3R - 0712014 AGWMR 04 / 16 / 2015

ConocoPhillips Company Risk Management & Remediation Program Manager/Director Corp. Waste Management Program 600 N. Dairy Ashford, MA 1004

John F. (Rick) Greiner, CPG, P.G.

Houston, TX 77079 Phone: 281-293-3264 E-mail: Rick.Greiner@conocophillips.com

Mr. Glenn von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

April 16, 2015

Re: NMOCD Case No. 3RP-071, 2014 Annual Groundwater Monitoring Report

Dear Mr. von Gonten:

Enclosed is the 2014 Annual Groundwater Monitoring Report for the Johnston Federal No. 4 site. This report, prepared by Conestoga-Rovers & Associates (CRA), contains the results of the annual groundwater monitoring and mobile dual phase extraction event conducted during September and November, 2014, respectively, at the referenced site.

Please let me know if you have any questions.

Sinderel unn

Rick Greine

Enc

www.CRAworld.com

2014 Annual Groundwater Monitoring Report

ConocoPhillips Johnston Federal No. 4 Metering Station San Juan County, New Mexico API# 30-045-10130 NMOCD # 3RP-071

Prepared for: ConocoPhillips Company

Conestoga-Rovers & Associates

6121 Indian School Road, NE Suite 200 Albuquerque, New Mexico 87110

February 2015 • 074925 • Report No. 5

Table of Contents

Page

Section 1.0	Introdu	lction	1
	1.1	Background	1
Section 2.0	Mobile	Dual Phase Extraction	2
Section 3.0	Ground	lwater Sampling Methodology and Analytical Results	2
	3.1	Groundwater Sampling Methodology	2
	3.2	Groundwater Analytical Results	3
Section 4.0	Conclus	sions and Recommendations	5

List of Figures (Following Text)

- Figure 1 Site Location Map
- Figure 2 Site Plan
- Figure 3 Geological Cross Section
- Figure 4 September 2014 Groundwater Potentiometric Surface Map
- Figure 5 September 2014 Benzene Concentration Map

List of Tables (Following Text)

- Table 1 Site History Map
- Table 2
 Monitoring Well Specifications and Groundwater Elevations
- Table 3Field Parameters Summary
- Table 4Groundwater Laboratory Analytical Results Summary

List of Appendices

- Appendix A November 2014 Mobile Dual Phase Extraction Report
- Appendix B Groundwater Laboratory Analytical Reports

Section 1.0 Introduction

This report presents the results of the 2014 annual groundwater monitoring event, a mobile dual phase extraction (MDPE) event, and post-MDPE groundwater monitoring events conducted by Conestoga-Rovers & Associates (CRA) at the ConocoPhillips Company (ConocoPhillips) Johnston Federal No. 4 Metering Station (Site). The Site is located on Bureau of Land Management (BLM) land, approximately 13 miles east-northeast of Aztec, San Juan County, New Mexico in Unit Letter M, Section 27, Township 31N, Range 9W (**Figure 1**). A Site detail map is included as **Figure 2**. The Johnston Federal No. 4 wellhead, API # 30-045-10130, is located approximately one-half mile to the southwest of the metering station.

1.1 Background

Burlington Resources (Burlington) conducted initial site assessments of two production pits in August 1998. Soil from the separator pit was collected and analyzed for total petroleum hydrocarbons (TPH). The concentration of TPH in separator pit (Production Pit #1, Figure 2) soil was found to be below New Mexico Oil Conservation Division (NMOCD) recommended action levels for this constituent, and the pit was subsequently granted closure by NMOCD. Soil from the tank drain pit (Production Pit #2, Figure 2) was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels. Following laboratory results, approximately 3,055 cubic yards of hydrocarbon-impacted soil was excavated in December 1998. Once complete, the excavation was backfilled with clean fill material, and the NMOCD granted pit closure.

A groundwater monitoring well, MW-1, was installed at the Site to a depth of 50 feet below ground surface (bgs) in May of 1999. Burlington sampled MW-1 on a quarterly basis until the acquisition of Burlington by ConocoPhillips in March of 2006. Tetra Tech, Inc. (Tetra Tech) began sampling MW-1 in November 2007. In August 2008, three additional groundwater monitoring wells were installed under the supervision of Tetra Tech by WDC Exploration and Drilling of Peralta, NM. With information obtained during monitoring well installation in 2008, a generalized geologic cross section was completed for the Site and is presented as **Figure 3**. The existing Burlington/ConocoPhillips monitoring well network at the Site includes MW-1, MW-2, MW-3, and MW-4. Monitoring wells MW-1, MW-2, MW-3, and MW-4 were incorporated into an annual sampling schedule beginning on October 24, 2008.

El Paso CGP Company (El Paso) owns 12 additional Site monitoring wells with the last six of those wells being installed in late 2013. The El Paso-owned monitoring wells are scheduled on a semi-annual basis and free product is also being recovered.

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to CRA of Albuquerque, NM.

A historical timeline for the Site is presented in **Table 1**.

Section 2.0 Mobile Dual Phase Extraction

CRA provided oversight for an MDPE event conducted on November 12 and 13, 2014 by AcuVac of Houston, TX. MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to maximize mass removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, induce a hydraulic gradient toward the extraction well, and to create the groundwater depression, exposing the capillary fringe or smear zone to SVE. Recovered liquids were discharged to the on-site evaporation tank. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE). Power generated by the ICE is used to create the induced vacuum for SVE.

During the two days of MDPE, approximately 44 gallons of hydrocarbons (liquid and vapor) were extracted from monitoring well MW-1. The November 2014 MDPE event follows an August 2013 MDPE event in which 94 gallons of hydrocarbons were extracted from MW-1. Data from the January 2015 groundwater monitoring event indicate that, while the MDPE events were very effective in removing a mass of hydrocarbons, elevated concentrations remain in the groundwater in the vicinity of MW-1 (see Section 3.2). The complete report for MDPE activities performed at the Site was provided by AcuVac and is included as **Appendix A**.

Section 3.0 Groundwater Sampling Methodology and Analytical Results

3.1 Groundwater Sampling Methodology

Groundwater Elevation Measurements

On September 23, 2014, groundwater elevation measurements were obtained for monitoring wells MW-1, MW-2, MW-3, and MW-4 using an oil/water interface probe. Groundwater elevations are detailed in **Table 2**. A groundwater potentiometric surface map is presented as **Figure 4**. Based on September 2014 monitoring event data, groundwater flow is to the east-southeast and is consistent with historical data at the Site.

There was no measurable thickness of product present in the Site monitoring wells during the 2014 annual groundwater sampling event; however, a slight but continuous hydrocarbon sheen was observed in the purge water generated from monitoring well MW-1.

Groundwater sampling

On September 23, 2014, groundwater samples were collected from monitoring wells MW-1, MW-2, MW-3, and MW-4. Approximately three well volumes were purged from each monitoring well with a dedicated polyethylene 1.5-inch disposable bailer prior to sampling. While bailing each well, groundwater parameter data, including temperature, pH, conductivity, dissolved oxygen, and oxidation-reduction potential were collected using a multi-parameter sonde. Field parameters are summarized on **Table 3**.

Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace Analytical Services, Inc. of Lenexa, Kansas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260, naphthalene by EPA Method 8270, sulfate by EPA Method 300.0, and for dissolved manganese and iron by EPA Method 6010.

Additionally, groundwater samples were collected from monitoring wells MW-3 and MW-4 on December 17, 2014 and from monitoring well MW-1 on January 8, 2015, in order to assess the effectiveness of the November 2014 MDPE event. The samples were analyzed for BTEX by EPA Method 8260 and for naphthalene by EPA Method 8270. The associated laboratory analytical reports are included as **Appendix B**.

3.2 Groundwater Analytical Results

The New Mexico Water Quality Control Commission (NMWQCC) mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedances of NMWQCC groundwater quality standards in Site monitoring wells are discussed below. Results are summarized in **Table 4**.

September 2014

Benzene

 The NMWQCC standard for benzene is 0.01 milligrams per liter (mg/L). The groundwater sample collected from MW-1 exceeded the standard for benzene with a concentration of 2.97 mg/L.

• Toluene

• The NMWQCC standard for toluene is 0.75 mg/L. The groundwater sample collected from MW-1 exceeded the standard for toluene with a concentration of 4.25 mg/L.

• Ethylbenzene

 The NMWQCC standard for ethylbenzene is 0.75 mg/L. The groundwater sample collected from MW-1 exceeded the standard for ethylbenzene with a concentration of 0.778 mg/L.

• Total Xylenes

 The NMWQCC standard for total xylenes is 0.620 mg/L. The groundwater sample collected from MW-1 exceeded the standard for xylenes with a concentration of 6.89 mg/L.

• Naphthalene

 The NMWQCC standard for naphthalene is 0.03 mg/L. The groundwater sample collected from MW-1 exceeded the standard for naphthalene with a concentration of 0.0446 mg/L.

• Sulfate

 The NMWQCC standard for sulfate is 600 mg/L. The groundwater samples collected from MW-2 and MW-4 exceeded the standard for sulfate with concentrations of 1,190 mg/L and 905 mg/L, respectively.

• Dissolved Manganese

• The NMWQCC standard for dissolved manganese is 0.2 mg/L. The groundwater samples collected from MW-1, MW-3, and MW-4 exceeded the standard for dissolved manganese with concentrations of 0.85 mg/L, 0.65 mg/L, and 2.2 mg/L, respectively.

December 2014/January 2015

- Benzene
 - The groundwater collected from MW-1 exceeded the NMWQCC standard for benzene with a concentration of 4.35 mg/L.

• Toluene

• The groundwater collected from MW-1 exceeded the NMWQCC standard for toluene with a concentration of 6.15 mg/L.

• Ethylbenzene

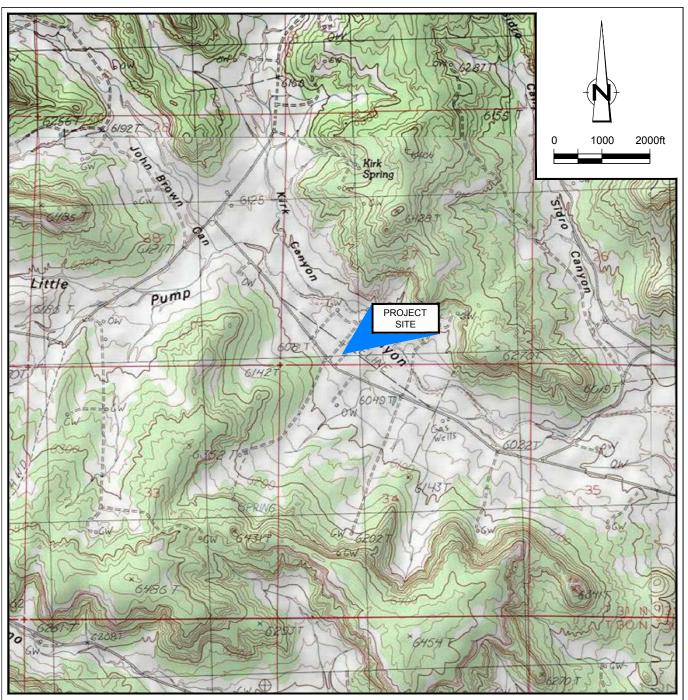
• The groundwater collected from MW-1 exceeded the NMWQCC standard for ethylbenzene with a concentration of 1.07 mg/L.

• Xylenes

 The groundwater collected from MW-1 exceeded the NMWQCC standard for xylenes with a concentration of 10.0 mg/L.

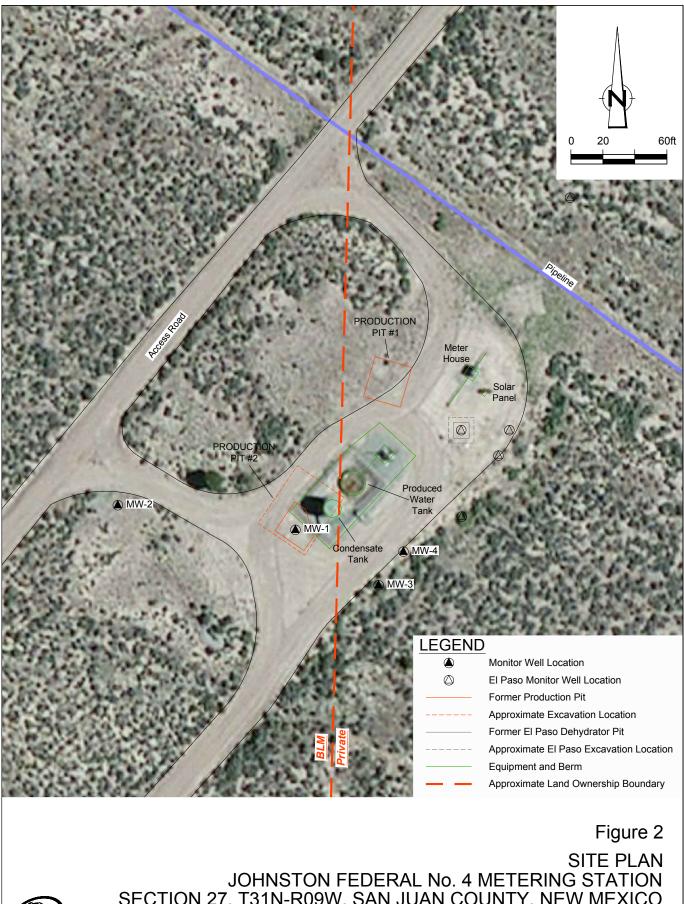
Section 4.0 Conclusions and Recommendations

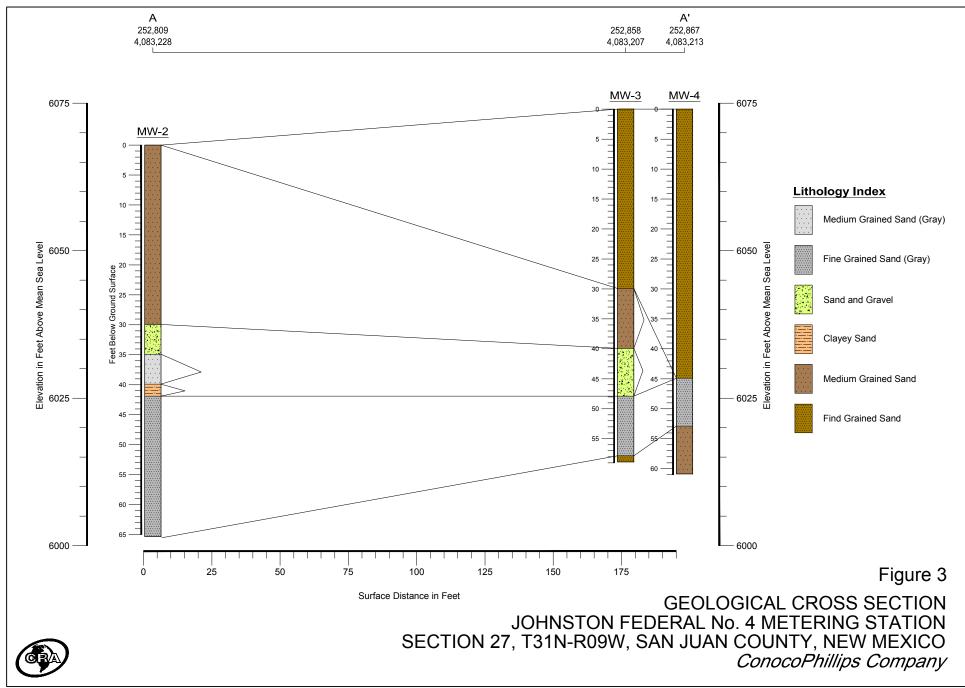
Approximately 44 gallons of hydrocarbons were successfully removed from the subsurface at monitoring well MW-1 during the November 2014 MDPE event. The concentration of BTEX in MW-1 increased between the September 2014 and December 2014/January 2015 sampling events. Additionally, the concentration of benzene in MW-4, down-gradient from MW-1, has been reduced to below the NMWQCC standard. This same Site phenomenon, increased concentrations at the extraction well (MW-1), and decreased concentrations down-gradient (MW-4) was observed after the 2013 MDPE event. This serves as evidence of the beneficial plume-shrinking effect of the induced gradient toward the extraction well as a result of the MDPE event. CRA recommends conducting additional MDPE events at the Site to remediate the dissolved-phase hydrocarbon plume.

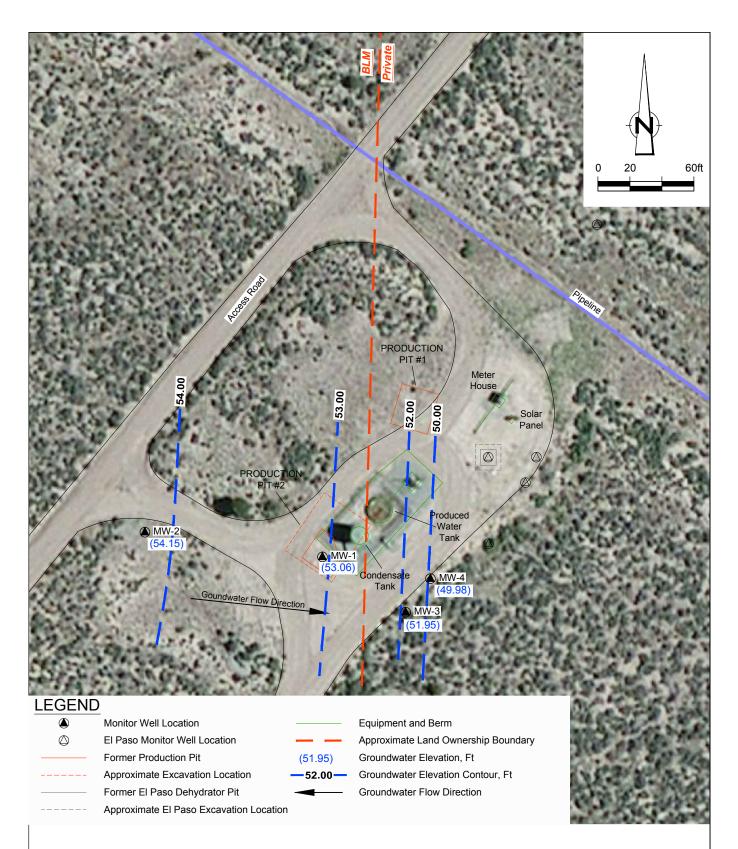

Concentrations of sulfate and dissolved manganese continue to be detected above NMWQCC groundwater quality standards in Site monitoring wells. CRA recommends continued annual sampling of Site monitoring wells until all monitored groundwater quality parameters approach NMWQCC standards. CRA will begin a quarterly sampling schedule once all parameters are near or below NMWQCC standards or background levels.

The next groundwater monitoring event at the Site is scheduled to take place during September of 2015 and will include analyses for BTEX, naphthalene, dissolved manganese, dissolved iron, and sulfate.

Figures




SOURCE: USGS 7.5 MINUTE QUAD "TURLEY, NEW MEXICO" LAT/LONG: 36.8626° NORTH, 107.7723° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO WEST


Figure 1

SITE LOCATION MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

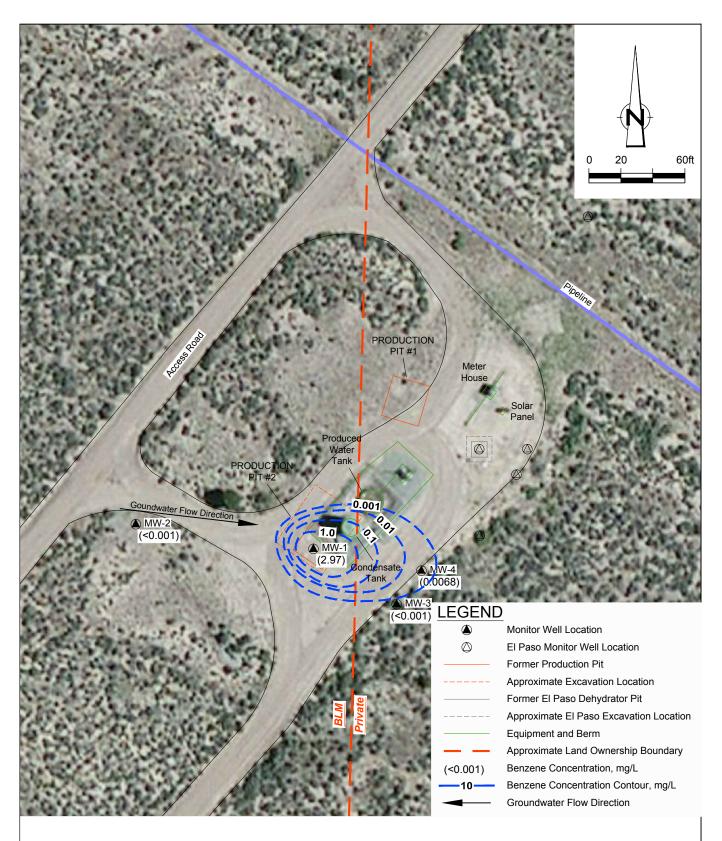

JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

Figure 4

SEPTEMBER 2014 GROUNDWATER POTENTIOMETRIC SURFACE MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

Figure 5

SEPTEMBER 2014 BENZENE CONCENTRATION MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO *ConocoPhillips Company*

Tables

Page 1 of 2

TABLE 1

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 METERING STATION SAN JUAN COUNTY, NEW MEXICO

Date/Time Period	Event/Action	Description/Comments
August 1952	Well Spudded	Well was spudded by Anderson-Prichard Oil Corporation on August 21, 1952.
April 1961	Transfer of Well Ownership	Ownership of the well transferred from Anderson-Prichard Oil Corporation to Union Texas Natural Gas Corporation on April 26, 1961.
September 1971	Transfer of Well Ownership	Meridian Oil Inc., a wholly-owned subsidiary of Burlington Resources, took over operation of well from Union Texas Petroleum Corporation on September 17, 1991.
August 1994	Initial Site Assesment	El Paso Energy conducted a site assessment of a former unlined pit near the metering station.
September 1994	Pit Excavation	El Paso Energy excavated ~60 cubic yards of soil from their former unlined pit.
August 1995	Monitor Well Installation	El Paso contracted Philip Environmental Services Corporation to install a monitor well in the vicinity of their former pit on August 9, 1995.
December 1995	Monitor Well Installation	El Paso contracted Philip Environmental Services Corporation to install two downgradient monitor wells between December 12 and 15, 1995.
August 1997	Product Removal	El Paso Energy commenced product removal from their MW-1 on August 26, 1997.
September 1997	Piezometer Installation	El Paso contracted Philip Environmental Services Corp. to install 3 temporary piezometers on September 15, 1997.
July 1998	NMOCD Communication With Site Operators	New Mexico Oil Conservation Division (NMOCD) issued a response letter to El Paso Field Services (EPFS) on July 8, 1998, indicating that they would be sending letters to the operators of the sites (including Burlington Resources) and that EPFS should work cooperatively with the operators on investigation and remediation activities.
July 1998	NMOCD Requests Groundwater Investigation by Burlington Resources	NMOCD issued a letter to Burlington Resources on July 9, 1998, referencing work done at the Site by EPFS and requiring Burlington Resources (BR) to immediately implement their previously approved pit closure plan. The letter also required BR to submit a comprehensive groundwater investigation and remediation plan for all pit closure Sites in the San Juan Basin that encounter groundwater.
August 1998	Burlington Resources Granted Closure of Pit #1	Burlington Resources sampled Pit #1 on August 10, 1998 and laboratory analytical results indicated closure was warranted.
August 1998	Initial Site Assessment	Initial site assessment conducted on the site separator pit. Soil from this area was collected and analyzed for total petroleum hydrocarbons (TPH) and was found to contain TPH below NMOCD recommended action levels. The pit was subsequently granted closed status by NMOCD.
August 1998	Initial Site Assessment	Initial site assessment conducted on the tank drain pit. Soil from this area was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and for TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels.
December 1998	Pit Excavation	Burlington Resources excavated ~3,055 cubic yards of hydrocarbon-impacted soil from Pit #2 (58 ft x 45 ft x 30 ft deep), starting on December 17, 1998. The excavation extended to ~30 feet below ground surface (practical extent). The bottom of the excavation was sampled on December 28, 1998.
May 1999	Monitor Well Installation	Monitor Well MW-1 installed to a depth of 50 feet below ground surface (bgs); the screened interval was placed from 35 to 50 feet bgs, and was installed in the center of pit #2. Burlington Resources began monitoring MW-1 on a quarterly basis.
June 1999	Confirmation of Groundwater Impacts	Laboratory analysis of groundwater from MW-1 shows levels of benzene, toluene, and total xylenes in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Burlington Resources notified NMOCD via E-mail on June 1, 1999.
July 2001	NMOCD Communication With Site Operators	NMOCD response letter sent to EPFS on July 18, 2001 again urges EPFS to work cooperatively with the operators to investigate and remediate contaminated groundwater.

SITE HISTORY TIMELINE CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 METERING STATION SAN JUAN COUNTY, NEW MEXICO

Date/Time Period	Event/Action	Description/Comments
April 2003	NMOCD Requests Monitor Well Installation	NMOCD response letter to EPFS sent on April 3, 2003, requires EPFS to install additional monitor wells to determine the real extent of groundwater impacts.
March 2006	Acquisition of Burlington Resources by ConocoPhilips Company	ConocoPhillips Company acquired Burlington Resources on March 31, 2006.
November 2007 and January 2008	3rd and 4th Quarter 2007 Groundwater Monitoring	Johnston Federal No. 4 Monitoring Station groundwater sampled during November 2007 and January 2008 by Tetra Tech.
March 2008	Reporting	2007 Annual Groundwater Monitoring Report submitted to NMOCD.
March 2008	Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX.
April 2008	NMOCD Requests Further Investigation	NMOCD indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
April 2008	1st Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX in MW-1 on April 30, 2008. Note: Prior to this date the location of MW-1 was not clear and the incorrect well was sampled. This was the first quarter that ConocoPhillips MW-1 was sampled. BTEX constituents were found to be above NMWQCC standards in MW-1.
July 2008	2nd Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX in MW-1.
August 2008	Groundwater Monitor Well Installation	Monitor Wells MW-2, MW-3, and MW-4 installed under the supervision of Tetra Tech by WDC Exploration and Wells of Peralta, NM.
October 2008	3rd Quarter 2008 groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the Site for MW-1 through MW-4. MW-2, MW-3 and MW-4 groundwater samples are analyzed for baseline parameters including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics as requested by the NMOCD. In addition, an expanded list (beyond BTEX analysis) of VOCs were included for MW-1.
January 2009	4th Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the Site for MW-1 through MW-4. The groundwater sample obtained for MW-1 is analyzed for baseline parameters including major ions, total metals, SVOCs, VOCs, diesel range organics, and gasoline range organics. As of January 2009, baseline parameters have been collected for all 4 groundwater monitor wells at the Site.
September 25, 2009	2009 Annual Groundwater Monitoring	Tetra Tech conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Fe and Mn and sulfate.
September 22, 2010	2010 Annual Groundwater Monitoring	Tetra Tech conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn and sulfate.
June 15, 2011	Transfer of Site Consulting Responsibilities	Site consulting responsibilities tranferred from Tetra Tech, Inc. to Conestoga-Rovers & Associates, Inc. (CRA) of Albuquerque, NM.
September 28, 2011	2011 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
September 26, 2012	2012 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
August 23, 2013 - August 27, 2013	Dual-Phase Extraction	AcuVac, under CRA oversight, performs three days of dual-phase extraction on MW- 1.
September 17, 2013	2013 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
September 23, 2014	2014 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
November 12, 2014 - November 13, 2014	Dual-Phase Extraction	AcuVac, under CRA oversight, performs two days of dual-phase extraction on MW-1.
December 17, 2014 and January 8, 2015	2014 Post-MDPE Groundwater Monitoring	CRA conducts post-MDPE groundwater monitoring at the Site for MW-1, MW-3, and MW-4 with analyses for BTEX and naphthalene.

MONITORING WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NEW MEXICO

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				5/25/1999	NM	NM
				9/1/1999	47.02	52.98
				12/1/1999	46.96	53.04
				1/18/2000	44.05	55.95
				5/17/2000	46.90	53.10
				9/8/2000	46.91	53.09
				12/20/2000	46.88	53.12
				3/27/2001	NM	NM
				6/27/2001	47.05	52.95
				9/17/2001	46.93	53.07
				12/19/2001	46.97	53.03
				3/25/2002	46.99	53.01
				6/25/2002	47.01	52.99
				9/24/2002	46.98	53.02
				12/30/2002	47.40	52.60
				3/27/2003	NM	NM
				6/27/2003	NM	NM
				10/10/2003	NM	NM
				12/10/2003	NM	NM
				3/16/2004	47.28	52.72
				6/22/2004	47.06	52.94
				9/30/2004	47.24	52.76
MW-1	51.79	35 - 50	100	12/13/2004	47.14	52.86
				3/23/2005	46.91	53.09
				6/22/2005	46.93	53.07
				10/28/2005	46.87	53.13
				12/14/2005	46.72	53.28
				3/20/2006	46.75	53.25
				6/21/2006	46.84	53.16
				10/20/2006	46.89	53.11
				12/13/2006	46.92	53.08
				11/9/2007	NM	NM
				1/15/2008	NM	NM
				4/30/2008	46.45	53.55
				7/23/2008	46.63	53.37
				10/24/2008	46.60	53.40
				1/29/2009	46.57	53.43
				4/23/2009	46.40	53.60
				9/25/2009	46.52	53.48
				9/22/2010	46.60	53.40
				9/28/2011	46.65	53.35
				9/26/2012	46.80	53.20
				9/17/2013	46.88	53.12
				9/23/2014	46.94	53.06
RA 074937-1	Dest5 Th10			12/17/2014	46.94	53.06

MONITORING WELL SPECIFICATIONS AND GROUNDWATER ELEVATIONS CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NEW MEXICO

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				10/24/2008	42.85	54.86
				1/29/2009	42.83	54.88
				4/23/2009	42.75	54.96
				9/25/2009	42.82	54.89
MW-2	65.5	41.5 - 61.5	97.71	9/22/2010	43.01	54.70
101.00-2	05.5	41.5 - 61.5	97.71	9/28/2011	43.14	54.57
				9/26/2012	43.33	54.38
				9/17/2013	43.51	54.20
				9/23/2014	43.56	54.15
				12/17/2014	43.59	54.12
				10/24/2008	43.91	50.74
	59	9 35 - 55	94.65	1/29/2009	41.97	52.68
				4/23/2009	41.87	52.78
				9/25/2009	42.04	52.61
MW-3				9/22/2010	42.17	52.48
10100-3	59	35 - 55	94.05	9/28/2011	42.22	52.43
				9/26/2012	42.36	52.29
				9/17/2013	42.47	52.18
				9/23/2014	42.70	51.95
				12/17/2014	42.62	52.03
				10/24/2008	43.11	51.68
				1/29/2009	43.11	51.68
				4/23/2009	43.06	51.73
				9/25/2009	43.20	51.59
	61	37 - 57	04 70	9/22/2010	43.39	51.40
MW-4	01	37-57	94.79	9/28/2011	43.45	51.34
				9/26/2012	43.57	51.22
				9/17/2013	43.65	51.14
				9/23/2014	44.81	49.98
				12/17/2014	44.80	49.99

Notes:

ft = Feet

TOC = Top of casing

bgs = below ground surface

* Elevation relative to the TOC of MW-1, set at arbitrary 100 feet.

NM = Not measured

FIELD PARAMETERS SUMMARY CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NEW MEXICO

Well ID	Sample Date	Temperature (°C)	рН	TDS (g/L)	Conductivity (μS/cm)	DO (mg/L)	ORP (mV)	Volume (gallons)
MW-1	9/23/2014		No par	ameters co	ollected due to L	NAPL shee	n.	
	9/23/2014	15.00	7.22	1.50	2310	11.30	57.0	9.50
MW-2	9/23/2014	14.80	7.18	1.50	2360	10.89	63.0	10.00
	9/23/2014	14.80	7.17	1.50	2360	10.70	67.0	10.50
	9/23/2014	15.70	7.01	1.20	1820	10.13	-104.0	6.25
	9/23/2014	15.70	7.01	1.20	1840	9.12	-127.0	6.75
	9/23/2014	15.70	7.01	1.20	1850	8.48	-137.0	7.25
MW-3								
	12/17/2014	14.76	7.48	1.379	2123	2.40	-149.1	5.75
	12/17/2014	14.72	7.48	1.402	2158	2.66	-159.7	6.25
	12/17/2014	14.78	7.49	1.441	2218	2.39	-164.0	6.75
	9/23/2014	16.40	6.65	1.400	2130	10.81	-124.0	3.50
	9/23/2014	16.00	6.72	1.400	2110	9.17	-136.0	4.00
	9/23/2014	15.80	6.77	1.300	2110	8.42	-142.0	4.50
MW-4	9/23/2014	15.90	6.81	1.300	2110	8.10	-150.0	5.00
10100-4								
	12/17/2014	14.79	7.22	1.508	2320	4.74	-145.4	6.25
	12/17/2014	14.91	7.35	1.511	2324	3.70	-158.7	6.75
	12/17/2014	14.98	7.37	1.509	2323	2.94	-166.6	7.25

Notes:

TDS = total dissolved solids

DO = dissolved oxygen

ORP = oxidation-reduction potential

GROUNDWATER LABORATORY ANALYTICAL RESULTS SUMMARY CONOCOPHILLIPS COMPANY JOHNSTON FEDERAL No. 4 SAN JUAN COUNTY, NEW MEXICO

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Napthalene (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)
	NMWQCC Groundwater Quality	1		0.01	0.75	0.75	0.62	0.03	600	1	0.2
	MW-1	5/25/1999	(orig)	8.7	2.9	2.8	2.9				
	MW-1	12/1/1999	(orig)	4.7	1.3	0.9	10				
Well ID MW-1 MW-2 MW-3	MW-1	1/18/2000	(orig)	3.6	0.82	0.84	7.5				
	MW-1	5/17/2000	(orig)	6.9	1.1	1.5	17				
	MW-1	9/8/2000	(orig)	4.6	0.62	0.93	10				
	MW-1	12/20/2000	(orig)	< 0.0002	0.0005	0.034	0.061				
	MW-1	3/27/2001	(orig)	5.43	0.641	0.991	9.83				
	MW-1	6/27/2001	(orig)	5.87	0.9	0.99	10.4				
	MW-1	9/17/2001	(orig)	5.91	0.75	0.98	10.7				
	MW-1	12/19/2001	(orig)	7.2	0.65	1.02	11.3				
	MW-1	3/25/2002	(orig)	5.52	0.83	1.19	10.5				
	MW-1	6/26/2002	(orig)	0.516	0.0662	0.0787	0.863				
	MW-1	9/24/2002	(orig)	5.31	8	0.88	13.96				
	MW-1	12/30/2002	(orig)	7.66	10.2	0.76	14.14				
	MW-1	6/22/2004	(orig)	6.16	8.1	0.47	15.84				
	MW-1	3/20/2006	(orig)	3.17	3.74	1.06	30.13				
MW-1	MW-1	6/21/2006	(orig)	4.9	3.28	0.448	2.39				
	MW-1	12/13/2006	(orig)	5.3	7.2	0.87	15.45				
	MW-1	3/27/2007	(orig)	6.87	5.72	0.21	12.16				
	MW-1	6/25/2007	(orig)	5.68	1.83	0.4	9.48				
	MW-1	4/30/2008	(orig)	6.3	1.8	0.28 J	8.6				
	MW-1	7/23/2008	(orig)	7.1	2.2	0.45	10.6				
	MW-1	10/24/2008	(orig)	6	2.1	0.4	9	0.044			
	MW-1	1/29/2009	(orig)	6.7	2.2	0.63	14.5	0.061	315		
	MW-1	9/25/2009	(orig)	3.9	1.5	0.68	9.8	0.04	429	< 0.02	1.11
	MW-1	9/22/2010	(orig)	3.5	0.98	0.63	7.5	0.049	190		0.752
	GW-074925-092811-CM-004	9/28/2011	(orig)	3.36	1.05	0.667	6.81	0.037	202	< 0.05	0.774
	GW-074925-092811-CM-005	9/28/2011	(Duplicate)	3.43	1.12	0.779	8.29				
	GW-074925-092612-CM-MW-1	9/26/2012	(orig)	3.07	0.599	0.577	5.16	0.0398	113	< 0.05	0.67
	GW-074925-091713-CM-MW-1	9/17/2013	(orig)	4.69	7.55	1.17	11.0	0.0365	371	< 0.05	0.89
	GW-074925-091713-CM-DUP	9/17/2013	(Duplicate)	4.70	7.21	1.04	9.97				
	GW-074925-092314-SP-MW-1	9/23/2014	(orig)	2.970	4.250	0.778	6.89	0.0446	155	<0.050	0.85
	GW-074925-092314-SP-DUP	9/23/2014	(Duplicate)	2.820	3.880	0.754	6.690				
	GW-074925-010815-JW-MW-1	1/8/2015	(orig)	4.35	6.15	1.07	10.0	0.0787			
	MW-2	10/24/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	974		
	MW-2	1/29/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-2	9/25/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	1260	< 0.02	0.04
M\M-2	MW-2	9/22/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	1350		0.0074
10100 2	GW-074925-092811-CM-002	9/28/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0001	1290	2.49	0.0956
	GW-074925-092612-CM-MW-2	9/26/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1210	< 0.05	< 0.005
	GW-074925-091713-CM-MW-2	9/17/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1230	< 0.05	< 0.005
	GW-074925-092314-SP-MW-2	9/23/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.00045	1190	< 0.05	< 0.005
	1011 2			0.00				< 0.005	714		
	MW-3	10/24/2008	(orig)	0.02	< 0.0005	< 0.0005	0.024	< 0.005			
	MW-3 MW-3	10/24/2008 1/29/2009	(orig) (orig)	0.02	< 0.0005 < 0.0005	< 0.0005 < 0.0005	0.024	< 0.005			
									 1070	< 0.02	 1.24
	MW-3	1/29/2009	(orig)	0.012	< 0.0005	< 0.0005	0.005				
MW-3	MW-3 MW-3	1/29/2009 9/25/2009	(orig) (orig)	0.012 0.0021	< 0.0005 < 0.001	< 0.0005 < 0.001	0.005 < 0.002	< 0.001	1070		1.24
MW-3	MW-3 MW-3 MW-3	1/29/2009 9/25/2009 9/22/2010	(orig) (orig) (orig)	0.012 0.0021 0.0042	< 0.0005 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001	0.005 < 0.002 < 0.001	 < 0.001 < 0.001	1070 1060	< 0.02	1.24 1.11
MW-3	MW-3 MW-3 MW-3 GW-074925-092811-CM-003	1/29/2009 9/25/2009 9/22/2010 9/28/2011	(orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038	< 0.0005 < 0.001 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001	0.005 < 0.002 < 0.001 < 0.003	 < 0.001 < 0.001 < 0.0001	1070 1060 809	< 0.02 1.58	1.24 1.11 0.704
MW-3	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012	(orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003	 < 0.001 < 0.0001 < 0.0005	1070 1060 809 892	< 0.02 1.58 0.063	1.24 1.11 0.704 0.67
MW-3	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-091713-CM-MW-3	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013	(orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003	 < 0.001 < 0.0001 < 0.0005 < 0.0005	1070 1060 809 892 808	< 0.02 1.58 0.063 0.80	1.24 1.11 0.704 0.67 0.67
MW-3	MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-091713-CM-MW-3 GW-074925-092314-SP-MW-3	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014	(orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003	 < 0.001 < 0.001 < 0.0005 < 0.0005 < 0.0005	1070 1060 809 892 808 598	< 0.02 1.58 0.063 0.80 0.83	1.24 1.11 0.704 0.67 0.67
MW-3	MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-091713-CM-MW-3 GW-074925-092713-CM-MW-3 GW-074925-121714-CM-MW-3	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014	(orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003	 < 0.001 < 0.001 < 0.0005 < 0.0005 < 0.00053 < 0.00045	1070 1060 809 892 808 598	< 0.02 1.58 0.063 0.80 0.83 	1.24 1.11 0.704 0.67 0.67 0.65
MW-3	MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-092713-CM-MW-3 GW-074925-092713-CM-MW-3 GW-074925-121714-CM-MW-3 MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008	(orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003	 < 0.001 < 0.0001 < 0.0005 < 0.0005 < 0.00053 < 0.00045 < 0.0005	1070 1060 809 892 808 598	< 0.02 1.58 0.063 0.80 0.83 	1.24 1.11 0.704 0.67 0.67 0.65
MW-3	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-091713-CM-MW-3 GW-074925-092314-\$P-MW-3 GW-074925-121714-CM-MW-3 MW-4 MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009	(orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024 0.11	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 0.006	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.006 0.009	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 0.01 0.147	 < 0.001 < 0.0001 < 0.0005 < 0.0005 < 0.00053 < 0.00053 < 0.0005 < 0.005	1070 1060 809 892 808 598 678	< 0.02 1.58 0.063 0.80 0.83 	1.24 1.11 0.704 0.67 0.67 0.65
MW-3	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-092314-SP-MW-3 GW-074925-092314-SP-MW-3 GW-074925-121714-CM-MW-3 MW-4 MW-4 MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009 9/25/2009 9/22/2010	(orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024 0.11 0.0088	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 0.006 < 0.001	<0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.009 0.0057	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 0.01 0.147 0.002	 < 0.001 < 0.0001 < 0.0005 < 0.00053 < 0.00045 < 0.0005 < 0.005 < 0.005 < 0.005	1070 1060 809 892 808 598 678 968	< 0.02 1.58 0.063 0.80 0.83 0.508	1.24 1.11 0.704 0.67 0.65 1.24
MW-3	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-092713-CM-MW-3 GW-074925-092314-SP-MW-3 GW-074925-121714-CM-MW-3 MW-4 MW-4 MW-4 MW-4 MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009 9/25/2009 9/22/2010 9/28/2011	(orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024 0.11 0.0088 0.019 0.0256	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 0.006 < 0.001 0.005 0.005	<0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.009 0.0057 0.0057 0.0069	0.005 < 0.002 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 < 0.003 0.01 0.147 0.002 0.0057 0.0106	 < 0.001 < 0.0001 < 0.0005 < 0.0005 < 0.0005 < 0.00045 < 0.005 < 0.005 < 0.001 < 0.001	1070 1060 809 892 808 598 678 968 1040	< 0.02 1.58 0.063 0.80 0.83 0.508 	1.24 1.11 0.704 0.67 0.65 1.24 1.27 1.82
	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092811-CM-003 GW-074925-09211-3-CM-MW-3 GW-074925-092314-SP-MW-3 GW-074925-121714-CM-MW-3 MW-4 MW-4 MW-4 GW-074925-092811-CM-001 GW-074925-092811-CM-001	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009 9/25/2009 9/25/2009 9/22/2010 9/28/2011	(orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 0.024 0.011 0.0088 0.019 0.0256 0.0124	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 < 0.0005 0.0005 0.0078 0.0023	<0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.009 0.0057 0.0069 0.0017 <0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 0.011 0.047 0.002 0.0057 0.0106 < 0.003	 < 0.001 < 0.0001 < 0.0005 < 0.00053 < 0.00053 < 0.0005 < 0.005 < 0.005 < 0.001 < 0.0001 < 0.0001 < 0.0005	1070 1060 809 892 808 598 678 968 1040 960 949	< 0.02 1.58 0.063 0.80 0.83 0.508 0.532 0.57	1.24 1.11 0.704 0.67 0.65 1.24 1.27 1.82 1.5
	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-091713-CM-MW-3 GW-074925-092314-SP-MW-3 GW-074925-121714-CM-MW-3 MW-4 MW-4 MW-4 MW-4 GW-074925-092811-CM-001 GW-074925-092811-CM-001 GW-074925-092612-CM-MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/28/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009 9/25/2009 9/25/2009 9/28/2011 9/26/2012	(orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024 0.11 0.0088 0.019 0.0256 0.0124 0.0130	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 0.006 < 0.001 0.005 0.0078 0.0073 0.0023	<0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.009 0.0057 0.0069 0.0017 <0.001 <0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 0.01 0.147 0.002 0.0057 < 0.003 0.0106 < 0.003	 < 0.001 < 0.0001 < 0.0005 < 0.00053 < 0.00053 < 0.0005 < 0.0005 < 0.005 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.00001 	1070 1060 809 892 808 598 678 968 1040 960 949 	< 0.02 1.58 0.063 0.80 0.83 0.508 0.508 0.532 0.57 	1.24 1.11 0.704 0.67 0.67 0.65 1.24 1.27 1.82 1.5
	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092811-CM-003 GW-074925-092811-CM-MW-3 GW-074925-092314-SP-MW-3 GW-074925-092314-SP-MW-3 MW-4 MW-4 MW-4 MW-4 GW-074925-092811-CM-001 GW-074925-092811-CM-001 GW-074925-092612-CM-MW-4 GW-074925-092612-CM-MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/26/2012 9/26/2012 9/17/2013	(orig) (o	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024 0.019 0.025 0.0124 0.0130 0.005	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 0.006 < 0.001 0.005 0.0078 0.0073 0.0022 < 0.001	<0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.009 0.0057 0.0069 0.0057 0.0069 0.0017 <0.001 <0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 0.01 0.147 0.002 0.0057 0.0106 < 0.003 0.0031 < 0.003	 < 0.001 < 0.0001 < 0.0005 < 0.00053 < 0.00053 < 0.00045 < 0.0005 < 0.001 < 0.001 < 0.0001 < 0.0001 < 0.0001 < 0.0005 < 0.0005	1070 1060 809 892 598 678 968 1040 960 949 925	< 0.02 1.58 0.063 0.80 0.83 0.508 0.508 0.532 0.57 0.51	1.24 1.11 0.704 0.67 0.65 1.24 1.27 1.82 1.5 1.6
	MW-3 MW-3 MW-3 GW-074925-092811-CM-003 GW-074925-092612-CM-MW-3 GW-074925-091713-CM-MW-3 GW-074925-092314-SP-MW-3 GW-074925-121714-CM-MW-3 MW-4 MW-4 MW-4 MW-4 GW-074925-092811-CM-001 GW-074925-092811-CM-001 GW-074925-092612-CM-MW-4	1/29/2009 9/25/2009 9/22/2010 9/28/2011 9/28/2012 9/17/2013 9/23/2014 12/17/2014 10/24/2008 1/29/2009 9/25/2009 9/25/2009 9/28/2011 9/26/2012	(orig) (orig)	0.012 0.0021 0.0042 0.0038 0.0016 0.0012 < 0.001 < 0.001 0.024 0.11 0.0088 0.019 0.0256 0.0124 0.0130	< 0.0005 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.0005 0.006 < 0.001 0.005 0.0078 0.0073 0.0023	<0.0005 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.006 0.009 0.0057 0.0069 0.0017 <0.001 <0.001	0.005 < 0.002 < 0.001 < 0.003 < 0.003 < 0.003 < 0.003 0.01 0.147 0.002 0.0057 < 0.003 0.0106 < 0.003	 < 0.001 < 0.0001 < 0.0005 < 0.00053 < 0.00053 < 0.0005 < 0.0005 < 0.005 < 0.0005 < 0.0001 < 0.0001 < 0.0001 < 0.00001 	1070 1060 809 892 808 598 678 968 1040 960 949 	< 0.02 1.58 0.063 0.80 0.83 0.508 0.508 0.532 0.57 	1.24 1.11 0.704 0.67 0.65 1.24 1.27 1.82 1.5

<u>Notes:</u> NMWQCC = New Mexico Water Quality Control Commission

mg/L = milligrams per liter (parts per million) <0.7 = Below laboratory detection limit of 0.7 mg/L

J = Estimated value between MDL and PQL Bold = concentrations that exceed the NMWQCC groundwater quality standard

Appendix A

November 2014 Mobile Dual Phase Extraction Report

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

November 17, 2014

Mr. Jeff Walker, CPG, PMP Project Manager Conestoga-Rovers & Associates 6121 Indian School Road NE Albuquerque, NM 67110

Dear Jeff:

Re: MDP Events, Johnston Federal No. 4, Aztec, NM

Enclosed is a copy of the Operating Data collected during the Mobile Dual Phase (MDP) Events #4A and 4B, at the above location on November 12 and 13, 2014. Table #1 is the Summary Well Data and Table #2 is the Summary Recovery Data on well MW-1. PSH is referred to as LNAPL in this report. GW samples are taken frequently in a 2,000 ml beaker, to determine the average LNAPL percentage and volume.

OBJECTIVES

The Objectives of an MDP Event are to:

- Evaluate the potential for removing liquid and vapor phase LNAPL (PSH) from the groundwater (GW) and soils in the subsurface formations.
- Expose the capillary fringe area and below to the Extraction Well (EW) induced vacuums.
- Increase the GW and contaminant specific yields with high induced vacuums.
- Provide an induced hydraulic gradient to gain hydraulic control of the area during the Event period.
- Select the GW depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

The tests were conducted using AcuVac's I-6 System, with Roots RAI-33 and RAI-22 blowers, various instrumentation, including the HORIBA[®] Analyzer, Solinst Interface Probes, Lumidor O₂ Meter, flow gauges, a sensitive instrument to determine barometric pressure, V-1 vacuum box to capture non-diluted vapor samples, Redi-Flo 2 total fluids pump and other special equipment.

The vacuum extraction portion of the AcuVac System consists of a vacuum pump driven by an internal combustion (IC) engine. The vacuum pump is connected to the extraction well and the vacuum created on the extraction well causes light hydrocarbons in the soil and on the GW to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC Engine where they are burned as part of the normal combustion process. Propane is used as auxiliary fuel to help power the engine if the well vapors do not provide the required BTU.

Emissions from the engine are passed through three catalytic converters to ensure maximum destruction of removed hydrocarbon vapors. The engine's fuel to air ratio can be adjusted to maintain efficient combustion. Because the engine is the power source for all equipment, all systems

stop when the engine stops. This eliminates any uncontrolled release of hydrocarbons. Since the AcuVac System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure or overheating.

The GW Extraction is provided by an in-well, Redi-Flo 2 total fluids pump that has the discharge line connected to a total volume meter. The discharge line from the volume meter is then connected to the stand-by collection tank. The electrical power for the GW pump was supplied from a 120v Honda generator. The GW flow rate can be adjusted to maintain a target level. Interface meters are used to measure all DTGW/DTLNAPL.

In order to monitor the TPH content of the well vapors, AcuVac utilizes a HORIBA[®] gas analyzer that is capable of detecting hydrocarbons up to 100,000 ppmv using undiluted samples. The samples are collected directly from the Well Vapor Flow within the manifold attached to the Extraction Well. The undiluted samples are processed immediately on site and the results recorded. Samples are generally collected every 60 minutes during the course of the Event, and more often if the circumstances dictate. The average of the vapor samples obtained along with the average Well Vapor Flow Rate are used to calculate the volume of vapors recovered in pounds per day and burned as IC Engine fuel in gallons per hour. The volume of vapors burned as fuel along with any auxiliary propane that is consumed is then reconciled to the known capabilities of the IC Engine of the AcuVac System to ensure overall accuracy.

The design of the AcuVac System enables complete independent control of both the Induced Well Vacuum and the GW pumping functions such that the AcuVac team can control the IHG to expose the maximum amount of the formation to SVE. The ability to separate the vacuum and liquid flows improves the LNAPL recovery rates, and enables the AcuVac team to record data specific to each.

SUMMARY OF MDP EVENT #4A - WELL MW-1

- The total Event time was 8.0 hours. The Event was conducted on November 12, 2014. The data is compared to Event #3 conducted on August 27, 2013 which had a total Event time of 8.0 hours.
- The total liquid volume recovered was 143 gals, with an estimated volume of 1.0 gal of LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 20.08 gals, for a total liquid and vapor LNAPL recovery of 21.08 gals. This equates to an average of 2.63 gals/hr.
- Average HORIBA[®] Analytical Data from the influent vapor samples was: HC = 43,708 ppmv, CO₂ = 5.85%, CO = 1.07%, O₂ = 9.0% and H₂S = 8.33 ppm.
- Compared with MDP Event #3 data, the average TPH levels decreased 12,444 ppmv, CO₂ decreased 1.49%, CO decreased 0.55%, O₂ increased 4.5% and H₂S decreased 8.33 ppm.
- The maximum HORIBA[®] Analytical Data from the influent vapor samples for TPH was 51,640 ppmv. Compared with MDP Event #3 data, the maximum TPH levels decreased 5,980 ppmv.

- The Average Induced Vacuum was $51"H_2O$ with a maximum vacuum of $60"H_2O$. Compared with MDP Event #3 data, the average induced vacuum decreased $19"H_2O$ and the maximum induced vacuum decreased $10"H_2O$.
- The average EW well vapor flow was 29.32 scfm with a maximum well vapor flow of 33.07 scfm. Compared with MDP Event #3 data, the average EW well vapor flow decreased 3.83 scfm, and the maximum well flow decreased at 5.93 scfm.
- The Total Depth of the well was measured at 51.67 ft BTOC. The GW pump inlet was set at 51.0 ft BTOC, which is essentially the bottom of the well. The average GW pump rate was 0.29 gpm, and the maximum GW pump rate was 0.50 gpm.
- The average GW depression, based on the positioning of the GW pump, was 4.0 ft below static level.
- There was no LNAPL thickness recorded prior to the start of Event #4A and a LNAPL thickness of 0.03 ft was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #4A Well MW-1 was 21.08 gals.

ADDITIONAL INFORMATION

- An estimated volume of 1.0 gal of liquid LNAPL was recovered during the 8.0 hour Event.
- The recovered groundwater was cloudy with biomass at the start of the Event and then cleared after approximately 1.0 hr.
- The high TPH vapor levels indicate contaminant in the LNAPL range.
- The TPH vapor levels remained mostly steady throughout the Event.
- The low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface did not occur.
- The H_2S levels varied from a high of 12.0 ppm to a low of 1.0 ppm.

SUMMARY OF MDP EVENT #4B: WELL MW-1

- The total Event time was 8.0 hours. The Event was conducted on November 13, 2014. The data is compared to Event #4A conducted on November 12, 2014 which had a total Event time of 8.0 hours.
- The total liquid volume recovered was 48 gals, of which 1.0 gals were LNAPL.
- Total vapor LNAPL burned as IC engine fuel was 21.89 gals, for a total liquid and vapor LNAPL recovery of 22.89 gals. This equates to an average of 2.86 gals/hr.
- Average HORIBA[®] Analytical Data from the influent vapor samples was: HC = 42,410 ppmy CO = 5,20% CO = 0.02% O = 0.1% and HS = 1.12
- HC = 43,419 ppmv, CO₂ = 5.29%, CO = 0.93%, O₂ = 9.1% and H₂S = 1.13 ppm.
- Compared with MDP Event #4A data, the TPH levels decreased 289 ppmv, CO₂ decreased 0.56%, CO decreased 0.14%, O₂ increased 0.1% and H₂S decreased 7.20 ppm.
- The maximum HORIBA[®] Analytical Data from the influent vapor samples for TPH was 45,590 ppmv. Compared with MDP Event #4A data, the maximum TPH levels decreased 6,050 ppmv.
- The average EW well vapor flow was 32.40 scfm with a maximum well vapor flow of 32.73 scfm. Compared with MDP Event #4A data, the average EW well vapor flow increased 2.88 scfm, and the maximum well flow decreased 0.34 scfm.

- The Total Depth of the well was measured at 51.67 ft BTOC. The GW pump inlet was set at 51.0 ft BTOC, which is essentially the bottom of the well. The average GW pump rate was 0.10 gpm, and the maximum GW pump rate was 0.10 gpm.
- The average GW depression, based on the positioning of the GW pump, was 4.0 ft below static level.
- A LNAPL thickness of 0.01 ft was recorded prior to the start of Event #4B and no LNAPL was recorded at the conclusion of the Event.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #4B Well MW-1 was 22.89 gals.

ADDITIONAL INFORMATION

- An estimated volume of 1.0 gals of liquid LNAPL were recovered during the 8.0 hour Event.
- The high TPH vapor levels indicate contaminant in the LNAPL range.
- The TPH vapors levels remained mostly steady throughout the Event.
- The low O₂ levels in the influent vapors indicate SVE short circuiting from the ground surface did not occur.

OTHER INFORMATION - EVENTS #1 & 2

The total LNAPL removed, including liquid and vapor, during the 16.0 hr Events #1 & 2 (Well MW-1) was 43.97 gals. This equates to 2.75 gals/hr.

GENERAL OVERVIEW

The vadose zone and the exposed saturated zone is highly contaminated with LNAPL. This conclusion is based on the high TPH levels and the fact that the influent LNAPL vapors provided 80% of the Internal Combustion Engine's fuel, i.e., little propane was required. There may be some liquid LNAPL pooled in an area outside of the Induced Hydraulic Gradient (IHG) Radius of Influence (ROI). The IHG occurs when the LNAPL/GW depression in the extraction well is maintained during the Event period. The IHG at this site is estimated to have an ROI of 25 to 30 ft. The estimated total liquid LNAPL recovery of 5.0 gals during the three Event periods was based on the sheen of LNAPL observed in the collection tank and observed slugs of LNAPL passing through the clear sight tube of the liquid volume discharge line.

Schedule A illustrates the changes in the TPH levels during each of the five Events. Overall, the TPH levels are decreasing during each Event, and decreasing with each successive Event.

Given the decrease in the average TPH levels measured in ppmv from Event #1 to the subsequent Events, as well as the ending TPH level for each Event, this site would benefit from a program of regular MDP Events to fully remediate the site.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with Hexane and CO₂. In all subsequent Events, the test data will be compared to the previous Event to evaluate the progress for this remediation project.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr (hr)(ppmv)(ft^3)$

ADDITIONAL INFORMATION INCLUDED WITH REPORT

- Table #1A Summary Well Data for Well mw-1
- Table #1B Summary Recovery Data for Well mw-1
- Recorded Data
- Photographs of the MDP System and well MW-1.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

March

Paul D. Faucher Vice President, Operations

Summary Well Data Table #1A

Event		4A	4B
WELL NO.		MW-1	MW-1
Total Event Hours		8.0	8.0
Cumulative Event Hours		32.0	40.0
ТD	ft	51.67	51.67
Well Screen	ft	15' to 45'	15' to 45'
Well Size	in	2.0	2.0
Well Data			
DTGW - Static - Start Event	ft	46.97	47.32
DTLNAPL - Static - Start Event	ft	-	47.31
NAPL	ft	-	0.01
Hydro-Equivalent- Beginning	ft	46.97	47.31
DTGW - End Event	ft	47.78	45.72
DTLNAPL - End Event	ft	47.75	-
LNAPL	ft	0.03	-
Hydro-Equivalent- Ending	ft	47.76	45.72
Extraction Data			
Average Extraction Well Vacuum	"H ₂ O	51.00	77.06
Maximum Extraction Well Vacuum	"H ₂ O	60.00	80.00
Average Extraction Well Vapor Flow	scfm	29.37	32.40
Maximum Extraction Well Vapor Flow	scfm	33.07	32.73
Average GW/LNAPL Pump Rate	gpm	0.29	0.10
Maximum GW/LNAPL Pump Rate	gpm	0.50	0.10
Influent Data			
Maximum TPH	ppmv	51,640	45,590
Average TPH	ppmv	43,708	43,419
Average CO ₂	%	5.85	5.29
Average CO	%	1.07	0.93
Average O ₂	%	9.0	9.1
Average H ₂ S	ppm	8.33	1.13

Summary Recovery Data Table #1B

Event		4A	4B
WELL NO.	-	MW-1	MW-1
Recovery Data- Current Event	· · ·		
Total Liquid Volume Recovered	gals	143	48
Total Liquid LNAPL Recovered	gals	1.00	1.00
Total Liquid LNAPL Recovered / Total Liquid	%	0.70	2.08
Total Liquid LNAPL Recovered / Total LNAPL	%	4.74	4.37
Total Vapor LNAPL Recovered	gals	20.08	21.89
Total Vapor LNAPL Recovered / Total LNAPL	%	95.26	95.63
Total Vapor and Liquid LNAPL Recovered	gals	21.08	22.89
Average LNAPL Recovery	gals/hr	2.63	2.86
Total LNAPL Recovered	lbs	147	160
Total Volume of Well Vapors	cu. ft	14,170	15,552
Recovery Data- Cumulative			
Total Liquid Volume Recovered	gals	547	595
Total Liquid LNAPL Recovered	gals	35.45	36.45
Total Vapor LNAPL Recovered	gals	109.15	131.04
Total Vapor and Liquid LNAPL Recovered	gals	114.65	137.54
Average LNAPL Recovery	gals/hr	3.58	3.44
Total LNAPL Recovered	lbs	803	963
Total Volume of Well Vapors	cu. ft	60,989	76,541

ACUVAC OPERATING DATA - EVENT # 🦗 PAGE # 1 **MOBILE DUAL PHASE SYSTEM** Location: Johnston Federal #4, San Juan County, NM **Project Managers: Faucher/George** Date: 11/12/14 Parameters Time Time Time Time Time Time 0800 0830 0900 0730 0930 1000 Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter WELL# MW-7004.5 7004.0 7003.0 7003.5 70050 7002.5 R.P.M. 2200 2100 2100 2200 2200 2200 ENGINE/BLOWER Oil Pressure 50 50 50 psi 50 50 50 oF Water Temp 120 120 130 120 120 120 14 14 14 14 Volts 14 14 8 8 8 Intake Vacuum 8 "Hg 8 8 Gas Flow Fuel/Propane cfh 50 50 10 20 10 10 ON on **ON/OFF** and Onl **GW** Pump ON ON Extraction Well Flow 22.58 33.07 scfm 22.58 33.07 33,07 33.07 **ATMOSPHERE/VACUUM/AIR** Extraction Well Vacuum "H2O 40 40 60 60 60 60 **PUMP/VOLUME** ,5 Pump Rate .5 .5 ,25 ,25 gals/min .25 Total Volume 15 gals 60 -30 45 53 54 °F Influent Vapor Temp. 54 54 54 54 56 Air Temperature °F 33.2 33.4 36.5 38.3 45.7 501 **Barometric** Pressure "Hg 29.98 29.98 29.99 29.98 29.98 29.98 Absolute Pressure "Hg ~ HC 29580 ppmv 47760 .----28.250 **/APOR /INFLUENT** CO₂ -% 6.40 3.88 3.72 ~ CO % 1,08 ,84 ,75 - O_2 % 9.0 10,5 10.7 --H₂S ppm 8 1 2 ARRIVED ON SITE AT 0645 HAS. MUBILIZED THE ACUNAL STSTEM. GAUGED THE WELL DIGW 46.97 Fr Broc NOLIOUID NAPL ENTHEWELL TO ST.67 FT BIDC. PLACED TOTAL FUIDS FUMP ZULET AT ST PET BOOK PROVIDING & 4FT GWD. NOTES ENITIM ENDUCED WELL VAC SET AT 40" HZO RESULANG, ENA WUF OF ZZ. 58 SOFM AT 0830 HES BLORDASED ENDUCED WELL VAC TO 60" HZO RESULTING IN A NUF OF 33.07 Scin ENITAL TOTAL FLUIDS PUMP PLATE SET AT . 5 GPM AND DEORDASED TO :25 GPM AT STOOITES. TPH VAPORSAMPLE CONTENTS & AT OGOSHIRS AS A RESULT OF SHORT CIRCUITING LNAPL % SLIGHT Vol SLIGHT SUIGHT SUGIT SUIGHT Gals Stan SHEEN SHEEN Sites SHEEN MANIFOLD -4.0 -4.0 Depth of GW Depression ft -4.0 -4.0 -4.0 -4.0 Extraction Well DTLNAPL ft 46.97 Extraction Well DTGW ft

() Indicates Well Pressure

LMAPL

9

Avi					MOD		
T //	OPERATING DATA - E			AGE # 🍾		ILE DUAL PHA	
Locatio	on: Johnston Federal #4, Date:		unty, NM 		Project	Managers: Fa	ucher/George
	Parameters	11/12/14 Time 1030	Time 100	Time 1130	Time 1200	Time 1230	Time 1300
	WELL# MW- /	Hr Meter 7005.5	Hr Meter 7006.0	Hr Meter 7006-5	Hr Meter 7007, 0	Hr Meter 7007.5	Hr Meter 7008.0
	R.P.M.	2200	2100	2100	2100	2100	2100
VER	Oil Pressure psi	50	50	50	50	50	50
ENGINE/BLOWER	Water Temp °F	130	130	130	130	130	130
INE/I	Volts	14	14	14	14	14	14
ENG	Intake Vacuum "Hg	8	10	10	10	10	10
EN	Gas Flow Fuel/Propane cfh	10	15	15	15	15	15
	GW Pump ON/OFF	ON	· 20	0~	ON	UN	ON
R	Extraction Well Flow scfm	33.07	25.92	28.75	28.75	28.75	28.75
M/AI	Extraction Well Vacuum "H ₂ O	60	40	50	50	50	50
UME	Pump Rate gals/min	,25	,25	,25	,25	:25	.25
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	68	75	83	90	98	105
PHER	Influent Vapor Temp. °F	56	56	56	56	56	56
MOS P	Air Temperature °F	51,3	52,7	53,6	542	54.6	55,1
АТ	Barometric Pressure "Hg	29.99	28.98	29,97	29,96	29.95	29.95
	Absolute Pressure "Hg	c	-	~	-	-	~
Ę	HC ppmv	1	51640	48170	47850	-	46,950
LUE	CO ₂ %	e	7.08	6.42	6.45	-	6.12
/INF	CO %	+	1.40	1.20	1.15	-	1.06
VAPOR /INFLUENT	O ₂ %	1	5.7	8.2	8,8	-	8.9
VA	H ₂ S ppm	1	12	8	12	-	12
NOTES	A 1100 HAS INDUCE CIRCUITING, TPH SAMPLE AT 50" H SAMPLE. IT WAS CO BEFORE SHART CIR	VAPOR CON 20 INSULI WCLUDD T	TENT I TO D WELL VA	51,640 PPI c. 1130 HPS	МV. Ат 1138 SAmPlé Ce	itas BTAIN MIARABLE	250 TPH TO 1100/11/15
MANIFOLD	LNAPL % Vol Gals Depth of GW Depression ft	SLIGHT SHEEN - 4.0	SLIGHT SHEEN -4.0	SLIGHT SHEEN -4.0	546HT 5H33N	SLIGHT SHEEN -4.0	549HT 5H200
MAN	Extraction Well DTLNAPL ft						
	Extraction Well DTGW ft						
() Indianta	s Well Pressure				-		stForms/1210017B

() Indicates Well Pressure

ACUVAC OPERATING DATA - EVENT # $\frac{9}{4}$ PAGE # 3**MOBILE DUAL PHASE SYSTEM** Location: Johnston Federal #4, San Juan County, NM **Project Managers: Faucher/George** Date: 11/2/19 Time 1500 Time 1330 Parameters Time Time Time Time 1430 1530 1400 Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter Hr Meter WELL # MW-7008.5 7009.5 7009.0 7010,0 7010,5 R.P.M. 2100 2100 2100 2100 2100 ENGINE/BLOWER **Oil Pressure** psi 50 50 50 50 50 Water Temp °F 130 130 130 130 130 Volts 14 14 14 14 14 Intake Vacuum "Hg 10 10 10 10 10 15 15 Gas Flow Fuel/Propane cfh 15 15 15 **GW** Pump **ON/OFF** ON 50 au OFF ON Extraction Well Flow scfm 29.57 29,57 29.57 29.57 29.57 ATMOSPHERE/VACUUM/AIR 50 50 Extraction Well Vacuum "H2O 50 50 50 **PUMP/VOLUME** Pump Rate gals/min ,25 .25 .25 ,25 ,25 Total Volume gals 113 135 143 120 128 Influent Vapor Temp. °F 56 56 56 56 54 0000 °F 59.2 53.1 Air Temperature 57.3 55.6 54.7 **Barometric** Pressure "Hg 29.94 29.93 29.52 29.92 29.91 Absolute Pressure "Hg -~ _ HC .46910 ppmv 46220 VAPOR /INFLUENT CO_2 % 6.32 6.28 -CO % -1.05 -1.08 O_2 % -9.3 9.5 --H₂S ppm 11 9 WELL VAC AND WVR STEADY DUILING PERIOD. TPH VAPORS MOSTLY STEADY DURING PARIOD. AT 1530 HAS EVENT CONCLUDED. 03 FT OF LNAPL PRESENT IN THE WELL. DEMOBILIZED ACUVAL SYSTEM, SECURED SITE, DE ARTED NOTES AT THE CONCLUSION OF THE EVENT LIQUID LNAPL WAS PREJENT IN THE SITE GAUGE. IT IS ESTIMATED THAT I GAL OF LIQUID LNAPL WAS RECONDED DURING THE EVENT. LNAPL % Vol SLIGHT SLIG, UT SLIGHT SLIG, HT SLIGHT Gals SHEEN SHOON SHEEN SHEEN SHEEN MANIFOLD - 4.0 Depth of GW Depression ft -4.0 -4.0 -4.0 -4.0 Extraction Well DTLNAPL ft 47.75 Extraction Well DTGW ft 47.78

() Indicates Well Pressure

LNAPL

.03

\sim	OPERATING DATA - I	EVENT # 47	3 Р	AGE # /	MOBI	LE DUAL PHA	ASE SYSTEM
Locatio	n: Johnston Federal #4,	San Juan Co	unty, NM		Project I	Aanagers: Fa	ucher/Georg
	Date:	11/13/14					
	Parameters	Time 0730	Time 0800	Time 0830	Time 0900	Time 0930	Time 1000
	WELL# MW- (Hr Meter 70/0/5	Hr Meter 7011.0	Hr Meter 7011.5	Hr Meter 70/2,0	Hr Meter 70/2.5	Hr Meter 7013.0
	R.P.M.	200	2100	2200	2200	2200	2200
VER	Oil Pressure psi	50	50	50	50	50	50
BLOV	Water Temp °F	120	120	120	120	120	120
INE/I	Volts	14	14	14	14	14	14
ENGINE/BLOWER	Intake Vacuum "Hg	8	8	12	12	12	12
	Gas Flow Fuel/Propane cfh	20	20	20	20	20	20
	GW Pump ON/OFF	ONTOFF	ONCOPF	ONTOFF	ONTOFF	ONTOFF	ONTOFF
æ	Extraction Well Flow scfm	29.24	30.47	32.73	32.73	32.73	32.73
IIA/I	Extraction Well Vacuum "H ₂ O	50	60	80	80	80	80
ME	Pump Rate gals/min	,1	,1	.1	.1	.1	.1
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Total Volume gals	-	3	6	9	12	15
HER	Influent Vapor Temp. °F	52		50		50	50
10SP Pl	Air Temperature °F		50	36,5	50 37,4	<u> </u>	39.3
ATA	Barometric Pressure "Hg	35.1	35.9			30,20	
		30.16	30.16	30,18	3019	50,60	30.20
			-	~	-	~	
VAPOR /INFLUENT	HC ppmv	-	45,190	-	45,590	-	42,84
NFLU	CO ₂ %	-	5.82	-	6.31	-	4.62
R /II			1.06	-	1.05	-	,89
/APC	O ₂ %	-	9.6	-	9.3	-	10.1
-	H ₂ S ppm		z	Access	3	-	1.
NOTES	ARRIVED ON SITE MW-1. PLACED TH 4 FT GWD. SET IN 29.24 SCAM. AT C INDUCOD WITH VAN VAC & 85"H20, W	E INLET T JITIAL IND BOO HAU I 1 80" HZU VF 9 33.	8 THE TOTH UCOD WELL V DUCED VA 1, WY F 1 26 SCFM.	n FLUIDS PO 1A2 AT 50" 2 1 60 HzO 32.73 SCFM	UMP AT 511 H20 RESULT , WVF 130 . AT 1000	FT BTOL PRO TING EN A 4750FM. 1 Hous ENDUCO	WIDWE, A WVF OF 47 0830 30 WELL
	44A, BUT STADY LNAPL % Vol		SLIGHT	aurit	SLIGHT	c. Ic. IL	
	LINAPL 76 VOI Gals	SLIGHT	SACEN	SUGHT	SHEEN	SLIGHT SHEEN	SHEEN
MANIFOLD	Depth of GW Depression ft	-4,0	-4.0	-4.0	-4.0	- 4.0	- 4.0
MAN	Extraction Well DTLNAPL ft	47.31					
	Extraction Well DTGW ft	11. 0.					

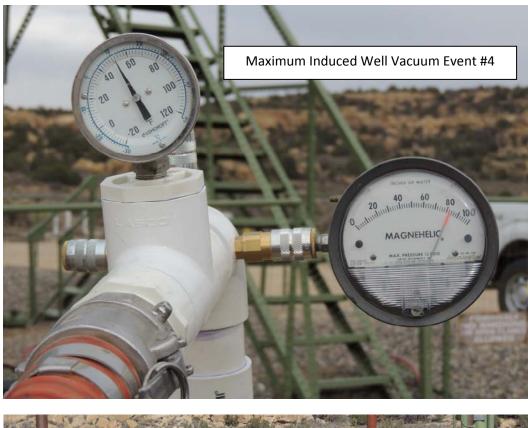
XV	ACUVAC OPERATING DATA - EVENT # 475 PAGE # 2 MOBILE DUAL PHASE S								
Locatio	on: Johnston Federal #4,	San Juan Co	unty, NM		Project	Managers: Fa	ucher/George		
	Date:	11/13/14							
	Parameters	Time 1030	Time	Time 1130	Time /200	Time 1230	Time 1300		
	WELL# MW- /	Hr Meter 7013, 5	Hr Meter	Hr Meter 7014.5	Hr Meter 7015. 0	Hr Meter 7015.5	Hr Meter 7016,0		
	R.P.M.	2200	7014.0	2200		2200	2200		
ER	Oil Pressure psi	50	2200 50	50	2200	50	50		
IMO	Water Temp °F	120	120	120	120	130			
ENGINE/BLOWER	Volts	14	14	14	14	14	130 14		
	Intake Vacuum "Hg	12	12		12	12	17		
E	Gas Flow Fuel/Propane cfh	20	20	12 20	20	20	20		
	GW Pump ON/OFF	1			1		1		
	Extraction Well Flow scfm	ONLOFF	0~10FF 32.73	32.73	32.73	onloff	ONIOTF		
AIR		32.73				32.73	32.73		
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Extraction Well Vacuum "H ₂ O	80	80	80	90	80	80		
VACI	Pump Rate gals/min	.1	.1	.1	.1	. l	.1		
PUMP/VOLUME	Total Volume gals	18	21	24	27	30	33		
HHAS	Influent Vapor Temp. °F	50	50	50	50	50	50		
LMO	Air Temperature °F	45.2	46,1	46.7	47.4 0	000 46.3	46.5		
A	Barometric Pressure "Hg	30,19	30,18	30,17	30.16	30.14	30,12		
	Absolute Pressure "Hg	-	-		-	-	-		
TN	HC ppmv	•	43,810	<u>^</u>	44,110	-	42690		
/INFLUENT	CO ₂ %	-	6.04	-	6.30	~	5.94		
/INF	CO %	~	.95	-	. 96	-	.76		
VAPOR.	O ₂ %	~	9,2	-	8.6	-	9.3		
VA	H ₂ S ppm	-	1	-	1		0		
	INDUCODWOULVAC A	NO WVE :	STOGOV AT	30* H20 AND	32.73 Scfn	7.			
							3		
	LI QUID RECOVERY EXTREMENT LOW, SIMILAR TO PREVIOUS EVENTS #2 AND #3. TPH MOSTLY STEADY BUT SLIGHTLY DECREASING.								
NOTES				1001.31071					
ž				·S		4.40			
						10 A			
		0							
	LNAPL % Vol	LIGHT	LIGHT	LIGHT	LIGHT	UGHT	LIGHT		
ŋ	Gals	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN		
MANIFOLD	Depth of GW Depression ft	-4.0	- 4.0	-4.0	-4.0	-4.0	-4.0		
MAN	Extraction Well DTLNAPL ft								
	Extraction Well DTGW ft								

() Indicates Well Pressure

AD

OPERATING DATA - EVENT # 48

PAGE # 3


ACUVAC MOBILE DUAL PHASE SYSTEM

	OPERATING DATA - E	VENT # 70	1	PAGE # 3	MOB	ILE DUAL PH	ASE SYSTE
Locatio	on: Johnston Federal #4,	in the second	unty, NM		Project	Managers: Fa	ucher/Geor
	Date:	11/13/14					
	Parameters	Time /330	Time 1400	Time 1430	Time 1500	Time 1530	Time
	WELL# MW- (Hr Meter 70/6.5	Hr Meter 7017. O	Hr Meter 70/7.5	Hr Meter 70/8.0	Hr Meter 7018.5	Hr Meter
	R.P.M.	2200	2200	2200	2200	2200	
WER	Oil Pressure psi	50	50	50	50	50	
BLO	Water Temp °F	130	130	130	130	130	
ENGINE/BLOWER	Volts	44	14	14	14	14	
ENG	Intake Vacuum "Hg	12	12	12	12	12	
	Gas Flow Fuel/Propane cfh	20	20	20	20	20	
	GW Pump ON/OFF	ONTOFF	ONTOFF	ONIOFF	ONTOFF	as loff	
R	Extraction Well Flow scfm	32.73	32.73	32.73	32.73	32.73	
M/A	Extraction Well Vacuum "H ₂ O	80	80	80	80	80	
ATMOSPHERE/VACUUM/AIR PUMP/VOLUME	Pump Rate gals/min	. l	. (. (.1	.1	
SPHERE/VACUU PUMP/VOLUME	Total Volume gals	36	39	42	45	48	
PHEI	Influent Vapor Temp. °F	50	50	60	50	50	
MOS P	Air Temperature	46.8	46.7	47.3	48.2	47.8	
AT	Barometric Pressure "Hg	30,10	30,08	30,06	30.06	30,05	
	Absolute Pressure "Hg	~	-	-	-	-	
Ę	HC ppmv	-	40,130	-	42540	-	
VAPOR /INFLUENT	CO ₂ %	-	7.04	-	,24	-	
/INF	CO %	(.85	-	.90	-	
POR	O ₂ %	_	8.8	-	8.2	-	
VA	H ₂ S ppm	-	0	-	1	-	
NOTES	INDUCED WELL W LI OUID RECOVER AT 1530 HAY E LNAPL PRESENT SECURE SITE.	VENT CO VENT CO FIL ITH	VAPORS M NCLUDED. 'E WELL.	WEU MW	-1 WAS G	Ky POZIOL AUXID. NO	LOUD
0	LNAPL % Vol Gals	SUGHT SHEEN	SLIGHT SHEET	SHEEN	SHEEN	SHEEN	
MANIFOLD	Depth of GW Depression ft	- 4.0	- 4.0	- 4.0	- 4.0	-4.0	
MAN	Extraction Well DTLNAPL ft					-	
	Extraction Well DTGW ft					45.72	
Indicate	s Well Pressure				LNAPI	/	estForms/121001

JOHNSTON FEDERAL NO. 4 SITE AZTEC, NM

JOHNSTON FEDERAL NO. 4 SITE AZTEC, NM

JOHNSTON FEDERAL NO. 4 SITE AZTEC, NM

Appendix B

Groundwater Laboratory Analytical Reports

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

October 08, 2014

Christine Matthews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074925 Johnston Federal No. 4 Pace Project No.: 60178711

Dear Christine Matthews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 24, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Angela Bown, Conestoga Rovers & Associates Chris Fetters, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project: 074925 Johnston Federal No. 4

Pace Project No.: 6017

	-	-	-				
No.:	60	178	37'	11			

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60178711001	GW-074925-092314-SP-MW-1	Water	09/23/14 09:45	09/24/14 08:35
60178711002	GW-074925-092314-SP-MW-2	Water	09/23/14 11:00	09/24/14 08:35
60178711003	GW-074925-092314-SP-MW-3	Water	09/23/14 11:15	09/24/14 08:35
60178711004	GW-074925-092314-SP-MW-4	Water	09/23/14 10:40	09/24/14 08:35
60178711005	GW-074925-092314-SP-DUP	Water	09/23/14 00:00	09/24/14 08:35
60178711006	TRIP BLANK	Water	09/23/14 17:00	09/24/14 08:35

SAMPLE ANALYTE COUNT

Project:074925 Johnston Federal No. 4Pace Project No.:60178711

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60178711001	 GW-074925-092314-SP-MW-1	EPA 6010	TDS	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60178711002	GW-074925-092314-SP-MW-2	EPA 6010	TDS	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60178711003	GW-074925-092314-SP-MW-3	EPA 6010	TDS	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60178711004	GW-074925-092314-SP-MW-4	EPA 6010	TDS	2
		EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
		EPA 300.0	OL	1
60178711005	GW-074925-092314-SP-DUP	EPA 5030B/8260	PRG	8
60178711006	TRIP BLANK	EPA 5030B/8260	PRG	8

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

 Method:
 EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 CRA Conoco New Mexico

 Date:
 October 08, 2014

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Method:	EPA 8270C by SIM
Description:	8270 MSSV PAH by SIM
Client:	CRA Conoco New Mexico
Date:	October 08, 2014

General Information:

4 samples were analyzed for EPA 8270C by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/46287

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Method: EPA 5030B/8260

Description:8260 MSVClient:CRA Conoco New MexicoDate:October 08, 2014

General Information:

6 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/64726

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 CRA Conoco New Mexico

 Date:
 October 08, 2014

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Sample: GW-074925-092314-SP- MW-1	Lab ID: 601	78711001	Collected: 09/23/1	4 09:4	5 Received: 09	/24/14 08:35 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Met	hod: EPA 601	0 Preparation Meth	od: EF	PA 3010			
Iron, Dissolved	ND m	g/L	0.050	1	09/26/14 17:15	10/02/14 12:44	7439-89-6	
Manganese, Dissolved	0.85 m	g/L	0.0050	1	09/26/14 17:15	10/02/14 12:44	7439-96-5	
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 827	OC by SIM Prepara	ition M	ethod: EPA 35100	;		
Naphthalene <i>Surrogates</i>	44.6 ug	J/L	2.6	5	09/25/14 00:00	10/06/14 19:45	91-20-3	
2-Fluorobiphenyl (S)	69 %		36-120	1	09/25/14 00:00	10/01/14 18:16	321-60-8	
Terphenyl-d14 (S)	79 %		29-134	1	09/25/14 00:00	10/01/14 18:16	1718-51-0	
8260 MSV	Analytical Met	hod: EPA 503	0B/8260					
Benzene	2970 ug	J/L	50.0	50		09/25/14 19:16	71-43-2	
Ethylbenzene	778 ug	J/L	50.0	50		09/25/14 19:16	100-41-4	
Toluene	4250 ug	J/L	50.0	50		09/25/14 19:16	108-88-3	
Xylene (Total)	6890 ug	J/L	150	50		09/25/14 19:16	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	99 %		80-120	50		09/25/14 19:16		
1,2-Dichloroethane-d4 (S)	101 %		80-120	50		09/25/14 19:16	17060-07-0	
Toluene-d8 (S)	101 %		80-120	50		09/25/14 19:16	2037-26-5	
Preservation pH	1.0		0.10	50		09/25/14 19:16		
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300	0.0					
Sulfate	155 m	g/L	10.0	10		10/03/14 12:04	14808-79-8	

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Sample: GW-074925-092314-SP- MW-2	Lab ID: 601	78711002	Collected: 09/23/	14 11:00	Received: 09	0/24/14 08:35	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Met	hod: EP	A 3010			
Iron, Dissolved	ND mg	g/L	0.050	1	09/26/14 17:15	10/02/14 12:47	7439-89-6	
Manganese, Dissolved	ND mg	g/L	0.0050	1	09/26/14 17:15	10/02/14 12:47	7439-96-5	
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	270C by SIM Prepar	ation Me	ethod: EPA 35100	2		
Naphthalene Surrogates	ND ug	/L	0.45	1	09/25/14 00:00	10/01/14 18:36	6 91-20-3	
2-Fluorobiphenyl (S)	68 %		36-120	1	09/25/14 00:00	10/01/14 18:36	6 321-60-8	
Terphenyl-d14 (S)	90 %		29-134	1	09/25/14 00:00	10/01/14 18:36	6 1718-51-0	
8260 MSV	Analytical Mether	nod: EPA 50)30B/8260					
Benzene	ND ug	/L	1.0	1		09/25/14 19:32	2 71-43-2	
Ethylbenzene	ND ug	/L	1.0	1		09/25/14 19:32	2 100-41-4	
Toluene	ND ug	/L	1.0	1		09/25/14 19:32	2 108-88-3	
Xylene (Total) Surrogates	ND ug	/L	3.0	1		09/25/14 19:32	2 1330-20-7	
4-Bromofluorobenzene (S)	100 %		80-120	1		09/25/14 19:32	2 460-00-4	
1,2-Dichloroethane-d4 (S)	98 %		80-120	1		09/25/14 19:32	2 17060-07-0	
Toluene-d8 (S)	99 %		80-120	1		09/25/14 19:32	2 2037-26-5	
Preservation pH	1.0		0.10	1		09/25/14 19:32	2	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	1190 mg	g/L	100	100		10/03/14 12:35	5 14808-79-8	

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Sample: GW-074925-092314-SP- MW-3	Lab ID: 6017	8711003	Collected:	09/23/1	4 11:15	Received: 09	/24/14 08:35	Matrix: Water	
Parameters	Results	Units	Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Prepara	tion Meth	nod: EP/	A 3010			
Iron, Dissolved	0.83 mg	/L		0.25	5	09/26/14 17:15	10/02/14 12:21	7439-89-6	
Manganese, Dissolved	0.65 mg	/L		0.025	5	09/26/14 17:15	10/02/14 12:21	7439-96-5	
8270 MSSV PAH by SIM	Analytical Meth	od: EPA 82	70C by SIM	Prepara	ation Me	thod: EPA 35100	;		
Naphthalene Surrogates	ND ug/	L		0.53	1	09/25/14 00:00	10/01/14 18:57	91-20-3	
2-Fluorobiphenyl (S)	67 %			36-120	1	09/25/14 00:00	10/01/14 18:57	7 321-60-8	
Terphenyl-d14 (S)	75 %			29-134	1	09/25/14 00:00	10/01/14 18:57	7 1718-51-0	
8260 MSV	Analytical Meth	od: EPA 50)30B/8260						
Benzene	ND ug/	L		1.0	1		09/25/14 19:48	3 71-43-2	
Ethylbenzene	ND ug/	L		1.0	1		09/25/14 19:48	3 100-41-4	
Toluene	ND ug/	L		1.0	1		09/25/14 19:48	3 108-88-3	
Xylene (Total)	ND ug/	L		3.0	1		09/25/14 19:48	3 1330-20-7	
Surrogates									
4-Bromofluorobenzene (S)	98 %			80-120	1		09/25/14 19:48		
1,2-Dichloroethane-d4 (S)	100 %			80-120	1		09/25/14 19:48	3 17060-07-0	
Toluene-d8 (S)	98 %			80-120	1		09/25/14 19:48	3 2037-26-5	
Preservation pH	1.0			0.10	1		09/25/14 19:48	3	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0						
Sulfate	598 mg	/L		50.0	50		10/03/14 12:51	14808-79-8	

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Sample: GW-074925-092314-SP- MW-4	Lab ID: 601	78711004	Collected: 09/23/	14 10:40) Received: 09	/24/14 08:35 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Met	hod: EPA 60	010 Preparation Me	thod: EP	A 3010			
Iron, Dissolved	0.39 m	g/L	0.25	5	09/26/14 17:15	10/02/14 12:28	7439-89-6	
Manganese, Dissolved	2.2 m	g/L	0.025	5	09/26/14 17:15	10/02/14 12:28	7439-96-5	
8270 MSSV PAH by SIM	Analytical Met	hod: EPA 82	270C by SIM Prepa	ration Me	ethod: EPA 35100	;		
Naphthalene Surrogates	ND ug	ı/L	0.53	1	09/25/14 00:00	10/01/14 19:17	91-20-3	
2-Fluorobiphenyl (S)	65 %		36-120	1	09/25/14 00:00	10/01/14 19:17	321-60-8	
Terphenyl-d14 (S)	86 %		29-134	1	09/25/14 00:00	10/01/14 19:17	1718-51-0	
8260 MSV	Analytical Met	hod: EPA 50)30B/8260					
Benzene	6.8 ug	ı/L	1.0	1		09/25/14 20:05	71-43-2	
Ethylbenzene	1.1 ug	ı/L	1.0	1		09/25/14 20:05	100-41-4	
Toluene	ND ug	ı/L	1.0	1		09/25/14 20:05	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND ug	ı/L	3.0	1		09/25/14 20:05	1330-20-7	
4-Bromofluorobenzene (S)	99 %		80-120	1		09/25/14 20:05	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %		80-120	1		09/25/14 20:05	17060-07-0	
Toluene-d8 (S)	99 %		80-120	1		09/25/14 20:05	2037-26-5	
Preservation pH	1.0		0.10	1		09/25/14 20:05	5	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0					
Sulfate	905 m	g/L	100	100		10/03/14 13:06	14808-79-8	

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Sample: GW-074925-092314-SP- DUP	Lab ID: 6017871100	05 Collected: 09/23/1	4 00:00	Received: 09	9/24/14 08:35 N	Matrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	A 5030B/8260					
Benzene	2820 ug/L	100	100		09/30/14 07:54	71-43-2	
Ethylbenzene	754 ug/L	100	100		09/30/14 07:54	100-41-4	
Toluene	3880 ug/L	100	100		09/30/14 07:54	108-88-3	
Xylene (Total)	6690 ug/L	300	100		09/30/14 07:54	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	100 %	80-120	100		09/30/14 07:54	460-00-4	
1,2-Dichloroethane-d4 (S)	99 %	80-120	100		09/30/14 07:54	17060-07-0	
Toluene-d8 (S)	99 %	80-120	100		09/30/14 07:54	2037-26-5	
Preservation pH	1.0	0.10	100		09/30/14 07:54		

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

Sample: TRIP BLANK	Lab ID: 6017871100	6 Collected: 09/23/	4 17:00	Received: 09	9/24/14 08:35 N	Aatrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	A 5030B/8260					
Benzene	ND ug/L	1.0	1		09/30/14 05:12	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		09/30/14 05:12	100-41-4	
Toluene	ND ug/L	1.0	1		09/30/14 05:12	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		09/30/14 05:12	1330-20-7	
Surrogates	-						
4-Bromofluorobenzene (S)	96 %	80-120	1		09/30/14 05:12	460-00-4	
1,2-Dichloroethane-d4 (S)	100 %	80-120	1		09/30/14 05:12	17060-07-0	
Toluene-d8 (S)	98 %	80-120	1		09/30/14 05:12	2037-26-5	
Preservation pH	1.0	0.10	1		09/30/14 05:12		

,	074925 Johnston 60178711	Federal No. 4										
QC Batch:	MPRP/29080		Analys	sis Method:	E	PA 6010						
QC Batch Method:	EPA 3010			sis Descript		010 MET Di	ssolved					
Associated Lab Sam	ples: 60178711	001, 6017871100	02, 60178711	003, 60178	711004							
METHOD BLANK:	1449940		Ν	Matrix: Wat	ter							
Associated Lab Sam	oles: 60178711	001, 6017871100	02, 60178711	003, 60178	711004							
			Blank	K R	eporting							
Param	eter	Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Iron, Dissolved		mg/L		ND	0.050	10/02/14	11:34		_			
Manganese, Dissolve	ed	mg/L		ND	0.0050	10/02/14	11:34					
		1449941										
		1440041	Spike	LCS		LCS	% Rec	;				
Param	eter	Units	Conc.	Resu		% Rec	Limits		ualifiers			
Iron, Dissolved		mg/L			9.9	99	80	-120		-		
Manganese, Dissolve	ed	mg/L	1		0.96	96	80	-120				
MATRIX SPIKE & MA	ATRIX SPIKE DU	PLICATE: 1449	9942		1449943							
			MS	MSD								
		6017851000 ⁻	1 Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
		0017651000	Opinto									
Parameter	Un		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Parameter	Un mg/L		Conc.	•	Result 9.7	Result 10.3	% Rec 95	% Rec 101	Limits 75-125	RPD 5		Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

QC Batch:	MSV/64640
QC Batch Method:	EPA 5030B/8260

Associated Lab Samples:

 64640
 Analysis Method:
 EPA 5030B/8260

 030B/8260
 Analysis Description:
 8260 MSV Water 10 mL Purge

 60178711001, 60178711002, 60178711003, 60178711004
 60178711004

METHOD BLANK: 1448937 Matrix: Water Associated Lab Samples: 60178711001 60178711002 60178711003 60178711004

Associated Lab Samples. 00	5178711001, 60178711002	, 60178711003, 60	11/6/11004		
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/25/14 16:19	
Ethylbenzene	ug/L	ND	1.0	09/25/14 16:19	
Toluene	ug/L	ND	1.0	09/25/14 16:19	
Xylene (Total)	ug/L	ND	3.0	09/25/14 16:19	
1,2-Dichloroethane-d4 (S)	%	99	80-120	09/25/14 16:19	
4-Bromofluorobenzene (S)	%	99	80-120	09/25/14 16:19	
Toluene-d8 (S)	%	100	80-120	09/25/14 16:19	

LABORATORY CONTROL SAMPLE: 1448938

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	19.4	97	80-120	
Ethylbenzene	ug/L	20	21.0	105	80-121	
Toluene	ug/L	20	19.7	99	80-122	
Xylene (Total)	ug/L	60	63.3	106	80-121	
1,2-Dichloroethane-d4 (S)	%			99	80-120	
4-Bromofluorobenzene (S)	%			100	80-120	
Toluene-d8 (S)	%			100	80-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLICA	TE: 14489	39		1448940							
			MS	MSD								
	6	0178755003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	19.4	19.1	95	94	37-157	2	32	
Ethylbenzene	ug/L	ND	20	20	20.2	20.0	99	98	31-160	1	32	
Toluene	ug/L	ND	20	20	19.6	19.2	96	94	35-157	2	37	
Xylene (Total)	ug/L	ND	60	60	61.6	61.0	103	102	34-156	1	37	
1,2-Dichloroethane-d4 (S)	%						100	98	80-120			
4-Bromofluorobenzene (S)	%						103	102	80-120			
Toluene-d8 (S)	%						99	100	80-120			
Preservation pH		1.0			1.0	1.0				0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

QC Batch: MSV/64726 QC Batch Method: EPA 5030B/8260 Analysis Method:

Analysis Description:

Matrix: Water

8260 MSV Water 10 mL Purge

EPA 5030B/8260

Associated Lab Samples: 60178711005, 60178711006

METHOD BLANK: 1450880

Associated Lab Samples: 60178711005, 60178711006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/30/14 04:56	
Ethylbenzene	ug/L	ND	1.0	09/30/14 04:56	
Toluene	ug/L	ND	1.0	09/30/14 04:56	
Xylene (Total)	ug/L	ND	3.0	09/30/14 04:56	
1,2-Dichloroethane-d4 (S)	%	100	80-120	09/30/14 04:56	
4-Bromofluorobenzene (S)	%	100	80-120	09/30/14 04:56	
Toluene-d8 (S)	%	99	80-120	09/30/14 04:56	

LABORATORY CONTROL SAMPLE: 1450881

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	18.9	95	80-120	
Ethylbenzene	ug/L	20	20.3	101	80-121	
Toluene	ug/L	20	19.0	95	80-122	
Xylene (Total)	ug/L	60	61.9	103	80-121	
1,2-Dichloroethane-d4 (S)	%			101	80-120	
4-Bromofluorobenzene (S)	%			100	80-120	
Toluene-d8 (S)	%			98	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

QC Batch: OE	XT/46287		Analysis	Method:		EPA 8270C by	SIM	
	A 3510C		2	Descriptio		8270 Water PA		V
Associated Lab Samples:	60178711	001, 6017871100	2, 6017871100	3, 601787	11004		-	
METHOD BLANK: 1448	3734		Ма	trix: Wate	r			
Associated Lab Samples:	60178711	001, 6017871100	2, 6017871100	3, 601787	11004			
			Blank	Rep	oorting			
Parameter		Units	Result	L	imit	Analyze	d Quali	fiers
Naphthalene		ug/L		ND	0.5	10/01/14 1	:44	
2-Fluorobiphenyl (S)		%		80	36-12	0 10/01/14 11	:44	
Terphenyl-d14 (S)		%		80	29-13	4 10/01/14 11	:44	
LABORATORY CONTRO	L SAMPLE:	1448735						
			Spike	LCS		LCS	% Rec	
Parameter		Units	Conc.	Result		% Rec	Limits	Qualifiers
Naphthalene		ug/L			8.7	87	44-120	
2-Fluorobiphenyl (S)		%				80	36-120	
Terphenyl-d14 (S)		%				74	29-134	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	074925 Johnstor 60178711	n Federal No. 4										
QC Batch:	WETA/31201		Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	sis Descrip	tion: 3	00.0 IC Anio	ns					
Associated Lab San	nples: 6017871	1001, 60178711002,	60178711	003, 60178	3711004							
METHOD BLANK:	1454631		ſ	Matrix: Wa	ter							
Associated Lab San	nples: 6017871	1001, 60178711002,	60178711	003, 60178	3711004							
			Blanl	k R	eporting							
Paran	neter	Units	Resu	lt	Limit	Analyz	ed	Qualifiers				
Sulfate		mg/L		ND	1.0	0 10/03/14	10:01					
LABORATORY CON	NTROL SAMPLE:	1454632										
Paran	neter	Units	Spike Conc.	LCS Resi		LCS % Rec	% Rec Limits		ualifiers			
Sulfate		mg/L	5	5	4.7	95	90	-110				
MATRIX SPIKE & M	IATRIX SPIKE DL	IPLICATE: 14526	55		1452656							
			MS	MSD								
		60178693008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r U	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate	mg/L	2640	2500	2500	5150	5150	100	101	80-120	0	15	
MATRIX SPIKE SAM	MPLE:	1452657										
			601787	11001	Spike	MS	Μ	IS	% Rec			
Paran	neter	Units	Res	sult	Conc.	Result	% F	Rec	Limits		Qualif	iers
Sulfate		mg/L		155	50	2	07	103	80-1	20		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 074925 Johnston Federal No. 4

Pace Project No.: 60178711

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: OEXT/46287

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/64726

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:074925 Johnston Federal No. 4Pace Project No.:60178711

Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
GW-074925-092314-SP-MW-1	EPA 3010	MPRP/29080	EPA 6010	ICP/21882
GW-074925-092314-SP-MW-2	EPA 3010	MPRP/29080	EPA 6010	ICP/21882
GW-074925-092314-SP-MW-3	EPA 3010	MPRP/29080	EPA 6010	ICP/21882
GW-074925-092314-SP-MW-4	EPA 3010	MPRP/29080	EPA 6010	ICP/21882
GW-074925-092314-SP-MW-1	EPA 3510C	OEXT/46287	EPA 8270C by SIM	MSSV/14907
GW-074925-092314-SP-MW-2	EPA 3510C	OEXT/46287	EPA 8270C by SIM	MSSV/14907
GW-074925-092314-SP-MW-3	EPA 3510C	OEXT/46287	EPA 8270C by SIM	MSSV/14907
GW-074925-092314-SP-MW-4	EPA 3510C	OEXT/46287	EPA 8270C by SIM	MSSV/14907
GW-074925-092314-SP-MW-1	EPA 5030B/8260	MSV/64640		
GW-074925-092314-SP-MW-2	EPA 5030B/8260	MSV/64640		
GW-074925-092314-SP-MW-3	EPA 5030B/8260	MSV/64640		
GW-074925-092314-SP-MW-4	EPA 5030B/8260	MSV/64640		
GW-074925-092314-SP-DUP	EPA 5030B/8260	MSV/64726		
TRIP BLANK	EPA 5030B/8260	MSV/64726		
GW-074925-092314-SP-MW-1	EPA 300.0	WETA/31201		
GW-074925-092314-SP-MW-2	EPA 300.0	WETA/31201		
GW-074925-092314-SP-MW-3	EPA 300.0	WETA/31201		
GW-074925-092314-SP-MW-4	EPA 300.0	WETA/31201		
	GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-2 GW-074925-092314-SP-MW-3 GW-074925-092314-SP-MW-4 GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-2 GW-074925-092314-SP-MW-3 GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-2 GW-074925-092314-SP-MW-3 GW-074925-092314-SP-MW-4 GW-074925-092314-SP-DUP TRIP BLANK GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-1 GW-074925-092314-SP-MW-1	GW-074925-092314-SP-MW-1 EPA 3010 GW-074925-092314-SP-MW-2 EPA 3010 GW-074925-092314-SP-MW-3 EPA 3010 GW-074925-092314-SP-MW-3 EPA 3010 GW-074925-092314-SP-MW-4 EPA 3010 GW-074925-092314-SP-MW-4 EPA 3510C GW-074925-092314-SP-MW-2 EPA 3510C GW-074925-092314-SP-MW-3 EPA 3510C GW-074925-092314-SP-MW-4 EPA 3510C GW-074925-092314-SP-MW-4 EPA 5030B/8260 GW-074925-092314-SP-MW-1 EPA 5030B/8260 GW-074925-092314-SP-MW-2 EPA 5030B/8260 GW-074925-092314-SP-MW-3 EPA 5030B/8260 GW-074925-092314-SP-MW-4 EPA 5030B/8260 GW-074925-092314-SP-MW-4 EPA 5030B/8260 GW-074925-092314-SP-MW-4 EPA 5030B/8260 GW-074925-092314-SP-MW-1 EPA 5030B/8260 GW-074925-092314-SP-MW-1 EPA 5030B/8260 GW-074925-092314-SP-MW-1 EPA 300.0 GW-074925-092314-SP-MW-2 EPA 300.0 GW-074925-092314-SP-MW-3 EPA 300.0 GW-074925-092314-SP-MW-3 EPA 300.0	GW-074925-092314-SP-MW-1 EPA 3010 MPRP/29080 GW-074925-092314-SP-MW-2 EPA 3010 MPRP/29080 GW-074925-092314-SP-MW-3 EPA 3010 MPRP/29080 GW-074925-092314-SP-MW-3 EPA 3010 MPRP/29080 GW-074925-092314-SP-MW-4 EPA 3010 MPRP/29080 GW-074925-092314-SP-MW-4 EPA 3510C OEXT/46287 GW-074925-092314-SP-MW-2 EPA 3510C OEXT/46287 GW-074925-092314-SP-MW-3 EPA 3510C OEXT/46287 GW-074925-092314-SP-MW-4 EPA 3510C OEXT/46287 GW-074925-092314-SP-MW-3 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-1 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-3 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-4 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-4 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-4 EPA 5030B/8260 MSV/64726 TRIP BLANK EPA 300.0 WETA/31201 GW-074925-092314-SP-MW-1 EPA 300.0 WETA/31201 GW-074925-092314-SP-MW-1 EPA	GW-074925-092314-SP-MW-1 EPA 3010 MPRP/29080 EPA 6010 GW-074925-092314-SP-MW-2 EPA 3010 MPRP/29080 EPA 6010 GW-074925-092314-SP-MW-3 EPA 3010 MPRP/29080 EPA 6010 GW-074925-092314-SP-MW-3 EPA 3010 MPRP/29080 EPA 6010 GW-074925-092314-SP-MW-4 EPA 3010 MPRP/29080 EPA 6010 GW-074925-092314-SP-MW-4 EPA 3510C OEXT/46287 EPA 8270C by SIM GW-074925-092314-SP-MW-2 EPA 3510C OEXT/46287 EPA 8270C by SIM GW-074925-092314-SP-MW-3 EPA 3510C OEXT/46287 EPA 8270C by SIM GW-074925-092314-SP-MW-4 EPA 5030B/8260 MSV/64640 EPA 8270C by SIM GW-074925-092314-SP-MW-1 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-2 EPA 5030B/8260 MSV/64640 GW-074925-092314-SP-MW-4 EPA 5030B/8260 MSV/64726 EPA 5030B/8260 MSV/64726 GW-074925-092314-SP-MW-1 EPA 5030B/8260 MSV/64726 GW-074925-092314-SP-MW-1 EPA 5030B/8260 MSV/64726 GW-074925-092314-SP-MW-1 EPA 300.0 WETA/31201

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60178711 601**787**11

Client Name: CRA COP NM			Optional
Courier: Fed Ex 🕅 UPS 🗆 USPS 🗆 Client 🗆	Commercial 🗆 Pa	ce 🗆 Other 🗆	Proj Due Date:
11.0 0380 0000	Pace Shipping Label U		Proj Name:
Custody Seal on Cooler/Box Present: Yes 🕅 No			programe.
Packing Material: Bubble Wrap Bubble Ba			Dther 🗆
		ue None 🗆 Samples re	ceived on ice, cooling process has begun.
Cooler Temperature:	(circle	one)	and initials of person examining
Temperature should be above freezing to 6°C		conte	ents: <u>18 9 24</u>
Chain of Custody present:	Kyes □No □N/A	1.	
Chain of Custody filled out:		2.	
Chain of Custody relinquished:	IXYes □No □N/A	3.	
Sampler name & signature on COC:	Kyes □No □N/A	4.	
Samples arrived within holding time:	Yes No N/A	5.	
Short Hold Time analyses (<72hr):	□Yes MNo □N/A	6.	
Rush Turn Around Time requested:		7	•
Sufficient volume:	IXYes □No □N/A	8.	
Correct containers used:	IØYes □No □N/A		
Pace containers used:	IXYes □No □N/A	9.	
Containers intact:	XYes No N/A	10.	
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No 比N/A	11.	
Filtered volume received for dissolved tests?	□Yes □No 【	12.	
Sample labels match COC:	₽ ↓ Yes □No □N/A		
Includes date/time/ID/analyses Matrix:	WT	13.	
All containers needing preservation have been checked.	∰Yes □No □N/A		
All containers needing preservation are found to be in compliance with EPA recommendation.	∯yes □No □N/A	14.	
Exceptions Coliform, TOC, O&G, WI-DRO (water), Phenolics	Ų Yes □No	Initial when completed	Lot # of added preservative
Trip Blank present:	₩Yes □No □N/A		
Pace Trip Blank lot # (if purchased):		15,	
Headspace in VOA vials (>6mm);	□Yes KNo □N/A		
		16.	
Project sampled in USDA Regulated Area:	Yes No N/A	17. List State:	
Client Notification/ Resolution: Copy C	COC to Client? Y	N) Field Data Requi	
Person Contacted: D	ate/Time:		Temp Log: Record start and finish times when unpacking cooler, if >20 min,
Comments/ Resolution:			recheck sample temps
			Start: 1115 Start:
		alattat	End: 1120 End:
Project Manager Review:		Date: 41414	Temp. Temp

Pace Analytical 9

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

						NUVUI	ITOTT	:uc						1			-
	CRA COP NM	Report To: Christine Mathews	e Mathews			Attention:	tion: C	CRA									•
Address: 612	6121 Indian School Rd NE, Ste 200	Copy To: Jeff Wal	Jeff Walker, Angela Bown	3own		Comp	Company Name:	Angela Bown	umc			REGULATORY AGENCY	ORY AG	ENCY			
Alb	Albequerque, NM 87110					Address:	BSS.					I NPDES	L	GROUND WATER	WATER	L DRINK	DRINKING WATER
Email To: cma	cmathews@craworld.com	Purchase Order No.:				Pace (Refere	Pace Quote Reference:					L UST	L	RCRA		L OTHER	
Phone: (505)884-0672	4-0672 Fax (505)884-4932	Project Name: Joh	Johnston Federal No. 4	I No. 4		Pace	1 · · ·	Alice Flanagan	LIE			Site Location	tion				
Requested Due Date/TAT:	te/TAT:	Project Number: 74925	325			Pace		7801, 20				STATE:	TE:	MX			
									19	190	uested /	Requested Analysis Filtered (Y/N)	iltered (Y	(N)			
Section D Required Cl	Section D Valid Matrix Codes Required Client Information <u>MATRIX</u> COD	to left)	0	COLLECTED	D		Pr	Preservatives	1 N / A								
	DRINKING WATER WATER WASTE WATER PRODUCT SOLUSOLID OIL	=GRAB C=CC see valid codes 우은 온 주 중 주 당	COMPOSITE	1.0	COMPOSITE END/GRAB	-			(1						(N/Y) ə	11+27-109	1112
TEM #	SAMPLE ID WIFE (A-Z, 0-9 /) OTHER Sample IDs MUST BE UNIQUE TISSUE		H T T T T T	TAME		# OF CONTAINER	⊣NO³ ⊣⁵2O⁴ ∩ubueseuveq	л ^{gs} 2 ^s 0 ³ л¤ОН НСІ	Vethanol Uther Analysis Tes	SZ70 Napthalen	010 Dissolved 000.0 Sulfate		C		ninoldO leubise? 	Dace Proiec	Pace Project No / Lah I D
1 (Sm W).	WW . 07 4925 197314 . AD . WW	I ISA		9	40	÷						BAZA BP	3	4444 B	Ξ	a	
2 610.0	074925.092314.5P. MW	2	lt	- 9.23.14	0011 14	ナ	8	3		XX	XX			5		200	
3 (21W-0	74925-092314.50.	W-3 W10	+	- 0.234	34 115	ト	3 1	3		XX	XX					243	
4 (SW.0	74926092314.5P.	MUU-4 WTS	t	- 9.23.14	14 1040	4		m		(X)	IXX	7 1	⇒		_	204	
5 GW.07	4425.092314.9P.	Autologica		- 9'Z'M	M	m		m		~					-1	015	
14 0	ip blank	-		G.23.M	COLL M	ŋ		m		×		(2)	13)06414 14	*		900	
~ ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~																	
6																	
10																	
12		V															
-	ADDITIONAL COMMENTS	L RELINGU	RELINQUISHED BY / AFFILIATION	ILIATION	/ DATE	-	TIME	ACC	ACCEPTED BY / AFFILIATION	/ AFFILL	ATION	DATE		TIME		SAMPLE CONDITIONS	SIDINS
hend	Physical Been	('025)	PA I	WYR	16 412	1 100	1001	(fr-	0		ku	H2/3	4 0435		A 2'	2	~
							V				27.0						
Page 23		5	3	SAMPLER NAME AN PRINT Name	ME AND SIGNATURE	TURE ER:	Sel.	201	ACC	DATE	DATE Signed	0100	13		C° ni qmeT	Ice (Y/V) stody Sealed	mples Intact (۲/۷)
							G	NOT N	M	(MM)	(YY/DD/MM)		Ţ	-			

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

January 05, 2015

Christine Mathews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074925 JOHNSTON FEDERAL NO 4 Pace Project No.: 60184906

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on December 18, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Angela Bown, Conestoga Rovers & Associates Chris Fetters, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184

).:	60184906		

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60184906001	GW-074925-121714-CM-MW-3	Water	12/17/14 10:00	12/18/14 09:00
60184906002	GW-074925-121714-CM-MW-4	Water	12/17/14 09:50	12/18/14 09:00
60184906003	GW-074925-121714-CM-DUP	Water	12/17/14 08:00	12/18/14 09:00
60184906004	TB-074925-121714-CM-TRIP BLANK	Water	12/17/14 13:00	12/18/14 09:00

SAMPLE ANALYTE COUNT

Project:074925 JOHNSTON FEDERAL NO 4Pace Project No.:60184906

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60184906001	GW-074925-121714-CM-MW-3	EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
60184906002	GW-074925-121714-CM-MW-4	EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8
60184906003	GW-074925-121714-CM-DUP	EPA 5030B/8260	PRG	8
60184906004	TB-074925-121714-CM-TRIP BLANK	EPA 5030B/8260	PRG	8

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Method: EPA 8270C by SIM

Description:8270 MSSV PAH by SIMClient:CRA Conoco New MexicoDate:January 05, 2015

General Information:

2 samples were analyzed for EPA 8270C by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/47580

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Method: EPA 5030B/8260

Description:8260 MSVClient:CRA Conoco New MexicoDate:January 05, 2015

General Information:

4 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/66610

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Sample: GW-074925-121714-CM- MW-3	Lab ID: 60184906	001 Collected: 12/17/	14 10:00	Received: 12	2/18/14 09:00 I	Matrix: Water	
Parameters	Results U	nits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270C by SIM Prepar	ation Me	thod: EPA 35100	2		
Naphthalene <i>Surrogates</i>	ND ug/L	0.45	1	12/18/14 00:00	12/23/14 22:48	3 91-20-3	
2-Fluorobiphenyl (S)	77 %	58-115	1	12/18/14 00:00	12/23/14 22:48	3 321-60-8	
Terphenyl-d14 (S)	96 %	53-127	1	12/18/14 00:00	12/23/14 22:48	3 1718-51-0	
8260 MSV	Analytical Method: E	PA 5030B/8260					
Benzene	ND ug/L	1.0	1		12/20/14 08:26	6 71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/20/14 08:26	6 100-41-4	
Toluene	ND ug/L	1.0	1		12/20/14 08:26	6 108-88-3	
Xylene (Total)	ND ug/L	3.0	1		12/20/14 08:26	6 1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	98 %	80-120	1		12/20/14 08:26	6 460-00-4	
1,2-Dichloroethane-d4 (S)	89 %	80-120	1		12/20/14 08:26	6 17060-07-0	
Toluene-d8 (S)	97 %	80-120	1		12/20/14 08:26	6 2037-26-5	
Preservation pH	1.0	0.10	1		12/20/14 08:26	6	

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Sample: GW-074925-121714-CM- MW-4	Lab ID: 60184900	6002 Collected: 12/17/	14 09:50	Received: 12	/18/14 09:00	Matrix: Water	
Parameters	Results L	Inits Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method: E	PA 8270C by SIM Prepa	ation Me	thod: EPA 3510C	;		
Naphthalene <i>Surrogates</i>	ND ug/L	0.45	1	12/18/14 00:00	12/23/14 23:09	91-20-3	
2-Fluorobiphenyl (S)	79 %	58-115	1	12/18/14 00:00	12/23/14 23:09	321-60-8	
Terphenyl-d14 (S)	101 %	53-127	1	12/18/14 00:00	12/23/14 23:09	1718-51-0	
8260 MSV	Analytical Method: E	EPA 5030B/8260					
Benzene	3.0 ug/L	1.0	1		12/20/14 08:40	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/20/14 08:40	100-41-4	
Toluene	ND ug/L	1.0	1		12/20/14 08:40	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		12/20/14 08:40	1330-20-7	
Surrogates	-						
4-Bromofluorobenzene (S)	98 %	80-120	1		12/20/14 08:40	460-00-4	
1,2-Dichloroethane-d4 (S)	90 %	80-120	1		12/20/14 08:40	17060-07-0	
Toluene-d8 (S)	97 %	80-120	1		12/20/14 08:40	2037-26-5	
Preservation pH	1.0	0.10	1		12/20/14 08:40		

ANALYTICAL RESULTS

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Sample: GW-074925-121714-CM- DUP	Lab ID: 601849060	003 Collected: 12/17/1	4 08:00	Received: 12	2/18/14 09:00 N	Aatrix: Water	
Parameters	Results Un	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EF	PA 5030B/8260					
Benzene	3.9 ug/L	1.0	1		12/20/14 08:55	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/20/14 08:55	100-41-4	
Toluene	ND ug/L	1.0	1		12/20/14 08:55	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		12/20/14 08:55	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	95 %	80-120	1		12/20/14 08:55	460-00-4	
1,2-Dichloroethane-d4 (S)	88 %	80-120	1		12/20/14 08:55	17060-07-0	
Toluene-d8 (S)	99 %	80-120	1		12/20/14 08:55	2037-26-5	
Preservation pH	1.0	0.10	1		12/20/14 08:55		

ANALYTICAL RESULTS

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Sample: TB-074925-121714-CM- TRIP BLANK	Lab ID: 6018490600	4 Collected: 12/17/1	4 13:00	Received: 1	2/18/14 09:00	Matrix: Water	
Parameters	Results Units	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Method: EPA	5030B/8260					
Benzene	ND ug/L	1.0	1		12/20/14 05:43	71-43-2	
Ethylbenzene	ND ug/L	1.0	1		12/20/14 05:43	100-41-4	
Toluene	ND ug/L	1.0	1		12/20/14 05:43	108-88-3	
Xylene (Total)	ND ug/L	3.0	1		12/20/14 05:43	1330-20-7	
Surrogates							
4-Bromofluorobenzene (S)	95 %	80-120	1		12/20/14 05:43	460-00-4	
1,2-Dichloroethane-d4 (S)	87 %	80-120	1		12/20/14 05:43	17060-07-0	
Toluene-d8 (S)	100 %	80-120	1		12/20/14 05:43	2037-26-5	
Preservation pH	1.0	0.10	1		12/20/14 05:43	5	

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

QC Batch: MSV/66610 QC Batch Method: EPA 5030B/8260

Associated Lab Samples:

Analysis Method:

030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge 60184906001, 60184906002, 60184906003, 60184906004

EPA 5030B/8260

 METHOD BLANK:
 1497478
 Matrix:
 Water

 Associated Lab Samples:
 60184906001, 60184906002, 60184906003, 60184906004
 60184906004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	12/20/14 04:45	
Ethylbenzene	ug/L	ND	1.0	12/20/14 04:45	
Toluene	ug/L	ND	1.0	12/20/14 04:45	
Xylene (Total)	ug/L	ND	3.0	12/20/14 04:45	
1,2-Dichloroethane-d4 (S)	%	88	80-120	12/20/14 04:45	
4-Bromofluorobenzene (S)	%	96	80-120	12/20/14 04:45	
Toluene-d8 (S)	%	99	80-120	12/20/14 04:45	

LABORATORY CONTROL SAMPLE: 1497479

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	21.1	106	80-120	
Ethylbenzene	ug/L	20	20.7	103	80-120	
Toluene	ug/L	20	20.6	103	80-120	
Xylene (Total)	ug/L	60	63.8	106	80-120	
1,2-Dichloroethane-d4 (S)	%			88	80-120	
4-Bromofluorobenzene (S)	%			97	80-120	
Toluene-d8 (S)	%			100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074925 JOHNST Pace Project No.: 60184906	ON FEDERAL NO 4							
QC Batch: OEXT/47580		Analysis N	Method:	EF	PA 8270C by \$	SIM		
QC Batch Method: EPA 3510C		Analysis E	Description:	82	70 Water PAH	H by SIM MSS	V	
Associated Lab Samples: 6018490	6001, 60184906002							
METHOD BLANK: 1497295		Mati	rix: Water					
Associated Lab Samples: 6018490	6001, 60184906002							
		Blank	Report	ng				
Parameter	Units	Result	Limit		Analyzed	Qualif	fiers	
Naphthalene	ug/L	Ν	ID	0.50	12/23/14 21	:06		
2-Fluorobiphenyl (S)	%	7	75 5	8-115	12/23/14 21	:06		
Terphenyl-d14 (S)	%	ç	93 5	3-127	12/23/14 21	:06		
LABORATORY CONTROL SAMPLE:	1497296							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result	C	% Rec	Limits	Qualifiers	
Naphthalene	ug/L	10	9.4		94	47-113		
2-Fluorobiphenyl (S)	%				84	58-115		
Terphenyl-d14 (S)	%				95	53-127		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: OEXT/47580

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/66610

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074925 JOHNSTON FEDERAL NO 4

Pace Project No.: 60184906

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60184906001	GW-074925-121714-CM-MW-3	EPA 3510C	OEXT/47580	EPA 8270C by SIM	MSSV/15381
60184906002	GW-074925-121714-CM-MW-4	EPA 3510C	OEXT/47580	EPA 8270C by SIM	MSSV/15381
60184906001	GW-074925-121714-CM-MW-3	EPA 5030B/8260	MSV/66610		
60184906002	GW-074925-121714-CM-MW-4	EPA 5030B/8260	MSV/66610		
60184906003	GW-074925-121714-CM-DUP	EPA 5030B/8260	MSV/66610		
60184906004	TB-074925-121714-CM-TRIP BLANK	EPA 5030B/8260	MSV/66610		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60184906

Client Name: GP (FA NM_				Optional
Courier: Fed Ex 🖉 UPS □ USPS □ Client □	Commercial []	Pace Oth	ner 🗆	Proj Due Date:
	Pace Shipping Lab			Proj Name:
Custody Seal on Cooler/Box Present: Yes 🖄 No			, □	
Packing Material: Bubble Wrap			ne 🗆 🛛 Oth	ner 🗆
			Samples rece	eived on ice, cooling process has begun.
Cooler Temperature: 3 /		sircle one)	Date an	nd initials of person examining
Temperature should be above freezing to 6°C			conten	ts: IM 12/18/14 /155
Chain of Custody present:	19 Yes INO IN	I/A 1.		
Chain of Custody filled out:	-PYes No No	I/A 2.		
Chain of Custody relinquished:		WA 3.		
Sampler name & signature on COC:	VYes No No	1/A 4		
Samples arrived within holding time:	Pres No No	V/A 5.		
Short Hold Time analyses (<72hr):	TYes ZNO DA	VA 6.		
Rush Turn Around Time requested:	DYes 7No DM	N/A 7.		
Sufficient volume:		V/A 8,		
Correct containers used:	Øyes No DI	N/A		
Pace containers used:	∕ ØYes □No □I	N/A 9.		
Containers intact:	TYes No DI	N/A 10.		
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No Ø	N/A 11.		
Filtered volume received for dissolved tests?	□Yes □No Ø	N/A 12.		
Sample labels match COC:	Yes No	N/A		
Includes date/time/ID/analyses Matrix:	water	13.		
All containers needing preservation have been checked.				
All containers needing preservation are found to be in	/			
compliance with EPA recommendation.	🗆 Yes 🗆 No 💋	14.		Lot # of added
Exceptions: VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics	ZYes No	Initial when completed	Ma	preservative
Trip Blank present:	Yes No	N/A		
Pace Trip Blank lot # (if purchased): 120114 3		15.		
Headspace in VOA vials (>6mm):	Yes PNO D	N/A		
		16.		
Project sampled in USDA Regulated Area:	🗆 Yes 🗆 No 🕅	NIA 17. List St	ate:	
Client Notification/ Resolution: Copy	COC to Client? Y	/N) Fi	ield Data Require	ed? Y / N
	Date/Time:	<u> </u>		Temp Log: Record start and finish times when unpacking cooler, if >20 min, recheck sample temps.
Comments/ Resolution:				Start: 1150 Start:
		300	1.11	End: 1155 End:
Project Manager Review:		Date: 1	1814	Temp: Temp:

	tical	bs.com
	Analy	www.pace!abs.con
2	Pace	

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	Page: of i	_			GROUND WATER	C OTHER						(pu) SH906	ਲੂ © ਕਿ Pace Project No./ Lab I.D.	3 0644) given (11)	200 12	740 9m 11 mar Chan 23		SCOLONIA) IZII (May				SAMPLE CONDITIONS	3.1 7 7 7		
		_		AGENCY	GROUN	RCRA		ž	(N/N)							124	+					TIME	600		
				REGULATORY AGENCY		UST	Site Location	STATE:	lysis Filtered													DATE	12/16/14	-	
				RE	L		Si		Requested Analysis Filtered (Y/N)			nəlsrttqsN			IXI III							FFILIATION			
		ation:	CRA	e: Angela Bown			Alice Flanagan	7801, 20		Preservatives	Î	anol 2 ⁰ 3 H				X						ACCEPTED BY / AFFILIATION	Will Shan I have	.]	
	Section C	Invoice Information:	Attention:	Company Name:	Address:	Pace Quote Reference	Pace Project Manager	Pace Profile #:				SServed CONTAINER	# OE	X 5	JX X	3						TIME	1520		
										ED	COLLECTION COMPOSITE END/GRAB		DATE TIME SA	14 1000	714 0957	2/17/14		2/17/14 (200				DATE	H/L/71	•	
		:0	thews	Jeff Walker, Angela Bown		4071737	Johnston Federal No. 4			COLLECTED	COMPOSITE		DATE TIME D	121	12/17	12		121				RELINQUISHED BY / AFFILIATION	Maun /CLA		
	Section B	Required Project Information:	Report To: Christine Mathews	Copy To: Jeff Walker,		Purchase Order No.: 407	Project Name: Johnsto	Project Number. 74925		(fiel of	=GKAB C=CC	81X CODE	IGMAS	3 WTG	1-4 WT 6	0 witca		Bank		_			Wash Da		
com	ω α	×	R	6121 Indian School Rd NE, Ste 200 C	M 87110		Fax: (505)884-4932 P	4		3	DRINKING WATER WATER WASTE WATER PRODUCT SOIL/SOLID OIL	UNIQUE TISSUE TS		-WW. MD. AILIZI	121714. CM. MW	12174. CM. du		12174. CM. trip				COMMENTS			
NINN: pacetabs.com	Section A	d Client Information:	y: CRA COP NM		Albequerque, NM 87110	cmathews@craworld.com	(505)884-0672	Requested Due Date/TAT:		Section D Required Client Information		SAMPLE ID (A-Z, 0-9 / , -) Sample IDS MUST BE UNIQUE		5w OTA 25 1	Cow 074925	61W-074925	- in-	4.8.01496				ADDITIONAL COMMENTS			
1	Section	Require	Company:	Address:		Email To:	Phone:	Request				#	MƏTI	1	2	9	4	un u	2	80 ON	10	12			

F-ALL-Q-020rev.08, 12-Oct-2007 Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

DATE Signed (MM/DD/YY):

SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER:

Samples Intact (Y/N)

Custody Sealed Cooler (Y/N)

Received on Ice (Y/N)

O° ni qmeT

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

January 16, 2015

Christine Mathews CRA 6121 Indian School Rd NE Suite 200 Albuquerque, NM 87110

RE: Project: 074925 JOHNSON FEDERAL NO 4 Pace Project No.: 60185940

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on January 10, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, COP Conestoga-Rovers & Associa Angela Bown, Conestoga Rovers & Associates Chris Fetters, COP Conestoga-Rovers & Associa Jeff Walker, COP Conestoga-Rovers & Associa

CERTIFICATIONS

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 13-012-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

SAMPLE SUMMARY

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60185940001	GW-074925-010815-JW-MW-1	Water	01/08/15 13:05	01/10/15 08:10

SAMPLE ANALYTE COUNT

Project:074925 JOHNSON FEDERAL NO 4Pace Project No.:60185940

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60185940001	GW-074925-010815-JW-MW-1	EPA 8270C by SIM	NAW	3
		EPA 5030B/8260	PRG	8

PROJECT NARRATIVE

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

Method: EPA 8270C by SIM

Description:8270 MSSV PAH by SIMClient:CRA Conoco New MexicoDate:January 16, 2015

General Information:

1 sample was analyzed for EPA 8270C by SIM. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

QC Batch: OEXT/47760

IO: The internal standard response was outside the laboratory acceptance limits confirmed by reanalysis. The results reported are from the most QC compliant analysis.

• GW-074925-010815-JW-MW-1 (Lab ID: 60185940001)

2-Fluorobiphenyl (S)

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: OEXT/47760

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

PROJECT NARRATIVE

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

Method: EPA 5030B/8260

Description:8260 MSVClient:CRA Conoco New MexicoDate:January 16, 2015

General Information:

1 sample was analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable): All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/67013

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

Sample: GW-074925-010815-JW- MW-1	Lab ID: 601859400	01 Collected: 01/08/1	5 13:05	Received: 01	/10/15 08:10 I	Matrix: Water	
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by SIM	Analytical Method: EP	A 8270C by SIM Prepara	ation Me	thod: EPA 3510C	2		
Naphthalene Surrogates	78.7 ug/L	4.5	10	01/13/15 00:00	01/14/15 19:56	91-20-3	
2-Fluorobiphenyl (S)	76 %	58-115	1	01/13/15 00:00	01/14/15 15:50	321-60-8	10
Terphenyl-d14 (S)	64 %	53-127	1	01/13/15 00:00	01/14/15 15:50) 1718-51-0	
8260 MSV	Analytical Method: EP	A 5030B/8260					
Benzene	4350 ug/L	100	100		01/15/15 13:15	5 71-43-2	
Ethylbenzene	1070 ug/L	20.0	20		01/14/15 15:05	5 100-41-4	
Toluene	6150 ug/L	100	100		01/15/15 13:15	5 108-88-3	
Xylene (Total)	10000 ug/L	60.0	20		01/14/15 15:05	5 1330-20-7	
Surrogates	-						
4-Bromofluorobenzene (S)	105 %	80-120	20		01/14/15 15:05	60-00-4	
1,2-Dichloroethane-d4 (S)	101 %	80-120	20		01/14/15 15:05	5 17060-07-0	
Toluene-d8 (S)	102 %	80-120	20		01/14/15 15:05	2037-26-5	
Preservation pH	1.0	0.10	20		01/14/15 15:05	5	

Project: 074925 JOHNSON FEDERAL NO 4

%

%

Pace Project No.: 60185940

4-Bromofluorobenzene (S)

Toluene-d8 (S)

QC Batch: MSV/66988		Analysis M	ethod: E	PA 5030B/82	60	
QC Batch Method: EPA 5030B/82	260	Analysis D	escription: 8	260 MSV Wat	ter 10 mL Purge	•
Associated Lab Samples: 601859	40001					
METHOD BLANK: 1505785		Matri	x: Water			
Associated Lab Samples: 601859	40001					
Parameter	Units	Blank Result	Reporting Limit	Analyze	d Qualif	ïers
Ethylbenzene	ug/L	N	0 1.0	01/14/15 0	8:48	
Xylene (Total)	ug/L	NE) 3.0	01/14/15 0	8:48	
1,2-Dichloroethane-d4 (S)	%	100) 80-120	0 01/14/15 0	8:48	
4-Bromofluorobenzene (S)	%	97	7 80-120	0 01/14/15 0	8:48	
Toluene-d8 (S)	%	102	2 80-120	0 01/14/15 0	8:48	
LABORATORY CONTROL SAMPLE	: 1505786					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Ethylbenzene	ug/L	20	21.1	106	80-120	
Xylene (Total)	ug/L	60	59.9	100	80-120	
1,2-Dichloroethane-d4 (S)	%			99	80-120	

Parameter	Units	60186000004 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Ethylbenzene	ug/L	ND	20	20	21.3	21.4	106	107	51-148	1	14	
Xylene (Total)	ug/L	ND	60	60	60.0	62.2	100	104	39-158	3	15	
1,2-Dichloroethane-d4 (S)	%						100	100	80-120			
4-Bromofluorobenzene (S)	%						101	101	80-120			
Toluene-d8 (S)	%						101	100	80-120			
Preservation pH		1.0			1.0	1.0				0		

100

102

80-120

80-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

QC Batch: MSV/67	7013	Analysis Metl	hod: Ef	PA 5030B/8260	
QC Batch Method: EPA 50	30B/8260	Analysis Des	cription: 82	260 MSV Water 10	mL Purge
Associated Lab Samples: 6	0185940001				
METHOD BLANK: 1506487		Matrix:	Water		
Associated Lab Samples: 6	0185940001				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	01/15/15 12:26	
Toluene	ug/L	ND	1.0	01/15/15 12:26	
1,2-Dichloroethane-d4 (S)	%	97	80-120	01/15/15 12:26	
4-Bromofluorobenzene (S)	%	96	80-120	01/15/15 12:26	
Toluene-d8 (S)	%	102	80-120	01/15/15 12:26	

LABORATORY CONTROL SAMPLE: 1506488

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	20.7	103	80-120	
Toluene	ug/L	20	20.0	100	80-120	
1,2-Dichloroethane-d4 (S)	%			101	80-120	
4-Bromofluorobenzene (S)	%			101	80-120	
Toluene-d8 (S)	%			101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:074925 JOHNSCPace Project No.:60185940	ON FEDERAL NO 4							
QC Batch: OEXT/47760		Analysis	Method:	EF	PA 8270C by \$	SIM		
QC Batch Method: EPA 3510C		Analysis	Description:	82	270 Water PAI	H by SIM MSS	V	
Associated Lab Samples: 6018594	0001							
METHOD BLANK: 1505104		Mat	trix: Water					
Associated Lab Samples: 6018594	0001							
		Blank	Repo	rting				
Parameter	Units	Result	Lin	nit	Analyzeo	l Qualif	iers	
Naphthalene	ug/L	1	ND D	0.50	01/14/15 15	:09		
2-Fluorobiphenyl (S)	%		90	58-115	01/14/15 15	:09		
Terphenyl-d14 (S)	%		95	53-127	01/14/15 15	:09		
LABORATORY CONTROL SAMPLE:	1505105							
		Spike	LCS		LCS	% Rec		
Parameter	Units	Conc.	Result		% Rec	Limits	Qualifiers	
Naphthalene	ug/L	10	9	.3	93	47-113		
2-Fluorobiphenyl (S)	%				89	58-115		
Terphenyl-d14 (S)	%				91	53-127		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074925 JOHNSON FEDERAL NO 4

Pace Project No.: 60185940

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: OEXT/47760

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/67013

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

IO The internal standard response was outside the laboratory acceptance limits confirmed by reanalysis. The results reported are from the most QC compliant analysis.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:074925 JOHNSON FEDERAL NO 4Pace Project No.:60185940

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60185940001	GW-074925-010815-JW-MW-1	EPA 3510C	OEXT/47760	EPA 8270C by SIM	MSSV/15436
60185940001	GW-074925-010815-JW-MW-1	EPA 5030B/8260	MSV/66988		
60185940001	GW-074925-010815-JW-MW-1	EPA 5030B/8260	MSV/67013		

Sample Condit	ion Upon Receipt	-		60185940
Packing Material: Bubble Wrap Bubble E	Pace Shipping Label L o 🕅 Seals intact: Y Bags 🕅 Foam J Type of Ice: (Wet) Blu	′es⊡ No12 ŽD None	No C No C Samples receiv	Optional Proj Due Date: Proj Name: r □ ed on ice, cooling process has begun. initials of person examining 0 1 \ ∞
Chain of Custody present:		L		
Chain of Custody filled out:		2		
Chain of Custody relinquished:		2.		
Sampler name & signature on COC:		3.		
Samples arrived within holding time:		4.		
Short Hold Time analyses (<72hr):		5.		
Rush Turn Around Time requested:		6.		
Sufficient volume:		/		
		8,		
Correct containers used:	[™] Yes □No □N/A [™] Yes □No □N/A			
Pace containers used:	1	9.		
Containers intact:		10.		
Unpreserved 5035A soils frozen w/in 48hrs?		11.		
Filtered volume received for dissolved tests?		12.	_	
Sample labels match COC:	¥Yes □No □N/A			
Includes date/time/ID/analyses Matrix:	WT	13.		
All containers needing preservation have been checked. All containers needing preservation are found to be in	□Yes □No 【ZN/A			
compliance with EPA recommendation.	□Yes □No 📢N/A	14.		
Exceptions VOA, coliform, TOC, O&G, WI-DRO (water), Phenolics	₩Yes □No	Initial when completed		Lot # of added preservative
Trip Blank present:	□Yes K2No □N/A			
Pace Trip Blank lot # (if purchased):	-	15.		
Headspace in VOA vials (>6mm):	□Yes NO □N/A	16.		
Project sampled in USDA Regulated Area:	□Yes □No 12 N/A	17. List State:		
	COC to Client? Y / N		ata Required?	Y / N
Person Contacted:	Date/Time:		·	
Comments/ Resolution:				
Project Manager Review: AAF		Date: 01/12	2/15	

F-KS-C-003-Rev 7, 04December2012

Operation Contract: Number Contract: Autor: Shirty Status Laboratory Name: PACE Lab Location			Phon	202	0-28-01	-884-0672 Fax:	2	Fax:	100	1000	MUMA.	(V) IIII	BEIG	6613	661345940		(See Reverse Side for Instructions)	r Instructior
Oper (Mann: Contract: Autrice: FLAMEAN Lab Contract: Autrice: <		35	7 0000	aborat	ny Na	me: P	ACE	ne izio	R :	1000	Lab	Locat	2	EVE		5	SSOW ID:	11115
Oper Location: SAU Liss Representation Initiaty Contact: Aucl. 198 (R. UMMITH & PRESENTATION Saurul: Balance Aud (RIC) Saurul: Balance Aud (RIC) Saurul: Balance Aud (RIC) Saurul: Balance Aud (RIC) Curron Interaction Balance Aud (RIC) Curron Interaction<	SOTINSTON	No.		ab Con	tact:	ALIC	ě	AN	461	42	Lat	Quote	No:		na mu		Cooler No:	1920
Image: Contact: Arc. Is Arc. Is Arc. Arc. Arc. Arc. Arc. Arc. Arc. Arc.	SAN JUAN	WN	antes Atom	AMPLE		CON	PRESE	QUAN	NN &	10,81	a la	AN (See B.	AL YSI:	s Requ	ESTED Definitions		Carrier:	attability.
anglere(si: JEFF WHLER, CHE KAHEK Construct a calaboration of the construction of the	ANGLE BOWN	erentetyan let	artio	b (c)	n di	18-		lloŝ	52-8	əlqmsi	XE	Interte	12	道明	10 gaž	E	Airbill No:	ĩ
Subset Date Time Construction Current fraction Date Time Time Construction Current fraction Date Time Construction Date Current fraction Date Date Date Date Current fraction Date Date Date Date Date Date Date Date Date	and the second se		еро	k of COC	12 10	0.4	Acid (H ₂ S	48 19	Vie and	2\erentsin	U8 (HUNA		d loss	2 Middle		Date Shipped:	14
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		1.111.01		(see psc	- 02	- 18-	Sulfuric .	(HOPN)	EnCores	- Per ti	esec.	0288	16	and the second sec	() been	asw/sw	COMMENTS/ SPECIAL INSTRUCTIONS:	NTS/ RUCTIONS.
Afficient of the second of	Gw-	-1 1/8/15	1000	T	3	M	100120	11 (A	10511	5	-	102	3)1041	2 2 46	4M	0	" 412010 "	ONI 1
Applied	2											-	3	1				NAME
AT Required in business days (use separate COCs for different TATs): I O I <td>3</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>BE</td>	3				_													BE
The definition of the second state of the second	A Designment of the structures	6. 0 1 4 - 1		a la	No.		4					10					12010	1, 5
AT Required in business days (are separate COCs for different TAIs): Image: Separate COCs for different TAIs): Image: Toolar in the color must be and the c	2	will prove the first	Dig TR					1		the life	100		22		1		Mitterto 8	-BWB
AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Required in business day (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: AT Reprint TATs Total TATs Total Number of Containers: Notes/ Special Requirements:	σ	A TRACTICE FUEL	and the							fit mo	9		2			THE .	Cmum2	NC.
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements:			Autor P				3					12					Autom -	-
AT Required in business days (use separate COCS for different TATs): Total Number of Containers: S Notes/Special Requirements: 1 Day 2 Days 3 Days 1 Veek Zowany Dat AT 1 Day 2 Days 3 Days 1 Veek Zowany Dat AT	8	a fileonda o	N International Action		1	W.S.					ior		18				water a	112
AI Required in business days (use separate COCs for different TATs): Total Number of Containers: S Notes/ Special Requirements: I Day I Day I Day I Day Motes/ Special Requirements: I Day I Day I Day I Port I Port I Day I Day I Port I Port I Port I Day I Day I Port I Port I Port I Day I Day I Port I Port I Port I Day I Day I Port I Port I Port I Day I Day I Port I Port I Port I Day I Port I Port I Port I Port	0	and the solution	a week						The second secon		No.					Â	AL TIMOP	(They
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: S Notes/ Special Requirements: 1 1 Day 2 Days 1 Works/ Special Requirements: Alt Samples in Cooler must be on COC Notes/ Special Requirements: 1 bay 2 Days 1 Works/ Special Requirements: Alt Samples in Cooler must be on COC Notes/ Special Requirements:	10									-						a l'ille	I Testini	-
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Notes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 2 Modes/ Special Requirements: 2 Modes/ Special Requirements: 2 Modes/ Special Requirements:	Business Business and and and also	served first server of	a survey of													1.1.1	All sold	1444
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: S Notes/ Special Requirements: 1 Day 2 Days 3 Days 1 Woek 2 Notes/ Special Requirements: 1 Day 2 Days 3 Days 1 Woek 2 Notes/ Special Requirements: 1 Day 2 Days 3 Days 1 Woek 2 Notes/ Special Requirements: 1 Day 2 Days 1 Woek 2 Wotes/ Special Requirements:	2 2	art and to	Ser - Shi	-													9	¢
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: S Notes/ Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 Week 2 Wotes/ Special Requirements: 1 Day 2 Days 1 - 9 - 14' 1 3 j 5 1. 1 Day 2. 3 Notes/ Special Requirements: 100	1 3	Public the second second	HUNDER			i.				100	-					E.		
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: Solves/Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Week Other: ST 1 Day 2 Days 3 Days 1 Week 2 Week Solves/Special Requirements: Notes/Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Week Solves/Special Requirements: 2 Motes/Special Requirements: 2 Motes/Special Requirements: Notes/Special Requirements: Date 2 Motes/Special Requirements: 2 Motes/Special Requirements: 2 Motes/Special Requirements: Date 4 1 - 9 - 14 1 - 3 - 14 1 - 3 - 14 1 - 5 - 16 Motes/Special Requirements:				P	3				1	M M	31		1	20 M			c. 1992.0	< 14
AT Required in business days (use separate COCs for different TATs): Total Number of Containers: S Notes/ Special Requirements: 1 Day 2 Days 3 Days 1 Week 2 Week 2 Week 2 Week 1 Day 2 Days 3 Days 1 Week 2 Week 2 Week 2 Week 2 Week 1 Day 2 Days 3 Days 1 Week 2 Week 2 Week 2 Week 2 Week A Relinvouished ar Received any Date Time Received BY Company Date A Mathin 1 - 9 - 14 1 3 j 5 1. A Mathin Mathin <td>5</td> <td>MT there will have</td> <td>- Diodium</td> <td>8</td> <td>2</td> <td>Ig</td> <td></td> <td></td> <td></td> <td></td> <td>N N</td> <td></td> <td></td> <td></td> <td></td> <td>- 1 II</td> <td>States -</td> <td>A.F.</td>	5	MT there will have	- Diodium	8	2	Ig					N N					- 1 II	States -	A.F.
1 Day 2 Days 1 Week 2 Week 2 Optimer: 3 Days 1 Week 2 Days 2 Days 1 Optimer 2 Days A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A	TAT Required in business days (use separate C	COCs for different T	ATs):			Tota	I Numbe	r of Cor	Itainers		Not	es/ Spe	scial Re	squirem	ents:			
PELINOUISHED BY COMPANY DATE TIME RECEIVED BY COMPANY DAT A C M M C R M 1-9-14 1315 1. A C MPANY DAT A C M M C R M 1-9-14 1315 1. A C MPANY DAT A C M M C R M 1-9-14 1315 1. A C MPANY DAT	🗌 2 Days 🔲 3 Days	2 Week Nother:	CTD		AIL	sample	s in Cool	er must	t be on	COC	E						Temp	1,7 00
22 1-9-14 1315 1. 25 Rad Rad Rad	A RELINQUISHED BY	COMPANY	DA	TE		TIME			REC	CEIVED	Bγ				COMPANY		DATE	TIME
ge 14	Sull The	CRA	1-9-1	5	M			J	M	\$	00	1		lace	- HUHA	-Tqtitt	1/10	080
4		herr Changing	Mark	Ð		Hx	2.								10			
3. of .	4 of ²		Meren				ň							1 Aller	10.00	100	Hugh Dev	