GW - 028

2015 Annual Discharge Permit Report

PART 15 OF 16

March 2016

Mr. John Kieling July 23, 2015 Page 2

upon the analytical characterization data and profile to be provided, the TSDF will process the material to remove organics prior to land disposal. However, because the samples indicate that the soil is not characteristically hazardous (toxicity) and all of the sample concentrations were below the land disposal restrictions treatment standards for soils, NRC requests that the soils in the three containers be designated as non-hazardous waste under a "no longer contained-in" determination. This designation will not affect NRC's decision to protectively manage the soils through off-site treatment and disposal, but NMED's action on our "no longer contained-in determination request" will affect the hazardous materials designation on a RCRA manifest.

If you have any questions or comments regarding this request, please feel free to contact me at 575-746-5487 or Robert Combs at 575-746-5382.

Sincerely,

Scott M. Denton

Environmental Manager

Navajo Refining Company, L.L.C.

Enclosures

c: Robert Combs, NRC

Micki Schultz, NRC

Pam Krueger, ARCADIS

Leslie Barras, TRC

Table 1 - Waste Soil Characterization Analytical Results

Tank 815

Navajo Refining Company, Artesia, New Mexico

Analyte	Toxicity Characteristic Limit	Hazardo	us Waste Treat	ment Standard	s (mg/kg)	Alternation	ve Treatment S	tandards for So	ils (mg/kg)		Analytical Results	
	(mg/L)	K048	K049	K051	K052	K048	K049	K051	K052	S. Bro 25	S. Bro 53	S. Bro 49
Semivolatile Organic Compound	ds (mg/kg)											
2,4-Dimethylphenol			NA		NA		NA		NA	<18.5	<3.81	<38.1
Acenaphthene				NA				NA		1.25 J	0.168 J	0.845 J
Anthracene			3.4	3.4			34	34	8550	0.552 J	0.262 J	1.35 J
Benz(a)anthracene				3.4	3.4			34	34	0.246 J	0.634	2.63 J
Benzo(a)pyrene		3.4	3.4	3.4		34	34	34		<1.83	0.488 J	2.13 J
bis(2-Ethylhexyl) phthalate		28	28	28		280	280	280	E550	<18.5	<3.81	<38.1
Carbon disulfide			NA				NA		(# = /	not analyzed	not analyzed	not analyzed
Chrysene	Ta 1	3.4	3.4	3.4	==	34	34	34	10201	0.395 J	0.662	6.86
Di-n-butyl phthalate	1==.	28		28		280		280		<18.5	<3.81	<38.1
Fluorene		NA		NA		NA		NA		2.2	0.290 J	0.994 J
m-Cresol (3-methylphenol)	144				5.6	=-	==		56	<18.5	<3.81	<38.1
Naphthalene		5.6	5.6	5.6	5.6	56	56	56	56	2.03	0.160 J	<3.77
o-Cresol (2-methylphenol)					5.6	22	223		56	<18.5	<3.81	<38.1
p-Cresol (4-methylphenol)					5.6				56	<18.5	<3.81	<38.1
Phenanthrene		5.6	5.6	5.6	5.6	56	56	56	56	0.996 J	0.896	3.87
Phenol		6.2	6.2	6.2	6.2	62	62	62	62	<18.5	<3.81	<38.1
Pyrene		8.2	8.2	8.2		82	82	82		1.82 J	1.59	10.4
TCLP Volatile Organic Compou	ınds (mg/L)			•								
1,1-Dichloroethene	0.7									< 0.050	< 0.050	< 0.050
1,2-Dichloroethane	0.5									< 0.050	< 0.050	< 0.050
2-Butanone	200									< 0.50	< 0.50	< 0.50
Benzene	0.5									< 0.050	< 0.050	< 0.050
Carbon tetrachloride	0.5									< 0.050	< 0.050	< 0.050
Chlorobenzene	100									< 0.050	< 0.050	< 0.050
Chloroform	6									< 0.25	< 0.25	< 0.25
Tetrachloroethene	0.7									< 0.050	< 0.050	< 0.050
Trichloroethene	0.5									< 0.050	< 0.050	< 0.050
Vinyl Chloride	0.2									< 0.050	< 0.050	< 0.050
TCLP Semivolatile Organic Con	npounds (mg/L)		•	•	•	•	•	•	•	•	•	
1,4-Dichlorobenzene	7.5								:	< 0.10	< 0.10	< 0.10
2,4,5-Trichlorophenol	400									< 0.10	< 0.10	< 0.10
2,4,6-Trichlorophenol	2								u==0	< 0.10	< 0.10	< 0.10
2,4-Dinitrotoluene	0.13									< 0.10	<0.10	< 0.10
Cresols, Total	200									< 0.20	< 0.20	< 0.20
Hexachlorobenzene	0.13									< 0.10	<0.10	< 0.10
Hexachlorobutadiene	0.5									<0.10	<0.10	<0.10
Hexachloroethane	3									<0.10	<0.10	<0.10
Nitrobenzene	2									< 0.10	<0.10	<0.10
Pentachlorophenol	100									<0.10	<0.10	<0.10
Pyridine	5									<0.10	<0.10	<0.10

Table 1 - Waste Soil Characterization Analytical Results

Tank 815

Navajo Refining Company, Artesia, New Mexico

Analyte	Toxicity Characteristic Limit	Hazardous Waste Treatment Standards (mg/kg)				Alternative Treatment Standards for Soils (mg/kg)				Analytical Results		
	(mg/L)	K048	K049	K051	K052	K048	K049	K051	K052	S. Bro 25	S. Bro 53	S. Bro 49
TCLP Metals (mg/L)												
Arsenic	5									< 0.450	< 0.450	< 0.450
Barium	100									<1.40	<1.40	<1.40
Cadmium	1									< 0.450	< 0.450	< 0.450
Chromium	5	0.6	0.6	0.6	0.6	6	6	6	6	< 0.450	< 0.450	< 0.450
Lead	5									< 0.450	< 0.450	< 0.450
Mercury	0.2									< 0.0100	< 0.0100	< 0.0100
Nickel		11	11	11	11	110	110	110	110	< 0.450	< 0.450	< 0.450
Selenium	1									< 0.450	< 0.450	< 0.450
Silver	5									< 0.450	< 0.450	< 0.450
Total Metals (mg/kg)												
Total Lead		NA	NA	NA	NA	NA	NA	NA	NA	20.9	13.1	40.2
Total Petroleum Hydrocarbons (mg.	/kg)											
Diesel Range Organics									7	30,000	5,260	9,610

Notes and Abbreviations:

- -- Analyte is not listed as characteristically hazardous or as an analyte associated with the listed waste.
- < x = Sample result was not detected with reporting limit value of x.
- B = The indicated compound was found in the associated method blank as well as the laboratory samples.
- J = Estimated value below the lowest calibration point.

mg/kg = milligrams per kilogram

mg/L = milligrams per liter

NA = Analyte .identified in 40 CFR 268.40 as associated with the waste code, but standard listed as "not applicable for non-wastewater forms"

ANALYTICAL REPORT June 02, 2015

ARCADIS US - TX

L763904 Sample Delivery Group:

Samples Received: 05/08/2015

Project Number: TX001155.0000

Description: Navajo Refining Company - Artesia, NM

Report To: Pam Krueger

2929 Briarpark Dr., Suite 300

Houston, TX 77042

Entire Report Reviewed By:

Pamela a. Langford

Pam Langford

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴Cn: Case Narrative	5
⁵ Sr: Sample Results	6
TANK 815 S. BRO 25 L763904-01	6
TANK 815 S. BRO 53 L763904-02	8
TANK 815 S. BRO 49 L763904-03	10
TRIP BLANK L763904-04	12
TANK 815 S. BRO 25 L763904-05	13
TANK 815 S. BRO 53 L763904-06	14
TANK 815 S. BRO 49 L763904-07	15
⁶ Qc: Quality Control Summary	16
Total Solids by Method 2540 G-2011	16
Mercury by Method 7470A	17
Metals (ICP) by Method 6010B	19
Volatile Organic Compounds (GC/MS) by Method 8260B	22
Semi-Volatile Organic Compounds (GC) by Method 3546/DRO	26
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	27
⁷ Gl: Glossary of Terms	31
⁸ Al: Accreditations & Locations	32

⁹Sc: Chain of Custody

33

-	
۶.	3
-	

Sr

Qc

GI

Sc

TANK 815 S. BRO 25 L763904-01 Waste			Collected by I. Castro	Collected date/time 05/07/15 09:10	Received date/time 05/08/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analysis Analyst
Mercury by Method 7470A	WG788910	1	05/14/15 21:17	05/15/15 06:53	ESC
Metals (ICP) by Method 6010B	WG789056	1	05/15/15 20:28	05/17/15 14:37	JDG
Preparation by Method 1311	WG788648	1	05/13/15 15:58	05/13/15 15:59	BG
Preparation by Method 1311	WG788704	1	05/14/15 14:41	05/14/15 14:42	LJN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG789017	1	05/14/15 21:09	05/15/15 14:48	ADF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG789393	1	05/17/15 09:45	05/17/15 09:45	MCB
TANK 815 S. BRO 53 L763904-02 Waste			Collected by I. Castro	Collected date/time 05/07/15 09:25	Received date/time 05/08/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
			date/time	date/time	
Mercury by Method 7470A	WG788910	1	05/14/15 21:17	05/15/15 07:00	ESC
Metals (ICP) by Method 6010B	WG789056	1	05/15/15 20:28	05/17/15 14:41	JDG
Preparation by Method 1311	WG788648	1	05/13/15 15:58	05/13/15 15:59	BG
Preparation by Method 1311	WG788704	1	05/14/15 14:41	05/14/15 14:42	LJN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG789017	1	05/14/15 21:09	05/15/15 15:58	ADF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG789393	1	05/17/15 10:44	05/17/15 10:44	MCB
TANK 815 S. BRO 49 L763904-03 Waste			Collected by I. Castro	Collected date/time 05/07/15 09:40	Received date/time 05/08/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analysis Analyst
Mercury by Method 7470A	WG788952	1	05/14/15 21:57	05/15/15 09:23	ESC
Metals (ICP) by Method 6010B	WG789055	1	05/15/15 23:32	05/17/15 13:39	JDG
Preparation by Method 1311	WG788648	1	05/13/15 15:58	05/13/15 15:59	BG
Preparation by Method 1311	WG788704	1	05/14/15 14:41	05/14/15 14:42	LJN
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG789017	1	05/14/15 21:09	05/15/15 16:21	ADF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG789393	1	05/17/15 11:04	05/17/15 11:04	MCB
TRIP BLANK L763904-04 GW			Collected by I. Castro	Collected date/time 05/07/15 00:00	Received date/time 05/08/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
Volatile Organic Compounds (GC/MS) by Method 8260B	WG787918	1	date/time 05/17/15 08:15	date/time 05/17/15 08:15	MCB
			Collected by	Collected date/time	Received date/time
TANK 815 S. BRO 25 L763904-05 Solid			I. Castro	05/07/15 09:10	05/08/15 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analysis Analyst
Metals (ICP) by Method 6010B	WG788480	1	05/12/15 18:27	05/13/15 12:35	LTB
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG788480 WG788184	50	05/11/15 18:23	05/12/15 20:21	KMF
Semi-Volatile Organic Compounds (GC) by Method 3546/DRO	WG788415	100	05/12/15 18:02	05/13/15 14:40	CLG
Total Solids by Method 2540 G-2011	WG788085	1	05/11/15 13:39	05/12/15 09:21	MEL
TANK 815 S. BRO 53 L763904-06 Solid			Collected by I. Castro	Collected date/time 05/07/15 09:25	Received date/time 05/08/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
Motole (ICD) by Mothad COOP	WC700400	4	date/time	date/time	LTD
Metals (ICP) by Method 6010B	WG788480	1	05/12/15 18:27	05/13/15 12:40	LTB
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG788184	10	05/11/15 18:23	05/12/15 19:58	KMF
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG788184	20	05/11/15 18:23	05/13/15 20:02	KMF
Semi-Volatile Organic Compounds (GC) by Method 3546/DRO	WG788415	20	05/12/15 18:02	05/13/15 11:35	CLG
Total Solids by Method 2540 G-2011	WG788085	1	05/11/15 13:39	05/12/15 09:21	MEL

TANK 815 S. BRO 49 L763904-07 Solid			Collected by I. Castro	Collected date/time 05/07/15 09:40	Received date/time 05/08/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analysis Analyst
			date/time	date/time	
Metals (ICP) by Method 6010B	WG788480	1	05/12/15 18:27	05/13/15 12:44	LTB
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG788184	100	05/11/15 18:23	05/12/15 20:44	KMF
Semi Volatile Organic Compounds (GC/MS) by Method 8270C	WG788184	200	05/11/15 18:23	05/13/15 19:38	KMF
Semi-Volatile Organic Compounds (GC) by Method 3546/DRO	WG788415	200	05/12/15 18:02	05/13/15 14:50	CLG
Total Solids by Method 2540 G-2011	WG788085	1	05/11/15 13:39	05/12/15 09:21	MEL

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Pamela a. Langford Pam Langford

Pam Langford

Technical Service Representative

ONE LAB. NATIONWIDE.

Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP ZHE Extraction	-		5/14/2015 2:41:09 PM	WG788704
TCLP Extraction	-		5/13/2015 3:58:54 PM	WG788648

Mercury by Method 7470A

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Mercury	ND		0.0100	0.20	1	05/15/2015 06:53	WG788910

Ss

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Arsenic	ND		0.450	5	1	05/17/2015 14:37	WG789056
Barium	ND		1.40	100	1	05/17/2015 14:37	WG789056
Cadmium	ND		0.450	1	1	05/17/2015 14:37	WG789056
Chromium	ND		0.450	5	:1	05/17/2015 14:37	WG789056
Lead	ND		0.450	5	1	05/17/2015 14:37	WG789056
Nickel	ND		0.450		1	05/17/2015 14:37	WG789056
Selenium	ND		0.450	1	1	05/17/2015 14:37	WG789056
Silver	ND		0.450	5	1	05/17/2015 14:37	WG789056

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		16.5	50.0	1	05/17/2015 09:45	WG789393
Carbon tetrachloride	U		16.5	50.0	1	05/17/2015 09:45	WG789393
Chlorobenzene	U		16.5	50.0	1	05/17/2015 09:45	WG789393
Chloroform	U		82.5	250	1	05/17/2015 09:45	WG789393
1,2-Dichloroethane	U		16.5	50.0	1	05/17/2015 09:45	WG789393
1,1-Dichloroethene	U		16.5	50.0	1	05/17/2015 09:45	WG789393
2-Butanone (MEK)	U		165	500	1	05/17/2015 09:45	WG789393
Tetrachloroethene	U		16.5	50.0	1	05/17/2015 09:45	WG789393
Trichloroethene	U		16.5	50.0	1	05/17/2015 09:45	WG789393
Vinyl chloride	U		16.5	50.0	1	05/17/2015 09:45	WG789393
(S) Toluene-d8	101			88.5-111		05/17/2015 09:45	WG789393
(S) Dibromofluoromethane	97.8			78.3-121		05/17/2015 09:45	WG789393
(S) a,a,a-Trifluorotoluene	102			85.0-114		05/17/2015 09:45	WG789393
(S) 4-Bromofluorobenzene	104			71.0-126		05/17/2015 09:45	WG789393

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
l,4-Dichlorobenzene	ND		0.100	7.50	1	05/15/2015 14:48	WG789017
2,4-Dinitrotoluene	ND		0.100	0.13	1	05/15/2015 14:48	WG789017
Hexachlorobenzene	ND		0.100	0.13	1	05/15/2015 14:48	WG789017
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	05/15/2015 14:48	WG789017
Hexachloroethane	ND		0.100	3	1	05/15/2015 14:48	WG789017
Nitrobenzene	ND		0.100	2	1	05/15/2015 14:48	WG789017
Pyridine	ND		0.100	5	1	05/15/2015 14:48	WG789017
3&4-Methyl Phenol	ND		0.100	400	1	05/15/2015 14:48	WG789017
2-Methylphenol	ND		0.100	200	1	05/15/2015 14:48	WG789017
Pentachlorophenol	ND		0.100	100	1	05/15/2015 14:48	WG789017
2,4,5-Trichlorophenol	ND		0.100	400	1	05/15/2015 14:48	WG789017
2,4,6-Trichlorophenol	ND		0.100	2	1	05/15/2015 14:48	WG789017
(S) 2-Fluorophenol	35.9		10.0-77.9	87		05/15/2015 14:48	WG789017

TANK 815 S. BRO 25
Collected date/time: 05/07/15 09:10

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

L763904

_	•		-					
	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
(S) Phenol-d5	23.7		5.00-70.1	67		05/15/2015 14:48	WG789017	
(S) Nitrobenzene-d5	48.2		21.8-123	120		05/15/2015 14:48	WG789017	
(S) 2-Fluorobiphenyl	51.2		29.5-131	122		05/15/2015 14:48	WG789017	
(S) 2,4,6-Tribromophenol	75.5		11.2-130	148		05/15/2015 14:48	WG789017	
(S) p-Terphenyl-d14	58.4		29.3-137	149		05/15/2015 14:48	WG789017	


ONE LAB. NATIONWIDE.

Preparation by Method 1311

Mercury by Method 7470A

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction	-		5/13/2015 3:58:54 PM	WG788648
TCLP ZHE Extraction	-		5/14/2015 2:41:09 PM	WG788704

³ Ss

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Mercury	ND		0.0100	0.20	1	05/15/2015 07:00	WG788910

Metals (ICP) by Method 6010B

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Arsenic	ND		0.450	5	1	05/17/2015 14:41	WG789056
Barium	ND		1.40	100	1	05/17/2015 14:41	WG789056
Cadmium	ND		0.450	1	1	05/17/2015 14:41	WG789056
Chromium	ND		0.450	5	1	05/17/2015 14:41	WG789056
Lead	ND		0.450	5	1	05/17/2015 14:41	WG789056
Nickel	ND		0.450		1	05/17/2015 14:41	WG789056
Selenium	ND		0.450	1	1	05/17/2015 14:41	WG789056
Silver	ND		0.450	5	1	05/17/2015 14:41	WG789056

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		16.5	50.0	1	05/17/2015 10:44	WG789393
Carbon tetrachloride	U		16.5	50.0	1	05/17/2015 10:44	WG789393
Chlorobenzene	U		16.5	50.0	1	05/17/2015 10:44	WG789393
Chloroform	U		82.5	250	1	05/17/2015 10:44	WG789393
1,2-Dichloroethane	U		16.5	50.0	1	05/17/2015 10:44	WG789393
1,1-Dichloroethene	U		16.5	50.0	1	05/17/2015 10:44	WG789393
2-Butanone (MEK)	U		165	500	1	05/17/2015 10:44	WG789393
Tetrachloroethene	U		16.5	50.0	1	05/17/2015 10:44	WG789393
Trichloroethene	U		16.5	50.0	1	05/17/2015 10:44	WG789393
Vinyl chloride	U		16.5	50.0	1	05/17/2015 10:44	WG789393
(S) Toluene-d8	101			88.5-111		05/17/2015 10:44	WG789393
(S) Dibromofluoromethane	97.1			78.3-121		05/17/2015 10:44	WG789393
(S) a,a,a-Trifluorotoluene	101			85.0-114		05/17/2015 10:44	WG789393
(S) 4-Bromofluorobenzene	103			71.0-126		05/17/2015 10:44	WG789393

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	05/15/2015 15:58	WG789017
2,4-Dinitrotoluene	ND		0.100	0.13	1	05/15/2015 15:58	WG789017
Hexachlorobenzene	ND		0.100	0.13	1	05/15/2015 15:58	WG789017
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	05/15/2015 15:58	WG789017
Hexachloroethane	ND		0.100	3	1	05/15/2015 15:58	WG789017
Nitrobenzene	ND		0.100	2	1	05/15/2015 15:58	WG789017
Pyridine	ND		0.100	5	1	05/15/2015 15:58	WG789017
3&4-Methyl Phenol	ND		0.100	400	1	05/15/2015 15:58	WG789017
2-Methylphenol	ND		0.100	200	1	05/15/2015 15:58	WG789017
Pentachlorophenol	ND		0.100	100	1	05/15/2015 15:58	WG789017
2,4,5-Trichlorophenol	ND		0.100	400	1	05/15/2015 15:58	WG789017
2,4,6-Trichlorophenol	ND		0.100	2	1	05/15/2015 15:58	WG789017
(S) 2-Fluorophenol	45.0		10.0-77.9	87		05/15/2015 15:58	WG789017

TANK 815 S. BRO 53
Collected date/time: 05/07/15 09:25

SAMPLE RESULTS - 02

15 - 02 ONE LAB. NATIONWIDE.

L763904

	Result	Qualifier	RDL	Limit	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
(S) Phenol-d5	31.7		5.00-70.1	67		05/15/2015 15:58	WG789017
(S) Nitrobenzene-d5	59.1		21.8-123	120		05/15/2015 15:58	WG789017
(S) 2-Fluorobiphenyl	63.0		29.5-131	122		05/15/2015 15:58	WG789017
(S) 2,4,6-Tribromophenol	81.8		11.2-130	148		05/15/2015 15:58	WG789017
(S) p-Terphenyl-d14	65.4		29.3-137	149		05/15/2015 15:58	WG789017

ONE LAB. NATIONWIDE.

Collected date/time: 05/07/15 09:40 Preparation by Method 1311

	Result	Qualifier	Prep	Batch
Analyte			date / time	
TCLP Extraction	-		5/13/2015 3:58:54 PM	WG788648
TCLP ZHE Extraction	-		5/14/2015 2:41:09 PM	WG788704

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Mercury	ND		0.0100	0.20	1	05/15/2015 09:23	WG788952

Ss

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Arsenic	ND		0.450	5	1	05/17/2015 13:39	WG789055
Barium	ND		1.40	100	1	05/17/2015 13:39	WG789055
Cadmium	ND		0.450	1	1	05/17/2015 13:39	WG789055
Chromium	ND		0.450	5	:1	05/17/2015 13:39	WG789055
Lead	ND		0.450	5	1	05/17/2015 13:39	WG789055
Nickel	ND		0.450		1	05/17/2015 13:39	WG789055
Selenium	ND		0.450	1	1	05/17/2015 13:39	WG789055
Silver	ND		0.450	5	1	05/17/2015 13:39	WG789055

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		16.5	50.0	1	05/17/2015 11:04	WG789393
Carbon tetrachloride	U		16.5	50.0	1	05/17/2015 11:04	WG789393
Chlorobenzene	U		16.5	50.0	1	05/17/2015 11:04	WG789393
Chloroform	U		82.5	250	1	05/17/2015 11:04	WG789393
1,2-Dichloroethane	U		16.5	50.0	1	05/17/2015 11:04	WG789393
1,1-Dichloroethene	U		16.5	50.0	1	05/17/2015 11:04	WG789393
2-Butanone (MEK)	U		165	500	1	05/17/2015 11:04	WG789393
Tetrachloroethene	U		16.5	50.0	1	05/17/2015 11:04	WG789393
Trichloroethene	U		16.5	50.0	1	05/17/2015 11:04	WG789393
Vinyl chloride	U		16.5	50.0	1	05/17/2015 11:04	WG789393
(S) Toluene-d8	100			88.5-111		05/17/2015 11:04	WG789393
(S) Dibromofluoromethane	97.9			78.3-121		05/17/2015 11:04	WG789393
(S) a,a,a-Trifluorotoluene	101			85.0-114		05/17/2015 11:04	WG789393
(S) 4-Bromofluorobenzene	104			71.0-126		05/17/2015 11:04	WG789393

	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
1,4-Dichlorobenzene	ND		0.100	7.50	1	05/15/2015 16:21	WG789017
2,4-Dinitrotoluene	ND		0.100	0.13	1	05/15/2015 16:21	WG789017
Hexachlorobenzene	ND		0.100	0.13	1	05/15/2015 16:21	WG789017
Hexachloro-1,3-butadiene	ND		0.100	0.50	1	05/15/2015 16:21	WG789017
Hexachloroethane	ND		0.100	3	1	05/15/2015 16:21	WG789017
Nitrobenzene	ND		0.100	2	1	05/15/2015 16:21	WG789017
Pyridine	ND		0.100	5	1	05/15/2015 16:21	WG789017
3&4-Methyl Phenol	ND		0.100	400	1	05/15/2015 16:21	WG789017
2-Methylphenol	ND		0.100	200	1	05/15/2015 16:21	WG789017
Pentachlorophenol	ND		0.100	100	1	05/15/2015 16:21	WG789017
2,4,5-Trichlorophenol	ND		0.100	400	1	05/15/2015 16:21	WG789017
2,4,6-Trichlorophenol	ND		0.100	2	1	05/15/2015 16:21	WG789017
(S) 2-Fluorophenol	38.2		10.0-77.9	87		05/15/2015 16:21	WG789017

TANK 815 S. BRO 49
Collected date/time: 05/07/15 09:40

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

L763904

	•		-				
	Result	Qualifier	RDL	Limit	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
(S) Phenol-d5	25.7		5.00-70.1	67		05/15/2015 16:21	WG789017
(S) Nitrobenzene-d5	51.2		21.8-123	120		05/15/2015 16:21	WG789017
(S) 2-Fluorobiphenyl	53.5		29.5-131	122		05/15/2015 16:21	WG789017
(S) 2,4,6-Tribromophenol	69.8		11.2-130	148		05/15/2015 16:21	WG789017
(S) p-Terphenyl-d14	55.3		29.3-137	149		05/15/2015 16:21	WG789017

ONE LAB. NATIONWIDE.

L763904

Volatile Organic Compounds (GC/MS) by Method 8260B

Collected date/time: 05/07/15 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.330	1.00	1	05/17/2015 08:15	<u>WG787918</u>
Carbon tetrachloride	U		0.380	1.00	1	05/17/2015 08:15	WG787918
Chloroform	U		0.320	5.00	1	05/17/2015 08:15	WG787918
1,2-Dibromoethane	U		0.380	1.00	1	05/17/2015 08:15	WG787918
1,1-Dichloroethane	U		0.260	1.00	1	05/17/2015 08:15	WG787918
1,2-Dichloroethane	U		0.360	1.00	1	05/17/2015 08:15	WG787918
1,1-Dichloroethene	U		0.400	1.00	1	05/17/2015 08:15	WG787918
Ethylbenzene	U		0.380	1.00	1	05/17/2015 08:15	WG787918
Methylene Chloride	U		1.00	5.00	1	05/17/2015 08:15	WG787918
1,1,1,2-Tetrachloroethane	U		0.380	1.00	1	05/17/2015 08:15	WG787918
1,1,2,2-Tetrachloroethane	U		0.130	1.00	1	05/17/2015 08:15	WG787918
Toluene	U		0.780	5.00	1	05/17/2015 08:15	WG787918
1,1,1-Trichloroethane	U		0.319	1.00	1	05/17/2015 08:15	WG787918
1,1,2-Trichloroethane	U		0.380	1.00	1	05/17/2015 08:15	WG787918
Vinyl chloride	U		0.260	1.00	1	05/17/2015 08:15	WG787918
o-Xylene	U		0.340	1.00	1	05/17/2015 08:15	WG787918
m&p-Xylene	U		0.720	2.00	1	05/17/2015 08:15	WG787918
Xylenes, Total	U		1.10	3.00	1	05/17/2015 08:15	WG787918
(S) Toluene-d8	99.8			88.5-111		05/17/2015 08:15	WG787918
(S) Dibromofluoromethane	93.5			78.3-121		05/17/2015 08:15	WG787918
(S) 4-Bromofluorobenzene	101			71.0-126		05/17/2015 08:15	WG787918

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.1		1	05/12/2015 09:21	WG788085

Metals (ICP) by Method 6010B

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	20.9		0.210	0.555	1	05/13/2015 12:35	WG788480

Ss

Semi-Volatile Organic Compounds (GC) by Method 3546/DRO

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	30000		85.0	444	100	05/13/2015 14:40	WG788415
(S) o-Terphenyl	0.000	×		50.0-150		05/13/2015 14:40	WG788415

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)pyrene	U		0.300	1.83	50	05/12/2015 20:21	WG788184
Naphthalene	2.03		0.490	1.83	50	05/12/2015 20:21	WG788184
2,4-Dimethylphenol	U		2.70	18.5	50	05/12/2015 20:21	WG788184
Acenaphthene	1.25	<u>J</u>	0.360	1.83	50	05/12/2015 20:21	WG788184
Anthracene	0.552	<u>J</u>	0.360	1.83	50	05/12/2015 20:21	WG788184
Benzo(A)Anthracene	0.246	<u>J</u>	0.230	1.83	50	05/12/2015 20:21	WG788184
Bis(2-Ethylhexyl)phthalate	U		0.660	18.5	50	05/12/2015 20:21	WG788184
Chrysene	0.395	<u>J</u>	0.310	1.83	50	05/12/2015 20:21	WG788184
Di-n-butyl phthalate	U		0.600	18.5	50	05/12/2015 20:21	WG788184
Fluorene	2.20		0.380	1.83	50	05/12/2015 20:21	WG788184
3&4-Methyl Phenol	U		0.430	18.5	50	05/12/2015 20:21	WG788184
2-Methylphenol	U		0.540	18.5	50	05/12/2015 20:21	WG788184
Phenanthrene	0.996	<u>J</u>	0.290	1.83	50	05/12/2015 20:21	WG788184
Phenol	U		0.390	18.5	50	05/12/2015 20:21	WG788184
Pyrene	1.82	7	0.690	1.83	50	05/12/2015 20:21	WG788184
(S) 2-Fluorophenol	74.2	×		21.1-116		05/12/2015 20:21	WG788184
(S) Phenol-d5	92.5	×		26.3-121		05/12/2015 20:21	WG788184
(S) Nitrobenzene-d5	163	×		21.9-129		05/12/2015 20:21	WG788184
(S) 2-Fluorobiphenyl	89.1	×		34.9-129		05/12/2015 20:21	WG788184
(S) 2,4,6-Tribromophenol	89.2	X		21.6-142		05/12/2015 20:21	WG788184
(S) p-Terphenyl-d14	114	×		21.5-128		05/12/2015 20:21	WG788184

ONE LAB. NATIONWIDE.


Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.4		1	05/12/2015 09:21	WG788085

Ss

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Lead	13.1		0.220	0.572	1	05/13/2015 12:40	WG788480

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) High Fraction	5260		17.0	91.5	20	05/13/2015 11:35	WG788415
(S) o-Terphenyl	0.000	X		50.0-150		05/13/2015 11:35	WG788415

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)pyrene	0.488	J	0.120	0.755	20	05/13/2015 20:02	WG788184
Naphthalene	0.160	<u>J</u>	0.100	0.378	10	05/12/2015 19:58	WG788184
2,4-Dimethylphenol	U		0.540	3.81	10	05/12/2015 19:58	WG788184
Acenaphthene	0.168	<u>J</u>	0.0730	0.378	10	05/12/2015 19:58	WG788184
Anthracene	0.262	<u>J</u>	0.0720	0.378	10	05/12/2015 19:58	WG788184
Benzo(A)Anthracene	0.634		0.0490	0.378	10	05/12/2015 19:58	WG788184
Bis(2-Ethylhexyl)phthalate	U		0.140	3.81	10	05/12/2015 19:58	WG788184
Chrysene	0.662		0.0640	0.378	10	05/12/2015 19:58	WG788184
Di-n-butyl phthalate	U		0.120	3.81	10	05/12/2015 19:58	WG788184
Fluorene	0.290	J	0.0780	0.378	10	05/12/2015 19:58	WG788184
3&4-Methyl Phenol	U		0.0890	3.81	10	05/12/2015 19:58	WG788184
2-Methylphenol	U		0.110	3.81	10	05/12/2015 19:58	WG788184
Phenanthrene	0.896		0.0610	0.378	10	05/12/2015 19:58	WG788184
Phenol	U		0.0800	3.81	10	05/12/2015 19:58	WG788184
Pyrene	1.59		0.140	0.378	10	05/12/2015 19:58	WG788184
(S) 2-Fluorophenol	77.5			21.1-116		05/12/2015 19:58	WG788184
(S) Phenol-d5	79.1			26.3-121		05/12/2015 19:58	WG788184
(S) Nitrobenzene-d5	114			21.9-129		05/12/2015 19:58	WG788184
(S) 2-Fluorobiphenyl	77.3			34.9-129		05/12/2015 19:58	WG788184
(S) 2,4,6-Tribromophenol	91.2			21.6-142		05/12/2015 19:58	WG788184
(S) p-Terphenyl-d14	87.7			21.5-128		05/12/2015 19:58	WG788184

Metals (ICP) by Method 6010B

Analyte

Analyte

TPH (GC/FID) High Fraction

Lead

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

RDL (dry)

RDL (dry)

mg/kg

915

mg/kg

0.572

Analysis

Analysis

date / time

05/13/2015 14:50

05/13/2015 14:50

date / time

05/13/2015 12:44

Batch

Batch

WG788415

WG788415

WG788480

Dilution

Dilution

200

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	87.4		1	05/12/2015 09:21	WG788085

Ss

Cn

(S) o-Terphenyl 0.000 50.0-150

Semi-Volatile Organic Compounds (GC) by Method 3546/DRO Result (dry)

Result (dry)

mg/kg

40.2

mg/kg

9610

Qualifier

Qualifier

MDL

mg/kg

0.220

MDL

170

mg/kg

	Result (dry)	Qualifier	MDL	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzo(a)pyrene	2.13	J	1.20	7.55	200	05/13/2015 19:38	WG788184
Naphthalene	U		1.00	3.77	100	05/12/2015 20:44	WG788184
2,4-Dimethylphenol	U		5.40	38.1	100	05/12/2015 20:44	WG788184
Acenaphthene	0.845	<u>J</u>	0.730	3.77	100	05/12/2015 20:44	WG788184
Anthracene	1.35	<u>J</u>	0.720	3.77	100	05/12/2015 20:44	WG788184
Benzo(A)Anthracene	2.63	<u>J</u>	0.490	3.77	100	05/12/2015 20:44	WG788184
Bis(2-Ethylhexyl)phthalate	U		1.40	38.1	100	05/12/2015 20:44	WG788184
Chrysene	6.86		0.640	3.77	100	05/12/2015 20:44	WG788184
Di-n-butyl phthalate	U		1.20	38.1	100	05/12/2015 20:44	WG788184
Fluorene	0.994	<u>J</u>	0.780	3.77	100	05/12/2015 20:44	WG788184
3&4-Methyl Phenol	U		0.890	38.1	100	05/12/2015 20:44	WG788184
2-Methylphenol	U		1.10	38.1	100	05/12/2015 20:44	WG788184
Phenanthrene	3.87		0.610	3.77	100	05/12/2015 20:44	WG788184
Phenol	U		0.800	38.1	100	05/12/2015 20:44	WG788184
Pyrene	10.4		1.40	3.77	100	05/12/2015 20:44	WG788184
(S) 2-Fluorophenol	69.5	×		21.1-116		05/12/2015 20:44	WG788184
(S) Phenol-d5	71.0	×		26.3-121		05/12/2015 20:44	WG788184
(S) Nitrobenzene-d5	126	×		21.9-129		05/12/2015 20:44	WG788184
(S) 2-Fluorobiphenyl	86.6	×		34.9-129		05/12/2015 20:44	WG788184
(S) 2,4,6-Tribromophenol	83.2	×		21.6-142		05/12/2015 20:44	WG788184
(S) p-Terphenyl-d14	140	X		21.5-128		05/12/2015 20:44	WG788184

ONE LAB. NATIONWIDE.

Total Solids by Method 2540 G-2011

L763904-05,06,07

Method Blank (MB)

 (MB) 05/12/15 09:20
 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %
 %

 Total Solids
 0.000900
 Section 1.00
 Section 1.00

³Ss

L763908-02 Original Sample (OS) • Duplicate (DUP)

(OS) 05/12/15 09:21 • (DUP) 05/	12/15 09:22					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	79.1	78.0	1	1.44		5

Laboratory Control Sample (LCS)

(LCS) 05/12/15 09:20					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATIONWIDE.

Mercury by Method 7470A

L763904-01,02

Method Blank (MB)

(MB) 05/15/15 06:34

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Mercury	U		0.0033	0.0100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/15/15 06:36 • (LCSD) 05/15/15 06:38

, , ,	Spike Amoun	t LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Mercury	0.0300	0.0295	0.0284	98	95	80-120			4	20

L763935-02 Original Sample (OS) - Matrix Spike (MS) - Matrix Spike Duplicate (MSD)

(OS) 05/15/15 06:40 • (MS) 05/15/15 06:42 • (MSD) 05/15/15 06:44

,	, ,	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte		mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury		0.0300	ND	0.0294	0.0299	98	100	1	75-125			2	20

L764413-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 05/15/15 06:47 • (MS) 05/15/15 06:49 • (MSD) 05/15/15 06:51

	Spike Amou	ınt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury	0.0300	ND	0.0239	0.0288	80	96	1	75-125			18	20

Mercury

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

L763904-03

Mercury by Method 7470A Method Blank (MB)

 (MB) 05/15/15 09:06
 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 mg/l
 mg/l
 mg/l

0.0033

0.0100

U

(LCS) 05/15/15 09:12 • (LCSD) 05/1	15/15 09:14									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Mercury	0.0300	0.0289	0.0284	96	95	80-120			2	20

(OS) 05/15/15 09	9:17 • (MS) 05/15/1	15 09:19 • (MS	iD) 05/15/15 09:21											
		Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte		mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Mercury		0.0300	ND	0.0289	0.0289	96	96	1	75-125			0	20	

ONE LAB. NATIONWIDE.

Metals (ICP) by Method 6010B

L763904-05,06,07

Method Blank (MB)

(MB) 05/13/15 10:24

Analyte Lead

MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		0.19	0.500

Ср

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/13/15 10:28 • (LCSD) 05/13/15 10:32

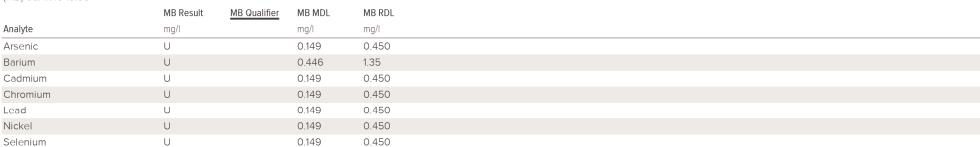
, ,	,	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte		mg/kg	mg/kg	mg/kg	%	%	%			%	%
Lead		100	104	108	104	108	80-120			4	20

⁶Qc

(OS) 05/13/15 10:37 • (MS) 05/13/15 10:50 • (MSD) 05/13/15 11:09

(00) 00/10/10 10:07 - (1110) 00/10/1		nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Lead	100	3.93	102	107	98	103	1	75-125			5	20

ONE LAB. NATIONWIDE.


L763904-03

Metals (ICP) by Method 6010B

Method Blank (MB)

Silver

Silver

Sr

[°]Qc

Gl

Sc

Ss

[']Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

0.149

9.43

0.450

105

U

9.00

(LCS) 05/17/15 13:10 • (LCSD) 05/17/15 13:16 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD **RPD Limits** Analyte mg/l mg/l mg/l % % % % Arsenic 9.00 9.21 9.10 102 101 80-120 1 20 9.00 9.47 9.40 105 104 80-120 20 Barium Cadmium 9.00 9.39 9.30 104 103 80-120 1 20 Chromium 9.00 9.48 9.50 105 106 80-120 0 20 Lead 9.00 9.42 9.34 105 104 80-120 20 Nickel 9.19 9.10 102 101 80-120 20 9.00 Selenium 2 20 9.00 9.70 9.52 108 106 80-120

80-120

105

L763928-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

9.47

(OS) 05/17/15 13:21 • (MS) 05/17/1	5 13:30 • (MSE	0) 05/17/15 13:34										
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	9.00	ND	9.49	9.55	105	106	1	75-125			1	20
Barium	9.00	2.58	11.7	11.6	102	101	1	75-125			1	20
Cadmium	9.00	ND	9.60	9.53	107	106	1	75-125			1	20
Chromium	9.00	0.00831	9.26	9.12	103	101	1	75-125			1	20
Lead	9.00	0.0154	9.41	9.32	104	103	1	75-125			1	20
Nickel	9.00	0.00105	9.25	9.19	103	102	1	75-125			1	20
Selenium	9.00	0.00165	10.2	10.1	113	112	1	75-125			0	20
Silver	9.00	ND	9.62	9.53	107	106	1	75-125			1	20

0

20

ONE LAB. NATIONWIDE.

L763904-01,02

Method Blank (MB)

Metals (ICP) by Method 6010B

(MB)	05/17/15	13:43	

Silver

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.149	0.450
Barium	U		0.446	1.35
Cadmium	U		0.149	0.450
Chromium	U		0.149	0.450
Load	U		0.149	0.450
Nickel	U		0.149	0.450
Selenium	U		0.149	0.450

U

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

0.149

0.450

LCS) 05/17/15 13:59 •	(LCSD) 05/17/15 14:04
-----------------------	-----------------------

(LCS) 05/1//15 13:59 • (LCSD) 05/1	1//15 14:04									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic	9.00	9.66	9.46	107	105	80-120			2	20
Barium	9.00	9.82	9.61	109	107	80-120			2	20
Cadmium	9.00	9.74	9.52	108	106	80-120			2	20
Chromium	9.00	9.67	9.47	107	105	80-120			2	20
Lead	9.00	9.65	9.44	107	105	80-120			2	20
Selenium	9.00	10.2	9.94	113	110	80-120			2	20
Silver	9.00	9.74	9.52	108	106	80-120			2	20

L764199-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 05/17/15 14:08 • (MS) 05/17/15 14:17 • (MS	D) 05/17/15 14:23										
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	9.00	0.0209	9.91	9.96	110	110	1	75-125			1	20
Barium	9.00	1.16	10.7	10.6	106	105	1	75-125			1	20
Cadmium	9.00	ND	9.84	9.76	109	108	1	75-125			1	20
Chromium	9.00	0.00609	9.50	9.41	106	105	1	75-125			1	20
Lead	9.00	ND	9.53	9.42	106	105	1	75-125			1	20
Nickel	9.00	0.0629	9.56	9.48	106	105	1	75-125			1	20
Selenium	9.00	0.0407	10.6	10.6	118	117	1	75-125			0	20
Silver	9.00	ND	9.97	9.86	111	110	1	75-125			1	20

Volatile Organic Compounds (GC/MS) by Method 8260B

L763904-04

ONE LAB. NATIONWIDE.

Method Blank (MB)

(MB) 05/17/15 06:17							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Benzene	U		0.000331	0.00100			
Carbon tetrachloride	U		0.000379	0.00100			
Chloroform	U		0.000324	0.00500			
,2-Dibromoethane	U		0.000381	0.00100			
,1 Dichloroethane	U		0.000259	0.00100			
,2-Dichloroethane	U		0.000361	0.00100			
,1-Dichloroethene	U		0.000398	0.00100			
Ethylbenzene	U		0.000384	0.00100			
Methylene Chloride	U		0.00100	0.00500			
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100			
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100			
Toluene	U		0.000780	0.00500			
I,1,1-Trichloroethane	U		0.000319	0.00100			
1,1,2-Trichloroethane	U		0.000383	0.00100			
Vinyl chloride	U		0.000259	0.00100			
Xylenes, Total	U		0.00106	0.00300			
o-Xylene	U		0.000341	0.00100			
m&p-Xylenes	U		0.000719	0.00200			
(S) Toluene-d8	98.6			88.5-111			
(S) Dibromofluoromethane	93.1			78.3-121			
(S) 4-Bromofluorobenzene	99.0			71.0-126			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/17/15 05:07 • (LCSD) 0	05/17/15 05:25									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0220	0.0217	87.8	86.7	74.8-121			1.27	20
Carbon tetrachloride	0.0250	0.0241	0.0241	96.5	96.4	70.2-123			0.0800	20
Chloroform	0.0250	0.0218	0.0217	87.3	86.9	76.0-121			0.470	20
1,2-Dibromoethane	0.0250	0.0261	0.0260	104	104	76.6-121			0.160	20
1,1-Dichloroethane	0.0250	0.0228	0.0229	91.2	91.4	70.7-126			0.230	20
1,2-Dichloroethane	0.0250	0.0232	0.0236	92.8	94.2	68.8-124			1.55	20
1,1-Dichloroethene	0.0250	0.0229	0.0221	91.5	88.4	67.8-129			3.52	20
Ethylbenzene	0.0250	0.0253	0.0247	101	99.0	78.8-122			2.22	20
Methylene Chloride	0.0250	0.0192	0.0182	76.9	72.6	70.3-120			5.69	20
1,1,1,2-Tetrachloroethane	0.0250	0.0263	0.0260	105	104	74.2-124			1.21	20
1,1,2,2-Tetrachloroethane	0.0250	0.0268	0.0269	107	108	70.7-122			0.110	20

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

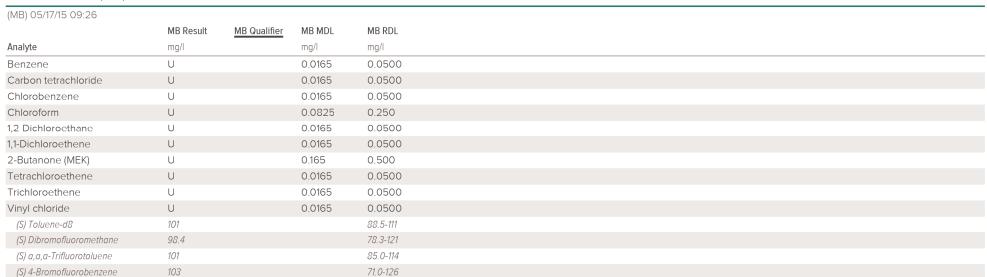
L763904-04

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

/1	CC1	05/17/15	05.07	(I CCD)	05/17/15	UE-3E

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Toluene	0.0250	0.0228	0.0233	91.1	93.1	79.7-116			2.23	20
1,1,1-Trichloroethane	0.0250	0.0226	0.0235	90.3	94.0	73.2-123			4.00	20
1,1,2-Trichloroethane	0.0250	0.0250	0.0251	100	100	77.7-118			0.350	20
Vinyl chloride	0.0250	0.0223	0.0211	89.3	84.5	65.9-128			5.52	20
Xylenes, Total	0.0750	0.0761	0.0764	101	102	78.7 121			0.360	20
o-Xylene	0.0250	0.0258	0.0258	103	103	77.6-122			0.0300	20
m&p-Xylenes	0.0500	0.0503	0.0506	101	101	78.8-121			0.530	20
(S) Toluene-d8				99.7	101	88.5-111				
(S) Dibromofluoromethane				97.8	94.6	78.3-121				
(S) 4-Bromofluorobenzene				99.2	96.7	71.0-126				

(OS) 05/17/15 08:32 • (MS) 05/	17/15 08:50 • (M	SD) 05/17/15 09:0	7									
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0250	ND	0.0195	0.0212	78.1	84.7	1	54.3-133			8.13	20
Carbon tetrachloride	0.0250	ND	0.0227	0.0233	90.7	93.4	1	55.7-134			2.86	20
Chloroform	0.0250	ND	0.0192	0.0207	76.7	83.0	1	63.0-129			7.91	20
1,2-Dibromoethane	0.0250	ND	0.0226	0.0262	90.4	105	1	67.1-125			15.0	20
1,1-Dichloroethane	0.0250	ND	0.0207	0.0221	82.8	88.5	1	58.5-132			6.65	20
1,2-Dichloroethane	0.0250	ND	0.0206	0.0225	82.4	90.1	1	60.0-126			8.91	20
1,1-Dichloroethene	0.0250	ND	0.0211	0.0222	84.4	88.9	1	51.1-140			5.22	20.2
Ethylbenzene	0.0250	ND	0.0233	0.0260	93.2	104	1	61.4-133			11.1	20
Methylene Chloride	0.0250	ND	0.0159	0.0171	63.7	68.2	1	58.1-122			6.93	20
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0236	0.0252	94.4	101	1	64.0-128			6.73	20
1,1,2,2-Tetrachloroethane	0.0250	ND	0.0252	0.0265	101	106	1	56.0-132			4.85	22.2
Toluene	0.0250	ND	0.0206	0.0233	82.2	93.2	1	61.4-130			12.5	20
1,1,1-Trichloroethane	0.0250	ND	0.0215	0.0224	86.0	89.5	1	58.7-134			3.93	20
1,1,2-Trichloroethane	0.0250	ND	0.0234	0.0259	93.7	104	1	66.3-125			10.0	20
Vinyl chloride	0.0250	ND	0.0197	0.0210	78.9	83.9	1	47.8-137			6.23	20
Xylenes, Total	0.0750	ND	0.0700	0.0780	93.3	104	1	63.3-131			10.9	20
o-Xylene	0.0250	ND	0.0233	0.0256	93.2	103	1	63.3-130			9.58	20
m&p-Xylenes	0.0500	ND	0.0467	0.0524	93.4	105	1	61.7-133			11.5	20
(S) Toluene-d8					98.7	98.7		88.5-111				
(S) Dibromofluoromethane					98.4	93.9		78.3-121				
(S) 4-Bromofluorobenzene					99.1	100		71.0-126				



ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L763904-01,02,03

Method Blank (MB)

(200) 00/1//10 00:00 (2000)	00/1//10 07:12									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0226	0.0252	90.4	101	74.8-121			11.0	20
Carbon tetrachloride	0.0250	0.0235	0.0262	94.0	105	70.2-123			10.9	20
Chlorobenzene	0.0250	0.0229	0.0255	91.5	102	78.1-119			10.7	20
Chloroform	0.0250	0.0231	0.0257	92.5	103	76.0-121			10.7	20
1,2-Dichloroethane	0.0250	0.0236	0.0264	94.5	105	68.8-124			10.9	20
1,1-Dichloroethene	0.0250	0.0237	0.0267	94.7	107	67.8-129			12.2	20
2-Butanone (MEK)	0.125	0.119	0.132	95.1	106	55.0-149			10.6	20
Tetrachloroethene	0.0250	0.0229	0.0257	91.7	103	72.6-126			11.4	20
Trichloroethene	0.0250	0.0229	0.0253	91.7	101	77.7-118			9.78	20
Vinyl chloride	0.0250	0.0254	0.0284	101	113	65.9-128			11.2	20
(S) Toluene-d8				101	101	88.5-111				
(S) Dibromofluoromethane				99.8	98.8	78.3-121				
(S) a,a,a-Trifluorotoluene				101	101	85.0-114				
(S) 4-Bromofluorobenzene				102	102	71.0-126				

Ss

[†]Cn

Sr

[°]Qc

GI

Sc

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L763904-01,02,03

L763904-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

					۰
00	OE/17/15	00:15 - (MC)	05/17/15 10:05 -	(MSD) 05/17/15 10:25	

	Spike Amoun	t Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	1.25	ND	1.06	1.17	84.7	93.4	1	54.3-133			9.86	20
Carbon tetrachloride	1.25	ND	1.05	1.17	84.0	93.7	1	55.7-134			11.0	20
Chlorobenzene	1.25	ND	1.06	1.18	85.0	94.8	1	67.0-125			10.9	20.3
Chloroform	1.25	ND	1.08	1.20	86.5	96.1	1	63.0-129			10.4	20
1,2 Dichloroethane	1.25	ND	1.10	1.22	87.9	97.9	1	60.0 126			10.8	20
1,1-Dichloroethene	1.25	ND	1.09	1.19	86.9	95.4	1	51.1-140			9.29	20.2
2-Butanone (MEK)	6.25	ND	5.08	5.67	81.2	90.7	1	22.4-138			11.0	27
Tetrachloroethene	1.25	ND	1.05	1.17	84.3	93.3	1	53.0-139			10.1	20
Trichloroethene	1.25	ND	1.05	1.17	83.8	93.5	1	44.1-149			10.9	20
Vinyl chloride	1.25	ND	1.18	1.28	94.3	102	1	47.8-137			8.31	20
(S) Toluene-d8					101	102		88.5-111				
(S) Dibromofluoromethane					99.7	98.9		78.3-121				
(S) a,a,a-Trifluorotoluene					101	102		85.0-114				
(S) 4-Bromofluorobenzene					102	101		71.0-126				

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 3546/DRO

L763904-05,06,07

Method Blank (MB)

(MB) 05/13/15 09:57				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) High Fraction	U		0.769	4.00
(S) o-Terphenyl	97.2			50.0-150

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/13/15 10:07 • (LCSD) 05	5/13/15 10:17									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) High Fraction	60.0	51.6	51.1	86.0	85.2	50.0-150			0.860	20
(S) o-Ternhenyl				87.8	89 9	50 0-150				

ONE LAB. NATIONWIDE.

[°]Ss

Sc

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

74.8

L763904-05,06,07

Method Blank (MB)

(S) 2,4,6-Tribromophenol

MB Result	MB Qualifier	MB MDL	MB RDL
mg/kg		mg/kg	mg/kg
U		0.00642	0.0330
U		0.00632	0.0330
U		0.00428	0.0330
U		0.00548	0.0330
U		0.00555	0.0330
U		0.00682	0.0330
U		0.00889	0.0330
U		0.00528	0.0330
U		0.0120	0.333
U		0.0109	0.333
U		0.0123	0.0330
U		0.00986	0.333
U		0.00783	0.333
U		0.0471	0.333
U		0.00695	0.333
70.2			21.9-129
73.9			34.9-129
70.1			21.5-128
72.7			26.3-121
68.9			21.1-116
	mg/kg U U U U U U U U U U U U U U U U U T0.2 73.9 70.1 72.7	mg/kg U U U U U U U U U U U U U U U U U U	mg/kg mg/kg U 0.00642 U 0.00632 U 0.00428 U 0.00548 U 0.00555 U 0.00682 U 0.00889 U 0.0120 U 0.0120 U 0.0123 U 0.00986 U 0.00783 U 0.0471 U 0.00695 70.2 73.9 70.1 72.7

${\it Laboratory\ Control\ Sample\ (LCS)} \bullet {\it Laboratory\ Control\ Sample\ Duplicate\ (LCSD)}$

(LCS) 05/12/15 10:28 • (LCSD) 05/12/15 10:51												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
Acenaphthene	0.667	0.493	0.506	74.0	75.8	48.9-107			2.44	20		
Anthracene	0.667	0.528	0.529	79.1	79.4	52.0-112			0.320	20		
Benzo(a)anthracene	0.667	0.530	0.515	79.4	77.2	52.3-106			2.86	20		
Benzo(a)pyrene	0.667	0.532	0.526	79.7	78.9	51.9-106			1.01	20		
Chrysene	0.667	0.507	0.499	76.0	74.7	54.4-110			1.69	20		
Fluorene	0.667	0.512	0.524	76.7	78.5	51.1-109			2.35	20		
Naphthalene	0.667	0.464	0.473	69.6	71.0	43.4-103			2.02	20		
Phenanthrene	0.667	0.502	0.511	75.2	76.6	51.6-107			1.76	20		
Bis(2-ethylhexyl)phthalate	0.667	0.513	0.508	76.9	76.1	48.1-116			1.09	20.5		
Di-n-butyl phthalate	0.667	0.506	0.512	75.9	76.8	49.7-113			1.22	20		
Pyrene	0.667	0.541	0.517	81.2	77.5	47.1-108			4.55	20		

21.6-142

(S) Phenol-d5

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L763904-05,06,07

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/12/15 10:28 • (LCSD) 05/12/15 10:51	
Spike Am	ount LCS

' '										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
2-Methylphenol	0.667	0.448	0.468	67.2	70.1	42.4-100			4.23	20
3&4-Methyl Phenol	0.667	0.512	0.534	76.7	80.0	50.5-115			4.17	20
2,4-Dimethylphenol	0.667	0.472	0.470	70.8	70.4	42.2-110			0.520	20
Phenol	0.667	0.467	0.478	70.0	71.7	41.5-106			2.41	20
(S) Nitrobenzene d5				72.6	72.7	21.9 129				
(S) 2-Fluorobiphenyl				77.3	78.0	34.9-129				
(S) p-Terphenyl-d14				74.3	69.3	21.5-128				

26.3-121

21.1-116

21.6-142

73.2

69.7

87.8

72.3

70.5

88.7

L764231-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 05/12/15 15:41 • (MS) 05/12	2/15 16:05 • (MSI	0) 05/12/15 16:28										
	Spike Amoui	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Acenaphthene	0.667	ND	0.529	0.511	79.2	76.7	1	32.2-134			3.30	27.3
Anthracene	0.667	ND	0.538	0.528	80.7	79.2	1	32.3-137			1.87	28.4
Benzo(a)anthracene	0.667	ND	0.531	0.515	79.6	77.3	1	33.3-124			3.00	29
Benzo(a)pyrene	0.667	ND	0.528	0.523	79.1	78.4	1	28.2-128			0.950	28.4
Chrysene	0.667	ND	0.499	0.486	74.8	72.9	1	36.3-129			2.58	28
Fluorene	0.667	ND	0.542	0.525	81.3	78.8	1	34.0-133			3.15	27.1
Naphthalene	0.667	ND	0.489	0.480	73.3	71.9	1	36.4-121			1.94	27.2
Phenanthrene	0.667	ND	0.517	0.510	77.5	76.4	1	30.8-137			1.49	26.5
Bis(2-ethylhexyl)phthalate	0.667	ND	0.525	0.510	78.7	76.5	1	21.8-141			2.85	35.2
Di-n-butyl phthalate	0.667	0.00527	0.532	0.526	78.9	78.0	1	32.2-133			1.12	25.9
Pyrene	0.667	ND	0.529	0.496	79.4	74.3	1	24.1-130			6.53	29.9
2-Methylphenol	0.667	ND	0.474	0.466	71.1	69.9	1	30.3-118			1.70	25.1
3&4-Methyl Phenol	0.667	ND	0.546	0.538	81.9	80.6	1	33.3-141			1.52	25.7
2,4-Dimethylphenol	0.667	ND	0.504	0.498	75.5	74.7	1	12.3-149			1.09	32.3
Phenol	0.667	ND	0.490	0.490	73.5	73.5	1	25.1-130			0.0200	29.6
(S) Nitrobenzene-d5					76.5	76.3		21.9-129				
(S) 2-Fluorobiphenyl					82.2	79.8		34.9-129				
(S) p-Terphenyl-d14					69.7	67.5		21.5-128				
(S) Phenol-d5					73.9	73.8		26.3-121				
(S) 2-Fluorophenol					75.3	74.1		21.1-116				
(S) 2,4,6-Tribromophenol					91.6	91.8		21.6-142				

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L763904-01,02,03

Method Blank (MB)

MB) 05/15/15 11:20						
	MB Result	MB Qualifier	MB MDL	MB RDL		
analyte	mg/l		mg/l	mg/l		
Dichlorobenzene	U		0.0330	0.100		
-Dinitrotoluene	U		0.0330	0.100		
kachlorobenzene	U		0.0330	0.100		
kachloro-1,3-butadiene	U		0.0330	0.100		
achloroethane	U		0.0330	0.100		
obenzene	U		0.0330	0.100		
ine	U		0.0330	0.100		
thylphenol	U		0.0330	0.100		
Methyl Phenol	U		0.0330	0.100		
chlorophenol	U		0.0330	0.100		
5-Trichlorophenol	U		0.0330	0.100		
-Trichlorophenol	U		0.0330	0.100		
Nitrobenzene-d5	60.7			21.8-123		
2-Fluorobiphenyl	59.3			29.5-131		
p-Terphenyl-d14	59.9			29.3-137		
Phenol-d5	30.3			5.00-70.1		
) 2-Fluorophenol	45.1			10.0-77.9		
S) 2,4,6-Tribromophenol	73.3			11.2-130		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/15/15 10:10 • (LCSD) 05/15/15 10:33											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,4-Dichlorobenzene	0.0500	0.0222	0.0253	44.4	50.6	21.0-89.4			13.1	32.6	
2,4-Dinitrotoluene	0.0500	0.0333	0.0371	66.5	74.2	31.2-105			11.0	22	
Hexachlorobenzene	0.0500	0.0365	0.0402	73.0	80.5	38.5-116			9.77	20.1	
Hexachloro-1,3-butadiene	0.0500	0.0254	0.0295	50.8	59.0	16.1-104			14.9	31.2	
Hexachloroethane	0.0500	0.0207	0.0246	41.3	49.2	16.5-89.8			17.4	30.7	
Nitrobenzene	0.0500	0.0299	0.0313	59.8	62.5	31.4-106			4.55	25.7	
Pyridine	0.0500	0.0112	0.0121	22.5	24.1	13.5-58.9			7.10	32.5	
2-Methylphenol	0.0500	0.0259	0.0279	51.8	55.9	26.4-86.9			7.61	26.5	
3&4-Methyl Phenol	0.0500	0.0293	0.0312	58.6	62.4	27.9-92.0			6.34	27	
Pentachlorophenol	0.0500	0.0340	0.0391	67.9	78.2	10.0-97.4			14.1	35.1	
2,4,5-Trichlorophenol	0.0500	0.0356	0.0390	71.3	78.0	34.9-112			9.09	23.9	
2,4,6-Trichlorophenol	0.0500	0.0361	0.0404	72.1	80.7	29.8-107			11.2	24.1	
(S) Nitrobenzene-d5				56.6	59.6	21.8-123					
(S) 2-Fluorobiphenyl				59.6	62.1	29.5-131					

(S) 2-Fluorophenol

(S) 2,4,6-Tribromophenol

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Semi Volatile Organic Compounds (GC/MS) by Method 8270C

L763904-01.02.03

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 05/15/15 10:10 • (LCSD) 05/15/15 10:33											
		Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
	Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
	(S) p-Terphenyl-d14				53.7	59.2	29.3-137				
	(S) Phenol-d5				31.3	32.6	5.00-70.1				
	(S) 2-Fluorophenol				43.9	46.4	10.0-77.9				
	(S) 2.4.6-Tribromonhenol				84.0	95.6	11 2-130				

L763904-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 05/15/15 14:48 • (MS) 05/15/15 15:11 • (MSD) 05/15/15 15:35												
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
1,4-Dichlorobenzene	0.500	ND	0.258	0.255	51.6	50.9	1	14.0-104			1.30	36.4
2,4-Dinitrotoluene	0.500	ND	0.342	0.401	68.5	80.1	1	16.2-135			15.7	20.6
Hexachlorobenzene	0.500	ND	0.379	0.435	75.8	87.0	1	31.9-135			13.8	20
Hexachloro-1,3-butadiene	0.500	ND	0.291	0.285	58.1	57.1	1	15.7-109			1.85	37.6
Hexachloroethane	0.500	ND	0.244	0.238	48.9	47.5	1	10.4-105			2.84	40
Nitrobenzene	0.500	ND	0.309	0.329	61.8	65.8	1	23.1-121			6.35	29
Pyridine	0.500	ND	0.124	0.127	24.8	25.4	1	10.0-77.8			2.61	38.8
2-Methylphenol	0.500	ND	0.262	0.289	52.4	57.8	1	10.0-133			9.89	40
3&4-Methyl Phenol	0.500	ND	0.293	0.321	58.6	64.1	1	17.4-100			9.10	27.7
Pentachlorophenol	0.500	ND	0.415	0.495	83.0	98.9	1	10.0-108			17.6	40
2,4,5-Trichlorophenol	0.500	ND	0.365	0.418	73.0	83.6	1	30.6-120			13.5	33.8
2,4,6-Trichlorophenol	0.500	ND	0.378	0.433	75.6	86.7	1	19.1-114			13.7	29.9
(S) Nitrobenzene-d5					58.4	64.6		21.8-123				
(S) 2-Fluorobiphenyl					61.8	68.0		29.5-131				
(S) p-Terphenyl-d14					55.8	63.0		29.3-137				
(S) Phenol-d5					29.4	31.9		5.00-70.1				

42.8

90.1

47.2

108

10.0-77.9

11.2-130

Abbreviations and Definitions

J

X

Estimated value.

Surrogate recovery outside the control limit.

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Qualifier	Description

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.**

State Accreditations

Alabama	40660	Nevada
Alaska	UST-080	New Ham
Arizona	AZ0612	New Jers
Arkansas	88-0469	New Mex
California	01157CA	New York
Colorado	TN00003	North Ca
Conneticut	PH-0197	North Ca
Florida	E87487	North Ca
Georgia	NELAP	North Da
Georgia ¹	923	Ohio-VA
Idaho	TN00003	Oklahom
Illinois	200008	Oregon
Indiana	C-TN-01	Pennsylv
lowa	364	Rhode Is
Kansas	E-10277	South Ca
Kentucky ¹	90010	South Da
Kentucky ²	16	Tennesse
Louisiana	Al30792	Texas
Maine	TN0002	Texas ⁵
Maryland	324	Utah
Massachusetts	M-TN003	Vermont
Michigan	9958	Virginia
Minnesota	047-999-395	Washingt
Mississippi	TN00003	West Virg
Missouri	340	Wisconsi
Montana	CERT0086	Wyoming
Nebraska	NE-OS-15-05	

Nevada	TN-03-2002-34		
New Hampshire	2975		
New Jersey-NELAP	TN002		
New Mexico	TN00003		
New York	11742		
North Carolina	Env375		
North Carolina ¹	DW21704		
North Carolina ²	41		
North Dakota	R-140		
Ohio-VAP	CL0069		
Oklahoma	9915		
Oregon	TN200002		
Pennsylvania	68-02979		
Rhode Island	221		
South Carolina	84004		
South Dakota	n/a		
Tennessee 14	2006		
Texas	T 104704245-07-TX		
Texas ⁵	LAB0152		
Utah	6157585858		
Vermont	VT2006		
Virginia	109		
Washington	C1915		
West Virginia	233		
Wisconsin	9980939910		
Wyoming	A2LA		

^{1.} Drinking Water ^{2.} Underground Storage Tanks ^{3.} Aquatic Toxicity ^{4.} Chemical/Microbiological ^{5.} Mold ^{n/e} Accreditation not applicable

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789
Canada	1461.01	DOD	1461.01
EPA-Crypto	TN00003	USDA	S-67674

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

			Billing Info	rmation:			1, 1		А	Analysis / Container / Preservative Chain of Custody Page						Page 1 of [
ARCADIS US - TX 2929 Briarpark Dr., Suite 300 Houston, TX 77042			630 Plaza	tn: Accounts Payable 0 Plaza Drive, Suite 600 ghlands Ranch, CO 80129											-	ESC CITENNICIES S OF CHOICE		
Report to: Project Manager			Email To: @	To: @arcadis-us.com											12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-51 Phone: 800-767-51	7122 58 (25.7) 2-5		
Project Description: Navajo Refining Company - Artesia, NM				Collected: Arteria NM				res	E						Fax: 615-758-5859			
Client Project # TX009835.0000			4	P.O.#				- P/H 16ozClr-NoPres	PH, CYANIBE GOLCH MOPRES	8270, LEAD 402CH NOPEGS					Table F065			
Collected by (print):	ollected by (print): Site/Facility ID #							H 1602			100	70/				Acctnum: ARCADHTX Template:T102293		
Collected by (senature): Rush? (Lab MUST Be Same Day			200% 100% 50%	Email?	No XYesNoYesf		STEX ZozCh-TW	TCLP	PH CYAIN	270, LEAD	090				Prelogin: P508494 TSR: 638 - Pam Langford PB: Shipped Via: FedEX Ground			
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Catrs	BIE	FULL	RC,	873	8				Rem./Contamina			
Tank 815 S. Bro 25	Grah	TCLP	-	5/7/15	9:10	3	*	Х	*	X		0.14				-0/		
Tank 815 S. Bro 53	6 rab	TCLP		5/7/15	9:25	3	*	X	1	X					*,	-09		
Tank 815 S. Rr. 49	9 Grab	TCLP		5/7/15	9:40	3	×	X	*	*						13		
Trip Blank	-	W	-			1					X				-	- 61		
		, ,				1							37		150			
1961 1961		1 1																
50 (20.0) 100					-										~			
* Matrix: SS - Soil GW - Groundwate	r WasteW	ater DW - D	rinking Wate	or OT - Other		1					10000				- 7			
Remarks: Full TCLf	includes	(TCL	P meta H DR	Is, TCLP V				/ 091	นนว	pH .		Tem Othe	r	Hold#				
Relinquished by : (Signature)		Date:	1	Time: F	eceived by: (Sign	ature)	aille.	0 11	-1-11	Sampl	es retur	ned via:	UPS	Condition	on: (la	b use only)		
Latit		5/7		10:45						FedEx Courier C				-	15			
Relinquished by : (Signature)		Date:	1190	Time:	leceived by: (Sign	ature)	K			Temp		C Bo	ttles Received		eal Intact: Y	_N _ NA		
Relinquished by : (Signature)		Date:		Time: F	teceived for lab b	y: (Sign	ature)			Date:		Tin	ne:	pH Che				
A-2-7				Ī	BOBRI THOMAS					5-8-15 09:00								

SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

RYAN FLYNN Cabinet Secretary BUTCH TONGATE Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

August 4, 2015

Mr. Scott M. Denton Environmental Manager Navajo Refining Company, L.L.C. P.O. Box 159 Artesia, New Mexico 88211-0159

RE: DENIAL

"NO LONGER CONTAINED-IN" DETERMINATION FOR CHARACTERIZATION OF SOIL EXCAVATED FROM TANK 815 RELEASE NAVAJO REFINING COMPANY, L.L.C., ARTESIA REFINERY EPA ID# NMD048918817 HWB-NRC-MISC

Dear Mr. Denton:

The New Mexico Environment Department (NMED) has received Navajo Refining Company, L.L.C., Artesia Refinery's (the Permittee) *Characterization of Soil Excavated from Tank 815 Release*, dated July 23, 2015. On April 16, 2015, the Permittee notified NMED and the New Mexico Energy, Minerals & Natural Resources Department Oil Conservation Division (OCD) that the sump located adjacent to Tank 815 had overflowed and that a water/diesel mixture from the sump had been released inside the containment area of the North Colony Landfarm (NCL), a hazardous waste management unit (HWMU).

Three roll-off containers were filled with excavated soil from the southeast quadrant of the containment area and one representative soil sample was collected from each roll-off container in May 2015 and submitted to a laboratory to characterize the soil for disposal. Historically, K048, K049, K051, and K052 listed RCRA hazardous wastes were applied to the NCL. Based on the analytical results of the soil samples, the Permittee is requesting a "no longer contained-in" determination from NMED to allow the excavated soil to be managed as nonhazardous waste.

S. M. Denton August 4, 2015 Page 2 of 2

The excavated soil meets New Mexico's residential soil screening levels (SSLs) for all analytes with the exception of benzo(a)anthracene and benzo(a)pyrene. However, benzo(a)anthracene and benzo(a)pyrene are below the industrial SSLs. Although the excavated soil is not a characteristically hazardous waste per 40 CFR Part 261 Subpart C, it is a K-Listed waste because chrysene and pyrene exceed the hazardous constituent standards as defined in Part 268.2(i) of the Land Disposal Restriction (LDR) Treatment Standards listed in 40 CFR Part 268.40 and the Universal Treatment Standards listed in 40 CFR Part 268.48 regulatory limits.

NMED has reviewed the Permittee's request and has determined that the excavated soil is a hazardous waste and does not meet applicable LDR standards. NMED hereby denies the Permittee's request for a "no longer contained-in" determination and must manage the excavated soil as hazardous waste and dispose of the excavated soil at an appropriate facility.

If you have any questions regarding this letter, please contact Leona Tsinnajinnie of my staff at (505) 476-6057.

Sincerely,

John E. Kieling

Chief

Hazardous Waste Bureau

cc:

- D. Cobrain, NMED HWB
- N. Dhawan, NMED HWB
- K. Van Horn, NMED HWB
- L. Tsinnajinnie, NMED HWB
- C. Chavez, NMEMNRD OCD
- M. Holder, Navajo Refining Company, L.L.C.
- R. Combs, Navajo Refining Company, L.L.C., Artesia Refinery
- P. Kruger, ARCADIS
- L. King, EPA 6PD-N

File: Reading and NRC 2015, HWB-NRC-MISC

Attachment D Waste Manifests

Please print or type. (Form designed for use on elite (12-pitch) typewriter.)

Move #295

#295 Form Approved. OMB No. 2050-0039

\uparrow		ORM HAZARDOUS	1. Generator ID Nur NWD	nber 048918817		2. Page 1 of		gency Response 00-424-93		4. Manifest T	racking Ni	2034	JJ	K						
Н	5. Gen	nerator's Name and Mailin	ng Address	jo Refining Co	Generator's Site Address (if different than malling address) Navajo Refining Co., L.IC.															
Ш		P.O. Box 159 Artesia, NM 88211-0159 501 E. Main Artesia, NM 882																		
Ш	Gener	Senerator's Phone: 575-748-3311 Artesia, NM 882										210 -								
	6. Tran	6. Transporter 1 Company Name Fluid Transports, INC										U.S. EPA ID Number TXD988057931								
Ш	7. Tran	7 Transporter 2 Company Name										U.S. EPA ID Number								
Ш	Fluid Transport										TX D 988057931									
	8. Designated Facility Name and Site Address U.S. Ecology Texas, Inc.										umber	· · · · · · ·								
Ш	3277 County Road 69										•	TXD0694	52340)						
П	Facility	y's Phone: 800-24	12-3209-116	Robstown,	TX 78380	USA				í				1						
П	9a.	9b. U.S. DOT Description		Shipping Name, Hazard	Class, ID Number,			10. Contain	ers	11. Total	12. Unit	13 Wa	ste Codes							
Ш	НМ	and Packing Group (if a						No.	Туре	Quantity	Wt./Vol.			KOS						
엉	Х			ous Waste, So		, 9, PG II	it		CM		Р	K048	K049							
RA		(KU48, KU	149, KUD1 &	K052 Impacto	ea Son)					27580		K052	OUT	4891						
GENERATOR		2.											~							
ำไ																				
Ш		3.																		
Ш							l													
Ш																				
Ш		4.					1		ĺ											
П																				
	14. Sp	pecial Handling Instruction		rmation 1 Cherritec	Custe CCN1	15402														
П	Material passed TCLP but may contain legacy K listed wastes																			
Ш		Unit 8 Tank 81	S NCL Impac	aeg son din	WE 7.8	140	isin #	53												
Ш	15. 6	GENERATOR'S/OFFERO marked and labeled/placa	R'S CERTIFICATIO	N: I hereby declare that	the contents of thi	is consignment	are fully a	nd accurately des	cribed above	by the proper shi	pping name	e, and are classif	ied, packa the Prima	ged, rv						
	. в	Exporter, I certify that the cortify that the waste min	contents of this consi	ignment conform to the	terms of the attach	ed EPA Acknow	vledgment	of Consent.						·						
		ator's/Offeror's Printed/Ty	roed Name	/			nature					Month	Day	Year						
\downarrow	7	SINE	CRAS	(22) AL			∌ €	NE	SA	deas	<u> </u>		14	1/3						
INT	16 4h t	ernational Shipments	Import to			Export from	U.S.	Port of enti				_								
_		porter signature (for expo ansporter Acknowledgmen		ials				Date leavin	1g U.S.:											
TRANSPORTER		porter 1 Printed/Typed Na				Sig	gnature	1.1	7/1		$\overline{}$	Month	Day	Year						
SPC	77	Michael	1 Som	5			1/0	Just	ay)	1 m			114							
RAN	Iransp	porter 2 Printed/Typed Na 5 te Ve		Kex		5K	gnature	1		Bin		Month	Day	Year						
╁	18. Dís	screpancy		XEX				AV	* W	PLOI	CPZ		1././	1/-51						
	18a. D	Discrepancy Indication Spa	ace Quan	tity	Туре			Residue		Partial Reje	ection		Full Reje	ction						
				•																
_	18b. A	Alternate Facility (or General	rator)				M	anifest Reference	Number:	U.S. EPA ID N	umber									
딩		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,																	
FA		y's Phone:		· · · · · · · · · · · · · · · · · · ·								LMand	Davi	V						
ATE	18c. S	Signature of Alternate Faci	ility (or Generator)									Monti	Day	Year						
DESIGNATED FACILITY	19. Ha	azardous Waste Report M	lanagement Method	Codes (i.e., codes for ha	azardous waste tre	atment, dispos	al, and rec	ycling systems)												
DES	1.			2.		3.				4.										
1		18039					.W	-f	40-											
		esignated Facility Owner of d/Typed Name	or Operator: Certifica	tion of receipt of hazard	ous materials cove		ifest exce gnalure	pt as noted in Item	18a			Month	Day	Year						
\downarrow			Kohott	Cution	in	1	/	111	-			18	1/8	115						

Prick#75

elea	se prir	int or type. (Form designed for use on elite (12-pitch) typewriter.)	,					Form	Approved.	OMB No. 2	2050-0039	
↑	UNIF	FORM HAZARDOUS 1. Generator ID Number NMD048918817	2. Page 1 of	800-	cy Response 424-930	0		830	203	5 J .	JK	
	5. Generator's Name and Mailing Address Navajo Refining Co., L.L.C. (Artesia) P.O. Box 159 Artesia, NM 88211-0159 Generator's Phone: 575-748-3311 Generator's Name and Mailing Address Navajo Refining Co., L.L.C. Solid Ending Co., L.L.C. Generator's Name and Mailing Address Navajo Refining Co., L.L.C. Solid Ending Co., L.L.C. Solid Ending Co., L.L.C. Solid Ending Address (if different/han mailing address) Navajo Refining Co., L.L.C. Solid Ending Co.,											
ľ		ansporter 1 Company Name	U.S. EPÀ ID Number TXD988057931									
	7 7-	Fluid Transports, INC	U.S. EPA ID Number									
	7. ⊤ra	ansporter 2 Company Name					1					
	8. Des	esignated Facility Name and Site Address U.S. Ecology Texas, In 3277 County Road 69 Robstown, TX 78380	U.S. EPAID N	S. EPA ID Number TXD069452340								
Facility's Phone;												
	9a. HM	 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number and Packing Group (if any)) 	11. Total Quantity	12. Unit Wt./Vol.	l	Waste Code						
GENERATOR -	х	RQ, NA3077, Hazardous Waste, Solid, N.O.S., (K048, K049, K051 & K052 Impacted Soil)	, 9, PG III		/	CM	9,860	P	K048 K052		K051 489H	
H GEN		2.										
		3.	*11									
		4.			-							
						` `		<u></u>			<u> </u>	
	14. Special Handling Instructions and Additional Information 1. 090091916-0 ERG# 171 Chemitrec Cust# CCN15402 Material passed TCLP but may contain legacy K listed wastes Unit 8 Tank 815 NCL Impacted Soli Bin Wt. 7 920 Bin # 25 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, package.											
		GENERATOR'S/OFFEROR'S CERTIFICATION: Thereby declare that the contents of the marked and labeled/placarded, and are in all respects in proper condition for transport as Exporter, I certify that the contents of this consignment conform to the terms of the attact I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a I	according to appl ched EPA Acknow	licable interna wledgment of	tional and nati Consent.	onal governm	ental regulations	. If export st	nipment and i	am the Prin	nary	
	Gene	erator's/Offeror's Printed/Typed Name	Sig	ignature Z	RIN	2	pres	N	Moi	oth Day	<i>-</i>	
INT	16. Ír	International Shipments Import to U.S.	Export from	U.S.	Port of en Date leavi	,						
_		nsporter signature (for exports only): Transporter Acknowledgment of Receipt of Materials			Date loavi	iig 0.0						
Ä	Trans	nsporter 1 Printed/Typed Name	Si	ignature					Moi			
SPO	(Care Johnson		ignature C	- Canadana	-			Mo Mo		Year	
TRANSPORTER	Irans	nsporter 2-Printed/Typed Name	I	ISH MADE	•							
İΤ	+-	Discrepancy										
	18a.	Discrepancy Indication Space Quantity Type			Residue		Partial Re	ejection		Full Re	jection	
ľ				Mani	fest Reference	e Number:						
<u> </u>	18b.	a. Alternate Facility (or Generator)		Mani	fest Reference	Number:	U.S. EPA ID	Number				
ACII ITY -	18b.		, , , , , , , , , , , , , , , , , , ,	Mani	fest Reference	e Number:	U.S. EPA ID	Number				
IATED FACILITY -	18b. Facil	o. Alternate Facility (or Generator) Sility's Phone: J. Signature of Alternate Facility (or Generator)		Mani	fest Reference	e Number:	U.S. EPA ID	Number	M	onth Da	ay Year	
SIGNATED FACILITY -	18b. Facil 18c.	sility's Phone:		sal, and recyc		e Number:		Number	M	onth Da	ay Year	
- DESIGNATED FACILITY -	Facil 18c.	Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste to the codes of the codes for hazardous waste to tha	3.	sal, and recyc	ing systems)		U.S. EPA ID	Number	M	onth Da	y Year	
DESIGNATED FACILITY -	Facil 18c.	cility's Phone: Signature of Alternate Facility (or Generator) Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste	3.	sal, and recyc	ing systems)			Number		onth Da	y Year	

Please print or type. (Form designed for use on elite (12-pitch) typewriter.) Form Approved. OMB No. 2050-0039 1. Generator ID Number 2. Page 1 of 3. Emergency Response Phone 4. Manifest Tracking Number UNIFORM HAZARDOUS NMD048918817 008302033 **JJK** 800-424-9300 **WASTE MANIFEST** 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address)
Navajo Refining Co., L.L.C. Navajo Refining Co., L.L.C. (Artesia) P.O. Box 159 501 E. Main Artesia, NM 88210 -Artesia, NM 88211-0159 575-748-3311 Generator's Phone: 6. Transporter 1 Company Name U.S. EPA ID Number Fluid Transports, INC TXD988057931 7. Transporter 2 Company Name U.S. EPA ID Number 93505791 8. Designated Facility Name and Site Address U.S. Ecology Texas, Inc. U.S. EPA ID Number 3277 County Road 69 TXD069452340 Robstown, TX 78380 USA 800-242-3209-116 Facility's Phone: 9b. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number, Containers 11. Total **12**. Unit 13. Waste Codes and Packing Group (if any)) HM Quantity Wt./Vol. Туре K048 K049 K05 RQ, NA3077, Hazardous Waste, Solid, N.O.S., 9, PG III GENERATOR Х CM (KO48, KO49, KO51 & KO52 Impacted Soil) K052 OUT 489H 8,900 14. Special Handling Instructions and Additional Information 1. 090091916-0 ERG# 171 Chemtrec Cust# CCN15402 Material passed TCLP but may contain legacy K listed wastes Unit 8 Tank 815 NCL Impacted Soil Bln Wt. Bin# 15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. If export shipment and I am the Primary Exporter, I certify that the contents of this consignment conform to the terms of the attached EPA Acknowledgment of Consent. I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a large quantity generator) or (b) (if I am a small quantity generator) is true Generator's/Offeror's Printed/Typed Name Signature 16. International Shipments Export from U.S. Port of entry/exit; Date leaving U.S.: Transporter signature (for exports only): 17. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Day Year -lorentino Transporter 2 Printed/Typed Name 18a. Discrepancy Indication Space Quantity Partial Rejection _ Type __ Residue Full Rejection Manifest Reference Number: 18b. Alternate Facility (or Generator) U.S. EPA ID Number Facility's Phone: DESIGNATED 18c. Signature of Alternate Facility (or Generator) Month Year Day 19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treatment, disposal, and recycling systems) 20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials covered by the manifest except as noted in Item 18a Signature EPA Form 8700-22 (Rev. 3-05) Previous editions are obsolete.

DESIGNATED FACILITY TO DESTINATION STATE (IF REQUIRED)

Attachment E Final C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Release Notification and Corrective Action													
						OPERA'	ΓOR	☐ Initia	al Report	\boxtimes	Final Report		
Name of Co	mpany: N	avajo Refini	ng Compar	y, L.L.C.		Contact: Robert Combs							
		St., Artesia,				Telephone No.: 575-746-5382							
Facility Nan	ne: Navajo	Refining C	ompany, L.	L.C.		Facility Type: Petroleum Refinery							
Surface Own	ner: Navaj	o Refining (Company,	Mineral C	Owner N	J/A			API No	. N/A			
			TION	ACEDE	EACE								
I India I attan	Castian	Tanakin		ON OF RELEASE									
Unit Letter	Init Letter Section Township Range Feet from the North					South Line	Feet from the	East/V	ast/West Line County				
Latitude_Longitude32.852260°/-104.395653°													
NATURE OF RELEASE													
		d diesel/water			1-1-1-1		Release: > 25 bl			Recovered:			
		r draw/sump a	t T-815			04/16/15,	Iour of Occurrence Unknown time	e:	Date and 6:30 am	Hour of Dis	scovery	: 04/16/15	
Was Immedia	ate Notice (Yes 🗌	No 🗌 Not R	equired	If YES, To Whom? NM Oil Conservation Division Santa Fe– Left message to Carl Chavez NMED Hazardous Waste Bureau – Left message to Leona Tsinnajinnie							
By Whom? I						Date and Hour 04/16/15 ~13:00 - 15:00							
Was a Water	course Read					If YES, Volume Impacting the Watercourse.							
			Yes 🛛 1	lo		N/A							
If a Watercourse was Impacted, Describe Fully.* N/A													
							from T-815 over						
the crude pro		imediately clo	sed upon di	scovery and a v	acuum t	ruck was sen	t to recover any fi	ree Iiqui	ds. The rec	covered liqu	ids wei	e returned to	
Describe Are	a Affected	and Cleanup	Action Taker	1.*									
Pooled liquid	s were rem	oved by vacui	um truck and	absorbent pad	ls were u	sed to remov	e remaining hydro	ocarbons	s. Stained	soil was ren	noved t	o a depth of	
							The excavated are						
source and graded to match the surrounding area. Representative samples were collected from each roll-off container for waste characterization. Removal of the impacted soil from the spill will be collected in roll-off bins and characterized for disposal. The three roll-off bins were transported to U.S. Ecology										J.S. Ecology			
Inc. in Robstown, Texas and disposed as hazardous waste.										z.o. zeologj,			
I haraby carti	fy that the	information a	ivan ahava i	true and some	alata ta t	na hast of my	knowledge and u	un d'arratar	ad that num	went to MA	IOCD -	ulas and	
							nd perform correct						
public health	or the envi	ronment. The	acceptance	of a C-141 rep	ort by the	e NMOCD m	arked as "Final R	eport" d	loes not rel	ieve the ope	erator o	fliability	
							ion that pose a thr						
or the environ	nment. In a	iddition, NMC ws and/or regi	OCD accepta	nce of a C-141	report d	oes not reliev	e the operator of	respons	ibility for c	ompliance	with an	y other	
rederal, state,	or local la	ws and/or regi	nations.				OIL CON	CEDV	ATION	DIVICI	ONI		
G:t	agh	k				OIL CONSERVATION DIVISION							
Signature:						A	Environment 1 C	maa!=1!					
Printed Name	e: Rob	ert Combs				Approved by Environmental Specialist:							
Title: Enviro	nmental Sp	ecialist				Approval Da	te:		Expiration	Date:			
E-mail Addre	ess: robert.	combs@holly	frontier.com			Conditions o	f Approval:			Attached	1 🗆		
Data: 1	/29/16	D	hone: 575	746 5292									

^{*} Attach Additional Sheets If Necessary

C.3 November 17, 2015 – Groundwater Expression into Eagle Draw

January 8, 2016

Submitted by electronic mail

Mr. Carl Chavez, Environmental Engineer New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive Santa Fe, NM 87505

RE:

C-141 Report on Seepage into Eagle Draw

Discharge Permit GW-028

Dear Mr. Chavez:

On November 17, 2015, Navajo Refining Company, L.L.C. (Navajo) notified the Oil Conservation Division (OCD) and the New Mexico Environment Department (NMED) Hazardous Waste Bureau (HWB) by telephone that Refinery personnel had observed evidence of the seepage of dark liquids through cracks in a concreted portion of the bank of Eagle Draw within the Refinery. Navajo also notified the National Response Center of this seepage the same day.

This report summarizes Navajo's actions taken to date regarding the seepage, including the measures summarized in your electronic mail of November 17, 2015, and proposed actions based upon our evaluation regarding the likely source of the seepage. Form C-141 is re-provided as Attachment A.

Refinery Setting

The location of the observed seepage along the bank of Eagle Draw is in the northwestern portion of the Refinery. Recovery well (RW) 17 is located on the west side of Eagle Draw, and due north of the observed seepage, and monitor well (MW)-55 is further to the northeast. The area of the seepage is within the Refinery's fenced boundaries. Attachment B provides Figure 1, which is the location of the seepage in relation to an overall Refinery map.

Actions Taken

At the time the incident was internally reported, Environmental Department personnel went out to inspect the seepage to develop an immediate course of action. There was no odor to the seepage itself, but the liquids expressing through cracks in the concrete sidewall appeared to be dark and featured entrained particulate matter. Absorbents were applied in order to remove as much stained material as possible. Although there was no sheen on the surface water in the Draw, field screening of ambient air over the surface water was conducted, but did not indicate

Mr. Chavez January 8, 2016 Page 2

the presence of hydrogen sulfide or benzene. Notwithstanding the lack of hydrocarbon odor in the seepage or sheen on the water in the Draw, Navajo protectively placed oil absorbent booms downstream of the observed seepage locations, and booms will be replaced as needed.

Three water samples were collected on November 19, 2015 at the locations shown in Figure 2 (Attachment C). Two of the samples were collected from surface water: sample location ED01-111915 was very near the point where the seepage was observed within Eagle Draw, downstream of the confluence with Clark Draw. The second surface sample, ED02-111915, was collected further downstream within Eagle Draw east of Navajo Road, within the Refinery's fenceline. At OCD's request for comparison purposes, a sample was also collected from monitoring well MW-55 (see Figure 2, Attachment C), which is screened from 13.7 to 23.7 feet below ground surface. The three samples, plus a trip blank for volatile organic compounds (VOC) analysis, were shipped overnight to a certified laboratory for analysis of the constituents requested by OCD (total petroleum hydrocarbons, general chemistry, VOCs, BTEX, and the eight RCRA metals).

The full set of analytes, associated screening levels, and analytical results are summarized in Table 1 (Attachment D), and a copy of the laboratory report (and the contractor's field notes) is provided as Attachment E. (The lab report erroneously identifies surface water sample ED02-111915 as "ED-1111915," as indicated by the markup on the report.) The lab report was also provided to you via electronic mail on December 21, 2015.

The analytical results from the groundwater sample and the two surface water samples were compared to the following screening levels:

- Upper tolerance limit (UTL) calculated for background concentrations of general chemistry parameters and mercury (from Navajo's background groundwater investigation report submitted to OCD and NMED in September 2015);
- Lower of the New Mexico Water Quality Control Commission (WQCC) Water Quality Standard (WQS) provided in 20.6.2.3103 New Mexico Administrative Code (NMAC) or the United States Environmental Protection Agency (USEPA) Maximum Contaminant Level (MCL) for metals (other than mercury) and VOCs.
- TPH screening level provided in the 2012 version of the HWB risk assessment guidance document for TPH DRO and TPH ORO.
- Human Health Surface Water Quality Standards (SWQS)
- Aquatic Life SWQS

As Table 1 (Attachment D) indicates, the water quality of the two surface water samples is affected primarily by total petroleum hydrocarbons (TPH): Diesel Range Organics (DRO) and Oil Range Organics (ORO), even more so than levels in MW-55. The TPH and VOCs in ED02-

¹The coordinates of the ED01-111915 sample area are latitude 32.852356 and longitude 104.393864, while those of the ED02-111915 sample are latitude 32.852972 and longitude 104.393347.

111955, the downstream surface water sample, are significantly lower than the sample collected nearest the seep, indicating that degradation of these compounds is occurring.

- MW-55: The reported concentration of TPH DRO exceeds the TPH screening level in the sample collected from MW-55. All other constituents of concern (COCs) were either not detected or were reported at concentrations below the screening levels.
- ED01-111955: The reported concentrations of TPH DRO and TPH ORO both exceed the TPH screening level in the sample collected closest to the observed seep. The reported concentrations of arsenic and benzene exceed the EPA MCLs in the sample collected closest to the observed seep. The reported concentration of benzene exceeds the aquatic life chronic SWQS. All other COCs were either not detected or were reported at concentrations below the screening levels.
- ED02-111955: The reported concentrations of TPH DRO and TPH ORO both exceed the TPH screening level in the sample collected on the downstream side of Navajo Road. The reported concentration of potassium exceeds the background UTL in this sample. All other COCs were either not detected or were reported at concentrations below the screening levels.

Evaluation and Recommendations

Navajo has observed higher than normal groundwater levels in the monitoring wells located in the northern portion of the Artesia Refinery during the past two years, most likely due to heavier than normal rainfall in the region during this period. Attachments F and G present the historic precipitation data for the area and ground elevation trends. We believe that impacted groundwater associated with a solid waste management unit and/or an area of contamination, which is being monitored and, in some cases, recovered through implementation of the Facility-Wide Ground Water Monitoring Program (FWGWMP), is the seepage liquid. The constituents of concern measured in the surface water samples appear to be consistent generally with results of recent FWGWMP events for the adjacent wells and recovery trenches.

In addition to the actions taken thus far, we propose the following:

- Conduct weekly inspections of the seepage area for the month of January 2016 to visually examine for additional seepage and potential sheens on surface water in Eagle Draw.
- As needed, apply absorbents to recover/remove any seepage.
- Ensure that booms are ready and serviceable to put into use in surface waters in Eagle Draw, as needed.
- Take and record water level elevations in RW-17A and RW-17G on a weekly basis during the month of January 2016 in order to evaluate fluctuations in levels in comparison to weather.

- Operate RW-7 and RW-8 consistently during the month of January 2016 in order to reduce groundwater elevations.
- Repair the concrete fissures in this specific locale of Eagle Draw.

Should you have any questions about this notification report, please do not hesitate to contact me at (575) 746-5487 or scott.denton@hollyfrontier.com.

Sincerely,

Scott M. Denton

Environmental Manager

c: Robert A. Combs, Artesia Refinery, Environmental Specialist Leona Tsinnajinnie, NMED HWB

Enclosures:

Attachment A - Form C-141

Attachment B – Figure 1 (Location of Seepage within the Refinery)

Attachment C - Figure 2 (Locations of November 19, 2015 Samples)

Attachment D – Table 1 (Analytical Results and Comparison Standards)

Attachment E - Analytical Lab Report with Contractor Field Notes

Attachment F – Precipitation Data January 2011 – November 2015

Attachment G - GW Level Trends

Attachment A

Form C-141 (Previously provided to OCD)