

J. Brady Crouch

ConocoPhillips Company Risk Management & Remediation Program Manager

600 N. Dairy Ashford EC3-06-W056 Houston, TX 77079 Phone: 832-486-3016

Mr. Randolph Bayliss, P. E. District III & IV Hydrologist New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2017

Re: NMOCD Case No. 3R-173, 2016 Annual Groundwater Monitoring and Remediation Report

Dear Mr. Bayliss:

Enclosed is the 2016 Annual Groundwater Monitoring and Remediation Report for the Flora Vista No.1 site. This report, prepared by GHD Services, Inc., contains the results of site activities in 2016.

Please let me know if you have any questions.

Sincerely, Joseph B. Canuch

J. Brady Crouch

Enc

2016 Annual Groundwater Monitoring and Remediation Report

ConocoPhillips Flora Vista No. 1 San Juan County, New Mexico API# 30-045-20073 NMOCD# 3R-173

ConocoPhillips Company

GHD | 6121 Indian School Rd NE Suite 200 Albuquerque NM 87110 USA 074926| 5MN00| Report No 8 | March 21, 2017

Table of Contents

1.	Introd	luction	1
	1.1	Background	1
2.	In-Sit	u Chemical Oxidation	2
3.	Grou	ndwater Monitor Summary Methodology and Analytical Results	2
	3.1	Groundwater Monitor Summary	2
	3.2	Groundwater Monitor Methodology	2
	3.3	Groundwater Monitor Analytical Results	2
4.	Conc	lusions and Recommendations	4

Figure Index

Figure 1	Site Vicinity Map
Figure 2	Site Plan
Figure 3	Geologic Cross Section
Figure 4	March 2015 Groundwater Potentiometric Surface Map
Figure 5	June 2015 Groundwater Potentiometric Surface Map
Figure 6	September 2015 Groundwater Potentiometric Surface Map
Figure 7	December 2015 Groundwater Potentiometric Surface Map
Figure 8	2016 Benzene Concentration Map

Table Index

Table 1 Site History TimelineTable 2 Field Parameters SummaryTable 3 Groundwater Analytical Results Summary

Appendix Index

Appendix A Groundwater Laboratory Analytical Reports

1. Introduction

This annual report presents the results of the quarterly groundwater monitor events conducted by GHD Services, Inc. (GHD) during 2016 at the Flora Vista No. 1 natural gas well site (hereafter referred to as the "Site"). The Site is operated by Burlington Resources Oil & Gas Company LP (Burlington), a wholly owned subsidiary of ConocoPhillips Company (ConocoPhillips). The Site is located on private property in Unit Letter F, Section 22, Township 30N, Range 12W, of San Juan County, New Mexico (Figure 1). The Site consists of a gas well and associated equipment and installations. A detailed Site Plan is provided as Figure 2.

1.1 Background

A previous operator removed an earthen dehydrator pit from service in March 1994. Hydrocarbon impacted soil was subsequently excavated in April 1994 and again in November 1995. A pit closure report was submitted to the New Mexico Oil Conservation Division (NMOCD) in August 1996 by El Paso Field Services. The NMOCD issued a letter to El Paso Field Services on January 24, 1997 approving pit closure and remediation.

Burlington encountered hydrocarbon impacted soil at the Site during a production facility resetting activity in early 2003. Burlington subsequently directed the excavation of approximately 9,443 cubic yards of soil in an attempt to remove impacted soils. Groundwater was observed in the bottom of the excavation at approximately 25 feet below ground surface (ft bgs). Field screening was conducted during excavation to determine extent of impacted soil. To enhance the remediation of the remaining amounts of residual hydrocarbon contamination in the excavated area, approximately 80 barrels (bbls) of a potassium permanganate oxidizer solution was sprayed on the soil.

In September 2003, Envirotech installed a groundwater monitor well (MW 1) slightly down gradient from the center of the excavation (Figure 2). Subsequent monitor included analyses for benzene, toluene, ethylbenzene, and total xylenes (BTEX), as well as total petroleum hydrocarbons (TPH). Groundwater analyses indicated the presence of benzene and total xylenes above regulatory standards. Monitor wells MW 2, MW 3, and MW 4 were installed at the Site in August 2008 in response to an April 2008 request from NMOCD for Site characterization and additional laboratory analyses.

A generalized geologic cross section was prepared using boring logs from the August 2008 monitor well installation and is presented as Figure 3. Site history is summarized in Table 1.

2. In-Situ Chemical Oxidation Event

A groundwater sample was collected from monitor well MW-1 and submitted to GHD's Innovative Technology Group (ITG) to assess potential technologies that would address the remediation of Site contaminants. The ITG conducted microcosm studies of the groundwater sample to test the oxidation of hydrocarbons and solubilization of iron and manganese in the reducing groundwater of the Site. In-situ chemical oxidation (ISCO) with a sodium hydroxide catalyzed sodium persulfate was determined to be the most cost effective method to treat Site contaminants. In late October of

2016 GHD injected approximately 4,834 gallons of a 15% solution of PersulfOx into monitor wells MW-1 and MW-5. Results of the scheduled March 2017 quarterly groundwater monitor will be a first assessment of the effectiveness of the ISCO action. Results will be used to plan potential additional ISCO injection in Site groundwater.

3. Groundwater Monitor Summary Methodology and Analytical Results

3.1 Groundwater Monitor Summary

Quarterly groundwater monitor was conducted at the Site on March 31, June 20, September 7, and November 29, 2016. Groundwater elevation measurements were recorded in monitor wells MW 1, MW 2, MW 3, MW 4, and MW 5 using an oil/water interface probe. Groundwater elevations are detailed in Table 2. Groundwater potentiometric surface maps created from 2016 data are presented as Figures 4, 5, 6, and 7. Groundwater flow fluctuates from southwest to southeast seasonally and is consistent with historical data.

3.2 Groundwater Monitor Methodology

Prior to sampling, at least three well volumes were purged from Site monitor wells with a dedicated polyethylene 1.5 inch bailer. If three well volumes could not be purged, wells were purged until dry and allowed to recharge prior to sampling. Purge water generated during sampling events was placed in the on Site produced water tank. While bailing each well, groundwater parameter data, including temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential were collected using a calibrated multi parameter meter. Field parameters are summarized on Table 3.

Monitor well MW-1 was unable to be sampled during the March 2016 event due to insufficient well volume. MW-1 and MW-5 were also not sampled during the November 2016 event because it was too soon after the October 25, 2016 ISCO injection event that utilized these two wells as injection points.

Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace. Samples were analyzed for the presence of BTEX by EPA Method 8260 and dissolved iron and dissolved manganese by EPA Method 6010.

On June 20, 2016, groundwater samples were collected from two down gradient domestic irrigation wells. Domestic irrigation wells DW 1 and DW 2 are located at 32 Road 3581 and 34 Road 3581, Flora Vista, New Mexico, respectively.

3.3 Groundwater Monitor Analytical Results

Groundwater samples collected during 2016 quarterly sampling events from monitor well MW-2 and domestic irrigation wells DW 1 and DW 2 did not exceed New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for any target constituents. Groundwater collected from monitor wells MW-1, MW-3, MW-4, and MW-5 exceeded the NMWQCC standards for the following constituents:

March 2016

- Dissolved Iron The NMWQCC standard for dissolved iron is 1 milligram per liter (mg/L). The
 concentrations of dissolved iron in the groundwater sample collected from MW-4 and MW-5
 were 1.44 mg/L and 2.06 mg/L.
- Dissolved Manganese The NMWQCC standard for dissolved manganese is 0.2 mg/L. The
 concentrations of dissolved manganese in the groundwater sample collected from MW-4 and
 MW-5 were 3.9 mg/L and 2.18 mg/L.
- Xylenes The NMWQCC standard for total xylenes is 0.62 mg/L. The concentration of xylenes in the groundwater sample collected from MW-5 was 0.936 mg/L.

June 2016

- Benzene The NMWQCC standard for benzene is 0.01 mg/L. The concentrations of benzene
 in the groundwater samples collected from MW-1, MW-4 and MW-5 were 0.834 mg/L, 0.0428
 mg/L and 0.0404 mg/L, respectively.
- Xylenes The concentrations of xylenes in the groundwater sample collected from MW-1 and MW-5 were 2.06 mg/L and 2.48 mg/L.
- Dissolved Iron The concentrations of dissolved iron in groundwater samples collected from MW-1, MW-4 and MW-5 were 40.8 mg/L, 4.88 and 6.48 mg/L, respectively.
- Dissolved Manganese The concentrations of dissolved manganese in groundwater samples collected from MW-1, MW-4 and MW-5 were 2.17 mg/L, 3.87 mg/L and 2.68 mg/L, respectively.

September 2016

- Benzene The concentrations of benzene in the groundwater samples collected from MW-1 and MW-5 were 0.525 mg/L and 0.0229 mg/L.
- Xylenes The concentrations of xylenes in the groundwater samples collected from MW-1 and MW-5 were 1.62 mg/L and 3.45 mg/L
- Dissolved Iron The concentrations of dissolved iron in groundwater samples collected from MW-1, MW-4, and MW-5 were 17.6 mg/L, 4.01mg/L, and 4.6 mg/L, respectively.
- Dissolved Manganese The concentrations of dissolved manganese in groundwater samples collected from MW-1, MW-4, and MW-5 were 1.51 mg/L, 3.84 mg/L, and 2.07 mg/L, respectively.

December 2016

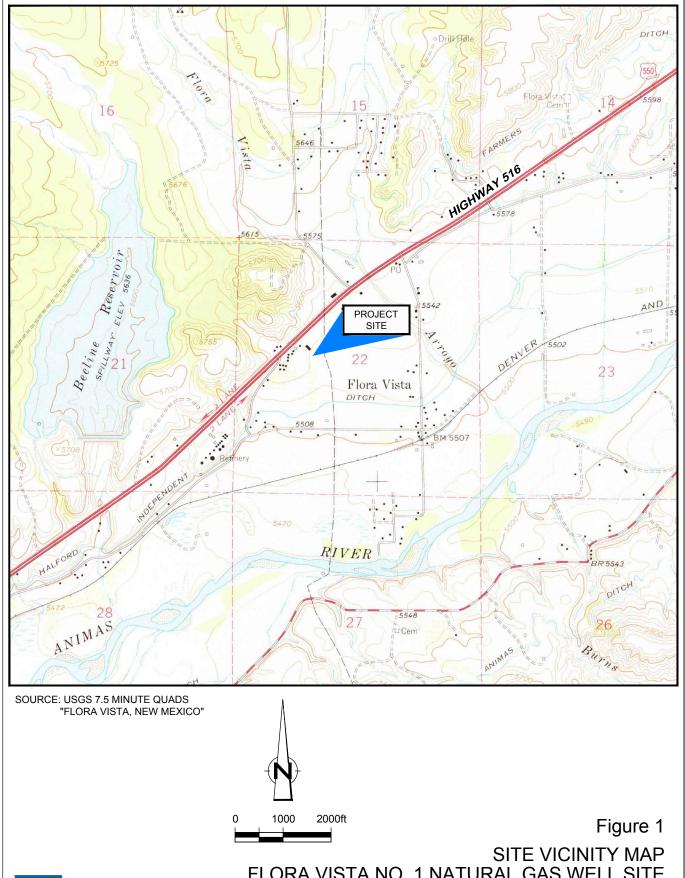
- Benzene The concentration of benzene in the groundwater sample collected from MW-4 was 0.0346 mg/L.
- Dissolved Iron The concentration of dissolved iron in groundwater sample collected from MW-4 was 4.31 mg/L.
- Dissolved Manganese The concentration of dissolved manganese in groundwater sample collected from MW-4 was 3.88 mg/L.

A contaminant concentration map for 2016 quarterly groundwater monitor events is presented on Figures 8. A summary of the historical groundwater laboratory analytical results is presented in Table 5. The 2016 groundwater laboratory analytical reports are included in Appendix C.

4. Conclusions and Recommendations

Groundwater samples collected from MW-1 have consistently exceeded NMWQCC groundwater quality standards for benzene, dissolved iron, and dissolved manganese from October 2008 through December 2016 and have intermittently exceeded the NMWQCC groundwater quality standards for ethylbenzene and total xylenes. BTEX constituent concentrations exhibit a decreasing trend over time in MW-1.

Groundwater samples collected from MW-4 have consistently exceeded NMWQCC groundwater quality standards for dissolved iron and dissolved manganese from October 2008 through December 2016 and have intermittently exceeded the NMWQCC groundwater quality standard for benzene.


Groundwater samples from MW-5 exceeded NMWQCC groundwater quality standards for benzene, xylenes, dissolved iron, and dissolved manganese during all of the 2016 events for which it was sampled (with the exception of March for which benzene was non-detect).

Based on the historical groundwater quality data, groundwater samples collected from MW-2, MW-3, DW-1 and DW-2 have never exceeded NMWQCC groundwater quality standards for any target groundwater quality constituents.

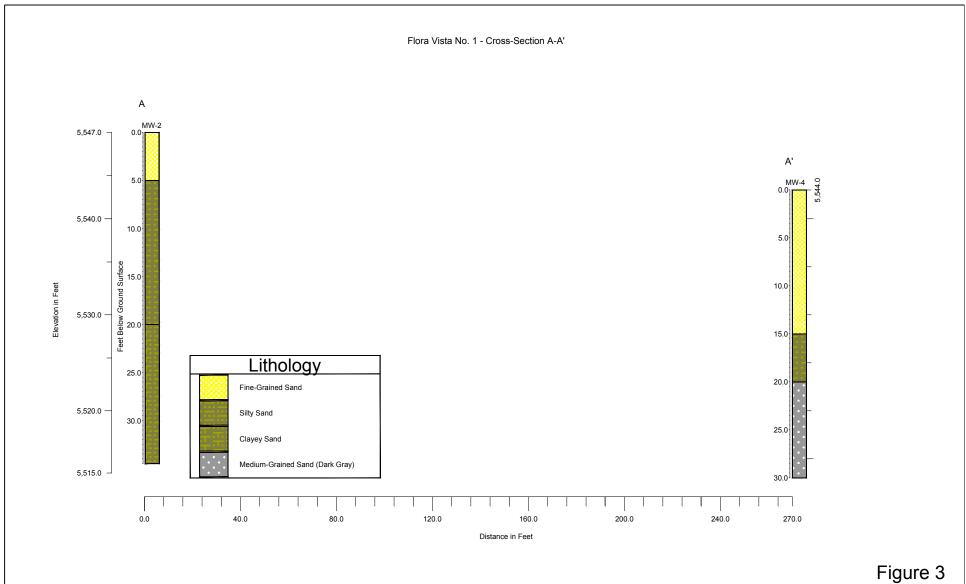
GHD injected approximately 4,834 gallons of a 15% solution of PersulfOx into monitor wells MW-1 and MW-5 to address above-standard concentrations of BTEX, dissolved iron and manganese. The ITG in its treatability study for the site recommended this dose should be delivered in three injection events preferably spaced 3 months apart, but at least 6 weeks apart.

In addition to the continuation of ISCO injection events, GHD recommends the continuation of quarterly sampling of all Site monitor wells and annual sampling of DW 1 and DW 2 to monitor groundwater quality at the Site. The next sampling event will take place in March 2017.

Figures

GHD

FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company



ConocoPhillips high resolution aerial imagery 2008.

Figure 2

SITE PLAN FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

GEOLOGICAL CROSS SECTION FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

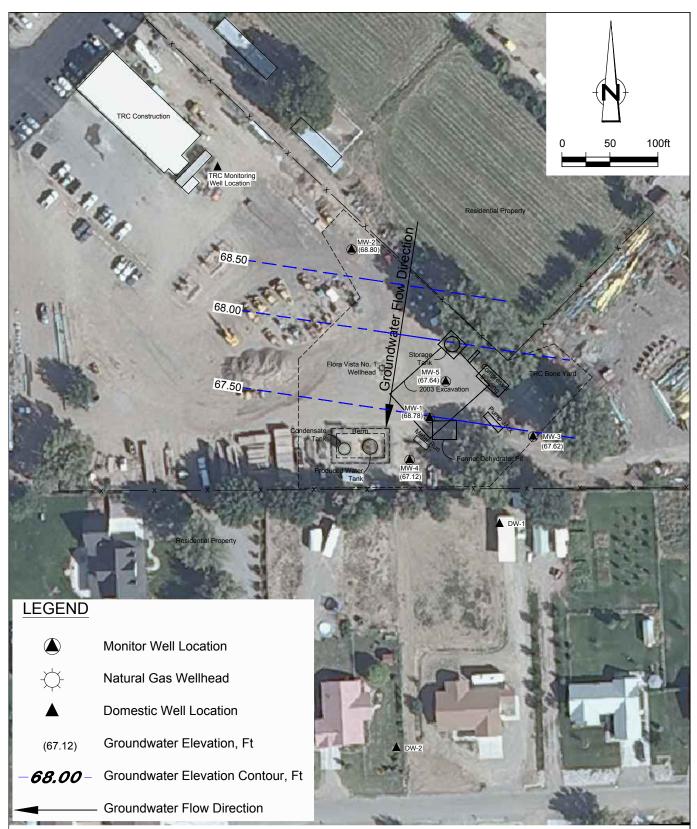


Figure 4

MARCH 2016 GROUNDWATER POTENTIOMETRIC SURFACE MAP FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

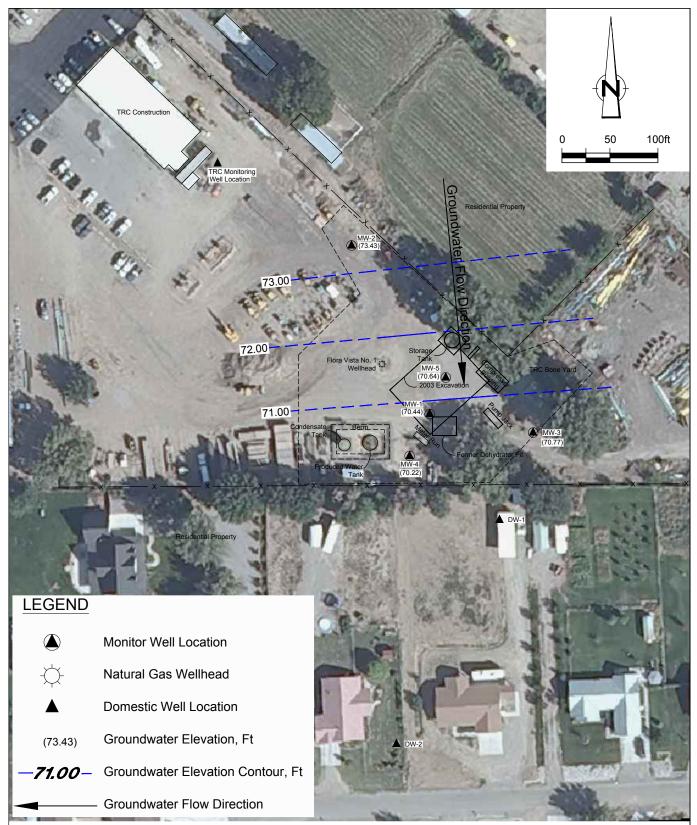


Figure 5

JUNE 2016 GROUNDWATER POTENTIOMETRIC SURFACE MAP FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

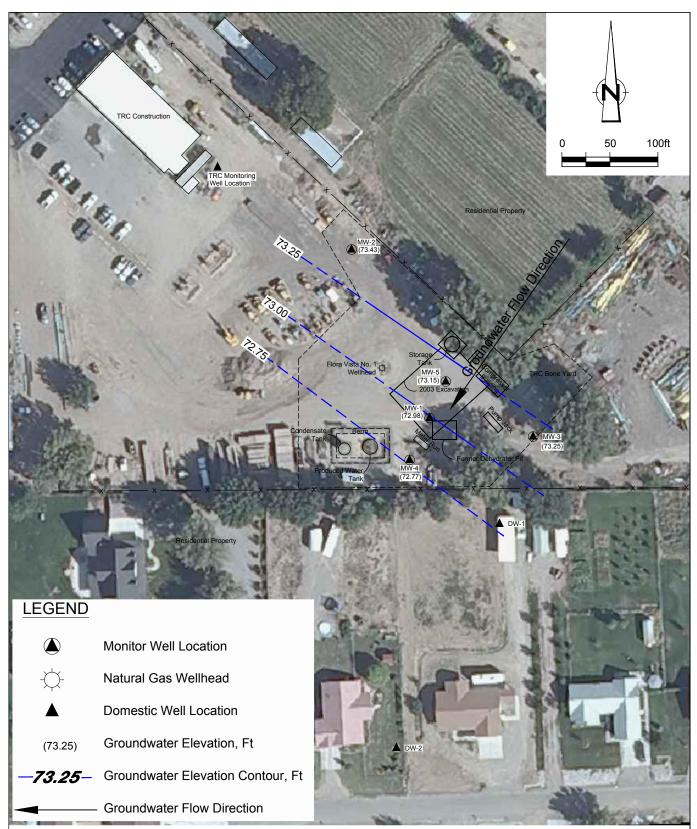


Figure 6

SEPTEMBER 2016 GROUNDWATER POTENTIOMETRIC SURFACE MAP FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

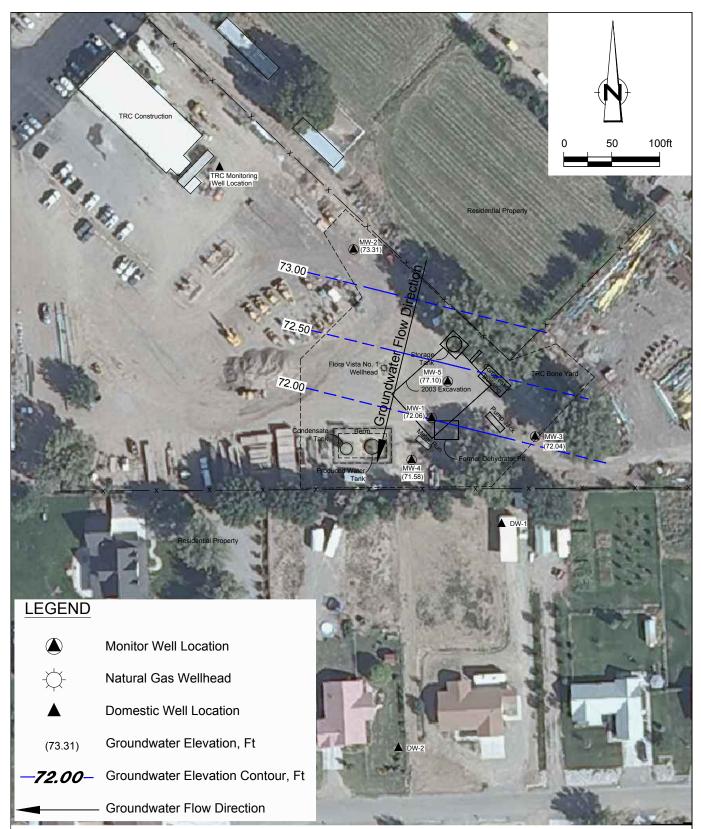


Figure 7

NOVEMBER 2016 GROUNDWATER POTENTIOMETRIC SURFACE MAP FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

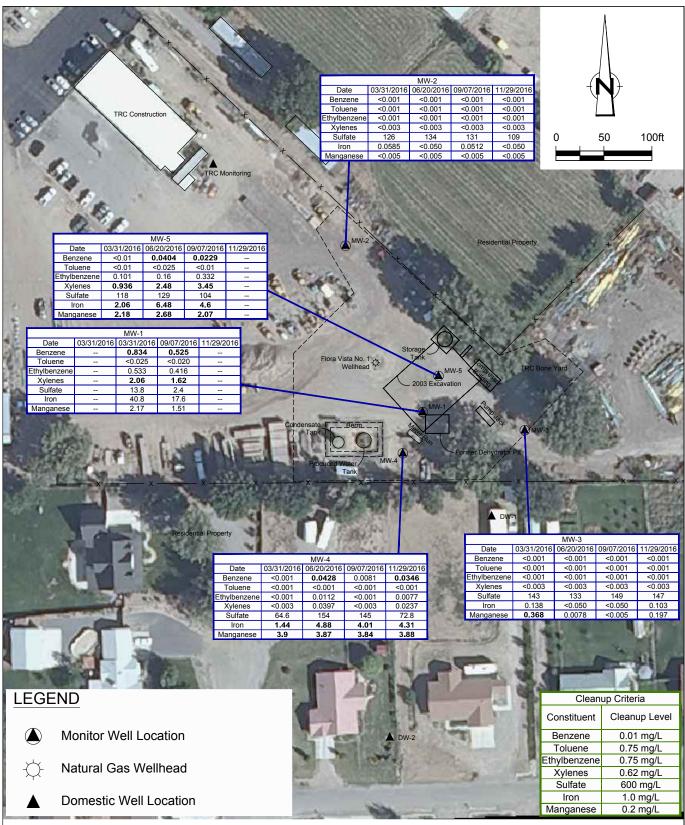


Figure 8

2016 CONTAMINANT CONCENTRATION MAP FLORA VISTA NO. 1 NATURAL GAS WELL SITE SECTION 22, T30N-R12W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

Date/Time Period	Event/Action	Description/Comments
November 28, 1995	Pit Closure Activities	Philip Environmental excavated and removed approximately 850 cubic yards of soil from the area where the Flora Vista No. 1 dehydrator pit was located. Excavation activities were stopped in the north and west directions due to the positions of the compressor and meter run equipment.
July and August 1996	Submittal of Pit Closure	El Paso Field Services submits Pit Closure Reports to the New Mexico Oil Conservation Division outlining the excavation and closure of the dehydrator pit at the site.
January 24, 1997	Pit Closure Approval	El Paso Field Services receives approval of pit closure from the New Mexico Oil Conservation Division.
June and July 2003	Initial Site Assessment	Historical petroleum contaminated soil discovered during a production facility resetting activity. Environmental investigation began with the excavation of approximately 4,986 cubic yards of impacted soil and 4,446 cubic yards of clean soil. Groundwater was encountered at approximately 25 feet below the ground surface. The impacted soil was taken to a commercial landfill facility located on Crouch Mesa in Farmington, New Mexico. Approximately 80 bbls of potassium permanganate was sprayed on the soils to breakdown any minor amounts of residual petroleum contaminants. The excavation area was backfilled with clean soil.
September 2, 2003	Groundwater Monitor Well Installation	One ground water Monitor Well, MW-1, was installed slightly down-gradient from the center of the soil excavation by Envirotech. Total depth of well is 26 feet.
September of 2003 through December 13, 2006	Quarterly Groundwater Monitoring	Quarterly groundwater monitoring of MW-1 for analysis of BTEX constituents. MW-1 remained above standards for benzene, ethylbenzene, and total xylenes.
March 31, 2006	Site Transfer	ConocoPhillips Company completes acquisition of Burlington Resources.
March 2007 through January 2008	Consultant Change and Groundwater Monitoring	After the acquisition of Burlington Resources by ConocoPhillips, consulting responsibilities were transferred from Lode Star LLC of Farmington, NM to Tetra Tech of Albuquerque, NM. Tetra Tech began sampling the Flora Vista site quarterly in March of 2007. Four consecutive quarters of groundwater sampling were conducted at the Flora Vista site. Groundwater was sampled from MW-1 and was analyzed for BTEX constituents during all sampling events. MW-1 remained above standards for benzene, ethylbenzene, and total xylenes.
March 28, 2008	Reporting	Annual report for 2007 is submitted to the Oil Conservation Division of NM Energy, Minerals, and Resources Department (OCD).
April 1, 2008	Additional Monitoring Requested by OCD	Oil Conservation Division of NM Energy, Minerals, and Resources Dept. indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
July 23, 2008	Groundwater Monitoring	Groundwater monitoring of MW-1. One sample and a duplicate were collected. Benzene and Xylenes are above NMWQCC standards.
August 12 and 13, 2008	Groundwater Monitor Well Installation and Groundwater Monitoring	Three additional groundwater Monitor Wells, MW-2, MW-3 and MW-4 were installed by WDC and overseen by Tetra Tech. MW-2 was installed upgradient of MW-1. Both MW-3 and MW-4 were installed downgradient of MW-1. Soil samples were collected from just above the groundwater interface for each boring location and sent to Southern Petroleum Laboratory for a baseline soil analysis. All wells were developed by purging approximately 80 gallons of fluid using a surge block and hand bailer/purge pump.
October 21, 2008	Groundwater Monitoring	Third quarter 2008 groundwater monitoring was completed and was the first quarter of sampling to include all four monitor wells on site. A baseline suite was completed including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics. There were 3 constituents that returned results above NMWQCC limits, Benzene (MW-1 and MW-4), Total Xylenes (MW-1), and Sulfate (MW-1).
January 28, 2009	Groundwater Monitoring	Xylenes (MW-1) were above NMWQCC standards.
March 1, 2009	Initiate Annual Sampling	The Flora Vista No. 1 site is put on an annual monitoring schedule. The next sampling event was scheduled for September 2009.
September 30, 2009	Groundwater Monitoring	Tetra Tech conducted 2009 annual groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1) and manganese (MW-1 and MW-4) were above NMWQCC standards.

Table 1

Date/Time Period	Event/Action	Description/Comments
December 16, 2009	Private Irrigation Well Sampling	Tetra Tech collected a groundwater sample from a domestic well (DW-1) located to the south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards.
May 14, 2010	Initiate Quarterly Sampling	The Flora Vista No. 1 site is put on a semi-annual monitoring schedule. Private domestic irrigation well sampling is also to be included in semi-annual sampling events.
June 10, 2010	Private Irrigation Well Sampling	Tetra Tech collected a groundwater sample from a second private down-gradient domestic well (DW-2) to be sampled for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards.
June 10 and 11, 2010	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1) and manganese (MW-1 and MW-4) were above NMWQCC standards.
September 27, 2010	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron and manganese (MW-1 and MW-4) were above NMWQCC standards.
December 14, 2010	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron and manganese (MW-1 and MW-4) were above NMWQCC standards.
March 17, 2011	Groundwater Monitoring	Tetra Tech conducted groundwater monitoring at the site for BTEX constituents, dissolved iron, dissolved manganese, and sulfate. Groundwater collected from MW-1 exceeded the NMWQCC standards for benzene, xylenes, dissolved iron and dissolved manganese. Groundwater collected from MW-4 exceeded the NMWQCC standards from benzene and dissolved manganese. Tetra Tech also collected a groundwater sample from a domestic well (DW-2) located to the south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards in the domestic well sample.
June 15, 2011	Transfer of Site Consulting Responsibilities	On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech of Albuquerque, NM to Conestoga-Rovers & Associates (CRA) of Albuquerque, NM.
June 24, 2011	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards. CRA also collected a groundwater sample from Domestic Well DW-1 located south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards in the domestic well sample.
September 29, 2011	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
December 14, 2011	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese, and sulfate. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
March 9, 2012	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards. The well vault of MW-2 is found to be destroyed.
April 25, 2012	Well Pad Repair	CRA on site to oversee repair of MW-2.
June 7, 2012	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards. CRA also collected a groundwater sample from Domestic Well DW-2 located south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards in the domestic well sample.
July 27, 2012	Private Irrigation Well Sampling	CRA collected a groundwater sample from Domestic Well DW-1 located south of the site to be analyzed for BTEX. All constituents were found to be below laboratory detection limits and NMWQCC standards in the domestic well sample.

Table 1

Date/Time Period	Event/Action	Description/Comments
September 19, 2012	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
December 13, 2012	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), ethylbenzene (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
March 20, 2013	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
June 12, 2013	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
August 21-22, 2013	Dual-Phase Extraction	CRA and subcontractor AccuVac conducted Mobile Dual-Phase Extraction from MW-1 and MW-4. 1292 gallons pumped from these wells and 0.5 gallons equivalent product removed via SVE during the two-day event.
September 11, 2013	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
December 13, 2013	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
March 19, 2014	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
June 17, 2014	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
September 18, 2014	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
December 18, 2014	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. MW-1 and MW-3 were inaccessible during this monitoring event. Benzene, dissolved iron, and dissolved manganese were above NMWQCC standards in MW-4.
March 19, 2015	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. MW-1 did not contain sufficient volume for sampling. Dissolved iron and dissolved manganese were above NMWQCC standards in MW-4.
June 18, 2015	Groundwater Monitoring	CRA conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-4), xylenes (MW-1), dissolved iron (MW-1 and MW-4) and dissolved manganese (MW-1 and MW-4) were above NMWQCC standards.
September 1, 2015	Monitoring Well Installation	GHD installed MW-5 upgradient from MW-1. Soils just above water table impacted with TPH above NMOCD standards. BTEX constituents, dissolved iron and manganesewere in groundwater above NMWQCC standards.
September 17, 2015	Groundwater Monitoring	GHD conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1, MW-4, and MW-5), xylene (MW-5), dissolved iron (MW-1, MW-4, and MW-5) and dissolved manganese (MW-1, MW-4, and MW-5) were above NMWQCC standards.
December 3, 2015	Groundwater Monitoring	GHD conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1, MW-4, and MW-5), toluene (MW-5), xylene (MW-5), dissolved iron (MW-1, MW-4, and MW-5) and dissolved manganese (MW-1, MW-4, and MW-5) were above NMWQCC standards.
March 31, 2016	Groundwater Monitoring	GHD conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Total xylenes (MW-5), dissolved iron (MW-4, and MW-5) and dissolved manganese (MW-3, MW-4, and MW-5) were above NMWQCC standards.
June 20, 2016	Groundwater Monitoring	GHD conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1, MW-4, MW-5), total xylenes (MW-1, MW-5), dissolved iron and dissolved manganese (MW-1, MW-4, and MW-5) were above NMWQCC standards.

Date/Time Period	Event/Action	Description/Comments
October 25-26, 2016	ISCO Event	GHD conducted an in-situ chemical oxidation event. A total of 4834 gallons of 15% solution catalyzed sodium persulfate was injected into MW-1 and MW-5.
September 7, 2016		GHD conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1 and MW-5), total xylenes (MW-1, MW-5), dissolved iron and dissolved manganese (MW-1, MW-4, and MW-5) were above NMWQCC standards.
November 29, 2016	Groundwater Monitoring	GHD conducted groundwater monitoring at the site for BTEX constituents, dissolved iron and manganese. Benzene (MW-1, MW-4, MW-5), total xylenes (MW-1, MW-5), dissolved iron and dissolved manganese (MW-1, MW-4, and MW-5) were above NMWQCC standards.

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

		Elevation*	Screen		Depth to				
Well ID	Total Depth	*	Interval	Date Measured	Groundwater	Relative Water Level			
	(ft below TOC)		(ft bgs)		(ft below TOC)				
				6/20/2003	NM	NM			
				9/23/2003	17.03	77.35			
				12/16/2003	20.11	74.27			
				3/16/2004	23.69	70.69			
				6/21/2004	19.92	74.46			
				9/30/2004	16.82	77.56			
				12/13/2004	20.40	73.98			
				3/22/2005	24.32	70.06			
				6/22/2005	NM	NM			
				10/24/2005	NM	NM			
				12/13/2005	21.24	73.14			
				3/22/2006	24.75	69.63			
				6/22/2006	20.48	73.90			
				10/20/2006	19.13	75.25			
				12/13/2006	21.24	73.14			
		94.38		11/9/2007	19.71	74.67			
				1/15/2008	NM	NM			
				3/19/2008	24.35	70.03			
				7/23/2008	19.89	74.49			
			11.02 - 26.02	10/21/2008	19.48	74.90			
	26.02			1/28/2009	23.96	70.42			
				9/30/2009	18.16	76.22			
				6/10/2010	21.64	72.74			
				9/27/2010	19.31	75.07			
MW-1				12/14/2010	21.41	72.97			
IVIV - I	20.02			3/17/2011	24.95	69.43			
				6/24/2011	22.55	71.83			
				9/29/2011	18.37	76.01			
				12/14/2011	20.63	73.75			
				3/9/2012	24.12	70.26			
				6/7/2012	23.08	70.88			
				9/19/2012	18.94	75.02			
		1		12/13/2012	21.22	72.74			
		1		3/20/2013	24.79	69.17			
				6/12/2013	22.51	71.45			
				9/11/2013	18.34	75.62			
		1		12/13/2013	21.53	72.43			
		1		3/19/2014	25.26	68.70			
		1		6/17/2014	21.55	72.41			
		93.96		9/18/2014	19.58	74.38			
		00.00		12/18/2014		by gravel and asphalt			
		1		3/19/2015	25.18	68.78			
		1		6/18/2015	23.56	70.40			
		1		9/17/2015	21.85	72.11			
		1		12/3/2015	22.65	71.31			
				3/31/2016*	26.02	67.94			
				6/20/2016	23.52	70.44			
		1					9/6/2016	20.98	72.98
				11/29/2016	21.90	72.06			
		<u> </u>		11/20/2010	21.00	. 2.00			

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

		Elevation*	Screen		Depth to	
Well ID	Total Depth	*	Interval	Date Measured	Groundwater	Relative Water Level
	(ft below TOC)		(ft bgs)		(ft below TOC)	
				10/21/2008	20.71	76.39
				1/28/2009	22.75	74.35
				9/30/2009	18.83	78.27
				6/11/2010	22.09	75.01
				9/27/2010	20.12	76.98
		97.1		12/14/2010	NM	NM
				3/17/2011	NM	NM
				6/24/2011	22.50	74.60
				9/29/2011 12/14/2011	18.95 21.79	75.43 75.31
				3/9/2012	25.60	71.50
				6/7/2012	22.46	74.54
				9/19/2012	17.70	79.30
				12/13/2012	22.43	74.57
				3/20/2013	26.49	70.51
MW-2	31.35		12.35 - 27.35	6/12/2013	22.13	74.87
				9/11/2013	17.95	79.05
				12/13/2013	22.78	74.22
				3/19/2014	26.99	70.01
				6/17/2014	20.31	76.69
		97.00		9/18/2014	19.87	77.13
				12/18/2014	23.00	74.00
				3/19/2015	26.92	70.08
				6/18/2015	23.24	73.76
				9/17/2015	22.78	74.22
				12/3/2015	24.23	72.77
				3/31/2016	28.20	68.80
				6/20/2016	25.67	71.33
				9/6/2016	23.57	73.43
				11/29/2016	23.69	73.31
				10/21/2008	17.92	74.98
				1/28/2009	21.53	71.37
				9/30/2009	16.43	76.47
				6/10/2010	19.71	73.19
		92.9		9/27/2010 12/14/2010	17.81 19.61	75.09 73.29
		32.3		3/17/2011	23.32	69.58
				6/24/2011	20.55	72.35
				9/29/2011	16.84	77.54
				12/14/2011	19.13	73.77
				3/9/2012	22.51	70.39
				6/7/2012	20.93	71.50
				9/19/2012	17.48	74.95
				12/13/2012	19.78	72.65
MW-3	20.07		11 07 06 07	3/20/2013	23.18	69.25
1V1VV-3	30.87		11.87 - 26.87	6/12/2013	20.68	71.75
				9/11/2013	16.90	75.53
				12/13/2013	20.11	72.32
				3/19/2014	23.64	68.79
				6/17/2014	19.85	72.58
		92.43		9/18/2014	18.01	74.42
				12/18/2014		by standing water
				3/19/2015	23.55	68.88
				6/18/2015	21.84	70.59
				9/17/2015	20.18	72.25
				12/3/2015	21.10	71.33
				3/31/2016	24.81	67.62
				6/20/2016	21.66	70.77
				9/6/2016 11/29/2016	19.18 20.39	73.25 72.04
	1	1	1	11/29/2010	20.39	<i>i</i> ∠.04

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

		Elevation*	Screen		Depth to	
Well ID	Total Depth	*	Interval	Date Measured	Groundwater	Relative Water Level
	(ft below TOC)		(ft bgs)		(ft below TOC)	
				10/21/2008	18.06	75.54
				1/28/2009	24.55	69.05
				9/30/2009	17.89	75.71
				6/10/2010	21.02	72.58
				9/27/2010	18.93	74.67
		93.6		12/14/2010	21.04	72.56
				3/17/2011	24.58	69.02
				6/24/2011	21.80	71.80
				9/29/2011	17.94	76.44
				12/14/2011	20.28	73.32
				3/9/2012	23.70	69.90
				6/7/2012	22.19	70.98
	4 30.42			9/19/2012	18.60	74.57
		93.17	11.42 - 26.42	12/13/2012	20.96	72.21
N 40 4				3/20/2013	24.38	68.79
MW-4				6/12/2013	21.81	71.36
				9/11/2013	18.89	74.28
				12/13/2013	21.28	71.89
				3/19/2014	24.88	68.29
				6/17/2014	21.21	71.96
				9/18/2014	19.16	74.01
				12/18/2014	21.41	71.76
				3/19/2015	24.80	68.37
				6/18/2015	23.09	70.08
				9/17/2015	21.37	71.80
				12/3/2015	22.29	70.88
				3/31/2016	26.05	67.12
				6/20/2016	22.95	70.22
				9/6/2016	20.40	72.77
				11/29/2016	21.59	71.58
				9/17/2015	21.59	72.23
				12/3/2015	22.41	71.41
MW-5	29.68	93.82	15-30	3/31/2016	26.18	67.64
C-VVIVI	29.08	93.8∠	15-30	6/20/2016	23.18	70.64
				9/6/2016	20.67	73.15
				11/29/2016	21.72	72.10

Notes:

- 1. ** = Casing elevations are based on an arbitrary 100 ft relative surface elevation set at the gas well head
- 2. * = well was dry
- 3. ft = Feet
- 4. TOC = Top of casing
- 5. bgs = below ground surface
- 6. NM = Not measured

Table 3

Field Parameters Summary ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

Well ID	Sample Date	Temperature (°C)	рН	TDS (g/L)	Conductivity (µS/cm)	DO (mg/L)	ORP (mV)	Volume (gallons)
	3/31/2016	No	o paramete	rs or samp	le collected due t	o low well v	olume.	
MW-1	6/20/2016	16.70	6.34		1070	0.41	-132.7	0.25
	9/7/2016	15.55	6.30	0.027	37	9.16	-66.6	1.50
	3/31/2016		No pa	rameters ta	ken due to low w	vell volume.		
N 4) A / O	6/20/2016	17.00	6.40		870	2.32	-104.0	1.50
MW-2	9/7/2016	15.00	6.57	0.571	879	3.67	-19.9	4.00
	11/29/2016	14.78	7.21		909	4.51	-17.1	
	3/31/2016	14.68	7.13	0.510	800	4.66	-13.0	2.50
N 41 A / 2	6/20/2016	14.90	7.05		750	2.02	83.2	4.00
MW-3	9/7/2016	14.19	6.02	0.467	719	5.55	12.5	5.00
	11/29/2016	13.68	7.41		725	5.03	-11.4	
	3/31/2016	15.60	6.98	0.700	1030	5.73	-47.0	2.25
N 4\ A / 4	6/20/2016	15.20	6.79		1040	1.06	-60.8	3.50
MW-4	9/7/2016	14.55	6.40	0.655	1008	2.48	-59.8	4.50
	11/29/2016	13.58	7.16		903	3.04	-80.9	
	3/31/2016	16.16	7.13	0.600	980	4.74	-97.0	1.75
MW-5	6/20/2016	15.90	6.88		1030	0.68	-99.7	3.25
	9/7/2016	14.96	6.34	0.599	918	1.51	-130.2	4.50

Notes:

TDS = total dissolved solids DO = dissolved oxygen

ORP = oxidation-reduction potential

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

W-# ID	0	D-4-	01-		E4hll	T-1	Xylenes	0.45-4-	Iron	Manganese
Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Ethylbenzene (mg/L)	Toluene (mg/L)	(total) (mg/L)	Sulfate (mg/L)	(dissolved) (mg/L)	(dissolved) (mg/L)
	NIMINOCO Cura un de cata y Occalit	. Ctomeloude	туре							
1	NMWQCC Groundwater Quality		(a rie)	0.01	0.75	0.75	0.62	600	1	0.2
-	MW-1 MW-1	6/20/2003 9/23/2003	(orig)	1.7 7.5	0.49 0.66	0.3 0.02	5.09 9.22			
-	MW-1	12/16/2003	(orig) (orig)	7.93	1.18	0.02	0.864			
-	MW-1	3/16/2004	(orig)	6.86	1.16	ND	8.47			
	MVV-1	6/21/2004	(orig)	4.14	0.43	ND	3.12			
-	MW-1	9/30/2004	(orig)	9.08	1.41	0.03	9.98			
-	MW-1	12/13/2004	(orig)	8.52	1.34	ND	9.39			
-	MW-1	3/22/2005	(orig)	4.55	0.85	ND	5.95			
-	MW-1	6/22/2005	(orig)			0.02188				
-	MW-1	10/24/2005	(orig)	6.39	1.01	ND	7.416			
F	MW-1	12/13/2005	(orig)	6.17	1.01	ND	7.57			
F	MW-1	3/22/2006	(orig)	3.58	0.77	ND	5.84			
-	MW-1	6/22/2006	(orig)	3.1	0.5	ND	3.5			
-	MW-1	10/20/2006	(orig)	6.6	1.22	0.01	8.91			
-	MW-1	12/13/2006	(orig)	4.23	1.09	0.01	8.13			
F	MW-1	3/27/2007	(orig)	2.37	0.504	0.007	3.749			
-	MW-1	6/25/2007	(orig)	2.87	0.51	0.14	3.89			
F	MW-1	11/9/2007	(orig)	5.6	0.91	< 0.0007	6.8			
	MW-1	1/15/2008	(orig)	4.2	0.89	< 0.0007	5.7			
	MW-1	3/19/2008	(orig)	2.7	0.59	< 0.005	4.7			
	MW-1	7/23/2008	(orig)	2	0.38	< 0.005	1.4			
	MW-1	10/21/2008	(orig)	4.5	0.63	< 0.005	5.3			
	MW-1	1/28/2009	(orig)	4	0.88	< 0.005	8.7			
	MW-1	9/30/2009	(orig)	4.2	0.53	0.0016	5.1	11.7	2.08	1.09
	MW-1	6/10/2010	(orig)	1.7	0.33	0.0012	0.99	27	0.126	1.28
	MW-1	9/27/2010	(orig)	3.2	0.53	0.002	4.2016	1.8	7.73	1.19
MW-1	MW-1	12/14/2010	(orig)	3.2	0.62	0.0012	5.3016	1.03	4.13	0.888
-	MW-1	3/17/2011	(orig)	1.7	0.48	0.0037	4.3092	2.27	1.11	1.07
-	GW-74926-062411-PG-01	6/24/2011	(orig)	2.1	0.494	0.0025	2.03	18.4	< 0.1	0.894
-	GW-74926-062411-PG-02	6/24/2011	(Duplicate)	1.97	0.458	0.0026	1.94			
-	GW-074926-092911-CM-009	9/29/2011	(orig)	2.44	0.519	< 0.005	3.65	< 1.0	25.2	1.02
-	GW-074926-121411-CB-MW-1	12/14/2011	(orig)	2.31	0.508	0.0055	3.93	13.2	25.4	0.945
-	GW-074926-3912-CB-MW-1	3/9/2012	(orig)	1.59	0.636	< 0.001	5.04		25.3	1.03
-	GW-074926-060712-CB-MW-1	6/7/2012	(orig)	1.77	0.182	0.127	0.633		21.4	0.914
-	GW-074926-091912-JP-MW-1	9/19/2012	(orig)	1.52	0.414	< 0.020	2.49		19	0.86
-	GW-074926-121312-CM-MW-1	12/13/2012	(orig)	2.02	0.809	< 0.025	5.02		23.8	0.75
-	GW-074926-032013-CM-MW-1	3/20/2013	(orig)	0.182	0.0406	< 0.002	0.0914		9.39	1.08
-	GW-074926-061213-JR-MW1	6/12/2013	(orig)	0.698	0.160	< 0.001	0.873		12.8	1.12
-	GW-074926-091113-CM-MW1	9/11/2013	(orig)	1.05	0.831	< 0.020	5.1		18.0	1.05
-	GW-074926-121313-CM-MW-1	12/13/2013	(orig)	0.591	0.670	0.0015	1.79		25.4	0.88
-	GW-074926-031914-CK-MW-1	3/19/2014	(orig)	0.0822	0.039	< 0.001	0.271			
-	GW-074926-061714-CK-MW-1	6/17/2014	(orig)	0.522	0.189	< 0.001	0.398		17.4	0.896
-	GW-074926-091814-CB-MW-1	9/18/2014	(orig)	0.849	0.299	< 0.001	1.23		23.4	1.01
Ļ		12/18/2014	ļ	We	II was obstructed				rations.	
Ļ		3/19/2015				e due to ins			T	
Ļ	GW-074926-061815-CB-MW-1	6/18/2015	(orig)	0.213	0.116	< 0.001	0.691		5.72	0.542
Ļ	GW-074926-061815-CB-DUP	6/18/2015	(Duplicate)	0.17	0.0684	< 0.001	0.533			
L	GW-074926-091715-CK-MW-1	9/17/2015	(orig)	0.0673	0.0859	< 0.001	0.362		4.22	0.614
Ļ	GW-074926-12315-CB-MW-1	12/3/2015	(orig)	0.0908	0.0612	< 0.001	0.138		2.69	0.63
L		3/31/2016		1 -		e due to ins			1	-
	GW-074926-062016-SP-MW-1	6/20/2016	(orig)	0.834	0.533	< 0.025	2.06	13.8	40.8	2.17
	GW-074926-090716-SP-MW-1	9/7/2016	(orig)	0.525	0.416	< 0.020	1.62	2.4	17.6	1.51

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Ethylbenzene (mg/L)	Toluene (mg/L)	Xylenes (total) (mg/L)	Sulfate (mg/L)	lron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)
	NMWQCC Groundwater Qualit	v Standards		0.01	0.75	0.75	0.62	600	1	0.2
	MW-2	10/21/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	115		
	MW-2	1/28/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND	ND	ND
	MW-2	9/30/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	123	0.0223	< 0.005
	MW-2	6/11/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	156	< 0.02	< 0.005
	MW-2	9/27/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	179	< 0.02	< 0.005
	GW-74926-062411-PG-05	6/24/2011	(orig)	< 0.0010	< 0.0010	< 0.0010	< 0.0030	176	0.191	< 0.015
	GW-074926-092911-CM-006	9/29/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	151	< 0.05	< 0.005
	GW-074926-121411-CB-MW-2	12/14/2011	(orig)	0.00031 J	0.0002 J	< 0.001	0.0022 J	135	0.0133 J	0.0022 J
	GW-074926-3912-CB-MW-2	3/9/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
	GW-074926-060712-CB-MW-2	6/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0822	0.0052
	GW-074926-091912-JP-MW-2	9/19/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
	GW-074926-121312-CM-MW-2	12/13/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
	GW-074926-032013-CM-MW-2	3/20/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
MW-2	GW-074926-061213-JR-MW2	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0665	< 0.005
10100-2	GW-074926-091113-CM-MW2	9/11/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-121313-CM-MW-2	12/13/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-031914-CK-MW-2	3/19/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	0.0242
	GW-074926-061714-CK-MW-2	6/17/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-091814-CB-MW-2	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0656	< 0.005
	GW-074926-121814-CM-MW-2	12/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.709	0.0055
	GW-074926-031915-CM-MW-2	3/19/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.883	0.0434
	GW-074926-061815-CB-MW-2	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-091715-CK-MW-2	9/17/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-12315-CB-MW-2	12/3/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-033116-CM-MW-2	3/31/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	126	0.0585	< 0.005
	GW-074926-062016-SP-MW-2	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	134	< 0.050	< 0.005
	GW-074926-090716-SP-MW-2	9/7/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	131	0.0512	< 0.005
	GW-074926-112916-CN-MW-2	11/29/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	109	< 0.050	< 0.005
	MW-3	10/21/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	93		
	MW-3	1/28/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	ND	ND	ND
	MW-3	9/30/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	144	0.0543	< 0.005
	MW-3	6/10/2010	(orig)	< 0.0005	< 0.001	< 0.001	< 0.001	122	0.0425	< 0.005
	MW-3	9/27/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	170	< 0.02	< 0.005
	MW-3	12/14/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	142	< 0.02	< 0.005
	MW-3	3/17/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	119	< 0.02	< 0.005
	GW-74926-062411-PG-03	6/24/2011	(orig)	< 0.0010	< 0.0010	< 0.0010	< 0.0030	127	0.189	< 0.015
	GW-074926-092911-CM-007	9/29/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	160	< 0.05	0.0063
	GW-074926-121411-CB-MW-3	12/14/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	136	0.0288 J	0.0207
	GW-074926-3912-CB-MW-3	3/9/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
	GW-074926-060712-CB-MW-3	6/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
	GW-074926-091912-JP-MW-3	9/19/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	< 0.005
	GW-074926-121312-CM-MW-3	12/13/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.0605	0.026
MW-3	GW-074926-032013-CM-MW-3	3/20/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.05	0.0149
	GW-074926-061213-JR-MW3	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		0.189	0.0094
	GW-074926-091113-CM-MW3	9/11/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-121313-CM-MW-3	12/13/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	0.013
	GW-074926-031914-CK-MW-3	3/19/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-061714-CK-MW-3	6/17/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-091814-CB-MW-3	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
		12/18/2014			und to be covered			1	1	
	GW-074926-031915-CM-MW-3	3/19/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-061815-CB-MW-3	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-091715-CK-MW-3	9/17/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	< 0.005
	GW-074926-12315-CB-MW-3	12/3/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		< 0.050	0.0258
	GW-074926-033116-CM-MW-3	3/31/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	143	0.138	0.368
[GW-074926-062016-SP-MW-3	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	133	< 0.050	0.0078
	GW-074926-090716-SP-MW-3	9/7/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	149	< 0.050	< 0.005
	GW-074926-112916-SP-MW-3	11/29/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	147	0.103	0.197

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

Well ID	Comple ID	Date	Comple	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Sulfate	Iron	Manganese
Well ID	Sample ID	Date	Sample Type	(mg/L)	(mg/L)	(mg/L)	(total) (mg/L)	(mg/L)	(dissolved) (mg/L)	(dissolved) (mg/L)
NMWQCC Groundwater Quality Standards		.,,,,,	0.01	0.75	0.75	0.62	600	1	0.2	
	MW-4	10/21/2008	(orig)	0.039	0.031	< 0.0005	0.02	90.1		
	MW-4	1/28/2009	(orig)	0.039	0.031	< 0.0005	0.18	90.1 ND	ND	ND
	MW-4	9/30/2009	(orig)	0.86	0.054	< 0.0005	0.572	48.9	0.148	4.48
	MW-4	6/10/2010	(orig)	0.14	0.027	< 0.0003	0.252	53.3	0.0566	4.65
 	MW-4	9/27/2010	(orig)	0.033	0.041	< 0.001	0.274	92.5	1.22	4.34
 	MW-4	12/14/2010	(orig)	0.13	0.093	< 0.001	0.899	67.5	1.75	4.69
 	MW-4	3/17/2011	(orig)	0.017	0.018	< 0.001	0.1966	83	0.0852	4.46
 	GW-74926-062411-PG-04	6/24/2011	(orig)	0.0296	0.0371	< 0.0010	0.472	130	1.5	4.9
	GW-074926-092911-CM-008	9/29/2011	(orig)	0.0392	0.0039	< 0.001	0.0536	96.1	2.55	4.1
	GW-074926-092911-CM-010	9/29/2011	(Duplicate)	0.043	0.0035	< 0.001	0.0483			
 	GW-074926-121411-CB-MW-4	12/14/2011	(orig)	0.101	0.0443	< 0.001	0.378	81.2	2.62	4.58
	GW-074926-121411-CB-DUP	12/14/2011	(Duplicate)	0.104	0.0437	< 0.005	0.372			
	GW-074926-3912-CB-MW-4	3/9/2012	(orig)	0.0264	0.0066	< 0.001	0.0651		2.46	4.73
	GW-074926-3912-CB-DUP	3/9/2012	(Duplicate)	0.0234	0.0056	< 0.001	0.058			
	GW-074926-060712-CB-MW-4	6/7/2012	(orig)	0.044	0.0245	< 0.001	0.303		2.07	4.02
	GW-074926-060712-CB-DUP	6/7/2012	(Duplicate)	0.026	0.0124	< 0.001	0.155			
	GW-074926-091912-JP-MW-4	9/19/2012	(orig)	0.0029	0.0048	< 0.001	0.0576		1.93	4.5
Ī	GW-074926-091912-JP-DUP	9/19/2012	(Duplicate)	0.0028	0.0045	< 0.001	0.0551			
	GW-074926-121312-CM-MW-4	12/13/2012	(orig)	0.0941	0.0399	< 0.002	0.385		2.92	4.9
	GW-074926-121312-CM-DUP	12/13/2012	(Duplicate)	0.197	0.0712	< 0.001	0.55			
	GW-074926-032012-CM-MW-4	3/20/2013	(orig)	0.0035	0.002	< 0.001	0.0211		1.82	4.37
	GW-074926-032012-CM-DUP	3/20/2013	(Duplicate)	0.0034	0.0022	< 0.001	0.0212			
MW-4	GW-074926-061213-JR-MW4	6/12/2013	(orig)	0.0588	0.0509	< 0.005	0.545		1.53	4.29
	GW-074926-061213-JR-DUP	6/12/2013	(Duplicate)	0.0215	0.0213	< 0.001	0.218			
10100-4	GW-074926-091113-CM-MW4	9/11/2013	(orig)	0.0166	0.0231	< 0.001	0.226		3.1	4.35
	GW-074926-091113-CM-DUP	9/11/2013	(Duplicate)	0.0156	0.0162	< 0.001	0.158			
	GW-074926-121313-CM-MW-4	12/13/2013	(orig)	0.0362	0.0199	< 0.001	0.169		2.7	4.8
	GW-074926-121313-CM-DUP	12/13/2013	(Duplicate)	0.0357	0.0185	< 0.001	0.16			
Ī	GW-074926-031914-CK-MW-4	3/19/2014	(orig)	< 0.001	< 0.001	< 0.001	0.0046		1.33	4.19
<u> </u>	GW-074926-031914-CK-DUP	3/19/2014	(Duplicate)	< 0.001	< 0.001	< 0.001	0.0049			
	GW-074926-061714-CK-MW-4	6/17/2014	(orig)	0.0069	< 0.001	< 0.001	< 0.003		2.68	4.01
Ī	GW-074926-061714-CK-DUP	6/17/2014	(Duplicate)	0.0063	< 0.001	< 0.001	< 0.003			
	GW-074926-091814-CB-MW-4	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003		3.43	4.63
	GW-074926-091814-CB-DUP	9/18/2014	(Duplicate)	0.0018	< 0.001	< 0.001	< 0.003			
	GW-074926-121814-CM-MW-4	12/18/2014	(orig)	0.0398	0.0062	< 0.001	0.0486		4.02	4.46
	GW-074926-121814-CM-DUP	12/18/2014	(Duplicate)	0.0296	0.0048	< 0.001	0.0354			
	GW-074926-031915-CM-MW-4	3/19/2015	(orig)	0.0012	< 0.001	< 0.001	< 0.003		1.57	4.02
	GW-074926-031915-CM-DUP	3/19/2015	(Duplicate)	0.0011	< 0.001	< 0.001	< 0.003			
	GW-074926-061815-CB-MW-4	6/18/2015	(orig)	0.067	0.0102	< 0.001	0.0563		3.02	4.35
	GW-074926-091715-CK-MW-4	9/17/2015	(orig)	0.0319	0.0297	< 0.001	0.178		3.03	3.75
	GW-074926-091715-CK-DUP	11/29/2016	(Duplicate)	0.0318	0.027	< 0.001	0.162			
	GW-074926-12315-CB-MW-4	12/3/2015	(orig)	0.0676	0.0526	< 0.01	0.354		4.34	4.12
	GW-074926-12315-CB-DUP	12/3/2015	(Duplicate)	0.0489	0.0396	< 0.01	0.263			
	GW-074926-033116-CM-MW-4	3/31/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	64.6	1.44	3.9
	GW-074926-062016-SP-MW-4	6/20/2016	(orig)	0.0428	0.0112	<0.001	0.0397	154	4.88	3.87
	GW-074926-090716-SP-MW-4	9/7/2016	(orig)	0.0081	< 0.001	< 0.001	< 0.003	145	4.01	3.84
								72.8		3.88
	GW-074926-112916-SP-MW-4	11/29/2016	(orig)	0.0346	0.0077	< 0.001	0.0237	/2.8	4.31	3.8

Groundwater Analytical Results Summary ConocoPhillips Company Flora Vista No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Ethylbenzene (mg/L)	Toluene (mg/L)	Xylenes (total) (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)
	NMWQCC Groundwater Quality Standards			0.01	0.75	0.75	0.62	600	1	0.2
	GW-074926-091715-CK-MW-5	9/17/2015	(orig)	0.0182	0.571	< 0.001	4.95		2.72	2.94
	GW-074926-12315-CB-MW-5	12/3/2015	(orig)	0.128	1.15	< 0.001	12.4		20.9	0.366
	GW-074926-033116-CM-MW-5	3/31/2016	(orig)	< 0.010	0.101	< 0.01	0.936	118	2.06	2.18
MW-5	GW-074926-033116-CM-DUP	3/31/2016	(Duplicate)	< 0.010	0.136	< 0.01	1.26			
	GW-074926-062016-SP-MW-5	6/20/2016	(orig)	0.0404	0.16	< 0.025	2.48	129	6.48	2.68
	GW-074926-090716-SP-MW-5	9/7/2016	(orig)	0.0229	0.332	< 0.01	3.45	104	4.6	2.07
	GW-074926-090716-SP-DUP	9/7/2016	(Duplicate)	0.0216	0.393	< 0.010	4.46			-
	DW-1	12/16/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			
	RS-74926-062411-CB-01	6/24/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			
DW-1	GW-074926-072712-JK-DW-17	7/27/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			
	DW-074926-061213-JR-32	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			
		12/18/2014	Attempt to contact landowner regarding well sampling. No response.							
	GW-074926-061815-CB-DOM-32	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			-
	GW-074926-062016-SP-DOM1	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			
DW-2	#34	6/10/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			
	Domestic #34	3/17/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			-
	GW-074926-061712-CB-DW34	6/7/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			-
	DW-074926-061213-JR-34	6/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			-
		12/18/2014	Attempt to sample well but landowner had shut well in for the winter months.							
	GW-074926-061815-CB-DOM-34	6/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			
	GW-074926-062016-SP-DOM2	6/20/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			

Notes:

- 1. MW = monitoring well
- 2. NMWQCC = New Mexico Water Quality Control Commission
 3. Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards
- 4. mg/L = milligrams per liter (parts per million)
 5. < 1.0 = Below laboratory detection limit of 1.0 mg/L
 6. ND = not detected
- 7. -- = not analyzed

Appendix A
Groundwater Laboratory Analytical Reports
Groundwater Laboratory Analytical Reports
GHD 2016 Annual Groundwater Monitoring and Site Assessment Report 074926 (8)

April 12, 2016

Jeffrey Walker GHD Services, Inc. 6121 Indian School Rd NE Ste 200 Albuquerque, NM 87110

RE: Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Dear Jeffrey Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on April 01, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

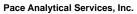
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan

alice.flanagan@pacelabs.com


Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Cassie Brown, GHD Services, Inc,

Cale Kanack, GHD

(913)599-5665

9608 Loiret Blvd. Lenexa, KS 66219

CERTIFICATIONS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

Kansas Field Laboratory Accreditation: # E-92587

(913)599-5665

SAMPLE SUMMARY

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60216117001	GW-074926-033116-CM-MW-2	Water	03/31/16 09:10	04/01/16 08:50
60216117002	GW-074926-033116-CM-MW-3	Water	03/31/16 08:55	04/01/16 08:50
60216117003	GW-074926-033116-CM-MW-4	Water	03/31/16 09:05	04/01/16 08:50
60216117004	GW-074926-033116-CM-MW-5	Water	03/31/16 09:25	04/01/16 08:50
60216117005	GW-074926-033116-CM-DUP	Water	03/31/16 00:00	04/01/16 08:50
60216117006	TB-074926-033116-CM-001	Water	03/31/16 15:30	04/01/16 08:50

SAMPLE ANALYTE COUNT

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60216117001	GW-074926-033116-CM-MW-2	EPA 6010	SMW	2
		EPA 5030B/8260	PGH	8
		EPA 300.0	OL	1
60216117002	GW-074926-033116-CM-MW-3	EPA 6010	SMW	2
		EPA 5030B/8260	PGH	8
		EPA 300.0	OL	1
60216117003	GW-074926-033116-CM-MW-4	EPA 6010	SMW	2
		EPA 5030B/8260	PGH	8
		EPA 300.0	OL	1
60216117004	GW-074926-033116-CM-MW-5	EPA 6010	SMW	2
		EPA 5030B/8260	PGH	8
		EPA 300.0	OL	1
60216117005	GW-074926-033116-CM-DUP	EPA 5030B/8260	PGH	8
60216117006	TB-074926-033116-CM-001	EPA 5030B/8260	PGH	8

(913)599-5665

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Method: EPA 6010

Description: 6010 MET ICP, Dissolved **Client:** GHD Services_COP NM

Date: April 12, 2016

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

(913)599-5665

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Method: EPA 5030B/8260

Description: 8260 MSV **Client:** GHD Services_COP NM

Date: April 12, 2016

General Information:

6 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/75110

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/75111

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: MSV/75141

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** GHD Services_COP NM

Date: April 12, 2016

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Sample: GW-074926-033116-CM- MW-2	Lab ID: 602	16117001	Collected: 03/31/1	6 09:10	Received: 04	/01/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	58.5	ug/L	50.0	1	04/04/16 15:45	04/07/16 16:01	7439-89-6	
Manganese, Dissolved	ND	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:22	7439-96-5	
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		04/08/16 19:18	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/08/16 19:18	100-41-4	
Toluene	ND	ug/L	1.0	1		04/08/16 19:18	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		04/08/16 19:18	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	100	%	77-130	1		04/08/16 19:18		
1,2-Dichloroethane-d4 (S)	93	%	81-127	1		04/08/16 19:18	17060-07-0	
Toluene-d8 (S)	97	%	80-120	1		04/08/16 19:18	2037-26-5	
Preservation pH	1.0		0.10	1		04/08/16 19:18		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	126	mg/L	10.0	10		04/08/16 22:48	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Sample: GW-074926-033116-CM- MW-3	Lab ID: 602	16117002	Collected: 03/31/1	6 08:55	Received: 04	l/01/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	138	ug/L	50.0	1	04/04/16 15:45	04/07/16 16:05	7439-89-6	
Manganese, Dissolved	368	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:26	7439-96-5	
8260 MSV	Analytical Meth	od: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		04/08/16 19:32	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/08/16 19:32	100-41-4	
Toluene	ND	ug/L	1.0	1		04/08/16 19:32	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		04/08/16 19:32	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	100	%	77-130	1		04/08/16 19:32	460-00-4	
1,2-Dichloroethane-d4 (S)	93	%	81-127	1		04/08/16 19:32	17060-07-0	
Toluene-d8 (S)	98	%	80-120	1		04/08/16 19:32	2037-26-5	
Preservation pH	1.0		0.10	1		04/08/16 19:32		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00					
Sulfate	143	mg/L	10.0	10		04/08/16 23:34	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Sample: GW-074926-033116-CM- MW-4	Lab ID: 602	16117003	Collected: 03/31/1	6 09:05	Received: 04	/01/16 08:50 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Met	hod: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	1440	ug/L	50.0	1	04/04/16 15:45	04/07/16 16:09	7439-89-6	
Manganese, Dissolved	3900	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:29	7439-96-5	
8260 MSV	Analytical Met	nod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		04/11/16 16:57	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/11/16 16:57	' 100-41-4	
Toluene	ND	ug/L	1.0	1		04/11/16 16:57	' 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		04/11/16 16:57	1330-20-7	
Surrogates		-						
4-Bromofluorobenzene (S)	102	%	77-130	1		04/11/16 16:57	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	81-127	1		04/11/16 16:57	17060-07-0	
Toluene-d8 (S)	98	%	80-120	1		04/11/16 16:57	2037-26-5	
Preservation pH	1.0		0.10	1		04/11/16 16:57	•	
300.0 IC Anions 28 Days	Analytical Met	nod: EPA 30	0.00					
Sulfate	64.6	mg/L	10.0	10		04/08/16 23:49	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Sample: GW-074926-033116-CM- MW-5	Lab ID: 602	16117004	Collected: 03/31/1	6 09:25	Received: 04	l/01/16 08:50 N	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Meth	nod: EP/	A 3010				
Iron, Dissolved	2060	ug/L	50.0	1	04/04/16 15:45	04/07/16 16:13	7439-89-6		
Manganese, Dissolved	2180	ug/L	5.0	1	04/04/16 15:45	04/07/16 12:33	7439-96-5		
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260						
Benzene	ND	ug/L	10.0	10		04/11/16 17:12	71-43-2		
Ethylbenzene	101	ug/L	10.0	10		04/11/16 17:12	100-41-4		
Toluene	ND	ug/L	10.0	10		04/11/16 17:12	108-88-3		
Xylene (Total)	936	ug/L	30.0	10		04/11/16 17:12	1330-20-7		
Surrogates									
4-Bromofluorobenzene (S)	100	%	77-130	10		04/11/16 17:12	460-00-4		
1,2-Dichloroethane-d4 (S)	95	%	81-127	10		04/11/16 17:12	17060-07-0		
Toluene-d8 (S)	99	%	80-120	10		04/11/16 17:12	2037-26-5		
Preservation pH	1.0		0.10	10		04/11/16 17:12			
300.0 IC Anions 28 Days	Analytical Meth	Analytical Method: EPA 300.0							
Sulfate	118	mg/L	10.0	10		04/09/16 00:04	14808-79-8		

ANALYTICAL RESULTS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Sample: GW-074926-033116-CM-Lab ID: 60216117005 Collected: 03/31/16 00:00 Received: 04/01/16 08:50 Matrix: Water DUP DF **Parameters** Results Units Report Limit Prepared CAS No. Analyzed Qual Analytical Method: EPA 5030B/8260 8260 MSV ND 10.0 10 04/11/16 17:26 71-43-2 Benzene ug/L 136 10.0 04/11/16 17:26 100-41-4 Ethylbenzene ug/L 10 Toluene ND 10.0 10 04/11/16 17:26 108-88-3 ug/L Xylene (Total) 1260 30.0 04/11/16 17:26 1330-20-7 ug/L 10 Surrogates 4-Bromofluorobenzene (S) 100 % 77-130 10 04/11/16 17:26 460-00-4 1,2-Dichloroethane-d4 (S) 88 % 81-127 10 04/11/16 17:26 17060-07-0 Toluene-d8 (S) 100 % 80-120 10 04/11/16 17:26 2037-26-5 04/11/16 17:26 Preservation pH 1.0 0.10 10

ANALYTICAL RESULTS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Sample: TB-074926-033116-CM-001	Lab ID: 602	16117006	Collected: 03/31/1	6 15:30	Received: 04	1/01/16 08:50 M	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		04/08/16 21:42	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/08/16 21:42	100-41-4	
Toluene	ND	ug/L	1.0	1		04/08/16 21:42	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		04/08/16 21:42	1330-20-7	
Surrogates		•						
4-Bromofluorobenzene (S)	103	%	77-130	1		04/08/16 21:42	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		04/08/16 21:42	17060-07-0	
Toluene-d8 (S)	99	%	80-120	1		04/08/16 21:42	2037-26-5	
Preservation pH	1.0		0.10	1		04/08/16 21:42		

QUALITY CONTROL DATA

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Manganese, Dissolved

Date: 04/12/2016 01:52 PM

QC Batch: MPRP/35427 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 60216117001, 60216117002, 60216117003, 60216117004

METHOD BLANK: 1735616 Matrix: Water
Associated Lab Samples: 60216117001, 60216117002, 60216117003, 60216117004

ug/L

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

1000

 Iron, Dissolved
 ug/L
 ND
 50.0
 04/07/16 14:38

 Manganese, Dissolved
 ug/L
 ND
 5.0
 04/07/16 11:29

0.21 mg/L

LABORATORY CONTROL SAMPLE: 1735617

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Dissolved 10000 10300 103 80-120 ug/L Manganese, Dissolved 1000 992 99 80-120 ug/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1735618 1735619 MSD MS 60216170001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Iron, Dissolved ug/L 3030 10000 10000 13200 13300 101 103 75-125 20

1000

1190

1200

98

99

75-125

20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

QC Batch: MSV/75110 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60216117001, 60216117002

METHOD BLANK: 1738171 Matrix: Water

Associated Lab Samples: 60216117001, 60216117002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L		1.0	04/08/16 15:13	
Ethylbenzene	ug/L	ND	1.0	04/08/16 15:13	
Toluene	ug/L	ND	1.0	04/08/16 15:13	
Xylene (Total)	ug/L	ND	3.0	04/08/16 15:13	
1,2-Dichloroethane-d4 (S)	%	98	81-127	04/08/16 15:13	
4-Bromofluorobenzene (S)	%	98	77-130	04/08/16 15:13	
Toluene-d8 (S)	%	98	80-120	04/08/16 15:13	

LABORATORY CONTROL SAMPLE	E: 1738172					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		20.2	101	79-116	
Ethylbenzene	ug/L	20	20.5	103	80-120	
Toluene	ug/L	20	19.7	98	80-120	
Xylene (Total)	ug/L	60	63.5	106	80-120	
1,2-Dichloroethane-d4 (S)	%			93	81-127	
4-Bromofluorobenzene (S)	%			98	77-130	
Toluene-d8 (S)	%			101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

QC Batch: MSV/75111 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60216117006

METHOD BLANK: 1738177 Matrix: Water

Associated Lab Samples: 60216117006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	04/08/16 21:27	
Ethylbenzene	ug/L	ND	1.0	04/08/16 21:27	
Toluene	ug/L	ND	1.0	04/08/16 21:27	
Xylene (Total)	ug/L	ND	3.0	04/08/16 21:27	
1,2-Dichloroethane-d4 (S)	%	96	81-127	04/08/16 21:27	
4-Bromofluorobenzene (S)	%	101	77-130	04/08/16 21:27	
Toluene-d8 (S)	%	99	80-120	04/08/16 21:27	

LABORATORY CONTROL SAMPLE:	1738178					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L		20.0	100	79-116	
Ethylbenzene	ug/L	20	20.9	105	80-120	
Toluene	ug/L	20	19.4	97	80-120	
Xylene (Total)	ug/L	60	61.7	103	80-120	
1,2-Dichloroethane-d4 (S)	%			97	81-127	
4-Bromofluorobenzene (S)	%			103	77-130	
Toluene-d8 (S)	%			101	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

QC Batch: MSV/75141 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60216117003, 60216117004, 60216117005

METHOD BLANK: 1739480 Matrix: Water

Associated Lab Samples: 60216117003, 60216117004, 60216117005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	04/11/16 14:45	
Ethylbenzene	ug/L	ND	1.0	04/11/16 14:45	
Toluene	ug/L	ND	1.0	04/11/16 14:45	
Xylene (Total)	ug/L	ND	3.0	04/11/16 14:45	
1,2-Dichloroethane-d4 (S)	%	95	81-127	04/11/16 14:45	
4-Bromofluorobenzene (S)	%	97	77-130	04/11/16 14:45	
Toluene-d8 (S)	%	98	80-120	04/11/16 14:45	

LABORATORY CONTROL SAMPLE:	1739481					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	20.9	104	79-116	
Ethylbenzene	ug/L	20	19.7	99	80-120	
Toluene	ug/L	20	19.0	95	80-120	
Xylene (Total)	ug/L	60	62.1	104	80-120	
1,2-Dichloroethane-d4 (S)	%			93	81-127	
4-Bromofluorobenzene (S)	%			100	77-130	
Toluene-d8 (S)	%			97	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

QC Batch: WETA/38896 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60216117001, 60216117002, 60216117003, 60216117004

METHOD BLANK: 1738080 Matrix: Water
Associated Lab Samples: 60216117001, 60216117002, 60216117003, 60216117004

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 04/08/16 16:43

LABORATORY CONTROL SAMPLE: 1738081

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.0 101 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1738082 1738083

MS MSD 60216133001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate mg/L 317 100 100 422 422 105 105 80-120 0 15

MATRIX SPIKE SAMPLE: 1738084 MS 60216133002 Spike MS % Rec Parameter Units Result Conc. Result % Rec Limits Qualifiers 226 331 105 80-120 Sulfate mg/L 100

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSV/75110

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/75111

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: MSV/75141

Date: 04/12/2016 01:52 PM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60216117

Date: 04/12/2016 01:52 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60216117001	GW-074926-033116-CM-MW-2	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216117002	GW-074926-033116-CM-MW-3	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216117003	GW-074926-033116-CM-MW-4	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216117004	GW-074926-033116-CM-MW-5	EPA 3010	MPRP/35427	EPA 6010	ICP/25919
60216117001	GW-074926-033116-CM-MW-2	EPA 5030B/8260	MSV/75110		
60216117002	GW-074926-033116-CM-MW-3	EPA 5030B/8260	MSV/75110		
60216117003	GW-074926-033116-CM-MW-4	EPA 5030B/8260	MSV/75141		
60216117004	GW-074926-033116-CM-MW-5	EPA 5030B/8260	MSV/75141		
60216117005	GW-074926-033116-CM-DUP	EPA 5030B/8260	MSV/75141		
60216117006	TB-074926-033116-CM-001	EPA 5030B/8260	MSV/75111		
60216117001	GW-074926-033116-CM-MW-2	EPA 300.0	WETA/38896		
60216117002	GW-074926-033116-CM-MW-3	EPA 300.0	WETA/38896		
60216117003	GW-074926-033116-CM-MW-4	EPA 300.0	WETA/38896		
60216117004	GW-074926-033116-CM-MW-5	EPA 300.0	WETA/38896		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60216117

Client Name: (THD COP	Ontinnal
Ollotte Halite.	Pace □ Other □ Client □ Proi Due Date:
1 501 115 222	, to but buto,
	.,
Custody Seal on Cooler/Box Present: Yes 🖒 No □ Seals intact: Yes	
Packing Material: Bubble Wrap ☐ Bubble Bags ☐ Foam ☑ CF +1.0 CF 0.0	
	e None Samples received on ice, cooling process has begun.
Cooler remperature: 911	Date and initials of person examining contents:
Temperature should be above freezing to 6°C	
	1.
The state of the s	2.
Chain of Custody relinquished:	3.
Sampler name & signature on COC:	4.
Samples arrived within holding time:	5
Short Hold Time analyses (<72hr): □Yes ☑No □N/A	6.
Rush Turn Around Time requested: □Yes ☑No □N/A	7.
4	8.
Correct containers used: Myes □No □N/A	34
Pace containers used:	9.
Containers intact:	10.
Unpreserved 5035A soils frozen w/in 48hrs? □Yes □No ttn/A	11,
Filtered volume received for dissolved tests?	12.
Sample labels match COC: \$\square{\pmatch} \text{Yes} \quare \text{No} \quare \text{N/A}	
Includes date/time/ID/analyses Matrix: いて	13.
All containers needing preservation have been checked.	
All containers needing preservation are found to be in compliance MYes □No □N/A with EPA recommendation.	14.
Evention (VOA) Coliform ORC MIDDO (water)	Initial when Lot # of added completed preservative
Trip Blank present:	preservative
0)75 (4	15.
Headspace in VOA vials (>6mm):	
	16
	16.
	17. List State:
- 17	18.
Client Notification/ Resolution: Copy COC to Client? Y	Field Data Required? Y / N
Person Contacted: Date/Time: Comments/ Resolution:	Temp Log: Record start and finish times when unpacking cooler, if >20 min, recheck sample temps.
	Start: (3 V) Start:
n and a second	End: (350 End:
Project Manager Review:	Date: Temp: Temp:

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical

SAMPLE ID	öyde ox	Regulatory Agency		State / Location	MM	The second second		Chlorine (Y/N)		BP34 BP3F (3) DCAH			事(つ)	(4) DC4**	(3)0000			4		SAMPLE CONDITIONS	y y y y	111		O no bed on
COUNTRINGED BY AND LEID Sample of the matter wildow of the matter wildow of the matter wildow of the matter wildow of the matter and the matter of the matt	П			AND REAL PROPERTY.		ysis Filtered (Y/N)															1/1 082			-
COUNTY C				agen@pacelabs.com,		Requested Analy	N/A	0.00£ \	VisnA TR 09S8 Vd etstlu8	X X X	X X	XXX	X X X	×	*					ED BY / AFFILATION	2 1/2			
SAMPLE ID Several COP IN Separate COP IN			Onote:				Preservatives		NªSSSO3 HCI HNO3 HSSO¢	41 1	61	6113	1 91 1								J Shi		67	Malland
Client Information: GHO Services COP NM AND SERVICE COP NM	Attent	Addre	Pace	Pace	Pace			EMP AT COLLECTIO	HME SAMPLE TE TNOD 30 P	(Kg 1.)	15.7.7.5.	-	Mis	1	1530		1 2			19	3,3116			ME AND SIGNATURE
Client Information: GHD Services COP NM GHD Services COP NM GHD Services COP NM G21 Indian School Rd, NE St2 G21 Indian School Rd, NE St2 G25-884-0672 G26-884-0672 G26-884-0672	mation: Mathews	(er		006 COD Flora Vista Not	25.000		COLLECTED	START	TIME		131							2		SHED BY / AFFILIATION	UNITODO SOH			SAMPLER NA
Client Information: GHD Services_COP NM GHD Services_COP NM GHD Services_COP NM GHD Services_COP NM GAT 10 One Character per box. (A-Z 0-91, -) Sample 1ds must be unique	Required Project Infor	Copy To: Jeff Walk	Angela bown	i I		rioject #.	(hel o)	DE (see valid codes	€ ₽ ₽ O⊃ XIЯTAM	- 7 11	pi	2	15	NIP WIG						RELINGUS	C HARDON	3		
Bade Signature S	NM	Rd. NE St2		mo:	Fax					W	3		M	1		- 5	Ь	7		COMMENTS				
THE PARTY OF THE P	S		Le, NM 87110	shristine mathews@ghd.cc	505-884-0672	d Due Date:		SAMPLE One Character po	(A-Z, 0-9 / , Sample Ids must l			2 =	3=		DE TE					INOTIONA				Pane

July 05, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on June 22, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

alice Flanagan

alice.flanagan@pacelabs.com

Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

CERTIFICATIONS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60221896001	GW-074926-062016-SP-MW2	Water	06/20/16 16:45	06/22/16 08:50
60221896002	GW-074926-062016-SP-MW3	Water	06/20/16 17:10	06/22/16 08:50
60221896003	GW-074926-062016-SP-MW4	Water	06/20/16 17:25	06/22/16 08:50
60221896004	GW-074926-062016-SP-MW5	Water	06/20/16 17:35	06/22/16 08:50
60221896005	GW-074926-062016-SP-MW1	Water	06/20/16 17:45	06/22/16 08:50
60221896006	GW-074926-062016-SP-DUP	Water	06/20/16 00:00	06/22/16 08:50
60221896007	GW-074926-062016-SP-DW1	Water	06/20/16 15:30	06/22/16 08:50
60221896008	GW-074926-062016-SP-DW2	Water	06/20/16 15:20	06/22/16 08:50
60221896009	Trip blank	Water	06/20/16 16:45	06/22/16 08:50

SAMPLE ANALYTE COUNT

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Lab ID	Sample ID	Method	Analysts	Analytes Reported	
60221896001	GW-074926-062016-SP-MW2	EPA 6010	JGP	2	
		EPA 5030B/8260	PGH	8	
		EPA 300.0	OL	1	
60221896002	GW-074926-062016-SP-MW3	EPA 6010	JGP	2	
		EPA 5030B/8260	PGH	8	
		EPA 300.0	OL	1	
60221896003	GW-074926-062016-SP-MW4	EPA 6010	JGP	2	
		EPA 5030B/8260	PGH	8	
		EPA 300.0	OL	1	
60221896004	GW-074926-062016-SP-MW5	EPA 6010	JGP	2	
		EPA 5030B/8260	PGH	8	
		EPA 300.0	OL	1	
60221896005	GW-074926-062016-SP-MW1	EPA 6010	JGP	2	
		EPA 5030B/8260	PGH	8	
		EPA 300.0	OL	1	
60221896006	GW-074926-062016-SP-DUP	EPA 5030B/8260	PGH	8	
60221896007	GW-074926-062016-SP-DW1	EPA 5030B/8260	PGH	8	
60221896008	GW-074926-062016-SP-DW2	EPA 5030B/8260	PGH	8	
60221896009	Trip blank	EPA 5030B/8260	PGH	8	

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Method: EPA 6010

Description: 6010 MET ICP, Dissolved **Client:** GHD Services_COP NM

Date: July 05, 2016

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Method: EPA 5030B/8260

Description: 8260 MSV

Client: GHD Services_COP NM

Date: July 05, 2016

General Information:

9 samples were analyzed for EPA 5030B/8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/76596

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Analyte Comments:

QC Batch: MSV/76597

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- GW-074926-062016-SP-DUP (Lab ID: 60221896006)
 - 4-Bromofluorobenzene (S)

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days **Client:** GHD Services_COP NM

Date: July 05, 2016

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- MW2	Lab ID: 602	21896001	Collected: 06/20/1	6 16:45	Received: 06	5/22/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved	ND	ug/L	50.0	1	06/24/16 09:30	06/27/16 10:53	3 7439-89-6	
Manganese, Dissolved	ND	ug/L	5.0	1	06/24/16 09:30	06/27/16 10:53	3 7439-96-5	
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		06/23/16 13:38	3 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		06/23/16 13:38	3 100-41-4	
Toluene	ND	ug/L	1.0	1		06/23/16 13:38	3 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		06/23/16 13:38	3 1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	103	%	77-130	1		06/23/16 13:38	3 460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	81-127	1		06/23/16 13:38	3 17060-07-0	
Toluene-d8 (S)	101	%	80-120	1		06/23/16 13:38	3 2037-26-5	
Preservation pH	1.0		0.10	1		06/23/16 13:38	3	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	134	mg/L	10.0	10		07/02/16 13:29	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- MW3	Lab ID: 602	21896002	Collected: 06/20/1	6 17:10	Received: 06	5/22/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	ND	ug/L	50.0	1	06/24/16 09:30	06/27/16 10:56	7439-89-6	
Manganese, Dissolved	7.8	ug/L	5.0	1	06/24/16 09:30	06/27/16 10:56	7439-96-5	
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		06/23/16 13:52	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		06/23/16 13:52	100-41-4	
Toluene	ND	ug/L	1.0	1		06/23/16 13:52	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		06/23/16 13:52	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	102	%	77-130	1		06/23/16 13:52	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	81-127	1		06/23/16 13:52	17060-07-0	
Toluene-d8 (S)	100	%	80-120	1		06/23/16 13:52	2037-26-5	
Preservation pH	1.0		0.10	1		06/23/16 13:52		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	133	mg/L	10.0	10		07/02/16 14:28	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- MW4	Lab ID: 602	21896003	Collected: 06/20/1	6 17:25	Received: 06	5/22/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	4880	ug/L	50.0	1	06/24/16 09:30	06/27/16 11:00	7439-89-6	
Manganese, Dissolved	3870	ug/L	5.0	1	06/24/16 09:30	06/27/16 11:00	7439-96-5	
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260					
Benzene	42.8	ug/L	1.0	1		06/23/16 14:07	71-43-2	
Ethylbenzene	11.2	ug/L	1.0	1		06/23/16 14:07	100-41-4	
Toluene	ND	ug/L	1.0	1		06/23/16 14:07	108-88-3	
Xylene (Total)	39.7	ug/L	3.0	1		06/23/16 14:07	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	102	%	77-130	1		06/23/16 14:07	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	81-127	1		06/23/16 14:07	17060-07-0	
Toluene-d8 (S)	109	%	80-120	1		06/23/16 14:07	2037-26-5	
Preservation pH	1.0		0.10	1		06/23/16 14:07		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	154	mg/L	10.0	10		07/02/16 14:43	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- MW5	Lab ID: 602	21896004	Collected: 06/20/1	6 17:35	Received: 06	/22/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	6480	ug/L	50.0	1	06/24/16 09:30	06/27/16 11:04	7439-89-6	
Manganese, Dissolved	2680	ug/L	5.0	1	06/24/16 09:30	06/27/16 11:04	7439-96-5	
8260 MSV	Analytical Meth	od: EPA 50	030B/8260					
Benzene	40.4	ug/L	25.0	25		06/23/16 14:21	71-43-2	
Ethylbenzene	160	ug/L	25.0	25		06/23/16 14:21	100-41-4	
Toluene	ND	ug/L	25.0	25		06/23/16 14:21	108-88-3	
Xylene (Total)	2480	ug/L	75.0	25		06/23/16 14:21	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	104	%	77-130	25		06/23/16 14:21	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	81-127	25		06/23/16 14:21	17060-07-0	
Toluene-d8 (S)	101	%	80-120	25		06/23/16 14:21	2037-26-5	
Preservation pH	1.0		0.10	25		06/23/16 14:21		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00					
Sulfate	129	mg/L	10.0	10		07/02/16 14:58	14808-79-8	

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- MW1	Lab ID: 602	21896005	Collected: 06/20/1	6 17:45	Received: 06	5/22/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	40800	ug/L	50.0	1	06/24/16 09:30	06/27/16 11:08	7439-89-6	
Manganese, Dissolved	2170	ug/L	5.0	1	06/24/16 09:30	06/27/16 11:08	7439-96-5	
8260 MSV	Analytical Meth	od: EPA 50	30B/8260					
Benzene	834	ug/L	25.0	25		06/23/16 18:28	71-43-2	
Ethylbenzene	553	ug/L	25.0	25		06/23/16 18:28	100-41-4	
Toluene	ND	ug/L	25.0	25		06/23/16 18:28	108-88-3	
Xylene (Total)	2060	ug/L	75.0	25		06/23/16 18:28	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	99	%	77-130	25		06/23/16 18:28	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	25		06/23/16 18:28	17060-07-0	
Toluene-d8 (S)	102	%	80-120	25		06/23/16 18:28	2037-26-5	
Preservation pH	1.0		0.10	25		06/23/16 18:28		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.00					
Sulfate	13.8	mg/L	1.0	1		07/03/16 10:16	14808-79-8	

ANALYTICAL RESULTS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP-Lab ID: 60221896006 Collected: 06/20/16 00:00 Received: 06/22/16 08:50 Matrix: Water DUP DF **Parameters** Results Units Report Limit Prepared CAS No. Analyzed Qual Analytical Method: EPA 5030B/8260 8260 MSV ND 25.0 25 06/23/16 18:42 71-43-2 Benzene ug/L 56.2 25.0 25 06/23/16 18:42 100-41-4 Ethylbenzene ug/L Toluene ND 25.0 25 06/23/16 18:42 108-88-3 ug/L Xylene (Total) 657 75.0 25 06/23/16 18:42 1330-20-7 ug/L Surrogates 4-Bromofluorobenzene (S) 102 % 77-130 25 06/23/16 18:42 460-00-4 D3 1,2-Dichloroethane-d4 (S) 99 % 81-127 25 06/23/16 18:42 17060-07-0 Toluene-d8 (S) 100 % 80-120 25 06/23/16 18:42 2037-26-5 06/23/16 18:42 Preservation pH 1.0 0.10 25

ANALYTICAL RESULTS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- DW1	Lab ID: 602	21896007	Collected: 06/20/1	6 15:30	Received: 00	6/22/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Met	hod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		06/23/16 18:14	1 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		06/23/16 18:14	1 100-41-4	
Toluene	ND	ug/L	1.0	1		06/23/16 18:14	1 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		06/23/16 18:14	1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	103	%	77-130	1		06/23/16 18:14	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		06/23/16 18:14	17060-07-0	
Toluene-d8 (S)	99	%	80-120	1		06/23/16 18:14	4 2037-26-5	
Preservation pH	1.0		0.10	1		06/23/16 18:14	1	

ANALYTICAL RESULTS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: GW-074926-062016-SP- DW2	Lab ID: 602	21896008	Collected: 06/20/1	6 15:20	Received: 0	6/22/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Meth	nod: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		06/23/16 17:59	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		06/23/16 17:59	9 100-41-4	
Toluene	ND	ug/L	1.0	1		06/23/16 17:59	9 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		06/23/16 17:59	9 1330-20-7	
Surrogates								
4-Bromofluorobenzene (S)	100	%	77-130	1		06/23/16 17:59	9 460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		06/23/16 17:59	9 17060-07-0	
Toluene-d8 (S)	100	%	80-120	1		06/23/16 17:59	2037-26-5	
Preservation pH	1.0		0.10	1		06/23/16 17:59	9	

ANALYTICAL RESULTS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

Sample: Trip blank	Lab ID: 6022	21896009	Collected: 06/20/1	6 16:45	Received: 06	6/22/16 08:50 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical Meth	od: EPA 50	030B/8260					
Benzene	ND	ug/L	1.0	1		06/23/16 15:34	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		06/23/16 15:34	100-41-4	
Toluene	ND	ug/L	1.0	1		06/23/16 15:34	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		06/23/16 15:34	1330-20-7	
Surrogates		•						
4-Bromofluorobenzene (S)	102	%	77-130	1		06/23/16 15:34	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	81-127	1		06/23/16 15:34	17060-07-0	
Toluene-d8 (S)	98	%	80-120	1		06/23/16 15:34	2037-26-5	
Preservation pH	1.0		0.10	1		06/23/16 15:34		

QUALITY CONTROL DATA

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

QC Batch: MPRP/36443 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 60221896001, 60221896002, 60221896003, 60221896004, 60221896005

METHOD BLANK: 1782187 Matrix: Water

Associated Lab Samples: 60221896001, 60221896002, 60221896003, 60221896004, 60221896005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers solved ug/L ND 50.0 06/27/16 09:39

 Iron, Dissolved
 ug/L
 ND
 50.0
 06/27/16 09:39

 Manganese, Dissolved
 ug/L
 ND
 5.0
 06/27/16 09:39

LABORATORY CONTROL SAMPLE: 1782188

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers ug/L Iron, Dissolved 10000 9700 97 80-120 Manganese, Dissolved ug/L 1000 961 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1782189 1782190

6	0221546001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec		RPD		Qual
ug/L	2610	10000	10000	12100	12000	95	94	75-125	1	20	
ug/L	0.18 mg/L	1000	1000	1120	1120	94	94	75-125	0	20	
	Units ug/L	ug/L 2610	Units 60221546001 Result Spike Conc. ug/L 2610 10000	Units Result Conc. Spike ug/L 2610 10000 10000	Units Result Conc. Spike MS ug/L 2610 10000 10000 12100	Units Result Conc. Spike MS MSD ug/L 2610 10000 10000 12100 12000	Units Result Conc. Conc. Result MSD MSD	Units Result Conc. Spike Conc. MS MSD Result MS MSD MSD MSD MSD MSD MSD MSD MSD MSD M	Units Result Conc. Spike Conc. MS Result MSD Result	Units Result Conc. Spike Conc. MS Result MSD Result	Units Result Conc. Spike Conc. MS Result MSD Rec Result MSD Result MSD Rec Result MSD Result M

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

QC Batch: MSV/76596 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60221896001, 60221896002, 60221896003, 60221896004

METHOD BLANK: 1781339 Matrix: Water
Associated Lab Samples: 60221896001, 60221896002, 60221896003, 60221896004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	06/23/16 09:01	
Ethylbenzene	ug/L	ND	1.0	06/23/16 09:01	
Toluene	ug/L	ND	1.0	06/23/16 09:01	
Xylene (Total)	ug/L	ND	3.0	06/23/16 09:01	
1,2-Dichloroethane-d4 (S)	%	104	81-127	06/23/16 09:01	
4-Bromofluorobenzene (S)	%	100	77-130	06/23/16 09:01	
Toluene-d8 (S)	%	99	80-120	06/23/16 09:01	

LABORATORY CONTROL SAMPLE:	1781340					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		20.6	103	79-116	
Ethylbenzene	ug/L	20	19.1	95	80-120	
Toluene	ug/L	20	19.0	95	80-120	
Xylene (Total)	ug/L	60	56.9	95	80-120	
1,2-Dichloroethane-d4 (S)	%			100	81-127	
4-Bromofluorobenzene (S)	%			104	77-130	
Toluene-d8 (S)	%			99	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

QC Batch: MSV/76597 Analysis Method: EPA 5030B/8260

QC Batch Method: EPA 5030B/8260 Analysis Description: 8260 MSV Water 10 mL Purge

Associated Lab Samples: 60221896005, 60221896006, 60221896007, 60221896008, 60221896009

METHOD BLANK: 1781343 Matrix: Water

Associated Lab Samples: 60221896005, 60221896006, 60221896007, 60221896008, 60221896009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	06/23/16 15:20	
Ethylbenzene	ug/L	ND	1.0	06/23/16 15:20	
Toluene	ug/L	ND	1.0	06/23/16 15:20	
Xylene (Total)	ug/L	ND	3.0	06/23/16 15:20	
1,2-Dichloroethane-d4 (S)	%	103	81-127	06/23/16 15:20	
4-Bromofluorobenzene (S)	%	101	77-130	06/23/16 15:20	
Toluene-d8 (S)	%	98	80-120	06/23/16 15:20	

LABORATORY CONTROL SAMPLE:	1781344					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L		20.5	103	79-116	
Ethylbenzene	ug/L	20	18.7	94	80-120	
Toluene	ug/L	20	19.5	97	80-120	
Xylene (Total)	ug/L	60	57.3	96	80-120	
1,2-Dichloroethane-d4 (S)	%			100	81-127	
4-Bromofluorobenzene (S)	%			101	77-130	
Toluene-d8 (S)	%			100	80-120	

MATRIX SPIKE & MATRIX SPI	IKE DUPLICA	TE: 17813	45 MS	MSD	1781346							
	6	0221873005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	ND	20	20	20.5	21.3	100	104	37-151	4	40	
Ethylbenzene	ug/L	ND	20	20	19.2	19.1	96	95	29-151	0	45	
Toluene	ug/L	ND	20	20	19.6	19.2	98	96	37-147	2	43	
Xylene (Total)	ug/L	ND	60	60	56.9	57.2	95	95	27-156	0	46	
1,2-Dichloroethane-d4 (S)	%						100	101	81-127			
4-Bromofluorobenzene (S)	%						100	99	77-130			
Toluene-d8 (S)	%						101	98	80-120			
Preservation pH		1.0			1.0	1.0				0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Sulfate

QC Batch: WETA/40375 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60221896001, 60221896002, 60221896003, 60221896004

METHOD BLANK: 1787632 Matrix: Water
Associated Lab Samples: 60221896001, 60221896002, 60221896003, 60221896004

1787633

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 mg/L
 ND
 1.0
 07/02/16 09:28

LABORATORY CONTROL SAMPLE:

Date: 07/05/2016 10:17 AM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.1 101 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1787634 1787635

MS MSD 60221997017 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 25 mg/L 67.5 25 95.0 94.5 110 108 80-120 15

MATRIX SPIKE SAMPLE: 1787636

MS 60221896001 Spike MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 134 184 80-120 Sulfate mg/L 50 100

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

QC Batch: WETA/40385 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60221896005

METHOD BLANK: 1787906 Matrix: Water

Associated Lab Samples: 60221896005

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 07/03/16 09:06

LABORATORY CONTROL SAMPLE: 1787907

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.3 106 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1787908 1787909

MS MSD 60221896005 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 5 5 80-120 mg/L 13.8 18.3 18.5 90 93 15

MATRIX SPIKE SAMPLE: 1787910 MS 60221898001 Spike MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers Sulfate ND 114 80-120 mg/L 100 94

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSV/76596

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 07/05/2016 10:17 AM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074926 COP Flora Vista No 1

Pace Project No.: 60221896

Date: 07/05/2016 10:17 AM

ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
0221896001	GW-074926-062016-SP-MW2	EPA 3010	MPRP/36443	EPA 6010	ICP/26565
0221896002	GW-074926-062016-SP-MW3	EPA 3010	MPRP/36443	EPA 6010	ICP/26565
0221896003	GW-074926-062016-SP-MW4	EPA 3010	MPRP/36443	EPA 6010	ICP/26565
0221896004	GW-074926-062016-SP-MW5	EPA 3010	MPRP/36443	EPA 6010	ICP/26565
0221896005	GW-074926-062016-SP-MW1	EPA 3010	MPRP/36443	EPA 6010	ICP/26565
0221896001	GW-074926-062016-SP-MW2	EPA 5030B/8260	MSV/76596		
0221896002	GW-074926-062016-SP-MW3	EPA 5030B/8260	MSV/76596		
0221896003	GW-074926-062016-SP-MW4	EPA 5030B/8260	MSV/76596		
0221896004	GW-074926-062016-SP-MW5	EPA 5030B/8260	MSV/76596		
0221896005	GW-074926-062016-SP-MW1	EPA 5030B/8260	MSV/76597		
0221896006	GW-074926-062016-SP-DUP	EPA 5030B/8260	MSV/76597		
0221896007	GW-074926-062016-SP-DW1	EPA 5030B/8260	MSV/76597		
0221896008	GW-074926-062016-SP-DW2	EPA 5030B/8260	MSV/76597		
0221896009	Trip blank	EPA 5030B/8260	MSV/76597		
0221896001	GW-074926-062016-SP-MW2	EPA 300.0	WETA/40375		
0221896002	GW-074926-062016-SP-MW3	EPA 300.0	WETA/40375		
0221896003	GW-074926-062016-SP-MW4	EPA 300.0	WETA/40375		
0221896004	GW-074926-062016-SP-MW5	EPA 300.0	WETA/40375		
0221896005	GW-074926-062016-SP-MW1	EPA 300.0	WETA/40385		

820

Sample Condition Upon Receipt ESI Tech Spec Client

Client Name: GHD COP			Optio	nal	
Courier: FedEx 10 UPS	PEX 🗆 ECI 🗆	Pace □ Other □ C		Due Date:	
1302 10111 5021	Pace Shipping Label		,,	Name:	
Custody Seal on Cooler/Box Present: Yes No					
Packing Material: Bubble Wrap □ Bubble Ba			Other □		
CF-0.1 CF 0.0	ype of Ice: Wet	Blue None Samples re	eceived on ice, co	ooling process has b	egun.
Cooler Temperature: 2.7		de one)		erson examining	
Temperature should be above freezing to 6°C		conte			
Chain of Custody present:	Maryes □No □N/A		<u> </u>	on COC	
Chain of Custody filled out:	⊠ Yes □No □N/A	2. GW-074926-012016	ispi bul	6/20/4 1530	(3) 04 41
Chain of Custody relinquished:	¥Yes □No □N/A	3. GW-074176 - 162016 -	is. Drs	6/20/4/520	(3) DOR H
Sampler name & signature on COC:	Åyes □No □N/A	4.			
Samples arrived within holding time:	Mary No □N/A	5.			
Short Hold Time analyses (<72hr):	□Yes No □N/A	6.			
Rush Turn Around Time requested:	□Yes ば No □N/A	7.			
Sufficient volume:	M⊈Yes □No □N/A	8.			
Correct containers used:	Maryes □No □N/A				
Pace containers used:	IZYes □No □N/A	9.			
Containers intact:	∠ Yes □No □N/A	10.			
Unpreserved 5035A soils frozen w/in 48hrs?	□Yes □No ₺N/A	11.			
Filtered volume received for dissolved tests?	MÉYes □No □N/A	12.			
Sample labels match COC:	⊠ Yes □No □N/A				
Includes date/time/ID/analyses Matrix:	آس ا	13.			
All containers needing preservation have been checked.					
All containers needing preservation are found to be in compliand with EPA recommendation.	e PYes □No □N/A	14.			
Exceptions: VOA Coliform, O&G, WI-DRO (water)	⊈ Yes □No	Initial when completed	Lot # of add		
Trip Blank present:	Yes No N/A		procentant		
Pace Trip Blank lot # (if purchased):	·	15.			
Headspace in VOA vials (>6mm):	□Yes Ø No □N/A				
s:		16.			
Project sampled in USDA Regulated Area:	□Yes □No I ŪN/A	17. List State:			
Additional labels attached to 5035A vials in the field?	□Yes □No 🗖N/A	18,			
	OC to Client? Y	N) Field Data Requi	red? Y / N	1	
Person Contacted: D	ate/Time:	rocowed that		cord start and finish t g cooler, if >20 min,	
INEXO DILLEG From the a have	Causania	- School la for	Start: 1220	Start:	
NIOC BOX	1 custony	- Change In	End: (232	End:	
Project Manager Review:		Date: 0/22/10	Temp:	Temp:	

Face Analytical

CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. Ali relevant fields must be completed accurately.

388 5 ADGGHTOO (N/A) 419916) ntact Затріва SAMPLE CONDITIONS (N/A) Cooler 7690 ŏ Sealed Custody Regulatory Agency State / Location 3034 (N/Y) Z Received on Residual Chlorine (Y/N) Page: TEMP in C 0820 TIME 12 DATE DATE Signed: Dissolved Fe, Mn alice flanagan@pacelabs.com ACCEPTED BY / AFFILIATION Sulfate by 300.0 \Rightarrow 8560 BTEX Analyses Test N/A Other Methanol NaZSZO3 Preservatives Z NaOH 12 100 Pace Quote: Pace Project Manager: 3 3 HCL Invoice Information: EONH Company Name Pace Profile #: H2SO4 Section C TIME 169 Unpreserved P # OF CONTAINERS 5 S SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SIGNATURE of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TIME END DATE COLLECTED 074926 COP Flora Vista No1 REMNQUISHED BY I AFFILIATION GES 1725 1745 1735 213 TIME START Christine Mathews 08.50 620 DATE 07.9 29 6.20 2.9 Required Project Information Jeff Walker (G=GRAB C=COMP) SAMPLE TYPE irchase Order #: MATRIX CODE (see valid codes to left) roject Name: GW 074926. G62016 SP.MWS Section B Copy To: GW. 674926. 662616.57°. MW GW 074926 062016-59. DUP IN -074926 -062016-5P-MUZ Gu 074976, 062016 -SP.MW JW. 07 4926. 062016. SP NW MATRIX
Drinking Water
Water
Water
Water
Product
Soul/Solid
Oil
Wipe
Air
Other
Tissue One Character per box. (A-Z, 0-9 /, -) Sample Ids must be unique ADDITIONAL COMMENTS 6212 Indian School Rd NE St2 Fax SAMPLE ID GHD Services COP NM ine mathews@ghd com Required Client Information: 505-884-0672 buquerque, NM 87110 equested Due Date Page 25 of 25 Address: 9 12 ÷ 7 n 00 6 19 ITEM #

September 26, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com

alice Spiller

Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60227293001	GW-074926-090716-SP-MW-1	Water	09/07/16 17:42	09/09/16 08:50
60227293002	GW-074926-090716-SP-MW-2	Water	09/07/16 18:00	09/09/16 08:50
60227293003	GW-074926-090716-SP-MW-3	Water	09/07/16 18:10	09/09/16 08:50
60227293004	GW-074926-090716-SP-MW-4	Water	09/07/16 18:30	09/09/16 08:50
60227293005	GW-074926-090716-SP-MW-5	Water	09/07/16 17:45	09/09/16 08:50
60227293006	GW-074926-090716-SP-DUP	Water	09/07/16 00:00	09/09/16 08:50
60227293007	TRIP BLANK	Solid	09/07/16 17:42	09/09/16 08:50

SAMPLE ANALYTE COUNT

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60227293001	GW-074926-090716-SP-MW-1	EPA 6010	TDS	2
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227293002	GW-074926-090716-SP-MW-2	EPA 6010	TDS	2
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227293003	GW-074926-090716-SP-MW-3	EPA 6010	TDS	2
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227293004	GW-074926-090716-SP-MW-4	EPA 6010	TDS	2
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227293005	GW-074926-090716-SP-MW-5	EPA 6010	TDS	2
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227293006	GW-074926-090716-SP-DUP	EPA 8260	JTK	8

PROJECT NARRATIVE

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Method: EPA 6010

Description: 6010 MET ICP, Dissolved
Client: GHD Services_COP NM
Date: September 26, 2016

General Information:

5 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Method: EPA 8260

Description: 8260 MSV UST, Water
Client: GHD Services_COP NM
Date: September 26, 2016

General Information:

6 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 446568

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 60227293005,60227374008

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1825963)
 - Toluene

Additional Comments:

PROJECT NARRATIVE

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: GHD Services_COP NM
Date: September 26, 2016

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sample: GW-074926-090716-SP- MW-1	Lab ID: 6022	27293001	Collected: 09/07/1	6 17:42	Received: 09	0/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved	17600	ug/L	50.0	1	09/12/16 12:15	09/13/16 12:33	3 7439-89-6	
Manganese, Dissolved	1510	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:33	3 7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 82	60					
Benzene	525	ug/L	20.0	20		09/10/16 09:56	71-43-2	
Ethylbenzene	416	ug/L	20.0	20		09/10/16 09:56	5 100-41-4	
Toluene	ND	ug/L	20.0	20		09/10/16 09:56	6 108-88-3	
Xylene (Total)	1620	ug/L	60.0	20		09/10/16 09:56	3 1330-20-7	
Surrogates		-						
Toluene-d8 (S)	99	%	80-120	20		09/10/16 09:56	2037-26-5	
4-Bromofluorobenzene (S)	103	%	77-130	20		09/10/16 09:56	6 460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	81-127	20		09/10/16 09:56	3 17060-07-0	
Preservation pH	1.0		1.0	20		09/10/16 09:56	6	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Sulfate	2.4	mg/L	1.0	1		09/23/16 16:38	3 14808-79-8	

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sample: GW-074926-090716-SP- MW-2	Lab ID: 60227293002		Collected: 09/07/16 18:00		Received: 09	/09/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 601	O Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	51.2	ug/L	50.0	1	09/12/16 12:15	09/13/16 12:40	7439-89-6	
Manganese, Dissolved	ND	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:40	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	0					
Benzene	ND	ug/L	1.0	1		09/10/16 10:11	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/10/16 10:11	100-41-4	
Toluene	ND	ug/L	1.0	1		09/10/16 10:11	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/10/16 10:11	1330-20-7	
Surrogates								
Toluene-d8 (S)	98	%	80-120	1		09/10/16 10:11	2037-26-5	
4-Bromofluorobenzene (S)	104	%	77-130	1		09/10/16 10:11	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	81-127	1		09/10/16 10:11	17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 10:11		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	.0					
Sulfate	131	mg/L	10.0	10		09/24/16 12:46	14808-79-8	

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sample: GW-074926-090716-SP- MW-3	Lab ID: 602	27293003	Collected: 09/07/1	6 18:10	Received: 09	/09/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	ND	ug/L	50.0	1	09/12/16 12:15	09/13/16 12:42	7439-89-6	
Manganese, Dissolved	ND	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:42	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	0					
Benzene	ND	ug/L	1.0	1		09/10/16 10:26	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/10/16 10:26	100-41-4	
Toluene	ND	ug/L	1.0	1		09/10/16 10:26	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/10/16 10:26	1330-20-7	
Surrogates		_						
Toluene-d8 (S)	98	%	80-120	1		09/10/16 10:26	2037-26-5	
4-Bromofluorobenzene (S)	105	%	77-130	1		09/10/16 10:26	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		09/10/16 10:26	17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 10:26		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	.0					
Sulfate	149	mg/L	10.0	10		09/24/16 13:57	14808-79-8	

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sample: GW-074926-090716-SP- MW-4	Lab ID: 6022	27293004	Collected: 09/07/1	6 18:30	Received: 09	0/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved	4010	ug/L	50.0	1	09/12/16 12:15	09/13/16 12:44	1 7439-89-6	
Manganese, Dissolved	3840	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:44	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 82	60					
Benzene	8.1	ug/L	1.0	1		09/10/16 10:41	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/10/16 10:41	I 100-41-4	
Toluene	ND	ug/L	1.0	1		09/10/16 10:41	I 108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/10/16 10:41	1330-20-7	
Surrogates								
Toluene-d8 (S)	105	%	80-120	1		09/10/16 10:41	2037-26-5	
4-Bromofluorobenzene (S)	102	%	77-130	1		09/10/16 10:41	I 460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		09/10/16 10:41	17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 10:41	l	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	145	mg/L	10.0	10		09/24/16 14:11	14808-79-8	

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sample: GW-074926-090716-SP- MW-5	Lab ID: 602	27293005	Collected: 09/07/1	6 17:45	Received: 09	/09/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 601	10 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	4600	ug/L	50.0	1	09/12/16 12:15	09/13/16 12:46	7439-89-6	
Manganese, Dissolved	2070	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:46	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 826	60					
Benzene	22.9	ug/L	10.0	10		09/15/16 00:41	71-43-2	
Ethylbenzene	332	ug/L	10.0	10		09/15/16 00:41	100-41-4	
Toluene	ND	ug/L	10.0	10		09/15/16 00:41	108-88-3	
Xylene (Total) Surrogates	3450	ug/L	30.0	10		09/15/16 00:41	1330-20-7	
Toluene-d8 (S)	95	%	80-120	10		09/15/16 00:41	2037-26-5	
4-Bromofluorobenzene (S)	102	%	77-130	10		09/15/16 00:41		
1,2-Dichloroethane-d4 (S)	96	%	81-127	10		09/15/16 00:41	17060-07-0	
Preservation pH	1.0		1.0	10		09/15/16 00:41		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Sulfate	104	mg/L	10.0	10		09/24/16 14:25	14808-79-8	

ANALYTICAL RESULTS

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sample: GW-074926-090716-SP- DUP	Lab ID: 602	227293006	Collected: 09/07/1	6 00:00	Received: 09	9/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Met	hod: EPA 82	260					
Benzene	21.6	ug/L	10.0	10		09/10/16 10:56	6 71-43-2	
Ethylbenzene	393	ug/L	10.0	10		09/10/16 10:56	6 100-41-4	
Toluene	ND	ug/L	10.0	10		09/10/16 10:56	6 108-88-3	
Xylene (Total)	4460	ug/L	150	50		09/15/16 01:25	5 1330-20-7	
Surrogates		_						
Toluene-d8 (S)	98	%	80-120	10		09/10/16 10:56	6 2037-26-5	
4-Bromofluorobenzene (S)	103	%	77-130	10		09/10/16 10:56	6 460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	81-127	10		09/10/16 10:56	3 17060-07-0	
Preservation pH	1.0		1.0	10		09/10/16 10:56	5	

QUALITY CONTROL DATA

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

QC Batch: 446110 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 60227293001, 60227293002, 60227293003, 60227293004, 60227293005

METHOD BLANK: 1824025 Matrix: Water

Associated Lab Samples: 60227293001, 60227293002, 60227293003, 60227293004, 60227293005

Blank Reporting Parameter Limit Qualifiers Units Result Analyzed Iron, Dissolved ND 50.0 09/13/16 12:12 ug/L Manganese, Dissolved ug/L ND 5.0 09/13/16 12:12

LABORATORY CONTROL SAMPLE: 1824026

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers ug/L Iron, Dissolved 10000 10100 101 80-120 ug/L Manganese, Dissolved 1000 960 96 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1824027 1824028

		60227292002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved Manganese, Dissolved	ug/L ug/L	709 1670	10000	10000	10900	10900	102 93	102 96	75-125 75-125	0	20	
Manganoos, Biocontoa	ug/ =	1010	1000	1000	2000	2000	00	00	10 120		_0	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1824029 1824030

		60227293005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved	ug/L	4600	10000	10000	14600	14700	100	101	75-125	1	20	
Manganese, Dissolved	ug/L	2070	1000	1000	3000	3020	94	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

QC Batch: 446046 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 60227293001, 60227293002, 60227293003, 60227293004, 60227293006

METHOD BLANK: 1823489 Matrix: Water

Associated Lab Samples: 60227293001, 60227293002, 60227293003, 60227293004, 60227293006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/10/16 06:13	
Ethylbenzene	ug/L	ND	1.0	09/10/16 06:13	
Toluene	ug/L	ND	1.0	09/10/16 06:13	
Xylene (Total)	ug/L	ND	3.0	09/10/16 06:13	
1,2-Dichloroethane-d4 (S)	%	96	81-127	09/10/16 06:13	
4-Bromofluorobenzene (S)	%	104	77-130	09/10/16 06:13	
Toluene-d8 (S)	%	100	80-120	09/10/16 06:13	

					_	
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
				/0 IXEC		Qualifiers
Benzene	ug/L	20	20.6	103	79-116	
Ethylbenzene	ug/L	20	19.3	97	81-110	
Toluene	ug/L	20	20.2	101	82-111	
Xylene (Total)	ug/L	60	56.1	94	80-111	
1,2-Dichloroethane-d4 (S)	%			97	81-127	
4-Bromofluorobenzene (S)	%			99	77-130	
Toluene-d8 (S)	%			99	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 18234	91		1823492							
			MS	MSD								
	6	0227292002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	2.3	20	20	23.5	23.0	106	103	37-151	2	40	
Ethylbenzene	ug/L	1.1	20	20	20.4	19.7	96	93	29-151	3	45	
Toluene	ug/L	1.8	20	20	22.1	21.6	101	99	37-147	2	43	
Xylene (Total)	ug/L	5.4	60	60	61.6	59.0	94	89	27-156	4	46	
1,2-Dichloroethane-d4 (S)	%						95	97	81-127			
4-Bromofluorobenzene (S)	%						101	99	77-130			
Toluene-d8 (S)	%						98	99	80-120			
Preservation pH		1.0			1.0	1.0				0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

QC Batch: 446568 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 60227293005, 60227293006

METHOD BLANK: 1825959 Matrix: Water

Associated Lab Samples: 60227293005, 60227293006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND ND	1.0	09/15/16 00:26	
Ethylbenzene	ug/L	ND	1.0	09/15/16 00:26	
Toluene	ug/L	ND	1.0	09/15/16 00:26	
Xylene (Total)	ug/L	ND	3.0	09/15/16 00:26	
1,2-Dichloroethane-d4 (S)	%	96	81-127	09/15/16 00:26	
4-Bromofluorobenzene (S)	%	104	77-130	09/15/16 00:26	
Toluene-d8 (S)	%	97	80-120	09/15/16 00:26	

LABORATORY CONTROL SAMPLE:	1825960					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		21.0	105	79-116	
Ethylbenzene	ug/L	20	18.6	93	81-110	
Toluene	ug/L	20	19.3	97	82-111	
Xylene (Total)	ug/L	60	54.1	90	80-111	
1,2-Dichloroethane-d4 (S)	%			93	81-127	
4-Bromofluorobenzene (S)	%			101	77-130	
Toluene-d8 (S)	%			99	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 18259	61		1825962							
			MS	MSD								
	6	0227293005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	22.9	200	200	228	223	103	100	37-151	2	40	
Ethylbenzene	ug/L	332	200	200	521	510	94	89	29-151	2	45	
Toluene	ug/L	ND	200	200	188	187	94	93	37-147	1	43	
Xylene (Total)	ug/L	3450	600	600	4020	3940	94	82	27-156	2	46	
1,2-Dichloroethane-d4 (S)	%						96	94	81-127			
4-Bromofluorobenzene (S)	%						100	100	77-130			
Toluene-d8 (S)	%						98	98	80-120			
Preservation pH		1.0			1.0	1.0				0		

MATRIX SPIKE & MATRIX SP	KE DUPLICA	TE: 18259	63		1825964						
			MS	MSD							
	60	0227374008	Spike	Spike	MS	MSD	MS	MSD	% Rec	Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD RPD	Qual
Benzene	ug/L	270	100	100	383	361	113	91	37-151	6 40	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

QUALITY CONTROL DATA

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	ATE: 18259	63 MS	MSD	1825964							
	_	0227374008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Ethylbenzene	ug/L	29.1	100	100	125	116	96	87	29-151	7	45	
Toluene	ug/L	901	100	100	1070	987	168	86	37-147	8	43	M1
Xylene (Total)	ug/L	670	300	300	1000	942	110	91	27-156	6	46	
1,2-Dichloroethane-d4 (S)	%						94	96	81-127			
4-Bromofluorobenzene (S)	%						101	101	77-130			
Toluene-d8 (S)	%						99	97	80-120			
Preservation pH		1.0			1.0	1.0				0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Sulfate

QC Batch: 447743 Analysis Method:
QC Batch Method: EPA 300.0 Analysis Description:

EPA 300.0 300.0 IC Anions

Associated Lab Samples: 60227293001

METHOD BLANK: 1831500 Matrix: Water

Associated Lab Samples: 60227293001

Parameter Units Blank Reporting Result Limit Analyzed Qualifiers

mg/L ND 1.0 09/23/16 16:54

LABORATORY CONTROL SAMPLE: 1831501

ParameterUnitsSpike Conc.LCS ResultLCS % Rec LimitsQualifiersSulfatemg/L54.79590-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1831502 1831503

MS MSD

60227293001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 5 5 7.1 7.2 80-120 mg/L 2.4 94 95 15

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

QC Batch: 447841 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60227293002, 60227293003, 60227293004, 60227293005

METHOD BLANK: 1832280 Matrix: Water
Associated Lab Samples: 60227293002, 60227293003, 60227293004, 60227293005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 09/24/16 12:18

LABORATORY CONTROL SAMPLE: 1832281

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 4.8 96 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1832282 1832283

MS MSD 60227293002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 179 80-120 mg/L 131 50 50 179 97 0 15 96

MATRIX SPIKE SAMPLE: 1832284

MS 60227293005 Spike MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 104 155 80-120 Sulfate mg/L 50 103

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/26/2016 01:09 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074926 COP FLORA VISTA NO 1

Pace Project No.: 60227293

Date: 09/26/2016 01:09 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60227293001	GW-074926-090716-SP-MW-1	EPA 3010	446110	EPA 6010	446261
60227293002	GW-074926-090716-SP-MW-2	EPA 3010	446110	EPA 6010	446261
60227293003	GW-074926-090716-SP-MW-3	EPA 3010	446110	EPA 6010	446261
60227293004	GW-074926-090716-SP-MW-4	EPA 3010	446110	EPA 6010	446261
60227293005	GW-074926-090716-SP-MW-5	EPA 3010	446110	EPA 6010	446261
60227293001	GW-074926-090716-SP-MW-1	EPA 8260	446046		
60227293002	GW-074926-090716-SP-MW-2	EPA 8260	446046		
60227293003	GW-074926-090716-SP-MW-3	EPA 8260	446046		
60227293004	GW-074926-090716-SP-MW-4	EPA 8260	446046		
60227293005	GW-074926-090716-SP-MW-5	EPA 8260	446568		
60227293006	GW-074926-090716-SP-DUP	EPA 8260	446046		
60227293006	GW-074926-090716-SP-DUP	EPA 8260	446568		
60227293001	GW-074926-090716-SP-MW-1	EPA 300.0	447743		
60227293002	GW-074926-090716-SP-MW-2	EPA 300.0	447841		
60227293003	GW-074926-090716-SP-MW-3	EPA 300.0	447841		
60227293004	GW-074926-090716-SP-MW-4	EPA 300.0	447841		
60227293005	GW-074926-090716-SP-MW-5	EPA 300.0	447841		

Sample Condition Upon Receipt ESI Tech Spec Client

AFS

Client Name: GHD, Cop. Nm							
Courier: FedEx ☎ UPS □ VIA □ Clay □ PE	EX 🗆	ECI		Pace □	Xroads [☐ Client ☐	Other
Tracking #: 2044 6652 8006 Pace	Shippin	g Lab	el Used?	Yes 🗆	No 🗷		
Custody Seal on Cooler/Box Present: Yes No 🗆	Seals in	ntact:	Yes 🔀	No □			
Packing Material: Bubble Wrap ☑ Bubble Bags ☐		Foa	am 🗆	None [Other 🗆	
Thermometer Used: T-266 / T-239 Type	of Ice:	Web	Blue	None			
Cooler Temperature (°C): As-readv-2 _ Corr. Factor	r CF +1.1 C	F -0.1 (Correcte	d 09			initials of person g contents: 1/9/1/2 1020
Temperature should be above freezing to 6°C							
Chain of Custody present:	1 7 Yes	□No	□N/A				
Chain of Custody relinquished:	es	□No	□N/A				
Samples arrived within holding time:	Yes	□No	□N/A				
Short Hold Time analyses (<72hr):	□Yes	⊠No	□N/A				
Rush Turn Around Time requested:	□Yes	No	□n/a				
Sufficient volume:	Yes	□No	□n/a				
Correct containers used:	7 Yes	□No	□N/A				
Pace containers used:	/ ✓ Yes	□No	□N/A				
Containers intact:	Tayes	□No	□N/A				
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes	□No	N/A				
Filtered volume received for dissolved tests?	Yes	□No	• □N/A				
Sample labels match COC: Date / time / ID / analyses	Yes	□No	□N/A				
Samples contain multiple phases? Matrix:	□Yes	□No	12 N/A				
Containers requiring pH preservation in compliance?	Yes	□No	□N/A				
(HNO₃, H₂SO₄, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	,		1				
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: N/A							
Lead acetate strip turns dark? (Record only)	□Yes	□No	1				
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes	□No					
Trip Blank present:	Yes		□N/A				
Headspace in VOA vials (>6mm):	□Yes		□N/A				
	□Yes	-					
Samples from USDA Regulated Area: State:							
Additional labels attached to 5035A / TX1005 vials in the field?			,				
Client Notification/ Resolution: Copy COC to C	Client?	Υ /	N	Field Da	ata Require		
Person Contacted: Date/Tin	me:						ecord start and finish times ng cooler, if >20 min, recheck
Comments/ Resolution:						sample temps	
						Start: o1	Start:
						End: /o?	End:
Project Manager Review: alice			Date:	09/09/16	<u> </u>	Temp:	Temp:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

REJUNGUISHED BY I AFFILIATION DATE TIME SAMPLE CONDIT	CM-074926-090716-5P-MW-1 SMAPLE 1D Sample 1ds must be unique SMAPLE - 090716-5P-MW-2 SMAPLE - 090716-5P-MW-5 SMAPLE - 090716-5P-MW-5	Copy To: Jeff Walker, Angela Bown Purchase Order # 34005658 Project Name: 074926 COP Flora Vista No1 Project ## CODE St. Www WWW ARTRIX TYBE OF BOATE TIME DATE TWE DATE TWE DATE TWE DATE COLLECTED COLLECTE	SAMPLE TEMP AT COLLECTION SAMPLE TEMP AT COLLECTION THOSE OF CONTAINERS SAMPLE TEMP AT COLLECTION THOSE OF COL	Methanol Methanol Methanol Other Asses Test Analyses Test 8950 BTEX 8050 BTE	Ested Analysis Filtered (YN) 2004) IEEE/IEEE/IEEE	State / Location NM Regulatory Agency (Y/N) Residual Chlorine (Y/N) (201 (202 (203) (204) (204) (204) (205) (205)
REJUGUISHED BY I AFFLUATION DATE TIME ACCEPTED BY I AFFLUATION DATE THE THE ACCEPTED BY I AFFLUATION DATE THE ACCEPTED BY I ACCEPTED BY I AFFLUATION DATE THE ACCEPT	a Policy					3
	ADDITIONAL COMMENTS		S-76 [6	THA Su (Sace	16 8 50	6.

December 19, 2016

Jeffrey Walker GHD Services, Inc 6121 Indian School Rd NE Ste 200 Albuquerque, NM 87110

RE: Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Dear Jeffrey Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on December 01, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com

Alice Spiller

Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc,

CERTIFICATIONS

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

SAMPLE SUMMARY

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
60233335001	GW-074926-112916-CN-MW2	Water	11/29/16 15:35	12/01/16 08:55	
60233335002	GW-074926-112916-CN-MW3	Water	11/29/16 15:10	12/01/16 08:55	
60233335003	GW-074926-112916-CN-MW4	Water	11/29/16 15:20	12/01/16 08:55	
60233335004	TRIP BLANK	Water	11/29/16 15:10	12/01/16 08:55	

SAMPLE ANALYTE COUNT

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60233335001	GW-074926-112916-CN-MW2	EPA 6010	JGP	2
		EPA 8260	EAG	8
		EPA 300.0	OL	1
60233335002	GW-074926-112916-CN-MW3	EPA 6010	JGP	2
		EPA 8260	EAG	8
		EPA 300.0	OL	1
0233335003	GW-074926-112916-CN-MW4	EPA 6010	JGP	2
		EPA 8260	EAG	8
		EPA 300.0	OL	1
60233335004	TRIP BLANK	EPA 8260	EAG	8

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Method: EPA 6010

Description: 6010 MET ICP, Dissolved
Client: GHD Services_COP NM
Date: December 19, 2016

General Information:

3 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Method: EPA 8260

Description: 8260 MSV UST, Water
Client: GHD Services_COP NM
Date: December 19, 2016

General Information:

4 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 458375

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

PROJECT NARRATIVE

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: GHD Services_COP NM
Date: December 19, 2016

General Information:

3 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

Sample: GW-074926-112916-CN- MW2	Lab ID: 602	33335001	Collected: 11/29/1	6 15:35	Received: 12	2/01/16 08:55 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EP/	A 3010			
Iron, Dissolved	ND	ug/L	50.0	1	12/02/16 11:10	12/05/16 16:55	7439-89-6	
Manganese, Dissolved	ND	ug/L	5.0	1	12/02/16 11:10	12/05/16 16:55	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 82	60					
Benzene	ND	ug/L	1.0	1		12/10/16 04:30	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		12/10/16 04:30	100-41-4	
Toluene	ND	ug/L	1.0	1		12/10/16 04:30	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		12/10/16 04:30	1330-20-7	
Surrogates								
Toluene-d8 (S)	102	%	80-120	1		12/10/16 04:30	2037-26-5	
4-Bromofluorobenzene (S)	94	%	77-130	1		12/10/16 04:30	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	81-127	1		12/10/16 04:30	17060-07-0	
Preservation pH	1.0		1.0	1		12/10/16 04:30		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	109	mg/L	10.0	10		12/17/16 16:20	14808-79-8	

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

Sample: GW-074926-112916-CN- MW3	Lab ID: 602	33335002	Collected: 11/29/1	6 15:10	Received: 12	/01/16 08:55 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved	103	ug/L	50.0	1	12/02/16 11:10	12/05/16 16:59	7439-89-6	
Manganese, Dissolved	197	ug/L	5.0	1	12/02/16 11:10	12/05/16 16:59	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 82	60					
Benzene	ND	ug/L	1.0	1		12/10/16 04:44	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		12/10/16 04:44	100-41-4	
Toluene	ND	ug/L	1.0	1		12/10/16 04:44	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		12/10/16 04:44	1330-20-7	
Surrogates								
Toluene-d8 (S)	103	%	80-120	1		12/10/16 04:44	2037-26-5	
4-Bromofluorobenzene (S)	95	%	77-130	1		12/10/16 04:44	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	81-127	1		12/10/16 04:44	17060-07-0	
Preservation pH	1.0		1.0	1		12/10/16 04:44		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Sulfate	147	mg/L	10.0	10		12/17/16 16:34	14808-79-8	

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

Sample: GW-074926-112916-CN- MW4	Lab ID: 602	33335003	Collected: 11/29/1	6 15:20	Received: 12	2/01/16 08:55 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EPA	A 3010			
Iron, Dissolved	4310	ug/L	50.0	1	12/02/16 11:10	12/05/16 17:02	7439-89-6	
Manganese, Dissolved	3880	ug/L	5.0	1	12/02/16 11:10	12/05/16 17:02	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	0					
Benzene	34.6	ug/L	1.0	1		12/10/16 04:58	71-43-2	
Ethylbenzene	7.7	ug/L	1.0	1		12/10/16 04:58	100-41-4	
Toluene	ND	ug/L	1.0	1		12/10/16 04:58	108-88-3	
Xylene (Total)	23.7	ug/L	3.0	1		12/10/16 04:58	1330-20-7	
Surrogates								
Toluene-d8 (S)	106	%	80-120	1		12/10/16 04:58	2037-26-5	
4-Bromofluorobenzene (S)	97	%	77-130	1		12/10/16 04:58	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	81-127	1		12/10/16 04:58	17060-07-0	
Preservation pH	1.0		1.0	1		12/10/16 04:58		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	.0					
Sulfate	72.8	mg/L	5.0	5		12/17/16 16:48	14808-79-8	

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

Sample: TRIP BLANK	Lab ID: 6023	33335004	Collected: 11/29/1	6 15:10	Received: 12	2/01/16 08:55 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Meth	nod: EPA 8260	0					
Benzene	ND	ug/L	1.0	1		12/10/16 05:12	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		12/10/16 05:12	100-41-4	
Toluene	ND	ug/L	1.0	1		12/10/16 05:12	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		12/10/16 05:12	1330-20-7	
Surrogates								
Toluene-d8 (S)	103	%	80-120	1		12/10/16 05:12	2037-26-5	
4-Bromofluorobenzene (S)	97	%	77-130	1		12/10/16 05:12	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	81-127	1		12/10/16 05:12	17060-07-0	
Preservation pH	1.0		1.0	1		12/10/16 05:12		

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Manganese, Dissolved

Date: 12/19/2016 09:28 AM

QC Batch: 457310 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 60233335001, 60233335002, 60233335003

METHOD BLANK: 1872141 Matrix: Water

Associated Lab Samples: 60233335001, 60233335002, 60233335003

ug/L

Parameter Units Result Reporting
Result Limit Analyzed Qualifiers

solved ug/L ND 50.0 12/05/16 16:34

 Iron, Dissolved
 ug/L
 ND
 50.0
 12/05/16 16:34

 Manganese, Dissolved
 ug/L
 ND
 5.0
 12/05/16 16:34

0.38 mg/L

LABORATORY CONTROL SAMPLE: 1872142

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Iron, Dissolved ug/L 10000 9900 99 80-120 ug/L Manganese, Dissolved 1000 1010 101 80-120

1000

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1872143 1872144 MSD MS 60232824001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Iron, Dissolved ug/L 9200 10000 10000 19600 19400 103 102 75-125 20

1000

1400

1390

101

101

75-125

20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

QC Batch: 458375 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 60233335001, 60233335002, 60233335003, 60233335004

METHOD BLANK: 1876626 Matrix: Water
Associated Lab Samples: 60233335001, 60233335002, 60233335003, 60233335004

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	12/10/16 02:53	
Ethylbenzene	ug/L	ND	1.0	12/10/16 02:53	
Toluene	ug/L	ND	1.0	12/10/16 02:53	
Xylene (Total)	ug/L	ND	3.0	12/10/16 02:53	
1,2-Dichloroethane-d4 (S)	%	98	81-127	12/10/16 02:53	
4-Bromofluorobenzene (S)	%	96	77-130	12/10/16 02:53	
Toluene-d8 (S)	%	102	80-120	12/10/16 02:53	

LABORATORY CONTROL SAMPLE:	1876627					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		18.4	92	79-116	
Ethylbenzene	ug/L	20	19.3	97	81-110	
Toluene	ug/L	20	18.6	93	82-111	
Xylene (Total)	ug/L	60	58.6	98	80-111	
1,2-Dichloroethane-d4 (S)	%			96	81-127	
4-Bromofluorobenzene (S)	%			94	77-130	
Toluene-d8 (S)	%			103	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

QC Batch: 458963 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60233335001, 60233335002, 60233335003

METHOD BLANK: 1878843 Matrix: Water

Associated Lab Samples: 60233335001, 60233335002, 60233335003

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 12/17/16 09:14

LABORATORY CONTROL SAMPLE: 1878844

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 5.0 99 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1878845 1878846

MS MSD 60233523001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 80-120 mg/L 1450 500 500 1990 1980 108 107 0 15

MATRIX SPIKE SAMPLE: 1878847

60233523002 Spike MS MS % Rec

ParameterUnitsResultConc.Result% RecLimitsQualifiersSulfatemg/L1290500182010580-120

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 458375

Date: 12/19/2016 09:28 AM

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074926 COP Flora Vista No1

Pace Project No.: 60233335

Date: 12/19/2016 09:28 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60233335001	GW-074926-112916-CN-MW2	EPA 3010	<u>457310</u>	EPA 6010	457385
60233335002	GW-074926-112916-CN-MW3	EPA 3010	457310	EPA 6010	457385
60233335003	GW-074926-112916-CN-MW4	EPA 3010	457310	EPA 6010	457385
60233335001	GW-074926-112916-CN-MW2	EPA 8260	458375		
60233335002	GW-074926-112916-CN-MW3	EPA 8260	458375		
60233335003	GW-074926-112916-CN-MW4	EPA 8260	458375		
60233335004	TRIP BLANK	EPA 8260	458375		
60233335001	GW-074926-112916-CN-MW2	EPA 300.0	458963		
60233335002	GW-074926-112916-CN-MW3	EPA 300.0	458963		
60233335003	GW-074926-112916-CN-MW4	EPA 300.0	458963		

Sample Condition Upon Receipt ESI Tech Spec Client

Client Name: GHD	
Courier: FedEx ☑ UPS □ VIA □ Clay □ PEX □	□ ECI □ Pace □ Xroads □ Client □ Other □
Tracking #: 7 044 6456 7838 Pace Shi	nipping Label Used? Yes □ No □
Custody Seal on Cooler/Box Present: Yes Ø No □ Se	eals intact: Yes to No □
Packing Material: Bubble Wrap ☐ Bubble Bags 전 CF+0.7 CF-0.5	Foam □ None □ Other □
Thermometer Used: T-266 T-239 Type of	fice Wet Blue None
Cooler Temperature (°C): As-read October Corr. Factor CF	Date and initials of person examining contents:
Temperature should be above freezing to 6°C	
Chain of Custody present:	Yes Ono On/A
Chain of Custody relinquished:	ÎYes □No □N/A
Samples arrived within holding time:	(Yes □No □N/A
Short Hold Time analyses (<72hr):	Yes No □N/A
Rush Turn Around Time requested:	JYes ⊠ No □N/A
Sufficient volume:	Yes Ono On/A
Correct containers used:	Yes Ono On/A
Pace containers used:	Yes Ono On/A
Containers intact:	ĪYes □No □N/A
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	Yes □No KÚN/A
Filtered volume received for dissolved tests?	Įv̇̀es □No □N/A
Sample labels match COC: Date / time / ID / analyses	(Yes □No □N/A
Samples contain multiple phases? Matrix: WT	Yes KINo □N/A
	Yes □No □N/A
(HNO ₃ , H ₂ SO ₄ -HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA) Micro, O&G, KS TPH, OK-DRO)	
Cyanide water sample checks: (XN/A	
post destate only turns dank. (Nessel Siny)	Yes \(\sum \text{No} \)
Potassium iodide test strip turns blue/purple? (Preserve)]Yes □No
Trip Blank present:	Yes DNo DN/A
Headspace in VOA vials (>6mm):	Yes KINo □N/A
Samples from USDA Regulated Area: State:	Yes □No □M/A
Additional labels attached to 5035A / TX1005 vials in the field?	JYes □No MEN/A
Client Notification/ Resolution: Copy COC to Clien	nt? Y / N Field Data Required? Y / N
Person Contacted: Date/Time:	when unpacking cooler, if >20 min, recheck
Comments/ Resolution:	sample temps.
	Start: (0 Start:
Project Manager Review: Alice	Date: 12/01/16

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

MATRIX CODE Project #: Note	Company: GHD Services COP NM Address: 6212 Indian School Rd NE St2	Report To: *Christipe Makews** Copy To: /Jeff Walker, Angela Bown	Invoice information: Attention: Company Name:	
The section of the se			Address:	Regulatory Agency
REPUBLISHED BY ATTHEWOON DATE	ghd.com	Purchase Order #:		State / coation
Residual Chrome (VN) Relationship of the value occess to bring Relationship of the value occess to bring Relationship of the value occess to bring Relationship occess to bring Relat		all e.	22	NM
RECORDER DATE TIME AMAIN CONTINUES AMA				s Filtered (Y/N)
Residual Chicine (YIV) Residu		COMP)	Preservatives	
\$ \$ 0 ONTE TIME DATE TIME \$ \$ 5 TH THE \$ \$ 5 TH THE \$ \$ 10 MM		king Water DW Solut and Water WY WY DW Solut and Water WY WY DW Solut and WY DY CODE (see valid codes of TRIX CODE (cee valid codes of Trix A R R A R A R A R A R A R A R A R A R	PF CONTAINERS PROBLEX	Š
RELINQUISHED BY AFFLUATION DATE THE ACCEPTED BY AFFLUATION THE ACCEPTED BY AFFLUATION DATE THE ACCEPTED BY AFFLUATION THE AC	926-113916-6	TANDO OF CALL SAIN STACE	A A S A A S A S A S A S A S A S A S A S	1834 80 F
RELINQUISHED BY A AFELLATION DATE THE SAMPLE CONDITIONS RELINQUISHED BY A AFELLATION DATE THE SAMPLE CONDITIONS RELINQUISHED BY A FELLATION DATE THE SAMPLE CONDITIONS RELINQUISH DATE THE SAMPLE CONDITION DATE THE SAMPLE DATE THE SAMPLE CONDITION DATE THE SA	136-1139110-1	3 ~		
RELINGUISHED BY AFFILLATION DATE THE SAMPLE CONDITIONS RELINGUISHED BY AFFILLATION DATE THE SAMPLE CONDITIONS RELINGUISHED BY AFFILLATION DATE THE ACCEPTED BY AFFILLATION THE ACCEPTED BY	7-075611-9667	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		7m h + 4
RELIABLISHED BY AFFLIATION RELIABLISHED BY AFFLIATION DATE THE ACCEPTED BY AFFLIATION ONTE THE A				(3)DCAH
RELINQUISHED BY AFFLLATION DATE TIME ACCEPTED BY AFFLLATION DATE TIME (13010 135)	/	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		and care
RELINQUISHED BY / AFFILLATION DATE TIME ACCEPTED BY / AFFILLATION DATE ACCEPTED BY / AFFIL				vii idgi seks
RELINQUISHED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME AUTHOR	No.			
RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY IAFFILIATION DATE TIME RELINQUISHED BY AFFILIATION DATE TIME RELINQUISHED BY AFFILIATION DATE TIME RELINQUISHED BY AFFILIATION DATE RELINQUISHED BY AFFILIATION RELI	ò			
RELINQUISHED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME 141/km 0855 8.77	# T			
RELINQUISHED BY I AFFILIATION DATE TIME ACCEPTED BY I AFFILIATION DATE TIME **CONTROLL 350 1 1 1 1 1 1 1 1 1	2		10.00	
RELINQUISHED BY AFFILIATION DATE THE ACCEPTED BY LAFFILIATION DATE THE ACCEPTED BY LAFFILIATION DATE THE THINE ACCEPTED BY LAFFILIATION DATE THE ACCEPTED BY LAFFILIATION DATE T	The second second			
RELINQUISHED BY I AFFILIATION DATE THREE ACCEPTED BY I AFFILIATION DATE THREE				7
Alebadar 15080 113010 1350 (the 1911/4 0855 0;	DITIONAL COMMENTS		TIME ACCEPTED BY / AFFILATION	TIME
		0	1350 AC 14 19	1/10 0855 0,
		SAMPLER NAME AND	SIGNATURE MPI ER: 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uo pe
			KI Walke John	