APPROVED

By OCD; Dr. Oberding at 8:52 am, May 25, 2016

Basin Environmental Service Technologies, LLC

3100 Plains Highway
P. O. Box 301
Lovington, New Mexico 88260

bjarguijo@basinenv.com

Office: (575) 396-2378 Fax: (575) 396-1429

2014 ANNUAL MONITORING REPORT

14-INCH VAC TO JAL LEGACY

Lea County, New Mexico
Plains SRS # 2009-092

UNIT LTR "F" (SE/NW), Section 25, Township 25 South, Range 37 East
Latitude 32° 06' 10.7" North, Longitude 103° 07' 10.3" West
NMOCD Reference # 1RP-2162

Prepared For:

Plains All American Pipeline, LP 333 Clay Street, Suite 1600 Houston, Texas 77002

Prepared By:

Basin Environmental Service Technologies, LLC P. O. Box 301 Lovington, New Mexico 88260

March 2015

Ben J. Arguijo Project Manager

TABLE OF CONTENTS

TABLE OF CONTENTS
1.0 INTRODUCTION 2.0 SITE DESCRIPTION & BACKGROUND INFORMATION 3.0 FIELD ACTIVITIES 3.1 Groundwater Remediation Activities 3.2 Groundwater Monitoring 4.0 LABORATORY RESULTS 5.0 SUMMARY 6.0 ANTICIPATED ACTIONS 7.0 LIMITATIONS 8.0 DISTRIBUTION
FIGURES
Figure 1 – Site Location Map
Figure 2A – Inferred Groundwater Gradient Map – 1Q2014 Figure 2B – Inferred Groundwater Gradient Map – 2Q2014 Figure 2C – Inferred Groundwater Gradient Map – 3Q2014 Figure 2D – Inferred Groundwater Gradient Map – 4Q2014
Figure 3A – Groundwater Concentration Map – 1Q2014 Figure 3B – Groundwater Concentration Map – 2Q2014 Figure 3C – Groundwater Concentration Map – 3Q2014 Figure 3D – Groundwater Concentration Map – 4Q2014
TABLES
Table 1 – 2014 Groundwater Elevation Data Table 2 – 2014 Concentrations of BTEX, Chloride & TDS in Groundwater Table 3 – Concentrations of RCRA & NMWQCC Metals in Groundwater Table 4 – Concentrations of Volatile Organic Compounds Groundwater Table 5 – Concentrations of Semi-Volatile Compounds in Groundwater Table 6 – Concentrations of Anions/Cations in Groundwater

APPENDICES

Appendix A – Laboratory Analytical Reports

Appendix B – Release Notification and Corrective Action (Form C-141)

Appendix C – Monitor Well Logs

1.0 INTRODUCTION

Basin Environmental Service Technologies, LLC (Basin Environmental), on behalf of Plains All American Pipeline, LP (Plains), is pleased to submit this *Annual Monitoring Report* in compliance with the New Mexico Oil Conservation Division (NMOCD) letter of May 1998, requiring submittal of an Annual Monitoring Report by April 1st of each year. This report is intended to be viewed as a complete document with text, figures, tables, and appendices. This report presents the results of the quarterly groundwater monitoring events conducted in calendar year 2014 only. For reference, a "Site Location Map" is provided as Figure 1.

2.0 SITE DESCRIPTION & BACKGROUND INFORMATION

The legal description of the 14-Inch Vac to Jal Legacy release site is Unit Letter "F" (SE/NW), Section 25, Township 25 South, Range 37 East, in Lea County, New Mexico. The geographic coordinates of the release site are 32°06′10.7" North latitude and 103°07′10.3" West longitude.

On April 9, 2009, Plains discovered a crude oil release from a fourteen-inch (14") steel pipeline. The cause of the release was attributed to external corrosion of the pipeline. The release was reported to the New Mexico Oil Conservation Division (NMOCD) on April 9, 2009. During initial response activities, a temporary clamp was installed on the pipeline to mitigate the release. Approximately two hundred and fifty barrels (250 bbls) of crude oil was released, with no recovery.

On April 9, 2009, following initial response activities, excavation of hydrocarbon-impacted soil commenced at the site. To facilitate remediation activities, the excavation was divided into two (2) sections: Main Excavation and West Excavation. Excavated soil was stockpiled on-site on a plastic liner to mitigate the potential leaching of contaminants into the vadose zone. Approximately eighteen thousand cubic yards (18,000 yd³) of impacted soil was excavated and stockpiled on-site during excavation activities. Final dimensions of the Main Excavation were approximately four hundred feet (400') in length, approximately two hundred feet (200') in width, and five feet (5') to fourteen feet (14') in depth. Final dimensions of the West Excavation were approximately one hundred and fifty feet (150') in length, approximately one hundred and five feet (105') in width, and approximately ten feet (10') in depth. Due to safety concerns associated with excavating near and supporting two (2) fourteen-inch (14") diameter pipelines that bisect the release site, Plains requested and received NMOCD approval to leave the soil beneath and adjacent to the pipelines in-situ.

On July 2 and 3, 2009, three (3) soil borings (SB-1, SB-2, and SB-3) were advanced at the release site to evaluate the vertical extent of soil impact. During the advancement of the soil borings, groundwater was encountered at approximately sixty-four feet (64') below ground surface (bgs). On July 1, 2009, soil boring SB-1 was converted to monitor well MW-1.

On July 2, 2009, temporary casing was installed in soil borings SB-2 and SB-3 to allow a preliminary groundwater sample to be collected for analysis. Following collection of the preliminary groundwater sample, the temporary casing was removed from soil borings SB-2 and

SB-3, and the soil borings were plugged with cement and bentonite, pursuant to NMOCD and New Mexico Office of the State Engineer (NMOSE) standards.

On December 10, 2009, two (2) soil borings (SB-4 and SB-5) were installed up-gradient of the excavation to evaluate the potential groundwater impact from an up-gradient, off-site source. During the advancement of soil borings SB-4 and SB-5, groundwater was encountered at approximately sixty-four (64') bgs. Temporary casing was installed in soil borings SB-4 and SB-5 to allow a preliminary groundwater sample to be collected for analysis. Following collection of the preliminary groundwater sample, the temporary casing was removed from soil borings SB-4 and SB-5, and the soil borings were plugged with cement and bentonite, pursuant to NMOCD and NMOSE standards.

From May 6 through May 8, 2013, five (5) additional monitor wells (MW-2 through MW-6) were installed to evaluate the status of the groundwater at the site. The monitor wells were installed to total depths of approximately eighty feet (80') bgs. Monitor well MW-2 is located approximately three hundred and eighty feet (380') to the northwest (up-gradient) of monitor well MW-1. Monitor well MW-3 is located approximately two hundred feet (200') to the northeast (cross-gradient) of monitor well MW-1. Monitor well MW-1. Monitor well MW-5 is located approximately two hundred and eighty feet (280') to the west-northwest (cross-gradient) of monitor well MW-1. Monitor well MW-6 is located approximately one hundred and fifty feet (150') to the southeast (down-gradient) of monitor well MW-1.

PSH was not observed in monitor wells MW-2 through MW-6. Laboratory analytical results of soil samples collected during the installation of the monitor wells indicated benzene, toluene, ethylbenzene, and total xylenes (BTEX), total petroleum hydrocarbons (TPH), and chloride concentrations were less than NMOCD regulatory standards in all submitted samples.

From June 25 through June 26, 2014, three (3) additional monitor wells (MW-7, MW-8, and MW-9) were installed to further monitor the down- and cross-gradient migration of the dissolved-phase plume. The monitor wells were installed to total depths of approximately eighty feet (80') bgs. Monitor well MW-7 is located approximately forty-five feet (45') to the southeast (down-gradient) of monitor well MW-1. Monitor well MW-8 is located approximately one hundred eighty feet (180') to the east-northeast (cross-gradient) of monitor well MW-1. Monitor well MW-9 is located approximately one hundred fifty feet (150') to the southeast (down-gradient) of monitor well MW-1.

PSH was not observed in monitor wells MW-7 through MW-9. Laboratory analytical results of soil samples collected during the installation of the monitor wells indicated benzene, BTEX, TPH, and chloride concentrations were less than NMOCD regulatory standards in all submitted samples. Monitor Well Logs are provided as Appendix C.

Currently, a total of nine (9) monitor wells (MW-1 through MW-9) are located at the 14-Inch Vac to Jal Legacy release site. Monitor wells MW-2 through MW-9 are gauged and sampled on a quarterly schedule, while MW-1 is gauged weekly but not sampled due to the presence of PSH.

The 14-Inch Vac to Jal Legacy release site is located approximately one thousand, one hundred and forty-seven feet (1,147') to the south-southeast of a documented groundwater remediation site (Arco South Justis Unit F-230). Information regarding this site can be found in the NMOCD imaging system.

3.0 FIELD ACTIVITIES

3.1 Groundwater Remediation Activities

A measurable thickness of PSH was detected in monitor well MW-1 during the April 12, 2012, quarterly monitoring event. Basin Environmental began manual, monthly gauging and recovery of PSH from MW-1 in April 2012. In November 2013, the frequency of PSH recovery was increased to twice monthly. The frequency was increased to weekly in June 2014. Approximately 556.5 gallons (13.25 barrels) of PSH has been recovered from MW-1 since recovery operations began in April 2012, and approximately 372.5 gallons (8.9 barrels) of PSH were recovered during the 2014 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 2.31 feet, and the maximum PSH thickness was 3.37 feet on June 17, 2014.

Basin Environmental began monthly manual recovery of hydrocarbon-impacted groundwater from monitor wells MW-3 and MW-8 in November 2014 in an effort to control the down-gradient migration of the dissolved-phase plume.

All recovered fluids are disposed of at an NMOCD- approved disposal facility.

3.2 Groundwater Monitoring

The on-site monitor wells were gauged and sampled on February 12 (1Q2014), May 12 (2Q2014), August 4 (3Q2014), and November 12, 2014 (4Q2014). The groundwater monitoring events consisted of measuring static water levels in the on-site monitor wells (MW-1 through MW-9), checking for the presence of PSH, and purging and sampling of each well exhibiting sufficient recharge. The monitor wells were purged using disposable Teflon bailers of a minimum of three (3) well volumes of water, or until the wells were dry. Groundwater was allowed to recharge, and samples were obtained using clean, disposable Teflon bailers. Water samples were stored in clean, plastic or glass containers provided by the laboratory and placed on ice in the field. Purged water was collected in a trailer-mounted polystyrene tank and disposed of at an NMOCD-approved disposal.

A yearly monitoring event for polyaromatic hydrocarbons (PAH) was conducted on May 12, 2014. Based on sampling criteria provided by the NMOCD, only monitor wells MW-2 through MW-6 were subject to annual PAH monitoring during the 2014 calendar year.

Baseline sampling of monitor wells MW-7 through MW-9 was conducted on July 2, 2014. Laboratory analytical results from the baseline monitoring event are summarized in Tables 3 through 6.

Based on laboratory analytical results of groundwater samples collected from monitor well MW-5, which is located approximately two hundred and sixty feet (260') to the west-southwest (crossgradient) of the release point, and the absence of elevated chloride concentrations in the soil columns of monitor wells MW-2 through MW-6, Plains requested permission to cease monitoring of TDS and chloride concentrations in monitor wells MW-2 through MW-6 in the *2013 Annual Monitoring Report*, dated March 2014. The request was subsequently approved by the NMOCD, with the caveat that a chloride sample would be collected from monitor well MW-2 on a quarterly basis. Quarterly chloride monitoring of MW-2 commenced in November 2014.

Locations of the groundwater monitoring wells and the inferred groundwater elevations, which were constructed from measurements collected during the 2014 quarterly sampling events, are depicted in Figures 2A through 2D. The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 12, 2014) indicates a general gradient of approximately 0.0014 feet/foot to the southeast as measured between monitor wells MW-2 and MW-9.

On November 12, 2014, the corrected groundwater elevation ranged between 3,002.22 and 3,002.97 feet above mean sea level in monitor wells MW-9 and MW-2, respectively. The "2014 Groundwater Elevation Data" is provided as Table 1.

4.0 LABORATORY RESULTS

Groundwater samples collected from the on-site monitor wells during the quarterly and yearly monitoring events were delivered to Xenco Laboratories in Odessa, Texas, for determination of total dissolved solids (TDS), chloride, BTEX, and/or PAH constituent concentrations by Environmental Protection Agency (EPA) Methods SM2540C, E300, SW846-8021b, and SW846 8270C, respectively. A summary of laboratory analytical results is presented in Table 2, "Concentrations of BTEX, Chloride & TDS in Groundwater". A summary of PAH constituent concentrations is presented in Table 5, "Concentrations of Semi-Volatile Compounds in Groundwater". "Groundwater Concentration" maps are provided as Figure 3A through 3D. Laboratory analytical reports are provided as Appendix A.

Laboratory analytical results were compared to NMOCD regulatory limits based on the New Mexico groundwater standards found in section 20.6.2.3103 of the New Mexico Administrative Code (NMAC).

Monitor well MW-1

Monitor well MW-1 was not sampled during the 2014 reporting period due to the presence of PSH in the monitor well.

Monitor Well MW-2

Laboratory analytical results indicated benzene concentrations ranged from 0.0084~mg/L in 2Q2014 to 0.0101~mg/L in 3Q2014. Toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory method detection limit (MDL) in all submitted groundwater samples. Chloride concentrations ranged from 9,550~mg/L in 1Q2014 to 10,500~mg/L in 4Q2014.

The TDS concentration in the groundwater sample collected during 1Q2014 was 10,800 mg/L. The benzene concentration in the groundwater sample collected during 3Q2014 exceeded NMOCD regulatory standards. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted samples. Chloride concentrations exceeded NMOCD regulatory standards in all submitted samples. TDS concentrations in the groundwater sample collected during 1Q2014 exceeded NMOCD regulatory standards.

PAH constituent concentrations in the groundwater sample collected on May 12, 2014, were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards.

Monitor Well MW-3

Laboratory analytical results indicated benzene concentrations ranged from 0.0345 mg/L in 4Q2014 to 0.4920 mg/L in 1Q2014. Toluene and ethylbenzene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples. Total xylene concentrations ranged from less than the laboratory MDL in 4Q2014 to 0.0204 mg/L in 1Q2014. The chloride concentration in the groundwater sample collected during 1Q2014 was 6,840 mg/L, and the TDS concentration was 13,600 mg/L. Benzene concentrations exceeded NMOCD regulatory standards in all submitted groundwater samples. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted samples. Chloride and TDS concentrations in the groundwater sample collected during 1Q2014 exceeded NMOCD regulatory standards.

PAH constituent concentrations in the groundwater sample collected on May 12, 2014, were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards.

Monitor Well MW-4

Laboratory analytical results indicated benzene concentrations ranged from 0.0176 mg/L in 1Q2014 to 0.1050 mg/L in 4Q2014. Toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples, with the exception of the groundwater sample collected during 4Q2014, which exhibited a total xylene concentration of 0.0024 mg/L. The chloride concentration in the groundwater sample collected during 1Q2014 was 7,700 mg/L, and the TDS concentration was 15,200 mg/L. Benzene concentrations exceeded NMOCD regulatory standards in all submitted groundwater samples. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted samples. Chloride and TDS concentrations in the groundwater sample collected during 1Q2014 exceeded NMOCD regulatory standards.

PAH constituent concentrations in the groundwater sample collected on May 12, 2014, were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards.

Monitor Well MW-5

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in all groundwater samples

submitted during the reporting period. The chloride concentration in the groundwater sample collected during 1Q2014 was 4,550 mg/L, and the TDS concentration was 8,540 mg/L. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. The chloride concentration in the groundwater sample collected during 1Q2014 exceeded the NMOCD regulatory standard, while the TDS concentration was less than the NMOCD regulatory standard.

PAH constituent concentrations in the groundwater sample collected on May 12, 2014, were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards.

Monitor Well MW-6

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in all groundwater samples submitted during the reporting period. The chloride concentration in the groundwater sample collected during 1Q2014 was 5,260 mg/L, and the TDS concentration was 9,920 mg/L. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. The chloride concentration in the groundwater sample collected during 1Q2014 exceeded the NMOCD regulatory standard, while the TDS concentration was less than the NMOCD regulatory standard.

PAH constituent concentrations in the groundwater sample collected on May 12, 2014, were both less than the appropriate laboratory MDL and less than NMOCD regulatory standards.

Monitor Well MW-7

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL in the baseline sample collected on July 2, 2014, to 0.3970 mg/L in 4Q2014. Toluene and ethylbenzene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples. Total xylene concentrations ranged from less than the laboratory MDL in the baseline sample collected on July 2 to 0.0087 mg/L in 4Q2014. The chloride concentration in the baseline sample collected on July 2 was 4,850 mg/L, and the TDS concentration was 13,700 mg/L. Benzene concentrations exceeded NMOCD regulatory standards in 3Q2014 and 4Q2014. Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. Chloride and TDS concentrations in the baseline sample collected on July 2 exceeded NMOCD regulatory standards.

Monitor Well MW-8

Laboratory analytical results indicated benzene concentrations ranged from less than the laboratory MDL in the baseline sample collected on July 2, 2014, to 0.7030 mg/L in 4Q2014. Toluene and ethylbenzene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples. Total xylene concentrations ranged from less than the laboratory MDL in the baseline sample collected on July 2 to 0.0150 mg/L in 4Q2014. The chloride concentration in the baseline sample collected on July 2 was 7,540 mg/L, and the TDS concentration was 18,100 mg/L. Benzene concentrations exceeded NMOCD regulatory standards in 3Q2014 and 4Q2014.

Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. Chloride and TDS concentrations in the baseline sample collected on July 2 exceeded NMOCD regulatory standards.

Monitor Well MW-9

Laboratory analytical results indicated benzene, toluene, ethylbenzene, and total xylene concentrations were less than the appropriate laboratory MDL in all submitted groundwater samples. The chloride concentration in the baseline sample collected on July 2, 2014, was 3,340 mg/L, and the TDS concentration was 9,680 mg/L. Benzene and BTEX constituent concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. The chloride concentration in the baseline sample collected on July 2 exceeded the NMOCD regulatory standard, while the TDS concentration was less than the NMOCD regulatory standard.

5.0 SUMMARY

This report presents the results of groundwater monitoring activities for the 2014 annual monitoring period. Currently, there are nine (9) groundwater monitoring wells (MW-1 through MW-9) on-site. Monitor well MW-1 was not sampled in 2014 due to the presence of PSH. Monitor wells MW-7 through MW-9 were installed in June 2014 and sampled during the last three quarters of the monitoring period. The results of those sampling events are summarized above.

The "Groundwater Gradient Map" from the most recent sampling event (Figure 2D, November 12, 2014) indicates a general gradient of approximately 0.0014 feet/foot to the southeast as measured between monitor wells MW-2 and MW-9.

A measurable thickness of PSH was detected in monitor well MW-1 throughout the 2014 reporting period. The average PSH thickness measured in MW-1 during the reporting period was 2.31 feet, and the maximum PSH thickness was 3.37 feet on June 17, 2014.

During the reporting period, approximately 372.5 gallons (8.9 barrels) of PSH was recovered, by manual recovery, from monitor well MW-1.

Review of laboratory analytical results generated from analysis of groundwater samples collected in 2014 indicated benzene concentrations were less than the NMOCD regulatory standard in monitor wells MW-5, MW-6, and MW-9. However, benzene concentrations above NMOCD standards were detected in the groundwater samples from monitor wells MW-2 (3Q2014 and 4Q2014), MW-3 (all submitted samples), MW-4 (all submitted samples), MW-7 (3Q2014 and 4Q2014), and MW-8 (3Q2014 and 4Q2014). Toluene, ethylbenzene, and total xylene concentrations were less than NMOCD regulatory standards in all submitted groundwater samples. Chloride concentrations exceeded NMOCD regulatory standards in groundwater samples from monitor wells MW-2 (1Q2014), MW-3 (1Q2014), MW-4 (1Q2014), MW-7 (July 2 baseline), and MW-8 (July 2 baseline).

6.0 ANTICIPATED ACTIONS

PSH recovery from monitor well MW-1 will continue on weekly schedule. Groundwater recovery from monitor wells MW-3 and MW-8 will continue on a twice-monthly schedule. All recovered fluid will be disposed of at an NMOCD-permitted disposal facility.

Monitor wells MW-2 through MW-9 will be monitored and sampled quarterly for concentrations of BTEX. Monitor well MW-2 will also be monitored quarterly for concentrations of chloride. Results of the 2015 sampling events will be reported in the 2015 Annual Monitoring Report, which will be submitted to the NMOCD by April 1, 2016.

7.0 LIMITATIONS

Basin Environmental Service Technologies, LLC, has prepared this *Annual Monitoring Report* to the best of its ability. No other warranty, expressed or implied, is made or intended. Basin Environmental has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Basin Environmental has not conducted an independent examination of the facts contained in referenced materials and statements. Basin Environmental has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Basin Environmental has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Basin Environmental notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Plains All American Pipeline, LP. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Basin Environmental Service Technologies, LLC, and/or Plains All American Pipeline, LP.

8.0 DISTRIBUTION

Copy 1: Jim Griswold

New Mexico Energy, Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 jim.griswold@state.nm.us

Copy 2: Tomas Oberding

New Mexico Oil Conservation Division

1625 N. French Drive Hobbs, New Mexico 88240 tomas.oberding@state.nm.us

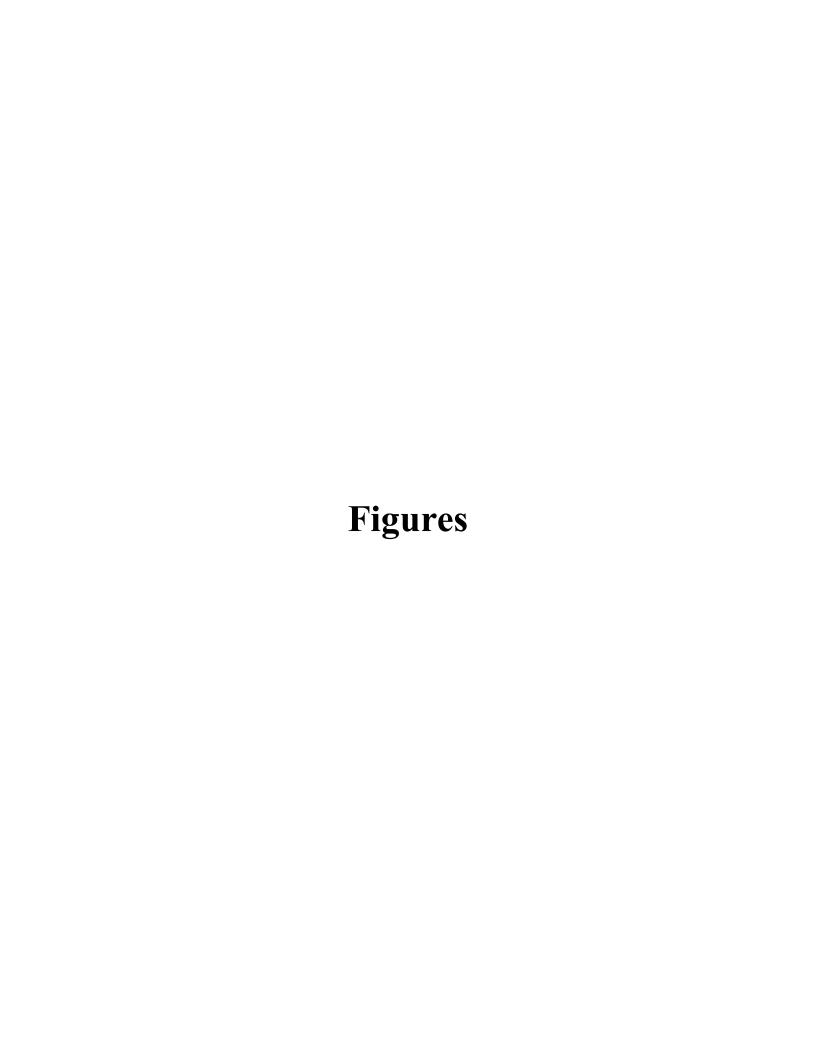
Copy 3: Jeff Dann

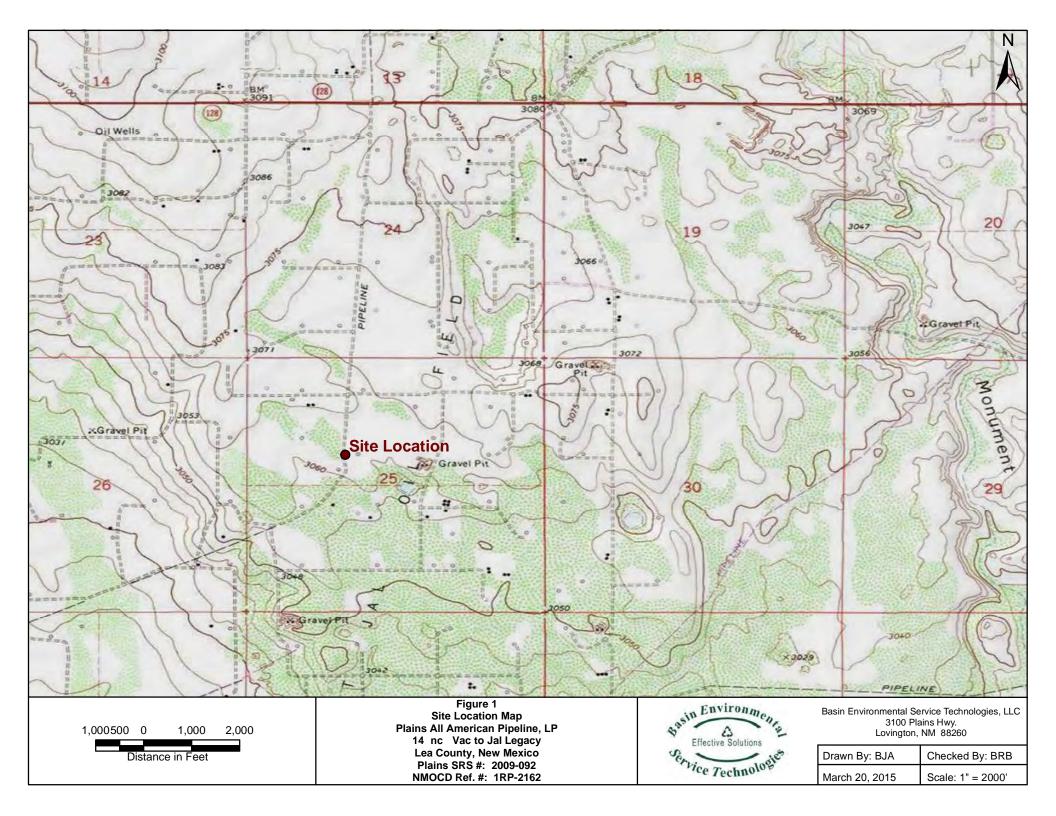
Plains All American Pipeline, LP

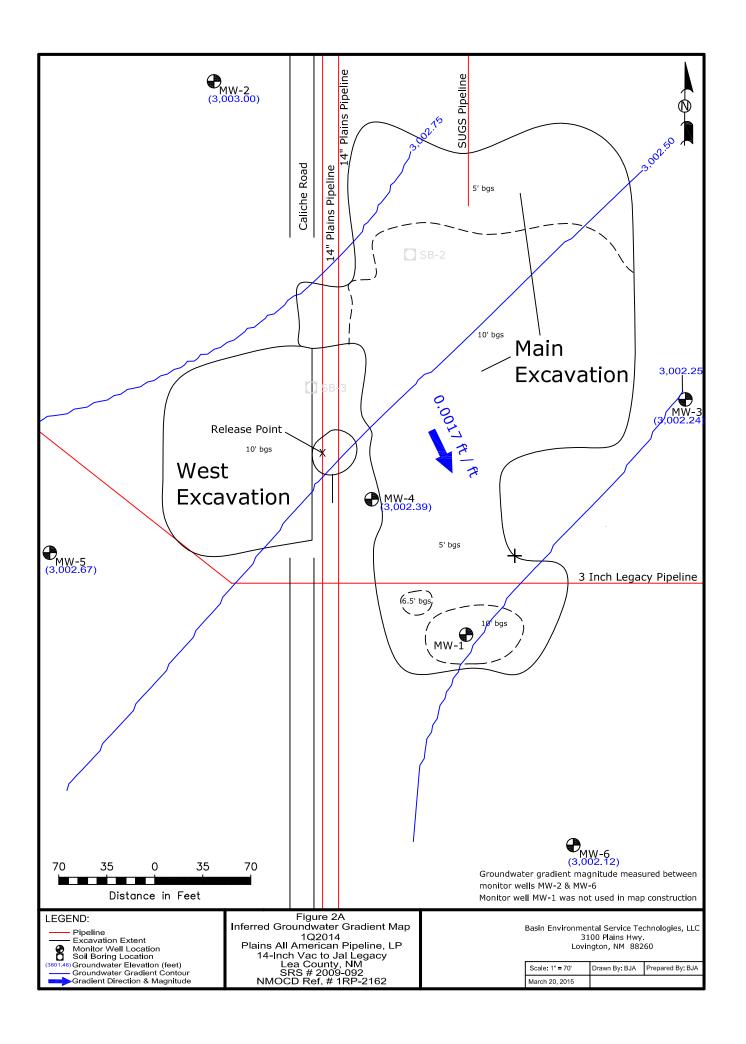
333 Clay Street Suite 1600

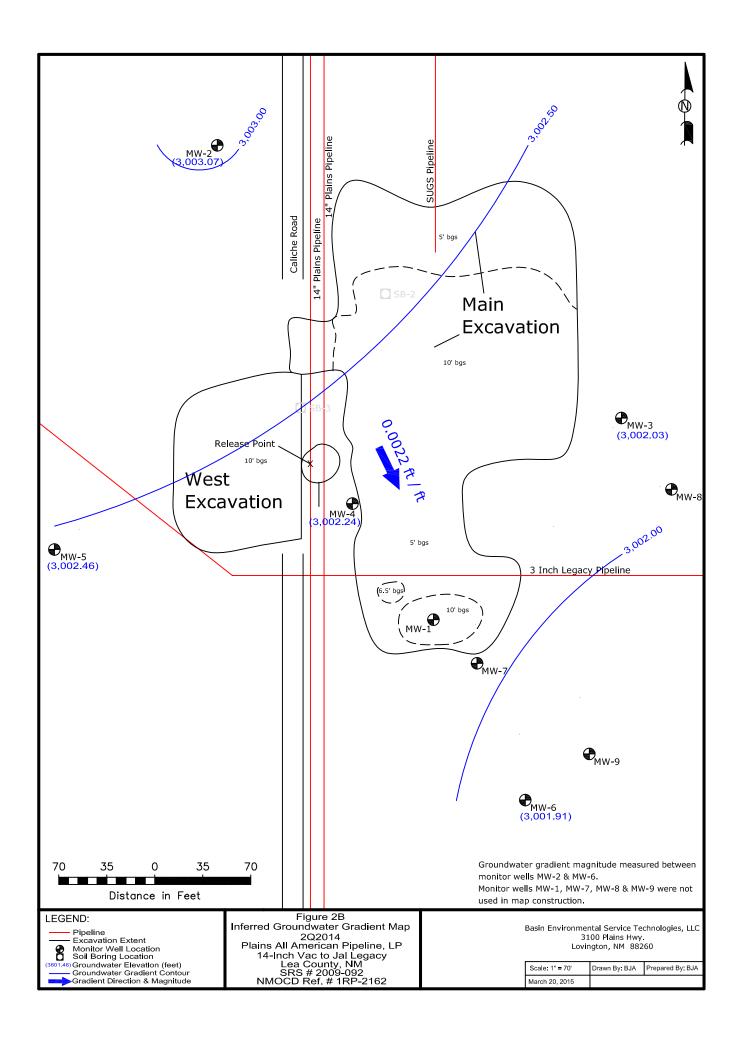
Houston, Texas 77002 jpdann@paalp.com

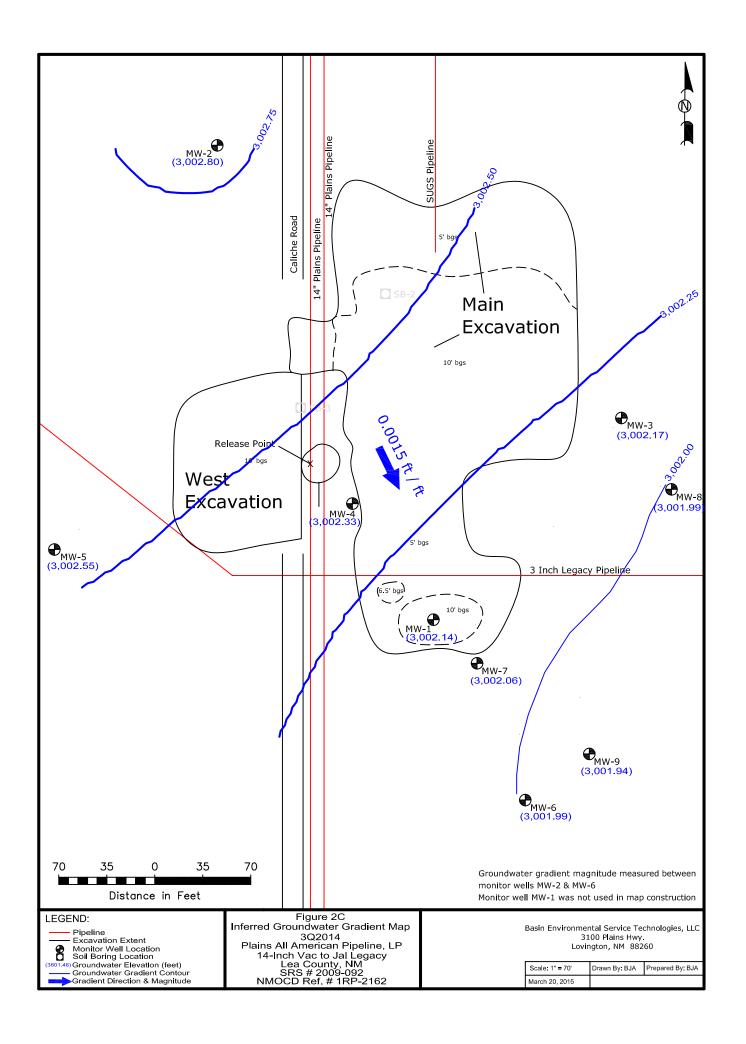
Copy 4: Camille Bryant

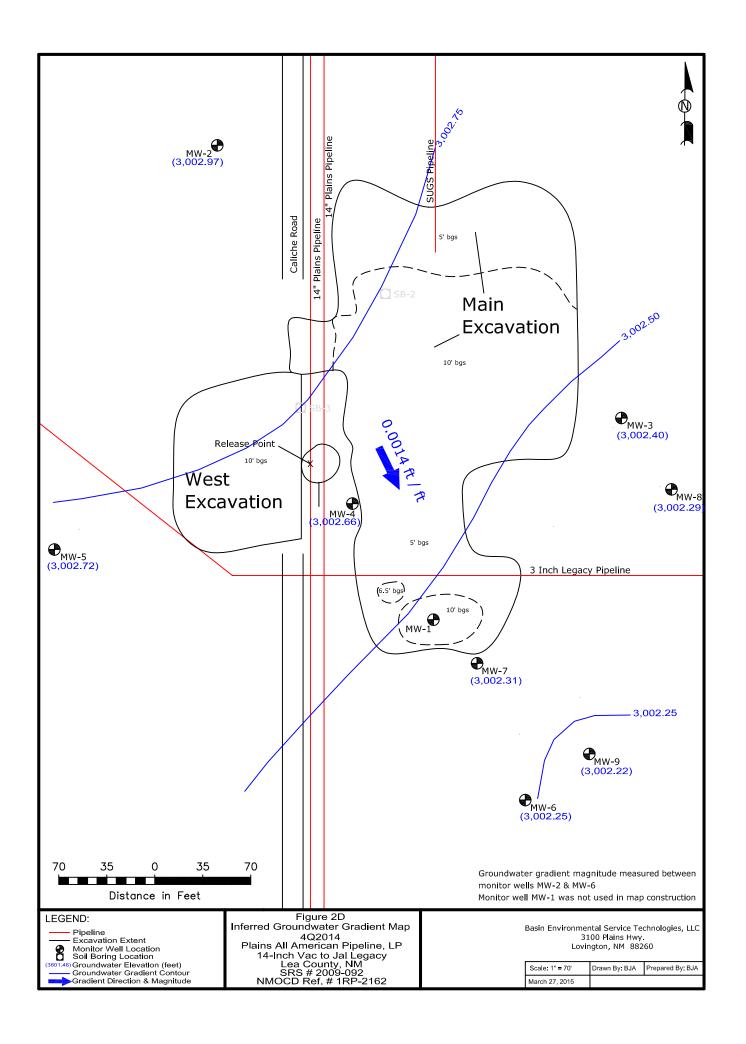

Plains All American Pipeline, LP

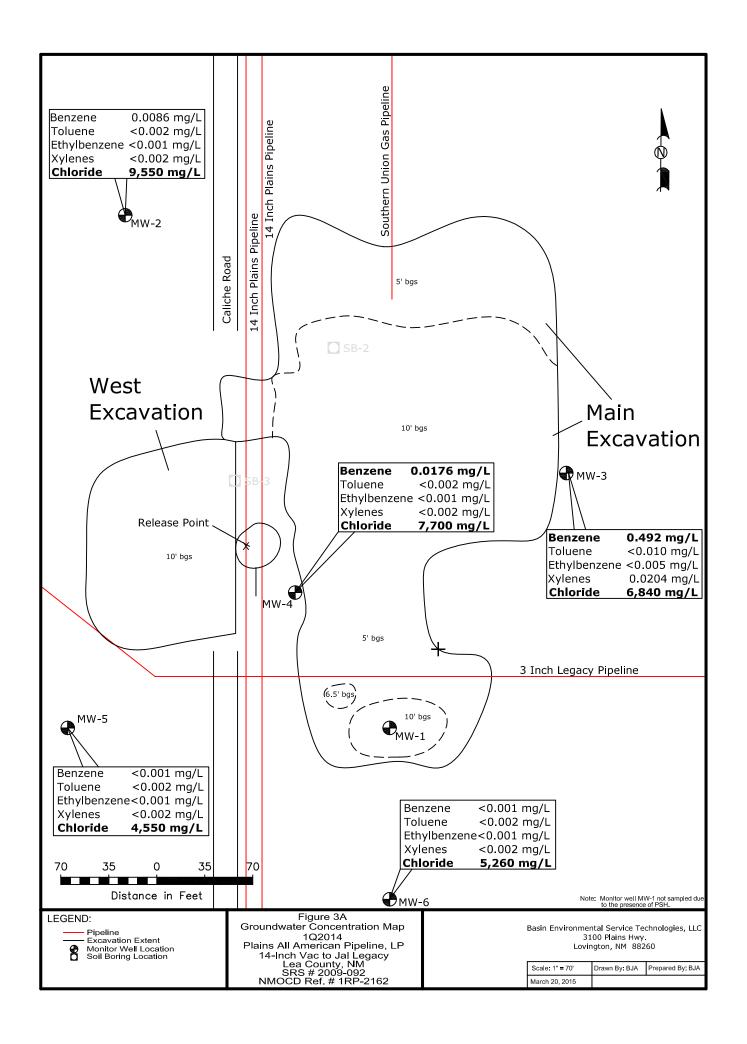

2530 State Highway 214 Denver City, Texas cjbryant@paalp.com

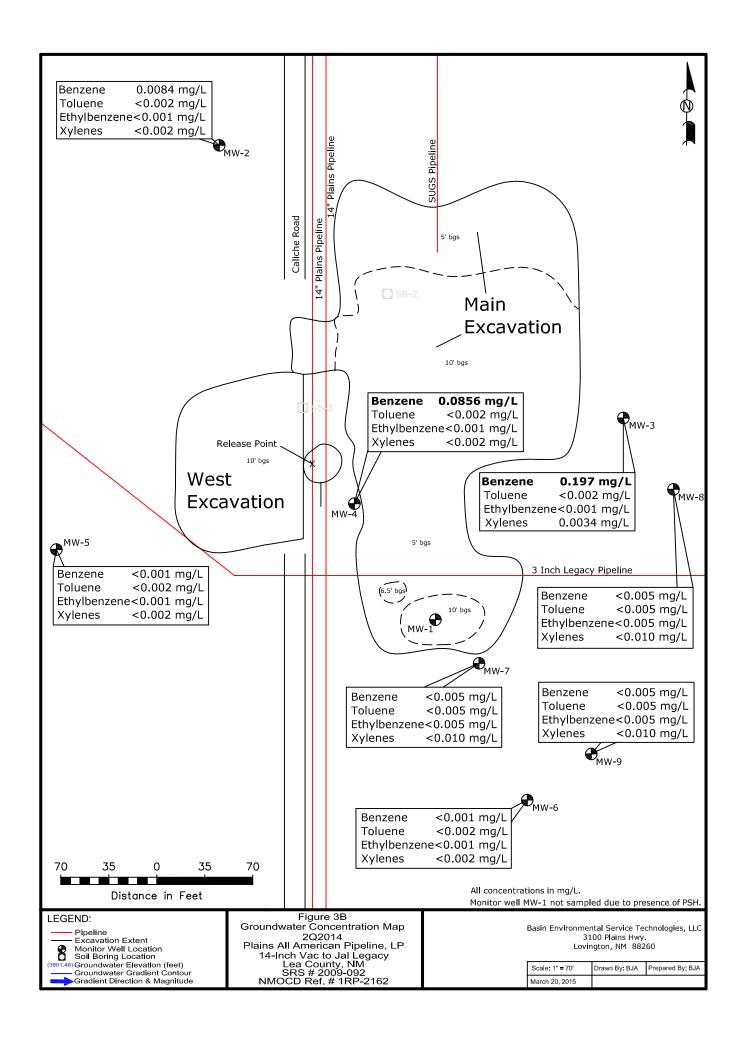

Copy 5: Basin Environmental Service Technologies, LLC

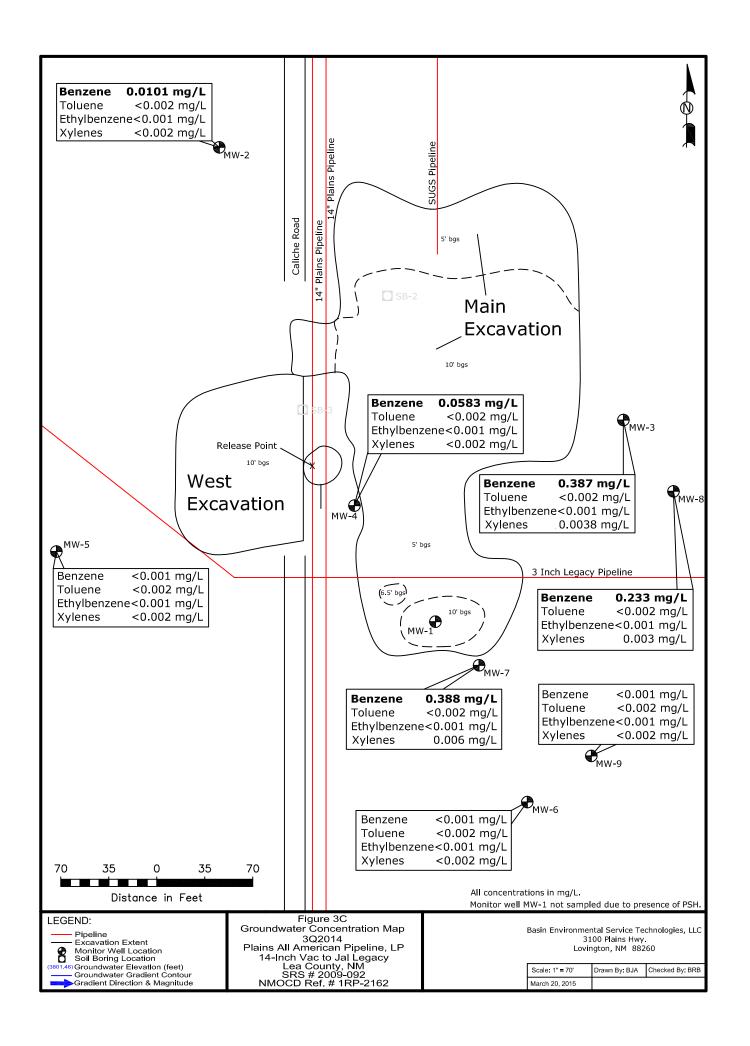

P. O. Box 301

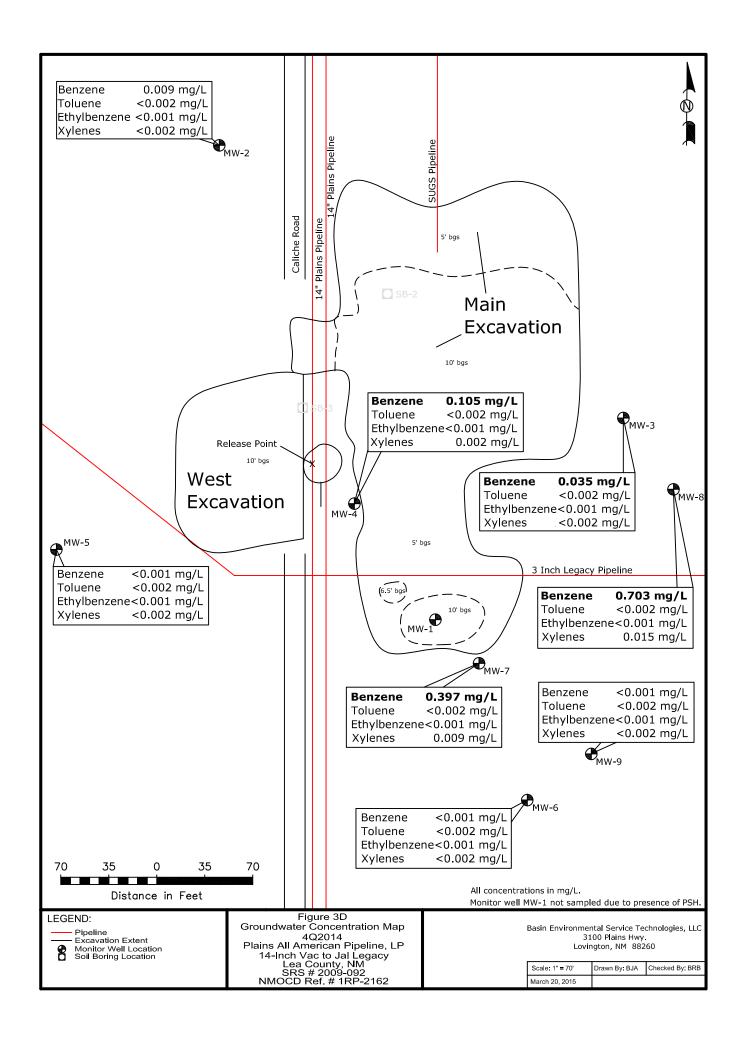

Lovington, New Mexico 88260











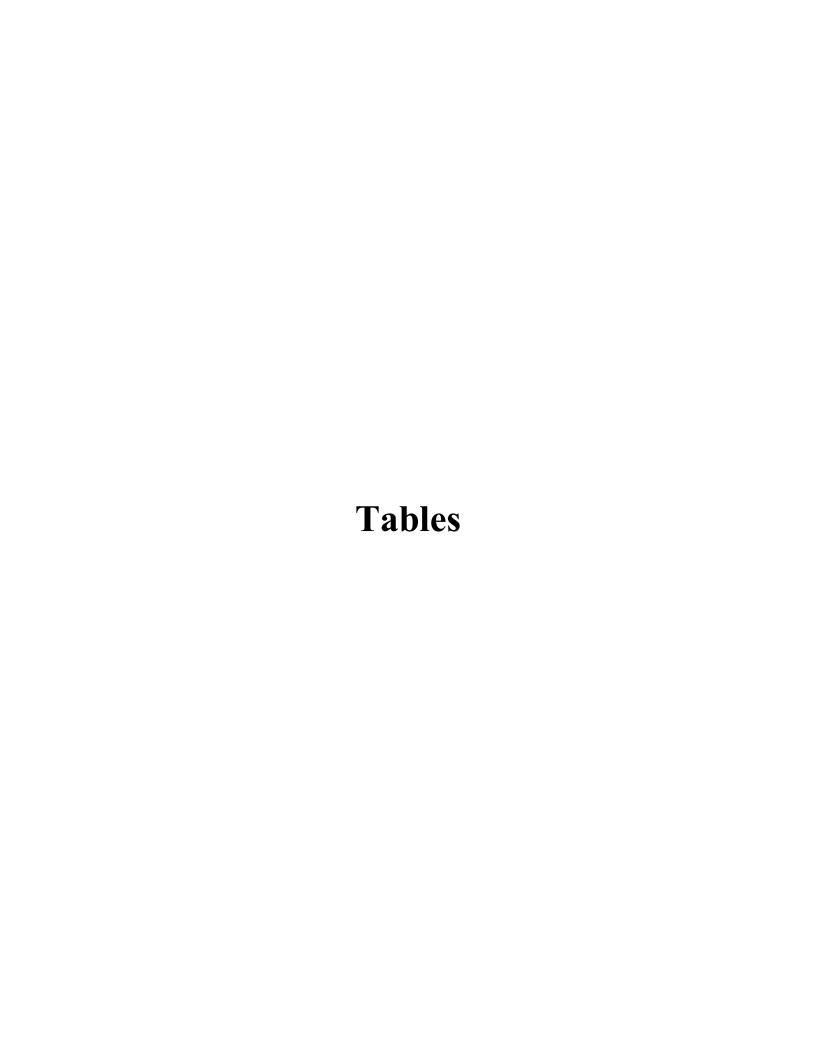


TABLE 1 2014 GROUNDWATER ELEVATION DATA

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092

NMOCD REFERENCE #: 1RP-2162

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUNDWATER ELEVATION
MW-1	02/12/2014	3,065.33	62.56	65.19	2.63	3,002.38
	05/12/2014	3,065.33	62.57	65.21	2.64	3,002.36
	08/04/2014	3,065.33	63.05	63.98	0.93	3,002.14
	11/12/2014	3,065.33	62.81	63.52	0.71	3,002.41
MW-2	02/12/2014	3,065.28	-	62.28	-	3,003.00
	05/12/2014	3,065.28	-	62.21	-	3,003.07
	08/04/2014	3,065.28	-	62.48	-	3,002.80
	11/12/2014	3,065.28	-	62.31	-	3,002.97
MW-3	02/12/2014	3,065.43	-	63.19	-	3,002.24
	05/12/2014	3,065.43	-	63.40	-	3,002.03
	08/04/2014	3,065.43	_	63.26	_	3,002.17
	11/12/2014	3,065.43	-	63.03	-	3,002.40
MW-4	02/12/2014	3,065.15	1	62.76	-	3,002.39
	05/12/2014	3,065.15	-	62.91	-	3,002.24
	08/04/2014	3,065.15	-	62.82	-	3,002.33
	11/12/2014	3,065.15	-	62.49	-	3,002.66
1 0 A / E	00/40/0044	0.005.05		20.00		0.000.07
MW-5	02/12/2014	3,065.95	-	63.28	-	3,002.67
	05/12/2014	3,065.95	-	63.49	-	3,002.46
	08/04/2014	3,065.95	-	63.40	-	3,002.55
	11/12/2014	3,065.95	-	63.23	-	3,002.72
MW-6	02/12/2014	3,065.35	-	63.23	-	3,002.12
	05/12/2014	3,065.35	-	63.44	-	3,001.91
	08/04/2014	3,065.35	-	63.36	-	3,001.99
	11/12/2014	3,065.35	-	63.10	-	3,002.25
		·				
MW-7	07/02/2014	3,065.38	-	77.52	-	2,987.86
	08/04/2014	3,065.38	-	63.32	-	3,002.06
	11/12/2014	3,065.38	-	63.07	-	3,002.31
NAVA (O	07/00/004 4	0.005.40		77.00		0.007.04
MW-8	07/02/2014	3,065.10	-	77.26	-	2,987.84
	08/04/2014	3,065.10	-	63.11	-	3,001.99
	11/12/2014	3,065.10	-	62.81	-	3,002.29
MW-9	07/02/2014	3,065.42	-	77.65	-	2,987.77
	08/04/2014	3,065.42	_	63.48	_	3,001.94
	11/12/2014	3,065.42	-	63.20	-	3,002.22

⁻⁼ Not applicable

TABLE 2 2014 CONCENTRATIONS OF BENZENE, BTEX, CHLORIDE & TOTAL DISSOLVED SOLIDS IN GROUNDWATER

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092 NMOCD REFERENCE #: 1RP-2162

				METHOD	S: EPA SW	846-8021B, 50	30			
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENES (mg/L)	TOTAL BTEX (mg/L)	CHLORIDE (mg/L)	TDS (mg/L)
MW-2	02/12/2014	0.0086	<0.0020	< 0.0010	<0.0020	< 0.0010	< 0.0020	0.0086	9,550	10,800
	05/12/2014	0.0084	< 0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	0.0084	-	-
	08/04/2014	0.0101	<0.0020	< 0.0010	< 0.0020	< 0.0010	< 0.0020	0.0101	-	-
	11/12/2014	0.0085	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0085	10,500	-
MW-3	02/12/2014	0.4920	<0.0020	<0.0010	0.0146	0.0058	0.0204	0.5120	6,840	13,600
	05/12/2014	0.1970	<0.0020	<0.0010	0.0034	<0.0010	0.0034	0.2000	-	-
	08/04/2014	0.3870	<0.0020	<0.0010	0.0038	<0.0010	0.0038	0.3910	-	-
	11/12/2014	0.0345	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0345	-	-
MW-4	02/12/2014	0.0176	<0.0020	<0.0010	<0.0020	< 0.0010	<0.0020	0.0176	7,700	15,200
	05/12/2014	0.0856	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	0.0856	-	-
	08/04/2014	0.0583	<0.0020	<0.0010	<0.0020	< 0.0010	<0.0020	0.0583	-	-
	11/12/2014	0.1050	<0.0020	<0.0010	0.0024	<0.0010	0.0024	0.1070	-	-
MW-5	02/12/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	4,550	8,540
	05/12/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	-	-
	08/04/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	-	-
	11/12/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	-	-
MW-6	02/12/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	5,260	9,920
	05/12/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	-	-
	08/04/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	-	-
	11/12/2014	<0.0010	<0.0020	<0.0010	<0.0020	<0.0010	<0.0020	<0.0020	-	-

TABLE 2 2014 CONCENTRATIONS OF BENZENE, BTEX, CHLORIDE & TOTAL DISSOLVED SOLIDS IN GROUNDWATER

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092 NMOCD REFERENCE #: 1RP-2162

				METHOD	S: EPA SW	846-8021B, 50	30			
SAMPLE LOCATION	SAMPLE DATE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYL- BENZENE (mg/L)	M,P- XYLENES (mg/L)	O-XYLENES (mg/L)	TOTAL XYLENES (mg/L)	TOTAL BTEX (mg/L)	CHLORIDE (mg/L)	TDS (mg/L)
MW-7	07/02/2014	<0.0050	<0.0050	< 0.0050	< 0.0100	< 0.0050	< 0.0100	< 0.0100	4,850	13,700
	08/04/2014	0.3880	<0.0020	< 0.0010	0.0060	< 0.0010	0.0060	0.3940	-	-
	11/12/2014	0.3970	<0.0020	< 0.0010	0.0076	0.0011	0.0087	0.4060	-	-
MW-8	07/02/2014	<0.0050	<0.0050	<0.0050	<0.0100	< 0.0050	<0.0100	<0.0100	7,540	18,100
	08/04/2014	0.2330	<0.0020	< 0.0010	0.0029	< 0.0010	0.0029	0.2360	-	-
	11/12/2014	0.7030	<0.0100	<0.0050	0.0150	< 0.0050	0.0150	0.7180	-	-
MW-9	07/02/2014	<0.0050	<0.0050	<0.0050	<0.0100	< 0.0050	< 0.0100	<0.0100	3,340	9,680
	08/04/2014	< 0.0010	<0.0020	< 0.0010	<0.0020	< 0.0010	<0.0020	<0.0020	-	-
	11/12/2014	< 0.0010	<0.0020	< 0.0010	<0.0020	< 0.0010	<0.0020	<0.0020	-	-
NMOCD CRITERIA		0.01	0.75	0.75	T01	AL XYLENES	0.62		250	10,000

Note: MW-1 no longer sampled due to the presence of PSH.

^{- =} Not analyzed.

TABLE 3 CONCENTRATIONS OF RCRA & NMWQCC METALS IN GROUNDWATER

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092 NMOCD REFERENCE #: 1RP-2162

All water concentrations are reported in mg/L

								EPA	METHOD	S 200.7,	200.8, 747	0A						
SAMPLE LOCATION	SAMPLE DATE	Aluminum	Arsenic	Barium	Boron	Cadmium	Chromium	Cobalt	Copper	Iron	Lead	Manganese	Molybdenum	Nickel	Selenium	Silver	Zinc	Mercury
MW-7	7/2/2014	52.6	0.0206	1.44	0.962	<0.0100	0.0621	0.0435	0.0641	49.8	0.0664	2.86	<0.0100	0.103	<0.0300	< 0.0100	0.308	< 0.00020
MW-8	7/2/2014	124	0.102	3.30	0.601	< 0.0100	0.150	0.0830	0.149	104	0.0913	3.54	< 0.0100	0.203	< 0.0300	0.0255	0.927	< 0.00100
MW-9	7/2/2014	42.2	0.0215	3.33	0.743	<0.0100	0.0506	0.0333	0.0407	38.7	0.0546	2.83	<0.0100	0.081	< 0.0300	< 0.0100	0.256	0.00025
Maximum Conta from NM WQCC water standards 101.UU and 3-10	Drinking Sections 1-	5.0 mg/L	0.1 mg/L	1.0 mg/L	0.75 mg/L	0.01 mg/L	0.05 mg/L	0.05 mg/L	1.0 mg/L	1.0 mg/L	0.05 mg/L	0.2 mg/L	1.0 mg/L	0.2 mg/L	0.05 mg/L	0.05 mg/L	10 mg/L	0.002 mg/L

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092

NMOCD REFERENCE #: 1RP-2162

SAMPLE LOCATION	SAMPLE DATE	Benzene	Bromobenzene	Bromochloromethane	Bromodichloromethane	Bromoform	Bromomethane	2-Butanone	MTBE	n-Butylbenzene	sec-Butylbenzene	tert-Butylbenzene	Carbon Disulfide	Carbon Tetrachloride	Chlorobenzene	Chloroethane
MW-7	7/2/2014	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	-	< 0.005	< 0.005	< 0.01
MW-8	7/2/2014	<0.005	< 0.005				< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	-	<0.005		
MW-9	7/2/2014	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	-	<0.005	< 0.005	<0.01
Maximum Contam NMWQCC Drinking Sections 1-101.0	g water standards	= =												0.01 mg/L		

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092

NMOCD REFERENCE #: 1RP-2162

SAMPLE LOCATION	SAMPLE DATE	2-Chloroethyl vinyl ether	Chloroform	Chloromethane/ Methyl Chloride	2-Chlorotoluene	4-Chlorotoluene	p-Cymene(p- Isopropyltoluene)	Dibromochloromethane	1,2-Dibromo-3- chloropropane	1,2-Dibromoethane (EDB)	Dibromomethane (methylene bromide)	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Dichlorodifluormethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethene	cis-1,2-Dichloroethene
MW-7	7/2/2014	< 0.005	< 0.005	<0.010	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
MW-8	7/2/2014	< 0.005		<0.010															< 0.005
MW-9	7/2/2014	< 0.005	< 0.005	<0.010	< 0.005	< 0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
	ninant Levels from g water standards UU and 3-103.A.		0.1mg/L							0.0001 mg/L						0.005 mg/L	0.01 mg/L	0.005 mg/L	0.1mg/L

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092 NMOCD REFERENCE #: 1RP-2162

SAMPLE LOCATION	SAMPLE DATE	trans-1,2-Dichloroethene	1,2-Dichloropropane	1,3-Dichloropropane	2,2-Dichloropropane	1,1-Dichloropropane	cis-1,3-Dichloropropene	trans-1,3-Dichloropropene	Ethylbenzene	Hexachlorobutadiene	2-Hexanone	Isopropylbenzene	Methylene chloride	4-Methyl-2-pentanone (MIBK)	Naphthalene	n-Propylbenzene	Styrene	1,1,1,2-Tetrachloroethane
MW-7	7/2/2014	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.05	< 0.010	< 0.005	< 0.005	< 0.005
MW-8	7/2/2014	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05	< 0.005	< 0.005	< 0.05	< 0.010	< 0.005	< 0.005	< 0.005
MW-9	7/2/2014	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	<0.05	< 0.005	<0.005	<0.05	< 0.010	< 0.005	< 0.005	< 0.005
Maximum Contam NMWQCC Drinkin Sections 1-101.	g water standards								0.75 mg/L				0.1mg/L		0.03 mg/L			

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092 NMOCD REFERENCE #: 1RP-2162

SAMPLE LOCATION	SAMPLE DATE	1,1,2,2-Tetrachloroethane	Tetrachloroethene (PCE)	Toluene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,1,1-Trichloroethane	1,1,2-Trichloroethane	Trichloroethene (TCE)	Trichlorofluoromethane	1,2,3-Trichloropropane	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	o-Xylene	m,p-Xylene	Vinyl Chloride
MW-7	7/2/2014	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.002
MW-8	7/2/2014	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005			< 0.005						
MW-9	7/2/2014	< 0.005	< 0.005	<0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.010	< 0.002
Maximum Contam NMWQCC Drinkin Sections 1-101.	g water standards	=		0.75 mg/L			0.06 mg/L		0.01 mg/ L					Total Xylene	0.62 mg/L	0.001 mg/L

TABLE 5 CONCENTRATIONS OF SEMI-VOLATILE COMPOUNDS IN GROUNDWATER

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092 NMOCD REFERENCE #: 1RP-2162

All water concentrations are reported in mg/L

							All water con	E	PA SW846	-8270C, 351	10						
SAMPLE LOCATION	SAMPLE DATE	Acenaphthene	Acenaphthylene	Anthracene	Benzo[a]anthracene	Benzo[a]pyrene	Benzo[b]fluoranthene	Benzo[g,h,i]perylene	Benzo[k]fluoranthene	Chrysene	Dibenz[a,h]anthracene	Fluoranthene	Fluorene	Indeno[1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
MW-2	5/12/2014	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	< 0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.00053	<0.000053	< 0.000053
MW-3	5/12/2014	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.000051	<0.00051	<0.000051	<0.000051
MW-4	5/12/2014	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.000053	<0.00053	<0.000053	<0.000053
MW-5	5/12/2014	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.00052	<0.000052	<0.000052
MW-6	5/12/2014	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.000052	<0.00052	<0.000052	<0.000052
MW-7	7/2/2014	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050	<0.000050
MW-8	7/2/2014	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050	<0.000050
MW-9	7/2/2014	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.000050	<0.00050	<0.000050	<0.000050

TABLE 6 CONCENTRATIONS OF ANIONS/CATIONS IN GROUNDWATER

PLAINS ALL AMERICAN PIPELINE, LP 14-INCH VAC TO JAL LEGACY LEA COUNTY, NEW MEXICO PLAINS SRS #: 2009-092

NMOCD REFERENCE #: 1RP-2162

All water concentrations are reported in mg/L

SAMPLE	SAMPLE				EPA Method	ds 200.7, 300	/300.1, E353.	2, SM2320B			
LOCATION	DATE	Calcium	Magnesium	Potassium	Sodium	Chloride	Sulfate	Bicarbonate	Carbonate	Nitrate	Flouride
MW-7	7/2/2014	1,050	316	40.2	1,890	4,850	490	230	<4.00	7.82	<80.0
MW-8	7/2/2014	1,250	256	44.4	1,170	7,540	615	192	<4.00	5.46	<80.0
MW-9	7/2/2014	697	193	31.8	1,340	3,340	406	317	<4.00	3.52	<80.0
_		•	•	•	•	250 mg/L	7/6m 009		•	10 mg/L	1.6 mg/L

Appendix A Laboratory Analytical Reports

Analytical Report 479258

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo 14" Vac to Jal Legacy SRS #2009-092 20-FEB-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

20-FEB-14

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 479258

14" Vac to Jal Legacy Project Address: NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 479258. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 479258 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Hoah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 479258

PLAINS ALL AMERICAN EH&S, Midland, TX

14" Vac to Jal Legacy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	02-12-14 09:45		479258-001
MW-3	W	02-12-14 10:00		479258-002
MW-4	W	02-12-14 10:45		479258-003
MW-5	W	02-12-14 11:15		479258-004
MW-6	W	02-12-14 11:45		479258-005

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: 14" Vac to Jal Legacy

 Project ID:
 SRS #2009-092
 Report Date:
 20-FEB-14

 Work Order Number(s):
 479258
 Date Received:
 02/12/2014

Sample receipt non conformances an	nd comments:	
Sample receipt non conformances an	nd comments per sample:	
None		

Project Location: NM

Certificate of Analysis Summary 479258

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS #2009-092

Contact: Ben Arguijo

Project Name: 14" Vac to Jal Legacy

Date Received in Lab: Wed Feb-12-14 02:45 pm **Report Date:** 20-FEB-14

Project Manager: Kelsey Brooks

								Project Ma	nager:	Kelsey Brook	S	
	Lab Id:	479258-	001	479258-	002	479258-	003	479258-	004	479258-0	005	
Analonia Danasanta I	Field Id:	MW-	2	MW-3	3	MW-4	1	MW-	5	MW-6	5	
Analysis Requested	Depth:											
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	
	Sampled:	Feb-12-14	09:45	Feb-12-14	10:00	Feb-12-14	10:45	Feb-12-14	11:15	Feb-12-14	11:45	
BTEX by EPA 8021B	Extracted:	Feb-18-14	15:00	Feb-18-14	15:00	Feb-18-14	15:00	Feb-18-14	15:00	Feb-18-14	15:00	
And		Feb-19-14	17:26	Feb-19-14	18:16	Feb-18-14	23:43	Feb-19-14	16:53	Feb-19-14	17:09	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Benzene		0.00855	0.00100	0.492	0.00500	0.0176	0.00100	ND	0.00100	ND	0.00100	
Toluene		ND	0.00200	ND	0.0100	ND	0.00200	ND	0.00200	ND	0.00200	
Ethylbenzene		ND	0.00100	ND	0.00500	ND	0.00100	ND	0.00100	ND	0.00100	
m_p-Xylenes		ND	0.00200	0.0146	0.0100	ND	0.00200	ND	0.00200	ND	0.00200	
o-Xylene		ND	0.00100	0.00580	0.00500	ND	0.00100	ND	0.00100	ND	0.00100	
Total Xylenes		ND	0.00100	0.0204	0.00500	ND	0.00100	ND	0.00100	ND	0.00100	
Total BTEX		0.00855	0.00100	0.512	0.00500	0.0176	0.00100	ND	0.00100	ND	0.00100	
Inorganic Anions by EPA 300/300.1	Extracted:	Feb-14-14	13:45	Feb-14-14	14:07	Feb-14-14	14:30	Feb-14-14	14:53	Feb-14-14	15:15	
	Analyzed:	Feb-14-14	13:45	Feb-14-14	14:07	Feb-14-14	14:30	Feb-14-14	14:53	Feb-14-14	15:15	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Chloride		9550	500	6840	200	7700	200	4550	200	5260	200	
TDS by SM2540C	Extracted:											
Analyzed:		Feb-17-14	12:30	Feb-17-14	12:30	Feb-17-14	12:30	Feb-17-14	12:30	Feb-17-14	12:30	
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Total dissolved solids		10800	5.00	13600	5.00	15200	5.00	8540	5.00	9920	5.00	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

4-Bromofluorobenzene

T T-- 24 -- -

Form 2 - Surrogate Recoveries

Project Name: 14" Vac to Jal Legacy

Project ID: SRS #2009-092 Work Orders: 479258,

Lab Batch #: 934403 Matrix: Water Sample: 479258-003 / SMP Batch:

Data Amalamada 00/10/14/02:42

Units: mg/L Date Analyzed: 02/18/14 23:43	SURROGATE RECOVERY STUDY							
BTEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
1,4-Difluorobenzene	0.0276	0.0300	92	80-120				
4-Bromofluorobenzene	0.0261	0.0300	87	80-120				

Matrix: Water **Lab Batch #:** 934403 Sample: 479258-004 / SMP Batch: 1

Units: mg/L Date Analyzed: 02/19/14 16:53 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0281 0.0300 94 80-120

0.0276

0.0300

80-120

92

Lab Batch #: 934403 Sample: 479258-005 / SMP Matrix: Water Batch:

mg/L **Units:** Date Analyzed: 02/19/14 17:09 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0289	0.0300	96	80-120	
4-Bromofluorobenzene	0.0279	0.0300	93	80-120	

Sample: 479258-001 / SMP **Lab Batch #:** 934403 Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 02/19/14 17:26	SURROGATE RECOVERY STUDY						
	BTE	CX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluoro	obenzene	Analytes	0.0282	0.0300	94	80-120			
4-Bromoflu	orobenzene		0.0275	0.0300	92	80-120			

Lab Batch #: 934403 Sample: 479258-002 / SMP Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 02/19/14 18:16	SURROGATE RECOVERY STUDY						
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluorober	nzene		0.0294	0.0300	98	80-120			
4-Bromofluorol	enzene		0.0256	0.0300	85	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: 14" Vac to Jal Legacy

Work Orders : 479258, **Project ID:** SRS #2009-092

Lab Batch #: 934403 Sample: 651313-1-BLK / BLK Batch: 1 Matrix: Water

Units:	mg/L	Date Analyzed: 02/18/14 18:42	SURROGATE RECOVERY STUDY					
	ВТЕ	CX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1.4.75.75		Analytes						
1,4-Difluorobe	enzene		0.0276	0.0300	92	80-120		
4-Bromofluoro	obenzene		0.0268	0.0300	89	80-120		

Lab Batch #: 934403 Sample: 651313-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 02/18/14 18:58 SURROGATE RECOVERY STUDY Amount Found Amount Recovery Limits Flags [A] [B] %R Flags							
	BTI	EX by EPA 8021B	Found	Amount		Limits	Flags
		Analytes			[D]		
1,4-Difluor	robenzene		0.0310	0.0300	103	80-120	
4-Bromoflu	uorobenzene		0.0306	0.0300	102	80-120	

Lab Batch #: 934403 Sample: 651313-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 02/18/14 19:14 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0305	0.0300	102	80-120	
4-Bromofluorobenzene	0.0302	0.0300	101	80-120	

Units:	mg/L	Date Analyzed: 02/18/14 19:30	SURROGATE RECOVERY STUDY					
	ВТІ	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
1,4-Difluoro	benzene		0.0318	0.0300	106	80-120		
4-Bromofluo	orobenzene		0.0298	0.0300	99	80-120		

Units:	nits: mg/L Date Analyzed: 02/18/14 19:46		SURROGATE RECOVERY STUDY						
	BTI	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
1,4-Difluorober	nzene		0.0313	0.0300	104	80-120			
4-Bromofluoro	benzene		0.0310	0.0300	103	80-120			

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: 14" Vac to Jal Legacy

Work Order #: 479258 Project ID: SRS #2009-092

 Lab Batch #:
 934244
 Sample: 934244-1-BKS
 Matrix: Water

 Date Analyzed:
 02/17/2014
 Date Prepared: 02/17/2014
 Analyst: AMB

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

1 8 0									
TDS by SM2540C	Blank Result	Spike Added	Blank Spike	Blank Spike	Control Limits	Flags			
Analytes	[A]	[B]	Result [C]	%R [D]	%R				
Total dissolved solids	20.5	1000	992	99	80-120				

Units:

mg/L

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: 14" Vac to Jal Legacy

Work Order #: 479258 Project ID: SRS #2009-092

Analyst: ARM Date Prepared: 02/18/2014 Date Analyzed: 02/18/2014

Lab Batch ID: 934403Sample: 651313-1-BKSBatch #: 1Matrix: Water

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00100	0.100	0.106	106	0.100	0.104	104	2	70-125	25	
Toluene	< 0.00200	0.100	0.109	109	0.100	0.106	106	3	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.108	108	0.100	0.106	106	2	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.214	107	0.200	0.210	105	2	70-131	25	
o-Xylene	< 0.00100	0.100	0.108	108	0.100	0.106	106	2	71-133	25	

Analyst: AMB Date Prepared: 02/14/2014 Date Analyzed: 02/14/2014

Lab Batch ID: 934163 Sample: 651046-1-BKS Batch #: 1 Matrix: Water

Units: mg/L BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	24.8	99	25.0	24.7	99	0	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: 14" Vac to Jal Legacy

Work Order #: 479258 Lab Batch #: 934163

Project ID: SRS #2009-092

Date Analyzed: 02/14/2014 **Date Prepared:** 02/14/2014 Analyst: AMB **QC- Sample ID:** 479273-001 S **Batch #:** 1 Matrix: Water

Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY								
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Chloride	197	125	341	115	80-120				

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS / MSD Recoveries

Project Name: 14" Vac to Jal Legacy

Work Order #: 479258 Project ID: SRS #2009-092

Lab Batch ID: 934403 **QC- Sample ID:** 479465-001 S **Batch #:** 1 **Matrix:** Water

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result [C]	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[0]	[D]	[E]	Kesuit [F]	[G]	70	/0K	70KI D	
Benzene	< 0.00100	0.100	0.106	106	0.100	0.105	105	1	70-125	25	
Toluene	< 0.00200	0.100	0.106	106	0.100	0.107	107	1	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.106	106	0.100	0.108	108	2	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.210	105	0.200	0.213	107	1	70-131	25	
o-Xylene	< 0.00100	0.100	0.105	105	0.100	0.107	107	2	71-133	25	

Sample Duplicate Recovery

Project Name: 14" Vac to Jal Legacy

Work Order #: 479258

Lab Batch #: 934244 **Project ID:** SRS #2009-092

 Date Analyzed:
 02/17/2014 12:30
 Date Prepared:
 02/17/2014
 Analyst: AMB

 QC- Sample ID:
 479341-001 D
 Batch #:
 1
 Matrix: Water

Reporting Units: mg/L	SAMPLE / SAMPLE DUPLICATE RECOVERY								
TDS by SM2540C Analyte	Parent Sample Result [A]	Sample Duplicate Result [B]	RPD	Control Limits %RPD	Flag				
Total dissolved solids	1780	1820	2	10					

Lab Batch #: 934244

 Date Analyzed:
 02/17/2014 12:30
 Date Prepared:
 02/17/2014
 Analyst: AMB

 QC- Sample ID:
 479375-001 D
 Batch #:
 1
 Matrix: Water

Reporting Units: mg/L SAMPLE / SAMPLE DUPLICATE RECOVER'							
TDS by SM2540C	Parent Sample Result [A]	Duplicate Result	RPD	Control Limits %RPD	Flag		
Analyte		[B]					
Total dissolved solids	472	481	2	10			

_
\sim
7
_
$\overline{}$
•
_
a
- 2
2
•

YES NO N/A

76	177	60
	W	~
		ories

3100 Plains Hwy.

14" Vac to Jal Legacy

Sample ID

MW-2

MW-3

MW-4

MW-5

MW-6

Reg. Program / Clean-up Std

SRS #2009-092

Camille Bryant

Lovington

Ben Arquijo

Basin Environmental Service Technologies, LLC

Plains All American

Company:

Address:

PM/Attn:

Project ID:

Invoice To:

Sample

2

6

8 9 0

Sampler Signature:

City:

CHAIN OF CUSTODY RECORD

(575)396-2378

(575)396-1429

PAA-C. Bryant

Cont Type

VC

Pres Type*

E, 1

Example atiles by 8260

Volatiles

Cont

4

4

4

VP

E.I

BTEX

Lab Only:

88260

cjbryant@paalp.com,

bjarguijo@basinenv.com

Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800 Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550

Phone:

Zip:

PO#:

Circle One Event: Daily Weekly Monthly Quartely

N/A

Quote #:

Matrix

Code /

GW

GW

GW

State: NM

Collect

Time

STATE for Certs & Reas

Email:

Semi-Annual Annual

Collect

Date

LAB W.O#: Field billable Hrs:

Std (5-7D) 5Hrs 1D 2D 3D 4D 5D 7D 10D 14D Other

ANALYSES REQUESTED

TAT Work Days = D Need results by:

PC

Chloride

X

TDS

X

X

X

EDDs

Page 1 of 1

ES Encore Sampler TS TerraCore Sampler Vial Pre-preserved Air Canister TR 7B PC

* Container Type Codes

GA Glass Amber Tedlar Bag GC Glass Clear Zip Lock Bag Plastic Amber Plastic Clear PC Plastic Clear

VA Vial Amber

VC Vial Clear

Size(s): 2oz, 4oz, 8oz, 16oz, 32oz, 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other

** Preservative Type Codes A. None E. HCL B. HNO₃ F. MeOH J. MCAA H₂SO₄ G. Na₂S₂O₃ K. ZnAc&NaOH D. NaOH H. NaHSO₄ L Asbc Acid&NaOH

Hold Sample
) Run PAH
Only If ^ Matrix Type Codes GW Ground Water S Soil/Sediment/Solid WW Waste Water W Wipe DW Drinking Water A Air O Oil SW Surface Water OW Ocean/Sea Water T Tissue Product-Liquid U Urine Product-Solid B Blood SL Sludge

REMARKS

GW X 4 X X GW 4

COC & Labels

Coolers Temp °C CTLs TRRP DW NPDES LPST DICIN FL TX GA NC SC NJ PA OK LA 1 2 3 4 CLP AFCEE QAPP ADaPT SEDD ERPIMS Match Incomplete Other AL NM Other: NELAC DoD-ELAP Other: XLS Other: 3 Absent Unclear Relinquished by Affiliation Date Time Received by Affiliation Date Time 12/12 3

QA/QC Level & Certification

Received on time to meet HTs? C.O.C. Serial #

Lab Use Only

Non-Conformances found?

Received on Wet Ice? abeled with proper preservatives?

Proper containers used? pH verified-acceptable, excl VOCs?

Samples intact upon arrival?

Received within holding time? Custody seals intact? VOCs rec'd w/o headspace?

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 02/12/2014 02:45:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 479258

Temperature Measuring device used:

			easuring device used .				
		Sample Receipt Checklist	Comment				
#1 *Temperature of coo	oler(s)?		2.5				
#2 *Shipping container	in good condition	?	Yes				
#3 *Samples received of	on ice?		Yes				
#4 *Custody Seals intac	ct on shipping cor	ntainer/ cooler?	Yes				
#5 Custody Seals intac	t on sample bottle	es?	Yes				
#6 *Custody Seals Sigr	ned and dated?		Yes				
#7 *Chain of Custody p	resent?		Yes				
#8 Sample instructions	complete on Cha	nin of Custody?	Yes				
#9 Any missing/extra sa	amples?		No				
#10 Chain of Custody s	signed when relind	quished/ received?	Yes				
#11 Chain of Custody a	agrees with sampl	le label(s)?	Yes				
#12 Container label(s)	legible and intact	?	Yes				
#13 Sample matrix/ pro	perties agree with	h Chain of Custody?	Yes				
#14 Samples in proper	container/ bottle?		Yes				
#15 Samples properly p	preserved?		Yes				
#16 Sample container(s	s) intact?		Yes				
#17 Sufficient sample a	amount for indicat	ed test(s)?	Yes				
#18 All samples receive	ed within hold time	e?	Yes				
#19 Subcontract of sam	nple(s)?		Yes				
#20 VOC samples have	e zero headspace	e (less than 1/4 inch bubble)?	Yes				
	nreceived with HI	NO3 HCI H2SO42	Yes				
#21 <2 for all samples إ	preserved with th	100,110L, 11200+:					
-	-	NaAsO2+NaOH, ZnAc+NaOH?	N/A				
, in the second second	s preserved with N	NaAsO2+NaOH, ZnAc+NaOH? Plivery of samples prior to placing	N/A				

Analytical Report 485273

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo 14" Vac to Jal Legacy SRS #2009-092 19-MAY-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

19-MAY-14

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 485273

14" Vac to Jal Legacy Project Address: NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 485273. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 485273 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Hoah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 485273

PLAINS ALL AMERICAN EH&S, Midland, TX

14" Vac to Jal Legacy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	05-12-14 08:30		485273-001
MW-3	W	05-12-14 09:00		485273-002
MW-4	W	05-12-14 09:30		485273-003
MW-5	W	05-12-14 10:00		485273-004
MW-6	W	05-12-14 11:00		485273-005

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: 14" Vac to Jal Legacy

 Project ID:
 SRS #2009-092
 Report Date:
 19-MAY-14

 Work Order Number(s):
 485273
 Date Received:
 05/12/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-941130 PAHs by GCMS SIM

Surrogate Nitrobenzene-d5, Surrogate Terphenyl-D14 recovered below QC limits. Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 485273-002.

Surrogate 2-Fluorobiphenyl recovered below QC limits. Matrix interferences is suspected; data confirmed by re-analysis Samples affected are: 485273-002,485273-005.

Insufficient sample for re-extraction. Surrogate failure confirmed by re-analysis only.

Certificate of Analysis Summary 485273

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS #2009-092

Project Name: 14" Vac to Jal Legacy

Project Location: NM

Contact: Ben Arguijo

Date Received in Lab: Mon May-12-14 03:00 pm

Report Date: 19-MAY-14

Project Manager: Kelsev Brooks

	1 Toject Wanager. Reisey Brooks											
	Lab Id:	485273-0	01	485273-	002	485273-	003	485273-	004	485273-0	005	
Analysis Pagyastad	Field Id:	MW-2		MW-3		MW-4		MW-5		MW-6		
Analysis Requested	Depth:											
Matrix		WATER	WATER		R	WATER		WATER		WATER		
	Sampled:	May-12-14 (May-12-14 08:30		09:00	May-12-14 09:30		May-12-14	10:00	May-12-14	11:00	
BTEX by EPA 8021B	Extracted:	May-15-14	May-15-14 16:00		16:00	May-15-14 16:00		May-15-14 16:00		May-15-14 16:00		
	Analyzed:	May-16-14 (May-16-14 09:39		May-16-14 09:56 May-16-14 10:13		10:13	May-16-14 10:29		May-16-14 01:02		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	
Benzene		0.00836	0.00100	0.197	0.00100	0.0856	0.00100	ND	0.00100	ND	0.00100	
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
m,p-Xylenes		ND	0.00200	0.00343	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Total Xylenes		ND	0.00100	0.00343	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	
Total BTEX		0.00836	0.00100	0.200	0.00100	0.0856	0.00100	ND	0.00100	ND	0.00100	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Certificate of Analysis Summary 485273

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS #2009-092

Project Name: 14" Vac to Jal Legacy

Project Location: NM

Contact: Ben Arguijo

Date Received in Lab: Mon May-12-14 03:00 pm

Report Date: 19-MAY-14

Project Manager: Kelsey Brooks

Lab Id:	485273-001	485273-002	405072 002	405252 004		
	103273 001	463273-002	485273-003	485273-004	485273-005	
Field Id:	MW-2	MW-3	MW-4	MW-5	MW-6	
Depth:						
Matrix:	WATER	WATER	WATER	WATER	WATER	
ampled:	May-12-14 08:30	May-12-14 09:00	May-12-14 09:30	May-12-14 10:00	May-12-14 11:00	
xtracted:	May-15-14 16:12	May-15-14 16:15	May-15-14 16:18	May-15-14 16:21	May-15-14 16:24	
nalyzed:	May-16-14 12:52	May-16-14 13:10	May-16-14 13:28	May-16-14 14:03	May-16-14 14:20	
nits/RL:	mg/L RL	mg/L RL	mg/L RL	mg/L RL	mg/L RL	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.000532	ND 0.000510	ND 0.000526	ND 0.000515	ND 0.000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
	ND 0.0000532	ND 0.0000510	ND 0.0000526	ND 0.0000515	ND 0.0000515	
· ·	Matrix: ampled: tracted: nalyzed:	Matrix: WATER Impled: May-12-14 08:30 Itracted: May-15-14 16:12 Impled: May-16-14 12:52 Impl	Matrix: WATER WATER ampled: May-12-14 08:30 May-12-14 09:00 tracted: May-15-14 16:12 May-15-14 16:15 malyzed: May-16-14 12:52 May-16-14 13:10 mits/RL: mg/L RL mg/L RL ND 0.0000532 ND 0.0000510 ND 0.0000510 ND 0.0000510 ND 0.0000532 ND 0.0000510 ND 0.0000510 ND 0.0000510	Matrix: WATER WATER WATER Impled: May-12-14 08:30 May-12-14 09:00 May-12-14 09:30 Itracted: May-15-14 16:12 May-15-14 16:15 May-15-14 16:18 Inits/RL: May-16-14 12:52 May-16-14 13:10 May-16-14 13:28 Inits/RL: mg/L RL mg/L RL ND 0.0000532 ND 0.0000510 ND 0.0000526 ND 0.0000532 ND 0.0000	Matrix: WATER WATER WATER WATER WATER WATER May-12-14 09:30 May-12-14 10:00 tracted: May-15-14 16:12 May-15-14 16:15 May-15-14 16:18 May-15-14 16:21 May-16-14 12:52 May-16-14 13:10 May-16-14 13:28 May-16-14 14:03 May-16-14 13:28 May-16-14 14:03 May-16-14 13:10 May-16-14 13:10	Matrix: WATER WATER WATER WATER WATER WATER WATER WATER WATER May-12-14 10:00 May-12-14 11:00 May-15-14 16:18 May-15-14 16:21 May-15-14 16:24 May-16-14 13:28 May-16-14 14:03 May-16-14 14:20 May-16-14 14:20 May-16-14 13:28 May-16-14 14:03 May-16-14 14:20 May-16-14

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Project Name: 14" Vac to Jal Legacy

Project ID: SRS #2009-092 Work Orders: 485273,

Lab Batch #: 941148 Matrix: Water Sample: 485273-005 / SMP Batch:

Units: mg/L	Date Analyzed: 05/16/14 01:02	SU	RROGATE RE	ECOVERY	STUDY	
ВТ	TEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0255	0.0300	85	80-120	
4-Bromofluorobenzene		0.0295	0.0300	98	80-120	

Matrix: Water **Lab Batch #:** 941155 Sample: 485273-001 / SMP Batch: 1

Units: mg/L Date Analyzed: 05/16/14 09:39 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Flags Found Limits Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0267 0.0300 89 80-120 4-Bromofluorobenzene 0.0278 0.0300 80-120

Lab Batch #: 941155 Sample: 485273-002 / SMP Matrix: Water Batch:

Units: mg/L Date Analyzed: 05/16/14 09:56 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0299	0.0300	100	80-120	
4-Bromofluorobenzene	0.0257	0.0300	86	80-120	

Sample: 485273-003 / SMP **Lab Batch #:** 941155 Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 05/16/14 10:13	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluor	obenzene		0.0292	0.0300	97	80-120	
4-Bromoflu	ıorobenzene		0.0258	0.0300	86	80-120	

Lab Batch #: 941155 **Sample:** 485273-004 / SMP Batch: Matrix: Water

Units: mg/L Date Analyzed: 05/16/14 10:29	SU	RROGATE RE	COVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0277	0.0300	92	80-120	
4-Bromofluorobenzene	0.0297	0.0300	99	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

93

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: 14" Vac to Jal Legacy

Work Orders : 485273, **Project ID:** SRS #2009-092

Units: mg/L Date Analyzed: 05/16/14 12:52	SU	RROGATE RI	ECOVERY S	STUDY	
PAHs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
Nitrobenzene-d5	0.579	1.00	58	35-114	
2-Fluorobiphenyl	0.573	1.00	57	43-116	
Terphenyl-D14	0.688	1.00	69	33-141	

Units:	mg/L	Date Analyzed: 05/16/14 13:10	SU	RROGATE RI	ECOVERY	STUDY	
	PAH	Is by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
Nitrobenzene-	·d5		0.281	1.00	28	35-114	**
2-Fluorobiphe	enyl		0.283	1.00	28	43-116	**
Terphenyl-D1	4		0.312	1.00	31	33-141	**

Lab Batch #: 941130 **Sample:** 485273-003 / SMP **Batch:** 1 **Matrix:** Water

Units:	mg/L	Date Analyzed: 05/16/14 13:28	SU	RROGATE RE	ECOVERY S	STUDY	
	PAl	Hs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
Nitrobenze	ene-d5		0.469	1.00	47	35-114	
2-Fluorobiphenyl			0.435	1.00	44	43-116	
Terphenyl-	D14		0.422	1.00	42	33-141	

Lab Batch #: 941130 **Sample:** 485273-004 / SMP **Batch:** 1 **Matrix:** Water

Units:	mg/L	Date Analyzed: 05/16/14 14:03	SURROGATE RECOVERY STUDY					
	PAI	Is by GCMS SIM Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags	
Nitrobenze	ne-d5		0.442	1.00	44	35-114		
2-Fluorobiphenyl			0.437	1.00	44	43-116		
Terphenyl-D14			0.487	1.00	49	33-141		

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

TT. . *4 ...

Form 2 - Surrogate Recoveries

Project Name: 14" Vac to Jal Legacy

Project ID: SRS #2009-092 Work Orders: 485273,

Lab Batch #: 941130 Matrix: Water Sample: 485273-005 / SMP Batch:

Units: mg/L Date Analyzed: 05/16/14 14:20	SU	RROGATE RI	ECOVERY S	STUDY	
PAHs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
Nitrobenzene-d5	0.403	1.00	40	35-114	
2-Fluorobiphenyl	0.410	1.00	41	43-116	**
Terphenyl-D14	0.448	1.00	45	33-141	

Sample: 655595-1-BLK / BLK **Lab Batch #:** 941148 Batch: Matrix: Water 1. 05/15/14 20:05

Units:	mits: mg/L Date Analyzed: 05/15/14 20:05 SURROGATE RECOVERY STUDY								
	BTI	EX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags		
		Analytes			[D]				
1,4-Difluorobenzene			0.0263	0.0300	88	80-120			
4-Bromoflu	iorobenzene		0.0282	0.0300	94	80-120			

Lab Batch #: 941155 Sample: 655591-1-BLK / BLK Batch: Matrix: Water

Units: mg/L **Date Analyzed:** 05/16/14 04:36 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits Flags [B] [A] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0266 0.0300 89 80-120 4-Bromofluorobenzene 0.0298 0.0300 99 80-120

Lab Batch #: 941130 **Sample:** 655514-1-BLK / BLK Batch: 1 Matrix: Water

Units: Date Analyzed: 05/16/14 12:00 mg/L SURROGATE RECOVERY STUDY Amount True Control PAHs by GCMS SIM **Found** Amount Recovery Limits Flags [B] %R %R [A] [D] **Analytes** Nitrobenzene-d5 35-114 0.683 1.00 68 2-Fluorobiphenyl 0.665 1.00 67 43-116 Terphenyl-D14 1.00 0.748 75 33-141

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: 14" Vac to Jal Legacy

Work Orders : 485273, **Project ID:** SRS #2009-092

Units: **Date Analyzed:** 05/15/14 20:21 mg/L SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0278 0.0300 93 80-120 4-Bromofluorobenzene 0.0332 0.0300 111 80-120

 Lab Batch #: 941155
 Sample: 655591-1-BKS / BKS
 Batch: 1
 Matrix: Water

Units: mg/L **Date Analyzed:** 05/16/14 04:52 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0269 0.0300 90 80-120 4-Bromofluorobenzene 0.0321 0.0300 107 80-120

Lab Batch #: 941130 Sample: 655514-1-BKS / BKS Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 05/16/14 12:17 SURROGATE RECOVERY STUDY

PAHs by GCMS SIM Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Nitrobenzene-d5	0.690	1.00	69	35-114	
2-Fluorobiphenyl	0.685	1.00	69	43-116	
Terphenyl-D14	0.810	1.00	81	33-141	

Lab Batch #: 941148 Sample: 655595-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 05/15/14 20:38 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0284	0.0300	95	80-120	
4-Bromofluorobenzene	0.0340	0.0300	113	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: 14" Vac to Jal Legacy

Work Orders : 485273, **Project ID:** SRS #2009-092

Date Analyzed: 05/16/14 05:09 Units: mg/L SURROGATE RECOVERY STUDY True Control Amount BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0276 0.0300 92 80-120 4-Bromofluorobenzene 0.0325 0.0300 108 80-120

Lab Batch #: 941130 Sample: 655514-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 05/16/14 16:07 SURROGATE RECOVERY STUDY **Amount** True Control PAHs by GCMS SIM Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** Nitrobenzene-d5 0.698 1.00 70 35-114 2-Fluorobiphenyl 0.684 1.00 68 43-116 Terphenyl-D14 0.797 1.00 80 33-141

 Lab Batch #: 941148
 Sample: 485068-001 S / MS
 Batch: 1
 Matrix: Water

Units: mg/L Date Analyzed: 05/15/14 20:54 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0288	0.0300	96	80-120	
4-Bromofluorobenzene	0.0347	0.0300	116	80-120	

Units: Date Analyzed: 05/16/14 05:25 mg/L SURROGATE RECOVERY STUDY True Amount Control BTEX by EPA 8021B **Found** Amount Limits Flags Recovery [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0274 0.0300 91 80-120

0.0318

0.0300

4-Bromofluorobenzene

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

106

80-120

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Project Name: 14" Vac to Jal Legacy

Work Orders: 485273, **Project ID**: SRS #2009-092

Units: Date Analyzed: 05/15/14 21:11 mg/L SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Limits Flags Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0285 0.0300 95 80-120 4-Bromofluorobenzene 0.0300 80-120 0.0345 115

Units:	mg/L	Date Analyzed: 05/16/14 05:42	SU	RROGATE RI	ECOVERY S	STUDY	
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
		Analytes			[D]		
1,4-Difluorol	benzene		0.0292	0.0300	97	80-120	
4-Bromofluo	robenzene		0.0337	0.0300	112	80-120	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

mg/L

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: 14" Vac to Jal Legacy

Work Order #: 485273 Project ID: SRS #2009-092

Analyst: ARM Date Prepared: 05/15/2014 Date Analyzed: 05/16/2014

Lab Batch ID: 941155Sample: 655591-1-BKSBatch #: 1Matrix: Water

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Benzene	< 0.00100	0.100	0.108	108	0.100	0.108	108	0	70-125	25	
Toluene	< 0.00200	0.100	0.106	106	0.100	0.107	107	1	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.112	112	0.100	0.113	113	1	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.230	115	0.200	0.231	116	0	70-131	25	
o-Xylene	< 0.00100	0.100	0.117	117	0.100	0.118	118	1	71-133	25	

Analyst: ARM **Date Prepared:** 05/15/2014 **Date Analyzed:** 05/15/2014

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		լսյ	[C]	[D]	[E]	Kesuit [F]	լσյ				
Benzene	< 0.00100	0.100	0.103	103	0.100	0.106	106	3	70-125	25	
Toluene	< 0.00200	0.100	0.104	104	0.100	0.106	106	2	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.111	111	0.100	0.114	114	3	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.229	115	0.200	0.235	118	3	70-131	25	
o-Xylene	< 0.00100	0.100	0.115	115	0.100	0.118	118	3	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

mg/L

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: 14" Vac to Jal Legacy

Work Order #: 485273 Project ID: SRS #2009-092

Analyst: PKH Date Prepared: 05/15/2014 Date Analyzed: 05/16/2014

Lab Batch ID: 941130Sample: 655514-1-BKSBatch #: 1Matrix: Water

5		DLANK/DLANK STIKE / DLANK STIKE DUFLICATE RECUVERT STUDT								71	
PAHs by GCMS SIM Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Acenaphthene	40 0000500	0.00100	0.000610	C1	0.00100	0.000616	(2)	1	57.00	25	-
	< 0.0000500		0.000610	61		0.000616	62	1	57-90	-	
Acenaphthylene	<0.0000500	0.00100	0.000633	63	0.00100	0.000617	62	3	47-95	25	
Anthracene	< 0.0000500	0.00100	0.000638	64	0.00100	0.000633	63	1	56-90	25	
Benzo(a)anthracene	< 0.0000500	0.00100	0.000792	79	0.00100	0.000798	80	1	51-100	25	
Benzo(a)pyrene	< 0.0000500	0.00100	0.000706	71	0.00100	0.000744	74	5	49-97	25	
Benzo(b)fluoranthene	< 0.0000500	0.00100	0.000794	79	0.00100	0.000781	78	2	41-114	25	
Benzo(g,h,i)perylene	< 0.0000500	0.00100	0.000721	72	0.00100	0.000728	73	1	51-105	25	
Benzo(k)fluoranthene	< 0.0000500	0.00100	0.000648	65	0.00100	0.000647	65	0	54-103	25	
Chrysene	< 0.0000500	0.00100	0.000734	73	0.00100	0.000736	74	0	60-101	25	
Dibenz(a,h)anthracene	< 0.0000500	0.00100	0.000655	66	0.00100	0.000786	79	18	50-109	25	
Dibenzofuran	< 0.0000500	0.00100	0.000615	62	0.00100	0.000613	61	0	55-91	25	
Fluoranthene	< 0.0000500	0.00100	0.000688	69	0.00100	0.000657	66	5	58-93	25	
Fluorene	< 0.0000500	0.00100	0.000626	63	0.00100	0.000598	60	5	58-93	25	
Indeno(1,2,3-c,d)Pyrene	< 0.0000500	0.00100	0.000666	67	0.00100	0.000709	71	6	52-108	25	
Naphthalene	< 0.000500	0.00100	0.000627	63	0.00100	0.000638	64	2	51-100	25	
Phenanthrene	< 0.0000500	0.00100	0.000721	72	0.00100	0.000717	72	1	43-97	25	
Pyrene	< 0.0000500	0.00100	0.000758	76	0.00100	0.000753	75	1	51-95	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: 14" Vac to Jal Legacy

Work Order #: 485273 Project ID: SRS #2009-092

Lab Batch ID: 941148 **QC- Sample ID:** 485068-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 05/15/2014 **Date Prepared:** 05/15/2014 **Analyst:** ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.105	105	0.100	0.111	111	6	70-125	25	
Toluene	<0.00200	0.100	0.106	106	0.100	0.112	112	6	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.114	114	0.100	0.119	119	4	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.234	117	0.200	0.245	123	5	70-131	25	
o-Xylene	< 0.00100	0.100	0.117	117	0.100	0.123	123	5	71-133	25	

Lab Batch ID: 941155 **QC- Sample ID:** 485208-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 05/16/2014 **Date Prepared:** 05/15/2014 **Analyst:** ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample Result	Spike Added	Spiked Sample Result	Spiked Sample %R	Spike Added	Duplicate Spiked Sample Result [F]	Spiked Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes	[A]	[B]	[C]	70K [D]	[E]	Result [F]	76K [G]	70	70K	70KPD	
Benzene	< 0.00100	0.100	0.102	102	0.100	0.0992	99	3	70-125	25	
Toluene	< 0.00200	0.100	0.100	100	0.100	0.0981	98	2	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.106	106	0.100	0.104	104	2	71-129	25	
m,p-Xylenes	< 0.00200	0.200	0.216	108	0.200	0.212	106	2	70-131	25	
o-Xylene	< 0.00100	0.100	0.110	110	0.100	0.108	108	2	71-133	25	

\simeq
~
_
$\overline{}$
-
_
π
- ''
_
.=

Laboratories	XE	N	CO
	Labo	rat	ories

CHAIN OF CUSTODY RECORD

Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800 Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550

Page 1 of 1

LAB W.O#: 485273

GA Glass Amber GC Glass Clear Field billable Hrs Plastic Amber PC Company: Plastic Clear Basin Environmental Service Technologies, LLC Phone: (575)396-2378 PC Plastic Clear TAT Work Days = D\ Need results by: Time: Address: 3100 Plains Hwy. Fax: (575)396-1429 Std (5-7D) 5Hrs 1D 2D 3D 4D 5D 7D 10D 14D Other Size(s): 2oz, 4oz, 8oz, 16oz, 32oz, 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other City: State: NM Zip: Lovington 88260 ** Preservative Type Codes **ANALYSES REQUESTED** PM/Attn: cjbryant@paalp.com Email: Cont Type Ben Arguijo VP GA bjarguijo@basinenv.com A. None E. HCL 14" Vac to Jal Legacy Project ID: PO#: B. HNO₃ F. MeOH J. MCAA Pres Type* C. HoSO PAA-C. Bryant G. Na₂S₂O₃ K. ZnAc&NaOH SRS #2009-092 E.I D. NaOH H. NaHSO4 L Asbc Acid&NaOH Invoice To: Quote #: Example Volatiles by 8260 Camille Bryant Plains All American ^ Matrix Type Codes Sampler Signature: Circle One Event: Daily Weekly Monthly GW Ground Water S Soil/Sediment/Solid BTEX Quartely Semi-Annual Annual WW Waste Water W Wipe DW Drinking Water SW Surface Water O Oil Collect Collect OW Ocean/Sea Water T Tissue Matrix Sample ID Sample Product-Liquid U Urine B Blood Date Time Code ^ Product-Solid SL Sludge # Cont Lab Only: REMARKS MW-2 5/12/14 0830 GW X 4 MW-3 X GW 4 MW-4 GW 4 MW-5 X GW 4 MW-6 X GW 4 6 8 9 0 Reg. Program / Clean-up Std STATE for Certs & Regs QA/QC Level & Certification **EDDs** COC & Labels Coolers Temp °C -Lab Use Only YES NO N/A FL TX GA NC SC NJ PA OK 1 2 3 4 CLP AFCEE QAPP CTLs TRRP DW NPDES LPST DryCln Other ADAPT SEDD ERPIMS Match Incomplete Non-Conformances found? LA AL NM Other: NELAC DoD-ELAP Other: XLS Other: Absent Unclea Samples intact upon arrival? Relinquished by Affiliation Date Time Received by Affiliation Date Time Received on Wet Ice? abeled with proper preservatives? Received within holding time? 2 Custody seals intact? VOCs rec'd w/o headspace? 3 Proper containers used? pH verified-acceptable, excl VOCs? 4 Received on time to meet HTs?

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330 FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

C.O.C. Serial #

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 05/12/2014 03:00:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 485273

Temperature Measuring device used:

Work Order #: 485273	remperature w	leasuring device used :
	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		0
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	tainer/ cooler?	No
#5 Custody Seals intact on sample bottle	s?	No
#6 *Custody Seals Signed and dated?		No
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	in of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relind	uished/ received?	Yes
#11 Chain of Custody agrees with sampl	e label(s)?	Yes
#12 Container label(s) legible and intact?		Yes
#13 Sample matrix/ properties agree with		Yes
#14 Samples in proper container/ bottle?		Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicate	• •	Yes
#18 All samples received within hold time	9?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace		Yes
#21 <2 for all samples preserved with HN		Yes
#22 >10 for all samples preserved with N	aAsO2+NaOH, ZnAc+NaOH?	No
* Must be completed for after-hours de		n the refrigerator
Analyst: PH Device	/LOt#:	
Checklist completed by: Checklist reviewed by:	Kelsey Brooks Kelsey Brooks Kelsey Brooks	Date: 05/13/2014 Date: 05/13/2014

Analytical Report 488672

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo 14'' Vac To Jal Legacy SRS# 2009-092 17-JUL-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

17-JUL-14

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 488672

14" Vac To Jal Legacy

Project Address: Lovington, NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 488672. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 488672 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Moah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 488672

PLAINS ALL AMERICAN EH&S, Midland, TX

14" Vac To Jal Legacy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-7	W	07-02-14 10:30		488672-001
MW-8	W	07-02-14 11:30		488672-002
MW-9	W	07-02-14 09:30		488672-003

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: 14" Vac To Jal Legacy

 Project ID:
 SRS# 2009-092
 Report Date:
 17-JUL-14

 Work Order Number(s):
 488672
 Date Received:
 07/03/2014

Sample receipt non conformances and comments:

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments:

Batch: LBA-945213 VOAs by SW-846 8260B

Dichlorodifluoromethane, Hexachlorobutadiene, Styrene recovered below QC limits in the Matrix Spike and Matrix Spike Duplicate. Samples affected are: 488672-002, -001, -003.

The Laboratory Control Sample for Dichlorodifluoromethane, Hexachlorobutadiene, Styrene is within laboratory Control Limits

Sample -002 had pH7. Analysis occured within 7day holding time criteria for unpreserved samples.

Batch: LBA-945339 Nitrogen, Nitrate by E353.2

Samples 488672-001,002, and 003 were rec. on 7-8-14 when they were already out of hold.

Batch: LBA-945767 TDS by SM2540C

Analysis added after samples had gone out of hold. AS 7/17/14

Certificate of Analysis Summary 488672

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Project Location: Lovington, NM

Contact: Ben Arguijo

Project Name: 14" Vac To Jal Legacy

Date Received in Lab: Thu Jul-03-14 10:56 am

Report Date: 17-JUL-14

Project Manager: Kelsey Brooks

								r roject Manager:	Reisey Brooks	
Analysis Requested	Lab Id:	488672-001		488672-002		488672-003				
	Field Id:	MW-7		MW-8		MW-9				
	Depth:									
	Matrix:	WATER		WATER		WATER				
	Sampled:	Jul-02-14 10:30		Jul-02-14 11:30		Jul-02-14 09:30				
Alkalinity by SM2320B Extracted: SUB: E871002 Analyzed:										
		Jul-09-14 17:02		Jul-09-14 17:02		Jul-09-14 17:02				
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
Alkalinity, Bicarbonate (as CaCO3)		230	4.00	192	4.00	317	4.00			
Alkalinity, Carbonate (as CaCO3)		ND	4.00	ND	4.00	ND	4.00			
Inorganic Anions by EPA 300/300.1	Extracted:	Jul-08-14 03:47		Jul-08-14 04:10		Jul-08-14 (1 04:32			
SUB: E871002	Analyzed:	Jul-08-14 03:47		Jul-08-14 04:10		Jul-08-14 04:32				
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
Chloride		4850	200	7540	200	3340	200			
Fluoride		ND	80.0	ND	80.0	ND	80.0			
Sulfate		490	400	615	400	406	400			
Mercury by EPA 7470A SUB: E871002	Extracted:	Jul-08-14 12:00		Jul-08-14 12:00		Jul-08-14 12:00				
	Analyzed:	Jul-08-14 15:54		Jul-08-14 15:56		Jul-08-14 15:58				
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
Mercury		ND	0.000200	ND	0.00100	0.000254	0.000200			
Metals by EPA 200.8			0:40	Jul-11-14 10:40		Jul-11-14 10:40				
SUB: E871002	Analyzed:	Jul-11-14 20:25		Jul-11-14 20:33		Jul-11-14 20:40				
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
Arsenic 0.0206 0.01		0.0100	0.102	0.0100	0.0215	0.0100				
Silver		ND	0.0100	0.0255	0.0100	ND	0.0100			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Certificate of Analysis Summary 488672

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Project Location: Lovington, NM

Contact: Ben Arguijo

Project Name: 14" Vac To Jal Legacy

Date Received in Lab: Thu Jul-03-14 10:56 am

Report Date: 17-JUL-14

roject Location: Lovington, NM									17 1 B	
			ı					Project Manager:	Kelsey Brooks	I
Analysis Requested	Lab Id:	488672-001		488672-002		488672-003				
	Field Id:	MW-7		MW-8		MW-9				
	Depth:									
	Matrix:	WATER		WATER		WATER				
Sampled		Jul-02-14 10:30		Jul-02-14 11:30		Jul-02-14 09:30				
Metals per ICP by EPA 200.7 Extracted:		Jul-09-14 13:00		Jul-09-14 13:00		Jul-09-14 13:00				
SUB: E871002	Analyzed:	Jul-10-14 19:37		Jul-10-14 19:43		Jul-10-14 19:50				
	Units/RL:									
Aluminum	Unus/KL:	mg/L 52.6	RL 0.200	mg/L 124	RL 0.200	mg/L 42.2	0.200			
Barium		1.44	0.0100	3.30	0.0100	3.33	0.0100			
Boron		0.962	0.0500	0.601	0.0500	0.743	0.0500			
Cadmium		ND	0.0100	ND	0.0100	ND	0.0100			
Calcium		1050	0.200	1250	0.200	697	0.200			
Chromium		0.0621	0.0100	0.150	0.0100	0.0506	0.0100			
Cobalt		0.0435	0.0100	0.0830	0.0100	0.0333	0.0100			
Copper		0.0641	0.0200	0.149	0.0200	0.0407	0.0200			
Iron		49.8	0.200	104	0.200	38.7	0.200			
Lead		0.0664	0.0100	0.0913	0.0100	0.0546	0.0100			
Magnesium		316	0.200	256	0.200	193	0.200			
Manganese		2.86	0.0200	3.54	0.0200	2.83	0.0200			
Molybdenum		ND	0.0100	ND	0.0100	ND	0.0100			
Nickel		0.103	0.0100	0.203	0.0100	0.0809	0.0100			
Potassium		40.2	0.500	44.4	0.500	31.8	0.500			
Selenium		ND	0.0300	ND	0.0300	ND	0.0300			
Sodium		1890	0.500	1170	0.500	1340	0.500			
Zinc		0.308	0.0300	0.927	0.0300	0.256	0.0300			
Nitrogen, Nitrate by E353.2	Extracted:									
SUB: E871002	Analyzed:	Jul-08-14 14:56		Jul-08-14 14:56		Jul-08-14 14:56				
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
Nitrate		7.82	0.100	5.46	0.100	3.52	0.100			

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Project Location: Lovington, NM

Contact: Ben Arguijo

Project Name: 14" Vac To Jal Legacy

Date Received in Lab: Thu Jul-03-14 10:56 am

Report Date: 17-JUL-14

Project Manager: Kelsey Brooks

Lab Id:	488672-001	488672-002	488672-003			
Field Id:	MW-7	MW-8	MW-9			
Depth:						
Matrix:	WATER	WATER	WATER			
Sampled:	Jul-02-14 10:30	Jul-02-14 11:30	Jul-02-14 09:30			
Extracted:	Jul-09-14 13:09	Jul-09-14 13:12	Jul-09-14 13:15			
Analyzed:	Jul-09-14 18:42	Jul-09-14 19:08	Jul-09-14 19:33			
Units/RL:	mg/L RL	mg/L RL	mg/L RL			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.000500	ND 0.000500	ND 0.000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
	ND 0.0000500	ND 0.0000500	ND 0.0000500			
Extracted:						
Analyzed:	Jul-16-14 14:07	Jul-16-14 14:07	Jul-16-14 14:07			
Units/RL:	mg/L RL	mg/L RL	mg/L RL			
	13700 K 5.00	18100 K 5.00	9680 K 5.00			
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Analyzed:	Field Id: Depth: Matrix: WATER Sampled: Jul-02-14 10:30 Extracted: Jul-09-14 18:42 Units/RL: Mp 0.0000500 ND 0.0000500	Field Id: MW-7 MW-8 Depth: Matrix: WATER WATER Sampled: Jul-02-14 10:30 Jul-02-14 11:30 Extracted: Jul-09-14 13:09 Jul-09-14 13:12 Analyzed: Jul-09-14 18:42 Jul-09-14 19:08 Units/RL: mg/L RL mg/L RL ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500 ND 0.0000500	Field Id: MW-7	Field Id:	Field Id:

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Project Name: 14" Vac To Jal Legacy

Contact: Ben Arguijo

Project Location: Lovington, NM

 $\textbf{Date Received in Lab:} \quad \text{Thu Jul-03-14 } 10:56 \text{ am}$

Report Date: 17-JUL-14

Project Manager: Kelsey Brooks

								Project Manager:	Keisey Diooks	
	Lab Id:	488672-0	001	488672-0	02	488672-0	003			
Analusia Daguastad	Field Id:	MW-7		MW-8		MW-9)			
Analysis Requested	Depth:									
	Matrix:	WATE	R	WATER	₹	WATE	R			
	Sampled:	Jul-02-14 1	0:30	Jul-02-14 1	1:30	Jul-02-14 (9:30			
Total Phosphorus by EPA 365.1	Extracted:	Jul-09-14	12:05	Jul-09-14 1	2:05	Jul-09-14 1	12:05			
SUB: E871002	Analyzed:	Jul-09-14	13:44	Jul-09-14 1	4:00	Jul-09-14 1	13:47			
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
Total Phosphorus (as P)		1.86	0.0200	13.1	0.200	1.72	0.0200	-		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Contact: Ben Arguijo

Project Name: 14" Vac To Jal Legacy

Date Received in Lab: Thu Jul-03-14 10:56 am Penert Date: 17 HH 14

P	coject Location: Lovington, NM					Report Date:	1/-JUL-14
						Project Manager:	Kelsey Brooks
		Lab Id:	488672-001	488672-002	488672-003		

Pield Lt		Lab Id:	400670	001	100672.4	202	4006724	002	1 Toject Munuger.		
Analysis Requested											
Matrix WATER Sampled: Jul-02-14 1-30 Jul-02-14 1-30 Jul-02-14 1-30 Jul-02-14 1-50 Jul-02-14 Jul-02-14 1-50 Jul-02-14	Analysis Requested	Field Id:	MW-7	7	MW-8	3	MW-9)			
No	71matysis Requested	Depth:									
VOAs by SW-846 8260B SUB: E871002 Part Part		Matrix:	WATE	R	WATER		WATER				
SUB: E871002 Analyzed: Units/RL: (mg/L) Jul-08-14 5:14 Jul-08-14 9:43 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		Sampled:	Jul-02-14	10:30	Jul-02-14	11:30	Jul-02-14 09:30				
No. No.	VOAs by SW-846 8260B	Extracted:	cted: Jul-08-14 14		Jul-08-14	15:06	Jul-08-14	15:07			
Remander	SUB: E871002	Analyzed:	Jul-08-14	15:14	Jul-08-14	19:43	Jul-08-14	20:10			
Remander		Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL			
No. 0.0500 ND 0.00500 ND	Benzene			0.00500	ND	0.00500		0.00500			
Bromodichloromethane	Bromobenzene		ND	0.00500	ND	0.00500	ND	0.00500			
ND 0.00500 ND	Bromochloromethane		ND	0.00500	ND	0.00500	ND	0.00500			
Methyl bromide ND 0.05500 ND 0.00500 ND 0.00500 n-Butylbenzene ND 0.05500 ND 0.00500 ND 0.00500 See-Butylbenzene ND 0.00500 ND 0.00500 ND 0.00500 Eer-Butylbenzene ND 0.00500 ND 0.00500 ND 0.00500 Carbon Tetrachloride ND 0.00500 ND 0.00500 ND 0.00500 Chlorocharee ND 0.00500 ND 0.00500 ND 0.00500 Chlorochane ND 0.00500 ND 0.00500 ND 0.00500 Chloroform ND 0.00500 ND 0.00500 ND 0.0050 Chlorofolure ND 0.00500 ND 0.0050 ND 0.0050 4-Chlorofolure ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorofoluree ND 0.00500 ND 0.00500 ND 0.00500	Bromodichloromethane		ND	0.00500	ND	0.00500	ND	0.00500			
ND 0.00500 ND	Bromoform		ND	0.00500	ND	0.00500	ND	0.00500			
ND 0.00500 ND	Methyl bromide		ND	0.00500	ND	0.00500	ND	0.00500			
ND 0.00500 ND	n-Butylbenzene		ND	0.00500	ND	0.00500	ND	0.00500			
Carbon Tetrachloride ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 Chlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 Chlorochtane ND 0.0100 ND 0.00500 ND 0.00500 ND 0.00500 Chloroform ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 Methyl Chloride ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 2-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 1,2-Dibromo-Lorotoluene ND 0.00500	Sec-Butylbenzene		ND	0.00500	ND		ND				
ND 0.00500 ND	tert-Butylbenzene		ND		ND		ND				
ND 0.0100 ND 0.0100 ND 0.0100 ND 0.00500 ND 0.	Carbon Tetrachloride		ND	0.00500	ND	0.00500	ND	0.00500			
ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500	Chlorobenzene		ND	0.00500	ND		ND				
Methyl Chloride ND 0.0100 ND 0.0100 ND 0.0100 2-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 4-Chlorotoluene ND 0.00500 ND 0.00500 ND 0.00500 6-Cymene (p-Isopropyltoluene) ND 0.00500 ND 0.00500 ND 0.00500 Dibromochloromethane ND 0.00500 ND 0.00500 ND 0.00500 1,2-Dibromo-3-Chloropropane ND 0.00500 ND 0.00500 ND 0.00500 1,2-Dibromoethane ND 0.00500 ND 0.00500 ND 0.00500 Methylene bromide ND 0.00500 ND 0.00500 ND 0.00500 1,2-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,3-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,4-Dichlorobenzene ND 0.00500 ND 0.00500 <td>Chloroethane</td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td>ND</td> <td></td> <td></td> <td></td> <td></td>	Chloroethane		ND		ND		ND				
ND 0.00500 ND	Chloroform		ND	0.00500	ND	0.00500	ND				
A-Chlorotoluene	Methyl Chloride										
P-Cymene (p-Isopropyltoluene)	2-Chlorotoluene		ND		ND						
ND 0.00500 ND	4-Chlorotoluene										
1,2-Dibromo-3-Chloropropane ND 0.00500	p-Cymene (p-Isopropyltoluene)										
1,2-Dibromoethane ND 0.00500 ND 0.00500 ND 0.00500 Methylene bromide ND 0.00500 ND 0.00500 ND 0.00500 1,2-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,3-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,4-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 Dichlorodifluoromethane ND 0.00500 ND 0.00500 ND 0.00500	Dibromochloromethane										
Methylene bromide ND 0.00500											
1,2-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,3-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,4-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 Dichlorodifluoromethane ND 0.00500 ND 0.00500 ND 0.00500	1,2-Dibromoethane				ND						
1,3-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 1,4-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 Dichlorodifluoromethane ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500	Methylene bromide										
1,4-Dichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 Dichlorodifluoromethane ND 0.00500 ND 0.00500 ND 0.00500	1,2-Dichlorobenzene										
ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500	1,3-Dichlorobenzene										
	1,4-Dichlorobenzene										
Y) / 1 / 1	Dichlorodifluoromethane		ND	0.00500	ND	0.00500	ND	0.00500		_	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092 Contact: Ben Arguijo Project Name: 14" Vac To Jal Legacy

Project Location: Lovington, NM

Date Received in Lab: Thu Jul-03-14 10:56 am

Report Date: 17-JUL-14

Project Manager: Kelsey Brooks

1,2-Dichloroethane						Troject Manager.	Heisej Brooks	
Depth: Matrix: WATE W		Lab Id:	488672-001	488672-002	488672-003			
Matrix Matrix Sampled Matrix Sampled Jul-02-14 U-30 U-30 Jul-02-14 U-30 U	Analysis Requested	Field Id:	MW-7	MW-8	MW-9			
NOAs by SW-846 8260B Surfacet: Jul-08-14 1-57 Jul-08-14 1-	Anaiysis Kequesiea	Depth:						
No. No.		Matrix:	WATER	WATER	WATER			
SUB: E871002 Analyzed: Units/RL: mg/L II. Jul-08-14 15:44 mg/L Jul-08-14 15:45 mg/L Jul-08-14 20:10 mg/L RL mg/L		Sampled:	Jul-02-14 10:30	Jul-02-14 11:30	Jul-02-14 09:30			
No. No.	VOAs by SW-846 8260B	Extracted:	Jul-08-14 14:57	Jul-08-14 15:06	Jul-08-14 15:07			
1,1-Dichloroethane	SUB: E871002	Analyzed:	Jul-08-14 15:14	Jul-08-14 19:43	Jul-08-14 20:10			
1,1-Dichloroethane		Units/RL:	mg/L RL	mg/L RL	mg/L RL			
1,1-Dichloroethene	1,1-Dichloroethane	011112/2121						
cis-1,2-Dichloroethylene ND 0.0500 ND 0.00500 ND 0.00500 trans-1,2-dichloroethylene ND 0.00500 ND 0.00500 ND 0.00500 1,3-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 2,2-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 1,1-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 2,2-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 1,1-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 Ethylence ND 0.00500 ND 0.00500 <td>1,2-Dichloroethane</td> <td></td> <td>ND 0.00500</td> <td>ND 0.00500</td> <td>ND 0.00500</td> <td></td> <td></td> <td></td>	1,2-Dichloroethane		ND 0.00500	ND 0.00500	ND 0.00500			
trans-12-dichloroperbylene ND 0.00500 ND 0.00500 ND 0.00500 1,2-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 1,3-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 1,1-Dichloropropane ND 0.00500 ND 0.00500 ND 0.00500 1,1-Dichloropropene ND 0.00500 ND 0.00500 ND 0.00500 1,1-Dichloropropane ND 0.00500 ND 0.00	1,1-Dichloroethene		ND 0.00500	ND 0.00500	ND 0.00500			
1,2-Dichloropropane	cis-1,2-Dichloroethylene		ND 0.00500	ND 0.00500	ND 0.00500			
1,3-Dichloropropane	trans-1,2-dichloroethylene		ND 0.00500	ND 0.00500	ND 0.00500			
2,2-Dichloropropane ND 0.00500 ND 0.00500 <t< td=""><td>1,2-Dichloropropane</td><td></td><td>ND 0.00500</td><td>ND 0.00500</td><td>ND 0.00500</td><td></td><td></td><td></td></t<>	1,2-Dichloropropane		ND 0.00500	ND 0.00500	ND 0.00500			
1,1-Dichforopropene	1,3-Dichloropropane		ND 0.00500	ND 0.00500	ND 0.00500			
cis-1,3-Dichloropropene ND 0,00500	2,2-Dichloropropane		ND 0.00500	ND 0.00500	ND 0.00500			
trans-1,3-dichloropropene ND 0.05500 ND 0.05500 ND 0.05500 ND 0.00500 Ethylbenzene ND 0.00500 ND 0.00500 ND 0.00500 ND 0.00500 Hexachlorobutadiene ND 0.00500 ND 0.00500 <td>1,1-Dichloropropene</td> <td></td> <td>ND 0.00500</td> <td>ND 0.00500</td> <td>ND 0.00500</td> <td></td> <td></td> <td></td>	1,1-Dichloropropene		ND 0.00500	ND 0.00500	ND 0.00500			
Ethylbenzene ND 0.00500 ND 0.	cis-1,3-Dichloropropene		ND 0.00500					
Hexachlorobutadiene	trans-1,3-dichloropropene		ND 0.00500	ND 0.00500	ND 0.00500			
Sopropylbenzene	Ethylbenzene		ND 0.00500	ND 0.00500	ND 0.00500			
Methylene Chloride ND 0.00500 ND 0.00500 ND 0.00500 MTBE ND 0.00500 ND 0.00500 ND 0.00500 Naphthalene ND 0.0100 ND 0.0100 ND 0.0100 n-Propylbenzene ND 0.00500 ND 0.00500 ND 0.00500 Styrene ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 1,1,2,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 Totuene ND 0.00500 ND 0.00500 ND 0.00500 Toluene ND 0.00500 ND 0.00500 ND 0.00500 1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500	Hexachlorobutadiene		ND 0.00500	·				
MTBE ND 0.00500 ND 0.00500 ND 0.00500 Naphthalene ND 0.0100 ND 0.0100 ND 0.0100 n-Propylbenzene ND 0.00500 ND 0.00500 ND 0.00500 Styrene ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 Tetrachloroethylene ND 0.00500 ND 0.00500 ND 0.00500 Toluene ND 0.00500 ND 0.00500 ND 0.00500 1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500	Isopropylbenzene		ND 0.00500	·				
Naphthalene ND 0.0100 ND 0.0100 ND 0.0100 n-Propylbenzene ND 0.00500 ND 0.00500 ND 0.00500 Styrene ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 Tetrachloroethylene ND 0.00500 ND 0.00500 ND 0.00500 Toluene ND 0.00500 ND 0.00500 ND 0.00500 1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500	1			·				
ND 0.00500 ND	MTBE			·				
Styrene ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 Tetrachloroethylene ND 0.00500 ND 0.00500 ND 0.00500 Toluene ND 0.00500 ND 0.00500 ND 0.00500 1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500				·	·			
1,1,1,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 1,1,2,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 Tetrachloroethylene ND 0.00500 ND 0.00500 ND 0.00500 Toluene ND 0.00500 ND 0.00500 ND 0.00500 1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500	n-Propylbenzene							
1,1,2,2-Tetrachloroethane ND 0.00500 ND 0.00500 ND 0.00500 Tetrachloroethylene ND 0.00500 ND 0.00500 ND 0.00500 Toluene ND 0.00500 ND 0.00500 ND 0.00500 1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500	Styrene							
Tetrachloroethylene				·				
Toluene	, , ,			·	·			
1,2,3-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500 1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500	-			·				
1,2,4-Trichlorobenzene ND 0.00500 ND 0.00500 ND 0.00500				·				
1,2,1 11.00.000.000.000.000.000.000.000.000.	7 7-							
	1,2,4-Trichlorobenzene		ND 0.00500	ND 0.00500	ND 0.00500		_	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Project Location: Lovington, NM

Contact: Ben Arguijo

Project Name: 14" Vac To Jal Legacy

Date Received in Lab: Thu Jul-03-14 10:56 am

Report Date: 17-JUL-14

Project Manager: Kelsey Brooks

	Troject Wallager. Relievy Drooks							
	Lab Id:	488672-001	488672-002	488672-003				
Analysis Paguested	Field Id:	MW-7	MW-8	MW-9				
Analysis Requested	Depth:							
	Matrix:	WATER	WATER	WATER				
	Sampled:	Jul-02-14 10:30	Jul-02-14 11:30	Jul-02-14 09:30				
VOAs by SW-846 8260B	Extracted:	Jul-08-14 14:57	Jul-08-14 15:06	Jul-08-14 15:07				
SUB: E871002	Analyzed:	Jul-08-14 15:14	Jul-08-14 19:43	Jul-08-14 20:10				
	Units/RL:	mg/L RI	mg/L R	L mg/L RL				
1,1,1-Trichloroethane		ND 0.0050	ND 0.005	00 ND 0.00500				
1,1,2-Trichloroethane		ND 0.0050	ND 0.005	00 ND 0.00500				
Trichloroethylene		ND 0.0050	ND 0.005	00 ND 0.00500				
Trichlorofluoromethane		ND 0.0050	ND 0.005	00 ND 0.00500				
1,2,3-Trichloropropane		ND 0.0050	ND 0.005	00 ND 0.00500				
1,2,4-Trimethylbenzene		ND 0.0050	ND 0.005	00 ND 0.00500				
1,3,5-Trimethylbenzene		ND 0.0050	ND 0.005	00 ND 0.00500				
o-Xylene		ND 0.0050	ND 0.005	00 ND 0.00500				
m,p-Xylenes		ND 0.010	ND 0.01	00 ND 0.0100				
Vinyl Chloride		ND 0.0020	ND 0.002	00 ND 0.00200				
			·			I.		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kalsay Brooks

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders : 488672, **Project ID:** SRS# 2009-092

Units: mg/L	Date Analyzed: 07/08/14 15:14	SURROGATE RECOVERY STUDY						
VOA	s by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags		
Dibromofluoromethane	· · · · · · · · · · · · · · · · · · ·	0.0526	0.0500	105	75-131			
1,2-Dichloroethane-D4		0.0505	0.0500	101	63-144			
Toluene-D8		0.0466	0.0500	93	80-117			
4-Bromofluorobenzene		0.0505	0.0500	101	74-124			

 Lab Batch #: 945213
 Sample: 488672-002 / SMP
 Batch: 1
 Matrix: Water

Units: mg/L Date Analyzed: 07/08/14 19:43 SURROGATE RECOVERY STUDY

VOAs by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane	0.0503	0.0500	101	75-131	
1,2-Dichloroethane-D4	0.0488	0.0500	98	63-144	
Toluene-D8	0.0470	0.0500	94	80-117	
4-Bromofluorobenzene	0.0495	0.0500	99	74-124	

Units: mg/L Date Analyzed: 07/08/14 20:10 SURROGATE RECOVERY STUDY

VOAs by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Dibromofluoromethane	0.0504	0.0500	101	75-131	
1,2-Dichloroethane-D4	0.0534	0.0500	107	63-144	
Toluene-D8	0.0470	0.0500	94	80-117	
4-Bromofluorobenzene	0.0505	0.0500	101	74-124	

 Lab Batch #: 945303
 Sample: 488672-001 / SMP
 Batch: 1
 Matrix: Water

Units: mg/L Date Analyzed: 07/09/14 18:42 SURROGATE RECOVERY STUDY

PAHs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags			
Analytes			[D]					
Nitrobenzene-d5	0.871	1.00	87	35-114				
2-Fluorobiphenyl	0.855	1.00	86	43-116				
Terphenyl-D14	0.866	1.00	87	33-141				

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders : 488672, **Project ID:** SRS# 2009-092

Lab Batch #: 945303 **Sample:** 488672-002 / SMP **Batch:** 1 **Matrix:** Water

Units: mg/L Date Analyzed: 07/09/14 19:0	Date Analyzed: 07/09/14 19:08 SURROGATE RECOVERY STUDY					
PAHs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags	
Analytes			[D]			
Nitrobenzene-d5	0.866	1.00	87	35-114		
2-Fluorobiphenyl	0.861	1.00	86	43-116		
Terphenyl-D14	0.855	1.00	86	33-141		

Units: mg/L Date Analyzed: 07/09/14 19:33	SURROGATE RECOVERY STUDY										
PAHs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags						
Analytes			[D]								
Nitrobenzene-d5	0.798	1.00	80	35-114							
2-Fluorobiphenyl	0.847	1.00	85	43-116							
Terphenyl-D14	0.830	1.00	83	33-141							

 Lab Batch #: 945213
 Sample: 658096-1-BLK / BLK
 Batch: 1
 Matrix: Water

Units:	nits: mg/L Date Analyzed: 07/08/14 14:18			SURROGATE RECOVERY STUDY								
	VOAs	by SW-846 8260B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
Dibromoflu	uoromethane	•	0.0518	0.0500	104	75-131						
1,2-Dichlor	roethane-D4		0.0485	0.0500	97	63-144						
Toluene-D	8		0.0470	0.0500	94	80-117						
4-Bromoflu	uorobenzene		0.0515	0.0500	103	74-124						

Lab Batch #: 945303 Sample: 658056-1-BLK / BLK Batch: 1 Matrix: Water

Units: mg/L Date Analyzed: 07/09/14 17:25

SURROGATE RECOVERY STUDY

Amount True Amount Recovery Limits Flags

[A] [B] %R %R

PAHs by GCMS SIM	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
Analytes			[D]		
Nitrobenzene-d5	0.812	1.00	81	35-114	
2-Fluorobiphenyl	0.932	1.00	93	43-116	
Terphenyl-D14	0.967	1.00	97	33-141	

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Project ID: SRS# 2009-092 Work Orders: 488672,

Lab Batch #: 945213 Matrix: Water **Sample:** 658096-1-BKS / BKS Batch: 1

Units:	mg/L	Date Analyzed: 07/08/14 11:34	SURROGATE RECOVERY STUDY								
	VOAs	by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags				
		Analytes			[2]						
Dibromoflu	oromethane		0.0502	0.0500	100	75-131					
1,2-Dichlor	roethane-D4		0.0488	0.0500	98	63-144					
Toluene-D8	8		0.0473	0.0500	95	80-117					
4-Bromoflu	ıorobenzene		0.0502	0.0500	100	74-124					

Lab Batch #: 945303 Sample: 658056-1-BKS / BKS Batch: Matrix: Water

Units: mg/L Date Analyzed: 07/09/14 17:51 SURROGATE RECOVERY STUDY

PAHs by GCMS SIM Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Nitrobenzene-d5	0.806	1.00	81	35-114	
2-Fluorobiphenyl	0.881	1.00	88	43-116	
Terphenyl-D14	0.932	1.00	93	33-141	

Lab Batch #: 945303 **Sample:** 658056-1-BSD / BSD Batch: 1 Matrix: Water

Units: mg/L **Date Analyzed:** 07/09/14 18:16 SURROGATE RECOVERY STUDY

PAHs by GCMS SIM Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
Nitrobenzene-d5	0.813	1.00	81	35-114	
2-Fluorobiphenyl	0.885	1.00	89	43-116	
Terphenyl-D14	0.921	1.00	92	33-141	

Lab Batch #: 945213 **Sample:** 488672-001 S / MS Matrix: Water Batch: 1

Units: Date Analyzed: 07/08/14 18:26 mg/L SURROGATE RECOVERY STUDY

·		SCHROGHIE RECOVERT STEET							
VOAs by SW-846 8260B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags				
Analytes			[D]						
Dibromofluoromethane	0.0506	0.0500	101	75-131					
1,2-Dichloroethane-D4	0.0505	0.0500	101	63-144					
Toluene-D8	0.0464	0.0500	93	80-117					
4-Bromofluorobenzene	0.0497	0.0500	99	74-124					

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders : 488672, **Project ID:** SRS# 2009-092

Units: Date Analyzed: 07/08/14 18:52 mg/L SURROGATE RECOVERY STUDY Amount True Control **VOAs by SW-846 8260B** Found Amount Limits Flags Recovery [A] [B] %R %R [D] **Analytes** Dibromofluoromethane 0.0496 0.0500 99 75-131 1,2-Dichloroethane-D4 0.0502 0.0500 100 63-144 Toluene-D8 0.0471 0.0500 94 80-117 4-Bromofluorobenzene 0.0506 0.0500 101 74-124

Surrogate Recovery [D] = 100 * A / B

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Blank Spike Recovery

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

 Lab Batch #:
 945339
 Sample: 945339-1-BKS
 Matrix: Water

 Date Analyzed:
 07/08/2014
 Date Prepared: 07/08/2014
 Analyst: BFO

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Nitrogen, Nitrate by E353.2 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Nitrate	< 0.100	2.00	2.11	106	90-110	

 Lab Batch #:
 945223
 Sample: 658101-1-BKS
 Matrix: Water

 Date Analyzed:
 07/09/2014
 Date Prepared: 07/09/2014
 Analyst: BFO

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Total Phosphorus by EPA 365.1 Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags
Total Phosphorus (as P)	< 0.0200	0.500	0.507	101	90-110	

Blank Spike Recovery

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

 Lab Batch #:
 945213
 Sample: 658096-1-BKS
 Matrix: Water

 Date Analyzed:
 07/08/2014
 Date Prepared: 07/08/2014
 Analyst: MCH

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

Keporting Omts: mg/L	BLANK/BLANK SPIKE RECOVERY STUDY						
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags	
Benzene	<0.00500	0.0500	0.0473	95	68-123		
Bromobenzene	< 0.00500	0.0500	0.0444	89	83-124		
Bromochloromethane	< 0.00500	0.0500	0.0483	97	68-119		
Bromodichloromethane	< 0.00500	0.0500	0.0534	107	72-132		
Bromoform	< 0.00500	0.0500	0.0495	99	65-136		
Methyl bromide	< 0.00500	0.0500	0.0472	94	48-120		
n-Butylbenzene	< 0.00500	0.0500	0.0472	94	82-128		
Sec-Butylbenzene	< 0.00500	0.0500	0.0460	92	83-130		
tert-Butylbenzene	< 0.00500	0.0500	0.0481	96	83-131		
Carbon Tetrachloride	< 0.00500	0.0500	0.0544	109	68-135		
Chlorobenzene	< 0.00500	0.0500	0.0447	89	78-124		
Chloroethane	< 0.0100	0.0500	0.0465	93	55-120		
Chloroform	< 0.00500	0.0500	0.0511	102	71-119		
Methyl Chloride	< 0.0100	0.0500	0.0513	103	54-114		
2-Chlorotoluene	< 0.00500	0.0500	0.0457	91	83-128		
4-Chlorotoluene	< 0.00500	0.0500	0.0455	91	81-125		
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0456	91	85-129		
Dibromochloromethane	< 0.00500	0.0500	0.0478	96	74-135		
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0455	91	62-134		
1,2-Dibromoethane	< 0.00500	0.0500	0.0469	94	77-129		
Methylene bromide	< 0.00500	0.0500	0.0512	102	71-124		
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0446	89	81-123		
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0448	90	82-126		
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0452	90	80-119		
Dichlorodifluoromethane	< 0.00500	0.0500	0.0579	116	59-121		
1,1-Dichloroethane	< 0.00500	0.0500	0.0521	104	75-125		
1,2-Dichloroethane	< 0.00500	0.0500	0.0562	112	64-130		
1,1-Dichloroethene	< 0.00500	0.0500	0.0489	98	68-116		
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0493	99	74-130		
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0482	96	64-109		
1,2-Dichloropropane	< 0.00500	0.0500	0.0481	96	72-127		
1,3-Dichloropropane	< 0.00500	0.0500	0.0457	91	79-133		
2,2-Dichloropropane	< 0.00500	0.0500	0.0569	114	71-134		

Blank Spike Recovery [D] = 100*[C]/[B] All results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Blank Spike Recovery

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

 Lab Batch #:
 945213
 Sample: 658096-1-BKS
 Matrix: Water

 Date Analyzed:
 07/08/2014
 Date Prepared: 07/08/2014
 Analyst: MCH

Reporting Units: mg/L Batch #: 1 BLANK /BLANK SPIKE RECOVERY STUDY

reporting omes. mg/L	Datch #: 1	DLANK / DLANK SFIRE RECOVERT STUDT					
VOAs by SW-846 8260B Analytes	Blank Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Control Limits %R	Flags	
1,1-Dichloropropene	< 0.00500	0.0500	0.0512	102	69-124		
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0541	108	74-138		
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0486	97	70-132		
Ethylbenzene	< 0.00500	0.0500	0.0459	92	69-131		
Hexachlorobutadiene	< 0.00500	0.0500	0.0427	85	74-130		
Isopropylbenzene	< 0.00500	0.0500	0.0447	89	66-133		
Methylene Chloride	< 0.00500	0.0500	0.0446	89	60-121		
MTBE	< 0.00500	0.0500	0.0537	107	60-152		
Naphthalene	< 0.0100	0.0500	0.0459	92	69-140		
n-Propylbenzene	< 0.00500	0.0500	0.0480	96	86-129		
Styrene	< 0.00500	0.0500	0.0476	95	79-128		
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0485	97	78-131		
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0435	87	80-133		
Tetrachloroethylene	< 0.00500	0.0500	0.0477	95	79-122		
Toluene	< 0.00500	0.0500	0.0442	88	62-132		
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0445	89	76-126		
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0453	91	77-127		
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0525	105	72-124		
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0458	92	71-135		
Trichloroethylene	< 0.00500	0.0500	0.0531	106	74-123		
Trichlorofluoromethane	< 0.00500	0.0500	0.0610	122	70-143		
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0449	90	75-134		
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0484	97	79-132		
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0477	95	72-139		
o-Xylene	< 0.00500	0.0500	0.0466	93	67-132		
m,p-Xylenes	< 0.0100	0.100	0.0923	92	69-132		
Vinyl Chloride	< 0.00200	0.0500	0.0481	96	59-124		

BS / BSD Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Analyst: RKO Date Prepared: 07/07/2014 Date Analyzed: 07/07/2014

Lab Batch ID: 945189 **Sample:** 657985-1-BKS **Batch #:** 1 **Matrix:** Water

Units: mg/L BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Chloride	<1.00	25.0	23.9	96	25.0	23.8	95	0	80-120	20	
Fluoride	< 0.400	5.00	5.00	100	5.00	4.95	99	1	80-120	20	
Sulfate	<2.00	25.0	23.6	94	25.0	23.6	94	0	80-120	20	

Analyst: BHRE Date Prepared: 07/08/2014 Date Analyzed: 07/08/2014

Lab Batch ID: 945104Sample: 658038-1-BKSBatch #: 1Matrix: Water

Units: mg/L BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

		1					I			I	
Mercury by EPA 7470A	Blank Sample Result	Spike Added	Blank Spike	Blank Spike	Spike Added	Blank Spike	Blk. Spk Dup.	RPD	Control Limits	Control Limits	Flag
	[A]		Result	%R		Duplicate	%R	%	%R	%RPD	
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Mercury	< 0.000200	0.00200	0.00174	87	0.00200	0.00175	88	1	80-120	20	

Analyst: DAB **Date Prepared:** 07/11/2014 **Date Analyzed:** 07/11/2014

Lab Batch ID: 945482 **Sample:** 658226-1-BKS **Batch #:** 1 **Matrix:** Water

Units: mg/L BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Metals by EPA 200.8 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Arsenic	< 0.00200	0.100	0.102	102	0.100	0.104	104	2	85-115	20	
Silver	< 0.00200	0.0500	0.0530	106	0.0500	0.0529	106	0	85-115	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E]

mg/L

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Analyst: DAB Date Prepared: 07/09/2014 Date Analyzed: 07/10/2014

 Lab Batch ID: 945411
 Sample: 658113-1-BKS
 Batch #: 1
 Matrix: Water

ing D	BLANK SPIRE / BLANK SPIRE DUPLICATE RECOVERY STUDY										
Metals per ICP by EPA 200.7 Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Aluminum	< 0.200	5.00	5.15	103	5.00	5.12	102	1	85-115	20	
Barium	< 0.0100	1.00	0.987	99	1.00	0.984	98	0	85-115	20	
Boron	< 0.0500	1.00	1.14	114	1.00	1.14	114	0	85-115	20	
Cadmium	< 0.0100	1.00	1.02	102	1.00	1.02	102	0	85-115	20	
Calcium	< 0.200	25.0	26.3	105	25.0	26.1	104	1	85-115	20	
Chromium	< 0.0100	1.00	1.08	108	1.00	1.07	107	1	85-115	20	
Cobalt	< 0.0100	1.00	0.995	100	1.00	0.989	99	1	85-115	20	
Copper	< 0.0200	1.00	1.05	105	1.00	1.05	105	0	85-115	20	
Iron	< 0.200	5.00	5.30	106	5.00	5.30	106	0	85-115	20	
Lead	< 0.0100	1.00	1.07	107	1.00	1.06	106	1	85-115	20	
Magnesium	< 0.200	25.0	26.8	107	25.0	26.7	107	0	85-115	20	
Manganese	< 0.0200	1.00	1.02	102	1.00	1.01	101	1	85-115	20	
Molybdenum	< 0.0100	1.00	1.11	111	1.00	1.10	110	1	85-115	20	
Nickel	< 0.0100	1.00	1.03	103	1.00	1.03	103	0	85-115	20	
Potassium	< 0.500	10.0	9.79	98	10.0	9.94	99	2	85-115	20	
Selenium	< 0.0300	1.00	1.15	115	1.00	1.16	116	1	85-115	20	
Sodium	< 0.500	25.0	25.4	102	25.0	25.3	101	0	85-115	20	
Zinc	< 0.0300	1.00	1.15	115	1.00	1.16	116	1	85-115	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

mg/L

Units:

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Analyst: PKH Date Prepared: 07/09/2014 Date Analyzed: 07/09/2014

Lab Batch ID: 945303Sample: 658056-1-BKSBatch #: 1Matrix: Water

0		BLANK STIKE / BLANK STIKE DUFLICATE RECOVERT STUDI											
PAHs by GCMS SIM Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag		
Acenaphthene	< 0.0000500	0.00100	0.000806	81	0.00100	0.000827	83	3	57-90	25			
Acenaphthylene	< 0.0000500	0.00100	0.000840	84	0.00100	0.000852	85	1	47-95	25			
Anthracene	< 0.0000500	0.00100	0.000858	86	0.00100	0.000868	87	1	56-90	25			
Benzo(a)anthracene	< 0.0000500	0.00100	0.000911	91	0.00100	0.000925	93	2	51-100	25			
Benzo(a)pyrene	< 0.0000500	0.00100	0.000864	86	0.00100	0.000876	88	1	49-97	25			
Benzo(b)fluoranthene	< 0.0000500	0.00100	0.000824	82	0.00100	0.000833	83	1	41-114	25			
Benzo(g,h,i)perylene	< 0.0000500	0.00100	0.000794	79	0.00100	0.000812	81	2	51-105	25			
Benzo(k)fluoranthene	< 0.0000500	0.00100	0.000818	82	0.00100	0.000838	84	2	54-103	25			
Chrysene	< 0.0000500	0.00100	0.000855	86	0.00100	0.000877	88	3	60-101	25			
Dibenz(a,h)anthracene	< 0.0000500	0.00100	0.000800	80	0.00100	0.000815	82	2	50-109	25			
Dibenzofuran	< 0.0000500	0.00100	0.000829	83	0.00100	0.000858	86	3	55-91	25			
Fluoranthene	< 0.0000500	0.00100	0.000864	86	0.00100	0.000892	89	3	58-93	25			
Fluorene	< 0.0000500	0.00100	0.000833	83	0.00100	0.000847	85	2	58-93	25			
Indeno(1,2,3-c,d)Pyrene	< 0.0000500	0.00100	0.000799	80	0.00100	0.000816	82	2	52-108	25			
Naphthalene	< 0.000500	0.00100	0.000810	81	0.00100	0.000842	84	4	51-100	25			
Phenanthrene	< 0.0000500	0.00100	0.000881	88	0.00100	0.000923	92	5	43-97	25			
Pyrene	< 0.0000500	0.00100	0.000849	85	0.00100	0.000870	87	2	51-95	25			

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

BS / BSD Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Analyst: ANS Date Prepared: 07/16/2014 Date Analyzed: 07/16/2014

Lab Batch ID: 945767Sample: 945767-1-BKSBatch #: 1Matrix: Water

Units: mg/L		BLAN	K/BLANK S	SPIKE / I	BLANK S	SPIKE DUPI	LICATE	RECOVI	ERY STUD	Y	
TDS by SM2540C	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Total dissolved solids	< 5.00	1000	984	98	1000	979	98	1	80-120	10	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672

Lab Batch #: 945189 **Project ID:** SRS# 2009-092

 Date Analyzed:
 07/08/2014
 Date Prepared: 07/08/2014
 Analyst: RKO

 QC- Sample ID:
 488629-001 S
 Batch #: 1
 Matrix: Water

QC- Sample ID: 488629-001 S

Batch #: 1

Matrix: Water

Reporting Units: mg/L

MATRIX / MATRIX SPIKE RECOVERY STUDY

	Parent Spiked Sample Control									
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Chloride	170	250	451	112	80-120					
Fluoride	<4.00	50.0	53.6	107	80-120					
Sulfate	67.2	250	321	102	80-120					

Lab Batch #: 945189

 Date Analyzed:
 07/08/2014
 Date Prepared: 07/08/2014
 Analyst: RKO

 QC- Sample ID:
 488694-002 S
 Batch #: 1
 Matrix: Water

Reporting Units: mg/L MATRIX / MATRIX SPIKE RECOVERY STUDY

1 8	Porent Carlant Carrain Carrain											
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag						
Chloride	89.3	250	357	107	80-120							
Fluoride	<4.00	50.0	52.7	105	80-120							
Sulfate	131	250	399	107	80-120							

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Form 3 - MS Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672

Project ID: SRS# 2009-092 Lab Batch #: 945411

Date Analyzed: 07/10/2014 **Date Prepared:** 07/09/2014 Analyst: DAB **QC- Sample ID:** 488694-002 S Batch #: Matrix: Water

Reporting Units: mg/L	MATI	RIX / MA	TRIX SPIKE	RECO	VERY STU	DY
Metals per ICP by EPA 200.7 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag
· ·	-0.200	5.00	5.10	102	70.120	
Aluminum	< 0.200	5.00	5.12	102	70-130	
Barium	0.0404	1.00	1.00	96	70-130	
Boron	0.306	1.00	1.43	112	70-130	
Cadmium	< 0.0100	1.00	0.988	99	70-130	
Calcium	92.5	25.0	118	102	70-130	
Chromium	< 0.0100	1.00	1.03	103	70-130	
Cobalt	< 0.0100	1.00	0.957	96	70-130	
Copper	< 0.0200	1.00	1.00	100	70-130	
Iron	< 0.200	5.00	4.90	98	70-130	
Lead	< 0.0100	1.00	1.01	101	70-130	
Magnesium	16.6	25.0	42.2	102	70-130	
Manganese	0.0779	1.00	1.05	97	70-130	
Molybdenum	< 0.0100	1.00	1.06	106	70-130	
Nickel	< 0.0100	1.00	0.978	98	70-130	
Potassium	5.26	10.0	15.4	101	70-130	
Selenium	< 0.0300	1.00	1.10	110	70-130	
Sodium	81.5	25.0	108	106	70-130	
Zinc	0.0737	1.00	1.18	111	70-130	

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Lab Batch ID: 945104 **QC- Sample ID:** 488558-001 S **Batch #:** 1 **Matrix:** Water

 Date Analyzed:
 07/08/2014
 Date Prepared:
 07/08/2014
 Analyst:
 BHRE

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Mercury by EPA 7470A Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Mercury	< 0.000200	0.00200	0.00183	92	0.00200	0.00180	90	2	75-125	20	

Lab Batch ID: 945482 **QC- Sample ID:** 489060-001 S **Batch #:** 1 **Matrix:** Water

 Date Analyzed:
 07/11/2014
 Date Prepared:
 07/11/2014
 Analyst:
 DAB

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Metals by EPA 200.8 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Arsenic	< 0.00200	0.100	0.105	105	0.100	0.105	105	0	70-130	20	
Silver	< 0.00200	0.0500	0.0522	104	0.0500	0.0520	104	0	70-130	20	

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Lab Batch ID: 945411 QC- Sample ID: 488661-001 S Batch #: 1 Matrix: Waste Water

Date Analyzed: 07/10/2014 Date Prepared: 07/09/2014 Analyst: DAB

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Metals per ICP by EPA 200.7 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Aluminum	0.269	5.00	5.89	112	5.00	6.12	117	4	70-130	20	
Barium	0.102	1.00	1.12	102	1.00	1.12	102	0	70-130	20	
Boron	0.0622	1.00	1.26	120	1.00	1.29	123	2	70-130	20	
Cadmium	< 0.0100	1.00	1.06	106	1.00	1.05	105	1	70-130	20	
Calcium	240	25.0	265	100	25.0	263	92	1	70-130	20	
Chromium	0.304	1.00	1.38	108	1.00	1.37	107	1	70-130	20	
Cobalt	< 0.0100	1.00	1.02	102	1.00	1.00	100	2	70-130	20	
Copper	< 0.0200	1.00	1.10	110	1.00	1.10	110	0	70-130	20	
Iron	< 0.200	5.00	5.19	104	5.00	5.14	103	1	70-130	20	
Lead	< 0.0100	1.00	1.05	105	1.00	1.03	103	2	70-130	20	
Magnesium	6.23	25.0	33.0	107	25.0	32.5	105	2	70-130	20	
Manganese	< 0.0200	1.00	1.03	103	1.00	1.01	101	2	70-130	20	
Molybdenum	0.219	1.00	1.33	111	1.00	1.32	110	1	70-130	20	
Nickel	< 0.0100	1.00	1.03	103	1.00	1.02	102	1	70-130	20	
Potassium	254	10.0	270	160	10.0	273	190	1	70-130	20	X
Selenium	0.0662	1.00	1.26	119	1.00	1.25	118	1	70-130	20	
Sodium	95.6	25.0	125	118	25.0	126	122	1	70-130	20	
Zinc	0.0358	1.00	1.23	119	1.00	1.22	118	1	70-130	20	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Lab Batch ID: 945223 **QC- Sample ID:** 488661-001 S **Batch #:** 1 **Matrix:** Waste Water

Date Analyzed: 07/09/2014 Date Prepared: 07/09/2014 Analyst: BFO

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Total Phosphorus by EPA 365.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Total Phosphorus (as P)	0.764	0.500	1.25	97	0.500	1.27	101	2	90-110	20	

Lab Batch ID: 945223 **QC- Sample ID:** 488718-001 S **Batch #:** 1 **Matrix:** Water

 Date Analyzed:
 07/09/2014
 Date Prepared:
 07/09/2014
 Analyst:
 BFO

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

Total Phosphorus by EPA 365.1 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
·											
Total Phosphorus (as P)	0.869	0.500	1.37	100	0.500	1.37	100	0	90-110	20	

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 Project ID: SRS# 2009-092

Lab Batch ID: 945213 **QC- Sample ID:** 488672-001 S **Batch #:** 1 **Matrix:** Water

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00500	0.0500	0.0458	92	0.0500	0.0476	95	4	66-142	25	
Bromobenzene	< 0.00500	0.0500	0.0423	85	0.0500	0.0435	87	3	75-125	25	
Bromochloromethane	< 0.00500	0.0500	0.0463	93	0.0500	0.0475	95	3	60-140	25	
Bromodichloromethane	< 0.00500	0.0500	0.0489	98	0.0500	0.0504	101	3	75-125	25	
Bromoform	< 0.00500	0.0500	0.0479	96	0.0500	0.0509	102	6	75-125	25	
Methyl bromide	< 0.00500	0.0500	0.0363	73	0.0500	0.0353	71	3	60-140	25	
n-Butylbenzene	< 0.00500	0.0500	0.0409	82	0.0500	0.0434	87	6	75-125	25	
Sec-Butylbenzene	< 0.00500	0.0500	0.0400	80	0.0500	0.0427	85	7	75-125	25	
tert-Butylbenzene	< 0.00500	0.0500	0.0415	83	0.0500	0.0448	90	8	75-125	25	
Carbon Tetrachloride	< 0.00500	0.0500	0.0431	86	0.0500	0.0449	90	4	62-125	25	
Chlorobenzene	< 0.00500	0.0500	0.0410	82	0.0500	0.0438	88	7	60-133	25	
Chloroethane	< 0.0100	0.0500	0.0362	72	0.0500	0.0356	71	2	60-140	25	
Chloroform	< 0.00500	0.0500	0.0470	94	0.0500	0.0483	97	3	70-130	25	
Methyl Chloride	< 0.0100	0.0500	0.0379	76	0.0500	0.0380	76	0	60-140	25	
2-Chlorotoluene	< 0.00500	0.0500	0.0415	83	0.0500	0.0444	89	7	73-125	25	
4-Chlorotoluene	< 0.00500	0.0500	0.0416	83	0.0500	0.0431	86	4	74-125	25	
p-Cymene (p-Isopropyltoluene)	< 0.00500	0.0500	0.0400	80	0.0500	0.0427	85	7	75-125	25	
Dibromochloromethane	< 0.00500	0.0500	0.0456	91	0.0500	0.0457	91	0	73-125	25	
1,2-Dibromo-3-Chloropropane	< 0.00500	0.0500	0.0487	97	0.0500	0.0491	98	1	59-125	25	
1,2-Dibromoethane	< 0.00500	0.0500	0.0464	93	0.0500	0.0470	94	1	73-125	25	
Methylene bromide	< 0.00500	0.0500	0.0489	98	0.0500	0.0490	98	0	69-127	25	
1,2-Dichlorobenzene	< 0.00500	0.0500	0.0429	86	0.0500	0.0444	89	3	75-125	25	
1,3-Dichlorobenzene	< 0.00500	0.0500	0.0414	83	0.0500	0.0436	87	5	75-125	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*[(C-F)/(C+F)] Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 **Project ID:** SRS# 2009-092

Lab Batch ID: 945213 **QC- Sample ID:** 488672-001 S **Batch #:** 1 **Matrix:** Water

 Date Analyzed:
 07/08/2014
 Date Prepared:
 07/08/2014
 Analyst:
 MCH

Reporting Units: VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
1,4-Dichlorobenzene	< 0.00500	0.0500	0.0419	84	0.0500	0.0437	87	4	75-125	25	
Dichlorodifluoromethane	< 0.00500	0.0500	0.0256	51	0.0500	0.0290	58	12	70-130	25	X
1,1-Dichloroethane	< 0.00500	0.0500	0.0463	93	0.0500	0.0485	97	5	72-125	25	
1,2-Dichloroethane	< 0.00500	0.0500	0.0508	102	0.0500	0.0518	104	2	68-127	25	
1,1-Dichloroethene	< 0.00500	0.0500	0.0364	73	0.0500	0.0371	74	2	59-172	25	
cis-1,2-Dichloroethylene	< 0.00500	0.0500	0.0458	92	0.0500	0.0462	92	1	75-125	25	
trans-1,2-dichloroethylene	< 0.00500	0.0500	0.0393	79	0.0500	0.0434	87	10	75-125	25	
1,2-Dichloropropane	< 0.00500	0.0500	0.0445	89	0.0500	0.0465	93	4	74-125	25	
1,3-Dichloropropane	< 0.00500	0.0500	0.0453	91	0.0500	0.0467	93	3	75-125	25	
2,2-Dichloropropane	< 0.00500	0.0500	0.0439	88	0.0500	0.0472	94	7	75-125	25	
1,1-Dichloropropene	< 0.00500	0.0500	0.0423	85	0.0500	0.0446	89	5	75-125	25	
cis-1,3-Dichloropropene	< 0.00500	0.0500	0.0486	97	0.0500	0.0505	101	4	74-125	25	
trans-1,3-dichloropropene	< 0.00500	0.0500	0.0447	89	0.0500	0.0457	91	2	66-125	25	
Ethylbenzene	< 0.00500	0.0500	0.0413	83	0.0500	0.0441	88	7	75-125	25	
Hexachlorobutadiene	< 0.00500	0.0500	0.0351	70	0.0500	0.0369	74	5	75-125	25	X
Isopropylbenzene	< 0.00500	0.0500	0.0397	79	0.0500	0.0420	84	6	75-125	25	
Methylene Chloride	< 0.00500	0.0500	0.0390	78	0.0500	0.0421	84	8	75-125	25	
MTBE	< 0.00500	0.0500	0.0529	106	0.0500	0.0583	117	10	65-135	25	
Naphthalene	< 0.0100	0.0500	0.0515	103	0.0500	0.0541	108	5	70-130	25	
n-Propylbenzene	< 0.00500	0.0500	0.0421	84	0.0500	0.0451	90	7	75-125	25	
Styrene	< 0.00500	0.0500	< 0.00500	0	0.0500	< 0.00500	0	NC	75-125	25	X
1,1,1,2-Tetrachloroethane	< 0.00500	0.0500	0.0453	91	0.0500	0.0477	95	5	72-125	25	
1,1,2,2-Tetrachloroethane	< 0.00500	0.0500	0.0455	91	0.0500	0.0477	95	5	74-125	25	
Tetrachloroethylene	< 0.00500	0.0500	0.0405	81	0.0500	0.0429	86	6	71-125	25	

Matrix Spike Percent Recovery [D] = 100*(C-A)/BRelative Percent Difference RPD = 200*(C-F)/(C+F) Matrix Spike Duplicate Percent Recovery [G] = 100*(F-A)/E

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672 **Project ID:** SRS# 2009-092

Lab Batch ID: 945213 **QC- Sample ID:** 488672-001 S **Batch #:** 1 **Matrix:** Water

 Date Analyzed:
 07/08/2014
 Date Prepared:
 07/08/2014
 Analyst:
 MCH

Reporting Units: VOAs by SW-846 8260B Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	Spiked Sample %R [D]	Spike Added [E]	Duplicate Spiked Sample Result [F]	Spiked Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Toluene	< 0.00500	0.0500	0.0395	79	0.0500	0.0421	84	6	59-139	25	
1,2,3-Trichlorobenzene	< 0.00500	0.0500	0.0459	92	0.0500	0.0480	96	4	75-137	25	
1,2,4-Trichlorobenzene	< 0.00500	0.0500	0.0454	91	0.0500	0.0468	94	3	75-135	25	
1,1,1-Trichloroethane	< 0.00500	0.0500	0.0440	88	0.0500	0.0461	92	5	75-125	25	
1,1,2-Trichloroethane	< 0.00500	0.0500	0.0460	92	0.0500	0.0482	96	5	75-127	25	
Trichloroethylene	< 0.00500	0.0500	0.0449	90	0.0500	0.0481	96	7	62-137	25	
Trichlorofluoromethane	< 0.00500	0.0500	0.0362	72	0.0500	0.0401	80	10	60-140	25	
1,2,3-Trichloropropane	< 0.00500	0.0500	0.0428	86	0.0500	0.0444	89	4	75-125	25	
1,2,4-Trimethylbenzene	< 0.00500	0.0500	0.0441	88	0.0500	0.0463	93	5	75-125	25	
1,3,5-Trimethylbenzene	< 0.00500	0.0500	0.0427	85	0.0500	0.0449	90	5	70-125	25	
o-Xylene	< 0.00500	0.0500	0.0428	86	0.0500	0.0463	93	8	75-125	25	
m,p-Xylenes	< 0.0100	0.100	0.0832	83	0.100	0.0887	89	6	75-125	25	
Vinyl Chloride	< 0.00200	0.0500	0.0336	67	0.0500	0.0328	66	2	60-140	25	

Sample Duplicate Recovery

Project Name: 14" Vac To Jal Legacy

Work Order #: 488672

Lab Batch #: 945243 **Project ID:** SRS# 2009-092

 Date Analyzed:
 07/09/2014 17:02
 Date Prepared:
 07/09/2014
 Analyst:
 DHE

 QC- Sample ID:
 488579-001 D
 Batch #:
 1
 Matrix:
 Water

Reporting Units: mg/L	SAMPLE	SAMPLE	DUPLIC						
Alkalinity by SM2320B	Parent Sample Result [A]	Sample Duplicate Result	RPD		Flag				
Analyte		[B]							
Alkalinity, Bicarbonate (as CaCO3)	6.12	5.38	13	20					
Alkalinity, Carbonate (as CaCO3)	<4.00	<4.00	0	20	U				

Lab Batch #: 945767

 Date Analyzed:
 07/16/2014 14:07
 Date Prepared:
 07/16/2014
 Analyst: ANS

 QC- Sample ID:
 489042-003 D
 Batch #:
 1
 Matrix:
 Water

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/L TDS by SM2540C Parent Sample Sample Control RPD **Duplicate** Limits Result Flag [A] Result %RPD [B] Analyte Total dissolved solids 1390 1380 1 10

Lab Batch #: 945767

 Date Analyzed:
 07/16/2014 14:07
 Date Prepared:
 07/16/2014
 Analyst: ANS

 QC- Sample ID:
 489144-001 D
 Batch #:
 1
 Matrix:
 Water

SAMPLE / SAMPLE DUPLICATE RECOVERY Reporting Units: mg/L Sample Control TDS by SM2540C Parent Sample RPD **Duplicate** Limits Flag Result Result %RPD [A] [B] Analyte 2350 Total dissolved solids 2290 3 10

Spike Relative Difference RPD 200 * | (B-A)/(B+A) | All Results are based on MDL and validated for QC purposes. BRL - Below Reporting Limit

Final 1.001

Page 33 of 35

CHAIN OF CUSTODY

Setting the Standard since 1990

Stafford, Tex	as (281-240-4200)													Odes	sa, Te	exas (432-56	3-1800)			Lake	eland, F	lorida (8	63-646	6-8526)		
Dallas, Texa	s (214-902-0300)													Norce	ross, i	Georg	jia (77	0-449-88	(00)		Tam	pa, Flor	ida (813	-620-2	(000)		
Service Cen	ter - San Antonio, Texas	(210-509-3334)				Ā	ww.xe	nco.com	!					Xenco	Quote	#			Xenco	Job#	L	18	86	, -	F0		
			electivit	Helith		hill h	i di Unio			1	1	un de que	en en plane	no filo	Mode	Ana	ılytical	Informat	lon	tili itali	photo.	1111		Ma	atrix Co	des	
Client / R	eporting Information				Pro	ect Infor	mation																				
Company Nam	e / Branch: Basin B	nvironmental		Project I	Name/Num	ber:	SRE	1 # 2	009	-0	92			0										A= /	Air Soil/Sec	d/Solid	
Company Add	ess:			Project L	ocation:	**	, ,		0 - 1					Wall										GW	=Grour	nd Wate	er
3/00 P/A.	ins Hay, Lovingb,	1, NM 88260		Invoice	VACT	אל ס	Le	9464						M			2							P =	= Drink Product = Surfa	t	
bja (34)	e Businenv. com, t: Ben J. Agu me: Robert Sku	(806)549-4	1597	invoice	ber:	mille Usin	SA	unt V Am	nerius	n				A, W.	8260)	020	m3							SL:	= Sludge /= Waste	е	
Project Contac	" Ben J. Arsi	סנים		PO Num	ber:	24.4		-	,		-			RLKA,	8	00	3								: Wipe : Oil		
Samplers's Na	me: Robert Su	Juer			F	AH.	12.	BryAN	1					D		5								ww	/= Waste	e Water	n
	, , , , , , , , ,	7		Collectio					umber o		erved	bottles	}	15	-2	3	renera										
No.	Field ID / Point of Co	llection						5				4		Meta	70	2005	10										
			Sample Depth	Date	Time	N.d. and	# of	HCI NaOH/2	Acetate HNO3	H2S04	NaOH	NaHSO4 MEOH	NONE	X		'	2						E	iold Co	mments	,	
	MW-7		n/n	7/2/14	Time 10:30	Matrix	T S S S S S S S S S S S S S S S S S S S	3	4 I	1	2	2 2	3	X	X	K	X.							1610 00	11111101113		
1	MN-8		1	179/1	11:20	1	Ť	ĬĬ	Tİ	T			11		1	T	1				1						
2	MW-9		1		9:20			1						1/							1						
3	711/0		Ψ	- V	1.30	W	V	V	V	W.			W	W	V	V	V										
4																+	\dashv				_						
5												+				-											
6												1	-			\dashv											
7																\dashv											
8																					1						
9																1	\neg									-	
10 Turns	round Time (Business days)	HEF HER A				D	ata Deli	verable Inf	formation									Notes		351 373				Mi		rănă.	
Same Da	/ TAT	5 Day TAT			Le	vel II Std	QC			Lev	el IV (i	Full Dat	ta Pkg	/raw d	ata)			5e	e at	tach	ed si	heet	for	spe.	afre	APA!	15ES
, Next Day	EMERGENCY	7 Day TAT			Le	vel III Sto	d QC+ F	orms		TRF	RP Lev	el IV						10	24051	ad.			1984	,			
2 Day EM	TERGENCY	Contract TAT			Le	vel 3 (CL	P Form	s)] บรา	r/RG	-411															
3 Day EM	IERGENCY .				TR	RP Chec	klist																				
TAT Sta	rts Day received by Lal	o, if received by 3:0	0 pm														F	ED-EX/U	JPS: Tra	cking #							
		SAMPLE CUSTOD	MUST BE		ED BELOW	ACH TIM	IE SAMF	LES CHA	NGE POS			CLUDIN ed By:	G COU	RIER D		RY Date T	imo		Racais	ed By:						di di	
Relinquished	+ Sawer		/5/		The state of	TE	the	5		2	iquisii	eu by.				Date 1	, and,		2	eu by.							
Relinquished	by:		Date Time		Heceived	1	10	1-	,	Relin	quish	ed By:				Date T	1	105	Receiv	red By:							
3 Relinquished	by:	¥.	Date Time	e:	3 Received	By:				Cust	ody S	eal#			Prese			pplicable	4	On V	j ce	Coole	r Temp.	The	rmo. Cor	r. Facto	<u></u> ,
5 Notice: Signature of	f this document and relinquishme	ent of samples constitutes a	valid purch	ase order fro	[5 m client comp	any to XE	NCO Lai	ooratories a	and its aff	liates, s	subcont	ractors	and ass	igns XE	NCO's	standa	rd terms	and condi	tions of s	ervice uni	ss prev	iously neg	iotiated un	nder a fu	lly execute	ed client c	ontract.

NMOCD -Analytical Parameters for Initial Groundwater Sampling (3-12-08)

- 1. All compounds listed in US EPA SW-846 Method 8260 (VOC's)
- 2. All compounds listed in US EPA SW-846 Method 8270 (SVOC's)
- 3. General Chemistry:

Bicarbonate Alkalinity

Calcium

Carbonate Alkalinity

Chloride

Fluoride

Magnesium

Nitrate

Phosphate

Potassium

Sodium

Sulfate

4. RCRA Metals:

Arsenic

Barium

Cadmium

Chromium

Lead

Mercury

Selenium

Silver

5. NMWQCC Metals:

Aluminum

Boron

Cobalt

Copper

Iron

Manganese

Molybdenum

Nickel

Zinc

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 07/03/2014 10:56:00 AM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 488672

Temperature Measuring device used:

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		2.5
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	No
#5 Custody Seals intact on sample bottle	es?	No
#6 *Custody Seals Signed and dated?		No
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	in of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relind	quished/ received?	Yes
#11 Chain of Custody agrees with sampl	le label(s)?	Yes
#12 Container label(s) legible and intact?	?	Yes
#13 Sample matrix/ properties agree with	n Chain of Custody?	Yes
#14 Samples in proper container/ bottle?		Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicate	ed test(s)?	Yes
#18 All samples received within hold time	e?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace	(less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HN	NO3,HCL, H2SO4?	N/A
#22 >10 for all samples preserved with N	laAsO2+NaOH, ZnAc+NaOH?	No
* Must be completed for after-hours de		the refrigerator
Analyst:	PH Device/Lot#:	
Checklist completed by: Checklist reviewed by:	Kelsey Brooks Kelsey Brooks Kelsey Brooks	Date: 07/03/2014 Date: 07/03/2014

Analytical Report 490785

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo 14'' Vac To Jal Legacy SRS# 2009-092 12-AUG-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-16-TX), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

12-AUG-14

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 490785

14" Vac To Jal Legacy

Project Address: Lovington, NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 490785. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 490785 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Hoah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 490785

PLAINS ALL AMERICAN EH&S, Midland, TX

14" Vac To Jal Legacy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	08-04-14 13:55		490785-001
MW-3	W	08-04-14 14:00		490785-002
MW-4	W	08-04-14 13:20		490785-003
MW-5	W	08-04-14 14:35		490785-004
MW-6	W	08-04-14 12:15		490785-005
MW-7	W	08-04-14 11:40		490785-006
MW-8	W	08-04-14 13:15		490785-007
MW-9	\mathbf{W}	08-04-14 11:00		490785-008

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: 14" Vac To Jal Legacy

 Project ID:
 SRS# 2009-092
 Report Date:
 12-AUG-14

 Work Order Number(s):
 490785
 Date Received:
 08/05/2014

Sample recei	pt non confor	mances and c	comments:			
Sample recei	pt non confor	rmances and c	comments pe	r sample:		
None						

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092 Project Name: 14"

Project Name: 14" Vac To Jal Legacy

Contact: Ben Arguijo
Project Location: Lovington, NM

Date Received in Lab: Tue Aug-05-14 02:44 pm

Report Date: 12-AUG-14

Project Manager: Kelsey Brooks

								I I OJECE IVIA	ect Manager. Reisey Brooks						
	Lab Id:	490785-0	001	490785-	002	490785-	003	490785-	004	490785-0	005	490785-	006		
Analysis Paguastad	Field Id:	MW-2	!	MW-	3	MW-4	1	MW-	5	MW-6	5	MW-	7		
Analysis Requested	Depth:														
	Matrix:	WATE	R	WATE	ER	WATE	R	WATE	R	WATE	R	WATE	ER		
	Sampled:	Aug-04-14	13:55	Aug-04-14	14:00	Aug-04-14	13:20	Aug-04-14	14:35	Aug-04-14	12:15	Aug-04-14	11:40		
BTEX by EPA 8021B	Extracted:	Aug-11-14	10:00	Aug-11-14	10:00	Aug-11-14	10:00	Aug-11-14	10:00	Aug-11-14	10:00	Aug-11-14	10:00		
	Analyzed:	Aug-11-14	Aug-11-14 13:27		Aug-11-14 13:44		Aug-11-14 14:00		Aug-11-14 14:16		Aug-11-14 14:33		14:49		
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL		
Benzene		0.0101	0.00100	0.387	0.00100	0.0583	0.00100	ND	0.00100	ND	0.00100	0.388	0.00100		
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200		
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100		
m_p-Xylenes		ND	0.00200	0.00378	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	0.00597	0.00200		
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100		
Total Xylenes		ND	0.00100	0.00378	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	0.00597	0.00100		
Total BTEX		0.0101	0.00100	0.391	0.00100	0.0583	0.00100	ND	0.00100	ND	0.00100	0.394	0.00100		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Project Location: Lovington, NM

Certificate of Analysis Summary 490785

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092 Project Name: 14" Vac To Jal Legacy

Contact: Ben Arguijo

Date R

Date Received in Lab: Tue Aug-05-14 02:44 pm

Report Date: 12-AUG-14

Project Manager: Kelsey Brooks

				Troject Wanager. Reisey Brooks
	Lab Id:	490785-007	490785-008	
Analysis Requested	Field Id:	MW-8	MW-9	
Anatysis Requestea	Depth:			
	Matrix:	WATER	WATER	
	Sampled:	Aug-04-14 13:15	Aug-04-14 11:00	
BTEX by EPA 8021B	Extracted:	Aug-11-14 10:00	Aug-11-14 10:00	
	Analyzed:	Aug-11-14 15:06	Aug-11-14 15:22	
	Units/RL:	mg/L RL	mg/L RL	
Benzene		0.233 0.00100	ND 0.00100	
Toluene		ND 0.00200	ND 0.00200	
Ethylbenzene		ND 0.00100	ND 0.00100	
m_p-Xylenes		0.00287 0.00200	ND 0.00200	
o-Xylene		ND 0.00100	ND 0.00100	
Total Xylenes		0.00287 0.00100	ND 0.00100	
Total BTEX		0.236 0.00100	ND 0.00100	

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- BRL Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders: 490785, **Project ID:** SRS# 2009-092

Lab Batch #: 947952 Matrix: Water Sample: 490785-001 / SMP Batch:

Units: mg/	L Date Analyzed: 08/11/14 13:27	SU	RROGATE RI	ECOVERY S	STUDY	
	BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0273	0.0300	91	80-120	
4-Bromofluorobenze	ene	0.0304	0.0300	101	80-120	

Matrix: Water **Lab Batch #:** 947952 Sample: 490785-002 / SMP Batch: 1

Units: mg/L Date Analyzed: 08/11/14 13:44 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Flags Found Limits Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0290 0.0300 97 80-120 4-Bromofluorobenzene 0.0276 0.0300 80-120

Lab Batch #: 947952 Sample: 490785-003 / SMP Matrix: Water Batch:

Units: mg/L Date Analyzed: 08/11/14 14:00 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0266	0.0300	89	80-120	
4-Bromofluorobenzene	0.0267	0.0300	89	80-120	

Lab Batch #: 947952 Sample: 490785-004 / SMP Batch: Matrix: Water

Units: mg/L	Date Analyzed: 08/11/14 14:16	SURROGATE RECOVERY STUDY											
BT	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags							
1,4-Difluorobenzene	Analytes	0.0277	0.0300	92	80-120								
4-Bromofluorobenzene		0.0301	0.0300	100	80-120								

Lab Batch #: 947952 **Sample:** 490785-005 / SMP Batch: Matrix: Water

Units: mg/L Date Analyzed: 08/11/14 14:33	SU	RROGATE RE	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0279	0.0300	93	80-120	
4-Bromofluorobenzene	0.0301	0.0300	100	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

92

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

4-Bromofluorobenzene

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders: 490785, **Project ID:** SRS# 2009-092

Lab Batch #: 947952 Matrix: Water Sample: 490785-006 / SMP Batch:

Units: mg/L	Date Analyzed: 08/11/14 14:49	SU	RROGATE RI	ECOVERY	STUDY	
ВЗ	ΓEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0344	0.0300	115	80-120	
4-Bromofluorobenzene		0.0249	0.0300	83	80-120	

Matrix: Water **Lab Batch #:** 947952 Sample: 490785-007 / SMP Batch: 1

Units: mg/L Date Analyzed: 08/11/14 15:06 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Flags Found Limits Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0346 0.0300 115 80-120

0.0281

0.0300

94

80-120

Lab Batch #: 947952 Sample: 490785-008 / SMP Batch: Matrix: Water

Units: mg/L Date Analyzed: 08/11/14 15:22 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0270	0.0300	90	80-120	
4-Bromofluorobenzene	0.0298	0.0300	99	80-120	

Sample: 659867-1-BLK / BLK Matrix: Water **Lab Batch #:** 947952 Batch: 1

Units: mg/L Date Analyzed: 08/11/14 11:17 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Amount Recovery Limits **Flags** [B] %R %R [A] [D] **Analytes** 1,4-Difluorobenzene 0.0284 0.0300 95 80-120 4-Bromofluorobenzene 0.0304 0.0300 101 80-120

Lab Batch #: 947952 Sample: 659867-1-BKS / BKS Batch: Matrix: Water

Units: mg/L Date Analyzed: 08/11/14 1		Date Analyzed: 08/11/14 11:33	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	EX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorober	nzene	<u> </u>	0.0285	0.0300	95	80-120	
4-Bromofluorobenzene		0.0348	0.0300	116	80-120		

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders : 490785, **Project ID:** SRS# 2009-092

Units: **Date Analyzed:** 08/11/14 11:49 mg/L SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0289 0.0300 96 80-120 4-Bromofluorobenzene 0.0352 0.0300 80-120 117

Lab Batch #: 947952 **Sample:** 490785-001 S / MS **Batch:** 1 **Matrix:** Water

Units: mg/L **Date Analyzed:** 08/11/14 12:05 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0268 0.0300 89 80-120 4-Bromofluorobenzene 0.0330 0.0300 110 80-120

Lab Batch #: 947952 **Sample:** 490785-001 SD / MSD **Batch:** 1 **Matrix:** Water

Units: mg/L **Date Analyzed:** 08/11/14 12:21 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery %R %R [A] [B] [D] **Analytes** 1,4-Difluorobenzene 0.0264 0.0300 88 80-120 4-Bromofluorobenzene 0.0335 0.0300 112 80-120

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

BS / BSD Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 490785 Project ID: SRS# 2009-092

 Analyst:
 ARM
 Date Prepared: 08/11/2014
 Date Analyzed: 08/11/2014

Lab Batch ID: 947952 **Sample:** 659867-1-BKS **Batch #:** 1 **Matrix:** Water

Units: mg/L BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added [E]	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Benzene	< 0.00100	0.100	0.0941	94	0.100	0.0997	100	6	70-125	25	
Toluene	< 0.00200	0.100	0.0989	99	0.100	0.105	105	6	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.104	104	0.100	0.111	111	7	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.209	105	0.200	0.222	111	6	70-131	25	
o-Xylene	< 0.00100	0.100	0.103	103	0.100	0.110	110	7	71-133	25	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)| Blank Spike Recovery [D] = 100*(C)/[B] Blank Spike Duplicate Recovery [G] = 100*(F)/[E] All results are based on MDL and Validated for QC Purposes

Form 3 - MS / MSD Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 490785 Project ID: SRS# 2009-092

Lab Batch ID: 947952 **QC- Sample ID:** 490785-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 08/11/2014 **Date Prepared:** 08/11/2014 **Analyst:** ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	0.0101	0.100	0.0977	88	0.100	0.101	91	3	70-125	25	
Toluene	< 0.00200	0.100	0.0962	96	0.100	0.0997	100	4	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.101	101	0.100	0.105	105	4	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.203	102	0.200	0.212	106	4	70-131	25	
o-Xylene	< 0.00100	0.100	0.100	100	0.100	0.105	105	5	71-133	25	

_
\subseteq
2
_
$\overline{}$
_
π
ë

5	G	N	0	0
] [bo		H	
-	00	4.1		10

CHAIN OF CUSTODY RECORD

Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4200 Odessa: 12600 West I-20 East Odessa, TX 79765 (432)563-1800

LAB W.O#:

110785 VA

* Container Type Codes

al Amber ES Encore Sampler
TerraCore Sampler
TerraCore Sampler
AC Air Canister
Alass Amber B Tedlar Bag
Alass Clear ZB Zip Lock Bag
Plastic Clear

Environment	HODDS: 4008 N Grimes and Ashestos Baddochemistry	HODDS, NM 882	40 (575)392-7											illable H			1 - 1	00	GC Glass Clear 2 PA Plastic Amber	TB Tedlar Bag ZB Zip Lock Bag PC Plastic Clear	
Compa	nny: Basin Environmental Service Tec	hnologies, LL	С	Phone:	(575)	396-2	378	TAT W	ork Day	s = D	Need r	esults b	y:			Tim	ne:		PC Plastic Clear Other		
Addres	3100 Plains Hwy.			Fax:	(575)	396-1	429	(Std (5-	7D) 5H	rs 1D 2	2D 3D	4D <u>5D</u>	7D 10E	14D	Other_			Size(s): 2oz, 4oz, 8oz, 16o; 40ml, 125 ml, 250 ml, 500	ź, 32oz , 1Gal ml, 1L, Other	_
City:	Lovington		State: NM	Zip:	8826	0			ANALYSES REQUESTED									** Preservativ	e Type Codes		
PM/Atti	n: Ben Arguijo		Email:	cjbryant@p bjarguijo@				Cont Type * VC	VP										A. None E. HCL	I. Ice	_
Project	ID: 14" Vac to Jal Legacy SRS #2009-092			PO#:	PAA-	C. Brya	ant	Pres Type** E, I	E,I										B. HNO_3 F. $MeOH$ H_2SO_4 G. $Na_2S_2O_3$ F D. $NaOH$ H. $NaHSO_4$ O.		G.
Invoice	e To: Camille Bryant Plains All Am	erican		Quote #:		11		260										le in PAH Only if	^ Matrix T	ype Codes	-
Sample	er Signature:		Event: Daily I Annual		Month	nly (Q	uartely	Example Volatiles by 8260	ВТЕХ									Hold Sample Run PAH hest TPH Only If	GW Ground Water WW Waste Water DW Drinking Water SW Surface Water	S Soil/Sediment/Solid W Wipe A Air O Oil	PORTORION
Sample #	Sample ID	Collect Date	Collect Time	Matrix Code ^	Field Filtered	Integrity OK (Y/N)	Fotal # of containers	E) Volatile	Δ.									(CALL on Highest	r L r roduct-Liquid		
Sa								# Cont	Lab Only	<i>/</i> :										ARKS	
1	MW-2	8/4/19	8/4/14 13:55				3		Χ											10	
2	MW-3	8/4/14	14:00	GW			3		Х												
3	MW-4	8/4/14	13:20	GW			3		X											7	
4	MW-5	8/4/14	14:35	GW			3		Х												
5	MW-6	8/4/14	12:15	GW			3		Χ												
6	MW-7	8/4/16	11:40	GW			3.		Х												
7	MW-8	314/18	13:15	GW			3		Х												
8	MW-9	8/4/14	11:00	GW			3		Х												
9		,												3							
0																					
	Reg. Program / Clean-up Std		for Certs 8					& Certific			EDDs			Labels		coolers	Temp °	С	Lab Use Only	YES NO N	/A
CTLs Other:	TRRP DW NPDES LPST DryCln	FL TX GA I AL NM Oth				C DoD	-ELAP			XLS Oth			Absent	ncomplete Unclear	13.	211	3		Non-Conformances found? Samples intact upon arrival?		
1	Relinquished by		Affilia Basin		0.	Date - 4-	-	7 im			eceived		Affili	ation	O Ilve	te (T	me	Received on Wet Ice? Labeled with proper preserval		_
2	Valey Soph Basi		1)951n	MUIGON.	0	1-	11	1. [Opm	V.Cashilo				8/5/14		8-4-14 4:40 01511/1 1111/2		Received within holding time? Custody seals intact?	?		
3										, ,	140	<u> </u>	> 120100 8/8		101-11-11-11-11		- /	VOCs rec'd w/o headspace? Proper containers used? pH verified-acceptable, excl \		_	
1																			Received on time to meet HT		_

B&A Laboratories: Hobbs 575-392-7550 Dallas 214-902-0300 Houston 281-242-4200 Odessa 432-563-1800 San Antonio 210-509-3334 Phoenix 602-437-0330

C.O.C. Serial #

FTS Service Centers: Atlanta 770-449-8800 Lakeland 863-646-8526 Tampa 803-543-8099 Philadelphia 610-955-5649 South Carolina 803-543-8099

XENCO Laboratories

Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 08/05/2014 02:44:00 PM

Acceptable Temperature Range: 0 - 6 degC
Air and Metal samples Acceptable Range: Ambient

Work Order #: 490785

Temperature Measuring device used:

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		3.9
#2 *Shipping container in good condition?		Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping con	tainer/ cooler?	No
#5 Custody Seals intact on sample bottle	s?	No
#6 *Custody Seals Signed and dated?		No
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Chai	n of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when relinq	uished/ received?	Yes
#11 Chain of Custody agrees with sample	e label(s)?	Yes
#12 Container label(s) legible and intact?		Yes
#13 Sample matrix/ properties agree with	Chain of Custody?	Yes
#14 Samples in proper container/ bottle?		Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicate	ed test(s)?	Yes
#18 All samples received within hold time	?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace	(less than 1/4 inch bubble)?	Yes
#21 <2 for all samples preserved with HN	O3,HCL, H2SO4?	Yes
#22 >10 for all samples preserved with Na	aAsO2+NaOH, ZnAc+NaOH?	No
Must be completed for after-hours de Analyst:	livery of samples prior to placing in PH Device/Lot#:	n the refrigerator
Checklist completed by: Checklist reviewed by:	Mmv Morah Kelsey Brooks	Date: 08/05/2014
		Date:

Analytical Report 497144

for PLAINS ALL AMERICAN EH&S

Project Manager: Ben Arguijo 14" Vac To Jal Legacy SRS# 2009-092 21-NOV-14

Collected By: Client

12600 West I-20 East Odessa, Texas 79765

Xenco-Houston (EPA Lab code: TX00122): Texas (T104704215-14-18), Arizona (AZ0765), Florida (E871002), Louisiana (03054) New Jersey (TX007), North Carolina(681), Oklahoma (9218), Pennsylvania (68-03610)

Xenco-Atlanta (EPA Lab Code: GA00046): Florida (E87429), North Carolina (483), South Carolina (98015), Kentucky (85), DoD (L10-135) Texas (T104704477), Louisiana (04176), USDA (P330-07-00105)

Xenco-Lakeland: Florida (E84098)

Xenco-Odessa (EPA Lab code: TX00158): Texas (T104704400-TX)

Xenco-Dallas (EPA Lab code: TX01468): Texas (T104704295-TX)

Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757)

Xenco-Phoenix Mobile (EPA Lab code: AZ00901): Arizona (AZM757)

Xenco Tucson (EPA Lab code: AZ000989): Arizona (AZ0758)

21-NOV-14

Project Manager: **Ben Arguijo PLAINS ALL AMERICAN EH&S**1301 S. COUNTY ROAD 1150
Midland, TX 79706

Reference: XENCO Report No(s): 497144

14" Vac To Jal Legacy

Project Address: Lovington, NM

Ben Arguijo:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 497144. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 497144 will be filed for 60 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully, Hoah

Kelsey Brooks

Project Manager

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Odessa - San Antonio - Tampa - Lakeland - Atlanta - Phoenix - Oklahoma - Latin America

Sample Cross Reference 497144

PLAINS ALL AMERICAN EH&S, Midland, TX

14" Vac To Jal Legacy

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
MW-2	W	11-12-14 13:05		497144-001
MW-3	W	11-12-14 11:00		497144-002
MW-4	W	11-12-14 12:05		497144-003
MW-5	W	11-12-14 13:55		497144-004
MW-6	W	11-12-14 13:50		497144-005
MW-7	\mathbf{W}	11-12-14 14:30		497144-006
MW-8	\mathbf{W}	11-12-14 10:10		497144-007
MW-9	\mathbf{W}	11-12-14 15:10		497144-008

CASE NARRATIVE

Client Name: PLAINS ALL AMERICAN EH&S

Project Name: 14" Vac To Jal Legacy

 Project ID:
 SRS# 2009-092
 Report Date:
 21-NOV-14

 Work Order Number(s):
 497144
 Date Received:
 11/14/2014

Certificate of Analysis Summary 497144

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Project Location: Lovington, NM

Contact: Ben Arguijo

Project Name: 14" Vac To Jal Legacy

Report Date: 21-NOV-14

Date Received in Lab: Fri Nov-14-14 03:10 pm

Project Manager: Kelsey Brooks

								I I OJECE IVIA	mager.	Keisey Diook	.0		
	Lab Id:	497144-	001	497144-0	002	497144-0	003	497144-0	004	497144-0	005	497144-	006
Analysis Paguastad	Field Id:	MW-	2	MW-3	3	MW-4 MW-5		5	MW-6		MW-7		
Analysis Requested	Depth:												
	Matrix:	WATE	R	WATE	R	WATE	R	WATE	R	WATE	R	WATE	ER
	Sampled:	Nov-12-14	Nov-12-14 13:05 N		Nov-12-14 11:00		12:05	Nov-12-14	13:55	Nov-12-14	13:50	Nov-12-14	14:30
BTEX by EPA 8021B	Extracted:	Nov-18-14	ov-18-14 13:00 No		13:00	Nov-18-14 13:00 N		Nov-18-14	13:00	Nov-18-14	13:00	Nov-18-14	13:00
	Analyzed:	Nov-18-14	Nov-18-14 18:38 Nov-18-14 18:38		18:54	Nov-18-14 19:10		Nov-18-14	19:26	Nov-18-14	20:15	Nov-18-14	20:32
	Units/RL:	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL	mg/L	RL
Benzene		0.00845	0.00100	0.0345	0.00100	0.105	0.00100	ND	0.00100	ND	0.00100	0.397	0.00100
Toluene		ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200	ND	0.00200
Ethylbenzene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100
m_p-Xylenes		ND	0.00200	ND	0.00200	0.00240	0.00200	ND	0.00200	ND	0.00200	0.00760	0.00200
o-Xylene		ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	ND	0.00100	0.00113	0.00100
Total Xylenes		ND	0.00100	ND	0.00100	0.00240	0.00100	ND	0.00100	ND	0.00100	0.00873	0.00100
Total BTEX		0.00845	0.00100	0.0345	0.00100	0.107	0.00100	ND	0.00100	ND	0.00100	0.406	0.00100
Inorganic Anions by EPA 300/300.1	Extracted:	Nov-19-14	21:50										
	Analyzed:	Nov-19-14	21:50										
	Units/RL:	mg/L	RL										
Chloride		10500	200										

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Kelsey Brooks Project Manager

Certificate of Analysis Summary 497144

PLAINS ALL AMERICAN EH&S, Midland, TX

Project Id: SRS# 2009-092

Contact: Ben Arguijo

Project Location: Lovington, NM

Project Name: 14" Vac To Jal Legacy

Report Date: 21-NOV-14

Project Manager: Kelsev Brooks

Date Received in Lab: Fri Nov-14-14 03:10 pm

				Froject Manager: Reisey Brooks
	Lab Id:	497144-007	497144-008	
Analysis Paguestad	Field Id:	MW-8	MW-9	
Analysis Requested	Depth:			
	Matrix:	WATER	WATER	
	Sampled:	Nov-12-14 10:10	Nov-12-14 15:10	
BTEX by EPA 8021B	Extracted:	Nov-18-14 13:00	Nov-18-14 13:00	
	Analyzed:	Nov-19-14 11:09	Nov-18-14 20:48	
	Units/RL:	mg/L RL	mg/L RL	
Benzene		0.703 0.00500	ND 0.00100	
Toluene		ND 0.0100	ND 0.00200	
Ethylbenzene		ND 0.00500	ND 0.00100	
m_p-Xylenes		0.0150 0.0100	ND 0.00200	
o-Xylene		ND 0.00500	ND 0.00100	
Total Xylenes		0.0150 0.00500	ND 0.00100	
Total BTEX		0.718 0.00500	ND 0.00100	
· · · · · · · · · · · · · · · · · · ·				

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

Kelsey Brooks Project Manager

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- F RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- **RL** Reporting Limit

MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection

PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation

DL Method Detection Limit

NC Non-Calculable

- + NELAC certification not offered for this compound.
- * (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994.

Certified and approved by numerous States and Agencies.

A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - San Antonio - Atlanta - Midland/Odessa - Tampa/Lakeland - Phoenix - Latin America

	Phone	Fax
4143 Greenbriar Dr, Stafford, TX 77477	(281) 240-4200	(281) 240-4280
9701 Harry Hines Blvd , Dallas, TX 75220	(214) 902 0300	(214) 351-9139
5332 Blackberry Drive, San Antonio TX 78238	(210) 509-3334	(210) 509-3335
2505 North Falkenburg Rd, Tampa, FL 33619	(813) 620-2000	(813) 620-2033
12600 West I-20 East, Odessa, TX 79765	(432) 563-1800	(432) 563-1713
6017 Financial Drive, Norcross, GA 30071	(770) 449-8800	(770) 449-5477
3725 E. Atlanta Ave, Phoenix, AZ 85040	(602) 437-0330	

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Project ID: SRS# 2009-092 Work Orders: 497144,

Lab Batch #: 955688 Matrix: Water Sample: 497144-001 / SMP Batch:

Units: mg/L	Date Analyzed: 11/18/14 18:38	SU	RROGATE RE	ECOVERY S	STUDY	
В	TEX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
	Analytes			[D]		
1,4-Difluorobenzene		0.0298	0.0300	99	80-120	
4-Bromofluorobenzene		0.0294	0.0300	98	80-120	

Matrix: Water Lab Batch #: 955688 Sample: 497144-002 / SMP Batch: 1

Units: mg/L Date Analyzed: 11/18/14 18:54 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0311 0.0300 104 80-120 4-Bromofluorobenzene 0.0287 0.0300 80-120 96

Lab Batch #: 955688 Sample: 497144-003 / SMP Matrix: Water Batch:

Units: mg/L **Date Analyzed:** 11/18/14 19:10 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0324	0.0300	108	80-120	
4-Bromofluorobenzene	0.0278	0.0300	93	80-120	

Lab Batch #: 955688 Sample: 497144-004 / SMP Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 11/18/14 19:26	SU	RROGATE RE	ECOVERY S	STUDY	
	ВТЕ	CX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorober	nzene		0.0295	0.0300	98	80-120	
4-Bromofluoro	benzene		0.0286	0.0300	95	80-120	

Lab Batch #: 955688 **Sample:** 497144-005 / SMP Batch: Matrix: Water

Units: mg/L Date Analyzed: 11/18/14 20:15	SU	RROGATE RI	ECOVERY S	STUDY	
BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0308	0.0300	103	80-120	
4-Bromofluorobenzene	0.0302	0.0300	101	80-120	

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Project ID: SRS# 2009-092 Work Orders: 497144,

Lab Batch #: 955688 Matrix: Water Sample: 497144-006 / SMP Batch: 1

Units: mg/L	Date Analyzed: 11/18/14 20:32	SU	RROGATE RE	ECOVERY S	STUDY	
ВТЕХ	K by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene		0.0291	0.0300	97	80-120	
4-Bromofluorobenzene		0.0269	0.0300	90	80-120	

Matrix: Water **Lab Batch #: 955688** Sample: 497144-008 / SMP Batch: 1

Units: mg/L **Date Analyzed:** 11/18/14 20:48 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Amount Recovery Flags [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0280 0.0300 93 80-120 4-Bromofluorobenzene 0.0273 0.0300 91 80-120

Lab Batch #: 955688 Sample: 497144-007 / SMP Matrix: Water Batch:

Units: mg/L Date Analyzed: 11/19/14 11:09 SURROGATE RECOVERY STUDY

BTEX by EPA 8021B Analytes	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags
1,4-Difluorobenzene	0.0305	0.0300	102	80-120	
4-Bromofluorobenzene	0.0309	0.0300	103	80-120	

Lab Batch #: 955688 Sample: 664623-1-BLK / BLK Batch: Matrix: Water

Units:	mg/L	Date Analyzed: 11/18/14 15:00	SURROGATE RECOVERY STUDY									
	ВТЕ	X by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.4-Difluoro	obenzene	Analytes	0.0293	0.0300	98	80-120						
4-Bromofluo			0.0286	0.0300	95	80-120						

Lab Batch #: 955688 **Sample:** 664623-1-BKS / BKS Batch: Matrix: Water

Units: mg/L	Date Analyzed: 11/18/14 15:16	SURROGATE RECOVERY STUDY									
ВТ	EX by EPA 8021B	Amount Found [A]	True Amount [B]	Recovery %R [D]	Control Limits %R	Flags					
1.4 D'C 1	Analytes	0.0200	0.0000		00.420						
1,4-Difluorobenzene		0.0299	0.0300	100	80-120						
4-Bromofluorobenzene		0.0305	0.0300	102	80-120						

^{*} Surrogate outside of Laboratory QC limits

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Form 2 - Surrogate Recoveries

Project Name: 14" Vac To Jal Legacy

Work Orders: 497144, **Project ID:** SRS# 2009-092

Lab Batch #: 955688 Matrix: Water **Sample:** 664623-1-BSD / BSD Batch: 1

Units: mg/L Date Analyzed: 11/18/14 15:33 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B **Found** Amount Recovery Limits Flags [A] [B] %R %R [D]**Analytes** 1,4-Difluorobenzene 0.0312 0.0300 104 80-120 4-Bromofluorobenzene 0.0313 0.0300 104 80-120

Lab Batch #: 955688 Sample: 497192-001 S / MS Batch: 1 Matrix: Water

Units: mg/L **Date Analyzed:** 11/18/14 15:49 SURROGATE RECOVERY STUDY **Amount** True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery [A] [B] %R %R [D] **Analytes** 1,4-Difluorobenzene 0.0309 0.0300 103 80-120 4-Bromofluorobenzene

0.0318

0.0300

106

Final 1.000

80-120

Lab Batch #: 955688 Sample: 497192-001 SD / MSD Batch: Matrix: Water

Units: mg/L Date Analyzed: 11/18/14 16:05 SURROGATE RECOVERY STUDY Amount True Control BTEX by EPA 8021B Found Limits Flags Amount Recovery %R %R [A] [B] [D] **Analytes** 1,4-Difluorobenzene 0.0302 0.0300 101 80-120 4-Bromofluorobenzene 0.0304 0.0300 101 80-120

Surrogate Recovery [D] = 100 * A / B

All results are based on MDL and validated for QC purposes.

Version: 1.%

^{*} Surrogate outside of Laboratory QC limits

^{**} Surrogates outside limits; data and surrogates confirmed by reanalysis

^{***} Poor recoveries due to dilution

Units:

mg/L

BS / BSD Recoveries

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Project Name: 14" Vac To Jal Legacy

Work Order #: 497144 Project ID: SRS# 2009-092

 Analyst:
 ARM
 Date Prepared:
 11/18/2014
 Date Analyzed:
 11/18/2014

Lab Batch ID: 955688Sample: 664623-1-BKSBatch #: 1Matrix: Water

	Blank Sample Result [A]	Spike Added [B]	Blank Spike Result [C]	Blank Spike %R [D]	Spike Added	Blank Spike Duplicate Result [F]	Blk. Spk Dup. %R [G]	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		լսյ	[C]	[D]	[15]	Kesuit [F]	[0]				
Benzene	< 0.00100	0.100	0.0881	88	0.100	0.0891	89	1	70-125	25	
Toluene	< 0.00200	0.100	0.0943	94	0.100	0.0952	95	1	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.101	101	0.100	0.101	101	0	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.208	104	0.200	0.209	105	0	70-131	25	
o-Xylene	< 0.00100	0.100	0.0953	95	0.100	0.0971	97	2	71-133	25	

Analyst: JUM **Date Prepared:** 11/19/2014 **Date Analyzed:** 11/19/2014

Lab Batch ID: 955839 Sample: 664657-1-BKS Batch #: 1 Matrix: Water

Units: mg/L

BLANK /BLANK SPIKE / BLANK SPIKE DUPLICATE RECOVERY STUDY

Inorganic Anions by EPA 300/300.1	Blank Sample Result [A]	Spike Added	Blank Spike Result	Blank Spike %R	Spike Added	Blank Spike Duplicate	Blk. Spk Dup. %R	RPD %	Control Limits %R	Control Limits %RPD	Flag
Analytes		[B]	[C]	[D]	[E]	Result [F]	[G]				
Chloride	<1.00	25.0	26.8	107	25.0	22.6	90	17	90-110	20	

Relative Percent Difference RPD = 200*|(C-F)/(C+F)|Blank Spike Recovery [D] = 100*(C)/[B]Blank Spike Duplicate Recovery [G] = 100*(F)/[E]All results are based on MDL and Validated for QC Purposes

Form 3 - MS Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 497144

Project ID: SRS# 2009-092 Lab Batch #: 955839

Date Analyzed: 11/19/2014 **Date Prepared:** 11/19/2014 Analyst: JUM **QC- Sample ID:** 497123-001 S Matrix: Water **Batch #:** 1

Reporting Units: mg/L

Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY								
Inorganic Anions by EPA 300 Analytes	Parent Sample Result [A]	Spike Added [B]	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag			
Chloride	262	500	716	91	80-120				

Lab Batch #: 955839

Date Analyzed: 11/19/2014 **Date Prepared:** 11/19/2014 Analyst: JUM **QC- Sample ID:** 497144-001 S Batch #: Matrix: Water

Reporting Units: mg/L	MATRIX / MATRIX SPIKE RECOVERY STUDY									
Inorganic Anions by EPA 300	Parent Sample Result	Spike Added	Spiked Sample Result [C]	%R [D]	Control Limits %R	Flag				
Analytes	[A]	[B]								
Chloride	10500	5000	15400	98	80-120					
Chionde	10500	3000	15400	98	80-120					

Matrix Spike Percent Recovery [D] = 100*(C-A)/B Relative Percent Difference [E] = 200*(C-A)/(C+B)All Results are based on MDL and Validated for QC Purposes

BRL - Below Reporting Limit

Version: 1.%

Page 12 of 15 Final 1.000

Form 3 - MS / MSD Recoveries

Project Name: 14" Vac To Jal Legacy

Work Order #: 497144 Project ID: SRS# 2009-092

Lab Batch ID: 955688 **QC- Sample ID:** 497192-001 S **Batch #:** 1 **Matrix:** Water

Date Analyzed: 11/18/2014 Date Prepared: 11/18/2014 Analyst: ARM

Reporting Units: mg/L MATRIX SPIKE / MATRIX SPIKE DUPLICATE RECOVERY STUDY

BTEX by EPA 8021B	Parent Sample	Spike	Spiked Sample Result	Sample	Spike	Duplicate Spiked Sample		RPD	Control Limits	Control Limits	Flag
Analytes	Result [A]	Added [B]	[C]	%R [D]	Added [E]	Result [F]	%R [G]	%	%R	%RPD	
Benzene	< 0.00100	0.100	0.0929	93	0.100	0.0855	86	8	70-125	25	
Toluene	< 0.00200	0.100	0.100	100	0.100	0.0917	92	9	70-125	25	
Ethylbenzene	< 0.00100	0.100	0.108	108	0.100	0.0975	98	10	71-129	25	
m_p-Xylenes	< 0.00200	0.200	0.221	111	0.200	0.200	100	10	70-131	25	
o-Xylene	< 0.00100	0.100	0.102	102	0.100	0.0922	92	10	71-133	25	

1	XENCO
	VILLA
-	Laboratories
	racolatories

CHAIN OF CUSTODY RECORD

Houston: 4143 Greenbriar Dr. Stafford, TX 77477 (281)240-4203 Odessa: 12500 West I-20 East Odessa, TX 79765 (432)563-1800 Hobbs: 4008 N Grimes Hobbs, NM 88240 (575)392-7550

Page 1 of 1

VA Vial Amber VC Vial Clear VP Vial Pre-preserved ES TS AC Encore Sampler TerraCore Sampler Air Canisles Tedlar Bag Zip Lock Bag TB ZB

GA Gass Amber

Grafi Halloni	at district studiochoursity								-			Field bi	Nable H	Irs:	- :	-	GC Glass Clear ZB Zip Lock 8 PA Plastic Amber PC Plastic C	Beg Jean
Compa	positi Ettenotanicinal octale 1401	nolagies, LL	С .	Phone:	(575)396-	2378	TAT, W	ork Day	3 = D	Need r	esults t				Time:		PC Flastic Clear Other	-
Address	s: 3100 Plains Hwy.			Fax:	(575)396-	1429						28 Walter Brook Co.	7D 10T	0 14D Ott			Size(s): 202, 402, 802, 1602, 3202, 1Gal 40ml, 125 ml, 250 ml, 500 ml, 1L, Other_	
City:	Lovington		State: NM	Zip:	88260					NO. OF THE REAL PROPERTY.	*	ğ., (†)	AND DESCRIPTION OF THE PERSON NAMED IN	All the second second second		·	FARTON POWER	odes !
PM/Attr	Ben Arguijo		Email:		ipaalp.com,)basinanv.com	11		VP	PC	PC							A. None E. HCL 'L Ice B. HNO _s F. MeOH J. MCAA	
٠.	ID: 14" Vac to Jal Legacy SRS #2009-092			PO#:	PAA-C. Bry	rank :		E,I	1	1							H ₂ SO ₂ G. Na ₂ S ₂ O ₃ K. ZnAc&NaOH D. NaOH H. NaHSO ₄ L ASDC ACK	G. IšNaOH
Invoice	volce To: Quote #: Quote #:														A SOLEHOMO COOK			
Sample	Rome: De Saxten	Semi-Annua	Event: Daily Amual	Weekly N/A	Monthly (Quartely		BTEX	Chloride	18 Miles						·	GNV Ground Water S SolvSedime WW Waste Water Y Wipe DW Drinking Water A Air SW Sufface Water O OL OW Ocean/Sea Water T Tissue PL Product-Uquid U Urine PS Product-Sold B Bhand SL Sludge Other	
								Lat City				-					REMARKS	
_1	MW-2	11/12/14	1305	GW		4		X	X	X			i				TDS Romo Ved	on
_2	MW-3	11/12/14	1100	GW		4		Х	*	X	B						all samples	
_3	MW-4	11/12/14	1205	GW		4		X	*	_X \	1/2						Chloride On	yon
_4	MW-5	11/12/14	1355	ĠW		4		X	X	×							MW-2 Per	
_5	MW-6	11/12/14	1350	GW		4		X	X	X							Ben 11/13/	114
_6	: MW-7	11/12/14	1430	GW		4		X	X	X							n/P:	
7	MW-8	11/12/14	1010	GW		4		X	*	*								
8	MW-9	11/12/14	1510	GW		4		X	*	*		.:						
_9				•					MB								·	
_0	•																	
	to comprise the equiver	3,144.1	i de	Tight .		11.		rakta -)		17719			18 4		i.		ls.	4 . W
CTLs Ti Diber:	RRP DW NPDES LPST DryCh	FL TX GA N AL NM Othe	IC SC NJ PA		1 2 3 NELAC DOL				ADaPT XLS Other		RPIMS .	Maich in Absent	Complete Unclear	1162	1 3		Pron-Conformances found? Semples Interl upon arrival?	
1				V: 3	1) (6		711		Ž.	111		10	V	74			Received on Wet Ice? Labeled with proper preservetives?	
1 2	O Sayton	-:	Busin	_	11-12	_	17:00			A.	,	0/	End	7 7		780	Received within holding time? Custody seals intact?	
3 <	THE STATE OF	,	Busnt		-	14	084	1	10/	456	ing		5020	11.13-1		1895	VOCs rec'd w/o headspace? Proper containers used?	
4	R. H. T. Vapplins		BASIN		11-13-	14	220		5/347	(ea)	IN	Mails.	-	1613-19	-	1310	p'H verified ecceptable, excl VOCs? Received on time to mast HTs?	
38A La	boratories: Hobbs 575-392-7550	Dallas 214	-902-0300	Housto	n 281-24	2-4200	Odessa	432-563	3-1800	Šan An	tonio 2	10-509-3	() 334 P		437-033	1010	C.O.C. Serial #	

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: PLAINS ALL AMERICAN EH&S

Date/ Time Received: 11/14/2014 03:10:00 PM

Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient

Work Order #: 497144

Temperature Measuring device used:

	Sample Receipt Checklist	Comments
#1 *Temperature of cooler(s)?		-1
#2 *Shipping container in good condition	?	Yes
#3 *Samples received on ice?		Yes
#4 *Custody Seals intact on shipping cor	ntainer/ cooler?	No
#5 Custody Seals intact on sample bottle	es?	No
#6 *Custody Seals Signed and dated?		No
#7 *Chain of Custody present?		Yes
#8 Sample instructions complete on Cha	in of Custody?	Yes
#9 Any missing/extra samples?		No
#10 Chain of Custody signed when reline	quished/ received?	Yes
#11 Chain of Custody agrees with sample	e label(s)?	Yes
#12 Container label(s) legible and intact	?	Yes
#13 Sample matrix/ properties agree with	n Chain of Custody?	Yes
#14 Samples in proper container/ bottle?		Yes
#15 Samples properly preserved?		Yes
#16 Sample container(s) intact?		Yes
#17 Sufficient sample amount for indicat		Yes
#18 All samples received within hold time	e?	Yes
#19 Subcontract of sample(s)?		No
#20 VOC samples have zero headspace		Yes
#21 <2 for all samples preserved with HI samples for the analysis of HEM or HEM-analysts.		Yes
#22 >10 for all samples preserved with N	laAsO2+NaOH, ZnAc+NaOH?	No
* Must be completed for after-hours de	livery of samples prior to placing in	the refrigerator
Analyst:	PH Device/Lot#:	
Checklist completed by:	Mmy Moah Kelsey Brooks	Date: 11/14/2014
Checklist reviewed by:	Kelsey Brooks	Date: 11/14/2014

Appendix B Release Notification & Corrective Action (Form C-141)

District I
1625 N. French Dr., Hobbs, NM 88240
District II
1301 W. Grand Avenue, Artesia, NM 88210
District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

FGRL0912457808

State of New Mexico **Energy Minerals and Natural Resources**

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

RECEIVED

Revised October 10, 2003

APR 20 2000 Submit 2 Copies to appropriate
HOBBSOCD District Office in accordance
with Rule 116 on back
side of form

Release Notification and Corrective Action

						OPERA?	ror		🛛 Initia	l Report		Final Report
Name of Co	mpany	Plains Pipel	ine, LP			Contact	Jason Henry					
Address		2530 Hwy 2	14 – Der	ver City, Tx 793	23	Telephone N	lo. (575) 441-1	099				
Facility Nan	ne	14 - inch Va	ic to Jal I	egacy		Facility Typ	e Pipeline					
Surface Our	T oon	Dotroloum		Mineral O	waar	<u></u>			Lease N	·		1
Surface Own	ner Legac	y renoieum		Milleral O	WIICI		מיביאתיני	34 . 0.			0 -	
				LOCA	TIOI	N OF REI	LEASE WELL	API	# 30·C	25.1175	7.00	3 · OD
Unit Letter	Section	Township	Range	Feet from the		South Line	Feet from the		est Line	County		
F	25	25S	37E						Lea			
		L	L	ntitude N 32°6		' Longitude		.3"				
Type of Relea		de Oil				Volume of	Release 250 bbl			ecovered 0		
Source of Rel	ease 14	" Steel Pipelin	ne			Date and H 04/09/2009	lour of Occurrence			Hour of Disco 9 10:00 a.m.		
Was Immedia	te Notice (If YES, To		······································	··· · · · · · · · · · · · · · · · · ·			
		\boxtimes	Yes [No 🔲 Not Rea	quired	Larry John	son					
By Whom? J						Date and H						
Was a Watero	course Rea			1.57		If YES, Vo	lume Impacting t	the Water	course.			
		L	Yes 🛚	NO								
If a Watercou	rse was Im	pacted, Descr	ibe Fully.	•			WATE	>@ (25/			
							W111C	1191	33			
Describe Cause of Problem and Remedial Action Taken.*												
Describe Cau	se of Probl	em and Keme	diai Actio	ı raken.								
bbls/day beca	use the lin	e is inactive ar	ıd was bei	Jal Line, a release ng purged at the ti lo ppm and the gra	me of t	he release. T	ne depth of the pi					
Describe Are	a Affected	and Cleanup A	Action Tal	cen.* .			······································				 	
		-		t measured approx	imately	y 300° x 300°.	The impacted as	rea will b	e remedia	ted per applic	able į	guidelines.
regulations al public health should their o or the enviror	l operators or the envi perations h nment. In a	are required to ronment. The nave failed to a	o report ar acceptance adequately OCD accep	is true and completed of a C-141 report investigate and restance of a C-141 r	lease not by the mediate	otifications and e NMOCD me contaminati	nd perform correct arked as "Final R on that pose a thr	ctive action eport" do eat to gro	ons for rele ses not reli ound water	eases which neve the operate, surface water	nay er tor of er, hu	ndanger Tiability man health
		A/			ļ		OIL CON	SERV.	<u>ATION</u>	DIVISIO	7	
Signature:	Chason	n Hon	MW									
	Just			**			ENV ENGR District Supervis		· W »	" Och		
Printed Name	:// Jason H	enry	<u>/</u>				District Super Fis	~ <i>DA</i>	1001A	of and	WAG.	<u> </u>
Title: Remed	diation Cod	ordinator		***		Approval Dat	e: 04/21/0	29 E	xpiration	Date:0612	2,10	۶۹
E-mail Address: jhenry@paalp.com Date: 04/20/2009 Phone: (575) 441-1099						Conditions of Approval: DELINEATE TO CLEANING, SUBMIT FINAL 6-14 Attached BY 06/22/109.						
		2009		(575) 441-1099		DI CAIST	-10 (,			<u></u>		
Attach Addit	nonai She		ary	710				1	RP	- 214.	\$	(09.4)

Appendix C """"Monitor Well Logs

Monitor Well MW-7

Depth Below		Chloride				
Ground	Soil	Field	PID	Petroleum P	etroleum	
Surface	Column	Test	Reading	Odor	Stain	Soil Description
E°			9.7	None	None	0' - 1' - Soft caliche 1' - 2' - Hard caliche & sandstone 2' - 7' - Gravely caliche
<u> </u>				None	None	·
E 10			6.7	None	None	
15			6.3	None	None	7' - 27' - Medium hard caliche & sandstone
20			0.1	None	None	
25	328		0.9	None	None	27' - 29' - Tan pink sandstone & silty sand
30			8.0	None	None	29' - 31' - Pink silty sand & clay
35			0.5	None	None	31' - 35' - Pink sandstone & silty sand 35' - 36' - Pink loose sand
Ē				None	None	
E-40			0.5	None	None	36' - 44' - Pink silty sand & clay
45			0.4	None	None	44' - 47' - Pink silty sand & gravel
50	0 6 0 5		0.2	None	None	471 001 701 11
55				None	None	47' - 63' - Pink silty sand & medium to small gravel
60				None	None	63' - 67' - Pink hard cemented gravel &
-65				None	None	sandstone
75	<u> </u>			None	None	67' - 73' - Pink silty sand & clay
Ė				None	None	73' - 76' - Red silty sand & clay 76' - 80' - Red silty clay
-80						

June 26, 2014 Date Drilled_ Thickness of Bentonite Seal 51 Ft Depth of Exploratory Boring _ 80 Ft bgs Depth to Groundwater _ Ground Water Elevation

▼ Indicates the PSH level measured

0

The state of the s

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- Monitor well was advanced on date using air rotary drilling techniques.
- Monitor well was constructed with 4" ID, 0.10-inch, factory-slotted, threaded joint, Schedule 40 PVC pipe.
- Well is protected with a locked stick-up steel cover and compression cap.
- 4.) Lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- Depths indicated are referenced from ground surface.
 Due to the non-cohesive nature of the soil at lower depths, water was injected beginning at approximately 50' bgs to prevent collapse of the borehole.

Basin Environmental Service Technologies, LLC 3100 Plains Hwy. Lovington, NM 88260

Prep By: BJA Checked By: BRB March 20, 2015

Plains All American Pipeline, LP 14" Vac to Jal Legacy Lea County, New Mexico Plains SRS #: 2009-092 NMOCD Reference #: 1RP-2162

Depth

Monitor Well MW-8

Depth Below Ground	Soil	Chloride Field	PID	Petroleum P	etroleum		
Surface	Column	Test	Reading	Odor Odor	Stain_	Soil Description	
E°			6.6	None	None	0' - 1' - Caliche 1' - 6' - Hard sandstone & caliche	
E				None	None	6' - 11' - Gravely caliche & silty sand	И
-5 -10 -115 -15 -20 -25 -30			7.9	None	None	11' - 13' - Hard sandstone & caliche	
15			5.7 7.6	None	None	13' - 21' - Caliche	
25			7.0	None	None	21' - 23' - Medium hard caliche & sandstone 23' - 26' - Tan pink silty sand & gravely caliche	
30			6.1	None	None	26' - 28' - Pink sandstone & silty sand	
Ē				None	None		
35			7.0	None	None	28' - 45' - Pink silty sand & clay	
40			6.9 5.0	None	None		
E 50	 0 . (6.6	None	None		
55	. ⊕ . 6 . ⊕ . 6		<u></u>	None	None	45' - 58' - Pink silty sand & gravel	
E 60	- 0 <u>- 0</u>			None	None	58' - 62' - Pink gravel & silty sand	XXXX
E 65				None	None	62' - 66' - Hard cemented gravel	
Ę				None	None	66' - 71' - Pink silty sand & clay	
E -				None	None	71' - 72' - Red silty sand & clay	
75 E 80				None	None	72' - 80' - Red silty clay	

Date Drilled	June 26, 2014
Thickness of Bentonite	Seal51 Ft
Depth of Exploratory B	oring 80 Ft bgs
Depth to Groundwater	71 Ft bgs
Ground Water Elevation	

▼ Indicates the PSH level measured

Grout Surface Seal

Bentonite Pellet Seal

Sand Pack

Completion Notes

- Monitor well was advanced on date using air rotary drilling techniques.
- Monitor well was constructed with 2" ID, 0.10-inch, factory-slotted, threaded joint, Schedule 40 PVC pipe.
- Well is protected with a locked stick-up steel cover and compression cap.
- Lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- gradua.

 5) Depths indicated are referenced from ground surface.

 6.) Due to the non-cohesive nature of the soll at lower depths, water was injected beginning at approximately 50' bgs to prevent collapse of the borehole.

Basin Environmental Service Technologies, LLC 3100 Plains Hwy.

Lovington, ritti cozoo					
Prep By: BJA	Checked By: BRB				
March 20, 2015					

Monitor Well MW-9

Depth Below		Chloride					
Ground Surface	Soil Column	Field Test	PID Reading	Petroleum P Odor	etroleum Stain	Soil Description	
F°	Ocidinin	1631	6.7	None	None	0' - 1' - Brown silty clay 1' - 2' - Hard caliche rocks	
5			6.9	None	None	2' - 15' - Gravely caliche	
Ę			7.3	None	None		
= 15				None	None		
20			6.7	None	None	15' - 26' - Medium hard caliche & sandstone	
-25 -30			1.6	None	None	26' - 28' - Tan sandstone & silty sand 28' - 31' - Pink sandstone & silty sand	
Ē				None	None	31' - 35' - Pink silty sand & clay	И
35			3.3	None	None	35' - 37' - Tan silty sand (loose)	
E-40	9.8		1.3	None	None	37' - 43' - Pink silty sand & clay	
40	9 (0 (1.9	None	None	43' - 52' - Pink silty sand & gravel	
55	0 6 0 4		(1.3)	None	None		
= 55				None	None	52' - 63' - PInk gravel & silty sand	
60				None	None	63' - 66' - Hard cemented gravel	V. V. V. V.
E ₇₀				None	None	66' - 71' - Pink silty sand & clay	26.22.22
- 65 - 70 - 75	<u> </u>			None	None		2.5
F 75				None	None	71' - 80' - Red silty sand & clay	3.8.3

Date I	DrilledJune	June 25, 2014			
Thickr	ness of Bentonite Seal_	51 Ft			
Depth	of Exploratory Boring _	80 Ft bgs			
Depth	to Groundwater	72 Ft bgs			
Ground Water Elevation					
▼ ▼ O PID	Indicates the PSH leve on	ater level 2014 coted for ppm obtained			
Ā	Grout Surface Seal				
	Bentonite Pellet Seal				

Sand Pack

Completion Notes

- Monitor well was advanced on date using air rotary drilling techniques.
- Monitor well was constructed with 4" ID, 0.10-inch, factory-slotted, threaded joint, Schedule 40 PVC pipe.
- Well is protected with a locked stick-up steel cover and compression cap.
- Lines between material types shown on the profile log represent approximate boundaries. Actual transitions may be gradual.
- gradua.

 5) Depths indicated are referenced from ground surface.

 6.) Due to the non-cohesive nature of the soll at lower depths, water was injected beginning at approximately 50' bgs to prevent collapse of the borehole.

Basin Environmental Service Technologies, LLC 3100 Plains Hwy.

Lovington, Nin Gozoo				
Prep By: BJA	Checked By: BRB			
March 20, 2015				