1R - 258

2013 AGWMR

05 / 30 / 2014

www.CRAworld.com

2013 Annual Groundwater Monitoring Report

Former New Mexico "F" State Tank Battery Case NO. 1R258 **OGRID NO. 4323**

NE/4, SE, SECTION 24, T-19-S, R-36-E Latitude: N 32 38' 34.9" Longitude: W 103 18' 0.49"

Lea County, New Mexico

Prepared for: Chevron Environmental Management Company

Conestoga-Rovers & Associates

6320 Rothway, Suite 100 Houston, Texas 77040

www.CRAworld.com

2013 Annual Groundwater Monitoring Report

Former New Mexico "F" State Tank Battery
Case NO. 1R258
OGRID NO. 4323
NE/4, SE, SECTION 24, T-19-S, R-36-E
Latitude: N 32° 38′ 34.9″ Longitude: W 103° 18′ 0.49″
Lea County, New Mexico

Prepared for: Chevron Environmental Management Company

Conestoga-Rovers & Associates

6320 Rothway, Suite 100 Houston, Texas, 77040

Table of Contents

	Page
Section 1.0	Introduction1
Section 2.0	Regulatory Framework2
Section 3.0	Groundwater Sampling and Analysis33.1Potentiometric Surface Elevation and Gradient43.2Analytical Results4
Section 4.0	Corrective Action5
Section 5.0	Planned Activities5
Section 6.0	Summary of Findings6
	List of Figures (Following Text)
Figure 1	Site Location Map
Figure 2	Site Details Map
Figure 3	Groundwater Gradient Map- March 2013
Figure 4	Groundwater Gradient Map- June 2013
Figure 5	Groundwater Gradient Map- September 2013
Figure 6	Groundwater Gradient Map- November 2013
Figure 7	LNAPL Thickness Map- March 2013
Figure 8	LNAPL Thickness Map- June 2013
Figure 9	LNAPL Thickness Map- November 2013
Figure 10	LNAPL Thickness Map- November 2013
Figure 11	Groundwater BTEX and Chloride Concentrations Map- March 2013
Figure 12	Groundwater BTEX and Chloride Concentrations Map- June 2013
Figure 13	Groundwater BTEX and Chloride Concentrations Map- September 2013
Figure 14	Groundwater BTEX and Chloride Concentrations Map- November 2013

List of Tables (Following Text)

Table 1 Groundwater Gauging Summary

Table 2 Groundwater Analytical Summary

Table 3 Summary of Field Duplicate Sample Results

List of Appendices

Appendix A Certified Laboratory Reports

Appendix B MDPE Reports

Section 1.0 Introduction

This Annual Groundwater Monitoring Report presents groundwater data collected during the 2013 reporting period by Conestoga-Rovers & Associates (CRA) on behalf of Chevron Environmental Management Company (CEMC) at the former New Mexico State "F" Tank Battery (Site). Groundwater gauging and sampling events were performed in March, June, September and November 2013.

The Site is located on Lea County Road 41 (Maddox Road), approximately 3.1 miles northwest of Monument, New Mexico and situated in the northeast quarter (NE/4) of the southeast quarter (SE/4), Section 24, Township 19 South, Range 36 East, Lea County, New Mexico. Site Location and Site Details maps are illustrated on Figures 1 and 2, respectively. Historically, Texaco Exploration and Production, Inc. (Texaco) operated the Site as an oil field tank battery. An earthen emergency reserve pit was located approximately 175 feet north of the tank battery. The tank battery and reserve pit are visible in aerial photographs dated February 1949, July 1983, and June 1986. Sometime after 1986, the tank battery and associated equipment were removed from the Site. The former reserve pit was subsequently unearthed during construction of a production facility immediately south of the pit by the Amerada-Hess Corporation.

The former pit was excavated and approximately 7,400 cubic yards of soil and caliche rock were stockpiled adjacent to the excavated pit. In 1998, Highlander Environmental Corporation (Highlander) performed a subsurface assessment at the Site. The assessment activities included collection of soil samples from the sidewalls and bottom of the excavation and from the stockpiled soil generated during excavation activities. Chemical analyses of the soil samples confirmed that concentrations of all constituents of concern were below the New Mexico Oil Conservation Division (NMOCD) recommended remediation action levels for the Site. The soil sampling activities and laboratory analyses are documented in the *Subsurface Investigation Report, New Mexico "F" State Tank Battery, Lea County, New Mexico* (Highlander, September 1998). The *Annual Groundwater Monitoring Report, New Mexico "F" State Tank Battery, Lea County, New Mexico* (Larson and Associates, Inc., 2005) indicates that the pit was closed between September 1998 and November 2003 according to closure requirements stipulated by the NMOCD in correspondence dated January 20, 1999. The bottom of the excavated pit was lined with two feet of compacted clay, the stockpiled soil was returned to the excavation and the backfilled excavation was contoured to natural grade.

In addition to the soil assessment activities, nine monitor wells (MW-1 through MW-9) were installed at the Site between 1998 and 1999. Light non-aqueous phase liquid (LNAPL) was observed in wells MW-1 and MW-2. In November 1999, monitor wells (MW-1, MW-2 and MW-9) were plugged and abandoned and replaced with recovery wells (RW-1, RW-2 and RW-3). On

February 17, 2003, New Mexico Office of the State Engineer (NMOSE) approved applications (File No. L-11029, L-11030 and L-11031) submitted by Texaco to divert underground water for remediation of LNAPL. The remediation system was installed from October 2004 through February 2005 and was activated on February 14, 2005. Excluding brief periods for routine maintenance, the groundwater recovery/gradient control system operated from February 14, 2005 to November 20, 2006. In November 2006, LNAPL recovery methods were re-evaluated and the total fluids groundwater recovery/gradient control system was shut down. An LNAPL skimmer pump system was installed in RW-1 and absorbent socks were installed in RW-2 and RW-3 on November 28, 2006. This system is currently in operation at the Site. In addition, two Mobile Dual Phase Extraction (MDPE) events were conducted in 2012 using the newly installed RW-4. A skimmer pump was installed in RW-4 in October 2012. Semi-annual groundwater monitoring and weekly operation and maintenance (O&M) activities have been performed by CRA since 2005 along with annual reporting to the NMOCD for this Site.

Section 2.0 Regulatory Framework

The NMOCD guidelines require groundwater to be analyzed for potential contaminants as defined by the New Mexico Water Quality Control Commission (NMWQCC) regulations. In addition, the NMWQCC regulations provide the Human Health Standards for Groundwater. The constituent of concern (COC) in affected groundwater at the Site is LNAPL in the form of crude oil. In this report, groundwater analytical results for benzene, toluene, ethylbenzene, total xylenes (BTEX) and chloride are compared to the NMWQCC standards as shown in the following table:

Analyte	NMWQCC Standard for Groundwater (mg/L)
Benzene ¹	0.01
Toluene ¹	0.75
Ethylbenzene ¹	0.75
Total Xylenes ¹	0.62
Chloride ²	250

Notes:

- 1) ¹NMWQCC Human Health Standards per NMAC 20.6.2.3103A
- 2) ²NMWQCC Other Standards for Domestic Water Supply per NMAC 20.6.2.3103B

Section 3.0 Groundwater Sampling and Analysis

The Site is monitored with a network of six monitor wells (MW-3, MW-4, MW-5, MW-6, MW-7 and MW-8), two offsite water wells (WW-1 and WW-2) and four recovery wells (RW-1, RW-2, RW-3 and RW-4). Two semi-annual monitoring and sampling events were performed during the 2013 calendar year. The first (June) and second (November) semi-annual 2013 events included the collection of static fluid levels and LNAPL thicknesses (if present) in the six monitor wells and the four recovery wells and the collection of groundwater samples from all six monitor wells and the two offsite water wells. Static fluid levels are not collected from the two offsite water wells (WW-1 and WW-2). In addition, monitor well MW-6 was sampled in March and September 2013 to ensure the plume is not moving toward the offsite water wells (WW-1 and WW-2). At the request of the NMOCD, groundwater samples are collected from beneath the LNAPL in the recovery wells annually. This was conducted during the monitoring event for the first half of 2013 in June.

The semi-annual monitoring and sampling activities were performed on June 14 and November 27, 2013. Monitor well MW-6 was also sampled on March 14 and September 13, 2013. Prior to purging, static fluid levels and LNAPL thicknesses were measured and recorded from top of casing (TOC) with an electronic oil/water interface probe to the nearest hundredth of a foot. Purging was considered complete when three well volumes had been removed or the wells were purged dry. Geochemical field parameters including pH, temperature and conductivity were collected during the purging/sampling process. All non-disposable groundwater sampling equipment was decontaminated with a soap (Liquinox and potable water wash, a potable water rinse and a final deionized water rinse to minimize potential cross-contamination between each monitor well. Subsequent to the purging process, groundwater samples were collected using clean, disposable PVC bailers. During the third and fourth quarters, samples were collected using a non-purge method of Hydrosleeves. Laboratory-supplied sample containers were then filled directly from the disposable PVC bailers or Hydrosleeve.

Wells that contained measurable (>0.01 foot) LNAPL were not purged or sampled during the sampling events. Recovery wells were sampled beneath the product using Hydrosleeve™ to ensure that only water was collected rather than product. The groundwater samples were placed on ice in an insulated cooler and chilled to a temperature of approximately 4°C (40°F). The coolers were sealed for shipment and proper chain-of-custody documentation accompanied the samples to the laboratory (Xenco Laboratories located in Odessa, Texas) for analyses of BTEX by EPA Method 8021B and chlorides by EPA-approved methods. The fluids recovered and generated during the sampling events were containerized onsite in labeled drums and subsequently managed at an NMOCD-permitted salt water disposal (SWD) facility by Nabors Well Services LTD. (Nabors).

3.1 Potentiometric Surface Elevation and Gradient

Groundwater elevation data are presented in Table I. Groundwater gradient maps for each event (March, June, September and November 2013) are presented on Figures 3, 4, 5 and 6, respectively. Depth to groundwater ranged from 51.02 feet (RW-3) to 65.96 feet (MW-6) below TOC on March 14, 2013; from 51.41 feet (RW-3) to 67.08 (MW-6) feet below TOC on June 14, 2013; from 51.70 feet (RW-3) to 66.75 feet (MW-6) below TOC on September 13, 2013; and from 50.93 feet (RW-3) to 65.94 feet (MW-6) below TOC on November 20, 2013. Groundwater elevations at the Site appear to be consistent with historical levels with groundwater flow to the southeast. The maximum gradient observed during the 2013 calendar year was 0.007 feet/foot.

LNAPL was detected in monitor well MW-3 during the first semi-annual monitoring period in June 2013. LNAPL was detected in the four onsite recovery wells. Recovery wells RW-1 and RW-4 were not gauged in November and June, respectively, but historically contained measurable amounts of LNAPL. LNAPL was not detected in recovery wells RW-2 and RW-3 in March 2013. LNAPL thickness during the 2013 monitoring period ranged from 0.03 feet in RW-2 during the November event to 4.12 feet in RW-4 during the September event. LNAPL thickness maps for March, June, September and November 2013 are presented as Figures 7, 8, 9, and 10, respectively. LNAPL thickness data are summarized in Table I.

3.2 Analytical Results

Analytical results are summarized in Table II. Groundwater BTEX and chloride concentration maps for March, June, September and November 2013 are presented as FIGURES 11, 12, 13, and 14, respectively. BTEX and chloride concentrations were below the NMWQCC standards in the samples collected from the monitor wells, recovery wells and offsite water wells (WW-1 and WW-2) during the 2013 monitoring events with the exception of benzene in RW-4 during the June event (0.0245 mg/L). This data indicates any dissolved phase hydrocarbon plume at the site is small and stable in nature. It should be noted that the off-site water wells were sampled during the June event only.

Overall precision for both the sample collection and laboratory procedures were monitored using the results of the field duplicate samples. The relative percent differences (RPDs) between the results for the duplicate samples must be less than 30 percent. Two duplicate samples were collected during the 2013 monitoring period – one during the June event and one during the November event. All duplicate RPDs were within the 30 percent criterion. Duplicate and parent sample results are summarized on Table III. Copies of the certified analytical reports and chain-of-custody documentation are attached in Appendix A.

Section 4.0 Corrective Action

Excluding brief periods for routine maintenance, the Xitech® LNAPL skimmer pump system installed in RW-1 has operated continuously since installation. A Xitech® LNAPL skimmer pump was installed in RW-4 in October 2012 and, excluding brief periods for routine maintenance, has operated continuously from October to present. The best course of action for the two other recovery wells (RW-2 and RW-3) was determined to be absorbent socks based on trace amounts of LNAPL observed in both wells.

Operation and maintenance (O&M) activities were performed on a semi-monthly basis. Approximately 174 gallons of LNAPL were recovered in 2013 from the LNAPL recovery system connected to RW-1 and RW-4. Additionally, approximately 2,284 gallons of LNAPL have been recovered since November 28, 2006 when the skimmer system was installed in recovery well RW-1.

Eight 8-hour Mobile Dual Phase Extraction (MDPE) events were conducted in 2013 (February 14, March 22, April 9, May 15, June 14, July 10, October 21 and November 25) by AcuVac Remediation Inc. (AcuVac) to assist in reduction of LNAPL. The events were conducted on recovery well RW-1. Groundwater and LNAPL samples were frequently taken in 2,000 ml beakers to determine average LNAPL percentage of total volume.

During the eight MDPE events conducted throughout 2013, approximately 15,576 gallons of fluid were recovered, including 1,006 gallons of LNAPL. A total of 43 gallons of LNAPL vapors were recovered and burned as internal combustion engine fuel. This resulted in a total LNAPL recovery of 1,049 gallons. AcuVac reports for each event are located in Appendix B.

Collectively, approximately 3,779 gallons of LNAPL has been recovered through the remediation system and the MDPE events.

Section 5.0 Planned Activities

The Xitech® skimmer pump system will continue to be utilized for LNAPL recovery at the Site in 2014. The recovered product will be pumped into the 225-gallon tank which is situated inside a secondary containment structure. The remedial system will be analyzed to assess the potential benefit of enhancing the LNAPL recovery with the aid of a soil vapor extraction unit (SVE).

Semi-annual groundwater sampling events are scheduled to be performed during June and December 2014. Groundwater samples will be collected from all wells that do not contain measurable LNAPL and from the two offsite water wells (WW-1 and WW-2) during the semi-

annual groundwater sampling events. In addition, quarterly gauging and monitor well (MW-6) sampling activities will be performed to monitor the groundwater gradient and the potential for offsite plume migration. Semi-monthly O&M activities will also be performed to monitor the performance of the LNAPL recovery system and to periodically replace the absorbent socks in the other two recovery wells (RW-2 and RW-3) as necessary.

Section 6.0 Summary of Findings

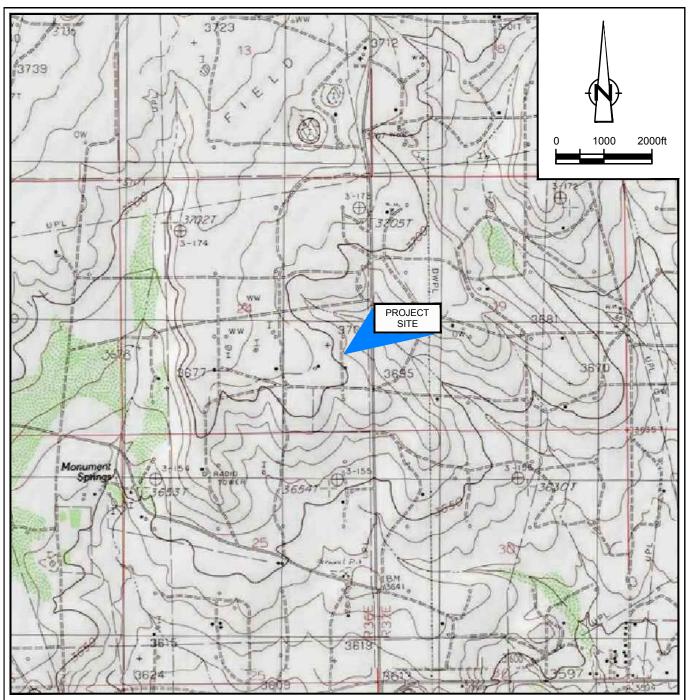
Based on groundwater monitoring activities performed at the Site, CRA presents the following summary:

- Depth to groundwater ranged from 51.02 feet to 65.96 feet below TOC on March 14; from 51.41 feet to 67.08 feet below TOC on June 14; from 51.70 feet to 66.75 feet below TOC on September 13; and from 50.93 feet to 65.94 feet below TOC on November 20. Groundwater elevations at the Site appear to be consistent with historical levels with groundwater flow to the southeast. The maximum gradient observed during the 2013 calendar year was 0.007 feet/foot.
- LNAPL was detected in monitoring well MW-3 during June 2013 monitoring period.
 Historically, four onsite recovery wells have contained measurable amounts of LNAPL.
 LNAPL thickness during the 2013 monitoring period ranged from 0.03 feet in RW-2 during the November event to 4.12 feet in RW-4 during the September event.
- BTEX and chloride concentrations were below the NMWQCC standards in all samples collected from the monitor wells, recovery wells and offsite water wells (WW-1 and WW-2) during the 2013 monitoring events with the exception of benzene in RW-4 during the June event (0.0245 mg/L). This data indicates any dissolved phase hydrocarbon plume at the site is small and stable in nature.
- Approximately 174 gallons of LNAPL were recovered in 2013 from RW-1 and RW-4.
 Additionally, approximately 2,284 gallons of LNAPL have been recovered since
 November 28, 2006 when the skimmer system was installed in recovery well RW-1.
- MDPE events conducted in 2013 resulted in approximately 15,576 gallons of fluid recovery, including 1,006 gallons of liquid LNAPL. A total of 43 gallons of LNAPL vapors were recovered and burned as internal combustion engine fuel. This resulted in a total LNAPL recovery of 1,049 gallons.

 Collectively, approximately 3,779 gallons of LNAPL has been recovered through the remediation system and the MDPE events.

Respectfully Submitted,

CONESTOGA - ROVERS & ASSOCIATES

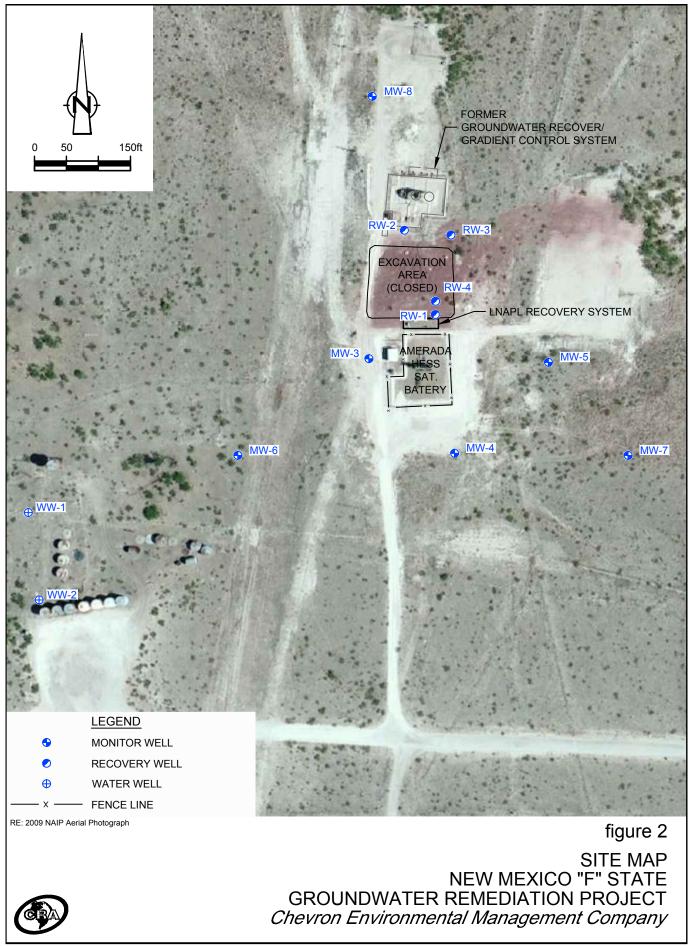

J. Scott Christ

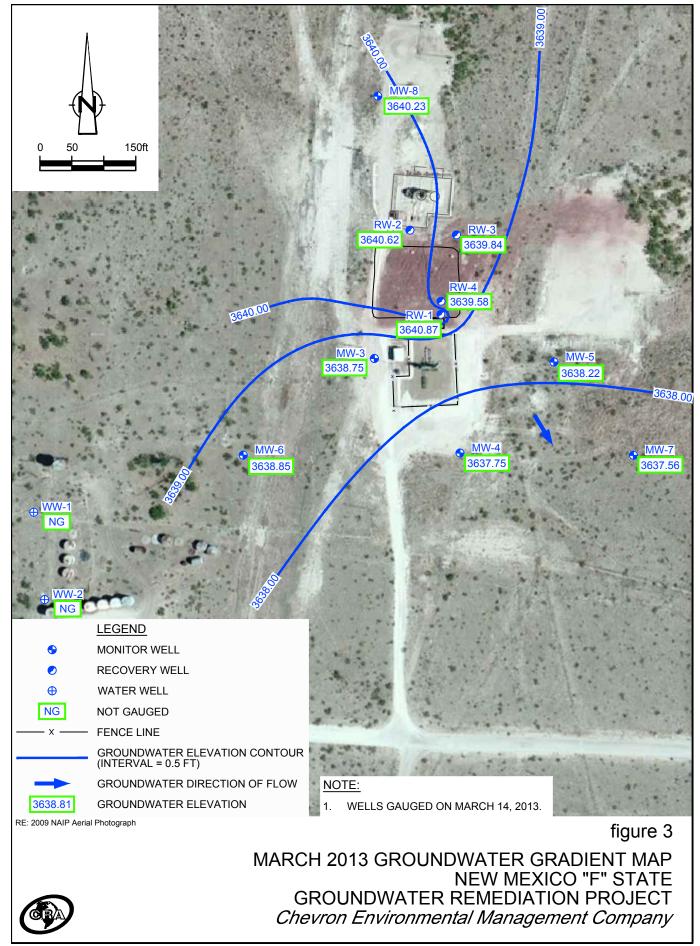
Project Manager

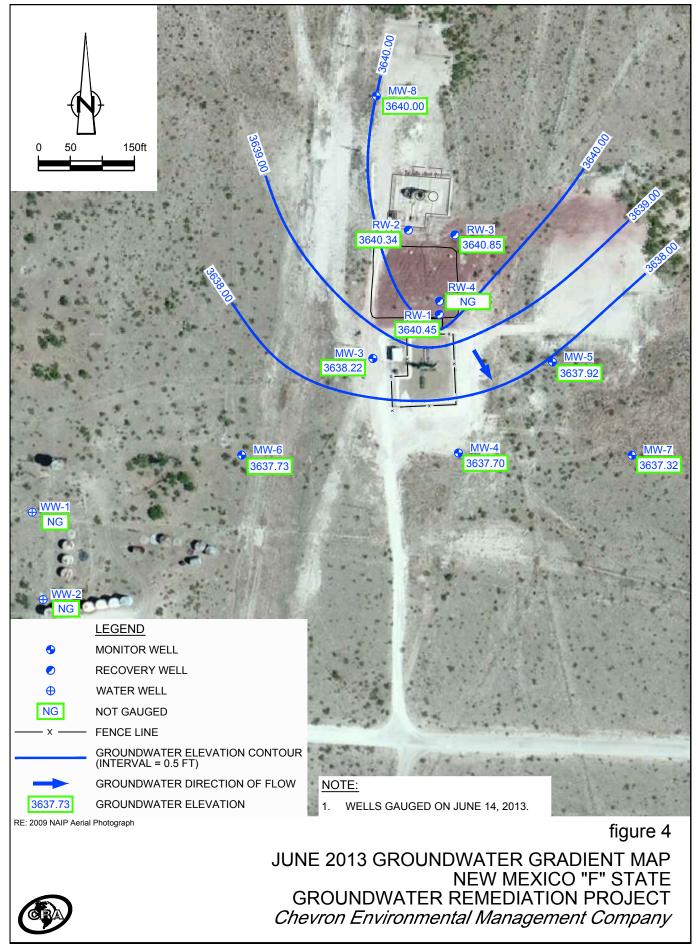
Joe Cruseturner

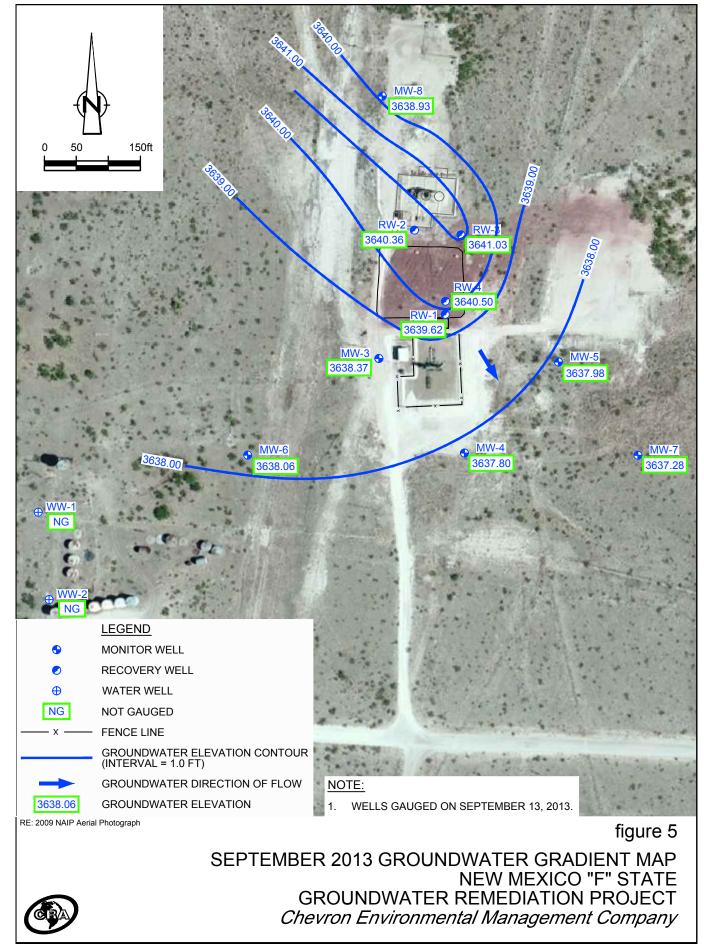
Principal

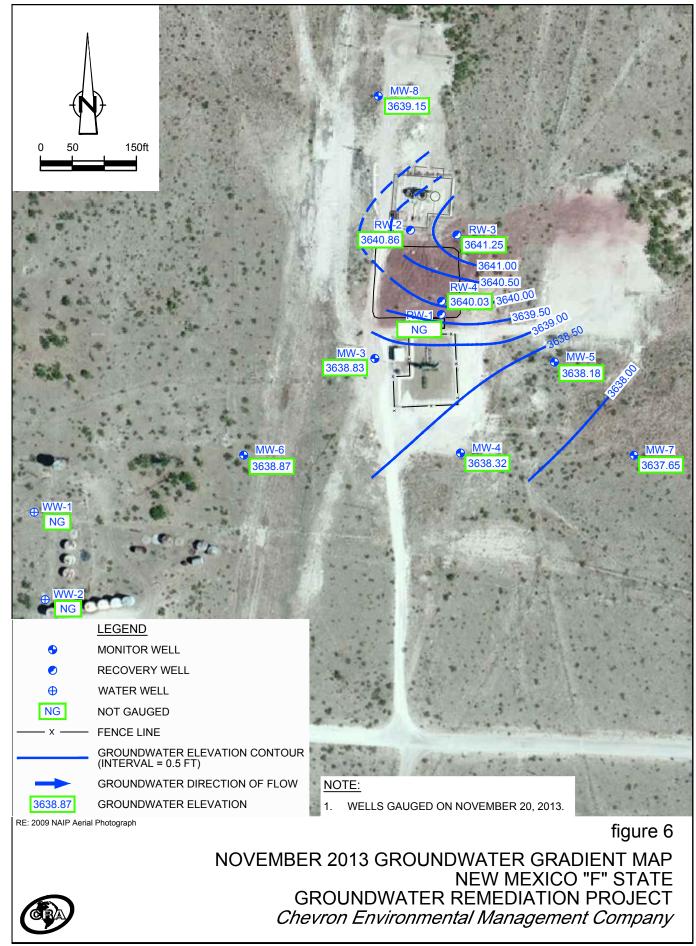
FIGURES

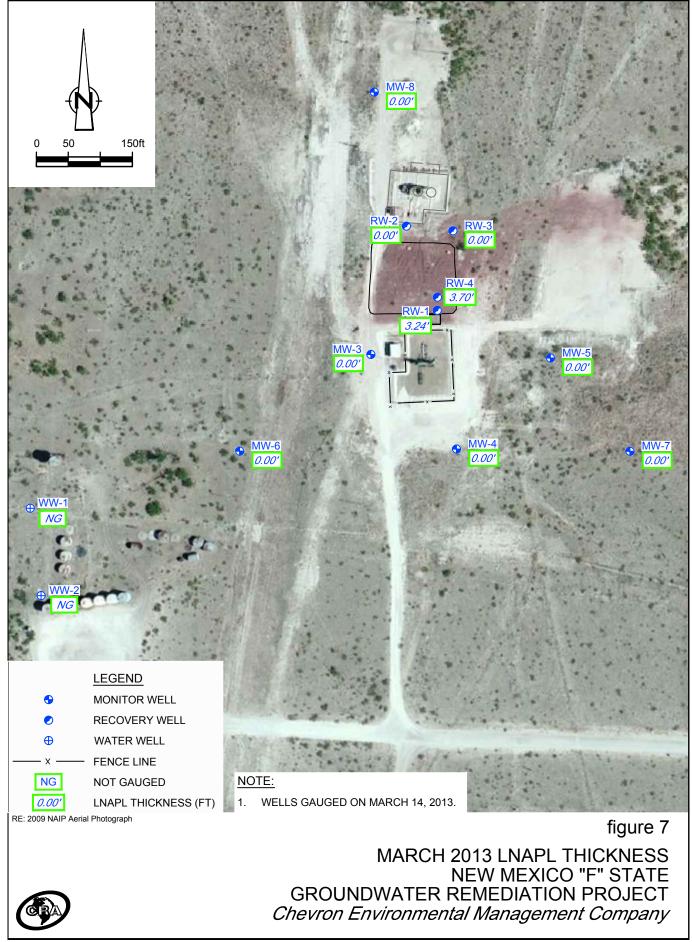

SOURCE: USGS 7.5 MINUTE QUAD "MONUMENT NORTH, NEW MEXICO"

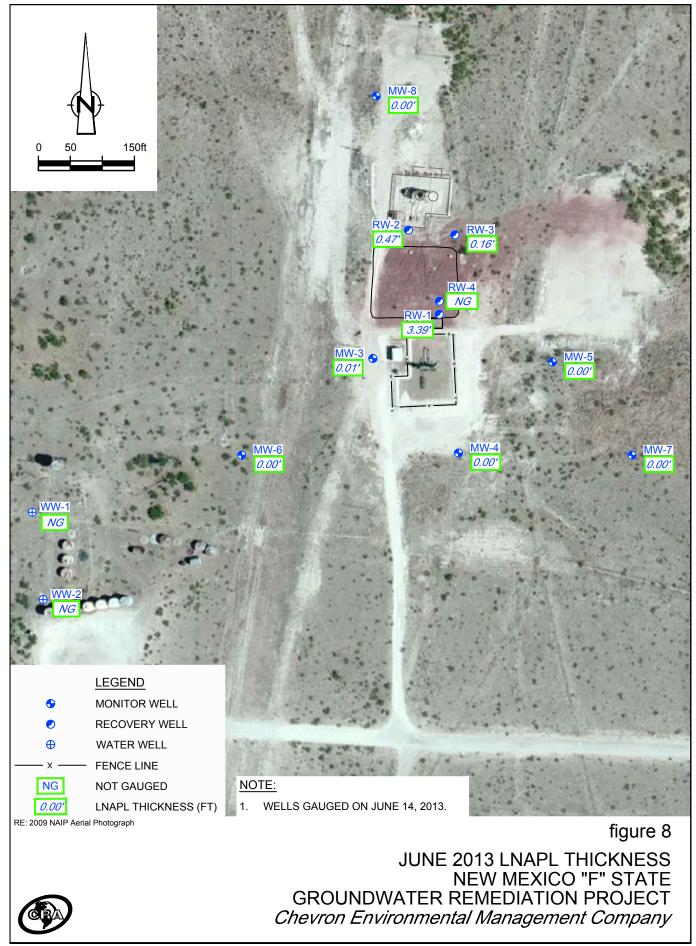

LAT/LONG: 32.6429° NORTH, 103.3013° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO EAST


figure 1

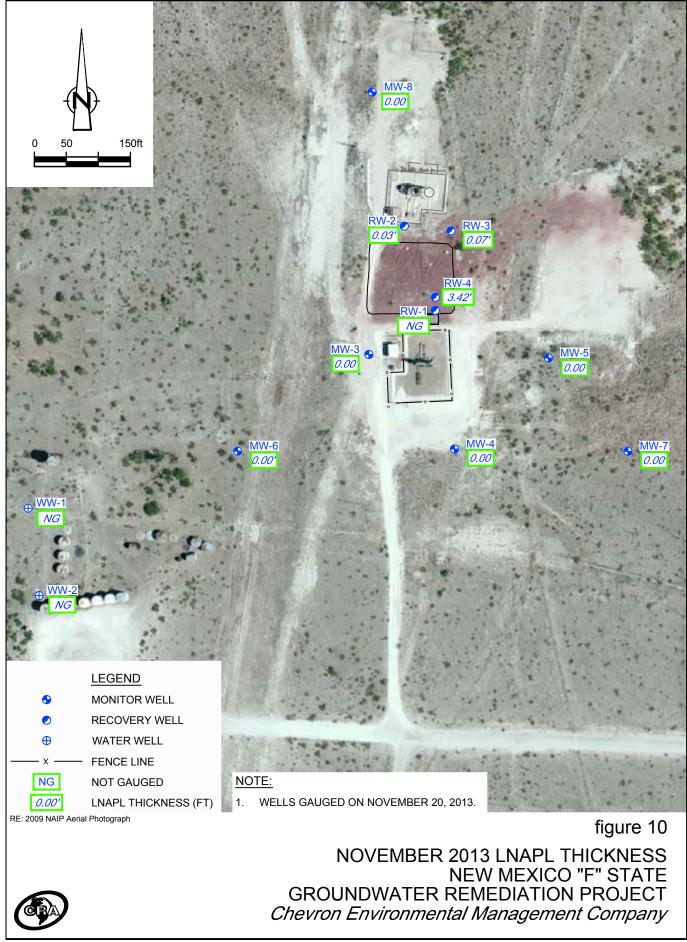

SITE LOCATION MAP NEW MEXICO "F" STATE GROUNDWATER REMEDIATION PROJECT LEA COUNTY, NEW MEXICO Chevron Environmental Management Company

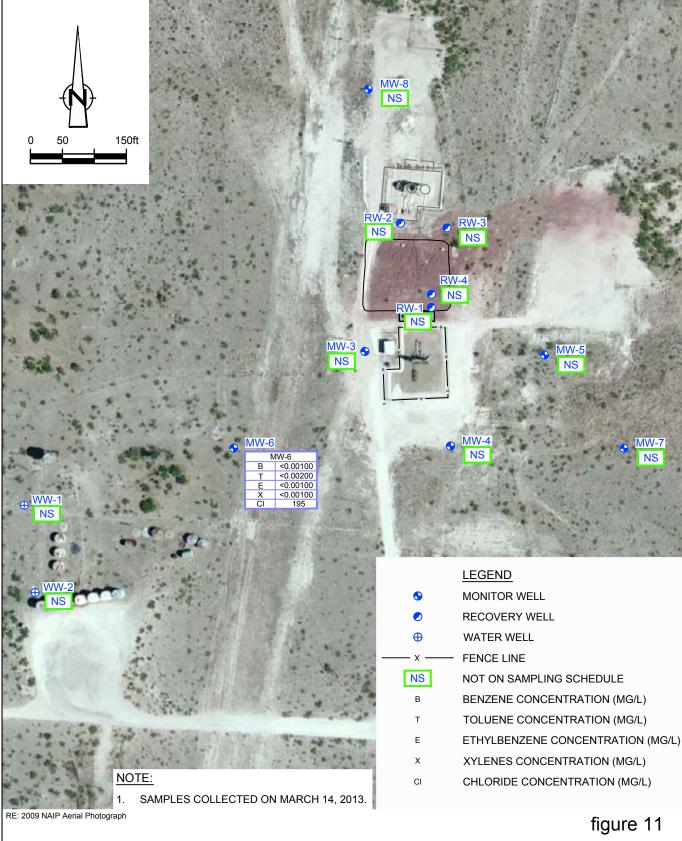


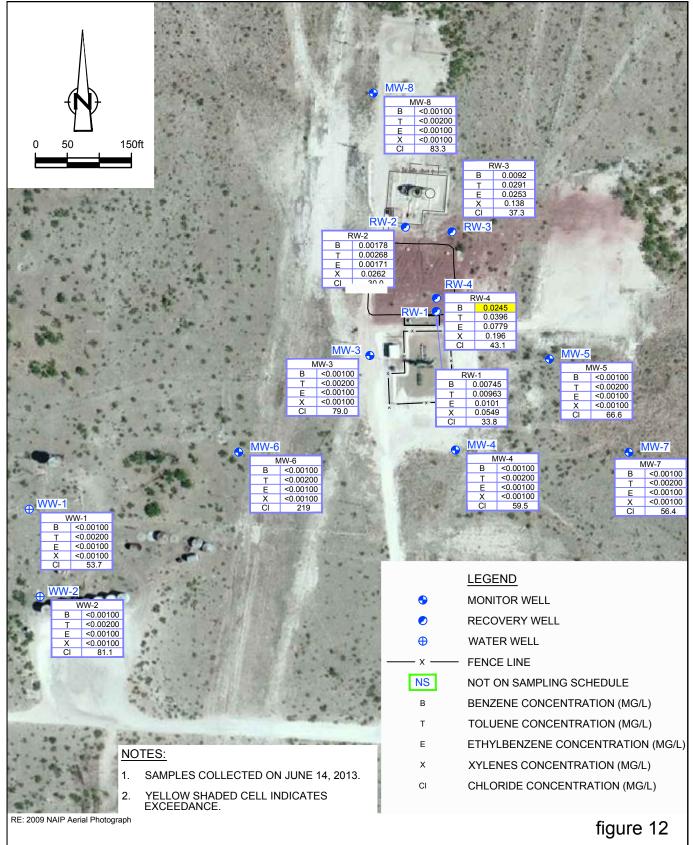


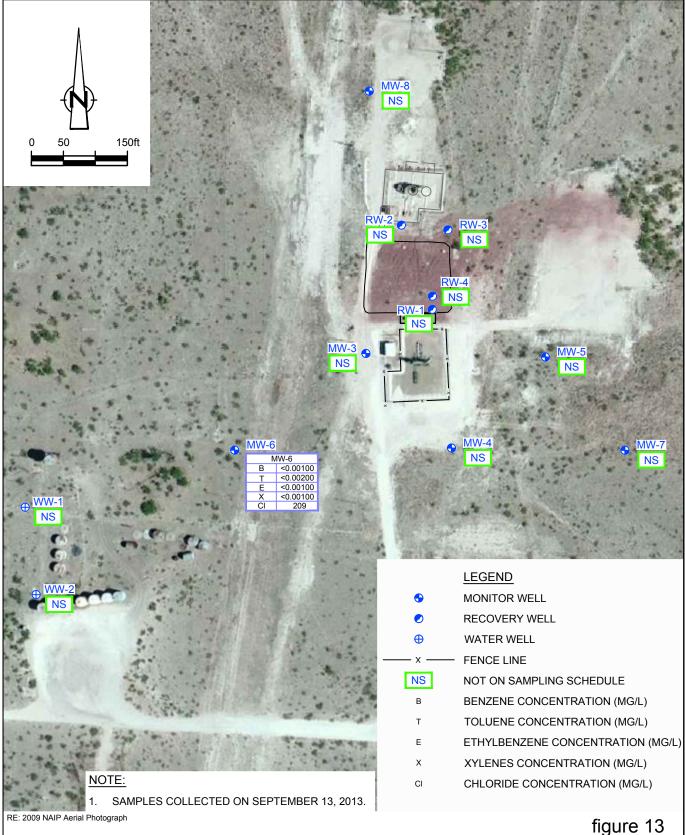











MARCH 2013 BTEX AND CHLORIDE CONCENTRATION MAP **NEW MEXICO "F" STATE** GROUNDWATER REMEDIATION PROJECT Chevron Environmental Management Company

JUNE 2013 BTEX AND CHLORIDE CONCENTRATION MAP NEW MEXICO "F" STATE GROUNDWATER REMEDIATION PROJECT Chevron Environmental Management Company

SEPTEMBER 2013 BTEX AND CHLORIDE CONCENTRATION MAP **NEW MEXICO "F" STATE** GROUNDWATER REMEDIATION PROJECT Chevron Environmental Management Company

figure 14

NOVEMBER 2013 BTEX AND CHLORIDE CONCENTRATION MAP NEW MEXICO "F" STATE GROUNDWATER REMEDIATION PROJECT Chevron Environmental Management Company

TABLES

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
тос	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs⁴)
MW-3	7/28/98	59.53			3637.32	70.15	55 <i>- 7</i> 5
3696.85	6/25/99	59.06			3637.79		
	2/16/01	59.53			3637.32		
	6/11/02	59.18			3637.67		
	11/26/02	59.54			3637.31		
	6/5/03	59.45			3637.40		
	12/3/03	59.47			3637.38		
	7/1/04	59.24			3637.61		
	12/20/04	58.83			3638.02		
	6/6/05	58.53			3638.32		
	12/12/05	57.83			3639.02		
	1/25/06	57.85			3639.00		
	5/1/06	57.59			3639.26		
	6/26/06	57.66			3639.19		
	12/18/06	57.54			3639.31		
	3/16/07	57.43			3639.42		
	6/26/07	57.31			3639.54		
	9/27/07	57.89			3638.96		
	12/13/07	57.61			3639.24		
	3/6/08	57.70			3639.15		
	6/4/08	57.33			3639.52		
	9/4/08	57.45			3639.40		
	11/13/08	57.26			3639.59		
	3/5/09	57.65			3639.20		
	6/15/09	57.40			3639.45		
	9/9/09	57.64			3639.21		
	11/19/09	57.59			3639.26		
	3/23/10	57.60			3639.25		
	6/29/10	58.34			3638.51		
	9/22/10	58.35			3638.50		
	11/8/10	57.61			3639.24		
	6/2/11	57.49			3639.36		
	12/1/11	58.42			3638.43		
	3/7/12	57.92			3638.93		
	6/26/12	57.89			3638.96		
	9/20/12	58.14			3638.71		
	11/26/12	58.15			3638.70		
	3/14/13	58.10			3638.75		
	6/14/13	58.64	58.63	0.01	3638.22		
	9/13/13	58.48			3638.37		
	11/20/13	58.02			3638.83		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs⁴)
MW-4	7/28/98	69.72			3629.78	68.74	55 <i>- 7</i> 5
3699.50	6/25/99	62.31			3637.19		
	2/16/01	62.52			3636.98		
	6/11/02	62.39			3637.11		
	11/26/02	62.76			3636.74		
	6/5/03	62.71			3636.79		
	12/3/03	62.67			3636.83		
	7/1/04	62.43			3637.07		
	12/20/04	62.02			3637.48		
	6/6/05	61.67			3637.83		
	12/12/05	61.11			3638.39		
	1/25/06	61.11			3638.39		
	5/1/06	60.89			3638.61		
	6/26/06	60.93			3638.57		
	12/18/06	60.79			3638.71		
	3/16/07	60.72			3638.78		
	6/26/07	60.60			3638.90		
	9/27/07	61.02			3638.48		
	12/13/07	60.88			3638.62		
	3/6/08	60.96			3638.54		
	6/4/08	60.65			3638.85		
	9/4/08	60.75			3638.75		
	11/13/08	60.61			3638.89		
	3/5/09	60.75			3638.75		
	6/15/09	60.70			3638.80		
	9/9/09	60.89			3638.61		
	11/19/09	60.83			3638.67		
	3/23/10	60.91			3638.59		
	6/29/10	61.54			3637.96		
	9/22/10	61.53			3637.97		
	11/8/10	60.96			3638.54		
	6/2/11	60.85			3638.65		
	12/1/11	61.63			3637.87		
	3/7/12	61.16			3638.34		
	6/26/12	61.16			3638.34		
	9/20/12	61.33			3638.17		
	11/26/12	61.40			3638.10		
	3/14/13	61.75			3637.75		
	6/14/13	61.80			3637.70		
	9/13/13	61.70			3637.80		
	11/20/13	61.18			3638.32		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs4)
MW-5	7/28/98	56.53			3636.99	66.80	48 - 68
3693.52	3/23/99	56.30			3637.22		
	6/25/99	56.21			3637.31		
	2/16/01	56.31			3637.21		
	6/11/02	56.29			3637.23		
	11/26/02	56.13			3637.39		
	6/5/03	56.53			3636.99		
	12/3/03	56.57			3636.95		
	7/1/04	54.34			3639.18		
	12/20/04	55.86			3637.66		
	6/6/05	55.60			3637.92		
	12/12/05	55.04			3638.48		
	1/25/06	55.07			3638.45		
	5/1/06	54.87			3638.65		
	6/26/06	54.86			3638.66		
	12/18/06	54.61			3638.91		
	3/16/07	54.51			3639.01		
	6/26/07	54.49			3639.03		
	9/27/07	54.84			3638.68		
	12/13/07	54.74			3638.78		
	3/6/08	54.77			3638.75		
	6/4/08	54.58			3638.94		
	9/4/08	54.68			3638.84		
	11/13/08	54.57			3638.95		
	3/5/09	54.70			3638.82		
	6/15/09	54.69			3638.83		
	9/9/09	54.86			3638.66		
	11/19/09	54.81			3638.71		
	3/23/10	54.80			3638.72		
	6/29/10	55.38			3638.14		
	9/22/10	55.40			3638.12		
	11/8/10	54.84			3638.68		
	6/2/11	55.79			3637.73		
	12/1/11	55.49			3638.03		
	3/7/12	54.14			3639.38		
	6/26/12	55.14			3638.38		
	9/20/12	55.28			3638.24		
	11/26/12	55.37			3638.15		
	3/14/13	55.30			3638.22		
	6/14/13	55.60			3637.92		
	9/13/13	55.54			3637.98		
	11/20/13	55.34			3638.18		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs4)
MW-6	7/28/98	67.86			3636.95	78.25	56 - 76
3704.81	6/25/99	67.25			3637.56		
	2/16/01	67.45			3637.36		
	6/11/02	67.19			3637.62		
	11/26/02	67.09			3637.72		
	6/5/03	67.57			3637.24		
	12/3/03	67.61			3637.20		
	7/1/04	67.43			3637.38		
	12/20/04	67.55			3637.26		
	6/6/05	66.41			3638.40		
	12/12/05	65.80			3639.01		
	1/25/06	65.88			3638.93		
	5/1/06	65.57			3639.24		
	6/26/06	65.82			3638.99		
	12/18/06	65.67			3639.14		
	3/16/07	65.69			3639.12		
	6/26/07	65.41			3639.40		
	9/27/07	66.46			3638.35		
	12/13/07	65.85			3638.96		
	3/6/08	65.68			3639.13		
	6/4/08	65.39			3639.42		
	9/4/08	65.56			3639.25		
	11/13/08	65.32			3639.49		
	3/5/09	65.88			3638.93		
	6/15/09	65.38			3639.43		
	9/9/09	65.67			3639.14		
	11/19/09	65.70			3639.11		
	3/23/10	65.69			3639.12		
	6/29/10	66.69			3638.12		
	9/22/10	66.72			3638.09		
	11/8/10	65.75			3639.06		
	3/3/11	65.52			3639.29		
	6/2/11	65.28			3639.53		
	9/27/11	67.49			3637.32		
	12/1/11	66.55			3638.26		
	3/7/12	66.00			3638.81		
	6/26/12	65.92			3638.89		
	9/20/12	66.53			3638.28		
	11/26/12	66.19			3638.62		
	3/14/13	65.96			3638.85		
	6/14/13	67.08			3637.73		
	9/13/13	66.75			3638.06		
	11/20/13	65.94			3638.87		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs⁴)
MW-7	7/28/98	58.08			3636.50	68.88	49 - 69
3694.58	6/25/99	57.96			3636.62		
	2/16/01	58.09			3636.49		
	6/11/02	58.07			3636.51		
	11/26/02	57.92	-1		3636.66	-1	
	6/5/03	58.29			3636.29		
	12/3/03	58.33			3636.25		
	7/1/04	58.11			3636.47		
	12/20/04	57.62			3636.96		
	6/6/05	57.28			3637.30		
	12/12/05	56.84			3637.74		
	1/25/06	56.86			3637.72		
	5/1/06	56.69			3637.89		
	6/26/06	56.66			3637.92		
	12/18/06	56.40			3638.18		
	3/16/07	56.28			3638.30		
	6/26/07	56.29			3638.29		
	9/27/07	56.59			3637.99		
	12/13/07	56.51			3638.07		
	3/6/08	56.56			3638.02		
	6/4/08	56.38			3638.20		
	9/4/08	56.49			3638.09		
	11/13/08	56.40			3638.18		
	3/5/09	56.48			3638.10		
	6/15/09	56.51			3638.07		
	9/9/09	56.64			3637.94		
	11/19/09	56.59			3637.99		
	3/23/10	56.63			3637.95		
	6/29/10	57.13			3637.45		
	9/22/10	57.15			3637.43		
	11/8/10	56.61			3637.97		
	6/2/11	56.58			3638.00		
	12/1/11	57.22			3637.36		
	3/7/12	56.92			3637.66		
	6/26/12	56.93			3637.65		
	9/20/12	57.01			3637.57		
	11/26/12	57.13			3637.45		
	3/14/13	57.02			3637.56		
	6/14/13	57.26			3637.32		
	9/13/13	57.30			3637.28		
	11/20/13	56.93			3637.65		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs⁴)
MW-8	7/28/98	56.84			3637.74	66.91	46 - 66
3694.58	6/25/99	56.56			3638.02		
	2/16/01	56.49			3638.09		
	6/11/02	56.56			3638.02		
	11/26/02	56.88			3637.70	-1	
	6/5/03	56.89			3637.69		
	12/3/03	56.91			3637.67		
	7/1/04	56.70			3637.88		
	12/20/04	56.23			3638.35		
	6/6/05	55.86			3638.72		
	12/12/05	55.29			3639.29		
	1/25/06	55.30			3639.28		
	5/1/06	55.03			3639.55		
	6/26/06	54.96			3639.62		
	12/18/06	54.80			3639.78		
	3/16/07	54.68			3639.90		
	6/26/07	54.67			3639.91		
	9/27/07	54.95			3639.63		
	12/13/07	54.82			3639.76		
	3/6/08	54.82			3639.76		
	6/4/08	54.70			3639.88		
	9/4/08	54.77			3639.81		
	11/13/08	54.73			3639.85		
	3/5/09	55.05			3639.53		
	6/15/09	54.96			3639.62		
	9/9/09	55.14			3639.44		
	11/19/09	55.12			3639.46		
	3/23/10	55.16			3639.42		
	6/29/10	55.66			3638.92		
	9/22/10	55.65			3638.93		
	11/8/10	55.12			3639.46		
	6/2/11	55.02			3639.56		
	12/1/11	55.73			3638.85		
	3/7/12	55.46			3639.12		
	6/26/12	55.46			3639.12		
	9/20/12	55.50			3639.08		
	11/26/12	55.57			3639.01		
	3/14/13	55.38			3639.20		
	6/14/13	55.61			3638.97		
	9/13/13	55.65			3638.93		
	11/20/13	55.43			3639.15		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs⁴)
RW-1	11/3/99	62.17			3637.75	71.60	55 <i>- 7</i> 5
3699.92	2/16/01	62.37	62.33	0.04	3637.59		
	6/11/02	62.26	61.86	0.40	3638.01		
	11/26/02	62.60	62.07	0.53	3637.79		
	6/5/03	63.00	62.84	0.16	3637.06		
	12/3/03	63.26	62.61	0.65	3637.23		
	7/1/04	63.10	62.33	0.77	3637.50		
	12/20/04	61.80	60.96	0.84	3638.86		
	3/1/05	Start	-up groundwa	ter extraction	system		
	1/25/06	61.44	58.67	2.77	3640.92		
	5/1/06	61.56	58.38	3.18	3641.16		
	6/26/06	61.59	58.43	3.16	3641.11		
	12/18/06	58.78	58.55	0.23	3641.34		
	3/16/07	58.74	58.30	0.44	3641.57		
	6/26/07	58.52	58.37	0.15	3641.53		
	9/27/07	59.40	58.72	0.68	3641.13		
	12/13/07	60.90	58.44	2.46	3641.23		
	3/6/08	59.24	58.76	0.48	3641.11		
	6/4/08	59.37	58.59	0.78	3641.25		
	9/4/08	58.82	58.51	0.31	3641.38		
	11/13/08	60.59	58.10	2.49	3641.56		
	3/5/09	60.82	58.50	2.32	3641.18		
	6/15/09	60.65	58.28	2.37	3641.40		
	9/9/09	60.77	58.50	2.27	3641.19		
	11/19/09	58.96	58.63	0.33	3641.26		
	3/23/10	61.51	58.80	2.71	3640.84		
	6/29/10	62.18	59.00	3.18	3640.59		
	9/22/10	60.80	58.40	2.40	3641.27		
	11/8/10	61.16	58.39	2.77	3641.24		
	6/2/11	61.23	58.36	2.87	3641.26		
	9/27/11	62.44	59.43	3.01	3640.18		
	12/2/11	62.24	58.95	3.29	3640.63		
	3/7/12	61.10	58.80	2.30	3640.88		
	6/26/12	60.80	58.80	2.00	3640.91		
	9/20/12	62.09	58.84	3.25	3640.75		
	11/26/12	62.24	58.85	3.39	3640.72		
	3/14/13	61.96	58.72	3.24	3640.87		
	6/14/13	62.51	59.12	3.39	3640.45		
	9/13/13	62.91	60.05	2.86	3639.58		
	11/20/13				t gauged		1
	11/20/13			110	ı gaugeu		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs4)
RW-2	10/14/99	53.28			3638.84	67.55	47 - 67
3692.12	11/3/99	53.95			3638.17		
	2/16/01	54.01			3638.11		
	6/11/02	54.01	53.98	0.03	3638.14		
	11/26/02	54.28	54.07	0.21	3638.02		
	6/5/03	53.24	53.23	0.01	3638.89		
	12/3/03	54.51	54.38	0.13	3637.72		
	7/1/04	54.51	54.12	0.39	3637.95		
	12/20/04	53.69	53.52	0.17	3638.58		
	3/1/05			iter extraction	•		
	1/25/06	51.55	51.14	0.41	3640.93		
	5/1/06	51.34	50.91	0.43	3641.16		
	6/26/06	51.02	50.94	0.08	3641.17		
	11/28/06	I	Absorbant socl	k installed in v	vell		
	12/18/06	51.15	50.75	0.40	3641.32		
	3/16/07	50.69			3641.43		
	6/26/07	50.63			3641.49		
	9/27/07	51.00			3641.12		
	12/13/07	50.92			3641.20		
	3/6/08	50.90			3641.22		
	6/4/08	50.65			3641.47		
	9/4/08	50.73			3641.39		
	11/13/08	50.67			3641.45		
	3/5/09	51.03			3641.09		
	6/15/09	50.80			3641.32		
	9/9/09	51.02	50.97	0.05	3641.14		
	11/19/09	50.99	50.95	0.04	3641.17		
	3/23/10	51.16			3640.96		
	6/29/10	51.70	51.56	0.14	3640.55		
	9/22/10	51.65			3640.47		
	11/8/10	50.95	50.94	0.01	3641.18		
	11/29/10	50.89			3641.23		
	2/4/11	50.82			3641.30		
	6/2/11	50.91			3641.21		
	9/27/11	51.97			3640.15		
	12/2/11	51.85			3640.27		
	3/7/12	51.33			3640.79		
	6/26/12	51.35	51.27	0.08	3640.84		
	9/20/12	51.54	51.40	0.14	3640.71		
	11/26/12	55.26			3636.86		
	3/14/13	51.50			3640.62		
	6/14/13	52.20	51.73	0.47	3640.34		
	9/13/13	51.89	51.74	0.15	3640.36		
	11/20/13	51.29	51.26	0.03	3640.86		

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC2)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs⁴)
RW-3	10/14/99	45.82			3645.04	68.65	47 - 67
3690.86	11/3/99	52.82			3638.04		
	2/16/01	52.88			3637.98		
	6/11/02	52.91			3637.95		
	11/26/02	53.22	53.15	0.07	3637.70		
	6/5/03	54.56	54.40	0.16	3636.44		
	12/3/03	53.23			3637.63		
	7/1/04	53.19	52.98	0.21	3637.85		
	12/20/04	52.50	52.09	0.41	3638.72		
	3/1/05	Start	-up groundwa	ter extraction	system		
	1/25/06	50.71			3640.15		
	5/1/06	50.49			3640.37		
	6/26/06	50.50			3640.36		
	11/28/06	I	Absorbant sock	k installed in w	vell		
	12/18/06	50.31			3640.55		
	3/16/07	50.22			3640.64		
	6/26/07	50.15			3640.71		
	9/27/07	50.49			3640.37		
	12/13/07	52.38			3638.48		
	3/6/08	50.42			3640.44		
	6/4/08	50.32			3640.54		
	9/4/08	50.90			3639.96		
	11/13/08	50.15			3640.71		
	3/5/09	50.49			3640.37		
	6/15/09	50.35			3640.51		
	9/9/09	50.52			3640.34		
	11/19/09	50.50			3640.36		
	3/23/10	51.73			3639.13		
	6/29/10	51.10			3639.76		
	9/22/10	51.22			3639.64		
	11/8/10	50.65	50.64	0.01	3640.22		
	2/4/11	50.39			3640.47		
	6/2/11	54.01			3636.85		
	9/27/11	51.55			3639.31		
	12/2/11	51.39			3639.47		
	3/7/12	51.00	50.85	0.15	3639.99		
	6/26/12	50.90	50.84	0.06	3640.01		
	9/20/12		•	Not Gauged -	Obstruction in Wel	1	
	11/26/12	Not Gauged - Obstruction in Well					
	3/14/13	51.02			3639.84	51.10	
	6/14/13	51.41	51.25	0.16	3640.85		
	9/13/13	51.70	51.02	0.68	3641.03		
	11/20/13	50.93	50.86	0.07	3641.25		

GROUNDWATER GAUGING SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY FORMER NEW MEXICO "F" STATE TANK BATTERY

LEA COUNTY, NEW MEXICO

Well ID		Depth to	Depth to	LNAPL	Groundwater	Total	Well Screen
TOC	Collection	Groundwater	LNAPL	Thickness	Elevation	Well Depth	Interval
Elevation	Date	(ft TOC²)	(ft TOC)	(ft)	(ft above MSL³)	(ft TOC)	(ft bgs4)
RW-4	6/2/11	60.44	59.40	1.04	3640.43	75.00	35-75
3699.94	6/21/11	63.15	59.35	3.80	3640.20		
	9/27/11	65.66	59.95	5.71	3639.40		
	12/2/11	63.54	59.82	3.72	3639.74		
	3/7/12	60.21	59.90	0.31	3640.01		
	6/26/12	63.06	59.55	3.51	3640.03		
	9/20/12	63.10	56.08	7.02	3643.14		
	11/26/12	63.67	59.70	3.97	3639.83		
	3/14/13	63.68	59.98	3.70	3639.58		
	6/14/13		not g	gauged			
	9/13/13	63.14	59.02	4.12	3640.50		
	11/20/13	62.98	59.56	3.42	3640.03		
WW-1	6/11/02	66.35			3637.82	Unknown	Unknown
3704.17	6/5/03	68.25			3635.92		
WW-2	6/11/02	66.18			3637.66	Unknown	Unknown
3703.84	11/26/02	66.18			3637.66		
	6/5/03	68.54			3635.30		

Notes:

- 1. Data through June 6, 2005 provided by Larson & Associates, Inc.
- 2. TOC Top of Casing.
- 3. MSL Mean Sea Level.
- 4. bgs Below ground surface.
- 5. Corrected groundwater elevations from July 1998 to December 2006 were calculated using LNAPL specific gravity of 0.88.
- 6. Corrected groundwater elevations from January 2007 to current were calculated using LNAPL specific gravity of 0.897.
- 7. MW-1, MW-2 and MW-9 were plugged and abandoned and replaced with RW-1, RW-2 and RW-3 in November 1999.
- 8. Monitor wells (MWs) are 2-inch in diameter; Recovery wells (RWs) are 4-inch in diameter.

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New M	exico Water Quality	Control Commiss	ion Groundwater S	tandard	
		0.011	0.751	0.751	0.621	250.0 ²
MW-3	7/28/98	0.003	< 0.001	<0.001	0.002	36.0
	2/16/01	<0.005	<0.005	<0.005	<0.005	31
	6/12/02	<0.005	<0.005	<0.005	<0.005	27.1
	11/26/03	<0.001	<0.001	<0.001	<0.001	31.9
	6/6/03	<0.001	<0.001	<0.001	<0.001	27.5
	12/4/03	<0.001	<0.001	<0.001	0.0017	26.1
	7/2/04	<0.005	<0.005	<0.005	< 0.005	28.0
	12/21/04	< 0.005	<0.005	< 0.005	< 0.005	32.3
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	34.3
	12/13/05	< 0.005	<0.005	<0.005	<0.010	29.3
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	31.1
	12/19/06	< 0.005	<0.005	< 0.005	< 0.001	28.0
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	31.0
	12/14/07	<0.000500	<0.000500	< 0.000500	<0.00100	31
	6/5/08	< 0.00037	<0.00039	< 0.00042	<0.00035	30
DUP	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	32
	11/14/08	< 0.00037	<0.00039	<0.00042	< 0.00035	32
	6/16/09	< 0.00037	<0.00039	<0.00042	<0.00035	35
	11/20/09	< 0.00037	<0.00039	<0.00042	< 0.00035	40
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	50.4
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	64.0
	6/2/11	0.00053J	0.00061J	<0.0010	<0.0030	90.7
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	85.0
DUP	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	85.7
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	114
	11/26/12	<0.000100	<0.000200	0.00116	0.00345	94.6
	6/14/13	<0.001	<0.002	<0.001	<0.001	79.0
	11/27/13	<0.001	<0.002	<0.001	<0.001	101

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New M	exico Water Quality	Control Commiss	ion Groundwater St	andard	
		0.011	0.751	0.751	0.621	250.0 ²
MW-4	7/28/98	<0.001	<0.001	<0.001	<0.001	94.0
	2/16/01	< 0.005	<0.005	<0.005	0.008	170
	6/12/02	< 0.005	<0.005	< 0.005	<0.005	85.6
	11/26/03	0.002	<0.001	<0.001	<0.005	160.0
	6/6/03	<0.001	<0.001	<0.001	0.0026	111.0
	12/4/03	0.0015	<0.001	<0.001	<0.001	104.0
	7/2/04	<0.001	<0.001	<0.001	<0.001	72.4
	12/21/04	< 0.005	<0.005	<0.005	<0.005	59.7
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	58.4
	12/13/05	< 0.005	<0.005	<0.005	<0.010	55.3
	6/27/06	0.000597	<0.000500	<0.000500	<0.001	48.8
	12/19/06	< 0.005	<0.005	<0.005	<0.001	34.0
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	39.0
	12/13/07	0.000968	<0.000500	<0.000500	0.00254	63.1
	6/5/08	<0.00037	<0.00039	<0.00042	<0.00035	61.0
	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	52.0
	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	59.0
	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	58.0
	7/1/10	0.00032J	<0.00020	<0.00020	<0.00070	54.5
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	57.5
DUP	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	58.4
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	49.8
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	142.0
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	73.7
	11/26/12	< 0.000100	<0.000200	<0.000100	<0.000100	69.3
	6/14/13	<0.001	<0.002	<0.001	< 0.001	59.5
	11/27/13	<0.001	<0.002	<0.001	<0.001	65.1

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride					
	New M	exico Water Quality	Control Commiss	ion Groundwater St	andard						
	0.01^{1} 0.75^{1} 0.75^{1} 0.62^{1} 250.0^{2}										
MW-5	7/28/98	<0.001	<0.001	<0.001	<0.001	360.0					
	2/16/01	<0.005	<0.005	<0.005	<0.005	120					
	6/12/02	<0.005	<0.005	<0.005	<0.005	90.2					
	11/26/03	0.002	<0.001	0.003	<0.002	59.1					
	6/6/03	<0.001	<0.001	<0.001	<0.001	48.6					
	12/4/03	<0.001	<0.001	<0.001	<0.001	36.5					
	7/2/04	< 0.005	<0.005	< 0.005	<0.005	32.9					
	12/21/04	<0.005	<0.005	<0.005	<0.005	39.8					
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	41.1					
	12/13/05	<0.005	<0.005	< 0.005	<0.010	39.7					
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	43.2					
	12/19/06	<0.005	<0.005	<0.005	<0.001	51.0					
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	67					
	12/14/07	<0.000500	<0.000500	<0.000500	<0.00100	101					
	6/4/08	<0.00037	<0.00039	<0.00042	<0.00035	78.7					
	11/14/08	<0.00037	<0.00039	<0.00042	<0.00035	100					
	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	140					
	11/20/09	<0.00037	<0.00039	<0.00042	<0.00035	110					
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	115					
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	168					
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	134					
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	172					
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	137					
	11/26/12	<0.000100	<0.000200	<0.000100	<0.000100	110					
	6/14/13	<0.001	<0.002	<0.001	< 0.001	66.6					
	11/27/13	<0.001	<0.002	<0.001	<0.001	72.3					

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New Me	exico Water Quality	Control Commiss	ion Groundwater St	andard	
		0.011	0.751	0.75¹	0.621	250.0 ²
MW-6	7/28/98	<0.001	< 0.001	< 0.001	<0.001	43.0
	2/16/01	<0.005	<0.005	0.006	0.006	52
	6/12/02	<0.001	<0.001	< 0.001	<0.001	54.1
	11/26/03	<0.001	<0.001	<0.001	<0.002	65.0
	6/6/03	<0.001	<0.001	< 0.001	<0.001	43.7
	12/4/03	<0.001	<0.001	<0.001	<0.001	45.3
	7/2/04	<0.001	<0.001	<0.001	<0.001	57.5
	12/21/04	< 0.005	<0.005	< 0.005	<0.005	61.3
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	66.7
	12/13/05	<0.005	<0.005	<0.005	<0.010	80.9
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	86.4
	12/19/06	<0.005	<0.005	< 0.005	<0.001	88.0
	3/16/07	<0.000500	<0.000500	<0.000500	<0.001	92.2
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	110
	9/27/07	<0.000500	<0.000500	<0.000500	<0.00100	99.5
	12/14/07	<0.000500	<0.000500	<0.000500	<0.00100	99.2
	3/6/08	<0.000370	< 0.000390	<0.000420	<0.000350	88.8
	6/4/08	< 0.00037	<0.00039	< 0.00042	<0.00035	117
	9/4/08	< 0.00037	<0.00039	< 0.00042	<0.00035	130
	11/14/08	< 0.00037	<0.00039	< 0.00042	<0.00035	130
	3/5/09	<0.00037	<0.00039	< 0.00042	<0.00035	140
	6/16/09	< 0.00037	<0.00039	< 0.00042	<0.00035	160
	9/9/09	< 0.00037	<0.00039	< 0.00042	<0.00035	160
	11/20/09	< 0.00037	<0.00039	< 0.00042	<0.00035	140
	3/23/10	<0.00020	<0.00020	<0.00020	<0.00070	169
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	161
DUP	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	169
	9/22/10	0.00033J	<0.00010	<0.00010	<0.00030	157
	11/9/10	<0.00010	<0.00010	0.0010	<0.00030	182
	3/3/11	<0.00010	<0.00010	<0.00010	<0.00030	225
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	215
DUP	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	221
	9/27/11	<0.00010	<0.00010	< 0.00010	<0.00030	222
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	198
	3/7/12	<0.000100	<0.000200	<0.000100	<0.000100	189
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	259
DUP	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	260
	9/20/12	<0.000100	<0.000200	<0.000100	<0.000100	221
	11/26/12	<0.000100	<0.000200	<0.000100	<0.000100	176
	3/14/13	< 0.001	<0.002	<0.001	< 0.001	195
	6/14/13	< 0.001	<0.002	<0.001	< 0.001	219
	9/13/13	<0.001	<0.002	<0.001	<0.001	209
	11/27/13	<0.001	<0.002	<0.001	<0.001	220

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride				
	New M	exico Water Quality	Control Commiss	ion Groundwater St	tandard					
	0.01^{1} 0.75^{1} 0.75^{1} 0.62^{1} 250.0^{2}									
MW-7	7/28/98	<0.001	<0.001	<0.001	<0.001	82.0				
	2/16/01	<0.005	< 0.005	<0.005	< 0.005	150				
	6/12/02	< 0.005	<0.005	<0.005	<0.005	96.7				
	11/26/03	<0.001	< 0.001	<0.001	<0.002	133.0				
	6/6/03	< 0.001	<0.001	<0.001	<0.001	199.0				
	12/4/03	<0.001	< 0.001	<0.001	<0.001	230.0				
	7/2/04	< 0.001	<0.001	<0.001	<0.001	215.0				
	12/21/04	< 0.005	<0.005	< 0.005	< 0.005	274.0				
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	221.0				
	12/13/05	< 0.005	<0.005	<0.005	<0.010	204.0				
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	158.0				
	12/19/06	< 0.005	<0.005	<0.005	<0.001	130.0				
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	110				
	12/13/07	<0.000500	<0.000500	<0.000500	<0.00100	135				
	6/5/08	< 0.00037	<0.00039	<0.00042	<0.00035	72.4				
	11/14/08	< 0.00037	<0.00039	<0.00042	< 0.00035	66				
	6/16/09	<0.00037	<0.00039	<0.00042	<0.00035	58				
	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	47				
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	51.2				
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	67.1				
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	69.4				
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	76.6				
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	91.5				
	11/26/12	<0.000100	<0.000200	<0.000100	<0.000100	67.7				
	6/14/13	<0.001	<0.002	<0.001	<0.001	56.4				
	11/27/13	< 0.001	<0.002	<0.001	<0.001	78.1				

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New Mo	exico Water Quality	Control Commiss	ion Groundwater St	tandard	
		0.011	0.75¹	0.75¹	0.621	250.0 ²
MW-8	7/28/98	<0.001	<0.001	<0.001	<0.001	29.0
	2/16/01	<0.005	<0.005	<0.005	<0.005	94
	6/12/02	<0.005	< 0.005	<0.005	<0.005	180.0
	11/26/03	<0.001	<0.001	<0.001	<0.002	239.0
	6/6/03	<0.001	<0.001	<0.001	<0.001	244.0
	12/4/03	< 0.001	< 0.001	<0.001	< 0.001	251.0
	7/2/04	<0.005	<0.005	<0.005	< 0.005	206.0
	12/21/04	< 0.005	<0.005	<0.005	< 0.005	244.0
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	227.0
	12/13/05	<0.005	< 0.005	< 0.005	<0.010	144.0
	6/27/06	<0.000500	<0.000500	< 0.000500	<0.001	92.6
	12/19/06	<0.005	<0.005	< 0.005	<0.001	83.0
	6/27/07	<0.000500	<0.000500	< 0.000500	<0.00100	79
	12/13/07	<0.000500	<0.000500	< 0.000500	<0.00100	82.9
	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	54.9
	11/14/08	< 0.00037	<0.00039	<0.00042	<0.00035	47
	6/16/09	< 0.00037	<0.00039	<0.00042	<0.00035	45
	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	36
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	38.4
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	47.6
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	51.8
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	72.7
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	95.7
	11/26/12	<0.000100	<0.000200	<0.000100	<0.000100	77.6
	6/14/13	<0.001	<0.002	<0.001	<0.001	83.3
DUP	6/14/13	<0.001	<0.002	<0.001	<0.001	84.3
	11/27/13	<0.001	<0.002	<0.001	<0.001	72.2
DUP	11/27/13	<0.001	<0.002	<0.001	<0.001	71.3

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New M	exico Water Quality	Control Commiss	ion Groundwater S	tandard	
		0.011	0.751	0.751	0.621	250.0 ²
WW-1	7/28/98	<0.001	<0.001	<0.001	<0.001	100.0
	6/12/02	<0.001	<0.001	<0.001	<0.001	43.6
	11/26/02	<0.001	<0.001	<0.001	<0.002	80.0
	6/6/03	<0.001	<0.001	<0.001	<0.001	73.4
	12/4/03	<0.001	<0.001	<0.001	<0.001	65.3
	7/2/04	<0.001	<0.001	<0.001	<0.001	66.5
	12/21/04	<0.005	<0.005	<0.005	<0.005	74.3
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	63.4
	12/13/05	< 0.005	< 0.005	<0.005	<0.010	41.1
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	50.0
	12/19/06	< 0.005	< 0.005	<0.005	<0.001	80.0
	6/27/07	<0.000500	<0.000500	<0.000500	<0.00100	52
	12/14/07	<0.000500	<0.000500	<0.000500	<0.00100	59.8
	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	64.1
DUP	6/4/08	< 0.00037	<0.00039	<0.00042	<0.00035	64.4
	11/14/08	<0.00037	<0.00039	< 0.00042	<0.00035	73
	6/17/09	< 0.00037	<0.00039	<0.00042	<0.00035	60
	11/20/09	< 0.00037	<0.00039	<0.00042	<0.00035	64
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	41.0
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	77.0
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	73.6
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	50.2
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	90.0
	11/26/12	<0.000100	<0.000200	<0.000100	<0.000100	69.9
	6/14/13	<0.001	<0.002	<0.001	<0.001	53.7
	11/27/13			Not Sampled		

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride
	New Me	exico Water Quality	Control Commiss	ion Groundwater S	tandard	
		0.011	0.751	0.75¹	0.621	250.0 ²
WW-2	6/12/02	<0.001	<0.001	<0.001	<0.001	53.7
	11/26/02	<0.001	<0.001	<0.001	<0.002	70.9
	6/6/03	<0.001	<0.001	<0.001	<0.001	71.1
	12/4/03	<0.001	<0.001	<0.001	<0.001	52.4
	7/2/04	<0.001	<0.001	<0.001	<0.001	51.0
	12/21/04	<0.005	<0.005	<0.005	<0.005	55.6
	6/6/05	<0.00100	<0.00100	<0.00100	<0.00100	55.3
	12/13/05	<0.005	<0.005	<0.005	<0.010	75.3
	6/27/06	<0.000500	<0.000500	<0.000500	<0.001	69.7
	12/19/06	<0.005	<0.005	<0.005	<0.001	57.0
	6/27/07	<0.000500	< 0.000500	<0.000500	<0.00100	46
	12/14/07	<0.000500	< 0.000500	< 0.000500	<0.00100	83.1
	6/4/08	< 0.00037	<0.00039	<0.00042	< 0.00035	65.9
	11/14/08	< 0.00037	<0.00039	<0.00042	< 0.00035	73
	6/17/09	< 0.00037	<0.00039	<0.00042	< 0.00035	60
	11/20/09		Not Sa	mpled - Pump Not V	Vorking	
	7/1/10	<0.00020	<0.00020	<0.00020	<0.00070	66.3
	11/9/10	<0.00010	<0.00010	<0.00010	<0.00030	77.2
	6/2/11	<0.00010	<0.00010	<0.00010	<0.00030	74.9
	12/2/11	<0.00010	<0.00010	<0.00010	<0.00030	76.5
	6/26/12	<0.000100	<0.000100	<0.000100	<0.000100	63.1
	11/26/12	<0.000100	<0.000200	< 0.000100	<0.000100	50.3
	6/14/13	< 0.001	< 0.002	< 0.001	< 0.001	81.1
	11/27/13		,	Not Sampled		
RW-1³	6/5/08	0.0119	< 0.0039	<0.0042	<0.0035	36.2
	6/17/09	0.012	0.0055	0.0018	0.012	49.0
	7/1/10	0.022	0.00070J	0.0027	0.017	41.1
	6/26/12	0.0113	<0.00100	0.00514	0.0350	44.1
	6/27/13	0.00745	0.00963	0.0101	0.0549	33.8
RW-2	6/27/07	0.00287	<0.0025	<0.00250	0.0303	60
	6/5/08	< 0.0037	<0.0039	<0.0042	<0.0035	51.1
	6/17/09	<0.00037	0.0046	<0.00042	0.016	44
	7/1/10	0.0016	<0.00020	<0.00020	0.0067	30.1
	6/26/12	<0.00100	<0.00100	<0.00100	0.00362	43.9
	6/14/13	0.00178	0.00268	0.00171	0.0262	30

GROUNDWATER ANALYTICAL SUMMARY CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY FORMER NEW MEXICO "F" STATE TANK BATTERY LEA COUNTY, NEW MEXICO

Sample ID	Sample Date	Benzene	Toluene	Ethyl-benzene	Total Xylenes	Chloride					
	New Mexico Water Quality Control Commission Groundwater Standard										
		0.011	0.751	0.751	0.621	250.0 ²					
RW-3	6/11/02	< 0.005	< 0.005	<0.005	<0.005	25.9					
	12/3/04	<0.001	<0.001	<0.001	<0.001	36.6					
	6/27/07	0.00855	<0.00250	0.0122	0.0270	130					
	6/5/08	< 0.0037	<0.0039	<0.0042	0.0129	90.6					
	6/17/09	0.0052	0.0042	0.011	0.0250	74					
	11/20/09	< 0.00037	0.001	0.0027	0.0076	60					
DUP	11/20/09	< 0.00037	0.0013	0.003	0.0080	60					
	7/1/10	0.0065	<0.00020	0.0066	0.0030	68.3					
	6/26/12	0.00682	<0.00100	<0.00100	<0.00100	55.4					
	6/14/13	0.0092	0.0291	0.0253	0.138	37.3					
RW-4	6/26/12	0.00221	<0.00100	0.00410	0.0188	65.1					
	6/27/13	0.0245	0.0396	0.0779	0.196	43.1					

Notes:

- 1. Result shown in mg/L.
- 2. Data through June 6, 2005 provided by Larson & Associates, Inc.
- 3. Bold indicates detection above method detection limit.
- 4. Shaded cells indicate New Mexico Water Quality Control Commission (NMWQCC) exceedance.
- 5. 1 Human Health Standards for Groundwater.
- 6. ²Other Standards for Domestic Water Supply.
- 7. $^3\mathrm{RW}\text{-}1$ was sampled by dropping a disposable PVC bailer below 3.18 feet of LNAPL.

SUMMARY OF FIELD DUPLICATE SAMPLE RESULTS CHEVRON ENVIRONMENTAL MANAGEMENT COMPANY F STATE

LEA COUNTY, NEW MEXICO

Date	Original	Chloride Sample	Duplicate	Chloride Sample	RPD¹
Date	Sample ID	Result (mg/L)	Sample ID	Result (mg/L)	KI D
6/4/08	WW-1	64.1	DUP	64.4	0.4669
11/14/08	MW-3	32	DUP	32	0.0000
11/20/10	RW-3	60	DUP	60	0.0000
7/1/10	MW-6	161	DUP	169	4.8485
11/9/10	MW-4	57.5	DUP	58.4	1.5531
6/2/11	MW-6	215	DUP	221	2.7523
12/2/11	MW-3	85	DUP	85.7	0.8202
6/26/12	MW-6	259	DUP	260	0.3854
6/14/13	MW-8	83.3	DUP	84.0	0.8368
11/27/13	MW-8	72.2	DUP	71.3	1.2544

Notes:

1) RPD - relative percent differences

APPENDICES

Appendix A

Certified Laboratory Reports

Analytical Report 459349

for Conestoga Rovers & Associates

Project Manager: Brittany Ford
New Mexico F State
039122
25-MAR-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

> Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900) Xenco-Lakeland: Florida (E84098)

> Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

25-MAR-13

Project Manager: Brittany Ford **Conestoga Rovers & Associates** 2135 S Loop 250 W

Midland, TX 79703

Reference: XENCO Report No(s): 459349

New Mexico F State Project Address:

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 459349. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 459349 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully

Nicholas Straccione

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 459349

Conestoga Rovers & Associates, Midland, TX

New Mexico F State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW6 031413	W	03-14-13 10:10		459349-001

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: New Mexico F State

Project ID: 039122 Report Date: 25-MAR-13 Work Order Number(s): 459349 Date Received: 03/15/2013

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Project Location:

Certificate of Analysis Summary 459349

Conestoga Rovers & Associates, Midland, TX

Project Id: 039122

Contact: Brittany Ford

Project Name: New Mexico F State

Date Received in Lab: Fri Mar-15-13 09:43 am

Report Date: 25-MAR-13

			 	Project Manager:	Nicholas Straccione	
	Lab Id:	459349-001				
Analysis Requested	Field Id:	MW6 031413				
Analysis Requested	Depth:					
	Matrix:	WATER				
	Sampled:	Mar-14-13 10:10				
BTEX by EPA 8021B	Extracted:	Mar-22-13 13:00				
	Analyzed:	Mar-22-13 15:27				
	Units/RL:	mg/L RL				
Benzene		ND 0.00100				
Toluene		ND 0.00200				
Ethylbenzene		ND 0.00100				
m,p-Xylenes		ND 0.00200				
o-Xylene		ND 0.00100				
Total Xylenes		ND 0.00100				
Total BTEX		ND 0.00100				
Inorganic Anions by EPA 300/300.1	Extracted:	Mar-18-13 10:00				
	Analyzed:	Mar-19-13 05:22				
	Units/RL:	mg/L RL				
Chloride		195 10.0				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Nicholas Straccione Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

Phone Fax 4143 Greenbriar Dr. Stafford, TX 77477 (281) 240-4280 (281) 240-4200 9701 Harry Hines Blvd , Dallas, TX 75220 (214) 902 0300 (214) 351-9139 5332 Blackberry Drive, San Antonio TX 78238 (210) 509-3334 (210) 509-3335 2505 North Falkenburg Rd, Tampa, FL 33619 (813) 620-2000 (813) 620-2033 12600 West I-20 East, Odessa, TX 79765 (432) 563-1800 (432) 563-1713 6017 Financial Drive, Norcross, GA 30071 (770) 449-8800 (770) 449-5477 3725 E. Atlanta Ave, Phoenix, AZ 85040 (602) 437-0330

Page 6 of 13

Final 1.000

^{*} Surrogate recovered outside laboratory control limit.

Form 2 - Surrogate Recoveries

Project Name: New Mexico F State

Work Orders : 459349, **Project ID:** 039122

Units: mg/L Date Analyzed: 03/22/13 15:27	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0281	0.0300	94	80-120					
4-Bromofluorobenzene	0.0289	0.0300	96	80-120					

Lab Batch #: 909649 Sample: 635521-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 03/22/13 13:49	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0259	0.0300	86	80-120					
4-Bromofluorobenzene	0.0250	0.0300	83	80-120					

Lab Batch #: 909649 Sample: 635521-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 03/22/13 13:16	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0325	0.0300	108	80-120					
4-Bromofluorobenzene	0.0295	0.0300	98	80-120					

Lab Batch #: 909649 Sample: 635521-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 03/22/13 13:33	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0315	0.0300	105	80-120					
4-Bromofluorobenzene	0.0288	0.0300	96	80-120					

Units: mg/L Date Analyzed: 03/22/13 14:55	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0318	0.0300	106	80-120				
4-Bromofluorobenzene	0.0349	0.0300	116	80-120				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: New Mexico F State

Work Orders: 459349, **Project ID:** 039122

Units: mg/L Date Analyzed: 03/22/13 16:00	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0326	0.0300	109	80-120				
4-Bromofluorobenzene	0.0296	0.0300	99	80-120				

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: New Mexico F State

Work Order #: 459349

Lab Batch ID: 909649

Date Prepared: 03/22/2013 Analyst: KEB

Project ID: 039122 **Date Analyzed:** 03/22/2013

Matrix: Water **Sample:** 635521-1-BKS **Batch #:** 1

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/L

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes					. ,						
Benzene	< 0.00100	0.100	0.0895	90	0.100	0.0864	86	4	70-125	25	
Toluene	< 0.00200	0.100	0.0875	88	0.100	0.0858	86	2	70-125	25	
Ethylbenzene	<0.00100	0.100	0.0969	97	0.100	0.0913	91	6	71-129	25	
m,p-Xylenes	<0.00200	0.200	0.183	92	0.200	0.177	89	3	70-131	25	
o-Xylene	<0.00100	0.100	0.0878	88	0.100	0.0831	83	6	71-133	25	

Date Analyzed: 03/19/2013 Analyst: AMB **Date Prepared:** 03/18/2013

Matrix: Water **Lab Batch ID:** 909499 **Batch #:** 1 **Sample:** 635438-1-BKS

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/L Blk. Spk Blank Spike Blank Blank Blank Control Control **Inorganic Anions by EPA 300/300.1** Spike Sample Result Added Spike Spike Spike Dup. RPD Limits Limits Flag Added [A] Result %R Duplicate %R % %R %RPD Result [F] [B] [C] [D] [G] [E] **Analytes** Chloride < 1.00 25.0 25.8 103 25.0 26.2 105 2 80-120 20

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: New Mexico F State

Work Order #: 459349 **Lab Batch #:** 909499

Project ID: 039122

Date Prepared: 03/18/2013 **Date Analyzed:** 03/19/2013 **QC- Sample ID:** 459402-021 S Batch #: 1

Analyst: AMB Matrix: Water

Reporting Units: mg/L

MATE	RIX / MA	TRIX SPIKE	RECOV	VERY STU	DY
Parent		Spiked Sample		Control	
Sample	Spike	Result	%R	Limits	Flag
Dogult	1 43.	[[IID.1	0/10	

Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes	[A]	[B]				
Chloride	1990	1250	3280	103	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: New Mexico F State

Work Order #: 459349 Project ID: 039122

Lab Batch ID: 909649 **QC- Sample ID:** 459386-002 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 03/22/2013 Date Prepared: 03/22/2013 Analyst: KEB

Reporting Units: mg/L	MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY										
BTEX by EPA 8021B	Parent Sample Result	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	Spiked Dup.	RPD	Control Limits	Control Limits	Flag
Analytes	[A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00100	0.100	0.0903	90	0.100	0.0820	82	10	70-125	25	
Toluene	< 0.00200	0.100	0.0918	92	0.100	0.0879	88	4	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0943	94	0.100	0.0858	86	9	71-129	25	
m,p-Xylenes	<0.00200	0.200	0.174	87	0.200	0.161	81	8	70-131	25	
o-Xylene	< 0.00100	0.100	0.0886	89	0.100	0.0841	84	5	71-133	25	

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

Company-City CRA -	Midland			Phor	1e 43	2-69	86-00	86		Lab	Only	y:	. 1	19	59	34	9												
Project Name-Location	☐ Previous	ly done at X	ENCO			Pro	ject IE ろりつこ)																	oject s	pecific			
Proj. State: TX, AL, FL, G	A, LA, MS, NC,	Proj. Mana	ager (PM)					- 11						0 7	5				Ι					\Box		Re	marks	5
NJ, PA, SC, TN, UT Other E-mail Results to BFord C cro-wo nvoice to □ Accounting	PM and orld- com □ Inc. Invoice w		432 port [) bs	b ~	0186		P.O.		S	LL Other:		Appdx-2 CALL		Appdx 1 Appdx2										7d (10d) 21d Highest Hit	angriest mit			
Bill to:											CALL	VPH	1 1	27 1		3								1.	ر ا و	ν E	eded		֓֞֞֜֞֜֜֞֜֜֜֓֓֓֓֓֓֓֓֓֓֟֜֜֟֜֓֓֓֓֓֓֓֓֓֓֓֜֟֜֓֓֓֓֡֜֜֜֓֓֡֓֜֜֝֡֓֡֓֡
Quote/Pricing:		P.O. No:	1 + 1 1 + 1				Call f		Э.	Oxyg	Š	1	.1 1	8	23TAL	- ?				ŀ					1 2	and a	s ne		Ι.
Reg Program: UST DR	Y-CLEAN Land	Fill Waste	Disp	NPD	ES	DW	TRRP			EtoH	Appdx-2	¥	191		کے اگ					١.						ੂੰ ਵੇ	ed a		1
APP Per-Contract CLF	AGCEE NAV	Y DOE D	OD L	JSAC	Е ОТ	HER				1 77		ᇤ		용				اما						7	& >	vv, n l apply	Š		6
pecial DLs (GW DW Q	APP MDLs RL	s See Lab F	PM In	clude	d C	all F	M)			BTEX-MTBE	Appdx-1	MA EPH	1 1	Ĭ	4 >		8	2005.						;	24h 48	ges will	pre-ap		
Sampler Name Just	in Nixon	Signatu	re)	0>	16	Z				Ä	ል §	GRO GRO	ă	PCBs	-8 RCRA-4		212	F							됩 .	urchai	sare		1
Sample ID	Sampling Date	Time	Depth ff' in" m			itainers	Container Size	Container Type	Preservatives	List	PP TC	TX-1005 DRO	1 77 1		Metals: RCRA-8	EDB / DBCP	なるない	Chloride							TATASAP 5h	Addit: FAH above Ing Hold Samples (Surcharges	Sample Clean-ups are pre-approved as needed		
mub 03/4/3	3-14-13	1010		W	X	3		_	ИСС								X	X							十				T
									4,11															\Box					Γ
									1.5								11.											:	T
	â																											 	T
					1									1	1	\top					1		\Box		\top				T
					+						1		1 1			+			7					\top	\top	\top			t
			1						2. 2		+	+		┪								1.	H	\vdash	+	_			t
			+	H	+	\vdash			•	a . F	+	+	1		+	+	┼		+				\vdash	\dashv	+	+			H
			 	\vdash	+					-	十			+		+	+-			-		-	\vdash	\dashv	+	+			H
			1	\vdash	-					${\color{blue}+}$			\vdash	\dashv			1	\vdash	+					\mathbf{H}	+	+-			╁
Relinguished by (Initial	s and Sign)	Date &	Time	\Box	Poli:		hed to	/lpiti	ale or	L Sic	الار الارا	+-	l l Date	<u></u> _	ime	-	<u> </u>				۲.,	<u>ل</u>	Ш	<u>_</u>			. O ° c		<u>L</u>
Relinquished by (Initial	s and sign)	3/15-/12				iquis	neu (O	(mud	ais di	iu Sig	111/		Date	αı	iiile	$\overline{}$			rs per (ed on			ports	are.ti		ler Ter ellectu				<u>-</u>
) I' ypera	wy.	2/15/15	<u> </u>	4 3 - 4				Otherwise agreed on writing. Reports are the Intellectual Property of XENCO until paid. Samples will be held 30 days after final report is e-mailed unless																					
5)						(11			1//	hereby requested. Rush Charges and Collection Fees are pre-approved if needed					61/	i he	eby re	equest	ed. Rus	sh Cha	arges	and	Collec	ction F	ees a	re pre-	d if need	jer	

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract.

www.xenco.com

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Acceptable Temperature Range: 0 - 6 degC

Date/ Time Received: 03/15/2013 09:43:00 AM

Air and Metal samples Acceptable Range: Ambient

Work Order #: 459349

Temperature Measuring device used:

	Sample Receipt Checklist	Comments	
#1 *Temperature of cooler(s)?		1	
#2 *Shipping container in good of	condition?	Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on ship	ping container/ cooler?	Yes	
#5 Custody Seals intact on samp	ble bottles?	Yes	
#6 *Custody Seals Signed and d	ated?	Yes	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete	on Chain of Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed wh	en relinquished/ received?	Yes	
#11 Chain of Custody agrees wit	th sample label(s)?	Yes	
#12 Container label(s) legible an	d intact?	Yes	
#13 Sample matrix/ properties ag	gree with Chain of Custody?	Yes	
#14 Samples in proper container	r/ bottle?	Yes	
#15 Samples properly preserved	1?	Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount fo	r indicated test(s)?	Yes	
#18 All samples received within	hold time?	Yes	
#19 Subcontract of sample(s)?		Yes	
#20 VOC samples have zero hea	adspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved	with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserve	ed with NaAsO2+NaOH, ZnAc+NaOH?	Yes	
Must be completed for after-ho	ours delivery of samples prior to placing	g in the refrigerator	
Analyst:	PH Device/Lot#:	-	
Allalyst.	TTT Device/Lot#.		
Checklist completed	l by:	Date:	_
Checklist reviewed	by:	Date:	

Analytical Report 465163

for

Conestoga Rovers & Associates

Project Manager: Brittany Ford

Midland Odessa Discounted Fee Schedule

039122

24-JUN-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX) Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Tico-Danas (Li A Lao Code, 1701-00). 1cas (110-70-275-17)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757) Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

24-JUN-13

Project Manager: **Brittany Ford Conestoga Rovers & Associates**2135 S Loop 250 W

Midland, TX 79703

Reference: XENCO Report No(s): 465163

Midland Odessa Discounted Fee Schedule

Project Address:

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 465163. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 465163 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectivity,

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 465163

Conestoga Rovers & Associates, Midland, TX

Midland Odessa Discounted Fee Schedule

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
RW02-061413	\mathbf{W}	06-14-13 15:00		465163-001
RW03-061413	W	06-14-13 15:30		465163-002
MW05-061413	W	06-14-13 10:40		465163-003
MW06-061413	W	06-14-13 11:00		465163-004
MW07-061413	W	06-14-13 11:20		465163-005
MW08-061413	W	06-14-13 09:20		465163-006
WW01-061413	W	06-14-13 10:00		465163-007
WW02-061413	W	06-14-13 10:20		465163-008
DUP1-061413	W	06-14-13 09:20		465163-009
MW03-061413	W	06-14-13 09:40		465163-010
MW04-061413	W	06-14-13 11:40		465163-011

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: Midland Odessa Discounted Fee Schedule

 Project ID:
 039122
 Report Date:
 24-JUN-13

 Work Order Number(s):
 465163
 Date Received:
 06/17/2013

Samp	le receipt non conformand	es and comments	S:	
Sampl	le receipt non conformanc	ees and comments	s per sample:	
None				

Certificate of Analysis Summary 465163

Conestoga Rovers & Associates, Midland, TX

Project Id: 039122 **Contact:** Brittany Ford

Date Received in Lab: Mon Jun-17-13 10:13 am

Report Date: 24-JUN-13

Project Location: Project Manager: Kelsey Brooks

	Lab Id:	465163-	001	465163-	002	465163-0	003	465163-	004	465163-	005	465163-	006
Amalusia Dogunatad	Field Id:	RW02-06	51413	RW03-06	1413	MW05-06	1413	MW06-06	1413	MW07-06	1413	MW08-06	51413
Analysis Requested	Depth:												
	Matrix:	WATE	WATER		WATER		WATER		WATER		WATER		ER
	Sampled:	Jun-14-13	15:00	Jun-14-13	15:30	Jun-14-13	10:40	Jun-14-13	11:00	Jun-14-13	11:20	Jun-14-13	09:20
BTEX by EPA 8021B	Extracted:	Jun-20-13	14:30	Jun-20-13	Jun-20-13 14:30		Jun-20-13 14:30		Jun-20-13 14:30		Jun-20-13 14:30		14:30
	Analyzed: Jun-21-1		09:45	Jun-21-13	10:17	Jun-21-13 09:29		Jun-20-13 19:18		Jun-20-13	19:34	Jun-20-13 19:50	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.00178	0.00100	0.00920	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		0.00268	0.00200	0.0291	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		0.00171	0.00100	0.0253	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		0.0150	0.00200	0.134	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		0.0112	0.00100	0.00400	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		0.0262	0.00100	0.138	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		0.0324	0.00100	0.202	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00
	Analyzed:	Jun-18-13	12:55	Jun-18-13	13:38	Jun-18-13	14:00	Jun-18-13	14:22	Jun-18-13	14:43	Jun-18-13	15:05
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		30.0	5.00	37.3	5.00	66.6	5.00	219	10.0	56.4	5.00	83.3	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Project Id: 039122

Contact: Brittany Ford

Certificate of Analysis Summary 465163

Conestoga Rovers & Associates, Midland, TX

Date Received in Lab: Mon Jun-17-13 10:13 am

Report Date: 24-JUN-13

Project Location:

								Project Ma	nager:	Kelsey Brook	S	
	Lab Id:	465163-0	007	465163-0	008	465163-0	009	465163-	010	465163-	011	
Analusia Daguastad	Field Id:	WW01-06	1413	WW02-06	1413	DUP1-06	1413	MW03-06	1413	MW04-06	1413	
Analysis Requested	Depth:											
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	
	Sampled:	Jun-14-13	10:00	Jun-14-13	10:20	Jun-14-13	09:20	Jun-14-13	09:40	Jun-14-13	11:40	
BTEX by EPA 8021B	Extracted:	Jun-24-13	08:00	Jun-24-13	08:00	Jun-24-13	08:00	Jun-24-13	08:00	Jun-24-13	08:00	
	Analyzed:	Jun-24-13	16:08	Jun-24-13	10:45	Jun-24-13	15:46	Jun-24-13	11:02	Jun-24-13	11:18	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Inorganic Anions by EPA 300/300.1	Extracted:	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00	Jun-18-13	10:00	
	Analyzed:	Jun-18-13	16:10	Jun-18-13	16:32	Jun-18-13	16:54	Jun-18-13	17:15	Jun-18-13	17:37	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Chloride		53.7	2.00	81.1	5.00	84.0	5.00	79.0	5.00	59.5	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.

BRL Below Reporting Limit.

RL Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

^{*} Surrogate recovered outside laboratory control limit.

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Orders: 465163, **Project ID**: 039122

Lab Batch #: 916808 **Sample:** 465163-004 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/20/13 19:18	SU	RROGATE RI	ECOVERY	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0338	0.0300	113	80-120	
4-Bromofluorobenzene	0.0242	0.0300	81	80-120	

Lab Batch #: 916808 **Sample:** 465163-005 / SMP **Batch:** 1 **Matrix:** Water

SURROGATE RECOVERY STUDY Units: mg/L Date Analyzed: 06/20/13 19:34 Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0351 0.0300 117 80-120 4-Bromofluorobenzene 0.0245 0.0300 82 80-120

Lab Batch #: 916808 **Sample:** 465163-006 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 0	5/20/13 19:50	SURROGATE	RECOVERY	STUDY	
BTEX by EPA 8021B		nt True I Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0338	0.0300	113	80-120	
4-Bromofluorobenzene	0.0240	0.0300	80	80-120	

Lab Batch #: 916808 **Sample:** 465163-003 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/21/13 09:29	9 SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0324	0.0300	108	80-120	
4-Bromofluorobenzene	0.0244	0.0300	81	80-120	

Lab Batch #: 916808 **Sample:** 465163-001 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/21/13 09:45	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
1,4-Difluorobenzene	0.0349	0.0300	116	80-120					
4-Bromofluorobenzene	0.0291	0.0300	97	80-120					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Orders: 465163, **Project ID**: 039122

Lab Batch #: 916808 **Sample:** 465163-002 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L	Date Analyzed: 06/21/13 10:17	SU	RROGATE RI	ECOVERY S	STUDY	
BTE	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0248	0.0300	83	80-120	
4-Bromofluorobenzene		0.0246	0.0300	82	80-120	

Lab Batch #: 916886 **Sample:** 465163-008 / SMP **Batch:** 1 **Matrix:** Water

SURROGATE RECOVERY STUDY Units: mg/L Date Analyzed: 06/24/13 10:45 Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0350 0.0300 117 80-120 4-Bromofluorobenzene 0.0256 0.0300 85 80-120

Units: mg/L Date Analyzed: 06/24/13 11:02	SURROGATE RECOVERY STUDY				
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0349	0.0300	116	80-120	
4-Bromofluorobenzene	0.0252	0.0300	84	80-120	

Lab Batch #: 916886 **Sample:** 465163-011 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/24/13 11:18	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0333	0.0300	111	80-120		
4-Bromofluorobenzene	0.0252	0.0300	84	80-120		

Units: mg/L Date Analyzed: 06/24/13 15:46	SURROGATE RECOVERY STUDY					
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
1,4-Difluorobenzene	0.0332	0.0300	111	80-120		
4-Bromofluorobenzene	0.0242	0.0300	81	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Orders : 465163, **Project ID:** 039122

Lab Batch #: 916886 **Sample:** 465163-007 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/24/13 16:08	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0359	0.0300	120	80-120			
4-Bromofluorobenzene	0.0248	0.0300	83	80-120			

Lab Batch #: 916808 Sample: 640019-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 06/20/13 18:46	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0343	0.0300	114	80-120			
4-Bromofluorobenzene	0.0240	0.0300	80	80-120			

Lab Batch #: 916886 Sample: 640115-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 06/24/13 09:14	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0347	0.0300	116	80-120	
4-Bromofluorobenzene	0.0249	0.0300	83	80-120	

Lab Batch #: 916808 Sample: 640019-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 06/20/13 17:58	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0311	0.0300	104	80-120				
4-Bromofluorobenzene	0.0242	0.0300	81	80-120				

Lab Batch #: 916886 Sample: 640115-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 06/24/13 08:25	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0350	0.0300	117	80-120				
4-Bromofluorobenzene	0.0297	0.0300	99	80-120				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Orders : 465163, **Project ID:** 039122

Lab Batch #: 916808 Sample: 640019-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 06/20/13 18:14	SURROGATE RECOVERY STUDY						
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
Analytes			[D]				
1,4-Difluorobenzene	0.0322	0.0300	107	80-120			
4-Bromofluorobenzene	0.0242	0.0300	81	80-120			

Lab Batch #: 916886 Sample: 640115-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 06/24/13 08:42	SURROGATE RECOVERY STUDY								
BTEX by EPA 8021B		Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
	Analytes			[D]						
1,4-Difluorobenzene		0.0339	0.0300	113	80-120					
4-Bromofluorobenzene		0.0290	0.0300	97	80-120					

Lab Batch #: 916808 **Sample:** 465199-001 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/20/13 22:47	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0352	0.0300	117	80-120	
4-Bromofluorobenzene	0.0243	0.0300	81	80-120	

Lab Batch #: 916886 **Sample:** 465367-002 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/24/13 12:32	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	0.0244	0.0300	81	80-120	

Lab Batch #: 916886 **Sample:** 465367-002 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 06/24/13 12:49	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0336	0.0300	112	80-120				
4-Bromofluorobenzene	0.0251	0.0300	84	80-120				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163 Analyst: DYV

Date Prepared: 06/20/2013 **Batch #:** 1

Project ID: 039122 **Date Analyzed:** 06/20/2013

Lab Batch ID: 916808

Sample: 640019-1-BKS

Matrix: Water

Units: mg/L

BLANK/BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
<0.00100	0.100	0.119	119	0.100	0.120	120	1	70-125	25	
							1			
			87				1			
<0.00200	0.200	0.171	86	0.200	0.170	85	1	70-131	25	
< 0.00100	0.100	0.0865	87	0.100	0.0861	86	0	71-133	25	
	Sample Result [A]	Sample Result	Sample Result [A] Added Result [B] Spike Result [C] <0.00100	Sample Result [A] Added [B] Spike Result [C] Spike %R [D] <0.00100	Sample Result [A] Added [B] Spike Result [C] Spike %R [D] Added [E] <0.00100	Sample Result [A] Added [B] Spike Result [C] Spike %R [D] Added Puplicate Result [F] <0.00100	Sample Result [A] Added [B] Spike Result [C] Spike %R [D] Added [E] Spike Duplicate Result [F] Dup. %R [G] <0.00100	Sample Result [A] Added Result [B] Spike Result [C] Spike WR [D] Added Result [E] Spike Duplicate Result [F] Dup. WR [G] RPD WR [G] <0.00100	Sample Result [A] Added [B] Spike Result [C] Spike (D) Added [E] Spike Duplicate Result [F] Dup. %R (G) RPD % %R %R Limits %R <0.00100	Sample Result [A] Added [B] Spike Result [C] Spike (D) Added [E] Spike Result [F] Dup. %R (G) RPD % %R (G) Limits %RPD <0.00100

Date Prepared: 06/24/2013 **Date Analyzed:** 06/24/2013 Analyst: DYV

Matrix: Water **Lab Batch ID:** 916886 **Batch #:** 1 **Sample:** 640115-1-BKS

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/L

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00100	0.100	0.102	102	0.100	0.120	120	16	70-125	25	
Toluene	< 0.00200	0.100	0.0889	89	0.100	0.101	101	13	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0837	84	0.100	0.0927	93	10	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.167	84	0.200	0.184	92	10	70-131	25	
o-Xylene	< 0.00100	0.100	0.0866	87	0.100	0.0945	95	9	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163

Project ID: 039122

Analyst: AMB

Date Prepared: 06/18/2013

Date Analyzed: 06/18/2013

Lab Batch ID: 916702

Sample: 639978-1-BKS **Batch #:** 1

Matrix: Water

Units: mg/L		BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY									
Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<1.00	25.0	23.2	93	25.0	23.2	93	0	80-120	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|
Blank Spike Recovery [D] = 100*(C)/[B]
Blank Spike Duplicate Recovery [G] = 100*(F)/[E]
All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163

Lab Batch #: 916808

Project ID: 039122

Date Prepared: 06/20/2013 **Date Analyzed:** 06/20/2013

Analyst: DYV

QC- Sample ID: 465199-001 S

Batch #: Matrix: Water

Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	%R	Control Limits	Flag

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Benzene	< 0.00100	0.100	0.119	119	70-125	
Toluene	< 0.00200	0.100	0.0959	96	70-125	
Ethylbenzene	< 0.00100	0.100	0.0834	83	71-129	
m,p-Xylenes	< 0.00200	0.200	0.164	82	70-131	
o-Xylene	< 0.00100	0.100	0.0841	84	71-133	

Lab Batch #: 916702

Date Analyzed: 06/18/2013

Date Prepared: 06/18/2013

Analyst: AMB

QC- Sample ID: 465163-001 S

1 Batch #:

Matrix: Water

Reporting Units: mg/L	MATE	KIX / MA	TRIX SPIKE	RECOV	VERY STU	ן אע
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Analytes						
Chloride	30.0	125	157	102	80-120	

Lab Batch #: 916702

Date Analyzed: 06/18/2013

Date Prepared: 06/18/2013

Analyst: AMB

QC- Sample ID: 465163-011 S

Batch #:

Matrix: Water

Reporting Units: mg/L	MATE	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	59.5	125	192	106	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: Midland Odessa Discounted Fee Schedule

Work Order #: 465163

Project ID: 039122

Lab Batch ID: 916886

Reporting Units:

QC- Sample ID: 465367-002 S

Batch #:

Matrix: Water

Date Analyzed: 06/24/2013

mg/L

Date Prepared: 06/24/2013 **Analyst:** DYV

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[-]	[D]	[E]		[G]			,,,	
Benzene	< 0.00100	0.100	0.120	120	0.100	0.120	120	0	70-125	25	
Toluene	< 0.00200	0.100	0.101	101	0.100	0.101	101	0	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.0950	95	0.100	0.0939	94	1	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.188	94	0.200	0.186	93	1	70-131	25	
o-Xylene	< 0.00100	0.100	0.0960	96	0.100	0.0951	95	1	71-133	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| 4143 Greenbriar Drive, Stafford, TX 77477 281-240-4200

Final 1.000

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

9701 Harry Hines Blvd., Dallas, TX 75220

www.xenco.com

Remarks

Samples (Surcharges will apply and are pre-approved)

Hold

Sample Clean-ups are pre-approved as needed

Addn:

10

Highest Hit

S

mg/Kg

mg/L W,

Addn: PAH above

Cont. Size: 40z (4), 80z (8), 32oz (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other _______ Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Page 17 of 18	
Final 1.00	

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Company-City PA -M	:Ulad			Pho	ne 43	2+	16-a	986		Lab O	nly:		2	+	65	16	3										Page 2	
Project Name-Location	☐ Previously	done at X	ENCO		C	Pro	ject IE)		TAT:														30				
Proj. State: TX, AL, FL, G NJ, PA, SC, TN, UT Other	A, LA, MS, NC,	Proj. Man			in	P	(A)			As:			CALL	Appdx2	ppdx2 PCBs)	CBS)						T		21d	L.	(p	Rema	rks
E-mail Results to	Brown Com	aword.	can		V	Fa:	6864	2186		VOHs VOAs			x-2	S	4	Tero.								10d	Highest Hit	-approved)		
nvoice to ☐ Accounting Bill to:	☐ Inc. Invoice wi	th Final Re	port [] Inv	oice	must	have a	P.O.		0		п	о Арр	Pesticides	Appdy	Pest. ne							+	PZ	S High	are pre-ap	ged	L
Quote/Pricing:		P.O. No:			1	Г	Call f	or P.C).	Oxyg		VPH		a l	TAL G							-		2d		and are	as needed	
Reg Program: UST DR	Y-CLEAN Land-	Fill Waste	-Disp	NPI	DES	DW	TRRP			0		MA	\cup	9 P	3PP 23T	Š		0						39	mg/Kg	oly ar	od as	
QAPP Per-Contract CLI	AGCEE NAV	DOE D	OD L	JSAC	CE O	THER						EPH	AE	Herbicides	13P			300						48h	Α,	II apply	prove	
Special DLs (GW DW C	APP MDLs RLs	See Lab F	PM In	clud	ed C	all F	PM)			BTEX-MTBE E DW Appdx-1		MA		s Herbi	344 Pt	s vocs	81108						1	1 24h	mg/L W,	arges w	e pre-ap	
Sampler Name Signature Signature					0		BTEX	8310	GRO	ot DV	PCBs	RC.	(Metals	3							12h	, e	Surch	ips ar	d			
Sample ID	Sampling Date	Time	Depth ft' In" m	Matrix	Composite	# Containers	Container Size	Container Type	Preservatives	VOA: Full-List VOA: PP TCL	Σ	TX-1005 DRO		OC Pesticides	Metals: RCRA-8 RCRA-4 Pb 13PP 23TAL Appdx 1		BTEX	Chlorica						TATASAP 5h	Addn: PAH above	Hold Samples (Surcharges will	Sample Clean-ups are pre-approved	-
mw04061413	6-14-13	1140		V	X	3									T.		X	X										
		ea		\$									7													14		
				11			A PROPERTY OF																					
														_	1	1			_	_			_	1				\perp
					31 1				-						+	+	+		4	+			+	- 1	-			+
		-	-	Н		-		78			-		-	-	+	+	+	\vdash	-	+		-	+	+	-			+
			-	H	+	1			-	-				+	+	+	+		+	+	H		-	+				+
			-	Н	+	-				-	-			-		+	-	-		+	1		+	+	-			+
			-	H	+									+		+	-				H			-				+
Relinquished by (Initia	lls and Sign)	Date &	Time		Rel	inquis	shed to	(Initia	als an	d Sign)		Date	& T	ime	To	otal Co	ntaine	ers per	COC:	2	3	C	ooler	Tem	5%	C C	
1) Astur (14	6-17-13		0	2)						77					0	therwi	se agr	eed on	writin			are the	Intelle	ectual	Prop	erty of XEN	
3)					6) BR Belleshie							17-1		10:1				-								mailed unles		

Committed to Excellence in Service and Quality

www.xenco.com

Work Order #: 465163

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Date/ Time Received: 06/17/2013 10:13:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used:

	Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?		5.5	
#2 *Shipping container in good condition?		Yes	
#3 *Samples received on ice?		Yes	
#4 *Custody Seals intact on shipping contain	iner/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?		Yes	
#6 *Custody Seals Signed and dated?		Yes	
#7 *Chain of Custody present?		Yes	
#8 Sample instructions complete on Chain	of Custody?	Yes	
#9 Any missing/extra samples?		No	
#10 Chain of Custody signed when relinquis	shed/ received?	Yes	
#11 Chain of Custody agrees with sample la	abel(s)?	Yes	
#12 Container label(s) legible and intact?		Yes	
#13 Sample matrix/ properties agree with C	hain of Custody?	Yes	
#14 Samples in proper container/ bottle?		Yes	
#15 Samples properly preserved?		Yes	
#16 Sample container(s) intact?		Yes	
#17 Sufficient sample amount for indicated	test(s)?	Yes	
#18 All samples received within hold time?		Yes	
#19 Subcontract of sample(s)?		No	
#20 VOC samples have zero headspace (le	ess than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO	3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaA	sO2+NaOH, ZnAc+NaOH?	N/A	

nalyst:	PH D	evice/Lot#:	
Checklist com	pleted by:	Kelsey Brooks	Date: 06/17/2013
Checklist revi	iewed by:	Mmy Hoah Kelsey Brooks	Date: <u>06/17/2013</u>

Analytical Report 465916

for

Conestoga Rovers & Associates

Project Manager: Scott Christ

F Slate

039122

08-JUL-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-10-6-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

08-JUL-13

Project Manager: **Scott Christ Conestoga Rovers & Associates**2135 S Loop 250 W
Midland, TX 79703

Reference: XENCO Report No(s): 465916

F Slate

Project Address: TX

Scott Christ:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 465916. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 465916 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectivity,

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 465916

Conestoga Rovers & Associates, Midland, TX

F Slate

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
RW 1	W	06-27-13 10:00		465916-001
RW 4	W	06-27-13 10:20		465916-002

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: F Slate

 Project ID:
 039122
 Report Date:
 08-JUL-13

 Work Order Number(s):
 465916
 Date Received:
 06/28/2013

This laboratory is NELAC accredited under the Texas Laboratory Accreditation Program for all the methods, analytes, and matrices reported in this data package except as noted. The data have been reviewed and are technically compliant with the requirements of the methods used, except where noted by the laboratory.

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Certificate of Analytical Results 465916

Conestoga Rovers & Associates, Midland, TX

F Slate

Sample Id: RW 1 Matrix: Water Sample Depth:

Lab Sample Id: 465916-001 Date Received: 06.28.13 10.10

Analytical Method: Inorganic Anions by EPA 300/300.1

Analyst: AMB % Moist: Tech: AMB

Seq Number: 917907 Date Prep: 07.02.13 10.00

Prep seq: 640752

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Dil Factor Flag
Chloride	16887-00-6	33.8	5.00	0.140	mg/L	07.03.13 09:21	5

Analytical Method: BTEX by EPA 8021B

DYV

Analyst:

Prep Method: 5030B

Prep Method:

E300P

% Moist:

Tech: DYV

Seq Number: 917708 Date Prep: 07.02.13 15.30

Prep seq: 640597

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag Dil Factor
Benzene	71-43-2	0.00745	0.00100	0.000500	mg/L	07.03.13 14:21	1
Toluene	108-88-3	0.00963	0.00200	0.00100	mg/L	07.03.13 14:21	1
Ethylbenzene	100-41-4	0.0101	0.00100	0.000700	mg/L	07.03.13 14:21	1
m,p-Xylenes	179601-23-1	0.0534	0.00200	0.00140	mg/L	07.03.13 14:21	1
o-Xylene	95-47-6	0.00145	0.00100	0.000700	mg/L	07.03.13 14:21	1
Total Xylenes	1330-20-7	0.0549		0.000700	mg/L	07.03.13 14:21	
Total BTEX		0.0820		0.000500	mg/L	07.03.13 14:21	

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1,4-Difluorobenzene	90	80 - 120	%		
4-Bromofluorobenzene	98	80 - 120	%		

Certificate of Analytical Results 465916

Conestoga Rovers & Associates, Midland, TX

F Slate

Sample Id: RW 4 Matrix: Water Sample Depth:

Lab Sample Id: 465916-002 Date Received: 06.28.13 10.10

Analytical Method: Inorganic Anions by EPA 300/300.1

Analyst: AMB % Moist: Tech: AMB

Seq Number: 917907 Date Prep: 07.02.13 10.00

Prep seq: 640752

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Dil Factor Flag
Chloride	16887-00-6	43.1	5.00	0.140	mg/L	07.03.13 10:04	5

Analytical Method: BTEX by EPA 8021B

Prep Method: 5030B

Prep Method:

E300P

Analyst: DYV

Tech: DYV

Seq Number: 917708 Date Prep: 07.02.13 15.30

Prep seq: 640597

% Moist:

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	0.0245	0.0100	0.00500	mg/L	07.03.13 11:41		10
Toluene	108-88-3	0.0396	0.0200	0.0100	mg/L	07.03.13 11:41		10
Ethylbenzene	100-41-4	0.0779	0.0100	0.00700	mg/L	07.03.13 11:41		10
m,p-Xylenes	179601-23-1	0.196	0.0200	0.0140	mg/L	07.03.13 11:41		10
o-Xylene	95-47-6	ND	0.0100	0.00700	mg/L	07.03.13 11:41	U	10
Total Xylenes	1330-20-7	0.196		0.00700	mg/L	07.03.13 11:41		
Total BTEX		0.338		0.00500	mg/L	07.03.13 11:41		

Surrogate	% Recovery	Limits	Units	Analysis Date	Flag
1,4-Difluorobenzene	110	80 - 120	%		
4-Bromofluorobenzene	98	80 - 120	%		

Certificate of Analytical Results 465916

Conestoga Rovers & Associates, Midland, TX

F Slate

Sample Id: 640597-1-BLK Matrix: Water Sample Depth:

Lab Sample Id: 640597-1-BLK Date Collected: Date Received:

Analytical Method: BTEX by EPA 8021B Prep Method: 5030B

Analyst: DYV % Moist: Tech: DYV

Seq Number: 917708 Date Prep: 07.02.13 15.30

Prep seq: 640597

Parameter	CAS Number	Result	MQL	SDL	Units	Analysis Date	Flag	Dil Factor
Benzene	71-43-2	ND	0.00100	0.000500	mg/L	07.02.13 20:32	U	1
Toluene	108-88-3	ND	0.00200	0.00100	mg/L	07.02.13 20:32	U	1
Ethylbenzene	100-41-4	ND	0.00100	0.000700	mg/L	07.02.13 20:32	U	1
m,p-Xylenes	179601-23-1	ND	0.00200	0.00140	mg/L	07.02.13 20:32	U	1
o-Xylene	95-47-6	ND	0.00100	0.000700	mg/L	07.02.13 20:32	U	1

Surrogate% RecoveryLimitsUnitsAnalysis DateFlag1,4-Difluorobenzene12080 - 120%4-Bromofluorobenzene8380 - 120%

Sample Id: 640752-1-BLK Matrix: Water Sample Depth:
Lab Sample Id: 640752-1-BLK Date Collected: Date Received:

Analytical Method: Inorganic Anions by EPA 300/300.1

Prep Method: E300P

Analyst: AMB % Moist: Tech: AMB

Seq Number: 917907 Date Prep: 07.02.13 10.00

Prep seq: 640752

CAS Analysis **Dil Factor** SDL MQL **Parameter** Result Units Flag Number Date Chloride 16887-00-6 ND 1.00 0.0280 07.03.13 03:12 mg/L U

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: F Slate

Work Orders : 465916, **Project ID:** 039122

Lab Batch #: 917708 Sample: 640597-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 07/02/13 19:44	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0298	0.0300	99	80-120	
4-Bromofluorobenzene	0.0245	0.0300	82	80-120	

Lab Batch #: 917708 Sample: 640597-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 07/02/13 20:00	SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by	EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Ana	alytes			[D]		
1,4-Difluorobenzene		0.0296	0.0300	99	80-120	
4-Bromofluorobenzene		0.0245	0.0300	82	80-120	

Lab Batch #: 917708 Sample: 640597-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 07/02/13 20:32	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0359	0.0300	120	80-120	
4-Bromofluorobenzene	0.0249	0.0300	83	80-120	

Lab Batch #: 917708 **Sample:** 465713-014 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 07/02/13 23:26	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0283	0.0300	94	80-120	
4-Bromofluorobenzene	0.0253	0.0300	84	80-120	

Lab Batch #: 917708 **Sample:** 465713-014 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 07/02/13 23:42	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0308	0.0300	103	80-120	
4-Bromofluorobenzene	0.0252	0.0300	84	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: F Slate

Work Order #: 465916 Analyst: DYV

Date Prepared: 07/02/2013

Lab Batch ID: 917708

Sample: 640597-1-BKS **Batch #:** 1

Project ID: 039122 **Date Analyzed:** 07/02/2013

Matrix: Water

Units: mg/L

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	<0.000500	0.100	0.117	117	0.100	0.115	115	2	70-125	25	
Toluene	< 0.00100	0.100	0.0920	92	0.100	0.0918	92	0	70-125	25	
Ethylbenzene	< 0.000700	0.100	0.0819	82	0.100	0.0813	81	1	71-129	25	
m,p-Xylenes	< 0.00140	0.200	0.162	81	0.200	0.160	80	1	70-131	25	
o-Xylene	< 0.000700	0.100	0.0838	84	0.100	0.0814	81	3	71-133	25	

Date Prepared: 07/02/2013 **Date Analyzed:** 07/03/2013 Analyst: AMB

Matrix: Water **Lab Batch ID: 917907 Batch #:** 1 **Sample:** 640752-1-BKS

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Units: mg/L Blk. Spk Blank Spike Blank Blank Blank Control Control **Inorganic Anions by EPA 300/300.1** Spike Sample Result Added Spike Spike Spike Dup. RPD Limits Limits Flag Added [A] Result %R Duplicate %R % %R %RPD Result [F] [B] [C] [D] [G] [E] **Analytes** Chloride < 0.0280 25.0 22.8 91 25.0 22.7 91 0 80-120 20

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: F Slate

Work Order #: 465916

Lab Batch #: 917907

QC- Sample ID: 465916-001 S

Date Prepared: 07/02/2013 **Date Analyzed:** 07/03/2013

Project ID: 039122

Analyst: AMB

Batch #:

Matrix: Water

Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY									
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Chloride	33.8	125	153	95	80-120					

Lab Batch #: 917907

Date Analyzed: 07/03/2013 **QC- Sample ID:** 465966-013 S **Date Prepared:** 07/02/2013

Analyst: AMB

Batch #:

Matrix: Water

Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY								
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Chloride	275	125	415	112	80-120				

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: F Slate

Work Order #: 465916

mg/L

Project ID: 039122

Lab Batch ID: 917708

708 **QC- Sample ID:** 465713-014 S

Batch #:

Matrix: Water

Date Analyzed: 07/02/2013

Reporting Units:

Date Prepared: 07/02/2013

Analyst: DYV

MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	0.00449	0.100	0.119	115	0.100	0.119	115	0	70-125	25	
Toluene	< 0.00100	0.100	0.0938	94	0.100	0.0929	93	1	70-125	25	
Ethylbenzene	< 0.000700	0.100	0.0812	81	0.100	0.0807	81	1	71-129	25	
m,p-Xylenes	< 0.00140	0.200	0.161	81	0.200	0.160	80	1	70-131	25	
o-Xylene	< 0.000700	0.100	0.0818	82	0.100	0.0820	82	0	71-133	25	

	5332, Blackberry D	rive, San Anto	nio, TX			0-509	9-3334			_		_	st I-20) Eas	, Ode	essa,	TX 7	9765	43	2-563	1800	S	erial #	# : 3	127	788	30	Р	Page of	f	1
Company-City			4	Pho マン		le e	ට ය කි	وا		La	b Or	nly:			4	10	5	91	0												
Project Name-Location	Previous	ly done at X			0		oject IE		1																AT is p						1
F State					<	>39	122			It is	s typi	ically	/ 5-7	Wo	rking	Da	ys fo	r lev	el II	and 1	0+W	orking	days	for le	vel III	and I	V da	ta.	1		
Proj. State: TX, AL, FL, C														크		Q	(8)				\pm	-		-	+	70			Remar	ks	
NJ, PA, SC, TN, UT Othe	rnm	5col	==	er	cori:	sE		-		As	Ŀ			CALL		Appdx2	PCBs)									21d	.=	क्र			
	ZIPM and				,		x No:			VOAs	Other:			7		&										٩	Highest Hit	pre-approved)			
Schrist@ cr Invoice to □ Accounting	a world /	b ford 6	esa	الما	cy b	166	m	D 0			- 1			Appdx-2	es	X	Herb.									A	Jhe.	appl		;;	
	☐ Inc. Invoice v	vith Final Re	port [in	voice	must	nave a	P.O.		VOHs	CALL		.	A	ticio	Appdx 1										74	≝	Jre-6	ا ای	From:	
Bill to:				_							- 1		VPH	Ы	Pesticides	_ [Pest.									2d	ဟ	are p	ege	_	
Quote/Pricing:		P.O. No:					Call f		0.	Oxyg	Appdx-2				OP I	3TAI											mg/Kg	and a	s ne	٠,	
Reg Program: UST DE	RY-CLEAN Land	-Fill Waste	-Disp	NP	DES	DW	TRRP	•		ᅵᇴ	App		MA	TCLP	″	2	SVOCs									34	E	<u>></u>	g	, by:	
QAPP Per-Contract CL	P AGCEE NAV	Y DOE D	OD (JSA	CE O	THEF	₹:			EfoH	- 1		H	A H	cides	13P										48h	×,	ll app	prove	Rcv.	
Special DLs (GW DW	QAPP MDLs RL	s See Lab l	PM Ir	cluc	led C	Call	PM)			BTEX-MTBE	Appdx-1	8270	MA	BN&AE	Herbicides	4 P.	VOCs		M	0						24h	mg/L	es wi	re-ap		
										ÌŽ				- 1	S	\$			1	õ							-	arg	e D		
Sampler Name Den	eldvener	Signatu	re v	n	9] []	DW	8310	GRO	MO	PCBs	22	(Metals		8021	M						12h	0	urch	Sar	Date	
Sample ID	Sampling Date	Time	Depth ft' ln" m	Matrix	Composite	# Containers	Container Size	Container Type	Preservatives		VOA: PP TCL	≥	TX-1005 DRO	SVOCs: Full-List	OC Pesticides F		SPLP - TCLP (N	EDB / DBCP	BTEX 8	Chloride E						TATASAP 5h	Addn: PAH above	Hold Samples (Surcharges will apply	Sample Clean-ups are pre-approved as needed	Addn:	
Rw (Linutes	1000	-	3	V	4	UOA 25ami	_	HLI	Ħ				-					X	X		+	П	\top	\top	X	Ì				1
		1000	_	w	-	4	VOA		He	\vdash	\dashv		\dashv		\dashv	\dashv			X	Ĵ	\top	+	\vdash	\dashv	+	X	\vdash	\vdash		+	1
Rw 4	Sinutes	1050	+-	H	-14	1	Zacunt	_	THE	\vdash	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv	-	-	$\stackrel{\sim}{\rightarrow}$	\rightarrow	+	+	\vdash	+	+		\vdash	\vdash		+	-
	-	-	+	Н	+	-	-	-	-	Н	\dashv	\dashv	\dashv	\dashv	\dashv	-	-	\dashv	\dashv	+	+	+	\vdash	+	+	+	\vdash	\vdash		+	ď
		-	+	Н	+	+	-		-	Н	\dashv	\dashv	\dashv	\dashv	\dashv	\dashv		\dashv	\dashv	+	+	+	\vdash	+	+	+	\vdash	\vdash	-	+	-
	+	-	+	Н	+	+		-	+	\vdash	\vdash	\dashv	-	\dashv	-	\dashv	_	\vdash	\dashv	+	+	+	\vdash	+	+	+	\vdash	\vdash		+	1,
	-		+-	\vdash	+	-	-			\vdash	\dashv	\dashv	-	-	\dashv	\dashv	_	\dashv	\dashv	+	+	+	\vdash	+	+	+	\vdash	\vdash		+	ľ
																										\perp					7
																				-											8
			\top	П	\dashv	\top				\Box		\Box							\neg	\neg	\top	+	\Box	\neg	\top	\top		П		\top	٩
	-		+-	\vdash	-	+	-	_		\vdash		\dashv	\dashv	\dashv	-	\dashv	_	\dashv	\dashv	+	+	+	\vdash	+	+	+	\vdash	\vdash		+	1.
					<u> </u>		<u></u>	<u> </u>	1	لِبا	Щ	\Box		Ш				Ш	\perp								\bot	Ų			10
Relinquished by (Initi	als and Sign)	Date &				inqui	shed to	(Inth	als a	nd Si	gn)	2		Date								COC:	8		С	ooler	Temp	<u>،نکرر</u>	O °C		-
1) Phul		2834	13		2)	U	un		OY	V	7	7	0	18	13	16	111												erty of XENC		
3)		1010			4)																								nailed unless		
5)		1			6)							- 1						nere	ov re	TUESTE	CI KU	sn Ch	arges a	and Co	DIECTIO	II ree	s are	bre-s	pproved if ne	euea.	1

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Committed to Excellence in Service and Quality

www.xenco.com

Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other _______ Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Work Order #: 465916

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Date/ Time Received: 06/28/2013 10:10:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used:

Sample Receipt Checklist		Comments
#1 *Temperature of cooler(s)?	3	
#2 *Shipping container in good condition?	Yes	
#3 *Samples received on ice?	Yes	
#4 *Custody Seals intact on shipping container/ cooler?	Yes	
#5 Custody Seals intact on sample bottles?	Yes	
#6 *Custody Seals Signed and dated?	Yes	
#7 *Chain of Custody present?	Yes	
#8 Sample instructions complete on Chain of Custody?	Yes	
#9 Any missing/extra samples?	No	
#10 Chain of Custody signed when relinquished/ received?	Yes	
#11 Chain of Custody agrees with sample label(s)?	Yes	
#12 Container label(s) legible and intact?	Yes	
#13 Sample matrix/ properties agree with Chain of Custody?	Yes	
#14 Samples in proper container/ bottle?	Yes	
#15 Samples properly preserved?	Yes	
#16 Sample container(s) intact?	Yes	
#17 Sufficient sample amount for indicated test(s)?	Yes	
#18 All samples received within hold time?	Yes	
#19 Subcontract of sample(s)?	Yes	
#20 VOC samples have zero headspace (less than 1/4 inch bubble)?	Yes	
#21 <2 for all samples preserved with HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples preserved with NaAsO2+NaOH, ZnAc+NaOH?	Yes	

Analyst:	PH D	evice/Lot#:	
Checklist comple	ted by:	Mmv Moah Kelsey Brooks	Date: <u>06/28/2013</u>
Checklist review	ed by:	Mmy Moah Kelsey Brooks	Date: 06/28/2013

Analytical Report 470310

for

Conestoga Rovers & Associates

Project Manager: Brittany Ford

F State

039122.2013.01

20-SEP-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-14-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757) Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

Page 1 of 13

Final 1.003

20-SEP-13

Project Manager: **Brittany Ford Conestoga Rovers & Associates**2135 S Loop 250 W

Midland, TX 79703

Reference: XENCO Report No(s): 470310

F State

Project Address: New Mexico

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 470310. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 470310 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Julian Martinez

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 470310

Conestoga Rovers & Associates, Midland, TX

F State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-6	W	09-13-13 13:15		470310-001

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: F State

Project ID: 039122.2013.01 Report Date: 20-SEP-13
Work Order Number(s): 470210

Work Order Number(s): 470310 Date Received: 09/13/2013

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-922962 Inorganic Anions by EPA 300/300.1

E300

Batch 922962, Chloride recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 470310-001.

The Laboratory Control Sample for Chloride is within laboratory Control Limits

Total BTEX

Chloride

Certificate of Analysis Summary 470310

Conestoga Rovers & Associates, Midland, TX Project Name: F State

Project Id: 039122.2013.01

Contact: Brittany Ford

Inorganic Anions by EPA 300/300.1

SUB: TX104704215

Project Location: New Mexico

Date Received in Lab: Fri Sep-13-13 04:34 pm

Report Date: 20-SEP-13 **Project Manager:** Kelsey Brooks

	Lab Id:	470310-001		,	,	
Analysis Requested	Field Id:	MW-6				
Anaiysis Kequesieu	Depth:					
	Matrix:	WATER				
	Sampled:	Sep-13-13 13:15				
BTEX by EPA 8021B	Extracted:	Sep-19-13 17:00				
	Analyzed:	Sep-19-13 20:42				
	Units/RL:	mg/L RL				
Benzene		ND 0.00100				
Toluene		ND 0.00200				
Ethylbenzene		ND 0.00100				
m_p-Xylenes		ND 0.00200				
o-Xylene		ND 0.00100				
Total Xylenes		ND 0.00100				

ND

Sep-17-13 12:30

Sep-17-13 21:36

209

mg/L

Extracted:

Analyzed: Units/RL:

0.00100

RL

1.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent be best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

AR.

Julian Martinez Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantiation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- H The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave. Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: F State

Work Orders: 470310, **Project ID:** 039122.2013.01

Lab Batch #: 923164 **Sample:** 470310-001 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L	Date Analyzed: 09/19/13 20:42	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Į .	Analytes			[D]		
1,4-Difluorobenzene		0.0288	0.0300	96	80-120	
4-Bromofluorobenzene		0.0287	0.0300	96	80-120	

Lab Batch #: 923164 Sample: 644114-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 09/19/13 19:38	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
1,4-Difluorobenzene	0.0296	0.0300	99	80-120	
4-Bromofluorobenzene	0.0294	0.0300	98	80-120	

Lab Batch #: 923164 Sample: 644114-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 09/19/13 18:50	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0282	0.0300	94	80-120				
4-Bromofluorobenzene	0.0301	0.0300	100	80-120				

Lab Batch #: 923164 Sample: 644114-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 09/19/13 19:06	SURROGATE RECOVERY STUDY							
вте	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
	Analytes			[D]					
1,4-Difluorobenzene		0.0298	0.0300	99	80-120				
4-Bromofluorobenzene		0.0296	0.0300	99	80-120				

Lab Batch #: 923164 **Sample:** 470446-004 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 09/19/13 22:33	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0313	0.0300	104	80-120				
4-Bromofluorobenzene	0.0300	0.0300	100	80-120				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: F State

Work Orders: 470310, Project ID: 039122.2013.01

Lab Batch #: 923164 **Sample:** 470446-004 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 09/19/13 22:49	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0310	0.0300	103	80-120				
4-Bromofluorobenzene	0.0292	0.0300	97	80-120				

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: F State

Work Order #: 470310 **Project ID:** 039122.2013.01

 Lab Batch #:
 922962
 Sample:
 643929-1-BKS
 Matrix:
 Water

 Date Analyzed:
 09/17/2013
 Date Prepared:
 09/17/2013
 Analyst:
 RKO

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

	DEM IN / DEM IN STIRE RECOVERT STOD T					
Inorganic Anions by EPA 300/300.1	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags
Analytes	[A]	[B]	Result [C]	%R [D]	%R	
Chloride	<1.00	100	101	101	90-110	

BS / BSD Recoveries

Project Name: F State

Work Order #: 470310 Analyst: ARM

Date Prepared: 09/19/2013

Project ID: 039122.2013.01 **Date Analyzed:** 09/19/2013

Lab Batch ID: 923164

Analytes

Benzene

Toluene

Ethylbenzene

m_p-Xylenes

o-Xylene

Sample: 644114-1-BKS **Batch #:** 1

< 0.00100

0.100

0.108

108

0.100

Matrix: Water

Units: mg/L

BTEX by EPA 8021B

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY Blank Spike Blank Blank Spike Blank Blk. Spk Control Control Sample Result Added Spike Spike Spike Dup. RPD Limits Limits Flag Added [A] Result %R **Duplicate** %R % %R %RPD [B] Result [F] [C] [D] [G] [E]< 0.00100 0.100 0.112 112 0.100 0.110 110 2 70-125 25 < 0.00200 0.100 0.114 114 0.100 0.110 110 4 70-125 25 < 0.00100 0.100 0.109 109 0.100 0.105 105 4 71-129 25 < 0.00200 0.200 0.217 109 0.200 0.209 105 4 70-131 25

0.104

104

4

71-133

25

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: F State

Work Order #: 470310 Project ID: 039122.2013.01

Lab Batch ID: 923164 **QC- Sample ID:** 470446-004 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 09/19/2013 **Date Prepared:** 09/19/2013 **Analyst:** ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00100	0.100	0.108	108	0.100	0.0993	99	8	70-125	25	
Toluene	< 0.00200	0.100	0.108	108	0.100	0.0997	100	8	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.102	102	0.100	0.0954	95	7	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.205	103	0.200	0.191	96	7	70-131	25	
o-Xylene	< 0.00100	0.100	0.102	102	0.100	0.0954	95	7	71-133	25	

Lab Batch ID: 922962 **QC- Sample ID:** 470110-009 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 09/18/2013 Date Prepared: 09/17/2013 Analyst: RKO

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	100	98.4	98	100	97.6	98	1	80-120	20	

Lab Batch ID: 922962 QC- Sample ID: 470365-001 S Batch #: 1 Matrix: Waste Water

Date Analyzed:09/17/2013Date Prepared:09/17/2013Analyst:RKO

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	52.4	100	130	78	100	128	76	2	80-120	20	X

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

ANALYSIS REQUEST & CHAIN OF CUSTODY RECORD

www.xenco.com

Page 12 of

Final 1.003

Cont. Type: Glass Amb (A), Glass Clear (C), Plastic (P), Various (V)

Preservatives: Various (V), HCI pH<2 (H), H2SO4 pH<2 (S), HNO3 pH<2 (N), Asbc Acid&NaOH (A), ZnAc&NaCH (Z), (Cool, <4C) (C), None (NA), See Label (L), Other (O). (9 hereby requested. Rush Charges and Collection Fees are pre-approved if needed. 3) (+ until paid. Samples will be held 30 days after final report is e-mailed unless PEUL ELABEL (1 Otherwise agreed on writing. Reports are the Intellectual Property of XENCO 61-21-1 (2 Relinquished by (Initials and Sign) Cooler Temp: O. 5 °C Total Containers per COC: Relinquished to (Initials and Sign) Date & Time Date & Time 10 Men-to 113000 El 5151 174 1 5 Depth ft' In" m Matrix Grab TX-1005 PAHs Composite SPLP 8 VOA: Preservatives Container Type Container Size Sample Clean-ups are pre-approved as needed Hold Samples (Surcharges will apply and are pre-approved Addn: PAH above TATASAP Metals: RCRA-8 SVOCs: Full-List VOA: Full-List EDB / DBCP Pesticides Date Sample ID PP **Jime** SIM Sampling DRO TCL BIEXMIBE 8310 **PCBs** RCRA-4 GRO DW Sampler Name DW Signature 12h 8270 Appdx-1 Herbicides 24h BN&AE MA EPH Special DLs (GW DW QAPP MDLs RLs See Lab PM Included Pb 13PP 23TAL 48h QAPP Per-Contract CLP AGCEE NAVY DOE DOD USACE OTHER: Rcv. EtOH TCLP Appdx-2 MA Reg Program: UST DRY-CLEAN Land-Fill Waste-Disp NPDES DW TRRP mg/Kg 3d S Oxyg Quote/Pricing: O.9 Tor IbO [:oN .O.9 **VPH** PP Pesticides S CALL Appdx 1 VOHs 7d Highest Hit Invoice to Accounting Inc. Invoice with Final Report Invoice must have a P.O. Herb. blue Bere world 10d Other: VOAs E-mail Results to Fax No: 21d mu NJ, PA, SC, TN, UT Other Br. 2 Card Proj. State: TX, AL, FL, GA, LA, MS, NC, Proj. Manager (PM) Remarks 7-5 Laber 10 Elos 2519ED It is typically 5-7 Working Days for level II and 10+ Working days for level III and IV data. Project Name-Location TAT: ASAP 5h 12h 24h 48h 3d 5d 7d 10d 21d Standard TAT is project specific. Previously done at XENCO Project ID 43200300184 407 Company-City Lab Only: Phone 5332, Blackberry Drive, San Antonio, TX 78238 210-509-3334 ÎO Page Serial #: 12600 West I-20 East, Odessa, TX 79765 432-563-1800 Laboratories 4143 Greenbriar Drive, Stafford, TX 77477 281-240-4200 9701 Harry Hines Blvd., Dallas, TX 75220 214-902-0300

subcontractors and assigns under Xenco's standard terms and conditions of service unless previously negotiated under a fully executed client contract. Notice: Signature of this document and relinquishment of these samples constitutes a valid purchase order from client company to Xenco Laboratories and its affiliates, Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Cont. Size: 4oz (4), 8oz (8), 32oz (32), 40ml VOA (40), 1L (1), 500ml (5), Tedlar Bag (B), Various (V), Other —

Committed to Excellence in Service and Quality

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Date/ Time Received: 09/13/2013 04:34:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Temperature Measuring device used :

Work Order #: 470310		lemp	perature Measuring de	evice used :
		Sample Receipt Che	ecklist	Comments
#1 *Temperature of coole	r(s)?		.5	
#2 *Shipping container in	n good conditi	on?	Yes	
#3 *Samples received or	ice?		Yes	
#4 *Custody Seals intact	on shipping	container/ cooler?	N/A	
#5 Custody Seals intact	on sample bo	ttles?	N/A	
#6 *Custody Seals Signe	d and dated?		N/A	
#7 *Chain of Custody pre	esent?		Yes	
#8 Sample instructions of	omplete on C	hain of Custody?	Yes	
#9 Any missing/extra sar	nples?		No	
#10 Chain of Custody sig	gned when re	inquished/ received?	Yes	
#11 Chain of Custody ag	rees with san	nple label(s)?	Yes	
#12 Container label(s) le	gible and inta	ct?	Yes	
#13 Sample matrix/ prop	erties agree v	vith Chain of Custody?	Yes	
#14 Samples in proper c	ontainer/ bott	le?	Yes	
#15 Samples properly pr	eserved?		Yes	
#16 Sample container(s)	intact?		Yes	
#17 Sufficient sample an	nount for indic	cated test(s)?	Yes	
#18 All samples received	d within hold t	ime?	Yes	
#19 Subcontract of samp	ole(s)?		Yes	
#20 VOC samples have	zero headspa	ce (less than 1/4 inch bubble	e)? Yes	
#21 <2 for all samples pr	eserved with	HNO3,HCL, H2SO4?	Yes	
#22 >10 for all samples	oreserved with	n NaAsO2+NaOH, ZnAc+Na	OH? N/A	
Must be completed for	after-hours d	elivery of samples prior to	placing in the refrige	rator
Analyst:	PH D	evice/Lot#:		
Checklist co	mpleted by:	Candau James Candace James	Date: <u>09/13/</u>	2013
Checklist re	viewed by:		Date: <u>09</u> /13/	2013

Analytical Report 475032

for Conestoga Rovers & Associates

> Project Manager: Brittany Ford F-State

> > 09-DEC-13

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122):

Texas (T104704215-13-15-TX), Arizona (AZ0765), Arkansas (08-039-0), Connecticut (PH-0102), Florida (E871002) Illinois (002082), Indiana (C-TX-02), Iowa (392), Kansas (E-10380), Kentucky (45), Louisiana (03054) New Hampshire (297408), New Jersey (TX007), New York (11763), Oklahoma (9218), Pennsylvania (68-03610) Rhode Island (LAO00312), USDA (S-44102), DoD (L11-54)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Tampa Mobile (EPA Lab code: FL01212): Florida (E84900)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona(AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code:AZ000989): Arizona (AZ0758)

09-DEC-13

Project Manager: **Brittany Ford Conestoga Rovers & Associates**2135 S Loop 250 W

Midland, TX 79703

Reference: XENCO Report No(s): 475032

F-State

Project Address: New Mexico

Brittany Ford:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 475032. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 475032 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Hoah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 475032

Conestoga Rovers & Associates, Midland, TX

F-State

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-8-112713	W	11-27-13 13:15		475032-001
MW-3-112713	W	11-27-13 13:25		475032-002
MW-6-112713	W	11-27-13 13:40		475032-003
MW-4-112713	W	11-27-13 14:00		475032-004
MW-7-112713	W	11-27-13 14:15		475032-005
MW-5-112713	W	11-27-13 14:35		475032-006
DUP-1-112713	W	11-27-13 00:00		475032-007

CASE NARRATIVE

Client Name: Conestoga Rovers & Associates

Project Name: F-State

Project ID: Report Date: 09-DEC-13 Work Order Number(s): 475032 Date Received: 12/02/2013

	Sample receipt non conformances and comments:
-	Sample receipt non conformances and comments per sample:
	None

Project Id:

Project Location: New Mexico

Contact: Brittany Ford

Certificate of Analysis Summary 475032

Conestoga Rovers & Associates, Midland, TX

Project Name: F-State

Date Received in Lab: Mon Dec-02-13 09:34 am

Report Date: 09-DEC-13

Project Manager: Kelsev Brooks

								I Toject Ma	mager. 1	xeisey brook	3		
	Lab Id:	475032-	001	475032-0	02	475032-0	003	475032-	004	475032-0	005	475032-	006
Analusia Danusatad	Field Id:	MW-8-11	2713	MW-3-112	2713	MW-6-11	2713	MW-4-11	2713	MW-7-11	2713	MW-5-11	2713
Analysis Requested	Depth:												
	Matrix:	WATE	ER	WATE	₹	WATE	R	WATE	R	WATE	R	WATE	ER
	Sampled:	Nov-27-13	13:15	Nov-27-13	13:25	Nov-27-13	13:40	Nov-27-13	14:00	Nov-27-13	14:15	Nov-27-13	14:35
BTEX by EPA 8021B	Extracted:	Dec-02-13	11:00	Dec-02-13	11:00	Dec-02-13	11:00	Dec-02-13	11:00	Dec-02-13	11:00	Dec-02-13	11:00
	Analyzed:	Dec-02-13	22:52	Dec-02-13	23:08	Dec-02-13	23:24	Dec-02-13	23:40	Dec-02-13	23:56	Dec-03-13	00:43
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m,p-Xylenes		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Total BTEX		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00	Dec-03-13	10:00
	Analyzed:	Dec-03-13	23:17	Dec-04-13	01:33	Dec-04-13	02:18	Dec-04-13	02:41	Dec-04-13	03:03	Dec-04-13	03:26
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Chloride		72.2	5.00	101	5.00	220	5.00	65.1	5.00	78.1	5.00	72.3	5.00

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Project Location: New Mexico

Certificate of Analysis Summary 475032

Conestoga Rovers & Associates, Midland, TX

Project Id:

Project Name: F-State

Date Received in Lab: Mon Dec-02-13 09:34 am Contact: Brittany Ford

Report Date: 09-DEC-13 Project Manager Kalsay Brook

				Project Manager:	Kelsey Brooks	
	Lab Id:	475032-007				
Analysis Requested	Field Id:	DUP-1-112713				
Anaiysis Requesieu	Depth:					
	Matrix:	WATER				
	Sampled:	Nov-27-13 00:00				
BTEX by EPA 8021B	Extracted:	Dec-02-13 11:00				
	Analyzed:	Dec-03-13 00:59				
	Units/RL:	mg/L RL				
Benzene		ND 0.00100				
Toluene		ND 0.00200				
Ethylbenzene		ND 0.00100				
m,p-Xylenes		ND 0.00200				
o-Xylene		ND 0.00100				
Total Xylenes		ND 0.00100				
Total BTEX		ND 0.00100				
Inorganic Anions by EPA 300/300.1	Extracted:	Dec-03-13 10:00				
	Analyzed:	Dec-04-13 03:49				
	Units/RL:	mg/L RL				
Chloride		71.3 5.00				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: F-State

Work Orders: 475032, **Project ID:** Lab Batch #: 928985 Matrix: Water **Sample:** 475032-001 / SMP Batch:

Units:	mg/L Date Analyzed: 12/02/13 22:5	SURROGATE RECOVERY STUDY								
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
	Analytes			[D]						
1,4-Difluoro	benzene	0.0274	0.0300	91	80-120					
4-Bromoflu	orobenzene	0.0282	0.0300	94	80-120					

Matrix: Water Lab Batch #: 928985 Sample: 475032-002 / SMP Batch: 1

Date Analyzed: 12/02/13 23:08 **Units:** mg/L SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0261 0.0300 87 80-120 4-Bromofluorobenzene 0.0273 0.0300 91 80-120

Lab Batch #: 928985 Sample: 475032-003 / SMP Batch: Matrix: Water

Units: mg/L Date Analyzed: 12/02/13 23:24 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0263	0.0300	88	80-120	
4-Bromofluorobenzene	0.0279	0.0300	93	80-120	

Sample: 475032-004 / SMP **Lab Batch #:** 928985 Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 12/02/13 23:40	SURROGATE RECOVERY STUDY						
	BTE	X by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluore	obenzene	Analytes	0.0277	0.0300	92	80-120			
4-Bromoflu	orobenzene		0.0286	0.0300	95	80-120			

Lab Batch #: 928985 Sample: 475032-005 / SMP Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 12/02/13 23:56	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluoroben	nzene		0.0270	0.0300	90	80-120			
4-Bromofluorob	enzene		0.0294	0.0300	98	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: F-State

Work Orders: 475032, **Project ID:** Lab Batch #: 928985 Matrix: Water **Sample:** 475032-006 / SMP Batch:

Units: mg/L Date Analyzed: 12/03/13 00:43 SURROGATE RECOVERY STUDY								
	BTEX	by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
		Analytes			[D]			
1,4-Difluor	robenzene		0.0272	0.0300	91	80-120		
4-Bromoflu	uorobenzene		0.0294	0.0300	98	80-120		

Lab Batch #: 928985 Sample: 475032-007 / SMP Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 12/03/13 00:59 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Recovery Limits Amount Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0272 0.0300 91 80-120 4-Bromofluorobenzene

0.0275

0.0300

92

80-120

Lab Batch #: 928985 **Sample:** 647762-1-BLK / BLK Batch: Matrix: Water

Units: mg/L Date Analyzed: 12/02/13 21:16 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0283	0.0300	94	80-120	
4-Bromofluorobenzene	0.0269	0.0300	90	80-120	

Sample: 647762-1-BKS / BKS Matrix: Water **Lab Batch #:** 928985 Batch: 1

Units: mg/L Date Analyzed: 12/02/13 19:57 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0306 0.0300 102 80-120 4-Bromofluorobenzene 0.0299 0.0300 100 80-120

Lab Batch #: 928985 **Sample:** 647762-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L	Date Analyzed: 12/02/13 20:13	SURROGATE RECOVERY STUDY					
ВТ	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluorobenzene		0.0311	0.0300	104	80-120		
4-Bromofluorobenzene		0.0309	0.0300	103	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: F-State

Units: mg/	L Date Analyzed: 12/02/13 20:29	SU	RROGATE RE	ECOVERY S	STUDY	
	BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzen	e	0.0301	0.0300	100	80-120	
4-Bromofluorobenz	ene	0.0325	0.0300	108	80-120	

Units:	mg/L	Date Analyzed: 12/02/13 20:45	SU	RROGATE RI	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes	Analytes			[D]		
1,4-Difluoro	benzene		0.0308	0.0300	103	80-120	
4-Bromoflu	orobenzene		0.0327	0.0300	109	80-120	

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: F-State

Work Order #: 475032 Project ID:

Analyst: ARM **Date Prepared:** 12/02/2013 **Date Analyzed:** 12/02/2013

Lab Batch ID: 928985 **Sample:** 647762-1-BKS **Batch #:** 1 **Matrix:** Water

Units:	mg/L	BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.110	110	0.100	0.116	116	5	70-125	25	
Toluene	< 0.00200	0.100	0.107	107	0.100	0.113	113	5	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.101	101	0.100	0.107	107	6	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.202	101	0.200	0.214	107	6	70-131	25	
o-Xylene	< 0.00100	0.100	0.103	103	0.100	0.109	109	6	71-133	25	

Analyst: AMB Date Prepared: 12/03/2013 Date Analyzed: 12/03/2013

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	22.9	92	25.0	23.1	92	1	80-120	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: F-State

Work Order #: 475032 Project ID:

Analyst: AMB Date Prepared: 12/03/2013 Date Analyzed: 12/04/2013

Lab Batch ID: 929328 **Sample:** 647852-1-BKS **Batch #:** 1 **Matrix:** Water

Units: mg/L BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	23.2	93	25.0	23.2	93	0	80-120	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: F-State

Work Order #: 475032

Project ID: Lab Batch #: 929056

Date Analyzed: 12/03/2013 **Date Prepared:** 12/03/2013 Analyst: AMB **QC- Sample ID:** 475007-010 S **Batch #:** 1 Matrix: Water

Reporting Units: mg/L

Reporting Units: Mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	261	250	502	96	80-120	

Lab Batch #: 929056

Date Analyzed: 12/03/2013 **Date Prepared:** 12/03/2013 Analyst: AMB **QC- Sample ID:** 475080-001 S Batch #: Matrix: Water

Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	2050	2500	4550	100	80-120	

Lab Batch #: 929328

Date Analyzed: 12/04/2013 **Date Prepared:** 12/03/2013 Analyst: AMB **QC- Sample ID:** 475032-002 S **Batch #:** 1 Matrix: Water

orting United mg/I

Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECOV	VERY STU	DY
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
Chloride	101	125	215	91	80-120	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Page 13 of 16

Final 1.000

Form 3 - MS / MSD Recoveries

Project Name: F-State

Work Order #: 475032 Project ID:

Lab Batch ID: 928985 **QC- Sample ID:** 474800-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 12/02/2013 Date Prepared: 12/02/2013 Analyst: ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	-	Duplicate Spiked Sample	-	RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00100	0.100	0.117	117	0.100	0.116	116	1	70-125	25	
Toluene	< 0.00200	0.100	0.115	115	0.100	0.114	114	1	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.110	110	0.100	0.109	109	1	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.222	111	0.200	0.218	109	2	70-131	25	
o-Xylene	< 0.00100	0.100	0.112	112	0.100	0.111	111	1	71-133	25	

Page	
15	
앜	
16	

Matrix: Air (A), Product (P), Solid (S), Water (W), Liquid (L)

Company-City Conestoga - Ro			cs	one					ab Oı			75					°)								
Project Name-Location	☐ Previously	done at XE	NCO		Pro	ject ID)													rd TAT i for level					
Proj. State: TX, AL, FL, GA IJ, PA, SC, TN, UT Other	NW	Proj Mana		for				VOAs	J.:			CALL	Appdx2	PCBs)							21d		(pa	Remark	(S
,	PM and				#///	No:		WOHs VO	. 0			Appdx-2 icides		Herb.							10d	Highest Hit	approved)		
Invoice to ☐ Accounting ☐ Inc. Invoice with Final Report ☐ Invoice must have a P.O Bill to:									0		- 1	10	Appdx 1	Pest. H							p2	(0	pre	pap	
uote/Pricing:		P.O. No:	W			Call f	or P.O	DAXO	dx-2	1 1	-		23TAL								50	1 8,	and are	s nee	
eg Program: UST DRY)	EFOH	Q.			\circ		SVOCs		6					34		apply a	/ed a							
APP Per-Contract CLP			×		EPH	BN&AE T Herbicides	Pb 13PP			8					484			ppro							
pecial DLs (GW DW QA	APP MDLs RLs	See Lab P	M Inclu	ded (Call P	PM)		MTB	Appdx-1	1 00 1		BN Her	1 1	VOCs	2	2 2					24h	mg/L	rges \	bre-a	
ampler Name Warren	Maurer	Signatur	e /2	f	W	M	~	BTEX-MTBE	MO	8310	\sim 1	PCBs	RCRA-4	(Metals	000	3					12h	9	(Surcharges will	ps are	
				П	2	Size	Гуре				DRO	.02	3A-8		8	any dee					52	a a	es	au-nt	
Sample ID	Sampling Date	Time	Depth ft' ln" m Matrix	Composite	# Containers	Container Size	Container Type	Preservatives	VOA: PP	00	TX-1005	SVOCs: Full-L OC Pesticides	Metals: RCRA-8	SPLP - TCLP	Pro-	CLIPS.					TATASAP	Addn: PAH	Hold Samples	Sample Clean-ups are pre-approved as needed	
MW-8-112713	11/27/13	1315	h	4	3											(X									1
mw-3-112713		1325													\perp	\coprod					_		\sqcup		4
MW- 9-112713		1340	Ш	Ш	Ш				1		_		_			Н	1				\perp	_	$\perp \perp$		+
mw-4-112713		1400	$\sqcup \sqcup$		Ш				_		_				\perp	\sqcup	\vdash	_	\vdash	\perp	+	+	\vdash		+
MW-7-112713		1415	\parallel	1	Ш			_	_				-		\dashv	\mathcal{H}	\vdash	_		\dashv	+	+	\sqcup		+
MW-5- 112713		1435	$\sqcup \sqcup$	$\perp \perp$	Ш		\sqcup		_		_		_		$\perp \parallel$	11	\vdash			-	_	+	\vdash		+
Dup-1- 112713	V		4		4		\vdash		_		_		-		4	1	1	_		-	\dashv	+	\vdash		+
•				\sqcup					_			_	_		_	+	++	_	\vdash		+	+	\perp		+
				4					-	Ш	_	_	+		_	+	++	_	\vdash	-		+	-		+
		D 1 0		1		II 4-	(1-:4:-		0:)	Щ		Date &	Time						21					116.0	
Relinquished by (Initials) Rwm Rd WW		Date & 34	12/2/L		inquis	nea to	(Initia	ls and	oign)				12/					r COC:		orts are t				erty of XENC	20
) KWM KIT W VV	~	0 7.39	LIH	4)	and	bu	K				v	,	101	1/	until pa	id. S	amples	will be h	neld 30	days aft	ter final	repor	t is e-ı	mailed unless	S
5)			6)							hereby requested. Rush Charges and Collection Fees are pre-app						approved if ne	ede								

Committed to Excellence in Service and Quality

www.xenco.com

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: Conestoga Rovers & Associates

Date/ Time Received: 12/02/2013 09:34:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 475032

Temperature Measuring device used:

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		0
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	tainer/ cooler?	N/A
#5 Custody Seals intact on sample bottle	es?	N/A
#6 *Custody Seals Signed and dated?		N/A
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	in of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relind	quished/ received?	Yes
#11 Chain of Custody agrees with sampl	e label(s)?	Yes
#12 Container label(s) legible and intact?)	Yes
#13 Sample matrix/ properties agree with	Chain of Custody?	Yes
#14 Samples in proper container/ bottle?		Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicate	ed test(s)?	Yes
#18 All samples received within hold time	9?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace	(less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HN	103,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with N	aAsO2+NaOH, ZnAc+NaOH?	N/A
* Must be completed for after-hours de Analyst: PH Device		the refrigerator
Checklist completed by: Checklist reviewed by:	Candace James Mury Morah	Date: 12/02/2013 Date: 12/02/2013
	Kelsey Brooks	Datis. 12/02/2013

Appendix B

MDPE Reports

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • fax:713.468.6689 • www.acuvac.com

February 14, 2013

Ms. Brittany Ford Project Manager Conestoga-Rovers & Associates 2135 S. Loop 250 W. Midland, TX 79703

Dear Brittany:

Re: Event #7: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #7 at the above location on February 11, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #7 - Well RW-1

The total Event time was 8.0 hours. The data is compared to Event #6 conducted on November 13, 2012 which had a total Event time of 7.5 hours.

- The total GW/NAPL recovered was 1,995 gals of which 4.72% or 94.1 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel was 5.30 gals, resulting in a total liquid and vapor NAPL recovery of 99.4 gals, or 4.98%. This equates to 12.42 gal/hr, which is an decrease of 1.15 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 14,557 ppmv, $CO_2 = 9.89\%$, CO = 0%, $O_2 = 5.6\%$ and $H_2S = 3.11\%$.
- Compared with MDP Event #6 data, the TPH levels increased 1,003 ppmv, CO₂ increased 0.34%, CO was equal, O₂ decreased 0.9% and H₂S decreased 0.51%.
- The Average Induced Vacuum was 67.94"H₂O and the average EW vapor flow was 6.71 scfm. The average induced vacuum increased 9.25"H₂O and the average well flow increased 0.25 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.15gpm. The average GW pump rate decreased 0.13 gpm.
- The average GW depression was estimated at 2.0 ft below static level, which was steady with Event #6. This estimate is based on the GW pump position and GW rate.

At the start of Event #7, the static NAPL level was 3.68 ft and 0.21 ft of NAPL was
estimated at the conclusion of the Event. The static GW level decreased 12.73 ft based on
hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x \text{ 1.58E}^{-7} \text{ (min)(lb mole)} = \text{lbs/hr}$ $(hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 8.0 hour Event #7 (well RW-1), was 99.4 gals, or 4.98 % of the total liquid volume of 1,995 gals. This equates to 12.42 gals/hr.

During the seven Events totaling 52.3 hours, the total NAPL removed, including liquid and vapor, equals 599.6 gals, or 4.68 % of a total liquid volume of 12,798 gals. This equates to a NAPL recovery rate of 11.46 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 decreased slightly from 13.56 to 12.42 gal/hr.
- The induced vacuum was higher than Event #6, but the GW/NAPL pump rate decreased by 0.63 gpm. These changes were necessary to maintain a constant liquid depression at approximately 2.0 ft.
- At the conclusion of the Event, the well was gauged and 0.21" of NAPL remained in the well.

We appreciate you selecting AcuVac to provide this service. We have schedule Event #8 for Thursday March 14, 2013. Should you have any questions, please contact me.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

130006.REP

Well and Recovery Data Information - Event #7 February 11, 2013

EVENT NO		7
WELL NO.		RW-1
Total Event Hours		8.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #7	ft	62.59
DTNAPL - Static - Start Event #7	ft	58.91
NAPL	ft	3.68
DTGW - End Event #7	ft	59.52
DTNAPL - End Event #7	ft	59.31
NAPL	ft	0.21
Average Extraction Well Vacuum	"H₂O	67.94
Average Extraction Well Vapor Flow	scfm	6.71
Average GW/NAPL Pump Rate	gpm	4.15
Average TPH	ppmv	14,557
Average CO ₂	%	9.89
Average CO	%	0
Average O ₂	%	5.6
Average H ₂ S	%	3.11
Total Liquid Volume Recovered	gals	1,995
Total Liquid NAPL Recovered	gals	94.10
Total Liquid NAPL Recovered	%	4.98
Total Vapor and Liquid NAPL Recovered	gals	99.4
Total NAPL Recovered	%	4.72
Total NAPL Recovered	lbs	695.8
Total Volume of Well Vapors	cu.ft	3,222

130006.REP

OPERATING DATA - EVENT # 7

PAGE#

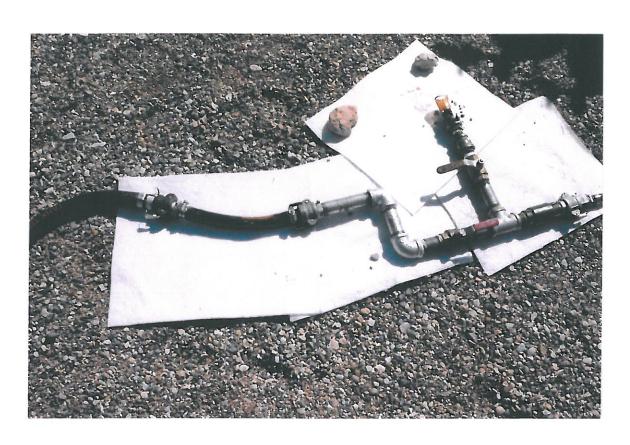
ACUVAC MOBILE DUAL PHASE SYSTEM

Location	COPERATING DATA - EVENT # / PAGE # ACUVAC MOBILE DUAL PHASE SYST Control of the						
	Date:	2-11-13	-	_	_		
	Parameters	Time 0745 Hr Meter	Time OEIS Hr Meter	Time CE 45 Hr Meter	Time CGIS	Time CG45 Hr Meter	Time 1015 Hr Meter
	WELL # RW-1	Hr Meter 6119,5	6230.0	622015	69210	622115	699910
)	R.P.M.	1800	1800	1800	1800	1800	1800
WER	Oil Pressure psi	50	30	50	30	50	50
ENGINE/BLOWER	Water Temp °F	140	150	150	160	160	160
GINE	Volts	13	13	13	13	13	13
EŽ	Intake Vacuum "Hg	70	70	20	20	20	20
	Gas Flow Fuel/Propane cfh	110.	10	110	110	110	110
	GW Pump ON/OFF	ON	900	ON	ON	on	on
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Flow scfm	5.29	599	5,29	5,29	5,73	5.73
COO	Extraction Well Vacuum "H ₂ O	60	60	60	60	60	60
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4.0	4.0	40	4,0	4.0	4,6
HERI	Total Volume gals		120	240	360	480	600
10SP Pt	Influent Vapor Temp. °F	68	68	68	68	68	68
ATA	Air Temperature °F	3.4.6	35.8	363	38.5	40.1	42.7
	Barometric Pressure "Hg	29.96	29.96	29.95	29,95	2996	29.96
L .	HC ppmv	15,820		12,620		14,200	
POR	CO ₂ / CO %	9,440	-	9.72/0	*	10.32 0	
VAPOR /INFLUENT	O ₂ %	6.4	^	6,6	•	6-1	
	H ₂ S ppm	3,0	•	3,0		3.0	
NOTES	SET GW/NAPL Pamp inlet @ 62,064 B700- Initial EW indu Vacuum set @ 60" Hao, Vaper well flow (VWF)= 5,299 0445- NOTE- VWF@ 5,73505+11						
		<i></i>					
Q	NAPL % Vol Gals	- N/A	11/13,2	10/12.0	7/8,4	7 /8.4	6/7.2
MANIFOLD	Depth of GW Depression ft			1 -		4m \ 4	-2.0
MAN		-2.0	-2.0	-2.0	-9.0	-7.0	"div
	Extraction Well DTNAPL ft	58.9.1	707				
	Extraction Well DTGW ft	62.59					

	OPERATING DATA - E		PAG	E# -2	ACUVAC MOBILE DUAL PHASE SYSTEM				
Location	: "F" STATE, Lea County	, NM	0		Proje	et Managers: Sadl	er/Faucher		
	Date:	2-11-13	_	_		-	_		
	Parameters	Time 1045	Time [[15	Time 1145	Time (213	Time 1245	Time 1315		
	WELL # RW-1	Hr Meter	Hr Meter	Hr Meter 67.23.5	Hr Meter 6274.0	Hr Meter	Hr Meter		
	R.P.M.	1800	1800	1800	1800	1800	1800		
VER	Oil Pressure psi	50	30	50	30	30	50		
ENGINE/BLOWER	Water Temp °F	160	160	160	160	160	160		
INE	Volts	<i>t</i> 3	13	13	13	13	13		
ENG	Intake Vacuum "Hg	20	20	19	19	19	19		
	Gas Flow Fuel/Propane cfh	110	110	100	100	(00	100		
	GW Pump ON/OFF	00	01	000	000	06	00		
/AIR	Extraction Well Flow scfm	6.18	6.18	7,68	7,68	7.68	7.68		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	60	60	75 .	75	75	75		
SPHERE/VACUUI PUMP/VOLUME	Pump Rate gals/min	4.0	4.0	4.0	4.0	4.0	4.0		
IERE MP/V	Total Volume gals	720	840	960	1080	1200	1320		
OSPI	Influent Vapor Temp. °F	69	69	69	69	69	69		
ATM	Air Temperature °F	44.6	46.2	482	49.1	50,6	51.9		
	Barometric Pressure "Hg	29.94	.19.92	29.89	29.87	24.87	29.86		
_	HC ppmv	14,840	_	12,130	۳	13,340	-		
VAPOR /INFLUENT	CO ₂ / CO %	10,560	~	9.54/0	-	9.36 0	-		
VAP	O ₂ %	6.5	•	3.4		4.8	,		
7	H ₂ S ppm	3.0	•	3.0	-	3.0	_		
	Ew induced uce	ean stea	dy @- 60"	Hro. VW	F e 6,185	c.fm-PR:	4.00 pm		
	11134AS- FUCRES						(,		
2000.0000	PR= 4091n		14 14 14 14 14 14 14 14 14 14 14 14 14 1			Name of the last o			
NOTES				**************************************					
ž				V. 8 44 4 10 10 10 10 10 10 10 10 10 10 10 10 10					
	NAPL % Vol Gals	5/40	4/4.8	4/4,8	4 /4.8	4/4.8	4/418		
9	Data Logger ft	N/A	_	-	-	-			
MANIFOLD	Depth of GW Depression ft	-7.0	-7.0	-20	-2.0	-3.0	- 3.0		
M.	Extraction Well DTNAPL ft	,							
	Extraction Well DTGW ft								
() T 1' '	Well Pressure					7FOPMS/TeetFr			

OPERATING DATA - EVENT #7 PAGE # 3 ACUVAC MOBILE DUAL PHASE SYSTI Location: "F" STATE, Lea County, NM Project Managers: Sadler/Faucher									
	Date:	2-11-13	-	_	-				
	Parameters	Time t345	Time 1415	Time 1445	Time 1515	Time 1545	Time		
	WELL # RW-1	Hr Meter 6225.5	Hr Meter 6226.0	Hr Meter 6226.5	Hr Meter 6227,0	Hr Meter 6727.5	Hr Meter		
	R.P.M.	1800	1800	1800	1800	1800			
VER	Oil Pressure psi	50	50	50	50	50			
ENGINE/BLOWER	Water Temp °F	160	160	160	160	160			
INE/	Volts	<i>C</i> 3	13	13	13	13			
ENG	Intake Vacuum "Hg	19	19	19	19	19			
	Gas Flow Fuel/Propane cfh	100	100	100	100	(00)			
	GW Pump ON/OFF	00	00	00	٥٥٠	000			
/AIR	Extraction Well Flow scfm	7.69	7.68	7,68	7.68	7.68			
OCUM ME	Extraction Well Vacuum "H ₂ O	75	75	75	75	15			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5			
HERE MP/V	Total Volume gals	14.55	1590	1725	1860	1995			
OSPI	Influent Vapor Temp. °F	69	69	69	69	69			
ATM	Air Temperature \ °F	523	5311	356	567	57.2			
	Barometric Pressure "Hg	29.83	24.83	29.80	29.79	29.78			
r.	HC ppmv	14,700	Pm.	16,550	-	16,710			
OR	CO ₂ / CO %	9.25/0	_	10,00 6	-	1006/0			
VAPOR /INFLUENT	O ₂ %	4.8	~	5.0	-	5.1	1340		
,	H ₂ S ppm	4.0	-	3.0	-	3.0			
	FU vocuum and VWF steady @ 75 HzO, 71685chm-PR= 4.5gpm 1345 HRS-PR: 4.5gpm - NOIS HARL recovery on decreasing trend NOTE: HORMA HE weeks continue on an increasing trend-								
NOTES									
N	Induced vaccoun ROI appears to be increasing to bother								
	*	*		,		94.3			
	NAPL % Vol Gals	3/40	3/4.(2/217	2/2.7	1/14			
g.	Data Logger ft	MA	_	_	-				
MANIFOLD	Depth of GW Depression ft	-20	-2.0	-20	-2.0	-20			
W.	Extraction Well DTNAPL ft			•		59.31			
Ī	Extraction Well DTGW ft					59.52			


() Indicates Well Pressure


7FORMS/TestForms/1210018

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • fax:713.468.6689 • www.acuvac.com

March 22, 2013

Ms. Brittany Ford Project Manager Conestoga-Rovers & Associates 2135 S. Loop 250 W. Midland, TX 79703

Dear Brittany:

Re: Event #8: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #8 at the above location on March 14, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #8 - Well RW-1

The total Event time was 7.5 hours. The data is compared to Event #7 conducted on February 11, 2013, which had a total Event time of 8.0 hours.

- The total GW/NAPL recovered was 2,046 gals of which 5.80% or 118.6 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel was 6.71 gals, resulting in a total liquid and vapor NAPL recovery of 125.3 gals, or 6.12%. This equates to 15.66 gal/hr, which is an increase of 3.24 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 15,168 ppmv, $CO_2 = 9.79\%$, CO = 0%, $O_2 = 5.5\%$ and $H_2S = 2.88\%$.
- Compared with MDP Event #7 data, the TPH levels increased 611 ppmv, CO₂ decreased 0.10%, CO was equal, O₂ decreased 0.2% and H₂S decreased 0.24%.
- The Average Induced Vacuum was 82.50"H₂O and the average EW vapor flow was 8.15 scfm. The average induced vacuum increased 14.56"H₂O and the average well flow increased 1.44 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.58 gpm. The average GW pump rate increased 0.44 gpm.
- The average GW depression was estimated at 2.0 ft below static level, which was consistent with Event #7. This estimate is based on the GW pump position and GW rate.

• At the start of Event #8, the static NAPL level was 3.24 ft and 0.02 ft of NAPL was estimated at the conclusion of the Event. The static GW level decreased 0.38 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E^{-7} (min)(lb mole)} = lbs/hr (hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 8.0 hour Event #8 (well RW-1), was 125.3 gals, or 6.12% of the total liquid volume of 2,046 gals. This equates to 15.66 gals/hr.

During the eight Events totaling 60.3 hours, the total NAPL removed, including liquid and vapor, equals 724.9 gals, or 4.88% of a total liquid volume of 14,844 gals. This equates to a NAPL recovery rate of 12.02 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 increased significantly from 12.42 to 15.66 gal/hr.
- The induced vacuum was higher than Event #7, and the GW/NAPL pump rate increased by 0.44 gpm. These changes were necessary to maintain a constant liquid depression at approximately 2.0 ft.
- At the conclusion of the Event, the well was gauged and 0.02" of NAPL remained in the well.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #9 for Tuesday, April 16, 2013. Should you have any questions, please contact me.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

Well and Recovery Data Information - Event #8 March 12, 2013

EVENT NO		8
WELL NO.		RW-1
Total Event Hours		7.5
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #8	ft	61.96
DTNAPL - Static - Start Event #8	ft	58.72
NAPL	ft	3.24
DTGW - End Event #8	ft	59.14
DTNAPL - End Event #8	ft	59.12
NAPL	ft	0.02
Average Extraction Well Vacuum	"H ₂ O	82.50
Average Extraction Well Vapor Flow	scfm	8.15
Average GW/NAPL Pump Rate	gpm	4.58
Average TPH	ppmv	15,168
Average CO ₂	%	9.79
Average CO	%	0
Average O ₂	%	5.5
Average H ₂ S	%	2.88
Total Liquid Volume Recovered	gals	2,046
Total Liquid NAPL Recovered	gals	118.6
Total Liquid NAPL Recovered	%	5.80
Total Vapor and Liquid NAPL Recovered	gals	125.3
Total NAPL Recovered	%	6.12
Total NAPL Recovered	lbs	724.9
Total Volume of Well Vapors	cu.ft	3,912

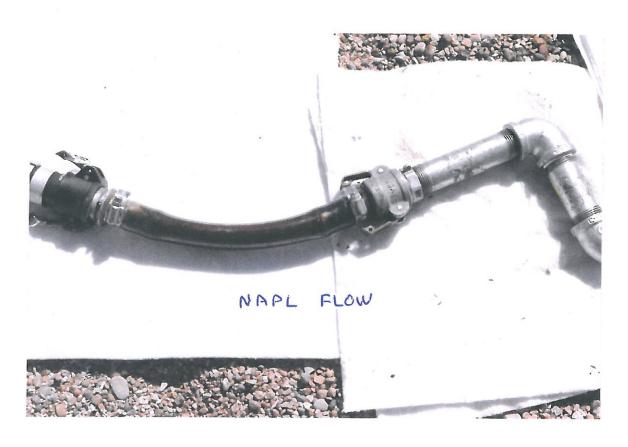
Locati	ion: "F" State Site, Lea		PAGE# [ACUVAC MOBILE DUAL PHASE Project Managers: Sadler/Lundgr						
	Date:	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013		
	Parameters	Time 0745	Time 080	Time 0845	Time OGIS	Time OA45	Time iDi 5		
	well# PW-(Hr Meter 6239.5	Hr Meter 6-240.0	Hr Meter	Hr Meter	Hr Meter 6/241, 5	Hr Meter		
	R.P.M.	1800	1800	1900	1800	1900	1808		
ENGINE/BLOWER	Oil Pressure psi	50	50	SO	SO	50	50		
	Water Temp °F	140	160	160	160	160	(66		
INE	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	19	19	19	19	19	19		
	Gas Flow Fuel/Propane cfh	110	110	110	110	110	((0		
	GW Pump ON/OFF	00	ON	02	ON	OW	00		
/AIR	Extraction Well Flow scfm	6.47	6.91	7,34	7,34	7.18	7,78		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H2O	73	75	75	75	15	75		
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	4.2	4.2	4.2	4.2	4.2	4.2		
HERE MP/V	Total Volume gals	-	126	252	378	504	630		
IOSPI	Influent Vapor Temp. °F	68	68	68	68	હહ	68		
ATM	Air Temperature °F	46.4	48.6	50,3	520	538	55,9		
	Barometric Pressure "Hg	30, 7e	30,30	30.21	30.71	30.21	30-20		
	HC ppmv	13.810	~	14,950	_	15,070	7		
VAPOR /INFLUENT	CO ₂ / CO %	9.32/,01	1	9.38/0	~	9.62/0	•		
VAI	O ₂ %	6.3	ſ	4.9	(4.7	•		
	H ₂ S %	2.0	5	3.0	i.	3.0	,		
	SET GUIDAR	- Pemp	e 620 f	+ BTOC -	Initial		evl		
	vieuem @ 75°Hzc VWF= 6.47 scfm - incresion to 6.91 schm								
NOTES	SET GW MARI PEMP & GLO H BTOC - Initial EW induced Ucacam @ 75° Hz VWF = 6.47 schm - increasing to 6.91 schm Pany Rate = 4.29pm - 0845 - VWF = 7.78 schm - 0945 - VWF = 7.78 schm								
ž			X						
	NAPL % Vol Gals	7	10/126	10/12.6	80/101	7.5 9.5	7.0/8.8		
OLD	Data Logger ft	NA	-	_	•	-	-		
MANIFOLD	Depth of GW Depression ft	-210	-200	~3.0	-2.0	-20	-20		
Σ	Extraction Well DTNAPL ft	58.72							
	Extraction Well DTGW ft	61,96		3					
() Y 1: /	s Well Pressure		salaran to the terminal			7EODMS/TootEo			

Locatio	ation: "F" State Site, Lea County, NM Project Managers: Sadler/Lundgren							
	Date:	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013	
	Parameters	Time 1045	Time (15	Time 1145	Time 1715	Time 1)45	Time (315	
	WELL# Per (Hr Meter 6 2 42 5	Hr Meter 62-430	Hr Meter 6243, 3	Hr Meter 624440	Hr Meter 62 44.5	Hr Meter 63-450	
	R.P.M.	1800	1800	1800	1800	1800	1800	
VER	Oil Pressure psi	50	50	50	50	50	50	
ENGINE/BLOWER	Water Temp °F	160	160	160	160	160	160	
INE	Volts	(3	13	13	13	13	13	
ENG	Intake Vacuum "Hg	19	19	19	19	19	19	
	Gas Flow Fuel/Propane cfh	10	1(0	110	110	(10	(10	
	GW Pump ON/OFF	00	ON	OL	ON	ON	00	
/AIR	Extraction Well Flow scfm	7.78	7.78	7.78	7.78	7.18	7,78	
UUM	Extraction Well Vacuum "H ₂ O	73	75	75	75	75	75	
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	42	4.2	4.2	4.2	4.2	4,2	
HERE MP/V	Total Volume gals	136	882	1000	1134	1260	1386	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	69	69	69	69	69	69	
ATM	Air Temperature °F	58.(61.6	64.8	690	791.8	74.8	
	Barometric Pressure "Hg	30.20	30.00	30119	30.19	30.17	3016	
	HC ppmv	14.870	-	13,640	~	15,260	-	
VAPOR	CO ₂ / CO %	9,94/0	-	9.46 (0	1	10.02 6	~	
VAI	O ₂ %	5,4	•	5.6		5.6	~	
	H ₂ S %	3.0	•	30		30	-	
NOTES	FW induced woman and UWF steady @ 75° 40, 7.78 colone PR = 4.2 gpm - NANL steady @ 790 of volume 1315 HHs [Twensaggo] EW vaccount = 90'Hro, UWF = 7.78 scfm							
	NAPL % Vol	_/		. / .	- /.	1.	į	
_	Gals	7/8.8	7 8.8	6 7.6	5/63	5 /63	45 5.7	
GOLD	Data Logger ft	NIA		-	~	-	-	
MANIFOLD	Depth of GW Depression ft	-20	-2.0	-20	-2.0	-2.0	-210	
Σ	Extraction Well DTNAPL ft							
	Extraction Well DTGW ft							

Locati	ration: "F" State Site, Lea County, NM Project Managers: Sadler/Lundgren						
	Date:	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013	03/14/2013
	Parameters WELL# Data-1	Time 1345 Hr Meter	Time 14(5 Hr Meter	Time 1445 Hr Meter	Time / S / S Hr Meter	Time (345 Hr Meter	Time Hr Meter
	1600	6245.5	6246,0	6246.5	6291.6		
	R.P.M.	1800	(800	1800	(800	_	
WER	Oil Pressure psi	30	50	50	50	_	
ENGINE/BLOWER	Water Temp °F	160	(60	160	160		
GINE	Volts	13	13	(3	13	-	
Ä	Intake Vacuum "Hg	18	(8	18	18	_	
	Gas Flow Fuel/Propane cfh	110	110	110	(10	<u>-</u>	
	GW Pump ON/OFF	000	000	od	ON .		
VAIR	Extraction Well Flow scfm	834	8.81	કારા	8.81	-	
UUM	Extraction Well Vacuum "H ₂ O	90	90	90	90	<u>_</u>	
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	515	515	5.3	55		
HERE MP/V	Total Volume gals	1551	1716	1881	2046	_	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	69	69	69	69	_	
ATM	Air Temperature °F	75,5	11.2	77.4	74.0	-	
	Barometric Pressure "Hg	30.13	3013	30,12	30.10	-	
	HC ppmv	15,000	1	15,120	_	<u> </u>	
VAPOR /INFLUENT	CO ₂ / CO %	10.06 10	^	1000 60	_	-	
VAP	O ₂ %	5.7	5	5.9	-	-	
	H ₂ S %	30		30	-		
	BW indered var		21		95cCm -		
NOTES	15134ns- MO	P discon	finued, n	raximan L	iolarme or	(holding	James
	NAN C	,	,				
	NAPL % Vol Gals	4/6.6	4/66	3 510	2 33		
OLD	Data Logger ft	NA	7	407	_		
MANIFOLD	Depth of GW Depression ft	720	-20	-10	-2.0		
M	Extraction Well DTNAPL ft				59.12		
	Extraction Well DTGW ft				39.14		
					~ 144		

() Indicates Well Pressure

NAPL OOLSE


7FORMS/TestForms/1210018

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

April 9, 2013

Ms. Brittany Ford Project Manager Conestoga-Rovers & Associates 2135 S. Loop 250 W. Midland, TX 79703

Dear Brittany:

Re: Event #9: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #9 at the above location on April 9, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #9 - Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #8 conducted on March 14, 2013, which had a total Event time of 7.5 hours.

- The total GW/NAPL recovered was 1,950 gals of which 5.92% or 115.5 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.51 gals, resulting in a total liquid and vapor NAPL recovery of 121.0 gals, or 6.21%. This equates to 17.29 gal/hr, which is an increase of 1.62 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 14,816 ppmv, $CO_2 = 7.43\%$, CO = 0%, $O_2 = 7.7\%$ and $H_2S = 3.00\%$.
- Compared with MDP Event #8 data, the TPH levels decreased 351 ppmv, CO₂ decreased 2.36%, CO was equal, O₂ increased 2.2% and H₂S increased 0.13%.
- The Average Induced Vacuum was 82.14"H₂O and the average EW vapor flow was 7.83 scfm. The average induced vacuum decreased 0.36"H₂O and the average well flow decreased 0.32 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 5.00 gpm. The average GW pump rate increased 0.42 gpm.
- The average GW depression was estimated at 2.0 ft below static level, which was consistent with Event #8. This estimate is based on the GW pump position and GW rate.

• At the start of Event #9, the static NAPL level was 3.21 ft and 0.20 ft of NAPL was estimated at the conclusion of the Event. The static GW level decreased 0.38 ft based on hydro-equivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x \text{ 1.58E}^{-7} \text{ (min)(lb mole)} = \text{ lbs/hr}$ $(hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 7.5 hour Event #9 (well RW-1), was 115.5 gals, or 5.92% of the total liquid volume of 1,950 gals. This equates to 17.29 gals/hr.

During the eight Events totaling 67.8 hours, the total NAPL removed, including liquid and vapor, equals 845.9 gals, or 5.04% of a total liquid volume of 16,794 gals. This equates to a NAPL recovery rate of 12.57 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 increased significantly from 15.66 to 17.29 gal/hr. The increase is most likely the result of the increased groundwater pump rate.
- The induced vacuum was slightly lower than Event #8, and the GW/NAPL pump rate increased by 0.42 gpm. These changes were necessary to maintain a constant liquid depression at approximately 2.0 ft.
- At the conclusion of the Event, the well was gauged and 0.20" of NAPL remained in the well.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #10 for Tuesday, May 21, 2013. Should you have any questions, please contact me.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

= aller

cc: Scott Christ CRA- Houston

Well and Recovery Data Information - Event #9 April 9, 2013

EVENT NO		9
WELL NO.		RW-1
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #9	ft	61.63
DTNAPL - Static - Start Event #9	ft	58.42
NAPL	ft	3.21
DTGW - End Event #9	ft	59.32
DTNAPL - End Event #9	ft	59.12
NAPL	ft	0.20
Average Extraction Well Vacuum	"H ₂ O	82.14
Average Extraction Well Vapor Flow	scfm	7.83
Average GW/NAPL Pump Rate	gpm	5.00
Average TPH	ppmv	14,816
Average CO ₂	%	7.43
Average CO	%	0
Average O ₂	%	7.7
Average H ₂ S	%	3.00
Total Liquid Volume Recovered	gals	1,950
Total Liquid NAPL Recovered	gals	115.5
Total Liquid NAPL Recovered	%	5.92
Total Vapor and Liquid NAPL Recovered	gals	121.0
Total NAPL Recovered	%	6.21
Total NAPL Recovered	lbs	845.9
Total Volume of Well Vapors	cu.ft	3,289

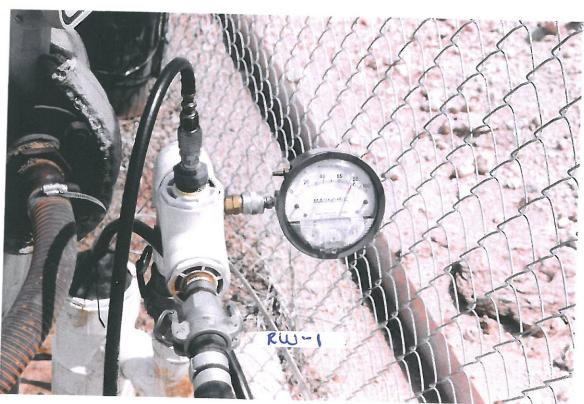
1	7	7	-
()	1 L		N
X	111	ИI	B

Locatio	ocation: "F" State Site, Lea County, NM Project Managers: Sadler/Faucher/Wel						ucher/Wells
	Date:	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013
	Parameters	Time 0730	Time	Time 0930	Time 0900	Time 0930	Time 1000
	WELL# RW-1	Hr Meter 6309.0	Hr Meter 6309.5	Hr Meter 6310.0	Hr Meter 63/0.5	Hr Meter 6311-0	Hr Meter 6311.5
	R.P.M.	1900	1900	1500	1900	1900	1900
/ER	Oil Pressure psi	50	50	50	50	50	50
NO78	Water Temp °F	130	130	130	130	130	130
ENGINE/BLOWER	Volts	14	14	14	14	14	14
	Intake Vacuum "Hg	19	19	19	19	19	19
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120
	GW Pump ON/OFF	ON	ON	on	ON	ON	0~
/AIR	Extraction Well Flow scfm	7.93	7.93	7-93	7.83	7.83	7.83
UUM. ME	Extraction Well Vacuum "H ₂ O	90	90	90	80	80	80
VAC OLUI	Pump Rate gals/min	5.0	5.0	5.0	5-0	5.0	5.0
IERE MP/V	Total Volume gals	-	150	300	450	600	750
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	60	68	68	68	68	68
ATM	Air Temperature °F	66.0	67.0	67.3	71.0	74.8	77.1
	Barometric Pressure "Hg	29.40	29.40	29.40	29.40	29.40	29.40
* 5	HC ppmv	13,750	11,490		9390	_	10,720
VAPOR /INFLUENT	CO ₂ / CO %	9.36/.03	8.42/.01	•	7.0/0.0	1	8.06/0.0
VAF	O ₂ %	5.6	5.7		5.5		5.6
/	H ₂ S %	3	2	-	3		3
	STATINED @ OT	30 HRS.	SET GW/	NAPL PUM	Pe 63.50	A Broc	
	Tuducas WELL VI	ACUUM SE	ET @ 90" F	to WEL	L VAPOR SO	er @ 7.83	SCFM
50	GW PUMP RATE						
NOTES	AT 0900 HZS RE				M 70 80"1	120 VAPOR	WELL
Z	FLOW REMAINED						
			1,			***************************************	
				VICE (10 TO 10 TO			
	NAPL % Vol Gals	_	9/13.5	9 /13.5	8/12.0	8/12.0	8/12.0
OLD	Data Logger ft	-2.0	-2.0	-20	-2.0	-20	-2.0
MANIFOLD	Depth of GW Depression ft	2.5	2.5	2.5	2.5	2.5	2.5
MA	Extraction Well DTNAPL ft	58.42					
	Extraction Well DTGW ft	61.63					
() Indicates	s Well Pressure	321				7FORMS/TestF	(1210010

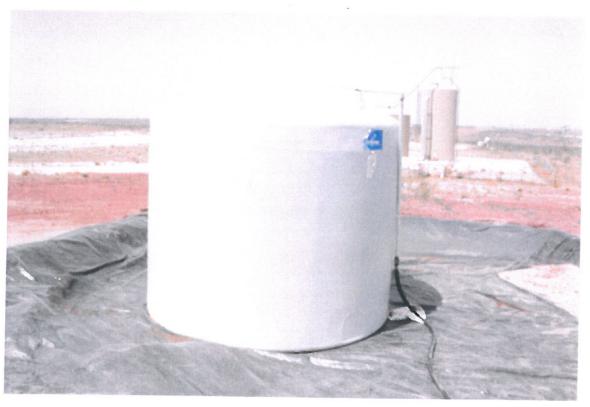
Location: "F" State Site, Lea County, NM Project Managers: Sadler/Faucher/V							
	Dat		04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013
	Parameters	Time	Time	Time	Time	Time	Time
	WELL# RW-1	1030 Hr Meter 6312.0	1100 Hr Meter 6312.5	1130 Hr Meter 6313.0	1200 Hr Meter 6313.5	1230_ Hr Meter 6314.0	1300 Hr Meter 6314.5
	R.P.M.	1900	1900	1900	1900	1900	1900
ER	Oil Pressure p	si 50	50	50	50	50	50
TOW	Water Temp	PF 140	140	140	140	140	140
ENGINE/BLOWER	Volts	14	14	14	14	14	14
ENG	Intake Vacuum "F	Ig ZO	20	20	20	20	20
	Gas Flow Fuel/Propane c	fh 120	120	120	120	120	120
	GW Pump ON/OF	ON	ON	on	0~	ON	ON
AIR	Extraction Well Flow scf	n 7.93	7.93	7-83	7.83	7.83	7.93
UUM/ 1E	Extraction Well Vacuum "H2		80	80	80	80	80
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/m	5,0	5.0	5.0	4.5	4.0	4.0
IERE/ VIP/V	Total Volume ga		1050	1200	1335	1455	1575
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp.	F 68	68	68	68	68	68
ATM	Air Temperature	F 79.4	78.8	81.1	84.2	81.3	88.1
	Barometric Pressure "I-	lg 29.42	29.42	29.42	29.42	29.42	29.42
	HC ppr	nv	8090	_	6340	_	9210
VAPOR /INFLUENT	CO ₂ / CO	/6	6.06/00		6.12/0,0	1	6.80/0.0
VAP	O ₂ 9,	6	9.6		10.0	(9.7
/	H ₂ S %	6	4	1	3	1	3
	AT 1030 HRS B	Azomerzi	PRESSUR	E + SUGO	HEY TO 29	.42" Hg	
	AT 1200 HZS RE						o Raducad
700	GW PUMP RA				1		
NOTES	1200 HR DUFE						
Z	TEMPOSLARY TO						
		011-70-1-00-					
				1 1230			
	NAPL % Vo	10	5/7.5	4/6.0	4/5.4	4/4.8	4/4.8
(TD	Data Logger	-2.0	-2.0	-2.0	-2.0	-20	-7-0
MANIFOLD	Depth of GW Depression	t 2.5	2.5	2.5	2.5	2.5	2.5
MA	Extraction Well DTNAPL f						
	Extraction Well DTGW f	t					
() Indicate	s Well Pressure				I	7FORMS/TestF	(1210018

OPERATING DATA - EVENT #9

PAGE# 3


ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Sadler/Faucher/W							ucher/Wells
	Date:	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013	04/09/2013
	Parameters	Time	Time 1 400	Time 1430	Time	Time	Time
	WELL# PW-1	Hr Meter 6315.0	Hr Meter 63 15. 5	Hr Meter 6316.0	Hr Meter	Hr Meter	Hr Meter
- XXXII - X - 152-	R.P.M.	1900	1900	1900			
ÆR	Oil Pressure psi	50	50	50			
ENGINE/BLOWER	Water Temp °F	140	140	140			
INE/B	Volts	14	14	14			
ENG	Intake Vacuum "Hg	20	20	20			
	Gas Flow Fuel/Propane cfh	120	120	120			100000000000000000000000000000000000000
	GW Pump ON/OFF	ON	مى	02			
AIR	Extraction Well Flow scfm	7.83	7.93	7.83			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	90	80	80			
VACI	Pump Rate gals/min	4-0	4.0	4.0			
ERE/	Total Volume gals	1695	1815	1950			
OSPH	Influent Vapor Temp. °F	68	68	68			
ATM	Air Temperature °F	83.6	81.6	82.7			
	Barometric Pressure "Hg	29.41	29.41	29.41			
	HC ppmv	-	9050	_			
VAPOR /INFLUENT	CO ₂ / CO %	_	7.60/0.0	_			
VAP	O ₂ %	_	9.5	-			
V.	H ₂ S %	-	3	_			
NOTES							
	NAPL % Vol Gals	3/6	3/6	3/6			
OLD	Data Logger ft	-7.0	-2.0	-2.0			
MANIFOLD	Depth of GW Depression ft	2.50	2.50	2,50			
W	Extraction Well DTNAPL ft			59.12			
F	Extraction Well DTGW ft			59.32			
() Indicate						7FORMS/Feet	Samue /1210018



AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

May 15, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #10: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #10 at the above location on May 15, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #10 - Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #9 conducted on April 9, 2013, which had a total Event time of 7.0 hours.

- The total GW/NAPL recovered was 1,935 gals of which 5.92% or 109.8 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 4.89 gals, resulting in a total liquid and vapor NAPL recovery of 114.7 gals, or 5.93%. This equates to 16.38 gal/hr, which is a decrease of 0.90 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 11,856 ppmv, $CO_2 = 8.58\%$, CO = 0%, $O_2 = 10.1\%$ and $H_2S = 1.75\%$.
- Compared with MDP Event #9 data, the TPH levels decreased 2,960 ppmv, CO₂ increased 1.15%, CO was equal, O₂ increased 2.5% and H₂S decreased 1.25%.
- The Average Induced Vacuum was 100.00"H₂O and the average EW vapor flow was 8.68 scfm. The average induced vacuum increased 17.86"H₂O and the average well flow increased 0.85 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.61 gpm. The average GW pump rate decreased 0.39 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #9. This estimate is based on the GW pump position and GW rate.

 At the start of Event #10, the static NAPL level was 3.89 ft and 0.11 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.34 ft based on hydroequivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x \text{ 1.58E}^{-7} \text{ (min)(lb mole)} = \text{ lbs/hr}$ $\text{(hr)(ppmv)(ft}^{3})$

The total NAPL removed, including liquid and vapor, during the 7.0 hour Event #10 (well RW-1), was 114.7 gals, or 5.93% of the total liquid volume of 1,935 gals. This equates to 16.38 gals/hr.

During the ten Events totaling 74.3 hours, the total NAPL removed, including liquid and vapor, equals 960.6 gals, or 5.13% of a total liquid volume of 18,729 gals. This equates to a NAPL recovery rate of 12.93 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 decreased from 17.29 to 16.38 gal/hr.
- The induced vacuum was set higher, and the average GW/NAPL pump rate was slightly decreased by 0.39 gpm. These changes were necessary to maintain a liquid recovery volume in the 1,950 gallon range over a 7.0 hour Event period. The 2,000 gallon collection tank is a limiting factor for this site. With a larger capacity collection tank, the induced vacuum, liquid pump rate and NAPL recovery could be increased.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #11 for Thursday, June 13, 2013. Should you have any questions, please contact me.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #10 May 15, 2013

EVENT NO		10
		RW-1
Total Event Hours		7.0
TD	fi	90.0
Well Size	in	4.0
DTGW - Static - Start Event #10	ft	62.71
DTNAPL - Static - Start Event #10	ft	58.82
NAPL	ft	3.89
DTGW - End Event #10	ft	59.27
DTNAPL - End Event #10	ft	59.16
NAPL	ft	0.11
Average Extraction Well Vacuum	"H ₂ O	100.00
Average Extraction Well Vapor Flow	scfm	8.68
Average GW/NAPL Pump Rate	gpm	4.61
Average TPH	ppmv	11,856
Average CO ₂	%	8.58
Average CO	%	0
Average O ₂	%	10.1
Average H ₂ S	%	1.75
Total Liquid Volume Recovered	gals	1,935
Total Liquid NAPL Recovered	gals	109.8
Total Liquid NAPL Recovered	%	5.92
Total Vapor and Liquid NAPL Recovered	gals	114.7
Total NAPL Recovered	%	5.93
Total NAPL Recovered	lbs	802.8
Total Volume of Well Vapors	cu.ft	3,647

Locati	ocation: "F" State Site, Lea County, NM Project Managers: Sadler/Faucher/Hend						
	Date:	5/15/13	5/15/13	5/15/13	5/13/13	5/15/13	5/15/13
	Parameters	Time 0715	Time 0745	Time 0815	Time 0845	Time O915	Time 0945
	WELL# MW-1	Hr Meter 6350.0	Hr Meter 6350, 5	Hr Meter 6357- 0	Hr Meter 635%. 6	Hr Meter 6352-0	Hr Meter 6352.5
	R.P.M.	2300	2100	2100	2100	2100	2100
VER	Oil Pressure psi	50	50	60	50	50	50
ENGINE/BLOWER	Water Temp °F	130	140	140	140	140	150
:INE/	Volts	13	13	13	13	13	13
ENC	Intake Vacuum "Hg	19	19	19	19	19	15
	Gas Flow Fuel/Propane cfh	150	120	120	120	120	120
	GW Pump ON/OFF	on	ON	al	ON	02	·on
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Flow scfm	8.68	8.68	8.68	8.68	8.68	8.68
UUM	Extraction Well Vacuum "H ₂ O	100	100	(00	100	100	100
VAC	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	.4.5
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	_	135	270	405	540	675
IOSP PU	Influent Vapor Temp. °F	68	68	68	68	68	.68
ATIV	Air Temperature °F	58.1	60.2	66.0	73.2	73.9	76.8
	Barometric Pressure "Hg	29.84	29.84	29.84	29.84	29.84	29.84
'n	HC ppmv	11,030	^	10,160	ومست	12.340	_
VAPOR /INFLUENT	CO ₂ / CO %	8.69/0.0	_	8.46/0.0	to.	9.27/0.0	_
VA/INFI	O ₂ %	8,4		8.2	_	9.8	_
	H ₂ S %	2	_	2	-	-	_
	STARTED EVEN	TAT 67	15 Hzs. 3	SET GW P	UMP DALES	C 63.50	OF BTOC
so	GW PUMP RATE SET @ 4.5 GPM. WELL VAPOR PLOW OF 8.68 SCFM						
NOTES	RESULTED FROM						
~							
		127					
	NAPL % Vol Gals	_	8/10.8	8/10.8	8/10.8	7/ 9.45	7/9.48
97	Data Logger ft	_	_	-	_	-	-
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
MA	Extraction Well DTNAPL ft	58,92					
	Extraction Well DTGW ft	62.71					
) Indicates	Well Pressure NAPL	3.09				7FORMS/TestFor	rms/1210018
	IVITIL	-					

PAGE # 2

ACUVAC MOBILE DUAL PHASE SYSTEM

Loca	tion: "F" State Site			PAC	sE# ←		DBILE DUAL PI gers: Sadler/Fa	
		Date:		10/0/				T 7 :-
	Parameters	Date.	Time	Time	5/18/15 Time	5/13/15 Time	5/13/15 Time	5/13/5 Time
			1015 Hr Meter	1045	1115	1145	1215	1245
	WELL#		6353.0	Hr Meter 6353.5	Hr Meter 6354-0	Hr Meter 6354. 5	Hr Meter 6355. U	Hr Meter
	R.P.M.		2100	2100	2100	2100	2100	- 2100
WER	Oil Pressure	psi	50	50	60	50	50	50
ENGINE/BLOWER	Water Temp	°F	160	160	160	160	160	160
GINE	Volts		13	13	13	3	13	13
EN	Intake Vacuum	"Hg	19	19	19	19	15	18
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	GW Pump ON	/OFF	an	ON	لمن	ON	ON	٥٨١
VAIR	Extraction Well Flow	scfm	8.68	8.68	8.68	8.68	8.68	8.68
OUN ME	Extraction Well Vacuum	"H ₂ O	100	.100	100	100	(00	(00
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate ga	ıls/min	4.5	4.5	4.5	4.5	4.5	5.0
HERE MP/V	Total Volume	gals	810	945	1080	1215	1350	1485
IOSPI PU	Influent Vapor Temp.	°F	68	68	68	68	70	70
ATM	Air Temperature	°F	83.4	86.7	89.3	92.0	94.0	94-0
	Barometric Pressure	"Hg	29.84	29.32	29.92	28.82	29.82	29.82
	НС	ppmv	14,680	_	12,320		11,170	
VAPOR /INFLUENT	CO ₂ / CO	%	10.2/0.04		8.7 /0.01		6.9/0.0	
VAI	O ₂	%	12.5		11.6		10.2	
	H ₂ S	%	2	-	Z	-	2	_
	AT 1045 HO	uzs	BAREMI	TRIC PRE	3 (U)ZE DE	マストンハ		
	HC CONTENT							
102	AT 1245 Hovi	25	GILL DIVA	DRASET	2 IN TO ARROW	70 C 60	244	
NOTES								
ž	INDUCED VAC	2011	MAY W	EU VITTOR	- 1700 KG	=MAINED	STEMIN.	
								
	NAPL %	Vol	5/	e/	e/	-/	/	
		Gals	5/6.75	5/6.75	5/6.75	5/6.75	5/6.75	5/6.75
OTO.	Data Logger	ft	_			_	-	_
MANIFOLD	Depth of GW Depression	ft	-1:0	-1.0	-10	-1.0	-1.0	-1.0
Z	Extraction Well DTNAPL	ft	_		-	_		
	Extraction Well DTGW	ft	_	-	_	_	_	_
Indicates	Well Pressure							

Locati	cation: "F" State Site, Lea County, NM Project Managers: Sadler/Faucher/Hen					cher/Hendley	
	Date	5/15/13	5/15/13	5/15/13	5/15/13	5/15/13	
	Parameters	Time 1315	Time 1345	Time 1415	Time 1445	Time 15/5	Time
	WELL# MW-1	Hr Meter 6356.0	Hr Meter 6356.5	Hr Meter 6357.0	Hr Meter 6357-5	Hr Meter	Hr Meter
	R.P.M.	2100	2100	2100			
VER	Oil Pressure psi	50	50	.50			
BLOV	Water Temp °F	160	160	160			
ENGINE/BLOWER	Volts	13	13	13			
ENG	Intake Vacuum "Hg	19	19	19			
	Gas Flow Fuel/Propane cfh	120	120	120			
	GW Pump ON/OFF	0~	·ON	OFF			
/AIR	Extraction Well Flow scfm	8.68	8.68	8.68			
UUM	Extraction Well Vacuum "H ₂ O	100	100	100			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	5.0	5,0	5.0			
IERE MP/V	Total Volume gals	1635	1785	1935			
OSPI	Influent Vapor Temp. °F	70	70	70			
ATM	Air Temperature °F	94	95	95			
	Barometric Pressure "Hg	29.74	29.74	29.74			
	HC ppmv	11.730	-	11,420			
VAPOR /INFLUENT	CO ₂ / CO %	7.30/0.0	_	8.60 10.0			
VAI	O ₂ %	10.2	-	9.4			
	H ₂ S %	2	-	2			
NOTES	AT 1415 HRS CO	1 AND W	ELL VAPOR	2 FLOW RE	MAINED S	20401	ENDED.
	NAPL % Vol Gals	5/7.5	\$/6.0	4/6.0			
9	Data Logger ft	_	_				
MANIFOLD	Depth of GW Depression ft	-1.0	-1-0	-10			
MA	Extraction Well DTNAPL ft			59.16			
	Extraction Well DTGW ft			59. 21			
) Indicates							

() Indicates Well Pressure

NAPL O.11

7FORMS/TestForms/1210018

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

June 14, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #11: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #11 at the above location on June 14, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #11 - Well RW-1

The total Event time was 7.5 hours. The data is compared to Event #10 conducted on May 15, 2013, which had a total Event time of 7.0 hours.

- The total GW/NAPL recovered was 1,965 gals of which 5.63% or 116.7 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.20 gals, resulting in a total liquid and vapor NAPL recovery of 121.9 gals, or 6.20%. This equates to 16.25 gal/hr, which is a decrease of 0.13 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: $HC = 9,999 \text{ ppmv}, CO_2 = 7.35\%, CO = 0\%, O_2 = 10.1\% \text{ and } H_2S = 1.75\%.$
- Compared with MDP Event #10 data, the TPH levels decreased 1,857 ppmv, CO₂ decreased 1.23%, CO, O₂, and H₂S were equal.
- The Average Induced Vacuum was 113.75"H₂O and the average EW vapor flow was 10.22 scfm. The average induced vacuum increased 13.75"H₂O and the average well flow increased 1.54 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.41 gpm. The average GW pump rate decreased 0.20 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #10. This estimate is based on the GW pump position and GW rate.

• At the start of Event #11, the static NAPL level was 3.39 ft and 0.02 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydroequivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x \text{ 1.58E}^{-7} \text{ (min)(lb mole)} = \text{ lbs/hr}$ $(hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 7.5 hour Event #11 (well RW-1), was 121.9 gals, or 6.20% of the total liquid volume of 1,965 gals. This equates to 16.25 gals/hr.

During the eleven Events totaling 81.8 hours, the total NAPL removed, including liquid and vapor, equals 1,082.5 gals, or 5.23% of a total liquid volume of 20,694 gals. This equates to a NAPL recovery rate of 13.23 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 decreased slightly from 16.38 to 16.25 gal/hr.
- The induced vacuum was set higher, and the average GW/NAPL pump rate was slightly decreased by 0.24 gpm. These changes were necessary to maintain a liquid recovery volume in the 1,815 gallon range over a 7.5 hour Event period. The 2,000 gallon collection tank is a limiting factor for this site. With a larger capacity collection tank, the induced vacuum, liquid pump rate and NAPL recovery could be increased.

We appreciate you selecting AcuVac to provide this service. We have scheduled Event #12 for Wednesday, July 10, 2013. Should you have any questions, please contact me.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #11 June 14, 2013

EVENT NO		11
		RW-1
Total Event Hours		7.5
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #11	ft	62.51
DTNAPL - Static - Start Event #11	ft	59.12
NAPL	ft	3.39
DTGW - End Event #11	ft	59.95
DTNAPL - End Event #11	ft	59.93
NAPL	ft	0.02
Average Extraction Well Vacuum	"H ₂ O	113.75
Average Extraction Well Vapor Flow	scfm	10.22
Average GW/NAPL Pump Rate	gpm	4.41
Average TPH	ppmv	9,999
Average CO ₂	%	7.35
Average CO	%	0
Average O ₂	%	10.1
Average H ₂ S	%	1.75
Total Liquid Volume Recovered	gals	1,965
Total Liquid NAPL Recovered	gals	116.7
Total Liquid NAPL Recovered	%	5.63
Total Vapor and Liquid NAPL Recovered	gals	121.9
Total NAPL Recovered	%	6.20
Total NAPL Recovered	lbs	853.3
Total Volume of Well Vapors	cu.ft	4,600

130028.REP 3

Location	ocation: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley						
	Date:	6/14/13	6/14/13	6/14/13	6/14/13	6/14/13	6/14/13
	Parameters	Time 0630	Time O700	Time 0730	Time 0800	Time 0830	Time 0900
	WELL# RW-1	Hr Meter 6407.0	Hr Meter 6407.5	Hr Meter 6408,0	Hr Meter 6408, 5	Hr Meter 6409. O	Hr Meter 6 409.5
	R.P.M.	2100	2100	2100	2100	2100	2/00
/ER	Oil Pressure psi	50	50	50	50	50	
ENGINE/BLOWER	Water Temp °F	130	130	130	130	130	140
INE	Volts	13	13	13	13	13	13
ENG	Intake Vacuum "Hg	19	19	19	19	19	19
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120
	GW Pump ON/OFF	ON	ON	ON	لىن	02	ON
'AIR	Extraction Well Flow scfm	7.11	9,47	9,47	10.26	10.26	10.63
UUM	Extraction Well Vacuum "H ₂ O	100	100	100	100	100	120
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	-	4.5	4.5	4.5	4.5	4.5
IERE MP/V	Total Volume gals		135	270	405	540	675
OSPI	Influent Vapor Temp. °F	68	68	68	68	68	68
ATM	Air Temperature °F	722	72.4	72.4	76.0	77.4	77.4
	Barometric Pressure "Hg	30,12	30,12	30,12	30,12	30,12	30.12
	HC ppmv	11,120	1	9230		9060)
OR	CO ₂ / CO %	7.46/0.01	í	6-98/0.0	ſ	6.98/0.0	1
VAPOR /INFLUENT	O ₂ %	10,9)	8.2	ĺ	125	l
,	H ₂ S %	2	_	2		2	1
	STARTED EVEN	TATO	630 Hzs.	SET GI	J PUMP O	2 62:017 B	370c.
	WELL VAC SO	AT 100"	420, REI	MAINED CO	WSTANT UN	77 L 0900 th	25 /1 120 04/20
S	GW PUMP PLATE	SET@4	-5 GPM.	WELL VA	on Plew	STAZRED C	7.11 SCFM
NOTES	AND INCREASED	1010,265	(FM @ 100'	"H20. INC	RASCO TO	10.63 SCFN	ne 120"H20
					-		
	NAPL % Vol		<i>a</i> /	0/	A /	/	,
	Gals)	9/	9/	8/	7/	7/
(T)	Data Logger ft	_	_	_	_	_	_
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
MA	Extraction Well DTNAPL ft	59.12					
	Extraction Well DTGW ft	62,51					
		6-17/					(1000)

() Indicates Well Pressure

7FORMS/TestForms/1210018

Locatio	ation: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley					endley	
	Date:	6/14/13	Cl14/13	6/14/13	6/14/13	6/14/13	6/14/13
	Parameters	Time 0930	Time	Time 6030	Time 1100	Time 1/30	Time 1200
	well# Rw-1	Hr Meter 6410,0	Hr Meter 6410,5	Hr Meter 6411.0	Hr Meter 6 411.5	Hr Meter 64/20	Hr Meter 6.412,5
	R.P.M.	2100	2100	2100	2100	2100	2/00
ENGINE/BLOWER	Oil Pressure psi	50	50	50	50	50	50
	Water Temp °F	160	160	160	160	160	160
	Volts	13	13	13	ι3	13	13
	Intake Vacuum "Hg	19	19	19	19	19	19
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	(20
	GW Pump ON/OFF	ON	20	لمه	میا	الده.	OFF
/AIR	Extraction Well Flow scfm	10.63	10.63	10,63	10.63	10.63	-
UUM. ME	Extraction Well Vacuum "H ₂ O	120	120	120	120	120	-
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	4.5	4.5	4.5	5,0	5.0	_
IERE MP/V	Total Volume gals	810	945	1080	1215	1350	
OSPI	Influent Vapor Temp. °F	68	68	68	68	68	68
ATM	Air Temperature °F	81.2	79.2	76.4	76.6	74.2	74.6
	Barometric Pressure "Hg	30.10	30.10	30.10	30.10	30,10	30.10
	HC ppmv	8860		12,610	_	11830	_
VAPOR /INFLUENT	CO ₂ / CO %	6.5. lao		8.48 (0.01		8.21/0.0	-
VAP	O ₂ %	7.7	_	10.2	1	9,4	-
7	H ₂ S %	2		2	_	1	
NOTES	WEU VACUUM AT 1200 HZS ME						
	NAPL % Vol Gals	6/8.1	4 8.1	6/8.1	5/6.75	5/6.75	5/0.75
OLD	Data Logger ft						
MANIFOLD	Depth of GW Depression ft						
MA	Extraction Well DTNAPL ft						
	Extraction Well DTGW ft						
	s Well Pressure					7FORMS/TestFr	

Locatio	on: "F" State Site, Lea C		PAGE # ACUVAC MOBILE DUAL PHASE SYSTEM Project Managers: Faucher/Hendley					
	Date:	6/14/13	6/14/13	6/14/13	6/14/13			
	Parameters	Time /230	Time 1300	Time 1336	Time / 400	Time	Time	
	WELL# RW-1	Hr Meter 64/3/0	Hr Meter 6413, 5	Hr Meter 6414.0	Hr Meter 6414.5	Hr Meter	Hr Meter	
	R.P.M.	2100	2100	2100	2100			
/ER	Oil Pressure psi	50	50	50	50			
ENGINE/BLOWER	Water Temp °F	160	160	160	160			
INEA	Volts	13	13	13	13			
ENG	Intake Vacuum "Hg	19	19	19	19			
	Gas Flow Fuel/Propane cfh	120	170	120	120			
	GW Pump ON/OFF	02	02	ON	077			
/AIR	Extraction Well Flow scfm	10.63	10.63	10.63	10,63			
UUM. ME	Extraction Well Vacuum "H ₂ O	120	120	120	120			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	5.0	5.0	5.0	OFF			
IERE MP/V	Total Volume gals	1500	1650	1800	1950			
OSPE	Influent Vapor Temp. °F	68	68	68	68			
ATM	Air Temperature °F	70.2	70,8	70.2	72.4			
	Barometric Pressure "Hg	30.08	30.06	30.04	30.04			
	HC ppmv	10,020	Designation	7260	_			
VAPOR /INFLUENT	CO ₂ / CO %	7.14/0.0	_	6.96/0.0	-			
VAP	O ₂ %	7,8	1	14.2	-			
_	H ₂ S %	/	-	2	_	1.000	district.	
NOTES	INDUCED WELL	VAC A	N VAPOR	L FLOW R	CAPACOT	STEADY.	ENT EANED	
MANIFOLD	NAPL % Vol Gals	4/4-0	4/6.0	4/6.0	4/6.0			
	Data Logger ft							
	Depth of GW Depression ft	-1.0	-1.0	-1.0	•	P		
	Extraction Well DTNAPL ft				59,93			
	Extraction Well DTGW ft				59.95			

() Indicates Well Pressure

NAPL 02
7FORMS/TestForms/1210018

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

July 10, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #12: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #12 at the above location on July 10, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #12 - Well RW-1

The total Event time was 6.5 hours. The data is compared to Event #11 conducted on June 14, 2013, which had a total Event time of 7.5 hours.

- The total GW/NAPL recovered was 1,905 gals of which 6.39% or 121.65 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 4.67 gals, resulting in a total liquid and vapor NAPL recovery of 126.32 gals, or 6.63%. This equates to 19.43 gal/hr, which is a increase of 3.18 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 11,181 ppmv, $CO_2 = 7.59\%$, CO = 0%, $O_2 = 10.1\%$ and $H_2S = 2.43\%$.
- Compared with MDP Event #11 data, the TPH levels increased 1,182 ppmv, CO₂ increased 0.24%, CO was equal at 0%, O₂ was steady at 10.1%, and H₂S increased 0.68%.
- The Average Induced Vacuum was 100.00"H₂O and the average EW vapor flow was 9.47 scfm. The average induced vacuum decreased 13.75"H₂O and the average well flow decreased 0.75 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.59 gpm. The average GW pump rate increased 0.18 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #11. This estimate is based on the GW pump position and GW rate.
- At the start of Event #12, the static NAPL level was 3.76 ft and 0.02 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydroequivalent.

Summary and Observations:

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x \text{ 1.58E}^{-7} \text{ (min)(lb mole)} = \text{ lbs/hr}$ $(hr)(ppmv)(ft^3)$

The total NAPL removed, including liquid and vapor, during the 6.5 hour Event #12 (well RW-1), was 126.32 gals, or 6.63% of the total liquid volume of 1,905 gals. This equates to 19.43 gals/hr.

During the eleven Events totaling 88.3 hours, the total NAPL removed, including liquid and vapor, equals 1,208.83 gals, or 5.35% of a total liquid volume of 22,599 gals. This equates to a NAPL recovery rate of 13.69 gals/hr.

Additional Information:

- The average liquid and vapor NAPL recovery from well RW-1 increased from 16.25 to 19.43 gal/hr.
- The induced vacuum was set lower, and the average GW/NAPL pump rate was slightly increased by 0.18 gpm. These changes were necessary to maintain a liquid recovery volume in the 1,900 gallon range over a 7.0 hour Event period. The 2,000 gallon collection tank is a limiting factor for this site. With a larger capacity collection tank, the induced vacuum, liquid pump rate and NAPL recovery could be increased.

This was the last Event we have scheduled for this site. We are preparing a final report with more data and recommendations on how to increase the LNAPL recovery rate through the Event process at this site. Once we compile all the data, we would like to schedule a conference with both of you, perhaps in your Houston office.

We appreciate you selecting AcuVac to provide this service.

Sincerely,

James E. Sadler, VP

Engineering/Environmental

cc: Brittany Ford CRA- Dallas

Well and Recovery Data Information - Event #12 July 10, 2013

EVENT NO		12
Well Number		RW-1
Total Event Hours		6.5
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event #12	ft	62.80
DTNAPL - Static - Start Event #12	ft	59.04
NAPL	ft	3.76
DTGW - End Event #12	ft	59.95
DTNAPL - End Event #12	ft	59.93
NAPL	ft	0.02
Average Extraction Well Vacuum	"H₂O	100.00
Average Extraction Well Vapor Flow	scfm	9.47
Average GW/NAPL Pump Rate	gpm	4.59
Average TPH	ppmv	11,181
Average CO ₂	%	7.59
Average CO	%	0
Average O ₂	%	10.1
Average H ₂ S	%	2.43
Total Liquid Volume Recovered	gals	1,905
Total Liquid NAPL Recovered	gals	121.65
Total Liquid NAPL Recovered	%	6.39
Total Vapor and Liquid NAPL Recovered	gals	126.32
Total NAPL Recovered	%	6.63
Total NAPL Recovered	lbs	884.2
Total Volume of Well Vapors	cu.ft	3,693

AVR	OPERATING DATA -	EVENT #12	PAG	E#	ACUVAC MOI	BILE DUAL PH	ASE SYSTEM		
Locatio	on: "F" State Site, Lea	County, NM		P	roject Manage	rs: Faucher/H	endley		
	Date		07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013		
	Parameters	Time 0630	Time 0700	Time 0730	Time 0800	Time 0830	Time O900		
	WELL# MW-1	Hr Meter 6,447. 5	Hr Meter 6448. 0	Hr Meter 6448 5	Hr Meter 6449. 0	Hr Meter 6449.5	Hr Meter 6 450, 0		
	R.P.M.	2400	2200	2200	2200	2200	2200		
VER	Oil Pressure ps	50	50	50	50	50	50		
BLOV	Water Temp °	130	130	140	140	140	140		
INE	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "H	19	19	15	Time 0800 Time 0830 Time 0900 Hr Meter 6449.0 G449.5 G450.0 2200 2200 2200 50 50 50 50 140 140 140 13 13 13 19 19 130 130 130 0N 0N 0N 0N 9.47 9.47 9.47 100 100 100 4.0 5.0 5.0 30.10 30.10 0 - 9.340 - 7.62/a0 - 7.				
	Gas Flow Fuel/Propane cfl	130	130	130	130	130	130		
	GW Pump ON/OFF	ON	on	ON		and	ON		
/AIR	Extraction Well Flow scfm	9.47	9.47	9.47	9.47	9.47	9.47		
NOTES VAPOR ATMOSPHERE/VACUUM/AIR ENGINE/BLOWER OF PUMP/VOLUME OF	Extraction Well Vacuum "H ₂ C	100	100	100	100	100	100		
NAC OLU	Pump Rate gals/mir	4.0	4.0	4.0	4.0	5.0	5.0		
IERE MP/V	Total Volume gals		120	240	360	480	20 20		
OSPI	Influent Vapor Temp. °F		-			_	_		
ATM	Air Temperature °F	74.2	75.4	76.0	80.4	82.4	£3.8		
	Barometric Pressure "Hg	30.10	30.10	30.10	30.10	30.10	30.10		
<u></u>	HC ppm	10,040		10,840	_	9.340			
OR	CO ₂ / CO %			7.20/0.0	-	7:62/00	_		
VAF	O ₂ %	10.3	_	10.9	_	14.7	-		
,	H ₂ S %	3	_	2		2	_		
	PORFORMED AL	L SAFOT	CHECKS	STAZTE	DEVENT	@ 0630 F	Hes		
							S .		
·	RESULTING FUR WELL VAPOR FLOW OF 9.47 SCFM								
OTE	WELL VAC AN								
VAPOR /INFLUENT									
		. W.S.Nee		***					
	NAPL % Vol Gals	_	9/10.8	8/9.6	8/9.6	7/8.4	7/8.4		
OLD	Data Logger ft	_	_		_	_	_		
· ·					- 46 6				

MANIFOLD	NAPL % Vo	_	9/10.8	3/9.6	8/9.6	7/8.4	7/8.4
	Data Logger	-	-		_	_	_
	Depth of GW Depression f	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
	Extraction Well DTNAPL fi	59.04					
	Extraction Well DTGW fi	62.30					

() Indicates Well Pressure

NAPL 3.76

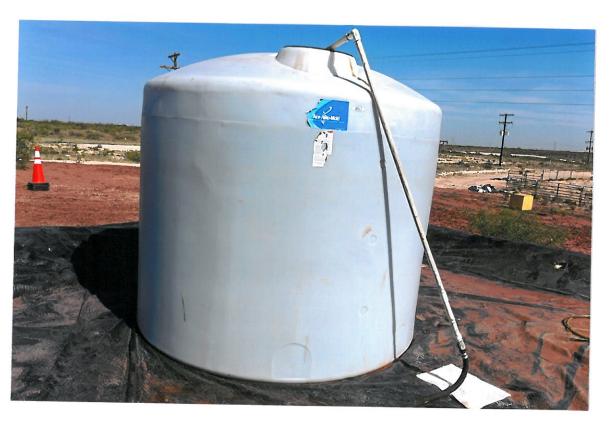
7FORMS/TestForms/1210018

OPERATING DATA - EVENT #12 PAGE # CACUVAC MOBILE DUAL PHASE SYS									
Location	on: "F" State Site, Lea C	County, NM	Project Managers: Faucher/Hendley						
Date: 07/10/2013			07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013		
	Parameters	Time 0930	Time	Time 1030	Time //00	Time 1130	Time 1200		
	WELL# MW-1	Hr Meter 6750.5	Hr Meter 6451.0	Hr Meter 6451.5	Hr Meter 6452.0	Hr Meter 6452.5	Hr Meter 6 45 3, 0		
VER	R.P.M.	2000	2000	2000	7000	ZODO	2000		
	Oil Pressure psi	50	50	50	50	50	50		
BLOy	Water Temp °F	140	140	140	140	140	140		
ENGINE/BLOWER	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	19	19	19	15	19	19		
	Gas Flow Fuel/Propane cfh	12	12	12	12	12	12		
	GW Pump ON/OFF	0~	0~	on	الهن	0~	0~)		
AIR	Extraction Well Flow scfm	9.47	9.47	9,47	9.47	5.47	9.47		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H2O	100	100	100	100	100	100		
SPHERE/VACUU PUMP/VOLUME	Pump Rate gals/min	5.0	50	5.5	5.5	57.5	5-5		
HERE MP/V	Total Volume gals	780	930	1090	1245	1410	1575		
IOSPI	Influent Vapor Temp. °F		_	-			_		
ATM	Air Temperature °F	86.2	88.8	91.4	92.6	95.4	96.6		
	Barometric Pressure "Hg	30.10	30.10	30.10	30.10	30.10	30.10		
-	HC ppmv	9980	2000-	11730	_	12,120	_		
OR	CO ₂ / CO %	7.52/0,0	married to the state of the sta	7:64/0.0		8.25/0.0			
VAPOR /INFLUENT	O ₂ %	7,5	_	7.8	_	8.7			
,	H ₂ S %	2	-	2	_	:3	Austra		
	INDUCED WELL VAC AND WELL VAPOR PLOW REMAINED CONSTANT								
	DURING THIS PAZIOD.								
70	TACROASED THE GW PUMP RATE TO 5.5 GPM @ 1030 HZS.								
NOTES									
Z									
					*				
	NAPL % Vol Gais	1/10.50	7/10.50	7/10.50	6/9,9	6/9.9	5/8.25		
C.D	Data Logger ft	_	_	_	_	_	_		
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1,0	-1.0	-1.0	-1.0		
M	Extraction Well DTNAPL ft								
	Extraction Well DTGW ft				- I - OS -				
	1								

Locatio	on: "F" State Site, Lea C		TAGI	The second secon	roject Manage		
	Date:	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013	07/10/2013
	Parameters	Time (230)	Time / 300	Time	Time	Time	Time
	WELL# MW-1	Hr Meter 6453.5	Hr Meter 6454. U	Hr Meter	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2000	2000				
/ER	Oil Pressure psi	50	50		- 533		
ENGINE/BLOWER	Water Temp °F	140	140				
INEA	Volts	13	13				
ENG	Intake Vacuum "Hg	19	19				
	Gas Flow Fuel/Propane cfh	12	12				
	GW Pump ON/OFF	لده	02				
/AIR	Extraction Well Flow scfm	9.47	9.47				
UUM ME	Extraction Well Vacuum "H ₂ O	100	100				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	5.5	5.5				
HERE MP/V	Total Volume gals	1740	1905				
OSPI	Influent Vapor Temp. °F	_	-				
ATM	Air Temperature °F	97.4	97.8				
	Barometric Pressure "Hg	30.10	30.10				
	HC ppmv	14,220				-	
VAPOR /INFLUENT	CO ₂ / CO %	9.010.0	_				
VAP	O ₂ %	10.9	_				
-	H ₂ S %	3	-	/2			
NOTES	WEU Flow A. AT 1300 HRS CONCLUDED.	NO VAC	ROMANNE ON TANK	ÉD STEAD TEACHED	CAPACIT	GHOUT THE	NT
	NAPL % Vol Gals	4/6.6	4/ 6.6	max a symptom			
OLD	Data Logger ft						
NIFO	Depth of GW Depression ft	-1.0	-1.0				
INIF	Depth of GW Deplession It				a page transmission come.	C272 29 000 000 000 000 000	
MANIFOLD	Extraction Well DTNAPL ft		55.93				

() Indicates Well Pressure

NAPL :02



AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

October 21, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #13: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #13 at the above location on October 17, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #13 - Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #12 conducted on July 10, 2013, which had a total Event time of 6.5 hours.

- The total GW/NAPL recovered was 1,890 gals of which 8.68% or 164.03 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.45 gals, resulting in a total liquid and vapor NAPL recovery of 169.48 gals, or 8.97%. This equates to 24.21 gal/hr, which is an increase of 4.78 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 12,316 ppmv, $CO_2 = 7.35\%$, CO = 0%, $O_2 = 9.4\%$ and $H_2S = 2.63$ ppm.
- Compared with MDP Event #12 data, the TPH levels increased 1,135 ppmv, CO₂ decreased 0.24%,
 CO was equal at 0%, O₂ decreased 0.7%, and H₂S increased 0.20 ppm.
- The Average Induced Vacuum was 93.33"H₂O and the average EW vapor flow was 9.32 scfm. The average induced vacuum decreased 6.67"H₂O and the average well flow decreased 0.15 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.50 gpm. The average GW pump rate decreased 0.09 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #12. This estimate is based on the GW pump position and GW rate.
- At the start of Event #13, the static NAPL level was 3.73 ft and 0.01 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydro-equivalent.

Additional Information- Event #13

- During the Event period the Induced Well Vacuum was varied to increase the recovery of NAPL as a percentage of the total liquid volume. This cycle of increasing and decreasing the Induced Well Vacuum every 30 minutes continued for the remainder of the Event period. Based on our observations of the amount of NAPL visible in the site gauge, the NAPL recovery increased to approximately 12.5%. We recommend the installation of a new, more shallow, well that will increase the percentage of NAPL recovery further as less groundwater will be included in the liquid recovery.
- The GW pump rate remained steady throughout the Event period at 4.5 gpm as the 2,000 gallon collection tank is a limiting factor. In order to compensate for the tank size, the Induced Well Vacuum was varied, as described above, in order to reduce the GW upwelling and enable the GW pump to capture more NAPL.
- Based on the use of the above methods, the average liquid and vapor NAPL recovery from well RW-1 increased from 19.43 to 24.21 gal/hr.

NAPL Recovery Data:

The total NAPL removed, including liquid and vapor, during the 7.0 hour Event #13 (well RW-1), was 169.48 gals, or 8.97% of the total liquid volume of 1,890 gals. This equates to 24.21 gals/hr.

During the thirteen Events totaling 95.3 hours, the total NAPL removed, including liquid and vapor, equals 1,378.31 gals, or 5.63% of a total liquid volume of 24,489 gals. This equates to a NAPL recovery rate of 14.46 gals/hr.

Method of Calibration and Calculations

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is: $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x 1.58E^{-7} \text{ (min)(lb mole)} = \text{lbs/hr}$ $(hr)(ppmv)(ft^3)$

Information included with Report

- Recorded Data
- Photographs of the MDP System and well RW-1

We have tentatively scheduled the next Event for November 14, 2013. Once we review our schedule we can confirm this date with you.

We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

Paul D. Faucher

Vice President, Operations

cc: Brittany Ford

CRA- Dallas

Well and Recovery Data Information - Event #13

October 17, 2013

Table #1

EVENT		1A
Well Number		MW-8
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event	ft	62.49
DTNAPL - Static - Start Event	ft	58.76
NAPL	ft	3.73
DTGW - End Event	ft	59.32
DTNAPL - End Event	ft	59.31
NAPL	ft	0.01
Average Extraction Well Vacuum	"H₂O	93.33
Average Extraction Well Vapor Flow	scfm	9.32
Average GW/NAPL Pump Rate	gpm	4.50
Average TPH	ppmv	12,316
Average CO ₂	%	7.35
Average CO	%	0
Average O ₂	%	9.4
Average H ₂ S	ppm	2.63
Total Liquid Volume Recovered	gals	1,890
Total Liquid NAPL Recovered	gals	164.03
Total Liquid NAPL Recovered	%	8.68
Total Vapor and Liquid NAPL Recovered	gals	169.48
Total NAPL Recovered	%	8.97
Total NAPL Recovered	lbs	1,186
Total Volume of Well Vapors	cu.ft	3,914

OPERATING DATA - EVENT #13

PAGE#

ACUVAC MOBILE DUAL PHASE SYSTEM

Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley							Hendley			
	Date:	10/17/2013								
	Parameters	Time 6700 Hr Meter	Time 0730 Hr Meter	Time	Time 0330	Time O 700 Hr Meter	Time OS30 Hr Meter			
	WELL#	6577.5	6578.0	6578.5	6579.0	6579.5	65800			
	R.P.M.	2000	2000	2000	7000	2000	7000			
WER	Oil Pressure psi	50	50	50	50	50	50			
/BLO	Water Temp °F	130	130	130	130	130	130			
ENGINE/BLOWER	Volts	13	13	13	13	13	13			
EN	Intake Vacuum "Hg	18	18	18	18	18	18			
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120			
	GW Pump ON/OFF	ON	ON	40	200	011	ON			
X	Extraction Well Flow scfm	9.47	9.47	9.47	9.47	9.47	9.47			
[M/A]	Extraction Well Vacuum "H ₂ O	100	106	100	100	100	100			
CUT UME	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	~~	135	270	405	540	675			
PHEI	Influent Vapor Temp. °F	_	-	-	-		_			
MOS	Air Temperature °F	41000	44	46	49	51	52			
AT	Barometric Pressure "Hg	30.08	30.08	30.08	30.08	30.08	30.08			
	Absolute Pressure "Hg	_	-	-	-	_	_			
E	HC ppmv	12,580		12,760	_	12,460				
APOR /INFLUENT	CO ₂ %	6.84	-	7.32	-	7.48	_			
/INF	CO %	0.0	1	0.0	_	0.0	_			
POR	O ₂ %	10.5	_	9.7	1	9.6	_			
Α	H ₂ S ppm	2.0	_	3.0	_	2.0	_			
	ARZIVED AT THE SITE AT OLDO HZS. MOBILIZED THE HOUVAR MOP SYSTEM. PETZFORMED									
	ALL SATES CHECKS. TAILGIATE SATES MEETING. STARTED EVENT AT 0700HRS.									
(0	SET DITTAL INDUCEDUEU VACE 100" HZO RESULTING IN A WELL PLOW OF 9.4750FM									
NOTES	SET TOTAL PLUIDS PUMP & 620 FT BTOC. SET INITIAL GW PUMP RATE & 4.5 GPM.									
Z										
	THROUGHOUT THE PORTO									
_	LNAPL % Vol Gals	-/-	10/13.5	9/12.15	8/10.8	3/10.8	7/9.45			
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1-0	-1-0	-1.0	-1.0			
MAN	Extraction Well DTLNAPL ft	58.76								
	Extraction Well DTGW ft	62.49								
/	s Well Pressure					TROPI (C/F)	etForms/1210017B			

() Indicates Well Pressure

NAPL 3.73

PAGE # 2 ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio		ATING DATA - EVENT #13 PAGE # CUVAC MOBILE DUAL PHASE SYS ' State Site, Lea County, NM Project Managers: Faucher/Hendley					/Hendley		
1000000	Date:	10/17/2013							
	Parameters WELL #	Time 1000 Hr Meter 6580.5	Time 1030 Hr Meter 6581. 0	Time 11 00 Hr Meter 6581.5	Time 1130 Hr Meter 6582.0	Time 1200 Hr Meter 65 8250	Time 1230 Hr Meter 6583.0		
	R.P.M.	2000	2000	2000	2000	2000	2000		
/ER	Oil Pressure psi	50	56	50	50	50	50		
LOW	Water Temp °F	130	130	130	130	130	130		
ENGINE/BLOWER	Volts	13	13	13	13	13	13		
ENG]	Intake Vacuum "Hg	18	18	18	13	18	18		
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120		
	GW Pump ON/OFF	02	لده	02	020	02	02		
~	Extraction Well Flow scfm	9.0	9.47	9.0	9.47	9.0	5.47		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H2O	80	100	80	100	80	100		
CUL	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5		
E/VA VOL	Total Volume gals	810	945	1080	1215	1350	1485		
SPHERE/VACUU PUMP/VOLUME	Influent Vapor Temp. °F			-	-	-	-		
AOSP PU	Air Temperature °F	50	50	51	52	55	5000Y		
ATN	Barometric Pressure "Hg	30.08	30.08			30.10	30.10		
	Absolute Pressure "Hg	20.00	70.00	30.10	30.10	-	-		
,	HC ppmv	11.62-		12 620	_				
POR /INFLUENT	CO ₂ %	11,820		7-62	_	12530	_		
NFL	CO %	6.32		0.0	_	7.34	_		
OR /I	O ₂ %	(0.7	1	9.4	_	8.9			
VAP	H ₂ S ppm	30	_	3.0	_	3.0	_		
		- Mariana - I		1	11		200		
SS	AT 1000 HAS REDUCED INDUCED WELL VAC TO 80"HZD WHICH LOWERD THE CUATER COLUMN IS THE WELL TRESULTING IN INCREASED PRODUCT RECOVERY. BASED UPON TIMED VISUAL INSPECTION OF THE CLEAR SITE GAUGE, PRODUCT RECOVERY INCREASED TO								
NOTES	APPROXIMATELY 125% BASED UPON PRODUCT APPEARING IN THE SITE GLASS FOR								
_	APPROXIMATELY 20 MINUTES EACH HALF HOW AT THE BOTTOM OF THE HOW THE								
	THIS CHOLD WELL VAC WAS FUCTIONS TO 100 "HZO. THIS CHOLE CONTINUED FOR								
	THE REMAINSE	OF THE E	VENT PAZ	d.).			-		
۵	LNAPL % Vol Gals	12.5/	5.0/6.75	12.5/	5.0/6.75	12.5/	5.0/6.75		
FOL	Depth of GW Depression ft	-1,0	-1.0	-1.0	-1.0	-1.0	-1.0		
MANIFOLD	Extraction Well DTLNAPL ft						7)		
	Extraction Well DTGW ft								

() Indicates Well Pressure

Location: "F" State Site, Lea County, NM					Project Managers: Faucher/Hendley			
J107 - 4 103-	Date:	10/17/2013				Ī		
	Parameters	Time 1300	Time 1330	Time 1400	Time	Time	Time	
	WELL#	Hr Meter 6583.5	Hr Meter 6584.0	Hr Meter 6589. 5	Hr Meter	Hr Meter	Hr Meter	
1000	R.P.M.	Z000	2006	2000				
WER	Oil Pressure psi	50	50	50				
BLO	Water Temp °F	130	130	130				
ENGINE/BLOWER	Volts	13	13	13				
ENG	Intake Vacuum "Hg	18	13	18				
	Gas Flow Fuel/Propane cfh	120	120	120				
	GW Pump ON/OFF	02	500	0~				
×	Extraction Well Flow scfm	9.0	9.47	9.0				
M/AI	Extraction Well Vacuum "H ₂ O	30	100	80				
CUI	Pump Rate gals/min	4.5	4.5	4.5				
E/VA	Total Volume gals		1.5	7.0				
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	-	_	_				
MOSI	Air Temperature °F	2002	68	72				
ΑT	Barometric Pressure "Hg	3010	30.10	30.10				
	Absolute Pressure "Hg	_	-	_				
H	HC ppmv	11,930		(1,480				
POR /INFLUENT	CO ₂ %	8.34		7.54	8 8			
INFI	CO %	0.0		0.0	100.000			
POR	O ₂ %	8.4		7.8		and the second s		
VA	H ₂ S ppm	2.0	3.2 3 200	3.0				
NOTES	AT 1400 HAS THE STOPPOS CONTYNUE THE PUMP WAS SHI	O TO PUN	EMOBILIZE	DOWN UNT	E. PORFOR	25. AT WHICE	1 POWT	
MANIFOLD	LNAPL % Vol Gals Depth of GW Depression ft Extraction Well DTLNAPL ft	12.50/ 16.9	5.0/6.75	12.50/				
	Extraction Well DTGW ft	59.32						

() Indicates Well Pressure

NAPL . U

AcuVac Remediation, LLC.

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • Fax: 713.468.6689 • www.acuvac.com

November 25, 2013

Mr. Scott Christ Project Manager Conestoga-Rovers & Associates 6320 Rothway, Suite 100 Houston, Texas 77040

Dear Scott:

Re: Event #14: "F" State Site, Lea County, NM

The following is the Report and a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Event #14 at the above location on November 21, 2013. Table #1 is the Well Data Information on well RW-1. PSH is referred to as NAPL in this report. GW samples are frequently taken in 2,000 ml beakers to determine the average NAPL percentage and volume.

Summary of MDP Event #14- Well RW-1

The total Event time was 7.0 hours. The data is compared to Event #13 conducted on October 17, 2013, which had a total Event time of 7.0 hours.

- The total GW/NAPL recovered was 1,890 gals of which 8.75% or 165.38 gals were NAPL.
- Total NAPL vapors burned as IC engine fuel were 5.33 gals, resulting in a total liquid and vapor NAPL recovery of 170.71 gals, or 9.03%. This equates to 24.39 gal/hr, which is an increase of 0.18 gals/hr.
- Average HORIBA Analytical Data from the influent vapor samples was: HC = 12,763 ppmv, $CO_2 = 8.92\%$, CO = 0%, $O_2 = 9.4\%$ and $H_2S = 2.13$ ppm.
- Compared with MDP Event #13 data, the TPH levels increased 447 ppmv, CO₂ increased 1.57%, CO was equal at 0%, O₂ was equal at 9.4%, and H₂S decreased 0.50 ppm.
- The Average Induced Vacuum was 88.67"H₂O and the average EW vapor flow was 8.80 scfm. The average induced vacuum decreased 4.66"H₂O and the average well flow decreased 0.52 scfm.
- The GW pump was set at 62.0 ft BTOC. The average GW/NAPL pump rate was 4.50 gpm. The average GW pump rate was equal at 4.50 gpm.
- The average GW depression was estimated at 1.0 ft below static level, which was consistent with Event #13. This estimate is based on the GW pump position and GW rate.
- At the start of Event #14, the static NAPL level was 3.35 ft and 0.04 ft of NAPL remained at the conclusion of the Event. The static GW level decreased 0.25 ft based on hydro-equivalent.

Additional Information- Event #14

- During the Event period the Induced Well Vacuum was varied to increase the recovery of NAPL as
 a percentage of the total liquid volume. This cycle of increasing and decreasing the Induced Well
 Vacuum every 30 minutes continued for the Event period. Based on our observations of the amount
 of NAPL visible in the site gauge, the NAPL recovery increased to approximately 12.5%.
- A recommendation is to install a new, more shallow, well that will increase the percentage of NAPL recovery further as less groundwater will be included in the liquid recovery.
- A liquid sample was taken at 1030 hours to illustrate the amount of NAPL in the groundwater/NAPL mixture. A photo is included for reference purposes.
- At the conclusion of the Event, the collection tank was gauged. There was not a clean separation of the groundwater and NAPL at this point. However, it is concluded that 0.60 ft of NAPL was detected. Based on the dimensions of the collection tank, this is approximately 150 gals. A total of 1,890 gals were recovered, leaving 1,740 gals of a groundwater/NAPL emulsion still in suspension. Based on the liquid sample collected, it is estimated that the groundwater/NAPL emulsion contained approximately 1.0 1.50% NAPL, increasing the NAPL recovery by approximately 20 gals for a total NAPL recovery of 170 gals. This exceeds the measured amounts of NAPL recovered during the Event.
- The GW pump rate remained steady throughout the Event period at 4.5 gpm as the 2,000 gallon collection tank is a limiting factor. In order to compensate for the tank size, the Induced Well Vacuum was varied, as described above, in order to reduce the GW upwelling and enable the GW pump to capture more NAPL.
- Based on the use of the above methods, the average liquid and vapor NAPL recovery from well RW-1 increased from 24.21 to 24.39 gal/hr.
- A Summary of Events #4 through #14 is included to illustrate the NAPL at the start and conclusion
 of each Event, the total NAPL recovered during each Event and the resulting cost per gallon to
 recover.

NAPL Recovery Data:

The total NAPL removed, including liquid and vapor, during the 7.0 hour Event #14 (well RW-1), was 170.71 gals, or 9.03% of the total liquid volume of 1,890 gals. This equates to 24.39 gals/hr.

During the fourteen Events totaling 102.3 hours, the total NAPL removed, including liquid and vapor, equals 1,549.02 gals, or 5.87% of a total liquid volume of 26,379 gals. This equates to a NAPL recovery rate of 15.14 gals/hr.

Method of Calibration and Calculations

During each Event, the test data is compared to the previous Event to evaluate the progress for this remediation project.

The HORIBA Analytical instrument is calibrated with HEXANE and CO₂.

The formula used to calculate the Emission Rate is:

 $ER = HC \text{ (ppmv) } x \text{ MW (Hexane) } x \text{ Flow Rate (scfm) } x 1.58E^{-7} \text{ (min)(lb mole)} = \text{lbs/hr}$

 $(hr)(ppmv)(ft^3)$

Information included with Report

- Summary of Events #4 to #14
- Recorded Data
- Photographs of the MDP System and well RW-1

We have tentatively scheduled the next Event for December 13, 2013. Once we review our schedule we can confirm this date with you.

We appreciate you selecting AcuVac to provide this service.

Sincerely,

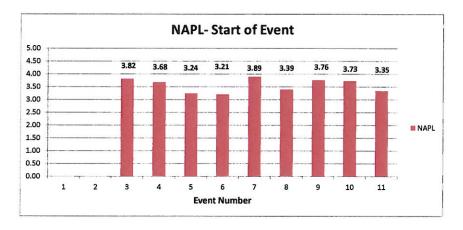
ACUVAC REMEDIATION, LLC

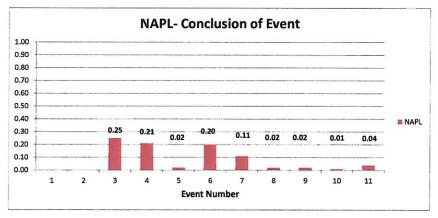
Paul D. Faucher

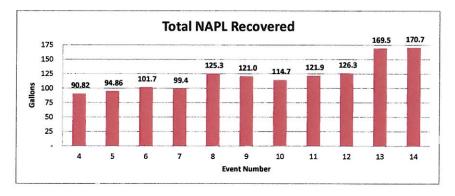
Vice President, Operations

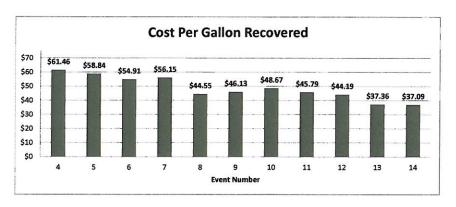
cc: Brittany Ford

CRA- Dallas


Well and Recovery Data Information - Event #14


November 21, 2013


Table #1


EVENT	111	14
Well Number		RW-1
Total Event Hours		7.0
TD	ft	90.0
Well Size	in	4.0
DTGW - Static - Start Event	ft	61.98
DTNAPL - Static - Start Event	ft	58.63
NAPL	ft	3.35
DTGW - End Event	ft	59.24
DTNAPL - End Event	ft	59.20
NAPL	ft	0.04
Average Extraction Well Vacuum	"H₂O	88.67
Average Extraction Well Vapor Flow	scfm	8.80
Average GW/NAPL Pump Rate	gpm	4.50
Average TPH	ppmv	12,763
Average CO ₂	%	8.92
Average CO	%	0
Average O ₂	%	9.4
Average H ₂ S	ppm	2.13
Total Liquid Volume Recovered	gals	1,890
Total Liquid NAPL Recovered	gals	165.38
Total Liquid NAPL Recovered	%	8.75
Total Vapor and Liquid NAPL Recovered	gals	170.71
Total NAPL Recovered	%	9.03
Total NAPL Recovered	lbs	1,195
Total Volume of Well Vapors	cu.ft	3,696

"F" STATE SITE LEA COUNTY, NM SUMMARY OF EVENTS #4 THROUGH #14

OPERATING DATA - EVENT #14

PAGE # 1 ACUVAC MOBILE DUAL PHASE SYSTEM

Locatio	Location: "F" State Site, Lea County, NM Project Managers: Faucher/Hendley								
	Date:	11/21/2013	_	-	-	-	_		
	Parameters	Time 0630	Time 6700	Time 0730	Time 0800	Time	Time OS 00		
	WELL#	Hr Meter 665.0	Hr Meter 665.5	Hr Meter 6606.0	Hr Meter 6606.5	Hr Meter 6607.0	Hr Meter 6607.50		
	R.P.M.	2000	2000	2000	2000	2000	2000		
WER	Oil Pressure psi	50	50	50	50	50	50		
BLO	Water Temp °F	130	136	130	130	130	130		
ENGINE/BLOWER	Volts	13	13	13	13	13	13		
ENG	Intake Vacuum "Hg	16	16	16	16	16	16		
	Gas Flow Fuel/Propane cfh	120	120	170	120	120	120		
	GW Pump ON/OFF	on	ON	00	000	000	الره		
¥	Extraction Well Flow scfm	8.18	8.68	8.18	9.47	8.18	9.47		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	80	100	80	100	80	F00		
CUC	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5		
EVA VOL	Total Volume gals	_	135	270	405	540	675		
PHER UMP	Influent Vapor Temp. °F	-	-	_		_			
MOS	Air Temperature CLOODY °F	54	54	55	UNN SC	56	60		
AT	Barometric Pressure "Hg	30.02	30.02	30,02	30.04	30.04	30,04		
	Absolute Pressure "Hg	-	-	-	_	-	_		
ь	HC ppmv	10,230	•	12,550	~	12,810	1		
POR ANFLUENT	CO ₂ %	7.68	_	9.28	_	8.78	~		
/INFI	CO %	ø		.02		102	_		
POR	O ₂ %	8.2	•	7.1	_	10.8	•		
VA	H ₂ S ppm	2	•	2	_	1	-		
	SOS PAGE 1A.								
g					W 1				
NOTES					200	a			
200	LNAPL % Vol Gals	-/-	12,50/	3/6.75	12.50/	5/6.75	12.50/		
MANIFOLD			1:-	-1.0		-1.0			
	Depth of GW Depression ft	-1.0	-1:0	_ /. 0	-1.0	-1.0	-1.0		
MANI	Depth of GW Depression ft Extraction Well DTLNAPL ft	58.63	-/.0	_7.0	<i>-7.0</i>	-7.0	-7.0		

() Indicates Well Pressure

1	4	
12	01	X
X	W	10
\wedge	741	10

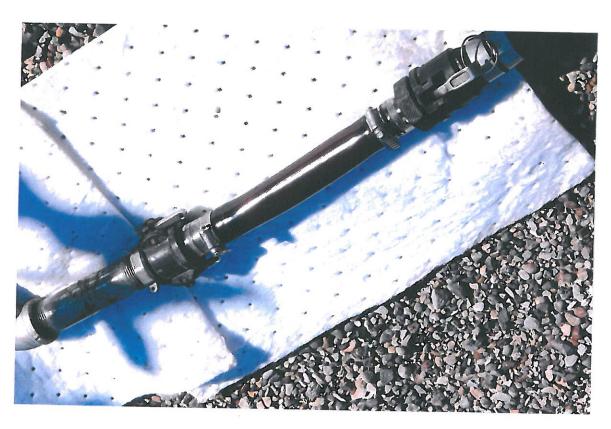
PAGE # /A **DETAILED OPERATING DATA - EVENT #14** ACUVAC MOBILE DUAL PHASE SYSTEM "F" State Site, Lea County, NM Project Managers: Faucher/Hendley Location: Date: 11/21/13 Time Time Time Parameters Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter WELL# MW-1 PAZMALLY MOBER THE SITE ON 11/20/13 LAYING OUT HOSE AND THE TOTAL FLUIDS PUMP. ADVISED BY CRA TECH THAT THE COLLECTION TANK MAY HAVE NOT BEEN PULLY VACATED. THIS LATER TURNEDOUT NOT TO BE THE CASE. ATTRIVED AT THE SITE AT 0600 ON 11/21/13. COMPLETED MOBE. PETEFORMAD SAPOTY CHECKS. HEW THILGARE SAFETY MITG. STATUTED EVENT @ 0630 HZS. INITIAL INDVICED WELL VAC WAS SET AT 80" HOD WHICH TESUTED IN A WELL VAPOR PLOW OF 8.18 SCAM. SET TOTAL PLUIDS PUMP @ 62 OFF BTOC. SET INITIAL PUMP RATE @ 4.5 GPM. AT 0700 HRS INCITERED THE INDUCED WELL VAC TO 100" HZO RESULTING IN A WELL VAPOR FLOW OF B.68 SCFM. AT 0730 HZS REDUCED WELL VAC TO 80" H, D (WVF 8.185CFM. NAPL RECOVERY INCREASED SIGNIFICANTLY WITH THE SITE GLASS APPEARING PARTIALLY OPAQUE FOR BOMINUTES. AT 0800 HIS INCREASED INDUCED WELL VAC TO 100" HE AND WELL VATOR FLOW TO 9,47 SCFM. NAPL RECONDER FELL. THIS CYCLE WAS TREPEATED THROUGH 0900 HRS.

() Indicates Well Pressure 7FORMS/TestForms/1210018

PAGE # Z ACUVAC MOBILE DUAL PHASE SYSTEM

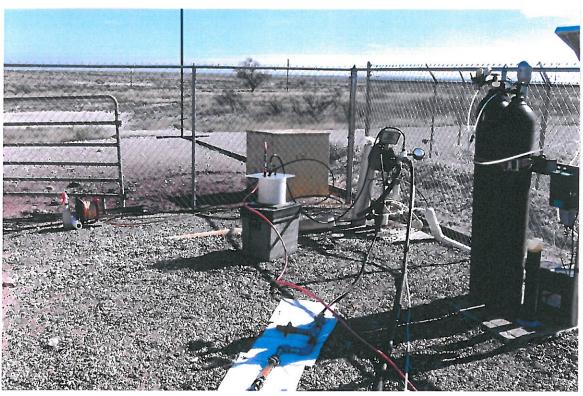
Location: "F" State Site, Lea County, NM Project Managers: Faucher/He									
	Date:	11/21/2013			_ roject mana	bars. Lauchel			
	Parameters		Time	Time	Time	Time	Time		
		Time 09 30 Hr Meter	Hr Meter	1 030 Hr Meter	Hr Meter	1130	1200		
	WELL#	6608.0	6608.5	6609.0	66 09.5	Hr Meter 6610-0	Hr Meter		
	R.P.M.	2000	2000	2000	2000	2000	2000		
WER	Oil Pressure psi	50	50	50	50	50	50		
BLO	Water Temp °F	140	140	140	140	140	140		
ENGINE/BLOWER	Volts	13	13	13	13	13	13		
EN	Intake Vacuum "Hg	16	18	18	18	18	18		
	Gas Flow Fuel/Propane cfh	120	120	120	120	120	120		
	GW Pump ON/OFF	01)	02	on	02	ON	02		
×	Extraction Well Flow scfm	8.18	9.47	9.18	9.47	7.49	9.47		
[M/A]	Extraction Well Vacuum "H ₂ O	80	100	80	100	70	100		
CUL	Pump Rate gals/min	4.5	4.5	4.5	4.5	4.5	4.5		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	810	945	1,080	1215	1350	1485		
PUMF	Influent Vapor Temp. °F	~	-	-24	_	-	_		
[MOS	Air Temperature °F	68	72	BREEZ	72	74	78		
[¥	Barometric Pressure "Hg	30.06	3006	30.06	30.06	30.04	30.04		
	Absolute Pressure "Hg	-	_	-	-	_	-		
TN	HC ppmv	14,910		15,160	1	13.710	_		
VAPOR /INFLUENT	CO ₂ %	9.32		9.68		9.54	1		
/INF	CO %	.04		.04		.05	1		
POR	O ₂ %	12.1		9.0	-	9.4	-		
VA	H ₂ S ppm	2	_	2	-	2	-		
	CYCLE OF INCRE	BASING AN	D DETREM	BING THE	FNO RED	WEUVAC	. cuts		
	CYCLE OF INCREASING AND DECREASING THE INDUCED WELL VAC WAS REPEASED THROUGHOUT THIS PERIOD OF THE EVOUT.								
S	AT 1030 HZS OBTAINED A LIONID SAMPLE SEE ATTACHED PHOTO.								
NOTES									
2									
	LNAPL % Vol Gals	5.0/6.75	12.50/	5.0/	12.50/	5/6.75	120/		
OLD	Depth of GW Depression ft	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		
MANIFOLD	Extraction Well DTLNAPL ft	0	7.0	- 7,0	7.0		0		
_	Extraction Well DTGW ft								
() Indicate									

() Indicates Well Pressure



Locatio	on: "F" State Site, Lea		Project Managers: Faucher/				
	Date:	11/21/2013	_	-	_	_	-
	Parameters	Time 1230	Time 1300	Time 1330	Time	Time	Time
	WELL#	Hr Meter 66110	Hr Meter 6611.5	Hr Meter 6612-0	Hr Meter	Hr Meter	Hr Meter
	R.P.M.	2000	2000	2200			
WER	Oil Pressure psi	50	60	50			
ENGINE/BLOWER	Water Temp °F	140	140	140			
INE/	Volts	13	13	13			
ENG	Intake Vacuum "Hg	18	18	18			
	Gas Flow Fuel/Propane cfh	120	120	120			
	GW Pump ON/OFF	ON	ou	OFF			
œ	Extraction Well Flow scfm	7.49	9.47	7.49	-		
M/AI	Extraction Well Vacuum "H ₂ O	70	100	70			
CUU	Pump Rate gals/min	4.5	4.5	4.5		-	
E/VA VOLI	Total Volume gals	1620	1755	1890			
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Influent Vapor Temp. °F	_	-	_			
10SP PU	Air Temperature °F	78	79	80			
ATN	Barometric Pressure "Hg	30.04	30.02				
	Absolute Pressure "Hg	30,07	30,0,0	30.00			
		11 775	_	20.6			
POR /INFLUENT	HC ppmv	11,370		11,360			
NFL	CO %	8.40	_	8.68			
JR /I	O ₂ %	.01		,01			
VAP		7.6 3		8.6 3			
NOTES	THE CYCLE OF THEREASING ANN DECREASING THE WELL VAC CONTINUED DUTAIN THIS PETGOD. AT 1380 HIZS VAC WAS DISCONTINUED. TOTAL FLUIDS PUM WAS DISCONTINUED C 1340 HIZS. RW-1 WAS GAUGEO. DE-MOBED THE SITE. DEPARTED SITE AT 1430 HIZS. ADDITIONAL COMMERTS ON PAGE 3B.						
r _D	LNAPL % Vol Gals	5/6.75		5/6.75			
MANIFOLD	Depth of GW Depression ft	-1.0	-1.0	-1-0			
MA	Extraction Well DTLNAPL ft			59.20			
	Extraction Well DTGW ft			59.24			
					Contract Con		

() Indicates Well Pressure


NAPL 104

Location: "F" State Site, Lea County, NM				Project Managers: Faucher/Hendley				
	Date:	11/11/13	-	_	-	-	-	
	Parameters	Time	Time	Time	Time	Time	Time	
	WELL# MW-1	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	Hr Meter	
	AT 1415 THE C	OLLECTION	JANK W	AS GAUGE	D TO ODTAN	AN ESTIA	HATE OF	
	THE NAPL THICK	WESS. 7	THENARL	WAS AT	PROX 1 PT BE	LOW THE TO	r or	
	THE TANK OPENI	UG. THE	E Borron	OF THE	NAPL THICK	NESS WAS	STIMATE	
	AT 1.6 PT BELOW							
	THICKNESS OF	.6 FT	02 7.2	". THE	POLLOWING 1	S A BASIC	-	
	CALCULATION T	O RECONI	CIVE / PRI	INE THE	ESTIMASES	MADE DU	TUNG	
	THE COURSE OF	THE EN	NENT.					
					74-	10/-		
	TANKHERGHT	96".	MAK VOL	UME ZIC	WGAL.	0/96 = Za	93 GAL 50	
	NAPL THICKNESS:							
	7.2" * 20.83	GAL =	149.98 6	AL				
					00			
	TOTAL VOLUME !		ט		890.00 GAL			
· ·	NAPL PROM AS	ove		-	149.887			
NOTES		2	DE D-		190			
4	ESTIMATED NAPL	CONTENT	OF REAMA,	LD.	190			
	TOTAL NAPL	149 98	+ 17,40	1 = 167.3	8 GAL C	gy 170 m	AL	
	, UTT WAIL	. ,	. 11.1-					
	THE ABOVE CALL	2ULATION	SUPPORTS	THE EST	TIMATES US	ED DUZING	9 . THE	
	EVENT PERIOD T							
			-					
			-					
	II.							

