UIC - I - __011__

PERMITS, RENEWALS, & MODS (WDW-2)

2016

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Tuesday, May 23, 2017 3:45 PM
То:	Schmaltz, Randy (Randy.Schmaltz@wnr.com)
Cc:	Griswold, Jim, EMNRD; Sanchez, Daniel J., EMNRD
Subject:	Western Refining SW, Inc. WDW-2 (UICI-11) Permit Conditions Variance Request May
	17, 2017

Mr. James R. Schmaltz:

The New Mexico Oil Conservation Division (OCD) is in receipt of the above subject request. Please find below OCD responses to Western's Variance Requests.

- 1) Quarterly Monitoring Requirements: Provide the environmental test type and methods that deviate from the discharge permit for OCD review.
- Monitor and Piezometer Wells: Provide a map to scale with MWs and piezometric groundwater flow direction for OCD review.
- 3) Continuous Monitoring Device: OCD approves on the condition that Western provide monthly 24-hr. graphs of pressure and flow rate in the quarterly report and/or annual report.
- 4) Fall-Off Test: OCD approves on the condition that Western complete its UIC Class I (NH) Disposal Well Fall-Off Test on or before September 30, 2017.

Please contact me if you have questions. Thank you.

Mr. Carl J. Chavez, CHMM (#13099) New Mexico Oil Conservation Division Energy Minerals and Natural Resources Department 1220 South St Francis Drive Santa Fe, New Mexico 87505 Ph. (505) 476-3490 E-mail: <u>CarlJ.Chavez@state.nm.us</u>

"Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: <u>http://www.emnrd.state.nm.us/OCD</u> and see "Publications")

May 17, 2017

Carl Chavez Environmental Bureau New Mexico Energy, Minerals & Natural Resources Dept. 1220 South St. Francis Drive Santa Fe, NM 87505

Certified Mailer #: 7016 2140 0000 3867 3529

RE: Permit Conditions Variance Request Class I Waste Injection Well "WDW-2" Bloomfield Terminal OCD Discharge Permit UICI-0011

Dear Mr. Chavez,

Western Refining Southwest, Inc. (Western) requests the following variances to the OCD Discharge Permit UICI-0011 conditions:

- **Condition 2.A Quarterly Monitoring Requirements** Western requests a permit variance to use the most up-to-date EPA approved methods for on-going sampling activities. The listed analytical methods in some cases do not reflect the most up-to-date EPA approved methods.
- **Condition 2.A.1 Monitor and Piezometer Wells** Western proposes to use the existing ground water remediation and monitoring program to detect potential ground water contamination associated with WDW-2. This program includes monitoring frequency, chemical monitoring parameters and reporting requirements.
- **Condition 3.C Continuous Monitoring Device** Western requests a permit variance to use the Terminal's data historian system to continuously record well injection parameters in real time. This system is more reliable than a chart recording system.
- **Condition 3.E Fall-Off Test** Western requests a permit variance to complete the Fall-Off Test (FOT) within 90-days of commencement of injection operations. Prior to the FOT, the well injection parameters must be allowed to stabilize which will not be possible until the NMOCD approved well stimulation is completed. Western will provide NMOCD proper notice prior the FOT.

If you have any questions or prefer to discuss these topics in more detail, please feel free to contact me at (505) 632-4171 at your convenience.

Sincerely,

State R. Schmaltz Western Refining HSER Manager – Logistics

cc: A. Hains (WNR)

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Tuesday, February 7, 2017 9:22 AM
То:	Griswold, Jim, EMNRD; Goetze, Phillip, EMNRD
Cc:	'Allen.Hains@wnr.com'
Subject:	FW: Western WDW#2 Formation Water Analytical (UICI-011) API# 30-045-35747 Water Quality Data
	Entrada Fm.
Attachments:	Western WDW#2 Formation Water Analytical.pdf

Gentlemen:

Western Refining SW, Inc. has submitted their environmental laboratory data results for the Entrada Fm. The TDS is 48,900 ppm.

It appears that Western has an acceptable injection zone.

Thank you.

Mr. Carl J. Chavez, CHMM (#13099) New Mexico Oil Conservation Division Energy Minerals and Natural Resources Department 1220 South St Francis Drive Santa Fe, New Mexico 87505 Ph. (505) 476-3490 E-mail: <u>Carl J. Chavez@state.nm.us</u> **"Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: <u>http://www.emnrd.state.nm.us/OCD</u> and see "Publications")**

From: Hains, Allen [mailto:Allen.Hains@wnr.com]
Sent: Tuesday, February 7, 2017 9:11 AM
To: Chavez, Carl J, EMNRD <CarlJ.Chavez@state.nm.us>
Subject: Western WDW#2 Formation Water Analytical

Carl,

The WDW#2 formation water analysis is attached.

Thank you,

Allen S. Hains Manager Remediation Projects

Western Refining 212 N. Clark Street El Paso, Texas 79905 915 534-1483 915 490-1594 (cell)

	Field Parameters									
Site	Sp. Cond.	TDS	DO (mg/L)	ORP	pH (Units)	Temp.	Date	Time	Sampler	
DWD#2	68,017	(g/⊑) 44,200	1.33	211.9	5.13	52.3	1/25/2017	11:00 AM	Matt Krakow	

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

February 01, 2017

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: DWD #2

OrderNo.: 1701A75

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/26/2017 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report Lab Order 1701A75 Date Reported: 2/1/2017

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. **Project:** DWD #2

Lab ID: 1701A75-001 Client Sample ID: DWD 2 Formation Water Collection Date: 1/25/2017 11:00:00 AM Received Date: 1/26/2017 7:05:00 AM

Analyses Result **PQL** Qual Units **DF** Date Analyzed Batch **EPA METHOD 300.0: ANIONS** Analyst: MRA 1/26/2017 6:37:17 PM Fluoride ND 2.0 mg/L R40335 20 Chloride 23000 2500 mg/L 5E 1/27/2017 7:20:01 PM R40361 Bromide ND 2.0 R40335 mg/L 20 1/26/2017 6:37:17 PM Phosphorus, Orthophosphate (As P) ND 10 mg/L 1/26/2017 6:37:17 PM R40335 20 Sulfate 910 25 mg/L 50 1/27/2017 7:07:36 PM R40361 Nitrate+Nitrite as N ND 20 mg/L 100 1/27/2017 7:32:26 PM R40361 SM2510B: SPECIFIC CONDUCTANCE Analyst: JRR 1/30/2017 1:40:54 PM 94000 50 µmhos/cm R40366 Conductivity 50 SM2320B: ALKALINITY Analyst: JRR 1/30/2017 11:39:53 AM R40366 mg/L CaCO3 Bicarbonate (As CaCO3) 255.3 20.00 1 Carbonate (As CaCO3) ND 2.000 mg/L CaCO3 1 1/30/2017 11:39:53 AM R40366 Total Alkalinity (as CaCO3) 255.3 20.00 mg/L CaCO3 1/30/2017 11:39:53 AM R40366 1 SM2540C MOD: TOTAL DISSOLVED SOLIDS Analyst: KS **Total Dissolved Solids** 48900 2000 *D mg/L 2/1/2017 3:56:00 PM 29970 1 **EPA 6010B: TOTAL RECOVERABLE METALS** Analyst: pmf Calcium 1700 20 mg/L 20 1/30/2017 10:59:56 AM 29930 Magnesium 200 20 mg/L 20 1/30/2017 10:59:56 AM 29930 Potassium 450 20 mg/L 20 1/30/2017 10:59:56 AM 29930 Sodium 16000 500 500 1/30/2017 11:06:12 AM 29930 mg/L

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Oualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- Analyte detected below quantitation limits J Page 1 of 5
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client:Hall EnvironmentalProject:Not indicatedLab ID:B17011690-001Client Sample ID:1701A75-001C DWD 2 Formation Water

 Report Date:
 01/27/17

 Collection Date:
 01/25/17
 11:00

 DateReceived:
 01/27/17

 Matrix:
 Aqueous

Analyses F	lesult Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
CORROSIVITY pH	6.46 s.u.		0.10		SW9040C	01/27/17 10:54 / jmg

RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

QA/QC Summary Report

Prepared by Billings, MT Branch

Client: Hall Environmental

Project: Not Indicated

Report Date: 01/27/17 Work Order: B17011690

Analyte		Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	SW9040C				-		Analytical Ru	n: ORION	720A HZW	_170127A
Lab ID: pH	ICV	Initial Calibratio 8.11	on Verifications.u.	on Standard 0.10	101	98	102		01/27	7/17 10:54
Method:	SW9040C								Batch	R273874
Lab ID: pH	B17011690-001ADUP	Sample Duplic 6.49	ate s.u.	0.10		Run: ORIC	ON 720A HZW_	170127A 0.5	01/27 3	7/17 10:54

ND - Not detected at the reporting limit.

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

170	WO#:
01-F	

Client:	Westerr	n Refining S	outhwe	st, Inc.							
Project:	DWD#	2									
Sample ID	МВ	SampT	Type: m t	olk	TestCode: EPA Method 300.0: Anions						
Client ID:	PBW	Batcl	h ID: R4	0335	R	RunNo: 4	0335				
Prep Date:		Analysis D	Date: 1/	26/2017	S	SeqNo: 12	264291	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		ND	0.10								
Bromide		ND	0.10								
Phosphorus, C	Orthophosphate (As P	ND	0.50								
Sample ID	LCSb	SampT	Type: Ics	5	Tes	tCode: El	PA Method	300.0: Anions			
Client ID:	LCSW	Batcl	h ID: R4	0335	R	RunNo: 4	0335				
Prep Date:		Analysis D	Date: 1/	26/2017	S	SeqNo: 12	264293	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride		0.52	0.10	0.5000	0	104	90	110			
Bromide		2.4	0.10	2.500	0	96.4	90	110			
Phosphorus, C	Orthophosphate (As P	4.8	0.50	5.000	0	96.7	90	110			
Sample ID	МВ	SampT	Type: m t	olk	Tes	tCode: El	PA Method	300.0: Anions	;		
Client ID:	PBW	Batcl	h ID: R4	0361	R	RunNo: 4	0361				
Prep Date:		Analysis D	Date: 1/	27/2017	S	SeqNo: 12	265117	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Sulfate		ND	0.50								
Nitrate+Nitrite	as N	ND	0.20								
Sample ID	LCS	SampT	Type: Ics	6	Tes	tCode: El	PA Method	300.0: Anions			
Client ID:	LCSW	Batcl	h ID: R4	0361	R	RunNo: 4	0361				
Prep Date:		Analysis D	Date: 1/	27/2017	S	SeqNo: 12	265118	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.8	0.50	5.000	0	95.5	90	110			
Sulfate		9.7	0.50	10.00	0	97.2	90	110			
Nitrate+Nitrite	as N	3.5	0.20	3.500	0	98.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 2 of 5

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1701A75
	01-Feb-17

Client: Project:	Western F DWD #2	Refining S	Southwe	st, Inc.							
Sample ID	MB-29930	Samp	Гуре: М	BLK	TestCode: EPA 6010B: Total Recoverable Metals						
Client ID:	PBW	Batch ID: 29930			F	RunNo: 4	0375				
Prep Date:	1/27/2017	Analysis E	Date: 1/	30/2017	S	SeqNo: 12	265583	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		ND	1.0								
Magnesium		ND	1.0								
Potassium		ND	1.0								
Sodium		ND	1.0								
Sample ID	LCS-29930	Samp	Type: LC	S	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Batc	h ID: 29	930	F	RunNo: 4	0375				
Prep Date:	1/27/2017	Analysis E	Date: 1/	30/2017	5	SeqNo: 12	265584	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		49	1.0	50.00	0	98.3	80	120			
Magnesium		49	1.0	50.00	0	97.3	80	120			
Potassium		47	1.0	50.00	0	94.9	80	120			
Sodium		40	4.0	F0 00	0	05.4	00	100			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 5

WO#:	1701A75
	01-Feb-17

Client: Project:	Western Refining DWD #2	g Southwest, Inc.					
Sample ID mb-1	Sam	npType: mblk	TestCode	SM2320B: AI	lkalinity		
Client ID: PBW	Ba	atch ID: R40366	RunNo	40366			
Prep Date:	Analysis	s Date: 1/30/2017	SeqNo	1266120	Units: mg/L CaCO3		
Analyte	Result	PQL SPK val	ue SPK Ref Val %RE	C LowLimit	HighLimit %RPD	RPDLimit	Qual
Total Alkalinity (as CaC	:03) ND	20.00					
Sample ID Ics-1	Sam	ıрТуре: Ics	TestCode	SM2320B: AI	lkalinity		
Client ID: LCSV	l Ba	atch ID: R40366	RunNo	40366			
Prep Date:	Analysis	s Date: 1/30/2017	SeqNo	1266121	Units: mg/L CaCO3		
Analyte	Result	PQL SPK val	ue SPK Ref Val %RE	C LowLimit	HighLimit %RPD	RPDLimit	Qual
Total Alkalinity (as CaC	78.04	20.00 80.	0 0 97	.6 90	110		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 4 of 5

Page 5 of 5

Client: Project:	Weste DWD	rn Refining Southy #2	vest, Inc.						
Sample ID	MB-29970	SampType:	MBLK	Test	Code: SM2540C N	IOD: Total Dise	solved So	lids	
Client ID:	PBW	Batch ID: 2	29970	R	unNo: 40436				
Prep Date:	1/31/2017	Analysis Date:	2/1/2017	S	eqNo: 1267368	Units: mg/L			
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC LowLimi	t HighLimit	%RPD	RPDLimit	Qual
Total Dissolve	d Solids	ND 20	.0						
Sample ID	LCS-29970	SampType:	LCS	Test	Code: SM2540C N	IOD: Total Diss	solved So	lids	
Client ID:	LCSW	Batch ID:	29970	R	unNo: 40436				
Prep Date:	1/31/2017	Analysis Date:	2/1/2017	S	eqNo: 1267369	Units: mg/L			
Analyte		Result PQ	L SPK value	SPK Ref Val	%REC LowLimi	t HighLimit	%RPD	RPDLimit	Qual
Total Dissolve	d Solids	1010 20	.0 1000	0	101 80) 120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis Lab 4901 Haw Aibuquerque, NA TEL: 505-345-3975 FAX: 505-34 Website: www.hallenvironmer	kins NE 487109 Sam 45-4107 ttal.com	ple Log-In C	heck List
Client Name: Western Refining Southw	Work Order Number: 1701A75		RcptNo:	1
Received by/date: AT 611 216/17				
Logged By: Anne Thorne 1	/26/2017 7:05:00 AM	anne An-	~	
Completed By: Anne Thorne 1	/26/2017 9:13:16 AM	are the		
Reviewed By: 12	6/17			
Chain of Custody	··· •			
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?	<u>Courier</u>			
Log In				
4. Was an attempt made to cool the samples?	Yes 🗹	No		
5. Were all samples received at a temperature o	f >0° C to 6.0°C Yes ☑	No 🗌		
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly	preserved? Yes 🗹	No 🗌		
9. Was preservative added to bottles?	Yes	No 🔽	NA 🗌	
10.VOA vials have zero headspace?	Yes 🗌	No 🗆	No VOA Vials 🔽	
11. Were any sample containers received broken	? Yes 🗌	No 🔽	# of processed	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🔽	No 🗌	bottles checked for pH:	2 r >12 unless noted;
13. Are matrices correctly identified on Chain of C	ustody? Yes 🗹	No 🗀	Adjusted?	<u>Ny</u>
14. Is it clear what analyses were requested?	Yes 🗹	No	Oh - she she she s	La
 Were all holding times able to be met? (If no, notify customer for authorization.) 	Yes 🗹	No 🗔	Checked by:	V - V
Special Handling (if applicable)				
16. Was client notified of all discrepancies with thi	s order? Yes	No	NA 🔽	
Person Notified:		·····]
By Whom:	 Via: □ eMail □	Phone Fax	In Person	
Regarding:				
Client Instructions:				
17. Additional remarks:				-
18. <u>Cooler Information</u> Cooler No Temp °C Condition Sea	I Intact Seal No Seal Date	Signed By		

NTAL								(N 1	o Y)	Air Bubbles							 			
Ū		2	109			-	+m	гму:	פי	See at	X	\times	\times	_		 				-
Ż			UIII M 87		-410 t			(\	/0/	-im92) 0728										-
	23	j -	ue. N		o-345 ques				()	40V) 80928					 					
5	, v	ן מ	uera		s Re	120	PCB's	1 8082	səp	8081 Pestici							 			-
Z	ΞĮ	5	Abua	5 5 1	ra) alysi	(*(<u></u>	I ON O	NC SIRI	9M 8 ANUA						 		 		
					/5 An		(SM	S 0728	, or (0168) s'HA9							 			
	Z		www. NS NI		5-39			(1.4() g p	edb (Metho						 				-
		ς ΄	awki)5-34			(1.8	l≯þ	odteM) H9T										
			101 H	- L	el. 5((0)	1M / O	אם / סי י	ษอ)	7PH 8015B						 			s:	
			4	: 1		(ʎļu	IO SED) H9T -	9E +	BTEX + MTI								 	smar	1
				Т			1208)	2	יבי קריי	 TM + X∃T8							 		N N	
	, 2-day		2		19031-2		o hin so w	ita Ko W	.y	HEAL NO.	Į P	102	102						Date Time 125/17) イイ	Date Time
	X Rust		C#1		- 126	ger:	114 R	Vatt K	berature:	Preservative Type	Poly	H.Wd 3	Hasey	-					e inhalte	he -
	□ Standard	Project Name	DW	Project #:	0.4	Project Mana	Ž	Sampler: 1/	Sample Tem	Container Type and #	1-500201	1-Secul	1-1221-1						Received by:	
of-Custody Record	rn Refining		570 CK 4990		22-637-4169		□ I evel 4 (Full Validation)	Other		Matrix Sample Request ID	H20 DWD3 Formation where								Relinquished by: Draft Mr. M.	Relinquished by: ///wetw.//bulle-
Chain-	West		g Address	0.	<u>にある</u> 注 に が 単	or Fax#:) Package: ndard	ditation LAP	D (Type)_	Time	00:11								Time:	Time:
-	Client		Mailin	A	Phone	email	oA/QC ¥ Sta	Accre		Date	25-17								Date: 15/17	N Date:

1. 17

All Anions	EPA Method 300.0	1-500ml unpreserved plastic 1-125 ml H2SO4 plastic
Alkalinity	SM2320 B	Volume will come from the 500ml unpreserved plastic
eC	SM 2510B	Volume will come from the 500ml unpreserved plastic
TDS	SM 2540 C	Volume will come from the 500ml unpreserved plastic
Cations	EPA Method 200.7	1-500ml HNO3 Plastic
рН	EPA Method 9040	Volume will come from the 500ml unpreserved plastic

SM = Standard Methods

EPA Methods 310.1, 150.1, 160.1, 320.1 and 120.1 have been withdrawn by EPA. Most labs have are accredited for all of the tests listed above and we perform these methods regularly for t

We will ship out one bottle set today as listed below. Fill all bottles to the neck and keep the sa We can rush this work on a 1-2 business day TAT.

1-500ml unpreserved plastic

1-125ml H2SO4 Plastic

1-500ml HNO3 plastic

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Tuesday, December 20, 2016 5:11 PM
То:	'Hains, Allen'
Cc:	Griswold, Jim, EMNRD; Davis, Bruce; Schmaltz, Randy; Robinson, Kelly; Roberts, Dale; Dooling, Frank
Subject:	RE: WNR Bloomfield Terminal Injection Well (UICI-11) Surface Equipment

Allen:

The New Mexico Oil Conservation Division (OCD) has completed its review of the attached drawings outlining planned construction of infrastructure near WDW-2.

Please be sure to construct a berm or firewall around the four 500 bbl. Capacity Tanks. OCD has recommended that tanks be placed on liner or impermeable material in the past. A sump to capture and dewater any leakage from tanks is also recommended.

Thank you.

From: Hains, Allen [mailto:Allen.Hains@wnr.com] Sent: Wednesday, December 14, 2016 6:14 PM To: Chavez, Carl J, EMNRD <CarlJ.Chavez@state.nm.us> Cc: Griswold, Jim, EMNRD < Jim.Griswold@state.nm.us>; Davis, Bruce < Bruce.Davis@wnr.com>; Schmaltz, Randy <Randy.Schmaltz@wnr.com>; Robinson, Kelly <Kelly.Robinson@wnr.com>; Roberts, Dale <Dale.Roberts@wnr.com>; Dooling, Frank <Frank.Dooling@wnr.com>

Subject: WNR Bloomfield Terminal Injection Well Surface Equipment

Carl,

As we discussed a few weeks ago, Western is sending information about the surface equipment for the WDW #2 injection well for the purposes of the Facility's OCD Discharge Permit renewal.

As you are aware, the injection well is located across the highway from the abandoned WDW #1 injection well. The well is located close to the existing piping route from the Aeration Lagoons to the Evaporation Ponds. Western will be building the surface infrastructure in the vicinity to WDW #2 and the existing pipeline.

The surface infrastructure will include:

- a one pump and an additional pump to installed in the future,
- 4 tanks (to settle solids),
- Filtration,
- Insulated building, and
- Associated piping and instrumentation.

The attached documentation shows the location and preliminary design documents. After construction is complete, Western can provide as buils for your records.

Please Note: the Evaporation Pond Closure Plan is being reviewed by Western and should be submitted to you shortly.

Thank you,

Allen S. Hains Manager Remediation Projects

Western Refining 123 W. Mills Ave. El Paso, Texas 79901 915 534-1483 915 490-1594 (cell)

Chavez, Carl J, EMNRD

From:	Hains, Allen <allen.hains@wnr.com></allen.hains@wnr.com>
Sent:	Wednesday, December 14, 2016 6:14 PM
То:	Chavez, Carl J, EMNRD
Cc:	Griswold, Jim, EMNRD; Davis, Bruce; Schmaltz, Randy; Robinson, Kelly; Roberts, Dale; Dooling, Frank
Subject:	WNR Bloomfield Terminal Injection Well Surface Equipment
Attachments:	WNR Bloomfield Terminal Injection Well Surface Equipment.pdf

Carl,

As we discussed a few weeks ago, Western is sending information about the surface equipment for the WDW #2 injection well for the purposes of the Facility's OCD Discharge Permit renewal.

As you are aware, the injection well is located across the highway from the abandoned WDW #1 injection well. The well is located close to the existing piping route from the Aeration Lagoons to the Evaporation Ponds. Western will be building the surface infrastructure in the vicinity to WDW #2 and the existing pipeline.

The surface infrastructure will include:

- a one pump and an additional pump to installed in the future,
- 4 tanks (to settle solids),
- Filtration,
- Insulated building, and
- Associated piping and instrumentation.

The attached documentation shows the location and preliminary design documents. After construction is complete, Western can provide as buils for your records.

Please Note: the Evaporation Pond Closure Plan is being reviewed by Western and should be submitted to you shortly.

Thank you,

Allen S. Hains Manager Remediation Projects

Western Refining 123 W. Mills Ave. El Paso, Texas 79901 915 534-1483 915 490-1594 (cell)

										SCALE
										DRAWN BY
										REDRAWN BY
										FINAL CHK.
	2	Scanned & Redrawn, Added Injection Well, Tanks & Building.		VC	[10/16]					ENIOD
	1	General Revision		NHB	[3/04]					ENGR.
	Α	ADDED DHT & SULFEROX UNIT TO PLANT AREA		BY	DATE	BY	DATE	BY.	DATE.	APPR. BY
REFERENCE DWGS.	NO.	REVISION	JOB No.	DR/	\WN	CHE	CKED	APPF	ROVED	AFE/WO No.
7		8 9 10		11					12	

EVAPORATION PONDS

		14 15 16 17	\checkmark
lark	Ouan	Description	к
A	1	500 BBL Steel Tank, 1/4" BCB, 3/16" Shell and Deck	
В	1	500 BBL Steel Tank, 1/4" BCB, 3/16" Shell and Deck	
С	1	500 BBL Steel Tank, 1/4" FB, 3/16" Shell and Deck	-
D	1	500 BBL Steel Tank, 1/4" FB, 3/16" Shell and Deck	
E	4	24" x 36" Cleanout with one piece cover	L
F	4	8" Std. Thief Hatch	
н	0 4	Vent – 4" Coupling	
1	4	Aux 4" 150 Flanged Coupling	-
J	4	Aux. — 2" 150 Flanged Coupling	
К	2	Drain – 4" Coupling	I
L	2	Siphon Drain — 4" Coupling	
М	2	Siphon Drain - 4" Pipe to Center, braced to tank bottom	
N	4	Suction – 6" Flanged Connection, 6" Ext. Projection	
D	2	Inlet - 6 Flanged Connection with 6 Line I.D. as Shown	
г О	1	Inlet - 6" Flanged Conn. with 6" Line on I.D. as Shown	н
s	1	Outlet - 6" Flanged Conn. With 6" Line on I.D. as Shown	
Т	1	Inlet — 6" Flanged Conn. with 6" Line on I.D. as Shown	
U	1	Oil Skim – 4" Coupling	
۷	4	Splash Plate — 1/4" PL x 24" x 24", 5/8" Holes spaced at	
		2" Centers - 121 Holes	G
W V	1	4" 150 4" Coupling	
^	4		_
lotes	s: 		
) All) All	interr	nal Welds—seal welded and ground for coating. nal piping braced to tank.	F
) All	splas	h plates welded to tank wall.	
) All \ All	Tanks	s to have removable Striker Plate for coating.	
) All	Tanks	s to have walkway clips - API Type	
) Ex	terior	painted white.	E
,) Fu	rnish	the following Walkway and Stairway	
1-	-26'S	Stairway, 1—21' Walkway, 3 — 18'—4" Extension	
	Walkw	ay, 6-Sets of Brackets	-
			D
			-
			c
			в
DATE			
0/2016	T/	ANKS A, B, C, & D	<u>ין –</u> ן
		LAYOUT Bloomfield San Juan	
]	DWG. NO.	•
	1	0	Ţ
		14 15 16 17	\mathbf{i}

GENERAL STRUCTURAL NOTES

BUILDING CODE

2009 EDITION OF THE INTERNATIONAL BUILDING CODE, WITH STATE OF NEW MEXICO AMENDMENTS.

LOADS

GRAVITY:

ROOF:

ROOF LIVE LOAD = 20 PSF (REDUCIBLE). ROOF DEAD LOAD = 2.5 PSF. ROOF SNOW LOAD = 30 PSF. COLLATERAL LOAD = 2 PSF.

LATERAL:

WIND. 3 SECOND WIND GUST = 90MPH. WIND IMPORTANCE FACTOR = 1.0 EXPOSURE = C.

SEISMIC:

SEISMIC IMPORTANCE FACTOR = 1.0. SHORT PERIOD SPECTRAL ACCELERATION Ss = 0.178g. ONE SECOND SPECTRAL ACCELERATION S1 = 0.038g. SOIL SITE CLASS = D. Sds = 0.189g.Sd1 = 0.061g.SEISMIC DESIGN CATEGORY = B. BASIC SEISMIC-FORCE RESISTING SYSTEM = ORDINARY STEEL CONCENTRICALLY BRACED FRAMES AND LIGHT FRAMED WALLS SHEATHED WITH STEEL SHEETS. DESIGN BASE SHEAR = 0.6K RESPONSE MODIFICATION FACTOR (R) = 3.25 AND 7. ANALYSIS PROCEDURE USED = EQUIVALENT LATERAL FORCE PROCEDURE.

FOUNDATIONS

DESIGN SOIL BEARING VALUE = 2500 PSF (CODE MAXIMUM).

CONCRETE

ALL EXTERIOR CONCRETE SLABS ARE TO SLOPE AWAY FROM BUILDINGS.

THE SPECIFIED 28 DAY COMPRESSIVE STRENGTH IS AS FOLLOWS: FOOTINGS AND SLABS ON GRADE , F'c = 3000 PSI (DESIGN BASED ON 2500 PSI).

ALL CAST-IN-PLACE CONCRETE CONSTRUCTION SHALL CONFORM TO THE LATEST EDITION OF THE ACI. MECHANICALLY VIBRATE ALL CONCRETE WHEN PLACED UNLESS NOTED OTHERWISE. ADMIXTURES CONTAINING CHLORIDES SHALL NOT BE USED. NO OTHER ADMIXTURES PERMITTED WITHOUT APPROVAL. FOR CONCRETE WITHOUT PLASTICIZER, MAXIMUM SLUMP 5 INCHES AT POINT OF PLACEMENT UNLESS NOTED OTHERWISE. IF PLASTICIZER IS USED, A HIGHER FINAL SLUMP MAY BE ALLOWED UPON ENGINEER'S APPROVAL. UNLESS NOTED OTHERWISE ON

THE DRAWINGS, THE EMBEDMENT OF CONDUITS, PIPES, SLEEVES, ETC. OF ANY MATERIAL SHALL NOT BE PERMITTED WITHIN ANY CONCRETE STRUCTURAL ELEMENT OR STRUCTURAL CONCRETE TOPPINGS WITHOUT THE APPROVAL OF THE ENGINEER. TEST DATA FOR EACH CONCRETE MIX SHALL BE SUBMITTED FOR REVIEW PER CHAPTER 5 OF ACI 318. REFERENCE FIGURE R5.3 FOR SUBMITTAL REOUIREMENTS AND OPTIONS. CONCRETE MIX DESIGNS THAT ARE SUBMITTED WITHOUT THE APPROPRIATE TEST DATA CANNOT BE REVIEWED.

REINFORCING

ALL REINFORCING PER CRSI SPECIFICATIONS AND HANDBOOK. NO TACK WELDING OF REINFORCING BARS ALLOWED WITHOUT PRIOR REVIEW OF PROCEDURE WITH THE ENGINEER. LATEST ACI CODE AND DETAILING MANUAL APPLY. CLEAR CONCRETE COVERAGES ARE 3 INCHES FOR CONCRETE CAST AGAINST AND PERMANENTLY EXPOSED TO EARTH, 1-1/2 INCHES FOR CONCRETE EXPOSED TO EARTH OR WEATHER.

ALL REINFORCING SHALL BE CHAIRED TO ENSURE PROPER CLEARANCES. SUPPORT OF FOUNDATION REINFORCING MUST PROVIDE ISOLATION FROM MOISTURE/CORROSION BY USE OF A PLASTIC OR CONCRETE CHAIR. DUCT-TAPE COVERED REINFORCING IS NOT AN ACCEPTABLE CHAIR.

ALL DIMENSIONS REFERENCED IN DRAWINGS AS "CLEAR" SHALL BE FROM FACE OF STRUCTURE TO EDGE OF REINFORCING, AND SHALL NOT BE LESS THAN STATED, NOR GREATER THAN "CLEAR" DIMENSION PLUS 3/8 INCHES. ALL OTHERS SHALL BE PLUS OR MINUS ¼ INCHES TYPICAL UNLESS NOTED OTHERWISE.

STEEL REINFORCING:

A.ALL PRINCIPAL LONGITUDINAL - ASTM A615 - GR 60. B. TIES, STIRRUPS, ETC. ASTM A615 - GR 40. C. WIRE PER ASTM A82.

LAP SPLICES IN CONCRETE:

PROVIDE BENT CORNER BARS TO MATCH AND LAP WITH HORIZONTAL BARS AT ALL CORNERS AND INTERSECTIONS PER TYPICAL DETAILS. REINFORCING BAR SPACING GIVEN ARE MAXIMUM ON CENTERS. SECURELY TIE ALL BARS IN LOCATION BEFORE PLACING CONCRETE. LAP SPLICES, UNLESS NOTED OTHERWISE, SHALL BE CLASS "B" TENSION LAP SPLICES PER LATEST EDITION OF ACI 318.

DRYPACK:

DRYPACK SHALL BE 5000 PSI NON-SHRINK GROUT, FIVE STAR OR EQUIVALENTS. INSTALL DRYPACK UNDER COLUMN BASE PLATE AFTER COLUMN HAS BEEN PLUMBED BUT PRIOR TO SUPPORTED FRAMING BEING INSTALLED.

STRUCTURAL STEEL

ALL STEEL MEMBERS ARE TO BE PAINTED FOR RUSTPROOFING AND WEATHERPROOFING.

GENERAL:

ALL CONSTRUCTION PER LATEST AISC HANDBOOK. ALL WIDE FLANGE STEEL SHALL BE ASTM A992 (Fy = 50 KSI). ALL MISCELLANEOUS STEEL UNLESS NOTED OTHERWISE SHALL BE ASTM A36 (Fy = 36 KSI).

ALL STRUCTURAL ROLLED STEEL MEMBERS WITH Fy GREATER THAN 36 KSI ARE TO BE IDENTIFIED WITH AN ASTM SPECIFICATION MARK OR TAG PER IBC SEC. 2203.1.

UNLESS NOTED OTHERWISE, ALL BOLTS SHALL BE ASTM A307. ALL BOLTS SHALL BE INSTALLED WITH STEEL WASHERS AT SHORT SLOTTED HOLES USING SNUG TIGHT INSTALLATION, UNLESS NOTED OTHERWISE.

MATERIAL PROPERTIES OF COLD FORMED LIGHT GAGE STEEL MEMBERS CONFORM TO THE REOUIREMENTS OF ASTM A1011-06b GRADE 55 WITH A MINIMUM YIELD OF 55,000 PSI.

ANCHOR RODS:

ANCHOR RODS INCLUDE HOOKED, HEADED, AND THREADED AND NUTTED ANCHORS. THE TERMS ANCHOR BOLT AND ANCHOR ROD ARE USED SYNONYMOUSLY THROUGHOUT THESE DOCUMENTS. ALL ANCHOR ROD MATERIAL SHALL BE PER ASTM F1554 GRADE 55 - WELDABLE. ALL ANCHOR RODS SHALL BE INSTALLED WITH STEEL WASHERS AT SHORT SLOTTED HOLES USING SNUG TIGHT INSTALLATION UNLESS NOTED OTHERWISE.

STEEL ERECTION NOTE:

PER OSHA, STEEL MEMBERS AND DIAGONAL BRACING CANNOT BE RELEASED FROM HOISTING CABLES UNTIL ALL BOLTS OR WELDS AT MEMBER ENDS ARE COMPLETELY INSTALLED.

GENERAL STRUCTURAL NOTES

CERTIFICATES SHALL BE THOSE ISSUED BY AN ACCEPTED TESTING CONTRACTOR SHALL BE RESPONSIBLE FOR VERIFICATION OF ALL AGENCY. ALL WELDING DONE BY E70 SERIES LOW HYDROGEN RODS UNLESS NOTED OTHERWISE. SHOP WELDS AND FIELD WELDS SHALL BE SHOWN ON THE SHOP DRAWINGS SUBMITTED FOR REVIEW.

ROOF/WALL SHEATHING:

ALL ROOF AND WALL SHEATHING SHAL BE 26 GA. R-PANEL SHEATHING, 36 INCHES WIDE MANUFACTURED IN ACCORDANCE TO ASTM-A792 GRADE 80 WITH MINIMUM YIELD STRESS OF 80,000 PSI AND INSTALLED PER ER-5409P. ATTACH DECK TO FRAMING WITH 1¼" SELF DRILLING TEK SCREWS WITH WASHERS BY PROVIDING 3 SCREWS AT INTERMEDIATE SUPPORTS, 6 SCREWS AT SHEET ENDS AND AT 6" MAX ALONG PARALLEL SUPPORTS. PROVIDE ³/₄" SELF DRILLING TEK SCREWS WITH WASHERS AT 12" ON CENTER MAXIMUM ALONG SIDECAPS. ROOF SHEETS ARE TO BE INSTALLED AS A 4-SPAN MINIMUM.

PANEL CLOSURES SHALL BE PROVIDED AT ALL ROOF TO WALL TRANSITIONS. SIDE LAP SEALANT IS TO BE PROVIDED AT ROOF PANEL LAPS. SEALANT IS TO BE PROVIDED BETWEEN ROOF PANELS AND RIDGE CAP. RAKE TRIM AND OUTSIDE CORNER WALL TRIM ARE TO BE PROVIDED FOR WEATHERPROOFING. RAKE TRIM IS TO BE INSTALLED WITH SEALANT AND CLOSURES. ALL ROOF AND WALL PENETRATIONS SHALL BE SEALED ACCORDINGLY.

GENERAL NOTES:

THE STRUCTURAL CONSTRUCTION DOCUMENTS REPRESENT THE FINISHED STRUCTURE. EXCEPT WHERE NOTED, THEY DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL PROVIDE ALL MEASURES NECESSARY TO PROTECT THE STRUCTURE DURING CONSTRUCTION. SUCH MEASURES SHALL INCLUDE, BUT NOT LIMITED TO, BRACING, SHORING FOR LOADS DUE TO CONSTRUCTION EQUIPMENT, ETC. THE STRUCTURAL ENGINEER OF RECORD SHALL NOT BE RESPONSIBLE FOR THE CONTRACTOR'S MEANS, METHODS, TECHNIQUES, SEQUENCES FOR PROCEDURE OF CONSTRUCTION, OR THE SAFETY PRECAUTIONS AND THE PROGRAMS INCIDENT THERETO (NOR SHALL OBSERVATION VISITS TO THE SITE INCLUDE INSPECTIONS FOR THESE ITEMS).

WHERE REFERENCE IS MADE TO VARIOUS TEST STANDARDS FOR MATERIALS, SUCH STANDARDS SHALL BE THE LATEST EDITION AND/OR ADDENDA. ANY ENGINEERING DESIGN, PROVIDED BY OTHERS AND SUBMITTED FOR REVIEW, SHALL BEAR THE SEAL OF A REGISTERED ENGINEER RECOGNIZED BY THE BUILDING CODE JURISDICTION OF THIS PROJECT.

NOTES AND DETAILS ON DRAWINGS SHALL TAKE PRECEDENCE OVER GENERAL STRUCTURAL NOTES AND TYPICAL DETAILS. WHERE NO DETAILS ARE SHOWN, CONSTRUCTION SHALL CONFORM TO SIMILAR WORK ON THE PROJECT, AND/OR AS PROVIDED OF IN THE CONTRACT DOCUMENTS. WHERE DISCREPANCIES OCCUR BETWEEN PLANS, DETAILS, GENERAL STRUCTURAL NOTES AND SPECIFICATIONS, THE GREATER REQUIREMENTS SHALL GOVERN.

DIMENSIONS WITH DRAWINGS PRIOR TO START OF CONSTRUCTION. RESOLVE ANY DISCREPANCY WITH THE ENGINEER. ESTABLISH AND VERIFY ALL OPENINGS AND INSERTS FOR ARCHITECTURAL, CIVIL, MECHANICAL, PLUMBING, AND ELECTRICAL ITEMS WITH THE APPROPRIATE TRADE DRAWINGS AND SUBCONTRACTORS PRIOR TO CONSTRUCTION.

TYPICAL DETAILS MAY NOT NECESSARILY BE CUT ON PLANS, BUT APPLY UNLESS NOTED OTHERWISE.

CONSTRUCTION MATERIALS SHALL BE SPREAD OUT IF PLACED ON FRAMED CONSTRUCTION. LOAD SHALL NOT EXCEED THE DESIGN LIVE LOAD PER SQUARE FOOT.

OPTIONS ARE FOR CONTRACTOR'S CONVENIENCE. IF AN OPTION IS CHOSEN, CONTRACTOR SHALL BE RESPONSIBLE FOR ALL NECESSARY CHANGES, APPROVALS AND THE COORDINATION OF THE WORK WITH ALL RELATED TRADES AND SUPPLIERS.

VERIFY ALL DIMENSIONS WITH ARCHITECTURAL DRAWINGS (IF APPLICABLE) AND FIELD CONDITIONS.

THE ADEQUACY OF ENGINEERING DESIGNS AND LAYOUT PERFORMED BY OTHERS RESTS WITH THE DESIGNING OR SUBMITTING AUTHORITY.

REVIEWING IS INTENDED ONLY AS AN AID TO THE CONTRACTOR IN OBTAINING CORRECT SHOP DRAWINGS. RESPONSIBILITY FOR CORRECTNESS SHALL REST WITH THE CONTRACTOR.

MECHANICAL, ELECTRICAL, PLUMBING, SITE, EXISTING BUILDING PLANS AND WORK BY OTHERS. CONTRACTOR AND OWNER ARE **RESPONSIBLE FOR PROVIDING ADDITIONAL INFORMATION** INCLUDING, BUT NOT LIMITED TO, PREVIOUSLY MENTIONED ITEMS IF REQUIRED BY RELEVANT AUTHORITY.

CONSTRUCTION NOTES:

A. PER OSHA, STEEL MEMBERS AND DIAGONAL BRACING CANNOT BE RELEASED FROM HOISTING CABLES UNTIL ALL BOLTS OR WELDS AT MEMBER ENDS ARE COMPLETE. B. FOUNDATION FOOTINGS SHALL BEAR ON FIRM, UNDISTURBED SOIL 18 INCHES MINIMUM BELOW ADJACENT FINISHED GRADE. FINISHED GRADE IS DEFINED AS TOP OF SLAB FOR INTERIOR FOOTINGS.

IF CLAY OR OTHER UNSUITABLE SOIL IS FOUND, THE FOLLOWING **GUIDELINES SHALL BE FOLLOWED:**

- 1. OVEREXCAVATE THE EXISTING SITE SOILS TO A MINIMUM DEPTH OF TWO FEET BELOW BOTTOM OF FOOTING ELEVATION SHOWN. THE OVEREXCAVATION SHALL EXTEND LATERALLY OUTSIDE PERIMETER WALL AND OUTSIDE OF FOOTING EDGES A MINIMUM OF 5 FEET.
- 2. THE EXPOSED OVEREXCAVATESD SURFACE SHALL BE SCARIFIED TO A DEPTH OF 8 INCHES AND RECOMPACTED TO 95% OF MAXIMUM DENSITY AS ESTABLISHED BY ASTM D - 1557.
- 3. THE FOOTING BASE SHALL BE BROUGHT TO DESIGN ELEVATION UTILIZING ENGINEERED STRUCTURAL FILL PLACED AS NOTED BELOW.

C. ON SITE SOILS MAY BE SUITABLE FOR USE AS BACKFILL SOILS AND STRUCTURAL FILL, IF THEY MEET THE FOLLOWING REQUIREMENTS. ALL FILL MATERIAL SHALL BE FREE OF VEGETATION AND DEBRIS AND CONTAIN NO ROCKS LARGER THAN 4 INCHES. GRADATION OF THE BACKFILL MATERIAL SHALL BE IN ACCORDANCE WITH ASTM D-442. SAND IS NOT AN ACCEPTABLE BACKFILL.

D. STRUCTURAL FILL AND BACKFILL SHALL BE PLACED IN LAYERS OF NOT MORE THAN 8 INCHES LOOSE WITH EACH LAYER BEING COMPACTED TO A MINIMUM DENSITY OF 95% OF LABORATORY DENSITY AS DETERMINED BY ASTM D-1557.

E. THE METHOD AND STABILITY OF THE FOUNDATION EXCAVATION IS THE RESPONSIBILITY OF THE CONTRACTOR, SEE SPECIFICATIONS AND NOTES HEREIN FOR ADDITIONAL INFORMATION.

F. CONTRACTOR TO VERIFY ROUGH OPENING REQUIREMENTS WITH DOOR AND/OR WINDOW MANUFACTURERS PRIOR TO INSTALLATION.

	Lamb Engineering & Design	2805 BANNOCK DR (575) 396-5377 LOVINGTON NM, 88260 dplambd3@gmail.com
P (1)	B CHANNER C	SONAL EN 23-16
PROJECT:	JNL 24X36X12 BLOOMFIELD, NM	
DRAWN	BY:	DCL
CHECKE	D BY:	DPL
DATE:		11-23-16
GENER NOTES	TITLE AL STRUCTI	JRAL

NOTES:

A) CONCRETE CONTROL JOINTS REQUIRED IN SLAB.

- B) CONCRETE SLAB REINFORCEMENT (IF USED) SHALL BE PLACED AT MIDPOINT BETWEEN TOP OF CONCRETE SLAB AND BOTTOM OF CONCRETE SLAB. SUPPORT REINFORCEMENT WITH MATERIAL THAT DOES NOT RUST.
- C) NO CONCRETE SLAB ON GRADE SLOPE IS SHOWN ON PLAN. IF SLOPE IS REQUIRED, CONTACT ENGINEER.
- D) PLANS SHOWN PROVIDE CONCRETE SLAB ON GRADE CRACK CONTROL UTILIZING A MONOLITHIC CONCRETE POUR. IF CONCRETE CRACKING IS OF GREAT CONCERN, CONTACT ENGINEER FOR A 2 OR 3 CONCRETE POUR DESIGN.
- E) CONCRETE FOOTINGS AND TURNDOWNS SHALL BEAR EITHER ON UNDISTURBED SOIL OR ENGINEERED BACKFILL, COMPACTED PREPARED AND TESTED PER CONSTRUCTION NOTES WITHIN GENERAL FOUNDATION NOTES. IF FOOTINGS ARE CONSTRUCTED TO DEPTHS GREATER THAN PLANS SHOW, ADDITIONAL REINFORCING SHALL BE REQUIRED AND ENGINEER SHOULD BE NOTIFIED TO RESOLVE.

	Lamb Engineering & Design	2805 BANNOCK DR. (575) 396-5377 LOVINGTON NM, 88260 dplambd3@gmail.com
LEL P.	HILL OF THE CONTRACT OF THE CO	CONAL ET 1-23-16
	, NM	
PROJECT:	JNL 24X36X BLOOMFIELD	
PROJECT:	JNL 24X36X BLOOMFIELD	
PROJECT: DRAWN	JNL 24X36X BLOOMFIELD	DCL
PROJECT DRAWN CHECKE	DINC 24X36X DINC 24X37X DINC 2	DCL DPL
PROJECC DRAWN CHECKE DATE:	DINC 24X36X DINC 24X37X DINC 2	DCL DPL 11-23-16
PROJECI DRAWN CHECKE DATE: SHEET FOUNE	DATION PLAN	DCL DPL 11-23-16

NOTE:

CONTRACTOR TO MAINTAIN MIN OF 11/4" CLEARANCE OF ANCHORS FROM ALL EDGES OF BASE PLATES.

NOTES:

- 1. CONCRETE TURNDOWN BEYOND.
- 2. #4 CONTINUOUS REBAR.
- 3. CONCRETE SLAB ON GRADE. SLAB REINFORCING MAY OR MAY NOT OCCUR.
- 4. NOTCH SLAB EDGE AS REQUIRED TO ACCEPT
- METAL SIDING. 5. STEEL COLUMN - SEE DETAIL 4/S-202 FOR BASE PLATE OR
- EMBED INFO.
- 6. GRADE TO SLOPE AWAY FROM SLAB.
- 7. 18" MINIMUM BELOW LOWEST ADJACENT FINISH GRADE OR MINIMUM FROST DEPTH AS REQUIRED BY LOCAL JURISDICTION.
- 8. CONCRETE FOOTING.

В

6"

6"

6"

6

6

6'

TYPICAL STEEL COLUMN AT CONCRETE 3

PLATE WITH ANCHORS

		EN	IBED PLATI	E SCHEDULE	
FOR COLUM	IN SIZE	COLUMN	EMBED TYPE	С	D
* ^C *	c	W8X10 OR 4X4 T.S.	W12X26	10"	8"
		W8X15	W12X26	10"	8"
		W10X12	W12X26	12"	10"
		W12X14	W12X26	14"	12"
(4)		W12X16	W12X26	14"	12"
		W12X19	W12X26	14"	12"
	(3)	W14X22	W16X36	16"	14"
		W16X26	W16X36	18"	16"
		W16X31	W16X36	18"	16"
		W18X35	W12X40	20"	18"
		W21X44	W12X40	23"	21"

W-SHAPED EMBED PLATE

4

TYPICAL BASE PLATE AND ANCHOR

No Scale

NOTES: 1. SLAB REINFORCING IF REQUIRED. 2. FILL SAWCUT JOINT WITH URETHANE SEALANT ON FOAM ROD IF CLIENT REQUIRES SMOOTH FINISH.

SAWED JOINT OR TOOLED GROOVE JOINT ¼ SLAB THICKNESS.
 2 #4 CONTINUOUS, EXTEND EACH END INTO TURNDOWN MINIMUM 24".

(1)-

NOTES 1. SLAB REINFORCING IF REQUIRED. 2. FILL SAWCUT JOINT WITH URETHANE SEALANT ON FOAM ROD IF CLIENT REQUIRES SMOOTH FINISH. 3. SAWED JOINT OR TOOLED GROOVE JOINT 1/4 SLAB THICKNESS.

6

5

TYPICAL CONCRETE CONTROL JOINT

No Scale
#9, #10, AND ALL GRADE
ROUND 2" PIN BARS.
$ = \underbrace{ \begin{bmatrix} (6) & (7) \\ \hline \\ \hline \\ (5) \end{bmatrix} } $
No Scale
No Scale
AL BARS PLACED SO THAT MORE E IS CAST IN THE MEMBER BELOW
'B" TENSION LAP SPLICES PER INLESS SPECIFICALLY NOTED 35 OR SCHEDULES. EER IF CLEAR SPACING OF N OR EQUAL TO 2 BAR DIAMETERS, HAN THE BAR DIAMETER. MAL WEIGHT CONCRETE. IN, SEE G.S.N., PLANS, SCHEDULES,

No Scale

NO SCALE

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Wednesday, July 20, 2016 8:17 AM
То:	Davis, Bruce (Bruce.Davis@wnr.com)
Cc:	Griswold, Jim, EMNRD; Perrin, Charlie, EMNRD; Schmaltz, Randy
	(Randy.Schmaltz@wnr.com); Allen.Hains@wnr.com
Subject:	Western Refining Southwest, Inc. Approval of Discharge Permit (UICI-011) for the Class
	I (non-hazardous) Waste Injection Well "WDW-2" (API# 30-045-35747) UL: H of Section
	27, Township 29 North, Range 11 West, NMPM, San Juan County
Attachments:	UICI-11 DP 7-20-2016.pdf

Mr. Davis, et al.:

Please find attached the New Mexico Oil Conservation Division (OCD) above subject letter and discharge permit related to your recent Underground Injection Control Well Application. The hardcopy was placed in the U.S. Mail this morning.

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM Environmental Engineer Oil Conservation Division- Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Phone: (505) 476-3490 Main Phone: (505) 476-3440 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>www.emnrd.state.nm.us/ocd</u>

Why not prevent pollution, minimize waste, reduce operation costs, and move forward with the rest of the Nation? To see how, go to "Publications" and "Pollution Prevention" on the OCD Website.

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin Cabinet Secretary

Tony Delfin Deputy Cabinet Secretary David R. Catanach, Division Director Oil Conservation Division

JULY 20, 2016

CERTIFIED MAIL RETURN RECEIPT NO: 3771 5961

Mr. Bruce D. Davis Director Western Refining Southwest, Inc. P.O. Box 159 Bloomfield, New Mexico 87413

RE: Approval of Discharge Permit (UICI-011) for the Class I (non-hazardous) Waste Injection Well "WDW-2" (API# 30-045-35747) Western Refining Southwest, Inc.- Bloomfield Terminal, UL: H of Section 27, Township 29 North, Range 11 West, Lat. 36.69860, Long. 107.97035, NMPM, San Juan County, New Mexico

Dear Mr. Davis:

The discharge permit (UICI-011) for the Western Class I Non-Hazardous Waste Injection Well "WDW-2," located 2028 FNL and 111 FEL Unit Letter "H", Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico, is hereby approved under the terms and conditions specified in the enclosed discharge permit.

OCD approves this discharge permit renewal pursuant to 20.6.2.3109A NMAC. Please note 20.6.2.3109G NMAC, which provides for possible future amendment of the permit. Please be advised that approval of this discharge permit does not relieve Western of liability if operations result in pollution of surface water, ground water, or the environment.

Please note that 20.6.2.3104 NMAC specifies "When a permit has been issued, discharges must be consistent with the terms and conditions of the permit." Pursuant to 20.6.2.3107C NMAC, Western is required to notify the Director of any increase in the injection volume or injection pressure, or process modification that would result in any change in the water quality or volume of the discharge.

This discharge permit will expire on July 20, 2021, and Western should submit a discharge permit renewal application in ample time before this date. Note that under 20.6.2.3106F NMAC, if a discharger submits a discharge permit renewal application at least 120 days before the discharge permit expires and is in compliance with the approved discharge permit, then the existing discharge permit will not expire until the application for renewal has been approved or disapproved.

The discharge permit renewal application for the Western Class I Non-Hazardous Waste Injection Well is subject to 20.6.2.3114 NMAC. Every billable facility submitting a discharge permit renewal application is assessed a non-refundable filing fee of \$100.00. OCD has already received the required \$100.00 filing fee and the \$4,500.00 permit fee for a Class I non-hazardous waste injection well is now required by check made payable by Western to the "Water Quality Management Fund."

If you have any questions, please contact Carl Chavez of my staff at (505-476-3490) or email: <u>CarlJ.Chavez@state.nm.us</u>. On behalf of the staff of the OCD, I wish to thank you and your staff for your cooperation during this discharge permit review.
July 20, 2016 Page 2

Sincerely,

David R. Catanad

David R. Catanach Director

DRC/cc

xc: Aztec District Office Randy R. Schmaltz, Western Refining Southwest, Inc. Allen Hains, El Paso

DISCHARGE PERMIT UICI-011 (WDW-2)

1. GENERAL PROVISIONS:

1.A. PERMITTEE AND PERMITTED FACILITY: The Director of the Oil Conservation Division (OCD) of the Energy, Minerals and Natural Resources Department issues Discharge Permit UICI-011 (Discharge Permit) to WESTERN REFINING SOUTHWEST, INC., L.L.C. (Permittee) to operate its Underground Injection Control (UIC) Class I non-hazardous waste injection well "Waste Disposal Well No. 2 (WDW-2) API No. 30-045-35747, located 2028 FNL and 111 FEL, Unit Letter "H", Section 27, Township 29 North, Range 11 West, (Lat. 36.69860, Long. 107.97035), NMPM, San Juan County, New Mexico. WDW-2 is located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Rd.

The Permittee is permitted to dispose of only non-hazardous (RCRA exempt and RCRA nonexempt non-hazardous) oil field waste fluids into WDW-2. Groundwater that may be affected by a spill, leak, or accidental discharge occurs at a depth of approximately 10 - 30 feet below ground surface and has a total dissolved solids (TDS) concentration of approximately 200 mg/L.

1.B. SCOPE OF PERMIT: OCD has been granted the authority by statute and by delegation from the Water Quality Control Commission (WQCC) to administer the Water Quality Act (Chapter 74, Article 6 NMSA 1978) as it applies to Class I non-hazardous waste injection wells (see Section 74-6-4, 74-6-5 NMSA 1978).

The Water Quality Act and the rules promulgated pursuant to the Act protect ground water and surface water of the State of New Mexico by providing that, unless otherwise allowed by 20.6.2 NMAC, no person shall cause or allow effluent or leachate to discharge so that it may move directly or indirectly into ground water unless such discharge is pursuant to an approved discharge plan (see 20.6.2.3104 NMAC, 20.6.2.3106 NMAC, and 20.6.2.5000 through 20.6.2.5299 NMAC).

This Discharge Permit for a Class I non-hazardous waste injection well (WDW-2) is issued pursuant to the Water Quality Act and WQCC rules, 20.6.2 NMAC. This Discharge Permit does not authorize any treatment of, or on-site disposal of, any materials, product, by-product, or oil field waste, other than non-hazardous oil field waste fluids into its Class I non-hazardous waste injection well (WDW-2), including, but not limited to, the on-site disposal of lube oil, glycol, antifreeze, and wash-down water. The Permittee may not dispose of any industrial waste fluid that is not oil field waste that is generated at its terminal. The Ground Water Quality Bureau of the New Mexico Environment Department permits the management of all industrial fluids that are not generated in the oil field.

Pursuant to 20.6.2.5004A NMAC, the following underground injection activities are prohibited:

- 1. The injection of fluids into a motor vehicle waste disposal well is prohibited.
- 2. The injection of fluids into a large capacity cesspool is prohibited.

3. The injection of any hazardous or radioactive waste into a well is prohibited except as provided by 20.6.2.5004A(3) NMAC.

4. Class IV wells are prohibited, except for wells re-injecting treated ground water into the same formation from which it was drawn as part of a removal or remedial action.

5. Barrier wells, drainage wells, recharge wells, return flow wells, and motor vehicle waste disposal wells are prohibited.

This Discharge Permit does not convey any property rights of any sort nor any exclusive privilege, and does not authorize any injury to persons or property, any invasion of other private rights, or any infringement of state, federal, or local laws, rules or regulations.

The Permittee shall operate in accordance with the terms and conditions specified in this Discharge Permit to comply with the Water Quality Act and the rules issued pursuant to that Act, so that neither a hazard to public health nor undue risk to property will result (see 20.6.2.3109C NMAC); so that no discharge will cause or may cause any stream standard to be violated (see 20.6.2.3109H(2) NMAC); so that no discharge of any water contaminant will result in a hazard to public health (see 20.6.2.3109H(3) NMAC); so that the numerical standards specified in 20.6.2.3103 NMAC are not exceeded; and, so that the technical criteria and performance standards (see 20.6.2.5000 through 20.6.2.5299 NMAC) for Class I non-hazardous waste injection wells are met. Pursuant to 20.6.2.5003B NMAC, the Permittee shall comply with 20.6.2.1 through 20.6.2.5299 NMAC.

The Permittee shall not allow or cause water pollution, discharge, or release of any water contaminant that exceeds the Water Quality Control Commission (WQCC) standards specified in 20.6.2.3101 NMAC and 20.6.2.3103 NMAC or 20.6.4 NMAC (Water Quality Standards for Interstate and Intrastate Streams). Pursuant to 20.6.2.5101A NMAC, the Permittee shall not inject waste fluids into ground water containing 10,000 mg/l or less total dissolved solids (TDS).

The issuance of this permit does not relieve the Permittee from the responsibility of complying with the provisions of the Water Quality Act, any applicable regulations or water quality standards of the WQCC, or any applicable federal laws, regulations or standards (see Section 74-6-5 NMSA 1978).

1.C. DISCHARGE PERMIT: This Discharge Permit (UICI-011) is a new UIC Class I (Non-hazardous) Discharge Permit due to the abandonment of the former San Juan Refining Company Disposal Well No. 1 (API# 30-045-29002) under former Discharge Permit UICI-009.

1.D. DEFINITIONS: Terms not specifically defined in this Discharge Permit shall have the same meanings as those in the Water Quality Act or the rules adopted pursuant to the Act, as the context requires.

1.E. FILING FEES AND PERMIT FEES: Pursuant to 20.6.2.3114 NMAC, every facility that submits a Discharge Permit application for initial approval or renewal shall pay the permit

fees specified in Table 1 and the filing fee specified in Table 2 of 20.6.2.3114 NMAC. OCD has already received the required \$100.00 filing fee. The Permittee shall submit the final \$4,500.00 permit fee for a Class I non-hazardous waste injection well to OCD with a check made payable to "Water Quality Management Fund" no later than thirty days after the date that this permit is issued.

1.F. EFFECTIVE DATE, EXPIRATION, RENEWAL CONDITIONS, AND PENALTIES FOR OPERATING WITHOUT A DISCHARGE PERMIT: This Discharge Permit becomes effective on the date that the Permittee receives this discharge permit or until the permit is terminated or expires. This Discharge Permit shall **expire on July 20, 2021.** The Permittee shall submit an application for renewal no later than 120 days before that expiration date, pursuant to 20.6.2.5101F NMAC. If a Permittee submits a renewal application at least 120 days before the Discharge Permit expires and is in compliance with the approved Discharge Permit, then the existing Discharge Permit will not expire until OCD has approved or disapproved the renewal application. A discharge permit continued under this provision remains fully effective and enforceable. Operating with an expired Discharge Permit may subject the Permittee to civil and/or criminal penalties (see Section 74-6-10.1 NMSA 1978 and Section 74-6-10.2 NMSA 1978).

1.G. MODIFICATIONS AND TERMINATIONS: The Permittee shall notify the OCD Director and the OCD's Environmental Bureau of any Facility expansion, any injection increase above the approved pressure limit or volume limit specified in Permit Condition 3.B.2, or process modification that would result in any significant modification in the discharge of water contaminants (see 20.6.2.3107C NMAC). The OCD Director may require the Permittee to submit a Discharge Permit modification application pursuant to 20.6.2.3109E NMAC and may modify or terminate a Discharge Permit pursuant to Sections 74-6-5(M) through (N) NMSA 1978.

1. If data submitted pursuant to any monitoring requirements specified in this Discharge Permit or other information available to the OCD Director indicate that 20.6.2 NMAC is being or may be violated, then the OCD Director may require modification or, if it is determined by the OCD Director that the modification may not be adequate, may terminate this Discharge Permit for a Class I non-hazardous waste injection well (WDW-2) that was approved pursuant to the requirements of this 20.6.2.5000 through 20.6.2.5299 NMAC for the following causes:

or,

a.

Noncompliance by Permittee with any condition of this Discharge Permit;

b. The Permittee's failure in the discharge permit application or during the discharge permit review process to disclose fully all relevant facts, or Permittee's misrepresentation of any relevant facts at any time; or,

c. A determination that the permitted activity may cause a hazard to public health or undue risk to property and can only be regulated to acceptable levels by discharge

permit modification or termination (see Section 75-6-6 NMSA 1978; 20.6.2.5101I NMAC; and 20.6.2.3109E NMAC).

2. This Discharge Permit may also be modified or terminated for any of the following causes:

a. Violation of any provisions of the Water Quality Act or any applicable regulations, standard of performance or water quality standards;

b. Violation of any applicable state or federal effluent regulations or limitations; or

c. Change in any condition that requires either a temporary or permanent reduction or elimination of the permitted discharge (see Section 75-6-5M NMSA 1978).

1.H. TRANSFER OF CLASS I NON-HAZARDOUS WASTE INJECTION WELL DISCHARGE PERMIT:

1. The transfer provisions of 20.6.2.3111 NMAC do not apply to a discharge permit for a Class I non-hazardous waste injection well.

2. Pursuant to 20.6.2.5101H NMAC, the Permittee may request to transfer its Class I non-hazardous waste injection well discharge permit if:

a. The OCD Director receives written notice 30 days prior to the transfer date; and

b. The OCD Director does not object prior to the proposed transfer date. OCD may require modifications to the discharge permit as a condition of transfer, and may require demonstration of adequate financial responsibility.

3. The written notice required in accordance with Permit Condition 1.H.2.a shall:

a. Have been signed by the Permittee and the succeeding Permittee, and shall include an acknowledgment that the succeeding Permittee shall be responsible for compliance with the Class I non-hazardous waste injection well discharge permit upon taking possession of the facility;

b. Set a specific date for transfer of the discharge permit responsibility, coverage and liability; and

c. Include information related to the succeeding Permittee's financial responsibility required by 20.6.2.5210B(17) NMAC.

1.I. COMPLIANCE AND ENFORCEMENT: If the Permittee violates or is violating a condition of this Discharge Permit, OCD may issue a compliance order that requires compliance

immediately or within a specified time period, or assess a civil penalty, or both (see Section 74-6-10 NMSA 1978). The compliance order may also include a suspension or termination of this Discharge Permit. OCD may also commence a civil action in district court for appropriate relief, including injunctive relief (see Section 74-6-10(A)(2) NMSA 1978). The Permittee may be subject to criminal penalties for discharging a water contaminant without a discharge permit or in violation of a condition of a discharge permit; making any false material statement, representation, certification or omission of material fact in a renewal application, record, report, plan or other document filed, submitted or required to be maintained under the Water Quality Act; falsifying, tampering with or rendering inaccurate any monitoring device, method or record required to be maintained under the Water Quality Act; or failing to monitor, sample or report as required by a Discharge Permit issued pursuant to a state or federal law or regulation (see Section 74-6-10.2 NMSA 1978).

2. GENERAL FACILITY OPERATIONS:

2.A. QUARTERLY MONITORING REQUIREMENTS FOR CLASS I NON-

HAZARDOUS WASTE INJECTION WELL: The Permittee shall properly conduct waste management injection operations at its facility by injecting only non-hazardous (RCRA exempt and RCRA non-hazardous, non-exempt) oil field waste fluids. Injected waste fluids shall not exhibit the RCRA characteristics, i.e., ignitability, reactivity, corrosivity, or toxicity under 40 CFR 261 Subpart "C" 261.21 - 261.24 (July 1, 1992), at the point of injection into WDW-2, based upon environmental analytical laboratory testing. Pursuant to 20.6.2.5207B, the Permittee shall provide analyses of the injected fluids at least quarterly to yield data representative of their toxicity characteristic.

The Permittee shall also analyze the injected fluids quarterly for the following characteristics:

- pH (Method 9040);
- Eh;
- Specific conductance;
- Specific gravity;
- Temperature;
- Major dissolved cations and anions, including: fluoride, calcium, potassium, magnesium, sodium bicarbonate, carbonate, chloride, sulfate, bromide, total dissolved solids, and cation/anion balance using the methods specified in 40 CFR 136.3); and,
- EPA RCRA Characteristics for Ignitability (ASTM Methods); Corrosivity (SW-846) and Reactivity (determined through Permittee's application of knowledge or generating process).

The Permittee shall analyze the injected fluids quarterly for the constituents identified in the Quarterly Monitoring List (below) to demonstrate that the injected fluids do not exhibit the characteristic of toxicity using the Toxicity Characteristic Leaching Procedure, EPA SW-846 Test Method 1311 (see Table 1, 40 CFR 261.24(b)).

ſ

EPA HW No.	Contaminant	SW-846 Methods	Regulatory Level (mg/L)
D004	Arsenic	1311	5.0
D005	Barium	1311	100.0
D018	Benzene	8021B	0.5
D006	Cadmium	1311	1.0
D019	Carbon tetrachloride	8021B 8260B	0.5
D020	Chlordane	8081A	0.03
D021	Chlorobenzene	8021B 8260B	100.0
D022	Chloroform	8021B 8260B	6.0
D007	Chromium	1311	5.0
D023	o-Cresol	8270D	200.0
D024	m-Cresol	8270D	200.0
D025	p-Cresol	8270D	200.0
D026	Cresol	8270D	200.0
D027	1,4-Dichlorobenzene	8021B 8121 8260B 8270D	7.3
D028	1,2-Dichloroethane	8021B 8260B	0.5
D029	1,1-Dichloroethylene	8021B 8260B	0.7
D030	2,4-Dinitrotoluene	8091 8270D	0.13
D032	Hexachlorobenzene	8121	0.13
D033	Hexachlorobutadiene	8021B 8121 8260B	0.5
D034	Hexachloroethane	8121	3.0
D008	Lead	1311	5.0
D009	Mercury	7470A 7471B	0.2
D035	Methyl ethyl ketone	8015B 8260B	200.0
D036	Nitrobenzene	8091 8270D	2.0
D037	Pentrachlorophenol	8041	100.0
D038	Pyridine	8260B 8270D	5.0

QUARTERLY MONITORING LIST

D010	Selenium	1311	1.0
D011	Silver	1311	5.0
D039	Tetrachloroethylene	8260B	0.7
D040	Trichloroethylene	8021B	0.5
		8260B	
D041	2,4,5-Trichlorophenol	8270D	400.0
D042	2,4,6-Trichlorophenol	8041A	2.0
		8270D	
D043	Vinyl chloride	8021B	0.2
		8260B	

If o-, m-, and p-cresol concentrations cannot be differentiated, then the total cresol (D026) concentration is used. The regulatory level of total cresol is 200 mg/L.

If the quantitation limit is greater than the regulatory level, then the quantitation limit becomes the regulatory level. If metals (dissolved), the EPA 1311 TCLP Laboratory Method is required with the exception of Mercury (total).

1. Monitor and Piezometer Wells: Groundwater with a total dissolved solids concentration of less than 10,000 mg/L occurs at an estimated depth of approximately 10 - 30 ft. below ground surface at the WDW-2 well (hereafter, "uppermost water-bearing unit"). Groundwater monitoring well (MW) with GW sampling capability shall be installed proximal to and hydrogeologically downgradient from WDW-2 in order to monitor the uppermost water-bearing unit. The MW shall be screened (15 ft. screen with top of screen positioned 5 ft. above water table) into the uppermost water-bearing unit. The Permittee shall propose a monitoring frequency with chemical monitoring parameters in order to detect potential groundwater contamination either associated with or not associated with WDW-2.

2.B. CONTINGENCY PLANS: The Permittee shall implement its proposed contingency plan(s) included in its application to cope with failure of a system(s) in the Discharge Permit.

2.C. CLOSURE: Prior to closure of the facility, the Permittee shall submit for OCD's approval, a closure plan including a completed form C-103 for plugging and abandonment of the waste injection well. The Permittee shall plug and abandon its well pursuant to 20.6.2.5209 NMAC and as specified in Permit Condition 2.D.

- 1. **Pre-Closure Notification:** Pursuant to 20.6.2.5005A NMAC, the Permittee shall submit a pre-closure notification to OCD's Environmental Bureau at least 30 days prior to the date that it proposes to close or to discontinue operation of WDW-2. Pursuant to 20.6.2.5005B NMAC, OCD's Environmental Bureau must approve all proposed well closure activities before the Permittee may implement its proposed closure plan.
- 2. Required Information: The Permittee shall provide OCD's Environmental Bureau with the following information in the pre-closure notification specified in Permit Condition 2.C.1:
 - Name of facility;
 - Address of facility;
 - Name of Permittee (and owner or operator, if appropriate);

- Address of Permittee (and owner or operator, if appropriate);
- Contact person;
- Phone number;
- Number and type of well(s);
- Year of well construction;
- Well construction details;
- Type of discharge;
- Average flow (gallons per day);
- Proposed well closure activities (e.g., sample fluids/sediment, appropriate disposal of remaining fluids/sediments, remove well and any contaminated soil, clean out well, install permanent plug, conversion to other type of well, ground water and vadose zone investigation, etc.);
- Proposed date of well closure;
- Name of Preparer; and
- Date.

2.D. PLUGGING AND ABANDONMENT PLAN: Pursuant to 20.6.2.5209A NMAC, when the Permittee proposes to plug and abandon WDW-2, it shall submit to OCD a plugging and abandonment plan that meets the requirements of 20.6.2.3109C NMAC, 20.6.2.5101C NMAC, and 20.6.2.5005 NMAC for protection of ground water. If requested by OCD, Permittee shall submit for approval prior to closure, a revised or updated plugging and abandonment plan. The obligation to implement the plugging and abandonment plan as well as the requirements of the plan survives the termination or expiration of this Discharge Permit. The Permittee shall comply with 20.6.2.5209 NMAC.

2.E. RECORD KEEPING: The Permittee shall maintain records of all inspections required by this Discharge Permit at its Facility office for a minimum of five years and shall make those records available for inspection by OCD.

2.F. RELEASE REPORTING: The Permittee shall comply with the following permit conditions, pursuant to 20.6.2.1203 NMAC, if it determines that a release of oil or other water contaminant, in such quantity as may with reasonable probability injure or be detrimental to human health, animal or plant life, or property, or unreasonably interfere with the public welfare or the use of property, has occurred. The Permittee shall report unauthorized releases of water contaminants in accordance with any additional commitments made in its approved Contingency Plan. If the Permittee determines that any constituent exceeds the standards specified in 20.6.2.3103 NMAC, then it shall report a release to OCD's Environmental Bureau.

1. Oral Notification: As soon as possible after learning of such a discharge, but in no event more than twenty-four (24) hours thereafter, the Permittee shall notify OCD's Environmental Bureau. The Permittee shall provide the following:

- The name, address, and telephone number of the person or persons in charge of the facility, as well as of the owner and/or operator of the facility;
- The name and location of the facility;
- The date, time, location, and duration of the discharge;

- The source and cause of discharge;
- A description of the discharge, including its chemical composition;
- The estimated volume of the discharge; and
- Any corrective or abatement actions taken to mitigate immediate damage from the discharge.

2. Written Notification: Within one week after the Permittee has discovered a discharge, the Permittee shall send written notification (may use C-141 Form with attachments) to OCD's Environmental Bureau verifying the prior oral notification as to each of the foregoing items and providing any appropriate additions or corrections to the information contained in the prior oral notification.

The Permittee shall provide subsequent written reports as required by OCD's Environmental Bureau.

2.G. OTHER REQUIREMENTS:

1. Inspection and Entry: Pursuant to Section 74-6-9 NMSA 1978 and 20.6.2.3107A NMAC, the Permittee shall allow any authorized representative of the OCD Director to:

- Upon the presentation of proper credentials, enter the premises at reasonable times;
- Inspect and copy records required by this Discharge Permit;
- Inspect any treatment works, monitoring, and analytical equipment;
- Sample any effluent before or after discharge; and
- Use the Permittee's monitoring systems and wells in order to collect samples.

2. Advance Notice: The Permittee shall provide OCD's Environmental Bureau and Aztec District Office with at least five (5) working days advance notice of any environmental sampling to be performed pursuant to this Discharge Permit, or any well subsurface work, i.e., Mechanical Integrity Testing, well plugging, abandonment or decommissioning of any equipment associated with WDW-2.

3. Environmental Monitoring: The Permittee shall ensure that any environmental sampling and analytical laboratory data collected meets the standards specified in 20.6.2.3107B NMAC. The Permittee shall ensure that all environmental samples are analyzed by an accredited "National Environmental Laboratory Accreditation Conference" (NELAC) Laboratory. The Permittee shall submit data summary tables, all raw analytical data, and EPA laboratory Quality Assurance/Quality Control (QA/QC) and Data Quality Objectives (DQOs) documentation to comply with OCD environmental sampling and analytical laboratory methods and data reporting requirements in New Mexico.

2.H. BONDING OR FINANCIAL ASSURANCE: Pursuant to 20.6.2.5210B(17) NMAC, the Permittee shall maintain at a minimum, a single well plugging bond in the amount that it shall determine, in accordance with Permit Condition 5.B, to cover potential costs associated

with plugging and abandonment of WDW-2, surface restoration, and post-operational monitoring, as may be needed. OCD may require additional financial assurance to ensure adequate funding is available to plug and abandon the well and/or for any required corrective action(s).

Methods by which the Permittee shall demonstrate the ability to undertake these measures shall include submission of a surety bond or other adequate assurances per Permit Condition 5.B. herein, such as financial statements or other materials acceptable to the OCD Director, such as: (1) a surety bond; (2) a trust fund with a New Mexico bank in the name of the State of New Mexico, with the State as Beneficiary; (3) a non-renewable letter of credit made out to the State of New Mexico; (4) liability insurance specifically covering the contingencies listed in this paragraph; or (5) a performance bond, generally in conjunction with another type of financial assurance. If an adequate bond is posted by the Permittee to a federal or another state agency, and this bond covers all of the measures specified above, the OCD Director shall consider this bond as satisfying the bonding or financial assurance requirements of Sections 20.6.2.5000 through 20.6.2.5299 NMAC wholly or in part, depending upon the extent to which such bond is adequate to ensure that the Permittee will fully perform the measures required herein.

2.I. REPORTING:

1. Quarterly Reports: The Permittee shall submit quarterly reports pursuant to 20.6.2.5208A NMAC to OCD's Environmental Bureau no later than 45 days following the end of each calendar quarter. The quarterly reports shall include the following:

a. Physical, chemical and other relevant characteristics of injection fluids;

b. Monthly average, maximum and minimum values for injection pressure, flow rate and volume, and annular pressure with any exceedances identified; and

c. Results of monitoring prescribed under Section 20.6.2.5207B NMAC with any exceedances of Permit Condition 2.A.

d. Piezometer and monitor well information from Permit Condition 2.A.1.

e. Continuous monitoring chart(s) and information from Permit Condition 3.C.

2. Annual Report: The Permittee shall submit its annual report pursuant to 20.6.2.3107 NMAC to OCD's Environmental Bureau by June 1st of the following year. The annual report shall include the following:

 Cover sheet marked as "Annual Class I Non-Hazardous Waste Injection Well (WDW-2), Name of Permittee, Discharge Permit Number, API number of well, date of report, and person submitting report;

- Summary of Class I non-hazardous waste injection well operations for the year including a description and reason for any remedial or major work on the well with a copy of form C-103(s);
- Copy of Monthly injection/disposal volume, including the cumulative total should be carried over to each year;
- Maximum and average injection pressures;
- Copy of the quarterly chemical analyses shall be included with data summary and all QA/QC and DQO associated information;
- Copy of any mechanical integrity test (MIT) chart(s), including the type of test, *i.e.*, duration, gauge pressure, etc. unless OCD has approved Monthly Continuous Monitoring Charts for MITs in lieu of individual MITs;
- Copy of Fall-Off Test charts;
- Summary tables listing environmental analytical laboratory data for quarterly waste fluid samples. Any 20.6.2.3103 NMAC constituent(s) found to exceed a water quality standard shall be highlighted and noted in the annual report. The Permittee shall include copies of the most recent year's environmental analytical laboratory data sheets with QA/QC summary sheet information in conformance with the National Environmental Laboratory Accreditation Conference (NELAC) and EPA Standards;
- Brief explanation describing deviations from the normal injection operations;
- Results of any leaks and spill reports (include any C-141 reports);
- Area of Review (AOR) annual update summary with any new wells penetrating the injection zone within a 1-mile radius from WDW-2;
- Summary with interpretation of MITs, Fall-Off Tests, Bradenhead Tests, etc., with conclusion(s) and recommendation(s);
- Summary of all major Facility activities or events, which occurred during the year with any conclusions and recommendations;
- Summary of any new discoveries of ground water contamination with all leaks, spills and releases and corrective actions taken; and,
- Permittee shall file its Annual Report in an electronic format with a hard copy submittal to OCD's Environmental Bureau.

3. CLASS I NON-HAZARDOUS WASTE INJECTION WELL OPERATIONS:

3.A. OPERATING REQUIREMENTS: The Permittee shall comply with the operating requirements specified in 20.6.2.5206A NMAC and 20.6.2.5206B NMAC to ensure that:

1. The maximum injection pressure at the wellhead shall not initiate new fractures or propagate existing fractures in the confining zone, or cause the movement of injection or formation fluids into ground water having 10,000 mg/l or less TDS except for fluid movement approved pursuant to 20.6.2.5103 NMAC.

2. Injection between the outermost casing and the well bore is prohibited in a zone other than the authorized injection zone. If the Permittee determines that WDW-2 is discharging or suspects that it is discharging fluids into a zone or zones other than the permitted injection zone specified in Permit Condition 3.B.1., then the Permittee shall cease operations until proper

repairs are made, notify the OCD's Environmental Bureau and Aztec District office within 24 hours, and shall not resume injection until the Permittee has received approval from the OCD.

3. Except during well stimulation, the maximum injection pressure shall not initiate new fractures or propagate existing fractures in the injection zone.

4. The annulus between the injection tubing and the long string of injection casing shall be filled with a fluid approved by the OCD Director with an annulus pressure also approved rework by the OCD Director.

3.B. INJECTION OPERATIONS:

1. Injection Formation, Interval (Zone) and Waste Fluids: The Permittee shall determine whether the Total Dissolved Solids (TDS) within the injection zone is greater than 10,000 ppm before OCD will approve any injection into the Entrada Formation. The Permittee shall inject only non-hazardous (RCRA exempt and/or RCRA non-exempt) oil field waste fluids into the Entrada Sandstone Formation estimated to exist from ~ 7,316 feet to 7,482 feet below ground level (bgl) at WDW-2. The conductor casing will be set at 300 feet. The surface casing will be set at 3,600 feet. The intermediate protection or injection casing will be set at 7,500 feet. The injection tubing will be set in the injection packer at approximately 7,265 feet, which isolates WDW-2 into the perforated injection interval estimated to be between 7,316 and 7,482 feet bgl. The Permittee shall ensure that the injected non-hazardous waste fluids enter perforations only within the specified injection interval and are not permitted to escape into other formations or onto the land surface.

2. Well Injection Pressure Limits and Injection Flow Rate: The Permittee shall ensure that the maximum allowable surface injection pressure on WDW-2 shall not exceed 1,465 psig. A Step-Rate Test (SRT) shall be performed and submitted to OCD under Sundry before approval of any increase in the injection pressure. The Permittee shall inspect and monitor the pressure-limiting device daily and shall report any pressure exceedances within 24 hours of detection to OCD's Environmental Bureau and Aztec District Office.

3. **Pressure-Limiting Device:** The Permittee shall equip and operate its Class I non-hazardous waste injection well or system with a pressure limiting device, or equivalent (*i.e.*, Murphy switch), in working condition which shall at all times limit surface injection pressure to the maximum allowable surface injection pressure limit.

The Permittee shall inspect and monitor the pressure-limiting device daily and shall report any pressure exceedances within 24 hours of detection to OCD's Environmental Bureau and Aztec District Office. The Permittee shall take all steps necessary to ensure that the injected waste fluids enter only the permitted injection interval and not escape to other formations or onto the ground surface. The Permittee shall report to OCD's Environmental Bureau within 24 hours of discovery any indication that new fractures or existing fractures have been propagated under operational conditions, or that damage to the well, the injection zone, or formation has occurred.

OCD may authorize an increase in maximum surface injection pressure if the Permittee demonstrates that higher pressure will not result in migration of the injected fluid from the designated injection zone or interval using a valid Step-Rate Test (SRT) run preferably in coordination with a Fall-Off Test (FOT).

3.C. CONTINUOUS MONITORING DEVICE: The Permittee shall install a continuous monitoring device in advance of injection that records the monthly (hourly basis) real-time injection pressure, injection rate, injection volume, and pressure on the annulus between the injection tubing and the long string of casing. The Permittee shall implement a chart changing procedure that depressurizes and properly re-aligns the pens on the chart scale during changing to prevent anomalous pressure noise, i.e., MIT annulus pressure, etc. The Permittee shall notify OCD within 24 hours after having knowledge of the MIT failure. The Permittee shall not resume injection operations until approved by OCD.

3.D. MECHANICAL INTEGRITY FOR CLASS I NON-HAZARDOUS WASTE INJECTION WELLS:

1. Pursuant to 20.6.2.5204 NMAC, the Permittee shall conduct a mechanical integrity test (MIT) for WDW-2 at least once every five years or more frequently as the OCD Director may require for good cause during the life of the well. In addition, an annual Bradenhead test shall be performed. The Permittee shall also demonstrate mechanical integrity for WDW-2 by completing an MIT after well workovers, including when it pulls the tubing or reseats the packer. The Permittee shall request MIT approval using form C-103 (Sundry Notices and Reports on Wells) with copies sent to OCD's Environmental Bureau and Aztec District Office. The Permittee shall notify OCD's Environmental Bureau 5 days prior to conducting any MIT to allow OCD the opportunity to witness the MIT.

The Permittee shall conduct a casing-tubing annulus MIT from the surface to the approved injection packer depth to assess casing and tubing integrity. The MIT shall consist of a 30-minute test at a minimum pressure of 500 psig measured at the surface. The Permittee shall follow OCD's 2004 New Mexico Oil Conservation Division Underground Injection Control Program Manual guidance when conducting a MIT. The Permittee shall submit the results of its MIT to OCD's Environmental Bureau and Aztec District Office within 30 days of completion. If any remedial work or any other workover operations are necessary, the Permittee shall comply with Permit Condition 3.F.

2. A Class I non-hazardous waste injection well has mechanical integrity if there is no detectable leak in the casing, tubing or packer which OCD considers to be significant at maximum operating temperature and pressure, and no detectable conduit for fluid movement out of the injection zone through the well bore, or vertical channels adjacent to the well bore, which the OCD considers to be significant. The following criteria will determine if the Class I nonhazardous waste injection well has passed the MIT:

a. The MIT passes if there is zero bleed-off during the test;

b. The MIT passes if there is a less than a \pm 10% change in the final test pressure compared to the starting pressure, if approved by OCD;

c. The MIT fails if there is more than a 10% reduction in the final pressure compared to the starting pressure or that the pressure does not stabilize within 10% of the starting pressure before the end of the MIT. The Permittee shall immediately shut-in the well and investigate for leaks in accordance with Permit Conditions 3.B, 3.C, 3.D, and 3.F. The Permittee shall not resume injection operations until approved by OCD.

d. When the MIT is not witnessed by OCD and fails, the Permittee shall immediately shut-in the well and investigate for leaks in accordance with Permit Conditions 3.C, 3.D, and 3.F. The Permittee shall notify OCD within 24 hours after having knowledge of the MIT failure. The Permittee shall not resume injection operations until approved by OCD.

3. Pursuant to 20.6.2.5204C NMAC, the OCD Director may consider the use of equivalent alternative test methods to determine mechanical integrity. The Permittee shall submit information on the proposed test and all technical data supporting its use. The OCD Director may approve the Permittee's request if it will reliably demonstrate the mechanical integrity of the well for which its use is proposed.

4. Pursuant to 20.6.2.5204D NMAC, when conducting and evaluating the MIT(s), the Permittee shall apply methods and standards generally accepted in the oil and gas industry. When the Permittee reports the results of all MIT(s) to the OCD Director, it shall include a description of the test(s), the method(s) used, and the test results.

5. The Permittee shall conduct a Bradenhead test at least annually and each time that it conducts an MIT.

3.E. FALL-OFF TEST: The Permittee shall submit an initial C-103 (Sundry Notice) form for the Fall-Off Test (FOT) to be completed within 90-days of well completion, which shall include a provision to evaluate injection zone (Entrada Formation) environmental laboratory water quality consistent with the water quality parameters in Permit Condition 2.A. The Permittee shall notify OCD within 24-hours of receipt of environmental laboratory quality data confirming total dissolved solids (TDS) are less than the protection limit of 10,000 ppm within the injection zone for further instruction. The minimum FOT frequency shall be at least annually before September 30th and comply with OCD's 2007 *New Mexico Oil Conservation Division UIC Class I Well Fall-Off Test Guidance* for conducting a FOT and for reporting FOT results. Historical FOT results shall be included with the FOT results to the OCD Environmental Bureau and Aztec District Office within 60 days of FOT completion.

3.F. WELL WORKOVER OPERATIONS: The Permittee shall pursuant to 20.6.2.5205A(5) NMAC, provide notice to and shall obtain approval from the OCD District Office prior to commencement of any remedial work or any other workover operations to allow OCD the opportunity to witness the operation. The Permittee shall request approval using form C-103 (Sundry Notices and Reports on Wells) sent to the OCD District Office with copies sent to

the OCD's Environmental Bureau. After completing remedial work, pressure tests, or any other workover operations, the Permittee shall run an MIT in accordance with Permit Condition 3.D to verify that the remedial work has successfully repaired any problems.

3.G. INJECTION RECORD VOLUMES AND PRESSURES: The Permittee shall submit quarterly reports of its injection operations and well workovers. The Permittee shall record the minimum, maximum, and average flow waste injection volumes (including total volumes) and annular pressures of the injected waste fluids on a monthly basis, and shall submit the data to OCD on a quarterly basis and in the annual report. The Permittee shall fill the casing-tubing annulus with an OCD-approved liquid and install a Murphy pressure switch or equivalent, as described in the Permittee's permit renewal application, in order to detect leakage in the casing, tubing, or packer.

3.H. AREA OF REVIEW (AOR): The Permittee shall report to OCD's Environmental Bureau within 72 hours of discovery of any new wells, conduits, or any other device that penetrates or may penetrate the injection zone within a 1-mile radius from its Class I non-hazardous waste injection well. Any un-cemented wells within the injection interval shall be identified by the Permittee and reported to OCD.

4. CLASS V WELLS: Pursuant to 20.6.2.5002B NMAC, leach fields and other waste fluids disposal systems that inject non-hazardous fluid into or above an underground source of drinking water are UIC Class V injection wells. This Discharge Permit does not authorize the use of a Class V injection well for the disposal of industrial waste. Pursuant to 20.6.2.5005 NMAC, the Permittee shall close any Class V industrial waste injection well that injects non-hazardous industrial wastes or a mixture of industrial wastes and domestic wastes (*e.g.*, septic systems, leach fields, dry wells, *etc.*) within 90 calendar days of the issuance of this Discharge Permit. The Permittee shall document the closure of any Class V wells used for the disposal of non-hazardous industrial wastes or a mixture of industrial wastes and domestic wastes other than contaminated ground water in its Annual Report. Other Class V wells, including wells used only for the injection of domestic wastes, shall be permitted by the New Mexico Environment Department.

5. SCHEDULE OF COMPLIANCE:

5.A. QUARTERLY AND ANNUAL REPORTS: The Permittee shall submit its quarterly and annual reports to OCD as specified in Permit Condition 2.I.

5.B. BONDING OR FINANCIAL ASSURANCE: The Permittee shall submit a cost estimate of the actual cost to properly close, restore land surface, plug and aban don its Class I non-hazardous waste injection well, conduct ground water restoration if applicable, and any post-operational monitoring as may be needed (see 20.6.2.5210B(17) NMAC). The Permittee's financial assurance shall be based on third person estimates. OCD requires the Permittee to submit Financial Assurance based on the OCD approved cost estimate. Financial assurance shall be approved by OCD and executed prior to discharge permit issuance and shall become effective upon commencement of construction.

AFFIDAVIT OF PUBLICATION

RECEIVED OCCOPY OF PUBLICATION

Ad No. 72834

2016 JUN 29 P 1:39

STATE OF NEW MEXICO County of San Juan:

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general English published at in circulation Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Sunday, June 19, 2016

And the cost of the publication is \$206.50

ON $\frac{\frac{\omega}{28}}{6}$ SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Christine Sellers

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOUR-CES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations (20.6.2.3108 NMAC), the following discharge permit application(s) has been submitted to the Director of the New Mexico Oil Conservation Division ("OCD"), 1220 S. Saint Francis Drive, Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

(UICI-11) Western Refining Southwest, Inc. James R. Schmaltz, Refinery Environmental Manager, #50 Road 4990, P.O. Box 159, Bloomfield, New Mexico 87413, has submitted an application for a new Underground Injection Control (UIC) Class I Non-Hazardous Injection Well (API No. 30-045-35747) Discharge Permit for waste disposal located 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well will be located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Rd. The San Juan River is within 1,320 ft. N-NW of the well at it closest point. Oil-field exempt and non-exempt, non-hazardous wastewater will be disposed into the Entrada Formation at an injection interval from 7,315 ft. to 7,483 ft. below ground surface at a daily rate not to exceed 8,500 barrels per day ~ (248 gpm) and at a maximum surface injection pressure of 1,465 psig. The injection fluid contains approximately 5,250 ppm total dissolved solids (TDS). Groundwater most likely to be affected by a spill, leak or accidental discharge is at a depth of about 20 ft. below ground surface with a TDS concentration of approximately 200 ppm TDS. Water quality in the Entrada Formation at this location is currently not known, and OCD will require environmental analytical testing during well completion before authorizing injection into the formation. The discharge permit addresses well construction, operation, monitoring of the well, associated surface facilities, provides a contingency plan in the event of accidental spills, leaks and other accidental discharges in order to protect fresh water, and closure plan for proper plug and abandonment of the well and restoration of the land surface to its pre-existing condition.

The OCD has determined that the application is administratively complete and has prepared a draft permit. The OCD will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive future notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the OCD at the address given above. The administrative completeness determination and draft permit may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday, or may also be viewed at the OCD web site <u>http://www.emnrd.state.nm.us/ocd/</u>. Persons interested in obtaining a copy of the application and draft permit may contact the OCD at the address given above. Prior to ruling on any proposed discharge permit or major modification, the Director shall allow a period of at least thirty (30) days after the date of publication of this notice, during which interested persons may submit comments or request that OCD hold a public hearing. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines that there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed permit based on information available, including all comments received. If a public hearing is held, the director will approve or disapprove the proposed permit based on information in the permit application and information submitted at the hearing.

Para obtener más información sobre esta

olicitud en español, sirvase comunicarse por vor: New Mexico Energy, Minerals and Natu-I Resources Department (Depto. Del Energia, linerals y Recursós Naturales de Nuevo éxico), Oil Conservation Division (Depto. onservacio n Del Petróleo), 1220 South St. rancis Drive, Santa Fe, New México (Contacto: aura Tulk, 575-748-1283).

VEN under the Seal of New Mexico Oil Con-rvation Commission at Santa Re, New Mexi-s on this 19th day of June 2016.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

.3 David R. Catanach, Director EAL gal No. 72834 published in The Daily Times June 19, 2016.

ALCH ALCOUNTS ST. MILL SE CALLS WILL

reputing a support of the second seco

87505

1220 S St. Francis [Sante Fe, NM 875

 \mathcal{L}

NMED-Dil Conservation Division % Carlos Chavez

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD	
Sent:	Wednesday, June 15, 2016 2:15 PM	
To:	'james.lane@state.nm.us'; Wunder, Matthew, DGF; 'arthur.allison@state.nm.us'; 'ddapr@nmda.nmsu.edu'; 'jjuen@blm.gov'; 'psisneros@nmag.gov'; 'r@rthicksconsult.com'; 'sric.chris@earthlink.net'; Parks, NM, EMNRD; 'Verhines, Scott, OSE'; 'peggy@nmbg.nmt.edu'; 'marieg@nmoga.org'; Fetner, William, NMENV; 'lazarus@glorietageo.com'; Wojahn, Beth, EMNRD; 'cnewman02@fs.fed.us'; Kieling, John, NMENV; 'bsg@garbhall.com'; 'Jerry.Schoeppner@state.nm.us';	
	'claudette.horn@pnm.com'; 'ekendrick@montand.com'; 'staff@ipanm.org'; 'maxey.brown@state.nm.us'; Bratcher, Mike, EMNRD; Perrin, Charlie, EMNRD; Jones, William V, EMNRD; Kelly, Jonathan, EMNRD; Powell, Brandon, EMNRD; Jones, William V, EMNRD; Griswold, Jim, EMNRD; Sanchez, Daniel J., EMNRD; Goetze, Phillip, EMNRD; Bayliss, Randolph, EMNRD	
Cc:	Schmaltz, Randy (Randy.Schmaltz@wnr.com); Allen.Hains@wnr.com	
Subject:	Western Refining Southwest, Inc. UIC Class I (Non-Hazardous) Disposal Well Draft Discharge Permit and Public Notice (UICI-011) Waste Disposal Well No. 2 (API# 30-045-35747) in Eddy County	

Ladies and Gentlemen:

Please find below the New Mexico Oil Conservation Division (OCD) Public Notice (30-day public comment period begins Sunday, June 19, 2016) and Draft Discharge Permit for the above subject Underground Injection Control (UIC) Class I (Non-hazardous) Disposal Well.

Discharge Permit (UICI-011) Western Refining Southwest, Inc. Waste Disposal Well No. 2- "WDW-2" (6/14/16): The Underground Injection Control (UIC) Class I (Non-hazardous) Disposal Well (API#: 30-045-35747) is located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. in Bloomfield, NM (San Juan County) or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Rd.

Administrative Completeness Description Application(s) Discharge Permit (6/14/2016) Public Notice (6/19/2016)

The OCD Website for public notices is at <u>http://www.emnrd.state.nm.us/OCD/env-draftpublicetc.html</u> (see "Draft Permits and Public Notices" section).

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM Environmental Engineer Oil Conservation Division- Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Phone: (505) 476-3490 Main Phone: (505) 476-3440 Fax: (505) 476-3462 E-mail: CarlJ.Chavez@state.nm.us Website: www.emnrd.state.nm.us/ocd

Why not prevent pollution, minimize waste, reduce operation costs, and move forward with the rest of the Nation? To see how, go to "Publications" and "Pollution Prevention" on the OCD Website.

Chavez, Carl J, EMNRD

From:	Donnelly, Patti <patti.donnelly@wnr.com></patti.donnelly@wnr.com>	
Sent:	Monday, May 16, 2016 1:08 PM	
То:	Chavez, Carl J, EMNRD	
Cc:	Schmaltz, Randy; Hains, Allen; Robinson, Kelly	
Subject:	Proof of Public Notice for Western Refining SW, Inc. WDW-2 Class 1 Injection Well	
	Discharge Permit Application (UICI-011)	
Attachments:	Proof of Public Notice for WDW-2 Class 1 Injection Well Discharge Permit	
	Ap(UICI-011).pdf	

Good afternoon! This is our submittal of proof of Public Notice for the WDW-2 Class 1 Injection Well Discharge Permit Application. The originals will be mailed to you Certified via the US Postal Service. If you have any questions or concerns, please do not hesitate to contact myself, Randy Schmaltz or Kelly Robinson.

Thank you, Patti Donnelly

Patti Donnelly Logistics, HSER Western Refining 111 CR 4990 Bloomfield, NM 87413 (505) 632-4005 patti.donnelly@wnr.com

May 12, 2016

Carl Chavez New Mexico Oil Conservation Division Environmental Bureau 1220 South St. Francis Dr Santa Fe, NM 87505

Certified Mail: 7015 1520 0001 8113 5666

RE: Proof of Public Notice for Western Refining Southwest, Inc. – Bloomfield Terminal's, Waste Disposal Well No. 2 "WDW-2" Class 1 (non-hazardous) Injection Well Discharge Permit Application (UICI-011).

Dear Mr. Chavez,

Western Refining Southwest, Inc. respectfully submits proof of public notice for the above subject's permit application as required by Oil Conservation Division and specified in NMAC 20.6.2.3108. The notice used was approved by the Oil Conservation Division.

Western provided notice by each of the following methods:

- The public notice was published in the Farmington Daily Times on Monday, April 11, 2016. Notice was published in both English and Spanish in a display ad. The Affidavit of Publication is attached.
- On April 7, 2016 the public notice was posted in both English and Spanish on a sign, 2 feet by 3 feet in size. The sign was placed at the entrance to the Bloomfield Terminal. The sign will be maintained in this location for a minimum of 30 days. A picture of the sign is attached.
- On April 7, 2016 Western mailed written notice to owners of properties within 1/3 mile of the proposed WDW-2 location. Copies of the certified letters are attached.
- On April 7, 2016 the notice was also placed at general public locations, being the Bloomfield US post office, and the Bloomfield public library. Posting of Public Notice - Certification is attached.

If you need additional information, please contact me at (505) 632-4171.

Sincerelv

Vames R. Schmaltz HSER Director Western Refining Southwest, Inc.

Cc: Allen Hains

COPY OF PUBLICATION

Ad No. 1107981

STATE OF NEW MEXICO County of San Juan:

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general circulation published in English at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Monday, April 11, 2016

And the cost of the publication is \$525.92

ON <u>5/10/16</u> SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Amstine Sellers

NOTICE OF PUBLICATION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations (20.6.2.3106 NMAC); the following discharge permit application(s) has been submitted to the Director of the New Mexico Oil Conservation Division ("NMOCD"), 1220 S. Saint Francis Drive, Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

(UICI-11) Western Refining Southwest, Inc. - Bloomfield Crude Oil and Motor Fuel Bulk Storage and Transportation Terminal, # 50 Road 4990 or PO Box 159, Bloomfield, New Mexico 87413 has submitted an application for a new Underground Infection Control (UIC) Class I (non-hazardous) Injection Well Discharge Permit(UICI-11) for Waste Disposal Well No.2 (WDW-2), located 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well is located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Rd. WDW-2 is proposed to be drilled to a total depth of 7500 ft. below ground level (bgl) into the Entrada Sandstone Formations The well replaces the previous Class I (non-hazardous) disposal well (UICI-9), which was plugged and abandoned in September of 2015. Wastewater to be disposed is derived from recovered ground water, water used for heating and cooling, boiler blowdown water, water entrained in crude supply, process equipment cleaning, waste water treatment system effluent, hydrotest water, and contact storm water. Oil field exempt and non-exempt, non-hazardous industrial wastewater will be injected at an average injection rate of 3,500 bbl/day (~100gpm). The Total Dissolved Solids (TDS) concentration of injected waste fluid is about 5,250 ppm. The TDS of the formation fluids is currently unknown and will be tested before final authorization is given by OCD to inject. Groundwater most likely to be affected by a spill, leak or accidental discharge is at a depth of approximately 10 to 30 ft bgl with a TDS concentration of about 3650 ppm. The discharge permit will address well construction, operation, monitoring of the well, and associated surface facilities, and provides a contingency plan in the event of accidental spills, leaks and other accidental discharges in order to protect fresh water.

The owner and operator of the facility is:

Western Refining Southwest, Inc. #50 County Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 Telephone: (505) 632-8013

The NMOCD has determined that the application is administratively complete and has prepared a draft permit. The NMCOD will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive further notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for persons who wish to receive further notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the Oil Conservation Division at the address given above. The administrative completeness determination and draft permit may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday, or may be also be viewed at the NMOCD web site <u>http://www.emurd.state.nm.us/ocd/</u>. Persons interested in obtaining a copy of the application and draft permit may contact the address above. Prior to ruling on any proposed discharge permit or major modification, the Director shall allow a period of at least (30) days after the date of publication of this notice, during which interested persons may submit comments or request that NMOCD hold a public hearing. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines that there id significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed permit based on information available, including all comments received. If a public hearing is held, the director will approve or disapprove the proposed permit based on information in the permit application and information submitted at the hearing.

Comments and inquires on regulations should be directed:

Director New Mexico Oil Conservation Division (NMOCD) 1220 S. Saint Francis Drive Sante Fe, New Mexico 87505 Telephone: (505) 476-3440

Para obtener más información sobre esta solicitud en español, sirvase comunicarse por favor:

New Mexico Energy, Mineral and Natural Resources Department (Depto. Del Energia, Minerals y Recursos Naturales de Nuevo México), Oil Conservation Division (Depto. Conservació n Del Petróleo), 1220 South St. Francis Drive, Santa Fe, New Mexico (Contacto: Laura Tulk, 575-748-1283).

COPY OF PUBLICATION

Ad No. 1107981

STATE OF NEW MEXICO County of San Juan:

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general published English circulation \mathbf{in} at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Monday, April 11, 2016

And the cost of the publication is \$525.92

ON $\frac{5/10}{10}$ SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Aristine Sellers

NOTICE OF PUBLICATION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations (20.6.2.3106 NMAC); the following discharge permit application(s) has been submitted to the Directo: of the New Mexico Oil Conservation Division ("NMOCD"), 1220 S. Saint Francis Drive, Santa Fe, New Mexico 87505, Telephone (505) 476-3440:

(UICI-11) Western Refining Southwest, Inc. - Bloomfield Crude Oil and Motor Fuel Bull Storage and Transportation Terminal, # 50 Road 4990 or PO Box 159, Bloomfield, New Mexico 87413 has submitted an application for a new Underground Infection Control (UIC) Class I (non-hazardous) Injection Well Discharge Permit(UICI-11) for Waste Disposal Well No.2 (WDW-2), located 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well is located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Rd. WDW-2 is proposed to be drilled to a total depth of 7500 ft. below ground level (bgl) into the Entrada Sandstone Formations The well replaces the previous Class I (non-hazardous) disposal well (UICI-9), which was plugged and abandoned in September of 2015. Wastewater to be disposed is derived from recovered ground water, water used for heating and cooling, boiler blowdown water, water entrained in crude supply, process equipment cleaning, waste water treatment system effluent, hydrotes water, and contact storm water. Oil field exempt and non-exempt, non-hazardous industria wastewater will be injected at an average injection rate of 3,500 bbl/day (~100gpm). The Total Dissolved Solids (TDS) concentration of injected waste fluid is about 5,250 ppm. The TDS of the formation fluids is currently unknown and will be tested before final authorization is given by OCD to inject. Groundwater most likely to be affected by a spill, leak or accidenta discharge is at a depth of approximately 10 to 30 ft bgl with a TDS concentration of about 3650 ppm. The discharge permit will address well construction, operation, monitoring o the well, and associated surface facilities, and provides a contingency plan in the event o accidental spills, leaks and other accidental discharges in order to protect fresh water.

The owner and operator of the facility is:

Western Refining Southwest, Inc. #50 County Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 Telephone: (505) 632-8013

The NMOCD has determined that the application is administratively complete and has prepared a draf permit. The NMCOD will accept comments and statements of interest regarding this application and will create a facility-specific mailing list for persons who wish to receive further notices. Persons interested in obtaining further information, submitting comments or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the Oil Conservation Divisior at the address given above. The administrative completeness determination and draft permit may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday, or may be also be viewed at the NMOCD web site <u>http://www.emurd.state.nm.us/ocd/</u>. Persons interested in obtaining a copy of the application and draft permit may contact the address above. Prior to ruling on any proposed discharge permit or major modification, the Director shall allow a period of at least (30) days after the date of public hearing. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines that there id significant public interested

If no public hearing is held, the Director will approve or disapprove the proposed permit based or information available, including all comments received. If a public hearing is held, the director will approve or disapprove the proposed permit based on information in the permit application and information submitted at the hearing.

Comments and inquires on regulations should be directed:

Director New Mexico Oil Conservation Division (NMOCD) 1220 S. Saint Francis Drive Sante Fe, New Mexico 87505 Telephone: (505) 476-3440

Para obtener más información sobre esta solicitud en español, sirvase comunicarse por favor:

New Mexico Energy, Mineral and Natural Resources Department (Depto. Del Energia, Minerals 3 Recursos Naturales de Nuevo México), Oil Conservation Division (Depto. Conservació n Del Petróleo) 1220 South St. Francis Drive, Santa Fe, New Mexico (Contacto: Laura Tulk, 575-748-1283). Ixconfigure10

COPY OF PUBLICATION

Ad No. 1107975

STATE OF NEW MEXICO **County of San Juan:**

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general circulation published \mathbf{in} English at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Monday, April 11, 2016

And the cost of the publication is \$525.92 _____

ON 5/10/16 SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Arustini Sellers

A CARLO CARL	÷,
OFFICIAL SEAL	
CHRISTINE SELLERS	ļ.
) (š(Policia)) Notary Public	
State of New Mexico,	
My Comm. Expires 1105/19	
the second se	Σ_{ij}

Aviso de Publicación

Se hace saber que en conformidad con los reglamentos de la Comisión de Control de la Ca dad dei Agua de Nuevo México (20.6.2.31 06 NMAC); la siguiente solicitud para un pmmiso d descarga ha sido presentado al Director de la División de Conservación del Petróleo de Nuev México (NMOCD por sus siglas en ingles), 1220 S. San Francisco Drive, Santa Fe, Nuevo Méxic 87505, teléfono (505) 476-3440:

(UICI -11) Western Refining Southwest, Inc.-Bloomfield Crude Oil and Motor I<nel Bu Storage and Transportation Terminal,# 50 Road 4990 o PO Box 159, Bloomfield, Nuev Mexico 87413 ha presentado una solicitud para un nuevo Pozo de Inyección Subterráne Controlado (UIC por sus siglas en ingles) de Clase I (no peligroso) para un Permiso del Poz de Inyección de IDescarga (UICI-11) para un Pozo de Descarga de Residuos No.2 (WDV 2), que se encuentra en 2028 FNL y 111 FEL (SE/4, NE/4) en la Sección 27, del Municip 29 Norte, Rango 11 Oeste, NMPM, en el Condado de San Juan, Nuevo México. El pozo c inyección se encuentra a unos 415 pies. N de la intersección de Sullivan Rd. y Wooten R o aproximadamente 1 milia E-NE de la intersección de la carretera 550 y Sullivan Rd. 5 propone WDW-2 para ser perforado anna profundidad total de 7,500 pies. debajo delniv del suelo (BGL por sus siglas en ingles) en una formacion de piedra arenada. El po sustituye al pozo anterior de Clase I (no peligroso) de descarga (UICI-9), que fuc sellado abandonado en septiembre del 2015. Las aguas residuales que deben eliminarse se deriv de agua subterránea recuperada, agua utilizada para calentamiento y enfriamiento, ag de boiler, agua separada del suministro de petróleo crudo, limpieza de equipos de proces efluente del sistema de tratamiento de aguas de desecho, agua utilizada para prueb hidrostática, y agua de lluvia. Aguas residuales industriales no peligrosas provenientes yacimientos de pertróleo exentos y no exentos, se inyectaran a una velocidad promet de 3,500 barriles I día (-100 gpm). La concentración de sólidos disueltos totales (TDS r sus siglas en ingleis) de fluido inyectado es de aproximadamente 5,250 ppm. El TDS de l fluidos de la forma cion es actualmente desconocido y se obtendran y analizaran muesti antes de la autorizacion final para inyectar sea aprobada por OCD. El agua subterran mas propensa a ser afectada por un derrame, fuga o descarga accidental esta a u profundidad de aproximada de entre 10 y 30 pies BGL con una concentracion de TDS aproximadamente 3650 ppm. La autorizacion de descarga iucluira información sobre construccion, oper acion, monitoreo del pozo, y las instalaciones en la snpcrficie asociac con el pozo, y proporcionara un plan de contingencia en caso de den ames accidental fugas y otras descargas accidentales con elfín de proteger el agua fresca.

El propletario y oper ador de la instalación es:

Western Refining Southwest, Inc. #50 County Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 Telephone: (505) 632-8013

El NMOCD ha deten ninado qne la solicitud es administrativamente completa y ha preparad borrador del permiso. El NMOCD aceptará comentarios y declaraciones de interés respect esta solicitud y creariá una lista de correo sobre una instalación especifica para las personas deseen recibir notificiaciones en el futuro. Las personas interesadas en obtener más informac enviar comentarios o solicitar que estar en una lista de correo sobre una instalación espec para futuras notificaciones pueden ponerse en contacto con el Jefe de la Oficina Ambiental c División de Conservación de Petróleo en la dirección indicada anteriormente. La determinaadministrativamente completa y el borrador del permiso puede ser visto en la dirección a mencionada de 8:00a.m. a 4:00pm, de lunes a viernes, o tambíen se puede consultar en la pá web de NMOCD http://www.emnrd.state.nm.us/ocd/. Las personas interesadas en obt una copia del permiso de solicitud y el proyecto pneden ponerso en contacto con la direc antes mencionada. Aintes de decidir sobre cualquier autorización del permiso de descar modificación mayor, el Director debera permitir un período de por lo monos (30) días despué la fecha de publicación del presente anuncio, durante el cual las personas interesadas pur presentar observaciones o solicitar gue NMOCD efectué una audiencia pública. En las solicitar de una audiencia pública se exponen las razonos por las que una audiencia debe ser rete Una audiencia se llevará a cabo si el Director determina que existe un interes público significa

Si no se realiza una aucliencia pública, el Director aprobara o rechazara la propuesta de per en base a la información disponible, incluyendo todos los comentarios recibidos. Si se lle cabo una audiencia pública, el director aprobara o rechazara la propuesta de permiso seg información de la solicitud de permiso y la información presentada en la audiencia.

Comentarios y preguntas sobre las regulaciones deben scr dirigidas a: Director New Mexico Oil Conservation Division (NMOCD)

1220 S. Saint Francis Drive Santa Fe, New Mexico 87505 Telephone (505) 476-3440

Para obtener más información sobre esta solicitud en español, sirvase comunicarse por New Mexico Energy, Minerals and Natural Resources Department (Depto. Del Energia, Mir y Recursos Naturales de Nuevo México), Oil Conservation Division (Depto. Conserva Del Petróleo), 1220 South St. Francis Drive, Santa Fe, New México (Contacto: Laura 575-748-1283).

AFFIDAVIT OF PUBLICATION

COPY OF PUBLICATION

Ad No. 1107975

STATE OF NEW MEXICO County of San Juan:

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general published in English circulation at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Monday, April 11, 2016

And the cost of the publication is \$525.92

ON <u>5/10/16</u> SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Christene Sellers

Aviso de Publicación

Se hace saber que en conformidad con los reglamentos de la Comisión de Control de la Ca dad del Agua de Nuevo México (20.6.2.31 06 NMAC); la siguiente solicitud para un pmmiso d descarga ha sido presentado al Director de la División de Conservación del Petróleo de Nuev México (NMOCD por sus siglas en ingles), 1220 S. San Francisco Drive, Santa Fe, Nuevo Méxic 87505, teléfono (505) 476-3440:

(UICI -11) Western Refining Southwest, Inc.-Bloomfield Crude Oil and Motor I<nel Bul Storage and Transportation Terminal,# 50 Road 4990 o PO Box 159, Bloomfield, Nuev Mexico 87413 ha presentado una solicitud para un nuevo Pozo de Inyección Subterráne Controlado (UIC por sus siglas en ingles) de Clase I (no peligroso) para un Permiso del Poz de Invección de Descarga (UICI-11) para un Pozo de Descarga de Residuos No.2 (WDW 2), que se encuentra en 2028 FNL y 111 FEL (SE/4, NE/4) en la Sección 27, del Municipi 29 Norte, Rango 11 Oeste, NMPM, en el Condado de San Juan, Nuevo México. El pozo d inyección se encuentra a unos 415 pies. N de la intersección de Sullivan Rd. y Wooten Ri o aproximadamente 1 milia E-NE de la intersección de la carretera 550 y Sullivan Rd. S propone WDW-2 para ser perforado anna profundidad total de 7,500 pies. debajo delniv del suelo (BGL por sus siglas en ingles) en una formacion de piedra arenada. El poz sustituye al pozo anterior de Clase I (no peligroso) de descarga (UICI-9), que fuc sellado abandonado en septiembre del 2015. Las aguas residuales que deben eliminarse se deriva (te agua subterránea recuperada, agua utilizada para calentamiento y enfriamiento, agu de boiler, agua separada del suministro de petróleo crudo, limpieza de equipos de proces esfluente del sistema de tratamiento de aguas de desecho, agua utilizada para prueba hidrostática, y agua de lluvia. Aguas residuales industriales no peligrosas provenientes c yracimientos de petróleo exentos y no exentos, se inyectaran a una velocidad promed cle 3,500 barriles I día (-100 gpm). La concentración de sólidos disueltos totales (TDS p sus siglas en ingles) de fluido inyectado es de aproximadamente 5,250 ppm. El TDS de lo fluidos de la formacion es actualmente desconocido y se obtendran y analizaran muestra antes de la autorizacion final para inyectar sea aprobada por OCD. El agua subterrante nnas propensa a ser afectada por un derrame, fuga o descarga accidental esta a un profundidad de aproximada de entre 10 y 30 pies BGL con una concentracion de TDS o aproximadamente 3650 ppm. La autorizacion de descarga iucluira información sobre construccion, operacion, monitoreo del pozo, y las instalaciones en la snpcrficie asociad con el pozo, y proporcionara un plan de contingencia en caso de den ames accidentale fugas y otras descargas accidentales con elfin de proteger el agua fresca.

El propietario y operador de la instalación es:

Western Refining Southwest, Inc. #50 County Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 Telephone: (505) 632-8013

El NMOCD ha detenninado qne la solicitud es administrativamente completa y ha preparado borrador del permiso. El NMOCD aceptará comentarios y dcclaraciones de interés respecto e sta solicitud y creará una lista de correo sobre una instalación específíca para las personas q d'eseen recibir notificaciones en el futuro. Las personas interesadas en obtener más informacio enviar comentarios o solicitar que estar en una lista de correo sobre una instalación especifi para futuras notificaciones pueden ponerse en contacto con el Jefe de la Oficina Ambiental de Elivisión de Conservación de Petróleo en la dirección indicada anteriormente. La determinaci administrativamente completa y el borrador del permiso puede ser visto en la dirección an nnencionada de 8:00a.m. a 4:00pm, de lunes a viernes, o tambíen se puede consultar en la pág web de NMOCD http://wwww.emnrd.state.nm.us/ocd/. Las personas interesadas en obter Lina copia del permiso de solicitud y el proyecto pneden ponerso en contacto con la direcc antes mencionada. Antes de decidir sobre cualquier autorización del permiso de descarge modificación mayor, el Director debera permitir un periodo de por lo monos (30) días después la fecha de publicación del presente anuncio, durante el cual las personas interesadas puec presentar observaciones o solicitar gue NMOCD efectué una audiencia pública. En las solicitar dle una audiencia pública se exponen las razonos por las que una audiencia debe ser reteni Una audiencia se llevará a cabo si el Director determina que existe un interes público significati

Si no se realiza una audiencia pública, el Director aprobara o rechazara la propuesta de perm en base a la información disponible, incluyendo todos los comentarios recibidos. Si se llev cabo una audiencia pública, el director aprobara o rechazara la propuesta de permiso segúr información de la solicitud de permiso y la información presentada en la audiencia.

Comentarios y preguntas sobre las regulaciones deben scr dirigidas a: Director New Mexico Oil Conservation Division (NMOCD) 1220 S. Saint Francis Drive Santa Fe, New Mexico 87505 Telephone (505) 476-3440

Para obtener más información sobre esta solicitud en español, sirvase comunicarse por fa New Mexico Energy, Minerals and Natural Resources Department (Depto. Del Energia, Mine y Recursos Naturales de Nuevo México), Oil Conservation Division (Depto. Conservac Del Petróleo), 1220 South St. Francis Drive, Santa Fe, New México (Contacto: Laura T 5/75-748-1283).

Posting of Public Notice – Certification

I, James Schmaltz, the undersigned, certify that on April 7, 2016, I posted a public notice for Western Refining Southwest, Inc submittal of a discharge permit application for an Underground Injection Control (UIC) Class I (Non-hazardous) Disposal Well in the following locations:

- Bloomfield Post Office
- Bloomfield Public Library

Signed this 13th day of April, 2016

Date 4/13/16 HSER DIRECTOR Signature _ Printed Name James R. SCHMALTZ Title

LOGISTICS

April 7, 2016

Bureau of Land Management 6251 College Blvd. Suite A Farmington, NM 87402

Certified Mail #: 7015 1520 0001 8113 5475

Re: Landowner Notification - Western Refining Southwest, Inc. – Bloomfield Crude Oil and Motor Fuel Bulk Storage and Transportation Terminal.

Pursuant to the requirements of the New Mexico Water Quality Control Commission regulation 20 NMAC 6.2.3108, Western Refining Southwest, Inc. announces that it is making application to the New Mexico Oil Conservation Division (NMOCD) – Environmental Bureau for a discharge permit to install a new Class I (Nonhazardous) Disposal Well (WDW#2) to replace the facilities previous Class I (Nonhazardous) Disposal Well (VICI-9) which was plugged and abandoned in September 2015.

The new Disposal Well (WDW-2) will be located at 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well is located approximately 415 feet N of the intersection of Sullivan Road and Wooten Road or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Road. WDW-2 is proposed to be drilled to a total depth of 7500 feet below ground level (bgl) into the Entrada Sandstone Formations.

A copy of the public notice is attached. If you have any questions please feel free to contact me at (505) 632-4171.

Sincerely

James R. Schmaltz HSER Director

cc: Carl Chavez, NMOCD Allen Hains, Western Refining Kelly Robinson, Western Refining

PS Form 3811, July 2015 PSN 7530-02-000-9053

LOGISTICS

April 7, 2016

Mr. & Mrs. Carroll G. Wooten 103 Road 4990 P.O. Box 1841 Bloomfield, NM 87413

Certified Mail #: 7015 1520 0001 8113 5574

Re: Landowner Notification - Western Refining Southwest, Inc. – Bloomfield Crude Oil and Motor Fuel Bulk Storage and Transportation Terminal.

Pursuant to the requirements of the New Mexico Water Quality Control Commission regulation 20 NMAC 6.2.3108, Western Refining Southwest, Inc. announces that it is making application to the New Mexico Oil Conservation Division (NMOCD) – Environmental Bureau for a discharge permit to install a new Class I (Nonhazardous) Disposal Well (WDW#2) to replace the facilities previous Class I (Nonhazardous) Disposal Well (VICI-9) which was plugged and abandoned in September 2015.

The new Disposal Well (WDW-2) will be located at 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well is located approximately 415 feet N of the intersection of Sullivan Road and Wooten Road or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Road. WDW-2 is proposed to be drilled to a total depth of 7500 feet below ground level (bgl) into the Entrada Sandstone Formations.

A copy of the public notice is attached. If you have any questions please feel free to contact me at (505) 632-4171.

Sincerely

James R. Schmaltz HSER Director

cc: Carl Chavez, NMOCD Allen Hains, Western Refining Kelly Robinson, Western Refining

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY		
 Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailplece, or on the front if space permits. 	A. Signature X. Multiple address different from item 1? Yes delivery address different from item 1? Yes		
Mr. & Mrs. Carroll G. Wooten			
P.O. Box 1841			
103 Road 4990			
Bloomfield, NM 87413	Ce Type		
9590 9401 0154 5234 1250 30	Adult Signature Adult Signature Restricted Delivery Certified Mail® Certified Mail® Certified Mail® Certified Mail Restricted Delivery Certified Mail Restricted Delivery		
2. Article Number (Transfer from service label)	Collect on Derivery Restricted Derivery Signature Confirmation		
	5574 Domestic Return Receipt		
PS Form 3811, July 2015 PSN 7530-02-000-9063			

LOGISTICS

April 7, 2016

Mr. & Mrs. J.D. Wooten 103 Road 4990 P.O. Box 1841 Bloomfield, NM 87413

Certified Mail #: 7015 1520 0001 8113 5475

Re: Landowner Notification - Western Refining Southwest, Inc. – Bloomfield Crude Oil and Motor Fuel Bulk Storage and Transportation Terminal.

Pursuant to the requirements of the New Mexico Water Quality Control Commission regulation 20 NMAC 6.2.3108, Western Refining Southwest, Inc. announces that it is making application to the New Mexico Oil Conservation Division (NMOCD) – Environmental Bureau for a discharge permit to install a new Class I (Nonhazardous) Disposal Well (WDW#2) to replace the facilities previous Class I (Nonhazardous) Disposal Well (VICI-9) which was plugged and abandoned in September 2015.

The new Disposal Well (WDW-2) will be located at 2028 FNL and 111 FEL (SE/4, NE/4) in Section 27, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The injection well is located approximately 415 feet N of the intersection of Sullivan Road and Wooten Road or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Road. WDW-2 is proposed to be drilled to a total depth of 7500 feet below ground level (bgl) into the Entrada Sandstone Formations.

A copy of the public notice is attached. If you have any questions please feel free to contact me at (505) 632-4171.

Sincerely

lames R. Schmaltz HSER Director

cc: Carl Chavez, NMOCD Allen Hains, Western Refining Kelly Robinson, Western Refining

Chavez, Carl J, EMNRD

From:	Chavez, Carl J, EMNRD
Sent:	Friday, March 18, 2016 3:24 PM
То:	'Lane, James, DGF'; Wunder, Matthew, DGF; 'Allison, Arthur, DIA';
	'ddapr@nmda.nmsu.edu'; 'jjuen@blm.gov'; 'psisneros@nmag.gov';
	'r@rthicksconsult.com'; 'sric.chris@earthlink.net'; 'nmparks@state.nm.us'; Verhines,
	Scott, OSE; 'peggy@nmbg.nmt.edu'; 'marieg@nmoga.org'; Fetner, William, NMENV;
	'lazarus@glorietageo.com'; 'cnewman02@fs.fed.us'; Kieling, John, NMENV;
	'bsg@garbhall.com'; 'Schoeppner, Jerry, NMENV'; 'claudette.horn@pnm.com';
	'ekendrick@montand.com'; 'staff@ipanm.org'; Dade, Randy, EMNRD; Bratcher, Mike,
	EMNRD; Perrin, Charlie, EMNRD; Jones, William V, EMNRD; Kelly, Jonathan, EMNRD;
	Powell, Brandon, EMNRD; Wojahn, Beth, EMNRD; Griswold, Jim, EMNRD; Goetze,
	Phillip, EMNRD
Cc:	Schmaltz, Randy (Randy.Schmaltz@wnr.com); Robinson, Kelly
	(Kelly.Robinson@wnr.com); Allen.Hains@wnr.com
Subject:	Western Refining Southwest, Inc. Bloomfield UIC Class I (Non-hazardous) Disposal Well
	Discharge Permit Application (UICI-011) San Juan County

Ladies and Gentlemen:

Please find below the New Mexico Oil Conservation Division (OCD) **initial** Public Notice for the above subject Underground Injection Control (UIC) Class I (Non-hazardous) Disposal Well Facility.

Discharge Permit (UICI-011) Western Refining Southwest, Inc. Waste Disposal Well No. 2- "WDW-2"

(3/18/16): The Underground Injection Control (UIC) Class I (Non-hazardous) Disposal Well (API#: *Currently Pending*) is located approximately 415 ft. N of the intersection of Sullivan Rd. and Wooten Rd. in Bloomfield, NM (San Juan County) or approximately 1 mile E-NE of the intersection of Hwy 550 and Sullivan Rd.

Administrative Completeness Description Application(s)

The OCD Website for public notices is at <u>http://www.emnrd.state.nm.us/OCD/env-draftpublicetc.html</u> (see "Draft Permits and Public Notices" section).

Please contact me if you have questions. Thank you.

Carl J. Chavez, CHMM Environmental Engineer Oil Conservation Division- Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Phone: (505) 476-3490 Main Phone: (505) 476-3440 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>www.emnrd.state.nm.us/ocd</u>

Why not prevent pollution, minimize waste, reduce operation costs, and move forward with the rest of the Nation? To see how, go to "Publications" and "Pollution Prevention" on the OCD Website.

State of New Mexico Energy, Minerals and Natural Resources Department

Susana Martinez Governor

David Martin Cabinet Secretary

Tony Delfin Deputy Cabinet Secretary

David R. Catanach, Division Director Oil Conservation Division

MARCH 18, 2016

CERTIFIED MAIL RETURN RECEIPT NO: 3771 5916

Mr. James R. Schmaltz Western Refining Southwest, Inc. P.O. Box 159 Bloomfield, New Mexico 87413

Re: Discharge Permit (UICI-11) Class I Non-Hazardous Oil Field Waste Disposal Well No. 2 Unit Letter H of Section 27 in Township 29 North, Range 11 East, NMPM; San Juan County

Mr. Schmaltz:

The Oil Conservation Division (OCD) has received Western Refining Southwest, Inc.'s application for disposal well No. 2 to inject non-hazardous oil field wastes into the Bluff-Cow Springs Sandstone and Entrada Sandstone Formations at the above referenced location. The initial submittal on March 4, 2016 provided the required information in order to deem the application administratively complete.

As such, the Water Quality Control Commission regulations (WQCC) notice requirements of 20.6.2.3108 NMAC must be satisfied and demonstrated to the OCD. OCD will also provide public notice pursuant to WQCC requirements and determine if there is sufficient public interest.

Please contact me at (505) 476-3490 or <u>carlj.chavez@state.nm.us</u> if you have questions. Thank you for your cooperation throughout the discharge permit review process.

Sincerely,

Care J. Chives

Carl J. Chavez Environmental Engineer

xc: OCD District III Office, Aztec

Description:

A new Underground Injection Control (UIC) Class I (Non-hazardous) Disposal Well (UICI-11) or "WDW-2" located at latitude N 36.698607646066° and longitude W 107.9703543338° has been proposed to be drilled to a total depth of 7,500 ft. below ground level (bgl) into the Entrada Sandstone Formation within the property boundary of the former Bloomfield Refinery (GW-1). The well replaces the previous Class I (Non-hazardous) Disposal Well (UICI-9), which was plugged and abandoned in September of 2015.

An assemblage of cemented casing strings to surface are proposed to be set as follows: 1) 13-3/8 inch conductor casing will be set to 300 ft. bgl; 2) 9-5/8 inch surface casing will be set to 3,600 ft. bgl; and 3) 7 inch production casing will be set to 7,500 ft. bgl. A 4-1/2 inch plastic lined injection string will be set through the packer at 7,265 ft. bgl within the 7 inch casing slotted from 7,315 - 7,483 ft. bgl.

Oilfield wastewater (~ 5,250 mg/L TDS) will be injected at an average injection rate of 3,500 bbl/day (~ 100 gpm) below a permitted maximum surface injection pressure (MSIP) of ~ 1,460 psig. A step-rate pressure test will be completed on the well shortly after well construction to determine the actual allowable fracture pressure and final MSIP for the well. A Fall-Off Test (FOT) on the well will also be performed shortly after well construction to verify the baseline injection zone hydrogeologic characteristics, i.e., permeability, aerial extent of the injection zone, fracture growth, etc. for future required annual FOTs to monitor the ability of the injection zone to accept wastewater over the operational life of the disposal well.

1X. After the well is drilled, cased and perforated an injectivity test will be performed. If the injection rate is less than 6 BPM prior to parting pressure, the well will be stimulated w/ approximately 222,000 lbs of 20/40 white sand in 110,000 gals of 30# cross linked gel at 50 bpm. Note: actual job design (if needed) will be based on actual results of the injectivity test.

X. All open hole and cased hole logs will be filed with NMOCD once the well is drilled and completed.

XII. Available geologic and engineering data has been examined and no evidence of open faults or any other hydrological connection between the disposal zone, the Entrada Formation, and any underground sources of drinking water, the Nacimiento Formation.

XIII. Based on the information available online as well as information from the "Four Corners Geological Society" there are no known faults located in the area of the proposed well. Natural fractures are few to nonexistent in the Entrada formation. The overlaying formation is the relatively impermeable Todilto Limestone. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately ¾ of mile to the east of the proposed injection well. The Ashcroft SWD #1 is a SWD well operated by XTO Energy and is completed in the Bluff and Entrada formations and has no evidence of water migrating out of the injection zones.

XIII. Public Notice will follow NMOCD review of this application.

Appendix C Injection Fluid Analytical

Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Volatile Organic Compounds (ug/L)	With the south of	1/23/2014	والعصار المعاد	7/28/2014	10/1/2014
1,1,1,2-Tetrachloroethane		< 10	na	< 2.0	< 5.0
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1,2,2-Tetrachloroethane		< 20	na	< 4.0	< 10
1,1,2-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethene		< 10	na	< 2.0	< 5.0
1,1-Dichloropropene		< 10	na	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	па	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane		< 20	na	< 4.0	< 10
1,2-Dibromoethane (EDB)		< 10	na	< 2.0	< 5.0
1,2-Dichlorobenzene		< 10	па	< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	< 5.0
1,2-Dichloropropane	Contract according	< 10	па	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,3-Dichlorobenzene		< 10	па	< 2.0	< 5.0
1,3-Dichloropropane		< 10	na	< 2.0	< 5.0
1,4-Dichlorobenzene	7500	< 10	na	< 2.0	< 5.0
1-Methylnaphthalene		< 40	na	< 8.0	< 20
2,2-Dichloropropane		< 20	na	< 4.0	< 10
2-Butanone		200	na	< 20	< 50
2-Chlorotoluene		< 10	па	< 2.0	< 5.0
2-Hexanone		< 100	na	< 20	< 50
2-Methylnaphthalene		< 40	na	< 8.0	< 20
4-Chlorotoluene		< 10	na	< 2.0	< 5.0
4-Isopropyltoluene		< 10	na	< 2.0	< 5.0
4-Methyl-2-pentanone		< 100	na	< 20	< 50
Acetone		1400	na	85	120
Benzene	500	< 10	па	< 2.0	< 5.0
Bromobenzene		< 10	na	< 2.0	< 5.0
Bromodichloromethane		< 10	па	< 2.0	< 5.0
Bromoform		< 10	na	< 2.0	< 5.0
Bromomethane		< 30	па	< 6.0	<15
Carbon disulfide	999316 (1893)9(1299 (1994))0000000000000000000000000000000000	< 100	na	< 20	< 50
Carbon Tetrachloride	500	< 10	па	< 2.0	< 5.0
Chlorobenzene	100000	< 10	na	< 2.0	< 5.0
Chloroethane		< 20	па	< 4.0	< 10
Chloroform	6000	< 10	na	< 2.0	< 5.0
Chloromethane		< 30	па	< 6.0	< 15
cis-1.2-DCE		< 10	па	< 2.0	< 5.0
cis-1.3-Dichloropropene		< 10	па	< 2.0	< 5.0
Dibromochloromethane		< 10	na	< 2.0	< 5.0
Dibromomethane		< 10	па	< 2.0	< 5.0
Dichlorodifluoromethane	······	<10	na	< 2.0	< 5.0
Ethylbenzene		<10	па	< 2.0	< 5.0
Hexachlorobutadiene	500	< 10	na	< 2.0	< 5.0
Isopropylbenzene	end all following the first second	< 10	па	< 2.0	< 5.0
Methyl tert-butyl ether (MTBE)		< 10	na	< 2.0	< 5.0
Methylene Chloride		< 30	ра	< 6.0	<15
Naphthalene	· · · · · · · · · · · · · · · · · · ·	< 30		<4.0	<10
n-Butylbenzene		<10	ра	<60	< 15
n-Propylbenzene		< 2.0	ра	< 2.0	< 5.0
sec-Butylbenzene	0-4847 (4014)-4016 - (11 - 014) (11 - 014) (14 - 16) (14 - 16)	< 10	na na	< 2.0	< 5.0
Styrene		< 10	ря	< 2.0	< 5.0
tert-Butylbenzene		< 10	ря	< 2.0	< 5.0
Tetrachloroethene (PCE)		< 10	.1a na	< 2.0	< 5.0
Toluene		<10	10 10	<20	< 5.0
trans-1 2-DCE		< 10	pa	<20	< 5.0
trans-1.3-Dichloropropene		<10	na	<2.0	< 5.0
Trichloroethene (TCF)	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	< 10	na	< 2.0	< 5.0
Trichlorofluoromethane		<10	na	<20	< 5.0
Vinyl chloride	200	<10	na	<20	< 5.0
Xylenes Total	200	<15	na	< 3.0	<75

Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity	P. S			
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Semi-Volatile Organic Compounds (ug/L)			CERTIFICATION PE		
1,2,4-Trichlorobenzene	and the first state of the second state of the	< 50	na	< 100	< 10
1,2-Dichlorobenzene		< 50	na	<100	< 10
1,3-Dichlorobenzene		< 50	na	< 100	< 10
1,4-Dichlorobenzene	7500	< 50	na	< 100	< 10
1-Methylnaphthalene		< 50	na	< 100	< 10
2,4,5-Trichlorophenol	2000	< 50	na	< 100	< 10
2,4,6-Trichlorophenol	2000	< 50	na	< 100	< 10
2,4-Dichlorophenol		< 100	na	< 100	< 10
2,4-Dimethylphenol		< 100	na	< 200	< 20
2,4-Dimitrophenol	130	< 50	na	< 100	< 10
2,4-Dimitrotoluene	150	< 50	na	<100	< 10
2.Chloropaphthalene		< 50	na	< 100	< 10
2-Chlorophenol		< 50	па	<100	< 10
2-Methylnaphthalene		< 50	na	<100	< 10
2-Methylphenol		< 50	na	< 200	< 20
2-Nitroaniline		< 50	na	< 100	< 10
2-Nitrophenol		< 50	па	< 100	< 10
3,3'-Dichlorobenzidine		< 50	na	210	< 10
3+4-Methylphenol		< 50	na	< 100	< 10
3-Nitroaniline		< 50	па	< 100	< 10
4,6-Dinitro-2-methylphenol		< 100	na	< 200	< 20
4-Bromophenyl phenyl ether	non and a second se	< 50	па	< 100	< 10
4-Chloro-3-methylphenol		< 50	na	< 100	< 10
4-Chloroaniline		< 50	na	<100	< 10
4-Chlorophenyl phenyl ether		< 50	na	<100	< 10
4-Nitroaniline		< 50	na	<100	< 10
4-Nitrophenol		< 50	na	<100	< 10
Acenaphthene		< 50	na	< 100	< 10
Acenaphthylene		< 50	na	<100	< 10
Aniline		< 50	na	<100	< 10
Anthracene		< 50	na	< 100	< 10
Repartement		< 50	na	< 100	<10
Benze(a)antinacene		< 50	110	< 100	< 10
Benzo(b)fluoranthene		< 50	na	< 100	< 10
Benzo(g h i)pervlene		< 50	na	< 100	< 10
Benzo(k)fluoranthene	Construction and a second second second	< 50	na	< 100	< 10
Benzoic acid		< 100	na	< 200	< 40
Benzyl alcohol		< 50	na	< 100	< 10
Bis(2-chloroethoxy)methane		< 50	na	<100	< 10
Bis(2-chloroethyl)ether		< 50	na	<100	< 10
Bis(2-chloroisopropyl)ether		< 50	na	< 100	< 10
Bis(2-ethylhexyl)phthalate		< 50	na	< 100	<10
Butyl benzyl phthalate		< 50	na	< 100	< 10
Carbazole		< 50	na	<100	< 10
Chrysene	10.000 00.000 00 1 (1 1 0.000 1 (0 0.000 0 0 0.000 0 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.0000 0 0.000	< 50	na	<100	<10
Dibenz(a,h)anthracene		< 50	na	< 100	< 10
Dibenzofuran		< 50	na	< 100	< 10
Diethyl phthalate		< 50	па	< 100	< 10
Dimethyl phthalate		< 50	na	<100	< 10
Di-n-butyl phthalate		< 50	na	< 100	< 20
Di-n-octyl phthalate		< 50	na	< 100	< 10
Fluorante		< 50	na	<100	< 10
Heyechlorobenzenc	130	< 50	na	<100	< 10
Vevechlorobutadiana	500	< 50	na	<100	< 10
Heyachlorocyclonentadiene	500	< 50	na	< 100	< 10
Hexachloroethane	3000	< 50	na	< 100	< 10
Indeno(1,2,3-cd)pyrene		< 50	па	< 100	< 10
Isophorone		< 50	na	< 100	<10
Naphthalene		< 50	па	< 100	< 10
Nitrobenzene	2000	< 50	na	< 100	< 10
N-Nitrosodimethylamine		< 50	па	< 100	<10
N-Nitrosodi-n-propylamine		< 50	na	< 100	< 10
N-Nitrosodiphenylamine		< 50	na	< 100	<10
Pentachlorophenol	100000	< 100	na	< 200	< 20
Phenanthrene		< 50	na	< 100	< 10
Phenol		< 50	na	< 100	< 10
Pyrene		< 50	na	<100	< 10
Pyridine	5000	< 50	na	<100	< 10

Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwis	se stated)			a fill the second	
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate		35	па	41	26
Total Dissolved Solids		5240	na	1380	742
pH (pH Units)		6.25	па	7.10	7.08
Bicarbonate (As CaCO3)		380	na	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	па	480	110
Magnesium		75	na	99	23
Potassium		37	na	36	8.2
Sodium		1000	na	1100	220
Total Alkalinity (as CaCO3)		380	na	220	150
Total Metals (mg/L)	a load and the second	Minter	Search Sector		
Arsenic	5.0	< 0.020	na	< 0.020	< 0.020
Barium	100.0	0.56	па	0.63	0,20
Cadmium	1.0	< 0.0020	na	< 0.0020	< 0.0020
Chromium	5.0	< 0.0060	na	< 0.0060	< 0.0060
Lead	5	< 0,0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0,2	< 0.0010	na	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity		No. Jan - A		6 CALLER AND	
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability ("F)	< 140° F	>200	na	>200	>200
Corrosivity (ph Units)	≤2 or ≥ 12.5	6.25	na	7.44	6.82

na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 13, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 1-23-2014

OrderNo.: 1401A07

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/24/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT:	Western Refining Southwest, I	nc.		Client Sa	mple ID: Inje	ection Well	
Project:	Injection Well 1-23-2014			Collecti	on Date: 1/2	3/2014 8:35:00 AM	
Lab ID:	1401A07-001	Matrix:	AQUEOU	S Receiv	ed Date: 1/2	4/2014 10:15:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst	JRR
Chloride		2400	100	ma/L	200	1/27/2014 7:14:18 PM	R16337
Sulfate		35	5.0	mg/L	10	1/24/2014 8:01:43 PM	R16313
EPA MET	HOD 7470: MERCURY					Analyst	DBD
Mercury		ND	0.0010	mg/L	5	1/30/2014 1:52:43 PM	11463
EPA 6010	B: TOTAL RECOVERABLE M	ETALS				Analyst	ELS
Arsenic		ND	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
Barium		0.56	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
Cadmiun	n	ND	0.0020	mg/L	1	1/29/2014 11:20:46 AM	11432
Calcium		490	5.0	mg/L	5	1/29/2014 11:22:17 AM	11432
Chromiu	m	ND	0.0060	ma/L	1	1/29/2014 11:20:46 AM	11432
Lead		ND	0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Magnesi	um	75	1.0	ma/L	1	1/29/2014 11:20:46 AM	11432
Potassiu	m	37	1.0	mg/L	1	1/29/2014 11:20:46 AM	11432
Selenium	1	ND	0.050	mg/L	1	1/29/2014 11:20:46 AM	11432
Silver		ND	0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Sodium		1000	20	mg/L	20	1/29/2014 11:50:27 AM	11432
EPA MET	HOD 8270C: SEMIVOLATILES	5				Analyst	DAM
Acenaph	thene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Acenaph	thylene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Aniline		ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Anthrace	ne	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Azobenz	ene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benz(a)a	Inthracene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(a)	pyrene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(b)	fluoranthene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(g,	h,i)perylene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(k)	fluoranthene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Benzoic	acid	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
Benzyl a	lcohol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chl	oroethoxy)methane	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chl	oroethyl)ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chl	oroisopropyl)ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-eth	ylhexyl)phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4-Bromo	phenyl phenyl ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Butyl ber	nzyl phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Carbazol	е	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4-Chloro-	-3-methylphenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4-Chloro	aniline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detect
	Е	Value above quantitation range	Н	Holding times
	J	Analyte detected below quantitation limits	ND	Not Detected a
	0	RSD is greater than RSDlimit	Р	Sample pH gre

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits ed in the associated Method Blank

for preparation or analysis exceeded

at the Reporting Limit Page 1 of 17

eater than 2.

RL Reporting Detection Limit

Analytical Report Lab Order 1401A07 Date Reported: 2/13/2014

Hall Environmental Analysis	Labora	tory, Inc.		Lab Order 1401A07 Date Reported: 2/13/2014
CLIENT: Western Refining Southwest, Inc Project: Injection Well 1-23-2014 Lab ID: 1401A07-001	e. Matrix:	AQUEOUS	lient San Collectio Receive	nple ID: Injection Well on Date: 1/23/2014 8:35:00 AM ed Date: 1/24/2014 10:15:00 AM
Analyses	Result	RL Qual	Units	DF Date Analyzed Batch
EPA METHOD 8270C: SEMIVOLATILES				Analyst: DAM
2-Chloronaphthalene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
2-Chlorophenol	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
4-Chlorophenyl phenyl ether	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Chrysene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Di-n-butyl phthalate	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Di-n-octyl phthalate	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Dibenz(a,h)anthracene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Dibenzofuran	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
1,2-Dichlorobenzene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
1,3-Dichlorobenzene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
1,4-Dichlorobenzene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
3,3'-Dichlorobenzidine	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Diethyl phthalate	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Dimethyl phthalate	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
2,4-Dichlorophenol	ND	100	µg/L	1 1/30/2014 7:14:30 PM 11420
2,4-Dimethylphenol	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
4,6-Dinitro-2-methylphenol	ND	100	µg/L	1 1/30/2014 7:14:30 PM 11420
2,4-Dinitrophenol	ND	100	µg/L	1 1/30/2014 7:14:30 PM 11420
2,4-Dinitrotoluene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
2,6-Dinitrotoluene	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
Fluoranthene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Fluorene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Hexachlorobenzene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Hexachlorobutadiene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Hexachiorocyclopentadiene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Hexachloroethane	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Indeno(1,2,3-cd)pyrene	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
Isophorone	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
1-Methylnaphthalene	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
2-Methylnaphthalene	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
2-Methylphenol	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
3+4-Methylphenol	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
N-Nitrosodi-n-propylamine	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
N-Nitrosodimethylamine	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
N-Nitrosodiphenylamine	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
Naphthalene	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
2-Nitroaniline	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420
3-Nitroaniline	ND	50	μg/L	1 1/30/2014 7:14:30 PM 11420
4-Nitroaniline	ND	50	µg/L	1 1/30/2014 7:14:30 PM 11420

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 17

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis	Labora	tory, Inc.			Lab Order 1401A07 Date Reported: 2/13/201	.4
CLIENT: Western Refining Southwest, Inc Project: Injection Well 1-23-2014		(Client Sampl Collection 1	e ID: Inje Date: 1/2:	ection Well 3/2014 8:35:00 AM	
Lab ID: 1401A07-001	Matrix:	AQUEOUS	Received I	Date: 1/24	4/2014 10:15:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst	DAM
Nitrobenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Nitrophenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4-Nitrophenoi	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Pentachlorophenol	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
Phenanthrene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Phenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Pyrene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Pyridine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,2,4-Trichlorobenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4,5-Trichlorophenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2.4.6-Trichlorophenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Surr: 2-Fluorophenol	66.2	22.7-98	%REC	1	1/30/2014 7:14:30 PM	11420
Surr: Phenol-d5	54.5	23.4-74.9	%REC	1	1/30/2014 7:14:30 PM	11420
Surr: 2,4,6-Tribromophenol	97.6	23.3-111	%REC	1	1/30/2014 7:14:30 PM	11420
Surr: Nitrobenzene-d5	86.5	36.8-111	%REC	1	1/30/2014 7:14:30 PM	11420
Surr: 2-Fluorobiphenyl	86.4	38.3-110	%REC	1	1/30/2014 7:14:30 PM	11420
Surr: 4-Terphenyl-d14	73.7	52.1-116	%REC	1	1/30/2014 7:14:30 PM	11420
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Benzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Toluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Ethylbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1.2.4-Trimethylbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1.3.5-Trimethylbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dichloroethane (EDC)	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dibromoethane (EDB)	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Naphthalene	ND	20	μg/L	10	1/31/2014 3:25:28 PM	R16441
1-Methylnaphthalene	ND	40	μg/L	10	1/31/2014 3:25:28 PM	R16441
2-Methylnaphthalene	ND	40	µg/L	10	1/31/2014 3:25:28 PM	R16441
Acetone	1400	100	µg/L	10	1/31/2014 3:25:28 PM	R16441
Bromobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Bromodichloromethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Bromoform	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Bromomethane	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441
2-Butanone	200	100	µg/L	10	1/31/2014 3:25:28 PM	R16441
Carbon disulfide	ND	100	µg/L	10	1/31/2014 3:25:28 PM	R16441
Carbon Tetrachloride	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Chlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Chloroethane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
 - ND Not Detected at the Reporting Limit Page 3 of 17

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

CLIENT:	: Western Refining Southwest,	Inc.	w	Client Sam	ple ID: Inje	ection Well	
Project:	Injection Well 1-23-2014			Collection	Date: 1/2	5/2014 8:55:00 AM	
Lab ID:	1401A07-001	Matrix: A	QUEOUS	Received	Date: 1/2	4/2014 10:15:00 AM	
Analyses		Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA ME	THOD 8260B: VOLATILES					Analyst	DJF
Chlorofo	orm	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Chlorom	nethane	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441
2-Chloro	otoluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
4-Chloro	otoluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
cis-1,2-[DCE	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
cis-1,3-[Dichloropropene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dibr	omo-3-chloropropane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
Dibromo	ochloromethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Dibromo	omethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dich	lorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,3-Dich	lorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,4-Dich	lorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Dichloro	odifluoromethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,1-Dich	nloroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,1-Dich	nloroethene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2-Dich	nloropropane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,3-Dich	nloropropane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
2,2-Dich	nloropropane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1-Dich	loropropene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
Hexachl	lorobutadiene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
2-Hexar	one	ND	100	μg/L	10	1/31/2014 3:25:28 PM	R16441
lsopropy	ylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
4-Isopro	pyitoluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
4-Methy	1-2-pentanone	ND	100	μg/L	10	1/31/2014 3:25:28 PM	R16441
Methyle	ne Chloride	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441
n-Butylb	enzene	ND	30	μg/L	10	1/31/2014 3:25:28 PM	R16441
n-Propyi	lbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
sec-Buty	ylbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Styrene		ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
tert-Buty	ylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,1,2-	Tetrachloroethane	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,2,2-	Tetrachloroethane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
Tetrachl	loroethene (PCE)	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441
trans-1,2	2-DCE	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
trans-1,3	3-Dichloropropene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2,3-Tri	ichlorobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2,4-Tr	ichlorobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,1-Tr	ichloroethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,1,2-Tri	ichloroethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte
	E	Value above quantitation range	Н	Holdin
	J	Analyte detected below quantitation limits	ND	Not De
	0	RSD is greater than RSDlimit	Р	Sample
	Ð	RPD outside accepted recovery limits	RL	Report

RPD outside accepted recovery limits R

S Spike Recovery outside accepted recovery limits

- te detected in the associated Method Blank
- ig times for preparation or analysis exceeded

etected at the Reporting Limit Page 4 of 17

e pH greater than 2.

RL Reporting Detection Limit

Analytical Report Lab Order 1401A07

Date Reported: 2/13/2014

Analytical Report Lab Order 1401A07

Date Reported: 2/13/2014

CLIENT: Western Refining Southwest, I	nc.		Client Sample I	D: Inj	ection Well	
Project: Injection Well 1-23-2014			Collection Da	te: 1/2	23/2014 8:35:00 AM	
Lab ID: 1401A07-001	Matrix:	AQUEOUS	Received Da	te: 1/2	24/2014 10:15:00 AM	
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analys	t DJF
Trichloroethene (TCE)	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Trichlorofluoromethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
1,2,3-Trichloropropane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441
Vinyl chloride	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441
Xylenes, Total	ND	15	µg/L	10	1/31/2014 3:25:28 PM	R16441
Surr: 1,2-Dichloroethane-d4	100	70-130	%REC	10	1/31/2014 3:25:28 PM	R16441
Surr: 4-Bromofluorobenzene	86.4	70-130	%REC	10	1/31/2014 3:25:28 PM	R16441
Surr: Dibromofluoromethane	98.8	70-130	%REC	10	1/31/2014 3:25:28 PM	R16441
Surr: Toluene-d8	101	70-130	%REC	10	1/31/2014 3:25:28 PM	R16441
SM2510B: SPECIFIC CONDUCTANCE					Analys	t: SRM
Conductivity	7100	0.010	µmhos/cm	1	1/24/2014 5:53:17 PM	R16304
SM4500-H+B: PH					Analys	t: SRM
рН	6.25	1.68 H	pH units	1	1/24/2014 5:53:17 PM	R16304
SM2320B: ALKALINITY					Analys	t: SRM
Bicarbonate (As CaCO3)	380	20	mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304
Carbonate (As CaCO3)	ND	2.0	mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304
Total Alkalinity (as CaCO3)	380	20	mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304
SM2540C MOD: TOTAL DISSOLVED SC	DLIDS				Analys	t: KS
Total Dissolved Solids	5240	100 *	mg/L	1	1/28/2014 5:33:00 PM	11406

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank	
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded		
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 5 of 17	
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	14605 0117	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	S	Spike Recovery outside accepted recovery limits				

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D	Batch #: Project Name:	140128036 1401A07
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID	140128036-001 1401A07-001E / INJE	Samp CTION WELL	ling Date	1/23/2014	Date/ Samp	Time Receive	ed 1/28/2014 8:35 AM	12:18 PM
Matrix	Water	Samp	le Location	t				
Comments								
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cvanide (reacti	ve)	ND	mg/L	1	2/12/2014	CRW	SW846 CH7	
Flashpoint		>200	°F		2/4/2014	KFG	EPA 1010	
ρΗ		5.89	ph Units		1/31/2014	AJT	EPA 150.1	
Reactive sulfid	e	1.57	mg/L	1	1/29/2014	АJT	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soli/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EFA:ID00013; A2:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen0086; FL(NELAP): E871089

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

.....

Sample ID	МВ	Samp1	Type: MI	зlk	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID:	PBW	Batcl	h ID: R1	6313	리	RunNo: 1	6313				
Prep Date:		Analysis E	Date: 1	24/2014	S	SeqNo: 4	70380	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		ND	0,50								
Sample ID	LCS	SampT	Type: LC	s	Tes	tCode: E	PA Method	300.0: Anion	s		
Client ID:	LCSW	Batcl	h ID: R1	6313	F	RunNo: 1	6313				
Prep Date:		Analysis D	Date: 1	24/2014	5	SeqNo: 4	70381	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		9.6	0.50	10.00	0	96.0	90	110			
Sample ID	МВ	Sampï	ype: MI	BLK	Tes	tCode: E	PA Method	300.0: Anion	s		
Sample ID Client ID:	MB PBW	Samp'i Batcl	ïype: Mi h ID: R1	BLK 6337	Tes F	tCode: E RunNo: 1	PA Method 6337	300.0: Anion	\$		
Sample ID Client ID: Prep Date:	MB PBW	SampT Batcl Analysis D	Type: MI h ID: R1 Date: 1/	BLK 6337 /27/2014	Tes F S	tCode: E RunNo: 1 SeqNo: 4	PA Method 6337 71000	300.0: Anion Units: mg/L	<u> </u>		
Sample ID Client ID: Prep Date: Analyte	MB PBW	SampT Batcl Analysis D Result	Type: Mi h ID: R1 Date: 1/ PQL	BLK 6337 27/2014 SPK value	Tes F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC	PA Method 6337 71000 LowLimit	300.0: Anion Units: mg/L HighLimit	s %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW	SampT Batcl Analysis D Result ND	Type: MI h ID: R1 Date: 1/ PQL 0.50	BLK 6337 27/2014 SPK value	Tes F SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC	PA Method 6337 71000 LowLimit	300.0: Anion Units: mg/L HighLimit	s %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW LCS	Samp'i Batcl Analysis D Result ND Samp'i	Type: MI h ID: R1 Date: 1/ PQL 0.50	BLK 6337 127/2014 SPK value	Tes F SPK Ref Val Tes	tCode: E RunNo: 1 SeqNo: 4 %REC tCode: E	PA Method 6337 71000 LowLimit PA Method	300.0: Anion Units: mg/L HighLimit 300.0: Anion	s %RPD s	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	MB PBW LCS LCSW	Samp'i Batcl Analysis D Result ND Samp'i Batcl	Fype: MI h ID: R1 Date: 1/ PQL 0.50 Fype: LC h ID: R1	BLK 6337 /27/2014 SPK value :S 6337	Tes F SPK Ref Val Tes F	tCode: E RunNo: 1 SeqNo: 4 %REC tCode: E RunNo: 1	PA Method 6337 71000 LowLimit PA Method 6337	300.0: Anion Units: mg/L HighLimit 300.0: Anion	s %RPD s	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	MB PBW LCS LCSW	Samp'i Batcl Analysis D Result ND Samp'i Batcl Analysis D	Type: MI h ID: R1 Date: 1, PQL 0.50 0.50 0.50 Type: LC LC h ID: R1 Date: 1, Date: 1,	BLK 6337 27/2014 SPK value SS 6337 27/2014	Tes F SPK Ref Val Tes F S	tCode: El RunNo: 1 SeqNo: 4 %REC tCode: El RunNo: 1 SeqNo: 4	PA Method 6337 71000 LowLimit PA Method 6337 71001	300.0: Anion Units: mg/L HighLimit 300.0: Anion Units: mg/L	s %RPD s	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte	MB PBW LCS LCSW	Samp'i Batcl Analysis D Result ND Samp'i Batcl Analysis D Result	Fype: MI h ID: R1 Date: 1, PQL 0.50 Fype: LC h ID: R1 Date: 1, PQL	BLK 6337 27/2014 SPK value SS 6337 27/2014 SPK value	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC tCode: E RunNo: 1 SeqNo: 4 %REC	PA Method 6337 71000 LowLimit PA Method 6337 71001 LowLimit	300.0: Anion Units: mg/L HighLimit 300.0: Anion Units: mg/L HighLimit	s %RPD s %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 17

1401A07 13-Feb-14

WO#:

Client: Western Refining Southwest, Inc.

Injection Well 1-23-2014

Project:

Sample ID 5ml rb	SampT	ype: M	BLK	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: PBW	Batch	ID: R 1	6441	F	lunNo: 1	6441				
Prep Date:	Analysis D	ate: 1	/31/2014	S	eqNo: 4	74209	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								

Qualifiers:

2,2-Dichloropropane

* Value exceeds Maximum Contaminant Level.

ND

2.0

- Е Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - р Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 7 of 17

13-Feb-14

WO#:

1401A07

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Injection Well 1-23-2014 **Project:**

Sample ID 5ml rb	SampTy	ype: MB	3LK	Test	tCode: EF	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	ID: R1	6441	R	unNo: 10	3441				
Prep Date:	Analysis D	ate: 1/:	31/2014	S	eqNo: 4	74209	Units: µɑ/L			
Analyte	Result		SPK value	SPK Ref Val	%REC	LowLimit	Hight imit	%RPD	RPDLimit	Qual
1.1-Dichloronronene	ND	<u>, u</u> ∟ 1∩		STATIST VOI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Hexachlorobutadiene	ND	10								
2-Hexanone	ND	10								
Isonronylhenzene	ND	10								
4-Isonroovitokiene		1.0								
4-Methyl-2-nentanone	ND	10								
Methylene Chloride		3.0								
n-Butylbenzene		3.0								
n-Propylbenzene	ND	10								
sec-Butvlhenzene	ND	10								
Styrene	ND	10								
tert-Butylhenzene	ND	1.0								
1.1.1.2-Tetrachloroethane	ND	1.0								
1.1.2.2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1 2-DCF	ND	1.0								
trans-1.3-Dichloropropene	ND	1.0								
1.2.3-Trichlorobenzene	ND	1.0								
1 2 4-Trichlorohenzene	ND	1.0								
1.1.1-Trichloroethane	ND	10								
1 1 2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1.2.3-Trichloropropane	ND	2.0								
Vinvi chloride	ND	10								
Xvlenes Total	ND	1.5								
Sur: 12-Dichloroethane-d4	10	1.0	10.00		101	70	130			
Sur: 4-Bromofiliorobenzene	84		10.00		84.4	70	130			
Surr: Dibromofluoromothana	0.3		10.00		93.4	70	130			
Surr: Toluene-d8	9.3		10.00		93.0	70	130			
					10		00003	ATU 50		
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tuode: E	PA Method	SZEOB: VOL	ATTLES		
Client ID: LCSW	Batch	h ID: R1	6441	- Fr	RunNo: 1	6441				
Prep Date:	Analysis D	Date: 1/	31/2014	S	SeqNo: 4	74213	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130	_		
Toluene	20	1.0	20.00	0	101	82.2	124			
Chlorobenzene	18	1.0	20.00	0	92.5	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level. *

Е Value above quantitation range

- Analyte detected below quantitation limits Ĵ
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- Reporting Detection Limit RL

Page 8 of 17

13-Feb-14

WO#:

1401A07

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES			
Client ID: LCSW	Batch	n ID: R1	6441	F	RunNo: 1	6441					
Prep Date:	Analysis D	ate: 1/	31/2014	S	SeqNo: 4	74213	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloroethene	24	1.0	20.00	0	119	83.5	155				
Trichloroethene (TCE)	19	1.0	20.00	0	93.4	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130				
Surr: 4-Bromofluorobenzene	8.8		10.00		88.1	70	130				
Surr: Dibromofluoromethane	8.1		10.00		80.7	70	130				
Surr: Toluene-d8	10		10.00		101	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 9 of 17

1401A07 13-Feb-14

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID mb-11420	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 11	420	F	RunNo: 1	6402				
Prep Date: 1/27/2014	Analysis D	ate: 1	/30/2014	ę	SeqNo: 4	73422	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,31-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1401A07 13-Feb-14

Page 10 of 17

Western Refining Southwest, Inc. **Client:**

Injection Well 1-23-2014 **Project:**

Sample ID mb-11420	SampType	B: MBLK	Tes	tCode: EP	A Method	8270C: Semi	volatiles		
Client ID: PBW	Batch IC)· 11420	F	RunNo: 16	402				
Prep Date: 1/27/2014	Analysis Date	e: 1/30/2014	ę	SeqNo: 47	3422	Units: µg/L			
Analyte	Result F	PQL SPK valu	ue SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10							
2,6-Dinitrotoluene	ND	10							
Fluoranthene	ND	10							
Fluorene	ND	10							
Hexachlorobenzene	ND	10							
Hexachlorobutadiene	ND	10							
Hexachlorocyclopentadiene	NÐ	10							
Hexachloroethane	ND	10							
Indeno(1,2,3-cd)pyrene	ND	10							
Isophorone	ND	10							
1-Methylnaphthalene	ND	10							
2-Methylnaphthalene	ND	10							
2-Methylphenol	ND	10							
3+4-Methylphenol	ND	10							
N-Nitrosodi-n-propylamine	ND	10							
N-Nitrosodimethylamine	ND	10							
N-Nitrosodiphenylamine	ND	10							
Naphthalene	ND	10							
2-Nitroaniline	ND	10							
3-Nitroaniline	ND	10							
4-Nitroaniline	ND	10							
Nitrobenzene	ND	10							
2-Nitrophenol	ND	10							
4-Nitrophenol	ND	10							
Pentachlorophenol	ND	20							
Phenanthrene	ND	10							
Phenol	ND	10							
Pyrene	ND	10							
Pyridine	ND	10							
1,2,4-Trichiorobenzene	ND	10							
2,4,5-Trichlorophenol	ND	10							
2,4,6-Trichlorophenol	ND	10							
Surr: 2-Fluorophenol	120	200	0.0	60.4	22.7	98			
Surr: Phenol-d5	91	200	0.0	45.4	23.4	74.9			
Surr: 2,4,6-Tribromophenol	150	200	0.0	74.9	23.3	111			
Surr: Nitrobenzene-d5	81	100	0.0	80.7	36.8	111			
Surr: 2-Fluorobiphenyl	77	100	0.0	76.6	38.3	110			
Surr: 4-Terphenyl-d14	74	100	0.0	73.9	52.1	116			

Qualifiers:

Value exceeds Maximum Contaminant Level. *

Value above quantitation range Е

- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

13-Feb-14

Page 11 of 17

Client:

Project:

Western Refining Southwest, Inc.

Injection Well 1-23-2014

Sample ID Ics-11420		ype: LC	S	Tes	tCode: EF	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	D: 11	420	F	RunNo: 16	6402				
Prep Date: 1/27/2014	Analysis D	ate: 1 /	30/2014	8	SeqNo: 4	73423	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	72	10	100.0	0	72.4	48	101			
4-Chloro-3-methylphenol	130	10	200.0	0	67.2	47,9	109			
2-Chlorophenol	70	10	200.0	0	35.0	40	105			S
1,4-Dichlorobenzene	60	10	100.0	0	60.3	40.8	94.3			
2,4-Dinitrotoluene	63	10	100.0	0	63.2	28.3	131			
N-Nitrosodi-n-propylamine	80	10	100.0	0	79.7	46.2	119			
4-Nitrophenol	16	10	200.0	0	8.02	10.5	67.9			S
Pentachlorophenol	31	20	200.0	0	15.5	22.4	81.1			S
Phenol	67	10	200.0	0	33.4	21.4	72.9			
Pyrene	66	10	100.0	0	65.9	46.9	109			
1,2,4-Trichlorobenzene	68	10	100.0	0	67.8	43.1	98.4			
Surr: 2-Fluorophenol	36		200.0		18.0	22.7	98			S
Surr: Phenol-d5	65		200.0		32.3	23.4	74.9			
Surr: 2,4,6-Tribromophenol	72		200.0		36.2	23.3	111			
Surr: Nitrobenzene-d5	74		100.0		73.5	36.8	111			
Surr: 2-Fluorobiphenyl	74		100.0		73.9	38.3	110			
Surr: 4-Terphenyl-d14	80		100.0		80.0	52.1	116			
Sample ID mb-11513	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Sample ID mb-11513 Client ID: PBW	SampT Batch	ype: ME 1 ID: 11	3LK 513	Tes F	tCode: El RunNo: 1	PA Method 5496	8270C: Semi	volatiles		
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014	SampT Batch Analysis D	ÿpe: ME 1 ID: 11)ate: 2 /	3LK 513 3/2014	Tes F S	tCode: El RunNo: 11 SeqNo: 41	PA Method 5496 75097	8270C: Semí Units: %RE	volatiles C		<u></u>
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte	SampT Batch Analysis D Result	ype: ME 1D: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value	Tes F SPK Ref Val	tCode: El RunNo: 10 SeqNo: 4 %REC	PA Method 6496 75097 LowLimit	8270C: Semi Units: %RE HighLimit	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol	SampT Batch Analysis D Result 110	ype: ME 1 ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0	Tes F S SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9	PA Method 6496 75097 LowLimit 22.7	8270C: Semi Units: %RE4 HighLimit 98	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5	SampT Batch Analysis D Result 110 93	ype: ME 1 ID: 11 9ate: 2/ PQL	BLK 513 3/2014 SPK value 200.0 200.0	Tes F SPK Ref Val	tCode: El RunNo: 11 SeqNo: 4 %REC 54.9 46.5	PA Method 5496 75097 LowLimit 22.7 23.4	8270C: Semi Units: %RE0 HighLimit 98 74.9	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 110 93 130	ype: ME 1 ID: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0	Tes F SPK Ref Val	tCode: El RunNo: 11 SeqNo: 4 <u>%REC</u> 54.9 46.5 65.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3	8270C: Semi Units: %RE0 HighLimit 98 74.9 111	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 110 93 130 77	ype: ME 1D: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0	Tes F SPK Ref Val	tCode: EI RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8	8270C: Semi Units: %RE0 HighLimit 98 74.9 111 111	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl	SampT Batch Analysis D Result 110 93 130 77 71	ype: MF 1 ID: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0	Tes F SPK Ref Val	tCode: El RunNo: 10 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6	PA Method 5496 75097 22.7 23.4 23.3 36.8 38.3	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 111 110	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14	SampT Batch Analysis D Result 110 93 130 77 71 71 72	ype: MF 1D: 11 21 PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0	Tes F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT	ype: ME 1D: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0	Tes F SPK Ref Val	tCode: El RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El	PA Method 5496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116 8270C: Semi	volatiles C %RPD volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch	ype: ME 1 ID: 11 20 PQL 9 PQL 1 ID: 11	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 5513	Tes F SPK Ref Val	tCode: EF RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: EF RunNo: 10	PA Method 5496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 5496	8270C: Semi Units: %RE0 HighLimit 98 74.9 111 111 110 116 8270C: Semi	volatiles C %RPD volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D	ype: ME a ID: 11 PQL PQL ype: LC a ID: 11 pate: 2/	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 55 513 3/2014	Tes F SPK Ref Val	tCode: El RunNo: 10 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 10 SeqNo: 4	PA Method 5496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 5496 75098	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE	volatiles C %RPD volatiles C	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result	ype: ME 1 ID: 11 PQL PQL ype: LC 1 ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 5513 3/2014 SPK value	Tes F SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC	PA Method 5496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit	8270C: Semi Units: %RE0 HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE0 HighLimit	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100	ype: ME i ID: 11 PQL PQL i JD: 11 Date: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 55 513 3/2014 SPK value 200.0	Tes F SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 11 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC 49.8	PA Method 5496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE4 HighLimit 98	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85	ype: ME 1 ID: 11 Pate: 2/ PQL 1 D: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 100.0 3/2014 SPK value 200.0 200.0	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: El RunNo: 10 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 10 SeqNo: 4 %REC 49.8 42.3	PA Method 5496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE4 HighLimit 98 74.9	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85 150	ype: ME 1 ID: 11 Pate: 2/ PQL PQL 1 ID: 11 PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 100.0 S 513 3/2014 SPK value 200.0 200.0 200.0	Tes F SPK Ref Val	tCode: El RunNo: 10 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 10 SeqNo: 4 %REC 49.8 42.3 77.3	PA Method 5496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4 23.3	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE4 HighLimit 98 74.9 111	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85 150 82	ype: ME a iD: 11 PQL PQL ype: LC a iD: 11 PQL PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 SS 513 3/2014 SPK value 200.0 200.0 200.0 100.0 200.0 200.0 100.0	Tes F SPK Ref Val	tCode: El RunNo: 10 SeqNo: 4' %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 10 SeqNo: 4' %REC 49.8 42.3 77.3 81.7	PA Method 5496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 5496 75098 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1	8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE4 HighLimit 98 74.9 111 111	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Page 12 of 17

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.

RL Reporting Detection Limit

WO#: 1401A07 13-Feb-14

WO#: 1401A07

13-Feb-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID Ics-11513	SampType	E LCS	TestCode	EPA Method	8270C: Sem	ivolatiles		
Client ID: LCSW	Batch ID:	: 11513	RunNo	16496				
Prep Date: 1/31/2014	Analysis Date:	: 2/3/2014	SeqNo	475098	Units: %RE	C		
Analyte	Result P	QL SPK value	SPK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	61	100.0	61	.4 52.1	116			
Sample ID Icsd-11513	SampType	: LCSD	TestCode	EPA Method	8270C: Sem	ivolatiles		
Client ID: LCSS02	Batch ID:	11513	RunNo	16496				
Prep Date: 1/31/2014	Analysis Date:	2/3/2014	SeqNo	475099	Units: %RE	C		
Analyte	Result P	QL SPK value	SPK Ref Val %RE	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110	200.0	54	.1 22.7	98	0	0	
Surr: Phenol-d5	90	200.0	44	.9 23.4	74.9	0	0	
Surr: 2,4,6-Tribromophenol	160	200.0	79	.0 23.3	111	0	0	
Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	160 89	200.0 100.0	79 88	.0 23.3 .8 36.8	111 111	0 0	0 0	
Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl	160 89 83	200.0 100.0 100.0	79 88 83	.0 23.3 .8 36.8 .1 38.3	111 111 110	0 0 0	0 0 0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 17

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Western F Injection	Refining Well 1-2	Southw 3-2014	vest, Inc.							
Sample ID	MB-11463	Samp	Туре: М	MBLK	Test	tCode: E	PA Method	7470: Mercun	y		
Client ID:	PBW	Bat	ch ID: 1	1463	R	tunNo: 1	6401				
Prep Date:	1/29/2014	Analysis	Date:	1/30/2014	S	SeqNo: 4	173049	Units: mg/L			
Analyte		Result	PQL	. SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.0002	0							
Sample ID	LCS-11463	Samp	Туре: 1	LCS	Tesi	tCode: E	PA Method	7470: Mercur	у		
Client ID:	LCSW	Bat	ch ID: 1	11463	F	RunNo: 1	6401				
Prep Date:	1/29/2014	Analysis	Date:	1/30/2014	S	SeqNo: 4	473050	Units: mg/L			
Analvte		Result	PQL	. SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0047	0.0002	0.005000	0	94.3	80	120			
Sample ID	1401A07-001CMS	Samp	Type: I	WS	Tes	tCode: E	PA Method	7470: Mercur	у		
Client ID:	Injection Well	Bat	ch ID: 1	11463	F	RunNo: 1	16401				
Prep Date:	- 1/29/2014	Analysis	Date:	1/30/2014	S	SeqNo: 4	473069	Units: mg/L			
Analyte		Result	PQI	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0046	0.001	0 0.005000	0	91.0	75	125			
Sample ID	1401A07-001CMS	D Sam	Type: I	MSD	Tes	tCode: E	PA Method	7470: Mercur	у		
Client ID;	Injection Well	Bat	ch ID: '	11463	F	RunNo: 1	16401				
Prep Date:	1/29/2014	Analysis	Date:	1/30/2014	S	SeqNo: 4	473070	Units: mg/L			
Analyte		Result	POI	SPK value	SPK Ref Val	%REC	LowLimit	HiahLimit	%RPD	RPDLimit	Qual
Mercury		0.0045	0.001	0 0.005000	0	90.1	75	125	1.02	20	B***

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 14 of 17

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID MB-11432	Samp	Гуре: МВ	LK	Test	Code: EF	PA 6010B: 1	Fotal Recover	able Meta	Is	
Client ID: PBW	Batc	h ID: 114	132	R	unNo: 10	5372				
Prep Date: 1/28/2014	Analysis [Date: 1/2	29/2014	S	eqNo: 4	72096	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								
					1.1000 1.002	19.11 A A A A A A A A A A A A A A A A A A	Line Contractory			
Sample ID LCS-11432	Samp	Type: LC	S	Tes	Code: El	PA 6010B: `	Total Recover	able Meta	als	
Sample ID LCS-11432 Client ID: LCSW	Samp Bato	Type: LC	S 432	Tes F	tCode: El tunNo: 1	PA 6010B: ` 6372	Total Recover	able Meta	als	
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014	Samp Bato Analysis	Type: LC :h ID: 11 4 Date: 1 /	S 432 29/2014	Tesi R S	tCode: El RunNo: 1 SeqNo: 4	PA 6010B: ` 6372 72097	Total Recover	able Meta	als	
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte	Samp Bato Analysis Result	Type: LC h ID: 11 Date: 1 PQL	S 432 29/2014 SPK value	Tesi R SPK Ref Val	Code: El RunNo: 1 SeqNo: 4 %REC	PA 6010B: ` 6372 72097 LowLimit	Total Recover Units: mg/L HighLimit	able Meta	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte	Samp Batc Analysis Result 0.43	Type: LC th ID: 114 Date: 1/ PQL 0.020	S 432 29/2014 SPK value 0.5000	Tes R S SPK Ref Val 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6	PA 6010B: ` 6372 72097 LowLimit 80	Total Recover Units: mg/L HighLimit 120	able Meta	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium	Samp Bato Analysis Result 0.43 0.43	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020	S 432 29/2014 SPK value 0.5000 0.5000	Tes F S SPK Ref Val 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5	PA 6010B: ` 6372 72097 LowLimit 80 80	Total Recover Units: mg/L HighLimit 120 120	able Meta	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium	Samp Bato Analysis Result 0.43 0.43 0.43	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020	S 432 29/2014 SPK value 0.5000 0.5000 0.5000	Tesi F S SPK Ref Val 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3	PA 6010B: ` 6372 72097 LowLimit 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium	Samp Bato Analysis Result 0.43 0.43 0.43 0.42 45	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00	Tesi R SPK Ref Val 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium	Samp Bato Analysis Result 0.43 0.43 0.43 0.42 45 0.43	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0060	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00 0.5000	Tesi F SPK Ref Val 0 0 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead	Samp Batc Analysis 0.43 0.43 0.42 45 0.43 0.42	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00 0.5000 0.5000	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0	ICode: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium	Samp Batc Analysis 0.43 0.43 0.42 45 0.43 0.42 45 0.43 0.42 45	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4 90.0	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium	Samp Bato Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 0.43 0.42 45 44	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4 90.0 88.6	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Caloium Chromium Lead Magnesium Potassium Selenium	Samp Bato Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 0.43 0.42 45 44 0.42	Type: LC th ID: 114 Date: 11 PQL 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 1.0 0.050	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00 0.5000	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 89.1 85.3 84.4 90.0 88.6 83.4	PA 6010B: ` 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	R PDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver	Samp Bato Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 44 0.42 0.089	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 0.050 0.050 0.0050	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 50.00 0.5000 0.5000 0.5000 0.1000	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 89.1 85.3 84.4 90.0 88.6 83.4 88.7	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	R PDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver Sodium	Samp Bato Analysis 0.43 0.43 0.43 0.42 45 0.43 0.42 45 44 0.42 0.089 45	Type: LC th ID: 114 Date: 11 PQL 0.020 0.0020 0.0020 1.0 0.0060 0.0050 1.0 0.050 0.0050 1.0 0.0050 1.0 0.0050 1.0 0.0050 0.0050 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 0.5000 0.5000 0.5000 0.5000 0.1000 50.00	Tesi R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El RunNo: 1 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 89.1 85.3 84.4 90.0 88.6 83.4 88.6 83.4 88.7 89.3	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	als RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 17

1401A07 13-Feb-14

WO#:

Client: Project:	Western Refining South Injection Well 1-23-2014	west, Inc. 4							
Sample ID mb-1	SampType:	MBLK	Test	Code: SN	12320B: Al	kalinity			
Client ID: PBW	Batch ID:	R16304	R	unNo: 16	304				
Prep Date:	Analysis Date:	1/24/2014	S	eqNo: 47	0197	Units: mg/L	CaCO3		
Analyte	Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO	3) ND :	20							
Sample ID 1cs-1	SampType:	LCS	Test	Code: SN	12320B: Al	kalinity			
Client ID: LCSW	Batch ID:	R16304	R	unNo: 16	304				
Prep Date:	Analysis Date:	1/24/2014	S	eqNo: 47	70198	Units: mg/L	CaCO3		
Analyte	Result PQ	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Quai
Total Alkalinity (as CaCO	3) 82	20 80.00	0	103	90	110			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Value above quantitation range Ε
- Analyte detected below quantitation limits ſ
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Ħ
- Not Detected at the Reporting Limit ND
- Ρ Sample pH greater than 2.
- Reporting Detection Limit RL

Page 16 of 17

13-Feb-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID MB-11406	SampType: MBLK	TestCode: SM2540C MOD: Total Dissolv	ed Solids
Client ID: PBW	Batch ID: 11406	RunNo: 16349	
Prep Date: 1/27/2014	Analysis Date: 1/28/2014	SeqNo: 471302 Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %	RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID LCS-11406	SampType: LCS	TestCode: SM2540C MOD: Total Dissolv	ed Solids
Sample ID LCS-11406 Client ID: LCSW	SampType: LCS Batch ID: 11406	TestCode: SM2540C MOD: Total Dissolv RunNo: 16349	ed Solids
Sample ID LCS-11406 Client ID: LCSW Prep Date: 1/27/2014	SampType: LCS Batch ID: 11406 Analysis Date: 1/28/2014	TestCode: SM2540C MOD: Total Dissolv RunNo: 16349 SeqNo: 471303 Units: mg/L	ed Solids
Sample ID LCS-11406 Client ID: LCSW Prep Date: 1/27/2014 Analyte	SampType: LCS Batch ID: 11406 Analysis Date: 1/28/2014 Result PQL SPK value	TestCode: SM2540C MOD: Total Dissolv RunNo: 16349 SeqNo: 471303 Units: mg/L SPK Ref Val %REC LowLimit HighLimit %	ed Solids RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 17 of 17

WO#: 1401A07

13-Feb-14

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albug TEL: 505-345-3975 F Website: www.halle	nalysis Laborata 4901 Hawkins 1 uerque, NM 871 AX: 505-345-41 environmental.co	NE 09 Samp 07 07	ble Log-In Ch	eck List
Client Name: Western Refining Southw	Work Order Number: 7	1401A07		RcptNo:	1
Received by/date: LM 6	1/24/14				- , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,
Logged By: Michelle Garcla	1/24/2014 10:15:00 AM		Michells Gare	un	
Completed By: Micheile Garcia	1/24/2014 12:54:49 PM		Minul Gan	uie	
Reviewed By: ATO//27/14	l				
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes	No [.]	Not Present 🖌	
2. Is Chain of Custody complete?		Yes 🖌	No	Not Present	
3. How was the sample delivered?		Courier			
Log In					
4. Was an attempt made to cool the samples?		Yes 🗹	No 🗆	na 🗋	
5. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🔽	No 🗌		
6. Sample(s) in proper container(s)?		Yes 🗹	No []		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗔		
8. Are samples (except VOA and ONG) properl	y preserved?	Yes 🔽	No 🛄		
9. Was preservative added to bottles?		Yes 🗍	No 🗹	NA 🖾	
10.VOA vials have zero headspace?		Yes 🔽	No 🗔	No VOA Vials 📋	
11, Were any sample containers received broke	n?	Yes 🗌	No 🗹 🛛	# of preserved	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🖂	bottles checked for pH:	12 unless noted)
13, Are matrices correctly identified on Chain of	Custody?	Yes 🖌	No	Adjusted	NO
14 is it clear what analyses were requested?		Yes 🖌	No		.X
15. Were all holding times able to be met? (if no, notify customer for authorization.)		Yes 🗹	No	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies with t	his order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified: By Whom: Regarding; Client Instructions:	Date:	¦eMail (〔] Pl	hone Fax	[] In Person	
17. Additional remarks:			·		
18. <u>Cooler Information</u>					
Cooler No Temp C Condition Se 1 1.2 Good Yes	al Intact Seal No Se	al Date	Signed By		

.

Page 1 of 1

	FAL	ORY								52	N) IQ	ע סו ין רך אוג,	Hoples ()	Ec, I Bulfa Air B	21	УG						1	×								
				m						Â	İVİS		ctivity, Co	сөЯ	\square	\uparrow	+		7			×	-		1	+		-			
	2	2		37100	0								Aillide	lingl			,	<									┢	1			-it-te-
	Ž		Eos	MN	541	st		_			(YO1	/-ime2) 0	8570		,	<u> </u>]			att u
	N.	5	ental.	due.	5-34	ane		80		70/	10			826	×	<u> </u>	4	\downarrow				L	<u> </u>								tated .
	2	Ŋ	enme	duen	ະ ຊ	is Re	(7	06, 20		180	181		hiolipad t	808		-	╀	_	-+-	•				\vdash		 					ark n
		<u>n</u>	envir	Albu	ű	alvs		оз У 'е	N 1	6M	180) SIE	I) A) B AF	10A		┢	╀	+-	-+-	+		-		-				4			l be cl
1			/hall	ц	375	An			(S	WIS	02	182	o 0168) H	I∀d		┢	-	╞			×		<u>.</u>								data w
1	Į		MMM (ins N	45-39			dn-:	yoe	8 (1.14	09-1	odiaM) E	103		+	+	+-	╋	<u>_</u>	_							1			racted
I		4	•	1awk	05-30				sa	т (1.48	t † 1) (Metho c	ttt			١,		╈												th cont
				904	el. 5		(0)	ЯM	10	ยน	0	สอ	93108 -	ITPI								•	1					6			Anval
:		j-Î	i	র্থ	ł		(A)	uo s	(G9:) He	۱۲.	+ 31	etm + Xe	178			_											arge arge			ibility.
		j						120	8) e	1.81	11 ·	+ 38 T	<u> </u>	118		·	ļ		\downarrow									Re			So posi
	_	Well		11.2							NO	C 1	HEAL No.	LOV/1971	1001	100-				-00-	- 00 -	- (a) -	- 00 -					Date Time	. Date Time	City HILIN	. This serves as notice of th
l Time:	d 🗆 Rush	e: Injection	1 03				ager:) .		Sol.	D/Yes	perature:	Preservativ e Type		HCI	Amber	Amber	Amber	US H	LINO	LINO3	Na OH	Zn Acutate	·					C NWLAN		dredited laboratories
Tum-Around	- X Standard	Project Nam	-1	Disting #			Project Mana	1		Sampler	On loe:	Sample Tem	Container Type and #		5-VOA	1 - liter	1-500 ml	1-500 ml	1-250 ml			1-500 ml	1-500 ml					Received by	Received by:	7	intracted to other ac
istody Record	ing .		1 4990		M 8/413	22			I Level 4 (Full Validation)				Sample Request ID	Taita attain 1812.0	Injection Well	Injection Well	Injection Well	Injection Well	Injection Well	Injection Wall		Injection Well	Injection Well					the las	1 by:	the harle	ted to Hall Environmental may be subco
-of-Cu	ern Refir		s: 50 CR		TITICIO, N	-632-413			D				Matrix		22	H ₂ 0	H₂0	H ₂ 0	H ₅ 0	0'H		0 ² L	μ ₂ υ	ŀ			Detroit of the	A share	Relinquished	CAN	amples submit
Chain	Weste		3 Addres	ī		#. 502	or Fax#:	Package.	ndard	er I	(Type)		Time	0	2:22								-				Timar	2/2 2	Time:	SE	necessary, \$
Ň	Client		Mailing		i	Phone	emailo	QA/QC	X Star		X EDI		Date		1-5F-1								-				Date:	-23-14	Date:	23/14	1 JI

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

August 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR

OrderNo.: 1407D12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT:	Western Refining Southwest, Inc			Client Sam	ple ID: Inj	ection Well	
Project:	Injection Well 7-28-14 3rd OTR			Collection	- 1 Date: 7/2	8/2014 9:30:00 AM	
Lab ID:	1407D12-001	Matrix:	AQUEOUS	Received	l Date: 7/2	9/2014 7:55:00 AM	
Analyses		Result	RL Qual	Units	DF	Date Analyzed	Batch
						Analyst:	I GP
	TIOD SULU: ANIONS	E10	05	mail	50	9/4/2014 5:04:00 DM	D20262
Sulfata		210	∡0 2.5	mg/L	50	7/20/2014 5.04.09 PM	R20303
Sullate		41	2.0	mg/L	5	112012014 4.11.401 W	120200
EPA MET	HOD 7470: MERCURY					Analyst:	MMD
Mercury		ND	0.00020	mg/L	1	8/4/2014 2:43:32 PM	14571
EPA 6010	B: TOTAL RECOVERABLE MET	ALS				Analyst:	ELS
Arsenic		ND	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Barium		0.63	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Cadmiun	n	ND	0.0020	mg/L	1	8/2/2014 2:09:02 PM	14549
Calcium		480	5.0	mg/L	5	8/2/2014 2:10:49 PM	14549
Chromiu	m	ND	0.0060	mg/L	1	8/2/2014 2:09:02 PM	14549
Lead		ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Magnesi	um	99	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Potassiu	m	36	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Seleniun	1	ND	0.050	mg/L	1	8/2/2014 2:09:02 PM	14549
Silver		ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Sodium		1100	20	mg/L	20	8/2/2014 3:24:50 PM	14549
EPA MET	HOD 8270C: SEMIVOLATILES					Analyst:	DAM
Acenaph	thene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Acenaph	thylene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Aniline		ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Anthrace	ne	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Azobenz	ene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benz(a)a	Inthracene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(a))pyrene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(b)	fluoranthene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(g,	,h,i)perylene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(k)	fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzoic	acid	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
Benzyl a	Icohol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chl	oroethoxy)methane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chl	oroethyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chl	oroisopropyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-eth	ylhexyl)phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Bromo	phenyl phenyl ether	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Butyl ber	nzyl phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Carbazol	e	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloro	-3-methylphenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

100

µg/L

ND

* Value exceeds Maximum Contaminant Level.E Value above quantitation range

E Value above quantitation rangeJ Analyte detected below quantitation limits

O RSD is greater than RSDlimit

4-Chloroaniline

Qualifiers:

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

1

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 1 of 20

7/31/2014 8:37:47 PM

14520

P Sample pH greater than 2.

RL Reporting Detection Limit

Analytical Report Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

Matrix: AQUEOUS

Analytical Report Lab Order 1407D12 Date Reported: 8/15/2014

CLIENT: Western Refining Southwest, Inc.Project: Injection Well 7-28-14 3rd QTR

1407D12-001

Lab ID:

Client Sample ID: Injection Well Collection Date: 7/28/2014 9:30:00 AM Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLA	TILES				Analyst	DAM
2-Chloronaphthalene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2-Chlorophenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chlorophenyl phenyl ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Chrysene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-butyl phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-octyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dibenz(a,h)anthracene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Dibenzofuran	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,2-Dichlorobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,3-Dichlorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,4-Dichlorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3,3'-Dichlorobenzidine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Diethyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dimethyl phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dichlorophenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dimethylphenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4,6-Dinitro-2-methylphenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitrophenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitrotoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,6-Dinitrotoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluoranthene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluorene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorobutadiene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorocyclopentadiene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachloroethane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Indeno(1,2,3-cd)pyrene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Isophorone	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1-Methylnaphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylnaphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylphenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
3+4-Methylphenol	210	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodi-n-propylamine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodimethylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodiphenylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Naphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroanlline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3-Nitroaniline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroaniline	ND	100	ua/L	1	7/31/2014 8:37:47 PM	14520

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank	
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded		
J		Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 2 of 20	
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 uge 2 01 20	
R		RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	S	Spike Recovery outside accepted recovery limits				

Hall Er	nvironmental Analysis	Labora	ntory, Inc	c.			Analytical Report Lab Order 1407D12 Date Reported: 8/15/20	014
CLIENT:	Western Refining Southwest, Inc	•		C	lient Sampl	e ID: Inj	ection Well	
Project:	Injection Well 7-28-14 3rd OTR				Collection]	Date: 7/2	8/2014 9:30:00 AM	
Lab ID:	1407D12-001	Matrix:	AQUEOUS		Received 1	Date: 7/2	9/2014 7:55:00 AM	
Analyses		Result	RL (Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLATILES						Analys	t: DAM
Nitrobenz	zene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroph	enol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroph	enol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pentachl	orophenol	ND	200		µg/L	1	7/31/2014 8:37:47 PM	14520
Phenanti	hrene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Phenol		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pyrene		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pyridine		ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
1.2.4-Trie	chlorobenzene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
2 4 5-Tri	shlaraphenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
246-Tri	chloropheng	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Surr 2	2-Fluorophenol	0	12.1-85.8	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr F	Phenol-d5	0	17.7-65.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr' 2	2 4 6-Tribromophenol	0	26-138	S	%REC	1	7/31/2014 8:37:47 PM	14520
Sur 1	vitrobenzene-d5	0	47.5-119	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr 2	2-Eluorobiphenyl	0	48,1-106	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 4	1-Terphenyl-d14	0	44-113	s	%REC	1	7/31/2014 8:37:47 PM	14520
EPA MET	HOD 8260B: VOLATILES						Analys	st: DJF
Benzene	1	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Toluene		ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Ethylben	zene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Methyl te	ert-butyl ether (MTBE)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,4-Tri	methylbenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.3.5-Tri	methylbenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dich	ioroethane (EDC)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dibro	omoethane (EDB)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Naphtha	lene	ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1-Methvl	naphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
2-Methyl	naphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	I R20298
Acetone		85	20		µg/L	2	7/31/2014 1:41:17 PN	I R20298
Bromobe	enzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	I R20298
Bromodi	chloromethane	ND	2.0		μg/L	2	7/31/2014 1:41:17 PN	I R20298
Bromofo	rm	ND	2.0		µg/L	2	7/31/2014 1:41:17 PN	I R20298
Bromom	ethane	ND	6.0		μg/L	2	7/31/2014 1:41:17 PN	R20298
2-Bufano	one	ND	20		µg/L	2	7/31/2014 1:41:17 PN	I R20298
Carbon	disulfide	ND	20		µg/L	2	7/31/2014 1:41:17 PN	R20298
Carbon	Tetrachloride	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	1 R20298
Chlorobe	enzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	1 R20298
Chloroet	hane	ND	4.0		μg/L	2	7/31/2014 1:41:17 PN	1 R20298
		l comple la	oin checklic	t for f	 PO hennel	lata and i	preservation informati	on

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- Analyte detected below quantitation limits J
- O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank В

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3 of 20
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Env	ironmental Analysis	Labora	tory, Inc.			Lab Order 1407D12 Date Reported: 8/15/201	(4
CLIENT: W Project: Ir	Vestern Refining Southwest, Inc njection Well 7-28-14 3rd QTR	•	na mangan kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana Mangan kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa kana sa k	Client San Collectio	nple ID: Inj on Date: 7/2	ection Well 28/2014 9:30:00 AM	
Lab ID: 1-	407D12-001	Matrix:	AQUEOUS	Receive	d Date: 7/2	29/2014 7:55:00 AM	
Analyses		Result	RL Qua	ıl Units	DF	Date Analyzed	Batch
EPA METH	OD 8260B: VOLATILES					Analyst	DJF
Chloroform		ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Chlorometh	ane	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
2-Chlorotolu	uene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
4-Chlorotol	Jene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
cis-1,2-DCE		ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
cis-1,3-Dich	nloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dibrom	o-3-chloropropane	ND	4.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Dibromochl	oromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Dibromome	ethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dichlor	obenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.3-Dichloro	obenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.4-Dichloro	obenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Dichlorodifi	uoromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.1-Dichlor	pethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.1-Dichlor	pethene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dichlor	opropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.3-Dichlor	opropane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
2.2-Dichlor	opropane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.1-Dichlor	enegora	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Hexachloro	butadiene	ND	2,0	µg/L	2	7/31/2014 1:41:17 PM	R20298
2-Hexanon	e	ND	20	μg/L	2	7/31/2014 1:41:17 PM	R20298
Isopropylbe	enzene	ND	2,0	µg/L	2	7/31/2014 1:41:17 PM	R20298
4-lsopropyl	toluene	ND	2,0	µg/L	2	7/31/2014 1:41:17 PM	R20298
4-Methvl-2-	pentanone	ND	20	µg/L	2	7/31/2014 1:41:17 PM	R20298
Methylene	Chloride	ND	6.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
n-Butviben;	zene	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
n-Propylbe	nzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
sec-Butylbe	enzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Styrene		ND	2,0	μg/L	2	7/31/2014 1:41:17 PM	R20298
tert-Butvlbe	nzene	ND	2,0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.1.1.2-Tet	rachloroethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1 1 2 2-Tet	rachloroethane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Tetrachloro	ethene (PCE)	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
trans-1 2-D		ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
trans-1.3-D	Vichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2.3-Trich	lorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2.4-Trich	lorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1 1 1-Trich	loroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,1,2-Trich	loroethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 4 of 20

Analytical Report

P Sample pH greater than 2.

RL Reporting Detection Limit

Hall Environmental Analysi	s Labora	ntory, Inc.			Lab Order 1407D12 Date Reported: 8/15/20	[4				
CLIENT: Western Refining Southwest, I Project: Injection Well 7-28-14 3rd QT	nc. R	AOUTOUS	Client Sample I Collection Dat	D: In te: 7/2	Injection Well 7/28/2014 9:30:00 AM					
Lab ID: 1407D12-001	Matrix:	RL On	Received Dat	DF	Date Analyzed	Batch				
Analyses	Kesuit									
EPA METHOD 8260B: VOLATILES					Analyst	DJF				
Trichloroethene (TCE)	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298				
Trichlorofluoromethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298				
1,2,3-Trichloropropane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298				
Vinyl chloride	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298				
Xylenes, Total	ND	3.0	µg/L	2	7/31/2014 1:41:17 PM	R20298				
Surr: 1,2-Dichloroethane-d4	92.4	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298				
Surr: 4-Bromofluorobenzene	95.4	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298				
Surr: Dibromofluoromethane	100	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298				
Surr: Toluene-d8	93.6	70-130	%REC	2	7/31/2014 1:41:17 PM	R20298				
SM2510B: SPECIFIC CONDUCTANCE					Analyst	: JRR				
Conductivity	1900	0.010	µmhos/cm	1	7/29/2014 12:08:01 PN	R20245				
SM4500-H+B: PH					Analyst	: JRR				
pН	7.10	1.68	H pH units	1	7/29/2014 12:08:01 PN	R20245				
SM2320B: ALKALINITY					Analyst	: JRR				
Bicarbonate (As CaCO3)	220	20	mg/L CaCO3	1	7/29/2014 12:08:01 PN	R20245				
Carbonate (As CaCO3)	ND	2.0	mg/L CaCO3	1	7/29/2014 12:08:01 PN	R20245				
Total Alkalinity (as CaCO3)	220	20	mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245				
SM2540C MOD: TOTAL DISSOLVED S	OLIDS				Analysi	: KS				
Total Dissolved Solids	1380	200	* mg/L	1	7/30/2014 5:19:00 PM	14475				

		Autor Autor Contra					
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank			
	Е	Value above quantitation range	Н	Holding times for preparation or analysi	is exceeded		
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 5 of 20		
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	* "8		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit			
	S	Spike Recovery outside accepted recovery limits					

Analytical Report

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109	Batch #: Project Name:	140730036 1407D12	
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	140730036-001 1407D12-001E / INJE0 Water	Sampling Date 7/28/2014 IJECTION WELL		Date/Time Received 7/30/2014 Sampling Time 9:30 AM			12:25 PM	
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cuenido (react	(va)	ND	ma/L	1	8/12/2014	CRW	SW846 CH7	
Elashooiot	146)	>200	°F		8/5/2014	KFG	EPA 1010	
nH		7.44	ph Units	k a	8/5/2014	AJT	SM 4500pH-B	
Reactive sulfid	e	ND	mg/L	1	8/1/2014	AJT	SW846 CH7	

Authorized Signature

w. Carth John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solld results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Cartifications held by Anatek Labs WA: EPA:WA00169; ID:WA00189; WA:C586; MT:Cert0095; FL(NELAP): E871099
Anatek Labs, Inc.

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140730036
Address:	4901 HAWKINS NE SUITE D	Project Name:	1 407D12
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		
	Analytical Results R	leport	

Quality Control Data

Lab Control Sa	mple											
Parameter		LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date /	Analysis Date	
Reactive sulfide		0.16	mg/L		D.2	80.0	70	-130	8/1/2	2014	8/1/2014	
Cyanide (reactive)		0.505	mg/L	mg/L 0		101.0	80	-120	8/12/	2014	8/12/2014	
Lab Control Sa	mple Duplicate	LCSD		LCSD				AR				
Parameter		Result	Units	Spike	Spike %Rec		%RPD		Prep Date		Analysis Date	
Reactive sulfide		0.18	mg/L	0.2	90.0	11.8	3	0-25	8/1/20)14	8/1/2014	
Matrix Spike			01-	NO		/	MC	-				
Somnle Number	Parameter		Sample Result	Result	Unit	ts S	Spike	%Rec	%Rec	Prep Date	Analysis Date	
140730036-001	Reactive sulfide		ND	0.22	mg/	L	0.2	110.0	70-130	8/1/2014	8/1/2014	
140730036-001	Cyanide (reactive)		ND	0.919	mg/	L	1	91.9	80-120	8/12/2014	8/12/2014	
Matrix Spike D	uplicate	MSD		MSD				AR				
Parameter		Result	Units	Spike	%F	Rec 9	6RPD	%RP) Pre	p Date	Analysis Date	
Cyanide (reactive))	0.906	mg/L	1	90).6	1,4	0-25	8/1	2/2014	8/12/2014	
Method Blank												
Parameter			Re	sult	U	nits		PQL	Pi	rep Date	Analysis Date	
Cvanide (reactive)	}		٨	١D	π	ng/L		1	8/1	2/2014	8/12/2014	
Reactive sulfide	T		٢	1D	n	ng/L		1	8/	1/2014	8/1/2014	
			·									

AR Acceptable Range ND Not Detected PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Anstek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anstek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099 Western Refining Southwest, Inc.

Client:

15-Aug-14

Project:		Injection Well 7-28-14 3rd	QTR							
Sample ID	МВ	SampType: MI	BLK	Test	Code: EF	PA Method	300.0: Anions		· · · · · · · · · · · · · · · · · · ·	
Client ID:	PBW	Batch ID: R2	0236	R	unNo: 20	0236				
Prep Date:		Analysis Date: 7/	29/2014	S	eqNo: 58	88153	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		ND 0.50								
Sample ID	LCS	SampType: LC	S	Test	tCode: EF	PA Method	300.0: Anions			
Client ID:	LCSW	Batch ID: R2	0236	R	lunNo: 20	0236				
Prep Date:		Analysis Date: 7	29/2014	S	eqNo: 51	88154	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		9.7 0.50	10.00	0	97.4	90	110			,
Sample ID	MВ	SampType: MI	BLK	Test	tCode: EF	PA Method	300.0: Anions	:		
Client ID:	PBW	Batch ID: R2	20236	R	tunNo: 20	0236				
Prep Date:		Analysis Date: 7	/29/2014	S	eqNo: 51	88211	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		ND 0.50								
Sample ID	LCS	SampType: LC	s	Test	tCode: EF	PA Method	300.0: Anions	i		
Client ID:	LCSW	Batch ID: R2	20236	R	tunNo: 2	0236				
Prep Date:		Analysis Date: 7/	/29/2014	S	eqNo: 51	88212	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	W REC	مئمينا الديسا		%PPD		Qual
Sulfate			OF IC VAIDO	or a nor vur		LOWLIMIE	HighLimit		RPDLINII	Quai
		9.6 0.50	10.00	0	95.6	LOWLIMIA 90	HighLimit 110	7013 12	RPDLIAIII	Quai
Sample ID	МВ	9.6 0.50 SampType: MI	10.00	0 Tesi	95.6 ICode: EF	90 PA Method	HighLimit 110 300.0: Anions			
Sample ID Client ID:	MB PBW	9.6 0.50 SampType: MI Batch ID: R2	10.00 BLK 20363	0 Tesi	95.6 tCode: EF	90 PA Method 0363	HighLimit 110 300.0: Anions		RPDLINIL	
Sample ID Client ID: Prep Date:	MB PBW	9.6 0.50 SampType: MI Batch ID: R2 Analysis Date: 8	10.00 BLK 20363 /4/2014	0 Tesi R	95.6 tCode: EF tunNo: 20 GegNo: 55	90 PA Method 0363 92146	HighLimit 110 300.0: Anions Units: mg/L		RPDLIMIL	
Sample ID Client ID: Prep Date: Analyte	MB PBW	9.6 0.50 SampType: Mil Batch ID: R2 Analysis Date: 8, Result PQL	10.00 BLK 20363 /4/2014 SPK value	0 Tesi R SPK Ref Val	95.6 tCode: EF tunNo: 20 SeqNo: 50 %REC	90 PA Method 0363 92146 LowLimit	HighLimit 110 300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW	9.6 0.50 SampType: MI Batch ID: R2 Analysis Date: 8, Result PQL ND 0.50	10.00 BLK 20363 /4/2014 SPK value	0 Tesi R SPK Ref Val	95.6 tCode: EF tunNo: 20 SeqNo: 50 %REC	90 PA Method 0363 92146 LowLimit	HighLimit 110 300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW LCS	9.6 0.50 SampType: MI Batch ID: R2 Analysis Date: 8, Result PQL ND 0.50 SampType: LC	10.00 BLK 20363 /4/2014 SPK value	0 Tesi SPK Ref Val Tesi	95.6 tCode: EF tunNo: 20 SeqNo: 50 %REC	PA Method 0363 92146 LowLimit	HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	MB PBW LCS LCSW	9.6 0.50 SampType: MI Batch ID: R2 Analysis Date: 8, Result PQL ND 0.50 SampType: LC Batch ID: R2	10.00 BLK 20363 /4/2014 SPK value 20363	0 Tesi SPK Ref Val Tesi Tesi	95.6 tCode: El tunNo: 20 SeqNo: 59 %REC tCode: El	PA Method 0363 92146 LowLimit PA Method 0363	HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	MB PBW LCS LCSW	9.6 0.50 SampType: MI Batch ID: R2 Analysis Date: 8, Result PQL ND 0.50 SampType: LC Batch ID: R2 Analysis Date: 8,	10.00 BLK 20363 /4/2014 SPK value SS 20363 /4/2014	0 Tesi SPK Ref Val Tesi Fi S	95.6 tCode: EI tode: EI tode: 5 %REC tCode: EI tcode: EI tode: EI	90 PA Method 0363 92146 LowLimit PA Method 0363 92147	HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte	MB PBW LCS LCSW	9.6 0.50 SampType: MI Batch ID: R2 Analysis Date: 8, Result PQL ND 0.50 SampType: LC Batch ID: R2 Analysis Date: 8, Result PQL	10.00 BLK 20363 /4/2014 SPK value 20363 /4/2014 SPK value	0 Tesi SPK Ref Val Tesi SPK Ref Val	95.6 tCode: El tunNo: 20 SeqNo: 59 %REC tCode: El tCode: El tunNo: 20 SeqNo: 59 %REC	2000 2010 2010 2010 2010 2010 2010 2010	HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Ρ Sample pH greater than 2.
- Reporting Detection Limit RL

Page 6 of 20

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID MB	SampType:	MBLK	TestCode: EPA Method 300.0: Anions				;			
Client ID: PBW	Batch ID:	R20363	R20363 RunNo: 20363							
Prep Date:	Analysis Date:	8/5/2014	8/5/2014 SeqNo: 592208 U				Units: mg/L			
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride	ND 0	.50								
Sample ID LCS	SampType:	LCS	Tes	tCode: El	PA Method	300.0: Anions	5			
Sample ID LCS Client ID: LCSW	SampType: Batch ID;	LCS R20363	Tes	tCode: El	PA Method 0363	300.0: Anion:	5			
Sample ID LCS Client ID: LCSW Prep Date:	SampType: Batch ID: Analysis Date:	LCS R20363 8/5/2014	Tes F	tCode: EF RunNo: 2 SeqNo: 5	PA Method 0363 92209	300.0: Anions Units: mg/L)			
Sample ID LCS Client ID: LCSW Prep Date: Analyte	SampType: Batch ID: Analysis Date: Result PC	LCS R20363 8/5/2014 QL SPK value	Tes F S SPK Ref Val	tCode: EF RunNo: 20 SeqNo: 59 %REC	PA Method 0363 92209 LowLimit	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 20

1407D12 15-Aug-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR Sample ID 5mL rb TestCode: EPA Method 8260B: VOLATILES SampType: MBLK Client ID: PBW Batch ID: R20230 RunNo: 20230 Prep Date: Analysis Date: 7/29/2014 SeqNo: 587928 Units: %REC %REC HighLimit %RPD Analyte Result PQL SPK value SPK Ref Val LowLimit 10.00 91.3 70 130 Surr: 1,2-Dichloroethane-d4 9.1 70 10.00 93.2 130 9.3 Surr: 4-Bromofluorobenzene 130 10.00 102 70 Surr: Dibromofluoromethane 10 Su San Clie Pre Ana Sι SL Su Su Sar Clie Рге Ana Benz Tolue Ethyll Methy 1,2,4

Qualifiers:

Carbon Tetrachloride Chlorobenzene

* Value exceeds Maximum Contaminant Level.

NÐ

ND

1.0

1.0

- Value above quantitation range Е
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded H
- Not Detected at the Reporting Limit ND
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 20

15-Aug-14

Qual

RPDLimit

Surr: Toluene-d8	9.7		10.00		96.7	70	130			
Sample ID 100ng Ics	SampTy	/pe: LC	S	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client (D: LCSW	Batch	ID: R2	0230	F	RunNo: 2	0230				
Prep Date:	Analysis Da	ate: 7/	29/2014	S	eqNo: 5	87930	Units: %RE	0		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	11		10.00		107	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			
Sample ID 5ml rb	SampType: MBLK			Tes	TestCode: EPA Method 8260B: VOLATILES					
Client ID: PBW	Batch ID: R20298			F	RunNo: 20298					
Prep Date:	Analysis Da	ate: 7/	31/2014	S	SeqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								

WO#: 1407D12

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampType: MBLK TestCode: EPA Method					PA Method	8260B: VOL/	TILES		
Client ID: PRW	Rater	ים ים ר	0298	, 30 F	RunNo: 2	0298				
Bron Data:		ister T	21/2014	r	Sention F	89942	Inite unit			
riep Date.	Audiysis D	a.c. //	5172014	2	. Ойнуол, Э		ornio, µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
isopropylbenzene	ND	1.0								
4-isopropyitoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 9 of 20

1407D12 15-Aug-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampT	ype: ME	зік	Tes	tCode: EPA Method 8260B: VOLATILES					
Client ID: PBW	Batch	1D: R2	0298	R	lunNo: 2	0298				
Prep Date:	Analysis D	ate: 7/	31/2014	S	eqNo: 5	89943	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.2	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1D: R2	0298	F	RunNo: 20298					
Prep Date:	Analysis D	ate: 7/	31/2014	S	eqNo: 5	89945	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	0	107	80	120			
Chlorobenzene	20	1.0	20.00	0	99,3	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	110	82.6	131			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Page 10 of 20

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12

Western Refining Southwest, Inc. **Client:**

Injection Well 7-28-14 3rd QTR **Project:**

Sample ID mb-14520	SampT	SampType: MBLK TestCode: EPA Method 8270C: Semivol						volatiles		
Client ID: PBW	Batch	ID: 14	520	F	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	5	SegNo: 5	90031	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyi)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl ohthalate	ND	10								
2.4-Dichlorophenol	ND	20								
2.4-Dimethylphenol	ND	10								
4 6-Dinitro-2-methylphenol	ND	20								

Qualifiers:

2,4-Dinitrophenol

* Value exceeds Maximum Contaminant Level.

ND

20

- Value above quantitation range Е
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
 - Ρ Sample pH greater than 2.
 - RĽ Reporting Detection Limit

Western Refining Southwest, Inc. **Client:**

Injection Well 7-28-14 3rd QTR **Project:**

Sample ID mb-14520	SampTyp	e: Mi	BLK	TestCode: EPA Method 8270C				volatiles		
Client ID: PBW	Batch II): 14	520	F	RunNo: 2	0300				
Prep Date: 7/31/2014	Analysis Dat	e: 7.	/31/2014	ş	SegNo: 5	90031	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
lsophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10	ł							
Pyridine	ND	10)							
1,2,4-Trichlorobenzene	ND	10)							
2,4,5-Trichlorophenol	ND	10)							
2,4,6-Trichlorophenol	ND	10)							
Surr: 2-Fluorophenol	130		200.0		66.7	12.1	85.8			
Surr: Phenol-d5	95		200.0		47.4	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		86.4	26	138			
Surr: Nitrobenzene-d5	84		100.0		83.6	47.5	119			
Surr: 2-Fluorobiphenyl	84		100.0		83.7	48.1	106			
Surr: 4-Terphenvi-d14	94		100.0	ł	94.5	44	113			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range Έ
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Sample pH greater than 2. Р
- RL Reporting Detection Limit

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID Ics-14520	SampType: LCS TestCode: EPA Method 8270C: Semivolatiles									
Client ID: LCSW	Batch	1D: 14	520	R	tunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	S	ieqNo: 5	90032	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	87	10	100.0	0	87.0	50.3	109			
4-Chloro-3-methylphenol	200	10	200.0	0	99.0	51.2	113			
2-Chlorophenol	190	10	200.0	0	94.9	48.5	104			
1,4-Dichlorobenzene	80	10	100.0	0	79.5	39.5	106			
2,4-Dinitrotoluene	82	10	100.0	0	82.3	45.4	107			
N-Nitrosodi-n-propylamine	91	10	100.0	0	91.0	50.4	119			
4-Nitrophenol	110	10	200.0	0	53.6	15.5	62.2			
Pentachlorophenol	150	20	200.0	0	72.7	23.5	93.5			
Phenol	110	10	200.0	0	54.8	26.8	65.6			
Pyrene	96	10	100.0	0	95.5	54.4	108			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	39.9	106			
Surr: 2-Fluorophenol	140		200.0		72.4	12,1	85.8			
Surr: Phenol-d5	100		200.0		52.5	17,7	65.8			
Surr: 2.4.6-Tribromophenol	170		200.0		87.0	26	138			
Surr: Nitrobenzene-d5	100		100.0		101	47.5	119			
Surr: 2-Fluorobiphenvl	96		100.0		96.0	48.1	106			
Surr: 4-Terphenyl-d14	91		100.0		90.9	44	113			
			~~	T						
Sample ID Icsd-14520	Sampl	ype: LC	SD	les	Code: El	PA Method	82/0C: Semi	volatiles		
Client ID: LCSS02	Batch	1 ID: 14	520	F	lunNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	S	eqNo: 5	90033	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	77	10	100.0	0	76.5	50.3	109	12.8	27.2	
4-Chloro-3-methylphenol	190	10	200.0	0	93.8	51.2	113	5.37	25.9	
2-Chlorophenol	170	40	000.0	0						
	+	10	200.0	0	84.4	48.5	104	11.7	22.5	
1,4-Dichlorobenzene	73	10	200.0	0	84.4 73.3	48.5 39.5	104 106	11.7 8.19	22.5 24.6	
1,4-Dichlorobenzene 2,4-Dinitrotoluene	73 73	10 10 10	200.0 100.0 100.0	0 0	84.4 73.3 73.1	48.5 39.5 45.4	104 106 107	11.7 8.19 11.9	22.5 24.6 25.3	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine	73 73 85	10 10 10 10	100.0 100.0 100.0 100.0	0 0 0	84.4 73.3 73.1 84.9	48.5 39.5 45.4 50.4	104 106 107 119	11.7 8.19 11.9 6.98	22.5 24.6 25.3 23.6	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol	73 73 85 110	10 10 10 10 10	100.0 100.0 100.0 200.0	0 0 0 0	84.4 73.3 73.1 84.9 52.7	48.5 39.5 45.4 50.4 15.5	104 106 107 119 62.2	11.7 8.19 11.9 6.98 1.69	22.5 24.6 25.3 23.6 34.7	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol	73 73 85 110 150	10 10 10 10 20	200.0 100.0 100.0 200.0 200.0	0 0 0 0 0	84.4 73.3 73.1 84.9 52.7 72.9	48.5 39.5 45.4 50.4 15.5 23.5	104 106 107 119 62.2 93.5	11.7 8.19 11.9 6.98 1.69 0.275	22.5 24.6 25.3 23.6 34.7 32.8	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol	73 73 85 110 150 100	10 10 10 10 20 10	200.0 100.0 100.0 200.0 200.0 200.0	0 0 0 0 0 0	84.4 73.3 73.1 84.9 52.7 72.9 51.6	48.5 39.5 45.4 50.4 15.5 23.5 26.8	104 106 107 119 62.2 93.5 65.6	11.7 8.19 11.9 6.98 1.69 0.275 6.05	22.5 24.6 25.3 23.6 34.7 32.8 25.5	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene	73 73 85 110 150 100 89	10 10 10 10 20 10 10	200.0 100.0 100.0 200.0 200.0 200.0 100.0	0 0 0 0 0 0 0 0	84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8	48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4	104 106 107 119 62.2 93.5 65.6 108	11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31	22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene	73 73 85 110 150 100 89 68	10 10 10 10 20 10 10 10	200.0 100.0 100.0 200.0 200.0 200.0 100.0 100.0		84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4	48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9	104 106 107 119 62.2 93.5 65.6 108 106	11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1	22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol	73 73 85 110 150 100 89 68 140	10 10 10 10 20 10 10 10	200.0 100.0 100.0 200.0 200.0 200.0 100.0 100.0 200.0		84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.4 68.8	48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1	104 106 107 119 62.2 93.5 65.6 108 106 85.8	11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0	22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol Surr: Phenol-d5	73 73 85 110 150 100 89 68 140 110	10 10 10 10 20 10 10 10	200.0 100.0 100.0 200.0 200.0 200.0 100.0 100.0 200.0 200.0		84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 53.9	48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7	104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8	11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0 0	22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	73 73 85 110 150 100 89 68 140 110 170	10 10 10 10 20 10 10 10	200.0 100.0 100.0 200.0 200.0 200.0 100.0 200.0 200.0 200.0 200.0		84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 53.9 86.5	48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7 26	104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8 138	11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0 0 0 0	22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0 0	
1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	73 73 85 110 150 100 89 68 140 110 170 88	10 10 10 10 20 10 10 10	200.0 100.0 100.0 200.0 200.0 200.0 100.0 200.0 200.0 200.0 200.0 100.0		84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 53.9 86.5 88.1	48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7 26 47.5	104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8 138 138 119	11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0 0 0 0 0	22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0 0 0 0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Page 13 of 20

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

WO#: 1407D12

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 7-28-14 3rd QTR

Sample ID Icsd-14520	SampType	Code: El	ode: EPA Method 8270C: Semivolatiles						
Client ID: LCSS02	Batch ID:	: 14520	R	unNo: 2	0300				
Prep Date: 7/31/2014	Analysis Date:	: 7/31/2014	S	eqNo: 5	90033	Units: µg/L			
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	90	100.0		90.0	44	113	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

15-Aug-14

1407D12

WO#:

ed

Page 14 of 20

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID	1407d12-001b dup	SampType	DUP	Tes	Code:	SM2510B: Sp	pecific Condu	uctance		
Client ID:	Injection Well	Batch ID:	R20245	F	unNo:	20245				
Prep Date:		Analysis Date:	7/29/2014	S	eqNo:	588403	Units: µmho	os/cm		
Analyte		Result P	QL SPK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity	L.	1800 0.	010					4.30	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 20

1407D12

15-Aug-14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	West Injec	ern Refining Southwest, Inc. tion Well 7-28-14 3rd QTR	
Sample ID	MB-14571	SampType: MBLK	TestCode: EPA Method 7470: Mercury
Client ID:	PBW	Batch ID: 14571	RunNo: 20345
Prep Date:	8/4/2014	Analysis Date: 8/4/2014	SeqNo: 591482 Units: mg/L
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury		ND 0.00020	
Sample ID	LCS-14571	SampType: LCS	TestCode: EPA Method 7470: Mercury
Client ID:	LCSW	Batch ID: 14571	RunNo: 20345
Prep Date:	8/4/2014	Analysis Date: 8/4/2014	SeqNo: 591483 Units: mg/L
Analyte		Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Mercury		0.0049 0.00020 0.005000	0 98.9 80 120

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- E Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- Reporting Detection Limit RL

Client: Project:	Western Injection	Refining S 1 Well 7-28	Southwes 3-14 3rd	st, Inc. QTR							
Sample ID	MB-14549	Samp	Type: ME	BLK	Test	Code: E	PA 6010B: "	Total Recover	able Meta	lls	
Cilent ID:	PBW	Batc	h ID: 14	549	R	unNo: 2	0323				
Prep Date:	8/1/2014	Analysis I	Date: 8 /	2/2014	s	eqNo: 5	90696	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.020								
Barium		ND	0.020								
Cadmium		ND	0.0020								
Calcium		ND	1.0								
Chromium		ND	0.0060								
Lead		ND	0.0050								
Maanesium		ND	1.0								
Potassium		ND	1.0								
Selenium		ND	0.050								
Silver		ND	0.0050								
Sodium		ND	1.0								
Sample ID	LCS-14549	Samp	Туре: LC	S	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Bato	h ID: 14	549	F	lunNo: 2	0323				
Prep Date:	8/1/2014	Analysis I	Date: 8/	2/2014	S	SeqNo: 5	90697	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.50	0.020	0.5000	0	101	80	120			
Barium		0.50	0.020	0.5000	0	99.7	80	120			
Cadmium		0.50	0.0020	0.5000	0	99.7	80	120			
Calcium		ND	1.0	50.00	0	0	80	120			S
Chromium		0.50	0.0060	0.5000	0	100	80	120			
Lead		0.50	0.0050	0.5000	0	99.5	80	120			
Magnesium		ND	1.0	50.00	0	0	80	120			S
Potassium		ND	1.0	50.00	0	0	80	120			S
Selenium		0.52	0.050	0.5000	0	105	80	120			
Silver		0.085	0.0050	0.1000	0	84.9	80	120			
Sodium		ND	1.0	50.00	0	0	80	120			S
Sample ID	LCS Cat-14549	Samp	Type: LC	s	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Bato	ch ID: 14	549	F	RunNo: 2	20323				
Prep Date:	8/1/2014	Analysis	Date: 8/	2/2014	2	SeqNo: 5	590698	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	*********	51	1.0	50.00	0	102	80	120			
Magnesium		51	1.0	50.00	0	101	80	120			
Potassium		49	1.0	50.00	0	97.3	80	120			
Sodium		50	1.0	50.00	0	101	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Lovel.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н

Page 17 of 20

- Not Detected at the Reporting Limit ND
- Ρ Sample pH greater than 2.
- Reporting Detection Limit RL

WO#: 15-Aug-14

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID	1407d12-001b dup	SampType	: DU	Р	Test	Code:	SM4500-H+E	3: pH			
Client ID:	Injection Well	Batch ID	: R2	0245	R	unNo:	20245				
Prep Date:		Analysis Date	: 7 E	29/2014	S	eqNo:	588388	Units: pH u	nits		
Analyte		Result P	QL	SPK value	SPK Ref Val	%RE	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
pН		7.11	1.68								H

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Page 18 of 20

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

)#: 1407D12 15-Aug-14

WO#: 1407D1

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Western Refining Southwest Injection Well 7-28-14 3rd Q	t, Inc. QTR				
Sample ID mb-1	SampType: MBL	LK Te	stCode: SM2320B: A	lkalinity		
Client ID: PBW	Batch ID: R20	245	RunNo: 20245			
Prep Date:	Analysis Date: 7/2	9/2014	SeqNo: 588355	Units: mg/L CaCO3		
Analyte Total Alkalinity (as CaC	Result PQL 3	SPK value SPK Ref Va	%REC LowLimit	HighLimit %RPI	D RPDLimit	Qual
Sample ID Ics-1	SampType: LCS	s Te	stCode: SM2320B: A	Ikalinity		
Client ID: LCSW	Batch ID: R20	245	RunNo: 20245			
Prep Date:	Analysis Date: 7/2	9/2014	SeqNo: 588356	Units: mg/L CaCO3		
Analyte	Result PQL	SPK value SPK Ref Val	%REC LowLimit	HighLimit %RPI	D RPDLimit	Qual
Total Alkalinity (as CaC	O3) 80 20	80.00 0	100 90	110		
Sample ID mb-2	SampType: MBL	L K Te	stCode: SM2320B: A	Ikalinity		
Client ID: PBW	Batch ID: R20	245	RunNo: 20245			
Prep Date:	Analysis Date: 7/2	9/2014	SeqNo: 588376	Units: mg/L CaCO3	i	
Analyte	Result PQL	SPK value SPK Ref Va	%REC LowLimit	HighLimit %RPI	D RPDLimit	Qual
Total Alkalinity (as CaC	03) ND 20					
Sample ID Ics-2	SampType: LCS	3 Te	stCode: SM2320B: A	lkalinity		
Client ID: LCSW	Batch ID: R20	245	RunNo: 20245			
Prep Date:	Analysis Date: 7/2	9/2014	SeqNo: 588377	Units: mg/L CaCO3	\$	
Analyte	Result PQL	SPK value SPK Ref Va	8 WREC LowLimit	HighLimit %RPI	D RPDLimit	Qual
Total Alkalinity (as CaC	03) 80 20	80.00 0	100 90	110		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 19 of 20

1407D12 15-Aug-14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client:	Western Refining Southwest, Inc.
Developed	Introduce Wall 7 09 14 2nd OTD

Project: Injection Well 7-28-14 3rd QTR

Sample ID MB-14475	SampType: MBLK	TestCode: SM2540C M	OD: Total Dissolved Solids
Client ID: PBW	Batch ID: 14475	RunNo: 20257	
Prep Date: 7/29/2014	Analysis Date: 7/30/2014	SeqNo: 588640	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID LCS-14475	SampType: LCS	TestCode: SM2540C M	OD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 14475	RunNo: 20257	
Prep Date: 7/29/2014	Analysis Date: 7/30/2014	SeqNo: 588641	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	1020 20.0 1000	0 102 80	120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
 - Sample pH greater than 2. Ρ
 - RL Reporting Detection Limit

Page 20 of 20

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albua TEL: 505-345-3975 I Website: www.hal	Analysis Laborato 4901 Hawkins I querque, NM 871 FAX: 505-345-41 lenvironmental.co	NE 09 Sam 07 07	ole Log-In Che	eck List
Client Name: Western Refining Southw	Work Order Number:	1407D12		RoptNo: 1	
Received by/date: A-07/29/19			<u> </u>		
Logged By: Anne Thorne 7	/29/2014 7:55:00 AM		ami Im	-	
Completed By: Anne Thorne 7	/29/2014		anne Sham	~	
Reviewed By: MA 07	29/14				
Chain of Custody		•			
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗆	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?		Courier			
Log In					
4. Was an attempt made to cool the samples?		Yes 🗹	No 🗌	NA 🗖	
5, Were all samples received at a temperature of	of >0° C to 6.0°C	Yes 🔽	No 🗌		
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test(s)	?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) properly	preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?		Yes	No 🗹	NA 🗌	,
10.VOA viais have zero headspace?		Yes 🗹	No 🗌	No VOA Viais	
11. Were any sample containers received broker	1? ·	Yes	No 🗹	# of preserved	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	No 🗌	for pH:	12 uhless noted)
13. Are matrices correctly identified on Chain of C	Sustody?	Yes 🗹	No 🗌	Adjusted?	0
14. Is it clear what analyses were requested?		Yes 🗹	No		08
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by:	
Special Handling (if applicable)					
19 Was diant patified of all discrepancies with th	is order?	Yes 🗌	No	NA 🔽	

Person Notified:		Date	an star the star star	
By Whom:	B	Via: 🗌 eMail [Phone 🗌 Fax	In Person
Regarding:	م ال الم المركز الم الم الم الم الم الم الم الم الم الم	na an an an an an an an an an an an an a	Selection and the state of the second second second	ng a sigar sa sa sa sa sa sa sa sa sa sa sa sa sa
Client Instructions	:			

17. Additional remarks:

18. Cooler Information

ľ	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1		1.0	Good	Yes			

.

		www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	1 1 1 2 2 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	5 2 2 3 2 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			ВТЕХ + МТ ТРН 8015В РАН'5 (8310 8270 (56mi 8270 (56mi 8270 (56mi 8270 (56mi 8270 (56mi						X				arks:			itty. Any sub-contracted data will be clearly notated on the analytical report.
im-Around Time:	Standard 🗆 Rush	oject Name:	Trijection-Well 3mgTR	oject#:		oject Manager:	208)) \$,{	ampler: Bob	Container Preservative	3-VOA Hel -cui	-liter amber 00	-500-1	-500ml -201	-250-1 H2 SON 201	-500ml HNO3 201	-520ml Na OH -201	-Storm Acetate -201		teceived by: Date Time Ren	Mistry Web, 1/28/4 1452	teceivedroy. Langer 11 and 11	tracted to other accredited laboratories. This serves as notice of this possi
Chain-of-Custody Record	Cliente Western Reguiug	J-	Mailing Address: #56 CP 4990	Rhom Field, NN BYH/3 Pr	Phone # 505-632-4/35	email or Fax#:	QA/QC Package:	🗶 Standard 🛛 🗆 Level 4 (Full Validation)	Accreditation Si NELAP Dother	Date Time Matrix Sample Request ID	236-10 9; 30 Ha O Idjection Well 2					· ·				Date: Time: Relinquished by:	29.14 1452 Robert Kaleon	Date: Time: Relinquished by:	If necessary cannot submitted to Hall Environmental may be subcon

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 23, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 4th QTR 10-1-14

OrderNo.: 1410102

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

Case Narrative

WO#: 1410102 Date: 10/23/2014

CLIENT:	Western Refining Southwest, Inc.
Project:	Injection Well 4th QTR 10-1-14

Analytical Notes Regarding EPA Method 8260: The injection well sample was diluted due to a foamy matrix.

Hall Environmental Analysis	Labora	ntory, Inc.		,	Lab Order 1410102 Date Reported: 10/23/20	14
CLIENT: Western Refining Southwest, In Project: Injection Well 4th QTR 10-1-14 Lab ID: 1410102-001	ic. 4 Matrix:	AQUEOUS	Client Samp Collection Received	l e ID: Injo Date: 10/ Date: 10/	ection Well 1/2014 10:00:00 AM 2/2014 6:50:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	LGP
Chloride	220	10	mg/L	20	10/2/2014 4:07:13 PM	R21640
Sulfate	26	2.5	mg/L	5	10/2/2014 3:54:49 PM	R21640
EPA METHOD 7470: MERCURY					Analyst:	MMD
Mercury	ND	0.00020	mg/L	1	10/8/2014 3:02:49 PM	15770
FPA 6010B: TOTAL RECOVERABLE ME	TALS				Analyst:	ELS
Arsonic	ND	0.020	ma/L	1	10/10/2014 9:26:53 AM	15825
Arachio	0.20	0.020	ma/L	1	10/10/2014 9:26:53 AM	15825
Cadmium	ND	0.0020	mg/L	1	10/10/2014 9:26:53 AM	15825
Calcium	110	5.0	ma/L	5	10/10/2014 9:28:28 AM	15825
Chromium	ND	0.0060	ma/L	1	10/10/2014 9:26:53 AM	15825
Lead	ND	0.0050	ma/L	1	10/10/2014 9:26:53 AM	15825
Magnesium	23	1.0	mg/L	1	10/10/2014 9:26:53 AM	15825
Potassium	8.2	1.0	mg/L	1	10/10/2014 9:26:53 AM	15825
Selenium	ND	0.050	mg/L	1	10/10/2014 9:26:53 AM	15825
Silver	ND	0.0050	mg/L	1	10/10/2014 9:26:53 AM	15825
Sodium	220	5.0	mg/L	5	10/10/2014 9:28:28 AM	15825
EPA METHOD 8270C: SEMIVOLATILES					Analyst	DAM
Acenaphthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Acepaphthylene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Aniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Anthracene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Azobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benz(a)anthracene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(a)pyrene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(b)fluoranthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(a,h,i)pervlene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(k)fluoranthene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Benzoic acid	ND	40	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzvi alcohol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroethyl)ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-ethylhexyl)phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Bromophenyl phenyl ether	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Butyl benzyl phthalate	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Carbazole	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Chloro-3-methylphenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Chloroaniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
			~ 100			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 2 of 18

Analytical Report

P Sample pH greater than 2.

RL Reporting Detection Limit

-	······································			1		
CLIENT:	Western Refining Southwest, Inc	.	C	lient Sam	ple ID: Injection Well	
Project:	Injection Well 4th OTR 10-1-14			Collection	n Date: 10/1/2014 10:00:00 AM	
Lab ID:	1410102-001	Matrix:	AQUEOUS	Received	d Date: 10/2/2014 6:50:00 AM	
Analyses		Result	RL Qual	Units	DF Date Analyzed Ba	atch
EPA MET	HOD 8270C: SEMIVOLATILES		4.000.00		Analyst: D/	AM
2-Chloro	naphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
2-Chloro	phenol	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
4-Chloro	phenyl phenyl ether	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Chrysen	8	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Di-n-buty	/i phthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Di-n-octy	/i phthalate	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Dibenz(a	i,h)anthracene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Dibenzof	furan	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
1,2-Dichl	lorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
1,3-Dichl	lorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
1,4-Dichl	lorobenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
3,3'-Dich	lorobenzidine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Diethyl p	hthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Dimethyl	phthalate	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
2,4-Dichl	lorophenol	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15	5747
2,4-Dime	ethylphenol	ND	10	μg/L	1 10/9/2014 9:16:21 PM 15	5747
4,6-Diniti	ro-2-methylphenol	ND	20	μg/L	1 10/9/2014 9:16:21 PM 15	5747
2,4-Diniti	rophenol	ND	20	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
2,4-Diniti	rotoluene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
2,6-Diniti	rotoluene	ND	10	μg/L	1 10/9/2014 9:16:21 PM 15	5/4/
Fluoranti	nene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
Fluorene		ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
Hexachio	probenzene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
Hexachic	probutadiene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
Hexachic	procyclopentadiene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	0/4/
Hexachic	proethane	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	0/4/
Indeno(1	,2,3-cd)pyrene	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
Isophoro	ne	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	747
1-Methyl	naphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PW 15	-747
2-Methyl	naphthalene	ND	10	µg/L	1 10/9/2014 9:16:21 PW 15	-747
2-Methyl	phenol	ND	20	µg/L	1 10/9/2014 9:16:21 PW 15	5/4/
3+4-Meth	nylphenol	ND	10	µg/L	1 10/9/2014 9:16:21 PW 15	747
N-Nitros	odi-n-propylamine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	747
N-Nitros	odimethylamine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	747
N-Nitroso	oaipnenylamine	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
Naphthal		ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	-747
2-Nitroar		ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5747
3-Nitroar	niline	ND	10	µg/L	1 10/9/2014 9:16:21 PM 15	5/4/
4-Nitroar	niline	ND	10	րց/բ	1 10/9/2014 9:16:21 PM 15	0/4/

Hall Environmental Analysis Laboratory, Inc.

Refer to the OC Summary report and sample login checklist for flagged QC data and preservation information.

Kele	IUU	le QC Summary report and sample login check	list for hage	ged QC data and preservation
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated M
	E	Value above quantitation range	H	Holding times for preparation or an
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

Method Blank

alysis exceeded

Page 3 of 18

RL Reporting Detection Limit

Lab Order 1410102 Date Reported: 10/23/2014

Analytical Report

Hall Ei	nvironmental Analysis	s Labora	ntory, Inc.			Lab Order 1410102 Date Reported: 10/23/20)14
CLIENT:	Western Refining Southwest, Ir	nc.		Client Sampl	e ID: Inje	ection Well	
Project:	Injection Well 4th QTR 10-1-1-	4		Collection]	Date: 10/	1/2014 10:00:00 AM	
Lab ID:	1410102-001	Matrix:	AQUEOUS	Received 1	Date: 10/	2/2014 6:50:00 AM	
Analyses		Result	RL Qua	al Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLATILES					Analyst:	DAM
Nitroben	zene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
2-Nitroph	nenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Nitroph	nenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Pentachl	orophenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747
Phenanti	hrene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Phenol		ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Pyrene		ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Pyridine		ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
1,2,4-Tri	chlorobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
2,4,5-Tri	chlorophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
2,4,6-Tri	chlorophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Surr: 2	2-Fluorophenol	59.4	12.1-85.8	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: I	Phenol-d5	52.8	17.7-65.8	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 2	2,4,6-Tribromophenol	83.8	26-138	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 1	Nitrobenzene-d5	76.3	47.5-119	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 2	2-Fluorobiphenyl	68.0	48.1-106	%REC	1	10/9/2014 9:16:21 PM	15747
Surr: 4	1-Terphenyl-d14	69.3	44-113	%REC	1	10/9/2014 9:16:21 PM	15747
EPA MET	HOD 8260B: VOLATILES					Analyst:	RAA
Benzene	1	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Toluene		ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Ethylben	zene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Methyl te	ert-butyl ether (MTBE)	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2,4-Tri	methylbenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1.3.5-Tri	methylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dichl	oroethane (EDC)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dibro	omoethane (EDB)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Naphtha	lene	ND	10	ug/L	5	10/3/2014 10:52:10 PM	R21653
1-Methyl	naphthalene	ND	20	ug/L	5	10/3/2014 10:52:10 PM	R21653
2-Methyl	naphthalene	ND	20	µg/L	5	10/3/2014 10:52:10 PM	R21653
Acetone	•	120	50	µg/L	5	10/3/2014 10:52:10 PM	R21653
Bromobe	enzene	ND	5.0	ug/L	5	10/3/2014 10:52:10 PM	R21653
Bromodi	chloromethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Bromofo	rm	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Bromom	ethane	ND	15	µq/L	5	10/3/2014 10:52:10 PM	R21653
2-Butanc	one	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R21653
Carbon o	lisulfide	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R21653
Carbon 7	Fetrachloride	ND	5.0	ug/L	5	10/3/2014 10:52:10 PM	R21653
Chlorohe	enzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Chloroet	hane	ND	10	μg/L	5	10/3/2014 10:52:10 PM	R21653
				, v -			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

 $B \quad \ \ Analyte \ detected \ in \ the \ associated \ Method \ Blank$

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 4 of 18

Analytical Report

P Sample pH greater than 2.

RL Reporting Detection Limit

Hall Environmental Analysi		Lab Order 1410102 Date Reported: 10/23/2014				
CLIENT: Western Refining Southwest, In Project: Injection Well 4th QTR 10-1-1 Lab ID: 1410102-001	nc. 4 Matrix: A	Client Sample ID: Injection Well Collection Date: 10/1/2014 10:00:00 AM Matrix: AQUEOUS Received Date: 10/2/2014 6:50:00 AM				
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst:	RAA
Chloroform	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Chloromethane	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653
2-Chlorotoluene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
4-Chlorotoluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
cis-1,2-DCE	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
cis-1,3-Dichloropropene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dibromo-3-chloropropane	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653
Dibromochloromethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Dibromomethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,3-Dichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,4-Dichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Dichlorodifluoromethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,1-Dichloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,1-Dichloroethene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,2-Dichloropropane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,3-Dichloropropane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
2,2-Dichloropropane	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,1-Dichloropropene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
Hexachlorobutadiene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
2-Hexanone	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R21653
Isopropylbenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
4-Isopropyltoluene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
4-Methyl-2-pentanone	ND	50	µg/L	5	10/3/2014 10:52:10 PM	R21653
Methylene Chloride	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653
n-Butylbenzene	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653
n-Propylbenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
sec-Butylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
Styrene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
tert-Butylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,1,1,2-Tetrachloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,1,2,2-Tetrachloroethane	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653
Tetrachloroethene (PCE)	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
trans-1,2-DCE	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
trans-1,3-Dichloropropene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,2,3-Trichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653
1,2,4-Trichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,1,1-Trichloroethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653
1,1,2-Trichloroethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 5 of 18

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report
Lab Order 1410102

Date Reported: 10/23/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.	2.		C	lient Sample I	D: Inj	jection Well				
Project: Injection Well 4th QTR 10-1-14		Collection Date: 10/1/2014 10:00:00 AM								
Lab ID: 1410102-001	Matrix:	AQUEOU	S	Received Da	te: 10	/2/2014 6:50:00 AM				
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES						Analyst	RAA			
Trichloroethene (TCE)	ND	5.0		µg/L	5	10/3/2014 10:52:10 PM	R21653			
Trichlorofluoromethane	ND	5.0		µg/L	5	10/3/2014 10:52:10 PM	R21653			
1,2,3-Trichloropropane	ND	10		µg/L	5	10/3/2014 10:52:10 PM	R21653			
Vinyl chloride	ND	5.0		μg/L	5	10/3/2014 10:52:10 PM	R21653			
Xylenes, Total	ND	7.5		µg/L	5	10/3/2014 10:52:10 PM	R21653			
Surr: 1,2-Dichloroethane-d4	82.3	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653			
Surr: 4-Bromofluorobenzene	84.8	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653			
Surr: Dibromofluoromethane	79.9	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653			
Surr: Toluene-d8	84.8	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653			
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR			
Conductivity	1100	0.010		µmhos/cm	1	10/6/2014 5:51:56 PM	R21715			
SM4500-H+B: PH						Analyst	JRR			
рН	7.08	1.68	Н	pH units	1	10/6/2014 5:51:56 PM	R21715			
SM2320B: ALKALINITY						Analyst	JRR			
Bicarbonate (As CaCO3)	150	20		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715			
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715			
Total Alkalinity (as CaCO3)	150	20		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715			
SM2540C MOD: TOTAL DISSOLVED SO	IDS					Analyst	: KS			
Total Dissolved Solids	742	40.0	*	mg/L	1	10/8/2014 4:42:00 PM	15759			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	3 Analyte detected in the associated Method Blank			
	Е	Value above quantitation range	Н	Holding times for preparation or analysis exceeded			
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 6 of 18		
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 450 0 01 10		
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit			
	S	Spike Recovery outside accepted recovery limits					

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109	Batch #: Project Name:	141003043 1410102	
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	141003043-001 1410102-001E / INJE(Water	Sampi CTION WELL Samp	ing Date	10/1/2014	Date/ Samp	ling Time	1:30 PM	
B		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (react Flashpoint pH Reactive sulfid	ivə)	ND >200 6.82 3.01	mg/L °F ph Units mg/L	1	10/15/2014 10/15/2014 10/8/2014 10/15/2014	CRW KFG KJS HSW	SW846 CH7 EPA 1010 SM 4500pH-B SW846 CH7	

Authorized Signature

John Coddingtoy, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQ1. Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C595; MT:Cert0095; FL(NELAP): E871099

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anatekiabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anatekiabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D	Batch #: Project Name:	141003043 1410102	
	ALBUQUERQUE, NM 87109		· ·	
Attn:	ANDY FREEMAN Analytical Results F	Report		

Quality Control Data

Lab Control Sa	mple										
Parameter Reactive sulfide CyanIde (reactive)		LCS Result 0.180 0.519	Units mg/L mg/L	LCS S 0.2 0.2	pike	%Rec 90.0 103.8	AR 1 70 80	%Rec -130 -120	Prep 10/15 10/15	Date //2014 //2014	Analysis Date 10/15/2014 10/15/2014
Matrix Spike Sample Number 141003043-001 141003043-001	Parameter Reactive sulfide Cyanide (reactive)		Sample Result 3.01 ND	MS Result 3.77 2.41	Uni mga mga	ts /L /L	MS Spike 0.767 2.5	%Rec 99.1 96.4	AR %Rec 70-130 80-120	Prep Date 10/15/2014 10/15/2014	Analysis Date 4 10/15/2014 4 10/15/2014
Matrix Spike Do Parameter Cyanide (reactive)	uplicate	MSD Result 2.41	Units mg/L	MSD Spike 2.5	%l 9	Rec 6.4	%RPD 0.0	AR %RPI 0-25) Pre 10/	ep Date 15/2014	Analysis Date 10/15/2014
Method Blank Parameter Cyanlde (reactive) Reactive sulfide)		Re N	sult. ND ND	L r	Inits ng/L ng/L		PQL 1 1	P 10 10	rep Date /15/2014 /15/2014	Analysis Date 10/15/2014 10/15/2014

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA;ID00013; AZ:0701; CO:ID00013; FL(NELAP);E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200301-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cen0095; FL(NELAP); E871099

Client:	Western Refining Southwest	, Inc.	

Project: Injection Well 4th QTR 10-1-14

Sample ID	MB	SampT	ype: ME	BLK	Test	tCode: El	PA Method	300.0: Anion	6		
Client ID:	PBW	Batch	i ID: R2	1640	R	lunNo: 2	1640				
Prep Date:		Analysis D	ate: 10)/2/2014	S	SeqNo: 6	34799	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Sulfate		ND	0.50								
Sample ID	LCS	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anion	5		
Sample ID Client ID:	LCS LCSW	SampT Batch	ype: LC	S 1640	Tes F	tCode: El RunNo: 2	PA Method 1640	300.0: Anion	5		
Sample ID Client ID: Prep Date:	LCS LCSW	SampT Batch Analysis D	ype: LC 1 ID: R2 ate: 10	S 1640)/2/2014	Tes F S	tCode: El RunNo: 2 GeqNo: 6	PA Method 1640 34800	300.0: Anion Units: mg/L	5		
Sample ID Client ID: Prep Date: Analyte	LCS LCSW	SampT Batch Analysis D Result	ype: LC n ID: R2 vate: 10 PQL	S 1640 5/2/2014 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 2 SeqNo: 6 %REC	PA Method 1640 34800 LowLimit	300.0: Anion Units: mg/L HighLimit	s %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	LCS LCSW	SampT Batch Analysis D Result 4.7	ype: LC 1D: R2 Pate: 10 PQL 0.50	S 1640 0/2/2014 SPK value 5.000	Tes F S SPK Ref Val 0	tCode: El RunNo: 2 SeqNo: 6 %REC 94.0	PA Method 1640 34800 LowLimit 90	300.0: Anion Units: mg/L HighLimit 110	s %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 7 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

·····	·					· · · ·				
Sample ID 5ml-rb	SampT	ype: ME	3LK	Test	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	1 ID: R2	1653	R	tunNo: 2 1	1653				
Prep Date:	Analysis D	ate: 10)/3/2014	S	eqNo: 6	36225	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1.3-Dichloropropane	ND	1.0								

Qualifiers:

2,2-Dichloropropane

* Value exceeds Maximum Contaminant Level.

ND

2.0

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
 - Reporting Detection Limit RL

Page 8 of 18

1410102

WO#:

23-Oct-14

Western Refining Southwest, Inc. **Client:** Injection Well 4th QTR 10-1-14 **Project:**

Sample ID 5ml-rb	SampTy	ype: ME	BLK	Test	tCode: El	PA Method	8260B: VOLA	TILES		
Client ID: PBW	Batch	ID: R2	1653	Я	lunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	0/3/2014	S	SeqNo: 6	36225	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8,0		10.00		80.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	8.0		10.00		80.5	70	130			
Surr: Toluene-d8	8.9		10.00		89.4	70	130			
Sample ID 100ng Ics	Samp1	Type: LO	CS	Tes	stCode: E	EPA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batcl	h ID: R	21653	1	RunNo: :	21653				
Prep Date:	Analysis D	Date: 1	0/3/2014		SeqNo: (636227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20,00	0	96.4	70	130			
Toluene	20	1.0	20.00	0	98.8	80	120			
Chlorobenzene	20	1.0	20.00	0	97.9	70	130			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Value above quantitation range E
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Р
- RL Reporting Detection Limit

23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	1 ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analysis D	ate: 10	0/3/2014	8	SeqNo: 6	36227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	21	1.0	20.00	0	105	82.6	131			
Trichloroethene (TCE)	19	1.0	20.00	0	96.9	70	130			
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.9	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	8.0		10.00		79.7	70	130			
Surr: Toluene-d8	9.1		10.00		91.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 10 of 18

1410102 23-Oct-14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, In-	c.
---	----

Project: Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampType	: MBLK	Tes	tCode: EP/	A Method	8270C: Semiv	olatiles		
Client ID: PBW	Batch ID	: 15747	R	RunNo: 218	B03				
Prep Date: 10/7/2014	Analysis Date	: 10/9/2014	S	BeqNo: 64(0784	Units: µg/L			
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10							
Acenaphthylene	ND	10							
Aniline	ND	10							
Anthracene	ND	10							
Azobenzene	ND	10							
Benz(a)anthracene	ND	10							
Benzo(a)pyrene	ND	10							
Benzo(b)fluoranthene	ND	10							
Benzo(g,h,i)perylene	ND	10							
Benzo(k)fluoranthene	ND	10							
Benzoic acid	ND	40							
Benzyl alcohol	ND	10							
Bis(2-chloroethoxy)methane	ND	10							
Bis(2-chloroethyl)ether	ND	10							
Bis(2-chloroisopropyl)ether	ND	10							
Bis(2-ethylhexyl)phthalate	ND	10							
4-Bromophenyl phenyl ether	ND	10							
Butyl benzyl phthalate	ND	10							
Carbazole	ND	10							
4-Chloro-3-methylphenol	ND	10							
4-Chloroaniline	ND	10							
2-Chloronaphthalene	ND	10							
2-Chlorophenol	ND	10							
4-Chlorophenyl phenyl ether	ND	10							
Chrysene	ND	10							
Di-n-butyl phthalate	ND	10							
Di-n-octyl phthalate	ND	20							
Dibenz(a,h)anthracene	ND	10							
Dibenzofuran	ND	10							
1,2-Dichlorobenzene	ND	10							
1,3-Dichlorobenzene	ND	10							
1,4-Dichlorobenzene	ND	10							
3,3'-Dichlorobenzidine	ND	10							
Diethyl phthalate	ND	10							
Dimethyl phthalate	ND	10							
2,4-Dichlorophenol	ND	20							
2,4-Dimethylphenol	ND	10							
4,6-Dinitro-2-methylphenol	ND	20							
2,4-Dinitrophenol	ND	20							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

_

Project: Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampTy	ype: MI	3LK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis Da	ate: 1	0/9/2014	S	GeqNo: 6	40784	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3++4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	140		200.0		68.8	12.1	85.8			
Surr: Phenol-d5	130		200.0		64.5	17.7	65.8			
Surr: 2,4,6-Tribromophenol	130		200.0		66.6	26	138			
Surr: Nitrobenzene-d5	79		100.0		79.4	47.5	119			
Surr: 2-Fluorobiphenyl	75		100.0		75.3	48.1	106			
Surr: 4-Terphenyl-d14	74		100.0		74.3	44	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Р Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 18

1410102 23-Oct-14

.....

Western Refining Southwest, Inc. **Client:**

Injection Well 4th QTR 10-1-14 **Project:**

Sample ID Ics-15747	SampT	ype: LC	S	Tes	tCode: El	PA Method	8270C: Semi	/olatiles		
Client ID: LCSW	Batch	1D: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D	ate: 10)/9/2014	S	GeqNo: 6	40785	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	77	10	100.0	0	76.7	47.9	114			
4-Chloro-3-methylphenol	180	10	200.0	0	88.1	51.7	122			
2-Chlorophenol	170	10	200.0	0	83.0	40.7	113			
1,4-Dichlorobenzene	70	10	100.0	0	70.4	39.6	99.9			
2,4-Dinitrotoluene	69	10	100.0	0	68.9	40.8	113			
N-Nitrosodi-n-propylamine	81	10	100.0	0	81.2	51.2	111			
4-Nitrophenol	130	10	200.0	0	64.1	15.7	86.9			
Pentachlorophenol	120	20	200.0	0	59.2	21.6	104			
Phenol	140	10	200.0	0	71.0	28.6	71.7			
Pyrene	73	10	100.0	0	73.1	54.2	128			
1,2,4-Trichlorobenzene	71	10	100.0	0	71.2	40.9	101			
Surr: 2-Fluorophenol	150		200.0		73.2	12.1	85.8			
Surr: Phenol-d5	140		200.0		71.8	17.7	65.8			S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138			
Surr: Nitrobenzene-d5	83		100.0		83.4	47.5	119			
Surr: 2-Fluorobiphenyl	0.46		100.0		0.460	48.1	106			S
Surr: 4-Terphenyl-d14	75		100.0		75.1	44	113			
Sample ID Icsd-15747	SampT	ype: LC	SD	Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	1 ID: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D	ate: 10)/9/2014	5	SeqNo: 6	40786	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	79	10	100.0	0	78.8	47,9	114	2.60	27.2	
4-Chloro-3-methylphenol	190	10	200.0	0	94.7	51.7	122	7.26	25.9	
2-Chlorophenol	160	10	200.0	0	80.2	40.7	113	3.52	22.5	
1,4-Dichlorobenzene	74	10	100.0	0	73.7	39.6	99.9	4.50	24.6	
2,4-Dinitrotoluene	73	10	100.0	0	73.1	40.8	113	6.00	25.3	
N-Nitrosodi-n-propylamine	79	10	100.0	0	79.0	51.2	111	2.82	23.6	
4-Nitrophenol	140	10	200.0	0	69.4	15.7	86.9	7,95	34.7	
Pentachlorophenol	120	20	200.0	0	61.6	21.6	104	4.01	32.8	
Phenoi	140	10	200.0	0	68.3	28.6	71.7	3.88	25.5	
Pyrene	79	10	100.0	0	78.8	54.2	128	7.56	31.4	
1,2,4-Trichlorobenzene	76	10	100.0	0	75.7	40.9	101	6.10	25.9	
Surr: 2-Fluorophenol	150		200.0		73.3	12.1	85.8	0	0	
Surr: Phenol-d5	140		200.0		72.3	17.7	65.8	0	0	S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138	0	0	
Surr: Nitrobenzene-d5	88		100.0		88.0	47.5	119	0	0	
Surr: 2-Fluorobiphenyl	83		100.0		83.2	48.1	106	0	0	

Qualifiers:

* Value exceeds Maximum Contaminant Level.

Value above quantitation range Е

- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Page 13 of 18

- Р Sample pH greater than 2.
- Reporting Detection Limit RL

1410102 23-Oct-14

Client:	Western Refining Southwest, Inc
Project:	Injection Well 4th QTR 10-1-14

Sample ID Icsd-15747	SampType:	LCSD	Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch ID:	15747	R	lunNo: 2	1803				
Prep Date: 10/7/2014	Analysis Date:	10/9/2014	S	SeqNo: 6	40786	Units: µg/L			
Analyte	Result PC	L SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Quai
Surr: 4-Terphenyl-d14	81	100.0		80.9	44	113	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
 - р Sample pH greater than 2.
 - Reporting Detection Limit RL

Page 14 of 18

1410102

Client: Western Refining Southwest, Inc. **Project:** Injection Well 4th QTR 10-1-14

Sample ID MB-15770	SampType: MBLK	TestCode: EPA Method	7470: Mercury	
Client ID: PBW	Batch ID: 15770	RunNo: 21753		
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 639033	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDL	imit Qual
Мегсигу	ND 0.00020			
Sample ID LCS-15770	SampType: LCS	TestCode: EPA Method	7470: Mercury	
Sample ID LCS-15770 Client ID: LCSW	SampType: LCS Batch ID: 15770	TestCode: EPA Method RunNo: 21753	7470: Mercury	
Sample ID LCS-15770 Client ID: LCSW Prep Date: 10/7/2014	SampType: LCS Batch ID: 15770 Analysis Date: 10/8/2014	TestCode: EPA Method RunNo: 21753 SeqNo: 639034	7470: Mercury Units: mg/L	
Sample ID LCS-15770 Client ID: LCSW Prep Date: 10/7/2014 Analyte	SampType: LCS Batch ID: 15770 Analysis Date: 10/8/2014 Result PQL SPK value	TestCode: EPA Method RunNo: 21753 SeqNo: 639034 SPK Ref Val %REC LowLimit	I 7470: Mercury Units: mg/L HighLimit %RPD RPDL	.imit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Е Value above quantitation range
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
 - Sample pH greater than 2. Р
 - RL Reporting Detection Limit

Page 15 of 18

1410102 23-Oct-14
QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID MB-15825	Samp	Туре: МВ	LK	Test	Code: EF	PA 6010B: 1	Fotal Recover	able Meta	ls	
Client ID: PBW	Bato	h ID: 158	325	R	tunNo: 2'	1801				
Prep Date: 10/9/2014	Analysis	Date: 10	/10/2014	s	eqNo: 64	40639	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0,0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	0.010	0.0050								
Sodium	ND	1.0								
Sample ID LCS-15828	5 Samp	Type: LC	S	Tes	tCode: El	PA 6010B: 1	Fotal Recover	able Meta	lls	
Sample ID LCS-15828 Client ID: LCSW	5 Samp Bato	Type: LC	S 825	Tes R	tCode: El RunNo: 2'	PA 6010B: 1 1801	Fotal Recover	able Meta	lls	
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014	5 Samp Bato Analysis	Type: LC ch ID: 15 Date: 10	S 825 0/10/2014	Tes R S	tCode: El RunNo: 2 SeqNo: 6	PA 6010B: 1 1801 40640	Total Recover	able Meta	lls	
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte	5 Samp Bato Analysis Result	Type: LC ch ID: 15 Date: 10 PQL	S 325 0/10/2014 SPK value	Tesi R SPK Ref Val	tCode: El RunNo: 2 SeqNo: 6 %REC	PA 6010B: T 1801 40640 LowLimit	Total Recover Units: mg/L HighLimit	able Meta %RPD	I IS RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic	5 Samp Bato Analysis Result 0.52	Type: LC ch ID: 15 Date: 10 PQL 0.020	S 825 0/10/2014 SPK value 0.5000	Tesi R S SPK Ref Val 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104	PA 6010B: 1 1801 40640 LowLimit 80	Total Recover Units: mg/L HighLimit 120	able Meta %RPD	n ls RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium	5 Samp Bato Analysis Result 0.52 0.49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020	S 325 3/10/2014 SPK value 0.5000 0.5000	Tesi R SPK Ref Val 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9	PA 6010B: 1 1801 40640 LowLimit 80 80	Total Recover Units: mg/L HighLimit 120 120	able Meta	n ls RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium	5 Samp Bato Analysis Result 0.52 0.49 0.49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020 0.0020	S 325)/10/2014 SPK value 0.5000 0.5000 0.5000	Tesi F SPK Ref Val 0 0 0 0	tCode: El RunNo: 2 SegNo: 6 %REC 104 98.9 98.9 98.9	PA 6010B: 1 1801 40640 LowLimit 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120	able Meta	n ls RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium	5 Samp Bato Analysis Result 0.52 0.49 0.49 0.49 52	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020 0.0020 1.0	S 325 3/10/2014 SPK value 0.5000 0.5000 0.5000 50.00	Tesi F SPK Ref Val 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104	PA 6010B: 1 1801 40640 LowLimit 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120	able Meta	l is RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium	5 Samp Bato Analysis <u>Result</u> 0.52 0.49 0.49 52 0.48	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060	S 325 325 325 325 325 325 325 325 325 325	Tesi SPK Ref Val 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8	PA 6010B: 1 1801 40640 LowLimit 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120	able Meta	lls RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead	5 Samp Bato Analysis <u>Result</u> 0.52 0.49 0.49 52 0.48 0.49	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060 0.0050	S 325 325 325 325 325 325 325 325 325 325	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 98.9 104 96.8 97.6	PA 6010B: 1 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120	able Meta	lls RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium	5 Samp Bate Analysis Result 0.52 0.49 0.49 0.49 52 0.48 0.49 51	Type: LC th ID: 151 Date: 10 PQL 0.020 0.0020 1.0 0.0060 0.0050 1.0	S 325 0/10/2014 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103	PA 6010B: 1 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium	5 Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51 49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0	S 825 9/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103 98.8	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium	5 Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51 49 0.50	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 1.0 0.050	S 325 325 325 325 325 325 325 325	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103 98.8 100	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver	5 Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51 49 0.50 0.10	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 1.0 0.050 0.0050	S 325 325 327 325 325 325 325 325 325 325 325	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103 98.8 100 102	PA 6010B: 7 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	able Meta	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 16 of 18

23-Oct-14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 4th QTR 10-1-14

Sample ID mb-1	SampType: MBLK	TestCode: SM2320B: A	kalinity	
Client ID: PBW	Batch ID: R21715	RunNo: 21715		
Prep Date:	Analysis Date: 10/6/2014	SeqNo: 637458	Units: mg/L CaCO3	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Total Alkalinity (as CaCO3)	ND 20			
Sample ID Ics-1	SampType: LCS	TestCode: SM2320B: A	kalinity	
Client ID: LCSW	Batch ID: R21715	RunNo: 21715		
Prep Date:	Analysis Date: 10/6/2014	SeqNo: 637459	Units: mg/L CaCO3	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Total Alkalinity (as CaCO3)	83 20 80.00	0 103 90	110	
Sample ID mb-2	SampType: MBLK	TestCode: SM2320B: A	kalinity	
Sample ID mb-2 Client ID: PBW	SampType: MBLK Batch ID: R21715	TestCode: SM2320B: A RunNo: 21715	kalinity	
Sample ID mb-2 Client ID: PBW Prep Date:	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474	kalinity Units: mg/L CaCO3	
Sample ID mb-2 Client ID: PBW Prep Date: Analyte	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474 SPK Ref Val %REC LowLimit	kalinity Units: mg/L CaCO3 HighLimit %RPD	RPDLimit Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3)	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value ND 20	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474 SPK Ref Val %REC LowLimit	kalinity Units: mg/L CaCO3 HighLimit %RPD	RPDLimit Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3)	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value ND 20 SampType: LCS	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474 SPK Ref Val %REC LowLimit TestCode: SM2320B: A	kalinity Units: mg/L CaCO3 HighLimit %RPD Ikalinity	RPDLimit Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3) Sample ID Ics-2 Client ID: LCSW	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value ND 20 SampType: LCS Batch ID: R21715	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474 SPK Ref Val %REC LowLimit TestCode: SM2320B: A RunNo: 21715	kalinity Units: mg/L CaCO3 HighLimit %RPD Ikalinity	RPDLimit Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3) Sample ID Ics-2 Client ID: LCSW Prep Date:	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value ND 20 SampType: LCS Batch ID: R21715 Analysis Date: 10/6/2014	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474 SPK Ref Val %REC LowLimit TestCode: SM2320B: A RunNo: 21715 SeqNo: 637475	kalinity Units: mg/L CaCO3 HighLimit %RPD Ikalinity Units: mg/L CaCO3	RPDLimit Qual
Sample ID mb-2 Client ID: PBW Prep Date: Analyte Total Alkalinity (as CaCO3) Sample ID Ics-2 Client ID: LCSW Prep Date: Analyte	SampType: MBLK Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value ND 20 SampType: LCS Batch ID: R21715 Analysis Date: 10/6/2014 Result PQL SPK value	TestCode: SM2320B: A RunNo: 21715 SeqNo: 637474 SPK Ref Val %REC LowLimit TestCode: SM2320B: A RunNo: 21715 SeqNo: 637475 SPK Ref Val %REC LowLimit	kalinity Units: mg/L CaCO3 HighLimit %RPD kalinity Units: mg/L CaCO3 HighLimit %RPD	RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 17 of 18

1410102 23-Oct-14

WO#:

QC SUMMARY REPORT

WO#: 1410102

23-Oct-14

Hall	Environmenta	l Analysis	Laboratory,	Inc.
		~	U /	

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 4th QTR 10-1-14

Sample ID MB-15759	SampType: MBLK	TestCode: SM2540C MOD: Total Dissolved Solids
Client ID: PBW	Batch ID: 15759	RunNo: 21752
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 638741 Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0	
Sample ID LCS-15759	SampType: LCS	TestCode: SM2540C MOD: Total Dissolved Solids
Sample ID LCS-15759 Client ID: LCSW	SampType: LCS Batch ID: 15759	TestCode: SM2540C MOD: Total Dissolved Solids RunNo: 21752
Sample ID LCS-15759 Client ID: LCSW Prep Date: 10/7/2014	SampType: LCS Batch ID: 15759 Analysis Date: 10/8/2014	TestCode: SM2540C MOD: Total Dissolved Solids RunNo: 21752 SeqNo: 638742 Units: mg/L
Sample ID LCS-15759 Client ID: LCSW Prep Date: 10/7/2014 Analyte	SampType: LCS Batch ID: 15759 Analysis Date: 10/8/2014 Result PQL SPK value	TestCode: SM2540C MOD: Total Dissolved Solids RunNo: 21752 SeqNo: 638742 Units: mg/L SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 18 of 18

	HALL
	ENVIRONMENTAL
	ANALYSIS
	LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

-

Client Name: Western Refining Southw Work	Order Number: 1410102		RoptNo: 1	
Received by/date: LM10/02/14				
Logged By: Anne Thorne 10/2/20	14 6:50:00 AM	anne Am	-	
Completed By: Anne Thorne 10/2/20	14	Dune Alum	~	
Reviewed By:	N2 rel	States 201		
Chain of Custody				······································
1 Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present	
2 Is Chain of Custody complete?	Yes 🗹	No 🗔	Not Present	
3. How was the sample delivered?	Courier			
<u>Log In</u>			[7]	
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗀		
5. Were all samples received at a temperature of $>0^\circ$ (C to 6.0°C Yes 🖌	No 🗆		
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗀		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗔		
8. Are samples (except VOA and ONG) properly preser	rved? Yes 🗹	No 🗖		
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆	
10 yrs () , , , , , , , , , , , , , , , , , ,	Voc. M	No	No VOA Vials	
10. VOA viais have zero neadspace?		No 🔽		
11. Were any sample containers received broken?	165		# of preserved	2.2
12. Does paperwork match bottle labels?	Yes 🗹	No 🗔	for pH:	STO .
(Note discrepancies on chain of custody)			(R2 g)	12 unless noted
13. Are matrices correctly identified on Chain of Custody	y? Yes 🗹	No 🛄	Adjusted	NU
14. Is it clear what analyses were requested?	Yes 🔽	No 🗌		t
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No	Checked by:	A
<u>Special Handling (if applicable)</u>				
16 Was client notified of all discrepancies with this orde	er? Yes 🗌	No 🗔	NA 🗹	

Person Notified:	Date
By Whom:	Via: 🗌 eMail 📄 Phone 🗍 Fax 📋 In Person
Regarding:	
Client Instructions:	and the second second second second second second second second second second second second second second second

4

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.3	Good	Yes			

Editivity With Editorial Ruth Project Name: Project Name: Project Name: Project Name: Project Name: Project Name: NN Project Name: Sample: Project Name:	of-Custody Record	Im-Around Time:	HALI	L ENVIRONMENTAL
Turie Turie <th< td=""><td>FINING D</td><td>Standard 🗆 Rush</td><td></td><td>LYSIS LABORATORY</td></th<>	FINING D	Standard 🗆 Rush		LYSIS LABORATORY
AC HORE ALL A	<u> </u>	oject Name:	www.ha	allenvironmental.com
Project #: Project With With With With With With With Wit	CR 4990	INJECTION Well Por	4901 Hawkins NE	- Albuquerque, NM 87109
And Manager: And His Hubbles Y or NI And Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And His Hubbles Y or NI Project Manager: And Hubbles Y or NI Project Manager: And Hubbles Y or NI Project Manager: And Hubbles Y or NI Project Manager: And Hubbles Y or NI Project Manager: And Hubbles Y or NI Project Manager: And Hubbles Y or NI Provent Hubbles Y or NI And Hubbles Y or NI Provent Hubbles Y or NI And Hubbles Y or NI Provent Hubbles Y or NI And Hubbles Y or NI Provent Hubble And Hubble Provent Hubble And Hubble Provent Hubble And	JN 87413 PI	oject #:	Tel. 505-345-3975	5 Fax 505-345-4107
Project Manager: Proj	4135			Analysis Request
Line Line	<u>0</u> _	oject Manager:	b (O) (J) (J)	(†0)
Parter H.Lul Vandadori) Sample Request ID Sample Request ID Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID Type and # Type and # Sample Request ID The And # Sample Request Reporter Repo			(SM)	5000 51000 51700
Sample Request ID Sample Request ID Sample Request ID Container Peebenative Feebenative Sample Request ID Type and # Type and # Type and # Type and # Type and # Type and # Filter Sample Request ID Sample Request ID Type and # Type and # Type and # Filter Sample Request ID Sample Request ID Sample Request ID Sample Request ID Type and # Filter Sample Request ID Sample Request ID Sample Remative Sample Request ID Sample Remative Sample Remative	KLevel 4 (ruli validauori)		IS 0 २२ (२२ (२२ (२२ (२२ (२२ (२२ (२२	282 1 ² 20 4 ²
Sample Request ID Container Type and # Type and # Type and # T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T		ampler: Loop n⊺ce: Macca ≦No	728 - 707 + 728 -	(A(
Sample Request ID Type and # Type Type and # Type and # Type Type and # Type and # Type Type and # Type an			0 01 (GI BE	A A A A A A A A A A A A A A A A A A A
Tivi. well Z-von HCI - with HCI - with the first and the first and the first and the first and the first and the first here is a second with the first here is a second by the first and	Sample Request ID	Container Preservative Container Type And # Type	TEX + MT TPH 8015B TPH 8015B	APRIO 1000 1000 1000 1000 1000 1000 1000 10
1-Liter amber 2C(1) X X 1-Soonil X X X 1-Soonil NACH -CU X 1-Soonil Z -CU X 1-Soonil <td< td=""><td>INI. well</td><td>3-VOA HCI -cul</td><td></td><td></td></td<>	INI. well	3-VOA HCI -cul		
1-500ml 1-500ml X X X 1-500ml 1-500ml X X X 1-500ml 1-500ml X X X 1-500ml 1-500ml X X X 1-500ml 1-500ml H4504 -CCl X 1-500ml 1-500ml H4504 -CCl X 1-500ml NdH -CCl X X 1-500ml NdH -CCl NdH		1-Liter auber 200		×
I-Seen I-Seen X X I-135 H-504 -CU X X I-560-11 H-504 -CU X X I-560-11 HV03 -COI X X Inv. Hold HV03 -COI X Inv. Received Dy: Date Time		122- [mog-		×
I- 135 Hasson, Husson, -CU X X 1- Exon, HUO3 -COI X X 1- Exon, MacH -COI X X 1- Seon, MacH COI X X 1- Seon		1-500ml	×	
I-seoned HNO3 COI X I-seoned MacH -COI X I-seoned NacH -COI X Inserved by: Pate Time Received by: Date Time Received by: Date Time At Abuldat Iolno Ird Intervention		- 125 1 H2SOH - CU	×	
The form the solution of the s		-500 HNO3 -201		
The first the fi		-seem! Nach -cul		
Iby: Iby: Iby: Iby: Iby: Iby: Iby: Received by: Date Time Remarks: Iby: Received by: Iby: Iby: Iby: Received by: Iby: Iby: Iby: Received by: Iby: Iby: Iby: Iby: Iby: Iby: Iby: Iby: Iby: Iby:		resorus ZN-Aceteral CO		
Iby: Bate Time Bate Time Khakon Muth Muth Muth Muth Makon Muth Muth Muth Muth Link Bate Time Remarks:				
The Knoken Muth With Walt Remarks: The Received by: Date Time Remarks: The Remarks:				
Iby: Beceived by: Date Time Remarks: F Knaken Ministructure Ministructure Ministructure Elist India Ministructure Bate Time Elist India India India				
By: Received by: Date Time Remarks: <i>Fraken Muchu Wult 16/14 1421</i> By: Lublet Received by: <u>Bate Time</u> <i>L</i> [h/h/d. [] (h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/h/				
The induction of the time date time the induction of the time	Hraken R	MINDATIC ANDE 16/14 1421	Remarks:	
	t house	eceived by: Date Time		

Appendix D Closure Plan

Western Refinery Southwest Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2

Closure Plan

In accordance with Rule 19.15.25 NMAC the following information describes the possible closure plan which would entail plugging and abandoning the proposed well bore and reclaiming the surface location to pre-drill status. This is Western's standard closure procedure.

All closure activities will include proper documentation and be available for review upon request. All required paperwork (sundry notices) will be submitted to NMOCD for approval prior to any field work taking place. All plug and abandon activities are intended to protect fresh water, public health and the environment.

General Plan

- 1. Notify NMOCD
- 2. Note: verify all cement volumes based on actual slurry to be pumped.
- 3. Review any COA's from NMOCD

Procedure

- 1 Move-in, rig up pulling unit. Pump & pit. Half tank for cement returns.
- 2 Hold safety meeting with rig crew and related personnel explaining the procedure and outlining potential hazards.
- 3 ND WH & NU BOP
- 4 TIH w/ CICR & set at ~ 7265'.
- 5 Load hole and circulate clean with fresh water.
- 6 Load tubing and pressure test tubing to 1000 psi.
- 7 Pull stinger out of CICR enough to load hole w/ water and circulate clean. Test casing to 500 psi.
- 8 Plug #1 (7265'-7483'). Mix & pump 85 sx (100 cf) of Class B neat cement. Sting out of retainer leaving 50' of cement on top of retainer. Note. Cement volumes will be adjusted if alternate but comparable cement is used (based on vendor selection). Volumes estimated using 100% excess.
- 9 Pull up hole.
- 10 Spot plug #2 in a balanced plug. Plug #2 Dakota: (6099'–6199'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.

- 11 Pull up hole & WOC. TIH & tag TOC.
- 12 Spot plug #3 in a balanced plug. Plug #3 Gallup (5549'-5649'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 13 Pull up hole & WOC. TIH & tag TOC.
- 14 Spot plug #4 in a balanced plug. Plug #4 Mesaverde (3285'-4087'). Mix & pump 150 sx (177 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 15 Pull up hole & WOC. TIH & tag TOC.
- 16 Spot plug #5 in a balanced plug. Plug #5 Chacra (2638'-2738'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 17 Pull up hole & WOC. TIH & tag TOC.
- 18 Spot plug #6 in a balanced plug. Plug #6 Pictured Cliffs (1668'-1768'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 19 Pull up hole & WOC. TIH & tag TOC.
- 20 Spot plug #7 in a balanced plug. Plug #7 Fruitland (1153'-11253'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 21 Pull up hole & WOC. TIH & tag TOC.
- 22 Spot plug #8 in a balanced plug. Plug #8 Surface Plug (350'-surface). Mix & pump 66 sx (77.9 cf) of Class B neat cement.
- 23 Fill up inside of casing w/ additional cement as needed to top off.
- 24 ND BOP & cut off well head.
- 25 Install P&A marker and cut off anchors.
- 26 RD & release rig and related equipment.
- 27 Remove all surface/production equipment.
- 28 Re-contour and re-claim surface/location as per NMOCD approved Reclamation plan.

Length		Тор	Bottom	
KB Adjustment	15.00	0	15.0	
4-1/2" PL casing/tubing		15.00	15.00	

WALSH ENGINEERING & PRODUCTION CORP.

Workover Cost Estimate

Western Refinery Southwest, Inc. AUTHORITY FOR EXPENDITURE

Mall Name ; WDW #2			Date: 2/2/	2016
Location: Sec 27, T29N, R11W, San Juan, NM	Objective:	Permanently	P&A Wellbore	
I Workover Cente	Tangible	Intangible	Total	
Apphore and Mine				
Completion Dig (19 hrs @ \$250/hr includes Mah de Mah, structure)		00 500	00 500	
Completion Rig (18 mis @ \$250/nr, includes Mob-de-Mob, crew travel)		29,500	29,500	
Completion Flatus/water nating (pump truck)				
Compart		7,200	7,200	
Tuhing Head and Mall Connection Fillings		24,650	24,650	
Tubing (490, ft @ 2.20, ft/ft)				
Sucker Pada (50 rada 30 60 finad)				
Dours bolo nump				
Downhole pump				
Pontols (topks, oto)		4 700		
Trucking		1,720	1,720	
Surface Ecolity Installation		5,100	5,100	
Destare Leastion				
Well Site Supervision		1 100		
Engineering		4,100	4,100	
Engineering Bito		1,000	1,000	
Dito				
Dipolines and Installation				
Tapk and Eithings				
Dieneral Costa		4.050		
Dispusar Cusis Motor		1,250	1,250	
Surface Perlamation		C 405	5 405	
D&A marker		5,125	5,125	
		135	135	
Workover Costs	0	79,780	79,780	
10% Contingency	Δ	7 072	7 078	
Total Workover Costs	•	97 759	07 750	
I VIGI WULKUVEL UUSIS	V	01,100	01,100	

Prepared By: John C. Thompson Date: 2/2/2016

Working Interest Owners

ESTIMATED COSTS ONLY--Each participating Owner to pay Proportionate Share of Actual Well Costs Subject to Operating Agreement

Mr. Jim Griswold, Bureau Chief NM Oil Conservation Division (OCD) Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Discharge Plan Application for UIC Class I Non-Hazardous Injection Well Proposed Waste Disposal Well (WDW) #2 Bloomfield Terminal Western Refining Southwest, Inc. (Western) Bloomfield, New Mexico

Dear Mr. Griswold:

The enclosed *Discharge Plan Application for UIC Class I Non-Hazardous Injection Well* revised pursuant to the conference call with the OCD staff on January 22nd, 2016. The purpose of the application for Waste Disposal Well #2 is to replace Disposal #1 (API # 30-045-29002) which was abandoned in 2015. The fluids to be disposed in the proposed injection well will be waste water system effluent, evaporation pond contact storm water and injection well stimulation/ maintenance liquids.

Western appreciates your assistance with this urgent matter. If there are any questions regarding the enclosed Discharge Plan Application, please contact Mr. Randy Schmaltz at (505) 632-4171.

Sincerely,

Mr. Mark Smith President Western Refining Southwest, Inc.

cc

Carl Chavez NMOCD Brandon Powell, NMOCD Phillip Goetze, NMOCD Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Revised August 1, 2011

Submit Original Plus 1 Copy to Santa Fe 1 Copy to Appropriate District Office

DISCHARGE PLAN APPLICATION FOR SERVICE COMPANIES, GAS PLANTS, REFINERIES, COMPRESSOR, GEOTHERMAL FACILITES AND CRUDE OIL PUMP STATIONS

(Refer to the OCD Guidelines for assistance in completing the application)

X New Renewal Modification

1. Type: UIC Class I Non-Hazardous Injection Well (WDW #2)

2. Operator: Western Refining Southwest, Inc.

Address: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413

Contact Person: Class I Non-Hazardous Injection Well Phone: 505-632-8013

3. Location: <u>SE</u> /4 <u>NE</u> /4 Section <u>27</u> Township <u>29N</u> Range <u>11W</u> Submit large scale topographic map showing exact location.

4. Attach the name, telephone number and address of the landowner of the facility site.

5. Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility.

- 6. Attach a description of all materials stored or used at the facility.
- 7. Attach a description of present sources of effluent and waste solids. Average quality and daily volume of waste water must be included.
- 8. Attach a description of current liquid and solid waste collection/treatment/disposal procedures.
- 9. Attach a description of proposed modifications to existing collection/treatment/disposal systems.
- 10. Attach a routine inspection and maintenance plan to ensure permit compliance.
- 11. Attach a contingency plan for reporting and clean-up of spills or releases.
- 12. Attach geological/hydrological information for the facility. Depth to and quality of ground water must be included.
- 13. Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.

14. CERTIFICATIONI hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

Name:	Bruce	D.	Davis		
Signature:	Bruce	ρ.	P		
E-mail Ad	dress: <u>b</u>	ruce	davis (DWNR.	Com

Title:	Director
Date:	3-2-16

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

4. Landowner of facility site.

San Juan Refining Company Attn: Western Refining Southwest, Inc. 1250 W. Washington St. Suite 101 Tempe, AZ 85281 Ron Weaver 505-632-8013

5. Description of the facility.

The proposed facility is an UIC Class I Non-hazardous Injection Well (WDW #2).

Purpose

The purpose of WDW #2 is to replace Disposal #1 (API# 30-045-29002) which was abandoned in 2015.

Location

The proposed well location is within the fence line of Bloomfield Terminal. See the figure and survey in Appendix A of this Discharge Plan Application.

Application for Permit to Drill

The Application for Permit to Drill (Form C-101) is included as Appendix A of this Discharge Plan Application. Form C-101 is also typically submitted under the Oil and Gas regulations, the format presents information also common for Class I injection wells under the Water Quality regulations. The Form C-101 includes general well data, well location survey (Form C-102), well design information including cement slurry details and a well drilling program.

Application for Authorization to Inject

The Application for Authorization to Inject (Form C-108) is included as Appendix B of this Discharge Plan Application. Although Form C-108 is typically submitted under the Oil and Gas regulations, the format presents information also common for Class I injection wells under the Water Quality regulations. The Form C-108 includes general well data, area of review information, proposed operation information, geologic data on the injection zone, the proposed stimulation program and other information.

6. Description of stored materials stored and used.

The proposed injection well will not be used to for material storage.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

7. Description of present sources of effluent and waste solids.

During workover (maintenance) operations, the proposed injection well WDW #2 will be a source of waste water and possibly waste solids. The waste water will be re-injected into the WDW #2. The waste solids will be characterized and disposed properly.

8. Current liquid and solid waste collection/treatment/disposal procedures.

The proposed injection well will be used to dispose of non-exempt non-hazardous waste water. A Injection Fluid Analytical is included as Appendix C of this Discharge Plan Application.

9. Description of proposed modifications to the existing collection/treatment/disposal systems.

The pumps and piping to injection well WDW #2 will be redesigned as needed to meet the pressure and flow demands determined during the injectivity testing. This redesign will allow treated waste water to be injected directly into the WDW #2 or directed to the evaporation ponds before injection into WDW #2.

10. Routine inspection and maintenance plan

The WDW #2 surface completion and associated flanges/pumps/piping will be visually inspected daily.

Mechanical Integrity Testing (MIT) will be conducted pursuant to 20.6.2.5204 NMAC. At a minimum, the program will include:

- A MIT at least once every five years or every time a well workover is performed, and
- An annual Bradenhead test.

11. Contingency Plan for Reporting and clean-up of Spills or releases.

The Bloomfield Terminal has an Emergency and Facility Response Plans in place respond releases including treated waste water. If a reportable quantity (5 bbl.) of treated waste water is released from the injection well, NMOCD and NMED Hazardous Waste Bureau will notified in accordance with applicable regulations. Containment, clean-up and reporting will commence as soon as practicable.

12. Geologic/Hydrological information.

Geologic information about the injection zone is included in Appendix B of this Discharge Plan Application.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

13. Facility Closure Plan.

A Closure Plan for WDW #2 is included as Appendix D of this Discharge Plan Application. The closure plan includes an estimate for Financial Assurance.

Appendix A Application for Permit to Drill

District I 1625 N. French Dr., Hobbs, NM 88240	State of New Mexico	Form C-101 Revised July 18, 2013
Phone: (575) 393-6161 Fax: (575) 393-0720 District II	Energy Minerals and Natural Resources	100350 5019 10, 2013
811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III	Oil Conservation Division	AMENDED REPORT
1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170	1220 South St. Francis Dr.	
District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462	Santa Fe, NM 87505	

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

		1.	Operator Name	and Address				² OGRID Number			
	Western Refining Southwest, Inc							267595 * API Number			
#50 County Road 4990 (PO Box 159) Bloomfield, NM 87413											
* Prop	erty Code		^{3.} Property Name Waste Disposal Well (WDW)					^م Well No. #2			
			7. 10	^{7.} St	irface Location	1					
UL - Lot H	Section 27	Township 29N	Range 11W	Lot Idn	Feet from 2028'	N/S Line North	Feet From 111'	Feet From E/W Line 111' East S			
1017 X 2017 X 2017 X 2017		Landre and Landre and Landre and Landre and Landre and Landre and Landre and Landre and Landre and Landre and L		* Propos	ed Bottom Hol	e Location					
UL - Lot	Section	Township	Range	Lot Idn	Feet from	N/S Line	Feet From	E/W Line	County		
	<u> </u>			9. Pc	 ool Informatio	n					
			515 513.020033	Country of the second s	States and a states of the sta				D 10 1		

Pool Name

Pool Code

^{11.} Work Type	¹² Well Type	¹² . Well Type I ³ . Cable/Rotary S R		^{15.} Ground Level Elevation	
N	S			5535' GL	
¹⁶ Multiple	¹⁶ Multiple ¹⁷ Proposed Depth NO ~ 7500'		^{19.} Contractor	^{20.} Spud Date	
NO			TBD	Est Marc 2016	
Depth to Ground water Less than 50'	Distance from	nearest fresh water well 660 '	Distance to	nearest surface water 1334°	

We will be using a closed-loop system in lieu of lined pits

^{21.} Proposed Casing and Cement Program

Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17-1/2"	13-3/8"	48 ppf – H40	~ 300'	464 sx	Surface
Int	12- ¼"	9-5/8"	36 ppf – J55	~ 3600'	857 sx	Surface
Prod	8-3/4"	7"	26 ppf – L80	~ 7500'	850 sx	Surface

Casing/Cement Program: Additional Comments

Will utilize a 2 stage cement job on the 7" casing w/ DV tool at $\sim 4000^{\circ}$

^{22.} Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
2M	2000 psi	2000 psi	Schaffer

^{23.} I hereby certify that the information given above is true and complete to the best of my knowledge and belief.	OIL CONSERVATION DIVISION			
I further certify that I have complied with 19.15.14.9 (A) NMAC 🗌 and/or 19.15.14.9 (B) NMAC 🔲, if applicable. Signature:	Approved By:			
Printed name: Bruce D. Davis	Title:			
Title: Director	Approved Date: Expiration Date:			
E-mail Address: bruce. davis @ WNR. com				
Date: 3-2-16 Phone: 602-286-1929	Conditions of Approval Attached			

DISTRICT 1 1625 N. French Dr., Hobbs, N.M. 88240 Phone: (676) 393-6161 Faxi (676) 303-0720 DISTRICT II 611 S. First St., Artesia, N.M. 66210 Phone: (675) 748-1283 Fax: (575) 748-6720 DISTRICT III 1000 Rio Brazos Rd., Aztec, N.M. 67410 Phone: (606) 334-6178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 87605 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department OIL CONSERVATION DIVISION

1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

□ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API	Number			^g Pool Code	19	[®] Pool Name						
⁴ Property C	ode	⁶ Property Name								6 We	ell Number	
		Waste Disposal Well (WDW)									2	
⁷ OGRID No).			75 88890 100	, ^D Ope	rator 1	Name				0	Elevation
26759	5			Wester	n Refinir	ng S	outhwest, Inc	с.				5535'
					¹⁰ Surf	ace	Location					
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Fee	t from the	East/West	line	County
H	27	29-N	11-W		2028		NORTH		111'	EAS1	•	SAN JUAN
			¹¹ Bott	om Hole	Locati	on I	f Different Fr	om	Surface			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Fee	t from the	East/West	line	County
¹⁸ Dedicated Acre	3		¹⁸ Joint or	Infill	14 Consolide	ation C	ode	15 Or	der No.			
NOATION			GOLONIET		G COMPI	TAIDTO		TATI				NGOLIDATED
NO ALLOW	ADLL W		VON-STA	NDARD 1	UNIT HAS	S BE	EN APPROVEI	\mathbf{BY}	THE DI	ISION	EN CC	UN2OPIDALED
16		010 11 1	1011 011	58	8'03'W -	262	4.16' (R)					
	- T-)	0.00 1	-		Az	17 OPE	TRATOR	CERT	IFICATION
	i.	19 56 5.000 PM	FND BLM "1999" BC			ļ		8	I hereby ce	rNfy that the	information the best of	on contained herein f my knowledge and
LATITUD	E: 36°41.	9162'N				1		WE	belief, and	that this orga	nization a	rither owns
LONGIL	IDE: 107-	58,1837	*			į.			land includ	ing the propos	ad bottom	hole location or
1110 27					1220	1	7	89.6	to a contra	of with an ou	mer of su	ch a mineral or
LATITUD	E: 36.698	3609° N	i.					54'(F	or a compu	isory pooling	order here	tofore entered by the
LONGITU NAD83	DE: 107.	970351" W					c		division.			
			<u> </u>			-+		Z	1	P		0
			2			ţ		0.0	K	1. C	1	11
	ļ					į		Į ×	Signature	SWC	- / U	12/23/15
						1		13	Jo	hu C.	Th	
	1					į.	444	575	Printed I	Name		00-100-11
						1	114		jou	men	Ishe.	13. not
				N		1			E-mail /	lddress		
	·		—Z	(1	 FND BL "1999"	MBC	18 SUI	RVEYOR	CERI	IFICATION
									I hereby co	rtify that the	well locat	ion shown on this plat
						1			was plotted	from field no r my supervis	tos of act	ual surveys made by that the same is true
	i					1			and correct	to the best of	my bella	f.
N09°	30' E					1			DECEM	IBER 12	, 265	N-RUC
						-			Date of S	urvey	EN.	ME SE W
						-+			Signature	and Seal of	Profession	FIRE AROLING
	1		•								- <(15702
			13									
	1									1	SP	
	Ì					1				-4	MININ PRO	Frank NAL S
MAG						i.			GLEN	W.RU.	SSE	Entimentanosses
INKO	l					1			Certificate	Number	-	15703
- N	i					-			2			

Western Refining Southwest, Inc. – WDW #2

Cement Slurry Details (Attachment for NMOCD – APD)

Note: Actual Slurry Design will vary depending upon vendor selection and actual hole conditions.

17-1/2" Hole - 13-3/8", 40 ppf, J55 casing at ~ 300 ft

394 (548 cf) sacks Type III Cement, 2% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 59.2% Fresh Water

Yield:1.39 cf/sx Slurry wt 14.60 ppg

12-1/4" Hole - 9-5/8", 36 ppf, J55 casing at ~ 3600 ft

Lead:

806 sacks (1621 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

50 sacks (70.5 cf) Type III Cement, 2.25% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 0.02% gps FP-6L, 60.4% Fresh Water

Yield: 1.41 cf/sx Slurry Wt: 14.5 ppg

8-3/4" Hole - 7", 26 ppf, L80 casing at ~ 7500 ft

Stage Tool (DV) at ~ 4000'

Stage no. 1

Lead:

224 sacks (450 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

180 sacks (338 cf) (10:90) Poz L:Type III Cement, 0.25% bwoc Calcium Chloride, 0.3% bwoc CD-32, 0.02 gps FP-6L, 0.5% bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 5 lbs/sx Kol-Seal, 87.8% Fresh Water

Yield: 1.88 cf/sx Slurry Wt: 13.0 ppg

Stage no. 2

Lead:

414 sacks (832 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

50 sacks (70.5 cf) Type III Cement, 2.25% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 0.02% gps FP-6L, 60.4% Fresh Water

Yield: 1.41 cf/sx Slurry Wt: 14.5 ppg

DRILLING PROGRAM Western Refining Southwest, Inc. Waste Disposal Well (WDW) #2 San Juan County, NM

Surface Location 2028' FNL & 111' FEL Section 27, T29N, R11W Graded Elevation 5535' <u>SHL Geographical Coordinates (NAD-83)</u> Latitude 36.698609° N Longitude 107.970351° W

Bottom Hole Location (Vertical Well) Same as Surface

DIRECTIONS TO Western Refining - WDW #2

- > From Bloomfield NM, go on South on HWY 550 to CR 4990
- > Turn left and go easterly on CR 4990 for ~ 1.0 mi.
- > Turn left (north) for 0.1 miles to new location.

Pre-Spud

- Identify Safe Briefing Areas on location. Prevailing wind is NW to SE. Attempt to locate briefing
 areas upwind in the corners of location. Note location of access road and provide for alternate exit if
 not up wind.
- Conduct rig inspection and pre-spud. Record "Rig-On-Daywork" and the Time & Date of well spud on both the Daily Drilling Report and the IADC Daily Drilling Report.
- Ensure regulatory notifications are made Notify the NMOCD, 24 hours prior to spudding the well, testing BOPE, casing, and cement jobs. The following information must be included: well name, legal location, permit number, drilling contractor, company representative, date & time of spud.
- Contact NMOCD Field Inspector Supervisor Brandon Powell 505-320-0200. Record time & date of notification on reports.
- Review and post NMOCD permits and conditions of approval. Ensure 100% compliance with all
 regulations and conditions.

Well Plan

- Drill 17-1/2" surface hole from 0' to 350'.
- Drill surface with a fresh water gel mud system.
- 8.3 -9.4 ppg, 32-75 vis, NC fluid loss, <5% LGS.
- Perform a deviation surveys at 100', 250' and TD.

- Control deviation as necessary.
- Run and cement 13-3/8" casing and cement to the surface.
- Contact NMOCD if cement is not circulated to surface to get remediation approved prior to 1" cement.
 If cement is below 200' from surface, a CBL may have to be run to determine cement top.
- Nipple up BOP and test BOPE
- Ensure all drill pipe has casing friendly hardbanding.
- Install ditch magnets and measure metal cuttings in a vis cup every tour.
- Drill 12-1/4" intermediate to ~ 3600' with a fresh water LSND mud.
- Short trip to surface casing to prepare hole for 9-5/8" casing.
- Run 9-5/8", 36 ppf J-55 casing to Intermediate TD (Clean threads & drift casing once it's on location, prior to running).
- Cement 9-5/8" casing in single stage. Calculate cement volumes to circulate cement to surface.
- Drill 8-3/4" to ~ 7500' w/ fresh water LSND mud.
- Short trip to intermediate to prepare hole for logs and 7" casing.
- Run triple combo open hole logs.
- Run 7", 26 ppf, L80 casing to TD (clean threads & drift casing once it's on location prior to running)
- Nipple down BOP, clean mud tanks.
- Release rig.

<u>Geology</u>

MD	Formation
Surface	Quatermary Alluvium
Joi	N
10'	Nacimiento
515'	Ojo Alamo
625'	Kirtland
1718'	Pictured Cliffs
1880'	Lewis
2688'	Chacra
3335'	Cliffhouse
3394'	Menefee
4037'	Point Lookout
4423'	Mancos Shale
5599'	Gallup
6060'	Greenhorn
6149'	Dakota
6365'	Burro Canyon
6411'	Morrison
7287'	Todilto
7315'	Entrada
7483'	Chinle

Casing Program:

Casing & Hole	Weight	Grade	Counling	Setting Depth (MD)	Top of Cement
13-3/8" (17-1/2")	48 ppf	H-40	LT&C	0-350 ft	To surface
9-5/8" (12-1/4")	36 ppf	J-55	LT&C	0-3600 ft	To surface
7" (8-3/4")	26 ppf	L-80	LT&C	0-7500	To surface

Mud logging: Commences at 300', 30-ft samples to TD, or as required to pick formation tops to TD

Open-Hole Logs: Triple Combo

Cased-Hole Logs: CBL

Rig-up

During rig-up, ensure that the following items are properly rigged up:

- Hydraulic remote choke and control panel (ensure that the choke manifold is configured properly to NMOCD standards)
- Trip tank (including piping, valves, etc.)
- Reliable wet-system bulk barite hopper (ensure that it is rigged up so that barite can be mixed prior to the suction tank and also so that barite can be mixed in the pre-mix tank)

Rig items to be taken care of the following issues prior to spud:

- Change seats and valves in mud pumps, redress relief valves, check pre-charge pressures of pulsation dampeners
- Repair all suction valves, etc., in mud tanks as required
- Check all centrifugal pumps, including charger pumps, mud mixing pumps, desander/desilter pumps, etc.

17 1/2" Surface Hole

MIRU During rig-up and while drilling surface hole, ensure that the following items are properly rigged up:.

Conduct rig inspection and pre-spud. Record "Rig-On-Daywork" and well spud time/date on Daily Report and on IADC Daily Drilling Report.

 Ensure regulatory notifications are made – NMOCD, 24 hours prior to spudding the well, testing BOPE, casing, and cement jobs. The following information must be included: well name, legal location, permit number, drilling contractor, company representative, date & time of spud. Contact NMOCD Field Inspector. Record name of government personnel contacted and time & date of notification on reports.

Procedure

Bottom-Hole Assembly (BHA) is to consist of the following:

- 1. PU 17-1/2" BHA
 - 17-1/2" surface hole bit
 - Bit sub (ported for float) 7-5/8" reg x 6-5/8" reg
 - Shock Sub
 - 4 ea. 8" DC's
 - Cross over 6-5/8" x 4-1/2"
 - 8 ea. 6" DC's
- 2. Drill 17-1/2" surface hole from 0' to 350'.
- 3. Drill surface with fresh water gel mud system. Drill surface with a fresh water gel mud system containing fresh water gel, poly-plus RD, detergent and 2% KCL
- 4. 8.3 -9.4 ppg. 32-75 vis, NC fluid loss, <5% LGS
- 5. Control deviation as necessary by varying RPM & WOB.
- 6. Install ditch magnets and measure metal cuttings in a vis cup every tour.
 - a. Take survey at 100', if the hole is straight take a second survey halfway to TD and at 13-3/8" casing point.
- 7. Ensure that all rig solids control equipment are working properly.

Target mud properties:

MW (PPG)	Funnel Viscosity Sec	PV	YP	Gels 10s/10m	MBT	Са	CI-	LGS
8.3 – 9.4	3 <mark>8 - 4</mark> 5	<12	8 - 18	1/2	<15 ppb	800-1200 mg/l	<1200 mg/l	ALAP

- 8. Drill to a minimum of 350-ft RKB. Adjust TD depth as required to fit the casing to the hole. Circulate and pump high viscosity sweeps as required. Make a wiper trip if any drag coming off bottom, otherwise continue POOH to run pipe.
- 9. RU and run 13-3/8" 48# H-40 LT&C casing.
 - a. Clean, visually inspect, and drift the casing on the rack.
 - b. Test slurries with actual mix water in advance. Ensure that Cement Company provides pumping time data from lab tests based on actual mix water and bulk cement as loaded for the job.
 - c. Run casing as follows:
 - Float Shoe
 - One (1) joint of 9-5/8" 36# J-55 LT&C casing
 - Float Collar
 - 13-3/8" 48# H-40 LT&C casing to surface.
 - d. Thread-lock the float shoe and float collar with equivalent thread-lock compound. Make up remaining joints with API modified thread compound. Ensure the float equipment is PDC friendly. Run 5 bow-spring centralizers with one 10-ft from the shoe, then on every jt to surface.
 - e. Fill the pipe as it is run.
 - f. Follow Wellhead Recommended Installation Procedure.
- 10. With the 13-3/8" casing run to bottom, circulate a minimum of one complete hole volume (casing volume + annular volume) before cementing as follows:

- a. Pump schedule (based on 125% excess)
 - 10-bbls Freshwater spacer
 - 394 sx (548 cf) 15.6 ppg
 - Drop top plug
 - Displace with surface drilling mud
- b. Bump the plug with 500 psi over final circulating pressure. Release pressure and then check the integrity of the float equipment.

Note: Pressure test casing to 1500 psi for 30 minutes. Pressure test the casing when pressure testing the BOPE.

- c. Ensure that 13-3/8" landing joint is centered in rotary table when Casing Head is landed.
- d. Report the following on the daily drilling report:
 - Spacer and cement slurry volumes, compositions, and properties (density, yield, etc.)
 - Displacement volume, fluid type, and density
 - Circulating pressure before bumping the plug and pressure that plug was bumped
 - Volume of fluid bled back and whether float equipment held or not
 - Whether cement was returned to surface and estimated volume of cement returns
 - Any other pertinent information about the cement job.
- e. If the cement falls back or does not return to surface, perform a top job with 1" tubing. Top Job Cement Slurry to consist of Class "G" Premium w/ 2% CaCl₂ (or similar cement).
- f. REGULATORY APPROVAL MUST BE GIVEN PRIOR TO PUMPING TOP JOB.
- g. WOC for a minimum 12 hours before drilling out.
- h. While waiting on cement, remove landing joint, nipple up BOPE,
- 11. Follow Wellhead Recommended Wellhead Installation Procedure for 13-5/8" 3,000 psi wellhead. The technician should remove plugs from side outlets, install side outlet valves, and confirm proper installation of entire 3M wellhead assembly equipment prior to pressure testing BOPE.
- 12. Nipple up 13-5/8" 3M BOPE, :
 - a. See attachment showing 2M BOPE (NOTE: Will test per NMOCD specs for 2M System as per APD)
- 14. Ensure that third party pressure test company personnel perform function and accumulator draw down tests by shutting off air and electric power to accumulator.
 - Check nitrogen pre-charge pressure for each accumulator bottle.
 - Record initial accumulator manifold pressure, open and shut all BOP equipment and hydraulic valves, and record final accumulator manifold pressure.
 - Ensure that results of function and accumulator draw down tests and any equipment deficiencies are noted on the Daily Drilling Report and the IADC Daily Drilling Report. Third party pressure test company personnel should provide report of accumulator unit inspection, including nitrogen pre-charge pressures for each accumulator bottle, to the rig supervisor.
- 15. Set 13-5/8" 3M BOP test plug (C22) in Casing Head bowl and open lower valve on Casing Head.
 - **Note:** Ensure that third party pressure test company personnel test all BOP equipment, choke manifold, and all surface equipment to low pressure of 250 psi and rated working pressure (2000 psi) for 10 minutes each test.
 - Note: Third party pressure test personnel should record and annotate all BOPE pressure tests on calibrated chart recorder with appropriate scale for test

pressures. One set of pressure recorder charts should be left onsite with drilling foreman and another set of pressure recorder charts should be submitted to the State Inspectors.

16. Remove 3M BOP test plug. Install retrievable long bowl protector (wear bushing) as required.

12-1/4" Section

Important Notes:

- This interval will be drilled with fresh water-base mud (WBM) LSND system. Weight up as required, 8.5 – 9.4 ppg, 42-60 sec/qt vis, 4-6cc WL, YP 8-18, maintain less than 2% LGS, pH 9.0-9.8.
- No mud materials should be mixed without explicit instructions from the mud engineer. Also
 ensure that good housekeeping is practiced on the top of the mud tanks to minimize the
 possibility of paper, plastic, or some other foreign object being dropped into the mud tanks, which
 could interfere with the pumps or be pumped down the hole.
- Wiper trip to surface to prepare for casing run.
- Adjust mud weight and LCM as necessary to prevent losses and gains.

Procedure

1. PU 12-1/4" BHA

4.

- 12-1/4" NOV
- NOV Mud Motor 7/8 5.0 .28 Revs per gallon
- 3 pt String IBS (Stabilizer)
- 2 ea. 6-1/2" DC's
- 3 pt String IBS (Stabilizer)
- 12 ea. 6-1/2" DC's
- 4 ea. 4-1/2" HWDP
- 4 ¹/₂" DP to surface
- 2. TIH and drill out float equipment
- 3. Drill 12-1/4" intermediate hole to TD ~ 3600'
 - Record all pressure tests on chart or Pason.
 - Drill out with fresh water based mud system as described above
 - Perform a deviation surveys every 500'
 - Continue to drill ahead with 12-1/4" PDC bit.
 - a. The 12-1/4" hole will be drilled with LSND WBM (reference mud program).
 - b. Record bit on bottom hours and record mud motor hours daily in remarks section of morning report.
- 5. Drill to Intermediate TD of ~3600'
- 6. Circulate hole clean and **Strap Out of Hole.**
- 7. While circulating prior to POOH, work pipe to assist in solids removal.
- 8. POOH to Surface Casing Point. If there is any drag, make wiper trip back to bottom and circulate and condition hole before POOH again.

Run 9-5/8", 36#, J55 LT&C casing.

9.

- Casing Running Order:
- One (1) Float Shoe
- One (1) joint 9-5/8", 36#, J55 LT&C casing
- One (1) Float Collar
- 9-5/8", 36#, J55 LT&C casing
- If necessary run DV tool to ensure cement to surface (Note: verify DV tool placement with Engineer prior to running casing)
- 9-5/8", 36#, J55 LT&C casing, as required, to surface
- Centralizers:
- One Bow Spring centralizer on bottom 10 jts.
- One Bow Spring centralizer on each 4th joint of casing to surface casing
- Two Bow Spring centralizers above and below each DV tool
- Clean threads, drift & visually inspect the casing on the rack.
- Torque each joint of casing to optimum make-up torque.
- Thread-lock the float collar and float shoe with thread lock compound.
- Use API modified pipe dope for remaining casing joints.
- Utilize a safety clamp (dog collar) on approximately first 10 joints of casing until enough weight is run to ensure casing slips are engaging properly. Upon reaching surface casing shoe, swap out elevators for minimum of 250-ton slip-type elevators and ensure circulating swage is ready to be picked up in the event difficulty is encountered running casing through open hole.
- 10. Wash casing down as required. Space out and land casing in wellhead with mandrel-type casing hanger.
 - **Note:** Record weight that casing is landed in bowl with mandrel-type casing hanger in Daily Drilling Report.
- 11. Once casing is landed, circulate a <u>minimum</u> of two full bottoms-up or until hole cleans up, whichever is greater, before cementing. Gradually stage pump rate up to 8-10 bpm while circulating to ensure that cavings and/or shale fragments are circulated out of the hole to minimize risk of packing off during the cement operations. Carefully monitor hole for losses while circulating.
- 12. Cement casing in single stage (if heavy losses or hole conditions dictate install DV tool as needed) Note: verify cement volumes with Engineer prior to ordering cement. Refer to vendor Cement Recommendations for cement details.
 - a. Pump schedule:
 - Pump 10-bbls fresh water to fill lines and prime pumps
 - Pressure test lines to 2,000 psi
 - Pump 5 bbls of fresh water then 10 bbls of mud clean prior to pumping cement.
 - Mix and pump 12.5 ppg lead cement slurry: 806 sx (1621 cf)
 - Mix and pump 14.5 ppg tail cement slurry: 50 sx (70.5 cf)
 - b. Displace with drilling fluid at 6-8 bpm. Carefully observe well for losses, and adjust displacement rate if required. Bump the plug with 500 psi over final circulating pressure.
 - c. Release pressure and check pressure integrity of the float equipment. NDBOPE. Lift stack.

- 13. Set slips on 9-5/8" casing. Energize slips with jam bolts.
- 14. LD 13-5/8" BOPE
- 15. NUBOPE (9-5/8"*2,000 psi)
- 16. Test BOPE
 - a. Test rams, HCR, manual valves and wellhead to 250 psi low and 2,000 psi high
 - b. Test manual chokes to 250 psi low and 2,000 psi high
 - c. Test kill line, choke line, choke manifold and all surface tools (TIW's, inside bop, etc) to 250 psi low and 2,000 psi high
 - d. Test 9-5/8" casing to 2,000 psi / 20 minutes.
 - e. Install wear bushing.

8 ³/₄" Section

Important Notes:

- This interval will be drilled with fresh water-base mud (WBM) LSND system. Weight up as required, 8.5 – 9.4 ppg, 42-60 sec/qt vis, 4-6cc WL, YP 8-18, maintain less than 2% LGS, pH 9.0-9.8.
- No mud materials should be mixed without explicit instructions from the mud engineer. Also
 ensure that good housekeeping is practiced on the top of the mud tanks to minimize the
 possibility of paper, plastic, or some other foreign object being dropped into the mud tanks, which
 could interfere with the pumps or be pumped down the hole.
- Wiper trip to Intermediate to prepare for casing run.
- Adjust mud weight and LCM as necessary to prevent losses and gains.

Procedure

13. PU 8 ¾" BHA

- 8 3/4" NOV DSHI516G-G2
- NOV Mud Motor 7/8 5.0 .28 Revs per gallon
- 3 pt String IBS (Stabilizer)
- 2 ea. 6-1/2" DC's
- 3 pt String IBS (Stabilizer)
- 12 ea. 6-1/2" DC's
- 4 ea. 4-1/2" HWDP
- 4 1/2" DP to surface
- 14. TIH and drill out float equipment
- 15. Drill 8-3/4" hole
 - Record all pressure tests on chart or Pason.
 - Drill out with fresh water based mud system as described above
 - Perform a deviation surveys every 500'
- 16. Continue to drill ahead with 8 $\frac{3}{4}$ " PDC bit to a TD of ~ 7500'.
 - c. The 8 ¾" hole will be drilled with LSND WBM (reference mud program).

- d. Record bit on bottom hours and record mud motor hours daily in remarks section of morning report.
- 17. Plan on bit trip at or near top of Dakota formation. Change out bit to 8-3/4" SKHI616D-D2 and fresh mud motor.
- 18. Continue drilling to TD of ~7500' (10' to 15' into Chinle Formation)
- 19. Circulate hole clean and Strap Out of Hole.
- 20. While circulating prior to POOH, work pipe to assist in solids removal.
- 21. POOH to Intermediate Casing Point. If there is any drag, make wiper trip back to bottom and circulate and condition hole before POOH again.
- 22. TOH & Run Open Hole Logs
- 23. TIH to TD, circulate & condition hole as necessary. TOH, LDDP & DC's
- 24. Run 7" 26# L-80 LT&C casing.
 - Casing Running Order:
 - One (1) Float Shoe
 - One (1) joint 7" 26# L-80 LT&C casing
 - One (1) Float Collar
 - 7" 26# L80 LT&C casing
 - Place DV tool at 4000' (Note: verify DV tool placement with Engineer prior to running casing)
 - 7" 26# N80 LT&C casing, as required, to surface
 - Centralizers:
 - One Bow Spring centralizer on bottom 10 jts.
 - One Bow Spring centralizer on each 4th joint of casing to surface casing
 - Two Bow Spring centralizers above and below each DV tool
 - Clean threads, drift & visually inspect the casing on the rack.
 - Torque each joint of casing to optimum make-up torque.
 - Thread-lock the float collar and float shoe with thread lock compound.
 - Use API modified pipe dope for remaining casing joints.
 - Utilize a safety clamp (dog collar) on approximately first 10 joints of casing until enough weight is run to ensure casing slips are engaging properly. Upon reaching surface casing shoe, swap out elevators for minimum of 250-ton slip-type elevators and ensure circulating swage is ready to be picked up in the event difficulty is encountered running casing through open hole.
- 25. Wash casing down as required. Space out and land casing in wellhead with mandrel-type casing hanger.
 - **Note:** Record weight that casing is landed in bowl with mandrel-type casing hanger in Daily Drilling Report.
- 26. Once casing is landed, circulate a <u>minimum</u> of two full bottoms-up or until hole cleans up, whichever is greater, before cementing. Gradually stage pump rate up to 8-10 bpm while circulating to ensure that cavings and/or shale fragments are circulated out of the hole to minimize risk of packing off during the cement operations. Carefully monitor hole for losses while circulating.

27. Cement casing in 2 stages as follows: (Note: verify cement volumes with Engineer prior to ordering cement). Refer to vendor Cement Recommendations for cement details.

First Stage:

- f. Pump schedule:
 - Pump 10-bbls fresh water to fill lines and prime pumps
 - Pressure test lines to 2,000 psi
 - Pump 5 bbls of fresh water then 10 bbls of mud clean prior to pumping cement.
 - Mix and pump 12.5 ppg lead cement slurry: 224 sx (450 cf)
 - Mix and pump 13.0 ppg tail cement slurry: 180 sx (338 cf)
 - Drop first-stage shutoff plug (top plug)
 - Pump 10-bbls fresh water
 - Displace with drilling fluid at 6-8 bpm. Carefully observe well for losses, and adjust displacement rate if required. Be sure to slow down displacement rate to 3 bpm or less for 15-20 bbl before and for 15-20 bbl after the first-stage shutoff plug reaches the DV tool at approximately 4,000'.
- g. Bump the plug with 500 psi over final circulating pressure.
- h. Release pressure and check pressure integrity of the float equipment.
- i. Drop opening plug.
- j. Wait required time for opening plug to fall inside casing to top of 2nd DV tool. This time will likely be required to put the cap back on the cement head after dropping the opening plug.
- k. Pressure up to required pressure to open 1st stage tool.
- Break circulation and continue to circulate while WOC. Carefully bring up pump rate and monitor returns for losses. Record volume of cement returned to surface. Circulate and WOC for 4 hours or longer before pumping second stage cement slurry, if samples indicate additional WOC time would be beneficial.

Second Stage:

- a. Pump schedule:
 - Pump 20-bbls water-based spacer mixed at 8.4 lb/gal.
 - Mix and pump 12.5 ppg lead cement slurry: 414 sx (832 cf).
 - Mix and pump 14.5 ppg tail cement slurry: 50 sx (70.5 cf)
 - Drop closing plug
 - Pump 10-bbls freshwater
 - Displace with drilling fluid at 6-8 bpm then slow down displacement rate to 3 bpm before bumping plug.
- b. Bump the plug with 500 psi over final circulating pressure, then slowly bring pressure up to closing pressure, which will be approximately the final circulating pressure plus required pressure to close 1st DV tool. Release pressure and check for flow back to ensure that the 1st stage tool is closed.
- c. Report the estimated volume of cement returns.
- m. Release pressure and check pressure integrity of the float equipment.
- Lay down landing joint. Install the mandrel pack-off using a stand of HWDP and test pack-off seals to 2000 psi.
- ND 11" 3M BOP Stack. NU 7-1/16" 5M x 4-1/16" Tubing Head Assembly. Be sure that bowl of Tubing Head Assembly is well greased to prevent corrosion while waiting on workover rig to complete well for SWD disposal.

- 30. NU 4-1/16" 5M Gate Valve, in order to secure well.
- 31. Release and RD drilling rig.

John Thompson Engineer

Appendix B

Application for Authorization to Inject

DATE IN	SUSPENSE	ENGINEER	LOGGED IN	TYPE	APP NO.

ABOVE THIS LINE FOR DIVISION USE ONLY

ST. ST

NEW MEXICO OIL CONSERVATION DIVISION

- Engineering Bureau -1220 South St. Francis Drive, Santa Fe, NM 87505

ADMINISTRATIVE APPLICATION CHECKLIST

THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND REGULATIONS WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE

Application Acronyms:

	[NSL-Non-Stan [DHC-Down [PC-Poo] [EOR-Qual	dard Location] [NSP-Non-Standard Proration Unit] [SD-Simultaneous Dedication] hole Commingling] [CTB-Lease Commingling] [PLC-Pool/Lease Commingling] ol Commingling] [OLS - Off-Lease Storage] [OLM-Off-Lease Measurement] [WFX-Waterflood Expansion] [PMX-Pressure Maintenance Expansion] [SWD-Salt Water Disposal] [IPI-Injection Pressure Increase] ified Enhanced Oil Recovery Certification] [PPR-Positive Production Response]
[1]	TYPE OF AP [A]	PLICATION - Check Those Which Apply for [A] Location - Spacing Unit - Simultaneous Dedication NSL NSP SD
	Check [B]	One Only for [B] or [C] Commingling - Storage - Measurement DHC CTB PLC PC OLS OLM
	[C]	Injection - Disposal - Pressure Increase - Enhanced Oil Recovery WFX PMX SWD IPI EOR PPR
	[D]	Other: Specify Class I Non-hazardous Injection Well
[2]	NOTIFICATI [A]	ON REQUIRED TO: - Check Those Which Apply, or Does Not Apply Working, Royalty or Overriding Royalty Interest Owners
	[B]	X Offset Operators, Leaseholders or Surface Owner
	[C]	X Application is One Which Requires Published Legal Notice
	[D]	Notification and/or Concurrent Approval by BLM or SLO U.S. Bureau of Land Management - Commissioner of Public Lands, State Land Office
	[E]	For all of the above, Proof of Notification or Publication is Attached, and/or,
	[F]	Waivers are Attached

[3] SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE OF APPLICATION INDICATED ABOVE.

[4] **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Bruce D. Davis	Bruce D. P-	Director	3-2-16
Print or Type Name	Signature	Title	Date
		e-mail Address	is @ WNR. com

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 FORM C-108 Revised June 10, 2003

	APPLICATION FOR AUTHORIZATION TO INJECT					
I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No					
Ш.	OPERATOR: Western Refining Southwest, Inc.					
	ADDRESS: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413					
	CONTACT PARTY: <u>Ron Weaver</u> PHONE: <u>505-632-8013</u>					
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.					
IV.	Is this an expansion of an existing project? Yes X. No If yes, give the Division order number authorizing the project:					
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.					
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.					
VII.	Attach data on the proposed operation, including:					
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.). 					
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.					
IX.	Describe the proposed stimulation program, if any.					
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).					
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.					
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.					
XIП.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.					
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.					
	NAME: Bruce D. Davis TITLE: Director					
	SIGNATURE: Brok DATE: 3-2-16					
*	E-MAIL ADDRESS: bruce. davis @ WNR. Com If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted.					

Please show the date and circumstances of the earlier submittal:
III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.
- XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

Side 2

Side 1	INJE	CTION WELL DATA SHEET	
OPERATO	R: Western Refining Southwest, Inc.		
WELL NAI	ME & NUMBER: Waste Disposal Well (WDW)	#2	
MELL LOC	CATION: 2028' FNL & 111' FEL	H 27	T29N R11W
	FOOTAGE LOCATION	UNIT LETTER SECTION	TOWNSHIP RANGE
	WELLBORE SCHEMATIC	WELL CO Surface (<u>ONSTRUCTION DATA</u> Casing
Date Drawn		Hole Size: <u>17-1/2</u>	Casing Size: <u>13-3/8, 48 ppf, H40</u>
17-1/2" Hole	0HI 4887 4887	Cemented with: <u>394</u> sx.	or 548 ft ³
		Top of Cement: Surface	Method Determined:
		Intermediat	te Casing
		Hole Size: 12-1/4"	Casing Size: 9-5/8", 36#, J55
12-114- Hole	- 3600° , 365°, J45	Cemented with: 857 sx	or 1693 ft ³
	DV tool at 4000 KB	Top of Cement: Surface	Method Determined:
		Production	n Casing
		Hole Size: 8-3/4"	Casing Size: 7", 26 ppf, L80
	Injection Suing A Ann A Add 100	Cemented with: 868 sx.	or 1692 ft ³
		Top of Cement: Surface	Method Determined:
0	IPC FB Packer at ~ 7265 '	Total Depth: ~ 7500'	
000	Proposed Injection Zone: Entrada Sandstone: 7315' - 7485'	Injection Interv	val (Proposed)
8-314" 1100	7*, 28#, USS	7315 ² feel	st to 7483' (perforated 4 spf)
Pro	od Csg @ 7300" YGB	(Perforated or Open H	Hole; indicate which)

Tubing Size	: 4-	1/2", 10.5 ppf	<u> </u>	ining Material:	Plastic Lined
Type of Packe	3r:	7" Baker "FAB-1"	(or similar model'		
Packer Settin	1g Depth:	~ 7265'			
Other Type	of Tubing/	'Casing Seal (if	applicable): <u>Bak</u>	ker Model "KBH-22"	Anchor tubing seal assembly, lat
			Additional	l Data	
1. Is this a	new well	drilled for injec	stion?	XYes	No
If no, fc	or what pur	rpose was the w	vell originally di	rilled?	
2. Name o	f the Inject	tion Formation.	: Entrada		
3. Name o	f Field or l	Pool (if applica	ble):		
4. Has the interval	well ever s and give	been perforatec plugging detail	l in any other zc l, i.e. sacks of co	me(s)? List all such p ement or plug(s) used.	erforated
5. Give th injectio	e name and n zone in t	d depths of any his area:	oil or gas zones Pictured Cliffs	s underlying or overly s, Chacra, Mesaverde,	ng the proposed Gallup, Dakota

Side 2

Western Refining Southwest, Inc.

Waste Disposal Well (WDW) #2

C-108 Data Sheet

V. Maps identifying all wells within 2 ½ miles of proposed injection well and Area of Review (AOR) of 1mile radius.

The maps are below.

								1000		CONTRACTOR DE LA CONTRACT		
	**	book be	0 0 00 0* 8	φ. φ.		1 - N - N - N - N - N - N - N - N - N -	₩ 0 ³ • 0	0#*	**	u ug o	*#	
	00 00 8 5 4 4 4	4 4 4 4 4 4 4 4 6 4 4 4 6 4 4 6	0 00 ×	** * • • *	N92 ** *	₩ 0 ₩ ₩ 0 ₩ ₩ 7 ₩ ₩ ₩ ₩ ₩ ₩ ₩	× × ×	9 9 9 • • • •	ې پ پ پ	* *	MAGL	
	* * * *	* ***	4 4 8	10 W 8 44 9 K	4 94 14 14 14 14 15	*** ay	** 0 ** 0	* *	0 7 x		* * 20N	
	6 10 ⁹	* **	o o* abos	* * * or or	* *	1870 (M	*** *	A**	**	8º *	和	
	6 Fi *	***	* * *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	100 v x	P R P	4 · · ·	Bax P	* 1 0 ⁴⁰	6 6 6 ⁴	o M	
	8 8 8	***	· ***	* • *	**	14 # 0 14 WA		*	•	* * *	a-	
	89 ¥≉ 0	т 4 . 16 .	* *	* * *	* * * * *	8 ***	*	09.9	** ">	* • •	a)	
	130 11 34 #1	n 0 ⁰	104	0 °0 *	* * **********************************	0 * 2 * 1 0 * 30 #	.9 * ·	- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	n de s'a	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	-=
	PRETTYLAD	* *	= u * 0, *	· · · · · · · · · · · · · · · · · · ·	+*+ + + + + + + + + + + + + + + + + + +	N. +	• ¥.*	*	* # * # * *	* *	+	с С
	54 0 4 4	** **	0 0	× + × 00	** * ***	R C	*** *** **	*** 0 ***	* 7. *			
Map	****	* * *	*	8 * **		Disposal	* *** *** * ***	* 0 • • • • •	и *ч ж	5 6 4 0		N
ase l	no K		₩ ₩0 ₩ ₩0 ₩ 4	* ************************************	N + N +	* * *** & 84	₩ 420°¢ #	**	به بر تو به	• ⁸ N1		-
Vell B	Ne	00 0 # 0	*	# 0 *	* * * **	* * ` \ * ** \	• 45 50 •	14 04 14 10 14 10	× ×	* N8	ť	
Λ	*	n ¤₩ ¥.₩	* 10 Mad [#] 10 %	* * *	* av +* * Ry * *	6 10 10 10 10 10 10 10	8	* *	÷ *	∧ ∧ * *		0-
	*	** 4*	8 80 4 W	* *	* * *	q. ⁴ = #	*	* ¥ * *	¤ ************************************	₹ ¥ 8		
	°* y	to t	* *	* * *	¢ 0 [€]	8 4 4	******	** **	0 4 4 0 0 4 4	**	L	- I
	8 6 4	& ***	* # * *	u v v	*** * • * 3	4 ¢	¢ #	n 9 19	6 6	« ***		÷
	Ф ф	* 0% ¥	**	* + + + + + + + + + + + + + + + + + + +	4%	* *	** »	*	1 0 12 W	*. *	*	
	*	4 4 4 ×	* * =	****	N Yo	(* 学	***	£1 € * * ***	• • * *	*** *	*	
	* **	и н н ж	0 <u>*</u> 0	* * *	· · · · · · · · · · · · · · · · · · ·	*	*	* *	14 × 4	6 * * *	ä	
	*	* *	р ч и <mark>е</mark> в	* * *	*8 **	*	* * *	* **	CANYON UN	* *	the last	
	***	* * *	0 # 12 m 10	*	5	* *	10 ***	95- × 0	CANYON #26	× × M	*	
	*	** * **	* * *	A d		*	6 ¥	* *	Der teoor	* NZ *	塔	
	a **		20 X	* * * * * *		8 8	* * * N	57 XF	۹ ۹	00 17 *		
	*		8	0.9 0	0-	*	* *		-		*	

	Att o	in the second se	36	拉米 林
***		€ * * ********************************	<i>☆</i> ★ ☆	**
**	***		•** •	12
ф.		₩ ₩ ₩ ₩ ₩ ₩	я 35 35	*
*-\$95- -\$9- •			*	¢- *₩
*•	· · · · · · · · · · · · · · · · · · ·		•☆ ★ •☆ ★ ☆	• * *
W/	↔ 2 8	SAL #1	☆ ~ ★ ★ ★ ★	*) •
余 • • • • • • • • • • • • • • • • • • •	* *	DISPO	** **	• *
* N	Ø ₩ Ø	◆ ★ 物 ★ ★ ☆	₩ × × × ×	● 10 本 本
Ç	↓ ~ ~ ~ ~ ↓	· 58 将	× ter ter	
	* *	☆ ★ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥ ≥	•	×.
*		€ [†] ⁄⁄⁄ [†] [†] [†] [†] [†]	* ØØ *	ক প্র কি
(II)	× → × × × × × × × × × × × ×	3 9_ ★ ★	32	₩
¥ = = •	* * ¢* * •	* *	₩ ₩	*
	* * * *	* **	*	80

Area of Review 1 mile radius

VI. Tabulation of data of all wells of public record within the AOR which penetrate the proposed injection zone.

The only well that penetrates the proposed injection zone is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations.

Tabulation of wells within the 1-mile AOR is below.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2 Well List for 1-Mile Area of Review (AOR)

ß	5,950	5,970	6,200	6,150		6,030			6,260	6,365	6,350	6,350	1,487	1,747	6,314	1,620	6,3US	PTC'T	01210	0,45U	1,44U		2,300	1000	C+7.1	100'7	100 0	100 C	2,951	CdE,d	C7C'D	0,385	0,380	2 GDE	CODE C	6 740	6.502	6,508	6,508		4,331	4,331	5,760		6,216	2,830	2,850	1,500	2,840				-	6,525	1,810	1,890
Wir Cum	1,291	1,472	1,283	1,964	1,056	1,172			4,546	211		25,920	716		6,176		850/8	791 C	10712	115.1	nca	Vo	no un	500	DIT	005	HCE'Z	LVL	747	2,414	0.022	8,033	15477	1485	1 770	7 506	8.346	1,661	2,536	27,028	1,390	893	657	2,137	1,247	1,244	1,556	1,120	1,900		8,653	107,818	9,116	15,362	6,720	5,522 B,922
sas cum	714,731	602,470	464,380	318,931	95,176	255,800			2,820,296	2,573,971	2,646,060	189,125	368,487	355,978	4,343,480	804,069	/////1454/5	1 FOC 500	1+1 0 0 0 0 0 0	110,040,0	164,643	101 330	10/ 005	803,208	745 745	040 040	100 020 L	000 LEL	337,989	4/4,351	DUC EVC	464,405	117,164	205 435	350.087	474 439	1.095.534	160,434	152,025	330,236	619	181,392	73,691	320,803	142,149	325,500	434,028	151,744	166,541		46,691	226,581	200,914	300,103	116,412	75,123
oil cum 0	56,157	65,478	36,820	63,095		7,534			22,497	16,714	15,187			10	41,071		45,25	17 690	14,150	AC/'C7				OT .	162		EAC	CNC	-	3,328	ancio	4,252		2		4 630	2.986	370			150		2,426		5,765						3,866	823		2,529		
Lease Code	006883	006883	006918	006918		006918			022839	000410	007282		015829	251550	006258	009267	006262	00000	etcono	0000100	857900	C7C700	707170	650/00	202400	149770	Jubres	077270	022685	022629	214610	073416	97470	251120 210100	007557	007287	006883	006918	006918		000412	022601	022841		021407	006264	006270	006268	006269							
Prod Zone Name	GALLUP /SD/	GALLUP /SD/	GALLUP /SD/	GALLUP /SD/	PICTURED CLIFFS	GALLUP /SD/	MESAVERDE	MORROW	DAKOTA	DAKOTA	DAKOTA	FRUITLAND COAL	FRUITLAND	PICTURED CUFFS	DAKOTA	FRUITLAND	DAKOLA	PAKOTA	CANOLA DAVOTA	UAKUIA	PHUILIANU		LINUNA ALIT	PICIUKED CUPPS	PARMINGLUN	CHALRA	FRUILANU CUAL	CHACKA	CHACRA	DAKOTA	DAKOTA	DAKUIA	CHALKA	CHACKA	CHACRA	DAKOTA	DAKOTA	DAKOTA	CHACRA	FRUITLAND COAL	MESAVERDE	CHACRA	GALLUP /SD/	FRUITLAND COAL	GALLUP /SD/	CHACRA	CHACRA	FRUITLAND	CHACRA	ENTRADA	GALLUP /SD/	DAKOTA	FRUITLAND COAL	DAKOTA	FRUITLAND COAL	FRUITLAND COAL
Status Name	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	INACTIVE	INACTIVE	ACTIVE	INACTIVE	INACTIVE	ACTIVE	INACTIVE	INACTIVE	INACI NE	ACTIVE	ALIIVE	ALIIVE	A MALINE	ALINE	INALINE	INACI IVE	ALIVE	ACTIVE	INAL INC	INACTIVE	ACTIVE	ACTIVE	ACTIVE	ACIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	INACTIVE	INACTIVE	INACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE	ACTIVE
County Name	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	NINOT NAC	NAUL NAS	SAN JUAN	NIKOT NIKO	SAN JUAN	NAUL NAS	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	NINDE NING	SAN JUAN	SAN JUAN	SAN JUAN	SAN ILIAN	SAN ILLAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN	SAN JUAN					
Field Name	ARMENTA	ARMENTA	ARMENTA	ARMENTA	FULCHER KUTZ	ARMENTA	SWD	SWD	BASIN	BASIN	BASIN	BASIN	AZTEC	FULCHER KUTZ	BASIN	AZTEC	BASIN	ALIEL	NICHO NICHO	NICKS	AZ LEC	CTERO	UIEKO	FULCHER KUIZ	UNDESIGNATED	UIEKO	BASIN	UIEKU	OTERO	BASIN	DACIN	BASIN	UIEKU	OTERO	OTERO	BASIN	BASIN	BASIN	OTERO	BASIN	BLANCO	OTERO	ARMENTA	BASIN	ARMENTA	OTERO	OTERO	AZTEC	OTERO	SWD	ARMENTA	BASIN	BASIN	BASIN	BASIN	BASIN
Longitude	-107.9548384	-107.9618893	-107.9716743	-107.9808835	-107,9808835	-107.9620229	-107,9736785	-107.9586722	-107.9598182	-107.9734791	-107,9834612	-107.9834612	-107.9541735	-107.9841029	-107.9311406	-107.9750193	-107.972768	1007/005//0T-	COCCCO6-/01-	ERUCCOR./UI-	141186./01-	CC0/006-/07-	8175455./01-	8545485.105-	SCIPCE./UI-	1977/96./01-	8404595./0E-	ototecs Lot	-107.9732919	-107.9565825	2007HDE'/DT-	E0616/6//01-		48455687.01- 4944664	955666 201-	107 9815395	-107.9551454	-107.9659406	-107.9659406	-107.9644588	-107.9644588	-107.9644588	-107.9525892	-107,9525892	-107.9804042	-107.9723245	-107.9810701	-107.9820557	-107.9820563	-107.9586722	-107.9721325	-107.9721325	-107.9632207	-107,9587095	-107,9808151	-107.9729853
Latitude	36.69244745	36.69445794	36.68790014	36.69549308	36.69549308	36.6874019	36.69640689	36.70129353	36.70149705	36.69478221	36,69567609	36.69567609	36.69953096	36.69234828	36.70608404	36.70664386	35.70654763	CC/CONT/96	1007000000	3022220102	36./0619366	20/00/0404000	35.53480338	2966/169.95	36.69189/86	36./U182344	TE/F/D/ 95	TC/S/D/ OF	36.69465987	36.70815951	20.03333002	36.69983513	51.0538294.45	36.69192545	C81289 35	301/00/0C	36.69192559	36.6849902	36.6849902	36.69991548	36.69991548	36,69991548	36.69824062	36,69824062	36,68874761	36.70637919	36.70553482	36.69985569	36.69966343	36.70129353	36.69461272	36.69461272	36.69257114	36.6942192	36.70572753	36.69957456 36.69410423
Location	29N 11W 26P NW SE SE	29N 11W 26K SE NE SW	29N 11W 34A C NE NE	29N 11W 27K NW NE SW	29N 11W 27K NW NE SW	29N 11W 35C SE NE NW	29N 11W 27I NW NE SE	29N 11W 26B 5W NW NE	29N 11W 26B SW NW NE	29N 11W 27I SW NE SE	29N 11W 27L NE NW SW	29N 11W 27L NE NW SW	29N 11W 26H NW SE NE	29N 11W 27M NE SW SW	29N 11W 22N SW SE SW	29N 11W 220 NE SW SE	29N 11W 22P SE SE	TOTAL TANK CAR NE SW	SOLUTION TO ANY THE SAM	MS MS MS MTT NS7	29N 11W ZZN SE SW	ZONI YOUR OLD LINE INC.	29N TTW 26I SW NESE	29N TIW Z/M NE SW SW	29N 11W 26P NW 56 56	29N TTM 798 26 NM NE	Z9N 11W Z3K 5W NE 5W	29N 11W 23K 5W NE 5W	29N 11W 27I SW NE SE	29N 11W Z3J SE NW SE	AND SCH AND SC	29N 11W 2/H NW SE NE	29N 11W 2/H NW 5E NE	29N 11W 26N NW SE SW	AND ATT AN EVALUATE NE	20N 11W 27F NW 5F NW 5F NW	29N 11W 26P NW SF SF	29N 11W 35E NE SW NW	29N 11W 35E NE SW NW	29N 11W 26F NW SE NW	29N 11W 26F NW SE NW	29N 11W 26F NW SE NW	29N 11W 26H SE SE NE	29N 11W 26H SE SE NE	29N 11W 34C NE NE NW	29N 11W 22P NW SE SE	29N 11W 22N SW SE SW	29N 11W 27F NW SE NW	29N 11W 27F NW SE NW	29N 11W 26B SW NW NE	29N 11W 27I SW NE SE	29N 11W 27I SW NE SE	29N 11W 26N NW SE SW	29N 11W 26J SW NW SE	29N 11W 22N W2 SE SW	29N 11W Z7H NW 5E NE 79N 11W 27L
Operator Name	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES D&G CO LP	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES ORG CO LP	SAN JUAN REFINING COMPANY	XTO ENERGY INCORPORATED	XTO ENERGY INCORPORATED	BP AMERICA PRODUCTION COMPANY	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES ORG CO LP	HOLCOMB OIL & GAS INCORPORATED	SOUTHERN UNION PRODUCTION COMPANY	MANANA GAS INCORPORATED	PICKETT JOHN C	MANANA GAS INCORPORATED		DP AIVIERICA FRUDUCI IUN LUMPAINI	BURLINGION RESOURCES DAG COLP	MANANA GAS INCORPORATED	CHAFARMAL OLD & GAS LOWITANT	SOUTHLAND KOYALLY COMPANY LLC	BURLINGION RESOURCES ORG CO LP	GENERAL MINERALS CORPORATION	XIU ENERGY INCORPORALED	HOLCOMB UIL & GAS INCORPORALEU	HOLCOMB UIL & GAS INCURPURATED	XTO ENERGY INCORPORATED	XTO ENERGY INCORPORATED	ATO ENERGY INCOMPONATED	XTO ENERGY INCORPORATED	XIO ENERGY INCORPORALED	SOUTHLAND ROYALTY COMPANY LLC	BUILLINGTON PESOLIPCES OF COL	BURUNGTON RESOURCES ORG COLF	BURINGTON RESOURCES ORG COLP	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES O&G CO LP	HOLCOMB OIL & GAS INCORPORATED	BP AMERICA PRODUCTION COMPANY	XTO ENERGY INCORPORATED	HOLCOMB OIL & GAS INCORPORATED	HOLCOMB OIL & GAS INCORPORATED	SOUTHLAND ROYALTY COMPANY LLC	MANANA GAS INCORPORATED	MANANA GAS INCORPORATED	MANANA GAS INCORPORATED	MANANA GAS INCORPORATED	XTO ENERGY INCORPORATED	XTO ENERGY INCORPORATED	XTO ENERGY INCORPORATED	BURLINGTON RESOURCES O&G CO LP	BURLINGTON RESOURCES O&G CO LP	MANANA GAS INCORPORATED	HOLCOMB OIL & GAS INCORPORALED HOLCOMB OIL & GAS INCORPORATED
Well Num	100		8	80	80	S									23									×												u							2	6	5	2					LR	IR	100	4		2
Lease Name	CALVIN	CALVIN	CONGRESS	CONGRESS	CONGRESS :	CONGRESS	DISPOSAL	ASHCROFT SWD	SULLIVAN GAS COM D	DAVIS GAS COM F	MANGUM	MANGUM	SULLIVAN	GARLAND B	COOK	GRACE PEARCE	HARTMAN	PAN AMERICAN SI ALE COM	PEARLE GAS LUIVI	CALVIN	COOK	LEA ANN	DELO	GARLAND B	DELO	EARLBSOLUVAN	STATE GAS COM BS	SIAIE GAS LUM BS	DAVIS GAS COM G	PEARCE GAS COM	SULLIVAN GAS CUNI D	DAVIS GAS COM F	DAVIS GAS COM F	CONGRESS	STIMMATT N	AdaNici IAA	CALVIN	CONGRESS	CONGRESS	DAVIS GAS COM J	DAVIS GAS COM J	DAVIS GAS COM J	EARL B SULUVAN	EARL B SULUVAN	SUMMIT	NANCY HARTMAN	MARY JANE	LAUREN KELLY	MARIAN S	ASHCROFT SWD	DAVIS GAS COM F	DAVIS GAS COM F	CALVIN	CALVIN	ROYAL FLUSH	JACQUE
Primary API	130045251950000	30045256120000	30045256570000	30045256730000	30045256730001	30045256750000	30045290020000	30045307880000	30045077330000	30045078250000	30045078350000	30045078350001	30045078680000	30045079030000	30045079400000	30045079590000	30045079610000	000050020202000	000000000000000000000000000000000000000	00005002155005	30045130890000	0000227720000	20000/541254005	000075/1755005	30045226390000	00005915254005	300452355000UL	0000222200000	30045235540000	30045240820000	20092240830000	30045240840000	30042240840000	30045245/20000		300425746730000	30045247720000	30045248370000	30045248370000	30045253290000	30045253290000	30045253290000	30045256210000	30045256210001	30045257070000	30045267210000	30045267310000	30045273610000	30045273650000	30045307880000	30045308330001	30045308330000	30045311180000	30045330930000	30045343120000	30045344090000 30045344630000
Production ID	00430452519502290	00430452561202290	00430452565702290	00430452567302290	00430452567377200	00430452567502290	00430452900296160	00430453078896162	100430450773371599	00430450782571599	00430450783571599	100430450783571629	00430450786871200	100430450790377200	00430450794071599	00430450795971200	00430450796171599	0042042042040000	607100011000011000	90000000000000000000000000000000000000	004304513089/1200	001170/070400400	00430452145/82329	004304521/32/1200	00430452263966627	57579291575405575	004304523550/1b25	10043045235508252	100430452355482329	00430452408271599	507/107/107/107/108	300430452408471599	500430452408482329	500430452457282329 00430457457293329	CTCTOC/CHTCHTCHTO	00410430423705000	00430452477771599	00430452483771599	00430452483782329	100430452532971629	00430452532972319	100430452532982329	00430452562102290	100430452562171629	00430452570702290	100430452672182329	100430452673182329	100430452736171200	100430452736582329	100430453078896436	100430453083302290	100430453083371599	900430453111871629	300430453309371599	300430453431271629	300430453440971629 100430453446371629
Map Symbol	0 13	0 13	0 13	0 13	0 13	0 13	1	13	G 23	G 23	G 23	G 23	G 23	G 23	G 23	G 23	57 50	5 1	3	2 0	27 0	1	27	6 23	5 10	17 17	G 40	1 22	G 25	G 22	5	6 25	5 22	2 00	20	17 IC	6 23	G 23	G 23	G 23	G 23	G 23	G 23	G 23	G 23	G 23	G Zā	G 25	G 23	1 23	G 23	G 23	G 22	6 23	G 21	G R 23

VII. Operation Data

- 1. A. Average Daily Injection Rate = 3,500 bbls.
 - B. Maximum Daily Injection Rate = 8,500 bbls.
- 2. The system is closed (water will be collected onsite as part of the Bloomfield Terminal's process and pumped over to the injection well).
- 3. Proposed pressures
 - A. The average and maximum injection pressures will be determined from a step rate test run after the well is completed. The anticipated injection pressures are ~ 2000 psi.
- 4. The fluid to be disposed in the proposed injection well will be Waste Water Treatment System effluent, Evaporation Ponds contact storm water and Injection Well Stimulation and Maintenance fluids. Table 1 contains information about the injection fluid including source, waste type, frequency and discharge volume. Table 2 contains information about the sources on Waste Water Treatment Plant influent. An Analytical Summary of the fluids disposed in Disposal #1 2014 Annual report is presented in Table 3. This summary best characterizes the fluid to be disposed.

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Sources of Injection Fluids Table 1

					;
Waste Water Source	Description	Waste Type	Frequency	Discharge Volume	
Waste Water Treatment System Effluent	The waste water treatment system processes waste water from terminal. The system consists of three stages : an API Separator, Benzene Strippers and Aeration Lagoons (aka. Aggressive Biological Treatment). ¹²	Non-Exempt	Routine	October to April - 20 to 50 GPM April to October - 50 to 100 GPM	
Contact Storm Water - Evaporation Ponds	Precipitation (storm water) that falls into the evaporation ponds is contained and discharged directly to the WDW $\#2$ injection well.	Non-Exempt	Non-Routine	Dependent on Precipitation	
Injection Well Stimulation and Maintenance	Fluids produced from the injection well during stimulation and maintenance operations.	Non-Exempt	Non-Routine	Dependent on scope of work	
1. Final waste water treatment consists of Aggressive Bio	ological Treatment (ABT).				1

2. Process Sewer System conveys waste water from various collection points to the waste water treatment system.

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Waste Water Treatment Plant Influent Table 2

		and the second se	and the second second second second second second second second second second second second second second second	
Waste Water Source	Description	Waste Lype	Frequency	DISCOARGE VOLUME
Recovered Ground Water	Ground water remediation efforts includes pump and treat remedies. Hydrocarbon impacted water is recovered from multiple recovery wells and the Hammond Ditch French Drain Recovery System. Recovered water containing trace hydrocarbons is discharged to the process sewer system. ^{1,2}	Non-Exempt	Routine	October to April - 15 to 45 GPM April to October - 30 to 90 GPM
Boiler	Boiler blowdown waste water containing dissolved solids is discharged to the terminal process sewer system.	Non-Exempt	Routine	1,200 gallons per day
Heater Treater at Terminals	Steam is used to separate water from crude oil. Waste water containing trace hydrocarbons and dissolved solids is discharged to process sewer system.	Non-Exempt ³	Routine	150 gallons per day
Boiler Feed Water Treatment System	Raw water is treated by this system to remove impurities before being supplied as feed water to the boiler system. Waste water from water softening units containing dissolved solids is routinely discharged to the process sewer system. ¹	Non-Exempt	Routine	280 gallons per day
Storage Tanks	Crude and product storage tanks are occasionally drained of bottom/decanted water. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent on Crude/Product Quality
Recoverable Material	The recoverable material is processed by the API Separator to recover the oil from water.	Non-Exempt ³	Non-Routine	Dependent of Water Fraction
Process Equipment Cleaning	Wash water used in maintenance of process equipment. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt	Non-Routíne	Dependent on Maintenance Scope and Schedule
Hydrotest Water	Water used for Mechanical Integrity Testing (MIT) of equipment such as Tanks, piping, etc. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent of MIT Scope and Schedule
Contact Storm Water	Storm water exposed to contarninants by contact with process equipment is contained and discharged to the process sewer system. Contact storm water may contain trace hydrocarbons and dissolved solids.	Non-Exempt	Non-Routine	Dependent on Precipitation

1. Process Sewer System conveys waste water from various collection points to the waste water treatment system.

2. The River Terrace recovered groundwater is treated using a Granular Activated Carbon (GAC) System. The GAC effluent is recycled in the terminal process water system.

3. Bloonnfield Terminal is a transportation facility. The exemption of oil and gas exploration and production wastes does not apply to transportation facilities.

Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Volatile Organic Compounds (ug/L)	Minister and All	1/23/2014	and statute of	7/28/2014	10/1/2014
1.1.1.2-Tetrachloroethane		< 10	na	<20	< 5.0
1,1,1,2 Tethenoroethana	·	< 10	na	< 2.0	< 5.0
1,1,2,2 Tetraphloroethane		< 20	na	<40	< 10
1,1,2,2-1 etrachoroethane		<10	na	< 2.0	< 5.0
1,1,2-Thenoroemane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethane		<10	па	< 2.0	< 5.0
1,1-Dichloroetnene		< 10	na	< 2.0	< 5.0
1,1-Dichloropropene		< 10	na	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane	participant a list destruction of the second second	< 20	na	< 4.0	< 10
1,2-Dibromoethane (EDB)		< 10	na	< 2,0	< 5.0
1,2-Dichlorobenzene		< 10	na	< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	< 5.0
1,2-Dichloropropane		< 10	na	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,3-Dichlorobenzene	a non-second and a second second second	< 10	na	< 2.0	< 5.0
1.3-Dichloropropane		< 10	na	< 2.0	< 5.0
1 4-Dichlorobenzene	7500	< 10	na	< 2.0	< 5,0
1-Methylnanhthalene		< 40	па	< 8.0	< 20
2.2-Dichloropropage	a - nan an c anan an	< 20	na	<40	< 10
2-Butanone		200	па	< 20	< 50
2-Chlorotoluene		< 10	na	<20	< 5.0
2 Hovemone		<100	na	< 20	< 50
2 Mathulaanhthalana		< 100	na	< 8.0	< 20
2-Memymaphinaiche		< 10	114	< 2.0	< 5.0
4 Target Italian		<10	114	< 2.0	< 5.0
4-isopropyitoluene		< 10	па	< 2.0	< 50
4-Methyl-2-pentanone		< 100	па	~20	< 30
Acetone		1400	na	85	120
Benzene	500	< 10	na	< 2.0	< 5.0
Bromobenzene		< 10	па	< 2,0	< 5.0
Bromodichloromethane		< 10	na	< 2.0	< 5.0
Bromoform	and the second second second second	< 10	na	< 2.0	< 5.0
Bromomethane		< 30	na	< 6.0	<15
Carbon disulfide		< 100	na	< 20	< 50
Carbon Tetrachloride	500	< 10	na	< 2.0	< 5.0
Chlorobenzene	100000	< 10	na	< 2.0	< 5.0
Chloroethane		< 20	na	< 4.0	< 10
Chloroform	6000	< 10	na	< 2.0	< 5.0
Chloromethane		< 30	na	< 6.0	<15
cis-1,2-DCE		< 10	па	< 2.0	< 5.0
cis-1.3-Dichloropropene		< 10	na	< 2.0	< 5.0
Dibromochloromethane		< 10	na	< 2.0	< 5.0
Dibromomethane		< 10	na	< 2.0	< 5.0
Dichlorodifluoromethane		< 10	na	< 2.0	< 5.0
Ethylbenzene		< 10	na	<20	< 5.0
Hevachlorobutadiene	500	< 10	na	<20	< 5.0
Isopropulbanzapa	500	< 10	114	<20	< 5.0
Mothyl tort hutyl other (MTRE)		< 10	na	<20	< 5.0
Methylana Chlorida	energy in the interim the state of the	< 20	na	<60	< 15
Methylene Chloride		< 30	114	< 1.0	< 10
	2	< 10	na	<4.0	< 10
n-butyibenzene		~10	na	>0.0	~ 13
n-rropyidenzene		< 20	na	~ 2.0	~ 5.0
sec-ButyIbenzene	4 1 - 5 (1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	< 10	na	< 2.0	< 5.0
Styrene		< 10	na	< 2.0	< 5.0
tert-Butylbenzene		< 10	na	< 2.0	< 5.0
Tetrachloroethene (PCE)		< 10	па	< 2.0	< 5.0
Toluene		< 10	na	< 2.0	< 5.0
trans-1,2-DCE		< 10	na	< 2.0	< 5.0
trans-1,3-Dichloropropene		< 10	na	< 2.0	< 5.0
Trichloroethene (TCE)		< 10	na	< 2.0	< 5.0
Trichlorofluoromethane		< 10	na	< 2.0	< 5.0
Vinyl chloride	200	< 10	na	< 2.0	< 5.0
Vulenes Total		< 15		<30	<75

Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
10 million (10 million)	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Semi-Volatile Organic Compounds (ug/L)		a sale of the	ar least in the		CONSIST. SUST
1,2,4-Trichlorobenzene		< 50	na	<100	< 10
1,2-Dichlorobenzene		< 50	па	< 100	< 10
1,3-Dichlorobenzene		< 50	na	<100	< 10
1,4-Dichlorobenzene	7500	< 50	па	< 100	< 10
1-Methylnaphthalene	(-1	< 50	na	<100	<10
2,4,5-Trichlorophenol		< 50	па	<100	<10
2,4,6-Trichlorophenol	2000	< 50	na	< 100	< 10
2,4-Dichlorophenol		<100	na	< 200	< 20
2,4-Dimethylphenol		< 50	na	< 100	< 10
2,4-Dinitrophenol	Later Management	<100	na	< 200	< 20
2,4-Dinitrotoluene	130	< 50	na	<100	< 10
2,6-Dinitrotoluene		< 50	na	< 100	< 10
2-Chloronaphthalene		< 50	па	< 100	< 10
2-Chlorophenol	albuite (partie) - province of a second second second second second second second second second second second s	< 50	na	< 100	< 10
2-Methylnaphthalene		< 50	na	< 100	< 10
2-Methylphenol		< 50	na	< 200	< 20
2-Nitroaniline		< 50	ла	<100	< 10
2-Nitrophenol		< 50	na	<100	< 10
3.3'-Dichlorobenzidine		< 50	na	210	< 10
3+4-Methylphenol		< 50	na	< 100	< 10
3-Nitroaniline	2	< 50	na	< 100	< 10
4.6-Dinitro-2-methylphenol		<100	na	< 200	< 20
4-Bromophenyl phenyl ether		< 50	na	<100	< 10
4-Chloro-3-methylphenol		< 50	na	<100	< 10
4-Chloroaniline		< 50	na	<100	< 10
4-Chlorophenyl phenyl ether	A second state of the seco	< 50	na	< 100	< 10
4-Nitroaniline		< 50	na	<100	< 10
4-Nitronhenol		< 50	na	< 100	< 10
Acenaphthene		< 50	na	< 100	< 10
Acenaphthylene		< 50	na	<100	<10
Aniline	**************************************	< 50	na	<100	< 10
Anthracene		< 50	na	<100	<10
Azobenzene		< 50	na	< 100	< 10
Renz(a)enthreene		< 50	na	< 100	< 10
Benzo(a)autore	terre and the second second second second second second second second second second second second second second	< 50	na	< 100	< 10
Benzo(b)fluoronthono		< 50	na	< 100	< 10
Benzo(c) hillorantinene		< 50	na na	< 100	< 10
Benzo(k)fluorenthane		< 50	na	< 100	< 10
Denzo(k)nuoranunene		< 100	na	< 200	< 10
Benzul elected		< 50		<100	< 10
Big(2 shlaresthaw) mothers		< 50	na	< 100	< 10
Bis(2-chloroethoxy)methane		< 50	na	< 100	< 10
Bis(2-chloroceny))ether	(man)	< 50	na	<100	< 10
Bis(2-chiofoisopropyi)ethel Bis(2-chiofoisopropyi)ethel		< 50	na	< 100	< 10
Bis(2-entymexyf)phinalaic		< 50	na	< 100	< 10
Gebeele		< 50	114	< 100	< 10
Carbazole		< 50	na	<100	< 10
Direction		< 50	na	<100	< 10
Dibenz(a,n)anthracene		< 50	IIa	< 100	< 10
Diothyl abthalata		< 50	ila re	< 100	< 10
Dimethyl abtholata		< 50	na	< 100	< 10
Dineutyi phinaiate		~ 50	112	< 100	< 10
Di-n-buryi primaiate	and the second second	~ 50	na	<100	< 10
Di-n-octyl primalate		~ 50	na	< 100	< 10
Fluorantnene		× 50	na	< 100	< 10
Fluorene	120	< 50 < 50	na	<100	~ 10
riexachiorobenzene	130	> 30	na	< 100	< 10
	006	~ 50	BN	< 100	< 10
Leveland	2000	<u>> 30</u>	na	< 100	< 10
riexachioroethane	3000	> 30	na	<100	~ 10
Indeno(1,2,3-cd)pyrene		> 30	па	< 100	< 10
Isophorone	anangaran kata serina seri	> 00	na	<100	~ 10
INaphthalene	0000	< 50	na	<100 <100	< 10
Nitrobenzene	2000	< 50	na	< 100	< 10
N-Nitrosodimethylamine		< 50	na	< 100	< 10
N-Nitrosodi-n-propylamine		< 50	na	< 100	< 10
N-Nitrosodiphenylamine	100000	< 50	na	< 100	< 10
Pentachlorophenol	100000	< 100	па	< 200	< 20
Phenanthrene		< 50	na	< 100	< 10
Pnenol		< 50	na	< 100	< 10 < 10
Pyrene		< 50	na	< 100	< 10
Pyridine	5000	< 50	na	< 100	< 10

Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwis	se stated)			1.418	
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate		35	па	41	26
Total Dissolved Solids		5240	na	1380	742
pH (pH Units)		6.25	па	7.10	7.08
Bicarbonate (As CaCO3)		380	na	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	na	480	110
Magnesium		75	na	99	23
Potassium		37	na	36	8.2
Sodium		1000	na	1100	220
Total Alkalinity (as CaCO3)		380	na	220	150
Total Metals (mg/L)		STRUCTURE DATE			
Arsenic	5.0	< 0.020	na	< 0.020	< 0.020
Barium	100.0	0,56	na	0.63	0.20
Cadmium	1.0	< 0.0020	na	< 0.0020	< 0.0020
Chromium	5.0	< 0.0060	па	< 0.0060	< 0.0060
Lead	5	< 0.0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0.2	< 0.0010	na	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity		The part of the second			
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1,6	na	<1.0	3.0
Ignitability (°F)	<140° F	>200	na	>200	>200
Corrosivity (ph Units)	≤2 or ≥ 12.5	6.25	na	7.44	6.82

a = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

5. A water sample and corresponding water analysis will be provided once the well is perforated and a water sample can be obtained. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations. The NMOCD records did not containing any data regarding the in-situ water quality found in the Ashcroft SWD #1 prior to injection.

VIII. Geology

Underground Drinking Water Sources

The known fresh water zones for the immediate area of the injection well are the Nacimiento and Ojo Alamo Formations of the Tertiary Age. The Nacimiento occurs at the surface and is about 570 feet thick in the immediate area. The Ojo Alamo is about 165 feet thick at an approximate depth of 569 to 734 feet.

Most of the water wells in the surrounding area are concentrated along the San Juan River flood plain and terraces north of the river and Bloomfield Terminal. These wells are completed in the Quaternary sand and gravels at depth of approximately 25 to 75 feet. These sand and gravels rest upon the Nacimiento.

One well (POD# SJ 02148) in the SE quarter of Section 27, T29N, R11W was drilled to a depth of 305 feet intersecting a water bearing sand within the Nacimiento at 225 to 285 feet with an estimated yield of 10gpm. The surface elevation is approximately 20 feet above the surface at proposed injection well location. The total depth of the well is at an approximate elevation of 5,250 feet. This is the deepest water well drilled in the study area according to the NM State Engineer's Office online records. The Point of Diversion Summary for the well is included (below).

New Mexico Office of the State Engineer Point of Diversion Summary

		(quarte	ers are 1=	NW 2=	NE 3=	SW 4=SE)	<i>1</i> 27	
		(quar	ters are s	mallest	to larg	gest)	(NAD83 U	TM in meters)	
PC	DD Number	Q64	Q16 Q4	Sec	Tws	Rng	Х	Y	
SJ	02148		2 4	27	29N	11W	234448	4065184*	
Driller License:	847								
Driller Name:	SAVAGE, BOB								
Drill Start Date:	10/20/1987	Drill Finis	sh Date	:	11/	16/1987	Plug	Date:	
Log File Date:	11/19/1987	PCW Rcv	/ Date:				Sou	rce:	Shallow
Pump Type:		Pipe Disc	charge	Size:			Esti	mated Yiel	d: 10 GPM
Casing Size:	7.00	Depth W	ell:		305	feet	Dep	th Water:	186 feet
Wate	r Bearing Stratific	cations:	Тор	Bott	om	Descrip	tion		
			225	2	285	Sandsto	ne/Grave	/Conglome	rate
	Casing Perfo	orations:	Тор	Bott	om				
			266	(305				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively. The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively.

The Bluff Sandstone maybe considered as a future injection zone and is not part of this application.

The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Waste Disposal Well (WDW	l) #2			addition of the second second		
Geologic Prognosis	Entrad	a & Bluff WDW, San	Juan County			
Header Well Name & Number: Waste Disposal V API: Pending Lat Sec. 27 Field: Surface Location Footage: 1980 FNL, 330 Bottom Hole Location Footage: Same as \$252 5522	Vell (WDW) #2 itude (NAD 83): Basin 0 FEL Surface	36.698499 Objective: County: Sta	Entrada & Bluff FM San Juan ate: New Mexi	Water Disposal Longitude (NAD 83) co Lease:	-107.971156 Location: TV GL Ele	VP: 29 N - Range: 11 W - vation:
Surface Owner: Type: Expiration Date:	Proposed Propo	KB Elevation: TD: 7500 sed Plugback:	5550 D	November 25, 201 Geologist: Pe	5 ter Kondrat Depth:	
Formation Tops	Top MD (KB)	Top Subsea (KB)	Thickness (FT)	Rock Type	Drilling Notes	Depositional Environment
Quaternary Alluvium	0	5550	10	Unconsolidated Gravels	Boulders, water, lost	Continental Rivers
Naciemento FM	10	5540	505	Shale & Sandstone	Water, gas	Continental Rivers
Ojo Alamo Sandstone	515	5035	110	Sandstone & Shale	Water, gas	Continental Rivers
Kirtland Shale	625	4925	578	Interbeddded Shale, sandstone	Water, gas	Coastal to Alluvial Plain
Fruitland FM	1203	4347	515	Interbeddded Shale, sandstone &	Coalbed methane	Coastal Plain
Pictured Cliffs Sandstone	1718	3832	162	Sandstone	Gas, water	Regressive Marine Beach
Lewis Shale	1880	3670	780	Shale, thin limestones	Gas	Offshore Marine
Huerfanito Bentonite Bed	2660	2890	28	Alterted volcanic ash, bentonite	Swelling clay	Volcanic Ash Layers
Chacra FM	2688	2862	189	Sandstone, siltstone	Gas, Waler	Offshore Marine Sands
Lower Lewis Shale	2877	2673	458	Shale, thin limestones	Gas, Water	Offshore Marine
Cliff House Sandstone	3335	2215	59	Sandstone	Gas, Water, Oll	Transgressive Marine
Menefee Member	3394	2156	643	Interbeddded Shale, sandstone &	Gas, Water, Oil	Coastal Plain
Point Lookout Sandstone	4037	1513	386	Sandstone	Gas, Water, Oll	Regressive Marine Beach
Mancos Shale	4423	1127	869	Shale, thin sandstones &	Gas, Water, Oil	Offshore Marine
Niobrara A	5292	258	102	Interbeddded Shale, sandstone	Oll, Gas, Water	Offshore Marine Sands
Niobrara B	5394	156	123	Interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands
Niobrara C	5517	33	82	Interbeddded Shale, sandstone	Oll, Gas, Water	Offshore Marine Sands
Gallup FM	5599	-49	243	Interbeddded Shale, sandstone	Oil, Gas, Water	Regressive Marine to
Juana Lopez FM	5842	-292	123	Shale, thin limestones	Oil, Gas, Water	Offshore Marine
Carlile Shale	5965	-415	95	Shale, thin limestones	Oil, Gas, Water	Offshore Marine
Greenhorn Limestone	6060	-510	56	Limestone	Oil, Gas, Water	Offshore Marine
Graneros Shale	6116	-566	33	Shale	Oil, Gas, Water	Offshore Marine
Dakola FM	6149	-599	216	Sandstone, shale & coals	Oil, Gas, Water	Transgressive Coastal
Burro Canvon FM	6365	-815	46	Sandstones, some conglomerate	Oll, Gas, Water	Braided Fluvial Fill
Morrison FM	6411	-861	635	Mudstones, sandstone	Oil, Gas, Water	Continental Rivers
Bluff Sandstone (aka Junction Creek Sandstone), Morrison FM Member	7046	-1496	118	Sandstone	Oil, Gas, Water	Alluvial Plain and Eolian
Wanakah FM	7164	-1614	123	Sillstone, Sandstone	Oil, Gas, Water	Alluvial Plain and Eolian
Todilto Limestone & Anhydrite	7287	-1737	28	Interbedded Limestone & Anbydrite	Oil, Gas, Water, Anyhydrite	Alluvial Plain and Eolian
Entrada Sandstone	7315	-1765	168	Sandstone	Oll, Gas, Water	Eolian Sand Dunes
Chinle FM	7483	-1933	17	Interbeddded Shale, sandstone	Oil, Gas, Water	Continental Rivers
Proposed TD	7500	-1950		TD designed for complete log c	overgage over Entrada Sand	stone.
Notes: Any significant flow rates, abnorma	al pressures, lost circula	ation, sticking, fluid loss o	r gain immediately not	I Ify company man, drilling superintende	ent and/or drilling engineer.	

TD-12551.00 Exclusive

Л V

Mr. Jim Griswold, Bureau Chief NM Oil Conservation Division (OCD) Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Discharge Plan Application for UIC Class I Non-Hazardous Injection Well Proposed Waste Disposal Well (WDW) #2 Bloomfield Terminal Western Refining Southwest, Inc. (Western) Bloomfield, New Mexico

Dear Mr. Griswold:

The enclosed *Discharge Plan Application for UIC Class I Non-Hazardous Injection Well* revised pursuant to the conference call with the OCD staff on January 22nd, 2016. The purpose of the application for Waste Disposal Well #2 is to replace Disposal #1 (API # 30-045-29002) which was abandoned in 2015. The fluids to be disposed in the proposed injection well will be waste water system effluent, evaporation pond contact storm water and injection well stimulation/ maintenance liquids.

Western appreciates your assistance with this urgent matter. If there are any questions regarding the enclosed Discharge Plan Application, please contact Mr. Randy Schmaltz at (505) 632-4171.

Sincerely,

Mr. Mark Smith President Western Refining Southwest, Inc.

cc

Carl Chavez NMOCD Brandon Powell, NMOCD Phillip Goetze, NMOCD State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Revised August 1, 2011

Submit Original Plus 1 Copy to Santa Fe I Copy to Appropriate District Office

DISCHARGE PLAN APPLICATION FOR SERVICE COMPANIES, GAS PLANTS, REFINERIES, COMPRESSOR, GEOTHERMAL FACILITES AND CRUDE OIL PUMP STATIONS

(Refer to the OCD Guidelines for assistance in completing the application)

X New Renewal Modification

1. Type: UIC Class I Non-Hazardous Injection Well (WDW #2)

2. Operator: Western Refining Southwest, Inc.

Address: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413

Contact Person: Class I Non-Hazardous Injection Well Phone: 505-632-8013

3. Location: <u>SE</u> /4 <u>NE</u> /4 Section <u>27</u> Township <u>29N</u> Range <u>11W</u> Submit large scale topographic map showing exact location.

4. Attach the name, telephone number and address of the landowner of the facility site.

5. Attach the description of the facility with a diagram indicating location of fences, pits, dikes and tanks on the facility.

- 6. Attach a description of all materials stored or used at the facility.
- 7. Attach a description of present sources of effluent and waste solids. Average quality and daily volume of waste water must be included.
- 8. Attach a description of current liquid and solid waste collection/treatment/disposal procedures.
- 9. Attach a description of proposed modifications to existing collection/treatment/disposal systems.
- 10. Attach a routine inspection and maintenance plan to ensure permit compliance.
- 11. Attach a contingency plan for reporting and clean-up of spills or releases.
- 12. Attach geological/hydrological information for the facility. Depth to and quality of ground water must be included.
- 13. Attach a facility closure plan, and other information as is necessary to demonstrate compliance with any other OCD rules, regulations and/or orders.

14. CERTIFICATIONI hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

Name:	Bruce	D.	Davis	
Signature:	Bruce	ρ.	R	
E-mail Ad	dress: b	ruce	. davis@v	NNR. Com

Title: _	Director	
Date: _	3-2-16	

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

4. Landowner of facility site.

San Juan Refining Company Attn: Western Refining Southwest, Inc. 1250 W. Washington St. Suite 101 Tempe, AZ 85281 Ron Weaver 505-632-8013

5. Description of the facility.

The proposed facility is an UIC Class I Non-hazardous Injection Well (WDW #2).

Purpose

The purpose of WDW #2 is to replace Disposal #1 (API# 30-045-29002) which was abandoned in 2015.

Location

The proposed well location is within the fence line of Bloomfield Terminal. See the figure and survey in Appendix A of this Discharge Plan Application.

Application for Permit to Drill

The Application for Permit to Drill (Form C-101) is included as Appendix A of this Discharge Plan Application. Form C-101 is also typically submitted under the Oil and Gas regulations, the format presents information also common for Class I injection wells under the Water Quality regulations. The Form C-101 includes general well data, well location survey (Form C-102), well design information including cement slurry details and a well drilling program.

Application for Authorization to Inject

The Application for Authorization to Inject (Form C-108) is included as Appendix B of this Discharge Plan Application. Although Form C-108 is typically submitted under the Oil and Gas regulations, the format presents information also common for Class I injection wells under the Water Quality regulations. The Form C-108 includes general well data, area of review information, proposed operation information, geologic data on the injection zone, the proposed stimulation program and other information.

6. Description of stored materials stored and used.

The proposed injection well will not be used to for material storage.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

7. Description of present sources of effluent and waste solids.

During workover (maintenance) operations, the proposed injection well WDW #2 will be a source of waste water and possibly waste solids. The waste water will be re-injected into the WDW #2. The waste solids will be characterized and disposed properly.

8. Current liquid and solid waste collection/treatment/disposal procedures.

The proposed injection well will be used to dispose of non-exempt non-hazardous waste water. A Injection Fluid Analytical is included as Appendix C of this Discharge Plan Application.

9. Description of proposed modifications to the existing collection/treatment/disposal systems.

The pumps and piping to injection well WDW #2 will be redesigned as needed to meet the pressure and flow demands determined during the injectivity testing. This redesign will allow treated waste water to be injected directly into the WDW #2 or directed to the evaporation ponds before injection into WDW #2.

10. Routine inspection and maintenance plan

The WDW #2 surface completion and associated flanges/pumps/piping will be visually inspected daily.

Mechanical Integrity Testing (MIT) will be conducted pursuant to 20.6.2.5204 NMAC. At a minimum, the program will include:

- A MIT at least once every five years or every time a well workover is performed, and
- An annual Bradenhead test.

11. Contingency Plan for Reporting and clean-up of Spills or releases.

The Bloomfield Terminal has an Emergency and Facility Response Plans in place respond releases including treated waste water. If a reportable quantity (5 bbl.) of treated waste water is released from the injection well, NMOCD and NMED Hazardous Waste Bureau will notified in accordance with applicable regulations. Containment, clean-up and reporting will commence as soon as practicable.

12. Geologic/Hydrological information.

Geologic information about the injection zone is included in Appendix B of this Discharge Plan Application.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well #2 (WDW #2) Discharge Plan Application Attachment

13. Facility Closure Plan.

A Closure Plan for WDW #2 is included as Appendix D of this Discharge Plan Application. The closure plan includes an estimate for Financial Assurance.

Appendix A Application for Permit to Drill

<u>District I</u> 1625 N. French Dr., Hobbs, NM 88240	State of New Mexico	Form C-101 Revised July 18, 2013
Phone: (575) 393-6161 Fax: (575) 393-0720 <u>District II</u>	Energy Minerals and Natural Resources	1001500 5019 10, 2013
811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District IVI	Oil Conservation Division	AMENDED REPORT
1000 Rio Brazos Road, Aztec, NM 87410 Phone: (505) 334-6178 Fax: (505) 334-6170	1220 South St. Francis Dr.	
<u>District IV</u> 1220 S. St. Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3460 Fax: (505) 476-3462	Santa Fe, NM 87505	

APPLICATION FOR PERMIT TO DRILL, RE-ENTER, DEEPEN, PLUGBACK, OR ADD A ZONE

		1		² OGRID Number							
Western Refining Southwest, Inc								267595			
#50 County Road 4990 (PO Box 159) Bloomfield, NM 87413								³ · API Number			
* Property Code * Property Name Waste Disposal Well (WDW)								° We #	11 No. 2		
	7. Surface Location										
UL - Lot H	Section 27	Township 29N	Range 11W	Lət Idn	Lot Idn Feet from N/S Line Feet From 2028' North 111'				County San Juan		
				* Propose	ed Bottom Hol	e Location					
UL - Lot	UL - Lot Section Township Range Lot Idn Feet from N/S Line Feet From E/W Line County										
	I	<u>I</u>		۱ ۹. Pe	ol Information	1					
									/		

Pool Name

Pool Code

^{11.} Work Type N	^{12.} Well S	l Type	^{13.} Cable/Rotary R	^{14.} Lease T P	Гуре	¹⁵ Ground Level Elevation 5535' GL
^{16.} Multiple NO	^{17.} Proposed Depth ~ 7500'		^{18.} Formation Entrada	^{19.} Contra TBD	ctor)	^{20.} Spud Date Est Marc 2016
Depth to Ground water		Distance from nearest fresh water well			Distance to	nearest surface water
Less than 50' 660'			660 '			1334'

We will be using a closed-loop system in lieu of lined pits

^{21.} Proposed Casing and Cement Program

Туре	Hole Size	Casing Size	Casing Weight/ft	Setting Depth	Sacks of Cement	Estimated TOC
Surf	17-1/2"	13-3/8"	48 ppf – H40	~ 300'	464 sx	Surface
Int	12- ¼"	9-5/8"	36 ppf – J55	~ 3600'	857 sx	Surface
Prod	8-3/4"	7"	26 ppf – L80	~ 7500'	850 sx	Surface

Casing/Cement Program: Additional Comments

Will utilize a 2 stage cement job on the 7" casing w/ DV tool at ~ 4000'

^{22.} Proposed Blowout Prevention Program

Туре	Working Pressure	Test Pressure	Manufacturer
2M	2000 psi	2000 psi	Schaffer

^{23.} I hereby certify that the information given above is true and complete to the best of my knowledge and belief.	OIL CONSERVATION DIVISION			
I further certify that I have complied with 19.15.14.9 (A) NMAC and/or 19.15.14.9 (B) NMAC , if applicable. Signature:	Approved By:			
Printed name: Bruce D. Davis	Title:			
Title: Director	Approved Date: Expiration Date:			
E-mail Address: bruce. davis @ WNR. com				
Date: 3-2-16 Phone: 602-286-1929	Conditions of Approval Attached			

DISTRICT I 1625 N. French Dr., Hobbs, N.M. 88240 Phone: (676) 393-6161 Fax: (676) 303-0720 DISTRICT II 011 S. First St., Artesis, N.M. 68210 Phone: (575) 748-1283 Fax: (575) 748-8720 DISTRICT III 1000 Rio Brazos Rd., Aztec, N.M. 67410 Phone: (605) 334-6178 Fax: (505) 334-6170 DISTRICT IV 1220 S. St. Francis Dr., Santa Fe, NM 07605 Phone: (505) 476-3460 Fax: (505) 476-3462

State of New Mexico Energy, Minerals & Natural Resources Department

Form C-102 Revised August 1, 2011 Submit one copy to appropriate District Office

OIL CONSERVATION DIVISION 1220 South St. Francis Dr. Santa Fe, NM 87505

□ AMENDED REPORT

WELL LOCATION AND ACREAGE DEDICATION PLAT

¹ API Number ⁸ Pool Code ⁸ Pool Nam					^s Pool Code			⁸ Pool Name				
⁴ Property C	ode				⁶ Well Number						ll Number	
				V	Vaste Disp	osal V	Vell (WDW)					2
"OGRID No).		⁹ Operator Name ⁹ Elevation								levation	
26759	5			Wester	n Refini	ng S	outhwest, Inc	•				5535'
					¹⁰ Surf	ace	Location				Souther community	
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Feet	from the	East/West	line	County
Н	27	29-N	11-W		2028	1	NORTH	~~~	111'	EAST		SAN JUAN
			¹¹ Bott	om Hole	Locati	on I	f Different Fr	om	Surface			
UL or lot no.	Section	Township	Range	Lot Idn	Feet from	the	North/South line	Feet	from the	East/West	line	County
Dedicated Acre	9		18 Joint or	Infill	¹⁴ Consolid	ation (ode	10 Ord	ler No			
Demonicou More			DOILE OX	, mm	CONSOLI	unon c			101 110,			
NO ALLOW	ABLE W	ILL BE A	SSIGNE		S COMP	LETIC	N UNTIL ALL	INTE	RESTS I	AVE BEE	IN CO	NSOLIDATEI
а. А	, , , , , , , , , , , , , , , , , , ,	ORAN	VON-STA	NDARD	UNIT HA	S BE	EN APPROVED	BY	THE DI	ISION		
5				SB	8°03'W -	- 262	4.16' (R)					
)				A z	17 OPE	RATOR (CERTI	FICATION
	. i	5 57 5 5 6 6 6	FND BLM "1999" BC					00"	I hereby co	rNfy that the is complete to th	nformation a best of	n contained herein my knowledge and
LATITUD	E: 36°41.	9162'N				ļ.		W ^L	belief, and	that this organ	tration et	ther owns
LONGITU	DE: 107	58,1837				1		1	a working land includ	interest or unue ing the propose	d bottom	hale location or
NAD Z/	·				1728		-	682	to a contra	to drill this w of with an own	ell at this	s location pursuant h a mineral or
LATITUD	E: 36.698	3609° N					328	64	a working or a compu	interest, or to a leary pooling or	ı voluntar rder h er et	y pooling agreemen ofore entered by th
LONGITU	DE: 107.	970351° W	· .				26	R	division.			a
NAD83	l		2 194	90 xxxxxx			·	+-				
						1		NO	C	P	-+	2
			ĩ					0.06	-	I.C	11-	_ /
	1							1 K	Stenature	SIV C		12/23
	1							1 i	Signature	hu C	1 h	e
	1					į.		7 3	Printed I	Vame	/ ***	500000
	1					ł	111 '		iol	maria	Isher	S. Act
								R	E-mail /	ddress		0
		<u> </u>	-2'	7—		-i -		$-\Phi$		the generation		
	İ		\sim			i	"1999"	BC	18 SU]	RVEYOR	CERT	IFICATION
									I hereby co	tify that the u	vell location	on shown on this p
	1					i			me or unde	r my supervisio	on, and th	hat the same is tru
	i								and correct	to the best of	my bellaf.	
N -1-09°	30' E		1			İ			DECEM	IBER 12,	26555	RUC RUC
						1			Date of S	плед 🖁	EN	SE W
			·			-+			Signature	and Seal of R	Sessial	1 Startingri Y
NAN	1		•								2	
										LIC	(1	5703)
	ł		1			ł						
						i i				Vin	6	
EN NE	İ					1					ROF	ESSIONAL
B						1			GLEN	W.RUS	SSEW	Munatages
IKI						1			Certificate	Number	3	15703
• · · · · · · · · · · · · · · · · · · ·	i i					1						

Western Refining Southwest, Inc. – WDW #2

Cement Slurry Details (Attachment for NMOCD – APD)

Note: Actual Slurry Design will vary depending upon vendor selection and actual hole conditions.

17-1/2" Hole - 13-3/8", 40 ppf, J55 casing at ~ 300 ft

394 (548 cf) sacks Type III Cement, 2% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 59.2% Fresh Water

Yield:1.39 cf/sx Slurry wt 14.60 ppg

12-1/4" Hole - 9-5/8", 36 ppf, J55 casing at ~ 3600 ft

Lead:

806 sacks (1621 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

50 sacks (70.5 cf) Type III Cement, 2.25% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 0.02% gps FP-6L, 60.4% Fresh Water

Yield: 1.41 cf/sx Slurry Wt: 14.5 ppg

8-3/4" Hole - 7", 26 ppf, L80 casing at ~ 7500 ft

Stage Tool (DV) at ~ 4000'

Stage no. 1

Lead:

224 sacks (450 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

180 sacks (338 cf) (10:90) Poz L:Type III Cement, 0.25% bwoc Calcium Chloride, 0.3% bwoc CD-32, 0.02 gps FP-6L, 0.5% bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 5 lbs/sx Kol-Seal, 87.8% Fresh Water

Yield: 1.88 cf/sx Slurry Wt: 13.0 ppg

Stage no. 2

Lead:

414 sacks (832 cf) (20:80) poz L:Type III cement w/ 0.1 gps FP-6L, 0.25 lbs/sack Cello Flake, 0.3% bwoc CD-32, 5 lbs/sx Kol-Seal, 0.5 % bwoc Sodium Metasilicate, 0.35% bwoc MPA-170, 5 lbs/sx CSE-2, 102.5% Fresh Water

Yield: 2.01 cf/sx Slurry wt: 12.50 ppg

Tail:

50 sacks (70.5 cf) Type III Cement, 2.25% bwoc Calcium Chloride, 0.25 lbs/sack Cello Flake, 0.02% gps FP-6L, 60.4% Fresh Water

Yield: 1.41 cf/sx Slurry Wt: 14.5 ppg

DRILLING PROGRAM Western Refining Southwest, Inc. Waste Disposal Well (WDW) #2 San Juan County, NM

Surface Location 2028' FNL & 111' FEL Section 27, T29N, R11W Graded Elevation 5535' <u>SHL Geographical Coordinates (NAD-83)</u> Latitude 36.698609° N Longitude 107.970351° W

Bottom Hole Location (Vertical Well) Same as Surface

DIRECTIONS TO Western Refining - WDW #2

- > From Bloomfield NM, go on South on HWY 550 to CR 4990
- > Turn left and go easterly on CR 4990 for ~ 1.0 mi.
- > Turn left (north) for 0.1 miles to new location.

Pre-Spud

- Identify Safe Briefing Areas on location. Prevailing wind is NW to SE. Attempt to locate briefing
 areas upwind in the corners of location. Note location of access road and provide for alternate exit if
 not up wind.
- Conduct rig inspection and pre-spud. Record "Rig-On-Daywork" and the Time & Date of well spud on both the Daily Drilling Report and the IADC Daily Drilling Report.
- Ensure regulatory notifications are made Notify the NMOCD, 24 hours prior to spudding the well, testing BOPE, casing, and cement jobs. The following information must be included: well name, legal location, permit number, drilling contractor, company representative, date & time of spud.
- Contact NMOCD Field Inspector Supervisor Brandon Powell 505-320-0200. Record time & date of notification on reports.
- Review and post NMOCD permits and conditions of approval. Ensure 100% compliance with all
 regulations and conditions.

Well Plan

- Drill 17-1/2" surface hole from 0' to 350'.
- Drill surface with a fresh water gel mud system.
- 8.3 -9.4 ppg, 32-75 vis, NC fluid loss, <5% LGS.
- Perform a deviation surveys at 100', 250' and TD.

- Control deviation as necessary.
- Run and cement 13-3/8" casing and cement to the surface.
- Contact NMOCD if cement is not circulated to surface to get remediation approved prior to 1" cement.
 If cement is below 200' from surface, a CBL may have to be run to determine cement top.
- Nipple up BOP and test BOPE
- Ensure all drill pipe has casing friendly hardbanding.
- Install ditch magnets and measure metal cuttings in a vis cup every tour.
- Drill 12-1/4" intermediate to ~ 3600' with a fresh water LSND mud.
- Short trip to surface casing to prepare hole for 9-5/8" casing.
- Run 9-5/8", 36 ppf J-55 casing to Intermediate TD (Clean threads & drift casing once it's on location, prior to running).
- Cement 9-5/8" casing in single stage. Calculate cement volumes to circulate cement to surface.
- Drill 8-3/4" to ~ 7500' w/ fresh water LSND mud.
- Short trip to intermediate to prepare hole for logs and 7" casing.
- Run triple combo open hole logs.
- Run 7", 26 ppf, L80 casing to TD (clean threads & drift casing once it's on location prior to running)
- Nipple down BOP, clean mud tanks.
- Release rig.

<u>Geology</u>

MD	Formation
Surface	Quatermary Alluvium
10'	Nacimiento
515'	Ojo Alamo
625'	Kirtland
1718'	Pictured Cliffs
1880'	Lewis
2688'	Chacra
3335'	Cliffhouse
3394'	Menefee
4037'	Point Lookout
4423'	Mancos Shale
5599'	Gallup
6060'	Greenhorn
6149'	Dakota
6365'	Burro Canyon
6411'	Morrison
7287'	Todilto
7315'	Entrada
7483'	Chinle

Casing Program:

Casing & Hole Size	Weight	Grade	Coupling	Setting Depth (MD)	Top of Cement
13-3/8" (17-1/2")	48 ppf	H-40	LT&C	0-350 ft	To surface
9-5/8" (12-1/4")	36 ppf	J-55	LT&C	0-3600 ft	To surface
7" (8-3/4")	26 ppf	L-80	LT&C	0-7500	To surface

Mud logging: Commences at 300', 30-ft samples to TD, or as required to pick formation tops to TD

Open-Hole Logs: Triple Combo

Cased-Hole Logs: CBL

Rig-up

During rig-up, ensure that the following items are properly rigged up:

- Hydraulic remote choke and control panel (ensure that the choke manifold is configured properly to NMOCD standards)
- Trip tank (including piping, valves, etc.)
- Reliable wet-system bulk barite hopper (ensure that it is rigged up so that barite can be mixed prior to the suction tank and also so that barite can be mixed in the pre-mix tank)

Rig items to be taken care of the following issues prior to spud:

- Change seats and valves in mud pumps, redress relief valves, check pre-charge pressures of pulsation dampeners
- Repair all suction valves, etc., in mud tanks as required
- Check all centrifugal pumps, including charger pumps, mud mixing pumps, desander/desilter pumps, etc.

17 1/2" Surface Hole

MIRU During rig-up and while drilling surface hole, ensure that the following items are properly rigged up:.

Conduct rig inspection and pre-spud. Record "Rig-On-Daywork" and well spud time/date on Daily Report and on IADC Daily Drilling Report.

 Ensure regulatory notifications are made – NMOCD, 24 hours prior to spudding the well, testing BOPE, casing, and cement jobs. The following information must be included: well name, legal location, permit number, drilling contractor, company representative, date & time of spud.
Contact NMOCD Field Inspector. Record name of government personnel contacted and time & date of notification on reports.

Procedure

Bottom-Hole Assembly (BHA) is to consist of the following:

- 1. PU 17-1/2" BHA
 - 17-1/2" surface hole bit
 - Bit sub (ported for float) 7-5/8" reg x 6-5/8" reg
 - Shock Sub
 - 4 ea. 8" DC's
 - Cross over 6-5/8" x 4-1/2"
 - 8 ea. 6" DC's
- 2. Drill 17-1/2" surface hole from 0' to 350'.
- 3. Drill surface with fresh water gel mud system. Drill surface with a fresh water gel mud system containing fresh water gel, poly-plus RD, detergent and 2% KCL
- 4. 8.3 -9.4 ppg, 32-75 vis, NC fluid loss, <5% LGS
- 5. Control deviation as necessary by varying RPM & WOB.
- 6. Install ditch magnets and measure metal cuttings in a vis cup every tour.
 - a. Take survey at 100', if the hole is straight take a second survey halfway to TD and at 13-3/8" casing point.
- 7. Ensure that all rig solids control equipment are working properly.

Target mud properties:

MW (PPG)	Funnel Viscosity Sec	PV	YP	Gels 10s/10m	МВТ	Са	CI-	LGS
8.3 - 9.4	38 - 45	<12	8 - 18	1/2	<15 ppb	800-1200 mg/l	<1200 mg/l	ALAP

- 8. Drill to a minimum of 350-ft RKB. Adjust TD depth as required to fit the casing to the hole. Circulate and pump high viscosity sweeps as required. Make a wiper trip if any drag coming off bottom, otherwise continue POOH to run pipe.
- 9. RU and run 13-3/8" 48# H-40 LT&C casing.
 - a. Clean, visually inspect, and drift the casing on the rack.
 - b. Test slurries with actual mix water in advance. Ensure that Cement Company provides pumping time data from lab tests based on actual mix water and bulk cement as loaded for the job.
 - c. Run casing as follows:
 - Float Shoe
 - One (1) joint of 9-5/8" 36# J-55 LT&C casing
 - Float Collar
 - 13-3/8" 48# H-40 LT&C casing to surface.
 - d. Thread-lock the float shoe and float collar with equivalent thread-lock compound. Make up remaining joints with API modified thread compound. Ensure the float equipment is PDC friendly. Run 5 bow-spring centralizers with one 10-ft from the shoe, then on every jt to surface.
 - e. Fill the pipe as it is run.
 - f. Follow Wellhead Recommended Installation Procedure.
- 10. With the 13-3/8" casing run to bottom, circulate a minimum of one complete hole volume (casing volume + annular volume) before cementing as follows:

- a. Pump schedule (based on 125% excess)
 - 10-bbls Freshwater spacer
 - 394 sx (548 cf) 15.6 ppg
 - Drop top plug
 - Displace with surface drilling mud
- b. Bump the plug with 500 psi over final circulating pressure. Release pressure and then check the integrity of the float equipment.

Note: Pressure test casing to 1500 psi for 30 minutes. Pressure test the casing when pressure testing the BOPE.

- c. Ensure that 13-3/8" landing joint is centered in rotary table when Casing Head is landed.
- d. Report the following on the daily drilling report:
 - Spacer and cement slurry volumes, compositions, and properties (density, yield, etc.)
 - Displacement volume, fluid type, and density
 - Circulating pressure before bumping the plug and pressure that plug was bumped
 - Volume of fluid bled back and whether float equipment held or not
 - Whether cement was returned to surface and estimated volume of cement returns
 - Any other pertinent information about the cement job.
- e. If the cement falls back or does not return to surface, perform a top job with 1" tubing. Top Job Cement Slurry to consist of Class "G" Premium w/ 2% CaCl₂ (or similar cement).
- f. REGULATORY APPROVAL MUST BE GIVEN PRIOR TO PUMPING TOP JOB.
- g. WOC for a minimum 12 hours before drilling out.
- h. While waiting on cement, remove landing joint, nipple up BOPE,
- 11. Follow Wellhead Recommended Wellhead Installation Procedure for 13-5/8" 3,000 psi wellhead. The technician should remove plugs from side outlets, install side outlet valves, and confirm proper installation of entire 3M wellhead assembly equipment prior to pressure testing BOPE.
- 12. Nipple up 13-5/8" 3M BOPE, :
 - a. See attachment showing 2M BOPE (NOTE: Will test per NMOCD specs for 2M System as per APD)
- 14. Ensure that third party pressure test company personnel perform function and accumulator draw down tests by shutting off air and electric power to accumulator.
 - Check nitrogen pre-charge pressure for each accumulator bottle.
 - Record initial accumulator manifold pressure, open and shut all BOP equipment and hydraulic valves, and record final accumulator manifold pressure.
 - Ensure that results of function and accumulator draw down tests and any equipment deficiencies are noted on the Daily Drilling Report and the IADC Daily Drilling Report. Third party pressure test company personnel should provide report of accumulator unit inspection, including nitrogen pre-charge pressures for each accumulator bottle, to the rig supervisor.
- 15. Set 13-5/8" 3M BOP test plug (C22) in Casing Head bowl and open lower valve on Casing Head.
 - **Note:** Ensure that third party pressure test company personnel test all BOP equipment, choke manifold, and all surface equipment to low pressure of 250 psi and rated working pressure (2000 psi) for 10 minutes each test.
 - Note: Third party pressure test personnel should record and annotate all BOPE pressure tests on calibrated chart recorder with appropriate scale for test

pressures. One set of pressure recorder charts should be left onsite with drilling foreman and another set of pressure recorder charts should be submitted to the State Inspectors.

16. Remove 3M BOP test plug. Install retrievable long bowl protector (wear bushing) as required.

12-1/4" Section

Important Notes:

- This interval will be drilled with fresh water-base mud (WBM) LSND system. Weight up as required, 8.5 – 9.4 ppg, 42-60 sec/qt vis, 4-6cc WL, YP 8-18, maintain less than 2% LGS, pH 9.0-9.8.
- No mud materials should be mixed without explicit instructions from the mud engineer. Also
 ensure that good housekeeping is practiced on the top of the mud tanks to minimize the
 possibility of paper, plastic, or some other foreign object being dropped into the mud tanks, which
 could interfere with the pumps or be pumped down the hole.
- Wiper trip to surface to prepare for casing run.
- Adjust mud weight and LCM as necessary to prevent losses and gains.

Procedure

1. PU 12-1/4" BHA

4.

- 12-1/4" NOV
- NOV Mud Motor 7/8 5.0 .28 Revs per gallon
- 3 pt String IBS (Stabilizer)
- 2 ea. 6-1/2" DC's
- 3 pt String IBS (Stabilizer)
- 12 ea. 6-1/2" DC's
- 4 ea. 4-1/2" HWDP
- 4 ½" DP to surface
- 2. TIH and drill out float equipment
- 3. Drill 12-1/4" intermediate hole to TD ~ 3600'
 - Record all pressure tests on chart or Pason.
 - Drill out with fresh water based mud system as described above
 - Perform a deviation surveys every 500'
 - Continue to drill ahead with 12-1/4" PDC bit.
 - a. The 12-1/4" hole will be drilled with LSND WBM (reference mud program).
 - b. Record bit on bottom hours and record mud motor hours daily in remarks section of morning report.
- 5. Drill to Intermediate TD of ~3600'
- 6. Circulate hole clean and **Strap Out of Hole.**
- 7. While circulating prior to POOH, work pipe to assist in solids removal.
- 8. POOH to Surface Casing Point. If there is any drag, make wiper trip back to bottom and circulate and condition hole before POOH again.

- Run 9-5/8", 36#, J55 LT&C casing.
 - Casing Running Order:
 - One (1) Float Shoe
 - One (1) joint 9-5/8", 36#, J55 LT&C casing
 - One (1) Float Collar
 - 9-5/8", 36#, J55 LT&C casing
 - If necessary run DV tool to ensure cement to surface (Note: verify DV tool placement with Engineer prior to running casing)
 - 9-5/8", 36#, J55 LT&C casing, as required, to surface
 - Centralizers:
 - One Bow Spring centralizer on bottom 10 jts.
 - One Bow Spring centralizer on each 4th joint of casing to surface casing
 - Two Bow Spring centralizers above and below each DV tool
 - Clean threads, drift & visually inspect the casing on the rack.
 - Torque each joint of casing to optimum make-up torque.
 - Thread-lock the float collar and float shoe with thread lock compound.
 - Use API modified pipe dope for remaining casing joints.
 - Utilize a safety clamp (dog collar) on approximately first 10 joints of casing until enough weight is run to ensure casing slips are engaging properly. Upon reaching surface casing shoe, swap out elevators for minimum of 250-ton slip-type elevators and ensure circulating swage is ready to be picked up in the event difficulty is encountered running casing through open hole.
- 10. Wash casing down as required. Space out and land casing in wellhead with mandrel-type casing hanger.
 - **Note:** Record weight that casing is landed in bowl with mandrel-type casing hanger in Daily Drilling Report.
- 11. Once casing is landed, circulate a <u>minimum</u> of two full bottoms-up or until hole cleans up, whichever is greater, before cementing. Gradually stage pump rate up to 8-10 bpm while circulating to ensure that cavings and/or shale fragments are circulated out of the hole to minimize risk of packing off during the cement operations. Carefully monitor hole for losses while circulating.
- 12. Cement casing in single stage (if heavy losses or hole conditions dictate install DV tool as needed) Note: verify cement volumes with Engineer prior to ordering cement. Refer to vendor Cement Recommendations for cement details.
 - a. Pump schedule:
 - Pump 10-bbls fresh water to fill lines and prime pumps
 - Pressure test lines to 2,000 psi
 - Pump 5 bbls of fresh water then 10 bbls of mud clean prior to pumping cement.
 - Mix and pump 12.5 ppg lead cement slurry: 806 sx (1621 cf)
 - Mix and pump 14.5 ppg tail cement slurry: 50 sx (70.5 cf)
 - b. Displace with drilling fluid at 6-8 bpm. Carefully observe well for losses, and adjust displacement rate if required. Bump the plug with 500 psi over final circulating pressure.
 - c. Release pressure and check pressure integrity of the float equipment. NDBOPE. Lift stack.

9.

- 13. Set slips on 9-5/8" casing. Energize slips with jam bolts.
- 14. LD 13-5/8" BOPE
- 15. NUBOPE (9-5/8"*2,000 psi)
- 16. Test BOPE
 - a. Test rams, HCR, manual valves and wellhead to 250 psi low and 2,000 psi high
 - b. Test manual chokes to 250 psi low and 2,000 psi high
 - c. Test kill line, choke line, choke manifold and all surface tools (TIW's, inside bop, etc) to 250 psi low and 2,000 psi high
 - d. Test 9-5/8" casing to 2,000 psi / 20 minutes.
 - e. Install wear bushing.

8 ³/₄" Section

Important Notes:

- This interval will be drilled with fresh water-base mud (WBM) LSND system. Weight up as required, 8.5 – 9.4 ppg, 42-60 sec/qt vis, 4-6cc WL, YP 8-18, maintain less than 2% LGS, pH 9.0-9.8.
- No mud materials should be mixed without explicit instructions from the mud engineer. Also
 ensure that good housekeeping is practiced on the top of the mud tanks to minimize the
 possibility of paper, plastic, or some other foreign object being dropped into the mud tanks, which
 could interfere with the pumps or be pumped down the hole.
- Wiper trip to Intermediate to prepare for casing run.
- Adjust mud weight and LCM as necessary to prevent losses and gains.

Procedure

- 13. PU 8 ¾" BHA
 - 8 3/4" NOV DSHI516G-G2
 - NOV Mud Motor 7/8 5.0 .28 Revs per gallon
 - 3 pt String IBS (Stabilizer)
 - 2 ea. 6-1/2" DC's
 - 3 pt String IBS (Stabilizer)
 - 12 ea. 6-1/2" DC's
 - 4 ea. 4-1/2" HWDP
 - 4 ¹/₂" DP to surface
- 14. TIH and drill out float equipment
- 15. Drill 8-3/4" hole
 - Record all pressure tests on chart or Pason.
 - Drill out with fresh water based mud system as described above
 - Perform a deviation surveys every 500'
- 16. Continue to drill ahead with 8 ³/₄" PDC bit to a TD of ~ 7500'.
 - c. The 8 ¾" hole will be drilled with LSND WBM (reference mud program).

- d. Record bit on bottom hours and record mud motor hours daily in remarks section of morning report.
- 17. Plan on bit trip at or near top of Dakota formation. Change out bit to 8-3/4" SKHI616D-D2 and fresh mud motor.
- 18. Continue drilling to TD of ~7500' (10' to 15' into Chinle Formation)
- 19. Circulate hole clean and **Strap Out of Hole.**
- 20. While circulating prior to POOH, work pipe to assist in solids removal.
- 21. POOH to Intermediate Casing Point. If there is any drag, make wiper trip back to bottom and circulate and condition hole before POOH again.
- 22. TOH & Run Open Hole Logs
- 23. TIH to TD, circulate & condition hole as necessary. TOH, LDDP & DC's
- 24. Run 7" 26# L-80 LT&C casing.
 - Casing Running Order:
 - One (1) Float Shoe
 - One (1) joint 7" 26# L-80 LT&C casing
 - One (1) Float Collar
 - 7" 26# L80 LT&C casing
 - Place DV tool at 4000' (Note: verify DV tool placement with Engineer prior to running casing)
 - 7" 26# N80 LT&C casing, as required, to surface
 - Centralizers:
 - One Bow Spring centralizer on bottom 10 jts.
 - One Bow Spring centralizer on each 4th joint of casing to surface casing
 - Two Bow Spring centralizers above and below each DV tool
 - Clean threads, drift & visually inspect the casing on the rack.
 - Torque each joint of casing to optimum make-up torque.
 - Thread-lock the float collar and float shoe with thread lock compound.
 - Use API modified pipe dope for remaining casing joints.
 - Utilize a safety clamp (dog collar) on approximately first 10 joints of casing until enough weight is run to ensure casing slips are engaging properly. Upon reaching surface casing shoe, swap out elevators for minimum of 250-ton slip-type elevators and ensure circulating swage is ready to be picked up in the event difficulty is encountered running casing through open hole.
- 25. Wash casing down as required. Space out and land casing in wellhead with mandrel-type casing hanger.
 - **Note:** Record weight that casing is landed in bowl with mandrel-type casing hanger in Daily Drilling Report.
- 26. Once casing is landed, circulate a <u>minimum</u> of two full bottoms-up or until hole cleans up, whichever is greater, before cementing. Gradually stage pump rate up to 8-10 bpm while circulating to ensure that cavings and/or shale fragments are circulated out of the hole to minimize risk of packing off during the cement operations. Carefully monitor hole for losses while circulating.

27. Cement casing in 2 stages as follows: (Note: verify cement volumes with Engineer prior to ordering cement). Refer to vendor Cement Recommendations for cement details.

First Stage:

- f. Pump schedule:
 - Pump 10-bbls fresh water to fill lines and prime pumps
 - Pressure test lines to 2,000 psi
 - Pump 5 bbls of fresh water then 10 bbls of mud clean prior to pumping cement.
 - Mix and pump 12.5 ppg lead cement slurry: 224 sx (450 cf)
 - Mix and pump 13.0 ppg tail cement slurry: 180 sx (338 cf)
 - Drop first-stage shutoff plug (top plug)
 - Pump 10-bbls fresh water
 - Displace with drilling fluid at 6-8 bpm. Carefully observe well for losses, and adjust displacement rate if required. Be sure to slow down displacement rate to 3 bpm or less for 15-20 bbl before and for 15-20 bbl after the first-stage shutoff plug reaches the DV tool at approximately 4,000'.
- g. Bump the plug with 500 psi over final circulating pressure.
- h. Release pressure and check pressure integrity of the float equipment.
- i. Drop opening plug.
- j. Wait required time for opening plug to fall inside casing to top of 2nd DV tool. This time will likely be required to put the cap back on the cement head after dropping the opening plug.
- k. Pressure up to required pressure to open 1st stage tool.
- I. Break circulation and continue to circulate while WOC. Carefully bring up pump rate and monitor returns for losses. Record volume of cement returned to surface. Circulate and WOC for 4 hours or longer before pumping second stage cement slurry, if samples indicate additional WOC time would be beneficial.

Second Stage:

- a. Pump schedule:
 - Pump 20-bbls water-based spacer mixed at 8.4 lb/gal.
 - Mix and pump 12.5 ppg lead cement slurry: 414 sx (832 cf).
 - Mix and pump 14.5 ppg tail cement slurry: 50 sx (70.5 cf)
 - Drop closing plug
 - Pump 10-bbls freshwater
 - Displace with drilling fluid at 6-8 bpm then slow down displacement rate to 3 bpm before bumping plug.
- b. Bump the plug with 500 psi over final circulating pressure, then slowly bring pressure up to closing pressure, which will be approximately the final circulating pressure plus required pressure to close 1st DV tool. Release pressure and check for flow back to ensure that the 1st stage tool is closed.
- c. Report the estimated volume of cement returns.
- m. Release pressure and check pressure integrity of the float equipment.
- Lay down landing joint. Install the mandrel pack-off using a stand of HWDP and test pack-off seals to 2000 psi.
- 29. ND 11" 3M BOP Stack. NU 7-1/16" 5M x 4-1/16" Tubing Head Assembly. Be sure that bowl of Tubing Head Assembly is well greased to prevent corrosion while waiting on workover rig to complete well for SWD disposal.

- 30. NU 4-1/16" 5M Gate Valve, in order to secure well.
- 31. Release and RD drilling rig.

John Thompson Engineer

Appendix B

Application for Authorization to Inject

DATE IN	SUSPENSE	ENGINEER	LOGGED IN	TYPE	APP NO.

ABOVE THIS LINE FOR DIVISION USE ONLY

NEW MEXICO OIL CONSERVATION DIVISION

- Engineering Bureau -1220 South St. Francis Drive, Santa Fe, NM 87505

ADMINISTRATIVE APPLICATION CHECKLIST

THIS CHECKLIST IS MANDATORY FOR ALL ADMINISTRATIVE APPLICATIONS FOR EXCEPTIONS TO DIVISION RULES AND REGULATIONS WHICH REQUIRE PROCESSING AT THE DIVISION LEVEL IN SANTA FE

Application Acronyms:

	[NSL-Non-Standard Location] [NSP-Non-Standard Proration Unit] [SD-Simultaneous Dedication] [DHC-Downhole Commingling] [CTB-Lease Commingling] [PLC-Pool/Lease Commingling] [PC-Pool Commingling] [OLS - Off-Lease Storage] [OLM-Off-Lease Measurement] [WFX-Waterflood Expansion] [PMX-Pressure Maintenance Expansion] [SWD-Salt Water Disposal] [IPI-Injection Pressure Increase] [EOR-Qualified Enhanced Oil Recovery Certification] [PPR-Positive Production Response]
[1]	TYPE OF APPLICATION - Check Those Which Apply for [A] [A] Location - Spacing Unit - Simultaneous Dedication [] NSL [] NSL [] SD
	Check One Only for [B] or [C] [B] Commingling - Storage - Measurement DHC CTB PLC PC OLS OLM
	[C] Injection - Disposal - Pressure Increase - Enhanced Oil Recovery WFX PMX SWD IPI EOR PPR
	[D] Other: Specify Class I Non-hazardous Injection Well
[2]	NOTIFICATION REQUIRED TO: - Check Those Which Apply, or Does Not Apply [A] Working, Royalty or Overriding Royalty Interest Owners
	[B] X Offset Operators, Leaseholders or Surface Owner
	[C] X Application is One Which Requires Published Legal Notice
	[D] Notification and/or Concurrent Approval by BLM or SLO U.S. Bureau of Land Management - Commissioner of Public Lands, State Land Office
	[E] For all of the above, Proof of Notification or Publication is Attached, and/or,
	[F] Waivers are Attached

[3] SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE OF APPLICATION INDICATED ABOVE.

[4] **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

Bruce D. Davis	Bruce D. P-	Director	3-2-16
Print or Type Name	Signature	Title	Date
		e-mail Address	davis @WNR. com

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505 FORM C-108 Revised June 10, 2003

	APPLICATION FOR AUTHORIZATION TO INJECT
I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Storage Application qualifies for administrative approval? Yes No
Ш.	OPERATOR: Western Refining Southwest, Inc.
	ADDRESS: #50 County Road 4990 (PO Box 159), Bloomfield, NM 87413
	CONTACT PARTY: <u>Ron Weaver</u> PHONE: <u>505-632-8013</u>
III.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? Yes X No If yes, give the Division order number authorizing the project:
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and, If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
*VIII.	Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
*X.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
*XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
XIII.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	NAME: <u>Bruce D. Davis</u> TITLE: <u>Director</u>
	SIGNATURE: $B_{n} p p_{2}$ DATE: $3 - 2 - 16$
	E-MAIL ADDRESS: bruce. davis @ WNR. com

* If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.
- XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

Side 2

Side 1		INJEC	TION WELL DATA SHEET	
OPERA	TOR:	Western Refining Southwest, Inc.		
WELL 1	VAME & N	UMBER: Waste Disposal Well (WDW) #	42	
MELL I	OCATION	V: 2028' FNL & 111' FEL	H 27	T29N R11W
		FOOTAGE LOCATION	UNIT LETTER	TOWNSHIP
	ĪM	ELLBORE SCHEMATIC	<u>WELL CO</u> Surface C	<u>NSTRUCTION DATA</u> Casing
Dat	e Drawn: Dec 2015		Hole Size: <u>17-1/2</u>	Casing Size: <u>13-3/8, 48 ppf. H40</u>
17-112" Hole		07H 1938 - 1938	Cemented with: 394 sx.	<i>or</i> 548 ft ³
			Top of Cement: Surface	Method Determined:
			Intermediate	e Casing
			Hole Size: 12-1/4"	Casing Size: <u>9-5/8", 36#, 155</u>
12-114- Hole		9-418°, 368°, U55 - 3600'	Cemented with: 857 sx	or 1693 ft ³
		DV tool at 4000 KB	Top of Cement: Surface	Method Determined:
			Production	Lasing
and a second second second second second second second second second second second second second second second			Hole Size:8-3/4"	Casing Size: 7", 26 ppf, L80
		Injection String 4 Jan 44 64 100 Inc.	Cemented with: 868 sx.	or 1692 ft ³
			Top of Cement: Surface	Method Determined:
		IPC FB Packer at ~ 7265 °	Total Depth: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	000	Proposed Injection Zone: Entrada Sandstone: 7315' - 7483'	Injection Interve	<u>al (</u> Proposed)
-1/C-8		2st, 155	7315' feet	to 7483' (perforated 4 spf)
Hole	Frod Csg @ 7500"		(Perforated or Open H	(ole; indicate which)

Type of Packer: 7" Baker "FAB-1" (or similar model" Packer Setting Depth: ~ 7265' Packer Setting Depth: ~ 7265' Other Type of Tubing/Casing Seal (if applicable):Baker Model "KBH-22" Anchor tubing seal assembly, landed Additional Data 1. Is this a new well drilled for injection? X ves No If no, for what purpose was the well originally drilled? 2. Name of the Injection Formation: 3. Name of field or Pool (if applicable): 3. Name of Field or Pool (if applicable): 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:			<u>1/4 - 1/1- 1/1- 1/1- 1/1- 1/1- 1/1- 1/1-</u>		multi Matchial.	r lasuc Lilleu
Packer Setting Depth: ~7265' Other Type of Tubing/Casing Seal (if applicable):Baker Model "KBH-22" Anchor tubing seal assembly, landed Additional Data 1. Is this a new well drilled for injection? X Yes No If no, for what purpose was the well originally drilled? 2. Name of the Injection Formation: 3. Name of field or Pool (if applicable): 3. Name of Field or Pool (if applicable): 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:	Type of Pac	:ker:	7" Baker "FAB-1" (or	similar model"		
Other Type of Tubing/Casing Seal (if applicable): <u>Baker Model "KBH-22" Anchor tubing seal assembly, landed</u> 1. Is this a new well drilled for injection? Additional Data 1. Is this a new well drilled for injection? Yes No 1. Is this a new well drilled for injection? Yes No 1. If no, for what purpose was the well originally drilled? No 2. Name of the Injection Formation: Entrada 3. Name of frield or Pool (if applicable):	Packer Set	ting Depth:	~ 7265'			
Additional Data 1. Is this a new well drilled for injection? X Yes No If no, for what purpose was the well originally drilled? If no, for what purpose was the well originally drilled? 2. Name of the Injection Formation: Base of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of the Injection Formation: Image: A state of any oil or gas zones underlying or overlying the proposed injection zone in this area: Pictured Cliffs. Chacra, Mesavetede, Gallup, Dakota	Other Typ	e of Tubing/	'Casing Seal (if app	olicable): <u>Bakı</u>	er Model "KBH-22"	Anchor tubing seal assembly,
 Is this a new well drilled for injection? <u>X</u> Yes <u>No</u> If no, for what purpose was the well originally drilled? Name of the Injection Formation: <u>Entrada</u> Name of Field or Pool (if applicable): <u>Entrada</u> Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Pictured Cliffs, Chacra, Mesaverde, Gallup, Dakota</u> 				Additional	Data	
If no, for what purpose was the well originally drilled? 2. Name of the Injection Formation: Entrada 3. Name of Field or Pool (if applicable): Entrada 4. Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. 5. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area:	1. Is this	a new well	drilled for injection	n?	X_Yes	No
 Name of the Injection Formation: <u>Entrada</u> Name of Field or Pool (if applicable): <u>Entrada</u> Has the well ever been perforated in any other zone(s)? List all such perforated in intervals and give plugging detail, i.e. sacks of cement or plug(s) used. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Pictured Cliffs. Chacra, Mesaverde, Gallup, Dakota</u> 	If no,	for what pur	rpose was the well	originally dri	illed?	
 Name of Field or Pool (if applicable): Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Pictured Cliffs, Chacra, Mesaverde, Gallup, Dakota</u> 	2. Name	of the Inject	tion Formation:	Entrada		
 Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used. Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Pictured Cliffs, Chacra, Mesaverde, Gallup, Dakota</u> 	3. Name	of Field or	Pool (if applicable)	;		
 Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Pictured Cliffs, Chacra, Mesaverde, Gallup, Dakota</u> 	4. Has th interv	he well ever als and give	been perforated in plugging detail, i.	any other zou e. sacks of cer	ne(s)? List all such I ment or plug(s) used	berforated
	5. Give	the name and ion zone in t	d depths of any oil his area: <u>pi</u>	or gas zones ctured Cliffs.	underlying or overly , Chacra, Mesaverde,	ing the proposed Gallup, Dakota

Western Refining Southwest, Inc.

Waste Disposal Well (WDW) #2

C-108 Data Sheet

V. Maps identifying all wells within 2 ½ miles of proposed injection well and Area of Review (AOR) of 1mile radius.

The maps are below.

	~% °	Nesk h	0 40 9** *0	₩ ₽ ₩ ₩ ₽ ₩	A S S	- h	14 14 18 18 18 18 18 18 18 18 18 18 18 18 18	• 0 0 ⁴⁰	** * *	ug to	-	
	00 00 R	× * *	0 d# h	* *	N6** * *	¥ 4 *	* ***	\$ 0 0 ×	ά. Έ		N	
	** **	84) 63 ³	* *	<i>*</i>	4 [#] 4 4 4	- R A- 4 35	6 8 0 N	· 🔊	44	* *	R L N	
	*** **	**** * * ** * * *	¢, ↓ ¢, ↓ ¢	** * *	₩ # ₩ #	v» * ** ≥	8 8 8 8 8	* * * **	40 ° 4	* * *	QZ * *	
	6 1 ³⁰	* *	0 0# 000	* * * o ot	* \$	18 Ax	* * *	* *	жж ¢ ^й ф	s* ₿ ²		
	р т ж	***	* * *	° ** **	04 x [™] x d		 	X BOX D	* \$ * * * *	83 80 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0 44	
	8 8	*** *	0 v 044	* 0 %	**	19 14 14 1	o x 44 . 4	* * *	0- 0 ₩0 % 0	¢* ¢ ↔	>	
	8 ₩	г 6 ж ж в	* *	° p & * * ₩	* ***	84 ** \$ *8	*	0.40	** *	***	8	
	12 11 34 #	9 0 ⁰	124 J.W.	» » °° **.	* * **** *****************************	* * * · ·	× .° * ≸ .0k .	4 10 10 10 10 10 10 10 10 10 10 10 10 10	* * * *			
	PRETTY LAD	× *	****	· · * · * · *	**************************************	8. x	¦• ⊮.	***	** *	x * x * x	. Ε 	
	54 0 4 0 4	5 * * *	•	D0 \$ 4 4	+= += += += += += += += += += += += += +		** **	***	4 4	a 4° a 4° a 4°		
ap	****	× × ×	*	# ***	я **	Pistosal #	*** ·*	*	0 10 ** · *==========		2	
ase N	80	K GISPO	194, 12, 194 p 00	* ************************************	14 + 4 4 + 4	* ***	o te un or o	4 4 * 2 * *	ф. К. ф. й	8 ⁸		
ell Ba	<u>*</u>	* # *	**+ 4*	* *	· * *	4 x 4	N 30 5	0 	0° ¥ 0¥ ¥≎	* N	+	
W	***	** ** ••	÷ ÷	* * 1	**************************************	**** * + 	8 22 4	67 14	¢ %	₩ × •		
	*	* *	Not 10 10	* * *	**************************************	* **	• •	*	^й и и _й	* *		
	"* ¥	* *	- 4 8 8	₩ ¥ ₽ 6	* 4***** * 2* * 4	8	0 0 8 0 0 0 0 0	0 2 8	0 ± 0 10 ± 0	8 * *	-	
	8 0	& °.,	A	**	* *	4, 40	*		* * ***	*> ¥	e	
	¢	* * * *	4 4 4	2 * *	74 4 %	р ж ж	9 8	*	nto ak	4 ^{**} *		
	*	* * *	** **	a <u>*</u> * *	***	*	**	8 A	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	* * * * * *	*	
	*	* ** *	р 1 ч 1 ж	2# 8 #3	* ** *	ه به به	a¥ ₩ ₩	* *	the of the second second second second second second second second second second second second second second se	*** b *	*	
	* * *	¤ ₩ ₩ DISPOSAL	₽ ₩	* *	w ci w	**	M. 12	* = *	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* **	族	
	**	* *	<u> </u>	* * *	***	*	* *	* *		***		
		* *		* <u>26</u> * * <u>2</u> 5	а т. 10 ж. т.	*	*** **	5+ *	os canyon * *	× ≈ N	*	
	# #	24 0	*	<i>d</i> ² , <i>∂</i>	8 8	* 8	* 0 ¥a	ъ Ф	CALLES	* VZ	*5	
	*	ທ ^ອ ້າ ສ	0 1 0 1 0 4	4	R b ^à	a 8 \$	* * * *	о 33- *•	¢ 1	N 0	*	
		and the second s	100	A47 14			1	and the second second	the second second			

12		й ¹	36	拉米 拉
Mar	│	€ [™] ?	***	
क्रम्स	× *** ★* ☆	÷ * ***	\$\$ ₩	*
	*	¢: ~ ~ ~ ~		
	×¥ 3			- +
**••	\$ \$ ** \$ \$ *		• 4°T •	12
	**		機	*
-\$	53	₩ 9 *	ø Ql	*
* 494	* * * *	5 * 敬	• *	0
-42-	中 中 中 中 中 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>		花齿的	\$-
•				*
*.				- ¥
x ¥	**	* 2	**	◆ 兼
Y	₩ • •		\$ \$ ★	*
	2	# 24	*	-
	*	SAI	☆ * **	- ¢ -
★ ★	₩ •	Od *	₩ ¥ [*]	
5		DIS	^ж ф	₩
-०-५ 🕏				恭 🛱
4	Ø	*	Ø₩ ØØ \$\$ \$\$	0
*Q) 株 4 株	\$\$ ★★ \$\$	举	**
		* 80	n	\$
P	Å L		N H H	
	مبر ج	x * x	~ ^按 ☆"	
	× ×	* "		ø*
				* ***
	ф ф) (ф)	€ ^按 ☆ <u>₩</u> ≪ ₩	\$\$ ØØ \$	σø
*	*	-¢-		0, 1
346		o		*
	× • • *	N	3	
¥	₩ ^按 →			
	* *	*	* *	*
*	<u>, </u>			*
	[₩] #	* **	*	
14	校 》 校 1	Ц. Щ. Ц. Ц. Ц. Ц. Ц. Ц. Ц. Ц. Ц. Ц. Ц. Ц. Ц.		0

Area of Review 1 mile radius

Enerdeg Browser Date: Jan 29, 2016 Author: JOHN THOMPSON

VI. Tabulation of data of all wells of public record within the AOR which penetrate the proposed injection zone.

The only well that penetrates the proposed injection zone is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations.

Tabulation of wells within the 1-mile AOR is below.

Western Refining Southwest, Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2 Well List for 1-Mile Area of Review (AOR)

-	Production ID	Primary API	Lease Name	Well Num	n Operator Name	Location	Latitude	Longitude Field Nam	e County Na	me Status Na	me Prod Zone Name	Lease Code	OII Cum G	as Cum W	r Cum	ę
	30452519502290	30045251950000	CALVIN	2	BURLINGTON RESOURCES O&G CO LP	29N 11W 26P NW SE SE	36.69244745	-107.9548384 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006883	56,157	714,731	1,291	5,950
	130452561202290	30045256120000	CALVIN CALVIN		BURLINGTON RESOURCES O&G CO LP	29N 11W 26K SE NE SW	36.69445794	-1.07.9618893 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006883	65,478	602,470	1,472	5,970
- 1 - 1	130452565702290	30045256570000	CONGRESS	16	BURLINGTON RESOURCES D&G CO LP	29N 11W 34A C NE NE	36.68790014	-107.9716743 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006918	36,820	464,380	1,283	6,200
1.000	130452567302290	30045256730000	CONGRESS	18	BURLINGTON RESOURCES O&G CO LP	29N 11W 27K NW NE SW	36.69549308	-107.9808835 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006918	63,095	318,931	1,964	6,150
- C	130452567377200	30045256730001	CONGRESS	18	BURLINGTON RESOURCES O&G CO LP	29N 11W 27K NW NE SW	36.69549308	-107.9808835 FULCHER KUT	Z SAN JUAN	ACTIVE	PICTURED CLIFFS			95,176	1,056	
- 10 C	130452567502290	30045256750000	CONGRESS	15	BURLINGTON RESOURCES O&G CO LP	29N 11W 35C SE NE NW	36.6874019	-107.9620229 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	006918	7,534	255,800	1,172	6,030
C22	204530023005167	3004520020000	ASHCROFT SMD	-1 -	ZAN JUAN REFINING CUMPANT XTO ENERGY INCORPORATED	29N 11W 2/I NW NE SE	36,70179353	UWS C8/96/6/UT-	SAN ILIAN	ACTIVE	MORROW					
~	30450773371599	30045077330000	SULLIVAN GAS COM D	-	XTO ENERGY INCORPORATED	29N 11W 26B SW NW NE	36.70149705	-107.9598182 BASIN	SANJUAN	ACTIVE	DAKOTA	022839	22.497	.820,296	4,546	6,260
	30450787571599	30045078750000	DAMS GAS COM F		BP AMFRICA PRODUCTION COMPANY	29N 11W 27I SW NF SF	36.69478771	-107 9734791 RASIN	SAN ILIAN	INACTIVE	DAKOTA	000410	16 714	573.971	211	6.365
	30450783571599	30045078350000	MANGUM		BURINGTON RESOURCES ORG CO LP	29N 11W 27L NE NW 5W	36.69567609	-107.9834612 BASIN	SAN JUAN	INACTIVE	DAKOTA	007282	15.187	646.060	1	6.350
	30450783571629	30045078350001	MANGUM	F	BURLINGTON RESOURCES O&G CO LP	29N 11W 27L NE NW SW	36.69567609	-107.9834612 BASIN	SANJUAN	ACTIVE	FRUITLAND COAL			189,125	25,920	6,350
	30450786871200	30045078680000	SULLIVAN	2	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26H NW SE NE	36,69953096	-107.9541735 AZTEC	SAN JUAN	INACTIVE	FRUITLAND	015829		368,487	716	1,487
1.000	30450790377200	30045079030000	GARLAND B	1	SOUTHERN UNION PRODUCTION COMPANY	29N 11W 27M NE 5W 5W	36.69234828	-107.9841029 FULCHER KUT	Z SAN JUAN	INACTIVE	PICTURED CUFFS	251550	10	355,978		1,747
100	(30450794071599	30045079400000	COOK	-	MANANA GAS INCORPORATED	29N 11W 22N SW SE SW	36.70608404	-107.9811406 BASIN	SAN JUAN	ACTIVE	DAKOTA	006258	41,071 4	,343,480	6,176	6,314
	130450795971200	30045079590000	GRACE PEARCE	T	PICKETT JOHN C	29N 11W 220 NE SW SE	36.70664386	-107.9750193 AZTEC	SAN JUAN	INACTIVE	FRUITLAND	009267		804,069		1,620
0	130450796171599	30045079610000	HARTMAN	-	MANANA GAS INCORPORATED	29N 11W 22P SE SE	36.70664763	-107.972768 BASIN	SAN JUAN	INACTIVE	DAKOTA	006262	45,556	,456,777	9,059	6,309
0	130450798571200	30045080090000	PAN AMERICAN STATE COM	e	COOK ROY L	29N 11W 23K NE SW	36.71005755	-107.9637286 AZTEC	SAN JUAN	INACTIVE	FRUITLAND	570540		31,853		1,523
0	130450798571599	30045079850000	PEARCE GAS COM	F	BP AMERICA PRODUCTION COMPANY	29N 11W 23K NE SW	36.70802867	-107.9633365 BASIN	SAN JUAN	INACTIVE	DAKOTA	000949	12,630	,695,598	2,187	6,274
0	130451200371599	30045120030000	CALVIN	e	BURLINGTON RESOURCES O&G CO LP	29N 11W 26M SW SW	36.6929968	-107.9655043 BASIN	SAN JUAN	ACTIVE	DAKOTA	006883	25,759	,648,517	7,941	6,450
gl	130451308971200	30045130890000	COOK	7	MANANA GAS INCORPORATED	29N 11W 22N SE 5W	36,70619366	-107.981141 AZTEC	SAN JUAN	ACTIVE	FRUITLAND	006258		845,491	650	1,440
g	130452075277200	30045207520000	LEA ANN	4	CHAPARRAL OIL & GAS COMPANY	29N 11W 35E NE SW NW	36.68464683	-107.9667053 FULCHER KUT	Z SAN JUAN	INACTIVE	PICTURED CUFFS	002529		266,925		1,900
8	130452145782329	30045214570000	DELO	9	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 26I SW NE SE	36.69480938	-107.9543218 OTERO	SAN JUAN	ACTIVE	CHACRA	021202		966,707	08	2,908
215	007//75/1754054	3004521/320000	GARLAND B	HT	BURLINGION RESOURCES ONG CULP	29N 11W 2/M NE SW SW	5466/189.9E	-10/.9845498 FULCHER KUI	ANJUAN	INACINE	PICIOKED CUPPS	650/00	PT C	803,208	110	4 0.45
215	130452263966627	30045226390000	DELO	а.	GENERAL MINERALS CORPORATION	ZSN 11W Z6P NW SE SE	36.69189/86	101.954158 UNDESIGNAL	CAN JUAN	ACTIVE	PARMINGLON	202400	791	745 745	DIL	138 0
۶I۶	6707900TC7CHOC		ETATE GAS COM BE	+ +		IN THAT SOU SEAL NE CAN HE CAN HE CAN	101/02/01/02	-107 0634046 BACIN	NAULUAN CAN ILLAN	ACTIVE	CUALITY AND COAT	1+0770		677 850	005 C	7 954
218	01222222001 /022222001	TOODOCCEZCHOOS	STATE GAS COM BS		HOLCOMB OIL & GAS INCORPORATED	TOUL TITLE SAUNE SAUNE SAUNE SAUNE	TETETUTAE	-107 9634048 DTFBO	NAU INAN	INACTIVE	CHACRA	077876	505	550.835	BCE'S	2 954
418	BCECEPSSECSPUE		DAVIS GAS COM G	4 -	XTD FNFRGY INCORPORATED	29N 111/V 27I SW NF SF	36 69465987	-107 9737919 DTFRO	SAN ILIAN	INACTIVE	CHACRA	022685	222	937.989	747	2.951
a g	30452408271599	30045240820000	PEARCE GAS COM	1E	XTO ENERGY INCORPORATED	29N 11V/ 23I SE NW SE	36.70815961	-107.9565825 BASIN	SANJUAN	ACTIVE	DAKOTA	022629	3,328	474.351	5,412	6,365
18	130452408371599	30045240830000	SULLIVAN GAS COM D	IE	XTO ENERGY INCORPORATED	29N 11W 26F NW SE NW	36.69993082	-107.9642882 BASIN	SANJUAN	ACTIVE	DAKOTA	022839	6,902	,458,755	7,940	6,329
10	130452408471599	30045240840000	DAVIS GAS COM F	1E	XTO ENERGY INCORPORATED	29N 11W 27H NW SE NE	36.69983513	-107.9731903 BASIN	SAN JUAN	ACTIVE	DAKOTA	023416	4,262	905,546	8,033	6,386
2	130452408482329	30045240840000	DAVIS GAS COM F	IE	XTO ENERGY INCORPORATED	29N 11W 27H NW SE NE	36.69983513	-107.9731903 OTERO	SAN JUAN	ACTIVE	CHACRA	023416		451,277	2,457	6,386
0	130452457282329	30045245720000	CONGRESS	6	SOUTHLAND ROYALTY COMPANY LLC	29N 11W 26N NW SE SW	36.69192545	-107.9635484 OTERO	SAN JUAN	ACTIVE	CHACRA	021193		233,679	1,485	2,962
010	13045245/382329	30045245730000	GARLAND	-	SOUTHLAND RDYALTY COMPANY LLC	Z9N IIW Z7M NE SW SW	36.69270239	-107.9844958 OTERO	SANJUAN	ACTIVE	CHACKA	021914		205,435 Can are	1,140	C05/7
010	1045245/482329	30045245/40000	SUMMIT		BURLINGTON RESOURCES 08/6 CO LP	Z9N 11W 34A SW NE NE	36.68/182	-10/.9/22658 DIEHO	NAULUAN	ACTIVE	CHACKA	155/00	1 130	780,005	1 EOC	765'7
210	CECT/C/047CHOCH	DODOCTTACZDOCE	TAL MAN	1	BUNLINGTON RESOURCES UNG COLD	JONI 111NI JED MINI CE CE	36 60107550	NICHA CONTRACTOR	NEOLVIC	ACTIVE	DAKOTA	CO6883	2 986	005 590	R 346	6 507
	0001121122000	30045248370000	CONGRESS	45	RURI INGTON RESOLITCES OR COLP	79N 11W 35F NF SW NW	36.6849902	-107-9659406 BASIN	SANJUAN	ACTIVE	DAKOTA	006918	370	160.434	1.661	6.508
10	130452483782329	30045248370000	CONGRESS	4E	BURUNGTON RESOURCES O&G CO LP	29N 11W 35E NE SW NW	36.6849902	-107.9659406 OTERO	SAN JUAN	ACTIVE	CHACRA	816900		152,025	2,536	6,508
10	130452532971629	30045253290000	DAVIS GAS COM J	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26F NW SE NW	36.69991548	-107.9644588 BASIN	SAN JUAN	ACTIVE	FRUITLAND CDAL			330,236	27,028	
0	130452532972319	30045253290000	DAVIS GAS COM J	1	BP AMERICA PRODUCTION COMPANY	29N 11W 26F NW SE NW	36,69991548	-107.9644588 BLANCO	SAN JUAN	INACTIVE	MESAVERDE	000412	150	619	1,390	4,331
01	430452532982329	30045253290000	DAVIS GAS COM J	-	XTO ENERGY INCORPORATED	29N 11W 26F NW SE NW	36,69991548	-107.9644588 OTERO	SAN JUAN	INACTIVE	CHACRA	022601		181,392	893	4,331
u i c	430452562102290	30045256210000	EARL B SULUVAN	Nr	HOLCOMB OIL & GAS INCORPORATED	29N 11W 26H SE SE NE	36.69824062	-107.9525892 ARMENTA	SAN JUAN	INACTIVE	GALLUP /SD/	022841	2,425	12/2/21	154	5,/bU
JIC	05020202220000	TOODTZ8525400E	SUMMIT	15	FOLCOME OL & GAS INCONFORMED	29N 11W 34C NF NF NW	36.68874761	-107.9804042 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/	021407	5.765	142.149	1.247	6.216
10	130452672182329	30045267210000	NANCY HARTMAN	2	MANANA GAS INCORPORATED	29N 11W 22P NW SE SE	36.70637919	-107.9723245 OTERO	SAN JUAN	ACTIVE	CHACRA	006264		325,500	1,244	2,830
18	130452673182329	30045267310000	MARY JANE	T	MANANA GAS INCORPORATED	29N 11W 22N SW SE SW	36.70553482	-107.9810701 OTERO	SAN JUAN	ACTIVE	CHACRA	006270		434,028	1,556	2,850
0	130452736171200	30045273610000	LAUREN KELLY	1	MANANA GAS INCORPORATED	29N 11W 27F NW SE NW	36.69985569	-107.9820557 AZTEC	SAN JUAN	ACTIVE	FRUITLAND	006268		151,744	1,120	1,500
0	130452736582329	30045273650000	MARIAN S	1	MANANA GAS INCORPORATED	29N 11W 27F NW SE NW	36.69966343	-107.9820563 OTERO	SAN JUAN	ACTIVE	CHACRA	006269		166,541	1,900	2,840
0	130453078896436	30045307880000	ASHCROFT SWD	T	XTO ENERGY INCORPORATED	29N 11W 26B SW NW NE	36.70129353	-107.9586722 SWD	SAN JUAN	ACTIVE	ENTRADA					
U I	430453083302290	30045308330001	DAVIS GAS COM F	1.R	XTO ENERGY INCORPORATED	29N 11W 27I SW NE SE	36.69461272	-107.9721325 ARMENTA	SAN JUAN	ACTIVE	GALLUP /SD/		3,866	46,691	8,653	
	430453083371599	30045308330000	DAVIS GAS COM F	IR	XTO ENERGY INCORPORATED	29N 11W 2/I SW NE SE	36.694612/2	-107.97.21325 BASIN	SAN JUAN	ACTIVE	DAKUIA SPIIITI AND COAL		C78	126,022	9116	
11 C	CTOT/DTTTCCHOCH	OUDUEBUEESVUE	CALVIN FALVIN	TCO	BUKLINGI UN RESUURCES UNG LO LE	AND 32 WAN AND 192 WALF NOC	CB1C769 96	NICHOL 1027COC. 101-	SAN ILLAN	ACTIVE	PAKOTA		2.529	RUD.103	15.362	6.525
- C	130453431271629	30045343120000	ROYAL FLUSH	1	MANANA GAS INCORPORATED	29N 11W 22N W2 SE SW	36,70572753	-107.9808151 BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL			116,412	6,720	1,810
	13D453440971629	30045344090000	IACOUE	-	HOLCOMB OIL & GAS INCORPORATED	29N 11W 27H NW SE NE	36.69957456	-107.9729694 BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL			62,855	3,225	1,897
100	130453446371629	30045344630000	JACQUE	1	HOLCOMB OIL & GAS INCORPORATED	29N 11W 27L	36,69410423	-107.9721853 BASIN	SAN JUAN	ACTIVE	FRUITLAND COAL			75,123	8,922	1,890

VII. Operation Data

- 1. A. Average Daily Injection Rate = 3,500 bbls.
 - B. Maximum Daily Injection Rate = 8,500 bbls.
- 2. The system is closed (water will be collected onsite as part of the Bloomfield Terminal's process and pumped over to the injection well).
- 3. Proposed pressures
 - A. The average and maximum injection pressures will be determined from a step rate test run after the well is completed. The anticipated injection pressures are ~ 2000 psi.
- 4. The fluid to be disposed in the proposed injection well will be Waste Water Treatment System effluent, Evaporation Ponds contact storm water and Injection Well Stimulation and Maintenance fluids. Table 1 contains information about the injection fluid including source, waste type, frequency and discharge volume. Table 2 contains information about the sources on Waste Water Treatment Plant influent. An Analytical Summary of the fluids disposed in Disposal #1 2014 Annual report is presented in Table 3. This summary best characterizes the fluid to be disposed.

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Sources of Injection Fluids Table 1

Waste Water Source	Description	Waste Type	Frequency	Discharge Volume	<u></u>
Waste Water Treatment System Effluent	The waste water treatment system processes waste water from terminal. The system consists of three stages : an API Separator, Benzene Strippers and Aeration Lagoons (aka. Aggressive Biological Treatment). ¹²	Non-Exempt	Routine	October to April - 20 to 50 GPM April to October - 50 to 100 GPM	
Contact Storm Water - Evaporation Ponds	Precipitation (storm water) that falls into the evaporation ponds is contained and discharged directly to the WDW $\#2$ injection well.	Non-Exempt	Non-Routine	Dependent on Precipitation	
Injection Well Stimulation and Maintenance	Fluids produced from the injection well during stimulation and maintenance operations.	Non-Exempt	Non-Routine	Dependent on scope of work	
1. Final waste water treatment consists of Aggressive Bio	ological Treatment (ABT).				

2. Process Sewer System conveys waste water from various collection points to the waste water treatment system.

Bloomfield Terminal Western Refining Southwest, Inc. Proposed Waste Disposal Well (WDW) #2 Waste Water Treatment Plant Influent Table 2

Waste Water Source	Description	Waste Type	Frequency	Discharge Volume
Recovered Ground Water	Ground water remediation efforts includes pump and treat remedies. Hydrocarbon impacted water is recovered from multiple recovery wells and the Hammond Ditch French Drain Recovery System. Recovered water containing trace hydrocarbons is discharged to the process sewer system. ^{1,2}	Non-Exempt	Routine	October to April - 15 to 45 GPM April to October - 30 to 90 GPM
Boiler	Boiler blowdown waste water containing dissolved solids is discharged to the terminal process sewer system.	Non-Exempt	Routine	1,200 gallons per day
Heater Treater at Terminals	Steam is used to separate water from crude oil. Waste water containing trace hydrocarbons and dissolved solids is discharged to process sewer system.	Non-Exempt ³	Routine	150 galions per day
Boiler Feed Water Treatment System	Raw water is treated by this system to remove impurities before being supplied as feed water to the boiler system. Waste water from water softening units containing dissolved solids is routinely discharged to the process sewer system. ¹	Non-Exempt	Routine	280 gallons per day
Storage Tanks	Crude and product storage tanks are occasionally drained of bottom/decanted water. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent on Crude/Product Quality
Recoverable Material	The recoverable material is processed by the API Separator to recover the oil from water.	Non-Exempt ³	Non-Routine	Dependent of Water Fraction
Process Equipment Cleaning	Wash water used in maintenance of process equipment. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt	Non-Routine	Dependent on Maintenance Scope and Schedule
Hydrotest Water	Water used for Mechanical Integrity Testing (MIT) of equipment such as Tanks, piping, etc. Waste water containing trace hydrocarbons and dissolved solids is discharged to the process sewer system.	Non-Exempt ³	Non-Routine	Dependent of MIT Scope and Schedule
Contact Storm Water	Storm water exposed to contaminants by contact with process equipment is contained and discharged to the process sewer system. Contact storm water may contain trace hydrocarbons and dissolved solids.	Non-Exempt	Non-Routine	Dependent on Precipitation

1. Process Sewer System conveys waste water from various collection points to the waste water treatment system.

2. The River Terrace recovered groundwater is treated using a Granular Activated Carbon (GAC) System. The GAC effluent is recycled in the terminal process water system.

3. Bloomfield Terninal is a transportation facility. The exemption of oil and gas exploration and production wastes does not apply to transportation facilities.

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Volatile Organic Compounds (ug/L)		1/23/2014		7/28/2014	10/1/2014
1,1,1,2-Tetrachloroethane		<10	na	< 2.0	< 5.0
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0
1.1.2.2-Tetrachloroethane		< 20	na	< 4.0	< 10
1,1,2-Trichloroethane		< 10	na	< 2.0	< 5.0
1.1-Dichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethene		< 10	na	< 2.0	< 5.0
1.1-Dichloropropene		< 10	na	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	<10
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane		< 20	na	< 4.0	< 10
1,2-Dibromoethane (EDB)		< 10	na	< 2,0	< 5.0
1,2-Dichlorobenzene		< 10	na	< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	< 5.0
1,2-Dichloropropane		< 10	na	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,3-Dichlorobenzene		< 10	na	< 2.0	< 5.0
1,3-Dichloropropane		< 10	na	< 2.0	< 5.0
1,4-Dichlorobenzene	7500	< 10	na	< 2.0	< 5.0
1-Methylnaphthalene		< 40	па	< 8.0	< 20
2,2-Dichloropropane		< 20	na	< 4.0	< 10
2-Butanone		200	na	< 20	< 50
2-Chlorotoluene		< 10	na	< 2.0	< 5.0
2-Hexanone		<100	па	< 20	< 50
2-Methylnaphthalene		< 40	na	< 8.0	< 20
4-Chlorotoluene		< 10	na	< 2.0	< 5.0
4-Isopropyltoluene	1. miles	< 10	na	< 2.0	< 5.0
4-Methyl-2-pentanone		< 100	na	< 20	< 50
Acetone		1400	na	85	120
Benzene	500	< 10	па	< 2.0	< 5.0
Bromobenzene		< 10	na	< 2.0	< 5.0
Bromodichloromethane		< 10	па	< 2.0	< 5.0
Bromoform		< 10	na	< 2.0	< 5.0
Bromomethane	the second second second second second second second second second second second second second second second s	< 30	na	< 6.0	<15
Carbon disulfide	*****	< 100	na	< 20	< 50
Carbon Tetrachloride	500	< 10	na	< 2.0	< 5.0
Chlorobenzene	100000	< 10	na	< 2.0	< 5.0
Chloroethane		< 20	na	< 4.0	< 10
Chloroform	6000	< 10	па	< 2.0	< 5.0
Chloromethane		< 30	na	< 6.0	< 15
cis-1,2-DCE		< 10	na	< 2.0	< 5.0
cis-1.3-Dichloropropene		< 10	na	< 2.0	< 5.0
Dibromochloromethane		< 10	na	< 2.0	< 5.0
Dibromomethane		< 10	na	< 2.0	< 5.0
Dichlorodifluoromethane		< 10	na	< 2.0	< 5.0
Ethylbenzene		< 10	na	< 2.0	< 5,0
Hexachlorobutadiene	500	< 10	na	< 2.0	< 5.0
Isopropylbenzene		< 10	na	< 2.0	< 5.0
Methyl tert-butyl ether (MTBE)		< 10	na	< 2.0	< 5.0
Methylene Chloride	erri enere de estador de electronis	< 30	na	< 6.0	< 15
Naphthalene		< 30	na	< 4.0	<10
n-Butylbenzene		< 10	na	< 6.0	<15
n-Propylbenzene		< 20	na	< 2.0	< 5.0
sec-Butylbenzene	*****	< 10	na	< 2.0	< 5.0
Styrene		< 10	па	< 2.0	< 5.0
tert-Butylbenzene		< 10	na	< 2.0	< 5.0
Tetrachloroethene (PCE)		< 10	ра	< 2.0	< 5.0
Toluene		< 10		< 2.0	< 5.0
frans-1 2-DCE		< 10	pa	<20	< 5.0
trans-1 3-Dichloropropene		< 10	na	<20	< 5.0
Trichloroethene (TCF)		< 10	pa	<20	< 5.0
Trichlorofluoromethane		< 10	na	< 2.0	< 5.0
Vinyl chloride	200	< 10	pa	<20	< 5.0
Yulener Total	200	< 15	na	< 3.0	<75

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Semi-Volatile Organic Compounds (ug/L)			The Street of Street	31 Jo B.	Contract Fuller
1,2,4-Trichlorobenzene		< 50	na	< 100	<10
1,2-Dichlorobenzene		< 50	na	< 100	< 10
1,3-Dichlorobenzene		< 50	na	< 100	< 10
1,4-Dichlorobenzene	7500	< 50	na	< 100	< 10
1-Methylnaphthalene	for the second se	< 50	na	< 100	<10
2,4,5-Trichlorophenol		< 50	па	< 100	<10
2,4,6-Trichlorophenol	2000	< 50	na	< 100	<10
2,4-Dichlorophenol		< 100	na	< 200	< 20
2,4-Dimethylphenol		< 50	na	< 100	< 10
2,4-Dinitrophenol		< 100	na	< 200	< 20
2,4-Dinitrotoluene	130	< 50	na	< 100	< 10
2,6-Dinitrotoluene		< 50	na	< 100	< 10
2-Chloronaphthalene		< 50	па	<100	< 10
2-Chlorophenol		< 50	na	< 100	<10
2-Methylnaphthalene		< 50	na	< 100	< 10
2-Methylphenol		< 50	na	< 200	< 20
2-Nitroaniline		< 50	na	<100	< 10
2-Nitrophenol		< 50	na	<100	< 10
3,3'-Dichlorobenzidine		< 50	па	210	< 10
3+4-Methylphenol		< 50	na	<100	< 10
3-Nitroaniline		< 50	na	< 100	< 10
4,6-Dinitro-2-methylphenol		<100	na	< 200	< 20
4-Bromophenyl phenyl ether		< 50	na	<100	< 10
4-Chloro-3-methylphenol		< 50	na	< 100	< 10
4-Chloroaniline		< 50	na	< 100	< 10
4-Chlorophenyl phenyl ether		< 50	na	< 100	< 10
4-Nitroaniline		< 50	na	< 100	< 10
4-Nitrophenol		< 50	na	< 100	< 10
Acenaphthene		< 50	na	< 100	<10
Acenaphinylene		< 50	na	< 100	<10
Aniline		< 50		<100	<10
Anthracene		< 50	118	< 100	< 10
Azobenzene		< 50	na	< 100	<10
Benz(a)aninfacene		< 50	na	<100	< 10
Benzo(a)pyrene		< 50	na	< 100	< 10
Benzo(b)nuorannene Benzo(chi)perulene		< 50	114	< 100	< 10
Benzo((c)fluoranthana		< 50	na	< 100	< 10
Benzo(k)Illioranuiene		< 100	na	< 200	< 40
Benzul alaohal		< 50	114	< 100	< 10
Bis(2 abloraethory)methane		< 50	na	< 100	< 10
Bis(2-chloroethyl)ether		< 50	па	< 100	< 10
Bis(2-chloroisopropyl)ether		< 50	na	< 100	< 10
Bis(2-ethylbeyyl)nbthalate	harmonic transformed the second	< 50	na	< 100	<10
Butyl benzyl phthalate		< 50	na	< 100	< 10
Carbazole		< 50	na	< 100	< 10
Chrysene		< 50	na	< 100	< 10
Dibenz(a h)anthracene	e new restances in a large scale of the	< 50	na	< 100	< 10
Dibenzofuran		< 50	na	< 100	< 10
Diethyl phthalate		< 50	na	< 100	< 10
Dimethyl phthalate		< 50	na	< 100	< 10
Di-n-butyl phthalate	Number (< 50	па	< 100	< 10
Di-n-octyl phthalate		< 50	na	< 100	< 20
Fluoranthene		< 50	na	< 100	< 10
Fluorene		< 50	na	< 100	< 10
Hexachlorobenzene	130	< 50	na	< 100	< 10
Hexachlorobutadiene	500	< 50	na	< 100	< 10
Hexachlorocyclopentadiene		< 50	na	< 100	< 10
Hexachloroethane	3000	< 50	na	< 100	< 10
Indeno(1,2,3-cd)pyrene		< 50	na	< 100	< 10
Isophorone		< 50	na	< 100	< 10
Naphthalene		< 50	na	< 100	< 10
Nitrobenzene	2000	< 50	na	< 100	< 10
N-Nitrosodimethylamine		< 50	na	< 100	< 10
N-Nitrosodi-n-propylamine		< 50	na	< 100	< 10
N-Nitrosodiphenylamine		< 50	na	< 100	< 10
Pentachlorophenol	100000	<100	па	< 200	< 20
Phenanthrene		< 50	na	< 100	< 10
Phenol		< 50	na	< 100	< 10
Pyrene		< 50	na	< 100	< 10
Pyridine	5000	< 50	na	< 100	< 10

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwis	se stated)			1.201	A CONTRACTOR
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate	and the second second second second second second second second second second second second second second second	35	па	41	26
Total Dissolved Solids		5240	na	1380	742
pH (pH Units)		6.25	па	7.10	7.08
Bicarbonate (As CaCO3)		380	na	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	na	480	110
Magnesium		75	na	99	23
Potassium		37	na	36	8.2
Sodium		1000	na	1100	220
Total Alkalinity (as CaCO3)		380	na	220	150
Total Metals (mg/L)		Y UDA LOUIS	-14 M	and the second second	
Arsenic	5.0	< 0.020	na	< 0.020	< 0.020
Barium	100.0	0,56	na	0,63	0.20
Cadmium	1.0	< 0.0020	na	< 0.0020	< 0.0020
Chromium	5,0	< 0.0060	na	< 0.0060	< 0.0060
Lead	5	< 0.0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0.2	< 0.0010	na	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity		a Columbia			
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability (°F)	< 140° F	>200	na	>200	>200
Corrosivity (ph Units)	<2 or > 12.5	6.25	na	7.44	6.82

na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

5. A water sample and corresponding water analysis will be provided once the well is perforated and a water sample can be obtained. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations. The NMOCD records did not containing any data regarding the in-situ water quality found in the Ashcroft SWD #1 prior to injection.

VIII. Geology

Underground Drinking Water Sources

The known fresh water zones for the immediate area of the injection well are the Nacimiento and Ojo Alamo Formations of the Tertiary Age. The Nacimiento occurs at the surface and is about 570 feet thick in the immediate area. The Ojo Alamo is about 165 feet thick at an approximate depth of 569 to 734 feet.

Most of the water wells in the surrounding area are concentrated along the San Juan River flood plain and terraces north of the river and Bloomfield Terminal. These wells are completed in the Quaternary sand and gravels at depth of approximately 25 to 75 feet. These sand and gravels rest upon the Nacimiento.

One well (POD# SJ 02148) in the SE quarter of Section 27, T29N, R11W was drilled to a depth of 305 feet intersecting a water bearing sand within the Nacimiento at 225 to 285 feet with an estimated yield of 10gpm. The surface elevation is approximately 20 feet above the surface at proposed injection well location. The total depth of the well is at an approximate elevation of 5,250 feet. This is the deepest water well drilled in the study area according to the NM State Engineer's Office online records. The Point of Diversion Summary for the well is included (below).

New Mexico Office of the State Engineer Point of Diversion Summary

	(quarters are 1=NW 2=NE 3=SW 4=SE)								
					(quarters are smallest to largest)				
PC	Q64	Q16 Q4	Sec	Tws	Rng	Х	Y		
SJ	02148		24	27	29N	11W	234448	4065184*	e
Driller License:	847								
Driller Name:	SAVAGE, BOB								
Drill Start Date:	10/20/1987	Drill Finis	sh Date	:	11/*	16/1987	Plug	Date:	
Log File Date:	11/19/1987	PCW Rcv	Date:				Sou	ce:	Shallow
Pump Type:		Pipe Disc	charge \$	Size:			Estimated Yield: 10 GF		
Casing Size:	7.00	Depth We	əll:		305	feet	Dept	h Water:	186 feet
Wate	r Bearing Stratific	ations:	Тор	Bott	om	Descrip	tion		
		225	2	285	Sandsto	ne/Gravel	/Conglome	rate	
	Casing Perfo	rations:	Тор	Bott	om				
			266	ŝ	305				

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively. The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Injection Zone

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent. The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 – 26 percent and 150 – 450 millidarcies respectively.

The Bluff Sandstone maybe considered as a future injection zone and is not part of this application.

The geologic prognosis and a cross section showing the regional thickness and log characteristics are included (below).

Waste Disposal Well (WDW	/) #2	1.00		· · · · · · · · · · · · · · · · · · ·				
Geologic Prognosis	Entrada	& Bluff WDW, San	Juan County					
Header Well Name & Number: Waste Disposal V API: Pending Lal Sec. 27 Field: Surface Location Footage: 1900 FNL, 330 Bottom Hole Location Footage: Same as \$ 5538 Surface Quage:	Vell (WDW) #2 itude (NAD 83): Basin D FEL Surface	36.698499 Objective: County: Sta	Entrada & Bluff FM 1 San Juan ate: New Mext	Water Disposal Longitude (NAD 83) co Lease:	-107.971156 Location: TV GL Ele	VP: 29 N - Range: 11 W - vation:		
Type: Proposed TD: 7500 November 25, 2015 Expiration Date: Geologist: Peter Kondrat Depth:								
Formation Tops	Top MD (KB)	Top Subsea (KB)	Thickness (FT)	Rock Type	Drilling Notes	Depositional Environment		
Quaternary Alluvium	0	5550	10	Unconsolidated Gravels	Boulders, water, lost cirriculation	Continental Rivers		
Naciemento FM	10	5540	505	Shale & Sandstone	Water, gas	Continental Rivers		
Ojo Alamo Sandstone	515	5035	110	Sandstone & Shale	Water, gas	Continental Rivers		
Kirtland Shale	625	4925	578	Interbeddded Shale, sandstone	Water, gas	Coastal to Alluvial Plain		
Fruitland FM	1203	4347	515	Interbeddded Shale, sandstone &	Coalbed methane	Coastal Plain		
Pictured Cliffs Sandstone	1718	3832	162	Sandstone	Gas, water	Regressive Marine Beach		
Lewis Shale	1880	3670	780	Shale, thin limestones	Gas	Offshore Marine		
Huerfanito Bentonite Bed	2660	2890	28	Alterted volcanic ash, bentonite	Swelling clay	Volcanic Ash Layers		
Chacra FM	2688	2862	189	Sandstone, siltstone	Gas, Waler	Offshore Marine Sands		
Lower Lewis Shale	2877	2673	458	Shale, thin limestones	Gas, Water	Offshore Marine		
Cliff House Sandstone	3335	2215	59	Sandstone	Gas, Water, Oil	Transgressive Marine		
Menefee Member	3394	2156	643	Interbeddded Shale, sandstone &	Gas, Water, Oil	Coastal Plain		
Point Lookout Sandstone	4037	1513	386	Sandstone	Gas, Water, Oil	Regressive Marine Beach		
Mancos Shale	4423	1127	869	Shale, thin sandstones &	Gas, Water, Oil	Offshore Marine		
Niobrara A	5292	258	102	Interbeddded Shale, sandstone	Oll, Gas, Water	Offshore Marine Sands		
Niobrara B	5394	156	123	Interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands		
Niobrara C	5517	33	82	Interbeddded Shale, sandstone	Oil, Gas, Water	Offshore Marine Sands		
Gallup FM	5599	-49	243	Interbeddded Shale, sandstone	Oil, Gas, Water	Regressive Marine to		
Juana Lopez FM	5842	-292	123	Shale, thin limestones	Oil, Gas, Water	Offshore Marine		
Carlile Shale	5965	-415	95	Shale, thin limestones	Oil, Gas, Water	Offshore Marine		
Greenhorn Limestone	6060	-510	56	Limestone	Oil, Gas, Water	Offshore Marine		
Graneros Shale	6116	-566	33	Shale	Oll, Gas, Water	Offshore Marine		
Dakola FM	6149	-599	216	Sandstone, shale & coals	Oil, Gas, Water	Transgressive Coastal		
Burro Canvon FM	6365	-815	46	Sandstones, some conglomerate	Oll, Gas, Water	Braided Fluvial Fill		
Morrison FM	6411	-861	635	Mudstones, sandstone	Oil, Gas, Water	Continental Rivers		
Bluff Sandstone (aka Junction Creek Sandstone), Morrison FM Member	7046	-1496	118	Sandstone	Oil, Gas, Water	Alluvial Plain and Eolian		
Wanakah FM	7164	-1614	123	Sillstone, Sandstone	Oil, Gas, Water	Alluvial Plain and Eolian		
Todilto Limestone & Anhydrite	7287	-1737	28	Interbedded Limestone & Anbyddite	Oil, Gas, Water, Anyhydrite	Alluvial Plain and Eolian		
Entrada Sandstone	7315	-1765	168	Sandstone	Oil, Gas, Water	Eolian Sand Dunes		
Chinle FM	7483	-1933	17	Interbeddded Shale, sandstone	Oll, Gas, Water	Continental Rivers		
Proposed TD	7500	-1950		TD designed for complete log c	overgage over Entrada Sand	stone.		
Notes: Any significant flow rates, abnorma	al pressures, lost circula	tion, sticking, fluid loss o	r gain immediately not	ify company man, drilling superintende	ent and/or drilling engineer.			

	u L	F	ő	ę	R	B	F
	-	12	5	24	10FT SWD #1	8	
35 114 14DY 30-114	N	F	÷	R	28 ASHCR	8	1
2 1	77	Q	15 14/14	8	21 WDW #2		=
8	+			31	DAVIS GAS	8	10
S	6		11	8	n.		o
1333 1 300407/490000 EURLINETON RESOURCES 04G COLP ANGEL PENK 6 22 Soud Data-9241962 Soud Data-9241962 Soud Data-9241962 Soud Cata - Sanger 11 W - Sec 13 Catin Gas All Zones, 137220 DIS Cum Oli All Zones, 137220 DIS Cum Mater All Zones, 135220 DIS	A state of the sta]		ront Ander Second Ander	wy w w w		
81 3004507782000 文10 505567 NGC0550547ED ネストロを25567 NGC0550547ED ネストロの115,001 スパロの115,001	الا معالی المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحالي المحا المحالي المحالي br>محالي المحالي ا				Value -		
3004530001111 579 (11) 11 11 11 11 11 11 11 11 11 11 11 11		- 7000 -	BLUFF	- 7200 - MANAGO		- 7400 - ENTRA	
24583.1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5	e - State State in			Lington Control		and the second se	

Contraction of the second seco

ANGEL PEAK B #22 -

TD-7512.00

consection of the section a manage of the Exclusive 1X. After the well is drilled, cased and perforated an injectivity test will be performed. If the injection rate is less than 6 BPM prior to parting pressure, the well will be stimulated w/ approximately 222,000 lbs of 20/40 white sand in 110,000 gals of 30# cross linked gel at 50 bpm. Note: actual job design (if needed) will be based on actual results of the injectivity test.

X. All open hole and cased hole logs will be filed with NMOCD once the well is drilled and completed.

XII. Available geologic and engineering data has been examined and no evidence of open faults or any other hydrological connection between the disposal zone, the Entrada Formation, and any underground sources of drinking water, the Nacimiento Formation.

XIII. Based on the information available online as well as information from the "Four Corners Geological Society" there are no known faults located in the area of the proposed well. Natural fractures are few to nonexistent in the Entrada formation. The overlaying formation is the relatively impermeable Todilto Limestone. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately ¾ of mile to the east of the proposed injection well. The Ashcroft SWD #1 is a SWD well operated by XTO Energy and is completed in the Bluff and Entrada formations and has no evidence of water migrating out of the injection zones.

XIII. Public Notice will follow NMOCD review of this application.

Appendix C Injection Fluid Analytical

Injection Well 2014 Quarterly Analytical Summary

	Toxicity				
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
Volatile Organic Compounds (ug/L)	Reference in the second second	1/23/2014	MAR HERIO	7/28/2014	10/1/2014
1,1,1,2-Tetrachloroethane		< 10	na	< 2.0	< 5.0
1,1,1-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1,2,2-Tetrachloroethane		< 20	na	< 4.0	<10
1,1,2-Trichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethane		< 10	na	< 2.0	< 5.0
1,1-Dichloroethene		< 10	na	< 2.0	< 5.0
1,1-Dichloropropene		< 10	na	< 2.0	< 5.0
1,2,3-Trichlorobenzene		< 10	па	< 2.0	< 5.0
1,2,3-Trichloropropane		< 20	na	< 4.0	< 10
1,2,4-Trichlorobenzene		< 10	na	< 2.0	< 5.0
1,2,4-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,2-Dibromo-3-chloropropane		< 20	па	< 4.0	<10
1,2-Dibromoethane (EDB)		< 10	na	< 2.0	< 5.0
1,2-Dichlorobenzene		< 10	па	< 2.0	< 5.0
1,2-Dichloroethane (EDC)	500	< 10	na	< 2.0	< 5.0
1,2-Dichloropropane		< 10	па	< 2.0	< 5.0
1,3,5-Trimethylbenzene		< 10	na	< 2.0	< 5.0
1,3-Dichlorobenzene		< 10	па	< 2.0	< 5.0
1,3-Dichloropropane		< 10	na	< 2.0	< 5.0
1,4-Dichlorobenzene	7500	< 10	na	< 2.0	< 5.0
1-Methylnaphthalene		< 40	na	< 8.0	< 20
2,2-Dichloropropane	enter a substantia de la constanti de la constanti de la constanti de la constanti de la constanti de la const	< 20	na	< 4.0	<10
2-Butanone		200	na	< 20	< 50
2-Chlorotoluene		< 10	na	< 2.0	< 5,0
2-Hexanone		<100	na	< 20	< 50
2-Methylnaphthalene		< 40	na	< 8.0	< 20
4-Chlorotoluene		< 10	na	< 2.0	< 5.0
4-Isopropyltoluene		< 10	na	< 2.0	< 5,0
4-Methyl-2-pentanone		< 100	na	< 20	< 50
Acetone		1400	na	85	120
Benzene	500	< 10	na	< 2.0	< 5.0
Bromobenzene		< 10	na	< 2.0	< 5.0
Bromodichloromethane		< 10	na	< 2.0	< 5.0
Bromoform		< 10	na	< 2.0	< 5.0
Bromomethane		< 30	na	< 6.0	<15
Carbon disulfide		< 100	na	< 20	< 50
Carbon Tetrachloride	500	< 10	па	< 2.0	< 5.0
Chlorobenzene	100000	< 10	na	< 2.0	< 5.0
Chloroethane		< 20	na	< 4.0	<10
Chloroform	6000	< 10	na	< 2.0	< 5.0
Chloromethane		< 30	na	< 6.0	< 15
cis-1,2-DCE		< 10	na	< 2.0	< 5.0
cis-1,3-Dichloropropene		<10	па	< 2.0	< 5.0
Dibromochloromethane		< 10	na	< 2.0	< 5.0
Dibromomethane		< 10	na	< 2.0	< 5.0
Dichlorodifluoromethane		<10	na	< 2.0	< 5.0
Ethylbenzene		<10	па	< 2.0	< 5.0
Hexachlorobutadiene	500	< 10	na	< 2.0	< 5.0
Isopropylbenzene		< 10	па	< 2.0	< 5.0
Methyl tert-butyl ether (MTBE)		< 10	na	< 2.0	< 5.0
Methylene Chloride		< 30	па	< 6.0	<15
Naphthalene		< 30	na	<4.0	<10
n-Butylbenzene		<10	na	< 6.0	<15
n-Propylbenzene		< 20	na	< 2.0	< 5.0
sec-Butylbenzene		< 10	na	< 2.0	< 5.0
Styrene		< 10	na	< 2.0	< 5.0
tert-Butylbenzene		< 10	na	< 2.0	< 5.0
Tetrachloroethene (PCE)		< 10	na	< 2.0	< 5.0
Toluene		< 10	na	< 2.0	< 5.0
trans-1,2-DCE		< 10	na	< 2.0	< 5.0
trans-1,3-Dichloropropene		< 10	na	< 2.0	< 5.0
Trichloroethene (TCE)		< 10	na	< 2.0	< 5.0
Trichlorofluoromethane		< 10	na	< 2.0	< 5.0
Vinyl chloride	200	< 10	na	< 2.0	< 5.0
Xylenes, Total		<15	na	< 3.0	< 7.5

Injection Well 2014 Quarterly Analytical Summary

	Toxicity	2	And a second sec			
	Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter	
Semi-Volatile Organic Compounds (ug/L)	Marshall & Berlin		Service of		and the second sec	
1 2 4-Trichlorobenzene		< 50	na	< 100	< 10	
1.2-Dichlorobenzene		< 50	па	< 100	< 10	
1.3-Dichlorobenzene		< 50	na	<100	< 10	
1 4-Dichlorobenzene	7500	< 50	na	< 100	< 10	
1-Methylnaphthalene		< 50	na	< 100	< 10	
2.4.5-Trichlorophenol	444444994(44444444444444444444444444444	< 50	na	< 100	< 10	
2.4.6-Trichlorophenol	2000	< 50	na	< 100	< 10	
2.4-Dichlorophenol		< 100	na	< 200	< 20	
2 4-Dimethylphenol	,	< 50	na	< 100	< 10	
2.4-Dinitrophenol		< 100	na	< 200	< 20	
2.4-Dinitrotoluene	130	< 50	na	< 100	< 10	
2.6-Dinitrotoluene		< 50	na	< 100	< 10	
2-Chloronaphthalene		< 50	na	< 100	< 10	
2-Chlorophenol		< 50	na	< 100	< 10	
2-Methylnaphthalene		< 50	na	< 100	< 10	
2-Methylphenol		< 50	na	< 200	< 20	
2-Nitroaniline		< 50	na	< 100	< 10	
2-Nitrophenol		< 50	na	< 100	< 10	
3 3'-Dichlorobenzidine		< 50	na	210	< 10	
3+4-Methylphenol	······	< 50	na	< 100	< 10	
3-Nitroaniline		< 50	па	< 100	<10	
4 6-Dinitro-2-methylphenol	ang a ang ang ang ang ang ang ang ang an	< 100	na	< 200	< 20	
4-Bromophenyl phenyl ether		< 50	па	< 100	< 10	
4-Chloro-3-methylphenol	terre and the second second second second second second second second second second second second second second	< 50	na	< 100	< 10	
4-Chloroaniline	10000000000000000000000000000000000000	< 50	па	<100	< 10	
4-Chlorophenyl phenyl ether		< 50	na	< 100	< 10	
4-Nitroaniline		< 50	na	< 100	< 10	
4-Nitrophenol		< 50	na	< 100	<10	
Acenanhthene		< 50	na	<100	<10	
Acenaphthylene		< 50	na	< 100	<10	
Aniline		< 50	na	< 100	<10	
Anthracene		< 50	na	< 100	< 10	
Azobenzene		< 50	na	< 100	< 10	
Benz(a)anthracene		< 50	na	< 100	< 10	
Benzo(a)pyrepe		< 50	na	< 100	<10	
Benzo(b)fluoranthene		< 50	na	<100	< 10	
Benzo(g h i)perulene		< 50	na	< 100	<10	
Banzo(k)fluoranthana		< 50	na	< 100	< 10	
Benzoio goid		< 100	na	< 200	< 40	
Benzul alcohol		< 50	na	< 100	< 10	
Rig(2 ablereathere) methane		< 50	na	< 100	< 10	
Bis(2-chloroethyl)athar		< 50	na	<100	< 10	
Bis(2 chloroicopropul) ather	manna a la companya ang	< 50	10	< 100	<10	
Bis(2-chiolosopiopyi)ettel		< 50	na	<100	< 10	
Bis(2-emymexy)phinalate	NUMBER OF STREET	< 50	na	< 100	< 10	
Carbagele		< 50	na	< 100	< 10	
Chryster		< 50	110	< 100	< 10	
Dikana(a k)anthracana		< 50		< 100	< 10	
Dibenzeanjanimacene		< 50	114	< 100	< 10	
District and a standard		< 50	114	< 100	< 10	
Dientyl philaiale		< 50	na	< 100	< 10	
Dinetnyi philaiate		< 50	na	< 100	< 10	
Di-n-outyr primalate		< 50	na	< 100	< 20	
Eluoranthene		< 50	na	<100	< 10	
Fluerene		< 50	na	< 100	< 10	
Lawashlarahangan-	120	< 50	na	< 100	< 10	
Upypehlorobutedig===	500	< 50	na	<100	< 10	
Haveskiereguelens-t	000	< 50	na	< 100	< 10	
Herechlerecthere	3000	< 50	 	< 100	< 10	
Indexe(1.2.2. ed)pursue	3000	< 50		< 100	< 10	
Isophorone		< 50	110	< 100	<10	
Newbihalawa		< 50	110	< 100	<10	
Nitrohangana	2000	< 50	114	< 100	<10	
N Nitronodimethul	2000	< 50	110	< 100	<10	
N Nitese di a angestanine		< 50	114	< 100	< 10	
IN-INITOSOGI-n-propylamine		< 50	118	< 100	<10	
n-initrosocipitenyiamine	100000	< 100	114	< 200	< 20	
Pentachiorophenoi	100000	< 50	na	< 100	<10	
Phenel		< 50	na na	< 100	<10	
Pureno		< 50	na	< 100	<10	
ryrene	5000	~ 50	na	< 100	<10	
Pyridine	5000	1 < 20	na	~100	~ 10	
Table 3

Injection Well 2014 Quarterly Analytical Summary

	Toxicity Characteristics	1st Quarter	2nd Quarter	3rd Quarter	4th Quarter
General Chemistry (mg/L unless otherwi	se stated)			LES SPAN	12466
Specific Conductance (umhos/cm)		7100	na	1900	1100
Chloride		2400	na	510	220
Sulfate		35	na	41	26
Total Dissolved Solids		5240	na	1380	742
pH (pH Units)		6.25	na	7.10	7.08
Bicarbonate (As CaCO3)		380	na	220	150
Carbonate (As CaCO3)		<2.0	na	<2.0	<2.0
Calcium		490	па	480	110
Magnesium		75	na	99	23
Potassium		37	па	36	8.2
Sodium		1000	na	1100	220
Total Alkalinity (as CaCO3)		380	na	220	150
Total Metals (mg/L)	a California March	Sector St.	949. P. H. H. H. H.	Mark and and	
Arsenic	5.0	< 0.020	na	< 0.020	< 0.020
Barium	100.0	0.56	na	0.63	0.20
Cadmium	1.0	< 0.0020	na	< 0.0020	< 0.0020
Chromium	5.0	< 0.0060	na	< 0.0060	< 0.0060
Lead	5	< 0,0050	na	< 0.0050	< 0.0050
Selenium	1	< 0.050	na	< 0.050	< 0.050
Silver	5	< 0.0050	na	< 0.0050	< 0.0050
Mercury	0.2	< 0.0010	na	< 0.00020	< 0.00020
Ignitability, Corrosivity, and Reactivity		10 10		and the second	
Reactive Cyanide (mg/L)		<1.0	na	<1.0	<1.0
Reactive Sulfide (mg/kg)		1.6	na	<1.0	3.0
Ignitability ("F)	< 140° F	>200	па	>200	>200
Corrosivity (ph Units)	≤2 or ≥ 12.5	6.25	na	7.44	6.82

na = A water sample was not collected during the 2nd quarter of 2014 because the well was not operational.

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

February 13, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4135 FAX (505) 632-3911

RE: Injection Well 1-23-2014

OrderNo.: 1401A07

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 1/24/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT: Western Refining Southwest, Project: Injection Well 1-23-2014	Inc.		Client Samp Collection	Die ID: Inje Date: 1/23	ection Well 3/2014 8:35:00 AM	
Lab ID: 1401A07-001		AQUEUUS		Date: 1/24	4/2014 10:15:00 AM	Detel
Analyses	Result	KL -	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	JRR
Chloride	2400	100	mg/L	200	1/27/2014 7:14:18 PM	R16337
Sulfate	35	5.0	mg/L	10	1/24/2014 8:01:43 PM	R16313
EPA METHOD 7470: MERCURY					Analyst	DBD
Mercury	ND	0.0010	mg/L	5	1/30/2014 1:52:43 PM	11463
EPA 6010B: TOTAL RECOVERABLE N	IETALS				Analyst	ELS
Arsenic	ND	0.020	ma/L	1	1/29/2014 11:20:46 AM	11432
Barium	0,56	0.020	mg/L	1	1/29/2014 11:20:46 AM	11432
Cadmium	ND	0.0020	mg/L	1	1/29/2014 11:20:46 AM	11432
Calcium	490	5.0	mg/L	5	1/29/2014 11:22:17 AM	11432
Chromium	ND	0.0060	mg/L	1	1/29/2014 11:20:46 AM	11432
Lead	ND	0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Magnesium	75	1.0	mg/L	1	1/29/2014 11:20:46 AM	11432
Potassium	37	1.0	mg/L	1	1/29/2014 11:20:46 AM	11432
Selenium	ND	0.050	mg/L	1	1/29/2014 11:20:46 AM	11432
Silver	ND	0.0050	mg/L	1	1/29/2014 11:20:46 AM	11432
Sodium	1000	20	mg/L	20	1/29/2014 11:50:27 AM	11432
EPA METHOD 8270C: SEMIVOLATILE	S				Analyst	DAM
Acenaphthene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Acenaphthylene	ND	50	ug/L	1	1/30/2014 7:14:30 PM	11420
Aniline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Anthracene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Azobenzene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benz(a)anthracene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(a)pyrene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(b)fluoranthene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(g,h,i)perylene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Benzo(k)fluoranthene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Benzoic acid	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
Benzyl alcohol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroethoxy)methane	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroethyl)ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-chloroisopropyl)ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Bis(2-ethylhexyl)phthalate	ND	50	µg/∟	1	1/30/2014 7:14:30 PM	11420
4-Bromophenyl phenyl ether	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Butyl benzyl phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Carbazole	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Chioro-3-methylphenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4-Chloroaniline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1401A07 Date Reported: 2/13/2014

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 1 of 17

P Sample pH greater than 2.

RL Reporting Detection Limit

Hall En	vironmental Analys	is Laborato	rv. Inc.			Lab Order 1401A07	14
					I. ID. Ia	inaction Woll	
CLIENT:	Western Refining Southwest,	lnc.	(lient Samp	ne iD: inj		
Project:	Injection Well 1-23-2014			Collection	Date: 1/2	23/2014 8:35:00 AM	
Lab ID:	1401A07-001	Matrix: AC	QUEOUS	Received	Date: 1/2	24/2014 10:15:00 AM	
Analyses		Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLATILE	S				Analyst	DAM
2-Chloron	aphthalene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
2-Chlorop	henol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
, 4-Chlorop	henyl phenyl ether	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Chrysene		ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Di-n-butyl	phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Di-n-octyl	phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Dibenz(a,	h)anthracene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Dibenzofi	Iran	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,2-Dichle	probenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,3-Dichle	probenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
1,4-Dichle	probenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
3,3'-Dichi	orobenzidine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Diethyl pł	nthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Dimethyl	phthalate	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dichle	prophenol	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dime	thylphenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
4,6-Dinitr	o-2-methylphenol	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dinitr	ophenol	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420
2,4-Dinitr	otoluene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2,6-Dinitr	otoluene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Fluoranth	ene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Fluorene		ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Hexachlo	robenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Hexachlo	robutadiene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
Hexachio	rocyclopentadiene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Hexachlo	roethane	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Indeno(1,	2,3-cd)pyrene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Isophoror	ne	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
1-Methylr	naphthalene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
2-Methylr	naphthalene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Methylp	phenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
3+4-Meth	ylphenol	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
N-Nitroso	di-n-propylamine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
N-Nitroso	odimethylamine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
N-Nitrosc	diphenylamine	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
Naphthal	ene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
2-Nitroan	iline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420
3-Nitroan	iline	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420
4-Nitroan	iline	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
 - J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 17

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysis		Date Reported: 2/13/2014								
CLIENT: Western Refining Southwest, In Project: Injection Well 1-23-2014 Lab ID: 1401A07-001	c. Matrix:	Client Sample ID: Injection Well Collection Date: 1/23/2014 8:35:00 AM Matrix: AQUEOUS Received Date: 1/24/2014 10:15:00 AM								
Analyses	Result	RL Qua	l Units	DF	Date Analyzed	Batch				
FPA METHOD 8270C: SEMIVOLATILES					Analyst	DAM				
Nitrobonzene	ND	50	ua/L	1	1/30/2014 7:14:30 PM	11420				
2-Nitrophenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420				
4-Nitrophenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420				
Pentachiorophenol	ND	100	µg/L	1	1/30/2014 7:14:30 PM	11420				
Phenanthrene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420				
Phenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420				
Pyrene	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420				
Pyridine	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420				
1 2 4-Trichlorobenzene	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420				
2 4 5-Trichlorophenoi	ND	50	µg/L	1	1/30/2014 7:14:30 PM	11420				
2 4 6-Trichlorophenol	ND	50	μg/L	1	1/30/2014 7:14:30 PM	11420				
Surr: 2-Elunrophenol	66.2	22.7-98	%REC	1	1/30/2014 7:14:30 PM	11420				
Surr: Phenol-d5	54.5	23,4-74.9	%REC	1	1/30/2014 7:14:30 PM	11420				
Surr: 2.4.6-Tribromophenol	97.6	23.3-111	%REC	1	1/30/2014 7:14:30 PM	11420				
Surr: Nitrobenzene-d5	86.5	36.8-111	%REC	1	1/30/2014 7:14:30 PM	11420				
Surr: 2-Fluorobiphenyl	86.4	38.3-110	%REC	1	1/30/2014 7:14:30 PM	11420				
Surr: 4-Terphenyl-d14	73.7	52.1-116	%REC	1	1/30/2014 7:14:30 PM	11420				
EPA METHOD 8260B: VOLATILES					Analysi	t: DJF				
Benzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441				
Toluene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Ethylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441				
Methyl tert-butyl ether (MTBE)	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441				
1,2,4-Trimethylbenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441				
1.3.5-Trimethylbenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
1.2-Dichloroethane (EDC)	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
1.2-Dibromoethane (EDB)	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Naphthalene	ND	20	μg/L	10	1/31/2014 3:25:28 PM	R16441				
1-Methylnaphthalene	ND	40	μg/L	10	1/31/2014 3:25:28 PM	R16441				
2-Methylnaphthalene	ND	40	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Acetone	1400	100	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Bromobenzene	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Bromodichloromethane	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Bromoform	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Bromomethane	ND	30	µg/L	10	1/31/2014 3:25:28 PM	R16441				
2-Butanone	200	100	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Carbon disulfide	ND	100	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Carbon Tetrachloride	ND	10	µg/L	10	1/31/2014 3:25:28 PM	R16441				
Chlorobenzene	ND	10	μg/L	10	1/31/2014 3:25:28 PM	R16441				
Chloroethane	ND	20	µg/L	10	1/31/2014 3:25:28 PM	R16441				
			* 1001	· · ·						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

- H Holding times for preparation or analysis exceeded
 - ND Not Detected at the Reporting Limit Page 3 of 17
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Analytical Report

Analytical Report

Lab Order 1401A07

Date Reported: 2/13/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Lab ID: 1401A07-001

Client Sample ID: Injection Well Collection Date: 1/23/2014 8:35:00 AM Received Date: 1/24/2014 10:15:00 AM

Analyses	Result	RL Qu	al Units	DF Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES				Analyst:	DJF
Chloroform	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
Chloromethane	ND	30	µg/L	10 1/31/2014 3:25:28 PM	R16441
2-Chlorotoluene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
4-Chlorotoluene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
cis-1,2-DCE	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
cis-1,3-Dichloropropene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
1,2-Dibromo-3-chloropropane	ND	20	µg/L	10 1/31/2014 3:25:28 PM	R16441
Dibromochloromethane	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
Dibromomethane	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
1,2-Dichlorobenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,3-Dichlorobenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,4-Dichlorobenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
Dichlorodifluoromethane	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,1-Dichloroethane	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,1-Dichloroethene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
1,2-Dichloropropane	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
1,3-Dichloropropane	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
2,2-Dichloropropane	ND	20	µg/L	10 1/31/2014 3:25:28 PM	R16441
1,1-Dichloropropene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
Hexachlorobutadiene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
2-Hexanone	ND	100	μg/L	10 1/31/2014 3:25:28 PM	R16441
Isopropylbenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
4-Isopropyitoluene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
4-Methyl-2-pentanone	ND	100	μg/L	10 1/31/2014 3:25:28 PM	R16441
Methylene Chloride	ND	30	µg/L	10 1/31/2014 3:25:28 PM	R16441
n-Butylbenzene	ND	30	µg/L	10 1/31/2014 3:25:28 PM	R16441
n-Propylbenzene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
sec-Butylbenzene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
Styrene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
tert-Butylbenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,1,1,2-Tetrachloroethane	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,1,2,2-Tetrachloroethane	ND	20	µg/L	10 1/31/2014 3:25:28 PM	R16441
Tetrachloroethene (PCE)	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
trans-1,2-DCE	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
trans-1,3-Dichloropropene	ND	10	µg/L	10 1/31/2014 3:25:28 PM	R16441
1,2,3-Trichlorobenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,2,4-Trichlorobenzene	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,1,1-Trichloroethane	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441
1,1,2-Trichloroethane	ND	10	μg/L	10 1/31/2014 3:25:28 PM	R16441

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	B Analyte detected in the associated Method B		
	E	Value above quantitation range	H	Holding times for preparation or analysis	s exceeded	
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 4 of 17	
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.		
	R.	RPD outside accepted recovery limits	RL	Reporting Detection Limit		
	S	Spike Recovery outside accepted recovery limits				

Analytical Report Lab Order 1401A07

Date Reported: 2/13/2014

7

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest Project: Injection Well 1-23-2014	st, Inc.	Client Sample ID: Injection Well Collection Date: 1/23/2014 8:35:00 AM									
Lab ID: 1401A07-001	Matrix:	AQUEOU	S	Received Dat	te: 1/2	24/2014 10:15:00 AM					
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 8260B: VOLATILES						Analyst:	DJF				
Trichloroethene (TCE)	ND	10		µg/L	10	1/31/2014 3:25:28 PM	R16441				
Trichlorofluoromethane	ND	10		µg/L	10	1/31/2014 3:25:28 PM	R16441				
1,2,3-Trichloropropane	ND	20		µg/L	10	1/31/2014 3:25:28 PM	R16441				
Vinyl chloride	ND	10		µg/L	10	1/31/2014 3:25:28 PM	R16441				
Xylenes, Total	ND	15		µg/L	10	1/31/2014 3:25:28 PM	R16441				
Surr: 1,2-Dichloroethane-d4	100	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441				
Surr: 4-Bromofluorobenzene	86.4	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441				
Surr: Dibromofluoromethane	98.8	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441				
Surr: Toluene-d8	101	70-130		%REC	10	1/31/2014 3:25:28 PM	R16441				
SM2510B: SPECIFIC CONDUCTANC	E					Analyst	SRM				
Conductivity	7100	0.010		µmhos/cm	1	1/24/2014 5:53:17 PM	R16304				
SM4500-H+B: PH						Analyst	SRM				
pН	6.25	1.68	Н	pH units	1	1/24/2014 5:53:17 PM	R16304				
SM2320B: ALKALINITY						Analyst	SRM				
Bicarbonate (As CaCO3)	380	20		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304				
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304				
Total Alkalinity (as CaCO3)	380	20		mg/L CaCO3	1	1/24/2014 5:53:17 PM	R16304				
SM2540C MOD: TOTAL DISSOLVED	SOLIDS					Analyst	KS				
Total Dissolved Solids	5240	100	*	mg/L	1	1/28/2014 5:33:00 PM	11406				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysi	s exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 5 of 1
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	I ugo D of I
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

> 140128036 1401A07

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:
Address:	4901 HAWKINS NE SUITE D	Project Name:
	ALBUQUERQUE, NM 87109	
Attn:	ANDY FREEMAN	

Analytical Results Report

Sample Number Client Sample ID	140128036-001 1401A07-001E / INJE	Samp CTION WELL	oling Date	1/23/2014	Date/ Samp	Time Receive	ed 1/28/2014 8:35 AM	12:18 PM			
Matrix	Matrix Water		Sample Location								
Comments											
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier			
Cvanide (reacti	ive)	ND	mg/L	1	2/12/2014	CRW	SW846 CH7				
Flashonint		>200	۰F		2/4/2014	KFG	EPA 1010				
nH		5.89	ph Units		1/31/2014	AJT	EPA 150.1				
Reactive sulfid	6	1.57	mg/L	1	1/29/2014	АJT	SW846 CH7				

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soli/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cent0085; FL(NELAP): E871089

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID	МВ	SampTy	pe: MI	BLK	Tes	tCode: E	PA Method	300.0: Anions	5		
Client ID:	PBW	Batch I	ID: R1	6313	Я	RunNo: 1	6313				
Prep Date:		Analysis Da	te: 1/	24/2014	S	SeqNo: 4	70380	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate	*******	ND	0,50								
Sample ID	LCS	SampType: LCS TestCode: EPA Meth						300.0: Anions	8		
Client ID:	LCSW	Batch I	ID: R1	6313	R	RunNo: 1	6313				
Prep Date:		Analysis Date: 1/24/2014 SeqNo: 470381					Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		9.6	0.50	10.00	0	96.0	90	110	******		
		SampType: MBLK TestCode: EPA Method 300.0: Anions									
Sample ID	МВ	SampTy	pe: MI	BLK	Tes	tCode: E	PA Method	300.0: Anions	5		
Sample ID Client ID:	MB PBW	SampTy Batch I	pe: MI ID: R1	3LK 6337	Tesi	tCode: E RunNo: 1	PA Method 6337	300.0: Anions	3		
Sample ID Client ID: Prep Date:	MB PBW	SampTy Batch I Analysis Da	pe: MI ID: R1 te: 1/	BLK 6337 27/2014	Tes F S	tCode: E tunNo: 1 SeqNo: 4	PA Method 6337 71000	300.0: Anions Units: mg/L	5		
Sample ID Client ID: Prep Date: Analyte	MB PBW	SampTy Batch I Analysis Da Result	pe: MI ID: R1 te: 1/ PQL	BLK 6337 27/2014 SPK value	Tesi F S SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC	PA Method 6337 71000 LowLimit	300.0: Anions Units: mg/L HighLimit	s %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride	MB PBW	SampTy, Batch I Analysis Da Result ND	pe: MI ID: R1 te: 1/ PQL 0.50	BLK 6337 27/2014 SPK value	Tesi F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC	PA Method 6337 71000 LowLimit	300.0: Anions Units: mg/L HighLimit	s %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID	MB PBW LCS	SampTy Batch I Analysis Da Result ND SampTy	pe: MI ID: R1 te: 1/ PQL 0.50 pe: LC	BLK 6337 27/2014 SPK value S	Tes F SPK Ref Val Tes	tCode: E RunNo: 1 SeqNo: 4 %REC KCode: E	PA Method 6337 .71000 LowLimit PA Method	300.0: Anions Units: mg/L HighLimit 300.0: Anions	\$ %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	MB PBW LCS LCSW	SampTy, Batch I Analysis Da Result ND SampTy, Batch I	pe: MI ID: R1 te: 1/ PQL 0.50 pe: L0	BLK 6337 27/2014 SPK value S 6337	Tes F SPK Ref Val Tes F	tCode: E RunNo: 1 SeqNo: 4 %REC %REC tCode: E RunNo: 1	PA Method 6337 .71000 LowLimit PA Method 6337	300.0: Anions Units: mg/L HighLimit 300.0: Anions	\$ %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	MB PBW LCS LCSW	SampTy Batch I Analysis Da Result ND SampTy Batch I Analysis Da	pe: MB ID: R1 te: 1/ PQL 0.50 pe: LC ID: R1 te: 1/	BLK 6337 27/2014 SPK value S 6337 27/2014	Tes F SPK Ref Val Tes F S	tCode: E RunNo: 1 SeqNo: 4 %REC tCode: E RunNo: 1 SeqNo: 4	PA Method 6337 .71000 LowLimit PA Method 6337 .71001	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L	s %RPD s	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte	MB PBW LCS LCSW	SampTy, Batch I Analysis Da Result ND SampTy, Batch I Analysis Da Result	pe: MI ID: R1 te: 1/ PQL 0.50 pe: L0 ID: R1 te: 1/ PQL	3LK 6337 27/2014 SPK value S 6337 27/2014 SPK value	Tesi SPK Ref Val Tesi F SPK Ref Val	tCode: E RunNo: 1 SeqNo: 4 %REC tCode: E RunNo: 1 SeqNo: 4 %REC	PA Method 6337 .71000 LowLimit PA Method 6337 .71001 LowLimit	300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L HighLimit	s %RPD s %RPD	RPDLimit RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 6 of 17

1401A07 *13-Feb-14*

WO#:

Western Refining Southwest, Inc. **Client:**

Project:

Injection Well 1-23-2014

Sample ID 5ml rb	SamnT	voe: M	SI K	TestCode: EPA Method 8260B: VOLATILES						
	Datah		6444			RAA1				
	Batch	ни: К1	0441		anino; 1	0441				
Prep Date:	Analysis D	ate: 1/	31/2014	5	SeqNo: 4	74209	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1.2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methyinaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								

Qualifiers:

2,2-Dichloropropane

Value exceeds Maximum Contaminant Level. *

ND

2.0

- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- р Sample pH greater than 2.
- Reporting Detection Limit RL

Page 7 of 17

13-Feb-14

WO#:

1401A07

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Injection Well 1-23-2014 **Project:**

		· · · · · · · · · · · · · · · · · · ·			Cade: =	14 88-44	90000 VOL			
Sample ID 5ml rb	SampT	ype: ME	9LK	PestCode: EPA Method 8260B; VOLATILES						
Client ID: PBW	Batch	וD: R1	6441	R	unNo: 10	6441				
Prep Date:	Analysis D	ate: 1 /:	31/2014	S	eqNo: 47	74209	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	8.4		10.00		84.4	70	130			
Surr: Dibromofluoromethane	9.3		10.00		93.4	70	130			
Surr: Toluene-d8	9.3		10.00		93.0	70	130			
Sample ID 100ng Ics	SampT	Гуре: LC	s	Tes	tCode: El	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	h ID: R1	6441	F	RunNo: 1	6441				
Prep Date:	Analysis D	Date: 1/	'31/2014	S	SeqNo: 4	74213	Units: µg/L			
Analyte	Result	PQL	_SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	107	70	130			
Toluene	20	1.0	20.00	0	101	82.2	124			
Chlorobenzene	18	1.0	20.00	0	92.5	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level. *

Value above quantitation range Е

- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- в Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- Reporting Detection Limit RL

WO#: 13-Feb-14

Page 8 of 17

1401A07

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID 100ng Ics	SampT	SampType: LCS TestCode: E				EPA Method 8260B: VOLATILES					
Client ID: LCSW	Batch	h ID: R1	6441	F	RunNo: 1	6441					
Prep Date:	Analysis E	Date: 1/	31/2014	S	SeqNo: 4	74213	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloroethene	24	1.0	20.00	0	119	83.5	155				
Trichloroethene (TCE)	19	1.0	20.00	0	93.4	70	130				
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130				
Surr: 4-Bromofluorobenzene	8.8		10.00		88.1	70	130				
Surr: Dibromofluoromethane	8.1		10.00		80.7	70	130				
Surr: Toluene-d8	10		10.00		101	70	130				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Value above quantitation range Е
- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- в Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
 - Ρ Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 9 of 17

13-Feb-14

WO#: 1401A07

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID mb-11420	SampTy	/pe: MBLK	Tes	tCode: Ef	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 11420	F	RunNo: 1	6402				
Prep Date: 1/27/2014	Analysis Da	ate: 1/30/2014	ę	SegNo: 4	73422	Units: µg/L			
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10							
Acenaphthylene	ND	10							
Aniline	ND	10							
Anthracene	ND	10							
Azobenzene	ND	10							
Benz(a)anthracene	ND	10							
Benzo(a)pyrene	ND	10							
Benzo(b)fluoranthene	ND	10							
Benzo(g,h,i)perylene	ND	10							
Benzo(k)fluoranthene	ND	10							
Benzoic acid	ND	20							
Benzyl alcohol	ND	10							
Bis(2-chloroethoxy)methane	ND	10							
Bis(2-chloroethyl)ether	ND	10							
Bis(2-chloroisopropyl)ether	ND	10							
Bis(2-ethylhexyl)phthalate	ND	10							
4-Bromophenyl phenyl ether	ND	10							
Butyl benzyl phthalate	ND	10							
Carbazole	ND	10							
4-Chloro-3-methylphenol	ND	10							
4-Chloroaniline	ND	10							
2-Chloronaphthalene	ND	10							
2-Chlorophenol	ND	10							
4-Chlorophenyl phenyl ether	ND	10							
Chrysene	ND	10							
Di-n-butyl phthalate	ND	10							
Di-n-octyl phthalate	ND	10							
Dibenz(a,h)anthracene	ND	10							
Dibenzofuran	ND	10							
1,2-Dichlorobenzene	ND	10							
1,3-Dichlorobenzene	ND	10							
1,4-Dichlorobenzene	ND	10							
3,3'-Dichlorobenzidine	ND	10							
Diethyl phthalate	ND	10							
Dimethyl phthalate	ND	10							
2.4-Dichlorophenol	ND	20							
2,4-Dimethylphenol	ND	10							
4,6-Dinitro-2-methylphenol	ND	20							
2,4-Dinitrophenol	ND	20							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 10 of 17

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1401A07 13-Feb-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID mb-11420	SampTyp	e: MBLK	Test	tCode: EP/	A Method	8270C: Semi	volatiles		
Client ID: PBW	Batch ID): 11420	R	lunNo: 164	102				
Prep Date: 1/27/2014	Analysis Date	e: 1/30/2014	s	SeqNo: 473	3422	Units: µg/L			
Analyte	Result F	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10							
2,6-Dinitrotoluene	ND	10							
Fluoranthene	ND	10							
Fluorene	ND	10							
Hexachlorobenzene	ND	10							
Hexachlorobutadiene	ND	10							
Hexachiorocyclopentadiene	ND	10							
Hexachloroethane	ND	10							
Indeno(1,2,3-cd)pyrene	ND	10							
Isophorone	ND	10							
1-Methylnaphthalene	ND	10							
2-Methylnaphthalene	ND	10							
2-Methylphenol	ND	10							
3+4-Methylphenol	ND	10							
N-Nitrosodi-n-propylamine	ND	10							
N-Nitrosodimethylamine	ND	10							
N-Nitrosodiphenylamine	ND	10							
Naphthalene	ND	10							
2-Nitroaniline	ND	10							
3-Nitroaniline	ND	10							
4-Nitroaniline	ND	10							
Nitrobenzene	ND	10							
2-Nitrophenol	ND	10							
4-Nitrophenol	ND	10							
Pentachlorophenol	ND	20							
Phenanthrene	ND	10							
Phenol	ND	10							
Pyrene	ND	10							
Pyridine	ND	10							
1,2,4-Trichlorobenzene	ND	10							
2,4,5-Trichlorophenol	ND	10							
2,4,6-Trichlorophenol	ND	10							
Surr: 2-Fluorophenol	120	200.0		60.4	22.7	98			
Surr: Phenol-d5	91	200.0	•	45.4	23.4	74.9			
Surr: 2,4,6-Tribromophenol	150	200.0	•	74.9	23.3	111			
Surr: Nitrobenzene-d5	81	100.0	1	80.7	36.8	111			
Surr: 2-Fluorobiphenyl	77	100.0	1	76.6	38.3	110			
Surr: 4-Terphenyl-d14	74	100.0	I	73.9	52.1	116			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 11 of 17

WO#:

Client:

Project:

Western Refining Southwest, Inc.

Injection Well 1-23-2014

Sample ID Ics-11420	SamoT	vpe: LC	S	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	1D: 11	- 420	55. F	anNo: 1	6402				
Prep Date: 1/27/2014	Analysis D	ate: 1/	30/2014	5	SeqNo: 4	73423	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	72	10	100.0	0	72.4	48	101			
4-Chloro-3-methylphenol	130	10	200.0	0	67.2	47.9	109			
2-Chlorophenol	70	10	200.0	0	35.0	40	105			S
1,4-Dichlorobenzene	60	10	100.0	0	60.3	40.8	94.3			
2,4-Dinitrotoluene	63	10	100.0	0	63.2	28.3	131			
N-Nitrosodi-n-propylamine	80	10	100.0	0	79.7	46.2	119			
4-Nitrophenol	16	10	200.0	0	8.02	10.5	67.9			S
Pentachlorophenol	31	20	200.0	0	15.5	22.4	81.1			S
Phenol	67	10	200.0	0	33.4	21.4	72.9			
Pyrene	66	10	100.0	0	65.9	46.9	109			
1,2,4-Trichlorobenzene	68	10	100.0	0	67.8	43.1	98.4			
Surr: 2-Fluorophenol	36		200.0		18.0	22.7	98			S
Surr: Phenol-d5	65		200.0		32.3	23.4	74.9			
Surr: 2,4,6-Tribromophenol	72		200.0		36.2	23.3	111			
Surr: Nitrobenzene-d5	74		100.0		73.5	36.8	111			
Surr: 2-Fluorobiphenvl	74		100.0		73.9	38.3	110			
Surr: 4-Terphenyl-d14	80		100.0		80.0	52.1	116			
Sample ID mb-11513	SampT	ype: MB	зlк	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Sample ID mb-11513 Client ID: PBW	SampT Batch	ype: MI 1 ID: 11	3LK 513	Tes F	tCode: El RunNo: 1	PA Method 6496	8270C: Semi	volatiles		
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014	SampT Batch Analysis D	ype: Mi i ID: 11 vate: 2/	3LK 513 3/2014	Tes F S	tCode: El RunNo: 1 SeqNo: 4	PA Method 6496 75097	8270C: Semi Units: %RE	volatiles C		
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte	SampT Batch Analysis D Result	ype: MB 1D: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value	Tes F S SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC	PA Method 6496 75097 LowLimit	8270C: Semi Units: %RE HighLimit	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol	SampT Batch Analysis D Result 110	ype: Mi D: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0	Tes F S SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9	PA Method 6496 75097 LowLimit 22.7	8270C: Semi Units: %RE HighLimit 98	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5	SampT Batch Analysis D Result 110 93	ype: MB n ID: 11 vate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0	Tes F S SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5	PA Method 6496 75097 LowLimit 22.7 23.4	8270C: Semi Units: %RE HighLimit 98 74.9	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 110 93 130	ype: Mi n ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0	Tes F S SPK Ref Val	tCode: El RunNo: 1 GeqNo: 4 <u>%REC</u> 54.9 46.5 65.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3	8270C: Semi Units: %RE HighLimit 98 74.9 111	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 110 93 130 77	ype: Mf 1D: 11 vate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0	Tes F S SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8	8270C: Semi Units: %RE HighLimit 98 74.9 111 111	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl	SampT Batch Analysis D Result 110 93 130 77 71	ype: Mf 1D: 11 Pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0	Tes F S SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6	PA Method 6496 75097 22.7 23.4 23.3 36.8 38.3	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 111 110	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14	SampT Batch Analysis D Result 110 93 130 77 71 71 72	ype: Mr D: 11 vate: 2/ PQL	BLK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0	Tes F S SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116	volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT	ype: MF ate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 3S	Tes F SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi	volatiles C %RPD volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch	ype: Mf 1 ID: 11 PQL PQL ype: LC	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 100.0 55 513	Tes F SPK Ref Val Tes F	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi	volatiles C %RPD volatiles	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D	ype: Mf 1D: 11 PQL Ype: LC 1D: 11 Pate: 2/	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0	Tes F SPK Ref Val Tes F S	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4	PA Method 6496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE	volatiles C %RPD volatiles C	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result	ype: MF ate: 2/ PQL ype: LC a ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 513 3/2014 SPK value	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC	PA Method 6496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE HighLimit	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100	ype: MF ate: 2/ PQL ype: LC a ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 3/2014 SPK value 200.0	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC 49.8	PA Method 6496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE HighLimit 98	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85	ype: Mf n ID: 11 PQL PQL ype: LC n ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 100.0 3/2014 SPK value 200.0 200.0 200.0	Tes F SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC 49.8 42.3	PA Method 6496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE HighLimit 98 74.9	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85 150	ype: Mf i ID: 11 PQL PQL i ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 3/2014 SPK value 200.0 200.0 200.0 200.0 200.0	Tes F SPK Ref Val Tes F SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC 49.8 42.3 77.3	PA Method 6496 75097 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4 23.3	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE HighLimit 98 74.9 111	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual
Sample ID mb-11513 Client ID: PBW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: 2-Fluorobiphenyl Surr: 4-Terphenyl-d14 Sample ID Ics-11513 Client ID: LCSW Prep Date: 1/31/2014 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 110 93 130 77 71 72 SampT Batch Analysis D Result 100 85 150 82	ype: Mf i ID: 11 PQL PQL i ID: 11 pate: 2/ PQL	3LK 513 3/2014 SPK value 200.0 200.0 200.0 100.0 100.0 100.0 100.0 3/2014 SPK value 200.0 200.0 200.0 200.0 100.0 200.0 200.0 100.0 200.0 200.0 200.0 200.0 100	Tes F SPK Ref Val	tCode: El RunNo: 1 SeqNo: 4 %REC 54.9 46.5 65.6 77.3 70.6 71.6 tCode: El RunNo: 1 SeqNo: 4 %REC 49.8 42.3 77.3 81.7	PA Method 6496 75097 LowLimit 22.7 23.4 23.3 36.8 38.3 52.1 PA Method 6496 75098 LowLimit 22.7 23.4 23.3 36.8	8270C: Semi Units: %RE HighLimit 98 74.9 111 111 110 116 8270C: Semi Units: %RE HighLimit 98 74.9 111 111	volatiles C %RPD volatiles C %RPD	RPDLimit	Qual

Qualifiers:

Value exceeds Maximum Contaminant Level. *

E Value above quantitation range

- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit Ο R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits \mathbf{S}
- В Analyte detected in the associated Method Blank
- Η Holding times for preparation or analysis exceeded

Page 12 of 17

- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- RĽ Reporting Detection Limit

WO#: 1401A07

13-Feb-14

WO#: 1401A07

13-Feb-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID Ics-11513	SampType: LCS TestCode: EPA Meth				PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch ID:	11513	R	tunNo: 1	6496				
Prep Date: 1/31/2014	Analysis Date:	2/3/2014	S	eqNo: 4	75098	Units: %RE	С		
Analyte	Result PQI	_ SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	61	100.0		61.4	52.1	116			
Sample ID Icsd-11513	SampType: I	LCSD	Test	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch ID:	11513	R	tunNo: 1	6496				
Prep Date: 1/31/2014	Analysis Date:	2/3/2014	S	eqNo: 4	75099	Units: % RE	C		
Analyte	Result PQL	_ SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110	200.0		54.1	22.7	98	0	0	
Surr: Phenol-d5	90	200.0		44.9	23.4	74.9	0	0	
Surr: 2,4,6-Tribromophenol	160	200.0		79.0	23.3	111	0	0	
Surr: Nitrobenzene-d5	89	100.0		88.8	36.8	111	0	0	
Surr: 2-Fluorobiphenyl	83	100.0		83.1	38.3	110	0	0	
Surr: 4-Terphenyl-d14	70	100.0		70.1	52.1	116	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 13 of 17

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Western F Injection	Refining Well 1-2	South 3-201	wes 4	t, Inc.								
Sample ID	MB-11463	Samp	Туре:	ΜВ	LK	Tes	tCode: E	EPA Meth	lod	7470: Mercury	ı		
Client ID:	PBW	Bate	ch ID:	114	63	F	RunNo:	16401					
Prep Date:	1/29/2014	Analysis	Date:	1/3	80/2014	ę	SeqNo:	473049		Units: mg/L			
Analvte		Result	PQ	L	SPK value	SPK Ref Val	%REC	LowLir	nit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND	0.000	20									
Sample ID	LCS-11463	Samp	туре:	LCS	S	Tes	tCode: I	EPA Meti	nod	7470: Mercury	1		
Client ID:	LCSW	Bat	ch ID:	114	63	F	RunNo:	16401					
Prep Date:	1/29/2014	Analysis	Date:	1/3	30/2014	S	SeqNo:	473050		Units: mg/L			
Analyte		Result	PQ	L	SPK value	SPK Ref Val	%REC	LowLi	mit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0047	0.000	20	0.005000	0	94.3		80	120			
Sample ID	1401A07-001CMS	Sam	Type:	MS		Tes	tCode: I	EPA Meti	nod	7470: Mercury	 /		
Client ID:	Injection Well	Bat	ch ID:	114	63	F	RunNo:	16401					
Prep Date:	- 1/29/2014	Analysis	Date:	1/3	30/2014	S	SeqNo:	473069		Units: mg/L			
Analyte		Result	PG)L.	SPK value	SPK Ref Val	%REC	: LowLi	mit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0046	0.00	10	0.005000	0	91.0)	75	125			
Sample ID	1401A07-001CMS	D Samr	Type:	MS	D	Tes	tCode:	EPA Met	hod	7470: Mercury	/		
Client ID	Injection Well	Bat	ch iD:	114	-	F	RunNo:	16401		-			
Pren Date	1/29/2014	Analysis	Date:	1/:	30/2014		SegNo:	473070		Units: mg/L			
	112012017	Desult					W DEC	louii	mit	Highl imit	% PPD	RPDI imit	Qual
Analyte		0.0045	<u>۲۵ م</u>	2∟ 10	0 005000	OFK RET VAL			75	125	1.02	20	
mercury		0.0040	0.00	10	0.000000	v	00.1			120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 14 of 17

1401A07 13-Feb-14

WO#:

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID MB-11432	B-11432 SampType: MBLK				TestCode: EPA 6010B: Total Recoverable Metals					
Client ID: PBW	Batc	h ID: 114	132	R	unNo: 16	5372				
Prep Date: 1/28/2014	Analysis I	Date: 1/2	29/2014	S	eqNo: 47	72096	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0.020								
Cadmium	ND	0.0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	ND	0.0050								
Sodium	ND	1.0								
Sample ID LCS-11432	Samp	Type: LC	S	Tes	tCode: El	PA 6010B: `	Total Recover	able Meta	als	
Sample ID LCS-11432 Client ID: LCSW	Samp Bato	Type: LC	S 432	Tes F	tCode: El RunNo: 10	PA 6010B: ` 6372	Total Recover	able Meta	als	
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014	Samp Bato Analysis	Type: LC h ID: 114 Date: 1/	S 432 29/2014	Tes F	tCode: El RunNo: 10 SeqNo: 4	PA 6010B: ` 6372 72097	Total Recover Units: mg/L	able Meta	nis	
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte	Samp Bato Analysis Result	Type: LC th ID: 11 4 Date: 1 7 PQL	S 432 29/2014 SPK value	Tes F S SPK Ref Val	tCode: Ef RunNo: 10 SeqNo: 4 %REC	PA 6010B: ` 6372 72097 LowLimit	Total Recover Units: mg/L HighLimit	able Meta	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic	Samp Bato Analysis Result 0.43	Type: LC h ID: 114 Date: 1/ PQL 0.020	S 432 29/2014 SPK value 0.5000	Tes F SPK Ref Val 0	tCode: El RunNo: 10 SeqNo: 4 %REC 85.6	PA 6010B: 1 6372 72097 LowLimit 80	Total Recover Units: mg/L HighLimit 120	able Meta	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium	Samp Bato Analysis Result 0.43 0.43	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020	S 432 29/2014 SPK value 0.5000 0.5000	Tes F SPK Ref Val 0 0	tCode: EF RunNo: 10 SeqNo: 4 %REC 85.6 85.5	PA 6010B: ` 6372 72097 LowLimit 80 80	Total Recover Units: mg/L HighLimit 120 120	able Meta	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium	Samp Bato Analysis Result 0.43 0.43 0.42	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020	S 432 29/2014 SPK value 0.5000 0.5000 0.5000	Tes F SPK Ref Val 0 0 0 0	tCode: EF RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3	PA 6010B: 1 6372 72097 LowLimit 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120	able Meta	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium	Samp Bato Analysis Result 0.43 0.43 0.42 45	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00	Tes F SPK Ref Val 0 0 0 0 0 0	tCode: El RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3 89.1	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80	Units: mg/L HighLimit 120 120 120 120	%RPD	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium	Samp Bato Analysis Result 0.43 0.43 0.42 45 0.43	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.0020 1.0 0.0060	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 50.00 0.5000	Tes F SPK Ref Val 0 0 0 0 0 0 0	tCode: El RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120	%RPD	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead	Samp Bate Analysis Result 0.43 0.43 0.43 0.42 45 0.43 0.42	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.0020 1.0 0.0060 0.0050	S 432 29/2014 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0	Code: El RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120	%RPD	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium	Samp Bate Analysis Result 0.43 0.43 0.43 0.42 45 0.43 0.42 45	Type: LC ch ID: 114 Date: 1/ PQL 0.020 0.0020 1.0 0.0060 0.0050 1.0	S 432 29/2014 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: El RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4 90.0	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120	%RPD	als RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium	Samp Bate Analysis Result 0.43 0.43 0.42 45 0.43 0.42 45 0.42 45 44	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 1.0	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 10 SeqNo: 4 85.6 85.5 84.3 89.1 85.3 84.4 90.0 88.6	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium	Samp Bato Analysis Result 0.43 0.43 0.42 45 0.43 0.42 45 44 0.42	Type: LC th ID: 114 Date: 1/ PQL 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 1.0 0.050	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 0.5000	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4 90.0 88.6 83.4	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	a is RPDLimit	Qual
Sample ID LCS-11432 Client ID: LCSW Prep Date: 1/28/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver	Samp Bato Analysis Result 0.43 0.43 0.42 45 0.43 0.42 45 44 0.42 0.089	Type: LC th ID: 114 PQL 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 0.050 0.0050 0.0050	S 432 29/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 0.5000 0.5000 0.5000 0.5000 0.5000	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 10 SeqNo: 4 %REC 85.6 85.5 84.3 89.1 85.3 84.4 90.0 88.6 83.4 88.7	PA 6010B: 6372 72097 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	%RPD	a is RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 15 of 17

WO#:

Client: Project:	Western Refining South Injection Well 1-23-201	west, Inc. [4							
Sample ID mb-1	SampType:	MBLK	Tes	tCode: SM23	320B: All	kalinity			
Client ID: PBW	Batch ID:	R16304	F	lunNo: 1630	4				
Prep Date:	Analysis Date:	1/24/2014	S	GeqNo: 4701	97	Units: mg/L	CaCO3		
Analyte	Result P	QL SPK value	SPK Ref Val	%REC Lo	owLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as CaCO	3) ND	20							
Sample ID 1cs-1	SampType:	LCS	Tes	tCode: SM23	320B: Al	kalinity			
Client ID: LCSW	Batch ID:	R16304	F	RunNo: 1630	4				
Prep Date:	Analysis Date:	1/24/2014	8	SeqNo: 4701	98	Units: mg/L	CaCO3		
Analyte	Result Pr	QL SPK value	SPK Ref Val	%REC La	owLimit	HighLimit	%RPD	RPDLimit	Quai
Total Alkalinity (as CaCO	3) 82	20 80.00	0	103	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 16 of 17

Client: Western Refining Southwest, Inc.

Project: Injection Well 1-23-2014

Sample ID MB-11406	SampType: MBLK			TestCode: SM2540C MOD: Total Dissolved Solie				lids		
Client ID: PBW	Batch I	D: 11	406	F	RunNo: 10	6349				
Prep Date: 1/27/2014	Analysis Dat	e: 1/	28/2014	S	SeqNo: 4	71302	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved Solids	ND	20.0		-						
Sample ID LCS-11406	SampTy	e: LC	S	Tes	tCode: SI	M2540C MC	DD: Total Dise	olved So	lids	
Sample ID LCS-11406 Client ID: LCSW	SampTyr Batch I	De: LC	S 406	Tes F	tCode: SI RunNo: 1	M2540C MC 6349	D: Total Dise	olved So	lids	
Sample ID LCS-11406 Client ID: LCSW Prep Date: 1/27/2014	SampTyr Batch I Analysis Dat	De: LC D: 11 D: 11	S 406 28/2014	Tes F S	tCode: SI RunNo: 1 SeqNo: 4	M2540C MC 6349 71303	DD: Total Diss Units: mg/L	olved So	lids	
Sample ID LCS-11406 Client ID: LCSW Prep Date: 1/27/2014 Analyte	SampTyr Batch I Analysis Dat Result	De: LC D: 11 e: 1/ PQL	S 406 28/2014 SPK value	Tes F S SPK Ref Val	tCode: SI RunNo: 14 SeqNo: 4 %REC	M2540C MC 6349 71303 LowLimit	DD: Total Diss Units: mg/L HighLimit	olved So %RPD	lids RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 17 of 17

WO#: 1401A07

13-Feb-14

HALL Hall Environme ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-345-2 Website: www	ental Analysis Labora 4901 Hawkin Albuquerque, NM 83 3975 FAX: 505-345-4 w.hallenvironmental.	Ne NE 7109 Sam 7107 com	ple Log-In Ci	heck List
Client Name: Western Refining Southw Work Order Num	iber: 1401A07		RcptNo:	1
Received by/date: LM GI/24/14 Logged By: Michelle Garcla 1/24/2014 10:15:00	D AM	Minus Co	un	
Reviewed By: AT 1/177/14	9 F WI	n pureus car	ue -	
Chain of Custody				b
1. Custody seals intact on sample bottles?	Yes il	No	Not Present M	
2. Is Chain of Custody complete?	Yes 🖌	No	Not Present	
3. How was the sample delivered?	Courier			
Log In 4. Was an attempt made to cool the samples?	Yes 🗹	No 🗆	NA 🗀	
5. Were all samples received at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗌	
6. Sample(s) in proper container(s)?	Yes 🗹	No []]		
7. Sufficient sample volume for indicated test(s)?	Yes 🖌	No 🗔		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🔽	No 🛄		
9. Was preservative added to bottles?	Yes	No 🗹	na 🗔	
10.VOA vials have zero headspace?	Yes 🗹	No 🗔	No VOA Vials 📋	
11. Were any sample containers received broken?	Yes 🗌	No 🗹	# of preserved bottles checked	Λ
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No	for pH:	r (12)unless noted)
13, Are matrices correctly identified on Chain of Custody?	Yes 🕅	No 🗍	Adjusted	NOX
14 is it clear what analyses were requested?	Yes 🗹	No		X
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No	Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified: Dat By Whom: Via Regarding: Client Instructions:	te: [: [i]eMait [i]]	Phone Fax		
17. Additional remarks:	<u></u>	<u>, , , , , , , , , , , , , , , , , , , </u>	<u></u>	Ĺ

-	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1	1.2	Good	Yes			

Page 1 of 1

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 1 Hawkins NE - Albuquerque, NM 87109	505-345-3975 Fax 505-345-4107 Analysis Request	ьсв, ^г bCB, ^г bO ⁴ 'SO ⁴) l' N ^{9'} K seck-nb D2 D2 D2	Cor N) Cor N)	PH 601560 (Method PH (Method PH (Method PH (8310 of PH (8310 of PH (8310 of PH (8310 of PH (8310 of PH (904) PH												· · ·	y sub-contracted data will be clearly notated on the analytical report.
Around Time: andard □ Rush at Name: Injection Well	Tel	t Manager: s (6021) s (6021)	Er Do TPH E Temberature	ainer Preservativ HEAL No. HEAL NO. HEAN NO. HEAL NO. HEAN NO. HEAL NO. HEAN NO. HEAN NO. HEA		Provide a standard provide a sta	ml Amber - CO	mi Amber	1 H ₂ SO4	mi HNO ₃ _ C()	m Na OH	mi Zn Acutate			10% Remarks: 10/100 / 03/14 /510	Of ZH ILL	o other accredited laboratories. This serves as notice of this possibility. An
Chain-of-Custody Record Tum-A Sient: Western Refining X Sta Address: 50 CR 4990	Bloomfield, NM 87413 Project have #: 505-632-4135	MOC Package: Standard D Level 4 (Full Validation)	I Other Sample EDD (Type) On Los Sample Sample EDD (Type)	Date Time Matrix Sample Request ID Conta	23-4 8:35 H20 Injection Well 5-VO/	H ₂ 0 Injection Well 1 - lite	H ₂ 0 Injection Well 1-500	H ₂ 0 Injection Well 1-500	H ₂ 0 Injection Well 1-250	H ₂ 0 Injection Well 1-500	H ₂ 0 Injection Well 1-500	1-500 Injection Well 1-500		B: JIme: Relition inched Awy.	14 ISID Varet Maler Mu	14 MID MARTIN Walter Concerned	If necessary, camples submitted to Hall Environmental may be subcontracted to a

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

August 15, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 7-28-14 3rd QTR

OrderNo.: 1407D12

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 7/29/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT:	Western Refining Southwest, Inc	•		Client Sample	e ID: Înj	ection Well	
Project:	Injection Well 7-28-14 3rd QTR			Collection E	ate: 7/2	8/2014 9:30:00 AM	
Lab ID:	1407D12-001	Matrix:	AQUEOUS	Received E	ate: 7/2	9/2014 7:55:00 AM	
Analyses		Result	RL (Jual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst:	LGP
Chloride		510	25	mg/L	50	8/4/2014 5:04:09 PM	R20363
Sulfate		41	2.5	mg/L	5	7/29/2014 4:17:43 PM	R20236
EPA MET	HOD 7470: MERCURY					Analyst:	MMD
Mercury		ND	0.00020	mg/L	1	8/4/2014 2:43:32 PM	14571
EPA 6010	B: TOTAL RECOVERABLE MET	ALS		-		Analyst:	ELS
Arsenic		ND	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Barium		0.63	0.020	mg/L	1	8/2/2014 2:09:02 PM	14549
Cadmiun	n	ND	0.0020	mg/L	1	8/2/2014 2:09:02 PM	14549
Calcium		480	5.0	mg/L	5	8/2/2014 2:10:49 PM	14549
Chromiu	m	ND	0.0060	mg/L	1	8/2/2014 2:09:02 PM	14549
Lead		ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Magnesi	um	99	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Potassiu	m	36	1.0	mg/L	1	8/2/2014 2:09:02 PM	14549
Selenium	ז	ND	0.050	mg/L	1	8/2/2014 2:09:02 PM	14549
Silver		ND	0.0050	mg/L	1	8/2/2014 2:09:02 PM	14549
Sodium		1100	20	mg/L	20	8/2/2014 3:24:50 PM	14549
EPA MET	HOD 8270C: SEMIVOLATILES					Analyst:	DAM
Acenaph	thene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Acenaph	thylene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Aniline		ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Anthrace	ne	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Azobenz	ene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benz(a)a	Inthracene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(a)	pyrene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(b)	fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(g,	h,i)perylene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzo(k)	fluoranthene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzoic	acid	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
Benzyl a	Icohol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chl	oroethoxy)methane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chl	oroethyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-chl	oroisopropyl)ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Bis(2-eth	ylhexyl)phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Bromo	phenyl phenyl ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Butyl ber	nzyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Carbazol	e	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloro	-3-methylphenol	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
4-Chloro	aniline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level. В Ε Н Value above quantitation range Analyte detected below quantitation limits ND J 0 RSD is greater than RSDlimit \mathbf{P} Sample pH greater than 2.

R RPD outside accepted recovery limits

Spike Recovery outside accepted recovery limits S

Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit Page 1 of 20

RLReporting Detection Limit

Date Reported: 8/15/2014

Analytical Report Lab Order 1407D12

Analytical Report Lab Order 1407D12

Date Reported: 8/15/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc. Project: Injection Well 7-28-14 3rd QTR

1407D12-001

Lab ID:

Client Sample ID: Injection Well Collection Date: 7/28/2014 9:30:00 AM Received Date: 7/29/2014 7:55:00 AM

Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILE	s				Analyst	DAM
2-Chloronaphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Chlorophenol	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Chlorophenyl phenyl ether	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Chrysene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-butyl phthalate	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Di-n-octyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dibenz(a,h)anthracene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dibenzofuran	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,2-Dichlorobenzene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
1,3-Dichlorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1,4-Dichlorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3,3'-Dichlorobenzidine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Diethyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Dimethyl phthalate	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dichlorophenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dimethylphenol	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4,6-Dinitro-2-methylphenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitrophenol	ND	200	μg/L	1	7/31/2014 8:37:47 PM	14520
2,4-Dinitrotoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2,6-Dinitrotoluene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluoranthene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Fluorene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorobenzene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorobutadiene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Hexachlorocyclopentadiene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
Hexachloroethane	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Indeno(1,2,3-cd)pyrene	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Isophorone	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
1-Methylnaphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylnaphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Methylphenol	ND	200	µg/L	1	7/31/2014 8:37:47 PM	14520
3+4-Methylphenol	210	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodi-n-propylamine	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodimethylamine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
N-Nitrosodiphenylamine	ND	100	μg/L	1	7/31/2014 8:37:47 PM	14520
Naphthalene	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroaniline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
3-Nitroaniline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroaniline	ND	100	µg/L	1	7/31/2014 8:37:47 PM	14520

Matrix: AQUEOUS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Qualifiers:
 *
 Value exceeds Maximum Contaminant Level.

 E
 Value above quantitation range
 - J Analyte detected below quantitation limits
 - O RSD is greater than RSDlimit
 - R RPD outside accepted recovery limits
 - S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 2 of 20
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Er	nvironmental Analysis	Labora	ntory, Inc				Analytical Report Lab Order 1407D12 Date Reported: 8/15/20	14
CI IENT.	Western Refining Southwest Inc				lient Samnl	e ID: Ini	ection Well	
CLIENT	Western Retning Southwest, Inc	•		C	Collection 1	Deter $7/2$	8/2014 0·30·00 AM	
Project:	Injection Well 7-28-14 3rd QTR				Collection		0/2014 9.30.00 ANI	
Lab ID:	1407D12-001	Matrix:	AQUEOUS		Received I	Date: 7/2	9/2014 7:55:00 AM	
Analyses		Result	RL C)ual	Units	DF	Date Analyzed	Batch
EPA MET	HOD 8270C: SEMIVOLATILES						Analys	t: DAM
Nitrobena	zene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
2-Nitroph	enol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
4-Nitroph	enol	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pentachl	orophenol	ND	200		µg/L	1	7/31/2014 8:37:47 PM	14520
Phenanti	hrene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Phenol		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pyrene		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
Pyridine		ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
1,2,4-Trie	chlorobenzene	ND	100		µg/L	1	7/31/2014 8:37:47 PM	14520
2,4,5-Tri	chlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
2.4.6-Tri	chlorophenol	ND	100		μg/L	1	7/31/2014 8:37:47 PM	14520
Surr: 2	2-Fluorophenol	0	12.1-85.8	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: F	Phenol-d5	0	17.7-65.8	S	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 2	2.4.6-Tribromophenol	0	26-138	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 1	Nitrobenzene-d5	0	47.5-119	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 2	2-Eluorobiphenyl	0	48.1-106	s	%REC	1	7/31/2014 8:37:47 PM	14520
Surr: 4	1-Terphenyl-d14	0	44-113	s	%REC	1	7/31/2014 8:37:47 PM	14520
EPA MET	HOD 8260B: VOLATILES						Analys	t: DJF
Benzene	•	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Toluene		ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Ethylben	zene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Methyl te	ert-butyl ether (MTBE)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.2.4-Tri	methylbenzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.3.5-Tri	methvlbenzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dich	loroethane (EDC)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dibro	omoethane (EDB)	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Naphtha	lene	ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1-Methyl	naphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
2-Methyl	naphthalene	ND	8.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Acetone		85	20		µg/L	2	7/31/2014 1:41:17 PM	R20298
Bromobe	enzene	ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Bromodi	chloromethane	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Bromoto		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Bromom	ethane	ND	6.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
2-Butan	one	ND	20		μg/L	2	7/31/2014 1:41:17 PM	R20298
Carbon	disulfide	ND	20		µg/L	2	7/31/2014 1:41:17 PM	R20298
Carbon	Tetrachloride	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Chlorobe	enzene	ND	2.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
Chloroet	bane	ND	4.0		μg/L	2	7/31/2014 1:41:17 PM	R20298
			oin chaoldict	fort	 lagged OC /	lata and i	preservation informati	<u>on</u>

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 3 of 20
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmental Analysi	s Laborate	ory, Inc.			Lab Order 1407D12 Date Reported: 8/15/201	4
CLIENT: Western Refining Southwest, I Project: Injection Well 7-28-14 3rd QT Lab ID: 1407D12-001	nc. R Matrix: A	QUEOUS	lient Samp Collection Received	ole ID: Inj Date: 7/2 Date: 7/2	ection Well 28/2014 9:30:00 AM 29/2014 7:55:00 AM	
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B: VOLATILES					Analyst	DJF
Chloroform	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Chloromethane	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
2-Chlorofoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
4-Chlorofoluene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
cis-1.2-DCE	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
cis-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dibromo-3-chloropropane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Dibromochloromethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
Dibromomethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dichlorobenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.3-Dichlorobenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.4-Dichlorobenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Dichlorodifluoromethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.1-Dichloroethane	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1.1-Dichloroethene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.2-Dichloropropane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.3-Dichloropropane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
2,2-Dichloropropane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,1-Dichloropropene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Hexachlorobutadiene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
2-Hexanone	ND	20	µg/L	2	7/31/2014 1:41:17 PM	R20298
Isopropylbenzene	ND	2,0	µg/L	2	7/31/2014 1:41:17 PM	R20298
4-Isopropyltoluene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
4-Methyl-2-pentanone	ND	20	µg/L	2	7/31/2014 1:41:17 PM	R20298
Methylene Chloride	ND	6.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
n-Butvibenzene	ND	6.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
n-Propylbenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
sec-Butylbenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Styrene	ND	2,0	µg/L	2	7/31/2014 1:41:17 PM	R20298
tert-Butylbenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,1,1,2-Tetrachloroethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1.1.2.2-Tetrachloroethane	ND	4.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
Tetrachloroethene (PCE)	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
trans-1,2-DCE	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
trans-1,3-Dichloropropene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,3-Trichlorobenzene	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,2,4-Trichlorobenzene	ND	2.0	μg/L	2	7/31/2014 1:41:17 PM	R20298
1,1,1-Trichloroethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298
1,1,2-Trichloroethane	ND	2.0	µg/L	2	7/31/2014 1:41:17 PM	R20298

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit Page 4 of 20

Analytical Report

- P Sample pH greater than 2.
- RL Reporting Detection Limit

Hall Environmen	tal Analysis La	bora	atory, In	c.			Lab Order 1407D12 Date Reported: 8/15/201	4
CLIENT: Western Refin Project: Injection Well	ing Southwest, Inc. 7-28-14 3rd QTR	latrix:	AOUEOUS	C	lient Sample I Collection Da Received Da	D: Inj te: 7/2 te: 7/2	ection Well 28/2014 9:30:00 AM 29/2014 7:55:00 AM	
Analyses	Re	sult	RL (Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8260B:	/OLATILES						Analyst	DJF
Trichlorgethene (TCE)		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Trichlorofluoromethane		ND	2,0		µg/L	2	7/31/2014 1:41:17 PM	R20298
1.2.3-Trichloropropane		ND	4.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Vinyl chloride		ND	2.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Xylenes, Total		ND	3.0		µg/L	2	7/31/2014 1:41:17 PM	R20298
Surr: 1,2-Dichloroethan	e-d4	92.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: 4-Bromofluorober	zene	95.4	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Dibromofluorome	ihane	100	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
Surr: Toluene-d8		93.6	70-130		%REC	2	7/31/2014 1:41:17 PM	R20298
SM2510B: SPECIFIC CO	ONDUCTANCE						Analyst	: JRR
Conductivity		1900	0.010		µmhos/cm	1	7/29/2014 12:08:01 PM	R20245
SM4500-H+B: PH							Analyst	: JRR
pН		7.10	1.68	Н	pH units	1	7/29/2014 12:08:01 PM	R20245
SM2320B: ALKALINITY							Analyst	: JRR
Bicarbonate (As CaCO3)		220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Carbonate (As CaCO3)		ND	2.0		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
Total Alkalinity (as CaCO	3)	220	20		mg/L CaCO3	1	7/29/2014 12:08:01 PM	R20245
SM2540C MOD: TOTAL	DISSOLVED SOLIDS	5					Analyst	: KS
Total Dissolved Solids		1380	200	*	mg/L	1	7/30/2014 5:19:00 PM	14475

Analytical Report

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

					(C. 1)
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analys	is exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 5 of 20
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	x 466 c 0x - c
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, iD 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109	Batch #: Project Name:	140730036 1407D12	
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	140730036-001 1407D12-001E / INJE0 Water	Samp CTION WELL	ling Date	7/28/2014	Date/ Samp	Time Receive Ning Time	ed 7/30/2014 9:30 AM	12:25 PM
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (react	lve)	ND	mg/L	1	8/12/2014	CRW	SW846 CH7	
Flashpoint		>200	۴		8/5/2014	KFG	EPA 1010	
рН		7.44	ph Units	5	8/5/2014	AJT	SM 4500pH-B	
Reactive sulfid	9	ND	mg/L	1	8/1/2014	AJT	SW846 CH7	

Authorized Signature

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solld results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0D28; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00159; ID:WA00189; WA:C586; MT:Cert0095; FL(NELAP): E871099

Anatek Labs, Inc. 1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	140730036	
Address:	4901 HAWKINS NE SUITE D	Project Name:	1 407D12	
	ALBUQUERQUE, NM 87109			
Attn:	ANDY FREEMAN			
	Analytical Results R	leport		

Quality Control Data

Lab Control Sa	mple										
Parameter		LCS Result	Units	LCS	Spike	%Rec	AR	%Rec	Prep	Date /	Analysis Date
Reactive sulfide		0.16	mg/L	1	0.2	80.0	70	-130	8/1/2	2014	8/1/2014
Cyanide (reactive)		0.505	mg/L		0.5	101.0	80	-120	8/12/	2014	8/12/2014
Lab Control Sa	mple Duplicate							40			
Parameter		LCSD	Units	LCSD Snike	%Rec	%RP	D 9	AR ARPD	Prep [Date A	malysis Date
Reactive suifide		0.18	mg/L	0.2	90.0	11.8	3	0-25	8/1/2)14	8/1/2014
Matrix Spike							це				
Somnia Number	Parameter		Sample Result	M5 Result	Unit	ts S	mə Spike	%Rec	%Rec	Prep Date	Analysis Date
140730036-001	Reactive sulfide		ND	0.22	mg/	L .	0.2	110.0	70-130	8/1/2014	8/1/2014
140730036-001	Cyanide (reactive)		ND	0.919	mg/	L	1	91.9	80-120	8/12/2014	8/12/2014
Matrix Spike D	uplicate	мер		MeD				۸R			
Parameter		. anou Result	Units	Spike	%F	Rec 9	6RPD	%RPI) Pre	p Date	Analysis Date
Cyanide (reactive)) 	0.906	mg/L	1	90).6	1.4	0-25	8/1	2/2014	8/12/2014
Method Blank											
Parameter			Re	sult	U	nits		PQL	P	rep Date	Analysis Date
Cvanide (reactive)	•		Ν	ID	n	ng/L		1	8/	2/2014	8/12/2014
Reactive sulfide	7		٨	D	n	ng/L		1	8/	1/2014	8/1/2014

Acceptable Range AR ND Not Detected Practical Quantitation Limit PQL RPD **Relative Percentage Difference**

Comments:

Certifications held by Anstek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anstek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871099

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID	МВ	SampTyp	e: MB	BLK	Test	tCode: El	PA Method	300.0: Anions	;		
Client ID:	PBW	Batch II	D: R2	0236	R	RunNo: 2	0236				
Prep Date:		Analysis Date	e: 7/:	29/2014	S	SeqNo: 5	88153	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		ND	0.50								
Sample ID	LCS	SampTyp	e: LC	S	Test	tCode: El	PA Method	300.0: Anions	;		
Client ID:	LCSW	Batch II	D: R2	0236	R	RunNo: 2	0236				
Prep Date:		Analysis Dat	e: 7/:	29/2014	S	SeqNo: 5	88154	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		9.7	0.50	10.00	0	97.4	90	110			
Sample ID	MB	SampTyp	e: Me	BLK	Tes	tCode: El	PA Method	300.0: Anions	5		
Client ID:	PBW	Batch II	D: R2	0236	R	RunNo: 2	0236				
Prep Date:		Analysis Dat	e: 7 /;	29/2014	S	SeqNo: 5	88211	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sulfate		ND	0.50								
Sample ID	LCS	SampTyp	e: LC	S	Tes	tCode: El	PA Method	300.0: Anions	3		
Sample ID Client ID:	LCS LCSW	SampTyp Batch II	DE: LC	S 0236	Tes	tCode: El RunNo: 2	PA Method 0236	300.0: Anions	3		
Sample ID Client ID: Prep Date:	LCS LCSW	SampTyp Batch II Analysis Dat	e: LC D: R2 e: 7/:	S 0236 29/2014	Tes F S	tCode: El RunNo: 2 SeqNo: 5	PA Method 0236 88212	300.0: Anions Units: mg/L	3		
Sample ID Client ID: Prep Date: Analyte	LCS LCSW	SampTyp Batch II Analysis Dat Result	e: LC D: R2 e: 7/: PQL	S 0236 29/2014 SPK value	Tesi F SPK Ref Val	tCode: El RunNo: 2 SeqNo: 5 %REC	PA Method 0236 88212 LowLimit	300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate	LCS LCSW	SampTyp Batch II Analysis Dat Result 9.6	e: LC D: R2 e: 7/: PQL 0.50	5 0236 29/2014 SPK value 10.00	Tes F SPK Ref Val 0	tCode: E RunNo: 2 GeqNo: 5 %REC 95.6	PA Method 0236 88212 LowLimit 90	300.0: Anions Units: mg/L HighLimit 110	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID	LCS LCSW MB	SampTyp Batch II Analysis Dat Result 9.6 SampTyp	De: LC D: R2 e: 7/: PQL 0.50 De: ME	S 0236 29/2014 SPK value 10.00 BLK	Tes F S SPK Ref Val 0 Tes	tCode: El RunNo: 2 BeqNo: 5 %REC 95.6 tCode: El	PA Method 0236 88212 LowLimit 90 PA Method	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions	3 %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID:	LCS LCSW MB PBW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II	De: LC D: R2 e: 7/: PQL 0.50 De: ME D: R2	S 0236 29/2014 SPK value 10.00 3LK 0363	Tes F SPK Ref Val 0 Tes F	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2	PA Method 0236 88212 LowLimit 90 PA Method 0363	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions	3 %RPD 5	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date:	LCS LCSW MB PBW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat	De: LC D: R2 e: 7/: PQL 0.50 De: ME D: R2 e: 8/	S 0236 29/2014 SPK value 10.00 3LK 0363 4/2014	Tes F S SPK Ref Val 0 Tes F S	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 SeqNo: 5	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date: Analyte	LCS LCSW MB PBW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat Result	De: LC D: R2 e: 7 /2 0.50 De: ME D: R2 e: 8 /4 PQL	S 0236 29/2014 SPK value 10.00 3LK 0363 4/2014 SPK value	Tes F SPK Ref Val 0 Tes F SPK Ref Val	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 SeqNo: 5 %REC	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146 LowLimit	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date: Analyte Chloride	LCS LCSW MB PBW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat Result ND	 be: LC c: 7/: PQL 0.50 be: ME D: R2 e: 8/- PQL 0.50 	S 0236 29/2014 SPK value 10.00 BLK 0363 4/2014 SPK value	Tes F SPK Ref Val 0 Tes F SPK Ref Val	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 SeqNo: 5 %REC	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146 LowLimit	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit	%RPD	RPDLimit RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date: Analyte Chloride	LCS LCSW MB PBW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat Result ND SampTyp	De: LC D: R2 e: 7/: PQL 0.50 De: R2 e: 8/- PQL 0.50 De: LC	S 0236 29/2014 SPK value 10.00 3LK 0363 4/2014 SPK value SPK value	Tes F S SPK Ref Val 0 Tes F SPK Ref Val Tes	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 SeqNo: 5 %REC	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146 LowLimit PA Method	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions	%RPD	RPDLimit RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID:	LCS LCSW MB PBW LCS LCSW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat Result ND SampTyp Batch II	De: LC D: R2 e: 7/2 PQL 0.50 De: R2 e: 8/4 PQL 0.50 De: LC D: R2	S 0236 29/2014 SPK value 10.00 3LK 0363 4/2014 SPK value S 0363	Tes F SPK Ref Val 0 Tes SPK Ref Val Tes F	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 %REC tCode: El RunNo: 2	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146 LowLimit PA Method 0363	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions	%RPD	RPDLimit RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date:	LCS LCSW MB PBW LCS LCSW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat ND SampTyp Batch II Analysis Dat	De: LC D: R2 e: 7/: PQL 0.50 De: ME D: R2 e: 8/- D: R2 D: R2 de: LC D: R2 e: 8/-	S 0236 29/2014 SPK value 10.00 3LK 0363 4/2014 SPK value SS 0363 4/2014	Tes F SPK Ref Val 0 Tes SPK Ref Val SPK Ref Val Tes F SPK Ref S	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 %REC tCode: El RunNo: 2 SeqNo: 5	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146 LowLimit PA Method 0363 92147	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit 300.0: Anions Units: mg/L	3 %RPD 3 %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Sulfate Sample ID Client ID: Prep Date: Analyte Chloride Sample ID Client ID: Prep Date: Analyte	LCS LCSW MB PBW LCS LCSW	SampTyp Batch II Analysis Dat Result 9.6 SampTyp Batch II Analysis Dat Result Analysis Dat Result	De: LC D: R2 e: 7/: PQL 0.50 D: R2 e: 8/ PQL 0.50 D: R2 e: 8/ PQL	S 0236 29/2014 SPK value 10.00 3LK 0363 4/2014 SPK value S 0363 4/2014 SPK value	Tes F SPK Ref Val 0 Tes SPK Ref Val Tes SPK Ref Val	tCode: El RunNo: 2 SeqNo: 5 %REC 95.6 tCode: El RunNo: 2 %REC tCode: El RunNo: 2 SeqNo: 5 %REC	PA Method 0236 88212 LowLimit 90 PA Method 0363 92146 LowLimit PA Method 0363 92147 LowLimit	300.0: Anions Units: mg/L HighLimit 110 300.0: Anions Units: mg/L HighLimit Units: mg/L HighLimit	%RPD	RPDLimit RPDLimit RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12

Page 6 of 20

15-Aug-14

Sample ID MB	SampType: MBLK	T	estCode: EPA Method				
Client ID: PBW	Batch ID: R2036	3	RunNo: 20363				
Prep Date:	Analysis Date: 8/5/20	014	SeqNo: 592208	Units: mg/L			
Analyte	Result PQL SP	PK value SPK Ref Va	al %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND 0.50						
Sample ID LCS	SampType: LCS	T	estCode: EPA Method	300.0: Anions	\$		
Client ID: LCSW	Batch ID: R2036	3	RunNo: 20363				
Prep Date:	Analysis Date: 8/5/20)14	SeqNo: 592209	Units: mg/L			
Analyte	Result PQL SP	PK value SPK Ref Va	al %REC LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 7 of 20

1407D12

WO#:

15-Aug-14

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. Project: Injection Well 7-28-14 3rd QTR

Sample ID 5mL rb	SampT	ype: MI	зlk	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch ID: R20230			RunNo: 20230						
Prep Date:	Analysis D	ate: 7,	29/2014	SeqNo: 587928 Units: %REC						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.1		10.00		91.3	70	130			
Surr: 4-Bromofluorobenzene	9.3		10.00		93.2	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.7		10.00		96.7	70	130			
Sample ID 100ng Ics	SampT	ype: LC	s	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	ו ID: R 2	20230	F	RunNo: 2	0230				
Prep Date:	Analysis D	ate: 7	/29/2014	5	eqNo: 5	87930	Units: %RE	C		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 4-Bromofluorobenzene	9.5		10.00		95.4	70	130			
Surr: Dibromofluoromethane	11		10.00		107	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			
Sample ID 5ml rb	SampT	ype: MI	BLK	TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch ID: R20298			RunNo: 20298						
Prep Date:	Analysis D	ate: 7	31/2014	SeqNo: 589943			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-Trimethylbenzene	ND	1.0								
1,3,5-Trimethylbenzene	ND	1.0								
1,2-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)										
	ND	1.0								
Naphthalene	ND ND	1.0 2.0								
Naphthalene 1-Methylnaphthalene	ND ND ND	1.0 2.0 4.0								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene	ND ND ND ND	1.0 2.0 4.0 4.0								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone	ND ND ND ND	1.0 2.0 4.0 4.0 10								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene	ND ND ND ND ND	1.0 2.0 4.0 4.0 10 1.0								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane	ND ND ND ND ND ND	1.0 2.0 4.0 4.0 10 1.0								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform	ND ND ND ND ND ND	1.0 2.0 4.0 10 1.0 1.0 1.0								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform Bromomethane	ND ND ND ND ND ND ND ND	1.0 2.0 4.0 10 1.0 1.0 1.0 3.0								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform Bromomethane 2-Butanone	ND ND ND ND ND ND ND ND	1.0 2.0 4.0 10 1.0 1.0 1.0 3.0 10								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide	ND ND ND ND ND ND ND ND ND	1.0 2.0 4.0 10 1.0 1.0 1.0 3.0 10 10								
Naphthalene 1-Methylnaphthalene 2-Methylnaphthalene Acetone Bromobenzene Bromodichloromethane Bromoform Bromomethane 2-Butanone Carbon disulfide Carbon Tetrachloride	ND ND ND ND ND ND ND ND ND	1.0 2.0 4.0 10 1.0 1.0 3.0 10 10 10								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12

15-Aug-14

Page 8 of 20

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch ID: R20298			F	RunNo: 2	0298				
Prep Date:	Analysis Date: 7/31/2014			SeqNo: 589943			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1,4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1,1-Dichloroethane	ND	1.0								
1,1-Dichloroethene	ND	1.0								
1,2-Dichloropropane	ND	1.0								
1,3-Dichloropropane	ND	1.0								
2,2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 9 of 20

15-Aug-14

WO#: 1407D12

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID 5ml rb	SampT	ype: ME	BLK	Tes	tCode: El					
Client ID: PBW	Batch	ו ID: R2	0298	F	RunNo: 2					
Prep Date:	Analysis Date: 7/31/2014			SeqNo: 589943			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.8		10.00		88.2	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.9	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.9		10.00		98.9	70	130			
Sample ID 100ng ics	SampT	ype: LC	s	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	n ID: R2	0298	RunNo: 20298						
Prep Date:	Analysis D	ate: 7/	31/2014	SeqNo: 589945			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	102	70	130			
Toluene	21	1.0	20.00	0	107	80	120			
Chlorobenzene	20	1.0	20.00	0	99,3	70	130			
1,1-Dichloroethene	22	1.0	20.00	0	110	82.6	131			
Trichloroethene (TCE)	21	1.0	20.00	0	103	70	130			
Surr: 1,2-Dichloroethane-d4	9.2		10.00		91.6	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.4		10.00		94.3	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- l Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 20

WO#: 1407D12

15-Aug-14

Western Refining Southwest, Inc. **Client:**

Injection Well 7-28-14 3rd QTR **Project:**

Sample ID mb-14520	SampTy	ype: ME	BLK	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch ID: 14520			RunNo: 20300						
Prep Date: 7/31/2014	Analysis Da	ate: 7/	31/2014	8	SegNo: 5	90031	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	20								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	10								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2.4-Dinitrophenol	ND	20								

Qualifiers:

2,4-Dinitrophenol

Value exceeds Maximum Contaminant Level. *

ND

Value above quantitation range Е

- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
 - Sample pH greater than 2. Ρ
 - RL Reporting Detection Limit

Page 11 of 20
Western Refining Southwest, Inc. **Client:**

Injection Well 7-28-14 3rd QTR **Project:**

Sample ID mb-14520	SampType	B: MBLK	Tes	tCode: EP	A Method	8270C: Semiv	volatiles		
Client ID: PBW	Batch ID	: 14520	F	RunNo: 20	300				
Prep Date: 7/31/2014	Analysis Date	: 7/31/2014	ę	SegNo: 59	0031	Units: µg/L			
Analyte	Result F	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10							
2,6-Dinitrotoluene	ND	10							
Fluoranthene	ND	10							
Fluorene	ND	10							
Hexachlorobenzene	ND	10							
Hexachlorobutadiene	ND	10							
Hexachlorocyclopentadiene	ND	10							
Hexachloroethane	ND	10							
Indeno(1,2,3-cd)pyrene	ND	10							
lsophorone	ND	10							
1-Methylnaphthalene	ND	10							
2-Methylnaphthalene	ND	10							
2-Methylphenol	ND	20							
3+4-Methylphenol	ND	10							
N-Nitrosodi-n-propylamine	ND	10							
N-Nitrosodimethylamine	ND	10							
N-Nitrosodiphenylamine	ND	10							
Naphthalene	ND	10							
2-Nitroaniline	ND	10							
3-Nitroaniline	ND	10							
4-Nitroaniline	ND	10							
Nitrobenzene	ND	10							
2-Nitrophenol	ND	10							
4-Nitrophenol	ND	10							
Pentachlorophenol	ND	20							
Phenanthrene	ND	10							
Phenol	ND	10							
Pyrene	ND	10							
Pyridine	ND	10							
1,2,4-Trichlorobenzene	ND	10							
2,4,5-Trichlorophenol	ND	10							
2,4,6-Trichlorophenol	ND	10							
Surr: 2-Fluorophenol	130	200.0)	66.7	12.1	85.8			
Surr: Phenol-d5	95	200.0)	47.4	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170	200.0)	86.4	26	138			
Surr: Nitrobenzene-d5	84	100.0)	83.6	47.5	119			
Surr: 2-Fluorobiphenyl	84	100.0)	83.7	48.1	106			
Surr: 4-Terphenvi-d14	94	100.0)	94.5	44	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Έ Value above quantitation range
- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Ρ
- RL Reporting Detection Limit

Page 12 of 20

15-Aug-14

1407D12

Client: Western Refining Southwest, Inc.

Project: Injection Well 7-28-14 3rd QTR

Sample ID Ics-14520	SampT	ype: LC	S	Test	Code: E	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batch	1 ID: 14	520	R	unNo: 2	0300				
Prep Date: 7/31/2014	Analysis D	ate: 7/	31/2014	S	ieqNo: 5	90032	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	87	10	100.0	0	87.0	50.3	109			
4-Chloro-3-methylphenol	200	10	200.0	0	99.0	51.2	113			
2-Chlorophenol	190	10	200.0	0	94.9	48.5	104			
1,4-Dichlorobenzene	80	10	100.0	0	79.5	39.5	106			
2,4-Dinitrotoluene	82	10	100.0	0	82.3	45.4	107			
N-Nitrosodi-n-propylamine	91	10	100.0	0	91.0	50.4	119			
4-Nitrophenol	110	10	200.0	0	53.6	15.5	62.2			
Pentachlorophenol	150	20	200.0	0	72.7	23.5	93.5			
Phenol	110	10	200.0	0	54.8	26.8	65.6			
Pyrene	96	10	100.0	0	95.5	54.4	108			
1,2,4-Trichlorobenzene	78	10	100.0	0	78.0	39.9	106			
Surr: 2-Fluorophenol	140		200.0		72.4	12.1	85.8			
Surr: Phenol-d5	100		200.0		52.5	17.7	65.8			
Surr: 2,4,6-Tribromophenol	170		200.0		87.0	26	138			
Surr: Nitrobenzene-d5	100		100.0		101	47.5	119			
Surr: 2-Fluorobiphenyl	96		100.0		96.0	48.1	106			
Surr: 4-Terphenyl-d14	91		100.0		90.9	44	113			
		······								
Sample ID Icsd-14520	SampT	ype: LC	SD	Tes	Code: E	PA Method	8270C: Semi	volatiles		
Sample ID Icsd-14520 Client ID: LCSS02	SampT Batch	ype: LC	SD 520	Tesi R	Code: E	PA Method 0300	8270C: Semi	volatiles		
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014	SampT Batch Analysis D	ÿpe: LC 1 ID: 14 Pate: 7/	SD 520 31/2014	Tesl R S	Code: E tunNo: 2 teqNo: 5	PA Method 0300 90033	8270C: Semi Units: µg/L	volatiles		
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte	SampT Batch Analysis D Result	ype: LC 1 ID: 144 Pate: 7/ PQL	SD 520 31/2014 SPK value	Tesi R SPK Ref Val	Code: E tunNo: 2 teqNo: 5 %REC	PA Method 0300 90033 LowLimit	8270C: Semi Units: µg/L HighLimit	volatiles %RPD	RPDLimit	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene	SampT Batch Analysis D Result 77	ype: LC 1 ID: 144 Date: 7/ PQL 10	SD 520 31/2014 SPK value 100.0	Tesi R S SPK Ref Val 0	Code: E tunNo: 2 teqNo: 5 %REC 76.5	PA Method 0300 90033 LowLimit 50.3	8270C: Semi Units: µg/L HighLimit 109	volatiles %RPD 12.8	RPDLimit 27.2	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol	SampT Batch Analysis D Result 77 190	ype: LC 1 ID: 14 pate: 7/ PQL 10 10	SD 520 31/2014 SPK value 100.0 200.0	Tesi R SPK Ref Val 0 0	Code: E tunNo: 2 teqNo: 5 %REC 76.5 93.8	PA Method 0300 90033 LowLimit 50.3 51.2	8270C: Semi Units: µg/L HighLimit 109 113	volatiles %RPD 12.8 5.37	RPDLimit 27.2 25.9	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol	SampT Batch Analysis D Result 77 190 170	ype: LC 1 ID: 144 pate: 7/ PQL 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0	Tes R SPK Ref Val 0 0 0	Code: E tunNo: 2 ieqNo: 5 %REC 76.5 93.8 84.4	PA Method 0300 90033 LowLimit 50.3 51.2 48.5	8270C: Semi Units: µg/L HighLimit 109 113 104	volatiles %RPD 12.8 5.37 11.7	RPDLimit 27.2 25.9 22.5	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene	SampT Batch Analysis D Result 77 190 170 73	ype: LC 1 ID: 144 Pate: 7/ PQL 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0	Tesl R SPK Ref Val 0 0 0 0 0	Code: E unNo: 2 ieqNo: 5 %REC 76.5 93.8 84.4 73.3	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5	8270C: Semi Units: μg/L HighLimit 109 113 104 106	volatiles %RPD 12.8 5.37 11.7 8.19	RPDLimit 27.2 25.9 22.5 24.6	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene	SampT Batch Analysis D Result 77 190 170 73 73	ype: LC DID: 144 Pate: 7/ PQL 10 10 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0	Tesi R SPK Ref Val 0 0 0 0 0 0	iCode: E itunNo: 2 iteqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4	8270C: Semi Units: μg/L HighLimit 109 113 104 106 107	%RPD 12.8 5.37 11.7 8.19 11.9	RPDLimit 27.2 25.9 22.5 24.6 25.3	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine	SampT Batch Analysis D Result 77 190 170 73 73 85	ype: LC Di ID: 144 Pate: 7/ PQL 10 10 10 10 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 100.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E cunNo: 2 %REC 76.5 93.8 84.4 73.3 73.1 84.9	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119	<pre>volatiles %RPD 12.8 5.37 11.7 8.19 11.9 6.98</pre>	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol	SampT Batch Analysis D Result 77 190 170 73 73 85 110	ype: LC DD: 144 Pate: 71 PQL 10 10 10 10 10 10 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 100.0 200.0	Tesi R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E cunNo: 2 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5	8270C: Semi Units: μg/L HighLimit 109 113 104 106 107 119 62.2	%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150	ype: LC D ID: 144 Pate: 7/ PQL 10 10 10 10 10 10 10 10 10 20	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 100.0 200.0 200.0	Tesi R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E cunNo: 2 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5	%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150 100	ype: LC D ID: 144 Pate: 7/ PQL 10 10 10 10 10 10 10 10 20 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 200.0 200.0 200.0 200.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E cunNo: 2 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6	%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150 100 89	ype: LC D ID: 144 Pate: 7/ PQL 10 10 10 10 10 10 10 20 10 10 20 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 200.0 200.0 200.0 200.0 100.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iCode: E icunNo: 2 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108	volatiles %RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene 1,2,4-Trichlorobenzene	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150 100 89 68	ype: LC plD: 144 pate: 7/ 10 10 10 10 10 10 10 20 10 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 200.0 200.0 200.0 200.0 200.0 100.0 100.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iCode: E tunNo: 2 iceqNo: 5 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106	<pre>volatiles %RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1</pre>	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Sur: 2-Fluorophenol	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150 100 89 68 140	ype: LC plD: 144 pate: 7/ 10 10 10 10 10 10 10 20 10 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 200.0 200.0 200.0 200.0 100.0 100.0 100.0 200.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	iCode: E tunNo: 2 SeqNo: 5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106 85.8	<pre>%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0</pre>	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol Surr: Phenol-d5	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150 100 89 68 140 110	ype: LC plD: 144 pate: 7/ PQL 10 10 10 10 10 10 20 10 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 100.0 200.0 200.0 200.0 100.0 100.0 200.0 200.0 200.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E cunNo: 2 SeqNo: 5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 68.4 68.8 53.9	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8	%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0 0	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 77 190 170 73 73 85 110 150 100 89 68 140 110 110	ype: LC plD: 144 PQL 10 10 10 10 10 10 10 10 20 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 200.0 200.0 200.0 100.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E tunNo: 2 SeqNo: 5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 68.4 68.8 53.9 86.5	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7 26	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8 138	%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0 0 0 0 0 0 0	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0 0 0	Qual
Sample ID Icsd-14520 Client ID: LCSS02 Prep Date: 7/31/2014 Analyte Acenaphthene 4-Chloro-3-methylphenol 2-Chlorophenol 1,4-Dichlorobenzene 2,4-Dinitrotoluene N-Nitrosodi-n-propylamine 4-Nitrophenol Pentachlorophenol Phenol Pyrene 1,2,4-Trichlorobenzene Surr: 2,4,6-Tribromophenol Surr: 2,4,6-Tribromophenol Surr: Nitrobenzene-d5 Surr: Nitrobenzene-d5	SampT Batch Analysis D Result 77 190 170 73 73 73 85 110 150 100 89 68 140 110 170 88	ype: LC plD: 144 PQL 10 10 10 10 10 10 10 10 20 10 10 10	SD 520 31/2014 SPK value 100.0 200.0 200.0 100.0 200.0 200.0 200.0 100.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0	Tes R SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Code: E SeqNo: 2 %REC 76.5 93.8 84.4 73.3 73.1 84.9 52.7 72.9 51.6 88.8 68.4 68.8 68.4 68.8 53.9 86.5 88.1	PA Method 0300 90033 LowLimit 50.3 51.2 48.5 39.5 45.4 50.4 15.5 23.5 26.8 54.4 39.9 12.1 17.7 26 47.5	8270C: Semi Units: µg/L HighLimit 109 113 104 106 107 119 62.2 93.5 65.6 108 106 85.8 65.8 138 119	%RPD 12.8 5.37 11.7 8.19 11.9 6.98 1.69 0.275 6.05 7.31 13.1 0	RPDLimit 27.2 25.9 22.5 24.6 25.3 23.6 34.7 32.8 25.5 31.4 25.9 0 0 0 0 0 0	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

Page 13 of 20

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

WO#: 1407D12

15-Aug-14

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 7-28-14 3rd QTR

Sample ID Icsd-14520	SampType	: LCSD	Test	Code: EF	PA Method	8270C: Semiv	volatiles		
Client ID: LCSS02	Batch ID	14520	R	unNo: 2 (0300				
Prep Date: 7/31/2014	Analysis Date:	7/31/2014	s	eqNo: 5	90033	Units: µg/L			
Analyte	Result P	QL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	90	100.0		90.0	44	113	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 14 of 20

15-Aug-14

1407D12

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID	1407d12-001b dup	SampType:	DUP	Test	Code:	SM2510B: S	pecific Condu	uctance		
Client ID:	Injection Well	Batch ID:	R20245	R	unNo:	20245				
Prep Date:		Analysis Date:	7/29/2014	S	eqNo:	588403	Units: µmho	os/cm		
Analyte		Result PC	QL SPK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		1800 0.0)10					4.30	20	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 20

1407D12 15-Aug-14

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	West Inject	ern Refining Southwest, Inc. tion Well 7-28-14 3rd QTR						
Sample ID	MB-14571	SampType: MBLK	TestCo	de: EPA Method	d 7470: Mercur	у		
Client ID:	PBW	Batch ID: 14571	Runi	lo: 20345				
Prep Date:	8/4/2014	Analysis Date: 8/4/2014	Seql	No: 591482	Units: mg/L			
Anaiyte		Result PQL SPK valu	ie SPK Ref Val %	REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		ND 0.00020						
Sample ID	LCS-14571	SampType: LCS	TestCo	de: EPA Method	d 7470: Mercur	у		
Client ID:	LCSW	Batch ID: 14571	Runl	No: 20345				
Prep Date:	8/4/2014	Analysis Date: 8/4/2014	Seq	No: 591483	Units: mg/L			
Analyte		Result PQL SPK valu	ue SPK Ref Val %	REC LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0049 0.00020 0.00500	0 0	98.9 80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 16 of 20

WO#: 1407D12 15-Aug-14

Client: Project:	Western Injection	Refining S Well 7-28	Southwes 3-14 3rd	st, Inc. QTR							
Sample ID	MB-14549	Samp	Type: ME	BLK	Test	tCode: El	PA 6010B: 1	Total Recover	able Meta	lls	
Client ID:	PBW	Bato	h ID: 14	549	R	RunNo: 2	0323				
Prep Date:	8/1/2014	Analysis I	Date: 8 /	2/2014	s	eqNo: 5	90696	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		ND	0.020								
Barium		ND	0.020								
Cadmium		ND	0.0020								
Calcium		ND	1.0								
Chromium		ND	0.0060								
Lead		ND	0.0050								
Magnesium		ND	1.0								
Potassium		ND	1.0								
Selenium		ND	0.050								
Silver		ND	0.0050								
Sodium		ND	1.0								
Sample ID	LCS-14549	Samp	Type: LC	S	Tes	tCode: E	PA 6010B: '	Total Recover	able Meta	als	
Client ID:	LCSW	Bato	h ID: 14	549	F	RunNo: 2	0323				
Prep Date:	8/1/2014	Analysis	Date: 8 /	2/2014	5	SeqNo: 5	90697	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic		0.50	0.020	0.5000	0	101	80	120			
Barium		0.50	0.020	0.5000	0	99.7	80	120			
Cadmium		0.50	0.0020	0.5000	0	99.7	80	120			
Calcium		ND	1.0	50.00	0	0	80	120			S
Chromium		0.50	0.0060	0.5000	0	100	80	120			
Lead		0.50	0.0050	0.5000	0	99.5	80	120			
Magnesium		ND	1.0	50.00	0	0	80	120			S
Potassium		ND	1.0	50.00	0	0	80	120			S
Selenium		0.52	0.050	0.5000	0	105	80	120			
Silver		0.085	0.0050	0.1000	0	84.9	80	120			
Sodium		ND	1.0	50.00	0	0	80	120			S
Sample ID	LCS Cat-14549	Samp	Type: LC	s	Tes	tCode: E	PA 6010B:	Total Recover	able Meta	als	
Client ID:	LCSW	Bate	ch ID: 14	549	F	RunNo: 2	20323				
Prep Date:	8/1/2014	Analysis	Date: 8/	/2/2014	5	SeqNo: 5	590698	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium		51	1.0	50.00	0	102	80	120			
Magnesium		51	1.0	50.00	0	101	80	120			
Potassium		49	1.0	50.00	0	97.3	80	120			

Qualifiers:

Sodium

* Value exceeds Maximum Contaminant Level.

50

1.0

50.00

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

80

120

ND Not Detected at the Reporting Limit

101

P Sample pH greater than 2.

0

RL Reporting Detection Limit

Page 17 of 20

1407D12 15-Aug-14

Client:Western Refining Southwest, Inc.Project:Injection Well 7-28-14 3rd QTR

Sample ID	1407d12-001b dup	SampTy	pe: Dl	JP	Tes	tCode:	SM4500-H+B	: pH	-		
Client ID:	Injection Well	Batch	ID: R2	20245	F	lunNo:	20245				
Prep Date:		Analysis Da	te: 7	/29/2014	S	eqNo:	588388	Units: pH u	nits		
Analyte		Result	PQL	SPK value	SPK Ref Val	%RE(C LowLimit	HighLimit	%RPD	RPDLimit	Qual
pН		7.11	1.68								Н

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

Page 18 of 20

- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

WO#: 1407D12

15-Aug-14

Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Western Refining Southwes Injection Well 7-28-14 3rd	st, Inc. QTR							
Sample ID mb-1	SampType: MB	BLK	Test	Code: SI	/12320B: Al	kalinity			
Client ID: PBW	Batch ID: R20	0245	R	unNo: 2 ()245				
Prep Date:	Analysis Date: 7/2	29/2014	S	eqNo: 58	38355	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as Ca	203) ND 20								
Sample ID Ics-1	SampType: LC	S	Tes	Code: SI	W2320B: Al	kalinity			
Client ID: LCSV	W Batch ID: R2	0245	R	unNo: 20	0245				
Prep Date:	Analysis Date: 7/2	29/2014	S	eqNo: 5	88356	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as Ca	203) 80 20	80.00	0	100	90	110			
Sample ID mb-2	SampType: MB	3LK	Tes	tCode: SI	12320B: AI	kalinity			
Client ID: PBW	Batch ID: R2	0245	F	unNo: 20	0245				
Prep Date:	Analysis Date: 7/2	29/2014	S	eqNo: 5	88376	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as Cal	ND 20								
Sample ID Ics-2	SampType: LC	S	Tes	tCode: SI	M2320B: AI	kalinity			
Client ID: LCSV	V Batch ID: R2	0245	F	tunNo: 2 0	0245				
Prep Date:	Analysis Date: 7/2	29/2014	S	SeqNo: 5	88377	Units: mg/L	CaCO3		
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity (as Cal	203) 80 20	80.00	0	100	90	110			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 19 of 20

Hall Environmental Analysis Laboratory, Inc.

Client:	Western Refining Southwest, Inc.
D	Tailanting Wall 7 00 14 2nd OTD

Project: Injection Well 7-28-14 3rd QTR

Sample ID MB-14475	SampType: MBLK Batch ID: 14475	TestCode: SM2540C MC RunNo: 20257	DD: Total Dissolved Solids
Prep Date: 7/29/2014	Analysis Date: 7/30/2014	SeqNo: 588640	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID LCS-14475	SampType: LCS	TestCode: SM2540C MC	DD: Total Dissolved Solids
Sample ID LCS-14475 Client ID: LCSW	SampType: LCS Batch ID: 14475	TestCode: SM2540C M0 RunNo: 20257	DD: Total Dissolved Solids
Sample ID LCS-14475 Client ID: LCSW Prep Date: 7/29/2014	SampType: LCS Batch ID: 14475 Analysis Date: 7/30/2014	TestCode: SM2540C M0 RunNo: 20257 SeqNo: 588641	DD: Total Dissolved Solids Units: mg/L
Sample ID LCS-14475 Client ID: LCSW Prep Date: 7/29/2014 Analyte	SampType: LCS Batch ID: 14475 Analysis Date: 7/30/2014 Result PQL SPK value	TestCode: SM2540C M0 RunNo: 20257 SeqNo: 588641 SPK Ref Val %REC LowLimit	DD: Total Dissolved Solids Units: mg/L HighLimit %RPD RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 20 of 20

HALL Hall Environmenta ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-345-397 Website: www.b	al Analysis Laborator 4901 Hawkins N buquerque, NM 8710 15 FAX: 505-345-410 nallenvironmental	79 72 73 77 77 77	ole Log-In Check List
Client Name: Western Refining Southw Work Order Numbe	er: 1407D12		RcptNo: 1
Received by/date: A-07/29/19			
Logged By: Anne Thorne 7/29/2014 7:55:00 AM	M	ami Am	-
Completed By: Anne Thorne 7/29/2014		Den M.	
Beviewed By: MA - m/29/14		Cana Store	-
Chain of Custody			
1, Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹
2, Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
3. How was the sample delivered?	Courier		
Log In			
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	
5, Were all samples received at a temperature of >0° C to 6.0°C	Yes 🔽	No 🗌	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗌	· ·
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌	
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗔
10.VOA vials have zero headspace?	Yes 🗹	No 🗌	No VOA Viais 🗌
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗌	for pH: (2)or (12) hiess noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗌	Adjusted? <u>NO</u>
14. Is it clear what analyses were requested?	Yes 🗹	No 🗌	19
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🗹	No 🗌	Checked by:
Special Handling (if applicable)			
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹

Person Notified:	Date
By Whom:	Via: eMail Phone Fax In Persor
Regarding:	
Client Instructions:	the second second second second second second second second second second second second second second second s

17. Additional remarks:

18. Cooler Information

ľ	Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
	1	1.0	Good	Yes			

	ANALYSIS LABORATORY	www.hailenvironmental.com	11 Hawkins NE - Albuquerque, NM 87109	I. 505-345-3975 Fax 505-345-4107	Analysis Request	ין אובר גרס גרס גרס גרס			01 N) 24, 408 24, 808 24, 8	(GF) 0 01 0 01 1 0 0 01 1 0 0 01 1 0 0 0 1 0 0 0 0	Ватов Нат Ватов Нат		×					X				S.			Any sub-contracted data will be clearly notated on the analytical report.
			490	Tel		ul)) (1)	902 805	ອ)) s,(+ 1WE	38. 38	BTEX + MT BTEX + MT									 		Remark			possibility.
		7-28-14	ell 3mgTR				,					1201	00	192	102	102	1922)02	102			Date Time	25/1 M/82/1	01/29/19	es. This serves as notice of this
ime:	□ Rush		ion W			er:			26 Ves	erature 1	Preservative Type	He l	amber			H2 SO4	HNO3	No.0H	Acetate				Flipely	5	credited laboratori
Turn-Around T	K Standard	Project Name:	TNJEET	Project #:		Project Manag			Sampler.	Sample della	Container Type and #	3-VOA	1-1:ter	1-500-	1-500-1	1-250~1	1-500ml	1-50ml	[-500m]			Received by:	V-JMJ24	Received for	contracted to other at
stody Record	ReGNIUS		5 CR 4990	NN 874/3	2-4/35			Level 4 (Full Validation)	ji		Sample Request ID	Injection Well										hed by:	hit Krokon	hed by: hed by:	Mutted to Hall Environmental may be sub
of-Cu	22		#55	R R					□ Othe		Matrix	Ha O	-				 	 				Relinquis	p		
זain-∢	leste		ddress	ž Č	No.	Fax#:	ackage:	ard	ation P	Type)	Time	8.6	-			-		-				Time:	1452	Time:	
ט	Clients N		Mailing A	Rloo	Phone #	email or	QA/QC P	X Stand	Accredit:		Date	7-26-10	-									Date:	-28-14	Date:	

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 23, 2014

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: (505) 632-4166 FAX (505) 632-3911

RE: Injection Well 4th QTR 10-1-14

OrderNo.: 1410102

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 1 sample(s) on 10/2/2014 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

Case Narrative

WO#: 1410102 Date: 10/23/2014

CLIENT:	Western Refining Southwest, Inc.
Project:	Injection Well 4th QTR 10-1-14

Analytical Notes Regarding EPA Method 8260: The injection well sample was diluted due to a foamy matrix.

Hall Environmental Analy	sis Labora	tory, Inc.			Date Reported: 10/23/20	14
CLIENT: Western Refining Southwest Project: Injection Well 4th QTR 10-1 Lab ID: 1410102-001	, Inc. -14 Matrix:	AQUEOUS	Client Samp Collection Received	le ID: Inj Date: 10/ Date: 10/	ection Well /1/2014 10:00:00 AM /2/2014 6:50:00 AM	
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst:	LGP
Chloride	220	10	mg/L	20	10/2/2014 4:07:13 PM	R21640
Sulfate	26	2.5	mg/L	5	10/2/2014 3:54:49 PM	R21640
FPA METHOD 7470: MERCURY					Analyst:	MMD
Mercury	ND	0.00020	mg/L	1	10/8/2014 3:02:49 PM	15770
EDA 6040P. TOTAL RECOVERABLE	METALS		Ū		Analyst	ELS
EPA 6010B: TOTAL RECOVERABLE		0.000	ma/l	1	10/10/2014 0·26·53 AM	15825
Arsenic		0.020	mg/L	1	10/10/2014 9:26:53 AM	15825
Banum	0.20 ND	0.020	mg/L	1	10/10/2014 9:26:53 AM	15825
Calmum	110	5.0	mg/L	5	10/10/2014 9:28:28 AM	15825
Caldulfi		0.00	mg/L	1	10/10/2014 9:26:53 AM	15825
Eand		0.0000	mg/L	1	10/10/2014 9:26:53 AM	15825
Magnesium	23	1.0	mα/L	1	10/10/2014 9:26:53 AM	15825
Potassium	82	1.0	mg/⊑	1	10/10/2014 9:26:53 AM	15825
Solenium	0.2 ND	0.050	mg/l	1	10/10/2014 9:26:53 AM	15825
Selection	ND	0.0050	ma/L	1	10/10/2014 9:26:53 AM	15825
Sodium	220	5.0	mg/L	5	10/10/2014 9:28:28 AM	15825
EPA METHOD 8270C: SEMIVOLATIL	ES				Analyst	DAM
Acenaphthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Acenaphthylene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Aniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Anthracene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Azobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Benz(a)anthracene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(a)pyrene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(b)fluoranthene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(g,h,i)pervlene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzo(k)fluoranthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzoic acid	ND	40	μg/L	1	10/9/2014 9:16:21 PM	15747
Benzyi alcohol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroethoxy)methane	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroethyl)ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-chloroisopropyl)ether	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Bis(2-ethylhexyl)phthalate	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
4-Bromophenyl phenyl ether	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
Butyl benzyl phthalate	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
Carbazole	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747
4-Chloro-3-methyiphenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747
4-Chloroanlline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level. Qualifiers: *

E Value above quantitation range

Analyte detected below quantitation limits J

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

- \mathbf{S} Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank в

H Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit Page 2 of 18
- Sample pH greater than 2. P
- RL Reporting Detection Limit

Lah Order 1410102

Analytical Report

CLIENT: Western Refining Southwest, I	nc.	Client Sample ID: Injection Well										
Project: Injection Well 4th OTR 10-1-1	.4	Collection Date: 10/1/2014 10:00:00 A										
Lab ID: 1410102-001	Matrix: A	QUEOUS	Received	Date: 10/	2/2014 6:50:00 AM							
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch						
EPA METHOD 8270C: SEMIVOLATILES	;				Analyst	DAM						
2-Chloronaphthalene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
2-Chlorophenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
4-Chlorophenyl phenyl ether	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Chrysene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Di-n-butyi phthalate	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Di-n-octyl phthalate	ND	20	µg/L	1	10/9/2014 9:16:21 PM	15747						
Dibenz(a,h)anthracene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Dibenzofuran	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
1,2-Dichlorobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
1,3-Dichlorobenzene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747						
1,4-Dichlorobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
3,3 ⁻ -Dichlorobenzidine	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Diethyl phthalate	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Dimethyl phthalate	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
2,4-Dichlorophenol	ND	20	µg/L	1	10/9/2014 9:16:21 PM	15747						
2,4-Dimethylphenol	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747						
4,6-Dinitro-2-methylphenol	ND	20	μg/L	1	10/9/2014 9:16:21 PM	15747						
2,4-Dinitrophenol	ND	20	µg/L	1	10/9/2014 9:16:21 PM	15747						
2,4-Dinitrotoluene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747						
2,6-Dinitrotoluene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Fluoranthene	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747						
Fluorene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Hexachlorobenzene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Hexachlorobutadiene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Hexachlorocyclopentadiene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Hexachloroethane	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Indeno(1,2,3-cd)pyrene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Isophorone	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
1-Methylnaphthalene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
2-Methylnaphthalene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
2-Methylphenol	ND	20	µg/L	1	10/9/2014 9:16:21 PM	15747						
3+4-Methylphenol	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
N-Nitrosodi-n-propylamine	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
N-Nitrosodimethylamine	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
N-Nitrosodiphenylamine	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
Naphthalene	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
2-Nitroaniline	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						
3-Nitroaniline	ND	10	μg/L	1	10/9/2014 9:16:21 PM	15747						
4-Nitroaniline	ND	10	µg/L	1	10/9/2014 9:16:21 PM	15747						

Hall Environmental Analysis Laboratory, Inc.

-

.

Analytical Report Lab Order 1410102 Date Reported: 10/23/2014

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	E	Value above quantitation range	Ĥ	Holding times for preparation or analys	is exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 3 of 18
	0	RSD is greater than RSDlimit	Р	Sample pH greater than 2.	1 450 5 01 10
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	

Spike Recovery outside accepted recovery limits S

RL Reporting Detection Limit

				Lab C)rder 1410102	
Hall Environmental Analysis	Labora	itory, Inc.		Date I	Reported: 10/23/20)14
CLIENT: Western Refining Southwest, Inc			lient Samp	le ID: Injection	Well	
Project: Injection Well 4th OTR 10-1-14			Collection	Date: 10/1/201	4 10:00:00 AM	
Lab ID: 1410102-001	Matrix:	AOUEOUS	Received	Date: 10/2/201	4 6:50:00 AM	
Analyses	Result	RL Qual	Units	DF Date	Analyzed	Batch
EPA METHOD 8270C: SEMIVOLATILES					Analyst:	DAM
Nitrobenzene	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
2-Nitrophenol	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
4-Nitrophenol	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
Pentachlorophenol	ND	20	µg/L	1 10/9/	2014 9:16:21 PM	15747
Phenanthrene	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
Phenol	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
Pyrene	ND	10	μg/L	1 10/9/	2014 9:16:21 PM	15747
Pyridine	ND	10	μg/L	1 10/9/	2014 9:16:21 PM	15747
1,2,4-Trichlorobenzene	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
2,4,5-Trichlorophenol	ND	10	µg/L	1 10/9/	2014 9:16:21 PM	15747
2,4,6-Trichlorophenol	ND	10	µg/L	1 10/9/	/2014 9:16:21 PM	15747
Surr: 2-Fluorophenol	59.4	12.1-85.8	%REC	1 10/9/	/2014 9:16:21 PM	15747
Surr: Phenoi-d5	52.8	17.7-65.8	%REC	1 10/9/	2014 9:16:21 PM	15747
Surr: 2,4,6-Tribromophenol	83.8	26-138	%REC	1 10/9/	2014 9:16:21 PM	15747
Surr: Nitrobenzene-d5	76.3	47.5-119	%REC	1 10/9/	/2014 9:16:21 PM	15747
Surr: 2-Fluorobiphenyl	68.0	48.1-106	%REC	1 10/9/	/2014 9:16:21 PM	15747
Surr: 4-Terphenyl-d14	69.3	44-113	%REC	1 10/9/	2014 9:16:21 PM	15747
EPA METHOD 8260B: VOLATILES					Analyst:	RAA
Benzene	ND	5.0	µg/L	5 10/3/	/2014 10:52:10 PM	R21653
Toluene	ND	5.0	µg/L	5 10/3/	/2014 10:52:10 PM	R21653
Ethylbenzene	ND	5.0	µg/L	5 10/3/	2014 10:52:10 PM	R21653
Methyl tert-butyl ether (MTBE)	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
1,2,4-Trimethylbenzene	ND	5.0	µg/L	5 10/3/	/2014 10:52:10 PM	R21653
1,3,5-Trimethylbenzene	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
1,2-Dichloroethane (EDC)	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
1,2-Dibromoethane (EDB)	ND	5.0	µg/L	5 10/3/	2014 10:52:10 PM	R21653
Naphthalene	ND	10	µg/L	5 10/3/	/2014 10:52:10 PM	R21653
1-Methylnaphthalene	ND	20	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
2-Methylnaphthalene	ND	20	µg/L	5 10/3/	/2014 10:52:10 PM	R21653
Acetone	120	50	µg/L	5 10/3/	/2014 10:52:10 PM	R21653
Bromobenzene	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Bromodichloromethane	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Bromoform	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Bromomethane	ND	15	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
2-Butanone	ND	50	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Carbon disulfide	ND	50	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Carbon Tetrachloride	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Chlorobenzene	ND	5.0	μg/L	5 10/3/	/2014 10:52:10 PM	R21653
Chloroethane	ND	10	μg/L	5 10/3/	/2014 10:52:10 PM	R21653

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Page 4 of 18

Analytical Report

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

P Sample pH greater than 2.

RL Reporting Detection Limit

Hall Environmental Analysis	s Laborat	ory, Inc.			Lab Order 1410102 Date Reported: 10/23/20	14			
CLIENT: Western Refining Southwest, In Project: Injection Well 4th QTR 10-1-1 Lab ID: 1410102-001	nc. 4 Matrix: A	Client Sample ID: Injection WellCollection Date: 10/1/2014 10:00:00 AMMatrix: AQUEOUSReceived Date: 10/2/2014 6:50:00 AM							
Analyses	Result	RL Qual	Units	DF	Date Analyzed	Batch			
EPA METHOD 8260B: VOLATILES					Analyst:	RAA			
Chloroform	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
Chloromethane	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653			
2-Chlorotoluene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
4-Chlorotoluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
cis-1,2-DCE	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
cis-1,3-Dichloropropene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1,2-Dibromo-3-chloropropane	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653			
Dibromochloromethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
Dibromomethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.2-Dichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.3-Dichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.4-Dichlorobenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
Dichlorodifluoromethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.1-Dichloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1.1-Dichloroethene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.2-Dichloropropane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.3-Dichloropropane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
2.2-Dichloropropane	ND	10	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1.1-Dichloropropene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
Hexachlorobutadiene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
2-Hexanone	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R21653			
Isopropylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
4-Isopropyltoluene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
4-Methyl-2-pentanone	ND	50	μg/L	5	10/3/2014 10:52:10 PM	R21653			
Methylene Chloride	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653			
n-Butylbenzene	ND	15	μg/L	5	10/3/2014 10:52:10 PM	R21653			
n-Propylbenzene	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
sec-Butylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
Styrene	ND	5,0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
tert-Butylbenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1 1 1 2-Tetrachloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1 1 2 2-Tetrachloroethane	ND	10	μα/L	5	10/3/2014 10:52:10 PM	R21653			
Tetrachloroethene (PCE)	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
trans-1.2-DCE	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
trans-1.3-Dichloropropene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1.2.3-Trichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1 2 4-Trichlorobenzene	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			
1 1 1-Trichloroethane	ND	5.0	µg/L	5	10/3/2014 10:52:10 PM	R21653			
1,1,2-Trichloroethane	ND	5.0	μg/L	5	10/3/2014 10:52:10 PM	R21653			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

O RSD is greater than RSDlimit

R RPD outside accepted recovery limits

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit Page 5 of 18

Analytical Report

P Sample pH greater than 2.

RL Reporting Detection Limit

Analytical Report
Lab Order 1410102

Date Reported: 10/23/2014

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, I	nc.	Client Sample ID: Injection Well									
Project: Injection Well 4th QTR 10-1-1	4	Collection Date: 10/1/2014 10:00:00 AM									
Lab ID: 1410102-001	Matrix:	AQUEOUS		Received Dat	t e: 10,	/2/2014 6:50:00 AM					
Analyses	Result	RL (Qual	Units	DF	Date Analyzed	Batch				
EPA METHOD 8260B: VOLATILES						Analyst	RAA				
Trichloroethene (TCE)	ND	5.0		µg/L	5	10/3/2014 10:52:10 PM	R21653				
Trichlorofluoromethane	ND	5.0		µg/L	5	10/3/2014 10:52:10 PM	R21653				
1,2,3-Trichloropropane	ND	10		µg/L	5	10/3/2014 10:52:10 PM	R21653				
Vinyl chloride	ND	5.0		µg/L	5	10/3/2014 10:52:10 PM	R21653				
Xylenes, Total	ND	7.5		µg/L	5	10/3/2014 10:52:10 PM	R21653				
Surr: 1,2-Dichloroethane-d4	82.3	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653				
Surr: 4-Bromofluorobenzene	84.8	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653				
Surr: Dibromofluoromethane	79.9	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653				
Surr: Toluene-d8	84.8	70-130		%REC	5	10/3/2014 10:52:10 PM	R21653				
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR				
Conductivity	1100	0.010		µmhos/cm	1	10/6/2014 5:51:56 PM	R21715				
SM4500-H+B: PH						Analyst	JRR				
рH	7.08	1.68	Н	pH units	1	10/6/2014 5:51:56 PM	R21715				
SM2320B: ALKALINITY						Analyst	JRR				
Bicarbonate (As CaCO3)	150	20		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715				
Carbonate (As CaCO3)	ND	2.0		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715				
Total Alkalinity (as CaCO3)	150	20		mg/L CaCO3	1	10/6/2014 5:51:56 PM	R21715				
SM2540C MOD: TOTAL DISSOLVED SO	DLIDS					Analyst	KS				
Total Dissolved Solids	742	40.0	*	mg/L	1	10/8/2014 4:42:00 PM	15759				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Meth	od Blank
	Е	Value above quantitation range	Н	Holding times for preparation or analysi	is exceeded
	J	Analyte detected below quantitation limits	ND	Not Detected at the Reporting Limit	Page 6 of 18
	O RSD is greater than RSD limit			Sample pH greater than 2.	1 age 0 01 10
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	Spike Recovery outside accepted recovery limits			

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client: Address:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D ALBUQUERQUE, NM 87109	Batch #: Project Name:	141003043 1410102	
Attn:	ANDY FREEMAN			

Analytical Results Report

Sample Number Client Sample ID Matrix Comments	141003043-001 1410102-001E / INJE(Water	Samp CTION WELL Samp	ling Date	10/1/2014	Date/ Samp	Time Receive ling Time	ed 10/3/2014 10:00 AM	1:30 PM
Bernatar		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier
Cyanide (react Flashpoint pH Reactive sulfid	ive)	ND >200 6.82 3.01	mg/L °F ph Units mg/L	1	10/15/2014 10/15/2014 10/8/2014 10/15/2014	CRW KFG KJS HSW	SW846 CH7 EPA 1010 SM 4500pH-B SW846 CH7	

Authorized Signature

John Coddingtor, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soil/solid results are reported on a dry-weight basis unless otherwise noted.

Certifications held by Anatek Lebs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM: ID00013; OR:ID200001-002; WA:C595 Certifications held by Anatek Lebs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cert0095; FL(NELAP): E871089

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokane WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB 4901 HAWKINS NE SUITE D	Batch #: Project Name:	141003043 1410102	
Autros.	ALBUQUERQUE, NM 87109	-	•	
Attn:	ANDY FREEMAN Analytical Results F	Report		

Quality Control Data

Lab Control Sam	ıple										
Parameter Reactive sulfide Cyanide (reactive)		LCS Result 0.180 0.519	Units mg/L mg/L	LCS S 0.2 0.5	pike	% Rec 90.0 103.8	AR 1 70 80	%Rec -130 -120	Prep 10/15/ 10/15	Date //2014 /2014	Analysis Date 10/15/2014 10/15/2014
Matrix Spike Sample Number 1 141003043-001 1 141003043-001 0	Parameter Reactive sulfide Cyanide (reactive)		Sample Resuit 3.01 ND	MS Result 3.77 2.41	Unit mg/ mg/	ts L	MS Spike 0.767 2.5	%Rec 99.1 96.4	AR %Rec 70-130 80-120	Prep Date 10/15/2014 10/15/2014	Analysis Date 10/15/2014 10/15/2014
Matrix Spike Du Parameter Cyanide (reactive)	plicate	MSD Result 2.41	Units mg/L	MSD Spike 2.5	% 90	Rec 3.4	%RPD 0.0	AR %RPE 0-25) Pre 10/	ep Date 15/2014	Analysis Date 10/15/2014
Method Blank Parameter Cyanlde (reactive) Reactive sulfide			Re N	sult ID ID	U n	nits ng/L ng/L		PQL 1 1	P 10/ 10/	rep Date /15/2014 /15/2014	Analysis Date 10/15/2014 10/15/2014

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Certifications held by Anatek Labs ID: EPA:ID00013; AZ:0701; CO:ID00013; FL(NELAP):E87893; ID:ID00013; MT:CERT0028; NM; ID00013; OR:ID200301-002; WA:C595 Certifications held by Anatek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT:Cent0095; FL(NELAP): E871098

Hall Environmental Analysis Laboratory, Inc.

Client: Project:		Western Refining S Injection Well 4th (outhwe QTR 10	st, Inc. -1-14							
Sample ID	мв	Samp1	Гуре: МВ	3LK	Tes	tCode: E	PA Method	300.0: Anion	5		
Client ID:	PBW	Batcl	h iD: R2	1640	F	RunNo: 2	1640				
Prep Date:		Analysis E	Date: 10	0/2/2014	S	BeqNo: 6	34799	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	0.50								
Sulfate		ND	0.50								
Sample ID	LCS	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	300.0: Anion	5		
Client ID:	LCSW	Batc	h ID: R2	1640	F	RunNo: 2	1640				
Prep Date:		Analysis [Date: 1	0/2/2014	5	SeqNo: 6	34800	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		4.7	0.50	5.000	0	94.0	90	110			
Sulfate		9.7	0.50	10.00	0	96.8	90	110			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 7 of 18

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID 5ml-rb	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Batch	1 ID: R2	1653	F	RunNo: 2	1653				
Prep Date:	Analvsis D	ate: 1	0/3/2014	e	SeaNo: 6	36225	Units: ua/L			
Anglista	Desult)/ ח ביי	Loud inst		<u>م</u> م /۷	DDDI imit	Qual
Renzeno	Kesuit	FQL 1 A	SPK Value	SPK KET Val	%REC	LOWLIMI	HighLimit	%К₽U	REALIUI	Qual
Tokiono		1.0								
		1.0								
Ethydenzene Matsulaat but datum (MTDE)		1.0								
Methyl tert-butyl ether (MTBE)	ND	1.0								
1,2,4-1 nmethylbenzene	ND	1.0								
1,3,5-1 nmethylbenzene	ND	1.0								
T,Z-Dichloroethane (EDC)	ND	1.0								
1,2-Dibromoethane (EDB)	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Acetone	ND	10								
Bromobenzene	ND	1.0								
Bromodichloromethane	ND	1.0								
Bromoform	ND	1.0								
Bromomethane	ND	3.0								
2-Butanone	ND	10								
Carbon disulfide	ND	10								
Carbon Tetrachloride	ND	1.0								
Chlorobenzene	ND	1.0								
Chloroethane	ND	2.0								
Chloroform	ND	1.0								
Chloromethane	ND	3.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
cis-1,2-DCE	ND	1.0								
cis-1,3-Dichloropropene	ND	1.0								
1,2-Dibromo-3-chloropropane	ND	2.0								
Dibromochloromethane	ND	1.0								
Dibromomethane	ND	1.0								
1,2-Dichlorobenzene	ND	1.0								
1,3-Dichlorobenzene	ND	1.0								
1.4-Dichlorobenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1.1-Dichloroethane	ND	1.0								
1.1-Dichloroethene	ND	10								
1 2-Dichloropropage	ND	10								
		10								

Qualifiers:

2,2-Dichloropropane

* Value exceeds Maximum Contaminant Level.

2.0

ND

- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 8 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID 5ml-rb	SampType: MBLK			Tesi	TestCode: EPA Method 8260B: VOLATILES					
Client ID: PBW	Batch	ID: R2	1653	R	tunNo: 2	1653				
Prep Date:	Analysis D	ate: 10)/3/2014	S	SeqNo: 6	36225	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0								
Trichloroethene (TCE)	ND	1.0								
Trichlorofluoromethane	ND	1.0								
1,2,3-Trichloropropane	ND	2.0								
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	8.0		10.00		80.4	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		101	70	130			
Surr: Dibromofluoromethane	8.0		10.00		80.5	70	130			
Surr: Toluene-d8	8.9		10.00	····	89.4	70	130			
Sample ID 100ng Ics	Samp	Type: LO	 วร	Tes	stCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batc	h ID: R	21653	۱	RunNo: 2	21653				
Prep Date:	Analysis [Date: 1	0/3/2014	:	SeqNo: 6	536227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	19	1.0	20.00	0	96.4	70	130			
Toluene	20	1.0	20.00	0	98.8	80	120			
Chlorobenzene	20	1.0	20.00	0	97.9	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

E Value above quantitation range

J Analyte detected below quantitation limits

- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- P Sample pH greater than 2.
- RL Reporting Detection Limit

1410102 23-Oct-14

WO#:

Page 9 of 18

Client: Western Refining Southwest, Inc.

Injection Well 4th QTR 10-1-14 **Project:**

Sample ID 100ng Ics	SampT	ype: LC	S	Tes	tCode: E	PA Method	8260B: VOL	ATILES		
Client ID: LCSW	Batch	Batch ID: R21653			RunNo: 21653					
Prep Date:	Analysis D)ate: 10	0/3/2014	8	SeqNo: 6	36227	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	21	1.0	20.00	0	105	82.6	131			
Trichloroethene (TCE)	19	1.0	20.00	0	96.9	70	130			
Surr: 1,2-Dichloroethane-d4	8.5		10.00		84.9	70	130			
Surr: 4-Bromofluorobenzene	9.8		10.00		97.7	70	130			
Surr: Dibromofluoromethane	8.0		10.00		79.7	70	130			
Surr: Toluene-d8	9.1		10.00		91.1	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- S Spike Recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank
- \mathbf{H} Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

Page 10 of 18

WO#: 1410102

23-Oct-14

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

појсси пјесион		(••• ••								
Sample ID mb-15747	SampT	ype: ME	BLK	Tes	Code: EF	PA Method	8270C: Semi	volatiles		
Client ID: PBW	Batch	ID: 15	747	R	unNo: 2'	1803				
Prep Date: 10/7/2014	Analysis D	ate: 10)/9/2014	S	eqNo: 64	40784	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	ND	40								
Benzyl alcohol	ND	10								
Bis(2-chloroethoxy)methane	ND	10								
Bis(2-chloroethyl)ether	ND	10								
Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	ND	10								
4-Bromophenyl phenyl ether	ND	10								
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	ND	20								
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3'-Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 11 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

_

Project: Injection Well 4th QTR 10-1-14

Sample ID mb-15747	SampType: MBLK			TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch I	D: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis Da	te: 1	0/9/2014	5	BeqNo: 6	40784	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10								
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	20								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	140		200.0		68.8	12.1	85.8			
Surr: Phenol-d5	130		200.0		64.5	17.7	65.8			
Surr: 2,4,6-Tribromophenol	130		200.0		66.6	26	138			
Surr: Nitrobenzene-d5	79		100.0		79.4	47.5	119			
Surr: 2-Fluorobiphenyl	75		100.0		75.3	48.1	106			
Surr: 4-Terphenyl-d14	74		100.0		74.3	44	113			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- Spike Recovery outside accepted recovery limits s
- в Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- Р Sample pH greater than 2.
- RL Reporting Detection Limit

Page 12 of 18

23-Oct-14

WO#:

1410102

Client: Western Refining Southwest, Inc. **Project:**

Injection Well 4th QTR 10-1-14

Sample ID Ics-15747	SampT	ype: LC	S	Tes	tCode: El	volatiles				
Client ID: LCSW	Batch	n ID: 15	747	न	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D	ate: 10)/9/2014	8	SeqNo: 6	40785	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	77	10	100.0	0	76.7	47.9	114			
4-Chloro-3-methylphenol	180	10	200.0	0	88.1	51.7	122			
2-Chlorophenol	170	10	200.0	0	83.0	40.7	113			
1,4-Dichlorobenzene	70	10	100.0	0	70.4	39.6	99.9			
2,4-Dinitrotoluene	69	10	100.0	0	68.9	40.8	113			
N-Nitrosodi-n-propylamine	81	10	100.0	0	81.2	51.2	111			
4-Nitrophenol	130	10	200.0	0	64.1	15.7	86.9			
Pentachiorophenol	120	20	200.0	0	59.2	21.6	104			
Phenol	140	10	200.0	0	71.0	28.6	71.7			
Pyrene	73	10	100.0	0	73.1	54.2	128			
1,2,4-Trichlorobenzene	71	10	100.0	0	71.2	40.9	101			
Surr: 2-Fluorophenol	150		200.0		73.2	12.1	85.8			
Surr: Phenol-d5	140		200.0		71.8	17.7	65.8			S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138			
Surr: Nitrobenzene-d5	83		100.0		83.4	47.5	119			
Surr: 2-Fluorobiphenyl	0.46		100.0		0.460	48.1	106			S
Sun: 4-Terphenyl-d14	75		100.0		75.1	44	113			
Sample ID Icsd-15747	SampT	ype: LC	SD	Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: LCSS02	Batch	n ID: 15	747	F	RunNo: 2	1803				
Prep Date: 10/7/2014	Analysis D)ate: 10)/9/2014	5	SeqNo: 6	40786	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	79	10	100.0	0	78.8	47.9	114	2.60	27.2	

Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	79	10	100.0	0	78.8	47.9	114	2.60	27.2	
4-Chloro-3-methylphenol	190	10	200.0	0	94.7	51.7	122	7.26	25.9	
2-Chlorophenol	160	10	200.0	0	80.2	40.7	113	3.52	22.5	
1,4-Dichlorobenzene	74	10	100.0	0	73.7	39.6	99.9	4.50	24.6	
2,4-Dinitrotoluene	73	10	100.0	0	73.1	40.8	113	6.00	25.3	
N-Nitrosodi-n-propylamine	79	10	100.0	0	79.0	51.2	111	2.82	23.6	
4-Nitrophenol	140	10	200.0	0	69.4	15.7	86.9	7.95	34.7	
Pentachlorophenol	120	20	200.0	0	61.6	21.6	104	4.01	32.8	
Phenol	140	10	200.0	0	68.3	28.6	71.7	3.88	25.5	
Pyrene	79	10	100.0	0	78.8	54.2	128	7.56	31.4	
1,2,4-Trichlorobenzene	76	10	100.0	0	75.7	40.9	101	6.10	25.9	
Surr: 2-Fluorophenol	150		200.0		73.3	12.1	85.8	0	0	
Surr: Phenol-d5	140		200.0		72.3	17.7	65.8	0	0	S
Surr: 2,4,6-Tribromophenol	140		200.0		70.9	26	138	0	0	
Surr: Nitrobenzene-d5	88		100.0		88.0	47.5	119	0	0	
Surr: 2-Fluorobiphenyl	83		100.0		83,2	48.1	106	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level. *

Value above quantitation range Е

- Analyte detected below quantitation limits J
- 0 RSD is greater than RSDlimit
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits s
- Analyte detected in the associated Method Blank в
- Н Holding times for preparation or analysis exceeded

Page 13 of 18

- ND Not Detected at the Reporting Limit
- Sample pH greater than 2. Р
- RL Reporting Detection Limit

WO#: 1410102

23-Oct-14

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 4th QTR 10-1-14

_

Sample ID Icsd-15747	SampTy	pe: LC	SD	Tes	Code: E	PA Method	8270C: Semi	volatiles		
Cilent ID: LCSS02	Batch	ID: 15	747	ਜ	lunNo: 2	1803				
Prep Date: 10/7/2014	Analysis Da	ate: 10)/9/2014	5	eqNo: 6	40786	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 4-Terphenyl-d14	81		100.0		80.9	44	113	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
 - RL Reporting Detection Limit

Page 14 of 18

1410102 23-Oct-14

Client: Western Refining Southwest, Inc.

Project: Injection Well 4th QTR 10-1-14

Sample ID MB-15770 Client ID: PBW	SampType: MBLK Batch ID: 15770	TestCode: EPA Method RunNo: 21753	7470: Mercury	
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 639033	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Mercury	ND 0.00020			
Sample ID LCS-15770	SampType: LCS	TestCode: EPA Method	7470: Mercury	
Sample ID LCS-15770 Client ID: LCSW	SampType: LCS Batch ID: 15770	TestCode: EPA Method RunNo: 21753	7470: Mercury	
Sample ID LCS-15770 Client ID: LCSW Prep Date: 10/7/2014	SampType: LCS Batch ID: 15770 Analysis Date: 10/8/2014	TestCode: EPA Method RunNo: 21753 SeqNo: 639034	7470: Mercury Units: mg/L	
Sample ID LCS-15770 Client ID: LCSW Prep Date: 10/7/2014 Analyte	SampType: LCS Batch ID: 15770 Analysis Date: 10/8/2014 Result PQL SPK value	TestCode: EPA Method RunNo: 21753 SeqNo: 639034 SPK Ref Val %REC LowLimit	7470: Mercury Units: mg/L HighLimit %RPD	RPDLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- E Value above quantitation range
- J Analyte detected below quantitation limits
- O RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
 - P Sample pH greater than 2.
- RL Reporting Detection Limit

Page 15 of 18

1410102 23-Oct-14

Ha	II	Envire	onmental	Ana	lysi	s La	borat	tory,	Inc.
----	----	--------	----------	-----	------	------	-------	-------	------

Client: Western Refining Southwest, Inc. Injustion Wall 4th OTP 10 1.14 Project

roject:	injection	weii 4ii QTK 10-1-14	

Sample ID MB-15825	Samp	Туре: МЕ	3LK	Test	iCode: El	PA 6010B: 1	Fotal Recover	able Meta	ils	
Client ID: PBW	Bato	h ID: 15	325	R	tunNo: 2	1801				
Prep Date: 10/9/2014	Analysis	Date: 10	/10/2014	s	eqNo: 6	40639	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	0.020								
Barium	ND	0,020								
Cadmium	ND	0,0020								
Calcium	ND	1.0								
Chromium	ND	0.0060								
Lead	ND	0.0050								
Magnesium	ND	1.0								
Potassium	ND	1.0								
Selenium	ND	0.050								
Silver	0.010	0.0050								
Sodium	ND	1.0								
Sample ID LCS-15825	Samp	Type: LC	S	Tes	tCode: El	PA 6010B: '	Total Recover	able Meta	ls	
Sample ID LCS-15825 Client ID: LCSW	Samp Bate	Type: LC	S 825	Tes R	tCode: El RunNo: 2	PA 6010B: ⁻ 1801	Total Recover	able Meta	lls	
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014	Samp Bato Analysis	Type: LC ch ID: 15 Date: 10	S 825 0/10/2014	Tes R S	tCode: El RunNo: 2 SegNo: 6	PA 6010B: ⁻ 1801 40640	Total Recover	able Meta	als	
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte	Samp Bato Analysis Result	Type: LC ch ID: 15 Date: 10 PQL	S 825 0/10/2014 SPK value	Tesi F S SPK Ref Val	tCode: El RunNo: 2 SeqNo: 6 %REC	PA 6010B: ⁻ 1801 40640 LowLimit	Total Recover Units: mg/L HighLimit	vable Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic	Samp Bato Analysis Result 0.52	Type: LC ch ID: 15 Date: 10 PQL 0.020	S 825 0/10/2014 SPK value 0.5000	Tesi F S SPK Ref Val 0	tCode: El RunNo: 2 SegNo: 6 %REC 104	PA 6010B: ⁻ 1801 40640 LowLimit 80	Total Recover Units: mg/L HighLimit 120	able Meta %RPD	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium	Samp Bate Analysis Result 0.52 0.49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020	S 825 0/10/2014 SPK value 0.5000 0.5000	Tesi R SPK Ref Val 0 0	tCode: El RunNo: 2 SegNo: 6 %REC 104 98.9	PA 6010B: ⁻ 1801 40640 LowLimit 80 80	Total Recover Units: mg/L HighLimit 120 120	able Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium	Samp Bate Analysis Result 0.52 0.49 0.49	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020 0.0020	S 825 0/10/2014 SPK value 0.5000 0.5000 0.5000	Tesi F SPK Ref Val 0 0 0 0	tCode: El RunNo: 2 SegNo: 6 %REC 104 98.9 98.9 98.9	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120	able Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium	Samp Bate Analysis Result 0.52 0.49 0.49 52	Type: LC ch ID: 15 Date: 10 PQL 0.020 0.020 0.0020 1.0	S 825 0/10/2014 SPK value 0.5000 0.5000 0.5000 50.00	Tesi F SPK Ref Val 0 0 0 0 0 0	tCode: El RunNo: 2 SegNo: 6 %REC 104 98.9 98.9 104	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80	Units: mg/L HighLimit 120 120 120 120	vable Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium	Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060	S 825 5/10/2014 SPK value 0.5000 0.5000 0.5000 50.00 0.5000	Tes F SPK Ref Val 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 98.9 104 96.8	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120	vable Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead	Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060 0.0050	S 825 0/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 98.9 104 96.8 97.6	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120	*able Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium	Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0	S 825 0/10/2014 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00	Tes F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120	*able Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium	Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51 49	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0	S 825 5/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103 98.8	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120	vable Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium	Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51 49 0.50	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0060 0.0050 1.0 1.0 0.050	S 825 5/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 0.5000	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103 98.8 100	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	vable Meta	als RPDLimit	Qual
Sample ID LCS-15825 Client ID: LCSW Prep Date: 10/9/2014 Analyte Arsenic Barium Cadmium Calcium Chromium Lead Magnesium Potassium Selenium Silver	Samp Bate Analysis Result 0.52 0.49 0.49 52 0.48 0.49 51 49 0.50 0.10	Type: LC ch ID: 15 Date: 10 0.020 0.020 0.0020 1.0 0.0050 1.0 1.0 0.050 0.0050	S 825 5/10/2014 SPK value 0.5000 0.5000 0.5000 0.5000 0.5000 50.00 50.00 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000	Tesi F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	tCode: El RunNo: 2 SeqNo: 6 %REC 104 98.9 98.9 104 96.8 97.6 103 98.8 100 102	PA 6010B: ⁻ 1801 40640 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Total Recover Units: mg/L HighLimit 120 120 120 120 120 120 120 120 120 120	vable Meta	als RPDLimit	Qual

Qualifiers:

Value exceeds Maximum Contaminant Level. *

Е Value above quantitation range

- J Analyte detected below quantitation limits
- 0 RSD is greater than RSDlimit
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank В
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- Reporting Detection Limit RL

Page 16 of 18

23-Oct-14

1410102

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. **Project:** Injection Well 4th QTR 10-1-14

Sample ID mb-1	SampType: MBLK TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R21715 RunNo: 21715
Prep Date:	Analysis Date: 10/6/2014 SeqNo: 637458 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCO3)	ND 20
Sample ID Ics-1	SampType: LCS TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R21715 RunNo: 21715
Prep Date:	Analysis Date: 10/6/2014 SeqNo: 637459 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCO3)	83 20 80.00 0 103 90 110
Sample ID mb-2	SampType: MBLK TestCode: SM2320B: Alkalinity
Client ID: PBW	Batch ID: R21715 RunNo: 21715
Prep Date:	Analysis Date: 10/6/2014 SeqNo: 637474 Units: mg/L CaCO3
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Total Alkalinity (as CaCO3)	ND 20
Sampie ID Ics-2	SampType: LCS TestCode: SM2320B: Alkalinity
Client ID: LCSW	Batch ID: R21715 RunNo: 21715
Pren Date:	Analysis Date: 10/6/2014 SeqNo: 637475 Units: mg/L CaCO3
1 Top Datos	
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

Value above quantitation range Ε

- Analyte detected below quantitation limits J
- RSD is greater than RSDlimit 0
- R RPD outside accepted recovery limits
- S Spike Recovery outside accepted recovery limits
- Analyte detected in the associated Method Blank в
- н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
 - P Sample pH greater than 2.
 - Reporting Detection Limit RL

1410102 23-Oct-14

WO#;

Page 17 of 18

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. **Project:** Injection Well 4th QTR 10-1-14

Sample ID MB-15759	SampType: MBLK	TestCode: SM2540C M	OD: Total Dissolved Solids
Client ID: PBW	Batch ID: 15759	RunNo: 21752	
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 638741	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	ND 20.0		
Sample ID LCS-15759	SampType: LCS	TestCode: SM2540C M	OD: Total Dissolved Solids
Client ID: LCSW	Batch ID: 15759	RunNo: 21752	
Prep Date: 10/7/2014	Analysis Date: 10/8/2014	SeqNo: 638742	Units: mg/L
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD RPDLimit Qual
Total Dissolved Solids	1010 20.0 1000	0 101 80	120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Value above quantitation range Е
- J Analyte detected below quantitation limits
- RSD is greater than RSDlimit 0
- RPD outside accepted recovery limits R
- Spike Recovery outside accepted recovery limits S
- в Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- Р Sample pH greater than 2.
- Reporting Detection Limit RL

Page 18 of 18

	HALL
	ENVIRONMENTAL
	ANALYSIS
	LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Southw	Work Order Number:	1410102		ReptNo: 1	
Received by/date: LM1002/1	<i>'</i> u	, ,			
Logged By: Anne Thorne	10/2/2014 6:50:00 AM		are An	-	
Completed By: Anne Thorne	10/2/2014		Am. Al	,	
Reviewed By:	10/02 Jul		Olive Jor		
Chain of Custody					······································
1 Custody seals intact on sample bottles?		Yes 🗌	No 🗖	Not Present 🗹	
 Is Chain of Custody complete? 		Yes 🗹	No 🗌	Not Present	
3, How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>					
4. Was an attempt made to cool the samples?	,	Yes 🗹	No 🗔	na 🗆	
5. Were all samples received at a temperature	of >0° C to 6.0°C	Yes 🖌	No 🗆	NA 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗆		
7. Sufficient sample volume for indicated test(s	5)?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) proper	ly preserved?	Yes 🖌	No 🗖		
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🗌	
11. Were any sample containers received broke	en?	Yes 🗌	No 🗹 🛛	# of processied	<u> </u>
				bottles checked	20
12. Does paperwork match bottle labels?		Yes 🗹	No	for pH:	12 unless noted
(Note discrepancies on chain of custody)	F Custody2	Vas 🗸	No 🗌	Adjusted	NO
13. Are mainces conecuy identified on official of	Clatudy:	Yes 🔽	No 🗆		
 15. Were all holding times able to be met? (If no, notify customer for authorization.) 		Yes 🗹	No 🗖	Checked by:	A
Special Handling /if applicable)					
40 Mas alight patilled of all disposances with	this order?	Yes	No 🗔 ·	NA 🗹	

Person Notified:		Date
By Whom:		Via: 🔄 eMail 📄 Phone 🗍 Fax 🔄 In Person
Regarding:	the second second second second second second second second second second second second second second second s	
Client Instructions	· · · · · · · ·	and a second a second a second a second a second a second a second a second a second a second a second a second

4

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By	
1	1.3	Good	Yes				

Monthly Biology Monthly Biology Monthly Biology Monthly Biology Image: Solution of the solutin of the solution of the solu	M Ket $MiNg$ X Standard R $#$ 53 $CR.4992$ $Project$ Name: M N N $BYMS$ $Project$ Manager: $V = 33 - W/35$ $Project$ Manager: $X = 10$ $N = 100$ $Rrolect #:$ $Matrix$ Sampler: Bab Matrix Sampler ID $Rolect #:$ $Matrix$ Sample Request ID $Role #:$ $Matrix$ Sample Request ID $Type and #$ $Type$ $Matrix$ Sample Request ID $Type and #$ $Type$	Well 215		A	AL	iis)	5	C		C	Y
All H. H. L. H. L. L. L. L. L. L. L. L. L. L. L. L. L.	So CR. 4990 Twject i ou N.M. 87413 Project Manager: A.M. 87413 Project Manager: XLevel 4 (Full Validation) Project Manager: XLevel 4 (Full Validation) Sampler: Bab Mer Sampler: Bab Mer Sampler: Bab Instruction Sampler: Bab Mer Sampler: Bab Instruction Sampler: Bab	Well ATE							5		
C.C. 1920 Ture C.T. O.U. Well Well C.M. Bryurs Project Manager: N.M. Bryurs Project Manager: Digloti fs: Cantable Sample Request ID Sample Request ID Type and # Type and # District District District	Sol CR. 4990 Tujectiou N M 87% Project Manager: Sampler: Project Manager: XLevel 4 (Full Validation) Project Manager: XLevel 4 (Full Validation) Sampler: XLevel 4 (Full Validation) Y	Well Tom		MM	w.halle	nviron	mental	COM			
N.M. Construction N.M. Construction N.M. Construction N.M. Construction N.M. Construction N.M. Construction N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction Sample Request II N.M. Construction M.M. Construction M.M. Construction M.M. Construct	N M Bry/J S Project #: 2-W/35 Project Manager: XLevel 4 (Full Validation) Project Manager: XLevel 4 (Full Validation) Sampler: Byber: Mile Onlice Inher Container Project ID Sampler: Byber: Inher Onlice	•	4901	Hawkins	ц Ш И	Albuqu	erque,	NM 87	7109		
Market Link Mark	S3-W/35 Project Manager: XLevel 4 (Full Validation) Project Manager: XLevel 4 (Full Validation) Sampler: XLevel 4 (Full Validation) <td></td> <td>Tel. 5</td> <td>05-345-3</td> <td>975</td> <td>Fax</td> <td>505-34</td> <td>5-410</td> <td>7</td> <td></td> <td></td>		Tel. 5	05-345-3	975	Fax	505-34	5-410	7		
Project Manager: Proj	Project Manager: XLevel 4 (Full Validation) XLevel 4 (Full Validation) Sampler: Differ Differ <td></td> <td></td> <td></td> <td>An</td> <td>alysis</td> <td>Requ∈</td> <td>st</td> <td></td> <td></td> <td></td>				An	alysis	Requ∈	st			
Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile Mile <t< td=""><td>XLevel 4 (Full Validation) Sampler: 30 Other Sampler: 30 Other Sampler: 70 Sample Request ID Type and # Division Type and #</td><td></td><td>КО) иλ) (1)</td><td>ď</td><td></td><td>(*0</td><td>5</td><td></td><td>ŧ.v</td><td></td><td></td></t<>	XLevel 4 (Full Validation) Sampler: 30 Other Sampler: 30 Other Sampler: 70 Sample Request ID Type and # Division Type and #		КО) иλ) (1)	ď		(*0	5		ŧ.v		
Alevel 4 (Full Validation) Sampler Diter Sampler Sampler	XLevel 4 (Full Validation) Sampler: Bab Other Sampler: Bab On ice On ice Sample Request ID Type and # Type and # Type Type and # Container		0 SE 208	* * S((SI	s"℃ ≯^	CB		50-		5
Sampler Sampler Infler Sampler Infler Sample Request ID Type and # Type Infler Sample Request ID Type and # Type Infler Second the Request ID Type and # Type Infler Second the Request ID Type and # Type Infler Second the Request ID Type and # Type Infler Second the Request ID Type and # Type Infler Second the Request ID Type and # Type Infler Second the Request ID Type and # Type Infler Second the Reduest ID Type Second the Reduest ID Infler Second the Reduest ID Infler Second the Reduest ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID Infler Second the Reducet ID	Ditter Sampler: Top Ditter Sampler: Top Sample Request ID Container Type and # Type Typ: J-Liter		୦ଧ ୨) । ୨,୧	77 TI	NIS)व'² √४	4 79		VLI V	/}	Ś
Real Standle Request ID Container Preservative This Container Preservative Request ID Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # Type and # This Littre Camber Cold	ix Sample Request ID Container Preserve Type and # Type Type and # (Type and # (Type and # (Type and # (Type and # ()		30 / D	();;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	0728	ON'E(308 / 1	(\	っ 他	7	
Type and # Type and # <td>rix Sample Request ID Container Preserve Type and # Type Type and # Type Type and # Type</td> <td></td> <td>BE BE</td> <td></td> <td>10 ()</td> <td>slete</td> <td>səþi</td> <td>-۸۵ ۱۰</td> <td>-11</td> <td>4.</td> <td>$\overline{\alpha}$</td>	rix Sample Request ID Container Preserve Type and # Type Type and # Type Type and # Type		BE BE		10 ()	slete	səþi	-۸۵ ۱۰	-11	4.	$\overline{\alpha}$
This well Z-von H cl Z-von H cl 1-1/2 2-von H cl X X 1-500mil 1-500mil X X X 1-500mil 1-500mil 100 X X 1-500mil 1-500mil 100 X X 1-500mil 1-500mil 100 X X 1-500mil 100 200 X X 1-500mil 200 200 X X 1-500mil 200 200 X X <	D IN: well 3-10A HC	ative HEAlers and	TM + X3T TM + X3T 83108 H9		168) s'HA	∋M 8 AAOS O,∃) enoin/	oitseg 180	(0V) 2002	म्बर्ग के	<u>خوم دا ال</u>	
I-Liter Cuber Cuber Cuber X I-Sooni I-Sooni X X X I-Sooni I-Sooni HSOU X X I-Sooni I-Sooni HSOU X X I-Sooni HSOU Cuber X X I-Sooni HSOU Cuber X X I-Sooni HOS Cuber X X I-Sooni Much Cuber X X I-Sooni Nuch Cuber X X I-Sooni Nuch Cuber Cuber X I-Sooni Nuch Cuber Cuber X I-Sooni Internation Cuber Cuber X I-Sooni Internation Cuber Cuber Cuber Internation Cuber Cuber Cuber Cuber Internation Cuber Cuber Cuber Cuber	1 - Liter aut		1 3 3 3		±	≠ ∃				<u> </u>	• ,
I-Sooni T-CU X X I-Sooni I-Sooni I-Sooni IXSOU X I-Sooni I-Sooni IXSOU T X I-Sooni I-Sooni IXSOU X X I-Sooni I-Sooni INDExt X X Instantion Instantion Instantis Instantis Instantis Instantis Instantis		er ad						×			
Interview Inter	1-500m	1							X		
I-Ise H-SOH -CU X 1-Seond HVO3 -CU X 1-Seond HVO3 -CU X 1-Seond NacH -CO -CO 1-Seond NacH -CO -CO 1-Seond NacH -CO -CO 1-A - - -CO 1-A - - -CO 1-A - - <t< td=""><td>1-500ml</td><td>72-1-1</td><td></td><td>×</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1-500ml	72-1-1		×							
ISeo HVO3 -COI X ISeo MacH -COI X ISeo MacH -COI X ISeo MacH -COI X ISeo MacH -COI X ISeo ISeo MacH -COI ISeo InSeo InSeo X Instruction InSeo InSeo X Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction Instruction	1- 135 ~ 142S	24, -ad					<u>۲</u>				
austred by:	1-50 ml HNC	100-50				X		-			
A. + I. halder Received by: A. + I. halder A. + I. halder Mathered by: A. + I. halder A. + I. halder A. + 1.	Mach Mach	1 -201					_			A	
arished by: Bee Kool Michael Date Time Remarks: Bet In the Internation of the Internati	- Acé	Tere 700				_					×
An + 1. In late the Bale Time Remarks:											
Withed by: Date Time Remarks: Date Time Remarks: Date Time Remarks: Date Time Remarks: MA. + I. hallat MA. + I. hallat No. + I. hallat											
Juished by: Received by: Date Time Remarks: Date Time Remarks: MA. + I. h. I. Received by: A Market Market by: MA. + I. h. I. (A Market by: A Ma						-		•			+
Date Time Remarks: Det Knaken Much With 1911 An. + 1. h. 1 h. 1 h. (H. 10) on 1 d or m								_			
quished by: Received by: Date Time $AA_1 + I_1 h_1 A_2 + I_2 h_2 + I_3 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_2 + I_4 h_4 + I_4 h_$	Juished by: Beef Knaken Muntu UN	obe 16/14 1421	Remarks:								
	Ant I hulds.	Date Time									

Appendix D Closure Plan

Western Refinery Southwest Inc. Bloomfield Terminal Waste Disposal Well (WDW) #2

Closure Plan

In accordance with Rule 19.15.25 NMAC the following information describes the possible closure plan which would entail plugging and abandoning the proposed well bore and reclaiming the surface location to pre-drill status. This is Western's standard closure procedure.

All closure activities will include proper documentation and be available for review upon request. All required paperwork (sundry notices) will be submitted to NMOCD for approval prior to any field work taking place. All plug and abandon activities are intended to protect fresh water, public health and the environment.

General Plan

- 1. Notify NMOCD
- 2. Note: verify all cement volumes based on actual slurry to be pumped.
- 3. Review any COA's from NMOCD

Procedure

- 1 Move-in, rig up pulling unit. Pump & pit. Half tank for cement returns.
- 2 Hold safety meeting with rig crew and related personnel explaining the procedure and outlining potential hazards.
- 3 ND WH & NU BOP
- 4 TIH w/ CICR & set at ~ 7265'.
- 5 Load hole and circulate clean with fresh water.
- 6 Load tubing and pressure test tubing to 1000 psi.
- 7 Pull stinger out of CICR enough to load hole w/ water and circulate clean. Test casing to 500 psi.
- 8 Plug #1 (7265'-7483'). Mix & pump 85 sx (100 cf) of Class B neat cement. Sting out of retainer leaving 50' of cement on top of retainer. Note. Cement volumes will be adjusted if alternate but comparable cement is used (based on vendor selection). Volumes estimated using 100% excess.
- 9 Pull up hole.
- 10 Spot plug #2 in a balanced plug. Plug #2 Dakota: (6099'–6199'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 11 Pull up hole & WOC. TIH & tag TOC.
- 12 Spot plug #3 in a balanced plug. Plug #3 Gallup (5549'-5649'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 13 Pull up hole & WOC. TIH & tag TOC.
- 14 Spot plug #4 in a balanced plug. Plug #4 Mesaverde (3285'-4087'). Mix & pump 150 sx (177 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 15 Pull up hole & WOC. TIH & tag TOC.
- 16 Spot plug #5 in a balanced plug. Plug #5 Chacra (2638'-2738'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 17 Pull up hole & WOC. TIH & tag TOC.
- 18 Spot plug #6 in a balanced plug. Plug #6 Pictured Cliffs (1668'-1768'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 19 Pull up hole & WOC. TIH & tag TOC.
- 20 Spot plug #7 in a balanced plug. Plug #7 Fruitland (1153'-11253'). Mix & pump 30 sx (35.4 cf) of Class B neat cement. Calculated cement volumes to include extra 50' of cement.
- 21 Pull up hole & WOC. TIH & tag TOC.
- 22 Spot plug #8 in a balanced plug. Plug #8 Surface Plug (350'-surface). Mix & pump 66 sx (77.9 cf) of Class B neat cement.
- 23 Fill up inside of casing w/ additional cement as needed to top off.
- 24 ND BOP & cut off well head.
- 25 Install P&A marker and cut off anchors.
- 26 RD & release rig and related equipment.
- 27 Remove all surface/production equipment.
- 28 Re-contour and re-claim surface/location as per NMOCD approved Reclamation plan.

	Length	Тор	Bottom	
KB Adjustment	15.00	0	15.00	
4-1/2" PL casing/tubing		15.00	15.00	

WALSH ENGINEERING & PRODUCTION CORP.

Workover Cost Estimate

Western Refinery Southwest, Inc. AUTHORITY FOR EXPENDITURE

Woll Name INDIN #9				
Location: Sec 27, T29N, R11W, San Juan, NM	Objective :	Permanently P&A Wellbore		
	Tangible	Intangible	Total	
I. Workover Costs	-	_		
Anchors, and Misc.				
Completion Rig (18 hrs @ \$250/hr, includes Mob-de-Mob, crew travel)		29,500	29,500	
Completion Fluids/Water hauling (pump truck)				
Cased Hole Services (Including CICR)		7,200	7,200	
Cement		24,650	24,650	
Tubing Head and Well Connection Fittings				
Tubing (480 ft @ 3.30 \$/ft.)				
Sucker Rods (50 rods @ 60 \$/rod)				
Down hole pump				
Pumping equipment (Polish rod, tbg anchor, ect)				
Rentals (tanks, etc)		1,720	1,720	
		5,100	5,100	
Sufface Facility Installation				
Restore Location				
Well Site Supervision		4,100	4,100	
Engineering		1,000	1,000	
Bits				
Labor & Trucking to remove surface equipment				
Track and Installation				
Pierces Costs				
Disposal Costs Motor		1,250	1,250	
Nieler Surface Basiametian				
Bla marker		5,125	5,125	
r oca indikel		135	135	
Workover Costs	0	79,780	79,780	
10% Contingency	0	7 978	7 978	
Total Workover Costs	ň	87 758	87 758	
			01,100	

Prepared By: John C. Thompson Date: 2/2/2016

Working Interest Owners

ESTIMATED COSTS ONLY--Each participating Owner to pay Proportionate Share of Actual Well Costs Subject to Operating Agreement

12 DATE IN	30 15 sus	PENSE	ENGINEER G	1-4-2016 LOGGED IN	SUD	PMAMI600432.778
		NEW N 122	AB 1EXICO OIL CO - Enginee 0 South St. Francis	OVE THIS LINE FOR DAVISION USE ONLY DNSERVATION I ering Bureau - Drive, Santa Fe, NM	DIVISION 87505	
		ADMI	NISTRATIV	E APPLICATI	ON CHEC	KLIST
Т	HIS CHECKLIST IS	MANDATOR	FOR ALL ADMINISTRA	TIVE APPLICATIONS FOR I	EXCEPTIONS TO DIV	ISION RULES AND REGULATIONS
	[NSL-Non-S [DHC-Do [PC-	tandard Lo wnhole Co Pool Comn [WFX-Wa [SV ualified Enl	cation] [NSP-Non- mmingling] [CTI hingling] [OLS - (aterflood Expansio VD-Salt Water Disp hanced Oil Recove	Standard Proration I B-Lease Commingling Off-Lease Storage] n] [PMX-Pressure osal] [IPI-Injection ry Certification] [F	Jnit] [SD-Simuli] [PLC-Pool/L [OLM-Off-Lease Maintenance Ex Pressure Increa PR-Positive Pro	aneous Dedication] ease Commingling] Measurement] spansion] ase] duction Response]
[1]	TYPE OF A	APPLICAT Locatio	FION - Check Thoson - Spacing Unit - SL NSP	se Which Apply for [A Simultaneous Dedica] SD	A] - 5 A tion	ANJHANDEFININGE 37218
	Che [B]	ck One On Comm	ly for [B] or [C] ingling - Storage - 1 HC [] CTB [Measurement		Supt - pending 0-045
	[C]	Injectio	on - Disposal - Pres FX 🔲 PMX 🚺	sure Increase - Enhan SWD 🔲 IPI	ced Oil Recovery	PPR
	[D]	Other:	Specify	5.02		
[2]	NOTIFICA [A]	TION RE	QUIRED TO: - Ch orking, Royalty or (eck Those Which Ap Overriding Royalty In	ply, or Does N terest Owners	ot Apply &
	[B]	🔀 Oi	ffset Operators, Lea	seholders or Surface	Owner	Pool
	[C]		oplication is One W	hich Requires Publis	ned Legal Notice	-Swoj Entrada
	[D]		Dification and/or C Bureau of Land Managemen	oncurrent Approval b	y BLM or SLO 3, State Land Office	26 I W
	[E]	🗌 Fo	or all of the above, I	Proof of Notification of	or Publication is	Attached, and/or,
	[F]	🗆 w	aivers are Attached			
(21		ooup am				

[3] SUBMIT ACCURATE AND COMPLETE INFORMATION REQUIRED TO PROCESS THE TYPE OF APPLICATION INDICATED ABOVE.

[4] **CERTIFICATION:** I hereby certify that the information submitted with this application for administrative approval is **accurate** and **complete** to the best of my knowledge. I also understand that **no action** will be taken on this application until the required information and notifications are submitted to the Division.

Note: Statement must be completed by an individual with managerial and/or supervisory capacity.

John C. Thompson	The the	Accus / Engineer	12/15/2015
Print or Type Name	Signature	Title	Date

e-mail Address

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, New Mexico 87505

APPLICATION FOR AUTHORIZATION TO INJECT

I.	PURPOSE: Secondary Recovery Pressure Maintenance X Disposal Stor	age
	Application qualifies for administrative approval?YesNo	
Π.	OPERATOR: San Juan Refining Co./Western Refining Southwest, Inc.	_
	ADDRESS:#50 County Road 4990, Bloomfield, NM 87413	
	CONTACT PARTY:John Thompson PHONE: _505-327-4892	
HI.	WELL DATA: Complete the data required on the reverse side of this form for each well proposed for injection.	
	Additional sheets may be attached if necessary.	
IV.	Is this an expansion of an existing project? Yes X No	
	If yes, give the Division order number authorizing the project:	
V.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circl	le
	drawn around each proposed injection well. This circle identifies the well's area of review.	
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Su	uch
	data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schema	atic
	of any plugged well illustrating all plugging detail.	

- VII. Attach data on the proposed operation, including:
 - 1. Proposed average and maximum daily rate and volume of fluids to be injected;
 - 2. Whether the system is open or closed;
 - 3. Proposed average and maximum injection pressure;
 - 4. Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and,
 - 5. If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
- *VIII. Attach appropriate geologic data on the injection zone including appropriate lithologic detail, geologic name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such sources known to be immediately underlying the injection interval.
- IX. Describe the proposed stimulation program, if any.
- *X. Attach appropriate logging and test data on the well. (If well logs have been filed with the Division, they need not be resubmitted).
- *XI. Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
- XII. Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground sources of drinking water.
- XIII. Applicants must complete the "Proof of Notice" section on the reverse side of this form.
- XIV. Certification: I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.

NAME:	John C. Thompson	1		TITLE:	Agent/Engi	neer
SIGNATURE:	Th		1 tr	a:	_DATE:	12/15/2015

E-MAIL ADDRESS: ____john@waisheng.net

* If the information required under Sections VI, VIII, X, and XI above has been previously submitted, it need not be resubmitted. Please show the date and circumstances of the earlier submittal:

DISTRIBUTION: Original and one copy to Santa Fe with one copy to the appropriate District Office

Side 2

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; Location by Section, Township and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.

(4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District Offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and the name of the next higher and next lower oil or gas zone in the area of the well, if any.
- XIV. PROOF OF NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) The intended purpose of the injection well; with the exact location of single wells or the Section, Township, and Range location of multiple wells;
- (3) The formation name and depth with expected maximum injection rates and pressures; and,

(4) A notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, 1220 South St. Francis Dr., Santa Fe, New Mexico 87505, within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

INJECTION WELL DATA SHEET

Тι	ubing Size: <u>4-1/2", 10.5 ppf</u> Lining Material: <u>Plastic Lined</u>
Ту	pe of Packer:7" Baker "FAB-1" (or similar model"
Pa	cker Setting Depth: <u>~7265</u>
Ot	her Type of Tubing/Casing Seal (if applicable): Baker Model "KBH-22" Anchor tubing seal assembly, landed in packer
	Additional Data
1.	Is this a new well drilled for injection? <u>X</u> Yes No
	If no, for what purpose was the well originally drilled?
2.	Name of the Injection Formation: Entrada
3.	Name of Field or Pool (if applicable):
4.	Has the well ever been perforated in any other zone(s)? List all such perforated intervals and give plugging detail, i.e. sacks of cement or plug(s) used.
5.	Give the name and depths of any oil or gas zones underlying or overlying the proposed injection zone in this area: <u>Pictured Cliffs, Chacra, Mesaverde, Gallup, Dakota</u>

San Juan Refining Co./Western Refining Southwest, Inc.

SWD #2

C-108 Data Sheet

V. See Attached Map

VI. See Attached Tabulation Sheet

VII. Operation Data

- A. Average Daily Injection Rate = 3,500 bbls
 B. Maximum Daily Injection Rate = 8,500 bbls
- 2. The system is closed (water will be collected onsite as part of the refinery process and pumped over to the injection well)
- 3. Proposed pressures
 - A. The average and maximum injection pressures will be determined from a step rate test run after the well is completed. The anticipated injection pressures are ~ 2000 psi.
- 4. The fluid to be disposed of will be non-hazardous treated water generated from the Bloomfield Terminal (former Refinery). Representative water analysis for each formation are attached.
- 5. A water sample and corresponding water analysis will be provided once the well is perforated and a water sample can be obtained. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately 3/4 miles to the east of the proposed Western SWD #1. The Ashcroft is a SWD well operated by XTO Energy Resources and is completed in the Entrada and Bluff formations. The NMOCD records did not containing any data regarding the in-situ water quality found in the Ashcroft SWD #1 prior to injection. However, water analysis of the recently drilled TnT SWD #1, located in the Southern portion of the San Juan Basin are included. Additional geologic properties of the Entrada formation are attached.

VIII. Geology

The Entrada Sandstone formation is Jurassic in age and is described as a wind blown deposit with fine to coarse-grained sandstone particles, clean and well sorted. Generally, the Entrada Sandstone formation is 200 to 280 ft thick throughout the San Juan Basin. Natural fractures are few to nonexistent.

The overlaying formation is the Todilto Limestone. Cores from the oil bearing portion of the Entrada formation indicate high porosities and permeability's with averages ranging from 22 - 26 percent and 150 - 450 millidarcies respectively. A cross section showing the regional thickness and log characteristics is included (below).

San Juan Refining Co./Western Refining Southwest, Inc. has approximately 70 ground water monitoring wells located within the refinery terminal (map of well locations is attached for reference). A sampling of the seven closest monitoring wells indicates an average depth to ground water to be approximately 24 ft.

Based on the attached comprehensive water analysis for the treated refinery water to be disposed the approximate TDS is 1220 mg/L.

IX. After the well is drilled, cased and perforated a injectivity test will be performed. If the injection rate is less than 6 BPM prior to parting pressure, the well will be stimulated w/ approximately 222,000 lbs of 20/40 white sand in 110,000 gals of 30# cross linked gel at 50 bpm. Note: actual job design (if needed) will be based on actual results of the injectivity test.

X. All open hole and cased hole logs will be filed with NMOCD once the well is drilled and completed.

XII. Based on the information available online as well as information from the "Four Corners Geological Society" there are no known faults located in the area of the proposed well. Natural fractures are few to nonexistent in the Entrada formation. The overlaying formation is the relatively impermeable Todilto Limestone. The closest off set is the Ashcroft SWD #1 (API# 30-045-30788) located approximately ¾ of mile to the east of the proposed SWD #1. The Ashcroft SWD #1 is a SWD well operated by XTO Energy and is completed in the Bluff and Entrada formations and has no evidence of water migrating out of the injection zones.

XIII. See attached certified mail receipts.

1 04 2 5 9 13 0 # 4 8 ** R 0 0 0 'n. a -40 ŧ ħ 2 8 9 * ų 5 a a 2 8.0 . の間 ø 8 NO ענ RP. 8 8 0.3 28 W k 2 20 * = 28N -¢ ... 82 16, 00 R æ P s\$ 49 1 ** 08 ×. -6 6³⁸ ٠ 0 (Å. đ 24 뽘 ž 8 4.8 B 8 a N.00 ŝ -ø e 0 2) (0,0) 5 • 10 2 à 2 8 . .0 RETTYLADY 30 11 34 8 nie: -4 * * 1 12 . Έ e -R ** 8, ٦, Well Base Map * 9 0 ۰. ø ģu 2 N 11W 1 18 d * 8 04. 0 28N 10 10 a)a 2 18 16 8 R • -. 8 -18 Red * 14 15 3 ١ŧ, . -* 18 ø 15 ** 'n. -. " 8 0 ₀ 8 P . ile: 4 * λŧ. . 8 a е в, -1 8 8 . 0 7 10 * a ¢ 36 9 **P** % . * 8 # # # 1 3 8 à 管理 * Ľ 2 * 0 ž 10 10 ٩, ISPOSAL B a 10 10 ł HJLDE # 11 w ø s^a nia N ĸ * 200 R a^e * * 8 ж. Ж **MILEGOS** e W ф Ц a ... ŧ. -. . ų, 狭腰 8 ** R 90 12W i) R 28 ġ * ła. 0 3 8 4 8 * ø 8 2 8 100 æ . 3 28N 监 -e ۵ • 1 \$ 1 a. . . . 4 . . n Ng . . 17 2 R -8 8 . 볛 8 . 4 e.0 -4 -

***	~~~ ~ ≈ *** ~	* ** ** *	й ***@	œ * *	***	****
• * **	★ ★	ASHCROFT SWD #1 *	26 ** * *	•**• • % *	• 森 本 森 城	× * ◆ * * * * * * * * * * * * * * * * *
* ~ * 6 * N	* * * 8 * * *	本 Disposal #1	*	× × × × × × × × × × × × × × × × × × ×	*** * * *	◆ * * * * * * * * * * * * * * * * * * * *
	* + * * * *	·····································	****	· 33	**	* **** ****
***	* [*] [*] [*] [*] [*] [*] [*]	* * * 50 * * *	* [*]	* 33 <i>2</i>	*	Ø ₩ *
	\$ \$\$ \$ \$	*	**	¥		ж ж

Г

eologic Prognosis		Entrada & Bluff	WOW San Juar	County		
		Entraua & DIUI	Juni, San Juar	County		estern
<u>Header</u> Well Name & Number API: Objective:	Entrada/Bluff WDW Pending Entrada & Bluff FM	#1 Water Disposal	Latitude (NAD 83): Longitude (NAD 83);	36 698499 -107 971156		efining
Location: Surface Location Footage: Bottom Hole Location Footage: Lease: Surface Owner	TWP: 29 N - Range: 1980 FNL, 330 FEL Same as Surface	11 W - Sec. 27	Field: County: State: GL Elevation: KB Elevation:	Basin San Juan New Mexico 5538 5550		
Type: Expiration Date: Depth:		ł	Proposed TD: Proposed Plugback:	7500		November 25, Geologist: Peter Ko
Formation Tops	Top MD (KB)	Top Subsea (KB)	Thickness (FT)	Rock Type	Drilling Notes	Depositional Environment
Quatemary Alluvium	0	5550	10	Unconsolidated Gravels	Boulders water lost cirriculation	Continental River
Naciemento FM	10	5540	505	Shale & Sandstone	Water, gas	Continental River
Ojo Alamo Sandstone	515	5035	110	Sandstone & Shate	Water, gas	Continental River
Kirtland Shale	625	4925	578	Interbeddded Shale, sandstone	Water, gas	Coastal to Alluvia
Fruitland FM	1203	4347	515	Interbeddded Shale, sandstone & coal	Coalbed methane	Coastal Plain
Pictured Cliffs Sandstone	1718	3832	162	Sandstone	Gas, water	Regressive Marin
Lewis Shale	1880	3670	780	Shale, thin limestones	Gas	Offshore Marine
Huerfanito Bentonite Bed	2660	2890	28	Alterted volcanic ash,	Swalling clou	Velessie Arb Lau
Chacm EM	2698	2000	100	Conduine Ded	Swelling clay	Offshore Marine
	2000	2002	109	Sandstone, siltstone	Gas, water	Sands
Lower Lewis Shale	28/7	26/3	458	Shale, thin limestones	Gas, Water	Offshore Marine Transgressive Ma
Cliff House Sandstone	3335	2215	59	Sandstone Interbeddded Shale	Gas. Water, Oil	Beach
Menafee Member	3394	2156	643	sandstone & coal	Gas, Water, Oil	Coastal Plain Regressive Marin
Point Lookout Sandstone	4037	1513	386	Sandstone Shale, thin sandstones &	Gas, Water, Oil	Beach
Mancos Shale	4423	1127	869	siltstones Interbeddded Shale	Gas, Water, Oil	Offshore Marine
Niobrara A	5292	258	102	sandstone	Oil, Gas, Water	Sands
Nióbrara B	5394	156	123	sandstone	Oil, Gas, Water	Sands
Niobrara C	5517	33	82	sandstone	Oil, Gas, Water	Sands
Gallup FM	5599	-49	243	sandstone	Oil, Gas, Water	Coastal Deposit
Juana Lopez FM	5842	-292	123	Shale, thin limestones	Oil, Gas, Water	Offshore Marine
Carlile Shale	5965	-415	95	Shale, thin limestones	Oil, Gas, Water	Offshore Marine
Greenhorn Limestone	6060	-510	56	Limestone	Oil, Gas, Water	Offshore Marine
Graneros Shale	6116	-566	33	Shale	Oil, Gas, Water	Offshore Marine
Dakota FM	6149	-599	216	Sandstone, shale & coals	Oil, Gas, Water	Transgressive Coa Plain to Marine
Burro Canyon FM	6365	-815	46	Sandstones, some conglomerate & mudstone	Oil, Gas, Water	Braided Fluvial Fit
Morrison FM	6411	-861	635	Mudstones, sandstone	Oil Gas Water	Continental River
Bluff Sandstone (aka Junction ireek Sandstone), Morrison FM						Aliuvial Plain and
Mømber	7046	-1496	118	Sandstone	Oil, Gas, Water	Eolian Altuvial Plain and
Wanakah FM	7164	-1614	123	Siltstone, Sandstone	Oil, Gas, Water	Eolian
Todilto Limestone & Anhydrite	7287	-1737	28	Anhydrite	Anyhydrite	Eolian
Entrada Sandstone	7315	-1765	168	Sandstone	Oil, Gas, Water	Eolian Sand Dune
Chinle FM	7483	-1933	17	sandstone	Oil, Gas, Water	Continental Rivers
Browned TD	7500	1070				

Enerdeg Browser Date: Nov 23, 2015 Author: JOHN THOMPSON

Western Refining SWD #2 Well Tabulation Sheet

Status N: Upper Perf Lower Perf 6240 6348 6242 2810 3514 2839 6262 1645 4030 2772 5646 6308 1689 1714 3276 6215 6176 6086 2827 6163 3970 1543 2701 1462 2631 5314 6177 1483 INACTIVE 4331 INACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE ACTIVE P&A P&A P&A 1890 6365 6450 2951 6329 6386 6386 4331 9 1897 **First Prod Date** 1960-12-01 1963-03-01 1981-01-01 1980-09-01 1981-05-01 2008-04-01 1985-02-01 1983-05-01 2008-02-01 1981-06-01 2002-05-01 2002-03-01 2008-01-01 30045240830000 29N 11W 26F NW SE NW 30045253290000 29N 11W 26F NW SE NW 29N 11W 26F NW 5E NW 29N 11W 26F NW SE NW 30045240840000 29N 11W 27H NW SE NE 30045240840000 29N 11W 27H NW SE NE 29N 11W 27H NW SE NE 30045290020000 29N 11W 27I NW NE SE 29N 31W 27I SW NE SE 30045235540000 29N 11W 27I SW NE SE 29N 11W 27I SW NE SE 29N 11W 27I SW NE SE 29N 11W 26M SW SW Location 30045344630000 29N 11W 27L 30045078250000 30045253290000 30045253290000 30045120030000 30045308330001 30045308330000 30045344090000 Primary API Well Num щ **1**E 믭 **1**R 38 , N XTO ENERGY INCORPORATEI SULLIVAN GAS COM D BP AMERICA PRODUCTION C DAVIS GAS COM F XTO ENERGY INCORPORATEL DAVIS GAS COM G XTO ENERGY INCORPORATE! DAVIS GAS COM F XTO ENERGY INCORPORATEI DAVIS GAS COM F XTO ENERGY INCORPORATEL DAVIS GAS COM F XTO ENERGY INCORPORATEL DAVIS GAS COM F HOLCOMB OIL & GAS INCOR DAVIS GAS COM J HOLCOMB OIL & GAS INCOR DAVIS GAS COM J XTO ENERGY INCORPORATEL DAVIS GAS COM J Lease Name SAN JUAN REFINING COMPA DISPOSAL HOLCOMB OIL & GAS INCOR JACQUE HOLCOMB OIL & GAS INCOR JACQUE BURLINGTON RESOURCES OF CALVIN **Operator Name**

San Juan Refining Co./Western Refining Southwest

	Depth to Groundwater	Approximate GW Elevation
<u> </u>	(ft)	(ft amsl)
MW-1	15	5502.2
MW-8	31	5502.9
MW-50	16	5502.1
MW-52	33	5502.6
MW-53	35	5502.5
MW-67	18	5502.1
MW-70	22	5502.4

Monitor Well Information

Comprehensive Water Analysis

non-hazardous, treated water from Western Refinery facility – Bloomfield, NM

						Lab Order 1507094	
Hall Environmental Analysis	Labor	atory, In	c.			Date Reported: 8/6/2015	5
CLIENT: Western Refining Southwest, In	c.		C	lient Sample I	D: Inj	ection Well	
Project: Injection Well 7-1-15				Collection Dat	te: 7/1	2015 9:00:00 AM	
Lah ID: 1507094-001	Matrix	AOUFOUS	2	Received Dat	ta: 7/2	2015 7:00:00 AM	
	wiatina.	AQUEUU		Received Dat	le: 112	2015 7.00.00 AM	
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS						Analyst	LGT
Chloride	480	50		mg/L	100	7/2/2015 5:18:55 PM	R27295
Sulfate	65	5.0		mg/L	10	7/2/2015 5:06:31 PM	R27295
SM2510B: SPECIFIC CONDUCTANCE						Analyst	JRR
Conductivity	2000	0.010		µmhos/cm	1	7/6/2015 11:31:17 AM	R27329
SM2320B. ALKALINITY				·		Analyst	IDD
Bicarbonate (As CaCO3)	274 6	20.00		ma/l CaCO3	1	7/6/2016 11-21-17 AM	JKK 027220
Carbonate (As CaCO3)	274.0 ND	20.00			1	7/6/2015 11:51:17 AM	R27329
Total Alkalinity (as CaCO3)	274.6	20.00		mg/L CaCO3	1	7/6/2015 11:31:17 AM	R27329
SM2540C MOD: TOTAL DISSOLVED SOL	IDS				·	Analyst	KS
Total Dissolved Solids	1220	40.0	*	ma/l	1	7/8/2015 5:09:00 PM	20129
	1220	100			•	Analust	100
5004500-11+B. F11	7 45	4.60		-11		Analyst	JKK
	7.40	1.68	М	pH units	1	7/6/2015 11:31:17 AM	R27329
EPA METHOD 7470: MERCURY						Analyst	JLF
Mercury	ND	0.0010		mg/L	5	7/8/2015 4:47:51 PM	20158
EPA 6010B: TOTAL RECOVERABLE MET	TALS					Analyst:	MED
Arsenic	ND	0.020		mg/L	1	7/9/2015 10:51 23 AM	20102
Barium	0.27	0.020		mg/L	1	7/9/2015 10 51 23 AM	20102
Cadmium	ND	0.0020		mg/L	1	7/16/2015 12:13:28 PM	20102
Calcium	120	5.0		mg/L	5	7/9/2015 1:02:36 PM	20102
Chromium	ND	0.0060		mg/L	1	7/14/2015 3:52:06 PM	20102
Lead	ND	0.0050		mg/L	1	7/9/2015 10:51:23 AM	20102
Magnesium	28	1.0		mg/L	1	7/9/2015 10:51:23 AM	20102
Potassium	7.7	1.0		mg/L	1	7/9/2015 10 51:23 AM	20102
Selenium	NU	0.050		mg/L	1	7/16/2015 12:13:28 PM	20102
Sadium		0.0050		mg/L	ĩ	7/16/2015 12:13:28 PM	20102
	260	5.0		mg/L	5	//9/2015 1:02:36 PM	20102
EPA METHOD 8270C: SEMIVOLATILES						Analyst	DAM
Acenaphthene	ND	10		µg/L	1	7/10/2015 1:30:30 PM	20095
Acenaphthylene	ND	10		µg/L	1	7/10/2015 1:30:30 PM	20095
Aniline	ND	10		µg/L	1	7/10/2015 1:30:30 PM	20095
Anthracene	ND	10		µg/L	1	7/10/2015 1:30:30 PM	20095
Azodenzene	ND	10		µg/L	1	7/10/2015 1:30:30 PM	20095
	NU	10		µg/L	1	//10/2015 1:30:30 PM	20095
Benzo(b)@vorsethese	ND	10		hâir Nau	1	7/10/2015 1:30:30 PM	20095
Benzo(a h i)nervlene		10		µg/L µg/l	1	7/10/2015 1:30:30 PM	20095
				hAr hAr		110/2010 1 00.00 PM	20093

Qualifiers:

٠ Value exceeds Maximum Contaminant Level, D

Sample Diluted Due to Matrix

В Analyte detected in the associated Method Blank

- E Value above quantitation range Analyte detected below quantitation limits Page 1 of 20 J
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

Р Sample pH Not In Range

RL Reporting Detection Limit

				Analytical Report	
				Lab Order 1507094	
Hall Environmental Analysis	Labora	tory, Inc.		Date Reported: 8/6/2015	
CLIENT: Western Refining Southwest, Inc.	3.	(Client Sa	mple ID: Injection Well	
Project: injection Well 7-1-15			Collecti	on Date: 7/1/2015 9:00:00 AM	
Lab ID: 1507094-001	Matrix:	AOUEOUS	Receiv	ed Date: 7/2/2015 7:00:00 AM	
	-				
Analyses	Result	RL Qual	Units	DF Date Analyzed E	Batch
EPA METHOD 8270C: SEMIVOLATILES				Analyst: [MAC
Benzo(k)fluoranthene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 2	20095
Benzoic acid	ND	20	μg/L	1 7/10/2015 1:30:30 PM 2	20095
Benzyl alcohol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 2	20095
Bis(2-chloroethoxy)methane	ND	10	µg/L	1 7/10/2015 1:30:30 PM 2	20095
Bis(2-chloroethyl)ether	ND	10	µg/L	1 7/10/2015 1:30:30 PM 2	20095
Bis(2-chloroisopropyl)ether	ND	10	µg/L	1 7/10/2015 1:30:30 PM 2	20095
Bis(2-ethylhexyl)phthatate	ND	10	uq/L	1 7/10/2015 1:30:30 PM 2	20095
4-Bromophenyl phenyl ether	ND	10	ua/L	1 7/10/2015 1:30:30 PM 2	20095
Butyl benzyl phthalate	ND	10	ua/L	1 7/10/2015 1:30:30 PM 2	20095
Carbazole	ND	10	ua/L	1 7/10/2015 1:30:30 PM 2	20095
4-Chloro-3-methylphenol	ND	10	ua/L	1 7/10/2015 1 30 30 PM 2	0095
4-Chloroaniline	ND	10	ua/L	1 7/10/2015 1:30:30 PM 2	0095
2-Chloronaphthalene	ND	10	uo/l.	1 7/10/2015 1:30:30 PM 2	0095
2-Chlorophenol	ND	10	uo/l	1 7/10/2015 1:30:30 PM 2	0095
4-Chlorophenyl phenyl ether	ND	10	ua/L	1 7/10/2015 1 30 30 PM 2	0095
Chrysene	ND	10	uo/L	1 7/10/2015 1:30:30 PM 2	0095
Dł-n-butyl phthalate	ND	10	uo/L	1 7/10/2015 1 30 30 PM 2	0095
Di-n-octvl phthalate	ND	10	ua/L	1 7/10/2015 1 30 30 PM 2	0095
Dibenz(a,h)anthracene	ND	10	но/L	1 7/10/2015 1 30 30 PM 2	0095
Dibenzofuran	ND	10	н о /I	1 7/10/2015 1 30 30 PM 2	0000
1.2-Dichlorohenzene	ND	10	ua/1	1 7/10/2015 1-30-30 PM 2	0000
1.3-Dichlorobenzene	ND	10	µ9/5 ug/l	1 7/10/2015 1:30:30 PM 2	0005
1 4-Dichlorobenzene	ND	10	µ9/⊂ ⊔σ/l	1 7/10/2015 1:30:30 PM 2	0000
3 3'-Dichlorobenzidine	ND	10	ug/l	1 7/10/2015 1:30:30 PM 2	0000
Diethyl phthalate	ND	10	ua/l	1 7/10/2015 1:30:30 PM 2	0000
Dimethyl obthalate	ND	10	µ9/⊏ µ//	1 7/10/2015 1:30:30 PM 2	0000
2 4-Dichlorophenol	ND	20	µ9/E	1 7/10/2015 1:30/30 PM 2	0000
2 4-Dimethylohenol	ND	10	µg/E	1 7/10/2015 1:30:30 PM 2	0000
4 6-Dinitro-2-methylobenol	ND	20	ug/l	1 7/10/2015 1:30:30 PM 2	0095
2 4-Dinitrophenol	ND	20	µg/L	1 7/10/2015 1:30 30 PM 2	0095
2 4-Dinitrotoluene	ND	10	uo/l	1 7/10/2015 1:30 30 PM 2	0095
2 6-Dinitrotoluene	ND	10	ug/L	1 7/10/2015 1:30 30 PM 2	0095
Fluoranthene	ND	10	ug/L	1 7/10/2015 1:30 30 PM 2	0095
Fluorene	ND	10	µg/⊏ ug/l	1 7/10/2015 1:30:30 PM 2	0095
Hexachlorobenzene	ND	10	pg/c	1 7/10/2015 1.30 30 PM 2	0095
Hexachlorobutadiene		10	µ9/⊑	1 7/10/2015 1-30-30 PM 2	0090
Hexachlorocyclopentadiene		10	μg/L μα/Ι	1 7/10/2015 1.30.30 PM 2	0090
Hexachloroethane		10	199/L	1 7/10/2015 1.30.30 PM 2	0093
Indeno(1.2.3.cd)nyrene	םא חוא	10	µ9/L	1 7/10/2015 1:30:30 PM 2	0005
mound reason pyrene	ND	10	µу/∟	1 110/2015 1:30:30 PM Z	0090

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 20
- P Sample pH Not In Range
- RL Reporting Detection Limit

				Analytical Report	
				Lab Order 1507094	
Hall Environmental Analysis	Labora	tory, Inc.		Date Reported: 8/6/2015	
CLIENT: Western Refining Southwest, Inc.	2.	C	lient Sam	nle ID: Injection Well	
Project: Injection Well 7-1-15			Collection	Date: 7/1/2015 9:00:00 AM	
Lab ID: 1507004 001	B.Ø 41	AOUEOUE	Desizioni	DALC: 7172015 7.00.00 AM	
Lab 1D: 1507094-001	watrix:	AQUEUUS	Received	1 Date: //2/2015 7:00:00 AM	
Analyses	Result	RL Qual	Units	DF Date Analyzed Ba	itch
EPA METHOD 8270C: SEMIVOLATILES				Analyst: DA	٩M
Isophorone	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
1-Methylnaphthalene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
2-Methylnaphthalene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
2-Methylphenol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
3+4-Methylphenol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
N-Nitrosodi-n-propylamine	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
N-Nitrosodimethylamine	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
N-Nitrosodiphenylamine	ND	10	µg/L	1 7/10/2015 1:30:30 PM 20	095
Naphthalene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
2-Nitroaniline	NÐ	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
3-Nitroaniline	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
4-Nitroaniline	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
Nitrobenzene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
2-Nitrophenol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
4-Nitrophenol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
Pentachiorophenol	ND	20	µg/L	1 7/10/2015 1:30:30 PM 200	095
Phenanthrene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
Phenol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
Pyrene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
Pyridine	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
1,2,4-Trichlorobenzene	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
2,4,5-Trichtorophenol	ND	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
2,4,6-Trichlorophenol	NÐ	10	µg/L	1 7/10/2015 1:30:30 PM 200	095
Surr: 2-Fluorophenol	66.2	14.9-111	%REC	1 7/10/2015 1:30:30 PM 200	095
Surr: Phenol-d5	64.1	11.3-108	%REC	1 7/10/2015 1:30:30 PM 200	095
Surr: 2,4,6-Tribromophenol	75.7	15.7-154	%REC	1 7/10/2015 1:30:30 PM 200	095
Surr: Nitrobenzene-d5	84.6	47.8-106	%REC	1 7/10/2015 1:30:30 PM 200	095
Surr: 2-Fluorobiphenyl	63.7	21.3-123	%REC	1 7/10/2015 1:30:30 PM 200	095
Surr: 4-Terphenyl-d14	51.4	14.3-135	%REC	1 7/10/2015 1:30:30 PM 200	095
EPA METHOD 8260B: VOLATILES				Analyst: BC	N.
Benzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R2	7397
Toluene	1.5	1.0	µg/L	1 7/9/2015 8:19:52 PM R2	7397
Ethylbenzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R2	7397
Methyl tert-butyl ether (MTBE)	NÐ	1.0	µg/L	1 7/9/2015 8:19:52 PM R2	7397
1,2,4-Trimethylbenzene	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R2	7397
1,3,5-Trimethylbenzene	ND	1.0	µg/L	1 7/9/2015 8 19 52 PM R2	7397
1,2-Dichloroethane (EDC)	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R2	7397
1,2-Dibromoethane (EDB)	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R2	7397
Naphthalene	ND	2.0	µg/L	1 7/9/2015 8:19:52 PM R2	7397

Qualifiers:

. Value exceeds Maximum Contaminant Level. D

Sample Diluted Due to Matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range Analyte detected below quantitation limits Page 3 of 20 J

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S __% Recovery outside of range due to dilution or matrix

Sample pH Not In Range RL Reporting Detection Limit

Р

				Lab Order 1507094
Hall Environmental Analysi	s Labora	tory, Inc.		Date Reported: 8/6/2015
CLIENT: Western Refining Southwest 1	nc	(`lient Sar	mple ID: Injection Well
Project: Injection Well 7-1-15			Collectiv	an Data: $7/1/2015 0.00.00 \text{ AM}$
Troject. Injection wen 7-1-15			Conecta	on Date: //1/2013 9:00:00 AM
Lab ID: 1507094-001	Matrix:	AQUEOUS	Receive	ed Date: 7/2/2015 7:00:00 AM
Analyses	Result	RL Qual	Units	DF Date Analyzed Batch
EPA METHOD 8260B: VOLATILES				Analyst: BCN
1-Methylnaphthalene	ND	4.0	µg/L	1 7/9/2015 8:19:52 PM R27397
2-Methylnaphthalene	ND	4.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Acetone	72	10	µg/L	1 7/9/2015 8:19:52 PM R27397
Bromobenzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Bromodichloromethane	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Bromoform	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Bromomethane	ND	3.0	µg/L	1 7/9/2015 8:19:52 PM R27397
2-Butanone	11	10	µg/L	1 7/9/2015 8:19:52 PM R27397
Carbon disulfide	ND	10	µg/L	1 7/9/2015 8:19:52 PM R27397
Carbon Tetrachloride	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Chlorobenzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Chloroethane	ND	2.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Chloroform	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Chloromethane	ND	3.0	µg/L	1 7/9/2015 8:19:52 PM R27397
2-Chlorotoluene	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R27397
4-Chlorotoluene	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R27397
cis-1,2-DCE	ND	1.0	μg/L	1 7/9/2015 8:19:52 PM R27397
cis-1,3-Dichloropropene	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R27397
1,2-Dibromo-3-chloropropane	ND	2.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Dibromochloromethane	ND	1.0	μg/L	1 7/9/2015 8:19:52 PM R27397
Dibromomethane	ND	1.0	μg/L	1 7/9/2015 8:19:52 PM R27397
1,2-Dichlorobenzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
1,3-Dichlorobenzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
1,4-Dichlorobenzene	ND	1.0	μg/L,	1 7/9/2015 8:19:52 PM R27397
Dichtorodifluoromethane	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
1,1-Dichloroethane	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
1,1-Dichloroethene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
1,2-Dichloropropane	ND	1.0	μg/L,	1 7/9/2015 8 19:52 PM R27397
1,3-Dichloropropane	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
2,2-Dichloropropane	ND	2.0	µg/L	1 7/9/2015 8:19:52 PM R27397
1,1-Dichloropropene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
Hexachtorobutadiene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397
2-Hexanone	ND	10	µg/L	1 7/9/2015 8 19:52 PM R27397
Isopropylbenzene	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R27397
4-Isopropyltoluene	ND	1.0	µg/L	1 7/9/2015 8 19:52 PM R27397
4-Methyl-2-pentanone	ND	10	µg/L	1 7/9/2015 8:19:52 PM R27397
Methylene Chloride	ND	3.0	µg/L	1 7/9/2015 8:19:52 PM R27397
n-Butylbenzene	ND	3.0	µg/L	1 7/9/2015 8:19:52 PM R27397
n-Propylbenzene	ND	1.0	µg/L	1 7/9/2015 8:19:52 PM R27397

Qualifiers:

٠ Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

- Holding times for preparation or analysis exceeded 11
- ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- Analyte detected below quantitation limits Page 4 of 20 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit

Analytical Report

Hall E	nvironmental Analys	sis Labora	tory, Inc.	Date Reported: 8/6/2015						
CLIENT: Project:	Western Refining Southwest, Injection Well 7-1-15	Inc.	C	lient Samp Collection	le ID: Inj Date: 7/1	ection Well /2015 9:00:00 AM				
Lab ID:	1507094-001	Matrix:	Received Date: 7/2/2015 7:00:00 AM							
Analyses		Result	RL Qual	Units	DF	Date Analyzed	Batch			
EPA MET	HOD 8260B: VOLATILES					Analys	BCN			
sec-Buty	lbenzene	ND	1.0	µq/L	1	7/9/2015 8:19:52 PM	R27397			
Styrene		ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
tert-Butyl	lbenzene	NÐ	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,1,1,2-T	etrachloroethane	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,1,2,2-T	etrachloroethane	ND	2.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
Tetrachic	proethene (PCE)	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
trans-1,2	-DCE	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
trans-1,3	-Dichloropropene	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,2,3-Tric	chlorobenzene	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,2,4-Tric	chlorobenzene	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,1,1-Tric	chloroethane	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,1,2-Tric	chloroethane	ND	1.0	µg/L	1	7/9/2015 8 19:52 PM	R27397			
Trichloro	ethene (TCE)	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
Trichloro	fluoromethane	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
1,2,3-Tric	chloropropane	ND	2.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
Vinyl chlo	oride	ND	1.0	µg/L	1	7/9/2015 8:19:52 PM	R27397			
Xylenes,	Total	ND	1.5	μg/L	1	7/9/2015 8:19:52 PM	R27397			
Surr: 1	,2-Dichloroethane-d4	96.9	70-130	%REC	1	7/9/2015 8:19:52 PM	R27397			
Surr: 4	-Bromofluorobenzene	90.8	70-130	%REC	1	7/9/2015 8:19:52 PM	R27397			
Surr: D	Dibromofluoromethane	103	70-130	%REC	1	7/9/2015 8 19 52 PM	R27397			
Surr: T	oluene-d8	95.5	70-130	%REC	1	7/9/2015 8:19:52 PM	R27397			

Qualifiers:

- . Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 20 J
- р Sample pH Not In Range
- RL Reporting Detection Limit

Analytical Report Lab Order 1507094

Anatek Labs, Inc.

1282 Alturas Drive · Moscow, ID 83843 · (208) 883-2839 · Fax (208) 882-9246 · email moscow@anateklabs.com 504 E Sprague Ste. D · Spokane WA 99202 · (509) 838-3999 · Fax (509) 838-4433 · email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	150707035
Address:	4901 HAWKINS NE SUITE D	Project Name:	1507094
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Sample Number Client Sample ID	Sample Number 150707035-001 Client Sample ID 1507094-001E / INJECT		oling Date	7/1/2015	Date/ Sam;	Date/Time Received 7/7/2015 Sampling Time 9:00 AM					
Matrix Comments	Water	Samj	ole Location	1							
Parameter		Result	Units	PQL	Analysis Date	Analyst	Method	Qualifier			
Cyanide (reacti	va)	ND	mg/L	1	7/15/2015	CRW	SW846 CH7				
Flashpoint		>200	*F		7/15/2015	KFG	EPA 1010				
pH		7,36	ph Units		7/8/2015	KMC	SM 4500pH-B				
Reactive sulfide		ND	mg/L	1	7/15/2015	HSW	SW846 CH7				

Authorized Signature

. Call

John Coddington, Lab Manager

MCL EPA's Maximum Contaminant Level

ND Not Detected

PQL Practical Quantitation Limit

This report shall not be reproduced except in full, without the written approval of the laboratory. The results reported relate only to the samples indicated. Soll/solid results are reported on a dry-weight basis unless otherwise noted.

Centrications he d by Anatek Labe ID., EPA ID50013, AZ 0701, CO-ID00013, FL(NELAP), E37593, ID JD00013, MT CERT0028, NM: ID00013, OR ID200001-082; WA C595 Centrications he d by Anatek Labe WA: EPA:WA00169; ID WA00159; WA C585 MT CanC095, FL(NELAP), E871099

Wednesday, July 22, 2015

Anatek Labs, Inc.

1282 Alturas Drive • Moscow, ID 83843 • (208) 883-2839 • Fax (208) 882-9246 • email moscow@anateklabs.com 504 E Sprague Ste. D • Spokana WA 99202 • (509) 838-3999 • Fax (509) 838-4433 • email spokane@anateklabs.com

Client:	HALL ENVIRONMENTAL ANALYSIS LAB	Batch #:	150707035
Address:	4901 HAWKINS NE SUITE D	Project Name:	1507094
	ALBUQUERQUE, NM 87109		
Attn:	ANDY FREEMAN		

Analytical Results Report

Quality Control Data

Parameter Reactive sulfide LCS Result 0.816 Units mg/L 0.907 90.0 70-130 7/15/2015 Analysis 7/15/2015 Cyanide (reactive) 0.486 mg/L 0.5 97.2 80-120 7/15/2015 <t< th=""><th>Lab Control San</th><th>nple</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Lab Control San	nple										
Reactive sulfide 0.816 mg/L 0.907 90.0 70-130 7/15/2015 7/15/20 Cyanide (reactive) 0.486 mg/L 0.5 97.2 80-120 7/15/2015 7/15/20 Matrix Spike Sample Number Parameter Sample Result Units Spike %Rec	Parameter	LC	CS Result	Units		pike (%Rec	AR	%Rec	Prep	Date	Analysis Date
Cyanide (reactive) 0.486 mg/L 0.5 97.2 80-120 7/15/2015 7/15/20 Matrix Spike Sample Number Parameter Sample MS MS AR Spike %Rec %Rec	Reactive sulfide		0.816	mg/L	0.90	7	90.0	70	-130	7/15/	2015	7/15/2015
Matrix Spike Sample Number Parameter Sample Result MS MS AR 150707035-001A Reactive sulfide ND 0.816 mg/L 0.907 90.0 70-130 7/15/2015 7/15/2 150707035-001 Cyanide (reactive) ND 0.462 mg/L 0.5 92.4 80-120 7/15/2015 7/15/2 Matrix Spike Duplicate MSD MSD MSD MSD AR AR Parameter Result Units Spike %Rec %RPD %RPD Prep Date Analysis Cyanide (reactive) 0.454 mg/L 0.5 90.8 1.7 0-25 7/15/2015 7/15/2015	Cyanide (reactive)		0.486	mg/L	0.5		97.2 80-		120 7/15		2015	7/15/2015
Sample Number Parameter Sample Result MS MS AR 150707035-001A Reactive sulfide ND 0.816 mg/L 0.907 90.0 70-130 7/15/2015 7/15/2 150707035-001 Cyanide (reactive) ND 0.462 mg/L 0.5 92.4 80-120 7/15/2015 7/15/2 Matrix Spike Duplicate MSD MSD MSD AR Parameter MSD MSD MSD AR Cyanide (reactive) 0.454 mg/L 0.5 92.4 80-120 7/15/2015 7/15/2	Matrix Spike											
Sample Number Parameter Result Result Spike Spike Acc Ac	Pamula Number	Deservator	Sa	mple	MS	Unite		MS	*/Dac	AR	Rean Date	Analysic Date
MD 0.816 Mg/L 0.807 50.0 70135 7112013 77137 150707035-001 Cyanide (reactive) ND 0.462 mg/L 0.5 92.4 80-120 7/15/2015 7/15	Asozozoze oot A	Parameter Desetive sulfide	r.e	ND	0.946	mail	1	D 007		70-120	7/15/2015	7/15/2015
MD U.452 mg/L U.5 92.4 80-120 //15/2015 //15/2015 Matrix Spike Duplicate MSD MSD AR Parameter Result Units Spike %Rec %RPD Prep Date Analysis Cyanide (reactive) 0.454 mg/L 0.5 90.8 1.7 0-25 7/15/2015 7/15/2015	150707035-001A 1				0.010	iiiy/L		0.807	00.0	10-100	7/15/2015	7/15/2010
Matrix Spike Duplicate MSD AR Parameter Result Units Spike %Rec %RPD Prep Date Analysis Cyanide (reactive) 0.454 mg/L 0.5 90.8 1.7 0-25 7/15/2015 7/15/2015	150707035-001				0.462	mg/L		0.5	92.4	00-120	115/2015	119/2019
MSD MSD AR Parameter Result Units Spike %Rec %RPD %Rep Data Analysis Cyanide (reactive) 0.454 mg/L 0.5 90.8 1.7 0-25 7/15/2015 7/15/20	Matrix Spike Du	plicate										
Cyanide (reactive) 0.454 mg/L 0.5 90.8 1.7 0-25 7/15/2015 7/15/20	B		MSD Besult	Inite	MSD	%.Da		«ppn	AR	Dem	n Data	Analysis Date
					apike 0.5	00.1		17	78KFL 0.25	7/1	5/2016	7/15/2015
		······	0.434 1		0.0	50.		1.7	-23	2210		
Method Blank	Method Blank			_								
Parameter Result Units PQL Prep Date Analysis	Parameter			Res	ult	Uni	ts		PQL	Pr	ep Date	Analysis Date
Cyanide (reactive) ND mg/L 1 7/15/2015 7/15/20	Cvanide (reactive)			NE)	ma	L		1	7/1	5/2015	7/15/2015
Beactive suifide ND mg/L 1 7/15/2015 7/15/20	Reactive sulfide			NF)	ma	٨.		1	7/1	5/2015	7/15/2015

AR Acceptable Range

ND Not Detected

PQL Practical Quantitation Limit

RPD Relative Percentage Difference

Comments:

Centifications held by Analek Labs ID: EPA:ID:00013, AZ:0701, CO:ID:00013; FL(NELAP):E87993; ID:ID:00013, MT.CERT0028; NM: ID:00013; OR:ID:200001-002; WA:C595 Certifications held by Analek Labs WA: EPA:WA00169; ID:WA00169; WA:C585; MT.Cent0095; FL(NELAP). E871099

Client: Project:		Western Refining S Injection Well 7-1-	outhwe	est, Inc.					224		
Sample ID N	ИВ	SampT	ype: Mi	BLK	Tes	tCode: E	PA Method	300.0: Anlon	s		
Client ID: P	PBW	Batcl	n ID: R2	27295	F	RunNo: 2	7295				
Prep Date:		Analysis D	ate: 7	/2/2015	5	SeqNo: 8	17819	Units:: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	-	NÐ	0.50								
Sulfate		ND	0.50								
Sample ID L	.cs	SampT	ype: LC	s	Tes	tCode: E	PA Method	300.0: Anion	S		
Client ID: L	.csw	Batch	n ID: R2	7295	F	RunNo: 2	7295				
Prep Date:		Analysis D	ate: 7/	2/2015	5	SeqNo: 8	17820	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		5.0	0.50	5.000	0	99.0	90	110			
Sulfate		10	0,50	10,00	0	103	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

WO#: 1507094

06-Aug-15

Page 6 of 20

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-1-15 Sample ID 100ng LCS SampType: LCS TestCode: EPA Method 8260B: VOLATILES Client ID: LCSW Batch ID: R27397 RunNo: 27397 Prep Date: Analysis Date: 7/9/2015 SeqNo: 822125 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene 18 1.0 20.00 0 90.9 70 130 Toluene 17 1.0 20.00 0 87.2 70 130 Chlorobenzene 17 1.0 20.00 0 85.5 70 130 1,1-Dichloroethene 19 1.0 20.00 0 95.4 70 130 Trichloroethene (TCE) 17 1.0 20.00 0 84.0 70 130 Surr: 1,2-Dichloroethane-d4 9.3 10.00 93.4 70 130 Surr: 4-Bromofluorobenzene 9.9 10.00 99.3 70 130 Surr: Dibromofluoromethane 11 10.00 106 70 130 Surr: Toluene-d8 10 10.00 100 70 130 Sample ID rb1 SampType: MBLK TestCode: EPA Method 8260B: VOLATILES Batch ID: R27397 Client ID: PBW RunNo: 27397 Prep Date: Analysis Date: 7/9/2015 SeqNo: 822418 Units: µg/L SPK value SPK Ref Val Analyte Result PQL %REC LowLimit HighLimit %RPD **RPDLimit** Qual Benzene ND 1.0 Toluene ND 1.0 Ethylbenzene ND 1.0 Methyl tert-butyl ether (MTBE) ND 1.0 1,2,4-Trimethylbenzene ND 1.0 1,3,5-Trimethylbenzene ND 1.0 1,2-Dichloroethane (EDC) ND 1.0 1,2-Dibromoethane (EDB) ND 1.0 Naphthalene ND 2.0 1-Methylnaphthalene ND 4.0 2-Methylnaphthalene ND 4.0 Acetone ND 10 Bromobenzene ND 1.0 Bromodichloromethane ND 1.0 Bromoform NÐ 1.0 Bromomethane ND 3.0 2-Butanone ND 10 Carbon disulfide ND 10 Carbon Tetrachloride ND 1.0 Chlorobenzene ND 1.0 Chloroethane ND 2.0 Chloroform ND 1.0

Qualifiers:

Chloromethane

2-Chlorotoluene

- * Value exceeds Maximum Contaminant Level:
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

ND

3.0

1.0

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

WO#: 1507094

06-Aug-15

Page 7 of 20

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: W	estern Refining S	outhwe	st, Inc.							
Project: Inj	ection Well 7-1-	15								
Sample ID rb1	Samp	vpe: ME	3LK	Tes	tCode: E	PA Method	8260B; VOL	ATILES		
Client ID: PBW	Batcl	h ID R2	7397	F	RunNo: 2	7397				
Prep Date:	Analysis E	ate: 7/	9/2015	S	SeaNo: 8	22418	Units: ua/L			
America	D ecently		0.014	0014 0 - 0 4 - 1						
Analyte	Result	PQL	SPK value	SPK Ret Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
4-Uniorotoluene	ND	1.0								
cis 1 2 Dicklemannana	ND	1.0								
1.2 Distance 2 ablamations	ND	1.0								
Dibromochloromothopa	ND	2.0								
Dibromomethane	ND	1.0								
1.2.Dichlombenzene		1.0								
1.3-Dichlombenzene		1.0								
1,3-Dichlombenzene	ND	1.0								
Dichlorodifluoromethane	ND	1.0								
1 1-Dichlomethane	ND	1.0								
1 1-Dichlomethene	ND	1.0								
1.2-Dichlomoropane	ND	1.0								
1.3-Dichloropropane	ND	1.0								
2.2-Dichloropropane	ND	2.0								
1,1-Dichloropropene	ND	1.0								
Hexachlorobutadiene	ND	1.0								
2-Hexanone	ND	10								
Isopropylbenzene	ND	1.0								
4-Isopropyltoluene	ND	1.0								
4-Methyl-2-pentanone	ND	10								
Methylene Chloride	ND	3.0								
n-Butylbenzene	ND	3.0								
n-Propylbenzene	ND	1.0								
sec-Butylbenzene	ND	1.0								
Styrene	ND	1.0								
tert-Butylbenzene	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	2.0								
Tetrachloroethene (PCE)	ND	1.0								
trans-1,2-DCE	ND	1.0								
trans-1,3-Dichloropropene	ND	1.0								
1,2,3-Trichlorobenzene	ND	1.0								
1,2,4-Trichlorobenzene	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								

Qualifiers:

1,1,2-Trichloroethane

Trichloroethene (TCE)

Trichlorofluoromethane

1,2,3-Trichloropropane

- Value exceeds Maximum Contaminant Level,
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND

ND

ND

ND

1.0

1.0

1.0

2.0

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- l Analyte detected below quantitation limits
- р Sample pH Not In Range
- RL Reporting Detection Limit

Page 8 of 20

WO#: 1507094

Client:	Western Refining Southwest, Inc.
Project:	Injection Well 7-1-15

	Comol			Tee	10-1-1 F		00000			
Sample ID 101	Sampi	ype: Mit	SLK	Tes	Code: E	PA Method	8260B: VOL	AIILES		
Client ID: PBW	Batch ID: R27397			RunNo: 27397						
Prep Date:	Analysis D	ate: 7/	9/2015	5	SeqNo: 8	22418	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Vinyl chloride	ND	1.0								
Xylenes, Total	ND	1.5								
Sur: 1,2-Dichloroethane-d4	10		10.00		102	70	130			
Sur: 4-Bromofluorobenzene	10		10.00		104	70	130			
Surr: Dibromofluoromethane	11		10.00		107	70	130			
Surr: Toluene-d8	9.9		10.00		98.7	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 9 of 20

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-1-15 Sample ID mb-20095 SampType:: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 20095 RunNo: 27414 Prep Date: 7/6/2015 Analysis Date: 7/10/2015 SeqNo: 822558 Units: µg/L Analyte Result SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** PQL Qual Acenaphthene ND 10 Acenaphthylene ND 10 Aniline ND 10 Anthracene ND 10 Azobenzene ND 10 Benz(a)anthracene ND 10 Benzo(a)pyrene ND 10 Benzo(b)fluoranthene ND 10 Benzo(g,h,i)perylene ND 10 Benzo(k)fluoranthene ND 10 ND 20 Benzoic acid ND Benzyl alcohol 10 Bis(2-chloroethoxy)methane ND 10 Bis(2-chloroethyl)ether ND 10 Bis(2-chloroisopropyl)ether ND 10 Bis(2-ethylhexyl)phthalate ND 10 ND 10 4-Bromophenyl phenyl ether Butyl benzyl phthalate ND 10 Carbazole ND 10 4-Chloro-3-methylphenol ND 10 4-Chloroaniline ND 10 2-Chloronaphthalene ND 10 2-Chlorophenol ND 10 4-Chlorophenyl phenyl ether ND 10 ND 10 Chrysene Di-n-butyl phthalate ND 10 ND 10 Di-n-octyl phthalate ND 10 Dibenz(a,h)anthracene Dibenzofuran ND 10 1,2-Dichlorobenzene ND 10 1,3-Dichlorobenzene ND 10 1,4-Dichlorobenzene ND 10 ND 10 3,3'-Dichlorobenzidine Diethyl phthalate ND 10 ND 10 **Dimethyl phthalate**

Qualifiers:

2,4-Dichlorophenol

2,4-Dimethylphenol

2,4-Dinitrophenol

4,6-Dinitro-2-methylphenol

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

NÐ

NÐ

NÐ

ND

20

10

20

20

- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 10 of 20

WO#: 1507094

Client:	Western Refining S	Southwes	st, Inc.								
Project:	Injection Well 7-1-	15									
Sample ID mb-2009	15 Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	8270C: Semi	volatiles			
Client ID: PBW	Batc	h ID: 200	095	RunNo: 27414							
Prep Date: 7/6/201	5 Analysis (Date: 7/	10/2015	5	SeqNo: 8	22558	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2,4-Dinitrotoluene	ND	10									
2,6-Dinitrotoluene	ND	10									
Fluoranthene	ND	10									
Fluorene	ND	10									
Hexachlorobenzene	ND	10									
Hexachlorobutadiene	ND	10									
Hexachlorocyclopentadien	e ND	10									
Hexachloroethane	ND	10									
Indeno(1,2,3-cd)pyrene	ND	10									
Isophorone	ND	10									
1-Methylnaphthalene	ND	10									
2-Methylnaphthalene	ND	10									
2-Methylphenol	ND	10									
3+4-Methyiphenoi	ND	10									
N-Nitrosodi-n-propylamine	NÐ	10									
N-Nitrosodimethylamine	ND	10									
N-Nitrosodiphenylamine	ND	10									
Naphthalene	ND	10									
2-Nitroaniline	ND	10									
3-Nitroaniline	ND	10									
4-Nitroaniline	ND	10									
Nitrobenzene	NÐ	10									
2-Nitrophenol	ND	10									
4-Nitrophenol	ND	10									
Pentachlorophenol	ND	20									
Phenanthrene	ND	10									
Phenol	ND	10									
Pyrene	ND	10									
Pyridine	ND	10									
1,2,4-Trichlorobenzene	NÐ	10									
2,4,5-Trichlorophenol	NÐ	10									
2,4,6-Trichlorophenol	ND	10									
Sum 2-Fluorophenol	140		200.0		69.6	14.9	111				
Surr: Phenol-d5	150		200.0		74.2	11.3	108				
Surr: 2,4,6-Tribromopher	nol 150		200.0		75.2	15.7	154				
Surr: Nitrobenzene-d5	75		100.0		75.0	47.8	106				
Surr: 2-Fluorobiphenyl	76		100.0		75.9	21.3	123				
Sun: 4-Terphenyl-d14	52		100.0		52.2	14.3	135				

Qualifiers:

- ٠ Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

Page 11 of 20

- E Value above quantitation range
- J Analyte detected below quantitation limits
- p Sample pH Not In Range
- RL Reporting Detection Limit

WO#: 1507094

Client: Western	Refining S	outhwe	st, Inc.							
Project: Injection	Well 7-1-	15								
	0									
Sample ID Ics-20095	Samp1	Type: LC	S	Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: LCSW	Batcl	h ID: 20	095	F	RunNo: 2	7414				
Prep Date: 7/6/2015	Analysis D)ate: 7/	10/2015	5	SeqNo: 8	22559	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimlt	Qual
Acenaphthene	51	10	100.0	0	51.2	47.8	99.7			
4-Chloro-3-methylphenol	110	10	200.0	0	56.2	58.1	103			S
2-Chlorophenol	73	10	200.0	0	36.7	49.5	96.8			S
1,4-Dichlorobenzene	34	10	100.0	0	33.8	40.4	89.4			S
2,4-Dinitrotoluene	42	10	100.0	0	41.8	38.6	91.3			
N-Nitrosodi-n-propylamine	51	10	100.0	0	51.1	53,9	95.6			S
4-Nitrophenol	93	10	200.0	0	46.3	26.4	108			
Pentachlorophenol	98	20	200.0	0	49.1	36.5	86.6			
Phenol	85	10	200.0	0	42.7	29.3	108			
Pyrene	56	10	100.0	0	56.2	45.7	100			
1,2,4-Trichlorobenzene	43	10	100.0	0	42.9	39.3	94.5			
Sur: 2-Fluorophenol	67		200.0		33.4	14.9	111			
Surt Phenol-d5	86		200.0		43.0	11.3	108			
Surr: 2.4.6-Tribromophenol	120		200.0		62.3	15.7	154			
Sur: Nitrobenzene-d5	47		100.0		46.6	47.8	106			s
Sur: 2-Fluorobiphenyl	53		100.0		53.0	21.3	123			Ŭ
Sum: 4-Terphenyl-d14	44		100.0		44.1	14.3	135			
Sample ID Icsd-20095	SamoT	vpe LC	SD.	Tesi	Code E	PA Method	8270C: Semis	volatiles		
Client ID: LCSS02	Batch	D 200	095	R	unNo: 2	7414		olutioo		
Prep Date: 7/6/2015	Analysis D	ate: 7/	10/2015	S	eqNo: 8	22560	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	76	10	100.0	0	76.1	47.8	99.7	39.1	28.2	R
4-Chloro-3-methylphenol	160	10	200.0	0	81.3	58:1	103	36.4	24.4	R
2-Chlorophenol	150	10	200.0	0	76.8	49.5	96.8	70.6	28.1	R
1,4-Dichlorobenzene	72	10	100.0	0	72.5	40.4	89.4	72,9	31.2	R
2,4-Dinitrotoluene	55	10	100.0	0	54.6	38.6	91.3	26.4	44,4	
N-Nitrosodi-n-propylamine	76	10	100.0	0	76.4	53.9	95.6	39.6	24.2	R
4-Nitropheno!	130	10	200.0	0	63.8	26.4	108	31.8	36.6	
Pentachlorophenol	130	20	200.0	0	65.8	36.5	86.6	29.1	29.5	
Phenol	160	10	200.0	0	77.8	29.3	108	58.2	30	R
Pyrene	69	10	100.0	0	69.3	45.7	100	20.8	31	
1,2,4-Trichlorobenzene	86	10	100.0	0	85.7	39.3	94.5	66.6	24	R

Qualifiers:

Surr: 2-Fluorophenol

Sur: Nitrobenzene-d5

Surr: 2-Fluorobiphenyl

Surr: 2,4,6-Tribromophenol

Surr: Phenol-d5

۰ Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded Н

140

160

160

80

77

200.0

200.0

200.0

100.0

100.0

р

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

% Recovery outside of range due to dilution or matrix S

В Analyte detected in the associated Method Blank

14.9

11.3

15.7

47.8

21.3

E Value above quantitation range

70.6

79.2

82.0

79.5

77.3

J Analyte detected below quantitation limits

Page 12 of 20

0

0

0

0

0

111

108

154

106

123

0

0

0

0

0

Sample pH Not In Range RL **Reporting Detection Limit** WO#: 1507094

QC SUMMARY REPORT

Western Refining Southwest, Inc.

Client:

Hall Environmental Analysis Laboratory, Inc.

Injection Well 7-1-15 **Project:** Sample ID Icsd-20095 SampType: LCSD TestCode: EPA Method 8270C: Semivolatiles Client ID: LCSS02 Batch ID: 20095 RunNo: 27414 Prep Date: 7/6/2015 Analysis Date: 7/10/2015 SeqNo: 822560 Units: µg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Surr: 4-Terphenyl-d14 51 100.0 51.2 14.3 0 135 0 Sample ID mb-20218 SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles Client ID: PBW Batch ID: 20218 RunNo: 27531 Prep Date: 7/13/2015 Analysis Date: 7/15/2015 SeqNo: 826536 Units: %REC Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Surr: 2-Fluorophenol 90 200.0 45.0 14,9 111 Sur: Phenol-d5 75 200.0 37.3 11.3 108 Surr: 2,4,6-Tribromophenol 140 200.0 69.6 15.7 154 Surr: Nitrobenzene-d5 64 100.0 64.4 47.8 106 Sur: 2-Fluorobiphenyl 61 100.0 61.2 21.3 123 Surr: 4-Terphenyl-d14 45 100.0 45.2 14.3 135

Sample ID Ics-20218	SampType: LCS			Tes	tCode: El	ode: EPA Method 8270C: Semivolatiles				
Client ID: LCSW	Batch ID: 20218			RunNo: 27531						
Prep Date: 7/13/2015	Analysis D	ate 7	/15/2015	s	eqNo: 8	26537	Units: %RE	с		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Surr: 2-Fluorophenol	110		200.0		53.4	14,9	111			
Sum Phenol-d5	82		200.0		41.0	11.3	108			
Surr: 2,4,6-Tribromophenol	150		200.0		74.7	15.7	154			
Surr: Nitrobenzene-d5	74		100.0		74.2	47.8	106			
Surr: 2-Fluorobiphenyl	74		100.0		73.5	21.3	123			
Sur: 4-Terphenyl-d14	44		100.0		44.2	14.3	135			
Sample ID Icsd-20218	SampT	ype: LC	SD	Tes	Code: El	PA Method	8270C: Semi	ivolatiles		
Sample ID Icsd-20218 Client ID: LCSS02	SampT Batch	ype: LC	SD 218	Test	Code: El tunNo: 2	PA Method 7531	8270C: Semi	volatiles		
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015	SampT Batch Analysis D	ype: LC ID: 20 ate: 7/	:SD 218 /15/2015	Tesi R S	Code: El unNo: 2 ieqNo: 8	PA Method 7531 26538	8270C: Semi Units: %RE	ivolatiles C		
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015 Analyte	SampT Batch Analysis D Result	ype: LC ID: 20 ate: 7/ PQL	SD 218 /15/2015 SPK value	Test R SPK Ref Val	Code: El unNo: 2 seqNo: 8 %REC	PA Method 7531 26538 LowLimit	8270C: Semi Units: %RE HighLimit	volatiles C %RPD	RPDLimit	Qual
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015 Analyte Sum 2-Fluorophenol	SampT Batch Analysis D Result 100	ype: LC ID: 20 ate: 7/ PQL	218 218 115/2015 SPK value 200.0	Test R SPK Ref Val	Code: El tunNo: 2 teqNo: 8 %REC 52.2	PA Method 7531 26538 LowLimit 14.9	8270C: Semi Units: %RE HighLimit 111	volatiles C %RPD 0	RPDLimit 0	Qual
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5	SampT Batch Analysis D Result 100 84	ype: LC ID: 20 ate: 7/ PQL	218 218 115/2015 SPK value 200.0 200.0	Tesi R SPK Ref Val	Code: El tunNo: 2 teqNo: 8 %REC 52.2 41.8	PA Method 7531 26538 LowLimit 14.9 11.3	8270C: Semi Units: %RE HighLimit 111 108	volatiles C %RPD 0 0	RPDLimit 0 0	Qual
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015 Analyte Surr: 2-Fluorophenol Surr: Phenol-d5 Surr: 2,4,6-Tribromophenol	SampT Batch Analysis D Result 100 84 150	ype: LC ID: 20 ate: 7/ PQL	218 218 /15/2015 SPK value 200.0 200.0 200.0	Tesi R SPK Ref Val	Code: El RunNo: 2 ReqNo: 8 %REC 52.2 41.8 75.7	PA Method 7531 26538 LowLimit 14.9 11.3 15.7	8270C: Semi Units: %RE HighLimit 111 108 154	volatiles C %RPD 0 0 0 0	RPDLimit 0 0 0	Qual
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015 Analyte Sum 2-Fluorophenol Sum Phenol-d5 Sum 2,4,6-Tribromophenol Sum Nitrobenzene-d5	SampT Batch Analysis D Result 100 84 150 76	ype: LC ID: 20 ate: 7/ PQL	218 218 /15/2015 SPK value 200.0 200.0 200.0 100.0	Tesi R SPK Ref Val	Code: El anNo: 2 eqNo: 8 %REC 52.2 41.8 75.7 76.0	PA Method 7531 26538 LowLimit 14.9 11.3 15.7 47.8	8270C: Semi Units: %RE HighLimit 111 108 154 106	volatiles C %RPD 0 0 0 0 0	RPDLimit 0 0 0 0	Qual
Sample ID Icsd-20218 Client ID: LCSS02 Prep Date: 7/13/2015 Analyte Sur: 2-Fluorophenol Sur: Phenol-d5 Sur: 2,4,6-Tribromophenol Sur: Nitrobenzene-d5 Sur: 2-Fluorobiphenyl	SampT Batch Analysis D Result 100 84 150 76 69	ype: LC ID: 20 ate: 7/ PQL	218 218 /15/2015 SPK value 200.0 200.0 200.0 100.0 100.0	Tesi R SPK Ref Val	Code: El unNo: 2 ieqNo: 8 %REC 52.2 41.8 75.7 76.0 68.5	PA Method 7531 26538 LowLimit 14.9 11.3 15.7 47.8 21.3	8270C: Semi Units: %RE HighLimit 108 154 106 123	volatiles C %RPD 0 0 0 0 0 0 0	RPDLimit 0 0 0 0 0	Qual

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- E Value above quantitation range
- J Analyte detected below quantitation limits
- р Sample pH Not In Range
- RL **Reporting Detection Limit**

06-Aug-15

Qual

Qual

Client:	Western Ref	ining Southwest, Inc.	
Project:	Injection We	7-1-15	
Sample ID	1507094-001b dup	SampType: DUP	TesiCode: SM2510B: Specific Conductance

Client ID: Injection Well	Batch	ID: R2	7329	F	RunNo: 2	7329					
Prep Date:	Analysis D	ate: 7/	6/2015	S	SeqNo: 8	19171	Units: µmhe	os/cm			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Conductivity	2000	0.010						0.0491	20		

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 14 of 20

WO#: 1507094

Chent:	Western	Kelining	Southw	est, Inc.							
Project:	Injection	Well 7-1	-15								
Sample ID	MB-20158	Sam	Туре∷№	IBLK	Tes	tCode: E	PA Method	7470: Mercu	у		
Client ID:	PBW	Bat	ch iD: 2	0158	F	RunNo: 2	7365				
Prep Date:	7/8/2015	Analysis	Date:	7/8/2015	ę	SeqNo: 8	20590	Units: mg/L			
Analyte Mercury		Result ND	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID	LCS-20158	Samr	Type	CS.	Tes	tCode [®] E	PA Method	7470: Moreu			
Client ID12	LCSW	Bat	ch ID 2	0158	res F		7365	rero, morcu	У		
Prep Date:	7/8/2015	Analysis	Date	7/8/2015	5	SeqNo: 8	20591	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0051	0.00020	0.005000	0	102	80	120			
Sample ID	1507094-001DMS	Samp	Type: N	IS	Tes	tCode; E	PA Method	7470: Mercur	<u>у</u>		
Sample ID Client ID:	1507094-001DMS Injection Well	Samp Bate	Type: № ch ID: 2	is 0158	Tes F	1Code: E RunNo: 2	PA Method 7365	7470: Mercur	y		
Sample ID Client ID: Prep Date:	1507094-001DMS Injection Well 7/8/2015	Samp Bate Analysis	oType: № ch ID: 2 Date: 7	IS 0158 7/8/2015	Tes F	1Code: E RunNo: 2 SeqNo: 8	PA Method 7365 20635	7470: Mercur Units: mg/L			
Sample ID Client ID: Prep Date: Analyte	1507094-001DMS Injection Well 7/8/2015	Samp Bat Analysis Result	Type: № ch ID: 2 Date: 7 PQL	IS 0158 7/8/2015 SPK value	Tes F S SPK Ref Val	1Code: El RunNo: 2 SeqNo: 8 %REC	PA Method 7365 20635 LowLimit	7470: Mercur Units: mg/L HighLimit	y %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Mercury	1507094-001DMS Injection Well 7/8/2015	Samp Bate Analysis Result 0.0059)Type: M ch ID: 2 Date: 7 PQL 0.0010	IS 0158 7/8/2015 SPK value 0 0.005000	Tes F S SPK Ref Val 0	ICode: E RunNo: 2 GeqNo: 8 %REC 118	PA Method 7365 20635 LowLimit 75	7470: Mercur Units: mg/L HighLimit 125	y %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Mercury Sample ID	1507094-001DMS Injection Well 7/8/2015 1507094-001DMS	Samp Bate Analysis Result 0.0059 Samp)Type: M ch ID: 2 Date: 7 PQL 0.0010	IS 0158 7/8/2015 SPK value 0.005000 SD	Tes F SPK Ref Val 0 Tes	ICode: El RunNo: 2 GeqNo: 8 %REC 118 ICode: El	PA Method 7365 20635 LowLimit 75 PA Method	7470: Mercur Units: mg/L HighLimit 125 7470: Mercur	y %RPD	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Mercury Sample ID Client ID:	1507094-001DMS Injection Well 7/8/2015 1507094-001DMS0 Injection Well	Samp Bate Analysis Result 0.0059 Samp Bate	oType: M ch ID: 2 Date: 7 PQL 0.0010 Type: M ch ID: 2	IS 0158 7/8/2015 SPK value 0.005000 SD 0158	Tes F SPK Ref Val 0 Tes F	tCode: El RunNo: 2 SeqNo: 8 %REC 118 tCode: El RunNo: 2	PA Method 7365 20635 LowLimit 75 PA Method 7365	7470: Mercur Units: mg/L HighLimit 125 7470: Mercur	y %RPD y	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Mercury Sample ID Client ID: Prep Date:	1507094-001DMS Injection Well 7/8/2015 1507094-001DMS Injection Well 7/8/2015	Samp Bata Analysis Result 0.0059 O Samp Bata Analysis	DType: M ch ID: 2 Date: 7 PQL 0.0010 Type: M ch ID: 2 Date: 7	IS 0158 7/8/2015 SPK value 0 0.005000 SD 0158 7/8/2015	Tes F SPK Ref Val 0 Tes F S	tCode: El RunNo: 2 SeqNo: 8 %REC 118 tCode: El RunNo: 2 SeqNo: 8	PA Method 7365 20635 LowLimit 75 PA Method 7365 20638	7470: Mercur Units: mg/L HighLimit 125 7470: Mercur Units: mg/L	y %RPD y	RPDLimit	Qual
Sample ID Client ID: Prep Date: Analyte Mercury Sample ID Client ID: Prep Date: Analyte	1507094-001DMS Injection Well 7/8/2015 1507094-001DMS0 Injection Well 7/8/2015	Samp Bate Analysis Result 0.0059 D Samp Bate Analysis Result	Type: M ch ID: 2 Date: 7 PQL 0.0010 Type: M ch ID: 2 Date: 7 PQL	IS 0158 7/8/2015 SPK value 0.005000 SD 0158 7/8/2015 SPK value	Tes F SPK Ref Val 0 Tes F SPK Ref Val	tCode: El RunNo: 2 SeqNo: 8 %REC 118 tCode: El RunNo: 2 SeqNo: 8 %REC	PA Method 7365 20635 LowLimit 75 PA Method 7365 20638 LowLimit	7470: Mercur Units: mg/L HighLimit 125 7470: Mercur Units: mg/L HighLimit	y %RPD y %RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 15 of 20

WO#: 1507094
Client:	Weste	ern Refining	Southwe	est, Inc.								
Project:	Inject	ion Well 7-1	-15									
Sample ID	MB-20102	Samp	Type: M	BLK	Tes	tCode: E	PA 6010B:	Total Recove	rable Met	als		
Client ID:	PBW	Bate	ch ID: 20	102	I	RunNo: 2	7378					
Prep Date:	7/6/2015	Analysis	Date: 7	/9/2015	:	SeqNo: 8	21352	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic		ND	0.020									
Barium		ND	0.020									
Calcium		ND	1.0									
Lead		ND	0.0050									
Magnesium		ND	1.0									
Potassium		NU	1.0									
		ND	1.0									
Sample ID	LCS-20102	Samp	Type: LC	s	Tes	tCode: El	PA 6010B:	Total Recover	able Meta	als		
Client ID:	LCSW	Bato	:h ID: 20	102	F	RunNo: 2	7378					
Prep Date:	7/6/2015	Analysis I	Date: 7	9/2015	5	SeqNo: 8	21353	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic		0.52	0.020	0.5000	0	103	80	120				
Barium		0.49	0.020	0.5000	0	98.5	80	120				
Calcium		51	1.0	50.00	0	102	80	120				
Lead		0.50	0.0050	0.5000	0	100	80	120				
Magnesium		50	1.0	50.00	0	101	80	120				
Polassium		48	1.0	50.00	0	96.8	80	120				
Sodium		49	1.0	50.00	0	98.9		120				
Sample ID	MB-20102	Samp	Туре: М	BLK	Tes	tCode: El	PA 6010B: 1	Total Recover	able Meta	IIS		
Client ID:	PBW	Batc	h ID: 20	102	F	lunNo: 2	7491					
Prep Date:	7/6/2015	Analysis (Date: 7/	14/2015	5	eqNo: 8	24974	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Quat	
Chromium		ND	0.0060									
Sample ID	LCS-20102	Samp	Type: LC	S	Tes	Code: EF	PA 6010B: "	Fotal Recover	able Meta	ils		
Client ID:	LCSW	Batc	h ID: 20	102	F	unNo; 2	7491					
Prep Date:	7/6/2015	Analysis [Date: 7/	14/2015	s	eqNo: 8	24975	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chromium		0.49	0.0060	0.5000	0	98.5	80	120				
Sample ID	MB-20102	Samp	Type: ME	BLK	Tes	Code: EF	PA 6010B: 1	Fotal Recover	able Meta	ls		
Client ID:	PBW	Batc	h ID: 20	102	RunNo: 27540							
Prep Date:	7/6/2015	Analysis [Date: 7/	16/2015	s	eqNo: 8	26932	Units: mg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

Page 16 of 20

E Value above quantitation range

- J Analyte detected below quantitation limits
 - Sample pH Not In Range
- RL Reporting Detection Limit

р

WO#: 1507094

Client: Project:	Weste Injecti	rn Refining S on Well 7-1-	Southwe -15	st, Inc.							
Sample ID	MB-20102	Samp	Туре: МІ	BLK	Tes	tCode: E	PA 6010B:	Total Recover	able Met	als	
Client ID:	PBW	Bato	:h ID: 20	102	F	RunNo: 2	7540				
Prep Date:	7/6/2015	Analysis	Date: 7/	16/2015	ę	SegNo: 8	26932	Units::: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cadmium		ND	0.0020								
Selenium		ND	0.050								
Silver		ND	0.0050								
Sample ID	LCS-20102	Samp	Type: LC	s	Tes	tCode: El	PA 6010B: 1	Total Recover	able Meta	als	
Client ID:	LCSW	Bato	:h ID:: 20	102	F	RunNo: 2	7540				
Prep Date:	7/6/2015	Analysis I	Date: 7/	16/2015	5	SeqNo: 8	26933	Units mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cadmium		0.50	0.0020	0.5000	0	101	80	120			
Selenium		0.50	0.050	0.5000	0	99.7	80	120			
Silver		0.10	0.0050	0.1000	0	105	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 17 of 20

7.46

1.68

Client:	Western R	efining So	outhwe	st, Inc.							
Project:	Injection V	Vell 7-1-1	5								
Sample ID	1507094-001b dup	SampTy	/pe: Dl	JP	Tes	tCode: S	M4500-H+B	: pH			
Client ID:	Injection Well	Batch	ID: R2	27329	F	RunNo: 2	7329				
Prep Date:	8	Analysis Da	ate: 7/	/6/2015	S	SeqNo: 8	19204	Units∷ pH u	nits		
Analyte	_	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

pН

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL

Page 18 of 20

WO#: 1507094

Н

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 1507094

06-Aug-15

Client:		Western Refining S	Southwe	st, Inc.							
Project:		Injection Well 7-1-	15								
Sample ID	mb-1	Samp	Гуре: М	BLK	Tes	tCode: S	M2320B: A	Ikalinity			
Client ID:	PBW	Batc	h ID: R	27329	F	RunNo: 2	7329				
Prep Date:		Analysis I	Date: 7	/6/2015	5	SeqNo: 8	19128	Units:: mg/l	_ CaCO3		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity	(as CaCO	3) ND	20.00								
Sample ID	lcs-1	Samp	lype: LC	s	Tes	tCode: SI	M2320B: A	Ikalinity			
Client ID:	LCSW	Batc	h ID: R2	27329	F	RunNo: 2	7329				
Prep Date:		Analysis [Date: 7/	6/2015	5	SeqNo: 8	19129	Units: mg/L	CaCO3		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity	(as CaCO	3) 78.36	20.00	80.00	0	98.0	90	110			
Sample ID	mb-2	Samp'	îype∷ Mi	BLK	Tes	tCode: SI	M2320B: AI	kalinity			
Client ID:	PBW	Batc	h ID: R2	732 9	F	lunNo: 2	7329				
Prep Date:		Analysis E	ate: 7/	6/2015	S	SeqNo: 8	19152	Units: mg/L	. CaCO3		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity	(as CaCO	3) ND	20.00								
Sample ID	lcs-2	Samp1	ype: LC	s	Tes	Code: SI	M2320B: AI	kalinity			
Client ID:	LCSW	Batcl	ID: R2	7329	R	unNo: 2	7329				
Prep Date:		Analysis D	ate: 7/	6/2015	s	eqNo: 8	19153	Units: mg/L	. CaCO3		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity	(as CaCO	3) 79.44	20.00	80.00	0	99.3	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level,
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- R1. Reporting Detection Limit

Page 19 of 20

- etterion chint

Client: Western Refining Southwest, Inc. **Project:** Injection Well 7-1-15 Sample ID MB-20129 SampType: MBLK TestCode: SM2540C MOD: Total Dissolved Solids Client ID: PBW Batch ID: 20129 RunNo: 27360 Prep Date: 7/7/2015 Analysis Date: 7/8/2015 SeqNo: 820297 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Total Dissolved Solids ND 20.0 Sample ID LCS-20129 SampType: LCS TestCode: SM2540C MOD: Total Dissolved Solids Client ID: LCSW Batch ID: 20129 RunNo: 27360 Prep Date: 7/7/2015 Analysis Date: 7/8/2015 SeqNo: 820298 Units: mg/L Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Total Dissolved Solids 1010 1000 20.0 0 101 80 120

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit

Page 20 of 20

MALL ENVIRONMENTAL ANALYSIS LABORATORY	Ilus Environmente Albug TEL: 505-345-3975 I Website: www.hali	4901 querqu FAX: 5 lenviro	Hawki Hawki	uury ns NE 87109 Sam -4107 1.com	iple Log-In Cl	neck List
Client Name: Western Refining Southw	Work Order Number:	15070	094		RcptNo:	1
Received by/date: AT-07/02	1/5				·	
Logged By: Anne Thome 7/2	2/2015 7:00:00 AM			am Im	-	
Completed By: Anne Thome 7/2	/2015			Om So-	_	
Reviewed By: (19 6	Ilazlis					
Chain of Custody	() ()	_				
1. Custody seals intact on sample bottles?		Yes		No 🗆	Not Present 🗹	
2. Is Chain of Custody complete?		Yes		No 🗔	Not Present	
3. How was the sample delivered?		<u>Cour</u>	<u>ier</u>			
<u>Log In</u>						
4. Was an attempt made to cool the samples?		Yes		No 🗍	NA 🗆	
5. Were all samples received at a temperature of	>0" C to 6.0"C	Yes		No 🗍	NA 🗌	
6. Sample(s) in proper container(s)?		Yes		No 🗆		
7. Sufficient sample volume for indicated test(s)?		Yes		No 🗆		
8. Are samples (except VOA and ONG) properly p	reserved?	Yes	\checkmark	No 🗔		
9. Was preservative added to bottles?		Yes		No 🗹	NA 🗆	
10. VOA vials have zero headspace?		Yes		No 🗔	No VOA Vials 🗹	
11. Were any sample containers received broken?		Yes		No 🗹	# of preserved	
12. Does paperwork match bottle labels?		Yes		No 🗔	for pH:	Z F12unless noted)
13 Are matrices correctly identified on Chain of Cus	stody?	Yes		No 🛄	Adjusted?	
14, is it clear what analyses were requested?		Yes		No 🗖		_
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No 🗖	Checked by:	<u>9</u> 4
Special Handling (If epplicable)						
16. Was client notified of all discrepancies with this	order?	Yes		No 🗍		
Remon NotiRed						
By Whom:		l aMa	а н П	Phone T Fay		
Regarding:	v itz.	, cane				
Client Instructions:	an an Adresse - Second Star	2. 14 .		nem ferning of the rest	an a transmission and an an an an an an an an an an an an an	
17. Additional remarks:		1.4			44.14.44	0
18. <u>Cooler Information</u> Cooler No Temp C Condition Seal I	ntact Seal No S	eal Da	ite	Signed By		
1 1.0 Good Yes					ļ	

Page 1 of 1

		www.hatlenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request		۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲		1 I I I I I I I I I I I I I I I I I I I		атех + МТ ВТЕХ + МТ ВТЕХ + МТ ВТЕХ + МТ ВТЕХ + МТ ВТЕХ + МЕ ВТЕХ + МЕ											Remarks:	041
Tum-Around Time:	K Standard 🗆 Rush	Project Name:	Injection well 7-1-15	Project #:	PO#12610939	Project Manager:			Sampler: 786 6 of the Sector	A REAL PRIME CONTRACTOR STATES	Container Preservative Type and # Type	5-VOA HCI -0	1-literamber -0	1-50ml -1	1-200 mag-1	1-125-1 HaSON -20	1-50m/ HNO3 -00	1-5am/ NaOtt -20	1-5com/20 acitete -20			Repealment by: Date Time The 1/1/5 12 Received by: Deter The Deter Time	Appendix 1
Chain-of-Custody Record	Client Western Refining		Mailing Address 450 CP 4990	B/OBMP ie/d. NNBML3	Phone #: 525-632-1/35	email or Fax#:	QAVQC Package:	A Standard D Level 4 (Full Validation)	Accreditation	D EDD (Type)	Date Time Matrix Sample Request ID	7-1-15 9:00 Had injection well										Date: Time: Relinquished by: 7-1-15 12/5 Vober Knollow Date: Time: Relinquished by: 11.1. 10th Volument by:	the representation of the representation

Water Analysis of Entrada Formation Water

(from TnT Disposal well located in section 8/T25N/R3W)

Muiti-Chern Analytical Laboratory

1122 S. FM1788 Midland, TX 76706

multi-chem

A HALLIBURTON SERVICE

(PTB = Pounds per Thousand Barrels)

Units of Measurement: Standard

State of the second second	and the second second second second	
Production Company:	TNT Environmental	Sales Rep: Greg Ramalho
Well Name:	SWD ENTRADA	Lab Tech: Andrew Callaghan
Sample Point:	SWD	
Sample Date:	11/20/2014	Scaling potential predicted using ScaleSoftPitzer from
Sample ID:	WA-294316	Brine Chemistry Consortium (Rice University)

				11 L AND DO LONG T	
Sample Specifi	cs	A DAVID RIVE C	Analysis @ Prop	erties in Sample Specifics	Contemporariles In
Test Date:	11/25/2014	Cations	mg/L	Anions	mg/L
System Temperature 1 (°F):	31	Sodium (Na):	4455.35	Chloride (CI):	6000.00
System Pressure 1 (psig):	15	Potassium (K):	44.79	Sulfate (SO4):	1094.00
System Temperature 2 (*F):	300	Magnesium (Mg)::	23.10	Bicarbonate (HCO3):	427.00
System Pressure 2 (psig):	300	Calcium (Ca):	115.67	Carbonate (CO3):	120.00
Calculated Density (g/ml):	1.0059	Strontium (Sr):	7.60	Acetic Acid (CH3COO)	
pH:	7.60	Barium (Ba):	9.30	Propionic Acid (C2H5COO)	
Calculated TDS (mg/L):	12320.63	Iron (Fe):	1.82	Butanoic Acid (C3H7COO)	
CO2 in Gas (%):		Zinc (Zn):	0.10	Isobutyric Acid ((CH3)2CHCOO)	
Dissolved CO2 (mg/L)):	80.00	Lead (Pb):	0.00	Fluoride (F):	
H2S in Gas (%):		Ammonia NH3;		Bromine (Br):	
H2S in Water (mg/L):	2.50	Manganese (Mn):	0.55	Silica (SiO2):	21.35

Notes:

Celestite Halite Zinc Sulfide Banum Sulfate Gypsum CaSO4·2H2O Calcium Iron NaCl SrSO4 Sulfide Carbonate Carbonate Si SI PTB PTB SI PTB PTB S! PTB PTB SI PTB PTB SI Temp PSI (°E) 1.31 0.00 0.09 1.02 0.00 0.00 6.95 0.05 0.00 2.21 0.99 1.95 300.00 300.00 1.90 85.63 1.92 5.47 77.73 1.90 5.47 2.04 0.99 1.80 1.30 0.00 0.00 0.00 0.00 0.00 0.00 7.04 0.05 270.00 268.00 1.68 0.05 1.29 0.00 0.00 0.00 0.00 0.00 0.00 7.17 240.00 236.00 1.47 68.31 1.90 5.47 1.89 0.98 1.63 1.45 0.00 0.00 0.00 0.00 7.32 0.05 5.47 1.76 0.97 1.27 0.00 0.00 1.92 210.00 205.00 1.26 57.99 1.98 5.48 1.67 0.96 1.25 1.24 0.00 0.00 0.00 0.00 0.00 0.00 7.53 0.05 180.00 173.00 1.06 47.51 0.00 7.79 0.05 0.00 0.00 0.00 0.00 0.00 5.49 1.03 1.19 150.00 141.00 0.88 37.61 2.08 1.62 0.96 2.23 5.51 1.64 0.96 0.81 1.11 0.00 0.00 0.00 0.00 0.00 0.00 8.13 0.05 120.00 110.00 0.71 29.02 0.00 0.00 0.00 8.56 0.05 22.00 2.44 5.52 1.73 0.97 0.59 0.96 0.00 0.00 0.00 90.00 78.00 0.57 0.05 0.00 0.00 0.00 0.00 0.00 9.11 2.73 5.53 1.92 0.98 0,36 0.73 0.00 60.00 46.00 0.46 16.76 0.39 0.00 0.00 0.00 0.00 0.00 0.00 9.83 0.05 13.73 3.10 5.53 2.26 0.99 0.16 31.00 15.00 0.39

		Hemi CaSO	hydrate 4⁻0 5H2 O	Anhydrate CaSO4		Calcium Fluoride		Zinc Carbonate		Lead Sulfide		Mg Silicate		Ca Mg Silicate		Silicate	
Temp (°F)	PSI	SI	РТВ	SI	РТВ	SI	РТВ	Si	PTB	SI	РТВ	SI	РТВ	SI	PTB	SI	PTB
300.00	300.00	0.00	0.00	0.14	31.79	0.00	0.00	0.91	0.06	0.00	0.00	7.71	25.75	4.14	13.11	9.66	1.42
270.00	268.00	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.06	0.00	0.00	6.34	25.03	3.32	12.39	8.62	1.41
240.00	236.00	0.00	0.00	0.00	0.00	0.00	0.00	0.54	0.05	0.00	0.00	4.87	22.02	2.45	10.55	7.49	1.41
210.00	205.00	0.00	0.00	0.00	0.00	0.00	0.00	0.29	0.03	0,00	0.00	3.30	15.59	1.51	7.07	6.31	1.40
180.00	173.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.67	7.51	0.54	2.57	5.08	1.38
150.00	141.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.84	1.32
120.00	110.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.66	1.18
90.00	78.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.55	0.90
60.00	46.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.61	0.45
31.00	15,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01

Multi-Chem - A Halliburton Service

Tuesday, November 25, 2014

Innovation

Excellence

Ethics

Commitment

AFFIDAVIT OF PUBLICATION

Ad No. 72205

STATE OF NEW MEXICO County of San Juan:

SAMMY LOPEZ, being duly sworn says: That he IS the PUBLISHER of THE DAILY TIMES, a daily newspaper of general circulation published in English at Farmington, said county and state, and that the hereto attached Legal Notice was published in a regular and entire issue of the said DAILY TIMES, a daily newspaper duly qualified for the purpose within the meaning of Chapter 167 of the 1937 Session Laws of the State of New Mexico for publication and appeared in the Internet at The Daily Times web site on the following day(s):

Monday, December 14, 2015

And the cost of the publication is \$60.13

ON 12/15/15 SAMMY LOPEZ appeared before me, whom I know personally to be the person who signed the above document.

Christine Sellers

COPY OF PUBLICATION

Western Refining Southwest, Inc., represented by John Thompson (505) 327-4892, has applied to the New Mexico Oll Conservation Division for administrative approval to be authorized to Inject nonhazardous treated water generated from the Bioomfield Terminal (former Refinery) into the proposed Class I (nonhazardous) disposal well. The proposed SWD #2, will be located 2019' FNL & 110' FEL, Section 27, T29N, PtilW, San Juan County, New Mexico.

ty, New Mexico. The proposed injection zone is the Entrada formation. The estimated injection depths are 7315' to 7,483' and the maximum anticipated injection rate is 8000 BPD. The maximum injection pressure will be determined from a step rate test. Interested parties can make comments to this application to the NM Oil Conservation Division, 1220 St. Francis Dr., Santa Fe, NM 87505. Comments must be received within 15 days of the date of this publication.

Legal No. 72205 published in The Daily Times on Dec 14, 2015 December 10, 2015

VIA CERTIFIED MAIL

Attn: Crystal Walker (Regulatory Coordinator) Burlington Resources Oil & Gas Company LP 3401 E. 30th Street Farmington, NM 87402

Re: Application of Western Refining Southwest, Inc. for Authorization to Inject in the proposed SWD #2, San Juan, New Mexico.

Dear Ms. Walker,

Western Refining Southwest, Inc. has applied to the New Mexico Oil Conservation Division to dispose of non-hazardous treated water generated from the Bloomfield Terminal (former Refinery) into the Entrada formation in the proposed SWD #2. The SWD #2 will be located 2019' feet from the North line and 110' feet from the East in Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico. As an offset operator (the Calvin #1 is within a half mile of the proposed SWD #2) you are being notified of this application pursuant to NMOCD rules

If you have no objection to this Application then no further action is required on your part. If you would like to file an objection or to request a hearing please notify the NMOCD at 1220 South St. Francis, St., Santa Fe, NM 87505 within 20 days of receipt of this notice.

If you have any questions or need additional information please feel free to call me at (505) 327-4892.

Sincerely,

John Thompson Walsh Engineering & Production Agent/Engineer for Western Refining Southwest

December 10, 2015

VIA CERTIFIED MAIL

Attn: Diane Montano (Regulatory Compliance Mgr.) XTO Energy, Inc. 382 Road 3100 Aztec, NM 87410

Re: Application of Western Refining Southwest, Inc. for Authorization to Inject in the proposed SWD #2, San Juan, New Mexico.

Dear Ms. Montano,

Western Refining Southwest, Inc. has applied to the New Mexico Oil Conservation Division to dispose of non-hazardous treated water generated from the Bloomfield Terminal (former Refinery) into the Entrada formation in the proposed SWD #2. The SWD #2 will be located 2019' feet from the North line and 110' feet from the East in Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico. As an offset operator of the Sullivan Gas Com D #1E, Davis Gas Com F #1E, Davis Gas Com F #1R, all of which are within a half mile of the proposed SWD #2, you are being notified of this application pursuant to NMOCD rules

If you have no objection to this Application then no further action is required on your part. If you would like to file an objection or to request a hearing please notify the NMOCD at 1220 South St. Francis, St., Santa Fe, NM 87505 within 20 days of receipt of this notice.

If you have any questions or need additional information please feel free to call me at (505) 327-4892.

Sincerely,

John Thompson Walsh Engineering & Production Agent/Engineer for Western Refining Southwest

December 10, 2015

VIA CERTIFIED MAIL

Attn: Regulatory Coordinator Holcomb Oil & Gas Inc. 512 W. Arrington Farmington, NM 87402

Re: Application of Western Refining Southwest, Inc. for Authorization to Inject in the proposed SWD #2, San Juan, New Mexico.

Dear Mr. Holcomb,

Western Refining Southwest, Inc. has applied to the New Mexico Oil Conservation Division to dispose of non-hazardous treated water generated from the Bloomfield Terminal (former Refinery) into the Entrada formation in the proposed SWD #2. The SWD #2 will be located 2019' feet from the North line and 110' feet from the East in Section 27, Township 29 North, Range 11 West, San Juan County, New Mexico. As an offset operator of the Davis Com J#1, Jacque #1, Jacque #2, all of which are within a half mile of the proposed SWD #2, you are being notified of this application pursuant to NMOCD rules

If you have no objection to this Application then no further action is required on your part. If you would like to file an objection or to request a hearing please notify the NMOCD at 1220 South St. Francis, St., Santa Fe, NM 87505 within 20 days of receipt of this notice.

If you have any questions or need additional information please feel free to call me at (505) 327-4892.

Sincerely.

John Thompson Walsh Engineering & Production Agent/Engineer for Western Refining Southwest

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature X. Active Agent B. Received by (Project Name) D. Is delinger address different from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is delinger from here 12 D. Is
1. Article Addressed to: Burlington Resources Oil Gra Attn: Austal Walkov 21101 C 20111 Ct	If YES, enter delivery address below:
Farmington, NM 8740	3. Service Type Certified Mail Express Mail Registered Return Receipt for Merchandise Insured Mail C.O.D.
	4. Restricted Delivery? (Extra Fee) Yes
2. Article Number () (Transfer from service label) 7011 19	570 0001 0594 4465
PS Form 3811, February 2004 Domestic Re	tum Receipt 102595-02-M-1540

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. Article Addressed to: XTO Energy, clnc, AHn: Diane Monteno 382, Pd. 3100 Aztec, NM 87410 	A. Signature X Agent A. Signature A. Signature A. Signature A. Signature A. Signature A. Signature A. Signature A. Senvice System D. Addressed Addressed A. Senvice System D. Address different from item 1? Yes If YES, Enter delivery address below: DEC 17 2015 3. Senvice Type C. Date of Delivery No DEC 17 2015 3. Senvice Type C. Cathied Mail Express Mail Fregistered Insured Mail C. Date of Delivery Addressed No DEC 17 2015 A delivery Address below: No DEC 17 2015 A delivery Address below: DEC ess below: DEC 17 2015 A delivery Address below: Address b

SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY						
 Complete items 1, 2, and 3. Also complete item 4 if Restricted Delivery is desired. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the fmpt if space permits 	A. Signature X G Agent B. Received by (Printed Name) C. Date of Delivery						
1. Article Addressed to: Hokomb Oil+Gras clinc Attn: Regulatory Coordinator 512 W. Arrigton	D. Is delivery address different from item 1? If YES, enter delivery address below: No DEC 17						
Farmington Win 82402	3. Service Type Certified Mail Depress Mail Registered Return Receipt for Merchandise Insured Mail C.O.D.						
2. Article Number (Transfer from service lebel) 7011 15	4. Restricted Delivery? (Extra Fee) □ Yes 70 0001 0594 4458						

McMillan, Michael, EMNRD

From:	John Thompson <john@walsheng.net></john@walsheng.net>
Sent:	Monday, January 04, 2016 10:23 AM
То:	McMillan, Michael, EMNRD
Subject:	RE: Western Refining Southwest Refining Co. SWD Well No.2 San Juan Co.

Western owns the surface.

From: McMillan, Michael, EMNRD [mailto:Michael.McMillan@state.nm.us] Sent: Monday, January 04, 2016 9:31 AM To: john@walsheng.net Subject: Western Refining Southwest Refining Co. SWD Well No.2 San Juan Co.

John:

I could not figure out who owns the surface-have they been notified for the Western Refining Southwest Refining Co. SWD Well No.2?

Thank You

Michael A. McMillan

Engineering and Geological Services Bureau, Oil Conservation Division 1220 South St. Francis Dr., Santa Fe NM 87505 O: 505.476.3448 F. 505.476.3462 <u>Michael.mcmillan@state.nm.us</u>