3R - 444

2015 AGWMR

11 / 20 / 2015

Environmental Affairs 188 County Road 4900 Bloomfield, NM 87413 505/632-4600 505/632-4781 Fax

November 20, 2015

Glenn von Gonten Hydrologist and Groundwater Remediation New Mexico Oil Conservation Division Environmental Bureau 1220 Saint Street Francis Drive Santa Fe, New Mexico 87505

RE: 2015 Annual Groundwater Report and Closure Request Dogie Compressor Station J Vent Condensate Release Administrative/Environmental Order #3R-444 Williams Four Corners LLC

Dear Mr. von Gonten:

The attached 2015 Annual Groundwater Report and Closure Request summarizes three quarters of groundwater monitoring in 2015 and request for No Further Action for the release associated with Administrative/Environmental Order #3R-444. Groundwater analytical results have been in compliance with the New Mexico Water Quality Control Commission standards for eight consecutive quarters.

Sincerely,

WILLIAMS FOUR CORNERS
Lelany Chrotum

Kelsey Christiansen Environmental Specialist

Attachment (1)

2015 Annual Groundwater Report and Closure Request

2015 ANNUAL GROUNDWATER REPORT AND CLOSURE REQUEST

DOGIE COMPRESSOR STATION J VENT CONDENSATE RELEASE

ADMINISTRATIVE/ENVIRONMENTAL ORDER NUMBER 3R-444

OCTOBER 2015

Prepared for:

WILLIAMS FOUR CORNERS LLC Bloomfield, New Mexico

2015 ANNUAL GROUNDWATER REPORT AND CLOSURE REQUEST

DOGIE COMPRESSOR STATION J VENT CONDENSATE RELEASE

ADMINISTRATIVE/ENVIRONMENTAL ORDER NUMBER 3R-444

OCTOBER 2015

Prepared for:

WILLIAMS FOUR CORNERS LLC 188 County Road 4900 Bloomfield, New Mexico 87413

Prepared by:

LT ENVIRONMENTAL, INC. 2243 Main Avenue, Suite 3 Durango, Colorado 81301 (970) 385-1096

TABLE OF CONTENTS

EXECUTIVE SU	MMARY	.ii
1.0 INTRODUC	TION	.1
	IONY	
2.0 METHODOI	LOGY	.2
2.2 GROUN	IDWATER AND PRODUCT LEVEL MEASUREMENTSIDWATER SAMPLINGIDWATER CONTOUR MAPS	.2
3.0 RESULTS		.3
4.0 CONCLUSIO	ONS	.3
5.0 RECOMME	NDATIONS	.5
	FIGURES	
FIGURE 1 FIGURE 2 FIGURE 3	SITE LOCATION MAP GROUNDWATER ELEVATION AND ANALYTICAL RESULTS (FEBRUARY 2015) GROUNDWATER ELEVATION & ANALYTICAL RESULTS (MAY 2015) GROUNDWATER ELEVATION & ANALYTICAL RESULTS (AUGUST	
	2015)	
	TABLES	
TABLE 1 TABLE 2	GROUNDWATER ANALYTICAL RESULTS GROUNDWATER ELEVATION SUMMARY	
	APPENDICES	
APPENDIX A APPENDIX B APPENDIX C APPENDIX D	REVISED WORK PLAN FOR BOS 200® AMENDMENT LETTER OF APPROVAL FROM NMOCD 2015 GROUNDWATER SAMPLING FIELD NOTES 2015 LABORATORY ANALYTICAL REPORTS	

EXECUTIVE SUMMARY

LT Environmental, Inc., (LTE) was retained by Williams Four Corners LLC (Williams) to apply BOS 200[®] to remediate impacted soil and groundwater and monitor groundwater quality at the former J Vent in the Dogie Compressor Station (Site). The New Mexico Oil Conservation Division (NMOCD) assigned Administrative/Environmental Order Number 3R-444 to the Site.

In 2011, Williams observed visible petroleum hydrocarbon staining on the ground surface during maintenance work to relocate and upgrade blowdown equipment at the Site. In September 2012, Williams excavated soil beneath the former J Vent until groundwater was encountered. A groundwater sample was collected from the groundwater seeping into the excavation and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). Concentrations of benzene, toluene, and total xylenes exceeded the New Mexico Water Quality Control Commission (NMWQCC) standards.

In September 2013, LTE applied a total of 1,000 pounds of BOS 200[®] to the bottom of the excavation prior to backfilling in accordance with the *Revised Work Plan for BOS 200*[®] *Amendment* dated April 23, 3013, and approved by NMOCD on May 31, 2013. The BOS 200[®] was mixed into the smear zone soil and groundwater in powder form using a trackhoe. Once the BOS 200[®] was applied, the excavation was backfilled. A groundwater sample was collected from within the excavation prior to the application of BOS 200[®] for analysis of BTEX, nitrate/nitrite as N, chloride, iron, sulfate, and total dissolved solids (TDS) to determine existing water quality characteristics.

In October 2013, LTE installed and surveyed four monitoring wells to monitor groundwater remediation and document groundwater quality for site closure. The monitoring wells were sampled quarterly from November 2013 to August 2015. Depth to groundwater data collected from the monitoring wells from 2013 through 2015 indicated the groundwater flow was consistently to the northwest. Concentrations of BTEX, nitrate/nitrite as N, and chloride in groundwater samples collected from the four monitoring wells were compliant with the NMWQCC standards every quarter. Iron, sulfate, and TDS concentrations exceeded the NMWQCC standards in all groundwater samples every quarter, including the sample from the upgradient monitoring well sample. Background groundwater quality for the Site was documented on December 17, 1997, with a groundwater sample from former monitoring well MW-1 and from the sample collected from the excavation just prior to the application of BOS 200[®] in September 2013. The background sample results indicate iron, sulfate, and TDS naturally exceed NMWQCC standards.

The addition of BOS 200[®] to impacted groundwater at the Site decreased concentrations of BTEX in groundwater to below laboratory detection limits as documented by eight quarterly groundwater sampling results. Williams formally requests closure at the Site as groundwater sampling results from all monitoring wells have been below NMWQCC standards for BTEX, nitrate/nitrite, and chloride for eight consecutive quarters. Concentrations of iron, sulfate, and TDS, which were analyzed to monitor general groundwater quality, exceeded NMWQCC standards in groundwater samples. However, the values were consistent with background concentrations and appear to be naturally occurring.

1.0 INTRODUCTION

LT Environmental, Inc., (LTE), on behalf of Williams Four Corners LLC (Williams), has prepared this report detailing groundwater remediation and monitoring activities completed from January 2015 through October 2015 at the former J Vent in the Dogie Compressor Station (Site). The scope of work for this project includes quarterly monitoring of historical petroleum hydrocarbon impacts to groundwater resulting from the operation of a former blowdown stack.

1.1 LOCATION

The Site is located in the northwest quarter of the northwest quarter of Section 4, Township 25 North, and Range 6 West in Rio Arriba County, New Mexico, in Largo Canyon as depicted on Figure 1. Largo Wash, which drains into the San Juan River approximately 28 miles to the north, is approximately 900 feet north-northeast of the Site.

1.2 HISTORY

The former J Vent was periodically used to vent natural gas at the Site during emergency shutdown. In 2011, the venting equipment was updated and moved south approximately 75 feet. When the equipment was relocated, visible petroleum hydrocarbon staining was observed on the ground surface. Natural gas condensate is often a byproduct of the blowdown process and is the most likely source of the staining.

In September 2012, Williams excavated soil beneath the former J Vent to the extent indicated on Figure 2. The excavation was approximately 80 feet long and 60 feet wide. The total depth of the excavation ranged from 5 feet to 7 feet below ground surface (bgs). Confirmation soil samples were collected above the smear zone along the sidewalls of the excavation. Groundwater was encountered in the excavation at approximately 6 feet bgs, and LTE collected a grab sample labeled GW-1 for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX). Analytical results are included in Table 1 and indicated BTEX concentrations exceeded the New Mexico Water Quality Control Commission (NMWQCC) standards. Additional details of the excavation, including analytical results from confirmation soil samples, are included in the *Revised Work Plan for BOS 200*[®] *Amendment* (Appendix A). The *Revised Work Plan for BOS 200*[®] *Amendment* was approved by the New Mexico Oil Conservation Division (NMOCD) on May 31, 2013 (Appendix B).

In September 2013 prior to implementation of the work plan, LTE collected a subsequent grab sample, GW-1, of the groundwater within the excavation for analysis of BTEX, nitrate/nitrite as N, chloride, iron, sulfate, and total dissolved solids (TDS) to determine pre-application water quality characteristics. LTE then applied a total of 1,000 pounds of BOS $200^{\text{®}}$ to the base of the excavation prior to backfilling. LTE designed the application to reduce benzene concentrations from 630 micrograms per liter (μ g/L) to less than 10 μ g/L by applying approximately 20 pounds of BOS $200^{\text{®}}$ to every 10-foot square area of the exposed smear zone using a trackhoe to mix the BOS $200^{\text{®}}$ into soil and groundwater at the smear zone. Once the BOS $200^{\text{®}}$ was applied, the excavation was backfilled with clean overburden stockpiled on site during the original excavation and additional clean fill material obtained from an offsite location. The backfilled excavation was graded to match the surrounding topography upon completion.

In October 2013, LTE installed four groundwater monitoring wells (MW-13, MW-14, MW-15, and MW-16) at the Site to assess groundwater remediation quarterly. LTE conducted quarterly groundwater sampling from November 2013 to August 2015.

2.0 METHODOLOGY

During 2015, LTE conducted quarterly groundwater monitoring activities at the Site. The activities included measuring groundwater elevations and collecting groundwater samples at the four monitoring wells.

2.1 GROUNDWATER AND PRODUCT LEVEL MEASUREMENTS

Groundwater level monitoring included recording depth to groundwater measurements with a Keck oil/water interface probe. The interface probe was decontaminated with AlconoxTM soap and rinsed with de-ionized water prior to each measurement. Groundwater elevation data are summarized in Table 2.

2.2 GROUNDWATER SAMPLING

Prior to sampling groundwater, depth to groundwater and total depth of monitoring wells were measured with a Keck oil/water interface probe. The volume of water in each monitoring well was calculated, and a minimum of three well casing volumes of water was purged from each well using a new disposable polyvinyl chloride (PVC) bailer. As water was removed from the monitoring well, pH, electric conductivity, and temperature were monitored. Monitoring wells were purged until these properties stabilized, indicating the purge water was representative of aquifer conditions. Stabilization was defined as three consecutive stable readings for each water property: plus or minus (\pm) 0.4 units for pH, \pm 10 percent for electric conductivity, and \pm 2 degrees Celsius (°C) for temperature. All purge water was disposed of in an on-site produced water tank. Copies of the groundwater sampling field notes are presented in Appendix C.

Once each monitoring well was properly purged, groundwater samples were collected by filling laboratory-supplied bottles. Samples were labeled with the date and time of collection, monitoring well designation, project name, collector's name, and parameters to be analyzed. They were immediately sealed and packed on ice. The samples were transferred to Hall Environmental Analysis Laboratory (HEAL) for analysis. Samples were stored on ice in a sealed cooler and maintained under strict chain-of-custody (COC) procedures. COC forms were completed documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used (if any), analyses required, and sampler's signature. Samples were analyzed for BTEX by United States Environmental Protection Agency (EPA) Method 8021B; nitrate/nitrite as N, chloride, and sulfate by EPA Method 300.0, iron by EPA Method 200.7, and TDS by Method SM2540C. Copies of the 2015 laboratory analytical reports are included in Appendix D.

2.3 GROUNDWATER CONTOUR MAPS

LTE used top-of-casing well elevations and groundwater elevations to draft groundwater contours and determine groundwater flow direction for the February, May, and August 2015

quarterly monitoring events (Figures 2 through 4). Contours were inferred based on groundwater elevations obtained and observations of physical characteristics (topography, proximity to irrigation ditches, etc.) at the Site.

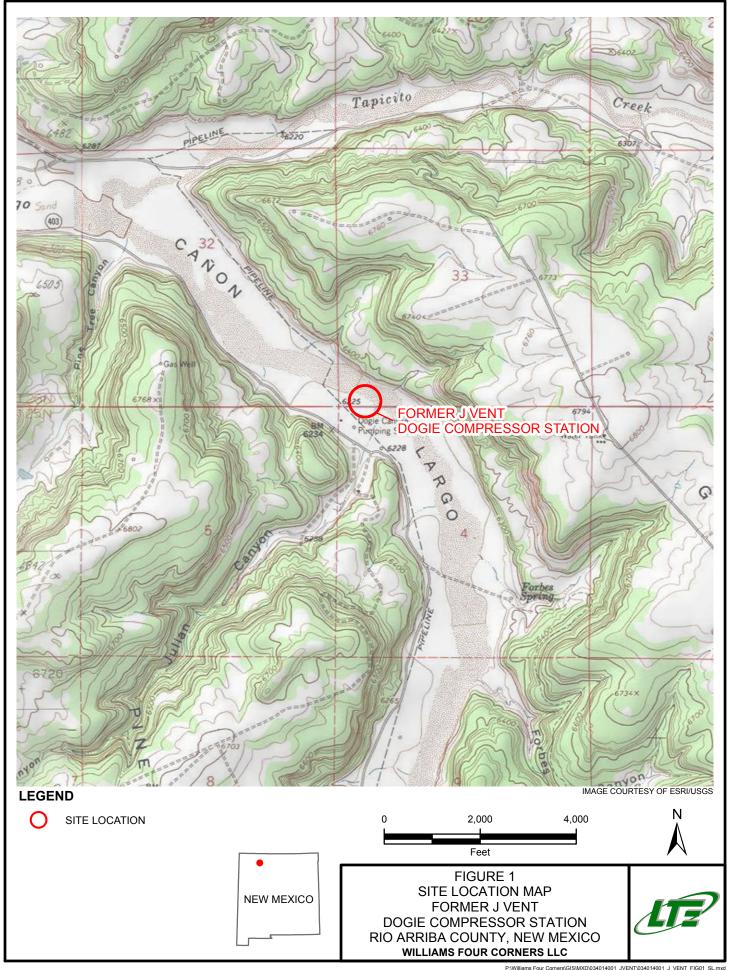
3.0 RESULTS

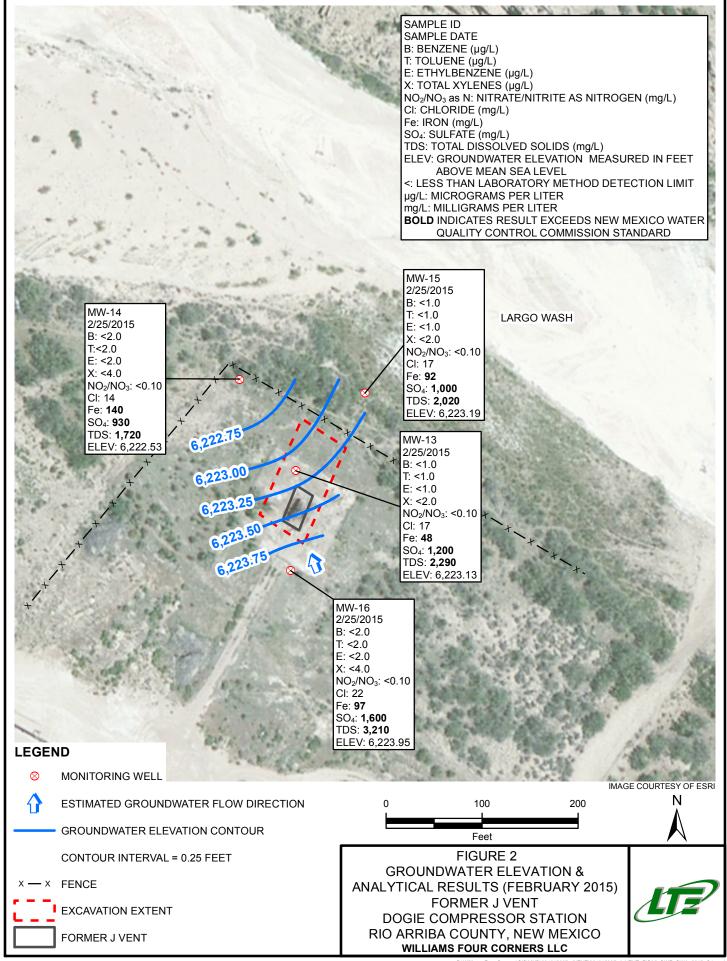
Groundwater analytical results indicate concentrations of BTEX in groundwater samples collected from monitoring wells MW-13, MW-14, MW-15, and MW-16 were below laboratory detection limits during 2015. Additionally, nitrate/nitrite as N and chloride concentrations in MW-13, MW-14, MW-15, and MW-16 were compliant with the NMWQCC standards. Iron and sulfate concentrations and TDS values exceeded the NMWQCC standards in the groundwater samples from all monitoring wells, including upgradient monitoring well MW-16, for each quarterly sampling event. The sulfate and TDS concentrations are consistent with background concentrations represented by analytical results from a grab sample collected from the open excavation prior to the BOS 200® application on September 17, 2013, and a groundwater sample collected from former monitoring well MW-1 on September 17, 1997. Iron concentrations fluctuated during 2015. The fluctuations in iron concentrations were observed to be consistent in all monitoring wells, including the upgradient well. Similar fluctuations were observed in the 2014 monitoring results. Table 1 summarizes the groundwater analytical results and the laboratory analytical reports are included in Appendix D.

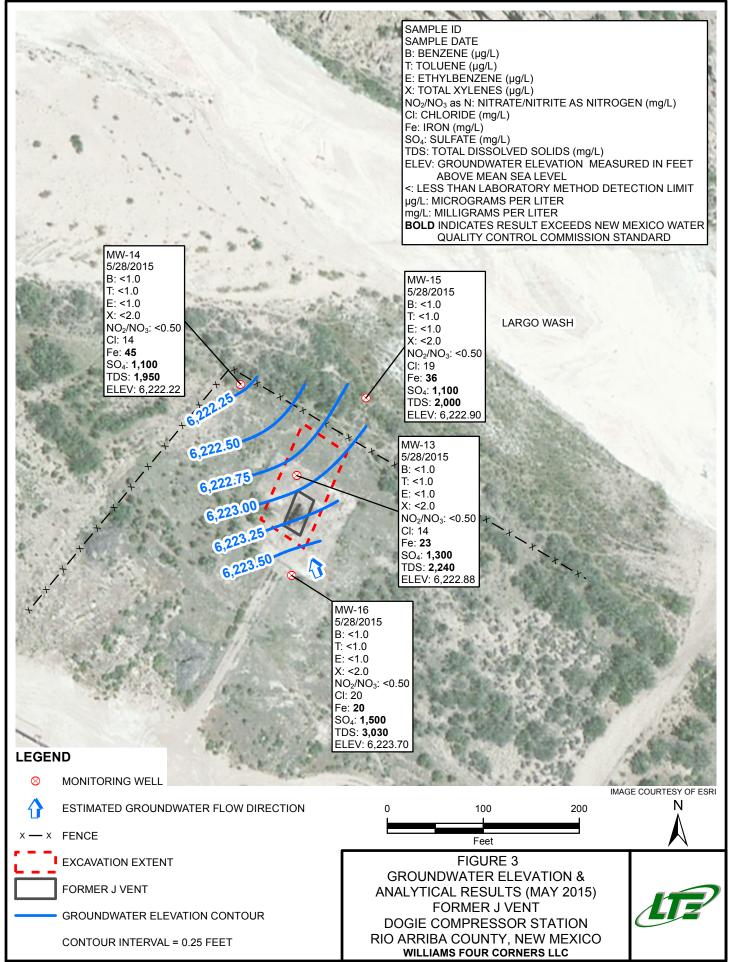
Depth to groundwater data obtained during the 2015 quarterly monitoring events are summarized in Table 2. Groundwater flow direction was determined to be consistently to the northwest as depicted on Figures 2 through 4.

4.0 CONCLUSIONS

The addition of BOS $200^{\$}$ to impacted groundwater at the Site has successfully remediated BTEX concentrations. Nitrate/nitrite as N, chloride, iron, sulfate, and TDS concentrations were analyzed to monitor general groundwater quality. The groundwater analytical results indicate the addition of BOS $200^{\$}$ has not affected these groundwater quality parameters, which remain consistent with naturally-occurring background conditions.


5.0 CLOSURE REQUEST


Williams formally requests a No Further Action status be assigned to Administrative/Environmental Order #3R-444. Eight consecutive quarters of compliance with the NMWQCC standards have been achieved for BTEX, nitrate/nitrite as N, and chloride; and iron, sulfate, and TDS are consistent with naturally occurring background conditions.



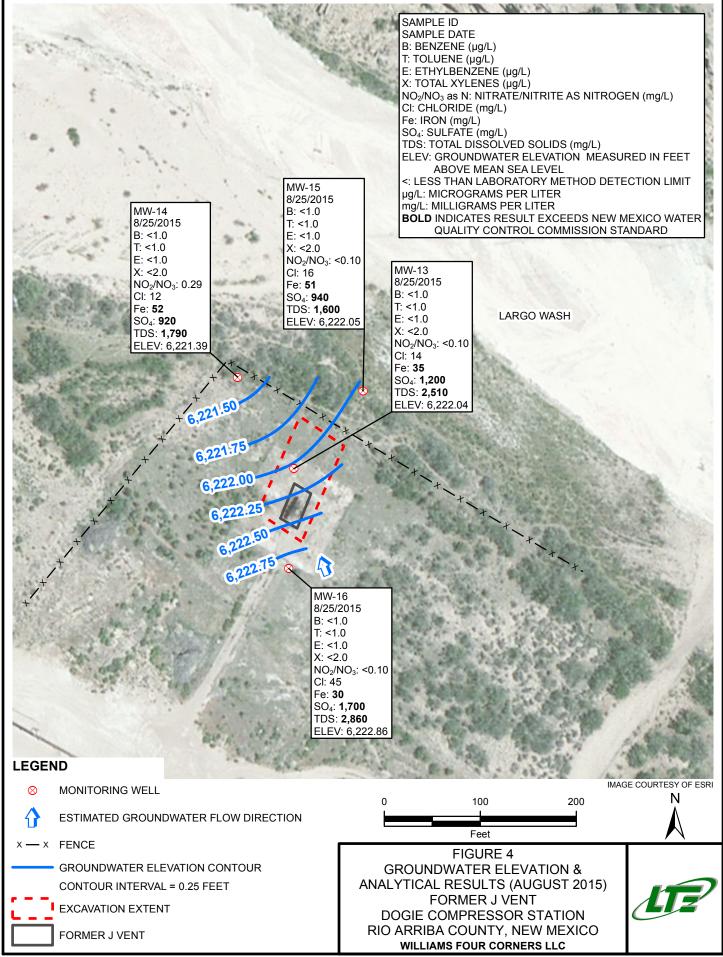

FIGURES

TABLE 1 GROUNDWATER ANALYTICAL RESULTS

DOGIE COMPRESSOR STATION J-VENT RIO ARRIBA COUNTY, NEW MEXICO WILLIAMS FOUR CORNERS LLC

Sample Identification	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	Nitrate + Nitrite as N (mg/L)	Chloride (mg/L)	Iron (mg/L)	Sulfate (mg/L)	Total Dissolved Solids (mg/L)
NMWQCC Standard	NA	10	750	750	620	10	250	1.0	600	1,000
Background MW-1	9/17/1997	<0.2	<0.2	<0.2	<0.4	NT	13.6	NT	889	1,983
GW-1	9/17/2012	630	2,800	190	2,000	NT	NT	NT	NT	NT
GW-1	9/17/2013	<1.0	<1.0	<1.0	<2.0	<0.50	34	4.9	2,200	4.120
GW-1	9/11/2013	<1.0	<1.0	<1.0	<2.0	<0.50	34	7.2	2,200	4,120
MW-13	11/4/2013	<1.0	<1.0	<1.0	<2.0	< 0.50	17	12	1,200	2,440
MW-13	2/27/2014	<2.0	<2.0	<2.0	<4.0	< 0.50	15	34	1,000	2,160
MW-13	5/28/2014	<1.0	<1.0	<1.0	<2.0	< 0.10	14	52	1,000	2,120
MW-13	8/26/2014	<1.0	<1.0	<1.0	<2.0	< 0.10	15	82	1,200	2,230
MW-13	11/20/2014	<1.0	<1.0	<1.0	<2.0	< 0.50	14	5.9	1,200	2,610
MW-13	2/25/2015	<1.0	<1.0	<1.0	<2.0	< 0.10	17	48	1,200	2,290
MW-13	5/28/2015	<1.0	<1.0	<1.0	<2.0	< 0.50	14	23	1,300	2,240
MW-13	8/25/2015	<1.0	<1.0	<1.0	<2.0	< 0.10	14	35	1,200	2,510
										_
MW-14	11/4/2013	<1.0	<1.0	<1.0	<2.0	<1.0	13	4.6	1,000	2,290
MW-14	2/27/2014	<2.0	<2.0	<2.0	<4.0	< 0.50	15	110	1,200	2,400
MW-14	5/28/2014	<1.0	<1.0	<1.0	<2.0	0.45	13	75	920	1,910
MW-14	8/26/2014	<1.0	<1.0	<1.0	<2.0	< 0.10	12	56	860	1,780
MW-14	11/20/2014	<1.0	<1.0	<1.0	<2.0	< 0.50	12	5.8	950	2,010
MW-14	2/25/2015	<2.0	<2.0	<2.0	<4.0	< 0.10	14	140	930	1,720
MW-14	5/28/2015	<1.0	<1.0	<1.0	<2.0	< 0.50	14	45	1,100	1,950
MW-14	8/25/2015	<1.0	<1.0	<1.0	<2.0	0.29	12	52	920	1,790
NOV. 15	11/4/2012	.1.0	.1.0	4.0	2.0	0.50	12	2.0	020	1.000
MW-15 MW-15	11/4/2013 2/27/2014	<1.0 <2.0	<1.0 <2.0	<1.0 <2.0	<2.0 <4.0	<0.50 <0.50	13 15	3.6 72	930	1,960
MW-15 MW-15	5/28/2014	<1.0	<1.0	<1.0	<2.0	0.90	12	72	980 760	2,040 1,530
MW-15	8/26/2014	<2.0	<2.0	<2.0	<4.0	< 0.10	13	190	860	1,690
MW-15	11/20/2014	<1.0	<1.0	<1.0	<2.0	<0.10	14	12	1,000	1,940
MW-15	2/25/2015	<1.0	<1.0	<1.0	<2.0	< 0.10	17	92	1,000	2,020
MW-15	5/28/2015	<1.0	<1.0	<1.0	<2.0	<0.10	19	36	1,100	2,000
MW-15	8/25/2015	<1.0	<1.0	<1.0	<2.0	<0.10	16	51	940	1,600
15	0, 20, 2010	12.0	11.0	-1.0	2.0	10.10	10		770	1,000
MW-16	11/4/2013	<1.0	<1.0	<1.0	<2.0	< 0.50	26	14	1,700	3,600
MW-16	2/27/2014	<2.0	<2.0	<2.0	<4.0	< 0.50	23	64	1,600	3,720
MW-16	5/28/2014	<1.0	<1.0	<1.0	<2.0	< 0.10	22	63	1,600	2,860
MW-16	8/26/2014	<1.0	<1.0	<1.0	<2.0	< 0.10	21	80	1,600	3,010
MW-16	11/20/2014	<1.0	<1.0	<1.0	<2.0	< 0.50	22	12	1,600	3,340
MW-16	2/25/2015	<2.0	<2.0	<2.0	<4.0	< 0.10	22	97	1,600	3,210
MW-16	5/28/2015	<1.0	<1.0	<1.0	<2.0	< 0.50	20	20	1,500	3,030
MW-16	8/25/2015	<1.0	<1.0	<1.0	<2.0	< 0.10	45	30	1,700	2,860

Notes:

 \boldsymbol{Bold} - indicates sample exceeds NMWQCC standard

mg/L - milligrams per liter

NA - not applicable

NMWQCC - New Mexico Water Quality Control Commission

NT - not tested

 $\mu g/L$ - micrograms per liter

< - indicates result is less than the stated laboratory method detection limit

TABLE 2 GROUNDWATER ELEVATION SUMMARY

DOGIE COMPRESSOR STATION J VENT RIO ARRIBA COUNTY, NEW MEXICO WILLIAMS FOUR CORNERS LLC

Well Number	Date	Top of Casing Elevation (feet)	Depth to Groundwater (feet BTOC)	Adjusted Groundwater Elevation (feet AMSL)
MW-13	11/4/2013	6,229.48	7.14	6,222.34
MW-13	2/27/2014	6,229.48	6.03	6,223.45
MW-13	5/28/2014	6,229.48	7.28	6,222.20
MW-13	8/26/2014	6,229.48	7.32	6,222.16
MW-13	11/20/2014	6,229.48	7.08	6,222.40
MW-13	2/25/2015	6,229.48	6.35	6,223.13
MW-13	5/28/2015	6,229.48	6.60	6,222.88
MW-13	8/25/2015	6,229.48	7.44	6,222.04
MW-14	11/4/2013	6,228.00	6.37	6,221.63
MW-14	2/27/2014	6,228.00	5.86	6,222.14
MW-14	5/28/2014	6,228.00	6.55	6,221.45
MW-14	8/26/2014	6,228.00	6.50	6,221.50
MW-14	11/20/2014	6,228.00	6.31	6,221.69
MW-14	2/25/2015	6,228.00	5.47	6,222.53
MW-14	5/28/2015	6,228.00	5.78	6,222.22
MW-14	8/25/2015	6,228.00	6.61	6,221.39
MW-15	11/4/2013	6,228.81	6.50	6,222.31
MW-15	2/27/2014	6,228.81	5.99	6,222.82
MW-15	5/28/2014	6,228.81	6.73	6,222.08
MW-15	8/26/2014	6,228.81	6.66	6,222.15
MW-15	11/20/2014	6,228.81	6.42	6,222.39
MW-15	2/25/2015	6,228.81	5.62	6,223.19
MW-15	5/28/2015	6,228.81	5.91	6,222.90
MW-15	8/25/2015	6,228.81	6.76	6,222.05
MW-16	11/4/2013	6,229.15	6.00	6,223.15
MW-16	2/27/2014	6,229.15	5.49	6,223.66
MW-16	5/28/2014	6,229.15	6.06	6,223.09
MW-16	8/26/2014	6,229.15	6.18	6,222.97
MW-16	11/20/2014	6,229.15	5.96	6,223.19
MW-16	2/25/2015	6,229.15	5.20	6,223.95
MW-16	5/28/2015	6,229.15	5.45	6,223.70
MW-16	8/25/2015	6,229.15	6.29	6,222.86

Notes:

AMSL - Above Mean Sea Level BTOC - Below Top of Casing

APPENDIX A $\label{eq:revised_work_plan} \textbf{REVISED WORK PLAN FOR BOS 200}^{\circledR} \textbf{ AMENDMENT}$

2243 Main Avenue, Suite 3 Durango, Colorado 81301 T 970.385.1096 / F 970.385.1873

April 23, 2013

Mr. Matt Webre Williams Four Corners, LLC 188 County Road 4900 Bloomfield, NM 87413

RE: Revised Work Plan for BOS 200® Amendment Williams Four Corners, LLC Dogie Compressor Station Rio Arriba County, New Mexico

Dear Mr. Webre:

LT Environmental, Inc. (LTE) is providing the following work plan to Williams Four Corners, LLC (Williams) to apply BOS 200® to an open excavation at the former J Vent at the Dogie Compressor Station (Site) to address historical petroleum hydrocarbon impacts to groundwater. The BOS 200® application and subsequent groundwater monitoring is proposed as a groundwater remediation program since a majority of the impacted soil has been removed and groundwater infiltration is impeding additional excavation progress. The following work plan provides details of the proposed remediation for which Williams is requesting temporary permission for a discharge for a period not to exceed 120 days from the New Mexico Oil Conservation Division (NMOCD) under 20.6.2.3106B of the New Mexico Administrative Code (NMAC).

Site Description and Background

The Site is located in the northwest quarter of the northwest quarter of Section 4, Township 25N, and Range 6W in Rio Arriba County, New Mexico in Largo Canyon as depicted in Figure 1. The former J Vent was periodically used to vent natural gas at the Site during emergency shutdown. In 2011, the venting equipment was updated and moved to the south approximately 75 feet. Petroleum hydrocarbon staining was visible at the location of the former J Vent, most likely the source of natural gas condensate, which is often a byproduct of the blow down process.

Williams excavated soil beneath the former J Vent to the extent shown on Figure 2. The excavation is approximately 80 feet long and 60 feet wide. The total depth of the excavation ranges from 5 feet to 7 feet below ground surface (bgs). Confirmation soil samples were collected above the smear zone along the sidewalls of the excavation by depositing five aliquots of soil into plastic bags, thoroughly mixing the contents and sampling into four ounce glass jars. Soil samples were stored on ice and delivered to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico following strict chain-of-custody procedures. The soil samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) by United States Environmental Protection Agency (USEPA) Method 8021B and total petroleum hydrocarbons (TPH) by USEPA Method 8015B. Laboratory analytical results are listed in

Table 1 and indicate soil samples did not exceed NMOCD standards. The complete laboratory analytical report is included in Attachment A.

Groundwater was encountered in the excavation at approximately 6 feet bgs. No sheen or odor was observed on the pooling groundwater. Groundwater was sampled by collecting a grab sample identified as GW-1 on September 17, 2012 from the location presented in Figure 2 in a decontaminated glass jar and immediately filling three pre-cleaned and pre-preserved 40-milliliter (ml) glass vials with zero headspace to prevent degradation of the sample. The groundwater sample was delivered on ice to HEAL and analyzed for BTEX according to USEPA Method 8021B. Table 2 includes the laboratory analytical results and indicates benzene, toluene, and total xylenes concentrations exceeded New Mexico Water Quality Control Commission (NMWOCC) standards. The complete laboratory analytical report is included in Attachment A.

Proposed Work Plan

To address the remaining impacted soil present on the bottom of the excavation and impacted groundwater, LTE proposes to apply an amendment in a single application for no more than 120 days to the excavation floor to enhance bioremediation of the smear zone, then backfill and monitor groundwater quality to document remediation progress and final closure. The BOS 200[®] product is a mix of activated carbon, petroleum-consuming microbes, calcium sulfate (gypsum), and nutrients. A material safety data sheet is included in Attachment B. The product removes hydrocarbons from the groundwater and saturated sediments through biological degradation of the hydrocarbon compounds. The product is applied directly to the smear zone during backfilling and the activated carbon attracts the hydrocarbons and adsorbs them where the hydrocarbons are co-located with microbes, nutrients, and electron acceptors. As the hydrocarbons are adsorbed into the activated carbon, microbes will use the hydrocarbons as a food source for respiratory and metabolic processes.

The following sections provide detailed information for a discharge as required by 20.6.2.3106C NMAC. It is important to note that the proposed addition of BOS $200^{\$}$ to the groundwater exposed by the open excavation is not designed as a slurry injection, but rather addition of the powder form of BOS $200^{\$}$ directly to the smear zone.

20.6.2.3106C (1)

LTE will apply a total of 1,000 pounds of BOS 200® to the base of the excavation prior to backfilling. The BOS 200® will be mixed into the smear zone soil and groundwater in powder form using a trackhoe. Once the BOS 200® has been applied, the excavation will be backfilled with clean overburden stockpiled onsite during the original excavation and additional clean fill material obtained from an offsite location. The backfilled excavation will be graded to match the surrounding topography upon completion.

In evaluating the Site, LTE has designed the application to reduce benzene concentrations from 630 micrograms per liter (μ g/l) to less than 10 μ g/l by applying approximately 20 pounds of BOS 200[®] to each 10-foot square area of the exposed smear zone.

BOS 200[®] is a mixture of approximately 80 percent (%) powdered or granulated activated carbon which is combined with a blend of sulfate reduction material and micronutrients at the factory. The selected nutrients include phosphorus (calcium phosphate), nitrogen (ammonium nitrate), and potassium (potassium chloride). Additional electron acceptors include iron, nitrate, and a time-release source of sulfate. The source of the time-release sulfate is gypsum or calcium sulfate.

When the BOS 200[®] is applied to the groundwater, the resulting mixture will have elevated concentrations of nitrate, sulfate, and chloride, but the effects will be minimal and temporary. At first, microbes will utilize oxygen during aerobic degradation. When oxygen is depleted, nitrate is the next highest energy electron acceptor. The first step in the de-nitrification is the formation of nitrite. Over the first month or two (post application), nitrate concentrations typically drop and low levels of nitrite are often observed. Finally, fermentation, sulfate reduction, and methanogenic respiration become the dominant pathways.

Metabolic by-products of the application will vary depending on what metabolic pathway is being used for hydrocarbon degradation. Carbon dioxide and water are the ultimate products of aerobic and most anaerobic biodegradations of hydrocarbons. The intermediate products of aerobic degradation may include simple acids, alcohols, and fatty acids. Acetate is produced by aerobic conditions, anaerobic fermentation, and methanogenic respiration. Other products include lactate, formate, butyrate, isobutyrate, pyruvate, and proprionate, along with methane.

Remediation Products, Inc. (RPI), the manufacturer of BOS 200[®], used the following site-specific characteristics and design criteria of the application to estimate the concentrations of ingredients of concern for this application:

- The excavation area is approximately 4,800 square feet
- The open excavation contains approximately 1 foot of standing groundwater
- The default porosity value of the silty sand is 0.3
- LTE will apply 1,000 pounds of product.

Based on these assumptions and the composition of BOS 200[®], RPI estimated concentrations of ingredients of concern as shown on Table 3. The remaining ingredients are activated carbon, calcium from the gypsum, and a proprietary blend of microbes.

LTE compared the ingredients of BOS 200[®] and associated by-products of the remediation process to the list of constituents identified in Subsections A and B of 20.6.2.3103 NMAC. The only constituents that are included in BOS 200[®] are nitrate, sulfate, chloride, and iron. These concentrations do not exceed NMWQCC standards (Table 4). Additionally, there are not enough water-soluble salts in BOS 200[®] given the parameters of this application to exceed 1,000 ppm total dissolved solids (TDS).

Once added to the groundwater, the BOS $200^{\$}$ application will migrate downgradient as part of normal groundwater flow behavior. However, the ingredients of concern will not exceed

NMWQCC standards. Additionally, the BOS 200[®] application will help prevent migration of petroleum hydrocarbon impacts by remediating the source.

20.6.2.3106C(2)

Groundwater monitoring wells were installed previously to address impacted groundwater unrelated to the J-Vent. Currently there are six existing monitoring wells (MW-3, MW-9, MW-10, MW-11, MW-12, and TMW-1) at the Site. These monitoring wells were installed north, east, and west of the J-Vent as part of the Dogie North Pit groundwater remediation (NMOCD Administrative/Environmental Order 3RP-313). Monitoring of these wells is no longer performed. Depth to groundwater is approximately 6 feet bgs and groundwater flow direction is toward the northwest based on previous groundwater monitoring events. Groundwater quality was analyzed from a sample collected on December 17, 1997 from monitoring well MW-1, which appears to have not been impacted from releases associated with operations at the Site. The approximate location of former MW-1 is depicted on Figure 2. The laboratory analytical results are included on Table 4 as background water quality data and indicate the sulfate concentration is 889 milligrams per liter (mg/l) and total dissolved solids (TDS) are 1,983 mg/l. The background concentrations indicate that sulfate and TDS naturally exceed the NMWQCC standards of 600 mg/l and 1,000 mg/l, respectively.

It should be noted that sulfate concentrations already exceed the NMWQCC standard at the Site. The addition of sulfate through the BOS 200® application may not increase sulfate concentrations above existing concentrations. Chloride was detected in former monitoring well MW-1 at a concentration of 13.6 mg/l; therefore, an additional 1.15 parts per million (ppm) from the BOS 200® application will not cause the chloride concentration to exceed the NMWQCC standard of 250 mg/l. Nitrate and iron concentrations were not analyzed in the groundwater sample from MW-1; however, the concentrations estimated to be added through the BOS 200® application (6.6 mg/l and 0.4 mg/l respectively) do not exceed the NMWQCC standards of 10 mg/l for nitrate and 1 mg/l for iron.

20.6.2.3106C (4)

The Site is located within the Largo Canyon floodplain. Excessive precipitation, such as a 100-year flood event could result in flooding of the Site.

20.6.2.3106C (5)

Following the BOS 200[®] application and backfilling, LTE proposes to install four groundwater monitoring wells to monitor groundwater quality (Figure 3). The monitoring wells will be constructed of schedule 40, two-inch diameter polyvinyl-chloride (PVC) and will include 15 feet of 0.01-inch machine slotted flush-threaded PVC well screen. At least ten feet of screen will be set beneath the water table and approximately three feet above to allow for seasonal fluctuations and a proper seal during well construction. A clean 10-20 grade silica sand gravel pack will be placed from the bottom of the boring to two feet above the top of the screen. One foot of 3/8-inch natural bentonite chips will be set above the gravel pack to the surface and completed with a

locking protective steel casing. Wells located within or near vehicle right-of-ways will be surrounded by three protective posts to prevent vehicle impact to the well. The new wells will be surveyed after construction. Top-of-casing elevations will be determined to an accuracy of no less than plus or minus 0.01 feet so that groundwater flow direction and gradient can be determined.

Following installation of monitoring wells, each new well will be developed utilizing a clean, disposable PVC bailer. LTE will purge fluid until the pH, specific conductivity and temperature is stabilized and turbidity is reduced to the greatest extent possible. All purge water will be collected and properly disposed of in accordance with applicable regulations.

Post-excavation groundwater monitoring will be conducted quarterly with the goal of observing eight consecutive quarters with analytical results in compliance with NMWQCC standards. Results will be presented in subsequent monitoring reports. Depth to water and total depth of the wells will be measured with a Keck oil-water interface probe. The interface probe will be decontaminated with AloconoxTM soap and rinsed with de-ionized water prior to each measurement. A minimum of three casing volumes will be removed from each well while pH, specific conductivity and temperature are monitored for stabilization. Once these parameters stabilize, the wells will be sampled by filling three pre-cleaned and pre-preserved 40 milliliter (ml) glass vials with zero headspace. The groundwater samples will be shipped on ice to a laboratory and analyzed for BTEX according to USEPA Method 8021B. Additionally, sulfate, chloride, iron, nitrate, and TDS will be analyzed to monitor concentrations in groundwater and demonstrate eventual consumption of the electron acceptors. Strict chain-of-custody procedures will be followed during transport of the samples to the laboratory. Groundwater will be monitored quarterly until eight consecutive quarters show results that are below NMWQCC standards.

Although metabolic by-products are likely to occur, acetate, lactate, formate, butyrate, isobutyrate, pyruvate, and methane are not regulated by NMWQCC and will not be monitored. Concentrations are not expected to be significantly elevated.

Quarterly groundwater monitoring will be documented and submitted in annual reports to the NMOCD. Reports will include groundwater elevations, relevant figures including site location and potentiometric surface maps, and analytical results. The initial annual report will include soil boring and monitoring well completion logs as well as cross sections.

20.6.2.3106C (6)

Shallow groundwater occurs at approximately 6 feet bgs. Depth to bedrock is unknown.

20.6.2.3106C (7)

See Sections 20.6.2.3106C (1), 20.6.2.3106C (3), and 20.6.2.3106C (5).

20.6.2.3106C (8)

No injection wells are being installed.

If you have any questions or comments regarding the scope of work, please do not hesitate to contact me at (970) 385-1096 or via email at aager@ltenv.com. You may also contact Matt Webre at (505) 632-4442 or at matt.webre@williams.com.

Sincerely,

LT ENVIRONMENTAL, INC.

ashley L. ager

Ashley L. Ager, M.S.

Senior Geologist

Attachments (9)

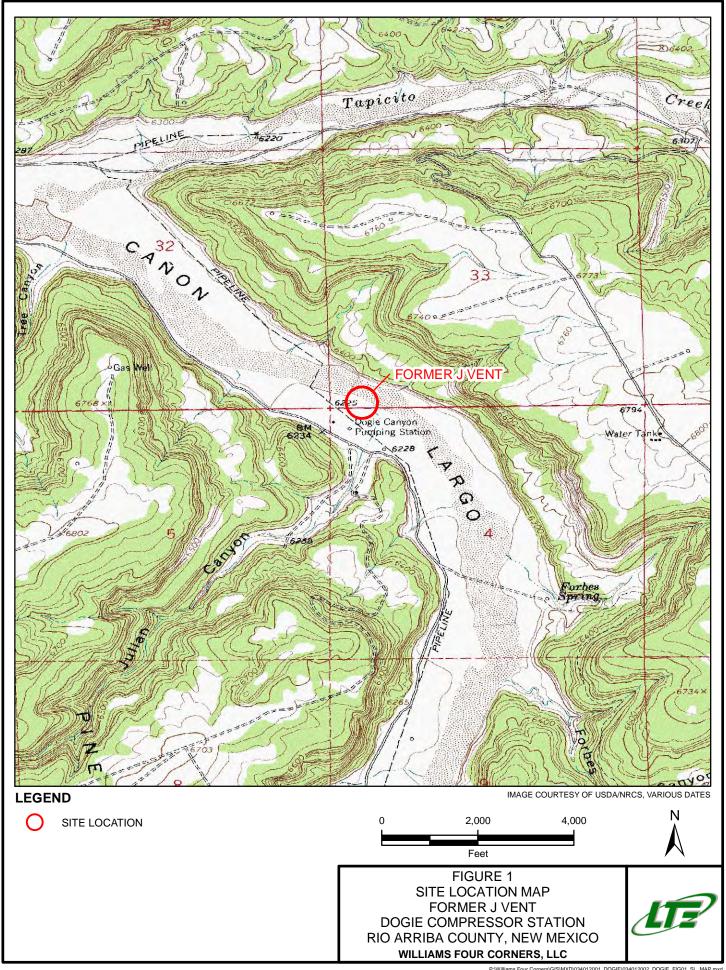
Figure 1 – Site Location Map

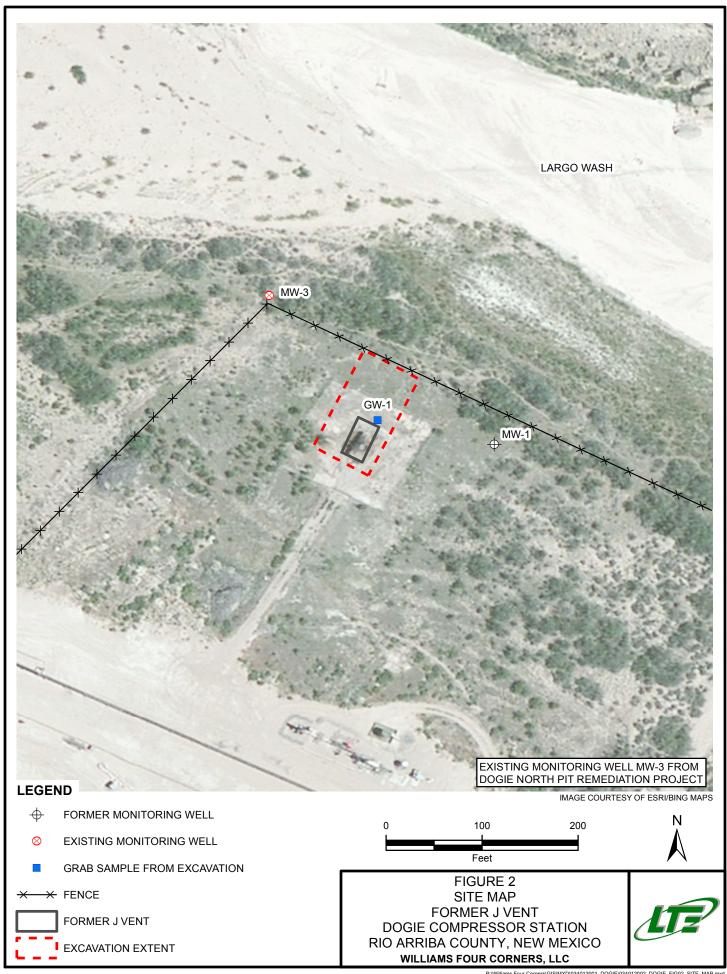
Figure 2 – Site Map

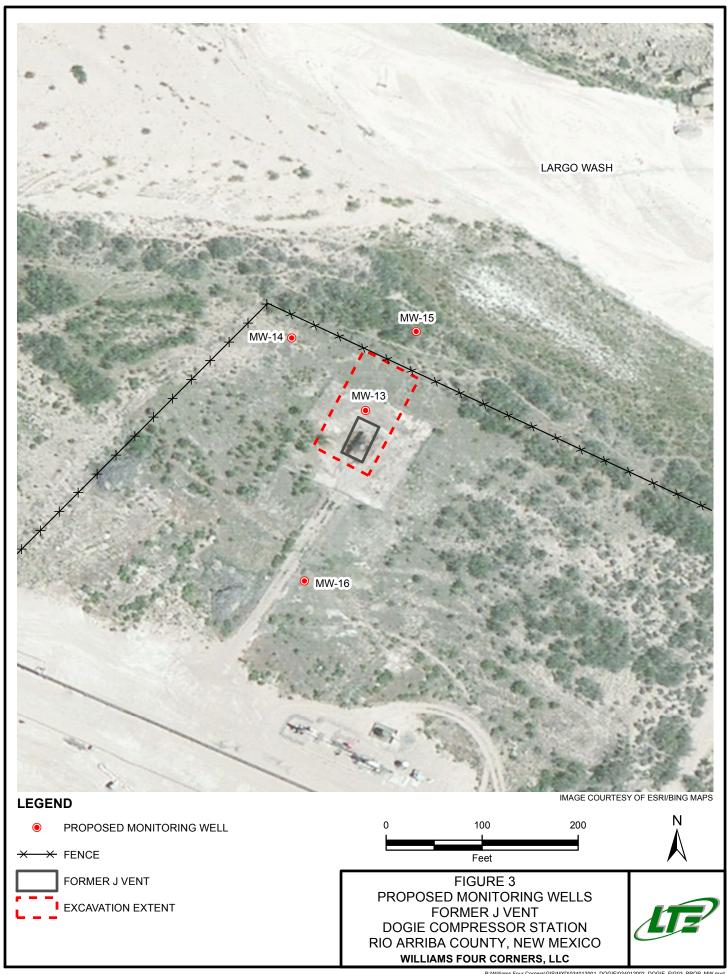
Figure 3 – Proposed Monitoring Well Locations

Table 1 – Soil Analytical Results

Table 2 – Groundwater Analytical Results


Table 3 – Concentrations of Ionic Ingredients of BOS 200® Amendment When Applied at the Site


Table 4 – Composition of BOS 200[®] Amendment Compared to NMWQCC Standards and Background Water Quality


Attachment A – Laboratory Analytical Reports

Attachment B - BOS 200® Material Safety Data Sheet

EXCAVATION SOIL ANALYTICAL RESULTS FORMER J-VENT WILLIAMS FOUR CORNERS, LLC

Sample ID	Date Sampled	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	GRO (mg/kg)	DRO (mg/kg)	MRO (mg/kg)	TPH (mg/kg)
North Wall	9/17/2012	< 0.050	< 0.050	< 0.050	< 0.10	0 - < 0.25	< 5.0	< 9.6	< 48	0 - < 62.6
South Wall	9/17/2012	< 0.050	< 0.050	< 0.050	< 0.10	0 - < 0.25	< 5.0	< 9.9	< 50	0 - < 64.9
East Wall	9/17/2012	< 0.050	< 0.050	< 0.050	< 0.10	0 - < 0.25	< 5.0	< 9.7	< 49	0 - < 63.7
West Wall	9/17/2012	< 0.050	< 0.050	< 0.050	< 0.10	0 - < 0.25	< 5.0	< 10.0	< 50	0 - < 65.0

NMOCD Standard 10 50 100

Notes:

BTEX - benzene, toluene, ethylbenzene, and total xylenes

DRO - diesel range organics

GRO - gasoline range organics

mg/kg - milligrams per kilogram

MRO - motor oil range organics

NMOCD - New Mexico Oil Conservation Commission

TPH - total petroleum hydrocarbons

< - indicates result is less than the stated laboratory method detection limit

EXCAVATION GROUNDWATER ANALYTICAL RESULTS FORMER J-VENT WILLIAMS FOUR CORNERS, LLC

Sample ID	Date Sampled	Benzene (µg/l)	Toluene (μg/l)	Ethylbenzene (µg/l)	Total Xylenes (μg/l)
GW-1	9/17/2012	630	2,800	190	2,000

NMWQCC Standard 10 750 750 620

Notes:

NMWQCC - New Mexico Water Quality Control Commission

 $\mu g/l$ - micrograms per liter

< - indicates result is less than the stated laboratory method detection limit

Bold - indicates sample exceeds NMWQCC standard

ESTIMATED SITE-SPECIFIC CONCENTRATIONS OF BOS 200° INGREDIENTS FORMER J-VENT WILLIAMS FOUR CORNERS, LLC

Constituent	BOS 200® Application (ppm)
Nitrate:Nitrogen	6.6
Chloride	1.15
Sulfate	210
Iron	0.8
Potassium	1.26
Phosphate	ND

Notes:

ND - Not Detectable

ppm - parts per million

Activated carbon, gypsum, and microbes are the primary constituents of BOS 200[®] Concentrations listed above are estimated based on the following assumptions:

- The excavation area is approximately 4,800 square feet
- The open excavation contains approximately 1 foot of standing groundwater
- The default porosity value of the silty sand is 0.3
- Application of 1,000 pounds of BOS 200®

COMPOSITION OF BOS 200° AMENDMENT COMPARED TO NMWQCC STANDARDS AND BACKGROUND WATER QUALITY FORMER J-VENT

WILLIAMS FOUR CORNERS, LLC

Subsection A & B of 20.6.2.3103 Constituent	NMWQCC Standard (mg/l)	BOS 200® Application (ppm)	Background Sample (MW-1) September 17, 1997
Arsenic (As)	0.1	NA	NT
Barium (Ba)	1.0	NA	NT
Cadmium (Cd)	0.01	NA	NT
Chromium (Cr)	0.05	NA	NT
Cyanide (CN)	0.2	NA	NT
Fluoride (F)	1.6	NA	NT
Lead (Pb)	0.05	NA	NT
Total Mercury (Hg)	0.002	NA	NT
Nitrate (NO3 as N)	10	6.6	NT
Selenium (Se	0.05	NA	NT
Silver (Ag)	0.05	NA	NT
Uranium (U)	0.03	NA	NT
Benzene	0.01	NA	< 0.0002
Polychlorinated biphenyls (PCB's)	0.001	NA	NT
Toluene	0.75	NA	< 0.0002
Carbon Tetrachloride	0.01	NA	NT
1,2-dichloroethane (EDC)	0.01	NA	NT
1,1-dichloroethylene (1,1-DCE)	0.005	NA	NT
1,1,2,2-tetrachloroethylene (PCE)	0.02	NA	NT
1,1,2-trichloroethylene (TCE)	0.1	NA	NT
ethylbenzene	0.75	NA	< 0.0002
total xylenes	0.62	NA	< 0.0004
methylene chloride	0.1	NA	NT
chloroform	0.1	NA	NT
1,1-dichloroethane	0.025	NA	NT
ethylene dibromide (EDB)	0.0001	NA	NT
1,1,1-trichloroethane	0.06	NA	NT
1,1,2-tetrachloroethane	0.01	NA	NT
1,1,2,2-tetrachloroethane	0.01	NA	NT
vinyl chloride	0.001	NA	NT
PAHs: total naphthalene plus monomethylnaphthalenes	0.03	NA	NT
benzo-a-pyrene	0.0007	NA	NT
Chloride (Cl)	250	1.15	13.6
Copper (Cu)	1.0	NA	NT
Iron (Fe)	1.0	0.4	NT
Manganese (Mn)	0.2	NA	NT
Phenols	0.005	NA NA	NT
Sulfate (SO4)	600	210	889
Total Dissolved Solids (TDS)	1,000	<1,000	1,983
Zinc (Zn)	10	NA	NT
pH	between 6 and 9	NA	7.66
hii	between 6 and 9	INA	7.00

Notes:

NA - Not Applicable

NMWQCC - New Mexico Water Quality Control Commission

NT - Not Tested

mg/l - milligrams per liter

ppm - parts per million

< - indicates result is less than the stated laboratory method detection limit

Bold - indicates sample exceeds NMWQCC standard

Concentrations for BOS 200® listed above are estimated based on the following assumptions:

- The excavation area is approximately 4,800 square feet
- The open excavation contains approximately 1 foot of standing groundwater
- The default porosity value of the silty sand is 0.3
- Application of 1,000 pounds of BOS 200®

ATTACHMENT A LABORATORY ANALYTICAL REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 19, 2012

Ashley Ager

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: J Vent OrderNo.: 1209694

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 4 sample(s) on 9/18/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Analytical Report

Lab Order 1209694

Date Reported: 9/19/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: North Walll

Project: J Vent Collection Date: 9/17/2012 10:27:00 AM 1209694-001 Matrix: MEOH (SOIL) Received Date: 9/18/2012 10:00:00 AM Lab ID:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANG				Analyst: JMP	
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	9/19/2012 7:30:09 AM
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/19/2012 7:30:09 AM
Surr: DNOP	111	77.6-140	%REC	1	9/19/2012 7:30:09 AM
EPA METHOD 8015B: GASOLINE RA				Analyst: NSB	
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/18/2012 2:01:25 PM
Surr: BFB	100	84-116	%REC	1	9/18/2012 2:01:25 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	9/18/2012 2:01:25 PM
Toluene	ND	0.050	mg/Kg	1	9/18/2012 2:01:25 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/18/2012 2:01:25 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/18/2012 2:01:25 PM
Surr: 4-Bromofluorobenzene	99.1	80-120	%REC	1	9/18/2012 2:01:25 PM

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits 1 of 8

Lab Order 1209694

Date Reported: 9/19/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE

Client Sample ID: South Wall

Project: J Vent Collection Date: 9/17/2012 10:33:00 AM

1209694-002 Matrix: MEOH (SOIL) Received Date: 9/18/2012 10:00:00 AM Lab ID:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	9/19/2012 7:51:37 AM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2012 7:51:37 AM
Surr: DNOP	104	77.6-140	%REC	1	9/19/2012 7:51:37 AM
EPA METHOD 8015B: GASOLINE RAN	IGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/18/2012 2:30:11 PM
Surr: BFB	100	84-116	%REC	1	9/18/2012 2:30:11 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	9/18/2012 2:30:11 PM
Toluene	ND	0.050	mg/Kg	1	9/18/2012 2:30:11 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/18/2012 2:30:11 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/18/2012 2:30:11 PM
Surr: 4-Bromofluorobenzene	102	80-120	%REC	1	9/18/2012 2:30:11 PM

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits 2 of 8

Lab Order 1209694

Date Reported: 9/19/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: East Wall

Collection Date: 9/17/2012 9:40:00 AM **Project:** J Vent 1209694-003 Matrix: MEOH (SOIL) **Received Date:** 9/18/2012 10:00:00 AM Lab ID:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGI	E ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	9/19/2012 8:13:18 AM
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	9/19/2012 8:13:18 AM
Surr: DNOP	109	77.6-140	%REC	1	9/19/2012 8:13:18 AM
EPA METHOD 8015B: GASOLINE RA	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/18/2012 2:59:02 PM
Surr: BFB	101	84-116	%REC	1	9/18/2012 2:59:02 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	9/18/2012 2:59:02 PM
Toluene	ND	0.050	mg/Kg	1	9/18/2012 2:59:02 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/18/2012 2:59:02 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/18/2012 2:59:02 PM
Surr: 4-Bromofluorobenzene	102	80-120	%REC	1	9/18/2012 2:59:02 PM

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits 2 3 of 8

Lab Order 1209694

Date Reported: 9/19/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: West Wall

Project: J Vent Collection Date: 9/17/2012 10:30:00 AM 1209694-004 Matrix: MEOH (SOIL) Received Date: 9/18/2012 10:00:00 AM Lab ID:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015B: DIESEL RANGE	ORGANICS				Analyst: JMP
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	9/19/2012 8:34:50 AM
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	9/19/2012 8:34:50 AM
Surr: DNOP	111	77.6-140	%REC	1	9/19/2012 8:34:50 AM
EPA METHOD 8015B: GASOLINE RAM	NGE				Analyst: NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	9/18/2012 3:27:52 PM
Surr: BFB	101	84-116	%REC	1	9/18/2012 3:27:52 PM
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	0.050	mg/Kg	1	9/18/2012 3:27:52 PM
Toluene	ND	0.050	mg/Kg	1	9/18/2012 3:27:52 PM
Ethylbenzene	ND	0.050	mg/Kg	1	9/18/2012 3:27:52 PM
Xylenes, Total	ND	0.10	mg/Kg	1	9/18/2012 3:27:52 PM
Surr: 4-Bromofluorobenzene	103	80-120	%REC	1	9/18/2012 3:27:52 PM

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - R RPD outside accepted recovery limits
 - Spike Recovery outside accepted recovery limits Page 4 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1209694**

19-Sep-12

Client: LTE
Project: J Vent

Sample ID MB-3802 SampType: MBLK TestCode: EPA Method 8015B: Diesel Range Organics **PBS** Client ID: Batch ID: 3802 RunNo: 5617 Units: mg/Kg Prep Date: 9/18/2012 Analysis Date: 9/19/2012 SeqNo: 161020 Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 10 10.00 103 77.6 140

Sample ID LCS-3802 SampType: LCS TestCode: EPA Method 8015B: Diesel Range Organics Client ID: LCSS Batch ID: 3802 RunNo: 5617 Prep Date: 9/18/2012 Analysis Date: 9/19/2012 SeqNo: 161021 Units: mg/Kg Analyte SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 29 10 50.00 58.5 52.6 130 Surr: DNOP 4.2 5.000 84.2 77.6 140

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 5 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1209694**

19-Sep-12

Client: LTE
Project: J Vent

Surr: BFB

Sample ID MB-3765 SampType: MBLK TestCode: EPA Method 8015B: Gasoline Range

Client ID: PBS Batch ID: 3765 RunNo: 5612

Prep Date: 9/14/2012 Analysis Date: 9/18/2012 SeqNo: 160814 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 990 1000 99.3 84 116

Sample ID LCS-3765 SampType: LCS TestCode: EPA Method 8015B: Gasoline Range

Client ID: LCSS Batch ID: 3765 RunNo: 5612

1000

Prep Date: 9/14/2012 Analysis Date: 9/18/2012 SeqNo: 160815 Units: mg/Kg

1000

Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 25 5.0 25.00 101 74 117

103

84

116

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 6 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1209694**

19-Sep-12

Client: LTE
Project: J Vent

Sample ID MB-3765 SampType: MBLK TestCode: EPA Method 8021B: Volatiles PBS Client ID: Batch ID: 3765 RunNo: 5612 9/14/2012 Analysis Date: 9/18/2012 SeqNo: 160837 Prep Date: Units: mg/Kg Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 0.050 Toluene ND 0.050 Ethylbenzene ND 0.050 ND Xylenes, Total 0.10 Surr: 4-Bromofluorobenzene 1.0 1.000 102 80 120

Sample ID LCS-3765	Samp1	ype: LC	s	Tes	tCode: E	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Batcl	h ID: 37	65	R	RunNo: 5	612				
Prep Date: 9/14/2012	Analysis D	Date: 9/	18/2012	S	SeqNo: 1	60838	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.050	1.000	0	100	76.3	117			
Toluene	1.0	0.050	1.000	0	101	80	120			
Ethylbenzene	1.0	0.050	1.000	0	103	77	116			
Xylenes, Total	3.1	0.10	3.000	0	104	76.7	117			
Surr: 4-Bromofluorobenzene	1.1		1.000		109	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 7 of 8

Hall Environmental Analysis Laboratory, Inc.

WO#: **1209694**

19-Sep-12

Client: LTE
Project: J Vent

Sample ID mb-3765	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBS	Batch	ID: 37	65	F	RunNo: 5	580				
Prep Date: 9/14/2012	Analysis D	ate: 9/	17/2012	8	SeqNo: 1	60199	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.43		0.5000		85.0	70	130			
Surr: 4-Bromofluorobenzene	0.42		0.5000		83.7	70	130			
Surr: Dibromofluoromethane	0.43		0.5000		85.9	70	130			
Surr: Toluene-d8	0.38		0.5000		75.9	70	130			

Sample ID Ics-3765	SampT	ype: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSS	Batch	ID: 37	65	F	RunNo: 5	580				
Prep Date: 9/14/2012	Analysis D	ate: 9/	17/2012	8	SeqNo: 1	60219	Units: %RE	С		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	0.42		0.5000		83.5	70	130			
Surr: 4-Bromofluorobenzene	0.42		0.5000		83.5	70	130			
Surr: Dibromofluoromethane	0.43		0.5000		86.8	70	130			
Surr: Toluene-d8	0.36		0.5000		72.6	70	130			

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Hall Environmental Analysis Laborator) 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-410', Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: LTE Work Order Number: 1209694 09/18/12 Received by/date: Logged By: Michelle Garcia 9/18/2012 10:00:00 AM Completed By: Michelle Garcia 9/18/2012 10:25:57 AM Reviewed By: Chain of Custody Yes No 🗌 .Not Present 🗹 1 Were seals intact? Yes 🔽 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier <u>Log In</u> Yes 🗹 No 🗌 NA 🗌 4 Coolers are present? (see 19. for cooler specific information) Yes V No NA 🗌 5. Was an attempt made to cool the samples? Yes 🗹 No 🗌 NA 🗀 6. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗌 7. Sample(s) in proper container(s)? Yes 🗹 No 🗌 Sufficient sample volume for indicated test(s)? Yes 🗹 No 🗌 9 Are samples (except VOA and ONG) properly preserved? 10. Was preservative added to bottles? Yes 🗌 No 🗹 NA 🗌 Yes ☐ No ☐ No VOA Vials 🗹 11. VOA vials have zero headspace? Yes No 🗸 12. Were any sample containers received broken? # of preserved Yes 🔽 No 🗌 13. Does paperwork match bottle labels? bottles checked (Note discrepancies on chain of custody) for pH: Yes 🗸 No 🗌 (<2 or >12 unless noted) 14. Are matrices correctly identified on Chain of Custody? Adjusted? Yes 🗸 No 🗌 15. Is it clear what analyses were requested? Yes 🗹 No 🗌 16. Were all holding times able to be met? (If no, notify customer for authorization.) Checked by Special Handling (if applicable) 17. Was client notified of all discrepancies with this order? Yes D No D NA 🗹 Person Notified: Date: By Whom: ☐ eMail ☐ Phone ☐ Fax ☐ In Person Regarding: Client Instructions: 18. Additional remarks: 19 Cooler Information Cooler No | Temp °C | Condition | Seal Intact | Seal No | Seal Date Signed By Good Yes

HALL ENVIRONMENTAL ANALYSIS LABORATORY	www.nalienviroliniental.com 4901 Hawkins NE - Albuquerque, NM 87109		Analysis	(ləs	PO ₄ ,SG	15B (Č 18.1) 13.NO ₂ , 18082	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TPH Method TPH (Method EDB (Method 8310 (PNA d RCRA 8 Me Anions (F,Cl 8081 Pestici 8260B (VOA 8270 (Semi-		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7	7				7	ks:		reflectives. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
		· -						 	7	7	7	7					Remarks		is possibility
Tum-Around Time: ☐ Standard Rush 24 hrs	- unt	Project #;		Project Manager:	Ashley Ager	Sampler: Ashilly Ager	Sample Temperature: 1.8	Container Preservative HEAL No Type and # NoCH 1209	402/1 (000 -00)	402/1 GOI002	1 1000 1	402/1 (00) 1/204	400 11 100 - W				Application () Color of 17/12 1356	18/18/18/18/18/18/18/18/18/18/18/18/18/1	dited la
Client: LTE	Mailing Address: 2243 Mgin Ave #3		Phone #: 970 385 1096	email or Fax#:	QA/QC Package: X Standard □ Level 4 (Full Validation)	Accreditation ☐ NELAP ☐ Other	□ EDD (Type)	Date Time Matrix Sample Request ID	-17-12 10:27 soil North Wall	-17-12 18:33 soil South Wall	17-12 9:40 soil East Wall	147-12 10:30 soil West Wall	N312 561			manari,	1-17-12 13:50 (MMM H)	1/2/1740 Mastre 12012	If necessary, samples submitted to Hall Environmental may be subcontracted to other accre

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 21, 2012

Ashley Ager

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: J Vent OrderNo.: 1209693

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 1 sample(s) on 9/18/2012 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1209693

Date Reported: 9/21/2012

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: GW-1

Collection Date: 9/17/2012 12:11:00 PM **Project:** J Vent 1209693-001 Matrix: AQUEOUS Received Date: 9/18/2012 10:00:00 AM Lab ID:

Analyses	Result	RL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	630	50	μg/L	50	9/18/2012 12:38:57 PM
Toluene	2800	50	μg/L	50	9/18/2012 12:38:57 PM
Ethylbenzene	190	50	μg/L	50	9/18/2012 12:38:57 PM
Xylenes, Total	2000	100	μg/L	50	9/18/2012 12:38:57 PM
Surr: 4-Bromofluorobenzene	102	69.7-152	%REC	50	9/18/2012 12:38:57 PM

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2
- Reporting Detection Limit

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits 1 of 3

Hall Environmental Analysis Laboratory, Inc.

WO#: **1209693**

21-Sep-12

Client: LTE
Project: J Vent

Surr: BFB

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8015B: Gasoline Range

Client ID: PBW Batch ID: R5614 RunNo: 5614

Prep Date: Analysis Date: 9/18/2012 SeqNo: 160860 Units: %REC

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Surr: BFB 19 20.00 93.2 69.8 119

Sample ID 2.5UG GRO LCS SampType: LCS TestCode: EPA Method 8015B: Gasoline Range

Client ID: LCSW Batch ID: R5614 RunNo: 5614

Prep Date: Analysis Date: 9/18/2012 SeqNo: 160861 Units: %REC

20.00

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

104

69.8

119

21

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 2 of 3

Hall Environmental Analysis Laboratory, Inc.

WO#: **1209693**

21-Sep-12

Client: LTE
Project: J Vent

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: **PBW** Batch ID: R5614 RunNo: 5614 Prep Date: Analysis Date: 9/18/2012 SeqNo: 160875 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 ND Ethylbenzene 1.0 Xylenes, Total ND 2.0 Surr: 4-Bromofluorobenzene 19 20.00 94.2 69.7 152

Sample ID 100NG BTEX LCS SampType: LCS TestCode: EPA Method 8021B: Volatiles Batch ID: R5614 Client ID: **LCSW** RunNo: 5614 Prep Date: Analysis Date: 9/18/2012 SeqNo: 160876 Units: µg/L Analyte **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit 20 1.0 20.00 O 98.5 80 120 Benzene Toluene 20 1.0 20.00 0 102 80 120 Ethylbenzene 21 20.00 0 105 80 120 1.0 Xylenes, Total 64 2.0 60.00 0 107 80 120 19 Surr: 4-Bromofluorobenzene 20.00 92.6 69.7 152

Sample ID 1209693-001AMS SampType: MS TestCode: EPA Method 8021B: Volatiles Client ID: GW-1 Batch ID: R5614 RunNo: 5614 Prep Date: Analysis Date: 9/18/2012 SeqNo: 160881 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene 1700 50 1000 626.5 104 74.1 124 Toluene 4000 50 1000 2847 112 75.2 124 1200 50 1000 105 69 125 Ethylbenzene 187.4 Xylenes, Total 5300 100 3000 1997 109 73.1 126 Surr: 4-Bromofluorobenzene 93.3 930 1000 69.7 152

Sample ID 1209693-001AMSD SampType: MSD TestCode: EPA Method 8021B: Volatiles Client ID: GW-1 Batch ID: R5614 RunNo: 5614 Prep Date: Analysis Date: 9/18/2012 SeqNo: 160882 Units: µg/L SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL SPK value LowLimit HighLimit Qual 1600 50 1000 626.5 100 74.1 124 2.08 11.2 Benzene Toluene 3900 50 1000 2847 110 75.2 124 0.523 11.9 1000 Ethylbenzene 1200 50 187.4 103 69 125 1.91 13.5 Xylenes, Total 5200 100 3000 1997 106 73.1 126 1.63 13 Surr: 4-Bromofluorobenzene 1000 1000 99.8 69.7 152 0 0

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH greater than 2

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Page 3 of 3

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

LTE Client Name: Work Order Number: 1209693 Received by/date: Logged By: 9/18/2012 10:00:00 AM Lindsay Mangin Completed By: **Lindsay Mangin** 9/18/2012 10:22:24 AM Reviewed By: 20 09/18/12 Chain of Custody 1 Were seals intact? Not Present 🗸 No 2. Is Chain of Custody complete? No Not Present Yes 🗸 3. How was the sample delivered? Courier <u>Log In</u> 4. Coolers are present? (see 19. for cooler specific information) Yes V No NA 5. Was an attempt made to cool the samples? Νo NA 6 Were all samples received at a temperature of >0° C to 6.0°C ✓ No NA 7. Sample(s) in proper container(s)? ✓ No 8 Sufficient sample volume for indicated test(s)? Nο 9. Are samples (except VOA and ONG) properly preserved? V. No 10. Was preservative added to bottles? No ✔ NΑ 11. VOA vials have zero headspace? ✓ No No VOA Vials 12. Were any sample containers received broken? # of preserved 13. Does paperwork match bottle labels? ✓ No bottles checked (Note discrepancies on chain of custody) for pH: 14. Are matrices correctly identified on Chain of Custody? ✓ No (<2 or >12 unless noted) Adjusted? 15. Is it clear what analyses were requested? 16. Were all holding times able to be met? Yes Nο (If no, notify customer for authorization.) Checked by: Special Handling (if applicable) 17. Was client notified of all discrepancies with this order? Yes Nο NA 🗸 Person Notified: Date: By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 18. Additional remarks:

19. Cooler Information
Cooler No. | Tem

Cooler No	Temp ºC	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.8	Good	Yes			

Chain-of-Custody Record	ord	Turn-Around Time:	je:	<u>.</u>													
Client: LTE		□ Standard	\leq Rush 2^{4}	24 1/2	1			I	<u>₹</u>	Ш ў	2	IZ.	2	HALL ENVIRONMENTAL		₹.	. }
		Project Name:		-					Z .	<u> </u>	7	י ב		ANALYSIS LABORATORY		0 K	-
Mailing Address: 2243 Main Ave #3	#		<u>_</u>			٦	www.h 4901 Hawkins NE	v riskvet	www.h	ੱ ਹ	ironn	www.hallenvironmental.com	COM.	environmental.com			
Durango, CO 81301)03	Project #:		i:		•	Tel 505-345-3075	15.341	13 INL	٠		i que,		27 108			
اگل							5	ŕ	60	Anal	sis F	Analysis Request	t is	6			
email or Fax#:		Project Manager:	5						_		(†	-				<u> </u>	-
QA/QC Package:		Azzh Mi	The Contract of the Contract o								OS'*	s,g(
According Level 4 (Full Validation)	alidation)	2001/11	102		ļ				_		0 <u>q</u> ,						
□ NELAP □ Other		Sampler: #540 On ice	2 6	Z No						- (ZON"	.808	(.	<u> </u>	(N
□ EDD (Type)		edwe	rature: 3								ON						ע טג
Date Time Matrix Sample Request ID		Container Pre Type and #	Preservative Type	HEAL	No	EX + MTB	H Method	H (Methoc	o ANG) 0	SteM 8 AR	ons (F,CI,	Pesticid	(AOV) 80 v-ime2) 0		<u>_</u>	_	() RAIddu8
217-12 12:11 GW GW-1		402/3 H		16031 - 06	W = 0	\					inA				+	_	1iA
								<u> </u>	┼		 	+	+			-	+
	,								-			 	-			-	+
												-			 _	+	4
													<u> </u>		┢	├-	 -
						+											ļ
		-				+		-	+		+	_	4			\dashv	
						_		_ _	_		- -	+	_ _		_	\dashv	
					<u>-</u>	_			+		+	 -	-		+		4-
						\vdash					\vdash	-	<u> </u>		+-	+	
Date: Time: Relinquished by 7	.	Received by:						_									
1351 Time	2	Mati	20 62	112	1351 K	Remarks	. <u>.</u>										
_ (Times Sal) Date 1	ime 7												
If necessary, semples submitted to Hall Environmental may be subcontracted to other agered	may be subcon		d laboratories.	ited laboratories. This serves as notice of this nossibility. Any enhandrantal data will be alond.	notice of this no	ssihility	Anv enh	-	tad data	Man No.	do note.				•		

ATTACHMENT B ${\bf BOS~200^{\$}~MATERIAL~SAFETY~DATA~SHEET}$

Material Safety Data Sheet Trap & Treat® BOS-200®

Section I

Manufacturer's Name Remediation Products Inc.	Emergency Telephone Number 303.487.1000
	Telephone Number for Information 303-487-1000
Prepared by B. Elliott	Date Prepared 11/8/2012
	Signature of Preparer (optional)

Section II - Hazard Ingredients/Identity Information

Non-hazardous components are listed at 3 percent (%) or greater. This is not intended to be a complete compositional disclosure.

Hazardous Components (Specific Chemical		ACGIH	Other Limits	
Identity; Common Name(s))	OSHA PEL	TLV	Recommended	%(optional)
Carbon	5mg/M^3	10mg/M^3	N/A	77
	(respirable)	(Total)		
Calcium Sulfate (Gypsum)		66	N/A	19
N/A = Not Applicable				
PELs and TLVs are 8-hour TWAs unless otherwise noted.				

Section III - Physical/Chemical Characteristics

Boiling Point	N/A	Specific Gravity (H ₂ O = 1)	2.33 g/cc real density
Vapor Pressure (mm Hg.)	N/A	Melting Point	Decomposes at 1450°C
Vapor Density (AIR = 1)	N/A	Evaporation Rate (Butyl Acetate = 1)	N/A
Solubility in Water: Negligible			
Appearance and Odor: Black powd	ler. No odor.		

Section IV - Fire and Explosion Hazard Data

Flash Point (Method Used)	Flammable Limits	LEL	UEL
Not combustible		N/A	N/A
Extinguishing Media			
Flood with plenty of water			
Special Fire Fighting Procedures			
None			
Unusual Fire and Explosion Hazards			

Contact with strong oxidizer, such as ozone, liquid oxygen, chlorine, permanganate, etc., may result in fire.
NFPA Rating:
Health=0; Reactivity=0; Flammability=1

Section V - Reactivity Data

Stability	Unstable		Conditions to Avoid
	Stable	X	None
Incompatibility (A	Materials to Avoid)		
Strong oxidizers,	such as ozone, liquid oxyge	en, cl	hlorine, permanganate, etc., and acids.
Hazardous Decomposition	May Occur	X	Conditions to Avoid Above 1450° - SO ₂ & CaO
Decomposition	W'II N O		Above 1430 - SO ₂ & CaO
	Will Not Occur		

Section VI - Health Hazard Data

Route(s) of Entry:	Inhalation?	Skin?	Ingestion?
	Yes	Yes	Yes
Health Hazards (Acute and Chronic)			

The effects of long-term, low-level exposures to carbon have not been determined. Safe handling of this material on a long-term basis should emphasize the avoidance of all effects from repetitive acute exposures.

Persons subjected to excessive dust will be forced to leave area because of nuisance; i.e., coughing, sneezing and nasal irritation.

CAUTION!!! This material, when wet, removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal regulations.

Carcinogenicity:	NTP?	IARC Monographs?	OSHA Regulated?
	N/A	N/A	No

Signs and Symptoms of Exposure

Effects and Hazards of Eye Contact: The physical nature of this product may produce eye irritation, if exposed to dusting conditions without protective eye equipment.

Effects and Hazards of Skin Contact: The product is not a primary skin irritant. The primary skin irritation (Rabbit) is 0.

Effects and Hazards of Inhalation Breathing): This product is practically non-toxic through inhalation. The acute inhalation LD₅₀ (Rat) is >6.4 mg/l (nominal concentration). Could cause irritation to respiratory passages, if exposed to dusting conditions without protective respiratory equipment.

Effects and Hazards of Ingestion (Swallowing): Material is non-toxic through ingestion. The acute oral LD_{50} (Rat) is >10g/kg.

Medical Conditions Generally Aggravated by Exposure

N/A

Emergency and First Aid Procedures

Eyes: Flush with plenty of water for at least 15 minutes. Call physician if irritation continues.

Skin: Wash with soap and water.

Inhalation: Move to fresh air.

Ingo	otion.	NT/A
mge	estion:	IN/A

Section VII - Precautions for Safe Handling and Use

Steps to Be Taken in Case Material is Released or Spilled

Sweep or vacuum material from spillages into a waste container for disposal or repackage. Avoid dusting conditions.

Waste Disposal Method

Dispose of unused product in waste container. Dispose of in accordance with local, state, and federal or national regulations.

Precautions to Be Taken in Handling and Storing

CAUTION!!! This product, when wet, removes oxygen from air causing a severe hazard to workers inside carbon vessels and enclosed or confined spaces. Before entering such an area, sampling and work procedures for low oxygen levels should be taken to ensure ample oxygen availability, observing all local, state, and federal or national regulations.

Be sure proper ventilation and respiratory and eye protection are used under dusting conditions.

Other Precautions

Wash thoroughly after handling. Exercise caution in the storage and handling of all chemical substances.

Section VIII - Control Measures

Transaction of the second				
Respiratory P	rotection (Specify Type)			
Carbon-A NI	OSH-approved particulate filter respira	ntor is recomn	nended, if excessive dust is generated.	
Ventilation Local Exhaust			Special	
Recommended, when used indoors or in confined			Not Required	
spaces				
	Mechanical (General)	Other		
Recommended, when used indoors or in confined			Not required	
	spaces			
Protective Gloves Eye Protection			on .	
Recommended Safety glasse			es or goggles recommended	
Other Protect	ive Clothing or Equipment			
Not required				
Work/Hygien	ic Practices			
Use of Tyvek	® or Nomex® suits is suggested to pro	otect skin from	n becoming excessively dirty and clothing	
from being ru	ined by contact with product.			

APPENDIX B LETTER OF APPROVAL FROM NMOCD

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez

Governor

David MartinCabinet Secretary-Designate

Brett F. Woods, Ph.D. Deputy Cabinet Secretary **Jami Bailey, Division Director**Oil Conservation Division

MAY 31, 2013

Mr. Matt Webre Williams Four Corners, LLC 188 CR 4900 Bloomfield, NM 87413

Re: Revised Work Plan for BOS 200® Amendment

Dogie Compressor Station J Vent Condensate Release

UL "D", Section 4, Township 25 North, Range 6 West NMPM

Rio Arriba County, New Mexico

3R-444

Dear Mr. Webre:

The Oil Conservation Division (OCD) has reviewed Williams Four Corners (Williams) revised remediation plan of April 23, 2013, submitted by LT Environmental Inc. to address ground water contamination at the Dogie Compressor Station J Vent condensate release site, located at UL "D", Section 4, Township 25 North, Range 6 West NMPM. OCD has determined that Williams has adequately addressed OCD concerns with the previous version. OCD hereby approves Williams remediation plan pursuant to 19.15.29 NMAC and approves Williams request for temporary permission for a discharge pursuant to 20.6.2.3106B NMAC.

Williams may proceed with its remediation program at the J Vent release site at the Dogie Compressor Station. To differentiate between the remediation program at the two pits at the compressor station (3R-312 and 3R-313), OCD has assigned a new case number - **3R-444.** Please use this case number in all future correspondence.

Sincerely,

Glenn von Gonten

Senior Hydrologist

GvG/gvg

CC: Brandon Powell

APPENDIX C 2015 GROUNDWATER SAMPLING FIELD NOTES

· · · · · · · · · · · · · · · · · · ·			Mator Sa	mnie Calle	ction Form	
			water sa	mpie com	CHOII FOINI	1. Milianar Forty Commence
Sample Loca	ation	\-Ven	-MW-	13	-	Williams Four Corners
Sample Date	44	2125	5 15	P	roject Name	
Sample Tim	'	1135			Project#_	034015007
Sample ID		MIN	-123		Sampler	Byerb M.Wicker
•		BIEV TI	os imon	chloriol	e Nitrate	Intrite Sulfate,
Analyses		DIEXT	2-4-1	<u> </u>	Laboratory	#10.11
Matrix	4 Time	CIVV	ndarot	Ship	ping Method	Dropoft
Turn Aroun	g Time	Ves	reactor	-	Other QA/QC	
Trip Blank		6.35			TD of Well	17.72
Depth to W	ater	1100		Dep	th to Product	ND
Time				127 x	11.2/ = 1	8Cx3=5.56
Vol. of H2O	to purge (5.560	a	1.01 1	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols
		(height	of water coll	unn " 0.103 ?, ' ₁₂	T JOI Z WELL	
Method of	Purging	Bottom	Valve E	xiill r	 	
Method of	Sampling		11 11			
	T	Total Vol				
	Vol.	H2O		-	Conductivity	-
	Removed	removed	pH	Temp.	(us or ms)	Comments
Time	(gal.)	(gal.)	(std. units)	FIG	3.54	Grav. cloudy by partides, 40 oder
1105	0.25	0:25	<i>b</i> .86	50.0	3,17	SA A
	0.25	0.50	1.03	44.1		SAA
	0.25	0.15	7.26	48.6	3.12	
	0.25	1,00	7.45	487	3,12	SAA
	1,00	2.00	7.45	44.5	3,09	<u>> A A </u>
	100	3,00	7,58	50.4	3.13	JAA
	1,00	4.00	7,56	50.5	311	1244
 	0.50	4.90	7.62	49.8	3.18	SAA
	0.25	4.75	7.60	50.5	3.17	I SAA
	0.25	5000	7.59	50,0	3.14	SAA
 	0.25	5,25	7,59	90.0	3,20	I SAA
1135	0.25	5,50	7.59	50.2	3,24	SAA
1177	10:67	1110	 / / 	T		
		 				
		 	<u> </u>			
		 -	 			
<u> </u>	<u> </u>	<u></u>	1 0 1 1	<u>. </u>		
Comments	: Beld	5/tereo	1 15TEX	< /ONS		
Describe D	eviations fr	om SOP:	NONE			
Describe D	CAIGNINIIS II.	J(11 JUT 1	1/1/1-6-			
	The same of the sa	710				2/25/15
Signature	a. 4	>11			_Date:	0 35 115
Ji511atul (~ <u></u>	<u> </u>				

noim.

					tion Form	
			<u>Water Sar</u>	npie Colle	ction Form	in the state of th
Sample Loca	tion	J-Vent	MW-14		_ Client _	Williams Four Corners
Sample Date	_	9/92/1		P		Dogie S-Vent
Sample Time	_	1355			Project # _	0340/5007
Sample ID	-	MW-1	<u> </u>		Sampler	Brooke Herb/Mike Wicker
Analyses	3	BTEX.	Withate	N. Mre	Chloride, S	thate TO'S Iron
Matrix	•	GW			Laboratory	(2 6.03
Turn Around	d Time	Stano	lard	Ship	oing Method	9 kg - 000 c 51
Trip Blank		Yes		(_ TD of Well	Standard 18.37
Depth to Wa	ater	5.4		Dont	h to Product	NA
Time	•	1330	2	Depu	n to Froduce.	= 10 3.7
Vol. of H2O	to purge	129	3 X016	<u> </u>	1 for 2" well o	= \(\mathcal{U} \cdot \beta \rightarrow \) or 0.6524 for 4" well) * 3 well vols
•		(height	of water coll	Imn " U.103	TIOIZ WENC	
Method of F		botto	m Valv	4 10201 1-	<u></u>	
Method of S	Sampling					
		Total Vol				
	Voi. Removed	H2O removed	рH	Temp.	Conductivity	Comments
Time	(gal.)	(gal.)	(std. units)	(¢)}	(us or ms)	Comments
1335	0.25	0,25	7.19	46.4	2.24	Orange, cloudy, no odor
	0.25	0,50	7.25	47.8	2.28	SAA
	0.25	0.35	7.34	47.7-	2.33	SAA
	0.25	1.00	7.34	4.1.8		Brainish brange Sittel
	00,1	2.00	7.36	410	2.47 2.47	SAA
	(.00	3.00	7.47	4 + 5	2.47	SAA
	1.00	4.00	7.46	47.8 47.8	240	SAM
	1.00	5.00	7.47	47.7	244	SAA
	0.15	5.75	7.49	47.9	2.44	SAA
	v.35	6.00	7.50	48.0	2.40	Sing
	16.07	(, 35	7.50	48.0	2.45	SAA
1355	0.25	6.50	1 1,0			
	<u> </u>	 	+	1		
		 	 			
	 	+	 			
<u> </u>	ا ; سم	T-110.	and R	TEV		
Comments	s: Feld	DITC!	tu D	10A		
						·
Describe f	Deviations f	rom SOP:	NOWE			
Describe L)6Algrinii2		14000			
			<u>, </u>		Date:	2/25/15
Signatur	e: 🔑	17			Date:	
_				, <u> </u>		

6 4

Sample Location 3	_
Sample Date 2-15-2015 Project Name 3-4975007	<u>\$_</u>
Sample Time Shandard	
Sample 1D Analyses Matrix Turn Around Time Trip Blank Depth to Water Time Vol. of H2O to purge Method of Purging Method of Sampling Method of Sampling Vol. Removed removed (gal.) 1230 025 025 025 025 025 025 025	
Analyses Matrix Turn Around Time Trip Blank Depth to Water Time Vol. of H2O to purge Vol. Removed Time (gal.) (gal.) (25 0.26 0.26 0.27 0.29	
Matrix Turn Around Time Trip Blank Depth to Water Time Vol. of H2O to purge Wethod of Purging Method of Sampling Vol. Removed Time (gal.) 1230 1240 1250 1240 1250 1260 1270 1280 12	<u> </u>
Turn Around Time Trip Blank Depth to Water Time Vol. of H2O to purge Vol. Removed Time (gal.) 1230 025 025 025 122 1245 025 025 120 129 129 129 129 129 129 129	
Trip Blank	
Depth to Water Time Depth to Product ND	
Time Vol. of H2O to purge Depth to Product ND	
Vol. of H2O to purge Conductivity Comments	
Method of Purging Method of Sampling Total Vol H20 removed (gal.) (std. units) Conductivity (us or ms) Comments 1230 0.25 0.25 7.22 45.9 2.45 0.004, 40 6db 0.25 0.75 7.27 45.5 2.79 SAA 0.25 0.75 7.27 45.5 2.79 SAA 0.25 0.75 7.29 49.1 2.81 SAA 1.00 2.00 7.31 45.7 2.99 SAA 1.00 3.00 7.35 46.2 2.95 Brown, cloudy, 46 1.00 4.00 7.38 46.4 3.01 5mm 1.00 5.00 7.39 46.0 3.01 5mm 1.00 5.55 7.40 46.4 3.01 5mm 0.35 5.55 7.40 46.4 3.01 5mm 0.35 5.55 7.40 46.4 3.01 5mm	1- :
Method of Purging Method of Sampling Total Vol H20 removed (gal.) Removed (gal.) pH (std. units) Conductivity (us or fix) Comments 1230 0.25 0.25 7.22 45.9 2.45 0.24 0.24 0.25 0.25 0.75 7.21 45.9 2.63 SAA SAA 0.25 0.75 7.21 45.5 2.79 SAA SAA 0.25 0.75 7.23 49.1 2.81 SAA SAA SAA 1.00 2.00 7.31 45.7 2.99 SAA SAA 1.00 3.00 7.35 46.2 2.95 Brown, cloudy, via color 3.01 3.00	15
Vol. Removed PH Temp. Conductivity (us or fin) Comments	
Vol. Removed Femoved (gal.) (std. units) (c) (us or fis) Comments 1230	
Time (gal.) (std. units) (c) F (us or ms) (u	
Time (gal.) (gal.) (std. units) (c) F (us or ms) (us or ms) (comments) (us or ms) (us or	
Time (gal.) (std. units) (C) (us of fing) 1230 0.25 0.25 7.22 46.9 2.45 0/auge. Cloudy. 40 600 0.25 0.50 7.24 45.5 2.79 SAA 0.25 0.75 7.27 49.1 2.81 SAA 0.25 1.00 7.29 49.1 2.81 SAA 1.00 3.00 7.31 45.7 2.99 SAA 1.00 3.00 7.35 46.2 2.95 Brown. Cloudy. 46 aday 1.00 5.00 7.36 46.4 2.97 SAA 1.00 5.00 7.37 46.6 301 SAA 0.25 5.35 7.40 46.4 3.01 SAA 0.25 5.35 7.40 46.4 3.01 SAA	As
1230 0.25 0.25 7.22 46.9 2.43 0xave closery, vio cere 0.25 0.50 7.24 45.9 2.63 SAA 0.25 0.75 7.27 45.5 2.79 SAA 0.25 1.00 7.29 49.1 2.81 SAA 1.00 2.00 7.31 45.7 2.99 SAA 1.00 3.00 7.35 46.2 2.95 Brown cloudy, no ador 1.00 5.00 7.37 46.6 301 SAA 1.00 5.00 7.37 46.6 301 SAA 0.25 5.35 7.40 46.4 3.01 SAA 0.25 5.35 7.40 46.4 3.01 SAA	700
0.25 0.50 7.24 45.9 3AA 0.25 0.75 7.27 45.5 2.79 SAA 0.25 1.00 7.29 49.1 2.81 SAA 1.00 2.00 7.31 45.7 2.99 SAA 1.00 3.00 7.35 46.2 2.95 Brown cloudy, no ador 1.00 4.00 7.38 46.4 2.97 SAA 1.00 5.00 7.39 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA	·
0.25 0.75 7.27 45.5 2.79 SAA 0.25 1.00 7.29 49.1 2.81 SAA 1.00 2.00 7.31 45.7 2.99 SAA 1.00 3.00 7.35 46.2 2.95 Brown, cloudy, no alov 1.00 4.00 7.38 46.4 2.97 SAA 1.00 5.00 7.37 46.6 301 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA	
0,25 1.00 7.29 49.1 2.89 3AA 1.00 2.00 7.31 45.7 2.99 SAA 1.00 3.00 7.35 46.2 2.95 Brown, cloudy, no alor 1.00 4.00 7.38 46.4 2.97 SAA 1.00 5.00 7.39 46.6 301 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA	
1.00 2.00 7.31 45.7 2.99 Brown doudy, no alor 1.00 3.00 7.35 46.2 2.95 Brown doudy, no alor 1.00 4.00 7.38 46.4 2.97 SAA 1.00 5.00 7.39 46.6 301 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA	
1.00 3.00 7.35 46.2 2.93 phon. Corry, vis con 1.00 4.00 7.38 46.4 2.97 SAA 1.00 5.00 7.37 46.6 301 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA 0.35 5.35 7.40 46.4 3.01 SAA	
1.00 4.00 7.38 46.4 2.41 3.01 SAM 1.00 5.00 7.39 46.6 3.01 SAM 0.35 5.35 7.40 46.4 3.01 SAM 0.25 5.50 7.40 46.5 2.98 SAM 0.25 5.35 7.41 46.4 2.95 SAM	
1.00 5.00 7.39 46.6 301 SPA 0.05 5.05 7.40 46.4 3.01 SPA 0.25 5.50 7.40 46.5 2.98 SPA 0.25 5.75 7.41 46.4 2.95 SPA	
0.05 5.05 7.40 46.4 3.01 SPA 0.05 5.50 7.40 46.5 0.98 SAM 0.05 5.75 7.41 46.4 2.95 SAA	
0 25 550 740 465 2.98 SAN	
10 35 5.75 7.41 464 2.45 5MM	
12/0 10.25 1,00 7.43 46.0 2.96 SAA	
1249 0.25 6.00 7.43 46.0 8.10	
Comments: Field Filtered BTEX Samples	
Describe Deviations from SOP:	
Date: 0/05/15	
Signature: Date: 0/35/13	
Jigirotorio.	

			Water Sai	nple Colle	ction Form	
	. 1	1 10001			Client	Williams Four Corners
Sample Loca				΄ Ρ ι	roject Name	Dogit J-Vent
Sample Date		105 1º	>		Project#	034015007
Sample Time	2	MW-	i			B. HerbaM. Wiker
Sample ID		1275	100°	i too Le	Tron the	longe Sulate, 715
Analyses		DIFX	J. TVOITCH		Laboratory	110000
Matrix			water	Ship	ing Method	DNOOF ROLLS
Turn Around	l Time	Standa	NO.	[-,	ther QA/QC	Standard
Trip Blank					TD of Well	
Depth to Wa 	ater	1420	<u></u>	Dept	h to Product	NA
Time					32	= (0.5)
Vol. of H2O	to purge	(height (of water colu	ımn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols
Method of F	urging	Bailer	<u></u>		<u> </u>	
Method of S	-	Baile	» 	<u> </u>		
		Total Vol				
	Vol.	H2O		Towns	Conductivity	
	Removed	removed	pH (std. units)	Temp. (火)	(us or ms)	Comments
Time	(gal.)	(gal.)	(SEG. GIIIES)	40.0	389	Brown Londy Silty no
1420	0,25	0.35	7 45	46.0	3.94	SAN
	0.25	0.50	7110	46.4	3.99	Silher
	0.92	0.35	7.40	46.10	3.95	No change
	0.25	1.00	7.50	1/2-1	4.04	u 8
	1.00	2.00	1.50	46.8	4.05	ėt
y'.	1.00	3.00	758	413	4.09	16
	1.00	4.00		46.8	4.10	11
	1.00	500	7.60	46.6	4.12	
	0.5	5.50	7.60	468	4.08	21
	0,05	15.10	7.59	46.8	4.10	, I
	0.25	6.00	7.59	46.6	4.09	ii .
	0.25	16.35	7.59	46.6	4.10	£1
1441_	0.75	650	1 7.31	90.0		
	ļ		<u> </u>	<u> </u>		
	<u> </u>		<u> </u>			
					1	
Comments	:					
		rom SOP:	NUNE	<u> </u>		
Describe D	eviations f					_
Describe D	eviations f	3 1/7				
Describe D	eviations f	12 -			Date:	2/25/15

		·	<u>Water Sc</u>	ample Coll	ection Form	I Tour Control			
Sample Loc	ation	J Vent_ Do	gie CS		Client	Four Corners LLC Williams Field-Services_	•		
Sample Date 5/28/				Project Name San Juan Basin Remediation Dogy					
Sample Time /045			-	-	Project Name San Juan Basin Remediation Dogy 1				
Sample ID MW-13				-	_	Alex Crooks	:		
Analyses			nitrate/nitr	- ite, total iro	•	de, and sulfate			
Matrix		Groundwat		· · · · · · · · · · · · · · · · · · ·		Hall Environmental			
Turn Aroun	d Time	Standard		- Ship	ping Method	Hand delivery			
Depth to W	ater	4.60		•	• -	18.53- 17.75			
Time		10:12		Dep	th to Product	NA			
Vol. of H2O	to nurge		1775-11	-			i		
VOI. 01 1120	to purge	(height	of water col	umn * 0.16	31 for 2" well	2 x 3 = 5. 4 \(\text{gal}\) or 0.6524 for 4" well) * \(\text{gal}\)			
Method of	Purging	PVC Bailer	.,		,				
Method of		PVC Bailer							
	<u> </u>	Total Vol	<u> </u>	1			;		
	Vol.	Total Vol H2O							
İ .	Removed	removed	рH	Temp.	Conductivity				
Time	(gal.)	(gal.)	(std. units)	<u>ver</u> €	(us or (ns)	Comments	1		
1015	25	125	7.33	61.9	1.46	Black color/ ador/clovery			
1018	.50	175	7.35	5816	1,36	No change			
10:20	175	1.00	7.58	57,0	1.35	NO Change			
10 23	150	1.00	7.67	57.0	1.43	al change			
1024	.50	200	7.65	57,0	1.47	No Changs			
1026	. 80	250	7.69	Slei7	1151	No Change			
1027.	.50	3,00	7,67	57.0	1.55	No Change			
1029	اگر،	3.50	7160	5/a:7	1.53	NO Change			
1031	.50	4.00	7.68	57.2	1.54	light gray/odor/Sugnt	Clay		
1032	.50	4.50	7.67	57.0	1.55	No change	_		
1035	.50	5100	7.65	57.3	1.53	Nochange			
1040	-50	5:80	7-48	5le 7	1.54	Nochange			
1045						Took Sample	-		
Comments:	700	k Sam	ple mi	N-13 a	H 1042				
Describe De	viations fro	m SOP:	NA	NO D	enations	3			
Signature:	De	Pex (roch		Date:	5/28/18			

			Water Sa	mple Colle	ection Form	Envertage VSIII			
Sample Loc	ation	J Vent_ Dog	rie CS		Clignt	Four Corners LLC Williams Field Services	Jye		
Sample Dat		5/28/2015 P			roject Name San Juan Basin Remediation Dogie				
Sample Time 12/5				•	-	Project # 034015007			
Sample ID MW-14				ı	Sampler	Alex Crooks	İ		
Analyses		BTEX 8021,	nitrate/nitri	te, total iro	n, TDS, Chloric	de, and sulfate	1		
Matrix		Groundwat			Laboratory	Hall Environmental			
Turn Aroun	d Time	Standard		Ship		Hand delivery			
Depth to W	ater	5.78		,	TD of Well	18.53 17.92			
Time		1140			th to Product				
Vol. of H2O	to purge	17.92-	5.78=1	2.14 8.10	431=1,98	x3=5,94			
7911 01 1120	'a haibe	(height	of water col	umn * 0.16	31 for 2" well	or 0.6524 for 4" well) * 3 well vols			
Method of	Purging	PVC Bailer	=						
Method of		PVC Bailer					1		
		Total Vol			1				
	Vol.	H2O			,				
	Removed	removed	pН	Temp.	Conductivity	1			
Time	(gal.)	(gal.)	(std. units)	(est	(us or ms)	Comments			
1145	125	175	7.50	100.2	1.31	light redbown/Slightcloud			
1149	. 25	'50	7.54	57.9	1035	Mochange			
1149	125	• 75	7.56	5716	1,35	No Change	1		
1151	.25_	1.00	7.51	5/0/5	1.36	An Change			
1152	.50_	1.50	7.58	5/011	1.39	1 gnt brown /Cloudy/Slighton	P		
1155	50	2.00	1:40	81e 3	1.41	No Change			
1158	-50	2.50	7.40	5518	1.43	No Change			
1159	-50	3,00	7,59	55,8	1.42	No anaha e	1		
1203	-5 ð	3,50	7163	55.9	1.40	No Cuarla			
1204	5D_	4.00	7.60	60.0	1.41	No Ching			
1208	-80	4,50	7.62	61.2	1.42	Mchange -			
1210	.50	5:00	7.59	58.3	1.42	No Change			
1211	1.00	100	7.60	56.0	1.43	No Change			
1215						Trou Sample			
<u> </u>			 	 	 				
	ر سوسی			11 11	at 101	-			
Comments	10010	Jam	<u>py V (</u>	N-19	at 121	<u> </u>	·		
	· .				·		.		
					,:		·		
							٠		
			1/2 -10-	1. 4.			·		
Describe De	eviations fro	om SOP:	No dei	1atton			.		
		$\frac{\partial}{\partial x}$	/7	/		5/4/	1		
Signature	: [1	Kex	LON	<u>~</u>	_Date:	5/28/15	-		
		7					لي		

	·	· <u> </u>	Water S	ample Coll	ection Forn	1				
Sample Loc	cation	J Vent_ Do	gie CS		د د Client	Williams Field Services				
Sample Date 5/28/2015				_	Project Name San Juan Basin Remediation Dogre					
Sample Tin		1/35		-	-	034015007				
Sample ID		MW-15		_	-	Alex Crooks				
Analyses	÷	· · · · · · · · · · · · · · · · · · ·	. nitrate/nitr	- ite. total iro	•	ide, and sulfate				
Matrix		Groundwa		,		Hall Environmental				
Turn Aroun	ıd Time	Standard		- Shir	•	Hand delivery				
Depth to W	-	5.9/				17.83				
Time	•	1058		- Den	th to Product					
Vol. of H2C	to nurgo		21-119			1×3=5.83				
VOIL OF FIZE	ro haige	(height	of water cal	umn * 0.16	31 for 2" well	or 0.6524 for 4" well) * 3 well vols				
Method of	Purging	PVC Bailer	ay maker all							
Method of		PVC Bailer	····							
	O	•	1							
	Vol.	Total Vol								
	Removed	removed	pH	Temp.	Conductivity					
Time	(gal.)	(gal.)	(std. units)	1216	(us or ms)	Comments				
1100	,25	.25	7.62	61.2	1.23	light brown/Slight cloud to				
1103	125	50	7.59	58.5	1-33	Mi change				
1605	125	7.75	7:55	55.9	1.41	NO Change				
1108	* 25	1.00	7.58	5514	1.42	No change				
11/0	150	1.50	7.54	550	1.46	119ht brann/Stant Cloud/solor				
1112	-50	2.00	7.62	55.4	1.48	No change				
1113	150	2.50	7,59	5512	1.49	No rindhal				
1116	.50	3.00	7:60	55.2	1.49	* No Change				
1119	050	3,50	7.57	55.2	1.45	AFOCHANGE				
1120	.50	4.00	7.100	55.0	1-48	Nochange				
1122	.50	4.50	7.102	55.2	1.47	NO Change				
1125	.50	5,00	7.58	55.5	1,49	Incuara.				
1130	1.00	10.00	7.59	55.4	1.45	Nochange				
1135		•				Took Sample				
				,						
		. (
Comments:	Tool	Sim o	UMW-	10 13-1	1/35					
vonanciits:	100K		101011	1) 27	1100					
		<u></u>		_	<u></u>					
-			10	· .						
Describe De	viations fro	m SOP:	NOCH	ange						
)	··							
Cianatura	///	/_/_	1.		Date:	chalie				
Signature:	INX	W Ste	Mu	··	Date.	2/78/12				

			Water Sa	mple Colle	ction Form	0. 00.]		
Sample Loca	ation	J Vent_ Dog			ልሎ Client	Williams Field-Services			
Sample Date		5/28/2015 Pi			Project Name San Juan Basin-Remediation Occile				
Sample Time		1715	<u>.</u>	i	Project#	034015007	OV		
Sample Time					Sampler	Alex Crooks			
Analyses			nitrate/nitri	te, total iror	, TDS, Chloric	de, and sulfate			
Matrix		Groundwat		<u> </u>	Laboratory	Hall Environmental			
Turn Around	d Time	Standard		Ship		Hand delivery	ļ .		
Depth to Wa		5.45		•		18.53 /7.85			
Time	acci	1000		Dept	th to Product	NA			
		1100	أيه مي درس	2.4 x.10	23/ = 7	17x3=10.07 gg/			
Vol. of H2O	to purge	(height	of water col	umn * 0.163	1 for 2" well	02x3=6.07 99/ or 0.6524 for 4" well)*/3 well vols			
Method of F	urging	PVC Bailer			<u> </u>				
Method of S		PVC Bailer					1		
·	· ·	Total Vol	<u></u>	<u> </u>					
	Vol.	H2O	m(J	Temp.	Conductivity				
	Removed	removed	pH (std. units)	(SIF.	(us or ms)	Comments	1		
Time	(gal.)	(gal.)	7:107	710002	1.87	Stignt color + set cloud/wac	260		
1235	125	50	7162	58.5	1.88	No Change			
1238	75			5710	1.89	Not hange			
1240	·US	75	7:63	5/03	1.87	light brown/cloudy/100 ador	1		
1293	. 25	1.00	7.64	Sle 3	1-89	No Chances	.		
1248	.50	1.50	7.1de	55,9	1.90	No Cuhai	ļ		
1251	.50	2,00	7.64	55.8	1.87	No Change	.		
1253	· 80	250	7.64	55.8	101	No change	lad e		
1255	150	3,00	7.44	55.8	1.91	No Change	. 1		
1258	.50_	3.50	7.63	55.6	193		i		
1300_	:50	4.00	7166	329	1.91	Nochang. No Cuakas			
1307	130	4.50	7:03	33.1		An Chaka			
1305	180	5,00	7.64	55.7	1.92	10 change			
13/0	1.60	100	7.61	55.7		on change			
13/2	125	10.25	7.63	55.5	1.90	Tode Lample			
135						1002 July 100			
				<u> </u>			'		
Comments:	160	U Sam	ale at	1315			. -		
			W				.		
							.		
		<u> </u>							
			1 m	Rujation	<u> </u>		·		
Describe De	eviations fr	om SUP:	11/1/1	20100110			·		
		\mathcal{A}	· · · · · · · · · · · · · · · · · · ·				'		
Signature	. [1	Vero/>	enle	_	Date:	5/27/15	_		
Signature		<u> </u>	TALL						

	Anthropic Vol. 2. Property Co.		Water Sa	mple Colle	ection Form	1-12	P sound 100
						Fou	r Corners
Sample Location		J Vent_ Dog	gie CS			: Williams Field Services San Juan Basin Remediation	
Sample Date		8/25/2015		Р			
Sample Time	e	1405				034015007	Dogie JVent 6W
Sample ID		MW-13				Michael A Wi	
Analyses		BTEX 8021,	nitrate/nitri	te, total iror		de, and sulfate	
Matrix		Groundwat	er			Hall Environm	
Turn Around	d Time	Standard		Ship	ping Method	Hand deliver	У
Depth to Wa	ater	7.44			TD of Well	17.75	
Time		1340		Dept	th to Product	ND	
Vol. of H2O	to purge	5.64					
	1-0.00	(height	of water colu	ımn * 0.163	1 for 2" well o	or 0.6524 for 4	1" well) * 3 well vols
Method of F	Purging	PVC Bailer	75				
Method of S		PVC Bailer					
4000 TO 00000 ST 0		Total Vol					
	Vol.	H2O					
	Removed	removed	рН	Temp.	Conductivity		
Time	(gal.)	(gal.)	(std. units)	(C)	(us) or ms)	4 1 0	Comments
1346	0,25	0.25	8.23	24.24	3,199.3	Dark Gras	y dordy, no odar
1349	01.50	1.75	7.86	19.12	3,526.8	SAA	
1353	1.75	3.50	7.71	17.22	3,615,3	SAA	
1355	0.75	4.25	7.66	16.20	3,641.9	SAA	
1356	0.25	4.50	7.65	16.01	3,677.1	SAA	
1357	0.25	4.75	7.64	15.65	3,695,6	SAA	
1359	0:25	5,00	7,64	15.55	3,705.4	SAA	
1359	0.25	5.25	7.64	15.51	3,702,2	SAA	
	0.63	1.10	7.0				
				8			
							101
						111	111
					1	lust	M
							100
Comments:							
		i i					
						8	
Describe De	eviations from	om SOP:	4				
2001.00		17	A				-
		///				(- V	
Signature	://	nd c	4		Date:	8-25-15	25 117 15
				MANAGEMENT OF THE STATE OF THE	ν:2	was a second	— <i> T-</i> / -
					74"		

			Water Sa	mple Colle	ection Form				
Sample Loca	ation	J Vent_ Doខ្	zie CS		Client	Williams Field Services Four Corners			
Sample Date		8/25/2015		P		San-Juan Basin Remediation			
Sample Tim		1735		•	Project # 034015007 Daie 5Ve				
Sample III	~	MW-14	4			Michael A Wicker			
Analyses				te, total iror		de, and sulfate			
Matrix		Groundwat		,		Hall Environmental			
Turn Around	d Time	Standard		Ship		Hand delivery			
Depth to W		bibl			TD of Well				
Time		1211		Dept	th to Product	112			
Vol. of H2O	to nurgo	5.53 90				. AM			
VOI. OI HZU	to burge	(height	of water coli	umn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols			
Method of I	Purging	PVC Bailer	-,			•			
Method of S		PVC Bailer							
		Total Vol							
	Vol.	H2O				VO.			
	Removed	removed	рН	Temp.	Conductivity	$e^{\frac{U^2}{3}}$			
Time	(gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments			
1214	0.25	0,25	7,05	24.50	2545.4	Clear No odor			
1220	Di25 MW	1.75	7.31	19.23	2796.3	Brown cloudy no odor			
1224	1.75	3,50	7.43	17.68	2,855.7	Gray cloudy no odov			
1228	1,25	4:75	7.45	17.20	2,870,6	SAA '			
1229	0.25	5,00	7.46	16.98	2,889.8	SAA			
1231	0.25	5.25	7.46	16.82	7.854.9	SAA			
1232	0.25	5.50	7.46	16.74	7,855.0	SAN			
1233	0.25	5.75	7.46	16.64	2.866.4	SAA			
						11/10			
						Lend Like			
				July - 17					
Comments:						/			
2									
Describe De	eviations fro	m SOP							
Describe De	- via tivii3 i10	ATT SOF				· · · · · · · · · · · · · · · · · · ·			
·		1 /1	1						
Signature	: Inin	Mul			Date:	8-25-15 25 15			
	0.0			A					

			Water San	nple Colle	ction Form				
				pic conc.		Villiams Field Services Four Corners			
ample Locat	ion	J Vent_ Dogie CS		Project Name San Juan Basin Remediation					
ample Date		8/25/2015		P		34015007 Dogie SVent 6W			
Sample Time		1475			Sampler N	Michael A Wicker			
Sample ID		MW-15							
Analyses				e, total iron	, TDS, Chloride	Hall Environmental			
Matrix		Groundwate	er						
Turn Around	Time	Standard		Ship	_ TD of Well	Hand delivery			
Depth to Wa	iter	6.76			_	110			
Гime		1429		Dept	h to Product _	ND			
Vol. of H2O	to nurge	541				2 2 2 4 5 4 11 2 11 * 2 wall vals			
VOI. 01 1120	to barge	(height	of water colu	ımn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols			
Method of P	urging	PVC Bailer	1						
Method of S		PVC Bailer							
IVIETHOU OF S	ипринь								
	Vol.	Total Vol H2O							
	Removed	removed	рН 🐖	Temp.	Conductivity	Comments			
Time	(gal.)	(gal.)	(std. units)	(C)	(us or ms)				
1433	0.25	0,25	8.22	24.44	2,390,1	Clear no odor			
1440	175	2,00	7.60	21.01	2,660.7	Brown cloudy no odor			
1444	7,00	4,00	7.51	18.78	2,743.9	SM			
111117	1,00	5:00	7.51	17.76	2,803.2	SAA			
1441	0.25	5,25	7,5)	17.31	2,803,8	SAA			
1440	0.25		7.51	17.27	2.826.8	SAA			
		5.15	7.50	17.21	2854.2	SAA			
1450	0.25	6,00	7,51	17.18	27963	SAA			
1451	0.25	Dioo	1171	1/11-		•			
			1						
4									
						4			
						2 11			
						Sit les			
Comment	s:								
,									
Describe	Deviations	from SOP:							
3		11	1	1/					
		///	// di			8-25-15 25 110			
Signatuu	ro. /	lux	1/4		Date:	0-611)			

			Water Sa	mple Colle	ection Form				
Sample Loca	ation	J Vent_ Dog	gie CS		Client	Williams Field Services Four	Corners		
Sample Date	e	8/25/2015		Project Name San Juan Basin Remediation					
Sample Tim	e	1325			Project#	034015007 Dagic 5Vent	6W		
Sample ID		MW-16			Sampler	Michael A Wicker			
Analyses		BTEX 8021, nitrate/nitrite, total iron, TDS, Chloride, and sulfate							
Matrix			Groundwater Laboratory Hall Environmental						
Turn Around	d Time	Standard		Ship	ping Method	Hand delivery			
Depth to W		6.29			TD of Well				
Time		1300		Dep	th to Product	ND			
Vol. of H2O	to purgo	5.65 90	1						
VOI. OI HZO	to purge	(height	of water col	umn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well v	ols		
Method of I	Purging	PVC Bailer	of water con						
Method of S		PVC Bailer							
	Vol.	Total Vol H2O							
	Removed	removed	рН	Temp.	Conductivity				
Time	(gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments			
1304	0.25	0.25	7.66	25.74	4,284.6	Brown cloudy, no odo	ov		
1308	1.50	1.75	7.65	22.03	4,439.8	SAA	NI DESCRIPTION OF THE PROPERTY		
1313	1,75	3,50	7.64	20,05	4,693.1	SAA			
1315	125	4.75	7.57	19.09	4.797.8	SAA			
1316	0.25	5.00	7,57	18.38	4.867.3	SAA			
1317	0,25	5.25	7.55	18.01	4,908.5	SAA			
1319	0.25	5.50	7.55	17.88	4.979.6	SAA			
1319	0,25	5.75	7.54	1271	5,006,6	SAA			
					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
-1					100				
						1 1			
					1				
					-	and let			
Comments:									
Describe De	eviations fro	om SOP:							
		-1							
	1	11/1				1 12			
Signature	Ch	KIW	if		Date:	8-25-15 25 1	$\frac{15}{2}$		

APPENDIX D 2015 LABORATORY ANALYTICAL REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 11, 2015

Ashley Ager Williams Four Corners 188 CR 4900 Bloomfield, NM 87413

TEL: (505) 632-4442

FAX

RE: J Vent Dogie CS OrderNo.: 1502A69

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 5 sample(s) on 2/26/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

and st

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 3/11/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-13

 Project:
 J Vent Dogie CS
 Collection Date: 2/25/2015 11:35:00 AM

 Lab ID:
 1502A69-001
 Matrix: AQUEOUS
 Received Date: 2/26/2015 7:50:00 AM

Analyses	Result	RL Q)ual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analyst	NSB
Benzene	ND	1.0		μg/L	1	2/26/2015 12:27:29 PM	R24548
Toluene	ND	1.0		μg/L	1	2/26/2015 12:27:29 PM	R24548
Ethylbenzene	ND	1.0		μg/L	1	2/26/2015 12:27:29 PM	R24548
Xylenes, Total	ND	2.0		μg/L	1	2/26/2015 12:27:29 PM	R24548
Surr: 4-Bromofluorobenzene	103	80-120		%REC	1	2/26/2015 12:27:29 PM	R24548
EPA METHOD 300.0: ANIONS						Analyst	LGT
Chloride	17	10		mg/L	20	2/26/2015 4:54:53 PM	R24552
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	2/26/2015 4:42:28 PM	R24552
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	2/26/2015 4:42:28 PM	R24552
Sulfate	1200	25	*	mg/L	50	2/28/2015 12:16:46 AM	R24580
EPA 6010B: TOTAL RECOVERABLE M	IETALS					Analyst	ELS
Iron	48	2.5		mg/L	50	3/3/2015 1:34:43 PM	17927
SM2540C MOD: TOTAL DISSOLVED S	OLIDS					Analyst	KS
Total Dissolved Solids	2290	200	*	mg/L	1	3/2/2015 4:19:00 PM	17924

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Po
- P Sample pH Not In Range

Page 1 of 11

RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/11/2015

CLIENT: Williams Four Corners Client Sample ID: MW-14

 Project:
 J Vent Dogie CS
 Collection Date: 2/25/2015 1:55:00 PM

 Lab ID:
 1502A69-002
 Matrix: AQUEOUS
 Received Date: 2/26/2015 7:50:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analyst	NSB
Benzene	ND	2.0		μg/L	2	2/26/2015 1:55:03 PM	R24548
Toluene	ND	2.0		μg/L	2	2/26/2015 1:55:03 PM	R24548
Ethylbenzene	ND	2.0		μg/L	2	2/26/2015 1:55:03 PM	R24548
Xylenes, Total	ND	4.0		μg/L	2	2/26/2015 1:55:03 PM	R24548
Surr: 4-Bromofluorobenzene	108	80-120		%REC	2	2/26/2015 1:55:03 PM	R24548
EPA METHOD 300.0: ANIONS						Analyst	LGT
Chloride	14	10		mg/L	20	2/26/2015 5:19:41 PM	R24552
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	2/26/2015 5:07:17 PM	R24552
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	2/26/2015 5:07:17 PM	R24552
Sulfate	930	25	*	mg/L	50	2/28/2015 12:29:10 AM	R24580
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst	ELS
Iron	140	10		mg/L	200	3/3/2015 1:36:28 PM	17927
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	1720	200	*	mg/L	1	3/2/2015 4:19:00 PM	17924

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 2 of 11

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/11/2015

CLIENT: Williams Four Corners Client Sample ID: MW-15

Project: J Vent Dogie CS Collection Date: 2/25/2015 12:49:00 PM 1502A69-003 Matrix: AQUEOUS Lab ID: **Received Date:** 2/26/2015 7:50:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analyst	NSB
Benzene	ND	1.0		μg/L	1	2/26/2015 2:24:20 PM	R24548
Toluene	ND	1.0		μg/L	1	2/26/2015 2:24:20 PM	R24548
Ethylbenzene	ND	1.0		μg/L	1	2/26/2015 2:24:20 PM	R24548
Xylenes, Total	ND	2.0		μg/L	1	2/26/2015 2:24:20 PM	R24548
Surr: 4-Bromofluorobenzene	103	80-120		%REC	1	2/26/2015 2:24:20 PM	R24548
EPA METHOD 300.0: ANIONS						Analyst	LGT
Chloride	17	10		mg/L	20	2/26/2015 5:44:30 PM	R24552
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	2/26/2015 5:32:06 PM	R24552
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	2/26/2015 5:32:06 PM	R24552
Sulfate	1000	25	*	mg/L	50	2/28/2015 12:41:35 AM	R24580
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst	ELS
Iron	92	5.0		mg/L	100	3/3/2015 1:38:12 PM	17927
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	2020	200	*	mg/L	1	3/2/2015 4:19:00 PM	17924

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range

Page 3 of 11

- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/11/2015

CLIENT: Williams Four Corners Client Sample ID: MW-16

 Project:
 J Vent Dogie CS
 Collection Date: 2/25/2015 2:41:00 PM

 Lab ID:
 1502A69-004
 Matrix: AQUEOUS
 Received Date: 2/26/2015 7:50:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	2.0		μg/L	2	2/26/2015 2:53:34 PM	R24548
Toluene	ND	2.0		μg/L	2	2/26/2015 2:53:34 PM	R24548
Ethylbenzene	ND	2.0		μg/L	2	2/26/2015 2:53:34 PM	R24548
Xylenes, Total	ND	4.0		μg/L	2	2/26/2015 2:53:34 PM	R24548
Surr: 4-Bromofluorobenzene	101	80-120		%REC	2	2/26/2015 2:53:34 PM	R24548
EPA METHOD 300.0: ANIONS						Analyst	: LGT
Chloride	22	10		mg/L	20	2/26/2015 6:09:19 PM	R24552
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	2/26/2015 5:56:54 PM	R24552
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	2/26/2015 5:56:54 PM	R24552
Sulfate	1600	25	*	mg/L	50	2/28/2015 12:53:59 AM	R24580
EPA 6010B: TOTAL RECOVERABLE	METALS					Analyst	: ELS
Iron	97	5.0		mg/L	100	3/3/2015 1:39:59 PM	17927
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	3210	200	*	mg/L	1	3/2/2015 4:19:00 PM	17924

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 4 of 11

- ND Not Detected at the Reporting Limit
 - P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1502A69**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 3/11/2015

CLIENT: Williams Four Corners Client Sample ID: TRIP BLANK

Project: J Vent Dogie CS Collection Date:

Lab ID: 1502A69-005 **Matrix:** TRIP BLANK **Received Date:** 2/26/2015 7:50:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	1	2/26/2015 3:22:46 PM	R24548
Benzene	ND	1.0	μg/L	1	2/26/2015 3:22:46 PM	R24548
Toluene	ND	1.0	μg/L	1	2/26/2015 3:22:46 PM	R24548
Ethylbenzene	ND	1.0	μg/L	1	2/26/2015 3:22:46 PM	R24548
Xylenes, Total	ND	2.0	μg/L	1	2/26/2015 3:22:46 PM	R24548
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	2/26/2015 3:22:46 PM	R24548
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	2/26/2015 3:22:46 PM	R24548
Surr: 4-Bromofluorobenzene	102	80-120	%REC	1	2/26/2015 3:22:46 PM	R24548

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 11

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502A69**

11-Mar-15

Client: Project:	Williams Four Corn J Vent Dogie CS	ers								
Sample ID MB	SampTy	ype: ME	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: PBW	Batch	ID: R2	4552	F	RunNo: 2	4552				
Prep Date:	Analysis Da	ate: 2/	26/2015	8	SeqNo: 7	23037	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50					<u></u>			
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sample ID LCS	SampTy	ype: LC	s	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: LCSW	Batch	ID: R2	4552	F	RunNo: 2	4552				
Prep Date:	Analysis Da	ate: 2/	26/2015	S	SeqNo: 7	23038	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	5.0	0.50	5.000	0	99.1	90	110			
Nitrogen, Nitrite (As N)	1.0	0.10	1.000	0	104	90	110			
Nitrogen, Nitrate (As N)	2.7	0.10	2.500	0	109	90	110			
Sample ID MB	SampTy	/pe: ME	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: PBW	Batch	ID: R2	4552	F	RunNo: 2	4552				
Prep Date:	Analysis Da	ate: 2/	26/2015	S	SeqNo: 7	23091	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sample ID LCS	SampTy	ype: LC	S	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: LCSW	Batch	ID: R2	4552	F	RunNo: 2	4552				
Prep Date:	Analysis Da	ate: 2/	26/2015	S	SeqNo: 7	23092	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9	0.50	5.000	0	98.6	90	110			
Nitrogen, Nitrite (As N)	0.97	0.10	1.000	0	97.4	90	110			
Nitrogen, Nitrate (As N)	2.6	0.10	2.500	0	102	90	110			
Sample ID MB	SampTy	/pe: ME	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID: PBW	Batch	ID: R2	4580	F	RunNo: 2	4580				
Prep Date:	Analysis Da	ate: 2/	27/2015	S	SeqNo: 7	23764	Units: mg/L			

Qualifiers:

Analyte

Sulfate

* Value exceeds Maximum Contaminant Level.

Result

ND

PQL

0.50

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

HighLimit

%RPD

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range

SPK value SPK Ref Val %REC LowLimit

RL Reporting Detection Limit

Page 6 of 11

RPDLimit

Qual

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502A69

11-Mar-15

Client: Williams Four Corners
Project: J Vent Dogie CS

Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R24580 RunNo: 24580

Prep Date: Analysis Date: 2/27/2015 SeqNo: 723765 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sulfate 9.5 0.50 10.00 0 94.8 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502A69**

11-Mar-15

Client: Williams Four Corners
Project: J Vent Dogie CS

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles PBW Client ID: Batch ID: R24548 RunNo: 24548 Analysis Date: 2/26/2015 Prep Date: SeqNo: 722919 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Methyl tert-butyl ether (MTBE) ND 2.5 Benzene ND 1.0 Toluene ND 1.0 ND Ethylbenzene 1.0 Xylenes, Total ND 2.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 Surr: 4-Bromofluorobenzene 20.00 104 120 21 80

Sample ID 100NG BTEX LCS	SampType: LCS TestCode: EPA Method 8021B: Volatiles									
Client ID: LCSW	Batch	1D: R2	4548 RunNo: 24548							
Prep Date:	Analysis D	ate: 2/	26/2015	\$	SeqNo: 7	22920	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	20	2.5	20.00	0	100	72.5	125			
Benzene	21	1.0	20.00	0	107	80	120			
Toluene	21	1.0	20.00	0	104	80	120			
Ethylbenzene	20	1.0	20.00	0	99.6	80	120			
Xylenes, Total	60	2.0	60.00	0	100	80	120			
1,2,4-Trimethylbenzene	20	1.0	20.00	0	99.6	80	120			
1,3,5-Trimethylbenzene	20	1.0	20.00	0	99.8	80	120			
Surr: 4-Bromofluorobenzene	23		20.00		116	80	120			

Sample ID 1502A69-001AMS	SampT	ype: MS	3	TestCode: EPA Method 8021B: Volatiles						
Client ID: MW-13	Batch	n ID: R2	4548	F	RunNo: 2	4548				
Prep Date:	Analysis D	ate: 2/	26/2015	8	SeqNo: 7	22922	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	22	2.5	20.00	0	109	64.7	132			
Benzene	21	1.0	20.00	0.1540	104	77.5	121			
Toluene	21	1.0	20.00	0.1480	102	78.6	122			
Ethylbenzene	20	1.0	20.00	0	98.9	78.1	128			
Xylenes, Total	59	2.0	60.00	0.7640	96.7	80	120			
1,2,4-Trimethylbenzene	20	1.0	20.00	0.3280	98.4	79.1	128			
1,3,5-Trimethylbenzene	19	1.0	20.00	0.2820	95.8	80	120			
Surr: 4-Bromofluorobenzene	23		20.00		114	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502A69**

11-Mar-15

Client: Williams Four Corners
Project: J Vent Dogie CS

Sample ID 1502A69-001AM	SD SampT	21 71 2								
Client ID: MW-13	Batch	Batch ID: R24548 RunNo: 24548								
Prep Date:	Analysis D	ate: 2/	26/2015	8	SeqNo: 7 2	22923	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	20	2.5	20.00	0	101	64.7	132	7.22	20	
Benzene	21	1.0	20.00	0.1540	107	77.5	121	2.16	20	
Toluene	21	1.0	20.00	0.1480	104	78.6	122	2.04	20	
Ethylbenzene	20	1.0	20.00	0	102	78.1	128	3.02	20	
Xylenes, Total	60	2.0	60.00	0.7640	99.0	80	120	2.39	20	
1,2,4-Trimethylbenzene	20	1.0	20.00	0.3280	99.4	79.1	128	0.955	20	
1,3,5-Trimethylbenzene	20	1.0	20.00	0.2820	98.9	80	120	3.21	20	
Surr: 4-Bromofluorobenzene	24		20.00		119	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: 1502A69

11-Mar-15

Client: Williams Four Corners

Project: J Vent Dogie CS

Sample ID MB-17927 SampType: MBLK TestCode: EPA 6010B: Total Recoverable Metals

Client ID: PBW Batch ID: 17927 RunNo: 24607

Prep Date: 2/27/2015 Analysis Date: 3/3/2015 SeqNo: 725156 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron ND 0.050

Sample ID LCS-17927 SampType: LCS TestCode: EPA 6010B: Total Recoverable Metals

Client ID: LCSW Batch ID: 17927 RunNo: 24607

Prep Date: 2/27/2015 Analysis Date: 3/3/2015 SeqNo: 725157 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron 0.50 0.050 0.5000 0 99.4 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 11

Hall Environmental Analysis Laboratory, Inc.

WO#: **1502A69**

11-Mar-15

Client: Williams Four Corners
Project: J Vent Dogie CS

Sample ID MB-17924 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 17924 RunNo: 24585

Prep Date: 2/27/2015 Analysis Date: 3/2/2015 SeqNo: 724021 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID LCS-17924 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 17924 RunNo: 24585

Prep Date: 2/27/2015 Analysis Date: 3/2/2015 SeqNo: 724022 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 11 of 11

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

EL: 505-345-39/5 FAX: 505-345-410/ Website: www.hallenvironmental.com

Sample Log-In Check List

RcptNo: 1 Client Name: WILLIAMS FOUR CORN Work Order Number: 1502A69 02/28/15 Received by/date: an Il 2/26/2015 7:50:00 AM Anne Thorne Logged By: 2/26/2015 **Anne Thorne** Completed By: 02/26/15 Reviewed By: Chain of Custody Not Present No 🔲 Yes 🗌 1. Custody seals intact on sample bottles? No 🗌 Not Present Yes 🗸 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? Log In NA 🗌 No 🗆 Yes 🗹 4. Was an attempt made to cool the samples? No 🗆 NA 🗌 Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🔲 Yes 🗹 Sample(s) in proper container(s)? Yes 🗸 No 🗀 7. Sufficient sample volume for indicated test(s)? Yes 🗸 8. Are samples (except VOA and ONG) properly preserved? NA 🗆 No 🗸 Yes 🗌 9. Was preservative added to bottles? No VOA Vials Yes 🗸 No 🗔 10. VOA vials have zero headspace? Yes 🗆 No 🔽 11. Were any sample containers received broken? # of preserved bottles checked for pH: No 🗌 Yes 🗸 12. Does paperwork match bottle labels? 12 unless noted) (Note discrepancies on chain of custody) Adjusted No 🗆 Yes 🗸 13. Are matrices correctly identified on Chain of Custody? No 🗌 Yes 🗸 14. Is it clear what analyses were requested? Checked by No 🗌 Yes 🗸 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) NA 🗹 Yes 🗌 No 🗀 16. Was client notified of all discrepancies with this order? Person Notified: Date Phone Fax In Person Via: eMail By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Seal Intact | Seal No | Cooler No | Temp ºC | Condition | Seal Date Signed By 1.0 Good

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request	BTEX + MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH 8015B (GRO / DRO / MRO) TPH (Method 504.1) EDB (Method 504.1) RCRA 8 Metals RCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8081 Pesticides / 8082 PCB's 8081 Pesticides / 8082 PCB's 8260B (VOA) 8270 (Semi-VOA) 8270 (Semi-VOA) Althrey (Natrite of Nobiles (Yorly) Althrey (Natrite of Nobiles (Yorly)) Althrey (Natrite of Nobiles (Yorly)) Althrey (Natrite of Nobiles (Yorly))			Remarks: Please copy bher be 14env. Ohn
Record Turn-Around Time: Standard Rush Project Name:	Detor-ecouplians.com Project Manager: Level 4 (Full Validation) ASh ev Aqev Sampler: B. Hevb / M. Wicker On ice: Day es Sample Temperature: On Sample Temperature: Container Sample Request ID Type and # Type Type	Various 6 Cool H2504	ANUX VOAXZ HCM	S Received by Date Time The Time Date Time Date Time Date Time
Chain-of-Custody Record Slient: Matt Webre William Stown Corners Mailing Address: 188 County Road 4900 Bloom Geld NM Chain Geld NM	Fax#: MAH. W. Inckage: ard tition P □ Other Type) Time Matrix	(S)	141 V MW-18	Date: Time: Relinquished by, 15 Set Proposition Date: Time: Relinquished by: 15 15 15 15 15 15 15 1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 15, 2015

Ashley Ager Williams Four Corners 188 CR 4900 Bloomfield, NM 87413

TEL: (505) 632-4442

FAX

RE: J Vent - Dogie CS OrderNo.: 1505C49

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 5 sample(s) on 5/29/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1505C49**Date Reported: **6/15/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-13

 Project:
 J Vent - Dogie CS
 Collection Date: 5/28/2015 10:45:00 AM

 Lab ID:
 1505C49-001
 Matrix: AQUEOUS
 Received Date: 5/29/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	:: LGT
Chloride	14	2.5		mg/L	5	5/29/2015 2:13:32 PM	R26526
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	5/29/2015 2:13:32 PM	R26526
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	5/29/2015 2:13:32 PM	R26526
Sulfate	1300	25	*	mg/L	50	6/3/2015 3:36:14 AM	R26575
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	:: KS
Total Dissolved Solids	2240	200	*	mg/L	1	6/1/2015 4:22:00 PM	19459
EPA METHOD 200.7: METALS						Analyst	:: JLF
Iron	23	2.0	*	mg/L	100	6/3/2015 3:17:51 PM	19513
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	1.0		μg/L	1	6/1/2015 4:19:03 PM	R26543
Toluene	ND	1.0		μg/L	1	6/1/2015 4:19:03 PM	R26543
Ethylbenzene	ND	1.0		μg/L	1	6/1/2015 4:19:03 PM	R26543
Xylenes, Total	ND	2.0		μg/L	1	6/1/2015 4:19:03 PM	R26543
Surr: 4-Bromofluorobenzene	99.4	80-120		%REC	1	6/1/2015 4:19:03 PM	R26543

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 10

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1505C49**Date Reported: **6/15/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-15

 Project:
 J Vent - Dogie CS
 Collection Date: 5/28/2015 11:35:00 AM

 Lab ID:
 1505C49-002
 Matrix: AQUEOUS
 Received Date: 5/29/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LGT
Chloride	19	2.5		mg/L	5	5/29/2015 2:38:22 PM	R26526
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	5/29/2015 2:38:22 PM	R26526
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	5/29/2015 2:38:22 PM	R26526
Sulfate	1100	25	*	mg/L	50	6/3/2015 3:48:39 AM	R26575
SM2540C MOD: TOTAL DISSOLVED S	OLIDS					Analyst	: KS
Total Dissolved Solids	2000	200	*	mg/L	1	6/1/2015 4:22:00 PM	19459
EPA METHOD 200.7: METALS						Analyst	: JLF
Iron	36	2.0	*	mg/L	100	6/3/2015 3:19:49 PM	19513
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	1.0		μg/L	1	6/1/2015 5:34:52 PM	R26543
Toluene	ND	1.0		μg/L	1	6/1/2015 5:34:52 PM	R26543
Ethylbenzene	ND	1.0		μg/L	1	6/1/2015 5:34:52 PM	R26543
Xylenes, Total	ND	2.0		μg/L	1	6/1/2015 5:34:52 PM	R26543
Surr: 4-Bromofluorobenzene	99.0	80-120		%REC	1	6/1/2015 5:34:52 PM	R26543

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 2 of 10

- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1505C49**Date Reported: **6/15/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-14

 Project:
 J Vent - Dogie CS
 Collection Date: 5/28/2015 12:15:00 PM

 Lab ID:
 1505C49-003
 Matrix: AQUEOUS
 Received Date: 5/29/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	:: LGT
Chloride	14	2.5		mg/L	5	5/29/2015 3:03:11 PM	R26526
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	5/29/2015 3:03:11 PM	R26526
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	5/29/2015 3:03:11 PM	R26526
Sulfate	1100	25	*	mg/L	50	6/3/2015 4:25:54 AM	R26575
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	1950	200	*	mg/L	1	6/1/2015 4:22:00 PM	19459
EPA METHOD 200.7: METALS						Analyst	:: JLF
Iron	45	2.0	*	mg/L	100	6/3/2015 3:30:08 PM	19513
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	1.0		μg/L	1	6/1/2015 6:00:22 PM	R26543
Toluene	ND	1.0		μg/L	1	6/1/2015 6:00:22 PM	R26543
Ethylbenzene	ND	1.0		μg/L	1	6/1/2015 6:00:22 PM	R26543
Xylenes, Total	ND	2.0		μg/L	1	6/1/2015 6:00:22 PM	R26543
Surr: 4-Bromofluorobenzene	96.0	80-120		%REC	1	6/1/2015 6:00:22 PM	R26543

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 10

- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1505C49**Date Reported: **6/15/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-16

 Project:
 J Vent - Dogie CS
 Collection Date: 5/28/2015 1:15:00 PM

 Lab ID:
 1505C49-004
 Matrix: AQUEOUS
 Received Date: 5/29/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	:: LGT
Chloride	20	2.5		mg/L	5	5/29/2015 3:52:50 PM	R26526
Nitrogen, Nitrite (As N)	ND	0.50		mg/L	5	5/29/2015 3:52:50 PM	R26526
Nitrogen, Nitrate (As N)	ND	0.50		mg/L	5	5/29/2015 3:52:50 PM	R26526
Sulfate	1500	25	*	mg/L	50	6/3/2015 4:38:19 AM	R26575
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	3030	200	*	mg/L	1	6/1/2015 4:22:00 PM	19459
EPA METHOD 200.7: METALS						Analyst	:: JLF
Iron	20	1.0	*	mg/L	50	6/3/2015 3:32:11 PM	19513
EPA METHOD 8021B: VOLATILES						Analyst	:: NSB
Benzene	ND	1.0		μg/L	1	6/1/2015 6:25:31 PM	R26543
Toluene	ND	1.0		μg/L	1	6/1/2015 6:25:31 PM	R26543
Ethylbenzene	ND	1.0		μg/L	1	6/1/2015 6:25:31 PM	R26543
Xylenes, Total	ND	2.0		μg/L	1	6/1/2015 6:25:31 PM	R26543
Surr: 4-Bromofluorobenzene	99.7	80-120		%REC	1	6/1/2015 6:25:31 PM	R26543

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH Not In Range

Page 4 of 10

RL Reporting Detection Limit

Lab Order 1505C49

Date Reported: 6/15/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: Trip Blank

Project: J Vent - Dogie CS Collection Date:

Lab ID: 1505C49-005 **Matrix:** TRIP BLANK **Received Date:** 5/29/2015 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	1.0	μg/L	1	6/1/2015 6:50:34 PM	R26543
Toluene	ND	1.0	μg/L	1	6/1/2015 6:50:34 PM	R26543
Ethylbenzene	ND	1.0	μg/L	1	6/1/2015 6:50:34 PM	R26543
Xylenes, Total	ND	2.0	μg/L	1	6/1/2015 6:50:34 PM	R26543
Surr: 4-Bromofluorobenzene	95.2	80-120	%REC	1	6/1/2015 6:50:34 PM	R26543

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 5 of 10

- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1505C49**

15-Jun-15

Client: Williams Four Corners
Project: J Vent - Dogie CS

Sample ID MB-19513 SampType: MBLK TestCode: EPA Method 200.7: Metals

Client ID: PBW Batch ID: 19513 RunNo: 26597

Prep Date: 6/2/2015 Analysis Date: 6/3/2015 SeqNo: 791692 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron ND 0.020

Sample ID LCS-19513 SampType: LCS TestCode: EPA Method 200.7: Metals

Client ID: LCSW Batch ID: 19513 RunNo: 26597

Prep Date: 6/2/2015 Analysis Date: 6/3/2015 SeqNo: 791693 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron 0.51 0.020 0.5000 0 103 85 115

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 6 of 10

Client:

Hall Environmental Analysis Laboratory, Inc.

Williams Four Corners

WO#: 1505C49

15-Jun-15

Project:	J Vent - Dogie CS							
Sample ID MB	SampT	pe: MBLK	Tes	tCode: EPA Meth	od 300.0: Anions	;		
Client ID: PBW	Batch	ID: R26526	R	RunNo: 26526				
Prep Date:	Analysis Da	ate: 5/29/2015	S	SeqNo: 788425	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLin	nit HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50						
Nitrogen, Nitrite (As N)	ND	0.10						
Nitrogen, Nitrate (As N)	ND	0.10						
Sample ID LCS	SampT	ype: LCS	Tes	tCode: EPA Meth	od 300.0: Anions	5		
Client ID: LCSW	Batch	ID: R26526	R	RunNo: 26526				
Prep Date:	Analysis Da	ate: 5/29/2015	S	SeqNo: 788426	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLin	nit HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9	0.50 5.000	0	98.5	90 110			
Nitrogen, Nitrite (As N)	1.0	0.10 1.000	0	100	90 110			
Nitrogen, Nitrate (As N)	2.6	0.10 2.500	0	103	90 110			
Sample ID MB	SampT	ype: MBLK	Tes	tCode: EPA Meth	od 300.0: Anions	5		
Client ID: PBW	Batch	ID: R26526	R	RunNo: 26526				
Prep Date:	Analysis Da	ate: 5/29/2015	S	SeqNo: 788479	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLim	nit HighLimit	%RPD	RPDLimit	Qual
Chloride	ND	0.50						
Nitrogen, Nitrite (As N)	ND	0.10						
Nitrogen, Nitrate (As N)	ND	0.10						
Sample ID LCS	SampT	ype: LCS	Tes	tCode: EPA Meth	od 300.0: Anions	5		
Client ID: LCSW	Batch	ID: R26526	R	RunNo: 26526				
Prep Date:	Analysis Da	ate: 5/29/2015	S	SeqNo: 788480	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLin	nit HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8	0.50 5.000	0	95.7	00 110			
Nitrogen, Nitrite (As N)	0.98	0.10 1.000	0	97.9	90 110			
Nitrogen, Nitrate (As N)	2.5	0.10 2.500	0	99.7	90 110			
Sample ID MB	SampT	pe: MBLK	Tes	tCode: EPA Meth	od 300.0: Anions	3		
Client ID: PBW	Batch	ID: R26575	R	RunNo: 26575				
Prep Date:	Analysis Da	ate: 6/2/2015	S	SeqNo: 790951	Units: mg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLim	nit HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

Sulfate

Value exceeds Maximum Contaminant Level.

ND

0.50

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Sample pH Not In Range
- Reporting Detection Limit

Page 7 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1505C49**

15-Jun-15

Client: Williams Four Corners

Project: J Vent - Dogie CS

Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R26575 RunNo: 26575

Prep Date: Analysis Date: 6/2/2015 SeqNo: 790952 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sulfate 10 0.50 10.00 0 104 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1505C49**

15-Jun-15

Client: Williams Four Corners
Project: J Vent - Dogie CS

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: PBW Batch ID: R26543 RunNo: 26543 Prep Date: Analysis Date: 6/1/2015 SeqNo: 788822 Units: µg/L Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 ND Ethylbenzene 1.0 Xylenes, Total ND 2.0 Surr: 4-Bromofluorobenzene 19 20.00 97.0 80 120

SampType: LCS Sample ID 100NG BTEX LCS TestCode: EPA Method 8021B: Volatiles Client ID: **LCSW** Batch ID: R26543 RunNo: 26543 Prep Date: Analysis Date: 6/1/2015 SeqNo: 788823 Units: µg/L Analyte **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual 23 1.0 20.00 O 114 80 120 Benzene Toluene 23 1.0 20.00 0 115 80 120 Ethylbenzene 22 20.00 0 108 80 120 1.0 Xylenes, Total 64 2.0 60.00 0 106 80 120 22 Surr: 4-Bromofluorobenzene 20.00 112 80 120

Sample ID 1505C49-001AMS SampType: MS TestCode: EPA Method 8021B: Volatiles Client ID: MW-13 Batch ID: R26543 RunNo: 26543 Prep Date: Analysis Date: 6/1/2015 SeqNo: 788826 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene 23 1.0 20.00 114 77.5 121 0 Toluene 23 1.0 20.00 0 115 78.6 122 78.1 Ethylbenzene 22 1.0 20.00 0 128 111 Xylenes, Total 66 60.00 0.6880 108 2.0 80 120 Surr: 4-Bromofluorobenzene 22 20.00 80 112 120

Sample ID 1505C49-001AMS	SD SampT	ype: MS	SD	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: MW-13	Batch	n ID: R2	6543	F	RunNo: 2	6543				
Prep Date:	Analysis D	ate: 6/	1/2015	8	SeqNo: 7	88827	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	105	77.5	121	8.25	20	
Toluene	23	1.0	20.00	0	115	78.6	122	0.147	20	
Ethylbenzene	22	1.0	20.00	0	111	78.1	128	0.00903	20	
Xylenes, Total	65	2.0	60.00	0.6880	108	80	120	0.543	20	
Surr: 4-Bromofluorobenzene	22		20.00		110	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1505C49**

15-Jun-15

Client: Williams Four Corners
Project: J Vent - Dogie CS

Sample ID MB-19459 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 19459 RunNo: 26541

Prep Date: 5/29/2015 Analysis Date: 6/1/2015 SeqNo: 788770 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID LCS-19459 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 19459 RunNo: 26541

Prep Date: 5/29/2015 Analysis Date: 6/1/2015 SeqNo: 788771 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1010 20.0 1000 0 101 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: WILLIAMS FOUR CORN	Work Order Number:	1505C49		RcptNo: 1	
Att.	05/29/15				ļ
Received by/date:	112		t W/M		
Logged By: Lindsay Mangin	5/29/2015 7:00:00 AM		; ;;		
Completed By: Lindsay Mangin	5/29/2015 9:01:31 AM		James Harry	•	
Reviewed By:	05/29/15		·		
Chain of Custody	•				
1. Custody seals intact on sample bottles	?	Yes 🗌	No 🗀	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗭	No 🗆	Not Present	
3. How was the sample delivered?		Courier			
<u>Log In</u>					
4. Was an attempt made to cool the sam	ples?	Yes 🐼	No 🗌	NA \square	
Were all samples received at a temper	rature of >0° C to 6.0°C	Yes 🛃	No 🗆	na 🗆	
o. The discontinuous and temperature		_	_		
6. Sample(s) in proper container(s)?	•	Yes 🖈	No 🗌		
7. Sufficient sample volume for indicated	test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) p	properly preserved?	.Yes 🛣	No 🗹		,
9. Was preservative added to bottles?		yes 🗹 03 +0 -0	03C For acc	eptable pH, t	teld in l
10.VOA vials have zero headspace?	-	Yes 🗹		No VOA Vials \square 2 ${\cal Y}$	hOUTS OF
11. Were any sample containers received	broken?	Yes 📙		# of preserved	prosur v
12. Does paperwork match bottle labels?	dvA	Yes 🗹		bottles checked 6 for pH: 62 br >12	unless noted
(Note discrepancies on chain of custoo 13. Are matrices correctly identified on Ch		Yes 🗹	No 🗆	Adjusted?	-5
14. Is it clear what analyses were requeste		Yes 🖈	No 🗆	_	
15. Were all holding times able to be met? (If no, notify customer for authorization	>	Yes 🗹	No 🗆	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies	with this order?	Yes 🗌	No 🗆	NA 🛃	
Person Notified:	Date:				
By Whom:	Via:	eMail	Phone Fax	In Person	
Regarding:					
Client Instructions:		en en en en en en en en en en en en en e		-	
17. Additional remarks:				'	
18. Cooler Information					
Cooler No Temp °C Condition		Seal Date	Signed By		6
1 2.0 Good	Yes				

Š	ain	of-CL	Chain-of-Custody Record	Turn-Around Time:	me:				J	HALL ENVIRONMENTAL	Ш	2	2	Z	Σ	Z	Ā	
Client:	401	May wabno	020	☑ Standard	□ Rush		5 % 5		4	ANALYSIS LABORATORY	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	. IS	2	BO	Ĭ.	Ĭ	X	
WIII 4,	38	100	WILLIAMS FON CONDERS	Project Name:	1	0,00			_	www.hallenvironmental.com	allenv	ironm	ental.	Com				
Mailing Address:	dress:	281	183 CA 4900	J VENT	17-00/12	- 1	4	901	lawkìi	4901 Hawkins NE	- Alt	ndne	rque,	Albuquerque, NM 87109	7109		•	
RISON FIETO	the	11 pl	! ⊩	Project #: カダヴァ	1/5007			Tel. 5	05-34	Tel. 505-345-3975		Fax 5	05-34	505-345-4107)7			
Phone #: 505	505	103	2/1/2 - 2/1/2								Anai	(†	Analysis Kequest	<u> </u>				``) <i>!</i>
email or Fax#: /	ax#: €/ kade:	회 #	email or Fax#: <u>M.C. #、WeDr.A.d.WilliamSicon</u> Project Manager DA/OC Package:	Froject iManager.	#: 17 17 49	12						OS'*	s,8(7		121/
XStandard	Ç p		☐ Level 4 (Full Validation)	といっと	9,10							Oq. <u>,</u>	2 PC			4.11	$\frac{1}{\ell}$	(Q)
Accreditation □ NELAP	uo	□ Other	-	Sampler: $\mathcal{H}\mathcal{C}$	UX CAZ	ODKS DNO						ON'EC	808 / \$	(A(120	41M	101	Or N)
□ EDD (Type)	ype)				perature: Z)NʻlC			<u>B</u>	12	<u></u>	入) S 7) 1/1
Date	Time	Matrix	Sample Request ID	Container P	Preservative Type	HEAL NO.	BTEX + MT	BTEX + MT 	TPH (Meth	EDB (Meth	PAH's (831 M 8 AROR), T) anoinA	oitse9 1808	OV) 80828 m98) 0728) Xajg	telt1/1	10+9/	Air Bubble:
1/28/	Sho/	SW.	MW-13	6, Vanous 4	CODI, HCI HWO< 42,504	100-												
3 -	7.35		NW-15			-(0)-												
	1215		WW-14			-003												
	1315		MW-16	>		-00H											_	
->		7	Tro Blank	Hel	>	-005							\dashv		>	>	5	<u> </u>
-/		·	2					_			-		\dashv		_		_	-
								_			_			+	\dashv			\dashv
							\parallel	$-\parallel$					_	_			\neg	_
								_		\vdash	H	\prod	+	\dashv	\dashv		\dashv	\dashv
		:												\vdash	\prod	\prod	$ \uparrow$	-/
										_			\dashv		_			
											\dashv			_			\exists	\dashv
Date: Tin	Time: 1535	Relipquished By:	AND NO	Regelived by:	7	5 Pate Time	Remarks: DUなど	rks: なん		copy brund Hanvican		3	79	(<u>a</u>	to	N	7	3
<u> </u>	Time: \$60	Relinquished/by:		Received by:	A STORY	Date Time)	,							
if nec	cessary,	samples sut			coredited laboratories	s. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	iliqissod	y. Any	sub-con	racted d	ta will t	e clearly	/ notate	d on the	analyti	cal repo	l ti	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 10, 2015

Brooke Herb Williams Four Corners 188 CR 4900 Bloomfield, NM 87413

TEL: (505) 632-4442

FAX

RE: Former JVent OrderNo.: 1508C60

Dear Brooke Herb:

Hall Environmental Analysis Laboratory received 5 sample(s) on 8/26/2015 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1508C60**Date Reported: **9/10/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-13

 Project:
 Former JVent
 Collection Date: 8/25/2015 2:05:00 PM

 Lab ID:
 1508C60-001
 Matrix: AQUEOUS
 Received Date: 8/26/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LGT
Chloride	14	10		mg/L	20	8/26/2015 4:21:44 PM	R28493
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	8/26/2015 4:09:19 PM	R28493
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	8/26/2015 4:09:19 PM	R28493
Sulfate	1200	25	*	mg/L	50	9/1/2015 8:56:51 PM	R28611
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	2510	200	*D	mg/L	1	8/27/2015 12:01:00 PM	20986
EPA METHOD 200.7: TOTAL METAL	S					Analyst	: JLF
Iron	35	2.0	*	mg/L	100	9/2/2015 1:49:03 PM	21077
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	1.0		μg/L	1	8/26/2015 11:24:34 PM	a28483
Toluene	ND	1.0		μg/L	1	8/26/2015 11:24:34 PM	a28483
Ethylbenzene	ND	1.0		μg/L	1	8/26/2015 11:24:34 PM	a28483
Xylenes, Total	ND	2.0		μg/L	1	8/26/2015 11:24:34 PM	a28483
Surr: 4-Bromofluorobenzene	97.9	65-127		%REC	1	8/26/2015 11:24:34 PM	a28483

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1508C60**Date Reported: **9/10/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-14

 Project:
 Former JVent
 Collection Date: 8/25/2015 12:35:00 PM

 Lab ID:
 1508C60-002
 Matrix: AQUEOUS
 Received Date: 8/26/2015 7:00:00 AM

Analyses	Result	RL Q	ual Units	DF Date Analyzed Batch
EPA METHOD 300.0: ANIONS				Analyst: LGT
Chloride	12	10	mg/L	20 8/26/2015 5:36:12 PM R28493
Nitrogen, Nitrite (As N)	ND	0.10	mg/L	1 8/26/2015 5:23:47 PM R28493
Nitrogen, Nitrate (As N)	0.29	0.10	mg/L	1 8/26/2015 5:23:47 PM R28493
Sulfate	920	10	* mg/L	20 8/26/2015 5:36:12 PM R28493
SM2540C MOD: TOTAL DISSOLVED	SOLIDS			Analyst: KS
Total Dissolved Solids	1790	200	*D mg/L	1 8/27/2015 12:01:00 PM 20986
EPA METHOD 200.7: TOTAL METAL	_S			Analyst: JLF
Iron	52	2.0	* mg/L	100 9/2/2015 1:58:16 PM 21077
EPA METHOD 8021B: VOLATILES				Analyst: NSB
Benzene	ND	1.0	μg/L	1 8/27/2015 12:39:12 AM a28483
Toluene	ND	1.0	μg/L	1 8/27/2015 12:39:12 AM a28483
Ethylbenzene	ND	1.0	μg/L	1 8/27/2015 12:39:12 AM a28483
Xylenes, Total	ND	2.0	μg/L	1 8/27/2015 12:39:12 AM a28483
Surr: 4-Bromofluorobenzene	91.6	65-127	%REC	1 8/27/2015 12:39:12 AM a28483

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S $\,\,$ $\,$ % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1508C60**Date Reported: **9/10/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-15

 Project:
 Former JVent
 Collection Date: 8/25/2015 2:55:00 PM

 Lab ID:
 1508C60-003
 Matrix: AQUEOUS
 Received Date: 8/26/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LGT
Chloride	16	10		mg/L	20	8/26/2015 6:01:01 PM	R28493
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	8/26/2015 5:48:36 PM	R28493
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	8/26/2015 5:48:36 PM	R28493
Sulfate	940	10	*	mg/L	20	8/26/2015 6:01:01 PM	R28493
SM2540C MOD: TOTAL DISSOLVED S	SOLIDS					Analyst	: KS
Total Dissolved Solids	1600	200	*D	mg/L	1	8/27/2015 12:01:00 PM	20986
EPA METHOD 200.7: TOTAL METALS	•					Analyst	: JLF
Iron	51	2.0	*	mg/L	100	9/2/2015 2:00:10 PM	21077
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	1.0		μg/L	1	8/27/2015 1:04:00 AM	a28483
Toluene	ND	1.0		μg/L	1	8/27/2015 1:04:00 AM	a28483
Ethylbenzene	ND	1.0		μg/L	1	8/27/2015 1:04:00 AM	a28483
Xylenes, Total	ND	2.0		μg/L	1	8/27/2015 1:04:00 AM	a28483
Surr: 4-Bromofluorobenzene	96.1	65-127		%REC	1	8/27/2015 1:04:00 AM	a28483

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1508C60**Date Reported: **9/10/2015**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners Client Sample ID: MW-16

 Project:
 Former JVent
 Collection Date: 8/25/2015 1:25:00 PM

 Lab ID:
 1508C60-004
 Matrix: AQUEOUS
 Received Date: 8/26/2015 7:00:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	: LGT
Chloride	45	10		mg/L	20	8/26/2015 6:25:50 PM	R28493
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	8/26/2015 6:13:26 PM	R28493
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	8/26/2015 6:13:26 PM	R28493
Sulfate	1700	50	*	mg/L	100	9/4/2015 12:15:23 AM	R28665
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	: KS
Total Dissolved Solids	2860	200	*D	mg/L	1	8/27/2015 12:01:00 PM	20986
EPA METHOD 200.7: TOTAL METAL	S					Analyst	: JLF
Iron	30	2.0	*	mg/L	100	9/2/2015 2:02:03 PM	21077
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	1.0		μg/L	1	8/27/2015 1:28:44 AM	a28483
Toluene	ND	1.0		μg/L	1	8/27/2015 1:28:44 AM	a28483
Ethylbenzene	ND	1.0		μg/L	1	8/27/2015 1:28:44 AM	a28483
Xylenes, Total	ND	2.0		μg/L	1	8/27/2015 1:28:44 AM	a28483
Surr: 4-Bromofluorobenzene	93.9	65-127		%REC	1	8/27/2015 1:28:44 AM	a28483

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit

Lab Order **1508C60**

Date Reported: 9/10/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Williams Four Corners

Client Sample ID: Trip Blank

Project: Former JVent Collection Date:

Lab ID: 1508C60-005 **Matrix:** TRIP BLANK **Received Date:** 8/26/2015 7:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analy	st: NSB
Benzene	ND	1.0	μg/L	1	8/27/2015 1:53:31 AM	1 a28483
Toluene	ND	1.0	μg/L	1	8/27/2015 1:53:31 AM	1 a28483
Ethylbenzene	ND	1.0	μg/L	1	8/27/2015 1:53:31 AM	1 a28483
Xylenes, Total	ND	2.0	μg/L	1	8/27/2015 1:53:31 AM	1 a28483
Surr: 4-Bromofluorobenzene	96.1	65-127	%REC	1	8/27/2015 1:53:31 AM	1 a28483

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 10
- P Sample pH Not In Range
- RL Reporting Detection Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1508C60**

10-Sep-15

Client: Williams Four Corners

Project: Former JVent

Sample ID MB-21077 SampType: MBLK TestCode: EPA Method 200.7: Total Metals

Client ID: PBW Batch ID: 21077 RunNo: 28618

Prep Date: 9/1/2015 Analysis Date: 9/2/2015 SeqNo: 865823 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Iron ND 0.020

Sample ID LCS-21077 SampType: LCS TestCode: EPA Method 200.7: Total Metals

Client ID: LCSW Batch ID: 21077 RunNo: 28618

Prep Date: 9/1/2015 Analysis Date: 9/2/2015 SeqNo: 865824 Units: mg/L

,

SPK value SPK Ref Val %REC %RPD **RPDLimit** Analyte Result PQL LowLimit HighLimit Qual Iron 0.51 0.020 0.5000 0 103 115

Sample ID LLLCS-21077 SampType: LCSLL TestCode: EPA Method 200.7: Total Metals Client ID: **BatchQC** Batch ID: 21077 RunNo: 28618 Prep Date: 9/1/2015 Analysis Date: 9/2/2015 SeqNo: 865825 Units: mg/L %REC %RPD **RPDLimit** Analyte Result **PQL** SPK value SPK Ref Val HighLimit Qual LowLimit

Iron ND 0.020 0.02000 0 97.4 50 150

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 6 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1508C60**

10-Sep-15

Client: Williams Four Corners

Project: Former JVent

Sample ID MB	SampT	SampType: MBLK			Code: El	PA Method	3			
Client ID: PBW	Batch	1D: R2	8493	R	unNo: 2	8493				
Prep Date:	Analysis D	ate: 8/	26/2015	S	eqNo: 8	61510	Units: mg/L			
Analyte	Result	Result PQL SPK value SF		SPK Ref Val	PK Ref Val %REC LowLimit			%RPD	RPDLimit	Qual
Chloride	ND	0.50								
Nitrogen, Nitrite (As N)	ND	0.10								
Nitrogen, Nitrate (As N)	ND	0.10								
Sulfate	ND	0.50								

Sample ID LCS	4.9 0.50 5.00 0.97 0.10 1.00	S	les	tCode: El	PA Method	3				
Client ID: LCSW	Batch ID: R28493 Analysis Date: 8/26/2015 Result PQL SPK va 4.9 0.50 5. 0.97 0.10 1. 2.6 0.10 2.		8493	F	RunNo: 2	8493				
Prep Date:	Analysis D	ate: 8/	26/2015	8	SeqNo: 8	61511	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9	0.50	5.000	0	98.0	90	110			
Nitrogen, Nitrite (As N)	0.97	0.10	1.000	0	97.3	90	110			
Nitrogen, Nitrate (As N)	2.6	0.10	2.500	0	103	90	110			
Sulfate	9.9	0.50	10.00	0	98.8	90	110			

Sample ID 1508C60-001B	MS Samp	Type: MS	3	Tes	tCode: El	S				
Client ID: MW-13	Bato	h ID: R2	8493	F	RunNo: 2	8493				
Prep Date:	Analysis I	Date: 8/	26/2015	8	SeqNo: 8	61534	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	20	0.50	5.000	14.76	104	81.2	116			
Nitrogen, Nitrite (As N)	0.92	0.10	1.000	0	92.0	77.1	110			
Nitrogen, Nitrate (As N)	2.5	0.10	2.500	0	102	87.3	111			

Sample ID 1508C60-001I	BMSD SampT	ype: MS	SD	Tes	tCode: El	PA Method	300.0: Anion	S		
Client ID: MW-13	Batch	ID: R2	8493	R	RunNo: 28	8493				
Prep Date:	Analysis D	ate: 8/	26/2015	S	SeqNo: 80	61535	Units: mg/L			
Analyte	Result	PQL	CDK value	CDV D-t V-I)/ DEC	LowLimit	HighLimit	0/ DDD	DDDI imit	Ougl
Allalyte	Result	FQL	SPK value	SPK Ref Val	%REC	LOWLITTIL	⊓ign∟imit	%RPD	RPDLimit	Qual
Chloride	20	0.50	5.000	14.76	104	81.2	116	0.0411	20	Quai
										Quai

Sample ID MB	SampT	ype: ME	BLK	Test	tCode: El	PA Method	300.0: Anion:	6		
Client ID: PBW	Batch	ID: R2	8611	R	tunNo: 2	8611				
Prep Date:	Analysis Da	ate: 9/	1/2015	S	eqNo: 8	65519	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Sulfate ND 0.50

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 7 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1508C60**

10-Sep-15

Client: Williams Four Corners

Project: Former JVent

Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSW Batch ID: R28611 RunNo: 28611

Prep Date: Analysis Date: 9/1/2015 SeqNo: 865520 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Sulfate 10 0.50 10.00 0 99.6 90 110

Sample ID MB SampType: MBLK TestCode: EPA Method 300.0: Anions Client ID: PBW Batch ID: R28665 RunNo: 28665 Units: mg/L Prep Date: Analysis Date: 9/3/2015 SeqNo: 868144 Result SPK value SPK Ref Val %REC LowLimit %RPD **RPDLimit** Analyte PQL HighLimit Qual Sulfate ND 0.50

Sample ID LCS SampType: LCS TestCode: EPA Method 300.0: Anions Client ID: LCSW Batch ID: R28665 RunNo: 28665 Prep Date: Analysis Date: 9/3/2015 SeqNo: 868145 Units: mg/L %REC %RPD **RPDLimit** Analyte Result SPK value SPK Ref Val HighLimit Qual LowLimit

Sulfate 10 0.50 10.00 0 101 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: **1508C60**

10-Sep-15

Client: Williams Four Corners

Project: Former JVent

Sample ID 5ML RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Batch	ID: a2	8483	R	RunNo: 2	8483				
Prep Date:	Analysis D	ate: 8/	26/2015	S	SeqNo: 8	61095	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	20		20.00		102	65	127			

Sample ID 100NG BTEX LC	S SampT	ype: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batch	n ID: a2	8483	F	RunNo: 2	8483				
Prep Date:	Analysis D	ate: 8/	26/2015	8	SeqNo: 8	61096	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	98.2	80	120			
Toluene	20	1.0	20.00	0	100	80	120			
Ethylbenzene	20	1.0	20.00	0	101	80	120			
Xylenes, Total	59	2.0	60.00	0	98.0	80	120			
Surr: 4-Bromofluorobenzene	21		20.00		104	65	127			

Sample ID 1508C60-001AN	IS Samp	Гуре: М	S	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: MW-13	Batc	h ID: a2	8483	F	RunNo: 2	8483				
Prep Date:	Analysis [Date: 8/	/26/2015	5	SeqNo: 8	61100	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.8	50.9	146			
Toluene	19	1.0	20.00	0	96.4	71.7	136			
Ethylbenzene	19	1.0	20.00	0	97.0	74.2	132			
Xylenes, Total	57	2.0	60.00	0.4218	94.0	75.7	130			
Surr: 4-Bromofluorobenzene	21		20.00		103	65	127			

Sample ID 1508C60-001AM	ISD SampT	уре: МS	SD	Tes	tCode: El	PA Method	8021B: Volati	les		
Client ID: MW-13	Batch	ID: a2	8483	F	RunNo: 2	8483				
Prep Date:	Analysis D	ate: 8/	27/2015	8	SeqNo: 8	61101	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	87.9	50.9	146	7.50	20	
Toluene	18	1.0	20.00	0	87.6	71.7	136	9.65	20	
Ethylbenzene	18	1.0	20.00	0	89.5	74.2	132	7.99	20	
Xylenes, Total	52	2.0	60.00	0.4218	86.8	75.7	130	7.90	20	
Surr: 4-Bromofluorobenzene	21		20.00		104	65	127	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 10

Hall Environmental Analysis Laboratory, Inc.

WO#: 1508C60

10-Sep-15

Client: Williams Four Corners

Project: Former JVent

Sample ID MB-20986 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: PBW Batch ID: 20986 RunNo: 28497

Prep Date: 8/26/2015 Analysis Date: 8/27/2015 SeqNo: 861745 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids ND 20.0

Sample ID LCS-20986 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids

Client ID: LCSW Batch ID: 20986 RunNo: 28497

Prep Date: 8/26/2015 Analysis Date: 8/27/2015 SeqNo: 861746 Units: mg/L

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Total Dissolved Solids 1030 20.0 1000 0 103 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 10

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

WILLIAMS FOUR CORN Work Order Number: 1508C60 RcptNo: 1 Client Name: Received by/date: 8/26/2015 7:00:00 AN Logged By: Lindsay Mangin 8/26/2015 9:46:41 AM Completed By: **Lindsay Mangin** 08/20/15 Reviewed By: Chain of Custody Yes 🗍 Not Present 1. Custody seals intact on sample bottles? Yes 🖈 No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log in No 🗆 NA 🗌 4. Was an attempt made to cool the samples? NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C Sample(s) in proper container(s)? Yes No 🗌 7. Sufficient sample volume for indicated test(s)? No 🗌 8. Are samples (except VOA and ONG) properly preserved? Yes No 🧖 NA 🗆 9. Was preservative added to bottles? Yes No 12 No VOA Vials 10. VOA vials have zero headspace? No 🖈 11. Were any sample containers received broken? Yes # of preserved bottles checked No 🗌 for pH: 12. Does paperwork match bottle labels? Yes 12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 13. Are matrices correctly identified on Chain of Custody? No 🗌 14. Is it clear what analyses were requested? Checked by: No 🗀 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) NA 🛃 16. Was client notified of all discrepancies with this order? Yes No 🔲 Person Notified: Date: By Whom: Via: ☐ eMail Phone Fax ☐ In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No | Temp ºC | Condition | Seal Intact | Seal No Signed By 2.1 Good Yes

HALL ENVIRONMENTAL	ANALYSIS LABORATORY		109	2		7	167	<u>5</u>	170 170		10401 10401	ماندان ماندان			T T T T T T		_					Q	_	Ź
TRONK	LABO	www.hallenvironmental.com	Albuquerque, NM 87109	505-345-4107	Analysis Request	¥ S	LCB.	Z808	(\ /		8081 Pestion (VO) 80816											Please copy results to	ENY, CON	MWICKER®LTEN, COM
S	SIS	ironm	ndne	Fax 5	sis R						D,∃) snoinA							_				7	当	Tigging 1
ū	֓֞֟֝֓֓֓֓֟֝֟֝֟֝֟֝֟֝֟֝֟֝֟֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֡֝֡֝֡֝	allenv	- Alb		Anal)		(RCRA 8 Me											8	B)	(er (
	įŞ	ww.h	4901 Hawkins NE -	505-345-3975			(SMI				EDB (Meth) 	390	ざら
Ī	\ \ \	§	wkins	-345							TPH (Metho											east	AF	2
	1 [.)1 Ha	I. 505		(оы	M / O	,			82108 H9T		· ·											
			490	<u>Te</u>		(ƙju	Gas c	Hd.	<u> </u>	38.	TM + X3T8											Remarks		
	」					()	208) s		L F	38	BTEX + 1	-			\rightarrow	X						Rei		$\overline{}$
			4		_				No		HEAL NO.	100-	-005	-088	100-	100) }					Date Time 8/15/1/5/1/2	: i= :	126 15 NABE
Time:	□ Rush		JVent	,	015007	ger:	How	<u>}</u>	/ Yes	derature: 2	Preservative Type	Vanious			>					i		ئے۔ کے۔۔۔ر		E H
Turn-Around	Standard	Project Name:	TO SARY	Project #:	034	Project Manager:	Brook	Sampler:	On Ice:	Sample Temperature:	Container Type and #	Various/6	,		>	70 VON 12	ļ					Received by:	Received by:	T)
Chain-of-Custody Record	Kelsey Christianson	Williams Foor Corners	188 RD 4900	Jd. NM 87413	133		□ Level 4 (Full Validation)				Sample Request ID	MW-13	MW-14	MW-15	MW-16	This Blank					1	las.	h :hq	t I Pala
of-Cus	7	ams F	188 R	Birrantield	\$ 215-	2			□ Other		Matrix	GW			>							Relinquis	Relinquished by:	/ Mut
hain-	Kelse	M	Mailing Address:		# (50x	r Fax#: 12	QA/QC Package:	tation	AP	(Type)	Time	1405		755	1325							Time:		<u> </u>
ပ	Client:		Mailing		Phone #:	email or	QA/QC Packa	Accreditation	□ NELAP	☐ EDD (Type)	Date	25-15			\Rightarrow	25-15						Date:	Date:	\$ \frac{1}{2}