AP - 111

SUMMARY REPORT EVAPORATION POND REPAIRS (2)

12/17/2015

APPENDICES

APPENDIX A

Photographs

Photo #1: Pond 6 Northwest Corner After Fill Placement - Looking South

Photo #2: Pond 6 Northwest Corner After Fill Placement - Looking North

Photo #3: Pond 7/8 West Berm Under Construction - Looking North (Note how the new crest alignment is shifted to the east)

Photo #4: Pond 11 South Berm Construction Complete - Looking North

Photo #5: Pond 12A South Berm Construction Complete - Looking West

Photo #6: Borrow area north of Pond 11 – Looking West

Photo #7: Pond 5 North Berm Under Construction, Nearly Complete - Looking East

Photo #8: Pond 6 West Berm Under Construction - Looking South

Photo #9: Pond 6 West Berm Under Construction, Nearly Complete - Looking North

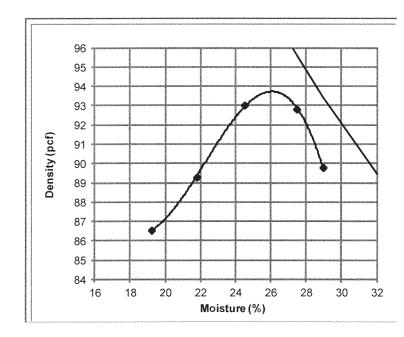
Photo #10: Pond 7/8 and Pond 11 South Berms Under Construction - Looking Northeast

Photo #11: Pond 7/8 and Pond 11 South Berms Under Construction, Nearly Complete - Looking Northeast

Photo #12: Pond 7/8 and Pond 11 South Berms Under Construction, Nearly Complete - Looking Northeast

Photo #13: Density Testing Pond 7/8 with repaired Pond 6 in the background

Photo #14: Moisture conditioning soil in the borrow area.


APPENDIX B

Geotechnical Data

Client:	Bonaguidi Construction 3100 East Aztec Ave.	Report Date: February 03, 2015
	Suite 5	Project #: 14-519-00435.4
	Gallup, NM 87301-	Work Order #: 1
Attn:	Dan Bonaguidi	Lab #: G5692
Project Name:	Pond 6 Dock Repair w/Engineer Firm	Sampled By: Client
Project Name.	Tona o Book Ropan WEngineos Fisht	Date Sampled: 1/26/2015
	Gallup, NM	Visual Description of Medium Dark Reddish Brown Clay Material:
		Sample Source: TP-1 -2.0' to 3.0'
Project Manager:	Lee Lommler	SOILS / AGGREGATES

No Project Specification was Provided.

Sieve Analysis (ASTM C117-04/C136-06) 200 Wash Procedure: A					
Sieve Size Passing					
3/4in.	100%				
1/2in.	98%				
3/8in.	95%				
#4	80%				
#10	73%				
#40	67%				
#50	66%				
#100	63%				

61%

#200

Moisture Density Relationship	: (ASTM D698-07) Method: A
Preparation Method: Dry	Rammer Type: Mechanical
Specific Gravity: 2.651 Assu	med
Maximum Density: 93.	7 (ASTM D2216-10)
Optimum Moisture: 26.1	1 Moisture Content (%): 12.5%

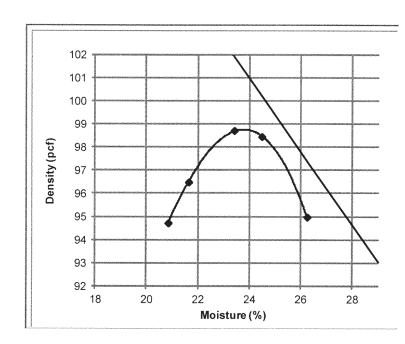
Plasticity Index (ASTM I	<u>D4318-10)</u>
Liquid Limit:	65
Plastic Limit:	25
Plasticity Index:	40

Preparation Method: Dry Liquid Limit Method: A PI Air Dried.

Soil Classification (ASTM D2487-10) CH

Jan

Distribution: Client 🗹 File: 🗹 Supplier: 🗹 Email: 🗌 Other: Addressee ()


er: Addressee () Dan Bonaguidi (email) (1)

AMEC Environment & Infrastructure, Inc. 8519 Jefferson NE Albuquerque, NM 87113 Tel 5058211801 Fax 5058217371

Client:	Bonaguidi Construction 3100 East Aztec Ave.	Report Date: February 03, 2015
	Suite 5	Project #: 14-519-00435.4
	Gallup, NM 87301-	Work Order #: 1
Attn:	Dan Bonaguidi	Lab #: G5693
Project Name:	Pond 6 Dock Repair w/Engineer Firm	Sampled By: Client
r rojoor nume.	Tond o Book Repair Weighteer Finn	Date Sampled: 1/26/2015
	Gallup, NM	Visual Description of Medium to Dark Reddish Brown Clay Material:
Project Manager:	Lee Lommler	Sample Source: TP-2 P-6 SW Corner SOILS / AGGREGATES

No Project Specification was Provided.

Sieve Analysis (A	ASTM C117-04/C136-06)				
200 Wash Procedur	200 Wash Procedure: A				
Sieve Size	Passing				
#4	100%				
#10	96%				
#40	88%				
#50	84%				
#100	78%				

74%

#200

Moisture Density Relationship:	(ASTM D698-07) Method: A
Preparation Method: Dry	Rammer Type: Mechanical
Specific Gravity: 2.651 Assum	ed
Maximum Density: 98.8	(ASTM D2216-10)
Optimum Moisture: 23.8	Moisture Content (%): 26.9%

Plasticity Index (ASTM	<u>D4318-10)</u>
Liquid Limit:	55
Plastic Limit:	23
Plasticity Index:	32

Preparation Method: Dry Liquid Limit Method: A

PI Air Dried.

Soil Classification (ASTM D2487-10) CH

A <u>sel</u> Reviewed By Jan

Distribution: Client 🗹 File: 🗹 Supplier: 🗹 Email: 🗌 Other: Addressee ()

her: Addressee () Dan Bonaguidi (email) (1)

AMEC Environment & Infrastructure, Inc. 8519 Jefferson NE Albuquerque, NM 87113 Tel 5058211801 Fax 5058217371

Client:	Bonaguidi Construction			Report Date:	February 03, 2015
	3100 East Aztec Ave.				
	Suite 5			Project #:	14-519-00435.4
	Gallup, NM 87301-			Work Order #:	1
Attn:	Dan Bonaguidi			Lab #:	G5694
Project Name:	Pond 6 Dock Repair w/Engineer Firm			Sampled By:	Client
rioject Manie.				Date Sampled:	1/26/2015
	Gallup, NM			Visual Description of Material:	Medium Reddish Brown Silty Clay
Droigot Managan			0 / 100000010	Sample Source:	TP-3
Project Manager:	Lee Lommler	SOIL	.S / AGGREGATE	S	
	No Project Specification was	Provided.			
		<u>Sieve An</u>	alysis_(ASTM C11	7-04/C136-06)	
		Sieve Size	Passing		
200 Wash Procedu	ure: A	1 1/2in.	100%		
		1in.	97%		
		1/2in.	95%		

94%

91%

89%

81%

75%

61%

50%

3/8in.

#4

#10

#40

#50

#100

#200

(ASTM D2216-10) Moisture Content (%): 8.1%

Reviewed By: S T Jan

Distribution: Client 🗹 File: 🗹 Supplier: 🗹 Email:

Other: Addressee () Dan Bonaguidi (email) (1)

AMEC Environment & Infrastructure, Inc. 8519 Jefferson NE Albuquerque, NM 87113 Tel 5058211801 Fax 5058217371

ADVANCED TERRA TESTING

ATTERBERG LIMITS ASTM D 4318

.

.

.

.

Atterberg Limits Test ASTM D 4318

Client: Axis Group Inc Job Number: 2905-3 Project: Western Refinery Location: --Project Number: 14-107

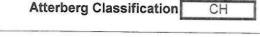
Test Configuration

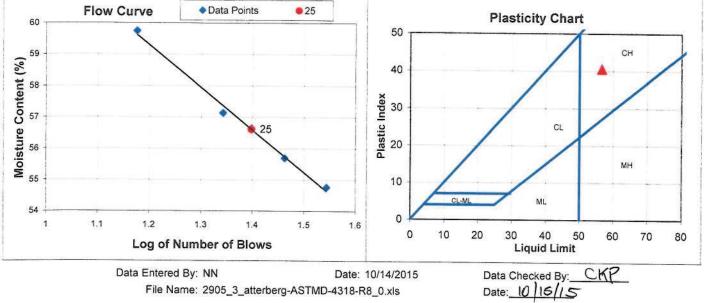
Liquid Limits Device: 1080 Material Size of Fines: -#40

Plastic Limits

Sample 1	Sample 2	Sample 3
6.387	6.404	6.414
5.660	5.666	5.689
0.727	0.738	0.725
1.106	1.132	1.128
16.0	16.3	15.9
	6.387 5.660 0.727 1.106	6.3876.4045.6605.6660.7270.7381.1061.132

Average: 16.0%


Standard Deviation: 0.2%


Liquid Limits

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
Number of Blows:	22	15	29	35	25
Weight of Wet Soil & Pan (g):	9.208	8.627	9,778	8.674	8.770
Weight of Dry Soil & Pan (g):	6.273	5.822	6.688	6.003	5.974
Weight of Water (g):	2.935	2.805	3.090	2.671	2.796
Weight of Pan (g):	1.136	1.127	1.140	1.125	1.038
Moisture Content (%):	57.1	59.7	55.7	54.8	56.6

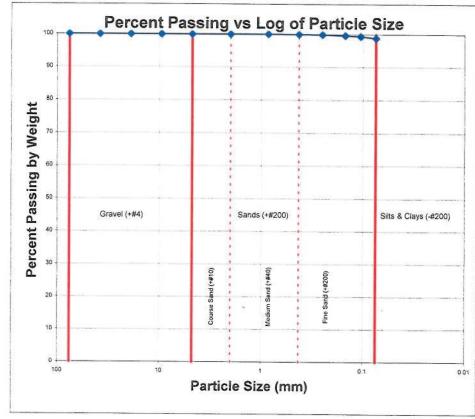
Plastic Limit: 16 Liquid Limit: 57

Plastic Index: 41

Boring Number: Gallup Borrow Depth: --Sample Number: --Test Date: 10/13/2015 Technician: BDF Sampled Date: 6/22/2015 Sampled By: --Method: Method A

MECHANICAL ANALYSIS ASTM D 6913

Particle Size Distribution (Gradation) of Soil Using Sieve Analysis ASTM D 6913


Client: Axis Group Inc Job Number: 2905-3 Project: Western Refinery Location: --Project Number: 14-107

Grain Size Data

Boring Number:	Gallup Borrow	
Depth:		
Sample Number:		
Sampled Date:		Sampled By:
(+) Wash Date:		Technician:
(-) Wash Date:	10/14/15	Technician: BDF

	Sieve	Sieve Size	Weight of Retained Soil	Weight of	Weight of Retained	Calculated Weight of Retained	Percent
Hygroscopic Moisture of Fines	Number	(mm)	& Pan (g)	Pan (g)	Soil (g)	Soil (g)	Passing by Weight (%)
Weight of Wet Soil & Pan (g): 1026.36	3"	76.2	0.00	0.00	0.00	0.00	100.0
Weight of Dry Soil & Pan (g): 1013.48	1.5"	38.10	0.00	0.00	0.00	0.00	100.0
Weight of Water (g): 12.88	3/4"	19.05	0.00	0.00	0.00	0.00	100.0
Weight of Pan (g): 814.67	3/8"	9.525	0.00	0.00	0.00	0.00	100.0
Weight of Dry Soil (g): 198.81	#4	4.750	0.00	0.00	0.00	0.00	100.0
Moisture (%): 6.5	#10	2.000	0.00	0.00	0.00	0.00	100.0
	#20	0.850	3.14	3.13	0.01	0.01	100.0
Total Wet Weight of Sample (g): 211.69	#40	0.425	3.15	3.11	0.04	0.04	100.0
Total Dry Weight of Sample (g): 198.81	#60	0.250	3.37	3.20	0.17	0.17	99.9
Calculated Weight Plus #200 (g): 2.21	#100	0.150	3.63	3.20	0.43	0.43	99.7
Moisture of Total Sample (%): 6.5	#140	0.106	3.72	3.19	0.53	0.53	99.4
Percent Retained #200 Sieve (%): 1.1	#200	0.075	4.22	3.20	1.03	1.03	98.9

Wet Weight of Soil (g): 211.69 Dry Weight of Soil (g): 198.81

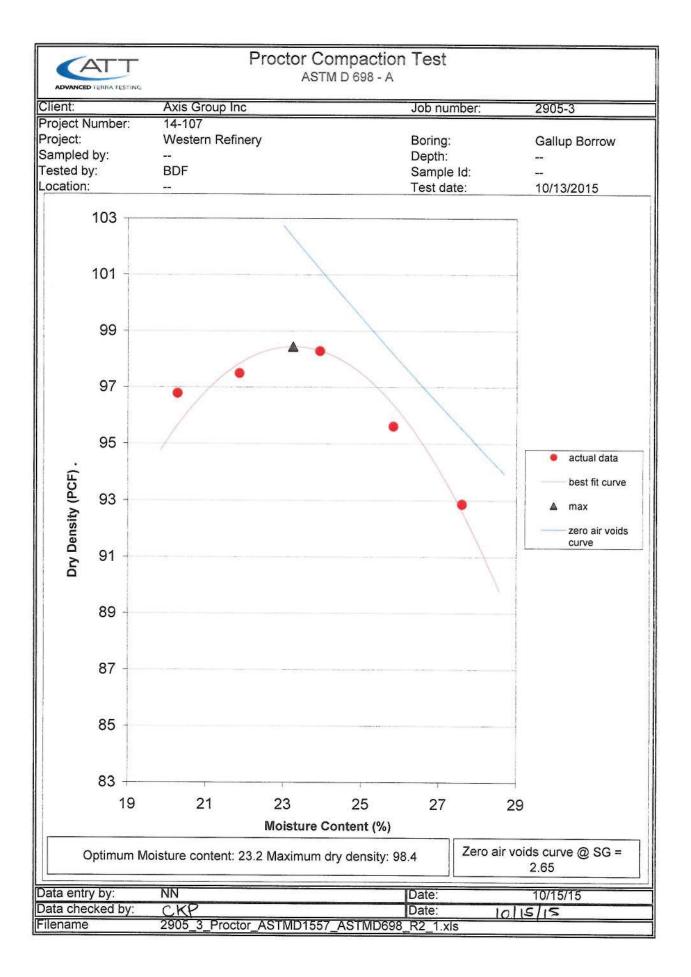
USCS Classification ASTM D 2487

Atterberg Classification: CH Group Symbol: CH

Course-Grained Soils

Percent Gravels (%): 0.00 Percent Sands (%): 1.11 Percent Fines (%): 98.89

> USCS Classification Fat Clay


Data Entered By: NN Date: 10/15/2015 File Name: 2905_3_grainSize-ASTM-C33-D1140-D6319-D2487-R6_0.xls

Checked By:

STANDARD PROCTOR COMPACTION Method A, B or C ASTM D 698

.

A	0	Compaction Test			
ADVANCED FCRRA FESTING	A	ASTM D 698 - A			
Client:	Axis Group Inc			Job number:	2905-3
Project Number:	14-107				
Project:	Western Refinery			Boring:	Gallup Borrow
Sampled by:	1			Depth:	- 1
Tested by:	BDF			Sample Id:	1
Location:	-			Test date:	10/13/2015
Initial conditions					
Wet Wt. Pan and Soil (g):	303.57			Pf (% fines)	100 00%
Dry Wt. Pan and Soil (g):	283.49			Pc (% course)	0.00%
Wt. Water (g):	20.08			Use Correction?	No
Dish Weight:	6.54			Layers	0
Wet Wt. of Total Fines (Ib):	32.19			Blows/Layer	25
Dry Wt. of total fines (lb):	30.01				
Mdc (mass dry coarse) (lb):	0				
Wt of Moisture added (ml)	360	400	320	280	0 440
Wt. of soil & dish (g)	368.32	262.99	392.63	373.06	351.71
Dry wt. soil & dish (g)	298.54	210.45	323.45	311.36	
Net loss of moisture (g)	69.78	52.54	69.18	61.70	
Wt. of dish (g)	6.97	7.02	6.98	6.98	
Net wt. of dry soil (g)	291.57	203.43	316.47	304.38	270.15
Moisture Content	23.9%	25.8%	21.9%	20.3%	
Corrected Moisture Content					
Wt of soil & mold (Ib)	13.84	13.79	13.74	13.66	13.73
Wt. of mold (Ib)	9.78	9.78	9.78	9.78	9.78
Net wt. of wet soil (Ib)	4.06	4.01	3.96	3.86	
Net wt of dry soil (lb)	3.28	3.19	3.25	3.23	
Dry Density, (pcf)	98.3	95.6	97.5	96.8	92.9
Corrected Dry Density (pcf)					
Data entry by:	NN		Ď	Date:	10/15/15
Data checked by:	CKP		Ö	Date:	10/15/15
Cilonomo					

PERMEABILITY TRIAXIAL Flow Pump ASTM 5084

PERMEABILITY TEST - BACK PRESSURE SATURATED - FLOW PUMP METHOD ASTM D 5084

CLIENT BORING NO. DEPTH SAMPLE NO. LOCATION PROJECT PROJECT NO. SOIL DESCR.	Axis Group Inc Gallup Borrow Western Refinery 14-107 Remolded -(#4)			JOB NO. 2905-3 Sampled By Date Sampled Tested By Date Started Date Finished CELL NUMBER PERMEANT CONFINING PRESS. (ps	 CAL 10/16/2015 10/29/2015 5P Tap Water f) 720
MOISTURE/DE		BEFORE TEST	AFTER TEST		
Wt. Soil + Moist Wt. Wet Soil & F Wt. Dry Soil & P Wt. Lost Moistur Wt. of Pan Only Wt. of Dry Soil Moisture Conter Wet Density PC Dry Density PCF	Pan (g) /an (g) /e (g) (g) nt % F	420.36 426.94 347.70 79.24 6.58 341.12 23.2 116.7 94.7	448.87 455.45 347.70 107.75 6.58 341.12 31.6 124.2 94.4		
	, ,	2.408 4.554 3.012 0.00794 0.00797 47.74	(cm) (sq cm) (cm)	29.383	

FLOW PUMP CALCULATIONS

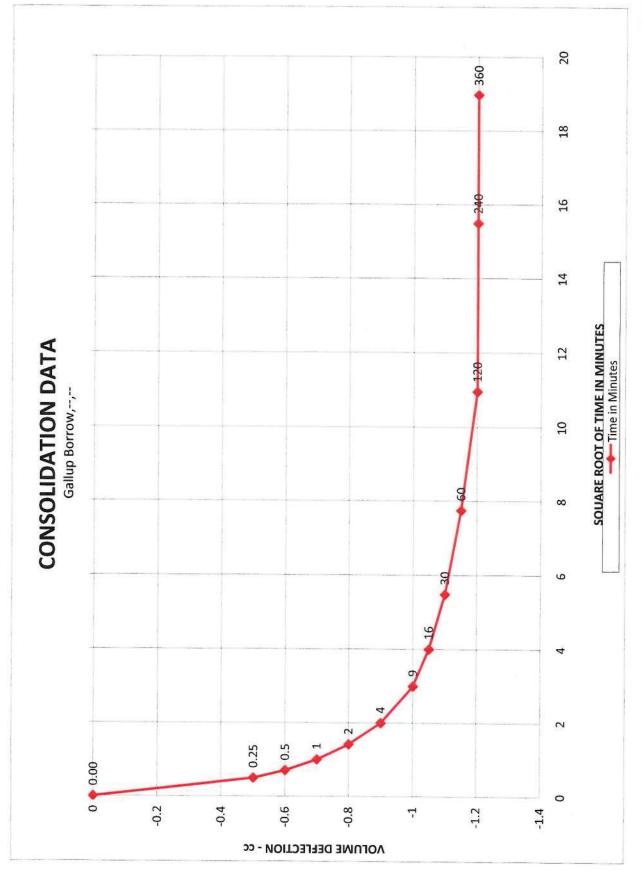
Pump Setting Velocity CM/Sec Q (cc/s) Height Diameter Pressure (psi) Area after consol. (cm*cm) Gradient Permeability k (cm/s) Permeability k (m/s) Back Pressure (psi) Cell Pressure (psi)	99 6.53E-04 2.09E-05 3.009 2.414 0.402 29.524 3.698 1.9E-07 1.9E-09 78.0 83.0 4.799
Ave. Effective Stress (psi)	4,799
Average temperature degree C:	22.5

PERMEABILITY TEST - BACK PRESSURE SATURATED - FLOW PUMP METHOD ASTM D 5084

CLIENT	Axís Group Inc	JOB NO. 2905-3	
		Sampled By	
BORING NO.	Gallup Borrow	Date Sampled	
DEPTH	Read	Tested By	CAL
SAMPLE NO.		Date Started	10/16/2015
LOCATION	-	Date Finished	10/29/2015
PROJECT	Western Refinery	CELL NUMBER	5P
PROJECT NO.	14-107	PERMEANT	Tap Water
SOIL DESCR.	Remolded -(#4)	CONFINING PRESS. (psf)	

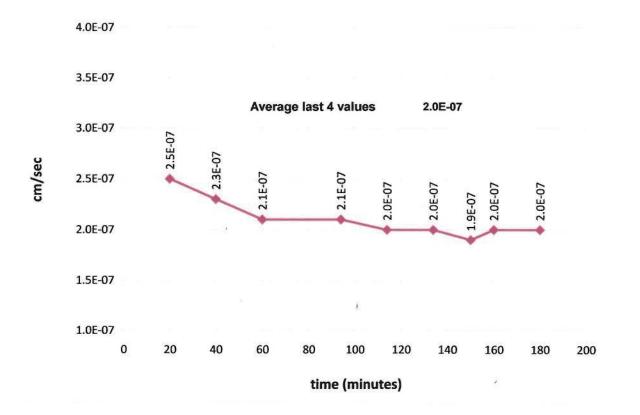
SATURATION DATA

Cell Pres. (PSI)	Back Pres. (PSI)	Burette Reading (CC) Close	Ореп	Pore Pressure (PSI) Close	Open	Change	в
40.0	38.0	2.5	13.1	Close	Open	Change	D
50.0	48.0	8.0	10,3	38.2	46.1	7.9	0.79
60.0	58,0	10.0	10.9	48.1	56.8	8.7	0.87
70.0	68.0	10.9	11.8	58.1	67.1	9.0	0.90
80.0	78.0	11.7	12.5	68.1	77.4	9.3	0.93
90.0		12.5	12.6	77.9	87.4	9.5	0.95


		CONS	OLIDATION	DATA	
	Elapsed	SQRT	Burette	Volume	
	Time	Time	Reading	Defl.	
	(Min)	(Min)	(CC)	(cc)	
	0.00	0.00	12.50	0.00	
	0.25	0.50	13.00	-0.50	
	0.5	0.71	13.10	-0.60	
	1	1.00	13.20	-0.70	
	2	1.41	13.30	-0.80	
	4	2.00	13.40	-0.90	
	9	3.00	13.50	-1.00	
	16	4.00	13.55	-1.05	
	30	5.48	13.60	-1.10	
	60	7.75	13.65	-1.15	
	120	10.95	13.70	-1.20	
	240	15.49	13.70	-1.20	
	360	18.97	13.70	-1.20	
Initial Height (in)	3.012			Init. Vol. (CC)	224.82
Height Change (in)	0.003			Vol. Change (CC)	11.70
Ht. After Cons. (in)	3,009			Cell Exp. (CC)	12.57
Initial Area (sq in)	4.554			Net Change (CC)	-0.87
Area After Cons. (sq in)	4.576			Cons. Vol. (CC)	225.69
Data entry by: NN		Date:	10/30/2015		
Checked by:			ulelie		

 Checked by:
 Carrier Content

 FileName:
 2905_3_OrganonFlowPumpPerm-ASTMD-5084-R3_0.xls



Preliminary Flow Pump Test Data ASTM D5084 Method D

Client:	Axis Group Inc	Boring Number:	Gallup Borrow		
Job Number:	2905-3	Depth:			
Project:	Western Refinery	Sample Number:			
Location:	<u></u>	Sampled Date:	<u></u>	Sampled By:	
Project Number:	14-107	Test Date:	10/29/2015	Technician:	CAL

 Data Entered By:
 CAL

 Date:
 10/29/2015

 File Name:
 2905_3_PrelimPerm_ASTMD-5084-methodD-R1_0.xls

Checked B Date:

Q:\Client Data File\2905\3\PICTURE\DSCF6055

	, in the second s				
Client:	Bonaguidi Construction	Report Date: March 24, 2015			
	3100 East Aztec Ave.				
	Suite 5	Project #: 14-519-00435.4			
	Gallup, NM 87301-	Report #: 40326			
Attn:	Dan Bonaguidi	Tested By: Michael Martinez			
Project Name:	Pond 6 Dock Repair w/Engineer Firm	Date Tested: 3/12/2015			
		Type of Material: Pond Berm Subgrade			

Project Manager: Lee Lommler

Gallup, NM

Sand Cone Apparatus #:1733Sand Cone Appartus Calibrated Volume:0.039

SAND CONE DENSITY TEST (ASTM D1556-07)

				Moist	ure Densi	ty Curve	s Used						
AMEC Lab	Maximum # Density	Optimum Moisture	Test T	ype / Method		Desci	ription						
G5692	93.7	26.1	ASTM	D698-07 / A	Medium	Dark Re	ddish Brow	n Clay					
G5693	98.8	23.8	ASTM D698-07 / A Medium to Dark Reddish Brown Clay										
					Density of Sand	Test Hole	***	Wet	Dry	Maximum	% Com-	% Com- paction	
Test #	ocation	Ele	vation	** Reference	Used (pcf)	Vol. <u>ft</u> ³	Moisture	Density (pcf)	Density (pcf)	Density (pcf)	paction	Required <u>Min Max</u>	
້01 5	Sta. 60+50			01	93.3	0.0930	14.1	114.7	100.5	93.7	100+	1	

** References the Oringinal Test Number for the Nuclear Density Test Performed

*** Molsture determined by oven-dry method (ASTM D2216).

Reviewed By jdc

Distribution: Client 🗹 File: 🗹 Supplier: 🗹 Email: 🗌 Other: Addressee ()

Addressee () Dan Bonaguidi (email) (1)

Client:	Bonaguidi Construction	Report Date: March 24, 2015				
	3100 East Aztec Ave.					
	Suite 5	Project #: 14-519-00435.4				
	Gallup, NM 87301-	Report #: 40326				
Attn:	Dan Bonaguidi	Tested By: Michael Martinez				
Project Name:	Pond 6 Dock Repair w/Engineer Firm	Date Tested: 3/12/2015				
noject Name.	Fond o Dock Repair withighteer film	General Location of Pond Berm Subgrade				
	Gallup, NM	Testing:				

Project Manager: Lee Lommler

FIELD DENSITY TEST USING NUCLEAR DENSITY GAUGE (ASTM D6938-10)

				Moi	istur	re Densi	ty Curve	es Use	∋d							=22
AMEC L		Maximum Density	Optimum Moisture	Test Type / Metho	bd		Desc	riptio	n							
G569	2	93.7	26.1	ASTM D698-07 /	A	Medium	n Dark R	eddish	1 Brov	vn Clay						87
G569	3	98.8	23.8	ASTM D698-07 / ,	A I	Medium	to Dark I	Reddis	sh Bro	own Clay						
Nu	clear C	ensity Gau	ge													_
Make:	Trox	der														
Model #:	344	0-A														
Serial #:	370	66														
				Te	est	Probe Depth	% N	loistu Requ		Wet Density	Dry Density	Maximum Density	% <u>Com-</u>	% Co pacti Requ	ion	
<u>Test #</u>	Local	ion			ode	<u>(in)</u>	Actual	(-)	<u>(+)</u>	(pcf)	(pcf)	(pcf)	paction	Min	Max	
01	Sta. 6	0+50		FSG -6'	D	6	13.3			108.2	95.5	93.7	100+	95		

Reviewed By:	
jdc	

FSG -6'

FSG -6'

D

D

6

6

19.6

14.0

Sta. 60+58

Sta. 60+59

02

03

Distribution: Client 🗸 File: 🗹 Supplier: 🗹 Email: 🗌 Other: Addressee ()

Dan Bonaguidi (email) (1)

109.4

113.4

91.4

99.5

93.7

98.8

98

100 +

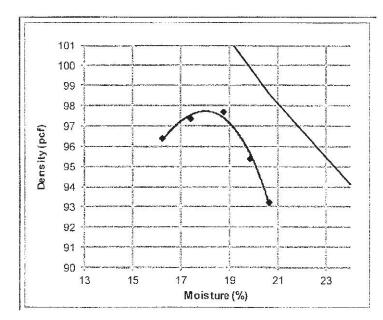
95

95

BTSB=Below Top of Subbase, BTOF= Below Top of Fill, FSG = Finished Subgrade, FBC = Finished Base Course, BOP = Bottom of Pipe, BOB = Bottom of Base, BOF = Bottom of Footing, OGP = Original Ground Prep Test Mode = D for Direct Transmission and B for Backscatter Modes

1 of 1

amec foster wheeler


		Venicetel
Client:	Bonaguidi Construction	Report Date: June 11, 2015
	3100 East Aztec Ave.	
Client: Attn: Project Name:	Suite 5	Project #: 14-519-00435.4
	Gallup, NM 87301-	Work Order #: 2
Attn:	Dan Bonaguidi	Lab #: G5746
Project Name:	Pond 6 Dock Repair w/Engineer Firm	Sampled By: Derek Martinez
	Pond o Dock Repair withgineer Finn	Date Sampled: 6/3/2015
	Gallup, NM	Visual Description of Reddish Clay Material:
		Sample Source: Side of Pond 7 & 8

SOILS / AGGREGATES

Project Manager: Lee Lommler

No Project Specification was Provided.

Sieve Analysis (ASTM C117-04/C136-06) 200 Wash Procedure: A Sieve Size Passing

 Moisture Density Relationship:
 (ASTM D1557-09)
 Method: A

 Preparation Method:
 Dry
 Rammer Type:
 Manual

 Specific Gravity:
 2.35
 Assumed
 Manual

 Maximum Density:
 97.5
 Optimum Moisture:
 18.0

Reviewed By:_______jdc Distribution: Client
File:
Supplier:
Email:
Other: Addressee () Dan Bonaguidi (email) (1) AMEC Environment & Infrastructure. Inc.

AMEC Environment & Infrastructure, Inc. 8519 Jefferson NE Albuquerque, NM 87113 Tel 5058211801 Fax 5058217371

Field Density Soils Results

Report Date: June 22, 2015

Client		
Name:	Bonaguidi Construction	
Address:	3100 East Aztec Ave Gallup, NM	87301
Attention:	Dan Bonaguidi	
PO Number:		
Date Tested:	6/17/2015 by Kevin Olson	
General Description (Material/Location):	Pond 7 & 8	

Project	wheeler
Name:	(14-519-00435.5) Pond 7 & 8 Dock Repair w/Engineer Firm
Address:	Gallup, NM
Phase:	Task:
Manager:	Abe Sandoval
Reference #:	NS20975

FIELD DENSITY TEST USING NUCLEAR DENSITY GAUGE (ASTM D6938-10)

					Moisture [Density (Curve	s Used		-0100000-02 00-0				
Lab/F		Maximum Density 97.5	Optimun Moisture 18.0		st Type/ Meth	od Description Reddish Clay			Source Side of Pond 7 & 8					
	Nuclear De	nsity Gauge		S	itandard Coui	nt	2		ilio and					
Make:					Calibration	Field	d							
Model	#:		Dens	ity:		244;	3							
Serial #: 37041			Mois	ture:		738	5							
					Dester	% M	oistu	re				% Co	mpac	tion
				Test	Probe Depth		Re	quired	Wet Density	Dry Density	Maximum Density		Req	uired
fest#	Location		Elevation	Mode		Actual	(-)	(+)	(lbs/ft^3)		(lbs/ft^3)	Actual	Min	Max
01	Sta. 43+75		FSG -1'	D	6	20.2	3	3	111.4	92.7	97.5	95	95	
02	Sta. 45+65		FSG -1.5'	D	6	20.7	3	3	114.8	95.1	97.5	98	95	

BTSB=Below Top of Subbase, BTOF= Below Top of Fill, FBC= Final Base Course, FSG = Finished Subgrade, FBC = Finished Base Course, BOP = Bottom of Pipe, BOB = Bottom of Base, BOF = Bottom of Footing, OGP = Original Ground Prep Test Mode = D for Direct Transmission and B for Backscatter Modes

Distribution: Dan Bonaguidi

Reviewed By: Abe Sandoval

1 7

Amec Foster Wheeler Environment & Infrastructure, Inc. - 8519 Jefferson NE - Albuquerque, NM 87113 phone: (505) 821-1801 fax: (505) 821-7371

Field Density Soils Results

Report Date: June 26, 2015

Client Name: Bonaguidi Construction Address: 3100 East Aztec Ave Gallup, NM 87301 Attention: Dan Bonaguidi PO Number: Date Tested: Date Tested: 6/23/2015 by Kevin Olson General Description (Material/Location): Dike on Pond #5

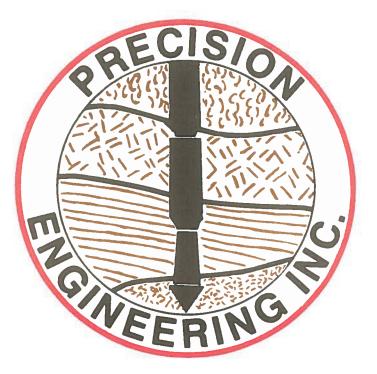
110,000	
Name:	(14-519-00435.5) Pond 7 & 8 Dock Repair w/Engineer Firm
Address:	Gallup, NM
Phase:	Task:
Manager:	Abe Sandoval
Reference #:	NS21609

FIELD DENSITY TEST USING NUCLEAR DENSITY GAUGE (ASTM D6938-10)

Project

					Moisture I	Density	Curve	es Used						
Lab/R	ef. #	Maximum Density	Optimun Moistur		st Type/ Meth	od	I	Descrip	tion		Sour	ce	-	
G5746	;	97.5	97.5 18.0		ASTM D1557/A		Reddish Clay				Side of Pond 7 & 8			
	Nuclear De	nsity Gauge		S	Standard Cou	nt						aldonia 1992a		
Make:	Troxler				Calibration	Fiel	d							
Model i	#: 3430		Dens	sity:		241	8							
Serial #	: 37041		Mois	ture:		72	7							
						% N	loistu	re				% Co	mpac	tion
				Test	Probe Depth		Re	quired	Wet Density	Dry Density	Maximum Density		Req	uired
fest#	Location		Elevation	Mode		Actual	(-)	(+)		(lbs/ft^3)	(lbs/ft^3)	Actual	Min	Max
01	Pond #5, E E Sign	nd, 220' W of	FSG -1'	D	6	17.3	2	2	108.9	92.8	97.5	95	95	
02	Pond #5 @ S	lign	FSG -1.5'	D	6	19.3	2	2	116.0	97.2	97.5	100	95	

BTSB=Below Top of Subbase, BTOF= Below Top of Fill, FBC= Final Base Course, FSG = Finished Subgrade, FBC = Finished Base Course, BOP = Bottom of Pipe, BOB = Bottom of Base, BOF = Bottom of Footing, OGP = Original Ground Prep Test Mode = D for Direct Transmission and B for Backscatter Modes


Distribution: Dan Bonaguidi

Reviewed By: Abe Sandoval

Amec Foster Wheeler Environment & Infrastructure, Inc. - 8519 Jefferson NE - Albuquerque, NM 87113 phone: (505) 821-1801 fax: (505) 821-7371

APPENDIX C

2002 Slope Stability Analysis

GEOTECHNICAL EVALUATION OF EVAPORATION PONDING CONTAINMENT BERMS

GIANT REFINING COMPANY CINIZA REFINERY FILE NO. 00-141

Submitted To:

Ms. Dorinda Mancini Giant Refining Company Route 3, Box 7 Gallup, New Mexico 87301

GEOTECHNICAL EVALUATION OF

EVAPORATION PONDING

CONTAINMENT BERMS

GIANT REFINING COMPANY CINIZA REFINRY GALLUP, NEW MEXICO

FILE NO: 00-141

PREPARED BY PRECISION ENGINEERING, INC. P.O. BOX 422 LAS CRUCES, NEW MEXICO

APPROVED BY

WILLIAM H. KINGSLEY, PE PE NO. 8313 FEBRUARY 12, 2002

Index

1.0 General	1
2.0 Laboratory Investigation	2
3.0 General Site and Soil Conditions	3
4.0 Analysis	4
 5.0 Observations and Recommendations 5.1 Wave Damage 5.2 Berm Height 	6 6 7
6.0 Summary	10

Appendix Contents

Boring and Section Plan

Boring and Dutch Cone Penetration Soundings

Analyzed Sections – 1 through 13

Analysis Sections and Soil Properties Result Data Finite Element Mesh Deformed Finite Element Mesh Deformation Vector Trace

Mechanical Grain Size Summary

Triaxial Shear Results

Key to Classification and Symbols

Soil Classification Chart

February 12, 2002

1.0 General

An evaluation of the structural integrity of the evaporation lagoon berms located at the Giant Refining Company's Ciniza Refinery has been performed. There are a total of twelve (12) lagoons located in three (3) impoundment areas. Within the major impoundment areas individual lagoons are separated by interior dikes. The structural analysis of the exterior containment berms was performed using a conventional method of slices as well as finite element analyses of the berm sections. A total of thirteen (13) sections were evaluated for stability at the lagoons. Critical section locations were established based on visual inspection of the lagoons as well as a survey of the lagoon berms.

Soil profiles were established based on information obtained from ten subsurface investigation locations. Representative samples were obtained from borings through the berms. The boring depths range from fifteen (15) to twenty (20) feet. The borings were advanced using a truck-mounted CME 75 drill equipped with eight and five-eighths ($8-\frac{5}{8}$) inch outside diameter, continuous flight, hollow-stemmed auger. The borings were completed in accordance with ASTM D-1452: Standard Method for Soil Investigation and Sampling by Auger Methods.

As the auger was advanced, continuous visual inspection of cutting returns was maintained. Samples were taken at five (5) foot intervals throughout the boring and at major soil changes. Standard penetration resistance determinations were accomplished in accordance with ASTM D-1586: Standard Method for Penetration Test and Split-Barrel Sampling of Soils. Relatively undisturbed samples were obtained using Shelby tubes in accordance with ASTM D-1587: Thin-Walled Tube Sampling of Soils

for Geotechnical Purposes. Following field classification, the samples were identified and transported to the laboratory for further study.

In addition to borings Dutch Cone soundings were used to evaluate the insitu soil properties and stratigraphy of the embankments and founding soils. Soundings were advanced in accordance with ASTM D-3441: Deep, Quasi-Static, Cone and Friction-Cone Penetration Tests of Soil. Soundings were taken at one (1) foot intervals from the surface through the total depth of the sounding. The soundings were advanced using the hydraulic push capabilities of the CME 75D drill unit.

The logs for the auger borings, and the boring location plan are provided in the appendix of this report. The locations of the sections used for the analysis of the berm embankments are also shown on the boring plan.

2.0 Laboratory Investigation

Representative soil samples obtained from the field investigation were examined and classified based on the Unified Classification System (ASTM D-2487) and the AASHTO Classification System (AASHTO M-145). Particle size analyses were conducted on representative samples. Moisture content determinations were made on all samples to establish moisture content profiles. Atterberg Limits were established on representative samples that exhibited a cohesive nature. All of the above indicator tests were used to aid in defining soil stratification and general insitu soil conditions. The mechanical grain size analyses and soil classification summaries are provided in the appendix of this report.

Unit weight and triaxial shear testing was performed on representative samples to determine strength properties for structural analysis of the soils in the embankments. Test results are shown in the appendix of this report. All testing was conducted in accordance with procedures outlined in the ASTM Standard Methods.

3.0 General Site and Soil Conditions

The evaporation lagoons are located at the southern edge of a broad valley formed as the result of the weathering of relatively soft shales (mudstones and siltstones) of the Petrified Forest Member of the Chinle Formation. These siltstones and mudstones of the Chinle have a high montmorillonite clay content. As a result the soils that have developed at the site are comprised of clays of moderate to high plasticity. All boring and soundings indicate the embankments have been constructed of clay taken from the valley floor. The embankments are founded on the native clays of the valley floor.

The Chinle Formation serves as the bedrock formation at this site. Generally, the formation dips to the north-northwest at approximately three (3) degrees. At the southerly edge of the lagoons the formation was encountered at approximately fifteen (15) feet below the natural ground elevation. At the northerly side of the lagoon site the formation has been encountered in past studies at a depth on the order of sixty (60) feet.

Groundwater was not encountered in any of the embankments. The only groundwater that was encountered during the investigation was a boring eight (8). This location is at the extreme southerly edge of the valley floor. During the drilling the groundwater was encountered at a depth of eighteen

(18) feet below the top of the berm. After twenty-four hours the water level had risen to slightly greater than six (6) feet below the boring elevation (top of the containment berm). At that location the berm height is approximately five (5) feet in height, making the water level approximately one (1) foot below the toe of the embankment. It should be noted that no free water was encountered during the drilling of boring eight (8) until the eighteen (18) foot depth. At that depth a water bearing sandy layer approximately two (2) feet in thickness was encountered. This sandy zone immediately overlies the Chinle Formation. The mudstone of the Chinle Formation is not water bearing. The sandy zone is a confined water bearing zone that is artesian. Nearly every boring that has been drilled to the undisturbed Chinle Formation at the Ciniza site has penetrated this overlying sand zone. The zone serves as an excellent marker for the top of the Chinle. There is no evidence of water migration at this location, or the other investigation locations, which can be attributed to leakage from the ponds.

4.0 Analysis

Thirteen (13) sections through the exterior embankments have been analyzed for stability. Both interior as well as exterior stability of the embankments has been checked. Because the interior height of the embankments are low, factors of safety for the interior slopes are very high. The controlling failure mechanism is associated with the geometry of the exterior slope (the slope that defines the outside or nonwetted face of the lagoon group).

The analyses demonstrate that the berms are structurally stable. Factors of safety against failure for the sections analyzed range from a high of 10.0 to a low of 2.5. Typical minimum desirable factors of safety for this type of structure are in the range of 1.3 to 1.5. As mentioned previously the

embankments were evaluated using the method of slices (Bishop's Modified Method) as well as finite element evaluation. A computer program developed by the New York State Highway Department named SLOPES was used to evaluate the berms with Bishop's Modified Method. A program developed at the Colorado School of Mines, Geomechanics Research Center by D. V. Griffiths was used to perform the finite element evaluation. The program, named SLOPE1 is well documented in the book "Programming the Finite Element Method" by I. M. Smith and D. V. Griffiths. Plots of the finite element (FE) mesh, deflection data, and vector traces of the deflected mesh were made using a separate plotting program and are presented in the appendix of this report. The deflected mesh graphically shows the result of the FE analysis at the most critical factor of safety identified. There was excellent correlation between the two analysis types where a circular failure provided the critical factor of safety.

The program SLOPES forces a circular failure where the FE program evaluates translation of nodes of the finite element mesh. The finite element program in this respect provides a more critical evaluation of the failure mode. It may be seen with the FE program that although the higher embankments show the critical failure mode to be a circular failure, the lower embankments tended to identify settlement as a more likely failure mode. The observation is somewhat academic, however, since the associated factors of safety against failure are 2.5 at the worst. Structurally, the berms are sound.

The soils comprising the embankments were tested to evaluate their propensity for being dispersive. Pinhole dispersion testing was performed on the materials in the constructed embankments. The soils were found to be in the category of nondispersive. Piping failure is unlikely to occur in the exterior containment embankments.

5.0 Observations and Recommendations

5.1 Wave Damage

A visual examination of the ponds was performed as a portion of the field investigation. Notes made during the field observation indicated there is no obvious structural failure that is occurring on the embankments. It was noted, however, that although the lagoon depth tended to not exceed two to three feet in total depth substantial wave erosion is occurring on the interior portion of the exterior containment embankments. Similarly, wave erosion is occurring along the interior pond separation dikes. Some, generally minor, erosion is occurring on the exterior faces of the perimeter containment berms.

A conscientious effort of embankment maintenance will easily control the exterior erosion of the containment berms. Although continual maintenance of the interior wave damage on the outside containment berms could also be made, over time significant pond volume loss would be realized as material is continually added to the interior of the lagoons at wave damage locations. It is recommended that a more permanent interior wave energy dissipation system be considered.

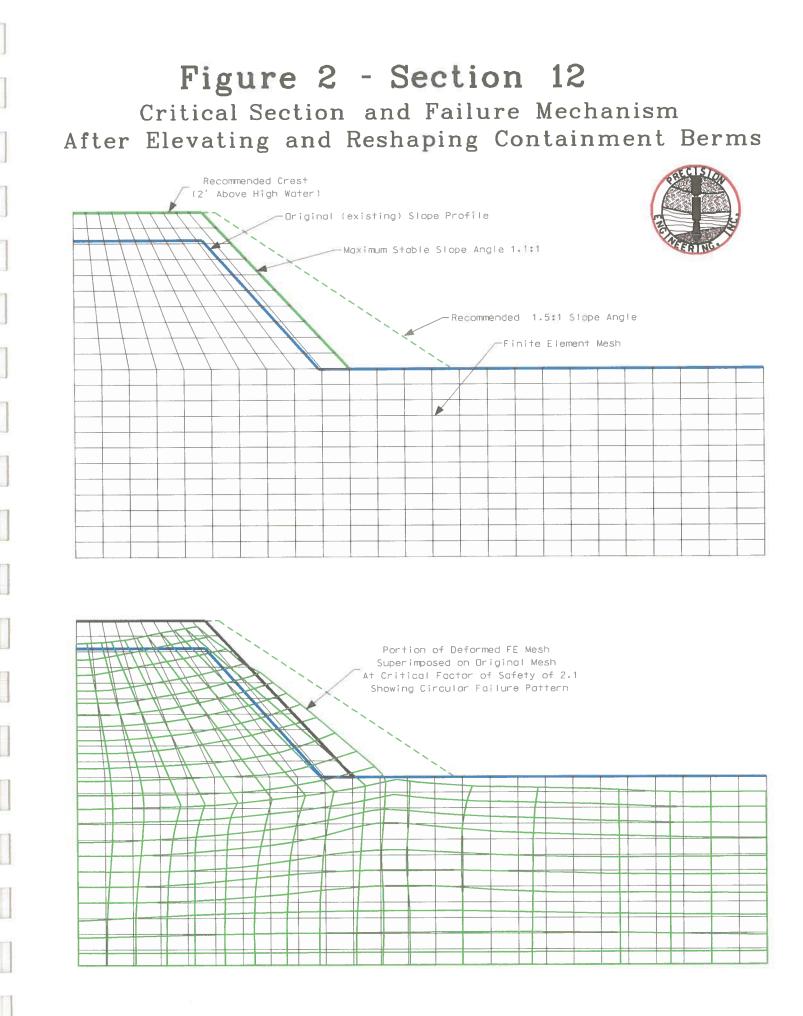
Wave damage may be reduced by plating the active wave areas with nonerosive material such as rock, grout blankets, or similar materials. If rock is selected at this site it should be placed on a geogrid material such as Tensar®, in Maccaferri® Reno Mattresses, or similar geotextile materials. These materials will prevent the rock from sinking into the soft soils or sliding off the slope where it will be ineffective against wave damage. It is recommended that wave protection be placed such that it extends from the top of the embankment to a minimum of twenty-four (24) inches below the lowest water level.

Where twenty four (24) inches extends below the bottom of the interior slope elevation, the slope protection material should key into the bottom of the lagoon impoundment a minimum of eight (8) inches. Because the lagoons are used as evaporation ponds the slope protection will likely be required on the entire interior face of the outside containment lagoons. Because of the lack of high quality aggregates in the Gallup area, rip-rap type energy dissipation, although permanently effective, will be costly to install.

An alternate wave protection system involves dissipation of the wave energy prior to reaching the embankment berms. Such systems involve the use of geogrids, fabrics, or liner materials constructed as a fence approximately three (3) to five (5) feet away from the wave impact area of the containment berms. It is the intent that these materials reflect or dissipate the majority of the wave energy prior to reaching the embankment material. Floating systems have also been used to reduce minor wave action. Materials such as partially submerged plastic drums have been successfully used to reduce the effects of wave action. These systems should be used to protect interior pond separation dikes as well as the exterior containment berms.

Should Giant Refining Company require assistance in design of these systems or require design review, Precision Engineering, Inc. can assist as required.

5.2 Berm Height

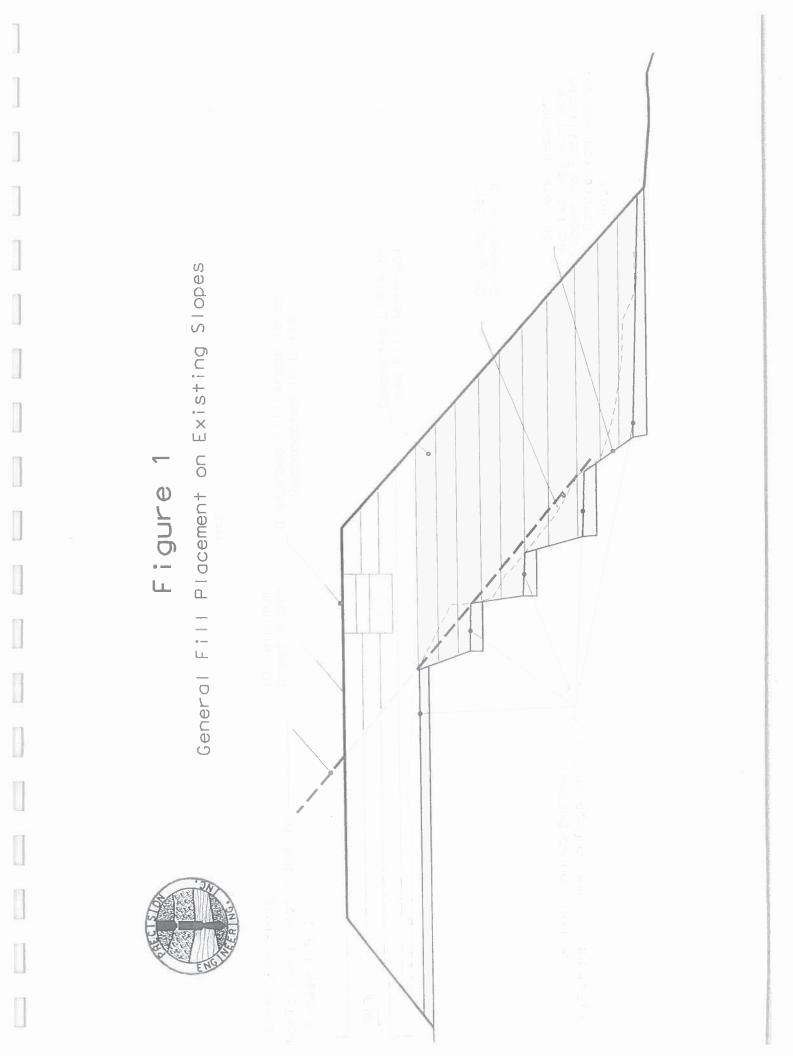

It was noted during the visual inspection that at some locations the impounded water level was within one (1) foot of the containment berm crest elevation. Should an interior dike be breached or high winds cause large waves the exterior containment dike could easily be overtopped. It is strongly

recommended that the elevation of the water or the elevation of the exterior berms be adjusted such that the high water mark is a minimum of two (2) feet below the exterior containment berm elevation. It is further recommended that the two (2) feet of freeboard be extended to include the interior pond separation dikes as well. Should the interior dikes be breached the most westerly exterior containment dikes could be overtopped.

Analysis indicates that when the elevation of the top of the outside containment berms are elevated approximately two (2) feet the minimum factor of safety against failure is 2.1. This minimum critical section is represented by Section 12 on the west side of the ponds (see boring plan). The failure mechanism and associated factor of safety is illustrated in Figure 2.

It is recommended that the berm elevations be adjusted to be two (2) feet above the maximum anticipated water level elevation. It is recommended that the minimum width of the top of the containment berms be ten (10) feet. For structural stability, the side slopes of the berms should not exceed their present slope angle after the addition of material to raise the crest elevation. It is recommended, however, that the slope angles not exceed an angle having a horizontal to vertical ratio of 1.5:1. This typically flatter slope angle will resist the development of erosion channels on the exterior face of the berms.

Soils placed to adjust the elevation of the berm crests were analyzed assuming that the material would be taken from the valley floor near the ponds. Based on material properties evaluated on other projects at the site, the soils may be taken from essentially any location on the Ciniza Refinery property. Soils imported to the site should be evaluated for stability. Soils taken from the Ciniza property may be



taken from the "Rattlesnake" pit area or the pit used by the NMSH&TD located east of pond 9. It is recommended that material not be taken from an area within twenty feet of the final berm toe points. It is recommended that the proposed borrow material be tested for strength properties by unconsolidated, undrained triaxial shear before being approved as fill material for the containment berms.

Soil placed on the berms should be keyed into the berms to provide the maximum strength. The side slopes of the existing embankments should be benched to create a horizontal surface for fill construction. This will provide structural interlock with the existing material. All new fill should be placed and compacted in lifts on the benched surfaces. Keys should be cut in the excavated slope to form horizontal benches as nearly level as is reasonable. Each bench should not exceed thirty-six (36) inches in elevation change to avoid stress concentrations within the fill. Bench cut faces may be sloped steeply to facilitate compaction adjacent to the cut face.

Fill should be placed and compacted beginning at the slope toe and progress to the top of the berm to allow for a more homogeneous new fill section. The berm will be more stable if the new slope section is constructed prior to adding height to the berms. The intent of this recommendation is illustrated in Figure 1.

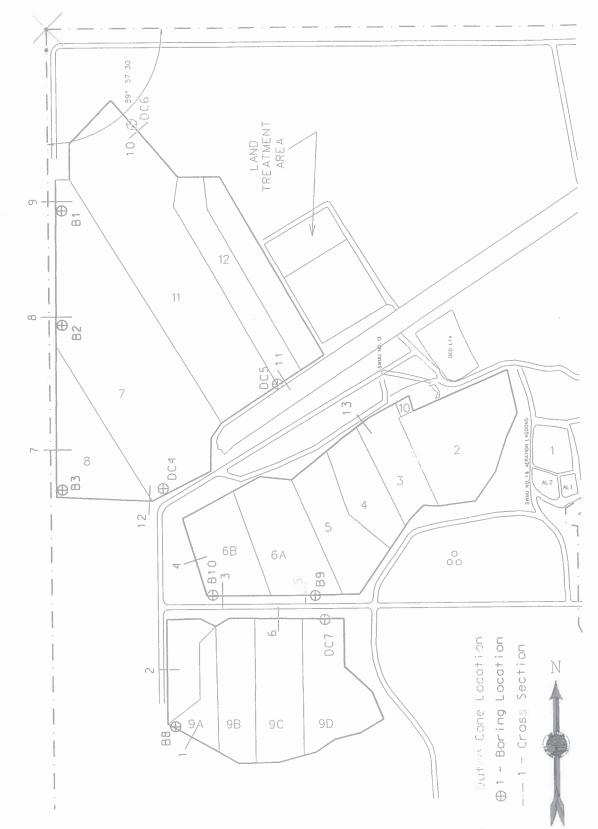
New fill should be placed on existing material that has been properly prepared to receive material. The existing surface should be cleared and grubbed to remove any organic debris and oversized material. Oversized material consists of rocks or soil lumps that exceed six (6) inches in maximum dimension. The standard proctor test (ASTM D-698) should be used as the reference unit weight because the test results provide a more flexible structure that resists cracking during any potential deformation. The prepared surface should be scarified eight (8) inches and compacted to a minimum of 95% of Standard Proctor unit weight.

New fill soils should be processed to bring them to a moisture content approximately two (2) percent above optimum moisture content. Compaction at this moisture content will minimize the hydraulic conductivity of the lift after compaction. Under no conditions shall fill material contain vegetative or other organic debris. The fill soils should be placed and compacted in uniform lifts not to exceed eight (8) inches in compacted thickness. The soils should be compacted using pad wheeled or sheepsfoot type equipment to provide better lift interlock and minimize the potential for providing a hydraulic conduit between lifts. The new fill soils should be compacted to a minimum of 100% of Standard Proctor (ASTM D-698) unit weight.

6.0 Summary

Analysis as and visual inspection of the exterior containment berms and interior lagoon separation dikes has provided the following conclusions and recommendations:

- The containment berms are structurally stable.
- There is little potential for a piping type failure through the lagoon containment berms.
- No water was detected leaking through or below the containment berms that could cause a stability or surface contamination problem.
- The interior slopes of the containment berms and lagoon separation dikes are susceptible to wave erosion. It is recommended that positive wave energy abatement systems be placed or that a continuous interior lagoon maintenance program be established. The maintenance program will likely cause substantial loss of lagoon life and wave abatement is recommended.
- The containment berms are susceptible to overtopping because of a lack of free board. It has been recommended that the berm heights be adjusted to allow for a minimum of two (2) feet of


free board above the maximum anticipated water level. Recommendations for fill placement

have been provided. The freeboard area should be protected from erosion degradation.

APPENDIX

CONTRACTOR OF CONT

Evaporation Ponds Giant Refining Company Plan Boring Ciniza Refinery

ater Blev:	NOT ENCOUNTE	RED		S	S A		Blevati	on:	BXIST	ING
oring No.:	ONE		P L	C A	M P		Date:	DECE	MBER O	6, 2000
LAB #	DEPTH	BLOW COUNT	0 T	L B	L B	MATERIAL CHARACTERISTICS (MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	ê M	Ŀ	PI	CLASS.
38625	0.0 - 1.5	4 - 5 - 6		2.5	S S	<u>CLAY</u> , REDDISH BROWN, WET, FIRM	25.5		NP	SM/A-2-
38626	5.0 - 6.5	6 - 6 - 6		<u>5.0</u> <u>7.5</u>	ទទួ	STIFF	21.7	47	25	CH/A-7-
38627	10.0-11.5	4 - 5 - 6		10	S S S	FIRM	22.5			
38628	<u>14.5</u> 15.0-16.5	12-16-23		<u>15</u>	S	<u>CLAY</u> , SLIGHTLY SILTY, REDDISH BROWN, MOIST, HARD	13.2	53	33	CH/A-7-
			<pre> // ~ // // // // // // // // // // // /</pre>		S					
38629	20.0-21.5 21.5 TOTAL DEPTH	7-15-19	- - - -	20	S S S	SOME SILT LAMANAE	12.0			

PRECISION ENGINEERING, INC.

File #: 00-141

							_ * ·			
	SEE SITE PLA					LOG OF TEST BORINGS	Site:	CINI	ZA	
	WEST DYKE CE						Elevati	on ·	EXIST	ING
ater Elev:	NOT ENCOUNTE	RED			S		11.0 V M D 1	011.	DRIGI.	
	TT 10			S	A M		Date:	DECE	MBER 0	5, 2000
loring No.:	TWO			A						
1						MATERIAL CHARACTERISTICS				
LAB #	DEPTH	BLOW COUNT					*M	L	PI_	CLASS.
	0.0 - 1.5	3-3-3	/*/*/*			CLAY, VERY SANDY, REDDISH BROWN, WET, SOFT	26.3	30	10	CL/A-4
30030	0.0 1.0		[/*/*/*		S					
1			1/*/*/*		S				1	1
		r 	/*/*/*		Ì					
			· /*/*/*		Ì			J		1
		' 		1	Ì					
i i			/*/*/*		Ì			I	l	
		1	/*/*/*	l		1		i i	1	
		ł	/*/*/*	1				l.		
Į i	0.000 0.000	1	/*/*/*	5.0				1		
38631	5.0 - 7.0	SHELBY	/*/*/*					1	1	1
		l	/*/*/*					1		
		[/*/*/*				1	1		1
	1	1	/*/*/*				1	1	1	1
38632	7.0 -10.0	SHELBY	/*/*/*						1	1
			//////			NO SAND	33.0	1	1	1
	l		//////		1			l I	1	1
								1	1	1
ļ							l	i i	1	1
							l	1	1	
	1						1	1	1	1
		1	/////		1		l	1	i	
1	1				1		İ		i	1
	1	[1		i			1
	13.0	1			1				1	1
	1	1	//*///		1	CLAY, SLIGHTLY SANDY, REDDISH BROWN, MOIST,			1	
			//*///		i	HARD		1		
	1	i i	//*///		1					
1					_			1		
38633	15.0-16.8	SHELBY	//*///	/						
Ì	1		//*///	/						
1	16.8	1	1//*///	/						
	TOTAL DEPTH	I I			1				1	1
		1			l			1		1
1			1					1	1	1
			l.				1		1	l L
			1					1	i I	1
	1			1			1	1	1	1
1	l			20	_		1	1		1
		8		1	1		1	1		
	1	1	l l		1				Ì	i
1	1	1		1					l l	
	1	1		1	1			ŀ	1	
1							1		-	1
	1			1						

-				
	Sheet:	3	OF	10

PRECISION ENGINEERING, INC.

File #: 00-141

	POND 8									
ater Elev:	NOT ENCOUNTE	RED			S A		Elevati	.on:	EXIST	ING
oring No.:	THREE			C			Date:	DECEN	BER 06	5, 2000
			L	A	P		1			
						<u>MATERIAL CHARACTERISTICS</u> (MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	 ≎m	τ.	та	CLASS.
LAB #	DEPTH	BLOW COUNT	T		E	CLAY, SLIGHTLY SANDY (FINE), REDDISH BROWN,	15.8			CH/A-7-0
38634	0.0 - 1.5	3-3-5	//*///			MOIST, FIRM		00	50	
Į	1		//*///		S	NOISI, FIM				1
			//*///		21					1
1			//*///		í				, 	1
	i		//*///		1					}
1			//*///		1					1
			//*///							
1			1//*///		 		i			
			//*///							
38635	5.0 - 6.5	3-4-3	1//////		s	LITTLE TO NO SAND, WET	30.2		1	
			1/////		s					
	1		1//////	1	s		1			
			1//////					ļ		1
	1	s 	1//////	7.5		•	1	l	1	
	1		1/////							
	1		1//////					l	1	
	-	1	1/////		I		1			
		I	1//////		1					
		{	1/////	10		l			[
38636	10.0-11.5	4-4-6	1/////	Ē	s		31.1	79	41	CH/A-7-
		1	/////	1	s	1		1	1	1
			1/////		S					
			1/////		1			1		1
		ļ	//////	1						
	1		//////			L		l	Į	
	1	1	1/////	1	-				l	l
			/////	1	1		1			1
	1	1	//////	1						ļ
	1	1	//////				 			
38637	15.0-16.5	4 - 6 - 9	//////	*	S		28.4	1	1	1
		1	//////		S			1	1	
		-	1/////		S					1
			/////			-		1	1	l
							1		1	1
			1//////		1		1	1	1	1
		1					1	1	1	
			1//////				1	1	1	
			1/////		l		1	1	1 	
		1 7 15 01	/////			LEITCHTIN CANDY HADD	30.8	60	34	CH/A-7
38638	20.0-21.5	7-15-21	1//*///			SLIGHTLY SANDY, HARD	150.0		1	/
1			//*/// //*///		S					
	TOTAL DEPTH						1	1		
1										1
	1	1	1		1		1	1	1	

c Penetration Sounding Log ASTM D-3441	ZA EVAPORATION PONDS Sounding Number: 4 ber 6,2000 41	sf) Friction Ralue (ksf) Friction Ratio (%) 00 700 800 900 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 2 4 6 8 10								
Quasi-Static	ject Location:CINIZ nding Date:Decemb ject Number: 00-14	Cone Bearing (ksf) 100 200 300 400 500 600								
	Pro Pro	0		ری ساست ۱	N mg	ار ما مالیسابی	- 	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

(JT) AJqə(

Log	er: 5 on: see plan	Friction Ratio	
nding	Numb Locati	6 (ksf) 9 10 1112 13 14 1 112 13 1 112	
on Sou 41	JNDS Sounding Sounding	Friction Value 1	
etratic TM D-34	APORATION PO 2000		
c Pen AS7	ZA EV. ber 7, 141	(ksf) 600 700 800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
i-Stati	ocation:CINIZA Date:Decemb€ umber: 00-14:	Cone Bearing (k	
Quas	roject L ounding roject N		
		(JT) AJg9(l C	

]

]

Static Penetration Sounding Log ASTM D-3441	Jon:CINIZA EVAPORATION PONDS Sounding Number: 6 e:December 7, 2000 Sounding Location: see plan	e Bearing (ksf) Friction Ralue (ksf) Friction Ratio (%) 400 500 600 700 800 900 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 0 2 4 6 3 10							I I <tdi< th=""></tdi<>
Quasi-Sta	on:(: De								
	ц v ц	()	0 10	- 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 10 10 10 10 10 10 10 10 10 10 10 10	M 4 0 0	2 10 1	20

]

(JJ) yJq9(

tion Sounding Log -3441	PONDS Sounding Number: 7 Sounding Location: see plan	Friction Value (ksf) Friction Ratio (2) 2 3 4 5 6 7 8 9 10 1112 13 14 0 2 4 6 8 10										
c Penetrat ASTM D-	INIZA EVAPORATION ember 7,2000)0-141	g (ksf) 1 600 700 800 900 0 1 1 1 1 1 1 1 1						-1	-1			
Quasi-Stati	Project Location:CI Sounding Date:Dece Project Number: 0(Cone Bearing 100 - 200 - 300 - 400 - 500										
		0.	0 4000-100	-	()]) yjd	9(] 2) 2)	10 0 0	- 10 - - - - - - - - - - - - - - - - - -	0 0 1	2 10 1444144	0.0

Sheet:	8	OF	10
SHEEC.	· · ·	QL -	

PRECISION ENGINEERING, INC.

File #: 00-141

Water Elev: 18' S Elevation: EXISTING Boring No.: EIGHT P C M Date: DECEMBER 07, 200 L A P		SOUTHWEST C	UKNER OF			H	OG OF TEST BORINGS	Site:	.e	-	
Link Boot B A B A loging No.: EIGHT P C N D					1	s 1	Е	levatio	on:	EXISTI	NG
Date: Date: Description Date: Description Date: Description	ater fiev.	10			s						
L A P LAB DEFTM BLOK COUNT T F F MODISTURE, CONDITION, COLOR, GRAINSLEE, DTC.) 4M L PC CLM 318639 0.6 - 1.5 4-4-10 (*/*/*) S STATURE, COUNT, COLOR, GRAINSLEE, DTC.) 4M L PC CLM 318639 0.6 - 1.5 4-4-10 (*/*/*) S STTPF 23.1 50 36 CI/A 1 (*/*/*) S STTPF 1 <th>oring No.:</th> <th>EIGHT</th> <th></th> <th>P</th> <th></th> <th></th> <th></th> <th>Date:</th> <th>DECEM</th> <th>BER 07</th> <th>, 2000</th>	oring No.:	EIGHT		P				Date:	DECEM	BER 07	, 2000
DAD # DEPTH BLOW COUNT T E E CMISTURE_CONSTITION_OLION_GRAPHIELE_ETC.) MH L PI CLAS 386539 0.0-1.5 4-4-10 /***** S SLAX_VERY GAMOY(FINE), REDISH BROWN, MET, 23.1 50 36 G(A/A-10) //**** S STIFF S CLAM S SLAW SCIENT, RANGY(FINE), REDISH BROWN, MET, 23.1 50 36 G(A/A-10) //**** S (*****) S (******) S (******) S (******) S (*******) S (************************************				L	A	P					
336339 0.0 - 1.5 4-4-10 /+*/*/* S CEAX, VERY SANDY (FINE), REDDISH BROWN, WET, 23.1 50 36 GMA 336339 0.0 - 1.5 4-4-10 /**/** I				0	L	L					
1/**/** S STIFF 1/*/** S 1/*/** S <	LAB #	DEPTH	BLOW COUNT	T							CLASS.
38642 15.0-16.5 3-5-5 1/*/*/1 5 1	38639	0.0 - 1.5	4-4-10	/*/*/*		S	CLAY, VERY SANDY (FINE), REDDISH BROWN, WET,	23.1	50	36	CH/A-7-
38640 5.0 - 7.0 SHELBY //*/**	1	l	l		1	S	STIFF			1	
38640 5.0 - 7.0 SHELBY /////						S		ĺ			
38640 5.0 - 7.0 SHELEY //*/** // 38640 5.0 - 7.0 SHELEY ////// // ////// ////// ////// ////// ////// 38640 5.0 - 7.0 SHELEY ////// ////// /////// /////// /////// ////// ////// /////// /////// /////// ////// ////// /////// /////// SHELEY /////// ////// /////// /////// /////// ////// ////// /////// ////// /////// ////// ////// /////// /////// ////// ////// ////// /////// /////// ////// ////// ////// /////// /////// ////// ////// ////// /////////// /////// /////// ////// ////// ////////////////////////////////////				1				1	1		
38640 5.0 - 7.0 SHELEY /*/** <td> </td> <td></td> <td>l</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>1</td> <td></td>			l							1	
38640 5.0 - 7.0 SHELEY /*/*/* 38640 5.0 - 7.0 SHELEY ///// 1////// LITTLE TO NO SAND SAND, FIRM 1////// LITTLE TO NO SAND SAND, FIRM 1////// LITTLE TO NO SAND SAND, FIRM 1////// 1////// 38641 10.0-11.5 3-5-6 /*/// </td <td></td> <td></td> <td></td> <td>, ,</td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td>1</td> <td></td>				, ,						1	
38640 5.0 - 7.0 SHELBY //*/** [5.0] 1/*/** 1/*/** LITTLE TO NO SAND SAND, FIRM 1 1////// 1////// 1 1////// 1 1////// 1 1////// 1 1////// 1 1////// 1 1////// 1 1/////// 1 1////////////////////////////////////			l						1	1	
38640 5.0 - 7.0 SHELBY ////// LITTLE TO NO SAND SAND, FIRM I I 38640 5.0 - 7.0 SHELBY ////// I I I I 38640 5.0 - 7.0 SHELBY ////// I I I I Image: Shelby ////// Image: Shelby ////// Image: Shelby Image: Sh			1						1		
38640 5.0 - 7.0 SHELEY //////1 I_ITTLE TO NO SAND SAND, FIRM I_I I_I 1 1/////1 I_ITTLE TO NO SAND SAND, FIRM I_I I_I 1 1/////1 I_I I_ITTLE TO NO SAND SAND, FIRM I_I I_I 1 1/////1 I_I I_ITTLE TO NO SAND SAND, FIRM I_I I_I I_I 1 1/////1 I_ITTLE TO NO SAND SAND, FIRM I_I I_I I_I I_I 1 1/////1 I_I I_I I_I I_I I_I I_I 1 1/////1 I_I I_I I_II I_II I_III I_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII						 		, , ,		1	
JOSTO J.N. T.C. MARLE [//////] Image: Start of the							LITTLE TO NO SAND SAND. FIRM	, ; 	1		
38641 10.0-11.5 3-5-6 ////// 1 <td>38640</td> <td>5.0 - 7.0</td> <td>SHELDI</td> <td></td> <td></td> <td></td> <td>minine to no brad state, same</td> <td></td> <td></td> <td></td> <td></td>	38640	5.0 - 7.0	SHELDI				minine to no brad state, same				
38641 10.0-11.5 3-5-6 1/**//1 1 <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td>1</td> <td></td> <td>, , </td> <td>i</td> <td></td> <td></td>			1	1		1		, , 	i		
38641 10.0-11.5 3-5-6 ////// 1 <td> </td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>			1						1		
38641 10.0-11.5 3-5-6 ////// 1 <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1		1			1					
38641 10.0-11.5 3-5-6 ///// S SLIGHTLY SANDY 32.2 79 41 CH/A	1		1								
38641 10.0-11.5 3-5-6 ///// 5 \$S SLIGHTLY SANDY 32.2 79 41 CH/A	1		1			1				ļ	l
38641 10.0-11.5 3-5-6 //*/// s sLIGHTLY SANDY 32.2 79 41 CH/A	1					1					1
38641 10.0-11.5 3-5-6 //*/// \$\$ SLIGHTLY SANDY 32.2 79 41 CH/A 38641 10.0-11.5 3-5-6 //*/// \$\$ <	1		1			Ì				l	1
38641 10.0-11.5 3-5-6 //*/// \$ SLIGHTLY SANDY 32.2 79 41 CH/A //*/// \$ //*/// \$	1		1	•	*	i				1	
38642 15.0-16.5 3-5-5 /*// <td>38641 </td> <td>10.0-11.5</td> <td>3-5-6</td> <td></td> <td></td> <td> s</td> <td>SLIGHTLY SANDY</td> <td>32.2</td> <td>79</td> <td> 41</td> <td>CH/A-7</td>	38641	10.0-11.5	3-5-6			s	SLIGHTLY SANDY	32.2	79	41	CH/A-7
38642 15.0-16.5 3-5-5 /*/*// I <td></td> <td></td> <td>1</td> <td></td> <td>-</td> <td>S</td> <td></td> <td> </td> <td></td> <td>l .</td> <td></td>			1		-	S				l .	
38642 15.0-16.5 3-5-5 /*/// <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td></td> <td></td> <td>1</td> <td>]</td>	1					S				1]
38642 15.0-16.5 3-5-5 /*/// <td> </td> <td></td> <td></td> <td> //*///</td> <td>1</td> <td>1</td> <td> </td> <td></td> <td></td> <td>1</td> <td></td>				//*///	1	1				1	
38642 15.0-16.5 3-5-5 //*/*// Image: state of the state o			1	//*///				1			1
38642 15.0-16.5 3-5-5 /*/*/ S VERY SANDY 20.1 CH/A 38642 15.0-16.5 3-5-5 /*/*/* S VERY SANDY 20.1 CH/A /*/*/* S /*/*/* S /*/*/* S /*/*/* S /*/*/* S /*/*/* S				//*///	[P				
38642 15.0-16.5 3-5-5 //*/// 15 Image: state of the state			1	//*///		[1		1	1	1
38642 15.0-16.5 3-5-5 /*//* S VERY SANDY 20.1 CH/R /*/*/* S /*/*/* S /*/*/* /*/*/* S /*/*/* S /*/*/* S /*/*/* /*/*/* /*/*/* </td <td>1</td> <td></td> <td>1</td> <td> //*///</td> <td>1</td> <td> </td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	1		1	//*///	1					1	
38642 15.0-16.5 3-5-5 /*/*/* S VERY SANDY 20.1 CH/# /*/*/* S /*/*/* S /*/*/* /*/*/* /*/*/* /*/*/* S /*/*/* S /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/* /*/* /*/* /*/*/* /*/*/* /*/*/* /*/* /*/* /*/* /*/* /*/*/* /*/* /*/* /*/* /*/* /*/* /* /* /*/*/* /*/* /*/* <td> </td> <td></td> <td>1</td> <td> //*///</td> <td> </td> <td></td> <td>1</td> <td></td> <td> </td> <td>1</td> <td></td>			1	//*///			1			1	
38642 15.0-16.5 3-5-5 /*/*/* S VERT SANDT /*/*/* S /*/*/* S /*/* /*/*/* S /*/*/* S /*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/*											1001/2-1
/*/*/* S /*/*/* /*/*/* /*/*/* /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/** /*/* /*/* /*/* /*/* </td <td>38642</td> <td>15.0-16.5</td> <td>3-5-5</td> <td></td> <td></td> <td></td> <td></td> <td>150.1</td> <td>li 1</td> <td>1</td> <td> Cn/A-</td>	38642	15.0-16.5	3-5-5					150.1	li 1	1	Cn/A-
//* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/* /*/*/*		[•	5	1	1	1	1
//* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>S</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td>						S		1	1	1	1
//* WATER BEARING AT 18', WATER RISES TO 6'2" /*/*/* AFTER 24-HOURS AND STABILIZES /*/*/* /*/*/* AFTER 24-HOURS AND STABILIZES /*/*/* /*/*/ 38643 20.0-21.2 0- /*/*/ 0- /*/*/ 21.2-21.5 6 /*//*/			1					1	1	1	1
/*/*/* WATER BEARING AT 18', WATER RISES TO 6'2" /*/*/* AFTER 24-HOURS AND STABILIZES /*/*/* /*/*/* /*/*/* 38643 20.0-21.2 0- /*/*/ 0- /*//*/ S 21.2-21.5 6 /*//*/ S MUDSTORE, REDDISH BROWN W/SOME GREEN MOTTLING,								1	1	Ì	i
/*/*/* AFTER 24-HOURS AND STABILIZES /*/*/* /*/*/* 38643 20.0-21.2 0- /*/*/ 0- /*/*/ 21.2-21.5 6 /*/*/		1	1			1	WATER READING AT 18', WATER RISES TO 6'2"	1		i	1
38643 20.0-21.2 0- /*/*/* S SANDY 24.7 60 34 0- /*//*/ S SANDY 24.7 60 34 21.2-21.5 6 /*//*/ S MODSTORE, REDDISH BROWN W/SOME GREEN MOTTLING,		l .				L L		i	1	1	i
38643 20.0-21.2 0- /*/*/ S SANDY 24.7 60 34 0- /*//*/ S S Image: Constraint of the state of the stat	1	1	1			1	ATTER 24 HOORD AND DEBEDOCOL	i	ĺ	i	
38643 20.0-21.2 0- /*//*/ S SANDY 24.7 60 34 0- /*//*/ S 21.2-21.5 6 /*//*/ S MODSTONE, REDDISH BROWN W/SOME GREEN MOTTLING,	1	1	1				1				
0- /*//*/ S 21.2-21.5 6 /*//*/ S MUDSTORE, REDDISH BROWN W/SOME GREEN MOTTLING,	1 29642	20 0-21 2	0-				SANDY	24.7	60	34	
21.2-21.5 6 /*//*/ S MUDSTONE, REDDISH BROWN W/SOME GREEN MOTTLING,	20043	20.0-21.2	•						1	1	
	1	21.2-21.5	1								
								_1			
	1			i				1	1		1

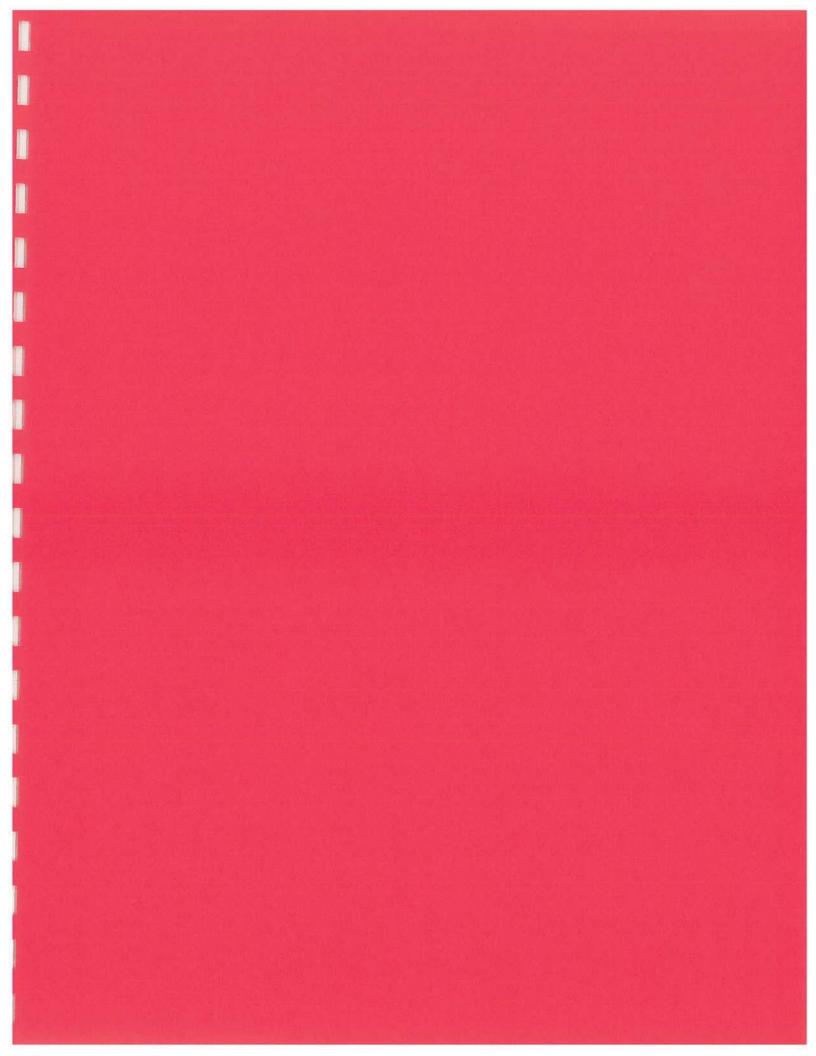
Sheet:	9	OF	10
Sheet:	2	OF.	T 0

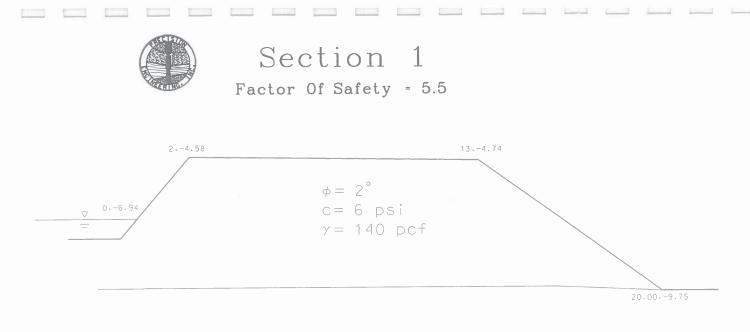
PRECISION ENGINEERING, INC.

File #: 00-141

Bore Point:	CENTER OF S OF POND 6A	OUTH SIDE			Ī	LOG OF TEST BORINGS	Site:	Site: CINIZA Elevation: EXISTING			
Water Elev:	NOT ENCOUNT	ERED			S		Elevati	.on :	EXIST	ING	
				s	A						
Boring No.:	NINE		P	C	М		Date:	DECE	MBER 0	7, 2000	
			_ L	A	P						
1	1		0	L	L	MATERIAL CHARACTERISTICS			î		
LAB #	DEPTH	BLOW COUNT	Т	E		(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	*M	L	PI	CLASS.	
38644	0.0 - 3.0	GRAB	/*/*/*			CLAY, VERY SANDY, REDDISH BROWN, MOIST, FIRM	14.0	41	25	CL/A-4	
			/*/*/*		G				1	1	
			/*/*/*		G				1	1	
1			/*/*/*		G				1	1	
			/*/*/*						1	1	
			/*/*/* /*/*/*		G				1		
			/*/*/*		ł	1) 	1	1	
			/*/*/*		l l	1				Ì	
			/*/*/*	-	: 	1	i		i	1	
38645	5.0 - 7.0	SHELBY	/*/*/*		1		i i	1	1	1	
1			/*/*/*		Ì				!	1	
		1	/*/*/*		1		1				
		1	/*/*/*		İ				1	1	
			/*/*/*			1		1		1	
		1	1/////		l	1			1		
	1		[//////	1			1		1		
1			//////	1		1			1		
		1	//////								
1	1	l.	1//////		1		1	1			
1		1	//////					1	1		
	1		//////		1		1	1	1	1	
1							1	1	1	1	
						[= 275475	27.4	1	1	E	
38646	12.0-14.0	GRAB				WET	12010-2	1		1	
	1	1	\////// \//*///		G G		1	1	1	1	
	1	1	//*///		G			ļ	1	i	
1	1		//*///		1			Ì	1	Ì	
1	1	1	//±///		1		i i	i	1		
38647	15.0-16.0	SHELBY	//*///		-			1			
1	1		//*///		Ì				1	1	
38648	16.0-17.0	SHELBY	//*///			SOFT				I	
<u> </u>	17.0	1	_								
	TOTAL DEPTH	r						1			
1	l .	1		1	1		ł	1			
	l.						1	1	1	1	
	1				1					t I	
					1		1	1	1	1	
1			1	20	-					i i	
				1	1			1		i i	
1		1	1	1					1	1	
	l	1			1		l	1			
	l	1	1	1	1			1	i		
1	1		1	1	1			<u> </u>			
let i e e	and of Devilue	g: 8-1/4" ID	Vollow S				Loga	ed By:	WHK		

S	heet:	10 OF 10				PRE	CISION ENGINEERING, INC.	File #: 00-141					
Bore Point: SOUTHWEST CORNER OF POND 6B Water Elev:							LOG OF TEST BORINGS	Site: CINIZA					
Wa	ter Elev	1				S	_ 	Elevat	ion:	EXIST	TING		
Во	ring No.	TEN		P		A M							
				_ L	A	P		Date	: DECE	MBER (07, 2000		
1	* * * *				L								
di i	LAB # 38649	DEPTH 0.0 - 3.0	BLOW COUNT GRAB	T		E		*M	L	PI	CLASS.		
Ľ.	30043	0.0 - 3.0	GICAB	/*//*/ /*//*/	•	G G	CLAY, SANDY, REDDISH BROWN, MOIST, FIRM	18.2	52	32	CH/A-7-		
Ϊ.				/*//*/		G	•		1				
į.				/*//*/		G			1	1			
L		l		/*//*/		G		1	i E	1			
1		ł		/*//*/		G	1	i i	1		1		
1		1		/*//*/			1	i	i	İ			
				/*//*/	•			F	1	Ì	Ì		
1				/*//*/	•		14	1			1		
1	38650	5.0 - 7.0	SHELBY	/*//*/		1		-	1		1		
i.	30030	3.0 - 7.0	SHELDI	/*//*/ /*//*/			WET	1		1			
		1		/*//*/		1			1	1			
i.				/*//*/		1		1	1	1			
I	38651	7.0 - 10.0	GRAB			G	LITTLE TO NO SAND, SOFTER AND REDDER 7' TO 10	137.9	82	40	 CH/A-7-		
		1		1/////		G			02	1.40	Ch/A-7-		
				//////		G	1	I	Ì		1		
	1			//////		G		Ì	İ	1			
				//////		G	8 	1	[Í		
	1	10.0.17.0.		//////	_						1		
1	1	10.0-13.0	GRAB			G	a 	1			[
1						G G	•			1			
i.				1//////		G		1	1	l 1	1		
Ì	Ì			1//////			' WET	1	1		1		
				1/////		G	1	1	1	1			
1				1/////		G		1		1	1		
				/////				i			ĺ		
1	1			/////				}	1				
1	38652	15 0 15 0		/////				1		1	1		
1	38652	15.0-17.0	SHELBY	/////			CLAY, REDDISH BROWN, WET, FIRM, SOME 1/2" ROOT		[
1	l			/////			MATTER		1				
		17.0							1				
1		TOTAL DEPTH											
I	1			1	i								
		1											
1					1								
1	1			1 1	0.0								
1	1			1 1	20								
i l	1	1		1 I							1		
İ											l		
		Í			1						1		
[1									1		
											r 		
[Si	ize & Typ	e of Boring:	8-1/4" ID Ho	llow Ste	mmed	l Aug	jer	Logged	I By: W	нк			

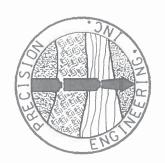

PRECISION ENGINEERING, INC.


P. O. BOX 422, LAS CRUCES, NEW MEXICO 88004

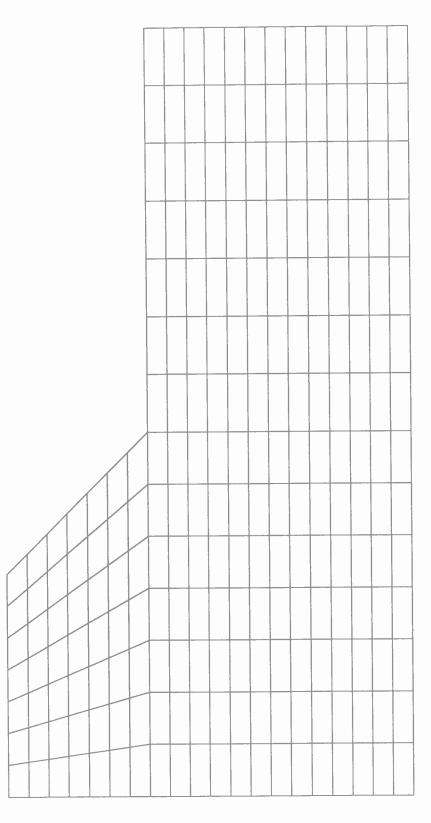
(505) 523-7674

MECHANICAL GRAIN SIZE ANALYSIS SUMMARY

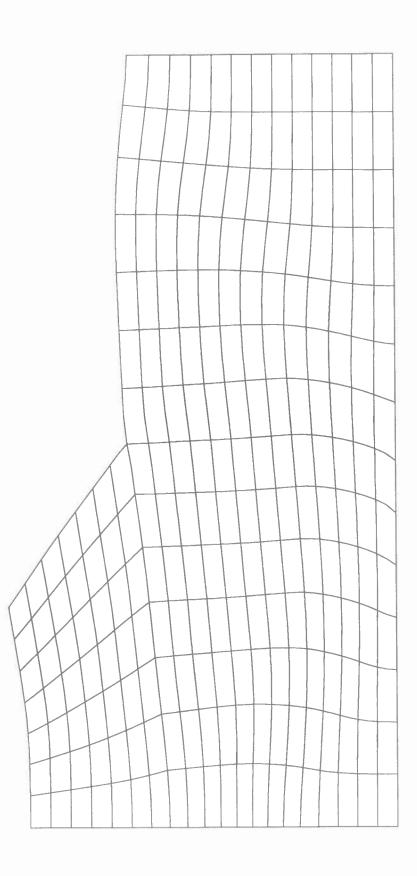
BORING	LAB	DEPTH			SIEVE	ANALY	SIS % PA	ASSIN	G				ATTE	RBERG	MOIST.	USCS	AASHT
NO.	NO.	D. FEET									LIMI	TS	CONTENT	CLASS .	CLASS		
]															
				1 1/2" 1"	3/4"	1/2"	3/8" #4	#10	#20	#40 #	60 #14	0 #200	LL	PI	ļ	ļ	
1	38625	0.0- 1.5	1												25.5		
1	38626	5.0- 6.5	1									92.4	47	25	21.7	CL	A-7-6
1	38627	10.0-11.5	1				U.S.S.P.						}	1	22.5		1
1	38628	15.0-16.5					1	1		The second second second second second second second second second second second second second second second se		86.6	53	33	13.2	СН	A-7-6
1	38629	20.0-21.5			ŀ			1							12.0	1	1
				1							1				1		
2	38630	0.0- 1.5		1								59.3	30	10	26.3	CL	A-4
2	38631	5.0-7.0	[1									1				
2	38632	7.0-10.0			1					1				1	33.0		
2	38633	15.0-16.8					1			[[[ļ.	
1								1		-					[Į	
3	38634	0.0- 1.5				I E			[]			83.2	50	36	15.8	CH	A-7-
3	38635	5.0- 6.5	1	1											30.2	ł	[
3	38636	10.0-11.5	1	1								97.4	79	41	31.1	CH	A-7-
3	38637	15.0-16.5						-	1		1			1	28.4		
3	38638	20.0-21.5				1	1					88.1	60	34	30.8	CH	A-7-0
					Į			1		ł	1						
в	38639	0.0-1.5		1		1 1							l		23.1		
8	38640	5.0- 7.0								-		1	1				
8	38641	10.0-11.5	1	1						1		85.2	72	42	32.2	CH	A-7-
8	38642	[15.0-16.5]			l	1	1	1			1	61.6	42	19	20.1	CL	A-7-
8	38643	20.0-21.2			Į.		1	1			1	Į			24.7		
		1	ł		and the second sec		1				1	L-D-D-D	-	1		1	1
9	38644	0.0-3.0				1	ŧ		1		l.	64.0	41	25	14.0	CL	A-7-
9	38645	5.0-7.0				E	[1		1		l.	
9	38646	12.0-14.0			1			[1		1	27.4	l	
9	38647	15.0-16.0	1					1			1	L					Summary of the second se
9	38648	16.0-17.0			İ								1	ļ			1
	1					1 1			ł				1	1		[1
10	38649	0.0-1.5				1			[64.7	52	32	18.2	CH	A-7-
10	38650	2.5-4.0				-							1				1
10	38651	5.0- 6.0					1					93.7	82	40	37.9	CH	A-7-
10	38652	6.0-6.5			1										1		
	1			1	1							1	1	1		1	1

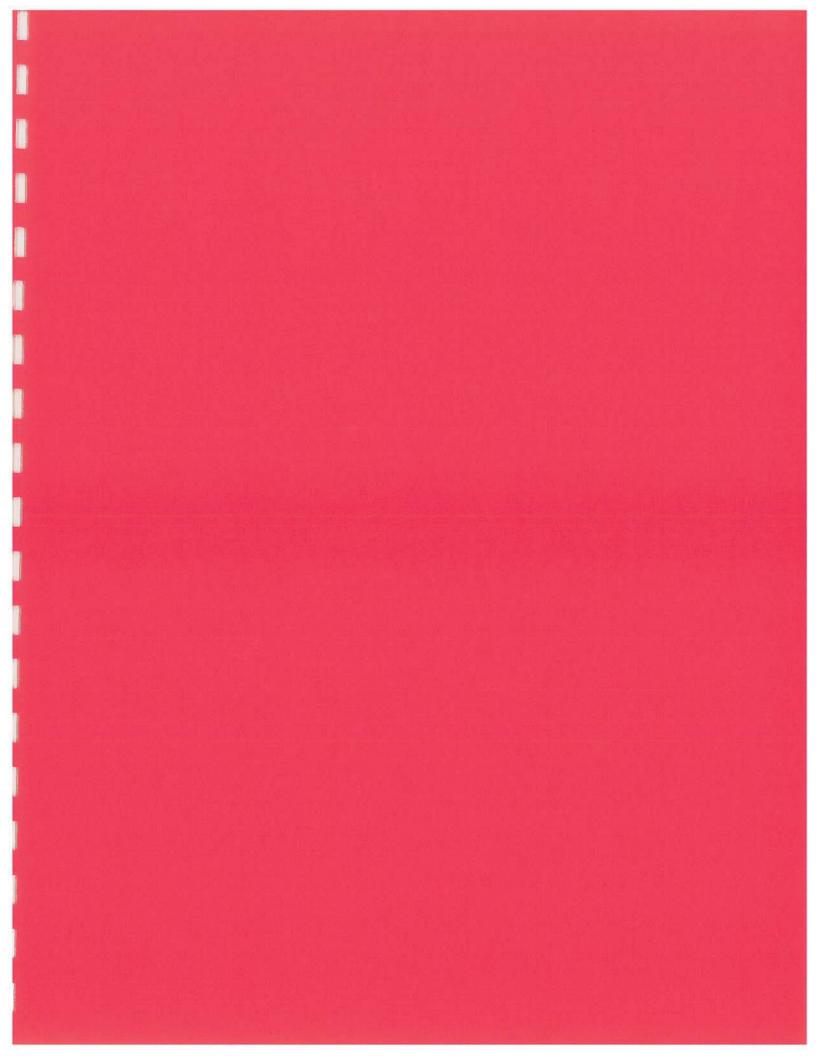

 $\phi = 0^{\circ}$ c = 8 psi $\gamma = 140$ pc

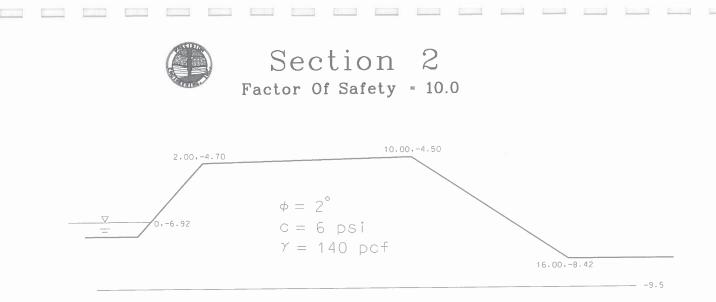
-19.75


$\phi =$	8°
C =	4 psi
$\gamma =$	140 pcf

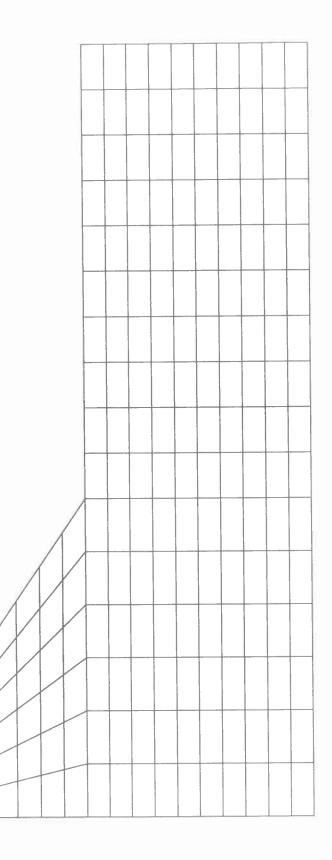
Section 1 Profile												
w1 = 11.00s1 = 7.00w2 = 20.00h1 = 7.00h2 = 13.00												
nx1= 7 nx2= 7 ny1= 7 ny2= 13												
Group phi c 1 2.00 864.00 2 0.00 1152.00 3 8.00 576.00	0.00 145.00 0	e v .1000E+06 0.30 .1000E+06 0.30 .1000E+06 0.30										
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2<	ed to each elemen 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2	t 2 3 3 3 3										
tol= 0.000100 limit= 1000 trial factor 0.4500E+01 0.5000E+01 0.5250E+01 0.5500E+01	max displacement 0.4536E+00 0.4976E+00 0.5456E+00 0.2521E+01	t iterations 51 74 162 1000										

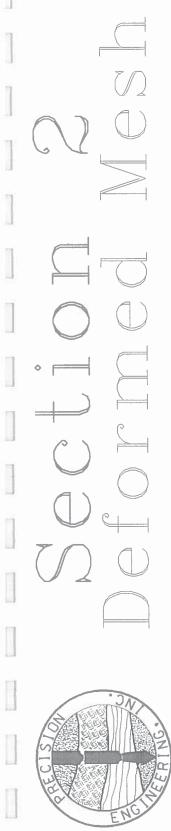

Page 1


]

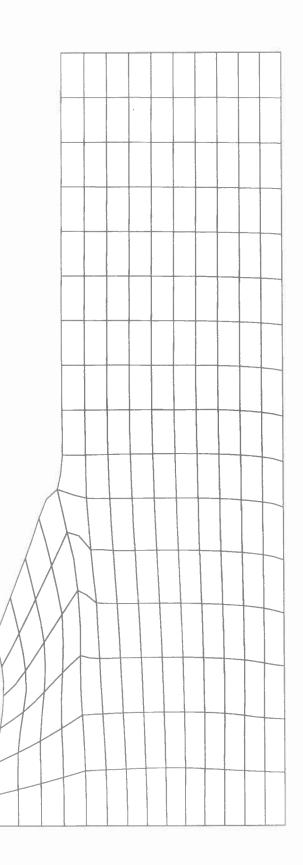


KKKFF RRRRRRFF RRRR KKKKKKKKKKKKKKKKK 7777 KKK * 1 1 1 1 1 P P P P P ******************** 1 1 ۰ F 1 t t t t t t t t t t t 114 TTTT I 1 11. 111 111 APATATATATATATA 11/1114 777777 111111111111 7777



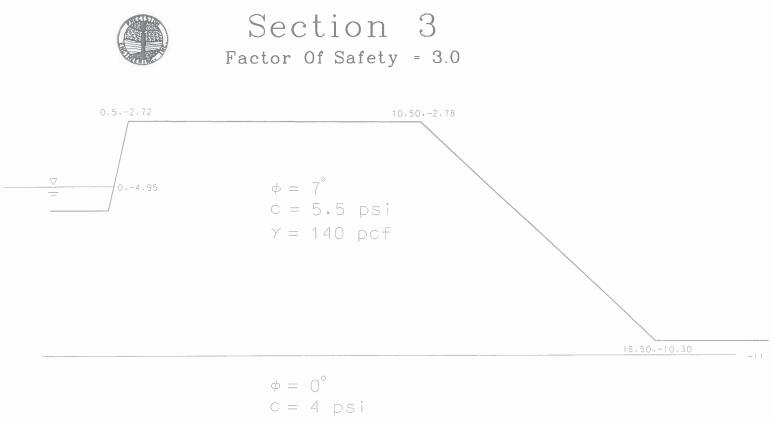

$$\phi = 0^{\circ}$$

c = 8 psi
 $\gamma = 140$ pcf


	-19.5
$\phi = 8^{\circ}$	
c = 4 psi	
$\gamma = 140 \text{ pcf}$	

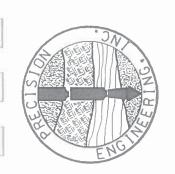
Sectio	on 2	Prof	ile													
w1= s1= w2= h1= h2=	8.0 6.0 20.0 4.2 10.0) ()) () 1 ()														
nx1= nx2= ny1= ny2=	6 10 4 10															
Group 1 2 3	p phi c 2.00 864.00 0.00 1152.00 8.00 576.00				0.0	psi gamm 0.00 140.0 0.00 145.0 0.00 135.0			e 0.1000E+06 0.1000E+06 0.1000E+06			v 0.30 0.30 0.30				
Prope 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	rty (1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	grour 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ass 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	sign 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ed to 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ch e 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ent 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
tol= limit			C													
						max displacement 0.2518E+00 0.2638E+00 0.3798E+00					iterations 83 182 1000					

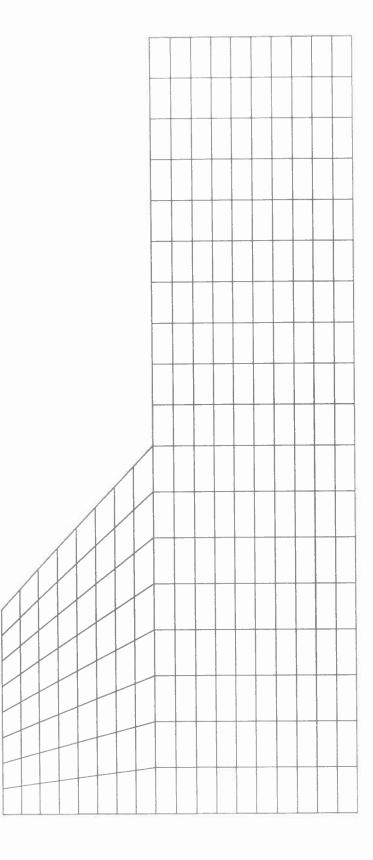
1



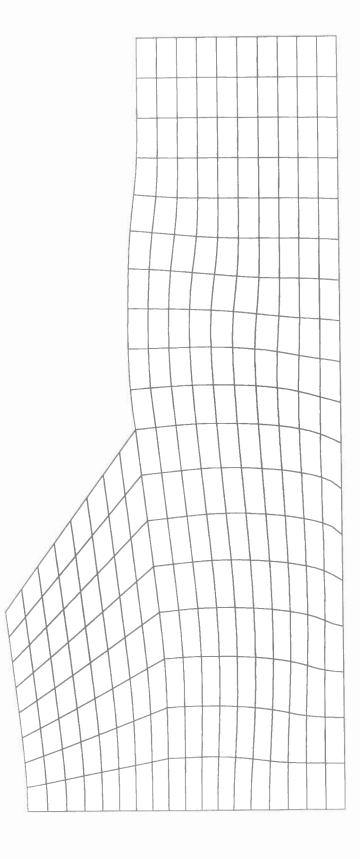
> > . ∢ ≫ ∢ > **** -70 20 3 7 **** 7 7 7 7 77 7 7 7 7 7 7 7 7777777777777777 7 7 77 7 7 7 1 777777777777777777 7 1 1 1 1 1 1 1 7 7 7 7 7 4 **************** * * * * * * * * * ۰ F *<i>7 7 7 7 7 7 7 7* 7 7 7 7 7 7 A A = アアアアアアアアアアアアア 777777A 777777 A A *א א א א א* 7 7 7 7 ********* ア・ア・ア ->

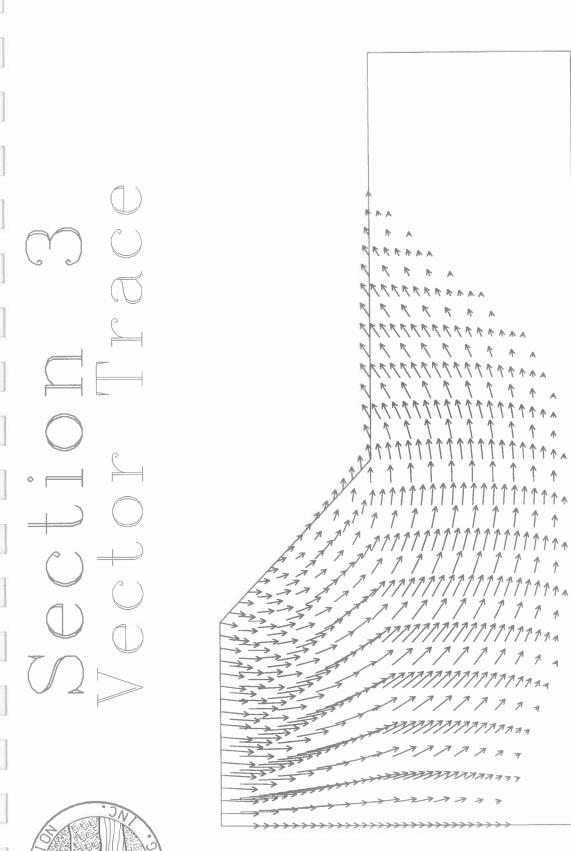
 $\gamma = 140 \text{ pcf}$


Sectio	on 3	Prof	ile												
w1= s1= w2= h1= h2=	10.0 8.0 20.0 7.5 10.0	0 0 0 0													
nx1= nx2= ny1= ny2=	- 8 10 8 10														
Group 1 2	phi 7.0 0.0	0 7	с 92.0 76.0		psi 0.0 0.0	0 1	gamm 140.0 130.0) O C	e .100 .100	0E+C		V 0.3			
Prope 1 1 1 1 1 1 2	1 1 1 1 1 1 2	roup 1 1 1 1 1 1 2	ass 1 1 1 1 1 1 2	igne 1 1 1 1 1 1 2	d to 1 1 1 1 1 1 2	eac 1 1 1 1 1 1 2	ch el 1 1 1 1 1 1 1 2	emer. 2	nt 2	2	2	2	2	2	2
2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	, 2	2
2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2 2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

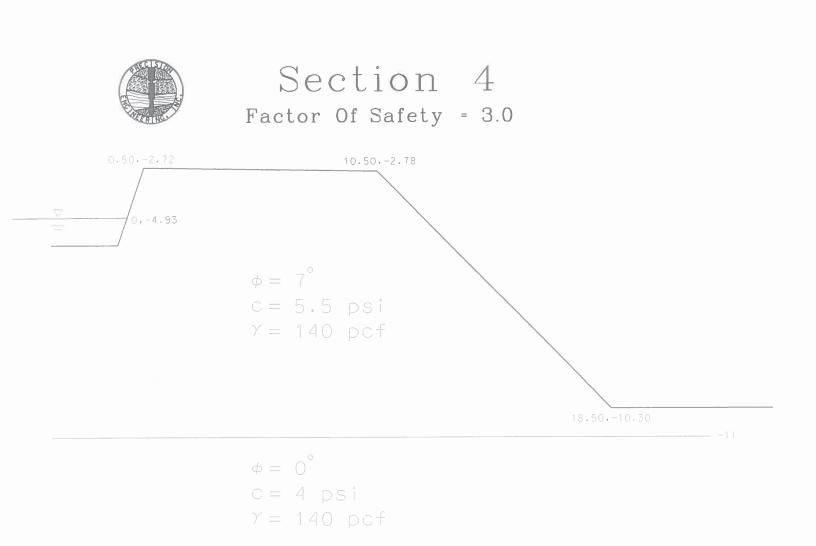

tol= 0.000100

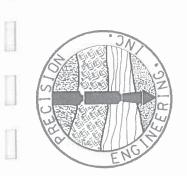
]


limit= 1000

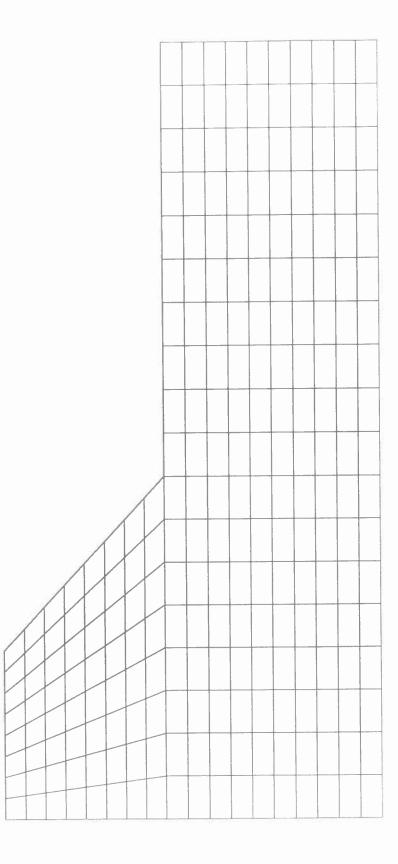

trial factor	max displacement	iterations
0.2000E+01	0.2554E+00	40
0.2500E+01	0.3177E+00	62
0.2750E+01	0.3490E+00	70
0.3000E+01	0.8735E+00	1000





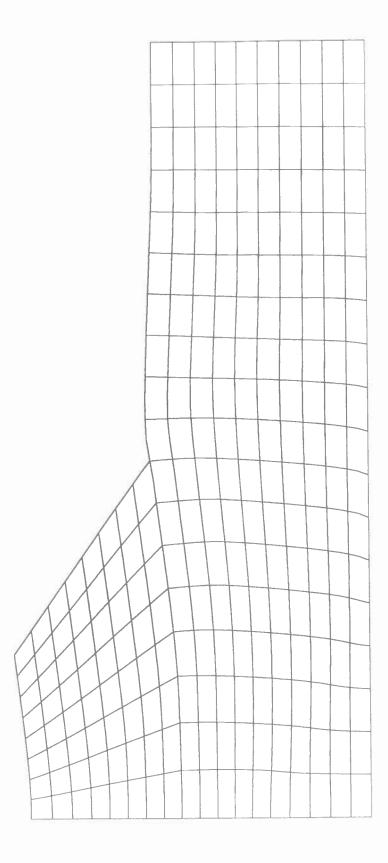

<pre>Section 4 Profile w1= 7.75</pre>	
s1= 8.00 w2= 20.00 h1= 7.50 h2= 10.00	
nx1= 8 nx2= 10 ny1= 8 ny2= 10	
Group phi c psi gamma e v 1 7.00 792.00 0.00 140.00 0.1000E+06 0.30 2 0.00 576.00 0.00 130.00 0.1000E+06 0.30	
Property group assigned to each element 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2
	2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2
2 2	2 2
2 2	2 2
2 2	2 2
2 2	2 2

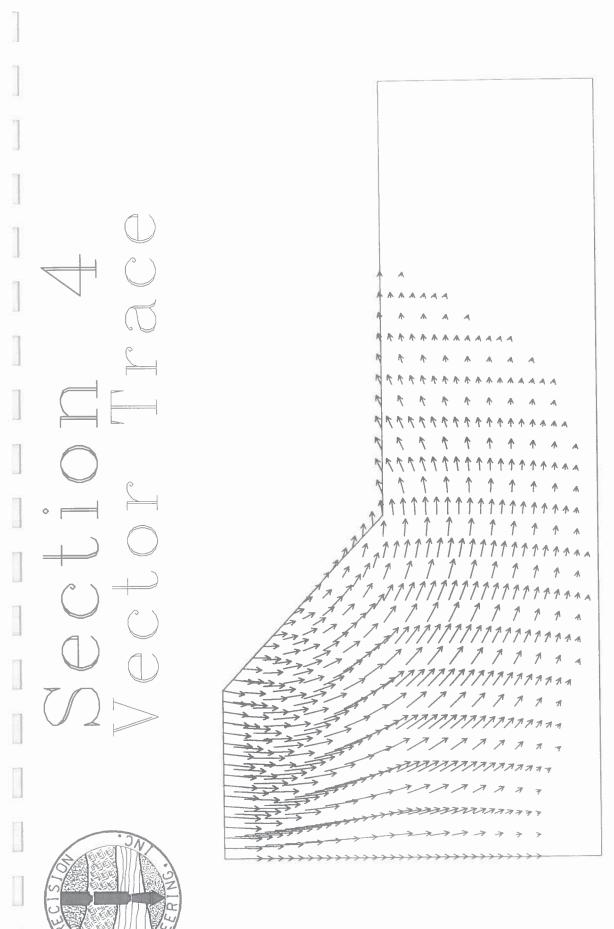
tol= 0.000100

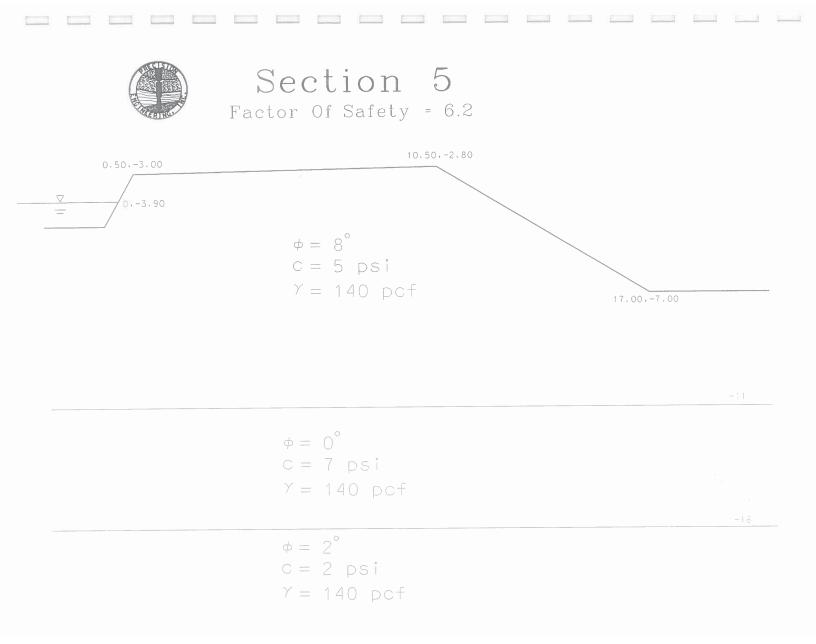

1

limit= 1000

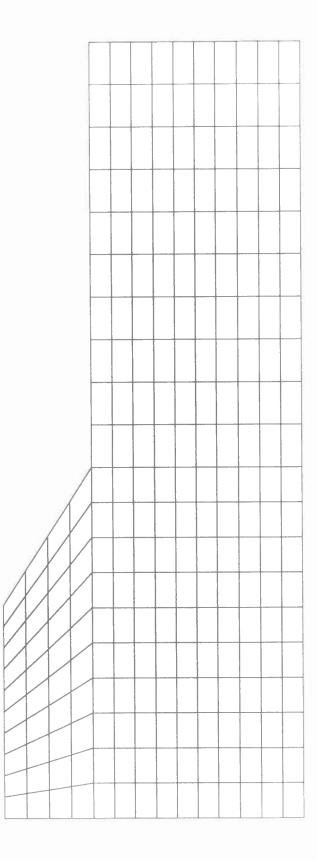
trial factor	max displacement	iterations
0.2000E+01	0.2529E+00	. 37
0.2500E+01	0.3136E+00	56
0.2750E+01	0.3458E+00	65
0.3000E+01	0.6995E+00	1000

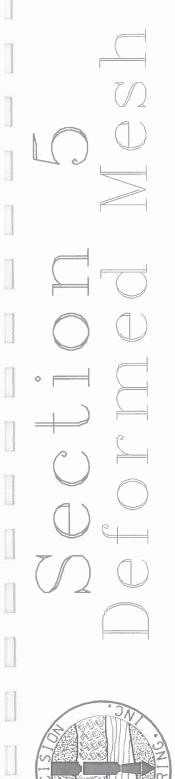


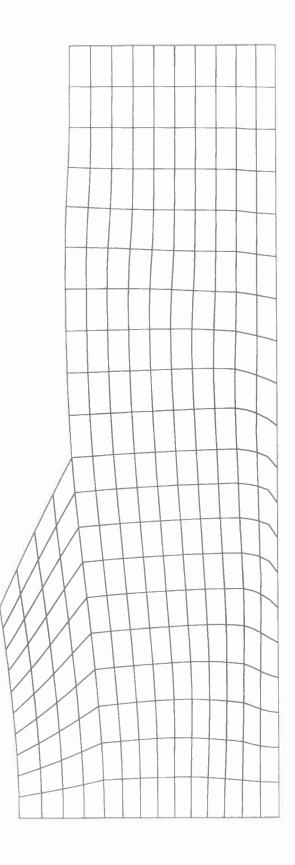




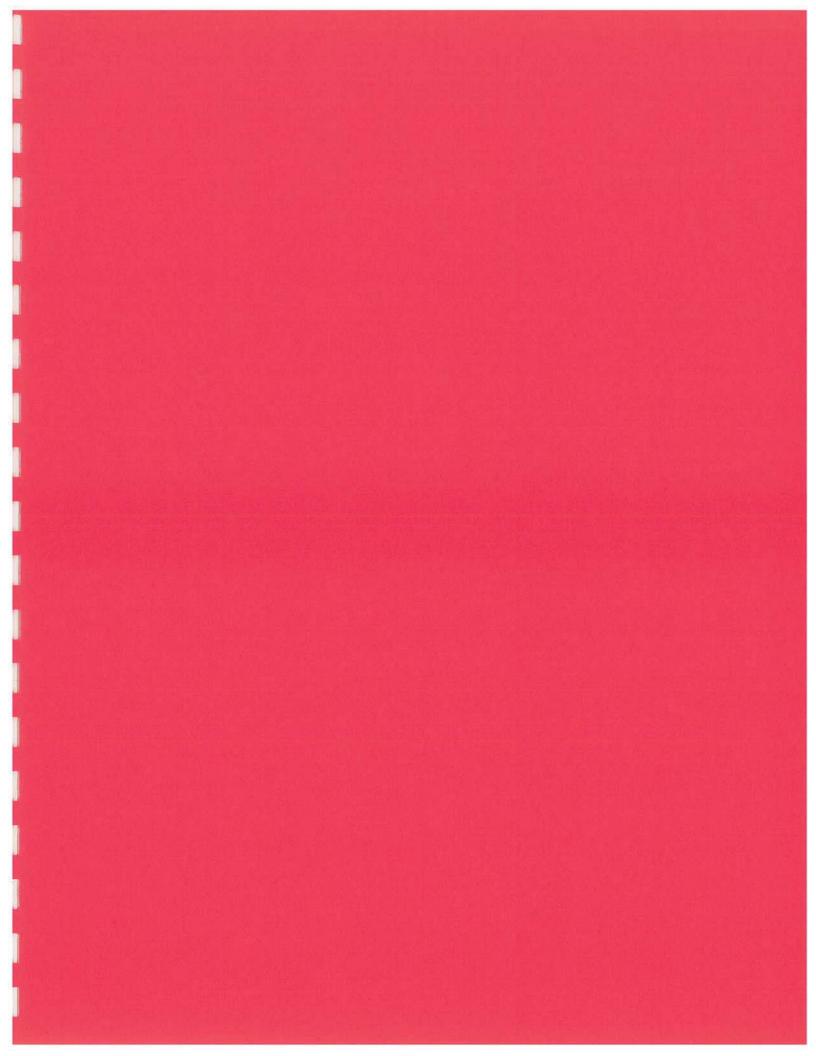
]

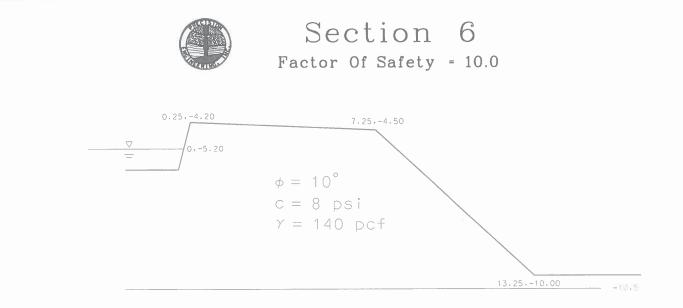

Costi	on 5 E	rofi	10														
Secti		LOII	110														
w2=	10.00 6.50 20.00 4.20)															
nx1= nx2= ny1= ny2=	10 10 4 10																
Group 1 2 3	8.00) 72) 10() 28		0	psi 0.0 0.0 0.0	0 1	gamm 140.0 140.0	0	0.100).1000E+06 0).30).30).30			
Prope 1 1 1	rty gr 1 1 1 1	roup 1 1 1 1	ass 1 1 1 1	igne 1 1 1 1	1 1 1 1	ead 1 1 1	1 1 1	1 1 1 1									
1	1 1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
1	1 1 1 1 1	1 1 1	1	1	1	1	1	1	1	1	1	1	1	1	1		
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		
2	1 1 2 2 2	1 2 2	2	2	2	2	2	2	2	2	2	2	2	2	2		
2 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2		
2 2	2 2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2		
2 2	2 2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	2	2		
23	2 2 3	2 3	3	3	3	3	3	3	3	3	3	3	3	3	3		
3	3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
3	3 3	3		C	C	5	J	C	C	C	C	5	0)	0		
	0.00																
	tria	l fa	ctor		max	dis	place	eme	nt	iter	atio	ns					


sec5.res

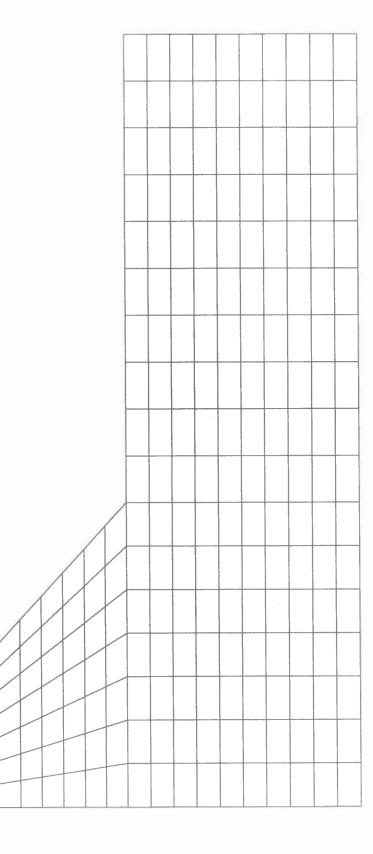

0.5800E+01	0.2946E+00	127
0.6000E+01	0.3065E+00	168
0.6100E+01	0.3191E+00	252
0.6200E+01	0.3918E+00	1000

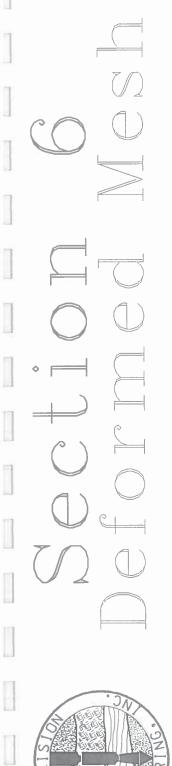
1

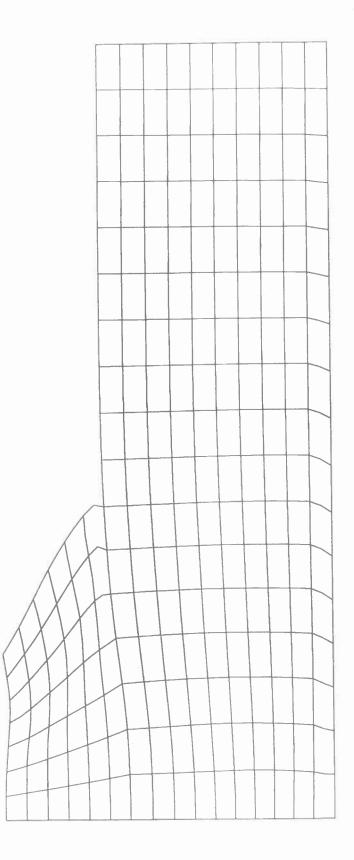




≥ -11 A ₼ ***** * * * * * * * * * * * * * * • • • • • • • • • • • • • • **^ ^ ^ ^ ^ ^ ^** ^ ^ ^ 1 1 **************** 1 1 1 1 ************ l • 11 11A A TATATATATA アファィ -----************


φ	= 0 °		-19.5
C	= 4 psi		
Y	= 140 pcf		


w1= s1= w2= h1=	7 10 10	7.0 6.0 20.0 5.5	0													
h2=		10.0														
nx1 nx2 ny1 ny2	?=	7 10 6 10														
Group phi c psi gamma e 1 10.00 1152.00 0.00 140.00 0.1000E+06 2 0.00 2304.00 0.00 140.00 0.1000E+06 3 0.00 576.00 0.00 140.00 0.1000E+06												V 0.3 0.3	30			
Pro	1 1 1 1 1	1 1 1 1 1	1 1 1 1	1 1 1 1 1	1 1 1 1 1	ed to 1 1 1 1 1	1 1 1 1 1									
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3


trial factor	max displacement	iterations
0.9000E+01	0.3093E+00	149
0.1000E+02	0.3472E+00	324
0.1010E+02	0.3636E+00	584
0.1020E+02	0.4050E+00	1000

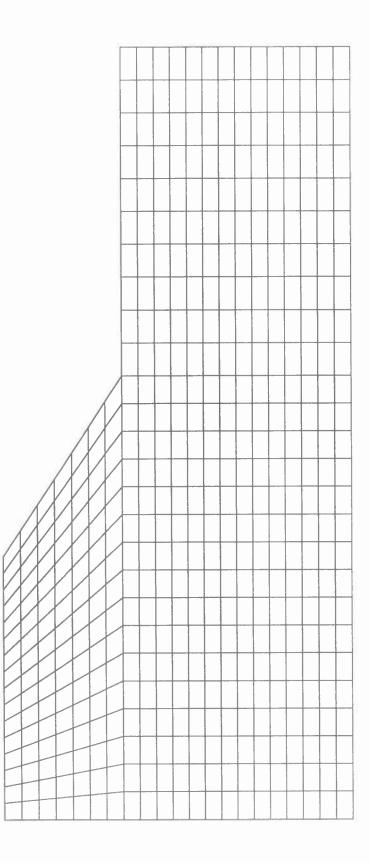
]

 \rightarrow 7777777 1 4 ***** A ************** ****** 4 4 1 1 1 1 1 1 1 1 1 1 1 - 1 1 4 1 1 1 1 1 1 1 1 1 ***************** ******* ***** x x x X X X X X 1 ******************** アアアアアイ *₹₹₹₹₹₹₹₹₹₹₹₹₹* 77711 *マラシシシノスススス*スススス 7 7 7 1 33777777777

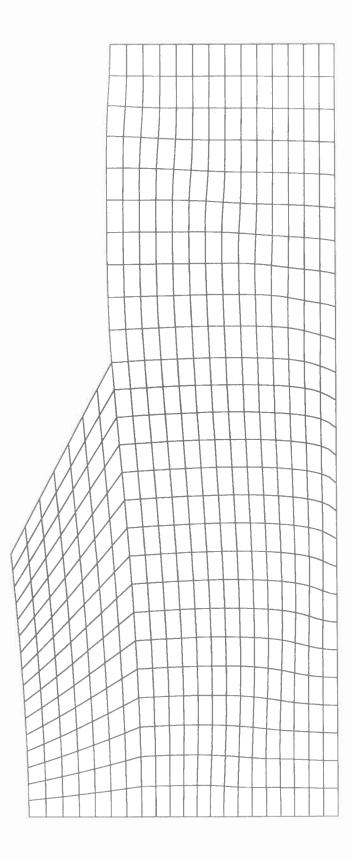
φ	
С	 16 psi
γ	 140 pcf

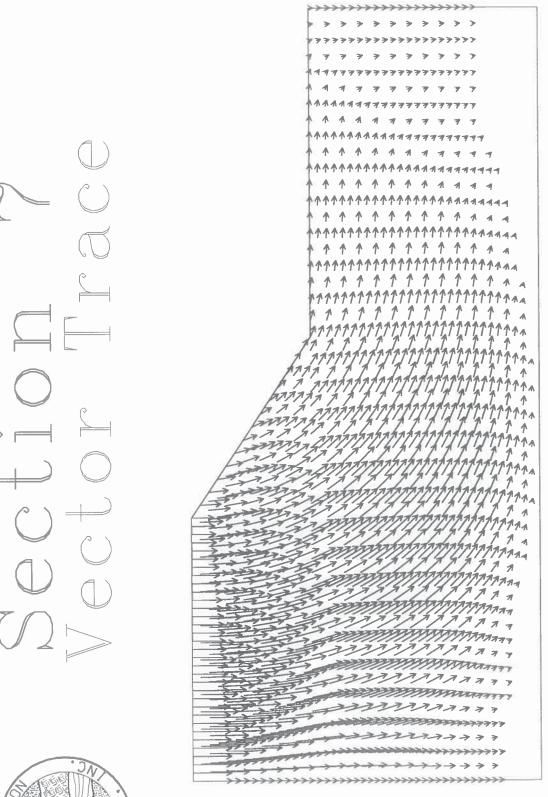
Section 7 Profile							
w1= 16.00 s1= 11.00 w2= 20.00 h1= 7.30 h2= 14.00							
nx1= 16 nx2= 10 ny1= 7 ny2= 14							
	psi g 0.00 14		e 1000E+06	v 0.	30		
Property group assigne 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	element 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 1 1 1 1 1	1 1 1 1 1	111111111111
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1	1 1	1 1	1 1	1	1	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1	1 1	1 1	1 1	1	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1	1 1	1 1	1 1	-	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1	1 1	1 1	1 1	1	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1	1 1	1 1	1 1	1	1	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1	1 1	1 1	1 1	1	1	1
1 1 1 1 1	1						

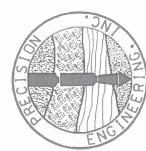
sec7.res

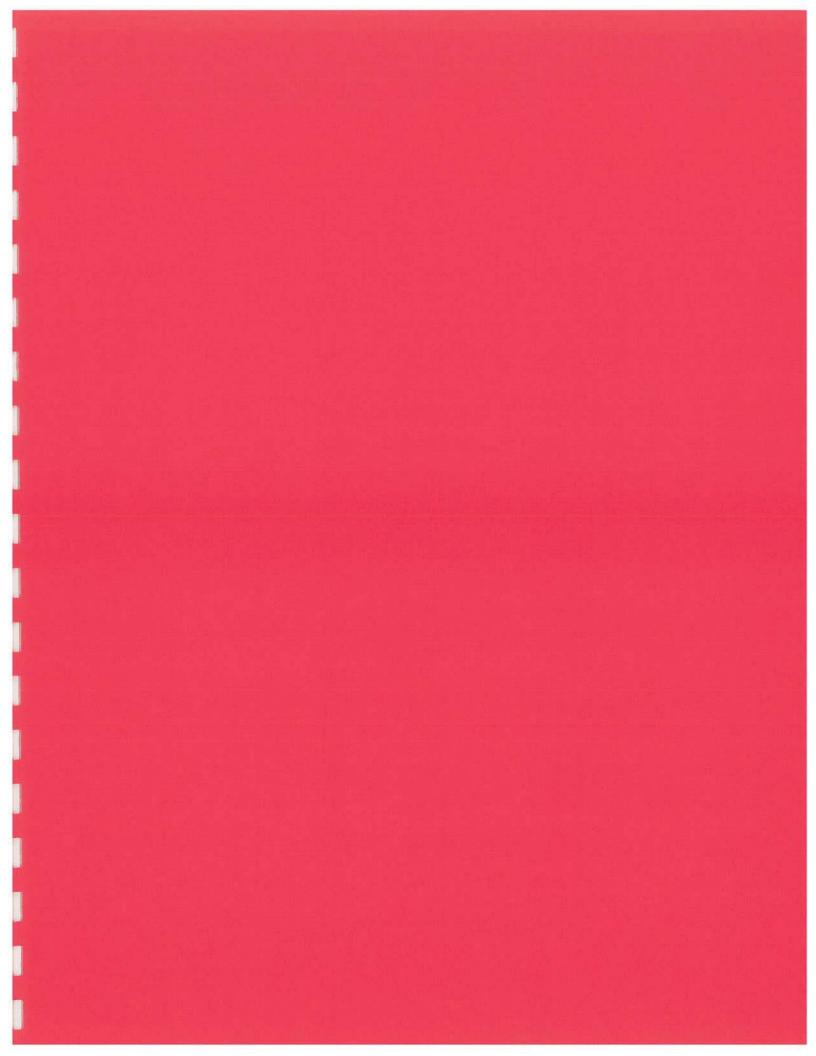

		1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1			1	-	я.	4	1	1	1		a)	7	1
1 1	1	1				1	T	1	Ţ	1	T	1	1	1	1
1	1 1	1 1		1 1	1 1	1	1	1	1	1	1	1	1	1	1
	1 1	1 1	1	1	1										
1 1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1 1	1 1	1 1		1 1	1	1	1	1	1	1	1	1	1	1
$\begin{array}{cc} 1 & 1 \\ 1 \end{array}$	1 1	1 1	1	1	1										
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	1	1	1	1	1										

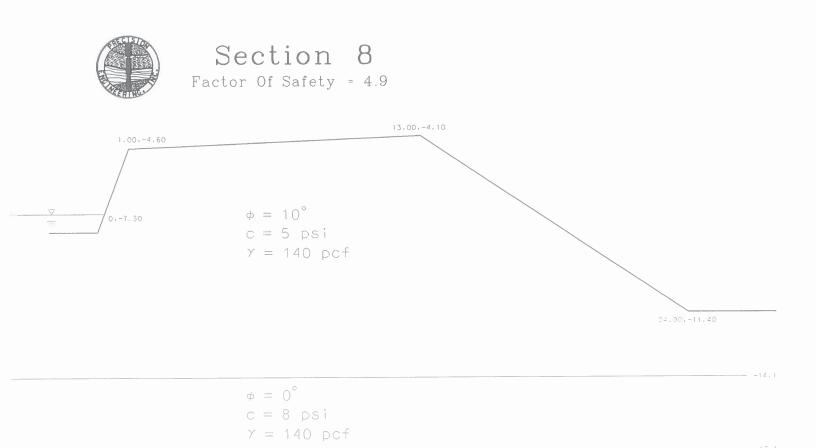
tol= 0.000100 limit= 1000

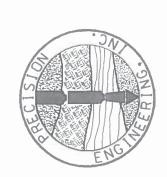

]

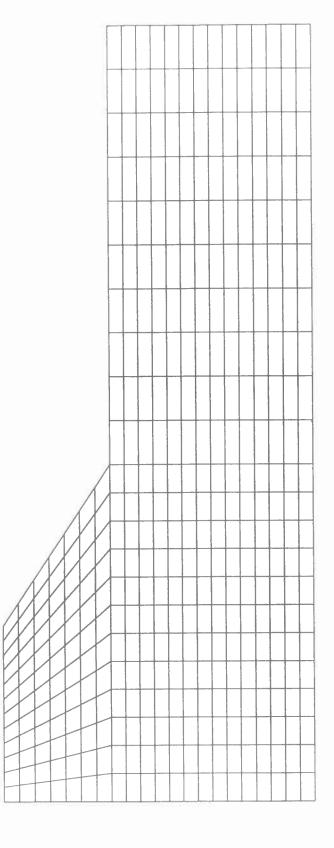

max displacement	iterations
0.5128E+00	74
0.5294E+00	83
0.5405E+00	93
0.5552E+00	110
0.6942E+00	1000
	0.5128E+00 0.5294E+00 0.5405E+00 0.5552E+00



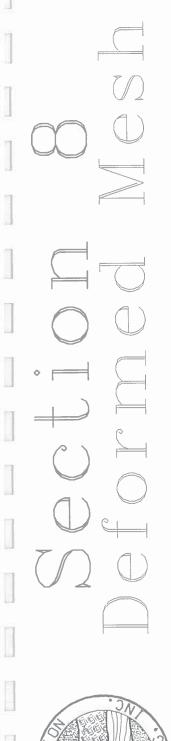


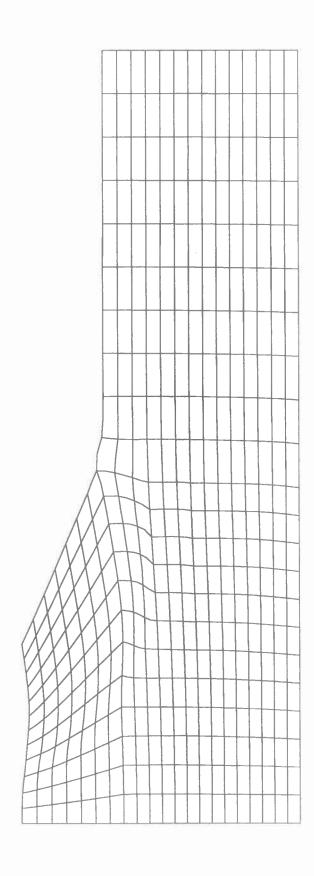


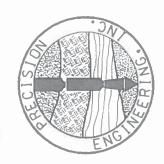


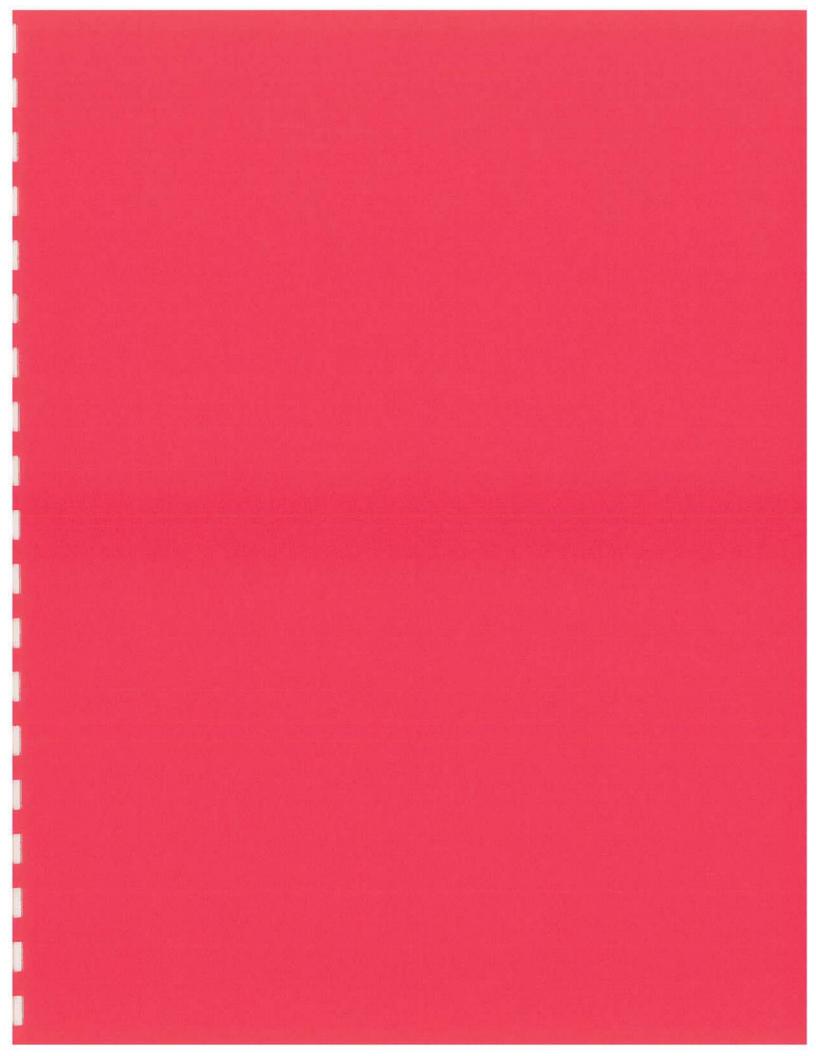

Section 8 Profile															
w1= s1= w2= h1= h2=	12.00 11.00 30.00 7.30 14.00														
nxl = 12 nx2 = 10 nyl = 7 ny2 = 14 Group phi c psi gamma e v															
Group 1 2 3	10.00) 115	C 20.00 52.00 04.00	psi 0.0 0.0 0.0	0	140.00		e 0.100 0.100 0.100)6	v 0.30 0.30 0.30					
1 1 1 1 1 1	erty gr 1 1 1 1 1 1 1 1 1	coup 1 1 1 1 1 1 1 1 1	assign 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ned to 1 1 1 1 1 1 1	ea 1 1 1 1 1 1 1	ch el 1 1 1 1 1 1 1	eme 1 1 1 1 1 1	ent 1 1 1 1 1 1	1 1 1 1 1	1 1 1 1 1 1	1	1	1	1	
1 1 1	1 1 1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	
1 1 1	1 1 1 1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	
	1 2 2 2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	
	2 2 2 2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	
	2 2 2 2	2 2	2 2	2	2	2	2	2	2	2	2	2	2	2	
	2 3 3 3	3	3 3	3	3	3	3	3	3	3	3	3	3	3	
3	3 3	3	3 3	3	3	3	3	3	3	3	3	3	3	3	

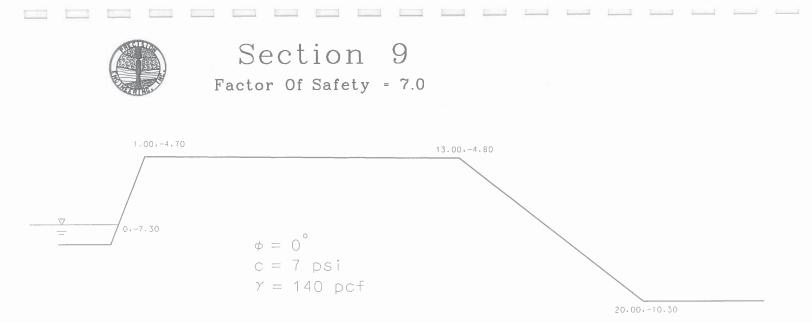
0	~	0		0													
3	3	3		3													
(*) (*)	8 3 8 3		3		3	3	3	3	3	3	3	3	3	3	3	3	3
3	3 3 3	3		3													
3	3 3	3	3	2	3	3	3	3	3	3	3	3	3	3	3	3	3
3				3													
3	3 3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	3 3	3)			500277										
3	3 3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	3 3	3			2	2	2	~	2	-	2	~	~		0	2	~
3	3 3 3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
			3		3	3	3	3	3	3	3	3	3	3	3	3	3
3	3	3	J	3	5	J	C	0	5	0	5	5	5	5	5	3	5
	3 3	3															


tol= 0.000100 limit= 1000


trial factor 0.4600E+01	max displacement 0.3695E+00	iterations 55 89
0.4700E+01 0.4800E+01 0.4900E+01	0.3768E+00 0.3859E+00 0.4922E+00	89 151 1000


0.00





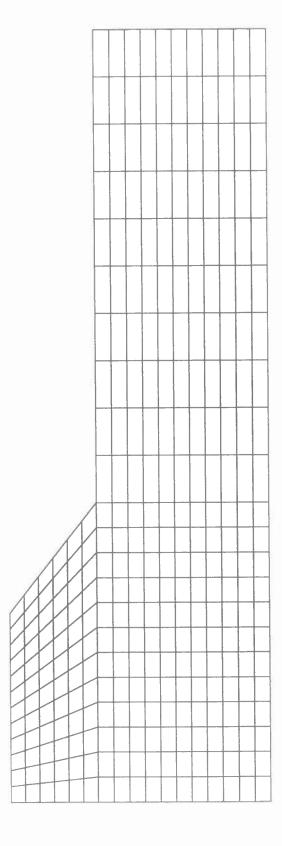
>>>>>>>>>>> >>>>>>>>>>> ********* * * * * * * * * * * * * * * * ********* * * * * * * * * * * * * * 73333333333333333333333333333333 77777777777777777777777777777 7 7 7 7 7 7 7 7 7 7 7 7 7 7 ******* 1 7 7 7 7 7 7 7 7 7 7 7 The Annon Annanananan 17 777777777 AAAA *オオオオオオオ*オ MMMMMMAAAAAAA 7777777777 3333334444444 **** 7777777777 Deservation and a second REKEKERS 7 7 A DECEMBER OF THE AND A DECEMBER OF THE KKKKKKKE 77 *********** ****** 7 7 **** 3333 ****** > > *****************

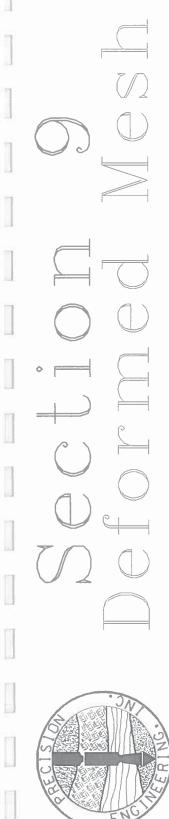
• F

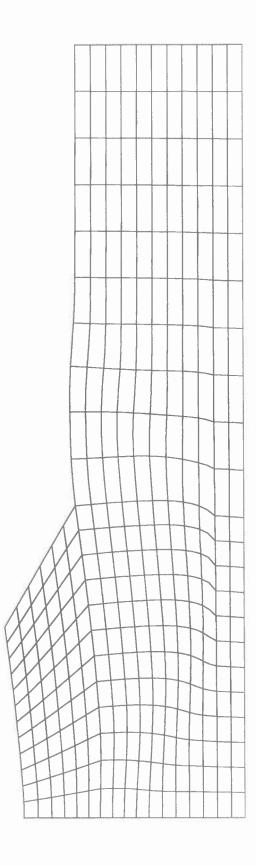
$$\phi = 0^{\circ}$$

c = 16 psi
 $\gamma = 140$ pcf

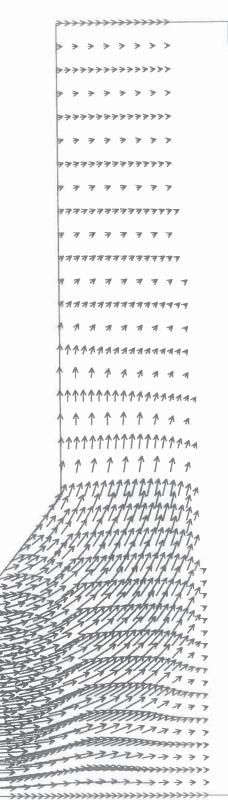
Section 9 Profile															
w1= s1= w2=	$ \begin{array}{rcl} 1 = & 7.00 \\ 2 = & 30.00 \end{array} $														
$ \begin{array}{llllllllllllllllllllllllllllllllllll$															
nxl= 12 nx2= 10 nyl= 6 ny2= 11															
Group 1 2	0.0		с 08.00 04.00)	0.0	psi gamma e 0.00 140.00 0.1000E+06 0.00 140.00 0.1000E+06									
Prope	erty g	roup	assi	gne	d to	eac	h el	emen	t						
1	1 1	1 1	1 1	1 1	1	1 1	1	1 1	1	1	1 1				
1	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1]	1 1				
1	1]	1	1	1	1	1	1	1	1	1				
1 1 1	1 1 1 1	1 1 1	1	1 1	1 1	1 1	1 1	1	1	1	1	1	1	1	1
1	1 1 1 1	1	1	1	7	1	1	1	1	1	1	1	1	1	1
1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	1 1 1	1													
1	1 1 1			1	1	1	1	1	1	1	1	1	1	1	1
	1 1		1	1	1	1	1	1	1	1	1	1	1	1	1
1 1	1 1 1 1		1	1	1	1	1	1	1	1	1	1	1	1	1
1 1	1 1 1 1		1	1	1	1	1	1	1	1]	1	1	1	1
1 1	1	1	1]	1].	1	1	1	1	1	1		Ĩ	1
	1	, 4.,													


Page 📗


sec9.res


100

1]	1]				1].	lanar	1	1	1	1	1	1	1	Ţ	1
2	1 2	2	1 2	2	2	2	2	2	2	2	2	2	2	1.	2	2		2
2	2	2	2	2	2	2	2	2	2	2	2	2	2		2	2		2
	2 2 tol= 0.000100 limit= 1000																	
trial factor 0.6500E+01 0.6600E+01 0.6700E+01 0.6800E+01 0.6900E+01 0.7000E+01						0.32 0.32 0.32 0.33	dis 177E 227E 283E 352E 451E 483E	+00 +00 +00 +00	emen	t		atio 100 104 111 122 149 000	ns					



• F

CONTRACTOR