GW - 001

C-141s (6 of 7)

Chavez, Carl J, EMNRD

From: Sent: To: Cc: Subject: Chavez, Carl J, EMNRD Tuesday, June 01, 2010 2:48 PM 'Schmaltz, Randy'; Monzeglio, Hope, NMENV Robinson, Kelly; Hurtado, Cindy RE: Groundwater Discovery

Randy:

Good afternoon. Some questions based on the discovery.

Is this a former or a new seep area or location? If so, do you know why it occurred or is occurring now? A description of system to "catch" the groundwater would be appreciated? Also, how will the waste water system treat the contaminated ground water?

Has Western evaluated the potential discharge location(s) along the river and conducted any analytical surface water sampling along the river to assess any discharge of ground water or via overland flow into the river?

Please clarify the above and/or any followup plans based on the above to assess impacts to the river. Thank you.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com]
Sent: Tuesday, June 01, 2010 2:33 PM
To: Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD
Cc: Robinson, Kelly; Hurtado, Cindy
Subject: Groundwater Discovery

Hope & Carl,

On Wednesday, May 19, 2010 during the bi-monthly visual inspections of area north of the refinery, Bloomfield found a new area where groundwater had surfaced. This new area is located north of the raw water ponds and is shown on the attached property map. A sample was collected on that day and analyzed for BTEX and MTBE using method 8260. Results were received on May 26, 2010 showing benzene at 110 ug/l. Bloomfield collected confirmation split samples on May 26, 2010, and received results from Envirotech Analytical Laboratory on June 1, 2010 showing benzene at 167 ug/l. Results from Hall Environmental Analysis Laboratory are still pending.

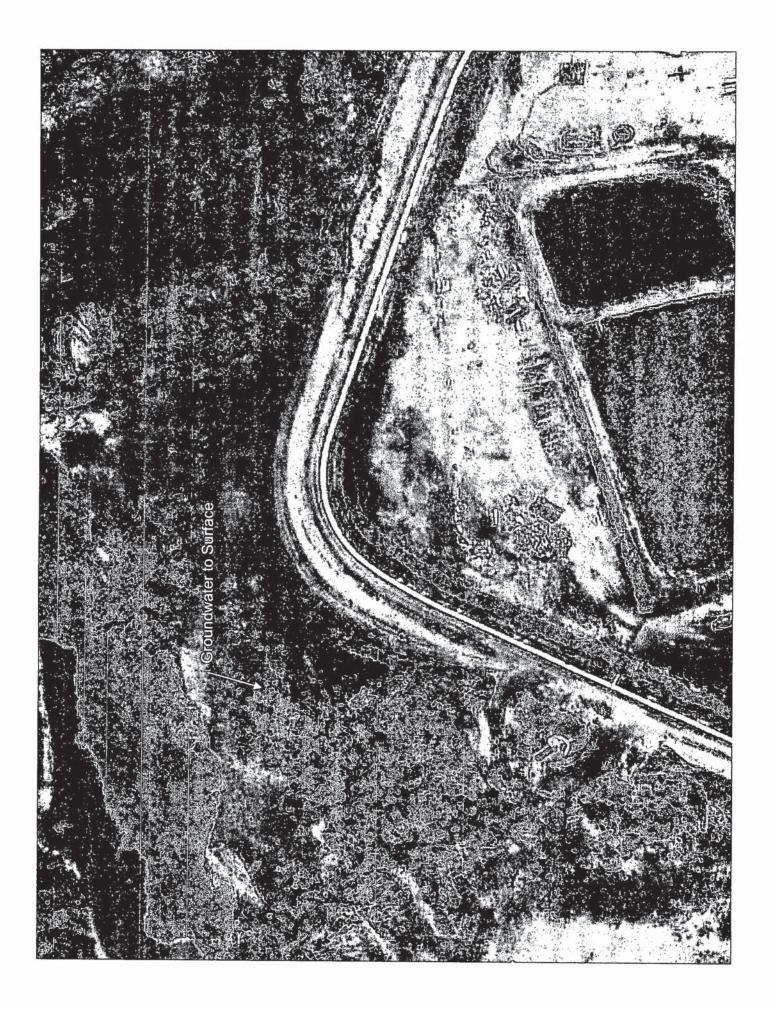
Bloomfield is currently installing a system to catch this groundwater, which will be transported to the refinery's wastewater system. Bloomfield will collect weekly samples of this captured water and will analyze for BTEX and MTBE. Bloomfield will provide a monthly summary on sample results and progress.

Randy Schmaltz Environmental Manager

Western Refining Southwest, Inc. Bloomfield Refinery #50 County Road 4990 Bloomfield, New Mexico 87413 (505) 632-4171 (505) 320-6989 email: <u>randy.schmaltz@wnr.com</u>

Chavez, Carl J, EMNRD

From:	Schmaltz, Randy [Randy.Schmaltz@wnr.com]
Sent:	Tuesday, June 01, 2010 2:33 PM
To:	Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD
Cc:	Robinson, Kelly; Hurtado, Cindy
Subject:	Groundwater Discovery
Attachmonts:	Groundwater to surface location map.pdf: Groundwater to surface - Envirotech.pdf:
Attachments:	Groundwater to surface location map.pdf; Groundwater to surface - Envirotech.pdf; Groundwater to surface - Hall.pdf


Hope & Carl,

On Wednesday, May 19, 2010 during the bi-monthly visual inspections of area north of the refinery, Bloomfield found a new area where groundwater had surfaced. This new area is located north of the raw water ponds and is shown on the attached property map. A sample was collected on that day and analyzed for BTEX and MTBE using method 8260. Results were received on May 26, 2010 showing benzene at 110 ug/l. Bloomfield collected confirmation split samples on May 26, 2010, and received results from Envirotech Analytical Laboratory on June 1, 2010 showing benzene at 167 ug/l. Results from Hall Environmental Analysis Laboratory are still pending.

Bloomfield is currently installing a system to catch this groundwater, which will be transported to the refinery's wastewater system. Bloomfield will collect weekly samples of this captured water and will analyze for BTEX and MTBE. Bloomfield will provide a monthly summary on sample results and progress.

Randy Schmaltz Environmental Manager

Western Refining Southwest, Inc. Bloomfield Refinery #50 County Road 4990 Bloomfield, New Mexico 87413 (505) 632-4171 (505) 320-6989 email: randy.schmaltz@wnr.com

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

1

0.1

Client:	Western Refining		Project #:	96012-0009	
Sample ID:	East Fork		Date Reported:	05-31-10	
Chain of Custody:	9482		Date Sampled:	05-26-10	
Laboratory Number:	54455		Date Received:	05-26-10	
Sample Matrix:	Aqueous		Date Analyzed:	05-27-10	
Preservative:	Cool		Analysis Requested:	BTEX	
Condition:	Intact				
			an a faith ann an		Det.
		Concentratior			Limit
Parameter		(ug/L)	Factor		(ug/L)
Benzene		167	1		0.2
Toluene		ND	1		0.2
Ethylbenzene		ND	1		0.2
p,m-Xylene		ND	· 1		0.2

ę,

Total BTEX

o-Xylene

167

ND

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	fluorobenzene	113 %
	1,4-difluorobenzene	101 %
	4-bromochlorobenzene	122 %

References: Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA, December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1996.

Comments: Drainage North of TK #38

Analyst

Review

COVER LETTER

Tuesday, May 25, 2010

Cindy Hurtado Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4161 FAX (505) 632-3911

RE: 5-19-10 Drainage North of TK#38

Dear Cindy Hurtado:

Order No.: 1005560

Hall Environmental Analysis Laboratory, Inc. received 2 sample(s) on 5/20/2010 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. Below is a list of our accreditations. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites.

Reporting limits are determined by EPA methodology.

Please do not hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

Aydy Freeman, Laboratory Manager

NM Lab # NM9425 NM0901 AZ license # AZ0682 ORELAP Lab # NM100001 Texas Lab# T104704424-08-TX

4901 Hawkins NE
Suite D
Albuquerque, NM 87109 505,345,3975
Fax 505,345,4107 www.hallenvironmental.com

	Western Refining So i-19-10 Drainage N					La	b Order	r: 1005560
Lab ID:	1005560-01	and a second state of			Collection	Date:	5/19/20	10 2:15:00 PM
Client Sample ID:	West Fork				M	atrix:	AQUE	SUS
Analyses	•	Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 826	: VOLATILES SHO	ORT LIST	842 - 19900 - 19900 - 19900 - 1990 - 19900 - 1990 - 1990 - 1990 - 1990 -		a na an an an an an an Angala (101 pr - 175 m Pray in			Analyst: HL
Benzene		ND	1.0		µg/L		1	5/20/2010 5:23:50 PN
Toluene		ND	1.0		µg/L		1	5/20/2010 5:23:50 PM
Ethylbenzene		ND	1.0		µg/L		1	5/20/2010 5:23:50 PM
Methyl tert-bulyl ethe	er (MTBE)	ND	1.0		μg/L `		1	5/20/2010 5:23:50 PN
Xylenes, Total	27 - 27 (\$	ND	2.0		µg/L		1	5/20/2010 5:23:50 PM
Lab ID:	1005560-02				Collection	Date:	5/19/20	10 2:25:00 PM
Client Sample ID:	East Fork				M	atrix:	AQUE	OUS
Analyses		Result	PQL	Qual	Units		DF	Date Analyzed
EPA METHOD 826	0: VOLATILES SHO	ORT LIST	-					Analyst: HL
Benzone		110	5.0		µg/L		5	5/21/2010 6:03:59 PM
Toluene		ND	1.0		µg/L		1	5/20/2010 6:52:11 PN
Ethylbenzene		ND	1.0		µg/L		1	5/20/2010 6:52:11 PM
Methyl tert-butyl ethe	er (MTBE)	ND	1.0		µg/L		1	5/20/2010 6:52:11 PN
Xylenes, Total		ND	2.0		ug/L		1	5/20/2010 6:52:11 PM

Qualificrs:

Value exceeds Maximum Contaminant Level ٠

E Estimated value

Analyte detected below quantitation limits J

NC Non-Chlorinated

PQL Practical Quantitation Limit

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits age 1 of 1

Date: 25-May-10

QA/QC SUMMARY REPORT

Client: Western R	cfining South	nwest, Inc.									
Project: 5-19-10 Di	rainage Nortl	n of TK#38							Work	Order:	1005560
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260: V	olatiles Shor	t List									¥ :
Sample ID: 1005560-01a msd		MSD				Batch ID:	R38830	Analys	is Date:	5/20/2010	6:22:54 PM
Benzene	20.31	µg/L	1.0	20	0	102	72.4	126	0.138	20	
Toluene	21.54	µg/L	1.0	20	0	108	79.2	115	1.72	20	
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analys	is Date:	5/20/2010	8:45:56 AM
Benzene	ND	μg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38844	Analys	is Date:	5/21/2010	8:57:02 AM
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-bulyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 5ml rb		MBLK				Batch ID:	R38830	Analys	is Date:	5/20/2010	8:45:56 AM
Benzene	ND	µg/L	1.0								
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
Xylenes, Total	ND	µg/L	2.0								
Sample ID: 100ng lcs		LCS				Batch ID:	R38830	Analys	is Date:	5/20/2010 1	0:54:22 AM
Benzene	20.06	µg/L	1.0	20	0	100	82.4	116			
Toluene	22.33	µg/L	1.0	20	0.	112	89.5	123			
Sample ID: 100ng lcs		LCS				Batch ID:	R38844	Analys	is Date:	5/21/2010 1	0:19:50 AM
Benzene	18.82	µg/L	1.0	20	0	94.1	82.4	116	•		
Toluene	21.74	ug/L	1.0	20	0	109	89.5	123			
Sample ID: 100ng lcs		LCS			•	Batch ID:	R38830		is Date:	5/20/2010 1	0:54:22 AM
Benzene	20.06		1.0	20	0	100	82.4	116			
Toluene	20.06	μg/L μg/L	1.0	20	0	112	89.5	123			
Sample ID: 1005560-01a ms	22.00	MS	1.0	20	U	Batch ID:	R36830		is Date:	5/20/2010	5:53:38 PM
	00.00							10703	10 10010	012012010	0.00.00114
Benzene	20.28	µg/L	1.0	20 20	0	101	72.4 79.2	126 115			
Toluene	21.91	µg/L	1.0	20	0	110	19.2	110			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

H Holding times for preparation or analysis exceeded

NC Non-Chlorinated

R RPD outside accepted recovery limits

Page 1

n 5

06	mplo neceipt on	our lot	
Client Name WESTERN REFINING SOUT		Date Received:	5/20/2010
Work Order Number 1005560		Received by: TLS	$\langle \lambda \rangle$
Checkilst completed by:	5/20/1 Date	Sample ID labels checked	by: Initials
Matrix: Carrier	name: <u>UPS</u>		
Shipping container/cooler in good condition?	Yes 🗹	No 🗍 Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗹	No 🗌 Not Present	Not Shipped
Custody seals intact on sample bottles?	Yes 🗌	No 🗍 🛛 N/A	
Chain of custody present?	Yes 🗹	No 🗔	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗔	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗔	
Samples in proper container/bottle?	Yes 🗹		
Sample containers intact?	Yes 🔽	No 🗌	E:
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
All samples received within holding time?	Yes 🗹	No 🗔	Number of preserved
Water - VOA vials have zero headspace? No VOA via	Is submitted	Yes 🗹 . No 🗀	bottles checked for pH:
Water - Preservation labels on bottle and cap match?	Yes 🗔	No 🗋 N/A 🔽	
Water - pH acceptable upon receipt?	Yes 🗌	No 🗌 N/A 🗹	
Container/Temp Blank temperature?	4.0°	<6° C Acceptable	below.
COMMENTS:		If given sufficient time to cool.	
2			
	· ····· ····· ·····		an Mara and Mara
		12	
Client contacted Date contacte	d:	Person contacted	
Contacted by: Regarding:			
Comments:			
Corrective Action			

Sample Receipt Checklist

UALL CRIVIDORIMENTAL	ANALYSIS LABORATORY	www.hailenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	505-345-3975 Fax 505-345-4107	Analysis Request		s,8(ЪС	(f. (H 5808 7808 7808 7808 7808 7808 7808 7808	140 5 6 0 3 1 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	001 F	ortied) H9T brited) BDB AVP) 0158 AVP) 0158 AVP) 0158 C,7) 807 Perior S1259 C/D S270 S270 S270 S270 S270 S270 S270 S270		X								
			901 Ha	Tel. 505		-			9) 89	310)8 F	TPH Method									rks:	
*		1	4									BTEX + MTI			 -	 \vdash	-	-	-	-	Remarks:	1
d Time:	C Rush	ne: 5-19-10	e North of TX# 38			nager.			July & Bab	AND SEAL CHERNOL STATE OF	mperature:	# Preservative	HCI I	Hc1 2							220 Date Time) Date Time
Turn-Around Time:	K Standard	Project Name:	DRAINAGE	Project #:		Project Manager:			Sampler: (On loc-ser	Sample Temperature	Container Type and #	3-VOA	3-10A							Received by:	Received by
Record	Client Western Refining	•	Mailing Address:井50 CR 4990	M	505-632-4161	505-632-3911		Level 4 (Full Validation)				Matrix Sample Request ID	420 West Fork	Had EAST FORK							Repired by. Valeet Knaleen	Réfinquished کیبیر
ain-o	lester	3	ddress:	signe	505	ax#: 50	ckage:	ırd			Type)	Time	2:15	2:25						 	a	Time: Ré
ч	Client: W		Mailing Ac	Bloc	Phone #:	email or Fax#:	QA/QC Package:	X Standard	Accreditation		D EDD (Type)	Date	5-19-10	2-4-10 3							a	Date: Ti

•

 $r_2 \to -r_3$

Chavez, Carl J, EMNRD

From: Sent: To: Subject: Schmaltz, Randy [Randy.Schmaltz@wnr.com] Monday, January 25, 2010 2:09 PM Chavez, Carl J, EMNRD RE: Tank #33 Discharge Water

Carl,

This all goes as far back as 2003 when hydrocarbons were first discovered in the #1 east outfall. This discovery resulted in Western (f.k.a. Giant) installing the #1 East Outfall Collection system.

Briefly, the #1 East Outfall water is collected in Tank #38. This collected water/hydrocarbon is pumped to a separator tank (tank #33) that is set up for gravitational separation of the mixed hydrocarbon effluent. Recovered oil is routed to a horizontal vessel (V-610). The underflow, clarified water, is sampled and routed to the refinery's raw water ponds.

Western is still investigating the recent change in the recovered water.

Thanks Randy

From: Chavez, Carl J, EMNRD [mailto:CarlJ.Chavez@state.nm.us] Sent: Friday, January 22, 2010 1:55 PM To: Schmaltz, Randy Subject: RE: Tank #33 Discharge Water

Thanks Randy. I received your phone call, but have been unable to contact you yet.

Was there a discharge to the environment that may require a C-141 notification to the OCD? Could you explain what the fluid and related process is for Tk 33? What caused contamination to get into Tk 33 or exceed regulatory limits? Thanks.

Carl J. Chavez, CHMM New Mexico Energy, Minerals & Natural Resources Dept. Oil Conservation Division, Environmental Bureau 1220 South St. Francis Dr., Santa Fe, New Mexico 87505 Office: (505) 476-3490 Fax: (505) 476-3462 E-mail: <u>CarlJ.Chavez@state.nm.us</u> Website: <u>http://www.emnrd.state.nm.us/ocd/</u>index.htm (Pollution Prevention Guidance is under "Publications")

From: Schmaltz, Randy [mailto:Randy.Schmaltz@wnr.com] Sent: Friday, January 22, 2010 11:49 AM To: Monzeglio, Hope, NMENV; Chavez, Carl J, EMNRD Subject: Tank #33 Discharge Water

This email is a follow up to the phone calls made on 1/14/2010 to NMED and OCD concerning the Tank # 33 discharge.

On January 14, 2010 Western received analytical results showing the discharge water from Tank #33 to be out of compliance. Tank #33 discharge water was immediately rerouted to the frontend of the API Separator and through the wastewater system. This is accomplished by using a vacuum truck to pump out Tank #33 as it fills. Key Energy, a local trucking company has been employed to be on-site continuously to transfer the Tank #33 water to the API Separator.

Randy Schmaltz Western Refining Southwest, Inc. Bloomfield Refinery This inbound email has been scanned for malicious software and transmitted safely to you using Webroot Email Security.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. -- This email has been scanned by the Sybari - Antigen Email System.

Confidentiality Notice: This e-mail, including all attachments is for the sole use of the intended recipient(s) and may contain confidential and privileged information. Any unauthorized review, use, disclosure or distribution is prohibited unless specifically provided under the New Mexico Inspection of Public Records Act. If you are not the intended recipient, please contact the sender and destroy all copies of this message. This email has been scanned using Webroot Email Security.

SOIL AND GROUNDWATER INVESTIGATION REPORT

XTO ENERGY, INC.

DAVIS GC F#IE PRODUCTION WELL SITE BLOOMFIELD, NEW MEXICO

OCD # TBD

Prepared for:

382 CR-3100 Aztec, New Mexico 87410

Prepared by:

TETRATECH, INC.

6121 Indian School Rd. NE, Suite 200 Albuquerque, NM 87110 Tetra Tech Project No. 114-690126

September 4, 2009

3

TABLE OF CONTENTS

1.0	NTRODUCTIONI
	I.I Site Background I
2.0	SOIL AND GROUNDWATER INVESTIGATION I
	2.1 Methodology and Results I
3.0	EXCAVATION EXPANSION AND ADDITIONAL SOIL REMOVAL
	3.1 Methodology and Results
2.0	SUMMARY AND CONCLUSIONS

FIGURES

- I. Site Location Map
- 2. Site Layout Map with Pothole Locations and Laboratory Analytical Results
- 3. Site Excavation Detail Map with Laboratory Analytical Results

TABLES

- I. Soil Analytical Results
- 2. Groundwater Analytical Results

APPENDICES

- Appendix A. Soil and Groundwater Laboratory Analytical Reports
- Appendix B. Waste Manifest Forms

SOIL AND GROUNDWATER INVESTIGATION REPORT DAVIS GAS COM F#IE, SAN JUAN COUNTY, NEW MEXICO SEPTEMBER 2009

1.0 INTRODUCTION

This report discusses the soil and groundwater investigation conducted by Tetra Tech, Inc. (Tetra Tech) from August 11 through 19, 2009 at the XTO Energy, Inc. (XTO) Davis Gas Com F#1E site located in Bloomfield, New Mexico (Site). The Site is located in Unit H of Section 27 within Township 29N and Range 11W, of San Juan County, New Mexico (Figure 1). The site layout is illustrated on Figure 2.

I.I Site Background

On July 9, 2009, XTO's lease operator discovered a small hole in the 90 barrel open-top beneath grade separator tank. The water from the tank was immediately removed, and XTO's construction supervisor was contacted to replace the tank. XTO construction crews discovered impacted soil beneath its former location and excavated approximately 200 cubic yards of sand and river cobble. The excavation stopped at 18' feet below ground surface (bgs) in sandstone bedrock due to sidewall stability concerns. A thin layer of groundwater began seeping in at that depth along the top of the sandstone bedrock. Within the excavation pit, the deepest 2.5' of cobbles (approximately 16-18' bgs) were gray in color, likely representing the groundwater smear zone where soil may have been impacted by a historic release. Potential up-gradient sources are also shown on Figure I and include the adjacent San Juan Refinery owned and operated by Western Refining Company and the Jacque #2 gas production well, owned and operated by Holcomb Oil. The subsurface investigation discussed in this report was initiated to better characterize lithology, delineate vertical and lateral extent of impacted soil, and investigate possible up-gradient concerns.

The location and dimensions of the excavation pit advanced during July 2009 and total petroleum hydrocarbon (TPH) results from the associated composite sampling are shown on Figures 2 and 3. Review of those results by the New Mexico Oil Conservation Division (NMOCD), prompted XTO to initiate this investigation.

2.0 SOIL AND GROUNDWATER INVESTIGATION

2.1 Methodology and Results

Tetra Tech, Inc.

1

Beginning on August 11, 2009, Tetra Tech supervised advancement of six potholes at the site by Core Oil Field Services of Waterflow, New Mexico using excavator and backhoe equipment. Figure 2 illustrates the location of the potholes. Three holes were advanced up-gradient of the initial excavation (B1, B2, and B3). Two holes were advanced on the east side of the existing excavation (B4 and B5) and one hole on the south side to plan for additional soil removal (B6). A pothole was not advanced on the west side, due to the presence of four high pressure gas lines located directly adjacent to that side of the excavation. Figure 2 illustrates the approximate locations of the pipelines and identifies ownership. Since the original soil sample collected from the bottom of the west wall contained only 434 parts per million (ppm) total petroleum hydrocarbon (TPH), Brandon Powell, with the NMOCD, who reviewed the initial analytical results, suggested XTO collect an additional composite sample of the west wall and request closure with those results if they were still relatively low or close to the standard of 100 ppm for site remediation required by the NMOCD. This sample was collected prior to additional excavation and had measured TPH of 138 ppm (Figure 3).

Soil from within the potholes was screened in the field for volatile organic compounds, described, and collected for laboratory analysis when the lithology changed or discoloration or hydrocarbon odor was noted. The total depth of potholes was controlled by the depth to groundwater, which was encountered along the top of the sandstone layer at approximately 17 to 18 feet below ground surface in most locations. Potholes containing no impacted soil were backfilled with original material.

The sample from the highest field screening result and the sample from just above the groundwater level in the bottom of each pothole was submitted for laboratory analysis. If no impacts were detected through field screening, only the sample from just above the groundwater level was collected for laboratory analysis. A photo-ionization detector (PID) was used for field screening by the heated headspace method.

The laboratory samples were placed in pre-cleaned glass jars supplied by Hall Environmental Laboratory, labeled with the location, date, time, sampler, and method of analysis and immediately placed on ice. Strict chain-of-custody procedures were followed during transport of the samples to the laboratory. Soil samples were analyzed for benzene, toluene, ethyl-benzene and xylenes (BTEX) and TPH according to USEPA Methods 8021 and 8015B, and anions/cations by USEPA Methods 300.0 and 6010B per NMOCD request. Soil sampling results from the pothole locations are presented in Table I and on Figure 2. The complete laboratory reports are attached as Appendix A.

Tetra Tech, Inc.

September 2009

All pothole soil samples were non-detect or below standards for BTEX and TPH, with the exception of B3 (3 feet to 3.5 feet deep), which was collected from an area where black sandy-silt was encountered from approximately two to four feet bgs. B3 was advanced approximately 65 feet north of the Jacque #2 wellhead.

Groundwater accumulated in the bottom of each pothole location, with the exception of B3, which was approximately 17 to 18 feet deep and advanced into the sandstone. The accumulated groundwater was collected from each location using a stainless steel cup attached to a telescoping rod that was lowered into the bottom of the excavations. The sampling device was decontaminated prior to use at each location by rinsing with de-ionized water. All groundwater samples were submitted to Hall Environmental Laboratory for analysis of BTEX and anions/cations according to USEPA Methods 8260B, 300.0, and 6010B. Groundwater sampling results are presented in Table 2 and Figure 2. The complete laboratory reports are attached as Appendix A.

All pothole groundwater results were non-detect or below the New Mexico Water Quality Control Commission (NMWQCC) standards for BTEX. The NMWQCC standard for sulfate was exceeded in potholes B4, B5, and B6 (Figure 2). The NMWQCC standard for chloride was exceeded in B6.

Following pothole advancement, prior to backfilling, it was noted that there was an area with varying degrees of light discoloration in the soil located approximately four to five feet deep in each location. Soil samples for field chloride analysis were collected from B1, B5, B6, and the east wall of the existing excavation for rush turn around at Envirotech, Inc. located in Farmington in order to compare the levels and determine if possible chloride presence could be naturally occurring. The results of those samples are included on Table 1. All pothole soil samples ranged from less than 33 ppm to 55 ppm, while the sample collected from the same depth in the east wall of the existing excavation resulted in 400 ppm chloride. The complete laboratory report is contained in Appendix A.

3.0 EXCAVATION EXPANSION AND ADDITIONAL SOIL REMOVAL

3.1 Methodology and Results

Groundwater from the initial 200 cubic yard excavation was sampled for cations/anions in addition to BTEX and TPH prior to additional soil removal in the area. A vacuum truck operated by Riley Industrial Services was used to purge the water prior to sampling. Sample collection took place the following day on August 12, 2009. Groundwater collected from the excavation prior to additional soil removal contained 3,300 ppm chloride; however, another groundwater sample was collected

Tetra Tech, Inc.

following excavation expansion due to the large volume of additional soil removed. This groundwater sample, collected on August 19, 2009, resulted in 590 ppm chloride. BTEX was nondetect or below the standards for both groundwater samples.

The decision to remove additional soil from the excavation was made based on soil sampling results collected during the initial excavation work completed in July 2009 (Figure 3). NMOCD advised additional removal of soil from the north, south, and east walls. This work began on August 13, 2009. Confirmatory soil samples were collected for laboratory analysis of BTEX and TPH by USEPA Methods 8021 and 8015B, and anions/cations by USEPA Methods 300.0 and 6010B. Soil containing white crystallization, PID readings above 100 ppm, hydrocarbon odor, or discoloration were removed from the site for disposal at the Envirotech landfarm located south of Bloomfield, New Mexico. The associated waste manifest documents are attached as Appendix B.

On August 13, 2009, the south wall of the excavation was expanded approximately 25 feet from the original south boundary. Gray material was completely removed to the sandstone layer at approximately 17 feet deep and PID readings no longer indicated hydrocarbon impacts. Confirmatory composite soil samples from the south bottom and the south wall were collected. Laboratory results were non-detect for BTEX and TPH.

On August 14, 2009 the north wall of the excavation was expanded approximately 37 feet north until gray material was completely removed to the sandstone layer at approximately 17 feet deep and PID readings no longer indicated hydrocarbon impacts. Confirmatory composite soil samples from the north bottom and the north wall were collected. Laboratory results were non-detect for BTEX and TPH.

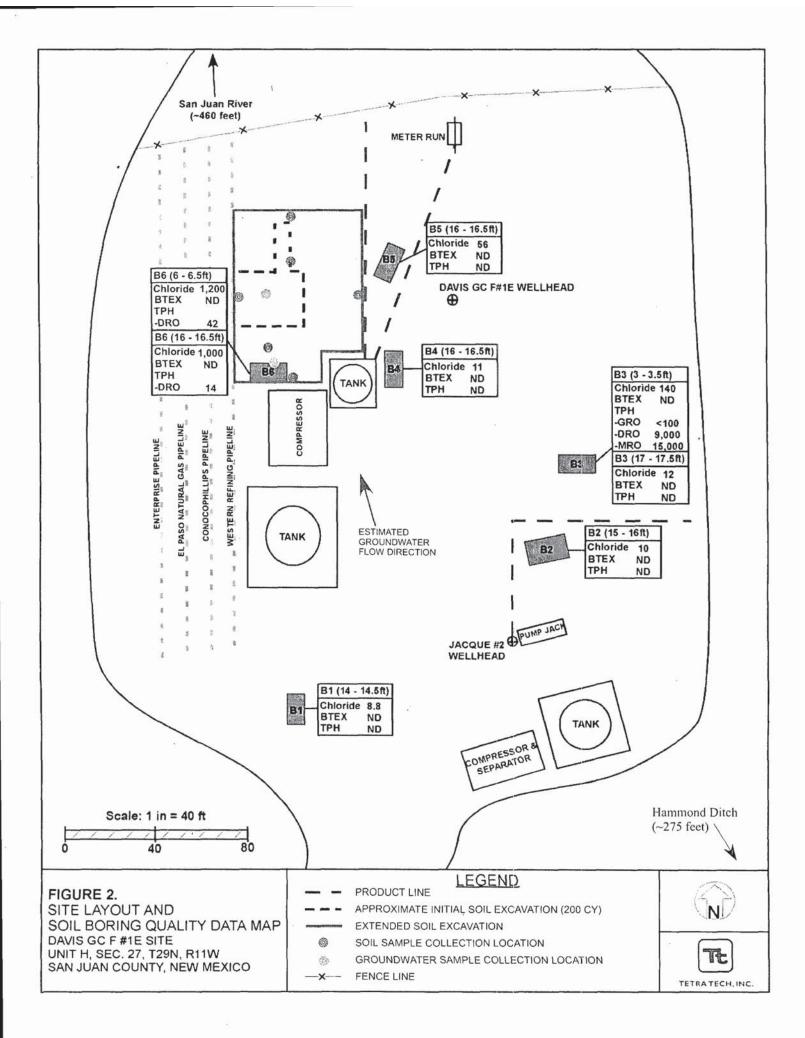
On August 17, 2009 the east wall of the excavation was expanded approximately 22 feet east until the soil containing white crystallization from approximately four to seven feet deep and all gray material from approximately 14 feet to 17 feet deep was removed. Confirmatory composite soil samples from the north bottom and the north wall were collected. Laboratory results were non-detect for BTEX and TPH.

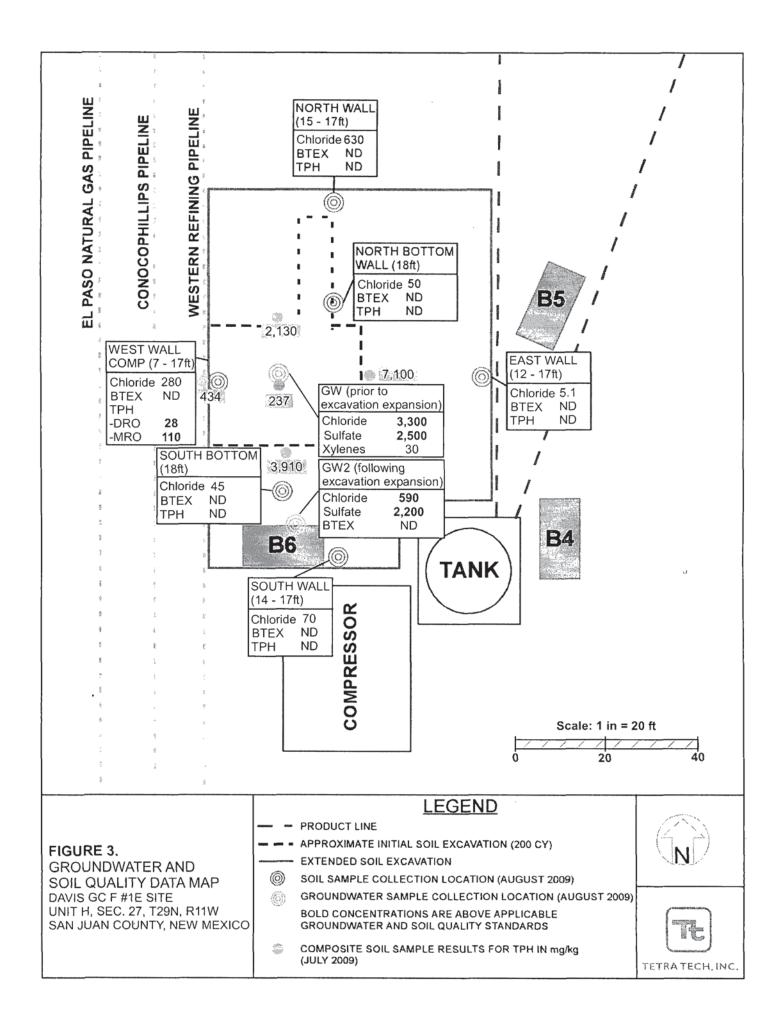
4.0 SUMMARY AND CONCLUSIONS

Approximately 2,180 cubic yards of soil was excavated in situ at the Davis Gas Com F#1E site. Potholes were advanced to determine if the source was up-gradient. The results indicate this is likely a historic release that is not connected to existing up-gradient impacts. All TPH impacts have been removed from the excavation area to below standards with the exception of the west wall,

Tetra Tech, Inc.

Soil and Groundwater Investigation Report Davis GC F #1E Site, San Juan County, New Mexico


which resulted in 138 ppm TPH. Tetra Tech, on behalf of XTO, requests no further action be taken to remediate soil at the Site in the area of the excavation.


Please contact Kelly Blanchard at 505-237-8440 or kelly.blanchard@tetratech.com if you have any questions or require additional information.

Tetra Tech, Inc.

FIGURES

TABLES

TE TEATRON.MC. Table 1. Soil Labora

#1E Excavation
يغا
30
- Davis
Energy
- XTO
Results
Analytical
Laboratory
I. Soil
-

Table 1. JUIL LAUVIANTY ATTACK RESULTS - ATTA LITERY - LATIS OF F #1E EAVATION			and the second second											
			A	nions by Metho	Anions by Method E300.0 (mg/kg - dry)	g - dry)		Volatile C	Drganics by Met l	Volatile Organics by Method 8021B (mg/kg - dry)	g - dry)	трн by Ме	TPH by Method 8015B (mg/kg - dry)	g/kg - dry)
Sample Location	. Date Sampled	Flouride	Chloride	Nitrite (as N)	Nitrate (as N)	Phosphorous, Orthophosphate (as P)	Sulfate	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO	MRO
B1 (14 - 14.5 feet)	08/11/09	2.7	8.8	<1.5	<1.5	<7.5	1,600	<0.050	<0.050	<0:050	<0.10	<5.0	<10	<50
B2 (15 + 16 feet)	08/11/09	2.0	10	<1.5	<1,5	<7.5	37	<0.050	<0.050	<0.050	<0.10	<5.0	<10	<50
B3 (3 - 3.5 feet)	08/11/09	<1.5	140	<1.5	<1.5	<7.5	66	<1.0	<1.0	<1.0	<2.0	<100	000'6	15,000
B3 (17 - 17.5 feet)	08/11/09	1.8	12	<1.5	<1.5	<7.5	46	<0.050	<0.050	<0:050	<0.10	<5.0	<10	<50
B4 (16 - 16.5 feet)	08/12/09	5.6	11	<1.5	<1.5	<7.5	510	<0.050	<0.050	<0.050	<0.10	<5.0	<10	<50
B5 (16 + 16.5 feet	08/12/09	<1.5	56	<1.5	<1.5	<7.5	570	<0.050	<0.050	<0.050	<0.10	<5.0	<10	< <u>50</u>
B6 (6 - 6.5 feet)	08/12/09	6.2	1,200	<1.5	14	<7.5	1,500	<0.050	<0.050	<0.050	<0.10	<10	42	<50
B6 (16 - 16.5 feel)	08/12/09	3.8	1,000	<1.5	12	<7.5	3,800	<0.10	<0.10	<0.10	<0.20	<5.0	14	<50
North Wali (15 - 17 feet)	08/14/09	2.0	630	<1.5	3.2	<7.5	430	<0:050	<0.050	- 0:050	<0.10	<5.0	<10	\$50
South Wall (14 - 17 feet)	08/13/09	2.4	70	<1.5	3.1	<7.5	1,700	<0.050	<0.050	<0.050	<0.10	<5.0	<10	<50
East Wall (12 - 17 feet)	08/17/09	0.69	5.1	<0.3	0.33	<1.5	570	<0.050	<0.050	<0.050	<0.10	<10	<10	\$50
West Wall Comp. (7 - 17 feet	08/13/09	2.5	280	<1.5	3.8	<7.5	1,000	<0.10	<0.10	<0.10	<0.20	<10	28	110
South Bottom (18 feet)	08/14/09	1,6	45	<1.5	<1.5	<7.5	230	<0.050	<0.050	. <0.050	<0.10	<5.0	<10	<50
North Bottom (18 feet)	08/14/09	1.6	50	<1.5	<1.5	<7.5	180	<0.050	<0.050	<0.050	<0.10	<5.0	<10	<50
Excavation D (Duplicate of North Bottom)	08/14/09	<1.5	10	<1.5	<1.5	<7.5	57	<0.050	<0.050	<0.050	<0.10	<5.0	<10	<50
NMOCD Standards	fards	NE	NE	NE	NE	эN.	NE	10p	pm - Benzene; 5(10ppm - Benzene: 50ppm - Total BTEX			100	
Explanation							_	Envirotech Field Test Results for Chloride	est Results for (Chloride				
NMOCD = New Mexico Oil Conservation Division recommended action level NE = Not established by NMOCD	conservation Divisio OCD	n recommended	action level					Sample	ple	Date	Chloride (ppm)			
N = Nitrogen								B1 (4 -5 feet)	5 feet)	8/12/2009	<33			
P = Phosphate								B5 (4 - 5 feet)	5 feet)	8/12/2009	<33			
mg/kg - dry = Miålgrams per kilogram; analyzed after residual water was removed from soil MTBE = Methyl tertiarv-butvl ether	kilogram; analyzed athar	after residuai wa	tler was remove.	d from soil				B6 (4 - 5 feet) Existing Excavation (4- 5 feet)	5 feet) tion (4- 5 feet)	8/12/2009 8/12/2009	23 IQ			
GRO = Gasolina Panoa Oroanioa	aning						-	0						

mg/kg - dry = Milligrams per kilogram: analyzed after residual water was removed from sol MTEE = Methyl tertiary-burkl ether GR0 = Gasoline Range Organics DR70 = Diseat Range Organics MR0 = Motor Oil Range Organics ppm = Parts per million

1 of 1

TETRA TECH, INC.
R

Table 2. Groundwater Laboratory Analytical Results - XTO Energy - Davis GC F #1E Excavation

					SAMP	SAMPLE ID / Date Collected	ollected	1000		
Constituent			8/12/2009	8/12/2009	8/13/2009	8/13/2009	8/13/2009	8/12/2009	8/19/2009	
								*Excavation	**Excavation	NMWQCC Groundwater
Anions	Method	Units	B1 - GW	B2 - GW	B4 - GW	B5 - GW	B6 - GW	Pit GW	GW2	Quality Standard
Fluoride	E300.0	mg/L	0.46	1.1	1.4	0.78	1.1	1.4	0.44	1.6
Chloride	E300.0	mg/L	65	69	110	200	430	3,300	590	250
Nitrate (as N)	E300.0	mg/L	<0.10	<0.10	<2.0	<2.0	<2.0	<10	3.3	10
Nitrite (as N)	E300.0	mg/L	<0.10	1.2	4	1.9	14	<10	<2.0	NE
Phosphorus. Orthophospate (as P)	E300.0	mg/L	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<2.5	NE
Sulfate	E300.0	mg/L	380	560	1,600	1,500	2,700	2,500	2,200	600
								Excavation	Excavation	NMWQCC Groundwater
VOCs (detections and BTEX only)	Method	Units	B1 - GW	B2 - GW	B4 - GW	B5 - GW	B6 - GW	Pit	GW2	Quality Standard
Benzene	8260B	hg/L	<1.0	<1.0	<1.0	<1.0 ·	<1.0	<1.0	<1.0	10
Toluene	8260B	hg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	750
Ethylbenzene	8260B	hg/L	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	750
Total Xvlenes	8260B	ng/L	<1.5	<1.5	<1.5	<1.5	<1.5	30	<1.5	620

Notes:

NMVVQCC = New Mexico Water Quality Control Commission Constituents in **BOLD** are in excess of NMVQCC groundwater quality standards

VOCs = volatile organic compounds

mg/L = milligrams per liter

μg/L = micrograms per liter P = phosphate N = nitrogen

NE = not established

NA = not analyzed *Excavation Pit GW sample collected prior to removal of additional soil in excavated area. **Excavation GW2 sample collected following removal of additional soil in excavated area.

9/18/2009

1 of 1

APPENDICES

••

APPENDIX A

Soil and Groundwater Laboratory Analytical Reports

.

٠

A 4 Constants for a second second

Chloride

XTO Energy	Project #:	98031-0121
B5 (4'-5')	Date Reported:	08-13-09
51224	Date Sampled:	08-12-09
Soil	Date Received:	08-12-09
Cool	Date Analyzed:	08-12-09
Intact	Chain of Custody:	7702
	B5 (4'-5') 51224 Soil Cool	B5 (4'-5')Date Reported:51224Date Sampled:SoilDate Received:CoolDate Analyzed:

Parameter Concentration (mg/Kg)

Total Chloride

< 33

Reference:

Quantab Titrator

Comments:

Analyst

Aristhe Maltles Review

Chloride

Client:	XTO Energy	Project #:	98031-0121
Sample ID:	B6 (4'-5')	Date Reported:	08-13-09
Lab ID#:	51225	Date Sampled:	08-12-09
Sample Matrix:	Soil	Date Received:	08-12-09
Preservative:	Cool	Date Analyzed:	08-12-09
Condition:	Intact	Chain of Custody:	7702

Parameter

Total Chloride

55

Concentration (mg/Kg)

Reference:

Quantab Titrator

Comments:

Analyst

Walter Review

Chloride

Client: XTO Energy Project #: 98031-0121 Sample ID: Existing Excavation (4'-5') Date Reported: 08-13-09 Lab ID#: 51226 Date Sampled: 08-12-09 Sample Matrix: Soil Date Received: 08-12-09 Preservative: Cool Date Analyzed: 08-12-09 Condition: Intact 7702 Chain of Custody:

Parameter

Total Chloride

400

Concentration (mg/Kg)

Reference:

Quantab Titrator

Comments:

Analyst

nothe mblacters Review

Chloride

Client:	XTO Energy	Project #:	98031-0121
Sample ID:	B1 (4'-5')	Date Reported:	08-13-09
Lab ID#:	51227	Date Sampled:	08-12-09
Sample Matrix:	Soil	Date Received:	08-12-09
Preservative:	Cool	Date Analyzed:	08-12-09
Condition:	Intact	Chain of Custody:	7702

Parameter

Total Chloride

< 33

Concentration (mg/Kg)

Reference:

Quantab Titrator

Comments:

Analyst

Mulaeters <u>Aristhe</u> Review

7.07		1			gms2	>	<i>▶</i>	>	> >							Date Time 8/12 14:45	8/2 14:05		-	Lelly. Han chardle tetrate Un.
	AETERS	4.1919	і э (1)	0190	олно	\times	X	X	X										email results to:	
	ARAN				Н∀З														Sult	N.
	SIS / F	c	/Н ч	with	тсгр												· ,		e l	Kell
	NALY				IDA												.]		heli	шо
	٩	ι	uoin	Α/ι	Cation										-	2	-yp		QN	h-inc.o
$\sum_{n=1}^{n}$		sl	stəð	V 8 V	АЯЭЯ										1	t i	T	P	C	ry wirotec
ĴĊ		(0928														fature	Signature	nature	U	r cito ^{ab@en}
		(1208 p															·	/: (Sigi		abo
		(3108	pou													Received by: (Signature)	Received by:	Received by: (Signature)	0	cal L
	R	-			Preservat HgCl HC											Rece	Rece	Rece	0	Analytical Laboratory 187401 • 505-632-0615 • lab@enviro
OF CUSIODY RECORD	1 B powfield, Net	rtect			No.Nolume Preservative of Containers H901 H0	- 402	20/1-1	-4 62	797							Time 14-40	14:55		envirotech	Analytical Laboratory 4 - Farmington, NM 87401 - 505-632-0615 - lab@envirotech-inc.com
	fanad	tem			ဗိ ပိ	s				S	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>ه</u>	w	s	s					ningtor
	bi	vd C		1210	Sample Matrix	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Sludge Aqueous	Date 8-12-09	8-12		$\left \right\rangle$	V Bei - Fam
CHAIN	Location: 「「「「」」	ancho		1	<i></i>	Solid Solid	Sold	Solid	Soil	Soll Solid	Soil Solid	Soil Solid	Solid Solid	Soil Solid	Soil Solid					North Standard
L U	Project Name / Location: DのVIS ら C F 井 ビ	Sampler Name: Lelly Blanchard (Tetra Tech	t Ner	18031	Lab No.	51274	812-09 12:50 57 2255	EXISTAND (4 5) 8/12/09 19305727U	F 2215											Southe For furthings us thrown
	Proje		·	,	ple		50 5	1300	1350							0				cz
	٨Ċ.	2 je		M	Sample Time	4-51)8-12-0911:00	5	109	1032)~	12		1,	14
	TO Energy, Inc.	H2		505-975-2563	Sample Date	13-6	2-09	8/12	12/18							e) (e)	12 12	e)	a.N.	Ĩ
	1012	120		1		3	i i i i i i i i i i i i i i i i i i i	12	8							Signature	ighature	gnatur	5	Č-
	E E	22	No.:	275	tion	til 1	(4.12.1)	Ner								(5) (5)	13 (Si	oy: (Si	2	J.
	55	ddres	hone	Ś	Sample No./ Identification			AVA	, 55th							shed t	The second	shed t	10	. ~!
	Client:	Client Address: 337 CK-3100 Hate,	Client Phone No.:	5	Sa	35	2	X (S)								Relinquished by:	elinoni	Refinquished by: (Signature)	e	-1-
		0.2	0	>	1	1		+			<u> </u>]]	Ì	0	1 00		>	*

COVER LETTER

Thursday, September 17, 2009

Martin Nee XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 333-3100 FAX (505) 333-3280

RE: Davis GC F#1E

Dear Martin Nee:

Order No.: 0908207

Hall Environmental Analysis Laboratory, Inc. received 9 sample(s) on 8/13/2009 for the analyses presented in the following report.

This report is an addendum to the report dated September 3 2009. This is an updated report.

No determination of compounds below these (denoted by the ND or < sign) has been made. Please don't hesitate to contact Hall Environmental for any additional information or clarifications.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

CLIENT:	XTO Energy			Client Sample	ID: B1 (14'-1-	4.5')
Lab Order:	0908207			Collection Da	ite: 8/11/2009	9 12:00:00 PM
Project:	Davis GC F#1E			Date Receiv	ed: 8/13/2009)
Lab ID:	0908207-01			Matr	ix: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE O	RGANICS				Analyst: SCC
Diesel Range O	rganics (DRO)	ND	10	mg/Kg	1	8/17/2009
. Motor Oil Range	e Organics (MRO)	ND	. 50	mg/Kg	1	8/17/2009
Surr: DNOP		85.0	61.7-135	%REC	1	8/17/2009
EPA METHOD	8015B: GASOLINE RANG	Ξ				Analyst: NSE
Gasoline Range	Organics (GRO)	ND	5.0	' mg/Kg	1	8/18/2009 4:18:34 PM
Surr: BFB		82.0	58.8-123	%REC	1	8/18/2009 4:18:34 PM
EPA METHOD	8021B: VOLATILES					Analyst: NSI
Benzene		ND	0.050	mg/Kg	1	8/18/2009 4:18:34 PM
Toluene		ND	0.050	mg/Kg	1	8/18/2009 4:18:34 PM
Ethylbenzene		ND	0.050	mg/Kg	1	8/18/2009 4:18:34 PM
Xylenes, Total		ND	0.10	mg/Kg	1	8/18/2009 4:18:34 PM
Surr: 4-Brom	ofluorobenzene	89.6	66.8-139	%REC	1	8/18/2009 4:18:34 PM
EPA METHOD	300.0: ANIONS					Analyst: TAF
Fluoride		2.7	1.5	mg/Kg	5	8/17/2009 5:07:37 PM
Chloride		8.8	1.5	mg/Kg	5	8/17/2009 5:07:37 PM
Nitrogen, Nitrite	(As N)	ND	1.5	mg/Kg	5	8/17/2009 5:07:37 PM
Nitrogen, Nitrate	e (As N)	ND	1.5	mg/Kg	5	8/17/2009 5:07:37 PM
Phosphorus, Or	thophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 5:07:37 PM
Sulfate		160	7.5	mg/Kg	5	8/17/2009 5:07:37 PM
EPA METHOD	6010B: SOIL METALS					Analyst: SN\
Calcium		6000	120	mg/Kg	5	8/20/2009 11:47:46 AN
Magnesium		980	25	mg/Kg	1	8/18/2009 5:22:29 PM
Potassium		340	50	mg/Kg	1	8/18/2009 5:22:29 PM
Sodium		130	25	mg/Kg	1	8/18/2009 5:22:29 PM

Date: 17-Sep-09

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	Е	Estimated value	Н	Holding times for preparation or analysis exceeded
	J.	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit
	S	Spike recovery outside accepted recovery limits		Page 1 of 9

CLIENT:	XTO Energy			Clier	nt Sample ID:	B3 (17'-17.	5')
Lab Order:	0908207			Co	llection Date:	8/11/2009 2	2:30:00 PM
Project:	Davis GC F#1E			D	ate Received:	8/13/2009	
Lab ID:	0908207-02			Matrix:		SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS			es sole of the		Analyst: SCC
Diesel Range C	Organics (DRO)	ND	10		mg/Kg	1	8/18/2009
Motor Oil Range	e Organics (MRO)	ND	50		mg/Kg	1	8/18/2009
Surr: DNOP		86.7	61.7-135		%REC	1	8/18/2009
EPA METHOD	8015B: GASOLINE RAI	NGE					Analyst: NSE
Gasoline Range	e Organics (GRO)	ND	5.0		mg/Kg	1	8/18/2009 4:49:04 PM
Surr: BFB	29	82.6	58.8-123		%REC	1	8/18/2009 4:49:04 PM
EPA METHOD	8021B: VOLATILES						Analyst: NSE
Benzene	19. 19	ND	0.050		mg/Kg	1	8/18/2009 4:49:04 PM
Toluene		ND	0.050		mg/Kg	1	8/18/2009 4:49:04 PM
Ethylbenzene		ND	0.050		mg/Kg	1	8/18/2009 4:49:04 PM
Xylenes, Total		ND	0.10		mg/Kg	1	8/18/2009 4:49:04 PM
Surr: 4-Brom	ofluorobenzene	91.6	66.8-139		%REC	1	8/18/2009 4:49:04 PM
EPA METHOD	300.0: ANIONS						Analyst: TAF
Fluoride		1.8	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Chloride		12	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Nitrogen, Nitrite	e (As N)	ND	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Nitrogen, Nitrat	e (As N)	ND	1.5		mg/Kg	5	8/17/2009 5:42:26 PM
Phosphorus, O	rthophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 5:42:26 PM
Sulfate		46	7.5		mg/Kg	5	8/17/2009 5:42:26 PM
EPA METHOD	6010B: SOIL METALS						Analyst: SNV
Calcium		880	25		mg/Kg	1	8/18/2009 5:25:28 PM
Magnesium		500	25		mg/Kg	1	8/18/2009 5:25:28 PM
Potassium		200	50		mg/Kg	• 1	8/18/2009 5:25:28 PM
Sodium		100	25		mg/Kg	1	8/18/2009 5:25:28 PM

Date: 17-Sep-09

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 2 of 9

CLIENT:	XTO Energy		Client Sample ID:			B3 (3'-3.5')		
Lab Order:	0908207			Co	llection Date:	8/11/2009 2	2:40:00 PM	
Project:	Davis GC F#1E			D	ate Received:	8/13/2009		
Lab ID:	0908207-03				Matrix:	SOIL		
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD 8	015B: DIESEL RANGE	ORGANICS					Analyst: SCC	
Diesel Range Or	rganics (DRO)	9000	1000		mg/Kg	100	8/18/2009	
Motor Oil Range	Organics (MRO)	15000	5000		mg/Kg	100	8/18/2009	
Sur: DNOP		0	61.7-135	S	%REC	100	8/18/2009	
EPA METHOD 8	015B: GASOLINE RAN	GE					Analyst: NSB	
Gasoline Range	Organics (GRO)	ND	100		mg/Kg	20	8/18/2009 5:19:37 PM	
Surr: BFB		77.9	58.8-123		%REC	20	8/18/2009 5:19:37 PM	
EPA METHOD 8	021B: VOLATILES						Analyst: NSB	
Benzene		ND	1.0		mg/Kg	20	8/18/2009 5:19:37 PM	
Toluene		ND	1.0		mg/Kg	20	8/18/2009 5:19:37 PM	
Ethylbenzene	,	ND	1.0		mg/Kg	20	8/18/2009 5:19:37 PM	
Xylenes, Total		ND	2.0		mg/Kg	20	8/18/2009 5:19:37 PM	
Surr: 4-Bromo	fluorobenzene	83.8	66.8-139		%REC	20	8/18/2009 5:19:37 PM	
EPA METHOD 3	300.0: ANIONS						Analyst: TAF	
Fluoride		ND	1.5		mg/Kg	5	8/17/2009 7:09:29 PM	
Chloride		140	1.5		mg/Kg	5	8/17/2009 7:09:29 PM	
Nitrogen, Nitrite	(As N)	ND	1.5		mg/Kg	5	8/17/2009 7:09:29 PM	
Nitrogen, Nitrate	(As N)	ND	1.5		mg/Kg	5	8/17/2009 7:09:29 PM	
Phosphorus, Ort	hophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 7:09:29 PM	
Sulfate		99	7.5		mg/Kg	- 5	8/17/2009 7:09:29 PM	
EPA METHOD 6	010B: SOIL METALS						Analyst: SNV	
Calcium		3100	2500		mg/Kg	100	8/20/2009 1:27:32 PM	
Magnesium		ND	2500		mg/Kg	100	8/20/2009 1:27:32 PM	
Potassium		ND	5000		mg/Kg	100	8/20/2009 1:27:32 PM	
Sodium		5100	2500		mg/Kg	100	8/20/2009 1:27:32 PM	

Date: 17-Sep-09

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte dete
	Е	Estimated value	Н	Holding tim
	J Analyte detected below quantitation limits		MCL	Maximum (

ND Not Detected at the Reporting Limit

- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 3 of 9

CLIENT:	XTO Energy	•		Clien	t Sample ID:	B2 (15-16')		
Lab Order:	0908207			Col	lection Date:	8/11/2009	3:45:00 PM	
Project:	Davis GC F#1E	3 (<u>* 1</u>)			ate Received:	8/13/2009		
Lab ID:	0908207-04			Matrix:				
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	8015B: DIESEL RANGE	ORGANICS					Analyst: SCC	
Diesel Range C	organics (DRO)	ND	10		mg/Kg	1	8/18/2009	
Motor Oil Range	e Organics (MRO)	ND.	50		mg/Kg	1	8/18/2009	
Surr: DNOP	50 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	85.3	61.7-135		%REC	1	8/18/2009	
EPA METHOD	8015B: GASOLINE RAI	NGE					Analyst: NSB	
Gasoline Range	e Organics (GRO)	ND	5.0		mg/Kg	1	8/18/2009 5:50:06 PM	
Surr: BFB	•	82.3	58.8-123		%REC	1	8/18/2009 5:50:06 PM	
EPA METHOD	8021B: VOLATILES				9		Analyst: NSB	
Benzene		ND	0.050		mg/Kg	1	8/18/2009 5:50:06 PM	
Toluene		ND	0.050		mg/Kg	1	8/18/2009 5:50:06 PM	
Ethylbenzene		ND	0.050	114	mg/Kg	1	8/18/2009 5:50:06 PM	
Xylenes, Total	+	ND	0.10		mg/Kg	1	8/18/2009 5:50:06 PM	
Surr: 4-Brom	ofluorobenzene	89.6	66.8-139		%REC	1	8/18/2009 5:50:06 PM	
EPA METHOD	300.0: ANIONS						Analyst: TAF	
Fluoride	<u>2</u>	2.0	1.5		mg/Kg	5	8/17/2009 7:44:18 PM	
Chloride		10	1.5		mg/Kg	5	8/17/2009 7:44:18 PM	
Nitrogen, Nitrite	(As N)	ND	1.5		mg/Kg	5	8/17/2009 7:44:18 PM	
Nitrogen, Nitrat	e (As N)	ND	1.5		mg/Kg	5	8/17/2009 7:44:18 PM	
Phosphorus, Or	rthophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 7:44:18 PM	
Sulfate		37	7.5		mg/Kg	5	8/17/2009 7:44:18 PM	
EPA METHOD	6010B: SOIL METALS	2					Analyst: SNV	
Calcium		1600	25		mg/Kg	1	8/18/2009 5:41:45 PM	
Magnesium		1000	25		mg/Kg	1	8/18/2009 5:41:45 PM	
Potassium		480	50		mg/Kg	1	8/18/2009 5:41:45 PM	
Sodium		200	25		mg/Kg	1	8/18/2009 5:41:45 PM	

Date: 17-Sep-09

Hall Environmental Analysis Laboratory, Inc.

1. s. 1. t.			•	
Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
	E	Estimated value	н	Holding times for preparation or analysis exceeded
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant Level
	NID	Net Detected at the Departing Limit	DI	Panorting Limit

ND Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits S

Page 4 of 9

RL Reporting Limit

CLIENT:	XTO Energy			Client Sample ID	: B4 (16-16	.5')		
Lab Order:	0908207			Collection Date	: 8/12/2009	8/12/2009 9:58:00 AM		
Project:	Davis GC F#1E			Date Received	: 8/13/2009			
Lab ID:	0908207-05			Matrix	: SOIL			
Analyses		Result	PQL	Qual Units	DF	Date Analyzed		
EPA METHOD	8015B: DIESEL RANGE	ORGANICS				Analyst: SCC		
Diesel Range O	organics (DRO)	ND	10	mg/Kg	1	8/18/2009		
Motor Oil Range	e Organics (MRO)	ND	50	mg/Kg	1	8/18/2009		
Surr: DNOP		87.7	61.7-135	%REC	1	8/18/2009		
EPA METHOD	8015B: GASOLINE RAN	4GE				Analyst: NSI		
Gasoline Range	Organics (GRO)	ND	5.0	mg/Kg	1	8/18/2009 6:20:41 PM		
Surr: BFB		83.0	58.8-123	%REC	1	8/18/2009 6:20:41 PM		
EPA METHOD	8021B: VOLATILES					Analyst: NSI		
Benzene		ND	0.050	mg/Kg	1	8/18/2009 6:20:41 PM		
Toluene		ND	0.050	mg/Kg	1	8/18/2009 6:20:41 PM		
Ethylbenzene		ND	0.050	mg/Kg	1	8/18/2009 6:20:41 PM		
Xylenes, Total		ND	0.10	mg/Kg	1	8/18/2009 6:20:41 PM		
Surr: 4-Brom	ofluorobenzene	93.4	66.8-139	%REC	1	8/18/2009 6:20:41 PM		
EPA METHOD	300.0: ANIONS					Analyst: TAF		
Fluoride		5.6	1.5	mg/Kg	5	8/17/2009 8:19:06 PM		
Chloride		11	1.5	mg/Kg	5	8/17/2009 8:19:06 PM		
Nitrogen, Nitrite	(As N)	ND	1.5	mg/Kg	5	8/17/2009 8:19:06 PM		
Nitrogen, Nitrate	e (As N)	. ND	1.5	mg/Kg	5	8/17/2009 8:19:06 PM		
Phosphorus, Or	thophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 8:19:06 PM		
Sulfate		510	7.5	mg/Kg	5	8/17/2009 8:19:06 PM		
EPA METHOD	6010B: SOIL METALS					Analyst: SN		
Calcium		21000	130	mg/Kg	5	8/20/2009 11:54:21 AM		
Magnesium		2600	130	mg/Kg	. 5	8/20/2009 11:54:21 AM		
Potassium		920	250	mg/Kg	5	8/20/2009 11:54:21 AM		
Sodium		690	130	mg/Kg	5	8/20/2009 11:54:21 AM		

Date: 17-Sep-09

Qualifiers:	Qualifiers: * Value exceeds Maximum Contaminant Level		В	Analyte detected in the associated Method Blank
E Estimated value		н	Holding times for preparation or analysis exceeded	
	J Analyte detected below quantitation limits		MCL	Maximum Contaminant Level
	ND Not Detected at the Reporting Limit		RL	Reporting Limit
S Spike recovery outside accepted recovery limits			Page 5 of 9	

CLIENT:	XTO Energy			Client Sampl	e ID: B5 (16-16	5.5')
Lab Order: 0908207		Coll		Collection	Date: 8/12/2009	11:35:00 AM
Project:	Davis GC F#1E		70	Date Rece	ived: 8/13/2009	Ň
Lab ID:	0908207-06	*			atrix: SOIL	4
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS				Analyst: SCC
Diesel Range C	Organics (DRO)	ND	10	mg/Kg	1 .	8/18/2009
Motor Oil Rang	e Organics (MRO)	ND	50	mg/Kg	1	8/18/2009
Surr: DNOP	n an	83.9	61.7-135	%REC	1	8/18/2009
EPA METHOD	8015B: GASOLINE RAI	NGE		- # -		Analyst: NSE
Gasoline Range	e Organics (GRO)	ND	5.0	mg/Kg	1	8/18/2009 6:51:20 PM
Surr: BFB		78.6	58.8-123	%REC	1	8/18/2009 6:51:20 PM
EPA METHOD	8021B: VOLATILES					Analyst: NSE
Benzene		ND	0.050	mg/Kg	1	8/18/2009 6:51:20 PM
Toluene		ND	0.050	mg/Kg	1	8/18/2009 6:51:20 PM
Ethylbenzene		ND	0.050	mg/Kg	1	8/18/2009 6:51:20 PM
Xylenes, Total		ND	0.10	mg/Kg	1	8/18/2009 6:51:20 PM
Surr: 4-Brom	ofluorobenzene	87.4	66.8-139	%REC	1	8/18/2009 6:51:20 PM
EPA METHOD	300.0: ANIONS					Analyst: TAF
Fluoride		ND	1.5	mg/Kg	5	8/17/2009 8:53:55 PM
Chloride		56	1.5	mg/Kg	5	8/17/2009 8:53:55 PM
Nitrogen, Nitrite	e (As N)	ND	1.5	mg/Kg	5	8/17/2009 8:53:55 PM
Nitrogen, Nitrat	e (As N)	ND	1.5	mg/Kg	5	8/17/2009 8:53:55 PM
Phosphorus, O	rthophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 8:53:55 PM
Sulfate		570	7.5	mg/Kg	5	8/17/2009 8:53:55 PM
EPA METHOD	6010B: SOIL METALS					Analyst: SN
Calcium		1100	25	mg/Kg	1	8/18/2009 5:48:49 PM
Magnesium		600	25	mg/Kg	1	8/18/2009 5:48:49 PM
Potassium		240	50	mg/Kg	1	8/18/2009 5:48:49 PM
Sodium		400	25	mg/Kg	1	8/18/2009 5:48:49 PM

Qualifiers:

*

- Value exceeds Maximum Contaminant Level Estimated value
- Е Analyte detected below quantitation limits J
- Not Detected at the Reporting Limit ND

S

- Spike recovery outside accepted recovery limits
- В Analyte detected in the associated Method Blank

- Н Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 6 of 9

CLIENT:	XTO Energy			Client Sample II): B6 (16-1	6.5')		
Lab Order:	0908207			Collection Date	e: 8/12/200	9 1:00:00 PM		
Project:	Davis GC F#1E			Date Received	1: 8/13/200	8/13/2009		
Lab ID:	0908207-07			Matrix	: SOIL			
Analyses		Result	PQL	Qual Units	DF	Date Analyzed		
EPA METHOD	8015B: DIESEL RANGE	ORGANICS				Analyst: SCC		
Diesel Range O	rganics (DRO)	14	10	mg/Kg	1	8/18/2009		
Motor Oil Range	Organics (MRO)	ND	50	mg/Kg	1	8/18/2009		
Surr: DNOP		92.0	61.7-135	%REC	1	8/18/2009		
EPA METHOD	3015B: GASOLINE RAM	IGE				Analyst: NSE		
Gasoline Range	Organics (GRO)	ND	5.0	mg/Kg	1	8/18/2009 7:21:43 PM		
Surr: BFB	•	87.1	58.8-123	%REC	1	8/18/2009 7:21:43 PM		
EPA METHOD 8	021B: VOLATILES					Analyst: NSE		
Benzene		ND	0.050	mg/Kg	1	8/18/2009 7:21:43 PM		
Toluene		ND	0.050	mg/Kg	1	8/18/2009 7:21:43 PM		
Ethylbenzene		ND	0.050	mg/Kg	1	8/18/2009 7:21:43 PM		
Xylenes, Total		ND	0.10	mg/Kg	1	8/18/2009 7:21:43 PM		
Surr: 4-Bromo	ofluorobenzene	95.1	66.8-139	%REC	1	8/18/2009 7:21:43 PM		
EPA METHOD	300.0: ANIONS					Analyst: TAF		
Fluoride		3.8	1.5	mg/Kg	5	8/17/2009 9:28:44 PM		
Chloride		1000	15	mg/Kg	50	8/17/2009 10:38:23 PM		
Nitrogen, Nitrite	(As N)	ND	1.5	mg/Kg	5	8/17/2009 9:28:44 PM		
Nitrogen, Nitrate	(As N)	12	1.5	mg/Kg	5	8/17/2009 9:28:44 PM		
Phosphorus, Ort	hophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 9:28:44 PM		
Sulfate		3800	75	mg/Kg	50	8/17/2009 10:38:23 PM		
EPA METHOD 6	010B: SOIL METALS					Analyst: SNV		
Calcium		9900	130	mg/Kg	5	8/20/2009 11:57:23 AM		
Magnesium	,	1700	130	mg/Kg	5	8/20/2009 11:57:23 AM		
Potassium		850	250	mg/Kg	5	8/20/2009 11:57:23 AM		
Sodium		2200	130	mg/Kg	5	8/20/2009 11:57:23 AM		

Date: 17-Sep-09

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

*

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

CLIENT:	XTO Energy	2. 4 2.5	1.4	Client	Sample ID:	B6 (6-6.5')	2 2 2
Lab Order:	0908207			Colle	ection Date:	8/12/2009	12:20:00 PM
Project:	Davis GC F#1E		÷	Dat	te Received:	8/13/2009	
Lab ID:	0908207-08				Matrix:	SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8	015B: DIESEL RANGE OF	RGANICS					Analyst: SCC
Diesel Range Org	anics (DRO)	42	. 10	r	mg/Kg	1	8/18/2009
Motor Oil Range	Organics (MRO)	ND	50	г	mg/Kg	1	8/18/2009
Surr: DNOP		91.4	61.7-135		%REC	1	8/18/2009
EPA METHOD 8	015B: GASOLINE RANGE						Analyst: NSB
Gasoline Range	Organics (GRO)	ND	10	7	mg/Kg	2	8/18/2009 11:56:00 PM
Surr: BFB		83.9	58.8-123	0	%REC	2	8/18/2009 11:56:00 PM
	021B: VOLATILES		-		1.8		Analyst: NSB
Benzene	VIID. VOLATILLO	ND	0.10	,	mg/Kg	2	8/18/2009 11:56:00 PM
Toluene		ND	0.10		mg/Kg	2	8/18/2009 11:56:00 PM
Ethylbenzene		ND	0.10		mg/Kg	2	8/18/2009 11:56:00 PM
Xylenes, Total		ND	0.20		mg/Kg	2	8/18/2009 11:56:00 PM
Surr: 4-Bromot	luorobenzene	92.2	66.8-139		%REC	2	8/18/2009 11:56:00 PM
EPA METHOD 3	00.0: ANIONS						Analyst: TAF
Fluoride		6.2	1.5	1	mg/Kg	5	8/17/2009 10:55:47 PM
Chloride	۸	1200	15		mg/Kg	50	8/17/2009 11:13:12 PM
Nitrogen, Nitrite (As N)	ND	1.5		mg/Kg	5	8/17/2009 10:55:47 PM
Nitrogen, Nitrate	(As N)	14	1.5	,	mg/Kg	5	8/17/2009 10:55:47 PM
Phosphorus, Orth	ophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 10:55:47 PM
Sulfate		1500	75		mg/Kg	50	8/17/2009 11:13:12 PM
EPA METHOD 6	010B: SOIL METALS			0			Analyst: SNV
Calcium		2400	25		mg/Kg	1	8/18/2009 5:56:17 PM
Magnesium		1100	25		mg/Kg	1	8/18/2009 5:56:17 PM
Potassium		580	50	8	mg/Kg	1	8/18/2009 5:56:17 PM
Sodium	Υ.	1900	25		mg/Kg	1	8/18/2009 5:56:17 PM

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

Hall Environmental Analysis Laboratory, Inc.

ND Not Detected at the Reporting Limit

- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

Date: 17-Sep-09

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 8 of 9

CLIENT: Lab Order:	XTO Energy 0908207		н 1			Excavation Pit 8/12/2009 2:10:00 PM			
Project:	Davis GC F#1E			Date	Received:				
Lab ID:	0908207-09				Matrix: AQUEOUS				
Analyses		Result	PQL	Qual U	nits	DF	Date Analyzed		
EPA METHOD	300.0: ANIONS						Analyst: RAGS		
Fluoride		1.4	0.10	mg	g/L	1	8/13/2009 1:48:54 PM		
Chloride		3300	20	mg	g/L	200	8/18/2009 12:33:16 AM		
Nitrate (As N)+N	Nitrite (As N)	ND	10	mg	g/L	50	8/18/2009 12:50:40 AM		
Phosphorus, Or	thophosphate (As P)	ND	0.50	mg	g/L	1	8/13/2009 1:48:54 PM		
Sulfate		2500	100	mg	g/L	200	8/18/2009 12:33:16 AM		
EPA METHOD	6010B: DISSOLVED M	TALS					Analyst: SNV		
Calcium		860	10	mg	g/L	10	8/18/2009 10:38:03 AM		
Magnesium		150	10	mg	g/L	10	8/18/2009 10:38:03 AM		
Potassium		13	1.0	mg	g/L	1	8/17/2009 4:39:23 PM		
Sodium		1600	20	mg	g/L	20	8/18/2009 10:40:59 AM		
EPA METHOD	8260B: VOLATILES						Analyst: HL		
Benzene		ND	. 1.0	рд	/Ĺ	1	8/14/2009 7:38:16 AM		
Toluene		ND	1.0	μg	/L	1	8/14/2009 7:38:16 AM		
Ethylbenzene		ND	1.0	þg		1	8/14/2009 7:38:16 AM		
Xylenes, Total		30	1.5	þg	/L	1	8/14/2009 7:38:16 AM		
Surr: 1,2-Dich	nloroethane-d4	95.4	54.6-141	%	REC	1	8/14/2009 7:38:16 AM		
Surr: 4-Brom	ofluorobenzene	109	60. 1- 133	%F	REC	1	8/14/2009 7:38:16 AM		
Surr: Dibromo	ofluoromethane	100	78.5-130	%F	REC	1	8/14/2009 7:38:16 AM		
Surr: Toluene	e-d8	98.7	79.5-126	%F	REC	1	8/14/2009 7:38:16 AM		

Date: 17-Sep-09

			And a second sec	An open sector of the sector o
Qualifiers:	•	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associated Method Blank
E	E Estimated value		. H	Holding times for preparation or analysis exceeded
J	J Analyte detected below quantitation limits		MCL	Maximum Contaminant Level
N	D	Not Detected at the Reporting Limit	RL	Reporting Limit
5	S	Spike recovery outside accepted recovery limits		Page

Page 9 of 9

Client: XTO Energy Project: Davis GC F#1	F			±ι					Work	Order:	0908207
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	owLimit Hig	ghLimit	%RPD	RPDLimit	
Method: EPA Method 300.0: Anio	ons										
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analys	is Date:	8/17/2009 1	2:11:39 PM
Fluoride	ND	mg/Kg	0.30								
Chloride .	ND	mg/Kg	0.30								
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30								
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30								
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5		÷		1.8				
Sulfate	3.201	mg/Kg	1.5							940 1	
Sample ID: MB-19889		MBLK				Batch ID:	19889	Analys	is Date:	8/18/2009	2:07:17 AM
Fluoride	ND	mg/Kg	0.30								
Chloride	ND	mg/Kg	0.30								
Nitrogen, Nitrite (As N)	ND	mg/Kg	0.30						÷		
Nitrogen, Nitrate (As N)	ND	mg/Kg	0.30			*).					
Phosphorus, Orthophosphate (As P)	ND	mg/Kg	1.5								
Sulfate	2.985	mg/Kg	.1.5								
Sample ID: LCS-19889		LCS		<i>.</i> 75		Batch ID:	19889	Analys	is Date:	8/17/2009	12:29:03 PN
Fluoride	1.557	mg/Kg	0.30	1.5	0	104	90	110			
Chloride	14.71	mg/Kg	0.30	15	0	98.0	90	110			
Nitrogen, Nitrite (As N)	2.990	mg/Kg	0.30	3	. 0	99.7	90 -	110			
Nitrogen, Nitrate (As N)	7.378	mg/Kg	0.30	7.5	0	98.4	90	110			
Phosphorus, Orthophosphate (As P)	14.57	mg/Kg	1.5	15	0	97.1	90	110			
Sulfate	29.49	mg/Kg	1.5	30	2.985	88.4	90	110			BS

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 17-Sep-09

QA/QC SUMMARY REPORT

Client:XTO EnergyProject:Davis GC F#	ΙE								Work	Order:	0908207
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 300.0: Ani	ons										
Sample ID: 0908207-09BMSD		MSD				Batch ID:	R34902	Analysi		8/13/2009	2:41:09 PM
Fluoride	1.836	mg/L	0.10	0.5	1.402	86.8	75.3	117	0.202	20	
Phosphorus, Orthophosphate (As P)	4.405	mg/L	0.50	5	0	88.1	74.5	116	1.46	20	
Sample ID: MB		MBLK				Batch ID:	R34902	Analysi	s Date:	8/13/2009	9:45:10 AM
Chloride	ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: MB		MBLK				Batch ID:	R34924	Analysi	s Date:	8/14/2009	8:54:06 AM
Fluoride	ND	mg/L	0.10						-		
Chloride	ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: MB		MBLK				Batch ID:	R34944	Analysi	s Date:	8/17/2009	8:53:05 AM
Fluoride	ND .	mg/L	0.10								
Chloride	ND	mg/L	0.10								
Nitrate (As N)+Nitrite (As N)	ND	mg/L	0.20								
Phosphorus, Orthophosphate (As P)	ND	mg/L	0.50								
Sulfate	ND	mg/L	0.50								
Sample ID: LCS		LCS				Batch ID:	R34902	Analysi	s Date:	8/13/2009 1	0:02:34 AM
Chloride	4.910	mg/L	0.10	5	0	98.2	90	110			
Nitrate (As N)+Nitrite (As N)	3.424	mg/L	0.20	3.5	õ	97.8	90	110			
Phosphorus, Orthophosphate (As P)	4.805	mg/L	0.50	5	0	96.1	90	110			
Sulfate	9.814	mg/L	0.50	10	0 0	98.1	90	110			
Sample ID: LCS-b	0.017	LCS	0.00		•	Batch ID:	R34902	Analysi	s Date:	8/13/2009	1:14:05 PM
Fluoride	0 6470		0.40	0.6	. 0	103	90	110			
	0.5170	mg/L	0.10	0.5	0	Batch ID:	90 R34924		Data	8/14/2000	9:11:31 AM
Sample ID: LCS		LCS						Analysi	S Date.	0/14/2005	3.11.31 AW
Fluoride	0.5038	mg/L	0.10	0.5	0	101	90	110			
Chloride	4.778	mg/L	0.10	5	0	95.6	90	110			
Nitrate (As N)+Nitrite (As N)	3.353	mg/L	0.20	3.5	0	95.8	90	110			
Phosphorus, Orthophosphate (As P)	4.885	mg/L	0.50	5	0	97.7	90	110			
Sulfate	9.849	mg/L	0.50	10	0	98.5	90	110 Analysi	Datas	0/47/0000	0.40.00 414
Sample ID: LCS		LCS				Batch ID:	R34944	Analysi	s Date:	8/17/2009	9:10:30 AM
Fluoride	0.4744	mg/L	0.10	0.5	0	94.9	90	110			
Chloride	4.793	mg/L	0.10	5	0	95.9	90	110			
Nitrate (As N)+Nitrite (As N)	3.355	mg/L	0.20	3.5	0	95.8	90	110			
Phosphorus, Orthophosphate (As P)	4.816	mg/L	0.50	5	0	96.3	90	110			
Sulfate	9.772	mg/L	0.50	10	0	97.7	90	110			
Sample ID: 0908207-09BMS		MS				Batch ID:	R34902	Analysi	s Date:	8/13/2009	2:23:44 PM
Fluoride	1.832	mg/L	0.10	0.5	1.402	86.1	75.3	117			
Phosphorus, Orthophosphate (As P)	4.470	mg/L	0.50	5	0	89.4	74.5	116			

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Client: XTO Energy Project: Davis GC F#1E

Work Order: 0908207 SPK Va SPK ref %Rec LowLimit HighLimit %RPD RPDLimit Qual Units PQL Analyte Result Method: EPA Method 8015B: Diesel Range Organics Batch ID: 19884 Analysis Date: 8/18/2009 Sample ID: 0908207-01AMSD MSD 72.9 117 0.283 Diesel Range Organics (DRO) 36.44 mg/Kg 10 50 0 67.4 17.4 Batch ID: 19884 Analysis Date: 8/17/2009 Sample ID: MB-19884 MBLK Diesel Range Organics (DRO) ND mg/Kg 10 mg/Kg Motor Oil Range Organics (MRO) ND 50 Batch ID: 19884 Analysis Date: 8/17/2009 Sample ID: LCS-19884 LCS Diesel Range Organics (DRO) 35.66 mg/Kg 10 50 0 71.3 64.6 116 Sample ID: LCSD-19884 Batch ID: 19884 Analysis Date: 8/17/2009 LCSD Diesel Range Organics (DRO) 39.25 mg/Kg 10 50 0 78.5 64.6 116 9.59 17.4 Sample ID: 0908207-01AMS Batch ID: 19884 Analysis Date: 8/17/2009 MS Diesel Range Organics (DRO) 36.34 mg/Kg 10 50 0 72.7 67.4 117 Method: EPA Method 8015B: Gasoline Range Sample ID: 0908207-01A MSD MSD Batch ID: 19869 Analysis Date: 8/21/2009 11:49:59 PM 94.3 Gasoline Range Organics (GRO) 27.63 mg/Kg 5.0 25 4.05 69.5 120 7.55 11.6 Sample ID: MB-19869 MBLK Batch ID: 19869 Analysis Date: 8/19/2009 3:59:26 AM Gasoline Range Organics (GRO) ND mg/Kg 5.0 Batch ID: Sample ID: LCS-19869 LCS 19869 Analysis Date: 8/22/2009 12:20:12 AM 0 111 133 Gasoline Range Organics (GRO) mg/Kg 64.4 27.71 5.0 25 Sample ID: 0908207-01A MS Batch ID: Analysis Date: 8/21/2009 11:19:39 PM MS 19869 120 Gasoline Range Organics (GRO) 25.62 5.0 4.05 86.3 69.5 mg/Kg 25

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Benzene
T - 1

Client:	XTO Energy
Project:	Davis GC F#1E

Project: Davis GC F	#1E								Work	Order:	0908207
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimi	t Qual
Method: EPA Method 8021B:	Volatiles										
Sample ID: 0908207-01A MSD		MSD				Batch ID:	19869	Analys	is Date:	8/22/2009	8 5:23:53 AM
Methyl tert-butyl ether (MTBE)	0.9763	mg/Kg	0.10	1	0	97.6	67.9	135	1.65	28	
Benzene	0.9698	mg/Kg	0.050	1	0.0038	96.6	78.8	132	0.607	27	
Toluene	0.9600	mg/Kg	0.050	1	0	96.0	78.9	112	6.40	19	
Ethylbenzene	0.9559	mg/Kg	0.050	1	0	95.6	69.3	125	9.78	10	
Xylenes, Total	2.802	mg/Kg	0.10	3	0	93.4	73	128	10.8	13	
Sample ID: MB-19869		MBLK				Batch ID:	19869	Analys	is Date:	8/19/2009	3:59:26 AN
Methyl tert-butyl ether (MTBE)	ND	mg/Kg	0.10								
Benzene	ND	mg/Kg	0.050								
Toluena	ND	mg/Kg	0.050								
Ethylbenzene	ND	mg/Kg	0.050								
Xylenes, Total	ND	mg/Kg	0.10								
Sample ID: LCS-19869		LCS				Batch ID:	19869	Analys	is Date:	8/22/2009	5:54:13 AN
Methyl tert-butyl ether (MTBE)	1.038	mg/Kg	0.10	1	0	104	67.9	135			
Benzene	0.9817	mg/Kg	0.050	1	0	98.2	78.8	132			
Toluene	0.9746	mg/Kg	0.050	1	0	97.5	78.9	112			
Ethylbenzene	0.9807	mg/Kg	0.050	1	0	98.1	69.3	125			
Xylenes, Total	2.883	mg/Kg	0.10	3	0	96.1	73	128			
Sample ID: 0908207-01A MS		MS				Batch ID;	19869	Analys	is Date:	8/22/2009	4:53:33 AN
Methyl tert-butyl ether (MTBE)	0.9603	mg/Kg	0.10	. 1	0	96.0	67.9	135			
Benzene	0.9757	mg/Kg	0.050	1	0.0038	97.2	78.8	132			
Toluene	1.024	mg/Kg	0.050	1	0	102	78.9	112			
Ethylbenzene	1.054	mg/Kg	0.050	1	0	105	69.3	125			
Xylenes, Total	3.123	mg/Kg	0.10	3	0	104	73	128			

Qualifiers:

- E Estimated value
- Analyte detected below quantitation limits J
- R RPD outside accepted recovery limits

- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit ND

S Spike recovery outside accepted recovery limits Date: 17-Sep-09

Client:	XT
Project:	Da

XTO Energy
Davis GC F#1E

Work Order: 0908207

Analyte .	Result	Units	PQL	SPK Va	SPK ref	%Rec Lo	owLimit Hig	ghLimit ·	%RPD	RPDLimit	Qual
Method: EPA Method 8260B:	VOLATILES									A.V	
Sample ID: 0908207-09a MSD		MSD				Batch ID:	R34910	Analys	is Date:	8/14/2009	8:33:28 AN
Benzene	19.82	µg/L	1.0	20	0	99.1	78.9	115	2.63	15	
Toluene	18.49	µg/L	1.0	20	0	92.5	80.5	105	5.51	<u>`</u> 15	
Chlorobenzene	18.59	μg/L	1.0	20	0	93.0	85	102	7.31	15	
1,1-Dichloroethene	18.09	µg/L	1.0	20	0	90.5	80.2	128	0.149	17.8	1
Trichloroethene (TCE)	16.03	µg/L	1.0	20	0	80.2	70.3	125	3.32	19.8	
Sample ID: b4		MBLK	3			Batch ID:	R34910	Analys	is Date:	8/13/2009 1	2:54:09 PN
Benzene	ND	µg/L	1.0							-	
Toluene	ND	µg/L	1.0								
Ethylbenzene	ND	µg/L	1.0								
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0								
1,2,4-Trimethylbenzene	ND	µg/L	1.0								
1,3,5-Trimethylbenzene	ND	µg/L	1.0	1							12
1,2-Dichloroethane (EDC)	ND	µg/L	1.0				2			£3	
1,2-Dibromoethane (EDB)	ND	µg/L	1.0					122			
Naphthalene	ND	µg/L	2.0								
1-Methylnaphthalene	ND	µg/L	4.0								
2-Methylnaphthalene	ND	µg/L	4.0							ं	
Acetone	ND	µg/L	10								
Bromobenzene	ND	µg/L	1.0								8
Bromodichloromethane	ND	hð\r hð\r	1.0								
Bromoform	ND	μg/L	1.0					~			
Bromomethane	ND	µg/L	1.0								
2-Butanone	ND	µg/L	10								
Carbon disulfide	ND	μg/L	10								
Carbon Tetrachloride	ND	µg/L	1.0								
Chlorobenzene											
Chloroethane	ND ND	µg/L	1.0 2.0								
Chloroform	ND	µg/L µg/L	1.0								
Chloromethane	ND		1.0								
2-Chlorotoluene	ND	μg/L μg/L	1.0								
4-Chlorotoluene	ND	μg/L μg/L	1.0								
cis-1,2-DCE	ND	μg/L	1.0								
cis-1,3-Dichloropropene	ND	μg/L	1.0								#1)
1,2-Dibromo-3-chloropropane	ND	μg/L	2.0								
Dibromochloromethane	ND	μg/L	1.0								
Dibromomethane	ND	µg/L	1.0					10 1			
1,2-Dichlorobenzene	ND	μg/L	1.0								
1,3-Dichlorobenzene	ND	μg/L	1.0								
1,4-Dichlorobenzene	ND	µg/L	1.0								
Dichlorodifluoromethane	ND	µg/L	1.0								
1,1-Dichloroethane	ND	µg/L	1.0								
1,1-Dichloroethene	ND	µg/L	1.0								
	ND	µg/L	1.0								
1,2-Dichloropropane 1,3-Dichloropropane	ND	μg/L μg/L	1.0								

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

	O Energy vis GC F#1E						We	ork Order:	0908207
Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec L	owLimit Hig	ghLimit %R	PD RPDLin	nit Qual
Method: EPA Method	8260B: VOLATILES								
Sample ID: b4		MBLK			Batch ID:	R34910	Analysis Date	e: 8/13/2009	9 12:54:09 PN
2,2-Dichloropropane	ND	µg/L	2.0						
1,1-Dichloropropene	ND	µg/L	1.0			,			
Hexachlorobutadiene	ND	µg/L	1.0						
2-Hexanone	ND	µg/L	10						
Isopropylbenzene	ND	µg/L	1.0						
4-Isopropyltoluene	ND	µg/L	1.0						
4-Methyl-2-pentanone	ND	µg/L	10						
Methylene Chloride	ND	µg/L	3.0						
n-Butylbenzene	ND	µg/L	1.0						
n-Propylbenzene	ND	µg/L	1.0						
sec-Butylbenzene	· ND	µg/L	1.0						
Styrene	ND	µg/L	1.0						
tert-Butylbenzene	ND	µg/L	1.0						
1,1,1,2-Tetrachloroethan		µg/L	1.0						
1,1,2,2-Tetrachloroethan		µg/L	2.0						
Tetrachloroethene (PCE)		µg/L	1.0						
trans-1,2-DCE	ND	µg/L	1.0						
trans-1,3-Dichloropropen		µg/L	1.0						
1,2,3-Trichlorobenzene	ND	µg/L	1.0						
1,2,4-Trichlorobenzene	ND	µg/L	1.0						
1,1,1-Trichloroethane	ND	µg/L	1.0						
1,1,2-Trichloroethane	ND	µg/L	1.0						
Trichloroethene (TCE)	ND	µg/L	1.0						
Trichtorofluoromethane	ND	µg/L	1.0						
1,2,3-Trichloropropane	ND	μg/L	2.0						
Vinyl chloride	ND	µg/L	1.0						
	ND		1.5						
Xylenes, Total	ND	µg/L	1.5		Detab ID:	D24040	Analysis Date	9/14/200)9 2:06:53 AN
Sample ID: b8		MBLK			Batch ID:	R34910	Analysis Date	a. 0/14/200	19 2.00.03 AN
Benzene	ND	µg/L	1.0						
Toluene	ND	µg/L	1.0						
Ethylbenzene	ND	µg/L	1.0						
Methyl.tert-butyl ether (M		µg/L	1.0						
1,2,4-Trimethylbenzene	ND	µg/L	1.0						
1,3,5-Trimethylbenzene	ND	µg/L	1.0						
1,2-Dichloroethane (EDC		µg/L	1.0						
1,2-Dibromoethane (EDE		µg/L	1.0						
Naphthalene	ND	µg/L	2.0						
1-Methylnaphthalene	ND	µg/L	4.0						
2-Methylnaphthalene	ND	µg/L	4.0						
Acetone	ND	µg/L	10						
Bromobenzene	ND	µg/L	1.0						
Bromodichloromethane	ND	µg/L	1.0		•				
Bromoform	ND	µg/L	1.0						
Bromomethane	ND	µg/L	1.0						

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 17-Sep-09

0908207

8/14/2009 2:06:53 AM

OA/OC SUMMARY REPORT

Project: D	avis GC F#1E							Work	Order:	090820
Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	wLimit Hig	ghLimit	%RPD	RPDLimit	Qual
	od 8260B: VOLATILES		20.00						5	
Sample ID: b8		MBLK			Batch ID:	R34910	Analys	is Date:	8/14/2009	2:06:53 A
2-Butanone	ND	µg/L	10						-	
Carbon disulfide	ND	µg/L	10	<u>a</u>						
Carbon Tetrachloride	ND	µg/L	1.0			2				
Chlorobenzene	ND	µg/L	1.0							
Chloroethane	ND	µg/L	2.0						. •	
Chloroform	ND	µg/L	1.0							
Chloromethane	ND	µg/L	1.0							
2-Chlorotoluene	ND ·	µg/L	1.0							
4-Chlorotoluene	ND	µg/L	1.0							
cis-1,2-DCE	ND	µg/L	1.0							
cis-1,3-Dichloropropen	e ND	µg/L	1.0							
1,2-Dibromo-3-chlorop	opane ND	µg/L	2.0							
Dibromochloromethane	ND	µg/L	1.0							
Dibromomethane	ND	µg/L	1.0							
1,2-Dichlorobenzene	ND	µg/L	1.0							
1,3-Dichlorobenzene	. ND	µg/L	1.0							
1,4-Dichlorobenzene	ND	µg/L	1.0						5	
Dichlorodifluoromethan	e ND	µg/L	1.0							
1,1-Dichloroethane	ND	µg/L	1.0							
1,1-Dichloroethene	ND	µg/L	1.0							
1,2-Dichloropropane	ND	µg/L	1.0							
1,3-Dichloropropane	ND	µg/L	1.0			<i></i>				
2,2-Dichloropropane	ND	μg/L	2.0							
1,1-Dichloropropene	ND	µg/L	1.0							
Hexachlorobutadiene	ND	μg/L	1.0		12					
2-Hexanone	ND	µg/L	10							
Isopropylbenzene	ND	µg/L	1.0							
4-Isopropyltoluene	ND	µg/L	1.0				•			
4-Methyl-2-pentanone	ND	µg/L	10							
Methylene Chloride	ND	μg/L	3.0							
n-Butylbenzene	ND	µg/L	1.0							
n-Propylbenzene	ND	µg/L	1.0							
sec-Bulylbenzene	ND	µg/L	1.0							
Styrene	ND	μg/L	1.0							
tert-Butylbenzene	ND	µg/L	1.0							
1,1,1,2-Tetrachloroetha		µg/L	1.0							
1,1,2,2-Tetrachloroetha		µg/L	2.0							
Tetrachloroethene (PC		µg/L	1.0							
trans-1,2-DCE	ND	µg/L	1.0							
trans-1,3-Dichloroprope	104	μg/L	1.0							
1,2,3-Trichlorobenzene		µg/L	1.0							
1,2,4-Trichlorobenzene		µg/L	1.0							
1,1,1-Trichloroethane	ND	µg/L	1.0							
1,1,2-Trichloroethane	ND	µg/L	1.0	1						

Qualifiers:

Estimated value Е

Analyte detected below quantitation limits J

R RPD outside accepted recovery limits Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Analyte	Result	Units	PQL	SPK Va SPK ref	%Rec Lo	wLimit Hig	ghLimit	%RPD	RPDLimit	Qual
Method: EPA Method 8260B:	VOLATILES									
Sample ID: b8		MBLK			Batch ID:	R34910	Analysi	s Date:	8/14/2009	2:06:53 AN
Trichloroethene (TCE)	ND	µg/L	1.0							
Trichlorofluoromethane	ND	µg/L	1.0							
1,2,3-Trichloropropane	ND	hð\r	2.0							
Vinyl chloride	ND	µg/L	1.0							
Kylenes, Total	ND	µg/L	1.5							
Sample ID: b11		MBLK			Batch D:	R34910	Analysis	s Date:	8/14/2009	1:44:23 PN
Benzene	ND	µg/L	1.0							
Toluene	ND	µg/L	1.0							
Ethylbenzene	ND	µg/L	1.0							
Methyl tert-butyl ether (MTBE)	ND	µg/L	1.0							
1,2,4-Trimethylbenzene	ND	µg/L	1.0							
1,3,5-Trimethylbenzene	ND	µg/L	1.0							
1,2-Dichloroethane (EDC)	ND	µg/L	1.0							
1,2-Dibromoethane (EDB)	ND	μg/L	1.0							
Naphthalene	ND	µg/L	2.0							
1-Methylnaphthalene	ND	µg/L	4.0							
2-Methylnaphthalene	ND	μg/L	4.0							
Acetone	ND	μġ/L	10							
Bromobenzene	ND	μg/L	1.0							
Bromodichloromethane	ND	μg/L	1.0							
			1.0							
Bromoform	ND	µg/L								
Bromomethane	ND	µg/L	1.0							
2-Butanone	ND	µg/L	10 10							
Carbon disulfide	ND	µg/L								
Carbon Tetrachloride	ND	µg/L	1.0							
Chlorobenzene	ND	µg/L	1.0							
Chloroethane	ND	µg/L	2.0							
Chloroform	ND	hð\r	1.0							
Chloromethane	ND	µg/L	1.0							
2-Chlorotoluene	ND	µg/L	1.0							
4-Chlorotoluene	ND	µg/L	1.0							
cis-1,2-DCE	ND	µg/L	1.0							
cis-1,3-Dichloropropene	ND	µg/L	1.0							
1,2-Dibromo-3-chloropropane	ND	µg/L	2.0							
Dibromochloromethane	ND	µg/L	1.0							
Dibromomethane	ND	μg/L	1.0							
1,2-Dichlorobenzene	ND	µg/L	1.0							
1,3-Dichlorobenzene	ND	μg/L	1.0							
1,4-Dichlorobenzene	ND	µg/L.	1.0							
Dichlorodifluoromethane	ND	µg/L	1.0							
1,1-Dichloroethane	ND	µg/L	1.0							
1,1-Dichloroethene	ND	µg/L	1.0							
1,2-Dichloropropane 1,3-Dichloropropane	ND ND	µg/L µg/L	1.0 1.0							

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 17-Sep-09

QA/QC SUMMARY REPORT

									SZ 23 23
Analyte	Result	Units	PQL	SPK Va SPK r	ref	%Rec Lo	wLimit Hig	hLimit %RPD	RPDLimit Qual
Method: EPA Method 8260B	VOLATILES								
Sample ID: b11		MBLK				Batch ID:	R34910	Analysis Date:	8/14/2009 1:44:23
2,2-Dichloropropane	ND	µg/L	2.0						
1,1-Dichloropropene	ND	µg/L	1.0						
-lexachlorobutadiene	ND	µg/L	1.0	• •					
2-Hexanone	ND	µg/L	10	5 C					
sopropylbenzene	ND	µg/L	1.0				•		
l-Isopropyltoluene	ND	µg/L	1.0						
1-Methyl-2-pentanone	ND	µg/L	10						
Methylene Chloride	ND	µg/L	3.0						
n-Butylbenzene	ND	µg/L	1.0						
n-Propylbenzene	ND	µg/L	1.0						
sec-Butylbenzene	ND	µg/L	1.0					54	
Styrene	ND	µg/L	1.0						
ert-Bulylbenzene	ND	µg/L	. 1.0						
1,1,1,2-Tetrachloroethane	ND	µg/L	1.0						
1,1,2,2-Tetrachloroethane	ND	μg/L	2.0						
Tetrachloroethene (PCE)	ND	µg/L	1.0						
rans-1,2-DCE	ND	µg/L	1.0						
rans-1,3-Dichloropropene	ND	µg/L	1.0						
1,2,3-Trichlorobenzene	· ND	µg/L	1.0						
1,2,4-Trichlorobenzene	ND	µg/L	1.0						
1,1,1-Trichloroethane	ND	µg/L	1.0						
1,1,2-Trichloroethane	ND	µg/L	1.0					3	
Trichloroethene (TCE)	ND	µg/L	1.0				÷3		
Trichlorofluoromethane	ND	µg/L	1.0						
1,2,3-Trichloropropane	ND	µg/L	2.0						
Vinyl chloride	ND	µg/L	1.0						
Xylenes, Total	ND	µg/L	1.5						
Sample ID: 100ng Ics		LCS				Batch ID:	R34910	Analysis Date:	8/13/2009 1:50:06
Benzene	17.48	µg/L	1.0	20	0	87.4	76.7	114	
Toluene	19.25	μg/L	1.0		0	96.2	78.4	117 .	
Chlorobenzene	19.09	µg/L	1.0	20	0	95.5	80.7	127	
1,1-Dichloroethene	18.37	µg/L	1.0		0	91.9	80.2	128	
Trichloroethene (TCE)	11.32	µg/L	1.0	20	0	56.6	77.4	115	S
Sample ID: 100ng lcs-b		LCS	<u>*</u>			Batch ID:	R34910	Analysis Date:	8/14/2009 1:39:16
Benzene	18.81	µg/L	1.0	20	0	94.1	76.7	114	
Toluene	18.61	µg/L	1.0		0	93.0	78.4	117	
Chlorobenzene	19.02	µg/L	1.0		0	95.1	80.7	127	
1,1-Dichloroethene	18.89	μg/L	1.0		0	94.4	80.2	128	
Trichloroethene (TCE)	14.81	μg/L	1.0		0	74.1	77.4	115	S
Sample ID: 0908207-09a MS		MS			040 V	Batch ID:	R34910	Analysis Date:	8/14/2009 8:05:54
	10.20		10	20	0	96.5	78.9	115	
Benzene	19.30	> µg/L	1.0		0	96.5 97.7		105	
Taluene	19.54	µg/L	1.0		0 0		80.5		
Chlorobenzene	20.00	hð/r	1.0	20	0	100	85	102	

Qualifiers:

E Estimated value

J Analyte detected below quantitation limits

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

	XTO Energy Davis GC F#1E								Work	Order:	0908207
Analyte	Result	Units	PQL	SPK Va	SPK ref	%Rec L	owLimit Hi	ghLimit	%RPD	RPDLimi	. 1
Method: EPA Met	hod 8260B: VOLATILES									11 L	I
Sample ID: 090820	7-09a MS	МS				Batch ID:	R34910	Analys	is Date:	8/14/2009	8:05:54 AM
Trichloroethene (TCE	.) 15.51	µg/L	1.0	20	0	77.5	70.3	125		·	
Method: EPA Met	hod 6010B: Dissolved M	etals									
Sample ID: MB		MBLK				Batch ID:	R34935	Analys	is Date:	8/17/2009	9 3:19:12 PM
Calcium	ND	mg/L	1.0								
Magnesium	ND	mg/L	1.0								
Potassium	ND	mg/L	1.0								
Sodium	ND	mg/L	1.0								
Sample ID: LCS		LCS				Batch ID:	R34935	Analys	is Date:	8/17/2009	3:22:13 PM
Calcium	49.11	mg/L	1.0	50.5	0	97.3	80	120			
Magnesium	49.11	mg/L	1.0	50.5	0	97.3	80	120			
Potassium	52,25	mg/L	1.0	55	0	95.0	80	120			
Sodium	48.51	mg/L	1.0	50.5	0	96.1	80	120			
Method: EPA Met	hod 6010B: Soil Metals										
Sample ID: MB-198		MBLK				Batch ID:	19887	Analys	is Date:	8/18/2009	4:55:33 PM
Calcium	ND	mg/Kg	25								
Magnesium	ND	mg/Kg	25								
Potassium	ND	mg/Kg	50								
Sodium	ND	mg/Kg	25								
Sample ID: MB-198		MBLK				Batch ID:	19887	Analys	is Date:	8/20/2009	12:14:44 PM
Calcium	ND	mg/Kg	25					,			
Magnesium	ND	mg/Kg	25								
Potassium	ND	mg/Kg	50								
Sodium	ND	mg/Kg	25								
Sample ID: LCS-19		LCS	20			Batch ID:	19887	Analys	is Date:	8/18/2009	4:58:37 PM
Calcium	2321	mg/Kg	25	2500	0	92.8	80	120			
Magnesium	2336	mg/Kg	25	2500	0	93.5	80	120			
Potassium	2508	mg/Kg	50	2500	0	100	80	120			
Sodium	2490	mg/Kg	25	2500	õ	99.6	80	120			
Sample ID: LCS-19		LCS			-	Batch ID:	19887		is Date:	8/20/2009	12:17:47 PM
Calcium	2440	mg/Kg	25	2500	0	97.6	80	120			
Magnesium	2433	mg/Kg	25	2500	0 0	97.3	80	120			
Potassium	2609	mg/Kg	50	2500	15.88	104	80	120			
Sodium	2628	• •	25	2500	0	105	80	120			
		mg/Kg mg/Kg									

Qualifiers:

- E Estimated value
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Sample Receipt Checklist										
Client Name XTO ENERGY	\bigcirc			Date Receiv	ved:	8/13/2009				
Work Order Number 0908207				Received	by: ARS	ΛN				
Checklist completed by:	L¥		8 3	Sample ID) labels checked by: 	Initials				
Matrix:	Carrier name:	Fed	Ξx			8				
Shipping container/cooler in good condition?		Yes		No 🗌	Not Present]				
Custody seals intact on shipping container/coole	er?	Yes	\checkmark	No 🗌	Not Present	Not Shipped				
Custody seals intact on sample bottles?		Yes		No 🗌	N/A	2				
Chain of custody present?		Yes		No 🗌						
Chain of custody signed when relinquished and	received?	Yes		No 🗌						
Chain of custody agrees with sample labels?		Yes	\checkmark	No 🗌						
Samples in proper container/bottle?		Yes	V	No 🗔						
Sample containers Intact?		Yes	\checkmark	No 🗌						
Sufficient sample volume for indicated test?		Yes		No 🗔						
All samples received within holding time?		Yes	\checkmark	No 🗔		Number of preserved bottles checked for				
Water - VOA vials have zero headspace?	No VOA vials sub	mitted		Yes 🗹	No 🗌	pH:				
Water - Preservation labels on bottle and cap m	atch?	Yes	\checkmark	No 🗌	N/A 🗌	0 2				
Water - pH acceptable upon receipt?		Yes	\checkmark	No 🗔	N/A 🗌	<2) >12 unless noted below.				
Container/Temp Blank temperature?		3	.0°	<6° C Accept						
COMMENTS:				If given suffici	ent time to cool.					
					i.					
14					X					
5										
Client contacted	Date contacted:			P	erson contacted					
Contacted by:	Regarding:									
Comments:					*					
		2								
						*				
		7.1								
Corrective Action				4						
				Course donation						
				1. K. C. T. S. M. B. M.						

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107	Alternational Action (8021) (TEX) MTBE + TMB's (8021) BTEX + MTBE + TPH (Gas only) TPH (Method 8015B (Gas/Diesel) TPH (Method 504.1) EDB (Method 504.1) BS10 (PNA or PAH) RCRA 8 Metals Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8310 (PNA or PAH) Anions (F,CI,NO ₃ ,NO ₂ ,PO ₄ ,SO ₄) 8270 (PNA or PAH) 8270 (PN		Remarks:	is possibility. Any sub-contracted data will be clearly notated on the analytical report.
Boy Tothar Felder Turn-Around Time: Dy Tothar Felder Du Rush Dy Tothar Froject Name: Rush 10 Project #:	Project Manager: Tetha Tech Kellury Blanchard Sampler: Kellury Branchard Sampler: Kellury Branchard Sampler: Kellury Branchard Sampler: Preservative Type and # Type (MAN Chart		Alcoriars cold Alcoriars cold Alcoriars cold Alcoriars cold Alcoriars cold Plassiers cold Plassi	Reconted by Auc Alle 2/12 1425 Reconted by August Date Time 9:30 8/13/09 subcontracted to other accredited laboratories. This serves as notice of this possibility.
Client: XTO Energy , the by tehn Client: XTO Energy , the by tehn Mailing Address: 382 (26-3168 Phone #: 505-333-3160	amail or Fax#: DAVOC Package: C Standard C Other D Other Date Time Matrix	Soil 03/ Soil 03/ Soil 83 (Soil 04 (Soil B5 (Soil B6 (Soil B6 (Soil B6 (Water Excav	0/14/04/1780 / COUNCE "DEMMAN RECEIPED TIME ALLERING Date: Time: Relinquisperby: Alack Received the Aller 8/12 15:20 kin Hacklus Received the 9:30 If recessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories.

COVER LETTER

Thursday, September 17, 2009

Martin Nee XTO Energy 382 County Road 3100 Aztec, NM 87410

TEL: (505) 333-3100 FAX (505) 333-3280

RE: Davis GC F#1E

Dear Martin Nee:

Order No.: 0908234

Hall Environmental Analysis Laboratory, Inc. received 8 sample(s) on 8/14/2009 for the analyses presented in the following report.

This report is an addendum to the report dated August 28, 2009. This is an updated report.

No determination of compounds below these (denoted by the ND or < sign) has been made. Please don't hesitate to contact Hall Environmental for any additional information or clarifications.

Reporting limits are determined by EPA methodology.

Please don't hesitate to contact HEAL for any additional information or clarifications.

Sincerely,

Andy Freeman, Laboratory Manager

4901 Hawkins NE ■ Suite D ■ Albuquerque, NM 87109 505.345.3975 ■ Fax 505.345.4107 www.hallenvironmental.com

Date: 17-Sep-09

CLIENT:XTO EnergyProject:Davis GC F#1ELab Order:0908234

CASE NARRATIVE

See Corrective Action: [2595] MB for batch 19889 for 300.0 in soil had value for SO4 in blank higher than reporting limit.

CLIENT:	XTO Energy				Clier	t Sample ID:	B1-GW		
Lab Order:	0908234		:e):	*	Co	Collection Date: 8/12/2009 2:55:00 PM			
Project:	Davis GC F#1E				D	ate Received:	8/14/2009		
Lab ID:	0908234-01					Matrix:	AQUEOUS	1	
Analyses		Result		PQL	Qual	Units	DF	Date Analyzed	
EPA METHOD	300.0: ANIONS							Analyst: LJB	
Fluoride		0.46		0.10		mg/L	1	8/14/2009 3:51:54 PM	
Chloride		65		2.0		mg/L	20	8/14/2009 4:09:19 PM	
Nitrate (As N)+I	Nitrite (As N)	ND		1.0		mg/L	5	8/20/2009 1:58:35 AM	
Phosphorus, O	rthophosphate (As P)	ND	2	0.50	н	mg/L	1	8/14/2009 3:51:54 PM	
Sulfate	1997	380		10		mg/L	20	8/14/2009 4:09:19 PM	
EPA METHOD	6010B: DISSOLVED MI	ETALS						Analyst: IC	
Calcium	*	110		10		mg/L	10	8/24/2009 12:49:44 PM	
Magnesium		23		1.0		mg/L	1	8/24/2009 12:02:42 PM	
Potassium		2.5		1.0		mg/L	1	8/24/2009 12:02:42 PM	
Sodium		190		10		mg/L	10	8/24/2009 12:49:44 PM	
EPA METHOD	8260B: VOLATILES							Analyst: DAM	
Benzene		ND		1.0		µg/L	1	8/17/2009 3:34:59 PM	
Toluene		ND		1.0	¥(µg/L	1	8/17/2009 3:34:59 PM	
Ethylbenzene		ND		1.0		µg/L	1	8/17/2009 3:34:59 PM	
Xylenes, Total		ND		1.5		µg/L	1	8/17/2009 3:34:59 PM	
Surr: 1,2-Dic	hloroethane-d4	99.2		54.6-141		%REC	1	8/17/2009 3:34:59 PM	
Surr: 4-Brom	ofluorobenzene	95.8		60.1-133		%REC	1	8/17/2009 3:34:59 PM	
. Surr: Dibrom	ofluoromethane	103		78.5-130		%REC	1 .	8/17/2009 3:34:59 PM	
Surr: Toluen	e-d8	98.3	04	79.5-126		%REC	1	8/17/2009 3:34:59 PM	

Date: 17-Sep-09

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 1 of 8

CLIENT:	XTO Energy			Clie	nt Sample I	D: B2-GW	
Lab Order:	0908234			Co	llection Da	te: 8/12/2009	9 3:20:00 PM
Project:	Davis GC F#1E			D	ate Receive	d: 8/14/2009)
Lab ID:	0908234-02				Matri	ix: AQUEOU	JS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS	-					Analyst: LJB
Fluoride		1.1	0.10		mg/L	1	8/14/2009 4:26:43 PM
Chloride		69	2.0		mg/L	20	8/14/2009 4:44:08 PM
Nitrate (As N)+N	Nitrite (As N)	1.2	1.0		mg/L	5	8/20/2009 2:16:00 AM
Phosphorus, Or	thophosphate (As P)	ND	0.50	н	mg/L	1	8/14/2009 4:26:43 PM
Sulfate		560	10		mg/L	20	8/14/2009 4:44:08 PM
EPA METHOD	6010B: DISSOLVED ME	TALS					Analyst: IC
Calcium		140	10		mg/L	10	8/24/2009 12:52:48 PM
Magnesium		32	1.0		mg/L	1	8/24/2009 12:05:54 PM
Potassium		2.7	1.0		mg/L	1	8/24/2009 12:05:54 PM
Sodium		230	10		mg/L	10	.8/24/2009 12:52:48 PM
EPA METHOD	8260B: VOLATILES						Analyst: DAM
Benzene		ND	1.0		µg/L	1	8/17/2009 4:03:22 PM
Toluene		ND	1.0		µg/L	1	8/17/2009 4:03:22 PM
Ethylbenzene		ND	1.0		µg/L	1	8/17/2009 4:03:22 PM
Xylenes, Total		ND	1.5		µg/L	1	8/17/2009 4:03:22 PM
Surr: 1,2-Dicł	nloroethane-d4	101	54.6-141		%REC	1	8/17/2009 4:03:22 PM
Surr: 4-Brome	ofluorobenzene	94.7	60. 1- 133		%REC	1	8/17/2009 4:03:22 PM
Surr: Dibromo	ofluoromethane	96.1	78.5-130		%REC	1	8/17/2009 4:03:22 PM
Surr: Toluene	-d8	95.4	79.5-126		%REC	1	8/17/2009 4:03:22 PM

Date: 17-Sep-09

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the as
	Е	Estimated value	Н	Holding times for prepara
	J	Analyte detected below quantitation limits	MCL	Maximum Contaminant L
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit

- ۶p
- S Spike recovery outside accepted recovery limits
- associated Method Blank
- ration or analysis exceeded
- Level

CLIENT:	XTO Energy		Client Sample ID			B4-GW				
Lab Order:	0908234 -			Coll	ection Date:	8/13/2009 9:00:00 AM				
Project:	Davis GC F#1E			Da	te Received:	8/14/2009				
Lab ID:	0908234-03				Matrix:	AQUEOUS	*: 2			
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed			
EPA METHOD	300.0: ANIONS						Analyst: LJB			
Fluoride		1.4	0.10		mg/L	1	8/14/2009 5:01:33 PM			
Chloride		110	2.0		mg/L	20	8/14/2009 5:18:58 PM			
Nitrogen, Nitrite	(As N)	ND	2.0		mg/L	20	8/14/2009 5:18:58 PM			
Nitrogen, Nitrat	e (As N)	4.0	0.10		mg/L	1	8/14/2009 5:01:33 PM			
Phosphorus, O	rthophosphate (As P)	ND	0.50		mg/L	1	8/14/2009 5:01:33 PM			
Sulfate		1600	25		mg/L	50	8/17/2009 7:54:41 PM			
EPA METHOD	6010B: DISSOLVED ME	TALS		3			Analyst: IC			
Calcium		160	10		mg/L	10	8/24/2009 12:55:52 PM			
Magnesium		33	1.0		mg/L	1	8/24/2009 12:11:48 PM			
Potassium		3.5	1.0		mg/L	1	8/24/2009 12:11:48 PM			
Sodium		590	10		mg/L	10	8/24/2009 12:55:52 PM			
EPA METHOD	8260B: VOLATILES						Analyst: DAN			
Benzene		ND	1.0		µg/L	1	8/17/2009 4:31:48 PM			
Toluene		ND	1.0		µg/L	1	8/17/2009 4:31:48 PM			
Ethylbenzene		ND	1.0		µg/L	1	8/17/2009 4:31:48 PM			
Xylenes, Total		ND	1.5		µg/L	1	8/17/2009 4:31:48 PM			
	hloroethane-d4	96.4	54.6-141		%REC	1	8/17/2009 4:31:48 PM			
	ofluorobenzene	96.7	60.1-133		%REC	1	8/17/2009 4:31:48 PM			
Surr: Dibrom	ofluoromethane	99.9	78.5-130		%REC	1	8/17/2009 4:31:48 PM			
Surr: Toluen	e-d8	94.2	79.5-126		%REC	1	8/17/2009 4:31:48 PM			

Date: 17-Sep-09

Qualifiers:

ŧ

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 3 of 8

CLIENT:	XTO Energy	Client Sample ID: B5-GW						
Lab Order:	0908234			Collectio	on Date: 8/13/200	8/13/2009 9:20:00 AM		
Project:	Davis GC F#1E			Date R	eceived: 8/14/200	9		
Lab ID:	0908234-04				Matrix: AQUEO	US		
Analyses		Result	PQL	Qual Unit	s DF	Date Analyzed		
EPA METHOD	300.0: ANIONS					Analyst: LJB		
Fluoride		0.78	0.10	mg/L	1	8/14/2009 5:36:22 PM		
Chloride		200	2.0	mg/L	20	8/14/2009 5:53:46 PM		
Nitrogen, Nitrite	(As N)	ND	2.0	mg/L	20	8/14/2009 5:53:46 PM		
Nitrogen, Nitrate	(As N)	1.9	0.10	mg/L	1	8/14/2009 5:36:22 PM		
Phosphorus, Ort	hophosphate (As P)	ND	0.50	mg/L	1	8/14/2009 5:36:22 PM		
Sulfate		1500	25	mg/L	50	8/17/2009 8:12:05 PM		
EPA METHOD	010B: DISSOLVED M	TALS				Analyst: SNV		
Calcium		210	10	mg/L	10	8/18/2009 10:26:35 AM		
Magnesium		42	1.0	mg/L		8/17/2009 4:30:46 PM		
Potassium		4.6	1.0	mg/L		8/17/2009 4:30:46 PM		
Sodium		• 510	10	mg/L		8/18/2009 10:26:35 AM		
EPA METHOD 8	260B: VOLATILES					Analyst: DAM		
Benzene		ND	1.0	µg/L	1	8/17/2009 5:00:15 PM		
Toluene		ND	1.0	µg/L	1	8/17/2009 5:00:15 PM		
Ethylbenzene		ND	1.0	µg/L	1	8/17/2009 5:00:15 PM		
Xylenes, Total		ND	1.5	µg/L	1	8/17/2009 5:00:15 PM		
	loroethane-d4	95.5	54.6-141	%RE	C 1	8/17/2009 5:00:15 PM		
-	ofluorobenzene	95.5	60.1-133	%RE	C 1	8/17/2009 5:00:15 PM		
Surr: Dibromo	fluoromethane	. 98.9	78.5-130	%RE		8/17/2009 5:00:15 PM		
Surr: Toluene		95.4	79.5-126	%RE		8/17/2009 5:00:15 PM		

Date: 17-Sep-09

Qualifiers:

Value exceeds Maximum Contaminant Level

E Estimated value

٠

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 4 of 8

CLIENT:	XTO Energy			Clier	t Sample ID:	B6-GW	
Lab Order:	0908234			Co	llection Date:	8/13/2009	9:40:00 AM
Project:	Davis GC F#1E	2		D	ate Received:	8/14/2009	1
Lab ID:	0908234-05				Matrix:	AQUEOU	JS
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	300.0: ANIONS				and the second se		Analyst: LJB
Fluoride		1.1	0.10		mg/L	1	8/14/2009 6:11:11 PM
Chloride	4-1 -	430	5.0		mg/L	50	8/17/2009 8:29:30 PM
Nitrogen, Nitrite	(As N)	ND	2.0		mg/L	20	8/14/2009 6:28:36 PM
Nitrogen, Nitrat	e (As N)	. 14	2.0		mg/L	20	8/14/2009 6:28:36 PM
Phosphorus, O	rthophosphate (As P)	ND	0.50		mg/L	1	8/14/2009 6:11:11 PM
Sulfate		2700	50		mg/L	100	8/17/2009 8:46:55 PM
EPA METHOD	6010B: DISSOLVED MI	ETALS				12	Analyst: SNV
Calcium		430	10		mg/L	10	8/18/2009 10:29:40 AM
Magnesium		84	1.0		mg/L	1	8/17/2009 4:35:08 PM
Potassium		9.5	1.0		mg/L	1	8/17/2009 4:35:08 PM
Sodium		840	10	121	mg/L	10	8/18/2009 10:29:40 AM
EPA METHOD	8260B: VOLATILES						Analyst: DAM
Benzene		ND	1.0		µg/L	1	8/17/2009 5:28:38 PM
Toluene		ND	1.0		µg/L	1	8/17/2009 5:28:38 PM
Ethylbenzene		ND	1.0		µg/L	1	8/17/2009 5:28:38 PM
Xylenes, Total		ND	1.5		µg/L ·	1	8/17/2009 5:28:38 PM
Surr: 1,2-Dic	hloroethane-d4	96.2	54.6-141		%REC	1	8/17/2009 5:28:38 PM
Surr: 4-Brom	ofluorobenzene	92.3	60.1-133		%REC	1	8/17/2009 5:28:38 PM
Surr: Dibrom	ofluoromethane	98.0	78.5-130		%REC	1	8/17/2009 5:28:38 PM
Surr: Toluen	e-d8	98.8	79.5-126		%REC	1	8/17/2009 5:28:38 PM

Date: 17-Sep-09

Qualifiers:

*

Value exceeds Maximum Contaminant Level

E Estimated value

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Page 5 of 8

CLIENT:	XTO Energy			-		l Composite (7-17')
Lab Order:	0908234			Collection Date		
Project:	Davis GC F#1E			Date Received		
Lab ID:	0908234-06			Matrix	: SOIL	
Analyses		Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS				Analyst: SCC
Diesel Range O	rganics (DRO)	28	10	mg/Kg	1	8/18/2009
Motor Oil Range	Organics (MRO)	110	50	mg/Kg	1	8/18/2009
Surr: DNOP		86.0	61. 7-13 5	%REC	1	8/18/2009
EPA METHOD 8	8015B: GASOLINE RAN	GE				Analyst: NSE
	Organics (GRO)	ND	10	mg/Kg	2	8/19/2009 12:26:26 AM
Surr: BFB		90.0	58.8-123	%REC	2	8/19/2009 12:26:26 AM
	8021B: VOLATILES					Analyst: NSE
Benzene		ND	0.10	mg/Kg	2	8/19/2009 12:26:26 AM
Toluene		ND	0.10	mg/Kg	2	8/19/2009 12:26:26 AM
Ethylbenzene		ND	0.10	mg/Kg	2	8/19/2009 12:26:26 AM
Xylenes, Total		ND	0.20	mg/Kg	2	8/19/2009 12:26:26 AM
	ofluorobenzene	96.1	66.8-139	%REC	2	8/19/2009 12:26:26 AM
EPA METHOD	300.0: ANIONS					Analyst: TAF
Fluoride		2.5	1.5	mg/Kg	5	8/17/2009 3:57:59 PM
Chloride		280	1.5	mg/Kg	5	8/17/2009 3:57:59 PM
Nitrogen, Nitrite	(As N)	ND	1.5	mg/Kg	5	8/17/2009 3:57:59 PM
Nitrogen, Nitrate		3.8	1.5	mg/Kg	5	8/17/2009 3:57:59 PM
•	thophosphate (As P)	ND	7.5	mg/Kg	5	8/17/2009 3:57:59 PM
Sulfate		1000	75	mg/Kg	50	8/17/2009 4:15:24 PM
EPA METHOD	6010B: SOIL METALS					Analyst: SNV
Calcium		4200	130	mg/Kg	5	8/20/2009 12:07:22 PM
Magnesium		930	130	mg/Kg	5	8/20/2009 12:07:22 PM
Potassium		380	250	mg/Kg	5	8/20/2009 12:07:22 PM
Sodium		690	130	mg/Kg	5	8/20/2009 12:07:22 PM

Date: 17-Sep-09

Qualifiers:	*	Value exceeds Maximum Contaminant Level	В	Analyte detected in the associate	ed Method Blank
	E	Estimated value	· H	Holding times for preparation or	analysis exceeded
	J	Analyte detected below quantitation limits	MCI	Maximum Contaminant Level	
	ND	Not Detected at the Reporting Limit	RL	Reporting Limit	Dess (af 0
	S	Spike recovery outside accepted recovery limits			Page 6 of 8

CLIENT:	XTO Energy			Client	Sample ID:	South Wall	(14-17')
Lab Order:	0908234			Coll	ection Date:	8/13/2009	3:00:00 PM
Project:	Davis GC F#1E	0.5		Da	te Received:	8/14/2009	2
Lab ID;	0908234-07			Matrix:		SOIL	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD	8015B: DIESEL RANGE	ORGANICS					Analyst: SCC
Diesel Range C	Organics (DRO)	ND	10		mg/Kg	1	8/18/2009
Motor Oil Rang	e Organics (MRO)	ND	50		mg/Kg	1	8/18/2009
Surr: DNOP		86.5	61.7-135		%REC	1	8/18/2009
EPA METHOD	8015B: GASOLINE RAI	NGE		2			Analyst: NSB
Gasoline Rang	e Organics (GRO)	ND	5.0		mg/Kg	1	8/19/2009 12:56:54 AM
Surr: BFB		85.5	58.8-123		%REC	1	8/19/2009 12:56:54 AM
EPA METHOD	8021B: VOLATILES						Analyst: NSB
Benzene .		ND	0.050		mg/Kg	1	8/19/2009 12:56:54 AM
Toluene		ND	0.050		mg/Kg	1	8/19/2009 12:56:54 AM
Ethylbenzene		ND	0.050		mg/Kg	1	8/19/2009 12:56:54 AM
Xylenes, Total		ND	0.10		mg/Kg	1	8/19/2009 12:56:54 AM
Surr: 4-Bron	nofluorobenzene	95.6	66.8-139		%REC	1	8/19/2009 12:56:54 AM
EPA METHOD	300.0: ANIONS						Analyst: TAF
Fluoride		. 2.4	1.5		mg/Kg	5	8/17/2009 4:32:49 PM
Chloride		70	1.5		mg/Kg	5	8/17/2009 4:32:49 PM
Nitrogen, Nitrite	e (As N)	ND	1.5		mg/Kg	5	8/17/2009 4:32:49 PM
Nitrogen, Nitrat	le (As N)	3.1	1.5		mg/Kg	5	8/17/2009 4:32:49 PM
Phosphorus, O	rthophosphate (As P)	ND	7.5		mg/Kg	5	8/17/2009 4:32:49 PM
Sulfate		1700	75		mg/Kg	50	8/17/2009 4:50:13 PM
EPA METHOD	6010B: SOIL METALS					S.	Analyst: SNV
		100 million (100 million)				525	

120

25

50

25

mg/Kg

mg/Kg

mg/Kg

mg/Kg

7500

810

290

280

Hall Environmental Analysis Laboratory, Inc.

Date: 17-Sep-09

Qualifiers:

*

Calcium

Magnesium

Potassium

Sodium

- Value exceeds Maximum Contaminant Level
- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank

5

1

1

1

- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level

RL Reporting Limit

Page 7 of 8

8/20/2009 12:11:54 PM

8/18/2009 6:06:44 PM

8/18/2009 6:06:44 PM

8/18/2009 6:06:44 PM

CLIENT:XTO EnergyLab Order:0908234Project:Davis GC F#1E		Client Sample ID: TRIP BLANK Collection Date:					
		Date Received: 8/14/2009					
Lab ID:	0908234-08			Matrix:		TRIP BLANK	
Analyses		Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8260B: VOLATILES							Analyst: DAM
Benzene		ND	1.0		µg/L	1	8/17/2009 5:56:58 PM
Toluene		ND	1.0		µg/L	1	8/17/2009 5:56:58 PM
Ethylbenzene		ND	1.0		µg/L	1	8/17/2009 5:56:58 PM
Xylenes, Total		ND	1.5		µg/L	1	8/17/2009 5:56:58 PM
Surr: 1,2-Dichloroethane-d4		98.5	54.6-141		%REC	1	8/17/2009 5:56:58 PM
Surr: 4-Bromofluorobenzene		94.9	60.1 -1 33		%REC	1	8/17/2009 5:56:58 PM
Surr: Dibromofluoromethane		98.2	78.5-130		%REC	1	8/17/2009 5:56:58 PM
Surr: Toluene-d8		98.8	79.5-126		%REC	1	8/17/2009 5:56:58 PM

Date: 17-Sep-09

Qualifiers:

* Value exceeds Maximum Contaminant Level

- E Estimated value
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 8 of 8