RECEIVED By OCD; Dr. Oberding at 7:30 am, Apr 07, 2015

APPROVED By OCD; Dr. Oberding at 7:30 am, Apr 07, 2015

REMEDIATION SUMMARY & SOIL CLOSURE REQUEST

Property:

REGENCY FIELD SERVICES LLC. Trunk "O" Drip Tank #107 Historical Release Site Lea County, New Mexico Unit Letter "O", Section 5, Township 21 South, Range 36 East Latitude 32.50335, Longitude -103.28578 1RP-3581

> April 2015 Apex Project No. 7030714G042

> > Prepared for:

Regency Field Services LLC 301 Commerce Street, Suite 700 Fort Worth, TX 76109 Attn: Ms. Crystal Callaway, BSN, RN, CHMM

Prepared by:

Thomas Franklin Project Manager

Liz Scaggs, P.G. Senior Technical Review

Apex TITAN, Inc., a subsidiary of Apex Companies, LLC 505 N. Big Spring St., Suite 301A, Midland, TX 79701 T 432.695.6016 F 432.695.6017 www.apexcos.com PG License No. 50296 PE License No. F14073

Table of Contents

1.0 INTRODUCTION	1
1.1 Site Description & Background	1
1.2 Project Objective	
1.3 Standard of Care	1
1.4 Reliance	2
2.0 SITE RANKING & PROPOSE REMEDIAL ACTION GOALS	2
3.0 INITIAL RESPONSE & DRILLING ACTIVITIES	
3.1 Initial Response3.2 Drilling Activities	ວ ຈ
3.3 Drilling Confirmation Soil Sampling Program	
4.0 LABORATORY ANALYTICAL METHODS	5
5.0 SITE RESTORATION/CLOSURE REQUEST	5
APPENDICES	
Appendix A	

Figure 1 - Topographic Map Figure 2 - Site Vicinity Map Figure 3 - Site Map

Appendix B

Table 1 – Soil Analytical Summary Table (Basin) Table 2 – Soil Analytical Summary Table (Apex)

Appendix C

Photos

Appendix D

Laboratory Analysis and Chain-of-Custody

Appendix E

Initial and Final C-141

Appendix F

Site History

REMEDIATION SUMMARY & SOIL CLOSURE REQUEST

REGENCY FIELD SERVICES LLC. Trunk "O" Drip Tank #107 Historical Release Site Lea County, New Mexico Unit Letter O, Section 5, Township 21 South, Range 36 East Latitude 32.50335, Longitude -103.28578

April 2015 Apex Project No. 7030714G042

1.0 INTRODUCTION

1.1 Site Description & Background

Apex TITAN, Inc. (Apex) has prepared this Remediation Summary and Soil Closure Request for the Regency Field Services, LLC (Regency) Trunk "O" Drip Tank #107 (referred to hereinafter as the "Site" or "subject Site"). This Soil Closure Request is based upon the interpretation of the data collected by Basin Environmental (Basin) and the remedial actions conducted to date by Apex.

The Trunk "O" Drip Tank #107 is located in Unit Letter O, Section 5, Township 21 South, Range 36 East, Lea County, New Mexico (GPS 32.50335, -103.28578). Regency Field Services, LLC has acquired this pipeline and associated equipment.

Remedial actions were conducted by Apex in accordance with New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division (NMOCD) rules (*NMAC 19.15.29 Release Notification*) and the NMOCD *Guidelines for Remediation of Leaks, Spills and Releases* as guidance.

1.2 Project Objective

The objective of the Remediation Summary and Soil Closure Request is to present documentation of the activities that were performed to date and to request closure of the site.

1.3 Standard of Care

Apex's services are performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Apex makes no warranties, express or implied, as to the services performed hereunder. Additionally, Apex does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services will be performed in accordance with the scope of work agreed with the client.

1.4 Reliance

This report has been prepared for the exclusive use of Regency, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the express written authorization of Regency and Apex. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, the report, and Apex's Agreement. The limitation of liability defined in the agreement is the aggregate limit of Apex's liability to the client.

2.0 SITE RANKING & PROPOSED REMEDIAL ACTION GOALS

The Site is subject to regulatory oversight by the NMOCD. To address activities related to releases, the NMOCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the NMOCD rules, specifically NMAC 19.15.29 *Release Notification.* These documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

In accordance with the NMOCD's *Guidelines for Remediation of Leaks, Spills and Releases*, Apex utilized the general site characteristics to determine the appropriate "ranking" for the Site. The ranking criteria and associated scoring are provided in the table below:

Rankin	Ranking Criteria						
	<50 feet	20					
Depth to Groundwater	50 to 99 feet	10	0				
	>100 feet	0					
Wellhead Protection Area,	Yes	20					
<1,000 feet from a water source, or; <200 feet from private domestic water source.	No	0	0				
Distance to Surface	<200 feet	20					
Distance to Surface Water Body	200 to 1,000 feet	10	0				
	>1,000 feet	0					
Total Rar	0						

Based on Apex's evaluation of the scoring criteria, the Site would have a Total Ranking Score of 0. This ranking is based on the following:

- The depth to the initial groundwater-bearing zone is >100 feet at the Site.
- The impacted area is greater than 200 feet from a private domestic water source.
- Distance to the nearest surface water body is greater than 1,000 ft.

Based on a Total Ranking Score of 0, cleanup goals for soils remaining in place include: 10 milligrams per kilogram (mg/Kg) for benzene, 50 mg/Kg for total benzene, toluene, ethylbenzene and xylene (BTEX), 5,000 mg/Kg for total petroleum hydrocarbons (TPH) and 1,000 mg/Kg for chloride.

3.0 INITIAL RESPONSE & DRILLING ACTIVITIES

3.1 Initial Response

On April 22, 2013 Basin personnel installed one (1) trench in the area of the former above ground storage tank as shown in Figure 3, Appendix A. During installation of the trench five (5) soil samples were obtained. The soil samples were submitted for laboratory analysis which detected elevated chloride and TPH concentrations where the former above ground storage tank was located. Chloride concentrations at the surface were 10,800 mg/kg, TPH concentrations at the surface were 23,094 mg/kg. The Soil Analytical Summary Table as provided by Basin is located in Appendix B.

3.2 Drilling Activities

Soil boring activities were conducted in the area of the former above ground storage tank. On February 17, 2015, Ms. Adrian Jackson was present to observe on-Site activities and to collect soil samples. Four soil borings (SB-1 through SB-4) as shown on Figure 3, Appendix A were installed. Soil boring, SB-1 was installed to a depth of fifteen (15) feet bgs, Soil boring, SB-2 through SB-4 were installed to a deep of five (5) feet bgs. Samples were collected and field screened for chlorides and hydrocarbons.

3.3 Drilling Confirmation Soil Sampling Program

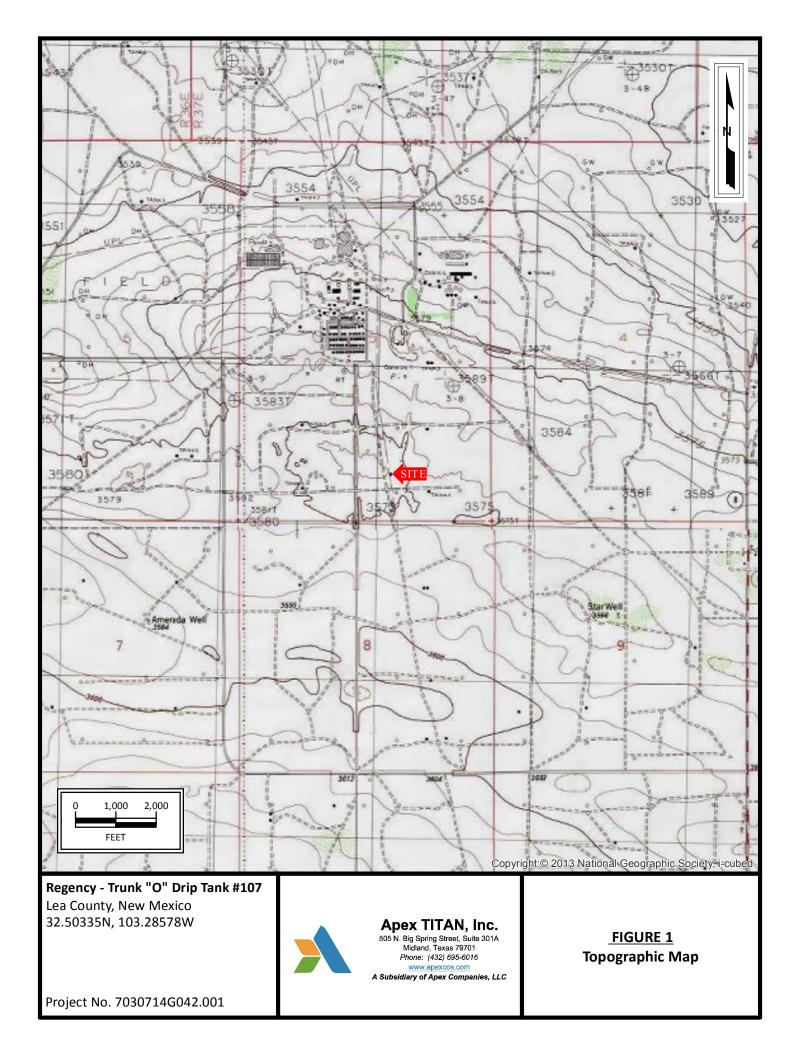
Fifteen (15) soil samples were collected from the Site by Apex personnel and analyzed for BTEX and TPH at the surface and for chlorides to the total depths. All sample results for BTEX, TPH and chlorides were below the cleanup goals, as previously discussed in Section 2.0.

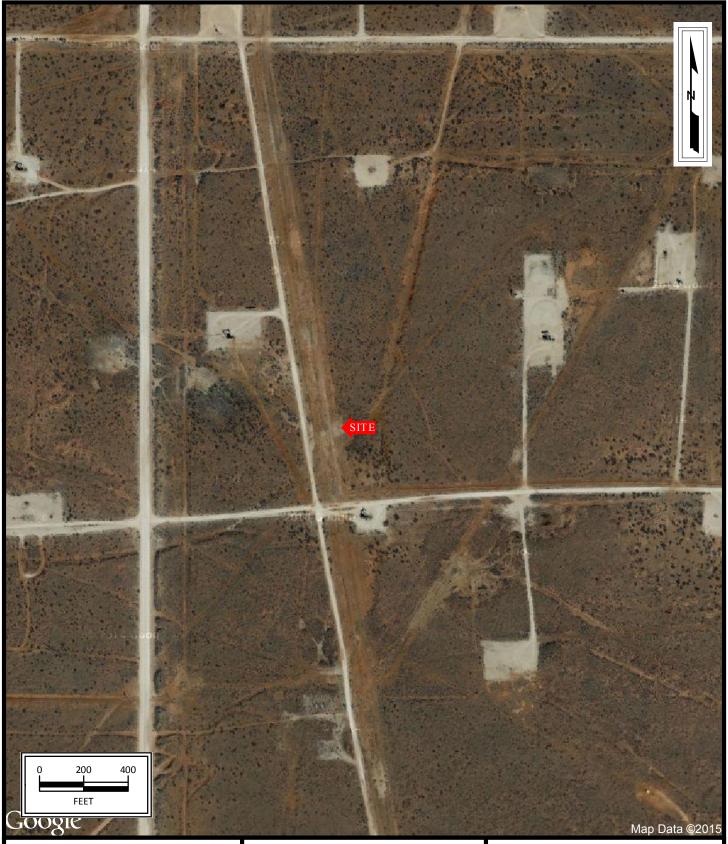
4.0 LABORATORY ANALYTICAL METHODS

The samples were analyzed for TPH GRO/DRO utilizing EPA method SW-846 8015, BTEX using EPA method SW-846 8021B and chlorides utilizing EPA method SW-846 300.1. Copies of the laboratory analysis are provided in Appendix D.

Soil samples were collected and placed in laboratory prepared glassware, placed on ice in a cooler. The sample coolers and completed chain-of-custody forms were relinquished to Trace Analysis, Inc. in Midland, Texas for normal turn-around time.

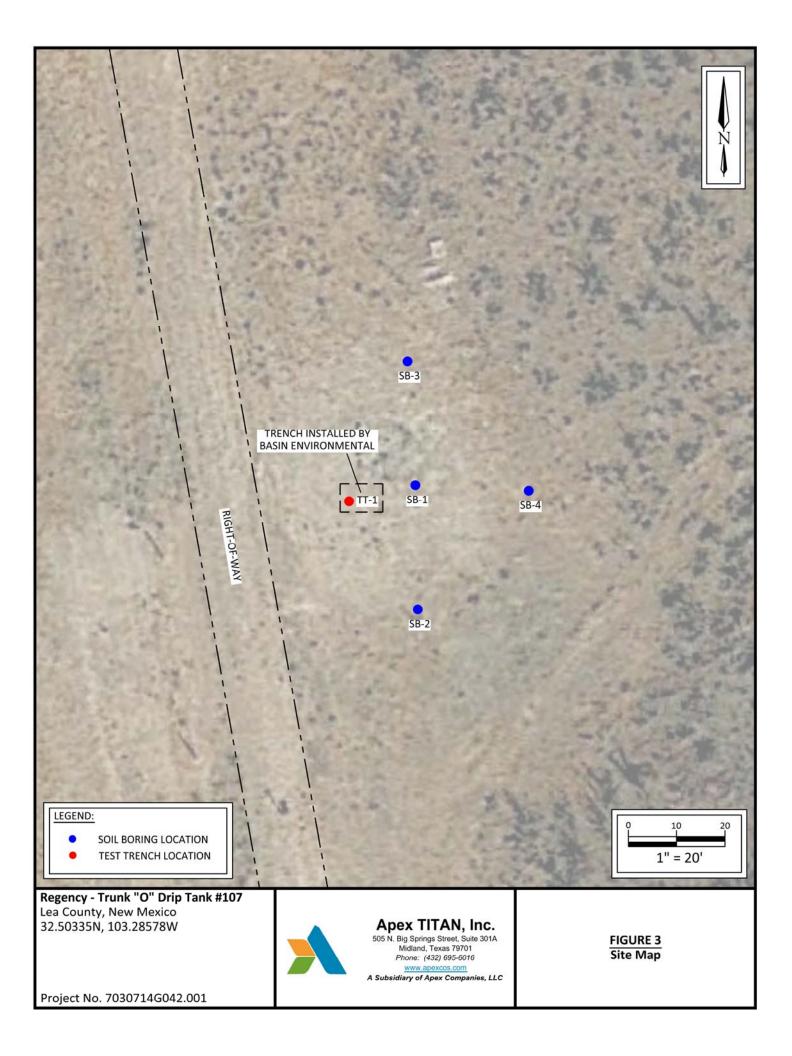
Figure 3 is a Site plan that indicates the approximate location of the confirmation soil samples and soil boring locations in relation to pertinent land features and general Site boundaries, which is included in Appendix A.


5.0 CLOSURE


Based upon the data provided by Basin and the work completed by Apex, the constituents of concern were horizontally and vertically delineated. Based upon the response actions and laboratory analytical results, no additional investigation and/or remediation appears warranted at this time. Regency respectfully requests closure of this site. Copies of the Initial and Final C-141 are provided in Appendix F.

APPENDIX A

Figures


Regency - Trunk "O" Drip Tank #107 Lea County, New Mexico 32.50335N, 103.28578W

Apex TITAN, Inc. 505 N. Big Spring Street, Suite 301A Midland, Texas 79701 Phone: (432) 695-6016 www.apexcos.com A Subsidiary of Apex Companies, LLC

FIGURE 2 Site Vicinity Map

Project No. 7030714G042.001

APPENDIX B

Soil Analytical Summary Table

TABLE 1

CONCENTRATIONS OF BENZENE, BTEX, TPH & CHLORIDE IN SOIL

SOUTHERN UNION GAS SERVICES TRUNK "O" D.T. #107 HISTORICAL RELEASE SITE LEA COUNTY, NEW MEXICO NMOCD REF: # N/A

					METHOD: EPA SW 846-8021B, 5030				METHOD: 8015M			TOTAL	EPA: 300
SAMPLE LOCATION	SAMPLE DEPTH (BGS)	SAMPLE DATE	SOIL STATUS	BENZENE (mg/Kg)	TOLUENE (mg/Kg)	ETHYL- BENZENE (mg/Kg)	TOTAL XYLENES (mg/Kg)	TOTAL BTEX (mg/Kg)	GRO C ₆ -C ₁₂ (mg/Kg)	DRO C ₁₂ -C ₂₈ (mg/Kg)	ORO C ₂₈ -C ₃₅ (mg/Kg)	TPH C ₆ -C ₂₈ (mg/Kg)	CHLORIDE (mg/Kg)
SP#1 @ Surface	Surface	4/22/2013	In-Situ	<0.050	<0.050	<0.050	<0.150	<0.300	64.5	19,200	3,830	23,094	10,800
TT-1 @ 2'	2'	4/22/2013	In-Situ	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	20.4	52.5	72.9	80.0
TT-1 @ 4'	4'	4/22/2013	In-Situ	<0.050	0.071	<0.050	<0.150	<0.300	<10.0	<10.0	15.4	15.4	848
TT-1 @ 8'	8'	4/22/2013	In-Situ	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	1,570
TT-1 @ 14'	14'	4/22/2013	In-Situ	<0.050	<0.050	<0.050	<0.150	<0.300	<10.0	<10.0	<10.0	<10.0	1,180
NMOCD Standard				10				50				5,000	1,000

- = Not analyzed.

TABLE 2 REGENCY - Trunk "O" Drip Tank #107 ANALYTICAL RESULTS											
Sample ID	Date	Sample Depth (feet)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylene (mg/Kg)	Total BTEX (mg/Kg)	TPH (DRO) (mg/Kg)	TPH (GRO) (mg/Kg)	Total TPH (mg/Kg)	Chloride (mg/Kg)
NMOCD - Guidelines	s for Remediation and Releases	of Leaks, Spills	10	NE	NE	NE	50	N	IE	5,000	1000
				SOIL	BORING CON	FIRMATION S	AMPLES				
Soil Bore-1	02/17/2015	0-1'	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<4.00	<50.0	110
Soil Bore-1	02/17/2015	2-3'	-	-	-	-	-	-	-	-	<25.0
Soil Bore-1	02/17/2015	4-5'	-	-	-	-	-	-	-	-	<25.0
Soil Bore-1	02/17/2015	6-7'	-	-	-	-	-	-	-	-	57.4
Soil Bore-1	02/17/2015	9-10'	-	-	-	-	-	-	-	-	81.5
Soil Bore-1	02/17/2015	14-15'	-	-	-	-	-	-	-	-	29.4
Soil Bore-2	02/17/2015	0-1'	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<4.00	<50.0	26.4
Soil Bore-2	02/17/2015	2-3'	-	-	-	-	-	-	-	-	27.3
Soil Bore-2	02/17/2015	4-5'	-	-	-	-	-	-	-	-	27.1
Soil Bore-3	02/17/2015	0-1'	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<4.00	<50.0	<25.0
Soil Bore-3	02/17/2015	2-3'	-	-	-	-	-	-	-	-	<25.0
Soil Bore-3	02/17/2015	4-5'	-	-	-	-	-	-	-	-	<25.0
Soil Bore-4	02/17/2015	0-1'	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<50.0	<4.00	<50.0	<25.0
Soil Bore-4	02/17/2015	2-3'	-	-	-	-	-	-	-	-	25.9
Soil Bore-4	02/17/2015	4-5'	-	-	-	-	-	-	-	-	34.6

mg/Kg- milligrams per Kilograms

NE - Not Established

Concentrations in Bold and Highlighted exceed the NMOCD Guidelines

APPENDIX C

Photos

View East – Picture taken 9/3/2014

View North – Picture taken 9/3/2014

View West – Picture taken 2/17/2015 during Soil Boring Activities

APPENDIX D

Laboratory Analysis and Chain-of-Custody

April 30, 2013

JOEL LOWRY Basin Environmental Service P.O. Box 301 Lovington, NM 88260

RE: TRUNK "O" D.T. #107

Enclosed are the results of analyses for samples received by the laboratory on 04/23/13 11:03.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-11-3. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

Basin Environmental Service JOEL LOWRY P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	04/23/2013	Sampling Date:	04/22/2013
Reported:	04/30/2013	Sampling Type:	Soil
Project Name:	TRUNK "O" D.T. #107	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	LEA COUNTY, NM		

Sample ID: SP #1 @ SURFACE (H300948-01)

BTEX 8021B	mg,	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/24/2013	ND	1.75	87.5	2.00	0.211	
Toluene*	<0.050	0.050	04/24/2013	ND	1.61	80.6	2.00	0.0547	
Ethylbenzene*	<0.050	0.050	04/24/2013	ND	1.73	86.3	2.00	1.63	
Total Xylenes*	<0.150	0.150	04/24/2013	ND	5.06	84.4	6.00	1.34	
Total BTEX	<0.300	0.300	04/24/2013	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: DW					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	10800	16.0	04/24/2013	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					S-06
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	64.5	50.0	04/23/2013	ND	205	103	200	4.08	
DRO >C10-C28	19200	50.0	04/23/2013	ND	190	94.9	200	8.60	
EXT DRO >C28-C35	3830	50.0	04/23/2013	ND					
Surrogate: 1-Chlorooctane	96.9	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	727	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Basin Environmental Service JOEL LOWRY P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	04/23/2013	Sampling Date:	04/22/2013
Reported:	04/30/2013	Sampling Type:	Soil
Project Name:	TRUNK "O" D.T. #107	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	LEA COUNTY, NM		

Sample ID: TT - 1 @ 2' (H300948-02)

BTEX 8021B	mg/	kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/29/2013	ND	2.18	109	2.00	0.709	
Toluene*	<0.050	0.050	04/29/2013	ND	1.96	98.2	2.00	0.399	
Ethylbenzene*	<0.050	0.050	04/29/2013	ND	2.14	107	2.00	0.0330	
Total Xylenes*	<0.150	0.150	04/29/2013	ND	6.18	103	6.00	1.28	
Total BTEX	<0.300	0.300	04/29/2013	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: DW					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	04/24/2013	ND	448	112	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	04/23/2013	ND	205	103	200	4.08	
DRO >C10-C28	20.4	10.0	04/23/2013	ND	190	94.9	200	8.60	
EXT DRO >C28-C35	52.5	10.0	04/23/2013	ND					
Surrogate: 1-Chlorooctane	89.0	65.2-14	0						
Surrogate: 1-Chlorooctadecane	117 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Basin Environmental Service JOEL LOWRY P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	04/23/2013	Sampling Date:	04/22/2013
Reported:	04/30/2013	Sampling Type:	Soil
Project Name:	TRUNK "O" D.T. #107	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	LEA COUNTY, NM		

Sample ID: TT - 1 @ 4' (H300948-03)

BTEX 8021B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/29/2013	ND	2.18	109	2.00	0.709	
Toluene*	0.071	0.050	04/29/2013	ND	1.96	98.2	2.00	0.399	
Ethylbenzene*	<0.050	0.050	04/29/2013	ND	2.14	107	2.00	0.0330	
Total Xylenes*	<0.150	0.150	04/29/2013	ND	6.18	103	6.00	1.28	
Total BTEX	<0.300	0.300	04/29/2013	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: DW					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	848	16.0	04/24/2013	ND	448	112	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	04/23/2013	ND	205	103	200	4.08	
DRO >C10-C28	<10.0	10.0	04/23/2013	ND	190	94.9	200	8.60	
EXT DRO >C28-C35	15.4	10.0	04/23/2013	ND					
Surrogate: 1-Chlorooctane	87.0	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	117 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Basin Environmental Service JOEL LOWRY P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	04/23/2013	Sampling Date:	04/22/2013
Reported:	04/30/2013	Sampling Type:	Soil
Project Name:	TRUNK "O" D.T. #107	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	LEA COUNTY, NM		

Sample ID: TT - 1 @ 8' (H300948-04)

BTEX 8021B	mg/	′kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/29/2013	ND	2.18	109	2.00	0.709	
Toluene*	<0.050	0.050	04/29/2013	ND	1.96	98.2	2.00	0.399	
Ethylbenzene*	<0.050	0.050	04/29/2013	ND	2.14	107	2.00	0.0330	
Total Xylenes*	<0.150	0.150	04/29/2013	ND	6.18	103	6.00	1.28	
Total BTEX	<0.300	0.300	04/29/2013	ND					
Surrogate: 4-Bromofluorobenzene (PID	100 9	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: DW						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1570	16.0	04/24/2013	ND	448	112	400	3.64	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	04/23/2013	ND	205	103	200	4.08	
DRO >C10-C28	<10.0	10.0	04/23/2013	ND	190	94.9	200	8.60	
EXT DRO >C28-C35	<10.0	10.0	04/23/2013	ND					
Surrogate: 1-Chlorooctane	88.5	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	119 9	63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Basin Environmental Service JOEL LOWRY P.O. Box 301 Lovington NM, 88260 Fax To: (575) 396-1429

Received:	04/23/2013	Sampling Date:	04/22/2013
Reported:	04/30/2013	Sampling Type:	Soil
Project Name:	TRUNK "O" D.T. #107	Sampling Condition:	Cool & Intact
Project Number:	NONE GIVEN	Sample Received By:	Jodi Henson
Project Location:	LEA COUNTY, NM		

Sample ID: TT - 1 @ 14' (H300948-05)

BTEX 8021B	mg/	/kg	Analyze	d By: AP					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	04/29/2013	ND	2.18	109	2.00	0.709	
Toluene*	<0.050	0.050	04/29/2013	ND	1.96	98.2	2.00	0.399	
Ethylbenzene*	<0.050	0.050	04/29/2013	ND	2.14	107	2.00	0.0330	
Total Xylenes*	<0.150	0.150	04/29/2013	ND	6.18	103	6.00	1.28	
Total BTEX	<0.300	0.300	04/29/2013	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 89.4-12	6						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: DW						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1180	16.0	04/24/2013	ND	448	112	400	3.64	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10	<10.0	10.0	04/23/2013	ND	205	103	200	4.08	
DRO >C10-C28	<10.0	10.0	04/23/2013	ND	190	94.9	200	8.60	
EXT DRO >C28-C35	<10.0	10.0	04/23/2013	ND					
Surrogate: 1-Chlorooctane	87.0	% 65.2-14	0						
Surrogate: 1-Chlorooctadecane	112 9	% 63.6-15	4						

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Submittal of samples	Relinquished by:		Relinquished by:	C	Relinquished by:				5	4	, , ,	2				Project Location: (include state)	Project #:	Invoice to:	Contact Person:	Address:	Company Name:		LAB Order ID #
	Submittal of samples constitutes agreement to Terms and Conditions	Company: Date: Time:		Bompany: Date: Time:	4/23/13 1					TT-1 @ 14'	TT-1 @ 8'	TT-1 @ 4'	TT-1 @ 2'	SP#1 @ Surface	SAMPLED		Lea Co.; NM		Southern Union Gas		P.O. Box 301 Lovington, NM 88260	Basin Environmental Service Technologies, LLC	Cardinal Labor	
ORIGINAL COPY	ons	Received by:		Received by:	aun.	Received by:				G G 1	G -		G 1		(G)RAB or (C) # CONTAINEF WATER					· · · · · · · · · · · · · · · · · · ·	60	hnologies, LLC	Laboratories	
OPY		Company:		Company:	JULINDER	ny						×	×	×	SOIL AIR SLUDGE HCL	MATRIX	Sampler Signature: Ocal	Project Name:		E-mail: pm@basiner rose.slade@	Fax #:	Phone #:	101 East Mariand Hobbs, NM 88240 Tel (575) 393-2326 Fax (575) 393-2476	
		Date: Time:		Date:" Fime:	$\mathcal{E}\mathcal{C}$					×		×	×	×	HNO ₃ H ₂ SO ₄ NaOH ICE NONE	PRESERVATIVE	I form	Trunk "O"		pm@basinenv.com, rose.slade@sug.com,cyndi.inskeep@sug.com	(575)396-1429	(575)396-2378	rland -2326 -2476	
		INST°C COR°C		OBS °C	COR 10 °C	OBS 1°C				4/22/13 940	4/22/13 930	4/22/13 920	4/22/13 910	4/22/13 830	DATE	SAMPLING		D.T. #107			429	-2378		-
	Carrier #	Log-in Review	Headspace Y / N /NA	Intact Y/N					, , , , , , , , , , , , , , , , , , ,	×××	××××××	××××	×××	××××	Chloride TPH 8015M BTEX 8021B				·····					
		Check]	REMARKS:											· · · · · · · · · · · · · · · · · · ·					ANALYSIS		
		Check If Special Reporting Limits	TRRP Report Required	Dry Weight Basis Required												· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		ALYSIS REQUEST		Page
		ts Are Needed											· · · · ·									5		1 of
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·						· · ·				Turn Around T	Time i	fdifferen	t from :	standar	ď		Pa	ge 8 of 8	

Summary Report

Thomas Franklin APEX/Titan 2351 W. Northwest Hwy. Suite 3321 Dallas, Tx 75220

Report Date: March 6, 2015

Work Order: 15021812

Project Location:	Lea Co, NM
Project Name:	Regency-Trunk "0" Drip Tank $\#107$
Project Number:	7030714G042

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
387205	Soil Bore-1 (0-1)	soil	2015-02-17	12:52	2015-02-18
387206	Soil Bore-1 $(2-3)$	soil	2015-02-17	12:54	2015-02-18
387207	Soil Bore-1 $(4-5)$	soil	2015-02-17	12:56	2015-02-18
387208	Soil Bore-1 $(6-7)$	soil	2015-02-17	13:00	2015-02-18
387209	Soil Bore-1 $(9-10)$	soil	2015-02-17	13:01	2015-02-18
387210	Soil Bore-1 $(14-15)$	soil	2015-02-17	13:02	2015-02-18
387211	Soil Bore-2 $(0-1)$	soil	2015-02-17	13:19	2015-02-18
387212	Soil Bore-2 $(2-3)$	soil	2015-02-17	13:21	2015-02-18
387213	Soil Bore-2 $(4-5)$	soil	2015-02-17	13:24	2015-02-18
387214	Soil Bore-3 $(0-1)$	soil	2015-02-17	13:38	2015-02-18
387215	Soil Bore-3 $(2-3)$	soil	2015-02-17	13:40	2015-02-18
387216	Soil Bore-3 $(4-5)$	soil	2015-02-17	13:42	2015-02-18
387217	Soil Bore-4 $(0-1)$	soil	2015-02-17	14:00	2015-02-18
387218	Soil Bore-4 $(2-3)$	soil	2015-02-17	14:01	2015-02-18
387219	Soil Bore-4 $(4-5)$	soil	2015-02-17	14:02	2015-02-18

]	BTEX		TPH DRO - NEW	TPH GRO
	Benzene	Toluene	Ethylbenzene	Xylene	DRO	GRO
Sample - Field Code	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
387205 - Soil Bore-1 (0-1)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	$< 50.0 \ Qr$	<4.00
387211 - Soil Bore-2 (0-1)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	${<}50.0$ Qr	<4.00
387214 - Soil Bore-3 (0-1)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	$< 50.0 \ Qr$	<4.00
387217 - Soil Bore-4 (0-1)	< 0.0200	< 0.0200	< 0.0200	< 0.0200	${<}50.0$ $_{\mathrm{Qr}}$	<4.00

Sample: 387205 - Soil Bore-1 (0-1)

Report Date: Marc	ch 6, 2015	Work Order: 15021812	Page 1	Page Number: 2 of 3		
Param	Flag	Result	Units	RL		
Chloride	~	110	mg/Kg	25		
Sample: 387206	- Soil Bore-1 (2-3)					
Param	Flag	Result	Units	RL		
Chloride	1 lag	<25.0	mg/Kg	25		
Sample: 387207	- Soil Bore-1 (4-5)					
Param	Flag	Result	Units	RL		
Chloride		<25.0	m mg/Kg	25		
Sample: 387208	- Soil Bore-1 (6-7)					
Param	Flag	Result	Units	RL		
Chloride		57.4	m mg/Kg	25		
Sample: 387209	- Soil Bore-1 (9-10)					
Param	Flag	Result	Units	RL		
Chloride		81.5	mg/Kg	25		
Sample: 387210	- Soil Bore-1 (14-15)					
		Result	Units	RL		
Param	- Soil Bore-1 (14-15) Flag	Result 29.4	Units mg/Kg	RL 25		
Param Chloride						
Param Chloride Sample: 387211 Param	Flag	29.4 Result	mg/Kg Units	25 RL		
Param Chloride Sample: 387211 Param	Flag - Soil Bore-2 (0-1)	29.4	mg/Kg	25		
Param Chloride Sample: 387211 Param Chloride	Flag - Soil Bore-2 (0-1)	29.4 Result	mg/Kg Units	25 RL		
Param Chloride Sample: 387211 Param Chloride	Flag - Soil Bore-2 (0-1) Flag	29.4 Result	mg/Kg Units	25 RL		

TraceAnalysis, Inc. • 6701 Aberdeen Ave., Suite 9 • Lubbock, TX 79424-1515 • (806) 794-1296 This is only a summary. Please, refer to the complete report package for quality control data.

Report Date: March	6, 2015	Work Order: 15021812	Page 1	Page Number: 3 of 3		
Sample: 387213 -	Soil Bore-2 (4-5)					
Param	Flag	Result	Units	RL		
Chloride		27.1	m mg/Kg	25		
Sample: 387214 -	Soil Bore-3 (0-1)					
Param	Flag	Result	Units	RL		
Chloride		<25.0	m mg/Kg	25		
Sample: 387215 -	Soil Bore-3 (2-3)					
Param	Flag	Result	Units	RL		
Chloride		<25.0	m mg/Kg	25		
Sample: 387216 -	Soil Bore-3 (4-5)					
Param	Flag	Result	Units	RL		
Chloride		<25.0	m mg/Kg	25		
Sample: 387217 -	Soil Bore-4 (0-1)					
Param	Flag	Result	Units	RL		
Chloride	0	<25.0	m mg/Kg	25		
Sample: 387218 -	Soil Bore-4 (2-3)					
Param	Flag	Result	Units	RL		
Chloride	0	25.9	m mg/Kg	25		
Sample: 387219 -	Soil Bore-4 (4-5)					
Param	Flag	Result	Units	RL		
Chloride	0	34.6	mg/Kg	25		

6701 Aberdeen Avenue, Suite 9 200 East Sunset Road, Suite E 5002 Basin Street, Suite A1 (BioAquatic) 2501 Mayes Rd., Suite 100

Lubbock, Texas 79424 El Paso, Texas 79922 Texas 79703 Midland, Carroliton. Texas 75006

E-Mail: lab@traceanalysis.com WEB: www.traceanalysis.com

Certifications

WBE HUB NCTRCA DBE NELAP DoD LELAP Kansas Oklahoma ISO 17025

Analytical and Quality Control Report

Thomas Franklin APEX/Titan 2351 W. Northwest Hwy. Suite 3321 Dallas, Tx, 75220

Report Date: March 6, 2015

FAX 915 • 585 • 4944

FAX 432 • 689 • 6313

Work Order:	15021812

915-585-3443

432-689-6301

972-242 -7750

Project Location: Lea Co, NM **Project Name:** Regency-Trunk "0" Drip Tank #107 Project Number: 7030714G042

Enclosed are the Analytical Report and Quality Control Report for the following sample(s) submitted to TraceAnalysis, Inc. Date:

	<i>,</i> 1 ,	<i>v</i> 1	Date	Time	Ďate
Sample	Description	Matrix	Taken	Taken	Received
387205	Soil Bore-1 (0-1)	soil	2015-02-17	12:52	2015-02-18
387206	Soil Bore-1 $(2-3)$	soil	2015-02-17	12:54	2015-02-18
387207	Soil Bore-1 $(4-5)$	soil	2015-02-17	12:56	2015-02-18
387208	Soil Bore-1 $(6-7)$	soil	2015-02-17	13:00	2015-02-18
387209	Soil Bore-1 $(9-10)$	soil	2015-02-17	13:01	2015-02-18
387210	Soil Bore-1 $(14-15)$	soil	2015-02-17	13:02	2015-02-18
387211	Soil Bore-2 $(0-1)$	soil	2015-02-17	13:19	2015-02-18
387212	Soil Bore-2 $(2-3)$	soil	2015-02-17	13:21	2015-02-18
387213	Soil Bore-2 $(4-5)$	soil	2015-02-17	13:24	2015-02-18
387214	Soil Bore-3 $(0-1)$	soil	2015-02-17	13:38	2015-02-18
387215	Soil Bore-3 $(2-3)$	soil	2015-02-17	13:40	2015-02-18
387216	Soil Bore-3 $(4-5)$	soil	2015-02-17	13:42	2015-02-18
387217	Soil Bore-4 $(0-1)$	soil	2015-02-17	14:00	2015-02-18
387218	Soil Bore-4 $(2-3)$	soil	2015-02-17	14:01	2015-02-18
387219	Soil Bore-4 $(4-5)$	soil	2015-02-17	14:02	2015-02-18

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch

basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 29 pages and shall not be reproduced except in its entirety, without written approval of TraceAnalysis, Inc.

Blain Leptinch #

Dr. Blair Leftwich, Director James Taylor, Assistant Director Brian Pellam, Operations Manager

Report Contents

Case	Narra	tive
------	-------	------

Analytical Report	6
Sample 387205 (Soil Bore-1 (0-1))	6
Sample 387206 (Soil Bore-1 (2-3))	7
Sample 387207 (Soil Bore-1 $(4-5)$)	7
Sample 387208 (Soil Bore-1 (6-7))	8
Sample 387209 (Soil Bore-1 (9-10))	8
Sample 387210 (Soil Bore-1 (14-15))	8
Sample 387211 (Soil Bore-2 (0-1))	9
Sample 387212 (Soil Bore-2 (2-3)) $\ldots \ldots $	10
Sample 387213 (Soil Bore-2 (4-5))	10
Sample 387214 (Soil Bore-3 (0-1))	11
Sample 387215 (Soil Bore-3 (2-3))	$11 \\ 12$
Sample 387216 (Soil Bore-3 (4-5))	$12 \\ 12$
Sample 387217 (Soil Bore-4 (0-1))	$12 \\ 13$
Sample 387217 (Soil Bore-4 (0-1)) $\ldots \ldots $	14
Sample 387218 (Soil Bore-4 (2-5))	14
Sample 587219 (Soli Bore-4 (4-5))	14
Method Blanks	16
QC Batch 119535 - Method Blank (1)	16
QC Batch 119536 - Method Blank (1)	16
QC Batch 119593 - Method Blank (1)	16
QC Batch 119676 - Method Blank (1)	17
QC Batch 119716 - Method Blank (1)	17
QC Batch 119824 - Method Blank (1)	17
Laboration Control Seller	10
Laboratory Control Spikes	18
QC Batch 119535 - LCS (1)	18
QC Batch 119536 - LCS (1)	18
QC Batch 119593 - LCS (1)	19
QC Batch 119676 - LCS (1)	19
QC Batch 119716 - LCS (1)	20
QC Batch 119824 - LCS (1)	20
Matrix Spikes	21
QC Batch 119535 - MS (1)	21
QC Batch 119536 - MS (1)	$\frac{-1}{21}$
QC Batch 119593 - MS (1)	22
$O(\mathbf{D} + 1, 1100\% - MG(1))$	$\frac{22}{22}$
QC Batch 119676 - MS (1) $\dots \dots \dots$	23
QC Batch 119710 - $MS(1)$	$\frac{23}{23}$
\odot Dawn 113024 - MD (1)	20
Calibration Standards	24
QC Batch 119535 - CCV (1)	24
QC Batch 119535 - CCV (2)	24

 $\mathbf{5}$

Page 3 of 29

QC Batch 119536 - CCV (2)	 	 •••	 	 	 	 	•••	 	•••	•	 24
•	 										$25 \\ 25$
QC Batch 119716 - $CCV(1)$	 	 • •	 	 	 	 	• •	 		•	 26
QC Batch 119824 - $CCV(1)$	 	 •••	 	 	 	 	•••	 		•	
Appendix											28
Report Definitions											$28 \\ 28$
Standard Flags	 	 •••	 	 	 	 		 		•	 28 28

Case Narrative

Samples for project Regency-Trunk "0" Drip Tank #107 were received by TraceAnalysis, Inc. on 2015-02-18 and assigned to work order 15021812. Samples for work order 15021812 were received intact at a temperature of 4.7 C.

Samples were analyzed for the following tests using their respective methods.

		Prep	Prep	\mathbf{QC}	Analysis
Test	Method	Batch	Date	Batch	Date
BTEX	S 8021B	101075	2015-02-20 at 10:19	119535	2015-02-21 at 19:55
Chloride (IC)	E 300.0	101217	2015-02-25 at $15:00$	119676	2015-02-26 at $13:12$
Chloride (IC)	E 300.0	101262	2015-03-02 at $13:00$	119716	2015-03-02 at $13:56$
Chloride (IC)	E 300.0	101363	2015-03-04 at $16:00$	119824	2015-03-05 at $12:57$
TPH DRO - NEW	S 8015 D	101143	2015-02-24 at $17:00$	119593	2015-02-25 at $08:30$
TPH GRO	S 8015 D	101075	2015-02-20 at $10:19$	119536	2015-02-21 at $20:01$

Results for these samples are reported on a wet weight basis unless data package indicates otherwise.

A matrix spike (MS) and matrix spike duplicate (MSD) sample is chosen at random from each preparation batch. The MS and MSD will indicate if a site specific matrix problem is occurring, however, it may not pertain to the samples for work order 15021812 since the sample was chosen at random. Therefore, the validity of the analytical data reported has been determined by the laboratory control sample (LCS) and the method blank (MB). These quality control measures are performed with each preparation batch to ensure data integrity.

All other exceptions associated with this report have been footnoted on the appropriate analytical page to assist in general data comprehension. Please contact the laboratory directly if there are any questions regarding this project.

Analytical Report

Sample: 387205 - Soil Bore-1 (0-1)

Laboratory:MidlandAnalysis:BTEXQC Batch:119535Prep Batch:101075		Analytica Date Ana Sample P		S 8021B 2015-02- 2015-02-	-21		Prep Method Analyzed By: Prepared By:	AK
				RL				
Parameter	Flag	Cert	1	Result	Units		Dilution	RL
Benzene	U	3	<().0200	mg/Kg		1	0.0200
Toluene	U	3	<(0.0200	mg/Kg		1	0.0200
Ethylbenzene	U	3	<(0.0200	mg/Kg		1	0.0200
Xylene	U	3	<().0200	mg/Kg		1	0.0200
						Spike	Percent	Recovery
Surrogate	Fla	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.69	mg/Kg	1	2.00	84	70 - 130
4-Bromofluorobenzene (4-BFB)			1.87	$\mathrm{mg/Kg}$	1	2.00	94	70 - 130

Sample: 387205 - Soil Bore-1 (0-1)

Laboratory:	Lubbock							
Analysis:	Chloride (IC)		Analytica	l Method:	E 300.0		Prep Method:	N/A
QC Batch:	119676		Date Ana	lyzed:	2015-02-26		Analyzed By:	RL
Prep Batch:	101217		Sample P	reparation:			Prepared By:	RL
				RL	1			
Parameter		Flag	Cert	Result	t.	Units	Dilution	RL
Chloride			1,2,4	110) m	g/Kg	1	25.0

Sample: 387205 - Soil Bore-1 (0-1)

Laboratory: Analysis: QC Batch: Prep Batch:	Midland TPH DRO - NE 119593 101143	W	Date A	ical Method: nalyzed: Preparation:	S 8015 D 2015-02-25 2015-02-24	Prep Method: Analyzed By: Prepared By:	\dot{SC}
Parameter		Flag	Cert	RL Result	Units	Dilution	RL
DRO		Qr	3	<50.0	m mg/Kg	1	50.0

Report Date: Ma 7030714G042	rch 6, 2015			Work Order: y-Trunk "0"	15021812 Drip Tank #1	07	Page Nur	mber: 7 of 29 Lea Co, NM
Surrogate	Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
n-Tricosane			101	m mg/Kg	1	100	101	70 - 130

Sample: 387205 - Soil Bore-1 (0-1)

	, ,								
Laboratory:MidlandAnalysis:TPH GROQC Batch:119536Prep Batch:101075		D	ate An	al Method alyzed: Preparatic	2015-0	2-21		Prep Metho Analyzed B Prepared B	y: AK
					RL				
Parameter	Flag		Cert		Result	Uni	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.71	mg/Kg	1	2.00	86	70 - 130
4-Bromofluorobenzene (4-BFB)				1.67	mg/Kg	1	2.00	84	70 - 130

Sample: 387206 - Soil Bore-1 (2-3)

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 119716 101262		Analytical Date Analy Sample Pr	yzed:	E 300.0 2015-03-02	Prep Method Analyzed By: Prepared By:	$ {RL}$
				RL	I		
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,4	<25.0	mg/Kg	; 1	25.0

Sample: 387207 - Soil Bore-1 (4-5)

Lubbock				
Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
19676	Date Analyzed:	2015-02-26	Analyzed By:	RL
01217	Sample Preparation:		Prepared By:	RL
	Chloride (IC) 19676	Chloride (IC)Analytical Method:19676Date Analyzed:	Chloride (IC)Analytical Method:E 300.019676Date Analyzed:2015-02-26	Chloride (IC)Analytical Method:E 300.0Prep Method:19676Date Analyzed:2015-02-26Analyzed By:

 $continued \dots$

7030714G042	: March 6, 2015 2		k Order: 1502181 runk "0" Drip Tar		Page Number: Lea (8 of 29 Co, NM
sample 3872(07 continued					
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
		,				
Parameter	Flag	Cert	RL Result	Units	Dilution	RL
Chloride		1,2,4	<25.0	mg/Kg	1	25.0
Laboratory: Analysis:	7208 - Soil Bore-1 (6 Lubbock Chloride (IC)	Analytica	l Method: E 30		Prep Method:	,
Sample: 38 Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock	Analytica Date Ana		0.0 -03-02	Prep Method: Analyzed By: Prepared By:	,
Laboratory: Analysis: QC Batch:	Lubbock Chloride (IC) 119716	Analytica Date Ana	lyzed: 2015		Analyzed By:	$ {RL}$
Laboratory: Analysis: QC Batch:	Lubbock Chloride (IC) 119716	Analytica Date Ana Sample P	lyzed: 2015 reparation:		Analyzed By:	$ {RL}$

Analysis:	Chloride (IC)		Analytical	Method:	E 300.0		Prep Method:	N/A
QC Batch:	119716		Date Anal	yzed:	2015-03-02		Analyzed By:	\mathbf{RL}
Prep Batch:	101262		Sample Pr	Sample Preparation:			Prepared By:	RL
				RL				
Parameter		Flag	Cert	Result	Uni	ts D	oilution	RL
Chloride			1,2,4	81.5	b mg/ŀ	Kg	1	25.0

Sample: 387210 - Soil Bore-1 (14-15)

Laboratory:	Lubbock				
Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	119716	Date Analyzed:	2015-03-02	Analyzed By:	RL
Prep Batch:	101262	Sample Preparation:		Prepared By:	RL

Report Date: March 6, 7030714G042		k Order: 1502181 unk "0" Drip Tar	Page Number: 9 of 29 Lea Co, NM			
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	29.4	mg/Kg	1	25.0

Sample: 387211 - Soil Bore-2 (0-1)

Laboratory: Midland								
Analysis: BTEX		Analytica	l Method:	S 8021E	3		Prep Method	l: S 5035
QC Batch: 119535		Date Ana	lyzed:	2015-02	-21		Analyzed By	: AK
Prep Batch: 101075		Sample P	reparation:	2015-02	-20		Prepared By	: AK
				RL				
Parameter	Flag	Cert]	Result	Unit	s	Dilution	RL
Benzene	U	3	<	0.0200	mg/Kg	r	1	0.0200
Toluene	U	3	<	0.0200	$\mathrm{mg/Kg}$	r 5	1	0.0200
Ethylbenzene	U	3	<	0.0200	$\mathrm{mg/Kg}$	r S	1	0.0200
Xylene	U	3	<	0.0200	mg/K_{2}	r	1	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.74	mg/Kg	1	2.00	87	70 - 130
4-Bromofluorobenzene (4-BFB)			1.96	mg/Kg	1	2.00	98	70 - 130

Sample: 387211 - Soil Bore-2 (0-1)

Analysis: QC Batch:	Lubbock Chloride (IC) 119716 101262		Analytical Date Anal Sample Pr	yzed:	E 300.0 2015-03-02		Prep Method: Analyzed By: Prepared By:	\mathbf{RL}
				RL	ı			
Parameter		Flag	Cert	Result	; U	Jnits	Dilution	RL
Chloride			1,2,4	26.4	mg	g/Kg	1	25.0

Sample: 387211 - Soil Bore-2 (0-1)

Laboratory:	Midland				
Analysis:	TPH DRO - NEW	Analytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	119593	Date Analyzed:	2015-02-25	Analyzed By:	\mathbf{SC}
Prep Batch:	101143	Sample Preparation:	2015-02-24	Prepared By:	\mathbf{SC}

Report Date: March 7030714G042		W Regency-	Page Number: 10 of 29 Lea Co, NM					
					RL			
Parameter		Flag	Cert	Res	sult	Units	Dilution	RL
DRO		$_{\rm Qr,U}$	3	<5	0.0	mg/Kg	1	50.0
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			96.3	mg/Kg	1	100	96	70 - 130

Sample: 387211 - Soil Bore-2 (0-1)

Laboratory:MidlandAnalysis:TPH GROQC Batch:119536Prep Batch:101075			Date An	al Methoo alyzed: Preparatio	2015-0 on: 2015-0	2-21		Prep Metho Analyzed B Prepared B	y: AK
					RL				
Parameter	Flag		Cert		Result	Unit	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.83	mg/Kg	1	2.00	92	70 - 130
4-Bromofluorobenzene (4-BFB	8)			1.78	mg/Kg	1	2.00	89	70 - 130

Sample: 387212 - Soil Bore-2 (2-3)

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 119716 101262		Analytical Date Analy Sample Pr	yzed:	E 300.0 2015-03-02	Prep Method: Analyzed By: Prepared By:	$ {RL}$
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,4	27.3	mg/Kg	1	25.0

Sample: 387213 - Soil Bore-2 (4-5)

Laboratory:	Lubbock				
Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	119716	Date Analyzed:	2015-03-02	Analyzed By:	\mathbf{RL}
Prep Batch:	101262	Sample Preparation:		Prepared By:	RL

Report Date: March 6, 20 7030714G042)15	Work Order: 15021812 Regency-Trunk "0" Drip Tank #107				r: 11 of 29 ea Co, NM
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	27.1	mg/Kg	1	25.0

Sample: 387214 - Soil Bore-3 (0-1)

Laboratory: Midland								
Analysis: BTEX		Analytica	l Method:	S 8021H	3		Prep Method	d: S 5035
QC Batch: 119535		Date Ana	lyzed:	2015-02	-21		Analyzed By	r: AK
Prep Batch: 101075		Sample P	reparation:	2015-02	-20		Prepared By	: AK
				RL				
Parameter	Flag	Cert		Result	Units	3	Dilution	RL
Benzene	U	3	<	0.0200	mg/Kg	5	1	0.0200
Toluene	U	3	<	0.0200	$\mathrm{mg/Kg}$	5	1	0.0200
Ethylbenzene	U	3	<	0.0200	$\mathrm{mg/Kg}$	5	1	0.0200
Xylene	U	3	<	0.0200	mg/Kg	5	1	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.74	mg/Kg	1	2.00	87	70 - 130
4-Bromofluorobenzene (4-BFB)			1.96	mg/Kg	1	2.00	98	70 - 130

Sample: 387214 - Soil Bore-3 (0-1)

Analysis: QC Batch:	Lubbock Chloride (IC) 119716 101262		Analytical Date Anal Sample Pr	yzed:	E 300.0 2015-03-02		Prep Method: Analyzed By: Prepared By:	\mathbf{RL}
				RL	ı			
Parameter		Flag	Cert	Result	; U	Inits	Dilution	RL
Chloride			1,2,4	<25.0) mg	;/Kg	1	25.0

Sample: 387214 - Soil Bore-3 (0-1)

Laboratory:	Midland				
Analysis:	TPH DRO - NEW	Analytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	119593	Date Analyzed:	2015-02-25	Analyzed By:	\mathbf{SC}
Prep Batch:	101143	Sample Preparation:	2015-02-24	Prepared By:	\mathbf{SC}

Report Date: Marc 7030714G042	ch 6, 2015	6, 2015 Work Order: 15021812 Regency-Trunk "0" Drip Tank #107					0	ber: 12 of 29 Lea Co, NM
					RL			
Parameter		Flag	Cert	Res	sult	Units	Dilution	RL
DRO		$_{\rm Qr,U}$	3	<5	50.0	m mg/Kg	1	50.0
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			101	$\mathrm{mg/Kg}$	1	100	101	70 - 130

Sample: 387214 - Soil Bore-3 (0-1)

Laboratory:MidlandAnalysis:TPH GROQC Batch:119536Prep Batch:101075]	Date An	al Methoo alyzed: Preparatic	2015-0	2-21		Prep Metho Analyzed B Prepared B	y: AK
_			~		RL				
Parameter	Flag		Cert		Result	Uni	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.81	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4-BFB)				1.74	mg/Kg	1	2.00	87	70 - 130

Sample: 387215 - Soil Bore-3 (2-3)

Analysis: QC Batch:	Lubbock Chloride (IC) 119716 101262		Analytical Date Analy Sample Pre	vzed:	E 300.0 2015-03-02	Prep Method: Analyzed By: Prepared By:	$ {RL}$
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,4	<25.0	mg/Kg	1	25.0

Sample: 387216 - Soil Bore-3 (4-5)

-		· · ·				
Laboratory:	Lubbock					
Analysis:	Chloride (IC)		Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	119824		Date Analyzed:	2015-03-05	Analyzed By:	\mathbf{RL}
Prep Batch:	101363		Sample Preparation:		Prepared By:	RL

Report Date: March 6, 2015 7030714G042		Work Regency-Tru	Page Number: 13 of 29 Lea Co, NM			
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	<25.0	mg/Kg	1	25.0

Sample: 387217 - Soil Bore-4 (0-1)

Laboratory: Midland								
Analysis: BTEX		Analytica	l Method:	S 8021E	3		Prep Method	l: S 5035
QC Batch: 119535		Date Ana	lyzed:	2015-02	-21		Analyzed By	: AK
Prep Batch: 101075		Sample P	reparation:	2015-02	-20		Prepared By	: AK
				RL				
Parameter	Flag	Cert]	Result	Units	S	Dilution	RL
Benzene	U	3	<(0.0200	mg/Kg	r	1	0.0200
Toluene	U	3	<(0.0200	m mg/Kg	5	1	0.0200
Ethylbenzene	U	3	<(0.0200	$\mathrm{mg/Kg}$	S	1	0.0200
Xylene	U	3	<(0.0200	mg/Kg	r	1	0.0200
						Spike	Percent	Recovery
Surrogate	Flag	g Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.80	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4-BFB)			1.99	mg/Kg	1	2.00	100	70 - 130

Sample: 387217 - Soil Bore-4 (0-1)

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 119824 101363		Analytical Date Anal Sample Pr	yzed:	E 300.0 2015-03-05		Prep Method: Analyzed By: Prepared By:	'
				RL	1			
Parameter		Flag	Cert	Result	5	Units	Dilution	RL
Chloride			1,2,4	<25.0) m	g/Kg	1	25.0

Sample: 387217 - Soil Bore-4 (0-1)

Laboratory:	Midland				
Analysis:	TPH DRO - NEW	Analytical Method:	S 8015 D	Prep Method:	N/A
QC Batch:	119593	Date Analyzed:	2015-02-25	Analyzed By:	\mathbf{SC}
Prep Batch:	101143	Sample Preparation:	2015-02-24	Prepared By:	\mathbf{SC}

Report Date: March 7030714G042	n 6, 2015	Work Order: 15021812 Regency-Trunk "0" Drip Tank #107					Page Num	ber: 14 of 29 Lea Co, NM
					RL			
Parameter		Flag	Cert	Res	sult	Units	Dilution	RL
DRO		$_{\rm Qr,U}$	3	<5	0.0	m mg/Kg	1	50.0
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
n-Tricosane			99.2	$\mathrm{mg/Kg}$	1	100	99	70 - 130

Sample: 387217 - Soil Bore-4 (0-1)

Laboratory:MidlandAnalysis:TPH GROQC Batch:119536Prep Batch:101075			Date An	al Method alyzed: Preparatio	2015-0	2-21		Prep Metho Analyzed B Prepared B	y: AK
					RL				
Parameter	Flag		Cert		Result	Unit	ts	Dilution	RL
GRO	U		3		<4.00	mg/K	g	1	4.00
Surrogate		Flag	Cert	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
Trifluorotoluene (TFT)				1.81	mg/Kg	1	2.00	90	70 - 130
4-Bromofluorobenzene (4-BFB))			1.78	$\mathrm{mg/Kg}$	1	2.00	89	70 - 130

Sample: 387218 - Soil Bore-4 (2-3)

Laboratory: Analysis: QC Batch: Prep Batch:	Lubbock Chloride (IC) 119824 101363		Analytical Date Analy Sample Pr	yzed:	E 300.0 2015-03-05	Prep Method Analyzed By: Prepared By:	$ {RL}$
				RL			
Parameter		Flag	Cert	Result	Units	Dilution	RL
Chloride			1,2,4	25.9	mg/Kg	1	25.0

Sample: 387219 - Soil Bore-4 (4-5)

Laboratory:	Lubbock				
Analysis:	Chloride (IC)	Analytical Method:	E 300.0	Prep Method:	N/A
QC Batch:	119824	Date Analyzed:	2015-03-05	Analyzed By:	\mathbf{RL}
Prep Batch:	101363	Sample Preparation:		Prepared By:	RL

Report Date: March 6, 2015 7030714G042			a Order: 15021812 unk "0" Drip Tan	Page Number: 15 of 29 Lea Co, NM		
			RL			
Parameter	Flag	Cert	Result	Units	Dilution	RL
Chloride		1,2,4	34.6	m mg/Kg	1	25.0

Method Blank (1)

Method Blanks

QC Batch: 119535

QC Batch: 119535 Prep Batch: 101075			analyzed: eparation:	2015-02- 2015-02-			Analyzed Prepared	v
					MDL			
Parameter	Flag		Cert		Result		Units	RL
Benzene			3		< 0.00533	1	mg/Kg	0.02
Toluene			3		< 0.00645	1	m mg/Kg	0.02
Ethylbenzene			3		< 0.0116	1	mg/Kg	0.02
Xylene			3		< 0.00874]	mg/Kg	0.02
						Spike	Percent	Recovery
Surrogate	Flag	Cert	Result	Units	Dilution	Amount	Recovery	Limits
Trifluorotoluene (TFT)			1.65	mg/Kg	1	2.00	82	70 - 130
4-Bromofluorobenzene (4-BFB)			1.93	mg/Kg	1	2.00	96	70 - 130

Method Blank (1) QC Batch: 119536

QC Batch: 119536		Date A	nalyzed:	2015-02-2	1		Analyzed	By: AK
Prep Batch: 101075		QC Pr	eparation:	2015-02-2	C		Prepared	By: AK
					MDL			
Parameter	Flag		Cert		Result		Units	RL
GRO			3		<2.32		m mg/Kg	4
Surrogata	Flog	Cert	Result	Units	Dilution	Spike	Percent	Recovery Limits
Surrogate	Flag	Cert				Amount	Recovery	
Trifluorotoluene (TFT)			1.66	mg/Kg	1	2.00	83	70 - 130
4-Bromofluorobenzene (4-BFB)			1.72	mg/Kg	1	2.00	86	70 - 130

Method Blank	(1)	QC Batch: 119593
--------------	-----	------------------

QC Batch:	119593	Date Analyzed:	2015-02-25	Analyzed By:	\mathbf{SC}
Prep Batch:	101143	QC Preparation:	2015-02-24	Prepared By:	\mathbf{SC}

Report Date: March 6 7030714G042	s, 2015		Work Order Regency-Trunk "0		±107	Page Number: 1 Lea (7 of 29 Co, NM
Parameter DRO		Flag	Cert 3		MDL Result <7.41	Units mg/Kg	RL 50
Surrogate n-Tricosane	Flag Cer	t I	Result Units 98.4 mg/Kg	Dilution 1	Spik Amou 100	int Recovery I	ecovery vimits) - 130
Method Blank (1) QC Batch: 119676	QC Batch:	119676	Date Analyzed:	2015-02-26		Analyzed By	
Prep Batch: 101217 Parameter Chloride		Flag	QC Preparation: Cert		MDL Result <3.97	Prepared By Units mg/Kg	RL RL 25
Method Blank (1) QC Batch: 119716	QC Batch:	119716	Date Analyzed:	2015-03-02		Analyzed By	
Prep Batch: 101262 Parameter Chloride		Flag	QC Preparation: Cert		MDL Result <3.97	Prepared By Units mg/Kg	RL RL 25
Method Blank (1) QC Batch: 119824	QC Batch:	119824	Date Analyzed:	2015-03-05		Analyzed By	: RL
Prep Batch: 101363 Parameter Chloride		Flag	QC Preparation: Cert	2015-03-04	MDL Result 6.99	Units mg/Kg	

Laboratory Control Spikes

Laboratory Control Spike (LCS-1)

QC Batch:	119535	Date Analyzed:	2015-02-21	Analyzed By:	AK
Prep Batch:	101075	QC Preparation:	2015-02-20	Prepared By:	AK

			LCS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		3	1.87	m mg/Kg	1	2.00	< 0.00533	94	70 - 130
Toluene		3	1.87	m mg/Kg	1	2.00	$<\!0.00645$	94	70 - 130
Ethylbenzene		3	1.92	m mg/Kg	1	2.00	< 0.0116	96	70 - 130
Xylene		3	5.79	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	96	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		3	1.84	mg/Kg	1	2.00	< 0.00533	92	70 - 130	2	20
Toluene		3	1.81	$\mathrm{mg/Kg}$	1	2.00	$<\!0.00645$	90	70 - 130	3	20
Ethylbenzene		3	1.84	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	92	70 - 130	4	20
Xylene		3	5.55	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	92	70 - 130	4	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	LCS	LCSD			Spike	LCS	LCSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.73	1.63	mg/Kg	1	2.00	86	82	70 - 130
4-Bromofluorobenzene (4-BFB)	2.01	1.97	$\mathrm{mg/Kg}$	1	2.00	100	98	70 - 130

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	$\frac{119536}{101075}$				ate Analyz C Preparat					•	By: AK By: AK
					LCS			Spike	Matrix		Rec.
Param			\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO				3	19.3	m mg/Kg	1	20.0	$<\!2.32$	96	70 - 130
D /		1 (1	•1	1		.1 .1	1	.1 1 1	1.		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

С					107		1 46	ge Number: Lea	Co, NM
С									
C	LCSD	TT •	D.1	Spike	Matrix	D	Ree		RPD
	Result	Units	Dil.	Amount	Result	Rec.	Lim	nit RPD	Limit
	LCSD			Spike	Matrix		Ree	с.	RPD
\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Lim		Limit
3	20.8	m mg/Kg	1	20.0	$<\!2.32$	104	70 - 1	130 8	20
resu	lt. RPD is	s based on	the sp	ike and sp	pike duplica	te resi	ult.		
	LCS	LCSI)		Spil	æ	LCS	LCSD	Rec.
	Resul	lt Resul			Dil. Amou	ınt	Rec.	Rec.	Limit
							88	91	70 - 130
	1.85	1.84	m	g/Kg	1 2.0	0	92	92	70 - 130
	QC P	reparation			Spike	M			•
F			Units	Dil.	-			Rec.	Limit
			ng/Kg	1	250			97	70 - 130
resu	lt. RPD is	based on	the sp	ike and s	pike duplica	te res	ult.		
	LCSD			Spike	Matrix		Ree	Ċ.	RPD
\mathbf{C}		Units	Dil.	-		Rec.			
3	240	mg/Kg	1	250	<7.41	96	70 - 2		20
resu	lt. RPD is	based on	the sp	ike and sp	pike duplica	te res	ult.		
CS	LCSD				Spike	LC	S	LCSD	Rec.
sult				Dil	Amount	Rec		Dec	- • • •
		UIII	$^{ m ts}$	D_{Π} .				Rec.	Limit
	F F resu C C S	e result. RPD is LCS Result 1.77 1.85 LCS Result 1.77 1.85 LCSD C Result 3 240 e result. RPD is C Result 3 240 e result. RPD is C S LCSD	e result. RPD is based on LCS LCSI Result Result 1.77 1.82 1.85 1.84 LCS LCSI Result Result 1.77 1.82 1.85 1.84 LCS F C Result 3 243 n e result. RPD is based on LCSD C Result Units 3 240 mg/Kg e result. RPD is based on CS LCSD	e result. RPD is based on the sp LCS LCSD Result Result U 1.77 1.82 m 1.85 1.84 m Date Analyzed: 201 QC Preparation: 201 LCS F C Result Units 3 243 mg/Kg e result. RPD is based on the sp LCSD C Result Units Dil. 3 240 mg/Kg 1 e result. RPD is based on the sp CS LCSD	e result. RPD is based on the spike and spike	Or Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspan="	e result. RPD is based on the spike and spike duplicate ress LCS LCSD Spike Result Result Units Dil. Amount 1.77 1.82 mg/Kg 1 2.00 1.85 1.84 mg/Kg 1 2.00 1.85 1.84 mg/Kg 1 2.00 1.85 1.84 mg/Kg 1 2.00 1.0 Date Analyzed: 2015-02-25 QC Preparation: 2015-02-24 LCS Spike M F C Result Units Dil. Amount Rates and spike duplicate ress LCSD Spike Matrix C Result Units Dil. Amount Result Rec. 3 240 mg/Kg 1 250 <7.41 96 e result. RPD is based on the spike and spike duplicate ress LCSD Spike Matrix C Result Units Dil. Amount Result Rec. 3 240 mg/Kg 1 250 <7.41 96 e result. RPD is based on the spike and spike duplicate ress CS LCSD Spike Matrix C Spike Matrix C RPD is based on the spike and spike duplicate ress CS LCSD Spike Matrix C Spike Matrix C Spike Matrix RPD is based on the spike and spike duplicate ress CS LCSD Spike Matrix C Spike Matrix Spike Matrix Spike Matrix C Spike Matrix Spike Matri	e result. RPD is based on the spike and spike duplicate result. LCS LCSD Spike LCS Result Result Units Dil. Amount Rec. 1.77 1.82 mg/Kg 1 2.00 88 1.85 1.84 mg/Kg 1 2.00 92 (1) Date Analyzed: 2015-02-25 QC Preparation: 2015-02-24 LCS Spike Matrix F C Result Units Dil. Amount Result $_3$ 243 mg/Kg 1 250 <7.41 e result. RPD is based on the spike and spike duplicate result. LCSD Spike Matrix Rec C Result Units Dil. Amount Result Rec. Lim $_3$ 240 mg/Kg 1 250 <7.41 96 70 - e result. RPD is based on the spike and spike duplicate result. CS LCSD Spike Matrix RPD is based on the spike and spike duplicate result.	e result. RPD is based on the spike and spike duplicate result. LCS LCSD Spike LCS LCSD Result Result Units Dil. Amount Rec. Rec. 1.77 1.82 mg/Kg 1 2.00 88 91 1.85 1.84 mg/Kg 1 2.00 92 92 1.85 1.84 mg/Kg 1 2.00 <1.10 1 97 1.85 1.84 mg/Kg 1 2.00 <1.10 1 1 1.85 1.84 mg/Kg 1 2.00 <1.10 1 1 1.85 1.84 mg/Kg 1 2.00 <1.10 1 1.85 1.85 1.84 mg/Kg 1 2.00 <1.10 1 1.85 1.85 1.84 mg/Kg 1 2.00 <1.10 1 1.85 1.85 1.85 1.85 1.85 1.85 1.85 1.85

Report Date: March 6, 2015	Work Order: 15021812	Page Number: 20 of 29
7030714G042	Regency-Trunk "0" Drip Tank $\#107$	Lea Co, NM

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	231	mg/Kg	1	250	$<\!3.97$	92	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch:	119716		Da	te Analyze	ed: 2015-0	03-02		1	Analyzed	By: RL
Prep Batch:	101262		QC	C Preparat	ion: 2015-0	03-02]	Prepared	By: RL
				LCS			Spike	Matrix		Rec.
Param		\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride			1,2,4	231	m mg/Kg	1	250	$<\!3.97$	92	90 - 110
_						-		_		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	233	$\mathrm{mg/Kg}$	1	250	< 3.97	93	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Laboratory Control Spike (LCS-1)

QC Batch: Prep Batch:	119824 101363			Analyzed reparatio	-	5-03-05 5-03-04				lyzed B pared B	•
				LCS			Spike	M	atrix		Rec.
Param		F	C F	Result	Units	Dil.	Amount	Re	esult I	lec.	Limit
Chloride			1,2,4	235	mg/Kg	1	250	<	3.97	94	90 - 110
Percent recov	very is based on the spike	e resul	t. RPD is	based of	n the sp	ike and spi	ke duplica	te resu	ılt.		
			LCSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	233	mg/Kg	1	250	<3.97	93	90 - 110	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spikes

Matrix Spike (MS-1)	Spiked Sample: 387120
---------------------	-----------------------

QC Batch:	119535	Date Analyzed:	2015-02-21	Analyzed By:	AK
Prep Batch:	101075	QC Preparation:	2015-02-20	Prepared By:	AK

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit
Benzene		3	1.58	mg/Kg	1	2.00	< 0.00533	79	70 - 130
Toluene		3	1.60	m mg/Kg	1	2.00	$<\!0.00645$	80	70 - 130
Ethylbenzene		3	1.75	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	88	70 - 130
Xylene		3	5.26	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	88	70 - 130

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Benzene		3	1.54	mg/Kg	1	2.00	< 0.00533	77	70 - 130	3	20
Toluene		3	1.60	$\mathrm{mg/Kg}$	1	2.00	$<\!0.00645$	80	70 - 130	0	20
Ethylbenzene		3	1.75	$\mathrm{mg/Kg}$	1	2.00	< 0.0116	88	70 - 130	0	20
Xylene		3	5.25	$\mathrm{mg/Kg}$	1	6.00	< 0.00874	88	70 - 130	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

	MS	MSD			Spike	MS	MSD	Rec.
Surrogate	Result	Result	Units	Dil.	Amount	Rec.	Rec.	Limit
Trifluorotoluene (TFT)	1.79	1.71	mg/Kg	1	2	90	86	70 - 130
4-Bromofluorobenzene (4-BFB)	2.00	1.89	$\mathrm{mg/Kg}$	1	2	100	94	70 - 130

Matrix Spike (MS-1) Spiked Sample: 387120

QC Batch: Prep Batch:	119536 101075				ate Analyz C Prepara	ed: 2015- tion: 2015-				v	By: AK By: AK
					MS			Spike	Matrix		Rec.
Param			\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
GRO				3	18.7	m mg/Kg	1	20.0	$<\!2.32$	94	70 - 130
D		1 .1	•1	1			,		1.		

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

matrix spikes continued												
			MCD			Que:1-o	Matuin		De	-		חחח
Param	\mathbf{F}	С	MSD Result	Units	Dil.	Spike Amount	Matrix Result	Rec.	Re Lin		RPD	RPD Limit
D	P	C	MSD	TT •/	וית	Spike	Matrix	р	Re		חחח	RPD
Param GRO	F	C	Result 15.7	Units mg/Kg	Dil.	Amount 20.0	Result <2.32	Rec. 78	Lin 70 -		$\frac{\text{RPD}}{17}$	$\frac{\text{Limit}}{20}$
Percent recovery is based of	on the spile	3		0, 0						130	11	20
Percent recovery is based of	on the spike	e resul	I. RPD IS	s based o	on the s	spike and sj	ріке апрііса	ite resu				
			MS				Sp		MS	MS		Rec.
Surrogate			Resu				Dil. Amo		Rec.	Ree		Limit
Trifluorotoluene (TFT)			1.71			mg/Kg mg/Kg		2	86 02	90		70 - 130 70 - 130
4-Bromofluorobenzene (4-I	BFB)		1.83	8 1.8	80	mg/Kg	1 2	2	92	93	5	10 - 130
•	Spined Su	inpie:		Analyzed reparatic)15-02-25)15-02-24				Analy: Prepa		•
Prep Batch: 101143	Spined ou	F	Date QC P C Re	reparatic MS esult)15-02-24	Spike Amount			Prepa	red By	•
Prep Batch: 101143 Param		-	Date QC P C Re	reparatic MS esult	on: 20	015-02-24 Dil.	-	Re	atrix	Prepa	red By	y: SC Rec. Limit
Prep Batch: 101143 Param DRO		F	Date QC P C Ra 3 1	reparatic MS esult 192	on: 20 Units mg/Kg	Dil.	Amount 250	Re <7	atrix sult 7.41	Prepa	red By	y: SC Rec. Limit
Prep Batch: 101143 Param DRO		F	Date QC P C Ra 3 1	reparatic MS esult 192	on: 20 Units mg/Kg	$\frac{\text{Dil.}}{\text{g} \qquad 1}$ spike and sp	Amount 250	Re <7	atrix sult 7.41	Prepa Rec 77	red By	y: SC Rec. Limit 70 - 130
•		F e resul	Date QC P $\frac{1}{2}$ $\frac{C}{3}$ $\frac{1}{2}$ t. RPD is	reparatic MS esult 192	on: 20 Units mg/Kg	Dil.	Amount 250 pike duplica	Re <7	atrix sult 7.41 ılt.	Prepa Rec 77	red By	y: SC Rec.
Prep Batch: 101143 Param DRO Percent recovery is based of Param	on the spike	F e resul	Date QC P $\frac{C}{3}$ 1 t. RPD is MSD	reparatio MS esult 192 5 based o	$\frac{\text{Units}}{\text{mg/Kg}}$ on the s Dil.	Dil. g 1 spike and sp Spike	Amount 250 pike duplica Matrix	Re <7 ate resu	utrix sult 7.41 Ilt. Re	Prepa: Rec 77 c. nit	red B	y: SC Rec. <u>Limit</u> 70 - 130 RPD
Prep Batch: 101143 Param DRO Percent recovery is based of Param DRO	on the spike F	F e resul	Date QC P $\frac{1}{C}$ Ra $\frac{3}{1}$ t. RPD is MSD Result 237	reparatio MS esult 92 s based o Units mg/Kg	$\frac{\text{Units}}{\text{mg/Kg}}$ on the s $\frac{\text{Dil.}}{1}$	Dil-02-24 Dil. g 1 spike and sp Spike Amount 250	Amount 250 pike duplica Matrix Result <7.41	Re <7 ate resu Rec. 95	atrix sult 7.41 Ilt. Re Lin 70 -	Prepa: Rec 77 c. nit	red B	y: SC Rec. Limit 70 - 130 RPD Limi
Prep Batch: 101143 Param DRO Percent recovery is based o	on the spike F Qr = Qr on the spike	F e resul	Date QC P C Ra 3 1 t. RPD is MSD Result 237 t. RPD is	reparation MS esult 192 s based on Units mg/Kg s based o	$\frac{\text{Units}}{\text{mg/Kg}}$ on the s $\frac{\text{Dil.}}{1}$	Dil. <u>g 1</u> spike and sp Spike Amount 250	Amount 250 pike duplica Matrix Result <7.41 pike duplica	Re <7 ate resu Rec. 95 ate resu	$\begin{array}{c} \text{atrix} \\ \text{sult} \\ \hline 7.41 \\ \text{lt.} \\ \text{lt.} \\ \hline \hline 70 - \\ \text{lt.} \end{array}$	Prepa Rec 77 cc. nit 130	RPD 21	y: SC Rec. Limit 70 - 130 RPD Limit 20
Prep Batch: 101143 Param DRO Percent recovery is based of Param DRO	on the spike F Qr = Qr on the spike N	F e resul	Date QC P C Ra 3 1 t. RPD is MSD Result 237 t. RPD is	reparatio MS esult 92 s based o Units mg/Kg s based o	$\frac{\text{Units}}{\text{mg/Kg}}$ on the s $\frac{\text{Dil.}}{1}$	Dil. <u>g 1</u> spike and sp Spike Amount 250	Amount 250 pike duplica Matrix Result <7.41	Re <7 ate resu Rec. 95 ate resu	atrix sult 7.41 ilt. Re Lin 70 - ilt. S	Prepa: Rec 77 c. nit	RPD 21	y: SC Rec. Limit 70 - 130 RPD Limi

Report Date: March 6, 2015	Work Order: 15021812	Page Number: 23 of 29
7030714G042	Regency-Trunk "0" Drip Tank $\#107$	Lea Co, NM

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	238	$\mathrm{mg/Kg}$	1	250	23	86	80 - 120	3	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 387215

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:			Analyzed By: Prepared By:	
		G .1	N <i>L</i>		D

			MS			Spike	Matrix		Rec.
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit
Chloride		1,2,4	228	m mg/Kg	1	250	19.1	84	80 - 120

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	С	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	229	$\mathrm{mg/Kg}$	1	250	19.1	84	80 - 120	0	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Matrix Spike (MS-1) Spiked Sample: 387436

QC Batch: Prep Batch:	Date Analyzed: QC Preparation:	Analyzed By: Prepared By:	

				MS			Spike	\mathbf{M}	a trix		Rec.
Param		F	C I	Result	Units	Dil.	Amount	Re	esult F	lec.	Limit
Chloride			1,2,4	2530	mg/Kg	5	1250	1	100	14	80 - 120
Percent recovery is based on the	spike	resul	t. RPD i	s based or	n the sp	ike and sp	ike duplica	ate resi	ılt.		
			MSD			Spike	Matrix		Rec.		RPD
Param	\mathbf{F}	\mathbf{C}	Result	Units	Dil.	Amount	Result	Rec.	Limit	RPD	Limit
Chloride		1,2,4	2510	mg/Kg	5	1250	1100	113	80 - 120	1	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Calibration Standards

Standard (CCV-1)

QC Batch: 119535			Date An	alyzed: 20	15-02-21		Analyz	zed By: AK
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		3	mg/kg	0.100	0.0970	97	80 - 120	2015-02-21
Toluene		3	m mg/kg	0.100	0.0971	97	80 - 120	2015-02-21
Ethylbenzene		3	m mg/kg	0.100	0.0981	98	80 - 120	2015-02-21
Xylene		3	mg/kg	0.300	0.295	98	80 - 120	2015-02-21

Standard (CCV-2)

QC Batch: 119535			Date An	alyzed: 20	15-02-21		Analyz	zed By: AK
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Benzene		3	mg/kg	0.100	0.0945	94	80 - 120	2015-02-21
Toluene		3	m mg/kg	0.100	0.0953	95	80 - 120	2015-02-21
Ethylbenzene		3	m mg/kg	0.100	0.0968	97	80 - 120	2015-02-21
Xylene		3	mg/kg	0.300	0.290	97	80 - 120	2015-02-21

Standard (CCV-1)

QC Batch:	119536		Date	Analyzed:	2015-02-21		Analy	zed By: AK
				CCVs	CCVs	CCVs	Percent	
				True	Found	Percent	Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
GRO		3	mg/Kg	1.00	1.03	103	80 - 120	2015-02-21

Standard (CCV-2)

QC Batch: 119536

Date Analyzed: 2015-02-21

Analyzed By: AK

Report Date 7030714G042	: March 6, 2015 2	5	Regen		er: 15021812)" Drip Tank ₇	#107	Page Nu	mber: 25 of 29 Lea Co, NM
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
GRO		3	m mg/Kg	1.00	1.03	103	80 - 120	2015-02-21
Standard (C	CCV-2)							
QC Batch:	119593		Date	Analyzed:	2015-02-25		Analy	yzed By: SC
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
D o mo mo	Floor	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
DRO	Flag	3	mg/Kg	250	232	93	80 - 120	2015-02-25
DRO Standard (O				250 Analyzed:		93		2015-02-25 yzed By: SC
DRO Standard (O	CCV-3)			Analyzed: CCVs	2015-02-25 CCVs	$\rm CCVs$	Analy Percent	yzed By: SC
DRO Standard (C QC Batch:	C CV-3) 119593	3		Analyzed: CCVs True	2015-02-25 CCVs Found	CCVs Percent	Analy Percent Recovery	Date
DRO Standard (C QC Batch:	CCV-3)		Date	Analyzed: CCVs	2015-02-25 CCVs	$\rm CCVs$	Analy Percent	yzed By: SC
DRO Standard (C QC Batch: Param DRO	CCV-3) 119593 Flag	3 Cert	Date	Analyzed: CCVs True Conc.	2015-02-25 CCVs Found Conc.	CCVs Percent Recovery	Analy Percent Recovery Limits	yzed By: SC Date Analyzed
DRO Standard (C QC Batch: Param DRO Standard (C	CCV-3) 119593 Flag	3 Cert	Date Units mg/Kg	Analyzed: CCVs True Conc.	2015-02-25 CCVs Found Conc.	CCVs Percent Recovery	Analy Percent Recovery Limits 80 - 120	yzed By: SC Date Analyzed
Param DRO Standard (C QC Batch: Param DRO Standard (C QC Batch:	CCV-3) 119593 Flag	3 Cert	Date Units mg/Kg	Analyzed: CCVs True Conc. 250 Analyzed: CCVs	2015-02-25 CCVs Found Conc. 227 2015-02-26 CCVs	CCVs Percent Recovery 91 CCVs	Analy Percent Recovery Limits 80 - 120 Analy Percent	yzed By: SC Date Analyzed 2015-02-25 zed By: RL
DRO Standard (C QC Batch: Param DRO Standard (C	CCV-3) 119593 Flag	3 Cert	Date Units mg/Kg	Analyzed: CCVs True Conc. 250 Analyzed:	2015-02-25 CCVs Found Conc. 227 2015-02-26	CCVs Percent Recovery 91	Analy Percent Recovery Limits 80 - 120 Analy	yzed By: SC Date Analyzed 2015-02-25

Standard (CCV-2)

QC Batch: 119676

Date Analyzed: 2015-02-26

Analyzed By: RL

Report Date: . 7030714G042	March 6, 2015			Work Order y-Trunk "0"	: 15021812 ' Drip Tank 7	¥107	Page Nu	mber: 26 of 29 Lea Co, NM
Param	Flag	Cert	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
Chloride		1,2,4	mg/Kg	25.0	23.3	93	90 - 110	2015-02-26
Standard (Co	CV-1)							
QC Batch: 11	.9716		Date .	Analyzed:	2015-03-02		Analy	zed By: RL
Param		C I	T T •	CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		1,2,4	mg/Kg	25.0	23.1	92	90 - 110	2015-03-02
	CV-2)				23.1 2015-03-02	92		2015-03-02
Chloride Standard (CO	CV-2)			Analyzed: 2 CCVs	2015-03-02 CCVs	$\rm CCVs$	Analy Percent	zed By: RL
Chloride Standard (C QC Batch: 11	C V-2) 9716	1,2,4	Date .	Analyzed: 2 CCVs True	2015-03-02 CCVs Found	CCVs Percent	Analy Percent Recovery	zed By: RL Date
Chloride Standard (CC QC Batch: 11 Param	CV-2)			Analyzed: 2 CCVs	2015-03-02 CCVs	$\rm CCVs$	Analy Percent	zed By: RL Date Analyzed
Chloride Standard (CC QC Batch: 11 Param Chloride	C V-2) 9716 Flag	1,2,4 Cert	Date . Units	Analyzed: 2 CCVs True Conc.	2015-03-02 CCVs Found Conc.	CCVs Percent Recovery	Analy Percent Recovery Limits	zed By: RL Date Analyzed
Chloride Standard (CO QC Batch: 11 Param Chloride Standard (CO	CV-2) .9716 Flag CV-1)	1,2,4 Cert	Date A Units mg/Kg	Analyzed: 2 CCVs True Conc. 25.0	2015-03-02 CCVs Found Conc.	CCVs Percent Recovery	Analy Percent Recovery Limits 90 - 110	zed By: RL Date
Chloride Standard (CO	CV-2) .9716 Flag CV-1)	1,2,4 Cert	Date A Units mg/Kg	Analyzed: 2 CCVs True Conc. 25.0	2015-03-02 CCVs Found Conc. 23.2	CCVs Percent Recovery	Analy Percent Recovery Limits 90 - 110	zed By: RL Date <u>Analyzed</u> 2015-03-02
Chloride Standard (C QC Batch: 11 Param Chloride Standard (C QC Batch: 11	CV-2) .9716 Flag CV-1) .9824	1,2,4 Cert 1,2,4	Date . Units mg/Kg Date .	Analyzed: 2 CCVs True Conc. 25.0 Analyzed: 2 CCVs True	2015-03-02 CCVs Found Conc. 23.2 2015-03-05 CCVs Found	CCVs Percent Recovery 93 CCVs Percent	Analy Percent Recovery Limits 90 - 110 Analy Percent Recovery	rzed By: RL Date Analyzed 2015-03-02 rzed By: RL Date
Chloride Standard (CO QC Batch: 11 Param Chloride Standard (CO	CV-2) .9716 Flag CV-1)	1,2,4 Cert	Date A Units mg/Kg	Analyzed: 2 CCVs True Conc. 25.0 Analyzed: 2	2015-03-02 CCVs Found Conc. 23.2 2015-03-05 CCVs	CCVs Percent Recovery 93 CCVs	Analy Percent Recovery Limits 90 - 110 Analy Percent	rzed By: RL Date Analyzed 2015-03-02 rzed By: RL

Standard (CCV-2)

QC Batch: 119824

Date Analyzed: 2015-03-05

Analyzed By: RL

Report Date: March 6, 2015 7030714G042			Regenc	Page Number: 27 of 29 Lea Co, NM				
				CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Cert	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Chloride		1,2,4	m mg/Kg	25.0	23.1	92	90 - 110	2015-03-05

Appendix

Report Definitions

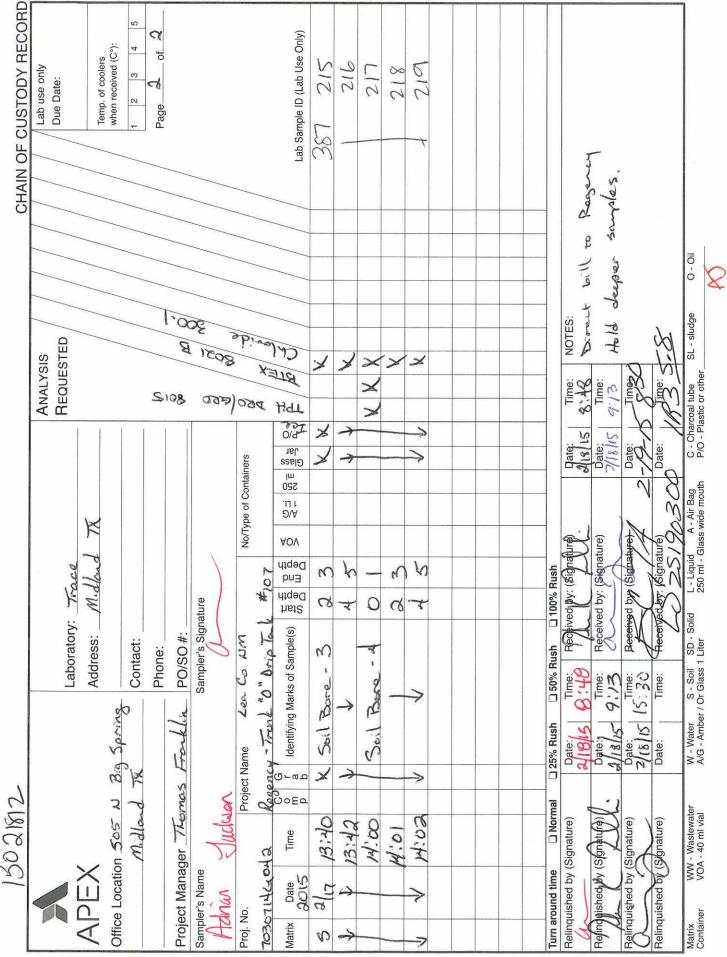
Name	Definition
MDL	Method Detection Limit
MQL	Minimum Quantitation Limit
SDL	Sample Detection Limit

Laboratory Certifications

	Certifying	Certification	Laboratory
С	Authority	Number	Location
-	NCTRCA	WFWB384444Y0909	TraceAnalysis
-	DBE	VN 20657	TraceAnalysis
-	HUB	1752439743100-86536	TraceAnalysis
-	WBE	237019	TraceAnalysis
1	LELAP	LELAP-02003	Lubbock
2	NELAP	T104704219-14-10	Lubbock
3	NELAP	T104704392-14-8	Midland
4		2014-018	Lubbock

Standard Flags

- F Description
- B Analyte detected in the corresponding method blank above the method detection limit
- H Analyzed out of hold time
- J Estimated concentration
- Jb The analyte is positively identified and the value is approximated between the SDL and MQL. Sample contains less then ten times the concentration found in the method blank. The result should be considered non-detect to the SDL.
- Je Estimated concentration exceeding calibration range.
- MI1 Split peak or shoulder peak
- MI2 Instrument software did not integrate
- MI3 Instrument software misidentified the peak
- MI4 Instrument software integrated improperly
- MI5 Baseline correction
- Qc Calibration check outside of laboratory limits.
- Qr RPD outside of laboratory limits
- Qs Spike recovery outside of laboratory limits.
- Qsr Surrogate recovery outside of laboratory limits.
- U The analyte is not detected above the SDL


Work Order: 15021812 Regency-Trunk "0" Drip Tank #107 Page Number: 29 of 29 Lea Co, NM

Attachments

The scanned attachments will follow this page. Please note, each attachment may consist of more than one page.

12071812		CH	CHAIN OF CUSTODY RECORD
		ANALYSIS REQUESTED	Due Date:
APEX	Address: M. d. and	XX	
2	Big Spiring		when received (C°): 1 1
Proport	United Contact:	198	(of 2
Project Manager Themes	Free Lilia PO/SO #:	~	
Sampler's Name	Sampler's Signature		
Adrian Incluen	Can	200/2/	
	Name Lea Co NM	~	
Matrix Date Time Date	1 Identifying Marks of Sample(s) 英	A/G m 250 P/C P/C	(vinO esti de l) (l el Samole I).
d viti			3877.05
PCIPI JII	1-261-16		206
12:21			LOZ
13:00	6 7		208
13:01	Q) b		209
13:02	J 14 15		210
13:19	Soil Bare - 2 0 1	*	211
13:31			212
13:24	L Z Z		213
13:38	V Sul Bone - 3 01	V J K K J	214
nal		Date: NOTES:	<i>F</i>
alm .	S 8:48 //~/	2/18/15 8:48 Direct bill to R	forest
Refinituished by (Signature)	2/18/15 9:13 Octived by: (Signature)	- 2/18/15 9	<i>خ</i> ەر
Relinquished by (Signature)	2/18/15 15:30 Pecetived by/(Signature)	V Pate: Time:	
Relinquished by (Signature)	Date: Time: Beeerved Dy: (Signature)	92200 Date: NP3 Time: 8	
Matrix WW - Wastewater Container VOA - 40 ml vial	W - Water S - Soil SD - Solid L - Liquid A/G - Amber / Or Glass 1 Liter 250 ml - Glas	L - Liquid A - Air Bag C - Charcoal tube SL - sludge O - Oil 250 ml - Glass wide mouth P/O - Plastic or other	
		Ş	

Apex TITAN, Inc. • 505 N. Big Springs Drive, Suite 301A • Midland, Texas 79701 • Office: 432-695-6016

Apex TITAN, Inc. • 505 N. Big Springs Drive, Suite 301A • Midland, Texas 79701 • Office: 432-695-6016

APPENDIX E

Initial and Final C-141

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

		Parts of the second second							
			Rele	ease Notific	ation and Co	orrective A	ction		
					OPERA	TOR	🛛 Initi	al Report	Final Repor
		Legency Field Services, Ltd		LLC. (Formerly	y- Contact: Cr	ystal Callaway			
Address: 42	21 W. 3rd S	Street, Suite	250, Ft W	orth, TX 76102	Telephone	No.: (817) 302-	9407		
Facility Nat	me: Trunk	"O" Drip Ta	ank #107		Facility Ty	pe: Natural Gas	Gathering		
Surface Ow	mer: State			Mineral O	wner		API No).	
				LOCA	TION OF RE	LEASE			
Unit Letter O	Section 5	Township 21 S	Range 36E	Feet from the	North/South Line	Feet from the	East/West Line	County Lea	
		1		L				-	

Latitude 32.50335 Longitude -103.28578

NATURE OF RELEASE

Type of Release: Oil and Produced Water	Volume of Release: Unknown	Volume Re	covered: Unknown			
Source of Release: Drip Tank	Date and Hour of Occurrence:	Date and H	our of Discovery:			
	Unknown	Unknown				
Was Immediate Notice Given?	If YES, To Whom?					
🗌 Yes 🛛 No 🗌 Not Required						
By Whom?	Date and Hour					
Was a Watercourse Reached?	If YES, Volume Impacting the Wat	tercourse.				
🗋 Yes 🛛 No						
If a Watercourse was Impacted, Describe Fully.*						
Describe Cause of Problem and Remedial Action Taken.*						
Describe Cause of Problem and Remedial Action Takeli."						
The drip tank facility was removed from its current location. There was so	me exidence of oil stained soil heres	th the tank w	hen it was removed			
The drip tank facting was fernoved if our its current location. There was se	she evidence of on stathed son bene	in the tank wi	ien it was removed.			
Describe Area Affected and Cleanup Action Taken.*						
Discribe Area Arterica and creatup Action Raken.						
The area measured approximately forty (40) feet in length and thirty (30) f	Feet in width. The impacted area is lo	cated inside the	he earthen tank containment			
and will be remediated in accordance to the NMOCD guidelines for leaks	and spills. On April 22, 2013 Basin J	Environmenta	l personnel installed one			
trench in the area of the drip tank. The soil samples were submitted for lal	boratory analysis which detected elev	ated chloride	and TPH concentrations at the			
surface. The site will be delineated and a work plan to remediate the impa	ct will be submitted for NMOCD app	oro val.				
I hereby certify that the information given above is true and complete to the	e best of my knowledge and understa	and that pursu	ant to NMOCD rules and			
regulations all operators are required to report and/or file certain release no	otifications and perform corrective ac	tions for relea	ses which may endanger			
public health or the environment. The acceptance of a C-141 report by the	NMOCD marked as "Final Report"	does not relie	ve the operator of liability			
should their operations have failed to adequately investigate and remediate	e contamination that pose a threat to g	ground water,	surface water, human health			
or the environment. In addition, NMOCD acceptance of a C-141 report do	bes not relieve the operator of response	sibility for cor	npliance with any other			
federal, state, or local laws and/or regulations.						
	OIL CONSERV	VATION I	DIVISION			
Signature: Mytel allance						
Approved by Environmental Specialist:						
Printed Name: VyStAL ALLAUNT						
Sopral in the special						
Title: X2 200 Venediation Specifi	Approval Date:	Expiration D	ate:			
Cushi cale and						
E-mail Address: CVY 474 - CALLAND BREGENCIONS (M	Sonditions of Approval:		Attached			
Date: 3)12/15 Phone: 817-707-6514						
Date: 312115 Phone: 817-307-6514						

* Attach Additional Sheets If Necessary

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico **Energy Minerals and Natural Resources**

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. ND COTTOF

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

	Santa Fe,	INIVI	8/303	
Release	Notification	and	Corrective	Action

						OPERA	ГOR	🗌 Initia	al Report	\boxtimes	Final Report
Name of Company: Regency Field Services LLC. (Formerly-						y- Contact: Cr	ystal Callaway				
	Southern Ur	nion Gas S	ervices, Ltd.	.)	,		•				
	Address: 42	1 W. 3rd S	treet, Suite 2	250, Ft. W	orth, TX 76102	2 Telephone 1	No.: 817-302-94	107			
	Facility Nan	ne: Trunk	"O" Drip Ta	nk #107		Facility Typ	e: Natural Gas	Gathering			
	Surface Own	ner: State			Mineral C)wner:		API No).		
	LOCATION OF RELEASE										
	Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County		
	0	5	21S	36E						Lea	

Latitude 32.50335 Longitude -103.28578

NATURE OF RELEASE

Type of Release: Oil and Produced Water	Volume of Release: Unknown	Volume Re	covered: Unknown			
Source of Release: Drip Tank	Date and Hour of Occurrence:	Date and H	our of Discovery: Unknown			
	Unknown					
Was Immediate Notice Given?	If YES, To Whom?					
🗌 Yes 🛛 No 🗌 Not Required						
By Whom?	Date and Hour:					
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	tercourse.				
🗌 Yes 🛛 No						
If a Watercourse was Impacted, Describe Fully.*						
If a watercourse was impacted, Describe Funy.						
Describe Cause of Problem and Remedial Action Taken.*						
The drip tank facility was removed from its current location. There was so	ome evidence of oil stained soil bene	ath the tank w	hen they were removed.			
			-			
Describe Area Affected and Cleanup Action Taken.*						
The drip tank facility has been removed from the current location. The site						
and sent to an NMOCD approved laboratory, which determined concentrat		ere less than th	e NMOCD regulatory			
standards. Subsequently, no further investigation or remediation is warran	ited at this time.					
I hereby certify that the information given above is true and complete to th	a hast of my knowledge and underst	and that purgu	ont to NMOCD rules and			
regulations all operators are required to report and/or file certain release no						
public health or the environment. The acceptance of a C-141 report by the						
should their operations have failed to adequately investigate and remediate						
or the environment. In addition MOCD acceptance of a C-141 report do						
federal, state, or local law and or regulations.		51011119 101 001				
	OIL CONSER	VATION I	DIVISION			
6/10	<u>OIL CONSER</u>					
Signature:						
Approved by Environmental Specialist						
Printed Name: CRISTAL D. CALLMAN						
6						
	Approval Date:	Expiration D	ate:			
E-mail Address: cystzl. czllzwy Crancy ozsk						
E-mail Address: Vysizi. Crimy Cricking og	concluons of Approval:		Attached			
Date: 4/1/15 Phone: (817) 302-401						

* Attach Additional Sheets If Necessary

APPENDIX F

Site History

REMEDIATION SUMMARY & SOIL CLOSURE REQUEST

REGENCY FIELD SERVICES LLC. Trunk "O" Drip Tank #107 Historical Release Site Lea County, New Mexico Unit Letter O, Section 5, Township 21 South, Range 36 East Latitude 32.50335, Longitude -103.28578

April 2015 Apex Project No. 7030714G042

SITE HISTORY

The previous remedial activities were reportedly conducted by Basin. This Closure Request is solely based upon the interpretation of the data provided by Basin and the work performed to date by Apex.

In reference to Table 1 as supplied by Basin, there is a chloride impact at the surface, eight (8) foot and fourteen (14) foot bgs. The two (2) foot sample and the four (4) foot sample do not show a significant impact which could possibly indicate a cross contamination during their sampling event.

During the sampling event as conducted by Apex, elevated chloride concentrations were not observed in the suspected soils. It is possible that the contamination was removed and not documented by Basin which would let the site appear to be clean. However, this is all speculation and cannot be proven, the only facts are the lab analytical that Apex collected showing the site as being below the Regulatory Standards.