AP-111

Investigation Report (SWMU-10 Sludge Pits) (3 of 3)

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client:Western Refining CompanyProject:SWMU 10

Sample ID Ics-25469	SampT	ype: LC	S	Tes	tCode: El	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSS	Batch	n ID: 254	469	F	RunNo: 34	4461				
Prep Date: 5/24/2016	Analysis D)ate: 5 /2	25/2016	S	eqNo: 1	063512	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.2	0.20	1.670	0	70.0	45.8	99.8			
4-Chloro-3-methylphenol	2.2	0.50	3.330	0	66.5	51.5	103			
2-Chlorophenol	1.8	0.20	3.330	0	54.1	46.5	105			
1,4-Dichlorobenzene	0.86	0.20	1.670	0	51.3	45.5	103			
2,4-Dinitrotoluene	1.1	0.50	1.670	0	66.9	36	87.2			
N-Nitrosodi-n-propylamine	0.80	0.20	1.670	0	48.1	47.3	104			
4-Nitrophenol	2.2	0.25	3.330	0	65.7	47.3	95.3			
Pentachlorophenol	1.9	0.40	3.330	0	56.6	38.7	89.3			
Phenol	1.8	0.20	3.330	0	54.5	47.8	106			
Pyrene	1.2	0.20	1.670	0	72.6	33.4	105			
1,2,4-Trichlorobenzene	1.0	0.20	1.670	0	61.4	50.4	115			
Surr: 2-Fluorophenol	1.6		3.330		47.4	28.3	102			
Surr: Phenol-d5	1.9		3.330		56.0	35.7	103			
Surr: 2,4,6-Tribromophenol	2.2		3.330		66.3	35.2	108			
Surr: Nitrobenzene-d5	1.0		1.670		59.7	24	118			
Surr: 2-Fluorobiphenyl	1.2		1.670		70.2	35.4	111			
Surr: 4-Terphenyl-d14	0.74		1.670		44.5	15	91.7			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 50 of 54

WO#: 1605875 07-Jul-16

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:		tern Refining C MU 10	Company	y							
Sample ID	MB-25448	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	7471: Mercu	ry		
Client ID:	PBS	Batch	n ID: 25	448	F	RunNo: 34	4452				
Prep Date:	5/23/2016	Analysis D	0ate: 5/	24/2016	5	SeqNo: 1	062465	Units: mg/K	ζg		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.00083	0.033								J
Sample ID	LCS-25448	SampT	ype: LC	S	Tes	tCode: El	PA Method	7471: Mercu	ry		
Client ID:	LCSS	Batch	n ID: 25	448	F	RunNo: 34	4452				
Prep Date:	5/23/2016	Analysis D)ate: 5/	24/2016	5	SeqNo: 1	062466	Units: mg/K	(g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.18	0.033	0.1667	0	110	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 51 of 54

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#:	1605875
	07-Jul-16

Client: Project:	Western SWMU	n Refining C 10	Company	у							
Sample ID	MB-25447	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil I	Vetals		
Client ID:	PBS	Batch	n ID: 25	447	F	RunNo: 3	4439				
Prep Date:	5/23/2016	Analysis D	ate: 5/	/24/2016	S	SeqNo: 1	061954	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	2.5								
Arsenic		ND	2.5								
Beryllium		ND	0.15								
Cadmium		ND	0.10								
Chromium		ND	0.30								
Cobalt		ND	0.30								
Lead		ND	0.25								
Manganese		0.047	0.10								J
Nickel		ND	0.50								
Selenium		1.3	2.5								J
Silver		ND	0.25								
Vanadium		ND	2.5								
Zinc		ND	2.5								
Sample ID	LCS-25447	SampT	ype: LC	s	Tes	tCode: El	PA Method	6010B: Soil I	Vetals		
Client ID:	LCSS	Batch	n ID: 25	447	F	RunNo: 3	4439				
Prep Date:	5/23/2016	Analysis D	ate: 5/	/24/2016	S	SeqNo: 1	061955	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		23	2.5	25.00	0	90.0	80	120			
Arsenic		24	2.5	25.00	0	95.3	80	120			
Beryllium		24	0.15	25.00	0	97.0	80	120			
Cadmium		24	0.10	25.00	0	94.4	80	120			
Chromium		23	0.30	25.00	0	93.1	80	120			
Cobalt		23	0.30	25.00	0	90.9	80	120			
Lead		23	0.25	25.00	0	91.3	80	120			
Manganese		24	0.10	25.00	0	94.1	80	120			
Nickel		23	0.50	25.00	0	92.2	80	120			
Selenium		24	2.5	25.00	0	97.6 02.9	80 80	120 120			
Silver		4.7	0.25 2.5	5.000 25.00	0	93.8 05.0	80 80	120 120			
Vanadium Zinc		24 24	2.5 2.5	25.00 25.00	0 0	95.9 94.2	80 80	120 120			
2110		27	2.5	25.00	0	54.2	00	120			
Sample ID	MB-25586	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	6010B: Soil I	Vetals		
Client ID:	PBS	Batch	n ID: 25	586	F	RunNo: 3	4597				
Prep Date:	5/31/2016	Analysis D	ate: 6/	/1/2016	S	eqNo: 1	067058	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		ND	0.10								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 52 of 54

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:		tern Refining C MU 10	Compan	у							
Sample ID	LCS-25586	SampT	ype: LC	s	Tes	tCode: E	PA Method	6010B: Soil	Metals		
Client ID:	LCSS	Batch	n ID: 25	586	F	RunNo: 3	4597				
Prep Date:	5/31/2016	Analysis D	ate: 6/	1/2016	S	SeqNo: 1	067059	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		22	0.10	25.00	0	88.8	80	120			
Sample ID	MB-25586	SampT	уре: М	BLK	Tes	tCode: E	PA Method	6010B: Soil	Metals		
Client ID:	PBS	Batch	n ID: 25	586	F	RunNo: 3	4951				
Prep Date:	5/31/2016	Analysis D	ate: 6/	16/2016	S	SeqNo: 1	079711	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron		2.0	2.5								J

Sample ID LCS-25586	SampTy	/pe: LC	s	Tes	tCode: E	PA Method	6010B: Soil I	Vetals		
Client ID: LCSS	Batch	ID: 25	586	F	RunNo: 34	4951				
Prep Date: 5/31/2016	Analysis Da	ate: 6/	16/2016	S	SeqNo: 1	079712	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Iron	25	2.5	25.00	0	99.4	80	120			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 53 of 54

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	estern Refining C WMU 10	Compan	у							
Sample ID rb	Samp	Гуре: МЕ	BLK	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range	
Client ID: PBS	Batc	h ID: C3	4413	F	RunNo: 34	4413				
Prep Date:	Analysis [Date: 5/	23/2016	S	eqNo: 1	061608	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) ND	5.0								
Surr: BFB	500		500.0		100	70	130			
Sample ID 2.5ug gro	icv Samp	Type: LC	s	Tes	tCode: El	PA Method	8015D Mod:	Gasoline	Range	
Client ID: LCSS	Batc	h ID: C3	4413	F	RunNo: 34	4413				
Prep Date:	Analysis [Date: 5/	23/2016	S	SeqNo: 1	061609	Units: mg/K	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (G	RO) 26	5.0	25.00	0	102	62.9	123			
Surr: BFB	510		500.0		102	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 54 of 54

ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-3	nmental Anaiysis Laborat 4901 Hawkins Albuquerque, NM 87 45-3975 FAX: 505-345-4 www.hallenvironmental.c	NE 109 Sam 107	ple Log-In Cł	neck List
Client Name: Western Refining Gallup Work Order I	Number: 1605875		RcptNo:	1
Received by/date: SA 05/18/1	6			
Logged By: Lindsay Mangin 5/18/2016 4:00	:00 PM	Julip		
Completed By: Lindsay Mangin 5/19/2016 7:00	:19 AM	ALAMAD		
Reviewed By: 05/19/16				
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?	Yes 🔽	No 🗌	Not Present 🗌	
3. How was the sample delivered?	Courier			
<u>Log In</u>				
4. Was an attempt made to cool the samples?	Yes 🔽	No 🗌		
5. Were all samples received at a temperature of >0° C to 6.0'	°C Yes 🗹	No 🗌		
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗆		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗆		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?	Yes 🗌	No 🔽	NA 🗆	
10. VOA vials have zero headspace?	Yes 🗌	No 🗆	No VOA Vials 🗹	
11. Were any sample containers received broken?	Yes	No 🔽	# of preserved bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No 🗌	for pH:	>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗌	Adjusted?	na aneco notody
14, Is it clear what analyses were requested?	Yes 🗹	No 🗌		
 Were all holding times able to be met? (If no, notify customer for authorization.) 	Yes 🔽	No 🗌	Checked by:	
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date			1
By Whom:		hone 🗌 Fax	In Person	
Regarding:				
Client Instructions:				
17. Additional remarks:				
18. Cooler Information				
Cooler No Temp *C Condition Seal Intact Seal	No Seal Date	Signed By		
F. 10 0000 100				

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Request	Ξ () () () () () () () () () ()		РН (1 DR 1) 1) 1) 10 2,1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	730 318. (A) 318. (A) (A)	A 1, NO 1, NO	TPH 80158 TPH 80158 TPH 80158 TPH (Metho (Netho (F8) 8 Metho (F8) 8 Metho (F8) 8 Metho (F8) 8 Metho (F8) 8 Metho (F8) 8 Metho (VO) 8081 Secola (VO) 82608 (VO) 82503 (Semi- metholes (VO) 82503 (Semi- secola (VO) 82503 (Sem	>>>	>	>	>		>	2 2 2 2	>	>				Remarks: CASE TNCI UDE I FLAGS	AND MDL		e necessibility. A four out-the entered states will be advantate exclusion and the manufacture access
Turn-Around Time:	KStandard Rush	Project Name:	SWMU 10	Project #:		roject Manager:	En Ruece	1.	X Yes	Sample Temperature: /, 0	Container Preservative HEAL No. Type and # Type	TARS-3 NEAT - ODI	VINS-2 MEOH -COI	VIALS-2 50B1 - 001		VIALS-2 MEOH -002	VINS-2 50B1 - 002	TARS-3 NEAT -003	VIALS-2 MEOH -003	VIALS-2 50BI - 003	ITARS-3 NEAT -COL	1111	2 SOBI -004	The Date Time	tell Mar Peo	Att cholic 1	ted laboratories TI
Chain-of-Custody Record	VESTERN REFINING SW, INC.		ailing Addressige GIANT CROSSING RD		hone #: 505-722-0217	mail or Fax#: ED. RIEGE@WNR.Com Project Manager:	A/QC Package: Standard K Level 4 (Full Validation)	uo	NELAP Other O	(EDD (Type) EXCEL	Date Time Matrix Sample Request ID	17-16-1325 SOIL SWMU 10-20(8-10') JARS-3		× ×	1610 SWHU 10-20(10-12) TARS-3	~	> >	1625 SWMU 10-20 (16-18')		*	1635 SWHU 10-20 (20-22')		~	Time: Relinquished by:	112	Time: Relinquished by:	-

ENTA!	ANALYSIS LABORATORY		60			6	SI 3	2	Œ	171	21.1	A STALS (SEE A selddu8 nA	/			7									AGS		
AL N.	N N	E	Albuquerque, NM 87109	4107						(¥	٥٨-	ime2) 0728	2			2			2			Ś			L.		
0	2 ¥	www.hallenvironmental.com	ue, Ni	505-345-4107	Request						202	OV) 80928	-	>	>	7	7	1	7	>	>	>	>	>	H		
-	IS I	nmer	Inerq	× 505	is Re	_	2000.00		10000			O, F) anoinA D Pestic				_	_	_	_	_	_	_	-	-	W	2	
Ĩ	S I	enviro	Albuc	Fax	Analysis		55 1	Ja	UN	2 J.M.		ACRA 8 Me				-			-	-	-	- 1		- 10	TNCLUDE	MD	
	S.	.halle	і Ш	375	An		(s	WIS	5 O Z	82	0 01	rɛ8) ɛ'HA9	-												DN N	A	
-	ANAL	www	4901 Hawkins NE	Tel. 505-345-3975					(1	·Þ0	g po	EDB (Metho													H	ANA	
			Hawk	05-3						2.50		TPH (Metho													NN NN		
			901	Tel. 5			12112-021	_				TPH 8015B	7			7	_		7		_	>			is L		
	11		4			_		100		-	_	TM + X3T8			_	_		_	_	_	-	-		-	Remarks:		
			0						PAYNE	ON D	(HEAL NO.	-005	-005	-005	-00%	-tele	-00%	-077	400-	-007	20%	20%	200	Steel, On	Date Time	5/18/10 1600
Time:	🗆 Rush		MU 10			ger:		RIEGE	RACY	X Yes	perature: /, /	Preservative Type	NEAT	MEOH		_	MEOH	5081	NEAT	MEOH	SOBI	NEAT	MEOH	5061	11	J'	let 0
Turn-Around Tim	X Standard	Project Name	SV	Project #:		Project Mana		ß	Sampler:		Sample Temperature:	Container Type and #	JARS-3	VIAIS-2	VIALS-2	IARG-3	VIALS-2		JARS-3	VIALS-2	VIALS-2	IARS-3	VIALS-2	VIALS-2	Received by:	Received by	Jue. a
Chain-of-Custody Record	ŸZ.	NERY	Lailing Addressig 2 GIANT CROSSING RD SWM	GALLIP NM 87301	722-0217	RTEGE @ WNR.ConProject Manager		KLevel 4 (Full Validation)				Sample Request ID	5WMU 10-19 (2-25) JARS-3		>	SWMU 10-19 (12-14')		1	SWMU 10-19(18-20')		*	SWMU 10-20(2-2.5') JARS-3		>	ad by	ind be	HAL.
-of-Cu	V REF	JALLUP REFINERY	92 GT	GALL	505-7	FD. R				□ Other		Matrix	Soll											>	Relinquished by	Relinquished by	March
Chain-	STER	HUP	g Address			axe	A/QC Package:	Standard	ccreditation	LAP	D (Type)	Time	17.16 09/5		>	1015	_	>	1025	-	*	1310	-	>	Time:	Time:	4004
-	Rent	BA	lailin		hone #:	mail	AVQC] Sta	ccret	I NELAP	EDD	Date	17-16		_			-						>	ate: 1	S in	10

WESTERN REFINING SOUTHWEST, INC. GALLUP REFINERY - SWMU 10 METALS AND CYANIDE ANALYSES FOR SOIL SAMPLES

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Chromium VI	SW-846 Method 3060A
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

June 28, 2016

Ed Riege Western Refining Company Rt. 3 Box 7 Gallup, NM 87301 TEL: (505) 722-0231 FAX

RE: SWMU 10

OrderNo.: 1605943

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 7 sample(s) on 5/19/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	nt Sampl	e ID: SWN	/U 10-	-21 (2-2.5')	
Project: SWMU 10				-			9:05:00 AM	
Lab ID: 1605943-001	Matrix:	SOIL					4:30:00 PM	
Lab ID. 1003943-001		SOIL	N	eceiveu i	Date. 3/19/	2010 -	1.30.001111	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: KJH	
Diesel Range Organics (DRO)	32	3.7	10		mg/Kg-dr	1	5/24/2016 2:54:59 PM	25449
Motor Oil Range Organics (MRO)	ND	52	52		mg/Kg-dr	1	5/24/2016 2:54:59 PM	25449
Surr: DNOP	110	0	70-130		%Rec	1	5/24/2016 2:54:59 PM	25449
PERCENT MOISTURE							Analyst: BCN	
Percent Moisture	7.7	1.0	1.0		wt%	1	5/23/2016	R34494
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.056	0.00062	0.036		mg/Kg-dr	1	5/26/2016 3:40:58 PM	25509
EPA METHOD 6010B: SOIL METALS							Analyst: MED	
Antimony	ND	1.3	2.7		mg/Kg-dr	1	5/31/2016 9:51:45 AM	25508
Arsenic	3.3	0.79	2.7		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Barium	570	0.26	0.54		mg/Kg-dr	5	5/31/2016 10:06:38 AM	25508
Beryllium	0.72	0.0050	0.16		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Cadmium	ND	0.069	0.11		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Chromium	9.2	0.14	0.33		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Cobalt	3.7	0.041	0.33		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Iron	9900	110	270		mg/Kg-dr	100	5/31/2016 10:08:25 AM	25508
Lead	2.1	0.19	0.27		mg/Kg-dr	1	5/31/2016 9:51:45 AM	25508
Manganese	440	0.24	0.54		mg/Kg-dr	5	5/31/2016 10:06:38 AM	25508
Nickel	6.0	0.12	0.54		mg/Kg-dr	1	5/31/2016 9:51:45 AM	25508
Selenium	ND	1.2	2.7		mg/Kg-dr	1	5/31/2016 9:51:45 AM	25508
Silver	ND	0.034	0.27		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Vanadium	16	0.038	2.7		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
Zinc	16	0.62	2.7		mg/Kg-dr	1	5/26/2016 4:04:00 PM	25508
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Acenaphthene	ND	0.092	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Acenaphthylene	ND	0.087	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Aniline	ND	0.10	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Anthracene	ND	0.071	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Azobenzene	ND	0.13	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benz(a)anthracene	ND	0.092	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benzo(a)pyrene	ND	0.081	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benzo(b)fluoranthene	ND	0.097	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benzo(g,h,i)perylene	ND	0.095	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benzo(k)fluoranthene	ND	0.095	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benzoic acid	ND	0.089	0.54		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Benzyl alcohol	ND	0.084	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469
Bis(2-chloroethoxy)methane	ND	0.12	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 1 of 47

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/28/2016

CLIENT: Western Refining Company			Clier	nt Sampl	e ID: SWM	1U 10	-21 (2-2.5')		
Project: SWMU 10			Co	llection I	Date: 5/18/	2016	9:05:00 AM		
Lab ID: 1605943-001	Matrix:	SOIL	R	Received Date: 5/19/2016 4:30:00 PM					
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID	
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM		
Bis(2-chloroethyl)ether	ND	0.079	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Bis(2-chloroisopropyl)ether	ND	0.096	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Bis(2-ethylhexyl)phthalate	0.17	0.088	0.54	J	mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
4-Bromophenyl phenyl ether	ND	0.10	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Butyl benzyl phthalate	ND	0.095	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Carbazole	ND	0.073	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
4-Chloro-3-methylphenol	ND	0.13	0.54		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
4-Chloroaniline	ND	0.12	0.54		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2-Chloronaphthalene	ND	0.085	0.27		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2-Chlorophenol	ND	0.085	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
4-Chlorophenyl phenyl ether	ND	0.12	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Chrysene	ND	0.091	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Di-n-butyl phthalate	ND	0.080	0.43		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Di-n-octyl phthalate	ND	0.092	0.43		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Dibenz(a,h)anthracene	ND	0.087	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Dibenzofuran	ND	0.11	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
1,2-Dichlorobenzene	ND	0.082	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
1,3-Dichlorobenzene	ND	0.083	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
1,4-Dichlorobenzene	ND	0.091	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
3,3'-Dichlorobenzidine	ND	0.079	0.27		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Diethyl phthalate	ND	0.11	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Dimethyl phthalate	ND	0.11	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2,4-Dichlorophenol	ND	0.10	0.43		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2,4-Dimethylphenol	ND	0.12	0.32		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
4,6-Dinitro-2-methylphenol	ND	0.065	0.43		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2,4-Dinitrophenol	ND	0.000	0.54		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2,4-Dinitrotoluene	ND	0.096	0.54		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2,6-Dinitrotoluene	ND	0.030	0.54		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469 25469	
Fluoranthene	ND	0.062	0.34		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469 25469	
Fluorene	ND	0.002	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469 25469	
Hexachlorobenzene	ND	0.098	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469 25469	
Hexachlorobutadiene	ND	0.085	0.21		mg/Kg-dr		5/26/2016 6:23:14 PM	25469 25469	
						1			
Hexachlorocyclopentadiene		0.12	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469 25460	
Hexachloroethane		0.092	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
Indeno(1,2,3-cd)pyrene	ND	0.084	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
1-Methylnaphthalene	ND	0.11	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2-Methylnaphthalene	ND	0.13	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
2-Methylphenol	ND	0.090	0.43		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	
3+4-Methylphenol	ND	0.078	0.21		mg/Kg-dr	1	5/26/2016 6:23:14 PM	25469	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Qualifiers:

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21 (2-2.5') **Project:** SWMU 10 Collection Date: 5/18/2016 9:05:00 AM Lab ID: 1605943-001 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM 5/26/2016 6:23:14 PM N-Nitrosodi-n-propylamine ND 0.10 0.21 mg/Kg-dr 1 25469 N-Nitrosodiphenylamine ND 0.10 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 Naphthalene ND 0.10 0.21 mg/Kg-dr 25469 1 5/26/2016 6:23:14 PM 2-Nitroaniline ND 0.21 mg/Kg-dr 0.12 1 5/26/2016 6:23:14 PM 25469 ND 0.095 3-Nitroaniline 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 4-Nitroaniline ND 0.076 0.43 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 Nitrobenzene ND 0.11 0.43 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 2-Nitrophenol ND 0.11 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 4-Nitrophenol ND 0.082 0.27 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 Pentachlorophenol ND 0.069 0.43 5/26/2016 6:23:14 PM 25469 mg/Kg-dr 1 Phenanthrene ND 0.073 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 Phenol ND 0.081 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 Pyrene ND 0.081 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 ND 0.085 0.43 Pyridine mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 ND 0.12 1,2,4-Trichlorobenzene 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 ND 2,4,5-Trichlorophenol 0.11 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 2,4,6-Trichlorophenol ND 0.089 0.21 mg/Kg-dr 1 5/26/2016 6:23:14 PM 25469 Surr: 2-Fluorophenol 61.9 0 28.3-102 %Rec 5/26/2016 6:23:14 PM 25469 1 Surr: Phenol-d5 65.9 0 35.7-103 %Rec 1 5/26/2016 6:23:14 PM 25469 0 35.2-108 Surr: 2,4,6-Tribromophenol 83.3 %Rec 1 5/26/2016 6:23:14 PM 25469 %Rec Surr: Nitrobenzene-d5 65.7 24-118 1 5/26/2016 6:23:14 PM 25469 Surr: 2-Fluorobiphenyl 80.8 35.4-111 %Rec 1 5/26/2016 6:23:14 PM 25469 Surr: 4-Terphenyl-d14 67.2 15-91.7 %Rec 1 5/26/2016 6:23:14 PM 25469 METHOD 8260B/5035LOW: VOLATILES Analyst: BCN ND 2.24 2.24 5/25/2016 4:59:00 PM Benzene µg/Kg-dry 1 25468 Toluene 4.77 0.271 2.24 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 Ethylbenzene 1.22 0.301 2.24 Л µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Methyl tert-butyl ether (MTBE) ND 0.377 2.24 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 1,2,4-Trimethylbenzene 1.95 0.380 2.24 J µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1,3,5-Trimethylbenzene 0.370 0.774 2 24 .1 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1.2-Dichloroethane (EDC) ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1,2-Dibromoethane (EDB) ND 2.24 2.24 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 Naphthalene ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1-Methylnaphthalene 0.370 0.255 4.49 J µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 2-Methylnaphthalene ND 0.590 4.49 µg/Kg-dry 5/25/2016 4:59:00 PM 25468 1 Acetone 13.9 0.664 11.2 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Bromobenzene ND 0.228 2.24 25468 µg/Kg-dry 1 5/25/2016 4:59:00 PM Bromodichloromethane ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Bromoform ND 2 24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 3 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21 (2-2.5') **Project:** SWMU 10 Collection Date: 5/18/2016 9:05:00 AM Lab ID: 1605943-001 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL METHOD 8260B/5035LOW: VOLATILES Analyst: BCN Bromomethane ND 0.404 3.36 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 2-Butanone ND 0.809 11.2 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Carbon disulfide ND 0.830 1 25468 11.2 µg/Kg-dry 5/25/2016 4:59:00 PM Carbon tetrachloride ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND Chlorobenzene 0.257 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Chloroethane ND 0.414 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Chloroform ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Chloromethane ND 0.568 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 2-Chlorotoluene ND 0.382 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 4-Chlorotoluene ND 0.373 2.24 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 cis-1,2-DCE ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 cis-1,3-Dichloropropene ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1,2-Dibromo-3-chloropropane ND 0.239 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Dibromochloromethane ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND 2.24 Dibromomethane 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND 1,2-Dichlorobenzene 0.327 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1,3-Dichlorobenzene ND 0.414 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND 0.420 2.24 1,4-Dichlorobenzene µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 Dichlorodifluoromethane ND 1.31 2.24 1 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1,1-Dichloroethane ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND 0.367 1,1-Dichloroethene 2 24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1,2-Dichloropropane ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND 2.24 2.24 5/25/2016 4:59:00 PM 25468 1,3-Dichloropropane µg/Kg-dry 1 ND 0.283 2.24 5/25/2016 4:59:00 PM 25468 2,2-Dichloropropane µg/Kg-dry 1 ND 2.24 2.24 25468 1,1-Dichloropropene µg/Kg-dry 1 5/25/2016 4:59:00 PM Hexachlorobutadiene ND 0.511 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 ND 0.559 5/25/2016 4:59:00 PM 25468 2-Hexanone 112 µg/Kg-dry 1 Isopropylbenzene ND 0.282 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 0.421 4-Isopropyltoluene ND 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 4-Methyl-2-pentanone ND 4.49 11.2 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 Methylene chloride ND 2.24 3.36 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 n-Butylbenzene ND 0.546 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 n-Propylbenzene ND 0.402 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 sec-Butylbenzene ND 0.398 2.24 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 Styrene ND 0.287 2.24 5/25/2016 4:59:00 PM 25468 µg/Kg-dry 1 ND 0.328 2.24 25468 tert-Butylbenzene µg/Kg-dry 1 5/25/2016 4:59:00 PM 1.1.1.2-Tetrachloroethane ND 2.24 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468 1,1,2,2-Tetrachloroethane ND 2.24 2.24 25468 µg/Kg-dry 1 5/25/2016 4:59:00 PM Tetrachloroethene (PCE) ND 0.295 2.24 µg/Kg-dry 1 5/25/2016 4:59:00 PM 25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Oualifiers:

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 47

Page 5 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company				-			-21 (2-2.5')						
Project: SWMU 10		Collection Date: 5/18/2016 9:05:00 AM											
Lab ID: 1605943-001	Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM												
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID					
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN						
trans-1,2-DCE	ND	0.227	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
trans-1,3-Dichloropropene	ND	0.272	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
1,2,3-Trichlorobenzene	ND	0.543	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
1,2,4-Trichlorobenzene	ND	0.680	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
1,1,1-Trichloroethane	ND	2.24	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
1,1,2-Trichloroethane	ND	2.24	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
Trichloroethene (TCE)	ND	2.24	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
Trichlorofluoromethane	ND	0.282	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
1,2,3-Trichloropropane	ND	2.24	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
Vinyl chloride	ND	0.590	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
Xylenes, Total	4.46	0.894	2.24		µg/Kg-dry	1	5/25/2016 4:59:00 PM	25468					
Surr: 1,2-Dichloroethane-d4	104	0	70-130		%Rec	1	5/25/2016 4:59:00 PM	25468					
Surr: 4-Bromofluorobenzene	103	0	70-130		%Rec	1	5/25/2016 4:59:00 PM	25468					
Surr: Dibromofluoromethane	93.0	0	70-130		%Rec	1	5/25/2016 4:59:00 PM	25468					
Surr: Toluene-d8	97.5	0	70-130		%Rec	1	5/25/2016 4:59:00 PM	25468					
EPA METHOD 8015D MOD: GASOLINE F	RANGE						Analyst: DJF						
Gasoline Range Organics (GRO)	2.0	0.61	4.1	J	mg/Kg-dr	1	5/24/2016 12:36:41 PM	A34454					
Surr: BFB	99.7	0	70-130		%Rec	1	5/24/2016 12:36:41 PM	A34454					

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining CompanyProject:SWMU 10Lab ID:1605943-002	Matrix:	Client Sample ID: SWMU 10-21 (12-14') Collection Date: 5/18/2016 10:15:00 AM Received Date: 5/19/2016 4:30:00 PM								
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8015M/D: DIESEL RANGE		;					Analyst: KJH			
Diesel Range Organics (DRO)	ND	4.5	12		mg/Kg-dr	1	5/24/2016 12:43:18 PM	25449		
Motor Oil Range Organics (MRO)	ND	62	62		mg/Kg-dr	1	5/24/2016 12:43:18 PM	25449		
Surr: DNOP	104	0	70-130		%Rec	1	5/24/2016 12:43:18 PM	25449		
PERCENT MOISTURE							Analyst: BCN			
Percent Moisture	19	1.0	1.0		wt%	1	5/23/2016	R34494		
EPA METHOD 7471: MERCURY							Analyst: pmf			
Mercury	0.0043	0.00069	0.040	J	mg/Kg-dr	1	5/26/2016 3:46:15 PM	25509		
EPA METHOD 6010B: SOIL METALS							Analyst: MED			
Antimony	ND	7.3	15		mg/Kg-dr	5	6/15/2016 6:59:11 AM	25508		
Arsenic	1.8	0.90	3.1	J	mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Barium	220	0.060	0.12		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Beryllium	1.3	0.0057	0.19		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Cadmium	ND	0.078	0.12		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Chromium	11	0.15	0.37		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Cobalt	5.6	0.047	0.37		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Iron	20000	120	310		mg/Kg-dr	100	5/31/2016 10:09:54 AM	25508		
Lead	5.1	0.22	0.31		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Manganese	240	0.055	0.12		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Nickel	11	0.14	0.62		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Selenium	ND	1.3	3.1		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Silver	ND	0.039	0.31		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Vanadium	21	0.043	3.1		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
Zinc	20	0.70	3.1		mg/Kg-dr	1	5/26/2016 4:08:33 PM	25508		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
Acenaphthene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Acenaphthylene	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Aniline	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Anthracene	ND	0.082	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Azobenzene	ND	0.15	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benz(a)anthracene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benzo(a)pyrene	ND	0.093	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benzo(b)fluoranthene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benzo(g,h,i)perylene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benzo(k)fluoranthene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benzoic acid	ND	0.10	0.62		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Benzyl alcohol	ND	0.097	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		
Bis(2-chloroethoxy)methane	ND	0.13	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 6 of 47

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/28/2016

CLIENT: Western Refining Company	Client Sample ID: SWMU 10-21 (12-14')										
Project: SWMU 10			Col	llection I	Date: 5/18/2	2016	10:15:00 AM				
Lab ID: 1605943-002	Matrix:	SOIL	R	eceived I	Date: 5/19/2	2016	4:30:00 PM				
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM				
Bis(2-chloroethyl)ether	ND	0.091	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Bis(2-chloroisopropyl)ether	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Bis(2-ethylhexyl)phthalate	0.14	0.10	0.62	J	mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
4-Bromophenyl phenyl ether	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Butyl benzyl phthalate	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Carbazole	ND	0.083	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
4-Chloro-3-methylphenol	ND	0.15	0.62		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
4-Chloroaniline	ND	0.13	0.62		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2-Chloronaphthalene	ND	0.097	0.31		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2-Chlorophenol	ND	0.097	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
4-Chlorophenyl phenyl ether	ND	0.14	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Chrysene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Di-n-butyl phthalate	0.11	0.092	0.49	J	mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Di-n-octyl phthalate	ND	0.11	0.49		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Dibenz(a,h)anthracene	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Dibenzofuran	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
1,2-Dichlorobenzene	ND	0.094	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
1,3-Dichlorobenzene	ND	0.095	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
1,4-Dichlorobenzene	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
3,3'-Dichlorobenzidine	ND	0.091	0.20		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Diethyl phthalate	ND	0.13	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Dimethyl phthalate	ND	0.13	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469 25469			
	ND	0.12	0.25		mg/Kg-dr		5/26/2016 6:53:34 PM	25469 25469			
2,4-Dichlorophenol						1					
2,4-Dimethylphenol	ND	0.13	0.37		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
4,6-Dinitro-2-methylphenol	ND	0.075	0.49		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2,4-Dinitrophenol	ND	0.082	0.62		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2,4-Dinitrotoluene	ND	0.11	0.62		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2,6-Dinitrotoluene	ND	0.13	0.62		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Fluoranthene	ND	0.071	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Fluorene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Hexachlorobenzene	ND	0.097	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Hexachlorobutadiene	ND	0.14	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Hexachlorocyclopentadiene	ND	0.14	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Hexachloroethane	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
Indeno(1,2,3-cd)pyrene	ND	0.096	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
1-Methylnaphthalene	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2-Methylnaphthalene	ND	0.15	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
2-Methylphenol	ND	0.10	0.49		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			
3+4-Methylphenol	ND	0.089	0.25		mg/Kg-dr	1	5/26/2016 6:53:34 PM	25469			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 7 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21 (12-14') **Project:** SWMU 10 Collection Date: 5/18/2016 10:15:00 AM Lab ID: 1605943-002 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM 5/26/2016 6:53:34 PM N-Nitrosodi-n-propylamine ND 0.12 0.25 mg/Kg-dr 1 25469 N-Nitrosodiphenylamine ND 0.12 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 Naphthalene ND 0.12 0.25 mg/Kg-dr 25469 1 5/26/2016 6:53:34 PM 2-Nitroaniline ND 0.13 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 ND 3-Nitroaniline 0.11 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 4-Nitroaniline ND 0.087 0.49 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 Nitrobenzene ND 0.13 0.49 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 2-Nitrophenol ND 0.12 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 4-Nitrophenol ND 0.094 0.31 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 5/26/2016 6:53:34 PM Pentachlorophenol ND 0.079 0.49 25469 mg/Kg-dr 1 Phenanthrene ND 0.084 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 Phenol ND 0.093 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 Pyrene ND 0.093 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 ND 0.098 0.49 Pyridine mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 ND 0.13 1,2,4-Trichlorobenzene 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 ND 2,4,5-Trichlorophenol 0.12 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 2,4,6-Trichlorophenol ND 0.10 0.25 mg/Kg-dr 1 5/26/2016 6:53:34 PM 25469 Surr: 2-Fluorophenol 48.1 0 28.3-102 %Rec 25469 1 5/26/2016 6:53:34 PM Surr: Phenol-d5 55.6 0 35.7-103 %Rec 1 5/26/2016 6:53:34 PM 25469 0 Surr: 2,4,6-Tribromophenol 57.9 35.2-108 %Rec 1 5/26/2016 6:53:34 PM 25469 %Rec Surr: Nitrobenzene-d5 57.3 24-118 1 5/26/2016 6:53:34 PM 25469 Surr: 2-Fluorobiphenyl 57.6 35.4-111 %Rec 1 5/26/2016 6:53:34 PM 25469 Surr: 4-Terphenyl-d14 56.0 15-91.7 %Rec 1 5/26/2016 6:53:34 PM 25469 METHOD 8260B/5035LOW: VOLATILES Analyst: BCN 1.87 5/25/2016 5:24:00 PM Benzene 1.93 1.87 µg/Kg-dry 1 25468 1.47 Toluene 0.226 5/25/2016 5:24:00 PM 25468 1 87 J µg/Kg-dry 1 Ethylbenzene ND 0.252 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 Methyl tert-butyl ether (MTBE) ND 0.315 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1,2,4-Trimethylbenzene 0.347 0.318 1 87 J µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1,3,5-Trimethylbenzene ND 0.309 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1.2-Dichloroethane (EDC) ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1,2-Dibromoethane (EDB) ND 1.87 1.87 5/25/2016 5:24:00 PM 25468 µg/Kg-dry 1 Naphthalene ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1-Methylnaphthalene ND 0.213 3.75 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 2-Methylnaphthalene ND 0.493 3.75 µg/Kg-dry 5/25/2016 5:24:00 PM 25468 1 Acetone 5.84 0.554 9.37 J µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 Bromobenzene ND 25468 0 191 1 87 µg/Kg-dry 1 5/25/2016 5:24:00 PM Bromodichloromethane ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 Bromoform ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 8 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21 (12-14') **Project:** SWMU 10 Collection Date: 5/18/2016 10:15:00 AM Lab ID: 1605943-002 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL METHOD 8260B/5035LOW: VOLATILES Analyst: BCN Bromomethane ND 0.337 2.81 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 2-Butanone ND 0.675 9.37 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 Carbon disulfide ND 0.693 1 25468 9.37 µg/Kg-dry 5/25/2016 5:24:00 PM Carbon tetrachloride ND µq/Kq-drv 25468 1.87 1.87 1 5/25/2016 5:24:00 PM ND Chlorobenzene 0.215 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1.87 Chloroethane ND 0.346 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 Chloroform ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 Chloromethane ND 0.475 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 2-Chlorotoluene ND 0.319 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 5/25/2016 5:24:00 PM 4-Chlorotoluene ND 0.311 25468 1.87 µg/Kg-dry 1 cis-1,2-DCE ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 cis-1,3-Dichloropropene ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1,2-Dibromo-3-chloropropane ND 0.199 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1.87 Dibromochloromethane ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 ND Dibromomethane 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 ND 1,2-Dichlorobenzene 0.273 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1,3-Dichlorobenzene ND 0.346 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 ND 0.351 25468 1,4-Dichlorobenzene 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM Dichlorodifluoromethane ND 1.09 1.87 1 5/25/2016 5:24:00 PM 25468 µg/Kg-dry 1,1-Dichloroethane ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 ND 0.307 5/25/2016 5:24:00 PM 25468 1,1-Dichloroethene 1.87 µg/Kg-dry 1 1,2-Dichloropropane ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 ND 1.87 5/25/2016 5:24:00 PM 25468 1,3-Dichloropropane 1.87 µg/Kg-dry 1 ND 0.237 5/25/2016 5:24:00 PM 25468 2,2-Dichloropropane 1.87 µg/Kg-dry 1 ND 25468 1,1-Dichloropropene 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM Hexachlorobutadiene ND 0.427 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 2-Hexanone ND 0.467 5/25/2016 5:24:00 PM 25468 9 37 µg/Kg-dry 1 Isopropylbenzene ND 0.236 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 ND 4-Isopropyltoluene 0.351 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 4-Methyl-2-pentanone ND 3.75 9.37 5/25/2016 5:24:00 PM 25468 µg/Kg-dry 1 Methylene chloride ND 1.87 2.81 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 n-Butylbenzene ND 0.456 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 n-Propylbenzene ND 0.335 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 sec-Butylbenzene ND 0.333 5/25/2016 5:24:00 PM 25468 1 87 µg/Kg-dry 1 Styrene ND 0.239 5/25/2016 5:24:00 PM 25468 1 87 µg/Kg-dry 1 ND 0.274 25468 tert-Butylbenzene 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 1.1.1.2-Tetrachloroethane ND 1.87 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468 1,1,2,2-Tetrachloroethane ND 25468 1 87 1 87 µg/Kg-dry 1 5/25/2016 5:24:00 PM Tetrachloroethene (PCE) ND 0.246 1.87 µg/Kg-dry 1 5/25/2016 5:24:00 PM 25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Oualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 9 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	nt Sampl	e ID: SWM	IU 10	-21 (12-14')			
Project: SWMU 10			Co	llection 1	Date: 5/18/2	2016	10:15:00 AM			
Lab ID: 1605943-002	Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN			
trans-1,2-DCE	ND	0.189	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
trans-1,3-Dichloropropene	ND	0.227	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
1,2,3-Trichlorobenzene	ND	0.453	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
1,2,4-Trichlorobenzene	ND	0.568	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
1,1,1-Trichloroethane	ND	1.87	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
1,1,2-Trichloroethane	ND	1.87	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
Trichloroethene (TCE)	ND	1.87	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
Trichlorofluoromethane	ND	0.235	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
1,2,3-Trichloropropane	ND	1.87	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
Vinyl chloride	ND	0.493	1.87		µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
Xylenes, Total	0.937	0.747	1.87	J	µg/Kg-dry	1	5/25/2016 5:24:00 PM	25468		
Surr: 1,2-Dichloroethane-d4	99.7	0	70-130		%Rec	1	5/25/2016 5:24:00 PM	25468		
Surr: 4-Bromofluorobenzene	102	0	70-130		%Rec	1	5/25/2016 5:24:00 PM	25468		
Surr: Dibromofluoromethane	91.9	0	70-130		%Rec	1	5/25/2016 5:24:00 PM	25468		
Surr: Toluene-d8	97.2	0	70-130		%Rec	1	5/25/2016 5:24:00 PM	25468		
EPA METHOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJF			
Gasoline Range Organics (GRO)	0.60	0.48	3.2	J	mg/Kg-dr	1	5/24/2016 1:05:04 PM	A34454		
Surr: BFB	93.4	0	70-130		%Rec	1	5/24/2016 1:05:04 PM	A34454		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 10 of 47
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Project: SWMU 10 Lab ID: 1605943-003	Matrix:	SOIL	Co	llection I	Date: 5/18/	2016 1	21 (20-22') 0:25:00 AM 4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: KJH	
Diesel Range Organics (DRO)	ND	3.8	11		mg/Kg-dr	1	5/24/2016 1:06:24 PM	25449
Motor Oil Range Organics (MRO)	ND	53	53		mg/Kg-dr	1	5/24/2016 1:06:24 PM	25449
Surr: DNOP	120	0	70-130		%Rec	1	5/24/2016 1:06:24 PM	25449
PERCENT MOISTURE							Analyst: BCN	
Percent Moisture	12	1.0	1.0		wt%	1	5/23/2016	R34494
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	ND	0.00063	0.037		mg/Kg-dr	1	5/26/2016 3:48:01 PM	25509
EPA METHOD 6010B: SOIL METALS							Analyst: MED	
Antimony	ND	6.8	14		mg/Kg-dr	5	5/31/2016 10:12:55 AM	25508
Arsenic	3.3	0.83	2.9		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Barium	1000	0.28	0.57		mg/Kg-dr	5	5/31/2016 10:12:55 AM	25508
Beryllium	0.91	0.0053	0.17		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Cadmium	ND	0.072	0.11		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Chromium	12	0.14	0.34		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Cobalt	8.8	0.043	0.34		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Iron	18000	110	290		mg/Kg-dr	100	5/31/2016 10:11:24 AM	25508
Lead	2.6	0.20	0.29		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Manganese	1800	0.51	1.1		mg/Kg-dr	10	5/31/2016 11:01:26 AM	25508
Nickel	15	0.13	0.57		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Selenium	ND	1.2	2.9		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Silver	ND	0.036	0.29		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Vanadium	17	0.040	2.9		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
Zinc	27	0.65	2.9		mg/Kg-dr	1	5/26/2016 4:10:03 PM	25508
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Acenaphthene	ND	0.096	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Acenaphthylene	ND	0.091	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Aniline	ND	0.11	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Anthracene	ND	0.074	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Azobenzene	ND	0.14	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benz(a)anthracene	ND	0.096	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benzo(a)pyrene	ND	0.085	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benzo(b)fluoranthene	ND	0.10	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benzo(g,h,i)perylene	ND	0.099	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benzo(k)fluoranthene	ND	0.099	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benzoic acid	ND	0.093	0.56		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Benzyl alcohol	ND	0.088	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469
Bis(2-chloroethoxy)methane	ND	0.12	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 11 of 47

Hall Environmental Analysis Laboratory, Inc.

Dat

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21 (20-22') **Project:** SWMU 10 Collection Date: 5/18/2016 10:25:00 AM Lab ID: 1605943-003 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM Bis(2-chloroethyl)ether ND 0.082 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Bis(2-chloroisopropyl)ether ND 0.10 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 0.12 0.091 0.56 J mg/Kg-dr 5/26/2016 7:23:47 PM 25469 Bis(2-ethylhexyl)phthalate 1 4-Bromophenyl phenyl ether ND 0.22 mg/Kg-dr 5/26/2016 7:23:47 PM 25469 0.11 1 ND Butyl benzyl phthalate 0.099 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Carbazole ND 0.076 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 4-Chloro-3-methylphenol ND 0.13 0.56 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 4-Chloroaniline ND 0.12 0.56 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 2-Chloronaphthalene ND 0.088 0.28 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 2-Chlorophenol ND 0.088 0.22 5/26/2016 7:23:47 PM 25469 mg/Kg-dr 1 4-Chlorophenyl phenyl ether ND 0.13 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Chrysene ND 0.095 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Di-n-butyl phthalate ND 0.084 0.45 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 ND 0.096 0.45 5/26/2016 7:23:47 PM Di-n-octyl phthalate mg/Kg-dr 1 25469 ND 0.091 Dibenz(a,h)anthracene 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 ND Dibenzofuran 0.11 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 1,2-Dichlorobenzene ND 0.086 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 ND 0.087 0.22 5/26/2016 7:23:47 PM 25469 1,3-Dichlorobenzene mg/Kg-dr 1 1.4-Dichlorobenzene ND 0.095 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 3,3'-Dichlorobenzidine ND 0.083 0.28 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 ND 0.11 0.22 5/26/2016 7:23:47 PM 25469 Diethyl phthalate mg/Kg-dr 1 Dimethyl phthalate ND 0.11 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 2,4-Dichlorophenol ND 0.10 0.45 5/26/2016 7:23:47 PM 25469 mg/Kg-dr 1 2,4-Dimethylphenol ND 0.12 0.34 5/26/2016 7:23:47 PM 25469 mg/Kg-dr 1 ND 0.068 5/26/2016 7:23:47 PM 25469 4,6-Dinitro-2-methylphenol 0.45 mg/Kg-dr 1 ND 0.074 2.4-Dinitrophenol 0.56 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 2,4-Dinitrotoluene ND 0.10 0.56 mg/Kg-dr 5/26/2016 7:23:47 PM 25469 1 2.6-Dinitrotoluene ND 0.12 0.56 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 ND 0.065 0.22 Fluoranthene mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Fluorene ND 0.10 0.22 5/26/2016 7:23:47 PM 25469 mg/Kg-dr 1 Hexachlorobenzene ND 0.088 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Hexachlorobutadiene ND 0.13 0.22 mg/Kg-dr 5/26/2016 7:23:47 PM 25469 1 Hexachlorocyclopentadiene ND 0.13 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 Hexachloroethane ND 0.096 0.22 mg/Kg-dr 5/26/2016 7:23:47 PM 25469 1 ND 0.087 0.22 5/26/2016 7:23:47 PM 25469 Indeno(1,2,3-cd)pyrene mg/Kg-dr 1 ND 0.11 0.22 25469 1-Methylnaphthalene mg/Kg-dr 1 5/26/2016 7:23:47 PM 2-Methylnaphthalene ND 0.13 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469 2-Methylphenol ND 0.094 0.45 25469 mg/Kg-dr 1 5/26/2016 7:23:47 PM 3+4-Methylphenol ND 0.081 0.22 mg/Kg-dr 1 5/26/2016 7:23:47 PM 25469

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Oualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

Page 12 of 47

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Project: SWMU 10 Lab ID: 1605943-003	Client Sample ID: SWMU 10-21 (20-22') Collection Date: 5/18/2016 10:25:00 AM Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
N-Nitrosodi-n-propylamine	ND	0.11	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
N-Nitrosodiphenylamine	ND	0.11	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Naphthalene	ND	0.11	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
2-Nitroaniline	ND	0.12	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
3-Nitroaniline	ND	0.099	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
4-Nitroaniline	ND	0.079	0.45		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Nitrobenzene	ND	0.12	0.45		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
2-Nitrophenol	ND	0.11	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
4-Nitrophenol	ND	0.085	0.28		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Pentachlorophenol	ND	0.072	0.45		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Phenanthrene	ND	0.076	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Phenol	ND	0.084	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Pyrene	ND	0.085	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Pyridine	ND	0.089	0.45		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
1,2,4-Trichlorobenzene	ND	0.12	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
2,4,5-Trichlorophenol	ND	0.11	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
2,4,6-Trichlorophenol	ND	0.093	0.22		mg/Kg-dr	1	5/26/2016 7:23:47 PM	25469		
Surr: 2-Fluorophenol	50.2	0	28.3-102		%Rec	1	5/26/2016 7:23:47 PM	25469		
Surr: Phenol-d5	54.9	0	35.7-103		%Rec	1	5/26/2016 7:23:47 PM	25469		
Surr: 2,4,6-Tribromophenol	67.1	0	35.2-108		%Rec	1	5/26/2016 7:23:47 PM	25469		
Surr: Nitrobenzene-d5	52.9		24-118		%Rec	1	5/26/2016 7:23:47 PM	25469		
Surr: 2-Fluorobiphenyl	64.6		35.4-111		%Rec	1	5/26/2016 7:23:47 PM	25469		
Surr: 4-Terphenyl-d14	51.3		15-91.7		%Rec	1	5/26/2016 7:23:47 PM	25469		
AETHOD 8260B/5035LOW: VOLATILES							Analyst: BCN			
Benzene	8.48	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Toluene	6.22	0.212	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Ethylbenzene	1.32	0.236	1.75	J	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Methyl tert-butyl ether (MTBE)	ND	0.295	1.75	-	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
1,2,4-Trimethylbenzene	1.03	0.297	1.75	J	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
1,3,5-Trimethylbenzene	0.684	0.289	1.75	J	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
1,2-Dichloroethane (EDC)	ND	1.75	1.75	-	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
1,2-Dibromoethane (EDB)	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Naphthalene	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
1-Methylnaphthalene	0.219	0.199	3.51	J	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
2-Methylnaphthalene	ND	0.462	3.51	÷	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Acetone	6.34	0.519	8.77	J	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Bromobenzene	ND	0.178	1.75	÷	µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Bromodichloromethane	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468		
Bromoform	ND	1.75	1.75		µg/Kg-dry		5/25/2016 5:49:00 PM	25468		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 13 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21 (20-22') **Project:** SWMU 10 Collection Date: 5/18/2016 10:25:00 AM Lab ID: 1605943-003 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL METHOD 8260B/5035LOW: VOLATILES Analyst: BCN Bromomethane ND 0.316 2.63 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 2-Butanone ND 0.632 8.77 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 Carbon disulfide ND 0.649 8.77 1 25468 µg/Kg-dry 5/25/2016 5:49:00 PM Carbon tetrachloride ND 25468 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM ND Chlorobenzene 0.201 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 1.75 Chloroethane ND 0.324 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 Chloroform ND 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 Chloromethane ND 0.444 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 2-Chlorotoluene ND 0.298 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 4-Chlorotoluene ND 0.292 1.75 5/25/2016 5:49:00 PM 25468 µg/Kg-dry 1 cis-1,2-DCE ND 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 cis-1,3-Dichloropropene ND 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 1,2-Dibromo-3-chloropropane ND 0.187 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 1.75 Dibromochloromethane ND 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND Dibromomethane 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND 1,2-Dichlorobenzene 0.255 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 1,3-Dichlorobenzene ND 0.324 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND 0.328 25468 1,4-Dichlorobenzene 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM Dichlorodifluoromethane ND 1.02 1.75 1 5/25/2016 5:49:00 PM 25468 µg/Kg-dry 1,1-Dichloroethane ND 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND 0.287 25468 1,1-Dichloroethene 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 1,2-Dichloropropane ND 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND 1.75 5/25/2016 5:49:00 PM 25468 1,3-Dichloropropane 1 75 µg/Kg-dry 1 ND 0.221 5/25/2016 5:49:00 PM 25468 2,2-Dichloropropane 1.75 µg/Kg-dry 1 ND 1.75 25468 1,1-Dichloropropene 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM ND 0.400 Hexachlorobutadiene 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND 0.437 5/25/2016 5:49:00 PM 25468 2-Hexanone 8 77 µg/Kg-dry 1 Isopropylbenzene ND 0.221 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 ND 0.329 4-Isopropyltoluene 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 4-Methyl-2-pentanone ND 3.51 8.77 5/25/2016 5:49:00 PM 25468 µg/Kg-dry 1 Methylene chloride ND 1.75 2.63 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 n-Butylbenzene ND 0.427 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 n-Propylbenzene ND 0.314 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 sec-Butylbenzene ND 0.311 5/25/2016 5:49:00 PM 25468 1 75 µg/Kg-dry 1 Styrene ND 0.224 5/25/2016 5:49:00 PM 25468 1 75 µg/Kg-dry 1 ND 0.256 25468 tert-Butylbenzene 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 1.1.1.2-Tetrachloroethane ND 1.75 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468 1,1,2,2-Tetrachloroethane ND 1.75 25468 1 75 µg/Kg-dry 1 5/25/2016 5:49:00 PM Tetrachloroethene (PCE) ND 0.230 1.75 µg/Kg-dry 1 5/25/2016 5:49:00 PM 25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Oualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 14 of 47

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	nt Sampl	e ID: SWN	IU 10	-21 (20-22')				
Project: SWMU 10			Со	llection]	Date: 5/18/2	2016	10:25:00 AM				
Lab ID: 1605943-003	Matrix:	Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN				
trans-1,2-DCE	ND	0.177	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
trans-1,3-Dichloropropene	ND	0.212	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
1,2,3-Trichlorobenzene	ND	0.424	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
1,2,4-Trichlorobenzene	ND	0.532	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
1,1,1-Trichloroethane	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
1,1,2-Trichloroethane	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
Trichloroethene (TCE)	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
Trichlorofluoromethane	ND	0.220	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
1,2,3-Trichloropropane	ND	1.75	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
Vinyl chloride	ND	0.461	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
Xylenes, Total	3.85	0.699	1.75		µg/Kg-dry	1	5/25/2016 5:49:00 PM	25468			
Surr: 1,2-Dichloroethane-d4	106	0	70-130		%Rec	1	5/25/2016 5:49:00 PM	25468			
Surr: 4-Bromofluorobenzene	101	0	70-130		%Rec	1	5/25/2016 5:49:00 PM	25468			
Surr: Dibromofluoromethane	92.3	0	70-130		%Rec	1	5/25/2016 5:49:00 PM	25468			
Surr: Toluene-d8	96.1	0	70-130		%Rec	1	5/25/2016 5:49:00 PM	25468			
EPA METHOD 8015D MOD: GASOLINE F	RANGE						Analyst: DJF				
Gasoline Range Organics (GRO)	0.76	0.54	3.6	J	mg/Kg-dr	1	5/24/2016 1:33:30 PM	A34454			
Surr: BFB	101	0	70-130		%Rec	1	5/24/2016 1:33:30 PM	A34454			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 15 of 47
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/28/2016

CLIENT: Western Refining Company			Clier	ıt Sampl	e ID: SWN	4U 10	-22 (2-2.5')	
Project: SWMU 10				-			4:35:00 PM	
Lab ID: 1605943-004	Matrix:	SOIL					4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS	i					Analyst: KJH	
Diesel Range Organics (DRO)	ND	4.5	12		mg/Kg-dr	1	5/24/2016 1:28:09 PM	25449
Motor Oil Range Organics (MRO)	ND	62	62		mg/Kg-dr	1	5/24/2016 1:28:09 PM	25449
Surr: DNOP	109	0	70-130		%Rec	1	5/24/2016 1:28:09 PM	25449
PERCENT MOISTURE							Analyst: BCN	
Percent Moisture	19	1.0	1.0		wt%	1	5/23/2016	R34494
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.044	0.00071	0.041		mg/Kg-dr	1	5/26/2016 3:49:49 PM	25509
EPA METHOD 6010B: SOIL METALS							Analyst: MED	
Antimony	ND	7.3	15		mg/Kg-dr	5	5/31/2016 10:16:13 AM	25508
Arsenic	2.4	0.90	3.1	J	mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Barium	290	0.060	0.12		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Beryllium	0.89	0.0057	0.18		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Cadmium	ND	0.078	0.12		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Chromium	12	0.15	0.37		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Cobalt	4.9	0.047	0.37		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Iron	14000	60	150		mg/Kg-dr	50	5/31/2016 10:14:41 AM	25508
Lead	4.3	0.22	0.31		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Manganese	570	0.27	0.62		mg/Kg-dr	5	5/31/2016 10:16:13 AM	25508
Nickel	8.6	0.14	0.62		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Selenium	ND	1.3	3.1		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Silver	ND	0.039	0.31		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Vanadium	18	0.043	3.1		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
Zinc	20	0.70	3.1		mg/Kg-dr	1	5/26/2016 4:11:42 PM	25508
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Acenaphthene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Acenaphthylene	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Aniline	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Anthracene	ND	0.081	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Azobenzene	ND	0.15	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benz(a)anthracene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benzo(a)pyrene	ND	0.093	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benzo(b)fluoranthene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benzo(g,h,i)perylene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benzo(k)fluoranthene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benzoic acid	ND	0.10	0.61		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Benzyl alcohol	ND	0.096	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469
Bis(2-chloroethoxy)methane	ND	0.13	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

Qualifiers:

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits

Page 16 of 47

- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1605943 Date Reported: 6/28/2016

CLIENT: Western Refining Company	Client Sample ID: SWMU 10-22 (2-2.5') Collection Date: 5/18/2016 4:35:00 PM								
Project: SWMU 10									
Lab ID: 1605943-004	Matrix:	SOIL	R	eceived l	Date: 5/19/	2016	4:30:00 PM		
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID	
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM		
Bis(2-chloroethyl)ether	ND	0.090	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Bis(2-chloroisopropyl)ether	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Bis(2-ethylhexyl)phthalate	0.19	0.10	0.61	J	mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
4-Bromophenyl phenyl ether	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Butyl benzyl phthalate	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Carbazole	ND	0.083	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
4-Chloro-3-methylphenol	ND	0.15	0.61		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
4-Chloroaniline	ND	0.13	0.61		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2-Chloronaphthalene	ND	0.097	0.31		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2-Chlorophenol	ND	0.097	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
4-Chlorophenyl phenyl ether	ND	0.14	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Chrysene	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Di-n-butyl phthalate	0.12	0.092	0.49	J	mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Di-n-octyl phthalate	ND	0.10	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Dibenz(a,h)anthracene	ND	0.099	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Dibenzofuran	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
1,2-Dichlorobenzene	ND	0.094	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
1,3-Dichlorobenzene	ND	0.095	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
1,4-Dichlorobenzene	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
3,3'-Dichlorobenzidine	ND	0.090	0.31		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Diethyl phthalate	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Dimethyl phthalate	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2,4-Dichlorophenol	ND	0.12	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2,4-Dimethylphenol	ND	0.13	0.43		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
4,6-Dinitro-2-methylphenol	ND	0.074	0.37		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2,4-Dinitrophenol	ND	0.074	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469 25469	
2,4-Dinitrophenoi 2,4-Dinitrotoluene	ND	0.081	0.61		mg/Kg-dr	ו 1	5/26/2016 7:53:55 PM	25469 25469	
2,4-Dinitrotoluene 2,6-Dinitrotoluene	ND	0.11	0.61		mg/Kg-dr mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469 25469	
	ND	0.13				1	5/26/2016 7:53:55 PM		
Fluoranthene			0.25		mg/Kg-dr			25469	
Fluorene	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Hexachlorobenzene	ND	0.097	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Hexachlorobutadiene	ND	0.14	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Hexachlorocyclopentadiene	ND	0.14	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Hexachloroethane	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
Indeno(1,2,3-cd)pyrene	ND	0.096	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
1-Methylnaphthalene	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2-Methylnaphthalene	ND	0.15	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
2-Methylphenol	ND	0.10	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	
3+4-Methylphenol	ND	0.089	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 17 of 47

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/28/2016

CLIENT: Western Refining Company Project: SWMU 10	Client Sample ID: SWMU 10-22 (2-2.5') Collection Date: 5/18/2016 4:35:00 PM										
Lab ID: 1605943-004	Matrix:	SOIL	R	eceived	Date: 5/19/	2016	4:30:00 PM				
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM				
N-Nitrosodi-n-propylamine	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
N-Nitrosodiphenylamine	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Naphthalene	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
2-Nitroaniline	ND	0.13	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
3-Nitroaniline	ND	0.11	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
4-Nitroaniline	ND	0.086	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Nitrobenzene	ND	0.13	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
2-Nitrophenol	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
4-Nitrophenol	ND	0.093	0.31		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Pentachlorophenol	ND	0.079	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Phenanthrene	ND	0.083	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Phenol	ND	0.092	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Pyrene	ND	0.093	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Pyridine	ND	0.097	0.49		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
1,2,4-Trichlorobenzene	ND	0.13	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
2,4,5-Trichlorophenol	ND	0.12	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
2,4,6-Trichlorophenol	ND	0.10	0.25		mg/Kg-dr	1	5/26/2016 7:53:55 PM	25469			
Surr: 2-Fluorophenol	62.9	0	28.3-102		%Rec	1	5/26/2016 7:53:55 PM	25469			
Surr: Phenol-d5	64.7	0	35.7-103		%Rec	1	5/26/2016 7:53:55 PM	25469			
Surr: 2,4,6-Tribromophenol	83.2	0	35.2-108		%Rec	1	5/26/2016 7:53:55 PM	25469			
Surr: Nitrobenzene-d5	66.7	-	24-118		%Rec	1	5/26/2016 7:53:55 PM	25469			
Surr: 2-Fluorobiphenyl	70.6		35.4-111		%Rec	1	5/26/2016 7:53:55 PM	25469			
Surr: 4-Terphenyl-d14	95.9		15-91.7	S	%Rec	1	5/26/2016 7:53:55 PM	25469			
METHOD 8260B/5035LOW: VOLATILES				Ū	,	•	Analyst: BCN	_0.00			
Benzene	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Toluene	1.18	0.201	1.67	J	μg/Kg-dry μg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Ethylbenzene	ND	0.201	1.67	5	μg/Kg-dry μg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Methyl tert-butyl ether (MTBE)	ND	0.224	1.67		μg/Kg-dry μg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,2,4-Trimethylbenzene	0.300	0.283	1.67	J	µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,3,5-Trimethylbenzene	0.300 ND	0.205	1.67	0		1	5/25/2016 6:14:00 PM	25468			
1,2-Dichloroethane (EDC)	ND	0.275 1.67	1.67		µg/Kg-dry µg/Kg-dry		5/25/2016 6:14:00 PM	25468 25468			
1,2-Dibromoethane (EDB)	ND	1.67	1.67			1	5/25/2016 6:14:00 PM				
	ND	1.67	1.67		µg/Kg-dry µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468 25468			
Naphthalene	ND	0.189	3.33			1	5/25/2016 6:14:00 PM				
1-Methylnaphthalene	ND ND	0.189	3.33 3.33		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468 25468			
2-Methylnaphthalene					µg/Kg-dry	1		25468 25468			
Acetone	11.7 ND	0.493	8.34		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Bromobenzene	ND	0.170	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Bromodichloromethane	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Bromoform	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
D C + 1 000			1 1 1		1001						

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Value exceeds Maximum Contaminant Level. *

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 18 of 47

Date Reported: 6/28/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-22 (2-2.5') **Project:** SWMU 10 Collection Date: 5/18/2016 4:35:00 PM Lab ID: 1605943-004 Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL METHOD 8260B/5035LOW: VOLATILES Analyst: BCN Bromomethane ND 0.300 2.50 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 2-Butanone ND 0.601 8.34 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 Carbon disulfide ND 0.617 8.34 1 5/25/2016 6:14:00 PM 25468 µg/Kg-dry Carbon tetrachloride ND µq/Kq-drv 25468 1.67 1.67 1 5/25/2016 6:14:00 PM ND Chlorobenzene 0.191 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 1.67 Chloroethane ND 0.308 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 Chloroform ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 Chloromethane ND 0.422 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 2-Chlorotoluene ND 0.284 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 4-Chlorotoluene ND 0.277 5/25/2016 6:14:00 PM 25468 1.67 µg/Kg-dry 1 cis-1,2-DCE ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 cis-1,3-Dichloropropene ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 1,2-Dibromo-3-chloropropane ND 0.177 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 1.67 Dibromochloromethane ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND Dibromomethane 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND 1,2-Dichlorobenzene 0.243 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 1,3-Dichlorobenzene ND 0.308 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND 0.312 25468 1,4-Dichlorobenzene 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM Dichlorodifluoromethane ND 0.973 1.67 1 5/25/2016 6:14:00 PM 25468 µg/Kg-dry 1,1-Dichloroethane ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND 0.273 5/25/2016 6:14:00 PM 25468 1,1-Dichloroethene 1.67 µg/Kg-dry 1 1,2-Dichloropropane ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND 1.67 5/25/2016 6:14:00 PM 25468 1,3-Dichloropropane 1.67 µg/Kg-dry 1 ND 0.210 5/25/2016 6:14:00 PM 25468 2,2-Dichloropropane 1.67 µg/Kg-dry 1 ND 1.67 25468 1,1-Dichloropropene 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM Hexachlorobutadiene ND 0.380 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND 0.415 5/25/2016 6:14:00 PM 25468 2-Hexanone 8 34 µg/Kg-dry 1 Isopropylbenzene ND 0.210 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 ND 0.313 4-Isopropyltoluene 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 4-Methyl-2-pentanone ND 3.33 8.34 5/25/2016 6:14:00 PM 25468 µg/Kg-dry 1 Methylene chloride ND 1.67 2.50 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 n-Butylbenzene ND 0.406 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 n-Propylbenzene ND 0.298 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 sec-Butylbenzene ND 0.296 5/25/2016 6:14:00 PM 25468 1 67 µg/Kg-dry 1 Styrene ND 0.213 5/25/2016 6:14:00 PM 25468 1 67 µg/Kg-dry 1 ND 0.244 25468 tert-Butylbenzene 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 1.1.1.2-Tetrachloroethane ND 1.67 1.67 µg/Kg-dry 1 5/25/2016 6:14:00 PM 25468 1,1,2,2-Tetrachloroethane ND 5/25/2016 6:14:00 PM 25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

1 67

1.67

1 67

0.219

ND

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Tetrachloroethene (PCE)

Oualifiers:

- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

µg/Kg-dry

µg/Kg-dry 1

- Е Value above quantitation range
- J Analyte detected below quantitation limits

1

5/25/2016 6:14:00 PM

- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 19 of 47

25468

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	nt Samnl	م ID• SWM	ITT 10	-22 (2-2.5')				
• • •				-							
3	Collection Date: 5/18/2016 4:35:00 PM Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM										
Lab ID: 1605943-004	Matrix:	4:30:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN				
trans-1,2-DCE	ND	0.168	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
trans-1,3-Dichloropropene	ND	0.202	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,2,3-Trichlorobenzene	ND	0.403	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,2,4-Trichlorobenzene	ND	0.506	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,1,1-Trichloroethane	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,1,2-Trichloroethane	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Trichloroethene (TCE)	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Trichlorofluoromethane	ND	0.209	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
1,2,3-Trichloropropane	ND	1.67	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Vinyl chloride	ND	0.439	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Xylenes, Total	ND	0.664	1.67		µg/Kg-dry	1	5/25/2016 6:14:00 PM	25468			
Surr: 1,2-Dichloroethane-d4	104	0	70-130		%Rec	1	5/25/2016 6:14:00 PM	25468			
Surr: 4-Bromofluorobenzene	102	0	70-130		%Rec	1	5/25/2016 6:14:00 PM	25468			
Surr: Dibromofluoromethane	93.8	0	70-130		%Rec	1	5/25/2016 6:14:00 PM	25468			
Surr: Toluene-d8	97.4	0	70-130		%Rec	1	5/25/2016 6:14:00 PM	25468			
EPA METHOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJF				
Gasoline Range Organics (GRO)	0.60	0.49	3.2	J	mg/Kg-dr	1	5/24/2016 2:01:48 PM	A34454			
Surr: BFB	97.6	0	70-130		%Rec	1	5/24/2016 2:01:48 PM	A34454			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Pa
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	10
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

Page 20 of 47

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/28/2016

CLIENT: Western Refining Company	Client Sample ID: SWMU 10-22 (8-9')									
Project: SWMU 10			Col	lection I	Date: 5/18/2	2016 4	4:50:00 PM			
Lab ID: 1605943-005	Matrix:	SOIL	R	eceived I	Date: 5/19/2	2016 4	4:30:00 PM			
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: KJH			
Diesel Range Organics (DRO)	ND	4.1	11		mg/Kg-dr	1	5/24/2016 2:11:34 PM	25449		
Motor Oil Range Organics (MRO)	ND	57	57		mg/Kg-dr	1	5/24/2016 2:11:34 PM	25449		
Surr: DNOP	92.7	0	70-130		%Rec	1	5/24/2016 2:11:34 PM	25449		
PERCENT MOISTURE							Analyst: BCN			
Percent Moisture	17	1.0	1.0		wt%	1	5/23/2016	R34494		
EPA METHOD 7471: MERCURY							Analyst: pmf			
Mercury	ND	0.00067	0.039		mg/Kg-dr	1	5/26/2016 3:51:37 PM	25509		
EPA METHOD 6010B: SOIL METALS							Analyst: MED			
Antimony	ND	2.9	6.1		mg/Kg-dr	2	5/31/2016 10:19:25 AM	25508		
Arsenic	2.6	0.88	3.0	J	mg/Kg-dr	2 1	5/26/2016 4:13:12 PM	25508		
Barium	350	0.00	0.24	0	mg/Kg-dr	2	5/31/2016 10:19:25 AM	25508		
Beryllium	0.97	0.0056	0.18		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Cadmium	ND	0.0030	0.10		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Chromium	13	0.15	0.12		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Cobalt	7.8	0.046	0.36		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Iron	17000	120	300		mg/Kg-dr	100	5/31/2016 10:17:54 AM	25508		
Lead	3.2	0.21	0.30		mg/Kg-dr	100	5/26/2016 4:13:12 PM	25508		
Manganese	520	0.21	0.30		mg/Kg-dr	2	5/31/2016 10:19:25 AM	25508		
Nickel	15	0.11	0.24			2 1	5/26/2016 4:13:12 PM	25508		
Selenium	ND	1.3	3.0		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Silver	ND	0.038	0.30		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Vanadium	17	0.038	3.0		mg/Kg-dr	1	5/26/2016 4:13:12 PM	25508		
Zinc	23	0.042	3.0 3.0		mg/Kg-dr mg/Kg dr	1	5/26/2016 4:13:12 PM	25508		
	23	0.09	5.0		mg/Kg-dr	I		20000		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
Acenaphthene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Acenaphthylene	ND	0.097	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Aniline	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Anthracene	ND	0.079	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Azobenzene	ND	0.15	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benz(a)anthracene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benzo(a)pyrene	ND	0.091	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benzo(b)fluoranthene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benzo(g,h,i)perylene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benzo(k)fluoranthene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benzoic acid	ND	0.099	0.60		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Benzyl alcohol	ND	0.094	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Bis(2-chloroethoxy)methane	ND	0.13	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 21 of 47
- P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 6/28/2016

CLIENT: Western Refining Company Project: SWMU 10 Lab ID: 1605943-005	Client Sample ID: SWMU 10-22 (8-9') Collection Date: 5/18/2016 4:50:00 PM Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
Bis(2-chloroethyl)ether	ND	0.088	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Bis(2-chloroisopropyl)ether	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Bis(2-ethylhexyl)phthalate	0.17	0.098	0.60	J	mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
4-Bromophenyl phenyl ether	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Butyl benzyl phthalate	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Carbazole	ND	0.081	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
4-Chloro-3-methylphenol	ND	0.14	0.60		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
4-Chloroaniline	ND	0.13	0.60		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2-Chloronaphthalene	ND	0.094	0.30		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2-Chlorophenol	ND	0.094	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
4-Chlorophenyl phenyl ether	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Chrysene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Di-n-butyl phthalate	0.11	0.089	0.48	J	mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Di-n-octyl phthalate	ND	0.10	0.48	Ũ	mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Dibenz(a,h)anthracene	ND	0.097	0.40		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Dibenzofuran	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
1,2-Dichlorobenzene	ND	0.092	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
1,3-Dichlorobenzene	ND	0.093	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
1,4-Dichlorobenzene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
3,3´-Dichlorobenzidine	ND	0.088	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Diethyl phthalate	ND	0.000	0.30		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469 25469		
Dimethyl phthalate	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2,4-Dichlorophenol	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
	ND							25469 25469		
2,4-Dimethylphenol	ND	0.13 0.072	0.36 0.48		mg/Kg-dr	1	5/26/2016 8:23:56 PM 5/26/2016 8:23:56 PM	25469 25469		
4,6-Dinitro-2-methylphenol					mg/Kg-dr	1				
2,4-Dinitrophenol 2,4-Dinitrotoluene		0.079	0.60		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
		0.11	0.60		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469 25460		
2,6-Dinitrotoluene		0.13	0.60		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Fluoranthene	ND	0.069	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Fluorene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Hexachlorobenzene	ND	0.094	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Hexachlorobutadiene	ND	0.13	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Hexachlorocyclopentadiene	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Hexachloroethane	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Indeno(1,2,3-cd)pyrene	ND	0.093	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
1-Methylnaphthalene	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2-Methylnaphthalene	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2-Methylphenol	ND	0.10	0.48		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
3+4-Methylphenol	ND	0.087	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 22 of 47

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1605943 Date Reported: 6/28/2016

CLIENT: Western Refining Company	Client Sample ID: SWMU 10-22 (8-9')									
Project: SWMU 10			Co	llection l	Date: 5/18/2	2016	4:50:00 PM			
Lab ID: 1605943-005	Matrix:	SOIL	R	eceived l	Date: 5/19/2	2016	4:30:00 PM			
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
N-Nitrosodi-n-propylamine	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
N-Nitrosodiphenylamine	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Naphthalene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2-Nitroaniline	ND	0.13	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
3-Nitroaniline	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
4-Nitroaniline	ND	0.084	0.48		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Nitrobenzene	ND	0.12	0.48		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2-Nitrophenol	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
4-Nitrophenol	ND	0.091	0.30		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Pentachlorophenol	ND	0.077	0.48		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Phenanthrene	ND	0.081	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Phenol	ND	0.090	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Pyrene	ND	0.090	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Pyridine	ND	0.095	0.48		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
1,2,4-Trichlorobenzene	ND	0.13	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2,4,5-Trichlorophenol	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
2,4,6-Trichlorophenol	ND	0.099	0.24		mg/Kg-dr	1	5/26/2016 8:23:56 PM	25469		
Surr: 2-Fluorophenol	54.0	0	28.3-102		%Rec	1	5/26/2016 8:23:56 PM	25469		
Surr: Phenol-d5	55.0	0	35.7-103		%Rec	1	5/26/2016 8:23:56 PM	25469		
Surr: 2,4,6-Tribromophenol	68.4	0	35.2-108		%Rec	1	5/26/2016 8:23:56 PM	25469		
Surr: Nitrobenzene-d5	61.5		24-118		%Rec	1	5/26/2016 8:23:56 PM	25469		
Surr: 2-Fluorobiphenyl	67.3		35.4-111		%Rec	1	5/26/2016 8:23:56 PM	25469		
Surr: 4-Terphenyl-d14	59.9		15-91.7		%Rec	1	5/26/2016 8:23:56 PM	25469		
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN			
Benzene	9.54	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Toluene	7.02	0.268	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Ethylbenzene	1.43	0.298	2.22	J	µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Methyl tert-butyl ether (MTBE)	ND	0.373	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
1,2,4-Trimethylbenzene	1.08	0.376	2.22	J	µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
1,3,5-Trimethylbenzene	0.677	0.366	2.22	J	µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
1,2-Dichloroethane (EDC)	ND	2.22	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
1,2-Dibromoethane (EDB)	ND	2.22	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Naphthalene	ND	2.22	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
1-Methylnaphthalene	ND	0.252	4.44		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
2-Methylnaphthalene	ND	0.584	4.44		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Acetone	2.93	0.657	11.1	J	µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Bromobenzene	ND	0.226	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Bromodichloromethane	ND	2.22	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		
Bromoform	ND	2.22	2.22		µg/Kg-dry		5/25/2016 6:39:00 PM	25468		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 23 of 47

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1605943 Date Reported: 6/28/2016

CLIENT: Western Refining CompanyProject:SWMU 10Lab ID:1605943-005	Client Sample ID: SWMU 10-22 (8-9') Collection Date: 5/18/2016 4:50:00 PM Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN			
Bromomethane	ND	0.400	3.33		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
2-Butanone	ND	0.800	11.1		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Carbon disulfide	ND	0.821	11.1		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Carbon tetrachloride	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Chlorobenzene	ND	0.255	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Chloroethane	ND	0.410	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Chloroform	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Chloromethane	ND	0.562	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
2-Chlorotoluene	ND	0.378	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
4-Chlorotoluene	ND	0.369	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
cis-1,2-DCE	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
cis-1,3-Dichloropropene	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,2-Dibromo-3-chloropropane	ND	0.236	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Dibromochloromethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Dibromomethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,2-Dichlorobenzene	ND	0.323	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,3-Dichlorobenzene	ND	0.410	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,4-Dichlorobenzene	ND	0.415	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Dichlorodifluoromethane	ND	1.30	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,1-Dichloroethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,1-Dichloroethene	ND	0.363	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,2-Dichloropropane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,3-Dichloropropane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
2,2-Dichloropropane	ND	0.280	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,1-Dichloropropene	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Hexachlorobutadiene	ND	0.506	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
2-Hexanone	ND	0.553	11.1		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Isopropylbenzene	ND	0.279	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
4-Isopropyltoluene	ND	0.416	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
4-Methyl-2-pentanone	ND	4.44	11.1		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Methylene chloride	ND	2.22	3.33		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
n-Butylbenzene	ND	0.540	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
n-Propylbenzene	ND	0.397	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
sec-Butylbenzene	ND	0.394	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Styrene	ND	0.284	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
tert-Butylbenzene	ND	0.324	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,1,1,2-Tetrachloroethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
1,1,2,2-Tetrachloroethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		
Tetrachloroethene (PCE)	ND	0.292	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- J Analyte detected below quantitation limits

Page 24 of 47

- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	it Sampl	le ID: SWM	1U 10	-22 (8-9')	
Project: SWMU 10			Со	llection	Date: 5/18/	2016	4:50:00 PM	
Lab ID: 1605943-005	Matrix: SOIL Received Date: 5/19/2016 4:30:00 PM							
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN	
trans-1,2-DCE	ND	0.224	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
trans-1,3-Dichloropropene	ND	0.269	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
1,2,3-Trichlorobenzene	ND	0.537	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
1,2,4-Trichlorobenzene	ND	0.673	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
1,1,1-Trichloroethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
1,1,2-Trichloroethane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
Trichloroethene (TCE)	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
Trichlorofluoromethane	ND	0.279	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
1,2,3-Trichloropropane	ND	2.22	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
Vinyl chloride	ND	0.584	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
Xylenes, Total	4.19	0.885	2.22		µg/Kg-dry	1	5/25/2016 6:39:00 PM	25468
Surr: 1,2-Dichloroethane-d4	101	0	70-130		%Rec	1	5/25/2016 6:39:00 PM	25468
Surr: 4-Bromofluorobenzene	99.3	0	70-130		%Rec	1	5/25/2016 6:39:00 PM	25468
Surr: Dibromofluoromethane	90.9	0	70-130		%Rec	1	5/25/2016 6:39:00 PM	25468
Surr: Toluene-d8	96.4	0	70-130		%Rec	1	5/25/2016 6:39:00 PM	25468
EPA METHOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJF	
Gasoline Range Organics (GRO)	0.73	0.52	3.4	J	mg/Kg-dr	1	5/24/2016 2:30:18 PM	A34454
Surr: BFB	97.7	0	70-130		%Rec	1	5/24/2016 2:30:18 PM	A34454

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 25 of 47
ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 460 20 01 17
R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

Date Reported: 6/28/2016

CLIENT: Western Refining Company Project: SWMU 10 Lab ID: 1605943-006	Matrix:	SOIL	Co	llection	e ID: DUP Date: 5/18/ Date: 5/19/	2016	4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS	5					Analyst: KJH	
Diesel Range Organics (DRO)	ND	4.3	12		mg/Kg-dr	1	5/25/2016 9:22:37 AM	25449
Motor Oil Range Organics (MRO)	ND	60	60		mg/Kg-dr	1	5/25/2016 9:22:37 AM	25449
Surr: DNOP	106	0	70-130		%Rec	1	5/25/2016 9:22:37 AM	25449
PERCENT MOISTURE							Analyst: BCN	
Percent Moisture	19	1.0	1.0		wt%	1	5/23/2016	R34494
EPA METHOD 7471: MERCURY							Analyst: pmf	
Mercury	0.018	0.00071	0.041	J	mg/Kg-dr	1	5/26/2016 3:53:25 PM	25509
EPA METHOD 6010B: SOIL METALS				č		-	Analyst: MED	
Antimony	ND	7.3	15		mg/Kg-dr	5	5/31/2016 10:28:43 AM	25508
Arsenic	2.2	0.90	3.1	J	mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Barium	730	0.30	0.62	0	mg/Kg-dr		5/31/2016 10:28:43 AM	25508
Beryllium	0.90	0.0057	0.18		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Cadmium	ND	0.078	0.12		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Chromium	9.8	0.15	0.37		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Cobalt	4.4	0.047	0.37		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Iron	14000	60	150		mg/Kg-dr	50	5/31/2016 10:21:09 AM	25508
Lead	4.6	0.22	0.31		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Manganese	510	0.27	0.62		mg/Kg-dr	5	5/31/2016 10:28:43 AM	25508
Nickel	8.0	0.14	0.62		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Selenium	ND	1.3	3.1		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Silver	ND	0.039	0.31		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Vanadium	19	0.043	3.1		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
Zinc	24	0.70	3.1		mg/Kg-dr	1	5/26/2016 4:14:40 PM	25508
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Acenaphthene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Acenaphthylene	ND	0.099	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Aniline	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Anthracene	ND	0.081	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Azobenzene	ND	0.15	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benz(a)anthracene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benzo(a)pyrene	ND	0.092	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benzo(b)fluoranthene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benzo(g,h,i)perylene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benzo(k)fluoranthene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benzoic acid	ND	0.10	0.61		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Benzyl alcohol Bis(2-chloroethoxy)methane	ND ND	0.095 0.13	0.24 0.24		mg/Kg-dr mg/Kg-dr	1 1	5/26/2016 8:54:00 PM 5/26/2016 8:54:00 PM	25469 25469

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

Hall Environmental Analysis Laboratory, Inc.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 26 of 47

Date Reported: 6/28/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Project: SWMU 10			Co	llection l	e ID: DUP Date: 5/18/	2016		
Lab ID: 1605943-006	Matrix:	SOIL	R	eceived l	Date: 5/19/	2016	4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Bis(2-chloroethyl)ether	ND	0.089	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Bis(2-chloroisopropyl)ether	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Bis(2-ethylhexyl)phthalate	0.16	0.099	0.61	J	mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4-Bromophenyl phenyl ether	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Butyl benzyl phthalate	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Carbazole	ND	0.082	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4-Chloro-3-methylphenol	ND	0.14	0.61		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4-Chloroaniline	ND	0.13	0.61		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2-Chloronaphthalene	ND	0.096	0.30		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2-Chlorophenol	ND	0.096	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4-Chlorophenyl phenyl ether	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Chrysene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Di-n-butyl phthalate	ND	0.091	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Di-n-octyl phthalate	ND	0.10	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Dibenz(a,h)anthracene	ND	0.098	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Dibenzofuran	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
1,2-Dichlorobenzene	ND	0.093	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
1,3-Dichlorobenzene	ND	0.094	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
1,4-Dichlorobenzene	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
3,3'-Dichlorobenzidine	ND	0.089	0.30		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Diethyl phthalate	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Dimethyl phthalate	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,4-Dichlorophenol	ND	0.11	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,4-Dimethylphenol	ND	0.13	0.36		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4,6-Dinitro-2-methylphenol	ND	0.073	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,4-Dinitrophenol	ND	0.080	0.61		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,4-Dinitrotoluene	ND	0.11	0.61		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,6-Dinitrotoluene	ND	0.13	0.61		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Fluoranthene	ND	0.070	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Fluorene	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Hexachlorobenzene	ND	0.096	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Hexachlorobutadiene	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Hexachlorocyclopentadiene	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Hexachloroethane	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Indeno(1,2,3-cd)pyrene	ND	0.095	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
1-Methylnaphthalene	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2-Methylnaphthalene	ND	0.14	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2-Methylphenol	ND	0.10	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
3+4-Methylphenol	ND	0.088	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 27 of 47

Date Reported: 6/28/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Project: SWMU 10				-	e ID: DUP Date: 5/18/2			
Lab ID: 1605943-006	Matrix:	SOIL	R	eceived l	Date: 5/19/2	2016	4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
N-Nitrosodi-n-propylamine	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
N-Nitrosodiphenylamine	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Naphthalene	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2-Nitroaniline	ND	0.13	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
3-Nitroaniline	ND	0.11	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4-Nitroaniline	ND	0.086	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Nitrobenzene	ND	0.13	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2-Nitrophenol	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
4-Nitrophenol	ND	0.092	0.30		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Pentachlorophenol	ND	0.078	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Phenanthrene	ND	0.082	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Phenol	ND	0.091	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Pyrene	ND	0.092	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Pyridine	ND	0.096	0.49		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
1,2,4-Trichlorobenzene	ND	0.13	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,4,5-Trichlorophenol	ND	0.12	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
2,4,6-Trichlorophenol	ND	0.10	0.24		mg/Kg-dr	1	5/26/2016 8:54:00 PM	25469
Surr: 2-Fluorophenol	32.2	0	28.3-102		%Rec	1	5/26/2016 8:54:00 PM	25469
Surr: Phenol-d5	37.7	0	35.7-103		%Rec	1	5/26/2016 8:54:00 PM	25469
Surr: 2,4,6-Tribromophenol	61.5	0	35.2-108		%Rec	1	5/26/2016 8:54:00 PM	25469
Surr: Nitrobenzene-d5	36.4		24-118		%Rec	1	5/26/2016 8:54:00 PM	25469
Surr: 2-Fluorobiphenyl	45.6		35.4-111		%Rec	1	5/26/2016 8:54:00 PM	25469
Surr: 4-Terphenyl-d14	65.4		15-91.7		%Rec	1	5/26/2016 8:54:00 PM	25469
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN	
Benzene	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Toluene	0.918	0.217	1.80	J	µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Ethylbenzene	ND	0.242	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Methyl tert-butyl ether (MTBE)	ND	0.302	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,2,4-Trimethylbenzene	ND	0.305	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,3,5-Trimethylbenzene	ND	0.297	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,2-Dichloroethane (EDC)	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,2-Dibromoethane (EDB)	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Naphthalene	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1-Methylnaphthalene	ND	0.205	3.60		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
2-Methylnaphthalene	ND	0.474	3.60		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Acetone	8.23	0.533	9.00	J	µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Bromobenzene	ND	0.183	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Bromodichloromethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Bromoform	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 28 of 47

Date Reported: 6/28/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	nt Sampl	e ID: DUP	01		
Project: SWMU 10				-	Date: 5/18/2			
Lab ID: 1605943-006	Matrix:	SOIL	R	eceived I	Date: 5/19/2	2016	4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN	
Bromomethane	ND	0.324	2.70		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
2-Butanone	ND	0.649	9.00		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Carbon disulfide	ND	0.666	9.00		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Carbon tetrachloride	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Chlorobenzene	ND	0.206	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Chloroethane	ND	0.332	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Chloroform	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Chloromethane	ND	0.456	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
2-Chlorotoluene	ND	0.306	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
4-Chlorotoluene	ND	0.299	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
cis-1,2-DCE	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
cis-1,3-Dichloropropene	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,2-Dibromo-3-chloropropane	ND	0.192	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Dibromochloromethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Dibromomethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,2-Dichlorobenzene	ND	0.262	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,3-Dichlorobenzene	ND	0.332	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,4-Dichlorobenzene	ND	0.337	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Dichlorodifluoromethane	ND	1.05	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,1-Dichloroethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,1-Dichloroethene	ND	0.295	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,2-Dichloropropane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,3-Dichloropropane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
2,2-Dichloropropane	ND	0.227	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,1-Dichloropropene	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Hexachlorobutadiene	ND	0.410	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
2-Hexanone	ND	0.448	9.00		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Isopropylbenzene	ND	0.226	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
4-Isopropyltoluene	ND	0.338	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
4-Methyl-2-pentanone	ND	3.60	9.00		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Methylene chloride	ND	1.80	2.70		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
n-Butylbenzene	ND	0.438	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
n-Propylbenzene	ND	0.322	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
sec-Butylbenzene	ND	0.320	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Styrene	ND	0.230	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
tert-Butylbenzene	ND	0.263	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,1,1,2-Tetrachloroethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
1,1,2,2-Tetrachloroethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468
Tetrachloroethene (PCE)	ND	0.236	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 29 of 47

Date Reported: 6/28/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clier	nt Sampl	e ID: DUP	01			
Project: SWMU 10			Со	llection	Date: 5/18/2	2016			
Lab ID: 1605943-006	Matrix:	SOIL	R	Received Date: 5/19/2016 4:30:00 PM					
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID	
METHOD 8260B/5035LOW: VOLATILES							Analyst: BCN		
trans-1,2-DCE	ND	0.182	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
trans-1,3-Dichloropropene	ND	0.218	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
1,2,3-Trichlorobenzene	ND	0.435	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
1,2,4-Trichlorobenzene	ND	0.546	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
1,1,1-Trichloroethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
1,1,2-Trichloroethane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
Trichloroethene (TCE)	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
Trichlorofluoromethane	ND	0.226	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
1,2,3-Trichloropropane	ND	1.80	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
Vinyl chloride	ND	0.473	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
Xylenes, Total	ND	0.717	1.80		µg/Kg-dry	1	5/25/2016 7:04:00 PM	25468	
Surr: 1,2-Dichloroethane-d4	103	0	70-130		%Rec	1	5/25/2016 7:04:00 PM	25468	
Surr: 4-Bromofluorobenzene	101	0	70-130		%Rec	1	5/25/2016 7:04:00 PM	25468	
Surr: Dibromofluoromethane	92.5	0	70-130		%Rec	1	5/25/2016 7:04:00 PM	25468	
Surr: Toluene-d8	96.7	0	70-130		%Rec	1	5/25/2016 7:04:00 PM	25468	
EPA METHOD 8015D MOD: GASOLINE R	ANGE						Analyst: DJF		
Gasoline Range Organics (GRO)	0.70	0.51	3.4	J	mg/Kg-dr	1	5/24/2016 2:58:36 PM	A34454	
Surr: BFB	99.9	0	70-130		%Rec	1	5/24/2016 2:58:36 PM	A34454	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 30 of 47
ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	
R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

Analytical Report

Lab Order 1605943

Date Reported: 6/28/2016

CLIENT: Western Refining Company Project: SWMU 10			Co	llection				
Lab ID: 1605943-007	Matrix:	MEOH BL	AN R	eceived l	Date: 5/19	9/2016	4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	ND	0.020	0.025		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Toluene	ND	0.0030	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Ethylbenzene	ND	0.0041	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Methyl tert-butyl ether (MTBE)	ND	0.016	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2,4-Trimethylbenzene	ND	0.0037	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,3,5-Trimethylbenzene	ND	0.0036	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2-Dichloroethane (EDC)	ND	0.013	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2-Dibromoethane (EDB)	ND	0.0036	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Naphthalene	0.023	0.0078	0.10	J	mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1-Methylnaphthalene	0.050	0.011	0.20	J	mg/Kg	1	5/24/2016 3:55:15 PM	C34454
2-Methylnaphthalene	0.060	0.011	0.20	J	mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Acetone	ND	0.065	0.75		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Bromobenzene	ND	0.0040	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Bromodichloromethane	ND	0.0029	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Bromoform	ND	0.0061	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Bromomethane	ND	0.018	0.15		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
2-Butanone	ND	0.029	0.50		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Carbon disulfide	ND	0.017	0.50		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Carbon tetrachloride	ND	0.0033	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Chlorobenzene	ND	0.0041	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Chloroethane	ND	0.010	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Chloroform	ND	0.0038	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Chloromethane	ND	0.0044	0.15		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
2-Chlorotoluene	ND	0.0037	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
4-Chlorotoluene	ND	0.0044	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
cis-1,2-DCE	ND	0.0029	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
cis-1,3-Dichloropropene	ND	0.0046	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1.2-Dibromo-3-chloropropane	ND	0.015	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Dibromochloromethane	ND	0.0045	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Dibromomethane	ND	0.0043	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2-Dichlorobenzene	ND	0.0044	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,3-Dichlorobenzene	ND	0.0041	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,4-Dichlorobenzene	ND	0.0062	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Dichlorodifluoromethane	ND	0.005	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,1-Dichloroethane	ND	0.0027	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,1-Dichloroethene	ND	0.016	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2-Dichloropropane	ND	0.0042	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,3-Dichloropropane	ND	0.0042	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
2,2-Dichloropropane	ND	0.0029	0.030		mg/Kg	1	5/24/2016 3:55:15 PM	C34454

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.	
--	--

Hall Environmental Analysis Laboratory, Inc.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 31 of 47

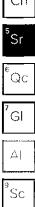
Analytical Report

Lab Order 1605943

Date Reported: 6/28/2016

CLIENT: Western Refining Company Project: SWMU 10				nt Sampl llection l	e ID: Me Date:	OH Bla	nk	
Lab ID: 1605943-007	Matrix:	MEOH BI	LAN R	eceived l	Date: 5/19	9/2016	4:30:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1-Dichloropropene	ND	0.0040	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Hexachlorobutadiene	ND	0.0061	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
2-Hexanone	ND	0.027	0.50		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Isopropylbenzene	ND	0.0043	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
4-Isopropyltoluene	ND	0.0045	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
4-Methyl-2-pentanone	ND	0.015	0.50		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Methylene chloride	0.016	0.014	0.15	J	mg/Kg	1	5/24/2016 3:55:15 PM	C34454
n-Butylbenzene	ND	0.0044	0.15		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
n-Propylbenzene	ND	0.0038	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
sec-Butylbenzene	ND	0.0069	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Styrene	ND	0.0045	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
tert-Butylbenzene	ND	0.0041	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,1,1,2-Tetrachloroethane	ND	0.0048	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,1,2,2-Tetrachloroethane	ND	0.0081	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Tetrachloroethene (PCE)	ND	0.0041	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
trans-1,2-DCE	ND	0.014	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
trans-1,3-Dichloropropene	ND	0.0073	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2,3-Trichlorobenzene	ND	0.0075	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2,4-Trichlorobenzene	ND	0.0053	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,1,1-Trichloroethane	ND	0.0031	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,1,2-Trichloroethane	ND	0.0059	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Trichloroethene (TCE)	ND	0.0054	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Trichlorofluoromethane	ND	0.0037	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
1,2,3-Trichloropropane	ND	0.0086	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Vinyl chloride	ND	0.0041	0.050		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Xylenes, Total	ND	0.0095	0.10		mg/Kg	1	5/24/2016 3:55:15 PM	C34454
Surr: Dibromofluoromethane	86.8		70-130		%Rec	1	5/24/2016 3:55:15 PM	C34454
Surr: 1,2-Dichloroethane-d4	78.8		70-130		%Rec	1	5/24/2016 3:55:15 PM	C34454
Surr: Toluene-d8	99.5		70-130		%Rec	1	5/24/2016 3:55:15 PM	C34454
Surr: 4-Bromofluorobenzene	104		70-130		%Rec	1	5/24/2016 3:55:15 PM	C34454

Hall Environmental Analysis Laboratory, Inc.


Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	в	Analyte detected in the associated Method Blank	
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 32 of 47
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 460 52 61 17
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

SAMPLE RESULTS - 01

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		:
Chromium,Hexavalent	U		0.640	2.00	1	05/26/2016 19:13	WG874409	2
Wet Chemistry b	y Method 9	012B						3
Wet Chemistry b	y Method 9 Result	0012B <u>Qualifier</u>	MDL	RDL	Dilution	Analysis	Batch	30
Wet Chemistry b	<u> </u>		MDL mg/kg	RDL mg/kg	Dilution	Analysis date / time	Batch	3 4

Collected date/time: 05/18/16 10:15

SAMPLE RESULTS - 02 L837333

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chromium,Hexavalent	U		0.640	2.00	1	05/26/2016 19:13	<u>WG874409</u>	
Wet Chemistry b	y Method 9	012B						
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	· · · · · · · · · · · · · · · · · · ·
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Cyanide	0.0485	J	0.0390	0.250	1	05/31/2016 10:27	WG875385	

Collected date/time: 05/18/16 10:25

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Qc

GL

A]

Sc

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		F Weiner 4.00
Chromium,Hexavalent	U		0.640	2.00	1	05/26/2016 19:15	WG874409	l'TC
Wet Chemistry b								³ Ss
	Result	<u>Qualifier</u>	MDL	RDL	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Cyanide	0.0438	ī	0.0390	0.250	1	06/02/2016 09:27	WG876669	[°] Cn
								⁵ Sr
								6

Collected date/time: 05/18/16 16:35

SAMPLE RESULTS - 04

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		1
Chromium,Hexavalent	U		0.640	2.00	1	05/26/2016 19:16	<u>W6874409</u>	
Wet Chemistry b	y Method 9	9012B						3
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
	0.0403		0.0390	0.250		06/02/2016 09:28	WG876669	

DATE/TIME: 06/02/16 15:08

Collected date/time: 05/18/16 16:50

SAMPLE RESULTS - 05

ONE LAB, NATIONWIDE.

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		ſ
Chromium,Hexavalent	U		0.640	2.00	1	05/26/2016 19:16	WG874403	
Wet Chemistry b	y Method 9	9012B						
Wet Chemistry b	y Method 9 Result	0012B Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Wet Chemistry b			MDL mg/kg	RDL mg/kg	Dilution	Analysis date / time	Batch	[

[°] Cn	
⁵ Sr	
[¢] Qc	
⁷ Gl	
A	
°Sc	

SAMPLE RESULTS - 06

Wet Chemistry by Method 3060A/7196A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		·
Chromium, Hexavalent	U		0.640	2.00	1	05/26/2016 19:17	WG874409	2 ² .
Wet Chemistry b								3
Wet Chemistry b	y Method S Result	012B Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Wet Chemistry b			MDL mg/kg	RDL mg/kg	Dilution	Analysis date / time	Batch	

Sr

Q¢

GI

AL

Sc

WG874409 Wet Chemistry by Method 3060A/7196A

QUALITY CONTROL SUMMARY

¥

Wet Chemistry by Method JubuA//196A	ethod 3060A/.	Add1/				V.20,10-5551551	00,00,40,00			
Method Blank (MB)	m									
(MB) R3140072-1 05/26/16 18:42 MB R	/16 18:42 MB Result	MB Qualifier	MB MDL	MB RDL		- - 				
Analyte	mg/kg		mg/kg	mg/kg						, . ,,
Chromium,Hexavalent	n		0.640	2.00						m
L837120-10 Original Sample (OS) • Duplicate (DUP)	al Sample (OS) • Duplic	cate (DUP)							SS
(OS) L837120-10 05/26/16 18:49 • (DUP) R3140072-4 05/26/16 18:49	16 18:49 • (DUP)	R3140072-4 05	5/26/16 18:49							มั
	Original Result (dry)	Original Result DUP Result (dry) Dilution DUP RPD (dry)	y) Dilution DUF		DUP Qualifier D	DUP RPD Limits				
Analyte	mg/kg	mg/kg	%		° [~]	%				က်
Chromium, Hexavalent	Ð	ON	1 0.000	00		20				j u
1.837333-03 Original Sample (OS) • Duplicate (DU ⁻⁾	nal Sample	Iqud • (SO)	icate (DU⊐	6						Ţ
(OS) L837333-03 05/26/16 19:15 • (DUP) R3140072-8 05/26/16 19:15	/16 19:15 • (DUP)	R3140072-8 0	5/26/16 19:15							ס ו
	Original Result	Original Result DUP Result	Dilution DUP RPD		DUP Qualifier D	DUP RPD Limits				
Analyte	mg/kg	mg/kg	%		ď	%				27
Chromium,Hexavalent	n	QN	1 0.000	00	7	20				
										Sc
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	ol Sample (L	.CS) • Labor	atory Con	trol Sam	ole Duplica:	te (LCSD)				
(LCS) R3140072-2 05/26/16 18:43 • (LCSD) R3140072-3 05/26/16 18:44	6/16 18:43 • (LCS	3D) R3140072-3	05/26/16 18:4	4						1
	Spike Amount LCS Result	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	9 ₆		96	8	
Chromium, Hexavalent	56.9	0.09	62.8	105	011	80.0-120		5.00	20	
007400-10 Octobel Semala (OS) - Matrix Series (MS) - Matrix Se	al Camalo In	OC) - Matrix	Shilo (MO	2) - Matri	No Vo No	ka Dunkata (MSD)				
			יואוי בעולה ע	- INDIAL - ÍC	א טאיאכי עמ	hirder (wilde				1
(05)1 837100-10 05/26/16 18:49 • (MS) R3140072-5 05/26/16 18:52 • (MSD) R3140072-6	16 18-49 - (MS) R	23140072-5 05/	126/16 18 52 . I	(MSD) R3140	072-6 05/26/16 18:53	6 18 53				

	mits		
	RPD Limits	%	20
	RPD	%	0.000
	MSD Qualifier		
	MS Qualifier		
	Rec. Limits	%	75.0-125
	Dilution		
6 18:53	MSD Rec.	8	75.0
72-6 05/26/1	MS Rec.	%	75.0
MSD) R31400) MSD Result (dry)	mg/kg	17.9
/26/16 18:52 • (MS Result (dry	mg/kg	17.9
3140072-5 05/	Spike Amount Original Result MS Result (dry) (dry)	mg/kg	N
16 18:49 - (MS) R	Spike Amount (dry)	mg/kg	23.8
(OS) L837120-10 05/26/16 18:49 • (MS) R3140072-5 05/26/16 18:52 • (MSD) R3140072-6 05/26/16 18:53		Analyte	Chromium, Hexavalent

ACCOUNT: Hall Environmental Analysis Laboratory

PROJECT:

WG875385 Wet Chemistry by Method 9012B

QUALITY CONTROL SUMMARY

Method Blank (MB)

	MB Result	MB Qualifier	MB MDL	MB RDL
nalyte	mg/kg		mg/kg	mg/kg
Cyanide			0.0390	0.250

-L837333-01 Original Sample (OS) • Duplicate (DUP)

	P RPD Limits		
-	DUP Qualifier DUP RPD Limits	%	20
:26	Dilution DUP RPD	%	13.0
05/31/16 10	Dilution		-
R3140567-7 05/31/16 10:26	DUP Result	mg/kg	2.52
OS) L837333-01 05/31/16 10:25 • (DUP) R31	Original Result	mg/kg	2.20
(OS) L837333-01 0		Analyte	Cyanide

° SS SS SC SC SC

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

mg/kg mg/kg % % % % % 66.4 59.4 137 123 50.0-150 11.0 20	05/31/16 1	(LCS) R3140567-5 05/31/16 10:12 • (LCSD) R3140567-6 Spike Amount LCS Result) R3140567-6 (LCS Result	05/31/16 10:13 LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
59.4 137 123 50.0-150	mg/kg		mg/kg	mg/kg	%	8	%		-	%	%
	48.4		66.4	59.4	137	123	50.0-150			11.0	20

WG876669 Wet Chemistry by M	WG876669 wet Chemistry by Method 9012B			QUALITY CONTROL SUMMARY 1837333-03.04.05.06
Method Blank (MB)	ik (MB)			
(MB) R3141092-4 06/02/16 09:22	06/02/16 09:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	бу/бш
Cyanide	n		0.0390	0.250

Duplicate (DUP)
• (so
Original Sample (
L837358-05

	DUP RPD Limits	84	20
	DUP Qualifier		5
09:37	DUP RPD	8	47.0
06/02/16	Dilution		-
R3141092-7	DUP Result	mg/kg	QN
02/16 09:36 • (DUP)	Original Result DUP Result Dilution DUP RPD	mg/kg	0.104
(OS) L837358-05 06/02/16 09:36 • (DUP) R3141092-7 06/02/16 09:37		Analyte	Cyanide

I.837397-01 Original Sample (OS) • Duplicate (DU²)

P) R3141092-8 06/02/16. Jit DUP Result Dilution mg/kg 10 10 10	16 09:59	ion DUP RPD DUP Qualifier DUP RPD Limits	% %	0.000 20
	P) R3141092-8 06/1	Original Result DUP Result D	mg/kg	
•*	(OS) L837397-01 06/02/16 09:58 • (DUP) R3141092-8 06/02/16 (Analyte	Cyanide

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	RPD Limits	%	20
	LCSD Qualifier RPD	86	13.0
	LCS Qualifier		
	Rec. Limits	86	50.0-150
	LCSD Rec.	%	89.0
24	LCS Rec.	%	101
5 06/02/16 09	: LCS Result LCSD Result LCS Rec.	mg/kg	43.2
iD) R3141092-(LCS Result	mg/kg	49.0
LCS) R3141092-5 06/02/16 09:23 • (LCSD)	Spike Amount	mg/kg	48.4
(LCS) R3141092-5 C		Analyte	Cyanide

"837397-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	RPD Limits	%	20
	MSD Qualifier RPD	86	12.0
	MSD Qualit		
	MS Qualifier		90
	Dilution Rec. Limits	%	80.0-120
	Dilution		, -
16 10:03	MSD Rec.	8	83.0
32-10 06/02/	MS Rec.	%	70.0
(MSD) R314109	Result (dry) MSD Result (dry)	mg/kg	4.23
02/16 10:02 • 1	MS Result (dry	mg/kg	3.76
3141092-9 06/	Spike Amount Original Result MS Resul (dry) (dry)	mg/kg	1.10
16 10:01 • (MS) R.	Spike Amount (dry)	mg/kg	3.78
(OS) L837397-03 06/02/16 10:01 • (MS) R3141092-9 06/02/16 10:02 • (MSD) R3141092-10 06/02/16 10:03		Analyte	Cyanide

GLOSSARY OF TERMS

Abbreviations and Definitions

SDG

MDL

RDL

ND

RPD

(dry)

Rec.

Original Sample

U

Τc

I Definitions	
Sample Delivery Group.	
Method Detection Limit.	
Reported Detection Limit.	
Not detected at the Reporting Limit (or MDL where applicable).	
Not detected at the Reporting Limit (or MDL where applicable).	
Relative Percent Difference.	
Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].	,
The non-spiked sample in the prep batch used to determine the Relative Percent Difference (F from a quality control sample. The Original Sample may not be included within the reported St Recovery.	
Description	

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.

Ss Cn Sr Qc GI

A. Sc

ACCOUNT: Hall Environmental Analysis Laboratory

DATE/TIME: 06/02/16 15:08

E E

Wester SWM	rn Refining C U 10	Company	1							
5449 SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics										
	Batch	n ID: 254	449	R	RunNo: 34433					
2016 Analysis Date: 5/24/2016			S	eqNo: 1	061812	Units: mg/K	g			
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
(DRO)	54	10	50.00	0	109	62.6	124			

70

120

100

Sult: DNOP	5.5		5.000		109	70	130			
Sample ID MB-25449	SampT	уре: М	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batcl	h ID: 25	449	F	RunNo: 3	4433				
Prep Date: 5/23/2016	Analysis D	Date: 5	/24/2016	S	SeqNo: 1	061813	Units: mg/ł	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	11		10.00		113	70	130			

E 000

Qualifiers:

Client:

Project:

Analyte

Sample ID LCS-25449 Client ID: LCSS Prep Date: 5/23/2016

Diesel Range Organics (DRO)

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 33 of 47

WO#:	1605943
	28-Jun-16

	stern Refining C MU 10	Compan	y							
Sample ID rb	SampT	уре: М	BLK	Tes	tCode: E	PA Method	8260B: Volat	tiles		
Client ID: PBS	Batch	n ID: C :	34454	F	RunNo: 3	34454				
Prep Date:	Analysis D	ate: 5	/24/2016	S	SeqNo: 1	062796	Units: mg/K	(q		
	-						_	-		Qual
Analyte Benzene	Result ND	PQL 0.025	SPR value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Toluene	ND	0.025								
Ethylbenzene	ND	0.050								
Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2,4-Trimethylbenzene	ND	0.050								
1,3,5-Trimethylbenzene	ND	0.050								
1,2-Dichloroethane (EDC)	ND	0.050								
1,2-Dibromoethane (EDB)	ND	0.050								
Naphthalene	ND	0.000								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
Acetone	ND	0.75								
Bromobenzene	ND	0.050								
Bromodichloromethane	ND	0.050								
Bromoform	ND	0.050								
Bromomethane	ND	0.15								
2-Butanone	ND	0.50								
Carbon disulfide	ND	0.50								
Carbon tetrachloride	ND	0.050								
Chlorobenzene	ND	0.050								
Chloroethane	ND	0.10								
Chloroform	ND	0.050								
Chloromethane	ND	0.15								
2-Chlorotoluene	ND	0.050								
4-Chlorotoluene	ND	0.050								
cis-1,2-DCE	ND	0.050								
cis-1,3-Dichloropropene	ND	0.050								
1,2-Dibromo-3-chloropropane	ND	0.10								
Dibromochloromethane	ND	0.050								
Dibromomethane	ND	0.050								
1,2-Dichlorobenzene	ND	0.050								
1,3-Dichlorobenzene	ND	0.050								
1,4-Dichlorobenzene	ND	0.050								
Dichlorodifluoromethane	ND	0.050								
1,1-Dichloroethane	ND	0.050								
1,1-Dichloroethene	ND	0.050								
1,2-Dichloropropane	ND	0.050								
1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane	ND	0.10								

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 34 of 47

WO#:	160	5943
	A O T	

28-Jun-16

Sample ID rb SampType: MBLK TestCode: EPA Method 8260B: Volatiles Client ID: PBS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062776 Units: mg/Kg Analyte Result POL SPK value SPK value Countinit HighLimit %RPD RPDLimit Qual 11:Dichtompropene ND 0.10 SeqNo: 1062776 Units: mg/Kg Analyte ND 0.50 SeqNo: 1062776 Units: mg/Kg Analyte ND 0.50 SeqNo: 1060 SeqNo:			Refining C	Compan	y								
Client ID: PBS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5724/2016 SeqNo: 1062736 Units: mg/Kg Analyte Result PCL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 11-Dichtoropropene ND 0.10 -	Project:	SWMUI	.0										
Prep Date: Analysis Date: \$724/2018 SeqNo: 10627796 Units: mg/kg Analyte Result POL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 1.1:Dichtoropropere ND 0.10 Secondardian ND 0.50 Stagnoppletrame ND 0.50 Secondardian	Sample ID rb		SampT	Type: ME	BLK	Tes	tCode: E	PA Method	8260B: Volat	iles			
Analyte Result PQL SPK value SPK ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual 11 Dichtorprogene ND 0.10	Client ID: PBS		Batcl	h ID: C3	4454	F	RunNo: 3	4454					
1.1-Dichtoropropene ND 0.10 Hexachtorobuladiene ND 0.10 Hexachtorobuladiene ND 0.50 Isopropylbenzene ND 0.50 Isopropylbenzene ND 0.50 Mathyl-z-periatrone ND 0.50 Methylen-chiride ND 0.50 Methylenzene ND 0.50 Friedbylbenzene ND 0.50 See-Bulylbenzene ND 0.50 Systeme ND 0.50 Systeme ND 0.50 Systeme ND 0.50 Ital: 2.2 retrachtoroethane ND 0.50 Ital: 3.2.6/chitoroethane ND 0.50 1.1.2.7 Frichtoroethane ND 0.50 1.2.3 Trichtoroethane ND 0.50 1.2.4 Trichtoroethane ND 0.50 1.2.3 Trichtoroethane ND 0.50 1.2.4 Trichtorotehane ND 0.50 1.2.3 Trichtoroethane ND 0.50	Prep Date:		Analysis D	Date: 5/	24/2016	S	SeqNo: 1	062796	Units: mg/Kg				
Heisachtorobutadiene ND 0.10 2-Heisanone ND 0.50 Sapropyllenzene ND 0.050 4-laspropyllenzene ND 0.50 4-spropyllenzene ND 0.50 4-spropyllenzene ND 0.50	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
2-Hexanone ND 0.50 isopropyloterzene ND 0.50 4-Methyl-2-pentanone ND 0.50 4-Methyl-2-pentanone ND 0.55 	1,1-Dichloropropene		ND	0.10									
isaprop/blenzene ND 0.050 44sprop/blenzene ND 0.050 Methylene chloride ND 0.15 n-Butylbenzene ND 0.050 sec-Butylbenzene ND 0.050 sec-Butylbenzene ND 0.050 sec-Butylbenzene ND 0.050 sec-Butylbenzene ND 0.050 1.1,1.2-Tetrachloroethane ND 0.050 1.1,1.2-Tetrachloroethane ND 0.050 1.1,2.2-Tetrachloroethane ND 0.050 Sum: Duc	Hexachlorobutadiene		ND	0.10									
4+lasprop/loluene ND 0.050 4-Methyl-2-pentanone ND 0.050 n-Butylbenzene ND 0.050 n-Brog/benzene ND 0.050 sec: Butylbenzene ND 0.050 Styrene ND 0.050 tert-Butylbenzene ND 0.050 tert-Butylbenzene ND 0.050 tert-Butylbenzene ND 0.050 tars.1-J2.Deftankloroethane ND 0.050 tars.1-J2.DE ND 0.050 tars.1-J2.DE ND 0.050 tars.1-J2.Trichloroethane ND 0.050 1,1,1.Trichloroethane ND 0.050 1,1.3.Trichloroethane ND 0.050 trichloroethane ND 0.050 1,1.3.Trichloroethane ND 0.050 trichloroethane ND 0.050 trichloroethane ND 0.050 trichloroethane ND 0.050 trichloroethane-4 ND 0.500 89.7 70 130 sur: bloromofluoromethane ND <td>2-Hexanone</td> <td></td> <td>ND</td> <td>0.50</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	2-Hexanone		ND	0.50									
4+Methyl-2-pentanone ND 0.50 Methylen chloride ND 0.15 n-Bulybenzene ND 0.050 sec-Bulybenzene ND 0.050 sec-Bulybenzene ND 0.050 Syrene ND 0.050 Syrene ND 0.050 1,1,2,2-Tetrachloroethane ND 0.050 trans1,2-DCE ND 0.050 trans1,2-DCE ND 0.050 1,1,2,2-Tetrachloroethane ND 0.050 trans1,2-DCE ND 0.050 1,1,2,4-Tricklorobenzene ND 0.050 1,1,2-Tetrachloroptene ND 0.050 1,1,2-Trickloroptenzene ND 0.10 Sur: Dibromofluoromethane ND 0.500 <	Isopropylbenzene		ND	0.050									
Methylene chloride ND 0.15 n-Butylkenzene ND 0.050 n-Butylkenzene ND 0.050 Skyrene ND 0.050 Styrene ND 0.050 1,1,2.2-Tetrachloroethane ND 0.050 taras: 1,3-Dichloroethane ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,1,2-Trichloroethane ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 1,2,3-Trichloroethane ND 0.500 1,2,3-Trichloroethane ND 0.500 1,2,3-Trichloroethane ND 0.500 1,2,3-Trichloroethane 0.0 0.500 Syrie B.Tolloroethane-d4 0.45 0.5000 Syrie B.Tolloroethane-d4	4-Isopropyltoluene		ND	0.050									
n-Butylbenzene ND 0.15 n-Propylbenzene ND 0.050 sac-Butylbenzene ND 0.050 tert-Butylbenzene ND 0.050 tert-Butylbenzene ND 0.050 1,1,2,2-Tetrachloroethane ND 0.050 trata-1,2-Det ND 0.050 trata-1,3-Dichioropropene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,4-Trichloroethane ND 0.050 1,2,4-Trichloroethane ND 0.050 1,2,4-Trichloroethane ND 0.050 1,2,4-Trichloroethane ND 0.050 Trichloroethane ND 0.10 Sur: 1,2)-Dichloroethane ND 0.500 Sur: 2,2)-Trichloroethane ND 0.10 Sur: 1,2)-Trichloroethane ND 0.10 Sur: 1,2)-Trichloroethane ND 0.500 Sur: 1,2)-Trichloroethane ND 0.500 Sur: 1,2)-Trichloroethane ND 0.500 Sur: 2,2)-Trichloroethane ND 0.500 Sur: 2,2)-Trichloroethane ND 0.500 Sur: 1,2)-Trichloroethane ND 0.500 Sur: 2,2)-Trichloroethane ND 0.500 Sur: 1,2)-Trichloroethane ND 0.500 Sur: 1,2)-Trichloroethane ND 0.500 Sur: 2,2)-Trichloroethane ND 0.500 Sur: 3,2)-Trichloroethan	4-Methyl-2-pentanone		ND	0.50									
n-Proyblenzene ND 0.050 sec-Bulyblenzene ND 0.050 Styrene ND 0.050 ti.1,12Tetrachloroethane ND 0.050 Tetrachloroethane ND 0.050 Tetrachloroethane (PCE) ND 0.050 trans-1,2-OE ND 0.050 trans-1,3-Dichloroethane ND 0.050 1,1,2Trichlorobenzene ND 0.050 1,1,2Trichlorobenzene ND 0.050 1,2.3-Trichlorobenzene ND 0.050 1,2.3-Trichloroethane ND 0.050 5.2.5 Sytenes, Total ND 0.10 Sur: 1,2.2-Dichloroethane 4.0,45 0.5000 99.9 70 130 Sur: 1,2.2-Dichloroethane 4.0,45 0.5000 99.8 70 130 Sur: 4.8romofluoroethane 4.0,45 0.5000 98.8 70 130 Sur: 4.8romofluoroethane 4.0,45 SeqNo: 1062797 Units: mg/Kg Analyte Analysis Det: 57K value SPK Ref Val %REC LowLinit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130	Methylene chloride		ND	0.15									
sec-Bulylbenzene ND 0.050 Styrene ND 0.050 tert-Butylbenzene ND 0.050 1,1,2Tertachloroethane ND 0.050 1,1,2.2-Tetrachloroethane ND 0.050 trans-1,2.DCE ND 0.050 trans-1,2.DCE ND 0.050 1,2,3-Trichloroethane ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,3-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 1,1,1-Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Xylenes, Total ND 0.10 Sur: Tolkroethane4 0.49 0.5000 99.9 70 130 Sur: Tolkroethane4 0.49 0.5000 98.8 70 130 Sur: Tolkroethane4 0.49 0.5000 98.8 70 130 Sur: To	n-Butylbenzene		ND	0.15									
Slyrene ND 0.050 tert-Bulytbenzene ND 0.050 1,1,1,2-Tetrachloroethane ND 0.050 trans-1,2-DCE ND 0.050 trans-1,3-DCL ND 0.050 1,2,4-Tichloroethane ND 0.050 trans-1,3-DCE ND 0.050 1,2,4-Tichlorobenzene ND 0.050 1,1,2-Tichlorobenzene ND 0.050 1,1,2-Tichloroethane ND 0.050 1,1,2-Tichloroethane ND 0.050 1,2,3-Tichloroethane ND 0.050 1,2,3-Tichloroethane ND 0.050 1,2,3-Tichloroethane ND 0.050 1,2,3-Tichloroethane-4 0.45 0.5000 99.9 70 130 Sur: Dibromofluoromethane 0.50 95.90 93.8 70 130 Sur: ABromofluorobenzene	n-Propylbenzene		ND	0.050									
tert-Butybenzene ND 0.050 1,1,1,2-Tetrachloroethane ND 0.050 1,1,2,2-Tetrachloroethane ND 0.050 Tetrachloroethane (PCE) ND 0.050 trans-1,2-OCE ND 0.050 trans-1,3-Dichloroptopene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,1,2-Trichloroethane ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,1-Trichloroethane ND 0.050 Trichloroethane ND 0.10 Sur: Dibromofluoromethane 0.50 0.500 Sur: Dibromofluoromethane 0.50 0.5000 89.7 70 130 Sur: Dibromofluoromethane 0.54 0.5000 98.8 70 130 Sur: Dibromofluorobenzene 0.54 0.5000 107 70	sec-Butylbenzene		ND	0.050									
1,1,1,2 Tetrachloroethane ND 0.050 1,1,2,2-Tetrachloroethane ND 0.050 Taras-1,2-DCE ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,4-Trichloroethane ND 0.050 1,2,4-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethane ND 0.10 Surr: Diromofluoromethane 0.50 0.5000 89.7 70 130 Surr: Diromofluorobenzene 0.54 0.5000 98.8 70 130 Surr: Diromofluorobenzene 0.54 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.	Styrene		ND	0.050									
1,1,2,2-Tetrachloroethane ND 0.050 Tetrachloroethane (PCE) ND 0.050 trans-1,2-DCE ND 0.050 trans-1,3-Dichloropropene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,4-Trichlorobenzene ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethane ND 0.050 1,2,3-Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Xyglenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: JDichloroethane-44 0.45 0.5000 98.7 70 130 Surr: Al-Bromofluoromethane 0.54 0.5000 98.8 70 130 Surr: Al-Bromofluorobenzene 0.54 0.5000 98.8 70 130 Surr: 4l-Bromofluorobenzene 0.54 0.5000 1	tert-Butylbenzene		ND	0.050									
Tetrachloroethene (PCE) ND 0.050 trans-1.2-DCE ND 0.050 trans-1.3-Dichloropropene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroptoppene ND 0.050 1,2,3-Trichloroethane ND 0.050 Trichloroethane ND 0.050 1,2,3-Trichloropopane ND 0.050 Yaylenes, Total ND 0.050 Surr: 1,2-Dichloroethane-4 0.45 0.5000 99.9 70 130 Surr: 1,2-Dichloroethane-44 0.45 0.5000 98.8 70 130 Surr: 1,2-Dichloroethane-48 0.49 0.5000 98.8 70 130 Surr: 1,2-Dichloroethane-44 0.545 0.5000 107 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130	1,1,1,2-Tetrachloroethane	,	ND	0.050									
trans-1,2-DCE ND 0.050 trans-1,3-Dichloropropene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,4-Trichlorobenzene ND 0.050 1,1,1-Trichlorobenzene ND 0.050 1,1,2-Trichlorobenzene ND 0.050 1,1,1-Trichloroethane ND 0.050 Trichloroethane ND 0.050 Surr: Dibromofloromethane ND 0.10 Surr: Dibromofloromethane 0.50 99.9 70 130 Surr: Dibromofloromethane 0.50 99.9 70 130 Surr: Dibromofloromethane 0.50 98.7 70 130 Surr: Outene-d8 0.49 0.5000 98.8 70 130 Surr: Outene-d8 0.49 0.5000 98.8 70 130 Surr: Outene-d8 0.54 0.5000 107 70 <td>1,1,2,2-Tetrachloroethane</td> <td>9</td> <td>ND</td> <td>0.050</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	1,1,2,2-Tetrachloroethane	9	ND	0.050									
trans-1,3-Dichloropropene ND 0.050 1,2,3-Trichlorobenzene ND 0.050 1,2,4-Trichlorobenzene ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroptopane ND 0.050 1,2,3-Trichloroptopane ND 0.050 1,2,3-Trichloroptopane ND 0.050 1,2,3-Trichloroptopane ND 0.10 Vinyl chloride ND 0.10 Surr: Dibromofluoromethane 0.50 .5000 99.9 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Surr: Toluene-d8 0.54	Tetrachloroethene (PCE)		ND	0.050									
1,2,3-Trichlorobenzene ND 0.10 1,2,4-Trichlorobenzene ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloropropane ND 0.10 Vinyl chloride ND 0.050 Surr: Dibromofluoromethane 0.50 0.5000 Surr: Dibromofluoromethane 0.50 0.5000 Surr: Toluene-d8 0.49 0.5000 Surr: Toluene-d8 0.54 TestCo	trans-1,2-DCE		ND	0.050									
1,2,4-Trichlorobenzene ND 0.050 1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroethane ND 0.050 Trichloroptoane ND 0.050 1,2,3-Trichloroppane ND 0.050 Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 0.5000 99.9 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Surr: ABromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Volatiles Client ID: LCSS Batch ID: C34454 RunNo:<	trans-1,3-Dichloropropene	e	ND	0.050									
1,1,1-Trichloroethane ND 0.050 1,1,2-Trichloroethane ND 0.050 Trichloroethane (TCE) ND 0.050 Trichlorofluoromethane ND 0.050 1,2,3-Trichloropropane ND 0.050 Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: Dibromofluoromethane 0.50 0.5000 89.7 70 130 Surr: Dibromofluoromethane 0.50 0.5000 89.7 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Surr: Toluene-d8 0.49 0.5000 107 70 130 Sample ID 100ng Ics Samplyre: LCS TestCode: EPA Method 8260B: Volatilles E Client ID: LCSS Batch ID: C3445			ND	0.10									
1,1,2-Trichloroethane ND 0.050 Trichloroethane (TCE) ND 0.050 Trichlorofluoromethane ND 0.050 1,2,3-Trichloropropane ND 0.050 1,2,3-Trichloropropane ND 0.050 1,2,3-Trichloropropane ND 0.050 1,2,3-Trichloropropane ND 0.050 Xylenes, Total ND 0.050 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: Dibromofluoromethane 0.50 89.7 70 130 Surr: J.2-Dichloroethane-d4 0.45 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Velocities Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analy	1,2,4-Trichlorobenzene		ND	0.050									
1,1,2-Trichloroethane ND 0.050 Trichloroethane (TCE) ND 0.050 Trichlorofluoromethane ND 0.050 1,2,3-Trichloropropane ND 0.050 1,2,3-Trichloropropane ND 0.050 1,2,3-Trichloropropane ND 0.050 1,2,3-Trichloropropane ND 0.050 Xylenes, Total ND 0.050 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: Dibromofluoromethane 0.50 89.7 70 130 Surr: J.2-Dichloroethane-d4 0.45 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Velocities Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analy	1,1,1-Trichloroethane		ND	0.050									
Trichlorodethene (TCE) ND 0.050 Trichlorofluoromethane ND 0.050 1,2,3-Trichloropropane ND 0.10 Vinyl chloride ND 0.050 Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: Dibromofluoromethane 0.50 89.7 70 130 Surr: J.2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Vinits: mg/Kg Client ID: LCSS Batch ID: C34454 RunNo: 34454 Vinits: mg/Kg Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK Ref Val %REC LowLimit HighLimit %RPD	1,1,2-Trichloroethane												
Trichlorofluoromethane ND 0.050 1,2,3-Trichloropropane ND 0.10 Vinyl chloride ND 0.050 Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 98.8 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 98.8 70 130 Surr: 1,2-Dichloroethane-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 3260B: Volatiles Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Volatiles Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual <													
1,2,3-Trichloropropane ND 0.10 Vinyl chloride ND 0.050 Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 98.8 70 130 Sample ID 100ng Ics SampType: LCs TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130 130													
Vinyl chloride ND 0.050 Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130 130													
Xylenes, Total ND 0.10 Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 98.8 70 130 Surr: 1,2-Dichloroethane-d4 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130													
Surr: Dibromofluoromethane 0.50 99.9 70 130 Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: 1,2-Dichloroethane-d4 0.49 0.5000 98.8 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130	=												
Surr: 1,2-Dichloroethane-d4 0.45 0.5000 89.7 70 130 Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130	=	thane			0.5000		99.9	70	130				
Surr: Toluene-d8 0.49 0.5000 98.8 70 130 Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 260B: Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Volatiles Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130													
Surr: 4-Bromofluorobenzene 0.54 0.5000 107 70 130 Sample ID 100ng Ics SampType: LCS TestCode: EPA Method 8260B: Volatiles Volatiles Client ID: LCSS Batch ID: C34454 RunNo: 34454 Volatiles Volatiles Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Volatiles Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130													
Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130		izene											
Client ID: LCSS Batch ID: C34454 RunNo: 34454 Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130	Sample ID 100ng lo	cs	Samol	vpe: LC	s	Tes	tCode: F	PA Method	8260B: Volat	iles			
Prep Date: Analysis Date: 5/24/2016 SeqNo: 1062797 Units: mg/Kg Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Benzene 1.0 0.025 1.000 0 101 70 130													
AnalyteResultPQLSPK valueSPK Ref Val%RECLowLimitHighLimit%RPDRPDLimitQualBenzene1.00.0251.000010170130									Units: mg/K	ģ			
Benzene 1.0 0.025 1.000 0 101 70 130	Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
									-				
	Toluene		0.97	0.050	1.000	0	97.4	70	130				
Chlorobenzene 0.95 0.050 1.000 0 95.4 70 130													

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 35 of 47

Client:	Western Refining Company
Project:	SWMU 10

Sample ID 100ng Ics	SampT	Type: LC	S	Tes	tCode: E	tiles				
Client ID: LCSS	Batch	h ID: C3	4454	F	RunNo: 3	4454				
Prep Date:	Analysis D	Analysis Date: 5/24/2016			SeqNo: 1	062797	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	1.1	0.050	1.000	0	106	70	130			
Trichloroethene (TCE)	0.98	0.050	1.000	0	98.2	70	130			
Surr: Dibromofluoromethane	0.51		0.5000		102	70	130			
Surr: 1,2-Dichloroethane-d4	0.45		0.5000		90.0	70	130			
Surr: Toluene-d8	0.49		0.5000		98.0	70	130			
Surr: 4-Bromofluorobenzene	0.54		0.5000		109	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 36 of 47

WO#: 1605943 28-Jun-16

WO#: 1605943

28-Jun-16

Client:Western Refining CompanyProject:SWMU 10

Sample ID LCS-25468	SampT	ype: LC	S	Tes	tCode: M	ethod 8260	B/5035LOW:	VOLATIL	ES			
Client ID: LCSS	Batcl	h ID: 254	468	F	RunNo: 3	4484						
Prep Date: 5/24/2016	Analysis E	Date: 5/	25/2016	S	SeqNo: 1	063539	Units: µg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	10.2	2.00	10.00	0	102	70	130					
Toluene	11.1	2.00	10.00	0	111	70	130					
Chlorobenzene	11.1	2.00	10.00	0	111	70	130					
1,1-Dichloroethene	10.3	2.00	10.00	0	103	68	129					
Trichloroethene (TCE)	10.2	2.00	10.00	0	102	70	130					
Surr: 1,2-Dichloroethane-d4	9.00		10.00		90.0	70	130					
Surr: 4-Bromofluorobenzene	10.0		10.00		100	70	130					
Surr: Dibromofluoromethane	8.76		10.00		87.6	70	130					
Surr: Toluene-d8	9.90		10.00		99.0	70	130					
Sample ID LCSD-25468	SampT	ype: LC	S	TestCode: Method 8260B/5035LOW: VOLATILES								
Client ID: LCSS	Batcl	h ID: 254	468	RunNo: 34484								
Prep Date: 5/24/2016	Analysis D	Date: 5/	25/2016	5	SeqNo: 1	063540	Units: µg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	10.3	2.00	10.00	0	103	70	130	1.08	0			
Foluene	11.2	2.00	10.00	0	112	70	130	0.629	0			
Chlorobenzene	11.3	2.00	10.00	0	113	70	130	1.96	0			
I,1-Dichloroethene	10.4	2.00	10.00	0	104	68	129	1.16	0			
Trichloroethene (TCE)	10.2	2.00	10.00	0	102	70	130	0.295	0			
Surr: 1,2-Dichloroethane-d4	8.93		10.00		89.3	70	130	0	0			
Surr: 4-Bromofluorobenzene	10.1		10.00		101	70	130	0	0			
Surr: Dibromofluoromethane	8.72		10.00		87.2	70	130	0	0			
Surr: Toluene-d8	9.86		10.00		98.6	70	130	0	0			
Sample ID MB-25468	SampT	уре: МЕ	BLK	Tes	tCode: M	ethod 8260	B/5035LOW:	VOLATIL	ES			
Client ID: PBS	Batcl	h ID: 254	468	F	RunNo: 3	4484						
Prep Date: 5/24/2016	Analysis E	Date: 5/	25/2016	S	SeqNo: 1	063541	Units: µg/K	g				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Benzene	ND	2.00										
Foluene	ND	2.00										
Ethylbenzene	ND	2.00										
Methyl tert-butyl ether (MTBE)	ND	2.00										
,2,4-Trimethylbenzene	ND	2.00										
,3,5-Trimethylbenzene	ND	2.00										
,2-Dichloroethane (EDC)	ND	2.00										
1,2-Dibromoethane (EDB)	ND	2.00										
Naphthalene	ND	2.00										
1-Methylnaphthalene	ND	4.00										

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 37 of 47

WO#:	1605943

Client:WesternProject:SWMU	Refining C 10	Compan	y							
Sample ID MB-25468	SampT	уре: М	BLK	Tes	tCode: N	Method 8260	B/5035LOW:	VOLATILI	ES	
Client ID: PBS	Batch	n ID: 25	468	F	RunNo: 3	34484				
Prep Date: 5/24/2016	Analysis D	ate: 5/	25/2016	S	SeqNo: '	1063541	Units: µg/Kg	I		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2-Methylnaphthalene	ND	4.00								
Acetone	ND	10.0								
Bromobenzene	ND	2.00								
Bromodichloromethane	ND	2.00								
Bromoform	ND	2.00								
Bromomethane	ND	3.00								
2-Butanone	ND	10.0								
Carbon disulfide	ND	10.0								
Carbon tetrachloride	ND	2.00								
Chlorobenzene	ND	2.00								
Chloroethane	ND	2.00								
Chloroform	ND	2.00								
Chloromethane	ND	2.00								
2-Chlorotoluene 4-Chlorotoluene	ND ND	2.00 2.00								
cis-1,2-DCE	ND	2.00								
cis-1,3-Dichloropropene	ND	2.00								
1,2-Dibromo-3-chloropropane	ND	2.00								
Dibromochloromethane	ND	2.00								
Dibromomethane	ND	2.00								
1,2-Dichlorobenzene	ND	2.00								
1,3-Dichlorobenzene	ND	2.00								
1,4-Dichlorobenzene	ND	2.00								
Dichlorodifluoromethane	ND	2.00								
1,1-Dichloroethane	ND	2.00								
1,1-Dichloroethene	ND	2.00								
1,2-Dichloropropane	ND	2.00								
1,3-Dichloropropane	ND	2.00								
2,2-Dichloropropane	ND	2.00								
1,1-Dichloropropene	ND	2.00								
Hexachlorobutadiene	ND	2.00								
2-Hexanone	ND	10.0								
Isopropylbenzene	ND	2.00								
4-Isopropyltoluene	ND	2.00								
4-Methyl-2-pentanone	ND	10.0								
Methylene chloride	ND	3.00								
n-Butylbenzene	ND	2.00								
n-Propylbenzene	ND	2.00								
sec-Butylbenzene	ND	2.00								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 38 of 47

WO#: 1605943

28-Jun-16

Client:Western Refining CompanyProject:SWMU 10

Sample ID MB-25468	SampT	ype: ME	BLK	Tes	tCode: M	ethod 8260	B/5035LOW:	VOLATILI	ES	
Client ID: PBS	Batch	n ID: 25	468	F	RunNo: 3	4484				
Prep Date: 5/24/2016	Analysis D	Date: 5/	25/2016	5	SeqNo: 1	063541	Units: µg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Styrene	ND	2.00								
tert-Butylbenzene	ND	2.00								
1,1,1,2-Tetrachloroethane	ND	2.00								
1,1,2,2-Tetrachloroethane	ND	2.00								
Tetrachloroethene (PCE)	ND	2.00								
trans-1,2-DCE	ND	2.00								
trans-1,3-Dichloropropene	ND	2.00								
1,2,3-Trichlorobenzene	ND	2.00								
1,2,4-Trichlorobenzene	ND	2.00								
1,1,1-Trichloroethane	ND	2.00								
1,1,2-Trichloroethane	ND	2.00								
Trichloroethene (TCE)	ND	2.00								
Trichlorofluoromethane	ND	2.00								
1,2,3-Trichloropropane	ND	2.00								
Vinyl chloride	ND	2.00								
Xylenes, Total	ND	2.00								
Surr: 1,2-Dichloroethane-d4	8.94		10.00		89.4	70	130			
Surr: 4-Bromofluorobenzene	10.0		10.00		100	70	130			
Surr: Dibromofluoromethane	8.80		10.00		88.0	70	130			
Surr: Toluene-d8	9.82		10.00		98.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 39 of 47

WO#:	160	5943
	2 0 T	

Client: Weste Project: SWM	ern Refining C U 10	Company	y							
Sample ID mb-25469	SampT	уре: МЕ	BLK	Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 254	469	F	RunNo: 3	4461				
Prep Date: 5/24/2016	Analysis D				SeqNo: 1		Units: mg/K	a		
	-						_	-		Qual
Analyte Acenaphthene	Result ND	PQL 0.20	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	0.15	0.50								J
4-Bromophenyl phenyl ether	ND	0.20								
Butyl benzyl phthalate	ND	0.20								
Carbazole	ND	0.20								
4-Chloro-3-methylphenol	ND	0.50								
4-Chloroaniline	ND	0.50								
2-Chloronaphthalene	ND	0.25								
2-Chlorophenol	ND	0.20								
4-Chlorophenyl phenyl ether	ND	0.20								
Chrysene	ND	0.20								
Di-n-butyl phthalate	0.12	0.40								J
Di-n-octyl phthalate	ND	0.40								
Dibenz(a,h)anthracene	ND	0.20								
Dibenzofuran	ND	0.20								
1,2-Dichlorobenzene	ND	0.20								
1,3-Dichlorobenzene	ND	0.20								
1,4-Dichlorobenzene	ND	0.20								
3,3 - Dichlorobenzidine	ND	0.25								
Diethyl phthalate	ND	0.20								
Dimethyl phthalate	ND	0.20								
2,4-Dichlorophenol	ND	0.40								
2,4-Dimethylphenol	ND	0.30								
4,6-Dinitro-2-methylphenol	0.087	0.40								J
2,4-Dinitrophenol	ND	0.50								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 40 of 47

WO#:	160	5943

Client: Wester	rn Refining C	Company	у							
Project: SWMU	U 10									
Sample ID mb-25469	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 25	469	F	RunNo: 3	4461				
Prep Date: 5/24/2016	Analysis D				SeqNo: 1		Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	0.50					-			
2,6-Dinitrotoluene	ND	0.50								
Fluoranthene	ND	0.20								
Fluorene	ND	0.20								
Hexachlorobenzene	ND	0.20								
Hexachlorobutadiene	ND	0.20								
Hexachlorocyclopentadiene	ND	0.20								
Hexachloroethane	ND	0.20								
Indeno(1,2,3-cd)pyrene	ND	0.20								
1-Methylnaphthalene	ND	0.20								
2-Methylnaphthalene	ND	0.20								
2-Methylphenol	ND	0.40								
3+4-Methylphenol	ND	0.20								
N-Nitrosodi-n-propylamine	ND	0.20								
N-Nitrosodiphenylamine	ND	0.20								
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.0		3.330		60.1	28.3	102			
Surr: Phenol-d5	2.2		3.330		65.9	35.7	103			
Surr: 2,4,6-Tribromophenol	2.5		3.330		75.8	35.2	108			
Surr: Nitrobenzene-d5	1.1		1.670		68.4	24	118			
Surr: 2-Fluorobiphenyl	1.2		1.670		73.2	35.4	111			
Surr: 4-Terphenyl-d14	1.1		1.670		64.4	15	91.7			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 41 of 47

Client: Western Refining Company **Project:** SWMU 10

Sample ID Ics-25469	SampT	Type: LC	S	Tes	tCode: El	PA Method	ivolatiles			
Client ID: LCSS		h ID: 25			RunNo: 34					
Prep Date: 5/24/2016	Analysis E	Date: 5/	25/2016	S	SeqNo: 1063512			٤g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.2	0.20	1.670	0	70.0	45.8	99.8			
4-Chloro-3-methylphenol	2.2	0.50	3.330	0	66.5	51.5	103			
2-Chlorophenol	1.8	0.20	3.330	0	54.1	46.5	105			
1,4-Dichlorobenzene	0.86	0.20	1.670	0	51.3	45.5	103			
2,4-Dinitrotoluene	1.1	0.50	1.670	0	66.9	36	87.2			
N-Nitrosodi-n-propylamine	0.80	0.20	1.670	0	48.1	47.3	104			
4-Nitrophenol	2.2	0.25	3.330	0	65.7	47.3	95.3			
Pentachlorophenol	1.9	0.40	3.330	0	56.6	38.7	89.3			
Phenol	1.8	0.20	3.330	0	54.5	47.8	106			
Pyrene	1.2	0.20	1.670	0	72.6	33.4	105			
1,2,4-Trichlorobenzene	1.0	0.20	1.670	0	61.4	50.4	115			
Surr: 2-Fluorophenol	1.6		3.330		47.4	28.3	102			
Surr: Phenol-d5	1.9		3.330		56.0	35.7	103			
Surr: 2,4,6-Tribromophenol	2.2		3.330		66.3	35.2	108			
Surr: Nitrobenzene-d5	1.0		1.670		59.7	24	118			
Surr: 2-Fluorobiphenyl	1.2		1.670		70.2	35.4	111			
Surr: 4-Terphenyl-d14	0.74		1.670		44.5	15	91.7			

Qualifiers:

Value exceeds Maximum Contaminant Level. *

D Sample Diluted Due to Matrix

- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- \mathbf{S} % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 42 of 47

WO#: 1605943

Client: Project:	Weste SWM	rn Refining C U 10	ompan	у									
Sample ID	MB-25509	SampT	уре: М	BLK	Tes	tCode: El	PA Method	7471: Mercu	ry				
Client ID:	PBS	Batch	n ID: 25	509	F	RunNo: 3	4523						
Prep Date:	5/25/2016	Analysis D	ate: 5/	26/2016	S	SeqNo: 1	064862	Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Mercury		ND	0.033										
Sample ID	LCS-25509	SampT	ype: LC	s	Tes	tCode: El	PA Method	7471: Mercu	ry				
Client ID:	LCSS	Batch	n ID: 25	509	F	RunNo: 3	4523						
Prep Date:	5/25/2016	Analysis D	ate: 5/	26/2016	S	SeqNo: 1	064863	Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Mercury		0.16	0.033	0.1667	0	98.8	80	120					
Sample ID	1605943-001B	MS SampT	ype: MS	6	Tes	tCode: El	PA Method	7471: Mercu	ry				
Client ID:	SWMU 10-21 (2-2.5') Batch	n ID: 25	509	F	RunNo: 3	4523						
Prep Date:	5/25/2016	Analysis D	ate: 5	26/2016	S	eqNo: 1	064865	Units: mg/k	(g-dry				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Mercury		0.23	0.036	0.1803	0.05558	98.8	75	125					
Sample ID	1605943-001B	MSD SampT	ype: MS	SD	Tes	tCode: El	PA Method	7471: Mercu	ry				
Client ID:	SWMU 10-21 (2-2.5') Batch	n ID: 25	509	F	RunNo: 3	4523						
Prep Date:	5/25/2016	Analysis D	ate: 5/	26/2016	S	SeqNo: 1	064866	Units: mg/k	(g-dry				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual		
Mercury		0.23	0.036	0.1817	0.05558	93.9	75	125	3.25	20			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 43 of 47

WO#: 1605943

Client: Western Refining Company Proj

ect:	SWMU 10
	2 11110 10

Sample ID MB-25508	SampT	ype: ME	BLK	TestCode: EPA Method 6010B: Soil Metals										
Client ID: PBS	Batch	n ID: 25	508	F	RunNo: 34511									
Prep Date: 5/25/2016	Analysis D	ate: 5/	26/2016	S	eqNo: 1	064307	Units: mg/K	g						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual				
Antimony	ND	2.5												
Arsenic	ND	2.5												
Barium	ND	0.10												
Beryllium	ND	0.15												
Cadmium	ND	0.10												
Chromium	ND	0.30												
Cobalt	ND	0.30												
ron	1.7	2.5								J				
Lead	ND	0.25												
Manganese	ND	0.10												
Nickel	ND	0.50												
Selenium	ND	2.5												
Silver	ND	0.25												
Vanadium	ND	2.5												
Zinc	ND	2.5												
Zinc Sample ID LCS-25508		2.5 ype: LC	s	Tes	tCode: El	PA Method	6010B: Soil I	Vietals						
	SampT				tCode: El		6010B: Soil I	Vietals						
Sample ID LCS-25508	SampT	ype: LC	508	F		4511	6010B: Soil I Units: mg/K							
Sample ID LCS-25508 Client ID: LCSS	SampT Batch	ype: LC	508 26/2016	F	RunNo: 34	4511			RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte	SampT Batch Analysis D Result 25	ype: LC 1D: 25 ate: 5/ PQL 2.5	508 26/2016 SPK value 25.00	F S SPK Ref Val 0	RunNo: 34 GeqNo: 10 %REC 99.8	4511 064308	Units: mg/K HighLimit 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016	SampT Batch Analysis D Result	ype: LC 1D: 25 ate: 5 / PQL	508 26/2016 SPK value	F S SPK Ref Val	RunNo: 34 SeqNo: 10 %REC	4511 064308 LowLimit	Units: mg/K HighLimit	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony	SampT Batch Analysis D Result 25 26 25	ype: LC n ID: 25 ate: 5/ PQL 2.5 2.5 0.10	508 26/2016 SPK value 25.00 25.00 25.00	F SPK Ref Val 0 0 0	RunNo: 3 GeqNo: 1 0 <u>%REC</u> 99.8 104 99.1	4511 064308 LowLimit 80 80 80	Units: mg/K HighLimit 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic	SampT Batch Analysis D Result 25 26	ype: LC n ID: 25 pate: 5/ PQL 2.5 2.5	508 26/2016 SPK value 25.00 25.00	F S SPK Ref Val 0 0	RunNo: 3 4 SeqNo: 1 0 <u>%REC</u> 99.8 104	4511 064308 LowLimit 80 80 80 80	Units: mg/K HighLimit 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium	SampT Batch Analysis D Result 25 26 25 26 25 26 25	ype: LC n ID: 25 vate: 5/ PQL 2.5 0.10 0.15 0.10	508 26/2016 SPK value 25.00 25.00 25.00	F SPK Ref Val 0 0 0	RunNo: 3 GeqNo: 1 0 <u>%REC</u> 99.8 104 99.1	4511 064308 LowLimit 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Beryllium	SampT Batch Analysis D Result 25 26 25 25 26	ype: LC n ID: 25 rate: 5/ PQL 2.5 2.5 0.10 0.15	508 26/2016 25.00 25.00 25.00 25.00	F SPK Ref Val 0 0 0 0	RunNo: 3 GeqNo: 1 0 <u>%REC</u> 99.8 104 99.1 103	4511 064308 LowLimit 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Beryllium Cadmium	SampT Batch Analysis D Result 25 26 25 26 25 26 25	ype: LC n ID: 25 vate: 5/ PQL 2.5 0.10 0.15 0.10	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	F SPK Ref Val 0 0 0 0 0 0	RunNo: 3 SeqNo: 1 <u>%REC</u> 99.8 104 99.1 103 101	4511 064308 LowLimit 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium	SampT Batch Analysis D Result 25 26 25 26 25 26 25 25 24 24 26	ype: LC 1D: 25 1ate: 5/ 2.5 2.5 0.10 0.15 0.10 0.30 0.30 2.5	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00	5 SPK Ref Val 0 0 0 0 0 0 0 0	RunNo: 3 SeqNo: 1 <u>%REC</u> 99.8 104 99.1 103 101 100	4511 064308 LowLimit 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt	SampT Batch Analysis D Result 25 26 25 26 25 25 25 25 25 24	ype: LC n ID: 25 pate: 5/ PQL 2.5 0.10 0.15 0.10 0.30 0.30	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	5 SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0	RunNo: 3 SeqNo: 1 <u>%REC</u> 99.8 104 99.1 103 101 100 95.6	4511 064308 LowLimit 80 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Iron	SampT Batch Analysis D Result 25 26 25 26 25 26 25 25 24 24 26	ype: LC 1D: 25 1ate: 5/ 2.5 2.5 0.10 0.15 0.10 0.30 0.30 2.5	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0	RunNo: 3 GeqNo: 1 <u>%REC</u> 99.8 104 99.1 103 101 100 95.6 105	4511 064308 LowLimit 80 80 80 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Iron	SampT Batch Analysis D Result 25 26 25 26 25 26 25 25 24 26 25 24 26 25	ype: LC 1D: 25: ate: 5/ PQL 2.5 2.5 0.10 0.15 0.10 0.30 0.30 0.30 0.25	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RunNo: 3 GeqNo: 1 <u>%REC</u> 99.8 104 99.1 103 101 100 95.6 105 98.3	4511 064308 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample ID LCS-25508 Client ID: LCSS Prep Date: 5/25/2016 Analyte Antimony Arsenic Barium Baryllium Cadmium Chromium Cobalt ron Lead Manganese Nickel	SampT Batch Analysis D Result 25 26 25 26 25 25 25 24 26 25 25 25 25 25 25	ype: LC p ID: 25 pate: 5/ PQL 2.5 0.10 0.15 0.10 0.30 0.30 0.30 0.30 0.25 0.25 0.10	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RunNo: 3 GeqNo: 1 <u>%REC</u> 99.8 104 99.1 103 101 100 95.6 105 98.3 99.6	4511 064308 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample IDLCS-25508Client ID:LCSSPrep Date:5/25/2016Analyte	SampT Batch Analysis D Result 25 26 25 26 25 25 25 24 26 25 25 25 25 25 25 25 25	ype: LC plD: 25 pate: 5/ PQL 2.5 0.10 0.15 0.10 0.30 0.30 0.30 0.30 0.25 0.10 0.25 0.10 0.50	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	F SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RunNo: 3 SeqNo: 10 %REC 99.8 104 99.1 103 101 100 95.6 105 98.3 99.6 99.1	4511 064308 LowLimit 80 80 80 80 80 80 80 80 80 80 80 80 80	Units: mg/K HighLimit 120 120 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				
Sample IDLCS-25508Client ID:LCSSPrep Date:5/25/2016Analyte	SampT Batch Analysis D Result 25 26 25 26 25 25 25 24 26 25 25 25 25 25 25 25 25	ype: LC plD: 25 pate: 5/ PQL 2.5 2.5 0.10 0.15 0.10 0.30 0.30 0.30 0.25 0.10 0.50 2.5	508 26/2016 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00 25.00	SPK Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RunNo: 34 SeqNo: 10 <u>%REC</u> 99.8 104 99.1 103 101 100 95.6 105 98.3 99.6 99.1 99.6	4511 064308 2004308 80 80 80 80 80 80 80 80 80 80 80 80 8	Units: mg/K HighLimit 120 120 120 120 120 120 120 120 120 120	g	RPDLimit	Qual				

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 44 of 47

WO#: 1605943

Qual

Qual

S

RS

Qual

S s

Qual

RS S

28-Jun-16

Client: Project:	Western Re SWMU 10	efining Co	ompany	y						
	1605943-001BMS	SampTy						6010B: Soil	Metals	
Client ID:	SWMU 10-21 (2-2.5')		ID: 25			RunNo: 3				
Prep Date:	5/25/2016 A	nalysis Da	ate: 5/	26/2016	ŝ	SeqNo: 1	064368	Units: mg/k	(g-dry	
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Arsenic		28	2.7	27.29	3.337	90.8	75	125		
Beryllium		25	0.16	27.29	0.7180	89.7	75	125		
Cadmium Chromium		24 35	0.11	27.29	0 9.159	88.8 05 9	75 75	125 125		
Cobalt		35 25	0.33 0.33	27.29 27.29	9.159 3.682	95.8 76.6	75 75	125		
Silver		4.8	0.33	5.459	0	88.0	75	125		
Vanadium		47	2.7	27.29	16.05	112	75	125		
Zinc		50	2.7	27.29	16.14	123	75	125		
Sample ID	1605943-001BMSD	SampTy	/pe: MS	SD.	Tes	tCode: El	PA Method	6010B: Soil	Metals	
Client ID:	SWMU 10-21 (2-2.5')		ID: 25			RunNo: 3				
Prep Date:		, nalysis Da				SeqNo: 1		Units: mg/k	(g-dry	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPDLimit	
Arsenic		29	2.7	26.83	3.337	96.3	75	125	3.65	20
Beryllium		24	0.16	26.83	0.7180	88.6	75	125	2.80	20
Cadmium		24	0.11	26.83	0	91.2	75	125	1.00	20
Chromium		30	0.32	26.83	9.159	76.9	75	125	16.9	20
Cobalt		23	0.32	26.83	3.682	72.4	75	125	6.20	20
Silver		4.8	0.27	5.367	0	89.2	75	125	0.310	20
Vanadium		40	2.7	26.83	16.05	88.1	75	125	15.8	20
Zinc		35	2.7	26.83	16.14	70.7	75	125	34.4	20
Sample ID	1605943-001BMS	SampTy	/pe: MS	6	Tes	tCode: El	PA Method	6010B: Soil	Metals	
Client ID:	SWMU 10-21 (2-2.5')) Batch	ID: 25	508	F	RunNo: 3	4558			
Prep Date:	5/25/2016 A	analysis Da	ate: 5/	31/2016	S	SeqNo: 1	065752	Units: mg/k	(g-dry	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Antimony		8.7	2.7	27.29	0	31.9	75	125		
Lead		23	0.27	27.29	2.127	74.7	75	125		
Nickel		27	0.55	27.29	6.041	78.0	75	125		
Selenium		21	2.7	27.29	0	75.9	75	125		
Sample ID	1605943-001BMSD	SampTy	/pe: MS	SD	Tes	tCode: El	PA Method	6010B: Soil	Metals	
Client ID:	SWMU 10-21 (2-2.5')) Batch	ID: 25	508	F	RunNo: 3	4558			
Prep Date:	5/25/2016 A	nalysis Da	ate: 5/	31/2016	5	SeqNo: 1	065753	Units: mg/M	(g-dry	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit
Antimony		4.5	2.7	26.83	0	16.9	75	125	63.2	20
Lead		21	0.27	26.83	2.127	71.1	75	125	5.99	20

Qualifiers:

> Value exceeds Maximum Contaminant Level. *

Sample Diluted Due to Matrix D

- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

Е Value above quantitation range

- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified
- Page 45 of 47

WO#: 1605943 28-Jun-16

Client: Project:	Western SWMU	Refining C .0	ompan	y							
Sample ID	1605943-001BMS	D SampT	ype: MS	SD	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID:	SWMU 10-21 (2-2	.5') Batch	n ID: 25	508	F	RunNo: 34	4558				
Prep Date:	5/25/2016	Analysis D	ate: 5/	31/2016	5	SeqNo: 1	065753	Units: mg/K	(g-dry		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Nickel		25	0.54	26.83	6.041	71.1	75	125	8.39	20	S
Selenium		19	2.7	26.83	0	69.3	75	125	10.9	20	S

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 46 of 47

Client: Project:	Western I SWMU 1	Refining C 0	ompan	у							
Sample ID	rb	SampT	ype: MI	BLK	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID:	PBS	Batch	ID: A3	84454	F	RunNo: 3	4454				
Prep Date:		Analysis D	ate: 5	/24/2016	S	SeqNo: 1	062581	Units: mg/k	۲g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang Surr: BFB	e Organics (GRO)	ND 510	5.0	500.0		101	70	130			
Sample ID	2.5ug gro lcs	SampT	ype: LC	s	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID:	LCSS	Batch	ID: A3	84454	F	RunNo: 3	4454				
Prep Date:		Analysis D	ate: 5	/24/2016	S	SeqNo: 1	062582	Units: mg/h	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
9	e Organics (GRO)	26	5.0	25.00	0	103	62.9	123			
Surr: BFB		500		500.0		99.4	70	130			
Sample ID	1605943-001bms	SampT	ype: M	S	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID:	SWMU 10-21 (2-2.	5') Batch	ID: A3	84454	F	RunNo: 3	4454				
Prep Date:		Analysis D	ate: 5	/24/2016	S	eqNo: 1	062584	Units: mg/k	Kg-dry		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	24	4.1	20.41	1.968	106	52.3	132			
Surr: BFB		410		408.2		101	70	130			
Sample ID	1605943-001bmsd	I SampT	ype: MS	SD	Tes	tCode: E	PA Method	8015D Mod:	Gasoline	Range	
Client ID:	SWMU 10-21 (2-2.	5') Batch	ID: A3	34454	F	RunNo: 3	4454				
Prep Date:		Analysis D	ate: 5/	/24/2016	S	SeqNo: 1	062585	Units: mg/k	Kg-dry		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Rang	e Organics (GRO)	22	4.1	20.41	1.968	99.4	52.3	132	6.01	20	
Surr: BFB		390		408.2		96.6	70	130	0	0	

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 47 of 47

ENVIRONMENTAL ANALYSIS LABORATORY TEL: 505-345-39	tal Analysis Laboro 4901 Hawkins Ibuquerque, NM 87 75 FAX: 505-345-4 hallenvironmental	NE 109 Samp 107	ole Log-In Check List
Client Name: Western Refining Gallup Work Order Numb	er: 1605943		RcptNo: 1
Received by/date: AG 05/19/16			
Logged By: Lindsay Mangin 5/19/2016 4:30:00 P	M	Julipo	
Completed By: Lindsay Mangin 5/20/2016 8:48:48 A	м	HARD	
Reviewed By: 0 05/23/10		000	
Chain of Custody			
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present 🗹
2. Is Chain of Custody complete?	Yes 🗹	No 🗌	Not Present
3. How was the sample delivered?	Courier		
Log In			
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	
Were all samples received at a temperature of >0° C to 6.0°C	Yes 🗹	No 🗔	
6. Sample(s) in proper container(s)?	Yes 🔽	No 🗌	
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌	
8. Are samples (except VOA and ONG) properly preserved?	Yes 🔽	No 🗆	
9. Was preservative added to bottles?	Yes 🗌	No 🔽	NA 🗆
10. VOA vials have zero headspace?	Yes 🗆	No 🗆	No VOA Vials 🗹
11, Were any sample containers received broken?	Yes	No 🗹	# of preserved
	-		bottles checked
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗸	No 🗌	for pH: (<2 or >12 unless no
13. Are matrices correctly identified on Chain of Custody?	Yes 🗹	No 🗆	Adjusted?
14. Is it clear what analyses were requested?	Yes 🗹	No 🗆	
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes 🖌	No 🗌	Checked by:
Special Handling (if applicable)	_	_	57 F.
16. Was client notified of all discrepancies with this order?	Yes 🗔	No 🗌	NA 🗹
Person Notified: Date		191 - 1739a	
By Whom: Via:	eMail	Phone 🗌 Fax	In Person
Regarding:			
Client Instructions:			
17. Additional remarks:			
18. Cooler Information			
Cooler No Temp C Condition Seal Intact Seal No	Seal Date	Signed By	
1 1.0 Good Yes			

	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	s 0 ⁴)	(SP) (SP) (SP) (SP) (SP) (SP) (SP) (SP)	УК 35 Б 1 (С: 3,2 б 1 (С:		- + 811 811 811 811 811 811 811 812 811 812 812	C BE BE BE C C C C C C C C C C C C C C C	Preservative Type BTEX + MT HEAL No. BTEX + MT TPH 8015E BTEX + MT TPH 8015E BTEX + MT TPH 8015E BTEX + MT BTEX + MT TPH 8015E BTEX + MT BTEX + MT BTEX + MT TPH 8015E BTEX + MT	NEAT -OOI V VV	5081 -001	NEAT -CO2 V V	ME0H -702	3.61 -(D2	NEAT -003 V VVV	MEOH -033	So BI - Cr3	NEAT -00%	MEOH -CCH V	SoBI - CCH	Date Time Remarks:	Date Time AND MDL	m5/19/110 1030)
Chain-of-Custody Record Turn-Around Time:	CALLUP REFTNERY	Mailing Address or GIANT CROSSING RD SWMU	Proje	Phone # 50 5-77 7-0217	ax ax	QA/QC Package:	C Standard	on	NELAP Other On lce:	K EDD (Type) EXCEL Sample Temperature:	Date Time Matrix Sample Request ID Container	-1816 0905 ANL SWMU 10-21 (2-2-3) TARS- 3		5 SWMU 10-21(12-14') JARS-			1025 3WHIL 10-21 (20-22') JARS-3		VIALS-2	1635 SWMU 10-22 (2-2.5') JARS-3		VIALS-2	Relinquished by:	Date: Time: Relinduished by: Recentration	191, 1, 30 + 1, 30

Ĺ	RY			Ĩ					(N	ot	۲) e	Air Bubble													
HALL ENVIRONMENTAL	ABORATORY					<u>(15</u>	ΞĪ	<u>0</u> 3	IH2	M	۲Ą	33C)								 -	-		FLAGS		Any sub-contracted data will be clearly notated on the analytical report.
	R		109				ЭС	1111	AY.	7	8	BURBALS	>			7] Ţ		inalytic
Ź	õ	Ę	M 87	505-345-4107						(40	-^-!	m92) 0728	7			7				 	<u> </u>		1		n the a
00	K	tal.co	e, N	345-	Request			(AOV) 80828			7	$\mathbf{>}$	>	7	>	7	>			 	-		tated c		
ίΓ	2 S	men	lerqu	505						_		oitee9 1808								 	-		- A		arly no
ź	IS	viron	Albuquerque, NM 87109	Fax	Analysis	([⊅] O	S'⁺C)-, , , , , , , , ,	ON			D, F) snoinA								 	-		L I		be cle
ш 	Ľ	allen	ı.	10	Ana		(0)		<u></u>			PAH's (831 M 8 ARDR								 			TNCLUDE	Y	ata will
	ANALYSIS	www.hallenvironmental.com	4901 Hawkins NE	Tel. 505-345-3975				115				EDB (Weth								 	+			9	acted d
I	A	X	vkins	-345-								TPH (Method								 	-		EASE	AND	-contra
			Ha	505		(OB	IW /	<u></u>				89108 H9T	$\overline{\ }$							 ╉			1 1		ny sub
			4901	Tel.								TM + X3T8								+	+		Remarks	ξ	
						()	805	}) s,{	IME	L +	BE	TM + XJT8								 1			Ren	N N	possib
	l	_										M		1					4				0	ime //	as notice of this possibility.
												HEAL NO.	R	6	R	R	R	\mathcal{R}	5				Time		as no
									ι.			HEA	ļĆ	Q	$ \zeta $	ĺζ	Q	$-\mathcal{O}$	(\mathbf{r})				ge	C afe	served
									PANNE	°N D	\supset		* ' + '						۱	1			$\left[- \right]$	\mathbb{K}	η <u>τ</u> Γ
	ush_										J.	tive		+					+						aboratories.
	C Rush		0					IJ	$\overline{\mathbf{J}}$	Yes	ure:	Preservative Type	NEAT	HOPW	5081	NEAT	MEDH	Б.	MEOH				N		₩.
Time			77			anager:		RIEGE	RACY	k	emperature:	Pres	Ž	ž	З С	ž				 _				N N	other accredit
Turn-Around Time:	Kstandard	lame	SWMU	чг.								ner 1d #	M I	2	2	Ņ	2	VIALS-2	N						
h-Aro	Stan	ect ⊳	ึง	Project #:		ject N		БU	Sampler:	On Ice:	Sample T	Container Type and #	JARS-3	VIALS-2	VIAI 5~2	TAR5 - 3	ALC	2	VIALS				Received t		
Tur	\mathbf{X}	[0]		Pro		D D			Sar	ຄົ	Sar	ŭ <u>∕</u>			5	P	VIALS-	ž		 _			Rec		
	ÿ		<i>CV</i>			۲ D		(uo	1			Q	6-						*					0	be sub
pro	SW, TNC.			-		0 V		KLevel 4 (Full Validation)	1			Sample Request ID	SWMII 10-22(8-9')						븻						tal may
- CC	3		N N	1 E		NN.		eV IIL	ŧ			Sequ	2-0			_			BLANK				. 1		onment
Ř	1		୍ ଟ୍ ପ୍	Ö		0)	4 (Fi				ole F	1	¦	╞	P01		┢							Envir
dy	Å	۲	J	え	Ö	j j		evel				Sam	N				j		1 S						
Iste	A	R R	5	õ	2	I H		$\vec{\mathbf{X}}$		2	Ы		3	<u>\$</u>		-1	 	 	Ī	 	_	_	lished by	hed b	
Chain-of-Custody Record	Client: WESTERN REFINING	Ē	Mailing Address of GIMT CROSSING	GALLUP, NM 87301	FVE-772 - 0217	FD. RTEGE @ WNR. COM Project M		☐ Other ☐ Other Matrix		SUL	Į		<u> </u>	ļ		MEOH MEOH				Relinquished by	Kelinquished by	If necessary, samples, subortition of Hall Environmental may be subcontracted to			
-of	3	Re	%	U	y Y						1 1							 	I	 	+				ry, sam
ain	a S	õ	ldres		1	ax#	QA/QC Package:	P	ion	<u>^</u>	_ype)	Time	250	¥	╞╌	1		╞	1				Time:	Date: Time:	ecessar
чС	1 1 1 1 1 1	1	ηg Ac		e #:	email or Fax#:	C Pa(□ Standard	Accreditation	D NELAP	K EDD (Type)	0	18.16 1650					+ ·		 	+			9	בוב בוב
	Sien Lien	GA	Mailir		Phone #:	emai	QA/Q	S □	Accr	Ź		Date	Ø		╀╼	+	 	<u> </u>	$\left \right\rangle$				Date:		8

WESTERN REFINING SOUTHWEST, INC. GALLUP REFINERY - SWMU 10 METALS AND CYANIDE ANALYSES FOR SOIL SAMPLES

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Chromium VI	SW-846 Method 3060A
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

June 30, 2016

Ed Riege Western Refining Company Rt. 3 Box 7 Gallup, NM 87301 TEL: (505) 722-0231 FAX

RE: SWMU 10

OrderNo.: 1605998

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 3 sample(s) on 5/20/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company

SWMU 10

1605998-001

Project:

Lab ID:

Date Reported: 6/30/2016 Client Sample ID: SWMU 10-20-GW Collection Date: 5/20/2016 10:45:00 AM Matrix: AQUEOUS Received Date: 5/20/2016 3:00:00 PM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8015M/D: DIESEL RANG	E						Analyst: TOM	
Diesel Range Organics (DRO)	440	6.9	10		mg/L	10	5/26/2016 3:40:44 PM	25494
Motor Oil Range Organics (MRO)	ND	50	50		mg/L	10	5/26/2016 3:40:44 PM	25494
Surr: DNOP	0	0	70-141	S	%Rec	10	5/26/2016 3:40:44 PM	25494
EPA METHOD 300.0: ANIONS							Analyst: LGT	
Fluoride	ND	0.11	0.50		mg/L	5	5/23/2016 5:26:04 PM	R34434
Chloride	1600	2.7	50		mg/L	100	5/25/2016 3:02:36 PM	R34487
Sulfate	260	1.3	10		mg/L	20	5/23/2016 5:38:29 PM	R34434
EPA METHOD 200.7: DISSOLVED MET	ALS				-		Analyst: ELS	
Barium	0.11	0.0013	0.0020		mg/L	1	5/25/2016 1:47:55 PM	C34463
Beryllium	ND	0.00031	0.0020		mg/L	1	5/25/2016 1:47:55 PM	C34463
Cadmium	ND	0.00075	0.0020		mg/L	1	5/25/2016 1:47:55 PM	C34463
Chromium	ND	0.0018	0.0060		mg/L	1	5/25/2016 1:47:55 PM	C34463
Cobalt	0.0074	0.00074	0.0060		mg/L	1	5/25/2016 1:47:55 PM	C34463
Iron	0.42	0.0091	0.020	*	mg/L	1	5/25/2016 1:47:55 PM	C34463
Manganese	1.2	0.0016	0.010	*	mg/L	5	5/25/2016 1:49:50 PM	C34463
Nickel	0.019	0.0024	0.010		mg/L	1	5/25/2016 1:47:55 PM	C34463
Silver	ND	0.0028	0.0050		mg/L	1	5/25/2016 1:47:55 PM	C34463
Vanadium	0.010	0.0013	0.050	J	mg/L	1	5/25/2016 1:47:55 PM	C34463
Zinc	0.046	0.0028	0.010		mg/L	1	5/25/2016 1:47:55 PM	C34463
EPA METHOD 200.7: METALS							Analyst: ELS	
Barium	0.26	0.0013	0.0020		mg/L	1	5/25/2016 11:04:43 AM	25486
Beryllium	0.0011	0.00031	0.0020	J	mg/L	1	5/25/2016 11:04:43 AM	25486
Cadmium	ND	0.00075	0.0020		mg/L	1	5/25/2016 11:04:43 AM	25486
Chromium	0.030	0.0022	0.0060		mg/L	1	5/25/2016 11:04:43 AM	25486
Cobalt	0.011	0.00085	0.0060		mg/L	1	5/25/2016 11:04:43 AM	25486
Iron	7.1	0.091	0.20	*	mg/L	10	6/1/2016 6:14:15 PM	25486
Manganese	1.4	0.015	0.020	*	mg/L	10	5/27/2016 12:19:04 PM	25486
Nickel	0.026	0.0024	0.010		mg/L	1	5/25/2016 11:04:43 AM	25486
Silver	ND	0.0028	0.0050		mg/L	1	5/25/2016 11:04:43 AM	25486
Vanadium	0.024	0.0015	0.050	J	mg/L	1	5/25/2016 11:04:43 AM	25486
Zinc	0.043	0.0039	0.010		mg/L	1	5/25/2016 11:04:43 AM	25486
EPA 200.8: DISSOLVED METALS							Analyst: DBD	
Antimony	ND	0.0024	0.0050		mg/L	5	5/23/2016 5:07:26 PM	C34426
Arsenic	ND	0.050	0.050		mg/L	50	5/23/2016 6:56:47 PM	C34426
Lead	ND	0.00084	0.0025		mg/L	5	5/23/2016 5:07:26 PM	C34426
Selenium	0.038	0.011	0.050	J	mg/L	50	5/23/2016 6:56:47 PM	C34426
EPA 200.8: METALS							Analyst: DBD	

EPA 200.8: METALS

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: *	Value exceeds Maximum Contaminant Level.
---------------	--

D Sample Diluted Due to Matrix

Η Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

RPD outside accepted recovery limits R

S % Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 28
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company	Client Sample ID: SWMU 10-20-GW									
Project: SWMU 10	Collection Date: 5/20/2016 10:45:00 AM									
Lab ID: 1605998-001	Matrix:	Matrix: AQUEOUSReceived Date: 5/20/2016 3:00:00 PM								
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA 200.8: METALS							Analyst: DBD			
Antimony	ND	0.0024	0.0050		mg/L	5	5/25/2016 2:30:09 PM	25486		
Arsenic	0.026	0.0029	0.010	*	mg/L	10	5/25/2016 3:11:35 PM	25486		
Lead	0.011	0.00084	0.0025		mg/L	5	5/25/2016 2:30:09 PM	25486		
Selenium	0.040	0.0021	0.010		mg/L	10	5/25/2016 3:11:35 PM	25486		
EPA METHOD 245.1: MERCURY							Analyst: pmf			
Mercury	0.00016	0.000053	0.00020	J	mg/L	1	5/26/2016 6:31:07 PM	25512		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
Acenaphthene	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Acenaphthylene	ND	120	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
Aniline	ND	120	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
Anthracene	ND	120	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
Azobenzene	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benz(a)anthracene	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benzo(a)pyrene	ND	140	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benzo(b)fluoranthene	ND	140	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benzo(g,h,i)perylene	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benzo(k)fluoranthene	ND	150	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benzoic acid	ND	130	1000	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Benzyl alcohol	ND	150	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Bis(2-chloroethoxy)methane	ND	140	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Bis(2-chloroethyl)ether	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Bis(2-chloroisopropyl)ether	ND	95	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Bis(2-ethylhexyl)phthalate	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
4-Bromophenyl phenyl ether	ND	130	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
Butyl benzyl phthalate	ND	120	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
	ND	110	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437		
4-Chloro-3-methylphenol 4-Chloroaniline	ND	130	500 500	D	µg/L	10	5/24/2016 4:35:11 PM	25437 25437		
	ND	140		D	µg/L	10 10	5/24/2016 4:35:11 PM	25437 25437		
2-Chloronaphthalene 2-Chlorophenol	ND ND	110 110	500 500	D D	µg/L	10 10	5/24/2016 4:35:11 PM 5/24/2016 4:35:11 PM	25437 25437		
4-Chlorophenyl phenyl ether	ND	130	500 500	D	μg/L μg/L	10	5/24/2016 4:35:11 PM	25437 25437		
Chrysene	ND	130	500 500	D	μg/L μg/L	10	5/24/2016 4:35:11 PM	25437		
Di-n-butyl phthalate	ND	140	500 500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
Di-n-octyl phthalate	ND	99	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
Dibenz(a,h)anthracene	ND	130	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
Dibenzofuran	ND	120	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
1,2-Dichlorobenzene	ND	110	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		
1,3-Dichlorobenzene	ND	110	500	D	μg/L	10	5/24/2016 4:35:11 PM	25437		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 28

Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-20-GW **Project:** SWMU 10 Collection Date: 5/20/2016 10:45:00 AM Lab ID: 1605998-001 Matrix: AQUEOUS Received Date: 5/20/2016 3:00:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM 1,4-Dichlorobenzene ND 120 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 3,3'-Dichlorobenzidine ND 120 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 ND 140 500 D 10 25437 Diethyl phthalate µg/L 5/24/2016 4:35:11 PM ND 120 500 D 10 Dimethyl phthalate µg/L 5/24/2016 4:35:11 PM 25437 D 2,4-Dichlorophenol ND 120 1000 10 5/24/2016 4:35:11 PM 25437 µg/L 2,4-Dimethylphenol 62000 1500 5000 µg/L 100 5/25/2016 11:48:15 AM 25437 D 4,6-Dinitro-2-methylphenol ND 90 1000 µg/L 10 5/24/2016 4:35:11 PM 25437 2,4-Dinitrophenol ND 140 1000 D µg/L 10 5/24/2016 4:35:11 PM 25437 D 2,4-Dinitrotoluene ND 160 500 µg/L 10 5/24/2016 4:35:11 PM 25437 2,6-Dinitrotoluene ND 140 500 D 10 5/24/2016 4:35:11 PM 25437 µg/L Fluoranthene ND 130 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 Fluorene ND 140 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 Hexachlorobenzene ND 130 500 D 10 5/24/2016 4:35:11 PM 25437 µg/L D ND 110 500 10 Hexachlorobutadiene µg/L 5/24/2016 4:35:11 PM 25437 ND 110 500 D 10 Hexachlorocyclopentadiene µq/L 5/24/2016 4:35:11 PM 25437 ND D Hexachloroethane 120 500 µg/L 10 5/24/2016 4:35:11 PM 25437 Indeno(1,2,3-cd)pyrene ND 150 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 ND 130 500 D 10 Isophorone µg/L 5/24/2016 4:35:11 PM 25437 1-Methylnaphthalene 170 150 500 JD 10 5/24/2016 4:35:11 PM 25437 µg/L 2-Methylnaphthalene 240 140 500 JD µg/L 10 5/24/2016 4:35:11 PM 25437 130000 2500 10000 200 5/25/2016 11:18:11 AM 25437 2-Methylphenol µg/L 3+4-Methylphenol 190000 2300 10000 µg/L 200 5/25/2016 11:18:11 AM 25437 N-Nitrosodi-n-propylamine ND 120 500 D 10 5/24/2016 4:35:11 PM 25437 µg/L N-Nitrosodimethylamine ND 110 500 D 10 5/24/2016 4:35:11 PM 25437 µg/L ND 120 500 D 10 25437 N-Nitrosodiphenylamine µg/L 5/24/2016 4:35:11 PM JD Naphthalene 240 130 500 µg/L 10 5/24/2016 4:35:11 PM 25437 2-Nitroaniline ND 140 500 D 10 5/24/2016 4:35:11 PM 25437 µg/L 3-Nitroaniline ND 150 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 130 500 D 10 4-Nitroaniline ND µg/L 5/24/2016 4:35:11 PM 25437 Nitrobenzene ND 140 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 D 2-Nitrophenol ND 120 500 µg/L 10 5/24/2016 4:35:11 PM 25437 4-Nitrophenol ND 130 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 Pentachlorophenol ND 120 1000 D µg/L 10 5/24/2016 4:35:11 PM 25437 Phenanthrene ND 130 500 D 10 5/24/2016 4:35:11 PM 25437 µg/L Phenol 89000 990 5000 100 5/25/2016 11:48:15 AM 25437 µg/L D ND 150 500 10 Pyrene µg/L 5/24/2016 4:35:11 PM 25437 Pvridine ND 110 500 D µg/L 10 5/24/2016 4:35:11 PM 25437 D ND 130 500 10 1,2,4-Trichlorobenzene µg/L 5/24/2016 4:35:11 PM 25437 2,4,5-Trichlorophenol ND 110 500 D µg/L 10 5/24/2016 4:35:11 PM 25437

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Oualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 28

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1605998** Date Reported: **6/30/2016**

CLIENT: Western Refining Company Project: SWMU 10 Lab ID: 1605998-001	Matrix:	AQUEOU	Co	llection 1)/2016 1	-20-GW 10:45:00 AM 3:00:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
2,4,6-Trichlorophenol	ND	120	500	D	µg/L	10	5/24/2016 4:35:11 PM	25437
Surr: 2-Fluorophenol	67.7	0	15-123	D	%Rec	10	5/24/2016 4:35:11 PM	25437
Surr: Phenol-d5	42.0	0	4.13-124	D	%Rec	10	5/24/2016 4:35:11 PM	25437
Surr: 2,4,6-Tribromophenol	92.8	0	18.4-134	D	%Rec	10	5/24/2016 4:35:11 PM	25437
Surr: Nitrobenzene-d5	107	0	28.8-134	D	%Rec	10	5/24/2016 4:35:11 PM	25437
Surr: 2-Fluorobiphenyl	96.4	0	35.9-125	D	%Rec	10	5/24/2016 4:35:11 PM	25437
Surr: 4-Terphenyl-d14	76.6	0	15-146	D	%Rec	10	5/24/2016 4:35:11 PM	25437
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
Benzene	1600	9.6	100		µg/L	100	5/26/2016 4:43:13 PM	A34513
Toluene	4000	12	100		μg/L	100	5/26/2016 4:43:13 PM	A34513
Ethylbenzene	290	1.1	10		μg/L	10	5/26/2016 12:37:51 PM	A34513
Methyl tert-butyl ether (MTBE)	3.8	2.1	10	J	μg/L	10	5/26/2016 12:37:51 PM	A34513
1,2,4-Trimethylbenzene	220	1.1	10		μg/L	10	5/26/2016 12:37:51 PM	A34513
1,3,5-Trimethylbenzene	64	1.2	10		μg/L	10	5/26/2016 12:37:51 PM	A34513
1,2-Dichloroethane (EDC)	ND	1.2	10		μg/L	10	5/26/2016 12:37:51 PM	A34513
1,2-Dibromoethane (EDB)	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Naphthalene	310	0.93	20		µg/L	10	5/26/2016 12:37:51 PM	A34513
1-Methylnaphthalene	140	2.0	40		µg/L	10	5/26/2016 12:37:51 PM	A34513
2-Methylnaphthalene	210	1.6	40		µg/L	10	5/26/2016 12:37:51 PM	A34513
Acetone	1400	49	100		µg/L	10	5/26/2016 12:37:51 PM	A34513
Bromobenzene	ND	0.98	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Bromodichloromethane	ND	1.4	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Bromoform	ND	1.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Bromomethane	ND	7.8	30		µg/L	10	5/26/2016 12:37:51 PM	A34513
2-Butanone	630	7.4	100		µg/L	10	5/26/2016 12:37:51 PM	A34513
Carbon disulfide	ND	6.0	100		µg/L	10	5/26/2016 12:37:51 PM	A34513
Carbon Tetrachloride	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Chlorobenzene	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Chloroethane	ND	1.9	20		µg/L	10	5/26/2016 12:37:51 PM	A34513
Chloroform	ND	0.89	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Chloromethane	ND	2.1	30		µg/L	10	5/26/2016 12:37:51 PM	A34513
2-Chlorotoluene	ND	4.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
4-Chlorotoluene	ND	1.3	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
cis-1,2-DCE	ND	1.2	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
cis-1,3-Dichloropropene	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,2-Dibromo-3-chloropropane	ND	2.3	20		µg/L	10	5/26/2016 12:37:51 PM	A34513
Dibromochloromethane	ND	0.87	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Dibromomethane	ND	1.2	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,2-Dichlorobenzene	ND	4.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513

Qualifiers: * Value exceeds Maximum Contaminant Level.

D

- B Analyte detected in the associated Method Blank
- E Valu
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits

Sample Diluted Due to Matrix

- S % Recovery outside of range due to dilution or matrix
- E Value above quantitation rangeJ Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 28

Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT:Western Refining CompanyProject:SWMU 10Lab ID:1605998-001	Client Sample ID: SWMU 10-20-GW Collection Date: 5/20/2016 10:45:00 AM Matrix: AQUEOUS Received Date: 5/20/2016 3:00:00 PM							
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,3-Dichlorobenzene	ND	1.4	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,4-Dichlorobenzene	ND	1.4	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Dichlorodifluoromethane	ND	3.6	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1-Dichloroethane	6.1	1.1	10	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1-Dichloroethene	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,2-Dichloropropane	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,3-Dichloropropane	ND	1.6	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
2,2-Dichloropropane	ND	1.7	20		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1-Dichloropropene	ND	1.3	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Hexachlorobutadiene	ND	2.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
2-Hexanone	69	8.4	100	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
Isopropylbenzene	20	1.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
4-Isopropyltoluene	2.5	1.4	10	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
4-Methyl-2-pentanone	63	4.3	100	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
Methylene Chloride	3.4	1.9	30	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
n-Butylbenzene	4.0	1.6	30	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
n-Propylbenzene	30	1.3	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
sec-Butylbenzene	1.7	1.2	10	J	µg/L	10	5/26/2016 12:37:51 PM	A34513
Styrene	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
tert-Butylbenzene	ND	1.2	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1,1,2-Tetrachloroethane	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1,2,2-Tetrachloroethane	ND	1.3	20		µg/L	10	5/26/2016 12:37:51 PM	A34513
Tetrachloroethene (PCE)	ND	1.5	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
trans-1,2-DCE	ND	4.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
trans-1,3-Dichloropropene	ND	1.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,2,3-Trichlorobenzene	ND	1.1	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,2,4-Trichlorobenzene	ND	1.3	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1,1-Trichloroethane	ND	0.91	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,1,2-Trichloroethane	ND	1.3	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Trichloroethene (TCE)	ND	1.8	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Trichlorofluoromethane	ND	2.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
1,2,3-Trichloropropane	ND	2.0	20		µg/L	10	5/26/2016 12:37:51 PM	A34513
Vinyl chloride	ND	2.0	10		µg/L	10	5/26/2016 12:37:51 PM	A34513
Xylenes, Total	1900	3.7	15		µg/L	10	5/26/2016 12:37:51 PM	A34513
Surr: 1,2-Dichloroethane-d4	96.2	0	70-130		%Rec	10	5/26/2016 12:37:51 PM	A34513
Surr: 4-Bromofluorobenzene	109	0	70-130		%Rec	10	5/26/2016 12:37:51 PM	A34513
Surr: Dibromofluoromethane	100	0	70-130		%Rec	10	5/26/2016 12:37:51 PM	A34513
Surr: Toluene-d8	102	0	70-130		%Rec	10	5/26/2016 12:37:51 PM	A34513

EPA METHOD 8015D: GASOLINE RANGE

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

Analyst: DJF

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 5 of 28

Analytical Report Lab Order 1605998 Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT:	Western Refining Company	Client Sample ID: SWMU 10-20-GW								
Project:	SWMU 10	Collection Date: 5/20/2016 10:45:00 AM								
Lab ID:	1605998-001	Matrix: AQUEOUS Received Date: 5/20/2016 3:00:00 PM								
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID	
J	HOD 8015D: GASOLINE RANGE	Result	MDL	PQL	Qual	Units	DF	Date Analyzed Analyst: DJF	Batch ID	
	HOD 8015D: GASOLINE RANGE Range Organics (GRO)	Result 25	MDL 0.15	PQL 0.50	Qual	Units mg/L	DF 10			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Page 6 of 28

Analytical Report

Lab Order 1605998

Date Reported: 6/30/2016

CLIENT: Western Refining Company Project: SWMU 10 Lab ID: 1605998-002	Client Sample ID: Trip Blank Collection Date: Matrix: TRIP BLANK Received Date: 5/20/2016 3:00:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8260B: VOLATILES							Analyst: DJF			
Benzene	ND	0.096	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Toluene	ND	0.12	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Ethylbenzene	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Methyl tert-butyl ether (MTBE)	ND	0.21	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
1,2,4-Trimethylbenzene	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
1,3,5-Trimethylbenzene	ND	0.12	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
1,2-Dichloroethane (EDC)	ND	0.12	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
1,2-Dibromoethane (EDB)	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Naphthalene	ND	0.093	2.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
1-Methylnaphthalene	1.1	0.20	4.0	J	µg/L	1	5/26/2016 2:09:48 PM	A34513		
2-Methylnaphthalene	1.3	0.16	4.0	J	µg/L	1	5/26/2016 2:09:48 PM	A34513		
Acetone	ND	4.9	10		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Bromobenzene	ND	0.098	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Bromodichloromethane	ND	0.14	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Bromoform	ND	0.10	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Bromomethane	ND	0.78	3.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
2-Butanone	ND	0.74	10		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Carbon disulfide	ND	0.60	10		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Carbon Tetrachloride	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Chlorobenzene	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Chloroethane	ND	0.19	2.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Chloroform	ND	0.089	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Chloromethane	ND	0.21	3.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
2-Chlorotoluene	ND	0.40	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
4-Chlorotoluene	ND	0.13	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
cis-1,2-DCE	ND	0.12	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
cis-1,3-Dichloropropene	ND	0.11	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,2-Dibromo-3-chloropropane	ND	0.23	2.0		µg/L	1	5/26/2016 2:09:48 PM	A34513		
Dibromochloromethane	ND	0.087	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
Dibromomethane	ND	0.12	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,2-Dichlorobenzene	ND	0.40	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,3-Dichlorobenzene	ND	0.14	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,4-Dichlorobenzene	ND	0.14	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
Dichlorodifluoromethane	ND	0.36	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,1-Dichloroethane	ND	0.11	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,1-Dichloroethene	ND	0.11	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,2-Dichloropropane	ND	0.11	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
1,3-Dichloropropane	ND	0.16	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		
2,2-Dichloropropane	ND	0.17	2.0		μg/L	1	5/26/2016 2:09:48 PM	A34513		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 7 of 28

Analytical Report

Lab Order 1605998

Date Reported: 6/30/2016

CLIENT: Western Refining CompanyProject:SWMU 10Lab ID:1605998-002	Matrix:	Client Sample ID: Trip Blank Collection Date: Matrix: TRIP BLANK Received Date: 5/20/2016 3:00:00 PM									
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID			
EPA METHOD 8260B: VOLATILES							Analyst: DJF				
1,1-Dichloropropene	ND	0.13	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Hexachlorobutadiene	ND	0.20	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513			
2-Hexanone	ND	0.84	10		μg/L	1	5/26/2016 2:09:48 PM	A34513			
Isopropylbenzene	ND	0.10	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513			
4-Isopropyltoluene	ND	0.14	1.0		μg/L	1	5/26/2016 2:09:48 PM	A34513			
4-Methyl-2-pentanone	ND	0.43	10		μg/L	1	5/26/2016 2:09:48 PM	A34513			
Methylene Chloride	0.33	0.19	3.0	J	µg/L	1	5/26/2016 2:09:48 PM	A34513			
n-Butylbenzene	ND	0.16	3.0		μg/L	1	5/26/2016 2:09:48 PM	A34513			
n-Propylbenzene	ND	0.13	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
sec-Butylbenzene	ND	0.12	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Styrene	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
tert-Butylbenzene	ND	0.12	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,1,1,2-Tetrachloroethane	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,1,2,2-Tetrachloroethane	ND	0.13	2.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Tetrachloroethene (PCE)	ND	0.15	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
trans-1,2-DCE	ND	0.40	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
trans-1,3-Dichloropropene	ND	0.10	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,2,3-Trichlorobenzene	ND	0.11	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,2,4-Trichlorobenzene	ND	0.13	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,1,1-Trichloroethane	ND	0.091	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,1,2-Trichloroethane	ND	0.13	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Trichloroethene (TCE)	ND	0.18	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Trichlorofluoromethane	ND	0.20	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
1,2,3-Trichloropropane	ND	0.20	2.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Vinyl chloride	ND	0.20	1.0		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Xylenes, Total	ND	0.37	1.5		µg/L	1	5/26/2016 2:09:48 PM	A34513			
Surr: 1,2-Dichloroethane-d4	94.9	0	70-130		%Rec	1	5/26/2016 2:09:48 PM	A34513			
Surr: 4-Bromofluorobenzene	111	0	70-130		%Rec	1	5/26/2016 2:09:48 PM	A34513			
Surr: Dibromofluoromethane	101	0	70-130		%Rec	1	5/26/2016 2:09:48 PM	A34513			
Surr: Toluene-d8	103	0	70-130		%Rec	1	5/26/2016 2:09:48 PM	A34513			

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 8 of 28
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	1 460 0 01 20
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

			CL	4.6	. ID. CW		21 CW	
CLIENT: Western Refining Company	Client Sample ID: SWMU 10-21-GW Collection Date: 5/20/2016 9:36:00 AM							
Project: SWMU 10								
Lab ID: 1605998-003	Matrix:	AQUEOUS	R	eceived I	Date: 5/20)/2016	3:00:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Acenaphthene	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Acenaphthylene	ND	12	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Aniline	ND	12	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Anthracene	ND	12	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Azobenzene	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benz(a)anthracene	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benzo(a)pyrene	ND	14	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benzo(b)fluoranthene	ND	14	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benzo(g,h,i)perylene	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benzo(k)fluoranthene	ND	15	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benzoic acid	ND	13	100	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Benzyl alcohol	ND	15	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Bis(2-chloroethoxy)methane	ND	14	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Bis(2-chloroethyl)ether	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Bis(2-chloroisopropyl)ether	ND	9.5	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Bis(2-ethylhexyl)phthalate	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
4-Bromophenyl phenyl ether	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Butyl benzyl phthalate	ND	12	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Carbazole	ND	11	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
4-Chloro-3-methylphenol	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
4-Chloroaniline	ND	14	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
2-Chloronaphthalene	ND	11	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
2-Chlorophenol	ND	11	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
4-Chlorophenyl phenyl ether	ND	13	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Chrysene	ND	14	50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Di-n-butyl phthalate	ND	12	50 50	D	µg/L	1	5/24/2016 4:04:33 PM	25437
Di-n-octyl phthalate	ND	9.9 13	50 50	D	µg/L	1	5/24/2016 4:04:33 PM 5/24/2016 4:04:33 PM	25437 25437
Dibenz(a,h)anthracene Dibenzofuran	ND ND	13	50 50	D D	μg/L μg/L	1 1	5/24/2016 4:04:33 PM	25437 25437
1,2-Dichlorobenzene	ND	12	50 50			1	5/24/2016 4:04:33 PM	25437 25437
1,3-Dichlorobenzene	ND	11	50 50	D D	μg/L μg/L	1	5/24/2016 4:04:33 PM	25437 25437
1,4-Dichlorobenzene	ND	12	50 50	D	μg/L μg/L	1	5/24/2016 4:04:33 PM	25437 25437
3,3´-Dichlorobenzidine	ND	12	50 50	D	μg/L μg/L	1	5/24/2016 4:04:33 PM	25437 25437
Diethyl phthalate	ND	12	50 50	D	μg/L μg/L	1	5/24/2016 4:04:33 PM	25437 25437
Dimethyl phthalate	ND	14	50 50	D	μg/L μg/L	1	5/24/2016 4:04:33 PM	25437 25437
2,4-Dichlorophenol	ND	12	100	D	μg/L μg/L	1	5/24/2016 4:04:33 PM	25437 25437
2,4-Dimethylphenol	ND	12	50	D	μg/L	1	5/24/2016 4:04:33 PM	25437
4,6-Dinitro-2-methylphenol	ND	9.0	100	D	μg/L	1	5/24/2016 4:04:33 PM	25437
	ND	9.0 14	100	D	μg/L		5,27,2010 7.07.00 F W	25437

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 9 of 28

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21-GW **Project:** SWMU 10 Collection Date: 5/20/2016 9:36:00 AM Lab ID: 1605998-003 Matrix: AQUEOUS Received Date: 5/20/2016 3:00:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL **EPA METHOD 8270C: SEMIVOLATILES** Analyst: DAM 2,4-Dinitrotoluene ND 16 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 2,6-Dinitrotoluene ND 14 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 ND 13 50 D 1 Fluoranthene µg/L 5/24/2016 4:04:33 PM 25437 50 D Fluorene ND 14 µg/L 1 5/24/2016 4:04:33 PM 25437 D 5/24/2016 4:04:33 PM ND 13 50 1 25437 Hexachlorobenzene µg/L Hexachlorobutadiene ND 11 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 D Hexachlorocyclopentadiene ND 11 50 µg/L 1 5/24/2016 4:04:33 PM 25437 Hexachloroethane ND 12 50 D 1 5/24/2016 4:04:33 PM 25437 µg/L 15 D Indeno(1,2,3-cd)pyrene ND 50 µg/L 1 5/24/2016 4:04:33 PM 25437 5/24/2016 4:04:33 PM ND 13 50 D 1 25437 Isophorone µg/L 1-Methylnaphthalene ND 15 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 2-Methylnaphthalene ND 14 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 2-Methylphenol ND 13 50 D 1 5/24/2016 4:04:33 PM 25437 µg/L D ND 11 50 1 3+4-Methylphenol µg/L 5/24/2016 4:04:33 PM 25437 12 50 D N-Nitrosodi-n-propylamine ND µg/L 1 5/24/2016 4:04:33 PM 25437 50 D N-Nitrosodimethylamine ND 11 µg/L 1 5/24/2016 4:04:33 PM 25437 N-Nitrosodiphenylamine ND 12 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 Naphthalene 13 50 D ND µg/L 1 5/24/2016 4:04:33 PM 25437 2-Nitroaniline ND 14 50 D 1 5/24/2016 4:04:33 PM 25437 µg/L D 3-Nitroaniline ND 15 50 µg/L 1 5/24/2016 4:04:33 PM 25437 ND 13 50 D 1 4-Nitroaniline µg/L 5/24/2016 4:04:33 PM 25437 Nitrobenzene ND 14 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 ND 12 50 D 1 25437 2-Nitrophenol µg/L 5/24/2016 4:04:33 PM 4-Nitrophenol 13 50 D 5/24/2016 4:04:33 PM 25437 ND µg/L 1 12 D Pentachlorophenol ND 100 1 5/24/2016 4:04:33 PM 25437 µg/L Phenanthrene D ND 13 50 µg/L 1 5/24/2016 4:04:33 PM 25437 Phenol ND 9.9 50 D 5/24/2016 4:04:33 PM µg/L 1 25437 Pyrene ND 15 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 50 D Pyridine ND 11 µg/L 1 5/24/2016 4:04:33 PM 25437 ND 13 50 D 1 5/24/2016 4:04:33 PM 25437 1,2,4-Trichlorobenzene µg/L 2,4,5-Trichlorophenol ND 11 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 2,4,6-Trichlorophenol ND 12 50 D µg/L 1 5/24/2016 4:04:33 PM 25437 Surr: 2-Fluorophenol 55.1 0 15-123 D %Rec 1 5/24/2016 4:04:33 PM 25437 Surr: Phenol-d5 0 4.13-124 D %Rec 5/24/2016 4:04:33 PM 25437 41 1 1 Surr: 2,4,6-Tribromophenol 70.0 0 18.4-134 D %Rec 5/24/2016 4:04:33 PM 25437 1 0 28.8-134 D Surr: Nitrobenzene-d5 74.5 %Rec 1 5/24/2016 4:04:33 PM 25437 Surr: 2-Fluorobiphenvl 71.6 0 35.9-125 D %Rec 1 5/24/2016 4:04:33 PM 25437 Surr: 4-Terphenyl-d14 37.0 0 15-146 D %Rec 5/24/2016 4:04:33 PM 25437 1

EPA METHOD 8260B: VOLATILES

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	P		D.I.	

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

- Blank
- Page 10 of 28

Analyst: DJF

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company Client Sample ID: SWMU 10-21-GW **Project:** SWMU 10 Collection Date: 5/20/2016 9:36:00 AM Lab ID: 1605998-003 Matrix: AQUEOUS Received Date: 5/20/2016 3:00:00 PM Result PQL Qual Units DF **Date Analyzed Batch ID** Analyses MDL EPA METHOD 8260B: VOLATILES Analyst: DJF Benzene 0.15 0.096 1.0 J µg/L 1 5/26/2016 1:41:29 PM A34513 Toluene 0.30 0.12 1.0 J µg/L 1 5/26/2016 1:41:29 PM A34513 ND 0.11 1 Ethylbenzene 1.0 µg/L 5/26/2016 1:41:29 PM A34513 Methyl tert-butyl ether (MTBE) 0.80 0.21 J 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 5/26/2016 1:41:29 PM 1,2,4-Trimethylbenzene 0.50 0.11 1.0 J µg/L 1 A34513 1,3,5-Trimethylbenzene ND 0.12 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 1,2-Dichloroethane (EDC) ND 0.12 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 1,2-Dibromoethane (EDB) ND 0.11 1.0 1 5/26/2016 1:41:29 PM A34513 µg/L Naphthalene 1.3 0.093 2.0 J µg/L 1 5/26/2016 1:41:29 PM A34513 5/26/2016 1:41:29 PM 1-Methylnaphthalene 3.9 0.20 4.0 J 1 µg/L A34513 2-Methylnaphthalene 4.9 0.16 4.0 µg/L 1 5/26/2016 1:41:29 PM A34513 Acetone 20 4.9 10 µg/L 1 5/26/2016 1:41:29 PM A34513 Bromobenzene ND 0.098 1.0 1 5/26/2016 1:41:29 PM A34513 µg/L Bromodichloromethane 1.8 0.14 1.0 1 µg/L 5/26/2016 1:41:29 PM A34513 0.16 0.10 1.0 1 Bromoform J µg/L 5/26/2016 1:41:29 PM A34513 Bromomethane ND 0.78 3.0 µg/L 1 5/26/2016 1:41:29 PM A34513 2-Butanone 5.7 0.74 10 J µg/L 1 5/26/2016 1:41:29 PM A34513 Carbon disulfide ND 0.60 10 1 µg/L 5/26/2016 1:41:29 PM A34513 Carbon Tetrachloride ND 0.11 1.0 1 5/26/2016 1:41:29 PM A34513 µg/L Chlorobenzene ND 0.11 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 Chloroethane ND 0.19 2.0 1 A34513 µg/L 5/26/2016 1:41:29 PM Chloroform 3.4 0.089 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 Chloromethane ND 0.21 3.0 1 5/26/2016 1:41:29 PM A34513 µg/L ND 0.40 1.0 5/26/2016 1:41:29 PM A34513 2-Chlorotoluene µg/L 1 0.13 ND A34513 4-Chlorotoluene 1.0 µg/L 1 5/26/2016 1:41:29 PM cis-1.2-DCE ND 0.12 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 ND 0.11 5/26/2016 1:41:29 PM A34513 cis-1,3-Dichloropropene 10 µg/L 1 1,2-Dibromo-3-chloropropane ND 0.23 2.0 µg/L 1 5/26/2016 1:41:29 PM A34513 0.087 1 Dibromochloromethane 1.3 1.0 µg/L 5/26/2016 1:41:29 PM A34513 Dibromomethane ND 0.12 1.0 1 5/26/2016 1:41:29 PM A34513 µg/L 1,2-Dichlorobenzene ND 0.40 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 1.3-Dichlorobenzene ND 0.14 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 1,4-Dichlorobenzene ND 0.14 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 Dichlorodifluoromethane ND 0.36 1.0 1 5/26/2016 1:41:29 PM A34513 µg/L ND 0.11 5/26/2016 1:41:29 PM A34513 1,1-Dichloroethane 1.0 µg/L 1 ND 1.0 1 A34513 1,1-Dichloroethene 0.11 µg/L 5/26/2016 1:41:29 PM 1.2-Dichloropropane ND 0.11 1.0 µg/L 1 5/26/2016 1:41:29 PM A34513 1,3-Dichloropropane ND 1.0 A34513 0 16 µg/L 1 5/26/2016 1:41:29 PM 2,2-Dichloropropane ND 0.17 2.0 µg/L 1 5/26/2016 1:41:29 PM A34513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Oualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits

Page 11 of 28

- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 6/30/2016

Date Reported: 6/30/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Company			Clie	nt Sampl	e ID: SW	MU 10	-21-GW	
Project: SWMU 10			Co	llection l	Date: 5/20)/2016	9:36:00 AM	
Lab ID: 1605998-003	Matrix:	AQUEOUS	R	eceived l	Date: 5/20	0/2016	3:00:00 PM	
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	
1,1-Dichloropropene	ND	0.13	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
Hexachlorobutadiene	ND	0.20	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
2-Hexanone	3.2	0.84	10	J	µg/L	1	5/26/2016 1:41:29 PM	A34513
Isopropylbenzene	ND	0.10	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
4-Isopropyltoluene	ND	0.14	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
4-Methyl-2-pentanone	2.4	0.43	10	J	µg/L	1	5/26/2016 1:41:29 PM	A34513
Methylene Chloride	ND	0.19	3.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
n-Butylbenzene	ND	0.16	3.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
n-Propylbenzene	ND	0.13	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
sec-Butylbenzene	ND	0.12	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
Styrene	ND	0.11	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
tert-Butylbenzene	ND	0.12	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
1,1,1,2-Tetrachloroethane	ND	0.11	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
1,1,2,2-Tetrachloroethane	ND	0.13	2.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
Tetrachloroethene (PCE)	ND	0.15	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
trans-1,2-DCE	ND	0.40	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
trans-1,3-Dichloropropene	ND	0.10	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
1,2,3-Trichlorobenzene	ND	0.11	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
1,2,4-Trichlorobenzene	ND	0.13	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
1,1,1-Trichloroethane	ND	0.091	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
1,1,2-Trichloroethane	ND	0.13	1.0		µg/L	1	5/26/2016 1:41:29 PM	A34513
Trichloroethene (TCE)	ND	0.18	1.0		μg/L	1	5/26/2016 1:41:29 PM	A34513
Trichlorofluoromethane	ND	0.20	1.0		μg/L	1	5/26/2016 1:41:29 PM	A34513
1,2,3-Trichloropropane	ND	0.20	2.0		μg/L	1	5/26/2016 1:41:29 PM	A34513
Vinyl chloride	ND	0.20	1.0		μg/L	1	5/26/2016 1:41:29 PM	A34513
Xylenes, Total	0.72	0.37	1.5	J	μg/L	1	5/26/2016 1:41:29 PM	A34513
Surr: 1,2-Dichloroethane-d4	102	0	70-130		%Rec	1	5/26/2016 1:41:29 PM	A34513
Surr: 4-Bromofluorobenzene	113	0	70-130		%Rec	1	5/26/2016 1:41:29 PM	A34513
Surr: Dibromofluoromethane	106	0	70-130		%Rec	1	5/26/2016 1:41:29 PM	A34513
Surr: Toluene-d8	101	0	70-130		%Rec	1	5/26/2016 1:41:29 PM	A34513
EPA METHOD 8015D: GASOLINE RANG	E						Analyst: DJF	
Gasoline Range Organics (GRO)	0.047	0.015	0.050	J	mg/L	1	5/26/2016 1:41:29 PM	C34513
Surr: BFB	102		70-130	-	%Rec	1	5/26/2016 1:41:29 PM	C34513

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits Page 12 of 2 ND Not Detected at the Reporting Limit P Sample pH Not In Range Page 12 of 2 R RPD outside accepted recovery limits RL Reporting Detection Limit Page 12 of 2 S % Recovery outside of range due to dilution or matrix W Sample container temperature is out of limit as specified	Qualifiers:	* D	Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix	B E	Analyte detected in the associated Method Blank Value above quantitation range	
HHolding times for preparation or analysis exceededJAnalyte detected below quantitation limitsPage 12 of 2NDNot Detected at the Reporting LimitPSample pH Not In RangeRRPD outside accepted recovery limitsRLReporting Detection Limit	Quaimers:			В	-	
NDNot Detected at the Reporting LimitPSample pH Not In RangeRRPD outside accepted recovery limitsRLReporting Detection Limit		D	I.	E	Value above quantitation range	
NDNot Detected at the Reporting LimitPSample pH Not In RangeRRPD outside accepted recovery limitsRLReporting Detection Limit		Η	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 12 of 28
		ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	8
S % Recovery outside of range due to dilution or matrix W Sample container temperature is out of limit as specified		R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
		S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	

SAMPLE RESULTS - 01

Wet Chemistry by Method 9012B

	Result	Qualifier	MDL	RDŁ	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Cyanide	1.05		0.0180	0.0500	10	05/31/2016 14:43	WG876094

.

	lethod 9012B
WG876094	Wet Chemistry by Met

¥

Metnod Blan≺ (MB)	(3MB) ≻r												
(MB) R3140646-2 05/31/16 13:55	: 05/31/16 13:55												T
Analyte	MB Result mg/l	MB Qualifier	MB MDL mg/l	MB RDL mg/l									
Cyanide	0.00218	0 01	0.00180	0.00500									
L836467-02	LS36467-02 Original Samole (OS) • Duplicate (DUP)	e (OS) • Dup	olicate (DUF	(*									ŚŚ
(OS) L836467-02	(OS) L836467-02 05/31/16 14:01 • (DUP) R3140646-5 05/31/16 14:02	1 R3140646-5 ()5/31/16 14:02										- Cu
•	Original Resu	Original Result DUP Result	Dilution DUP		DUP Qualifier DUP	OUP RPD Limits							
Analyte	∬gm	l/gm	%	I	≈								َنْ ک
Cyanide	0.00518	QN	1 10.0	_	20)
													ို့ဝိ
L837343-01 (L837343-01 Orig.nel Sample (OS) • Duplicate (DUP)	(OS) • Dup	licate (DUP)										
(OS) L837343-01	(OS) L837343-01 05/31/16 14:43 • (DUP) R3140646-8 05/31/16 14:44	R3140646-8 0	5/31/16 14:44										ູ ບັ
	Original Resu	Original Result DUP Result	Dilution DUP RPD		DUP Qualifier DUF	DUP RPD Limits							
Analyte	mg/l	mg/l	%										[
Cyanide	1.05	1.18	10 12.0		20								2
Laboratory C	Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)	-CS) • Lâbo	ratory Cont	rol Sample) Duplicate	(LCSD)							SC
(LCS) R3140646-5	(LCS) R3140646-3 05/31/16 13:56 • (LCSD) R3140646-4 05/31/16 13:57	D) R3140646-4	05/31/16 13:57										
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	l/gm	%	%	%		*	%	%			
Cyanide	0.100	0.103	0.103	103	103	90.0-110		_	0.000	20			
L S36467-03	L S36467-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)	(OS) • Mat	rix Sp ke (N	'S) • Matrix	Soike Dup	ilicate (MSI	D)						
(OS) L836467-03	(OS) L836467-03 05/31/16 14:03 • (MS) R3140646-6 05/31/16 14:04 • (MSD) R3140646-7 05/31/16	R3140646-6 0	5/31/16 14:04 • (h	ASD) R314064(5-7 05/31/16 14	14:07							,
	Spike Amoun	Spike Amount Original Result MS Result	t MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution R	Rec. Limits MS Qualifier		MSD Qualifier R	RPD	RPD Limits	
Analyte	mg/l	mg∕l	mg/l	l/gm	%	%	96			8≺	%	%	
Cyanide	0.200	0.00548	0.187	0.183	91.0	0.68	6	90.0-110	-1	<u>J6</u> 2.	2.00	20	

PAGE:

DATE/TIME:

SDG:

PROJECT:

ACCOUNT:

1605998-0011 SWMU 10-20-GW Collected date/time: 05/20/16 10:45

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 7199

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Hexavalent Chromium	0.000500		0.000150	0.000500	1	05/31/2016 20:03	WG876252

WG876252 Wet Chemistry by Method 7199

QUALITY CONTROL SUMMARY

¥

ź	
5	
ĺ.	
ſ	
i	Ċ
ē	1
	ļ
	ί
	5
	ļ

Method Blank (MB) (MB) R3140841-2 05/31/16 17:59

MB RDL	₩g/I	0.000500
MB MDL	l/ĝm	0.000150
MB Qualifier		
MB Result	l/gm	D
	Analyte	Hexavalent Chromium

1836719-01 Original Sample (OS) • Duplicate (DUP)

		Qualifier DUP RPD Limits	8	20
d	5 18:53	ution DUP RPD DUP	%	0.000
	(OS) L836719-01 05/31/16 18:42 • (DUP) R3140841-5 05/31/16 18:53	Original Result DUP Result Dilution DUP RPD	l∕gm	DN
	/31/16 18:42 • (D	Original	l∕bm	QN
	(OS) L836719-01 05,		Analyte	Hexavalent Chromium

° Qc

ত

S S C

2

С,

្ល់ភ

I

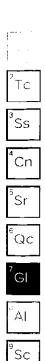
Ss

Ļ

_aboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	RPD Limits	%	20	
	LCSD Qualifier RPD	8	0.000	
	LCS Qualifier			
	Rec. Limits	%	90.0-110	
	LCSD Rec.	%	100	
	LCS Rec.	%	100	
05/31/16 18:15	LCSD Result	mg/l	0.00200	
R3140841-4	LCS Result	∥gm	0.00200	
31/16 18:07 • (LCSD)	Spike Amount	l/gm	0.00200	
(LCS) R3140841-3 05/5	Spike Amount LCS Result LCSD Result	Analyte	Hexavalent Chromium	

LS3S124-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)


(OS) L838184-02 05/31/16 21:17 • (MS) R3140841-6 05/31/16 21:25 •	6 21:17 • (MS) R31	140841-6 05/31/	3	15D) R3140841-7 05/31/16 21:33	05/31/16 21:3	e				-		
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Dilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	l/gm	mg/l	mg/l	1/6m	%	ઝર		%			8 9	%
Hexavalent Chromium	0.0500	ND	0.0522	0.0512	104	102	~	90.0-110			2.00	20

GLOSSARY OF TERMS

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
U	Not detected at the Reporting Limit (or MDL where applicable).
RPD	Relative Percent Difference.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Rec.	Recovery.
Qualifier	Description

The remainder of this page intentionally left blank, there are no qualifiers applied to this SDG.

WO#:	1605998

Client: Project:	Western SWMU	Refining (10	Company	y							
Sample ID	MB-25486	Samp	Туре: МЕ	BLK	Tes	tCode: E	PA Method	200.7: Metals			
Client ID:	PBW	Bato	ch ID: 25	486	F	RunNo: 3	4463				
Prep Date:	5/24/2016	Analysis	Date: 5/	25/2016	5	SeqNo: 1	062877	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		ND	0.0020								
Beryllium		ND	0.0020								
Cadmium		ND	0.0020								
Chromium		ND	0.0060								
Cobalt		ND	0.0060								
Iron		ND	0.020								
Manganese		ND	0.0020								
Nickel		ND	0.010								
Silver		ND	0.0050								
Vanadium		ND	0.050								
Zinc		ND	0.010								
Sample ID	LCS-25486	Samp	Type: LC	s	Tes	tCode: E	PA Method	200.7: Metals			
Client ID:	LCSW	Bato	ch ID: 25	486	F						
Prep Date:	5/24/2016	Analysis	Date: 5/	25/2016	S	SeqNo: 1	062878	Units: mg/L			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		0.50	0.0020	0.5000	0	99.2	85	115			
Beryllium		0.50	0.0020	0.5000	0	100	85	115			
Cadmium		0.51	0.0020	0.5000	0	102	85	115			
Chromium		0.50	0.0060	0.5000	0	101	85	115			
Cobalt		0.49	0.0060	0.5000	0	97.1	85	115			
Iron		0.50	0.020	0.5000	0	99.9	85	115			
Manganese		0.48	0.0020	0.5000	0	96.8	85	115			
Nickel		0.49	0.010	0.5000	0	97.2	85	115			
Silver		0.099	0.0050	0.1000	0	98.8	85	115			
Vanadium		0.51	0.050	0.5000	0	101	85	115			
Zinc		0.50	0.010	0.5000	0	101	85	115			
Sample ID	LLLCS-25486	Samp	Type: LC	SLL	Tes	tCode: E	PA Method	200.7: Metals			
Client ID:	BatchQC	Bato	ch ID: 25	486	F	RunNo: 3	4463				
Prep Date:	5/24/2016	Analysis	Date: 5/	25/2016	S	SeqNo: 1	062880	Units: mg/L			
Analyte		Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		0.0013	0.0020	0.002000	0	66.5	50	150			J
Beryllium		0.0020	0.0020	0.002000	0	103	50	150			
Cadmium		0.0022	0.0020	0.002000	0	110	50	150			
		0.0050	0.0060	0.006000	0	82.8	50	150			J
Chromium					•	405	50	150			
Chromium Cobalt		0.0063	0.0060	0.006000	0	105	50	150			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

- P Sample pH Not In Range
- RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 13 of 28

Client:Western Refining CompanyProject:SWMU 10

Sample ID LLLCS-25486	Samp	Type: LC	SLL	Tes	tCode: E	PA Method	200.7: Metals			
Client ID: BatchQC	Bato	ch ID: 25	486	F	unNo: 3	4463				
Prep Date: 5/24/2016	Analysis	Date: 5/	25/2016	S	eqNo: 1	062880	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Manganese	0.0027	0.0020	0.002000	0	136	50	150			
Nickel	0.0056	0.010	0.005000	0	113	50	150			J
Silver	0.0054	0.0050	0.005000	0	109	50	150			
Vanadium	0.0096	0.050	0.01000	0	95.8	50	150			J
Zinc	0.0063	0.010	0.005000	0	126	50	150			J

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 14 of 28

WO#:	160	5998
	20 T	

30-Jun	-16
--------	-----

	Western Refining SWMU 10	Compan	У							
Sample ID MB-C	Samp	Туре: МІ	BLK	Tes	tCode: E	PA Method	200.7: Dissol	ved Metal	s	
Client ID: PBW	Bato	ch ID: C3	4463	F	RunNo: 3	4463				
Prep Date:	Analysis	Date: 5	/25/2016	Ş	SeqNo: 1	062977	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	ND	0.0020								
Beryllium	ND	0.0020								
Cadmium	ND	0.0020								
Chromium	ND	0.0060								
Cobalt	ND	0.0060								
ron	ND	0.020								
Manganese	ND	0.0020								
lickel	ND	0.010								
Silver	ND	0.0050								
Vanadium	ND	0.050								
linc	ND	0.010								
Sample ID LCS-C	Samp	Type: LC	s	Tes	tCode: E	PA Method	200.7: Dissol	ved Metal	ls	
Client ID: LCSW	Bato	ch ID: C3	4463	F	RunNo: 3	4463				
Prep Date:	Analysis	Date: 5	/25/2016	S	SeqNo: 1	062978	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.49	0.0020	0.5000	0	97.1	85	115			
Beryllium	0.51	0.0020	0.5000	0	101	85	115			
Cadmium	0.49	0.0020	0.5000	0	98.8	85	115			
Chromium	0.48	0.0060	0.5000	0	96.7	85	115			
Cobalt	0.47	0.0060	0.5000	0	93.9	85	115			
ron	0.49	0.020	0.5000	0	97.7	85	115			
langanese	0.48	0.0020	0.5000	0	95.9	85	115			
lickel	0.47	0.010	0.5000	0	93.1	85	115			
Silver	0.10	0.0050	0.1000	0	100	85	115			
/anadium	0.50	0.050	0.5000	0	101	85	115			
Zinc	0.48	0.010	0.5000	0	96.3	85	115			
Sample ID LLLCS-	C Samp	Type: LC	SLL	Tes	tCode: E	PA Method	200.7: Dissol	ved Metal	s	
Client ID: BatchQ	c Bate	ch ID: C3	4463	F	RunNo: 3	4463				
Prep Date:	Analysis	Date: 5	/25/2016	S	SeqNo: 1	062979	Units: mg/L			
Analyte	Result	PQL		SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.0022	0.0020	0.002000	0	110	50	150			
Beryllium	0.0022	0.0020	0.002000	0	108	50	150			
Cadmium	0.0020	0.0020	0.002000	0	99.5	50	150			J
Chromium	0.0055	0.0060	0.006000	0	91.3	50	150			J
Cobalt	0.0071	0.0060	0.006000	0	118	50	150			
ron	0.026	0.020	0.02000	0	128	50	150			

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Detection Limit

Р

W Sample container temperature is out of limit as specified

Page 15 of 28

WO#: 1605998

30-Jun-16

Client: Western Refining Company Project: SWMU 10

Sample ID LLLCS-C	Samp	Type: LC	SLL	Tes	tCode: El	PA Method	200.7: Dissol	ved Metal	ls	
Client ID: BatchQC	Bato	h ID: C3	4463	F	RunNo: 3	4463				
Prep Date:	Analysis	Date: 5/	25/2016	S	SeqNo: 1	062979	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Manganese	0.0021	0.0020	0.002000	0	104	50	150			
Nickel	0.0042	0.010	0.005000	0	83.8	50	150			J
Silver	0.0055	0.0050	0.005000	0	109	50	150			
Vanadium	0.011	0.050	0.01000	0	109	50	150			J
Zinc	0.0060	0.010	0.005000	0	121	50	150			J

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 16 of 28

Client: Project:	Western SWMU	U	Company	у							
Sample ID	MB-25486	Samp	оТуре: МЕ	BLK	Tes	tCode: El	PA 200.8: N	letals			
Client ID:	PBW	Bat	ch ID: 25	486	F	RunNo: 3	4477				
Prep Date:	5/24/2016	Analysis	Date: 5/	25/2016	5	SeqNo: 1	063236	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	0.0010								
Arsenic		ND	0.0010								
Lead		ND	0.00050								
Selenium		ND	0.0010								
Sample ID	MSLCS-25486	Samp	Type: LC	S	Tes	tCode: El	PA 200.8: N	letals			
Client ID:	LCSW	Bat	ch ID: 25	486	F	RunNo: 3	4477				
Prep Date:	5/24/2016	Analysis	Date: 5/	25/2016	5	SeqNo: 1	063238	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		0.026	0.0010	0.02500	0	103	85	115			
Arsenic		0.023	0.0010	0.02500	0	92.3	85	115			
Lead		0.012	0.00050	0.01250	0	99.9	85	115			
Selenium		0.023	0.0010	0.02500	0	93.7	85	115			
Sample ID	MSLLLCS-25486	Samp	Type: LC	SLL	Tes	tCode: El	PA 200.8: N	letals			
Client ID:	BatchQC	Bat	ch ID: 25	486	F	RunNo: 3	4477				
Prep Date:	5/24/2016	Analysis	Date: 5/	25/2016	S	SeqNo: 1	063240	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		0.00078	0.0010	0.001000	0	78.0	50	150			J
Arsenic		0.00086	0.0010	0.001000	0	86.2	50	150			J
Lead		0.00055	0.00050	0.0005000	0	110	50	150			
Selenium		0.00090	0.0010	0.001000	0	90.1	50	150			J

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 17 of 28

WO#: 1605998

ND

0.0010

		v		0 >						
	Vestern Refining WMU 10	Compan	y							
	Samp	oType: LC	s	Tes	tCode: E	PA 200.8: [Dissolved Met	als		
	Bat	ch ID: C3	4426	F	RunNo: 3	4426				
	Analysis	Date: 5/	23/2016	S	SeqNo: 1	061595	Units: mg/L			
	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
	0.025	0.0010	0.02500	0	100	85	115			
	0.025	0.0010	0.02500	0	99.1	85	115			
	0.013	0.00050	0.01250	0	103	85	115			
	0.026	0.0010	0.02500	0	103	85	115			
_	Sam	oType: LC	SLL	Tes	tCode: E	PA 200.8: [Dissolved Met	als		

Sample ID LCSLL	SampType: LCSLL	TestCode: EPA 200.8:	Dissolved Metals	
Client ID: BatchQC	Batch ID: C34426	RunNo: 34426		
Prep Date:	Analysis Date: 5/23/2016	SeqNo: 1061599	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
Antimony	0.0010 0.0010 0.001000	0 100 50	150	
Arsenic	0.00097 0.0010 0.001000	0 96.6 50	150	J
Lead	0.00053 0.00050 0.0005000	0 106 50	150	
Selenium	0.00097 0.0010 0.001000	0 97.1 50	150	J
Sample ID MB	SampType: MBLK	TestCode: EPA 200.8:	Dissolved Metals	
Client ID: PBW	Batch ID: C34426	RunNo: 34426		
Prep Date:	Analysis Date: 5/23/2016	SeqNo: 1061601	Units: mg/L	
Analyte	Result PQL SPK value	SPK Ref Val %REC LowLimit	HighLimit %RPD	RPDLimit Qual
			V	
Antimony	ND 0.0010		Ŭ	
Antimony Arsenic				

Qualifiers:

Selenium

Client:

Project:

Prep Date:

Analyte Antimony Arsenic Lead Selenium

Sample ID LCS Client ID: LCSW

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 18 of 28

WO#: 1605998

Client: Project:	Weste SWM	ern Refining Compan U 10	у							
Sample ID	MB-25512	SampType: MI	BLK	Tes	tCode: El	PA Method	245.1: Mercu	ry		
Client ID:	PBW	Batch ID: 25	512	F	RunNo: 34	4519				
Prep Date:	5/25/2016	Analysis Date: 5/	26/2016	S	SeqNo: 1	064697	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.000076 0.00020								J
Sample ID	LCS-25512	SampType: LC	s	Tes	tCode: El	PA Method	245.1: Mercu	ry		
Client ID:	LCSW	Batch ID: 25	512	F	RunNo: 34	4519				
Prep Date:	5/25/2016	Analysis Date: 5/	26/2016	5	SeqNo: 1	064698	Units: mg/L			
Analyte		Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Mercury		0.0051 0.00020	0.005000	0	103	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 19 of 28

Client: Project:		Western Refining Company SWMU 10	
Sample ID	MB	SampType: MBLK TestCode: EPA Method 300.0: Anions	
Client ID:	PBW	Batch ID: R34434 RunNo: 34434	
Prep Date:		Analysis Date: 5/23/2016 SeqNo: 1061743 Units: mg/L	
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	nit Qual
Fluoride Sulfate		ND 0.10 ND 0.50	
Sample ID	LCSb	SampType: LCS TestCode: EPA Method 300.0: Anions	
Client ID:	LCSW	N Batch ID: R34434 RunNo: 34434	
Prep Date:		Analysis Date: 5/23/2016 SeqNo: 1061747 Units: mg/L	
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	nit Qual
Fluoride		0.54 0.10 0.5000 0 108 90 110	
Sulfate		9.9 0.50 10.00 0 98.5 90 110	
Sample ID	MB	SampType: MBLK TestCode: EPA Method 300.0: Anions	
Client ID:	PBW	Batch ID: R34487 RunNo: 34487	
Prep Date:		Analysis Date: 5/25/2016 SeqNo: 1063631 Units: mg/L	
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	nit Qual
Chloride		ND 0.50	
Sample ID	LCS	SampType: LCS TestCode: EPA Method 300.0: Anions	
Client ID:	LCSW	N Batch ID: R34487 RunNo: 34487	
Prep Date:		Analysis Date: 5/25/2016 SeqNo: 1063632 Units: mg/L	
Analyte		Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLim	nit Qual
Chloride		4.9 0.50 5.000 0 98.3 90 110	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 20 of 28

Client:WesternProject:SWMU	Refining Co 10	ompany	Į							
Sample ID MB-25494	SampType: MBLK TestCode: EPA Method 801							sel Range	9	
Client ID: PBW	Batch	ID: 254	494	F	unNo: 34	4483				
Prep Date: 5/25/2016	Analysis Da	ate: 5 /2	25/2016	S	eqNo: 10	063745	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	1.0								
Motor Oil Range Organics (MRO)	ND	5.0								
Surr: DNOP	0.98		1.000		97.7	70	141			
Sample ID LCS-25494	SampT	/pe: LC	S	Tes	tCode: EF	PA Method	8015M/D: Die	sel Range)	
Client ID: LCSW	Batch	ID: 254	494	F	unNo: 34	4489				
Prep Date: 5/25/2016	Analysis Da	ate: 5 /2	26/2016	S	eqNo: 10	064130	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	5.6	1.0	5.000	0	111	71.3	139			
Surr: DNOP	0.50		0.5000		101	70	141			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 21 of 28

WO#: 1605998 30-Jun-16

WO#:	1605998

30-J	un-16	
------	-------	--

Client: Project:	Western Refining SWMU 10	g Compan	у								
Sample ID rb1	San	SampType: MBLK			TestCode: EPA Method 8260B: VOLATILES						
Client ID: PBW	Ba	Batch ID: A34513		F	RunNo:	34513					
Prep Date:	Analysi	s Date: 5	/26/2016	S	SeqNo:	1064513	Units: µg/L				
Analyte	Resul	t PQL	SPK value	SPK Ref Val	%REC	C LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	NE) 1.0									
Toluene	NE) 1.0									
Ethylbenzene	NE) 1.0									
Methyl tert-butyl ether (f	MTBE) NC) 1.0									
1,2,4-Trimethylbenzene	e NE) 1.0									
1,3,5-Trimethylbenzene	e NE) 1.0									
1,2-Dichloroethane (ED	C) NE) 1.0									
1,2-Dibromoethane (ED	DB) NC) 1.0									
Naphthalene	NE	2.0									
1-Methylnaphthalene	NE	4.0									
2-Methylnaphthalene	NE	4.0									
Acetone	NE) 10									
Bromobenzene	NE) 1.0									
Bromodichloromethane	NE) 1.0									
Bromoform	NE) 1.0									
Bromomethane	NE	3.0									
2-Butanone	NE) 10									
Carbon disulfide	NE) 10									
Carbon Tetrachloride	NE) 1.0									
Chlorobenzene	NE) 1.0									
Chloroethane	NE	2.0									
Chloroform	NE) 1.0									
Chloromethane	NE	3.0									
2-Chlorotoluene	NE										
4-Chlorotoluene	NE) 1.0									
cis-1,2-DCE	NE) 1.0									
cis-1,3-Dichloropropene	e NE) 1.0									
1,2-Dibromo-3-chloropro	opane NE	2.0									
Dibromochloromethane	NE) 1.0									
Dibromomethane	NE) 1.0									
1,2-Dichlorobenzene	NE) 1.0									
1,3-Dichlorobenzene	NE) 1.0									
1,4-Dichlorobenzene	NE) 1.0									
Dichlorodifluoromethan	e NC) 1.0									
1,1-Dichloroethane	NE) 1.0									
1,1-Dichloroethene	NE) 1.0									
1,2-Dichloropropane	NE) 1.0									
1,3-Dichloropropane	NE) 1.0									
2,2-Dichloropropane	NE	2.0									

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 22 of 28

WO#:	1605998
	30-Jun-16

Client: Weste Project: SWM	rn Refining C U 10	ompan	у								
Sample ID rb1	SampT	SampType: MBLK			tCode: E	ATILES					
Client ID: PBW	Batch	n ID: A3	4513	F	RunNo: 34513						
Prep Date:	Analysis D	ate: 5	26/2016	S	SeqNo: 1064513		Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
1,1-Dichloropropene	ND	1.0					-				
Hexachlorobutadiene	ND	1.0									
2-Hexanone	ND	10									
Isopropylbenzene	ND	1.0									
4-Isopropyltoluene	ND	1.0									
4-Methyl-2-pentanone	ND	10									
Methylene Chloride	0.45	3.0								J	
n-Butylbenzene	ND	3.0									
n-Propylbenzene	ND	1.0									
sec-Butylbenzene	ND	1.0									
Styrene	ND	1.0									
tert-Butylbenzene	ND	1.0									
1,1,1,2-Tetrachloroethane	ND	1.0									
1,1,2,2-Tetrachloroethane	ND	2.0									
Tetrachloroethene (PCE)	ND	1.0									
trans-1,2-DCE	ND	1.0									
trans-1,3-Dichloropropene	ND	1.0									
1,2,3-Trichlorobenzene	ND	1.0									
1,2,4-Trichlorobenzene	ND	1.0									
1,1,1-Trichloroethane	ND	1.0									
1,1,2-Trichloroethane	ND	1.0									
Trichloroethene (TCE)	ND	1.0									
Trichlorofluoromethane	ND										
		1.0									
1,2,3-Trichloropropane	ND	2.0									
Vinyl chloride	ND	1.0									
Xylenes, Total	ND	1.5	40.00		00.0	70	100				
Surr: 1,2-Dichloroethane-d4	9.6		10.00		96.2		130				
Surr: 4-Bromofluorobenzene	11		10.00		109		130				
Surr: Dibromofluoromethane	10		10.00		101		130				
Surr: Toluene-d8	10		10.00		101	70	130				
Sample ID 100ng Ics	SampT	ype: LC	s	Tes	tCode: E	EPA Method	8260B: VOL	ATILES			
Client ID: LCSW	Batch	n ID: A3	4513	F	RunNo: 3	34513					
Prep Date:	Analysis D	ate: 5	/26/2016	S	SeqNo:	1064514	Units: µg/L				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene	19	1.0	20.00	0	95.7	70	130				
Toluene	20	1.0	20.00	0	101	70	130				
Chlorobenzene	20	1.0	20.00	0	99.4	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- \mathbf{S} % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank

Е Value above quantitation range

- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 23 of 28

Client:	Western Refining Company
Project:	SWMU 10

Sample ID 100ng Ics	SampT	ype: LC	S	TestCode: EPA Method 8260B: VOLATILES						
Client ID: LCSW	Batch	Batch ID: A34513			RunNo: 34513					
Prep Date:	Analysis D	ate: 5/	26/2016	SeqNo: 1064514			Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloroethene	20	1.0	20.00	0	101	70	130			
Trichloroethene (TCE)	18	1.0	20.00	0	90.3	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		99.6	70	130			
Surr: 4-Bromofluorobenzene	11		10.00		112	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	11		10.00		106	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- \mathbf{S} % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 24 of 28

30-Jun-16

WO#:	1605998

Client:WesterProject:SWMU	m Refining C J 10	ompany								
Sample ID mb-25437	SampType: MBLK TestCode: EPA Method 8270C: Semivolatiles									
Client ID: PBW	Batch	ID: 25437		RunNo: 34450						
Prep Date: 5/23/2016	Analysis D	ate: 5/24/2016		SeqNo: 1	062341	Units: µg/L				
Analyte	Result	PQL SPK va	alue SPK Ref Va	NREC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Acenaphthene	ND	10								
Acenaphthylene	ND	10								
Aniline	ND	10								
Anthracene	ND	10								
Azobenzene	ND	10								
Benz(a)anthracene	ND	10								
Benzo(a)pyrene	ND	10								
Benzo(b)fluoranthene	ND	10								
Benzo(g,h,i)perylene	ND	10								
Benzo(k)fluoranthene	ND	10								
Benzoic acid	6.7	20							J	
Benzyl alcohol	ND	10 10								
Bis(2-chloroethoxy)methane	ND ND	10 10								
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	ND	10								
Bis(2-ethylhexyl)phthalate	3.8	10							J	
4-Bromophenyl phenyl ether	ND	10							5	
Butyl benzyl phthalate	ND	10								
Carbazole	ND	10								
4-Chloro-3-methylphenol	ND	10								
4-Chloroaniline	ND	10								
2-Chloronaphthalene	ND	10								
2-Chlorophenol	ND	10								
4-Chlorophenyl phenyl ether	ND	10								
Chrysene	ND	10								
Di-n-butyl phthalate	ND	10								
Di-n-octyl phthalate	4.8	10							J	
Dibenz(a,h)anthracene	ND	10								
Dibenzofuran	ND	10								
1,2-Dichlorobenzene	ND	10								
1,3-Dichlorobenzene	ND	10								
1,4-Dichlorobenzene	ND	10								
3,3 ⁻ Dichlorobenzidine	ND	10								
Diethyl phthalate	ND	10								
Dimethyl phthalate	ND	10								
2,4-Dichlorophenol	ND	20								
2,4-Dimethylphenol	ND	10								
4,6-Dinitro-2-methylphenol	ND	20								
2,4-Dinitrophenol	ND	20								

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 25 of 28

WO#:	1605998

Client:WesternProject:SWMU	Refining C 10	ompany	ý							
Sample ID mb-25437	SampT	ype: ME	BLK	TestCode: EPA Method 8270C: Semivolatiles						
Client ID: PBW	Batch ID: 25437			F	RunNo: 3					
Prep Date: 5/23/2016	Analysis D	ate: 5/	24/2016	5	SeqNo: 1	062341	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
2,4-Dinitrotoluene	ND	10					-			
2,6-Dinitrotoluene	ND	10								
Fluoranthene	ND	10								
Fluorene	ND	10								
Hexachlorobenzene	ND	10								
Hexachlorobutadiene	ND	10								
Hexachlorocyclopentadiene	ND	10								
Hexachloroethane	ND	10								
Indeno(1,2,3-cd)pyrene	ND	10								
Isophorone	ND	10								
1-Methylnaphthalene	ND	10								
2-Methylnaphthalene	ND	10								
2-Methylphenol	ND	10								
3+4-Methylphenol	ND	10								
N-Nitrosodi-n-propylamine	ND	10								
N-Nitrosodimethylamine	ND	10								
N-Nitrosodiphenylamine	ND	10								
Naphthalene	ND	10								
2-Nitroaniline	ND	10								
3-Nitroaniline	ND	10								
4-Nitroaniline	ND	10								
Nitrobenzene	ND	10								
2-Nitrophenol	ND	10								
4-Nitrophenol	ND	10								
Pentachlorophenol	ND	20								
Phenanthrene	ND	10								
Phenol	ND	10								
Pyrene	ND	10								
Pyridine	ND	10								
1,2,4-Trichlorobenzene	ND	10								
2,4,5-Trichlorophenol	ND	10								
2,4,6-Trichlorophenol	ND	10								
Surr: 2-Fluorophenol	120		200.0		57.6	15	123			
Surr: Phenol-d5	87		200.0		43.6	4.13	124			
Surr: 2,4,6-Tribromophenol	160		200.0		79.7	18.4	134			
Surr: Nitrobenzene-d5	75		100.0		74.9	28.8	134			
Surr: 2-Fluorobiphenyl	71		100.0		71.3	35.9	125			
Surr: 4-Terphenyl-d14	65		100.0		65.5	15	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 26 of 28

Client:Western Refining CompanyProject:SWMU 10

Sample ID Ics-25437	SampT	Type: LC	S	TestCode: EPA Method 8270C: Semivolatiles													
Client ID: LCSW	Batcl	h ID: 25	437	F	RunNo: 3												
Prep Date: 5/23/2016	Analysis D	Date: 5/	24/2016	S	SeqNo: 1	062342	Units: µg/L										
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual							
Acenaphthene	84	10	100.0	0	83.7	35	113										
4-Chloro-3-methylphenol	130	10	200.0	0	66.0	40.7	114										
2-Chlorophenol	130	10	200.0	0	64.4	37.6	113										
1,4-Dichlorobenzene	69	10	100.0	0	68.7	37.7	106										
2,4-Dinitrotoluene	70	10	100.0	0	70.1	37	91										
N-Nitrosodi-n-propylamine	74	10	100.0	0	74.5	45.4	105										
4-Nitrophenol	73	10	200.0	0	36.4	33.4	104										
Pentachlorophenol	120	20	200.0	0	58.0	29.5	94.9										
Phenol	77	10	200.0	0	38.4	30.6	119										
Pyrene	82	10	100.0	0	82.0	26.2	120										
1,2,4-Trichlorobenzene	82	10	100.0	0	81.6	39.9	125										
Surr: 2-Fluorophenol	95		200.0		47.6	15	123										
Surr: Phenol-d5	75		200.0		37.5	4.13	124										
Surr: 2,4,6-Tribromophenol	150		200.0		74.3	18.4	134										
Surr: Nitrobenzene-d5	68		100.0		68.2	28.8	134										
Surr: 2-Fluorobiphenyl	70		100.0		70.0	35.9	125										
Surr: 4-Terphenyl-d14	61		100.0		61.5	15	146										

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 27 of 28

WO#: 1605998

Client: Project:	······································																
Sample ID	rb1	SampT	pe: M	BLK	TestCode: EPA Method 8015D: Gasoline Range												
Client ID:	PBW	Batch	ID: C3	4513	RunNo: 34513												
Prep Date:		Analysis D	ate: 5/	/26/2016	S	SeqNo: 1	064532	Units: mg/L									
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
Gasoline Rang Surr: BFB	je Organics (GRO)	ND 0.050 9.7 10				96.9	70	130									
Sample ID 2.5ug gro Ics SampType: LCS TestCode: EPA Method 8015D: Gasoline Range																	
Client ID:	LCSW	Batch	ID: C3	84513	F	RunNo: 3	4513										
Prep Date:		Analysis D	ate: 5/	/26/2016	S	SeqNo: 1	064533	Units: mg/L									
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
	e Organics (GRO)	0.52	0.050	0.5000	0 103		75.4	118									
Surr: BFB		10		10.00		101	70	130									
Sample ID	1605998-001B MS	SampT	pe: M \$	S	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e							
Client ID:	SWMU 10-20-GW	Batch	ID: C3	84513	F	RunNo: 3	4513										
Prep Date:		Analysis Da	ate: 5/	/26/2016	S	SeqNo: 1	064538	Units: mg/L									
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
Gasoline Rang	je Organics (GRO)	29	0.50	5.000	25.03	72.5	53.8	128									
Surr: BFB		97		100.0		97.1	70	130									
Sample ID	1605998-001B MS	D SampT	/pe: M \$	SD	Tes	tCode: El	PA Method	8015D: Gaso	line Rang	e							
Client ID:	SWMU 10-20-GW	Batch	ID: C3	4513	F	RunNo: 3	4513										
Prep Date:		Analysis D	ate: 5/	/26/2016	S	SeqNo: 1	064539	Units: mg/L									
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual						
Gasoline Rang	je Organics (GRO)	29	0.50	5.000	25.03	78.6	53.8	128	1.05	20							
Surr: BFB		98		100.0		98.4	70	130	0	0							

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Η Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 28 of 28

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental / Aibu TEL: 505-345-3975 / Website: www.iai	4901 Hawkins querque, NM 871 FAX: 505-345-41	NE 109 Samp	Sample Log-In Check List					
Client Name: Western Refining Gallup	Work Order Number:	1605998		RcptNo:	1				
Received by/date: AF	05/20/16								
Logged By: Lindsay Mangin	/ 5/20/2016 3:00:00 PM		Altho						
Completed By: Lindsay Mangin	5/20/2016 3:34:27 PM		ALALO						
Reviewed By:	05/23/16		000						
Chain of Custody	0)/0///0								
1. Custody seals intact on sample bottles?		Yes 🖌	No 🗌	Not Present					
2. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present					
3. How was the sample delivered?		Courier							
Log In				35					
 Was an attempt made to cool the samples? 		Yes 🔽	No 🗆	NA \Box					
5. Were all samples received at a temperature	of >0°C to 6.0°C	Yes 🗸	No 🗆						
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗆						
7. Sufficient sample volume for indicated test(s)		Yes M							
 Are samples (except VOA and ONG) properly Was preservative added to bottles? 	preserved?	Yes V	NO C	NA 🗆					
SEP 1	Remarks	AGO	5/22/14	0					
10.VOA vials have zero headspace?		Yes 🖉	No 🗆	No VOA Vials					
 Were any sample containers received broker 	17	Yes 🛄	No 🗹	# of preserved	01				
12.Does paperwork match bottle labels?		Yes 🔽	No 🗌	bottles checked for pH:	0				
(Note discrepancies on chain of custody)		-		Adjusted?	unless noted)				
13. Are matrices correctly identified on Chain of 0 14. Is it clear what analyses were requested?	Custody?	Yes ✓ Yes ✓		Aujusteu	yes_				
15. Were all holding times able to be met?		Yes V		Checked by:	VAC-				
(If no, notify customer for authorization.)					γ.				
Special Handling (if applicable)									
16. Was client notified of all discrepancies with th	nis order?	Yes 🗆	No 🗌	NA 🗹					
Person Notified:	Date								
By Whom:	Via:] eMail 🔲 Pl	hone 🗌 Fax 🛛	In Person					
Regarding:									
Client Instructions:	Analysis ad	led 1 ml	HND2	to-DALE D	annestab				
17. Additional remarks: For Metals PH, heley for 24 hrs pi 18. Cooler Information Cooler No Temp "C Condition Sec	and the second s	Stanson I.	AG-05 Signed By	lz3/14	or at apart				
1 2.2 Good Yes			original by						

Page	l of	1	
250			

		www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request	([*] C) S'*((S (S (S (S (S) (S) (S) (S) (S) (S) (S	сск СС СС СС СС СС СС СС СС СС СС СС СС СС	2008 2008 2008 2007 2007 2007 2007 2007	(Vi (Vi)) (Vi (Vi)) (Vi (Vi)) (Vi (Vi)) (Vi		ТРН 80158 ВТЕХ + МТ ТРН 80158 ТРН (Мейлс ВОВ (Мейлс ВОВ (Мейлс ВОВ (Мейлс ВОВ (УО) ВОВ1 Резціс ВОВ1 Резціс ВОВ1 Резціс ВОВ1 Резціс СРС С ССС С С ССС С С ССС С					>			>	A to the total and total and the total and the total and the total and t	Remarks:			bis cossibilitiv. Any sub-contracted data will be clearly notated on the analytical report
Turn-Around Time:	K Standard 🛛 Rush	Project Name:	SWMU 10	Project #:		Project Manager:		ED RIEGE	Sampler: TRACY RAYNE	On Ice: 🖉 Yes 🗆 No	Sample Temperature: 2.2	Container Preservative HEAL No. Type and # Type	40 ML - 001	a ieter anger-2 NEAT - 001	 PLASTIC-1 HNOZ - COUL							Received by. Date Time	First may 1200	Date]	the accredited laboratories.
Chain-of-Custody Record	Client: WESTERN REFINITIG SWITNC.		Mailing Address GIANT CROSSING RD		Phone #. 505-772-023/	RIESE @WNR.COM	QA/QC Package:	C Standard KLevel 4 (Full Validation)	uo		Kedd (Type) EXCEL	Date Time Matrix Sample Request ID	5.1D.19.1045 WATER SWALL 10-20-GW					- V TRIP BLANK	MD-0	0936 WATERS WM 10-21- GW		Relinquished by:	1112 A -1	elinquished by:	H necessary samples submitted to all Environmental may be subcontracted to of

N 2

WESTERN REFINING SOUTHWEST, INC. GALLUP REFINERY - NORTH DRAINAGE DITCH METALS AND CYANIDE ANALYSES FOR GROUNDWATER SAMPLES AND WATER QA/QC SAMPLES

TOTAL METALS ANALYSIS AND DISSOLVED METALS ANALYSIS

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020
Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

GENERAL CHEMISTRY PARAMETERS FOR GROUNDWATER SAMPLES AND WATER QA/QC SAMPLES

Analyte	Analytical Method
Chloride	EPA method 300.0
Fluoride	EPA method 300.0
Sulfate	EPA method 300.0

Appendix E

Quality Assurance/Quality Control Review

DATA VALIDATION INTRODUCTION

This summary presents data verification results for soil and groundwater samples collected from soil boring and monitoring wells installed at SWMU10 at the Gallup Refinery. The data review was performed in accordance with Provision IV.J.3.b (Review of Field and Laboratory QA/QC Data) of the RCRA Permit issued by NMED in October 2013, USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc.

A total of 73 soil samples and 11 groundwater samples (excluding QA samples) were collected from April 28, 2015 through September 21, 2016 in accordance with the SWMU 10 Investigation Work Plan (Western Refining Southwest, Inc., 2014). Soil and groundwater samples were submitted to Hall Environmental Analysis Laboratory for the following parameters in accordance with the approved Work Plan:

- volatile organic compounds (VOCs) by USEPA Method 8260B;
- semi-volatile organic compounds (SVOCs) by USEPA Method 8270;
- Gasoline, diesel, and motor oil range organics by SW-846 Method 8015B;
- Total recoverable and dissolved metals (Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, lead, nickel, selenium, silver, vanadium, and zinc) by SW846 Method 6010/6020;
- Chromium VI by SW-846 method 3060A;
- Tetraethyl lead by SW-846 method 3546;
- Cyanide by SW-846 method 9012; and
- Mercury by EPA Method 7470.

The groundwater samples were analyzed for water quality parameters including, sulfate, chloride, and fluoride.

Additionally, 29 quality assurance samples consisting of trip blanks, field blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation activities. Table A-1 presents a summary of the field sample identifications, laboratory sample identifications, and sample collection dates.

QUALITY CONTROL PARAMETERS REVIEWED

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt
- Holding Times;
- Blank Contamination (method blanks, trip blanks, field blanks, and equipment rinsate blanks);
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J+ The analyte was positively identified; however, the result should be considered an estimated value with a potential high bias.
- J- The analyte was positively identified; however, the result should be considered an estimated value with a potential low bias.
- UJ The reporting limit for a constituent that was not detected is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J+", "J-", or "UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

Results for the performance monitoring events that required qualification based on the data verification are summarized in Table A-2.

CHAIN-OF-CUSTODY

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

SAMPLE PRESERVATION AND TEMPERATURE UPON LABORATORY RECEIPT

Samples collected were received preserved and intact by Hall Environmental Laboratories, Inc. Samples were received by the laboratory at a temperature of 6.0 degrees Celsius or lower. Data qualification on lower temperature samples was not required. The hexavalent chromium field sample SWMU 10-12-GW was received at a pH of 7.5 rather than the range of 8 to 10 units. The field sample was not qualified. The sample bottle for the total metals analyses for sample SWMU 10-20-GW was apparently received with a pH outside the desired range, thus the lab added one milliliter of HNO3 and held the sample for 24 hours prior to analysis to ensure no metals had precipitated in the sample. The associated sample results are not qualified.

HOLDING TIMES

All samples were extracted and analyzed within method-specified holding time limits with the exception of the following:

 Lab Report 1505618 - Sample SWMU 10 EB06 was extracted 2 days after the 7 day holding time. This affected only the Method 8270C semi volatile analyses and only one sample. Since results may be biased low, the sample non-detect results were qualified "UJ".

See Table A-2 for qualified data.

BLANK CONTAMINATION

Method Blank

Method blanks were analyzed at the appropriate frequency. Target compounds were not detected in the method blanks, with the exception of the following:

 1,2,4-Trimethylbenzene, acetone, 2-butanone (MEK), chloromethane, and 1,1dichloroethane were detected in the blank for batch 19008. Acetone, 2-butanone, chloromethane, and 1,1-dichloroethane were not detected in the associated samples and qualification was not required. 1,2,4-Trimethylbenzene was detected at concentrations greater than 5x blank in associated samples; and qualification of the field samples was not necessary.

- Zinc was detected in the method blank for batch 19025. Zinc was detected at similar concentrations in associated sample SWMU 10-3-GW; and the field sample was qualified with a" J+".
- Toluene and 2-butanone were detected in the blank for batch 19032. Toluene was detected in 2 associated samples and 2-butanone was detected in 10 associated samples at similar concentrations; and the field samples were qualified with a" J+".
- Lead, iron and zinc were detected in the method blank for batch for 19080. Lead, iron and zinc were detected in associated samples at concentrations greater than 5x the concentrations in the blank; and qualification of field samples was not necessary;
- Lead and iron were detected in the method blank for batch 19081. Lead and iron were detected in associated samples. The concentration for lead in one sample SWMU 10-8 (18-20') was less than 5x the concentration in the blank and this sample was qualified "J+". The results for remaining associated samples were greater than 5x the blank and qualification was not necessary.
- Cadmium and iron were detected in the method blank for batch 19082. Cadmium was not detected in associated samples. Iron was detected in associated samples but the concentrations were greater than 5x the blank and qualification of field samples was not necessary.
- 2-Butanone and toluene were detected in the method blank for batch 19107. 2-Butanone was detected in six associated samples at similar concentrations; and the field samples were qualified "J+". Toluene was detected in associated samples at concentrations greater than 5x the blank and qualification of the field samples was not necessary.
- 2-Butanone was detected in the blank for batch 19243. 2-Butanone was detected in three associated samples SWMU 10-16 (2-4'), SWMU 10-16 (4.5-5') and SWMU 10-16 (8-9") at similar concentrations; and the field samples were qualified "J+".
- Iron and silver were detected in the method blank for batch 19259. Silver was not detected in associated samples. Iron was detected in associated samples but the concentrations were greater than 5x the blank; and field samples were not qualified.
- Iron was detected in the blank for batch 19279. Iron was detected in associated samples but the concentrations were greater than 5x the blank and field samples were not qualified.
- Iron was detected in the blank for batch 19280. Iron was detected in associated samples but the concentrations were greater than 5x the blank and field samples were not qualified.

- Iron was detected in the blank for batch 19333. Iron was detected in associated samples but the concentrations were greater than 5x the blank and field samples were not qualified.
- Mercury was detected in the blank for batch 19401. Mercury was also detected in the equipment blank EB06 and in an associated sample SWMU 10-11-GW at similar concentrations. The field samples were qualified "J+".
- Beryllium was detected in the method blank for batch R26030. Beryllium was detected in three associated samples SWMU 10-1-GW, SWMU 10-3-GW and SWMU 10-5-GW at similar concentrations. The field samples were qualified "J+".
- 2-Butanone, chloroethane, and chloromethane were detected in the method blank for batch R26144.
 2-Butanone, chloroethane, and chloromethane were not detected in associated samples and qualification of field samples is not necessary.
- 1,2,4- Trimethylbenzene, 2-butanone, and toluene were detected in the method blank for batch R25982. 1,2,4- Trimethylbenzene was detected in associated samples SWMU 10-1 (2-4') and SWMU 10-8 (4-6') at a similar concentration and the field samples were flagged "J+". 2-Butanone was not detected and toluene was detected in associated samples but concentrations were 5x the blank; and qualification of field samples is not necessary.
- 1,2,4-Trimethylbenzene, 1,2-dichloroethane, bromomethane, and chloroethane were detected in the blank for batch R26221. 1,2,4-Trimethylbenzene was detected in associated samples but concentrations were 5x the blank; and bromomethane, chloroethane, and 1,2-Dichloroethane were not detected in associated samples. Qualification of field samples was not necessary.
- Silver was detected in the method blank for analytical batch R25881. Silver was not detected in the associated sample and qualification was not required.
- Bromomethane and 1,2,4-trimethylbenzene were detected in the method blank for batch R26209; Bromomethane was detected in associated samples SWMU 10-11 (8-10"), SWMU 10-13 (6-8') and SWMU 10-14 (6-8') at similar concentrations; and field samples were flagged "J+". 1,2,4-Trimethylbenzene was detected in associated samples but concentrations were 5x the blank; and qualification of field samples was not necessary.
- Barium was detected in the blank for batch R26242. Barium was detected in associated samples but concentrations were 5x the blank; and qualification of field samples is not necessary.
- Silver was detected in the blank for batch R26291. Silver was not detected in associated samples; and qualification of field samples was not necessary.

- 1,2,4-Trimethylbenzene, 1,2-dichlorethane, and vinyl chloride were detected in the blank for batch R26332. 1,2,4-Trimethylbenzene was detected in associated samples SWMU 10-12-GW, SWMU 10-14-GW, SWMU 10-16-GW and two Trip Blanks at similar concentrations; and field samples were flagged "J+". 1,2-Dichlorethane and vinyl chloride were detected in associated sample SWMU 10-16-GW at similar concentrations and field samples were flagged "J+".
- Bis(2-ethylhexyl)phthalate, di-n-butyl phthalate, and 4,6-dinitro-2-methylphenol were detected in the method blank for batch 25469 but many sample results were non-detect and are not qualified. Samples SWMU 10-18 (2-2.5' and 8-10') had detections of di-n-butyl phthalate at concentrations close to that detected in the method blank and are both flagged as "J+". Samples SWMU 10-21 (2-2.5', 12-14', and 20-22') and SWMU 10-22 (2-2.5' and 8-9') were flagged as J+ for bis(2-ethylhexyl)phthalate. Samples SWMU 10-21 (12-14') and SWMU 10-22 (2-2.5' and 8-9') were flagged as J+ for di-n-butyl phthalate.
- Mercury was detected in the method blank for sample batch 25448 and associated samples SWMU 10-18 (2-2.5', 8-10', and 18-20'), SWMU 10-19 (2-2.5', 12-14' and 18-20'), and SWMU 10-20 (2-2.5', 8-10', 10-12', 16-18', and 20-22') are all qualified as J+.
- Manganese was detected in the method blank for sample batch 25447 and associated samples SWMU 10-18 (2-2.5', 8-10', and 18-20') are all qualified as J+.
- 1-Methlynaphthalene and methylene chloride were both detected in the method blank for batch D34413. Associated samples SWMU 10-19 (12-14' and 18-20') and SWMU 10-20 (8-10', 10-12', and 16-18') all flagged as J+ for 1-methlynaphthalene, while only samples SWMU 10-19 (12-14') and SWMU 10-20 (8-10' and 10-12') are flagged as J+ for methylene chloride.
- Cyanide, mercury and methylene chloride were detected in the method blanks for batches WG876094, 25512, and A34513, respectively and the associated results in sample SWMU 10-20-GW are flagged as J+.
- Toluene and bromomethane were detected in the method blank for batch S37464 and associated sample SWMU 10-24 (6-8') is flagged as J+.
- 1,2,4-Trimethylbenzene was detected in the method blank for batch S37484 and sample SWMU 10-25 (2-2.5') is flagged as J+.
- 1-Methlynaphthalene was detected in method blank for batch S37484 and samples SWMU 10-23 (15-16'), SWMU 10-24 (15-16'), and SWMU 10-25 (2-2.5') were flagged as J+.
- Bis(2-ethylhexyl)phthalate and di-n-butyl phthalate were both detected in the method blank for batch W37464 and associated samples SWMU 10-23 (2-2.5' and 15-16'), SWMU 10-24

(2-2.5', 8-10', and 15-16'), and SWMU 10-25 (2-2.5', 10-12', and 16.8-18') are flagged as J+.

- Manganese and zinc were detected in the method blank for batch 27709 and associated samples SWMU 10-23 (2-2.5' and 15-16'), SWMU 10-24 (2-2.5', 6-8', 8-10', and 15-16'), and SWMU 10-25 (2-2.5', 10-12', and 16.8-18') are flagged as J+.
- Manganese was detected in the method blank for batch 27858 and associated samples SWMU 10-25-GW is flagged as J+. In addition, bis(2-ethylhexyl)phthalate was detected in the batch (27668) that is associated with SWMU 10-25-GW and the result is flagged as J+.

See Table A-2 for qualified data.

Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Permit. Target compounds were not detected in the trip blanks with the following exceptions:

Lab Report 1505698

The VOCs ethylbenzene (0.11-J ug/L), naphthalene (0.31-J ug/L), 1-methylnaphthalene (0.71-J ug/L), 2-methylnaphthalene (1.1-J ug/L), 1,2,4-trimethylbenzene (0.29-J ug/L), and xylenes (0.041-J ug/L) were detected in TRIP Blank Sample No. 1501698-002a. The analytes were detected in the groundwater sample 1505698-001a associated with this trip blank at concentrations more than 5x the concentration detected in the blank. Sample results were not qualified; and

Lab Report 1505700

The VOCs toluene (0.14-J ug/L) and 1,2,4-trimethylbenzene (0.18-J ug/L) were detected in TRIP Blank Sample No. 1505700-002a. Toluene was not detected and 1,2,4-trimethybenzene was detected in the groundwater sample 1505700-001a (SWMU 10-12-GW) associated with this trip blank. The detected concentration of 1,2,4-trimethylbenzene (0.66 ug/L) was less than 5 times the concentration in the trip blank and may be biased high. The 1,2,4-trimethylbenzene result for the field sample was flagged "J+".

See Table A-2 for qualified data.

Field Blanks/Equipment Rinsate Blank

Field and equipment rinsate blanks were collected as specified in the SWMU10 Investigation Work Plan and the Permit.

Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2-butanone (MEK), cyclohexane, chloromethane, and methylene chloride. Common laboratory contaminants for SVOC analysis include phthalates. Data qualification was not required for MEK in sample batches 19032, 19107, and 19243 where the laboratory contaminant was detected in the blank. Data qualification was required for other samples with methylene chloride and phthalates since there were detection in blanks and field analytical results were detected at concentrations less than 10 times the blank concentration in field samples. See Table A-2 for qualified data.

Methanol Blanks

Methanol Blanks provided by the laboratory were analyzed for VOCs. There were no analytes detected in the methanol blanks above the respective laboratory reporting limits.

SURROGATE RECOVERY

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exceptions:

Lab Report 1504C86

• Surrogate recovery for nitrobenzene-d6 was high and above the acceptance limit for field sample SWMU 10 EB01. The surrogate recovery for five of the six surrogates included in Method 8270C were within limits. Since only one surrogate was outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.

Lab Report 1505002

• Surrogate recovery for nitrobenzene-d6 was high and above the acceptance limit for field sample SWMU 10 EB02. The surrogate recovery for five of the six surrogates included in Method 8270C were within limits. Since only one surrogate was outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.

- Surrogate recovery for di-n-octyl phthalate (DNOP) was below the acceptance limit for field samples SWMU 10-5 (0-2') and SWMU 10-5 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 diesel range organics (DRO) or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field sample SWMU 10-5 (0-2'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505004

- Surrogate recovery for DNOP was below the lower acceptance limit for field sample SWMU 10-4 (2-4'). Low surrogate was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field sample SWMU 10 DUP01. Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505005

 Surrogate recovery for bromofluorobenzene (BFB) was high and above the upper acceptance limit for field sample SWMU 10-3-GW. The associated field sample results for Method 8015 gasoline range organics (GRO) are qualified J+ due to a potential high bias.

Lab Report 1505057

- Surrogate recovery for DNOP was below the lower acceptance limit for field sample SWMU 10-8 (2-4'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field samples SWMU 10-9 (4-6') and SWMU 10-8 (2-4'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

- Surrogate recovery for DNOP was below the lower acceptance limit for field sample SWMU 10-10 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not required.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field sample SWMU 10-10 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505218

- Surrogate recovery for BFB was high and above the upper acceptance limit for field sample SWMU 10-5-GW. The associated field sample results for Method 8015 GRO are qualified J+ due to a potential high bias. Non-detect results are not qualified.
- Surrogate recoveries for 2-fluorophenol and 2,4,6-tribromophenol were below the acceptance limit for field sample SWMU 10-5-GW. The surrogate recovery for three of the six surrogates included in Method 8270C were within limits. Since only two of six surrogates were outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.

Lab Report 1505570

- Surrogate recovery for DNOP was below the lower acceptance limit for field samples SWMU 10-14 (6-8') and SWMU 10-11 (4-6'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8015 DRO or matrix interference; therefore data qualification was not qualified.
- Surrogate recovery for DNOP was high and above the upper acceptance limit for field sample SWMU 10-11 (8-10'). The associated field sample results for Method 8015 GRO are qualified J+ due to a potential high bias. Non-detect results are not qualified.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field samples SWMU 10-9 (4-6') and SWMU 10-8 (2-4'). Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

- Surrogate recovery for DNOP was below the lower acceptance limit for field samples SWMU 10-13 (6-8'), SWMU 10-17 (6-8'), and SWMU 10 DUP04. Low surrogate recovery was due to required sample dilution for analytical analysis by Method 8015 DRO or matrix effects; therefore data qualification was not qualified.
- Surrogate recoveries for Method 8270C were below the lower acceptance limits for field samples SWMU 10-17 (6-8') and SWMU DUP04. Low surrogate recovery was related to required sample dilution for analytical analysis by Method 8270C or matrix effects; therefore data qualification was not required.

Lab Report 1505709

- Surrogate recovery for nitrobenzene d-5 was high and above the upper acceptance limit for field sample SWMU 10 DUP01GW. The surrogate recovery for five of the six surrogates included in Method 8270C were within limits. Since only one of six surrogates was outside limits, the associated field sample results for semi-volatile organic compounds were not qualified.
- Surrogate recovery for dibromofluorobenzene was high and above the acceptance limit for field sample SWMU10 DUP01GW. The surrogate recovery for four of the five surrogates included in Method 8260 were within limits. Since only one of five surrogates was outside limits, the associated field sample results for volatile organic compounds were not qualified.

See Table A-2 for qualified data.

LCS RECOVERY AND RELATIVE PERCENT DIFFERENCE

Laboratory control samples (LCSO/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J+" to account for a potential high bias.

• If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J-" for detected results) to account for a potential low bias.

LCS/LCSD percent recoveries and relative percent differences (RPDs) were within acceptance limits and no qualification was required.

MS/MSD RECOVERY AND RELATIVE PERCENT DIFFERENCE

Matrix Spike/Matrix Spike Duplicate (MS/MSD) samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte was not detected in the associated analytical batch, then data qualification was not required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J+" to account for a potential high bias.
- Low MS/MSD recoveries for organic or inorganic parameters result in sample qualification of the associated analytical batch with a "J-".
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

MS/MSD percent recoveries and RPDs were within acceptance limits except for the following:

Lab Report 1505003

 The MS/MSD recoveries for benzene and toluene for Method 8260B Batch 19032 were below the lower acceptance limits for field sample SWMU 10-5 (22-24). Low recovery was related to dilution or matrix interference. Since results may be biased low, detected results in the batch are qualified "J-"and non-detect results are qualified "UJ".

Lab Report 1505057

The MS recovery of 127% and the MSD recovery of 172% for mercury was above the acceptance limit of 125% for Method 7471 batch 19445 and field sample SWMU 10-9 (2-4'). Since results may be biased high, the detected results are qualified "J+".

- The MS/MSD recovery of 166% for BFB is above the upper limit of 120% for Method 8015 GRO batch R26016 in field sample SWMU 10-5-GW. The associated field sample results for Method 8015 GRO are qualified J+ due to a potential high bias. Non-detect samples were not qualified.
- The MS/MSD recoveries were low and the relative percent difference (RPD) were outside the acceptance limits for several chemicals and surrogates for Method 8270C batch 19150 performed for field sample SWMU 10-5-GW. Low recovery was related to dilution or matrix interference. Since results may be biased low, the associated semi-volatile results were qualified "J-"if detected or "UJ" if non-detect.

Lab Report 1505570

- The MS/MSD recoveries for all compounds and surrogates for Method 8270C batch 19270 were within limits for field sample SWMU 10-14 (4-6'). The RPD of 30.4 for N-nitroso-n-propyl amine was above the limit of 27.5. Since the RPDs for other compounds were within limits, and the N-nitroso-n-propyl amine RPD was only slightly out of specifications, the field data were not qualified.
- The MS recovery of 33.2% and the MSD recovery of 33.3% for antimony was below the lower limit of 75% for Method 6010 batch 19259 and field sample SWMU 10-14 (6-8'). Low recovery was related to dilution or matrix interference. The associated field sample results for antimony are qualified "UJ" due to a potential low bias.
- The MS recovery for lead was within limits and MSD recovery of 74.4 for lead was below the acceptance limit of 75% for Method 6010 batch 19259 and field sample SWMU 10-14 (6-8'). Since MSD recovery was only slightly low, the associated field sample results were not qualified.

Lab Report 1505698

 MS recoveries for benzene (16.4%), toluene (13.4%), chlorobenzene (11.7%), 1,1dichloroethylene (6.58%), and trichloroethylene (9.98%) were below the lower acceptance limit of 30% for Method 8260 batch R26322 and field sample SWMU 10-11-GW. The RPDs for these compounds were outside acceptance limits. Low recovery was related to dilution or matrix interference. The field sample results for volatile organics are qualified "J-"and nondetect results are qualified "UJ" due to a potential low bias.

The MS and MSD recoveries for N-Nitrosodi-n-propylamine, 42.7% and 40.7, respectively, were below the lower limit of 43.5%. Antimony, cobalt, lead, manganese, nickel, and selenium had low MS recoveries of 29.8%, 69.2%, 67%, 74.6%, 72.6%, and 68.2%, respectively, vs the lower limit of 75%. Antimony, arsenic, beryllium, cadmium, cobalt, lead, manganese, nickel, and selenium had low MSD recoveries of 27.2%, 71.4%, 73.6%, 74.6%, 66.6%, 63.9%, 74.4%, 71.7%, and 66.2%, respectively, vs the lower limit of 75%. Low recovery was related to dilution or matrix interference. The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias. Barium had both MS and MSD recoveries (133.9% and 133.9%) above the upper limit of 125% and the results are flagged as J+.

Lab Report 160875

Antimony, cobalt, lead, manganese, nickel, and selenium had low MS recoveries of 29.8%, 69.2%, 67%, 74.6%, 72.6%, and 68.2%, respectively, vs the lower limit of 75%. Antimony, arsenic, beryllium, cadmium, cobalt, lead, manganese, nickel, and selenium had low MSD recoveries of 27.2%, 71.4%, 73.6%, 74.6%, 66.6%, 63.9%, 74.4%, 71.7%, and 66.2%, respectively, vs the lower limit of 75%. Low recovery was related to dilution or matrix interference. The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias. Barium had both MS and MSD recoveries (133.9% and 133.9%) above the upper limit of 125% and the results are flagged as J+.

Lab Report 1605943

Cyanide had a low MS recovery of 70% vs. the lower limit of 80%. Cobalt, nickel, selenium, and zinc had low MSD recoveries of 72.4%, 71.1%, 69.3%, and 70.7% vs. the lower limit of 75%. Antimony and lead had low recoveries for the MS (31.9% and 74.7%, respectively, vs. 75%) and MSD (16.9% and 71.1%, respectively, vs. 75%). The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias.

• Cyanide had a low MSD recovery of 89% vs. the lower limit of 90%. The field sample result with low recovery is qualified "J-"due to a potential low bias.

Lab Report 1609B57

Antimony, arsenic, lead, manganese, nickel, selenium, and zinc had low MS recoveries of 48.0%, 70.9%, 72.9%, -407%, 73%, 60.5, and 74.9%, respectively, vs. a lower limit of 75%. Antimony, manganese, and selenium had low MSD recoveries of 48.1%, -195%, and 59.2%, respectively, vs. a lower limit of 75%. The field sample results with low recovery are qualified "J-"and non-detect results are qualified "UJ" due to a potential low bias. Barium had a MSD recovery of 295%, above the upper limit of 125% and the results are flagged as J+.

Lab Report 1609C66

4-Nitrophenol had a low MSD recovery of 9.01% vs the lower limit of 15% and a RPD of 58.3% vs. a limit of 41.5%. The field sample result was non-detect and the result is qualified "UJ" due to a potential low bias.

See Table A-2 for qualified data.

DUPLICATES

Field Duplicates

Field duplicates were collected at a rate as stated in the approved SWMU10 Investigation Work Plan. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table A-3. The field duplicates were evaluated by the following criteria:

- If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 35 percent for soil and 25 percent for ground water samples.
- If an analyte was detected at a concentration that is less than five times the method reporting limit, then the difference between the sample and the field duplicate should not exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average of the concentrations.

Field duplicate RPDs were within acceptance limits except for the following soil sample:

- GRO and DRO for field sample SWMU 10-9 (4-6);
- 1,2,4-Trimethylbenzene, 1,3,5-trimethylbenzene, 1-methylnaphthalene, 2methylnaphthalene, hexachlorobutadiene, n-butylbenzene, n-propylbenzene, secbutylbenzene, and xylene(s) for field sample SWMU10-9 (4-6');
- 1-methylnaphthalene and 2-methylnaphthalene for field sample SWMU10-25 (2-2.5'); and
- Iron and zinc in field sample SWMU 10-15-GW.

See Table 3A for a field duplicate summary.

COMPLETENESS SUMMARY

The following equation was used to calculate the technical completeness:

% Technical Completeness =
$$\left(\frac{\text{Number of usable results}}{\text{Number of reported results}}\right) \times 100$$

The technical completeness attained for SWMU10 RCRA Investigation activities was 100 percent. The completeness results are provided in Table A-4. The analytical results for the required analytes per the approved SWMU10 Work Plan were considered usable for the intended purposes and the project DQOs have been met.

Table A-1Sample IdentificationSWMU10 Investigation ReportWestern Refining Southwest, Inc. - Gallup Refinery

Sample ID	Lab ID	Date Collected	Sample Type
SWMU 10 EB01	1504c86-001a	4/28/2015	EB
SWMU 10-1 (2-4')	1504c87-001a	4/28/2015	N
SWMU 10-1 (4-6')	1504c87-002a	4/28/2015	N
SWMU 10-1 (18-20')	1504c87-003a	4/28/2015	N
SWMU 10-3 (2-4')	1504c87-004a	4/28/2015	N
SWMU 10-3 (6-8')	1504c87-005a	4/28/2015	N
SWMU 10-3 (18-20')	1504c87-005a	4/28/2015	N
SWMU 10-1-GW	1505001-001a	4/28/2015	GW
Trip Blank		NA	ТВ
SWMU 10 EB02	1505001-002a	4/29/2015	EB
	1505002-001a 1505003-001a		N N
SWMU 10-5 (0-2') SWMU 10-5 (2-4')		4/29/2015	N
	1505003-002a	4/29/2015	N
SWMU 10-5 (4-6')	1505003-003a	4/29/2015	
SWMU 10-5 (14-16')	1505003-004a	4/29/2015	N
SWMU 10-5 (22-24')	1505003-005A	4/29/2015	N
SWMU 10-4 (0-2')	1505004-001A	4/29/2015	N
SWMU 10-4 (2-4')	1505004-002a	4/29/2015	N
SWMU 10-4 (6-8')	1505004-003A	4/29/2015	N
SWMU 10-4 (18-20')	1505004-004A	4/29/2015	N
SWMU 10 DUP01	1505004-005A	4/29/2015	FD
SWMU 10-3-GW	1505005-001a	4/29/2015	GW
Trip Blank	1505005-002a	NA	TB
SWMU 10 EB04	1505047-001a	5/1/2015	EB
SWMU 10 EB03	1505048-001a	4/30/2015	EB
SWMU 10-9 (2-4')	1505057-001A	4/30/2015	N
SWMU 10-9 (4-6')	1505057-002a	4/30/2015	N
SWMU 10-9 (18-20')	1505057-003A	4/30/2015	N
SWMU 10-9DUP02	1505057-004a	4/30/2015	FD
SWMU 10-8 (2-4')	1505057-005a	4/30/2015	N
SWMU 10-8 (4-6')	1505057-006a	4/30/2015	N
SWMU 10-8 (18-20')	1505057-007A	4/30/2015	N
SWMU 10-10 (2-4')	1505058-001A	4/30/2015	N
SWMU 10-10 (4-6')	1505058-002a	4/30/2015	N
SWMU 10-10 (18-20')	1505058-003A	4/30/2015	N
SWMU 10-7 (2-4')	1505059-001A	5/1/2015	N
SWMU 10-7 (4-6')	1505059-002A	5/1/2015	N
SWMU 10-7 (18-20')	1505059-003A	5/1/2015	N
SWMU 10-5-GW	1505218-001a	5/4/2015	GW
TRIP BLANK	1505218-002a	NA	TB
SWMU 10 EB05	1505222-001a	5/4/2015	EB
TRIP BLANK	1505222-002a	NA	TB
SWMU 10-6 (2-4')	1505223-001A	5/4/2015	N
SWMU 10-6 (10-12')	1505223-002A	5/4/2015	N
SWMU 10-2 (0-2')	1505223-003A	5/4/2015	N
SWMU 10-2 (2-4')	1505223-004A	5/4/2015	N
SWMU 10 DUP03	1505223-005A	5/4/2015	FD
MEOH BLANK	1505223-006	5/4/2015	FB
SWMU 10-14 (6-8')	1505570-001a	5/12/2015	N
SWMU 10-14 (21-23')	1505570-002a	5/12/2015	N
SWMU 10-11 (4-6')	1505570-003a	5/12/2015	N
SWMU 10-11 (8-10')	1505570-004a	5/12/2015	N
SWMU 10-11 (18-20')	1505570-005A	5/12/2015	N
SWMU 10-12 (6-8')	1505617-001a	5/12/2015	N

Table A-1Sample IdentificationSWMU10 Investigation ReportWestern Refining Southwest, Inc. - Gallup Refinery

Sample ID	Lab ID	Date Collected	Sample Type
SWMU 10-12 (20-22')	1505617-002a	5/12/2015	N
SWMU 10-13 (2-4')	1505617-003a	5/13/2015	N
SWMU 10-13 (6-8')	1505617-004a	5/13/2015	N
SWMU 10-13 (18-20')	1505617-005a	5/13/2015	N
SWMU 10-15 (2-4')	1505617-006a	5/13/2015	N
SWMU 10-15 (4-6')	1505617-007a	5/13/2015	N
SWMU 10-15 (18-20')	1505617-008a	5/13/2015	Ν
SWMU 10-17 (6-8')	1505617-009a	5/13/2015	Ν
SWMU 10 DUP04	1505617-010a	5/13/2015	FD
MEOH BLANK	1505617-011	5/13/2015	FB
SWMU 10 EB06	1505618-001a	5/12/2015	EB
SWMU 10-11-GW	1505698-001a	5/14/2015	GW
Trip Blank	1505698-002a	NA	ТВ
SWMU 10-12-GW	1505700-001a	5/14/2015	GW
Trip Blank	1505700-002a	NA	ТВ
SWMU 10-14-GW	1505701-001a	5/14/2015	GW
Trip Blank	1505701-002a	NA	TB
SWMU 10-16 (2-4')	1505705-001a	5/13/2015	N
SWMU 10-16 (4-5.5')	1505705-002a	5/13/2015	N
SWMU 10-16 (8-9')	1505705-003a	5/13/2015	N
SWMU 10-15-GW	1505708-001a	5/14/2015	GW
TRIP BLANK	1505708-002a	NA	ТВ
SWMU 10 DUP01GW	1505709-001a	5/14/2015	FD
TRIP BLANK	1505709-001a	NA	ТВ
SWMU 10-16-GW	1505710-001a	5/14/2015	GW
SWMU 10-18 (2-2.5')	1605874-001	5/16/2016	N
			N
SWMU 10-18 (8-10')	1605874-002	5/16/2016	N
SWMU 10-18 (18-20')	1605874-003	5/16/2016	N
SWMU 10-19 (2-2.5')	1605875-005	5/17/2016	4
SWMU 10-19 (12-14')	1605875-006	5/17/2016	N
SWMU 10-19 (18-20')	1605875-007	5/17/2016	N
SWMU 10-20 (2-2.5')	1605875-008	5/17/2016	N
SWMU 10-20 (8-10')	1605875-001	5/17/2016	N
SWMU 10-20 (10-12')	1605875-002	5/17/2016	N
SWMU 10-20 (16-18')	1605875-003	5/17/2016	N
SWMU 10-20 (20-22')	1605875-004	5/17/2016	N
SWMU 10-21 (2-2.5')	1605943-001	5/18/2016	N
SWMU 10-21 (12-14')	1605943-002	5/18/2016	N
SWMU 10-21 (20-22')	1605943-003	5/18/2016	N
SWMU 10-22 (2-2.5')	1605943-004	5/18/2016	N
SWMU 10-22 (8-9')	1605943-005	5/18/2016	N
DUP01	1605943-006	5/18/2016	FD
MeOH BLANK	1605943-007	NA	MB
SWMU 10-23 (2-2.5')	1609B57-001	9/19/2016	N
SWMU 10-23 (15-16')	1609B57-002	9/19/2016	N
SWMU 10-24 (2-2.5')	1609B57-003	9/19/2016	N
SWMU 10-24 (6-8')	1609B57-004	9/19/2016	N
SWMU 10-24 (8-10')	1609B57-005	9/19/2016	N
SWMU 10-24 (15-16')	1609B57-006	9/19/2016	N
SWMU 10-25 (2-2.5')	1609B57-007	9/19/2016	N
SWMU 10-25 (10-12')	1609B57-008	9/19/2016	N
SWMU 10-25 (16.5-18')	1609B57-009	9/19/2016	N
SWMU 10 DUP01	1609B57-010	9/19/2016	FD

Table A-1Sample IdentificationSWMU10 Investigation ReportWestern Refining Southwest, Inc. - Gallup Refinery

Sample ID	Lab ID	Date Collected	Sample Type
MeOH BLANK	1609B57-011	NA	MB
EB091916	1609B57-012	9/19/2016	EB
SWMU 10-20-GW	1605998-001	5/20/2016	GW
Trip Blank	1605998-002	NA	ТВ
SWMU 10-21-GW	1605998-003	5/20/2016	GW
SWMU 10-25-GW	1609C66-001	9/21/2016	GW
Trip Blank	1609C66-002	NA	ТВ

Notes:

N = Normal field sample

FD = Field duplicate

FB = Field Blank

NA = Not Applicable

TB = Trip Blank

EB = Equipment Blank GW = Groundwater MB = Methanol Blank

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10 DUP01	4/29/2015	1,3,5-Trimethylbenzene	0.000422	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Methylene chloride	0.00051	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	sec-Butylbenzene	0.000534	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Ethylbenzene	0.000638	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2-Hexanone	0.000653	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,4-Trimethylbenzene	0.000972	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Benzene	0.00104	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Xylenes, Total	0.00171	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Toluene	0.00232	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Acetone	0.0166	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Barium	380	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10 DUP01	4/29/2015	2-Butanone	0.00253	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 4 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10 DUP01	4/29/2015	Bromomethane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Carbon disulfide	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10 DUP01GW	5/14/2015	Benzene	0.4	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Butanone	2.9	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Acetone	16	ug/l	Water	j.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Methyl tert-butyl ether (MTBE)	150	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 5 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10 DUP01GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	•	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1.2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1.2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water		Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1.3-Dichlorobenzene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water		Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 6 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10 DUP01GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Toluene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP01GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10 DUP04	5/13/2015	Fluorene	3.2	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	Phenanthrene	6	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	Naphthalene	8.8	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	2,4-Dimethylphenol	18	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	Phenol	26	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	1-Methylnaphthalene	28	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	2-Methylphenol	29	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	2-Methylnaphthalene	45	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 DUP04	5/13/2015	3+4-Methylphenol	60	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10 EB05	5/4/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4,5-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4,6-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dimethylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dinitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,6-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Chloronaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Chlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	3,3 ⁻ Dichlorobenzidine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	3+4-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	3-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4,6-Dinitro-2-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Bromophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Chloro-3-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

Page 7 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10 EB05	5/4/2015	4-Chloroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Chlorophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	4-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Acenaphthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Acenaphthylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Aniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Azobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benz(a)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(a)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(b)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(g,h,i)perylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzo(k)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzoic acid	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Benzyl alcohol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-chloroethoxy)methane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-chloroethyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-chloroisopropyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Bis(2-ethylhexyl)phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Butyl benzyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Carbazole	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Chrysene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Dibenz(a,h)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Dibenzofuran	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Diethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Dimethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Di-n-butyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Di-n-octyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Fluorene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachlorocyclopentadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Hexachloroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Indeno(1,2,3-cd)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Isophorone	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Naphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Nitrobenzene	ND	ug/I	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	N-Nitrosodi-n-propylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	N-Nitrosodiphenylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

Page 8 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10 EB05	5/4/2015	Phenanthrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Phenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Pyridine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	2,4-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	N-Nitrosodimethylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB05	5/4/2015	Pentachlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10 EB06	5/12/2015	Mercury	0.00015	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is < 5x blank concentration
SWMU 10 EB06	5/12/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4,5-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4,6-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dichlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dimethylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dinitrophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,4-Dinitrotoluene	ND	ug/l	Water	IJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2,6-Dinitrotoluene	ND	ug/l	Water	IJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Chloronaphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Chlorophenol	ND	ug/l	Water	IJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Methylphenol	ND	ug/l	Water	IJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	2-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	3,3 - Dichlorobenzidine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	3+4-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	3-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4,6-Dinitro-2-methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Bromophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Chloro-3-methylphenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Chloroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Chlorophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	4-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Acenaphthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Acenaphthylene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Aniline	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Anthracene	ND	ug/l	Water	IJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Azobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time

Page 9 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10 EB06	5/12/2015	Benz(a)anthracene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(a)pyrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(b)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(g,h,i)perylene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzo(k)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzoic acid	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Benzyl alcohol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-chloroethoxy)methane	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-chloroethyl)ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-chloroisopropyl)ether	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Bis(2-ethylhexyl)phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Butyl benzyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Carbazole	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Chrysene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Dibenz(a,h)anthracene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Dibenzofuran	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Diethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Dimethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Di-n-butyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Di-n-octyl phthalate	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Fluoranthene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Fluorene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachlorobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachlorocyclopentadiene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Hexachloroethane	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Indeno(1,2,3-cd)pyrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Isophorone	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Naphthalene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Nitrobenzene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	N-Nitrosodimethylamine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	N-Nitrosodi-n-propylamine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	N-Nitrosodiphenylamine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Pentachlorophenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Phenanthrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Phenol	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Pyrene	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10 EB06	5/12/2015	Pyridine	ND	ug/l	Water	UJ	Qualified low bias since extracted 2 days after the 7 day holding time
SWMU 10-1 (18-20')	4/28/2015	Methylene chloride	0.000566	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	sec-Butylbenzene	0.000715	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3,5-Trimethylbenzene	0.000993	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 10 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-1 (18-20')	4/28/2015	1,2,4-Trimethylbenzene	0.00162	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Ethylbenzene	0.00192	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Acetone	0.00324	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Xylenes, Total	0.00647	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Toluene	0.00836	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Benzene	0.0146	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-1 (18-20')	4/28/2015	2-Butanone	0.00156	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')		Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')		Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	, ,	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	, ,	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	, ,	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 11 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-1 (18-20')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (18-20')	4/28/2015	1,3,5-Trimethylbenzene	0.000993	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (2-4')	4/28/2015	1,2,4-Trimethylbenzene	0.0061	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-1 (4-6')	4/28/2015	1,3,5-Trimethylbenzene	0.000318	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	sec-Butylbenzene	0.000593	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,4-Trimethylbenzene	0.000619	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Methylene chloride	0.000619	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Naphthalene	0.000877	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Benzene	0.00211	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Toluene	0.00253	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Methyl tert-butyl ether (MTBE)	0.00669	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Acetone	0.00926	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Ethylbenzene	0.0318	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Xylenes, Total	0.197	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-1 (4-6')	4/28/2015	2-Butanone	0.00257		Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,1,2-Tetrachloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,1-Trichloroethane	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 12 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-1 (4-6')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 13 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-1 (4-6')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-1 (4-6')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	n-Propylbenzene	0.000372	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	sec-Butylbenzene	0.000688	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Naphthalene	0.000725	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,3,5-Trimethylbenzene	0.00151	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,4-Trimethylbenzene	0.00238	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Ethylbenzene	0.00241	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Acetone	0.00422	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Toluene	0.0104	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Benzene	0.018	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-10 (18-20')	4/30/2015	2-Butanone	0.00159		Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,1,2-Tetrachloroethane	ND	0.0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1,2-Trichloroethane	ND	0.0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 14 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-10 (18-20')	4/30/2015	2-Methylnaphthalene	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Methylene chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (18-20')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2-Hexanone	0.000582	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Acetone	0.00792	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-10 (2-4')	4/30/2015	Toluene	0.000255	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10 10 (2 4)	4/30/2015	2-Butanone	0.00161	mg/kg	Soil	1471	Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-10 (2-4') SWMU 10-10 (2-4')	, ,	2-Butanone Methylene chloride	0.00161		Soil		low bias due to Method SW8260B MS/MSD recovery for batch Oualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4') SWMU 10-10 (2-4')	4/30/2015	1,1,1,2-Tetrachloroethane	0.00051 ND		Soil	LU	Qualified low bias due to Method 8260B MS/MSD recovery for batch Qualified low bias due to Method 8260B MS/MSD recovery for batch
	, ,			mg/kg			
SWMU 10-10 (2-4')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 15 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-10 (2-4')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2,4-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,3,5-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Benzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 16 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-10 (2-4')	4/30/2015	Ethylbenzene	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	sec-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (2-4')	4/30/2015	Xylenes, Total	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-10 (4-6')	4/30/2015	Fluorene	2.2	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	Phenanthrene	4.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	Naphthalene	5.9	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	1-Methylnaphthalene	17	mg/kg	Soil	J.	Qualified low bias due to surrogate recovery
SWMU 10-10 (4-6')	4/30/2015	2-Methylnaphthalene	25	mg/kg	Soil	Ļ	Qualified low bias due to surrogate recovery
SWMU 10-11 (4-6')	5/12/2015	Mercury	0.05	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-11 (8-10')	5/12/2015	Bromomethane	0.026	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-11 (8-10')	5/12/2015	Mercury	0.014	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-11-GW	5/14/2015	1,1-Dichloroethane	0.93	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	sec-Butylbenzene	2.2	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Benzene	2.5	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	4-Isopropyltoluene	2.7	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	n-Butylbenzene	3.4	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Toluene	6	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Isopropylbenzene	8.5	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Acetone	8.8	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	n-Propylbenzene	11	ug/l	Water	J.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,3,5-Trimethylbenzene	22	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Ethylbenzene	40	ug/l	Water	j.	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Naphthalene	45	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,4-Trimethylbenzene	64	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1-Methylnaphthalene	70	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Methylnaphthalene	98	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Xylenes, Total	230	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch

Page 17 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-11-GW	5/14/2015	Mercury	0.00075	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-11-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	14	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 18 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-11-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-11-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Benzene	0.47	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Naphthalene	0.52	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Methylnaphthalene	1.5	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Acetone	3.4	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	13	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & trip blank and field concentration <5x blank
SWMU 10-12-GW	5/14/2015	1,2,4-Trimethylbenzene	0.66	ug/l	Water	J+/J+/J-	concentration/Qualified low bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 19 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-12-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-12-GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-13 (6-8')	5/13/2015	Bromomethane	0.023	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-14 (21-23')	5/12/2015	Mercury	0.0032	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-14 (6-8')	5/12/2015	Bromomethane	0.023	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration
SWMU 10-14 (6-8')	5/12/2015	Mercury	0.0046	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-14 (6-8')	5/12/2015	Antimony	ND	mg/kg	Soil	UJ	Qualfied low since Method 6010 MS/SMSD recovery low
SWMU 10-14-GW	5/14/2015	Toluene	0.3	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Benzene	0.47	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch

Page 20 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-14-GW	5/14/2015	Acetone	2.7	ug/l	Water	- J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	16	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
				_			Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-14-GW	5/14/2015	1,2,4-Trimethylbenzene	0.44	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 21 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-14-GW	5/14/2015	Chloromethane	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-14-GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Benzene	0.51	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Butanone	2.9	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Acetone	9.7	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	150	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 22 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-15-GW	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 23 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-15-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-15-GW	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16 (2-4')	5/13/2015	2-Butanone	0.00304	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is < 5x blank concentration
SWMU 10-16 (4-5.5')	5/13/2015	2-Butanone	0.00146	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is < 5x blank concentration
SWMU 10-16 (8-9')	5/13/2015	2-Butanone	0.00173	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is < 5x blank concentration
SWMU 10-16-GW	5/14/2015	Benzene	0.24	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Xylenes, Total	0.35	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	cis-1,2-DCE	0.39	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1-Dichloroethene	0.73	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Trichloroethene (TCE)	0.77	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Acetone	1.6	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1-Dichloroethane	3.1	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Methyl tert-butyl ether (MTBE)	19	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-16-GW	5/14/2015	1,2,4-Trimethylbenzene	0.18	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-16-GW	5/14/2015	1,2-Dichloroethane (EDC)	0.47	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-16-GW	5/14/2015	Vinyl chloride	0.47	ug/l	Water	J+/J-	Iow bias due to Method SW8270C MSD recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.1.1.2-Tetrachloroethane	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1,1,2-retrachioroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.1.2.2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.2.3-Trichloropropane	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.2.4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1.4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualified low bias due to Method SW8270C MS recovery and RPD for batch

Page 24 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-16-GW	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Oualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2-Hexanone	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromobenzene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromodichloromethane	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromoform	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Bromomethane	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-16-GW	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-17 (6-8')	5/13/2015	Fluorene	7.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	Phenanthrene	15	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	Naphthalene	24	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	Phenol	52	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	2-Methylphenol	56	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery

Page 25 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-17 (6-8')	5/13/2015	1-Methylnaphthalene	76	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	3+4-Methylphenol	100	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-17 (6-8')	5/13/2015	2-Methylnaphthalene	130	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-1-GW	4/29/2015	Beryllium	0.00052	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-2 (0-2')	5/4/2015	2-Butanone	0.0038	mg/kg	Unknown	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-2 (2-4')	5/4/2015	2-Butanone	0.00283	mg/kg	Unknown	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-3 (18-20')	4/28/2015	2-Hexanone	0.000748	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Methylene chloride	0.00077	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	sec-Butylbenzene	0.000781	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,3,5-Trimethylbenzene	0.00123	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Acetone	0.00158	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,4-Trimethylbenzene	0.00184	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Ethylbenzene	0.00231	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Xylenes, Total	0.00707	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Toluene	0.01	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Benzene	0.0141	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-3 (18-20')	4/28/2015	2-Butanone	0.00151	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,1,2-Tetrachloroethane	ND	0 0	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 26 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-3 (18-20')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (18-20')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Ethylbenzene	0.000313	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Methylene chloride	0.000387	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2-Hexanone	0.000656	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Benzene	0.000872	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Xylenes, Total	0.00108	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Toluene	0.00116	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Acetone	0.0201	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-3 (2-4')	4/28/2015	2-Butanone	0.00273	mg/kg	Soil		low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 27 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-3 (2-4')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2,4-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,3,5-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 28 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-3 (2-4')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	sec-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (2-4')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,3,5-Trimethylbenzene	0.000351	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Methylene chloride	0.000547	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	sec-Butylbenzene	0.000555	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,4-Trimethylbenzene	0.000564	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2-Hexanone	0.000588	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Ethylbenzene	0.0008	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Xylenes, Total	0.00181	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Toluene	0.00301	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Benzene	0.00319	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Acetone	0.00534	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-3 (6-8')	4/28/2015	2-Butanone	0.00136		Soil		low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,1,2-Tetrachloroethane	ND	0 0	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1-Dichloroethane	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 29 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-3 (6-8')	4/28/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Chloromethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3 (6-8')	4/28/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-3-GW	4/29/2015	Gasoline Range Organics (GRO)	0.033	mg/l	Water	J+	Qualified high bias due to surrogate recovery

Page 30 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-3-GW	4/29/2015	Beryllium	0.0004	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is < 5x blank concentration
SWMU 10-3-GW	4/29/2015	Zinc	0.023	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is < 5x blank concentration
SWMU 10-4 (0-2')	4/29/2015	1,3,5-Trimethylbenzene	0.000347	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Methylene chloride	0.000606	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	sec-Butylbenzene	0.000645	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Ethylbenzene	0.000703	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,4-Trimethylbenzene	0.00077	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2-Hexanone	0.000886	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Benzene	0.00118	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Xylenes, Total	0.00182	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Toluene	0.00263	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Acetone	0.0237	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-4 (0-2')	4/29/2015	2-Butanone	0.00407	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 31 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-4 (0-2')	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (0-2')	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Isopropylbenzene	0.000482	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	n-Propylbenzene	0.00051	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Methylene chloride	0.000612	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	sec-Butylbenzene	0.000714	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Naphthalene	0.000742	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Acetone	0.0018	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,3,5-Trimethylbenzene	0.00184	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,4-Trimethylbenzene	0.00277	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Ethylbenzene	0.00291	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Xylenes, Total	0.00975	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Toluene	0.0127	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Benzene	0.0204	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 32 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-4 (18-20')	4/29/2015	1,1,2,2-Tetrachloroethane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 33 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-4 (18-20')	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (18-20')	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-4 (6-8')	4/29/2015	2-Butanone	0.00153	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-5 (22-24')	4/29/2015	n-Propylbenzene	0.000469	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Methylene chloride	0.000565	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	sec-Butylbenzene	0.000766	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Naphthalene	0.000785	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1-Methylnaphthalene	0.000843	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Methylnaphthalene	0.000852	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,3,5-Trimethylbenzene	0.00179	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Acetone	0.00186	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Ethylbenzene	0.00258	mg/kg	Soil	Ļ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,4-Trimethylbenzene	0.00263	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Xylenes, Total	0.00849	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Toluene	0.0112	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Benzene	0.0179	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 34 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-5 (22-24')	4/29/2015	1.4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Dibromomethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5 (22-24')	4/29/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-5-GW	5/4/2015	Gasoline Range Organics (GRO)	0.21	mg/l	Water	J+/J+	Qualified high bias due to surrogate recovery and Method GRO MS/MSD
SWMU 10-5-GW	5/4/2015	Beryllium	0.00042	mg/l	Water	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-5-GW	5/4/2015	Bis(2-chloroethyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	N-Nitrosodimethylamine	ND	ug/l	Water	IJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Pentachlorophenol	ND	ug/l	Water	IJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

Page 35 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-5-GW	5/4/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4,5-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4,6-Trichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dichlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dimethylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dinitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,6-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Chloronaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Chlorophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	3,3 ⁻ Dichlorobenzidine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	3+4-Methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	3-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4,6-Dinitro-2-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Bromophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Chloro-3-methylphenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Chloroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Chlorophenyl phenyl ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Nitroaniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	4-Nitrophenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Acenaphthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Acenaphthylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Aniline	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Azobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benz(a)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(a)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(b)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(g,h,i)perylene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzo(k)fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzoic acid	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Benzyl alcohol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Bis(2-chloroethoxy)methane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Bis(2-chloroisopropyl)ether	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Bis(2-ethylhexyl)phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch

Page 36 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-5-GW	5/4/2015	Butyl benzyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Carbazole	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Chrysene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Dibenz(a,h)anthracene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Dibenzofuran	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Diethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Dimethyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Di-n-butyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Di-n-octyl phthalate	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Fluoranthene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Fluorene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachlorobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachlorocyclopentadiene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Hexachloroethane	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Indeno(1,2,3-cd)pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Isophorone	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Naphthalene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Nitrobenzene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	N-Nitrosodi-n-propylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	N-Nitrosodiphenylamine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Phenanthrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Phenol	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Pyrene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	Pyridine	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-5-GW	5/4/2015	2,4-Dinitrotoluene	ND	ug/l	Water	UJ	Qualified low bias due to Method 8270C MS/MSD recoveryand RPD for batch
SWMU 10-6 (2-4')	5/4/2015	2-Butanone	0.00176	mg/kg	Unknown	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-7 (2-4')	5/1/2015	2-Butanone	0.00273	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-7 (4-6')	5/1/2015	2-Butanone	0.00175	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-8 (18-20')	4/30/2015	n-Propylbenzene	0.000428	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Isopropylbenzene	0.000447	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	sec-Butylbenzene	0.000714	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Naphthalene	0.000809	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,3,5-Trimethylbenzene	0.00159	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,4-Trimethylbenzene	0.00236	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Ethylbenzene	0.00285	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Acetone	0.00466	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Xylenes, Total	0.00872	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Toluene	0.0122	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Benzene	0.0178	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Lead	0.27	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is ≤ 5x blank concentration

Page 37 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-8 (18-20')	4/30/2015	1,1,1,2-Tetrachloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Butanone	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chloroethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chloroform	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 38 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-8 (18-20')	4/30/2015	Dichlorodifluoromethane	ND		Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil		Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Methylene chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (18-20')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-8 (2-4')	4/30/2015	Fluorene	8.1	mg/kg	Soil	j.	Qualified low bias due to surrogate recovery
SWMU 10-8 (2-4')	4/30/2015	Naphthalene	18	mg/kg	Soil	J.	Qualified low bias due to surrogate recovery
SWMU 10-8 (2-4')	4/30/2015	1-Methylnaphthalene	68	mg/kg	Soil	J.	Qualified low bias due to surrogate recovery
SWMU 10-8 (2-4')	4/30/2015	2-Methylnaphthalene	89	mg/kg	Soil	J.	Qualified low bias due to surrogate recovery
SWMU 10-8 (4-6')	4/30/2015	1,2,4-Trimethylbenzene	0.021	mg/kg	Soil	J+	Qualified high bias since detected in method blank & field concentration is \leq 5x blank concentration
SWMU 10-9 (18-20')	4/30/2015	sec-Butylbenzene	0.000849	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Naphthalene	0.000873	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,3,5-Trimethylbenzene	0.00151	mg/kg	Soil	j.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,4-Trimethylbenzene	0.00229	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Ethylbenzene	0.00242	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Acetone	0.00359	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Xylenes, Total	0.00807	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Toluene	0.0115	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Benzene	0.0159	mg/kg	Soil	J.	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,1,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 39 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-9 (18-20')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Butanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromoform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Bromomethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Methylene chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (18-20')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 40 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-9 (18-20')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Methylene chloride	0.000438	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Benzene	0.000788	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Acetone	0.0184	mg/kg	Soil	J-	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bis(2-ethylhexyl)phthalate	1.5	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-9 (2-4')	4/30/2015	Mercury	0.07	mg/kg	Soil	J+	Qualified high bias due to Method MS/MSD recovery
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-9 (2-4')	4/30/2015	Toluene	0.000797	mg/kg	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
SWMU 10-9 (2-4')	4/30/2015	2-Butanone	0.00234	0 0	Soil	J+/ J-	low bias due to Method SW8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1,1,2-Tetrachloroethane	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1,1-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1,2,2-Tetrachloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1,2-Trichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1-Dichloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1-Dichloroethene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,1-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,3-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,3-Trichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,4-Trichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2,4-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dibromo-3-chloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dibromoethane (EDB)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dichloroethane (EDC)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,3,5-Trimethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,3-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,3-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1,4-Dichlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	1-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2,2-Dichloropropane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Hexanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	2-Methylnaphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	4-Chlorotoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	4-Isopropyltoluene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	4-Methyl-2-pentanone	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bromobenzene	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bromodichloromethane	ND	mg/kg	Soil	IJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Bromoform	ND		Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch

Page 41 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-9 (2-4')	4/30/2015	Bromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Carbon disulfide	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Carbon tetrachloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chlorobenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chloroethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chloroform	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Chloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	cis-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	cis-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Dibromochloromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Dibromomethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Dichlorodifluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Ethylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Hexachlorobutadiene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Isopropylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Methyl tert-butyl ether (MTBE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Naphthalene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	n-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	n-Propylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	sec-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Styrene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	tert-Butylbenzene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Tetrachloroethene (PCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	trans-1,2-DCE	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	trans-1,3-Dichloropropene	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Trichloroethene (TCE)	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Trichlorofluoromethane	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Vinyl chloride	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (2-4')	4/30/2015	Xylenes, Total	ND	mg/kg	Soil	UJ	Qualified low bias due to Method 8260B MS/MSD recovery for batch
SWMU 10-9 (4-6')	4/30/2015	2-Methylnaphthalene	1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
SWMU 10-9 (4-6')	4/30/2015	1-Methylnaphthalene	1.1	mg/kg	Soil	J-	Qualified low bias due to surrogate recovery
Trip Blank	5/14/2015	Ethylbenzene	0.11	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Naphthalene	0.31	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Xylenes, Total	0.41	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1-Methylnaphthalene	0.71	ug/I	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Methylnaphthalene	1.1	ug/I	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Toluene	0.14	ug/l	Water	J-	Qualified low bias due to Method SW8270C MS recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
Trip Blank	5/14/2015	1,2,4-Trimethylbenzene	0.29	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch
							Qualified high bias since detected in method blank & field concentration <5x blank concentration/Qualified
Trip Blank	5/14/2015	1,2,4-Trimethylbenzene	0.18	ug/l	Water	J+/J-	low bias due to Method SW8270C MSD recovery and RPD for batch

Page 42 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
Trip Blank	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 43 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	Dibromomethane	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 44 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Trip Blank	5/14/2015	2-Hexanone	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 45 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
Trip Blank	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromobenzene	ND	ug/I	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 46 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
Trip Blank	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	IJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
Trip Blank	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 47 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
TRIP BLANK	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 48 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
TRIP BLANK	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,1-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2,2-Tetrachloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1,2-Trichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloroethene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,1-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,3-Trichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2,4-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromo-3-chloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dibromoethane (EDB)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloroethane (EDC)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3,5-Trimethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,3-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1,4-Dichlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	1-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2,2-Dichloropropane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Butanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Hexanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	2-Methylnaphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Chlorotoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Isopropyltoluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	4-Methyl-2-pentanone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Acetone	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Benzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromodichloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromoform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Bromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch

Page 49 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
TRIP BLANK	5/14/2015	Carbon disulfide	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Carbon Tetrachloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chlorobenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloroform	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Chloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	cis-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromochloromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dibromomethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Dichlorodifluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Ethylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Hexachlorobutadiene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Isopropylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methyl tert-butyl ether (MTBE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Methylene Chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Naphthalene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	n-Propylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	sec-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Styrene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	tert-Butylbenzene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Tetrachloroethene (PCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Toluene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	trans-1,2-DCE	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	trans-1,3-Dichloropropene	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichloroethene (TCE)	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Trichlorofluoromethane	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Vinyl chloride	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
TRIP BLANK	5/14/2015	Xylenes, Total	ND	ug/l	Water	UJ	Qualfied low bias due to Method SW8270C MS recovery and RPD for batch
SWMU 10-18 (2-2.5')	5/6/2016	Di-n-butyl phthalate	0.14	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-18 (8-10')	5/6/2016	Di-n-butyl phthalate	0.089	mg/kg	soil	J+	qualifed as non-detect due to presence in field sample below concentration in method blank
SWMU 10-18 (2-2.5')	5/6/2016	mercury	0.0044	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (8-10')	5/6/2016	mercury	0.0052	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (18-20')	5/6/2016	mercury	0.0011	mg/kg	soil	J+	qualified as non-detect due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-18 (2-2.5')	5/6/2016	manganese	200	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (8-10')	5/6/2016	manganese	700	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (18-20')	5/6/2016	manganese	690	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-18 (2-2.5')	5/6/2016	chromium VI	<0.64	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	chromium VI	<0.64	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	chromium VI	<0.64	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch

Page 50 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-18 (2-2.5')	5/6/2016	N-Nitrosodi-n-propylamine	< 0.1165	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	N-Nitrosodi-n-propylamine	< 0.1126	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	N-Nitrosodi-n-propylamine	< 0.1105	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (2-2.5')	5/6/2016	Antimony	2.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Arsenic	1.8	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Barium	130	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Cadmium	< 0.0757	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (2-2.5')	5/6/2016	cobalt	4.7	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-18 (2-2.5')	5/6/2016	Lead	5.2	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	manganese	200	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Nickel	8.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (2-2.5')	5/6/2016	Selenium	< 1.3042	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	Antimony	< 2.8	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	Arsenic	2.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Barium	170	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Cadmium	< 0.15	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (8-10')	5/6/2016	cobalt	6.4	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-18 (8-10')	5/6/2016	Lead	4.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	manganese	700	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (8-10')	5/6/2016	Selenium	< 2.6	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	Antimony	2.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Arsenic	2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Barium	1000	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Beryllium	0.86	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Cadmium	< 0.074	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-18 (18-20')	5/6/2016	cobalt	8.3	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-18 (18-20')	5/6/2016	Lead	2.6	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	manganese	690	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-18 (18-20')	5/6/2016	Selenium	< 1.3	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (12-14')	5/17/2016	1-Methylnaphthalene	7.2	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-19 (18-20')	5/17/2016	1-Methylnaphthalene	0.0014	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (8-10')	5/17/2016	1-Methylnaphthalene	41	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (10-12')	5/17/2016	1-Methylnaphthalene	25	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (16-18')	5/17/2016	1-Methylnaphthalene	8.4	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-19 (12-14')	5/17/2016	Methylene chloride	0.05	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (8-10')	5/17/2016	Methylene chloride	0.51	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (10-12')	5/17/2016	Methylene chloride	0.5	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank

Page 51 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-19 (2-2.5')	5/17/2016	mercury	0.002	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-19 (12-14')	5/17/2016	mercury	0.0019	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-19 (18-20')	5/17/2016	mercury	0.00081	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (2-2.5')	5/17/2016	mercury	2	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (8-10')	5/17/2016	mercury	0.23	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (10-12')	5/17/2016	mercury	0.0041	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20 (16-18')	5/17/2016	mercury	0.37	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20 (20-22')	5/17/2016	mercury	0.0012	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-19 (2-2.5')	5/17/2016	Antimony	4	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Arsenic	1.9	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Barium	160	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Beryllium	1.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Cadmium	< 0.0759	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (2-2.5')	5/17/2016	cobalt	5.2	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-19 (2-2.5')	5/17/2016	Lead	5.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	manganese	280	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Nickel	9.8	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (2-2.5')	5/17/2016	Selenium	< 1.3064	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (12-14')	5/17/2016	Antimony	< 6.8559	mg/kg	soil	UJ	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Arsenic	< 4.2233	mg/kg	soil	UJ	Qualified low bias due to Method MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Barium	830	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Cadmium	< 0.3668	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (12-14')	5/17/2016	cobalt	6.5	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-19 (12-14')	5/17/2016	Lead	5.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	manganese	1200	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (12-14')	5/17/2016	Selenium	< 6.3156	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (18-20')	5/17/2016	Antimony	3.2	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Arsenic	3	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Barium	480	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Beryllium	1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Cadmium	< 0.071	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-19 (18-20')	5/17/2016	cobalt	7.9	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-19 (18-20')	5/17/2016	Lead	3.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	manganese	410	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-19 (18-20')	5/17/2016	Selenium	< 1.219	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (2-2.5')	5/17/2016	Antimony	2.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Arsenic	5.4	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Barium	490	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery

Page 52 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-20 (2-2.5')	5/17/2016	Beryllium	0.77	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Cadmium	< 0.076	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (2-2.5')	5/17/2016	cobalt	4.9	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (2-2.5')	5/17/2016	Lead	21	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	manganese	520	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (2-2.5')	5/17/2016	Selenium	< 1.3049	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (8-10')	5/17/2016	Antimony	2.8	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Arsenic	3.9	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Barium	410	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Beryllium	1.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Cadmium	< 0.079	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (8-10')	5/17/2016	cobalt	5.6	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (8-10')	5/17/2016	Lead	2.8	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	manganese	370	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Nickel	11	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (8-10')	5/17/2016	Selenium	< 1.3674	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (10-12')	5/17/2016	Antimony	3.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Arsenic	1.9	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Barium	250	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Beryllium	1.1	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Cadmium	< 0.081	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (10-12')	5/17/2016	cobalt	5.6	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (10-12')	5/17/2016	Lead	6	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	manganese	190	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Nickel	10	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (10-12')	5/17/2016	Selenium	< 1.3864	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (16-18')	5/17/2016	Antimony	2.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Arsenic	2.2	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Barium	210	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Beryllium	0.87	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Cadmium	< 0.075	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (16-18')	5/17/2016	cobalt	5.5	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (16-18')	5/17/2016	Lead	5.3	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	manganese	750	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Nickel	10	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (16-18')	5/17/2016	Selenium	< 1.2956	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (20-22')	5/17/2016	Antimony	3.3	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Arsenic	2.7	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Barium	750	mg/kg	soil	J+	Qualified high bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Beryllium	0.88	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery

Page 53 of 81

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Oualifier	Comments
SWMU 10-20 (20-22')	5/17/2016	Cadmium	< 0.072	mg/kg	soil	IJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-20 (20-22')	5/17/2016	cobalt	8.5	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-20 (20-22')	5/17/2016	Lead	3.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	manganese	1100	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Nickel	14	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-20 (20-22')	5/17/2016	Selenium	< 1.2368	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-21 (20-22')	5/17/2016	cyanide	0.044	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-22 (2-2.5')	5/17/2016	cyanide	0.04	mg/kg	soil	J-	Qualified low bias due to Method MS recovery
SWMU 10-22 (8-9')	5/17/2016	cyanide	< 0.039	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-21 (2-2.5')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (12-14')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.14	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (20-22')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.12	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (2-2.5')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.19	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (8-9')	5/17/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (12-14')	5/17/2016	Di-n-butyl phthalate	0.11	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (2-2.5')	5/17/2016	Di-n-butyl phthalate	0.12	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-22 (8-9')	5/17/2016	Di-n-butyl phthalate	0.11	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-21 (2-2.5')	5/17/2016	Antimony	< 1.3	mg/kg	soil	UJ	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	cobalt	3.7	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	Lead	2.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	Nickel	6	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	Selenium	< 1.2	mg/kg	soil	UJ	Qualified low bias due to Method MSD recovery
SWMU 10-21 (2-2.5')	5/17/2016	zinc	16	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Antimony	< 7.3205	mg/kg	soil	UJ	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (12-14')	5/17/2016	cobalt	5.6	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Lead	5.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Nickel	11	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	Selenium	< 1.3487	mg/kg	soil	UJ	Qualified low bias due to Method MSD recovery
SWMU 10-21 (12-14')	5/17/2016	zinc	20	mg/kg	soil	J-	Qualified low bias due to Method MSD recovery
SWMU 10-20-GW	5/20/2016	cyanide	1.05	mg/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20-GW	5/20/2016	mercury	0.00016	mg/l	Water	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-20-GW	5/20/2016	methlyene chloride	3.4	ug/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-20-GW	5/20/2016	cyanide	1.05	mg/l	Water	J-	Qualified low bias due to Method MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Antimony	< 2.2222	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-23 (2-2.5')	9/19/2016	Arsenic	< 1.9626	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-23 (2-2.5')	9/19/2016	Barium	220	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Lead	2.6	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (2-2.5')	9/19/2016	Selenium	< 4.0179	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-23 (2-2.5')	9/19/2016	zinc	21	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Antimony	< 1.1461	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch

Page 54 of 81

Table A-2 Qualified Data SWMU10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-23 (15-16')	9/19/2016	Arsenic	1	mg/kg	soil	J-	Qualfied low bias due to MS recovery for batch
SWMU 10-23 (15-16')	9/19/2016	Barium	730	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Lead	0.95	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Nickel	13	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-23 (15-16')	9/19/2016	Selenium	< 2.0723	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-23 (15-16')	9/19/2016	zinc	25	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Antimony	1.1	mg/kg	soil	J-	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (2-2.5')	9/19/2016	Arsenic	< 0.9076	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (2-2.5')	9/19/2016	Barium	190	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Lead	2.3	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Nickel	5.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (2-2.5')	9/19/2016	Selenium	< 1.858	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Antimony	< 1.2345	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (6-8')	9/19/2016	Arsenic	< 1.0903	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (6-8')	9/19/2016	Barium	120	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Lead	3.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Nickel	9.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Selenium	< 2.2321	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (6-8')	9/19/2016	zinc	18	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Antimony	< 2.4091	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (8-10')	9/19/2016	Arsenic	< 2.1276	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (8-10')	9/19/2016	Barium	130	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Lead	1.5	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Nickel	12	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (8-10')	9/19/2016	Selenium	< 4.3557	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (8-10')	9/19/2016	zinc	22	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Antimony	2.1	mg/kg	soil	J-	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (15-16')	9/19/2016	Arsenic	< 1.0181	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-24 (15-16')	9/19/2016	Barium	510	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Lead	1.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Nickel	16	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (15-16')	9/19/2016	Selenium	< 2.0843	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-24 (15-16')	9/19/2016	zinc	26	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Antimony	< 1.1611	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (2-2.5')	9/19/2016	Arsenic	< 1.0254	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-25 (2-2.5')	9/19/2016	Barium	96	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Lead	2.1	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Nickel	5.7	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (2-2.5')	9/19/2016	Selenium	< 2.0993	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery

Page 55 of 81

Table A-2 Qualified Data SWMU10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-25 (10-12')	9/19/2016	Antimony	< 2.4915	mg/kg	soil	IJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (10-12')	9/19/2016	Arsenic	< 2.2003	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-25 (10-12')	9/19/2016	Barium	190	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (10-12')	9/19/2016	Lead	2.9	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (10-12')	9/19/2016	Nickel	14	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (10-12')	9/19/2016	Selenium	< 4.5047	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (10-12')	9/19/2016	zinc	26	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Antimony	1.6	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (16.5-18')	9/19/2016	Arsenic	< 1.0232	mg/kg	soil	UJ	Qualfied low bias due to MS recovery for batch
SWMU 10-25 (16.5-18')	9/19/2016	Barium	460	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Lead	< 0.2001	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Nickel	15	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-25 (16.5-18')	9/19/2016	Selenium	< 2.0948	mg/kg	soil	UJ	Qualfied low bias due to MS/MSD recovery for batch
SWMU 10-25 (16.5-18')	9/19/2016	zinc	27	mg/kg	soil	J-	Qualified low bias due to Method MS/MSD recovery
SWMU 10-24 (6-8')	9/19/2016	Toluene	0.25	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (6-8')	9/19/2016	Bromomethane	0.32	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (2-2.5')	9/19/2016	1,2,4-Trimethylbenzene	5.8	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (15-16')	9/19/2016	1-Methylnaphthalene	0.0004	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (15-16')	9/19/2016	1-Methylnaphthalene	0.0008	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (2-2.5')	9/19/2016	1-Methylnaphthalene	13	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (2-2.5')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.15	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (2-2.5')	9/19/2016	Di-n-butyl phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (15-16')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (15-16')	9/19/2016	Di-n-butyl phthalate	0.25	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (2-2.5')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.16	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (2-2.5')	9/19/2016	Di-n-butyl phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (8-10')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.23	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (8-10')	9/19/2016	Di-n-butyl phthalate	0.28	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (15-16')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.16	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-24 (15-16')	9/19/2016	Di-n-butyl phthalate	0.15	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (2-2.5')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (2-2.5')	9/19/2016	Di-n-butyl phthalate	0.35	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (10-12')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.16	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (10-12')	9/19/2016	Di-n-butyl phthalate	0.22	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (16.5-18')	9/19/2016	Bis(2-ethylhexyl)phthalate	0.17	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-25 (16.5-18')	9/19/2016	Di-n-butyl phthalate	0.35	mg/kg	soil	J+	qualified as high due to presence in field sample at conc. <5 times conc. in method blank
SWMU 10-23 (2-2.5')	9/19/2016	manganese	450	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (2-2.5')	9/19/2016	zinc	21	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (15-16')	9/19/2016	manganese	850	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-23 (15-16')	9/19/2016	zinc	25	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (2-2.5')	9/19/2016	manganese	370	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration

Page 56 of 81

Table A-2 Qualified Data SWMU10 Investigation Report Western Refining Southwest, Inc. - Gallup Refinery

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
SWMU 10-24 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (6-8')	9/19/2016	manganese	200	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (6-8')	9/19/2016	zinc	18	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (8-10')	9/19/2016	manganese	290	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (8-10')	9/19/2016	zinc	22	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (15-16')	9/19/2016	manganese	1400	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-24 (15-16')	9/19/2016	zinc	26	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (2-2.5')	9/19/2016	manganese	500	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (2-2.5')	9/19/2016	zinc	11	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (10-12')	9/19/2016	manganese	300	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (10-12')	9/19/2016	zinc	26	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (16.5-18')	9/19/2016	manganese	1100	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25 (16.5-18')	9/19/2016	zinc	27	mg/kg	soil	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25-GW	9/21/2016	manganese (total)	2.1	mg/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25-GW	9/21/2016	Bis(2-ethylhexyl)phthalate	2.8	ug/l	Water	J+	qualified high due to presence in method blank, blank concentration <5 times field concentration
SWMU 10-25-GW	9/21/2016	4-Nitrophenol	< 2.553	ug/l	Water	UJ	Qualfied low bias due to MS/MSD recovery for batch

Notes:

UJ = Estimated reporting concentration J- = Low bias J+ = High bias

Page 57 of 81

		SWMU 10-14 (0-2')	SWMU 10 DUP01	RPD	
	Parameter	Sample Result	Duplicate Result	(%)	
TPH (mg/kg-dry):	Gasoline Range Organics (GRO)	0.849320979 U	0.858017826 U	NC	
	Diesel Range Organics (DRO)	160	150	1.6	
	Motor Oil Range Organics (MRO)	330	310	1.6	
VOCs (ug/kg-dry)	1,3,5-Trimethylbenzene	0.000347 J	0.000422 J	4.9	
	Methylene chloride	0.000606 J	0.00051 J	4.3	
	sec-Butylbenzene	0.000645 J	0.000534 J	4.7	
	Ethylbenzene	0.000703 J	0.000638 J	2.4	
	1,2,4-Trimethylbenzene	0.00077 J	0.000972 J	5.8	
	2-Hexanone	0.000886 J	0.000653 J	7.6	
	Benzene	0.00118 J	0.00104 J	3.2	
	Xylenes, Total	0.00182 J	0.00171	1.6	
	Toluene	0.00263	0.00232	3.1	
	Acetone	0.0237	0.0166	8.8	
	2-Butanone	0.00407 J	0.00253 J	11.7	
	1,1,1,2-Tetrachloroethane	0.00031 U	0.00026 U	NC	
	1,1,1-Trichloroethane	0.00027 U	0.00023 U	NC	
	1,1,2,2-Tetrachloroethane	0.00042 U	0.00035 U	NC	
	1,1,2-Trichloroethane	0.00193 U	0.00159 U	NC	
	1,1-Dichloroethane	0.00045 U	0.00037 U	NC	
	1,1-Dichloroethene	0.00032 U	0.00027 U	NC	
	1,1-Dichloropropene	0.00035 U	0.00029 U	NC	
	1,2,3-Trichlorobenzene	0.00070 U	0.00058 U	NC	
	1,2,3-Trichloropropane	0.00068 U	0.00056 U	NC	
	1,2,4-Trichlorobenzene	0.00072 U	0.00060 U	NC	
	1,2-Dibromo-3-chloropropane	0.00057 U	0.00047 U	NC	
	1,2-Dibromoethane (EDB)	0.00023 U	0.00019 U	NC	
	1,2-Dichlorobenzene	0.00043 U	0.00035 U	NC	
	1,2-Dichloroethane (EDC)	0.00052 U	0.00043 U	NC	
	1,2-Dichloropropane	0.00041 U	0.00034 U	NC	
	1,3-Dichlorobenzene	0.00033 U	0.00027 U	NC	
	1,3-Dichloropropane	0.00030 U	0.00025 U	NC	
	1,4-Dichlorobenzene	0.00030 U	0.00025 U	NC	
	1-Methylnaphthalene	0.00076 U	0.00063 U	NC	
	2,2-Dichloropropane	0.00033 U	0.00028 U	NC	
	2-Chlorotoluene	0.00038 U	0.00031 U	NC	
	2-Methylnaphthalene	0.00075 U	0.00062 U	NC	
	4-Chlorotoluene	0.00037 U	0.00031 U	NC	
	4-Isopropyltoluene	0.00075 U	0.00062 U	NC	
	4-Methyl-2-pentanone	0.00081 U	0.00067 U	NC	
	Bromobenzene	0.00054 U	0.00044 U	NC	
	Bromodichloromethane	0.00026 U	0.00022 U	NC	
	Bromoform	0.00050 U	0.00041 U	NC	
	Bromomethane	0.00114 U	0.00094 U	NC	
	Carbon disulfide	0.00087 U	0.00072 U	NC	
	Carbon tetrachloride	0.00035 U	0.00029 U	NC	
	Chlorobenzene	0.00020 U	0.00016 U	NC	
	Chloroethane	0.00193 U	0.00159 U	NC	
	Chloroform	0.00040 U	0.00033 U	NC	
	Chloromethane	0.00023 U	0.00019 U	NC	
	cis-1,2-DCE	0.00051 U	0.00042 U	NC	
	cis-1,3-Dichloropropene	0.00193 U	0.00159 U	NC	
	Dibromochloromethane	0.00022 U	0.00018 U	NC	
	Dibromomethane	0.00109 U	0.00090 U	NC	
	Dichlorodifluoromethane	0.00079 U	0.00065 U	NC	
	Hexachlorobutadiene	0.00039 U	0.00032 U	NC	

		SWMU 10-14 (0-2')	SWMU 10 DUP01	RPD
	Parameter	Sample Result	Duplicate Result	(%)
	Isopropylbenzene	0.00045 U	0.00037 U	NC
	Methyl tert-butyl ether (MTBE)	0.00081 U	0.00067 U	NC
	Naphthalene	0.00063 U	0.00052 U	NC
	n-Butylbenzene	0.00079 U	0.00065 U	NC
	n-Propylbenzene	0.00036 U	0.00030 U	NC
	Styrene	0.00032 U	0.00026 U	NC
	tert-Butylbenzene	0.00030 U	0.00024 U	NC
	Tetrachloroethene (PCE)	0.00038 U	0.00032 U	NC
	trans-1,2-DCE	0.00031 U	0.00026 U	NC
	trans-1,3-Dichloropropene	0.00025 U	0.00021 U	NC
	Trichloroethene (TCE)	0.00038 U	0.00032 U	NC
	Trichlorofluoromethane	0.00039 U	0.00032 U	NC
	Vinyl chloride	0.00022 U	0.00018 U	NC
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	0.11459 U	2.81548 U	NC
	1,2-Dichlorobenzene	0.10707 U	2.63077 U	NC
	1,3-Dichlorobenzene	0.09942 U	2.44287 U	NC
	1,4-Dichlorobenzene	0.11708 U	2.87684 U	NC
	1-Methylnaphthalene	0.10376 U	2.54942 U	NC
	2,4,5-Trichlorophenol	0.13045 U	3.20523 U	NC
	2,4,6-Trichlorophenol	0.12941 U	3.17980 U	NC
	2,4-Dichlorophenol	0.11194 U	2.75040 U	NC
	2,4-Dimethylphenol	0.08799 U	2.16194 U	NC
	2,4-Dinitrophenol	0.04651 U	1.14282 U	NC
	2,4-Dinitrotoluene	0.10014 U	2.46060 U	NC
	2,6-Dinitrotoluene	0.12442 U	3.05723 U	NC
	2-Chloronaphthalene	0.11993 U	2.94674 U	NC
	2-Chlorophenol	0.10446 U	2.56672 U	NC
	2-Methylnaphthalene	0.10244 U	2.51697 U	NC
	2-Methylphenol	0.11222 U	2.75733 U	NC
	2-Nitroaniline	0.12737 U	3.12964 U	NC
	2-Nitrophenol	0.10061 U	2.47207 U	NC
	3,3 ⁻ Dichlorobenzidine	0.08619 U	2.11789 U	NC
	3+4-Methylphenol	0.11601 U	2.85059 U	NC
	3-Nitroaniline	0.10785 U	2.64997 U	NC
	4,6-Dinitro-2-methylphenol	0.06086 U	1.49551 U	NC
	4-Bromophenyl phenyl ether	0.11876 U	2.91810 U	NC
	4-Chloro-3-methylphenol	0.11145 U	2.73851 U	NC
	4-Chloroaniline	0.10352 U	2.54359 U	NC
	4-Chlorophenyl phenyl ether	0.16668 U	4.09557 U	NC
	4-Nitroaniline	0.10054 U	2.47040 U	NC
	4-Nitrophenol	0.09644 U	2.36972 U	NC
	Acenaphthene	0.13640 U	3.35154 U	NC
	Acenaphthylene	0.11339 U	2.78620 U	NC
	Aniline	0.09743 U	2.39403 U	NC
	Anthracene	0.09508 U	2.33627 U	NC
	Azobenzene	0.12548 U	3.08325 U	NC
	Benz(a)anthracene	0.08798 U	2.16169 U	NC
	Benzo(a)pyrene	0.12562 U	3.08667 U	NC
	Benzo(b)fluoranthene	0.10629 U	2.61175 U	NC
	Benzo(g,h,i)perylene	0.12738 U	3.12986 U	NC
	Benzo(k)fluoranthene	0.12650 U	3.10822 U	NC
	Benzoic acid	0.06378 U	1.56717 U	NC
	Benzyl alcohol	0.09943 U	2.44304 U	NC
	Bis(2-chloroethoxy)methane	0.10684 U	2.62506 U	NC
	Bis(2-chloroethyl)ether	0.11060 U	2.71765 U	NC

	SWMU 10-14 (0-2')	SWMU 10 DUP01	RPD
Parameter	Sample Result	Duplicate Result	(%)
Bis(2-chloroisopropyl)ether	0.08552 U	2.10120 U	NC
Bis(2-ethylhexyl)phthalate	0.12576 U	3.09000 U	NC
Butyl benzyl phthalate	0.13665 U	3.35771 U	NC
Carbazole	0.10425 U	2.56160 U	NC
Chrysene			NC
Dibenz(a,h)anthracene			NC
Dibenzofuran			NC
Diethyl phthalate	0.12704 U	3.12139 U	NC
Dimethyl phthalate	0.10302 U	2.53119 U	NC
Di-n-butyl phthalate	0.12659 U	3.11051 U	NC
Di-n-octyl phthalate	0.12461 U	3.06182 U	NC
Fluoranthene	0.13583 U	3.33755 U	NC
Fluorene	0.15239 U	3.74428 U	NC
Hexachlorobenzene	0.10565 U	2.59588 U	NC
Hexachlorobutadiene	0.11074 U	2.72107 U	NC
Hexachlorocyclopentadiene	0.07764 U	1.90769 U	NC
Hexachloroethane		2.44821 U	NC
Indeno(1,2,3-cd)pyrene	0.12721 U		NC
	0.11934 U	2.93240 U	NC
	0.10651 U	2.61700 U	NC
Nitrobenzene	0.11525 U		NC
N-Nitrosodi-n-propylamine	0.11603 U		NC
N-Nitrosodiphenylamine	0.10022 U	2.46238 U	NC
Pentachlorophenol			NC
Phenanthrene			NC
Phenol			NC
Pyrene	0.14447 U		NC
	0.09406 U	2.31115 U	NC
Antimony	1.51 U	1.45 U	NC
Arsenic	1.4 J	2.7 J	15.9
Barium	460	380	4.8
Beryllium	0.71	0.59	4.6
Cadmium	0.03 U	0.03 U	NC
Chromium	14	16	3.3
Cobalt	3.8	3.4	2.8
Cyanide	0.28 U	0.28 U	NC
Hexavalent Chromium	2.26 U	2.26 U	NC
Iron	10000	9100	2.4
Lead	3.8	3.6	1.4
Manganese	440	490	2.7
Mercury	0.034 J	0.035 J	0.7
Nickel	6.5	5.6	3.7
Selenium	1.76 U	1.69 U	NC
Silver	0.03 U	0.03 U	NC
Vanadium	17	21	5.3
			4.7
	Bis(2-chloroisopropyl)etherBis(2-ethylhexyl)phthalateButyl benzyl phthalateCarbazoleChryseneDibenz(a,h)anthraceneDibenzofuranDiethyl phthalateDinethyl phthalateDi-n-butyl phthalateDi-n-octyl phthalateFluoreneHexachlorobenzeneHexachlorobenzeneHexachlorocyclopentadieneHexachlorocyclopentadieneHexachloroethaneIndeno(1,2,3-cd)pyreneIsophoroneNaphthaleneNitrobenzeneN-Nitrosodi-n-propylamineN-NitrosodiphenylaminePentachlorophenolPhenolPyrenePyridineAntimonyArsenicBariumBerylliumCobaltCyanideHexavalent ChromiumIronLeadManganeseMercuryNickelSeleniumSilver	Bis(2-chloroisopropyl)ether 0.08552 U Bis(2-ethylhexyl)phthalate 0.12576 U Butyl benzyl phthalate 0.13665 U Carbazole 0.10425 U Chrysene 0.11240 U Dibenz(a,h)anthracene 0.12127 U Dibenz(a,h)anthracene 0.12127 U Dibenzofuran 0.11971 U Diethyl phthalate 0.12269 U Din-notyl phthalate 0.12269 U Din-notyl phthalate 0.12269 U Din-notyl phthalate 0.12269 U Pluoranthene 0.15239 U Hexachlorobenzene 0.10565 U Hexachlorocyclopentadiene 0.07764 U Hexachlorocyclopentadiene 0.11074 U Indeno(1,2,3-cd)pyrene 0.12721 U Isophorone 0.11623 U N-Nitrosodi-n-propylamine 0.11603 U N-Nitrosodiphenylamine 0.10022 U Pentachlorophenol 0.00032 U Phenanthrene 0.11710 U Phrenathrene 0.11710 U Phrenathrene 0.11710 U Phenanthrene 0.12721 U	Bis(2-chloroisopropyl)ether 0.08552 U 2.10120 U Bis(2-ethylhexyl)phthalate 0.12576 U 3.09000 U Butyl benzyl phthalate 0.13665 U 3.35771 U Carbazole 0.10425 U 2.56160 U Chrysene 0.11240 U 2.76177 U Dibenz(a,h)anthracene 0.11971 U 2.97976 U Dibertyl phthalate 0.127704 U 3.12139 U Dimethyl phthalate 0.12659 U 3.11051 U Di-n-butyl phthalate 0.12659 U 3.11051 U Di-n-octyl phthalate 0.10565 U 2.55183 U Jonenee 0.15239 U 3.74428 U Hexachlorobenzene 0.01565 U 2.59588 U Hexachlorocyclopentadiene 0.01774 U 2.72107 U Hexachlorocyclopentadiene 0.11934 U 2.93240 U Naphthalene 0.10651 U 2.61700 U Nitrobenzene 0.11924 U 2.85088 U N-Nitrosodin-propylamine 0.11603 U 2.85088 U N-Nitrosodin-propylamine 0.11603 U 2.86088 U N-Nitrosodin-propylamine 0.11710

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

		SWMU 10-9 (4-6')	SWMU 10-9 DUP02	RPD	
	Parameter	Sample Result	Duplicate Result	(%)	
TPH (mg/kg-dry):	Gasoline Range Organics (GRO)	12 J	69	35.2	
	Diesel Range Organics (DRO)	300	530	13.9	
	Motor Oil Range Organics (MRO)	120	170	8.6	
VOCs (ug/kg-dry)	1,1,1,2-Tetrachloroethane	0.01186 U	0.02684 U	NC	
	1,1,1-Trichloroethane	0.02196 U	0.04971 U	NC	
	1,1,2,2-Tetrachloroethane	0.01752 U	0.03967 U	NC	
	1,1,2-Trichloroethane	0.01738 U	0.03933 U	NC	
	1,1-Dichloroethane	0.05784 U	0.13093 U	NC	
	1,1-Dichloroethene	0.00995 U	0.02253 U	NC	
	1,1-Dichloropropene	0.02153 U	0.04874 U	NC	
	1,2,3-Trichlorobenzene	0.03086 U	0.06986 U	NC	
	1,2,3-Trichloropropane	0.02426 U	0.05491 U	NC	
	1,2,4-Trichlorobenzene	0.02668 U	0.06040 U	NC	
	1,2,4-Trimethylbenzene	0.42	2.8	37.0	
	1,2-Dibromo-3-chloropropane	0.02484 U	0.05622 U	NC	
	1,2-Dibromoethane (EDB)	0.01152 U	0.02607 U	NC	
	1,2-Dichlorobenzene	0.00872 U	0.01974 U	NC	
	1,2-Dichloroethane (EDC)	0.05784 U	0.13093 U	NC	
	1,2-Dichloropropane	0.00808 U	0.01830 U	NC	
	1,3,5-Trimethylbenzene	0.12 J	0.82	37.2	
	1,3-Dichlorobenzene	0.01703 U	0.03854 U	NC	
	1,3-Dichloropropane	0.01991 U	0.04508 U	NC	
	1,4-Dichlorobenzene	0.01801 U	0.04077 U	NC	
	1-Methylnaphthalene	1.1	9.3	39.4	
	2,2-Dichloropropane	0.02105 U	0.04765 U	NC	
	2-Butanone	0.09296 U	0.21044 U	NC	
	2-Chlorotoluene	0.01634 U	0.03699 U	NC	
	2-Hexanone	0.03556 U	0.08050 U	NC	
	2-Methylnaphthalene	1.5	13	39.7	
	4-Chlorotoluene	0.01093 U	0.02475 U	NC	
	4-Isopropyltoluene	0.01028 U	0.21 J	NC	
	4-Methyl-2-pentanone	0.02509 U	0.05679 U	NC	
	Acetone	0.10782 U	0.24407 U	NC	
	Benzene	0.02144 U	0.04854 U	NC	
	Bromobenzene	0.01073 U	0.02430 U	NC	
	Bromodichloromethane	0.01183 U	0.02677 U	NC	
	Bromoform	0.01162 U	0.02632 U	NC	
	Bromomethane	0.02791 U	0.06318 U	NC	
	Carbon disulfide	0.10405 U	0.23554 U	NC	
	Carbon tetrachloride	0.01408 U	0.03188 U	NC	
	Chlorobenzene	0.01113 U	0.02519 U	NC	
	Chloroethane	0.11192 U	0.25337 U	NC	
	Chloroform	0.01507 U	0.03412 U	NC	
	Chloromethane	0.01674 U	0.03789 U	NC	
	cis-1,2-DCE	0.01829 U	0.04141 U	NC	
	cis-1,3-Dichloropropene	0.01003 U	0.02271 U	NC	
	Dibromochloromethane	0.01084 U	0.02454 U	NC	
	Dibromomethane	0.01522 U	0.03446 U	NC	
	Dichlorodifluoromethane	0.03637 U	0.08232 U	NC	
	Ethylbenzene	0.04 J	0.34	39.5	
	Hexachlorobutadiene	0.02008 U	0.04545 U	NC	
	Isopropylbenzene	0.016 J	0.16 J	40.9	
	Methyl tert-butyl ether (MTBE)	0.02045 U	0.04629 U	NC	
	Methylene chloride	0.02043 U	0.13093 U	NC	
	Naphthalene	0.32	2.5	38.7	
	n-Butylbenzene	0.065 J	0.4 J	36.0	

		SWMU 10-9 (4-6')	SWMU 10-9 DUP02	RPD	
	Parameter	Sample Result	Duplicate Result	(%)	
	n-Propylbenzene	0.052 J	0.34	36.7	
	sec-Butylbenzene	0.021 J	0.17 J	39.0	
	Styrene	0.02654 U	0.06008 U	NC	
	tert-Butylbenzene	0.01656 U	0.03749 U	NC	
	Tetrachloroethene (PCE)	0.01253 U	0.02836 U	NC	
	Toluene	0.01721 U	0.03895 U	NC	
	trans-1,2-DCE	0.00940 U	0.02127 U	NC	
	trans-1,3-Dichloropropene	0.02603 U	0.05893 U	NC	
	Trichloroethene (TCE)	0.01408 U	0.03188 U	NC	
	Trichlorofluoromethane	0.04364 U	0.09880 U	NC	
	Vinyl chloride	0.05784 U	0.13093 U	NC	
	Xylenes, Total	0.26 J	1.9	38.0	
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	1.01696 U	0.12038 U	NC	
	1,2-Dichlorobenzene	0.95024 U	0.11248 U	NC	
	1,3-Dichlorobenzene	0.88237 U	0.10445 U	NC	
	1,4-Dichlorobenzene	1.03912 U	0.12300 U	NC	
	1-Methylnaphthalene	1.1 J	0.7	11.1	
	2,4,5-Trichlorophenol	1.15774 U	0.13704 U	NC	
	2,4,6-Trichlorophenol	1.14855 U	0.13595 U	NC	
	2,4-Dichlorophenol	0.99345 U	0.11760 U	NC	
	2,4-Dimethylphenol	0.78090 U	0.09244 U	NC	
	2,4-Dinitrophenol	0.41279 U	0.04886 U	NC	
	2,4-Dinitrotoluene	0.88877 U	0.10520 U	NC	
	2,6-Dinitrotoluene	1.10428 U	0.13071 U	NC	
	2-Chloronaphthalene	1.06437 U	0.12599 U	NC	
	2-Chlorophenol	0.92710 U	0.10974 U	NC	
	2-Methylnaphthalene	1 J	0.89	2.9	
	2-Methylphenol	0.99595 U	0.11789 U	NC	
	2-Nitroaniline	1.13043 U	0.13381 U	NC	
	2-Nitrophenol	0.89292 U	0.10569 U	NC	
	3,3 ⁻ Dichlorobenzidine	0.76499 U	0.09055 U	NC	
	3+4-Methylphenol	1.02964 U	0.12188 U	NC	
	3-Nitroaniline	0.95717 U	0.11330 U	NC	
	4,6-Dinitro-2-methylphenol	0.54018 U	0.06394 U	NC	
	4-Bromophenyl phenyl ether	1.05402 U	0.12477 U	NC	
	4-Chloro-3-methylphenol	0.98915 U	0.11709 U	NC	
	4-Chloroaniline	0.91875 U	0.10875 U	NC	
	4-Chlorophenyl phenyl ether	1.47933 U	0.17511 U	NC	
	4-Nitroaniline	0.89231 U	0.10562 U	NC	
	4-Nitrophenol	0.85595 U	0.10302 U	NC	
	Acenaphthene	1.21058 U	0.14330 U	NC	
	Acenaphthylene	1.00638 U	0.14930 U	NC	
	Aniline	0.86473 U	0.10236 U	NC	
	Anthracene	0.84386 U	0.09989 U	NC	
	Azobenzene	1.11368 U	0.13183 U	NC	
	Benz(a)anthracene	0.78081 U	0.13183 U 0.09242 U	NC	
	Benzo(a)pyrene	1.11491 U	0.13197 U	NC	
	Benzo(b)fluoranthene	0.94337 U	0.13197 U	NC	
	Benzo(g,h,i)perylene	1.13051 U	0.11167 U 0.13382 U	NC	
	Benzo(k)fluoranthene	1.13051 U 1.12270 U	0.13382 U 0.13289 U	NC	
	Benzoic acid		0.13289 U 0.06701 U		
		0.56607 U		NC	
	Benzyl alcohol	0.88243 U	0.10445 U	NC	
	Bis(2-chloroethoxy)methane	0.94818 U	0.11224 U	NC	
	Bis(2-chloroethyl)ether	0.98162 U	0.11619 U	NC	
	Bis(2-chloroisopropyl)ether	0.75896 U	0.08984 U	NC	
	Bis(2-ethylhexyl)phthalate	1.11611 U	0.13212 U	NC	

		SWMU 10-9 (4-6')	SWMU 10-9 DUP02	RPD
	Parameter	Sample Result	Duplicate Result	(%)
	Butyl benzyl phthalate	1.21281 U	0.14356 U	NC
	Carbazole	0.92525 U	0.10952 U	NC
	Chrysene	0.99756 U	0.11808 U	NC
	Dibenz(a,h)anthracene	1.07629 U	0.12740 U	NC
	Dibenzofuran	1.06247 U	0.12577 U	NC
	Diethyl phthalate	1.12745 U	0.13346 U	NC
	Dimethyl phthalate	0.91427 U	0.10822 U	NC
	Di-n-butyl phthalate	1.12352 U	0.13299 U	NC
	Di-n-octyl phthalate	1.10594 U	0.13091 U	NC
	Fluoranthene	1.20553 U	0.14270 U	NC
	Fluorene	1.35244 U	0.16009 U	NC
	Hexachlorobenzene	0.93764 U	0.11099 U	NC
	Hexachlorobutadiene	0.98286 U	0.11634 U	NC
	Hexachlorocyclopentadiene	0.68906 U	0.08156 U	NC
	Hexachloroethane	0.88430 U	0.10467 U	NC
	Indeno(1,2,3-cd)pyrene	1.12898 U	0.13364 U	NC
	Isophorone	1.05919 U	0.12538 U	NC
	Naphthalene	0.94527 U	0.33	NC
	Nitrobenzene	1.02284 U	0.12107 U	NC
	N-Nitrosodi-n-propylamine	1.02975 U	0.12189 U	NC
	N-Nitrosodiphenylamine	0.88942 U	0.10528 U	NC
	Pentachlorophenol	0.62025 U	0.07342 U	NC
	Phenanthrene	1.03930 U	0.12302 U	NC
	Phenol	0.89032 U	0.10539 U	NC
	Pyrene	1.28215 U	0.15177 U	NC
	Pyridine	0.83479 U	0.09881 U	NC
letals (mg/kg-dry):	Antimony	1.56 U	1.54 U	NC
	Arsenic	1.1 J	1.3 J	4.2
	Barium	250	190	6.8
	Beryllium	0.94	0.9	1.1
	Cadmium	0.033002519 U	0.03 U	NC
	Chromium	14	8.5	12.2
	Cobalt	5.3	4.1	6.4
	Cyanide	0.300287306 U	0.30 U	NC
	Hexavalent Chromium	2.40229845 U	2.37 U	NC
	Iron	16000	13000	5.2
	Lead	3.2	3.3	0.8
	Manganese	290	170	13.0
	Mercury	0.0086 J	0.0043 J	16.7
	Nickel	10	7.4	7.5
	Selenium	1.820599379 U	1.80 U	NC
	Silver	0.035376801 U	0.03 U	NC
	Vanadium	19	19	0.0
	Zinc	32	49	10.5

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-6 (10-12')	SWMU 10 DUP03	RPD
	Parameter	Sample Result	Field Duplicate	(%)
PH (mg/kg-dry):	Gasoline Range Organics (GRO)	1.22 U	1.16 U	NC
	Diesel Range Organics (DRO)	5.32 U	5.44 U	NC
	Motor Oil Range Organics (MRO)	48.08 U	49.16 U	NC
DCs (ug/kg-dry)	1,1,1,2-Tetrachloroethane	0.000407 U	0.000378 U	NC
	1,1,1-Trichloroethane	0.000356 U	0.000331 U	NC
	1,1,2,2-Tetrachloroethane	0.000550 U	0.000511 U	NC
	1,1,2-Trichloroethane	0.002501 U	0.002325 U	NC
	1,1-Dichloroethane	0.000584 U	0.000543 U	NC
	1,1-Dichloroethene	0.000417 U	0.000388 U	NC
	1,1-Dichloropropene	0.000458 U	0.000426 U	NC
	1,2,3-Trichlorobenzene	0.000915 U	0.000851 U	NC
	1,2,3-Trichloropropane	0.000878 U	0.000816 U	NC
	1,2,4-Trichlorobenzene	0.000937 U	0.000871 U	NC
	1,2,4-Trimethylbenzene	0.00363	0.00292	5.4
	1,2-Dibromo-3-chloropropane	0.000735 U	0.000683 U	NC
	1,2-Dibromoethane (EDB)	0.000299 U	0.000278 U	NC
	1,2-Dichlorobenzene	0.000555 U	0.000516 U	NC
	1,2-Dichloroethane (EDC)	0.000670 U	0.000623 U	NC
	1,2-Dichloropropane	0.000534 U	0.000497 U	NC
	1,3,5-Trimethylbenzene	0.0022 J	0.00172 J	6.1
	1.3-Dichlorobenzene	0.000424 U	0.000394 U	NC
	1,3-Dichloropropane	0.000390 U	0.000362 U	NC
	1.4-Dichlorobenzene	0.000393 U	0.000365 U	NC
	1-Methylnaphthalene	0.000982 U	0.000913 U	NC
	2,2-Dichloropropane	0.000434 U	0.000404 U	NC
	2-Butanone	0.000801 U	0.000745 U	NC
	2-Chlorotoluene	0.000488 U	0.000454 U	NC
	2-Hexanone	0.000520 U	0.000484 U	NC
	2-Methylnaphthalene	0.000977 U	0.000909 U	NC
	4-Chlorotoluene	0.000977-0 0.000482 U	0.000909 0 0.000448 U	NC
		0.000482 0 0.000971 U	0.000448 U 0.000902 U	NC
	4-Isopropyltoluene			-
	4-Methyl-2-pentanone	0.001056 U	0.000982 U	NC
	Acetone	0.00589 J	0.00256 J	19.7
	Benzene	0.0226	0.0206	2.3
	Bromobenzene	0.000696 U	0.000647 U	NC
	Bromodichloromethane	0.000338 U	0.000314 U	NC
	Bromoform	0.000648 U	0.000603 U	NC
	Bromomethane	0.001479 U	0.001375 U	NC
	Carbon disulfide	0.001132 U	0.001052 U	NC
	Carbon tetrachloride	0.000453 U	0.000421 U	NC
	Chlorobenzene	0.000254 U	0.000236 U	NC
	Chloroethane	0.002501 U	0.002325 U	NC
	Chloroform	0.000515 U	0.000479 U	NC
	Chloromethane	0.000295 U	0.000274 U	NC
	cis-1,2-DCE	0.000661 U	0.000615 U	NC
	cis-1,3-Dichloropropene	0.002501 U	0.002325 U	NC
	Dibromochloromethane	0.000281 U	0.000261 U	NC
	Dibromomethane	0.001419 U	0.001320 U	NC
	Dichlorodifluoromethane	0.001021 U	0.000949 U	NC
	Ethylbenzene	0.0035	0.00328	1.6
	Hexachlorobutadiene	0.000505 U	0.000469 U	NC
	Isopropylbenzene	0.000580 U	0.000539 U	NC
	Methyl tert-butyl ether (MTBE)	0.001049 U	0.000975 U	NC
	Methylene chloride	0.000618 U	0.000721 J	NC
	Naphthalene	0.00103 J	0.000837 J	5.2

		SWMU 10-6 (10-12')	SWMU 10 DUP03	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	n-Butylbenzene	0.001027 U	0.000955 U	NC
	n-Propylbenzene	0.000638 J	0.000477 J	7.2
	sec-Butylbenzene	0.000925 J	0.000849 J	2.1
	Styrene	0.000414 U	0.000385 U	NC
	tert-Butylbenzene	0.000383 U	0.000356 U	NC
	Tetrachloroethene (PCE)	0.000496 U	0.000461 U	NC
	Toluene	0.0146	0.0139	1.2
	trans-1,2-DCE	0.000404 U	0.000376 U	NC
	trans-1,3-Dichloropropene	0.000327 U	0.000304 U	NC
	Trichloroethene (TCE)	0.000497 U	0.000462 U	NC
	Trichlorofluoromethane	0.000505 U	0.000470 U	NC
	Vinyl chloride	0.000286 U	0.000266 U	NC
	Xylenes, Total	0.0116	0.00984	4.1
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	0.120870 U	0.112566 U	NC
	1,2-Dichlorobenzene	0.112940 U	0.105182 U	NC
	1,3-Dichlorobenzene	0.104874 U	0.097669 U	NC
	1,4-Dichlorobenzene	0.123504 U	0.115020 U	NC
	1-Methylnaphthalene	0.109448 U	0.101929 U	NC
	2,4,5-Trichlorophenol	0.137603 U	0.128149 U	NC
	2,4,6-Trichlorophenol	0.136511 U	0.127132 U	NC
	2,4-Dichlorophenol	0.118076 U	0.109965 U	NC
	2,4-Dimethylphenol	0.092814 U	0.086437 U	NC
	2,4-Dinitrophenol	0.049062 U	0.045692 U	NC
	2,4-Dinitrotoluene	0.105635 U	0.098378 U	NC
	2,6-Dinitrotoluene	0.131249 U	0.122232 U	NC
	2-Chloronaphthalene	0.126505 U	0.117815 U	NC
	2-Chlorophenol	0.110191 U	0.102621 U	NC
	2-Methylnaphthalene	0.108055 U	0.100632 U	NC
	2-Methylphenol	0.118374 U	0.110242 U	NC
	2-Nitroaniline	0.134357 U	0.125127 U	NC
	2-Nitrophenol	0.106127 U	0.098836 U	NC
	3,3 ⁻ Dichlorobenzidine	0.090922 U	0.084676 U	NC
	3+4-Methylphenol	0.122378 U	0.113970 U	NC
	3-Nitroaniline	0.113765 U	0.105949 U	NC
	4,6-Dinitro-2-methylphenol	0.064203 U	0.059792 U	NC
	4-Bromophenyl phenyl ether	0.125276 U	0.116669 U	NC
	4-Chloro-3-methylphenol	0.117566 U	0.109489 U	NC
	4-Chloroaniline	0.109198 U	0.101696 U	NC
	4-Chlorophenyl phenyl ether	0.175825 U	0.163746 U	NC
	4-Nitroaniline	0.106056 U	0.098770 U	NC
	4-Nitrophenol	0.101733 U	0.094744 U	NC
	Acenaphthene	0.143884 U	0.133999 U	NC
	Acenaphthylene	0.119613 U	0.111396 U	NC
	Aniline	0.102777 U	0.095717 U	NC
	Anthracene	0.100297 U	0.093407 U	NC
	Azobenzene	0.132366 U	0.123272 U	NC
	Benz(a)anthracene	0.092803 U	0.086427 U	NC
	Benzo(a)pyrene	0.132513 U	0.123409 U	NC
	Benzo(b)fluoranthene	0.112124 U	0.104421 U	NC
	Benzo(g,h,i)perylene	0.134367 U	0.125136 U	NC
	Benzo(k)fluoranthene	0.133438 U	0.124271 U	NC
	Benzoic acid	0.067280 U	0.062658 U	NC
	Benzyl alcohol	0.104881 U	0.097676 U	NC
	Bis(2-chloroethoxy)methane	0.112695 U	0.104953 U	NC
	Bis(2-chloroethyl)ether	0.116670 U	0.108655 U	NC

Parameter -chloroisopropyl)ether -ethylhexyl)phthalate benzyl phthalate azole ene (a,h)anthracene (a,h)anthracene (b) phthalate (b) phthalate (b) phthalate (c)	SWMU 10-6 (10-12') Sample Result 0.090206 U 0.132656 U 0.132656 U 0.144149 U 0.109971 U 0.118564 U 0.127923 U 0.126280 U 0.134003 U 0.108666 U 0.133536 U 0.131446 U	Field Duplicate 0.084009 U 0.123542 U 0.134246 U 0.102416 U 0.110419 U 0.119135 U 0.117604 U 0.124797 U 0.101200 U	(%) NC NC NC NC NC NC NC
ethylhexyl)phthalate benzyl phthalate azole ene nz(a,h)anthracene nzofuran yl phthalate thyl phthalate butyl phthalate octyl phthalate anthene	0.132656 U 0.144149 U 0.109971 U 0.118564 U 0.127923 U 0.126280 U 0.134003 U 0.108666 U 0.133536 U	0.123542 U 0.134246 U 0.102416 U 0.110419 U 0.119135 U 0.117604 U 0.124797 U	NC NC NC NC NC NC NC
benzyl phthalate azole ene az(a,h)anthracene azofuran yl phthalate thyl phthalate butyl phthalate octyl phthalate anthene	0.144149 U 0.109971 U 0.118564 U 0.127923 U 0.126280 U 0.134003 U 0.108666 U 0.133536 U	0.134246 U 0.102416 U 0.110419 U 0.119135 U 0.117604 U 0.124797 U	NC NC NC NC NC
azole ene oz(a,h)anthracene ozofuran yl phthalate thyl phthalate outyl phthalate octyl phthalate anthene	0.109971 U 0.118564 U 0.127923 U 0.126280 U 0.134003 U 0.108666 U 0.133536 U	0.102416 U 0.110419 U 0.119135 U 0.117604 U 0.124797 U	NC NC NC NC
ene nz(a,h)anthracene nzofuran yl phthalate thyl phthalate putyl phthalate nctyl phthalate anthene	0.118564 U 0.127923 U 0.126280 U 0.134003 U 0.108666 U 0.133536 U	0.110419 U 0.119135 U 0.117604 U 0.124797 U	NC NC NC NC
nz(a,h)anthracene nzofuran yl phthalate thyl phthalate outyl phthalate octyl phthalate anthene	0.127923 U 0.126280 U 0.134003 U 0.108666 U 0.133536 U	0.119135 U 0.117604 U 0.124797 U	NC NC NC
izofuran yl phthalate thyl phthalate outyl phthalate octyl phthalate anthene	0.126280 U 0.134003 U 0.108666 U 0.133536 U	0.117604 U 0.124797 U	NC NC
yl phthalate thyl phthalate outyl phthalate octyl phthalate anthene	0.134003 U 0.108666 U 0.133536 U	0.124797 U	NC
thyl phthalate butyl phthalate bctyl phthalate anthene	0.108666 U 0.133536 U		
outyl phthalate octyl phthalate anthene	0.133536 U	0.101200 U	
anthene			NC
anthene	0 121///6 11	0.124362 U	NC
	0.131440 0	0.122416 U	NC
ene	0.143283 U	0.133440 U	NC
	0.160744 U	0.149701 U	NC
chlorobenzene	0.111443 U	0.103787 U	NC
chlorobutadiene	0.116817 U	0.108792 U	NC
chlorocyclopentadiene	0.081898 U	0.076272 U	NC
chloroethane	0.105103 U	0.097883 U	NC
o(1,2,3-cd)pyrene	0.134185 U	0.124967 U	NC
orone	0.125890 U	0.117241 U	NC
thalene	0.112350 U	0.104631 U	NC
penzene	0.121569 U	0.113217 U	NC
rosodi-n-propylamine	0.122390 U	0.113982 U	NC
rosodiphenylamine	0.105712 U	0.098449 U	NC
chlorophenol	0.073720 U	0.068656 U	NC
anthrene	0.123526 U	0.115040 U	NC
ol	0.105819 U	0.098549 U	NC
e	0.152390 U	0.141921 U	NC
ne	0.099219 U	0.092403 U	NC
iony	1.9 J	1.9 J	0.0
ic	2.1 J	2.2 J	1.2
m	550	450	5.0
ium	1	0.95	1.3
ium	0.033 U	0.03 U	NC
nium	14	13	1.9
lt	8	7	3.3
de	0.296 U	0.28 U	NC
valent Chromium	2.368 U	260	NC
	20000	20000	0.0
	1.6	1.4	3.3
anese	760	730	1.0
ury	0.0035 U	0.0031 U	NC
	16	13	5.2
ium	1.821 U	1.69 U	NC
	0.035 U	0.03 U	NC
dium	14	17	4.8
	23	21	2.3
	m ium nium nium it de valent Chromium ganese ury d	m 550 ium 1 nium 0.033 U nium 14 lt 8 de 0.296 U valent Chromium 2.368 U 20000 1.6 ganese 760 ury 0.0035 U el 16 ium 1.821 U O.035 U 14	m 550 450 ium 1 0.95 nium 0.033 U 0.03 U nium 14 13 nium 14 13 ht 8 7 de 0.296 U 0.28 U valent Chromium 2.368 U 260 20000 20000 20000 1.6 1.4 14 ganese 760 730 ury 0.0035 U 0.0031 U 1 16 13 nium 1.821 U 1.69 U 0.035 U 0.03 U 1.69 U

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

			SWMU 10 DUP04	RPD
	Parameter	Sample Result	Field Duplicate	(%)
PH (mg/kg-dry):	Gasoline Range Organics (GRO)	1300	1100 v	4.2
		7800	3000 v	22.2
	Motor Oil Range Organics (MRO)			NC
TPH (mg/kg.dry): Gasoline Range Organics (GRO) 1300 Diesel Range Organics (MRO) ND U Motor Oil Range Organics (MRO) ND U VOCs (ug/kg.dry) 1.1.1_2-Tietrachioroethane ND U 1.1.1_2-Tichloroethane ND U 1.1.2.Trichloroethane ND U 1.1.2.Trichloroethane ND U 1.2.3.Trichloropapae ND U 1.2.3.Trichlorobenzene ND U 1.2.3.Trichlorobenzene ND U 1.2.4.Trichlorobenzene ND U 1.2.4.Trichlorobenzene ND U 1.2.Dichlorobenzene ND U 1.2.Dichlorobenzene ND U 1.2.Dichlorobenzene ND U 1.2.Dichlorobenzene ND U 1.2.Dichlorobenzene ND U 1.3.Dichlorobenzene ND U 1.3.Dichlorobenzene ND U 1.3.Dichlorobenzene ND U 1.3.Dichlorobenzene ND U 2.2.Dichloroethazene ND U 2.2.Dichloroethazene	< 0.0526 u	NC		
	1,1,1-Trichloroethane	ND U	< 0.0975 u	NC
	1,1,2,2-Tetrachloroethane	ND U	< 0.0778 u	NC
	1,1,2-Trichloroethane	ND U	< 0.0771 u	NC
	1,1-Dichloroethane	ND U	< 0.2568 u	NC
	1,1-Dichloroethene	ND U	< 0.0442 u	NC
	1,1-Dichloropropene	ND U	< 0.0956 u	NC
			< 0.137 u	NC
			< 0.1077 u	NC
			< 0.11844 u	NC
			17 v	11.4
	-			NC
	· · ·			NC
			< 0.03871 u	NC
				NC
				NC
			6.2 v	11.7
				NC
				NC
	-			NC
			31 v	10.8
				NC
		1	· · · · · · · · · · · · · · · · · · ·	NC
				NC
			· · · · · · · · · · · · · · · · · · ·	NC
			60 v	9.2
			< 0.0485 u	NC
			1.1 v	9.3
	4-Methyl-2-pentanone		< 0.1114 u	NC
	Acetone	ND U	< 0.4786 u	NC
	Benzene	1.9	1.2 v	11.3
	Bromobenzene	ND U	< 0.0476 u	NC
	Bromodichloromethane	ND U	< 0.0525 u	NC
	Bromoform	ND U	< 0.0516 u	NC
	Bromomethane		< 0.1239 u	NC
	Carbon disulfide		< 0.4619 u	NC
	Carbon tetrachloride		< 0.0625 u	NC
			< 0.0494 u	NC
		1	< 0.4969 u	NC
			< 0.0669 u	NC
			< 0.0743 u	NC
		1	< 0.0812 u	NC
				NC
	Dibromochloromethane		< 0.0481 u	NC
	Dibromomethane		< 0.0481 u	NC
	Dichlorodifluoromethane		< 0.1614 u	NC
	Ethylbenzene	11	8.3 V	7.0
	Hexachlorobutadiene		< 0.08913 u	NC
	Isopropylbenzene	3.1	2.3 v	7.4
	Methyl tert-butyl ether (MTBE)		< 0.0908 u	NC
	Methylene chloride	ND U	< 0.2568 u	NC

		SWMU 10-17 (6-8')	SWMU 10 DUP04	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	Naphthalene	20	13 v	10.6
	n-Butylbenzene	2.8	1.9 J	9.6
	n-Propylbenzene	5.2	3.3 v	11.2
	sec-Butylbenzene	1.8	1 v	14.3
	Styrene		< 0.1178 u	NC
	tert-Butylbenzene		< 0.0735 u	NC
	Tetrachloroethene (PCE)	ND U	< 0.0556 u	NC
	Toluene	34	23 v	9.6
	trans-1,2-DCE	ND U	< 0.0417 u	NC
	trans-1,3-Dichloropropene	ND U	< 0.1156 u	NC
	Trichloroethene (TCE)	ND U	< 0.0625 u	NC
	Trichlorofluoromethane	ND U	< 0.1938 u	NC
	Vinyl chloride	ND U	< 0.2568 u	NC
	Xylenes, Total	86	65 v	7.0
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	ND U	< 1.163 u	NC
	1,2-Dichlorobenzene	ND U	< 1.0867 u	NC
	1,3-Dichlorobenzene	ND U	< 1.0091 u	NC
	1,4-Dichlorobenzene	ND U	< 1.1883 u	NC
	1-Methylnaphthalene	76	28 v	23.1
	2,4,5-Trichlorophenol	ND U	< 1.324 u	NC
	2,4,6-Trichlorophenol	ND U	< 1.3135 u	NC
	2,4-Dichlorophenol		< 1.1361 u	NC
	2,4-Dimethylphenol	36	18 v	16.7
	2,4-Dinitrophenol		< 0.4721 u	NC
	2,4-Dinitrotoluene		< 1.0164 u	NC
	2.6-Dinitrotoluene		< 1.2629 u	NC
	2-Chloronaphthalene		< 1.2172 u	NC
	2-Chlorophenol		< 1.0602 u	NC
	2-Methylnaphthalene	130	45 v	24.3
	2-Methylphenol	56	29 v	15.9
	2-Nitroaniline		< 1.2928 u	NC
	2-Nitrophenol		< 1.0211 u	NC
	3,3´-Dichlorobenzidine		< 0.8748 u	NC
	3+4-Methylphenol	100	60 v	12.5
	3-Nitroaniline		< 1.0946 u	NC
	4,6-Dinitro-2-methylphenol		< 0.6178 u	NC
	4-Bromophenyl phenyl ether		1 0054	NC
	4-Chloro-3-methylphenol		< 1.2054 u < 1.1312 u	NC
	4-Chloroaniline		< 1.0507 u	NC
	4-Chlorophenyl phenyl ether		< 1.6918 u	NC
	4-Nitroaniline		< 1.0205 u	NC
	4-Nitrophenol		< 0.9789 u	NC
	Acenaphthene			NC
				NC
	Acenaphthylene			
	Aniline		< 0.9889 u	NC
	Anthracene		< 0.965 u	NC
	Azobenzene		< 1.2736 u	NC
	Benz(a)anthracene		< 0.8929 u	NC
	Benzo(a)pyrene		< 1.275 u	NC
	Benzo(b)fluoranthene		< 1.0788 u	NC
	Benzo(g,h,i)perylene		< 1.2929 u	NC
	Benzo(k)fluoranthene		< 1.2839 u	NC
	Benzoic acid		< 0.6474 u	NC
	Benzyl alcohol	ND U	< 1.0092 u	NC

		SWMU 10-17 (6-8')		SWMU 10 DUP04		RPD
	Parameter	Sample Result		Field Duplicate		(%)
	Bis(2-chloroethoxy)methane	-	U	< 1.0843	u	NC
	Bis(2-chloroethyl)ether			< 1.1226	u	NC
	Bis(2-chloroisopropyl)ether			< 0.8679	u	NC
	Bis(2-ethylhexyl)phthalate			< 1.2764	u	NC
	Butyl benzyl phthalate			< 1.387	u	NC
	Carbazole			< 1.0581	u	NC
	Chrysene			< 1.1408	u	NC
	Dibenz(a,h)anthracene			< 1.2309	u	NC
	Dibenzofuran			< 1.215	u	NC
	Diethyl phthalate			< 1.2894	u	NC
	Dimethyl phthalate			< 1.0456	u	NC
	Di-n-butyl phthalate			< 1.2849	u	NC
	Di-n-octyl phthalate			< 1.2648	u	NC
	Fluoranthene	ND	U	< 1.3787	u	NC
	Fluorene	7.1			2 v	18.9
	Hexachlorobenzene		U	< 1.0723	u	NC
	Hexachlorobutadiene			< 1.124	u	NC
	Hexachlorocyclopentadiene			< 0.788	u	NC
	Hexachloroethane			< 1.0113	u	NC
	Indeno(1,2,3-cd)pyrene	ND	U	< 1.2911	u	NC
	Naphthalene	24		8.8	3 v	23.2
	Nitrobenzene	ND	U	< 1.1697	u	NC
	N-Nitrosodi-n-propylamine	ND	U	< 1.1776	u	NC
	N-Nitrosodiphenylamine	ND	U	< 1.0171	u	NC
	Pentachlorophenol	ND	U	< 0.7093	u	NC
	Phenanthrene	15		(δv	21.4
	Phenol	52		26	δv	16.7
	Pyrene	ND	U	< 1.4663	u	NC
	Pyridine	ND	U	< 0.9547	u	NC
Metals (mg/kg-dry):	Antimony	ND	U	< 1.5264	1 u	NC
	Arsenic	1.5	J	1.1	LJ	7.7
	Barium	200		160) v	5.6
	Beryllium	1		1.1	Lν	2.4
	Cadmium	ND	U	< 0.0322	2 u	NC
	Chromium	11		11	Lν	0.0
	Cobalt	5.3		< 2.288		NC
	Cyanide	ND	U	5.4	1 v	NC
	Hexavalent Chromium	ND	U	< 0.2862	Lu	NC
	Iron	16000		16000) v	0.0
	Lead	4.4			3 v	4.6
	Manganese	210		200) v	1.2
	Mercury	ND	U	< 0.0032		NC
	Nickel	9.6		9.5	δV	0.3
	Selenium	ND	U	< 1.7774	1 u	NC
	Silver	ND	U	< 0.0345	5 u	NC
	Vanadium	19		19) v	0.0
	Zinc	17		17	7 V	0.0
	Notes:		-			

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-22 (2-	2.5')	DUP01		
		1605943-004	_	1605943-00	6	RPD
	Parameter	Sample Resul	t	Field Duplica		%
	Gasoline Range Organics (GRO)	0.6	J	< 0.858	u	NC
TPH (mg/kg-dry)	Diesel Range Organics (DRO)	< 4.5	u	150	V	NC
	Motor Oil Range Organics (MRO)	< 62	u	310	V	NC
VOCs (mg/kg-dry)	1,1,1,2-Tetrachloroethane	< 0.0017	u	< 0.0003	u	NC
	1,1,1-Trichloroethane	< 0.0017	u	< 0.0002	u	NC
	1,1,2,2-Tetrachloroethane	< 0.0017	u	< 0.0004	u	NC
	1,1,2-Trichloroethane	< 0.0017	u	< 0.0016	u	NC
	1,1-Dichloroethane	< 0.0017	u	< 0.0004	u	NC
	1,1-Dichloroethene	< 0.0003	u	< 0.0003	u	NC
	1,1-Dichloropropene	< 0.0017	u	< 0.0003	u	NC
	1,2,3-Trichlorobenzene	< 0.0004	u	< 0.0006	u	NC
	1,2,3-Trichloropropane	< 0.0017	u	< 0.0006	u	NC
	1,2,4-Trichlorobenzene	< 0.0005	u	< 0.00059	u	NC
	1,2,4-Trimethylbenzene	0.0003	J	0.000972	J	26.4
	1,2-Dibromo-3-chloropropane	< 0.0002	u	< 0.0005	u	NC
	1,2-Dibromoethane (EDB)	< 0.0002	u	< 0.0002	u	NC
	1,2-Dichlorobenzene	< 0.0002	u	< 0.00035	u	NC
	1,2-Dichloroethane (EDC)	< 0.0017	u	< 0.0004	u	NC
	1,2-Dichloropropane	< 0.0017	u	< 0.0003	u	NC
	1,3,5-Trimethylbenzene	< 0.0003	u	0.000422	J	NC
	1,3-Dichlorobenzene	< 0.0003	u	< 0.00027	u	NC
	1,3-Dichloropropane	< 0.0003	u	< 0.00021	u	NC
	1,4-Dichlorobenzene	< 0.0003	u	< 0.00025	u	NC
	1-Methylnaphthalene	< 0.0003	u	< 0.00023	u	NC
	2,2-Dichloropropane	< 0.0002	-	< 0.0002	u	NC
	2-Butanone	< 0.0002	u u	0.00253	J	NC
	2-Chlorotoluene	< 0.0008	-	< 0.0003	u	NC
	2-Hexanone	< 0.0003	u	0.000653	J	NC
	2-Methylnaphthalene	< 0.0004	u u	< 0.00062	u	NC
	4-Chlorotoluene	< 0.0004		< 0.00082	u	NC
	4-Isopropyltoluene	< 0.0003	u	< 0.0003	-	NC
	4-Methyl-2-pentanone	< 0.0003	u	< 0.0007	u	NC
	Acetone	0.0117	u	0.0166	u v	8.7
	Benzene		v	0.00108		NC
		< 0.0017	u	< 0.00104	J	NC
	Bromobenzene	< 0.0002	u	< 0.0004	u	-
	Bromodichloromethane	< 0.0017	u	< 0.0002	u	NC
	Bromoform	< 0.0017	u		u	NC
	Bromomethane Carbon disulfide	< 0.0003	u	< 0.0009 < 0.0007	u	NC
		< 0.0006	u		u	NC
	Carbon tetrachloride	< 0.0017	u	< 0.0003	u	NC
	Chlorobenzene	< 0.0002	u	< 0.0002	u	NC
	Chloroethane Chloroform	< 0.0003	u	< 0.0016	u	NC
		< 0.0017	u	< 0.0003	u	NC
	Chloromethane	< 0.0004	u	< 0.0002	u	NC
	cis-1,2-DCE	< 0.0017	u	< 0.0004	u	NC
	cis-1,3-Dichloropropene	< 0.0017	u	< 0.0016	u	NC
	Dibromochloromethane	< 0.0017	u	< 0.0002	u	NC
	Dibromomethane	< 0.0017	u	< 0.0009	u	NC
	Dichlorodifluoromethane	< 0.001	u	< 0.0007	u	NC
	Ethylbenzene	< 0.0002	u	0.000638	J	NC

		SWMU 10-22 (2-2	2.5')	DUP01		
		1605943-004		1605943-00	6	RPD
	Parameter	Sample Result		Field Duplica		%
	Hexachlorobutadiene	< 0.0004	- u	< 0.00032	u	NC
	Isopropylbenzene	< 0.0002	u	< 0.0004	u	NC
	Methyl tert-butyl ether (MTBE)	< 0.0003	u	< 0.0007	u	NC
	Methylene chloride	< 0.0017	u	0.00051	J	NC
	Naphthalene	< 0.0017	u	< 0.00052	u	NC
	n-Butylbenzene	< 0.0004	u	< 0.0007	u	NC
	n-Propylbenzene	< 0.0003	u	< 0.0003	u	NC
	sec-Butylbenzene	< 0.0003	u	0.000534	J	NC
	Styrene	< 0.0002	u	< 0.0003	u	NC
	tert-Butylbenzene	< 0.0002	u	< 0.0002	u	NC
	Tetrachloroethene (PCE)	< 0.0002	u	< 0.0002	u	NC
	Toluene	0.0012	J	0.00232	v	15.9
			-		_	
	trans-1,2-DCE	< 0.0002	u	< 0.0003 < 0.0002	u	NC NC
	trans-1,3-Dichloropropene Trichloroethene (TCE)	< 0.0002	u	< 0.0002	u	-
		< 0.0017	u		u	NC
	Trichlorofluoromethane	< 0.0002	u	< 0.0003	u	NC
	Vinyl chloride	< 0.0004	u	< 0.0002	u	NC
	Xylenes, Total	< 0.0007	u	0.00171	V	NC
SVOCs (mg/kg-dry)	1,2,4-Trichlorobenzene	< 0.13	u	< 2.8155	u	NC
	1,2-Dichlorobenzene	< 0.094	u	< 2.6308	u	NC
	1,3-Dichlorobenzene	< 0.095	u	< 2.4429	u	NC
	1,4-Dichlorobenzene	< 0.1	u	< 2.8768	u	NC
	1-Methylnaphthalene	< 0.12	u	< 2.5494	u	NC
	2,4,5-Trichlorophenol	< 0.12	u	< 3.2052	u	NC
	2,4,6-Trichlorophenol	< 0.1	u	< 3.1798	u	NC
	2,4-Dichlorophenol	< 0.11	u	< 2.7504	u	NC
	2,4-Dimethylphenol	< 0.13	u	< 2.1619	u	NC
	2,4-Dinitrophenol	< 0.081	u	< 1.1428	u	NC
	2,4-Dinitrotoluene	< 0.11	u	< 2.4606	u	NC
	2,6-Dinitrotoluene	< 0.13	u	< 3.0572	u	NC
	2-Chloronaphthalene	< 0.097	u	< 2.9467	u	NC
	2-Chlorophenol	< 0.097	u	< 2.5667	u	NC
	2-Methylnaphthalene	< 0.15	u	< 2.517	u	NC
	'2-Methylphenol (cresol,o-)	< 0.1	u	< 2.7573	u	NC
	2-Nitroaniline	< 0.13	u	< 3.1296	u	NC
	2-Nitrophenol	< 0.12	u	< 2.4721	u	NC
	3,3 ⁻ Dichlorobenzidine	< 0.09	u	< 2.1179	u	NC
	3+4-Methylphenol	< 0.089	u	< 2.8506	u	NC
	3-Nitroaniline	< 0.11	u	< 2.65	u	NC
	4,6-Dinitro-2-methylphenol	< 0.074	u	< 1.4955	u	NC
	4-Bromophenyl phenyl ether	< 0.12	u	< 2.9181	u	NC
	4-Chloro-3-methylphenol	< 0.15	u	< 2.7385	u	NC
	4-Chloroaniline	< 0.13	u	< 2.5436	u	NC
	4-Chlorophenyl phenyl ether	< 0.14	u	< 4.0956	u	NC
	4-Nitroaniline	< 0.086	u	< 2.4704	u	NC
	4-Nitrophenol	< 0.093	u	< 2.3697	u	NC
	Acenaphthene	< 0.11	u	< 3.3515	u	NC
	Acenaphthylene	< 0.1	u	< 2.7862	u	NC
	Aniline	< 0.12	u	< 2.394	u	NC
	Anthracene	< 0.081	u	< 2.3363	u	NC

		SWMU 10-22 (2-2	2.5')	DUP01		
		1605943-004	ŀ	1605943-00	6	RPD
	Parameter	Sample Result	t	Field Duplica	te	%
	Azobenzene	< 0.15	u	< 3.0833	u	NC
	Benz(a)anthracene	< 0.11	u	< 2.1617	u	NC
	Benzo(a)pyrene	< 0.093	u	< 3.0867	u	NC
	Benzo(b)fluoranthene	< 0.11	u	< 2.6117	u	NC
	Benzo(g,h,i)perylene	< 0.11	u	< 3.1299	u	NC
	Benzo(k)fluoranthene	< 0.11	u	< 3.1082	u	NC
	Benzoic acid	< 0.1	u	< 1.5672	u	NC
	Benzyl alcohol	< 0.096	u	< 2.443	u	NC
	Bis(2-chloroethoxy)methane	< 0.13	u	< 2.6251	u	NC
	Bis(2-chloroethyl)ether	< 0.09	u	< 2.7176	u	NC
	Bis(2-chloroisopropyl)ether	< 0.11	u	< 2.1012	u	NC
	Bis(2-ethylhexyl)phthalate	0.19	J	< 3.09	u	NC
	Butyl benzyl phthalate	< 0.11	u	< 3.3577	u	NC
	Carbazole	< 0.083	u	< 2.5616	u	NC
	Chrysene	< 0.1	u	< 2.7618	u	NC
	Dibenz(a,h)anthracene	< 0.099	u	< 2.9798	u	NC
	Dibenzofuran	< 0.12	u	< 2.9415	u	NC
	Diethyl phthalate	< 0.12	u	< 3.1214	u	NC
	Dimethyl phthalate	< 0.12	u	< 2.5312	u	NC
	Di-n-butyl phthalate	0.12	J	< 3.1105	u	NC
	Di-n-octyl phthalate	< 0.1	u	< 3.0618	u	NC
	Fluoranthene	< 0.071	u	< 3.3375	u	NC
	Fluorene	< 0.11	u	< 3.7443	u	NC
	Hexachlorobenzene	< 0.097	u	< 2.5959	u	NC
	Hexachlorobutadiene	< 0.14	u	< 2.7211	u	NC
	Hexachlorocyclopentadiene	< 0.14	u	< 1.9077	u	NC
	Hexachloroethane	< 0.11	u	< 2.4482	u	NC
	Indeno(1,2,3-cd)pyrene	< 0.096	u	< 3.1256	u	NC
	Naphthalene	< 0.12	u	< 2.617	u	NC
	Nitrobenzene	< 0.12	u	< 2.8318	u	NC
	N-Nitrosodi-n-propylamine	< 0.12	u	< 2.8509	u	NC
	N-Nitrosodiphenylamine	< 0.12	u	< 2.4624	u	NC
	Pentachlorophenol	< 0.079	u	< 1.7172	u	NC
	Phenanthrene	< 0.083	u	< 2.8773	u	NC
	Phenol	< 0.092	u	< 2.4649	u	NC
	Pyrene	< 0.092	u	< 3.5497	u	NC
	Pyridine	< 0.093	u	< 2.3111	u	NC
Motale (mg/kg dn/)	Antimony	< 7.3	u	< 1.4517	u	NC
Metals (mg/kg-dry)	,	2.4	J	2.7	J	2.9
	Arsenic	2.4	V	380	V	6.7
	Barium	0.89	_	0.59		
	Beryllium	< 0.0782	V	< 0.0306	V	10.1 NC
	Cadmium		u	< 0.0306 16	u	
	Chromium	12	V	3.4	v v	7.1 NC
	Hexavalent Chromium Cobalt	< 0.64 4.9	u	< 0.2828		NC NC
		0.04	V	< 2.2626	u	NC
	Cyanide	14000	-	9100	u V	
	Iron		V			10.6
	Lead	4.3	V	3.6	V	4.4
	Manganese	570	V	490	V	3.8
	Mercury	0.044	V	0.035	J	5.7

	SWMU 10-22 (2-2	.5')	DUP01		
	1605943-004		1605943-00)6	RPD
Parameter	Sample Result		Field Duplica	te	%
Nickel	8.6	V	5.6	V	10.6
Selenium	< 1.346	u	< 1.6905	u	NC
Silver	< 0.0391	u	< 0.0328	u	NC
Vanadium	18	V	21	V	3.8
Zinc	20	V	24	v	4.5

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-25 (2-2	2.5')	SWMU 10 DUF	201	
		1609B57-007	-	1609B57-01		RPD
	Parameter	Sample Result		Field Duplica	-	%
	Gasoline Range Organics (GRO)	730	v	510	Z	8.9
TPH (mg/kg-dry)	Diesel Range Organics (DRO)	790	v	3400	v	31.1
	Motor Oil Range Organics (MRO)	100	v	< 560	u	NC
VOCs (mg/kg-dry)	1,1,1,2-Tetrachloroethane	< 0.2042	u	< 0.18	u	NC
	1,1,1-Trichloroethane	< 0.1302	u	< 0.11	u	NC
	1,1,2,2-Tetrachloroethane	< 0.3458	u	< 0.3	u	NC
	1,1,2-Trichloroethane	< 0.2515	u	< 0.22	u	NC
	1,1-Dichloroethane	< 0.1153	u	< 0.1	u	NC
	1,1-Dichloroethene	< 0.6989	u	< 0.61	u	NC
	1,1-Dichloropropene	< 0.1693	u	< 0.15	u	NC
	1,2,3-Trichlorobenzene	< 0.3193	u	< 0.28	u	NC
	1,2,3-Trichloropropane	< 0.3691	u	< 0.32	u	NC
	1,2,4-Trichlorobenzene	< 0.2282	u	< 0.2	u	NC
	1,2,4-Trimethylbenzene	5.8	v	5.8	Z	0.0
	1,2-Dibromo-3-chloropropane	< 0.6536	u	< 0.57	u	NC
	1,2-Dibromoethane (EDB)	< 0.1518	u	< 0.13	u	NC
	1,2-Dichlorobenzene	< 0.1862	u	< 0.16	u	NC
	1,2-Dichloroethane (EDC)	< 0.5564	u	< 0.48	u	NC
	1,2-Dichloropropane	< 0.179	u	< 0.16	u	NC
	1,3,5-Trimethylbenzene	2.6	v	2.5	Z	1.0
	1,3-Dichlorobenzene	< 0.175	u	< 0.15	u	NC
	1,3-Dichloropropane	< 0.2421	u	< 0.21	u	NC
	1,4-Dichlorobenzene	< 0.2644	u	< 0.23	u	NC
	1-Methylnaphthalene	13	v	13	Z	0.0
	2,2-Dichloropropane	< 0.1222	u	< 0.11	u	NC
	2-Butanone	< 1.2194	u	< 1.1	u	NC
	2-Chlorotoluene	< 0.1574	u	< 0.14	u	NC
	2-Hexanone	< 1.1611	u	< 1	u	NC
	2-Methylnaphthalene	16	v	18	Z	2.9
	4-Chlorotoluene	< 0.1887	u	< 0.16	u	NC
	4-Isopropyltoluene	0.61	J	0.59	J	0.8
	4-Methyl-2-pentanone	< 0.6219	u	< 0.54	u	NC
	Acetone	< 2.7608	u	< 2.4	u	NC
	Benzene	< 0.8538	u	< 0.74	u	NC
	Bromobenzene	< 0.172	u	< 0.15	u	NC
	Bromodichloromethane	< 0.1243	u	< 0.11	u	NC
	Bromoform	< 0.2599	u	< 0.23	u	NC
	Bromomethane	< 0.7861	u	0.69	J	NC
	Carbon disulfide	< 0.7045	u	< 0.61	u	NC
	Carbon tetrachloride	< 0.1401	u	< 0.12	u	NC
	Chlorobenzene	< 0.1737	u	< 0.15	u	NC
	Chloroethane	< 0.4259	u	< 0.37	u	NC
	Chloroform	< 0.161	u	< 0.14	u	NC
	Chloromethane	< 0.1899	u	< 0.17	u	NC
	cis-1,2-DCE	< 0.1241	u	< 0.11	u	NC
	cis-1,3-Dichloropropene	< 0.1967	u	< 0.17	u	NC

		SWMU 10-25 (2-2	2.5')	SWMU 10 DUF	201	
		1609B57-007		1609B57-01		RPD
	Parameter	Sample Resul		Field Duplica		%
	Dibromochloromethane	< 0.1928	u	< 0.17	u	NC
	Dibromomethane	< 0.1848	u	< 0.16	u	NC
	Dichlorodifluoromethane	< 0.6602	u	< 0.57	u	NC
	Ethylbenzene	1		0.99	J	0.3
	Hexachlorobutadiene	< 0.2609	u	< 0.23	u	NC
	Isopropylbenzene	0.54	J	0.5	J	1.9
	Methyl tert-butyl ether (MTBE)	< 0.6706	u	< 0.58	u	NC
	Methylene chloride	< 0.6153	u	< 0.54	u	NC
	Naphthalene	3.8	J	4.1	Z	1.9
	n-Butylbenzene	0.95		0.87		2.2
	n-Propylbenzene	0.93	J	0.98	J	1.3
	sec-Butylbenzene	0.74	J	0.67	J	2.5
	Styrene	< 0.1905	u	< 0.17	u	NC
	tert-Butylbenzene	< 0.1769	u	< 0.15	u	NC
	Tetrachloroethene (PCE)	< 0.177	u	< 0.15	u	NC
	Toluene	0.29	J	0.2	J	9.2
	trans-1,2-DCE	< 0.5973	u	< 0.52	u	NC
	trans-1,3-Dichloropropene	< 0.3123	u	< 0.27	u	NC
	Trichloroethene (TCE)	< 0.2288	u	< 0.2	u	NC
	Trichlorofluoromethane	< 0.1596	u	< 0.14	u	NC
	Vinyl chloride	< 0.1745	u	< 0.15	u	NC
	Xylenes, Total	10	V	9.9	Z	0.3
SVOCs (mg/kg-dry)	1,2,4-Trichlorobenzene	< 0.1232	u	< 1.1742	u	NC
	1,2-Dichlorobenzene	< 0.0872	u	< 0.8314	u	NC
	1,3-Dichlorobenzene	< 0.088	u	< 0.839	u	NC
	1,4-Dichlorobenzene	< 0.0963	u	< 0.9177	u	NC
	1-Methylnaphthalene	0.82	v	14	Z	44.5
	2,4,5-Trichlorophenol	< 0.114	u	< 1.0863	u	NC
	2,4,6-Trichlorophenol	< 0.0945	u	< 0.9006	u	NC
	2,4-Dichlorophenol	< 0.1063	u	< 1.0126	u	NC
	2,4-Dimethylphenol	0.17	J	< 1.1788	u	NC
	2,4-Dinitrophenol	< 0.0755	u	< 0.72	u	NC
	2,4-Dinitrotoluene	< 0.1017	u	< 0.9694	u	NC
	2,6-Dinitrotoluene	< 0.1205	u	< 1.1486	u	NC
	2-Chloronaphthalene	< 0.0897	u	< 0.8546	u	NC
	2-Chlorophenol	< 0.0898	u	< 0.8557	u	NC
	2-Methylnaphthalene	1.4	v	24	Z	44.5
	'2-Methylphenol (cresol,o-)	0.53	v	< 0.9073	u	NC
	2-Nitroaniline	< 0.1228	u	< 1.1699	u	NC
	2-Nitrophenol	< 0.113	u	< 1.0769	u	NC
	3,3 [^] -Dichlorobenzidine	< 0.0839	u	< 0.7992	u	NC
	3+4-Methylphenol	< 0.0825	u	< 0.7858	u	NC
	3-Nitroaniline	< 0.1004	u	< 0.9569	u	NC
	4,6-Dinitro-2-methylphenol	< 0.0689	u	< 0.6564	u	NC
	4-Bromophenyl phenyl ether	< 0.1089	u	< 1.0377	u	NC
	4-Chloro-3-methylphenol	< 0.1359	u	< 1.2951	u	NC

		SWMU 10-25 (2-2	2.5')	SWMU 10 DU	P01	
		1609B57-007		1609B57-02	LO	RPD
	Parameter	Sample Result		Field Duplica		%
	4-Chloroaniline	< 0.1238	u	< 1.1801	u	NC
	4-Chlorophenyl phenyl ether	< 0.1301	u	< 1.2402	u	NC
	4-Nitroaniline	< 0.0803	u	< 0.7654	u	NC
	4-Nitrophenol	< 0.0868	u	< 0.8269	u	NC
	Acenaphthene	< 0.0977	u	< 0.9308	u	NC
	Acenaphthylene	< 0.0927	u	< 0.8833	u	NC
	Aniline	< 0.1076	u	< 1.0256	u	NC
	Anthracene	< 0.0756	u	< 0.7205	u	NC
	Azobenzene	< 0.1388	u	< 1.3227	u	NC
	Benz(a)anthracene	< 0.0981	u	< 0.9344	u	NC
	Benzo(a)pyrene	< 0.0862	u	< 0.8219	u	NC
	Benzo(b)fluoranthene	< 0.1029	u	< 0.9803	u	NC
	Benzo(g,h,i)perylene	< 0.1004	u	< 0.9571	u	NC
	Benzo(k)fluoranthene	< 0.1003	u	< 0.9562	u	NC
	Benzoic acid	0.21	J	2.7	J	42.8
	Benzyl alcohol	< 0.0892	u	< 0.8497	u	NC
	Bis(2-chloroethoxy)methane	< 0.1236	u	< 1.1778	u	NC
	Bis(2-chloroethyl)ether	< 0.0837	u	< 0.7976	u	NC
	Bis(2-chloroisopropyl)ether	< 0.1017	u	< 0.9692	u	NC
	Bis(2-ethylhexyl)phthalate	0.22	J	< 0.8844	u	NC
	Butyl benzyl phthalate	< 0.1008	u	< 0.961	u	NC
	Carbazole	< 0.0769	u	< 0.733	u	NC
	Chrysene	< 0.097	u	< 0.9243	u	NC
	Dibenz(a,h)anthracene	< 0.0921	u	< 0.8777	u	NC
	Dibenzofuran	< 0.1146	u	< 1.0917	u	NC
	Diethyl phthalate	0.28	v	< 1.1007	u	NC
	Dimethyl phthalate	< 0.1114	u	< 1.0618	u	NC
	Di-n-butyl phthalate	0.35	J	< 0.8117	u	NC
	Di-n-octyl phthalate	< 0.0972	u	< 0.9259	u	NC
	Fluoranthene	< 0.0656	u	< 0.6252	u	NC
	Fluorene	0.19	J	2.8	Z	43.6
	Hexachlorobenzene	< 0.0898	u	< 0.8559	u	NC
	Hexachlorobutadiene	< 0.1284	u	< 1.2232	u	NC
	Hexachlorocyclopentadiene	< 0.1302	u	< 1.241	u	NC
	Hexachloroethane	< 0.0979	u	< 0.9325	u	NC
	Indeno(1,2,3-cd)pyrene	< 0.0889	u	< 0.8476	u	NC
	Naphthalene	0.28	v	< 1.2	u	NC
	Nitrobenzene	< 0.1175	u	4.7	Z	NC
	N-Nitrosodi-n-propylamine	< 0.1095	u	< 1.1201	u	NC
	N-Nitrosodiphenylamine	< 0.1112	u	< 1.0432	u	NC
	Pentachlorophenol	< 0.0732	u	< 1.06	u	NC
	Phenanthrene	0.39	v	< 0.6976	u	NC
	Phenol	< 0.0858	u	5.1	Z	NC
	Pyrene	< 0.0861	u	< 0.8175	u	NC
	Pyridine	< 0.0903	u	< 0.8203	u	NC
etals (mg/kg-dry)	Antimony	< 1.1611	u	< 0.8604	u	NC

	SWMU 10-25 (2-	2.5')	SWMU 10 DU	P01	
	1609B57-00	7	1609B57-02	10	RPD
Parameter	Sample Resul	lt	Field Duplica	ite	%
Arsenic	< 1.0254	u	< 0.9931	u	NC
Barium	96	v	130	v	7.5
Beryllium	0.58	v	0.69	v	4.3
Cadmium	< 0.0732	u	< 0.0709	u	NC
Chromium	7.2	v	7.7	v	1.7
Hexavalent Chromium	<0.1	u	6.1	v	NC
Cobalt	0.12	J	0.063	J	15.6
Cyanide	0.3	J	0.43	J	8.9
Iron	12000	v	13000	v	2.0
Lead	2.1	v	3.4	v	11.8
Manganese	500	v	970	v	16.0
Mercury	0.0031	J	0.0053	J	13.1
Nickel	5.7	v	6.7	v	4.0
Selenium	< 2.0993	u	< 2.0332	u	NC
Silver	< 0.0722	u	< 0.07	u	NC
Vanadium	15	v	17	v	3.1
Zinc	11	v	16	v	9.3

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/kg-dry = micrograms per kilogram dry

mg/kg-dry = milligrams per kilogram

bold value = Field Duplicate RPD Outlier

		SWMU 10-15-GW	SWMU 10 DUP01GW	RPD
	Parameter	Sample Result	Field Duplicate	(%)
TPH (mg/l):	Gasoline Range Organics (GRO)	0.78	0.73	1.7
	Diesel Range Organics (DRO)	1	1.1	2.4
	Motor Oil Range Organics (MRO)	5 U	5 U	NC
VOCs (ug/l)	1,1,1,2-Tetrachloroethane	0.22094 U	0.11047 U	NC
	1,1,1-Trichloroethane	0.15544 U	0.07772 U	NC
	1,1,2,2-Tetrachloroethane	0.35915 U	0.17957 U	NC
	1,1,2-Trichloroethane	0.15763 U	0.07881 U	NC
	1,1-Dichloroethane	0.8 U	0.4 U	NC
	1,1-Dichloroethene	0.19865 U	0.09932 U	NC
	1,1-Dichloropropene	0.23043 U	0.11521 U	NC
	1,2,3-Trichlorobenzene	0.53278 U	0.26639 U	NC
	1,2,3-Trichloropropane	0.31673 U	0.15836 U	NC
	1,2,4-Trichlorobenzene	0.56547 U	0.28273 U	NC
	1,2,4-Trimethylbenzene	0.31893 U	0.15946 U	NC
	1,2-Dibromo-3-chloropropane	0.27209 U	0.13604 U	NC
	1,2-Dibromoethane (EDB)	0.26750 U	0.13375 U	NC
	1,2-Dichlorobenzene	0.23661 U	0.11831 U	NC
	1,2-Dichloroethane (EDC)	0.35297 U	0.17648 U	NC
	1,2-Dichloropropane	0.30239 U	0.17048 0 0.15119 U	NC
	1,3,5-Trimethylbenzene	0.30239 U 0.24576 U	0.12288 U	NC
	1,3-Dichlorobenzene	0.18698 U	0.09349 U	NC
	1,3-Dichloropropane	0.18698 U 0.34440 U	0.17220 U	NC
	1,4-Dichlorobenzene	0.34440 U 0.33168 U	0.16584 U	NC
	-	1.07678 U		NC
	1-Methylnaphthalene		0.53839 U	NC
	2,2-Dichloropropane	0.30330 U	0.15165 U	
	Benzene	0.51 J	0.4 J	6.0
	2-Butanone	2.9 J	2.9 J	0.0
	2-Chlorotoluene	0.15813 U	0.07906 U	NC
	2-Hexanone	0.95322 U	0.47661 U	NC
	2-Methylnaphthalene	1.18893 U	0.59446 U	NC
	4-Chlorotoluene	0.29868 U	0.14934 U	NC
	4-Isopropyltoluene	0.37722 U	0.18861 U	NC
	4-Methyl-2-pentanone	0.51323 U	0.25661 U	NC
	Acetone	9.7 J	16	12.3
	Bromobenzene	0.21555 U	0.10777 U	NC
	Bromodichloromethane	0.17935 U	0.08968 U	NC
	Bromoform	0.32470 U	0.16235 U	NC
	Bromomethane	2.32245 U	1.16123 U	NC
	Carbon disulfide	1.34646 U	0.67323 U	NC
	Carbon Tetrachloride	0.15607 U	0.07803 U	NC
	Chlorobenzene	0.18680 U	0.09340 U	NC
	Chloroethane	0.20937 U	0.10468 U	NC
	Chloroform	0.42972 U	0.21486 U	NC
	Chloromethane	0.34737 U	0.17368 U	NC
	cis-1,2-DCE	0.16120 U	0.08060 U	NC
	cis-1,3-Dichloropropene	0.26617 U	0.13308 U	NC
	Dibromochloromethane	0.19361 U	0.09681 U	NC
	Dibromomethane	0.46872 U	0.23436 U	NC
	Dichlorodifluoromethane	1.38481 U	0.69241 U	NC
	Ethylbenzene	0.20214 U	0.10107 U	NC
	Hexachlorobutadiene	0.50280 U	0.25140 U	NC
	Isopropylbenzene	0.30395 U	0.15197 U	NC
	Methyl tert-butyl ether (MTBE)	150	150	0.0
	Methylene Chloride	0.72072 U	0.36036 U	NC
	Naphthalene	0.43587 U	0.21793 U	NC
	n-Butylbenzene	0.49093 U	0.24546 U	NC
	n-Propylbenzene	0.49093 U 0.32634 U	0.16317 U	NC
	sec-Butylbenzene	0 /5720 11	0 22860 11	NC
	sec-Butylbenzene	0.45720 U	0.22860 U	NC
	sec-Butylbenzene Styrene tert-Butylbenzene	0.45720 U 0.21131 U 0.25893 U	0.22860 U 0.10566 U 0.12947 U	NC NC NC

		SWMU 10-15-GW	SWMU 10 DUP01GW	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	Toluene	0.21693 U	0.10847 U	NC
	trans-1,2-DCE	0.18810 U	0.09405 U	NC
	trans-1,3-Dichloropropene	0.22617 U	0.11309 U	NC
	Trichloroethene (TCE)	0.32669 U	0.16334 U	NC
	Trichlorofluoromethane	0.25403 U	0.12701 U	NC
	Vinyl chloride	0.25082 U	0.12541 U	NC
	Xylenes, Total	0.56497 U	0.28248 U	NC
SVOCs (mg/kg-dry):	1,2,4-Trichlorobenzene	1.99336 U	1.99336 U	NC
	1,2-Dichlorobenzene	1.89877 U	1.89877 U	NC
	1,3-Dichlorobenzene	1.69038 U	1.69038 U	NC
	1,4-Dichlorobenzene	1.23419 U	1.23419 U	NC
	1-Methylnaphthalene	1.80147 U	1.80147 U	NC
	2,4,5-Trichlorophenol	1.61671 U	1.61671 U	NC
	2,4,6-Trichlorophenol	1.25834 U	1.25834 U	NC
	2,4-Dichlorophenol	1.39496 U	1.39496 U	NC
	2,4-Dimethylphenol	1.85381 U	1.85381 U	NC
	2,4-Dinitrophenol	1.06974 U	1.06974 U	NC
	2.4-Dinitrotoluene	1.43393 U	1.43393 U	NC
	2,6-Dinitrotoluene	1.49035 U	1.49035 U	NC
	2-Chloronaphthalene	1.71573 U	1.71573 U	NC
	2-Chlorophenol	1.20402 U	1.20402 U	NC
	2-Methylnaphthalene	2.24599 U	2.24599 U	NC
	2-Methylphenol	1.24572 U	1.24572 U	NC
	2-Nitroaniline	1.79467 U	1.79467 U	NC
	2-Nitrophenol	1.23136 U	1.23136 U	NC
	3,3 ⁻ Dichlorobenzidine	2.60844 U	2.60844 U	NC
	3+4-Methylphenol	1.47532 U	1.47532 U	NC
		1.47532 U 1.47977 U		NC
	3-Nitroaniline	1.47977 U 1.36786 U	1.47977 U	NC
	4,6-Dinitro-2-methylphenol		1.36786 U	
	4-Bromophenyl phenyl ether	1.40872 U	1.40872 U	NC
	4-Chloro-3-methylphenol	1.35070 U	1.35070 U	NC
	4-Chloroaniline	1.87394 U	1.87394 U	NC
	4-Chlorophenyl phenyl ether	2.01318 U	2.01318 U	NC
	4-Nitroaniline	1.24171 U	1.24171 U	NC
	4-Nitrophenol	1.40498 U	1.40498 U	NC
	Acenaphthene	1.88470 U	1.88470 U	NC
	Acenaphthylene	1.86589 U	1.86589 U	NC
	Aniline	1.54599 U	1.54599 U	NC
	Anthracene	1.60486 U	1.60486 U	NC
	Azobenzene	2.00531 U	2.00531 U	NC
	Benz(a)anthracene	2.50627 U	2.50627 U	NC
	Benzo(a)pyrene	2.72398 U	2.72398 U	NC
	Benzo(b)fluoranthene	2.40284 U	2.40284 U	NC
	Benzo(g,h,i)perylene	3.12517 U	3.12517 U	NC
	Benzo(k)fluoranthene	2.51488 U	2.51488 U	NC
	Benzoic acid	1.02557 U	1.02557 U	NC
	Benzyl alcohol	1.17187 U	1.17187 U	NC
	Bis(2-chloroethoxy)methane	1.80486 U	1.80486 U	NC
	Bis(2-chloroethyl)ether	1.77363 U	1.77363 U	NC
	Bis(2-chloroisopropyl)ether	2.05946 U	2.05946 U	NC
	Bis(2-ethylhexyl)phthalate	3.32558 U	3.32558 U	NC
	Butyl benzyl phthalate	2.37012 U	2.37012 U	NC
	Carbazole	1.49023 U	1.49023 U	NC
	Chrysene	2.15442 U	2.15442 U	NC
	Dibenz(a,h)anthracene	3.26832 U	3.26832 U	NC
	Dibenzofuran	1.90194 U	1.90194 U	NC
	Diethyl phthalate	1.67338 U	1.67338 U	NC
	Dimethyl phthalate	1.99487 U	1.99487 U	NC
	Di-n-butyl phthalate	2.10312 U	2.10312 U	NC
	Di-n-octyl phthalate	1.93926 U	1.93926 U	NC

		SWMU 10-15-GW	SWMU 10 DUP01GW	RPD
	Parameter	Sample Result	Field Duplicate	(%)
	Fluorene	1.67191 U	1.67191 U	NC
	Hexachlorobenzene	2.02231 U	2.02231 U	NC
	Hexachlorobutadiene	1.94908 U	1.94908 U	NC
	Hexachlorocyclopentadiene	1.47091 U	1.47091 U	NC
	Hexachloroethane	1.61223 U	1.61223 U	NC
	Indeno(1,2,3-cd)pyrene	2.45952 U	2.45952 U	NC
	Isophorone	1.95246 U	1.95246 U	NC
	Naphthalene	1.83350 U	1.83350 U	NC
	Nitrobenzene	1.49388 U	1.49388 U	NC
	N-Nitrosodimethylamine	1.41684 U	1.41684 U	NC
	N-Nitrosodi-n-propylamine	2.03650 U	2.03650 U	NC
	N-Nitrosodiphenylamine	2.46700 U	2.46700 U	NC
	Pentachlorophenol	1.13741 U	1.13741 U	NC
	Phenanthrene	1.99666 U	1.99666 U	NC
	Phenol	1.08528 U	1.08528 U	NC
	Pyrene	2.31812 U	2.31812 U	NC
	Pyridine	1.67388 U	1.67388 U	NC
Vater Quality (mg/l)	Chloride	2300	2400	1.1
valer Quality (mg/l)	Fluoride	0.55	0.55	0.0
	Sulfate	440		
Neesland Metals (mar /l);		0.001429741 U	470 0.001 U	1.6 NC
Dissolved Metals (mg/l):	Antimony (d)			
	Arsenic (d)	0.011 J	0.011 J	0.0
	Barium (d)	0.22	0.22	0.0
	Beryllium (d)	0.000312692 U	0.00033 J	NC
	Cadmium (d)	0.000966229 U	0.001 U	NC
	Chromium (d)	0.0094	0.0094	0.0
	Cobalt (d)	0.023	0.023	0.0
	Iron (d)	0.61	2.2	28.3
	Lead (d)	0.0026 J	0.0039 J	10.0
	Manganese (d)	2.4	2.5	1.0
	Nickel (d)	0.65	0.66	0.4
	Selenium (d)	0.02	0.023	3.5
	Silver (d)	0.00121688 U	0.001 U	NC
	Vanadium (d)	0.0057 J	0.0076 J	7.1
	Zinc	0.15	0.036	30.6
otal Metals (mg/l):	Antimony	0.00215761 U	0.002 U	NC
	Arsenic	0.012	0.012	0.0
	Barium	0.37	0.31	4.4
	Beryllium	0.0015 J	0.0014 J	1.7
	Cadmium	0.000966229 U	0.001 U	NC
	Chromium	0.0062	0.0059 J	1.2
	Chromium, Hexavalent	0.0005 U	0.00061	NC
	Cobalt	0.025	0.025	0.0
	Cyanide	0.055	0.051	1.9
	Iron	9.4	7.4	6.0
	Lead	0.014	0.012	3.8
	Manganese	2.9	3	0.8
	Mercury	0.0000589 U	0.0000589 U	NC
	Nickel	0.64	0.65	0.4
		0.019	0.022	3.7
	ISelenium	0.01.7		
	Selenium Silver	0.002112456 U	0.022 0.002 U	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects

ug/I = micrograms per liter

mg/l = milligrams per liter

bold value = Field Duplicate RPD Outlier

	Parameter	Total Number of Results	Usable Results	Percent Technical Compliance
TPH :	Diesel Range Organics (DRO)	100	100	100
	Motor Oil Range Organics (MRO)	100	100	100
	Gasoline Range Organics (GRO)	100	100	100
VOCs:	All VOC Analytes	111	111	100
SVOCs:	All SVOC Analytes	100	100	100
Metals (total):	Antimony	98	98	100
	Arsenic	98	98	100
	Barium	98	98	100
	Beryllium	98	98	100
	Cadmium	98	98	100
	Chromium	98	98	100
	Cobalt	98	98	100
	Cyanide	98	98	100
	Hexavalent Chromium	98	98	100
	Iron	98	98	100
	Lead	98	98	100
	Manganese	98	98	100
	Mercury	98	98	100
	Nickel	98	98	100
	Selenium	98	98	100
	Silver	98	98	100
	Vanadium	98	98	100
	Zinc	98	98	100
Metals (mg/l dissolved):	Antimony	10	10	100
	Arsenic	10	10	100
	Barium	10	10	100
	Beryllium	10	10	100
	Cadmium	10	10	100
	Chromium	10	10	100
	Cobalt	10	10	100
	Iron	10	10	100
	Lead	10	10	100
	Manganese	10	10	100
	Nickel	10	10	100
	Selenium	10	10	100
	Silver	10	10	100
	Vanadium	10	10	100
	Zinc	10	10	100
Water Quality (mg/l)	Chloride	10	10	100
	Fluoride	10	10	100
	Sulfate	10	10	100

Notes: Number of samples used in completeness calculations includes soil samples, groundwater samples, soil and groundwater field duplicates, equipment rinsate, and field blanks. Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

Page 81 of 81

Appendix F Historical Analyses

2	
BLE	
IA	

•

-

Ciniza Refinery Metals Results for Wastewater samples Taken During July and August,1980. Ç.

API Separator Overflow 7/23/80 0830 hrs.		0.015	0.105	100.0>	1.2	100.0>	0.024	0.005
API Sepatrator Overflow 7/19/80 1300 hrs.	0 000			100.0>	0.64	<0.001	0.018	0.012
API Separator Overflow 7/17/80 1330 hrs.	0.004	0.22	22.0	T00.00	16.0	<0.001	0.015	0.006
Cooling Water Tower Blowdown 7/23/80 0830 hrs.	0.013	0.022	<0.001	r	- T.S.	0.001	0.025	0.010
Pond 3 Inlet /Softener Waste 8/11/80 1000 hrs.	160.0	0,068	<0.001	0.076		100.04	/ 60*0	0.002
New Well Raw Water 7/23/80 0830 hrs.	0.003	0.014	<0.001	<0.001	<0.001	100.0>	100.05	
Metal	Arsenic	Barium	Cadmíum	Chromium	Lead	Selenium	Silver	

мытате 505/982-9841 очторетате 800/545-2180 [А]] # 84-03-404	Mq/liter 0.01 0.4 0.01 0.036 0.01 0.01
Controls for Environmental Pollution, Inc. P.O. BOX 5351 • Santa Fe. New Mexico B7502 REPORT OF ANALYSIS	TYPE GF ANALYSIS Silver Arsenic Barium Chromium
Controls for Environmental Pollu P.O. BOX 5351 • Santa Fe. New Mexico 87502 REPORT OF ANA	DATE COLLECTED
	Seperator Sludge

Appendix G Site-Specific Dilution/Attenuation Factor Calculations

Calculation of Site-Specific Dilution/Attenuation Factor (DAF)

The DAF value was calculated using equation 33 from NMED's *Risk Assessment Guidance for Site Investigations and Remediation (July, 2015).*

$$DAF = 1 + \left(\frac{K * i * D}{I * L}\right) \qquad DAF = 1 + \left(\frac{38.96 * 0.027 * 10.58}{0.000242 * 100}\right) = 295$$

Where:

$$D = (0.0112*L^2)^{0.5} + D_a \left(1 - \exp\left[\frac{-L*I}{K*i*D_a}\right] \right)$$
$$D = (0.0112*100^2)^{0.5} + 12.5 \left(1 - \exp\left[\frac{-100*0.000242}{28.06*0.027*12.5}\right] \right) = 10.58 \text{ m}$$

K = Aquifer hydraulic conductivity (m/yr)

i = Hydraulic gradient (m/m)

D = Mixing zone depth (m)

I = Infiltration rate (m/yr)

L= Source length parallel to ground water flow (m)

D_a= Aquifer thickness (m)

Derivation of site-specific values:

K = 38.96 m/yr as determined from a slug test at well MW-1(completed in Sonsela Sandstone aquifer) and originally presented in Appendix C of the Discharge Plan Application for Giant Refining Company, Ciniza Refinery, dated November 21, 1985.

i = 0.013 m/m as measured during Fall 2015 ground water sampling event (potentiometric surface map of Sonsela aquifer attached)

D = 10.58 m [lower of aquifer thickness (12.5 m measured at nearest well that penetrates Sonsela aquifer – OW-12) or calculated mixing zone depth (10.58m)]

I = 0.000182 m/yr derivation using EPA's HELP model as described below

 $L = 100 \text{ m} - \text{conservative source area length measured across Aeration Basin and surrounding soils with potential impact$

D_a= 12.5 m - saturated thickness measured at nearest well that penetrates Sonsela aquifer – OW-12 during August 2015 ground water sampling event

Calculation of Infiltration Rate

Pursuant to EPA's Soil Screening Guidance: User's Guide (Second Edition, July 1996), infiltration rates can be calculated either of two ways: (1) assume that infiltration rate is

equivalent to recharge, or (2) use the EPA HELP model to estimate infiltration. Because the Gallup site is located in an area with low annual rainfall rates and high potential evapotranspiration rates, method 1 is not representative of site conditions. That is to say that it is unreasonable to assume that infiltration is equal to recharge.

EPA's HELP model was used to calculate the site-specific infiltration rate. Site-specific meteorological data was obtained from the Western Regional Climate Center and New Mexico State University, which operates a nearby weather station (Thoreau 5 ENE) as part of the NWS Cooperator Climate Stations. The weather station is located east northeast of Thoreau, New Mexico on HWY 371 and is approximately 16 miles south southeast of the Gallup Refinery.

Data obtained from the Thoreau 5 ENE station includes mean monthly temperature and average monthly precipitation. The average wind speed (11.3 km/hr) was obtained from the Western Regional Climate Center, as measured at the Gallup, NM airport. Daily solar radiation and quarterly relative humidity values were based on measurements from Albuquerque, NM. This data was obtained from the National Oceanic and Atmospheric Administration (NOAA) and is included in the HELP model's Weather Generator module. A review of the monthly average weather conditions (temperature and precipitation) at Gallup and Albuquerque as shown in the table below indicates very similar conditions such that use of quarterly relative humidity and solar radiation from Albuquerque should be sufficient to estimate conditions at the Western Refining Gallup Refinery. The quarterly relative humidity values used are 48%, 30%, 45%, and 50% for the first, second, third, and fourth quarters, respectively.

The HELP model soil profile was constructed with two layers. The Sonsela Aquifer is considered to be the uppermost aquifer in the area (reference the May 2000 RCRA Post-Closure Care Part B Permit Application). The upper layer (Layer 1.1) represents the unconsolidated deposits that overlie the Chinle Group (Petrified Forest Formation) bedrock. Based on the soil borings logs prepared from the recent investigation of SWMU 10, the predominant lithology in this upper layer is silty clay and clay, with lesser amounts of sandy clay. There are relatively thin (several feet thick) discontinuous layers of clayey sand and sand. The soil type chosen in the model was loam with an average thickness of 3 meters. Loam would normally be expected contain a higher percentage of silt and sand than observed in the most of the soil borings and is considered to be a conservative estimate of actual field conditions.

The land surface was assumed to have a poor stand of grass, which is more conservative than the other possible option of bare soil. The slope of the land surface was calculated to be 4.0 % based on surveyed elevations across the extent of SWMU 10. Based on the selected soil type (loam) the model default value for porosity is 0.463, field capacity is 0.232, wilting point is 0.116, and saturated hydraulic conductivity is 3.7E-4 cm/sec. These model default vales are taken from the US Department of Agriculture. Soil permeability tests conducted on soil samples collected beneath the nearby Land Treatment Unit indicated a permeability of 1.9E-5 cm/sec, thus the model default hydraulic conductivity of 3.7E-4 cm/sec is a conservative estimate (see attached page 2 of Appendix C from RCRA Post-Closure Care Permit Application).

The second layer (Layer 1.2) in the model represents the upper portion of the Chinle Group (i.e., Petrified Forest Formation), which overlies the Sonsela Aquifer. This upper portion of the Chinle Group consists of mudstone/claystone. The default soil type from

the HELP model chosen to represent the upper Chinle Group was moderately compacted clay. The model default value for porosity is 0.456, field capacity is 0.419, and wilting point is 0.332. The default porosity value of 0.456 is not believed to be representative of the claystone bedrock, thus a literature search was conducted to find more appropriate values. An average porosity of 0.165 was identified for the Jurassic Morrison Formation (claystone) at Long Park, Colorado (USDI, 1963). A site-specific hydraulic conductivity was used to be more representative of actual site conditions that the program default value. Yield tests, including slug tests and pumping tests have been performed at the refinery to estimate the hydraulic conductivity of the upper portion of the Chinle Group (see attached documentation). A slug test performed on July 3, 1984 in well OW-4 indicated a hydraulic conductivity of 4.0E-7 cm/sec. A pump test was performed in well OW-24 on February 20, 1985 and it yielded a hydraulic conductivity of 2.5E-7 cm/sec. The higher of these two conductivity values (4.0E-7 cm/sec) was utilized as a site-specific hydraulic conductivity for the lower layer (i.e., Chinle Group mudstone/sandstone). The thickness of this layer was estimated at 24.4 meters from boing log for OW-12.

Using the model's synthetic weather generator and the aforementioned inputs, the model was run for a 40 year period to simulate potential infiltration (percolation or leakage through Layer 1.2). The model output is enclosed, showing the annual values. Over the modeled 40 year period, the average annual infiltration was 0.000182 meters/year. This average annual infiltration was used in the aforementioned calculation of the site-specific DAF value.

References

USDI, 1963, Porosity and Bulk Density of Sedimentary Rocks, United States Department of the Interior, Geological Survey Bulletin 1144-E, p.55.

Project : SWMU 10

Location Specific Infiltration Rates

Model : HELP An US EPA model for predicting landfill hydrologic processes and testing of effectiveness of landfill designs

Author : Your title Scott Crouch

Client : Title Ed Riege

Location : Albuquerque

11/11/2016

1. Profile. EPA profile1

Model Settings

[HELP] Case Settings

Parameter	Value	Units
Runoff Method	Model calculated	(-)
Initial Moisture Settings	Model calculated	(-)

[HELP] Surface Water Settings

Parameter	Value	Units	
Runoff Area	100	(%%)	
Vegetation Class	Poor stand of grass	(-)	

Profile Structure

Layer	Top (m)	Bottom (m)	Thickness (m)
Alluvium	0.0000	-3.0000	3.0000
Chinle Bedrock	-2.9995	-27.4000	24.4005

1.1. Layer. Alluvium

Top Slope Length: 100.0000 Bottom Slope Length: 0.0000 Top Slope: 4.0000 Bottom Slope : 0.0000

[HELP] Vertical Perc. Layer Parameters

Parameter	Value	Units
total porosity	0.463	(vol/vol)
field capacity	0.232	(vol/vol)
wilting point	0.116	(vol/vol)
sat.hydr.conductivity	3.7E-4	(cm/sec)
subsurface inflow	0	(mm/year)

1.2. Layer. Chinle Bedrock

Top Slope Length: 0.0000 Bottom Slope Length: 0.0000 Top Slope: 0.0000 Bottom Slope : 0.0000

[HELP] Barrier Soil Liner Parameters

Parameter	Value	Units
total porosity	0.165	(vol/vol)
field capacity	0.419	(vol/vol)
wilting point	0.332	(vol/vol)
sat.hydr.conductivity	4.0E-7	(cm/sec)
subsurface inflow	0	(mm/year)

Annual Totals rate (m)

	Precipitation (m)	Runoff (m)	Evapotranspiration	Change in water
--	-------------------	------------	--------------------	-----------------

			(m)	storage (m)
Year-1 (m)	1.9660E-01	0.0000E+00	1.9677E-01	-1.7350E-04
Year-2 (m)	3.0180E-01	9.1537E-04	3.0657E-01	-5.7573E-03
Year-3 (m)	2.3510E-01	0.0000E+00	2.4060E-01	-5.7839E-03
Year-4 (m)	2.3000E-01	2.5366E-03	2.3451E-01	-7.1001E-03
Year-5 (m)	2.5270E-01	0.0000E+00	2.4301E-01	9.6812E-03
Year-6 (m)	1.5870E-01	5.4743E-06	1.4507E-01	1.3598E-02
Year-7 (m)	1.8420E-01	0.0000E+00	1.8756E-01	-3.4412E-03
Year-8 (m)	2.5770E-01	1.2916E-05	2.4903E-01	8.6291E-03
Year-9 (m)	1.9170E-01	6.6953E-04	2.1089E-01	-1.9862E-02
Year-10 (m)	2.2820E-01	1.2865E-03	2.1390E-01	1.2470E-02
Year-11 (m)	2.3680E-01	1.5046E-03	2.5558E-01	-2.5677E-02
Year-12 (m)	2.5940E-01	4.5220E-06	2.4044E-01	1.8948E-02
Year-13 (m)	1.8440E-01	1.1864E-05	1.9941E-01	-1.5097E-02
Year-14 (m)	1.5860E-01	0.0000E+00	1.5141E-01	7.1785E-03
Year-15 (m)	2.4990E-01	0.0000E+00	2.5856E-01	-8.6762E-03
Year-16 (m)	1.6700E-01	0.0000E+00	1.5472E-01	1.2275E-02
Year-17 (m)	1.3040E-01	0.0000E+00	1.1903E-01	1.1365E-02
Year-18 (m)	1.5020E-01	0.0000E+00	1.6500E-01	-1.4840E-02
Year-19 (m)	2.0530E-01	0.0000E+00	1.9808E-01	7.1662E-03
Year-20 (m)	1.8180E-01	2.6583E-04	1.8840E-01	-6.8733E-03
Year-21 (m)	2.3550E-01	6.9849E-06	2.2949E-01	5.9732E-03
Year-22 (m)	1.3750E-01	0.0000E+00	1.4770E-01	-1.0197E-02
Year-23 (m)	2.3340E-01	3.9462E-03	2.2872E-01	7.1646E-04
Year-24 (m)	2.2170E-01	0.0000E+00	2.2689E-01	-5.1976E-03
Year-25 (m)	1.4510E-01	5.4743E-06	1.3219E-01	1.2899E-02
Year-26 (m)	2.0130E-01	1.1479E-03	1.8065E-01	1.9493E-02
Year-27 (m)	2.3200E-01	0.0000E+00	2.2765E-01	4.3452E-03
Year-28 (m)	1.9260E-01	0.0000E+00	2.1651E-01	-2.3992E-02
Year-29 (m)	2.3390E-01	1.2639E-06	2.3704E-01	-3.1509E-03
Year-30 (m)	1.8890E-01	0.0000E+00	1.9277E-01	-3.8754E-03
Year-31 (m)	2.4520E-01	1.2662E-04	2.3575E-01	9.3052E-03
Year-32 (m)	2.2790E-01	0.0000E+00	2.2550E-01	2.3827E-03
Year-33 (m)	3.1730E-01	5.2643E-03	3.1169E-01	2.3910E-04
Year-34 (m)	2.1170E-01	0.0000E+00	2.0234E-01	9.3490E-03
Year-35 (m)	2.7430E-01	9.5079E-04	2.7840E-01	-5.0673E-03
Year-36 (m)	1.5090E-01	0.0000E+00	1.3599E-01	1.4901E-02
Year-37 (m)	2.1680E-01	1.5524E-04	2.5088E-01	-3.4290E-02
Year-38 (m)	1.7490E-01	0.0000E+00	1.6844E-01	6.4508E-03
Year-39 (m)	2.1190E-01	1.0321E-03	1.8405E-01	2.6758E-02
Year-40 (m)	1.7540E-01	0.0000E+00	1.9942E-01	-2.4131E-02
Total (m)	8.3887E+00	1.9850E-02	8.3706E+00	-9.0586E-03

(continued)

	Water budget balance (m)	Percolation or leakance through Layer 2 (m)	Average head on top of Layer 2 (m)
Year-1 (m)	-2.9526E-09	5.2603E-06	1.5356E-08
Year-2 (m)	-4.5326E-09	6.6981E-05	1.0819E-07
Year-3 (m)	-3.5308E-09	2.8523E-04	4.2733E-07
Year-4 (m)	-3.4543E-09	5.7620E-05	1.4046E-07
Year-5 (m)	-3.7952E-09	7.9856E-06	2.3292E-08
Year-6 (m)	-2.3834E-09	2.3447E-05	2.0752E-08
Year-7 (m)	-2.7664E-09	8.1705E-05	9.5470E-08
Year-8 (m)	-3.8703E-09	3.1331E-05	9.1296E-08
Year-9 (m)	-2.8790E-09	5.0396E-06	1.4646E-08
Year-10 (m)	-3.4272E-09	5.4365E-04	7.2411E-07
Year-11 (m)	-3.5564E-09	5.3959E-03	8.2432E-06
Year-12 (m)	-3.8958E-09	1.1126E-05	2.9653E-08
Year-13 (m)	-2.7694E-09	7.7901E-05	1.6158E-07
Year-14 (m)	-2.3819E-09	1.0173E-05	1.4647E-08
Year-15 (m)	-3.7531E-09	1.8462E-05	5.4615E-08
Year-16 (m)	-2.5081E-09	6.0052E-06	1.7436E-08
Year-17 (m)	-1.9584E-09	1.9551E-06	5.6773E-09
Year-18 (m)	-2.2558E-09	4.1669E-05	9.2553E-08
Year-19 (m)	-3.0833E-09	5.3926E-05	3.3493E-08
Year-20 (m)	-2.7304E-09	8.4890E-06	2.4744E-08
Year-21 (m)	-3.5369E-09	2.8949E-05	6.4945E-08
Year-22 (m)	-2.0650E-09	2.4329E-06	7.0344E-09

Year-23 (m)	-3,5053E-09	1.8935E-05	5.4598E-08
Year-24 (m)	-3.3296E-09	6.2363E-06	1.8079E-08
Year-25 (m)	-2.1792E-09	1.6165E-06	4.8035E-09
Year-26 (m)	-3.0232E-09	5.5487E-06	1.6342E-08
Year-27 (m)	-3.4843E-09	4.4125E-06	1.3844E-08
Year-28 (m)	-2.8926E-09	8.3842E-05	1.3650E-07
Year-29 (m)	-3.5128E-09	1.1656E-05	3.0979E-08
Year-30 (m)	-2.8370E-09	7.6141E-06	2.2408E-08
Year-31 (m)	-3.6825E-09	1.7414E-05	3.8111E-08
Year-32 (m)	-3.4227E-09	1.5151E-05	4.4395E-08
Year-33 (m)	-4.7654E-09	1.0183E-04	1.6100E-07
Year-34 (m)	-3.1794E-09	6.1061E-06	1.8312E-08
Year-35 (m)	-4.1196E-09	1.5303E-05	4.4619E-08
Year-36 (m)	-2.2663E-09	4.3212E-06	8.5338E-09
Year-37 (m)	-3.2560E-09	5.0865E-05	1.0231E-07
Year-38 (m)	-2.6267E-09	1.0114E-05	2.9412E-08
Year-39 (m)	-3.1824E-09	5.6373E-05	9.4730E-08
Year-40 (m)	-2.6342E-09	1.0777E-04	2.2750E-07
Total (m)	-1.2599E-07	7.2903E-03	7.2903E-06
		â	

7.2803 F-03 Moteur 7.2803 F-03 Moteur 40 yrs = 1.82 E-05 Meters/ 40 yrs

ALBUQUERQUE WSFO AIRPOR, NEW MEXICO (290234)

Period of Record Monthly Climate Summary

Period of Record : 1/ 1/1914 to 12/31/2005

ual	6.69	43.1	8.67	9.6	0			
Annual					0			
Dec	47.7	24.4	0.46					
Nov	56.9	31.4	0.46	1.0	0			
Oct N	71.0	44.0	0.88	0.1	0			
	82.4	56.0	0.96	0.0	0			
Sep		62.9 5	1.46 (0.0	0			
Aug	88.9			0				
	91.7	64.6	1.38	0.0	0	. 80 1%		
Jul	89.3	59.2	0.61	0.0	0	Denth	mdoor ,	.000
Jun	4 8	1		0	0	Snow	would u	ipicici
May Jun	79.4	50.1	0.63	0.0		80.1%	• • • • • • • • • • • • • • • • • • •	tia cuit
	70.0	40.8	0.54	0.6	0	nourfall-	Lowial	inout de
Mar Apr	60.6	33.0	0.52	1.6	0	6 60% Sr	0.0.0/0.0	uetall a
Mar	53.2	27.8	0.40		0	cord.	autom 2	or more
Feb					<u> </u>	od of re	ndroat.	DILCS IN
Jan	47.2	23.4	0.37	2.3	C	or peric	71.270 Г	lata grai
Ĺ	Average Max. Temperature (F)	Average Min. Temperature (F)	Average Total Precipitation (in.)	Average Total SnowFall (in.)	Average Snow Depth (in.)	Percent of possible observations for period of record.	Max. lemp.: 91.2% Mun. Jemp.: 5	Check Station Metadata or Metadata graphics for more usual about usia comprehension

THOREAU 5 ENE, NEW MEXICO (298830)

Period of Record Monthly Climate Summary

Period of Record : 1/ 1/1930 to 11/30/1992

	lon	Цећ	Feh Mar		Anr	Mav Jun		Jul	Aug Sep	S	O d	Oct	Nov I	Dec	Annual
		3		1	000	7.7	Q2 1	×	85 5 87 3	87 3	76.6		66.8 53.4 44.9 64.5	44.9	64.5
Average Max. Temperature (F)	43.2		ں	<u>5</u> .0	0.00	0.71		о Т.			0.00		1		0
A manufacture framework (F)	186		71.9 2	26.5	32.3	40.7	49.8	.8 5	55.8	53.8	47.4	37.2	26.5	19.8	35.9
Average MIII. Jeniperature (r.)										91 C		0.88	0.50	0.65	10.71
Average Total Precipitation (in.)	0.64	-	0.61 0	0.68	0.45	8C.U			1.12	7.10		00.0		2	
Woldge tout a testpringer ()				c l	+	¥ C			0.0	0.0	0 0	1	3.1	8.1	33.3
Average Total SnowFall (in.)	8.3		0.0	U.	1.1				~~~		2			•	<
	,		¢	0	0	0		C	C	С	0	0	0	Γ	0
Average Snow Depth (in.)			0	0	>	>	_	>	>	b					
Percent of possible observations for period	for peric	od of rec	of record.				1	•	Ì						
Max. Temp.: 46.1% Min. Temp.: 46.1% Precipitation: 68.4% Snowfall: 61.8% Snow Depth: 61.8%	46.1% I	recipita	tion: 68	.4% S	nowfall:	61.8%	Snow L)epth: 6	1.8%						
Check Station Metadata or Metadata graphics for more detail about data completeness.	data gra	phics fo	r more (letail a	ıbout da	ta com	oletenes	s.							

Western Regional Climate Center, <u>wrcc@dri.edu</u>

THOREAU 5 ENE, NEW MEXICO

Station Metadata

From NCDC Station Historical Listing for NWS Cooperative Network ObsTyp: t-Temperature-1, p-Daily precip-2, w-(blank), s-(blank), e-Evap-5 h-Hourly precip - 6 0.01" Universal, or - 7 0.10" Fisher-Porter U - Observed, but beginning date is uncertain

Count	Number (Coop)	Station Name (From NCDC listing)	0		ObsTyp t p w s e = = = = =	
1050 1051		THOREAU 6 ENE THOREAU 6 ENE	 10808 10809	 		63 01 88 04
1052		THOREAU 5 ENE	10809			7 99 99

Statistics by element

(From WRCC data archives) Last Compiled on Apr.23, 2009. Dates are format of YYYYMMDD. Numbers are total Number of observations PRECP SNWFL SNWDP TMAX TMIN TOBS EVAP WNDM STATION **START** END 19300101 19921130 15723 14204 14192 10584 10584 10580 0 0 298830 STATION - NCDC COOP Station number START - First Date in record END - Last Date in record (when last compiled) **PRECP** - Precipitation SNWFL - Snowfall SNWDP - Snow depth TMAX - Daily Max. Temperature TMIN - Daily Min. Temperature **TOBS** - Temperature at Observation time **EVAP** - Evaporation WNDMV - Wind Movement

Statistics by observation

(From WRCC data archives)

Last Compiled on Apr.23, 2009.

Dates are format of YYYYMMDD. Numbers represent one day and one day is considered present if

Average Wind Speeds - MPH

Average wind speeds are based on the hourly data from 1996-2006 from automated stations at reporting airports (ASOS) unless otherwise noted.

For more information click here on Western States, Alaska or Hawaii and Pacific Islands

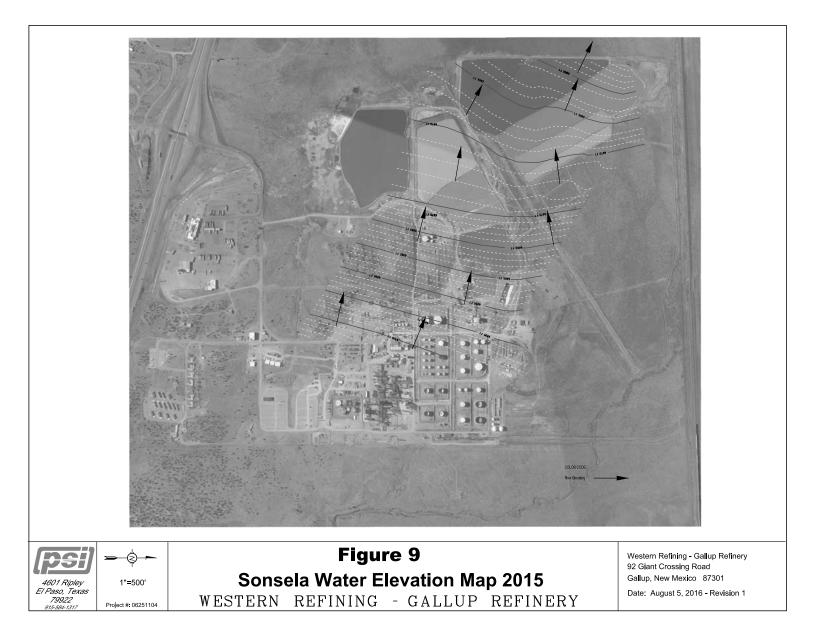
Arizona California Colorado Hawaii Idaho Montana Nevada New Mexico Oregon Utah Washington Wyoming

MONTANA

AVERAGE WIND SPEED - MPH

STATION	ID Years	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	I	Ann
BAKER AIRPORT ASOS	KBHK 1998-2006	10.4	10.5	12.2	12.5	12.7	11.7	10.7	10.8	10.0	10.3	10.5	10.7	I	11.1
BILLINGS-LOGAN AP ASOS	KBIL 1996-2006	12.8	12.2	11.0	10.5	10.4	10.0	9.3	9.2	9.6	10.3	12.0	13.0	1	10.9
BOZEMAN AIRPORT ASOS	KBZN 1996-2006	4.6	5.3	6.4	7.2	7.0	6.3	6.3	6.4	6.1	5.7	4.9	4.8		5.9
BUTTE AIRPORT ASOS	KBTM 1996-2006	4.7	5.0	6.8	7.3	7.7	7.3	6.9	6.6	6.2	6.2	5.2	4.9	1	6.2
CUT BANK AIRPORT ASOS	KCTB 1996-2006	14.6	12.8	13.3	12.8	13.4	12.3	11.2	10.2	11.4	13.0	13.6	14.6	1	12.8
DILLON AIRPORT ASOS	KDLN 1997-2006	10.2	9.7	10.3	10.0	9.6	8.4	8.0	8.0	8.7	9.0	9.3	9.2		9.2
GLASGOW AIRPORT ASOS	KGGW 1996-2006	9.3	9.3	11.7	12.4	12.6	11.4	10.7	11.0	10.5	10.3	9.3	9.4	1	10.6
GLENDIVE AIRPORT AWOS	KGDV 1996-2006	9.5	9.7	10.5	11.3	11.6	10.4	9.4	9.6	9.6	10.1	9.7	10.2	1	10.1
GREAT FALLS AP ASOS	KGTF 1996-2006	13.3	12.3	11.8	11.2	11.3	10.2	9.6	9.2	10.4	11.9	13.2	13.8		11.5
GREAT FALLS-MALSTROM AF	KGFA 1996-2006	12.3	9.9	11.9	10.7	10.3	9.7	9.1	8.8	9.9	10.4	13.2	13.2	1	10.9
HAVRE AIRPORT ASOS	KHVR 1996-2006	9.9	9.6	10.7	11.0	11.6	10.6	9.8	9.5	9.8	9.8	10.6	11.0		10.3
HELENA AIRPORT ASOS	KHLN 1996-2006	5.8	6.3	7.8	8.3	8.4	8.2	7.4	6.6	6.7	6.6	5.8	6.0	l	7.0
JORDAN AIRPORT ASOS	KJDN 1996-2006	7.3	7.9	9.3	10.0	10.5	9.7	8.4	8.4	8.2	8.2	7.9	8.1	[8.6
KALISPELL AIRPORT ASOS	KGPI 1996-2006	4.1	3.8	6.0	6.7	6.6	5.7	5.2	5.0	4.6	4.2	4.0	3.2		4.9
LEWISTOWN AIRPORT ASOS	KLWT 1996-2006	10.6	9.5	10.2	9.8	9.9	9.0	7.9	8.0	8.5	9.2	10.2	10.7	1	9.5
LIVINGSTON AIRPORT ASOS	KLVM 1996-2006	19.8	17.4	16.2	14.0	13.1	11.9	11.0	11.2	12.7	14.6	18.4	20.4		15.2
MILES CITY AP ASOS	KMLS 1996-2006	8.8	9.4	10.6	11.2	11.3	10.5	9.9	9.7	9.7	9.7	9.3	9.3		9.9
MISSOULA AIRPORT ASOS	KMSO 1996-2006	3.2	3.7	5.4	6.1	6.0	6.1	5.7	5.2	4.3	3.9	3.5	3.7	1	4.7
SIDNEY AIRPORT AWOS	KSDY 1996-2006	8.9	9.0	9.5	10.2	10.4	9.0	7.7	7.9	8.2	8.8	8.7	9.4	I	9.0
WOLF POINT AIRPORT ASOS	KOLF 1998-2006	7.1	7.6	9.4	10.3	10.4	8.9	8.2	8.3	7.6	7.7	7.3	7.6	1	8.3

NEW MEXICO


7.0 miles/hr × 1kile. = 11.3 Kthy

AVERAGE WIND SPEED - MPH

STATION	ID	Years	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	I	Ann
ALAMOGORDO AIRPORT ASOS	KALM	1996-2006	5.1	6.3	7.1	7.9	7.1	6.9	6.1	5.3	5.2	5.2	5.0	5.0	1	6.0
ALAMOGORDO-HOLLOMAN AFB	KHMN	1996-2006	8.5	9.7	10.6	11.8	10.8	10.6	9.8	9.1	8.8	8.5	8.1	8.3	- İ	9.6
ALBUQUERQUE AP ASOS	KABQ	1996-2006	7.0	8.2	9.3	11.1	10.0	10.0	8.7	8.3	8.0	7.9	7.2	6.9	L	8.5
ALBUQUERQUE-DBLE EAGLE	KAEG	1999-2006	7.1	7.9	9.0	10.6	9.5	8.6	7.0	6.2	7.0	6.5	6.5	6.1	1	7.7
ARTESIA AIRPORT ASOS	KATS	1997-2006	7.8	9.1	10.1	10.9	10.2	9.9	7.8	6.9	7.6	7.8	7.6	7.4		8.5
CARLSBAD AIRPORT ASOS	KCNM	1996-2006	9.2	9.8	10.9	11.4	10.4	9.9	8.5	7.7	8.2	8.5	8.4	8.8		9.3
CLAYTON MUNI AP ASOS	KCAO	1996-2006	11.9	12.7	13.4	14.6	13.4	13.0	11.7	10.8	11.8	12.1	12.1	12.0	I	12.4
CLINES CORNERS	KCQC	1998-2006	16.2	16.1	15.7	16.9	14.6	13.5	10.6	10.1	11.8	13.3	15.0	16.0	1	14.1
CLOVIS AIRPORT AWOS	KCVN	1996-2006	12.3	12.3	13.4	13.8	12.4	11.9	9.7	8.9	9.7	10.9	11.6	12.2	1	11.6
CLOVIS-CANNON AFB	KCVS	1996-2006	12.5	12.6	13.6	13.8	12.2	12.5	10.7	10.0	10.2	11.3	11.7	12.4	- 1	12.0
DEMING AIRPORT ASOS	KDMN	1996-2006	8.7	9.7	10.9	12.0	10.6	10.1	8.9	8.1	8.4	8.2	8.5	8.1		9.3
FARMINGTON AIRPORT ASOS	KFMN	1996-2006	7.3	8.3	9.0	9.8	9.4	9.4	8.7	8.2	8.0	7.8	7.6	7.3	l	8.4
				C 0	7 0	10 0	9.0	8.8	6.9	60	6.5	6.1	5.6	F 2	1	7.0
GALLUP AIRPORT ASOS .	KGUP	1996-2006	5.7	6.9	7.8	10.0	9.0		0.9	6.0	-	0.1	5.0	5.3	1	
GALLUP AIRPORT ASOS . GRANTS-MILAN AP ASOS		1996-2006 1997-2006	7.8	8.8	9.6	10.9	10.0	9.8	8.1	7.2	7.9	8.4	8.0	7.6	1	8.7
	KGNT		7.8	8.8 11.9	9.6 12.6	10.9 13.4	10.0 12.5	9.8 12.3	8.1 11.0	7.2 10.0	7.9	8.4 10.6	8.0 10.7	7.6	 	8.7 11.4
GRANTS-MILAN AP ASOS	KGNT KHOB	1997-2006	7.8 11.3	8.8 11.9 7.5	9.6 12.6 8.8	10.9 13.4 10.1	10.0 12.5 8.7	9.8 12.3 8.2	8.1 11.0 6.8	7.2 10.0 6.0	7.9 10.2 6.2	8.4 10.6 6.1	8.0 10.7 6.4	7.6 11.1 6.0	 	8.7 11.4 7.3
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS	KGNT KHOB KLRU KLVS	1997-2006 1996-2006 2000-2006 1996-2006	7.8 11.3 6.4 10.9	8.8 11.9 7.5 12.2	9.6 12.6 8.8 12.5	10.9 13.4 10.1 14.3	10.0 12.5 8.7 12.4	9.8 12.3 8.2 11.8	8.1 11.0 6.8 10.0	7.2 10.0 6.0 9.2	7.9 10.2 6.2 10.9	8.4 10.6 6.1 10.8	8.0 10.7 6.4 11.0	7.6 11.1 6.0 10.9	 	8.7 11.4 7.3 11.4
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS LAS CRUCES AIRPORT AWOS	KGNT KHOB KLRU KLVS KLAM	1997-2006 1996-2006 2000-2006 1996-2006 2005-2006	7.8 11.3 6.4 10.9 3.9	8.8 11.9 7.5 12.2 5.7	9.6 12.6 8.8 12.5 7.5	10.9 13.4 10.1 14.3 8.1	10.0 12.5 8.7 12.4 7.1	9.8 12.3 8.2 11.8 7.3	8.1 11.0 6.8 10.0 5.3	7.2 10.0 6.0 9.2 4.8	7.9 10.2 6.2 10.9 5.7	8.4 10.6 6.1 10.8 5.1	8.0 10.7 6.4 11.0 4.4	7.6 11.1 6.0 10.9 3.2	 	8.7 11.4 7.3 11.4 5.4
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS	KGNT KHOB KLRU KLVS KLAM	1997-2006 1996-2006 2000-2006 1996-2006	7.8 11.3 6.4 10.9 3.9	8.8 11.9 7.5 12.2	9.6 12.6 8.8 12.5 7.5 10.4	10.9 13.4 10.1 14.3 8.1 12.2	10.0 12.5 8.7 12.4 7.1 10.8	9.8 12.3 8.2 11.8 7.3 10.2	8.1 11.0 6.8 10.0 5.3 8.4	7.2 10.0 6.0 9.2 4.8 8.1	7.9 10.2 6.2 10.9 5.7 8.6	8.4 10.6 6.1 10.8 5.1 9.0	8.0 10.7 6.4 11.0 4.4 8.6	7.6 11.1 6.0 10.9 3.2 8.5		8.7 11.4 7.3 11.4 5.4 9.4
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS LOS ALAMOS AP AWOS	KGNT KHOB KLRU KLVS KLAM KRTN KROW	1997-2006 1996-2006 2000-2006 1996-2006 2005-2006 1998-2006 1996-2006	7.8 11.3 6.4 10.9 3.9 8.9 7.4	8.8 11.9 7.5 12.2 5.7 9.4 8.9	9.6 12.6 8.8 12.5 7.5 10.4 9.9	10.9 13.4 10.1 14.3 8.1 12.2 11.1	10.0 12.5 8.7 12.4 7.1 10.8 10.3	9.8 12.3 8.2 11.8 7.3 10.2 10.2	8.1 11.0 6.8 10.0 5.3 8.4 8.8	7.2 10.0 6.0 9.2 4.8 8.1 7.9	7.9 10.2 6.2 10.9 5.7 8.6 8.3	8.4 10.6 6.1 10.8 5.1 9.0 8.0	8.0 10.7 6.4 11.0 4.4 8.6 7.5	7.6 11.1 6.0 10.9 3.2 8.5 7.3		8.7 11.4 7.3 11.4 5.4 9.4 8.8
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS LOS ALAMOS AP AWOS RATON AIRPORT ASOS	KGNT KHOB KLRU KLVS KLAM KRTN KROW KSRR	1997-2006 1996-2006 2000-2006 1996-2006 2005-2006 1998-2006 1996-2006 1996-2006	7.8 11.3 6.4 10.9 3.9 8.9 7.4 8.8	8.8 11.9 7.5 12.2 5.7 9.4 8.9 9.6	9.6 12.6 8.8 12.5 7.5 10.4 9.9 10.0	10.9 13.4 10.1 14.3 8.1 12.2 11.1 11.6	10.0 12.5 8.7 12.4 7.1 10.8 10.3 10.0	9.8 12.3 8.2 11.8 7.3 10.2 10.2 8.4	8.1 11.0 6.8 10.0 5.3 8.4 8.8 5.9	7.2 10.0 6.0 9.2 4.8 8.1 7.9 5.3	7.9 10.2 6.2 10.9 5.7 8.6 8.3 6.4	8.4 10.6 6.1 10.8 5.1 9.0 8.0 7.4	8.0 10.7 6.4 11.0 4.4 8.6 7.5 7.9	7.6 11.1 6.0 10.9 3.2 8.5 7.3 8.7		8.7 11.4 7.3 11.4 5.4 9.4 8.8 8.3
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS LOS ALAMOS AP AWOS RATON AIRPORT ASOS ROSWELL AIRPORT ASOS	KGNT KHOB KLRU KLVS KLAM KRTN KROW KSRR KSAF	1997-2006 1996-2006 2000-2006 1996-2006 2005-2006 1998-2006 1996-2006 1996-2006 1996-2006	7.8 11.3 6.4 10.9 3.9 8.9 7.4 8.8 8.9	8.8 11.9 7.5 12.2 5.7 9.4 8.9 9.6 9.5	9.6 12.6 8.8 12.5 7.5 10.4 9.9 10.0 9.9	10.9 13.4 10.1 14.3 8.1 12.2 11.1 11.6 11.2	10.0 12.5 8.7 12.4 7.1 10.8 10.3 10.0 10.6	9.8 12.3 8.2 11.8 7.3 10.2 10.2 8.4 10.5	8.1 11.0 6.8 10.0 5.3 8.4 8.8 5.9 9.2	7.2 10.0 6.0 9.2 4.8 8.1 7.9 5.3 8.8	7.9 10.2 6.2 10.9 5.7 8.6 8.3 6.4 8.8	8.4 10.6 6.1 10.8 5.1 9.0 8.0 7.4 9.1	8.0 10.7 6.4 11.0 4.4 8.6 7.5 7.9 8.7	7.6 11.1 6.0 10.9 3.2 8.5 7.3 8.7 8.5		8.7 11.4 7.3 11.4 5.4 9.4 8.8 8.3 9.5
GRANTS-MILAN AP ASOS HOBES AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS LOS ALAMOS AP AWOS RATON AIRPORT ASOS ROSWELL AIRPORT ASOS RUIDOSO AIRPORT AWOS SANTA FE AIRPORT ASOS SILVER CITY AP AWOS	KGNT KHOB KLRU KLVS KLAM KRTN KROW KSRR KSAF KSVC	1997-2006 1996-2006 2000-2006 1996-2006 1998-2006 1996-2006 1996-2006 1996-2006 1996-2006	7.8 11.3 6.4 10.9 3.9 8.9 7.4 8.8 8.9 8.8 8.9 8.8 8.9 8.1	8.8 11.9 7.5 12.2 5.7 9.4 8.9 9.6 9.5 8.7	9.6 12.6 8.8 12.5 7.5 10.4 9.9 10.0 9.9 9.9	10.9 13.4 10.1 14.3 8.1 12.2 11.1 11.6 11.2 10.8	10.0 12.5 8.7 12.4 7.1 10.8 10.3 10.0 10.6 10.2	9.8 12.3 8.2 11.8 7.3 10.2 10.2 8.4 10.5 9.9	8.1 11.0 6.8 10.0 5.3 8.4 8.8 5.9 9.2 8.5	7.2 10.0 6.0 9.2 4.8 8.1 7.9 5.3 8.8 7.2	7.9 10.2 6.2 10.9 5.7 8.6 8.3 6.4 8.8 6.9	8.4 10.6 6.1 10.8 5.1 9.0 8.0 7.4 9.1 7.6	8.0 10.7 6.4 11.0 4.4 8.6 7.5 7.9 8.7 7.9	7.6 11.1 6.0 10.9 3.2 8.5 7.3 8.5 7.3 8.7 8.5 7.7		8.7 11.4 7.3 11.4 5.4 9.4 8.8 8.3 9.5 8.5
GRANTS-MILAN AP ASOS HOBBS AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS LOS ALAMOS AP AWOS RATON AIRPORT ASOS RUIDOSO AIRPORT AWOS SANTA FE AIRPORT ASOS SILVER CITY AP AWOS TAOS AIRPORT AWOS	KGNT KHOB KLRU KLVS KLAM KRTN KROW KSRR KSAF KSVC KSKX	1997-2006 1996-2006 2000-2006 1996-2006 2005-2006 1998-2006 1996-2006 1996-2006 1996-2006 1999-2006	7.8 11.3 6.4 10.9 3.9 8.9 7.4 8.8 8.9 8.1 5.8	8.8 11.9 7.5 12.2 5.7 9.4 8.9 9.6 9.5 8.7 6.5	9.6 12.6 8.8 12.5 7.5 10.4 9.9 10.0 9.9 9.9 7.7	10.9 13.4 10.1 14.3 8.1 12.2 11.1 11.6 11.2 10.8 9.1	10.0 12.5 8.7 12.4 7.1 10.8 10.3 10.0 10.6 10.2 8.6	9.8 12.3 8.2 11.8 7.3 10.2 10.2 8.4 10.5 9.9 8.5	8.1 11.0 6.8 10.0 5.3 8.4 8.8 5.9 9.2 8.5 7.1	7.2 10.0 6.0 9.2 4.8 8.1 7.9 5.3 8.8 7.2 6.6	7.9 10.2 6.2 10.9 5.7 8.6 8.3 6.4 8.8 6.9 6.7	8.4 10.6 6.1 10.8 5.1 9.0 8.0 7.4 9.1 7.6 6.6	8.0 10.7 6.4 11.0 4.4 8.6 7.5 7.9 8.7 7.9 6.0	7.6 11.1 6.0 10.9 3.2 8.5 7.3 8.7 8.5 7.7 5.7		$\begin{array}{c} 8.7\\ 11.4\\ 7.3\\ 11.4\\ 5.4\\ 9.4\\ 8.8\\ 8.3\\ 9.5\\ 8.5\\ 7.0\\ \end{array}$
GRANTS-MILAN AP ASOS HOBES AIRPORT AWOS LAS CRUCES AIRPORT AWOS LAS VEGAS AIRPORT ASOS LOS ALAMOS AP AWOS RATON AIRPORT ASOS ROSWELL AIRPORT ASOS RUIDOSO AIRPORT AWOS SANTA FE AIRPORT ASOS SILVER CITY AP AWOS	KGNT KHOB KLRU KLVS KLAM KRTN KROW KSRR KSAF KSVC KSKX KTCS	1997-2006 1996-2006 2000-2006 1996-2006 1998-2006 1996-2006 1996-2006 1996-2006 1996-2006	7.8 11.3 6.4 10.9 3.9 8.9 7.4 8.8 8.9 8.1 5.8 7.4	8.8 11.9 7.5 12.2 5.7 9.4 8.9 9.6 9.5 8.7 6.5 8.7	9.6 12.6 8.8 12.5 7.5 10.4 9.9 10.0 9.9 9.9 7.7 9.9	10.9 13.4 10.1 14.3 8.1 12.2 11.1 11.6 11.2 10.8	10.0 12.5 8.7 12.4 7.1 10.8 10.3 10.0 10.6 10.2 8.6 10.4	9.8 12.3 8.2 11.8 7.3 10.2 10.2 8.4 10.5 9.9 8.5 9.8	8.1 11.0 6.8 10.0 5.3 8.4 8.8 5.9 9.2 8.5 7.1 8.1	7.2 10.0 6.0 9.2 4.8 8.1 7.9 5.3 8.8 7.2	7.9 10.2 6.2 10.9 5.7 8.6 8.3 6.4 8.8 6.9 6.7 7.7	8.4 10.6 6.1 10.8 5.1 9.0 8.0 7.4 9.1 7.6	8.0 10.7 6.4 11.0 4.4 8.6 7.5 7.9 8.7 7.9 8.7 7.9 6.0 7.7	7.6 11.1 6.0 10.9 3.2 8.5 7.3 8.5 7.3 8.7 8.5 7.7		$ \begin{array}{r} 8.7\\ 11.4\\ 7.3\\ 11.4\\ 5.4\\ 9.4\\ 8.8\\ 8.3\\ 9.5\\ 8.5\\ \end{array} $

SONSELA POTENTIOMETRIC SURFACE MAP WESTERN REFINING COMPANY GALLUP REFINERY

Fall 2015

APPENDIX C – DISCHARGE PLAN APPLICATION GIANT REFINING COMPANY CINIZA REFINERY

November 21, 1985

APPENDIX C AQUIFER-TEST DATA AND ANALYSES

.

4

1

TEST PUMPING OF CHINLE SHALE

METHODOLOGY AND DESCRIPTION OF THE TEST

The test consisted of a 5 hour pumping period and a 2 hour recovery period. An air-driven piston pump capable of sustaining pumping rates as low as 10 gallons/hour (0.167 gpm) was used for the test. Water level measurments were taken with an electronic sounder. The well (OW-24) is located approximately 250 feet northwest of the land treatment facility and is completed within the Chinle shale. The lithologic and completion log of the well is attached (Figure F-2).

Pumping began at 1515 hours on February 20, 1985 at a rate of 10 gallons/hour. The produced water was very turbid. Clogging of the pump and pump lines necessitated continuous monitoring and adjustment of the discharge.

After 4 hours of pumping at 10 gallons/hour. the drawdown of the well appeared to stabilize at about 7 feet. The discharge rate was increased to 20 gallons/hour in order to more effectively stress the aquitard. After one hour of additional pumping a total drawdown of 12 feet was observed. However, this higher pumping rate increased the turbidity of the discharge and caused instability of the pumping rate. The lack of control of the discharge rate and the potential of diamage to the pump forced the termination of the test after a total of 5 hours of pumping.

Water level recovery was observed for 100 minutes. At this time the water level had recovered to within 90% of the pre-pumping level.

Pump Test Data, OW-24

PUMP TEST ANALYSIS

E.

Field measurements are summarized in Table F-1. Due to the short pumping time and potential well-bore and gravel-pack effects, the final analysis was based on methods developed by Shafer, for low-conductivity materials.

Partial penetration effects were neglected in the analysis because the low pumping rates and the expected anisotropy of the aquitard would prevent significant vertical flow to the well bore. The low pumping rate was also designed to completely drain the gravel pack in the well to insure accurate recovery data.

A copy of Shafer's methodology is attached, and the data for his analysis is given in Table F-2. Figure F-1 is a plot of the recovery data, according to Shafer's methods. This Figure includes calculation of T and K for the Chinle shales.

TD= 58 - 4'	= 58. Dw= 31.	.33'	(·p	PUMPIN	G DAT	TA .				ц
Tunn 6 55	26	37	1 of we	.ter					Pa	ige 1	of 2
-	≈ 18 g	a(v DA	TA SH	FET F	OR RE	COSDIN	G PURP	TEST D	\TA	
2. •) (~ / ~ /	=									
	County	11	Kinl	27-	(a.	/		Observa	tion well	no	24
	Location	للرب).	17.:	Kx()	1154	2/2	185	Purijed ft. Mijust- ment As	well no	.0.W	24
	7		Averag	e 0		Death	<u></u>	ft.	² = =	1 1106	······
	Date	Hour	(min)	e"	1/1ª	to	(unad- justed)	ment As	(ad- justed)	Q (and	Betarks
F	2-20 1					31-11.5	0	Feet	1.2.2.2.2	10	STATIC LEVEL
		516	<i>i</i>		FRA 10 C 19 70 1	1000 C 1000 C	CONSISTENCY (STATISTICS)	1.04		-344	LARCE INITIAL LK-
F		517	z				13.5				STATIC LEVEL W/ PUMP LARLE INITIAL SK- Setting pump rute Setting pump rute
		518	3			12	16.5	1			<u> </u>
		5/1	4				- 20.75	1			
		570	5				24.0	1			
F **		521	6			0	26.5				
		532	7		B	9-2)	17.0	7.75			
r		123	2			4-3	27,5	7.17			
) min		574	9				23.5				
ſ		525	10				29.5				
			:7				30.75				
		529					33.5				
		31						3.04			
Z min		33			3	52%	39.75	3.23			
:		535					41.0				
· · ·		540					47.0				
-		545	1				51.5				•
		50						4.25			2
		55					56.5			10g al	Value
5 mm	Service and the service of the servi	:00					62.75		f	- Je	
	1	05					\$1.0				clear pump value
		10				0					ure ri-
4		15	1		31	7.10%-	70.95	5.90			Pumped 10 gal
10	_		70		30	1º- 1/2	85.0	6.08			
1					5						

				``						4		
					PU	MPIN	g data			Pag	e 2 o	f 2
					17 N - C	1. 1. 1.	Ri 10 - 121	COREED	g pogp	anst bi	ለጥል	
				())	(IA 20	11.1.1	ruk ka		., , , , , , , , , , , , , , , , , , ,			
		County	:					_				Mc0 - 24
		lucati	on: <u>Cire</u>	v	•	Y .	<i>i</i>	.		_	MW	-24
			T	<u></u>	- 0	Ogp 1	12 sin	·=	ft. 41just-	·2		1
		Date	Bour	с (min)	(*. (*.in)	1.10	to	(verad-	ment A s	(sd- justed)	60 × 4	flexanks.
			16.35	30		- <u>···</u>		justed) 76 88,0			10	· · · · · · · · · · · · · · · · · · ·
		*¥	1645	9c				79.5			1	Lift suns to 50'
			1655	100				69.0			 	Lift pump to 50' clear fremp, rendy
			1705	110				QUA	7.00			pressine
	7 6		1715				39-22	-++	7.27			Pamped 20 gal
	2 hours		17.30	3			38-11		6.97			· · ·
i	15 mm		1745				34-242		7.25			
			1800	<u> </u>			SI-05		7.08			
١	34		1815	1.4			39-2		7.21			Pumped 30 gal
			1930				39-5		7.46			V
			1645	210			39.5		7.46			
			1900	225			37-2		7.21			
	44		1915	240			38-113		7.00			Pumped 40 pal
			1930	a55			39-0		7.04		10	V
			1932	157			39-4		7.38	ĸ	20	PUMP SLIPPLD APPARA
			1934	259'"			31-10		7.87		\geq	PUMP SLIPPLD APPARA <u>1 FOT - REPLACED</u> TO APPREX SAME LEVEL
	am.		1936	26/			103/2	√	8.23]	ATTROX SAME LEVE
			1938	263"		1	10-3%		8.33			PUMPING PATE PELL-OF
		1	1990	2650			10-1/3		8.17			SLIGHTLY
	-		1995	27030			0-9		3.79			
			1950	275 ³⁵			4-95	ŀ	7.83			
	Som -		1955	98 0	}		2-0	ł	0.04			
	, -		2000	385			1-8		9.72			
	-		2005	97 0 			42.8/4		2.75			silt in flought
	-	۲ د حد	2010	3002			43-4		1.27	l		Ad, Dun p value
凝 。	5. 54		2015	315	•	4	3-10%		.9Z			Ady pump value pumped to go l

4

RECOVERY DATA

Ć

Page 1 of 1

í

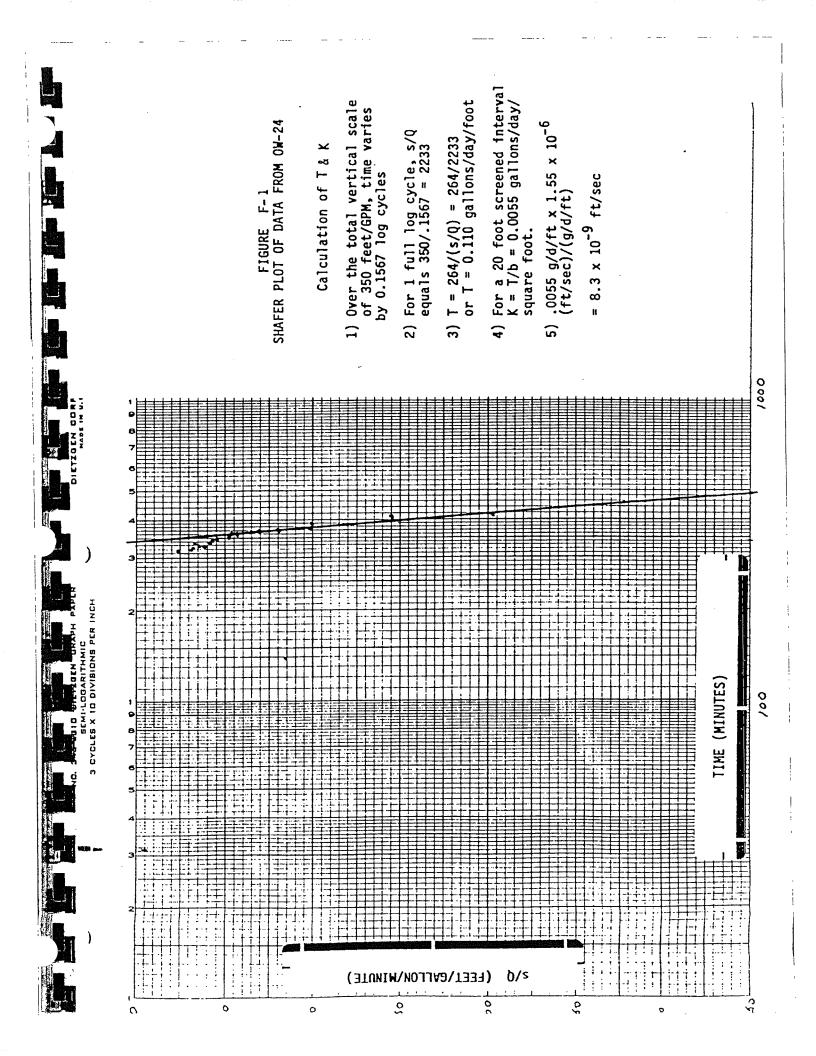
.

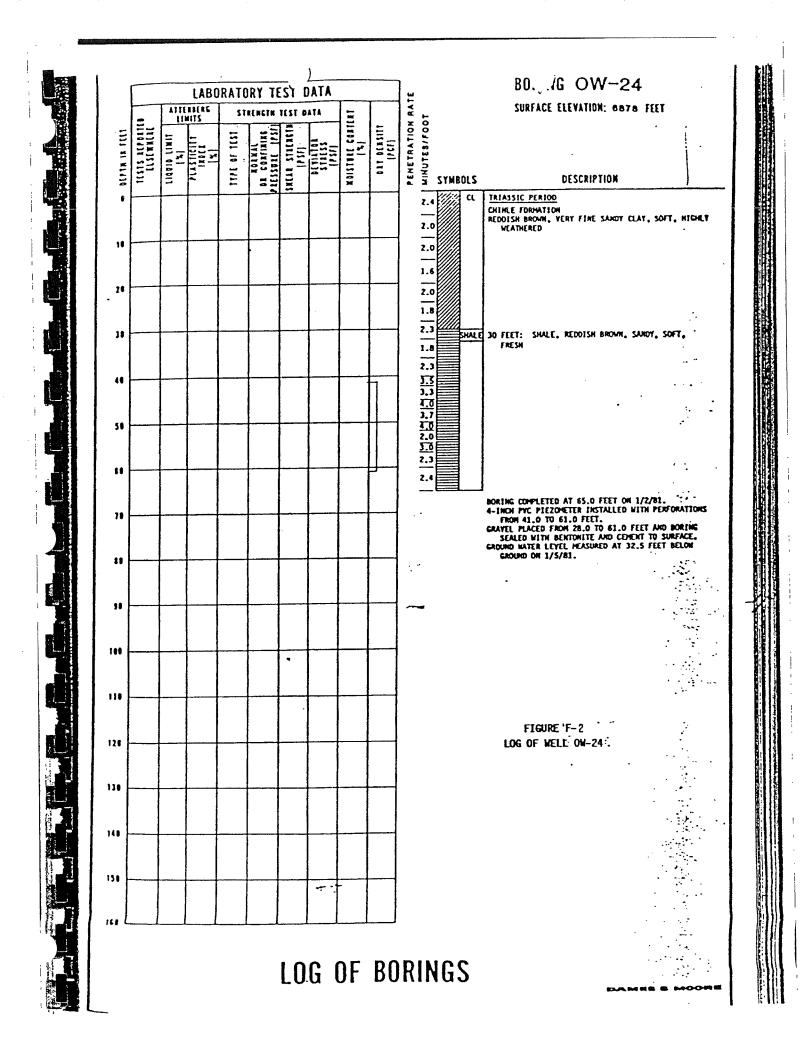
••

DATA SHEET FOR RECORDING PUMP TEST DATA

					P-						
	Gunty	-					-	Observa	cion sell	NO	_
	Lucatio	n: <u>Cia</u>	ing	RyL.	iag-		-				24 _
	-		- V Averaç	۰ ۲	9	51•n	f =	ft.			,
•			·		1	Depth	5	Adjust.	T	<u> </u>	
	Date	llour	t (min)	ر* (حتام)	1.70	to	(unad- justed)	ment As	(ad- justed)	Q (53:#5)	Benarks
	(2)			0			1	12.0	1	1	1 " p' '' ' '' ''' '' '' '''''''''''''''
	/	20:32					•	1		U	
		20 34		2_	<u> </u>	42-7-			1.37		·
Zmin		20.36		4		4-83/	i	· · · · · ·			····
Lun		2038		6		40 101	¥		3.14		
		2040		8		40-2		8.21	3.79		
		204/2		10		39-6	4	7.56	4.44		allinge theirs all the states
		2047		15		36-5%		6.11	5.81		
		205 z		20		37-1 /c		5.17	6.33		
		20.57		25		36:4-		4.38	7.62		
		2102		30		35-8/2		3.75			-
		2107		35		35-29		3.27			
		2112		40		34- 1 -	4	2.86			
Suin	, B	7/17		45		34:53		2.52	9.48		
		2122	•	50		31-34		2.27	9.73		· · · · · · · · · · · · · · · · · · ·
		1/27		55		34-05		2.07	9.93		
		2/32		60		33-104		1.92	10.03		
		9142		70		3-73		1.66	10.34		
Dain		2152		80		3-5%		1.51	10.49		•
-	ć	202		90		13-4K		1.42	10.28		
-		2212		100		3-34		1.32	10.68		
-	6	1222		110							
	2	+232		120							
15	3	1247		135							······································
-		302		1.50							
		317		165					1		

þ.


TABLE F-2


F

18

Time Since Pumping Started (min)	Drawdown (feet) (s)	Feet of Casing Filled (ft)	Time To Fill (min)	Q (gpm)	S/Q (ft/gpm)
317	12.0	0	0		
319	10.63	1.37	2	.45	23.8
321	9.69	.94	2	.31	31.6
323	8.86	.83	2	.27	32.7
325	8.21	.65	2	.21	38.7
327	7.56	.65	2	.21	35.6
332	6.11	1.45	5	.19	32.3
337	5.17	.94	5	.13	42.1
342	4.38	.79	5	.10	42.5
347	3.75	.63	5	.08	45.6
352	3.27	.48	5	.06	52.2
357	2.86	.41	5	.05	53.4
362	2, 52	.34	5	.04	56.8
367	2,27	.25	5	.03	69.5
372	2.07	.20	5	.026	79.3
377	1.92	.15	5	.019	98.0
387	1.66	.26	10	.017	97.8
397	1.51	.15	10	.009	154
407	1.42	.15	10	.009	145
417	1.32	.10	10	.006	202

DATA FOR SHAFER'S METHOD

-Portfolio #12: Pumping Test Analyses & Devices for Groundwater Monitoring-

Pumping Test Analyses for Low Yield Formations

William F. Achuff Director

Jan-Feb. 1978, Johnson Drillers Journal). Thus a different approach is required.

The best method for analyzing these formations is to pump a substantial portion of the casing empty, then shut the pump off and measure water levels as they recover. In ordinary pumping tests these measurements correspond to the nonpumping portion of the test. However, in the low T formations this "recovery period" is actually the "pumping period!"

After pump shut-off, the casing slowly begins filling with water. This water comes from the aquifer and actually represents the water pumped during this so called "pumping period." The pumping rate is determined by measuring the volume of

by David C. Shafer

ccasionally it is necessary to determine aquifer characteristics of very low yielding formations-those with transmissivities less than 500 gallons per day per foot. Though interest in these aquifers is certainly not because of their productive capability, it may be desirable to determine groundwater flow characteristics even in these low yield formations in order to determine such things as regional groundwater flow patterns, effect of dewatering or migration of pollution plumes near point sources of contamination.

effectively in low T (transmissivity) formations for two reasons. First, the pumped well's low specific capacity (gallons per minute per foot of drawdown) may cause the pump to break suction during the test and it may be impractical to throttle back the pumping rate sufficiently to prevent this. Second, even if a constant pumping rate can be maintained without breaking suction, most of the data obtained. will probably reflect casing storage effects rather than true aquifer parameters (see "Casing Storage Can Affect Pumping Test Data,"

Conventional pumping test anal-

ysis using the standard time draw-

down graph often does not work

Different Approach

		Pumping perio Drawdown at pui Casing	ate = 10 gpm od = 15 minutes mp shut off = 9 6" I.D. 114" I.D.		
Time in minutes since pumping started (t)	Drawdown in feet (s)	Number of feet of casing filled	Time in minutes required to fill	Volume filled divided by time required in gallons per minute (Q)	s/Q in feet per gallon per minute
15	90				•
(pump shut off)					
17	85.66	4.34	2	3.04	28.2
20	79.7	5.96	3	2.78	28.6
30	64.2	15.5	10	2.17	29.5
40	51.9	12.3	10	1.72	30.2
60	35.6	13. 3	20	1.14	31.1
80	24.6	11.0	20	.77	31.8
		['] Ta	able 1		

-Portfolio #12: Pumping Test Analyses & Devices for Groundwater Monitoring -

- 1.

casing filled in a given length of time.

During the test, careful measurements are made of time since pumping began (t) along with drawdown (s) at each of these times. Then a calculation is made to determine Q for each time t and finally the ratio s/Q is computed for each measured drawdown value. The ratio is simply the reciprocal of the specific capacity.

A graph is then constructed showing t versus the ratio s/Q plotted as usual on semi-logarithmic graph paper with t on the log scale. A straight line of best fit is drawn through the data points and T is calculated as follows:

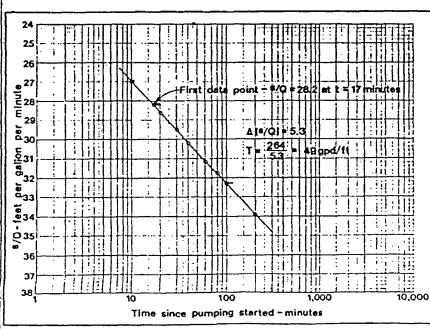
 $T = \frac{264}{\Delta(s/Q)}$

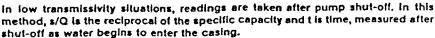
where $\triangle(s/Q)$ is the change in s/Q

over one log cycle of graph paper. This graph has the unique advantage that it will accurately reflect aquifer transmissivity independent of casing storage effects. In addition it will be sensitive to nearby recharge and/or negative boundaries and will reveal these conditions like any ordinary time drawdown graph.

To see how this technique works it is best to work an example. Table 1 shows data obtained from a 6-inch well pumped at 10 gpm for 15 minutes. Drawdown after 15 minutes of pumping measured 90 feet.

The next data point was recorded two minutes following pump shutoff or 17 minutes since pumping started. At this time the pumping water level was 85.66 feet, indicating that 4.34 feet of casing had filled during the two minute interval.


The annulus between the 6-inch casing and 1¼" drop pipe holds 1.4 gallons per foot so that the volume of casing filled is 1.4 times 4.34, or 6.08 gallons in two minutes. Thus,


Q = 6.08 gallons/2 minutes = 3.04 gpm

finally,

s/Q = 85.66 ft/3.04 gpm = 28.2 ft/gpm

which is plotted at a time of 17 minutes on the graph shown here. This analysis is repeated for each

drawdown measurement. The resultant calculated s/Q values are shown in the table and plotted in the figure. The formation T value from the graph is

$$T = \frac{264}{\Delta(s/Q)}$$
$$= 264/5.3$$
$$= 49 \text{ gpd/s}$$

Conventional Analysis

Examination role the fydraulic characteristics of this well (not included the shows that it a conwentional time drawdown graph had been sused measing set or age "effects" would thave lasted for approximately twelverhourse. This means that data recorded in the first twelve hours of pumping would have been useless and longer pumping than this would have been required to obtain any usable data at all. However, data collected after twelve hours of pumping probably would be more influenced by boundary conditions than by aquifer transmissivity. Thus, -

in practice of the second seco

In order to maximize the accuracy of this method, it is best to unload (empty) the casing as rapidly as possible. Thus it is actually better to use a high capacity pump than a low capacity pump in analyzing extremely low-yielding wells!

Another good idea is to unload the casing with compressed air since this can typically be done in one minute or less.

Recorded Data Must Be Accurate

An additional important consideration is that all data recorded for this type of analysis must be absolutely accurate. Small errors in the recorded values of time and/or drawdown can result in large errors in the calculated values of s/Q. For best results, drawdown should be recorded to the nearest hundredth of a toot and timed to the nearest second or two. JOHN W. SHOMAKER consulting geologist 3236 candelaria, n.e. albuquerque, new mexico 87107

(505) 884-2897

September 20, 1984

Carl D. Shook, Plant Manager Giant Refining Company, Ciniza Refinery Route 3, Box 7 Gallup, New Mexico 87301

Re: results of permeability tests, July 2 and 3, 1984

Dear Carl:

Copies of the field notes, calculations, and data plots for the two permeability tests are attached. The tests are summarized as follows:

Well OW-4 The well is completed principally in the clay and shale sequence which overlies the uppermost aquifer; a small thickness of sandstone which may be part of the uppermost aquifer was also penetrated. Total depth when drilled was 102.0 ft. Perforations are from 62.0 ft to 102 ft. The well is located near the center of the land-treatment area. A slug test was performed on July 3, 1984, following the method described by S. W. Lohman (1972, Ground-Water Hydraulics, U. S. Geol. Survey Prof. Paper 708, p. 27-29), which indicates the permeability of the section open to the well to be about 4 X 10⁻⁷ cm/sec.

<u>Well MW-1</u> This well is one of the monitoring wells on the boundary of the land-treatment area, and is completed in the uppermost aquifer. It was drilled to 120 ft, and is screened in the interval 87 to 120 ft; the casing is sealed above 89 ft so as to isolate the uppermost aquifer. The slug test performed on July 3, 1984 indicated a permeability of about 1.2 X 10^{-4} cm/sec.

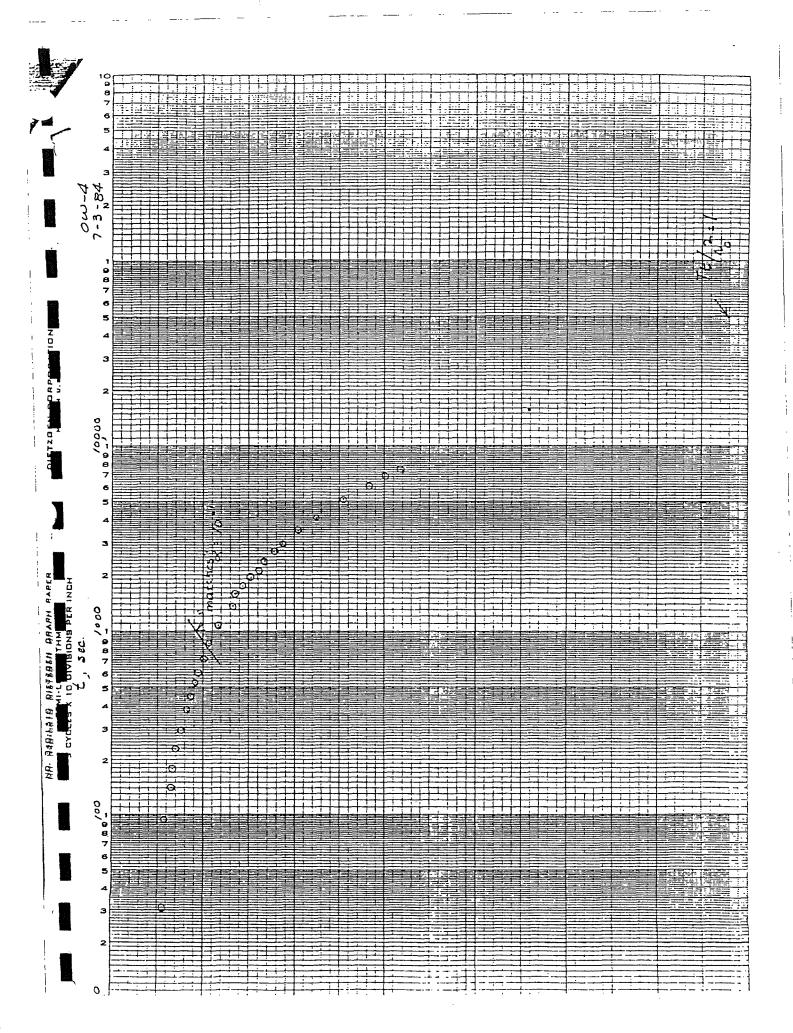
Information as to the construction of the wells is taken from Dames and Moore (March, 1981; Ground water and soils investigation, Ciniza Refinery near Gallup, New Mexico, and November, 1981, Groundwater monitoring plan, Ciniza Refinery near Gallup, New Mexico).

Please let me know if there are questions.

Sincerely,

John W. Shomaker Consulting Geologist

RECEIVED SEP 2 4 1984

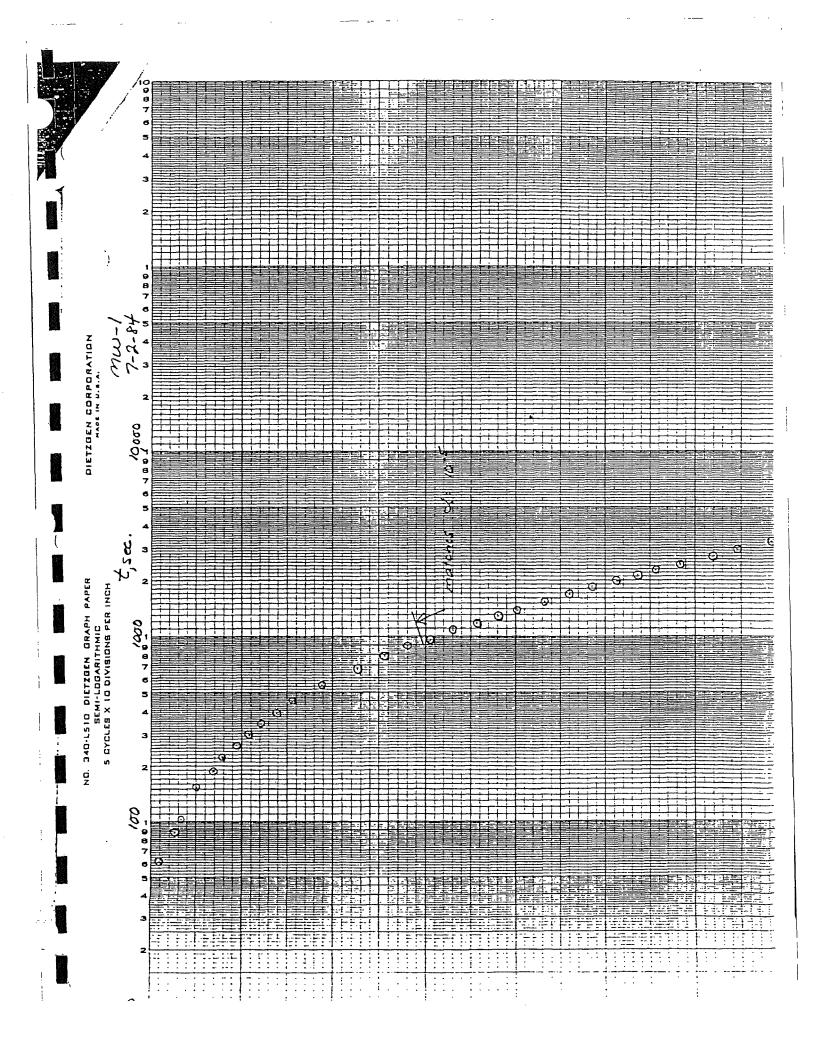

2 12			dole	: 7-3-84	- 11124 OW-4
cosing size: no water levels m which is <u>1.</u> volume of slu	00010	1/2" I from to groun	0 4.0 0 1/2 01 0 level.	o pve	mati. <u>PVC</u> casing, 3 sido >
$ \begin{array}{c} $	· .	4.8 4.8 4.8	4 000	.006 # .003 .224 .015 .223	3 Note- obstruction in cosing at <u>33.</u> won't pass 0,27 OD.
0,17 0:18 0.11		0,2 0,2	3 0	.015 .001 .002	
$r_c = internal rad$	dius of co	sum sing obj		•	$V_{,} f_{+}^{3} = 3.66 \text{ gol.}$
rs: radius of =					
initial water		-			ma 07:51
$H_0 = \frac{V}{\pi \lambda^2} =$	0.489 TT (0.16	<u>,</u>	5.72	f	
clock time	t, 500.	woter	<u> </u>	H/Ha	slug released
08:20:54			1	· · .	top slug: 23.2' MP
21:25 ?	31 5	20.75	5.40	0.944	
22:28	94	20.76	5.39	0.942	
23:14	140	20.80	5.35	0.935	
23:51	177	2081	5.34	0.934	
24:42	228	20.83		0,930	
25:42	288	20.87	5.28	0,923	
27:06	372	20.90	5.25	0.918	
29:14	<u> </u>	20.92	5.23	0,914	
30:55	601	20.95	5.20	_0.909_	
32:46	712	20.97	5.18	0.906	· · · · · · · · · · · · · · · · · · ·
35:16	862	21.04	5.11		
38:38	1064	21.10	5.05	0.893	
43:20	1356	21.9	4.96	0.867	
46:52	1558	21.21	4.94	0.864	raised slug 0,4fr.
		and well the United States of the	1111		
49:26	1712-	21.25	4.90	0.851	

Ż

ł

	elock times 8:20:54	<u>l, zec.</u>	level	Н	H/Ho_	remarks
j Zo=02	9:20:34 - 98:54:13-		-21.34			
	08:56:50	2096	21.35	4.80	0,839	1
0:00=	09:00:16	2362	21.39	4.76	0,832	
2-3-4CD	:05:00	2646	21.45	4.70	0,822	
	09:55	2941	21.50	4.65	0.8.13	
	17:46	3412	21.60	4.55	0.795	
	28:25	4051	21.71	4.44	0.776	m-scope trouble
	46:00	5106	21.89	4.26	0,745	
	10:02:23	6089	22.05	4,10	0,717	
	14:00	6786	22.15	4.00	0.699	
	10:24:20	7412	22.25	3.90	0.682	stopped test;
						slug almost un-
						covered
2					· · ·	
	+					
	•		<u> </u>			
				•		
	·					
						·
			ļ			· · · · · · · · · · · · · · · · · · ·
ļ						
		·				
	lote dota m	hatches:	$q = 10^{-1} c$	urve Tt	12=1 at	t= 50,000 sec.
-				-		
	· · · ·	T= 1.0 2	= (1.0) (0.165	$)^{F} = 5.4x$	10-7 f+2/	sec
		ť	50,000		/	
				= 0.05	ft"/day	= 0.35 gpd/ff
1						
				K, : 0.05 h 40	++ /day	= 0.001 ft/day
-				<u> </u>	ft screen	· /
	·····					1
	0.001 ft/day_	x 30.5 Cm/A	t_X	=	4 × 10-7	Cm/sec
	- /		60 × 1440	Sci/day		· · ·
	2			,		
	J= ~ c d 0.027	10 = 0.03	: water-	table Ste	rage	
	1 0.080				·	
		"				
	674	"hale ?				
						······································
		·				
			; 			
` ¶					··	·
		1 1	<i>i</i> ł	. 1	1 1	
		····				

dole: 7-2-84 cosing size: nominal 51/2" 00, ID 5.1" csq. matt. PVC water levels measured from top PVC cosing, sw side which is _1.37 ft obove ground level, (concrete 5/06) 2.05 volume of slug: -6<u>8</u> 1.37 cap OD, $f_{t}\left(\frac{0.37}{0.39}x^{\frac{1}{2}}\right)^{2}_{x}$ TT x length, $f_{t}=\frac{0.10}{0.05}$ 0.011 1 0.006 0.411 0.33 4.81 0.032 0.38 85.0 0.33 0.003 0.04 0.42 0.04 0.006 0:29 0.002 6.03 0.16 0.03 0.001 0.25 0.11 0,002 <u>0.474</u> = V, ft 3 = 3.55 gal Jum r = internal radius of casing above perfs. 0.211 ft rs: radius of screen or open hole: ____ initial water level 5.72 A below MP, time 13:32 $\frac{0.474}{\pi (0.211)^2} = \frac{3.389}{4}$ $H_0 = \frac{V}{\pi n^2}$ t, sec. woter H H/Ha clock time remarks slug released 13:48:00 22 2.30 ft ? 3.42 13:48:20 20 1.009 3.36 2.36 0.991 49:00 60 3.30 49:26 2.42 0.974 86 49:52 2.44 3.28 0.968 112 50:32 3.22 0.950 152 2.50 0.932 51:05 3.16 185 2.56 3.12 51:42 222 2.60 0.921 259 3.07 52:19 2.65 0.906 295 3.02 0.891 2.70 52:55 2.98 55:33 333-2.74 0.879 54:26 386 2.92 0.862 2,80 55:30 450 2.80 0.844 2.86 2.75 0.811 545 2.97 57:05 2.62 0,773 59:12 672 3.10 0.744 2.52 14:01:05 785 3.20 2.44 02:28 868 3,28 0.720 3.36 2,36 0.696 952 03:52


$\begin{array}{c c c c c c c c c c c c c c c c c c c $	clack times	<u>t, sec.</u>	level	<u>. н</u>	H/Ho	remarks
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14:05:38	1058	3.45	2.27	0.670	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1162	3.54			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 .		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\frac{33:09}{36:51} + \frac{1}{709} + \frac{443}{452} + \frac{1}{70} + \frac{1}{9} + \frac{1}{354} + \frac{1}{100} + \frac{1}{9} + \frac{1}{100} + \frac$		- 445	1	- 1		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		······································	· · · · · · · · · · · · · · · · · · ·			
$\frac{50:03}{57:39} = \frac{37\times3}{4179} = \frac{4.78}{4179} = \frac{0.94}{0.577}$ $\frac{57:39}{57:39} = \frac{4179}{4179} = \frac{4.78}{0.85} = \frac{0.54}{0.542}$ $\frac{15:05:36}{412} = \frac{4356}{5.01} = \frac{5.01}{0.71} = \frac{0.71}{0.710}$ $\frac{14.12}{14.12} = \frac{5175}{517} = \frac{5.12}{0.60} = \frac{0.77}{0.777}$ $\frac{21:12}{2.579} = \frac{5.78}{0.60} = \frac{0.54}{0.159} = \frac{0.59}{0.120}$ $\frac{44:35}{6.995} = \frac{6.95}{0.120} = \frac{0.36}{0.360} = \frac{0.06}{0.004}$ $\frac{44:35}{5.52} = \frac{6.94}{0.320} = \frac{0.36}{0.360} = \frac{0.094}{0.0047}$ $\frac{16:08:22}{1.579} = \frac{5.52}{0.700} = \frac{0.04}{0.0047}$ $\frac{17:00:30}{11,540} = \frac{5.58}{0.14} = \frac{0.04}{0.041}$ $\frac{17:00:30}{11,540} = \frac{10^{-5}}{0.077} = \frac{72}{2} + \frac{12}{0.041} = \frac{12}{0.041}$ $\frac{12}{0.041} = \frac{10^{-5}}{0.041} = \frac{10^{-5}}{0.041} = \frac{10^{-5}}$				1		
$\frac{57:39}{15:05:36} = \frac{4179}{1356} = \frac{11.90}{5.01} = 0.8\% = 0.74\%} = 0.74\%$ $\frac{15:05:36}{14:12} = \frac{4356}{5.01} = 5.01 = 0.71 = 0.710} = 0.717$ $\frac{14:12}{14:12} = \frac{5177}{5.17} = 5.12 = 0.60 = 0.177$ $\frac{14:12}{2} = \frac{5977}{5.18} = 0.54 = 0.159$ $\frac{33:01}{6301} = \frac{6301}{5.28} = 0.44 = 0.130$ $\frac{44:35}{6.995} = \frac{6995}{5.28} = 0.44 = 0.130$ $\frac{14:35}{6.994} = \frac{6995}{5.28} = 0.44 = 0.106$ $\frac{53:45}{75:45} = 7543} = 5.46 = 0.70 = 0.077$ $\frac{26:57}{257} = 9539} = 5.52 = 0.70 = 0.059$ $\frac{47:10}{10:08:22} = 8477 = 5.58 = 0.14 = 0.047$ $\frac{17:00:70}{11,540} = 5.58 = 0.14 = 0.047$ $\frac{17:00:70}{11,540} = 10^{-5} = 0.14 = 0.041$ $\frac{17:00:70}{11,540} = \frac{10^{-5}}{25} = 0.14 = 0.041$ $\frac{17:00:70}{11,540} = \frac{(1.0)(0.1)^{2}}{2} = 5.36 \times 10^{-5} = \frac{17}{520} = \frac{100}{5} = \frac{100}{530} = \frac{100}{5} = \frac$	•	3999			1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		- 113				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\frac{35.01}{44:35} \begin{pmatrix} 6301 \\ 5.28 \\ 0.44 \\ 0.130 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.106 \\ 0.097$		1	1	1	T	
$\frac{44:35}{5:43} = \frac{6995}{5:43} = \frac{5\cdot30}{5\cdot40} = \frac{0\cdot36}{0\cdot00} = \frac{0\cdot00}{94}$ $\frac{53:43}{5:43} = \frac{75\cdot43}{5\cdot43} = \frac{5\cdot46}{5\cdot44} = \frac{0\cdot00}{0.094} = \frac{0.094}{0.094}$ $\frac{16:08:22}{5:57} = \frac{8422}{5:52} = \frac{5\cdot52}{0.70} = \frac{0.097}{0.059}$ $\frac{47:10}{10,750} = \frac{5\cdot58}{0.14} = \frac{0.047}{0.041}$ $\frac{17:00:20}{11,540} = \frac{10^{-5}}{0.010} = \frac{10^{-5}}{0.000} = \frac{10^{-5}}{1000} = \frac{10^{-5}}{10000} = \frac{10^{-5}}{100000} = \frac{10^{-5}}{100000000000000000000000000000000000$						· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.44	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	44:55					
$\frac{26:57}{47:10} = 9539 = 5.52 = 0.70 = 0.059$ $\frac{47:10}{17:00:20} = 10,750. = 5.58 = 0.14 = 0.041$ $\frac{17:00:20}{11,540} = 10^{-5} \text{ curve}, \frac{72}{n^2-1} = 10^{-5} \text{ curve},$				· · · · ·		
$\frac{47:10}{17:00:20} 10,750. 5.50} 0.16 0.047$ $\frac{17:00:20}{11,540} 5.58 0.14 0.041$ $\frac{10,14}{10,041} 10^{-5} \text{ curre}, 72/n^2 = 1 \text{ at } t = 830 \text{ sec.}$ $\frac{72}{10} n_0 = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{10} \frac{10}{10} = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{10} \frac{10}{10} = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{10} \frac{10}{10} = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{10} \frac{10}{10} = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{10} \frac{10}{10} = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{10} \frac{10}{10} = (1.0)(0.11)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$				1		
$\frac{17:00:20}{11,540} \qquad 5.58 \qquad 0.14 \qquad 0.041$ $\frac{17:00:20}{11,540} \qquad 5.58 \qquad 0.14 \qquad 0.041$ $\frac{10.041}{11,540} \qquad 10^{-5} \text{ ourve}, \qquad 72/n^2 = 1 \text{ at } t = 830 \text{ sec.}$ $\frac{10.02}{12} = (1.0)(0.21)^2 = 5.36 \times 10^{-5} \text{ ft}^2/\text{sec}$ $\frac{1}{12} = \frac{100}{12} = \frac{100}{1$				1		
$\frac{1}{16te \ dota \ matches : \ 9 = 10^{-5} \ curre, \ 72/n^2 = 1 \ at \ t = 830 \ sec.}{T = 1.0 \ n_c^2} = (1.0)(0.21)^2 = 5.36 \times 10^{-5} \ ft^{-7}/sec}$ $\frac{1}{t} = \frac{1.0 \ n_c^2}{830} = 4.63 \ ft^{-7}/day = \frac{35 \ apd}{ft} \ ft^{-7}/day}{T = 0.35 \ ft/day}$		10,750.		1	<u> </u>	
$\frac{7 = 1.0 \ h_{c}^{2} = (1.0)(0.21)^{2} = 5.36 \times 10^{-5} \ ft^{2}/sec}{\frac{1}{2}}$ $= 4.63 \ ft^{2}/day = 35 \ apd/ft$ $K_{l} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$ $K_{l} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$	17:00:20	11,540	3.58	0.14	0.041	· · · · · · · · · · · · · · · · · · ·
$\frac{7 = 1.0 \ h_{c}^{2} = (1.0)(0.21)^{2} = 5.36 \times 10^{-5} \ ft^{2}/sec}{\frac{1}{2}}$ $= 4.63 \ ft^{2}/day = 35 \ apd/ft$ $K_{l} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$ $K_{l} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$				 		······
$\frac{7 = 1.0 \ h_{c}^{2} = (1.0)(0.21)^{2} = 5.36 \times 10^{-5} \ ft^{2}/sec}{\frac{1}{2}}$ $= 4.63 \ ft^{2}/day = 35 \ apd/ft$ $K_{1} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$ $K_{1} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$						
$\frac{7 = 1.0 \ h_{c}^{2} = (1.0)(0.21)^{2} = 5.36 \times 10^{-5} \ ft^{2}/sec}{\frac{1}{2}}$ $= 4.63 \ ft^{2}/day = 35 \ apd/ft$ $K_{1} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$ $K_{1} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$						
$\frac{7 = 1.0 \ h_{c}^{2} = (1.0)(0.21)^{2} = 5.36 \times 10^{-5} \ ft^{2}/sec}{\frac{1}{2}}$ $= 4.63 \ ft^{2}/day = 35 \ apd/ft$ $K_{1} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$ $K_{1} = 4.63 \ ft^{2}/day = 0.35 \ ft/day$;	 		·
$\frac{t}{K_{1}} = \frac{4.63}{f_{1}} \frac{f_{1}}{da_{1}} = \frac{35}{da_{1}} \frac{f_{1}}{f_{1}} \frac{f_{1}}{da_{1}} = \frac{35}{da_{1}} \frac{f_{1}}{f_{1}} \frac{f_{1}}{da_{1}} \frac{f_{1}}{f_{1}} \frac{f_{1}}{f_{$	late dota ma	atches:	9 = 10 ⁻⁵ ci	rre, Tt	$\sqrt{n^2=1}$ at	£= 830 sec.
$\frac{t}{K_{1}} = \frac{4.63}{f_{1}} \frac{f_{1}}{da_{1}} = \frac{35}{da_{1}} \frac{f_{1}}{f_{1}} \frac{f_{1}}{da_{1}} = \frac{35}{da_{1}} \frac{f_{1}}{f_{1}} \frac{f_{1}}{da_{1}} \frac{f_{1}}{f_{1}} \frac{f_{1}}{f_{$		T- 1.0 A2	- (10)(00)	2 (71	×10-5 1.21	
$= 4.63 \text{ ff}^{\prime}/\text{day} = 35 \text{ apd}/\text{ff}$ $K_{1} = 4.63 \text{ ff}^{\prime}/\text{day} = 0.35 \text{ ff}/\text{day}$ $\frac{1}{13.3} \text{ ff} \text{ screened}$	<u>.</u>	1= 1.0 1.0		= 3.36	x 10 ++	<u>rec</u>
<u> </u>	*	<u> </u>	020	,	DY /	25 10
•				= 4.65	1+ / day =	JJ zpd/tt
•		-		K1: 4.6	3 ft / day	= 0.35 ft/dav
<u>O. 35 Afday x 30.5 cm/lt 1 = 1.2 × 10 cm</u> // 60 × 1440 sec/day ar				h 13.3	A screene	4
<u> </u>						tt
			0.35 A/d	<u>ау х</u> 30.5	cm/ft	=1.2×10 cm
				/ ``	10 Gox	1440 sec/day ar
	!					
			-			1

-

1.40%

.

•

					· · · · ·									
9											`	に完全の目	\$?	
									9 0	\mathbf{D}	0			
					5-0	ç, °	6	<u>)</u> 0						
	0	2	9 O	0.4								20 tet	de se	
													Ň	

APPENDIX C RCRA POST-CLOSURE CARE PERMIT APPLICATION LAND TREATMENT UNIT GIANT REFINING COMPANY CINIZA REFINERY

May 2000

RCRA Part A and Part B Post-Closure Dermot Application Land Treatment Unit May 2000

APPENDIX C

Land Treatment Unit Historical Information and Data

Land Treatment Unit Historical Information and Data Ciniza Refinery May 2000

LAND TREATMENT UNIT HISTORICAL INFORMATION AND DATA

1.0 LAND TREATMENT HISTORY

Historical LTU information and data extracted from existing permit applications, operating permits, operating records, and other source documents are provided as Appendix C. The inclusion of this appendix does not imply that historical information and data have been verified.

In August 1980, Ciniza Refinery (Ciniza) notified the U.S. Environmental Protection Agency (EPA) that it was a generator and operator of a hazardous waste management facility. In November 1980, Ciniza submitted a Part A permit application as an "existing facility" (defined at 40 *Code of Federal Regulations* §260.10). This granted Ciniza interim status for their Land Treatment Unit (LTU) operations. In response to notice from the Regional Administrator, Ciniza submitted a Part B permit application in December 1983. Based on changing guidance, Ciniza submitted a land treatment demonstration plan (LTD) and an application for a two-phase LTD permit in April 1985. On February 9, 1987, Ciniza was issued a Short-term LTD Permit (NMD00033211-1) to conduct a hazardous waste land LTD. The LTD was conducted to identify the land treatment capabilities for refinery waste generated by Ciniza. The LTD defined waste management parameters (e.g., rate-limiting constituent, application-limiting constituent, capacity-limiting constituent, and unit life of the LTU). This was accomplished by identifying the Principal Hazardous Constituents (PHCs) present in refinery waste streams and measuring their degradation, transformation, and immobilization in the treatment zone of the LTU. From the results of the LTD and a modified Part B permit application, Ciniza was issued a Hazardous Waste Facility Permit (NMD 000333211-2) on November 4, 1988. Ciniza has not applied hazardous wastes to the LTU since November 8, 1990.

1.1 Land Treatment Program [20 NMAC 4.1, Subpart IX, §270.20(b)]

Ciniza's Hazardous Waste Facility Permit established operational requirements for the LTU. These requirements inchinclude procedural and engineering controls necessary to ensure that hazardous constituents are fully treated within the LTU without uncontrolled release to the environment.

The LTU consists of a treatment zone of soil extending 5 ft deep from the original soil surface. This depth is shallow enough to ensure that the treatment zone is more than 3 ft above the seasonal high water table. The zone of incorporation (ZOI) within the treatment zone is the volume of soil to which the waste was directly applied.

The ZOI for the Ciniza LTU is the top 12 in. of the treatment zone. The LTU was designed and constructed to prevent both washout of any hazardous waste and to prevent inundation of and discharge from the permitted unit through the use of a continuous dike which surrounds the LTU at an elevation of 3 ft above the natural grade.

The ZOI was tilled during permitted operations to encourage aerobic microbial activity and improve chemical reaction rates. During active treatment soil nutrients were applied, as necessary, to optimize carbon:nitrogen: phosphorous (C:N:P) ratios. Applications of Ciniza wastes to the LTU were limited to ensure that treatment processes were not overwhelmed or poisoned. Performance indicators (e.g., soil moisture, pH, total organic carbon) were monitored in the ZOI to ensure that treatment was proceeding.

1.2 Treatment Zone Description [20 NMAC 4.1, Subpart IX, §270.20(b)(2) and §270.20(b)(5)]

The LTU consists of three 480-by-240-ft sections, each of which contain 2.6 acres (1.0 hectares) of available treatment surface. Each section is delineated by a continuous dike to prevent site runon and runoff. The treatment zone extends 5-ft deep from the top of the soil within the diked section. The top 12 in. of the treatment zone is the ZOI. The ZOI is tilled when active to encourage aerobic degradation of organics and to maintain moisture content of the soil. This leaves 4 ft of the treatment zone undisturbed.

The soil within the treatment zone is silty clay containing closely-spaced root systems in the uppermost 3 to 4 ft. Field infiltration rates (the rate at which water penetrates into the soil surface) averages 1.0×10^{-3} cm/sec or 3.6 cm/hr. Soil permeability as determined by laboratory measurements averages 1.9×10^{-5} cm/sec or 6.8×10^{-2} cm/hr for three locations at the 6- to 12-in. depth. Field infiltration rate allows prediction of runoff and erosion; permeability (hydraulic conductivity) allows estimation of vertical water movement rates in the soil. The treatment zone soils have a saturated hydraulic conductivity rating of "moderately low" by the U.S. Department of Agriculture Class (Giant Refining Company Part B Permit Application 1984). The low permeability of the treatment zone soil assists in retarding the vertical movement of hazardous constituents through the treatment zone.

The silty clay soil has a high cation exchange capacity (CEC). The CEC is the total amount of exchangeable cations that the soil has to exchange with cations in the soil solution. The exchangeable cations in the LTU are the heavy metals present in the Ciniza wastes. The high CEC results in high sorption of heavy metals in the LTU soils, assuming other factors (such as soil pH) are favorable.

RECENT SOIL PERMEABILITY TESTS FIREWATER POND CONSTRUCTION PROJECT

Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674

Roposed Fire Water Storage

GRCC

Rigid Wall Hydraulic Conductivity Falling Head

ATTN: James Romero Giant Refining Company Route 3, Box 7 Gallup, NM 87301

Project: <u>Ciniza Fire Water Lagoon</u> Soil Type: <u>Silty Clay</u> Sampled From: <u>Boring 05-100-1(2.5'-3.0')</u>

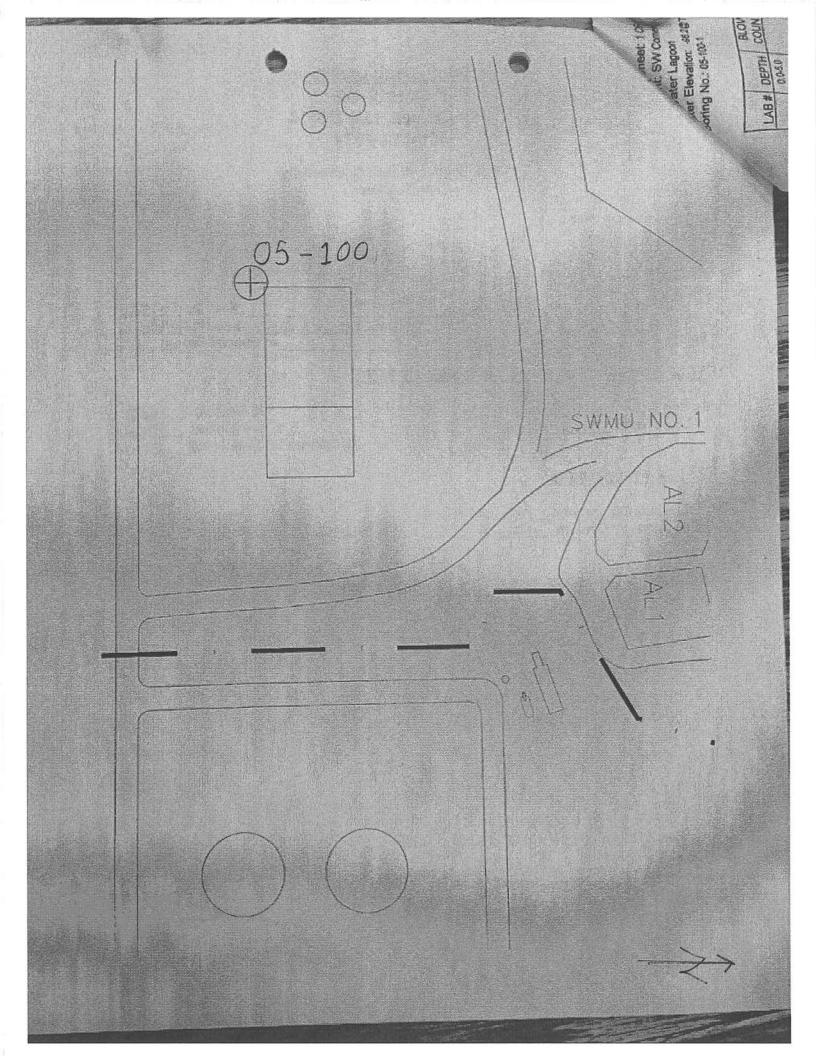
File No.: 05-100
Date October 13, 2005
Lab No.: 47872
Performed By, GG

TEST SPECIMEN CONDITIONS AT BEGINING OF TEST:

Wet Unit Weight: 120.8 pcf Dry Unit Weight: 109.0 pcf

% Moisture: 10,8 % Compaction: n/a % Compaction Requested: n/a

PROCTOR INFORMATION:


Maximum Dry Density: <u>n/a</u>pcf Optimum Moisture Content: <u>n/a</u>%

Coefficient of Permeability, k20, 1.1 X 10-7 cm/sec. avg

Remarks: Avg of three: 1.1x10⁻⁷, 1.1x10⁻⁷, 1.1x10⁻⁷

C \bil\Projects\2005\05100cinizafirewtr\[Permeability.xls]Report Reviewed By: Reviewed By:

.cil

SW Corner of Proposed , Lagoon cievation: -98.2@TD,-27@1 hr No.: 05-100-1

Precision Engineering, In P.O. Box 422 Las Cruces, NM 88004 505-523-7674

File #: 05-100 Site: Glant-Clniza

Elevation: EXISTING Date: 9/24/2005

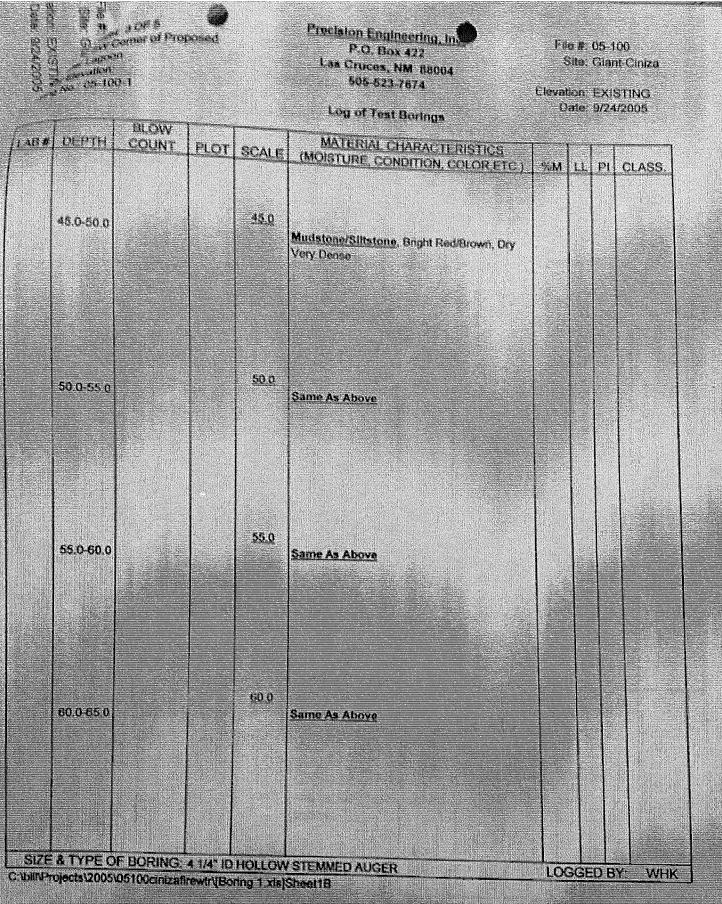
Log of Test Borings BLOW MATERIAL CHARACTERISTICS DEPTH AB # COUNT PLOT SCALE (MOISTURE, CONDITION, COLOR, ETC.) 0.0-5.0 %M PI CLASS Clay, Very Silly, Sandy, Very Fine, Dark Red. 11 Wet, Firm 47872 <u>2.5</u> [2.5-3.0 hydraulic conductivity sample] 5,0 5.0-10.0 Same As Above, Wet, Soft 7.5 10.0 10.0-15.0 Same As Above 15.0 15.0-16.0 Same As Above 16.0-17.5 Sand, Very Fine, Very Clayey, Very Silty, Weak Water Bearing, Moderately Dense, Dark Red/Brown 17.5-21.5 Clay, Dark Red, Wet, Soft 20.0 SIZE & TYPE OF BORING: 4 1/4" ID HOLLOW STEMMED AUGER LOGGED BY: WHK

C:\bithProjects\2005\05100cinizafirewtr\Boring 1.xts]Sheet1

Sheet: 2 OF 5 Bore Point: SW Comer of Proposed Fire Water Lagoon Water Elevation: Boring No.: 05-100-1 Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674 Eleration:

a 2

Elevation: EXISTING Date: 9/24/2005


Log of Test Borings

LAP	* DEPTH 21.5-22.1 22.1-23.5 23.5-25.1 25.0-30.0	BLOW GOUNT	PLOT	SCALE 25.0	MATERIAL CHARACTERISTICS (MOISTURE, CONDITION, COLOR,ETC.) Clay, Sandy, Dark Brown, Wet, Stiff Clay, Hard, Red/Brown (Brighter than Above), Wet/Moist Pertrifled Forest Formation <u>Mudstone/Claystone</u> , Weathered, Some Grey/Green Reduction Spots, Generally Red/ Brown, Fissile to Crumbly, Damp/Moist <u>Mudstone</u> , As Above, Few Reduction Spots,	<u>%M</u>	PI	CLASS
	30.0-35.0			<u>30.0</u>	Damp/Dry Same As Above dry			
	35.0-40.0			35.0	<u>Same As Above</u> dry			
	40.0-45.0				Same As Above, Brighter Red @ 44.5-45.0", dry			
SIZE C VSIMP		BORING 4 100cinizafire	1/4" 1D } wirt(Bor	IOLLOW	siltstone/mudstone, dry, very dense bright red brown STEMMED AUGER Sheet1A	LOGG	<u></u>	WHK _

Sheet: 2 OF 5 Bore Point: SW Comer of Proposed Fire Water Lagoon Water Elevation: Boring No.: 05-100-1 Precision Engineering, Inc. P.O. Box 422 Las Cruces, NM 88004 505-523-7674 File # E G E E Site: Giat and Elevation EXISTING Date: 9/24/2005

Log of Test Borings

LAB # DEPTH 21.5-22.1 22.1-23.5 23.5-25.1 25.0-30.0	BLOW COUNT	PLOT	SCALE 25.0	MATERIAL CHARACTERISTICS (MOISTURE, CONDITION, COLOR, ETC.) Clay, Sandy, Dark Brown, Wet, Stiff Clay, Hard, Red/Brown (Brighter than Above), Wet/Moist Pertrified Forest Formation Mudstone/Claystone, Weathered, Some Grey/Green Reduction Spots, Generally Red/ Brown, Fissile to Crumbly, Damp/Moist Mudstone, As Above, Few Reduction Spots, Damp/Dry	<u>%</u> M	PI	CLASS,
30.0-35.0			<u>30.0</u>	Same As Above dry			
35.0-40.0				Same As Above dry			
40.0-45.0 41.5			C 4 7	Same As Above, Brighter Red @ 44.5'-45.0', hy illistone/mudstone, dry, very dense, bright ed brown			

Sheet: 4 OF 5 Bore Point: SW Corner of Proposed Fire Water Lagoon Water Elevation: Boring No.: 05-100-1 Precision Engineering, In P.O. Box 422 Las Cruces, NM 88004 505-523-7674 File R. O L R

۰D

Cate: 9232055

Log of Test Borings

LAB # DEPTH COUNT PLOT 56.2-67-4 57.4-78.5	MATERIAL CHARACTERISTICS %M LL PI CLASS 95.0 Same As Above Image: Condition, color, etc.) %M LL PI CLASS 95.0 Same As Above Image: Condition, color, etc.) %M LL PI CLASS 95.0 Same As Above Image: Condition, color, etc.) %M LL PI CLASS 95.0 Same As Above Image: Condition, color, etc.) %M LL PI CLASS 95.0 Same As Above Image: Condition, color, etc.) %M LL PI CLASS 95.0 Same As Above Image: Condition, color, etc.) Middle Image: Condition, etc.) Image: Condition, etc.) 95.0 Sandstone, Fine, Rest.Ecove, Hard, Fissile, Grey/Green Orbicular Rest.econ Spots Image: Condition, etc.) Image: Condition, etc.) 95.0 Sandstone/Silitstone Interbads, Some Image: Condition, etc.) Image: Condition, etc.) Image: Condition, etc.) 96.0 Sandstone, Dark Red/Brown, Hard, Ery End Image: Condition, etc.) Image: Condition, etc.) 97.0 Sandstone, Dark Red/Brown, Hard, Ery End Image: Condition, etc.
	73.0 72.0
78.0-772.1	Mudstone, Fissile, Dry, Red/Brown, Some Grey/Green Reduction Spots Sandstone, Fine, Red/Brown, Fissile, Hard, Feldspathic, Bedded 6" to 1.0", White Mottled Upper Sonsela Member
SIZE & TYPE OF BORING: 4 1/4" II C:\bill\Projects\2005\05100cinizafirewtr\8	85.0 HOLLOW STEMMED AUGER LOGGED BY: WHK sing 1.xls]Sbeet1C

Date: 912 912 912 912 912 912 912 912	Las Cruces, NM 88004 505-523-7674 Log of Test Borings	File #: 05-100 Site: Giant-Ciniza Elevation: EXISTING Date: 9/24/2005
AB# DEPTH COUNT	PLOT SCALE MATERIAL CHARACTERIS (MOISTURE, CONDITION, COLO Upper Sonsela Member Continued (DR.ETC.) %M LL PI CLASS
	95.0	
97.7-98.2 98.2-101.6	Mudstone, Hard, Dry, Green/Grey Sandstone, Fine to Medium, Quar Water Bearing, Hard, (Sonsela Me 100.0 Petrified Forest Formation, Chinle	tz Grains, mber,
101.6	TD Boring continuopusly sampled usia barreled intrusion sampler Boring closed using 10' of 3/8" TR capped with 50' of 8% bentonite c 105.0 and backfilled to the ground surfa cuttings.	-30 Pel Plug ement sluny