GW – 028

Annual DP Report (Part 16 of 16)

2015

E-mail Address: robert.combs@hollyfrontier.com

* Attach Additional Sheets If Necessary

Phone: 575-746-5382

12/8/15

Date:

State of New Mexico Energy Minerals and Natural Resources

Form C-141 Revised August 8, 2011

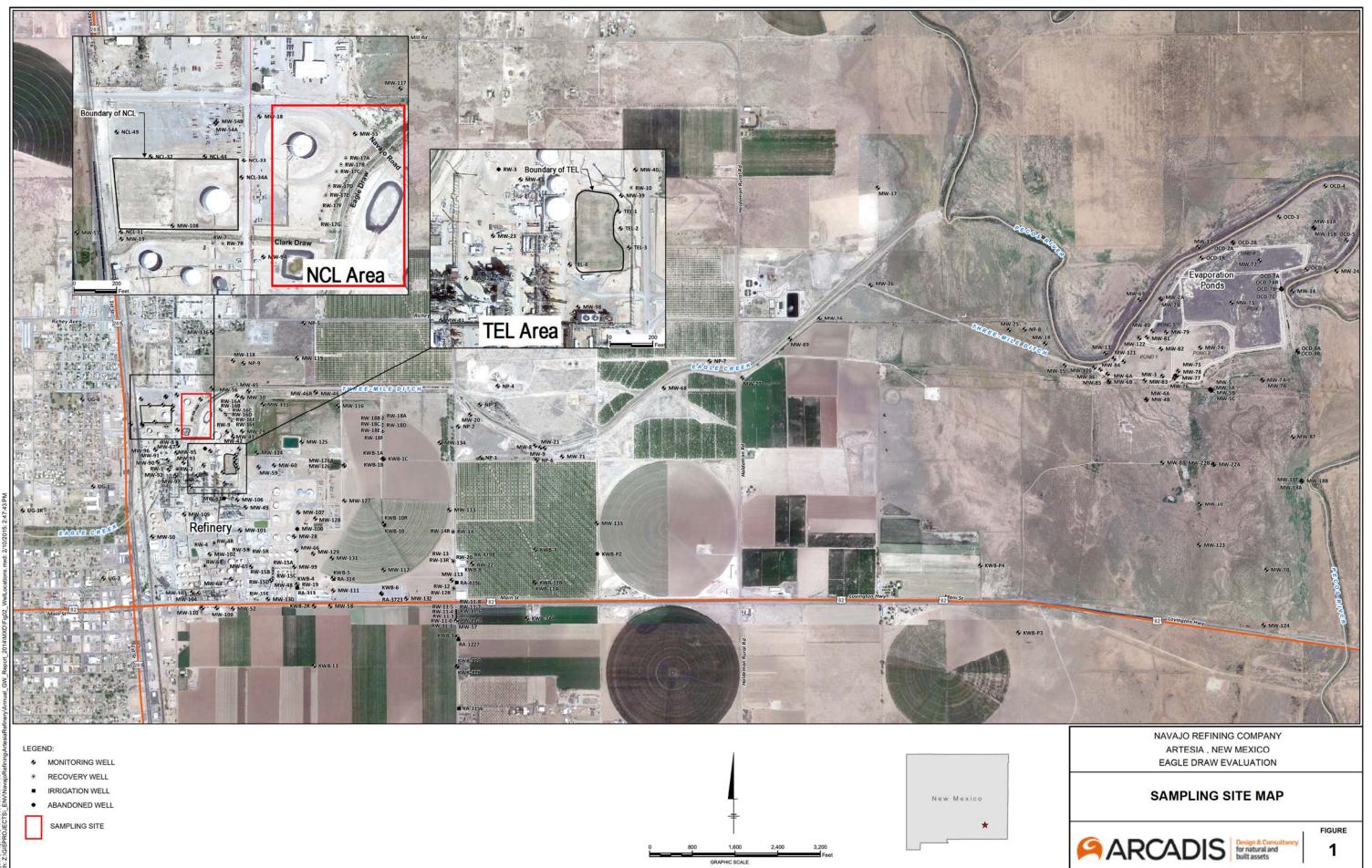
Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

Attached 🗌

Release Notification and Corrective Action								
OPERATOR Initial Report								
Name of Company Navajo Refining Company	Contact Robert Combs							
Address 501 E. Main St. Artesia, NM 88210		Telephone No. 575-746-5382						
Facility Name Navajo Refining Company, L.L	Facility Type Refinery							
Surface Owner	Mineral Owner		API No.					
LOCATION OF RELEASE								

Unit Letter	Section	Township	Range	Feet from the	North/South Line	Feet from the	East/West Line	County
								-

Latitude____Longitude___


NATURE OF RELEASE

	OI ILLERINGE			
Type of Release: Visible evidence of hydrocarbons from groundwater	Volume of Release	Volume Recovered: N/A, Absorbent		
expressed at the ground surface due to elevated water table.	approximately < 1 gallon	material applied to recover/remove		
		hydrocarbon staining from groundwater		
		extrusion onto concrete.		
Source of Release Impacted groundwater	Date and Hour of Occurrence	Date and Hour of Discovery		
Source of Release Impacted groundwater	12/2/15 Unknown hour	12/2/15@11:40 am		
Was Immediate Notice Given?	If YES, To Whom?	12/2/15(to)11,40 ani		
		1 am		
🛛 Yes 🔲 No 🗌 Not Required	National Response Center at 11:50	am		
	OCD Santa Fe office at 4:50 pm			
By Whom? Gabriela Combs/Robert Combs	Date and Hour please see above			
Was a Watercourse Reached?	If YES, Volume Impacting the Wa	itercourse.		
Yes 🗌 No	< 1 gallon			
Y (1 Y) (1 Y) (1 4				
If a Watercourse was Impacted, Describe Fully.*				
A small area of stained concrete located at the base of Clark Draw and East	gle Draw.			
Describe Cause of Problem and Remedial Action Taken.* A hydrocarbon				
on 12/2/15. There is not an active release of hydrocarbons from Refinery	operations. There is no hydrocarbor	n sheen present in the water. The impacts of		
groundwater extrusion are being addressed by removal of hydrocarbons fr	om the concrete with absorbent mate	rials. Absorbent booms were installed		
downstream as a precautionary measure to prevent the potential for residua	al hydrocarbons to impact any flowir	ng conditions in the waterway that may arise		
while the remedial action described below is being implemented.				
Describe Area Affected and Cleanup Action Taken.*	· · · · · · · · · · · · · · · · · · ·			
The stained area was confined to small, specific areas of the concrete. The	adjacent recovery trench will be mo	phitored routinely for evidence of phase		
separated hydrocarbons; if present, a vacuum truck will be used for the ne:				
separated hydrocarbons, it present, a vacuum a dex with be used for the ne.	te several days to remove any produc	t conceted in the adjacent monitoring wen.		
A final C-141 report will be submitted to OCD and HWB once corrective	actions comple regults at a are com	alata		
A final C-141 report will be submitted to OCD and H wB once corrective	actions, sample results, etc. are comp	ncic.		
I hereby certify that the information given above is true and complete to the				
regulations all operators are required to report and/or file certain release ne				
.public health or the environment. The acceptance of a C-141 report by the				
should their operations have failed to adequately investigate and remediate	e contamination that pose a threat to	ground water, surface water, human health		
or the environment. In addition, NMOCD acceptance of a C-141 report do	bes not relieve the operator of respon	sibility for compliance with any other		
federal, state, or local laws and/or regulations.				
	OIL CONSER	VATION DIVISION		
	OILCONDER			
Signature:				
Printed Name: Robert Combs	Approved by Environmental Specialist:			
		Designities Deter		
Title: Environmental Specialist	Approval Date:	Expiration Date:		

Conditions of Approval:

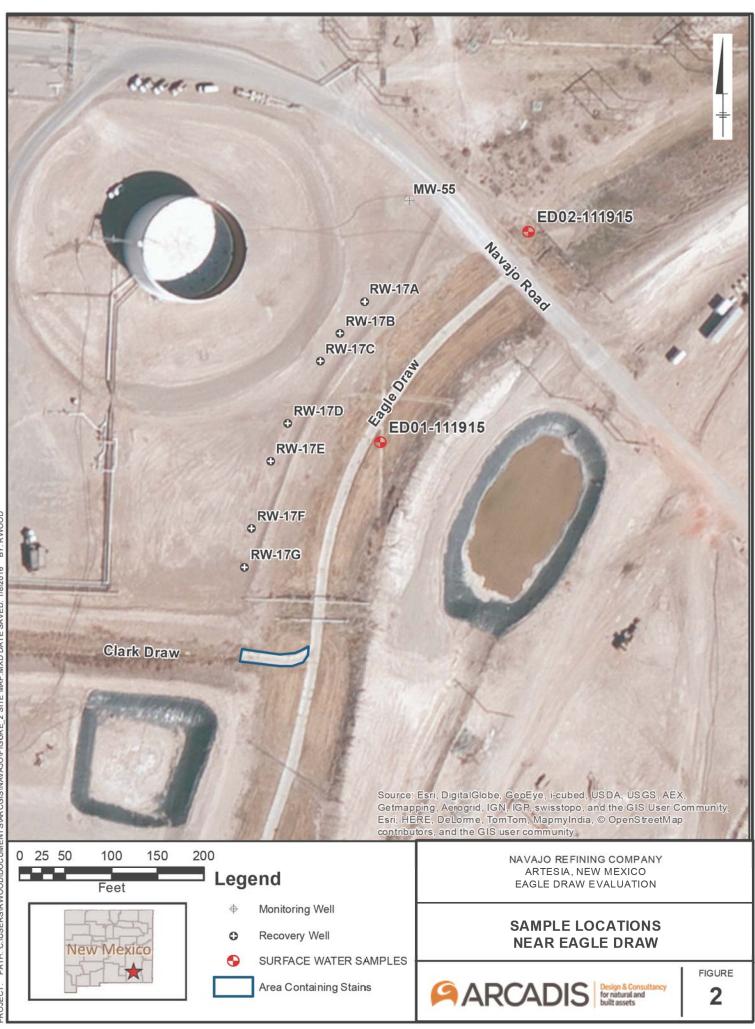

Attachment B

Figure 1 - Location of seepage within the Refinery

Attachment C

Figure 2 – Locations of November 19, 2015 Samples

CITY:(HOUSTON) DIVIGROUP:(INF/GIS) LD:(V.PAOUNCIC) PIC:/PM:() TM:(R.WOOD) PROJECT: PATH: C:/USERSIRWOOD/DOCUMENTS/ARCGISI/NAVAJO/FIGURE_2 SITE MAP./MXD DATE SAVED: 1/8/2016 BY:RWOOD

Attachment D

Table 1 – Analytical Results and Comparison Standards

Table 1. Analytical Results and Comparison Standards

			Human Health		Aquatic Life		MW-55		ED01-1119	15	ED02-111'	1915
Analyte	CGWSL	CGWSL Source	SWQS	Source	SWQS	Source	11/19/2015	5	11/19/2015		11/19/20	15
General Chemistry (mg/L)												
Calcium	1030	Background									3 🗖	
Chloride	5930	Background	6,000	notes			225		580		452	
Fluoride	2.95	Background					2.02		1.22		1.49	
Nitrate/Nitrite	15.1	Background	132	LW			4.39		< 0.0197		0.041	J
Potassium	8.75	Background					0.989	J	5.59		9.33	
Sodium	4300	Background					173	4	250		258	
Sulfate	4410	Background	3,000	notes			2020		745		1470	
TDS	16700	Background	14,000	notes			3480		2910	Î	1890	
Dissolved Metals (mg/L)												
Arsenic	0.01	EPA MCL	0.009	HH-OO	0.15	AL - Cr	0.00553		0.0159		0.00785	
Barium	1	WQCC HH	2	DWS			0.0105		0.0882	- ŝ	0.063	
Cadmium	0.005	EPA MCL	0.01	Irr	0.00028	AL - Cr	< 0.00016		< 0.00016		< 0.00016	3
Chromium	0.05	WQCC HH	0.1	Irr	0.042	AL - Cr	0.00186	J	0.00109	J	0.00104	J
Lead	0.015	EPA MCL	0.1	LW	0.001	AL - Cr	0.000389	J	0.00143	J	0.00114	J
Mercury	0.0044	Background	0.01	LW	0.00077	AL - Cr	< 0.000049		< 0.000049		< 0.000049	9
Selenium	0.05	WQCC HH	0.05	LW	0.005	AL - Cr	0.00845		0.000532	J	0.00642	
Silver	0.05	WQCC HH			0.001	AL - Ac	< 0.00031		< 0.00031		< 0.00031	
Total Petroleum Hydrocar	bons (mg/L)											
GRO	· · · · ·			S			< 0.0314		1.38	8	0.0469	J
DRO	0.2	NMED TPH					0.356		7.21		2.19	
ORO	0.2	NMED TPH					0.108		1.16		0.621	
Volatile Organic Carbons	(mg/L)	2										
Benzene	0.005	EPA MCL	0.51	HH-OO			< 0.00019		0.188		0.00285	
Toluene	0.75	WQCC HH	15	HH-OO			< 0.00018		0.0192	ĺ	0.000574	J
Ethylbenzene	0.7	EPA MCL	2.1	HH-OO			< 0.00016		0.0158		0.000669	1
Xylenes	0.62	WQCC HH		0			0.0013	J	0.131		0.00147	J

Notes:

The selected NMED surface water quality standards are based on the following designated uses, if available. Domestic water supply criteria are only used if there are no other criteria available. PERENNIAL WATERS - All perennial unclassified waters of the state.

A. Designated Uses: warmwater aquatic life, livestock watering, wildlife habitat and primary contact.

B. Criteria: the use-specific criteria in 20.6.4.900 NMAC are applicable to the designated uses.

Hardness-dependent criteria for metals are based on a hardness of 50 mg/L.

For TDS, sulfate and chloride the criteria for the Pecos River Basin were used for comparison purposes:

PECOS RIVER BASIN - The main stem of the Pecos river from the headwaters of Brantley

reservoir upstream to Salt creek (near Acme), perennial reaches of the Rio Peñasco downstream from state

highway 24 near Dunken, perennial reaches of the Rio Hondo and its tributaries below Bonney canyon and

perennial reaches of the Rio Felix.

A. Designated Uses: irrigation, livestock watering, wildlife habitat, secondary contact and

warmwater aquatic life.

Criteria: At all flows above 50 cfs: TDS 14,000 mg/L or less, sulfate 3,000 mg/L or less and chloride 6,000 mg/L or less.

HH-OO	human health-organism only
Irr	irrigation
LW	livestock watering
DWS	domestic water supply
AL - Cr	aquatic life - chronic
AL - Ac	aquatic life - acute

Attachment E

Analytical Lab Report with Contractor Field Notes

Contact: Ron Wood, ARCADIS 713-953-4840

ANALYTICAL REPORT

December 02, 2015

ARCADIS US - TX

Sample Delivery Group: Samples Received: Project Number: Description:

L802348 11/20/2015 TX001155.0001.00003 Navajo Refining Company - Artesia, NM

Report To:

Pam Krueger 2929 Briarpark Dr., Suite 300 Houston, TX 77042

Entire Report Reviewed By: Chu, faph

Chris McCord Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*	
Ср	

Ss

Cn

Sr

Qc

GI

ΆI

Sc

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	4
⁵ Sr: Sample Results	5
MW-55 L802348-01	5
ED01-111915 L802348-02 should be	6
ED-1111915 ED02-111915	7
TRIP BLANK L802348-04	8
⁶ Qc: Quality Control Summary	9
Gravimetric Analysis by Method 2540 C-2011	9
Wet Chemistry by Method 353.2	10
Wet Chemistry by Method 9056MOD	12
Mercury by Method 7470A	14
Metals (ICPMS) by Method 6020	15
Volatile Organic Compounds (GC) by Method 8015/8021/8021B	17
Semi-Volatile Organic Compounds (GC) by Method 8015	19
⁷ GI: Glossary of Terms	20
⁸ Al: Accreditations & Locations	21
⁹ Sc: Chain of Custody	22

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

Received date/time

Received date/time

11/20/15 09:00

11/20/15 09:00

Collected date/time

Collected date/time 11/19/15 13:10

11/19/15 12:45

.

Τс

Cn

Sr

Qc

Gl

Â

Sc

	Received date	Collected date/time	Collected by				
:00	11/20/15 09:00	11/19/15 10:30			MW-55 L802348-01 GW		
yst	Analys	Analysis	Preparation	Dilution	Batch	Method	
		date/time	date/time				
F	MF	11/25/15 17:16	11/25/15 16:40	1	WG831418	Gravimetric Analysis by Method 2540 C-2011	
(J	BRJ	11/22/15 11:03	11/21/15 17:20	1	WG830678	Mercury by Method 7470A	
G	JDG	11/24/15 14:44	11/24/15 09:18	1	WG831296	Metals (ICPMS) by Method 6020	
F	BJF	11/21/15 18:18	11/20/15 23:39	1	WG830634	Semi-Volatile Organic Compounds (GC) by Method 8015	
F	HJF	11/22/15 18:45	11/22/15 18:45	1	WG830660	Volatile Organic Compounds (GC) by Method 8015/8021	
К	ASK	11/30/15 16:19	11/30/15 16:19	1	WG832327	Wet Chemistry by Method 353.2	
D	DJD	11/24/15 15:13	11/24/15 15:13	1	WG830779	Wet Chemistry by Method 9056MOD	
D	DJD	11/24/15 15:59	11/24/15 15:59	50	WG830779	Wet Chemistry by Method 9056MOD	
	5	11/24/10 10:00	1/24/10 10:00	50	10050775	were chemistry by meaned 5050mob	

Collected by

Collected by

ED01-111915	L802348-02	GW
	2002010 02	011

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG831418	1	11/25/15 16:40	11/25/15 17:16	MF
Mercury by Method 7470A	WG830678	1	11/21/15 17:20	11/22/15 11:06	BRJ
Metals (ICPMS) by Method 6020	WG831296	1	11/24/15 09:18	11/24/15 15:54	JDG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG830634	1	11/20/15 23:39	11/21/15 18:35	BJF
Semi-Volatile Organic Compounds (GC) by Method 8015	WG830634	5	11/20/15 23:39	11/25/15 08:23	JNS
Volatile Organic Compounds (GC) by Method 8015/8021	WG830660	1	11/22/15 19:10	11/22/15 19:10	HJF
Wet Chemistry by Method 353.2	WG832327	1	11/30/15 16:21	11/30/15 16:21	ASK
Wet Chemistry by Method 9056MOD	WG830779	1	11/24/15 15:28	11/24/15 15:28	DJD
Wet Chemistry by Method 9056MOD	WG830779	50	11/24/15 16:16	11/24/15 16:16	DJD

ED-1111915 L802348-03 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG831418	1	11/25/15 16:40	11/25/15 17:16	MF
Vercury by Method 7470A	WG830678	1	11/21/15 17:20	11/22/15 11:08	BRJ
Metals (ICPMS) by Method 6020	WG831296	1	11/24/15 09:18	11/24/15 16:01	JDG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG830634	1	11/20/15 23:39	11/21/15 18:53	BJF
/olatile Organic Compounds (GC) by Method 8015/8021	WG830660	1	11/22/15 19:35	11/22/15 19:35	HJF
Net Chemistry by Method 353.2	WG832327	1	11/30/15 16:22	11/30/15 16:22	ASK
Net Chemistry by Method 9056MOD	WG830779	1	11/24/15 15:43	11/24/15 15:43	DJD
Wet Chemistry by Method 9056MOD	WG830779	50	11/24/15 16:31	11/24/15 16:31	DJD

TRIP BLANK L802348-04 GW			Collected by	Collected date/time 11/19/15 13:10	Received date/time 11/20/15 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC) by Method 8021B	WG830660	1	11/22/15 17:29	11/22/15 17:29	BMB

CASE NARRATIVE

2

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Technical Service Representative

Ср
² Tc
³ Ss
⁴ Cn
⁵ Sr
⁶ Qc
⁷ Gl
⁸ Al
⁹ Sc

Analyte

Nitrate-Nitrite

SAMPLE RESULTS - 01

Cn

Gravimetric Analysis by Method 2540 C-2011

									1 cm
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		Ср
Analyte	ug/l		ug/l	ug/l		date / time			2
Dissolved Solids	3480000		2820	10000	1	11/25/2015 17:16	WG831418		Tc
Wet Chemistry	by Method 3	353.2							³ Ss
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch		

1

date / time

11/30/2015 16:19

WG832327

ug/l

19.7

ug/l

100

Wet Chemistry by Method 9056MOD

ug/l

4390

nalyte ug/l ug/l date / time thloride 225000 2600 50000 50 11/24/2015 15:59 WG830779 luoride 2020 9.90 100 1 11/24/2015 15:13 WG830779		Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Indication 225000 2600 50000 50 11/24/2015 15:59 WG830779 Iuoride 2020 9.90 100 1 11/24/2015 15:13 WG830779	A		Qualifier			Dilution	,	Daten
luoride 2020 9.90 100 1 11/24/2015 15:13 WG830779	Analyte	ug/i		ug/i	ug/i		date / time	
	Chloride	225000		2600	50000	50	11/24/2015 15:59	WG830779
ulfate 2020000 3870 250000 50 11/24/2015 15:59 WG830779	Fluoride	2020		9.90	100	1	11/24/2015 15:13	WG830779
	Sulfate	2020000		3870	250000	50	11/24/2015 15:59	WG830779

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	I
Analyte	ug/l		ug/l	ug/l		date / time		
Mercury, Dissolved	U		0.0490	0.200	1	11/22/2015 11:03	WG830678	[

Metals (ICPMS) by Method 6020

Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
ug/l		ug/l	ug/l		date / time	
5.53		0.250	2.00	1	11/24/2015 14:44	WG831296
10.5		0.360	5.00	1	11/24/2015 14:44	WG831296
U		0.160	1.00	1	11/24/2015 14:44	WG831296
447000	4	46.0	1000	1	11/24/2015 14:44	WG831296
1.86	J	0.540	2.00	1	11/24/2015 14:44	WG831296
0.389	J	0.240	2.00	1	11/24/2015 14:44	WG831296
989	J	37.0	1000	1	11/24/2015 14:44	WG831296
8.45		0.380	2.00	1	11/24/2015 14:44	WG831296
U		0.310	2.00	1	11/24/2015 14:44	WG831296
173000	4	110	1000	1	11/24/2015 14:44	WG831296
	ug/l 5.53 10.5 U 447000 1.86 0.389 989 8.45 U	ug/l 5.53 10.5 U 447000 <u>4</u> 1.86 J 0.389 J 989 J 8.45 U	ug/l ug/l 5.53 0.250 10.5 0.360 U 0.160 447000 4 46.0 1.86 J 0.540 0.389 J 989 J 37.0 8.45 0.380 U 0.310	ug/l ug/l ug/l 5.53 0.250 2.00 10.5 0.360 5.00 U 0.160 1.00 447000 4 46.0 1000 1.86 J 0.540 2.00 0.389 J 0.240 2.00 989 J 37.0 1000 8.45 0.380 2.00 2.00	ug/l ug/l ug/l 5.53 0.250 2.00 1 10.5 0.360 5.00 1 U 0.160 1.00 1 447000 4 46.0 1000 1 1.86 J 0.540 2.00 1 0.389 J 0.240 2.00 1 989 J 37.0 1000 1 8.45 0.380 2.00 1 1	ug/l ug/l ug/l date / time 5.53 0.250 2.00 1 11/24/2015 14:44 10.5 0.360 5.00 1 11/24/2015 14:44 U 0.160 1.00 1 11/24/2015 14:44 447000 4 46.0 1000 1 11/24/2015 14:44 1.86 J 0.540 2.00 1 11/24/2015 14:44 0.389 J 0.240 2.00 1 11/24/2015 14:44 989 J 37.0 1000 1 11/24/2015 14:44 8.45 0.380 2.00 1 11/24/2015 14:44 U 0.310 2.00 1 11/24/2015 14:44

Volatile Organic Compounds (GC) by Method 8015/8021/8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	U		0.190	0.500	1	11/22/2015 18:45	WG830660
Toluene	U		0.180	5.00	1	11/22/2015 18:45	<u>WG830660</u>
Ethylbenzene	U		0.160	0.500	1	11/22/2015 18:45	WG830660
Total Xylene	1.30	J	0.510	1.50	1	11/22/2015 18:45	<u>WG830660</u>
TPH (GC/FID) Low Fraction	U		31.4	100	1	11/22/2015 18:45	WG830660
(S) a,a,a-Trifluorotoluene(Fl	D) 94.9			62.0-128		11/22/2015 18:45	<u>WG830660</u>
(S) a,a,a-Trifluorotoluene(Pl	D) 101			55.0-122		11/22/2015 18:45	WG830660

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
C10-C28 Diesel Range	356		22.2	100	1	11/21/2015 18:18	WG830634
C28-C40 Oil Range	108		11.8	100	1	11/21/2015 18:18	WG830634
(S) o-Terphenyl	107			50.0-150		11/21/2015 18:18	WG830634

ACCOUNT:	
ARCADIS US - TX	

PROJECT: TX001155.0001.00003 SDG: L802348

SAMPLE RESULTS - 02 L802348

Sc

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time	—	
Dissolved Solids	2910000		2820	10000	1	11/25/2015 17:16	WG831418	
Wet Chemistry	y by Method 3	53.2						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
king a king n								
Nitrate-Nitrite	U		19.7	100	1	11/30/2015 16:21	<u>WG832327</u>	
	u ry by Method 9 Result	056MOD Qualifier	19.7 MDL	100 RDL	1 Dilution	11/30/2015 16:21 Analysis	WG832327 Batch	
	y by Method 9				1 Dilution			
Wet Chemistry	ry by Method 9 Result		MDL	RDL	1 Dilution 50	Analysis		
Wet Chemistry Analyte	y by Method 9 Result ug/l		MDL ug/l	RDL ug/l		Analysis date / time	Batch	
Wet Chemistry Analyte Chloride Fluoride	y by Method 9 Result ug/l 580000		MDL ug/I 2600	RDL ug/l 50000		Analysis date / time 11/24/2015 16:16	Batch WG830779	
Wet Chemistry Analyte Chloride	ry by Method 9 Result ug/l 580000 1220 745000		MDL ug/l 2600 9.90	RDL ug/l 50000 100	50 1	Analysis date / time 11/24/2015 16:16 11/24/2015 15:28	Batch WG830779 WG830779	

1

date / time

11/22/2015 11:06

WG830678

Metals (ICPMS) by Method 6020

ug/l

U

Analyte

Mercury, Dissolved

. ,	-							
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Arsenic,Dissolved	15.9		0.250	2.00	1	11/24/2015 15:54	WG831296	
Barium, Dissolved	88.2		0.360	5.00	1	11/24/2015 15:54	WG831296	
Cadmium,Dissolved	U		0.160	1.00	1	11/24/2015 15:54	WG831296	
Calcium,Dissolved	420000		46.0	1000	1	11/24/2015 15:54	WG831296	
Chromium,Dissolved	1.09	J	0.540	2.00	1	11/24/2015 15:54	WG831296	
Lead, Dissolved	1.43	J	0.240	2.00	1	11/24/2015 15:54	WG831296	
Potassium, Dissolved	5590		37.0	1000	1	11/24/2015 15:54	WG831296	
Selenium,Dissolved	0.532	Ţ	0.380	2.00	1	11/24/2015 15:54	WG831296	
Silver,Dissolved	U		0.310	2.00	1	11/24/2015 15:54	WG831296	
Sodium,Dissolved	250000		110	1000	1	11/24/2015 15:54	WG831296	

ug/l

0.200

Volatile Organic Compounds (GC) by Method 8015/8021/8021B

ug/l

0.0490

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	188		0.190	0.500	1	11/22/2015 19:10	WG830660
Toluene	19.2		0.180	5.00	1	11/22/2015 19:10	<u>WG830660</u>
Ethylbenzene	15.8		0.160	0.500	1	11/22/2015 19:10	WG830660
Total Xylene	131		0.510	1.50	1	11/22/2015 19:10	WG830660
TPH (GC/FID) Low Fraction	1380		31.4	100	1	11/22/2015 19:10	WG830660
(S) a,a,a-Trifluorotoluene(Fl	D) 97.6			62.0-128		11/22/2015 19:10	WG830660
(S) a,a,a-Trifluorotoluene(Pl	D) 104			55.0-122		11/22/2015 19:10	WG830660

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
C10-C28 Diesel Range	7210		111	500	5	11/25/2015 08:23	WG830634
C28-C40 Oil Range	1160		11.8	100	1	11/21/2015 18:35	WG830634
(S) o-Terphenyl	120			50.0-150		11/21/2015 18:35	WG830634

PROJECT: TX001155.0001.00003

SDG: L802348

SAMPLE RESULTS - 03 L802348

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Dissolved Solids	1890000		2820	10000	1	11/25/2015 17:16	WG831418	
Net Chemistry	v by Method 3	53.2						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Analyte Nitrate-Nitrite	ug/l 41.0	J	ug/l 19.7	ug/l 100	1	date / time 11/30/2015 16:22	WG832327	
	41.0		-	_	1		<u>WG832327</u>	
litrate-Nitrite	41.0		-	_	1 Dilution		<u>W6832327</u> <u>Batch</u>	
litrate-Nitrite	41.0 / by Method 9	056MOD	19.7	100	1 Dilution	11/30/2015 16:22		
Nitrate-Nitrite Wet Chemistry	41.0 7 by Method 9 Result	056MOD	19.7 MDL	100 RDL	1 Dilution 50	11/30/2015 16:22 Analysis		
Vitrate-Nitrite Wet Chemistry	41.0 7 by Method 9 Result ug/l	056MOD	19.7 MDL ug/l	100 RDL ug/l		11/30/2015 16:22 Analysis date / time	Batch	

Mercury by Method 7470A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	ug/l		ug/l	ug/l		date / time		
Mercury,Dissolved	U		0.0490	0.200	1	11/22/2015 11:08	<u>WG830678</u>	

Metals (ICPMS) by Method 6020

	Dentil	0 1:0	MDI	DDI	Dilli	A	D. L.L.
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Arsenic,Dissolved	7.85		0.250	2.00	1	11/24/2015 16:01	WG831296
Barium, Dissolved	63.0		0.360	5.00	1	11/24/2015 16:01	WG831296
Cadmium,Dissolved	U		0.160	1.00	1	11/24/2015 16:01	WG831296
Calcium,Dissolved	377000		46.0	1000	1	11/24/2015 16:01	WG831296
Chromium,Dissolved	1.04	J	0.540	2.00	1	11/24/2015 16:01	WG831296
Lead, Dissolved	1.14	J	0.240	2.00	1	11/24/2015 16:01	WG831296
Potassium, Dissolved	9330		37.0	1000	1	11/24/2015 16:01	WG831296
Selenium,Dissolved	6.42		0.380	2.00	1	11/24/2015 16:01	WG831296
Silver,Dissolved	U		0.310	2.00	1	11/24/2015 16:01	WG831296
Sodium,Dissolved	258000		110	1000	1	11/24/2015 16:01	WG831296

Volatile Organic Compounds (GC) by Method 8015/8021/8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
Benzene	2.85		0.190	0.500	1	11/22/2015 19:35	WG830660
Toluene	0.574	J	0.180	5.00	1	11/22/2015 19:35	WG830660
Ethylbenzene	0.669		0.160	0.500	1	11/22/2015 19:35	WG830660
Total Xylene	1.47	J	0.510	1.50	1	11/22/2015 19:35	WG830660
TPH (GC/FID) Low Fraction	46.9	J	31.4	100	1	11/22/2015 19:35	WG830660
(S) a,a,a-Trifluorotoluene(Fl	D) 94.5			62.0-128		11/22/2015 19:35	WG830660
(S) a,a,a-Trifluorotoluene(Pl	ID) 99.6			55.0-122		11/22/2015 19:35	WG830660

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	ug/l		ug/l	ug/l		date / time	
C10-C28 Diesel Range	2190		22.2	100	1	11/21/2015 18:53	WG830634
C28-C40 Oil Range	621		11.8	100	1	11/21/2015 18:53	WG830634
(S) o-Terphenyl	107			50.0-150		11/21/2015 18:53	WG830634

SAMPLE RESULTS - 04

*

Qc

Gl

ΆI

Sc

Volatile Organic Compounds (GC) by Method 8015/8021/8021B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	Ср
Analyte	ug/l		ug/l	ug/l		date / time		2
Benzene	U		0.190	0.500	1	11/22/2015 17:29	WG830660	 Tc
Toluene	U		0.180	5.00	1	11/22/2015 17:29	WG830660	
Ethylbenzene	U		0.160	0.500	1	11/22/2015 17:29	WG830660	³ Ss
Total Xylene	U		0.510	1.50	1	11/22/2015 17:29	WG830660	
(S) a,a,a-Trifluorotolu	iene(PID) 101			55.0-122		11/22/2015 17:29	WG830660	⁴ Cr

WG831418

Gravimetric Analysis by Method 2540 C-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) 11/25/15 17:16					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Dissolved Solids	U		2.82	10.0	

L802348-01 Original Sample (OS) • Duplicate (DUP)

(OS) 11/25/15 17:16 • (DUP) 11/25	/15 17:16					
	Original Res	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Dissolved Solids	3480	3590	1	3.26		5

Laboratory Control Sample (LCS) - Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/25/15 17:16 • (LCSD) 11/25/1	15 17:16									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Dissolved Solids	8800	8720	8610	99.1	97.8	85.0-115			1.27	5

Â

Sc

WG832327

Wet Chemistry by Method 353.2

QUALITY CONTROL SUMMARY L802348-01,02,03

Тс

Ss

Cn

Sr

Qc

Sc

Method Blank (MB)

(MB) 11/30/15 16:08						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Nitrate-Nitrite	U		0.0197	0.100		

L802348-01 Original Sample (OS) • Duplicate (DUP)

(OS) 11/30/15 16:19 • (DUP) 11/30/15	5 16:20					
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Nitrate-Nitrite	4.39	4.34	1	1.00		20

L802480-01 Original Sample (OS) - Duplicate (DUP)

L802480-01 Original Sa	mple (OS) •	Duplicate	(DUP)				7
(OS) 11/30/15 16:36 • (DUP) 11/30/1	5 16:37						GI
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	⁸ Al
Nitrate-Nitrite	0.162	0.157	1	3.00		20	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/30/15 16:11 • (LCSD) 11/30/	LCS) 11/30/15 16:11 • (LCSD) 11/30/15 16:12										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Nitrate-Nitrite	5.00	4.73	4.82	95.0	96.0	90.0-110			2.00	20	

L802392-01 Original Sample (OS) • Matrix Spike (MS)

(OS) 11/30/15 16:23 • (MS) 11/30/15	(OS) 11/30/15 16:23 • (MS) 11/30/15 16:24											
	Spike Amou	nt Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	5.00	1.93	6.97	101	1	90.0-110						

ACCOUNT:								
ARCADIS US - TX								

PROJECT: TX001155.0001.00003

SDG: L802348

DATE/TIME: 12/02/15 10:19 PAGE: 10 of 23

Wet Chemistry by Method 353.2

QUALITY CONTROL SUMMARY

L802480-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/30/15 16:39 • (MS) 11/30/	(OS) 11/30/15 16:39 • (MS) 11/30/15 16:40 • (MSD) 11/30/15 16:41												
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Nitrate-Nitrite	5.00	6.08	11.0	11.0	98.0	98.0	1	90.0-110			0.000	20	

Sc

ACCOUNT: ARCADIS US - TX PROJECT: TX001155.0001.00003 SDG: L802348 DATE/TIME: 12/02/15 10:19 PAGE: 11 of 23 Wet Chemistry by Method 9056MOD

QUALITY CONTROL SUMMARY

(MB) 11/24/15 07:42					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	

Analyte	mg/l	mg/l	mg/l
Chloride	0.0916	0.0519	1.00
Fluoride	U	0.0099	0.100
Sulfate	U	0.0774	5.00

L801979-01 Original Sample (OS) • Duplicate (DUP)

(OS) 11/24/15 10:51 • (DUP) 11/24/15	11:06					
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	79.7	79.7	10	0		20
Fluoride	0.491	0.496	10	1		20
Sulfate	422	422	10	0		20

L802323-07 Original Sample (OS) • Duplicate (DUP)

(OS) 11/24/15 14:26 • (DUP) 11/24/15	DS) 11/24/15 14:26 • (DUP) 11/24/15 14:42											
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	36.4	36.4	10	0		20						
Fluoride	0.261	0.248	10	5		20						
Sulfate	110	109	10	0		20						

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

_CS) 11/24/15 07:58 • (LCSD) 11/24/15 08:13											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Chloride	40.0	39.8	39.9	100	100	90-110			0	20	
Fluoride	8.00	7.98	7.99	100	100	90-110			0	20	
Sulfate	40.0	40.1	40.2	100	100	90-110			0	20	

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc

⁹Sc

Â

G

PROJECT: TX001155.0001.00003 SDG: L802348

QUALITY CONTROL SUMMARY

L801999-04 Original Sample (OS) • Matrix Spike (MS)

(OS) 11/24/15 11:21 • (MS) 11/24/15 11:37

(,		nt Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	5.00	378	862	97	10	80-120	
Fluoride	0.500	0.668	50.8	100	10	80-120	
Sulfate	5.00	207	691	97	10	80-120	

L802323-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/24/15 13:40 • (MS) 11/24/15 13:55 • (MSD) 11/24/15 14:11												
	Spike Amount Original Result		MS Result	MSD Result	MS Rec.	MSD Rec.	Rec. Dilution	Rec. Limits	MS Qualifier MSD Qualifier		RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	5.00	17.2	509	509	98	98	10	80-120			0	20
Fluoride	0.500	0.424	50.7	50.9	101	101	10	80-120			0	20
Sulfate	5.00	539	1030	1030	97	97	10	80-120			0	20

Sc

WG830678

Mercury by Method 7470A

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) 11/22/15 10:19				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Mercury, Dissolved	U		0.000049	0.000200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/22/15 10:22 • (LCSD) 11/22/	/15 10:24									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Mercury, Dissolved	0.00300	0.00260	0.00245	87	82	80-120			6	20

L802534-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/22/15 10:46 • (MS) 11/22/1	5 10:48 • (MSE	0) 11/22/15 10:51										
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Mercury, Dissolved	0.00300	0.00000972	0.00281	0.00285	93	95	1	75-125			2	20

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY L802348-01,02,03

(MB) 11/24/15 15:33			
	MB Result MB Qualit	fier MB MDL	MB RDL
Analyte	mg/l	mg/l	mg/l
Arsenic, Dissolved	U	0.00025	0.00200
Barium,Dissolved	U	0.00036	0.00500
Cadmium, Dissolved	U	0.00016	0.00100
Calcium,Dissolved	U	0.046	1.00
Chromium,Dissolved	0.000714	0.00054	0.00200
Lead,Dissolved	0.000284	0.00024	0.00200
Potassium, Dissolved	0.0441	0.037	1.00
Selenium,Dissolved	U	0.00038	0.00200
Silver,Dissolved	U	0.00031	0.00200
Sodium,Dissolved	U	O.11	1.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/24/15 14:39 • (LCSD) 11/24	4/15 14:41									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic,Dissolved	0.0500	0.0528	0.0503	106	101	80-120			5	20
Barium, Dissolved	0.0500	0.0490	0.0501	98	100	80-120			2	20
Cadmium, Dissolved	0.0500	0.0556	0.0519	111	104	80-120			7	20
Calcium, Dissolved	5.00	4.91	5.19	98	104	80-120			6	20
Chromium, Dissolved	0.0500	0.0530	0.0517	106	103	80-120			3	20
Lead, Dissolved	0.0500	0.0507	0.0503	101	101	80-120			1	20
Potassium, Dissolved	5.00	4.87	4.97	97	99	80-120			2	20
Selenium,Dissolved	0.0500	0.0506	0.0509	101	102	80-120			1	20
Silver, Dissolved	0.0500	0.0510	0.0511	102	102	80-120			0	20
Sodium, Dissolved	5.00	5.34	5.68	107	114	80-120			6	20

L802348-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/24/15 14:44 • (MS) 11/24/15 14:53 • (MSD) 11/24/15 14:55												
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic, Dissolved	0.0500	0.00553	0.0603	0.0619	110	113	1	75-125			3	20
Barium, Dissolved	0.0500	0.0105	0.0589	0.0601	97	99	1	75-125			2	20
Cadmium, Dissolved	0.0500	0.0000293	0.0546	0.0559	109	112	1	75-125			2	20

PROJECT: TX001155.0001.00003

SDG: L802348

DATE/TIME: 12/02/15 10:19 PAGE: 15 of 23

ONE LAB. NATIONWIDE.

Тс

Cn

Ss

Sc

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY

L802348-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/24/15 14:44 • (MS) 11/24/15 14:53 • (MSD) 11/24/15 14:55

() =											101212-0012	
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Calcium,Dissolved	5.00	447	437	438	0	0	1	75-125	4	4	0	20
Chromium,Dissolved	0.0500	0.00186	0.0507	0.0504	98	97	1	75-125			0	20
Potassium, Dissolved	5.00	0.989	5.49	5.45	90	89	1	75-125			1	20
Lead, Dissolved	0.0500	0.000389	0.0483	0.0490	96	97	1	75-125			1	20
Selenium,Dissolved	0.0500	0.00845	0.0591	0.0591	101	101	1	75 125			0	20
Silver, Dissolved	0.0500	0.000110	0.0490	0.0493	98	98	1	75-125			1	20
Sodium,Dissolved	5.00	173	173	176	0	55	1	75-125	4	4	2	20

Sc

Τс

Ss

Cn

SDG: L802348 DATE/TIME: 12/02/15 10:19 PAGE: 16 of 23

WG830660

Volatile Organic Compounds (GC) by Method 8015/8021/8021B

QUALITY CONTROL SUMMARY L802348-01,02,03,04

(MB) 11/22/15 17:03					Ľ
	MB Result	MB Qualifier	MB MDL	MB RDL	2_
Analyte	mg/l		mg/l	mg/l	T
Benzene	U		0.000190	0.000500	
Toluene	0.000458		0.000180	0.00500	3
Ethylbenzene	U		0.000160	0.000500	Ĺ
Total Xylene	U		0.000510	0.00150	4
TPH (GC/FID) Low Fraction	U		0.0314	0.100	
(S) a,a,a-Trifluorotoluene(FID)	95.4			62.0-128	
(S) a,a,a-Trifluorotoluene(PID)	101			55.0-122	5

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/22/15 15:00 • (LCSD) 11/	22/15 15:25										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.0500	0.0487	0.0487	97.5	97.4	70.0-130			0.0400	20	
Toluene	0.0500	0.0452	0.0446	90.4	89.2	70.0-130			1.40	20	
Ethylbenzene	0.0500	0.0471	0.0467	94.3	93.4	70.0-130			0.940	20	
Total Xylene	0.150	0.142	0.141	95.0	93.8	70.0-130			1.29	20	
(S) a,a,a-Trifluorotoluene(PID)				101	101	55.0-122					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/22/15 15:49 • (LCSD) 11/22/15 16:14										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.60	5.89	102	107	67.0-132			5.09	20
(S) a,a,a-Trifluorotoluene(FID)				105	105	62.0-128				

L802348-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

ACCOUNT:

ARCADIS US -

(OS) 11/22/15 18:45 • (MS) 11/22/15 22:32 • (MSD) 11/22/15 22:57												
	Spike Amou	nt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0500	ND	0.0472	0.0487	94.5	97.5	1	57.2-131			3.14	20
Toluene	0.0500	ND	0.0431	0.0443	86.2	88.6	1	63.7-134			2.73	20
Ethylbenzene	0.0500	ND	0.0454	0.0469	90.9	93.8	1	67.5-135			3.23	20

Т:	PROJECT:	SDG:	DATE/TIME:
- TX	TX001155.0001.00003	L802348	12/02/15 10:19

PAGE: 17 of 23

Ср ²Tc ³Ss ⁴Cn ⁵Sr

Qc

⁷GI ⁸AI ⁹Sc

Volatile Organic Compounds (GC) by Method 8015/8021/8021B

QUALITY CONTROL SUMMARY

L802348-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/22/15 18:45 • (MS) 11/22/15 22:32 • (MSD) 11/22/15 22	2:57	2:5	22	į	15	2/	22	1/:	1	D)	SC	S	M	()	٠	32	2:3	2	/15	2	/2	11/	5)	N.	(1	٠	15	18:4	15	22/	11/2)S)	(C	
---	------	-----	----	---	----	----	----	-----	---	----	----	---	---	----	---	----	-----	---	-----	---	----	-----	----	----	----	---	----	------	----	-----	------	-----	----	--

	(/										
	Spike Amo	unt Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Total Xylene	0.150	0.00130	0.136	0.140	90.0	92.4	1	65.9-138			2.62	20
(S) a,a,a-Trifluorotoluene(PID)					99.6	99.7		55.0-122				

L802348-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 11/22/15 18:45 • (MS) 11/22/1	15 23:22 • (M	SD) 11/22/15 23:47										
	Spike Amo	ount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
TPH (GC/FID) Low Fraction	5.50	ND	5.22	5.70	94.8	104	1	50.0-143			8.97	20
(S) a,a,a-Trifluorotoluene(FID)					97.1	98.4		62.0-128				

GI

Â

Sc

WG830634

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) 11/21/15 17:08				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
C10-C28 Diesel Range	U		0.0222	0.100
C28-C40 Oil Range	U		0.0118	0.100
(S) o-Terphenyl	110			50.0-150

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) 11/21/15 17:26 • (LCSD) 11	1/21/15 17:43									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
C10-C28 Diesel Range	1.50	1.46	1.43	97.2	95.3	70.0-130			1.95	20
(S) o-Terphenyl				117	109	50.0-150				

GLOSSARY OF TERMS

¥

Ср

Тс

Ss

Cn

Sr

Qc

ΆI

Sc

Abbreviations	and Definitions	
---------------	-----------------	--

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
4	The sample concentration was greater than 4 times the spike value.
J	Estimated value.

ACCO	UNT	:
ARCADIS	US ·	- тх

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE**.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
daho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
owa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee ¹⁴	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789	
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01	
Canada	1461.01	USDA	S-67674	
EPA-Crypto	TN00003			

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

SDG:

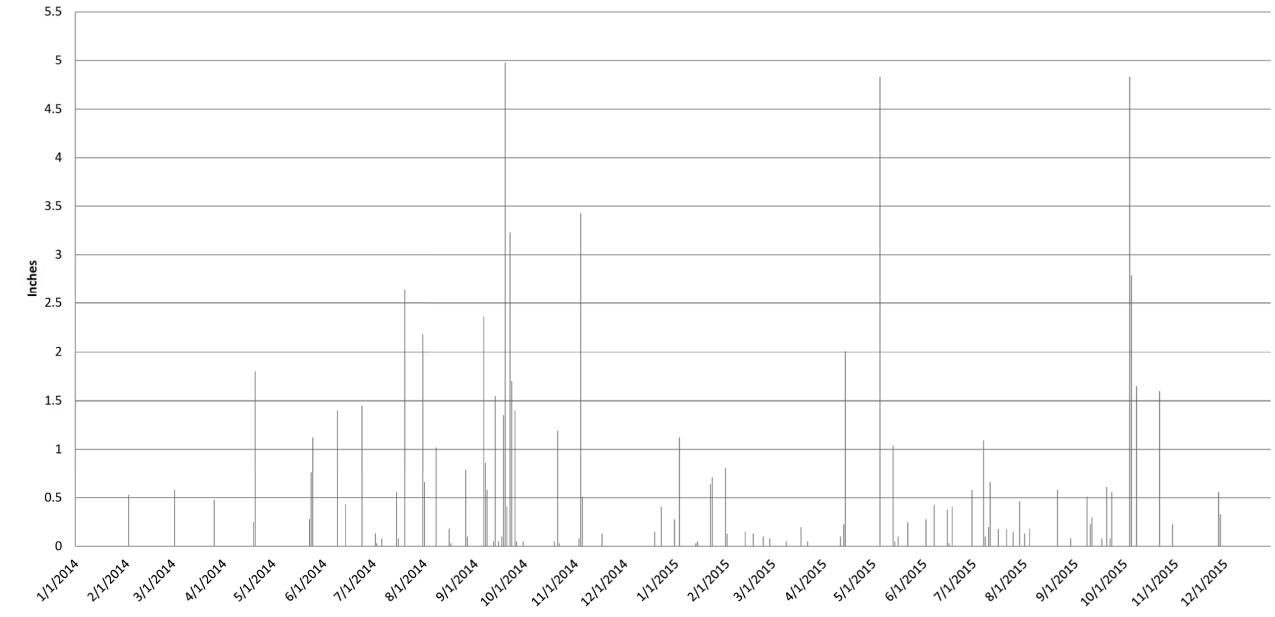
L802348

PROJECT:
TX001155.0001.00003

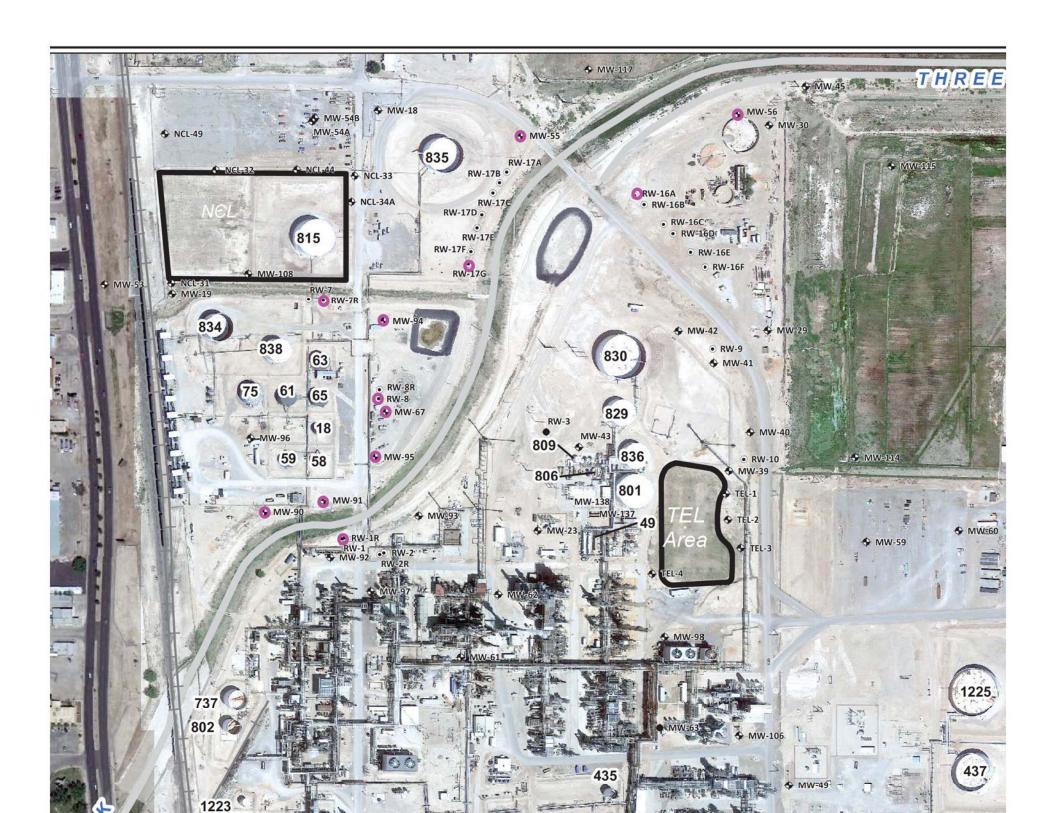
DATE/TIME:

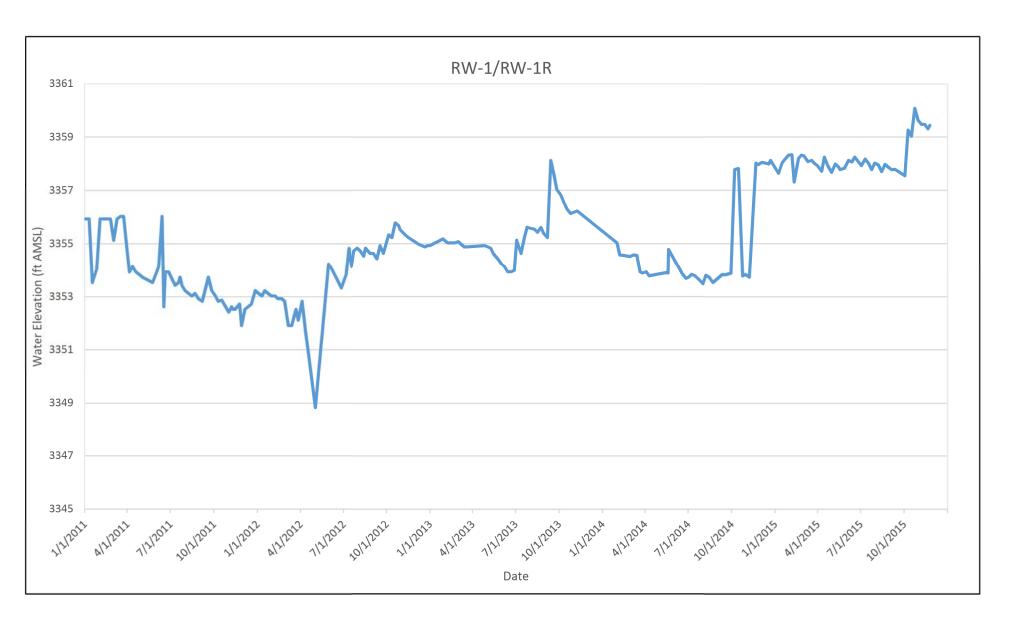
12/02/15 10:19

Billing Information:							100		Anal	lysis / Cc	I	r / Preser	vative			1	The	Page_of_
RCADIS US - TX 29 Briarpark Dr. lite 300 buston, TX 77042			Attn: Accounts Payable 630 Plaza Drive, Suite 600 Highlands Ranch, CO 80129							Polynowski wa singe					- An Altered	12 M	YOUR LAP 12065 Lebanon Rd Mount Juliet, TN 3 Phone: 615-758-58	37122
ort to: m Krueger				m.krueger@arcadis						oPres						Pł	Phone: 800-767-58 Fax: 615-758-5859	9 •
ject scription: Navajo Refining Com	ipany - Artesi	a, NM		City/State Collected:		1		Pres	-87	DPE-N		04					1# 302	378 2081
one: 713-953-4800	Client Project # TX001155.00			Lab Project # ARCADHTX-NA	AVAJORUSH			PE-Not	hb-HC	500mIHDPE-NoPres		E-H2S	Pres				T L	a station
ix: ollected by (print):	Site/Facility ID #	8		P.O. #			IDH-I	cl, Fl, SO4 125mlHDPE-NoPres	40mIAmb-HCI-BT	als 500	DH CI	NO2NO3 250mlHDPE-H2SO4	250mlHDPE-NoPres	H IS		area a	Template:T1 Prelogin: P5	107511
ollected by (signature):	Rush? (Lal	ab MUST Be N Day			esults Needed	1	40mlAmb-HCl	4 125	11VI 41	d Met	mlArnl	3 2501	ImiHD	(Net.			Prelogin: P5 TSR: 526 - Ch PB: 1-18	hris McCord
mmediately	Same Da Next Day Two Day Three Day	ay		Email?N FAX?N	No X_Yes NoYes	No. of	5X 40n	FI, SO	DROOROLVI	Dissolved Metals	GRO 40mlAmb HCI	D2NO.	TDS 250	Total		1	Shipped Via:	: FedEX Priorit
Packed on Ice N Y Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs		1.1	and the second second		x GR	N X	X TD	X			Rem./Contamir	
MW-55	6	GW		11/19/15		17 31	Contraction of	X	X X	x	X	X	X	X				6
EDDI-111915	6	GW	1	11/19/15	1	- 12 C	COLUMN TWO IS	x	X	X	X	x	X	X				ó
ED01-111915	6	GW	1-	11/19/15	1310	17 11	1000000000	x	x	X	X	X	X	X			and the second	
		GW			1 1 1	1.1		*	^		1	2.18		1		1	100 20 20 20	61
Trip Blent	e - Burr Berley Arth	1	-		1	1	T			蔀	1	16 14	- arran	T		1	· Partie	the state of the s
Trip Diener		<u>177. A</u> A			1 1		-			11								-
EN LASE IL		-	1	1 State		-	1		T	11	T					E		
							-	-								E	TARK	
The second second	C. Siller	1				-	-	T	-	T		183						1.2.2
		Vater Dur	Drinking Wee	ter OT - Other			1		1	рН	1	31	emp	2.90	6	52	919	07378
* Matrix: SS - Soil GW - Groundwate Remarks:Dissolved Metals =	M6020RCRA	8-D + CAD	IG,KDG,NA	4DG	T			Th.		- 1	1.11	1.1	other		1. 🔲	Hold #		
Remarks: Dissolved Metals = Hold Metals unt	1 Word	from	Pam K	< mar			1	11		Flow		Ot turned vi		JPS	c	Conditio	on:	(lab use only)
Relinquished by : (Signature)		Date:		Time:	Received by: (Si	orgnature	1	11	1				ourier		11		1)	X
hallout	San Spin Spinker	Date:	115	1345 Time:	Received by: (S	Signature	1	11	1	Tem	61strenzes	°C	Bottles	s Received	and the second	110	eal Intact:	Y_N_
Relinquished by : (Signature)	and the second second						1	<u>1</u>	0.16		5.1	2_	Time:		St. March 199	CUC Se	succession of the local division of the loca	NCF:
The second s	1.1000.071	ap li	the second	Time:	Received for la	b by: (S)	gnature,	1000	A STATE	Date	1.000	1 State		qu	Colored 1	Page 1	ALC: NO. OF THE OWNER.	In

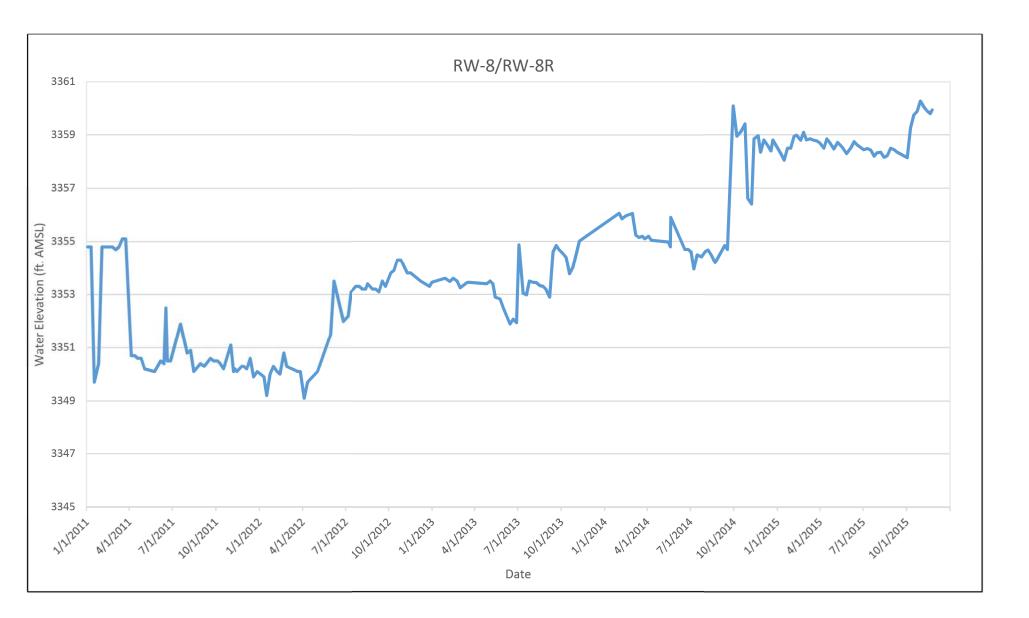

6 Weather: Sunny, 505 Personnel: R. Wood 11/19/15 0 Engle Daw Suchace Sampling . 0 Arrived onsite. Attempted to get badge whiter but safety 0700 does not issue waivers for background checks anymore -R. Combs spoke w/ safety and informed me that Domingo 0745 could escort me into Refinery Met Domingo @ Wanhouse to gather equipment 0830 0 Arrived @ MW-55 to begin sampling 0925 1030 - Sample time Left area to go find buttlewere from ESC 1045 Could not locate sample bottles. Broke for lanch 1115 . Arrived back onsite. Stopped EedEx driver to collect simple 1210 91 boffles. Arrived back @ Eagle Pran 230 Collected E DO1-111915 1245 - Taken from surface water on the east sid of Engle Prov South of Navio Rd Collected EDOZ-11915 1310 Taken from surface water on the west side of Eagle Draw cust 11615 Torth of Novajo Rd. 1330 Started pasting samples Dropped samples off @ FedEx building 1345 affite 1420 01 0 0 6 6

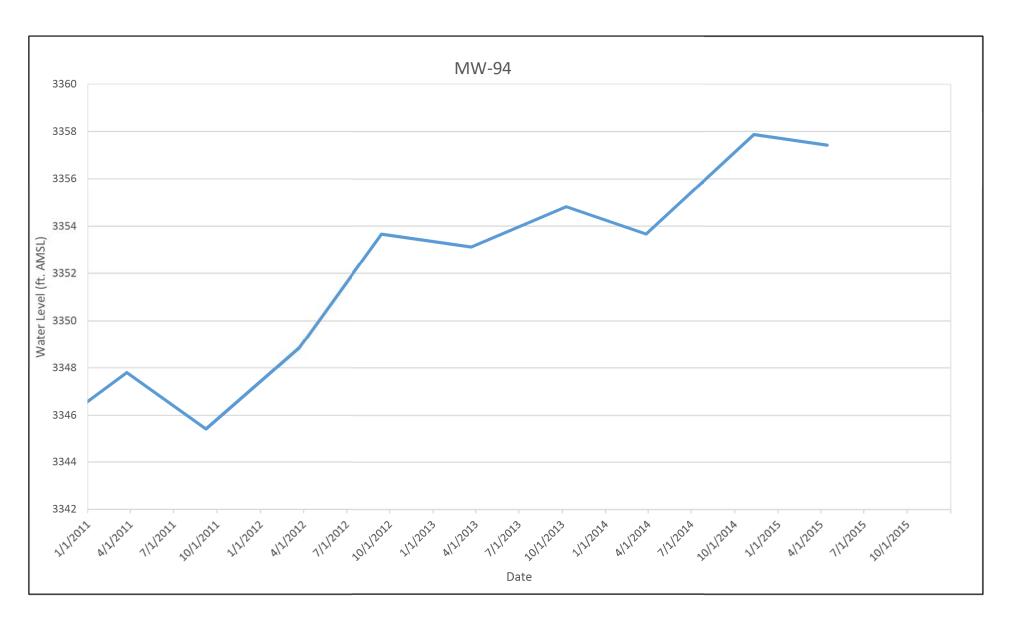
Attachment F


Precipitation Data January 2011 - November 2015


Precipitation


(January 2014 – Present)




Attachment G GW Level Trends

