3R - 449

Q3 2010 GWMR

11/29/2010

Animas Environmental Services, LLC

624 E. Comanche . Farmington, NM 87401 . TEL 505-564-2281 . FAX 505-324-2022 . www.atimaschy.commana.yor

2010 DEC -2 P 1:08

November 29, 2010

Glen von Gonten New Mexico Oil Conservation Division 1220 S. St. Francis Drive Santa Fe, New Mexico 87505

RE: 3rd Quarter Groundwater Monitoring Report for Williams Four Corners, LLC, Sammons #2 Pipeline December 2009 Release, Flora Vista, San Juan County, New Mexico

Dear Mr. von Gonten:

Animas Environmental Services, LLC (AES), on behalf of Williams Four Corners, LLC, has prepared this 3rd Quarter Groundwater Monitoring Report for the Sammons #2 Pipeline December 2009 Release in accordance with New Mexico Oil Conservation Division (NMOCD) and New Mexico Environment Department (NMED) Ground Water Quality Bureau (GWQB) regulations. The subject site is located near Flora Vista, San Juan County, New Mexico.

A third quarterly groundwater monitoring and sampling event was completed October 28, 2010, in accordance with a workplan previously prepared by AES and dated January 25, 2010. The workplan was submitted to the NMOCD for review prior to implementing the proposed scope of work.

1.0 Site Information

1.1 Site Location

The general project area is located in a rural area approximately 0.1 mile east of County Road 3000 on private property owned by Ms. Helen Clark. The spill location is located approximately 140 feet southeast of a wetland area that is adjacent to the Animas River. The project area is described legally as within the SE¼ NE¼ Section 32, T30N, R12W, in Flora Vista, San Juan County, New Mexico. Longitude and latitude were recorded as being N36°46′18.240″ and W108°06′54.540″. A topographic site location map is included as Figure 1, and a Site Vicinity Map is presented as Figure 2.

1.2 Spill History

On December 3, 2009, trenching operations during routine pipeline replacement activities uncovered petroleum hydrocarbon contaminated soils. Williams was in the process of replacing an in-service 2-inch diameter natural gas pipeline with a new 4-inch diameter natural gas pipeline. The pipeline connects the Sammons 2 well locations, which are owned by Conoco Phillips. The volume of natural gas condensate released into the surrounding environment and the length of time that the 2-inch diameter pipeline was leaking are unknown.

Initial remedial activities were completed between December 7 and 17, 2009, and included excavation of approximately 1,884 cubic yards of petroleum contaminated soil (PCS) and removal of 1,122 barrels (bbls) of petroleum contaminated groundwater. Petroleum contaminated soil and groundwater were transported to Industrial Ecosystems, Inc. (IEI) on Crouch Mesa, San Juan County, for disposal. Soil excavation and removal activities were documented in the *Remedial Activities Report for Sammons #2 Pipeline 2009 Spill*, prepared by AES and dated January 11, 2010.

Six 1-inch diameter groundwater monitoring wells were installed and sampled at the site in April 2010. Analytical results from groundwater samples collected during the sampling event showed benzene concentrations exceeded the New Mexico Water Quality Control Commission (WQCC) standard of 10 μ g/L in one well, MW-1 (11 μ g/L). The remaining wells had benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations either below laboratory detection limits or well below applicable WQCC standards.

Diesel and motor oil range organics were below laboratory detection limits for all wells sampled. Low level gasoline range organics (GRO) were detected in MW-2, MW-4, MW-5, and MW-6. Based on the laboratory results, AES recommended continued quarterly groundwater monitoring at the site for at least a year.

Groundwater investigation details are included within the *Site Investigation Report* prepared by AES and dated May 5, 2010.

2.0 Groundwater Monitoring and Sampling October 2010

On October 28, 2010, groundwater monitoring and sampling activities were conducted by AES. Work was completed in accordance with the workplan prepared by AES and dated January 25, 2010, and also in accordance with U.S. Environmental Protection Agency (USEPA) Environmental Response Team's Standard Operating Procedures (SOPs), and applicable American Society of Testing and Materials (ASTM) standards.

2.1 Notification

AES notified Aaron Dailey of Williams and Nick Clark, land owner, via telephone before starting sampling activities.

2.2 Groundwater Monitor Well Monitoring and Sampling

AES personnel completed groundwater monitoring and sampling of the wells on October 28, 2010. Groundwater samples were collected with new disposable bailers from a total of six monitor wells and transferred into appropriate sample containers, labeled accordingly, and documented on Water Sample Collection Forms.

Prior to sample collection, water quality measurements were recorded and included depth to groundwater, pH, temperature, conductivity, dissolved oxygen (DO), and oxidation reduction potential (ORP). Depth to groundwater was measured with a Keck Water Level Indicator, and water quality data was measured with a YSI Water Quality Meter. Samples were shipped in insulated coolers containing ice at less than 6°C via Greyhound bus to Hall Environmental Analytical Laboratory (Hall) in Albuquerque, New Mexico.

2.2.1 Laboratory Analyses - Groundwater

All groundwater analytical samples were analyzed for the following parameters:

- BTEX EPA Method 8260
- TPH (C₆-C₃₆) GRO, DRO, and MRO EPA Method 8015 Modified

2.2.2 Measurement Data

Depths to groundwater varied across the site and were observed to exist at 0.68 feet below top of casing (TOC) in MW-6 to 1.95 feet below TOC in MW-1. The groundwater gradient was calculated to be approximately 0.01 ft/ft to the northwest, which is consistent with previous site data. Note that the site is considered to be groundwater under the direct influence (GUDI) of the Animas River.

Following depth to water measurement, each well was purged with a disposable bailer until recorded temperature, pH, conductivity, and dissolved oxygen (DO) measurements were stabilized. All data was recorded onto Water Sample Collection Forms. Groundwater temperature ranged from 11.52°C to 15.62°C, and conductivity ranged from 0.719 mS to 3.797 mS. Although DO was recorded during field activities, it should be noted that due to the use of bailers, the accuracy of dissolved oxygen measurements is limited. Depth to groundwater measurements and water quality data are summarized in Table 1, and groundwater elevation contours are presented in Figure 3. Water Sample Collection forms are presented in Appendix A.

2.2.3 Groundwater Analytical Results

Analytical results from groundwater samples collected during the October 2010 sampling event showed that BTEX concentrations were below laboratory detection limits in all six monitoring wells.

Dissolved phase diesel and motor oil range organics concentrations were below laboratory detection limits for all wells sampled. WQCC standards have not been established for TPH. The laboratory analytical results for groundwater samples collected during the October 2010 sampling event have been tabulated and are presented in Table 2 and on Figure 4. Groundwater analytical laboratory reports are presented in Appendix A.

3.0 Conclusion and Recommendations

AES personnel conducted groundwater monitoring and sampling at the location of the Sammons #2 Pipeline December 2009 Release in October 2010. Depths to groundwater varied across the site and were observed to exist at about 0.68 to 1.95 feet bgs from the top of the well casing, and groundwater gradient was calculated to be approximately 0.01 ft/ft to the northwest.

Groundwater analytical results showed that contaminants of concern (BTEX and TPH) were below laboratory detection limits. Natural attenuation of groundwater contaminants appears to be successfully occurring at the site.

AES has tentatively scheduled the next quarterly sampling event for January 2011.

If you have any questions regarding site conditions or this report, please do not hesitate to contact Tami Ross or Elizabeth McNally at (505) 564-2281.

Sincerely,

Tami C. Ross, CHMM

Project Manager

Elizabeth McNally, P.E.

New Mexico Registration #15799

Attachments:

Tables

Table 1. Groundwater Measurement and Water Quality Data

Table 2. Groundwater Analytical Results

Figures

Figure 1. Topographic Site Location Map

Figure 2. Site Plan

Figure 3. Groundwater Elevations, October 2010

Figure 4. Groundwater Analytical Results, October 2010

Appendix A

Water Sample Collection Forms

Groundwater Analytical Laboratory Reports

Cc: Mr. Brandon Powell

New Mexico Oil Conservation Division

1000 Rio Brazos Road Aztec, New Mexico 87410

Mr. Aaron Dailey

Williams Four Corners, LLC

188 CR 4900

Bloomfield, NM 87413

Mr. Nick Clark 719 Otten Street Aztec, NM 87410

Files:2010/Williams/Sammons#2/Groundwater/Reports/3rd Qutr Investigation Report 112910

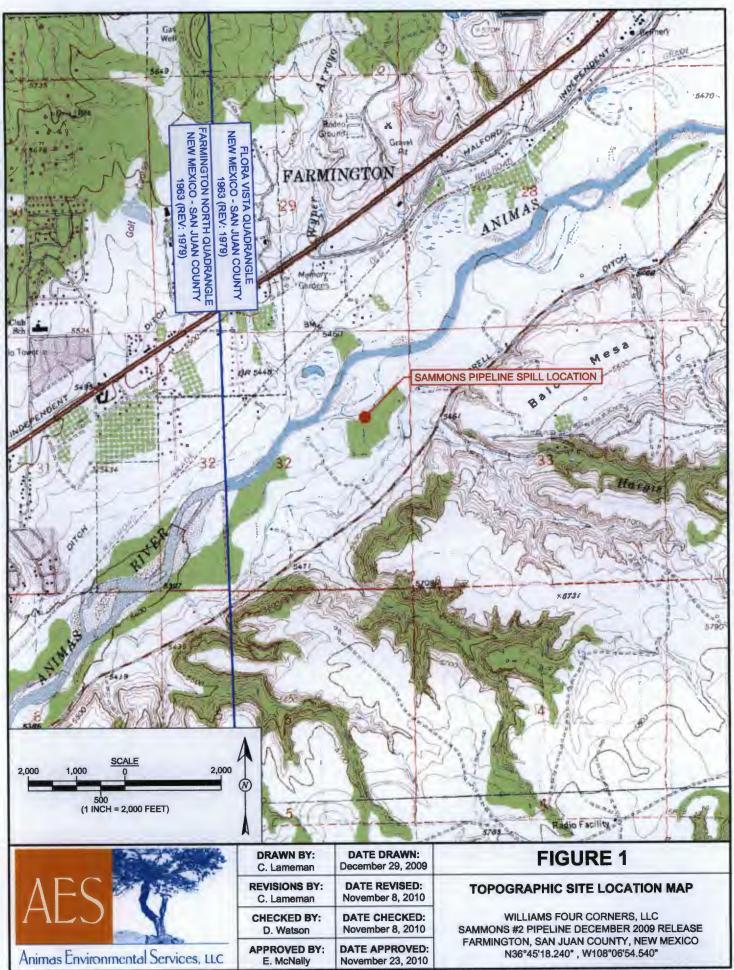
Quarterly Monitoring Report November 29, 2010

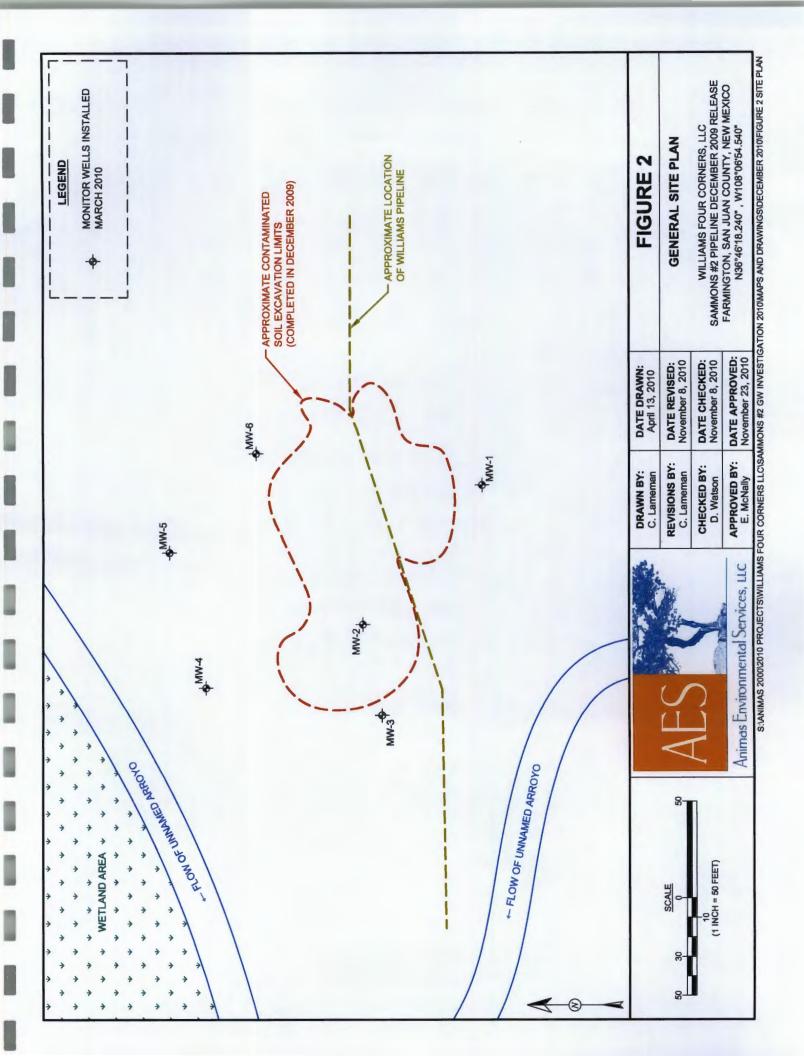
SUMMARY OF GROUNDWATER MEASUREMENT AND WATER QUALITY DATA Williams Four Corners #2 Pipeline December 2009 Release TABLE 1

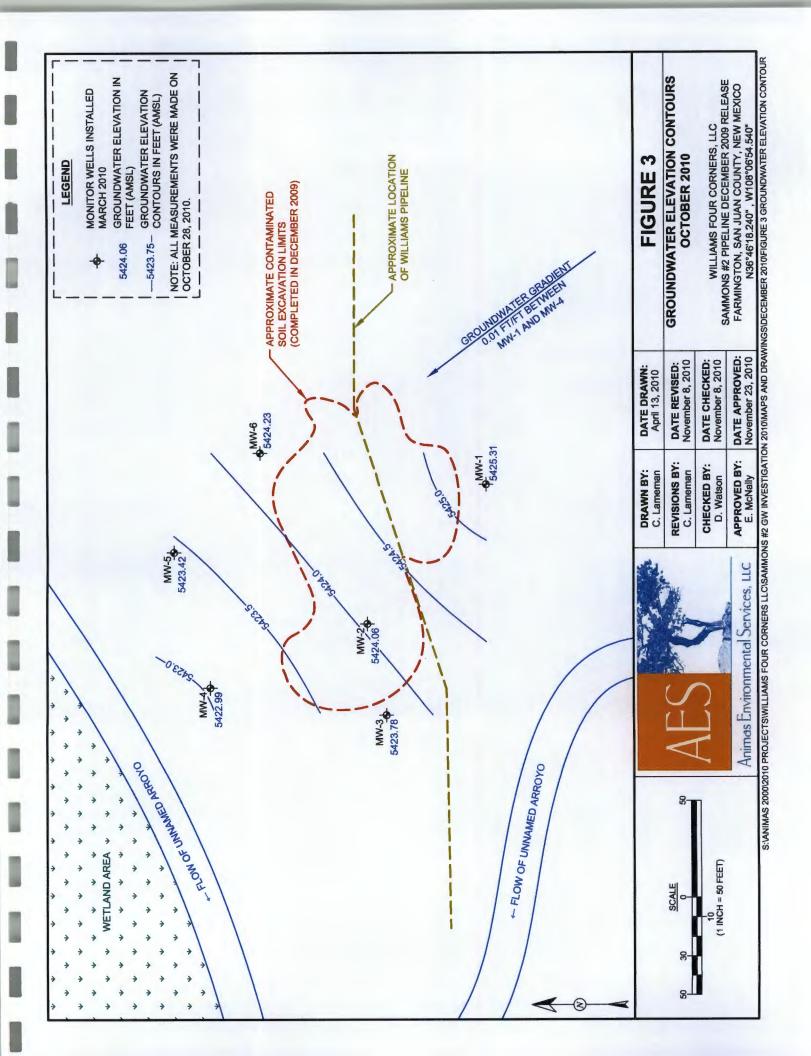
	w Mexico
	County, Ne
•	, San Juan County,
	Flora Vista, !

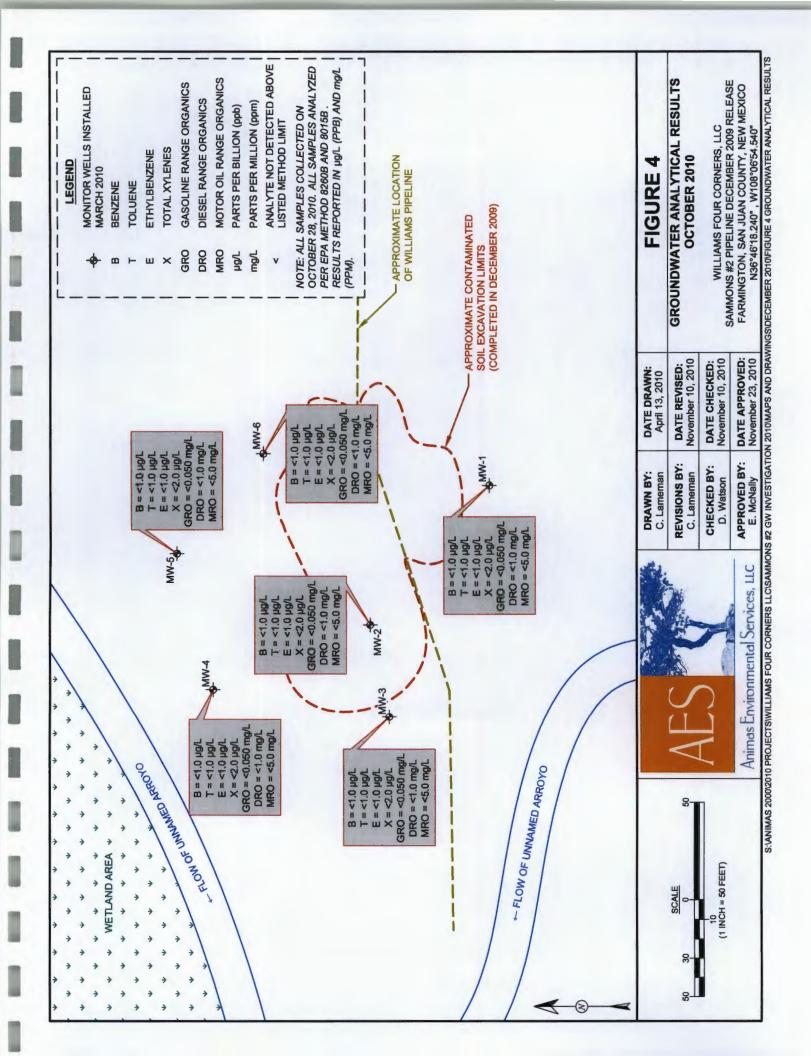
Well ID	Date	Depth to	Surveyed	GW Elev.	Temperature	Conductivity	00		ORP
	Sampled	Water (ft)	TOC (ft)	(ft)	(C)	(mS)	(mg/L)	Н	(mV)
MW-1	20-Apr-10	2.43	5427.26	5424.83	10.19	4.392	0.43	7.05	35.1
MW-1	20-Jul-10	2.05	5427.26	5425.21	14.75	1.108	1.76	7.14	-89.7
MW-1	28-Oct-10	1.95	5427.26	5425.31	11.84	3.797	0.67	7.03	-71.0
MW-2	20-Apr-10	1.11	5424.98	5423.87	10.37	1.670	0.20	7.39	-132.7
MW-2	20-Jul-10	0.91	5424.98	5424.07	19.09	0:630	1.84	7.26	-99.3
MW-2	28-Oct-10	0.92	5424.98	5424.06	11.52	0.719	0.22	7.45	-103.5
MW-3	20-Apr-10	1.77	5425.44	5423.67	9.73	2.005	0.24	7.21	-69.0
MW-3	20-Jul-10	1.56	5425.44	5423.88	17.89	0.842	1.52	7.22	-85.6
MW-3	28-Oct-10	1.66	5425.44	5423.78	12.61	0.670	0.18	7.43	-108.4
MW-4	20-Apr-10	1.59	5424.38	5422.79	09.6	2.174	0.22	7.29	-88.4
MW-4	20-Jul-10	1.44	5424.38	5422.94	16.39	1.061	1.29	7.17	-87.7
MW-4	28-Oct-10	1.39	5424.38	5422.99	14.48	1.026	0.22	7.28	-111.1
MW-5	20-Apr-10	1.00	5424.17	5423.17	9.88	3.140	0.21	7.37	-102.6
MW-5	20-Jul-10	0.86	5424.17	5423.31	20.50	1.440	1.03	86.9	-93.5
MW-5	28-Oct-10	0.75	5424.17	5423.42	15.62	1.650	0.30	7.09	-91.7
MW-6	20-Apr-10	1.04	5424.91	5423.87	11.09	2.277	0.22	7.28	-113.6
MW-6	20-Jul-10	0.89	5424.91	5424.02	21.57	1.399	1.06	6.93	-82.3
9-MW	28-Oct-10	89.0	5424.91	5424.23	11.93	1.482	0.21	7.12	-89.6

Page 1 of 1


TABLE 2
SUMMARY OF GROUNDWATER ANALYTICAL RESULTS
Williams Four Corners #2 Pipeline December 2009 Release
Flora Vista, San Juan County, New Mexico


Well ID	Date Sampled	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	GRO (C6-C10)	DRO (C10-C22)	MRO (C22-C32)
Analytic	al Method	(μg/L) 8260B	(μg/L) 8260B	(μg/L) 8260B	(μg/L) 8260B	(mg/L) 8015	(mg/L) 8015	(mg/L) 8015
	CC Standard	10	10	10	10	NE	NE	NE
MW-1	20-Apr-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-1	20-Jul-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-1	28-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-2	20-Apr-10	11	<1.0	2.4	22	1.1	<1.0	<5.0
MW-2	20-Jul-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-2	28-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-3	20-Apr-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-3	20-Jul-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-3	28-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-4	20-Apr-10	9.9	<1.0	<1.0	<1.5	0.074	<1.0	<5.0
MW-4	20-Jul-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-4	28-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
MW-5	20-Apr-10	9.7	<1.0	<1.0	<1.5	0.055	<1.0	<5.0
MW-5	20-Apr-10 20-Jul-10	<1.0	<1.0	<1.0	<1.5	<0.050	<1.0	<5.0
MW-5	28-Oct-10	<1.0	.			<0.050	<1.0	<5.0 <5.0
10100-3	20-001-10	1.0	<1.0	<1.0	<2.0	\0.030	\1.0	\3.0
MW-6	20-Apr-10	4.6	<1.0	11	47	3.2	<1.0	<5.0
MW-6	20-Jul-10	<1.0	<1.0	<1.0	<1.5	0.079	<1.0	<5.0
MW-6	28-Oct-10	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0	<5.0
Field Blank	22-Apr-10	<1.0	<1.0	<1.0	<1.5	NA	NA	NA


Notes:


< - Analyte below laboratory detection limit

NA - Not Analyzed NE - Not Established

DEPTH TO GROUNDWATER MEASUREMENT FORM

Animas Environmental Services

624 E. Comanche, Farmington NM 87401 Tel. (505) 564-2281 Fax (505) 324-2022

Project: Groundwater Monitoring Project No.: AES 091204

Site: Williams Sammons #2 Pipeline Spill Date: 10 - 2 8 - 10

Location:Flora Vista, San Juan County, New MexicoTime:ວງTech:ປ. (ພ): ໄໄວ້ອForm: 1 of 1

)		4
Well I.D.	Time	Depth to NAPL (ft.)	(ft.)	NAPL Thickness (ft.)	Notes / Observations
MW-1	1003	<u> </u>	1.95		
MW-2	1051] /	0.92	_	
MW-3	1132		1.66		
MW-4	1211		1.39		
MW-5	1246		0.75		
MW-6	1327		0,68		
		- LL LIN.			
				- U-W-	
.=					
					44.0
					•
					1
			i		
					A. W. C.
				, , , , , , , , , , , , , , , , , , , ,	

Wells measured with KECK water level or KECK interface tape, decontaminated between each well measurement.

MON	MONITORING WELL SAMPLING RECORD Animas Environmental Services									
Mon	itor Well No:	MW	-1		6	24 E. Comanche, Farm	ington NM 87401			
					1	Tel. (505) 564-2281 Fax	-			
Site:	Williams Sam	nmons #2 Pipelir	ne Spill			Project No.: AES 0912	204			
		San Juan County		ico	- -	Date: 10-24				
		Monitoring and			/	Arrival Time: <u>09</u> 5				
	g Technician:		Willis			Air Temp: 35	**************************************			
	e / No Purge:		je		T.O	.C. Elev. (ft): 5427 ell Depth (ft): 57	7.26			
	Diameter (in): al D.T.W. (ft):		Time:	-	i otai vve	en Deptn (π): (taken at initial gauging	n of all wolls)			
i .	m D.T.W. (ft):		- Time:	100	2	taken prior to purging (taken prior to	•			
	ai D.T.W. (ft):		- Time:	100		(taken after sample col				
		D.T.P.:	_	<i>1</i> .:	Th	ickness: Ti				
	V	Vater Quality	Paramete	rs - Rec	orded D	Ouring Well Purging				
	Temp	Conductivity	DO		ORP	PURGED VOLUME				
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations			
1018	11,32	3.982	2.52	7,18	-61.8	1/5 gallon				
1022	10.83	3,937	1.59	7.24	-65.8	1/5				
1025	11.38	3.914	0.73	7.14	-67.3	<i>1</i> /5				
1028	11.66	3.924	0.64	7.10	-69.5	1/5				
103	11,84	3.797	0.67	7.03	-71.0	Y5				
1036							Samples			
							Collected			
			A 448445							
Analyt	ical Parame	ters (include	analysis n	nethod a	and nun	nber and type of san	nple containers)			
	F	ull VOCs per EF	PA Method 8	8260B (3	- 40 mL \	Vials w/ HCl preserve)				
MF						ICL perserve, 1 - 40 mL	unpreserved)			
		,	· · · · · · · · · · · · · · · · · · ·			······································				
	D	isposal of Purg	ed Water:	Conci	o lp	*****				
Colle		Stored on Ice	•	Yes	<u> </u>					
	•	stody Record		Yes						
	Onam or oa	-			ronments	al Analysis Laboratory, A	Albuquerque NM			
Fauinm	ant Head Dur	-	٠.			erface Level, YSI Water				
Equipm	ent Osed Dui		New Dispos			enace Level, 131 Water	Quality Meter			
Notes/Com	ments: Per	. [] [ed to	o bail well.				
		TOPEL ILC	omp wa	15 US	ro to	yan wen				

revised. 08/10/09

er j

MON	ITORING W	/ELL SAMPLI	ING REC	ORD	A	nimas Environme	ental Services
Mon	nitor Well No:	MW	-2			624 E. Comanche, Farmi	•
				_		Tel. (505) 564-2281 Fax	
		nmons #2 Pipelir				Project No.: AES 0912	
		San Juan County		ico		Date: 10-24	
	: Groundwater g Technician:	r Monitoring and : いいい			_ ′	Arrival Time: <u>10 ケ</u> Air Temp: <u>40</u> º	
	g Technician: ge / No Purge:				- т.о	O.C. Elev. (ft): 5424	
	Diameter (in):			-		ell Depth (ft): 5,	
Initi	ial D.T.W. (ft):		Time:			(taken at initial gauging	g of all wells)
	rm D.T.W. (ft):		Time:	1051	Ī	_ (taken prior to purging	-
1	nal D.T.W. (ft): IAPL Present:		_ Time: D.T.W		Th	_(taken after sample col	llection) 'ime:
							lme:
	V	Nater Quality	Paramete	rs - Rec	orded D	During Well Purging	
	Temp	Conductivity	1		ORP	PURGED VOLUME	
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1058	11.66	0,743	0.65		-93.3	1/6	
1001	11.61	0.732	0.36		-95,4	1/6	
1104	11.53	0.728	0.29	7.52	-97.9	1/6	
1107	11.41	0.726			-99.1	1/6	
1110	11.50	0.722	0.23	 	-100.6	<u> </u>	
1113	11.55	0.722	0.23	7.47	-101.4	1/6	
1116	11.57	0.720	0.23	7.45	-[02,5	1 1/6	
1119	11.52	0.719	0.22	7.45	-103.5	1/6	
1124							Samples Collected
Analyt	ical Parame	ters (include a	analysis n	nethod a	and nun	nber and type of san	nple containers)
	F	ull VOCs per EF	A Method (8260B (3	- 40 mL '	Vials w/ HCl preserve)	
MF	RO, DRO, GRO	O per EPA Meth	od 8015 (2	- 40 mL \	√ials w/ F	HCL perserve, 1 - 40 mL	. unpreserved)
	D	isposal of Purg	jed Water:	Cover	ete		
Colle		s Stored on ice					
	_	ustody Record (-				
	611	-	-		ironment:	al Analysis Laboratory, A	Albuquerque, NM
Egyipm	ent Used Dur	_				terface Level, YSI Water	
- da.b	one occurrent	_	New Dispos			ellade Levol, 101 viato.	Quality Mctor
Notes/Com	ments: De	1 11	O G MUC	^ '		1 this well.	
110100, 001	monto.	1 ISPAILE P	omp o	*************************************	0 041	ואוט שבווו	

MONI	TORING W	ELL SAMPLI	ING REC	ORD	Ar	nimas Envir <mark>o</mark> nme	ental Services
Mon	itor Well No:	MW	-3		1	24 E. Comanche, Farmi	•
						Tel. (505) 564-2281 Fax	
		nmons #2 Pipelir				Project No.: AES 0912	
		San Juan County		ico	_	Date: (()~ ひる	
	Groundwater g Technician:	Monitoring and			- ′	Arrival Time: #30 Air Temp: 45	
	g rechnician. je / No Purge:				T.O	.C. Elev. (ft): 5425	
Well	Diameter (in):	1			Total We	ell Depth (ft): 5	1
	ial D.T.W. (ft):		Time:	_		(taken at initial gauging	g of all wells)
	m D.T.W. (ft):		Time:	32	<u>-</u>	(taken prior to purging	•
	al D.T.W. (ft):	D.T.P.:	Time:	<i>.</i> :		_(taken after sample collickness:Ti	
" " "							e.
	V	Vater Quality	Parameter	rs - Rec	orded D	Ouring Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(μS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1139	12.62	0.672		7.51	-98.2		
1142	12.58	0.668	0.36	7,47	-101.6	1/6	
1145	12.67	0.669	0.26		-104.3	1/6	
1148	12.69	0,669	0.21	7.44	-106.1	1/4	
1151	12.59	0.669	0.20	7.43	-107.3		
1154	12.61	0,670	0.18	7.43	-108,4	1/6	
1159							Samples
1							Collected
Analyti	ical Parame	ters (include a	analysis n	nethod a	and nun	nber and type of san	nple containers)
	F	ull VOCs per EF	A Method (8260B (3	- 40 mL \	Vials w/ HCl preserve)	
MR						ICL perserve, 1 - 40 mL	unpreserved)
	,	P					
	D	isposal of Purg	ed Water:	Conc	iele		
Collec		s Stored on Ice	_				
	•	stody Record (-				7.N. Y
		-	•		ronmenta	al Analysis Laboratory, A	Albuquerque, NM
Equipme	ent Used Dur	•	-	***************************************		erface Level, YSI Water	
m of or the con-	one occurrent		New Dispos			oridoo Eeroi, 12. Trainin	duality in stor
Notes/Com	ments:	Peristalti		٨		bail this well	
NOTES, COLL	ments.	1581 12 rail w	powh	Unro	01	DEVI THIS WEN	

revised. 00/10/09

MONI	TORING W	ELL SAMPL	NG REC	ORD	Ar	nimas Environme	ental Services
Mon	itor Well No:	MW	-4		6	24 E. Comanche, Farm	ington NM 87401
				-	-	Tel. (505) 564-2281 Fax	(505) 324-2022
		nmons #2 Pipelir			_	Project No.: AES 0912	204
		San Juan County		ico	_	Date: しつ~(名	-10
		Monitoring and			_ /	Arrival Time: 120	
	Technician:		Villis		_	Air Temp: 48°	
	e / No Purge:		<u>e</u>	_		.C. Elev. (ft): 542	
	Diameter (in):			_	Total We	ell Depth (ft): 5,	
	al D.T.W. (ft):		Time:			(taken at initial gauging	
	m D.T.W. (ft):		Time:	1211		(taken prior to purging	•
	al D.T.W. (ft):		Time:		T1.	(taken after sample col	
IT N	APL Present:	D.1.P.:	D.T.W	/.:	I NI	ckness:T	ime:
	V	Vater Quality	Paramete	rs - Rec	orded D	Ouring Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(μS) (mS)	(mg/L)	РH	(mV)	(see reverse for calc.)	Notes/Observations
1219	14,43	1,024	1.11	7.33	-94.5	1/5	
1222	14,35	1.025	0.37	7.31	-103.1	//5	
1225	14.34	1,025	0.26	7,29	-106.6	1/5	
1228	14.40	1,026	0.23	7.28		1/5	
1231	14.48	1.026	0.22	7.28	-111.1	1/5	
1236							Samo es
							Collected
Analyti	cal Parame	ters (include a	analysis n	nethod a	and nun	nber and type of sar	nple containers)
	F	ull VOCs per EF	PA Method 8	3260B (3	- 40 mL \	Vials w/ HCl preserve)	
MR						ICL perserve, 1 - 40 mL	unpreserved)
	Di	isposal of Purg	ed Water:	Conc	icte		
Collec		Stored on Ice		Yes			
ı	Chain of Cu	stody Record (Complete:	Yes	The distance of the second		
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Laboratory, A	Albuquerque, NM
Equipme	ent Used Dur		-			erface Level, YSI Water	
		-	New Dispos				
Notes/Comr	ments:	Peristalt			sed	to bail this	well
			1				
<u> </u>							

evised: 08/10/09

MON!	TORING W	ELL SAMPL	ING REC	ORD	A	nimas Environme	ental Services
Mon	itor Well No:	MW	-5		6	24 E. Comanche, Farm	ington NM 87401
				_	1	Tel. (505) 564-2281 Fax	•
		nmons #2 Pipelir				Project No.: AES 0912	204
1		San Juan County		ico	_	Date: 10-2	
		Monitoring and			- '	Arrival Time: 12	
	g Technician:		Willis		- TO	Air Temp: 50	
	e / No Purge: Diameter (in):		<u>e</u>	- ,		.C. Elev. (ft): 5424 ell Depth (ft): 5	
	al D.T.W. (ft):		Time:	-	rotal III	(taken at initial gauging	
	m D.T.W. (ft):		Time:	124	6	(taken prior to purging	•
	al D.T.W. (ft):		Time:			(taken after sample col	
If N	APL Present:	D.T.P.:	D.T.W	l.:	Th	ickness: T	ime:
	V	Vater Quality	Paramete	rs - Rec	orded D	Ouring Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	pН	(mV)	(see reverse for calc.)	Notes/Observations
1253	15.35	1.630	0.57	7.19	-82,6	1/5	
1256	15,42	1.641	0.33	7.14	-84.4	1/5	
1259	15,56	1.646	0,29	7,12	-86.6	1/5	
1302	15,57	1.646	0.29	7.11	-88.1	1/5	
1305	15.58	1.650	0.30	7.10	-89.4	1/5	
1308	15,63	1.650	0.30	7.09	-90.8	1/5	
1311	15,62	1.650	0.30	7.09	-91.7	1/5	
1316							Samples
							Collected
Analyt	ical Parame	ters (include a	analysis n	nethod a	and nun	nber and type of san	nple containers)
	F	ull VOCs per EF	PA Method 8	8260B (3	- 40 mL \	Vials w/ HCl preserve)	
MF	RO, DRO, GRO	D per EPA Meth	od 8015 (2	- 40 mL \	/ials w/ H	ICL perserve, 1 - 40 mL	unpreserved)
	D	isposal of Purg	ed Water:	Conc	rete		·
Colle	cted Samples	Stored on Ice	in Cooler:	405			
	Chain of Cu	stody Record (Complete:	Yes			
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Laboratory, A	Albuquerque, NM
Equipme	ent Used Dur	ing Sampling:	Keck Water	r Level or	Keck Int	erface Level, YSI Water	Quality Meter
		and	New Dispos	sable Bail	er		
Notes/Com	ments:	Peristo	illiz pu	ws u	sed h	o bail this we	ell
				· · · · · · · · · · · · · · · · · · ·			

revised: 08/10/09

MON	TORING W	ELL SAMPLI	NG REC	ORD	Aı	nimas Environme	ntal Services
Mon	itor Well No:	MW	-6	-	1	24 E. Comanche, Farmi Tel. (505) 564-2281 Fax	_
Sito	Williams Sam	nmons #2 Pipelir	o Spill		L	Project No.: AES 0912	The state of the s
		an Juan County		ico	-	Date: 1(2 - 28	
		Monitoring and			-	Arrival Time: 132	
	Technician:		، <i>الان</i> ع		- *		205
	e / No Purge:				Т.О	.C. Elev. (ft): 5424	
, -	Diameter (in):					ell Depth (ft):	30
Initi	al D.T.W. (ft):		Time:			(taken at initial gauging	of all wells)
	m D.T.W. (ft):	0.68	Time:	132	7	(taken prior to purging	•
	al D.T.W. (ft):		Time:			(taken after sample col	•
If N	APL Present:	D.T.P.:	D.T.W	/.:	Thi	ickness:T	ime:
	V	Vater Quality	Paramete	rs - Rec	orded D	Ouring Well Purging	
	Temp	Conductivity	DO		ORP	PURGED VOLUME	
Time	(deg C)	(µS) (mS)	(mg/L)	рН	(mV)	(see reverse for calc.)	Notes/Observations
1334	12.01	1.495	1:70		-78,6	1/5	
1337	11.73	1,4193	0,53	7,21	-79.8	1/5	
1340	11.89	1,489	0.30	7.16	-82,4	1/5	
1343	12,15	1.487	0.24	7.14	-84.6	1/5	
1346	12.11	1,488	0.22	7.13	-86.4	1/5	
1349	11.87	1,487	0.20	7.13	-87.2	1/5	
1352	11,96	1,481	0,20	7,12	-88,5	1/5	
1355	11,93	1.482	0.21	7.12	-89.6	1/5	
1400							Samples
							Collected
Analyt	ical Parame	ters (include a	analysis n	nethod a	and nur	nber and type of sar	nple containers)
	F	ull VOCs per EF	A Method 8	8260B (3	- 40 mL '	Vials w/ HCl preserve)	
MF	RO, DRO, GRO	per EPA Meth	od 8015 (2	- 40 mL V	/ials w/ ⊢	ICL perserve, 1 - 40 mL	unpreserved)
	D	isposal of Purg	ed Water:	Conco	lete		
Colle	cted Samples	Stored on Ice	in Cooler:	Y-5			
	Chain of Cu	stody Record	Complete:	Yes			
		Analytical La	aboratory:	Hall Envi	ronmenta	al Analysis Laboratory, <i>i</i>	Albuquerque, NM
Equipm	ent Used Dur	ing Sampling:	Keck Water	r Level or	Keck Int	erface Level, YSI Water	r Quality Meter
		and	New Dispo	sable Bail	er		
Notes/Com	ments:		Peris	staltie	mp a	was used to bail	this well
				·	1 1		

COVER LETTER

Tuesday, November 09, 2010

Ross Kennemer Animas Environmental Services 624 East Comanche Farmington, NM 87401

TEL: (505) 564-2281 FAX (505) 324-2022

RE: Williams Sammons #2 Pipeline Spill

Dear Ross Kennemer:

Hall Environmental Analysis Laboratory, Inc. received 7 sample(s) on 10/29/2010 for the analyses presented in the following report.

Order No.: 1010C42

, I was a same was a distribute a mine

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901

AZ license # AZ0682

togram in the same of the

ORELAP Lab # NM100001

Texas Lab# T104704424-08-TX

Date: 09-Nov-10

CLIENT:

Animas Environmental Services

Lab Order:

1010C42

Client Sample ID: MW-1

Project:

Collection Date: 10/28/2010 10:36:00 AM

Williams Sammons #2 Pipeline Spill

Date Received: 10/29/2010

Lab ID:

1010C42-01

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE					Analyst: JB
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/31/2010 5:56:47 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/31/2010 5:56:47 PM
Surr: DNOP	122	86.9-151	%REC	1	10/31/2010 5:56:47 PM
EPA METHOD 8015B: GASOLINE RAN	GE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	11/5/2010 6:17:42 PM
Surr: BFB	102	84.5-118	%REC	1	11/5/2010 6:17:42 PM
EPA METHOD 8260: VOLATILES SHOR	RT LIST				Analyst: RAA
Benzene	ND	1.0	µg/L	1	11/5/2010 10:03:47 PM
Toluene	ND	1.0	μg/L	1	11/5/2010 10:03:47 PM
Ethylbenzene	ND	1.0	μg/L	1	11/5/2010 10:03:47 PM
Xylenes, Total	ND	2.0	μg/L	1	11/5/2010 10:03:47 PM
Surr: 4-Bromofluorobenzene	104	76.4-106	%REC	1	11/5/2010 10:03:47 PM

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 09-Nov-10

CLIENT:

Animas Environmental Services

Lab Order:

1010C42

Client Sample ID: MW-2

Collection Date: 10/28/2010 11:24:00 AM

Project:

Williams Sammons #2 Pipeline Spill

Date Received: 10/29/2010

Lab ID: 1010C42-02 Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE					Analyst: JB
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/31/2010 6:30:36 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/31/2010 6:30:36 PM
Surr: DNOP	126	86.9-151	%REC	1	10/31/2010 6:30:36 PM
EPA METHOD 8015B: GASOLINE RANG	GE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	11/5/2010 6:46:42 PM
Surr: BFB	100	84.5-118	%REC	1	11/5/2010 6:46:42 PM
EPA METHOD 8260: VOLATILES SHOR	T LIST				Analyst: RAA
Benzene	ND	1.0	µg/L	1	11/5/2010 10:30:02 PM
Toluene	ND	1.0	μg/L	1	11/5/2010 10:30:02 PM
Ethylbenzene	ND	1.0	μg/L	1	11/5/2010 10:30:02 PM
Xylenes, Total	ND	2.0	μ g/L	1	11/5/2010 10:30:02 PM
Surr: 4-Bromofluorobenzene	105	76.4-106	%REC	1	11/5/2010 10:30:02 PM

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 09-Nov-10

CLIENT:

Animas Environmental Services

Lab Order:

1010C42

Williams Sammons #2 Pipeline Spill

Project: Lab ID:

1010C42-03

Client Sample ID: MW-3

Collection Date: 10/28/2010 11:59:00 AM

Date Received: 10/29/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE		**			Analyst: JB
Diesel Range Organics (DRO)	ND	1.0	m g/L	1	10/31/2010 7:04:26 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/31/2010 7:04:26 PM
Surr: DNOP	120	86.9-151	%REC	1	10/31/2010 7:04:26 PM
EPA METHOD 8015B: GASOLINE RANG	GE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	11/5/2010 8:42:26 PM
Surr: BFB	99.4	84.5-118	%REC	1	11/5/2010 8:42:26 PM
EPA METHOD 8260: VOLATILES SHOR	T LIST				Analyst: RAA
Benzene	ND	1.0	μg/L	1	11/5/2010 10:56:18 PM
Toluene	ND	1.0	µg/L	1	11/5/2010 10:56:18 PM
Ethylbenzene	ND	1.0	μg/L	1	11/5/2010 10:56:18 PM
Xylenes, Total	ŅD	2.0	μg/L	1	11/5/2010 10:56:18 PM
Surr: 4-Bromofluorobenzene	105	76.4-106	%REC	1	11/5/2010 10:56:18 PM

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 09-Nov-10

CLIENT:

Animas Environmental Services

Lab Order: Project:

1010C42

Williams Sammons #2 Pipeline Spill

Lab ID:

1010C42-04

Client Sample ID: MW-4

Collection Date: 10/28/2010 12:36:00 PM

Date Received: 10/29/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	SE .				Analyst: JB
Diesel Range Organics (DRO)	ND	1.0	mg/L	1	10/31/2010 7:38:33 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	1	10/31/2010 7:38:33 PM
Surr. DNOP	125	86.9-151	%REC	1	10/31/2010 7:38:33 PM
EPA METHOD 8015B: GASOLINE RA	ANGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1	11/5/2010 9:11:30 PM
Surr. BFB	102	84.5-118	%REC	1	11/5/2010 9:11:30 PM
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst: RAA
Benzene	ND	1.0	μg/L	1	11/5/2010 11:22:25 PM
Toluene	ND	1.0	μg/L	1	11/5/2010 11:22:25 PM
Ethylbenzene	ND	1.0	μg/L	1	11/5/2010 11:22:25 PM
Xylenes, Total	ND	2.0	μg/L	1	11/5/2010 11:22:25 PM
Surr: 4-Bromofiuorobenzene	100	76.4-106	%REC	1	11/5/2010 11:22:25 PM

- Value exceeds Maximum Contaminant Level
- Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
 - Spike recovery outside accepted recovery limits

Date: 09-Nov-10

CLIENT:

Project:

Animas Environmental Services

Lab Order:

1010C42

Williams Sammons #2 Pipeline Spill

Lab ID:

1010C42-05

Client Sample ID: MW-5

Collection Date: 10/28/2010 1:16:00 PM

Date Received: 10/29/2010

Matrix: AQUEOUS

Analyses	Result	PQL	Qual Uni	ts I	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG	E			······································		Analyst: JB
Diesel Range Organics (DRO)	ND	1.0	mg/L	. 1		10/31/2010 8:46:46 PM
Motor Oil Range Organics (MRO)	ND	5.0	mg/L	. 1		10/31/2010 8:46:46 PM
Surr: DNOP	122	86.9-151	%RE	C 1		10/31/2010 8:46:46 PM
EPA METHOD 8015B: GASOLINE RA	NGE					Analyst: NSB
Gasoline Range Organics (GRO)	ND	0.050	mg/L	1		11/5/2010 9:40:30 PM
Surr: BFB	99.9	84.5-118	%RE	C 1		11/5/2010 9:40:30 PM
EPA METHOD 8260: VOLATILES SHO	ORT LIST					Analyst: RAA
Benzene	ND	1.0	μg/L	1		11/5/2010 11:48:48 PM
Toluene	ND	1.0	µg/L	1		11/5/2010 11:48:48 PM
Ethylbenzene	ND	1.0	μg/L	1		11/5/2010 11:48:48 PM
Xylenes, Total	ND	2.0	μg/L	. 1		11/5/2010 11:48:48 PM
Surr: 4-Bromofluorobenzene	95.3	76.4-106	%RE	C 1		11/5/2010 11:48:48 PM

- Value exceeds Maximum Contaminant Level
- E Estimated value
- Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- Spike recovery outside accepted recovery limits

Date: 09-Nov-10

CLIENT:

Animas Environmental Services

Lab Order:

1010C42

Client Sample ID: MW-6

•

· Collection Date: 10/28/2010 2:00:00 PM

Project:

Williams Sammons #2 Pipeline Spill

Date Received: 10/29/2010

Lab ID:

1010C42-06

Matrix: AQUEOUS

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed		
EPA METHOD 8015B: DIESEL RANGE		 				Analyst: JB		
Diesel Range Organics (DRO)	ND	1.0		mg/L	1	10/31/2010 9:20:54 PM		
Motor Oil Range Organics (MRO)	ND	5.0		mg/L	1	10/31/2010 9:20:54 PM		
Surr: DNOP	121	86.9-151	-	%REC	1	10/31/2010 9:20:54 PM		
EPA METHOD 8015B: GASOLINE RANG	E					Analyst: NSB		
Gasoline Range Organics (GRO)	ND	0.050		mg/L	1	11/5/2010 10:09:29 PM		
Surr: BFB	99.7	84.5-118		%REC	1	11/5/2010 10:09:29 PM		
EPA METHOD 8260: VOLATILES SHORT	LIST					Analyst: RAA		
Benzene	ND	1.0		µg/L	1	11/6/2010 12:15:17 AM		
Toluene	ND	1.0		µg/L	1	11/6/2010 12:15:17 AM		
Ethylbenzene	ND	1.0		μg/L	1	11/6/2010 12:15:17 AM		
Xylenes, Total	ND	2.0		μg/Ľ	1	11/6/2010 12:15:17 AM		
Surr: 4-Bromofluorobenzene	110	76.4-106	S	%REC	1	11/6/2010 12:15:17 AM		

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 09-Nov-10

CLIENT:

Animas Environmental Services

Client Sample ID: TRIP BLANK

Lab Order:

1010C42

Collection Date:

Project:

Williams Sammons #2 Pipeline Spill

Date Received: 10/29/2010

Lab ID:

1010C42-07

Matrix: TRIP BLANK

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST	· ·		<u></u>		Analyst: RAA
Benzene	ND	1.0		µg/L	1	11/6/2010 12:42:17 AM
Toluene	ND	1.0		µg/L	1	11/6/2010 12:42:17 AM
Ethylbenzene	ND	1.0		µg/L	1	11/6/2010 12:42:17 AM
Xylenes, Total	ND	2.0		μg/L	1	11/6/2010 12;42:17 AM
Surr: 4-Bromofluorobenzene	· 109	76.4-106	s	%REC	1	11/6/2010 12:42:17 AM

- * Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- NC Non-Chlorinated
- PQL Practical Quantitation Limit

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Date: 09-Nov-10

QA/QC SUMMARY REPORT

Client:

Animas Environmental Services

Project:

Williams Sammons #2 Pipeline Spill

Work Order:

1010C42

Analyte	Post-II	1 Inito	DOI	SPK Va S	SDK	%Dag I	owLimit H	abl imit	%RPD	DDDI imit	Ougl
Analyte	Result	Units	PQL	JPK Va V		70 NGC L			70KPD	RPDLimit	Quai
Method: EPA Method 8015B: E	Diesel Range					Batch ID:	24325	Analysis	. Data:	10/31/2010	2:06:44 DI
Sample ID: MB-24325		MBLK	4.0			DATON ID:	24320	Analysis	B Date.	10/3 1/2010	3.00.44 PI
Diesel Range Organics (DRO)	ND ND	mg/L	1.0 5.0								
Motor Oil Range Organics (MRO) Sample ID: LCS-24325	ND	mg/L <i>LCS</i>	5.0			Batch ID:	24325	Analysis	Dota.	10/31/2010	3·40·35 DI
•	r 000		4.0	-	•			•	Date.	10/3//2010	J.40.33 PI
Diesel Range Organics (DRO) Sample ID: LCSD-24326	5.309	mg/L <i>LCSD</i>	1.0	5	0	106 Batch ID:	74 24325	157 Analysis	Date:	10/31/2010	4·14·49 Pł
Diesel Range Organics (DRO)	5.174	mg/L	1.0	5	0	103	74	157	2.58	23	7.14.42.11
			1.0			100					
Method: EPA Method 8015B: G Sample ID: 1010C42-01A MSD	asoune Kar	nge MSD				Batch ID:	R41995	Analysis	Date:	11/5/2010 1	1:36:16 PN
Gasoline Range Organics (GRO)	0.4982	mg/L	0.050	0.5	0	99.6	74.6	134	1.09	17	
Sample ID: 5ML RB	01002	MBLK	0.000	0.0	·	Batch ID:	R41995	Analysis		11/5/2010 8	3:27:09 AM
Gasoline Range Organics (GRO)	ND	mg/L	0.050					,			
Sample ID: 2.5UG GRO LCS		LCS	0.000			Batch ID:	R41995	Analysis	Date:	11/6/2010 12	2:05:10 Af
Gasoline Range Organics (GRO)	0.5088	mg/L	0.050	0.5	0	102	83.7	124			
Sample ID: 1010C42-01A MS		MS				Batch ID:	R41995	Analysis	Date:	11/5/2010 11	:07:21 PN
Gasoline Range Organics (GRO)	0.4928	mg/L	0.050	0.5	0	98.6	74.6	134			
Method: EPA Method 8260: Vol	atiles Short	List									
Sample ID: 5mi-rb		MBLK				Batch ID:	R42008	Analysis	Date:	11/5/2010 8	3:58:07 AN
Senzene	ND	μg/L	1.0								
Toluene	ND	μg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
(ylenes, Total	ND	µg/L	2.0								
Sample ID: b4		MBLK				Batch ID:	R42008	Analysis	Date:	11/5/2010 8	:19:19 PN
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
thylbenzene	ND	µg/L	1.0								
(ylenes, Total	ND	µg/L	2.0								
Sample ID: 100ng Ics		LCS				Batch ID:	R42008	Analysis	Date:	11/5/2010 10	:16:34 AN
Benzene	18.69	µg/L	1.0	20	0	93.5	84.6	109			
foluene	18.54	μg/L	1.0	20	0	92.7	81 D40000	114	Data	44 IE 1004 C 5	.44.00 551
ample ID: 100ng lcs2		LCS				Batch ID:	R42008	Analysis	Date:	11/5/2010 9	:11:38 PN
Senzene	18.50	μg/L	1.0	20	0	92.5	84.6	109			
oluene	18.74	µg/L	1.0	20	0	93.7	81	114			

	_		
Ou	al	ifie	rs

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Sample Receipt Checklist

Client Name ANIMAS ENVIRONMENTAL		•	Date Receive	ed:	10/29/2010	
Work Order Number 1010C42			Received b	y: LNM	Δ.	a. switzelkiwied
Checklist completed by:)29 L	Sample ID	labels checked b	y: M()	- 1
Matrix:	Carrier name:	Grevhound				
Shipping container/cooler in good condition?	,	Yes 🗹	No 🗔	Not Present		
Custody seals intact on shipping container/o	cooler?	Yes 🗹	No 🗌	Not Present	Not Shipped	
Custody seals intact on sample bottles?		Yes 🗌	No 🗆	N/A	✓	
Chain of custody present?		Yes 🗹	No 🗀			
Chain of custody signed when relinquished a	and received?	Yes 🗹	No 🗀			
Chain of custody agrees with sample labels?	,	Yes 🗹	No 🗀			
Samples in proper container/bottle?		Yes 🗹	No 🗀			
Sample containers intact?		Yes 🗹	No 🗆			
Sufficient sample volume for indicated test?		Yes 🗹	No 🗆	/		
All samples received within holding time?		Yes 🗹	No 🗆		Number o	of preserved
Water - VOA vials have zero headspace?	No VOA vials subi	mitted	Yes 🗹	No 🗀	bottles ch pH:	ecked for
Water - Preservation labels on bottle and cap	o match?	Yes 🗌	No 🗌	N/A 🗹		
Water - pH acceptable upon receipt?		Yes 🗌	No 🗆	N/A 🗹	<2 >12 un	less noted
Container/Temp Blank temperature?		3.9°	<6° C Acceptab	le	below.	
COMMENTS:			If given sufficient	t time to cool.		
	·		_			
Client contacted	Date contacted:		Pers	on contacted		<u>_</u>
Contacted by:	Regarding:					
Comments:						
Corrective Action						
		·				

	HALL ENVIRONMENTAL	The second communication of th	4901 Hawkins NE - Albuquerque, NM 87109	10	Anal)*() ()() ()()()()()()()()()()()()()()()	as or	(G)	(1.81) (1.81) (1.47) (1.47) (1.40) (1.40) (1.40) (1.40) (1.40) (1.40)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TEX + MTE TEX + MTE PH Method PH (Method DB (Method 310 (PNA o 310 (PNA o 310 (PNA o 310 (PNA o 310 (Postici	H	メ	× ×	×		X X X				Remarks:	4	This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time:	Standard Rush	iii	Williams Sammons 2 Spin	Project #:	09 1204	Project Manager:	(pin in mail	N. I-CHIRCHER	Sampler: N - Willis	Sample Temperature	Container Preservative Type and # Type	6-40 ml 5-49		80	6	5	0	1-41	2 +0m25 2-11 C		Received by: Date Time About Water 10/28/10 1500	Reprived by: Time Time	lcoredited laboratories.
Chain-of-Custody Record	Client: Animas Environmental	Service 11.6	Pomanche]	10	email or Fax#: 505 -324 - 2022-	ige:	☐ Standard ☐ Level 4 (Full Validation)	Accreditation	□ EDD (Type)	Matrix Sample Request ID	10/28/10 1636 H-20 MW-1	MW-2	1159 NW-3	1236 MW-4	1316 MW-5	1 1400 I- MW-6	- - - -	Iry Blank		19/24/10 1500 Affice 15/00 Affice 15/00 Affice 15/00 Affice 15/00 Affice Affice	Date: Time: Relinquished by: 10/28/10 1600 Wirner With	- s