J. Brady Crouch

ConocoPhillips Company Risk Management & Remediation Program Manager

600 N. Dairy Ashford EC3-06-W056 Houston, TX 77079 Phone: 832-486-3016

Mr. Randolph Bayliss, P. E. District III & IV Hydrologist New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

March 21, 2017

Re: NMOCD Case No. 3R-340, 2016 Annual Groundwater Monitoring and Remediation Report

Dear Mr. Bayliss:

Enclosed is the 2016 Annual Groundwater Monitoring and Site Assessment Report for the Randleman No. 1 site. This report, prepared by GHD Services, Inc., contains the results of groundwater monitoring and site assessment activities in 2016.

Please let me know if you have any questions.

Sincerely,

Foreph B. Couch

J. Brady Crouch

Enc

2016 Annual Groundwater Monitoring Report

ConocoPhillips Randleman No. 1 San Juan County, New Mexico API# 30-045-10698 NMOCD# 3R-340

ConocoPhillips Company

GHD | 6121 Indian School Rd NE Suite 200 Albuquerque NM 87110 USA 074933| Report No 8 | March 21, 2017

Table of Contents

1.	Introd	luction	1
	1.1	Background	1
2.	Grou	ndwater Monitoring Well Abandonment and Monitoring Well Installation	4
	2.1	Groundwater Monitoring Well Abandonment	4
	2.2	Groundwater Monitoring Well Installation	4
3.	Grou	ndwater Monitoring Methodology and Analytical Results	4
	3.1	Groundwater Monitoring Summary	4
	3.2	Groundwater Monitoring Methodology	4
	3.3	Groundwater Monitoring Analytical Results	4
4.	Conc	lusions and Recommendations	5

Figure Index

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 2a	Site Plan-MW-5 Location
Figure 3	Geological Cross Section
Figure 4	March 2016 Groundwater Potentiometric Surface Map
Figure 5	June 2016 Groundwater Potentiometric Surface Map
Figure 6	September 2016 Groundwater Potentiometric Surface Map
Figure 7	December 2016 Groundwater Potentiometric Surface Map
Figure 8	2016 Concentration Map

Table Index

Table 1	Site History Timeline
Table 2	Monitoring Well Specifications and Groundwater Elevations

- Table 3Field Parameters Summary
- Table 4
 Groundwater Analytical Results Summary

Appendix Index

Appendix A	Boring Log/Well Completion Diagram
Appendix B	Groundwater Laboratory Analytical Reports

1. Introduction

This report discusses the 2016 groundwater monitoring well plugging/abandonment, new well installation and quarterly monitoring events performed on behalf of ConocoPhillips Company (ConocoPhillips) by GHD Services, Inc. (GHD), at the Randleman No. 1 site located north of Aztec, New Mexico (Site). The Site is situated on private land in Section 13, Township 31N, Range 11W, of San Juan County, New Mexico. Geographical coordinates for the Site are 36°53'46.09"North and 107°56'43.78"West. A Site location map and detail map are included as Figures 1 and 2, respectively.

1.1 Background

In April 1997, an unlined surface impoundment was discovered to have been impacted by petroleum hydrocarbons. On April 29, 1997, excavation of the soil beneath the impoundment began. A total of 613 cubic yards of hydrocarbon impacted soil were removed and land farmed at the nearby Randleman No. 3 site. Three monitoring wells were installed at the Site on May 14, 1997, and quarterly groundwater monitoring was conducted through March 1998. Evaluation of groundwater monitoring results led to another excavation in April 1998. In total, 2.220 cubic yards of hydrocarbon impacted soil were excavated to address residual soil contamination extending to the south of the original excavated area. Quarterly groundwater monitoring was continued through September 2000. After four consecutive guarters of groundwater monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (NMOCD) grant closure status for the Site. In June 2002, the NMOCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitoring wells according to NMOCD standards. The Williams groundwater monitoring wells were indeed plugged and abandoned. The historical excavation area and historical groundwater monitoring wells are displayed in Figure 2.

On February 23, 2009, a release of approximately 60 barrels of condensate occurred as a result of a hole in an on Site production tank. Envirotech Inc. of Farmington, NM (Envirotech) excavated an area of approximately 42 foot by 51 foot by 7 foot deep on February 26, 2009. Seven composite soil samples were collected during excavation activities and were field analyzed for total petroleum hydrocarbons (TPH) using EPA Method 418.1. TPH results ranged from 8 to 1,080 parts per million (ppm) in the walls of the excavation. Additionally, samples were field analyzed for organic vapors using a photoionization detector and heated headspace techniques. Organic vapor concentrations ranged from 6.8 ppm to 898 ppm.

Because TPH and organic vapor levels were found to be above NMOCD action levels, the excavation was continued on February 27, 2009. The total area of excavation measured 81 ft x 43 ft x 20 ft deep. The excavation area is depicted in Figure 2a.

On March 2, 2009, groundwater was found seeping into the southeast corner of the excavation at a depth of approximately 20 feet below ground surface (bgs). A vacuum truck was utilized to recover

groundwater from the excavation. After removal of accumulated groundwater, Envirotech obtained a soil sample from the southeast corner of the excavation at a depth of 20 feet bgs. TPH and organic vapor results were found to be above NMOCD action levels. During field analysis of the soil sample, groundwater continued to seep into the excavation. Groundwater was again removed from the excavation, and additional excavation was performed to obtain a soil sample below NMOCD action levels. A groundwater sample was collected and sent for laboratory analysis of volatile organic compounds by EPA Method 8260B. The groundwater sample was found to contain benzene, total xylenes and total naphthalene above NMWQCC groundwater quality standards. Soon after the groundwater sample was taken, the excavation sidewalls collapsed, making further water removal via the vacuum truck impossible.

A total of 611 cubic yards of soil were removed from the Site and were transported to an NMOCD permitted facility. Clean fill was obtained from the landowner to backfill the excavation. Envirotech recommended the installation of groundwater monitoring wells at the Site under NMOCD guidelines.

Tetra Tech, Inc. (Tetra Tech) installed four groundwater monitoring wells at the Site between June 9 and 10, 2009. A generalized geologic cross section was produced using soil boring data collected during monitoring well installation (Figure 3).

Tetra Tech began conducting groundwater monitoring events at the Site on June 12, 2009. Hydrocarbon absorbent socks were placed in monitoring wells MW 2 and MW 3 on June 18, 2009 due to a light non aqueous phase liquid (LNAPL) sheen being observed intermittently in purge water during groundwater sampling. The socks were removed during the March 2010 sampling event. Since the removal of the socks, LNAPL has not been detected in MW 2 or in MW 3. Soil and groundwater samples were collected from the Kiffen Canyon Wash in October 2009 and analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) to assess potential off Site migration of hydrocarbon. BTEX constituents were found to be below NMWQCC standards in both the soil and groundwater collected from Kiffen Canyon Wash.

Site consulting responsibilities were transferred from Tetra Tech to GHD Services, Inc. (formerly CRA) On June 15, 2011. GHD has continued quarterly groundwater monitoring since that time.

A new monitoring well, MW-5, was installed between May 23 and 25, 2013, at the Randleman 01A/01M gas well site, approximately 2000 feet north of the Site (Figure 2b). MW 5 was installed to monitor groundwater quality in the up gradient direction. An October 30, 2014 meeting between GHD, COP and the NMOCD resulted in the agreement that MW 5 cannot be considered a viable up gradient well due to its distance from the Randleman No. 1 Site. Monitor well MW 5 was removed from the groundwater sampling schedule beginning in December 2014 and it was abandoned on September 13, 2016. GHD installed monitor well MW 6 on September 13, 2016 to replace monitor well MW 5. MW 6 was installed approximately 225 feet to the north of the Site (Figure 2). The historical timeline for the Site is presented in Table 1.

2. Groundwater Monitoring Well Abandonment and Monitoring Well Installation

2.1 Groundwater Monitoring Well Abandonment

Monitoring well MW-5 was plugged and abandoned on September 13, 2016. Plugging and abandonment of monitor well MW-5 was performed in general accordance with New Mexico Office of State Engineer (NMOSE) requirements. A well plugging plan was submitted to the NMOSE for their approval prior to well abandonment. Plugging operations were not performed until approval of the plugging plan was received from the NMOSE.

The well was plugged by pumping a high solids bentonite grout, from the bottom to the well top through a tremie pipe. The surface completion was removed, the well casing was cut off below ground surface, and the soil was returned to grade.

An NMOSE Plugging Record for the well was submitted by the drilling subcontractor following completion of plugging and abandonment activities.

2.2 Groundwater Monitoring Well Installation

Monitor well MW-6 was installed on September 13, 2016. The monitor well location was proposed in a workplan submitted to the NMOCD.

Prior to initiation of the monitor well installation activities, a permit was submitted to and approved by the NMOSE and a utility clearance protocol was completed. The boring was pre drilled to a depth of 5 feet below ground surface (ft bgs) using hydro excavation.

National Exploration, Wells, and Pumps of Peralta, New Mexico, installed the monitoring well under the supervision of GHD. The borehole was drilled using a CME 85 drill rig equipped with hollow stem auger. The boring for MW 6 encountered cobbles, boulders and sand that were hydroexcavated to a depth of 7 ft bgs. A very fine-grained sand was encountered from 7 to 12 ft bgs followed by a silty-clay to a depth of 21 ft bgs. A weathered clay was encountered from 21 to 23 ft bgs. A fractured, medium cemented sandstone was encountered from 23 to the bottom of the boring at 40 ft bgs. The Boring Log and Well Completion Form is included as Appendix A.

A two inch diameter, schedule 40 PVC monitoring well was installed in the boring. The well was installed to a depth of 40 ft bgs and constructed with 15 ft of 2-inch machine slot 0.01 inch PVC screen. Above the screened interval, the well was completed with 2 inch PVC blank casing.

The annulus in the borehole was backfilled with a 10/20 silica sand pack from the bottom to approximately 2 feet above the well screen. A 2 foot thick seal of 3/8 inch hydrated bentonite chips was placed above the sand pack. The remainder of the borehole annulus was filled with a high solids bentonite grout mix.

Monitor well MW-6 was completed with a traffic-rated flush mount well cover embedded in a 2 foot by 2 foot by 4-inch thick concrete pad.

Well development was performed by bailing and surging the wells until turbidity visibly cleared and field parameters of pH, temperature, and conductivity stabilized (within a 10% margin). Well development water was placed in the on Site produced water tank.

3.

Groundwater Monitoring Methodology and Analytical Results

3.1 Groundwater Monitoring Summary

Quarterly groundwater monitoring events were conducted on March 30, June 22, September 8, and December 1, 2016 that included monitoring wells MW-1, MW-2, MW-3, and MW-4. Monitoring well MW 6 was sampled in September and December.

Prior to collection of groundwater samples from monitoring wells MW-1, MW-2, MW-3, MW-4, and MW 6, depth to groundwater in each well was measured using an oil/water interface probe (Table 2). Groundwater potentiometric surface maps compiled utilizing 2016 quarterly monitoring measurements are presented as Figures 4, 5, 6, and 7. Groundwater flow direction at the Site varies from south southeast to nearly due south and appears to be influenced by surface water flow in the Kiffen Canyon Wash that borders the Site to the east.

3.2 Groundwater Monitoring Methodology

During groundwater monitoring events, Site monitoring wells were purged of at least three casing volumes of groundwater using a 1.5 inch diameter, polyethylene, and dedicated bailer. Groundwater parameters including pH, temperature, conductivity and oxidation reduction potential, were collected during purging using a multi-parameter meter. Field results were recorded and are summarized on Table 3.

Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace Analytical Services, Inc. of Lenexa, Kansas. Groundwater samples were analyzed for BTEX by EPA Method 8260; sulfate and chloride by EPA Method E300.0; total dissolved solids (TDS) by EPA Method 2540C; and dissolved manganese by EPA Method 6010. Analytical results are summarized in Table 4.

3.3 Groundwater Monitoring Analytical Results

The NMWQCC mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedances of NMWQCC groundwater quality standards in Site monitoring wells are discussed below.

Benzene

• The NMWQCC domestic water supply groundwater quality standard for benzene is 0.010 milligrams per liter (mg/L). Groundwater samples collected from all Site monitoring wells

were either below laboratory detection limits or below the NMWQCC standard for benzene during 2016.

Chloride

 The NMWQCC domestic water supply groundwater quality standard for chloride is 250 mg/L. Groundwater samples collected from monitoring well MW-4 contained chloride above NMWQCC standard during all quarterly sampling events in 2016. Monitoring well MW-6, located upgradient of the release, contained chloride above the standard in September and December. All other site wells contained concentrations of chloride below NMWQCC standard during 2016.

Dissolved Manganese

 The NMWQCC domestic water supply groundwater quality standard for dissolved manganese is 0.2 mg/L. Samples collected from Site monitoring wells MW-2, MW-3, and MW-4 contained concentrations of dissolved manganese that exceeded the NMWQCC standard for this constituent during the four 2016 quarterly sampling events. Monitoring well MW-6, located upgradient of the release, exceeded the standard in September and December. Concentrations from MW-1 were below NMWQCC standard during 2016.

Sulfate

• The NMWQCC domestic water supply groundwater quality standard for sulfate is 600 mg/L. Groundwater samples collected from all Site monitoring wells that were sampled exceeded the NMWQCC standard for sulfate during 2016 quarterly sampling events.

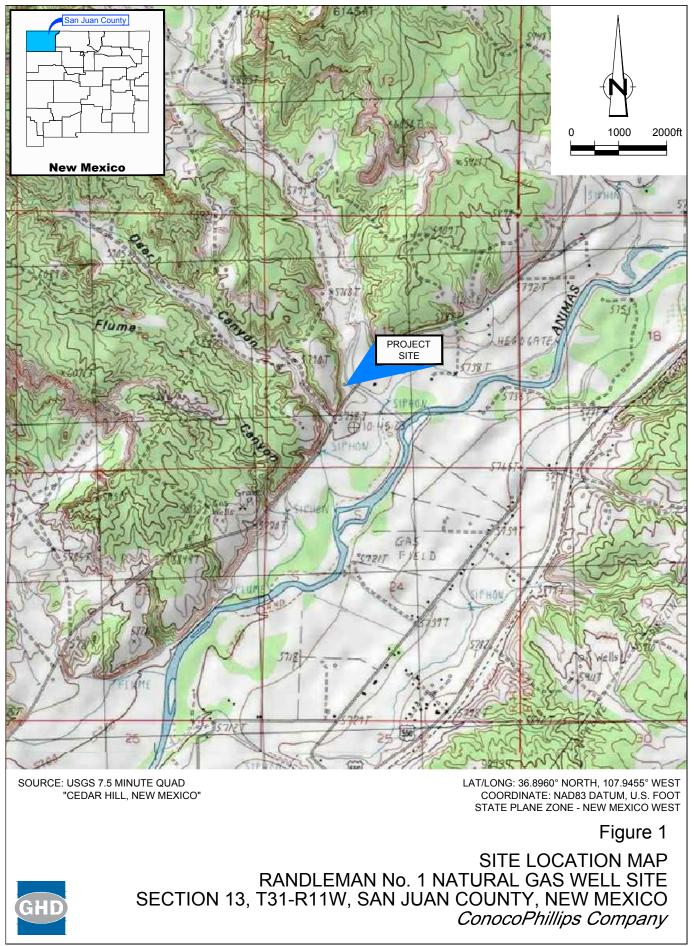
Total Dissolved Solids

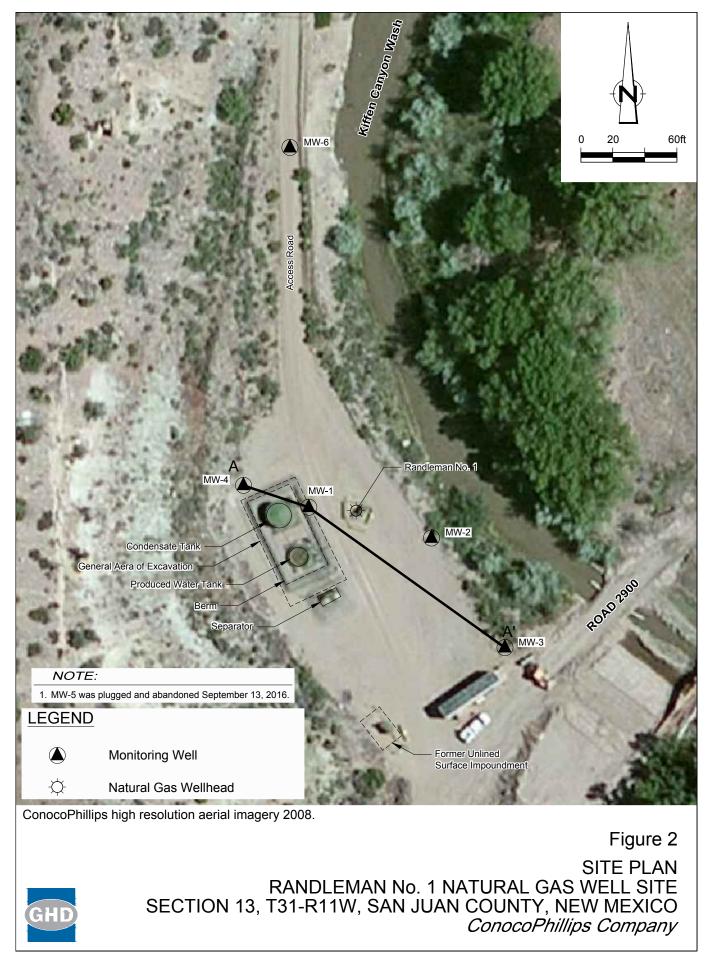
 The NMWQCC groundwater quality standard for TDS is 1,000 mg/L. Groundwater samples collected from all Site monitoring wells that were sampled exceeded the NMWQCC standard for TDS during 2016 quarterly sampling events.

The corresponding laboratory analytical reports, including quality control summaries, are included as Appendix A.

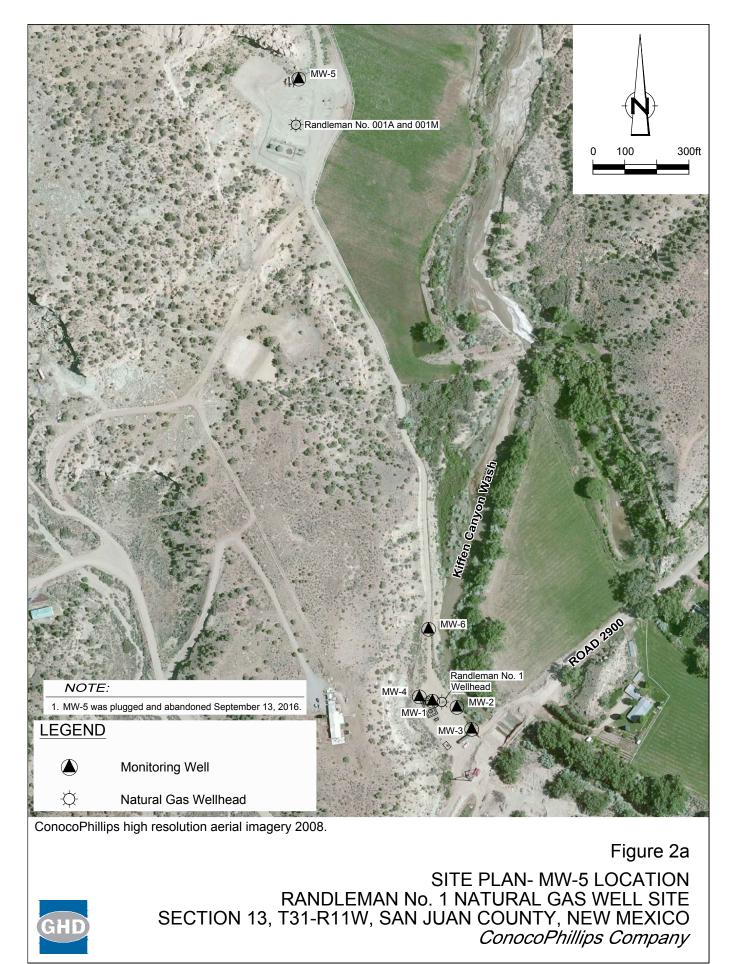
4. **Conclusions and Recommendations**

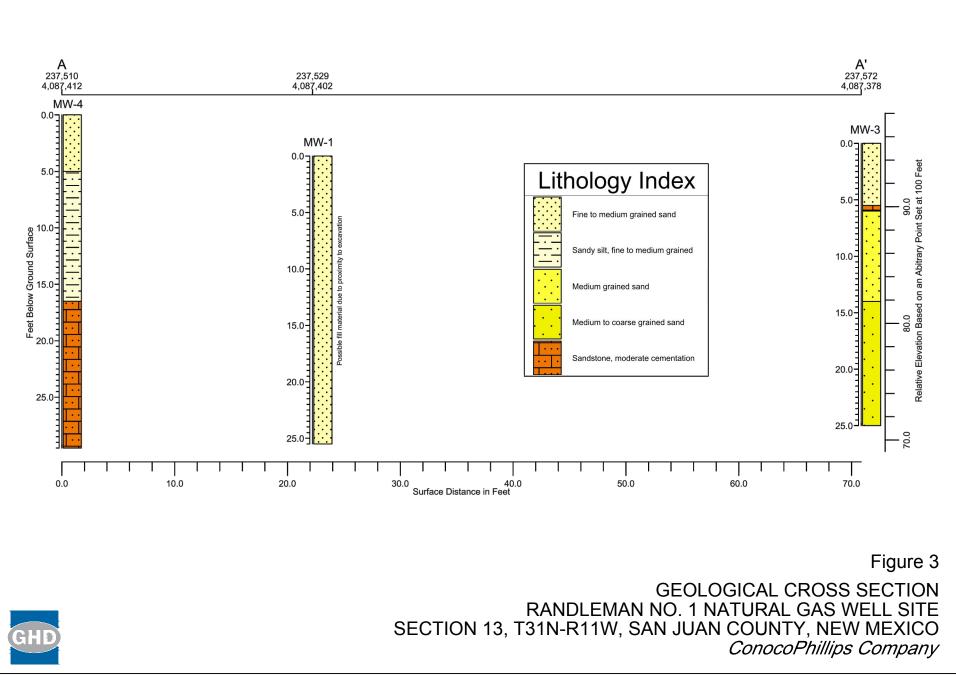
Concentrations of BTEX constituents have been below NMWQCC standards in MW 3 for seven consecutive quarters, below the standards in MW-1, MW-2, and MW-4 for eight or more consecutive quarters, and below the standards in MW-6 for two consecutive quarters. BTEX constituents were not detected in Site wells at concentrations above NMWQCC standards in 2016.


Inorganic constituents TDS, dissolved manganese, sulfates, and chlorides continue to occur at concentrations above standards in all or some Site monitoring wells. Groundwater analytical data from the newly installed upgradient monitoring well MW-6 will aid in understanding naturally occurring inorganic constituents in Site wells as compared to like constituents that may have resulted from historical releases.


The continuation of quarterly groundwater monitoring of BTEX and inorganic constituents is recommended.

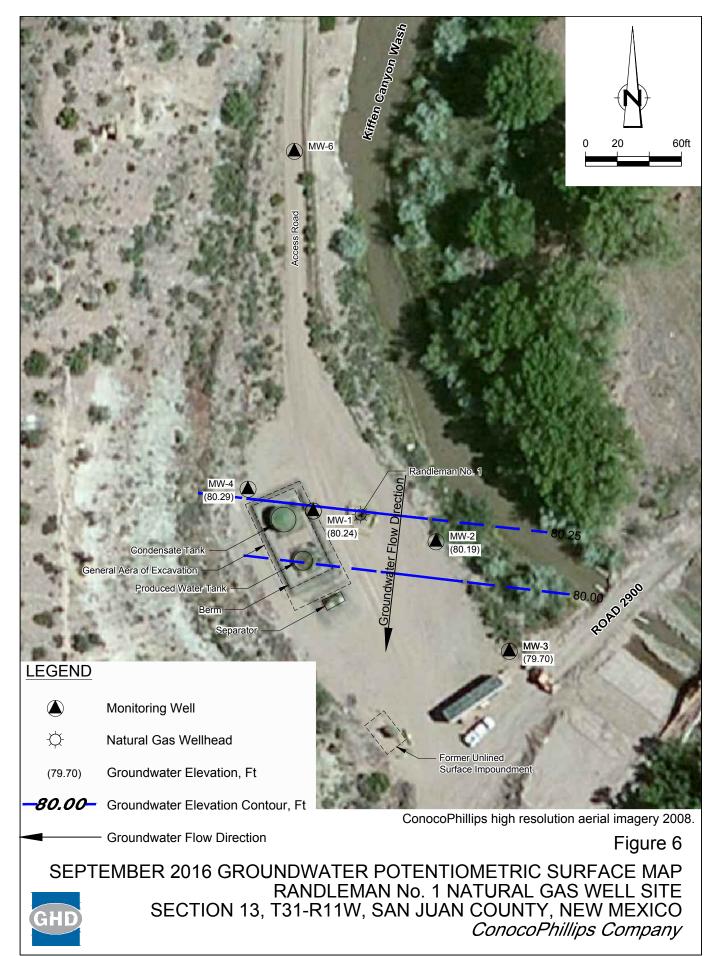
Figures

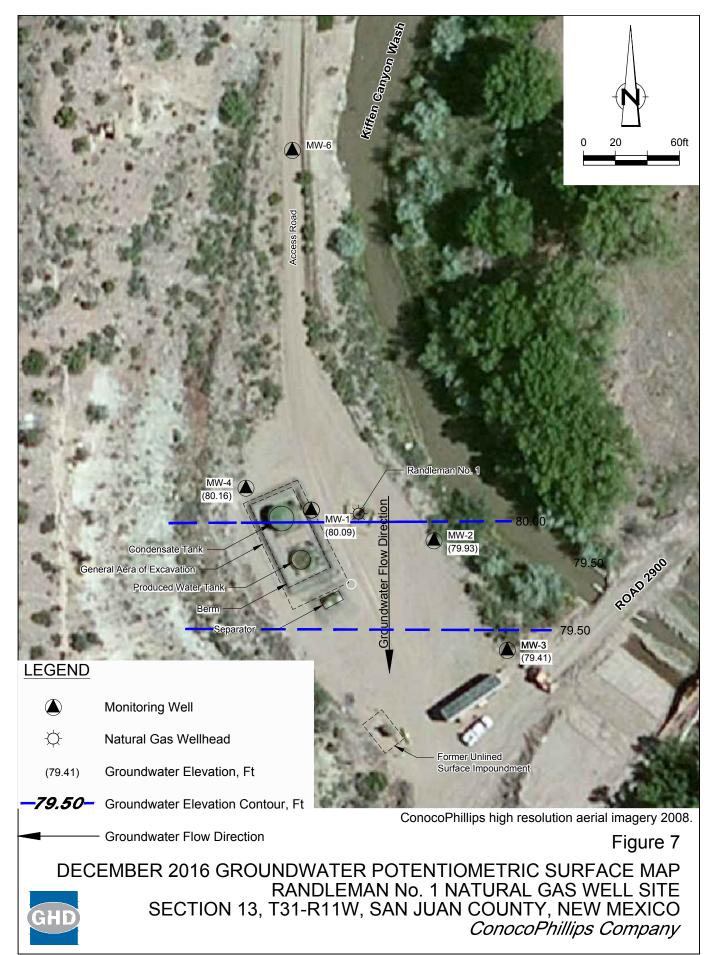

GHD | 2016 Annual Groundwater Monitoring Report | 074933 (8)

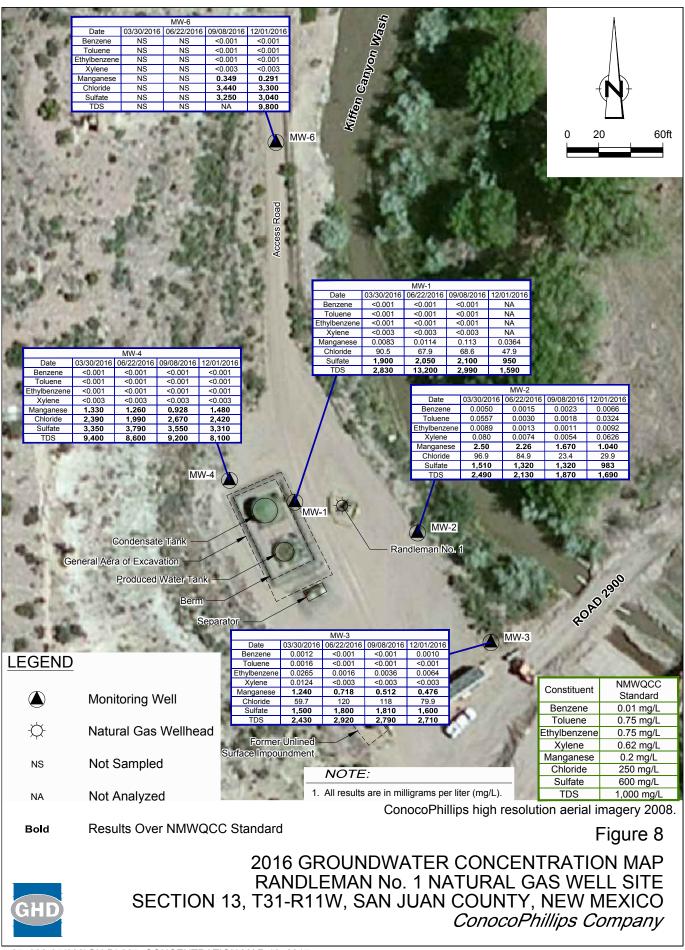

074933-95(008)GN-DL001_TOPO FEB 22, 2017

074933-95(008)GN-DL002_SD MAR 2, 2017

074933-95(008)GN-DL002_SD FEB 22, 2017


074933-95(008)GN-DL004_XSEC JUN 23, 2016


074933-95(008)GN-DL003_GG FEB 22, 2017


074933-95(008)GN-DL003_GG FEB 22, 2017

074933-95(008)GN-DL003_GG_NEW MAR 2, 2017

074933-95(008)GN-DL003_GG_NEW MAR 2, 2017

GHD | 2016 Annual Groundwater Monitoring Report | 074933 (8)

Page 1 of 2

Table 1

Site History Timeline ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

Date/Time Period	Event/Action	Description/Comments
September 20, 1951	Well spudded	Well spudded by Southern Union Gas Company.
August 1, 1952	Transfer of ownership	Well acquired by Aztec Oil and Gas Company.
December 1, 1976	Transfer of ownership	Southland Royalty Company acquired Aztec Oil and Gas Company.
November 22, 1985	Transfer of ownership	Southland Royalty Company acquired by Burlington Resources.
April 1, 1997	Discovery of impacted soil	An unlined surface impoundment was discovered to have been impacted by petroleum hydrocarbons.
April 29, 1997	Excavation of impacted soil	Excavation of the soil beneath the impoundment began; once complete, a total of 613 cubic yards of hydrocarbon impacted soil were removed and landfarmed at the nearby Randleman #3 site.
May 14, 1997	Installation of monitor wells	Three groundwater monitor wells were installed at the Site. Groundwater monitoring was initiated on a quarterly basis through March 1998.
April 1, 1998	Excavation of impacted soil	Evaluation of groundwater monitoring results initiated another excavation of 2,220 cubic yards of hydrocarbon impacted soil "to address residual soil contamination extending to the south of the original excavated area" (Williams, 2002).
February 1, 2002	Closure requested	Quarterly groundwater monitoring was continued through September 2000, and after 4 consecutive quarters of groundwater quality monitoring results below New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards for benzene, toluene, ethylbenzene, and total xylenes (BTEX), Williams Environmental Services (Williams) requested that the New Mexico Oil Conservation Division (OCD) grant closure status for the Site.
June 1, 2002	Closure granted by NMOCD	OCD granted closure for the Site, provided that Williams plug and abandon all Site groundwater monitoring wells according to OCD standards (NMEMNRD, 2002). The historical excavation area and historical groundwater monitor wells are displayed in Figure 2.
March 31, 2006	Transfer of ownership	ConocoPhillips Company acquired Burlington Resources and all assets.
February 23, 2009	Release from condensate tank	Approximately 60 barrels of condensate were found to have spilled from a hole located on the back side of an on-Site condensate tank into the bermed area. The spilled fluids remained in the berm and none of the condensate was recovered. Form C-141 stated that the spill impacted the soil on the ground surface around the tank, that the production tank was to be removed, and the affected soils were to be excavated.
February 26, 2009	Excavation and site assessment	Envirotech Inc. of Farmington, NM (Envirotech) performed the soil excavation and collected soil samples for analysis. The area of release was excavated to approximately 42 feet by 51 feet by 7 feet deep. 7 composite soil samples were collected from the excavation and were analyzed for total petroleum hydrocarbons (TPH) using EPA Method 418.1. Additionally, organic vapors were measured using a Photoionization Detector (PID). TPH results ranged from 8 parts per million (ppm) in the north wall sample to 1,080 ppm in the south wall sample. The OCD recommended action level for TPH at the Site was determined to be 100 ppm. Organic vapor concentrations ranged from 6.8 ppm from the north wall sample, to 898 ppm in the south wall sample. Due to high levels of TPH and organic vapors, the excavation was continued on February 27, 2009.
February 27, 2009	Further excavation and site assessment	Envirotech continued the excavation and sampling activities. Samples collected from the north, west, and east ends of the excavation on February 26, 2009 were found to be below OCD action levels for TPH, the focus of the excavation on February 27, 2009 was the south wall, the southeast wall, and the bottom of the southeast corner. The final excavation measured 81 feet by 43 feet by 20 feet deep (total depth is given for the deepest part of the excavation; other areas determined to be below OCD action levels went to approximately 8 feet bgs). Eight soil samples were collected and analyzed in the field for TPH and organic vapors. Excavation continued until all samples were found to be below 100 ppm for both TPH and organic vapors.
March 2, 2009	Further excavation and site assessment	Groundwater began to seep into the southeast corner of the excavation at 20 feet bgs. A vacuum truck was contracted to remove groundwater from the excavation. After removal of groundwater, a soil sample from the southeast corner of the excavation was collected. TPH and organic vapor results were found to be above OCD action levels. More water was then removed from the excavation, and additional soil removal was performed. A groundwater sample was collected from the area where water continued to seep into the excavation, and was analyzed for volatile organic compounds by EPA Method 8260. The groundwater sample was found to contain benzene, total xylenes and total naphthalenes above New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Once this sample had been obtained, the excavation caved in, making further water removal impossible (Envirotech, 2009). A total of 611 cubic yards of soil were romoved from the Site. Clean fill was used to backfill the excavation.

Site History Timeline ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

June 9 through 11, 2009 Installation of monitor wells Tetra Tech installs four groundwater monitoring event at the Site. MW-1, MW-2, MW-3 and MW-4. June 12, 2009 Groundwater monitoring Tetra Tech conducts the first groundwater monitoring event at the Site. June 12, 2009 Depth to water measurements were taken by Tetra Tech i. Site monitor wells to determine if hydrocarbon svere accurulating in the water column. Hydrocarbon sheen was detected in MW-2 and MW-3 by Tetra Tech. September 23, 2009 Groundwater monitoring Second quartery groundwater monitoring event at the Site conducted by Tetra Tech. October 1, 2009 Site assessment Tetra Tech on Site to hand auger one boring near the Kiffen Caryon Wash, which is located downgradient and east of the Site. Conducted by Tetra Tech. June 9, 2010 Groundwater monitoring Quarterky groundwater monitoring event at the Site conducted by Tetra Tech. June 9, 2010 Groundwater monitoring Quarterky groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterky groundwater monitoring event at the Site conducted by Tetra Tech. June 16, 2011 Groundwater monitoring Quarterky groundwater monitoring event at the Site conducted by Tetra Tech. June 22, 2011 Groundwater monitoring Quarterky groundwater monitoring event at the Site conducted by Tetra Tech.	Date/Time Period	Event/Action	Description/Comments
June 17, 2009 Depth to water measurements were taken by Teta Tech. In Site monitor weils to determine if hydrocarbons were accurulating in the water column. Hydrocarbon sheen was detected in MW-2 and MW-3. June 18, 2009 Absorbent socks placed in wells. Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Teta Tech. September 23, 2009 Groundwater monitoring Second quarterly groundwater monitoring event at the Site conducted by Teta Tech. December 16, 2009 Site assessment Second quarterly groundwater monitoring event at the Site conducted by Teta Tech. December 16, 2009 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. Quarterly groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. Quarterly groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. June 15, 2011 Transfer of Site consulting Quarterly groundwater monitoring event at the Site conducted by CRA. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conduct	June 9 through 11, 2009	Installation of monitor wells	Tetra Tech installs four groundwater monitor wells at the Site; MW-1, MW-2, MW-3 and MW-4.
June 17, 2009 Depth to water measurements were taken by Teta Tech. In Site monitor weils to determine if hydrocarbons were accurulating in the water column. Hydrocarbon sheen was detected in MW-2 and MW-3. June 18, 2009 Absorbent socks placed in wells. Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Teta Tech. September 23, 2009 Groundwater monitoring Second quarterly groundwater monitoring event at the Site conducted by Teta Tech. December 16, 2009 Site assessment Second quarterly groundwater monitoring event at the Site conducted by Teta Tech. December 16, 2009 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. Quarterly groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. Quarterly groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Teta Tech. June 15, 2011 Transfer of Site consulting Quarterly groundwater monitoring event at the Site conducted by CRA. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conduct	June 12, 2009	Groundwater monitoring	Tetra Tech conducts the first groundwater monitoring event at the Site.
June 17, 2009 measurements hydroCatroons were accumulating in the Water columin. HydroCatroon sheen was detected in WW-2 and MW-3. June 18, 2009 Absorbent socks plead in monitoring event at the Site conducted by Tetra Tech. September 23, 2009 Groundwater monitoring Second quartery groundwater monitoring event at the Site conducted by Tetra Tech. October 1, 2009 Site assessment Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located downgradient and east of the Site. Groundwater and soils amples collected from boring. No BTEX impacts were found. December 16, 2009 Groundwater monitoring. Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 9, 2010 Groundwater monitoring. Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. Quarterly groundwater monitoring. Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring. Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring. Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 12, 2011 Groundwater monitoring. Quarterly groundwater monitoring event at the Site conducted by CRA. June 22, 2011 Groundwater monitoring. Quarterly groundwater monitoring event at the Site co		Donth to water	Depth to water measurements were taken by Tetra Tech in Site monitor wells to determine if
June 16, 2009 wells Hydrocaron-absorbent socks were placed in molinor Weils MW-2 and MW-3 by lettar lech. September 23, 2009 Groundwater monitoring Second quarterly groundwater monitoring event at the Site conducted by Tetar Tech. December 16, 2009 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetar Tech. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. <	June 17, 2009	•	
Citcober 1, 2009 Site assessment Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located dy Oracle and Site Strondwater and soil samples collected from boring. No BTEX impacts were found. December 16, 2009 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. September 20, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 8, 2012 Groundwater monitoring Quarterly gro	June 18, 2009	•	Hydrocarbon-absorbent socks were placed in monitor wells MW-2 and MW-3 by Tetra Tech.
Citcober 1, 2009 Site assessment Tetra Tech on Site to hand auger one boring near the Kiffen Canyon Wash, which is located dy Oracle and Site Strondwater and soil samples collected from boring. No BTEX impacts were found. December 16, 2009 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. September 20, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 8, 2012 Groundwater monitoring Quarterly gro	September 23, 2009	Groundwater monitoring	Second quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
April 1, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. September 20, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 20, 2012 Groundwater monitoring Quarterly groundw	,	Site assessment	downgradient and east of the Site. Groundwater and soil samples collected from boring. No BTEX
June 9, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. September 20, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Transfer of Site consulting Site consulting responsibilities transferred from Tetra Tech of Albuquerque, NM to CRA of Albuquerque, NM. June 22, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 8, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 8, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. Ma	December 16, 2009	Groundwater monitoring	Quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
September 20, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. Lock and cap were observed missing from NW-4. The ground surface near MW-3 shifted, resulting in the well easing sticking out of the completion. The PVC casing was cut and the site was resurveyed by Tetra Tech. December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 15, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 13, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 27, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 19, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 27, 2013			
September 20, 2010 Groundwater monitoring bicking out of the completion. The PVC casing was cut and the site was resurveyed by Tetra Tech. December 17, 2010 Groundwater monitoring ouarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Transfer of Site consulting responsibilities Site consulting responsibilities transferred from Tetra Tech of Albuquerque, NM to CRA of Albuquerque, NM. June 22, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 27, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 13, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 8, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 62, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 12, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 27, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 27, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 20, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.	June 9, 2010	Groundwater monitoring	Quarterly groundwater monitoring event at the Site conducted by Tetra Tech.
December 17, 2010 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Transfer of Site consulting Site consulting responsibilities transferred from Tetra Tech of Albuquerque, NM. June 22, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 13, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 8, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 20, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 22, 2013 Installation of monitor well National Exploration, Wells, & Pumps installs an upgradient groundwater monitoring event at the Site conducted by CRA. March 20, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. <	September 20, 2010	Groundwater monitoring	observed missing from MW-4. The ground surface near MW-3 shifted, resulting in the well casing
March 16, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by Tetra Tech. June 15, 2011 Transfer of Site consulting responsibilities transferred from Tetra Tech of Albuquerque, NM to CRA of Albuquerque, NM. June 22, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 13, 2011 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 6, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 20, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 12, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 27, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 19, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 18, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 19, 2013 Groundwater monitori	December 17, 2010	Croundwater menitering	
June 15, 2011Transfer of Site consulting responsibilitiesSite consulting responsibilitiesSite consulting responsibilitiesJune 22, 2011Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.Beptember 27, 2011Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 13, 2011Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 8, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 6, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.May 23, 2013Installation of monitor well Autonal Exploration, Wells, & Pumps installs an upgradient groundwater monitoring well, MW-5.June 19, 2013Groundwater monitoring Guarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoring Quarter		0	
June 15, 2011responsibilitiesNM.June 22, 2011Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 27, 2011Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 8, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 6, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 20, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.May 23, 2013Installation of monitor wellNational Exploration, Wells, & Pumps installs an upgradient groundwater monitoringJune 19, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.Quarter 12, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.Quarterly groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.Quarterly groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.	March 16, 2011		
September 27, 2011Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 13, 2011Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 8, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 6, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 20, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 19, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 19, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site con		Ű	
December 13, 2011Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 8, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 20, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2012Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 19, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2015Groundwater monitoring Quarterly groundwater monitoring event at the	June 22, 2011	Groundwater monitoring	Quarterly groundwater monitoring event at the Site conducted by CRA.
March 8, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 6, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 20, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.May 23, 2013Installation of monitor wellNational Exploration, Wells, & Pumps installs an upgradient groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the SiteSeptember 16, 2015 <td>September 27, 2011</td> <td>Groundwater monitoring</td> <td>Quarterly groundwater monitoring event at the Site conducted by CRA.</td>	September 27, 2011	Groundwater monitoring	Quarterly groundwater monitoring event at the Site conducted by CRA.
June 6, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 20, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.May 23, 2013Installation of monitor wellNational Exploration, Wells, & Pumps installs an upgradient groundwater monitoring event at the Site conducted by CRA.June 19, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.Ma		Groundwater monitoring	Quarterly groundwater monitoring event at the Site conducted by CRA.
September 20, 2012 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 27, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. May 23, 2013 Installation of monitor well National Exploration, Wells, & Pumps installs an upgradient groundwater monitoring well, MW-5. June 19, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. October 1, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 20, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 18, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 18, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 2015 — No sampling occurred wet monitoring event at the Site conducted by CRA. June 2015 — No sampli		Groundwater monitoring	
December 12, 2012Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 27, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.May 23, 2013Installation of monitor wellNational Exploration, Wells, & Pumps installs an upgradient groundwater monitoring well, MW-5.June 19, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.March 30, 2016Groundwater monitorin	,	ÿ	
March 27, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.May 23, 2013Installation of monitor wellNational Exploration, Wells, & Pumps installs an upgradient groundwater monitoring well, MW-5.June 19, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GRD.December 2, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.March 18, 2016Groundwater monitori			
May 23, 2013 Installation of monitor well National Exploration, Wells, & Pumps installs an upgradient groundwater monitoring well, MW-5. June 19, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. October 1, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 12, 2013 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 20, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 18, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. September 18, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. December 18, 2014 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. March 18, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 2015 - No sampling occurred due to other work being performed at the Site. September 16, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the	· · · · · · · · · · · · · · · · · · ·		
June 19, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 12, 2013Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon and installation			
September 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.October 1, 2013Groundwater monitoringSupplemental metals treatability sampling from MW-3December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Groundwater monitoringQuarterly groundwater monitoring event			
October 1, 2013Groundwater monitoringSupplemental metals treatability sampling from MW-3December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 12, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.March 30, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Flug and abandon and installation of wellPlug and abandon M			
December 12, 2013Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.September 8, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon MW-5; install upgradient monitoring well MW-6.	,	0	
March 20, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.September 8, 2016Groundwater monitoringQuarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon MW-5; install upgradient monitoring well MW-6.	,	ÿ	
June 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.September 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.March 30, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 8, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon filePlug and abandon MW-5; install upgradient monitoring well MW-6.	,	0	
September 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.March 30, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 8, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon filePlug and abandon MW-5; install upgradient monitoring well MW-6.	,		
December 18, 2014Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.March 18, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA.June 2015No sampling occurred due to other work being performed at the Site.September 16, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.March 30, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 8, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon MW-5; install upgradient monitoring well MW-6.	,		
March 18, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by CRA. June 2015 No sampling occurred due to other work being performed at the Site. September 16, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. December 2, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. March 30, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. June 22, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 8, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.		0	
June 2015 No sampling occurred due to other work being performed at the Site. September 16, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. December 2, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. March 30, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. June 22, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 8, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.		0	
September 16, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.December 2, 2015Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.March 30, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.June 22, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 8, 2016Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD.September 13, 2016Plug and abandon and installation of wellPlug and abandon MW-5; install upgradient monitoring well MW-6.	,	Groundwater monitoring	
December 2, 2015 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. March 30, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. June 22, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 8, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.		-	
March 30, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. June 22, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 8, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.			
June 22, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 8, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.			
September 8, 2016 Groundwater monitoring Quarterly groundwater monitoring event at the Site conducted by GHD. September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.			
September 13, 2016 Plug and abandon and installation of well Plug and abandon MW-5; install upgradient monitoring well MW-6.			
		Plug and abandon and	
	• •	installation of well Groundwater monitoring	Quarterly groundwater monitoring event at the Site conducted by GHD.

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

					Depth to	Relative
Well ID	Total Depth	Top of Casing	Screen Interval	Date	Groundwater	Water Level
	(ft below TOC)	Elevation*	(ft bgs)	Measured	(ft below TOC)	(ft)
				6/12/2009	13.98	81.21
				6/14/2009	13.96	81.23
		95.19		9/23/2009	13.97	81.22
				12/16/2009	14.30	80.89
				4/1/2010	14.39	80.80
				6/9/2010 9/20/2010	13.99 14.54	81.20 80.36
				12/17/2010	14.34	80.50
				3/16/2011	14.78	80.12
				6/22/2011	13.65	81.25
			·	9/27/2011	13.59	81.31
				12/13/2011	14.01	80.89
				3/8/2012	14.49	80.41
				6/6/2012	13.62	81.28
				9/20/2012	14.22	80.68
MW-1	25.5		9 - 24	12/12/2012	14.55	80.35
	1			3/27/2013	14.54	80.36
	1		[6/19/2013	14.33	80.57
	1	94.9	[9/12/2013	14.63	80.27
	1			12/12/2013	14.67	80.23
				3/20/2014	15.09	79.81
				6/18/2014	14.15	80.75
				9/18/2014	13.84	81.06
				12/18/2014	14.58	80.32
				3/18/2015	14.96	79.94
				9/16/2015 12/2/2015	14.06 14.40	80.84 80.50
				3/30/2016	14.98	79.92
				6/22/2016	13.86	81.04
				9/8/2016	14.66	80.24
				12/1/2016	14.81	80.09
				6/12/2009	15.57	81.22
			·	6/14/2009	15.63	81.16
		96.79		9/23/2009	15.67	81.12
				12/16/2009	16.41	80.38
				4/1/2010	16.75	80.04
				6/9/2010	15.71	81.08
				9/20/2010	16.28	80.23
				12/17/2010	16.67	79.84
				3/16/2011	16.52	79.99
				6/22/2011	15.32	81.19
				9/27/2011	15.29	81.22
	1			12/13/2011	15.81	80.70
	1			3/8/2012	16.21	80.30
	1			6/6/2012	15.25	81.26
MW-2	23.8		8.9 - 23.8	9/20/2012 12/12/2012	15.97 16.30	80.54 80.21
11117-2	23.0		0.9 - 23.0	3/27/2012	16.34	80.17
				6/19/2013	16.05	80.46
		96.51		9/12/2013	16.27	80.24
		00.01		12/12/2013	16.40	80.11
	1			3/20/2014	16.83	79.68
				6/18/2014	15.84	80.67
	1			9/18/2014	15.48	81.03
	1			12/18/2014	16.31	80.20
	1			3/18/2015	16.67	79.84
				9/16/2015	15.70	80.81
	1			12/2/2015	16.07	80.44
				3/30/2016	16.68	79.83
				6/22/2016	15.48	81.03
	1		[9/8/2016	16.32	80.19
				12/1/2016	16.58	79.93

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

Well ID	Total Depth (ft below TOC)	Top of Casing Elevation*	Screen Interval (ft bgs)	Date Measured	Depth to Groundwater (ft below TOC)	Relative Water Leve (ft)
				6/12/2009	16.00	80.31
		96.31		6/14/2009	15.97	80.34
				9/23/2009	15.78	80.53
		00.01		12/16/2009	16.77	79.54
				4/1/2010	16.79	79.52
			4 4	6/9/2010	15.89	80.42
			-	9/20/2010	16.95	79.12
				12/17/2010	17.95	78.12
				3/16/2011	17.36	78.71
			-	6/22/2011	15.54	80.53
				9/27/2011	15.27	80.80
			-	12/13/2011	16.04	80.03
				3/8/2012	16.96	79.11
				6/6/2012	15.52	80.55
				9/20/2012	16.10	79.97
MW-3	22		6.5 - 21.5	12/12/2012	16.63	79.44
				3/27/2013	17.23	78.84
				6/19/2013	16.52	79.55
		96.07		9/12/2013	16.64	79.43
				12/12/2013	16.93	79.14
			l l	3/20/2014	17.69	78.38
			[6/18/2014	16.17	79.90
				9/18/2014	15.59	80.48
			[12/18/2014	16.74	79.33
			[3/18/2015	17.44	78.63
				9/16/2015	15.79	80.28
				12/2/2015	16.28	79.79
				3/30/2016	17.41	78.66
				6/22/2016	15.71	80.36
				9/8/2016	16.37	79.70
			T	12/1/2016	16.66	79.41
				6/12/2009	17.68	81.15
				6/14/2009	17.52	81.31
				9/23/2009	17.56	81.27
		98.83		12/16/2009	17.86	80.97
			-	4/1/2010	17.94	80.89
			-	6/9/2010	17.57	81.26
				9/20/2010	18.06	80.48
				12/17/2010	16.14	82.40
				3/16/2011	18.27	80.27
			-	6/22/2011	17.23	81.31
			F	9/27/2011	17.19	81.35
			-	12/13/2011	17.61	80.93
			-	3/8/2012	18.02	80.52
				6/6/2012	17.21	81.33
				9/20/2012	17.21	80.74
MW-4	29.5		11 - 26			
11111-4	29.0		11-20	3/27/2013	18.09 18.03	80.45
				3/27/2013		80.51
		09 54		6/19/2013	17.93	80.61
		98.54		9/12/2013	18.12	80.42
				12/12/2013	18.15	80.39
				3/20/2014	18.52	80.02
				6/18/2014	17.70	80.84
				9/18/2014	17.41	81.13
				12/18/2014	18.10	80.44
				3/18/2015	18.44	80.10
				9/16/2015	17.66	80.88
				12/2/2015	17.99	80.55
				3/30/2016	18.52	80.02
				6/22/2016	17.49	81.05
				9/8/2016	18.25	80.29
				12/1/2016	18.38	80.16
				6/19/2013	18.13	
			I Ī	9/12/2013	19.53	
			1 T	12/12/2013	21.44	
MW-5	59.23		ł	3/20/2014	22.80	
				6/18/2014	19.98	
				9/18/2014	19.80	
					onger be gauged a	
MW-6	40	100.09	25-40	9/26/16	16.71	83.38
		100.00	20.40	12/1/16	13.29	86.80

Notes: ft = Feet TOC = Top of casing bgs = below ground surface * Elevation relative to an arbitrary data point of 100 feet; resurveyed during 9/20/10 sampling event

Field Parameters Summary ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

		Temperature			Conductivity	DO	ORP	Volume
Well ID	Sample Date	(°C)	рΗ	TDS (g/L)	(µS/cm)	(mg/L)	(mV)	(gallons)
	3/18/2015	13.30	6.91	2.00	3060		-3.0	4.25
	9/16/2015	15.40	6.88	2.443	3757	3.12	-88.3	4.50
	12/2/2015	14.75	7.20	2.680	4130	3.89	79.2	4.50
MW-1	3/30/2016	13.79	7.08	2.400	3780	7.35	145.0	4.25
	6/22/2016	12.90	7.12		3850	3.20	-91.7	4.75
	9/8/2016	14.63	7.61	2.266	3484	6.01	-125.6	4.50
	12/1/2016	14.44	7.34		2199	3.12	-72.7	4.50
	3/18/2015	12.00	7.32	1.60	2530		-276.0	4.75
	9/16/2015	13.31	7.25	1.515	2331	1.92	-242.0	5.25
	12/2/2015	13.36	7.73	1.572	2420	2.45	-238.8	5.00
MW-2	3/30/2016	12.72	7.92	1.900	3040	4.96	-290.0	4.75
	6/22/2016	11.70	7.37		2490	1.36	-180.9	5.50
	9/8/2016	12.31	7.89	1.308	2012	8.28	-247.3	5.00
	12/1/2016	13.12	7.58		1926	2.42	-256.6	5.00
	3/18/2015	12.30	7.13	1.90	2990		-268.0	3.50
	9/16/2015	13.59	7.07	2.259	3474	10.58	-131.1	3.50
	12/2/2015	13.52	7.24	2.225	3423	4.07	-147.2	2.50
MW-3	3/30/2016	12.28	7.72	2.000	3190	7.31	-286.0	2.00
	6/22/2016	11.80	6.90		3430	3.27	-136.9	4.25
	9/8/2016	13.33	7.81	1.923	2959	7.36	-129.0	4.00
	12/1/2016	13.52	7.31		2888	2.91	-186.2	4.00
	3/18/2015	14.40	7.57	8.00	12800		-19.0	4.75
	9/16/20015	15.21	7.20	8.155	12543	2.81	-71.8	5.25
	12/2/2015	14.31	7.14	8.962	13789	3.05	64.0	5.00
MW-4	3/30/2016	14.64	7.89	8.000	14	6.02	-201.0	4.75
	6/22/2016	13.60	7.15		12	2.91	-64.2	5.25
	9/8/2016	14.04	8.06	7.776	11962	2.72	-118.7	5.00
	12/1/2016	14.55	7.63		12040	2.02	-129.3	5.00
MW-6	12/1/2016		No Paran	neters Colle	cted Due to Insul	ficient Volu	me	· · · · · · · · · · · · · · · · · · ·

Notes:

TDS = total dissolved solids

DO = dissolved oxygen ORP = oxidation-reduction potential

Page 1 of 4

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Naphthalene (mg/L)	lron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	NMWQCC Groundwater Quality	/ Standards		0.01	0.75	0.75	0.62	0.03	1	0.2	250	600	1000
	MW-1	6/14/2009	(orig)	0.0051	0.0076	< 0.005	0.0097	< 0.005			119	1690	
	MW-1	9/23/2009	(orig)	0.018	0.0054	0.0013	0.0116	< 0.001	< 0.02	0.17	80.5	1640	2880
	MW-1	12/16/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			0.108	127	1960	3140
	MW-1	4/1/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			0.0849	72.3	1440	2850
	MW-1	6/9/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			0.114	83.8	1450	3340
	MW-1	9/20/2010	(orig)	0.0053	< 0.001	< 0.001	< 0.001			0.207	84.9	1710	4070
	MW-1	12/17/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			0.131	93.5	2100	4340
	MW-1	3/16/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			0.102	120	1690	3230
	GW-74933-062211-PG-04	6/22/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			< 0.015	95.7	2060	3120
	GW-074933-092711-CM-009	9/27/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0988	107	2240	3420
	GW-074933-121311-CB-MW-1	12/13/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.518	113	2600	4050
	GW-074933-121311-CB-MW-DUP	12/13/2011	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003						
	GW-074933-3812-CB-MW-1	3/8/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.23	99	2230	3590
	GW-074933-3812-CB-DUP	3/8/2012	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003						
	GW-074933-060612-CB-MW-1	6/6/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0175	122	1780	3250
	GW-074933-092012-JP-MW-1	9/20/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0177	79.2		3260
	GW-074933-121212-CM-MW-1	12/12/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0227	99.1	1850	3100
	GW-074933-032713-JK-MW1	3/27/2013	(orig)	0.008	0.0051	0.0508	0.0856			1.27	829	1940	4240
MW-1	GW-074933-032713-JK-DUP	3/27/2013	(Duplicate)	0.008	0.0047	0.0493	0.078						
	GW-074933-061913-JK-MW1	6/19/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			< 0.005	73.6	1400	
	GW-074933-091213-CM-MW-1	9/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0315	133	1590	3870
	GW-074933-121213-CM-MW-1	12/12/2013	(orig)	< 0.001	< 0.001	0.001	< 0.003			0.0065	77.8	1470	2370
	GW-074933-032014-CK-MW-1	3/20/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.14	112	1520	2650
	GW-074933-032014-CK-DUP	3/20/2014	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003						
	GW-074933-061814-CK-MW-1	6/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0064	84.1	1590	2760
	GW-074933-061814-CK-DUP	6/18/2014	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003						
	GW-074933-091814-CB-MW-1	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0188	92.5	1690	3020
	GW-074933-091814-CB-DUP	9/18/2014	(Duplicate)	< 0.001	< 0.001	< 0.001	< 0.003						
	GW-074933-121814-CM-MW-1	12/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			< 0.005	84.2	1660	2690
	GW-074933-031815-CM-MW-1	3/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0153	85.3	1340	2480
	GW-074933-091615-CK-MW-1	9/16/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			< 0.005	127	1840	2920
	GW-074933-12215-CB-MW-1	12/2/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			< 0.005	84	1750	3340
	GW-074933-033016-CM-MW-1	3/30/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0083	90.5	1900	2830
	GW-074933-062116-SP-MW-1	6/22/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.0114	67.9	2050	13200
	GW-074933-062116-SP-MW-1	9/8/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.113	68.6	2100	2990
	GW-074933-120116-JK-MW-1	12/1/2016	(orig)							0.0364	47.9	950	1590

Page 2 of 4

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Naphthalene (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	NMWQCC Groundwater Qualit	y Standards		0.01	0.75	0.75	0.62	0.03	1	0.2	250	600	1000
	MW-2	6/14/2009	(orig)	0.0094	1.1	0.18	2.28	0.021			40.1	1360	
	MW-2	9/23/2009	(orig)	0.0077	< 0.001	0.11	0.72	0.016	0.0239	6.82	39.4	1390	2480
	MW-2	12/16/2009	(orig)	0.02	0.0079	0.24	0.7778			5.26	63.3	1510	2390
_	MW-2	4/1/2010	(orig)	0.009	0.027	0.18	0.547			4.1	56.5	1170	2460
	MW-2	6/9/2010	(orig)	0.0038	0.0093	0.099	0.2656			3.24	48.7	1280	2590
_	MW-2	9/20/2010	(orig)	0.005	0.0076	0.061	0.1365			2.7	48.7	1390	2440
_	MW-2	12/17/2010	(orig)	0.0068	0.019	0.071	0.1177			2.28	38.3	1520	2760
_	MW-2	3/16/2011	(orig)	0.0088	0.093	0.083	0.259			2.94	66.7	1470	2680
	GW-74933-062211-PG-03	6/22/2011	(orig)	0.0013	0.0036	0.0058	0.018			2.59	39.8	1730	2510
_	GW-074933-092711-CM-008	9/27/2011	(orig)	0.0076	0.0091	0.0104	0.0316			1.92	34.4	1330	2070
	GW-074933-092711-CM-010	9/27/2011	(Duplicate)	0.0075	0.0093	0.0104	0.0314						
	GW-074933-121311-CB-MW-2	12/13/2011	(orig)	0.009	0.0476	0.0144	0.07			2.08	36.9	1150	2170
_	GW-074933-3812-CB-MW-2	3/8/2012	(orig)	0.0107	0.0959	0.0232	0.149			2.01	66	1380	2500
	GW-074933-060612-CB-MW-2	6/6/2012	(orig)	0.0054	0.0404	0.0139	0.0797			2.12	76.9	1640	2560
	GW-074933-060612-CB-DUP	6/6/2012	(Duplicate)	0.0066	0.0405	0.0135	0.0728						
	GW-074933-092012-JP-MW-2	9/20/2012	(orig)	0.0063	0.0329	0.012	0.0612			1.8	32.7		2150
_	GW-074933-092012-JP-DUP	9/20/2012	(Duplicate)	0.0066	0.0338	0.01	0.0623						
	GW-074933-121212-CM-MW-2	12/12/2012	(orig)	0.0106	0.067	0.0147	0.0991			1.22	40.3	1160	2040
	GW-074933-121212-CM-DUP	12/12/2012	(Duplicate)	0.0103	0.0662	0.0156	0.0984						
	GW-074933-032713-JK-MW2	3/27/2013	(orig)	0.0215	0.0171	0.0263	0.11			1.06	70	1150	2050
MW-2	GW-074933-061913-JK-MW2	6/19/2013	(orig)	0.0318	0.104	0.0696	0.41			1.19	63.7	1000	
	GW-074933-061913-JK-DUP	6/19/2013	(Duplicate)	0.032	0.0986	0.0625	0.4						
_	GW-074933-091213-CM-MW-2	9/12/2013	(orig)	0.0043	0.0429	0.0118	0.0747			2.2	32.4	1390	2210
	GW-074933-091213-CM-DUP	9/12/2013	(Duplicate)	0.0032	0.0303	0.0084	0.0529						
_	GW-074933-121213-CM-MW-2	12/12/2013	(orig)	0.0084	0.109	0.0181	0.14			1.39	46.6	1220	2080
	GW-074933-121213-CM-DUP	12/12/2013	(Duplicate)	0.0073	0.108	0.0177	0.138						
	GW-074933-032014-CK-MW-2	3/20/2014	(orig)	0.0066	0.046	0.0108	0.0885			1.54	45.7	1280	2240
	GW-074933-061814-CK-MW-2	6/18/2014	(orig)	0.0038	0.0197	0.008	0.0451			2.2	46.3	1300	2130
_	GW-074933-091814-CB-MW-2	9/18/2014	(orig)	<0.001	<0.001	<0.001	<0.003			2.22	23.8	1200	2240
	GW-074933-121814-CM-MW-2	12/18/2014	(orig)	0.0051	0.117	0.0142	0.0842			1.37	37	1100	1740
	GW-074933-031815-CM-MW-2	3/18/2015	(orig)	0.0045	0.0415	0.0207	0.138			1.54	32.4	1100	2140
	GW-074933-091615-CK-MW-2	9/16/2015	(orig)	0.002	0.002	0.0019	0.007			2.17	18.3	1210	1880
	GW-074933-091615-CK-DUP	9/16/2015	(Duplicate)	0.0035	0.0036	0.0037	0.0137						
Γ	GW-074933-12215-CB-MW-2	12/2/2015	(orig)	0.0038	0.0127	0.0036	0.023			1.56	26.8	983	1870
F	GW-074933-033016-CM-MW-2	3/30/2016	(orig)	0.005	0.0557	0.0089	0.08			2.5	96.9	1510	2490
F	GW-074933-033016-CM-DUP	3/30/2016	(Duplicate)	0.005	0.0543	0.0087	0.0774						
	GW-074933-062116-SP-MW-2	6/22/2016	(orig)	0.0015	0.003	0.0013	0.0074			2.26	84.9	1320	2130
	GW-074933-062116-SP-DUP	6/22/2016	(Duplicate)	0.0023	0.0083	0.0034	0.0204						
	GW-074933-090816-SP-MW-2	9/8/2016	(orig)	0.0023	0.0018	0.0011	0.0054			1.67	23.4	1320	1870
F	GW-074933-090816-SP-DUP	9/8/2016	(Duplicate)	0.0023	0.002	0.0013	0.0055						
-	GW-074933-120116-JK-MW-2	12/1/2016	(orig)	0.0066	0.0324	0.0092	0.0626			1.04	29.9	983	1690

Page 3 of 4

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Naphthalene (mg/L)	lron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	NMWQCC Groundwater Quality	/ Standards		0.01	0.75	0.75	0.62	0.03	1	0.2	250	600	1000
	MW-3	6/14/2009	(orig)	0.01	1.4	0.49	4.05	0.036			40.3	1510	
	MW-3 duplicate	6/14/2009	(Duplicate)	0.01	1.4	0.54	4.3						
	MW-3	9/23/2009	(orig)	0.013	0.0085	0.089	0.32	0.0039	0.0486	1.11	64.5	1500	2720
	MW-3	12/16/2009	(orig)	0.018	0.017	0.096	0.28			0.932	99.1	1920	2560
	MW-3	4/1/2010	(orig)	0.018	0.076	0.19	0.59			1.04	5.34	796	1650
	MW-3	6/9/2010	(orig)	0.012	0.02	0.024	0.069			0.193	30.8	989	2200
	MW-3	9/20/2010	(orig)	0.009	0.011	0.079	0.142			0.818	49.9	493	2840
	MW-3	12/17/2010	(orig)	0.004	0.0034	0.048	0.071			0.41	64.8	1760	2590
	MW-3	3/16/2011	(orig)	0.0077	0.028	0.22	0.44			1.63	63.4	1180	2500
	GW-74933-062211-PG-01	6/22/2011	(orig)	0.0024	0.0203	0.0502	0.098			0.906	92.2	1780	3270
	GW-74933-062211-PG-02	6/22/2011	(Duplicate)	0.0026	0.0224	0.0548	0.107						
	GW-074933-092711-CM-007	9/27/2011	(orig)	< 0.001	< 0.001	0.0034	0.0043			0.842	272	2130	2940
	GW-074933-121311-CB-MW-3	12/13/2011	(orig)	0.00079 J	0.00053 J	0.0042	0.0042			0.747	82.7	1840	2810
	GW-074933-3812-CB-MW-3	3/8/2012	(orig)	0.016	0.032	0.143	0.226			1.76	63.4	1460	2730
	GW-074933-060612-CB-MW-3	6/6/2012	(orig)	< 0.001	0.0038	0.0273	0.0267			0.5	88.8	2100	3000
	GW-074933-092012-JP-MW-3	9/20/2012	(orig)	0.0038	< 0.001	0.0428	0.0288			0.578	105		2990
	GW-074933-121212-CM-MW-3	12/12/2012	(orig)	0.0137	0.0132	0.0442	0.0613			0.509	72.1	1550	2650
MW-3	GW-074933-032713-JK-MW3	3/27/2013	(orig)	< 0.001	< 0.001	0.14	0.168			1.81	52.7	1530	2500
10100-5	GW-074933-061913-JK-MW3	6/19/2013	(orig)	< 0.001	< 0.001	0.0534	0.048			1.66	81.6	1240	
	GW-074933-091213-CM-MW-3	9/12/2013	(orig)	0.0036	< 0.001	0.0403	0.0485			0.989	87.2	920	2120
	GW-074933-121213-CM-MW-3	12/12/2013	(orig)	0.0056	0.0131	0.0583	0.0761			1.2	57.8	1290	2080
	GW-074933-032014-CK-MW-3	3/20/2014	(orig)	0.0059	0.0152	0.0257	0.125			2.17	55.7	1350	2520
	GW-074933-061814-CK-MW-3	6/18/2014	(orig)	0.0021	0.008	0.0355	0.122			3.28	109	1540	2810
I F	GW-074933-091814-CB-MW-3	9/18/2014	(orig)	< 0.001	< 0.001	0.0173	0.0106			1.84	92	1540	3660
	GW-074933-121848-CK-MW-3	12/18/2014	(orig)	0.0121	0.0173	0.0109	0.0316			2.61	66.6	751	3100
	GW-074933-121814-CM-DUP	12/18/2014	(Duplicate)	0.0106	0.0152	0.0097	0.0274						
	GW-074933-031815-CM-MW-3	3/18/2015	(orig)	0.0086	0.0122	0.01	0.0274			1.8	59.3	1380	2460
	GW-074933-031815-CM-DUP	3/18/2015	(Duplicate)	0.0091	0.0135	0.011	0.03						
	GW-074933-091615-CK-MW-3	9/16/2015	(orig)	0.0014	< 0.001	0.0098	< 0.003		1	0.897	114	1560	2520
∥ ⊦	GW-074933-12215-CB-MW-3	12/2/2015	(orig)	< 0.001	< 0.001	0.0013	< 0.003			0.99	60.9	1580	2640
∥ ⊦	GW-074933-12215-CB-DUP	12/2/2015	(Duplicate)	< 0.001	< 0.001	0.0011	< 0.003						
	GW-074933-033016-CM-MW-3	3/30/2016	(orig)	0.0012	0.0016	0.0265	0.0124			1.24	59.7	1500	2430
∥ ⊢	GW-074933-062116-SP-MW-3	6/22/2016		< 0.0012	< 0.0018	0.0265	< 0.003			0.718	120	1800	2430
∥ ⊦			(orig)								-		
∥ ⊦	GW-074933-090816-SP-MW-3	9/8/2016	(orig)	< 0.001	< 0.001	0.0036	< 0.003			0.512	118	1810	2790
	GW-074933-120116-JK-MW-3	12/1/2016	(orig)	0.001	< 0.001	0.0064	< 0.003			0.476	79.9	1600	2710

Page 4 of 4

Table 4

Groundwater Analytical Results Summary ConocoPhillips Company Randleman No. 1 San Juan County, New Mexico

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Naphthalene (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)	Chloride (mg/L)	Sulfate (mg/L)	Total dissolved solids (TDS) (mg/L)
	NMWQCC Groundwater Quality	y Standards		0.01	0.75	0.75	0.62	0.03	1	0.2	250	600	1000
	MW-4	6/14/2009	(orig)	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005			2310	4190	
	MW-4	9/23/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.0308	2.73	2130	3320	8600
	MW-4	12/16/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			1.8	3430	4110	9600
	MW-4	4/1/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			1.52	2350	3110	8560
	MW-4	6/9/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			1.06	2190	2710	4720
	MW-4	9/20/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			1.24	2640	3260	9550
	MW-4	12/17/2010	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			1.68	2350	3570	9400
	MW-4	3/16/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.001			1.82	2310	3300	8440
	GW-74933-062211-PG-05	6/22/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.61	2150	4050	8760
	GW-074933-092711-CM-006	9/27/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.31	2350	3650	8270
	GW-074933-121311-CB-MW-4	12/13/2011	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.82	2240	1530	7850
	GW-074933-3812-CB-MW-4	3/8/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.106	2610	3250	8700
	GW-074933-060612-CB-MW-4	6/6/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.29	2520	3740	8270
	GW-074933-092012-JP-MW-4	9/20/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.32	2420		7590
	GW-074933-121212-CM-MW-4	12/12/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.51	2460	3250	8830
MW-4	GW-074933-032713-JK-MW4	3/27/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.46	2270	3180	8320
	GW-074933-061913-JK-MW4	6/19/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.44	2000	2790	
	GW-074933-091213-CM-MW-4	9/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.18	2520	3080	6570
	GW-074933-121213-CM-MW-4	12/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.61	2570	3320	8430
	GW-074933-032014-CK-MW-4	3/20/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.34	2470	3420	8600
	GW-074933-061814-CK-MW-4	6/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.32	2470	3010	8300
	GW-074933-091814-CB-MW-4	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.89	1890	2950	8820
	GW-074933-121814-CM-MW-4	12/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.45	2510	3480	8440
	GW-074933-031518-CM-MW-4	3/18/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.32	2400	3170	9220
	GW-074933-091615-CK-MW-4	9/16/20015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.44	2000	3370	7300
	GW-074933-12215-CB-MW-4	12/2/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.17	2390	3090	10800
	GW-074933-033016-CM-MW-4	3/30/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.33	2390	3350	9400
	GW-074933-062116-SP-MW-4	6/22/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.26	1990	3790	8600
	GW-074933-090816-SP-MW-4	9/8/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.928	2670	3550	9200
-	GW-074933-120116-JK-MW-4	12/1/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			1.48	2420	3310	8100
	GW-074933-061913-JK-MW5	6/19/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.255	3900	1550	
	GW-074933-091213-CM-MW-5	9/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.235	4040	1630	10800
	GW-074933-091213-CM-MW-5	12/12/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.245	4040	1830	8250
MW-5	GW-074933-032014-CK-MW-5	3/20/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.232	4130	1670	9530
10100-5	GW-074933-032014-CK-MW-5 GW-074933-061814-CK-MW-5	3/20/2014 6/18/2014	(0/	< 0.001	< 0.001	< 0.001	< 0.003			0.244	3690	1630	9530
			(orig)										
	GW-074933-091814-CB-MW-5	9/18/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.214	3840	1540	17900
\vdash	014/07/000 400/40 1// 1// 1// 0	9/13/2016	(- 0.001	. 0.001	. 0.001	-	PLUGGED AND A		0.040	0.1.10	0050	
MW-6	GW-074933-120116-JK-MW-6	9/26/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.349	3440	3250	
	GW-074933-120116-JK-MW-6	12/1/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003			0.291	3300	3040	9800

Notes:

MW = monitoring well

NMWQCC = New Mexico Water Quality Control Commission Constituents in **BOLD** are in excess of NMWQCC groundwater quality standards

mg/L = milligrams per liter (parts per million) < 1.0 = Below laboratory detection limit of 1.0 mg/L

Appendix A Boring Logs

PROJECT NAME: Randleman No. 1 LOCATION: Aztec, New Mexico FIELD LOGGED BY: Jeff Walker SURFACE ELEVATION (msl): N/A GROUNDWATER ELEVATION: -33 REMARKS: Boring completed as 2" PVC Groundwater Monitoring Well COORDINATES: 36.901478, -107.947044				SOIL BORING NO: MW-6 DRILL TYPE: Hollow Stem Auger BORE HOLE DIAMETER: 7 7/8" DRILLED BY: National EWP DATE/TIME HOLE STARTED: September 13, 2016 at 1014 DATE/TIME HOLE COMPLETED:September 13, 2016 at 1700					
DEPTH (bgs) - ft	SAMPLE TO LAB	SAMPLE ID	STRATAGRAPHIC SEQUENCE	COMPLETION INFORMATION	CLASSIFICATION AND DESCRIPTION	USCS Symbol	(mqq)	DEPTH (bgs) - ft	
-5					Cobbles: Hydroexcavated - cobbles / boulders, sand			0 - - - 	
- - -10 — -					Sand: tan, slightly moist, very fine grained, light to medium cemented			- - 	
-15					Silty Clay: gray, moist, silty, clay balls in auger cuttings			- - 	
-20 — - - -					Clay: greenish gray, dry to slightly moist, weathered shale				
-25 — - -					Sandstone: gray, dry, fractured, medium cemented			- 25 - -	
					moist			- - 	
-35					wet-no sample return			- - 	

Appendix B Groundwater Laboratory Analytical Reports

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

April 07, 2016

Jeffrey Walker GHD Services, Inc 6121 Indian School Rd NE Ste 200 Albuquerque, NM 87110

RE: Project: 074933 RANDLEMAN NO 1 COP Pace Project No.: 60216015

Dear Jeffrey Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on March 31, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanagan

Alice Flanagan alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Cassie Brown, GHD Services, Inc, Cale Kanack, GHD

CERTIFICATIONS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 602

60216015

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60216015001	GW-074933-033016-CM-MW-1	Water	03/30/16 11:55	03/31/16 13:25
60216015002	GW-074933-033016-CM-MW-2	Water	03/30/16 12:10	03/31/16 13:25
60216015003	GW-074933-033016-CM-MW-3	Water	03/30/16 12:30	03/31/16 13:25
60216015004	GW-074933-033016-CM-MW-4	Water	03/30/16 12:40	03/31/16 13:25
60216015005	GW-074933-033016-CM-DUP	Water	03/30/16 08:00	03/31/16 13:25
60216015006	TB-074933-033016-CM-001	Water	03/30/16 15:15	03/31/16 13:25

SAMPLE ANALYTE COUNT

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60216015001		EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	AGO	1
		EPA 300.0	OL	2
60216015002	GW-074933-033016-CM-MW-2	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	AGO	1
		EPA 300.0	OL	2
60216015003	GW-074933-033016-CM-MW-3	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	AGO	1
		EPA 300.0	OL	2
60216015004	GW-074933-033016-CM-MW-4	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	AGO	1
		EPA 300.0	OL	2
60216015005	GW-074933-033016-CM-DUP	EPA 8260	JTK	8
60216015006	TB-074933-033016-CM-001	EPA 8260	JTK	8

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

 Method:
 EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 GHD Services_COP NM

 Date:
 April 07, 2016

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Method:EPA 8260Description:8260 MSV UST, WaterClient:GHD Services_COP NMDate:April 07, 2016

General Information:

6 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Method: SM 2540C Description: 2540C Total Dissolved Solids Client: GHD Services_COP NM Date: April 07, 2016

General Information:

4 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 GHD Services_COP NM

 Date:
 April 07, 2016

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Sample: GW-074933-033016-CM- MW-1	Lab ID: 602	16015001	Collected: 03/30/1	6 11:55	Received: 03	8/31/16 13:25 I	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Met	nod: EP/	A 3010			
Manganese, Dissolved	8.3	ug/L	5.0	1	04/01/16 15:30	04/05/16 13:42	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 820	60					
Benzene	ND	ug/L	1.0	1		04/02/16 06:46	5 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/02/16 06:46	5 100-41-4	
Toluene	ND	ug/L	1.0	1		04/02/16 06:46	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/L	3.0	1		04/02/16 06:46	1330-20-7	
Toluene-d8 (S)	107	%	80-120	1		04/02/16 06:46	2037-26-5	
4-Bromofluorobenzene (S)	101	%	77-130	1		04/02/16 06:46		
1,2-Dichloroethane-d4 (S)	101	%	81-127	1		04/02/16 06:46	17060-07-0	
Preservation pH	1.0		1.0	1		04/02/16 06:46	;	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	0C					
Total Dissolved Solids	2830	mg/L	5.0	1		04/05/16 09:14	ļ	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Chloride	90.5	mg/L	5.0	5		04/05/16 22:13	16887-00-6	
Sulfate	1900	mg/L	200	200		04/05/16 22:28	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Sample: GW-074933-033016-CM- MW-2	Lab ID: 602	16015002	Collected: 03/30/1	6 12:10	Received: 03	8/31/16 13:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 601	10 Preparation Meth	nod: EP/	A 3010			
Manganese, Dissolved	2500	ug/L	5.0	1	04/01/16 15:30	04/05/16 13:46	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	50					
Benzene	5.0	ug/L	1.0	1		04/02/16 07:01	71-43-2	
Ethylbenzene	8.9	ug/L	1.0	1		04/02/16 07:01	100-41-4	
Toluene	55.7	ug/L	1.0	1		04/02/16 07:01	108-88-3	
Xylene (Total) <i>Surrogates</i>	80.0	ug/L	3.0	1		04/02/16 07:01	1330-20-7	
Toluene-d8 (S)	105	%	80-120	1		04/02/16 07:01	2037-26-5	
4-Bromofluorobenzene (S)	100	%	77-130	1		04/02/16 07:01	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	81-127	1		04/02/16 07:01	17060-07-0	
Preservation pH	1.0		1.0	1		04/02/16 07:01		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	0C					
Total Dissolved Solids	2490	mg/L	5.0	1		04/05/16 09:15	i	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0					
Chloride	96.9	mg/L	10.0	10		04/05/16 22:44	16887-00-6	
Sulfate	1510	mg/L	100	100		04/05/16 22:59	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Sample: GW-074933-033016-CM- MW-3	Lab ID: 602	16015003	Collected: 03/30/1	6 12:30	Received: 03	8/31/16 13:25	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EP/	A 3010			
Manganese, Dissolved	1240	ug/L	5.0	1	04/01/16 15:30	04/05/16 13:50	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 826	0					
Benzene	1.2	ug/L	1.0	1		04/02/16 07:45	5 71-43-2	
Ethylbenzene	26.5	ug/L	1.0	1		04/02/16 07:45	5 100-41-4	
Toluene	1.6	ug/L	1.0	1		04/02/16 07:45	5 108-88-3	
Xylene (Total) <i>Surrogates</i>	12.4	ug/L	3.0	1		04/02/16 07:45	5 1330-20-7	
Toluene-d8 (S)	106	%	80-120	1		04/02/16 07:45	5 2037-26-5	
4-Bromofluorobenzene (S)	102	%	77-130	1		04/02/16 07:45	5 460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	81-127	1		04/02/16 07:45	5 17060-07-0	
Preservation pH	1.0		1.0	1		04/02/16 07:45	5	
2540C Total Dissolved Solids	Analytical Meth	od: SM 2540	C					
Total Dissolved Solids	2430	mg/L	5.0	1		04/05/16 09:16	3	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Chloride	59.7	mg/L	5.0	5		04/05/16 23:44		
Sulfate	1500	mg/L	100	100		04/06/16 00:00) 14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Sample: GW-074933-033016-CM- MW-4	Lab ID: 602	16015004	Collected: 03/30/1	6 12:40	Received: 03	8/31/16 13:25 N	Aatrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60'	0 Preparation Meth	nod: EP/	A 3010			
Manganese, Dissolved	1330	ug/L	5.0	1	04/01/16 15:30	04/05/16 13:54	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 826	60					
Benzene	ND	ug/L	1.0	1		04/02/16 08:00	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/02/16 08:00	100-41-4	
Toluene	ND	ug/L	1.0	1		04/02/16 08:00	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		04/02/16 08:00	1330-20-7	
Surrogates								
Toluene-d8 (S)	105	%	80-120	1		04/02/16 08:00	2037-26-5	
4-Bromofluorobenzene (S)	102	%	77-130	1		04/02/16 08:00	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	81-127	1		04/02/16 08:00	17060-07-0	
Preservation pH	1.0		1.0	1		04/02/16 08:00		
2540C Total Dissolved Solids	Analytical Meth	od: SM 254	0C					
Total Dissolved Solids	9400	mg/L	5.0	1		04/05/16 09:16		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Chloride	2390	mg/L	200	200		04/06/16 00:15	16887-00-6	
Sulfate	3350	mg/L	200	200		04/06/16 00:15	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Sample: GW-074933-033016-CM- DUP	Lab ID: 60216015005		Collected: 03/30/	16 08:00	Received: 0	3/31/16 13:25 I	Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
8260 MSV UST, Water	Analytical M	lethod: EPA 82	260						
Benzene	5.0	ug/L	1.0	1		04/02/16 08:15	5 71-43-2		
Ethylbenzene	8.7	ug/L	1.0	1		04/02/16 08:15	5 100-41-4		
Toluene	54.3	ug/L	1.0	1		04/02/16 08:15	5 108-88-3		
Xylene (Total)	77.4	ug/L	3.0	1		04/02/16 08:15	5 1330-20-7		
Surrogates									
Toluene-d8 (S)	104	%	80-120	1		04/02/16 08:15	2037-26-5		
4-Bromofluorobenzene (S)	101	%	77-130	1		04/02/16 08:15	6 460-00-4		
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		04/02/16 08:15	5 17060-07-0		
Preservation pH	1.0		1.0	1		04/02/16 08:15	5		

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Sample: TB-074933-033016-CM-001	Lab ID: 60	216015006	Collected: 03/30/1	6 15:15	Received: 0	3/31/16 13:25 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Me	ethod: EPA 82	60					
Benzene	ND	ug/L	1.0	1		04/02/16 08:30	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		04/02/16 08:30	100-41-4	
Toluene	ND	ug/L	1.0	1		04/02/16 08:30	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		04/02/16 08:30	1330-20-7	
Surrogates		-						
Toluene-d8 (S)	105	%	80-120	1		04/02/16 08:30	2037-26-5	
4-Bromofluorobenzene (S)	101	%	77-130	1		04/02/16 08:30	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	81-127	1		04/02/16 08:30	17060-07-0	
Preservation pH	1.0		1.0	1		04/02/16 08:30		

Project: Pace Project No.:	074933 RANDL 60216015	EMAN	NO 1 COP										
QC Batch:	MPRP/35416			Analysi	s Method	:	EPA 6010						
QC Batch Method:	EPA 3010			Analysi	s Descrip	otion:	6010 MET Di	ssolved					
Associated Lab San	nples: 602160	15001,	60216015002	, 602160150	003, 6021	6015004							
METHOD BLANK:	1734700			Μ	latrix: Wa	ater							
Associated Lab San	nples: 602160	15001,	60216015002	, 602160150	003, 6021	6015004							
				Blank	F	Reporting							
Paran	neter		Units	Result		Limit	Analyz	zed	Qualifiers				
Manganese, Dissolv	red		ug/L		ND	5.	0 04/05/16	12:06					
LABORATORY CON	ITROL SAMPLE	: 173	4701										
				Spike	LCS	S	LCS	% Red	C				
Paran	neter		Units	Conc.	Resi	ult	% Rec	Limits	; Q	ualifiers			
Manganese, Dissolv	red		ug/L	1000		1000	100	80)-120		-		
MATRIX SPIKE & M	ATRIX SPIKE DI	JPLICA	TE: 17347	02		1734703	3						
				MS	MSD								
		6	0216014002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r L	Inits	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

METHOD BLANK: 1734975

QC Batch:	MSV/75033
QC Batch Method:	EPA 8260

Analysis Method:

Analysis Description: 8260 MSV UST-WATER

EPA 8260

Associated Lab Samples: 60216015001, 60216015002, 60216015003, 60216015004, 60216015005, 60216015006

Matrix: Water

Associated Lab Samples: 60216015001, 60216015002, 60216015003, 60216015004, 60216015005, 60216015006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	04/02/16 05:48	
Ethylbenzene	ug/L	ND	1.0	04/02/16 05:48	
Toluene	ug/L	ND	1.0	04/02/16 05:48	
Xylene (Total)	ug/L	ND	3.0	04/02/16 05:48	
1,2-Dichloroethane-d4 (S)	%	99	81-127	04/02/16 05:48	
4-Bromofluorobenzene (S)	%	102	77-130	04/02/16 05:48	
Toluene-d8 (S)	%	108	80-120	04/02/16 05:48	

LABORATORY CONTROL SAMPLE: 1734976

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	19.3	96	79-116	
Ethylbenzene	ug/L	20	20.1	100	81-110	
Toluene	ug/L	20	20.3	101	82-111	
Xylene (Total)	ug/L	60	61.6	103	80-111	
1,2-Dichloroethane-d4 (S)	%			97	81-127	
4-Bromofluorobenzene (S)	%			101	77-130	
Toluene-d8 (S)	%			108	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 074933 RANDL Pace Project No.: 60216015	EMAN NO 1 COP						
QC Batch: WET/60996		Analysis M	ethod:	SM 2540C			
QC Batch Method: SM 2540C		Analysis De	escription:	2540C Total Di	ssolved Solids		
Associated Lab Samples: 602160	15001, 6021601500	02, 60216015003,	60216015004				
METHOD BLANK: 1735821		Matrix	k: Water				
Associated Lab Samples: 602160	15001, 6021601500	2, 60216015003, Blank	60216015004 Reporting				
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	
Total Dissolved Solids	mg/L	NE) 5	5.0 04/05/16 09	9:10		
LABORATORY CONTROL SAMPLE	: 1735822						
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers	
Total Dissolved Solids	mg/L	1000	980	98	80-120		
SAMPLE DUPLICATE: 1735823							
_		60215933004			Max		
Parameter	Units	Result	Result	RPD	RPD	Qualifiers	
Total Dissolved Solids	mg/L	16100) 148	00	8	10	
SAMPLE DUPLICATE: 1735824							
Deremeter	Linita	60216013002		RPD	Max RPD	Qualifiers	
Parameter	Units	Result	Result				
Total Dissolved Solids	mg/L	627	6	22	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	074933 RANE 60216015	DLEMAN	NO 1 COP										
QC Batch:	WETA/3883	9		Analys	sis Method	: E	EPA 300.0						
QC Batch Method:	EPA 300.0			Analys	sis Descrip	tion: 3	300.0 IC Anic	ons					
Associated Lab Sar	nples: 60216	6015001,	60216015002	, 60216015	5003, 6021	6015004							
METHOD BLANK:	1735884			1	Matrix: Wa	ter							
Associated Lab Sar	nples: 60216	6015001,	60216015002	, 60216015	5003, 6021	6015004							
				Blanl	K R	eporting							
Parar	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Chloride			mg/L		ND	1.(0 04/05/16	09:00		_			
Sulfate			mg/L		ND	1.(04/05/16	09:00					
LABORATORY CO	NTROL SAMPL	.E: 173	35885										
				Spike	LCS		LCS	% Re					
Parar	neter		Units	Conc.	Resu	ılt	% Rec	Limits	s Qu	ualifiers			
Chloride			mg/L	5		4.7	95	90	0-110				
Sulfate			mg/L	5	5	4.8	96	90)-110				
MATRIX SPIKE & N	IATRIX SPIKE	DUPLIC	ATE: 173588	36		1735887							
				MS	MSD								
			60215915002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride		mg/L	11.4	10	10	21.0		97	98	80-120	0	15	
Sulfate		mg/L	20.6	10	10	31.0	30.9	104	103	80-120	0	15	
MATRIX SPIKE SA	MPLE:	173	35888										
				602159	15003	Spike	MS	N	1S	% Rec			
Parar	neter		Units	Res	ult	Conc.	Result	%	Rec	Limits		Qualit	fiers
Chloride			mg/L		11.4	5	16	5.1	95	80-1	20		
			3		19.0								

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60216015

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60216015001	GW-074933-033016-CM-MW-1	EPA 3010	MPRP/35416	EPA 6010	ICP/25911
60216015002	GW-074933-033016-CM-MW-2	EPA 3010	MPRP/35416	EPA 6010	ICP/25911
60216015003	GW-074933-033016-CM-MW-3	EPA 3010	MPRP/35416	EPA 6010	ICP/25911
60216015004	GW-074933-033016-CM-MW-4	EPA 3010	MPRP/35416	EPA 6010	ICP/25911
60216015001	GW-074933-033016-CM-MW-1	EPA 8260	MSV/75033		
60216015002	GW-074933-033016-CM-MW-2	EPA 8260	MSV/75033		
60216015003	GW-074933-033016-CM-MW-3	EPA 8260	MSV/75033		
60216015004	GW-074933-033016-CM-MW-4	EPA 8260	MSV/75033		
60216015005	GW-074933-033016-CM-DUP	EPA 8260	MSV/75033		
60216015006	TB-074933-033016-CM-001	EPA 8260	MSV/75033		
60216015001	GW-074933-033016-CM-MW-1	SM 2540C	WET/60996		
60216015002	GW-074933-033016-CM-MW-2	SM 2540C	WET/60996		
60216015003	GW-074933-033016-CM-MW-3	SM 2540C	WET/60996		
60216015004	GW-074933-033016-CM-MW-4	SM 2540C	WET/60996		
60216015001	GW-074933-033016-CM-MW-1	EPA 300.0	WETA/38839		
60216015002	GW-074933-033016-CM-MW-2	EPA 300.0	WETA/38839		
60216015003	GW-074933-033016-CM-MW-3	EPA 300.0	WETA/38839		
60216015004	GW-074933-033016-CM-MW-4	EPA 300.0	WETA/38839		

Sample Condition Upon Receipt

WO#:60216015

ourier: FedEx & UPS □ VIA □ Clay □ PEX □ ECl □ Pace □ Other □ Client □ Proj Duc Date: Proj D						
Client Name:						Optional
Courier: FedEx 🕅 UPS 🗆 VIA 🗆 Clay 🗆 PEX 🛙	∃ EC		Pace 🗆	Other 🗆	l Client	Proj Due Date:
Tracking #:650% \$165 2000 Pace S	Shipping	Label U	sed? Yes	s 🗆 No	o 🗆	Proj Name:
Custody Seal on Cooler/Box Present: Yes 🗱 No 🗆 😒	Seals int	tact: Y	es 🙇 🛛 🛚	No 🗆		
		Foam 🛛	t No	one 🗆	Other	
Inter: FeEX # UPS I VIA I Clay I PEX I ECI I Pace I Other I Clant I Pro Due Date: Exting #: 155% \$165 2000 Pace Shipping Label Used? Yes I No I Pro Due Date: Pro Name: itody Seal on Cooler/Box Present: Yes IX No I Seals intact: Yes IX No I Pro Name: itody Seal on Cooler/Box Present: If Yes IX No I Seals intact: Yes IX No I Pro Name: Date: Pro Name: Date: Pro Name: Date: Pro Name: Pro Name: Date: Date: Pro Name: Date:						
ourier: FelEx & UPS □ VIA □ Clay □ PEX □ ECI □ Pace □ Other □ Client □ Pro Due Date: racking #: 1/571 \$/L57						
1/	; 🗆 No	□n/a	1			
		□n/a	2			
		-				
	; □No	□n/a	4.			
Samples arrived within holding time:	; □No	□n/a	5.			
Short Hold Time analyses (<72hr):	s 🗖 No	□n/a	6.			
Rush Turn Around Time requested:	5 🖾 No	□n/a	7.			
Sufficient volume:	; □No	□n/a	8.			
Correct containers used:	a ⊡No	□n/A				
Pace containers used:	; □No	□n/A	9.			
Containers intact:	s □No	□n/a	10.			
Unpreserved 5035A soils frozen w/in 48hrs?	s □No	KIN/A	11.			
Filtered volume received for dissolved tests?	s 🗆 No	₩ N/A	12.			
Sample labels match COC:	s □No	□n/A				
Includes date/time/ID/analyses Matrix: WT			13.			
All containers needing preservation have been checked. $ otin Y_{\text{Yes}} $	a ⊡No	□n/A				
Courier: FedEx X UPS VIA Clay PEX ECI Pace Other Client Population Proj Name: Custody Seal on Cooler/Box Present: Yes X No Seals Intact: Yes X No Client C						
Exceptions: WOA, Coliform, O&G, WI-DRO (water)	; □No					
Trip Blank present:	a □No					
Pace Trip Blank lot # (if purchased): 2\25 ι			15.			
Headspace in VOA vials (>6mm):	No	□n/a				
			16.			
Project sampled in USDA Regulated Area:	; □No	₿N/A	17. List Sta	ate:		
Additional labels attached to 5035A vials in the field?	a ⊡No	IØN/A	18.			
Client Notification/ Resolution: Copy COC to Cl	lient?	Y IN) Fie	eld Data R	equired?	Y / N
Person Contacted: Date/Time	e:	\mathcal{O}	·			
Comments/ Resolution:						
			l.	1		

Date:

6

AA

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. CHAIN-OF-CUSTODY / Analytical Request Document

Invoice Information: Company Name:

Report To: Christine Mathews Required Project Information: Copy To: Jeff Walker

6212 Indian School Rd NE St2

Add:ass:

GHD Services_COP NM

Required Client Information:

Section A Company

Section B

Section C Attention: Address:

		Controis	EN EN	[12]	١	500	ay	tet	Culo	~				SAMPLE CONDITIONS	Y Y Y				Received on Cooler Cooler (Y/N) Sealed Cooler (Y/N)	
- 11 I	(N\Y) eni	Residual Chlor										*****			14				TEMP in C	
1.000			=	4 H	4	Ŧ								12	1			_	U - UIIII	
-		711	3)DUNH	6 364H	-	HP30(5)	5		-				_	- ų	5				12.11	
<u> </u>		_	35 1			0		-	-		-			TIME	52.61				0	
-			200			=												_		
			3	1.1				-						DATE	31				20-	
no fu			R	ł,		-									3		- 22	25 V	8	
										_									÷	
		TDS	X	X	-	X	X	•	_		-	_	_	-18		¢0€			DATE Signed:	
	_	Sulfate, Chlorid		\$		X	\sim	•		14				- N	1		1	E.	ATE (
	0.005 vd of	8260 B1EX	X	X		×	8	X	X	-		-				1			<u> </u>	
N//	Test	Analyses		-	H	2					h				I V	-	The state	- T	B	
		Ofher			1										M				23	
		lonsrijeM								_				CEPT	Lì		Ê 8		3B	
Decomption of the second	۳ ۱	NªSS2O3 NªOH			+	_				-					N		Π		-22	
	<u>D</u>	HCI	3	. 9	+	3	-0	3	5	-							•		TER	
		EONH		1		-	-	-	1.02	16.			10	+				1	ER	
		4082H												-	0			- 20	15	
		Unpreserved	-	-		-	-	-		10			\rightarrow	TIME	53			-	FOR	
-		# OF CONTAINE	5	80	1	<i>S</i>	50	3	3	_				- 100			_		TURE	
	PT COLLECTION	SAMPLE TEMP	0	0	+	2	0		10			-		DATE	3:30.16		e.		APLER NAME AND SIGNATURE PRINT Name of SAMPLERA SIGNATURE of SAMPLERA	
		TME	15	1210		1230	1240		12					6	Ne.				ND S f SAN	
	END	Ľ	19	9	12	2	3	31	21	_				10					ME A arre o arre o BRE o	
		DATE	3136-16	3:30.16	3.90%	3,30 K	3.30.16	3.30.16	8-30.ill 1515					z	R					
		TIME												INTION	161	- I		6 R	PRI	
	START		<u> </u>		4			-		1	1			RELINQUISHED BY / AFFI	B				SAN	
	S	DATE												DBY	B			2	44 - X - X	
() 2=2 8AA9=9)	SAMPLE TYPE	5	6	0	5	. 07	5							S		1	÷.	1 al x 11	
-		MATRIX CODE	1-IN	MC	王	PH H	WIG	PLY	5						1			÷.,		
-					No.			-							B		1.5			
	CODE VV VV VV VV VV VV	AR OT TS	7	2	P	C-MM-MO	-MM-	and	5					1	E	2				
	Vater ater		MI	M	MM	ž	1	1	Š					1		D	D			
	MATRIX Drinking Water Waste Water Product Soil/Solid Oil	Wipe Air Other Tissue	5	- N	N	E	S.	E	5					1						
	MAT Drink Vuate Vas Vas Prod	is ei G	3	-4	A			0	5					1						
			10	10	à	2	NO NO	1c	16					100						
		e	3331	033011	33016-	-910250	0330lb-)330/G-	0333016	15				INTS		10		1	2	
	Q	r box. e unic	3	12	£	Q	9	\sim		-				MMO						
	Ш	erpe 9/,-] ustb	1 cc	1	5	a	33	à	Ś					NAL						
	SAMPLE	One Character per box. (A-Z, 0-9 / , -) Sample Ids must be unique	74933	1-074933	Col-143	2KHI	cohl	93	074933					ADDITIONAL COMMENTS	1.1					
	SAI	ne Ch (A	2	14	F-	5	5	7	14					A					<u> </u>	
		Sai	34-0			V	3	-82.0470-11-	in											
			T	B	E	Co	55	7	SF-	5									Page 22 of 22	
		# MƏTI	-	2	3	4	S	9	7	8	6	10	11	12		22		5		
			100		100-11		1018	127		(P)	12-7	are -	Press-					-	1	

Samples Intacl (Y/V)

б

-

Page:

Regulatory Agency State / Location

MN

Requested Analysis Filtered (Y/N)

alice flanagan@pacelabs.com.

Pace Quote: Pace Project Manager: Pace Profile #:

074933 Randleman No 1 COP

Project Name: 0 Angela Bown

Fax

Albuquerque, NM 87110 Email: christine.mathews@ghd.com Phone: 505-884-0672 Fax Requested Due Date:

Project #:

A BUCE ANAMATICAL

Pace Analytical Services, Inc. 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

July 08, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074933 RANDLEMAN NO 1 COP Pace Project No.: 60222267

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on June 27, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Flanazan

Alice Flanagan alice.flanagan@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

_

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60222267001	GW-074933-062216-SP-MW-3	Water	06/22/16 13:55	06/27/16 08:30
60222267002	GW-074933-062216-SP-MW-2	Water	06/22/16 14:21	06/27/16 08:30
60222267003	GW-074933-062216-SP-MW-1	Water	06/22/16 14:45	06/27/16 08:30
60222267004	GW-074933-062216-SP-MW-4	Water	06/22/16 15:00	06/27/16 08:30
60222267005	GW-074933-062216-SP-DUP	Water	06/22/16 08:00	06/27/16 08:30
60222267006	TRIP BLANK	Water	06/22/16 08:00	06/27/16 08:30

SAMPLE ANALYTE COUNT

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60222267001	GW-074933-062216-SP-MW-3	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	HAC	1
		EPA 300.0	OL	2
60222267002	GW-074933-062216-SP-MW-2	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	HAC	1
		EPA 300.0	OL	2
60222267003	GW-074933-062216-SP-MW-1	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	HAC	1
		EPA 300.0	OL	2
60222267004	GW-074933-062216-SP-MW-4	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	HAC	1
		EPA 300.0	OL	2
60222267005	GW-074933-062216-SP-DUP	EPA 8260	JTK	8
60222267006	TRIP BLANK	EPA 8260	JTK	8

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

 Method:
 EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 GHD Services_COP NM

 Date:
 July 08, 2016

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Method:EPA 8260Description:8260 MSV UST, WaterClient:GHD Services_COP NMDate:July 08, 2016

General Information:

6 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: MSV/76770

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Method:SM 2540CDescription:2540C Total Dissolved SolidsClient:GHD Services_COP NMDate:July 08, 2016

General Information:

4 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 GHD Services_COP NM

 Date:
 July 08, 2016

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Sample: GW-074933-062216-SP- MW-3	Lab ID: 602	22267001	Collected: 06/22/1	6 13:55	Received: 06	6/27/16 08:30 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	010 Preparation Met	nod: EP	A 3010			
Manganese, Dissolved	718	ug/L	5.0	1	06/28/16 10:45	06/29/16 09:24	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 82	260					
Benzene	ND	ug/L	1.0	1		07/01/16 05:53	71-43-2	
Ethylbenzene	1.6	ug/L	1.0	1		07/01/16 05:53	100-41-4	
Toluene	ND	ug/L	1.0	1		07/01/16 05:53	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		07/01/16 05:53	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	80-120	1		07/01/16 05:53	2037-26-5	
4-Bromofluorobenzene (S)	102	%	77-130	1		07/01/16 05:53	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	81-127	1		07/01/16 05:53	17060-07-0	
Preservation pH	1.0		1.0	1		07/01/16 05:53		
2540C Total Dissolved Solids	Analytical Meth	od: SM 25	40C					
Total Dissolved Solids	2920	mg/L	5.0	1		06/28/16 10:34		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Chloride	120	mg/L	10.0	10		07/02/16 15:20	16887-00-6	
Sulfate	1800	mg/L	200	200		07/03/16 17:46	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Lab ID: 6022	22267002	Collected: 06/22/1	6 14:21	Received: 06	i/27/16 08:30	Matrix: Water	
nal preservation w	vere received	outside of recomm	ended t	temperature limits	s of 0-6 degrees	Celsius.	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EP	A 3010			
2260	ug/L	5.0	1	06/28/16 10:45	06/29/16 09:28	7439-96-5	
Analytical Meth	od: EPA 826	0					
1.5	ug/L	1.0	1		07/01/16 22:05	71-43-2	
1.3	ug/L	1.0	1		07/01/16 22:05	100-41-4	
3.0	ug/L	1.0	1		07/01/16 22:05	108-88-3	
7.4	ug/L	3.0	1		07/01/16 22:05	1330-20-7	
100	%	80-120	1		07/01/16 22:05	2037-26-5	
106	%	77-130	1		07/01/16 22:05	460-00-4	
104	%	81-127	1		07/01/16 22:05	17060-07-0	
1.0		1.0	1		07/01/16 22:05	i i	
Analytical Meth	od: SM 2540	С					
2130	mg/L	5.0	1		06/28/16 10:35	i	
Analytical Meth	od: EPA 300.	.0					
84.9	mg/L	10.0	10		07/02/16 15:35	16887-00-6	
1320	mg/L	100	100		07/03/16 18:00	14808-79-8	
	nal preservation w Results Analytical Meth 2260 Analytical Meth 1.5 1.3 3.0 7.4 100 106 104 1.0 Analytical Meth 2130 Analytical Meth 84.9	nal preservation were received Results Units Analytical Method: EPA 6010 2260 ug/L Analytical Method: EPA 8260 1.5 ug/L 1.3 ug/L 3.0 ug/L 7.4 ug/L 100 % 106 % 104 % 1.0 Analytical Method: SM 2540 2130 mg/L Analytical Method: EPA 300. 84.9 mg/L	Inal preservation were received outside of recomm Results Units Report Limit Analytical Method: EPA 6010 Preparation Meth 2260 ug/L 5.0 Analytical Method: EPA 8260 1.0 1.5 ug/L 1.0 1.3 ug/L 1.0 3.0 ug/L 1.0 7.4 ug/L 3.0 100 % 80-120 106 % 77-130 104 % 81-127 1.0 1.0 1.0 Analytical Method: SM 2540C 2130 mg/L 5.0 Analytical Method: EPA 300.0 84.9 mg/L 10.0	Inal preservation were received outside of recommended results Dr Results Units Report Limit DF Analytical Method: EPA 6010 Preparation Method: EPA DF 2260 ug/L 5.0 1 Analytical Method: EPA 8260 1.0 1 Analytical Method: EPA 8260 1.0 1 Analytical Method: EPA 8260 1.0 1 1.3 ug/L 1.0 1 3.0 ug/L 1.0 1 3.0 ug/L 1.0 1 100 % 80-120 1 106 % 77-130 1 104 % 81-127 1 1.0 1.0 1 1 Analytical Method: SM 2540C 2130 mg/L 5.0 1 Analytical Method: EPA 300.0 84.9 mg/L 10.0 10	Analytical Method: EPA 6010 Prepared Analytical Method: EPA 6010 Preparation Method: EPA 3010 2260 ug/L 5.0 1 06/28/16 10:45 Analytical Method: EPA 8260 1.5 ug/L 1.0 1 1.3 ug/L 1.0 1 3.0 ug/L 1.0 1 7.4 ug/L 3.0 1 100 % 80-120 1 106 % 77-130 1 104 % 81-127 1 1.0 1.0 1 1 Analytical Method: SM 2540C 2130 mg/L 5.0 1 Analytical Method: EPA 300.0 84.9 mg/L 10.0 10	Inal preservation were received outside of recommended temperature limits of 0-6 degrees Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 6010 Preparation Method: EPA 3010 2260 ug/L 5.0 1 06/28/16 10:45 06/29/16 09:28 Analytical Method: EPA 8260 1.0 1 07/01/16 22:05 0.1 07/01/16 22:05 0.1 07/01/16 22:05 0.1 07/01/16 22:05 0.1 07/01/16 22:05 0.1 07/01/16 22:05 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.2 <	Instruction Inits Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010 Preparation Method: EPA 3010 CAS No. 2260 ug/L 5.0 1 06/28/16 10:45 06/29/16 09:28 7439-96-5 Analytical Method: EPA 8260 1 06/28/16 10:45 06/29/16 09:28 7439-96-5 1.5 ug/L 1.0 1 07/01/16 22:05 71-43-2 1.3 ug/L 1.0 1 07/01/16 22:05 100-41-4 3.0 ug/L 1.0 1 07/01/16 22:05 108-88-3 7.4 ug/L 3.0 1 07/01/16 22:05 1330-20-7 100 % 80-120 1 07/01/16 22:05 2037-26-5 106 % 77-130 1 07/01/16 22:05 17060-07-0 1.0 1.0 1 07/01/16 22:05 17060-07-0 1 1.0 1.0 1 07/01/16 22:05 17060-07-0 1 07/01/16

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Sample: GW-074933-062216-SP- MW-1	Lab ID: 6022	22267003	Collected: 06/22/1	6 14:45	6 Received: 06	i/27/16 08:30	Matrix: Water	
Comments: • Samples requiring them	mal preservation w	vere received	l outside of recomm	nended	temperature limits	s of 0-6 degrees	Celsius.	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 601	0 Preparation Meth	nod: EP	A 3010			
Manganese, Dissolved	11.4	ug/L	5.0	1	06/28/16 10:45	06/29/16 09:43	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 826	0					
Benzene	ND	ug/L	1.0	1		07/01/16 06:52	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		07/01/16 06:52	100-41-4	
Toluene	ND	ug/L	1.0	1		07/01/16 06:52	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		07/01/16 06:52	1330-20-7	
Surrogates								
Toluene-d8 (S)	97	%	80-120	1		07/01/16 06:52	2037-26-5	
4-Bromofluorobenzene (S)	103	%	77-130	1		07/01/16 06:52	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	81-127	1		07/01/16 06:52	17060-07-0	
Preservation pH	1.0		1.0	1		07/01/16 06:52		
2540C Total Dissolved Solids	Analytical Meth	od: SM 2540)C					
Total Dissolved Solids	13200	mg/L	5.0	1		06/28/16 10:35	i	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	.0					
Chloride	67.9	mg/L	10.0	10		07/02/16 16:05	16887-00-6	
Sulfate	2050	mg/L	200	200		07/03/16 18:28	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Lab ID: 6022	22267004	Collected: 06/22/1	6 15:00	Received: 06	i/27/16 08:30	Matrix: Water	
mal preservation w	vere received	outside of recomm	nended t	temperature limits	s of 0-6 degrees	Celsius.	
Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
Analytical Meth	od: EPA 601	D Preparation Meth	nod: EP	A 3010			
1260	ug/L	5.0	1	06/28/16 10:45	06/29/16 09:47	7439-96-5	
Analytical Meth	od: EPA 826	0					
ND	ug/L	1.0	1		07/01/16 07:07	71-43-2	
ND	ug/L	1.0	1		07/01/16 07:07	100-41-4	
ND	ug/L	1.0	1		07/01/16 07:07	108-88-3	
ND	ug/L	3.0	1		07/01/16 07:07	1330-20-7	
101	%	80-120	1		07/01/16 07:07	2037-26-5	
106	%	77-130	1		07/01/16 07:07	460-00-4	
106	%	81-127	1		07/01/16 07:07	17060-07-0	
1.0		1.0	1		07/01/16 07:07	,	
Analytical Meth	od: SM 2540	С					
8600	mg/L	5.0	1		06/28/16 10:36	;	
Analytical Meth	od: EPA 300.	0					
1990	mg/L	200	200		07/03/16 18:43	16887-00-6	
3790	mg/L	200	200		07/03/16 18:43	14808-79-8	
	mal preservation w Results Analytical Meth 1260 Analytical Meth ND ND ND 101 106 106 1.0 Analytical Meth 8600 Analytical Meth 1990	nal preservation were received Results Units Analytical Method: EPA 6010 1260 ug/L Analytical Method: EPA 8260 ND ug/L ND ug/L ND ug/L ND ug/L 101 % 106 % 106 % 106 % 106 % 106 % 106 % 107 Model SM 2540 8600 mg/L Analytical Method: EPA 300. 1990 mg/L	nal preservation were received outside of recommResultsUnitsReport LimitAnalytical Method: EPA 6010Preparation Method1260ug/L5.0Analytical Method: EPA 82600NDug/L1.0NDug/L1.0NDug/L1.0NDug/L3.0101%80-120106%77-130106%81-1271.01.0Analytical Method: SM 2540C86008600mg/L5.0Analytical Method: EPA 300.019901990mg/L200	ND ug/L 1.0 1 ND ug/L 3.0 1 101 % 80-120 1 106 % 77-130 1 106 % 81-127 1 1.0 1.0 1 1 Analytical Method: SM 2540C 8600 mg/L 5.0 1 Analytical Method: EPA 300.0 1 200 200 1	Name Units Report Limit DF Prepared Analytical Method: EPA 6010 Preparation Method: EPA 3010 1 06/28/16 10:45 Analytical Method: EPA 8260 1 06/28/16 10:45 Analytical Method: EPA 8260 1 06/28/16 10:45 ND ug/L 1.0 1 ND ug/L 3.0 1 101 % 80-120 1 106 % 77-130 1 106 % 81-127 1 1.0 1.0 1 1 Analytical Method: SM 2540C 8600 mg/L 5.0 1 Analytical Method: EPA 300.0 1 200 200 200	Mail preservation were received outside of recommended temperature limits of 0-6 degrees Results Units Report Limit DF Prepared Analyzed Analytical Method: EPA 6010 Preparation Method: EPA 3010 1 06/28/16 10:45 06/29/16 09:47 Analytical Method: EPA 8260 0 0 0 0 0 0 ND ug/L 1.0 1 07/01/16 07:07 0 0 ND ug/L 1.0 1 07/01/16 07:07 0 0 ND ug/L 1.0 1 07/01/16 07:07 0	mal preservation were received outside of recommended temperature limits of 0-6 degrees Celsius. Results Units Report Limit DF Prepared Analyzed CAS No. Analytical Method: EPA 6010 Preparation Method: EPA 3010 1 06/28/16 10:45 06/29/16 09:47 7439-96-5 Analytical Method: EPA 8260 ND ug/L 5.0 1 06/28/16 10:45 06/29/16 09:47 7439-96-5 ND ug/L 1.0 1 07/01/16 07:07 71-43-2 ND ug/L 1.0 1 07/01/16 07:07 71-43-2 ND ug/L 1.0 1 07/01/16 07:07 100-41-4 ND ug/L 1.0 1 07/01/16 07:07 108-88-3 ND ug/L 3.0 1 07/01/16 07:07 1330-20-7 101 % 80-120 1 07/01/16 07:07 2037-26-5 106 % 77-130 1 07/01/16 07:07 17060-07-0 1.0 1.0 1 07/01/16 07:07 17060-07-0 1

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Sample: GW-074933-062216-SP- DUP	Lab ID: 6022	22267005	Collected: 06/22/1	6 08:00	Received: 0	6/27/16 08:30 N	Aatrix: Water	
Comments: • Samples requiring ther	mal preservation v	vere received	outside of recomm	ended to	emperature limi	ts of 0-6 degrees	Celsius.	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Meth	nod: EPA 8260	0					
Benzene	2.3	ug/L	1.0	1		07/01/16 07:22	71-43-2	
Ethylbenzene	3.4	ug/L	1.0	1		07/01/16 07:22	100-41-4	
Toluene	8.3	ug/L	1.0	1		07/01/16 07:22	108-88-3	
Xylene (Total)	20.4	ug/L	3.0	1		07/01/16 07:22	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	80-120	1		07/01/16 07:22	2037-26-5	
4-Bromofluorobenzene (S)	103	%	77-130	1		07/01/16 07:22	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	81-127	1		07/01/16 07:22	17060-07-0	
Preservation pH	1.0		1.0	1		07/01/16 07:22		

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Sample: TRIP BLANK Comments: • Samples requiring	Lab ID: 6022 thermal preservation v		Collected: 06/22/1 outside of recomm				latrix: Water Celsius.	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Meth	nod: EPA 8260)					
Benzene	ND	ug/L	1.0	1		07/01/16 07:36	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		07/01/16 07:36	100-41-4	
Toluene	ND	ug/L	1.0	1		07/01/16 07:36	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		07/01/16 07:36	1330-20-7	
Surrogates Toluene-d8 (S)	100	%	80-120	1		07/01/16 07:36	2037-26-5	
4-Bromofluorobenzene (S)	100	%	77-130	1		07/01/16 07:36		
1,2-Dichloroethane-d4 (S)	101	%	81-127	1		07/01/16 07:36	17060-07-0	
Preservation pH	1.0		1.0	1		07/01/16 07:36		

	933 RANDLEN 22267	IAN NO 1 COP										
QC Batch: M	PRP/36479		Analys	is Method:	:	EPA 6010						
QC Batch Method: El	PA 3010		Analysi	is Descript	tion: (6010 MET Di	ssolved					
Associated Lab Samples	602222670	001, 60222267002	, 60222267	003, 60222	2267004							
METHOD BLANK: 178	4029		N	latrix: Wa	ter							
Associated Lab Samples	602222670	001, 60222267002	, 60222267	003, 60222	2267004							
			Blank	R	eporting							
Parameter		Units	Result	t	Limit	Analyz	zed	Qualifiers				
Manganese, Dissolved		ug/L		ND	5.	0 06/29/16	09:13					
LABORATORY CONTRO	OL SAMPLE:	1784030										
			Spike	LCS	6	LCS	% Rec	;				
Parameter		Units	Conc.	Resu	ılt	% Rec	Limits	Q	ualifiers			
Manganese, Dissolved		ug/L	1000		972	97	80	-120				
MATRIX SPIKE & MATR	IX SPIKE DUP	LICATE: 17840	31		1784032							
			MS	MSD								
		60222267002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Unit	s Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Manganese, Dissolved	ug/l	L 2260	1000	1000	3110	3120	85	85	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

QC Batch:	MSV/76770
QC Batch Method:	EPA 8260

Analysis Method:

Analysis Description: 8260 MSV UST-WATER

EPA 8260

Associated Lab Samples: 60222267001, 60222267003, 60222267004, 60222267005, 60222267006

 METHOD BLANK:
 1786536
 Matrix:
 Water

 Associated Lab Samples:
 60222267001, 60222267003, 60222267004, 60222267005, 60222267006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	07/01/16 05:38	
Ethylbenzene	ug/L	ND	1.0	07/01/16 05:38	
Toluene	ug/L	ND	1.0	07/01/16 05:38	
Xylene (Total)	ug/L	ND	3.0	07/01/16 05:38	
1,2-Dichloroethane-d4 (S)	%	99	81-127	07/01/16 05:38	
4-Bromofluorobenzene (S)	%	104	77-130	07/01/16 05:38	
Toluene-d8 (S)	%	102	80-120	07/01/16 05:38	

LABORATORY CONTROL SAMPLE: 1786537

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	20.0	100	79-116	
Ethylbenzene	ug/L	20	20.1	100	81-110	
Toluene	ug/L	20	20.1	100	82-111	
Xylene (Total)	ug/L	60	59.5	99	80-111	
1,2-Dichloroethane-d4 (S)	%			102	81-127	
4-Bromofluorobenzene (S)	%			102	77-130	
Toluene-d8 (S)	%			100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No 60000067

Pace Project No.: 60222267	7							
QC Batch: MSV/76	QC Batch: MSV/76796		Analysis Method: EPA		EPA 8260			
QC Batch Method: EPA 820	60	Analysis Description: 8		260 MSV UST-WAT	ER			
Associated Lab Samples: 6	0222267002							
METHOD BLANK: 1787478		Matrix:	Water					
Associated Lab Samples: 6	0222267002							
		Blank	Reporting					
Parameter	Units	Result	Limit	Analyzed	Qualifiers			
Benzene	ug/L	ND	1.0	07/01/16 17:23				
Ethylbenzene	ug/L	ND	1.0	07/01/16 17:23				
Toluene	ug/L	ND	1.0	07/01/16 17:23				
Xylene (Total)	ug/L	ND	3.0	07/01/16 17:23				
1,2-Dichloroethane-d4 (S)	%	102	81-127	07/01/16 17:23				
4-Bromofluorobenzene (S)	%	103	77-130	07/01/16 17:23				

LABORATORY CONTROL SAMPLE: 1787479

Toluene-d8 (S)

%

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	19.5	98	79-116	
Ethylbenzene	ug/L	20	20.1	101	81-110	
Toluene	ug/L	20	19.9	99	82-111	
Xylene (Total)	ug/L	60	58.7	98	80-111	
1,2-Dichloroethane-d4 (S)	%			99	81-127	
4-Bromofluorobenzene (S)	%			98	77-130	
Toluene-d8 (S)	%			101	80-120	

100

80-120 07/01/16 17:23

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 17874	80		1787481							
			MS	MSD								
	6	0222267002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	1.5	20	20	20.2	20.2	93	94	37-151	0	40	
Ethylbenzene	ug/L	1.3	20	20	20.0	20.3	94	95	29-151	1	45	
Toluene	ug/L	3.0	20	20	22.4	22.4	97	97	37-147	0	43	
Xylene (Total)	ug/L	7.4	60	60	64.1	64.5	94	95	27-156	1	46	
1,2-Dichloroethane-d4 (S)	%						100	98	81-127			
4-Bromofluorobenzene (S)	%						102	97	77-130			
Toluene-d8 (S)	%						102	101	80-120			
Preservation pH		1.0			1.0	1.0				0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: Pace Project No.:	074933 RANDLEI 60222267	MAN NO 1 COP							
QC Batch:	C Batch: WET/62658 An					2540C			
QC Batch Method:	SM 2540C		Analysis D	escription:	254	OC Total Dis	ssolved Solids		
Associated Lab Sam	nples: 60222267	001, 6022226700	02, 60222267003,	60222267004	4				
METHOD BLANK:	1784043		Matri	x: Water					
Associated Lab Sam	nples: 60222267	001, 6022226700	2, 60222267003,	60222267004	4				
			Blank	Reporting	9				
Param	neter	Units	Result	Limit		Analyze	d Quali	fiers	_
Total Dissolved Solid	ds	mg/L	NE)	5.0	06/28/16 10):29		
LABORATORY CON	ITROL SAMPLE:	1784044							
Param	neter	Units	Spike Conc.	LCS Result		LCS Rec	% Rec Limits	Qu	alifiers
Total Dissolved Solid	s	mg/L	1000	962		96	80-120		
SAMPLE DUPLICAT	TE: 1784045								
			60222267002	Dup			Max		
Param	neter	Units	Result	Result		RPD	RPD		Qualifiers
Total Dissolved Solid	st	mg/L	2130) 2 [.]	120		0	10	
SAMPLE DUPLICAT	FE: 1784046								
			60222021001	Dup			Max		
Param	neter	Units	Result	Result		RPD	RPD		Qualifiers
Total Dissolved Solid	ds	mg/L	1450	D 14	440		1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 RANE Pace Project No.: 60222267	DLEMAN NO 1 COP						
QC Batch: WETA/40378	3	Analysis Met	hod:	EPA 300.0			
QC Batch Method: EPA 300.0		Analysis Des	cription:	300.0 IC Anions			
Associated Lab Samples: 60222	267001, 6022226700	2, 60222267003					
METHOD BLANK: 1787651		Matrix:	Water				
Associated Lab Samples: 60222	267001, 6022226700	2, 60222267003					
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyzed	Qualifie	ers	
Chloride	mg/L	ND	1.	0 07/02/16 09:	29		
LABORATORY CONTROL SAMPL	E: 1787652						
LABORATORT CONTROL SAMPL	E. 1767032	Spike	LCS	LCS	% Rec		
Parameter	Units		Result	% Rec	Limits	Qualifiers	
Chloride	mg/L	5	4.8	95	90-110		
Chionae	ing/E	0	4.0	55	30-110		
MATRIX SPIKE SAMPLE:	1787655		4.0		30-110		
		60222267002		MS	MS	% Rec	
						% Rec Limits	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	074933 RANDLE 60222267	MAN NO 1 COP										
Pace Project No.:	WETA/40386		Arrahus			PA 300.0						
				sis Method								
QC Batch Method:	EPA 300.0			sis Descrip		00.0 IC Anio	ns					
Associated Lab San	nples: 6022226	7001, 60222267002	2, 60222267	003, 6022	2267004							
METHOD BLANK:	1787911		Ν	Matrix: Wa	ter							
Associated Lab San	nples: 6022226	7001, 60222267002	2, 60222267	003, 6022	2267004							
			Blank	K R	eporting							
Paran	neter	Units	Resu	t	Limit	Analyz	ed	Qualifiers				
Chloride		mg/L		ND	1.0	07/03/16	09:02					
Sulfate		mg/L		ND	1.0	07/03/16	09:02					
LABORATORY CON	ITROL SAMPLE:	1787912										
			Spike	LCS	6	LCS	% Rec	;				
Paran	neter	Units	Conc.	Resu	ult	% Rec	Limits	Qı	alifiers			
Chloride		mg/L	5	5	4.9	99	90	-110				
Sulfate		mg/L	5	i	5.1	103	90	-110				
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 17879	13 MS	MSD	1787914							
		60222007003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Ur	nits Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride			50	50	175	175	115	115	80-120	0	15	
Sulfate	mę		50	50	142	142	108	108	80-120	0	15	
MATRIX SPIKE SAM	MPLE:	1787916										
			602222	67002	Spike	MS	Μ	IS	% Rec			
Paran	neter	Units	Res	ult	Conc.	Result	% F	Rec	Limits		Qualif	iers
Sulfate		mg/L		1320	500	18	90	112	80-1	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: MSV/76770

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60222267

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60222267001	GW-074933-062216-SP-MW-3	EPA 3010	MPRP/36479	EPA 6010	ICP/26591
60222267002	GW-074933-062216-SP-MW-2	EPA 3010	MPRP/36479	EPA 6010	ICP/26591
60222267003	GW-074933-062216-SP-MW-1	EPA 3010	MPRP/36479	EPA 6010	ICP/26591
60222267004	GW-074933-062216-SP-MW-4	EPA 3010	MPRP/36479	EPA 6010	ICP/26591
60222267001	GW-074933-062216-SP-MW-3	EPA 8260	MSV/76770		
60222267002	GW-074933-062216-SP-MW-2	EPA 8260	MSV/76796		
60222267003	GW-074933-062216-SP-MW-1	EPA 8260	MSV/76770		
60222267004	GW-074933-062216-SP-MW-4	EPA 8260	MSV/76770		
60222267005	GW-074933-062216-SP-DUP	EPA 8260	MSV/76770		
60222267006	TRIP BLANK	EPA 8260	MSV/76770		
60222267001	GW-074933-062216-SP-MW-3	SM 2540C	WET/62658		
60222267002	GW-074933-062216-SP-MW-2	SM 2540C	WET/62658		
60222267003	GW-074933-062216-SP-MW-1	SM 2540C	WET/62658		
60222267004	GW-074933-062216-SP-MW-4	SM 2540C	WET/62658		
60222267001	GW-074933-062216-SP-MW-3	EPA 300.0	WETA/40378		
60222267001	GW-074933-062216-SP-MW-3	EPA 300.0	WETA/40386		
60222267002	GW-074933-062216-SP-MW-2	EPA 300.0	WETA/40378		
60222267002	GW-074933-062216-SP-MW-2	EPA 300.0	WETA/40386		
60222267003	GW-074933-062216-SP-MW-1	EPA 300.0	WETA/40378		
60222267003 60222267004	GW-074933-062216-SP-MW-1 GW-074933-062216-SP-MW-4	EPA 300.0 EPA 300.0	WETA/40386 WETA/40386		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60	222267
60222267	

Client Name: CHD COP	Optional
	Pace Other Client Proj Due Date:
Tracking #: 8677 5876 4430 Pace Shipping Label	
Custody Seal on Cooler/Box Present: Yes 🕅 No 🗆 Seals intact:	
Packing Material: Bubble Wrap Bubble Bags	
2F-0.1 CF 0.0	lue None Samples received on ice, cooling process has begun.
	Date and initials of person examining
Temperature should be above freezing to 6°C	contents:
Chain of Custody present: Ves No N/A	1. Out of temp, ice melted
Chain of Custody filled out: 🛛 🕅 🛛 🖓 🖄	2.
Chain of Custody relinquished:	3.
Sampler name & signature on COC:	4.
Samples arrived within holding time:	5
Short Hold Time analyses (<72hr):	6.
Rush Turn Around Time requested:	7
Sufficient volume: Ves No N/A	8.
Correct containers used:	
Pace containers used:	9.
Containers intact:	10.
Unpreserved 5035A soils frozen w/in 48hrs?	11.
Filtered volume received for dissolved tests?	12.
Sample labels match COC:	
Includes date/time/ID/analyses Matrix:	13
All containers needing preservation have been checked.	
All containers needing preservation are found to be in compliance t_{Yes} \Box_{No} $\Box_{N/A}$ with EPA recommendation.	14.
Exceptions: VOA, Coliform, O&G, WI-DRO (water)	Initial when Lot # of added completed preservative
Trip Blank present:	
	15.
Headspace in VOA viais (>6mm):	
	16.
Project sampled in USDA Regulated Area: Ves No UN/A	
Additional labels attached to 5035A vials in the field? Yes No IN/A	
Client Notification/ Resolution: Copy COC to Client? Y /	N Field Data Required? Y / N
Person Contacted: Date/Time: (1/27) Comments/ Resolution: 1/0/2 forward (1) / /////////	ILe CMG1 (when unpacking cooler, if >20 min, recheck sample temps.
hund the of changes.	Start: ()00 Start:
Qui	End: 1097 End:
Project Manager Review:	Date: Date: Date: Temp:
	F-KS-C-004-Rev.4, 30June 2015

Section A Required Client Information:	Section B Required Project Information:	ect Informatic	:00		Section C Invoice Inf	Section C Invoice Information:	:0					Page: 1	of 1
Company: GHD Services COP NM	Report To: (Christine Mathews	ews		Attention	tion:						2.11.12	
Address: 6212 Indian School Rd. NE St2	Copy To:	Jeff Walker	-		Company Address:	Company Name: Address:					1-1-0-0-0-1-1-	Regulatory Agency	and the second second
Albuquerque, NM 8/110 Email: christine mathews@dhd.com	Purchase Order #:	er #:			Pace	Pace Quote:	1					3 1 2 1	
	Project Name:	074933 R	074933 Randleman No 1 COP	1 COP	Pace	Pace Project Manager		alice flanagan@pacelabs.com	selabs com		10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	State / Location	1112
Requested Due Date:	Project #:				Pace	Pace Profile #:	Black	K, yim	Requested	Requested Analysis Filtered (Y/N)	tered (Y/N)	WN	
			COLLECTED	CTED	NC	Pre	Preservatives	N/A		erran 			
Among the second	Nate -	MATRIX CODE (see valid code SAMPLE TYPE (G=GRAB C=	START	END	п SAMPLE TEMP AT COLLECTIC # OF CONTAINERS	HNO3 HS2O¢ Qubleselved	NªSSSO3 NªOH HCI	lonshanol Other 1887 2932 Anna	8260 BTEX Sulfate, Chloride by 300.0 Dissolved Mn -field fillered TDS	are to the		Residual Chlorine (Y/N)	267
1 5W-074933-062216-5P-MW-3		9	-		5	-	~		XXXX	A MEDE	HADDA (H) TEAR	8-4-	Ì
			H21	+	8	X	X		XXXX		I TOUGH	A QA/QC service	end inch
1.00			Shhi)	S	,X	X		XXXX		1 73/14		
	5-7		1500	+	2	X	X		XXXX	- Apr			
5 GW-074933-062216-58-DUP	Jup 1	マイシ		-}	3	QU.	X		×		(a) Dean		1 N N
ę			ente chă	12	en) en)	qua.		am		10	(31) (duly 73		
G G	12	-	νφ) 20	-				44		10			
8	1.2		H		8 4 8 4	Artic Liter				1-4	(
Ø	lfmis Dag					4 100 2011					16	n)	
10			Gree	_	c l					4			
11	1 (14)	1-1	5.00		4 Å 1 6 . e . 264 :								
12			1			_					-		TIONIC
ADDITIONAL COMMENTS	20%	RELINQUISHED	Mile HOAD	6/9	13/16 15	1221	ALLE	1 5 R.	Q.	10/27	3 0330	1915 - Mala N	V V
						2	10	5					
				-		-					-		2
Page	-		SAMPLE	SAMPLER NAME AND SIGNATURE	IGNATURE						の時間に	uo p	
e 24 of		ľ.	SIG	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	APLER:	Heven	Perez Alena		DATE Signed:		6123116	esled <u>Sustody</u> (eceived EMP in	V/N) amples (N/N)

September 22, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074933 RANDLEMAN NO 1 COP Pace Project No.: 60227292

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 09, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 6022

o.:	60227292	

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60227292001	GW-074933-090816-SP-MW-1	Water	09/08/16 12:35	09/09/16 08:50
60227292002	GW-074933-090816-SP-MW-2	Water	09/08/16 12:20	09/09/16 08:50
60227292003	GW-074933-090816-SP-MW-3	Water	09/08/16 13:05	09/09/16 08:50
60227292004	GW-074933-090816-SP-MW-4	Water	09/08/16 12:58	09/09/16 08:50
60227292005	GW-074933-090816-SP-DUP	Water	09/08/16 00:00	09/09/16 08:50
60227292006	TRIP BLANK	Water	09/08/16 00:00	09/09/16 08:50

SAMPLE ANALYTE COUNT

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60227292001		EPA 6010	TDS	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60227292002	GW-074933-090816-SP-MW-2	EPA 6010	TDS	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60227292003	GW-074933-090816-SP-MW-3	EPA 6010	TDS	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60227292004	GW-074933-090816-SP-MW-4	EPA 6010	TDS	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60227292005	GW-074933-090816-SP-DUP	EPA 8260	JTK	8

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Method:EPA 6010Description:6010 MET ICP, DissolvedClient:GHD Services_COP NMDate:September 22, 2016

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Method:EPA 8260Description:8260 MSV UST, WaterClient:GHD Services_COP NMDate:September 22, 2016

General Information:

5 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Method:SM 2540CDescription:2540C Total Dissolved SolidsClient:GHD Services_COP NMDate:September 22, 2016

General Information:

4 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:GHD Services_COP NMDate:September 22, 2016

General Information:

4 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Sample: GW-074933-090816-SP- MW-1	Lab ID: 602	27292001	Collected: 09/08/1	6 12:35	Received: 0	9/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Met	nod: EP/	A 3010			
Manganese, Dissolved	113	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:1	7 7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 820	60					
Benzene	ND	ug/L	1.0	1		09/10/16 08:1 [,]	1 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/10/16 08:1 [,]	1 100-41-4	
Toluene	ND	ug/L	1.0	1		09/10/16 08:1 [,]	1 108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/L	3.0	1		09/10/16 08:1	1 1330-20-7	
Toluene-d8 (S)	98	%	80-120	1		09/10/16 08:1	1 2037-26-5	
4-Bromofluorobenzene (S)	106	%	77-130	1		09/10/16 08:1	1 460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		09/10/16 08:1	1 17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 08:1	1	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	0C					
Total Dissolved Solids	2990	mg/L	5.0	1		09/14/16 13:34	4	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Chloride	68.6	mg/L	10.0	10		09/20/16 21:14		
Sulfate	2100	mg/L	200	200		09/21/16 14:19	9 14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Sample: GW-074933-090816-SP- MW-2	Lab ID: 6022	27292002	Collected: 09/08/1	6 12:20	Received: 09	9/09/16 08:50 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60 ⁻	10 Preparation Meth	nod: EP/	A 3010			
Manganese, Dissolved	1670	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:19	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 826	60					
Benzene	2.3	ug/L	1.0	1		09/10/16 08:26	71-43-2	
Ethylbenzene	1.1	ug/L	1.0	1		09/10/16 08:26	100-41-4	
Toluene	1.8	ug/L	1.0	1		09/10/16 08:26	108-88-3	
Xylene (Total) <i>Surrogates</i>	5.4	ug/L	3.0	1		09/10/16 08:26	1330-20-7	
Toluene-d8 (S)	99	%	80-120	1		09/10/16 08:26	2037-26-5	
4-Bromofluorobenzene (S)	102	%	77-130	1		09/10/16 08:26	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		09/10/16 08:26	17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 08:26	i	
2540C Total Dissolved Solids	Analytical Meth	od: SM 254	0C					
Total Dissolved Solids	1870	mg/L	5.0	1		09/14/16 13:34		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300	0.0					
Chloride	23.4	mg/L	2.0	2		09/21/16 14:33	16887-00-6	
Sulfate	1320	mg/L	100	100		09/21/16 15:01	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Sample: GW-074933-090816-SP- MW-3	Lab ID: 602	27292003	Collected: 09/08/1	6 13:05	Received: 09	9/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Met	nod: EP/	A 3010			
Manganese, Dissolved	512	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:28	3 7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 82	60					
Benzene	ND	ug/L	1.0	1		09/10/16 09:11	71-43-2	
Ethylbenzene	3.6	ug/L	1.0	1		09/10/16 09:11	100-41-4	
Toluene	ND	ug/L	1.0	1		09/10/16 09:11	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/10/16 09:11	1330-20-7	
<i>Surrogates</i> Toluene-d8 (S)	95	%	80-120	1		09/10/16 09:11	2037-26-5	
4-Bromofluorobenzene (S)	104	%	77-130	1		09/10/16 09:11		
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		09/10/16 09:11		
Preservation pH	1.0		1.0	1		09/10/16 09:11	l	
2540C Total Dissolved Solids	Analytical Meth	od: SM 254	OC					
Total Dissolved Solids	2790	mg/L	5.0	1		09/14/16 13:35	5	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Chloride	118	mg/L	10.0	10		09/20/16 22:11	16887-00-6	
Sulfate	1810	mg/L	200	200		09/21/16 15:30	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Sample: GW-074933-090816-SP- MW-4	Lab ID: 602	27292004	Collected: 09/08/1	6 12:58	Received: 09	9/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Met	nod: EP/	A 3010			
Manganese, Dissolved	928	ug/L	5.0	1	09/12/16 12:15	09/13/16 12:31	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 82	60					
Benzene	ND	ug/L	1.0	1		09/10/16 09:26	6 71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/10/16 09:26	6 100-41-4	
Toluene	ND	ug/L	1.0	1		09/10/16 09:26	6 108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/L	3.0	1		09/10/16 09:26	3 1330-20-7	
Toluene-d8 (S)	99	%	80-120	1		09/10/16 09:26	6 2037-26-5	
4-Bromofluorobenzene (S)	103	%	77-130	1		09/10/16 09:26	6 460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	81-127	1		09/10/16 09:26	6 17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 09:26	3	
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	0C					
Total Dissolved Solids	9200	mg/L	5.0	1		09/14/16 13:35	5	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0					
Chloride	2670	mg/L	500	500		09/21/16 15:44		
Sulfate	3550	mg/L	500	500		09/21/16 15:44	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Sample: GW-074933-090816-SP- DUP	Lab ID: 6	0227292005	Collected: 09/08/	6 00:00	Received: 0	9/09/16 08:50	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical M	1ethod: EPA 82	60					
Benzene	2.3	ug/L	1.0	1		09/10/16 09:4 ²	71-43-2	
Ethylbenzene	1.3	ug/L	1.0	1		09/10/16 09:42	100-41-4	
Toluene	2.0	ug/L	1.0	1		09/10/16 09:42	108-88-3	
Xylene (Total)	5.5	ug/L	3.0	1		09/10/16 09:4	1330-20-7	
Surrogates								
Toluene-d8 (S)	98	%	80-120	1		09/10/16 09:4	2037-26-5	
4-Bromofluorobenzene (S)	101	%	77-130	1		09/10/16 09:4	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		09/10/16 09:42	17060-07-0	
Preservation pH	1.0		1.0	1		09/10/16 09:41	I	

Project: Pace Project No.:	074933 RAN 60227292	DLEMAN	NO 1 COP										
QC Batch:	446110			Analys	is Method:	E	PA 6010						
QC Batch Method:	EPA 3010			Analys	is Descript	ion: 6	010 MET Di	ssolved					
Associated Lab San	nples: 6022	27292001	, 60227292002,	, 60227292	003, 60227	292004							
METHOD BLANK:	1824025			Ν	Aatrix: Wat	er							
Associated Lab San	nples: 6022	27292001	, 60227292002,	, 60227292	003, 60227	292004							
				Blank	K R	eporting							
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Manganese, Dissolv	ved		ug/L		ND	5.0	09/13/16	12:12					
LABORATORY COM	NTROL SAMP	LE: 18	24026	Cailus			1.00	0/ Da					
Param	neter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Re Limit		ualifiers			
Manganese, Dissolv	ved		ug/L	1000		960	96	8	0-120		-		
MATRIX SPIKE & M	IATRIX SPIKE		ATE: 182402	27		1824028							
				MS	MSD								
			60227292002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Manganese, Dissolv	red	ug/L	1670	1000	1000	2600	2630	93	96	75-125	1	20	
MATRIX SPIKE & M	IATRIX SPIKE		ATE: 182402	29		1824030							
				MS	MSD								
			60227293005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Manganese, Dissolv	red	ug/L	2070	1000	1000	3000	3020	94	95	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

QC Batch:	4460	46	Analysis Method:
QC Batch Method:	EPA	3260	Analysis Description:
Associated Lab Samp	oles:	60227292001, 60227292002,	60227292003, 602272920

8260 MSV UST-WATER 60227292001, 60227292002, 60227292003, 60227292004, 60227292005

EPA 8260

METHOD BLANK: 1823489 Matrix: Water

Associated Lab Samples: 6	60227292001,	60227292002,	60227292003,	60227292004, 60227292005	5
---------------------------	--------------	--------------	--------------	--------------------------	---

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/10/16 06:13	
Ethylbenzene	ug/L	ND	1.0	09/10/16 06:13	
Toluene	ug/L	ND	1.0	09/10/16 06:13	
Xylene (Total)	ug/L	ND	3.0	09/10/16 06:13	
1,2-Dichloroethane-d4 (S)	%	96	81-127	09/10/16 06:13	
4-Bromofluorobenzene (S)	%	104	77-130	09/10/16 06:13	
Toluene-d8 (S)	%	100	80-120	09/10/16 06:13	

LABORATORY CONTROL SAMPLE: 1823490

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	20.6	103	79-116	
Ethylbenzene	ug/L	20	19.3	97	81-110	
Toluene	ug/L	20	20.2	101	82-111	
Xylene (Total)	ug/L	60	56.1	94	80-111	
1,2-Dichloroethane-d4 (S)	%			97	81-127	
4-Bromofluorobenzene (S)	%			99	77-130	
Toluene-d8 (S)	%			99	80-120	

MATRIX SPIKE & MATRIX SP	IKE DUPLICA	TE: 18234	91		1823492							
			MS	MSD								
	6	0227292002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	2.3	20	20	23.5	23.0	106	103	37-151	2	40	
Ethylbenzene	ug/L	1.1	20	20	20.4	19.7	96	93	29-151	3	45	
Toluene	ug/L	1.8	20	20	22.1	21.6	101	99	37-147	2	43	
Xylene (Total)	ug/L	5.4	60	60	61.6	59.0	94	89	27-156	4	46	
1,2-Dichloroethane-d4 (S)	%						95	97	81-127			
4-Bromofluorobenzene (S)	%						101	99	77-130			
Toluene-d8 (S)	%						98	99	80-120			
Preservation pH		1.0			1.0	1.0				0		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 074933 RANDLE Pace Project No.: 60227292	MAN NO 1 COP						
QC Batch: 446523		Analysis Me	ethod: S	SM 2540C			
QC Batch Method: SM 2540C		Analysis De	escription: 2	2540C Total Di	ssolved Solids		
Associated Lab Samples: 6022729	2001, 60227292002	2, 60227292003,	60227292004				
METHOD BLANK: 1825604		Matrix	:: Water				
Associated Lab Samples: 6022729	2001, 60227292002	2, 60227292003,	60227292004				
		Blank	Reporting				
Parameter	Units	Result	Limit	Analyze	d Quali	fiers	_
Total Dissolved Solids	mg/L	ND	5.0	0 09/14/16 1	3:26		
LABORATORY CONTROL SAMPLE:	1825605						
David	11.5	Spike	LCS	LCS	% Rec	6	
Parameter	Units	Conc.	Result	% Rec	Limits	Qua	alifiers
Total Dissolved Solids	mg/L	1000	991	99	80-120		
SAMPLE DUPLICATE: 1825606							
_		60227223001	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	mg/L	1330	1390)	4	10	
SAMPLE DUPLICATE: 1825607							
	11.5	60227292002	Dup		Max		0
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	mg/L	1870	1880)	1	10	
SAMPLE DUPLICATE: 1825608							
_		60227172005	Dup		Max		
Parameter	Units	Result	Result	RPD	RPD		Qualifiers
Total Dissolved Solids	mg/L	802	839	9	5	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Project: 074933 RANDLE Pace Project No.: 60227292	EMAN NO 1 COP						
QC Batch: 447176		Analysis M	lethod:	EPA 300.0			
QC Batch Method: EPA 300.0		Analysis D	escription:	300.0 IC Anio	ons		
Associated Lab Samples: 6022729	2001, 60227292003						
METHOD BLANK: 1829066		Matri	x: Water				
Associated Lab Samples: 6022729	2001, 60227292003						
		Blank	Reportin	-			
Parameter	Units	Result	Limit	Analyz	zed Quali	fiers	
Chloride	mg/L	N	C	1.0 09/20/16	15:48		
LABORATORY CONTROL SAMPLE:	1829067						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Chloride	mg/L	5	4.6	93	90-110		
MATRIX SPIKE SAMPLE:	1829070						
		602270920	01 Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/L	:	38.2	50 8	5.9	95 80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	074933 RANDLE 60227292	MAN NO 1 COP										
QC Batch:	447397		Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA 300.0		Analys	sis Descrip	tion: 3	00.0 IC Anio	ns					
Associated Lab San	nples: 60227292	2001, 60227292002	, 60227292	003, 6022	7292004							
METHOD BLANK:	1830059		Ν	Matrix: Wa	ter							
Associated Lab San	nples: 60227292	2001, 60227292002	, 60227292	003, 6022	7292004							
			Blank	K R	eporting							
Paran	neter	Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Chloride		mg/L		ND	1.0	09/21/16	09:23		_			
Sulfate		mg/L		ND	1.0	09/21/16	09:23					
LABORATORY CON	NTROL SAMPLE:	1830060										
			Spike	LCS	6	LCS	% Rec					
Paran	neter	Units	Conc.	Resu	ult	% Rec	Limits	Qı	alifiers			
Chloride		mg/L	5	i	4.6	93	90	-110				
Sulfate		mg/L	5	i	4.9	98	90	-110				
MATRIX SPIKE & M	IATRIX SPIKE DU	PLICATE: 18300	61 MS	MSD	1830062							
		60227098001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	m	J/L 28.8	10	10	39.6	39.6	108	107	80-120	0	15	
MATRIX SPIKE SAM	MPLE:	1830063										
			602272	92002	Spike	MS	Μ	IS	% Rec			
Paran	neter	Units	Res	ult	Conc.	Result	% F	Rec	Limits		Quali	fiers
Chloride		mg/L		23.4	10	32	2.8	94	80-1	20		
Sulfate		mg/L		1320	500	18	00	97	80-1	00		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALIFIERS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60227292

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60227292001	GW-074933-090816-SP-MW-1	EPA 3010	446110	EPA 6010	446261
60227292002	GW-074933-090816-SP-MW-2	EPA 3010	446110	EPA 6010	446261
60227292003	GW-074933-090816-SP-MW-3	EPA 3010	446110	EPA 6010	446261
60227292004	GW-074933-090816-SP-MW-4	EPA 3010	446110	EPA 6010	446261
60227292001	GW-074933-090816-SP-MW-1	EPA 8260	446046		
60227292002	GW-074933-090816-SP-MW-2	EPA 8260	446046		
60227292003	GW-074933-090816-SP-MW-3	EPA 8260	446046		
60227292004	GW-074933-090816-SP-MW-4	EPA 8260	446046		
60227292005	GW-074933-090816-SP-DUP	EPA 8260	446046		
60227292001	GW-074933-090816-SP-MW-1	SM 2540C	446523		
60227292002	GW-074933-090816-SP-MW-2	SM 2540C	446523		
60227292003	GW-074933-090816-SP-MW-3	SM 2540C	446523		
60227292004	GW-074933-090816-SP-MW-4	SM 2540C	446523		
60227292001	GW-074933-090816-SP-MW-1	EPA 300.0	447176		
60227292001	GW-074933-090816-SP-MW-1	EPA 300.0	447397		
60227292002	GW-074933-090816-SP-MW-2	EPA 300.0	447397		
60227292003	GW-074933-090816-SP-MW-3	EPA 300.0	447176		
60227292003	GW-074933-090816-SP-MW-3	EPA 300.0	447397		
60227292004	GW-074933-090816-SP-MW-4	EPA 300.0	447397		

Pace Analytical www.pacelabs.com ESI Tech Spec		eip	t	WO#:6		292
Client Name: GrtD - CoP Non					Jr ·	
Courier: FedEx 🞢 UPS 🗆 VIA 🗆 Clay 🗆 Pl	EX 🗆	ECI		Pace 🗆 Xroads 🗆 C	lient 🗆 Othe	er 🗆
Tracking #: 7044 6652 7992 Pace	Shipping	, Lab	el Usec	? Yes 🖄 No 🗆		
	e of Ice:	Foa Wet	am 🗆 Blue	None D Othe	Date and initials	of person
Cooler Temperature (°C): As-read 2-9 Corr. Facto	r CF +1.1 CF	-0.1 (Correct	ed <u>40</u>		ents: 9/9/16 57 1000
Temperature should be above freezing to 6°C	<u> </u>	_				
Chain of Custody present:	Yes [No	□n/A			
Chain of Custody relinquished:	Yes [No	□n/a			
Samples arrived within holding time:	Yes [No	□n/a			
Short Hold Time analyses (<72hr):	□Yes [No	□n/A			
Rush Turn Around Time requested:	Yes ↓	No	□n/A			
Sufficient volume:	AYes [No	□n/a			
Correct containers used:	Yes [∃No				
Pace containers used:	/ ØYes [□n/A			
Containers intact:	ZYes D					
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	Yes [
Filtered volume received for dissolved tests?	Yes [-6			
			-			
Sample labels match COC: Date / time / ID / analyses	PYes [
Samples contain multiple phases? Matrix: weter	Yes C		_			
Containers requiring pH preservation in compliance? (HNO₃, H₂SO₄, HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide) (Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO)	₽Yes [JNo	∐N/A			
Cyanide water sample checks:	□Yes □					
Lead acetate strip turns dark? (Record only) Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □					
Trip Blank present:	TAYes C		¶ N/A			
Headspace in VOA vials (>6mm):	□Yes Ø		∬ΩN/A			
Samples from USDA Regulated Area: State:	□Yes □		ØN/A			
Additional labels attached to 5035A / TX1005 vials in the field?		_	Z N/A			
Client Notification/ Resolution: Copy COC to (Y /	-	Field Data Required?	Y / N	
Person Contacted: Date/Til Comments/ Resolution:	me:			whe sam	en unpacking coole pple temps.	art and finish times ar, if >20 min, recheck
				Sta		Start: End:
Project Manager Review:alice	1		Date	: <u>09/09/16</u> Ten	P	Temp:

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

SamPLE ID one character per box.	. Unishine manews Jeff Walker, Angela Bo⊮n Order # 34005854 ame: 074933 Randleman No	Company Name. Address:	y Name:	a state of		
SAMPLE ID Concernent School rou No. 512 Enduel MB 87110 565-884-0572 Fax fied Due Date: SAMPLE ID One Character per box.	Order # 34005854 Drder # 074933 Randleman No	Address:				
SAMPLE ID One Character per box.	34005854 074933 Randleman No				Red	Regulatory Agency
505-884-0672 Fax field Due Date: Societad Due Date: SamPLE ID Cone Character per box.	074933 Randleman No	Pace Quote:	ote:			
AMPLE ID • Character per box.		1 COP Pace Pro	Pace Project Manager: alice spiller@pacelabs.com	elabs.com	St	State / Location
Sam	Project #:	Pace Profile #:	ofile #: 8644 4			MM
				Requested Ana	Requested Analysis Filtered (Y/N)	
	(1991 o) 8		Preservatives			
			Test	field filtered.		
e	정 유 전 전 제 가 전 전 전 전 SAMPLE TYPE TAP TAP TAP	В Н В В В В В В В В В В В В В В В В В В	Husiyees Othet Methenol MacD MaOH HCI HN03 HS204	8260 BTEX 300.0 Sulfate, (Dissolved Mn Total Dissolved		Residual Child
16W-074923-09081 6	1235	-		XXXX	3(12.94) (1833.)(1830)	<i>∞</i>
1120 2 2 - 22 2 2 2 0 2 0 2 1	5P-MW-21111	200		1111	60094) (CBM) (BBM)	AA 2C Sundle calleord
2-913020-2200204C15	P-W12-3111	53			3(10-54) (884) (2831)	
1	-mu-4 11 1258	53		I WWWI		604
5 (W-074837- DC DF-16-5P.D	Dup WWW	53			S(00311)	Sa
9					S (Mar) 2	De
2						÷.
8						
6						P. 42
10						
11						
12					-	
ADDITIONAL COMMENTS	AFLINQUISHED BY I AFFILATION	I DATE TIME	ACCEPTED BY / AFFILIATION	AFFILIATION	DATE TIME	SAMPLE CONDITIONS
	Hvenkey	98-16162	S Alt la	-la-	1/9/16 350 A.o	~ ~ ~ ~
		1934 	100 mm/m	1 3 4 4 5		
Page	SAMPLER	SAMPLER NAME AND SIGNATURE	ç		3	uo p
e 22 of	PRINT	PRINT Name of SAMPLER: SIGNATURE of SAMPLER:	Pures Verez	DATE Signed: C	9-8-16	Received Custody Custody Cooler (Y/N) Samples Samples niact
22			lon 1 non			

kd w2

October 10, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074933 Randleman No.1 Pace Project No.: 60228834

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 29, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074933 Randleman No.1

Pace Project No.: 60228834

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project:074933 Randleman No.1Pace Project No.:60228834

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60228834001	GW-074933-092616-CN-MW6	Water	09/26/16 16:45	09/29/16 08:55

SAMPLE ANALYTE COUNT

Project:074933 Randleman No.1Pace Project No.:60228834

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60228834001	GW-074933-092616-CN-MW6	EPA 6010	SMW	1
		EPA 8260	JDH	8
		SM 2320B	HMM	1
		EPA 300.0	OL	2

Project: 074933 Randleman No.1

Pace Project No.: 60228834

Method:EPA 6010Description:6010 MET ICP, Dissolved (LF)Client:GHD Services_COP NMDate:October 10, 2016

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 Randleman No.1

Pace Project No.: 60228834

Method:EPA 8260Description:8260 MSV UST, WaterClient:GHD Services_COP NMDate:October 10, 2016

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 448720

L0: Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

- LCS (Lab ID: 1836169)
 - Ethylbenzene
 - Toluene

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 448720

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Project: 074933 Randleman No.1

Pace Project No.: 60228834

Method: SM 2320B

Description:2320B AlkalinityClient:GHD Services_COP NMDate:October 10, 2016

General Information:

1 sample was analyzed for SM 2320B. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 Randleman No.1

Pace Project No.: 60228834

 Method:
 EPA 300.0

 Description:
 300.0 IC Anions 28 Days

 Client:
 GHD Services_COP NM

 Date:
 October 10, 2016

General Information:

1 sample was analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074933 Randleman No.1

Pace Project No.: 60228834

Sample: GW-074933-092616-CN- MW6	Lab ID: 602	28834001	Collected: 09/26/1	16 16:45	Received: 09)/29/16 08:55 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved (LF)	Analytical Meth	nod: EPA 60'	10 Preparation Met	hod: EP/	A 3010			
Manganese, Dissolved	349	ug/L	5.0	1	10/05/16 09:10	10/06/16 13:58	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	60					
Benzene	ND	ug/L	1.0	1		09/30/16 19:42	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/30/16 19:42	100-41-4	L3
Toluene	ND	ug/L	1.0	1		09/30/16 19:42	108-88-3	L3
Xylene (Total)	ND	ug/L	3.0	1		09/30/16 19:42	1330-20-7	LS
Surrogates								
Toluene-d8 (S)	101	%	80-120	1		09/30/16 19:42		
4-Bromofluorobenzene (S)	99	%	77-130	1		09/30/16 19:42	460-00-4	
1,2-Dichloroethane-d4 (S)	104	%	81-127	1		09/30/16 19:42	17060-07-0	
Preservation pH	1.0		1.0	1		09/30/16 19:42		
2320B Alkalinity	Analytical Meth	nod: SM 232	0B					
Alkalinity, Total as CaCO3	71.8	mg/L	20.0	1		10/06/16 14:30		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0					
Chloride	3440	mg/L	500	500		10/09/16 22:02	16887-00-6	
Sulfate	3250	mg/L	500	500		10/09/16 22:02	14808-79-8	

-)	74933 Randlema	an No.1										
Pace Project No.: 6	0228834											
QC Batch:	449188		Analys	is Method	: E	PA 6010						
QC Batch Method:	EPA 3010		Analys	is Descrip	tion: 6	010 MET Di	ssolved					
Associated Lab Samp	les: 60228834	4001										
METHOD BLANK: 1	837969		N	Aatrix: Wa	ter							
Associated Lab Samp	les: 60228834	4001										
			Blank	R	eporting							
Parame	ter	Units	Resul	t	Limit	Analyz	zed	Qualifiers				
Manganese, Dissolve	b	ug/L		ND	5.0	0 10/06/16	13:52					
LABORATORY CONT	ROL SAMPLE:	1837970										
			Spike	LCS	6	LCS	% Red	C				
Parame	ter	Units	Conc.	Resu	ult	% Rec	Limits	s Qi	ualifiers			
Manganese, Dissolve	b	ug/L	1000		1030	103	80)-120		-		
MATRIX SPIKE & MA	TRIX SPIKE DUI	PLICATE: 18379	71		1837972							
			MS	MSD								
		60229103001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Un	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Manganese, Dissolved	d ug	/L 1.7 mg/L	1000	1000	2690	2660	97	94	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 Randleman No.1

Pace Project No.:

60228834

QC Batch:	448720		Analysis Metl	hod: E	EPA 8260	
QC Batch Method:	EPA 8260		Analysis Des	cription: 8	260 MSV UST-WAT	ER
Associated Lab San	nples: 60228834001					
METHOD BLANK:	1836168		Matrix:	Water		
Associated Lab San	nples: 60228834001					
			Blank	Reporting		
Paran	neter	Units	Result	Limit	Analyzed	Qualifiers
Benzene		ug/L	ND	1.(0 09/30/16 18:26	
			ND		0 09/30/16 18:26	

Toluene ug/L ND 1.0 09/30/16 18:26 Xylene (Total) ug/L ND 3.0 09/30/16 18:26 1,2-Dichloroethane-d4 (S) % 103 81-127 09/30/16 18:26 4-Bromofluorobenzene (S) % 107 77-130 09/30/16 18:26 Toluene-d8 (S) % 101 80-120 09/30/16 18:26

LABORATORY CONTROL SAMPLE: 1836169

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	21.6	108	79-116	
Ethylbenzene	ug/L	20	23.1	115	81-110 L	.0
Toluene	ug/L	20	22.3	112	82-111 L	.0
Xylene (Total)	ug/L	60	70.1	117	80-111 L	S
1,2-Dichloroethane-d4 (S)	%			100	81-127	
4-Bromofluorobenzene (S)	%			102	77-130	
Toluene-d8 (S)	%			112	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	074933 Randlem	an No.1							
Pace Project No.:	60228834								
QC Batch:	449323		Analysis I	Method:	SN	/I 2320B			
QC Batch Method:	SM 2320B		Analysis I	Description:	23	20B Alkalinity	/		
Associated Lab San	nples: 60228834	4001							
METHOD BLANK:	1838645		Mat	rix: Water					
Associated Lab San	nples: 60228834	4001							
			Blank	Reporti	-				
Paran	neter	Units	Result	Limit		Analyzed	d Qual	ifiers	
Alkalinity, Total as C	aCO3	mg/L	Ν	1D	20.0	10/06/16 11	1:49		
LABORATORY COM	NTROL SAMPLE:	1838646							
_			Spike	LCS		LCS	% Rec	-	
Paran	neter	Units	Conc.	Result		% Rec	Limits	Qu	ualifiers
Alkalinity, Total as C	aCO3	mg/L	500	487		97	90-110		
SAMPLE DUPLICAT	TE: 1838648								
_			6022876500				Max		0
Paran		Units	Result	Resul		RPD	RPD		Qualifiers
Alkalinity, Total as C	aCO3	mg/L	43	36	434		0	10	
SAMPLE DUPLICA	TE: 1839462								
	12. 1000402		6022876500	1 Dup			Мах		
Paran	neter	Units	Result	Resul	t	RPD	RPD		Qualifiers
Alkalinity, Total as C	aCO3	mg/L	3	51	363		3	10	
Alkalinity, Total as C	aCO3	mg/L	3	51	363		3	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project:		3 Randleman N	o.1										
Pace Project No.:	60228	834											
QC Batch:	4497	09		Analys	sis Method	: E	PA 300.0						
QC Batch Method:	EPA	300.0		Analys	sis Descrip	tion: 3	00.0 IC Anic	ons					
Associated Lab San	nples:	60228834001											
METHOD BLANK:	18406	40		I	Matrix: Wa	ter							
Associated Lab San	nples:	60228834001											
				Blanl	к	Reporting							
Paran	neter		Units	Resu	lt	Limit	Analyz	zed	Qualifiers				
Chloride			mg/L		ND	1.0	10/09/16	09:59		_			
Sulfate			mg/L		ND	1.0	10/09/16	09:59					
LABORATORY CON	NTROL	SAMPLE: 18	40641	Coike	LCS		LCS	% Red					
Param	neter		Units	Spike Conc.	Resi		% Rec	% Red Limits		ualifiers			
Chloride			mg/L	5	5	4.7	94	90)-110				
Sulfate			mg/L	5	5	5.3	105	90)-110				
MATRIX SPIKE & M			ATE: 18406	42		1840643							
				MS	MSD	1010010							
			60228562001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Sulfate		mg/L	111	50	50	161	162	101	103	80-120	1	15	
MATRIX SPIKE SAM	MPLE:	18	40644										
				602285	63001	Spike	MS	Ν	1S	% Rec			
Paran	neter		Units	Res	ult	Conc.	Result	%	Rec	Limits		Quali	fiers
Sulfate			mg/L		871	500	13	<u> </u>	101	80-	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074933 Randleman No.1

Pace Project No.: 60228834

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 448720

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- LS Analyte recovery in the laboratory control sample (LCS) was outside QC limits for one or more of the constituent analytes used in the calculated result.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:074933 Randleman No.1Pace Project No.:60228834

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60228834001	GW-074933-092616-CN-MW6	EPA 3010	449188	EPA 6010	449265
60228834001	GW-074933-092616-CN-MW6	EPA 8260	448720		
60228834001	GW-074933-092616-CN-MW6	SM 2320B	449323		
60228834001	GW-074933-092616-CN-MW6	EPA 300.0	449709		

Sample Condition Upon Receipt

WO#:60228834

Client Name: GHD		
Courier: FedEx 🖉 UPS 🗆 VIA 🗀 Clay 🗆 PE		Pace 🗆 Xroads 🗆 Client 🗆 Other 🗆
Tracking #: 7773 4162 0831 Pace	Shipping Label Used	ł? Yes □ No □
Custody Seal on Cooler/Box Present: Yes 🖄 No 🗆	Seals intact: Yes	1 No 🗆
Packing Material: Bubble Wrap D Bubble Bags	Foam 🗆	None Other
Thermometer Used: (T-266) T-239 Type of Id	ce: Wet Blue Nor	
Cooler Temperature (°C): As-read 2.8 Corr. Factor	CF +1.1 CF -0.1 Correct	Date and initials of person examining contents: 059/29
Temperature should be above freezing to 6°C		
Chain of Custody present:	ŹYes ⊡No □N/A	
Chain of Custody relinquished:	ØYes □No □N/A	
Samples arrived within holding time:	ØYes □No □N/A	
Short Hold Time analyses (<72hr):	□Yes ØNo □N/A	
Rush Turn Around Time requested:	□Yes 🗱No □N/A	
Sufficient volume:	□Yes KNo □N/A	No preserved volume for Dissolved Man
Correct containers used:	⊠Yes □No □N/A	
Pace containers used:	ØYes □No □N/A	
Containers intact:	XYes □No □N/A	
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ČN/A	
Filtered volume received for dissolved tests?	□Yes 🕅No □N/A	
Sample labels match COC: Date / time / ID / analyses	I⊈Yes ⊡No ⊡N/A	
Samples contain multiple phases? Matrix: WT	□Yes ∎No □N/A	
Containers requiring pH preservation in compliance?		
(HNO ₃ , H ₂ SO ₄ HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)	Jarda 1	
(Exceptions/VOA)Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: 👔 N/A		
Lead acetate strip turns dark? (Record only)	□Yes □No	
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No	
Trip Blank present:	□Yes 🕅 No □N/A	
Headspace in VOA vials (>6mm):	□Yes ¤ No □N/A	
Samples from USDA Regulated Area: State:	□Yes □No 🗗N/A	
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No	
Client Notification/ Resolution: Copy COC to C	Client? Y	Field Data Required? Y / N
Person Contacted: Date/Tir	ne:	ξ
Comments/ Resolution:		

Project Manager Review:

alle

Date: 420110

Pace Analytical

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

npany: GHD Iress: Cel 2 (II whitan Sch. Rd Suite 300 Alb, NW 12 H. walker Colud-com	5	mauon.			ln,	Invoice Information:	nation:		1								-
"6131 Indian Sch. Bd Surte 300 Alb, NW Eff. wallen Capid-com	$\left[\right]$	oftwarte	(ber-	CHD	Att	Attention:									ZCT	50033	2
Eff. worker Ogind-com	To:			È I.	ő	Company Name:	me:				R	EGULATO	REGULATORY AGENCY	сY			
Eff. waller Capp - com	Drucep	hillin ?	Sterlin To		Ad	Address:	1 I IIV	11.2		1		NPDES	X	GROUND WATER	TER	DRINKING WATER	WATER
	Purchase Order No.:	4			Ref	Pace Quote Reference:					••••	~ UST	L RCRA	RA	L	OTHER _	
Project SST - OC 7 2 Fax: Project	Project Name: Ra	Eardle mon	on no	10	Pa	Pace Project Manager:					0,	Site Location		111			
ted Due Date/TAT: Strof	Project Number:	07493	m	101 1 101	Par	Pace Profile #:					Γ	STATE:	-1	NN	10.00	12 N	
										Requ	ested An	alysis Fil	Requested Analysis Filtered (Y/N)				
i i i i i i i i i i i i i i i i i i i	(ffel of		COLLECTED		1	10	Preservatives	atives	1 N/∧		NN		5			1 21	
Drinking Water Water Waste Water Product Soil/Solid	=GKAB C=Co see valid codes	COMPOSITE START	Ŷ	COMPOSITE END/GRAB	_					のわて	DUN	1		(N/A) (- 7	60228834	4
SAMPLE ID OI WIP WD CAZ, 0-9 / -) WIP WIP WD CAZ, 0-9 / -) Air AR Sample IDs MUST BE UNIQUE Tissue TS Of Other Other Of Other Other Of Other Other Of Other Oth	.) ЭООЗ ХІЯТАМ	DATE	TIME	Щ Н Ш Ш Ш	TA 9MBT 3J9MA2	H ₂ SO ₄ Unpreserved # OF CONTAINER	HCI HNO ³	NaOH MacS ₂ O ₃ Methanol	Other Analysis Test	S XZLS	MA) BALLA	11 - 10500		Residual Chlorine		Pace Project No./ Lab I.D.	0,/ Lab I.D.
1 GW-074933-092016-CN-MW	12AM	altre 1	1	\mathbb{H}	w [*]]	M	×				L		(2) AC 34	(1) RP 3M		DIAH /	
2 11	1			- III - IIIC	1	X			- Que		X	1			3		100
3 10	N N	2	く			×								_			
4		Unit III								2					-		
50 40													-				
2		11 (m. 74 (m	4.17														
8	\mathbb{A}	/					-					2	2 19				
10	100	1	1											-			
11				A													
12			_		#	+							+	_			
ADDITIONAL COMMENTS	RELINQU	RELINQUISHED BY / AFFILIATION	FFILIATION	DATE		TIME		ACCEP	ACCEPTED BY / AFFILIATION	AFFILIA	NOL	DATE	TIME		SAN	SAMPLE CONDITIONS	SNO
MN SUMPLI NEWS C	Allel	Ullar	GHD	128	101	340		20		file		929	0855	4.9	>	~	\mathbf{X}
)							2						1				
• 'age					-									-			4
ORIGINAL 07	IAL	S	SAMPLER NAME	AE AND SIGNATURE	TURE									о, ч	(N/ uo pe	l) Cooler dy	Intaci Intaci
of 1			PRINI	PRINT Name of SAMPLER:										dua	viec Y) ec) bəl V/V)	1/Y) səlqr
7			SIGN	SIGNATURE of SAMPLER:	'LER:					DATE Signed	gned			θŢ		eə2	шь2

Pace Analytical Services, LLC 9608 Loiret Blvd. Lenexa, KS 66219 (913)599-5665

December 19, 2016

Jeffrey Walker GHD Services, Inc 6121 Indian School Rd NE Ste 200 Albuquerque, NM 87110

RE: Project: 074933 RANDLEMAN NO 1 COP Pace Project No.: 60233544

Dear Jeffrey Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on December 03, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

Alice Spiller alice.spiller@pacelabs.com Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc,

CERTIFICATIONS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070

SAMPLE SUMMARY

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 602

	-		
).:	60	233544	

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60233544001	GW-074933-120116-JK-MW-1	Water	12/01/16 10:07	12/03/16 08:20
60233544002	GW-074933-120116-JK-MW-2	Water	12/01/16 09:30	12/03/16 08:20
60233544003	GW-074933-120116-JK-MW-3	Water	12/01/16 09:45	12/03/16 08:20
60233544004	GW-074933-120116-JK-MW-4	Water	12/01/16 10:00	12/03/16 08:20
60233544005	GW-074933-120116-JK-MW-6	Water	12/01/16 10:50	12/03/16 08:20
60233544006	TRIP BLANK	Water	12/01/16 09:30	12/03/16 08:20

SAMPLE ANALYTE COUNT

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60233544001		EPA 6010	TDS	1
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60233544002	GW-074933-120116-JK-MW-2	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60233544003	GW-074933-120116-JK-MW-3	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60233544004	GW-074933-120116-JK-MW-4	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2
60233544005	GW-074933-120116-JK-MW-6	EPA 6010	JGP	1
		EPA 8260	JTK	8
		SM 2540C	JSS	1
		EPA 300.0	OL	2

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

 Method:
 EPA 6010

 Description:
 6010 MET ICP, Dissolved

 Client:
 GHD Services_COP NM

 Date:
 December 19, 2016

General Information:

4 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Method:EPA 6010Description:6010 MET ICP, Dissolved (LF)Client:GHD Services_COP NMDate:December 19, 2016

General Information:

1 sample was analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Method:EPA 8260Description:8260 MSV UST, WaterClient:GHD Services_COP NMDate:December 19, 2016

General Information:

4 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 458436

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Method: SM 2540C

Description:2540C Total Dissolved SolidsClient:GHD Services_COP NMDate:December 19, 2016

General Information:

5 samples were analyzed for SM 2540C. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 457694

D6: The precision between the sample and sample duplicate exceeded laboratory control limits.

- DUP (Lab ID: 1873782)
 - Total Dissolved Solids

Additional Comments:

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Method:EPA 300.0Description:300.0 IC Anions 28 DaysClient:GHD Services_COP NMDate:December 19, 2016

General Information:

5 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Sample: GW-074933-120116-JK- MW-1	Lab ID: 6023	3544001 (Collected: 12/01/1	6 10:0	7 Received: 12	2/03/16 08:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved (LF)	Analytical Meth	od: EPA 6010	Preparation Meth	nod: EF	PA 3010			
Manganese, Dissolved	36.4	ug/L	5.0	1	12/05/16 15:30	12/09/16 11:30	7439-96-5	
2540C Total Dissolved Solids	Analytical Meth	od: SM 2540	С					
Total Dissolved Solids	1590	mg/L	5.0	1		12/08/16 08:57		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 300.	0					
Chloride Sulfate	47.9 950	mg/L mg/L	5.0 50.0	5 50		12/17/16 14:01 12/17/16 14:15		

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Sample: GW-074933-120116-JK- MW-2	Lab ID: 602	33544002	Collected: 12/01/1	6 09:30	Received: 12	2/03/16 08:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60 ⁻	10 Preparation Meth	nod: EPA	A 3010			
Manganese, Dissolved	1040	ug/L	5.0	1	12/07/16 11:10	12/14/16 12:08	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	60					
Benzene	6.6	ug/L	1.0	1		12/12/16 22:42	71-43-2	
Ethylbenzene	9.2	ug/L	1.0	1		12/12/16 22:42	100-41-4	
Toluene	32.4	ug/L	1.0	1		12/12/16 22:42	108-88-3	
Xylene (Total) <i>Surrogates</i>	62.6	ug/L	3.0	1		12/12/16 22:42	1330-20-7	
Toluene-d8 (S)	106	%	80-120	1		12/12/16 22:42	2037-26-5	
4-Bromofluorobenzene (S)	99	%	77-130	1		12/12/16 22:42	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	81-127	1		12/12/16 22:42	17060-07-0	
Preservation pH	1.0		1.0	1		12/12/16 22:42		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 254	0C					
Total Dissolved Solids	1690	mg/L	5.0	1		12/05/16 16:52		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0					
Chloride	29.9	mg/L	5.0	5		12/17/16 14:29	16887-00-6	
Sulfate	983	mg/L	50.0	50		12/17/16 14:43	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Sample: GW-074933-120116-JK- MW-3	Lab ID: 6023	33544003	Collected: 12/01/1	6 09:45	Received: 12	2/03/16 08:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Met	nod: EP/	A 3010			
Manganese, Dissolved	476	ug/L	5.0	1	12/07/16 11:10	12/14/16 12:12	2 7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 82	60					
Benzene	1.1	ug/L	1.0	1		12/12/16 22:57	71-43-2	
Ethylbenzene	6.4	ug/L	1.0	1		12/12/16 22:57	100-41-4	
Toluene	ND	ug/L	1.0	1		12/12/16 22:57	7 108-88-3	
Xylene (Total) Surrogates	ND	ug/L	3.0	1		12/12/16 22:57	1330-20-7	
Toluene-d8 (S)	103	%	80-120	1		12/12/16 22:57	2037-26-5	
4-Bromofluorobenzene (S)	100	%	77-130	1		12/12/16 22:57	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	81-127	1		12/12/16 22:57	7 17060-07-0	
Preservation pH	1.0		1.0	1		12/12/16 22:57	7	
2540C Total Dissolved Solids	Analytical Meth	od: SM 254	0C					
Total Dissolved Solids	2710	mg/L	5.0	1		12/05/16 16:53	3	
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Chloride	79.9	mg/L	5.0	5		12/17/16 15:25	5 16887-00-6	
Sulfate	1600	mg/L	100	100		12/17/16 15:39	9 14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Sample: GW-074933-120116-JK- MW-4	Lab ID: 6023	33544004	Collected: 12/01/1	6 10:00	Received: 12	2/03/16 08:20 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	od: EPA 60	10 Preparation Meth	nod: EP/	A 3010			
Manganese, Dissolved	1480	ug/L	5.0	1	12/07/16 11:10	12/14/16 12:15	7439-96-5	
8260 MSV UST, Water	Analytical Meth	od: EPA 82	60					
Benzene	ND	ug/L	1.0	1		12/12/16 23:12	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		12/12/16 23:12	100-41-4	
Toluene	ND	ug/L	1.0	1		12/12/16 23:12	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		12/12/16 23:12	1330-20-7	
Surrogates								
Toluene-d8 (S)	103	%	80-120	1		12/12/16 23:12	2037-26-5	
4-Bromofluorobenzene (S)	99	%	77-130	1		12/12/16 23:12	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	81-127	1		12/12/16 23:12	17060-07-0	
Preservation pH	1.0		1.0	1		12/12/16 23:12		
2540C Total Dissolved Solids	Analytical Meth	od: SM 254	0C					
Total Dissolved Solids	8100	mg/L	5.0	1		12/05/16 16:53		
300.0 IC Anions 28 Days	Analytical Meth	od: EPA 30	0.0					
Chloride	2420	mg/L	200	200		12/17/16 15:52	16887-00-6	
Sulfate	3310	mg/L	200	200		12/17/16 15:52	14808-79-8	

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Sample: GW-074933-120116-JK- MW-6	Lab ID: 602	33544005	Collected: 12/01/1	6 10:50	Received: 12	2/03/16 08:20	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 601	0 Preparation Meth	nod: EPA	A 3010			
Manganese, Dissolved	291	ug/L	5.0	1	12/07/16 11:10	12/14/16 12:19	7439-96-5	
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	0					
Benzene	ND	ug/L	1.0	1		12/12/16 23:27	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		12/12/16 23:27	100-41-4	
Toluene	ND	ug/L	1.0	1		12/12/16 23:27	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/L	3.0	1		12/12/16 23:27	1330-20-7	
Toluene-d8 (S)	103	%	80-120	1		12/12/16 23:27	2037-26-5	
4-Bromofluorobenzene (S)	99	%	77-130	1		12/12/16 23:27	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		12/12/16 23:27	17060-07-0	
Preservation pH	1.0		1.0	1		12/12/16 23:27		
2540C Total Dissolved Solids	Analytical Meth	nod: SM 2540	С					
Total Dissolved Solids	9800	mg/L	5.0	1		12/05/16 16:54		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	.0					
Chloride	3300	mg/L	500	500		12/17/16 16:06	16887-00-6	
Sulfate	3040	mg/L	500	500		12/17/16 16:06	14808-79-8	

,	074933 RANDLEN 60233544	MAN NO 1 COP										
QC Batch:	457895		Analys	is Method:		EPA 6010						
QC Batch Method:	EPA 3010		Analysi	is Descript	tion: (6010 MET Di	ssolved					
Associated Lab Sam	ples: 60233544	002, 60233544003	, 602335440	004, 6023	3544005							
METHOD BLANK:	1874477		N	latrix: Wa	ter							
Associated Lab Sam	ples: 60233544	002, 60233544003	, 60233544	004, 6023	3544005							
			Blank	R	eporting							
Param	eter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Manganese, Dissolve	ed	ug/L		ND	5.	0 12/14/16	11:08					
LABORATORY CON	TROL SAMPLE:	1874478										
			Spike	LCS	6	LCS	% Re	с				
Param	eter	Units	Conc.	Resu	ılt	% Rec	Limits	s Qi	ualifiers			
Manganese, Dissolve	ed	ug/L	1000		1020	102	80	0-120		-		
MATRIX SPIKE & M	ATRIX SPIKE DUF	PLICATE: 18744	79		1874481							
			MS	MSD								
		60233393001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	· Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Manganese, Dissolve	ed ug/	/L 95.9	1000	1000	1080	1060	98	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 07	4933 RANDLEN	MAN NO 1 COP										
Pace Project No.: 60	233544											
QC Batch: 4	57686		Analys	is Method	E	PA 6010						
QC Batch Method: E	PA 3010		Analys	is Descrip	tion: 6	010 MET Di	ssolved					
Associated Lab Sample	s: 60233544	001										
METHOD BLANK: 18	73723		Ν	latrix: Wa	ter							
Associated Lab Sample	s: 60233544	001										
			Blank	R	eporting							
Paramete	r	Units	Result	t	Limit	Analyz	zed	Qualifiers				
Manganese, Dissolved		ug/L		ND	5.0	12/09/16	10:55					
LABORATORY CONTR	OL SAMPLE:	1873724										
			Spike	LCS	5	LCS	% Rec	:				
Paramete	r	Units	Conc.	Resu	ılt	% Rec	Limits	Qı	ualifiers			
Manganese, Dissolved		ug/L	1000		1000	100	80	-120				
MATRIX SPIKE & MAT	RIX SPIKE DUF	PLICATE: 18737	25		1873726							
			MS	MSD								
Denementer		60233432002	Spike	Spike	MS	MSD	MS % Data	MSD	% Rec		Max	01
Parameter	Uni	its Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
Manganese, Dissolved	ug/	/L 1.1 mg/L	1000	1000	2040	2100	97	103	75-125	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

QC Batch:	458436	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV UST-WATER
Associated Lab Sam	ples: 60233544002,	0233544003, 60233544004, 6023354400	5

METHOD BLANK: 1876730 Matrix: Water Associated Lab Samples: 60233544002, 60233544003, 60233544004, 60233544005 60233544005, 60233544005, 60233544005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	12/12/16 20:29	
Ethylbenzene	ug/L	ND	1.0	12/12/16 20:29	
Toluene	ug/L	ND	1.0	12/12/16 20:29	
Xylene (Total)	ug/L	ND	3.0	12/12/16 20:29	
1,2-Dichloroethane-d4 (S)	%	95	81-127	12/12/16 20:29	
4-Bromofluorobenzene (S)	%	99	77-130	12/12/16 20:29	
Toluene-d8 (S)	%	104	80-120	12/12/16 20:29	

LABORATORY CONTROL SAMPLE: 1876731

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Benzene	ug/L	20	17.0	85	79-116	
Ethylbenzene	ug/L	20	18.8	94	81-110	
Toluene	ug/L	20	18.1	90	82-111	
Xylene (Total)	ug/L	60	57.3	96	80-111	
1,2-Dichloroethane-d4 (S)	%			94	81-127	
4-Bromofluorobenzene (S)	%			100	77-130	
Toluene-d8 (S)	%			105	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

,	074933 RANDLEI 60233544	MAN NO 1 COP							
QC Batch:	457694		Analysis Me	ethod:	SM 2540C				
QC Batch Method:	SM 2540C		Analysis De	Analysis Description: 2540C Total Dissolved Solids					
Associated Lab Sam	ples: 60233544	002, 6023354400	03, 60233544004,	60233544005	5				
METHOD BLANK:	1873749		Matrix	: Water					
Associated Lab Sam	ples: 60233544	002, 6023354400	3, 60233544004,	60233544005	5				
			Blank	Reporting	I				
Param	eter	Units	Result	Limit	Anal	/zed	Quali	fiers	_
Total Dissolved Solid	s	mg/L	NC)	5.0 12/06/1	6 09:38			
LABORATORY CON	TROL SAMPLE:	1873750							
			Spike	LCS	LCS	%	Rec		
Param	eter	Units	Conc.	Result	% Rec	_ Lir	nits	Qu	alifiers
Total Dissolved Solid	S	mg/L	1000	982	98	3	80-120		
SAMPLE DUPLICAT	E: 1873751								
			60233544003	Dup			Max		
Param	eter	Units	Result	Result	RPI)	RPD		Qualifiers
Total Dissolved Solid	s	mg/L	2710	26	680	1		10	
SAMPLE DUPLICAT	E: 1873782								
			60233568002	Dup			Max		
Param	eter	Units	Result	Result	RPE)	RPD		Qualifiers
Total Dissolved Solid	6	mg/L	73.0	6	2.0	16		10 E	06

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	074933 RANDLEI 60233544	MAN NO 1 COP						
QC Batch:	458055		Analysis N	lethod:	SM 2540C			
QC Batch Method:	SM 2540C		Analysis D	escription:	2540C Total D	issolved Solids		
Associated Lab Sar	mples: 60233544	1001						
METHOD BLANK:	1875247		Matr	ix: Water				
Associated Lab Sar	mples: 60233544	4001						
Parar	neter	Units	Blank Result	Reporting Limit	Analyze	ed Quali	fiers	
Total Dissolved Soli	ids	mg/L	N	D	5.0 12/08/16 ()8:55		_
LABORATORY CO	NTROL SAMPLE:	1875248						
Parar	neter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qı	ualifiers
Total Dissolved Soli	ids	mg/L	1000	969	97	80-120		
SAMPLE DUPLICA	TE: 1875249							
Dama		11-20-	60233762004			Max		Qualifiant
Parar		Units	_ Result 96	Result	RPD	RPD		Qualifiers
Total Dissolved Soli	Ids	mg/L	96	2 g	970	1	10	
SAMPLE DUPLICA	TE: 1875250					• •		
Parar	neter	Units	60233819001 Result	I Dup Result	RPD	Max RPD		Qualifiers
Total Dissolved Soli		mg/L	178		/50	2	10	
Total Dissolved Soli	ds	mg/L	178	0 17	750	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

,	074933 RANDLEM 60233544	IAN NO 1 COP										
QC Batch:	458963		Analvs	is Method:	: E	PA 300.0						
QC Batch Method:	EPA 300.0			is Descrip		00.0 IC Anio	ns					
Associated Lab Sam	ples: 602335440	001, 60233544002	, 60233544	003, 6023	3544004, 6	0233544005	5					
METHOD BLANK:	1878843		N	latrix: Wa	ter							
Associated Lab Sam	ples: 602335440	001, 60233544002	, 60233544	003, 6023	3544004, 6	0233544005	5					
			Blank	R	eporting							
Param	eter	Units	Result	t	Limit	Analyz	ed	Qualifiers				
Chloride		mg/L		ND	1.0	12/17/16	09:14		_			
Sulfate		mg/L		ND	1.0	12/17/16	09:14					
LABORATORY CON	TROL SAMPLE:	1878844										
Param	eter	Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		alifiers			
Chloride		mg/L	5		4.7	93	90	-110				
Sulfate		mg/L	5		5.0	99	90	-110				
MATRIX SPIKE & M	ATRIX SPIKE DUP	LICATE: 18788	45		1878846							
			MS	MSD								
		60233523001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	· Unit	ts Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Chloride	mg/	L ND	500	500	514	520	92	94	80-120	1	15	
Sulfate	mg/	Ľ 1450	500	500	1990	1980	108	107	80-120	0	15	
MATRIX SPIKE SAM	IPLE:	1878847										
			6023352	23002	Spike	MS	М	S	% Rec			
Param	eter	Units	Resu	ult	Conc.	Result	% F	Rec	Limits		Qualif	iers
Chloride		mg/L		ND	500	5	37	94	80-1	20		
Sulfate		mg/L		1290	500	182	20	105	80-1	120		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 458436

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074933 RANDLEMAN NO 1 COP

Pace Project No.: 60233544

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60233544002	GW-074933-120116-JK-MW-2	EPA 3010	457895	EPA 6010	457953
60233544003	GW-074933-120116-JK-MW-3	EPA 3010	457895	EPA 6010	457953
60233544004	GW-074933-120116-JK-MW-4	EPA 3010	457895	EPA 6010	457953
60233544005	GW-074933-120116-JK-MW-6	EPA 3010	457895	EPA 6010	457953
60233544001	GW-074933-120116-JK-MW-1	EPA 3010	457686	EPA 6010	457730
60233544002	GW-074933-120116-JK-MW-2	EPA 8260	458436		
60233544003	GW-074933-120116-JK-MW-3	EPA 8260	458436		
60233544004	GW-074933-120116-JK-MW-4	EPA 8260	458436		
60233544005	GW-074933-120116-JK-MW-6	EPA 8260	458436		
60233544001	GW-074933-120116-JK-MW-1	SM 2540C	458055		
60233544002	GW-074933-120116-JK-MW-2	SM 2540C	457694		
60233544003	GW-074933-120116-JK-MW-3	SM 2540C	457694		
60233544004	GW-074933-120116-JK-MW-4	SM 2540C	457694		
60233544005	GW-074933-120116-JK-MW-6	SM 2540C	457694		
60233544001	GW-074933-120116-JK-MW-1	EPA 300.0	458963		
60233544002	GW-074933-120116-JK-MW-2	EPA 300.0	458963		
60233544003	GW-074933-120116-JK-MW-3	EPA 300.0	458963		
60233544004	GW-074933-120116-JK-MW-4	EPA 300.0	458963		
60233544005	GW-074933-120116-JK-MW-6	EPA 300.0	458963		

Sample Condition Upon Receipt ESI Tech Spec Client

WO#:60233544

60233544

Client Name: GHP COP			
DALL LIN TUN	EX ECI Shipping Label Used		Client Other
Custody Seal on Cooler/Box Present: Yes 🗱 No 🗆	Seals intact: Yes	K No 🗆	
Packing Material: Bubble Wrap Bubble Bags	Foam 🗆	None 🗆	Other 🗆
Thermometer Used: (CF+0.7) CF-0.5 T-266 / T-239 Type	of Ice: (Wet) Blue	None	
	GF +0.7 CF -0.5Correct	ted 40	Date and initials of person examining contents: 13 12/3
Temperature should be above freezing to 6°C			examining contents10 · 17
Chain of Custody present:	₩Yes □No □N/A		
Chain of Custody relinquished:	XYes No N/A		
Samples arrived within holding time:			
Short Hold Time analyses (<72hr):	□Yes (20No □N/A		
Rush Turn Around Time requested:	□Yes 🕅No □N/A		
Sufficient volume:	JE 1217 - HEYes KINO DN/A	No preserved volum	n for Mu-1
Correct containers used:	Yes No N/A		
Pace containers used:	₩Yes □No □N/A		
Containers intact:	IØYes □No □N/A		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No 🕼N/A		
Filtered volume received for dissolved tests?			
Sample labels match COC: Date / time / ID / analyses	IXYes □No □N/A	0	
Samples contain multiple phases? Matrix: 🗸	□Yes KINo □N/A		
Containers requiring pH preservation in compliance?	∰Yes □No □N/A		
(HNO ₃ , H ₂ SO, HCI<2; NaOH>9 Sulfide, NaOH>10 Cyanide)			
(Exceptions: VOA/Micro, O&G, KS TPH, OK-DRO) Cyanide water-sample checks: Ø N/A			
Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Trip Blank present:	KYes □No □N/A		
Headspace in VOA vials (>6mm):	□Yes 🖄No □N/A		
Samples from USDA Regulated Area: State:	□Yes □No ØN/A		
Additional labels attached to 5035A / TX1005 vials in the field?			
Client Notification/ Resolution: Copy COC to C		Field Data Require	ed? Y / N
Person Contacted: Date/Tir	()		Temp Log: Record start and finish times
Comments/ Resolution:			when unpacking cooler, if >20 min, recheck sample temps.
			Start: 1947 Start:
<u> </u>		interest	End: 0455 End:
Project Manager Review:	Date	»: 145tte	Temp: Temp:

§ 6 DATE THE DATE THE 0 4 2 3 7 4 7 × × 1 <t< th=""><th>TIME DATE TIME SAE 0004 SAE U H 0016 SAE H H 0017 SAE H H 0018 SAE H H 0019 SAE H H 0019 SAE H H 0019 SAE H H 019 SAE H H</th></t<>	TIME DATE TIME SAE 0004 SAE U H 0016 SAE H H 0017 SAE H H 0018 SAE H H 0019 SAE H H 0019 SAE H H 0019 SAE H H 019 SAE H H
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0430 × 1 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	and St 1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 1.5 0001
Image: constraint of the state of the st	1020 21 (
Image: Second	
Image: Constraint of the state of the st	
Image: Second	
TIME ACCEPTED BY LAFELATION DATE TIME ACCEPTED BY LAFELATION DATE TIME ACCEPTED BY LAFELATION DATE TIME TIME ACCEPTED BY LAFELATION DATE TIME TIME ACCEPTED BY LAFELATION DATE TIME ACCEPTED BY LAFELA	
The contract of the contract o	
DATE TIME ACCEPTED BY LAFTLATION DATE TIME TIME 12-82-16 (See A. Artuation 12/5 (1520 1410)	
DATE TIME ACCEPTED BY LAFFLATION DATE TIME TIME 12-22-14 15:00 14:00	
6 mm 12/3 1820 410	DATE TIME
	(BIND REALD
	0. N
	SIGNATURE of SAMPLER: