3R - 312

2014 AGWMR

04 / 10 / 2015

One Williams Center P.O. Box 645 Tulsa, OK 74101-0645

April 10, 2014

Glenn Von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Online Submission of 2014 Annual Groundwater Reports

Dear Mr. Von Gonten,

Williams Field Services (Williams) is electronically submitting the attached 2014 annual groundwater monitoring reports covering the period from January 1, 2014 to December 31, 2014 for the following sites:

- Davis #1 (3RP-311-0);
- Dogie East Pit (3RP-312-0);
- Florance #40 (3RP-315-0);
- Florance #47X (3RP-317-0);
- Ice Canyon Drip (3RP-322-0);
- Jicarilla Contract #147-6 (3RP-325-0); and
- Pritchard #2A (3RP-339-0).

If you have any questions regarding these reports please contact me at 918-573-4371 or <u>Danny.Reutlinger@Williams.com</u> or Ashley Ager with LT Environmental at 970-385-1096 or <u>aager@ltenv.com</u>.

Sincerely,

Williams Field Services

Danny Reutlinger

Senior Project Manager

cc:

Attachments (7)

2014 ANNUAL GROUNDWATER REPORT

DOGIE EAST PIT ADMINISTRATIVE/ENVIRONMENTAL ORDER NUMBER 3RP-312-0

APRIL 2015

Prepared for:

WILLIAMS FIELD SERVICES, LLC Tulsa, Oklahoma

2014 ANNUAL GROUNDWATER REPORT

DOGIE EAST PIT ADMINISTRATIVE/ENVIRONMENTAL ORDER NUMBER 3RP-312-0

APRIL 2015

Prepared for:

WILLIAMS FIELD SERVICES, LLC PO Box 3483, MD 48-6 Tulsa, Oklahoma 74101

Prepared by:

LT ENVIRONMENTAL, INC. 2243 Main Avenue, Suite 3 Durango, Colorado 81301 (970) 385-1096

TABLE OF CONTENTS

EXECUTIVE SU	JMMARY	.ii
1.0 INTRODUC	CTION	.1
	rionRY	
2.0 METHODO	LOGY	.2
2.2 GROUN 2.3 GROUN	R AND PRODUCT LEVEL MEASUREMENTSNDWATER SAMPLINGNDWATER CONTOUR MAPSECOVERY	.2 .3
3.0 RESULTS .		.3
4.0 CONCLUSI	ONS	.4
5.0 RECOMME	ENDATIONS	.4
	FIGURES	
FIGURE 1 FIGURE 2	SITE LOCATION MAP GROUNDWATER ELEVATIONS & ANALYTICAL RESULTS (MARCH	
FIGURE 3	2014) GROUNDWATER ELEVATIONS & ANALYTICAL RESULTS (JUNE	
FIGURE 4	2014) GROUNDWATER ELEVATIONS & ANALYTICAL RESULTS (SEPTEMBER 2014)	
FIGURE 5	GROUNDWATER ELEVATIONS & ANALYTICAL RESULTS (DECEMBER 2014)	
	TABLES	
TABLE 1 TABLE 2	GROUNDWATER ELEVATION SUMMARY GROUNDWATER LABORATORY ANALYTICAL RESULTS	
	APPENDICES	
APPENDIX A APPENDIX B	2014 QUARTERLY FIELD FORMS ANALYTICAL LABORATORY REPORTS	

EXECUTIVE SUMMARY

Groundwater at the Dogie East Pit (Administrative/Environmental Order Number 3RP-312-0) (Site) is impacted by petroleum hydrocarbons in excess of the New Mexico Water Quality Control Commission (NMWQCC) groundwater standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX) due to a release from a former dehydrator pit operated by Gas Company of New Mexico (GCNM). Impacted soil was excavated in 1997 and five monitoring wells were installed in 1998 to assess groundwater quality. Based on identified groundwater impacts, soil vapor extraction was tested for remediation, but never formally implemented. Instead, four additional downgradient groundwater monitoring wells were installed in 1999. Williams Field Services, LLC (Williams) purchased GCNM facilities from Public Service Company of New Mexico (PNM) in 2000 and assumed environmental liability for the Site. Since that time, Williams has monitored groundwater quality and conducted free product removal. Williams installed four additional groundwater monitoring wells and plugged and abandoned an existing well located outside of the delineated groundwater plume. During 2014, Williams retained LT Environmental Inc. (LTE) to complete annual sampling requirements. Between January 2014 and December 2014, four groundwater monitoring events were conducted.

LTE measured depth to groundwater, investigated presence of free product, and sampled groundwater from existing monitoring wells. Concentrations of BTEX in the most downgradient monitoring wells were compliant with NMWQCC groundwater standards in 2014; however, concentrations of BTEX in various on-site monitoring wells exceeded NMWQCC groundwater standards during at least one monitoring event in 2014. Groundwater monitoring well MW-6, which is downgradient of the original source area, contained measurable phase-separated hydrocarbons (PSH) and LTE recovered approximately 66.75 ounces with oil absorbent socks and manual recovery. PSH was visually observed with a bailer in adjacent monitoring well MW-5 during one quarter in 2014.

Williams will continue to monitor groundwater elevations and presence of PSH in the monitoring wells at the Site quarterly. Williams will manually recover PSH from monitoring wells MW-5 and MW-6 when present and install oil absorbent socks for passive PSH recovery between site visits. Williams will continue to conduct annual groundwater sampling for BTEX at monitoring wells MW-3, MW-5, MW-6, MW-7, MW-10, MW-11, MW-12, and MW-13.

1.0 INTRODUCTION

LT Environmental, Inc. (LTE) on behalf of Williams Field Services, LLC (Williams) has prepared this report detailing groundwater monitoring activities completed from January 2014 through December 2014 at the Dogie East Pit (Administrative/Environmental Order Number 3RP-312-0) (Site) at the Dogie Compressor Station. The scope of work for this project was continued monitoring of petroleum hydrocarbon impacts to groundwater as a result of operations of a former lined pit to collect drip gas and water from a condensate tank.

1.1 LOCATION

The Site is located at latitude 36.435003 and longitude -107.479499 in Unit D, Section 4, Township 25 North, Range 6 West. The Site is on the west flank of Largo Wash in the San Juan Basin in Rio Arriba County, New Mexico (Figure 1).

1.2 HISTORY

The original source of impacted groundwater is a former lined pit to collect drip gas and water from a condensate tank. Williams removed 526 cubic yards of petroleum hydrocarbon impacted soil in July 1997 and an additional 4,888 cubic yards of petroleum hydrocarbon impacted soil in October 1997. Groundwater was encountered at 14 feet below ground surface (bgs) in the excavation and groundwater samples contained benzene, toluene, ethylbenzene, and total xylenes (BTEX) concentrations in excess of the New Mexico Water Quality Control Commission (NMWQCC) standards. The excavation was left open through March 1998 and sampled again, at which time benzene, sulfate, and chloride concentrations exceeded the NMWQCC standards. The excavation was subsequently backfilled and in May 1998 groundwater monitoring wells MW-1, MW-2, MW-3, and MW-4 were installed. Impacted soil was observed in the borehole at MW-3 at approximately 12 feet bgs. In December 1998, monitoring well MW-5 and a 4-inch soil vapor extraction (SVE) well were installed and a pilot test was conducted; however, SVE was never implemented at the Site.

In September 1999, additional downgradient monitoring wells MW-6, MW-7, and MW-8 were installed. The installation date of groundwater monitoring well MW-9 is not known. Williams Field Services, LLC (Williams) purchased the GCNM facilities from Public Service Company of New Mexico (PNM) in 2000, including environmental liability from the dehydrator pit. Between 2000 and December 2012, Williams monitored groundwater in the monitoring wells at the Site and recovered phase separated hydrocarbons (PSH) from MW-6. Groundwater monitoring well MW-4 was observed to have been destroyed during the March 2013 site visit. It was not replaced due its location outside the existing extent of impacted groundwater. Additionally, monitoring well MW-9 was plugged and abandoned on October 13, 2013 for the same reason. Williams installed four new downgradient groundwater monitoring wells (MW-10, MW-11, MW-12, and MW-13) on October 13, 2013, to delineate the impacted groundwater plume.

On September 13, 2013, LTE collected a sample of PSH from MW-6 for analysis of paraffins, isoparaffins, aromatics, napthenes, and olefins (PIANO) to identify the chemical composition of the PSH and evaluate potential origin of the source. The source was confirmed to be natural gas condensate. On November 1, 2013, LTE performed a product bail down test at monitoring well

MW-6 to assess potential product recovery options. Much of the accumulated PSH was removed during the product bail down test.

2.0 METHODOLOGY

Groundwater monitoring activities were conducted at the Site in March 2014, June 2014, September 2014, and December 2014. LTE conducted quarterly site visits to monitor groundwater and presence of PSH, recover PSH when possible, and sample groundwater for water quality investigation. Groundwater monitoring wells MW-1, MW-2, SVE-4, and MW-8 were not sampled during 2014. These wells have either never contained BTEX in excess of NMWQCC standards or have eight documented quarters of BTEX concentrations compliant with NMWQCC standards. Monitoring wells MW-3 and MW-5 are sampled quarterly and downgradient monitoring wells MW-10, MW-11, MW-12, and MW-13 are sampled annually to monitor potential plume migration. Current source well MW-6 contains PSH and was not sampled.

2.1 WATER AND PRODUCT LEVEL MEASUREMENTS

Groundwater level monitoring included recording depth to groundwater measurements in all monitoring wells with a Keck oil/water interface probe. The presence of PSH was investigated using the interface probe. The interface probe was decontaminated with AlconoxTM soap and rinsed with de-ionized water prior to each measurement. These data are summarized in Table 1.

2.2 GROUNDWATER SAMPLING

Prior to sampling groundwater, depth to groundwater and total depth of monitoring wells were measured with a Keck oil/water interface probe. Groundwater monitoring wells containing PSH were not sampled. The volume of water in each monitoring well was calculated, and a minimum of three well casing volumes of water was purged from each well using a dedicated polyvinyl chloride (PVC) bailer. As water was removed from the monitoring well, pH, electric conductivity, and temperature were monitored. Monitoring wells were purged until these properties stabilized, indicating that the purge water was representative of aquifer conditions, or until the well was purged dry. Stabilization was defined as three consecutive stable readings for each water property (plus or minus (\pm) 0.4 units for pH, \pm 10 percent for electric conductivity, and \pm 2 degrees (°) Celsius for temperature). Purge water was containerized and disposed of on site. Copies of the field notes are presented in Appendix A.

Once each monitoring well was purged, groundwater samples were collected by filling three 40-milliliter (ml) glass vials. The laboratory-supplied vials were filled and capped with no air inside to prevent degradation of the sample. Samples were labeled with the date and time of collection, monitoring well name, project name, collector's name, and parameters to be analyzed. They were immediately sealed and packed on ice. The samples were transferred to Hall Environmental Analysis Laboratory (HEAL) for analysis of BTEX. Chain-of-custody forms, which are included in the laboratory analytical report in Appendix B, were completed documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used (if any), analyses required, and sampler's signature.

2.3 GROUNDWATER CONTOUR MAPS

LTE used existing top-of-casing well elevations and measured groundwater elevations to draft groundwater contours and determine groundwater flow direction for the March, June, September, and December 2014 quarterly monitoring events (Figures 2 through 5). Contours were inferred based on groundwater elevations obtained and observations of physical characteristics at the Site (topography, proximity to irrigation ditches, etc.).

2.4 PSH RECOVERY

Oil absorbent socks were used to passively recover PSH in groundwater monitoring well MW-6. Oil absorbent socks were removed from monitoring well MW-6 at least seven days prior to sampling to allow groundwater to equilibrate. LTE estimated the volume of recovered PSH in the socks based on percent saturation observed in the socks. Once the oil absorbent socks were removed, LTE manually bailed as much PSH from the monitoring well as possible. The PSH was disposed of on site. After sampling, new oil absorbent socks were installed. An oil absorbent sock was added to MW-5 in December 2014 when LTE visually observed a thin layer (less than 0.01 feet) of PSH in a sampling bailer that was undetected by the oil water interface probe.

3.0 RESULTS

Depth to groundwater and depth to PSH measured during the 2014 quarterly monitoring events are summarized in Table 1. Groundwater flow direction was determined to be consistently to the northwest at the Site (Figures 2 through 5).

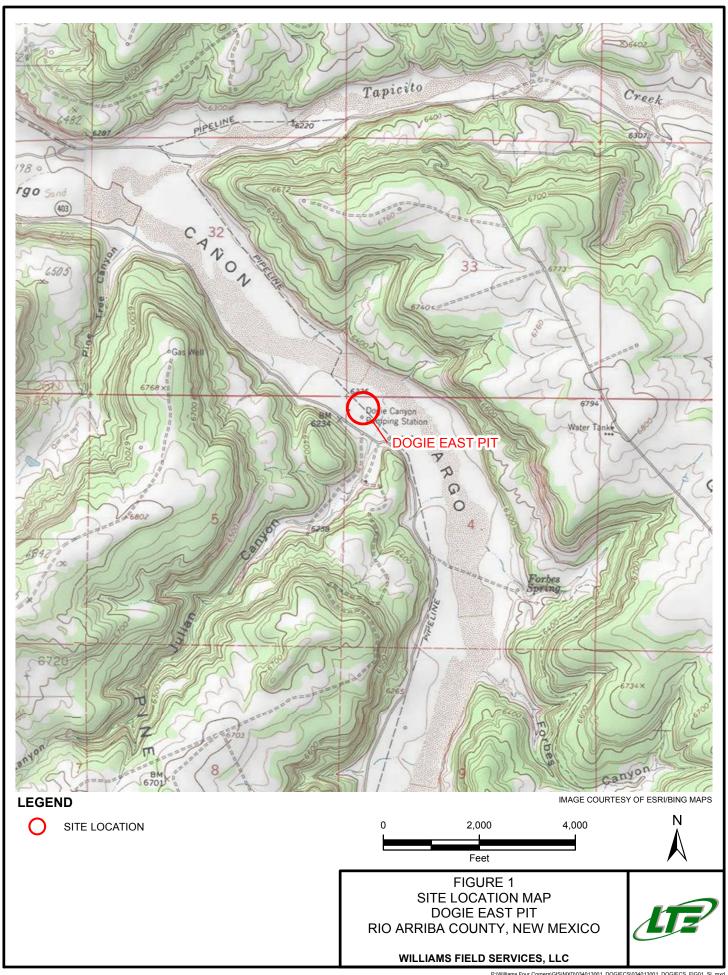
In 2014, laboratory analytical results indicated BTEX concentrations in downgradient groundwater monitoring wells MW-10, MW-11, and MW-13 were compliant with the NMWQCC groundwater standards. Laboratory analytical results indicated concentrations of total xylenes in groundwater monitoring well MW-3 exceeded the NMWQCC groundwater standards during all four 2014 quarterly sampling events. Laboratory analytical results indicated BTEX concentrations in groundwater monitoring well MW-5 were compliant with the NMWQCC groundwater standards in samples collected in March and September. In June 2014, a benzene concentration of 12 micrograms per liter (μ g/L) in monitoring well MW-5 exceeded the NMWQCC groundwater standard of 10 μ g/L and PSH was observed in monitoring well MW-5 in December 2014.

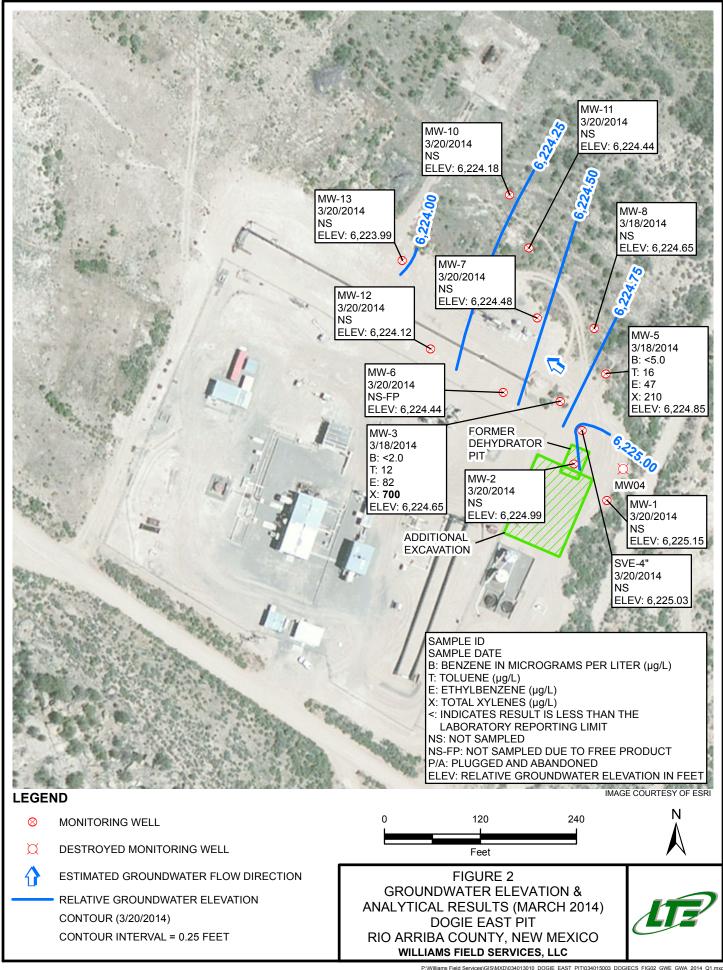
Groundwater monitoring well MW-6 contained measurable PSH during the March, June, and December 2014 sampling events. Measurable PSH ranged in thickness from less than 0.01 feet to 0.03 feet in monitoring well MW-6. In September no measureable PSH was observed and a groundwater sample was collected. Dissolved phase BTEX concentrations exceeded NMWQCC groundwater standards in monitoring well MW-6.

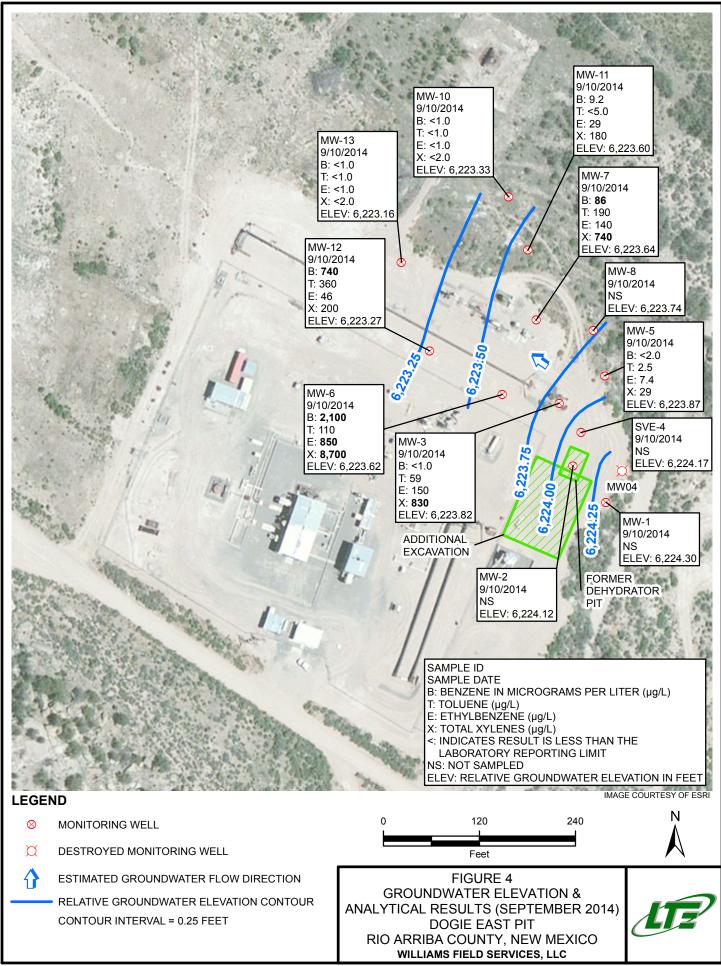
Approximately 0.15 ounces of PSH were removed from monitoring well MW-5 and approximately 66.75 ounces of PSH were removed from monitoring well MW-6 through passive oil absorbent socks and manual recovery.

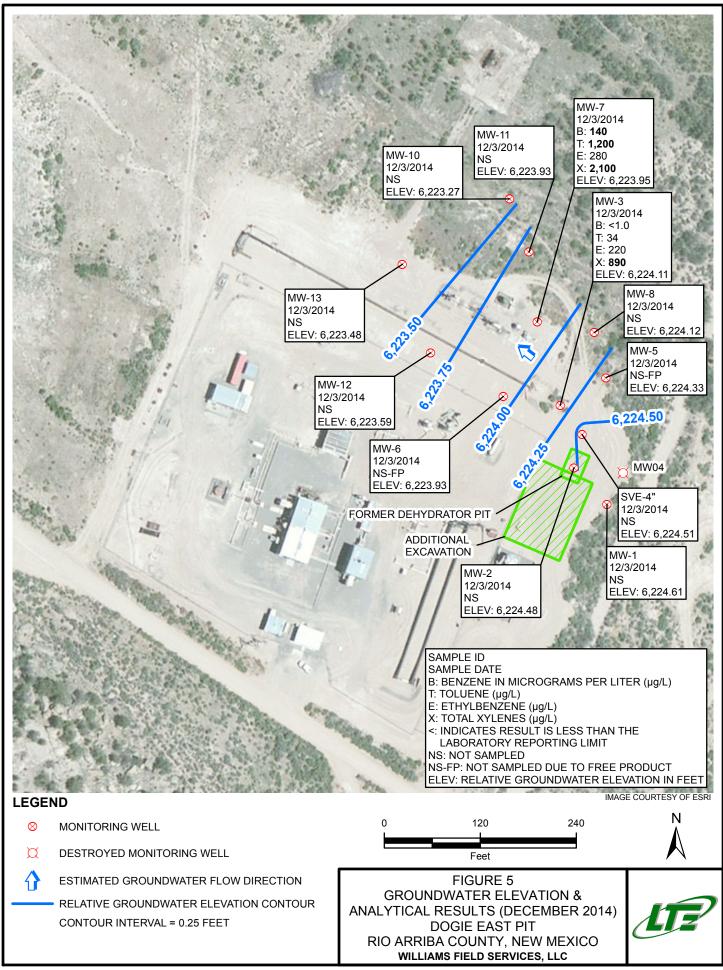
4.0 CONCLUSIONS

Impact to groundwater in the original source area at monitoring well MW-2 appears to have either attenuated or migrated as BTEX concentrations have been below the laboratory reporting detection limits since January 2012. The current source appears to be near monitoring well MW-6, which contained PSH during three 2014 monitoring events. Adjacent monitoring well MW-5 contained PSH in December 2014. Dissolved phase BTEX was observed downgradient in monitoring wells MW-7 and MW-12 and slightly upgradient in MW-3; however, the dissolved phase BTEX is delineated by downgradient wells MW-10, MW-12, and MW-13 which do not contain BTEX concentrations exceeding the NMWQCC standards.


5.0 RECOMMENDATIONS


Williams will continue monitoring groundwater elevations and the presence of PSH in all groundwater monitoring wells quarterly. Williams will collect annual groundwater samples for BTEX analysis from groundwater monitoring wells MW-3, MW-5, MW-7, MW-10, MW-11, MW-12, and MW-13. Williams will use oil absorbent socks and manual bailing to recover PSH from groundwater monitoring wells MW-5 and MW-6, quarterly. If PSH is not present, the monitoring wells will be sampled for BTEX analysis annually.


FIGURES



GROUNDWATER ELEVATION SUMMARY DOGIE EAST PIT WILLIAMS FIELD SERVICES, LLC

Well ID	Date	Top of Casing Elevation (feet)	Depth to Groundwater (feet BTOC)	Depth to Product (feet BTOC)	Product Thickness (feet)	Adjusted Groundwater Elevation (feet AMSL)
MW-1	4/6/2012	6,253.79	UNK	UNK	UNK	UNK
MW-1	6/12/2012	6,253.79	UNK	UNK	UNK	UNK
MW-1	9/27/2012	6,253.79	UNK	UNK	UNK	UNK
MW-1	12/7/2012	6,253.79	UNK	UNK	UNK	UNK
MW-1	3/6/2013	6,253.79	15.45	NP	NP	6,238.34
MW-1*	6/25/2013	6,239.41	15.64	NP	NP	6,223.77
MW-1	9/24/2013	6,239.41	14.88	NP	NP	6,224.53
MW-1	12/5/2013	6,239.41	14.63	NP	NP	6,224.78
MW-1	3/20/2014	6,239.41	14.26	NP	NP	6,225.15
MW-1	6/16/2014	6,239.41	15.01	NP	NP	6,224.40
MW-1	9/10/2014	6,239.41	15.11	NP	NP	6,224.30
MW-1	12/3/2014	6,239.41	14.80	NP	NP	6,224.61
MW-2	4/6/2012	6,253.92	UNK	UNK	UNK	UNK
MW-2	6/12/2012	6,253.92	UNK	UNK	UNK	UNK
MW-2	9/27/2012	6,253.92	UNK	UNK	UNK	UNK
MW-2	12/7/2012	6,253.92	UNK	UNK	UNK	UNK
MW-2	3/6/2013	6,253.92	15.50	NP	NP	6,238.42
MW-2*	6/25/2013	6,239.57	15.93	NP	NP	6,223.64
MW-2	9/24/2013	6,239.57	15.54	NP	NP	6,224.03
MW-2	12/5/2013	6,239.57	14.90	NP	NP	6,224.67
MW-2	3/20/2014	6,239.57	14.58	NP	NP	6,224.99
MW-2	6/16/2014	6,239.57	15.33	NP	NP	6,224.24
MW-2	9/10/2014	6,239.57	15.45	NP	NP	6,224.12
MW-2	12/3/2014	6,239.57	15.09	NP	NP	6,224.48
IVI VV Z	12/3/2014	0,237.31	13.07	111	111	0,224.40
MW-3	4/6/2012	6,253.35	UNK	UNK	UNK	UNK
MW-3	6/12/2012	6,253.35	UNK	UNK	UNK	UNK
MW-3	9/27/2012	6,253.35	UNK	UNK	UNK	UNK
MW-3	12/7/2012	6,253.35	UNK	UNK	UNK	UNK
MW-3	3/6/2013	6,253.35	15.40	NP	NP	6,237.95
MW-3*	6/25/2013	6,238.61	15.25	NP	NP	6,223.36
MW-3	9/24/2013	6,238.61	15.05	NP	NP	6,223.56
MW-3	12/5/2013	6,238.61	14.29	NP	NP	6,224.32
MW-3	3/20/2014	6,238.61	13.96	NP	NP	6,224.65
MW-3	6/16/2014	6,238.61	14.67	NP	NP	6,223.94
MW-3	9/10/2014	6,238.61	14.79	NP	NP	6,223.82
MW-3	12/3/2014	6,238.61	14.50	NP	NP	6,224.11
MW-4	4/6/2012	UNK	UNK	UNK	UNK	UNK
MW-4	6/12/2012	UNK	UNK	UNK	UNK	UNK
MW-4	9/27/2012	UNK	UNK	UNK	UNK	UNK
MW-4	12/7/2012	UNK	UNK	UNK	UNK	UNK
MW-4	3/6/2013	DEST	DEST	DEST	DEST	DEST
MW-5	4/6/2012	6,252.71	UNK	UNK	UNK	UNK
MW-5	6/12/2012	6,252.71	UNK	UNK	UNK	UNK
MW-5	9/27/2012	6,252.71	UNK	UNK	UNK	UNK
MW-5	12/7/2012	6,252.71	UNK	UNK	UNK	UNK
MW-5	3/6/2013	6,252.71	14.60	NP	NP	6,238.11
MW-5*	6/25/2013	6,238.48	14.96	NP	NP	6,223.52
MW-5	9/24/2013	6,238.48	14.35	NP	NP	6,224.13
MW-5	12/5/2013	6,238.48	13.94	NP NP	NP	6,224.54
MW-5	3/20/2014	6,238.48	13.63	NP	NP	6,224.85
MW-5	6/16/2014	6,238.48	14.39	NP	NP	6,224.09
171 17 3	0/10/2014	0,230.70	11.37	1 11	111	0,227.07

GROUNDWATER ELEVATION SUMMARY DOGIE EAST PIT WILLIAMS FIELD SERVICES, LLC

Well ID	Date	Top of Casing Elevation (feet)	Depth to Groundwater (feet BTOC)	Depth to Product (feet BTOC)	Product Thickness (feet)	Adjusted Groundwater Elevation (feet AMSL)
MW-5	9/10/2014	6,238.48	14.61	NP	NP	6,223.87
MW-5	12/3/2014	6,238.48	14.15	14.15†	< 0.01	6,224.33
MW-6	4/6/2012	6,254.09	UNK	UNK	UNK	UNK
MW-6	6/12/2012	6,254.09	UNK	UNK	UNK	UNK
MW-6	9/27/2012	6,254.09	UNK	UNK	UNK	UNK
MW-6	12/7/2012	6,254.09	UNK	UNK	UNK	UNK
MW-6	3/6/2013	6,254.09	16.68	15.95	0.73	6,237.99
MW-6*	6/25/2013	6,240.01	17.51	16.67	0.84	6,223.17
MW-6	9/24/2013	6,240.01	16.88	16.03	0.85	6,223.81
MW-6	12/5/2013	6,240.01	16.18	15.80	0.38	6,224.13
MW-6	3/20/2014	6,240.01	15.59	15.56	0.03	6,224.44
MW-6	6/16/2014	6,240.01	16.30	16.28	0.02	6,223.73
MW-6	9/10/2014	6,240.01	16.39	NP	NP	6,223.62
MW-6	12/3/2014	6,240.01	16.08	16.07	0.01	6,223.93
MW-7	4/6/2012	6,250.65	UNK	UNK	UNK	UNK
MW-7	6/12/2012	6,250.65	UNK	UNK	UNK	UNK
MW-7	9/27/2012	6,250.65	UNK	UNK	UNK	UNK
MW-7	12/7/2012	6,250.65	UNK	UNK	UNK	UNK
MW-7	3/6/2013	6,250.65	12.61	NP	NP	6,238.04
MW-7*	6/25/2013	6,236.53	13.40	NP	NP	6,223.13
MW-7	9/24/2013	6,236.53	12.71	12.67	0.04	6,223.85
MW-7	12/5/2013	6,236.53	12.34	NP	NP	6,224.19
MW-7	3/20/2014	6,236.53	12.05	NP	NP	6,224.48
MW-7	6/16/2014	6,236.53	12.84	NP	NP	6,223.69
MW-7	9/10/2014	6,236.53	12.89	NP	NP	6,223.64
MW-7	12/3/2014	6,236.53	12.58	NP	NP	6,223.95
MW-8	4/6/2012	6,249.10	UNK	UNK	UNK	UNK
MW-8	6/12/2012	6,249.10	UNK	UNK	UNK	UNK
MW-8	9/27/2012	6,249.10	UNK	UNK	UNK	UNK
MW-8	12/7/2012	6,249.10	UNK	UNK	UNK	UNK
MW-8	3/6/2013	6,249.10	11.88	NP	NP	6,237.22
MW-8*	6/25/2013	6,235.85	12.55	NP	NP	6,223.30
MW-8	9/24/2013	6,235.85	11.84	NP	NP	6,224.01
MW-8	12/5/2013	6,235.85	11.52	NP	NP	6,224.33
MW-8	3/18/2014	6,235.85	11.20	NP	NP	6,224.65
MW-8	6/16/2014	6,235.85	12.04	NP	NP	6,223.81
MW-8	9/10/2014	6,235.85	12.11	NP	NP	6,223.74
MW-8	12/3/2014	6,235.85	11.73	NP	NP	6,224.12
	1	_				•
MW-9	4/6/2012	6,243.67	UNK	UNK	UNK	UNK
MW-9	6/12/2012	6,243.67	UNK	UNK	UNK	UNK
MW-9	9/27/2012	6,243.67	UNK	UNK	UNK	UNK
MW-9	12/7/2012	6,243.67	UNK	UNK	UNK	UNK
MW-9	3/6/2013	6,243.67	8.01	NP	NP	6,235.66
MW-9*	6/25/2013	6,229.03	8.67	NP	NP	6,220.36
MW-9	9/24/2013	6,229.03	NM	NM	NM	NM
MW-9	12/5/2013	P/A	P/A	P/A	P/A	P/A
SVE-4"	4/6/2012	6,253.41	UNK	UNK	UNK	UNK
SVE-4"	6/12/2012	6,253.41	UNK	UNK	UNK	UNK
SVE-4"	9/27/2012	6,253.41	UNK	UNK	UNK	UNK
SVE-4"	12/7/2012	6,253.41	UNK	UNK	UNK	UNK

GROUNDWATER ELEVATION SUMMARY DOGIE EAST PIT WILLIAMS FIELD SERVICES, LLC

Well ID	Date	Top of Casing Elevation (feet)	Depth to Groundwater (feet BTOC)	Depth to Product (feet BTOC)	Product Thickness (feet)	Adjusted Groundwater Elevation (feet AMSL)
SVE-4"	3/6/2013	6,253.41	15.14	NP	NP	6,238.27
SVE-4"*	6/25/2013	6,239.22	15.60	NP	NP	6,223.62
SVE-4"	9/24/2013	6,239.22	14.83	NP	NP	6,224.39
SVE-4"	12/5/2013	6,239.22	14.56	NP	NP	6,224.66
SVE-4"	3/20/2014	6,239.22	14.19	NP	NP	6,225.03
SVE-4"	6/16/2014	6,239.22	14.99	NP	NP	6,224.23
SVE-4"	9/10/2014	6,239.22	15.05	NP	NP	6,224.17
SVE-4"	12/3/2014	6,239.22	14.71	NP	NP	6,224.51
MW-10	12/5/2013	6,231.08	7.23	NP	NP	6,223.85
MW-10	3/20/2014	6,231.08	6.90	NP	NP	6,224.18
MW-10	6/16/2014	6,231.08	7.77	NP	NP	6,223.31
MW-10	9/10/2014	6,231.08	7.75	NP	NP	6,223.33
MW-10	12/3/2014	6,231.08	7.81	NP	NP	6,223.27
MW-11	12/5/2013	6,232.35	8.24	NP	NP	6,224.11
MW-11	3/20/2014	6,232.35	7.91	NP	NP	6,224.44
MW-11	6/16/2014	6,232.35	8.75	NP	NP	6,223.60
MW-11	9/10/2014	6,232.35	8.75	NP	NP	6,223.60
MW-11	12/3/2014	6,232.35	8.42	NP	NP	6,223.93
MW-12	12/5/2013	6,238.15	14.37	14.36	0.01	6,223.79
MW-12	3/20/2014	6,238.15	14.03	NP	NP	6,224.12
MW-12	6/16/2014	6,238.15	14.77	NP	NP	6,223.38
MW-12	9/10/2014	6,238.15	14.88	NP	NP	6,223.27
MW-12	12/3/2014	6,238.15	14.56	NP	NP	6,223.59
MW-13	12/5/2013	6,237.85	14.18	NP	NP	6,223.67
MW-13	3/20/2014	6,237.85	13.86	NP	NP	6,223.99
MW-13	6/16/2014	6,237.85	14.61	NP	NP	6,223.24
MW-13	9/10/2014	6,237.85	14.69	NP	NP	6,223.16
MW-13	12/3/2014	6,237.85	14.37	NP	NP	6,223.48

Notes:

Groundwater elevation calculation in wells with product: (Top of Casing Elevation - Depth to Water) + (Product

Thickness * 0.8)
AMSL - Above Mean Sea Level
BTOC - Below Top of Casing
DEST - well has been destroyed

NM- Not Monitored

NP - No Product

P/A- Plugged and Abandoned

UNK - data is not known

^{*} Top of casing elevation was resurveyed on 6/19/2013

[†] Oil-water interface probe did not detect phase separated hydrocarbons. LTE visually observed phase separated hydrocarbons using a bailer.

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC S	tandard (µg/L)	10	750	750	620
MW-1	6/4/1998	2.8	1.3	< 0.5	2.3
MW-1	8/11/1998	<2.5	6.3	< 0.5	<1.5
MW-1	12/9/1998	<1	<1	<1	<3
MW-1	2/10/1999	< 0.5	< 0.5	< 0.5	<1.5
MW-1	3/30/2010	NS	NS	NS	NS
MW-1	6/22/2010	NS	NS	NS	NS
MW-1	9/16/2010	NS	NS	NS	NS
MW-1	12/9/2010	<1.0	<1.0	<1.0	<3.0
MW-1	3/10/2011	NS	NS	NS	NS
MW-1	6/15/2011	NS	NS	NS	NS
MW-1	9/13/2011	NS	NS	NS	NS
MW-1	1/6/2012	NS	NS	NS	NS
MW-1	4/6/2012	NS	NS	NS	NS
MW-1	6/12/2012	NS	NS	NS	NS
MW-1	9/27/2012	NS	NS	NS	NS
MW-1	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-1	3/6/2013	<1.0	<1.0	<1.0	<2.0
) MY 2	C/4/1000	1.4	1	1.0	1.1
MW-2	6/4/1998	1.4	1	1.9	11
MW-2	8/11/1998	76	2.4	12	30
MW-2	12/9/1998	38	<1	10	4.5
MW-2	2/10/1999	30	<0.5	7.1	3.7
MW-2	4/27/1999	2.9	< 0.5	2.1	3
MW-2	9/21/1999	8.5	0.8	2.2	1.9
MW-2	11/16/1999	32	0.8	3.4	7
MW-2	2/15/2000	57	1.2	16	2.6
MW-2	5/10/2000	< 0.5	< 0.5	1	<1.5
MW-2	11/2/2000	16.8	<1	2.07	<1
MW-2	2/16/2001	2.97	6.91	<1	<1
MW-2	5/10/2001	3.76	4.46	<1	<1
MW-2	10/31/2001	5.9	<2.0	<2.0	<2.0
MW-2	9/23/2003	7.7	<2.0	<2.0	< 5.0
MW-2	12/17/2003	<2.0	<2.0	<2.0	< 5.0
MW-2	9/18/2004	7.1	<2.0	<2.0	< 5.0
MW-2	3/11/2005	4.6	<2.0	<2.0	< 5.0
MW-2	6/16/2005	<2.0	<2.0	<2.0	<5.0
MW-2	9/19/2005	2.2	<2.0	<2.0	< 5.0
MW-2	12/1/2005	< 2.0	< 2.0	< 2.0	< 5.0

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC St	tandard (µg/L)	10	750	750	620
MW-2	2/27/2006	<1.0	<1.0	<1.0	<3.0
MW-2	7/14/2006	<1.0	<1.0	<1.0	<3.0
MW-2	10/6/2006	1.7	<1.0	<1.0	<3.0
MW-2	12/12/2006	<1.0	<1.0	<1.0	<3.0
MW-2	3/30/2010	<1.0	<1.0	<1.0	<3.0
MW-2	6/22/2010	<1.0	<1.0	<1.0	<3.0
MW-2	9/16/2010	<1.0	<1.0	<1.0	<3.0
MW-2	12/9/2010	<1.0	<1.0	<1.0	<3.0
MW-2	3/10/2011	<1.0	<1.0	<1.0	<3.0
MW-2	6/15/2011	<1.0	<1.0	<1.0	<3.0
MW-2	9/13/2011	<1.0	<1.0	<1.0	<3.0
MW-2	1/6/2012	<1.0	<1.0	<1.0	<3.0
MW-2	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-2	6/12/2012	<1.0	<1.0	<1.0	<3.0
MW-2	9/27/2012	<1.0	<1.0	<1.0	<3.0
MW-2	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-2	3/6/2013	<1.0	<1.0	<1.0	<2.0
MW-3	6/4/1998	470	3,800	680	6,200
MW-3	8/11/1998	500	5,200	730	5,550
MW-3	12/9/1998	90	350	540	4,240
MW-3	2/10/1999	130	810	610	4,830
MW-3	4/27/1999	220	1,300	520	4,140
MW-3	9/21/1999	110	920	470	2,930
MW-3	11/16/1999	180	1,600	440	2,620
MW-3	2/15/2000	120	1,900	640	5,120
MW-3	5/10/2000	140	1,500	370	3,650
MW-3	11/3/2000	277	3,270	552	4,350
MW-3	2/16/2001	148	2,470	328	2,580
MW-3	5/10/2001	205	3,080	593	5,820
MW-3	9/23/2003	230	530	19	1,600
MW-3	12/17/2003	260	290	24	800
MW-3	9/18/2004	170	990	530	2,300
MW-3	12/7/2004	130	400	530	2,500
MW-3	3/11/2005	130	12	200	540
MW-3	6/16/2005	330	770	2,300	3,900
MW-3	9/19/2005	160	<1.0	470	1,500
MW-3	12/1/2005	106	270	1,140	3,260

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC St	tandard (µg/L)	10	750	750	620
MW-3	2/27/2006	36.3	21.1	234	1,010
MW-3	10/6/2006	1.5	<1.0	11	36
MW-3	12/12/2006	14.2	43.3	230	725
MW-3	3/30/2010	8.2	1.5	141	401
MW-3	6/22/2010	6.1	4.1	30.9	100
MW-3	9/16/2010	12.2	7	15.3	40
MW-3	12/9/2010	1	2.3	13.1	28.9
MW-3	3/10/2011	18.9	20.7	213	529
MW-3	6/15/2011	4.5	34.4	118	345
MW-3	9/13/2011	13.9	1.9	220	459
MW-3	1/6/2012	6.6	<2.0	148	333
MW-3	4/6/2012	5.0	98.3	4.4	255
MW-3	6/12/2012	4.8	122	13.4	344
MW-3	9/27/2012	11.7	248	12.0	867
MW-3	12/7/2012	11.4	403	16.4	1,250
MW-3	3/6/2013	< 5.0	6.1	21	88
MW-3	6/25/2013	4.7	64	120	460
MW-3	9/24/2013	< 5.0	< 5.0	30	82
MW-3	12/5/2013	< 5.0	< 5.0	42	170
MW-3	3/18/2014	<2.0	12	82	700
MW-3	6/16/2014	3.6	92	140	880
MW-3	9/10/2014	<1.0	59	150	830
MW-3	12/3/2014	<1.0	34	220	890
	1			T	1
MW-4	6/4/1998	3,400	3,600	110	910
MW-4	8/11/1998	320	1,600	60	680
MW-4	12/9/1998	7,400	12,000	130	3,260
MW-4	2/10/1999	2,700	4,400	120	1,360
MW-4	4/27/1999	5,100	6,200	130	1,600
MW-4	9/21/1999	3,200	3,800	130	1,340
MW-4	2/15/2000	320	540	26	314
MW-4	5/10/2000	4,300	2,300	130	1,270
MW-4	11/2/2000	257	332	19.0	196
MW-4	2/16/2001	54	17.8	1.01	19.8
MW-4	5/10/2001	2,660	2,130	34.6	792
MW-4	10/31/2001	210	420	10	260
MW-4	9/23/2003	23	6	130	59
MW-4	12/17/2003	<2.0	< 2.0	<2.0	5.1

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC S	tandard (µg/L)	10	750	750	620
MW-4	11/16/2004	3,200	1,100	<10	520
MW-4	9/18/2004	80	170	6.7	66
MW-4	3/11/2005	<2.0	2.8	<2.0	10
MW-4	6/16/2005	310	<100	130	550
MW-4	2/27/2006	16.7	11.2	5.1	70.3
MW-4	3/30/2010	NS	NS	NS	NS
MW-4	6/22/2010	NS	NS	NS	NS
MW-4	9/16/2010	NS	NS	NS	NS
MW-4	12/9/2010	NS	NS	NS	NS
MW-4	3/10/2011	NS	NS	NS	NS
MW-4	6/15/2011	NS	NS	NS	NS
MW-4	9/13/2011	NS	NS	NS	NS
MW-4	1/6/2012	NS	NS	NS	NS
MW-4	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-4	6/12/2012	DEST	DEST	DEST	DEST
MW-5	12/9/1998	<20	2,300	300	2,720
MW-5	2/10/1999	<5	860	150	1,170
MW-5	4/27/1999	<10	1,000	130	1,150
MW-5	9/21/1999	3.2	450	97	780
MW-5	11/16/1999	5.3	1,200	170	1,520
MW-5	2/15/2000	<5	280	56	462
MW-5	5/10/2000	5.8	1,400	220	1,860
MW-5	11/2/2000	30.9	92.2	37.3	225
MW-5	2/16/2001	39.4	210	83.0	509
MW-5	5/10/2001	<1	439	218	1,180
MW-5	10/31/2001	<1.0	16	44	110
MW-5	9/23/2003	2.2	4	17	10
MW-5	12/17/2003	<10	130	64	370
MW-5	9/18/2004	<10	51	48	250
MW-5	12/7/2004	<2.0	20	17	180
MW-5	3/11/2005	12	41	43	140
MW-5	6/16/2005	<100	180	270	1,000
MW-5	9/19/2005	<1.0	400	170	1,700
MW-5	12/1/2005	12.6	176	187	961
MW-5	2/27/2006	<1.0	23	78	346
MW-5	7/14/2006	< 5.0	52.3	110	403
MW-5	7/16/2006	<1.0	<1.0	11.4	79

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC St	tandard (µg/L)	10	750	750	620
MW-5	3/30/2010	<1.0	5.1	21.1	84.5
MW-5	6/22/2010	1.0	9.4	99.4	270
MW-5	9/16/2010	NS	NS	NS	NS
MW-5	12/9/2010	NS	NS	NS	NS
MW-5	3/10/2011	NS	NS	NS	NS
MW-5	6/15/2011	NS	NS	NS	NS
MW-5	9/13/2011	NS	NS	NS	NS
MW-5	1/6/2012	NS	NS	NS	NS
MW-5	4/6/2012	NS	NS	NS	NS
MW-5	6/12/2012	NS	NS	NS	NS
MW-5	9/27/2012	NS	NS	NS	NS
MW-5	12/7/2012	<1.0	14.2	1.3	49.7
MW-5	3/6/2013	< 5.0	< 5.0	77	290
MW-5	6/25/2013	21	28	71	270
MW-5	9/24/2013	< 5.0	9.1	44	210
MW-5	12/5/2013	< 5.0	11	44	170
MW-5	3/18/2014	< 5.0	16	47	210
MW-5	6/16/2014	12	34	110	460
MW-5	9/10/2014	<2.0	2.5	7.4	29
MW-5	12/3/2014	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	2/10/1999	29	<0.5	7	4.6
MW-6	9/21/1999	690	330	240	1,930
MW-6	11/16/1999	370	48	130	694
MW-6	2/15/2000	10	0.6	5.7	22.7
MW-6	5/10/2000	390	2.6	25	400.0
MW-6	11/3/2000	2,570	109	226	1,690
MW-6	2/16/2001	171	11.0	12.5	33.5
MW-6	5/10/2001	506	23.2	122	384
MW-6	10/31/2001	1,900	120	160	480
MW-6	12/12/2006	281	727	152	1,350
MW-6	3/30/2010	1,160	46.1	487	2,530
MW-6	6/22/2010	3,430	102	460	3,410
MW-6	9/16/2010	2,940	144	370	2,760
MW-6	12/9/2010	2,580	<20	457	2,270
MW-6	3/10/2011	1,450	<20	369	1,800
MW-6	6/15/2011	726	<1	108	380
MW-6	9/13/2011	NS	NS	NS	NS

Well Name	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC S	tandard (µg/L)	10	750	750	620
MW-6	1/6/2012	NS	NS	NS	NS
MW-6	4/6/2012	NS	NS	NS	NS
MW-6	6/12/2012	NS	NS	NS	NS
MW-6	9/27/2012	NS	NS	NS	NS
MW-6	12/7/2012	NS	NS	NS	NS
MW-6	3/6/2013	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	6/25/2013	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	9/24/2013	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	12/5/2013	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	3/18/2014	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	6/16/2014	NS-FP	NS-FP	NS-FP	NS-FP
MW-6	9/10/2014	2,100	110	850	8,700
MW-6	12/3/2014	NS-FP	NS-FP	NS-FP	NS-FP
MW-7	9/21/1999	280	1,200	78	700
MW-7	11/16/1999	270	380	37	261
MW-7	2/15/2000	64	18	10	24.4
MW-7	5/10/2000	95	26	12	50.4
MW-7	11/3/2000	2.62	<1	<1	<1
MW-7	2/22/2001	13.0	1.16	1.40	2.97
MW-7	5/10/2001	23.4	<1	2.63	3.74
MW-7	10/31/2001	6.2	<2.0	<2.0	<2.0
MW-7	9/23/2003	5.4	<2.0	<2.0	< 5.0
MW-7	12/17/2003	28	<2.0	<2.0	< 5.0
MW-7	9/18/2004	100	18	6.1	29
MW-7	12/7/2004	35	11	<2.0	7.3
MW-7	3/11/2005	40	<2.0	<2.0	< 5.0
MW-7	6/16/2005	27	<2.0	<2.0	< 5.0
MW-7	9/19/2005	110	21	9.0	43
MW-7	12/1/2005	22.6	<2.0	<2.0	< 5.0
MW-7	2/27/2006	55.2	<1.0	<1.0	<3.0
MW-7	7/14/2006	<1.0	<1.0	<1.0	<3.0
MW-7	10/6/2006	460	< 5.0	8.3	<15.0
MW-7	12/12/2006	202	<1.0	1.3	<3.0
MW-7	3/30/2010	137	<1.0	<1.0	<3.0
MW-7	6/22/2010	131	<1.0	<1.0	<3.0
MW-7	9/16/2010	47.7	<1.0	<1.0	<3.0
MW-7	12/9/2010	20.9	<1.0	<1.0	<3.0

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
NMWQCC S	tandard (µg/L)	10	750	750	620
MW-7	3/10/2011	73.7	<1.0	<1.0	<3.0
MW-7	6/15/2011	72.6	<1.0	<1.0	<3.0
MW-7	9/13/2011	13	<1.0	<1.0	<3.0
MW-7	1/6/2012	27.7	2.2	<1.0	<3.0
MW-7	4/6/2012	88.8	3.7	<1.0	4.4
MW-7	6/12/2012	22.0	<1.0	4.1	<3.0
MW-7	9/27/2012	37.7	2.5	21.0	11.8
MW-7	12/7/2012	64.0	3.4	12.6	18.2
MW-7	3/6/2013	110	770	67	1,200
MW-7	6/25/2013	95	180	28	510
MW-7	9/24/2013	NS-FP	NS-FP	NS-FP	NS-FP
MW-7	12/5/2013	170	730	300	2,300
MW-7	9/10/2014	86	190	140	740
MW-8	9/21/1999	0.5	1	0.8	<1.5
MW-8	2/15/2000	0.6	1.4	0.6	<1.5
MW-8	5/10/2000	< 0.5	0.6	< 0.5	<1.5
MW-8	11/2/2000	<1	<1	<1	<1
MW-8	11/16/2004	< 0.5	0.6	0.5	<1.5
MW-8	2/16/2001	<1	<1	<1	<1
MW-8	5/10/2001	<1	<1	<1	<1
MW-8	10/31/2001	<1.0	< 2.0	<2.0	< 2.0
MW-8	9/23/2003	<2.0	< 2.0	<2.0	< 5.0
MW-8	12/17/2003	<2.0	< 2.0	<2.0	< 5.0
MW-8	9/18/2004	<2.0	< 2.0	<2.0	< 5.0
MW-8	12/7/2004	<2.0	< 2.0	<2.0	< 5.0
MW-8	3/11/2005	<2.0	< 2.0	<2.0	< 5.0
MW-8	6/16/2005	<2.0	< 2.0	<2.0	< 5.0
MW-8	9/19/2005	<2.0	< 2.0	<2.0	< 5.0
MW-8	12/1/2005	<2.0	< 2.0	<2.0	< 5.0
MW-8	2/27/2006	<1.0	<1.0	<1.0	<3.0
MW-8	7/14/2006	<1.0	<1.0	<1.0	<3.0
MW-8	3/30/2010	NS	NS	NS	NS
MW-8	6/22/2010	NS	NS	NS	NS
MW-8	9/16/2010	NS	NS	NS	NS
MW-8	12/9/2010	NS	NS	NS	NS
MW-8	3/10/2011	NS	NS	NS	NS
MW-8	6/15/2011	NS	NS	NS	NS

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC S	tandard (µg/L)	10	750	750	620
MW-8	9/13/2011	NS	NS	NS	NS
MW-8	1/6/2012	NS	NS	NS	NS
MW-8	4/6/2012	NS	NS	NS	NS
MW-8	6/12/2012	NS	NS	NS	NS
MW-8	9/27/2012	NS	NS	NS	NS
MW-8	12/7/2012	NS	NS	NS	NS
MW-8	3/6/2013	<2.0	<2.0	<2.0	<4.0
MW-8	6/25/2013	<2.0	<2.0	< 2.0	<4.0
MW-9	9/21/1999	3.7	550	110	920
MW-9	2/15/2000	0.5	1.4	0.6	<1.3
MW-9	5/10/2000	< 0.5	1.2	< 0.5	<1.5
MW-9	9/23/2003	<2.0	< 2.0	<2.0	< 5.0
MW-9	12/17/2003	<2.0	< 2.0	<2.0	< 5.0
MW-9	6/16/2005	<2.0	< 2.0	<2.0	< 5.0
MW-9	7/14/2006	<1.0	<1.0	<1.0	<3.0
MW-9	12/12/2006	<1.0	<1.0	<1.0	<3.0
MW-9	3/30/2010	<1.0	<1.0	<1.0	<3.0
MW-9	6/22/2010	<1.0	<1.0	<1.0	<3.0
MW-9	9/16/2010	<1.0	<1.0	<1.0	<3.0
MW-9	12/9/2010	<1.0	<1.0	<1.0	<3.0
MW-9	3/10/2011	<1.0	<1.0	<1.0	<3.0
MW-9	6/15/2011	<1.0	<1.0	<1.0	<3.0
MW-9	9/13/2011	<1.0	<1.0	<1.0	<3.0
MW-9	1/6/2012	<1.0	<1.0	<1.0	<3.0
MW-9	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-9	6/12/2012	<1.0	<1.0	<1.0	<3.0
MW-9	9/27/2012	<1.0	<1.0	<1.0	<3.0
MW-9	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-9	3/6/2013	<2.0	<2.0	<2.0	<4.0
·	_			_	
SVE-4"	9/23/2003	<2.0	<2.0	<2.0	<5.0
SVE-4"	12/17/2003	<2.0	<2.0	<2.0	< 5.0
SVE-4"	9/18/2004	<2.0	<2.0	<2.0	< 5.0

GROUNDWATER LABORATORY ANALYTICAL RESULTS DOGIE EAST PIT WILLIAMS FIELD SERVICES, LLC

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
NMWQCC St	tandard (µg/L)	10	750	750	620
SVE-4"	12/7/2004	<2.0	<2.0	<2.0	< 5.0
SVE-4"	3/11/2005	<2.0	<2.0	<2.0	< 5.0
SVE-4"	6/16/2005	5.6	<2.0	<2.0	< 5.0
SVE-4"	9/19/2005	<2.0	<2.0	<2.0	< 5.0
SVE-4"	12/1/2005	<2.0	2.8	<2.0	< 5.0
SVE-4"	3/30/2010	NS	NS	NS	NS
SVE-4"	6/22/2010	NS	NS	NS	NS
SVE-4"	9/16/2010	<1.0	<1.0	<1.0	<3.0
SVE-4"	12/9/2010	<1.0	<1.0	<1.0	<3.0
SVE-4"	3/10/2011	<1.0	<1.0	<1.0	<3.0
SVE-4"	6/15/2011	<1.0	<1.0	<1.0	<3.0
SVE-4"	9/13/2011	<1.0	<1.0	<1.0	<3.0
SVE-4"	1/6/2012	<1.0	<1.0	<1.0	<3.0
SVE-4"	4/6/2012	NS	NS	NS	NS
SVE-4"	6/12/2012	<1.0	<1.0	<1.0	<3.0
SVE-4"	9/27/2012	<1.0	<1.0	<1.0	<3.0
SVE-4"	12/7/2012	NS	NS	NS	NS
SVE-4"	3/6/2013	<1.0	<1.0	<1.0	<2.0
MW-10	12/5/2013	<5.0	<5.0	<5.0	<10
MW-10	9/10/2014	<1.0	<1.0	<1.0	<2.0
IVI VV - I U	9/10/2014	<1.0	<1.0	<1.0	<2.0
MW-11	12/5/2013	510	32	570	2,400
MW-11	9/10/2014	9.2	< 5.0	29	180
			T	1	·
MW-12	12/5/2013	NS-FP	NS-FP	NS-FP	NS-FP
MW-12	9/10/2014	740	360	46	200
MW-13	12/5/2013	<1.0	<1.0	<1.0	<2.0
MW-13	9/10/2014	<1.0	<1.0	<1.0	<2.0

Notes:

Bold - indicates sample exceeds NMWQCC standard

< - indicates result is less than laboratory reporting detection limit

μg/L - micrograms per liter

DEST - well has been destroyed

NS - not sampled

NS-FP - not sampled due to the presence of free phase hydrocarbons in the well

APPENDIX A 2014 QUARTERLY FIELD FORMS

		`	<u>Water So</u>	mple Colle	ection Form	!
Sample Loc	ation	Dogie			Client	Williams Field Services
Sample Dat		3/18/2014		F	Project Name	San Juan Basin Remediation
Sample Tim		1150		•	Project #	034013010
Sample ID		MW-3			Sampler	Daniel Newman
Analyses		BTEX 8021		•		
Matrix		Groundwat	er		Laboratory	Hall Environmental
Turn Aroun	d Time	Standard		Ship	ping Method	Hand delivery
Depth to W	/ater	14.03		•	TD of Well	19.79
Time		1120		Dept	th to Product	N/A
Vol. of H2O	to purge	19.79-10	103=5,76	x0.1631	=0,939 x3	= 2.8 \ or 0.6524 for 4" well) * 3 well vols
8 d . i.l l £	D		oj water cor	umm · 0.163	1 JUI 2 WEII	0,0324 JOI 4 WEILY 3 WEIL VOIS
Method of		PVC Bailer			-	
Method of	sampling	PVC Bailer				
	Vol.	Total Vol				
	Removed	H2O removed	рН	Temp.	Conductivity	
Time	(gal.)	(gal.)	(std. units)	(ØF	(us or ms)	Comments
1130	025	025	7 22	50,4	4,58	Sight HCodor, Black Sed Cladys
	0,25	0,50	7.16	51.1	444	No change
	0,25	.75	6.98	SUL	4,37	to change
-	Oas	1.00	7.11	51.3	4.12	NO Change
	0.25	1,25	708	50,9	4,15	NO Change
	025	1,50	720	51.3	4.07	NO Change
	025	1.75	7.18	511	3,96	Slight He ode Black sed (lady sheen
	025	2.00	7.17	513	3,8	No change
	<u>Gas</u>	2,25	naà	51.6	3,78	No Change
	0,25	2.50	7,20	51,4	3.79	NO change
	025	2,75	7,19	51.3	3,70	NO change
1150	OAS	3,00	7,23	51.a	3.75	NO change
\$q. 2						
	<u> </u>					. V. 4
	. 50 01.	1 0	150			
~	: Sample	$\overline{}$	· i	60)	Jon alevano	d 40 pit
-tomb	, brudeg	- HbO	on Sine	20)	Doduce	d Hy() Pic
			<u></u>		<u> </u>	_
		Sm CODe	٠ . ٨	11/4		
Describe D	eviations fro	JIII 30.F		7/5		
Describe D	eviations fro	JIII 307		775		

		_ 	<u>Water Sc</u>	imple Coll	ection Fo <u>rm</u>	1	1	
Sample Location Dogie					Client Williams Field Services			
Sample Dat	te	3/18/2014			Project Name San Juan Basin Remediation			
Sample Tim	ne	1830)		-	Project #	034013010		
Sample ID		MW-5		•	Sampler	Daniel Newman		
Analyses		BTEX 8021						
Matrix		Groundwat	er		Laboratory	Hall Environmental		
Turn Aroun	d Time	Standard		`Ship	ping Method	Hand delivery		
Depth to W	/ater	13.63		- -	TD of Well	18.15		
Time		1230			th to Product			
Vol. of H2O	to purge	18,15-13	2,4523,6	3 x0,163	1=0,737	रार १३०१२।		
	0					or 0.6524 for 4" well) * 3 well vols		
Method of	Purging	PVC Bailer						
Method of	Sampling	PVC Bailer						
	· ·	Total Vol	···					
	Vol.	H2O						
	Removed	removed	pН	Temp.	Conductivity		20/	
Time	(gal.)	(gal.)	(std. units)	(x)F	(us or (ms))	Comments	DDF.	
1830	0,72	025	J.75	50,7	4.0	Black, sediment, Clady	1823	
	032	USO	7.30	502	39	NO CHONGE		
•••	0x92	0.75	1,40	502	400	Black, Sediment, clady Stight HL		
	<u>DAS</u>	1,00	1,44	200	400	in chande	204	
	0.92	1192	6.74	803	4.08	No change		
	025	1.50		200	4.16	NO Change		
	0:92	1,25	720	50,4	4.11	40 change	205	
	(D).92	8'CC	731	50,4	405	NO Change	200	
1250	():35	332	732	30,4	4.10	NO change	200	
.;								
Comments	: Sam	2000) (25C	.)				
Comments	- UNIV	The Co	1/10/2					
-57	<u> </u>	i il a	(a) D=	ducad	water	Pot on sike	1	
<u> Um</u>	3 Ando	d Hg()	@ <u>ho</u>	duced	or core k	Pit on sibe		
			1//.					
Describe De	eviations fro	om SOP:	N/A					
 		/			_			
Signature	. 1	_///			Date:	5/10/14		
Jigilatui C		1///					1	

Sample Location Sample Date Sample Time Sample ID Sample			·	Water Sc	ample Coll	ection Forn	2			
Sample Date Sample Time ISUS Sample ID	Sample Lo	cation	Dogit	CS	Client	Williams Field Services				
Sample Time Sandard Shipping Method Sampling Sample Time Sandard Shipping Method Sampling Sample Time Sandard Shipping Method of Purging Method of Purging Method of Sampling PVC Baller			10	110/14	-					
## Analyses BTEX 8021 Groundwater Groundwater Standard Shipping Method Hand delivery Depth to Water 1515 Depth to Product N A Depth to Product N A			154	5	-	=				
Matrix Groundwater Standard Shipping Method Hand delivery To of Well 19.74	Sample ID		Mn	7-3	-			_		
Turn Around Time Depth to Water Time 1515 Depth to Product NA	Analyses		BTEX 8021					_		
14.47 TD of Well 19.49 NA	Matrix		Groundwa	ter	_	Laboratory	Hall Environmental	_		
Time 15 5 Depth to Product NA	Turn Arou	nd Time	Standard		Ship	ping Method	Hand delivery	-		
Vol. of H2O to purge S_1/2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Depth to V	Vater	14.1	<i>4</i> 7		TD of Well		-		
(height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Method of Purging Method of Sampling Vol. Removed (gal.)	Time		1519	<u> </u>	. Dep	th to Product	NA	-		
(height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols Method of Purging Method of Sampling Vol. Removed (gal.) Total Vol H20 (gal.) (ga	Vol. of H20) to purge	5.12	X .1631	= 0.83	35×3=	2.50	_		
Method of Sampling			(height	of water col	umn * 0.163	31 for 2" well	or 0.6524 for 4" well) * 3 well vols			
Vol. Total Vol H20 PH Temp. Conductivity (gal.) (gal.) (gal.) (std. units) (4F (us or ms)) Comments 15 5	Method of	Purging	PVC Bailer					-		
Vol. H20 Removed PH Temp. Conductivity (us or firs) Comments 15 5	Method of	Sampling	PVC Bailer					-		
Time Removed			Total Vol							
Time (gal.) (gal.) (std. units) (4F (us or fins)) Comments 1515 0.35 0.35 7.07 101.5 5.86 15(acx strong theodor 10.35 0.50 7.12 58.3 5.73 no charge 0.35 0.75 7.11 56 7.74 11 11 0.35 1.50 7.81 56.7 5.41 11 11 .35 1.75 7.31 56.7 5.10 11 .35 2.35 7.31 56.3 5.10 11 .35 2.35 7.31 56.3 4.98 .35 2.50 7.30 56.3 4.98 .35 2.50 7.30 56.3 4.98 .35 2.50 7.30 56.3 4.98 .35 2.50 7.30 56.3 4.98	-	1		11	Town	Conductivity				
1515 0.35 0.50 7.07 V1.5 5.80 Black Strong theodor 0.35 0.50 7.12 58.3 5.73 ho chean ge 0.35 0.73 7.11 60 7.574 0.35 1.00 7.12 50.5 5.41 11 11 50).30 7.31 50.3 5.19 11 11 .35 1.75 7.31 50.5 5.10 11 11 .35 2.35 7.21 50.3 4.98 .35 2.50 7.22 50.3 4.98 .35 2.50 7.23 50.3 4.98 .35 2.50 7.23 50.3 4.98	Time	i								
0.85 0.73 7.11 50. 75.74 11 11 11 11 11 11 11 11 11 11 11 11 11							Black Strong thodar	who		
0.85 0.73 7.11 50. 75.74 11 11 11 11 11 11 11 11 11 11 11 11 11							no change	Bug		
0.35 .60 7.10 56.5 5.41 11 11 11 15 50 7.31 56.7 5.41 11 11 11 11 12 13 13 1			0.45	7.11	•		• • • • • • • • • • • • • • • • • • • •			
50 50 731 563 5 19 1 11 11 12 13 14 14 14 14 14 14 14		<u> </u>	 	7.12	56.5	5.41	ii ti]		
1.75 1.75 7.31 56.5 5.10 10 11 11 11 11 11 11		/3 (Par.)		_	567	5.19	11 (1]		
195 3-00 720 56.5 5.00 11 11 12 12 12 12 12		,25			565	5.10	10 01]		
35 2.35 7.21 56.3 4.98	1		 		56.5	ව ලට	te et			
Comments: Describe Deviations from SOP: NA		,25			56.3	4.98				
Comments: Describe Deviations from SOP: NA		125		7.22	56.3	4.98]]		
Comments: Describe Deviations from SOP: NA	1							41		
Describe Deviations from SOP: NA	/						* '			
Describe Deviations from SOP: NA								<u> </u>		
Describe Deviations from SOP: NA								11		
Describe Deviations from SOP: NA				·				11		
Describe Deviations from SOP: NA								.		
Describe Deviations from SOP: NA]		
Describe Deviations from SOP: NA	Comments:									
	<u> </u>			<u> </u>						
			<u> </u>							
		· · · · · · · · · · · · · · · · · · ·		··········				<u>. </u>		
	Describe De	viations fro	m SOP:	NIA	·			•		
Signature: Date: 0/10/14								-		
Signature: $4000000000000000000000000000000000000$			10			10	11. 101	•		
	Signature	157	15			Date: ψ	110/19	-		
112	The second secon	- 0	4	-			112			

	<u> </u>		·					
Water Sample Collection Form								
Sample Location Deate Compressor Sto Client Williams Field Services								
Sample Dat	-1/1			Project Name San Juan Basin Remediation				
Sample Tim		1,410	119 119			034013010		
Sample ID	. •	MW-	5	•	Sampler	Broke Herrs		
Analyses		BTEX 8021	_ 	•				
Matrix		Groundwat	er		Laboratory	Hall Environmental		
Turn Aroun	d Time	Standard		Ship	ping Method	Hand delivery		
Depth to W			39	•		18.15		
Time		1550		Dep	th to Product			
Vol. of H2O	to purge	3.76	x./103	71 = 0.	61 X 3	= \ . 8 3 or 0.6524 for 4" well) * 3 well vols		
0.0 - 4 b - al a £ l	Di.a		of water con	umm · 0.103	1 JUI Z WEII	5, 0.0324 joi 4 Well, 0 Well 1911		
Method of		PVC Bailer						
Method of	Sampling	PVC Bailer						
	Vol.	Total Vol						
•	Removed	H2O removed	рĦ	Temp.	Conductivity			
Time	(gal.)	(gal.)	(std. units)	BHOF	(us or mis)	Comments Minor Sint		
1550	0.35	0.95	7.55	58.1	5.08	Granish Clear Strong HCodor		
10.00	0.25	0.50	744	55.0	5.10	Slight freen more Silt		
	0.25	0.75	7.42	54-7	5.14	no change		
	0.25	1.00	7.41	54.0	5.21	ι, σ.,		
	0.25	1,25	7 310	54.9	5.17	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	0.25	1670	7.39	54.0	5.10	le et		
	0.25	1775	7.40	54.3	5. ti	it ti		
	0.25	2.00	7.39	54.5	5.12	tt ti		
			1.00					
			<u> </u>					
C		<u> </u>						
Comments:								
					<u> </u>			
			A 1/A					
Describe De	eviations fro	om SOP:	NA_		 			
	- 1	10	<u></u> ,,		·			
Signature	: 4	15			Date:	1/11/14		

LTZ

Water Sample Collection Form									
Sample Loca	ation	Dogie		Client Williams Field Services					
Sample Date		9/10/2014		Project Name San Juan Basin Remediation					
Sample Tim		1200		•	Project # 034013010				
Sample ID		MW-5		•	Sampler	Alex Crooks			
Analyses		BTEX 8021		•					
Matrix		Groundwat	er		Laboratory	Hall Environmental			
Turn Around	d Time	Standard		Ship	• •	Hand delivery			
Depth to W		14.61		•	TD of Well				
Time	G. C.	1142		Dept	th to Product				
	to nurgo		101 = 3,54			3-[1.73]			
Vol. of H2O	to purge	(height	of water coli	umn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols			
Method of I	Purging	PVC Bailer	oj water con	u 0.200		,			
Method of S		PVC Bailer							
- Wethou of S	Jamping								
	Vol.	Total Vol							
	Removed	H2O removed	pН	Temp.	Conductivity				
Time	(gal.)	(gal.)	(std. units)	jest.	(us or ms)	Comments			
1142	. 25	. 25	7.40	63.5	1.82	Slight Black, Cloudy, afor			
11.51	•75	1.00	7.43	100.3	2.02	' '			
1158	.75	1.75	7.41	61,7	1.98				
1200						Towesample			
				, "					
	<u> </u>	J	L	<u> </u>	<u> </u>				
Comments:									
			1/10						
Describe De	eviations fro	om SOP:	NIA						
		70	7			4			
	//	1/2-1		21	D - 4	9/1.			
Signature	:///	<u> </u>	Jack	<u>//</u>	Date:	-110/14			
			<u> </u>	· · · · · · · · · · · · · · · · · · ·		/f=)-			

Water Sample Collection Form									
Sample Location	Dogie		Client Williams Field Services						
Sample Date	9/10/2014		Project Name San Juan Basin Rem		San Juan Basin Remediation				
Sample Time	1570		•	Project#	034013010				
Sample ID	MW-6		•	Sampler	Alex Crooks				
Analyses	BTEX 8021								
Matrix	Groundwat	er		Laboratory	Hall Environmental				
Turn Around Time	Standard		. Ship		Hand delivery				
Depth to Water	16.39		<u>-</u>		22,60				
Time	1500			th to Product					
Vol. of H2O to purge	22.60-1	16.39 = 6.	21 X.10	031= 1.	01 43 = 304				
	(height	of water col	umn * 0.16.	31 for 2" well	or 0.6524 for 4" well) * 3 well vols				
Method of Purging	PVC Bailer								
Method of Sampling	PVC Bailer				·				
Vol.	Total Vol H2O	·							
Removed	removed	рН	Temp.	Conductivity					
Time (gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments				
1502 23	, 25	7-45	64.8	1,02	Clear, cloudy , Signt odo				
1505 - 75	1.00	7.40	62,2	1.42	ignificant, oloudy, 6 dox				
1508 .75	1-75	7.42	61.0	1.44	no engine				
1512 .75	2.50	7.43	59.8	140	No Charles				
1515 175	3.28	7.44	59.5	141	no change				
1570					TourSamples				
				 					
		<u> </u>							
		<u> </u>							
Comments: Olight	Sheen Se	en on Pu	ige water	- Did not	hear product from sounder				
Added Socie 10	Nell		<i>0</i>						
		. 1 (
Describe Deviations for	om SOP:	MA		<u> </u>					
	1	\							
Signature:	y de	mps		_ Date:	09/10/14				
	/	•							

Water Sample Collection Form										
Sample Loc	ation	Dogie			Client	Williams Field Services				
Sample Dat		9/10/2014		F		San Juan Basin Remediation				
Sample Tim		1240		•	=	034013010				
Sample ID		MW-7		•	Sampler	Alex Crooks				
Analyses		BTEX 8021		•						
Matrix		Groundwat	er		Laboratory	Hall Environmental				
Turn Aroun		Standard		Ship	ping Method	Hand delivery				
Depth to W	ater 🚜	JO: 12	.89	•	TD of Well	70.62				
Time	64	1215		· ·	th to Product					
Vol. of H2O	to purge	70.62-	12.89=	7.73 × .1	631=1-21	$0 \times 3 = 3.78$				
		(height	of water col	umn * 0.163	1 for 2" well	or 0.6524 for 4" well) * 3 well vols				
Method of	Purging	PVC Bailer								
Method of S	Sampling	PVC Bailer								
		Total Vol								
	Vol.	H2O	l	_						
T:	Removed	removed (gal.)	pH (std. units)	Temp.	Conductivity (us or ms	Comments				
/ 2 / S	(gal.) , 75	, 25	7.37	64.4	250	Clear, Slight cloud, Slight ador				
1223	. 75	1.00	7.39	1001	2.39	light Gray, Shight Clords, Odor				
1226	075	1.75	7.42	595	2.41	No change				
1230	• 7 <i>5</i>	2.50	7,43	58.8	2.45	No Change				
1234	* 75	3.25	7.42	59, Z	2.38	Nochange				
1237	± 75	4.00	7.45	58.3	2.43	NO Charage				
1240						7004 Sample				
:										
Comments:	Toou	Samo	e 6 12	240						
		O arripo								
			Λ							
Describe De	eviations from	sm SØP:	MA							
		/								
	/ 1	// /-				9/10/11				
Signature	:M	ly R	00 PLS		Date:	1/10/14				
		,	•	 		/fz)-				

Water Sample Collection Form										
Sample Loca	ation	Dogie			Client	Williams Field Services				
Sample Date		9/10/2014		,		San Juan Basin Remediation				
Sample Time		1400	<u></u> <u></u>		034013010					
Sample ID	C	MW-10			-	Alex Crooks				
Analyses		BTEX 8021			5 6 p					
Matrix		Groundwat	er		Laboratory	Hall Environmental				
	Turn Around Time Standard Shipping Method Hand delivery									
	Depth to Water 7, 75 TD of Well 14.95									
Time	atei	1325		Den	th to Product					
			7 7 (27	1		×3 = \$52				
Vol. of H2O	to purge	/haight	of water col	umn * 0.16	31 for 2" well	or 0.6524 for 4" well) * 3 well vols				
(height of water column * 0.1631 for 2" well or 0.6524 for 4" well) * 3 well vols										
Method of Purging PVC Bailer Method of Sampling PVC Bailer										
ivietnoa of S	ampling	PVC Bailer		***						
	Vol.	Total Vol								
	voi. Removed	H2O removed	рН	Temp.	Conductivity					
Time	(gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments				
1330	.25	25,000	7,47	71.1	2.15	Block, Cloudy, Ador				
1335	.75	1.00	7.61	47.3	2.08	No creances				
1339	.75	1.75	7.59	67,8	2,08	m Change				
1345	•75	2,50	7.60	67.5	2.10	No change				
1348	.75	3.25	7.61	68.1	2.89	No Charles				
1352	.50	3.75	7.58	67.9	2.11	No change				
1400						Toole Samdy				
<u> </u>										
		}				8x / / / 10				
	· · ·									
					†					
		<u>.</u>	L	<u></u>						
Comments:										
			1/							
Describe De	viations fro	om SOP:	NA							
	/	1	1/							
	///	11/	-hr		D-4	29/12/10C				
Signature	: (XX)	X (su	0701		_Date:	-1/10/19				
		, ,	•							

				<u>Water Sa</u>	imple Coll	ection Form	
Sample	e Loca	ition	Dogie			Client	Williams Field Services
Sample			9/10/2014		į	Project Name	San Juan Basin Remediation
Sample			1320		•	Project #	034013010
Sample			MW-11		•	Alex Crooks	
Analys			BTEX 8021		•		
Matrix			Groundwat	er		Laboratory	Hall Environmental
Turn A		d Time	Standard		Ship	ping Method	Hand delivery
Depth	to Wa	ater	8.75		•	TD of Well	15.30
Time			1255		Dep	th to Product	NB
	f ⊔2∩	to purge	15.30-8	7.75=6.			1 x 3 = 3.20]
VOI. UI	1 1120	to purge	(height	of water col	umn * 0.163	31 for 2" well	or 0.6524 for 4" well) * 3 well vols
Metho	nd of F	Purging	PVC Bailer	o,		,	•
		Sampling	PVC Bailer				
		Vol.	Total Vol H2O				
		Removed	removed	pH	Temp.	Conductivity	
Tin	ne	(gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments
129	55	. 25	125	7.44	67.8	ilel	light gray, clordy, odor
125	_	.75	1.00	7.62	6410	1.46	Brown, Cloudy I Strong Odor
130		. 75	1.75	7.74	63.7	1.45	No change
130		175	2.50	7.65	62.9	1.55	No Charles
131		.75	3.25	7.78	42.5	1.203	No Chahal
132							TOOK Sample
							<i>y</i>
	ř		:				
		· · · · · · · · · · · · · · · · · · ·					
						g e	ata ny ¹⁷
		1,000		i.			;
				,	<u> </u>		
Comm	nents:	•			·		
							<u></u>
				- 1 l			
Descri	ibe De	eviations fro	m SOP:	1117	<i>A</i>		
				1'/	<u>/</u>	· · · · · · · · · · · · · · · · · · ·	
Ciana		. / //	12/0/0	MI	,	Date:	9/10/14
Signa	iture	· (XX)	NX/JC	00/2		. Date.	
							TTZ -
				100		1 1	

Water Sample Collection Form										
Sample Loca	ation	Dogie			Client	Williams Field Services				
Sample Date		9/10/2014			Project Name	San Juan Basin Remediation				
Sample Tim		1455			Project #	034013010				
Sample ID		MW-12			Sampler	Alex Crooks				
Analyses		BTEX 8021				· · · · · · · · · · · · · · · · · · ·				
Matrix		Groundwat	er		Laboratory	Hall Environmental				
Turn Aroun	d Time	Standard		Ship	ping Method	Hand delivery				
Depth to W	ater	14.88			TD of Well	19.18				
Time		1435			th to Product					
Vol. of H2O	to purge	19.18-1	14.88 = 4	1,3 x .14	131 = .70	×3=/2.10				
	10 hav. 80	(height	of water col	umn * 0.16.	31 for 2" well	or 0.6524 for 4" well) * 3 well vols				
Method of Purging PVC Bailer										
Method of Sampling PVC Bailer PVC Bailer										
	1	Total Vol								
	Vol.	H2O								
	Removed	removed	pН	Temp.	Conductivity					
Time	(gal.)	(gal.)	(std. units)	(c)	(us or ms)	Comments				
1438	, 25	. 25	7.91	67.5	205	Black, Cloudy, ador				
1442	,50	-75	7,82	115,5	1.76	100 Chaplas				
1440	,50	1.25	7.78	64.7	1,74	NO Change				
1449	. 50	1.75	7.76	63.9	1,76	No Charles				
1453	50	2.25	7.78x	63.9	1,73	TOTAL CARRY				
1455	·					1000 Jampa				
		1								
		<u> </u>								
			L	<u></u>						
Comments:										
Describe De	eviations fro	om SOP:	NIA	7						
	1	1	2							
Signature	. ///	110/1	mb.		Date:	9/10/14				
Jigilatule		IX C	voj-c							

	Water Sample Collection Form										
Sample Loca	ation	Dogie			Client	Williams Field Services					
Sample Date		9/10/2014		P	Project Name	San Juan Basin Remediation					
Sample Tim		1425			Project #	034013010					
Sample ID		MW-13			Sampler	Alex Crooks					
Analyses		BTEX 8021									
Matrix		Groundwat	er		Laboratory	Hall Environmental					
Turn Around	d Time	Standard		Ship	ping Method	Hand delivery					
Depth to W	ater	14.69		•	TD of Well	18.64					
Time		1405			th to Product						
Vol. of H2O	to purge	18.104-1	1469=	3.95x .1	1631= 16	4 x3 = 1.93					
VOI. 01 1120	to baile	(height	of water col	umn * 0.163	1 for 2" well	or 0.6524 for 4" well) * 3 well vols					
Method of Purging PVC Bailer											
Method of Sampling PVC Bailer PVC Bailer											
	· · ·	Total Vol									
	Vol.	H2O				[.					
	Removed	removed	pН	Temp.	Conductivity	1					
Time	(gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments					
1408	.25	. 25	7.76	68.4	2-73	Clear, Cloudy, Slight odor					
1415	,75	1.00	7.77	64,0	2.71	No Change					
1417	.75		1.75 7.77 63,5 2.72 No Change								
1421	· 25	200	7.78	13.2	2.75	No Change					
1925						Took sample					
		ļ									
		<u> </u>			<u> </u>						
Comments	Hac	Ro pre.	Senion	51.00.							
	110	or proce	jul Vul	· · · ·							
			. 71	<u>,/</u>							
Describe De	aviations fo	om SOD.	- ////	+							
Describe De	eviations fr	oili auri	, 	/							
	///	/ //	-/.								
Signature	:(100	W Ol	WOL		_Date:	7/10/14					
						LIZ					

			water Sa	тріе сон	ection Form				
Sample Loca	ation	Dogie Comp	oressor Stati			Williams Field Services			
Sample Date		12/3/1			Project Name	San Juan Basin Remediation			
Sample Tim		910			Project # 034013010				
Sample ID		MW-3			Sampler	Daniel Newman			
Analyses		BTEX 8021							
Matrix		Groundwat	er		Laboratory	Hall Environmental			
Turn Around	d Time	Standard		Ship	ping Method				
Depth to W	ater	14,50			TD of Well	19,79			
Time		925 .		Dep	th to Product	NIA			
Vol. of H2O	to nurge		0:579	v (1163) 4	= 0.86283	2,58			
VOI. 01 1120	to baile	(height	of water col	umn * 0.163	31 for 2" well o	or 0.6524 for 4" well) * 3 well vols			
Method of	Purging	PVC Bailer	•						
Method of	• •	PVC Bailer							
***************************************	- F0	Total Vol	Υ						
	Vol.	H2O							
	Removed	removed	рН	Temp.	Conductivity				
Time	(gal.)	(gal.)	(std. units)	xc)f	(us or(ms))	Comments			
	025	025	7.83	57.6	2.46	Black sed strong edox Nishern			
	035	0.50	6,14	58.3	2.49	No change			
	025	0.75	6.38	<u> 58.8</u>	2.34	No change			
	0.25	1.00	6,39	59.0	3.30	No chang -			
	0.50	150	6,87	58.6	2.04	Nochange			
	0.50	2.00	G.98	58.3	1,96	No change			
· L	0,25	2,25	7.13	58.6	1,89	No change			
	025	2.50	7,12	28.6	1,90	No chang-			
	0.25	2.75	7.13	58 6	1,91	Po change			
Con.	<u> </u>	<u> </u>	<u> </u>		<u></u>				
			ļ						
					 				
		<u> </u>	ļ			1 1 1 1 2 1			
		<u> </u>		<u> </u>					
		<u> </u>	<u>_</u>		<u> </u>	() ()			
	<u> </u>	<u></u>	<u> </u>	<u></u>					
Comments	: 3 HCL	- DOA'S			•	V			
	Partie	12.75	alloni						
	Deco		COME	N					
 -	1/50	21 \	CO. Di. 10						
Describe D	eviations fr	om SOP:	MA						
									
Signature	e: M	2			_Date:	12/3/14			
					· 				
•			•			LIZ			

			<u>Water Sai</u>	<u>mple Coll</u>	<u>ection Form</u>						
Sample Loca	tion	Dogie Comp	oressor Statio	on	Client	Williams Field Services					
Sample Date		12/31			roject Name	San Juan Basin Remediation					
Sample Time	•	U/A		·	-	034013010					
Sample ID		MW-5			-	Daniel Newman					
Analyses		BTEX 8021									
Matrix		Groundwate			Laboratory Hall Environmental						
Turn Around	l Time	Standard		Shin	ping Method						
Depth to Wa		14,18		•	TD of Well	18 15					
Time		1005		Dep	th to Product	NOT detected by interface broken					
	to pure-		5-1100.0	1000 -C	C74 V2 - 1	95					
Vol. of H2O	to purge	(height	of water colu	<u>ישיולשהט</u> 1mn * 0.16	31 for 2" well o	্রে <u> </u>					
Method of P) _U rging	PVC Bailer	., .ruice cont	. 5,200							
Method of S		PVC Bailer									
ivieurou of S											
	Vol.	Total Vol H2O	,	8							
	Removed	H2O removed	рH	Temp.	Conductivity	l l					
Time	(gal.)	(gal.)	(std. units)	16)	(us or(ms)	Comments					
1005	0,25	075	7.19	55,4	2.15	Sheen, Black, slightodon					
	0.15	0,40				Free Phase Product					
_						/V.					
				and the property of		+ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \					
						\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
						<u></u>					
C	, Fr.	D1		, , 1, ,	, with no	+ sample_					
Comments		Phase Pr		water.	, with no) MINISTER					
	PGG V	Sock	1 5	voil _							
	Bal	5-725-02	1,000	F							
	Bail	OUTOL	boduct	4							
			- f //								
Describe D	eviations fr	om SOP:	NH								
		4	<u> </u>								
Cianata	C	incl	-		Date:	12/3/14					
Signature											
			<u> </u>			- — Līz -					

APPENDIX B ANALYTICAL LABORATORY REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 26, 2014

Ashley Ager

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: San Juan Basin Remediation Dogie Compressor Station OrderNo.: 1403803

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 3 sample(s) on 3/19/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1403803**

Date Reported: 3/26/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-3

Project:San Juan Basin Remediation Dogie ComCollection Date: 3/18/2014 11:50:00 AMLab ID:1403803-001Matrix: AQUEOUSReceived Date: 3/19/2014 10:00:00 AM

Analyses	Result RL Qual Units		Units	DF	Date Analyzed	Batch	
EPA METHOD 8021B: VOLATILES						Analyst	: NSB
Benzene	ND	2.0	Р	μg/L	2	3/20/2014 4:54:11 PM	R17450
Toluene	12	2.0	Р	μg/L	2	3/20/2014 4:54:11 PM	R17450
Ethylbenzene	82	2.0	Ρ	μg/L	2	3/20/2014 4:54:11 PM	R17450
Xylenes, Total	700	20	Ρ	μg/L	10	3/21/2014 2:40:04 PM	R17507
Surr: 4-Bromofluorobenzene	188	82.9-139	SP	%REC	2	3/20/2014 4:54:11 PM	R17450

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 4

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1403803**Date Reported: **3/26/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-5

Project:San Juan Basin Remediation Dogie ComCollection Date: 3/18/2014 12:50:00 PMLab ID:1403803-002Matrix: AQUEOUSReceived Date: 3/19/2014 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	:: NSB
Benzene	ND	5.0	μg/L	5	3/20/2014 5:54:39 PM	R17450
Toluene	16	5.0	μg/L	5	3/20/2014 5:54:39 PM	R17450
Ethylbenzene	47	5.0	μg/L	5	3/20/2014 5:54:39 PM	R17450
Xylenes, Total	210	10	μg/L	5	3/20/2014 5:54:39 PM	R17450
Surr: 4-Bromofluorobenzene	121	82.9-139	%REC	5	3/20/2014 5:54:39 PM	R17450

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 4

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1403803**Date Reported: **3/26/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: Trip Blank

Project: San Juan Basin Remediation Dogie Com

Collection Date:

Lab ID: 1403803-003 **Matrix:** TRIP BLANK **Received Date:** 3/19/2014 10:00:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Methyl tert-butyl ether (MTBE)	ND	2.5	μg/L	1	3/20/2014 6:24:56 PM	R17450
Benzene	ND	1.0	μg/L	1	3/20/2014 6:24:56 PM	R17450
Toluene	ND	1.0	μg/L	1	3/20/2014 6:24:56 PM	R17450
Ethylbenzene	ND	1.0	μg/L	1	3/20/2014 6:24:56 PM	R17450
Xylenes, Total	ND	2.0	μg/L	1	3/20/2014 6:24:56 PM	R17450
1,2,4-Trimethylbenzene	ND	1.0	μg/L	1	3/20/2014 6:24:56 PM	R17450
1,3,5-Trimethylbenzene	ND	1.0	μg/L	1	3/20/2014 6:24:56 PM	R17450
Surr: 4-Bromofluorobenzene	98.3	82.9-139	%REC	1	3/20/2014 6:24:56 PM	R17450

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 4

- $P \hspace{0.5cm} \hbox{Sample pH greater than 2.} \\$
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1403803**

26-Mar-14

Client: LTE

Project: San Juan Basin Remediation Dogie Compressor

Sample ID 5ML RB	SampT	уре: МЕ	BLK	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBW	Batch	n ID: R1	7450	F	RunNo: 17450					
Prep Date:	Analysis D	ate: 3/	20/2014	S	SeqNo: 503110		Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	ND	2.5								
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
Surr: 4-Bromofluorobenzene	19		20.00		96.6	82.9	139			

Sample ID 100NG BTEX LCS	SampT	SampType: LCS TestCode: EPA Method 8021B: Volatiles								
Client ID: LCSW	Batch	n ID: R1	7450	F	RunNo: 1	7450				
Prep Date:	Analysis D	ate: 3/	20/2014	S	SeqNo: 5	03111	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Methyl tert-butyl ether (MTBE)	20	2.5	20.00	0	97.8	71.1	128			
Benzene	20	1.0	20.00	0	100	80	120			
Toluene	20	1.0	20.00	0	101	80	120			
Ethylbenzene	20	1.0	20.00	0	99.8	80	120			
Xylenes, Total	61	2.0	60.00	0	101	80	120			
1,2,4-Trimethylbenzene	20	1.0	20.00	0	99.1	80	120			
1,3,5-Trimethylbenzene	20	1.0	20.00	0	102	80	120			
Surr: 4-Bromofluorobenzene	20		20.00		100	82.9	139			

Sample ID 5ML RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Batch	1D: R1	7507	R	RunNo: 1	7507				
Prep Date:	Analysis D	ate: 3/	21/2014	S	SeqNo: 5	04436	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	19		20.00		97.0	82.9	139			

Sample ID 10	ONG BTEX LCS	SampTy	/pe: LC	S	Test	tCode: El	PA Method	8021B: Volati	les		
Client ID: LC	csw	Batch	ID: R1	7507	R	tunNo: 1	7507				
Prep Date:		Analysis Da	ate: 3/	21/2014	S	eqNo: 50	04437	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Xylenes, Total		61	2.0	60.00	0	102	80	120			
Surr: 4-Bromoflu	ıorobenzene	16		20.00		81.1	82.9	139			S

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 4

пан Environmental Analysis Laboratory 4901 Hawkins NE

Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com Work Order Number: 1403803 RcptNo: 1 Client Name: Received by/date: 3/19/2014 10:00:00 AM Michelle-Garcia Logged By: 3/19/2014 12:09:15 PM Completed By: Michelle Garcia Reviewed By: Chain of Custody Not Present No 🗌 1. Custody seals intact on sample bottles? Yes ~ No 🗌 Not Present 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In No 🗌 NA 🗌 Yes 🔽 4. Was an attempt made to cool the samples? No 🗌 NA 🗌 Yes 🔽 5. Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 No 🗔 Sample(s) in proper container(s)? No 🗔 Yes 🗸 7. Sufficient sample volume for indicated test(s)? ~ No 🗀 Yes 8. Are samples (except VOA and ONG) properly preserved? NA 🗀 No 🗹 9. Was preservative added to bottles? Yes Yes 🗸 No 🗌 No VOA Vials 10.VOA vials have zero headspace? Yes No 🗹 11. Were any sample containers received broken? # of preserved bottles checked No 🗌 for pH: Yes 🗸 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 Yes 🗸 13. Are matrices correctly identified on Chain of Custody? **V** No 🗌 14. Is it clear what analyses were requested? Yes 🗸 Checked by: 15. Were all holding times able to be met? No 🗔 (If no, notify customer for authorization.) Special Handling (if applicable) Yes No 🗀 NA 🗹 16. Was client notified of all discrepancies with this order? Date: Person Notified: Via: eMail Phone Fax In Person By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information

Seal Date

Signed By

Cooler No | Temp °C | Condition | Seal Intact | Seal No |

Good

C	hain-	of-Cu	stody Record	Turn-Around Time:				HALL ENVIRONMENTAL											
Client:	LTE	nuîrox	mental	Standard	☐ Rush												RAT		
	1			Project Name	e: Districts Re	sin Parada da						allen							
Mailing	Address	273	7 mesa Ave	Dogie (OMORESE	win Remodiation Estation	ŀ	490)1 Ha	awkin	s NE	- All	ouqu	erqu	e, N	M 87	109		
	\bigcap_{α}	ana a	Co 81301	Project#.		•		Те	I. 508	5-345	-397	5	Fax	505	-345-	-41<u>07</u>	7		
Phone	#:0770	2-36 3-36	35-1096	0340	013010	·					· 	Anal	ysis	Req	uest				
			@lbenv.com	Project Mana	ager:	•	1)	only)	8				O ₂	6					
	Package:		☐ Level 4 (Full Validation)	Ashle	y Agex	2	TMB's-(8021)	TPH (Gas o	DRO / MRO)		CIVAC		,PO _{4,S}	2 PCB's	!				
Accredi				Sampler:		euman '		TPH	~ 1	<u> </u>	. [5	2	8	/ 8082					N S
□ NEL		□ Othe	er	On Ice: Sample Tem		□ No	1 🕴	+	(GRO	418.1)	200) S	ပ္ခ်	/ sel		(Semi-VOA)			5
	(Type)_ 			oampe ten	inerature.		+ MIBE	MTBE	5B (thod	을 출	Met S	<u> ភ</u> ្	Pesticides	(VOA)	mi-			
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO. 1403803	BTEX + I	BTEX + I	TPH 8015B	TPH (Method	EDB (Method 504.1)	RCRA 8 Metals	Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄)	8081 Pes	I m I	8270 (Se			Air Dubblon
3/18/14		Lin	MW-3	Bluca	HCL	-001	X		İ		_								
3/18/14	1250	aw	MWS	3/VOA		-002	X												
3/18/14	430	AQ	TraBlank	2 VOA	,	-003	X												\prod
										\dashv	+	\perp			 	\vdash		+	++
							<u> </u>			_	_	+			\vdash	\square		+	+
			_				<u> </u>		_		-	_		1	\vdash	\sqcup		+	
					1				_		4	\bot			—			+	++
							ļ				4			<u> </u>	—			+	++
							-				_	_			_	1	\vdash	-	++
										_	-	+	1		₩			+	++
					<u> </u>		ļ		_	\dashv	_	╬	-	-	_		\vdash	+	1 1
Date:	Time:	Relinquish	ned hy:	Regnived by:	<u> </u>	Date Time	Rer	ll narks	<u>. </u>				`	<u> </u>	<u>L</u>	<u> </u>	Ш_		
3/18/11	1 </td <td>0/</td> <td></td> <td>May-to</td> <td>1 hot</td> <td>3/1</td> <td> </td> <td>Hank</td> <td>٠.</td> <td></td>	0/		May-to	1 hot	3/1	 	Hank	٠.										
Date:	Time:	Relinquist	ed by:	Received by:	muce	//8//4//5/3 Date Time	1												
3/18/14	1739		the Lacter	Miles	(Ja-	03/19/14 1000													
•	f necessary,	samples sub	omitted to Hall Environmental may be sub-	contracted to other	accredited laboratori	es. ⁽ This ⁽ serves as notice of thi	s possi	bility. i	Any sul	b-contr	acted d	ata will 1	e clea	rly not	ated or	n the ar	nalytical r	eport.	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 20, 2014

Brook Herb

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: Dogie Compressor Station OrderNo.: 1406730

Dear Brook Herb:

Hall Environmental Analysis Laboratory received 3 sample(s) on 6/17/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1406730**Date Reported: **6/20/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-3

Project: Dogie Compressor Station Collection Date: 6/16/2014 3:45:00 PM

Lab ID: 1406730-001 Matrix: AQUEOUS Received Date: 6/17/2014 7:45:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene 3.6 2.0 μg/L 2 6/18/2014 10:21:09 PM R19363 Toluene 92 2.0 μg/L 6/18/2014 10:21:09 PM R19363 Ethylbenzene 140 2.0 6/18/2014 10:21:09 PM R19363 μg/L 2 Xylenes, Total 880 20 μg/L 10 6/18/2014 9:52:28 PM R19363 Surr: 4-Bromofluorobenzene S %REC 6/18/2014 10:21:09 PM R19363 139 82.9-139

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 4

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1406730**Date Reported: **6/20/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-5

Project: Dogie Compressor Station Collection Date: 6/16/2014 4:10:00 PM

Lab ID: 1406730-002 Matrix: AQUEOUS Received Date: 6/17/2014 7:45:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene 12 5.0 μg/L 5 6/18/2014 11:18:29 PM R19363 Toluene 34 5.0 μg/L 6/18/2014 11:18:29 PM R19363 Ethylbenzene 110 5.0 5 6/18/2014 11:18:29 PM R19363 μg/L Xylenes, Total 460 10 μg/L 6/18/2014 11:18:29 PM R19363 Surr: 4-Bromofluorobenzene %REC 6/18/2014 11:18:29 PM R19363 118 82.9-139

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 4

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1406730**

Date Reported: 6/20/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: Trip Blank

Project: Dogie Compressor Station Collection Date:

Lab ID: 1406730-003 **Matrix:** AQUEOUS **Received Date:** 6/17/2014 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analy	st: NSB
Benzene	ND	1.0	μg/L	1	6/19/2014 12:15:39 A	AM R19363
Toluene	ND	1.0	μg/L	1	6/19/2014 12:15:39 A	AM R19363
Ethylbenzene	ND	1.0	μg/L	1	6/19/2014 12:15:39 A	AM R19363
Xylenes, Total	ND	2.0	μg/L	1	6/19/2014 12:15:39 A	AM R19363
Surr: 4-Bromofluorobenzene	99.0	82.9-139	%REC	1	6/19/2014 12:15:39 A	AM R19363

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 4

- P Sample pH greater than 2.
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1406730**

20-Jun-14

Client: LTE

Project: Dogie Compressor Station

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles PBW RunNo: 19363 Client ID: Batch ID: R19363 Analysis Date: 6/18/2014 SeqNo: 560010 Prep Date: Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 Ethylbenzene ND 1.0 ND Xylenes, Total 2.0 Surr: 4-Bromofluorobenzene 21 20.00 106 82.9 139

Sample ID 100NG BTEX LC	CS SampT	ype: LC	s	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batch	n ID: R1	9363	F	RunNo: 1	9363				
Prep Date:	Analysis D	ate: 6/	18/2014	\$	SeqNo: 5	60011	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	22	1.0	20.00	0	112	80	120			
Toluene	22	1.0	20.00	0	109	80	120			
Ethylbenzene	22	1.0	20.00	0	111	80	120			
Xylenes, Total	66	2.0	60.00	0	110	80	120			
Surr: 4-Bromofluorobenzene	22		20.00		109	82.9	139			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com RcptNo: 1 LTE Work Order Number: 1406730 Client Name: Received by/date: 6/17/2014 7:45:00 AM Michelle Garcia Logged-By:---Completed By: Michelle Garcia 6/17/2014 9:39:25 AM Reviewed By: Chain of Custody No \square Not Present Yes 1. Custody seals intact/on sample bottles? Yes 🗸 Not Present No 2. Is Chain of Custody complete? Courier 3. How was the sample delivered? <u>Log In</u> NA \square No 🗌 Yes 🗹 4. Was an attempt made to cool the samples? NA \square Yes 🗸 No 🗀 Were all samples received at a temperature of >0° C to 6.0°C Yes 🔽 No 6. Sample(s) in proper container(s)? No 🗌 Yes 🗹 7. Sufficient sample volume for indicated test(s)? Yes 🔽 Nο 8. Are samples (except VOA and ONG) properly preserved? No 🗸 NA 🗀 Yes 🗌 9. Was preservative added to bottles? Yes 🔽 No VOA Vials No 10.VOA vials have zero headspace? No 🔽 Yes 11. Were any sample containers received broken? # of preserved bottles checked Yes 🗹 No 🗌 for pH: 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗆 Yes 🗸 13. Are matrices correctly identified on Chain of Custody? Yes 🗸 No 14. Is it clear what analyses were requested? No 🗌 Checked by: Yes 🗹 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes 🗌 No 🗔 NA 🔽 16. Was client notified of all discrepancies with this order? Person Notified: Date: eMail Phone Fax In Person Via: By Whom: Regarding: Client Instructions:

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.8	Good	Yes			

Chail Client:	n-of-CL	ord					I	HALL	Ш	Z	P.	Z	ENVIRONMENTAL	E	_ }	
-1	Christ	1 Christon worker	Standard Rush	-	2		4	Ž	>	S	5		ANALYSIS LABORATOR	Ö	>	
			Project Name:				>	ww.h	www.hallenvironmental.com	onme	ental.c	шо				
Mailing Addre	nct:ss	Mailing Address: 2243 Main Ne SWS	Ucy Ecompressiv	CSSN ORTHON	7	1901 F	4901 Hawkins NE	s NE	- Albu	Idner	dhe	Albuquerque, NM 87109	60			
Primera		(U) \$130	Project #:			Tel. 5(Tel. 505-345-3975	-3975		Fax 50	5-345	505-345-4107				
Phone #:	allo	D-385.1090	りがしいのう	50					Analysis Request	sis Re	sənbe	1				
email or Fax#:		brevo alternatera	Project Manager:								s					
QA/QC Package:			Broke He	2				(SW			a 04					
Standard		☐ Level 4 (Full Validation)									70					
Accreditation □ NELAP	□ Other		Sampler: SAOKO On Ice: Zi Yes	またう D No Minus							ng / s	(A	<u> </u>		(14	OL IA)
□ EDD (Type)	(1)		Temp												7//	()
Date Time	e Matrix	Sample Request ID	- P	e HEAL No.	TM + X	TM + X 80158	(Metho	odieM) 158) e'	∍M 8 A	O,∃) en 	Pestic	imə2) (səlqqnş
		-	lype and # lype	S 1000											u ~; v	H IIH
alluly 1545	2 GW	MW-3	VOY/3 HC	-001	7	<u> </u>										!
0/2/ 12/10/10		S-MW	MA/13	730 —	メ										<u>.</u>	
- 1		TrioBank	VOA/O	-003	メ											l 1
			.													[
			,													i
										\dashv						ı
						_				\dashv			+			ı
	_					<u> </u> -					.					1
										+	-		 	-		ŀ
	-					+		┼	ļ							1
Date: Time:	Relinder	And pour	Received by:	ate Til	Remarks	rks:										
Cas h M		0	1 Moste Loste	1/10/1/ 1800												
Date: Time:	Retinquished by:	ned by:	Received/fby:	Date Time												ı
sesou JI	ary, samples sut	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report	ontracted to other accredited laborato	vies. This serves as notice of this	illidissod	y. Any s	ub-contra	rcted da	a will be	clearly r	otated	in the an	alytical re	eport.		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 24, 2014

Brooke Herb

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: Dogie OrderNo.: 1409579

Dear Brooke Herb:

Hall Environmental Analysis Laboratory received 9 sample(s) on 9/12/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1409579**Date Reported: **9/24/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-3

 Project:
 Dogie
 Collection Date: 9/10/2014 11:28:00 AM

 Lab ID:
 1409579-001
 Matrix: AQUEOUS
 Received Date: 9/12/2014 6:30:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analys	: NSB
Benzene	ND	1.0		μg/L	1	9/12/2014 3:46:09 PM	R21183
Toluene	59	1.0		μg/L	1	9/12/2014 3:46:09 PM	R21183
Ethylbenzene	150	10		μg/L	10	9/15/2014 12:34:37 PM	R21216
Xylenes, Total	830	20		μg/L	10	9/15/2014 12:34:37 PM	R21216
Surr: 4-Bromofluorobenzene	283	66.6-167	S	%REC	1	9/12/2014 3:46:09 PM	R21183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 11

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1409579**

Date Reported: 9/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-5

 Project:
 Dogie
 Collection Date: 9/10/2014 12:00:00 PM

 Lab ID:
 1409579-002
 Matrix: AQUEOUS
 Received Date: 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	: DJF
Benzene	ND	2.0	μg/L	2	9/15/2014 1:04:43 PM	R21216
Toluene	2.5	2.0	μg/L	2	9/15/2014 1:04:43 PM	R21216
Ethylbenzene	7.4	2.0	μg/L	2	9/15/2014 1:04:43 PM	R21216
Xylenes, Total	29	4.0	μg/L	2	9/15/2014 1:04:43 PM	R21216
Surr: 4-Bromofluorobenzene	122	66.6-167	%REC	2	9/15/2014 1:04:43 PM	R21216

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 11

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1409579**

Date Reported: 9/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-7

 Project:
 Dogie
 Collection Date: 9/10/2014 12:40:00 PM

 Lab ID:
 1409579-003
 Matrix: AQUEOUS
 Received Date: 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analy	st: DJF
Benzene	86	10	μg/L	10	9/16/2014 12:04:07 P	M R21244
Toluene	190	10	μg/L	10	9/16/2014 12:04:07 P	M R21244
Ethylbenzene	140	10	μg/L	10	9/16/2014 12:04:07 P	M R21244
Xylenes, Total	740	20	μg/L	10	9/16/2014 12:04:07 P	M R21244
Surr: 4-Bromofluorobenzene	125	66.6-167	%REC	10	9/16/2014 12:04:07 P	M R21244

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 11

Lab Order **1409579**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/24/2014

CLIENT: LTE Client Sample ID: MW-11

 Project:
 Dogie
 Collection Date: 9/10/2014 1:20:00 PM

 Lab ID:
 1409579-004
 Matrix: AQUEOUS
 Received Date: 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	:: NSB
Benzene	9.2	5.0	μg/L	5	9/12/2014 5:46:37 PM	R21183
Toluene	ND	5.0	μg/L	5	9/12/2014 5:46:37 PM	R21183
Ethylbenzene	29	5.0	μg/L	5	9/12/2014 5:46:37 PM	R21183
Xylenes, Total	180	10	μg/L	5	9/12/2014 5:46:37 PM	R21183
Surr: 4-Bromofluorobenzene	122	66.6-167	%REC	5	9/12/2014 5:46:37 PM	R21183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 11

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1409579**Date Reported: **9/24/2014**

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-10

 Project:
 Dogie
 Collection Date: 9/10/2014 2:00:00 PM

 Lab ID:
 1409579-005
 Matrix: AQUEOUS
 Received Date: 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	:: DJF
Benzene	ND	1.0	μg/L	1	9/15/2014 2:05:18 PM	R21216
Toluene	ND	1.0	μg/L	1	9/15/2014 2:05:18 PM	R21216
Ethylbenzene	ND	1.0	μg/L	1	9/15/2014 2:05:18 PM	R21216
Xylenes, Total	ND	2.0	μg/L	1	9/15/2014 2:05:18 PM	R21216
Surr: 4-Bromofluorobenzene	131	66.6-167	%REC	1	9/15/2014 2:05:18 PM	R21216

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 11

Lab Order 1409579

Date Reported: 9/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-13

Project: Dogie **Collection Date:** 9/10/2014 2:25:00 PM 1409579-006 Matrix: AQUEOUS Lab ID: **Received Date:** 9/12/2014 6:30:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analys	t: NSB
Benzene	ND	1.0	Р	μg/L	1	9/12/2014 7:17:14 PM	R21183
Toluene	ND	1.0	Р	μg/L	1	9/12/2014 7:17:14 PM	R21183
Ethylbenzene	ND	1.0	Р	μg/L	1	9/12/2014 7:17:14 PM	R21183
Xylenes, Total	ND	2.0	Р	μg/L	1	9/12/2014 7:17:14 PM	R21183
Surr: 4-Bromofluorobenzene	97.5	66.6-167	Р	%REC	1	9/12/2014 7:17:14 PM	R21183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 6 of 11

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order 1409579

Date Reported: 9/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-12

Project: Dogie **Collection Date:** 9/10/2014 2:55:00 PM 1409579-007 Matrix: AQUEOUS Lab ID: **Received Date:** 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	: DJF
Benzene	740	20	μg/L	20	9/15/2014 2:35:29 PM	R21216
Toluene	360	20	μg/L	20	9/15/2014 2:35:29 PM	R21216
Ethylbenzene	46	1.0	μg/L	1	9/12/2014 7:47:27 PM	R21183
Xylenes, Total	200	2.0	μg/L	1	9/12/2014 7:47:27 PM	R21183
Surr: 4-Bromofluorobenzene	131	66.6-167	%REC	1	9/12/2014 7:47:27 PM	R21183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND
- Not Detected at the Reporting Limit

Page 7 of 11

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1409579**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/24/2014

CLIENT: LTE Client Sample ID: MW-6

 Project:
 Dogie
 Collection Date: 9/10/2014 3:20:00 PM

 Lab ID:
 1409579-008
 Matrix: AQUEOUS
 Received Date: 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES				Analys	st: NSB
Benzene	2100	100	μg/L	100 9/12/2014 10:18:19 P	M R21183
Toluene	110	100	μg/L	100 9/12/2014 10:18:19 P	M R21183
Ethylbenzene	850	100	μg/L	100 9/12/2014 10:18:19 P	M R21183
Xylenes, Total	8700	200	μg/L	100 9/12/2014 10:18:19 P	M R21183
Surr: 4-Bromofluorobenzene	109	66.6-167	%REC	100 9/12/2014 10:18:19 P	M R21183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 11

Lab Order **1409579**

Date Reported: 9/24/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: Trip Blank

Project: Dogie Collection Date:

Lab ID: 1409579-009 **Matrix:** TRIP BLANK **Received Date:** 9/12/2014 6:30:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES				Analys	t: NSB
Benzene	ND	1.0	μg/L	1 9/12/2014 11:18:40 PM	/ R21183
Toluene	ND	1.0	μg/L	1 9/12/2014 11:18:40 PM	/ R21183
Ethylbenzene	ND	1.0	μg/L	1 9/12/2014 11:18:40 PM	/ R21183
Xylenes, Total	ND	2.0	μg/L	1 9/12/2014 11:18:40 PM	/ R21183
Surr: 4-Bromofluorobenzene	98.9	66.6-167	%REC	1 9/12/2014 11:18:40 PM	/ R21183

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 9 of 11

- P Sample pH greater than 2.
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409579**

24-Sep-14

Client: LTE
Project: Dogie

Sample ID 5ML RB	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Batch	ID: R2	1183	F	RunNo: 2	1183				
Prep Date:	Analysis D	ate: 9/	12/2014	S	SeqNo: 6	16442	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	19		20.00		95.3	66.6	167			

Sample ID 100NG BTEX LC	S Samp	Гуре: LC	S	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batc	h ID: R2	1183	F	RunNo: 2	1183				
Prep Date:	Analysis [Date: 9/	12/2014	8	SeqNo: 6	16443	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	100	80	120			
Toluene	20	1.0	20.00	0	100	80	120			
Ethylbenzene	20	1.0	20.00 0 100 80 120							
Xylenes, Total	62	2.0	2.0 60.00 0 104 80 120							
Surr: 4-Bromofluorobenzene	18		20.00		89.9	66.6	167			

Sample ID 5ML RB	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: PBW	Batch	1D: R2	1216	F	RunNo: 2	1216				
Prep Date:	Analysis D	ate: 9/	15/2014	8	SeqNo: 6	17973	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	21		20.00		105	66.6	167			

Sample ID 100NG BTEX LCS	SampT	ype: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batch	n ID: R2	1216	F	RunNo: 2	1216				
Prep Date:	Analysis D	ate: 9/	15/2014	8	SeqNo: 6	17974	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	94.7	80	120			
Toluene	19	1.0	20.00	0	96.3	80	120			
Ethylbenzene	19	1.0	20.00	0	96.7	80	120			
Xylenes, Total	60	2.0	60.00	0	100	80	120			
Surr: 4-Bromofluorobenzene	22		20.00		112	66.6	167			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 11

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1409579**

24-Sep-14

Client: LTE
Project: Dogie

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles PBW RunNo: 21244 Client ID: Batch ID: R21244 Analysis Date: 9/16/2014 Prep Date: SeqNo: 619156 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 Ethylbenzene ND 1.0 ND Xylenes, Total 2.0 Surr: 4-Bromofluorobenzene 18 20.00 91.6 66.6 167

Sample ID 100NG BTEX LO	SampT	ype: LC	s	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batch	n ID: R2	1244	F	RunNo: 2	1244				
Prep Date:	Analysis D	oate: 9/	16/2014	8	SeqNo: 6	19157	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.8	80	120			
Toluene	20	1.0	20.00	0	101	80	120			
Ethylbenzene	20	1.0	20.00	0	101	80	120			
Xylenes, Total	63	2.0	60.00	0	104	80	120			
Surr: 4-Bromofluorobenzene	22		20.00		112	66.6	167			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 11

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: RcptNo: 1 LTE Work Order Number: 1409579 Received by/date 9/12/2014 6:30:00 AM Logged By: Lindsay Mangin 9/12/2014 8:2p:37 AM Completed By: Lindsåy Mangin Reviewed By: Chain of Custody Not Present No 🗀 1. Custody seals intact on sample bottles? Yes No 🗀 Not Present Yes 🗸 2. Is Chain of Custody complete? 3. How was the sample delivered? Courier Log In NA 🗌 Yes 🔽 No 🗌 4. Was an attempt made to cool the samples? NA 🗌 No 🗔 Yes 🗸 Were all samples received at a temperature of >0° C to 6.0°C No 🗌 6. Sample(s) in proper container(s)? $\overline{\mathbf{v}}$ Yes 7. Sufficient sample volume for indicated test(s)? No 8. Are samples (except VOA and ONG) properly preserved? No 🔽 NA 🗌 9. Was preservative added to bottles? Yes Yes 🗸 No VOA Vials No 10.VOA vials have zero headspace? No 🔽 Yes 11. Were any sample containers received broken? # of preserved bottles checked for pH: No 🗌 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? No 🗌 13. Are matrices correctly identified on Chain of Custody? Yes No 🗌 14. Is it clear what analyses were requested? Checked by: Yes 🗹 No 🗌 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) Yes NA 🔽 16. Was client notified of all discrepancies with this order? No 🗆 Person Notified: Date: By Whom: eMail Phone Fax Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No Temp °C Condition Seal Intact Seal No Seal Date Signed By Good 2.1 Yes

Ö	ain-	of-Cu	ecord	Turn-Around Tim	ime:				I	4	Ш	>	12(2	HALL ENVIRONMENTAL	Z	_	
γ	T en	'ueau	Client: LT Environmental	⊈ Standard	□ Rush		Kana a	5.00	₹	\ Z	ANALYSIS	SIS		ě	LABORATORY	10	K	
				Project Name:					_	www.	allen	ironir		E03				
Mailing Address:	\ddress:		2243 Main Prus	1200c	~ :		4	901 F	4901 Hawkins NE	IS NE	- 1	enbno	Albuquerque, NM 87109	ÑN	37109			
Y	NGC,	DUTANO, CO 8/30	_	Project #:				[el. 5(Tel. 505-345-3975	5-397		Fax 5	505-345-4107	5-41	20			I
Phone #:	197	976-585-	1/0/-5	0340(3	3010						Anal	/sis	Analysis Request	st				
email or	Fax#:	pheri	email or Fax#: Pherba (tenurcom	Project Manager:	ler:							(þO						
QA/QC Package: AStandard	ackage: ard		☐ Level 4 (Full Validation)	Brookel	Herb		208) s ı			(Or VIC	(OIAIIC	S, ₄ O9,	S bcB.					
Accreditation □ NELAP	ation	□ Other	16	Sampler: Al	Lex Cred	72.5 1.70						ON' [©] C	808 / \$	(A	/			(N 10
☐ EDD (Type)	Type)_			Геш	erature: \mathbb{Z}_{*})NʻI						\ \
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative Type	HEAL NO.	FM~+ X3T8 TM + X3T8	86108 H9T	orteM) H9T	EDB (Metho	PAH's (831 RCRA 8 Me	O,4) anoinA	oite97 1808	(OV) 809S8 imə8) 07S8				səlddiiR riA
3/10	1128	6W	MW-3	3100	#01	100-	X											
	2021		S-MW	1)	700-												
	ohel		MW-7			500-												<u></u>
	1320		MW-11			tw-												
	anhi		MW-10			500-												
	52h1		MW-13		Coto	-00-												
	1455		MW-12			-027												
\rightarrow	0251	7	MW-6			-008												
			Trip Blank	>	7	1 00-	7	.						-			+	_
								4										_
							_				_					-		
Date:	Time:	Relipduished by:	by by:	Received by:	1. 1. 1.	Date Time	Remarks	<u>k</u> s:		-				-		-		4
	Time:	Relinquished by		Received by:		Date Time												
_	necessary s	samples subi		contracted to other acc	redited laboratorie	S. This serves as notice of this	possibilit	. Any s	ub-contr	acted d	ata will b	e clearly	, notated	on the	analytic	al report.	1.	1

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 08, 2015

Ashley Ager

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: Dogie Compressor Station OrderNo.: 1412261

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 7 sample(s) on 12/4/2014 for the analyses presented in the following report.

This report is a revised report and it replaces the original report issued December 11, 2014.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. All samples are reported as received unless otherwise indicated.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman

Laboratory Manager

anded

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1412261**

Date Reported: 1/8/2015

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-3

Project:Dogie Compressor StationCollection Date: 12/3/2014 9:10:00 AMLab ID:1412261-001Matrix: AQUEOUSReceived Date: 12/4/2014 7:55:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analys	t: NSB
Benzene	ND	1.0	Р	μg/L	1	12/5/2014 3:03:31 PM	R22975
Toluene	34	1.0	Р	μg/L	1	12/5/2014 3:03:31 PM	R22975
Ethylbenzene	220	10	Р	μg/L	10	12/8/2014 1:17:56 PM	R22998
Xylenes, Total	890	20	Р	μg/L	10	12/8/2014 1:17:56 PM	R22998
Surr: 4-Bromofluorobenzene	210	66.6-167	SP	%REC	1	12/5/2014 3:03:31 PM	R22975

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 3

- P Sample pH greater than 2.
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412261**

08-Jan-15

Client: LTE

Project: Dogie Compressor Station

Sample ID 1412	2261-001AMS	SampT	уре: М\$	3	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: MW	/- 3	Batch	n ID: R2	2975	R	RunNo: 2	2975				
Prep Date:		Analysis D	ate: 12	2/5/2014	S	SeqNo: 6	78609	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		22	1.0	20.00	0	111	80	120			
Toluene		55	1.0	20.00	33.85	105	80	120			
Ethylbenzene		230	1.0	20.00	208.4	122	79.7	126			E
Xylenes, Total		840	2.0	60.00	775.0	105	80	120			E
Surr: 4-Bromofluor	orobenzene	43		20.00		214	66.6	167			S

Sample ID 1412261-001AMS	D SampT	уре: М S	SD.	TestCode: EPA Method 8021B: Volatiles											
Client ID: MW-3	Batch	n ID: R2	2975	F	RunNo: 2	2975									
Prep Date:	Analysis Date: 12/5/2014			8	SeqNo: 6	78610	Units: µg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	22	1.0	20.00	0	111	80	120	0.469	20						
Toluene	55	1.0	20.00	33.85	104	80	120	0.537	20						
Ethylbenzene	230	1.0	20.00	208.4	109	79.7	126	1.12	20	E					
Xylenes, Total	830 2.0		60.00	775.0	93.1	80	120	0.869	20	E					
Surr: 4-Bromofluorobenzene	42		20.00		212	66.6	167	0	0	S					

Sample ID 5ML RB	SampT	уре: МЕ	BLK	TestCode: EPA Method 8021B: Volatiles											
Client ID: PBW	Batch	ID: R2	2975	R	tunNo: 2	2975									
Prep Date:	Analysis D	ate: 12	2/5/2014	S	seqNo: 6	78626	Units: µg/L								
Analyte	Result	PQL SPK value		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	ND	1.0		_			_		•	_					
Toluene	ND	1.0													
Ethylbenzene	ND	1.0													
Xylenes, Total	ND	2.0													
Surr: 4-Bromofluorobenzene	21		20.00		104	66.6	167								

Sample ID 100NG BTEX LCS	SampT	ype: LC	s	TestCode: EPA Method 8021B: Volatiles											
Client ID: LCSW	Batch	ID: R2	2975	R	RunNo: 2	2975									
Prep Date:	Analysis D	ate: 12	2/5/2014	S	SeqNo: 6	78627	Units: µg/L								
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual					
Benzene	18	1.0	20.00	0	90.9	80	120								
Toluene	18	1.0	20.00	0	92.3	80	120								
Ethylbenzene	18	1.0	20.00	0	92.0	80	120								
Xylenes, Total	59 2.0 60.00			0	98.7	80	120								
Surr: 4-Bromofluorobenzene	21		20.00		103	66.6	167								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 2 of 3

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412261**

08-Jan-15

Client: LTE

Project: Dogie Compressor Station

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles PBW RunNo: 22998 Client ID: Batch ID: R22998 Analysis Date: 12/8/2014 Prep Date: SeqNo: 679367 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Toluene ND 1.0 Ethylbenzene ND 1.0 Xylenes, Total ND 2.0 20.00 105 66.6 Surr: 4-Bromofluorobenzene 21 167

Sample ID 100NG BTEX LC	S Samp	Type: LC	s	Tes	TestCode: EPA Method 8021B: Volatiles											
Client ID: LCSW	Bato	h ID: R2	2998	F	RunNo: 2	2998										
Prep Date:	Analysis [Date: 12	2/8/2014	5	SeqNo: 6	79368	Units: µg/L									
Analyte	Result	Result PQL SPK value			SPK Ref Val %REC LowLimit			%RPD	RPDLimit	Qual						
Toluene	22	1.0	20.00	0	111	80	120									
Ethylbenzene	22	1.0	20.00	0	111	80	120									
Xylenes, Total	67	67 2.0 60.0		0	112	80	120									
Surr: 4-Bromofluorobenzene	23		20.00		114	66.6	167									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 3 of 3

4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: LTE Work Order Number: 1412261 RcptNo: 1 Received by/date: Logged By: **Ashley Gallegos** 12/4/2014 7:55:00 AM Completed By: **Ashley Gallegos** 12/4/2014 2:54:23 PM AT 12/05/14 Reviewed By: Chain of Custody 1. Custody seals intact on sample bottles? Yes \square Not Present No 🗌 Yes 🖈 2. Is Chain of Custody complete? Not Present 3. How was the sample delivered? Courier Log in 4. Was an attempt made to cool the samples? No 🗌 NA 🗌 Yes 🧳 Were all samples received at a temperature of >0° C to 6.0°C No 🗌 NA 🗌 No 🗆 Sample(s) in proper container(s)? 7. Sufficient sample volume for indicated test(s)? No 🗌 Yes Νo 8. Are samples (except VOA and ONG) properly preserved? Yes 9. Was preservative added to bottles? Nο Yes 10.VOA vials have zero headspace? No 🗆 No VOA Vials 🗌 Yes 11. Were any sample containers received broken? No 🐼 Yes # of preserved bottles checked 12. Does paperwork match bottle labels? No 🗀 for pH: (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? 13. Are matrices correctly identified on Chain of Custody? No 🗔 14. Is it clear what analyses were requested? No 🗆 15. Were all holding times able to be met? No ∐ Checked by: (If no, notify customer for authorization.) Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? No 🗀 Yes _ NA 🖈 Person Notified: Date By Whom: Via: eMail Phone Fax In Person Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Cooler No | Temp °C | Condition Seal Intact Seal No Seal Date Signed By Good Yes

	HALL ENVIRONMENTAL	www hallenvironmental com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis	([†] ()	O / WE	HOT () HGT () / DR () / L(GEGG (GEGG NO3)	BTM 5B (f thood thoo thoo 310 310 310 (AO'	TEX + 1 TEX + 1 TEX + 1 TEH 801 TEH (Me TEM 8 (8 T	3 7 1 1 1 1	X	7	7	×-	*	<i>y</i> _			Remarks:			r accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.
	Standard 🗆 Rush	. C	Logie Compressor Storton		034012010	ONCOM Project Manager:	Ashley Ager	Sampler: Dunie Neum	Sample Temperature: , 7		Container Preservative HEAL No. Type and # Type IL41のません。	100- 77H S/400	VOA(5, HCL -002	- 77H S	VORS HCL -DOY	Cool	10/15 Carl -006	VOA/3 Cal -007			Received by: Date Time	_≥	Received by/ Date Time (2/64/4/75)	ntracted to other accredited laboratories. This serves as notice of this
Cham-oi-custody Record	Client: LT Environmental		5 mai	Ce	S-1096	Goger (B)	QA/QC Package: Standard Level 4 (Full Validation)	Accreditation	ype)		Matrix Sample Request ID	910 GW MW3	lots GE	J.	(300 CIV)	3,	(23 14 12/20 G/V 1/11M-1/2	7RIP 3/ank			Time: Relinquished by		12/14 1736 (Antitum) auto	If necessary, samples submitted to Hall Environmental may be subcontracted to other