3R - 325

2014 AGWMR

04 / 10 / 2015

One Williams Center P.O. Box 645 Tulsa, OK 74101-0645

April 10, 2014

Glenn Von Gonten New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Online Submission of 2014 Annual Groundwater Reports

Dear Mr. Von Gonten,

Williams Field Services (Williams) is electronically submitting the attached 2014 annual groundwater monitoring reports covering the period from January 1, 2014 to December 31, 2014 for the following sites:

- Davis #1 (3RP-311-0);
- Dogie East Pit (3RP-312-0);
- Florance #40 (3RP-315-0);
- Florance #47X (3RP-317-0);
- Ice Canyon Drip (3RP-322-0);
- Jicarilla Contract #147-6 (3RP-325-0); and
- Pritchard #2A (3RP-339-0).

If you have any questions regarding these reports please contact me at 918-573-4371 or <u>Danny.Reutlinger@Williams.com</u> or Ashley Ager with LT Environmental at 970-385-1096 or <u>aager@ltenv.com</u>.

Sincerely,

Williams Field Services

Danny Reutlinger

Senior Project Manager

cc:

Attachments (7)

2014 ANNUAL GROUNDWATER REPORT

JICARILLA CONTRACT 147-6 ADMINISTRATIVE/ENVIRONMENTAL ORDER NUMBER 3RP-325-0

APRIL 2015

Prepared for:

WILLIAMS FIELD SERVICES, LLC Tulsa, Oklahoma

2014 ANNUAL GROUNDWATER REPORT

JICARILLA CONTRACT 147-6 ADMINISTRATIVE/ENVIRONMENTAL ORDER NUMBER 3RP-325-0

APRIL 2015

Prepared for:

WILLIAMS FIELD SERVICES, LLC PO Box 3483, MD 48-6 Tulsa, Oklahoma 74101

Prepared by:

LT ENVIRONMENTAL, INC. 2243 Main Avenue, Suite 3 Durango, Colorado 81301 (970) 385-1096

TABLE OF CONTENTS

EXECUTIVE SU	MMARYii
1.0 INTRODUC	ΤΙΟΝ1
	ION
2.0 METHODOI	LOGY1
2.2 GROUN	LEVEL MEASUREMENTS
3.0 RESULTS	2
4.0 CONCLUSIO	ONS3
5.0 RECOMMEN	NDATIONS3
	FIGURES
FIGURE 1 FIGURE 2 FIGURE 3	SITE LOCATION MAP GROUNDWATER ELEVATION & ANALYTICAL RESULTS (JUNE 2014) GROUNDWATER ELEVATION & ANALYTICAL RESULTS (DECEMBER 2014)
	TABLES
TABLE 1 TABLE 2	GROUNDWATER ELEVATIONS SUMMARY GROUNDWATER LABORATORY ANALYTICAL RESULTS
	APPENDICES
APPENDIX A APPENDIX B	2014 FIELD NOTES LABORATORY ANALYTICAL REPORTS

EXECUTIVE SUMMARY

Groundwater at the Jicarilla Contract 147-6 natural gas production well (Administrative/ Environmental Order Number 3RP-325-0) (Site) is impacted by petroleum hydrocarbons in excess of the New Mexico Water Quality Control Commission (NMWQCC) groundwater standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX) due to a release from a former dehydrator pit operated by Gas Company of New Mexico (GCNM). Impacted soil was excavated in 1998 and five monitoring wells (MW-1, MW-2, MW-3, MW-4, and MW-5) were installed in 1999 to assess groundwater quality. Based on the results of initial groundwater sampling, additional monitoring wells were installed in the downgradient direction (MW-5, MW-6, MW-7, MW-8, and MW-9) and one well was installed upgradient (MW-10). Over time, three monitoring wells located near a wash adjacent to the Site were destroyed by erosion (MW-4, MW-5, and MW-7). Williams Field Services, LLC (Williams) purchased the GCNM facility from Public Service Company of New Mexico (PNM) in 2000 and assumed environmental liability for the Site. Since that time, Williams has monitored groundwater quality. In 2013, Williams installed two monitoring wells (MW-11 and MW-12) to better understand current site conditions. Between January 2014 and December 2014, LT Environmental Inc., (LTE) was retained by Williams to conduct two groundwater monitoring events (June 2014 and December 2014). LTE measured depth to water for all existing monitoring wells and sampled groundwater from monitoring wells MW-3, MW-6, and MW-12 in June 2014 and December 2014.

Groundwater monitoring wells MW-3 and MW-6 contained BTEX in excess of the NMWQCC groundwater standards during the two 2014 monitoring events. Monitoring well MW-12 did not contain detectable BTEX concentrations during the two 2014 sampling events.

Impacted groundwater is delineated by monitoring wells MW-3 and MW-6 near the wash adjacent to the Site, which is downgradient from the original source area. Williams will monitor groundwater elevations and presence of PSH in the existing monitoring wells quarterly during 2015. Williams will sample groundwater from monitoring well MW-12 quarterly until eight consecutive quarters with BTEX concentrations compliant with NMWQCC standards have been obtained. Williams will sample groundwater from monitoring wells containing elevated BTEX concentrations (MW-3 and MW-6) annually. Additionally, Williams will evaluate potential remediation options for dissolved-phase BTEX.

1.0 INTRODUCTION

LT Environmental, Inc. (LTE), on behalf of Williams Field Services, LLC (Williams), has prepared this report detailing groundwater monitoring activities completed from January 2014 through December 2014 at the Jicarilla Contract 147-6 natural gas production well (Administrative/Environmental Order Number 3RP-325-0) (Site). The scope of work for this project was continued monitoring of petroleum hydrocarbon impacts to groundwater as a result of a release from a former dehydrator pit.

1.1 LOCATION

The Site is located at latitude 36.433803 and longitude -107.403562 in Unit C, Section 6, Township 25 North, Range 5 West (Figure 1). The Site is adjacent to a tributary to Tapacito Creek, which drains into Largo Wash, in the San Juan Basin of Rio Arriba County, New Mexico.

1.2 HISTORY

The source of groundwater impact is a former unlined dehydrator pit operated by Gas Company of New Mexico (GCNM). In July 1998, over 12,000 cubic yards of impacted soil were excavated from the Site. A groundwater sample collected from the excavation at approximately 26 feet below ground surface (bgs) contained 1,400 micrograms per liter (μ g/L) of benzene, 4,500 μ g/L of toluene, 580 μ g/L of ethylbenzene, and 6,800 μ g/L of total xylenes. In January 1999, five groundwater monitoring wells were installed. Based on the results of groundwater sampling, an additional five groundwater monitoring wells were installed at an unknown time. Over time, three monitoring wells located near a wash adjacent to the Site were destroyed by erosion (MW-4, MW-5, and MW-7). Records regarding these activities can be found in previous groundwater reports submitted to the New Mexico Oil Conservation Division (NMOCD). Williams purchased the GCNM facility from Public Service Company of New Mexico (PNM) in 2000, including environmental liability from the former unlined dehydrator pit. Between 2000 and December 2012, Williams monitored groundwater quality in the monitoring wells at the Site. Williams installed two groundwater monitoring wells (MW-11 and MW-12) on October 21, 2013 to better understand current site conditions.

2.0 METHODOLOGY

During 2014, LTE monitored groundwater in June 2014 and December 2014. Groundwater monitoring consisted of measuring groundwater elevations at all nine groundwater monitoring wells and sampling groundwater in monitoring wells MW-3, MW-6, and MW-12. Monitoring wells MW-1, MW-2, MW-8, and MW-9 were not sampled since there are eight previous quarters of sampling documenting BTEX concentrations compliant with NMWQCC standards in those wells. Monitoring well MW-10 is an upgradient monitoring well that has never contained concentrations of BTEX in excess of NWQCC standards. A small thickness of phase-separated hydrocarbons (PSH) was detected during one sampling event in 2013, but previous and subsequent sampling results suggest the oil/water interface probe malfunctioned at that time. Monitoring well MW-11 did not contain BTEX in excess of NMWQCC concentrations upon installation, so it has not been sampled again.

2.1 WATER LEVEL MEASUREMENTS

LTE measured depth to groundwater in the monitoring wells with a Keck oil/water interface probe. The presence of PSH was investigated using the interface probe. The interface probe was decontaminated with AlconoxTM soap and rinsed with de-ionized water prior to each measurement. These data are summarized in Table 1.

2.2 GROUNDWATER SAMPLING

Prior to sampling groundwater, LTE measured depth to groundwater and total depth of monitoring wells with a Keck oil/water interface probe. The volume of water in each monitoring well was calculated, and a minimum of three well casing volumes of water was purged from each well using a new disposable polyvinyl chloride (PVC) bailer. As water was removed from the monitoring well, pH, electric conductivity, and temperature were monitored. Monitoring wells were purged until these properties stabilized, indicating the purge water was representative of aquifer conditions, or until the well was purged dry. Stabilization was defined as three consecutive stable readings for each water property (plus or minus $(\pm)0.4$ units for pH, ±10 percent for electric conductivity, and ±2 degrees (°) Celsius for temperature). Purge water was containerized and disposed of at a facility designated by Williams. A copy of the 2014 field notes are presented in Appendix A.

Once each monitoring well was properly purged, groundwater samples were collected by filling three 40-milliliter (ml) glass vials. The laboratory-supplied vials were filled and capped with no air inside to prevent degradation of the sample. Samples were labeled with the date and time of collection, monitoring well designation, project name, collector's name, and parameters to be analyzed. They were immediately sealed, packed on ice, and transferred to Hall Environmental Analysis Laboratory (HEAL) under chain-of-custody (COC) procedures for analysis of BTEX using United States Environmental Protection Agency Method 8021. COC forms were completed documenting the date and time sampled, sample number, type of sample, sampler's name, preservative used (if any), analyses required, and sampler's signature. The COC forms are included in the laboratory analytical reports in Appendix B.

2.3 GROUNDWATER CONTOUR MAPS

LTE used existing top-of-casing well elevations and measured groundwater elevations to draft groundwater contours and determine groundwater flow direction for the June and December 2014 monitoring events (Figures 2 and 3). Contours were inferred based on groundwater elevations obtained and observations of physical characteristics at the Site (topography, proximity to irrigation ditches, etc.).

3.0 RESULTS

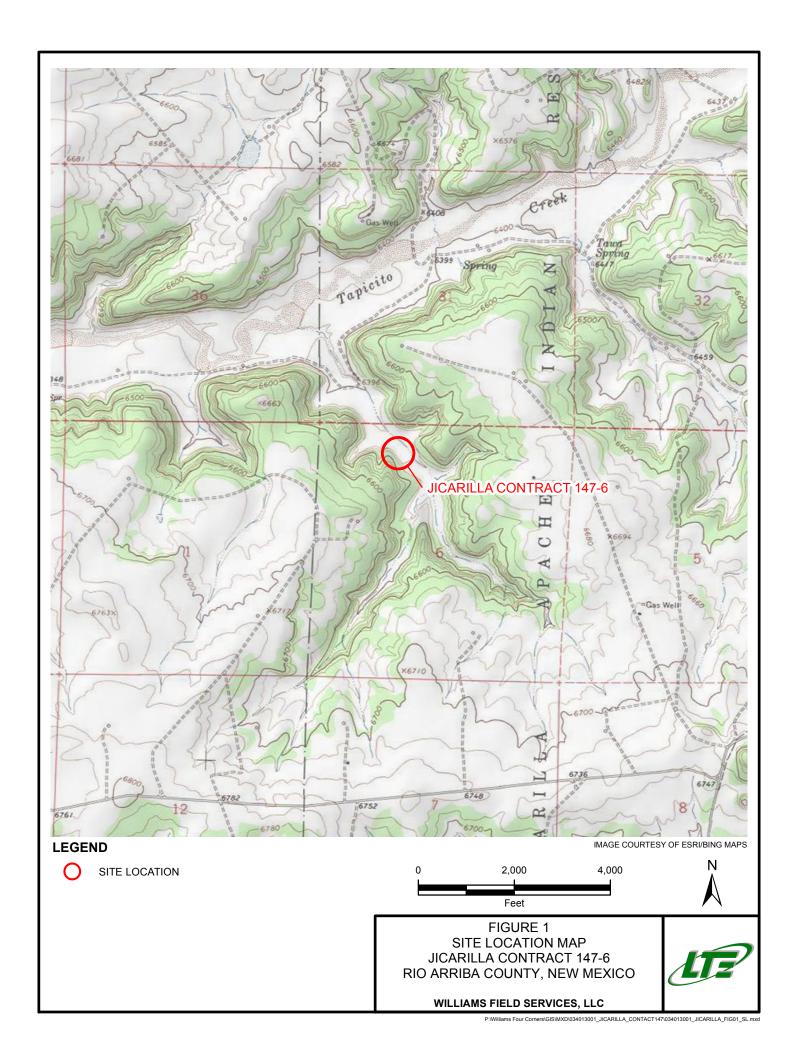
Groundwater elevations calculated with depth to water data presented in Table 1 indicate groundwater flow direction is consistently to the north-northwest as depicted on Figures 2 and 3.

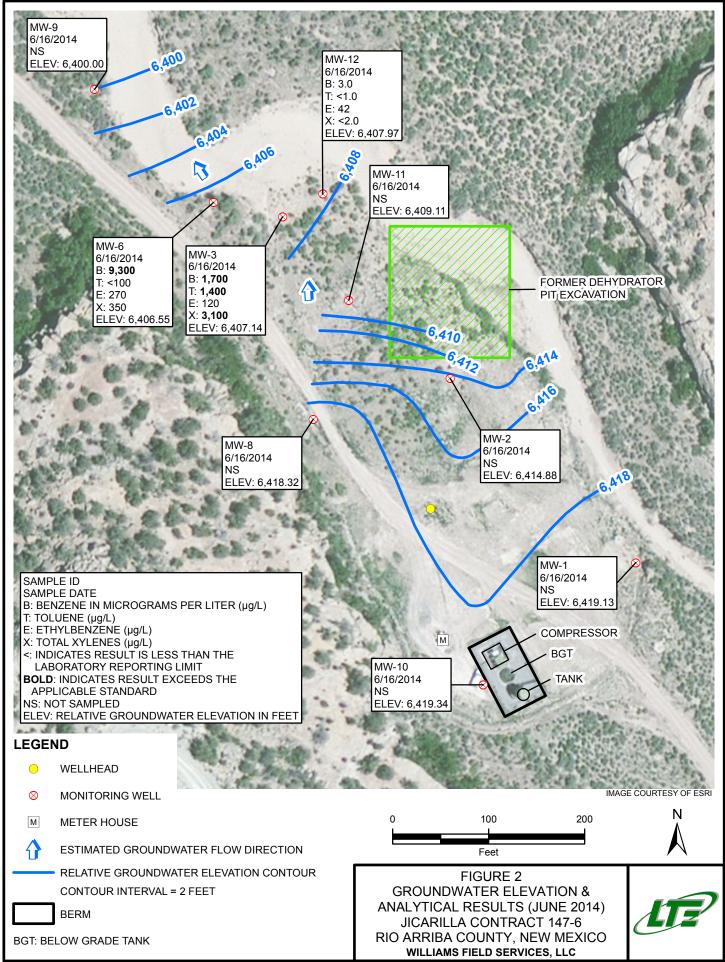
Groundwater monitoring wells MW-3 and MW-6 contained BTEX in excess of the NMWQCC groundwater standards during the two 2014 groundwater monitoring events. Monitoring well

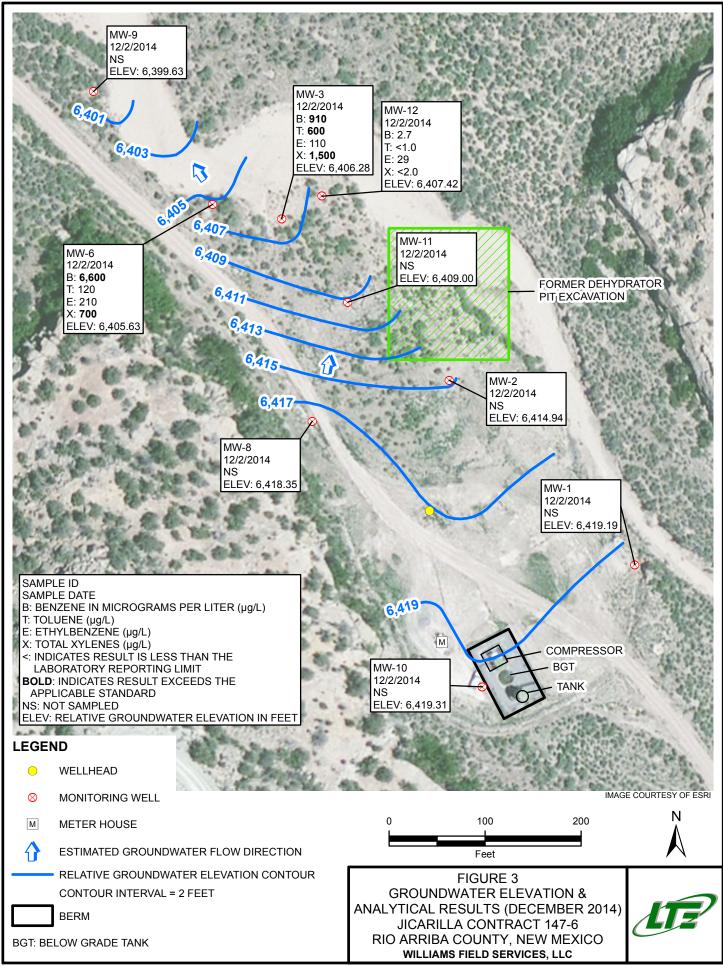
MW-12 did not contain detectable BTEX concentrations during the two 2014 groundwater monitoring events. Table 2 summarizes the groundwater analytical results and copies of the laboratory reports can be found in Appendix B.

4.0 CONCLUSIONS

Impacted groundwater is delineated by monitoring wells MW-3 and MW-6 and exists near the wash adjacent to the Site, which is downgradient of the original source area.


5.0 RECOMMENDATIONS


Williams will monitor groundwater elevations and presence of PSH in all existing monitoring wells quarterly during 2015. Williams will sample groundwater from monitoring well MW-12 quarterly until eight consecutive quarters with BTEX concentrations compliant with NMWQCC groundwater standards have been obtained. Williams will sample groundwater from monitoring wells containing elevated BTEX concentrations (MW-3 and MW-6) annually. Using data from 2014 and 2015, Williams will evaluate potential remediation options.



FIGURES

GROUNDWATER ELEVATIONS SUMMARY JICARILLA CONTRACT 147-6 WILLIAMS FIELD SERVICES, LLC

Well ID	Date	Top of Casing Elevation (feet AMSL)	Depth to Groundwater (feet BTOC)	Depth to Product (feet BTOC)	Product Thickness (feet)	Groundwater Elevation (feet AMSL)
MW-1	3/4/2013	6,435.75	21.85	NP	NP	6,413.90
MW-1**	6/25/2013	6,440.95	22.51	NP	NP	6,418.44
MW-1	12/2/2013	6,440.95	21.11	NP	NP	6,419.84
MW-1	6/16/2014	6,440.95	21.82	NP	NP	6,419.13
MW-1	12/2/2014	6,440.95	21.76	NP	NP	6,419.19
MW-2*	3/4/2013	6,432.70	22.34	22.33	0.01	6,411.17
MW-2**	6/25/2013	6,437.27	22.90	NP	NP	6,414.37
MW-2	12/2/2013	6,437.27	21.76	NP	NP	6,415.51
MW-2	6/16/2014	6,437.27	22.39	NP	NP	6,414.88
MW-2	12/2/2014	6,437.27	22.33	NP	NP	6,414.94
MW-3	3/4/2013	6,422.80	21.26	NP	NP	6,401.54
MW-3**	6/25/2013	6,427.87	21.37	NP	NP	6,406.50
MW-3	12/2/2013	6,427.87	21.44	NP	NP	6,406.43
MW-3	6/16/2014	6,427.87	20.73	NP	NP	6,407.14
MW-3	12/9/2014	6,427.87	21.59	NP	NP	6,406.28
MW-4	3/4/2013	DEST	DEST	DEST	DEST	DEST
MW-5	3/4/2013	DEST	DEST	DEST	DEST	DEST
MW-6	3/4/2013	6,426.77	25.61	NP	NP	6,401.16
MW-6**	6/25/2013	6,431.94	26.14	NP	NP	6,405.80
MW-6	12/2/2013	6,431.94	26.08	NP	NP	6,405.86
MW-6	6/16/2014	6,431.94	25.39	NP	NP	6,406.55
MW-6	12/2/2014	6,431.94	26.31	NP	NP	6,405.63
MW-7	3/4/2013	DEST	DEST	DEST	DEST	DEST
MW-8	3/4/2013	6,430.33	16.36	NP	NP	6,413.97
MW-8**	6/25/2013	6,435.14	17.31	NP	NP	6,417.83
MW-8	12/2/2013	6,435.14	17.65	NP	NP	6,417.49
MW-8	6/16/2014	6,435.14	16.82	NP	NP	6,418.32
MW-8	12/2/2014	6,435.14	16.79	NP	NP	6,418.35
MW-9	3/4/2013	6,423.04	28.55	NP	NP	6,394.49
MW-9**	6/25/2013	6,428.08	28.83	NP	NP	6,399.25
MW-9	12/2/2013	6,428.08	28.65	NP	NP	6,399.43
MW-9	6/16/2014	6,428.08	28.08	NP	NP	6,400.00
MW-9	12/2/2014	6,428.08	28.45	NP	NP	6,399.63
MW-10*	3/4/2013	6,435.38	20.90	20.89	0.01	6,415.29
MW-10**	6/25/2013	6,440.48	21.59	NP	NP	6,418.89
MW-10	12/2/2013	6,440.48	20.93	NP	NP	6,419.55
MW-10	6/16/2014	6,440.48	21.14	NP	NP	6,419.34
MW-10	12/2/2014	6,440.48	21.17	NP	NP	6,419.31
MW 11	10/0/2012	6 422 46	24.20	ND I	NP	c 400 00
MW-11	12/2/2013	6,433.46	24.38	NP	NP NP	6,409.08
MW-11 MW-11	6/16/2014	6,433.46	24.35	NP ND	NP ND	6,409.11
IVI VV - 1 I	12/2/2014	6,433.46	24.46	NP	NP	6,409.00
MW-12	12/2/2013	6,429.62	21.87	NP	NP	6,407.75
MW-12	6/16/2014	6,429.62	21.65	NP	NP	6,407.97
MW-12				1		·
	6/16/2014 12/2/2014	6,429.62 6,429.62	21.65 22.20	NP NP	NP NP	6,407.97 6,407.42

Notes

* - Interface probe appeared to be malfuntioning and presence of product is unlikely

** - Top of casing elevation was resurveyed on 6/19/13 AMSL - Above Mean Sea Level

AMSL - Above Mean Sea Level BTOC - Below Top of Casing DEST - well has been destroyed

NP - No Product

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/I
NMWQCC Standard (μg/L)		10	750	750	620
MW-1	1/28/1999	<0.5	1.5	< 0.5	2.6
MW-1	4/14/1999	<0.5	< 0.5	< 0.5	<1.5
MW-1	9/27/1999	< 0.5	< 0.5	< 0.5	<1.5
MW-1	11/15/1999	<0.5	< 0.5	<0.5	<1.5
MW-1	2/13/2001	<1	<1	<1	<1
MW-1	5/9/2001	<1	<1	<1	<1
MW-1	11/2/2001	<1.0	3.1	<2.0	<2.0
MW-1	3/20/2010	<1.0	<1.0	<1.0	<3.0
MW-1	6/22/2010	<1.0	<1.0	<1.0	<3.0
MW-1	9/16/2010	<1.0	<1.0	<1.0	<3.0
MW-1	12/8/2010	<1.0	<1.0	<1.0	<3.0
MW-1	3/10/2011	<1.0	<1.0	<1.0	<3.0
MW-1	6/15/2011	<1.0	<1.0	<1.0	<3.0
MW-1	9/13/2011	<1.0	<1.0	<1.0	<3.0
MW-1	1/6/2012	<1.0	<1.0	<1.0	<3.0
MW-1	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-1	6/12/2012	<1.0	<1.0	<1.0	<3.0
MW-1	9/27/2012	<1.0	<1.0	<1.0	<3.0
MW-1	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-1	3/4/2013	<1.0	<1.0	<1.0	<2.0
MW-1	6/25/2013	<2.0	<2.0	<2.0	<4.0
			I		I
MW-2	1/28/1999*	490	38	<5	1700
MW-2	4/14/1999*	230	<5	<5	671
MW-2	10/14/1999	55	< 0.5	2.6	196.5
MW-2	11/15/1999	130	< 0.5	15	272
MW-2	3/20/2000	140	5.3	120	440*
MW-2	6/6/2000	52	< 0.5	48	46
MW-2	2/13/2001	124	14.8	72.3	681
MW-2	5/9/2001	35.4	15.1	27	23
MW-2	11/2/2001	150	3.4	120	1200
MW-2	9/24/2003	2.8	5.1	2.8	<5.0
MW-2	12/17/2003	2.5	5.9	<2.0	<5.0
MW-2	9/19/2004	<2.0	3.2	<2.0	<5.0
MW-2	12/4/2004	<2.0	2.4	<2.0	<5.0
MW-2	3/9/2005*	23	13	<10	<25
MW-2	9/17/2005	<2.0	<2.0	4.3	<5.0
MW-2	12/1/2005	<2.0	2.8	<2.0	<5.0
MW-2	3/20/2010	<1.0	<1.0	<1.0	<3.0
MW-2	6/22/2010	<1.0	<1.0	<1.0	<3.0
MW-2	9/16/2010	<1.0	<1.0	<1.0	4.8
MW-2	12/8/2010	<1.0	<1.0	<1.0	<3.0
MW-2	3/10/2011	<1.0	<1.0	<1.0	<3.0
MW-2	6/15/2011	<1.0	<1.0	<1.0	<3.0
MW-2	9/13/2011	<1.0	<1.0	<1.0	17.8
MW-2	1/6/2012	<1.0	<1.0	<1.0	<3.0
MW-2	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-2	6/12/2012	<1.0	<1.0	<1.0	<3.0
MW-2	9/27/2012	<1.0	<1.0	<1.0	18.5
MW-2	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-2	3/4/2013	NSP	NSP	NSP	NSP
MW-2	6/25/2013	<2.0	<2.0	8.1	19

Well Name	Sample Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (µg/L)
NMWQCC S	Standard (µg/L)	10	750	750	620
MW-3	1/28/1999	7,100	5,900	260	4,130
MW-3	4/14/1999	6,700	3,100	220	3,360
MW-3	9/27/1999*	5,800	2,800	260	3,560
MW-3	11/15/1999*	5,200	1,800	200	2,970
MW-3	3/20/2000*	3,900	460	230	1,710
MW-3	6/7/2000*	4,400	64	190	1,232
MW-3	2/13/2001	7,250	1,660	305	5,800
MW-3	5/9/2001	7,810	1,860	531	7,610
MW-3	11/2/2001	6,700	7,400	420	7,900
MW-3	9/24/2003*	5,800	7,300	320	5,700
MW-3	12/17/2003	4,900	5,300	280	5,200
MW-3	9/19/2004*	5,400	9,500	310	6,500
MW-3	12/4/2004*	5,700	11,000	330	7,100
MW-3	3/9/2005*	4,700	7,900	280	5,600
MW-3	6/16/2005*	6,100	9,800	380	6,600
MW-3	9/17/2005	4,500	10,000	260	5,900
MW-3	12/1/2005*	5,570	9,970	324	6,760
MW-3	3/20/2010	3,590	1,990	252	2,310
MW-3	6/22/2010	2,710	1,080	191	1,170
MW-3	9/16/2010	3,240	3,630	219	2,210
MW-3	12/8/2010	2,950	3,380	229	1,900
MW-3	3/10/2011	1,800	729	122	1,900
MW-3	6/15/2011	2,150	1,710	124	1,000
MW-3	9/13/2011	3,460	4,500	330	4,670
MW-3	1/6/2012	1,790	1,970	144	1,400
MW-3	4/6/2012	1,900	127	955	1,040
MW-3	6/12/2012	2,700	203	4,990	2,890
MW-3	9/27/2012	2,070	194	4,380	2,690
MW-3	12/7/2012	1,650	145	1,810	1,630
MW-3	3/4/2013	1,200	720	88	680
MW-3	6/25/2013	2,300	3,300	250	4,000
MW-3	12/2/2013	2,900	7,700	350	5,700
MW-3	6/16/2014	1,700	1,400	120	3,100
MW-3	12/2/2014	910	600	110	1,500
11111 3	1	720	000		1,000
MW-4	1/28/1999*	1500	10,000	810	9,300
MW-4	4/14/1999*	280	30	5.0	500
MW-4	9/27/1999	56	<0.5	3.6	22
MW-4	11/15/1999	120	<0.5	8.1	41.5
MW-4	3/20/2000	250	<0.5	45	47
MW-4	6/7/2000	270	1.6	5.6	10.2
MW-4	2/13/2001	353	3.85	69.5	59.8
MW-4	5/9/2001	684	6.10	110	97.2
MW-4	11/2/2001	480	7.9	84	34
MW-4	9/24/2003	190	45	57	60
MW-4	12/17/2003	200	2.9	58	<5.0
MW-4	12/4/2004	170	<2.0	49	<5.0
MW-4	9/19/2004	55	<2.0	14	<5.0
MW-4	3/9/2005	68	<2.0	22	18
MW-4	6/16/2005	130	<2.0	40	<5.0
MW-4	9/17/2005	100	<2.0	38	55
MW-4	12/6/2005	100	<2.0	36.6	<5.0
MW-4	4/6/2012	NS	NS	NS	NS
1A1 AA	7/0/2012	1/10	1/12	140	2773

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)
NMWQCC S	l tandard (μg/L)	10	750	750	620
MW-4	6/12/2012	NS	NS	NS	NS
MW-4	9/27/2012	NS	NS	NS	NS
MW-4	12/7/2012	NS	NS	NS	NS
MW-4**	3/4/2013	<2.0	<2.0	<2.0	<4.0
MW-4**	6/25/2013	DEST	DEST	DEST	DEST
	L				
MW-5	1/28/1999*	1,600	10,000	820	9,500
MW-5	4/14/1999*	310	26	3.6	479
MW-5	9/27/1999	< 0.5	< 0.5	1.5	2
MW-5	11/15/1999*	<2.5	6	39.0	<3.0
MW-5	3/20/2000	5.1	< 0.5	210.0	8.0
MW-5	6/7/2000	1.5	< 0.5	3.3	2.9
MW-5	2/13/2001	3.49	<1	222	31.5
MW-5	5/9/2001	4.68	20.8	244	28.7
MW-5	11/2/2001	2.8	<2.0	200	13
MW-5	3/4/2013	DEST	DEST	DEST	DEST
	•	•		•	
MW-6	9/27/1999*	16,000	460.0	280	1,299
MW-6	11/15/1999*	20,000	940	330	1,640
MW-6	3/20/2000*	18,000	630	380	1,530
MW-6	6/7/2000*	19,000	820	370	1,960
MW-6	2/13/2001	22,300	60	358	1,560
MW-6	5/9/2001	33,900	2,310	577	3,820
MW-6	11/2/2001	31,000	2,200	730	4,500
MW-6	9/24/2003*	18,000	1,200	370	2,000
MW-6	12/17/2003*	21,000	<400	500	2,200
MW-6	12/4/2004*	16,000	120	360	1,800
MW-6	9/19/2004*	18,000	1,900	380	2,300
MW-6	3/9/2005*	19,000	810	410	2,100
MW-6	6/16/2005*	24,000	<400	620	2,500
MW-6	9/17/2005	15,000	370	380	1,400
MW-6	12/1/2005*	15,600	957	460	2,580
MW-6	3/20/2010	19,400	10,900	570	3,330
MW-6	6/22/2010	13,500	<100	411	16,740
MW-6	9/16/2010	10,200	2,190	280	1,410
MW-6	12/8/2010	10,000	495	380	1,510
MW-6	3/10/2011	13,000	4,260	380	1,740
MW-6	6/15/2011	14,400	518	364	1,450
MW-6	9/13/2011	12,300	2,570	498	2,730
MW-6	1/6/2012	11,600	730	339	1,660
MW-6	4/6/2012	13,800	333	3,070	1,590
MW-6	6/12/2012	13,000	406	1,010	1,560
MW-6	9/27/2012	10,300	360	3,430	2,070
MW-6	12/7/2012	10,200	315	1,540	1,760
MW-6	3/4/2013	7,900	180	5.4	300
MW-6	6/25/2013	10,000	270	340	920
MW-6	12/2/2013	8,400	250	250	930
MW-6	6/16/2014	9,300	<100	270	350
MW-6	12/2/2014	6,600	120	210	700
141 44 -O	12/2/2014	0,000	120	210	700
MW-7	10/14/1999	30	120	8.9	165
MW-7	11/15/1999	0.5	1.3	0.5	4.6
MW-7	3/20/2000	5.5	0.8	0.9	4.7

***			 (
Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)
	Standard (µg/L)	10	750	750	620
MW-7	6/7/2000	<0.5	<0.5	<0.5	<1.5
MW-7	2/13/2001	<1	<1	<1	<1
MW-7	5/9/2001	4.00	<1	<1	<1
MW-7	11/2/2001	16	<2.0	<2.0	2
MW-7	4/6/2012	NS	NS	NS	NS
MW-7	6/12/2012	NS	NS	NS	NS
MW-7	9/27/2012	NS	NS	NS	NS
MW-7	12/7/2012	NS	NS	NS	NS
MW-7	3/4/2013	DEST	DEST	DEST	DEST
MW-8	3/20/2000*	2,400	2,300	55.0	540
MW-8	6/7/2000*	1,100	130	27.0	106.7
MW-8	2/13/2001	613	16.2	13.0	12.4
MW-8	5/9/2001	182	3.65	6.98	2.41
MW-8	11/2/2001	370	<2.0	8.9	2.0
MW-8	9/24/2003	78	2.2	4.2	<5.0
MW-8	12/17/2003	55	<2.0	3.2	<5.0
MW-8	12/4/2004	19	<2.0	<2.0	<5.0
MW-8	9/19/2004	81	<2.0	2.8	<5.0
MW-8	3/9/2005	210*	4.6	5.2	8.6
MW-8	6/16/2005	43	<2.0	<2.0	<5.0
MW-8	9/17/2005	38	<2.0	<2.0	<5.0
MW-8	12/1/2005	23	<2.0	<2.0	<5.0
MW-8	3/20/2010	6.3	<1.0	<1.0	<3.0
MW-8	6/22/2010	3.0	<1.0	<1.0	<3.0
MW-8	9/16/2010	22.9	<1.0	<1.0	<3.0
MW-8	12/8/2010	<1.0	<1.0	<1.0	<3.0
MW-8	3/10/2011	2	<1.0	<1.0	<3.0
MW-8	6/15/2011	4.1	<1.0	<1.0	<3.0
MW-8	9/13/2011	1.9	<1.0	<1.0	<3.0
MW-8	1/6/2012	2.4	<1.0	<1.0	<3.0
MW-8	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-8	6/12/2012	2.5	<1.0	<1.0	<3.0
MW-8	9/27/2012	<1.0	<1.0	<1.0	<3.0
MW-8	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-8	3/4/2013	<1.0	<1.0	<1.0	<2.0
1.111 0	3/ 1/2013	*****	41.0	41.0	(2.0
MW-9	3/20/2000	<0.5	1.4	<0.5	1.5
MW-9	6/7/2000	<0.5	<0.5	<0.5	<1.5
MW-9	2/13/2001	<1	<1	<1	<1
MW-9	5/9/2001	<1	<1	<1	<1
MW-9	11/2/2001	150	<2.0	<2.0	<2.0
MW-9	9/24/2003	86	<2.0	<2.0	<5.0
		69	<2.0	<2.0	<5.0
MW-9	12/17/2003 12/4/2004	5.2	<2.0	<2.0	<5.0
MW-9	9/19/2004	45		+	
MW-9	-		<2.0	<2.0	<5.0
MW-9	3/9/2005	3.8	<2.0	<2.0	<5.0
MW-9	6/16/2005	<2.0	<2.0	<2.0	<5.0
MW-9	9/17/2005	<2.0	<2.0	<2.0	<5.0
MW-9	12/1/2005	<2.0	<2.0	<2.0	<5.0
MW-9	3/20/2010	<1.0	<1.0	<1.0	<3.0
MW-9	6/22/2010	<1.0	<1.0	<3.0	<3.0
MW-9	9/16/2010	8.6	<1.0	<1.0	<3.0

GROUNDWATER LABORATORY ANALYTICAL RESULTS JICARILLA CONTRACT 147-6 WILLIAMS FIELD SERVICES, LLC

Well Name	Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L
NMWQCC Standard (µg/L)		10	750	750	620
MW-9	12/8/2010	7.8	<1.0	<1.0	<3.0
MW-9	3/10/2011	<1.0	<1.0	<1.0	<3.0
MW-9	6/15/2011	<1.0	<1.0	<1.0	<3.0
MW-9	9/13/2011	<1.0	<1.0	<1.0	<3.0
MW-9	1/6/2012	<1.0	<1.0	<1.0	<3.0
MW-9	4/6/2012	<1.0	<1.0	<1.0	<3.0
MW-9	6/12/2012	<1.0	2.1	<1.0	<3.0
MW-9	9/27/2012	<1.0	<1.0	<1.0	<3.0
MW-9	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-9	3/4/2013	<2.0	<2.0	<2.0	<4.0
MW-9	6/25/2013	<2.0	<2.0	<2.0	<4.0
MW-10	3/20/2000	0.8	2.9	<0.5	1.5
MW-10	6/7/2000	<0.5	<0.5	<0.5	<1.5
MW-10	2/13/2001	<1	<1	1.5	<1
MW-10	5/9/2001	<1	<1	<1	<1
MW-10	11/2/2001	<1.0	<2.0	<2.0	<2.0
MW-10	4/6/2012	NS	NS	NS	NS
MW-10	6/12/2012	NS	NS	NS	NS
MW-10	9/27/2012	NS	NS	NS	NS
MW-10	12/7/2012	<1.0	<1.0	<1.0	<3.0
MW-10	3/4/2013	NSP	NSP	NSP	NSP
MW-10	6/25/2013	<2.0	<2.0	<2.0	<4.0
	T		T		
MW-11	12/2/2013	<1.0	6.5	2.7	39
MW-12	12/2/2013	12	<1.0	74	<2.0
MW-12	6/16/2014	3.0	<1.0	42	<2.0
MW-12	12/2/2014	2.7	<1.0	29	<2.0

Notes:

- < indicates result is less than laboratory reporting detection limit
- * indicates sample was diluted
- ** Sample identified as MW-4 on laboratory reports was later determined to be an unknown well and MW-4 was determined to be destroyed

 $\mu g/L$ - micrograms per liter

Bold - indicates sample exceeds NMWQCC standard

DEST - well has been destroyed

NMWQCC - New Mexico Water Quality Control Commission

NS - not sampled

NSC - not sampled due to eight quarters below NMWQCC standards

NSP - not sampled due to the presence of free phase hydrocarbons in the well

APPENDIX A 2014 FIELD NOTES

	· · · · · · · · · · · · · · · · · · ·		Water So	ample Coll	ection Forn	<u>n</u>
Sample Loc	cation	Sicarilla	Contract	4147	Client	Williams Field Services
Sample Da		<u> </u>	11/11/4		Project Name	San Juan Basin Remediation
Sample Tin)nO		Project #	034013010
Sample ID		Min	1-3	•	Sampler	"Etlero
Analyses		BTEX 8021	•	•	·	
Matrix		Groundwat	ter		Laboratory	Hall Environmental
Turn Aroun	nd Time	Standard		- Ship	•	Hand delivery
Depth to W	/ater	20,	73	•	· -	23.44
Time			30	Dep	th to Product	
Vol. of H2O) to purgo	***************************************				
VOI. 01 1120	to purge	(height	of water col	umn * 0.163	31 for 2" well	() () () () () () () () () ()
Method of	Purging	PVC Bailer				
Method of	Sampling	PVC Bailer				
		Total Vol				
	Vol.	H2O		Tauau	Canadanatisday	
Time	Removed	removed (gal.)	pH (std. units)	Temp.	Conductivity (us or ms)	Comments
1140	(gal.)		1.72	61.3	4.34	Yellowish clear, whitebury
11-0	0.20	0.25	7.80	59.8	11 111	HCodor HCodor
	V . XO	0.75	+-00	5-00	4.14	Bailea And
		<u> </u>				Darves (19)
	<u> </u>					
				•		,
	Palla	ما مانونا	a Cla-	OU VO		DO gallons
comments:	Daile	u un	atter	pura)	114 U.	20 gallons
		J		· ·	U	<u> </u>
				<u>. </u>		·
				· .		
Donesilla Di		- CODE	· 1 \	· \n. \ -	n 7- n	
Describe De			1801 CM	y Defor	4 (C) (D)	sng Volumes
Were	Sme			J		
Signature:	Rg.	145			Date:	U/14/14

			Water Sc	imple Coll	ection Form				
Sample Loc	ation	Sicavilla	a Contrac	f#14770	Client	Williams Field Services			
Sample Dat	:e	Vellu			Project Name	San Juan Basin Remediation			
Sample Tim	ne	1326		_	Project#	034013010			
Sample ID		\overline{M}	1-le	_	Sampler	Blevo			
Analyses		BTEX 8021							
Matrix		Groundwat	er		Laboratory	Hall Environmental			
Turn Aroun	d Time	Standard		Ship	ping Method	Hand delivery			
Depth to W	ater	25,3	শ		TD of Well	31.50			
Time		1300)		th to Product				
Vol. of H2O	to purge	\o \U \x (height	of water col	umn * 0.163	× 3 = 11 for 2" well o	2.99 or 0.6524 for 4" well) * 3 well vols			
Method of	Purging	PVC Bailer	•		·				
Method of		PVC Bailer							
	· · · ·	Total Vol							
	Vol.	H2O							
	Removed	removed	pΗ	Temp.	Conductivity				
Time	(gal.)	(gal.)	(std. units)	(¢) <u>←</u>	(us or ms)	Vellowish clear Stight			
1300	0.72	0,25	8,24	1.61	8,20	11000			
	0,92	0.50	8.34	58.5	F6.8	Gray Minor SI)+			
	0.35	0.75	8.35	201	8/39	no change			
	56.0	1.00	8.35	5105	8,43	11 0			
	1000	3.00	8.39	56.7	8.39	Black is n dear minor silt			
	9,35	2.25	8.40	200	8.37	no change			
	0.38	J.20	841	5+1	8.30				
·	0.25	2.75	8.41	54.2	8.33	[1			
	0.95	3.00	8.4	57.5	8.34				
-									
1 1									
				1	_				
Comments:	Wa	ter R	eacted	W/H	CL VI	oAs. Filled 5			
,	Man -	Dreser	ved VI	7Ac		•			
	comments: Water Reacted W/ HCL VDAS. Filled 3 non-preserved vors								
 • • • • • • • • • • • • • • • • • •				*					
Describe De	Describe Deviations from SOP: Set above								
	10/11/10								
Signature		010			Date:				
	and the second of	<u> </u>		*****		ITZ -			

Water Sample Collection Form										
Sample Loc	ation	Ira villa	Contract	-4147	Client	Williams Field Services				
Sample Dat		0	1 u 14		Project Name	San Juan Basin Remediation				
Sample Tim		ì	245		Project#	034013010				
Sample ID		MW-		_	Sampler	3 Herb				
Analyses		BTEX 8021		• 						
Matrix		Groundwat	er		Laboratory	Hall Environmental				
Turn Aroun	ıd Time	Standard		Ship	ping Method	Hand delivery				
Depth to W	/ater	.21.4	5	_	TD of Well	31.84				
Time		12	10		th to Product					
Vol. of H2O	to purge	(height	v . ly3 of water col	umn * 0.163	53 = 4.9 31 for 2" well	or 0.6524 for 4" well) * 3 well vols				
Method of	Purging	PVC Bailer								
Method of	Sampling	PVC Bailer								
<u> </u>	T	Total Vol			<u> </u>					
	Vol.	H2O]					
	Removed	removed	pH (abel punita)	Temp.	Conductivity	Comments				
Time	(gal.)	(gal.)	(std. units)	(A)F	- C-	1 1000000				
1910	0.25	0.92	8.17	59.5	1902.45	Brown Silty				
	0.32	0.50	^	56.7		no Change				
	0.25	0.75	8,27	56.5	2.08 ms	110 00000				
	0.25	1.00	8.33	58.5	2.04	Granish Brown Verysilfe				
	1.00	3.00	8.38	58.5	1.98	Cloudy gray less silt				
	1.00	3.00	8.38	57.6	201	000000000000000000000000000000000000000				
-	1.00	4.00	8.40	57.4	2.00	nocharce				
	i	4.50	8.41	57.7	2.00	etterst "				
	0.35	11 70	841	57.4	2.03	Clarish Gray Minor Sil+				
	0.35	5,00	8.42	57.7	2.04	Close v misser Sitt				
	0.25	5,00	8.74	3 4 , 1	57.07	gent mine.				
	<u> </u>									
	. <u> </u>									
1	<u> </u>		<u> </u>							
	1	<u> </u>	<u>L,</u>							
Comments:										
			<u> </u>							
				·						
				·						
Describe De	eviations fro	om SOP:	<u> </u>							
		10			1					
Signature	· Fd	10			_Date: \	1114/14				
#		- 21 Mg 1			and the second of the second o	ITZ -				

Water Sample Collection Form									
Sample Loca	ition	Jicarilla Con	tract		Client	Williams Field Services			
Sample Date		12/2/14		Р	Project Name San Juan Basin Remediation				
Sample Time		1235				034013010			
Sample ID		MW-6			Sampler	Daniel Newman			
Analyses		BTEX 8021							
Matrix		Groundwate	er		· ·	Hall Environmental			
Turn Around	d Time	Standard		Ship	ping Method				
Depth to Wa	ater	26.31			TD of Well				
Time		1200			th to Product				
Vol. of H2O	to purge	31.50-20	31=5.19	1×0.(63	1=0.841	6 ×3 = 2.53			
		(height	of water colu	ımn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols			
Method of I	Purging	PVC Bailer							
Method of S	Sampling	PVC Bailer							
	<u> </u>	Total Vol							
	Vol.	H2O			Constitution				
	Removed	removed	pH (std.units)	Temp. (C)	Conductivity (us or ms)	Comments			
Time	(gal.)	(gal.)	(std. units)	56, 5	2,51	Black, sed, odar, Nosheen			
1200	000	0.50	9,47	56.7	251	No change			
	().d>	0.75	8,43	56,7	2,52	Nochange			
<u> </u>	0.00	621,00	8.42	56,3	251	NO change			
	0.83	1,50	8.41	66.1	0.53	VI) change			
<u> </u>	0.50	200	8,40	55.9	252	NO change			
<u> </u>	0.50	250	942	56.1	2.54	NO change			
	0.50	3,00	8.45	56.1	7.55	NO change			
		7,00	000	700					
					,				
	 								
	 								
	 								
	 								
	 				(
	 								
	KII	9 1101	NALL	S					
Comments		- 6 - 1	VOA						
	<u>. Law</u> f	<u> </u>	lons_	1					
Docon Equipment									
			•						
			- AK		,				
Describe D	eviations f	rom SOP:	N/P						
		-/ }		<u> </u>	<u> </u>				
Signature	ر - ا	//,	1/		Date:	izlelia			
Jigilatuli	~ <i></i>								
<u></u>						/LIZ			

		Water Sa	<u>mple Colle</u>	ction Form	, i		
Sample Location	Jicarilla Con	tract		Client _	Williams Field Services		
Sample Date	1221		Р	roject Name	San Juan Basin Remediation		
Sample Time	1310		Project # 034013010				
Sample ID	MW-3			Sampler	Daniel Newman		
Analyses	BTEX 8021						
Matrix	Groundwate	er		Laboratory	Hall Environmental		
Turn Around Time	Standard		Ship	oing Method	Christine		
Depth to Water	21,59			TD of Well	23,44		
Time	1250		Dept	h to Product	N/A		
Vol. of H2O to purge	2344-21	59 -19	5 x 0.(63/	=,30 x	3 = 20 0,905		
VOI, Of 1120 to purge	(height	of water colu	ımn * 0.163	1 for 2" well o	or 0.6524 for 4" well) * 3 well vols		
Method of Purging	PVC Bailer				8		
Method of Sampling	PVC Bailer						
	Total Vol						
Vol.	H2O	,					
Removed		pН	Temp.	Conductivity (us or ms)	Comments		
Time (gal.)	(gal.)	(std. units)	(C)	1,51	clear Black, Slight a dor		
1250 13	115	7.81	57.0	1.49	Black, sed No sheen stighted		
10	325	7.81	57,1	1,50	No change Bailing do		
10	0.35	7.8	57.2	1,50	Nochange Bailing down		
10	0,45	7, 81	51.2		, 0		
		 	 				
 		 		 			
		<u> </u>	<u> </u>	 	. /		
			 				
				,			
		 					
 		 			N /		
		 					
 			 	V \	200		
 			 				
 							
	<u> </u>		- A 43				
Comments 3 N O N	plesei	<u>ve</u> v	0F1/				
did							
Deron equipment							
Bail 645 gallons							
Bailing down							
Describe Deviations from SOP: APA Did not bed complete amount of water, Bailing down							
Signature:				_Date:	12/2/14		
		<u> </u>		<u> </u>	Liz)-		

		·	<u>Water Sa.</u>	<u>mple Colle</u>	ction Form	
Sample Loca	tion	Jicarilla Con	tract		Client \	Williams Field Services
Sample Date	•	12/2/14		Pi	-	San Juan Basin Remediation
Sample Time	•	1355		·	· -	034013010
Sample ID	-	MW-12			· -	Daniel Newman
Analyses		BTEX 8021			• 	
Matrix		Groundwate	er		Laboratory	Hall Environmental
Turn Around	l Time	Standard		Shipr	oing Method	Christine
Depth to Wa	,	22,20		·· P\	TD of Well	
Time		1320			h to Product	NA
	to pure-	310400	22000C	4 x0,163	1 = 1.57 x	03 = 4.71
Vol. of H2O	to purge	JLOT A	of water coli	ımn * 0.163	1 for 2" well a	or 0.6524 for 4" well) * 3 well vols
Method of F) _{Urging}	PVC Bailer		2.200	-	
Method of S		PVC Bailer				
Medion of 5						
	Vol.	Total Vol H2O		:		
	Removed	H2O removed	рН	Temp.	Conductivity	1
Time	(gal.)	(gal.)	(std. units)	(C)	(us or ms)	Comments
1320	0,25	0,25	8.11	57.9	1394	Clear No sec No sneen
	025	0,50	8.13	57.4	1627	clear, sed, NO odar, Nosheev
	OAS	0.75	8.19	57.2	47	NO change
	Das	1.00	8.19	572	1794	He gray, sed, NO odor, Noshe
	0,50	1,30	8.27	37.0	1997	Mochange
	0.511	200	8.35	56.8	1778	Nochange
	1.00	300	8 85 2		1775	NO change
	0,50	350	8.17	56.8	1739	NO Change
	0,50	4,00	8.15.	36.8	1130	10 change
	n iso	U, 50	8,16	56.8	1729	NO Change
	0,23	4,75	8.15	S6,8	1730	VI
1				<u></u>	ļ	
7.01						
100						· · · · · · · · · · · · · · · · · · ·
	1		L			
	<u>,</u>					
Comments	//	7	10114	ς		
	rge 4	12	zallon	<u></u>		
70	L > HC	LVOF	4	<u> </u>	<u> </u>	
)ecor	1 Equi	gnery	<u> </u>		
			//			
Describe D	eviations fr	om SOP:	NA			
		/				. 1 1
<u></u>	01	10			Date:	12/2/16
Signature	e	10		=		
<u></u>						

APPENDIX B LABORATORY ANALYTICAL REPORTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

June 20, 2014

Brook Herb

LTE

2243 Main Ave Suite 3

Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: Jicarilla Contract 147-6 OrderNo.: 1406727

Dear Brook Herb:

Hall Environmental Analysis Laboratory received 4 sample(s) on 6/17/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order **1406727**

Date Reported: 6/20/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-3

 Project:
 Jicarilla Contract 147-6
 Collection Date: 6/16/2014 12:00:00 PM

 Lab ID:
 1406727-001
 Matrix: AQUEOUS
 Received Date: 6/17/2014 7:45:00 AM

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8021B: VOLATILES** Analyst: NSB 100 6/18/2014 7:29:06 PM Benzene 1700 100 Ρ μg/L R19363 Ρ Toluene 1400 100 μg/L 100 6/18/2014 7:29:06 PM R19363 Ethylbenzene 120 100 Ρ 100 6/18/2014 7:29:06 PM R19363 μg/L Xylenes, Total 3100 200 Ρ μg/L 100 6/18/2014 7:29:06 PM R19363 Surr: 4-Bromofluorobenzene %REC 100 6/18/2014 7:29:06 PM R19363 106 82.9-139

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1406727**

Hall Environmental Analysis Laboratory, Inc. Date Reported: 6/20/2014

CLIENT: LTE Client Sample ID: MW-6

 Project:
 Jicarilla Contract 147-6
 Collection Date: 6/16/2014 1:25:00 PM

 Lab ID:
 1406727-002
 Matrix: AQUEOUS
 Received Date: 6/17/2014 7:45:00 AM

Analyses	Result	RL (Qual	Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	9300	100	Р	μg/L	100 6/18/2014 7:57:44 PM	R19363
Toluene	ND	100	Р	μg/L	100 6/18/2014 7:57:44 PM	R19363
Ethylbenzene	270	100	Р	μg/L	100 6/18/2014 7:57:44 PM	R19363
Xylenes, Total	350	200	Р	μg/L	100 6/18/2014 7:57:44 PM	R19363
Surr: 4-Bromofluorobenzene	104	82.9-139	Р	%REC	100 6/18/2014 7:57:44 PM	R19363

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- Page 2 of 5
- RL Reporting Detection Limit

Received Date: 6/17/2014 7:45:00 AM

Lab Order 1406727

Date Reported: 6/20/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-12

Project: Jicarilla Contract 147-6 Collection Date: 6/16/2014 12:45:00 PM Matrix: AQUEOUS

Analyses Result **RL Qual Units DF** Date Analyzed Batch **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene 3.0 1.0 μg/L 6/18/2014 8:26:19 PM R19363 Toluene ND 1.0 μg/L 6/18/2014 8:26:19 PM R19363 Ethylbenzene 42 1.0 6/18/2014 8:26:19 PM R19363 μg/L Xylenes, Total ND 2.0 μg/L 6/18/2014 8:26:19 PM R19363 Surr: 4-Bromofluorobenzene %REC R19363 121 82.9-139 6/18/2014 8:26:19 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Lab ID:

1406727-003

- Value exceeds Maximum Contaminant Level.
- Ε Value above quantitation range
- Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 5

- P Sample pH greater than 2.
- RLReporting Detection Limit

Lab Order **1406727**

Date Reported: 6/20/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: Trip Blank

Project: Jicarilla Contract 147-6 Collection Date:

Lab ID: 1406727-004 **Matrix:** TRIP BLANK **Received Date:** 6/17/2014 7:45:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	1.0	μg/L	1	6/18/2014 9:23:46 PM	R19363
Toluene	ND	1.0	μg/L	1	6/18/2014 9:23:46 PM	R19363
Ethylbenzene	ND	1.0	μg/L	1	6/18/2014 9:23:46 PM	R19363
Xylenes, Total	ND	2.0	μg/L	1	6/18/2014 9:23:46 PM	R19363
Surr: 4-Bromofluorobenzene	99.9	82.9-139	%REC	1	6/18/2014 9:23:46 PM	R19363

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1406727**

20-Jun-14

Client: LTE

Project: Jicarilla Contract 147-6

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles Client ID: **PBW** Batch ID: R19363 RunNo: 19363 Prep Date: Analysis Date: 6/18/2014 SeqNo: 560010 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 ND Ethylbenzene 1.0 Xylenes, Total ND 2.0 Surr: 4-Bromofluorobenzene 21 20.00 106 82.9 139

Sample ID 100NG BTEX LCS SampType: LCS TestCode: EPA Method 8021B: Volatiles Batch ID: R19363 Client ID: **LCSW** RunNo: 19363 Prep Date: Analysis Date: 6/18/2014 SeqNo: 560011 Units: µg/L Analyte **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual LowLimit 22 1.0 20.00 O 112 80 120 Benzene Toluene 22 1.0 20.00 0 109 80 120 Ethylbenzene 22 20.00 0 80 120 1.0 111 Xylenes, Total 66 2.0 60.00 0 110 80 120 22 Surr: 4-Bromofluorobenzene 20.00 109 82.9 139

Sample ID 1406727-001AMS SampType: MS TestCode: EPA Method 8021B: Volatiles RunNo: 19363 Client ID: MW-3 Batch ID: R19363 Analysis Date: 6/18/2014 SeaNo: 560023 Units: µg/L Prep Date: Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene 3900 100 2000 1673 111 71 129 Toluene 3600 100 2000 1360 112 68.4 135 2400 100 2000 69.4 135 Ethylbenzene 124.6 112 200 Xylenes, Total 9600 6000 3078 108 72.4 135 2000 82.9 Surr: 4-Bromofluorobenzene 2100 107 139

Sample ID 1406727-001AMSD SampType: MSD TestCode: EPA Method 8021B: Volatiles Client ID: MW-3 Batch ID: R19363 RunNo: 19363 Prep Date: Analysis Date: 6/18/2014 SeqNo: 560024 Units: µg/L SPK Ref Val %REC %RPD **RPDLimit** Analyte Result **PQL** SPK value LowLimit HighLimit Qual 3700 100 2000 1673 99.4 71 129 6.40 20 Benzene Toluene 3400 100 2000 1360 100 68.4 135 6.41 20 Ethylbenzene 2200 100 2000 124.6 102 69.4 135 8.40 20 Xylenes, Total 9000 200 6000 3078 97.9 72.4 135 6.63 20 Surr: 4-Bromofluorobenzene 2200 2000 82.9 0 0 112 139

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Sample Log-In Check List

Website: www.hallenvironmental.com

Client Name: LTE	Work Order Number:	1406727		RcptNo:	1
Received by/date:	M Ole 17/14		<u> </u>	 	
Logged By: Michelle Ga	rcia 6/17/2014 7:45:00 AM		Michell Gan	uie	
Completed By: Michelle,Ga	rcia 6/17/2014 9:32:08 AM		Mitrell Gon Mitrell Gon	un	
Reviewed By:	ordital 4		·		
Chain of Custody	- Charty				
1. Custody seals intact on sar	mple bottles?	Yes 🗌	No 🗆	Not Present 🗹	
2. Is Chain of Custody comple	ete?	Yes 🗹	No 🗆	Not Present	
3. How was the sample delive	ered?	Courier			
<u>Log In</u>					
4. Was an attempt made to c	cool the samples?	Yes 🗹	No 🗆	na 🗆	
5. Were all samples received	at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗆	na 🗆	
6. Sample(s) in proper contain	iner(s)?	Yes 🗸	No 🗆		
7. Sufficient sample volume f	or indicated test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA	and ONG) properly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to	bottles?	Yes	No 🗹	NA 🗆	
10.VOA vials have zero heads	space?	Yes 🗹	No 🗆	No VOA Vials	
11, Were any sample containe	ers received broken?	Yes 🗀	No 🗹	# of preserved bottles checked	
12.Does paperwork match both		Yes 🗹	No 🗆	for pH:	r >12 unless noted)
13 Are matrices correctly iden		Yes 🗹	No 🗆	Adjusted?	
14. Is it clear what analyses w	ere requested?	Yes 🗹	No 🗆		
15. Were all holding times able (If no, notify customer for a		Yes 🗹	No L_	Checked by:	
Special Handling (if app	licable)				
16. Was client notified of all di		Yes 🗌	No 🗆	NA 🗹	
Person Notified:	Date:]
By Whom:	Via:	eMail	Phone Fax	In Person	
Regarding:					
Client Instructions:					
17. Additional remarks:					
18. Cooler Information	Troduction I continued I continued I	Seal Date	Signed By	I	
Cooler No Temp °C 1 1.8	Condition Seal Intact Seal No Good Yes	ocai Dale	Jigheu by		

5		당 -	Chain-or-Custody Record	חוויים ועלווים ו	<u>ט</u>				_	HALL ENVIRONMENTAL	ш Ц	Z	IR	20	Σ	Ż	¥		
	16	カバア	TEnvironmented	Standard	☐ Rush				•	ANALYSIS LABORATORY	Ţ	SIS		ğ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	AT	O	>	
1	ì			Project Name:				:		www.hallenvironmental.com	naller	viron	nenta		_				
Vailing Address:⊕	ddress		43 Main Ave SEB		Contrac	Jianila Contact 147-Ce	•	4901 Hawkins NE	Hawki	ns NE	- 1	pndne	Albuquerque, NM 87109	Σ	8710				
DUNENDE	1	Ç	(1) \$130)	Project #:	,	(Tel. 5	05-34	Tel. 505-345-3975		Fax	505-345-4107	45-41	107				
Phone #:		972	0.385.109w	034	012210	010					Ana	ysis	Analysis Request	est					
email or Fax#:	ax#:	Myncy	shrive land for	Project Manager:	er:							(⁵0	,						in .
QA/QC Package: □€Standard	ckage:		(acitabila//Ilina) / Jove 1	Boo	he then	2					(SIVI)	S' [†] O	ocB₁≅						
Accreditation	tion	Other	Lever 1 (all validation)	Sampler: D	Becke 1	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					IS 0/79	3'7ON' ⁸	Z808 /		(\			(N -	
□ EDD (Type)	Lype)			1-	rature:										/OA			0 X	
Date	Time	Matrix	Sample Request ID	Container P	Preservative Type	HEAL NO	BTEX + MT	BTEX + MTE B3108 H9T	TPH (Metho	EDB (Metho	PAH's (8310 RCRA 8 Met	IO,∃) anoinA	ioitea¶ 1808	8260B (VOA	-imə2) 0728			. zə ldduR 1i∆	
6/14	1200	ak	MW-3	VPH/3	100)	100				ļ	—	-	-	<u> </u>		ļ			
1 11/01	1325	M9	MW-6	VOM-13	[003]	-002	>								-				
16/14 1	1245	6 m	MW-12	SHUAN	HCI	- (203	Ş												
<u>-</u>			TrioBlank	C) YOU	14	-004	>												,
				 •															
				•															
											_				+			+	_
															-			+	_
Date: Ti	Time:	Relinquished	X X	Received by:	_	Date Time	Remarks:	- 동 - ::			-			-		1		+	
Ĺ	Sec.	4=)		Christul Language	Jant	1/14 1800													
)ate. Ti /v// / K	iine:	Relinquished by:	ed by: Mall	Received by:	3	Dafe Time 1771/4 0745													
1	cessary	samples subi	If necessary samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.	ontracted to other acon	edited laboratories	s. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.	possibili	y. Any s	up-cont	racted d	ata will b	e clearl	y notate	d on the	e analyt	ical rep	j;		

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

December 09, 2014

Ashley Ager LTE 2243 Main Ave Suite 3 Durango, CO 81301

TEL: (970) 946-1093

FAX

RE: Jicarilla Contract OrderNo.: 1412264

Dear Ashley Ager:

Hall Environmental Analysis Laboratory received 4 sample(s) on 12/4/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

Indest

4901 Hawkins NE

Albuquerque, NM 87109

Lab Order 1412264

Date Reported: 12/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-3

 Project:
 Jicarilla Contract
 Collection Date: 12/2/2014 1:10:00 PM

 Lab ID:
 1412264-001
 Matrix: AQUEOUS
 Received Date: 12/4/2014 7:55:00 AM

Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES						Analysi	: NSB
Benzene	910	50	Р	μg/L	50	12/5/2014 9:24:23 PM	R22975
Toluene	600	50	Р	μg/L	50	12/5/2014 9:24:23 PM	R22975
Ethylbenzene	110	50	Р	μg/L	50	12/5/2014 9:24:23 PM	R22975
Xylenes, Total	1500	100	Р	μg/L	50	12/5/2014 9:24:23 PM	R22975
Surr: 4-Bromofluorobenzene	103	66.6-167	Р	%REC	50	12/5/2014 9:24:23 PM	R22975

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 1 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1412264**

Date Reported: 12/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-6

Project: Jicarilla Contract Collection Date: 12/2/2014 12:35:00 PM

Lab ID: 1412264-002 Matrix: AQUEOUS Received Date: 12/4/2014 7:55:00 AM

Analyses	Result	RL (Qual	Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analys	st: NSB
Benzene	6600	100	Р	μg/L	100 12/5/2014 10:18:46 PI	M R22975
Toluene	120	100	Р	μg/L	100 12/5/2014 10:18:46 PI	M R22975
Ethylbenzene	210	100	Р	μg/L	100 12/5/2014 10:18:46 PI	M R22975
Xylenes, Total	700	200	Р	μg/L	100 12/5/2014 10:18:46 PI	M R22975
Surr: 4-Bromofluorobenzene	100	66.6-167	Р	%REC	100 12/5/2014 10:18:46 PI	M R22975

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 2 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1412264**

Date Reported: 12/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: MW-12

 Project:
 Jicarilla Contract
 Collection Date: 12/2/2014 1:55:00 PM

 Lab ID:
 1412264-003
 Matrix: AQUEOUS
 Received Date: 12/4/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES				An	alyst: NSB
Benzene	2.7	1.0	μg/L	1 12/5/2014 10:46:0	0 PM R22975
Toluene	ND	1.0	μg/L	1 12/5/2014 10:46:0	0 PM R22975
Ethylbenzene	29	1.0	μg/L	1 12/5/2014 10:46:0	0 PM R22975
Xylenes, Total	ND	2.0	μg/L	1 12/5/2014 10:46:0	0 PM R22975
Surr: 4-Bromofluorobenzene	119	66.6-167	%REC	1 12/5/2014 10:46:0	0 PM R22975

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 3 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Lab Order **1412264**

Date Reported: 12/9/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: LTE Client Sample ID: TRIP BLANK

Project: Jicarilla Contract Collection Date:

Lab ID: 1412264-004 **Matrix:** TRIP BLANK **Received Date:** 12/4/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analy	st: NSB
Benzene	ND	1.0	μg/L	1	12/5/2014 11:13:18 F	PM R22975
Toluene	ND	1.0	μg/L	1	12/5/2014 11:13:18	PM R22975
Ethylbenzene	ND	1.0	μg/L	1	12/5/2014 11:13:18	PM R22975
Xylenes, Total	ND	2.0	μg/L	1	12/5/2014 11:13:18	PM R22975
Surr: 4-Bromofluorobenzene	102	66.6-167	%REC	1	12/5/2014 11:13:18 F	PM R22975

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

Page 4 of 5

- P Sample pH greater than 2.
- RL Reporting Detection Limit

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1412264**

09-Dec-14

Client: LTE

Project: Jicarilla Contract

Sample ID 5ML RB SampType: MBLK TestCode: EPA Method 8021B: Volatiles PBW RunNo: 22975 Client ID: Batch ID: R22975 Analysis Date: 12/5/2014 Prep Date: SeqNo: 678626 Units: µg/L Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 Ethylbenzene ND 1.0 ND Xylenes, Total 2.0 21 104 Surr: 4-Bromofluorobenzene 20.00 66.6 167

Sample ID 100NG BTEX LC	CS SampT	ype: LC	s	Tes	tCode: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	Batch	n ID: R2	2975	F	RunNo: 2	2975				
Prep Date:	Analysis D	ate: 12	2/5/2014	S	SeqNo: 6	78627	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	18	1.0	20.00	0	90.9	80	120			
Toluene	18	1.0	20.00	0	92.3	80	120			
Ethylbenzene	18	1.0	20.00	0	92.0	80	120			
Xylenes, Total	59	2.0	60.00	0	98.7	80	120			
Surr: 4-Bromofluorobenzene	21		20.00		103	66.6	167			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 5 of 5

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107

Website: www.hallenvironmental.com

Sample Log-In Check List

RcptNo: 1 Work Order Number: 1412264 LTE Client Name: Received by/date: 12/4/2014 7:55:00 AM **Ashley Gallegos** Logged By: **Ashley Gallegos** 12/4/2014 3:04:28 PM Completed By: Reviewed By: A 12/05/14 Chain of Custody No [Not Present Yes 🗌 1 Custody seals intact on sample bottles? No [.] Not Present Yes 😿 2. Is Chain of Custody complete? Courier 3 How was the sample delivered? Log In NA 🗔 No 🗌 4. Was an attempt made to cool the samples? No 🗌 NA 🗌 5. Were all samples received at a temperature of >0° C to 6.0°C No 🗆 Sample(s) in proper container(s)? 7 Sufficient sample volume for indicated test(s)? 8. Are samples (except VOA and ONG) properly preserved? NA [] No 🛃 Yes 🗔 9. Was preservative added to bottles? No VOA Vials Yes 🖈 No 🗀 10. VOA vials have zero headspace? No 🗷 11. Were any sample containers received broken? # of preserved bottles checked for pH: No 🗌 12. Does paperwork match bottle labels? (<2 or >12 unless noted) (Note discrepancies on chain of custody) Adjusted? 13. Are matrices correctly identified on Chain of Custody? 14. Is it clear what analyses were requested? Checked by: No 🗌 Yes 15. Were all holding times able to be met? (If no, notify customer for authorization.) Special Handling (if applicable) NA 🛃 Yes 🗌 No [16. Was client notified of all discrepancies with this order? Date Person Notified: eMail Phone Fax In Person Via: By Whom: Regarding: Client Instructions: 17. Additional remarks: 18. Cooler Information Condition | Seal Intact | Seal No | Cooler No Temp °C Seal Date 1.2 Good

ည်	ain-	of-Cu	Chain-of-Custody Record	Lurn-Around Lime:	ı ime:				_		Ш	2	7	2	HALL ENVIRONMENTAL	Z	A	
Client: [7 E	N. B	I Enironmental	Standard	d □ Rush] L		. •	Z	֡֝֞֝֟֝֓֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֝֟֝֓֓֓֓֡֝֡֝֡֝֡֝֡֝	SIS		ě	ANALYSIS LABORATORY	Ë	K	
		ı		Project Name					_	www.hallenvironmental.com	allen	vironn	nental	com.				
Mailing Address: A	dress:	924	43 Main Ave #3	Jicarill	alla Contract	tract		4901	4901 Hawkins NE	ns NE		endne	rque,	Σ̈́	Albuquerque, NM 87109			
	070	ري	8 8130 l	Project #:	0.120.10			Tel.	Tel. 505-345-3975	5-397	5	Fax !	Fax 505-345-4107	15-41	20			
Phone #:	ajj	# a10 385	<i>(</i> \	, (つ [?						Ana	ysis	Analysis Request)St				
email or F	3X#: (Sage	8	Project Manage	lager:				/			(_þ O	s					
QA/QC Package:	;kage: ન)	☐ Level 4 (Full Validation)	15 P	ex Ager	7					(CIAII	PO4,5	LCB,				<u> </u>	
Accreditation	i o			Sampler:	Daniel	Neuman					2 O / 2	NO ⁵	2808			•		(N
□ NELAP		□ Other	er	On Ice:	XYes	No							} / S		() ic			10
☐ EDD (Type	ype)			Sample Temperature:	nperature:	1.2											_	Y) s
Date	Time	Matrix	Sample Request ID	Container Type and #	Preservative † Type	HEAL NO.		TEX + MT	LPH (Meth	rteM) 80	PAH's (831 PAH's (831),∃) anoinA	oltse91 Pesti	OV) 80528	mə&) 0√ऽ8			elddu8 ıiA
) xike	(310	730	MW-3	V6A [3	8	100 -	-	↓		ļ	<u> </u>	_	+-	\perp		_		<u> </u>
 	1,335		W C	VOA 13	HCI	C00-	X,											
—	1355	(r(k.)	W10	VION S	HC	- Co3	メ			_								
		3		V04 13	1 000 1	400-	X											
					:						_							\dashv
													_					_
																		_
-						3											_	_
											_			\dashv			_	-
								\dashv					_					_
											_	_		_			-	+
								\dashv			_						\dashv	_
	Time:	Relinquished by	sheat dy.	Received by:	-	Date Time	Rem	Remarks:										
MA	1558	h		Talle I	ansite of	13/4 (55K	-1-											
			No office of the second	news-av	1	12/04/14 x755	1											
	f necessary	Samples sut		to other	r accredited laboratories	This serves	Idissod si	lity. Any	-sup-con	tracted o	ata will	be clear	y notate	d on th	e analytic	sal repor	نها	