GW-028

2016 AGWMR Part 7 of 8

2017

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:00

L832422

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	<u> </u>	mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 19:47	WG870074
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 19:47	WG870074
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 19:47	WG870074
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 19:47	WG870074
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 19:47	WG870074
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 19:47	WG870074
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 19:47	WG870074
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Ethylbenzene	0.00107		0.000384	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Isopropylbenzene	0.0602		0.000326	0.00100	0.00100	1	05/05/2016 19:47	WG870074
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 19:47	WG870074
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 19:47	WG870074
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 19:47	WG870074
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 19:47	WG870074
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 19:47	WG870074
Methyl tert-butyl ether	0.00120		0.000367	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 19:47	WG870074
n-Propylbenzene	0.00513		0.000349	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 19:47	WG870074
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 19:47	WG870074
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 19:47	WG870074
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 19:47	WG870074
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 19:47	WG870074
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 19:47	WG870074
(S) Toluene-d8	105				90.0-115		05/05/2016 19:47	WG870074
(S) Dibromofluoromethane	100				79.0-121		05/05/2016 19:47	WG870074

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

94.6

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	2.19		0.0247	0.100	0.100	1	05/03/2016 15:53	WG869249
(S) o-Terphenyl	116				50.0-150		05/03/2016 15:53	WG869249

80.1-120

WG870074

05/05/2016 19:47

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3590		2.82	10.0	10.0	1	05/04/2016 16:22	WG869764

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.737	ВЈ	0.197	0.100	1.00	10	05/11/2016 13:26	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	314		2.60	1.00	50.0	50	05/03/2016 18:12	WG869281
Fluoride	0.837		0.00990	0.100	0.100	1	05/03/2016 17:58	WG869281
Sulfate	2700		3.87	5.00	250	50	05/03/2016 18:12	WG869281

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Wetals (ICI WIS) by N	VICTION 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00430	J	0.00125	0.00200	0.0100	5	05/06/2016 16:41	WG869264
Arsenic, Dissolved	0.00350	J	0.00125	0.00200	0.0100	5	05/04/2016 18:42	WG869664
Barium	0.0133	J	0.00180	0.00500	0.0250	5	05/06/2016 16:41	WG869264
Barium, Dissolved	0.00925		0.000360	0.00500	0.00500	1	05/04/2016 18:39	WG869664
Calcium	574		0.230	1.00	5.00	5	05/06/2016 16:41	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:41	WG869264
Chromium, Dissolved	0.00119	<u>J</u>	0.000540	0.00200	0.00200	1	05/04/2016 18:39	WG869664
Iron	0.170	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 16:41	WG869264
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 18:39	WG869664
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 16:41	WG869264
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:39	WG869664
Manganese	0.0744		0.00125	0.00500	0.0250	5	05/06/2016 16:41	WG869264
Manganese, Dissolved	0.0661		0.000250	0.00500	0.00500	1	05/04/2016 18:39	WG869664
Potassium	2.54	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 16:41	WG869264
Selenium	0.00285	J	0.00190	0.00200	0.0100	5	05/06/2016 16:41	WG869264
Selenium, Dissolved	0.00538	ВJ	0.00190	0.00200	0.0100	5	05/04/2016 18:42	WG869664
Sodium	214		0.550	1.00	5.00	5	05/06/2016 16:41	WG869264

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/02/2016 15:28	WG869042
(S) a,a,a-Trifluorotoluene(FID)	101				62.0-128		05/02/2016 15:28	WG869042

Ss

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 13:00	WG868978
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 13:00	WG868978
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 13:00	WG868978
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 13:00	WG868978
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 13:00	WG868978
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 13:00	WG868978
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 13:00	WG868978
Carbon disulfide	0.000321	J	0.000275	0.00100	0.00100	1	05/03/2016 13:00	WG868978
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 13:00	WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:20

Volatile Organic Compounds (GC/MS) by Method 8260B

Chlorodibromomethane U 0.000327 0.00100 0.00100 1 05/03/2016 13:00	WG868978 WG868978 WG868978
Chlorodibromomethane U 0.000327 0.00100 0.00100 1 05/03/2016 13:00	WG868978
-	
	WG868978
Chloroethane U 0.000453 0.00500 0.00500 1 05/03/2016 13:00 V	
Chloroform U 0.000324 0.00500 0.00500 1 05/03/2016 13:00	WG868978
Chloromethane U 0.000276 0.00250 0.00250 1 05/03/2016 13:00	WG868978
1,2-Dibromoethane U 0.000381 0.00100 0.00100 1 05/03/2016 13:00	WG868978
1,1-Dichloroethane U 0.000259 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,2-Dichloroethane U 0.000361 0.00100 0.00100 1 05/03/2016 13:00 V	WG868978
1,1-Dichloroethene U 0.000398 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
cis-1,2-Dichloroethene U 0.000260 0.00100 0.00100 1 05/03/2016 13:00 V	WG868978
trans-1,2-Dichloroethene U 0.000396 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,2-Dichloropropane U 0.000306 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
cis-1,3-Dichloropropene U 0.000418 0.00100 0.00100 1 05/03/2016 13:00	WG868978
trans-1,3-Dichloropropene U 0.000419 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Ethylbenzene U 0.000384 0.00100 0.00100 1 05/03/2016 13:00 V	WG868978
Isopropylbenzene U 0.000326 0.00100 0.00100 1 05/03/2016 13:00	WG868978
p-Isopropyltoluene U 0.000350 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
2-Butanone (MEK) U 0.00393 0.0100 0.0100 1 05/03/2016 13:00	WG868978
2-Hexanone U 0.00382 0.0100 0.0100 1 05/03/2016 13:00 <u>V</u>	WG868978
Methylene Chloride U 0.00100 0.00500 1 05/03/2016 13:00 <u>V</u>	WG868978
4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/03/2016 13:00 V	WG868978
Methyl tert-butyl ether U 0.000367 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Naphthalene U 0.00100 0.00500 1 05/03/2016 13:00 <u>V</u>	WG868978
n-Propylbenzene U 0.000349 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Styrene U 0.000307 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,1,2,2-Tetrachloroethane U 0.000130 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Tetrachloroethene U 0.000372 0.00100 0.00100 1 05/03/2016 13:00 V	WG868978
Toluene U 0.000780 0.00500 1 05/03/2016 13:00 <u>V</u>	WG868978
1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Trichloroethene U 0.000398 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Vinyl chloride U 0.000259 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
o-Xylene U 0.000341 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
m&p-Xylene U 0.000719 0.00100 0.00100 1 05/03/2016 13:00 <u>V</u>	WG868978
Xylenes, Total U 0.00106 0.00300 0.00300 1 05/03/2016 13:00 <u>V</u>	WG868978
(S) Toluene-d8 106 90.0-115 05/03/2016 13:00	WG868978
(S) Dibromofluoromethane 106 79.0-121 05/03/2016 13:00	WG868978

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

99.5

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.361		0.0247	0.100	0.100	1	05/03/2016 16:09	WG869249
(S) o-Terphenyl	106				50.0-150		05/03/2016 16:09	WG869249

80.1-120

05/03/2016 13:00

WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:20

L832422

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4990		2.82	10.0	10.0	1	05/04/2016 16:22	WG869764	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	4.61		0.197	0.100	1.00	10	05/11/2016 13:32	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	575		2.60	1.00	50.0	50	05/03/2016 20:27	WG869281
Fluoride	1.26		0.00990	0.100	0.100	1	05/03/2016 20:12	WG869281
Sulfate	3080		3.87	5.00	250	50	05/03/2016 20:27	WG869281

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/10/2016 21:36	WG871518

Αl

СС

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/02/2016 12:41	WG868783
Mercury, Dissolved	U	<u>J6</u>	0.0000490	0.000200	0.000200	1	05/02/2016 13:04	WG868782

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00401	J	0.00125	0.00200	0.0100	5	05/06/2016 16:44	WG869264
Arsenic, Dissolved	0.00279		0.000250	0.00200	0.00200	1	05/04/2016 18:18	WG869664
Barium	0.0131	J	0.00180	0.00500	0.0250	5	05/06/2016 16:44	WG869264
Barium, Dissolved	0.00849		0.000360	0.00500	0.00500	1	05/04/2016 18:18	WG869664
Boron	0.741		0.00750	0.0200	0.100	5	05/06/2016 16:44	WG869264
Boron, Dissolved	0.647		0.00150	0.0200	0.0200	1	05/05/2016 10:56	WG869664
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 16:44	WG869264
Cadmium, Dissolved	U		0.000160	0.00100	0.00100	1	05/04/2016 18:18	WG869664
Calcium	619		0.230	1.00	5.00	5	05/06/2016 16:44	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:44	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:18	WG869664
Cobalt	0.0122		0.00130	0.00200	0.0100	5	05/06/2016 16:44	WG869264
Cobalt, Dissolved	0.00479		0.000260	0.00200	0.00200	1	05/04/2016 18:18	WG869664
Iron	U		0.0750	0.100	0.500	5	05/06/2016 16:44	WG869264
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 18:18	WG869664
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 16:44	WG869264
Lead, Dissolved	0.000318	<u>J</u>	0.000240	0.00200	0.00200	1	05/04/2016 18:18	WG869664
Manganese	0.552		0.00125	0.00500	0.0250	5	05/06/2016 16:44	WG869264
Manganese, Dissolved	0.398		0.000250	0.00500	0.00500	1	05/04/2016 18:18	WG869664
Nickel	0.0100		0.00175	0.00200	0.0100	5	05/06/2016 16:44	WG869264
Nickel, Dissolved	0.00956		0.000350	0.00200	0.00200	1	05/04/2016 18:18	WG869664
Potassium	1.37	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 16:44	WG869264
Selenium	0.00528	J	0.00190	0.00200	0.0100	5	05/06/2016 16:44	WG869264
Selenium, Dissolved	0.00669	В	0.000380	0.00200	0.00200	1	05/04/2016 18:18	WG869664
Sodium	271		0.550	1.00	5.00	5	05/06/2016 16:44	WG869264

ONE LAB. NATIONWIDE.

Batch

Collected date/time: 04/28/16 12:20

Metals (ICPMS) by Method 6020

Volatile Organic Compounds (GC/MS) by Method 8260B Result

Qualifier

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.0247	J	0.00165	0.0100	0.0500	5	05/06/2016 16:44	WG869264
Uranium, Dissolved	0.0217		0.000330	0.0100	0.0100	1	05/04/2016 18:18	WG869664
Vanadium	0.0258		0.000900	0.00500	0.0250	5	05/06/2016 16:44	WG869264
Vanadium, Dissolved	0.0217		0.000180	0.00500	0.00500	1	05/04/2016 18:18	WG869664

Unadj. MQL

MQL

Dilution Analysis

I	
	⁵ Sr

Sc

	Result	Qualifici	JDL	Ondaj. Mal	MAL	Dilation	Allulysis	Daten	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 13:23	WG868978	
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 13:23	WG868978	
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/03/2016 13:23	WG868978	
Chloroform	U		0.000324	0.00500	0.00500	1	05/03/2016 13:23	WG868978	
Chloromethane	U		0.000276	0.00250	0.00250	1	05/03/2016 13:23	WG868978	
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
p-lsopropyltoluene	U		0.000350	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/03/2016 13:23	WG868978	
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/03/2016 13:23	WG868978	
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/03/2016 13:23	WG868978	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/03/2016 13:23	WG868978	
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Naphthalene	U		0.00100	0.00500	0.00500	1	05/03/2016 13:23	WG868978	
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Styrene	U		0.000307	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Toluene	U		0.000780	0.00500	0.00500	1	05/03/2016 13:23	WG868978	
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
o-Xylene	U		0.000341	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/03/2016 13:23	WG868978	
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/03/2016 13:23	WG868978	
(S) Toluene-d8	106				90.0-115	•	05/03/2016 13:23	WG868978	
1,									
ACCOLL	NIT.		חחס ובי	ST.	CDC		DATE/TIM	IF.	DAG

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:20

Volatile Organic Compounds (GC/MS) by Method 8260B

	1	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
(S) Dibromofluoromethane	106				79.0-121		05/03/2016 13:23	WG868978
(S) 4-Bromofluorobenzene	98.8				80.1-120		05/03/2016 13:23	WG868978

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.127		0.0247	0.100	0.100	1	05/03/2016 16:25	WG869249
(S) o-Terphenyl	106				50.0-150		05/03/2016 16:25	WG869249

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1410		2.82	10.0	10.0	1	05/04/2016 16:22	WG869764	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 13:34	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	313		2.60	1.00	50.0	50	05/03/2016 20:57	WG869281
Fluoride	1.03		0.00990	0.100	0.100	1	05/03/2016 20:42	WG869281
Sulfate	83.1		0.0774	5.00	5.00	1	05/03/2016 20:42	WG869281

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00703	J	0.00125	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Arsenic, Dissolved	0.00454		0.000250	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Barium	0.327		0.00180	0.00500	0.0250	5	05/06/2016 16:47	WG869264
Barium,Dissolved	0.245		0.000360	0.00500	0.00500	1	05/04/2016 18:20	WG869664
Calcium	246		0.230	1.00	5.00	5	05/06/2016 16:47	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Iron	0.546		0.0750	0.100	0.500	5	05/06/2016 16:47	WG869264
Iron,Dissolved	0.332		0.0150	0.100	0.100	1	05/04/2016 18:20	WG869664
Lead	0.00143	J	0.00120	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Lead,Dissolved	0.000729	<u>J</u>	0.000240	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Manganese	2.55		0.00125	0.00500	0.0250	5	05/06/2016 16:47	WG869264
Manganese,Dissolved	2.13		0.000250	0.00500	0.00500	1	05/04/2016 18:20	WG869664
Potassium	0.206	J	0.185	1.00	5.00	5	05/06/2016 16:47	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Selenium,Dissolved	0.00226	<u>B</u>	0.000380	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Sodium	199		0.550	1.00	5.00	5	05/06/2016 16:47	WG869264

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00703	J	0.00125	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Arsenic, Dissolved	0.00454		0.000250	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Barium	0.327		0.00180	0.00500	0.0250	5	05/06/2016 16:47	WG869264
Barium, Dissolved	0.245		0.000360	0.00500	0.00500	1	05/04/2016 18:20	WG869664
Calcium	246		0.230	1.00	5.00	5	05/06/2016 16:47	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Iron	0.546		0.0750	0.100	0.500	5	05/06/2016 16:47	WG869264
Iron,Dissolved	0.332		0.0150	0.100	0.100	1	05/04/2016 18:20	WG869664
Lead	0.00143	J	0.00120	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Lead, Dissolved	0.000729	<u>J</u>	0.000240	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Manganese	2.55		0.00125	0.00500	0.0250	5	05/06/2016 16:47	WG869264
Manganese, Dissolved	2.13		0.000250	0.00500	0.00500	1	05/04/2016 18:20	WG869664
Potassium	0.206	J	0.185	1.00	5.00	5	05/06/2016 16:47	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:47	WG869264
Selenium, Dissolved	0.00226	<u>B</u>	0.000380	0.00200	0.00200	1	05/04/2016 18:20	WG869664
Sodium	199		0.550	1.00	5.00	5	05/06/2016 16:47	WG869264

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/03/2016 13:46	WG868978
Benzene	12.4		0.0828	0.00100	0.250	250	05/06/2016 13:17	WG870046
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Bromoform	U		0.00234	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Bromomethane	U		0.00433	0.00500	0.0250	5	05/03/2016 13:46	WG868978
n-Butylbenzene	0.00837		0.00180	0.00100	0.00500	5	05/03/2016 13:46	WG868978
sec-Butylbenzene	0.00944		0.00182	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Carbon disulfide	0.00197	<u>J</u>	0.00138	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Chloroethane	U		0.00226	0.00500	0.0250	5	05/03/2016 13:46	WG868978
Chloroform	U		0.00162	0.00500	0.0250	5	05/03/2016 13:46	WG868978
Chloromethane	U		0.00138	0.00250	0.0125	5	05/03/2016 13:46	WG868978
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/03/2016 13:46	WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:25

832422

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	0.00683		0.00180	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 13:46	WG868978
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/03/2016 13:46	WG868978
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/03/2016 13:46	WG868978
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/03/2016 13:46	WG868978
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Ethylbenzene	0.799		0.00192	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Isopropylbenzene	0.0477		0.00163	0.00100	0.00500	5	05/03/2016 13:46	WG868978
p-Isopropyltoluene	0.00591		0.00175	0.00100	0.00500	5	05/03/2016 13:46	WG868978
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/03/2016 13:46	WG868978
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/03/2016 13:46	WG868978
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/03/2016 13:46	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/03/2016 13:46	WG868978
Methyl tert-butyl ether	0.138		0.00184	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Naphthalene	0.137		0.00500	0.00500	0.0250	5	05/03/2016 13:46	WG868978
n-Propylbenzene	0.0883		0.00174	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Styrene	U		0.00154	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Toluene	0.120		0.00390	0.00500	0.0250	5	05/03/2016 13:46	WG868978
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,2,4-Trimethylbenzene	0.876		0.00186	0.00100	0.00500	5	05/03/2016 13:46	WG868978
1,3,5-Trimethylbenzene	0.134		0.00194	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Vinyl chloride	U		0.00130	0.00100	0.00500	5	05/03/2016 13:46	WG868978
o-Xylene	0.243		0.00170	0.00100	0.00500	5	05/03/2016 13:46	WG868978
m&p-Xylene	1.64		0.00360	0.00100	0.00500	5	05/03/2016 13:46	WG868978
Xylenes, Total	1.88		0.00530	0.00300	0.0150	5	05/03/2016 13:46	WG868978
(S) Toluene-d8	106				90.0-115		05/03/2016 13:46	WG868978
(S) Toluene-d8	102				90.0-115		05/06/2016 13:17	WG870046
(S) Dibromofluoromethane	114				79.0-121		05/06/2016 13:17	WG870046
(S) Dibromofluoromethane	101				79.0-121		05/03/2016 13:46	WG868978
(S) 4-Bromofluorobenzene	102				80.1-120		05/03/2016 13:46	WG868978

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

84.7

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.75		0.0247	0.100	0.100	1	05/03/2016 16:42	WG869249
(S) o-Terphenvl	104				50.0-150		05/03/2016 16:42	WG869249

80.1-120

WG870046

05/06/2016 13:17

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1090		2.82	10.0	10.0	1	05/04/2016 16:22	WG869764	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 13:35	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	190		2.60	1.00	50.0	50	05/03/2016 21:26	WG869281
Fluoride	1.42		0.00990	0.100	0.100	1	05/03/2016 21:12	WG869281
Sulfate	U		0.0774	5.00	5.00	1	05/03/2016 21:12	WG869281

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0226		0.00125	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Arsenic, Dissolved	0.0156		0.000250	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Barium	4.31		0.00180	0.00500	0.0250	5	05/06/2016 16:49	WG869264
Barium,Dissolved	3.93		0.000360	0.00500	0.00500	1	05/04/2016 18:23	WG869664
Calcium	149		0.230	1.00	5.00	5	05/06/2016 16:49	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Iron	7.43		0.0750	0.100	0.500	5	05/06/2016 16:49	WG869264
Iron,Dissolved	5.93		0.0150	0.100	0.100	1	05/04/2016 18:23	WG869664
Lead	0.00131	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Lead,Dissolved	0.000669	<u>J</u>	0.000240	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Manganese	0.199		0.00125	0.00500	0.0250	5	05/06/2016 16:49	WG869264
Manganese,Dissolved	0.165		0.000250	0.00500	0.00500	1	05/04/2016 18:23	WG869664
Potassium	0.573	J	0.185	1.00	5.00	5	05/06/2016 16:49	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Selenium,Dissolved	0.00194	ВЈ	0.000380	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Sodium	153		0.550	1.00	5.00	5	05/06/2016 16:49	WG869264

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0226		0.00125	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Arsenic, Dissolved	0.0156		0.000250	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Barium	4.31		0.00180	0.00500	0.0250	5	05/06/2016 16:49	WG869264
Barium, Dissolved	3.93		0.000360	0.00500	0.00500	1	05/04/2016 18:23	WG869664
Calcium	149		0.230	1.00	5.00	5	05/06/2016 16:49	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Iron	7.43		0.0750	0.100	0.500	5	05/06/2016 16:49	WG869264
Iron,Dissolved	5.93		0.0150	0.100	0.100	1	05/04/2016 18:23	WG869664
Lead	0.00131	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Lead, Dissolved	0.000669	<u>J</u>	0.000240	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Manganese	0.199		0.00125	0.00500	0.0250	5	05/06/2016 16:49	WG869264
Manganese, Dissolved	0.165		0.000250	0.00500	0.00500	1	05/04/2016 18:23	WG869664
Potassium	0.573	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 16:49	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:49	WG869264
Selenium, Dissolved	0.00194	<u>B J</u>	0.000380	0.00200	0.00200	1	05/04/2016 18:23	WG869664
Sodium	153		0.550	1.00	5.00	5	05/06/2016 16:49	WG869264

СС

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.500	0.0500	2.50	50	05/05/2016 20:05	WG870074
Benzene	5.26		0.0166	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Bromodichloromethane	U		0.0190	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Bromoform	U		0.0234	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Bromomethane	U		0.0433	0.00500	0.250	50	05/05/2016 20:05	WG870074
n-Butylbenzene	U		0.0180	0.00100	0.0500	50	05/05/2016 20:05	WG870074
sec-Butylbenzene	U		0.0182	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Carbon disulfide	0.0329	<u>J</u>	0.0138	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Carbon tetrachloride	U		0.0190	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Chlorobenzene	U		0.0174	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Chlorodibromomethane	U		0.0164	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Chloroethane	U		0.0226	0.00500	0.250	50	05/05/2016 20:05	WG870074
Chloroform	U		0.0162	0.00500	0.250	50	05/05/2016 20:05	WG870074
Chloromethane	U		0.0138	0.00250	0.125	50	05/05/2016 20:05	WG870074
1,2-Dibromoethane	U		0.0190	0.00100	0.0500	50	05/05/2016 20:05	WG870074
1,1-Dichloroethane	U		0.0130	0.00100	0.0500	50	05/05/2016 20:05	WG870074

1,1,1-Trichloroethane

1,1,2-Trichloroethane Trichloroethene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:25

Volatile Organic Com	pounds (GC	C/MS) by Me	ethod 8260	DВ				
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.0180	0.00100	0.0500	50	05/05/2016 20:05	WG870074
1,1-Dichloroethene	U		0.0199	0.00100	0.0500	50	05/05/2016 20:05	WG870074
cis-1,2-Dichloroethene	U		0.0130	0.00100	0.0500	50	05/05/2016 20:05	WG870074
trans-1,2-Dichloroethene	U		0.0198	0.00100	0.0500	50	05/05/2016 20:05	WG870074
1,2-Dichloropropane	U		0.0153	0.00100	0.0500	50	05/05/2016 20:05	WG870074
cis-1,3-Dichloropropene	U		0.0209	0.00100	0.0500	50	05/05/2016 20:05	WG870074
trans-1,3-Dichloropropene	U		0.0210	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Ethylbenzene	0.437		0.0192	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Isopropylbenzene	0.0442	J	0.0163	0.00100	0.0500	50	05/05/2016 20:05	WG870074
p-Isopropyltoluene	U		0.0175	0.00100	0.0500	50	05/05/2016 20:05	WG870074
2-Butanone (MEK)	U		0.196	0.0100	0.500	50	05/05/2016 20:05	WG870074
2-Hexanone	U		0.191	0.0100	0.500	50	05/05/2016 20:05	WG870074
Methylene Chloride	U		0.0500	0.00500	0.250	50	05/05/2016 20:05	WG870074
4-Methyl-2-pentanone (MIBK)	U		0.107	0.0100	0.500	50	05/05/2016 20:05	WG870074
Methyl tert-butyl ether	3.71		0.0184	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Naphthalene	0.150	J	0.0500	0.00500	0.250	50	05/05/2016 20:05	WG870074
n-Propylbenzene	0.0616	_	0.0174	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Styrene	U		0.0154	0.00100	0.0500	50	05/05/2016 20:05	WG870074
1,1,1,2-Tetrachloroethane	U		0.0192	0.00100	0.0500	50	05/05/2016 20:05	WG870074
1,1,2,2-Tetrachloroethane	U		0.00650	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Tetrachloroethene	U		0.0186	0.00100	0.0500	50	05/05/2016 20:05	WG870074
Toluene	0.0937	J	0.0390	0.00500	0.250	50	05/05/2016 20:05	WG870074
		_						

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.0500

0.150

90.0-115

79.0-121

80.1-120

50

50

50

50

50

50

50

50

50

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

05/05/2016 20:05

WG870074

0.0160

0.0192

0.0199

0.0186

0.0194

0.0130

0.0170

0.0360

0.0530

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

0.184

0.645

0.829

99.2

100

90.3

0.323

0.0886

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.24		0.0247	0.100	0.100	1	05/03/2016 16:58	WG869249
(S) o-Terphenyl	107				50.0-150		05/03/2016 16:58	WG869249

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 13:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4640		2.82	10.0	10.0	1	05/04/2016 16:22	WG869764

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.79		0.197	0.100	1.00	10	05/11/2016 13:36	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	193		2.60	1.00	50.0	50	05/03/2016 21:56	WG869281
Fluoride	2.85		0.00990	0.100	0.100	1	05/03/2016 21:41	WG869281
Sulfate	3800		3.87	5.00	250	50	05/03/2016 21:56	WG869281

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/10/2016 21:39	WG871518

Trictals (ICI WIS) by I	Metals (let Ma) by Metalou 6026										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Arsenic	0.00400	J	0.00125	0.00200	0.0100	5	05/06/2016 16:52	WG869264			
Arsenic, Dissolved	0.00399		0.000250	0.00200	0.00200	1	05/04/2016 14:56	WG869664			
Barium	0.0124	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 16:52	WG869264			
Barium,Dissolved	0.00975		0.000360	0.00500	0.00500	1	05/04/2016 14:56	WG869664			
Calcium	542		0.230	1.00	5.00	5	05/06/2016 16:52	WG869264			
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:52	WG869264			
Chromium, Dissolved	0.000707	<u>J</u>	0.000540	0.00200	0.00200	1	05/04/2016 14:56	WG869664			
Iron	U		0.0750	0.100	0.500	5	05/06/2016 16:52	WG869264			
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 14:56	WG869664			
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 16:52	WG869264			
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 14:56	WG869664			
Manganese	U		0.00125	0.00500	0.0250	5	05/06/2016 16:52	WG869264			
Manganese,Dissolved	0.00112	<u>J</u>	0.000250	0.00500	0.00500	1	05/04/2016 14:56	WG869664			
Potassium	1.13	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 16:52	WG869264			
Selenium	0.00436	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 16:52	WG869264			
Selenium,Dissolved	0.00511	<u>B</u>	0.000380	0.00200	0.00200	1	05/04/2016 14:56	WG869664			
Sodium	186		0.550	1.00	5.00	5	05/06/2016 16:52	WG869264			

Gl

Αl

Sc

PAGE:

27 of 99

Metals (ICPMS) by Method 6020

Volatile Organic Con	npounas (GC	/MS) by Me	etnod 826	00B
	Result	Qualifier	SDL	Unadj. I
Analyte	mg/l		mg/l	mg/l

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 20:22	WG870074
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 20:22	WG870074
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 20:22	WG870074
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Carbon disulfide	0.000636	<u>J</u>	0.000275	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 20:22	WG870074

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 13:15

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 20:22	WG870074
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 20:22	WG870074
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 20:22	WG870074
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:22	WG870074
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 20:22	WG870074
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 20:22	WG870074
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 20:22	WG870074
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 20:22	WG870074
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 20:22	WG870074
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 20:22	WG870074
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 20:22	WG870074
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 20:22	WG870074
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 20:22	WG870074
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 20:22	WG870074
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 20:22	WG870074
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 20:22	WG870074
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 20:22	WG870074
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 20:22	WG870074
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 20:22	WG870074
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 20:22	WG870074
(S) Toluene-d8	99.4				90.0-115		05/05/2016 20:22	WG870074

103

92.6

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

05/05/2016 20:22

05/05/2016 20:22

WG870074

WG870074

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 09:36	WG868978
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 09:36	WG868978
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 09:36	WG868978
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Chloroethane	U		0.000453	0.00500	0.00500	1	05/03/2016 09:36	WG868978
Chloroform	U		0.000324	0.00500	0.00500	1	05/03/2016 09:36	WG868978
Chloromethane	U		0.000276	0.00250	0.00250	1	05/03/2016 09:36	WG868978
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 09:36	WG868978
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/03/2016 09:36	WG868978
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/03/2016 09:36	WG868978
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/03/2016 09:36	WG868978
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/03/2016 09:36	WG868978
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/03/2016 09:36	WG868978
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/03/2016 09:36	WG868978
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/03/2016 09:36	WG868978
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/03/2016 09:36	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/03/2016 09:36	WG868978
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Naphthalene	U		0.00100	0.00500	0.00500	1	05/03/2016 09:36	WG868978
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Styrene	U		0.000307	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Toluene	U		0.000780	0.00500	0.00500	1	05/03/2016 09:36	WG868978
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/03/2016 09:36	WG868978
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/03/2016 09:36	WG868978
o-Xylene	U		0.000341	0.00100	0.00100	1	05/03/2016 09:36	WG868978
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/03/2016 09:36	WG868978
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/03/2016 09:36	WG868978
(S) Toluene-d8	106				90.0-115		05/03/2016 09:36	WG868978
(-)	100				00.0 1.0			
(S) Dibromofluoromethane	106				79.0-121		05/03/2016 09:36	WG868978

Тс

Ss

Cn

СС

Gl

Αl

³Sc

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2670		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 13:37	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	146		2.60	1.00	50.0	50	05/03/2016 19:12	WG869281
Fluoride	1.70		0.00990	0.100	0.100	1	05/03/2016 22:41	WG869281
Sulfate	1680		3.87	5.00	250	50	05/03/2016 19:12	WG869281

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00154	<u>J</u>	0.00125	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Arsenic, Dissolved	0.000937	<u>J</u>	0.000250	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Barium	0.0392		0.00180	0.00500	0.0250	5	05/06/2016 16:55	WG869264
Barium,Dissolved	0.0253		0.000360	0.00500	0.00500	1	05/04/2016 18:25	WG869664
Calcium	504		0.230	1.00	5.00	5	05/06/2016 16:55	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Iron	0.512		0.0750	0.100	0.500	5	05/06/2016 16:55	WG869264
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 18:25	WG869664
Lead	0.00311	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Manganese	0.0321		0.00125	0.00500	0.0250	5	05/06/2016 16:55	WG869264
Manganese,Dissolved	0.0214		0.000250	0.00500	0.00500	1	05/04/2016 18:25	WG869664
Potassium	1.76	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 16:55	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Selenium,Dissolved	0.00176	ВЈ	0.000380	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Sodium	127		0.550	1.00	5.00	5	05/06/2016 16:55	WG869264

Qc

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00154	J	0.00125	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Arsenic, Dissolved	0.000937	<u>J</u>	0.000250	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Barium	0.0392		0.00180	0.00500	0.0250	5	05/06/2016 16:55	WG869264
Barium, Dissolved	0.0253		0.000360	0.00500	0.00500	1	05/04/2016 18:25	WG869664
Calcium	504		0.230	1.00	5.00	5	05/06/2016 16:55	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Iron	0.512		0.0750	0.100	0.500	5	05/06/2016 16:55	WG869264
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 18:25	WG869664
Lead	0.00311	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Manganese	0.0321		0.00125	0.00500	0.0250	5	05/06/2016 16:55	WG869264
Manganese, Dissolved	0.0214		0.000250	0.00500	0.00500	1	05/04/2016 18:25	WG869664
Potassium	1.76	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 16:55	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:55	WG869264
Selenium, Dissolved	0.00176	<u>B J</u>	0.000380	0.00200	0.00200	1	05/04/2016 18:25	WG869664
Sodium	127		0.550	1.00	5.00	5	05/06/2016 16:55	WG869264

Αl

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.03		0.157	0.100	0.500	5	05/02/2016 15:51	WG869042
(S) a,a,a-Trifluorotoluene(FID)	92.4				62.0-128		05/02/2016 15:51	WG869042

	*							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 20:39	WG870074
Benzene	0.0112		0.000331	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 20:39	WG870074
n-Butylbenzene	0.000770	<u>J</u>	0.000361	0.00100	0.00100	1	05/05/2016 20:39	WG870074
sec-Butylbenzene	0.0146		0.000365	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Carbon disulfide	0.00126		0.000275	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 20:39	WG870074

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:30

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 20:39	WG870074
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 20:39	WG870074
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 20:39	WG870074
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:39	WG870074
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 20:39	WG870074
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 20:39	WG870074
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 20:39	WG870074
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Ethylbenzene	0.000609	<u>J</u>	0.000384	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Isopropylbenzene	0.0775		0.000326	0.00100	0.00100	1	05/05/2016 20:39	WG870074
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 20:39	WG870074
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 20:39	WG870074
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 20:39	WG870074
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 20:39	WG870074
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 20:39	WG870074
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 20:39	WG870074
n-Propylbenzene	0.00468		0.000349	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 20:39	WG870074
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,2,4-Trimethylbenzene	0.000760	J	0.000373	0.00100	0.00100	1	05/05/2016 20:39	WG870074
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 20:39	WG870074
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 20:39	WG870074
m&p-Xylene	0.0144		0.000719	0.00100	0.00100	1	05/05/2016 20:39	WG870074
Xylenes, Total	0.0144		0.00106	0.00300	0.00300	1	05/05/2016 20:39	WG870074
(S) Toluene-d8	102				90.0-115		05/05/2016 20:39	WG870074
(S) Dibromofluoromethane	98.5				79.0-121		05/05/2016 20:39	WG870074

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

90.1

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	4.92		0.0247	0.100	0.100	1	05/03/2016 17:14	WG869249
(S) o-Terphenyl	115				50.0-150		05/03/2016 17:14	WG869249

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 20:39

WG870074

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:40

L832422

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3040		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 13:38	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	74.2		0.0519	1.00	1.00	1	05/03/2016 22:56	WG869281
Fluoride	1.43		0.00990	0.100	0.100	1	05/03/2016 22:56	WG869281
Sulfate	1690		3.87	5.00	250	50	05/03/2016 23:11	WG869281

Qc

Gl

Metals (ICPMS) by Method 6020

			Metals (ICI WS) by Method 0020									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>				
Analyte	mg/l		mg/l	mg/l	mg/l		date / time					
Arsenic	0.00199	J	0.00125	0.00200	0.0100	5	05/06/2016 16:57	WG869264				
Arsenic,Dissolved	0.00153	J	0.000250	0.00200	0.00200	1	05/04/2016 18:27	WG869664				
Barium	0.0204	J	0.00180	0.00500	0.0250	5	05/06/2016 16:57	WG869264				
Barium,Dissolved	0.0164		0.000360	0.00500	0.00500	1	05/04/2016 18:27	WG869664				
Calcium	539		0.230	1.00	5.00	5	05/06/2016 16:57	WG869264				
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 16:57	WG869264				
Chromium, Dissolved	0.00107	<u>J</u>	0.000540	0.00200	0.00200	1	05/04/2016 18:27	WG869664				
ron	U		0.0750	0.100	0.500	5	05/06/2016 16:57	WG869264				
ron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 18:27	WG869664				
_ead	0.00934	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 16:57	WG869264				
_ead,Dissolved	0.00629		0.000240	0.00200	0.00200	1	05/04/2016 18:27	WG869664				
Manganese	0.0312		0.00125	0.00500	0.0250	5	05/06/2016 16:57	WG869264				
Manganese,Dissolved	0.0222		0.000250	0.00500	0.00500	1	05/04/2016 18:27	WG869664				
Potassium	U		0.185	1.00	5.00	5	05/06/2016 16:57	WG869264				
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 16:57	WG869264				
Selenium, Dissolved	0.00216	В	0.000380	0.00200	0.00200	1	05/04/2016 18:27	WG869664				
Sodium	89.6		0.550	1.00	5.00	5	05/06/2016 16:57	WG869264				

Ål

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	14.7		0.785	0.100	2.50	25	05/02/2016 19:43	WG869042
(S) a,a,a-Trifluorotoluene(FID)	99.8				62.0-128		05/02/2016 19:43	WG869042

^{*}Cn

•		, -						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		1.00	0.0500	5.00	100	05/03/2016 15:17	WG868978
Benzene	4.07		0.0331	0.00100	0.100	100	05/03/2016 15:17	WG868978
Bromodichloromethane	U		0.0380	0.00100	0.100	100	05/03/2016 15:17	WG868978
Bromoform	U		0.0469	0.00100	0.100	100	05/03/2016 15:17	WG868978
Bromomethane	U		0.0866	0.00500	0.500	100	05/03/2016 15:17	WG868978
n-Butylbenzene	U		0.0361	0.00100	0.100	100	05/03/2016 15:17	WG868978
sec-Butylbenzene	U		0.0365	0.00100	0.100	100	05/03/2016 15:17	WG868978
Carbon disulfide	0.0306	<u>J</u>	0.0275	0.00100	0.100	100	05/03/2016 15:17	WG868978
Carbon tetrachloride	U		0.0379	0.00100	0.100	100	05/03/2016 15:17	WG868978

1,3,5-Trimethylbenzene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 12

Collected date/time: 04/28/16 11:40

L832422

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.0348	0.00100	0.100	100	05/03/2016 15:17	WG868978
Chlorodibromomethane	U		0.0327	0.00100	0.100	100	05/03/2016 15:17	WG868978
Chloroethane	U		0.0453	0.00500	0.500	100	05/03/2016 15:17	WG868978
Chloroform	U		0.0324	0.00500	0.500	100	05/03/2016 15:17	WG868978
Chloromethane	U		0.0276	0.00250	0.250	100	05/03/2016 15:17	WG868978
1,2-Dibromoethane	U		0.0381	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,1-Dichloroethane	U		0.0259	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,2-Dichloroethane	U		0.0361	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,1-Dichloroethene	U		0.0398	0.00100	0.100	100	05/03/2016 15:17	WG868978
cis-1,2-Dichloroethene	U		0.0260	0.00100	0.100	100	05/03/2016 15:17	WG868978
trans-1,2-Dichloroethene	U		0.0396	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,2-Dichloropropane	U		0.0306	0.00100	0.100	100	05/03/2016 15:17	WG868978
cis-1,3-Dichloropropene	U		0.0418	0.00100	0.100	100	05/03/2016 15:17	WG868978
trans-1,3-Dichloropropene	U		0.0419	0.00100	0.100	100	05/03/2016 15:17	WG868978
Ethylbenzene	0.430		0.0384	0.00100	0.100	100	05/03/2016 15:17	WG868978
Isopropylbenzene	0.0409	J	0.0326	0.00100	0.100	100	05/03/2016 15:17	WG868978
p-Isopropyltoluene	U		0.0350	0.00100	0.100	100	05/03/2016 15:17	WG868978
2-Butanone (MEK)	U		0.393	0.0100	1.00	100	05/03/2016 15:17	WG868978
2-Hexanone	U		0.382	0.0100	1.00	100	05/03/2016 15:17	WG868978
Methylene Chloride	U		0.100	0.00500	0.500	100	05/03/2016 15:17	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.214	0.0100	1.00	100	05/03/2016 15:17	WG868978
Methyl tert-butyl ether	U		0.0367	0.00100	0.100	100	05/03/2016 15:17	WG868978
Naphthalene	0.139	J	0.100	0.00500	0.500	100	05/03/2016 15:17	WG868978
n-Propylbenzene	0.0527	J	0.0349	0.00100	0.100	100	05/03/2016 15:17	WG868978
Styrene	U		0.0307	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,1,1,2-Tetrachloroethane	U		0.0385	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,1,2,2-Tetrachloroethane	U		0.0130	0.00100	0.100	100	05/03/2016 15:17	WG868978
Tetrachloroethene	U		0.0372	0.00100	0.100	100	05/03/2016 15:17	WG868978
Toluene	0.220	J	0.0780	0.00500	0.500	100	05/03/2016 15:17	WG868978
1,1,1-Trichloroethane	U	_	0.0319	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,1,2-Trichloroethane	U		0.0383	0.00100	0.100	100	05/03/2016 15:17	WG868978
Trichloroethene	U		0.0398	0.00100	0.100	100	05/03/2016 15:17	WG868978
1,2,4-Trimethylbenzene	0.177		0.0373	0.00100	0.100	100	05/03/2016 15:17	WG868978
10571	0.0400		0.0007	0.00400	0.400	400	05/00/0040 45 47	1440000070

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

0.0462

U

U

0.865

0.865

106

103

98.7

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	6.88		0.0247	0.100	0.100	1	05/03/2016 17:30	WG869249
(S) o-Terphenyl	115				50.0-150		05/03/2016 17:30	WG869249

0.00100

0.00100

0.00100

0.00100

0.00300

0.100

0.100

0.100

0.100

0.300

90.0-115

79.0-121

80.1-120

100

100

100

100

100

05/03/2016 15:17

05/03/2016 15:17

05/03/2016 15:17

05/03/2016 15:17

05/03/2016 15:17

05/03/2016 15:17

05/03/2016 15:17

05/03/2016 15:17

WG868978 WG868978

WG868978

WG868978

WG868978 WG868978

WG868978

WG868978

0.0387

0.0259

0.0341

0.0719

0.106

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 08:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3270		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 13:39	WG870052

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	206		2.60	1.00	50.0	50	05/03/2016 23:41	WG869281
Fluoride	3.06		0.00990	0.100	0.100	1	05/03/2016 23:26	WG869281
Sulfate	2130		3.87	5.00	250	50	05/03/2016 23:41	WG869281

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l	· · · · · · · · · · · · · · · · · · ·	mg/l	mg/l	mg/l		date / time	
Arsenic	0.0137		0.00125	0.00200	0.0100	5	05/06/2016 17:00	WG869264
Arsenic, Dissolved	0.0100		0.000250	0.00200	0.00200	1	05/04/2016 18:45	WG869664
Barium	0.0231	J	0.00180	0.00500	0.0250	5	05/06/2016 17:00	WG869264
Barium,Dissolved	0.0197		0.000360	0.00500	0.00500	1	05/04/2016 18:45	WG869664
Calcium	677		0.230	1.00	5.00	5	05/06/2016 17:00	WG869264
Chromium	0.00907	J	0.00270	0.00200	0.0100	5	05/06/2016 17:00	WG869264
Chromium, Dissolved	0.00692		0.000540	0.00200	0.00200	1	05/04/2016 18:45	WG869664
Iron	0.858		0.0750	0.100	0.500	5	05/06/2016 17:00	WG869264
Iron,Dissolved	0.219		0.0150	0.100	0.100	1	05/04/2016 18:45	WG869664
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 17:00	WG869264
Lead,Dissolved	0.000301	<u>J</u>	0.000240	0.00200	0.00200	1	05/04/2016 18:45	WG869664
Manganese	0.0663		0.00125	0.00500	0.0250	5	05/06/2016 17:00	WG869264
Manganese,Dissolved	0.0540		0.000250	0.00500	0.00500	1	05/04/2016 18:45	WG869664
Potassium	1.76	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 17:00	WG869264
Selenium	0.0242		0.00190	0.00200	0.0100	5	05/06/2016 17:00	WG869264
Selenium,Dissolved	0.0180		0.000380	0.00200	0.00200	1	05/04/2016 18:45	WG869664
Sodium	164		0.550	1.00	5.00	5	05/06/2016 17:00	WG869264

Gl

Metals (ICPMS) by Method 6020

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.06		0.0314	0.100	0.100	1	05/02/2016 20:06	WG869042
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/02/2016 20:06	WG869042

⁹ Sc

_								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/03/2016 15:40	WG868978
Benzene	0.258		0.00166	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Bromoform	U		0.00234	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Bromomethane	U		0.00433	0.00500	0.0250	5	05/03/2016 15:40	WG868978
n-Butylbenzene	U		0.00180	0.00100	0.00500	5	05/03/2016 15:40	WG868978
sec-Butylbenzene	0.00208	J	0.00182	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Carbon disulfide	0.00216	<u>J</u>	0.00138	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/03/2016 15:40	WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 08:25

L832422

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Chloroethane	U		0.00226	0.00500	0.0250	5	05/03/2016 15:40	WG868978
Chloroform	U		0.00162	0.00500	0.0250	5	05/03/2016 15:40	WG868978
Chloromethane	U		0.00138	0.00250	0.0125	5	05/03/2016 15:40	WG868978
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 15:40	WG868978
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/03/2016 15:40	WG868978
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/03/2016 15:40	WG868978
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/03/2016 15:40	WG868978
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Ethylbenzene	0.0106		0.00192	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Isopropylbenzene	0.0119		0.00163	0.00100	0.00500	5	05/03/2016 15:40	WG868978
o-Isopropyltoluene	U		0.00175	0.00100	0.00500	5	05/03/2016 15:40	WG868978
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/03/2016 15:40	WG868978
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/03/2016 15:40	WG868978
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/03/2016 15:40	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/03/2016 15:40	WG868978
Methyl tert-butyl ether	U		0.00184	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Naphthalene	0.0113	<u>J</u>	0.00500	0.00500	0.0250	5	05/03/2016 15:40	WG868978
n-Propylbenzene	0.00919		0.00174	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Styrene	U		0.00154	0.00100	0.00500	5	05/03/2016 15:40	WG868978
I,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Toluene	U		0.00390	0.00500	0.0250	5	05/03/2016 15:40	WG868978
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,2,4-Trimethylbenzene	0.0331		0.00186	0.00100	0.00500	5	05/03/2016 15:40	WG868978
1,3,5-Trimethylbenzene	0.00543		0.00194	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Vinyl chloride	U		0.00130	0.00100	0.00500	5	05/03/2016 15:40	WG868978
o-Xylene	U		0.00170	0.00100	0.00500	5	05/03/2016 15:40	WG868978
m&p-Xylene	0.0567		0.00360	0.00100	0.00500	5	05/03/2016 15:40	WG868978
Xylenes, Total	0.0567		0.00530	0.00300	0.0150	5	05/03/2016 15:40	WG868978
(S) Toluene-d8	105				90.0-115		05/03/2016 15:40	WG868978
(S) Dibromofluoromethane	105				79.0-121		05/03/2016 15:40	WG868978
(0) 4.0								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

98.5

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	7.83		0.0247	0.100	0.100	1	05/03/2016 17:47	WG869249
(S) o-Terphenyl	112				50.0-150		05/03/2016 17:47	WG869249

80.1-120

05/03/2016 15:40

WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1990		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 15:11	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	500		2.60	1.00	50.0	50	05/04/2016 00:11	WG869281
Fluoride	1.81		0.00990	0.100	0.100	1	05/03/2016 23:56	WG869281
Sulfate	1.84	J	0.0774	5.00	5.00	1	05/03/2016 23:56	WG869281

Qc

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0113		0.00125	0.00200	0.0100	5	05/06/2016 17:03	WG869264
Arsenic, Dissolved	0.00911		0.000250	0.00200	0.00200	1	05/04/2016 18:47	WG869664
Barium	12.8		0.00180	0.00500	0.0250	5	05/06/2016 17:03	WG869264
Barium, Dissolved	10.9		0.000720	0.00500	0.0100	2	05/04/2016 19:07	WG869664
Calcium	110		0.230	1.00	5.00	5	05/06/2016 17:03	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:03	WG869264
Chromium, Dissolved	0.000955	J	0.000540	0.00200	0.00200	1	05/04/2016 18:47	WG869664
Iron	0.456	J	0.0750	0.100	0.500	5	05/06/2016 17:03	WG869264
Iron,Dissolved	0.0206	<u>J</u>	0.0150	0.100	0.100	1	05/04/2016 18:47	WG869664
Lead	0.0186		0.00120	0.00200	0.0100	5	05/06/2016 17:03	WG869264
Lead,Dissolved	0.000319	J	0.000240	0.00200	0.00200	1	05/04/2016 18:47	WG869664
Manganese	0.105		0.00125	0.00500	0.0250	5	05/06/2016 17:03	WG869264
Manganese, Dissolved	0.0697		0.000250	0.00500	0.00500	1	05/04/2016 18:47	WG869664
Potassium	2.14	J	0.185	1.00	5.00	5	05/06/2016 17:03	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 17:03	WG869264
Selenium, Dissolved	0.00164	ВЈ	0.000380	0.00200	0.00200	1	05/04/2016 18:47	WG869664
Sodium	561		0.550	1.00	5.00	5	05/06/2016 17:03	WG869264

Αl

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	34.7		0.157	0.100	0.500	5	05/02/2016 20:29	WG869042
(S) a,a,a-Trifluorotoluene(FID)	100				62.0-128		05/02/2016 20:29	WG869042

Gl

	• •							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/03/2016 16:02	WG868978
Benzene	15.5		0.0828	0.00100	0.250	250	05/06/2016 13:38	WG870046
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Bromoform	U		0.00234	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Bromomethane	U		0.00433	0.00500	0.0250	5	05/03/2016 16:02	WG868978
n-Butylbenzene	0.0254		0.00180	0.00100	0.00500	5	05/03/2016 16:02	WG868978
sec-Butylbenzene	0.0225		0.00182	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Carbon disulfide	0.00185	Ţ	0.00138	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/03/2016 16:02	WG868978

Ol

Collected date/time: 04/28/16 09:15

Volatile Organic Compounds (GC/MS) by Method 8260B

NE	LAB.	NATIONWIDE.	

Ss

Cn

Gl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Chloroethane	U		0.00226	0.00500	0.0250	5	05/03/2016 16:02	WG868978
Chloroform	U		0.00162	0.00500	0.0250	5	05/03/2016 16:02	WG868978
Chloromethane	U		0.00138	0.00250	0.0125	5	05/03/2016 16:02	WG868978
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 16:02	WG868978
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/03/2016 16:02	WG868978
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/03/2016 16:02	WG868978
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/03/2016 16:02	WG868978
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Ethylbenzene	0.179		0.00192	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Isopropylbenzene	0.161		0.00163	0.00100	0.00500	5	05/03/2016 16:02	WG868978
p-Isopropyltoluene	U		0.00175	0.00100	0.00500	5	05/03/2016 16:02	WG868978
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/03/2016 16:02	WG868978
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/03/2016 16:02	WG868978
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/03/2016 16:02	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/03/2016 16:02	WG868978
Methyl tert-butyl ether	0.0297		0.00184	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Naphthalene	0.193		0.00500	0.00500	0.0250	5	05/03/2016 16:02	WG868978
n-Propylbenzene	0.268		0.00174	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Styrene	U		0.00154	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Toluene	0.00412	J	0.00390	0.00500	0.0250	5	05/03/2016 16:02	WG868978
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,2,4-Trimethylbenzene	U		0.00186	0.00100	0.00500	5	05/03/2016 16:02	WG868978
1,3,5-Trimethylbenzene	U		0.00194	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Vinyl chloride	U		0.00130	0.00100	0.00500	5	05/03/2016 16:02	WG868978
o-Xylene	0.00284	<u>J</u>	0.00170	0.00100	0.00500	5	05/03/2016 16:02	WG868978
m&p-Xylene	0.0147		0.00360	0.00100	0.00500	5	05/03/2016 16:02	WG868978
Xylenes, Total	0.0176		0.00530	0.00300	0.0150	5	05/03/2016 16:02	WG868978
(S) Toluene-d8	103				90.0-115		05/03/2016 16:02	WG868978
(S) Toluene-d8	101				90.0-115		05/06/2016 13:38	WG870046
(S) Dibromofluoromethane	114				79.0-121		05/06/2016 13:38	WG870046
(S) Dibromofluoromethane	96.9				79.0-121		05/03/2016 16:02	WG868978
(S) 4-Bromofluorobenzene	100				80.1-120		05/03/2016 16:02	WG868978
(S) 4-Bromofluorobenzene	83.3				80.1-120		05/06/2016 13:38	WG870046

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	28.7		0.494	0.100	2.00	20	05/04/2016 14:48	WG869249
(S) o-Terphenyl	125	<u>J7</u>			50.0-150		05/04/2016 14:48	WG869249

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:05

L832422

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2180		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 15:12	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	571		2.60	1.00	50.0	50	05/04/2016 00:25	WG869281
Fluoride	1.13		0.00990	0.100	0.100	1	05/04/2016 01:25	WG869281
Sulfate	164		0.774	5.00	50.0	10	05/10/2016 16:38	WG870882

СС

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	0.0290	J	0.0120	0.00500	0.0500	10	05/10/2016 21:42	WG871518

Αl

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/02/2016 12:50	WG868783
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/02/2016 14:00	WG868782

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00777	J	0.00125	0.00200	0.0100	5	05/06/2016 17:06	WG869264
Arsenic, Dissolved	0.00620		0.000250	0.00200	0.00200	1	05/04/2016 18:49	WG869664
Barium	0.220		0.00180	0.00500	0.0250	5	05/06/2016 17:06	WG869264
Barium, Dissolved	0.169		0.000360	0.00500	0.00500	1	05/04/2016 18:49	WG869664
Boron	1.56		0.00750	0.0200	0.100	5	05/06/2016 17:06	WG869264
Boron, Dissolved	1.08		0.00150	0.0200	0.0200	1	05/05/2016 10:59	WG869664
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 17:06	WG869264
Cadmium, Dissolved	U		0.000160	0.00100	0.00100	1	05/04/2016 18:49	WG869664
Calcium	160		0.230	1.00	5.00	5	05/06/2016 17:06	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:06	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:49	WG869664
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 17:06	WG869264
Cobalt, Dissolved	U		0.000260	0.00200	0.00200	1	05/04/2016 18:49	WG869664
Iron	0.221	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 17:06	WG869264
Iron,Dissolved	0.0158	<u>J</u>	0.0150	0.100	0.100	1	05/04/2016 18:49	WG869664
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 17:06	WG869264
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:49	WG869664
Manganese	0.164		0.00125	0.00500	0.0250	5	05/06/2016 17:06	WG869264
Manganese, Dissolved	0.128		0.000250	0.00500	0.00500	1	05/04/2016 18:49	WG869664
Nickel	0.00598	<u>J</u>	0.00175	0.00200	0.0100	5	05/06/2016 17:06	WG869264
Nickel, Dissolved	0.00484		0.000350	0.00200	0.00200	1	05/04/2016 18:49	WG869664
Potassium	2.03	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 17:06	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 17:06	WG869264
Selenium, Dissolved	0.00157	ВЈ	0.000380	0.00200	0.00200	1	05/04/2016 18:49	WG869664
Sodium	568		0.550	1.00	5.00	5	05/06/2016 17:06	WG869264

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:05

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Uranium	U		0.00165	0.0100	0.0500	5	05/06/2016 17:06	WG869264		
Uranium,Dissolved	U		0.000330	0.0100	0.0100	1	05/04/2016 18:49	WG869664		
Vanadium	0.00531	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 17:06	WG869264		
Vanadium, Dissolved	0.00403	J	0.000180	0.00500	0.00500	1	05/04/2016 18:49	WG869664		

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	4.86		0.157	0.100	0.500	5	05/02/2016 20:52	WG869042
(S) a,a,a-Trifluorotoluene(FID)	94.2				62.0-128		05/02/2016 20:52	WG869042

СС

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/03/2016 16:25	WG868978
Benzene	1.46		0.00331	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Bromoform	U		0.00469	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Bromomethane	U		0.00866	0.00500	0.0500	10	05/03/2016 16:25	WG868978
n-Butylbenzene	0.00732	J	0.00361	0.00100	0.0100	10	05/03/2016 16:25	WG868978
sec-Butylbenzene	0.0138		0.00365	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Carbon disulfide	0.00332	J	0.00275	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Chloroethane	U		0.00453	0.00500	0.0500	10	05/03/2016 16:25	WG868978
Chloroform	U		0.00324	0.00500	0.0500	10	05/03/2016 16:25	WG868978
Chloromethane	U		0.00276	0.00250	0.0250	10	05/03/2016 16:25	WG868978
1,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/03/2016 16:25	WG868978
cis-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/03/2016 16:25	WG868978
trans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/03/2016 16:25	WG868978
cis-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/03/2016 16:25	WG868978
trans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Ethylbenzene	0.309		0.00384	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Isopropylbenzene	0.0759		0.00326	0.00100	0.0100	10	05/03/2016 16:25	WG868978
p-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/03/2016 16:25	WG868978
2-Butanone (MEK)	U		0.0393	0.0100	0.100	10	05/03/2016 16:25	WG868978
2-Hexanone	U		0.0382	0.0100	0.100	10	05/03/2016 16:25	WG868978
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/03/2016 16:25	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/03/2016 16:25	WG868978
Methyl tert-butyl ether	0.0955		0.00367	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Naphthalene	0.0959		0.0100	0.00500	0.0500	10	05/03/2016 16:25	WG868978
n-Propylbenzene	0.0867		0.00349	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Styrene	U		0.00307	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Tetrachloroethene	U		0.00372	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Toluene	0.0158	<u>J</u>	0.00780	0.00500	0.0500	10	05/03/2016 16:25	WG868978
1,1,1-Trichloroethane	U		0.00319	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Trichloroethene	U		0.00398	0.00100	0.0100	10	05/03/2016 16:25	WG868978

MW-138

SAMPLE RESULTS - 15

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:05

L832422

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	U		0.00373	0.00100	0.0100	10	05/03/2016 16:25	WG868978
1,3,5-Trimethylbenzene	U		0.00387	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/03/2016 16:25	WG868978
o-Xylene	U		0.00341	0.00100	0.0100	10	05/03/2016 16:25	WG868978
m&p-Xylene	0.00736	<u>J</u>	0.00719	0.00100	0.0100	10	05/03/2016 16:25	WG868978
Xylenes, Total	U		0.0106	0.00300	0.0300	10	05/03/2016 16:25	WG868978
(S) Toluene-d8	105				90.0-115		05/03/2016 16:25	WG868978
(S) Dibromofluoromethane	103				79.0-121		05/03/2016 16:25	WG868978
(S) 4-Bromofluorobenzene	99.1				80.1-120		05/03/2016 16:25	WG868978

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	15.5		0.124	0.100	0.500	5	05/04/2016 13:26	WG869249
(S) o-Terphenyl	135				50.0-150		05/04/2016 13:26	WG869249

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3950		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 15:14	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	343		5.19	1.00	100	100	05/10/2016 18:13	WG870882
Fluoride	1.87		0.00990	0.100	0.100	1	05/04/2016 01:55	WG869281
Sulfate	2160		7.74	5.00	500	100	05/10/2016 18:13	WG870882

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	0.348	J	0.120	0.00500	0.500	100	05/10/2016 21:48	WG871518

Gl

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/02/2016 12:52	WG868783
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/02/2016 14:03	WG868782

Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0893		0.00125	0.00200	0.0100	5	05/06/2016 17:50	WG869264
Arsenic, Dissolved	0.0671		0.000250	0.00200	0.00200	1	05/04/2016 18:51	WG869664
Barium	0.0567		0.00180	0.00500	0.0250	5	05/06/2016 17:50	WG869264
Barium,Dissolved	0.0397		0.000360	0.00500	0.00500	1	05/04/2016 18:51	WG869664
Boron	0.982		0.00750	0.0200	0.100	5	05/06/2016 17:50	WG869264
Boron,Dissolved	0.760		0.00150	0.0200	0.0200	1	05/05/2016 11:02	WG869664
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 17:50	WG869264
Cadmium, Dissolved	U		0.000160	0.00100	0.00100	1	05/04/2016 18:51	WG869664
Calcium	178		0.230	1.00	5.00	5	05/06/2016 17:50	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:50	WG869264
Chromium, Dissolved	0.000810	J	0.000540	0.00200	0.00200	1	05/04/2016 18:51	WG869664
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 17:50	WG869264
Cobalt, Dissolved	U		0.000260	0.00200	0.00200	1	05/04/2016 18:51	WG869664
Iron	0.0953	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 17:50	WG869264
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/04/2016 18:51	WG869664
Lead	0.00601	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 17:50	WG869264
Lead, Dissolved	0.00429		0.000240	0.00200	0.00200	1	05/04/2016 18:51	WG869664
Manganese	0.144		0.00125	0.00500	0.0250	5	05/06/2016 17:50	WG869264
Manganese, Dissolved	0.103		0.000250	0.00500	0.00500	1	05/04/2016 18:51	WG869664
Nickel	0.0101		0.00175	0.00200	0.0100	5	05/06/2016 17:50	WG869264
Nickel, Dissolved	0.00729		0.000350	0.00200	0.00200	1	05/04/2016 18:51	WG869664
Potassium	2.43	J	0.185	1.00	5.00	5	05/06/2016 17:50	WG869264
Selenium	0.00327	J	0.00190	0.00200	0.0100	5	05/06/2016 17:50	WG869264
Selenium,Dissolved	0.00345	В	0.000380	0.00200	0.00200	1	05/04/2016 18:51	WG869664
Sodium	1740		0.550	1.00	5.00	5	05/06/2016 17:50	WG869264

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:00

Metals (ICPMS) by Method 6020

	D 1:	0 1:0	CDI		1401	D:1 ::	A 1 .	D
	Result	<u>Qualifier</u>	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	U		0.00165	0.0100	0.0500	5	05/06/2016 17:50	WG869264
Uranium,Dissolved	U		0.000330	0.0100	0.0100	1	05/04/2016 18:51	WG869664
Vanadium	0.00840	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 17:50	WG869264
Vanadium, Dissolved	0.00646		0.000180	0.00500	0.00500	1	05/04/2016 18:51	WG869664

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	33.8		3.14	0.100	10.0	100	05/02/2016 21:15	WG869042
(S) a,a,a-Trifluorotoluene(FID)	101				62.0-128		05/02/2016 21:15	WG869042

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	<u> </u>	mg/l	mg/l	mg/l		date / time	
Acetone	U		2.50	0.0500	12.5	250	05/03/2016 19:28	WG868978
Benzene	9.65		0.0828	0.00100	0.250	250	05/03/2016 19:28	WG868978
Bromodichloromethane	U		0.0950	0.00100	0.250	250	05/03/2016 19:28	WG868978
Bromoform	U		0.117	0.00100	0.250	250	05/03/2016 19:28	WG868978
Bromomethane	U		0.216	0.00500	1.25	250	05/03/2016 19:28	WG868978
n-Butylbenzene	U		0.0902	0.00100	0.250	250	05/03/2016 19:28	WG868978
sec-Butylbenzene	U		0.0912	0.00100	0.250	250	05/03/2016 19:28	WG868978
Carbon disulfide	0.0722	<u>J</u>	0.0688	0.00100	0.250	250	05/03/2016 19:28	WG868978
Carbon tetrachloride	U	_	0.0948	0.00100	0.250	250	05/03/2016 19:28	WG868978
Chlorobenzene	U		0.0870	0.00100	0.250	250	05/03/2016 19:28	WG868978
Chlorodibromomethane	U		0.0818	0.00100	0.250	250	05/03/2016 19:28	WG868978
Chloroethane	U		0.113	0.00500	1.25	250	05/03/2016 19:28	WG868978
Chloroform	U		0.0810	0.00500	1.25	250	05/03/2016 19:28	WG868978
Chloromethane	U		0.0690	0.00250	0.625	250	05/03/2016 19:28	WG868978
I,2-Dibromoethane	U		0.0952	0.00100	0.250	250	05/03/2016 19:28	WG868978
,1-Dichloroethane	U		0.0648	0.00100	0.250	250	05/03/2016 19:28	WG868978
,2-Dichloroethane	U		0.0902	0.00100	0.250	250	05/03/2016 19:28	WG868978
,1-Dichloroethene	U		0.0995	0.00100	0.250	250	05/03/2016 19:28	WG868978
cis-1,2-Dichloroethene	U		0.0650	0.00100	0.250	250	05/03/2016 19:28	WG868978
rans-1,2-Dichloroethene	U		0.0990	0.00100	0.250	250	05/03/2016 19:28	WG868978
,2-Dichloropropane	U		0.0765	0.00100	0.250	250	05/03/2016 19:28	WG868978
cis-1,3-Dichloropropene	U		0.104	0.00100	0.250	250	05/03/2016 19:28	WG868978
rans-1,3-Dichloropropene	U		0.105	0.00100	0.250	250	05/03/2016 19:28	WG868978
Ethylbenzene	1.65		0.0960	0.00100	0.250	250	05/03/2016 19:28	WG868978
sopropylbenzene	0.104	<u>J</u>	0.0815	0.00100	0.250	250	05/03/2016 19:28	WG868978
o-Isopropyltoluene	U		0.0875	0.00100	0.250	250	05/03/2016 19:28	WG868978
2-Butanone (MEK)	U		0.982	0.0100	2.50	250	05/03/2016 19:28	WG868978
2-Hexanone	U		0.955	0.0100	2.50	250	05/03/2016 19:28	WG868978
Methylene Chloride	U		0.250	0.00500	1.25	250	05/03/2016 19:28	WG868978
1-Methyl-2-pentanone (MIBK)	U		0.535	0.0100	2.50	250	05/03/2016 19:28	WG868978
Methyl tert-butyl ether	U		0.0918	0.00100	0.250	250	05/03/2016 19:28	WG868978
Naphthalene	0.262	J	0.250	0.00500	1.25	250	05/03/2016 19:28	WG868978
n-Propylbenzene	0.159	J	0.0872	0.00100	0.250	250	05/03/2016 19:28	WG868978
Styrene	U		0.0768	0.00100	0.250	250	05/03/2016 19:28	WG868978
,1,1,2-Tetrachloroethane	U		0.0962	0.00100	0.250	250	05/03/2016 19:28	WG868978
,1,2,2-Tetrachloroethane	U		0.0325	0.00100	0.250	250	05/03/2016 19:28	WG868978
Tetrachloroethene	U		0.0930	0.00100	0.250	250	05/03/2016 19:28	WG868978
Toluene	2.53		0.195	0.00500	1.25	250	05/03/2016 19:28	WG868978
,1,1-Trichloroethane	U		0.0798	0.00100	0.250	250	05/03/2016 19:28	WG868978
1,1,2-Trichloroethane	U		0.0958	0.00100	0.250	250	05/03/2016 19:28	WG868978
Trichloroethene	U		0.0995	0.00100	0.250	250	05/03/2016 19:28	WG868978

MW-137

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:00

Volatile Organic Compounds (GC/MS) by Method 8260B

9		, ,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
1,2,4-Trimethylbenzene	0.460		0.0932	0.00100	0.250	250	05/03/2016 19:28	WG868978	
1,3,5-Trimethylbenzene	0.102	<u>J</u>	0.0968	0.00100	0.250	250	05/03/2016 19:28	WG868978	
Vinyl chloride	U		0.0648	0.00100	0.250	250	05/03/2016 19:28	WG868978	
o-Xylene	0.539		0.0852	0.00100	0.250	250	05/03/2016 19:28	WG868978	
m&p-Xylene	0.694		0.180	0.00100	0.250	250	05/03/2016 19:28	WG868978	
Xylenes, Total	1.23		0.265	0.00300	0.750	250	05/03/2016 19:28	WG868978	
(S) Toluene-d8	106				90.0-115		05/03/2016 19:28	WG868978	
(S) Dibromofluoromethane	104				79.0-121		05/03/2016 19:28	WG868978	
(S) 4-Bromofluorobenzene	99.9				80.1-120		05/03/2016 19:28	WG868978	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	11.8		0.124	0.100	0.500	5	05/04/2016 13:43	WG869249
(S) o-Terphenyl	103				50.0-150		05/04/2016 13:43	WG869249

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3010		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 15:15	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	457		2.60	1.00	50.0	50	05/09/2016 13:46	WG869673
Fluoride	0.867		0.00990	0.100	0.100	1	05/09/2016 13:30	WG869673
Sulfate	1090		3.87	5.00	250	50	05/09/2016 13:46	WG869673

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

ivietais (ICFIVIS) by IV	VICTIOG 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00814	J	0.00125	0.00200	0.0100	5	05/06/2016 17:52	WG869264
Arsenic, Dissolved	0.00492		0.000250	0.00200	0.00200	1	05/04/2016 18:54	WG869664
Barium	0.0274		0.00180	0.00500	0.0250	5	05/06/2016 17:52	WG869264
Barium, Dissolved	0.0204		0.000360	0.00500	0.00500	1	05/04/2016 18:54	WG869664
Calcium	295		0.230	1.00	5.00	5	05/06/2016 17:52	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:52	WG869264
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:54	WG869664
Iron	0.182	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 17:52	WG869264
Iron,Dissolved	0.0401	J	0.0150	0.100	0.100	1	05/04/2016 18:54	WG869664
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 17:52	WG869264
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:54	WG869664
Manganese	0.197		0.00125	0.00500	0.0250	5	05/06/2016 17:52	WG869264
Manganese, Dissolved	0.137		0.000250	0.00500	0.00500	1	05/04/2016 18:54	WG869664
Potassium	0.617	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 17:52	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 17:52	WG869264
Selenium, Dissolved	0.00121	<u>B J</u>	0.000380	0.00200	0.00200	1	05/04/2016 18:54	WG869664
Sodium	601		0.550	1.00	5.00	5	05/06/2016 17:52	WG869264

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.737		0.0314	0.100	0.100	1	05/02/2016 21:37	WG869042
(S) a,a,a-Trifluorotoluene(FID)	87.6				62.0-128		05/02/2016 21:37	WG869042

9	1	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/03/2016 19:51	WG868978
Benzene	0.103		0.00166	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Bromoform	U		0.00234	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Bromomethane	U		0.00433	0.00500	0.0250	5	05/03/2016 19:51	WG868978
n-Butylbenzene	U		0.00180	0.00100	0.00500	5	05/03/2016 19:51	WG868978
sec-Butylbenzene	0.00562		0.00182	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Carbon disulfide	0.00212	Ţ	0.00138	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/03/2016 19:51	WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:05

L832422

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Chloroethane	U		0.00226	0.00500	0.0250	5	05/03/2016 19:51	WG868978
Chloroform	U		0.00162	0.00500	0.0250	5	05/03/2016 19:51	WG868978
Chloromethane	U		0.00138	0.00250	0.0125	5	05/03/2016 19:51	WG868978
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 19:51	WG868978
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/03/2016 19:51	WG868978
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/03/2016 19:51	WG868978
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/03/2016 19:51	WG868978
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Ethylbenzene	U		0.00192	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Isopropylbenzene	0.0325		0.00163	0.00100	0.00500	5	05/03/2016 19:51	WG868978
p-Isopropyltoluene	U		0.00175	0.00100	0.00500	5	05/03/2016 19:51	WG868978
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/03/2016 19:51	WG868978
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/03/2016 19:51	WG868978
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/03/2016 19:51	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/03/2016 19:51	WG868978
Methyl tert-butyl ether	0.0114		0.00184	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Naphthalene	U		0.00500	0.00500	0.0250	5	05/03/2016 19:51	WG868978
n-Propylbenzene	0.0138		0.00174	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Styrene	U		0.00154	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Toluene	U		0.00390	0.00500	0.0250	5	05/03/2016 19:51	WG868978
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,2,4-Trimethylbenzene	0.0169		0.00186	0.00100	0.00500	5	05/03/2016 19:51	WG868978
1,3,5-Trimethylbenzene	U		0.00194	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Vinyl chloride	U		0.00130	0.00100	0.00500	5	05/03/2016 19:51	WG868978
o-Xylene	U		0.00170	0.00100	0.00500	5	05/03/2016 19:51	WG868978
m&p-Xylene	0.0380		0.00360	0.00100	0.00500	5	05/03/2016 19:51	WG868978
Xylenes, Total	0.0380		0.00530	0.00300	0.0150	5	05/03/2016 19:51	WG868978
(S) Toluene-d8	106				90.0-115		05/03/2016 19:51	WG868978
(S) Dibromofluoromethane	105				79.0-121		05/03/2016 19:51	WG868978

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.88		0.0247	0.100	0.100	1	05/03/2016 19:58	WG869249
(S) o-Terphenyl	105				50.0-150		05/03/2016 19:58	WG869249

(S) 4-Bromofluorobenzene

80.1-120

05/03/2016 19:51

WG868978

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:10

L832422

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2530		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/11/2016 15:16	WG870052

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	312		2.60	1.00	50.0	50	05/09/2016 14:18	WG869673
Fluoride	1.04		0.00990	0.100	0.100	1	05/09/2016 14:02	WG869673
Sulfate	1180		3.87	5.00	250	50	05/09/2016 14:18	WG869673

Metals (ICPMS) by Method 6020

Metals (ICI MS) by Metalod 6020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.00578	J	0.00125	0.00200	0.0100	5	05/06/2016 17:55	WG869264		
Arsenic, Dissolved	0.00459		0.000250	0.00200	0.00200	1	05/04/2016 18:56	WG869664		
Barium	0.0210	J	0.00180	0.00500	0.0250	5	05/06/2016 17:55	WG869264		
Barium, Dissolved	0.0177		0.000360	0.00500	0.00500	1	05/04/2016 18:56	WG869664		
Calcium	258		0.230	1.00	5.00	5	05/06/2016 17:55	WG869264		
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:55	WG869264		
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/04/2016 18:56	WG869664		
Iron	U		0.0750	0.100	0.500	5	05/06/2016 17:55	WG869264		
Iron,Dissolved	0.0198	<u>J</u>	0.0150	0.100	0.100	1	05/04/2016 18:56	WG869664		
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 17:55	WG869264		
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:56	WG869664		
Manganese	0.888		0.00125	0.00500	0.0250	5	05/06/2016 17:55	WG869264		
Manganese, Dissolved	0.740		0.000250	0.00500	0.00500	1	05/04/2016 18:56	WG869664		
Potassium	0.393	J	0.185	1.00	5.00	5	05/06/2016 17:55	WG869264		
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 17:55	WG869264		
Selenium, Dissolved	0.00129	ВJ	0.000380	0.00200	0.00200	1	05/04/2016 18:56	WG869664		
Sodium	453		0.550	1.00	5.00	5	05/06/2016 17:55	WG869264		

Qc GI

°Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.171		0.0314	0.100	0.100	1	05/02/2016 22:01	WG869042
(S) a,a,a-Trifluorotoluene(FID)	93.7				62.0-128		05/02/2016 22:01	WG869042

⁹Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	Qualifier	mg/l	mg/l	mg/l	Dilution	date / time	Batch
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 20:56	WG870074
Benzene	0.00360		0.000331	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 20:56	WG870074
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 20:56	WG870074
sec-Butylbenzene	0.00444		0.000365	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Carbon disulfide	0.00136		0.000275	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 20:56	WG870074

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:10

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	444	mg/l	mg/l	mg/l	2	date / time	2000
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 20:56	WG870074
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 20:56	WG870074
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 20:56	WG870074
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:56	WG870074
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 20:56	WG870074
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 20:56	WG870074
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 20:56	WG870074
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Isopropylbenzene	0.0170		0.000326	0.00100	0.00100	1	05/05/2016 20:56	WG870074
p-lsopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 20:56	WG870074
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 20:56	WG870074
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 20:56	WG870074
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 20:56	WG870074
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 20:56	WG870074
Methyl tert-butyl ether	0.00384		0.000367	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 20:56	WG870074
n-Propylbenzene	0.00125		0.000349	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 20:56	WG870074
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 20:56	WG870074
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 20:56	WG870074
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 20:56	WG870074
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 20:56	WG870074
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 20:56	WG870074
(S) Toluene-d8	103				90.0-115		05/05/2016 20:56	WG870074
(S) Dibromofluoromethane	103				79.0-121		05/05/2016 20:56	WG870074

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

95.4

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	2.26		0.0247	0.100	0.100	1	05/03/2016 20:14	WG869249
(S) o-Terphenyl	106				50.0-150		05/03/2016 20:14	WG869249

80.1-120

05/05/2016 20:56

WG870074

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3120		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:31	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	185		2.60	1.00	50.0	50	05/09/2016 14:34	WG869673
Fluoride	1.51		0.00990	0.100	0.100	1	05/10/2016 00:39	WG869673
Sulfate	1380		3.87	5.00	250	50	05/09/2016 14:34	WG869673

Metals (ICPMS) by Method 6020

Wetals (ICI WIS) by N	VICTIOG 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/I		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0150		0.00125	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Arsenic, Dissolved	0.0112		0.00125	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Barium	0.0379		0.00180	0.00500	0.0250	5	05/06/2016 17:58	WG869264
Barium, Dissolved	0.0323		0.00180	0.00500	0.0250	5	05/07/2016 03:02	WG869123
Calcium	422		0.230	1.00	5.00	5	05/06/2016 17:58	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Iron	U		0.0750	0.100	0.500	5	05/06/2016 17:58	WG869264
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:02	WG869123
Lead	0.00274	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Lead, Dissolved	0.00207	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Manganese	0.0113	<u>J</u>	0.00125	0.00500	0.0250	5	05/06/2016 17:58	WG869264
Manganese, Dissolved	0.00654	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 03:02	WG869123
Potassium	4.40	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 17:58	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Selenium,Dissolved	0.0103		0.00190	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Sodium	271		0.550	1.00	5.00	5	05/06/2016 17:58	WG869264

Qc

Gl

Αl

Sc

Arsenic, Dissolved	0.0112		0.00125	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Barium	0.0379		0.00180	0.00500	0.0250	5	05/06/2016 17:58	WG869264
Barium, Dissolved	0.0323		0.00180	0.00500	0.0250	5	05/07/2016 03:02	WG869123
Calcium	422		0.230	1.00	5.00	5	05/06/2016 17:58	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Iron	U		0.0750	0.100	0.500	5	05/06/2016 17:58	WG869264
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:02	WG869123
Lead	0.00274	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Lead, Dissolved	0.00207	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Manganese	0.0113	<u>J</u>	0.00125	0.00500	0.0250	5	05/06/2016 17:58	WG869264
Manganese, Dissolved	0.00654	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 03:02	WG869123
Potassium	4.40	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 17:58	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 17:58	WG869264
Selenium, Dissolved	0.0103		0.00190	0.00200	0.0100	5	05/07/2016 03:02	WG869123
Sodium	271		0.550	1.00	5.00	5	05/06/2016 17:58	WG869264

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	23.9		0.785	0.100	2.50	25	05/02/2016 22:23	WG869042
(S) a,a,a-Trifluorotoluene(FID)	96.9				62.0-128		05/02/2016 22:23	WG869042

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Acetone	U		0.250	0.0500	1.25	25	05/03/2016 20:36	WG868978			
Benzene	12.7		0.166	0.00100	0.500	500	05/06/2016 14:00	WG870046			
Bromodichloromethane	U		0.00950	0.00100	0.0250	25	05/03/2016 20:36	WG868978			
Bromoform	U		0.0117	0.00100	0.0250	25	05/03/2016 20:36	WG868978			
Bromomethane	U		0.0216	0.00500	0.125	25	05/03/2016 20:36	WG868978			
n-Butylbenzene	U		0.00902	0.00100	0.0250	25	05/03/2016 20:36	WG868978			
sec-Butylbenzene	U		0.00912	0.00100	0.0250	25	05/03/2016 20:36	WG868978			
Carbon disulfide	0.0107	<u>J</u>	0.00688	0.00100	0.0250	25	05/03/2016 20:36	WG868978			
Carbon tetrachloride	U		0.00948	0.00100	0.0250	25	05/03/2016 20:36	WG868978			

10

Collected date/time: 04/28/16 09:15

Volatile Organic Compounds (GC/MS) by Method 8260B

NE LAB.	NATIONWIDE.	
		_

Ss

Cn

СС

Gl

Αl

Sc

<u> </u>	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00870	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Chlorodibromomethane	U		0.00818	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Chloroethane	U		0.0113	0.00500	0.125	25	05/03/2016 20:36	WG868978
Chloroform	U		0.00810	0.00500	0.125	25	05/03/2016 20:36	WG868978
Chloromethane	U		0.00690	0.00250	0.0625	25	05/03/2016 20:36	WG868978
1,2-Dibromoethane	U		0.00952	0.00100	0.0250	25	05/03/2016 20:36	WG868978
1,1-Dichloroethane	U		0.00648	0.00100	0.0250	25	05/03/2016 20:36	WG868978
1,2-Dichloroethane	U		0.00902	0.00100	0.0250	25	05/03/2016 20:36	WG868978
I,1-Dichloroethene	U		0.00995	0.00100	0.0250	25	05/03/2016 20:36	WG868978
cis-1,2-Dichloroethene	U		0.00650	0.00100	0.0250	25	05/03/2016 20:36	WG868978
rans-1,2-Dichloroethene	U		0.00990	0.00100	0.0250	25	05/03/2016 20:36	WG868978
I,2-Dichloropropane	U		0.00765	0.00100	0.0250	25	05/03/2016 20:36	WG868978
cis-1,3-Dichloropropene	U		0.0104	0.00100	0.0250	25	05/03/2016 20:36	WG868978
trans-1,3-Dichloropropene	U		0.0105	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Ethylbenzene	0.0446		0.00960	0.00100	0.0250	25	05/03/2016 20:36	WG868978
sopropylbenzene	0.0329		0.00815	0.00100	0.0250	25	05/03/2016 20:36	WG868978
o-Isopropyltoluene	U		0.00875	0.00100	0.0250	25	05/03/2016 20:36	WG868978
2-Butanone (MEK)	U		0.0982	0.0100	0.250	25	05/03/2016 20:36	WG868978
2-Hexanone	U		0.0955	0.0100	0.250	25	05/03/2016 20:36	WG868978
Methylene Chloride	U		0.0250	0.00500	0.125	25	05/03/2016 20:36	WG868978
4-Methyl-2-pentanone (MIBK)	U		0.0535	0.0100	0.250	25	05/03/2016 20:36	WG868978
Methyl tert-butyl ether	0.0580		0.00918	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Naphthalene	0.0442	J	0.0250	0.00500	0.125	25	05/03/2016 20:36	WG868978
n-Propylbenzene	0.0430	_	0.00872	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Styrene	U		0.00768	0.00100	0.0250	25	05/03/2016 20:36	WG868978
,1,1,2-Tetrachloroethane	U		0.00962	0.00100	0.0250	25	05/03/2016 20:36	WG868978
,1,2,2-Tetrachloroethane	U		0.00325	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Tetrachloroethene	U		0.00930	0.00100	0.0250	25	05/03/2016 20:36	WG868978
oluene	0.124	J	0.0195	0.00500	0.125	25	05/03/2016 20:36	WG868978
,1,1-Trichloroethane	U	_	0.00798	0.00100	0.0250	25	05/03/2016 20:36	WG868978
1,1,2-Trichloroethane	U		0.00958	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Trichloroethene	U		0.00995	0.00100	0.0250	25	05/03/2016 20:36	WG868978
1,2,4-Trimethylbenzene	0.0824		0.00932	0.00100	0.0250	25	05/03/2016 20:36	WG868978
1,3,5-Trimethylbenzene	0.0114	<u>J</u>	0.00968	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Vinyl chloride	U	_	0.00648	0.00100	0.0250	25	05/03/2016 20:36	WG868978
o-Xylene	U		0.00852	0.00100	0.0250	25	05/03/2016 20:36	WG868978
n&p-Xylene	0.203		0.0180	0.00100	0.0250	25	05/03/2016 20:36	WG868978
Kylenes, Total	0.203		0.0265	0.00300	0.0750	25	05/03/2016 20:36	WG868978
(S) Toluene-d8	104				90.0-115		05/03/2016 20:36	WG868978
(S) Toluene-d8	101				90.0-115		05/06/2016 14:00	WG870046
(S) Dibromofluoromethane	115				79.0-121		05/06/2016 14:00	WG870046
(S) Dibromofluoromethane	99.9				79.0-121		05/03/2016 20:36	WG868978
(S) 4-Bromofluorobenzene	96.9				80.1-120		05/03/2016 20:36	WG868978
(S) 4-Bromofluorobenzene	83.6				80.1-120		05/06/2016 14:00	WG870046

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	19.5		0.124	0.100	0.500	5	05/04/2016 13:59	WG869249
(S) o-Terphenyl	110				50.0-150		05/04/2016 13:59	WG869249

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 08:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1270		2.82	10.0	10.0	1	05/04/2016 15:50	WG869765

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.197	J P1	0.197	0.100	1.00	10	05/06/2016 05:32	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	239		2.60	1.00	50.0	50	05/10/2016 01:11	WG869673
Fluoride	0.940		0.00990	0.100	0.100	1	05/10/2016 00:55	WG869673
Sulfate	168		0.774	5.00	50.0	10	05/10/2016 21:35	WG871228

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Metals (ICI MS) by Metalou 0020								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0293		0.00125	0.00200	0.0100	5	05/06/2016 18:00	WG869264
Arsenic, Dissolved	0.0210		0.000250	0.00200	0.00200	1	05/04/2016 18:58	WG869664
Barium	0.0898		0.00180	0.00500	0.0250	5	05/06/2016 18:00	WG869264
Barium, Dissolved	0.0758		0.000360	0.00500	0.00500	1	05/04/2016 18:58	WG869664
Calcium	220		0.230	1.00	5.00	5	05/06/2016 18:00	WG869264
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 18:00	WG869264
Chromium, Dissolved	0.000621	<u>J</u>	0.000540	0.00200	0.00200	1	05/04/2016 18:58	WG869664
Iron	1.38		0.0750	0.100	0.500	5	05/06/2016 18:00	WG869264
Iron,Dissolved	1.11		0.0150	0.100	0.100	1	05/04/2016 18:58	WG869664
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 18:00	WG869264
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/04/2016 18:58	WG869664
Manganese	1.34		0.00125	0.00500	0.0250	5	05/06/2016 18:00	WG869264
Manganese, Dissolved	1.09		0.000250	0.00500	0.00500	1	05/04/2016 18:58	WG869664
Potassium	0.522	J	0.185	1.00	5.00	5	05/06/2016 18:00	WG869264
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 18:00	WG869264
Selenium,Dissolved	0.00105	ВЈ	0.000380	0.00200	0.00200	1	05/04/2016 18:58	WG869664
Sodium	169		0.550	1.00	5.00	5	05/06/2016 18:00	WG869264

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.614		0.0314	0.100	0.100	1	05/02/2016 22:46	WG869042
(S) a,a,a-Trifluorotoluene(FID)	97.0				62.0-128		05/02/2016 22:46	WG869042

3									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 11:07	WG868978	
Benzene	0.0664	<u>J6</u>	0.000331	0.00100	0.00100	1	05/03/2016 11:07	WG868978	
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 11:07	WG868978	
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 11:07	WG868978	
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 11:07	WG868978	
n-Butylbenzene	0.000427	J	0.000361	0.00100	0.00100	1	05/03/2016 11:07	WG868978	
sec-Butylbenzene	0.00151		0.000365	0.00100	0.00100	1	05/03/2016 11:07	WG868978	
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 11:07	WG868978	
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 11:07	WG868978	

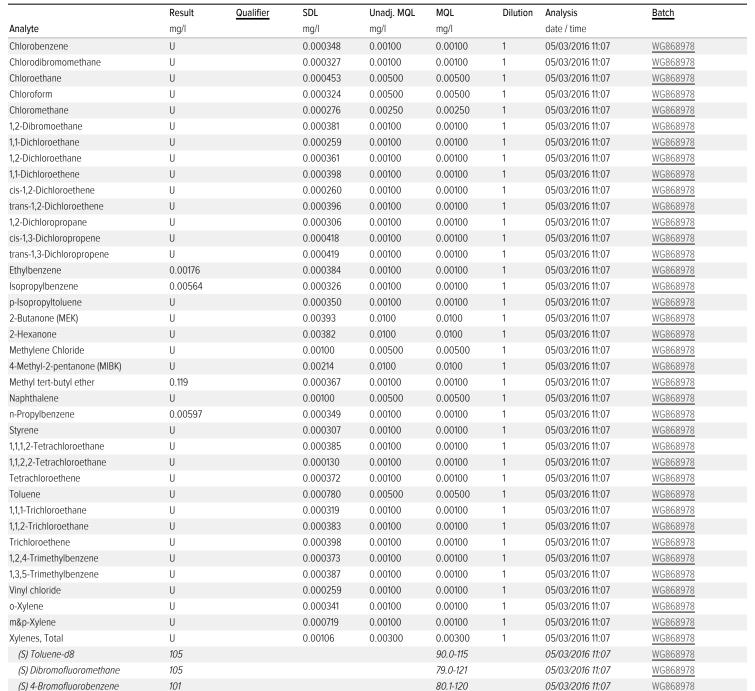
Collected date/time: 04/28/16 08:25

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE	LAB.	NATIONWIDE.	

Тс

Ss


Cn

Qc

GI

Al

Sc

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.84		0.0247	0.100	0.100	1	05/03/2016 20:47	WG869249
(S) o-Terphenyl	103				50.0-150		05/03/2016 20:47	WG869249

SAMPLE RESULTS - 21

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3050		2.82	10.0	10.0	1	05/04/2016 18:17	WG869816

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:34	WG870054

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1140		2.60	1.00	50.0	50	05/10/2016 01:43	WG869673
Fluoride	0.478		0.00990	0.100	0.100	1	05/10/2016 01:27	WG869673
Sulfate	1070		3.87	5.00	250	50	05/10/2016 01:43	WG869673

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Calcium	370		0.230	1.00	5.00	5	05/06/2016 18:03	WG869264
Potassium	3.67	J	0.185	1.00	5.00	5	05/06/2016 18:03	WG869264
Sodium	695		0.550	1.00	5.00	5	05/06/2016 18:03	WG869264

Αl

Sc

Qc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 14:56	WG868976
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 14:56	WG868976
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 14:56	WG868976
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Chloroethane	U		0.000453	0.00500	0.00500	1	05/03/2016 14:56	WG868976
Chloroform	U		0.000324	0.00500	0.00500	1	05/03/2016 14:56	WG868976
Chloromethane	U		0.000276	0.00250	0.00250	1	05/03/2016 14:56	WG868976
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/03/2016 14:56	WG868976
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/03/2016 14:56	WG868976
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/03/2016 14:56	WG868976
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 14:56	WG868976
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/03/2016 14:56	WG868976
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/03/2016 14:56	WG868976
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/03/2016 14:56	WG868976
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/03/2016 14:56	WG868976
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/03/2016 14:56	WG868976
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/03/2016 14:56	WG868976
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/03/2016 14:56	WG868976
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/03/2016 14:56	WG868976
-Hexanone	U		0.00382	0.0100	0.0100	1	05/03/2016 14:56	WG868976
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/03/2016 14:56	WG868976
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/03/2016 14:56	WG868976

SAMPLE RESULTS - 21

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:00

(S) 4-Bromofluorobenzene

L832422

Volatile Organic Compounds (GC/MS) by Method 8260B

81.5

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/06/2016 14:21	WG870046
Naphthalene	U		0.00100	0.00500	0.00500	1	05/03/2016 14:56	WG868976
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Styrene	U		0.000307	0.00100	0.00100	1	05/03/2016 14:56	WG868976
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/03/2016 14:56	WG868976
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Toluene	U		0.000780	0.00500	0.00500	1	05/03/2016 14:56	WG868976
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/03/2016 14:56	WG868976
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 14:56	WG868976
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/03/2016 14:56	WG868976
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/03/2016 14:56	WG868976
o-Xylene	U		0.000341	0.00100	0.00100	1	05/03/2016 14:56	WG868976
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/03/2016 14:56	WG868976
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/03/2016 14:56	WG868976
(S) Toluene-d8	103				90.0-115		05/03/2016 14:56	WG868976
(S) Toluene-d8	102				90.0-115		05/06/2016 14:21	WG870046
(S) Dibromofluoromethane	120				79.0-121		05/06/2016 14:21	WG870046
(S) Dibromofluoromethane	102				79.0-121		05/03/2016 14:56	WG868976
(S) 4-Bromofluorobenzene	98.0				80.1-120		05/03/2016 14:56	WG868976

80.1-120

05/06/2016 14:21

WG870046

Method Blank (MB Corporation MB Rule MB Qualifier MB MB Rule MB R	MB Result MB Qualifier MB MD MB RD M	WG869764 Gravimetric Analys		540 C-2011		C	UALITY L8324		ROL SUN				ONE LAB. NATIONWIDE.	*
MB Result MB Qualifier MB MDL mg/l	MB Result MB Qualifier MB MDL MB RDL mg/l	Method Blank (N	MB)							_				1
Manalyte mg/l mg/	Part Might	-	-											Ср
L832360-01 Original Sample OS ** Duplicate DUP	2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 2.82 10.0 4 Cr 2.832360-01 05/04/16 16:22 · (DUP) R3134189-4 05/04/16 16:22 2.832360-01 05/04/16 16:22 · (DUP) R3134189-4 05/04/16 16:22 2.82 10.0 2.82 10.0 4 Cr 2.82 10.0 2.82 10			MB Qualifier										2
L832360-01 Original Sample (OS) * Duplicate (DUP) (OS) L832360-01 05/04/16 16:22 * (DUP) R3134189-4 05/04/16 16:22 Original Result DUP Result Dilution DUP RPD DUP RPD Limits Analyte mg/l mg/l % 5 Dissolved Solids 11800 11800 1 0.169 5 Laboratory Control Sample (LCS) * Laboratory Control Sample Duplicate (LCSD) (LCS) R3134189-2 05/04/16 16:22 * (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCS Result LCS Result LCS Result LCS Result LCS Result Results R	Second Sample Cos Duplicate DUP													10
Cos L832360-01 O5/04/16 16:22 * (DUP) R3134189-4 O5/04/16 16:22 * O7iginal Result DUP Result DUP Result DUP RPD DUP RPD Limits Support DUP RPD Limits	Sazago O O O O O O O O O	orașorveu sorius	O .		2.02	10.0								3 Ss
Analyte Original Result DUP Result DUP RPD Limits Dissolved Solids 11800 11800 1 0.169 ** 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) CCSD) CCSD) (LCS) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 • (LCSD Result LCS Result LCS Result Resu	Original Result DUP Result DUP Result DUP Reput DUP RPD Limits e mg/l mg/l v % red Solids 11800 11800 1 0.169 5 Coratory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Limits LCS Qualifier RPD RPD Limits e mg/l mg/l mg/l wg/l % % % % % % % % % % % % % % % % % % %													4 (7)
Analyte mg/l mg/l % % % Dissolved Solids 11800 11800 1 0.169 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCS Result LCS Res. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % %	See mg/l mg/l % % %	OS) L832360-01 05/												CII
Dissolved Solids 11800 11800 1 0.169 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % %	Figure F	∆nalvte	•											5 Sr
(LCS) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % % %	Traitory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD) F3134189-2 O5/04/16 16:22 + (LCSD) R3134189-3 O5/04/16 16:22 + (LCSD) R3134189-3 O5/04/16 16:22 + (LCSD) R3134189-3 O5/04/16 O5/04													
(LCS) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % % %	Traitory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD) F3134189-2 O5/04/16 16:22 + (LCSD) R3134189-3 O5/04/16 16:22 + (LCSD) R3134189-3 O5/04/16 16:22 + (LCSD) R3134189-3 O5/04/16 O5/04													~
(LCS) R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % %	R3134189-2 05/04/16 16:22 • (LCSD) R3134189-3 05/04/16 16:22 Spike Amount LCS Result LCSD Result LCSD Res. LCSD Rec. LCSD Rec. LCSD Rec. LCSD Rec. LCSD Rec. LCSD Qualifier RPD RPD Limits													°Oc
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % %	Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. LCSD Rec. LCSD Qualifier LCSD Qualifier RPD RPD Limits	abaratan, Can	tral Cample /		roton. Co	antral Cam	nla Dunliaat	1 CCD)						[®] Qc
Analyte mg/l mg/l mg/l % % % %	e mg/l mg/l mg/l % % % % % % % red Solids 8800 8720 8560 99.1 97.3 85.0-115 1.85 5						ple Duplicat	e (LCSD)						7
Dissolved Solids 8800 8720 8560 99.1 97.3 85.0-115 1.85 5	red Solids 8800 8720 8560 99.1 97.3 85.0-115 1.85 5		04/16 16:22 • (LCSE	D) R3134189-3	05/04/16 16	i:22			LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		°Qc
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount	D) R3134189-3 LCS Result	05/04/16 16 LCSD Resu	i:22 It LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier				8
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		7
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ Gl
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI
		LCS) R3134189-2 05/	04/16 16:22 • (LCSE Spike Amount mg/l	D) R3134189-3 LCS Result mg/l	05/04/16 16 LCSD Resu mg/l	i:22 Ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		⁷ GI

DATE/TIME:

05/17/16 20:14

PAGE:

54 of 99

PROJECT:

249545.0000.0000 000

ACCOUNT:

WG86976!		540 C-2011		C		Y CONTF					ONE LAB. NATIONWIDE.	果
Method Blank (I	MB)											1
(MB) R3134188-1 05/0	04/16 15:50											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Dissolved Solids	U		2.82	10.0								3 Ss
L832422-11 Orig	ginal Sample (OS) • Dupl	icate (Dl	JP)								
(OS) L832422-11 05/0	04/16 15:50 • (DUP)	R3134188-4 0	5/04/16 15:5	50								[‡] Cn
	Original Result	t DUP Result	Dilution		DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						Sr
Dissolved Solids	2670	2640	1	1.13		5						6 _
Laboratory Con	tral Cample (1	CC) Labo	ratan (C	antral Cam	nalo Dundio	ato (LCCD)						[°] Qc
(LCS) R3134188-2 05					ibie Dubiic	ate (LC3D)						7 GI
(203) 1(3134100-2-03)	Spike Amount		LCSD Resi		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		8 Al
Dissolved Solids	8800	8730	8710	99.2	99.0	85.0-115			0.229	5		
												9Sc

DATE/TIME:

05/17/16 20:14

PAGE:

55 of 99

PROJECT:

249545.0000.0000 000

ACCOUNT:

WG869816 Gravimetric Analys		640 C-2011		G	UALITY	CONTR L83242		MMARY			ONE LAB. NATIONWIDE.	*
Method Blank (N	MB)											1
(MB) R3134195-1 05/0	,											Ср
. ,	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Dissolved Solids	U		2.82	10.0								3 Ss
L832422-21 Oriç	ginal Sample (OS) • Dup	olicate (DU	IP)								4
(OS) L832422-21 05/0												Cn
	Original Result		Dilution [UP RPD Limits						5_
Analyte Dissolved Solids	mg/l	mg/l	9		% 5							⁵ Sr
Dissolved Solids	3050	3020	1 (.824	5							6
												[°] Qc
Laboratory Cont					ple Duplicate	e (LCSD)						⁷ Gl
(LCS) R3134195-2 05/	/04/16 18:17 • (LCSD) Spike Amount		05/04/16 18:1 LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		Gi
		LC3 Result	LC3D Resul	LUS REC.					KPD	KPD LIIIIILS		
Analyte	•			%	%	%			%	%		8 1
Analyte Dissolved Solids	mg/l 8800	mg/l 8450	mg/l 8500						% 0.590	% 5		⁸ Al
	mg/l	mg/l	mg/l	%	%	%						⁸ Al

DATE/TIME:

05/17/16 20:14

PAGE:

56 of 99

PROJECT:

249545.0000.0000 000

ACCOUNT:

Nitrate-Nitrite 0.0240 BJ 0.0197 0.100 L832422-01 Original Sample (OS) * Duplicate (DUP) (OS) L832422-01 O5/11/16 13:21 * (DUP) R3135762-8 05/11/16 13:22 Urginal Result DIP Result DIP RPD DUP RPD Limits Analyte mg/l mg/l % % % Nitrate-Nitrite 0.430 ND 10 17.0 BJ 20 (OS) L832422-15 Original Sample (OS) * Duplicate (DUP) (OS) L832422-15 Original Sample (OS) * Duplicate (DUP) (OS) L832422-15 Original Result DIP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits	WG870052 Wet Chemistry by Met	thod 353.2					Y CONTR					ONE LAB. NATIONWIDE.	¥
MB MB MB MB MB MB MB MB	Method Blank (MB))											1 Cn
Analyte mg/l mg/l mg/l n/mark-Nirrite	(MB) R3135762-5 05/11/16	13:17											
Name		MB Result	MB Qualifier	MB MDL	MB RDL								2
Signate	Analyte	mg/l		mg/l	mg/l								² Tc
Cost	Nitrate-Nitrite	0.0240	ВЈ	0.0197	0.100								
Cost													3 Ss
Co 1	L832422-01 Origin	ıal Sample ((OS) • Dupl	icate (D	UP)								4
Analyte Mirate Nitrite Olive													[†] Cn
National Nigria	(00) 2002 122 01 011 1					DUP Qualifier	DUP RPD Limits						
Nation	Analyte	-					%						⁵Sr
Cost		0.430		10	17.0	ВЈ	20						
Cost													600
Cost L832422-15 Os/11/16 15-12 (DUP) Result DUP Result DUP Reput DUP Reput DUP Reput Nitrate-Nitrite				_									- QC
Nitrate-Nitrite Nitrate-Ni	L832422-15 Origin	al Sample (OS) • Dupli	icate (DI	JP)								7 01
Analyte mg/l mg/l % % % % % % % % %	(OS) L832422-15 05/11/16	15:12 • (DUP) R	3135762-11 05/	/11/16 15:13									GI
Nitrate-Nitrite U ND 10 0.000 20 Laboratory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD) (LCS) R3135762-6 05/11/16 13:18 + (LCSD) R3135762-7 05/11/16 13:19 Spike Amount LCS Result LCSD Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % % % Nitrate-Nitrite 5.00 4.78 4.80 96.0 96.0 90.0-110 0.000 20 L832422-06 Original Sample (OS) + Matrix Spike (MS) (OS) L832422-06 05/11/16 13:32 + (MS) R3135762-9 05/11/16 13:33 Spike Amount Original Result MS Result MS Result MS Rec. Dilution Rec. Limits Oualifier MS Oualifier MS Rec. Dilution Rec. Limits Oualifier MS Rec. Dilution Rec. Dilu		Original Result	DUP Result										
Solution Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD)	Analyte				%								⁸ Al
Laboratory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD)	Nitrate-Nitrite	U	ND	10	0.000		20						
Laboratory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD)													950
CLCS R3135762-6 O5/11/16 13:18 • (LCSD R3135762-7 O5/11/16 13:19 Spike Amount LCS Result LCS Desult RPD RPD Limits LCS Desult RPD RPD Limits LCS Desult Result RPD RPD Limits LCS Desult RPD RPD Limits LCS Desult RPD RPD Limits LCS Desult RPD RPD Limits RPD Limits RPD RPD Limits RPD Limits RPD Limits RPD Limit	I - b aratan (Cantral	Cample /		ton. C	antrol Cor	la Dundia	-+- // CCD)						30
Spike Amount LCS Result LCS Dec. Rec. Limits LCS Qualifier LCS Qualifier RPD RPD Limits RPD Limits RPD Limits RPD Limits RPD L						npie Duplica	ate (LCSD)						_
Analyte mg/l mg/l mg/l % % % % % % 0.000 20 Nitrate-Nitrite 5.00 4.78 4.80 96.0 96.0 90.0-110 0.000 20 L832422-06 Original Sample (OS) • Matrix Spike (MS) (OS) L832422-06 05/11/16 13:32 • (MS) R3135762-9 05/11/16 13:33 Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits Oualifier Analyte mg/l mg/l mg/l % % %	(LCS) R3135762-6 05/11/16												
Nitrate-Nitrite 5.00 4.78 4.80 96.0 96.0 90.0-110 0.000 20 L832422-06 Original Sample (OS) • Matrix Spike (MS) (OS) L832422-06 05/11/16 13:32 • (MS) R3135762-9 05/11/16 13:33 Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits MS Qualifier Analyte mg/l mg/l % %		•						LCS Qualifier	LCSD Qualifier				
L832422-06 Original Sample (OS) • Matrix Spike (MS) (OS) L832422-06 05/11/16 13:32 • (MS) R3135762-9 05/11/16 13:33 Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits Outling Analyte mg/l mg/l % %													
(OS) L832422-06 O5/11/16 13:32 • (MS) R3135762-9 O5/11/16 13:33 Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits MS Qualifier Analyte mg/l mg/l % % %	Nitrate-Nitrite	5.00	4.78	4.80	96.0	96.0	90.0-110			0.000	20		
(OS) L832422-06 O5/11/16 13:32 • (MS) R3135762-9 O5/11/16 13:33 Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits MS Qualifier Analyte mg/l mg/l % % %													
Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits MS Qualifier Analyte mg/l mg/l % %	L832422-06 Origir	nal Sample	(OS) • Matr	rix Spik€	∍ (MS)								
Analyte mg/l mg/l mg/l % %	(OS) L832422-06 05/11/16	3 13:32 • (MS) R	3135762-9 05/	/11/16 13:33									
Analyte mg/l mg/l mg/l % %		Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Nitrate-Nitrite 5.00 4.61 52.5 96.0 10 90.0-110	Analyte	mg/l	mg/l	mg/l	%		%						
	Nitrate-Nitrite	5.00	4.61	52.5	96.0	10	90.0-110						

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME: 05/17/16 20:14

PAGE:

57 of 99

QUALITY CONTROL SUMMARY L832422-01,02,03,04,05,06,07,08,09,11,12,13,14,15,16,17,18

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L834500-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC) L024E00 01	OF /11/16 1E-00 /MC) D010E760 10	05/11/16 15:24 • (MSD) R3135762-13 05/11/16 15:25

(11)		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.562	5.32	5.34	95.0	96.0	1	90.0-110			1.00	20

												Total Control
WG870054 Wet Chemistry by Metl	hod 353.2			(QUALIT	Y CONTR L832422-19		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)												1 _
(MB) R3134229-1 05/06/16	05:27 و											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								Тс
Nitrate-Nitrite	U		0.0197	0.100								3 Ss
L832422-20 Origin	nal Sample	(OS) • Dup	olicate (E	OUP)								4
(OS) L832422-20 05/06/1	6 05:32 • (DUF	P) R3134229-4	05/06/16 (05:33								Cn
	Original Result	DUP Result	Dilution		DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						°Sr
Nitrate-Nitrite	0.197	ND	10	25.0	<u>J P1</u>	20						606
L832435-07 Origin	al Sample	(OS) • Dup	licate (D	OUP)								Qc
(OS) L832435-07 05/06/10	<u>'</u>	· / ·										⁷ GI
,	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ Al
Nitrate-Nitrite	0.258	ND	10	2.00	<u> </u>	20						9_
Laboratory Control	Sample (Lo	CS) • Labor	ratory C	ontrol San	nple Duplic	cate (LCSD)						Sc
(LCS) R3134229-2 05/06/	I6 05:28 • (LCS	D) R3134229-3	3 05/06/16	ن 05:29								
	Spike Amount		LCSD Resu				LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	4.98	5.01	100	100	90.0-110			1.00	20		
L832435-02 Origin		. ,		· '								
(OS) L832435-02 05/06/1	, ,						MC					ı
	Spike Amount	Original Result			Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	0.500	3.82	8.04	84.3	10	90.0-110	<u>J6</u>					
												ŀ
												ļ

DATE/TIME:

05/17/16 20:14

PAGE:

59 of 99

PROJECT: 249545.0000.0000 000

ACCOUNT:

QUALITY CONTROL SUMMARY LB32422-19,20,21

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832435-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832435-12	05/06/16 05:57 •	(MS) R3134229-7	05/06/16 05:59 • (1	MSD) R3134229-8	05/06/16 06:00

(03) 2032 133 12 03/00/10	00.57 - (1415) 1	(31342237 03	,,00,10 05.55	(11100) 1101012	23 0 03/00/10	00.00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	0.500	U	4.43	4.16	86.0	80.7	10	90.0-110	<u>J6</u>	<u>J6</u>	6.19	20

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869281 Wet Chemistry by Method 9056A $\underline{\texttt{L832422-01}, \texttt{02}, \texttt{04}, \texttt{05}, \texttt{06}, \texttt{07}, \texttt{08}, \texttt{09}, \texttt{11}, \texttt{12}, \texttt{13}, \texttt{14}, \texttt{15}, \texttt{16}}$ Method Blank (MB) (MB) R3133711-4 05/03/16 07:00 MB MDL MB RDL MB Result MB Qualifier Тс Analyte mg/l mg/l mg/l Chloride 0.0955 0.0519 1.00 Fluoride U 0.0099 0.100 Ss 0.0774 5.00 Sulfate U Cn L832422-15 Original Sample (OS) • Duplicate (DUP) (OS) L832422-15 05/04/16 00:25 • (DUP) R3133711-6 05/04/16 00:40 Sr Original Result DUP Result Dilution DUP RPD **DUP Qualifier DUP RPD Limits** Analyte mg/l mg/l % Chloride 571 558 50 15 138 136 Sulfate 50 GI L832422-15 Original Sample (OS) • Duplicate (DUP) Αl (OS) L832422-15 05/04/16 01:25 • (DUP) R3133711-7 05/04/16 01:40 DUP Qualifier DUP RPD Limits Original Result DUP Result Dilution DUP RPD Sc Analyte mg/l % % 1.16 Fluoride 1.13 3 15 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133711-5 05/03/16 07:15 • (LCSD) R3133711-8 05/03/16 07:30 Spike Amount LCS Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l % % % mg/l mg/l %

40.0

8.00

40.0

40.3

8.18

40.7

40.7

8.23

40.8

101

102

102

Chloride

Fluoride

Sulfate

102

103

102

80-120

80-120

80-120

15

15

15

0

					~ · · · · · -							má.
WG869673 Wet Chemistry by M					QUALIT	Y CONTF		MMARY			ONE LAB. NATIONWIDE.	-
Method Blank (M	1B)											1
(MB) R3135221-1 05/09	9/16 12:11											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Chloride	U		0.0519	1.00								2
Fluoride	U		0.0099	0.100								°Ss
Sulfate	U		0.0774	5.00								
												⁴ Cn
L832435-02 Ori	ginal Sample	(OS) • Dup	olicate (l	DUP)								
(OS) L832435-02 05/0	09/16 15:22 • (DUP)) R3135221-4	05/09/16 1	5:38								⁵ Sr
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁶ Qc
Fluoride	0.907	0.903	1	1		15						QC
												7
L832435-02 Orio	ainal Sample	(OS) • Dur	licato (l	JI IDI								GI
(OS) L832435-02 05/0	<u> </u>	· / /	,									8
(03) L632435-02 05/0	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						Al
Analyte	mg/l	mg/l	Dilution	%	DOI Qualifier	%						
Chloride	293	280	50	5		15						Sc
Sulfate	1030	1030	50	1		15						
1 000 400 40 0 :		(00)	/-	N. I.D.)								
L832409-10 Orig		. , .										
(OS) L832409-10 05/10												
	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	421	417	20	1		15						
Fluoride Sulfate	1.28 355	1.15 350	20 20	11	7	15 15						
Zuilate	333	350	20	I		15						
Laboratory Cont	rol Sample (Lo	CS) • Labo	ratory (Control Sar	nple Duplic	cate (LCSD)						
(LCS) R3135221-2 05/0	09/16 12:27 • (LCSE	D) R3135221-3	05/09/16	12:43		. ,						
, ,	Spike Amount	-	LCSD Re		. LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.1	39.3	98	98	80-120			0	15		
Fluoride	8.00	7.86	7.94	98	99	80-120			1	15		

DATE/TIME: 05/17/16 20:14 PAGE: 62 of 99

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG869673 Wet Chemistry by Method 9056A Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3135221-2 05/09/16 12:27 • (LCSD) R3135221-3 05/09/16 12:43 Spike Amount LCS Result LCSD Rec. LCSD Qualifier RPD RPD Limits LCSD Result LCS Rec. Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % % % % Sulfate 40.0 38.7 39.4 97 98 80-120 15 Ss L832435-03 Original Sample (OS) • Matrix Spike (MS) (OS) L832435-03 05/09/16 16:26 • (MS) R3135221-6 05/09/16 16:42 MS Qualifier Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits Sr Analyte mg/l mg/l mg/l % % Fluoride 5.00 0.548 5.43 98 80-120

MSD Rec.

%

102

101

100

Dilution Rec. Limits

80-120

80-120

80-120

mg/l

50.0

5.00

50.0

Analyte

Chloride

Fluoride

Sulfate

L832435-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

mg/l

51.2

5.00

50.3

MSD Result

mg/l

51.2

5.03

50.4

MS Rec.

102

100

100

(OS) L832435-12 05/10/16 03:02 • (MS) R3135221-8 05/10/16 03:18 • (MSD) R3135221-9 05/10/16 03:34 Spike Amount Original Result MS Result

mg/l

0.360

U

0.227

MSD Qualifier

MS Qualifier

RPD

0

1

0

Тс

Cn

GI

Αl

Sc

RPD Limits

15

15

15

WG87088	32 y Method 9056A			(QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	*
Method Blank	(MB)											1
(MB) R3136016-1 0	5/09/16 23:45											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								³ Ss
Sulfate	U		0.0774	5.00								4
L832488-01 C	riginal Sample (OS) • Dup	licate (D	UP)								Cn
(OS) L832488-01 (5/10/16 03:48 • (DUP)	R3136016-4 0	5/10/16 04	:04								⁵ Sr
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁶ Qc
Fluoride	2.56	2.53	1	1		15						QC
		(0.0)										⁷ Gl
	riginal Sample (
(OS) L832488-01 (95/10/16 11:35 • (DUP) F											⁸ Al
	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁹ Sc
Chloride	3690 2510	3620 2500	100 100	2		15						50
Sulfate	2510	2500	100	0		15						
L832422-15 C	riginal Sample (OS) • Dup	licate (D	UP)								
(OS) L832422-15 (5/10/16 16:38 • (DUP)	R3136016-7 0	5/10/16 16:5	54								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	569	559	10	2		15						
Fluoride	0.587	0.553	10	6	<u>J</u>	15						
Sulfate	164	155	10	5		15						
Laboratory Co	ontrol Sample (L	CS) • Labo	ratory C	Control San	nple Duplic	ate (LCSD)						
(LCS) R3136016-2	05/10/16 00:01 • (LCSE											
	Spike Amount		LCSD Res				LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	40.2	39.7	100	99	80-120			1	15		
Fluoride	8.00	8.00	7.93	100	99	80-120			1	15		

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 20:14 PAGE: 64 of 99

L832422-03,15,16 Wet Chemistry by Method 9056A Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3136016-2 05/10/16 00:01 • (LCSD) R3136016-3 05/10/16 00:17 Spike Amount LCS Result LCSD Rec. LCSD Qualifier RPD RPD Limits LCSD Result LCS Rec. Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % % % % Sulfate 40.0 40.2 39.8 100 99 80-120 15 L832488-14 Original Sample (OS) • Matrix Spike (MS) (OS) L832488-14 05/10/16 07:47 • (MS) R3136016-5 05/10/16 09:50 MS Qualifier Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits Analyte mg/l mg/l mg/l % % Fluoride 5.00 0.603 4.08 70 80-120 L832422-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832422-03 05/10/16 17:09 • (MS) R3136016-8 05/10/16 17:25 • (MSD) R3136016-9 05/10/16 17:41 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. RPD Limits Dilution Rec. Limits MS Qualifier MSD Qualifier RPD Analyte mg/l mg/l mg/l mg/l % Chloride 50.0 U 49.3 49.3 99 99 80-120 0 15 Fluoride 5.00 4.86 4.89 97 98 80-120 U 1 15

98

QUALITY CONTROL SUMMARY

50.0

U

49.2

49.2

98

WG870882

Sulfate

80-120

0

15

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

GI

Αl

Sc

WG871228 Wet Chemistry by	~			(YTIJAUÇ	CONTF		UMMA	RY			40	IE LAB. NATIONWIDE.	*
Method Blank ((MB)													1
(MB) R3135448-1 05/	/10/16 11:38													Ср
	MB Result	MB Qualifier	MB MDL	MB RDL										2
Analyte	mg/l		mg/l	mg/l										² Tc
Sulfate	U		0.0774	5.00										
														³ Ss
L832435-04 O	riginal Sample	(OS) • Dur	licato (DI II	D)										
		, , ,	` `											¹ Cn
(OS) L832435-04 05	5/10/16 22:04 • (DUP Original Result			S P RPD	DUP Qualifier [DUP RPD Limits								
Analyte	mg/l	mg/l	%	FKFD		%								⁵ Sr
Sulfate	199	215	10 8			15								51
Sundic		2.0												⁶ Qc
Laboratory Cor	ntrol Sample (L	CS) • Labo	ratory Con	trol Sam	ple Duplica	te (LCSD)								7
(LCS) R3135448-2 05	5/10/16 11:52 • (LCSD) R3135448-3	05/10/16 12:07			, ,								GI
,	Spike Amount	•	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	ifier LCSD (Qualifier RPD	RPD Lir	nits			
Analyte	mg/l	mg/l	mg/l	%	%	%	<u></u>		%	%				⁸ AI
Sulfate	40.0	39.1	39.2	98	98	80-120			0	15				,
														⁹ Sc
														SC
L832654-01 Or	riginal Sample	(OS) • Matr	ix Spike (N	1S) • Mat	rix Spike Du	uplicate (MS	SD)							
(OS) L832654-01 05	5/11/16 01:06 • (MS) R:	3135448-5 05	/11/16 01:20 • (N	/ISD) R3135	448-6 05/11/16 0	01:35								
	Spike Amount	Original Resul	t MS Result	MSD Resu	lt MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifie	r RPD	RPD Limit	s	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Sulfate	50.0	19.9	68.7	69.0	98	98	1	80-120			0	15		

Wet Chemistry h	8 by Method D 7511-0	9 e 2		G	YTIJAUQ	CONTF L832422-06,		UMMA	RY			ONE LAB. NA	ATIONWIDE.	¥
Method Blank	< (MB)													1
MB) R3136170-1 0	5/10/16 20:39													C
	MB Result	MB Qualifier	MB MDL	MB RDL										² T
Analyte Cyanide	mg/l U		mg/l 0.0012	mg/l 0.00500										L'
,,,,,,,,	-													3 S
_832409-16 (Original Sample ((OS) • Dupl	licate (DU	JP)										4
	05/10/16 21:15 • (DUP) R													1
	Original Result	DUP Result	Dilution D			OUP RPD Limits								5
Analyte	mg/l	mg/l	%		%									٥
Cyanide	U	0.000	1 0	1	2	0								6
														ຶ(
	Original Sample (P)										7
OS) L832435-14 (05/10/16 21:54 • (DUP) F													(
Analyte	Original Result	mg/l	Dilution D		DUP Qualifier D	OUP RPD Limits								8
Cyanide	0.00500	0.00400	1 2		J P1 2									1
														9,
	ontrol Sample (L0 05/10/16 20:42 • (LCSE				ple Duplicat	te (LCSD)								95
	. ,	D) R3136170-3(45 t LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	ifier LCSD G	Dualifier RPD	RPD Limi	ts			9 (
LCS) R3136170-2 Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l	05/10/16 20:- LCSD Result mg/l	t LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	ifier LCSD G	%	%	ts			9()
LCS) R3136170-2	05/10/16 20:42 • (LCSE Spike Amount	D) R3136170-3 (LCS Result	05/10/16 20:4 LCSD Result	45 t LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	ifier <u>LCSD G</u>			ts			9
LCS) R3136170-2 Analyte Cyanide	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100	D) R3136170-3 (LCS Result mg/l 0.0970	05/10/16 20:- LCSD Result mg/l 0.0980	45 t LCS Rec. % 97	LCSD Rec. %	Rec. Limits % 86-114		ifier LCSD G	%	%	ts			9
LCS) R3136170-2 Analyte Cyanide _832409-17 C	05/10/16 20:42 • (LCSE Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970	05/10/16 20:- LCSD Result mg/l 0.0980	45 t LCS Rec. % 97	LCSD Rec. % 98 rix Spike Du	Rec. Limits % 86-114		ifier <u>LCSD G</u>	%	%	ts			9
LCS) R3136170-2 Analyte Cyanide _832409-17 C	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (*	D) R3136170-3 (LCS Result mg/l 0.0970	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (1	45 t LCS Rec. % 97	LCSD Rec. % 98 rix Spike Du 5170-11 05/10/16:	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec.		Rec. Limits	%	%	RPD	RPD Limits		9,
LCS) R3136170-2 Analyte Cyanide _832409-17 C	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		9 -
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		_
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount	D) R3136170-3 (LCS Result mg/l 0.0970 (OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I 1/10/16 22:19 -	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec.	D)	Rec. Limits	% 1	% 20	RPD			
LCS) R3136170-2 Analyte Eyanide .832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		
LCS) R3136170-2 Analyte Eyanide _832409-17 (OS) L832409-17 (Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 Driginal Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 (LCS Result mg/l 0.0970 OS) • Matrix 3136170-10 05/ Original Result	05/10/16 20:- LCSD Result mg/l 0.0980 ix Spike (I y/10/16 22:19 • t MS Result mg/l	45 t LCS Rec. % 97 MS) • Matr • (MSD) R3136 MSD Resul mg/l 0.117	LCSD Rec. % 98 rix Spike Du 6170-11 05/10/16 . It MS Rec. %	Rec. Limits % 86-114 plicate (MS 22:22 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD % 3	%	PAGE:	

WG868782 Mercury by Method 74	170A			Ql	JALITY	CONTR L832422-06		UMMA	RY			ONE LAB. NATIONWIDE.	*
Method Blank (MB))												1
(MB) R3133036-1 05/02/16													- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte Mercury, Dissolved	mg/l U		mg/l 0.000049	mg/l 0.000200									- Tc
Mercury, Dissolved	U		0.000049	0.000200									³ Ss
Laboratory Control	l Sample (L	CS) • Labo	ratory Con	itrol Sampl	e Duplicate	e (LCSD)							4
(LCS) R3133036-2 05/02/													· Cn
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD C	<u>Jualifier</u> RPD	RPD Limit	ts		5
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			Sr Sr
Mercury, Dissolved	0.00300	0.00291	0.00307	97	102	80-120			5	20			6
													[°] Qc
L832422-06 Origin	nal Sample	(OS) • Mat	rix Spike (N	۸S) • Matrix	x Spike Du	plicate (MS	SD)						7
(OS) L832422-06 05/02/													GI GI
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%	10	10	%	%	. Al
Mercury, Dissolved	0.00300	U	0.00137	0.00144	46	48	1	75-125	<u>J6</u>	<u>J6</u>	5	20	0
													Sc

DATE/TIME:

05/17/16 20:14

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

PAGE:

68 of 99

VG86878 lercury by Meth				Ql	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWID	DE.
Nethod Blank						1032422-0	0,13,10						F
MB) R3133035-1 0													
	MB Result	MB Qualifier	MB MDL	MB RDL									[:
Analyte Mercury	mg/l U		mg/l 0.000049	mg/l 0.000200									— L
nercury	U		0.000045	0.000200									3
_aboratory Co	ontrol Sample (L	.CS) • Labo	ratory Con	ntrol Sampl	e Duplicat	e (LCSD)							F
LCS) R3133035-2	05/02/16 11:39 • (LCSI												
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Qua	lifier LCSD G	Oualifier RPD %	RPD Limi %	ts		1
Mercury	0.00300	0.00299	0.00297	100	99	80-120			1	20			— L
viercury	0.00000	0.00233	0.00237	100	33	00 120				20			
L832391-03 C	riginal Sample	(OS) • Matr	ix Spike (N	/IS) • Matrix	: Spike Du	plicate (MS	D)						_ [
OS) L832391-03 0	5/02/16 11:45 • (MS) R												
Analyte	Spike Amount mg/l	Original Resul mg/l	t MS Result mg/l	MSD Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	RPD Limits %	[
Mercury	0.00300	ND	0.00201	0.00292	67	97	1	⁷⁵ -125	<u>J6</u>	13	37	20	
wercury	0.00000	ND	0.00201	0.00232	0,	31		75 125	30	<u>J3</u>	3,	20	-

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 20:14 PAGE: 69 of 99

QUALITY CONTROL SUMMARY 1832422-19

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134619-1 05/07	/16 02:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	0.0221		0.015	0.100	
Lead,Dissolved	U		0.00024	0.00200	
Manganese,Dissolved	U		0.00025	0.00500	
Selenium, Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134619-2 05/07/1	CS) R3134619-2 05/07/16 02:40 • (LCSD) R3134619-3 05/07/16 02:43												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
Arsenic,Dissolved	0.0500	0.0482	0.0496	96	99	80-120			3	20			
Barium,Dissolved	0.0500	0.0494	0.0487	99	97	80-120			1	20			
Chromium, Dissolved	0.0500	0.0490	0.0490	98	98	80-120			0	20			
Iron,Dissolved	5.00	4.78	4.82	96	96	80-120			1	20			
Lead,Dissolved	0.0500	0.0491	0.0499	98	100	80-120			2	20			
Manganese,Dissolved	0.0500	0.0492	0.0491	98	98	80-120			0	20			
Selenium Dissolved	0.0500	0.0482	0.0482	96	96	80-120			0	20			

L832409-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-25 05/0	OS) L832409-25 05/07/16 02:46 • (MS) R3134619-5 05/07/16 02:51 • (MSD) R3134619-6 05/07/16 02:54													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Arsenic, Dissolved	0.0100	0.00741	0.0242	0.0123	34	10	5	75-125	<u>J6</u>	J3 J6	65	20		
Barium,Dissolved	0.0100	0.0650	0.105	0.122	81	115	5	75-125			15	20		
Chromium, Dissolved	0.0100	U	0.0434	0.0503	87	101	5	75-125			15	20		
Iron,Dissolved	1.00	U	4.41	5.39	88	108	5	75-125			20	20		
Lead,Dissolved	0.0100	0.00386	0.0479	0.0534	88	99	5	75-125			11	20		
Manganese, Dissolved	0.0100	0.00359	0.0451	0.0551	83	103	5	75-125			20	20		
Selenium.Dissolved	0.0100	0.596	0.0371	0.0348	0	0	5	75-125	V	V	6	20		

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000 SDG:

DATE/TIME: 05/17/16 20:14

PAGE: 70 of 99 GI

L832422

MB Result MB Qualifier MB MD L MB RDL Analyte mg/l mg/l mg/l Aresinic, Dissolved U 0.0025 0.00200 Chronium, Dissolved U 0.0054 0.0020 ron, Dissolved U 0.015 0.100 dead, Dissolved U 0.0024 0.0020 Anaganese, Dissolved U 0.00025 0.00500 Gelenium, Dissolved U 0.00038 0.00200	2										
Analyte mg/l mg/l Arsenic,Dissolved U 0.00025 0.00200 Chromium,Dissolved U 0.0054 0.00200 Iron,Dissolved U 0.015 0.100 Lead,Dissolved U 0.00024 0.00200 Manganese,Dissolved 0.00079 0.00025 0.00500 Selenium,Dissolved U 0.00038 0.00200	2									3)	Method Blank (M
Analyte mg/l mg/l Arsenic, Dissolved U 0.00025 0.00200 Chromium, Dissolved U 0.0054 0.00200 Iron, Dissolved U 0.015 0.100 Lead, Dissolved U 0.00024 0.00200 Manganese, Dissolved U 0.00079 0.0005 0.00500 Selenium, Dissolved U 0.00038 0.00200	3										(MB) R3134386-1 05/05/
Arsenic, Dissolved U 0.0025 0.00200 Chromium, Dissolved U 0.0054 0.0020 Iron, Dissolved U 0.015 0.100 Lead, Dissolved U 0.0024 0.0020 Manganese, Dissolved 0.00079 0.0025 0.00500	3								MB Qualifier		
Chromium, Dissolved U 0.00054 0.00200 Iron, Dissolved U 0.015 0.100 Lead, Dissolved U 0.00024 0.00200 Manganese, Dissolved U 0.00025 0.00500 Selenium, Dissolved U 0.00038 0.00200	3										
Iron, Dissolved U 0.015 0.100 Lead, Dissolved U 0.00024 0.00200 Manganese, Dissolved 0.00079 0.00025 0.00500 Selenium, Dissolved U 0.00038 0.00200											
Lead, Dissolved U 0.00024 0.00200 Manganese, Dissolved 0.00079 0.00025 0.00500 Selenium, Dissolved U 0.00038 0.00200	L										
Manganese, Dissolved 0.00079 0.00025 0.00500 Selenium, Dissolved U 0.00038 0.00200											
Selenium,Dissolved U 0.00038 0.00200	4										
											*
Method Blank (MB)	Te.						0.00200	0.00038		U	Selenium,Dissolved
Method Blank (MB)	5										
method blank (mb)	L -									3)	Method Blank (MI
(MB) R3134488-1 05/06/16 13:13	6										
(MB) K3134488-1 U3/U0/10 13.13 MB Result MB Qualifier MB MDL MB RDL							MB RDL	MB MDL	MB Qualifier		(1907) (1-00+401CX (1918)
Analyte mg/l mg/l mg/l	7								Guainter		Analyte
Barium,Dissolved U 0.00036 0.00500											· ·
5 55555	8						0.00000	0.00000		o .	Barram, Bissorrea
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)		PPD Limits	LCSD Qualifier PPD	LCS Qualifier	Pac Limits	LCSD Pac					(LCS) R3134386-2 05/0
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42 Solid Amount 1/CS Page 1/CSD P				LC3 Qualifier						•	Analyte
(LCS) R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits			1								· ·
(LCS) R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % % %			2								
CLCS R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42											,
CLCS R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42											
CLCS R3134386-2 05/05/16 20:40 • (LCSU) R3134386-3 05/05/16 20:40 • (LCSU) R3134386-3 05/05/16 20:40 • (LCS DResult LCS Result LCS Qualifier LCS Qualifier LCS Qualifier RPD RPD Limits Result Res											
CLCS R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42											*
CLCS R3134386-2 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D Result LCS Result LCS D Result RPD RPD Limits RPD Limits RPD Limits RPD RPD Limits RPD Lim		20				100	50				
CLCS R3134386-2 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D) Result LCS Result LCS D Result RPD RPD Limits RPD RPD Limits LCS D Result RPD RPD Limits RPD		20						J.0302	0.0402	0.0300	Scienium, Dissolved
CLCS R3134386-2 05/05/16 20:40 • (LCSU) R3134386-3 05/05/16 20:42		20						3.0302	0.0402	0.0300	Scientifi, Dissolved
CLCS R3134386-2 05/05/16 20:40 • (LCSD R3134386-3 05/05/16 20:42 Spike Amount LCS Result LCSD Result LCSD Resc. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Representation Re		20	·			ole Duplicate	itrol Samo				
CLCS R3134386-2 O5/05/16 20:40 * (LCSU) R3134386-3 O5/05/16 20:42		20				le Duplicate		oratory Con	CS) • Labo	ol Sample (L	Laboratory Contro
CLCS R3134386-2 O5/O5/16 20:40 • (LCSD) R3134386-3 O5/O5/16 20:42				LCS Qualifier	e (LCSD)		9	oratory Con 05/06/16 13:19	CS) • Labo	ol Sample (L. 6/16 13:16 • (LCSE	Laboratory Contro
CLCS R3134386-2 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D) R3134386-3 05/05/16 20:40 • (LCS D Result LCS Result LCS D Result RPD RPD Limits RPD Limits RPD Limits RPD RPD Limits RPD Lim		RPD Limits	LCSD Qualifier RPD	LCS Qualifier	e (LCSD)	LCSD Rec.	LCS Rec.	oratory Con 05/06/16 13:19 LCSD Result	CS) • Labo)) R3134488-3 LCS Result	ol Sample (L 6/16 13:16 • (LCSE Spike Amount	Laboratory Contro (LCS) R3134488-2 05/0

DATE/TIME: 05/17/16 20:14

PAGE: 71 of 99

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY L832422-01

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	U	0.0573	0.0573	115	115	5	75-125			0	20
Chromium, Dissolved	0.0100	U	0.0550	0.0537	110	107	5	75-125			2	20
ron,Dissolved	1.00	U	5.36	5.24	107	105	5	75-125			2	20
.ead,Dissolved	0.0100	U	0.0553	0.0540	111	108	5	75-125			2	20
Manganese,Dissolved	0.0100	0.00200	0.0528	0.0521	102	100	5	75-125			1	20
Selenium,Dissolved	0.0100	0.0141	0.0709	0.0703	114	112	5	75-125			1	20

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-01 05/11/16	10:40 • (MS) R3	135630-5 05/	11/16 10:50 • (N	ISD) R3135630	-6 05/11/16 10:	55							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Barium Dissolved	0.00500	0.0125	0.0605	0.0621	96	aa	10	75-125			3	20	

Тс

QUALITY CONTROL SUMMARY <u>L832422-01,02,03,04,05,06,07,08,09,11,12,13,14,15,16,17,18,19,20,21</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134594-1 05/	06/16 16:04			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Boron	U		0.0015	0.0200
Cadmium	U		0.00016	0.00100
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	U		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	0.00164		0.00025	0.00500
Nickel	0.000785		0.00035	0.00200
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	U		0.00018	0.00500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134594-2 0!	5/06/16 16:06 • (LCS	D) R3134594-	3 05/06/16 16:	09							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0523	0.0531	105	106	80-120			2	20	
Barium	0.0500	0.0524	0.0524	105	105	80-120			0	20	
Boron	0.0500	0.0472	0.0481	94	96	80-120			2	20	
Cadmium	0.0500	0.0554	0.0559	111	112	80-120			1	20	
Calcium	5.00	5.26	5.25	105	105	80-120			0	20	
Chromium	0.0500	0.0517	0.0513	103	103	80-120			1	20	
Cobalt	0.0500	0.0522	0.0522	104	104	80-120			0	20	
Iron	5.00	5.05	5.05	101	101	80-120			0	20	
Lead	0.0500	0.0522	0.0522	104	104	80-120			0	20	
Manganese	0.0500	0.0525	0.0524	105	105	80-120			0	20	
Nickel	0.0500	0.0522	0.0541	104	108	80-120			4	20	
Potassium	5.00	5.09	5.16	102	103	80-120			1	20	
Selenium	0.0500	0.0508	0.0505	102	101	80-120			1	20	
Sodium	5.00	5.28	5.19	106	104	80 ₋ 120			2	20	

249545.0000.0000 000

DATE/TIME: 05/17/16 20:14

PAGE: 73 of 99

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832422-01,02,03,04,05,06,07,08,09,11,12,13,14,15,16,17,18,19,20,21

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	(LCSD) R3134594-3	

(LCS) R3134594-2 05/06/1	16 16:06 • (LCS)	D) R3134594-3	05/06/16 16:0	19						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Uranium	0.0500	0.0528	0.0521	106	104	80-120			1	20
Vanadium	0.0500	0.0510	0.0505	102	101	80-120			1	20

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00165	0.0631	0.0640	123	125	5	75-125			2	20
Barium	0.0100	0.0343	0.0931	0.0943	118	120	5	75-125			1	20
Boron	0.0100	0.167	0.215	0.224	95	113	5	75-125			4	20
Cadmium	0.0100	U	0.0637	0.0638	127	128	5	75-125	<u>J5</u>	<u>J5</u>	0	20
Calcium	1.00	179	187	189	164	201	5	75-125	V	V	1	20
Chromium	0.0100	U	0.0608	0.0606	122	121	5	75-125			0	20
Cobalt	0.0100	U	0.0598	0.0605	120	121	5	75-125			1	20
Potassium	1.00	4.96	11.2	11.3	124	126	5	75-125		<u>J5</u>	1	20
Iron	1.00	U	5.99	6.07	120	121	5	75-125			1	20
Lead	0.0100	U	0.0608	0.0621	122	124	5	75-125			2	20
Manganese	0.0100	0.0113	0.0701	0.0699	118	117	5	75-125			0	20
Nickel	0.0100	U	0.0616	0.0592	123	118	5	75-125			4	20
Selenium	0.0100	U	ND	0.0544	0	109	5	75-125	<u>J6</u>	<u>J3</u>	200	20
Sodium	1.00	43.6	48.8	50.5	105	138	5	75-125		V	3	20
Uranium	0.0100	U	0.0622	0.0610	124	122	5	75-125			2	20
Vanadium	0.0100	П	0.0594	0.0602	119	120	5	75-125			1	20

Тс

QUALITY CONTROL SUMMARY L832422-02,03,04,05,06,07,08,09,11,12,13,14,15,16,17,18,20

ONE LAB. NATIONWIDE.

Тс

GI

Αl

Sc

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3133781-7 05/04	/16 14:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Cadmium,Dissolved	U		0.00016	0.00100	
Chromium, Dissolved	U		0.00054	0.00200	
Cobalt,Dissolved	U		0.00026	0.00200	
Iron,Dissolved	U		0.015	0.100	
Lead,Dissolved	0.000553		0.00024	0.00200	
Manganese,Dissolved	U		0.00025	0.00500	
Nickel, Dissolved	U		0.00035	0.00200	
Selenium, Dissolved	0.00107		0.00038	0.00200	
Uranium,Dissolved	U		0.00033	0.0100	
Vanadium, Dissolved	0.0015		0.00018	0.00500	

Method Blank (MB)

(MB) R3133974-1 0	5/05/16 10:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Boron, Dissolved	U		0.0015	0.0200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133781-8 05/0	4/16 14:40 • (LCSE) R3133781-9	05/04/16 14:43								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic, Dissolved	0.0500	0.0483	0.0479	97	96	80-120			1	20	
Barium, Dissolved	0.0500	0.0523	0.0493	105	99	80-120			6	20	
Cadmium, Dissolved	0.0500	0.0502	0.0500	100	100	80-120			0	20	
Chromium, Dissolved	0.0500	0.0501	0.0491	100	98	80-120			2	20	
Cobalt, Dissolved	0.0500	0.0509	0.0500	102	100	80-120			2	20	
Iron,Dissolved	5.00	4.88	4.84	98	97	80-120			1	20	
Lead,Dissolved	0.0500	0.0503	0.0494	101	99	80-120			2	20	
Manganese,Dissolved	0.0500	0.0494	0.0477	99	95	80-120			3	20	
Nickel, Dissolved	0.0500	0.0512	0.0499	102	100	80-120			3	20	
Selenium, Dissolved	0.0500	0.0502	0.0493	100	99	80-120			2	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832422

DATE/TIME: 05/17/16 20:14

PAGE: 75 of 99

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

 $\underline{\textbf{L832422-02,03,04,05,06,07,08,09,11,12,13,14,15,16,17,18,20}}$

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133781-8 05/04/16 14:40 • (LCS	SD) R3133781-	9 05/04/16 14:43	;			
Spike Amou	nt LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali

Тс

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Uranium,Dissolved	0.0500	0.0503	0.0493	101	99	80-120			2	20
Vanadium, Dissolved	0.0500	0.0501	0.0496	100	99	80-120			1	20

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133974-2 05/05/16	5 10:46 • (LCSE) R3133974-3	05/05/16 10:48							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Boron,Dissolved	0.0500	0.0402	0.0420	80	84	80-120			4	20

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869042 $\underline{\textbf{L832422-01}, \textbf{02}, \textbf{03}, \textbf{04}, \textbf{05}, \textbf{11}, \textbf{12}, \textbf{13}, \textbf{14}, \textbf{15}, \textbf{16}, \textbf{17}, \textbf{18}, \textbf{19}, \textbf{20}}$ Volatile Organic Compounds (GC) by Method 8015D/GRO Method Blank (MB) (MB) R3133940-3 05/02/16 09:16 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) Low Fraction 0.0314 0.100 U (S) a,a,a-Trifluorotoluene(FID) 100 62.0-128 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133940-1 05/02/16 08:06 • (LCSD) R3133940-2 05/02/16 08:29 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % % TPH (GC/FID) Low Fraction 5.50 6.52 6.40 119 116 67.0-132 1.76 20 62.0-128 (S) a,a,a-Trifluorotoluene(FID) 100 100 GI L832421-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832421-03 05/02/16 11:15 • (MS) R3133940-4 05/02/16 11:38 • (MSD) R3133940-5 05/02/16 12:01 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % Analyte mg/l mg/l mg/l mg/l % % % Sc TPH (GC/FID) Low Fraction 5.50 U 5.33 6.04 97.0 110 50.0-143 12.4 20 (S) a,a,a-Trifluorotoluene(FID) 99.8 100 62.0-128

SDG:

L832422

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/17/16 20:14

PAGE:

77 of 99

QUALITY CONTROL SUMMARY L832422-21

ONE LAB. NATIONWIDE.

²Tc

GI

ΑI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte mg/ Acetone U Benzene U	B Result MB Qualifier	MB MDL mg/l	MB RDL
Analyte mg/ Acetone U Benzene U			
Acetone U Benzene U	y	9/	mg/l
Benzene U		0.0100	0.0500
		0.000331	0.00100
Bromodichloromethane U		0.000331	0.00100
Bromoform U		0.000380	0.00100
Bromomethane U		0.000403	0.00500
n-Butylbenzene U		0.000361	0.00100
sec-Butylbenzene U		0.000365	0.00100
Carbon disulfide U		0.000303	0.00100
Carbon tetrachloride U		0.000273	0.00100
Chlorobenzene U		0.000373	0.00100
Chlorodibromomethane U		0.000348	0.00100
Chloroethane U		0.000327	0.00500
Chloroform U		0.000133	0.00500
Chloromethane U		0.000324	0.00250
1,2-Dibromoethane U		0.000270	0.00100
1,1-Dichloroethane U		0.000351	0.00100
1,2-Dichloroethane U		0.000255	0.00100
1,1-Dichloroethene U		0.000398	0.00100
cis-1,2-Dichloroethene U		0.000350	0.00100
trans-1,2-Dichloroethene U		0.000200	0.00100
1,2-Dichloropropane U		0.000336	0.00100
cis-1,3-Dichloropropene U		0.000300	0.00100
trans-1,3-Dichloropropene U		0.000419	0.00100
Ethylbenzene U		0.000384	0.00100
2-Hexanone U		0.00382	0.0100
Isopropylbenzene U		0.000326	0.00100
p-Isopropyltoluene U		0.000350	0.00100
2-Butanone (MEK) U		0.00393	0.0100
	00173	0.00100	0.00500
4-Methyl-2-pentanone (MIBK) U	00170	0.00214	0.0100
Naphthalene U		0.00100	0.00500
n-Propylbenzene U		0.000349	0.00100
Styrene U		0.000313	0.00100
1,1,1,2-Tetrachloroethane U		0.000385	0.00100
1,1,2,2-Tetrachloroethane U		0.000130	0.00100
Tetrachloroethene U		0.000372	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832422

DATE/TIME: 05/17/16 20:14

PAGE: 78 of 99

QUALITY CONTROL SUMMARY 1832422-21

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3133744-3 05/03/16	6 05:55			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Toluene	U		0.000780	0.00500
1,1,1-Trichloroethane	U		0.000319	0.00100
1,1,2-Trichloroethane	U		0.000383	0.00100
Trichloroethene	U		0.000398	0.00100
1,2,4-Trimethylbenzene	U		0.000373	0.00100
1,3,5-Trimethylbenzene	U		0.000387	0.00100
Vinyl chloride	U		0.000259	0.00100
Xylenes, Total	U		0.00106	0.00300
o-Xylene	U		0.000341	0.00100
m&p-Xylenes	U		0.000719	0.00100
(S) Toluene-d8	103			90.0-115
(S) Dibromofluoromethane	102			79.0-121
(S) 4-Bromofluorobenzene	96.1			80.1-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133744-1 05/03	/16 04:38 • (LCSI	D) R3133744-2	05/03/16 04:5	i8						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.184	0.179	147	143	28.7-175			2.68	20.9
Benzene	0.0250	0.0248	0.0250	99.3	100	73.0-122			0.780	20
Bromodichloromethane	0.0250	0.0240	0.0235	95.9	94.0	75.5-121			1.96	20
Bromoform	0.0250	0.0236	0.0248	94.3	99.4	71.5-131			5.20	20
Bromomethane	0.0250	0.0192	0.0192	76.6	77.0	22.4-187			0.460	20
n-Butylbenzene	0.0250	0.0234	0.0237	93.8	94.7	75.9-134			1.04	20
sec-Butylbenzene	0.0250	0.0228	0.0239	91.2	95.6	80.6-126			4.74	20
Carbon disulfide	0.0250	0.0210	0.0219	84.0	87.4	53.0-134			3.96	20
Carbon tetrachloride	0.0250	0.0230	0.0242	92.1	96.7	70.9-129			4.89	20
Chlorobenzene	0.0250	0.0235	0.0243	93.9	97.2	79.7-122			3.50	20
Chlorodibromomethane	0.0250	0.0234	0.0241	93.5	96.6	78.2-124			3.18	20
Chloroethane	0.0250	0.0212	0.0213	84.6	85.2	41.2-153			0.620	20
Chloroform	0.0250	0.0241	0.0246	96.3	98.3	73.2-125			2.05	20
Chloromethane	0.0250	0.0246	0.0251	98.6	101	55.8-134			1.94	20
1,2-Dibromoethane	0.0250	0.0235	0.0238	94.0	95.3	79.8-122			1.40	20
1,1-Dichloroethane	0.0250	0.0260	0.0262	104	105	71.7-127			0.930	20
1,2-Dichloroethane	0.0250	0.0243	0.0238	97.0	95.2	65.3-126			1.90	20

TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832422 DATE/TIME:

PAGE: 79 of 99

QUALITY CONTROL SUMMARY 1832422-21

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
,1-Dichloroethene	0.0250	0.0223	0.0226	89.4	90.4	59.9-137			1.14	20	
cis-1,2-Dichloroethene	0.0250	0.0241	0.0246	96.3	98.3	77.3-122			2.08	20	
rans-1,2-Dichloroethene	0.0250	0.0238	0.0243	95.2	97.4	72.6-125			2.24	20	
,2-Dichloropropane	0.0250	0.0267	0.0262	107	105	77.4-125			1.97	20	
cis-1,3-Dichloropropene	0.0250	0.0258	0.0253	103	101	77.7-124			1.84	20	
rans-1,3-Dichloropropene	0.0250	0.0254	0.0251	101	100	73.5-127			1.25	20	
Ethylbenzene	0.0250	0.0229	0.0236	91.6	94.5	80.9-121			3.13	20	
2-Hexanone	0.125	0.138	0.139	110	111	59.4-151			0.950	20	
sopropylbenzene	0.0250	0.0220	0.0231	88.2	92.2	81.6-124			4.46	20	
o-Isopropyltoluene	0.0250	0.0226	0.0238	90.4	95.3	77.6-129			5.30	20	
2-Butanone (MEK)	0.125	0.182	0.174	146	139	46.4-155			4.43	20	
Methylene Chloride	0.0250	0.0240	0.0242	96.1	96.7	69.5-120			0.680	20	
I-Methyl-2-pentanone (MIBK)	0.125	0.147	0.143	118	114	63.3-138			3.12	20	
Naphthalene	0.0250	0.0229	0.0229	91.4	91.8	69.7-134			0.390	20	
n-Propylbenzene	0.0250	0.0231	0.0240	92.4	95.9	81.9-122			3.78	20	
Styrene	0.0250	0.0234	0.0242	93.5	96.6	79.9-124			3.28	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0235	0.0243	94.0	97.1	78.5-125			3.28	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0239	0.0240	95.8	96.1	79.3-123			0.290	20	
Tetrachloroethene	0.0250	0.0226	0.0238	90.2	95.1	73.5-130			5.23	20	
Toluene	0.0250	0.0243	0.0239	97.1	95.5	77.9-116			1.68	20	
,1,1-Trichloroethane	0.0250	0.0238	0.0238	95.2	95.3	71.1-129			0.100	20	
1,1,2-Trichloroethane	0.0250	0.0237	0.0243	94.7	97.4	81.6-120			2.77	20	
Frichloroethene	0.0250	0.0247	0.0246	98.6	98.3	79.5-121			0.320	20	
l,2,4-Trimethylbenzene	0.0250	0.0228	0.0237	91.0	94.8	79.0-122			4.03	20	
1,3,5-Trimethylbenzene	0.0250	0.0225	0.0236	90.1	94.3	81.0-123			4.62	20	
/inyl chloride	0.0250	0.0218	0.0223	87.3	89.2	61.5-134			2.13	20	
Kylenes, Total	0.0750	0.0686	0.0714	91.5	95.1	79.2-122			3.94	20	
o-Xylene	0.0250	0.0230	0.0239	91.9	95.4	79.1-123			3.77	20	
m&p-Xylenes	0.0500	0.0456	0.0475	91.2	95.0	78.5-122			4.02	20	
(S) Toluene-d8				102	103	90.0-115					
(S) Dibromofluoromethane				102	102	79.0-121					
(S) 4-Bromofluorobenzene				94.6	99.1	80.1-120					

ACCOUNT:

PROJECT: 249545.0000.0000 000

L832422

DATE/TIME: 05/17/16 20:14

PAGE: 80 of 99

QUALITY CONTROL SUMMARY 1832422-21

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0179

0.0182

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0812	0.0847	64.9	67.8	1	25.0-156			4.24	21.5
Benzene	0.0250	U	0.0196	0.0198	78.3	79.1	1	58.6-133			1.00	20
Bromodichloromethane	0.0250	U	0.0199	0.0198	79.8	79.4	1	69.2-127			0.490	20
Bromoform	0.0250	U	0.0202	0.0209	80.9	83.8	1	66.3-140			3.45	20
Bromomethane	0.0250	U	0.0133	0.0127	53.1	50.7	1	16.6-183			4.60	20.5
n-Butylbenzene	0.0250	U	0.0195	0.0197	78.2	79.0	1	64.8-145			1.03	20
sec-Butylbenzene	0.0250	U	0.0191	0.0193	76.4	77.0	1	66.8-139			0.860	20
Carbon disulfide	0.0250	U	0.0102	0.0105	40.9	42.0	1	34.9-138			2.66	20
Carbon tetrachloride	0.0250	U	0.0189	0.0191	75.8	76.6	1	60.6-139			1.00	20
Chlorobenzene	0.0250	U	0.0188	0.0189	75.1	75.6	1	70.1-130			0.710	20
Chlorodibromomethane	0.0250	U	0.0197	0.0202	78.8	80.6	1	71.6-132			2.24	20
Chloroethane	0.0250	U	0.0157	0.0153	62.8	61.2	1	33.3-155			2.59	20
Chloroform	0.0250	U	0.0203	0.0204	81.1	81.5	1	66.1-133			0.540	20
Chloromethane	0.0250	U	0.0160	0.0158	63.9	63.1	1	40.7-139			1.13	20
1,2-Dibromoethane	0.0250	U	0.0194	0.0197	77.5	78.7	1	73.8-131			1.62	20
1,1-Dichloroethane	0.0250	U	0.0214	0.0215	85.5	85.9	1	64.0-134			0.490	20
1,2-Dichloroethane	0.0250	U	0.0195	0.0199	78.0	79.5	1	60.7-132			1.89	20
1,1-Dichloroethene	0.0250	U	0.0164	0.0170	65.6	68.0	1	48.8-144			3.50	20
cis-1,2-Dichloroethene	0.0250	U	0.0193	0.0199	77.3	79.4	1	60.6-136			2.71	20
trans-1,2-Dichloroethene	0.0250	U	0.0177	0.0176	70.8	70.5	1	61.0-132			0.400	20
1,2-Dichloropropane	0.0250	U	0.0222	0.0223	88.7	89.1	1	69.7-130			0.430	20
cis-1,3-Dichloropropene	0.0250	U	0.0205	0.0206	81.9	82.4	1	71.1-129			0.560	20
trans-1,3-Dichloropropene	0.0250	U	0.0208	0.0209	83.0	83.7	1	66.3-136			0.780	20
Ethylbenzene	0.0250	U	0.0182	0.0187	72.9	74.8	1	62.7-136			2.57	20
2-Hexanone	0.125	U	0.0974	0.102	77.9	81.7	1	59.4-154			4.66	20.1
Isopropylbenzene	0.0250	U	0.0182	0.0185	72.8	73.8	1	67.4-136			1.32	20
p-Isopropyltoluene	0.0250	U	0.0190	0.0189	75.8	75.7	1	62.8-143			0.190	20
2-Butanone (MEK)	0.125	U	0.119	0.121	95.2	96.7	1	45.0-156			1.62	20.8
Methylene Chloride	0.0250	U	0.0184	0.0182	73.7	72.6	1	61.5-125			1.43	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.128	0.132	102	105	1	60.7-150			2.82	20
Naphthalene	0.0250	U	0.0199	0.0203	79.4	81.3	1	61.8-143			2.28	20
n-Propylbenzene	0.0250	U	0.0189	0.0191	75.5	76.5	1	63.2-139			1.41	20
Styrene	0.0250	U	0.0186	0.0194	74.5	77.4	1	68.2-133			3.81	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0194	0.0199	77.5	79.5	1	70.5-132			2.61	20
1,1,2,2-Tetrachloroethane	0.0250	U	0.0213	0.0221	85.1	88.4	1	64.9-145			3.77	20

0.0250

Tetrachloroethene

PROJECT: 249545.0000.0000 000

71.7

SDG: L832422

57.4-141

DATE/TIME: 05/17/16 20:14 20

PAGE: 81 of 99

QUALITY CONTROL SUMMARY 1832422-21

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Toluene	0.0250	U	0.0191	0.0192	76.4	76.9	1	67.8-124			0.710	20
1,1,1-Trichloroethane	0.0250	U	0.0202	0.0201	80.6	80.6	1	58.7-134			0.0500	20
1,1,2-Trichloroethane	0.0250	U	0.0205	0.0210	82.1	84.1	1	74.1-130			2.45	20
Trichloroethene	0.0250	U	0.0195	0.0196	78.2	78.4	1	48.9-148			0.270	20
1,2,4-Trimethylbenzene	0.0250	U	0.0184	0.0186	73.4	74.4	1	60.5-137			1.35	20
1,3,5-Trimethylbenzene	0.0250	U	0.0185	0.0187	73.8	74.9	1	67.9-134			1.43	20
Vinyl chloride	0.0250	U	0.0155	0.0153	62.2	61.1	1	44.3-143			1.76	20
Xylenes, Total	0.0750	U	0.0548	0.0557	73.0	74.2	1	65.6-133			1.64	20
o-Xylene	0.0250	U	0.0183	0.0187	73.3	74.8	1	67.1-133			2.12	20
m&p-Xylenes	0.0500	U	0.0365	0.0370	72.9	73.9	1	64.1-133			1.39	20
(S) Toluene-d8					101	102		90.0-115				
(S) Dibromofluoromethane					102	103		79.0-121				
(S) 4-Bromofluorobenzene					95.3	95.7		80.1-120				

QUALITY CONTROL SUMMARY <u>1832422-01,03,05,06,07,10,12,13,14,15,16,17,19,20</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3133780-3 05/03/14					
(5,	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Acetone	U		0.0100	0.0500	
Benzene	U		0.000331	0.00100	
Bromodichloromethane	U		0.000380	0.00100	
Bromoform	U		0.000469	0.00100	
Bromomethane	U		0.000866	0.00500	
n-Butylbenzene	U		0.000361	0.00100	
sec-Butylbenzene	U		0.000365	0.00100	
Carbon disulfide	U		0.000275	0.00100	
Carbon tetrachloride	U		0.000379	0.00100	
Chlorobenzene	U		0.000348	0.00100	
Chlorodibromomethane	U		0.000327	0.00100	
Chloroethane	U		0.000453	0.00500	
Chloroform	U		0.000324	0.00500	
Chloromethane	U		0.000276	0.00250	
1,2-Dibromoethane	U		0.000381	0.00100	
1,1-Dichloroethane	U		0.000259	0.00100	
1,2-Dichloroethane	U		0.000361	0.00100	
1,1-Dichloroethene	U		0.000398	0.00100	
cis-1,2-Dichloroethene	U		0.000260	0.00100	
trans-1,2-Dichloroethene	U		0.000396	0.00100	
1,2-Dichloropropane	U		0.000306	0.00100	
cis-1,3-Dichloropropene	U		0.000418	0.00100	
trans-1,3-Dichloropropene	U		0.000419	0.00100	
Ethylbenzene	U		0.000384	0.00100	
2-Hexanone	U		0.00382	0.0100	
Isopropylbenzene	U		0.000326	0.00100	
p-Isopropyltoluene	U		0.000350	0.00100	
2-Butanone (MEK)	U		0.00393	0.0100	
Methylene Chloride	0.00168		0.00100	0.00500	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	
Methyl tert-butyl ether	U		0.000367	0.00100	
Naphthalene	U		0.00100	0.00500	
n-Propylbenzene	U		0.000349	0.00100	
Styrene	U		0.000307	0.00100	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832422

DATE/TIME: 05/17/16 20:14

PAGE: 83 of 99

QUALITY CONTROL SUMMARY <u>1832422-01,03,05,06,07,10,12,13,14,15,16,17,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

1B) R3133780-3 05/03/1	6 07:17				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
etrachloroethene	U		0.000372	0.00100	
luene	U		0.000780	0.00500	
,1-Trichloroethane	U		0.000319	0.00100	
,2-Trichloroethane	U		0.000383	0.00100	
ichloroethene	U		0.000398	0.00100	
2,4-Trimethylbenzene	U		0.000373	0.00100	
3,5-Trimethylbenzene	U		0.000387	0.00100	
nyl chloride	U		0.000259	0.00100	
rlenes, Total	U		0.00106	0.00300	
Xylene	U		0.000341	0.00100	
&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	106			90.0-115	
(S) Dibromofluoromethane	105			79.0-121	
(S) 4-Bromofluorobenzene	100			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133780-1 (05/03/16 05:24 • (LCSD) R3133780-2	05/03/16 05:46
--------------------	--------------------	------------------	----------------

(LCS) R313378U-1 U5/U3	(LCS) K3133/80-1 03/03/16 03:24 + (LCSD) K3133/80-2 03/03/16 03:46											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Acetone	0.125	0.166	0.170	133	136	28.7-175			2.45	20.9		
Benzene	0.0250	0.0245	0.0256	98.0	103	73.0-122			4.61	20		
Bromodichloromethane	0.0250	0.0249	0.0256	99.8	102	75.5-121			2.45	20		
Bromoform	0.0250	0.0218	0.0221	87.3	88.3	71.5-131			1.13	20		
Bromomethane	0.0250	0.0197	0.0209	78.9	83.7	22.4-187			5.85	20		
n-Butylbenzene	0.0250	0.0287	0.0308	115	123	75.9-134			6.91	20		
sec-Butylbenzene	0.0250	0.0233	0.0243	93.2	97.0	80.6-126			4.06	20		
Carbon disulfide	0.0250	0.0220	0.0231	87.8	92.3	53.0-134			4.94	20		
Carbon tetrachloride	0.0250	0.0218	0.0224	87.2	89.6	70.9-129			2.71	20		
Chlorobenzene	0.0250	0.0235	0.0235	94.1	94.0	79.7-122			0.0600	20		
Chlorodibromomethane	0.0250	0.0223	0.0229	89.2	91.5	78.2-124			2.47	20		
Chloroethane	0.0250	0.0259	0.0274	103	110	41.2-153			5.94	20		
Chloroform	0.0250	0.0250	0.0263	100	105	73.2-125			4.86	20		
Chloromethane	0.0250	0.0228	0.0243	91.0	97.2	55.8-134			6.62	20		
1,2-Dibromoethane	0.0250	0.0239	0.0241	95.6	96.3	79.8-122			0.710	20		
1,1-Dichloroethane	0.0250	0.0253	0.0271	101	108	71.7-127			6.90	20		

TRC Solutions - Austin, TX

249545.0000.0000 000

DATE/TIME: 05/17/16 20:14

PAGE: 84 of 99

QUALITY CONTROL SUMMARY <u>1832422-01,03,05,06,07,10,12,13,14,15,16,17,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133780-1 05/03/1	6 05:24 • (LCSI	D) R3133780-2	2 05/03/16 05:	46							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0261	0.0285	104	114	65.3-126			9.07	20	
1,1-Dichloroethene	0.0250	0.0249	0.0267	99.5	107	59.9-137			7.15	20	
cis-1,2-Dichloroethene	0.0250	0.0229	0.0239	91.5	95.8	77.3-122			4.54	20	
trans-1,2-Dichloroethene	0.0250	0.0225	0.0242	90.1	96.8	72.6-125			7.21	20	
1,2-Dichloropropane	0.0250	0.0259	0.0274	104	110	77.4-125			5.61	20	
cis-1,3-Dichloropropene	0.0250	0.0265	0.0277	106	111	77.7-124			4.56	20	
trans-1,3-Dichloropropene	0.0250	0.0289	0.0302	116	121	73.5-127			4.51	20	
Ethylbenzene	0.0250	0.0233	0.0236	93.3	94.3	80.9-121			1.09	20	
2-Hexanone	0.125	0.142	0.156	114	125	59.4-151			9.16	20	
Isopropylbenzene	0.0250	0.0235	0.0237	94.2	94.8	81.6-124			0.650	20	
p-Isopropyltoluene	0.0250	0.0233	0.0236	93.0	94.3	77.6-129			1.30	20	
2-Butanone (MEK)	0.125	0.172	0.186	138	149	46.4-155			7.68	20	
Methylene Chloride	0.0250	0.0250	0.0260	99.8	104	69.5-120			4.14	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.152	0.165	121	132	63.3-138			8.10	20	
Methyl tert-butyl ether	0.0250	0.0255	0.0270	102	108	70.1-125			5.87	20	
Naphthalene	0.0250	0.0249	0.0267	99.7	107	69.7-134			6.95	20	
n-Propylbenzene	0.0250	0.0243	0.0245	97.4	98.0	81.9-122			0.590	20	
Styrene	0.0250	0.0239	0.0236	95.5	94.6	79.9-124			0.980	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0221	0.0227	88.3	90.8	78.5-125			2.83	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0263	0.0270	105	108	79.3-123			2.57	20	
Tetrachloroethene	0.0250	0.0202	0.0209	80.7	83.6	73.5-130			3.53	20	
Toluene	0.0250	0.0243	0.0253	97.3	101	77.9-116			4.04	20	
1,1,1-Trichloroethane	0.0250	0.0225	0.0239	89.9	95.5	71.1-129			6.04	20	
1,1,2-Trichloroethane	0.0250	0.0237	0.0245	94.9	97.9	81.6-120			3.06	20	
Trichloroethene	0.0250	0.0215	0.0228	86.1	91.3	79.5-121			5.84	20	
1,2,4-Trimethylbenzene	0.0250	0.0231	0.0230	92.3	92.2	79.0-122			0.170	20	
1,3,5-Trimethylbenzene	0.0250	0.0235	0.0235	94.2	94.1	81.0-123			0.0700	20	
Vinyl chloride	0.0250	0.0225	0.0239	89.9	95.6	61.5-134			6.12	20	
Xylenes, Total	0.0750	0.0703	0.0702	93.7	93.7	79.2-122			0.0500	20	
o-Xylene	0.0250	0.0232	0.0233	92.7	93.2	79.1-123			0.520	20	
m&p-Xylenes	0.0500	0.0471	0.0469	94.2	93.9	78.5-122			0.330	20	
(S) Toluene-d8				105	104	90.0-115					
(S) Dibromofluoromethane				103	105	79.0-121					
(S) 4-Bromofluorobenzene				101	97.9	80.1-120					

249545.0000.0000 000

DATE/TIME:

QUALITY CONTROL SUMMARY <u>L832422-01,03,05,06,07,10,12,13,14,15,16,17,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832422-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0253

0.0251

OS) L832422-20 05/03/16 11:07 • (MS) R3133780-4 05/03/16 11:30 • (MSD) R3133780-5 05/03/16 11:52												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0802	0.0787	64.1	63.0	1	25.0-156			1.83	21.5
Benzene	0.0250	0.0664	0.0764	0.0777	39.9	45.1	1	58.6-133	<u>J6</u>	<u>J6</u>	1.66	20
Bromodichloromethane	0.0250	U	0.0231	0.0230	92.4	91.9	1	69.2-127			0.560	20
Bromoform	0.0250	U	0.0206	0.0198	82.4	79.3	1	66.3-140			3.89	20
Bromomethane	0.0250	U	0.00657	0.00708	26.3	28.3	1	16.6-183			7.55	20.5
n-Butylbenzene	0.0250	0.000427	0.0273	0.0270	108	106	1	64.8-145			1.22	20
sec-Butylbenzene	0.0250	0.00151	0.0228	0.0224	85.2	83.6	1	66.8-139			1.73	20
Carbon disulfide	0.0250	U	0.0119	0.0118	47.7	47.0	1	34.9-138			1.40	20
Carbon tetrachloride	0.0250	U	0.0199	0.0189	79.5	75.5	1	60.6-139			5.21	20
Chlorobenzene	0.0250	U	0.0207	0.0200	82.7	80.1	1	70.1-130			3.17	20
Chlorodibromomethane	0.0250	U	0.0204	0.0204	81.4	81.6	1	71.6-132			0.300	20
Chloroethane	0.0250	U	0.0211	0.0200	84.5	79.9	1	33.3-155			5.56	20
Chloroform	0.0250	U	0.0242	0.0232	96.9	92.9	1	66.1-133			4.27	20
Chloromethane	0.0250	U	0.0157	0.0155	62.8	61.8	1	40.7-139			1.52	20
1,2-Dibromoethane	0.0250	U	0.0215	0.0212	86.0	84.8	1	73.8-131			1.35	20
1,1-Dichloroethane	0.0250	U	0.0235	0.0227	93.9	90.8	1	64.0-134			3.36	20
1,2-Dichloroethane	0.0250	U	0.0244	0.0237	97.7	94.9	1	60.7-132			2.99	20
1,1-Dichloroethene	0.0250	U	0.0204	0.0199	81.8	79.7	1	48.8-144			2.52	20
cis-1,2-Dichloroethene	0.0250	U	0.0202	0.0198	80.9	79.1	1	60.6-136			2.30	20
trans-1,2-Dichloroethene	0.0250	U	0.0180	0.0174	72.1	69.4	1	61.0-132			3.74	20
1,2-Dichloropropane	0.0250	U	0.0244	0.0239	97.5	95.5	1	69.7-130			2.06	20
cis-1,3-Dichloropropene	0.0250	U	0.0236	0.0230	94.5	92.1	1	71.1-129			2.59	20
trans-1,3-Dichloropropene	0.0250	U	0.0269	0.0260	107	104	1	66.3-136			3.40	20
Ethylbenzene	0.0250	0.00176	0.0219	0.0214	80.6	78.7	1	62.7-136			2.14	20
2-Hexanone	0.125	U	0.123	0.120	98.3	96.1	1	59.4-154			2.28	20.1
Isopropylbenzene	0.0250	0.00564	0.0256	0.0255	79.7	79.5	1	67.4-136			0.170	20
p-Isopropyltoluene	0.0250	U	0.0209	0.0208	83.8	83.2	1	62.8-143			0.750	20
2-Butanone (MEK)	0.125	U	0.139	0.136	111	109	1	45.0-156			2.25	20.8
Methylene Chloride	0.0250	U	0.0211	0.0204	84.3	81.4	1	61.5-125			3.48	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.152	0.148	122	118	1	60.7-150			2.94	20
Methyl tert-butyl ether	0.0250	0.119	0.140	0.143	84.3	96.6	1	61.4-136			2.17	20
Naphthalene	0.0250	U	0.0253	0.0252	101	101	1	61.8-143			0.390	20
n-Propylbenzene	0.0250	0.00597	0.0267	0.0264	82.8	81.9	1	63.2-139			0.890	20
Styrene	0.0250	U	0.0218	0.0212	87.3	84.9	1	68.2-133			2.70	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0204	0.0200	81.8	80.0	1	70.5-132			2.24	20

0.0250

U

1,1,2,2-Tetrachloroethane

101

64.9-145

0.570

20

GI

QUALITY CONTROL SUMMARY <u>1832422-01,03,05,06,07,10,12,13,14,15,16,17,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832422-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832422-20	05/03/16 11:07 • (MS) R	3133780-4 05	/03/16 11:30	 (MSD) R313378 	0-5 05/03/1	6 11:52
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD F

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0165	0.0165	66.1	66.2	1	57.4-141			0.110	20
Toluene	0.0250	U	0.0221	0.0216	88.3	86.5	1	67.8-124			2.05	20
1,1,1-Trichloroethane	0.0250	U	0.0205	0.0202	81.9	80.7	1	58.7-134			1.46	20
1,1,2-Trichloroethane	0.0250	U	0.0235	0.0229	94.1	91.4	1	74.1-130			2.86	20
Trichloroethene	0.0250	U	0.0183	0.0178	73.1	71.0	1	48.9-148			2.92	20
1,2,4-Trimethylbenzene	0.0250	U	0.0202	0.0200	80.8	80.0	1	60.5-137			0.950	20
1,3,5-Trimethylbenzene	0.0250	U	0.0207	0.0205	82.8	81.9	1	67.9-134			1.13	20
Vinyl chloride	0.0250	U	0.0166	0.0164	66.4	65.4	1	44.3-143			1.42	20
Xylenes, Total	0.0750	U	0.0619	0.0597	82.6	79.5	1	65.6-133			3.75	20
o-Xylene	0.0250	U	0.0204	0.0198	81.7	79.2	1	67.1-133			3.09	20
m&p-Xylenes	0.0500	U	0.0415	0.0399	83.0	79.7	1	64.1-133			4.08	20
(S) Toluene-d8					105	107		90.0-115				
(S) Dibromofluoromethane					107	106		79.0-121				
(S) 4-Bromofluorobenzene					98.4	99.4		80.1-120				

QUALITY CONTROL SUMMARY L832422-01,07,14,19,21

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134515-3 05/06/16	MB) R3134515-3 05/06/16 05:04								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/l		mg/l	mg/l					
Benzene	U		0.000331	0.00100					
Methyl tert-butyl ether	U		0.000367	0.00100					
(S) Toluene-d8	99.6			90.0-115					
(S) Dibromofluoromethane	116			79.0-121					
(S) 4-Bromofluorobenzene	82.7			80.1-120					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134515-1	05/06/16 03:39 •	(LCSD) R3134515-2	05/06/16 04:01

(LCS) R3134515-1 U5/U6/11	(CCS) K3134515-1 05/06/16 03.39 • (CCSD) K3134515-2 05/06/16 04.01										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.0250	0.0282	0.0277	113	111	73.0-122			1.85	20	
Methyl tert-butyl ether	0.0250	0.0250	0.0247	100	98.6	70.1-125			1.48	20	
(S) Toluene-d8				101	101	90.0-115					
(S) Dibromofluoromethane				118	114	79.0-121					
(S) 4-Bromofluorobenzene				85.9	84.3	80.1-120					

L832600-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832600-02 05/06/16 07:35 • (MS) R3134515-4 05/06/16 06:31 • (MSD) R3134515-5 05/06/16 06:52												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0250	0.00546	0.0315	0.0302	104	99.0	1	58.6-133			4.31	20
Methyl tert-butyl ether	0.0250	ND	0.0249	0.0243	99.6	97.2	1	61.4-136			2.41	20
(S) Toluene-d8					103	100		90.0-115				
(S) Dibromofluoromethane					116	115		79.0-121				
(S) 4-Bromofluorobenzene					87.3	86.4		80.1-120				

PROJECT: 249545.0000.0000 000

SDG: L832422

DATE/TIME: 05/17/16 20:14

PAGE: 88 of 99

QUALITY CONTROL SUMMARY L832422-02,04,08,09,11,18

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134382-3 05/05/1	6 18:21				_
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Acetone	U		0.0100	0.0500	_
Benzene	U		0.000331	0.00100	
Bromodichloromethane	U		0.000380	0.00100	
Bromoform	U		0.000469	0.00100	
Bromomethane	U		0.000866	0.00500	
n-Butylbenzene	U		0.000361	0.00100	
sec-Butylbenzene	U		0.000365	0.00100	
Carbon disulfide	U		0.000275	0.00100	
Carbon tetrachloride	U		0.000379	0.00100	
Chlorobenzene	U		0.000348	0.00100	
Chlorodibromomethane	U		0.000327	0.00100	
Chloroethane	U		0.000453	0.00500	
Chloroform	U		0.000324	0.00500	
Chloromethane	U		0.000276	0.00250	
1,2-Dibromoethane	U		0.000381	0.00100	
1,1-Dichloroethane	U		0.000259	0.00100	
1,2-Dichloroethane	U		0.000361	0.00100	
1,1-Dichloroethene	U		0.000398	0.00100	
cis-1,2-Dichloroethene	U		0.000260	0.00100	
trans-1,2-Dichloroethene	U		0.000396	0.00100	
1,2-Dichloropropane	U		0.000306	0.00100	
cis-1,3-Dichloropropene	U		0.000418	0.00100	
trans-1,3-Dichloropropene	U		0.000419	0.00100	
Ethylbenzene	U		0.000384	0.00100	
2-Hexanone	U		0.00382	0.0100	
Isopropylbenzene	U		0.000326	0.00100	
p-Isopropyltoluene	U		0.000350	0.00100	
2-Butanone (MEK)	U		0.00393	0.0100	
Methylene Chloride	U		0.00100	0.00500	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	
Methyl tert-butyl ether	U		0.000367	0.00100	
Naphthalene	U		0.00100	0.00500	
n-Propylbenzene	U		0.000349	0.00100	
Styrene	U		0.000307	0.00100	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832422

DATE/TIME: 05/17/16 20:14

PAGE: 89 of 99

QUALITY CONTROL SUMMARY L832422-02,04,08,09,11,18

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

MB) R3134382-3 05/05/1	6 18:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
etrachloroethene	U		0.000372	0.00100	
oluene	U		0.000780	0.00500	
1,1-Trichloroethane	U		0.000319	0.00100	
1,2-Trichloroethane	U		0.000383	0.00100	
richloroethene	U		0.000398	0.00100	
2,4-Trimethylbenzene	U		0.000373	0.00100	
3,5-Trimethylbenzene	U		0.000387	0.00100	
inyl chloride	U		0.000259	0.00100	
ylenes, Total	U		0.00106	0.00300	
-Xylene	U		0.000341	0.00100	
&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	98.3			90.0-115	
(S) Dibromofluoromethane	102			79.0-121	
(S) 4-Bromofluorobenzene	89.2			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134382-1	05/05/16	16:55	•	(LCSD)	K3	1343	32-2	05/0	J5/ II	6 17:12	

(LC3) R3134362-1 U3/U	3/10 10.33 • (LC3L	J) K3134302-2	05/05/16 17.12	<u>′</u>							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.121	0.115	96.9	92.2	28.7-175			5.04	20.9	
Benzene	0.0250	0.0262	0.0230	105	92.0	73.0-122			13.2	20	
Bromodichloromethane	0.0250	0.0268	0.0238	107	95.3	75.5-121			11.9	20	
Bromoform	0.0250	0.0283	0.0248	113	99.3	71.5-131			12.9	20	
Bromomethane	0.0250	0.0341	0.0297	136	119	22.4-187			13.6	20	
n-Butylbenzene	0.0250	0.0259	0.0225	103	89.9	75.9-134			14.1	20	
sec-Butylbenzene	0.0250	0.0254	0.0226	101	90.5	80.6-126			11.4	20	
Carbon disulfide	0.0250	0.0295	0.0252	118	101	53.0-134			15.9	20	
Carbon tetrachloride	0.0250	0.0262	0.0228	105	91.1	70.9-129			13.9	20	
Chlorobenzene	0.0250	0.0258	0.0231	103	92.5	79.7-122			10.7	20	
Chlorodibromomethane	0.0250	0.0267	0.0239	107	95.8	78.2-124			10.7	20	
Chloroethane	0.0250	0.0356	0.0312	142	125	41.2-153			13.2	20	
Chloroform	0.0250	0.0258	0.0228	103	91.2	73.2-125			12.5	20	
Chloromethane	0.0250	0.0312	0.0274	125	109	55.8-134			13.1	20	
1,2-Dibromoethane	0.0250	0.0270	0.0234	108	93.5	79.8-122			14.3	20	
1,1-Dichloroethane	0.0250	0.0272	0.0240	109	95.9	71.7-127			12.5	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832422

DATE/TIME: 05/17/16 20:14

PAGE: 90 of 99

QUALITY CONTROL SUMMARY L832422-02,04,08,09,11,18

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134382-1 05/05/1	6 16:55 • (LCSE	D) R3134382-2	05/05/16 17:12	2							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0255	0.0226	102	90.4	65.3-126			12.2	20	
1,1-Dichloroethene	0.0250	0.0304	0.0259	121	103	59.9-137			16.0	20	
cis-1,2-Dichloroethene	0.0250	0.0254	0.0224	101	89.6	77.3-122			12.3	20	
trans-1,2-Dichloroethene	0.0250	0.0258	0.0226	103	90.5	72.6-125			12.9	20	
1,2-Dichloropropane	0.0250	0.0287	0.0257	115	103	77.4-125			11.2	20	
cis-1,3-Dichloropropene	0.0250	0.0283	0.0248	113	99.1	77.7-124			13.4	20	
trans-1,3-Dichloropropene	0.0250	0.0281	0.0244	113	97.6	73.5-127			14.2	20	
Ethylbenzene	0.0250	0.0265	0.0235	106	93.9	80.9-121			11.9	20	
2-Hexanone	0.125	0.150	0.124	120	99.3	59.4-151			18.9	20	
Isopropylbenzene	0.0250	0.0259	0.0229	104	91.8	81.6-124			12.2	20	
p-Isopropyltoluene	0.0250	0.0257	0.0230	103	92.1	77.6-129			10.8	20	
2-Butanone (MEK)	0.125	0.150	0.131	120	104	46.4-155			14.0	20	
Methylene Chloride	0.0250	0.0241	0.0220	96.5	88.2	69.5-120			8.94	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.172	0.142	138	114	63.3-138			19.1	20	
Methyl tert-butyl ether	0.0250	0.0240	0.0222	96.0	88.8	70.1-125			7.79	20	
Naphthalene	0.0250	0.0246	0.0222	98.4	88.7	69.7-134			10.4	20	
n-Propylbenzene	0.0250	0.0260	0.0230	104	92.2	81.9-122			12.2	20	
Styrene	0.0250	0.0253	0.0231	101	92.2	79.9-124			9.40	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0264	0.0242	106	97.0	78.5-125			8.66	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0243	0.0212	97.3	85.0	79.3-123			13.5	20	
Tetrachloroethene	0.0250	0.0283	0.0245	113	97.9	73.5-130			14.4	20	
Toluene	0.0250	0.0265	0.0229	106	91.5	77.9-116			14.6	20	
1,1,1-Trichloroethane	0.0250	0.0262	0.0226	105	90.6	71.1-129			14.5	20	
1,1,2-Trichloroethane	0.0250	0.0257	0.0227	103	90.7	81.6-120			12.4	20	
Trichloroethene	0.0250	0.0276	0.0239	111	95.4	79.5-121			14.7	20	
1,2,4-Trimethylbenzene	0.0250	0.0241	0.0219	96.6	87.5	79.0-122			9.91	20	
1,3,5-Trimethylbenzene	0.0250	0.0247	0.0222	98.9	88.9	81.0-123			10.7	20	
Vinyl chloride	0.0250	0.0312	0.0268	125	107	61.5-134			15.0	20	
Xylenes, Total	0.0750	0.0780	0.0696	104	92.8	79.2-122			11.4	20	
o-Xylene	0.0250	0.0257	0.0233	103	93.3	79.1-123			9.59	20	
m&p-Xylenes	0.0500	0.0523	0.0463	105	92.5	78.5-122			12.3	20	
(S) Toluene-d8				98.4	98.6	90.0-115					
(S) Dibromofluoromethane				98.0	98.8	79.0-121					
(S) 4-Bromofluorobenzene				87.1	88.4	80.1-120					

TRC Solutions - Austin, TX

249545.0000.0000 000

L832422

DATE/TIME: 05/17/16 20:14 PAGE: 91 of 99

QUALITY CONTROL SUMMARY L832422-02,04,08,09,11,18

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832422-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0235

0.0233

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0622	0.0489	49.7	39.1	1	25.0-156		<u>J3</u>	23.9	21.5
Benzene	0.0250	0.0707	0.0858	0.0897	60.4	75.9	1	58.6-133			4.44	20
Bromodichloromethane	0.0250	U	0.0231	0.0226	92.3	90.6	1	69.2-127			1.93	20
Bromoform	0.0250	U	0.0254	0.0250	101	100	1	66.3-140			1.35	20
Bromomethane	0.0250	U	0.0181	0.0204	72.5	81.6	1	16.6-183			11.8	20.5
n-Butylbenzene	0.0250	0.000558	0.0212	0.0210	82.7	81.9	1	64.8-145			0.960	20
sec-Butylbenzene	0.0250	0.0344	0.0511	0.0550	66.9	82.7	1	66.8-139			7.42	20
Carbon disulfide	0.0250	0.00110	0.0160	0.0180	59.7	67.8	1	34.9-138			11.8	20
Carbon tetrachloride	0.0250	U	0.0199	0.0212	79.5	85.0	1	60.6-139			6.62	20
Chlorobenzene	0.0250	U	0.0214	0.0211	85.5	84.5	1	70.1-130			1.23	20
Chlorodibromomethane	0.0250	U	0.0234	0.0227	93.4	90.7	1	71.6-132			2.91	20
Chloroethane	0.0250	U	0.0246	0.0268	98.4	107	1	33.3-155			8.48	20
Chloroform	0.0250	U	0.0215	0.0222	85.9	88.7	1	66.1-133			3.13	20
Chloromethane	0.0250	U	0.0175	0.0194	70.1	77.5	1	40.7-139			9.98	20
1,2-Dibromoethane	0.0250	U	0.0227	0.0216	90.8	86.5	1	73.8-131			4.76	20
1,1-Dichloroethane	0.0250	U	0.0217	0.0221	86.6	88.6	1	64.0-134			2.22	20
1,2-Dichloroethane	0.0250	U	0.0215	0.0210	85.9	84.1	1	60.7-132			2.07	20
1,1-Dichloroethene	0.0250	U	0.0214	0.0232	85.6	92.7	1	48.8-144			7.95	20
cis-1,2-Dichloroethene	0.0250	U	0.0200	0.0214	80.1	85.5	1	60.6-136			6.58	20
trans-1,2-Dichloroethene	0.0250	U	0.0183	0.0200	73.1	79.9	1	61.0-132			8.85	20
1,2-Dichloropropane	0.0250	U	0.0238	0.0242	95.2	96.7	1	69.7-130			1.54	20
cis-1,3-Dichloropropene	0.0250	U	0.0232	0.0221	92.9	88.5	1	71.1-129			4.86	20
trans-1,3-Dichloropropene	0.0250	U	0.0236	0.0222	94.5	88.8	1	66.3-136			6.27	20
Ethylbenzene	0.0250	0.00108	0.0222	0.0223	84.4	84.9	1	62.7-136			0.570	20
2-Hexanone	0.125	U	0.109	0.0984	87.5	78.7	1	59.4-154			10.5	20.1
Isopropylbenzene	0.0250	0.0535	0.0700	0.0740	65.6	81.7	1	67.4-136	<u>J6</u>		5.59	20
p-Isopropyltoluene	0.0250	U	0.0213	0.0222	85.2	88.6	1	62.8-143			3.94	20
2-Butanone (MEK)	0.125	U	0.135	0.121	108	96.6	1	45.0-156			11.5	20.8
Methylene Chloride	0.0250	U	0.0194	0.0207	77.4	82.8	1	61.5-125			6.74	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.157	0.156	126	125	1	60.7-150			0.490	20
Methyl tert-butyl ether	0.0250	0.00130	0.0229	0.0232	86.5	87.8	1	61.4-136			1.35	20
Naphthalene	0.0250	U	0.0228	0.0211	91.1	84.2	1	61.8-143			7.84	20
n-Propylbenzene	0.0250	0.00447	0.0253	0.0261	83.5	86.4	1	63.2-139			2.78	20
Styrene	0.0250	U	0.0213	0.0213	85.4	85.2	1	68.2-133			0.270	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0235	0.0236	94.0	94.5	1	70.5-132			0.490	20

0.0250

U

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

94.1

93.4

SDG: L832422

64.9-145

DATE/TIME: 05/17/16 20:14

0.780

20

PAGE: 92 of 99

QUALITY CONTROL SUMMARY L832422-02,04,08,09,11,18

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832422-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0209	0.0202	83.7	80.6	1	57.4-141			3.81	20
Toluene	0.0250	U	0.0210	0.0214	84.1	85.7	1	67.8-124			1.81	20
1,1,1-Trichloroethane	0.0250	U	0.0207	0.0221	82.8	88.4	1	58.7-134			6.54	20
1,1,2-Trichloroethane	0.0250	U	0.0302	0.0297	121	119	1	74.1-130			1.53	20
Trichloroethene	0.0250	U	0.0206	0.0205	82.3	82.1	1	48.9-148			0.270	20
1,2,4-Trimethylbenzene	0.0250	U	0.0206	0.0211	82.5	84.6	1	60.5-137			2.53	20
1,3,5-Trimethylbenzene	0.0250	U	0.0204	0.0210	81.8	84.0	1	67.9-134			2.69	20
Vinyl chloride	0.0250	U	0.0198	0.0220	79.1	88.0	1	44.3-143			10.7	20
Xylenes, Total	0.0750	U	0.0638	0.0637	85.0	84.9	1	65.6-133			0.0800	20
o-Xylene	0.0250	U	0.0214	0.0217	85.5	86.7	1	67.1-133			1.32	20
m&p-Xylenes	0.0500	U	0.0424	0.0420	84.7	84.1	1	64.1-133			0.790	20
(S) Toluene-d8					103	106		90.0-115				
(S) Dibromofluoromethane					101	103		79.0-121				
(S) 4-Bromofluorobenzene					89.7	92.1		80.1-120				

Тс

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG869249 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 <u>L832422-01,02,03,04,05,06,07,08,11,12,13,14,15,16,17,18,19,20</u> Method Blank (MB) (MB) R3133524-1 05/03/16 11:29 MB Result MB MDL MB RDL MB Qualifier Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 102 50.0-150 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133524-2 05/03/16 11:46 • (LCSD) R3133524-3 05/03/16 12:02 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Rec. Limits Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.89 1.61 126 107 15.8 20 (S) o-Terphenyl 50.0-150 103 106

Тс

Ss

Cn

Sr

GI

GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:	The same		Billing Info	rmation:	0.11 11 19	1		300	1	Agalysis ,	/ Contai	iner / Pr	eservati	ive		- 4	Chain of Custody	Page of				
TRC Solutions - Aus	tin, TX			nts Payable	1		160	100	- 0%	TV TV					1000		ma T	700				
505 E. Huntland Dr, Ste 250 Austin, TX 78752			21 Griffin Road North Windsor, CT 06095										- 500mIHDPE-HNO3	12	103 7	Sulfate. 125mIHDPE-NoPres	2804 7		Se,U,V 7	L-A-B S-	25C	
Report to:	277	-	Email To:			Jul Pil	TO S		1	l li	H	Ŧ	nHD	EH	344	Pb,S	12065 Lebanon Rd Mount Juliet, TN 37	OF CHOIC				
speer@trcsolutions.com			speer@trcsolutions.com				1		-	20	Nao	DPE	125n	g		iX,	Phone: 615-758-58: Phone: 800-767-58:	8 X 2 2 2				
Project Description: REST Spring 2010	16 - Team H (JH Collected: Artesia, NM				t ption: REST Spring 2016 - Team H () +				City/State Collected: Artesia, NM			10		Se,	-qm	H	ate-	9ml		Hg,M	Fax: 615-758-5859	回流
Phone: 512-684-3170	Client Projec			Lab Project # TRCATX-REST SPRING			BT			,Pb,Mn	HDPEA	la - 500ı	de, Sulfa	3) - 25	Pres	Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	L# L838	State of the last				
Collected by (print):	Site/Facility I			P.O. #			ICI-E	10	HCI	r,Fe	0ml	X,	luor	ZNC	ON-	d,Cc	Acctnum: TR	CATX				
Scott Udc + HMI Tram Collected by (signature):		Navajo- Ar		Date	Results Needed		H-qu	+qu	mb	3a,C	-25	Ca,	Je, F	(NO	DPE	Ba,C	Template: T1					
Scott Udy immediately Packed on Ice N Y	Same Next Two C	Day	Notified)200%100%50%	Email? _	_NoYes	No.	- 40mlAmb-HCI-BT	- 40mIAmb-HCI	- 40mIAmb-HC	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	Cyanide (CN) - 250mlHDPEAmb-NaOH	Cations-Total Ca, K, Na - 500mIHDPE-HNO3	Anions- Chloride, Fluoride,	Nitrate/Nitrite (NO2NO3) - 250mIHDPE-H2SO4	- 250mIHDPE-NoPres	Tot/Diss. As,B,	Prelogin: P54 TSR: Chris Cooler:	19625 McCord				
Sample ID	Comp Grab	1	Depth	Date	Time	of Cntrs	0	GRO.	V8260	ot./D			union	litrat	TDS -	ot/Di	Shipped Via:					
MW-103	1	GW	77	4/28/16	945	12	0	0	>	-	0		4	V	~	-	Rem./Contaminant	ELECTRIC STREET				
MW-104		GW		4/28/16		12	/	./	1	V	TOTAL STREET	2	V	1	-	u Po		-01				
EB-REST-02				4/28/16	1105	12	1	1	1	1		V	1	1	,		11 1/2	07				
DUP-REST-02	7 1	F-4-1	100	4/28/16		12	1	V	V	1		V	1	V	1		- 210	04				
MW-1263	10.84			4/28/16		12	_	1	1	1		V	1	V	1			05				
KWB-IA				4/28/16	1220	N	1	_	V	1	1	1	V	1	1	V	-	06				
KWB-6				4/28/16	925	10	~		/	1		1	1	1	1		2800 12	07				
KWB-10R		- 1	E1:	4/28/16	1125	10	1		1	1		1	V	1	1	400	- 16.2	08				
RW-#18A				4/28/16	1315	7			V	1		1	1	V	1		ELE	M				
Trip Blank-REST-02	V	1		4/28/16		t		100	V	100							7000	10				
* Matrix: SS - Soil GW - Groundwater	ww - WasteV	Vater DW - Dr	inking Wate	er OT - Other						рН _		Tem	p			1						
temarks: Log all metals by 6	020. Disso	lved meta	Charles B. A.A.							Flow_	146	Othe	r		Hol	d#						
Relinquished by: (Signature)		The second second second	8/16	1415	eceived by: (Signa		A			1250		ed via: D Courie			Con	dition:	(lab (ise ody				
Relinquished by : (Signature)	move a	Date:		Time: R	eceived by: (Signa	ture)	1			Temp: 3, 1		C Bot		ceived:	coc	Seal In	ntact: Y	N_ NA				
Relinquished by : (Signature)	4	Date:		lme: R	eceived for lab by	: (Signa	ture)			Dates	9/10	Tim			pH (Checked	A STATE OF THE PARTY OF THE PAR					

Company Name/Address:	100			Billing Info	rmatio	n:		71.11			-	A	nalysis ,	Contai	ner / Pro	eservat	ive			Chain of Custo	dy Page 2 of
TRC Solutions - Aus	tin, TX			Accoun	nts P	ayabl	le			1800		0.00		19	15.1	170	100	ME	177	mad 7	CCC
05 E. Huntland Dr, Ste 250 ustin, TX 78752						21 Griffin Road North Windsor, CT 06095							500mIHDPE-HNO3	1	2 2	Sulfate- 125mlHDPE-NoPres	100		V.U.	L-A-B	ESC.
		3.70		1 - 9						185			물	7	8	IDP	H2S		Se,	MOUR L	B OF CHOIC
leport to: speer@trcsolutions.com	100			Email To:		lustian.		CHIEF I				1	00m	НО	4	- Imig	- 250mIHDPE-H2SO4		li,Pb	12065 Lebanon Mount Juliet, TN	37122
Irelant			32.00	speer@	City/	7. 1927	s.co	om					1.3	-Na	P	-126	모	360	An, A	Phone: 615-758 Phone: 800-767- Fax: 615-758-58	5859
Pescription: REST Spring 2010	6 - Team-I	CJ	Н		Colle	cted:	Ar	tesia, N.	M	637			S,	Amb	- E	lfate-	0ml	33	Hg,h	_	Lan Character
hone: 512-684-3170	Client Projec	t#			- COSSESSIV	Lab Project # TRCATX-REST SPRING			3T			Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	250miHDPEAmb-NaOH	Cations-Total Ca, K, Na - 500mIHDPE-HNO3	Fluoride, Sul	03) - 25	Pres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	L# L832422		
Collected by (print):	Site/Facility		27.1		P.O.	P.O. #			C	5	HCI	F.F.	0ml	X.	luoi	ZNC	N-	d,C	Acctnum: T	RCATX	
Scott Lide + Hin Team	REST -	Vavaj	jo- Ar	tesia	75	K	_			P.H.	4	-qu	a,c	-25	Ca,	O, F	2)PE	3a,C	Template: 7	
Collected by (signature):	Rush?		UST Be N	Notified)		Da	te Re	sults Needed		IAm	Am	nIAi	As,B		Ital	Chloride,	ite	볼	B, B,	Prelogin: P	
mmediately Packed on Ice N Y	Next Two I	Day		50% 55%				No _Yes	No.	- 40mIAmb-HCI-BT	- 40mlAmb-HCI	0 - 40mlAmb-HC	Diss. A	Cyanide (CN)	ons-To		Nitrate/Nitrite (NO2NO3)	- 250mIHDPE-NoPres	Tot/Diss. As	TSR: Ch	ris McCord
Sample ID	Comp/Grab	Ma	trix *	Depth		Date		Time	Cntrs	DRO	GRO	V8260	Tot.	Cya	Cati	Anions-	Nitr	TDS	Tot	Shipped Via:	
MW-40		G	·w	role from a	4	28	16	1230	12	/	/	V	1		V	1	V	V		-	-1
MW-98	1		1		1	1281		1140	12	V	1	V	V		V	1	V	1			16
MW-93						28	-	825	12	V	V	1	V	1335	V	1	1	1			13
MW-23	- 3		1	e ji	_	28	-	915	12	/	V	1	1		1	V	1/	1			14
mw-138					-	128	_	1005	13	V	1	1		/	V	1	1	V	1	-	19
mw-137				101	_	281	-	1100	13	/	V	1		1	V	V	V	V	1		16
mw-42			7	7.00		28		1205	12	1	V	1	1		1	1	V	1			,1
mw-4)	contract to			7	+-	28/	-	1110	12	V	1	1	1		1	1	V	1	10.78	Est & I	18
MW-106	1			24	1	28)	-	915	12	1	1	1	1	100	V	1	1	1			19
MW-101	V	1	1	V. 18-15	1	281	_	825	12	1	V	1	V	1	V	V	V	1		T	20
					55	THE STATE OF		Article i	1.6	7.4		1		7 100			Estate 1	the same		10 F	
Matrix: SS - Soil GW - Groundwater													pH _		_ Tem	p	1000	-	-	A. 15 61	
emarks: Log all metals by 60	020. Disso	olved	meta	A		Iterec	_						Flow_	2016	_ Othe	er		Hol	ld #		
elinquished by : (Signature)	de	Date	1	5/16	14	15		eived by: (Signat		A					ed via:			Cor	ndition:	(1:	b use only
elinquished by : (Signature)		Date	e:		lime:		Rec	eived by: (Signat	ture)	1			Temp:		r Bo	2	Z7	co	C Seal I	ntact:Y	NNA
Relinquished by : (Signature)	1	Date	e:	1	lime:	4	Rec	eived for lab by:	(Signa	ture)			Date:/	12/1	Tir	ne:	00	pH	Checke	d: N	

Company Name/Address:			Billing Info	rmation:	- 100				A	nalysis /	Contai	ner / Pre	eservati	/e			Chain of Custody	Page Sof
TRC Solutions - Austin, TX 505 E. Huntland Dr, Ste 250 Austin, TX 78752			21 Griff	nts Payable in Road North r, CT 06095						500mIHDPE-HNO3		500miHDPE-HNO3 (2	125mlHDPE-NoPres	H2SO4 6		As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	YOUR LAB	SSC OF CHOICE
Report to:	VAL	(Line)	Email To:	- T				613		00m	НО	E-H	SmIH	PE-I		li,Pb	12065 Lebanon Rd Mount Juliet, TN 371	
speer@trcsolutions.com	436	Heris	speer@	City/State	com						-Na	무		H		Mn,N	Phone: 615-758-585 Phone: 800-767-585 Fax: 615-758-5859	
Description: REST Spring 2016	6 - Team-G	- Team & COH Collected: Artesia, NN		W)				n,Se	Amb	lm0	Sulfate-	50m	200	Hg,	L# L83	32422		
Phone: 512-684-3170	Site/Facility ID #		Lab Project # TRCATX-REST SPRING			3T			As,Ba,Cr,Fe,Pb,Mn,Se	HDPE/	Na - 50	ide, Su	03) - 2	Pres	o,Cr,Fe	Table #	1001	
Collected by (print): Scott Ude + Hal Team								-FC	P-HC	Cr,Fe	50ml	a, K,	Fluor	IOZN	DE-N	Cd,C	Acctnum: TRO	
Collected by (signature):	Rush? (L	ab MUST Be	Notified)	Date	Results Needed		40mlAmb-HCI-BT	Amb	IAm	s,Ba	(N	Cations-Total Ca, K,	oride,	rite (N	HHD	,B,Ba	Prelogin: P54	
Such Ucu Immediately Packed on Ice N Y	Same II Next D Two Da Three II	ay sy	200% 100% 50% 25%	300	_NoYes _NoYes	No.	1	GRO - 40mlAmb-HCI	V8260 - 40mlAmb-HCl	Tot./Diss. A	Cyanide (CN) - 250mlHDPEAmb-NaOH		Anions- Chloride, Fluoride,	Nitrate/Nitrite (NO2NO3) - 250miHDPE-H2SO4	3 - 250mIHDPE-NoPres	Tot/Diss. As	TSR: Chris McCord Cooler:	
Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRC	V826	Tot.	Cya	Cati	Anic	Nitr	TDS	Tot	Shipped Via:	Sample # (tab only)
RA-3156		GW		4/28/16	1200	6		115	/	59		/	V	V	V			21
					1 10 1	1			To B					-				
			Tal						3/8							1.25		
						1			36								12	
	T. PERMIT	E 1/4/2						1			-			210715			学 人社	
1 105			1.7	- 6	1	, Like	500										is.	E Blon
	- 石道			1	11.75	104						3		33		- 50		
	. 19		E		982	15		34							86			
				45.47	関係を	1		7	100		1836							0.00
					A PT MAN	1	100		A BA			dia		11.5				
* Matrix: SS - Soil GW - Groundwater Remarks: Log all metals by 6				ATE OF THE PERSON NAMED IN						pH .		Ten			Ho	old#		
Relinquished by : (Signature)	020. 01330	Date: \	. 1	Time:	Received by: (Sign	ature)	A			2000	757-00.00	ned via:		5	Co	ndition	: (lab	use only)
Sicor elel		4/	28/16	1415		隐		gris.	10	A	edEx	□ Cour						JUL
Relinquished by : (Signature)		Date:		Time:	Received by: (Sign	ature)	K		4	Temp:		"C B	ottles R	eceived:	235 00	or so-t	letted:	N NA
Relinquished by : (Signature)		Date:	- 1	Time:	Received for lab b	y: (Sign:	ature)		200	Date:	1/29,		me:	00	ph	C Seal		

ANALYTICAL REPORT May 18, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832435

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: REST Spring 2016

REST - NAVAJO-ARTESIA Site:

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By:

Mark W. Beasley

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	8
⁵ Sr: Sample Results	9
MW-48 L832435-01	9
MW-130 L832435-02	11
MW-67 L832435-03	13
MW-94 L832435-04	16
MW-95 L832435-05	18
RW-7R L832435-06	20
MW-126A L832435-07	22
MW-127 L832435-08	24
MW-129 L832435-09	26
MW-131 L832435-10	28
MW-134 L832435-11	30
EB-REST-03 L832435-12	32
DUP-REST-03 L832435-13	34
KWB-7 L832435-14	36
RA-313 L832435-15	39
MW-64 L832435-16	41
⁶ Qc: Quality Control Summary	43
Gravimetric Analysis by Method 2540 C-2011	43
Wet Chemistry by Method 353.2	46
Wet Chemistry by Method 9056A	48
Wet Chemistry by Method D 7511-09e2	57
Mercury by Method 7470A	58
Metals (ICPMS) by Method 6020	60
Volatile Organic Compounds (GC) by Method 8015D/GRO	67
Volatile Organic Compounds (GC/MS) by Method 8260B	69
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	81
⁷ Gl: Glossary of Terms	82
⁸ Al: Accreditations & Locations	83

⁹Sc: Chain of Custody

84

		Collected by SU / HM1 Team	Collected date/time 04/27/16 15:25	Received date/time 04/29/16 09:00
Batch	Dilution	Preparation	Analysis	Analyst
				JM
				JDG
				JDG
				JNS
				DAH
WG868979	20	05/03/16 17:13	05/03/16 17:13	DAH
WG869976	50	05/04/16 22:10	05/04/16 22:10	LRL
WG870054	10	05/06/16 05:35	05/06/16 05:35	ASK
WG869673	1	05/09/16 17:13	05/09/16 17:13	CM
WG869673	50	05/09/16 17:29	05/09/16 17:29	CM
		Collected by SU / HM1 Team	Collected date/time 04/27/16 17:30	Received date/time 04/29/16 09:00
Batch	Dilution	Preparation	Analysis	Analyst
		date/time	date/time	,,
WG869085	1	05/03/16 05:16	05/03/16 06:19	JM
WG869123	5	05/05/16 13:16	05/07/16 03:10	JDG
WG869293	5	05/04/16 22:27	05/07/16 16:33	JDG
WG869251	1	05/02/16 16:48	05/04/16 20:30	JNS
WG869043	1	05/02/16 19:24	05/02/16 19:24	DAH
WG868979	1	05/03/16 17:31	05/03/16 17:31	DAH
WG870054	10	05/06/16 05:36	05/06/16 05:36	ASK
WG869673	1	05/09/16 15:22	05/09/16 15:22	CM
WG869673	50	05/09/16 15:54	05/09/16 15:54	CM
		Collected by SU / HM1 Team	Collected date/time 04/27/16 15:30	Received date/time 04/29/16 09:00
Patch	Dilution	Proparation	Analysis	Analyst
Batch	Dilution	date/time	date/time	Analyst
WG869085	1	05/03/16 05:16	05/03/16 06:19	JM
WG868781	1	04/30/16 11:12	05/02/16 10:31	NJB
WG869207	1	05/03/16 12:30	05/04/16 12:23	NJB
WG869123	5	05/05/16 13:16	05/07/16 03:13	JDG
WG869293	5	05/04/16 22:27	05/07/16 16:35	JDG
WG870589	10	05/06/16 14:41	05/07/16 09:04	LAT
WG870591		05/06/16 16:27	05/09/16 11:19	JDG
		05/02/16 16:48		JNS
		05/02/16 19:49		DAH
		05/04/16 05:27		BMB
				ASK
				CM
WG869673	50	05/09/16 16:57	05/09/16 16:57	CM
WG869673 WG871228	50 10	05/09/16 16:57 05/10/16 21:49	05/09/16 16:57 05/10/16 21:49	CM SAM
WG869673 WG871228 WG871518	50 10 10	05/09/16 16:57 05/10/16 21:49 05/10/16 21:51	05/09/16 16:57 05/10/16 21:49 05/10/16 21:51	CM SAM NJM
WG871228	10	05/10/16 21:49	05/10/16 21:49	SAM NJM
WG871228	10	05/10/16 21:49 05/10/16 21:51 Collected by	05/10/16 21:49 05/10/16 21:51 Collected date/time	SAM NJM Received date/time
WG871228 WG871518	10 10	05/10/16 21:49 05/10/16 21:51 Collected by SU / HM1 Team	05/10/16 21:49 05/10/16 21:51 Collected date/time 04/27/16 14:40 Analysis	SAM NJM Received date/time 04/29/16 09:00
WG871228 WG871518 Batch	10 10 Dilution	05/10/16 21:49 05/10/16 21:51 Collected by SU / HM1 Team Preparation date/time	05/10/16 21:49 05/10/16 21:51 Collected date/time 04/27/16 14:40 Analysis date/time	SAM NJM Received date/time 04/29/16 09:00 Analyst
	WG869085 WG869293 WG870075 WG869043 WG869043 WG869976 WG869976 WG869673 WG869673 WG869673 WG869673 WG869293 WG869291 WG869043 WG869673 WG869673 WG869673 WG869673 WG869673 WG869673	WG869085 1 WG869251 5 WG869043 25 WG869043 25 WG869976 50 WG869976 50 WG870054 10 WG869673 1 WG869673 50 WG86923 5 WG86923 5 WG869293 5 WG869293 1 WG869043 1 WG869043 1 WG869043 1 WG869043 1 WG869073 1 WG870054 10 WG869673 1 WG869073 1 WG869073 50 Batch Dilution	Batch	Batch

SAMPLE SUMMARY

SAMPLE SUMMARY

MW-94 L832435-04 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 14:40	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/04/16 22:20	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	50	05/02/16 20:14	05/02/16 20:14	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	50	05/04/16 05:50	05/04/16 05:50	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:44	05/06/16 05:44	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 18:17	05/09/16 18:17	CM
Wet Chemistry by Method 9056A	WG869673	100	05/09/16 18:33	05/09/16 18:33	CM
Wet Chemistry by Method 9056A	WG871228	10	05/10/16 22:04	05/10/16 22:04	SAM
MW-95 L832435-05 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 16:25	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	•
Gravimetric Analysis by Method 2540 C-2011	WG869085	1	05/03/16 05:16	05/03/16 06:19	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:18	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:45	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/04/16 22:39	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/02/16 20:38	05/02/16 20:38	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 06:13	05/04/16 06:13	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:45	05/06/16 05:45	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 18:49	05/09/16 18:49	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 19:05	05/09/16 19:05	CM
			Collected by	Collected date/time	Received date/time
RW-7R L832435-06 GW			SU / HM1 Team	04/27/16 17:15	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869085	1	05/03/16 05:16	05/03/16 06:19	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:21	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:47	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/04/16 22:57	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/02/16 23:05	05/02/16 23:05	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 06:35	05/04/16 06:35	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:46	05/06/16 05:46	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 19:21	05/09/16 19:21	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 19:36	05/09/16 19:36	CM
MW-126A L832435-07 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 18:15	Received date/time 04/29/16 09:00
Mothod	Ratch	Dilution	Proparation	Analysis	Analyst

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869085	1	05/03/16 05:16	05/03/16 06:19	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:23	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:49	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/04/16 23:16	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/02/16 23:30	05/02/16 23:30	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 06:58	05/04/16 06:58	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:48	05/06/16 05:48	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 19:52	05/09/16 19:52	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 20:08	05/09/16 20:08	CM

³Ss

SA

ΔMPI F	SUMMARY	
─ \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	JUMINAN	

MW-127 L832435-08 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 17:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869085	1	05/03/16 05:16	05/03/16 06:19	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:26	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:51	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/04/16 23:34	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/02/16 23:54	05/02/16 23:54	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 07:21	05/04/16 07:21	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870327	50	05/06/16 01:11	05/06/16 01:11	LRL
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:47	05/06/16 05:47	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 21:12	05/09/16 21:12	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 20:24	05/09/16 20:24	CM
MW-129 L832435-09 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 16:25	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:29	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:54	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/04/16 23:52	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/03/16 00:19	05/03/16 00:19	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 07:44	05/04/16 07:44	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870327	50	05/06/16 01:32	05/06/16 01:32	LRL
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:54	05/06/16 05:54	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 21:28	05/09/16 21:28	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 21:44	05/09/16 21:44	CM
MW-131 L832435-10 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 15:35	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:32	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:56	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 00:11	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/03/16 00:44	05/03/16 00:44	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 08:06	05/04/16 08:06	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870327	100	05/06/16 01:53	05/06/16 01:53	LRL
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:55	05/06/16 05:55	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 22:00	05/09/16 22:00	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 22:16	05/09/16 22:16	CM
MW-134 L832435-11 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 18:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			-l - 4 - /4*	-1 - 4 - /4:	

mourou	Batteri	Bildion	· · cparation	7 41101 3 515	,
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:34	
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 16:21	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 00:29	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/03/16 01:09	05/03/16 01:09	[
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 08:29	05/04/16 08:29	E

Volatile Organic Compounds (GC/MS) by Method 8260B

WG870327

05/06/16 00:09

1

05/06/16 00:09

JM

JDG

JDG

JNS DAH

 BMB

LRL

SAMPLE SUMMARY

ONE	IΔR	NATIONWIDE

MW-134 L832435-11 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 18:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:56	05/06/16 05:56	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 22:32	05/09/16 22:32	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 22:48	05/09/16 22:48	CM
ED DECT 03 1 03343E 13 CW			Collected by SU / HM1 Team	Collected date/time 04/27/16 18:45	Received date/time 04/29/16 09:00
EB-REST-03 L832435-12 GW					
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869123	1	05/05/16 13:16	05/07/16 03:42	JDG
Metals (ICPMS) by Method 6020	WG869293	1	05/04/16 22:27	05/09/16 10:06	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 00:47	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/03/16 01:34	05/03/16 01:34	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 08:52	05/04/16 08:52	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 05:57	05/06/16 05:57	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/10/16 03:02	05/10/16 03:02	CM
DUP-REST-03 L832435-13 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 15:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:45	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:01	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 01:06	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869043	1	05/03/16 01:59	05/03/16 01:59	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 09:15	05/04/16 09:15	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 06:01	05/06/16 06:01	ASK
Wet Chemistry by Method 9056A	WG869673	1	05/09/16 23:04	05/09/16 23:04	CM
Wet Chemistry by Method 9056A	WG869673	50	05/09/16 23:19	05/09/16 23:19	CM
KWB-7 L832435-14 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 14:50	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Mercury by Method 7470A	WG868781	1	04/30/16 11:12	05/02/16 10:34	NJB
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:25	NJB
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:48	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:03	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 09:09	LAT

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Wet Chemistry by Method D 7511-09e2

WG870591

WG869251

WG868983

WG870054

WG869673

WG869673

WG871518

10

1

1

10

1

50

1

05/06/16 16:27

05/02/16 16:48

05/04/16 09:37

05/06/16 06:02

05/10/16 00:07

05/10/16 00:23

05/10/16 21:54

05/09/16 11:24

05/05/16 01:24

05/04/16 09:37

05/06/16 06:02

05/10/16 00:07

05/10/16 00:23

05/10/16 21:54

JDG

JNS

BMB

ASK

 CM

CM

NJM

RA-313 L832435-15 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 14:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:10	JDG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 10:00	05/04/16 10:00	BMB
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 06:07	05/06/16 06:07	ASK
Wet Chemistry by Method 9056A	WG869679	1	05/10/16 11:53	05/10/16 11:53	CM
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 09:09	05/16/16 09:09	CM
Wet Chemistry by Method 9056A	WG871015	10	05/16/16 19:37	05/16/16 19:37	CSU
MW-64 L832435-16 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 12:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869816	1	05/04/16 17:40	05/04/16 18:17	MMF
Metals (ICPMS) by Method 6020	WG869123	5	05/05/16 13:16	05/07/16 03:50	JDG
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:13	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	5	05/02/16 16:48	05/06/16 05:39	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870480	50	05/06/16 16:48	05/06/16 16:48	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	50	05/04/16 10:23	05/04/16 10:23	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870327	1000	05/06/16 02:13	05/06/16 02:13	LRL
Wet Chemistry by Method 353.2	WG870054	10	05/06/16 06:08	05/06/16 06:08	ASK
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 19:51	05/16/16 19:51	CSU

 CM

Wet Chemistry by Method 9056A

05/15/16 15:39

1

05/15/16 15:39

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2950		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:35	WG870054	

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1110		2.60	1.00	50.0	50	05/09/2016 17:29	WG869673
Fluoride	1.45		0.00990	0.100	0.100	1	05/09/2016 17:13	WG869673
Sulfate	20.5		0.0774	5.00	5.00	1	05/09/2016 17:13	WG869673

Cn

Metals (ICI MS) by Metalod 0020								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0125		0.00125	0.00200	0.0100	5	05/07/2016 16:30	WG869293
Arsenic, Dissolved	0.00857	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 10:44	WG870075
Barium	2.77		0.00180	0.00500	0.0250	5	05/07/2016 16:30	WG869293
Barium, Dissolved	2.64		0.00180	0.00500	0.0250	5	05/09/2016 10:44	WG870075
Calcium	234		0.230	1.00	5.00	5	05/07/2016 16:30	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:30	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:44	WG870075
Iron	0.177	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 16:30	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 10:44	WG870075
Lead	0.00371	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 16:30	WG869293
Lead, Dissolved	0.00134	<u>J</u>	0.00120	0.00200	0.0100	5	05/09/2016 10:44	WG870075
Manganese	0.390		0.00125	0.00500	0.0250	5	05/07/2016 16:30	WG869293
Manganese, Dissolved	0.402		0.00125	0.00500	0.0250	5	05/09/2016 10:44	WG870075
Potassium	1.80	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 16:30	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:30	WG869293
Selenium,Dissolved	0.00321	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 10:44	WG870075
Sodium	314		0.550	1.00	5.00	5	05/07/2016 16:30	WG869293

Qc

Gl

Metals (ICPMS) by Method 6020

Αl

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	23.3		0.785	0.100	2.50	25	05/02/2016 18:59	WG869043
(S) a,a,a-Trifluorotoluene(FID)	94.1				62.0-128		05/02/2016 18:59	WG869043

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.200	0.0500	1.00	20	05/03/2016 17:13	WG868979
Benzene	7.17		0.0166	0.00100	0.0500	50	05/04/2016 22:10	WG869976
Bromodichloromethane	U		0.00760	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Bromoform	U		0.00938	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Bromomethane	U		0.0173	0.00500	0.100	20	05/03/2016 17:13	WG868979
n-Butylbenzene	U		0.00722	0.00100	0.0200	20	05/03/2016 17:13	WG868979
sec-Butylbenzene	0.00987	J	0.00730	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Carbon disulfide	U		0.00550	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Carbon tetrachloride	U		0.00758	0.00100	0.0200	20	05/03/2016 17:13	WG868979

Collected date/time: 04/27/16 15:25

L832435

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Cn

[°]Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00696	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Chlorodibromomethane	U		0.00654	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Chloroethane	U		0.00906	0.00500	0.100	20	05/03/2016 17:13	WG868979
Chloroform	U		0.00648	0.00500	0.100	20	05/03/2016 17:13	WG868979
Chloromethane	U		0.00552	0.00250	0.0500	20	05/03/2016 17:13	WG868979
1,2-Dibromoethane	U		0.00762	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,1-Dichloroethane	U		0.00518	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,2-Dichloroethane	U		0.00722	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,1-Dichloroethene	U		0.00796	0.00100	0.0200	20	05/03/2016 17:13	WG868979
cis-1,2-Dichloroethene	U		0.00520	0.00100	0.0200	20	05/03/2016 17:13	WG868979
trans-1,2-Dichloroethene	U		0.00792	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,2-Dichloropropane	U		0.00612	0.00100	0.0200	20	05/03/2016 17:13	WG868979
cis-1,3-Dichloropropene	U		0.00836	0.00100	0.0200	20	05/03/2016 17:13	WG868979
trans-1,3-Dichloropropene	U		0.00838	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Ethylbenzene	0.790		0.00768	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Isopropylbenzene	0.0670		0.00652	0.00100	0.0200	20	05/03/2016 17:13	WG868979
p-Isopropyltoluene	U		0.00700	0.00100	0.0200	20	05/03/2016 17:13	WG868979
2-Butanone (MEK)	U		0.0786	0.0100	0.200	20	05/03/2016 17:13	WG868979
2-Hexanone	U		0.0764	0.0100	0.200	20	05/03/2016 17:13	WG868979
Methylene Chloride	U		0.0200	0.00500	0.100	20	05/03/2016 17:13	WG868979
4-Methyl-2-pentanone (MIBK)	U		0.0428	0.0100	0.200	20	05/03/2016 17:13	WG868979
Methyl tert-butyl ether	0.326		0.00734	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Naphthalene	0.101		0.0200	0.00500	0.100	20	05/03/2016 17:13	WG868979
n-Propylbenzene	0.0983		0.00698	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Styrene	U		0.00614	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,1,1,2-Tetrachloroethane	U		0.00770	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,1,2,2-Tetrachloroethane	U		0.00260	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Tetrachloroethene	U		0.00744	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Toluene	0.214		0.0156	0.00500	0.100	20	05/03/2016 17:13	WG868979
1,1,1-Trichloroethane	U		0.00638	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,1,2-Trichloroethane	U		0.00766	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Trichloroethene	U		0.00796	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,2,4-Trimethylbenzene	0.310		0.00746	0.00100	0.0200	20	05/03/2016 17:13	WG868979
1,3,5-Trimethylbenzene	0.0223		0.00774	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Vinyl chloride	U		0.00518	0.00100	0.0200	20	05/03/2016 17:13	WG868979
o-Xylene	0.0788		0.00682	0.00100	0.0200	20	05/03/2016 17:13	WG868979
m&p-Xylene	0.671		0.0144	0.00100	0.0200	20	05/03/2016 17:13	WG868979
Xylenes, Total	0.750		0.0212	0.00300	0.0600	20	05/03/2016 17:13	WG868979
(S) Toluene-d8	105				90.0-115		05/03/2016 17:13	WG868979
(S) Toluene-d8	106				90.0-115		05/04/2016 22:10	WG869976
(S) Dibromofluoromethane	105				79.0-121		05/04/2016 22:10	WG869976
(S) Dibromofluoromethane	103				79.0-121		05/03/2016 17:13	WG868979
(S) 4-Bromofluorobenzene	106				80.1-120		05/03/2016 17:13	WG868979
(S) 4-Bromofluorobenzene	104				80.1-120		05/04/2016 22:10	WG869976

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	15.3		0.124	0.100	0.500	5	05/06/2016 05:02	WG869251
(S) o-Terphenyl	125				50.0-150		05/06/2016 05:02	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:30

L832435

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2570		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	3.82	<u>J6</u>	0.197	0.100	1.00	10	05/06/2016 05:36	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	293		2.60	1.00	50.0	50	05/09/2016 15:54	WG869673
Fluoride	0.907		0.00990	0.100	0.100	1	05/09/2016 15:22	WG869673
Sulfate	1030		3.87	5.00	250	50	05/09/2016 15:54	WG869673

Cn

Metals (ICPMS) by Method 6020

Tweetals (ICI IVIS) by IV	1100 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00449	J	0.00125	0.00200	0.0100	5	05/07/2016 16:33	WG869293
Arsenic, Dissolved	0.00450	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:10	WG869123
Barium	0.0228	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 16:33	WG869293
Barium, Dissolved	0.0198	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 03:10	WG869123
Calcium	281		0.230	1.00	5.00	5	05/07/2016 16:33	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:33	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:10	WG869123
Iron	0.451	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 16:33	WG869293
Iron,Dissolved	0.116	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 03:10	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:33	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:10	WG869123
Manganese	0.105		0.00125	0.00500	0.0250	5	05/07/2016 16:33	WG869293
Manganese, Dissolved	0.103		0.00125	0.00500	0.0250	5	05/07/2016 03:10	WG869123
Potassium	0.870	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 16:33	WG869293
Selenium	0.00575	J	0.00190	0.00200	0.0100	5	05/07/2016 16:33	WG869293
Selenium, Dissolved	0.0126		0.00190	0.00200	0.0100	5	05/07/2016 03:10	WG869123
Sodium	324		0.550	1.00	5.00	5	05/07/2016 16:33	WG869293

°Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/02/2016 19:24	WG869043
(S) a,a,a-Trifluorotoluene(FID)	98.8				62.0-128		05/02/2016 19:24	WG869043

⁹Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 17:31	WG868979
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 17:31	WG868979
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 17:31	WG868979
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 17:31	WG868979
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 17:31	WG868979
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 17:31	WG868979
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 17:31	WG868979
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 17:31	WG868979
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 17:31	WG868979

Naphthalene

Styrene

Toluene

n-Propylbenzene

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

WG868979

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

106

105

109

Collected date/time: 04/27/	Collected date/time: 04/27/16 17:30					L832435						
Volatile Organic Com	pounds (GC	/MS) by Me	ethod 8260)B								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch				
Analyte	mg/l		mg/l	mg/l	mg/l		date / time					
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/03/2016 17:31	WG868979	2_			
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/03/2016 17:31	WG868979	L			
Chloroethane	U		0.000453	0.00500	0.00500	1	05/03/2016 17:31	WG868979	3			
Chloroform	U		0.000324	0.00500	0.00500	1	05/03/2016 17:31	WG868979	3			
Chloromethane	U		0.000276	0.00250	0.00250	1	05/03/2016 17:31	WG868979	<u> </u>			
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/03/2016 17:31	WG868979	4			
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/03/2016 17:31	WG868979	L			
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/03/2016 17:31	WG868979	5			
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 17:31	WG868979	5			
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/03/2016 17:31	WG868979				
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/03/2016 17:31	WG868979	6			
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/03/2016 17:31	WG868979				
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/03/2016 17:31	WG868979	7			
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/03/2016 17:31	WG868979				
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/03/2016 17:31	WG868979				
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/03/2016 17:31	WG868979	8 /			
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/03/2016 17:31	WG868979				
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/03/2016 17:31	WG868979	9			
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/03/2016 17:31	WG868979	95			
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/03/2016 17:31	WG868979				
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/03/2016 17:31	WG868979				
Methyl tert-butyl ether	0.000538	<u>J</u>	0.000367	0.00100	0.00100	1	05/03/2016 17:31	WG868979				

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

1

1

1

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

05/03/2016 17:31

0.00100

0.000349

0.000307

0.000385

0.000130

0.000372

0.000780

0.000319

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

	R	esult	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	n	ng/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.	.08		0.0247	0.100	0.100	1	05/04/2016 20:30	WG869251
(S) o-Terphenyl	1	11				50.0-150		05/04/2016 20:30	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1790		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:43	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	312		2.60	1.00	50.0	50	05/09/2016 16:57	WG869673
Fluoride	0.548		0.00990	0.100	0.100	1	05/09/2016 16:26	WG869673
Sulfate	281		0.774	5.00	50.0	10	05/10/2016 21:49	WG871228

Ss

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	0.0440	<u>J</u>	0.0120	0.00500	0.0500	10	05/10/2016 21:51	WG871518

Gl

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	0.0440	J	0.0120	0.00500	0.0500	10	05/10/2016 21:51	WG871518

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/02/2016 10:31	WG868781
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:23	WG869207

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0101		0.00125	0.00200	0.0100	5	05/07/2016 16:35	WG869293
Arsenic, Dissolved	0.0110		0.00125	0.00200	0.0100	5	05/07/2016 03:13	WG869123
Barium	0.229		0.00180	0.00500	0.0250	5	05/07/2016 16:35	WG869293
Barium, Dissolved	0.231		0.00180	0.00500	0.0250	5	05/07/2016 03:13	WG869123
Boron	0.471		0.0150	0.0200	0.200	10	05/07/2016 09:04	WG870589
Boron, Dissolved	0.458		0.0150	0.0200	0.200	10	05/09/2016 11:19	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/07/2016 16:35	WG869293
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 03:13	WG869123
Calcium	202		0.230	1.00	5.00	5	05/07/2016 16:35	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:35	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:13	WG869123
Cobalt	U		0.00130	0.00200	0.0100	5	05/07/2016 16:35	WG869293
Cobalt,Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 03:13	WG869123
Iron	U		0.0750	0.100	0.500	5	05/07/2016 16:35	WG869293
Iron,Dissolved	0.156	J	0.0750	0.100	0.500	5	05/07/2016 03:13	WG869123
Lead	0.00135	J	0.00120	0.00200	0.0100	5	05/07/2016 16:35	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:13	WG869123
Manganese	0.117		0.00125	0.00500	0.0250	5	05/07/2016 16:35	WG869293
Manganese, Dissolved	0.133		0.00125	0.00500	0.0250	5	05/07/2016 03:13	WG869123
Nickel	U		0.00175	0.00200	0.0100	5	05/07/2016 16:35	WG869293
Nickel, Dissolved	0.00267	<u>J</u>	0.00175	0.00200	0.0100	5	05/07/2016 03:13	WG869123
Potassium	0.427	J	0.185	1.00	5.00	5	05/07/2016 16:35	WG869293
Selenium	U	_	0.00190	0.00200	0.0100	5	05/07/2016 16:35	WG869293
Selenium,Dissolved	0.00609	J	0.00190	0.00200	0.0100	5	05/07/2016 03:13	WG869123
Sodium	218	_	0.550	1.00	5.00	5	05/07/2016 16:35	WG869293

PAGE:

Analyte

Uranium

Uranium, Dissolved Vanadium

Vanadium, Dissolved

SAMPLE RESULTS - 03

0.00500

0.00500

0.0250

0.0250

5

ONE LAB. NATIONWIDE.

WG869293

WG869123

Collected date/time: 04/27/16 15:30

Result

mg/l

U

U

Metals (ICPMS) by Method 6020

SDL

mg/l

0.00165

0.00165

0.000900

0.000900

Qualifier

Unadj. MQL	MQL	Dilution	Analysis	Batch
mg/l	mg/l		date / time	
0.0100	0.0500	5	05/07/2016 16:35	WG869293
0.0100	0.0500	5	05/07/2016 03:13	WG869123

05/07/2016 16:35

05/07/2016 03:13

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

0.00139

0.00283

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.29		0.157	0.100	0.500	5	05/02/2016 19:49	WG869043
(S) a,a,a-Trifluorotoluene(FID)	94.1				62.0-128		05/02/2016 19:49	WG869043

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/04/2016 05:27	WG868983
Benzene	0.223		0.00331	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Bromoform	U		0.00469	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Bromomethane	U		0.00866	0.00500	0.0500	10	05/04/2016 05:27	WG868983
-Butylbenzene	U		0.00361	0.00100	0.0100	10	05/04/2016 05:27	WG868983
ec-Butylbenzene	0.00769	<u>J</u>	0.00365	0.00100	0.0100	10	05/04/2016 05:27	WG868983
arbon disulfide	0.00300	<u>J</u>	0.00275	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/04/2016 05:27	WG868983
hlorobenzene	U		0.00348	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Chloroethane	U		0.00453	0.00500	0.0500	10	05/04/2016 05:27	WG868983
Chloroform	U		0.00324	0.00500	0.0500	10	05/04/2016 05:27	WG868983
Chloromethane	U		0.00276	0.00250	0.0250	10	05/04/2016 05:27	WG868983
2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/04/2016 05:27	WG868983
1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/04/2016 05:27	WG868983
2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/04/2016 05:27	WG868983
1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/04/2016 05:27	WG868983
s-1,2-Dichloroethene	0.00527	<u>J</u>	0.00260	0.00100	0.0100	10	05/04/2016 05:27	WG868983
ans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/04/2016 05:27	WG868983
2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/04/2016 05:27	WG868983
is-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/04/2016 05:27	WG868983
ans-1,3-Dichloropropene	U	<u>J4</u>	0.00419	0.00100	0.0100	10	05/04/2016 05:27	WG868983
hylbenzene	0.00869	<u>J</u>	0.00384	0.00100	0.0100	10	05/04/2016 05:27	WG868983
opropylbenzene	0.0321		0.00326	0.00100	0.0100	10	05/04/2016 05:27	WG868983
-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/04/2016 05:27	WG868983
-Butanone (MEK)	U	<u>J4</u>	0.0393	0.0100	0.100	10	05/04/2016 05:27	WG868983
-Hexanone	U		0.0382	0.0100	0.100	10	05/04/2016 05:27	WG868983
lethylene Chloride	U		0.0100	0.00500	0.0500	10	05/04/2016 05:27	WG868983
-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/04/2016 05:27	WG868983
lethyl tert-butyl ether	0.359		0.00367	0.00100	0.0100	10	05/04/2016 05:27	WG868983
laphthalene	U		0.0100	0.00500	0.0500	10	05/04/2016 05:27	WG868983
-Propylbenzene	0.0120		0.00349	0.00100	0.0100	10	05/04/2016 05:27	WG868983
tyrene	U		0.00307	0.00100	0.0100	10	05/04/2016 05:27	WG868983
1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/04/2016 05:27	WG868983
1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/04/2016 05:27	WG868983
etrachloroethene	U		0.00372	0.00100	0.0100	10	05/04/2016 05:27	WG868983
oluene	U		0.00780	0.00500	0.0500	10	05/04/2016 05:27	WG868983
1,1-Trichloroethane	U		0.00319	0.00100	0.0100	10	05/04/2016 05:27	WG868983
,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/04/2016 05:27	WG868983
richloroethene	U		0.00398	0.00100	0.0100	10	05/04/2016 05:27	WG868983

MW-67

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:30

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	U		0.00373	0.00100	0.0100	10	05/04/2016 05:27	WG868983
1,3,5-Trimethylbenzene	U		0.00387	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/04/2016 05:27	WG868983
o-Xylene	U		0.00341	0.00100	0.0100	10	05/04/2016 05:27	WG868983
m&p-Xylene	U		0.00719	0.00100	0.0100	10	05/04/2016 05:27	WG868983
Xylenes, Total	U		0.0106	0.00300	0.0300	10	05/04/2016 05:27	WG868983
(S) Toluene-d8	106				90.0-115		05/04/2016 05:27	WG868983
(S) Dibromofluoromethane	107				79.0-121		05/04/2016 05:27	WG868983
(S) 4-Bromofluorobenzene	99.9				80.1-120		05/04/2016 05:27	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	11.1		0.124	0.100	0.500	5	05/06/2016 05:20	WG869251
(S) o-Terphenyl	117				50.0-150		05/06/2016 05:20	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2980		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:44	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	217		5.19	1.00	100	100	05/09/2016 18:33	WG869673
Fluoride	1.02		0.00990	0.100	0.100	1	05/09/2016 18:17	WG869673
Sulfate	199		0.774	5.00	50.0	10	05/10/2016 22:04	WG871228

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Arsenic	0.0286		0.00125	0.00200	0.0100	5	05/07/2016 16:42	WG869293
Arsenic, Dissolved	0.0163		0.00125	0.00200	0.0100	5	05/07/2016 03:15	WG869123
Barium	0.353		0.00180	0.00500	0.0250	5	05/07/2016 16:42	WG869293
Barium, Dissolved	0.356		0.00180	0.00500	0.0250	5	05/07/2016 03:15	WG869123
Calcium	124		0.230	1.00	5.00	5	05/07/2016 16:42	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:42	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:15	WG869123
Iron	U		0.0750	0.100	0.500	5	05/07/2016 16:42	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:15	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:42	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:15	WG869123
Manganese	0.00666	J	0.00125	0.00500	0.0250	5	05/07/2016 16:42	WG869293
Manganese, Dissolved	0.00601	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 03:15	WG869123
Potassium	0.189	J	0.185	1.00	5.00	5	05/07/2016 16:42	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:42	WG869293
Selenium, Dissolved	0.0334		0.00190	0.00200	0.0100	5	05/07/2016 03:15	WG869123
Sodium	532		0.550	1.00	5.00	5	05/07/2016 16:42	WG869293

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	7.91		1.57	0.100	5.00	50	05/02/2016 20:14	WG869043
(S) a,a,a-Trifluorotoluene(FID)	96.1				62.0-128		05/02/2016 20:14	WG869043

	•	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.500	0.0500	2.50	50	05/04/2016 05:50	WG868983
Benzene	0.417		0.0166	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Bromodichloromethane	U		0.0190	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Bromoform	U		0.0234	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Bromomethane	U		0.0433	0.00500	0.250	50	05/04/2016 05:50	WG868983
n-Butylbenzene	0.0379	<u>J</u>	0.0180	0.00100	0.0500	50	05/04/2016 05:50	WG868983
sec-Butylbenzene	0.0403	<u>J</u>	0.0182	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Carbon disulfide	0.0155	<u>J</u>	0.0138	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Carbon tetrachloride	U		0.0190	0.00100	0.0500	50	05/04/2016 05:50	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:40

832435

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.0174	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Chlorodibromomethane	U		0.0164	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Chloroethane	U		0.0226	0.00500	0.250	50	05/04/2016 05:50	WG868983
Chloroform	U		0.0162	0.00500	0.250	50	05/04/2016 05:50	WG868983
Chloromethane	U		0.0138	0.00250	0.125	50	05/04/2016 05:50	WG868983
1,2-Dibromoethane	U		0.0190	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,1-Dichloroethane	U		0.0130	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,2-Dichloroethane	U		0.0180	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,1-Dichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 05:50	WG868983
cis-1,2-Dichloroethene	0.0149	<u>J</u>	0.0130	0.00100	0.0500	50	05/04/2016 05:50	WG868983
trans-1,2-Dichloroethene	U	_	0.0198	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,2-Dichloropropane	U		0.0153	0.00100	0.0500	50	05/04/2016 05:50	WG868983
cis-1,3-Dichloropropene	U		0.0209	0.00100	0.0500	50	05/04/2016 05:50	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.0210	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Ethylbenzene	0.553	_	0.0192	0.00100	0.0500	50	05/04/2016 05:50	WG868983
sopropylbenzene	0.0776		0.0163	0.00100	0.0500	50	05/04/2016 05:50	WG868983
o-Isopropyltoluene	U		0.0175	0.00100	0.0500	50	05/04/2016 05:50	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.196	0.0100	0.500	50	05/04/2016 05:50	WG868983
2-Hexanone	U	_	0.191	0.0100	0.500	50	05/04/2016 05:50	WG868983
Methylene Chloride	U		0.0500	0.00500	0.250	50	05/04/2016 05:50	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.107	0.0100	0.500	50	05/04/2016 05:50	WG868983
Methyl tert-butyl ether	0.621		0.0184	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Naphthalene	0.228	<u>J</u>	0.0500	0.00500	0.250	50	05/04/2016 05:50	WG868983
n-Propylbenzene	0.120	_	0.0174	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Styrene	U		0.0154	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,1,1,2-Tetrachloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,1,2,2-Tetrachloroethane	U		0.00650	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Tetrachloroethene	U		0.0186	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Toluene	0.687		0.0390	0.00500	0.250	50	05/04/2016 05:50	WG868983
1,1,1-Trichloroethane	U		0.0160	0.00100	0.0500	50	05/04/2016 05:50	WG868983
I,1,2-Trichloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Trichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,2,4-Trimethylbenzene	0.489		0.0186	0.00100	0.0500	50	05/04/2016 05:50	WG868983
1,3,5-Trimethylbenzene	0.100		0.0194	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Vinyl chloride	U		0.0130	0.00100	0.0500	50	05/04/2016 05:50	WG868983
o-Xylene	0.387		0.0170	0.00100	0.0500	50	05/04/2016 05:50	WG868983
m&p-Xylene	0.228		0.0360	0.00100	0.0500	50	05/04/2016 05:50	WG868983
Xylenes, Total	0.615		0.0530	0.00300	0.150	50	05/04/2016 05:50	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

108

105

102

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.69		0.0247	0.100	0.100	1	05/04/2016 22:20	WG869251
(S) o-Terphenyl	45.6	<u>J2</u>			50.0-150		05/04/2016 22:20	WG869251

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

90.0-115

79.0-121

80.1-120

05/04/2016 05:50

05/04/2016 05:50

05/04/2016 05:50

WG868983

WG868983

WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1670		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:45	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	280		2.60	1.00	50.0	50	05/09/2016 19:05	WG869673
Fluoride	0.805		0.00990	0.100	0.100	1	05/09/2016 18:49	WG869673
Sulfate	326		3.87	5.00	250	50	05/09/2016 19:05	WG869673

Qc

Gl

Αl

Sc

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00175	J	0.00125	0.00200	0.0100	5	05/07/2016 16:45	WG869293
Arsenic, Dissolved	0.00164	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:18	WG869123
Barium	0.0736		0.00180	0.00500	0.0250	5	05/07/2016 16:45	WG869293
Barium,Dissolved	0.0732		0.00180	0.00500	0.0250	5	05/07/2016 03:18	WG869123
Calcium	191		0.230	1.00	5.00	5	05/07/2016 16:45	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:45	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:18	WG869123
Iron	U		0.0750	0.100	0.500	5	05/07/2016 16:45	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:18	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:45	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:18	WG869123
Manganese	0.0214	J	0.00125	0.00500	0.0250	5	05/07/2016 16:45	WG869293
Manganese,Dissolved	0.0269		0.00125	0.00500	0.0250	5	05/07/2016 03:18	WG869123
Potassium	0.518	J	0.185	1.00	5.00	5	05/07/2016 16:45	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:45	WG869293
Selenium,Dissolved	0.00486	J	0.00190	0.00200	0.0100	5	05/07/2016 03:18	WG869123
Sodium	180		0.550	1.00	5.00	5	05/07/2016 16:45	WG869293

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.129		0.0314	0.100	0.100	1	05/02/2016 20:38	WG869043
(S) a,a,a-Trifluorotoluene(FID)	100				62.0-128		05/02/2016 20:38	WG869043

	• •							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 06:13	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 06:13	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 06:13	WG868983
sec-Butylbenzene	0.00330		0.000365	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Carbon disulfide	0.000427	J	0.000275	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:13	WG868983

Collected date/time: 04/27/16 16:25

Volatile Organic Compounds (GC/MS) by Method 8260B

ONFIAR N	ATIONWIDE.

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 06:13	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 06:13	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 06:13	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:13	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 06:13	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 06:13	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 06:13	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Isopropylbenzene	0.0101		0.000326	0.00100	0.00100	1	05/04/2016 06:13	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 06:13	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 06:13	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 06:13	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 06:13	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 06:13	WG868983
Methyl tert-butyl ether	0.000379	<u>J</u>	0.000367	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Naphthalene	U	_	0.00100	0.00500	0.00500	1	05/04/2016 06:13	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 06:13	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 06:13	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 06:13	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 06:13	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 06:13	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 06:13	WG868983
(S) Toluene-d8	106			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	90.0-115	•	05/04/2016 06:13	WG868983
(S) Dibromofluoromethane	107				79.0-121		05/04/2016 06:13	WG868983
12, 2.0.0	99.9				80.1-120		05/04/2016 06:13	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.06		0.0247	0.100	0.100	1	05/04/2016 22:39	WG869251
(S) o-Terphenyl	113				50.0-150		05/04/2016 22:39	WG869251

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	878		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:46	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	186		2.60	1.00	50.0	50	05/09/2016 19:36	WG869673
Fluoride	0.651		0.00990	0.100	0.100	1	05/09/2016 19:21	WG869673
Sulfate	624		3.87	5.00	250	50	05/09/2016 19:36	WG869673

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Arsenic	0.0154		0.00125	0.00200	0.0100	5	05/07/2016 16:47	WG869293
Arsenic,Dissolved	0.0136		0.00125	0.00200	0.0100	5	05/07/2016 03:21	WG869123
Barium	0.0293		0.00180	0.00500	0.0250	5	05/07/2016 16:47	WG869293
Barium,Dissolved	0.0303		0.00180	0.00500	0.0250	5	05/07/2016 03:21	WG869123
Calcium	262		0.230	1.00	5.00	5	05/07/2016 16:47	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:47	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:21	WG869123
Iron	1.09		0.0750	0.100	0.500	5	05/07/2016 16:47	WG869293
Iron,Dissolved	0.509		0.0750	0.100	0.500	5	05/07/2016 03:21	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:47	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:21	WG869123
Manganese	1.22		0.00125	0.00500	0.0250	5	05/07/2016 16:47	WG869293
Manganese, Dissolved	1.25		0.00125	0.00500	0.0250	5	05/07/2016 03:21	WG869123
Potassium	0.651	J	0.185	1.00	5.00	5	05/07/2016 16:47	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:47	WG869293
Selenium,Dissolved	0.00396	J	0.00190	0.00200	0.0100	5	05/07/2016 03:21	WG869123
Sodium	110		0.550	1.00	5.00	5	05/07/2016 16:47	WG869293

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.0588	J	0.0314	0.100	0.100	1	05/02/2016 23:05	WG869043
(S) a,a,a-Trifluorotoluene(FID)	97.3				62.0-128		05/02/2016 23:05	WG869043

Ss

	• •							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 06:35	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 06:35	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 06:35	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Carbon disulfide	0.000326	<u>J</u>	0.000275	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:35	WG868983

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:15

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 06:35	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 06:35	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 06:35	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 06:35	WG868983
I,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 06:35	WG868983
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 06:35	WG868983
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 06:35	WG868983
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:35	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 06:35	WG868983
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 06:35	WG868983
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 06:35	WG868983
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 06:35	WG868983
ans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 06:35	WG868983
thylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 06:35	WG868983
opropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 06:35	WG868983
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 06:35	WG868983
-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 06:35	WG868983
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 06:35	WG868983
lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 06:35	WG868983
I-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 06:35	WG868983
Methyl tert-butyl ether	0.0687		0.000367	0.00100	0.00100	1	05/04/2016 06:35	WG868983
aphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 06:35	WG868983
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 06:35	WG868983
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 06:35	WG868983
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 06:35	WG868983
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 06:35	WG868983
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 06:35	WG868983
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 06:35	WG868983
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 06:35	WG868983
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 06:35	WG868983

U

U

U

U

U

U

U

106

104

98.6

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.97		0.0247	0.100	0.100	1	05/04/2016 22:57	WG869251
(S) o-Terphenyl	108				50.0-150		05/04/2016 22:57	WG869251

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

05/04/2016 06:35

WG868983

PAGE:

21 of 86

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 18:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2360		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.258	J	0.197	0.100	1.00	10	05/06/2016 05:48	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	245		2.60	1.00	50.0	50	05/09/2016 20:08	WG869673
Fluoride	1.02		0.00990	0.100	0.100	1	05/09/2016 19:52	WG869673
Sulfate	1270		3.87	5.00	250	50	05/09/2016 20:08	WG869673

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00222	J	0.00125	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Arsenic, Dissolved	0.00221	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Barium	0.0174	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 16:49	WG869293
Barium,Dissolved	0.0178	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 03:23	WG869123
Calcium	342		0.230	1.00	5.00	5	05/07/2016 16:49	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Iron	0.803		0.0750	0.100	0.500	5	05/07/2016 16:49	WG869293
Iron,Dissolved	0.714		0.0750	0.100	0.500	5	05/07/2016 03:23	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Manganese	0.797		0.00125	0.00500	0.0250	5	05/07/2016 16:49	WG869293
Manganese, Dissolved	0.820		0.00125	0.00500	0.0250	5	05/07/2016 03:23	WG869123
Potassium	0.465	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 16:49	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Selenium,Dissolved	0.00299	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Sodium	124		0.550	1.00	5.00	5	05/07/2016 16:49	WG869293

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00222	J	0.00125	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Arsenic, Dissolved	0.00221	J	0.00125	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Barium	0.0174	J	0.00180	0.00500	0.0250	5	05/07/2016 16:49	WG869293
Barium,Dissolved	0.0178	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 03:23	WG869123
Calcium	342		0.230	1.00	5.00	5	05/07/2016 16:49	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Chromium,Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Iron	0.803		0.0750	0.100	0.500	5	05/07/2016 16:49	WG869293
Iron,Dissolved	0.714		0.0750	0.100	0.500	5	05/07/2016 03:23	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Manganese	0.797		0.00125	0.00500	0.0250	5	05/07/2016 16:49	WG869293
Manganese,Dissolved	0.820		0.00125	0.00500	0.0250	5	05/07/2016 03:23	WG869123
Potassium	0.465	J	0.185	1.00	5.00	5	05/07/2016 16:49	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:49	WG869293
Selenium,Dissolved	0.00299	J	0.00190	0.00200	0.0100	5	05/07/2016 03:23	WG869123
Sodium	124		0.550	1.00	5.00	5	05/07/2016 16:49	WG869293

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.202		0.0314	0.100	0.100	1	05/02/2016 23:30	WG869043
(S) a,a,a-Trifluorotoluene(FID)	94.3				62.0-128		05/02/2016 23:30	WG869043

CII	
5	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 06:58	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 06:58	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 06:58	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 06:58	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 06:58	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 06:58	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 06:58	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 06:58	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:58	WG868983

22 of 86

ONE LAB. NATIONWIDE.

IVI VV - I∠ O A Collected date/time: 04/2		SAMPLE	E RESUL 1832435	_15 - 0	/		ONE LAB. NATIONWIDE.	4	
Volatile Organic Co	mpounds (G0	C/MS) by M	ethod 8260	В					
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	(
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 06:58	WG868983	² T
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 06:58	WG868983	L.
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 06:58	WG868983	3
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 06:58	WG868983	³ S
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 06:58	WG868983	<u> </u>
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 06:58	WG868983	4
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 06:58	WG868983	. `

Chiorogipholihethalie	U		0.000327	0.00100	0.00100		03/04/2010 00.30	W0000303
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 06:58	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 06:58	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 06:58	WG868983
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 06:58	WG868983
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 06:58	WG868983
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 06:58	WG868983
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:58	WG868983
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 06:58	WG868983
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 06:58	WG868983
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 06:58	WG868983
tis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 06:58	WG868983
rans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 06:58	WG868983
thylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 06:58	WG868983
sopropylbenzene	0.000495	<u>J</u>	0.000326	0.00100	0.00100	1	05/04/2016 06:58	WG868983
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 06:58	WG868983
-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 06:58	WG868983
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 06:58	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 06:58	WG868983
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 06:58	WG868983
lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 06:58	WG868983
laphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 06:58	WG868983
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 06:58	WG868983
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 06:58	WG868983
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 06:58	WG868983
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 06:58	WG868983
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 06:58	WG868983
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 06:58	WG868983
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 06:58	WG868983
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 06:58	WG868983
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:58	WG868983
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 06:58	WG868983
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 06:58	WG868983
'inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 06:58	WG868983
-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 06:58	WG868983
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 06:58	WG868983
ylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 06:58	WG868983
(S) Toluene-d8	105				90.0-115		05/04/2016 06:58	WG868983
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 06:58	WG868983
(S) 4-Bromofluorobenzene	99.3				80.1-120		05/04/2016 06:58	WG868983

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.751		0.0247	0.100	0.100	1	05/04/2016 23:16	WG869251
(S) o-Terphenyl	110				50.0-150		05/04/2016 23:16	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1910		2.82	10.0	10.0	1	05/03/2016 06:19	WG869085

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:47	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	245		2.60	1.00	50.0	50	05/09/2016 20:24	WG869673
Fluoride	1.10		0.00990	0.100	0.100	1	05/09/2016 21:12	WG869673
Sulfate	552		3.87	5.00	250	50	05/09/2016 20:24	WG869673

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Wetals (ICI WIS) by N	Method 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00535	J	0.00125	0.00200	0.0100	5	05/07/2016 16:51	WG869293
Arsenic,Dissolved	0.00441	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:26	WG869123
Barium	0.137		0.00180	0.00500	0.0250	5	05/07/2016 16:51	WG869293
Barium, Dissolved	0.115		0.00180	0.00500	0.0250	5	05/07/2016 03:26	WG869123
Calcium	244		0.230	1.00	5.00	5	05/07/2016 16:51	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:51	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:26	WG869123
Iron	0.357	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 16:51	WG869293
Iron,Dissolved	0.258	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 03:26	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:51	WG869293
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:26	WG869123
Manganese	0.103		0.00125	0.00500	0.0250	5	05/07/2016 16:51	WG869293
Manganese, Dissolved	0.103		0.00125	0.00500	0.0250	5	05/07/2016 03:26	WG869123
Potassium	0.335	J	0.185	1.00	5.00	5	05/07/2016 16:51	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:51	WG869293
Selenium, Dissolved	0.00298	J	0.00190	0.00200	0.0100	5	05/07/2016 03:26	WG869123
Sodium	153		0.550	1.00	5.00	5	05/07/2016 16:51	WG869293

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	6.40		0.0314	0.100	0.100	1	05/02/2016 23:54	WG869043
(S) a,a,a-Trifluorotoluene(FID)	94.2				62.0-128		05/02/2016 23:54	WG869043

Cn

	•	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 07:21	WG868983
Benzene	2.01		0.0166	0.00100	0.0500	50	05/06/2016 01:11	WG870327
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 07:21	WG868983
n-Butylbenzene	0.00229		0.000361	0.00100	0.00100	1	05/04/2016 07:21	WG868983
sec-Butylbenzene	0.00334		0.000365	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Carbon disulfide	0.000424	J	0.000275	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 07:21	WG868983

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Toluene-d8

(S) Dibromofluoromethane

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 08

Collected date/time: 04/27/16 17:20

L832435

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.	4

Тс

Ss

Cn

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 07:21	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 07:21	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 07:21	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:21	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 07:21	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 07:21	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 07:21	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Ethylbenzene	0.348		0.0192	0.00100	0.0500	50	05/06/2016 01:11	WG870327
Isopropylbenzene	0.0198		0.000326	0.00100	0.00100	1	05/04/2016 07:21	WG868983
p-Isopropyltoluene	0.00153		0.000350	0.00100	0.00100	1	05/04/2016 07:21	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 07:21	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 07:21	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 07:21	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 07:21	WG868983
Methyl tert-butyl ether	0.629		0.0184	0.00100	0.0500	50	05/06/2016 01:11	WG870327
Naphthalene	0.0425		0.00100	0.00500	0.00500	1	05/04/2016 07:21	WG868983
n-Propylbenzene	0.0325		0.000349	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Toluene	0.287		0.0390	0.00500	0.250	50	05/06/2016 01:11	WG870327
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,2,4-Trimethylbenzene	0.0941		0.000373	0.00100	0.00100	1	05/04/2016 07:21	WG868983
1,3,5-Trimethylbenzene	0.00632		0.000387	0.00100	0.00100	1	05/04/2016 07:21	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 07:21	WG868983
o-Xylene	0.0375		0.000341	0.00100	0.00100	1	05/04/2016 07:21	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

0.112

0.149

105

102

90.7

104

98.5

102

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.43		0.0247	0.100	0.100	1	05/04/2016 23:34	WG869251
(S) o-Terphenyl	99.1				50.0-150		05/04/2016 23:34	WG869251

0.00100

0.00300

0.00100

0.00300

90.0-115

90.0-115

79.0-121

79.0-121

80.1-120

80.1-120

1

0.000719

0.00106

WG868983

WG868983

WG868983 WG870327

WG870327

WG868983

WG868983

WG870327

05/04/2016 07:21

05/04/2016 07:21

05/04/2016 07:21

05/06/2016 01:11

05/06/2016 01:11

05/04/2016 07:21

05/04/2016 07:21

05/06/2016 01:11

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1520		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:54	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	300		2.60	1.00	50.0	50	05/09/2016 21:44	WG869673
Fluoride	1.10		0.00990	0.100	0.100	1	05/09/2016 21:28	WG869673
Sulfate	44.1		0.0774	5.00	5.00	1	05/09/2016 21:28	WG869673

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Metals (ICI MS) by Metalod 0020									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Arsenic	0.0272		0.00125	0.00200	0.0100	5	05/07/2016 16:54	WG869293	
Arsenic,Dissolved	0.0256		0.00125	0.00200	0.0100	5	05/07/2016 03:29	WG869123	
Barium	0.593		0.00180	0.00500	0.0250	5	05/07/2016 16:54	WG869293	
Barium,Dissolved	0.614		0.00180	0.00500	0.0250	5	05/07/2016 03:29	WG869123	
Calcium	170		0.230	1.00	5.00	5	05/07/2016 16:54	WG869293	
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:54	WG869293	
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:29	WG869123	
Iron	5.49		0.0750	0.100	0.500	5	05/07/2016 16:54	WG869293	
Iron,Dissolved	5.58		0.0750	0.100	0.500	5	05/07/2016 03:29	WG869123	
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:54	WG869293	
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:29	WG869123	
Manganese	1.10		0.00125	0.00500	0.0250	5	05/07/2016 16:54	WG869293	
Manganese,Dissolved	1.17		0.00125	0.00500	0.0250	5	05/07/2016 03:29	WG869123	
Potassium	0.331	J	0.185	1.00	5.00	5	05/07/2016 16:54	WG869293	
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:54	WG869293	
Selenium,Dissolved	0.00253	J	0.00190	0.00200	0.0100	5	05/07/2016 03:29	WG869123	
Sodium	210		0.550	1.00	5.00	5	05/07/2016 16:54	WG869293	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	2.70		0.0314	0.100	0.100	1	05/03/2016 00:19	WG869043
(S) a,a,a-Trifluorotoluene(FID)	96.7				62.0-128		05/03/2016 00:19	WG869043

Cn

9	`	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 07:44	WG868983
Benzene	U		0.0166	0.00100	0.0500	50	05/06/2016 01:32	WG870327
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 07:44	WG868983
n-Butylbenzene	0.000444	J	0.000361	0.00100	0.00100	1	05/04/2016 07:44	WG868983
sec-Butylbenzene	0.00103		0.000365	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Carbon disulfide	0.000295	J	0.000275	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 07:44	WG868983

Collected date/time: 04/27/16 16:25

L832435

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE	ΙΛR	NATIONWIDE.
OIVL	LAD.	NATIONVIDE.

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 07:44	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 07:44	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 07:44	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:44	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 07:44	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 07:44	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 07:44	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Ethylbenzene	U		0.0192	0.00100	0.0500	50	05/06/2016 01:32	WG870327
Isopropylbenzene	0.00172		0.000326	0.00100	0.00100	1	05/04/2016 07:44	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 07:44	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 07:44	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 07:44	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 07:44	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 07:44	WG868983
Methyl tert-butyl ether	4.59		0.0184	0.00100	0.0500	50	05/06/2016 01:32	WG870327
Naphthalene	0.00534		0.00100	0.00500	0.00500	1	05/04/2016 07:44	WG868983
n-Propylbenzene	0.000863	J	0.000349	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Toluene	U		0.0390	0.00500	0.250	50	05/06/2016 01:32	WG870327
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,2,4-Trimethylbenzene	0.00382		0.000373	0.00100	0.00100	1	05/04/2016 07:44	WG868983
1,3,5-Trimethylbenzene	0.000880	<u>J</u>	0.000387	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 07:44	WG868983
o-Xylene	0.000796	<u>J</u>	0.000341	0.00100	0.00100	1	05/04/2016 07:44	WG868983
m&p-Xylene	0.00199		0.000719	0.00100	0.00100	1	05/04/2016 07:44	WG868983
Xylenes, Total	0.00278	J	0.00106	0.00300	0.00300	1	05/04/2016 07:44	WG868983
(S) Toluene-d8	105				90.0-115		05/04/2016 07:44	WG868983
(S) Toluene-d8	102				90.0-115		05/06/2016 01:32	WG870327
(S) Dibromofluoromethane	90.8				79.0-121		05/06/2016 01:32	WG870327
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 07:44	WG868983
(S) 4-Bromofluorobenzene	98.3				80.1-120		05/04/2016 07:44	WG868983
(S) 4-Bromofluorobenzene	100				80.1-120		05/06/2016 01:32	WG870327

Sample Narrative:

 $8260B\,L832435-09\,WG870327: Non-target\ and\ target\ compounds\ too\ high\ to\ run\ at\ a\ lower\ dilution.$

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.68		0.0247	0.100	0.100	1	05/04/2016 23:52	WG869251
(S) o-Terphenyl	103				50.0-150		05/04/2016 23:52	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:35

832435

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1250		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 05:55	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	288		2.60	1.00	50.0	50	05/09/2016 22:16	WG869673
Fluoride	0.774		0.00990	0.100	0.100	1	05/09/2016 22:00	WG869673
Sulfate	9.49		0.0774	5.00	5.00	1	05/09/2016 22:00	WG869673

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL					
and the	/1		SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
ınalyte	mg/l		mg/l	mg/l	mg/l		date / time	
rsenic	0.0222		0.00125	0.00200	0.0100	5	05/07/2016 16:56	WG869293
rsenic,Dissolved	0.0218		0.00125	0.00200	0.0100	5	05/07/2016 03:32	WG869123
arium	2.67		0.00180	0.00500	0.0250	5	05/07/2016 16:56	WG869293
larium,Dissolved	2.76		0.00180	0.00500	0.0250	5	05/07/2016 03:32	WG869123
Calcium	158		0.230	1.00	5.00	5	05/07/2016 16:56	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:56	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:32	WG869123
on	1.46		0.0750	0.100	0.500	5	05/07/2016 16:56	WG869293
on,Dissolved	1.46		0.0750	0.100	0.500	5	05/07/2016 03:32	WG869123
ead	U		0.00120	0.00200	0.0100	5	05/07/2016 16:56	WG869293
ead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:32	WG869123
Manganese	0.305		0.00125	0.00500	0.0250	5	05/07/2016 16:56	WG869293
Manganese,Dissolved	0.322		0.00125	0.00500	0.0250	5	05/07/2016 03:32	WG869123
otassium	0.238	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 16:56	WG869293
elenium	U		0.00190	0.00200	0.0100	5	05/07/2016 16:56	WG869293
elenium,Dissolved	0.00271	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 03:32	WG869123
odium	167		0.550	1.00	5.00	5	05/07/2016 16:56	WG869293

⁶Qc

Gl

°Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	9.16		0.0314	0.100	0.100	1	05/03/2016 00:44	WG869043
(S) a,a,a-Trifluorotoluene(FID)	95.5				62.0-128		05/03/2016 00:44	WG869043

⁹Sc

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 08:06	WG868983
Benzene	2.42		0.0331	0.00100	0.100	100	05/06/2016 01:53	WG870327
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 08:06	WG868983
n-Butylbenzene	0.00308		0.000361	0.00100	0.00100	1	05/04/2016 08:06	WG868983
sec-Butylbenzene	0.00318		0.000365	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 08:06	WG868983

Collected date/time: 04/27/16 15:35

L832435

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 08:06	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 08:06	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 08:06	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:06	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 08:06	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 08:06	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 08:06	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Ethylbenzene	0.0535	_	0.000384	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Isopropylbenzene	0.0183		0.000326	0.00100	0.00100	1	05/04/2016 08:06	WG868983
p-Isopropyltoluene	0.000697	J	0.000350	0.00100	0.00100	1	05/04/2016 08:06	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 08:06	WG868983
2-Hexanone	U	_	0.00382	0.0100	0.0100	1	05/04/2016 08:06	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 08:06	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 08:06	WG868983
Methyl tert-butyl ether	3.69		0.0367	0.00100	0.100	100	05/06/2016 01:53	WG870327
Naphthalene	0.0353		0.00100	0.00500	0.00500	1	05/04/2016 08:06	WG868983
n-Propylbenzene	0.0315		0.000349	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Toluene	0.142		0.000780	0.00500	0.00500	1	05/04/2016 08:06	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,2,4-Trimethylbenzene	0.0212		0.000373	0.00100	0.00100	1	05/04/2016 08:06	WG868983
1,3,5-Trimethylbenzene	0.00562		0.000387	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 08:06	WG868983
o-Xylene	0.0370		0.000341	0.00100	0.00100	1	05/04/2016 08:06	WG868983
m&p-Xylene	0.0513		0.000719	0.00100	0.00100	1	05/04/2016 08:06	WG868983
Xylenes, Total	0.0883		0.00106	0.00300	0.00300	1	05/04/2016 08:06	WG868983
(S) Toluene-d8	104				90.0-115		05/04/2016 08:06	WG868983
(S) Toluene-d8	102				90.0-115		05/06/2016 01:53	WG870327
(S) Dibromofluoromethane	88.7				79.0-121		05/06/2016 01:53	WG870327
(S) Dibromofluoromethane	101				79.0-121		05/04/2016 08:06	WG868983
(S) 4-Bromofluorobenzene	101				80.1-120		05/04/2016 08:06	WG868983
(S) 4-Bromofluorobenzene	99.9				80.1-120		05/06/2016 01:53	WG870327

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	2.12		0.0247	0.100	0.100	1	05/05/2016 00:11	WG869251
(S) o-Terphenyl	103				50.0-150		05/05/2016 00:11	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 18:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4560		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.79		0.197	0.100	1.00	10	05/06/2016 05:56	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	498		2.60	1.00	50.0	50	05/09/2016 22:48	WG869673
Fluoride	1.24		0.00990	0.100	0.100	1	05/09/2016 22:32	WG869673
Sulfate	2800		3.87	5.00	250	50	05/09/2016 22:48	WG869673

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00566	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 16:21	WG869293
Arsenic,Dissolved	0.00551	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:34	WG869123
Barium	0.0112	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 16:21	WG869293
Barium,Dissolved	0.0107	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 03:34	WG869123
Calcium	576	\vee	0.230	1.00	5.00	5	05/07/2016 16:21	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 16:21	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:34	WG869123
ron	U		0.0750	0.100	0.500	5	05/07/2016 16:21	WG869293
ron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:34	WG869123
.ead	0.00131	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 16:21	WG869293
.ead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:34	WG869123
Manganese	0.0102	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 16:21	WG869293
Manganese,Dissolved	0.00802	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 03:34	WG869123
Potassium	1.70	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 16:21	WG869293
Selenium	0.00812	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 16:21	WG869293
Selenium,Dissolved	0.00963	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 03:34	WG869123
Sodium	311	\vee	0.550	1.00	5.00	5	05/07/2016 16:21	WG869293

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Desuit	Ovalifian	CDI	Head: MOI	MOL	Dilution	Amalusis	Datab
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.0420	<u>J</u>	0.0314	0.100	0.100	1	05/03/2016 01:09	WG869043
(S) a,a,a-Trifluorotoluene(FID)	95.3				62.0-128		05/03/2016 01:09	WG869043

Ss

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 08:29	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/06/2016 00:09	WG870327
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 08:29	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 08:29	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Carbon disulfide	0.000390	J	0.000275	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 08:29	WG868983

ONE LAB. NATIONWIDE.

IVI VV - 134 Collected date/time: 04/2	7/16 18:20		SAMPL	LE RESU L832435	L15 - II			ONE LAB. NATIONWIDE.
Volatile Organic Cor	mpounds (G0	C/MS) by M	ethod 8260)B				
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 08:29	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 08:29	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 08:29	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:29	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 08:29	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 08:29	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 08:29	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 08:29	WG868983
n Icanranyltaluana	- 11		0.0003E0	0.00100	0.00100	1	05/04/2016 00:20	MCoeodoo

1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:29	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 08:29	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 08:29	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 08:29	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 08:29	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 08:29	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 08:29	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 08:29	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 08:29	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 08:29	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/06/2016 00:09	WG870327
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 08:29	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 08:29	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 08:29	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 08:29	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 08:29	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 08:29	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 08:29	WG868983
(S) Toluene-d8	105				90.0-115		05/04/2016 08:29	WG868983
(S) Toluene-d8	101				90.0-115		05/06/2016 00:09	WG870327
(S) Dibromofluoromethane	91.2				79.0-121		05/06/2016 00:09	WG870327

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

108

97.2

100

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0971	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 00:29	WG869251
(S) o-Terphenyl	106				50.0-150		05/05/2016 00:29	WG869251

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

80.1-120

05/04/2016 08:29

05/04/2016 08:29

05/06/2016 00:09

WG868983

WG868983

WG870327

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 18:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	64.0		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U	J6	0.197	0.100	1.00	10	05/06/2016 05:57	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	0.360	<u>J</u>	0.0519	1.00	1.00	1	05/10/2016 03:02	WG869673
Fluoride	U		0.00990	0.100	0.100	1	05/10/2016 03:02	WG869673
Sulfate	0.227	<u>J</u>	0.0774	5.00	5.00	1	05/10/2016 03:02	WG869673

Qc

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.000250	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Arsenic, Dissolved	U		0.000250	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Barium	U		0.000360	0.00500	0.00500	1	05/09/2016 10:06	WG869293
Barium,Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 03:42	WG869123
Calcium	U		0.0460	1.00	1.00	1	05/09/2016 10:06	WG869293
Chromium	U		0.000540	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Chromium, Dissolved	0.00199	Ţ	0.000540	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Iron	U		0.0150	0.100	0.100	1	05/09/2016 10:06	WG869293
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 03:42	WG869123
Lead	0.000280	Ţ	0.000240	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Manganese	0.000321	J	0.000250	0.00500	0.00500	1	05/09/2016 10:06	WG869293
Manganese,Dissolved	0.000923	J	0.000250	0.00500	0.00500	1	05/07/2016 03:42	WG869123
Potassium	U		0.0370	1.00	1.00	1	05/09/2016 10:06	WG869293
Selenium	U		0.000380	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Sodium	0.169	<u>J</u>	0.110	1.00	1.00	1	05/09/2016 10:06	WG869293

Arsenic, Dissolved	U		0.000250	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Barium	U		0.000360	0.00500	0.00500	1	05/09/2016 10:06	WG869293
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 03:42	WG869123
Calcium	U		0.0460	1.00	1.00	1	05/09/2016 10:06	WG869293
Chromium	U		0.000540	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Chromium, Dissolved	0.00199	<u>J</u>	0.000540	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Iron	U		0.0150	0.100	0.100	1	05/09/2016 10:06	WG869293
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 03:42	WG869123
Lead	0.000280	<u>J</u>	0.000240	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Manganese	0.000321	<u>J</u>	0.000250	0.00500	0.00500	1	05/09/2016 10:06	WG869293
Manganese, Dissolved	0.000923	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 03:42	WG869123
Potassium	U		0.0370	1.00	1.00	1	05/09/2016 10:06	WG869293
Selenium	U		0.000380	0.00200	0.00200	1	05/09/2016 10:06	WG869293
Selenium, Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 03:42	WG869123
Sodium	0.169	ī	0.110	1.00	1.00	1	05/09/2016 10:06	WG869293

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 01:34	WG869043
(S) a,a,a-Trifluorotoluene(FID)	97.9				62.0-128		05/03/2016 01:34	WG869043

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 08:52	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 08:52	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 08:52	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 08:52	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 18:45

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 08:52	WG868983
Chloroform	0.000745	J	0.000324	0.00500	0.00500	1	05/04/2016 08:52	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 08:52	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:52	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 08:52	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 08:52	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 08:52	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 08:52	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 08:52	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 08:52	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 08:52	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 08:52	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 08:52	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 08:52	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 08:52	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 08:52	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 08:52	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 08:52	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 08:52	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 08:52	WG868983
(S) Toluene-d8	106				90.0-115		05/04/2016 08:52	WG868983
(S) Dibromofluoromethane	107				79.0-121		05/04/2016 08:52	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

98.5

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/05/2016 00:47	WG869251
(S) o-Terphenyl	99.7				50.0-150		05/05/2016 00:47	WG869251

80.1-120

05/04/2016 08:52

WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4910		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.73		0.197	0.100	1.00	10	05/06/2016 06:01	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	497		2.60	1.00	50.0	50	05/09/2016 23:19	WG869673
Fluoride	1.24		0.00990	0.100	0.100	1	05/09/2016 23:04	WG869673
Sulfate	2780		3.87	5.00	250	50	05/09/2016 23:19	WG869673

Cn

Metals (ICPMS) by Method 6020

- Wetals (ICI Wis) by I	1100 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00555	J	0.00125	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Arsenic,Dissolved	0.00504	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Barium	0.00895	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 17:01	WG869293
Barium,Dissolved	0.00916	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 03:45	WG869123
Calcium	565		0.230	1.00	5.00	5	05/07/2016 17:01	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Iron	0.0767	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 17:01	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:45	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Manganese	0.0110	Ţ	0.00125	0.00500	0.0250	5	05/07/2016 17:01	WG869293
Manganese,Dissolved	0.00888	J	0.00125	0.00500	0.0250	5	05/07/2016 03:45	WG869123
Potassium	1.69	Ţ	0.185	1.00	5.00	5	05/07/2016 17:01	WG869293
Selenium	0.00711	J	0.00190	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Selenium,Dissolved	0.00888	Ţ	0.00190	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Sodium	303		0.550	1.00	5.00	5	05/07/2016 17:01	WG869293

Gl

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00555	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Arsenic, Dissolved	0.00504	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Barium	0.00895	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 17:01	WG869293
Barium, Dissolved	0.00916	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 03:45	WG869123
Calcium	565		0.230	1.00	5.00	5	05/07/2016 17:01	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Iron	0.0767	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 17:01	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:45	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Manganese	0.0110	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 17:01	WG869293
Manganese, Dissolved	0.00888	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 03:45	WG869123
Potassium	1.69	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 17:01	WG869293
Selenium	0.00711	J	0.00190	0.00200	0.0100	5	05/07/2016 17:01	WG869293
Selenium, Dissolved	0.00888	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 03:45	WG869123
Sodium	303		0.550	1.00	5.00	5	05/07/2016 17:01	WG869293

Sc

Αl

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 01:59	WG869043
(S) a,a,a-Trifluorotoluene(FID)	96.4				62.0-128		05/03/2016 01:59	WG869043

	,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 09:15	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 09:15	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 09:15	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 09:15	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:00

L832435

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 09:15	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 09:15	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 09:15	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:15	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 09:15	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 09:15	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 09:15	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 09:15	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 09:15	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 09:15	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 09:15	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 09:15	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 09:15	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 09:15	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 09:15	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 09:15	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 09:15	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 09:15	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 09:15	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 09:15	WG868983
(S) Toluene-d8	106				90.0-115		05/04/2016 09:15	WG868983
(0) D.II								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

108

99.5

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0774	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 01:06	WG869251
(S) o-Terphenyl	104				50.0-150		05/05/2016 01:06	WG869251

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

05/04/2016 09:15

05/04/2016 09:15

WG868983

WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2830		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:02	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	281		2.60	1.00	50.0	50	05/10/2016 00:23	WG869673
Fluoride	0.917		0.00990	0.100	0.100	1	05/10/2016 00:07	WG869673
Sulfate	953		3.87	5.00	250	50	05/10/2016 00:23	WG869673

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	0.00500	<u>J P1</u>	0.00120	0.00500	0.00500	1	05/10/2016 21:54	WG871518

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/02/2016 10:34	WG868781
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:25	WG869207

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0104		0.00125	0.00200	0.0100	5	05/07/2016 17:03	WG869293
Arsenic, Dissolved	0.00997	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 03:48	WG869123
Barium	0.0550		0.00180	0.00500	0.0250	5	05/07/2016 17:03	WG869293
Barium,Dissolved	0.0544		0.00180	0.00500	0.0250	5	05/07/2016 03:48	WG869123
Boron	0.503		0.0150	0.0200	0.200	10	05/07/2016 09:09	WG870589
Boron, Dissolved	0.472		0.0150	0.0200	0.200	10	05/09/2016 11:24	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/07/2016 17:03	WG869293
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 03:48	WG869123
Calcium	325		0.230	1.00	5.00	5	05/07/2016 17:03	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:03	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:48	WG869123
Cobalt	0.00739	<u>J</u>	0.00130	0.00200	0.0100	5	05/07/2016 17:03	WG869293
Cobalt, Dissolved	0.00568	<u>J</u>	0.00130	0.00200	0.0100	5	05/07/2016 03:48	WG869123
Iron	1.42		0.0750	0.100	0.500	5	05/07/2016 17:03	WG869293
Iron,Dissolved	1.40		0.0750	0.100	0.500	5	05/07/2016 03:48	WG869123
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:03	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:48	WG869123
Manganese	3.48		0.00125	0.00500	0.0250	5	05/07/2016 17:03	WG869293
Manganese, Dissolved	3.66		0.00125	0.00500	0.0250	5	05/07/2016 03:48	WG869123
Nickel	0.0121		0.00175	0.00200	0.0100	5	05/07/2016 17:03	WG869293
Nickel, Dissolved	0.00777	<u>J</u>	0.00175	0.00200	0.0100	5	05/07/2016 03:48	WG869123
Potassium	0.236	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 17:03	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 17:03	WG869293
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 03:48	WG869123
Sodium	248		0.550	1.00	5.00	5	05/07/2016 17:03	WG869293

Ss

Analyte

Uranium

Vanadium

Uranium, Dissolved

Vanadium, Dissolved

SAMPLE RESULTS - 14

Unadj. MQL

MQL

mg/l

0.0500

0.0500

0.0250

0.0250

Dilution

5

5

5

5

Analysis

date / time

05/07/2016 17:03

05/07/2016 03:48

05/07/2016 17:03

05/07/2016 03:48

ONE LAB. NATIONWIDE.

Batch

WG869293

WG869123

WG869293

WG869123

Collected date/time: 04/27/16 14:50

Result

0.00299

0.00299

0.00196

0.00229

mg/l

Qualifier

SDL

mg/l

0.00165

0.00165

0.000900

0.000900

Metals (ICPMS) by Method 6020

 	_
L832435	

mg/l

0.0100

0.0100

0.00500

0.00500

L832435

05/18/16 14:35

Тс

⁴ Cn	1

⁵ Sr	
-----------------	--

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 09:37	WG868983	
Benzene	0.0365		0.000331	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Bromomethane	U		0.000165	0.00500	0.00500	1	05/04/2016 09:37	WG868983	
n-Butylbenzene	0.00365		0.000361	0.00300	0.00300	1	05/04/2016 09:37	WG868983	
sec-Butylbenzene	0.00607		0.000365	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Carbon disulfide	U.00007		0.000303	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Carbon tetrachloride	U		0.000273	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
				0.00100		1			
Chlorobenzene	U		0.000348		0.00100	•	05/04/2016 09:37	WG868983	
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 09:37	WG868983	
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 09:37	WG868983	
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 09:37	WG868983	
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Ethylbenzene	0.0248		0.000384	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Isopropylbenzene	0.0140		0.000326	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
p-lsopropyltoluene	0.000952	<u>J</u>	0.000350	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 09:37	WG868983	
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 09:37	WG868983	
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 09:37	WG868983	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 09:37	WG868983	
Methyl tert-butyl ether	0.0104		0.000367	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Naphthalene	0.0141		0.00100	0.00500	0.00500	1	05/04/2016 09:37	WG868983	
n-Propylbenzene	0.0193		0.000349	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 09:37	WG868983	
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,2,4-Trimethylbenzene	0.0482		0.000373	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
1,3,5-Trimethylbenzene	0.00903		0.000387	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
o-Xylene	0.00167		0.000341	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
m&p-Xylene	0.0218		0.000719	0.00100	0.00100	1	05/04/2016 09:37	WG868983	
Xylenes, Total	0.0235		0.00106	0.00300	0.00300	1	05/04/2016 09:37	WG868983	
(S) Toluene-d8	105				90.0-115		05/04/2016 09:37	WG868983	
1 /	• •								
ACCOUN			PROJEC		SDG		DATE/TIME		PAG
TRC Solutions - A	Austin TX		249545 0000 (2000 000	1.8324	35	05/18/16 14:3	5	37 of

KWB-7

SAMPLE RESULTS - 14

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:50

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
(S) Dibromofluoromethane	105				79.0-121		05/04/2016 09:37	WG868983
(S) 4-Bromofluorobenzene	99.1				80.1-120		05/04/2016 09:37	WG868983

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.22		0.0247	0.100	0.100	1	05/05/2016 01:24	WG869251
(S) o-Terphenyl	109				50.0-150		05/05/2016 01:24	WG869251

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:00

832435

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	881		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.680	J	0.197	0.100	1.00	10	05/06/2016 06:07	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	17.6		0.0519	1.00	1.00	1	05/16/2016 09:09	WG871015
Fluoride	0.893		0.00990	0.100	0.100	1	05/10/2016 11:53	WG869679
Sulfate	501		0.774	5.00	50.0	10	05/16/2016 19:37	WG871015

СС

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Calcium	175		0.230	1.00	5.00	5	05/07/2016 17:10	WG869293
Potassium	1.02	J	0.185	1.00	5.00	5	05/07/2016 17:10	WG869293
Sodium	17.3		0.550	1.00	5.00	5	05/07/2016 17:10	WG869293

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 10:00	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 10:00	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 10:00	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 10:00	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 10:00	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 10:00	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 10:00	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 10:00	WG868983
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 10:00	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:00	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 10:00	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 10:00	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 10:00	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 10:00	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 10:00	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 10:00	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 10:00	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 10:00	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 10:00	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 10:00	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 10:00	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:00

832435

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 10:00	WG868983	
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 10:00	WG868983	
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 10:00	WG868983	
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 10:00	WG868983	
(S) Toluene-d8	107				90.0-115		05/04/2016 10:00	WG868983	
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 10:00	WG868983	
(S) 4-Bromofluorobenzene	99.8				80.1-120		05/04/2016 10:00	WG868983	

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1510		2.82	10.0	10.0	1	05/04/2016 18:17	WG869816	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:08	WG870054

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	379		1.30	1.00	25.0	25	05/16/2016 09:36	WG871015
Fluoride	1.08		0.00990	0.100	0.100	1	05/16/2016 19:51	WG871015
Sulfate	39.9		0.0774	5.00	5.00	1	05/15/2016 15:39	WG871783

Metals (ICPMS) by Method 6020

Metals (ICFMS) by Metalou 6020									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Arsenic	0.0333		0.00125	0.00200	0.0100	5	05/07/2016 17:13	WG869293	
Arsenic, Dissolved	0.0321		0.00125	0.00200	0.0100	5	05/07/2016 03:50	WG869123	
Barium	2.26		0.00180	0.00500	0.0250	5	05/07/2016 17:13	WG869293	
Barium,Dissolved	2.24		0.00180	0.00500	0.0250	5	05/07/2016 03:50	WG869123	
Calcium	109		0.230	1.00	5.00	5	05/07/2016 17:13	WG869293	
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:13	WG869293	
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 03:50	WG869123	
Iron	U		0.0750	0.100	0.500	5	05/07/2016 17:13	WG869293	
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 03:50	WG869123	
Lead	0.00187	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 17:13	WG869293	
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 03:50	WG869123	
Manganese	0.0599		0.00125	0.00500	0.0250	5	05/07/2016 17:13	WG869293	
Manganese,Dissolved	0.0624		0.00125	0.00500	0.0250	5	05/07/2016 03:50	WG869123	
Potassium	0.754	Ţ	0.185	1.00	5.00	5	05/07/2016 17:13	WG869293	
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 17:13	WG869293	
Selenium,Dissolved	0.00232	Ţ	0.00190	0.00200	0.0100	5	05/07/2016 03:50	WG869123	
Sodium	396		0.550	1.00	5.00	5	05/07/2016 17:13	WG869293	

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	136		1.57	0.100	5.00	50	05/06/2016 16:48	WG870480
(S) a,a,a-Trifluorotoluene(FID)	99.5				62.0-128		05/06/2016 16:48	WG870480

Volatile Organic Compounds (GC/MS) by Method 8260B

•								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.500	0.0500	2.50	50	05/04/2016 10:23	WG868983
Benzene	25.3		0.331	0.00100	1.00	1000	05/06/2016 02:13	WG870327
Bromodichloromethane	U		0.0190	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Bromoform	U		0.0234	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Bromomethane	U		0.0433	0.00500	0.250	50	05/04/2016 10:23	WG868983
n-Butylbenzene	U		0.0180	0.00100	0.0500	50	05/04/2016 10:23	WG868983
sec-Butylbenzene	U		0.0182	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Carbon disulfide	U		0.0138	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Carbon tetrachloride	U		0.0190	0.00100	0.0500	50	05/04/2016 10:23	WG868983

Ss

Collected date/time: 04/28/16 12:00

L832435

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.0174	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Chlorodibromomethane	U		0.0164	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Chloroethane	U		0.0226	0.00500	0.250	50	05/04/2016 10:23	WG868983
Chloroform	U		0.0162	0.00500	0.250	50	05/04/2016 10:23	WG868983
Chloromethane	U		0.0138	0.00250	0.125	50	05/04/2016 10:23	WG868983
1,2-Dibromoethane	U		0.0190	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,1-Dichloroethane	U		0.0130	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,2-Dichloroethane	U		0.0180	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,1-Dichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 10:23	WG868983
cis-1,2-Dichloroethene	U		0.0130	0.00100	0.0500	50	05/04/2016 10:23	WG868983
trans-1,2-Dichloroethene	U		0.0198	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,2-Dichloropropane	U		0.0153	0.00100	0.0500	50	05/04/2016 10:23	WG868983
cis-1,3-Dichloropropene	U		0.0209	0.00100	0.0500	50	05/04/2016 10:23	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.0210	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Ethylbenzene	3.11		0.0192	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Isopropylbenzene	0.0817		0.0163	0.00100	0.0500	50	05/04/2016 10:23	WG868983
p-Isopropyltoluene	U		0.0175	0.00100	0.0500	50	05/04/2016 10:23	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.196	0.0100	0.500	50	05/04/2016 10:23	WG868983
2-Hexanone	U		0.191	0.0100	0.500	50	05/04/2016 10:23	WG868983
Methylene Chloride	U		0.0500	0.00500	0.250	50	05/04/2016 10:23	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.107	0.0100	0.500	50	05/04/2016 10:23	WG868983
Methyl tert-butyl ether	0.666		0.0184	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Naphthalene	0.195	J	0.0500	0.00500	0.250	50	05/04/2016 10:23	WG868983
n-Propylbenzene	0.122		0.0174	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Styrene	U		0.0154	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,1,1,2-Tetrachloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,1,2,2-Tetrachloroethane	U		0.00650	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Tetrachloroethene	U		0.0186	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Toluene	18.8		0.780	0.00500	5.00	1000	05/06/2016 02:13	WG870327
1,1,1-Trichloroethane	U		0.0160	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,1,2-Trichloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Trichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,2,4-Trimethylbenzene	0.666		0.0186	0.00100	0.0500	50	05/04/2016 10:23	WG868983
1,3,5-Trimethylbenzene	0.140		0.0194	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Vinyl chloride	U		0.0130	0.00100	0.0500	50	05/04/2016 10:23	WG868983
o-Xylene	2.44		0.0170	0.00100	0.0500	50	05/04/2016 10:23	WG868983
m&p-Xylene	5.26		0.0360	0.00100	0.0500	50	05/04/2016 10:23	WG868983
Xylenes, Total	7.70		0.0530	0.00300	0.150	50	05/04/2016 10:23	WG868983
(S) Toluene-d8	106				90.0-115		05/04/2016 10:23	WG868983
(S) Toluene-d8	102				90.0-115		05/06/2016 02:13	WG870327
(S) Dibromofluoromethane	89.5				79.0-121		05/06/2016 02:13	WG870327
(S) Dibromofluoromethane	100				79.0-121		05/04/2016 10:23	WG868983
(S) 4-Bromofluorobenzene	97.2				80.1-120		05/04/2016 10:23	WG868983
(S) 4-Bromofluorobenzene	99.8				80.1-120		05/06/2016 02:13	WG870327

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	12.3		0.124	0.100	0.500	5	05/06/2016 05:39	WG869251
(S) o-Terphenyl	117				50.0-150		05/06/2016 05:39	WG869251

Method Blank (MB) (MB) R3133452-1 05/03/16 06:19 MB R Analyte mg/l Dissolved Solids U		MB MDL MI					
MB Ro Analyte mg/l		MB MDL ME					1
Analyte mg/l	esult <u>MB Qualifier</u>	MB MDL ME					_ Ср
· · · · · · · · · · · · · · · · · · ·			RDL				² Tc
		mg/l mg 2.82 10					
							³ Ss
L832409-26 Original Sa	ample (OS) • Dup	olicate (DUP)					4 0
(OS) L832409-26 05/03/16 06:19							— [‡] Cn
Origin Analyte mg/l	nal Result DUP Result mg/l	Dilution DUP RPI	DUP Qualifier DUP RPD Lin %	its			⁵ Sr
Dissolved Solids 5180		1 4.04	5				- L
5.5561100	1370		· ·				⁶ Qc
							טעט
Laboratory Control Sam			Sample Duplicate (LCS)))			- GI
(LCS) R3133452-2 05/03/16 06:1	9 • (LCSD) R3133452-3 • Amount LCS Result		Rec. LCSD Rec. Rec. Li	mits LCS Qualifier LCSD Qualifie	er RPD	RPD Limits	
Analyte mg/l	mg/l	mg/l %	% % %	IIILS <u>LC3 Qualifier</u> <u>LC3D Qualifie</u>	<u># KPD</u> %	%	8 Al
Dissolved Solids 8800		8580 92	B 97.5 85.0-1°	5	4.90	5	- LA
							⁹ Sc
							50

SDG:

L832435

DATE/TIME:

05/18/16 14:35

PAGE:

43 of 86

PROJECT:

249545.0000.0000 000

ACCOUNT:

WG86908 Gravimetric Analy		540 C-2011		Q		CONTF	ROL SUN	MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)											1
(MB) R3133461-1 05/0	03/16 06:51											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								² Tc
Dissolved Solids	U		2.82	10.0								³ Ss
L832435-09 O	riginal Sample	(OS) • Du	plicate (Dl	JP)								
(OS) L832435-09 05	5/03/16 06:51 • (DUP) R3133461-4	05/03/16 06:	51								[‡] Cn
	Original Result		Dilution D	-		UP RPD Limits						5
Analyte	mg/l	mg/l	9		%							⁵ Sr
Dissolved Solids	1520	1540	1 1.	.47	5							⁶ Qc
Laboratory Cor	ntrol Sample (L	CS) • Labo	oratory Co	ntrol Samr	ole Duplicat	e (LCSD)						טגט
(LCS) R3133461-2 05												⁷ Gl
	Spike Amount		LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits		0
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		°AI
Dissolved Solids	8800	8430	8730	95.8	99.2	85.0-115			3.50	5		
												Sc

DATE/TIME:

05/18/16 14:35

PAGE:

44 of 86

PROJECT:

249545.0000.0000 000

ACCOUNT:

WG869816 Gravimetric Analysis	s by Method 25	640 C-2011		(QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	装
Method Blank (M	B)											1 _
(MB) R3134195-1 05/04/	/16 18:17											Ср
	MB Result	MB Qualifier	MB MDL									² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								TC
Dissolved Solids	U		2.02	10.0								³ Ss
L832422-21 Orig	inal Sample (OS) • Dup	licate (E	DUP)								
(OS) L832422-21 05/04	4/16 18:17 • (DUP) F	R3134195-4 0	5/04/16 18:	17								*Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						⁵ Sr
Dissolved Solids	3050	3020	1	0.824		5						6
												[®] Qc
Laboratory Contr	rol Sample (L	CS) • Labo	ratory (Control Sam	ple Duplic	ate (LCSD)						7
(LCS) R3134195-2 05/0												GI
Analyte	Spike Amount		LCSD Re		LCSD Rec	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits		8
Analyte	mg/l	mg/l	mg/l	%	%				%	%		Al
· .		0.450	0E00	06.0	06.6	0E /\ 11E			0.500	E		
· .	8800	8450	8500	96.0	96.6	85.0-115			0.590	5		9
· .		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
· .		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
Dissolved Solids		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
· .		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc
· .		8450	8500	96.0	96.6	85.0-115			0.590	5		⁹ Sc

SDG:

L832435

DATE/TIME:

05/18/16 14:35

PAGE:

45 of 86

PROJECT:

249545.0000.0000 000

ACCOUNT:

WG870054	1					Y CONTR					ONE LAB. NATIONWIDE.	装
Wet Chemistry by	Method 353.2				L832435-01,0	02,03,04,05,06,07	,08,09,10,11,1	2,13,14,15,16				
Method Blank (N	MB)											1 Cn
(MB) R3134229-1 05/0	06/16 05:27											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100								10
Made Mate	Ü		0.0137	0.100								³ Ss
L832422-20 Or	iginal Sample	(OS) • Dup	olicate (E	DUP)								4
(OS) L832422-20 05	- '	, ,	`									[‡] Cn
(55, 555)	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits						-
Analyte	mg/l	mg/l		%		%						⁵ Sr
Nitrate-Nitrite	0.197	ND	10	25.0	<u>J P1</u>	20						
												⁶ Qc
L832435-07 Ori	ginal Sample	(OS) • Dup	licate (D	DUP)								7
(OS) L832435-07 05/	06/16 05:48 • (DUF	P) R3134229-6	05/06/16	05:49								GI
	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						0
Analyte	mg/l	mg/l	40	%		%						Al
Nitrate-Nitrite	0.258	ND	10	2.00	7	20						9
												Sc
Laboratory Con		,			nple Duplic	cate (LCSD)						
(LCS) R3134229-2 05												
Analista	Spike Amount		LCSD Res	sult LCS Rec. %	LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	r RPD %	RPD Limits %		
Analyte Nitrate-Nitrite	mg/l 5.00	mg/l 4.98	mg/l 5.01	100	100	90.0-110			1.00	20		
Nitiate-Nitiite	3.00	4.30	5.01	100	100	90.0-110			1.00	20		
1022425 02 02	iginal Campla	(OC) Mot	riv Cnila	o (MC)								
L832435-02 Or	<u> </u>	. ,		· '								
(OS) L832435-02 05/					5		MS					
		Original Resul			Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	0.500	3.82	8.04	84.3	10	90.0-110	<u> 16</u>					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/18/16 14:35

PAGE: 46 of 86

WG870054

QUALITY CONTROL SUMMARY <u>L832435-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832435-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(0.0) 000 40 5 40	05/06/46 05:57	(NAC) DO40 4000 7	05/06/46 05 50	(MCD) D0404000 0	05/06/46 06:00
(US)11832435-12	U5/U6/16 U5:5/ •	(IVIS) R3134779-7	U5/U6/16 U5:59	 (MSD) R3134229-8 	U5/U6/16 U6:UU

(,													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Nitrate-Nitrite	0.500	U	4.43	4.16	86.0	80.7	10	90.0-110	J6	J6	6.19	20	

WG869673 Wet Chemistry by Met	thod 9056A					Y CONTR					ONE LAB. NATIONWIDE.	*
Method Blank (MB)											1
(MB) R3135221-1 05/09/16	<u> </u>											Ср
(112) 110100221 1 00700710	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								² Tc
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								3 Ss
Sulfate	U		0.0774	5.00								
												⁴ Cn
L832435-02 Origin	nal Sample	(OS) • Dup	olicate (I	DUP)								CII
(OS) L832435-02 05/09/	16 15:22 • (DUP	R3135221-4 (05/09/16 1	5:38								⁵ Sr
. ,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						6
Fluoride	0.907	0.903	1	1		15						Qc
												7
L832435-02 Origin	nal Sample	(OS) • Dur	olicate (l	DUP)								GI
(OS) L832435-02 05/09/												8
(03) 1832433-02 03/09/	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						Al
Analyte	mg/l	mg/l	Dilation	%	DOI Quante	%						9
Chloride	293	280	50	5		15						Sc
Sulfate	1030	1030	50	1		15						
L832409-10 Origin	al Sample	OS) • Dun	licate (F)LIP)								
(OS) L832409-10 05/10/1		, ,	,									
(03) 2832409-10 03/10/1	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	421	417	20	1		15						
Fluoride	1.28	1.15	20	11	<u>J</u>	15						
Sulfate	355	350	20	1		15						
Laboratory Contro	l Sample (I	CS) • Labo	ratory (Control Sar	nnle Dunlic	cate (LCSD)						
(LCS) R3135221-2 05/09/					пріс Бирік	cate (LCOD)						
(LC3) K3133221-2 U3/U9/	Spike Amount		LCSD Re		LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	% LC3 Rec.	%	%	LOS Quantier	ECOD Qualifier	%	%		
Chloride	40.0	39.1	39.3	98	98	80-120			0	15		
Fluoride	8.00	7.86	7.94	98	99	80-120			1	15		

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/18/16 14:35 PAGE: 48 of 86

WG869673

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832435-01,02,03,04,05,06,07,08,09,10,11,12,13,14

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(1	CS) R3135221-2	05/09/16 12:27 •	(LCSD) R3135221-3	05/09/16 12:43

(ECS) 1(31332212 03/03/1	0 12.27 - (2002) 1131332213	00/00/10 12.40							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Sulfate	40.0	38.7	39.4	97	98	80-120			2	15

Тс

L832435-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L832435-03 05/09/16 16:26 • (MS) R3135221-6 05/09/16 16:42

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Fluoride	5.00	0.548	5.43	98	1	80-120	

L832435-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832435-12												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	0.360	51.2	51.2	102	102	1	80-120			0	15
Fluoride	5.00	U	5.00	5.03	100	101	1	80-120			1	15
Sulfate	50.0	0.227	50.3	50.4	100	100	1	80-120			0	15

GI

WG869679 Wet Chemistry by Met	hod 9056A			1	QUALIT	Y CONTR		ИMARY			ONE LAB. NATIONWIDE.	禁
Method Blank (MB)							10					1
(MB) R3135625-1 05/10/16												Ср
()	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Fluoride	U		0.0099	0.100								3
												Ss
L832435-15 Origina	al Sample (OS) • Dupli	icate (D	JUP)								4
(OS) L832435-15 05/10/16												Cn
Analista	Original Result		Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %						⁵ Sr
Analyte Fluoride	mg/l 0.893	mg/l 0.943	1	5		75						21
Tidofide	0.655	0.545	'	3		13						⁶ Qc
L832453-03 Origin	al Sample	(OS) • Dup	olicate (f	DUP)								QC -
(OS) L832453-03 05/10/16		· / '										⁷ GI
,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ Al
Fluoride	0.108	0.109	1	1		15						
												⁹ Sc
Laboratory Control	' '	,			nple Duplic	ate (LCSD)						
(LCS) R3135625-2 05/10/1												
	Spike Amount		LCSD Res				LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte Fluoride	mg/l 8.00	mg/l 7.64	mg/l 7.65	% 95	% 96	% 80-120			0	% 15		
Fluoride	8.00	7.04	7.00	95	90	80-120			0	15		
450 00 0		(=0)		(1.40)								
L832450-02 Origin		` '		, ,								
(OS) L832450-02 05/10/10							MC					
	Spike Amount	Original Result			Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Fluoride	5.00	1.96	6.01	81	1	80-120						
		1.50	0.01	01		00 120						

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME: 05/18/16 14:35

PAGE:

50 of 86

WG869679

QUALITY CONTROL SUMMARY L832435-15

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832453-01 05/10/16 18:16	 (MS) R3135625-7 05/10/16 	20:24 · (MSD) R3135625-	8 05/10/16 20:40

(***, *** *** *** *** ***	Spike Amount				MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Fluoride	5.00	0.158	5.05	5.07	98	98	1	80-120			0	15

WG871015 Wet Chemistry by Me	thod 9056A				QUALIT		ROL SUN	MMARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB	<u>'</u>											1 Cp
(MB) R3137141-1 05/16/16	07:45											ОР
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Тс
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								³ Ss
Sulfate	U		0.0774	5.00								4
L832409-13 Origin	nal Sample (OS) • Dupl	icate (D	UP)								*Cn
(OS) L832409-13 05/16/10					5110.0 .115	SUD DDD LUWIN						⁵ Sr
A1-40	Original Result		Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %						
Analyte	mg/l	mg/l	50	7								⁶ Qc
Chloride	126 U	0.000	50 50	0		15 15						
Fluoride Sulfate	2520	2340	50	7		15						⁷ Gl
Zuilate	2520	2340	50	/		15						Gi
L832603-21 Origin				·								⁸ AI
(OS) L832603-21 05/16/1					DUD Ourlie	DUD DDD Limite						9 Sc
A-alida	Original Result		Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %						
Analyte Fluoride	mg/l 0.294	mg/l 0.506	1	53	12	15						
Fluoride	0.294	0.506	1	53	<u>J3</u>	15						
L832603-21 Origin	nal Sample ((OS) • Dupl	icate (D	UP)								
(OS) L832603-21 05/16/1	6 16:19 • (DUP) F	R3137141-7 05/	16/16 16:32	2								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	199	39.2	50	134	<u>J P1</u>	15						
Sulfate	1090	190	50	141	<u>J P1</u>	15						
Laboratory Contro	, ,				mple Duplic	cate (LCSD)						
(LCS) R3137141-2 05/16/16												
	Spike Amount		LCSD Res				s <u>LCS Qualifier</u>		RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.7	39.8	99	100	80-120			0	15		
Fluoride	8.00	7.85	7.87	98	98	80-120			0	15		

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/18/16 14:35 PAGE: 52 of 86

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG871015 Wet Chemistry by Method 9056A L832435-15,16 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3137141-2 05/16/16 07:59 • (LCSD) R3137141-3 05/16/16 08:12 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. LCSD Qualifier RPD RPD Limits Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % % % % Sulfate 40.0 39.9 40.1 100 100 80-120 15

L832435-15 Original Sample (OS) • Matrix Spike (MS)

ACCOUNT:

TRC Solutions - Austin, TX

(OS) L832435-15 05/16/16	09:09 • (MS) R	3137141-4 05/1	6/16 09:23				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	17.6	66.6	98	1	80-120	
Fluoride	5.00	0.982	5.50	90	1	80-120	

Тс

Ss

GI

PAGE:

53 of 86

 $L832603\text{-}22 \ \text{Original Sample (OS)} \bullet \text{Matrix Spike (MS)} \bullet \text{Matrix Spike Duplicate (MSD)}$

(OS) L832603-22 05/16/	16 17:10 • (MS) R3	3137141-8 05/16	6/16 17:23 • (M	SD) R3137141-9	05/16/16 17:36								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	U	51.9	52.1	104	104	1	80-120			0	15	
Fluoride	5.00	U	5.22	5.16	104	103	1	80-120			1	15	
Sulfate	50.0	U	50.1	50.2	100	100	1	80-120			0	15	

SDG:

L832435

DATE/TIME:

05/18/16 14:35

PROJECT:

249545.0000.0000 000

WG87122 Wet Chemistry	28 by Method 9056A			(QUALIT	Y CONTI		UMMA	.RY			ON	E LAB. NATIONWIDE.	*
Method Blank	k (MB)													1
(MB) R3135448-1 (05/10/16 11:38													Ср
	MB Result	MB Qualifier	MB MDL	MB RDL										2
Analyte	mg/l		mg/l	mg/l										² Tc
Sulfate	U		0.0774	5.00										
														³ Ss
L832435-04	Original Sample	(OS) • Dur	olicate (D	UP)										
	05/10/16 22:04 • (DUP	, , ,												⁴ Cn
(00) ====	Original Result	•	Dilution		DUP Qualifier	DUP RPD Limits								
Analyte	mg/l	mg/l		%		%								⁵ Sr
Sulfate	199	215	10	8		15								
														⁶ Qc
Laboratory C	ontrol Sample (L	CS) • Labo	ratory C	ontrol San	nple Dupli	cate (LCSD)								7
(LCS) R3135448-2	05/10/16 11:52 • (LCSE) R3135448-3	05/10/16 12	:07										' ´GI
	Spike Amount	LCS Result	LCSD Resu	ult LCS Rec.	LCSD Re	ec. Rec. Limits	LCS Qua	ifier LCSD (Qualifier RPD	RPD Lim	nits			
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				. ⁸ Al
Sulfate	40.0	39.1	39.2	98	98	80-120			0	15				
														⁹ Sc
1022654 017	Original Comple	(OC) Moto	riv Cailra	(MC) Ma	tris Cailca l	Dunlingto (MC	-D)							30
	Original Sample	` '	<u> </u>	· /			DD)							
(OS) L832654-01	05/11/16 01:06 • (MS) R:													
	•	Original Resul					Dilution		MS Qualifier	MSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Sulfate	50.0	19.9	68.7	69.0	98	98	1	80-120			0	15		

WG871783 Wet Chemistry by Me	thod 9056A			(QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB												1
(MB) R3136840-1 05/15/16	,											Ср
,	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Sulfate	U		0.0774	5.00								3
												°Ss
L832453-02 Origin	nal Sample	(OS) • Dup	licate (D	UP)								4
(OS) L832453-02 05/15/1												Cn
	Original Result		Dilution [DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						³ Sr
Sulfate	121	119	10 1	1		15						6
												[°] Qc
L832453-03 Origin	nal Sample	(OS) • Dup	licate (D	UP)								7
(OS) L832453-03 05/15/1												GI
	Original Result		Dilution [DUP Qualifier	DUP RPD Limits						8
Analyte	mg/l	mg/l		%		%						Al
Sulfate	128	125	10 2	2		15						g
												Sc
Laboratory Contro	I Sample (L	CS) • Labo	ratory Co	ontrol Sam	aple Duplic	cate (LCSD)						
(LCS) R3136840-2 05/15/												
	Spike Amount		LCSD Resul				LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Sulfate	40.0	39.8	39.7	99	99	80-120			0	15		
L832435-16 Origin	' '	· /		` '								
(OS) L832435-16 05/15/16	3 15:39 • (MS) R	3136840-4 05	,/15/16 15:53									
	Spike Amount	Original Result	t MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Sulfate	50.0	39.9	88.8	98	1	80-120						

DATE/TIME: 05/18/16 14:35

PAGE: 55 of 86

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

WG871783

QUALITY CONTROL SUMMARY L832435-16

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(,	Spike Amount		,		MS Rec.		Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	153	625	625	94	94	10	80-120			0	15

WG871518 Wet Chemistry b	8 y Method D 7511-0)9e2		(TIJAUÇ	Y CONTF		ИΜΑ	RY			ONE LA	AB. NATIONWIDE.	*
Method Blank	(MB)					-								1
MB) R3136170-1 05	(/													Ср
,	MB Result	MB Qualifier	MB MDL	MB RDL										2 _
Analyte	mg/l		mg/l	mg/l					_		_			Tc
Cyanide	U		0.0012	0.00500										3 Ss
L832409-16 C	riginal Sample ((OS) • Dup	licate (D	UP)										4
(OS) L832409-16 C	5/10/16 21:15 • (DUP) R													· Čn
	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits								5 _
Analyte	mg/l	mg/l		%		%								Sr
Cyanide	U	0.000	1	0		20								.6
L832435-14 C	riginal Sample (OS) • Dupl	licate (D	UP)										Qc
	5/10/16 21:54 • (DUP) F													GI ⁷ GI
(0-7,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits								
Analyte	mg/l	mg/l		%		%			_		_			. ⁸ Al
Cyanide	0.00500	0.00400	1	22	<u>J P1</u>	20								<u> </u>
			_											Sc
(LCS) R3136170-2 (ontrol Sample (LC 05/10/16 20:42 • (LCSE Spike Amount	D) R3136170-3 LCS Result	05/10/16 20 LCSD Resu	0:45 Sult LCS Rec.	LCSD Rec	c. Rec. Limits	LCS Qualifier	LCSD Q		RPD Lii	mits			
	05/10/16 20:42 • (LCSE	D) R3136170-3	05/10/16 20	0:45			LCS Qualifier	LCSD Q	ualifier RPD %	RPD Liu % 20	mits			
(LCS) R3136170-2 C Analyte Cyanide L832409-17 O	05/10/16 20:42 • (LCSE	D) R3136170-3 LCS Result mg/l 0.0970 (OS) • Matri	05/10/16 20 LCSD Resu mg/l 0.0980	20:45 sult LCS Rec. % 97	LCSD Rec % 98 trix Spike D	Rec. Limits % 86-114		LCSD Q	%	%	mits			
(LCS) R3136170-2 C Analyte Cyanide L832409-17 O	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 original Sample (15/10/16 21:24 • (MS) R3	D) R3136170-3 LCS Result mg/l 0.0970 (OS) • Matri	05/10/16 20 LCSD Rest mg/l 0.0980 rix Spike	97 e (MS) • Mat 9 • (MSD) R313	LCSD Rec % 98 trix Spike D	Rec. Limits % 86-114	D)	LCSD Q	%	% 20		RPD Limits		
(LCS) R3136170-2 (Analyte Cyanide L832409-17 ((OS) L832409-17 0 Analyte	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 original Sample (05/10/16 21:24 • (MS) R3 Spike Amount mg/l	D) R3136170-3 LCS Result mg/l 0.0970 (OS) • Matri 3136170-10 05 Original Result	05/10/16 20 LCSD Resumg/I 0.0980 Tix Spike 5/10/16 22:15 It MS Result mg/I	0:45 uilt LCS Rec. % 97 e (MS) • Mat 9 • (MSD) R313 t MSD Resu mg/l	LCSD Rec % 98 trix Spike D 6170-11 05/10/1 ult MS Rec. %	Rec. Limits % 86-114 Duplicate (MS) 16 22:22 MSD Rec. %	Dilution Rec	c. Limits	% 1	% 20	<u>r</u> RPD %	%		
(LCS) R3136170-2 (Analyte Cyanide L832409-17 ((OS) L832409-17 0	05/10/16 20:42 • (LCSE Spike Amount mg/l 0.100 original Sample (5/10/16 21:24 • (MS) R3 Spike Amount	D) R3136170-3 LCS Result mg/l 0.0970 (OS) • Matri 3136170-10 05 Original Result	05/10/16 20 LCSD Rest mg/l 0.0980 Tix Spike	9: (MS) • Mat (MSD) R313 t MSD Resu	LCSD Rec % 98 trix Spike D 6170-11 05/10/1	Rec. Limits % 86-114 Duplicate (MS) 16 22:22 MSD Rec.	D)	c. Limits	% 1	% 20	r RPD			

WG868781 Mercury by Method 74	470A			QL	JALITY	CONTR L832435-0		UMMA	RY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)	<u> </u>												¹ Cp
(MB) R3133034-1 05/02/10 Analyte	6 09:18 MB Result mg/l	MB Qualifier	MB MDL mg/l	MB RDL mg/l									² Tc
Mercury	U		0.000049	0.000200									3 Ss
Laboratory Contro					e Duplicate	e (LCSD)							⁴ Cn
(LCS) R3133034-6 05/02	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	lifier LCSD (Qualifier RPD	RPD Limi	its		
Analyte Mercury	mg/l 0.00300	mg/l 0.00346	mg/l 0.00324	% 115	108	% 80-120			7	% 20			⁵ Sr
L832388-01 Origin	al Sample	(OS) - Matri	v Spiko (M	C) - Matrix	Spiko Dur	alicato (MSI))						⁶ Qc
(OS) L832388-01 05/02/1	6 09:27 • (MS)	R3133034-4 05	5/02/16 09:30	• (MSD) R31330	034-5 05/02/	16 09:33			MO 0 115	1400 0 115			⁷ Gl
Analyte	mg/l	Original Result mg/l	mg/l	MSD Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	RPD Limits %	8 Al
Mercury	0.00300	ND	0.00302	0.00280	101	93	1	75-125			8	20	
													Sc

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/18/16 14:35 PAGE: 58 of 86

Mercury by Method	7470A					L832435-0	J3,14						
Method Blank (MI	В)												1
(MB) R3133626-1 05/04	/16 12:07												Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									
Mercury,Dissolved	U		0.000049	0.000200									3
													³ Ss
Laboratory Contr	ol Sample (L0	CS) • Labor	ratory Con	itrol Sample	e Duplicate	.e (LCSD)							4
(LCS) R3133626-2 05/0													—— Cn
	Spike Amount		LCSD Result		LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD Q	Qualifier RPD	RPD Limit	its		5
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			sr
Mercury,Dissolved	0.00300	0.00284	0.00263	95	88	80-120			7	20			
													⁶ Qc
L832603-17 Origi	nal Sample (OS) • Matri	x Spike (M	/IS) • Matrix	. Spike Dur	plicate (MS ^r	۵)						7
(OS) L832603-17 05/04	/16 12:13 • (MS) R3	3133626-4 05/	04/16 12:16 • (MSD) R313362	.6-5 05/04/16	12:18							/ GI
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier		RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	⁸ Al
Mercury,Dissolved	0.00300	U	0.00254	0.00254	85	85	1	75-125			0	20	
													⁹ Sc
													30

DATE/TIME:

05/18/16 14:35

PROJECT: 249545.0000.0000 000

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE:

59 of 86

WG869207

ACCOUNT:

WG869123

QUALITY CONTROL SUMMARY L832435-02,03,04,05,06,07,08,09,10,11,12,13,14,16

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

metriod Blank (iv					
(MB) R3134619-1 05/07	//16 02:38				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Cadmium,Dissolved	U		0.00016	0.00100	
Chromium, Dissolved	U		0.00054	0.00200	
Cobalt, Dissolved	U		0.00026	0.00200	
ron,Dissolved	0.0221		0.015	0.100	
Lead,Dissolved	U		0.00024	0.00200	
Manganese,Dissolved	U		0.00025	0.00500	
Nickel,Dissolved	U		0.00035	0.00200	
Selenium,Dissolved	U		0.00038	0.00200	
Uranium,Dissolved	U		0.00033	0.0100	
Vanadium, Dissolved	0.000257		0.00018	0.00500	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3134619-2 05/07/16 02:40 • (LCSD) R3134619-3 05/07/16 02:43	LCS) R3134619	2 05/07/16	02:40 •	(LCSD) R3134619-	3 05/07/16 02:43
---	---------------	------------	---------	------------------	------------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic, Dissolved	0.0500	0.0482	0.0496	96	99	80-120			3	20
Barium, Dissolved	0.0500	0.0494	0.0487	99	97	80-120			1	20
Cadmium, Dissolved	0.0500	0.0496	0.0513	99	103	80-120			3	20
Chromium, Dissolved	0.0500	0.0490	0.0490	98	98	80-120			0	20
Cobalt, Dissolved	0.0500	0.0496	0.0499	99	100	80-120			0	20
Iron,Dissolved	5.00	4.78	4.82	96	96	80-120			1	20
Lead,Dissolved	0.0500	0.0491	0.0499	98	100	80-120			2	20
Manganese, Dissolved	0.0500	0.0492	0.0491	98	98	80-120			0	20
Nickel, Dissolved	0.0500	0.0489	0.0501	98	100	80-120			2	20
Selenium, Dissolved	0.0500	0.0482	0.0482	96	96	80-120			0	20
Uranium,Dissolved	0.0500	0.0495	0.0500	99	100	80-120			1	20
Vanadium, Dissolved	0.0500	0.0480	0.0489	96	98	80-120			2	20

ΑI

Sc

QUALITY CONTROL SUMMARY L832435-02,03,04,05,06,07,08,09,10,11,12,13,14,16

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832409-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-25 05/07/	16 02:46 • (MS)	R3134619-5 05	5/07/16 02:51 •	(MSD) R313461	9-6 05/07/16	02:54						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic, Dissolved	0.0100	0.00741	0.0242	0.0123	34	10	5	75-125	<u>J6</u>	J3 J6	65	20
Barium, Dissolved	0.0100	0.0650	0.105	0.122	81	115	5	75-125			15	20
Cadmium, Dissolved	0.0100	U	0.0465	0.0537	93	107	5	75-125			14	20
Chromium, Dissolved	0.0100	U	0.0434	0.0503	87	101	5	75-125			15	20
Cobalt, Dissolved	0.0100	U	0.0439	0.0498	88	100	5	75-125			12	20
Iron,Dissolved	1.00	U	4.41	5.39	88	108	5	75-125			20	20
Lead,Dissolved	0.0100	0.00386	0.0479	0.0534	88	99	5	75-125			11	20
Manganese, Dissolved	0.0100	0.00359	0.0451	0.0551	83	103	5	75-125			20	20
Nickel, Dissolved	0.0100	U	0.0425	0.0474	85	95	5	75-125			11	20
Selenium, Dissolved	0.0100	0.596	0.0371	0.0348	0	0	5	75-125	$\underline{\vee}$	$\underline{\vee}$	6	20
Uranium, Dissolved	0.0100	U	0.0490	0.0518	98	104	5	75-125			6	20
Vanadium, Dissolved	0.0100	0.00116	0.0458	0.0512	89	100	5	75-125			11	20

QUALITY CONTROL SUMMARY <u>L832435-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

Wictinoa Diam	(2)				
(MB) R3134752-1 (05/07/16 16:13				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic	U		0.00025	0.00200	
Barium	U		0.00036	0.00500	
Cadmium	U		0.00016	0.00100	
Calcium	U		0.046	1.00	
Chromium	U		0.00054	0.00200	
Cobalt	U		0.00026	0.00200	
Iron	U		0.015	0.100	
Lead	U		0.00024	0.00200	
Manganese	0.000495		0.00025	0.00500	
Nickel	U		0.00035	0.00200	
Potassium	U		0.037	1.00	
Selenium	U		0.00038	0.00200	
Sodium	U		0.11	1.00	
Uranium	U		0.00033	0.0100	
Vanadium	0.000202		0.00018	0.00500	

9 5 6

GI

Тс

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134752-2 0	05/07/16 16:16 • (LCSE	D) R3134752-3	05/07/16 16:18								_
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0508	0.0519	102	104	80-120			2	20	
Barium	0.0500	0.0493	0.0483	99	97	80-120			2	20	
Cadmium	0.0500	0.0543	0.0552	109	110	80-120			2	20	
Calcium	5.00	4.99	5.19	100	104	80-120			4	20	
Chromium	0.0500	0.0512	0.0507	102	101	80-120			1	20	
Cobalt	0.0500	0.0534	0.0533	107	107	80-120			0	20	
Iron	5.00	4.94	4.90	99	98	80-120			1	20	
Lead	0.0500	0.0510	0.0497	102	99	80-120			3	20	
Manganese	0.0500	0.0495	0.0499	99	100	80-120			1	20	
Nickel	0.0500	0.0531	0.0531	106	106	80-120			0	20	
Potassium	5.00	4.95	4.85	99	97	80-120			2	20	
Selenium	0.0500	0.0499	0.0484	100	97	80-120			3	20	
Sodium	5.00	5.39	5.23	108	105	80-120			3	20	
Uranium	0.0500	0.0515	0.0500	103	100	80-120			3	20	
Vanadium	0.0500	0.0506	0.0497	101	99	80-120			2	20	

ACCOUNT: TRC Solutions - Austin, TX PROJECT: 249545.0000.0000 000

SDG: L832435 DATE/TIME: 05/18/16 14:35

PAGE: 62 of 86

QUALITY CONTROL SUMMARY <u>L832435-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832435-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832435-11 05/07/16	6 16:21 • (MS) R3	134752-5 05/0)7/16 16:25 • (N	ISD) R3134752	-6 05/07/16 16	:28						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00566	0.0566	0.0568	102	102	5	75-125			0	20
Barium	0.0100	0.0112	0.0635	0.0633	105	104	5	75-125			0	20
Cadmium	0.0100	U	0.0518	0.0535	104	107	5	75-125			3	20
Calcium	1.00	576	573	598	0	440	5	75-125	\vee	\vee	4	20
Chromium	0.0100	U	0.0503	0.0513	101	103	5	75-125			2	20
Cobalt	0.0100	U	0.0511	0.0519	102	104	5	75-125			2	20
Potassium	1.00	1.70	6.67	6.73	99	101	5	75-125			1	20
Iron	1.00	U	4.83	4.95	97	99	5	75-125			2	20
Lead	0.0100	0.00131	0.0502	0.0510	98	99	5	75-125			2	20
Manganese	0.0100	0.0102	0.0578	0.0581	95	96	5	75-125			1	20
Nickel	0.0100	U	0.0509	0.0528	102	106	5	75-125			4	20
Selenium	0.0100	0.00812	0.0571	0.0578	98	99	5	75-125			1	20
Sodium	1.00	311	311	318	0	134	5	75-125	\vee	\vee	2	20
Uranium	0.0100	0.0459	0.0951	0.0961	98	100	5	75-125			1	20
Vanadium	0.0100	0.0201	0.0698	0.0707	99	101	5	75-125			1	20

QUALITY CONTROL SUMMARY L832435-01

ONE LAB. NATIONWIDE.

⁶Qc

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134963-1 05/09	9/16 10:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	0.0259		0.015	0.100	
Lead,Dissolved	0.000687		0.00024	0.00200	
Manganese,Dissolved	0.0003		0.00025	0.00500	
Selenium, Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134963-2 05/0	9/16 10:30 • (LCS	D) R3134963-	3 05/09/16 10:3	33							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic,Dissolved	0.0500	0.0512	0.0534	102	107	80-120			4	20	
Barium, Dissolved	0.0500	0.0517	0.0524	103	105	80-120			1	20	
Chromium, Dissolved	0.0500	0.0534	0.0550	107	110	80-120			3	20	
Iron,Dissolved	5.00	5.23	5.38	105	108	80-120			3	20	
Lead,Dissolved	0.0500	0.0524	0.0538	105	108	80-120			3	20	
Manganese,Dissolved	0.0500	0.0518	0.0526	104	105	80-120			1	20	
Selenium, Dissolved	0.0500	0.0506	0.0519	101	104	80-120			2	20	

L832447-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832447-01 05/09	/16 10:35 • (MS) R	3134963-5 05	/09/16 10:40 •	(MSD) R313496	63-6 05/09/16	10:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00646	0.0536	0.0585	94	104	5	75-125			9	20
Barium, Dissolved	0.0100	0.0161	0.0606	0.0636	89	95	5	75-125			5	20
Chromium, Dissolved	0.0100	U	0.0489	0.0497	98	99	5	75-125			2	20
Iron,Dissolved	1.00	U	4.68	5.46	94	109	5	75-125			15	20
Lead,Dissolved	0.0100	U	0.0486	0.0513	97	103	5	75-125			5	20
Manganese,Dissolved	0.0100	0.319	0.326	0.350	14	63	5	75-125	$\underline{\vee}$	$\underline{\vee}$	7	20
Selenium Dissolved	0.0100	0.00234	0.0506	0.0560	96	107	5	75-125			10	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832435

DATE/TIME: 05/18/16 14:35

PAGE: 64 of 86

WG870589 Metals (ICPMS) by Met	thod 6020			QL	JALITY	CONTR L832435-0		JMMAI	RY			ONE LAB. NATIONWIDE.	装
Method Blank (MB))												1 _
(MB) R3134666-1 05/07/16													Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									Tc
Boron	U		0.0015	0.0200									3 _
													Ss
Laboratory Control	Sample (L	CS) • Labor	atory Conf	trol Sample	e Duplicate	(LCSD) د							4 ()
(LCS) R3134666-2 05/07/													Cn
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Quali	fier LCSD Q	Qualifier RPD %	RPD Limit	iS		⁵ Sr
Boron	0.0500	0.0478	0.0491	96	98	80-120			3	20			31
Bore	0.0000	0.0	0.0.0.		55	00 120			-				⁶ Qc
1000450.04.0-:		(OC) Mad	· Cailea /	4C) Matui	Cailea Dec	-!:t- /N/C							الباد
L832450-04 Origin		· /	' '		<u> </u>	' '	D)						GI T
(OS) L832450-04 05/07/1		R3134666-5 0 Original Result		MSD Result	1666-6 05/07/1 MS Rec.	16 08:59 MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	ws rec. %	%	Dilution	%	M3 Quaimer	Mon Angillier	жг о %	%	8 Al
Boron	0.00500	0.689	0.704	0.712	31	47	10	75-125	V	<u>V</u>	1	20	AI
									_	_			⁹ Sc
													30

SDG: L832435 DATE/TIME:

05/18/16 14:35

PAGE:

65 of 86

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG870591 Metals (ICPMS) by M	lethod 6020			QI	JALITY	CONTR		UMMA	ιRY			ONE LAB. NATIONWIDE.	*
Method Blank (MI	B)												1
(MB) R3134973-1 05/09/	/16 10:45												- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL									2 _T
Analyte Boron,Dissolved	mg/l		mg/l	mg/l									- Tc
Boron, Dissolved	U		0.0015	0.0200									3 Ss
Laboratory Contro	ol Sample (L	-CS) • Labo	ratory Cor	ntrol Sampl	le Duplicat	e (LCSD)							4
(LCS) R3134973-2 05/0													- Cn
Analyte	Spike Amount		LCSD Result	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Qual	ifier LCSD (Qualifier RPD %	RPD Limi %	ıts		⁵ Sr
Boron, Dissolved	mg/l 0.0500	mg/l 0.0484	mg/l 0.0502	97	100	80-120			4	20			- 21
DOIOII,DISSOIVEU	0.0300	0.0404	0.0302	97	100	00-120			4	20			6
L832468-01 Origi	inal Sample	(OS) • Matr	iv Snike (N	۷S) • Matrix	v Snike Du	nlicate (MS	(U)						[°] Qc
(OS) L832468-01 05/09							<i>D</i>)						⁷ GI
(00) 2002 100 01 22.22		t Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	8 Al
Boron, Dissolved	0.00500	0.596	0.642	0.644	92	95	10	75-125			0	20	" L'"

SDG: L832435

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/18/16 14:35

PAGE:

66 of 86

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869043 L832435-01,02,03,04,05,06,07,08,09,10,11,12,13 Volatile Organic Compounds (GC) by Method 8015D/GRO Method Blank (MB) (MB) R3133562-5 05/02/16 11:18 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) Low Fraction 0.0314 0.100 U (S) a,a,a-Trifluorotoluene(FID) 96.3 62.0-128 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133562-3 05/02/16 10:04 • (LCSD) R3133562-4 05/02/16 10:29 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % % TPH (GC/FID) Low Fraction 5.50 5.94 6.09 108 111 67.0-132 2.59 20 62.0-128 (S) a,a,a-Trifluorotoluene(FID) 107 106 GI L832212-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832212-01 05/02/16 13:29 • (MS) R3133562-8 05/02/16 14:58 • (MSD) R3133562-9 05/02/16 15:23 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % Analyte mg/l mg/l mg/l mg/l % % % Sc TPH (GC/FID) Low Fraction ND 6.30 5.53 115 100 50.0-143 13.1 20 5.50 (S) a,a,a-Trifluorotoluene(FID) 111 115 62.0-128

SDG:

L832435

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/18/16 14:35

PAGE:

67 of 86

WG870480 Volatile Organic Comp	pounds (GC)	by Method 8	015D/GRO	Ql	JALITY	CONTR L832435		UM	MARY				ONE LAB. NATIONWID	DE. 🦊
Method Blank (MB)	.)													1
(MB) R3134535-3 05/06/1	-													— ГСр
(,	MB Result	MB Qualifier	MB MDL	MB RDL										
Analyte	mg/l		mg/l	mg/l										² Tc
TPH (GC/FID) Low Fraction	U		0.0314	0.100										
(S) a,a,a-Trifluorotoluene(FIL	D) 102			62.0-128										³Ss
Laboratory Control	I Sample (L	.CS) • Labo	ratory Con	trol Sample	e Duplicate	e (LCSD)								⁴ Cn
(LCS) R3134535-1 05/06/1	16 11:36 • (LCSD) R3134535-2	05/06/16 11:58											5
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	lifier	LCSD Qualifier	-	RPD Lim	its		Sr
Analyte	mg/l	mg/l	mg/l	%	%	%				%	%			_ 🖳
TPH (GC/FID) Low Fraction	5.50	4.85	5.03	88.1	91.4	67.0-132				3.65	20			⁶ Qc
(S) a,a,a-Trifluorotoluene(FIL	0)			101	101	62.0-128								
														⁷ Gl
L833378-01 Origina)							_ [Gi
(OS) L833378-01 05/06/16														⁸ Al
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. L	imits MS	Qualifier	MSD Qualifier		RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%	140			%	%	— ∣°sc
TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FIL	5.50	0.322	5.51	5.84	94.4 101	100 <i>101</i>	1	50.0-1 62.0-1				5.77	20	
(3) u,u,u-TTIIIUUTULUIUETIE(FIL	טן				101	101		02.0-1	120					

SDG: L832435

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/18/16 14:35 PAGE: 68 of 86

QUALITY CONTROL SUMMARY $\frac{1832435\cdot01,02}{}$

ONE LAB. NATIONWIDE.

²Tc

GI

ΔI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

TVICTIOG DIGITA (IVID)				
(MB) R3133363-3 05/03/16		110.0 115		
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-lsopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100
.,.,=,= 10000000000000000000000000000000000	-		2.000.00	0.00.00

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832435

DATE/TIME: 05/18/16 14:35

PAGE: 69 of 86

QUALITY CONTROL SUMMARY L832435-01,02

ONE LAB. NATIONWIDE.

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(LCS) R3133363-1 05/03/16 09:06 • (LCSD) R3133363-2 05/03/16 09:23

Metriod Blank (MB)	1				
(MB) R3133363-3 05/03/1	6 10:15				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	105			90.0-115	
(S) Dibromofluoromethane	103			79.0-121	
(S) 4-Bromofluorobenzene	106			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.161	0.153	129	122	28.7-175			5.36	20.9	
Benzene	0.0250	0.0239	0.0229	95.7	91.5	73.0-122			4.44	20	
Bromodichloromethane	0.0250	0.0242	0.0236	96.9	94.3	75.5-121			2.73	20	
Bromoform	0.0250	0.0244	0.0249	97.5	99.6	71.5-131			2.08	20	
Bromomethane	0.0250	0.0259	0.0260	104	104	22.4-187			0.490	20	
n-Butylbenzene	0.0250	0.0243	0.0227	97.3	90.9	75.9-134			6.77	20	
sec-Butylbenzene	0.0250	0.0257	0.0252	103	101	80.6-126			1.98	20	
Carbon disulfide	0.0250	0.0227	0.0222	90.6	88.6	53.0-134			2.28	20	
Carbon tetrachloride	0.0250	0.0229	0.0220	91.5	87.8	70.9-129			4.09	20	
Chlorobenzene	0.0250	0.0245	0.0240	97.9	95.9	79.7-122			2.04	20	
Chlorodibromomethane	0.0250	0.0242	0.0243	96.9	97.0	78.2-124			0.130	20	
Chloroethane	0.0250	0.0255	0.0250	102	99.9	41.2-153			2.23	20	
Chloroform	0.0250	0.0245	0.0238	98.0	95.2	73.2-125			2.84	20	
Chloromethane	0.0250	0.0238	0.0232	95.1	92.9	55.8-134			2.39	20	
1,2-Dibromoethane	0.0250	0.0234	0.0226	93.7	90.6	79.8-122			3.37	20	
1,1-Dichloroethane	0.0250	0.0243	0.0236	97.1	94.5	71.7-127			2.72	20	

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: TRC Solutions - Austin, TX 70 of 86 249545.0000.0000 000 L832435 05/18/16 14:35

QUALITY CONTROL SUMMARY L832435-01,02

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133363-1 05/03/1	6 09:06 • (LCSI	D) R3133363-	2 05/03/16 09:	23							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0232	0.0225	92.9	89.8	65.3-126			3.40	20	
1,1-Dichloroethene	0.0250	0.0256	0.0241	102	96.6	59.9-137			5.64	20	
cis-1,2-Dichloroethene	0.0250	0.0248	0.0244	99.2	97.5	77.3-122			1.74	20	
trans-1,2-Dichloroethene	0.0250	0.0254	0.0247	102	98.8	72.6-125			2.73	20	
1,2-Dichloropropane	0.0250	0.0240	0.0237	95.9	95.0	77.4-125			0.910	20	
cis-1,3-Dichloropropene	0.0250	0.0242	0.0233	96.9	93.0	77.7-124			4.13	20	
trans-1,3-Dichloropropene	0.0250	0.0236	0.0230	94.6	92.0	73.5-127			2.78	20	
Ethylbenzene	0.0250	0.0248	0.0239	99.3	95.8	80.9-121			3.59	20	
2-Hexanone	0.125	0.121	0.114	97.2	91.4	59.4-151			6.14	20	
Isopropylbenzene	0.0250	0.0258	0.0253	103	101	81.6-124			1.60	20	
p-Isopropyltoluene	0.0250	0.0263	0.0259	105	104	77.6-129			1.34	20	
2-Butanone (MEK)	0.125	0.111	0.101	89.2	80.8	46.4-155			9.85	20	
Methylene Chloride	0.0250	0.0246	0.0246	98.5	98.5	69.5-120			0.0600	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.125	0.119	99.7	95.3	63.3-138			4.45	20	
Methyl tert-butyl ether	0.0250	0.0235	0.0234	94.0	93.6	70.1-125			0.460	20	
Naphthalene	0.0250	0.0256	0.0248	102	99.4	69.7-134			2.82	20	
n-Propylbenzene	0.0250	0.0259	0.0255	104	102	81.9-122			1.59	20	
Styrene	0.0250	0.0249	0.0254	99.5	102	79.9-124			2.00	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0237	0.0241	94.6	96.3	78.5-125			1.77	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0249	0.0248	99.8	99.2	79.3-123			0.550	20	
Tetrachloroethene	0.0250	0.0259	0.0245	103	97.9	73.5-130			5.53	20	
Toluene	0.0250	0.0247	0.0240	98.8	96.1	77.9-116			2.83	20	
1,1,1-Trichloroethane	0.0250	0.0263	0.0253	105	101	71.1-129			3.86	20	
1,1,2-Trichloroethane	0.0250	0.0233	0.0227	93.0	90.7	81.6-120			2.54	20	
Trichloroethene	0.0250	0.0255	0.0241	102	96.2	79.5-121			5.87	20	
1,2,4-Trimethylbenzene	0.0250	0.0256	0.0257	102	103	79.0-122			0.520	20	
1,3,5-Trimethylbenzene	0.0250	0.0251	0.0250	100	100	81.0-123			0.310	20	
Vinyl chloride	0.0250	0.0265	0.0256	106	103	61.5-134			3.45	20	
Xylenes, Total	0.0750	0.0753	0.0737	100	98.2	79.2-122			2.22	20	
o-Xylene	0.0250	0.0249	0.0245	99.6	98.1	79.1-123			1.59	20	
m&p-Xylenes	0.0500	0.0504	0.0492	101	98.3	78.5-122			2.54	20	
(S) Toluene-d8				106	108	90.0-115					
(S) Dibromofluoromethane				101	104	79.0-121					
(S) 4-Bromofluorobenzene				102	105	80.1-120					

249545.0000.0000 000

L832435

DATE/TIME:

PAGE: 71 of 86

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832435-01,02

L832429-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0232

0.0246

ND

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	ND	0.0689	0.0683	55.1	54.6	1	25.0-156			0.830	21.5
Benzene	0.0250	ND	0.0207	0.0211	82.8	84.3	1	58.6-133			1.74	20
Bromodichloromethane	0.0250	ND	0.0230	0.0239	92.0	95.7	1	69.2-127			4.02	20
Bromoform	0.0250	ND	0.0225	0.0237	90.0	94.7	1	66.3-140			5.12	20
Bromomethane	0.0250	ND	0.0177	0.0202	70.7	80.6	1	16.6-183			13.1	20.5
n-Butylbenzene	0.0250	ND	0.0224	0.0229	89.8	91.4	1	64.8-145			1.85	20
sec-Butylbenzene	0.0250	ND	0.0235	0.0247	94.2	98.7	1	66.8-139			4.77	20
Carbon disulfide	0.0250	ND	0.0116	0.0127	46.5	50.8	1	34.9-138			8.90	20
Carbon tetrachloride	0.0250	ND	0.0199	0.0214	79.7	85.7	1	60.6-139			7.21	20
Chlorobenzene	0.0250	ND	0.0222	0.0224	88.8	89.7	1	70.1-130			0.980	20
Chlorodibromomethane	0.0250	ND	0.0229	0.0230	91.5	91.9	1	71.6-132			0.470	20
Chloroethane	0.0250	ND	0.0186	0.0207	74.5	82.9	1	33.3-155			10.6	20
Chloroform	0.0250	ND	0.0222	0.0232	89.0	92.8	1	66.1-133			4.15	20
Chloromethane	0.0250	ND	0.0155	0.0173	62.0	69.1	1	40.7-139			10.8	20
1,2-Dibromoethane	0.0250	ND	0.0208	0.0209	83.1	83.5	1	73.8-131			0.490	20
1,1-Dichloroethane	0.0250	ND	0.0220	0.0225	88.1	90.1	1	64.0-134			2.22	20
1,2-Dichloroethane	0.0250	ND	0.0209	0.0214	83.7	85.7	1	60.7-132			2.45	20
1,1-Dichloroethene	0.0250	ND	0.0199	0.0210	79.7	83.9	1	48.8-144			5.19	20
cis-1,2-Dichloroethene	0.0250	0.00629	0.0270	0.0279	82.6	86.4	1	60.6-136			3.45	20
trans-1,2-Dichloroethene	0.0250	ND	0.0198	0.0210	79.2	84.1	1	61.0-132			5.95	20
1,2-Dichloropropane	0.0250	0.00130	0.0220	0.0227	82.6	85.6	1	69.7-130			3.33	20
cis-1,3-Dichloropropene	0.0250	ND	0.0222	0.0223	88.9	89.2	1	71.1-129			0.310	20
trans-1,3-Dichloropropene	0.0250	ND	0.0222	0.0222	86.5	86.4	1	66.3-136			0.0900	20
Ethylbenzene	0.0250	ND	0.0218	0.0222	87.3	88.8	1	62.7-136			1.73	20
2-Hexanone	0.125	ND	0.0883	0.0883	70.6	70.7	1	59.4-154			0.0500	20.1
Isopropylbenzene	0.0250	ND	0.0233	0.0242	93.2	96.7	1	67.4-136			3.63	20
p-Isopropyltoluene	0.0250	ND	0.0237	0.0250	94.7	100	1	62.8-143			5.46	20
2-Butanone (MEK)	0.125	ND	0.0721	0.0700	57.7	56.0	1	45.0-156			3.04	20.8
Methylene Chloride	0.0250	ND	0.0206	0.0227	82.5	90.9	1	61.5-125			9.64	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.111	0.117	88.5	93.9	1	60.7-150			5.93	20
Methyl tert-butyl ether	0.0250	ND	0.0217	0.0232	86.8	93.0	1	61.4-136			6.86	20
Naphthalene	0.0250	ND	0.0233	0.0245	93.4	98.1	1	61.8-143			4.92	20
n-Propylbenzene	0.0250	ND	0.0235	0.0244	94.1	97.4	1	63.2-139			3.47	20
Styrene	0.0250	ND	0.0229	0.0236	91.5	94.4	1	68.2-133			3.17	20
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0220	0.0234	88.2	93.6	1	70.5-132			6.00	20

1,1,2,2-Tetrachloroethane 0.0250

PROJECT: 249545.0000.0000 000

92.8

98.5

SDG: L832435

64.9-145

DATE/TIME: 05/18/16 14:35

6.06

20

PAGE: 72 of 86

QUALITY CONTROL SUMMARY L832435-01,02

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832429-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	0.0680	0.0862	0.0813	72.8	53.3	1	57.4-141		J6	5.81	20
Toluene	0.0250	ND	0.0215	0.0224	86.1	89.6	1	67.8-124			4.09	20
1,1,1-Trichloroethane	0.0250	ND	0.0234	0.0251	93.7	100	1	58.7-134			6.78	20
1,1,2-Trichloroethane	0.0250	ND	0.0221	0.0221	88.2	88.4	1	74.1-130			0.190	20
Trichloroethene	0.0250	0.00680	0.0277	0.0272	83.5	81.8	1	48.9-148			1.62	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0230	0.0245	92.0	97.9	1	60.5-137			6.23	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0229	0.0239	91.4	95.8	1	67.9-134			4.62	20
Vinyl chloride	0.0250	ND	0.0185	0.0205	74.1	81.9	1	44.3-143			9.91	20
Xylenes, Total	0.0750	ND	0.0667	0.0682	88.9	91.0	1	65.6-133			2.30	20
o-Xylene	0.0250	ND	0.0223	0.0232	89.3	92.7	1	67.1-133			3.68	20
m&p-Xylenes	0.0500	ND	0.0443	0.0451	88.7	90.1	1	64.1-133			1.60	20
(S) Toluene-d8					106	110		90.0-115				
(S) Dibromofluoromethane					101	104		79.0-121				
(S) 4-Bromofluorobenzene					103	105		80.1-120				

QUALITY CONTROL SUMMARY <u>L832435-03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134082-3 05/04/	16 03:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-lsopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832435

DATE/TIME: 05/18/16 14:35

PAGE: 74 of 86

QUALITY CONTROL SUMMARY <u>L832435-03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

MB) R3134082-3 05/04/1	6 03:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
etrachloroethene	U		0.000372	0.00100	
oluene	U		0.000780	0.00500	
I,1-Trichloroethane	U		0.000319	0.00100	
1,2-Trichloroethane	U		0.000383	0.00100	
ichloroethene	U		0.000398	0.00100	
2,4-Trimethylbenzene	U		0.000373	0.00100	
3,5-Trimethylbenzene	U		0.000387	0.00100	
nyl chloride	U		0.000259	0.00100	
lenes, Total	U		0.00106	0.00300	
Xylene	U		0.000341	0.00100	
&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	105			90.0-115	
(S) Dibromofluoromethane	107			79.0-121	
(S) 4-Bromofluorobenzene	102			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.192	0.179	153	144	28.7-175			6.59	20.9	
Benzene	0.0250	0.0274	0.0262	109	105	73.0-122			4.31	20	
Bromodichloromethane	0.0250	0.0274	0.0264	110	106	75.5-121			3.92	20	
Bromoform	0.0250	0.0231	0.0218	92.3	87.2	71.5-131			5.65	20	
Bromomethane	0.0250	0.0101	0.00963	40.2	38.5	22.4-187			4.27	20	
n-Butylbenzene	0.0250	0.0325	0.0315	130	126	75.9-134			3.09	20	
sec-Butylbenzene	0.0250	0.0253	0.0250	101	99.9	80.6-126			1.27	20	
Carbon disulfide	0.0250	0.0266	0.0255	107	102	53.0-134			4.36	20	
Carbon tetrachloride	0.0250	0.0243	0.0232	97.3	92.9	70.9-129			4.62	20	
Chlorobenzene	0.0250	0.0250	0.0245	100	97.9	79.7-122			2.23	20	
Chlorodibromomethane	0.0250	0.0235	0.0231	94.0	92.6	78.2-124			1.57	20	
Chloroethane	0.0250	0.0290	0.0280	116	112	41.2-153			3.68	20	
Chloroform	0.0250	0.0277	0.0264	111	106	73.2-125			4.72	20	
Chloromethane	0.0250	0.0240	0.0235	95.9	94.0	55.8-134			2.01	20	
1,2-Dibromoethane	0.0250	0.0254	0.0246	102	98.4	79.8-122			3.16	20	
1,1-Dichloroethane	0.0250	0.0288	0.0273	115	109	71.7-127			5.42	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832435

DATE/TIME: 05/18/16 14:35

PAGE: 75 of 86

QUALITY CONTROL SUMMARY <u>L832435-03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134082-1 05/04/1	6 01:39 • (LCSE	D) R3134082-2	2 05/04/16 02:0	02							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0298	0.0279	119	112	65.3-126			6.43	20	
1,1-Dichloroethene	0.0250	0.0285	0.0274	114	110	59.9-137			3.86	20	
cis-1,2-Dichloroethene	0.0250	0.0252	0.0239	101	95.8	77.3-122			5.25	20	
trans-1,2-Dichloroethene	0.0250	0.0255	0.0244	102	97.4	72.6-125			4.67	20	
1,2-Dichloropropane	0.0250	0.0292	0.0265	117	106	77.4-125			9.53	20	
cis-1,3-Dichloropropene	0.0250	0.0296	0.0273	118	109	77.7-124			7.88	20	
trans-1,3-Dichloropropene	0.0250	0.0326	0.0304	130	121	73.5-127	<u>J4</u>		7.06	20	
Ethylbenzene	0.0250	0.0250	0.0248	100	99.1	80.9-121			1.00	20	
2-Hexanone	0.125	0.156	0.151	125	121	59.4-151			3.38	20	
Isopropylbenzene	0.0250	0.0249	0.0244	99.7	97.5	81.6-124			2.22	20	
p-Isopropyltoluene	0.0250	0.0249	0.0245	99.6	97.9	77.6-129			1.75	20	
2-Butanone (MEK)	0.125	0.197	0.186	158	149	46.4-155	<u>J4</u>		5.77	20	
Methylene Chloride	0.0250	0.0264	0.0252	106	101	69.5-120			4.44	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.166	0.155	133	124	63.3-138			6.98	20	
Methyl tert-butyl ether	0.0250	0.0284	0.0269	114	108	70.1-125			5.45	20	
Naphthalene	0.0250	0.0265	0.0263	106	105	69.7-134			0.840	20	
n-Propylbenzene	0.0250	0.0262	0.0255	105	102	81.9-122			2.81	20	
Styrene	0.0250	0.0256	0.0252	102	101	79.9-124			1.44	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0235	0.0229	94.1	91.5	78.5-125			2.82	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0277	0.0265	111	106	79.3-123			4.49	20	
Tetrachloroethene	0.0250	0.0217	0.0214	86.9	85.7	73.5-130			1.42	20	
Toluene	0.0250	0.0268	0.0254	107	101	77.9-116			5.47	20	
1,1,1-Trichloroethane	0.0250	0.0248	0.0239	99.1	95.4	71.1-129			3.79	20	
1,1,2-Trichloroethane	0.0250	0.0255	0.0242	102	96.9	81.6-120			5.03	20	
Trichloroethene	0.0250	0.0244	0.0225	97.6	90.0	79.5-121			8.10	20	
1,2,4-Trimethylbenzene	0.0250	0.0242	0.0239	96.9	95.7	79.0-122			1.27	20	
1,3,5-Trimethylbenzene	0.0250	0.0249	0.0244	99.4	97.5	81.0-123			1.93	20	
Vinyl chloride	0.0250	0.0260	0.0249	104	99.8	61.5-134			4.03	20	
Xylenes, Total	0.0750	0.0748	0.0729	99.7	97.2	79.2-122			2.57	20	
o-Xylene	0.0250	0.0245	0.0238	98.1	95.4	79.1-123			2.79	20	
m&p-Xylenes	0.0500	0.0503	0.0490	101	98.1	78.5-122			2.47	20	
(S) Toluene-d8				106	104	90.0-115					
(S) Dibromofluoromethane				105	104	79.0-121					
(S) 4-Bromofluorobenzene				99.4	98.3	80.1-120					

QUALITY CONTROL SUMMARY <u>L832435-03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0277

0.0246

(OS) L832450-02 05/04/1	16 05:04 • (MS)	R3134082-4 C	5/04/16 03:5	6 • (MSD) R3134	1082-5 05/0	4/16 04:19						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0915	0.0815	73.2	65.2	1	25.0-156			11.6	21.5
Benzene	0.0250	U	0.0254	0.0224	102	89.6	1	58.6-133			12.6	20
Bromodichloromethane	0.0250	U	0.0252	0.0226	101	90.3	1	69.2-127			10.9	20
Bromoform	0.0250	U	0.0217	0.0203	86.7	81.2	1	66.3-140			6.58	20
Bromomethane	0.0250	U	0.00939	0.00842	37.5	33.7	1	16.6-183			10.9	20.5
n-Butylbenzene	0.0250	U	0.0308	0.0275	123	110	1	64.8-145			11.6	20
sec-Butylbenzene	0.0250	U	0.0241	0.0214	96.2	85.7	1	66.8-139			11.6	20
Carbon disulfide	0.0250	U	0.0214	0.0187	85.5	74.7	1	34.9-138			13.4	20
Carbon tetrachloride	0.0250	U	0.0222	0.0198	88.9	79.2	1	60.6-139			11.5	20
Chlorobenzene	0.0250	U	0.0235	0.0210	94.1	84.1	1	70.1-130			11.2	20
Chlorodibromomethane	0.0250	U	0.0228	0.0199	91.3	79.5	1	71.6-132			13.9	20
Chloroethane	0.0250	U	0.0259	0.0242	104	97.0	1	33.3-155			6.64	20
Chloroform	0.0250	U	0.0265	0.0236	106	94.3	1	66.1-133			11.6	20
Chloromethane	0.0250	U	0.0204	0.0187	81.5	74.7	1	40.7-139			8.68	20
1,2-Dibromoethane	0.0250	U	0.0240	0.0212	96.1	84.8	1	73.8-131			12.5	20
1,1-Dichloroethane	0.0250	U	0.0268	0.0237	107	94.9	1	64.0-134			12.3	20
1,2-Dichloroethane	0.0250	0.000526	0.0287	0.0254	113	99.6	1	60.7-132			12.2	20
1,1-Dichloroethene	0.0250	U	0.0262	0.0227	105	90.9	1	48.8-144			14.1	20
cis-1,2-Dichloroethene	0.0250	U	0.0235	0.0207	93.8	82.8	1	60.6-136			12.5	20
trans-1,2-Dichloroethene	0.0250	U	0.0229	0.0206	91.6	82.2	1	61.0-132			10.7	20
1,2-Dichloropropane	0.0250	U	0.0262	0.0239	105	95.5	1	69.7-130			9.33	20
cis-1,3-Dichloropropene	0.0250	U	0.0259	0.0235	104	94.0	1	71.1-129			9.73	20
trans-1,3-Dichloropropene	0.0250	U	0.0292	0.0263	117	105	1	66.3-136			10.6	20
Ethylbenzene	0.0250	U	0.0234	0.0205	93.5	81.8	1	62.7-136			13.3	20
2-Hexanone	0.125	U	0.131	0.119	105	94.9	1	59.4-154			9.85	20.1
Isopropylbenzene	0.0250	U	0.0238	0.0210	95.1	84.0	1	67.4-136			12.4	20
p-Isopropyltoluene	0.0250	U	0.0238	0.0209	95.2	83.8	1	62.8-143			12.8	20
2-Butanone (MEK)	0.125	U	0.140	0.129	112	103	1	45.0-156			8.09	20.8
Methylene Chloride	0.0250	U	0.0244	0.0218	97.5	87.2	1	61.5-125			11.1	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.160	0.147	128	118	1	60.7-150			8.41	20
Methyl tert-butyl ether	0.0250	0.322	0.301	0.289	0.000	0.000	1	61.4-136	EV	EV	3.96	20
Naphthalene	0.0250	U	0.0258	0.0242	103	96.9	1	61.8-143			6.13	20
n-Propylbenzene	0.0250	U	0.0246	0.0218	98.6	87.2	1	63.2-139			12.3	20
Styrene	0.0250	U	0.0216	0.0187	86.6	75.0	1	68.2-133			14.4	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0227	0.0200	90.7	79.8	1	70.5-132			12.7	20

1,1,2,2-Tetrachloroethane 0.0250

249545.0000.0000 000

111

SDG: L832435

64.9-145

DATE/TIME:

GI

QUALITY CONTROL SUMMARY <u>L832435-03,04,05,06,07,08,09,10,11,12,13,14,15,16</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0202	0.0182	80.6	72.9	1	57.4-141			10.1	20
Toluene	0.0250	U	0.0243	0.0219	97.2	87.7	1	67.8-124			10.3	20
1,1,1-Trichloroethane	0.0250	U	0.0236	0.0210	94.5	83.8	1	58.7-134			11.9	20
1,1,2-Trichloroethane	0.0250	U	0.0245	0.0217	98.2	86.8	1	74.1-130			12.3	20
Trichloroethene	0.0250	U	0.0212	0.0190	84.9	76.2	1	48.9-148			10.8	20
1,2,4-Trimethylbenzene	0.0250	U	0.0232	0.0205	92.7	82.0	1	60.5-137			12.3	20
1,3,5-Trimethylbenzene	0.0250	U	0.0236	0.0209	94.6	83.7	1	67.9-134			12.2	20
Vinyl chloride	0.0250	U	0.0216	0.0194	86.3	77.5	1	44.3-143			10.8	20
Xylenes, Total	0.0750	U	0.0702	0.0622	93.6	82.9	1	65.6-133			12.1	20
o-Xylene	0.0250	U	0.0231	0.0206	92.6	82.5	1	67.1-133			11.5	20
m&p-Xylenes	0.0500	U	0.0470	0.0415	94.1	83.0	1	64.1-133			12.4	20
(S) Toluene-d8					104	105		90.0-115				
(S) Dibromofluoromethane					108	106		79.0-121				
(S) 4-Bromofluorobenzene					100	99.0		80.1-120				

QUALITY CONTROL SUMMARY L832435-01

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3133943-3 05/04/16	6 18:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.000331	0.00100
(S) Toluene-d8	107			90.0-115
(S) Dibromofluoromethane	108			79.0-121
(S) 4-Bromofluorobenzene	104			80.1-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133943-1 05/04/1	6 17:49 • (LCSD) R3133943-2	05/04/16 18:06	5						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0241	0.0247	96.4	99.0	73.0-122			2.60	20
(S) Toluene-d8				106	108	90.0-115				
(S) Dibromofluoromethane				103	105	79.0-121				
(S) 4-Bromofluorobenzene				98.6	101	80.1-120				

L832423-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832423-02 05/04/16 21:01 • (MS) R3133943-4 05/04/16 19:35 • (MSD) R31339	43-5 05/04/16 19:52
--	---------------------

(00) 2002 120 02 00/0 1/1	0 2 0 . (0)	0.000 10 1 001	0 17 10 10.00	(11100) 1101000 11	0 0 00/0 1/10 1	0.02						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0250	U	0.0243	0.0228	97.4	91.1	1	58.6-133			6.61	20
(S) Toluene-d8					110	106		90.0-115				
(S) Dibromofluoromethane					106	103		79.0-121				
(S) 4-Bromofluorobenzene					103	102		80.1-120				

GI

QUALITY CONTROL SUMMARY L832435-08,09,10,11,16

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134327-3 05/05/1	6 21:30				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.000331	0.00100	
Ethylbenzene	U		0.000384	0.00100	
Methyl tert-butyl ether	U		0.000367	0.00100	
Toluene	U		0.000780	0.00500	
(S) Toluene-d8	101			90.0-115	
(S) Dibromofluoromethane	90.6			79.0-121	
(S) 4-Bromofluorobenzene	101			80.1-120	

⁶Qc

GI

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134327-1 05/05/1	16 20:07 • (LCSI	D) R3134327-2	05/05/16 20:2	27						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.0250	0.0206	0.0204	82.3	81.7	73.0-122			0.770	20
Ethylbenzene	0.0250	0.0253	0.0248	101	99.3	80.9-121			1.80	20
Methyl tert-butyl ether	0.0250	0.0198	0.0205	79.3	81.9	70.1-125			3.31	20
Toluene	0.0250	0.0233	0.0233	93.2	93.2	77.9-116			0.0100	20
(S) Toluene-d8				102	103	90.0-115				
(S) Dibromofluoromethane				89.9	89.6	79.0-121				
(S) 4-Bromofluorobenzene				102	100	80.1-120				

L832435-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832435-11 05/06/16	6 00:09 • (MS) F	3134327-4 05	/05/16 23:07 •	(MSD) R313432	27-5 05/05/16	23:28						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Benzene	0.0250	U	0.0176	0.0176	70.4	70.3	1	58.6-133			0.170	20
Ethylbenzene	0.0250	U	0.0226	0.0224	90.5	89.5	1	62.7-136			1.11	20
Methyl tert-butyl ether	0.0250	U	0.0175	0.0173	69.9	69.3	1	61.4-136			0.850	20
Toluene	0.0250	U	0.0206	0.0206	82.5	82.3	1	67.8-124			0.280	20
(S) Toluene-d8					102	102		90.0-115				
(S) Dibromofluoromethane					88.4	89.0		79.0-121				
(S) 4-Bromofluorobenzene					101	101		80.1-120				

PROJECT: 249545.0000.0000 000

SDG: L832435

DATE/TIME: 05/18/16 14:35

PAGE: 80 of 86

QUALITY CONTROL SUMMARY <u>1832435-01,02,03,04,05,06,07,08,09,10,11,12,13,14,16</u>

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Method Blank (MB)

(MB) R3133569-1 05/03/1	16 13:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
TPH (GC/FID) High Fraction	U		0.0247	0.100
(S) o-Terphenyl	116			50.0-150

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Compan	y Name/Address:		- T	Billing Infor	Information:				Analysis / Container / Preservative								Chain of Custody	Pageof_	
505 E	Solutions - Aust Huntland Dr, Ste 250 N, TX 78752	in, TX		21 Griffi	nts Payable in Road North r, CT 06095	1					500mIHDPE-HNO3	212	500mIHDPE-HNO3	125mIHDPE-NoPres	H2SO4 √		B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	L-A-B S-C	SC.
Report t		4		Email To:	turnal diaman						000m	нов	PE-	55mll)PE		Ni,P	Mount Juliet, TN 3712 Phone: 615-758-5858	2000
speer@trcsolutions.com Project REST Spring 2016 - Team H C 5		C2+l	speer@	City/State	tesia, Ni	n				3.3	n-qu	MIHD		JHIM(lg,Mn,	Phone: 800-767-5859 Fax: 615-758-5859		
Descript	JUIL	In the second		No.	Lab Project #	100.00					Mn,	EAL	500	Sulfate-	.250	S	Fe,H	11 1832	STATE OF THE PARTY
Phone:	512-684-3170	Client Project #			1 STORE DESIGNATION AND ADDRESS OF THE ADDRESS OF T	ST SPRING	9	BT	40mlAmb-HCI	_	e,Pb,	Cyanide (CN) - 250mlHDPEAmb-NaOH	Na -		03)	oPre	Co,Cr,	A182	
Collecte	d by (print):	Site/Facility ID	#	rtaela	P.O.#			-HCI-		40mIAmb-HCI	Cr,F		X,	. Fluoride,	IOZN	PE-N	Cd,C	Acctnum: TRO	
Collecte	Scott Ude + HM1 Team REST - Navajo- Artesia Collected by (signature): Rush? (Lab MUST Be Notified			Date R	esults Needed	Sec. 5	40mlAmb-HCI-BT	Amb	IAm	s,Ba	- (N:	talC	Chloride,	rite (h	250mIHDPE-NoPres		Template: T11 Prelogin: P54		
Same Day Immediately		yy	200% 100% 50%	Email?NoYes NoYes of			1	1	4 1	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	anide (C	Cations-Total Ca,	Anions- Ch	Nitrate/Nitrite (NO2NO3) - 250mlHDPE-H2SO4		rot/Diss. As	TSR: Chris McCord Cooler: Shipped Via:		
	Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V8260	Tot	3	Cal	An	ž	TDS	To	Rem./Contaminant	Sample # (lab on
	MW-48		GW		4/27/16	1525	12	1	/	/	V		V	1	V	V			-0
wer 3	mw-130		1		4/27/16	1730	12	1	V	V	1		V	V	V	V	196	L. P.	00
	mw-67				4/27/10	1530	13	/	/	V	11	V	V	V	~	V	V		0
	MW-94			,	4/27/16	1440	15	V	V	V	V		V	V	V	V			ov
	MW-95	- CUH FT	1000		4/27/16	1625	12	V	V	V	V	1	V	V	V	V		7.0	09
	RW-7				4/27/10	1715	12	/	V	V	V		V	V	V	V			a
-	MW-126A		1.9 Es	14上海	4/27/16	1815	12	V	1	V	V		V	V	V	V		14	0
The second	MW-127			o caste	4/27/16	1720	12	1	V	1	V		V	V	V	1			0
8-	MW-129	Mes Lift		1144	4/27/16	1625	12	V	V	V	V	1	V	V	V	V			0
	MW-131	1	V	4075	4/27/16	1535	12	V	V	1	1		V	V	14	1	1		10
	ks: Log all metals by 6					6711017	28	217	3	H	pH .			er			old#		
Reling	Relinquished by : (Signature) Date: 4/28/16 Relinquished by : (Signature) Date:		28/16	0900	teceived by: (Sign:		瘾		4			Cour	ier [Condition: (lab use only)			
Reling				Time:	Received by: (Sign)	ature)	K			Temp:			16	ecelved	C	5/21/20/09/00	I Intact:Y	NNA	
Relinq	uished by : (Signature)		Date:		Time:	Received for lab by	v: (Sign	atura)		0.0	Date:	29/1		ime:	100	pi <	H Check	ved: NCF	/

Company Name/Address:		B	illing Infor	mation:				- 4	An	alysis / C	ontaine	er / Pres	ervative	-		200	Chain of Custody	Page Cof_
TRC Solutions - Aus 505 E. Huntland Dr, Ste 250 Austin, TX 78752		- 2	Accounts Payable 21 Griffin Road North Windsor, CT 06095			7		11.		500mIHDPE-HNO3	212	4NO3 &	Sulfate- 125mlHDPE-NoPres	- 250mIHDPE-H2SO4 🔨		b,Se,U,V	L·A·B S·C·	SC.
Report to: ispeer@trcsolutions.com			mail To:	trcsolutions.co	om			題	200	- 500m	NaOH	500mIHDPE-HNO3	125ml	HDPE		In,Ni,P	Mount Juliet, TN 3712. Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
Project Description: REST Spring 201	16 - Team H C		i	1	tesla, W	N				n,Se	Amb-	HIm00	ulfate-	50ml		e,Hg,N	L# 1_832	435
Phone: 512-684-3170	Client Project #			Lab Project # TRCATX-RE	ST SPRING	100	-BT		75	Fe,Pb,M	IHDPE	K, Na - 50	Fluoride, Su	NO3) - 2	NoPres	,cd,co,cr,Fe,Hg,Mn,Ni,Pb,	Table #	
Collected by (print): Scott Ude + HMI Toxi	Site/Facility ID	# avajo- Art	esia	P.O. #		Tank.	р-нсі	IP-HCI	mb-HCl	3a,Cr,F	-250n	Ca, K	Je, Fluo	(NO2N	IDPE-N	Ba	Acctnum: TRCATX Template: T111397	
Collected by (signature): Slott Udl Immediately Packed on ice N Y		b MUST Be N		Email?	_NoYes	No.	O - 40mlAmb-HCI-BT	O - 40mlAmb-HCI	V8260 - 40mlAmb-HC	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	Cyanide (CN) - 250mlHDPEAmb-NaOH	Cations-Total Ca,	Anions- Chloride,	Nitrate/Nitrite (NO2NO3)	TDS - 250mIHDPE-NoPres	Tot/Diss. As,B,	Prelogin: P54: TSR: Chris Cooler: Shipped Via:	
Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DR	GRO	V82	-	0		A		F	1	Rem./Contaminant	Sample # (lab c
mw-134		GW	- 1	4/27/16	1820	17	V	V	V	V		V	V	V			1.89	1
EB-REST-03			81	4/27/16	1845	12	1	/	V	V		V	V	V	V	60		
DUP-REST-03				4/27/16		12	/	V	V	V	,	V	V	V	V	V		1
KWB-7			hif-	4/27/16	1450	8	/		V		~	V	V	V	1			- 1
RA-313	V	V		4/27/16	1400	ما"			V			7	V				1	
	and a	- 1 1 1											1000			3	/ ER	
		1		101年														
• Matrix: SS - Soil GW - Groundwal Remarks: Log all metals by								把		Flow	in the	Ot	her			old#		use only)
Relinquished by : (Signature)	ide	Date: 4/28	Cort.	Time: 0900	Received by: (Sign Received by: (Sign	聽	ぬ		NA.	- TOP-12	FedEx	rned via	rier I			onditio	n: (lac	Ju
Relinquished by : (Signature)	ľ.	Date:	ander i		100	4	P.			3.			163		0	OC Se	al Intact:Y	
Relinquished by : (Signature)		Date:	3 1 1	1	Received for lab b		CHARLES TO SERVICE STATE OF THE PARTY OF THE				29/1		89	both	395	42		V

Non-Conformance Form **ESC Lab Sciences**

Evaluated by: Nikki	
Date: 4/29/16	
Client: TRCATX	
Login #: L832435	

Non-Conformance (check applicable items)

Sample Integrity	Chain of Custody Clarification	
Parameter(s) past holding time	× Login Clarification Needed	If Broken Container:
Improper	Chain of custody is incomplete	Insufficient nacking material around container
Improper container type	Please specify Metals requested.	Insufficient packing material inside
Improper preservation	Please specify TCLP requested.	Improper handling by carrier (FedEx / UPS / Courie
Insufficient sample volume.	Received additional samples not listed on coc.	Sample was frozen
Sample is biphasic.	Sample ids on containers do not match ids on coc	Container lid not intact
Vials received with headspace.	Trip Blank not received.	If no Chain of Custody:
Broken container	Client did not "X" analysis.	Received by:
Broken container:	Chain of Custody is missing	Date/Time:
Sufficient sample remains		Temp./Cont. Rec./pH:
		Carrier:
		Tracking#

- Login Comments:

 1. Did not receive KWB7 @ 1450. Did receive KW8 @1450. Logged per COC

 2. Received MW-64 4/28/16 @ 1200. (not sure which Rest Spring project it goes with)

Cilent informed by:	Call	Email	Voice Mail	Date:	Time:
TSR Initials:CM	Client Contac	+			

Login Instructions:

- MW-64 can be logged with this COC under TRCATX-REST SPRING. Log for DROLVI, GRO, V8260, Tot/Diss. Short metals list, CAG, KG, NAG, CHLORIDE, FLUORIDE. SULFATE, NO2NO3 and TDS. Log per COC.
 MW-64 can b

This E-mail and any attached files are confidential, and may be copyright protected. If you are not the addressee, any dissemination of this communication is strictly prohibited. If you have received this message in error, please contact the sender immediately and delete/destroy all information received.

ANALYTICAL REPORT May 16, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832447

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: TMD Spring 2016

Site: TMD - NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth June

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

32

TABLE OF CONTENTS

NE	LAB.	NATIONWIDE.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-25 L832447-01	5
MW-27 L832447-02	7
MW-89 L832447-03	9
MW-26 L832447-04	11
Qc: Quality Control Summary	13
Gravimetric Analysis by Method 2540 C-2011	13
Wet Chemistry by Method 353.2	15
Wet Chemistry by Method 9056A	17
Metals (ICPMS) by Method 6020	21
Volatile Organic Compounds (GC/MS) by Method 8260B	24
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	29
GI: Glossary of Terms	30
Al: Accreditations & Locations	31

⁹Sc: Chain of Custody

SAMPLE SUMMARY

LE SUMMARY	OI	NE LAB. INA

MW-25 L832447-01 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 14:30	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	. ,
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:15	JDG
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 10:35	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG868891	1	05/01/16 11:50	05/02/16 11:36	TRF
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 10:46	05/04/16 10:46	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:11	05/05/16 15:11	DR
Wet Chemistry by Method 9056A	WG869679	1	05/10/16 12:42	05/10/16 12:42	CM
Wet Chemistry by Method 9056A	WG869679	100	05/10/16 12:58	05/10/16 12:58	CM
Wet Chemistry by Method 9056A	WG871783	100	05/15/16 23:05	05/15/16 23:05	CM
MW-27 L832447-02 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 17:30	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:17	JDG
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 10:47	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG868891	1	05/01/16 11:50	05/02/16 03:15	TRF
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 11:09	05/04/16 11:09	BMB
Net Chemistry by Method 353.2	WG870055	1	05/05/16 15:13	05/05/16 15:13	DR

 CM

 CM

CM

Received date/time

Received date/time

Analyst

MMF

JDG

JDG

TRF BMB

DR

 CM

 CM

CM

PAGE:

3 of 32

04/29/16 09:00

04/29/16 09:00

MW-26 L832447-04 GW

Gravimetric Analysis by Method 2540 C-2011

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

ACCOUNT:

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Method

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869087	1	05/03/16 06:22	05/03/16 06:51	JM
Metals (ICPMS) by Method 6020	WG869293	5	05/04/16 22:27	05/07/16 17:20	JDG
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 10:49	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG868891	1	05/01/16 11:50	05/02/16 03:34	TRF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868983	1	05/04/16 11:31	05/04/16 11:31	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:14	05/05/16 15:14	DR
Wet Chemistry by Method 9056A	WG869679	1	05/10/16 14:17	05/10/16 14:17	CM
Wet Chemistry by Method 9056A	WG869679	50	05/10/16 14:33	05/10/16 14:33	CM
Wet Chemistry by Method 9056A	WG871783	50	05/15/16 16:36	05/15/16 16:36	CM

Batch

WG869534

WG869293

WG870075

WG868891

WG868983

WG870055

WG869679

WG869679

WG871783

WG869679

WG869679

WG871783

1

50

50

05/10/16 13:45

05/10/16 14:01

05/15/16 16:22

Collected by

Collected by

Preparation

date/time

SU / HM1 Team

05/03/16 18:05

05/04/16 22:27

05/05/16 17:34

05/01/16 11:50

05/04/16 11:54

05/05/16 15:15

05/10/16 14:49

05/10/16 15:05

05/15/16 17:20

SU / HM1 Team

05/10/16 13:45

05/10/16 14:01

05/15/16 16:22

04/27/16 16:40

Collected date/time

Collected date/time

04/27/16 15:50

05/03/16 18:57

05/07/16 17:22

05/09/16 10:56

05/02/16 03:52

05/04/16 11:54

05/05/16 15:15

05/10/16 14:49

05/10/16 15:05

05/15/16 17:20

Analysis

date/time

Dilution

1

5

5

1

1

1

1

100

100

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Ss

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	11800		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.125	<u>P1</u>	0.0197	0.100	0.100	1	05/05/2016 15:11	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	4130		5.19	1.00	100	100	05/10/2016 12:58	WG869679
Fluoride	1.13		0.00990	0.100	0.100	1	05/10/2016 12:42	WG869679
Sulfate	4100		7.74	5.00	500	100	05/15/2016 23:05	WG871783

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00582	J	0.00125	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Arsenic, Dissolved	0.00646	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Barium	0.0148	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 17:15	WG869293
Barium, Dissolved	0.0161	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 10:35	WG870075
Calcium	647		0.230	1.00	5.00	5	05/07/2016 17:15	WG869293
Chromium	0.00332	<u>J</u>	0.00270	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 17:15	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 10:35	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Manganese	0.889		0.00125	0.00500	0.0250	5	05/07/2016 17:15	WG869293
Manganese, Dissolved	0.319	\vee	0.00125	0.00500	0.0250	5	05/09/2016 10:35	WG870075
Potassium	6.61		0.185	1.00	5.00	5	05/07/2016 17:15	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Selenium,Dissolved	0.00234	J	0.00190	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Sodium	2670		0.550	1.00	5.00	5	05/07/2016 17:15	WG869293

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00582	J	0.00125	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Arsenic, Dissolved	0.00646	J	0.00125	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Barium	0.0148	J	0.00180	0.00500	0.0250	5	05/07/2016 17:15	WG869293
Barium,Dissolved	0.0161	Ţ	0.00180	0.00500	0.0250	5	05/09/2016 10:35	WG870075
Calcium	647		0.230	1.00	5.00	5	05/07/2016 17:15	WG869293
Chromium	0.00332	J	0.00270	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 17:15	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 10:35	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Manganese	0.889		0.00125	0.00500	0.0250	5	05/07/2016 17:15	WG869293
Manganese, Dissolved	0.319	\vee	0.00125	0.00500	0.0250	5	05/09/2016 10:35	WG870075
Potassium	6.61		0.185	1.00	5.00	5	05/07/2016 17:15	WG869293
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 17:15	WG869293
Selenium,Dissolved	0.00234	J	0.00190	0.00200	0.0100	5	05/09/2016 10:35	WG870075
Sodium	2670		0.550	1.00	5.00	5	05/07/2016 17:15	WG869293

СС

Αl Sc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 10:46	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 10:46	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 10:46	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 10:46	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 10:46	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 10:46	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 10:46	WG868983

0

Collected date/time: 04/27/16 14:30

Volatile Organic Compounds (GC/MS) by Method 8260B

NE LAB. NATIONWIDE.	NE	LAB.	NATIONWIDE.	- 1
---------------------	----	------	-------------	-----

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:46	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 10:46	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 10:46	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 10:46	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 10:46	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 10:46	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 10:46	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 10:46	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 10:46	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 10:46	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 10:46	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 10:46	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 10:46	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 10:46	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 10:46	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 10:46	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 10:46	WG868983
(S) Toluene-d8	104				90.0-115		05/04/2016 10:46	WG868983
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 10:46	WG868983
(S) 4-Bromofluorobenzene	96.8				80.1-120		05/04/2016 10:46	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.348		0.0247	0.100	0.100	1	05/02/2016 11:36	WG868891
(S) o-Terphenyl	106				50.0-150		05/02/2016 11:36	WG868891

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3150		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087

Ss

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.687		0.0197	0.100	0.100	1	05/05/2016 15:13	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	234		2.60	1.00	50.0	50	05/10/2016 14:01	WG869679
Fluoride	1.19		0.00990	0.100	0.100	1	05/10/2016 13:45	WG869679
Sulfate	3950		3.87	5.00	250	50	05/15/2016 16:22	WG871783

СС

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00228	J	0.00125	0.00200	0.0100	5	05/07/2016 17:17	WG869293
Arsenic, Dissolved	0.00249	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 10:47	WG870075
Barium	0.0179	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 17:17	WG869293
Barium,Dissolved	0.0185	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 10:47	WG870075
Calcium	470		0.230	1.00	5.00	5	05/07/2016 17:17	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:17	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:47	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 17:17	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 10:47	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:17	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 10:47	WG870075
Manganese	0.0186	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 17:17	WG869293
Manganese,Dissolved	0.0164	<u>J</u>	0.00125	0.00500	0.0250	5	05/09/2016 10:47	WG870075
Potassium	9.36		0.185	1.00	5.00	5	05/07/2016 17:17	WG869293
Selenium	0.0127		0.00190	0.00200	0.0100	5	05/07/2016 17:17	WG869293
Selenium,Dissolved	0.0132		0.00190	0.00200	0.0100	5	05/09/2016 10:47	WG870075
Sodium	156		0.550	1.00	5.00	5	05/07/2016 17:17	WG869293

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:09	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:09	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:09	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:09	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:09	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:09	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:09	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:30

832447

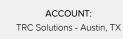
Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:09	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 11:09	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 11:09	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 11:09	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 11:09	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 11:09	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 11:09	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 11:09	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 11:09	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 11:09	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 11:09	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 11:09	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 11:09	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 11:09	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 11:09	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 11:09	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 11:09	WG868983
(S) Toluene-d8	106				90.0-115		05/04/2016 11:09	WG868983
(S) Dibromofluoromethane	103				79.0-121		05/04/2016 11:09	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.134		0.0247	0.100	0.100	1	05/02/2016 03:15	WG868891
(S) o-Terphenyl	114				50.0-150		05/02/2016 03:15	WG868891

80.1-120



(S) 4-Bromofluorobenzene

05/04/2016 11:09

WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3640		2.82	10.0	10.0	1	05/03/2016 06:51	WG869087

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	3.64		0.0197	0.100	0.100	1	05/05/2016 15:14	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	399		2.60	1.00	50.0	50	05/10/2016 14:33	WG869679
Fluoride	3.58		0.00990	0.100	0.100	1	05/10/2016 14:17	WG869679
Sulfate	1490		3.87	5.00	250	50	05/15/2016 16:36	WG871783

Metals (ICPMS) by Method 6020

Ivietais (ICI Ivio) by it	victilod 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00839	J	0.00125	0.00200	0.0100	5	05/07/2016 17:20	WG869293
Arsenic, Dissolved	0.00780	J	0.00125	0.00200	0.0100	5	05/09/2016 10:49	WG870075
Barium	0.0155	J	0.00180	0.00500	0.0250	5	05/07/2016 17:20	WG869293
Barium, Dissolved	0.0143	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 10:49	WG870075
Calcium	556		0.230	1.00	5.00	5	05/07/2016 17:20	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:20	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:49	WG870075
Iron	0.228	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 17:20	WG869293
Iron,Dissolved	0.165	<u>J</u>	0.0750	0.100	0.500	5	05/09/2016 10:49	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:20	WG869293
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 10:49	WG870075
Manganese	0.0788		0.00125	0.00500	0.0250	5	05/07/2016 17:20	WG869293
Manganese, Dissolved	0.0917		0.00125	0.00500	0.0250	5	05/09/2016 10:49	WG870075
Potassium	12.0		0.185	1.00	5.00	5	05/07/2016 17:20	WG869293
Selenium	0.0311		0.00190	0.00200	0.0100	5	05/07/2016 17:20	WG869293
Selenium, Dissolved	0.0332		0.00190	0.00200	0.0100	5	05/09/2016 10:49	WG870075
Sodium	299		0.550	1.00	5.00	5	05/07/2016 17:20	WG869293

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:31	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:31	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:31	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:31	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:31	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:31	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:31	WG868983

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:40

832447

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:31	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 11:31	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 11:31	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 11:31	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 11:31	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 11:31	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 11:31	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 11:31	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 11:31	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 11:31	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 11:31	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 11:31	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 11:31	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 11:31	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 11:31	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 11:31	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 11:31	WG868983
(S) Toluene-d8	105				90.0-115		05/04/2016 11:31	WG868983
(S) Dibromofluoromethane	104				79.0-121		05/04/2016 11:31	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.38		0.0247	0.100	0.100	1	05/02/2016 03:34	WG868891
(S) o-Terphenyl	114				50.0-150		05/02/2016 03:34	WG868891

80.1-120

(S) 4-Bromofluorobenzene

05/04/2016 11:31

WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:50

832447

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	8730		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.301		0.0197	0.100	0.100	1	05/05/2016 15:15	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1260		5.19	1.00	100	100	05/10/2016 15:05	WG869679
Fluoride	1.86		0.00990	0.100	0.100	1	05/10/2016 14:49	WG869679
Sulfate	4520		7.74	5.00	500	100	05/15/2016 17:20	WG871783

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00384	J	0.00125	0.00200	0.0100	5	05/07/2016 17:22	WG869293
Arsenic, Dissolved	0.00363	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 10:56	WG870075
Barium	0.0101	J	0.00180	0.00500	0.0250	5	05/07/2016 17:22	WG869293
Barium, Dissolved	0.00913	J	0.00180	0.00500	0.0250	5	05/09/2016 10:56	WG870075
Calcium	725		0.230	1.00	5.00	5	05/07/2016 17:22	WG869293
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 17:22	WG869293
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:56	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 17:22	WG869293
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 10:56	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 17:22	WG869293
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 10:56	WG870075
Manganese	0.847		0.00125	0.00500	0.0250	5	05/07/2016 17:22	WG869293
Manganese, Dissolved	0.534		0.00125	0.00500	0.0250	5	05/09/2016 10:56	WG870075
Potassium	5.75		0.185	1.00	5.00	5	05/07/2016 17:22	WG869293
Selenium	0.0194		0.00190	0.00200	0.0100	5	05/07/2016 17:22	WG869293
Selenium,Dissolved	0.0186		0.00190	0.00200	0.0100	5	05/09/2016 10:56	WG870075
Sodium	695		0.550	1.00	5.00	5	05/07/2016 17:22	WG869293

[°]Qc

Gl

°AI

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:54	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:54	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:54	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:54	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:54	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:54	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:54	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:54	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:54	WG868983

1,3,5-Trimethylbenzene

Vinyl chloride

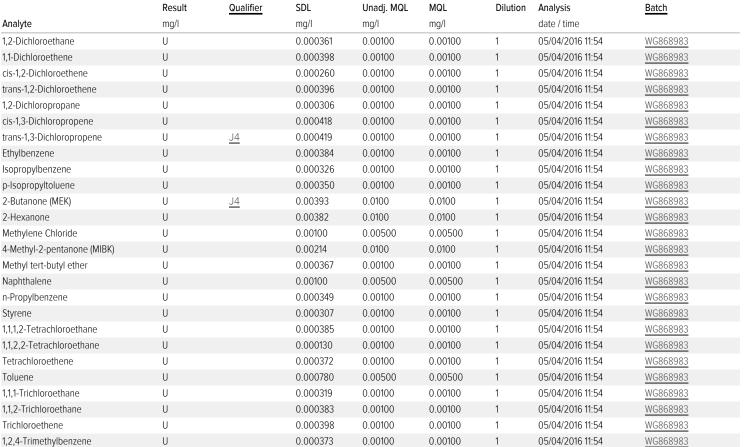
o-Xylene

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane


(S) 4-Bromofluorobenzene

SAMPLE RESULT

Collected date/time: 04/27/16 15:50

Volatile Organic Compounds (GC/MS) by Method 8260B

TS - 04	ONE LAB. NATIONWIDE

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

107

109

97.0

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.103		0.0247	0.100	0.100	1	05/02/2016 03:52	WG868891
(S) o-Terphenyl	109				50.0-150		05/02/2016 03:52	WG868891

0.00100

0.00100

0.00100

0.00100

0.00300

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

1

05/04/2016 11:54

05/04/2016 11:54

05/04/2016 11:54

05/04/2016 11:54

05/04/2016 11:54

05/04/2016 11:54

05/04/2016 11:54

05/04/2016 11:54

WG868983

WG868983

WG868983

WG868983

WG868983

WG868983

WG868983

WG868983

0.000387

0.000259

0.000341

0.000719

0.00106

WG86908 Gravimetric Analy		540 C-2011		Q	UALITY	CONTF	ROL SUN	MMARY			ONE LAB. NATIONWIDI	*
Method Blank (1
(MB) R3133461-1 05/	03/16 06:51											- Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								_ Tc
Dissolved Solids	U		2.82	10.0								³Ss
L832435-09 O	riginal Sample	(OS) • Duj	olicate (I	DUP)								
(OS) L832435-09 05	5/03/16 06:51 • (DUF) R3133461-4	05/03/16 0	16:51								- *Cn
	Original Result		Dilution	-		JP RPD Limits						5
Analyte	mg/l	mg/l		%	%							_ ⁵Sr
Dissolved Solids	1520	1540	1	1.47	5							6
												[®] Qc
Laboratory Cor	ntrol Sample (L	CS) • Labo	oratory (Control Samp	ole Duplicat	e (LCSD)						-
(LCS) R3133461-2 05	5/03/16 06:51 • (LCSI	D) R3133461-3	05/03/16	06:51								- ′GI
	Spike Amount	LCS Result	LCSD Re		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		_ ⁸ Al
Dissolved Solids	8800	8430	8730	95.8	99.2	85.0-115			3.50	5		
												°Sc

SDG:

L832447

DATE/TIME:

05/16/16 15:13

PAGE:

13 of 32

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

Gravimetric Analys	sis by Method 2	540 C-2011				L83244	7-04					
Method Blank (N	MB)											1
(MB) R3133743-1 05/0	3/16 18:57											- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								_ Tc
Dissolved Solids	U		2.82	10.0								3
												³Ss
L832447-04 Ori	ginal Sample	(OS) • Dup	olicate (D	DUP)								4
(OS) L832447-04 05/9	03/16 18:57 • (DUF	P) R3133743-4	05/03/16 18	3:57								- Cn
	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						Sr
Dissolved Solids	8730	8710	1	0.229		5						6
												[©] Qc
L832887-01 Orig	ginal Sample	(OS) • Dup	licate (D	UP)								7
(OS) L832887-01 05/0	03/16 18:57 • (DUP	P) R3133743-5	05/03/16 18	:57								- GI
	Original Resu	lt DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						_ ⁸ Al
Dissolved Solids	1720	1710	1	0.583		5						
												⁹ Sc
Laboratory Cont	trol Sample (I	CS) • Labo	oratory (Control Sai	mple Duplic	cate (LCSD)						
(LCS) R3133743-2 05/						(= 302)						-
(200) 1.0.00740 2 007	·	t LCS Result	LCSD Res		LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Dissolved Solids	8800	8700	8720	98.9	99.1	85.0-115			0.230	5		

QUALITY CONTROL SUMMARY

WG869534

ONE LAB. NATIONWIDE.

											Transis.
WG870055 Wet Chemistry by Met	hod 353.2			(QUALIT	Y CONTR L832447-01,0		MARY		ONE LAB. NATIONWIDE.	*
Method Blank (MB)											1
(MB) R3134124-1 05/05/16	15:06										- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL							2
Analyte	mg/l		mg/l	mg/l							² Tc
Nitrate-Nitrite	U		0.0197	0.100							
											³ Ss
L832447-01 Origina	al Sample (OS) • Dupli	cate (DI	UP)							4
(OS) L832447-01 05/05/16	. ,		05/16 15:12	2							- Cn
	Original Result	DUP Result	Dilution		DUP Qualifier	DUP RPD Limits					5
Analyte	mg/l	mg/l		%		%					_ Sr
Nitrate-Nitrite	0.125	ND	1	30.0	<u>J P1</u>	20					-6
											[®] Qc
L832460-01 Origin	<u>'</u>		`								7
(OS) L832460-01 05/05/1											GI
	Original Result		Dilution		DUP Qualifier	DUP RPD Limits					8
Analyte	mg/l	mg/l		%		%					. Al
Nitrate-Nitrite	0.0420	ND	1	13.0	ī	20					9
Laboratory Control	Sample (L0	CS) • Labor	ratory C	ontrol San	nnle Duplic	ate (LCSD)					Sc
(LCS) R3134124-2 05/05/1		-				,					-
(200) 10104124 2 00,00,	Spike Amount		LCSD Resu		LCSD Red	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Nitrate-Nitrite	5.00	5.11	5.04	102	101	90.0-110			1.00	20	
L832447-04 Origin	al Sample (OS) • Matr	ix Spike	: (MS)							
(OS) L832447-04 05/05/1	6 15:15 • (MS) R	3134124-5 05/	05/16 15:16								-
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	mg/l	mg/l	mg/l	%		%	Gaac.				
Nitrate-Nitrite	5.00	0.301	5.82	110	1	90.0-110					

SDG: L832447 DATE/TIME:

05/16/16 15:13

PAGE:

15 of 32

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832460-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L 832460-07	7 05/05/16 15:37	(MS) D313/13/1-7	05/05/16 15:38	(MSD) R3134124-8	05/05/16 15:39

20) 2002 100 07 00/00/10 10:07 (mo) Note 12.17 00/00/10 10:00 (mos) Note 12.10 00/00/10 10:00												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0400	4.48	4.51	89.0	89.0	1	90.0-110	<u>J6</u>	<u>J6</u>	1.00	20

WG8696 Wet Chemistry	579 by Method 9056A				QUALIT	Y CONTF L832447-01,		VIVIARY			ONE LAB. NATION	- '
Method Blan	k (MB)											1
(MB) R3135625-1	05/10/16 10:22											[C
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								To
Chloride	U		0.0519	1.00								3
Fluoride	U		0.0099	0.100								Ss
L832435-15 (Original Sample (OS) • Dupl	icate (D	UP)								[‡] Cı
(OS) L832435-15	05/10/16 11:53 • (DUP) R		5/10/16 12:1	11								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						°Sr
Analyte	mg/l	mg/l		%		%						
Chloride	17.2	17.3	1	1		15						⁶ Q
Fluoride	0.893	0.943	1	5		15						- G
												7 _
L832453-03	Original Sample	(OS) • Dun	licate ([OUP)								⁷ Gl
	Original Sample	· / ·	`									8
	Original Sample 05/10/16 18:48 • (DUP) Original Result	R3135625-6 (`		DUP Qualifier	DUP RPD Limits						⁷ Gl
	05/10/16 18:48 • (DUP)	R3135625-6 (05/10/16 19	9:36	DUP Qualifier	DUP RPD Limits						8 Al
(OS) L832453-03	05/10/16 18:48 • (DUP) Original Result	R3135625-6 (05/10/16 19	0:36 DUP RPD	DUP Qualifier							8
(OS) L832453-03 Analyte	05/10/16 18:48 • (DUP) Original Result mg/l	R3135625-6 CDUP Result	05/10/16 19 Dilution	DUP RPD	DUP Qualifier	%						8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C	05/10/16 18:48 • (DUP) Original Result mg/l 13.4	R3135625-6 (CDUP Result mg/l 13.4 0.109 CS) • Labo	05/10/16 19 Dilution 1 1 ratory C	DUP RPD % 0 1		% 15 15						8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Lo	R3135625-6 (CDUP Result mg/l 13.4 0.109 CS) • Labo	05/10/16 19 Dilution 1 1 1 ratory C 05/10/16 LCSD Res	:36 DUP RPD % 0 1 Control Sar 10:54 sult LCS Rec.	mple Duplic	% 15 15 cate (LCSD)	LCS Qualifier	LCSD Qualific	_	RPD Limits		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Le 2 05/10/16 10:38 • (LCSE Spike Amount mg/l	R3135625-6 (CDUP Result mg/l 13.4 0.109 CS) • Labo D) R3135625-3 LCS Result mg/l	D5/10/16 19 Dilution 1 1 1 cratory C C 05/10/16 LCSD Res	DUP RPD % 0 1 Control Sar 10:54 sult LCS Rec. %	mple Duplic LCSD Rec %	% 15 15 cate (LCSD) c. Rec. Limits %	LCS Qualifier	LCSD Qualifie	%	%		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte Chloride	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Ld 0.05/10/16 10:38 • (LCSE Spike Amount mg/l 40.0	R3135625-6 (CDUP Result mg/l 13.4 0.109 CS) • Labo CD) R3135625-3 LCS Result mg/l 39.0	D5/10/16 19 Dilution 1 1 1 ratory C 05/10/16 LCSD Res mg/l 39.1	0 1 1 Control Sar 10:54 sult LCS Rec. %	mple Duplic LCSD Rec % 98	% 15 15 cate (LCSD) c. Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifie	- % 0	% 15		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Le 2 05/10/16 10:38 • (LCSE Spike Amount mg/l	R3135625-6 (CDUP Result mg/l 13.4 0.109 CS) • Labo D) R3135625-3 LCS Result mg/l	D5/10/16 19 Dilution 1 1 1 cratory C C 05/10/16 LCSD Res	DUP RPD % 0 1 Control Sar 10:54 sult LCS Rec. %	mple Duplic LCSD Rec %	% 15 15 cate (LCSD) c. Rec. Limits %	LCS Qualifier	LCSD Qualifie	%	%		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte Chloride	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Ld 0.05/10/16 10:38 • (LCSE Spike Amount mg/l 40.0	R3135625-6 (CDUP Result mg/l 13.4 0.109 CS) • Labo CD) R3135625-3 LCS Result mg/l 39.0	D5/10/16 19 Dilution 1 1 1 ratory C 05/10/16 LCSD Res mg/l 39.1	0 1 1 Control Sar 10:54 sult LCS Rec. %	mple Duplic LCSD Rec % 98	% 15 15 cate (LCSD) c. Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifie	- % 0	% 15		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte Chloride Fluoride	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Ld 0.05/10/16 10:38 • (LCSE Spike Amount mg/l 40.0	R3135625-6 (C) DUP Result mg/l 13.4 0.109 CS) * Labo D) R3135625-3 LCS Result mg/l 39.0 7.64	Distriction 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00000000000000000000000000000000000000	mple Duplic LCSD Rec % 98	% 15 15 cate (LCSD) c. Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifie	- % 0	% 15		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Le Cost/10/16 10:38 • (LCSE Spike Amount mg/l 40.0 8.00	R3135625-6 (DUP Result mg/l 13.4 0.109 CS) • Labo D) R3135625-3 LCS Result mg/l 39.0 7.64 (OS) • Mat	D5/10/16 19 Dilution 1 1 1 ratory C 05/10/16 LCSD Res mg/l 39.1 7.65	:36 DUP RPD % 0 1 Control Sar 10:54 sult LCS Rec. % 98 95	mple Duplic LCSD Rec % 98	% 15 15 cate (LCSD) c. Rec. Limits % 80-120		LCSD Qualifie	- % 0	% 15		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Ld 2 05/10/16 10:38 • (LCSE Spike Amount mg/l 40.0 8.00 Original Sample 05/10/16 15:37 • (MS) R	R3135625-6 (DUP Result mg/l 13.4 0.109 CS) • Labo D) R3135625-3 LCS Result mg/l 39.0 7.64 (OS) • Mat	Distriction 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:36 DUP RPD % 0 1 Control Sar 10:54 sult LCS Rec. % 98 95	mple Duplic LCSD Rec % 98	% 15 15 cate (LCSD) c. Rec. Limits % 80-120		LCSD Qualifie	- % 0	% 15		8 Al
(OS) L832453-03 Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02	05/10/16 18:48 • (DUP) Original Result mg/l 13.4 0.108 Control Sample (Ld 2 05/10/16 10:38 • (LCSE Spike Amount mg/l 40.0 8.00 Original Sample 05/10/16 15:37 • (MS) R	R3135625-6 (CS) • Labo CCS) • Mata	Distriction 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:36 DUP RPD % 0 1 Control Sar 10:54 sult LCS Rec. % 98 95	mple Duplic LCSD Rec % 98 96	% 15 15 15 cate (LCSD) c. Rec. Limits % 80-120 80-120	LCS Qualifier MS Qualifier	LCSD Qualifie	- % 0	% 15		8 Al

SDG: L832447

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/16/16 15:13 PAGE: 17 of 32

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832453-01 O5/10/16 18:16	 (MS) R3135625-7 05/10/16 20:24 	• (MSD) R3135625-8 05/10/16 20:40

(US) L832453-UT U5/TU/T6	18:16 • (IVIS) R3	135625-7 05/1	0/16 20:24 • (IV	15D) K3135625	-8 05/10/16 20	1.40						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	6.47	56.7	57.0	101	101	1	80-120			0	15
Fluoride	5.00	0.158	5.05	5.07	98	98	1	80-120			0	15

WG871783	h1 005C*			(QUALIT	Y CONTR		MARY		ONE LA	B. NATIONWIDE.	樂
Wet Chemistry by Met						L832447-01,0	2,03,04					
Method Blank (MB)												1 Cp
(MB) R3136840-1 05/15/16		MD O - P.C.	MDMDI	MD DDI								
Analyte	MB Result mg/l	MB Qualifier	MB MDL mg/l	MB RDL mg/l								² Tc
Sulfate	U		0.0774	5.00								
												3 Ss
L832453-02 Origin	nal Sample	(OS) • Dup	licate (D	UP)								4
(OS) L832453-02 05/15/16	6 18:32 • (DUP)	R3136840-5 C	5/15/16 18:	46								Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						E
Analyte	mg/l	mg/l		%		%						⁵ Sr
Sulfate	121	119	10	1		15						6
												[°] Qc
L832453-03 Origin	ial Sample	(OS) • Dup	licate (D	UP)								7
(OS) L832453-03 05/15/16												GI
Analista	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						8
Analyte Sulfate	mg/l 128	mg/l 125	10	2		15						Al
Junate	120	123	10	2		15						9
Laboratory Control	Cample /l /		aton (C	antral Can	nnla Dunlia	oto (LCCD)						Sc
(LCS) R3136840-2 05/15/1		-			Tiple Duplic	ate (LC3D)						
(LCS) R3136840-2 05/15/1	Spike Amount		LCSD Resi		LCSD Rec	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%	Loo dadiiici	2005 duamer	%	%		
Sulfate	40.0	39.8	39.7	99	99	80-120			0	15		
L832435-16 Origina	al Sample (OS) • Matri	x Spike	(MS)								
(OS) L832435-16 05/15/16	15:39 • (MS) R3	3136840-4 05/	15/16 15:53	3								
		Original Result			Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	Guanitei					
Sulfate	50.0	39.9	88.8	98	1	80-120						

SDG: L832447 DATE/TIME: 05/16/16 15:13 PAGE: 19 of 32

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	153	625	625	94	94	10	80-120			0	15

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134752-1 05	/07/16 16:13			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Iron	U		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	0.000495		0.00025	0.00500
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134752-2 05	/07/16 16:16 • (LCSE	D) R3134752-3	05/07/16 16:18	3							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0508	0.0519	102	104	80-120			2	20	
Barium	0.0500	0.0493	0.0483	99	97	80-120			2	20	
Calcium	5.00	4.99	5.19	100	104	80-120			4	20	
Chromium	0.0500	0.0512	0.0507	102	101	80-120			1	20	
Iron	5.00	4.94	4.90	99	98	80-120			1	20	
Lead	0.0500	0.0510	0.0497	102	99	80-120			3	20	
Manganese	0.0500	0.0495	0.0499	99	100	80-120			1	20	
Potassium	5.00	4.95	4.85	99	97	80-120			2	20	
Selenium	0.0500	0.0499	0.0484	100	97	80-120			3	20	
Sodium	5.00	5.30	5.23	108	105	2∩ ₋ 12∩			3	20	

L832435-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832435-11 05/07/16	5 16:21 • (MS) R3	134752-5 05/0)7/16 16:25 • (l	MSD) R3134752	!-6 05/07/16 16	5:28						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00566	0.0566	0.0568	102	102	5	75-125			0	20
Barium	0.0100	0.0112	0.0635	0.0633	105	104	5	75-125			0	20
Calcium	1.00	576	573	598	0	440	5	75-125	V	\vee	4	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
TRC Solutions - Austin TX	249545 0000 0000 000	1.832447	05/16/16 15:13	21 of 32

Manganese Selenium

Sodium

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

20

20

20

Metals (ICPMS) by Method 6020

0.0100

0.0100

1.00

0.0102

0.00812

311

L832435-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0578

0.0571

311

0.0581

0.0578

318

95

98

0

(OS) L832435-11 05/07/1	16 16:21 • (MS) R3	134752-5 05/0	07/16 16:25 • (N	MSD) R3134752	-6 05/07/16 16	6:28							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chromium	0.0100	U	0.0503	0.0513	101	103	5	75-125			2	20	
Potassium	1.00	1.70	6.67	6.73	99	101	5	75-125			1	20	
Iron	1.00	U	4.83	4.95	97	99	5	75-125			2	20	
Lead	0.0100	0.00131	0.0502	0.0510	98	99	5	75-125			2	20	

75-125

75-125

75-125

96

99

134

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134963-1 05/09	9/16 10:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	0.0259		0.015	0.100	
Lead,Dissolved	0.000687		0.00024	0.00200	
Manganese,Dissolved	0.0003		0.00025	0.00500	
Selenium, Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

CS) R3134963-2 05/09	9/16 10:30 • (LCSI	D) R3134963-	3 05/09/16 10:3	33							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
nalyte	mg/l	mg/l	mg/l	%	%	%			%	%	
senic,Dissolved	0.0500	0.0512	0.0534	102	107	80-120			4	20	
arium,Dissolved	0.0500	0.0517	0.0524	103	105	80-120			1	20	
omium,Dissolved	0.0500	0.0534	0.0550	107	110	80-120			3	20	
Dissolved	5.00	5.23	5.38	105	108	80-120			3	20	
d,Dissolved	0.0500	0.0524	0.0538	105	108	80-120			3	20	
nganese,Dissolved	0.0500	0.0518	0.0526	104	105	80-120			1	20	
nium,Dissolved	0.0500	0.0506	0.0519	101	104	80-120			2	20	

L832447-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832447-01 05/09/	16 10:35 • (MS) R	3134963-5 05	/09/16 10:40 •	(MSD) R313496	63-6 05/09/16	10:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00646	0.0536	0.0585	94	104	5	75-125			9	20
Barium,Dissolved	0.0100	0.0161	0.0606	0.0636	89	95	5	75-125			5	20
Chromium, Dissolved	0.0100	U	0.0489	0.0497	98	99	5	75-125			2	20
Iron,Dissolved	1.00	U	4.68	5.46	94	109	5	75-125			15	20
Lead,Dissolved	0.0100	U	0.0486	0.0513	97	103	5	75-125			5	20
Manganese,Dissolved	0.0100	0.319	0.326	0.350	14	63	5	75-125	$\underline{\vee}$	$\underline{\vee}$	7	20
Selenium Dissolved	0.0100	0.00234	0.0506	0.0560	96	107	5	75-125			10	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832447

DATE/TIME: 05/16/16 15:13

PAGE: 23 of 32

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(MB) R3134082-3 05/04/	16 03:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-lsopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832447

DATE/TIME: 05/16/16 15:13

PAGE: 24 of 32

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

1B) R3134082-3 05/04/1	6 03:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
trachloroethene	U		0.000372	0.00100	
luene	U		0.000780	0.00500	
1-Trichloroethane	U		0.000319	0.00100	
,2-Trichloroethane	U		0.000383	0.00100	
ichloroethene	U		0.000398	0.00100	
,4-Trimethylbenzene	U		0.000373	0.00100	
3,5-Trimethylbenzene	U		0.000387	0.00100	
yl chloride	U		0.000259	0.00100	
enes, Total	U		0.00106	0.00300	
ylene	U		0.000341	0.00100	
-Xylenes	U		0.000719	0.00100	
Toluene-d8	105			90.0-115	
S) Dibromofluoromethane	107			79.0-121	
S) 4-Bromofluorobenzene	102			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LC3) R3134062-1 05/04	+/10 U1.39 • (LC3L	J) K3134U6Z-2	2 05/04/16 02.0	J2							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.192	0.179	153	144	28.7-175			6.59	20.9	
Benzene	0.0250	0.0274	0.0262	109	105	73.0-122			4.31	20	
Bromodichloromethane	0.0250	0.0274	0.0264	110	106	75.5-121			3.92	20	
Bromoform	0.0250	0.0231	0.0218	92.3	87.2	71.5-131			5.65	20	
Bromomethane	0.0250	0.0101	0.00963	40.2	38.5	22.4-187			4.27	20	
n-Butylbenzene	0.0250	0.0325	0.0315	130	126	75.9-134			3.09	20	
sec-Butylbenzene	0.0250	0.0253	0.0250	101	99.9	80.6-126			1.27	20	
Carbon disulfide	0.0250	0.0266	0.0255	107	102	53.0-134			4.36	20	
Carbon tetrachloride	0.0250	0.0243	0.0232	97.3	92.9	70.9-129			4.62	20	
Chlorobenzene	0.0250	0.0250	0.0245	100	97.9	79.7-122			2.23	20	
Chlorodibromomethane	0.0250	0.0235	0.0231	94.0	92.6	78.2-124			1.57	20	
Chloroethane	0.0250	0.0290	0.0280	116	112	41.2-153			3.68	20	
Chloroform	0.0250	0.0277	0.0264	111	106	73.2-125			4.72	20	
Chloromethane	0.0250	0.0240	0.0235	95.9	94.0	55.8-134			2.01	20	
1,2-Dibromoethane	0.0250	0.0254	0.0246	102	98.4	79.8-122			3.16	20	
1,1-Dichloroethane	0.0250	0.0288	0.0273	115	109	71.7-127			5.42	20	

249545.0000.0000 000

SDG:

PAGE: 25 of 32

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134082-1 05/04/1	6 01:39 • (LCSL	J) K3134U8Z-2	2 05/04/16 02.0)2							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0298	0.0279	119	112	65.3-126			6.43	20	
1,1-Dichloroethene	0.0250	0.0285	0.0274	114	110	59.9-137			3.86	20	
cis-1,2-Dichloroethene	0.0250	0.0252	0.0239	101	95.8	77.3-122			5.25	20	
trans-1,2-Dichloroethene	0.0250	0.0255	0.0244	102	97.4	72.6-125			4.67	20	
1,2-Dichloropropane	0.0250	0.0292	0.0265	117	106	77.4-125			9.53	20	
cis-1,3-Dichloropropene	0.0250	0.0296	0.0273	118	109	77.7-124			7.88	20	
trans-1,3-Dichloropropene	0.0250	0.0326	0.0304	130	121	73.5-127	<u>J4</u>		7.06	20	
Ethylbenzene	0.0250	0.0250	0.0248	100	99.1	80.9-121			1.00	20	
2-Hexanone	0.125	0.156	0.151	125	121	59.4-151			3.38	20	
Isopropylbenzene	0.0250	0.0249	0.0244	99.7	97.5	81.6-124			2.22	20	
p-Isopropyltoluene	0.0250	0.0249	0.0245	99.6	97.9	77.6-129			1.75	20	
2-Butanone (MEK)	0.125	0.197	0.186	158	149	46.4-155	<u>J4</u>		5.77	20	
Methylene Chloride	0.0250	0.0264	0.0252	106	101	69.5-120			4.44	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.166	0.155	133	124	63.3-138			6.98	20	
Methyl tert-butyl ether	0.0250	0.0284	0.0269	114	108	70.1-125			5.45	20	
Naphthalene	0.0250	0.0265	0.0263	106	105	69.7-134			0.840	20	
n-Propylbenzene	0.0250	0.0262	0.0255	105	102	81.9-122			2.81	20	
Styrene	0.0250	0.0256	0.0252	102	101	79.9-124			1.44	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0235	0.0229	94.1	91.5	78.5-125			2.82	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0277	0.0265	111	106	79.3-123			4.49	20	
Tetrachloroethene	0.0250	0.0217	0.0214	86.9	85.7	73.5-130			1.42	20	
Toluene	0.0250	0.0268	0.0254	107	101	77.9-116			5.47	20	
1,1,1-Trichloroethane	0.0250	0.0248	0.0239	99.1	95.4	71.1-129			3.79	20	
1,1,2-Trichloroethane	0.0250	0.0255	0.0242	102	96.9	81.6-120			5.03	20	
Trichloroethene	0.0250	0.0244	0.0225	97.6	90.0	79.5-121			8.10	20	
1,2,4-Trimethylbenzene	0.0250	0.0242	0.0239	96.9	95.7	79.0-122			1.27	20	
1,3,5-Trimethylbenzene	0.0250	0.0249	0.0244	99.4	97.5	81.0-123			1.93	20	
Vinyl chloride	0.0250	0.0260	0.0249	104	99.8	61.5-134			4.03	20	
Xylenes, Total	0.0750	0.0748	0.0729	99.7	97.2	79.2-122			2.57	20	
o-Xylene	0.0250	0.0245	0.0238	98.1	95.4	79.1-123			2.79	20	
m&p-Xylenes	0.0500	0.0503	0.0490	101	98.1	78.5-122			2.47	20	
(S) Toluene-d8				106	104	90.0-115					
(S) Dibromofluoromethane				105	104	79.0-121					
(S) 4-Bromofluorobenzene				99.4	98.3	80.1-120					

PROJECT: 249545.0000.0000 000

L832447

DATE/TIME: 05/16/16 15:13

PAGE: 26 of 32

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832447-01,02,03,04

L832450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0915	0.0815	73.2	65.2	1	25.0-156			11.6	21.5
Benzene	0.0250	U	0.0254	0.0224	102	89.6	1	58.6-133			12.6	20
Bromodichloromethane	0.0250	U	0.0252	0.0226	101	90.3	1	69.2-127			10.9	20
Bromoform	0.0250	U	0.0217	0.0203	86.7	81.2	1	66.3-140			6.58	20
Bromomethane	0.0250	U	0.00939	0.00842	37.5	33.7	1	16.6-183			10.9	20.5
n-Butylbenzene	0.0250	U	0.0308	0.0275	123	110	1	64.8-145			11.6	20
sec-Butylbenzene	0.0250	U	0.0241	0.0214	96.2	85.7	1	66.8-139			11.6	20
Carbon disulfide	0.0250	U	0.0214	0.0187	85.5	74.7	1	34.9-138			13.4	20
Carbon tetrachloride	0.0250	U	0.0222	0.0198	88.9	79.2	1	60.6-139			11.5	20
Chlorobenzene	0.0250	U	0.0235	0.0210	94.1	84.1	1	70.1-130			11.2	20
Chlorodibromomethane	0.0250	U	0.0228	0.0199	91.3	79.5	1	71.6-132			13.9	20
Chloroethane	0.0250	U	0.0259	0.0242	104	97.0	1	33.3-155			6.64	20
Chloroform	0.0250	U	0.0265	0.0236	106	94.3	1	66.1-133			11.6	20
Chloromethane	0.0250	U	0.0204	0.0187	81.5	74.7	1	40.7-139			8.68	20
1,2-Dibromoethane	0.0250	U	0.0240	0.0212	96.1	84.8	1	73.8-131			12.5	20
1,1-Dichloroethane	0.0250	U	0.0268	0.0237	107	94.9	1	64.0-134			12.3	20
1,2-Dichloroethane	0.0250	0.000526	0.0287	0.0254	113	99.6	1	60.7-132			12.2	20
1,1-Dichloroethene	0.0250	U	0.0262	0.0227	105	90.9	1	48.8-144			14.1	20
cis-1,2-Dichloroethene	0.0250	U	0.0235	0.0207	93.8	82.8	1	60.6-136			12.5	20
trans-1,2-Dichloroethene	0.0250	U	0.0229	0.0206	91.6	82.2	1	61.0-132			10.7	20
1,2-Dichloropropane	0.0250	U	0.0262	0.0239	105	95.5	1	69.7-130			9.33	20
cis-1,3-Dichloropropene	0.0250	U	0.0259	0.0235	104	94.0	1	71.1-129			9.73	20
trans-1,3-Dichloropropene	0.0250	U	0.0292	0.0263	117	105	1	66.3-136			10.6	20
Ethylbenzene	0.0250	U	0.0234	0.0205	93.5	81.8	1	62.7-136			13.3	20
2-Hexanone	0.125	U	0.131	0.119	105	94.9	1	59.4-154			9.85	20.1
Isopropylbenzene	0.0250	U	0.0238	0.0210	95.1	84.0	1	67.4-136			12.4	20
p-Isopropyltoluene	0.0250	U	0.0238	0.0209	95.2	83.8	1	62.8-143			12.8	20
2-Butanone (MEK)	0.125	U	0.140	0.129	112	103	1	45.0-156			8.09	20.8
Methylene Chloride	0.0250	U	0.0244	0.0218	97.5	87.2	1	61.5-125			11.1	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.160	0.147	128	118	1	60.7-150			8.41	20
Methyl tert-butyl ether	0.0250	0.322	0.301	0.289	0.000	0.000	1	61.4-136	EV	EV	3.96	20
Naphthalene	0.0250	U	0.0258	0.0242	103	96.9	1	61.8-143			6.13	20
n-Propylbenzene	0.0250	U	0.0246	0.0218	98.6	87.2	1	63.2-139			12.3	20
Styrene	0.0250	U	0.0216	0.0187	86.6	75.0	1	68.2-133			14.4	20

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

L832447

DATE/TIME: 05/16/16 15:13

0.0250

0.0250

U

U

0.0227

0.0277

0.0200

0.0246

90.7

111

79.8

98.3

70.5-132

64.9-145

12.7

20

20

QUALITY CONTROL SUMMARY L832447-01,02,03,04

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0202	0.0182	80.6	72.9	1	57.4-141			10.1	20
Toluene	0.0250	U	0.0243	0.0219	97.2	87.7	1	67.8-124			10.3	20
1,1,1-Trichloroethane	0.0250	U	0.0236	0.0210	94.5	83.8	1	58.7-134			11.9	20
1,1,2-Trichloroethane	0.0250	U	0.0245	0.0217	98.2	86.8	1	74.1-130			12.3	20
Trichloroethene	0.0250	U	0.0212	0.0190	84.9	76.2	1	48.9-148			10.8	20
1,2,4-Trimethylbenzene	0.0250	U	0.0232	0.0205	92.7	82.0	1	60.5-137			12.3	20
1,3,5-Trimethylbenzene	0.0250	U	0.0236	0.0209	94.6	83.7	1	67.9-134			12.2	20
Vinyl chloride	0.0250	U	0.0216	0.0194	86.3	77.5	1	44.3-143			10.8	20
Xylenes, Total	0.0750	U	0.0702	0.0622	93.6	82.9	1	65.6-133			12.1	20
o-Xylene	0.0250	U	0.0231	0.0206	92.6	82.5	1	67.1-133			11.5	20
m&p-Xylenes	0.0500	U	0.0470	0.0415	94.1	83.0	1	64.1-133			12.4	20
(S) Toluene-d8					104	105		90.0-115				
(S) Dibromofluoromethane					108	106		79.0-121				
(S) 4-Bromofluorobenzene					100	99.0		80.1-120				

(MB) R3132892-1 05/01/16 20:54 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 110 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3132892-2 05/01/16 21:12 • (LCSD) R3132892-3 05/01/16 21:30 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.69 1.60 112 107 5.02 20 (S) o-Terphenyl 114 50.0-150 115 GI Αl

SDG:

L832447

DATE/TIME:

05/16/16 15:13

PROJECT:

249545.0000.0000 000

QUALITY CONTROL SUMMARY

L832447-01,02,03,04

WG868891

Method Blank (MB)

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

ACCOUNT:

TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE.

PAGE:

29 of 32

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Тс

Ss

Cn

Sr

Qc

GI

Sc

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Fax: Collected by (print): Scorr Ude + Hm Tam TN Collected by (signature):	Feam F- C ient Project # ie/Facility ID 'MD - Nav	,	21 Griffi Windso	Lab Project #	om	vm				500mIHDPE-HNO3	чаон У	500mIHDPE-HNO3 №	Anions- Chloride, Fluoride, Sulfate-1125mlHDPE-NoPres	-250mIHDPE-H2SO4 ⅓		v,Ni,Pb,Se,U,V	TO SEE SEE	2062
Austin, TX 78752 Report to: jspeer@trcsolutions.com Project Description: TMD Spring 2016 —Te Description: 512-684-3170 Fax: Collected by (print): Scort Ude + Hm Tam TN Collected by (signature):	te/Facility ID FMD - Nav Rush? (La	,	Email To:	City/State Collected: A	17.6	vm				500mIHDPE-P		12/2/2006	125mIHDPE-No	11H211F728		V,U,eS,dY,IN,	12065 Lebanon Rd Mount Juliet, TN 371: Phone: 615-758-5858	
project Description: TMD Spring 2016 -Te Phone: 512-684-3170 Clier Fax: Site/ Collected by (print): Site/ Collected by (signature):	te/Facility ID FMD - Nav Rush? (La	,	7 25-10	City/State Collected: 4	17.6	vm				500m	NaOH	DPE-	125ml	DPE-		Ni,PE	Mount Juliet, TN 371: Phone: 615-758-5858	2762
Phone: 512-684-3170 Clier Fax: Site/ Collected by (print): Site/ TN Collected by (signature):	te/Facility ID FMD - Nav Rush? (La	,		Collected: A	rtesia, r	vm	45			1.0	-NaOH	IDPE-H	1125ml	HDPE-		-		7
Fax: Collected by (print): Scorr Ude + Hm Tam TN Collected by (signature):	re/Facility ID TMD - Nav Rush? (La				5.447 9780	Collected: Artesia, NM				Mn,Se	EAmb-	00mlF	ulfate-	250mll		Hg,M	Fax: 615-758-5859	
Scott Ude + Hm Tam TN Collected by (signature):	Rush? (La		ordenie i	TRCATX-TMD SPRING		-BT			As,Ba,Cr,Fe,Pb,Mn,Se	nIHDPE	Na -	oride, Su	03) - 2	oPres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	B203		
/			esia	P.O. #		L	P-HCI-	P-HCI	nb-HC	a,Cr,F	250m	X,	e, Fluo	NOSN	PE-N	a,Cd,C	Acctnum: TRO	
Immediately	Next Da	у	200% 100% 50%	Email?		No.	- 40mlAmb-HCI-BT	40mIAmb-HCI	V8260 - 40mlAmb-HCI	iss. As,B	Cyanide (CN) - 250mlHDPEAmb-NaOH	Cations-Total Ca,	s- Chlorid	Nitrate/Nitrite (NO2NO3)	250miHDPE-NoPres		Prelogin: P54 TSR: Chris Cooler:	9617
Packed on Ice N Y V	Three D	1.158	25%	FAX?N	77.77	of Cntrs	DRO-	GRO.	260	Tot./Diss.	yani	atio	nion	itrat	TDS-	rot/Diss.	Shipped Via:	
Sample ID Cor	comp. Grab	Matrix *	Depth	Date	Time	Citus	D	5	8		O	Ö	4	z	F	F	Rem./Contaminant	Sample # (lab only)
mw-25		GW	22	4/27/16	1430	10	/		V	V		V	V	V	V		198.46	-01
MW-27				4/27/16	1730	1	~		/	~		~	V	/	V	coli	17 19	02
MW-89	Hise	Tiles-	11	4/27/10	1640		/		~	1	303	1	V	1	~		4.7	03
MW-26	1	1		4/27/16	1550	P	~		~	V		/	/	V		100-1		04
		- 156		1		F												
	1 255		1/6															多图 所
				2,000				1917				100						
* Matrix: SS - Soil GW - Groundwater WW Remarks: Log all metals by 6020.				Section and Property lies	67110	33:	75	72	3	pH _		Tem	-		Но	ld#		
Relinquished by : (Signature)		Date: 4/28	3/16	Time: Re	ceived by: (Sign:	Mary I	Ø.		40	Sample	edEx	ned via:	UP:		Cor	ndition	: (lab u	se only) Jw7
Relinquished by : (Signature) Relinquished by : (Signature)		Date:	F-1		ceived by: (Signa	40	K			Temp: 3./		°C Bo	ttles Re	ceived:		C Seal		N_NA

ANALYTICAL REPORT May 16, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832450

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: TMD Spring 2016

Site: TMD NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth June

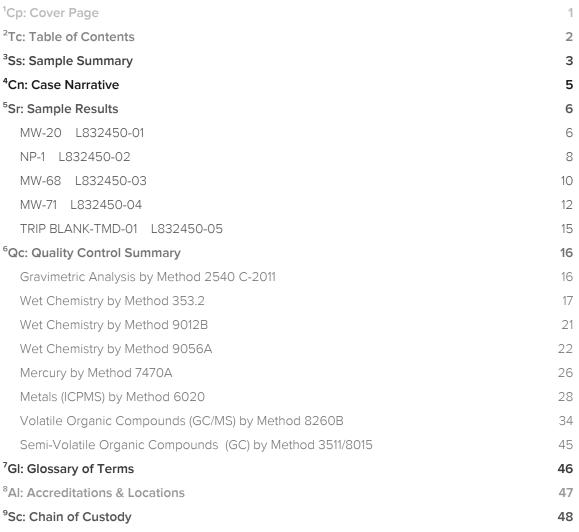
Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

3	_
	Ss

Cn


Sr	•
----	---

ONE LAB. NATIONWIDE.

$\overline{}$	AN			\sim 1	1 1 1	ΝЛ	Λ Г	11/
$\overline{}$	ΔIV	ıPı	\vdash	\sim 1	11//	IV/I	Δ $+$	γ.

AMPLE	SUMMARY

MW-68	L832450-03	GW	
-------	------------	----	--

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869816	1	05/04/16 17:40	05/04/16 18:17	MMF
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 04:39	JDG
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:01	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG868891	1	05/01/16 11:50	05/02/16 04:28	TRF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG869310	1	05/03/16 00:26	05/03/16 00:26	DAH
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:23	05/05/16 15:23	DR
Wet Chemistry by Method 9056A	WG869679	1	05/10/16 17:12	05/10/16 17:12	CM
Wet Chemistry by Method 9056A	WG869679	50	05/10/16 17:28	05/10/16 17:28	CM
Wet Chemistry by Method 9056A	WG871783	50	05/15/16 18:03	05/15/16 18:03	CM

WG869679

WG871783

50

50

05/10/16 16:57

05/15/16 17:49

Collected by

Collected by

SU / HM1 Team

SU / HM1 Team

05/10/16 16:57

05/15/16 17:49

Collected date/time 04/28/16 09:50

Collected date/time

04/28/16 09:00

MW-71 L832450-04 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869816	1	05/04/16 17:40	05/04/16 18:17	MMF
Mercury by Method 7470A	WG869159	1	05/02/16 11:44	05/03/16 10:58	NJB
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:27	NJB
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 04:42	JDG
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:03	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 08:45	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 11:29	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG868891	1	05/01/16 11:50	05/02/16 04:46	TRF
Volatile Organic Compounds (GC/MS) by Method 8260B	WG869310	1	05/03/16 00:45	05/03/16 00:45	DAH
Wet Chemistry by Method 353.2	WG870055	50	05/05/16 15:24	05/05/16 15:24	DR
Wet Chemistry by Method 9012B	WG870326	1	05/06/16 12:26	05/12/16 15:22	DR

 CM

CM

Received date/time

Received date/time

04/29/16 09:00

04/29/16 09:00

MW-71 L832450-04 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 09:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Wet Chemistry by Method 9056A	WG869679	1	05/10/16 17:44	05/10/16 17:44	CM
Wet Chemistry by Method 9056A	WG869679	100	05/10/16 18:00	05/10/16 18:00	CM
Wet Chemistry by Method 9056A	WG871783	50	05/15/16 18:17	05/15/16 18:17	CM
TRIP BLANK-TMD-01 L832450-05 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 00:00	Received date/time 04/29/16 09:00
	Dotob	Dilution	Droporotion	Amahasia	Analyst
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC/MS) by Method 8260B	WG869310	1	05/02/16 19:41	05/02/16 19:41	DAH

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:35

L832450

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4850		2.82	10.0	10.0	1	05/04/2016 18:17	WG869816

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	8.09		0.0197	0.100	0.100	1	05/05/2016 15:21	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	515		2.60	1.00	50.0	50	05/10/2016 16:41	WG869679
Fluoride	2.18		0.00990	0.100	0.100	1	05/10/2016 15:21	WG869679
Sulfate	2790		3.87	5.00	250	50	05/15/2016 17:34	WG871783

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00628	J	0.00125	0.00200	0.0100	5	05/07/2016 04:34	WG869289
Arsenic, Dissolved	0.00646	J	0.00125	0.00200	0.0100	5	05/09/2016 10:58	WG870075
Barium	0.0113	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 04:34	WG869289
Barium, Dissolved	0.0112	J	0.00180	0.00500	0.0250	5	05/09/2016 10:58	WG870075
Calcium	594		0.230	1.00	5.00	5	05/07/2016 04:34	WG869289
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 04:34	WG869289
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 10:58	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 04:34	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 10:58	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:34	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 10:58	WG870075
Manganese	0.00814	J	0.00125	0.00500	0.0250	5	05/07/2016 04:34	WG869289
Manganese, Dissolved	0.00432	J	0.00125	0.00500	0.0250	5	05/09/2016 10:58	WG870075
Potassium	0.370	J	0.185	1.00	5.00	5	05/07/2016 04:34	WG869289
Selenium	0.0305		0.00190	0.00200	0.0100	5	05/07/2016 04:34	WG869289
Selenium,Dissolved	0.0266		0.00190	0.00200	0.0100	5	05/09/2016 10:58	WG870075
Sodium	274		0.550	1.00	5.00	5	05/07/2016 04:34	WG869289

°Qc

Gl

°AI

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 12:17	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 12:17	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 12:17	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 12:17	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 12:17	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 12:17	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 12:17	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:35

L832450

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:17	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:17	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:17	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:17	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 12:17	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:17	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 12:17	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:17	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:17	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:17	WG868983
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:17	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:17	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:17	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:17	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 12:17	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 12:17	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 12:17	WG868983
(S) Toluene-d8	108				90.0-115		05/04/2016 12:17	WG868983
(S) Dibromofluoromethane	107				79.0-121		05/04/2016 12:17	WG868983

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.149		0.0247	0.100	0.100	1	05/02/2016 04:10	WG868891
(S) o-Terphenyl	109				50.0-150		05/02/2016 04:10	WG868891

80.1-120

05/04/2016 12:17

WG868983

PAGE:

7 of 48

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4460		2.82	10.0	10.0	1	05/04/2016 18:17	WG869816

Ss

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.494	J	0.197	0.100	1.00	10	05/09/2016 15:35	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	391		2.60	1.00	50.0	50	05/10/2016 16:57	WG869679
Fluoride	1.96		0.00990	0.100	0.100	1	05/10/2016 15:37	WG869679
Sulfate	2620		3.87	5.00	250	50	05/15/2016 17:49	WG871783

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Calcium	470		0.230	1.00	5.00	5	05/07/2016 04:36	WG869289
Potassium	3.12	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 04:36	WG869289
Sodium	403		0.550	1.00	5.00	5	05/07/2016 04:36	WG869289

Sc

СС

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 05:04	WG868983
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 05:04	WG868983
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 05:04	WG868983
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 05:04	WG868983
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 05:04	WG868983
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 05:04	WG868983
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,2-Dichloroethane	0.000526	<u>J</u>	0.000361	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:04	WG868983
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 05:04	WG868983
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 05:04	WG868983
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 05:04	WG868983
trans-1,3-Dichloropropene	U	<u>J4</u>	0.000419	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 05:04	WG868983
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 05:04	WG868983
2-Butanone (MEK)	U	<u>J4</u>	0.00393	0.0100	0.0100	1	05/04/2016 05:04	WG868983
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 05:04	WG868983
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 05:04	WG868983
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 05:04	WG868983

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:45

(S) 4-Bromofluorobenzene

Volatile Organic Compounds (GC/MS) by Method 8260B

98.3

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Methyl tert-butyl ether	0.213		0.00367	0.00100	0.0100	10	05/06/2016 02:34	WG870327
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 05:04	WG868983
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 05:04	WG868983
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 05:04	WG868983
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 05:04	WG868983
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 05:04	WG868983
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 05:04	WG868983
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 05:04	WG868983
(S) Toluene-d8	106				90.0-115		05/04/2016 05:04	WG868983
(S) Toluene-d8	102				90.0-115		05/06/2016 02:34	WG870327
(S) Dibromofluoromethane	90.3				79.0-121		05/06/2016 02:34	WG870327
(S) Dibromofluoromethane	107				79.0-121		05/04/2016 05:04	WG868983
(S) 4-Bromofluorobenzene	97.9				80.1-120		05/04/2016 05:04	WG868983

80.1-120

05/06/2016 02:34

WG870327

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/I		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2980		2.82	10.0	10.0	1	05/04/2016 18:17	WG869816	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.510		0.0197	0.100	0.100	1	05/05/2016 15:23	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	263		2.60	1.00	50.0	50	05/10/2016 17:28	WG869679
Fluoride	1.75		0.00990	0.100	0.100	1	05/10/2016 17:12	WG869679
Sulfate	1840		3.87	5.00	250	50	05/15/2016 18:03	WG871783

СС

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00314	J	0.00125	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Arsenic, Dissolved	0.00267	J	0.00125	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Barium	0.0133	J	0.00180	0.00500	0.0250	5	05/07/2016 04:39	WG869289
Barium, Dissolved	0.0122	J	0.00180	0.00500	0.0250	5	05/09/2016 11:01	WG870075
Calcium	489		0.230	1.00	5.00	5	05/07/2016 04:39	WG869289
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 04:39	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:01	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Manganese	0.0393		0.00125	0.00500	0.0250	5	05/07/2016 04:39	WG869289
Manganese, Dissolved	0.0388		0.00125	0.00500	0.0250	5	05/09/2016 11:01	WG870075
Potassium	5.58		0.185	1.00	5.00	5	05/07/2016 04:39	WG869289
Selenium	0.00339	J	0.00190	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Selenium,Dissolved	0.00200	J	0.00190	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Sodium	206		0.550	1.00	5.00	5	05/07/2016 04:39	WG869289

Metals (ICPMS) by Method 6020

	Result	<u>Qualifier</u>	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00314	J	0.00125	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Arsenic, Dissolved	0.00267	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Barium	0.0133	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 04:39	WG869289
Barium, Dissolved	0.0122	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 11:01	WG870075
Calcium	489		0.230	1.00	5.00	5	05/07/2016 04:39	WG869289
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 04:39	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:01	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Manganese	0.0393		0.00125	0.00500	0.0250	5	05/07/2016 04:39	WG869289
Manganese, Dissolved	0.0388		0.00125	0.00500	0.0250	5	05/09/2016 11:01	WG870075
Potassium	5.58		0.185	1.00	5.00	5	05/07/2016 04:39	WG869289
Selenium	0.00339	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 04:39	WG869289
Selenium, Dissolved	0.00200	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 11:01	WG870075
Sodium	206		0.550	1.00	5.00	5	05/07/2016 04:39	WG869289

Ss Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 00:26	WG869310
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Bromoform	U		0.000469	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Bromomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 00:26	WG869310
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 00:26	WG869310
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Chloroethane	U		0.000453	0.00500	0.00500	1	05/03/2016 00:26	WG869310
Chloroform	U		0.000324	0.00500	0.00500	1	05/03/2016 00:26	WG869310
Chloromethane	U		0.000276	0.00250	0.00250	1	05/03/2016 00:26	WG869310
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/03/2016 00:26	WG869310

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:50

L832450

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 00:26	WG869310
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/03/2016 00:26	WG869310
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/03/2016 00:26	WG869310
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/03/2016 00:26	WG869310
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/03/2016 00:26	WG869310
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/03/2016 00:26	WG869310
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/03/2016 00:26	WG869310
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/03/2016 00:26	WG869310
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/03/2016 00:26	WG869310
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/03/2016 00:26	WG869310
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Naphthalene	U		0.00100	0.00500	0.00500	1	05/03/2016 00:26	WG869310
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Styrene	U		0.000307	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Toluene	U		0.000780	0.00500	0.00500	1	05/03/2016 00:26	WG869310
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/03/2016 00:26	WG869310
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/03/2016 00:26	WG869310
o-Xylene	U		0.000341	0.00100	0.00100	1	05/03/2016 00:26	WG869310
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/03/2016 00:26	WG869310
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/03/2016 00:26	WG869310
(S) Toluene-d8	103				90.0-115		05/03/2016 00:26	WG869310
(S) Dibromofluoromethane	102				79.0-121		05/03/2016 00:26	WG869310

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.162		0.0247	0.100	0.100	1	05/02/2016 04:28	WG868891
(S) o-Terphenyl	106				50.0-150		05/02/2016 04:28	WG868891

80.1-120

(S) 4-Bromofluorobenzene

05/03/2016 00:26

WG869310

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:00

L832450

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5450		2.82	10.0	10.0	1	05/04/2016 18:17	WG869816

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	45.6		0.985	0.100	5.00	50	05/05/2016 15:24	WG870055

Wet Chemistry by Method 9012B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00180	0.00500	0.00500	1	05/12/2016 15:22	WG870326

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	907		5.19	1.00	100	100	05/10/2016 18:00	WG869679
Fluoride	1.62		0.00990	0.100	0.100	1	05/10/2016 17:44	WG869679
Sulfate	2890		3.87	5.00	250	50	05/15/2016 18:17	WG871783

Αl

СС

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/03/2016 10:58	WG869159
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:27	WG869207

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00436	J	0.00125	0.00200	0.0100	5	05/07/2016 04:42	WG869289
Arsenic, Dissolved	0.00436	J	0.00125	0.00200	0.0100	5	05/09/2016 11:03	WG870075
Barium	0.0103	J	0.00180	0.00500	0.0250	5	05/07/2016 04:42	WG869289
Barium, Dissolved	0.00939	Ţ	0.00180	0.00500	0.0250	5	05/09/2016 11:03	WG870075
Boron	0.689	V	0.0150	0.0200	0.200	10	05/07/2016 08:45	WG870589
Boron, Dissolved	0.649		0.0150	0.0200	0.200	10	05/09/2016 11:29	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/07/2016 04:42	WG869289
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/09/2016 11:03	WG870075
Calcium	669		0.230	1.00	5.00	5	05/07/2016 04:42	WG869289
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 04:42	WG869289
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:03	WG870075
Cobalt	U		0.00130	0.00200	0.0100	5	05/07/2016 04:42	WG869289
Cobalt,Dissolved	U		0.00130	0.00200	0.0100	5	05/09/2016 11:03	WG870075
Iron	U		0.0750	0.100	0.500	5	05/07/2016 04:42	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:03	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:42	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:03	WG870075
Manganese	U		0.00125	0.00500	0.0250	5	05/07/2016 04:42	WG869289
Manganese,Dissolved	U		0.00125	0.00500	0.0250	5	05/09/2016 11:03	WG870075
Nickel	U		0.00175	0.00200	0.0100	5	05/07/2016 04:42	WG869289
Nickel, Dissolved	U		0.00175	0.00200	0.0100	5	05/09/2016 11:03	WG870075
Potassium	3.72	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 04:42	WG869289
Selenium	0.0370		0.00190	0.00200	0.0100	5	05/07/2016 04:42	WG869289
Selenium, Dissolved	0.0345		0.00190	0.00200	0.0100	5	05/09/2016 11:03	WG870075
Sodium	502		0.550	1.00	5.00	5	05/07/2016 04:42	WG869289

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:00

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.0605		0.00165	0.0100	0.0500	5	05/07/2016 04:42	WG869289
Uranium, Dissolved	0.0588		0.00165	0.0100	0.0500	5	05/09/2016 11:03	WG870075
Vanadium	0.0257		0.000900	0.00500	0.0250	5	05/07/2016 04:42	WG869289
Vanadium, Dissolved	0.0244	J	0.000900	0.00500	0.0250	5	05/09/2016 11:03	WG870075

⁵ Sr

1 (-
`
8 ,
⁸ A
9
S

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/03/2016 00:45	WG869310
Benzene	U		0.000331	0.00100	0.00100	1	05/03/2016 00:45	WG869310
romodichloromethane	U		0.000380	0.00100	0.00100	1	05/03/2016 00:45	WG869310
romoform	U		0.000469	0.00100	0.00100	1	05/03/2016 00:45	WG869310
romomethane	U		0.000866	0.00500	0.00500	1	05/03/2016 00:45	WG869310
-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/03/2016 00:45	WG869310
ec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/03/2016 00:45	WG869310
arbon disulfide	U		0.000275	0.00100	0.00100	1	05/03/2016 00:45	WG869310
arbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/03/2016 00:45	WG869310
hlorobenzene	U		0.000348	0.00100	0.00100	1	05/03/2016 00:45	WG869310
hlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/03/2016 00:45	WG869310
hloroethane	U		0.000453	0.00500	0.00500	1	05/03/2016 00:45	WG869310
hloroform	U		0.000324	0.00500	0.00500	1	05/03/2016 00:45	WG869310
nloromethane	U		0.000321	0.00250	0.00250	1	05/03/2016 00:45	WG869310
2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/03/2016 00:45	WG869310
l-Dichloroethane	U		0.000351	0.00100	0.00100	1	05/03/2016 00:45	WG869310
2-Dichloroethane	U		0.000255	0.00100	0.00100	1	05/03/2016 00:45	WG869310
I-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 00:45	WG869310
s-1,2-Dichloroethene	U		0.000350	0.00100	0.00100	1	05/03/2016 00:45	WG869310
ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/03/2016 00:45	WG869310
2-Dichloropropane	U		0.000336	0.00100	0.00100	1	05/03/2016 00:45	WG869310
s-1,3-Dichloropropene	U		0.000300	0.00100	0.00100	1	05/03/2016 00:45	WG869310
ans-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/03/2016 00:45	WG869310
hylbenzene	U		0.000413	0.00100	0.00100	1	05/03/2016 00:45	WG869310
opropylbenzene	U		0.000384	0.00100	0.00100	1	05/03/2016 00:45	WG869310
Isopropyltoluene	U		0.000320	0.00100	0.00100	1	05/03/2016 00:45	WG869310 WG869310
Butanone (MEK)	U		0.000330	0.00100	0.00100	1	05/03/2016 00:45	WG869310
-Hexanone	U		0.00393	0.0100	0.0100	1	05/03/2016 00:45	WG869310 WG869310
ethylene Chloride	U		0.00382	0.00500	0.00500	1	05/03/2016 00:45	
Methyl-2-pentanone (MIBK)	U		0.00100	0.00300	0.00300	1	05/03/2016 00:45	WG869310 WG869310
ethyl tert-butyl ether	U		0.00214	0.0100	0.0100	1	05/03/2016 00:45	WG869310
	U		0.000307	0.00100	0.00100	1	05/03/2016 00:45	
aphthalene Drandhanzana	U		0.00100	0.00300	0.00500	1	05/03/2016 00:45	WG869310
Propylbenzene								WG869310
tyrene	U		0.000307	0.00100	0.00100	1	05/03/2016 00:45	WG869310
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/03/2016 00:45	WG869310
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/03/2016 00:45	WG869310
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/03/2016 00:45	WG869310
bluene	U		0.000780	0.00500	0.00500	1	05/03/2016 00:45	WG869310
I,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/03/2016 00:45	WG869310
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/03/2016 00:45	WG869310
ichloroethene	U		0.000398	0.00100	0.00100	1	05/03/2016 00:45	WG869310
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/03/2016 00:45	WG869310
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/03/2016 00:45	WG869310
nyl chloride	U		0.000259	0.00100	0.00100	1	05/03/2016 00:45	WG869310
Xylene	U		0.000341	0.00100	0.00100	1	05/03/2016 00:45	WG869310
&p-Xylene	U		0.000719	0.00100	0.00100	1	05/03/2016 00:45	WG869310
ylenes, Total	U		0.00106	0.00300	0.00300	1	05/03/2016 00:45	WG869310
(S) Toluene-d8	102				90.0-115		05/03/2016 00:45	WG869310

MW-71

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/I	mg/l		date / time			
(S) Dibromofluoromethane	102				79.0-121		05/03/2016 00:45	WG869310		
(S) 4-Bromofluorobenzene	98.0				80.1-120		05/03/2016 00:45	WG869310		

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0252	J	0.0247	0.100	0.100	1	05/02/2016 04:46	WG868891
(S) o-Terphenyl	100				50.0-150		05/02/2016 04:46	WG868891

Ss

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	_	mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/02/2016 19:41	WG869310
Benzene	U		0.000331	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Bromoform	U		0.000469	0.00100	0.00100	1	05/02/2016 19:41	WG869310
romomethane	U		0.000866	0.00500	0.00500	1	05/02/2016 19:41	WG869310
-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/02/2016 19:41	WG869310
ec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/02/2016 19:41	WG869310
hlorobenzene	U		0.000348	0.00100	0.00100	1	05/02/2016 19:41	WG869310
hlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/02/2016 19:41	WG869310
hloroethane	U		0.000453	0.00500	0.00500	1	05/02/2016 19:41	WG869310
hloroform	U		0.000324	0.00500	0.00500	1	05/02/2016 19:41	WG869310
hloromethane	U		0.000276	0.00250	0.00250	1	05/02/2016 19:41	WG869310
2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/02/2016 19:41	WG869310
I-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/02/2016 19:41	WG869310
2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/02/2016 19:41	WG869310
-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/02/2016 19:41	WG869310
s-1,2-Dichloroethene	U		0.000330	0.00100	0.00100	1	05/02/2016 19:41	WG869310
ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/02/2016 19:41	WG869310
2-Dichloropropane	U		0.000336	0.00100	0.00100	1	05/02/2016 19:41	WG869310
s-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/02/2016 19:41	WG869310
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/02/2016 19:41	WG869310
hylbenzene	U		0.000384	0.00100	0.00100	1	05/02/2016 19:41	WG869310
ppropylbenzene	U		0.000326	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Butanone (MEK)	U		0.000330	0.0100	0.0100	1	05/02/2016 19:41	WG869310
Hexanone (MER)	U		0.00333	0.0100	0.0100	1	05/02/2016 19:41	WG869310
ethylene Chloride	U		0.00382	0.0100	0.00500	1	05/02/2016 19:41	WG869310 WG869310
Methyl-2-pentanone (MIBK)	U		0.00100	0.00300	0.00300	1	05/02/2016 19:41	WG869310 WG869310
ethyl tert-butyl ether	U		0.00214	0.0100	0.0100		05/02/2016 19:41	WG869310 WG869310
	U		0.000367	0.00100	0.00100	1	05/02/2016 19:41	WG869310 WG869310
aphthalene Propulhenzone	U		0.00100	0.00500	0.00500	1	05/02/2016 19:41	WG869310 WG869310
Propylbenzene	U		0.000349	0.00100	0.00100	1	05/02/2016 19:41	WG869310 WG869310
yrene I,1,2-Tetrachloroethane	U		0.000307			1		
	U			0.00100	0.00100	1	05/02/2016 19:41	WG869310
I,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/02/2016 19:41	WG869310
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/02/2016 19:41	WG869310
oluene	U		0.000780	0.00500	0.00500	1	05/02/2016 19:41	WG869310
I,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/02/2016 19:41	WG869310
,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/02/2016 19:41	WG869310
ichloroethene	U		0.000398	0.00100	0.00100	1	05/02/2016 19:41	WG869310
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/02/2016 19:41	WG869310
8,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/02/2016 19:41	WG869310
nyl chloride	U		0.000259	0.00100	0.00100	1	05/02/2016 19:41	WG869310
Xylene	U		0.000341	0.00100	0.00100	1	05/02/2016 19:41	WG869310
&p-Xylene	U		0.000719	0.00100	0.00100	1	05/02/2016 19:41	WG869310
lenes, Total	U		0.00106	0.00300	0.00300	1	05/02/2016 19:41	WG869310
(S) Toluene-d8	101				90.0-115		05/02/2016 19:41	WG869310
(S) Dibromofluoromethane	99.8				79.0-121		05/02/2016 19:41	WG869310
(S) 4-Bromofluorobenzene	98.1				80.1-120		05/02/2016 19:41	WG869310

Ss

Cn

СС

Gl

Αl

Sc

WG869816 Gravimetric Analysis	s by Method 25	540 C-2011		G	QUALITY	CONTF L832450-01,		MMARY			ONE LAB. NATIONWIDE.	*
Method Blank (M	B)											1 _
(MB) R3134195-1 05/04/	/16 18:17											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Dissolved Solids	U		2.82	10.0								3 C a
L832422-21 Origi	inal Sample ((OS) • Dup	licate (Dl	JP)								³ Ss
(OS) L832422-21 05/04			<u> </u>									[†] Cn
(,	Original Result		Dilution		DUP Qualifier DU	JP RPD Limits						_
Analyte	mg/l	mg/l		%	%							⁵ Sr
Dissolved Solids	3050	3020	1	0.824	5							6
												[°] Qc
Laboratory Contro					ple Duplicate	e (LCSD)						7GI
									DDD	BBB 11 11		
	Spike Amount	LCS Result	LCSD Resu	ilt LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Resu mg/l	llt LCS Rec.	LCSD Rec. %	Rec. Limits %	LCS Qualifier	LCSD Qualifier	КРD %	%		8 Al
Analyte Dissolved Solids	•						LCS Qualifier	LCSD Qualifier				⁸ Al
	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
•	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		
	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		
,	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		
,	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		
,	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		
,	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		
,	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifier	%	%		

WG870055 Wet Chemistry by M				(QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	樂
Method Blank (M	B)											1
(MB) R3134124-1 05/05	,											Ср
, , , , , , , , , , , , , , , , , , , ,	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Nitrate-Nitrite	U		0.0197	0.100								3
L832447-01 Origi	inal Sample (OS) • Dupl	icate (Dl	JP)								Ss 4
(OS) L832447-01 05/05	5/16 15:11 • (DUP) F	R3134124-4 05	/05/16 15:12									Cn
,	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						⁵ Sr
Nitrate-Nitrite	0.125	ND	1	30.0	<u>J P1</u>	20						6
L832460-01 Orig	inal Sample	(OS) • Dupl	licate (DI	UP)								Qc
(OS) L832460-01 05/09	<u> </u>	· / '	,									⁷ GI
()	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						8 Al
Nitrate-Nitrite	0.0420	ND	1	13.0	7	20						9_
Laboratory Contr	ol Sample (L	CS) • Labo	ratory Co	ontrol Sam	nple Duplic	cate (LCSD)						Sc
(LCS) R3134124-2 05/0	5/16 15:08 • (LCSI	O) R3134124-3	05/05/16 15	5:09								
	Spike Amount	LCS Result	LCSD Resu		LCSD Re		LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	5.11	5.04	102	101	90.0-110			1.00	20		
L832447-04 Orig	inal Sample	(OS) • Matr	ix Spike	(MS)								
(OS) L832447-04 05/0	5/16 15:15 • (MS) R	3134124-5 05	/05/16 15:16									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	<u> </u>					
Nitrate-Nitrite	5.00	0.301	5.82	110	1	90.0-110						

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME: 05/16/16 15:20

PAGE:

17 of 48

$\begin{array}{c} {\sf QUALITY} \ \ {\sf CONTROL} \ \ {\sf SUMMARY} \\ {\scriptstyle \underline{{\sf L832450\cdot01,03,04}}} \end{array}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832460-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) 1.832460-07	7 05/05/16 15:37	(MS) D313/13/1-7	05/05/16 15:38	(MSD) R3134124-8	05/05/16 15:39

(00) 2002 100 07 00700 10 10.07 (1110) 1010 112 17 00700 10 10.00 (1110) 112 10 00700 10 10.00													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Nitrate-Nitrite	5.00	0.0400	4.48	4.51	89.0	89.0	1	90.0-110	<u>J6</u>	<u>J6</u>	1.00	20	

												Transfer.
WG870487	1			(QUALIT	Y CONTR	OL SU	MMARY			ONE LAB. NATIONWIDE.	*
Wet Chemistry by	Method 353.2					L832450	-02					
Method Blank (N	√B)											1
(MB) R3135143-5 05/0	9/16 15:16											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								² Tc
Nitrate-Nitrite	U		0.0197	0.100								3
												Ss
L832409-26 Or	iginal Sample	(OS) • Dup	olicate (C	JUP)								4
(OS) L832409-26 05	/09/16 15:25 • (DUP	²) R3135143-8(35/09/16 15	j:31								Cn
	Original Result	. DUP Result	Dilution		DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						Sr
Nitrate-Nitrite	0.377	ND	10	2.00	<u>J</u>	20						_
												⁶ Qc
L832603-23 Or	iainal Sample	(OS) • Dup	olicate (Γ	OUP)								
(OS) L832603-23 05/	· .	. , .	`									⁷ Gl
(00) ===================================	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						8 Al
Nitrate-Nitrite	0.0480	ND	1	143	<u>J P1</u>	20						
												⁹ Sc
Laboratory Con	trol Sample (L	.CS) • Labo	ratory C	ontrol San	nole Duplic	cate (LCSD)						
(LCS) R3135143-6 05/	, ,	,			.p p							
(200),	Spike Amount		LCSD Resu		. LCSD Red	ec. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	4.74	4.74	95.0	95.0	90.0-110			0.000	20		
L832603-22 Or	iginal Sample	(OS) • Mat	rix Snike	≥ (MS)								
(OS) L832603-22 05												
(03) 1032003-22 03		Original Result			Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	% %	Dilutio	%	Qualifier					
Nitrate-Nitrite	5.00	0.0770	4.50	88.0	1	90.0-110	<u>J6</u>					
Mudte-Mine	3.00	0.0770	4.50	00.0	'	30.0-110	30					

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME: 05/16/16 15:20

PAGE:

19 of 48

QUALITY CONTROL SUMMARY L832450-02

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-26 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

OS) L832603-26 05/09/16 16:24 • (MS) R3135143	8-11 05/09/16 16:25 • (MSD) R3135143-12 05/09/16 16:26

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Nitrate-Nitrite	5.00	0.0650	0.407	0.393	7.00	7.00	1	90.0-110	J6	J6	4.00	20	

WG870326 Wet Chemistry by M				(QUALIT	Y CONTR		UMMA	RY			ONE LAB. NATIONWID	E. 🤾
Method Blank (M	1B)												1
(MB) R3136186-1 05/12	2/16 15:17												_ Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									² Tc
Cyanide	0.00294	<u> </u>	0.00180	0.00500									3 Ss
													Ss
L832450-04 Ori	ginal Sample	(OS) • Dup	olicate (D	DUP)									4
(OS) L832450-04 05/1	12/16 15:22 • (DUP)	R3136186-4 0	5/12/16 15:2	23									— Cn
	Original Result	DUP Result	Dilution		DUP Qualifier	DUP RPD Limits							5
Analyte	mg/l	mg/l		%		%							_ ⁵ Sr
Cyanide	U	ND	1	0.000		20							6
													[°] Qc
Laboratory Cont	rol Sample (L	CS) • Labo	ratory C	ontrol San	nple Duplic	cate (LCSD)							7
(LCS) R3136186-2 05/1	12/16 15:18 • (LCSD)) R3136186-3 (05/12/16 15:	19									— GI
	Spike Amount	LCS Result	LCSD Res	ult LCS Rec.	LCSD Re	c. Rec. Limits	LCS Qua	lifier LCSD G	Qualifier RPD	RPD Lim	its		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			⁸ A
Cyanide	0.100	0.0916	0.104	92.0	104	90.0-110			13.0	20			
													⁹ Sc
L832460-08 Ori	ginal Sample	(OS) • Mat	rix Spike	e (MS) • Ma	ntrix Spike	Duplicate (MS	SD)						
(OS) L832460-08 05/1	12/16 15:24 • (MS) F	R3136186-5 05	5/12/16 15:2!	5 • (MSD) R313	6186-6 05/12/	/16 15:26							_
	Spike Amount	Original Result	t MS Result	MSD Resi	ult MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Cyanide	0.200	U	0.00566	0.178	3.00	89.0	1	90.0-110	<u>J6</u>	<u> 13 16</u>	188	20	

WG8696 Wet Chemistry	579 by Method 9056A			(TIJAUÇ	Y CONTR		MMARY			ONE LAB. NATIONWIDE.	¥
Method Blank	k (MB)											1
(MB) R3135625-1	05/10/16 10:22											C
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								² To
Chloride	U		0.0519	1.00								2
Fluoride	U		0.0099	0.100								ss:
L832435-15 (Original Sample ((OS) • Dupl	icate (C	UP)								⁴ C
(OS) L832435-15	05/10/16 11:53 • (DUP) R	3135625-4 05										5
	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						Sı
Analyte	mg/l	mg/l		%		%						
Chloride	17.2	17.3	1	1		15						⁶ Q
Fluoride	0.893	0.943	1	5		15						
I 832453-03	Original Sample	(OS) • Dup	olicate ([OUP)								⁷ G
	original campie,	(00)	,,	, ,								
(OS) L832453-03	05/10/16 18:48 • (DUP) I	R3135625-6 0	15/10/16 19	:36								8
(OS) L832453-03	05/10/16 18:48 • (DUP) Original Result):36 Dup RPD	DUP Qualifier	DUP RPD Limits						⁸ A
(OS) L832453-03 Analyte					DUP Qualifier	DUP RPD Limits						9
	Original Result mg/l 13.4	DUP Result mg/l		DUP RPD	DUP Qualifier	% 15						9
Analyte	Original Result	DUP Result mg/l	Dilution	DUP RPD %	DUP Qualifier	%						⁸ A
Analyte Chloride Fluoride	Original Result mg/l 13.4	t DUP Result mg/l 13.4 0.109	Dilution 1 1	% 0 1		% 15 15						9
Analyte Chloride Fluoride Laboratory Co	Original Result mg/l 13.4 0.108	DUP Result mg/l 13.4 0.109 CS) • Labor	Dilution 1 1 ratory C	DUP RPD % 0 1		% 15 15						9
Analyte Chloride Fluoride Laboratory Co	Original Result mg/l 13.4 0.108 Control Sample (LC	DUP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3	Dilution 1 1 ratory C	DUP RPD % 0 1 Control San 10:54	nple Duplic	% 15 15 cate (LCSD)	LCS Qualifier	LCSD Qualifie	RPD	RPD Limits		9
Analyte Chloride Fluoride Laboratory Co	Original Result mg/l 13.4 0.108 Control Sample (LCC) 2 05/10/16 10:38 • (LCSE)	DUP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3	Dilution 1 1 1 ratory C	DUP RPD % 0 1 Control San 10:54	nple Duplic	% 15 15 cate (LCSD)	LCS Qualifier	LCSD Qualifie	: RPD %	RPD Limits %		9
Analyte Chloride Fluoride Laboratory C. (LCS) R3135625-2 Analyte Chloride	Original Result mg/l 13.4 0.108 Control Sample (LCC) 2 05/10/16 10:38 • (LCSD Spike Amount mg/l 40.0	DIP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l 39.0	Dilution 1 1 1 ratory C 05/10/16 LCSD Res mg/l 39.1	DUP RPD % 0 1 Control San 10:54 Suit LCS Rec. % 98	nple Duplic LCSD Rec % 98	% 15 15 15	LCS Qualifier	LCSD Qualifier	%	% 15		9
Analyte Chloride Fluoride Laboratory C (LCS) R3135625-2 Analyte	Original Result mg/l 13.4 0.108 Control Sample (LC 2 05/10/16 10:38 • (LCSD Spike Amount mg/l	DIP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l	Dilution 1 1 ratory C C CO5/10/16 C LCSD Res mg/l	DUP RPD % 0 1 Control San 10:54 Suit LCS Rec. %	mple Duplic LCSD Rec %	% 15 15 cate (LCSD) c. Rec. Limits %	LCS Qualifier	LCSD Qualifier	%	%		9
Analyte Chloride Fluoride Laboratory Ci (LCS) R3135625-2 Analyte Chloride Fluoride	Original Result mg/l 13.4 0.108 Control Sample (LC) 2 05/10/16 10:38 • (LCSE) Spike Amount mg/l 40.0 8.00	DIP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l 39.0 7.64	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DUP RPD	nple Duplic LCSD Rec % 98	% 15 15 15	LCS Qualifier	LCSD Qualifier	%	% 15		9
Analyte Chloride Fluoride Laboratory Ci (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02	Original Result mg/l 13.4 0.108 Control Sample (LC 05/10/16 10:38 • (LCSD Spike Amount mg/l 40.0 8.00 Original Sample	DIP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l 39.0 7.64 (OS) • Matri	Dilution 1 1 1 ratory C 05/10/16 CCSD Res mg/l 39.1 7.65	DUP RPD % 0 1 10:54 Sult LCS Rec. % 98 95	nple Duplic LCSD Rec % 98	% 15 15 15	LCS Qualifier	LCSD Qualifier	%	% 15		9
Analyte Chloride Fluoride Laboratory Ci (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02	Original Result mg/l 13.4 0.108 Control Sample (LCSE Spike Amount mg/l 40.0 8.00 Original Sample 05/10/16 15:37 • (MS) R	DIP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l 39.0 7.64 (OS) • Matr R3135625-5 05	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DUP RPD % 0 1 10:54 Sult LCS Rec. % 98 95	nple Duplic LCSD Rec % 98 96	% 15 15 15 cate (LCSD) c. Rec. Limits % 80-120 80-120		LCSD Qualifie	%	% 15		9
Analyte Chloride Fluoride Laboratory C. (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02 (OS) L832450-02	Original Result mg/l 13.4 0.108 Control Sample (LCSE Spike Amount mg/l 40.0 8.00 Original Sample 05/10/16 15:37 • (MS) R. Spike Amount	DUP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l 39.0 7.64 (OS) • Matr R3135625-5 05 Original Result	Dilution 1 1 1 1 ratory C 05/10/16 1 LCSD Res mg/l 39.1 7.65 rrix Spik. 5/10/16 15:5	DUP RPD % 0 1 10:54 sult LCS Rec. % 98 95 e (MS) 53 t MS Rec.	nple Duplic LCSD Rec % 98	% 15 15 15 cate (LCSD) c. Rec. Limits % 80-120 80-120 Rec. Limits	LCS Qualifier MS Qualifier	LCSD Qualified	%	% 15		9
Analyte Chloride Fluoride Laboratory Ci (LCS) R3135625-2 Analyte Chloride Fluoride L832450-02	Original Result mg/l 13.4 0.108 Control Sample (LCSE Spike Amount mg/l 40.0 8.00 Original Sample 05/10/16 15:37 • (MS) R	DIP Result mg/l 13.4 0.109 CS) • Labor D) R3135625-3 LCS Result mg/l 39.0 7.64 (OS) • Matr R3135625-5 05	Dilution 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DUP RPD % 0 1 10:54 Sult LCS Rec. % 98 95	nple Duplic LCSD Rec % 98 96	% 15 15 15 cate (LCSD) c. Rec. Limits % 80-120 80-120		LCSD Qualified	%	% 15		9

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/16/16 15:20 PAGE: 22 of 48

QUALITY CONTROL SUMMARY L832450-01,02,03,04

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832453-	01 05/10/16 18:16	(MS) R3135625-7	05/10/16 20:24 · (MSD) R3135625-8	05/10/16 20:40

(OS) L832453-01 O5/10/16 18:16 • (MS) R3135625-7 O5/10/16 20:24 • (MSD) R3135625-8 O5/10/16 20:40												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	6.47	56.7	57.0	101	101	1	80-120			0	15
Fluoride	5.00	0.158	5.05	5.07	98	98	1	80-120			0	15

WG871783 Wet Chemistry by Metl	thod 9056A			(QUALIT	Y CONTF		MMARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)												
(MB) R3136840-1 05/15/16	′											Ср
(112)	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Sulfate	U		0.0774	5.00								3 _
												Ss
L832453-02 Origin		. , .										⁴ Cn
(OS) L832453-02 05/15/16					2110.0 -115	2112 000 11111						CII
Analyte	Original Result	mg/l	Dilution D	M RPD	DUP Qualifier	DUP RPD Limits %						⁵ Sr
Sulfate	121	119	10 1			15						
												⁶ Qc
L832453-03 Origin	nal Sample	(CS) • Dup	licate (D'	UP)								
(OS) L832453-03 05/15/16												⁷ GI
()	Original Result		Dilution [DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ Al
Sulfate	128	125	10 2	2		15						9
												Sc
Laboratory Control		•			nple Duplic	ate (LCSD)						
(LCS) R3136840-2 05/15/10	16 08:44 • (LCSE Spike Amount		05/15/16 08 LCSD Result		. LCSD Rec	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	m LCS Rec.	. LCSD Rec	Rec. Limits	LC3 Qualiner	LC3D Quainier	% %	%		
Sulfate	40.0	39.8	39.7	99	99	80-120			0	15		
L832435-16 Origina	al Sample (OS) • Matri	ix Spike	(MS)								
(OS) L832435-16 05/15/16	15:39 • (MS) R	3136840-4 05/	/15/16 15:53									
	Spike Amount	Original Result	. MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	<u> </u>					
Sulfate	50.0	39.9	88.8	98	1	80-120						

DATE/TIME: 05/16/16 15:20

PAGE: 24 of 48

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY L832450-01,02,03,04

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832453-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832453-01 O5/15/16 19:01 • (MS) R3136840-6	05/15/16 19:15 • (MSD) R3136840-7 05/15/16 19:58
--	--

,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Sulfate	50.0	153	625	625	94	94	10	80-120			0	15

Method Blank (MB Statistical Park MB MB MB MB MB MB MB M	WIDE.
MB Result MB Qualifier mg/l m	1
Marcury Marc	— Ср
Laboratory Control Sample (LCS) * Laboratory Control Sample Duplicate (LCSD) (LCS) R3133255-2 05/03/16 10:28 * (LCSD) R3133255-3 05/03/16 10:31 Spike Amount LCS Result LCSD Result LCSD Result LCS Rec. LCSD Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % Mercury 0.00300 0.00298 0.00292 99 97 80-120 2 20 L832391-01 Original Sample (OS) * Matrix Spike (MS) * Matrix Spike Duplicate (MSD) (OS) L832391-01 05/03/16 10:40 * (MS) R3133255-4 05/03/16 10:43 * (MSD) R3133255-5 05/03/16 10:46 Spike Amount Original Result MS Result MS Result MS Rec. MSD Resc. Dilution Rec. Limits MS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % SR RSUlt MS Resc. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits Analyte MS Qualifier RPD RPD Limits	2
Laboratory Control Sample (LCS) * Laboratory Control Sample Duplicate (LCSD) (LCS) R3133255-2 05/03/16 10:28 * (LCSD) R3133255-3 05/03/16 10:31 Spike Amount LCS Result LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % % % % % % % % % % % % % % %	² Tc
CLCS R3133255-2 O5/O3/16 10:28 • (LCSD) R3133255-3 O5/O3/16 10:31 Spike Amount LCS Result LCSD Qualifier RPD RPD Limits Result Res	³Ss
CLCS R3133255-2 05/03/16 10:28 • (LCSD) R3133255-3 05/03/16 10:31 Spike Amount LCS Result LCSD Qualifier RPD RPD Limits Result Resul	4
Analyte mg/l mg/l mg/l % % % % % % % % % % % % % % % % % % %	— [*] Cn
Mercury 0.00300 0.00298 0.00292 99 97 80-120 2 20 L832391-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832391-01 05/03/16 10:40 • (MS) R3133255-4 05/03/16 10:43 • (MSD) R3133255-5 05/03/16 10:46 Spike Amount Original Result MS Result MSD Result MSD Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % %	
L832391-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832391-01 05/03/16 10:40 • (MS) R3133255-4 05/03/16 10:43 • (MSD) R3133255-5 05/03/16 10:46 Spike Amount Original Result MS Result MSD Result MSD Result MSD Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % %	⁵ Sr
(OS) L832391-01 05/03/16 10:40 • (MS) R3133255-4 05/03/16 10:43 • (MSD) R3133255-5 05/03/16 10:46 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % %	6
(OS) L832391-01 05/03/16 10:40 • (MS) R3133255-4 05/03/16 10:43 • (MSD) R3133255-5 05/03/16 10:46 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % %	[©] Qc
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % %	⁷ Gl
Analyte mg/l mg/l mg/l % % % %	
· · · · · · · · · · · · · · · · · · ·	8 Al
	AI
	⁹ Sc
	SC

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/16/16 15:20 PAGE: 26 of 48

Mercury by Method 7	'470A			QL	JALITY	CONTR L832450-		JMMA	RY			ONE LAB. NATION	IWIDE.
Method Blank (ME													1
(MB) R3133626-1 05/04/	,												Ср
(MB) 1101000221 . 22	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
Mercury,Dissolved	U		0.000049	0.000200									3
Laboratory Contro	ol Sample (L	CS) • Labor	ratory Con [.]	trol Sample	e Duplicate	(LCSD)							Ss 4
(LCS) R3133626-2 05/04	4/16 12:09 • (LCS	D) R3133626-3	05/04/16 12:1	1									—
, ·	Spike Amount		LCSD Result		LCSD Rec.	Rec. Limits	LCS Quali	fier LCSD G	ualifier RPD	RPD Lim	its		E
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			sr
Mercury, Dissolved	0.00300	0.00284	0.00263	95	88	80-120			7	20			
													⁶ Qc
		()			~ :: D	/1.405							G.C.
L832603-17 Origin				•		·))						7
(OS) L832603-17 05/04/													— Í GI
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	0
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	⁸ AI
Mercury, Dissolved	0.00300	U	0.00254	0.00254	85	85	1	75-125			0	20	
													900
													[®] Sc
													[®] Sc
													<u></u> Sc
													[§] Sc
													Sc
													Sc
													[®] Sc
													[®] Sc
													[®] Sc
													[®] Sc
													[§] Sc
													[§] Sc
													[§] Sc
													[§] Sc
													[§] Sc
													[§] Sc
													³ Sc
													[§] Sc
													[§] Sc
													[§] Sc
													³ Sc

DATE/TIME:

05/16/16 15:20

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

PAGE:

27 of 48

QUALITY CONTROL SUMMARY L832450-01,02,03,04

ONE LAB. NATIONWIDE.

Method Blank (MB)

Metals (ICPMS) by Method 6020

Method Blank	(IVID)			
(MB) R3134620-1 05	/07/16 03:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	0.00076		0.00036	0.00500
Cadmium	U		0.00016	0.00100
Calcium	0.1		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	0.0157		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	U		0.00025	0.00500
Nickel	0.000446		0.00035	0.00200
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	0.00102		0.00018	0.00500

ΔI

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134620-2 05/07/	CS) R3134620-2 05/07/16 04:01 • (LCSD) R3134620-3 05/07/16 04:04									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic	0.0500	0.0526	0.0503	105	101	80-120			4	20
Barium	0.0500	0.0527	0.0506	105	101	80-120			4	20
Cadmium	0.0500	0.0549	0.0523	110	105	80-120			5	20
Calcium	5.00	5.44	5.35	109	107	80-120			2	20
Chromium	0.0500	0.0547	0.0516	109	103	80-120			6	20
Cobalt	0.0500	0.0554	0.0523	111	105	80-120			6	20
Iron	5.00	5.33	5.08	107	102	80-120			5	20
Lead	0.0500	0.0541	0.0520	108	104	80-120			4	20
Manganese	0.0500	0.0541	0.0516	108	103	80-120			5	20
Nickel	0.0500	0.0550	0.0543	110	109	80-120			1	20
Potassium	5.00	5.37	5.14	107	103	80-120			4	20
Selenium	0.0500	0.0542	0.0510	108	102	80-120			6	20
Sodium	5.00	5.57	5.26	111	105	80-120			6	20
Uranium	0.0500	0.0543	0.0522	109	104	80-120			4	20
Vanadium	0.0500	0.0548	0.0516	110	103	80-120			6	20

SDG:

DATE/TIME:

GI

Vanadium

QUALITY CONTROL SUMMARY L832450-01,02,03,04

ONE LAB. NATIONWIDE.

20

Metals (ICPMS) by Method 6020

L832409-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-23 05/07/1	6 04:07 • (MS)	R3134620-5 0	5/07/16 04:12 •	(MSD) R31346	20-6 05/07/16	04:15						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00316	0.0614	0.0566	116	107	5	75-125			8	20
Barium	0.0100	3.44	3.70	3.66	519	435	5	75-125	$\underline{\vee}$	\vee	1	20
Cadmium	0.0100	U	0.0577	0.0550	115	110	5	75-125			5	20
Calcium	1.00	130	143	141	254	214	5	75-125	$\underline{\vee}$	\vee	1	20
Chromium	0.0100	U	0.0575	0.0564	115	113	5	75-125			2	20
Cobalt	0.0100	U	0.0579	0.0549	116	110	5	75-125			5	20
Potassium	1.00	1.73	7.52	7.37	116	113	5	75-125			2	20
Iron	1.00	0.328	6.10	5.83	115	110	5	75-125			4	20
Lead	0.0100	U	0.0594	0.0565	119	113	5	75-125			5	20
Manganese	0.0100	0.0363	0.0960	0.0924	120	112	5	75-125			4	20
Nickel	0.0100	0.00359	0.0583	0.0540	109	101	5	75-125			8	20
Selenium	0.0100	0.00207	0.0304	0.0538	57	103	5	75-125	<u>J6</u>	<u>J3</u>	56	20
Sodium	1.00	450	479	469	569	380	5	75-125	$\underline{\vee}$	\vee	2	20
Uranium	0.0100	U	0.0584	0.0575	117	115	5	75-125			2	20

0.0100

0.00763

0.0650

0.0632

115

75-125

WG870075 Metals (ICPMS) by Method 6020

$\begin{array}{c} {\sf QUALITY} \ \ {\sf CONTROL} \ \ {\sf SUMMARY} \\ {\scriptstyle \underline{{\sf L832450\cdot01,03,04}}} \end{array}$

ONE LAB. NATIONWIDE.

Method Blank (MB)

WICTIOG DIGITA (IV	10)			
(MB) R3134963-1 05/09	9/16 10:28			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic, Dissolved	U		0.00025	0.00200
Barium, Dissolved	U		0.00036	0.00500
Cadmium, Dissolved	U		0.00016	0.00100
Chromium, Dissolved	U		0.00054	0.00200
Cobalt, Dissolved	U		0.00026	0.00200
Iron,Dissolved	0.0259		0.015	0.100
Lead,Dissolved	0.000687		0.00024	0.00200
Manganese, Dissolved	0.0003		0.00025	0.00500
Nickel, Dissolved	U		0.00035	0.00200
Selenium, Dissolved	U		0.00038	0.00200
Uranium, Dissolved	U		0.00033	0.0100
Vanadium, Dissolved	0.000218		0.00018	0.00500

Laboratory Control Sample (LC	CS) • Labo	ratory Con	trol Samp	ole Duplicate	(LCSD)
(LCS) R3134963-2 05/09/16 10:30 • (LCSI	D) R3134963-3	05/09/16 10:3	13		
Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic,Dissolved	0.0500	0.0512	0.0534	102	107	80-120			4	20	
Barium, Dissolved	0.0500	0.0517	0.0524	103	105	80-120			1	20	
Cadmium, Dissolved	0.0500	0.0547	0.0572	109	114	80-120			5	20	
Chromium, Dissolved	0.0500	0.0534	0.0550	107	110	80-120			3	20	
Cobalt, Dissolved	0.0500	0.0554	0.0568	111	114	80-120			2	20	
Iron,Dissolved	5.00	5.23	5.38	105	108	80-120			3	20	
Lead, Dissolved	0.0500	0.0524	0.0538	105	108	80-120			3	20	
Manganese, Dissolved	0.0500	0.0518	0.0526	104	105	80-120			1	20	
Nickel, Dissolved	0.0500	0.0553	0.0560	111	112	80-120			1	20	
Selenium, Dissolved	0.0500	0.0506	0.0519	101	104	80-120			2	20	
Uranium,Dissolved	0.0500	0.0516	0.0530	103	106	80-120			3	20	
Vanadium Dissolved	0.0500	0.0522	0.0541	104	108	80-120			4	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832450

DATE/TIME: 05/16/16 15:20

PAGE: 30 of 48 GI

Αl

Sc

$\begin{array}{c} {\sf QUALITY} \ \ {\sf CONTROL} \ \ {\sf SUMMARY} \\ {\scriptstyle \underline{{\sf L832450\cdot01,03,04}}} \end{array}$

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832447-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

RPD Limits
%
20
20
20
20
20
20
20
20
20
20
20
20

WG87058				Ql	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWIDE	*
Metals (ICPMS) b						L832450	0-04						
Method Blank	,												- ¹ Cr
(MB) R3134666-1 05													
A 1 to	MB Result	MB Qualifier	MB MDL	MB RDL									² Tc
Analyte Boron	mg/l U		mg/l 0.0015	mg/l 0.0200									- [
DUIUII	U		0.0015	0.0200									3 Ss
Laboratory Co	ntrol Sample (L	.CS) • Labo	ratory Cor	ntrol Sampl	e Duplicat	e (LCSD)							
(LCS) R3134666-2 C					· ·								− [†] Cr
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	lifier LCSD C		RPD Lim	its		5
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			_ ⁵ Sr
Boron	0.0500	0.0478	0.0491	96	98	80-120			3	20			
													⁶ Q
1022450 04 0	vicinal Campla	(OC) Mat	riv Cniko (1	(1C) Matri	v Cniko Di	·~licato (NAC	רחי						
L832450-04 O	0 1	, ,	, ,	,		, ,	וטס						- ⁷ G
(OS) L832450-04 0													L
A 1 to		Original Resul		MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	40	%	.,		%	%	_ A
Boron	0.00500	0.689	0.704	0.712	31	47	10	75-125	$\underline{\vee}$	$\underline{\vee}$	1	20	
													°Sc

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/16/16 15:20 PAGE: 32 of 48

aboratory Control Sample (LCS) * Laboratory Control Sample Duplicate (LCSD) CS) R3134973-2 05/09/16 10:50 * (LCSD) R3134973-3 05/09/16 10:55 Spike Amount		MR)												-
MB Result MB Qualifier MB MDL mg/l mg/l														
mg/l mg/l	иы) кэтэ чэ лэ-т оэл		MB Qualifier	MB MDL	MB RDL									L
aboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) CS) R3134973-2 05/09/16 10:50 • (LCSD) R3134973-3 05/09/16 10:55 Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits ralyte mg/l mg/l mg/l % % % % Soron,Dissolved 0.0500 0.0484 0.0502 97 100 80-120 4 20 832468-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) OS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:04 Spike Amount Original Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits RPD RPD Limits MSD Qualifier RPD RPD Limits MSD Qualifier RPD RPD Limits MSD Qualifier RPD RPD Limits	nalyte				mg/l									
CS) R3134973-2 05/09/16 10:50 • (LCSD) R3134973-3 05/09/16 10:55 • Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits RPD RPD RPD Limits RPD RPD RPD Limits RPD RPD RPD Limits RPD	oron,Dissolved	U		0.0015	0.0200									
CS) R3134973-2 05/09/16 10:50 • (LCSD) R3134973-3 05/09/16 10:55 • Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits RPD RPD RPD Limits RPD RPD RPD Limits RPD RPD RPD Limits RPD														
Spike Amount LCS Result LCSD Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualiffier LCSD Qualiffier RPD RPD Limits	aboratory Con	trol Sample (Lo	CS) • Labor	atory Con	trol Sample	∍ Duplicat∈	e (LCSD)							
nalyte mg/l mg/l mg/l % % % Soron,Dissolved 0.0500 0.0484 0.0502 97 100 80-120 4 20 832468-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) S) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:04 Spike Amount Original Result MS Result MS Result MS Resc. MSD Resc. Dilution Rec. Limits MS Qualifier RPD RPD Limits mg/l mg/l mg/l mg/l % % %	.CS) R3134973-2 05													
832468-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) SS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:04 Spike Amount Original Result MS Result MSD Result MSD Resc. MSD Rec. Dilution Rec. Limits MSD Qualifier RPD RPD Limits alyte mg/l mg/l mg/l % % %	nalida							LCS Quali	fier LCSบ Q			S		5
832468-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) DS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:14 Spike Amount Original Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits alyte mg/l mg/l mg/l % % %	· ·													
S) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:14 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits alyte mg/l mg/l mg/l % % %	TOII,DISSOIVEG	0.0000	0.0101	0.0302	51	100	00 120				20			6
DS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:14 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits nalyte mg/l mg/l mg/l % % % %														
DS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:14 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits nalyte mg/l mg/l mg/l % % % %	832468-01 Ori	ginal Sample (OS) • Matri	x Spike (M	S) • Matrix	Spike Dup	olicate (MSI	D)						
Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits alyte mg/l mg/l mg/l % % % %							· · · · · · · · · · · · · · · · · · ·							
								Dilution		MS Qualifier	MSD Qualifier	RPD		L
oron,Dissolved 0.00500 0.596 0.642 0.644 92 95 10 75-125 0 20	nalyte	mg/l	mg/l	mg/l	mg/l							%		
	oron,Dissolved	0.00500	0.596	0.642	0.644	92	95	10	75-125			0	20	
														9
														L
														I

DATE/TIME:

05/16/16 15:20

PROJECT: 249545.0000.0000 000

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE:

33 of 48

WG870591

ACCOUNT:

TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY $\frac{1832450\cdot01,02}{}$

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

(MB) R3134082-3 05/04/16 03:33

Volatile Organic Compounds (GC/MS) by Method 8260B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832450

DATE/TIME: 05/16/16 15:20

PAGE: 34 of 48

QUALITY CONTROL SUMMARY $\frac{1832450\cdot01,02}{}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

MB) R3134082-3 05/04/1	6 03:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
etrachloroethene	U		0.000372	0.00100	
oluene	U		0.000780	0.00500	
I,1-Trichloroethane	U		0.000319	0.00100	
1,2-Trichloroethane	U		0.000383	0.00100	
ichloroethene	U		0.000398	0.00100	
2,4-Trimethylbenzene	U		0.000373	0.00100	
3,5-Trimethylbenzene	U		0.000387	0.00100	
nyl chloride	U		0.000259	0.00100	
lenes, Total	U		0.00106	0.00300	
Xylene	U		0.000341	0.00100	
&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	105			90.0-115	
(S) Dibromofluoromethane	107			79.0-121	
(S) 4-Bromofluorobenzene	102			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134082-1 05/04	+/10 U1.39 • (LCSL	J) K3134U8Z-2	2 05/04/16 02:0	JZ							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.192	0.179	153	144	28.7-175			6.59	20.9	
Benzene	0.0250	0.0274	0.0262	109	105	73.0-122			4.31	20	
Bromodichloromethane	0.0250	0.0274	0.0264	110	106	75.5-121			3.92	20	
Bromoform	0.0250	0.0231	0.0218	92.3	87.2	71.5-131			5.65	20	
Bromomethane	0.0250	0.0101	0.00963	40.2	38.5	22.4-187			4.27	20	
n-Butylbenzene	0.0250	0.0325	0.0315	130	126	75.9-134			3.09	20	
sec-Butylbenzene	0.0250	0.0253	0.0250	101	99.9	80.6-126			1.27	20	
Carbon disulfide	0.0250	0.0266	0.0255	107	102	53.0-134			4.36	20	
Carbon tetrachloride	0.0250	0.0243	0.0232	97.3	92.9	70.9-129			4.62	20	
Chlorobenzene	0.0250	0.0250	0.0245	100	97.9	79.7-122			2.23	20	
Chlorodibromomethane	0.0250	0.0235	0.0231	94.0	92.6	78.2-124			1.57	20	
Chloroethane	0.0250	0.0290	0.0280	116	112	41.2-153			3.68	20	
Chloroform	0.0250	0.0277	0.0264	111	106	73.2-125			4.72	20	
Chloromethane	0.0250	0.0240	0.0235	95.9	94.0	55.8-134			2.01	20	
1,2-Dibromoethane	0.0250	0.0254	0.0246	102	98.4	79.8-122			3.16	20	
1,1-Dichloroethane	0.0250	0.0288	0.0273	115	109	71.7-127			5.42	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832450

DATE/TIME: 05/16/16 15:20

PAGE: 35 of 48

GI

QUALITY CONTROL SUMMARY L832450-01,02

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

,		D) R3134082-2									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0298	0.0279	119	112	65.3-126			6.43	20	
1,1-Dichloroethene	0.0250	0.0285	0.0274	114	110	59.9-137			3.86	20	
cis-1,2-Dichloroethene	0.0250	0.0252	0.0239	101	95.8	77.3-122			5.25	20	
trans-1,2-Dichloroethene	0.0250	0.0255	0.0244	102	97.4	72.6-125			4.67	20	
1,2-Dichloropropane	0.0250	0.0292	0.0265	117	106	77.4-125			9.53	20	
cis-1,3-Dichloropropene	0.0250	0.0296	0.0273	118	109	77.7-124			7.88	20	
trans-1,3-Dichloropropene	0.0250	0.0326	0.0304	130	121	73.5-127	<u>J4</u>		7.06	20	
Ethylbenzene	0.0250	0.0250	0.0248	100	99.1	80.9-121			1.00	20	
2-Hexanone	0.125	0.156	0.151	125	121	59.4-151			3.38	20	
Isopropylbenzene	0.0250	0.0249	0.0244	99.7	97.5	81.6-124			2.22	20	
p-Isopropyltoluene	0.0250	0.0249	0.0245	99.6	97.9	77.6-129			1.75	20	
2-Butanone (MEK)	0.125	0.197	0.186	158	149	46.4-155	<u>J4</u>		5.77	20	
Methylene Chloride	0.0250	0.0264	0.0252	106	101	69.5-120			4.44	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.166	0.155	133	124	63.3-138			6.98	20	
Methyl tert-butyl ether	0.0250	0.0284	0.0269	114	108	70.1-125			5.45	20	
Naphthalene	0.0250	0.0265	0.0263	106	105	69.7-134			0.840	20	
n-Propylbenzene	0.0250	0.0262	0.0255	105	102	81.9-122			2.81	20	
Styrene	0.0250	0.0256	0.0252	102	101	79.9-124			1.44	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0235	0.0229	94.1	91.5	78.5-125			2.82	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0277	0.0265	111	106	79.3-123			4.49	20	
Tetrachloroethene	0.0250	0.0217	0.0214	86.9	85.7	73.5-130			1.42	20	
Toluene	0.0250	0.0268	0.0254	107	101	77.9-116			5.47	20	
1,1,1-Trichloroethane	0.0250	0.0248	0.0239	99.1	95.4	71.1-129			3.79	20	
1,1,2-Trichloroethane	0.0250	0.0255	0.0242	102	96.9	81.6-120			5.03	20	
Trichloroethene	0.0250	0.0244	0.0225	97.6	90.0	79.5-121			8.10	20	
1,2,4-Trimethylbenzene	0.0250	0.0242	0.0239	96.9	95.7	79.0-122			1.27	20	
1,3,5-Trimethylbenzene	0.0250	0.0249	0.0244	99.4	97.5	81.0-123			1.93	20	
Vinyl chloride	0.0250	0.0260	0.0249	104	99.8	61.5-134			4.03	20	
Xylenes, Total	0.0750	0.0748	0.0729	99.7	97.2	79.2-122			2.57	20	
o-Xylene	0.0250	0.0245	0.0238	98.1	95.4	79.1-123			2.79	20	
m&p-Xylenes	0.0500	0.0503	0.0490	101	98.1	78.5-122			2.47	20	
(S) Toluene-d8				106	104	90.0-115					
(S) Dibromofluoromethane				105	104	79.0-121					
(S) 4-Bromofluorobenzene				99.4	98.3	80.1-120					

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832450-02 05/04/1	6 05:04 • (MS)	R3134082-4 C	5/04/16 03:56	6 • (MSD) R3134	1082-5 05/0	4/16 04:19						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0915	0.0815	73.2	65.2	1	25.0-156			11.6	21.5
Benzene	0.0250	U	0.0254	0.0224	102	89.6	1	58.6-133			12.6	20
Bromodichloromethane	0.0250	U	0.0252	0.0226	101	90.3	1	69.2-127			10.9	20
Bromoform	0.0250	U	0.0217	0.0203	86.7	81.2	1	66.3-140			6.58	20
Bromomethane	0.0250	U	0.00939	0.00842	37.5	33.7	1	16.6-183			10.9	20.5
n-Butylbenzene	0.0250	U	0.0308	0.0275	123	110	1	64.8-145			11.6	20
sec-Butylbenzene	0.0250	U	0.0241	0.0214	96.2	85.7	1	66.8-139			11.6	20
Carbon disulfide	0.0250	U	0.0214	0.0187	85.5	74.7	1	34.9-138			13.4	20
Carbon tetrachloride	0.0250	U	0.0222	0.0198	88.9	79.2	1	60.6-139			11.5	20
Chlorobenzene	0.0250	U	0.0235	0.0210	94.1	84.1	1	70.1-130			11.2	20
Chlorodibromomethane	0.0250	U	0.0228	0.0199	91.3	79.5	1	71.6-132			13.9	20
Chloroethane	0.0250	U	0.0259	0.0242	104	97.0	1	33.3-155			6.64	20
Chloroform	0.0250	U	0.0265	0.0236	106	94.3	1	66.1-133			11.6	20
Chloromethane	0.0250	U	0.0204	0.0187	81.5	74.7	1	40.7-139			8.68	20
1,2-Dibromoethane	0.0250	U	0.0240	0.0212	96.1	84.8	1	73.8-131			12.5	20
1,1-Dichloroethane	0.0250	U	0.0268	0.0237	107	94.9	1	64.0-134			12.3	20
1,2-Dichloroethane	0.0250	0.000526	0.0287	0.0254	113	99.6	1	60.7-132			12.2	20
1,1-Dichloroethene	0.0250	U	0.0262	0.0227	105	90.9	1	48.8-144			14.1	20
cis-1,2-Dichloroethene	0.0250	U	0.0235	0.0207	93.8	82.8	1	60.6-136			12.5	20
trans-1,2-Dichloroethene	0.0250	U	0.0229	0.0206	91.6	82.2	1	61.0-132			10.7	20
1,2-Dichloropropane	0.0250	U	0.0262	0.0239	105	95.5	1	69.7-130			9.33	20
cis-1,3-Dichloropropene	0.0250	U	0.0259	0.0235	104	94.0	1	71.1-129			9.73	20
trans-1,3-Dichloropropene	0.0250	U	0.0292	0.0263	117	105	1	66.3-136			10.6	20
Ethylbenzene	0.0250	U	0.0234	0.0205	93.5	81.8	1	62.7-136			13.3	20
2-Hexanone	0.125	U	0.131	0.119	105	94.9	1	59.4-154			9.85	20.1
Isopropylbenzene	0.0250	U	0.0238	0.0210	95.1	84.0	1	67.4-136			12.4	20
p-Isopropyltoluene	0.0250	U	0.0238	0.0209	95.2	83.8	1	62.8-143			12.8	20
2-Butanone (MEK)	0.125	U	0.140	0.129	112	103	1	45.0-156			8.09	20.8
Methylene Chloride	0.0250	U	0.0244	0.0218	97.5	87.2	1	61.5-125			11.1	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.160	0.147	128	118	1	60.7-150			8.41	20
Methyl tert-butyl ether	0.0250	0.322	0.301	0.289	0.000	0.000	1	61.4-136	EV	EV	3.96	20
Naphthalene	0.0250	U	0.0258	0.0242	103	96.9	1	61.8-143			6.13	20
n-Propylbenzene	0.0250	U	0.0246	0.0218	98.6	87.2	1	63.2-139			12.3	20
Styrene	0.0250	U	0.0216	0.0187	86.6	75.0	1	68.2-133			14.4	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0227	0.0200	90.7	79.8	1	70.5-132			12.7	20

1,1,2,2-Tetrachloroethane

249545.0000.0000 000

SDG: L832450

64.9-145

DATE/TIME:

20

0.0250

U

0.0277

0.0246

111

98.3

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832450-01,02

L832450-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0202	0.0182	80.6	72.9	1	57.4-141			10.1	20
Toluene	0.0250	U	0.0243	0.0219	97.2	87.7	1	67.8-124			10.3	20
1,1,1-Trichloroethane	0.0250	U	0.0236	0.0210	94.5	83.8	1	58.7-134			11.9	20
1,1,2-Trichloroethane	0.0250	U	0.0245	0.0217	98.2	86.8	1	74.1-130			12.3	20
Trichloroethene	0.0250	U	0.0212	0.0190	84.9	76.2	1	48.9-148			10.8	20
1,2,4-Trimethylbenzene	0.0250	U	0.0232	0.0205	92.7	82.0	1	60.5-137			12.3	20
1,3,5-Trimethylbenzene	0.0250	U	0.0236	0.0209	94.6	83.7	1	67.9-134			12.2	20
Vinyl chloride	0.0250	U	0.0216	0.0194	86.3	77.5	1	44.3-143			10.8	20
Xylenes, Total	0.0750	U	0.0702	0.0622	93.6	82.9	1	65.6-133			12.1	20
o-Xylene	0.0250	U	0.0231	0.0206	92.6	82.5	1	67.1-133			11.5	20
m&p-Xylenes	0.0500	U	0.0470	0.0415	94.1	83.0	1	64.1-133			12.4	20
(S) Toluene-d8					104	105		90.0-115				
(S) Dibromofluoromethane					108	106		79.0-121				
(S) 4-Bromofluorobenzene					100	99.0		80.1-120				

QUALITY CONTROL SUMMARY $\frac{1832450\cdot03,04,05}{}$

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

THE CHOOL BIGHT (IVID)				
(MB) R3133312-3 05/02/16				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000303	0.00100
,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	9		5.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832450

DATE/TIME: 05/16/16 15:20

PAGE: 39 of 48

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

Wethor Blank (WB	/				
(MB) R3133312-3 05/02/16	6 17:59				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	102			90.0-115	
(S) Dibromofluoromethane	98.9			79.0-121	
(S) 4-Bromofluorobenzene	99.6			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133312-1 05/02	LCS) R3133312-1 05/02/16 16:43 • (LCSD) R3133312-2 05/02/16 17:02												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
Acetone	0.125	0.161	0.176	129	141	28.7-175			8.63	20.9			
Benzene	0.0250	0.0254	0.0250	102	100	73.0-122			1.59	20			
Bromodichloromethane	0.0250	0.0240	0.0238	96.0	95.1	75.5-121			0.990	20			
Bromoform	0.0250	0.0241	0.0244	96.4	97.6	71.5-131			1.28	20			
Bromomethane	0.0250	0.0213	0.0205	85.2	81.9	22.4-187			3.89	20			
n-Butylbenzene	0.0250	0.0245	0.0242	97.9	96.8	75.9-134			1.12	20			
sec-Butylbenzene	0.0250	0.0240	0.0235	96.1	94.1	80.6-126			2.13	20			
Carbon disulfide	0.0250	0.0232	0.0226	92.8	90.2	53.0-134			2.75	20			
Carbon tetrachloride	0.0250	0.0244	0.0239	97.4	95.6	70.9-129			1.89	20			
Chlorobenzene	0.0250	0.0243	0.0241	97.1	96.3	79.7-122			0.790	20			
Chlorodibromomethane	0.0250	0.0239	0.0237	95.5	94.9	78.2-124			0.600	20			
Chloroethane	0.0250	0.0231	0.0221	92.5	88.3	41.2-153			4.67	20			
Chloroform	0.0250	0.0248	0.0243	99.1	97.2	73.2-125			1.87	20			
Chloromethane	0.0250	0.0266	0.0263	106	105	55.8-134			0.910	20			
1,2-Dibromoethane	0.0250	0.0237	0.0237	94.7	94.8	79.8-122			0.140	20			
1,1-Dichloroethane	0.0250	0.0263	0.0260	105	104	71.7-127			1.09	20			

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: TRC Solutions - Austin, TX 249545.0000.0000 000 L832450 05/16/16 15:20 40 of 48

QUALITY CONTROL SUMMARY $\frac{1832450\cdot03,04,05}{}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133312-1 05/02/16	6 16:43 • (LCSD)) R3133312-2	05/02/16 17:02								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0237	0.0235	94.7	93.9	65.3-126			0.820	20	
1,1-Dichloroethene	0.0250	0.0235	0.0227	93.9	91.0	59.9-137			3.18	20	
cis-1,2-Dichloroethene	0.0250	0.0251	0.0247	100	98.8	77.3-122			1.63	20	
trans-1,2-Dichloroethene	0.0250	0.0252	0.0243	101	97.3	72.6-125			3.42	20	
1,2-Dichloropropane	0.0250	0.0269	0.0266	108	107	77.4-125			1.09	20	
cis-1,3-Dichloropropene	0.0250	0.0259	0.0256	104	102	77.7-124			1.33	20	
trans-1,3-Dichloropropene	0.0250	0.0256	0.0253	102	101	73.5-127			0.990	20	
Ethylbenzene	0.0250	0.0237	0.0236	94.8	94.5	80.9-121			0.360	20	
2-Hexanone	0.125	0.129	0.137	103	109	59.4-151			5.52	20	
sopropylbenzene	0.0250	0.0231	0.0228	92.5	91.0	81.6-124			1.57	20	
p-Isopropyltoluene	0.0250	0.0242	0.0237	96.8	94.7	77.6-129			2.17	20	
2-Butanone (MEK)	0.125	0.159	0.169	128	135	46.4-155			5.83	20	
Methylene Chloride	0.0250	0.0233	0.0231	93.4	92.4	69.5-120			1.06	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.140	0.143	112	114	63.3-138			2.25	20	
Methyl tert-butyl ether	0.0250	0.0247	0.0246	98.9	98.3	70.1-125			0.600	20	
Naphthalene	0.0250	0.0225	0.0231	89.9	92.5	69.7-134			2.81	20	
n-Propylbenzene	0.0250	0.0241	0.0237	96.2	95.0	81.9-122			1.29	20	
Styrene	0.0250	0.0237	0.0239	94.8	95.8	79.9-124			1.01	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0240	0.0239	96.0	95.6	78.5-125			0.370	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0239	0.0242	95.6	96.6	79.3-123			1.06	20	
Tetrachloroethene	0.0250	0.0245	0.0238	98.2	95.1	73.5-130			3.11	20	
Toluene	0.0250	0.0247	0.0245	98.7	97.9	77.9-116			0.820	20	
1,1,1-Trichloroethane	0.0250	0.0245	0.0240	97.8	96.0	71.1-129			1.92	20	
1,1,2-Trichloroethane	0.0250	0.0243	0.0239	97.3	95.6	81.6-120			1.75	20	
Trichloroethene	0.0250	0.0254	0.0251	102	100	79.5-121			1.14	20	
1,2,4-Trimethylbenzene	0.0250	0.0239	0.0237	95.5	94.6	79.0-122			0.880	20	
1,3,5-Trimethylbenzene	0.0250	0.0237	0.0234	94.8	93.7	81.0-123			1.09	20	
Vinyl chloride	0.0250	0.0239	0.0233	95.7	93.2	61.5-134			2.69	20	
Xylenes, Total	0.0750	0.0718	0.0712	95.8	94.9	79.2-122			0.900	20	
o-Xylene	0.0250	0.0239	0.0239	95.8	95.5	79.1-123			0.350	20	
m&p-Xylenes	0.0500	0.0479	0.0473	95.7	94.6	78.5-122			1.18	20	
(S) Toluene-d8				102	102	90.0-115					
(S) Dibromofluoromethane				102	99.6	79.0-121					
(S) 4-Bromofluorobenzene				96.3	96.2	80.1-120					

PROJECT:

SDG: L832450 DATE/TIME:

PAGE: 41 of 48

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832458-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0189

(OS) L832458-05 05/02/1												
	•	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	ND	0.0660	0.0835	52.8	66.8	1	25.0-156		<u>J3</u>	23.5	21.5
Benzene	0.0250	0.00228	0.0197	0.0228	69.7	81.9	1	58.6-133			14.4	20
Bromodichloromethane	0.0250	ND	0.0190	0.0216	76.1	86.3	1	69.2-127			12.5	20
Bromoform	0.0250	ND	0.0189	0.0217	75.5	86.9	1	66.3-140			14.1	20
Bromomethane	0.0250	ND	0.0111	0.0128	44.4	51.3	1	16.6-183			14.4	20.5
n-Butylbenzene	0.0250	ND	0.0196	0.0217	78.5	86.9	1	64.8-145			10.2	20
sec-Butylbenzene	0.0250	ND	0.0184	0.0203	73.8	81.3	1	66.8-139			9.74	20
Carbon disulfide	0.0250	ND	0.00815	0.00941	32.6	37.7	1	34.9-138	<u>J6</u>		14.4	20
Carbon tetrachloride	0.0250	ND	0.0182	0.0206	72.7	82.5	1	60.6-139			12.6	20
Chlorobenzene	0.0250	ND	0.0181	0.0201	72.6	80.5	1	70.1-130			10.3	20
Chlorodibromomethane	0.0250	ND	0.0187	0.0206	75.0	82.5	1	71.6-132			9.57	20
Chloroethane	0.0250	ND	0.0135	0.0157	53.8	62.6	1	33.3-155			15.1	20
Chloroform	0.0250	ND	0.0197	0.0225	78.9	90.1	1	66.1-133			13.3	20
Chloromethane	0.0250	ND	0.0134	0.0154	53.4	61.5	1	40.7-139			14.0	20
1,2-Dibromoethane	0.0250	ND	0.0176	0.0202	70.4	80.7	1	73.8-131	<u>J6</u>		13.6	20
1,1-Dichloroethane	0.0250	ND	0.0201	0.0230	80.3	92.0	1	64.0-134			13.5	20
1,2-Dichloroethane	0.0250	ND	0.0175	0.0205	70.1	82.0	1	60.7-132			15.7	20
1,1-Dichloroethene	0.0250	ND	0.0153	0.0177	61.3	70.7	1	48.8-144			14.3	20
cis-1,2-Dichloroethene	0.0250	ND	0.0188	0.0213	75.1	85.1	1	60.6-136			12.5	20
trans-1,2-Dichloroethene	0.0250	ND	0.0162	0.0184	64.8	73.6	1	61.0-132			12.8	20
1,2-Dichloropropane	0.0250	ND	0.0214	0.0239	85.4	95.7	1	69.7-130			11.3	20
cis-1,3-Dichloropropene	0.0250	ND	0.0191	0.0222	76.4	89.0	1	71.1-129			15.2	20
trans-1,3-Dichloropropene	0.0250	ND	0.0190	0.0224	76.1	89.7	1	66.3-136			16.5	20
Ethylbenzene	0.0250	ND	0.0178	0.0195	71.4	78.1	1	62.7-136			9.04	20
2-Hexanone	0.125	ND	0.0846	0.106	67.7	84.9	1	59.4-154		<u>J3</u>	22.5	20.1
Isopropylbenzene	0.0250	ND	0.0178	0.0196	71.3	78.2	1	67.4-136			9.22	20
p-Isopropyltoluene	0.0250	ND	0.0184	0.0202	73.4	80.9	1	62.8-143			9.70	20
2-Butanone (MEK)	0.125	ND	0.107	0.135	85.5	108	1	45.0-156		<u>J3</u>	23.4	20.8
Methylene Chloride	0.0250	ND	0.0169	0.0191	67.5	76.4	1	61.5-125			12.5	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.117	0.141	93.3	113	1	60.7-150			19.0	20
Methyl tert-butyl ether	0.0250	ND	0.0190	0.0224	76.1	89.5	1	61.4-136			16.2	20
Naphthalene	0.0250	ND	0.0187	0.0224	74.9	89.5	1	61.8-143			17.7	20
n-Propylbenzene	0.0250	ND	0.0183	0.0203	73.4	81.0	1	63.2-139			9.92	20
Styrene	0.0250	ND	0.0186	0.0200	74.3	80.1	1	68.2-133			7.58	20
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0189	0.0210	75.5	84.0	1	70.5-132			10.7	20

0.0250

ND

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

75.8

90.1

0.0225

SDG: L832450

64.9-145

DATE/TIME: 05/16/16 15:20

17.3

20

PAGE: 42 of 48

QUALITY CONTROL SUMMARY $\frac{1832450\cdot03,04,05}{}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832458-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	ND	0.0168	0.0184	67.1	73.7	1	57.4-141			9.43	20
Toluene	0.0250	ND	0.0189	0.0207	75.6	82.9	1	67.8-124			9.26	20
1,1,1-Trichloroethane	0.0250	ND	0.0187	0.0215	74.9	85.9	1	58.7-134			13.6	20
1,1,2-Trichloroethane	0.0250	ND	0.0244	0.0274	97.4	109	1	74.1-130			11.6	20
Trichloroethene	0.0250	ND	0.0189	0.0211	75.5	84.3	1	48.9-148			11.0	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0180	0.0196	71.9	78.6	1	60.5-137			8.85	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0184	0.0200	71.1	77.7	1	67.9-134			8.69	20
Vinyl chloride	0.0250	ND	0.0131	0.0152	52.6	60.8	1	44.3-143			14.4	20
Xylenes, Total	0.0750	ND	0.0535	0.0590	71.3	78.7	1	65.6-133			9.90	20
o-Xylene	0.0250	ND	0.0181	0.0199	72.5	79.6	1	67.1-133			9.22	20
m&p-Xylenes	0.0500	ND	0.0353	0.0391	70.7	78.3	1	64.1-133			10.3	20
(S) Toluene-d8					104	103		90.0-115				
(S) Dibromofluoromethane					99.1	103		79.0-121				
(S) 4-Bromofluorobenzene					94.8	94.1		80.1-120				

QUALITY CONTROL SUMMARY L832450-02

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134327-3 05/05/16	MB) R3134327-3 05/05/16 21:30							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/l		mg/l	mg/l				
Methyl tert-butyl ether	U		0.000367	0.00100				
(S) Toluene-d8	101			90.0-115				
(S) Dibromofluoromethane	90.6			79.0-121				
(S) 4-Bromofluorobenzene	101			80.1-120				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134327-1 05/05/1	16 20:07 • (LCSI	D) R3134327-2	2 05/05/16 20:	27						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Methyl tert-butyl ether	0.0250	0.0198	0.0205	79.3	81.9	70.1-125			3.31	20
(S) Toluene-d8				102	103	90.0-115				
(S) Dibromofluoromethane				89.9	89.6	79.0-121				
(S) 4-Bromofluorobenzene				102	100	80.1-120				

GI.

L832435-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832435-11 05/06/16 00:09 • (MS) R3134327-4 05/05/16 23:07 • (MSD) R3134327-5 05/05/16 23:28												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Methyl tert-butyl ether	0.0250	U	0.0175	0.0173	69.9	69.3	1	61.4-136			0.850	20
(S) Toluene-d8					102	102		90.0-115				
(S) Dibromofluoromethane					88.4	89.0		79.0-121				
(S) 4-Bromofluorobenzene					101	101		80.1-120				

MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 110 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3132892-2 05/01/16 21:12 • (LCSD) R3132892-3 05/01/16 21:30 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.69 1.60 112 107 5.02 20 (S) o-Terphenyl 114 50.0-150 115 GI Αl

SDG:

L832450

DATE/TIME:

05/16/16 15:20

PROJECT:

249545.0000.0000 000

QUALITY CONTROL SUMMARY

L832450-01,03,04

WG868891

Method Blank (MB) (MB) R3132892-1 05/01/16 20:54

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

ACCOUNT:

TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE.

PAGE:

45 of 48

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

, to bre viations and	
SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

mpany Name/Address:			Billing Inform	mation:		1. J. W.			-		-	Containe	er / Pres	ervative		-		Chain of Custody	00
RC Solutions - Aust	tin, TX		Accoun							200	NO3		111	res	2		42	3 F	1
05 E. Huntland Dr, Ste 250 ustin, TX 78752				iffin Road North sor, CT 06095							- 500mIHDPE-HNO3	212	500mIHDPE-HNO3		Nitrate/Nitrite (NO2NO3) - 250mlHDPE-H2SO4		Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	YOUR LAB	同:第2回
port to:	7 to 15		Email To:			-					300m	аОН	PE-	25ml	DPE		N,P	Mount Juliet, TN 3712 Phone: 615-758-5858 Phone: 800-767-5859	
peer@trcsolutions.com	ion-		ispeer@	City/Stat	P	143/9					9	N-q	Ⅱ	e-11	H		J,Mr	Fax: 615-758-5859	
ect TMD Spring 2016	Spring 2016 - Team F-CJH			Collected	: Ac	tesia, N	M				Mn,S	EAm	000m	Sulfat	250r	10	Fe,Hg	L# L832	Annual Control of the
one: 512-684-3170	Client Project #			TRCA		D SPRING		-BT		5	Fe,Pb,I	250mlHDPEAmb-NaOH	Na-	oride, S	NO3) -	- 250mIHDPE-NoPres	,Co,Cr,	G070	-11/2
lected by (print):	Site/Facility ID		esia	P.O. #				P-HCI	- 40mIAmb-HCI	- 40mlAmb-HC	3a,Cr,	-250	Ca, K	de, Flu	(NO2	IDPE-	Ba,Cd	Acctnum: TRC Template: T11	1389
llected by (signature):	Rush? (L	ab MUST Be			Date Re	esults Needed		IAm	IAm	mIA	As,E	(N)	otal	lori	trite	HIII.	As,B,	Prelogin: P54	9617 McCord
Scott Udl	Same I	ay	200% 100% 50% 25%	- 1.65(2)		_NoYes	No. of	0 - 40mIAmb-HCI-BT	D - 40m	60 - 40	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	Cyanide (CN)	Cations-Total Ca, K,	ions-Cl	rate/Ni	18 - 250	Tot/Diss. /	Cooler: Shipped Via:	MCCOrd
scked on Ice N Y Sample ID	Comp Grab	Matrix *	Depth	D	ate	Time	Cntrs	DRO	GRO	V8260	Tot	S	Ca	An	ž	TDS	2	Rem./Contaminant	Sample # (lab only
MW-20	1	GW	9	4/2	8116	1135	10	/		/	1		V	V	V	V		150	
NP-1		1		4/2	8/16	1045	- 6			V		Z	V	1	V	V			00
MW-68		i i	The last	4/2	8/16	950	16	/		1	1		V	1	V	V		4	0
MW-71		100		4/2	8/16	900	11	1		1		V	V	V	1	V	V		OL
Trip Blank-TMD	-01	1		-	28/16		1	100		/					_		-		
Trip Giang 1	101 4	-			10	AF.		部		1		180		100				2 0 0	Control of
A 4	Theorem ?				Ú.	4 145						1	-			100			AND DESCRIPTION
			-500			1 44		100				-	13		1	-			1000000
	H BE	- Control		3 42				18		100	12	-			-			100 30	and the same of
			1	E .	14		1	100		132					-		101	12.	.18
Matrix: SS - Soil GW - Groundwate	a Manay Waste	Water DW	Drinking W	ater OT - 0	Other						pН		Te	emp		- 4	4	313703	840
Remarks: Log all metals by											Flow		_ 0	ther	4	-	Hold #		
Remarks: Log all metals by	0020. Diss	Date: \	100	Time:	64 20	Received by: (Si	gnature)	46						a: 🗆 u		3.3	Conditi	on: (la	b use only)
< to the	1	41	28/16	141	5		100	ARR.			100000			urier Bottles		d:			(30
Relinquished by : (Signature)	re) Date: Time: Received by: (Signa			gna;ure	人			Tem	1		38	1	1	coc s	eal Intact:Y	NNA			
Palinguished by (Cinnatura)	puiched by '(Signature) Date: Time: Pecrivad for lab by				by (Sig	nature)	0	NAME OF	Date	1 1		Time:			pH Che		CF:		
reiindnizuea ph : faiRiermeh	equished by (Signature)				9	4	un.	·MC	14	29	16	00	200		2	711			

ANALYTICAL REPORT

TRC Solutions - Austin, TX

Sample Delivery Group: L832460

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: TEL Spring 2016

Site: TEL - NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth J men

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	6
⁵ Sr: Sample Results	7
TEL-3 L832460-01	7
EB-TEL-01 L832460-02	9
TEL-2 L832460-03	11
TRIP BLANK-TEL-01 L832460-04	13
TEL-1 L832460-05	14
TEL-4 L832460-06	16
DUP-TEL-01 L832460-07	18
MW-49 L832460-08	20
⁶ Qc: Quality Control Summary	23
Gravimetric Analysis by Method 2540 C-2011	23
Wet Chemistry by Method 353.2	24
Wet Chemistry by Method 9012B	26
Wet Chemistry by Method 9056A	27
Mercury by Method 7470A	30
Metals (ICPMS) by Method 6020	32
Volatile Organic Compounds (GC) by Method 8015D/GRO	38
Volatile Organic Compounds (GC/MS) by Method 8260B	40
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	51
⁷ Gl: Glossary of Terms	52
⁸ Al: Accreditations & Locations	53

⁹Sc: Chain of Custody

54

SAMPLE SUMMARY

ONE	IΔR	NATIC	DNWIDI

TEL-3 L832460-01 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 10:30	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/05/16 21:28	LAT
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/06/16 13:35	LAT
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 04:44	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	5	05/02/16 21:06	05/04/16 14:32	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 01:40	05/06/16 01:40	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	25	05/04/16 08:24	05/04/16 08:24	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:26	05/05/16 15:26	DR
Wet Chemistry by Method 9056A	WG869680	20	05/09/16 17:22	05/09/16 17:22	CM
Wet Chemistry by Method 9056A	WG871228	1	05/10/16 22:42	05/10/16 22:42	SAM
Wet Chemistry by Method 9056A	WG871228	10	05/11/16 09:08	05/11/16 09:08	SAM
EB-TEL-01 L832460-02 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 10:45	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869245	1	05/03/16 10:57	05/07/16 11:39	LAT
Metals (ICPMS) by Method 6020	WG869289	1	05/04/16 12:26	05/07/16 04:47	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 06:29	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 04:50	05/05/16 04:50	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 08:03	05/04/16 08:03	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:29	05/05/16 15:29	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 04:20	05/09/16 04:20	CM
TEL-2 L832460-03 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 09:40	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/05/16 21:34	LAT
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/06/16 13:58	LAT
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 04:50	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	20	05/02/16 21:06	05/05/16 22:15	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 02:03	05/06/16 02:03	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870445	1	05/06/16 12:15	05/06/16 12:15	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870646	20	05/07/16 03:10	05/07/16 03:10	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:34	05/05/16 15:34	DR
• •					
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 04:51	05/09/16 04:51	CM

TRIP BLANK-TEL-01 L832460-04 GW

Volatile Organic Compounds (GC/MS) by Method 8260B

Method

Batch

WG868987

Collected by

Preparation

05/04/16 07:21

date/time

Dilution

SU / HM1 Team

Collected date/time

04/28/16 00:00

Analysis

date/time

05/04/16 07:21

Received date/time

Analyst

BMB

04/29/16 09:00

TEL-1 L832460-05 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 08:55	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
Cravimatria Analysis by Mathad 2E40 C 2011	WG869818	1	date/time 05/04/16 18:18	date/time 05/04/16 18:59	MMF
Gravimetric Analysis by Method 2540 C-2011	WG869818 WG869245	1 5	05/04/16 18:18	05/05/16 21:42	LAT
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/06/16 14:01	LAT
Metals (ICPMS) by Method 6020					JDG
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 04:52	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 16:59	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 05:55	05/05/16 05:55	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 09:06	05/04/16 09:06	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:35	05/05/16 15:35	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 05:22	05/09/16 05:22	CM
Wet Chemistry by Method 9056A	WG869680	50	05/09/16 05:37	05/09/16 05:37	CM
			Collected by SU / HM1 Team	Collected date/time 04/28/16 07:55	Received date/time
TEL-4 L832460-06 GW	Datab	Dilution			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/05/16 21:44	LAT
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/06/16 14:03	LAT
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 04:55	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 17:16	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 02:26	05/06/16 02:26	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	10	05/04/16 09:27	05/04/16 09:27	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:36	05/05/16 15:36	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 05:53	05/09/16 05:53	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 06:08	05/09/16 06:08	CM
DUP-TEL-01 L832460-07 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 10:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/05/16 21:47	LAT
Metals (ICPMS) by Method 6020	WG869245	5	05/03/16 10:57	05/06/16 14:06	LAT
Metals (ICPMS) by Method 6020	WG869289	5	05/04/16 12:26	05/07/16 05:03	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 17:33	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 02:49	05/06/16 02:49	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	10	05/04/16 09:48	05/04/16 09:48	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:37	05/05/16 15:37	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 06:54	05/09/16 06:54	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 07:10	05/09/16 07:10	CM
MW-49 L832460-08 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 10:10	Received date/time 04/29/16 09:00
	D-1.1	D:1 ::	Duran austi	Analysis	Α
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Mercury by Method 7470A	WG869159	1	05/02/16 11:44	05/03/16 11:01	NJB
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:34	NJB
		10	05/03/16 10:57	05/11/16 11:55	JDG
Metals (ICPMS) by Method 6020	WG869245	10			
Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG869245 WG869245 WG869245	5 5	05/03/16 10:57 05/03/16 10:57	05/05/16 21:50 05/06/16 14:09	LAT LAT

SAMPLE SUMMARY

Collected by

Collected date/time

Received date/time

MW-49 L832460-08 GW			SU / HM1 Team	04/28/16 10:10	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 09:14	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 17:49	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 03:12	05/06/16 03:12	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	20	05/04/16 10:09	05/04/16 10:09	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:40	05/05/16 15:40	DR
Wet Chemistry by Method 9012B	WG870326	1	05/06/16 12:26	05/12/16 15:24	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 07:25	05/09/16 07:25	CM
Wet Chemistry by Method 9056A	WG869680	20	05/09/16 17:53	05/09/16 17:53	CM

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2900		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0420	J	0.0197	0.100	0.100	1	05/05/2016 15:26	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	585		0.519	1.00	10.0	10	05/11/2016 09:08	WG871228
Fluoride	2.71		0.00990	0.100	0.100	1	05/10/2016 22:42	WG871228
Sulfate	622		1.55	5.00	100	20	05/09/2016 17:22	WG869680

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00876	J	0.00125	0.00200	0.0100	5	05/07/2016 04:44	WG869289
Arsenic,Dissolved	0.00979	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 21:28	WG869245
Barium	0.0208	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 04:44	WG869289
Barium,Dissolved	0.0234	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 13:35	WG869245
Calcium	473		0.230	1.00	5.00	5	05/07/2016 04:44	WG869289
Chromium	0.0269		0.00270	0.00200	0.0100	5	05/07/2016 04:44	WG869289
Chromium, Dissolved	0.00350	<u>J</u>	0.00270	0.00200	0.0100	5	05/05/2016 21:28	WG869245
Iron	0.171	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 04:44	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 21:28	WG869245
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:44	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 21:28	WG869245
Manganese	0.00661	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 04:44	WG869289
Manganese,Dissolved	0.00813	<u>J</u>	0.00125	0.00500	0.0250	5	05/05/2016 21:28	WG869245
Potassium	7.31		0.185	1.00	5.00	5	05/07/2016 04:44	WG869289
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 04:44	WG869289
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:28	WG869245
Sodium	364		0.550	1.00	5.00	5	05/07/2016 04:44	WG869289

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.05		0.0314	0.100	0.100	1	05/06/2016 01:40	WG870384
(S) a,a,a-Trifluorotoluene(FID)	92.2				62.0-128		05/06/2016 01:40	WG870384

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.250	0.0500	1.25	25	05/04/2016 08:24	WG868987
Benzene	0.317		0.00828	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Bromodichloromethane	U		0.00950	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Bromoform	U		0.0117	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Bromomethane	U		0.0216	0.00500	0.125	25	05/04/2016 08:24	WG868987
n-Butylbenzene	U		0.00902	0.00100	0.0250	25	05/04/2016 08:24	WG868987
sec-Butylbenzene	0.0108	<u>J</u>	0.00912	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Carbon disulfide	U		0.00688	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Carbon tetrachloride	U		0.00948	0.00100	0.0250	25	05/04/2016 08:24	WG868987

Collected date/time: 04/28/16 10:30

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.	
----------------------	--

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00870	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Chlorodibromomethane	U		0.00818	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Chloroethane	U		0.0113	0.00500	0.125	25	05/04/2016 08:24	WG868987
Chloroform	U		0.00810	0.00500	0.125	25	05/04/2016 08:24	WG868987
Chloromethane	U		0.00690	0.00250	0.0625	25	05/04/2016 08:24	WG868987
1,2-Dibromoethane	U		0.00952	0.00100	0.0250	25	05/04/2016 08:24	WG868987
I,1-Dichloroethane	U		0.00648	0.00100	0.0250	25	05/04/2016 08:24	WG868987
1,2-Dichloroethane	U		0.00902	0.00100	0.0250	25	05/04/2016 08:24	WG868987
I,1-Dichloroethene	U		0.00995	0.00100	0.0250	25	05/04/2016 08:24	WG868987
cis-1,2-Dichloroethene	U		0.00650	0.00100	0.0250	25	05/04/2016 08:24	WG868987
rans-1,2-Dichloroethene	U		0.00990	0.00100	0.0250	25	05/04/2016 08:24	WG868987
,2-Dichloropropane	U		0.00765	0.00100	0.0250	25	05/04/2016 08:24	WG868987
cis-1,3-Dichloropropene	U		0.0104	0.00100	0.0250	25	05/04/2016 08:24	WG868987
rans-1,3-Dichloropropene	U		0.0105	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Ethylbenzene	U		0.00960	0.00100	0.0250	25	05/04/2016 08:24	WG868987
sopropylbenzene	0.0593		0.00815	0.00100	0.0250	25	05/04/2016 08:24	WG868987
o-Isopropyltoluene	U		0.00875	0.00100	0.0250	25	05/04/2016 08:24	WG868987
-Butanone (MEK)	U		0.0982	0.0100	0.250	25	05/04/2016 08:24	WG868987
2-Hexanone	U		0.0955	0.0100	0.250	25	05/04/2016 08:24	WG868987
Methylene Chloride	U		0.0250	0.00500	0.125	25	05/04/2016 08:24	WG868987
I-Methyl-2-pentanone (MIBK)	U		0.0535	0.0100	0.250	25	05/04/2016 08:24	WG868987
Methyl tert-butyl ether	0.0445		0.00918	0.00100	0.0250	25	05/04/2016 08:24	WG868987
laphthalene	U		0.0250	0.00500	0.125	25	05/04/2016 08:24	WG868987
n-Propylbenzene	U		0.00872	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Styrene	U		0.00768	0.00100	0.0250	25	05/04/2016 08:24	WG868987
,1,1,2-Tetrachloroethane	U		0.00962	0.00100	0.0250	25	05/04/2016 08:24	WG868987
,1,2,2-Tetrachloroethane	U		0.00325	0.00100	0.0250	25	05/04/2016 08:24	WG868987
etrachloroethene	U		0.00930	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Toluene	U		0.0195	0.00500	0.125	25	05/04/2016 08:24	WG868987
,1,1-Trichloroethane	U		0.00798	0.00100	0.0250	25	05/04/2016 08:24	WG868987
,1,2-Trichloroethane	U		0.00958	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Frichloroethene	U		0.00995	0.00100	0.0250	25	05/04/2016 08:24	WG868987
,2,4-Trimethylbenzene	0.0128	J	0.00932	0.00100	0.0250	25	05/04/2016 08:24	WG868987
,3,5-Trimethylbenzene	U	_	0.00968	0.00100	0.0250	25	05/04/2016 08:24	WG868987
/inyl chloride	U		0.00648	0.00100	0.0250	25	05/04/2016 08:24	WG868987
o-Xylene	U		0.00852	0.00100	0.0250	25	05/04/2016 08:24	WG868987
n&p-Xylene	U		0.0180	0.00100	0.0250	25	05/04/2016 08:24	WG868987
Kylenes, Total	U		0.0265	0.00300	0.0750	25	05/04/2016 08:24	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 08:24	WG868987
(S) Dibromofluoromethane	104				79.0-121		05/04/2016 08:24	WG868987
(S) 4-Bromofluorobenzene	103				80.1-120		05/04/2016 08:24	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	14.1		0.124	0.100	0.500	5	05/04/2016 14:32	WG869259
(S) o-Terphenyl	121				50.0-150		05/04/2016 14:32	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	U		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.114		0.0197	0.100	0.100	1	05/05/2016 15:29	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	0.0574	<u>J</u>	0.0519	1.00	1.00	1	05/09/2016 04:20	WG869680
Fluoride	U		0.00990	0.100	0.100	1	05/09/2016 04:20	WG869680
Sulfate	U		0.0774	5.00	5.00	1	05/09/2016 04:20	WG869680

Metals (ICPMS) by Method 6020

Analyte	Result mg/l	Qualifier	SDL	Unadj. MQL	MOL	Dilution	A b t-	D
Analyte	mg/l			Ondaj. Mal	MQL	Dilution	Analysis	Batch
			mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.000250	0.00200	0.00200	1	05/07/2016 04:47	WG869289
Arsenic,Dissolved	U		0.000250	0.00200	0.00200	1	05/07/2016 11:39	WG869245
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 04:47	WG869289
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 11:39	WG869245
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 04:47	WG869289
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 04:47	WG869289
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/07/2016 11:39	WG869245
ron	U		0.0150	0.100	0.100	1	05/07/2016 04:47	WG869289
ron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 11:39	WG869245
.ead	U		0.000240	0.00200	0.00200	1	05/07/2016 04:47	WG869289
.ead,Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 11:39	WG869245
Manganese	U		0.000250	0.00500	0.00500	1	05/07/2016 04:47	WG869289
Manganese,Dissolved	0.000433	J	0.000250	0.00500	0.00500	1	05/07/2016 11:39	WG869245
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 04:47	WG869289
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 04:47	WG869289
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 11:39	WG869245
Sodium	0.193	J	0.110	1.00	1.00	1	05/07/2016 04:47	WG869289

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/05/2016 04:50	WG869044
(S) a,a,a-Trifluorotoluene(FID)	99.4				62.0-128		05/05/2016 04:50	WG869044

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U	<u>J3</u>	0.0100	0.0500	0.0500	1	05/04/2016 08:03	WG868987
Benzene	U	<u>J3</u>	0.000331	0.00100	0.00100	1	05/04/2016 08:03	WG868987
Bromodichloromethane	U	<u>J3</u>	0.000380	0.00100	0.00100	1	05/04/2016 08:03	WG868987
Bromoform	U	<u>J3</u>	0.000469	0.00100	0.00100	1	05/04/2016 08:03	WG868987
Bromomethane	U	<u>J3</u>	0.000866	0.00500	0.00500	1	05/04/2016 08:03	WG868987
n-Butylbenzene	U	<u>J3</u>	0.000361	0.00100	0.00100	1	05/04/2016 08:03	WG868987
sec-Butylbenzene	U	<u>J3</u>	0.000365	0.00100	0.00100	1	05/04/2016 08:03	WG868987
Carbon disulfide	U	<u>J3</u>	0.000275	0.00100	0.00100	1	05/04/2016 08:03	WG868987
Carbon tetrachloride	U	<u>J3</u>	0.000379	0.00100	0.00100	1	05/04/2016 08:03	WG868987

Ss

Naphthalene

Styrene

Toluene

n-Propylbenzene

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/	ollected date/time: 04/28/16 10:45						L832460						
Volatile Organic Com	pounds (GC	/MS) by Me	ethod 8260	B					4				
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch					
Analyte	mg/l		mg/l	mg/l	mg/l		date / time						
Chlorobenzene	U	<u>J3</u>	0.000348	0.00100	0.00100	1	05/04/2016 08:03	WG868987	² _T				
Chlorodibromomethane	U	<u>J3</u>	0.000327	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
Chloroethane	U	<u>J3</u>	0.000453	0.00500	0.00500	1	05/04/2016 08:03	WG868987	3 _				
Chloroform	0.000943	<u>J J3</u>	0.000324	0.00500	0.00500	1	05/04/2016 08:03	WG868987	3 5				
Chloromethane	U	<u>J3</u>	0.000276	0.00250	0.00250	1	05/04/2016 08:03	WG868987					
1,2-Dibromoethane	U	<u>J3</u>	0.000381	0.00100	0.00100	1	05/04/2016 08:03	WG868987	4				
1,1-Dichloroethane	U	<u>J3</u>	0.000259	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
1,2-Dichloroethane	U	<u>J3</u>	0.000361	0.00100	0.00100	1	05/04/2016 08:03	WG868987	5 _				
1,1-Dichloroethene	U	<u>J3</u>	0.000398	0.00100	0.00100	1	05/04/2016 08:03	WG868987	5				
cis-1,2-Dichloroethene	U	<u>J3</u>	0.000260	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
trans-1,2-Dichloroethene	U	<u>J3</u>	0.000396	0.00100	0.00100	1	05/04/2016 08:03	WG868987	6				
1,2-Dichloropropane	U	<u>J3</u>	0.000306	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
cis-1,3-Dichloropropene	U	<u>J3</u>	0.000418	0.00100	0.00100	1	05/04/2016 08:03	WG868987	7				
trans-1,3-Dichloropropene	U	<u>J3</u>	0.000419	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
Ethylbenzene	U	<u>J3</u>	0.000384	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
Isopropylbenzene	U	<u>J3</u>	0.000326	0.00100	0.00100	1	05/04/2016 08:03	WG868987	8				
p-Isopropyltoluene	U	<u>J3</u>	0.000350	0.00100	0.00100	1	05/04/2016 08:03	WG868987					
2-Butanone (MEK)	U	<u>J3</u>	0.00393	0.0100	0.0100	1	05/04/2016 08:03	WG868987	9_				
2-Hexanone	U	<u>J3</u>	0.00382	0.0100	0.0100	1	05/04/2016 08:03	WG868987	9 5				
Methylene Chloride	U	<u>J3</u>	0.00100	0.00500	0.00500	1	05/04/2016 08:03	WG868987					
4-Methyl-2-pentanone (MIBK)	U	<u>J3</u>	0.00214	0.0100	0.0100	1	05/04/2016 08:03	WG868987					
Methyl tert-butyl ether	U	<u>J3</u>	0.000367	0.00100	0.00100	1	05/04/2016 08:03	WG868987					

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

05/04/2016 08:03

WG868987

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

104

105

104

<u>J3</u>

0.00100

0.000349

0.000307

0.000385

0.000130

0.000372

0.000780

0.000319

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.165		0.0247	0.100	0.100	1	05/04/2016 06:29	WG869259
(S) o-Terphenyl	104				50.0-150		05/04/2016 06:29	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:40

1832460

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2720		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0460	J	0.0197	0.100	0.100	1	05/05/2016 15:34	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	344		1.04	1.00	20.0	20	05/09/2016 17:38	WG869680
Fluoride	1.08		0.00990	0.100	0.100	1	05/09/2016 04:51	WG869680
Sulfate	825		1.55	5.00	100	20	05/09/2016 17:38	WG869680

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0101		0.00125	0.00200	0.0100	5	05/07/2016 04:50	WG869289
Arsenic, Dissolved	0.0120		0.00125	0.00200	0.0100	5	05/05/2016 21:34	WG869245
Barium	0.127		0.00180	0.00500	0.0250	5	05/07/2016 04:50	WG869289
Barium, Dissolved	0.0483		0.00180	0.00500	0.0250	5	05/06/2016 13:58	WG869245
Calcium	224		0.230	1.00	5.00	5	05/07/2016 04:50	WG869289
Chromium	0.00303	<u>J</u>	0.00270	0.00200	0.0100	5	05/07/2016 04:50	WG869289
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 21:34	WG869245
Iron	U		0.0750	0.100	0.500	5	05/07/2016 04:50	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 21:34	WG869245
Lead	0.00131	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 04:50	WG869289
Lead, Dissolved	0.00137	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 21:34	WG869245
Manganese	0.0212	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 04:50	WG869289
Manganese, Dissolved	0.0224	<u>J</u>	0.00125	0.00500	0.0250	5	05/05/2016 21:34	WG869245
Potassium	0.954	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 04:50	WG869289
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 04:50	WG869289
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:34	WG869245
Sodium	419		0.550	1.00	5.00	5	05/07/2016 04:50	WG869289

⁴Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	3.12		0.0314	0.100	0.100	1	05/06/2016 02:03	WG870384
(S) a,a,a-Trifluorotoluene(FID)	91.8				62.0-128		05/06/2016 02:03	WG870384

³Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	• •							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/06/2016 12:15	WG870445
Benzene	0.709		0.00662	0.00100	0.0200	20	05/07/2016 03:10	WG870646
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Bromoform	U		0.000469	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Bromomethane	U		0.000866	0.00500	0.00500	1	05/06/2016 12:15	WG870445
n-Butylbenzene	0.00424		0.000361	0.00100	0.00100	1	05/06/2016 12:15	WG870445
sec-Butylbenzene	0.00662		0.000365	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Carbon disulfide	0.00124		0.000275	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/06/2016 12:15	WG870445

Collected date/time: 04/28/16 09:40

L832460

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Gl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Chloroethane	U		0.000453	0.00500	0.00500	1	05/06/2016 12:15	WG870445
Chloroform	U		0.000324	0.00500	0.00500	1	05/06/2016 12:15	WG870445
Chloromethane	U		0.000276	0.00250	0.00250	1	05/06/2016 12:15	WG870445
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 12:15	WG870445
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/06/2016 12:15	WG870445
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/06/2016 12:15	WG870445
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/06/2016 12:15	WG870445
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Ethylbenzene	0.00692		0.000384	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Isopropylbenzene	0.0380		0.000326	0.00100	0.00100	1	05/06/2016 12:15	WG870445
p-Isopropyltoluene	0.00438		0.000350	0.00100	0.00100	1	05/06/2016 12:15	WG870445
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/06/2016 12:15	WG870445
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/06/2016 12:15	WG870445
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/06/2016 12:15	WG870445
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/06/2016 12:15	WG870445
Methyl tert-butyl ether	0.0156		0.000367	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Naphthalene	0.00966		0.00100	0.00500	0.00500	1	05/06/2016 12:15	WG870445
n-Propylbenzene	0.0484		0.000349	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Styrene	U		0.000307	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Toluene	0.0243		0.000780	0.00500	0.00500	1	05/06/2016 12:15	WG870445
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,2,4-Trimethylbenzene	0.125		0.000373	0.00100	0.00100	1	05/06/2016 12:15	WG870445
1,3,5-Trimethylbenzene	0.0143		0.000387	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/06/2016 12:15	WG870445
o-Xylene	0.0102		0.000341	0.00100	0.00100	1	05/06/2016 12:15	WG870445
m&p-Xylene	0.136		0.000719	0.00100	0.00100	1	05/06/2016 12:15	WG870445
Xylenes, Total	0.146		0.00106	0.00300	0.00300	1	05/06/2016 12:15	WG870445
(S) Toluene-d8	106				90.0-115		05/06/2016 12:15	WG870445
(S) Toluene-d8	101				90.0-115		05/07/2016 03:10	WG870646
(S) Dibromofluoromethane	97.9				79.0-121		05/07/2016 03:10	WG870646
(S) Dibromofluoromethane	114				79.0-121		05/06/2016 12:15	WG870445
(S) 4-Bromofluorobenzene	100				80.1-120		05/06/2016 12:15	WG870445
(0) 4.0	07.0				00 4 400		05/07/0040 00 40	1110070010

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

87.9

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	18.1		0.494	0.100	2.00	20	05/05/2016 22:15	WG869259
(S) o-Terphenyl	130	<u>J7</u>			50.0-150		05/05/2016 22:15	WG869259

(S) 4-Bromofluorobenzene

80.1-120

05/07/2016 03:10

WG870646

Collected date/time: 04/28/16 00:00

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

L832460

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 07:21	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 07:21	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 07:21	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 07:21	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 07:21	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 07:21	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:21	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 07:21	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 07:21	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 07:21	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 07:21	WG868987
p-lsopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 07:21	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 07:21	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 07:21	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 07:21	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 07:21	WG868987
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 07:21	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 07:21	WG868987
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 07:21	WG868987
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 07:21	WG868987
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 07:21	WG868987
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 07:21	WG868987
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 07:21	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 07:21	WG868987
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 07:21	WG868987

Тс

Ss

Cn

СС

Gl

Αl

³Sc

106

(S) 4-Bromofluorobenzene

80.1-120

05/04/2016 07:21

WG868987

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 08:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2570		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0380	J	0.0197	0.100	0.100	1	05/05/2016 15:35	WG870055

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	113		2.60	1.00	50.0	50	05/09/2016 05:37	WG869680
Fluoride	3.00		0.00990	0.100	0.100	1	05/09/2016 05:22	WG869680
Sulfate	1510		3.87	5.00	250	50	05/09/2016 05:37	WG869680

Metals (ICPMS) by Method 6020

metals (iei ma) by metalou 5025										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.00407	J	0.00125	0.00200	0.0100	5	05/07/2016 04:52	WG869289		
Arsenic,Dissolved	0.00441	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 21:42	WG869245		
Barium	0.0126	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 04:52	WG869289		
Barium,Dissolved	0.0119	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 14:01	WG869245		
Calcium	389		0.230	1.00	5.00	5	05/07/2016 04:52	WG869289		
Chromium	0.0269		0.00270	0.00200	0.0100	5	05/07/2016 04:52	WG869289		
Chromium, Dissolved	0.0140		0.00270	0.00200	0.0100	5	05/05/2016 21:42	WG869245		
Iron	0.104	J	0.0750	0.100	0.500	5	05/07/2016 04:52	WG869289		
Iron,Dissolved	0.0750	J	0.0750	0.100	0.500	5	05/05/2016 21:42	WG869245		
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:52	WG869289		
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 21:42	WG869245		
Manganese	0.199		0.00125	0.00500	0.0250	5	05/07/2016 04:52	WG869289		
Manganese, Dissolved	0.204		0.00125	0.00500	0.0250	5	05/05/2016 21:42	WG869245		
Potassium	1.72	J	0.185	1.00	5.00	5	05/07/2016 04:52	WG869289		
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 04:52	WG869289		
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:42	WG869245		
Sodium	373		0.550	1.00	5.00	5	05/07/2016 04:52	WG869289		

Αl

СС

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00407	J	0.00125	0.00200	0.0100	5	05/07/2016 04:52	WG869289
Arsenic, Dissolved	0.00441	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 21:42	WG869245
Barium	0.0126	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 04:52	WG869289
Barium, Dissolved	0.0119	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 14:01	WG869245
Calcium	389		0.230	1.00	5.00	5	05/07/2016 04:52	WG869289
Chromium	0.0269		0.00270	0.00200	0.0100	5	05/07/2016 04:52	WG869289
Chromium, Dissolved	0.0140		0.00270	0.00200	0.0100	5	05/05/2016 21:42	WG869245
Iron	0.104	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 04:52	WG869289
Iron,Dissolved	0.0750	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 21:42	WG869245
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 04:52	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 21:42	WG869245
Manganese	0.199		0.00125	0.00500	0.0250	5	05/07/2016 04:52	WG869289
Manganese, Dissolved	0.204		0.00125	0.00500	0.0250	5	05/05/2016 21:42	WG869245
Potassium	1.72	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 04:52	WG869289
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 04:52	WG869289
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:42	WG869245
Sodium	373		0.550	1.00	5.00	5	05/07/2016 04:52	WG869289

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.153		0.0314	0.100	0.100	1	05/05/2016 05:55	WG869044
(S) a,a,a-Trifluorotoluene(FID)	99.2				62.0-128		05/05/2016 05:55	WG869044

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 09:06	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 09:06	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 09:06	WG868987
sec-Butylbenzene	0.00174		0.000365	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 09:06	WG868987

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 08:55

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	<u>quao.</u>	mg/l	mg/l	mg/l	2	date / time	<u> </u>
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 09:06	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 09:06	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 09:06	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:06	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 09:06	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 09:06	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 09:06	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Ethylbenzene	0.000718	Ţ	0.000384	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Isopropylbenzene	0.00136	_	0.000326	0.00100	0.00100	1	05/04/2016 09:06	WG868987
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 09:06	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 09:06	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 09:06	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 09:06	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 09:06	WG868987
Methyl tert-butyl ether	0.00229		0.000367	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 09:06	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Toluene	0.000793	<u>J</u>	0.000780	0.00500	0.00500	1	05/04/2016 09:06	WG868987
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,2,4-Trimethylbenzene	0.000807	<u>J</u>	0.000373	0.00100	0.00100	1	05/04/2016 09:06	WG868987
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 09:06	WG868987
o-Xylene	0.00160		0.000341	0.00100	0.00100	1	05/04/2016 09:06	WG868987
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 09:06	WG868987
Xylenes, Total	0.00160	<u>J</u>	0.00106	0.00300	0.00300	1	05/04/2016 09:06	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 09:06	WG868987
(S) Dibromofluoromethane	99.7				79.0-121		05/04/2016 09:06	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

101

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.51		0.0247	0.100	0.100	1	05/04/2016 16:59	WG869259
(S) o-Terphenyl	125				50.0-150		05/04/2016 16:59	WG869259

80.1-120

WG868987

05/04/2016 09:06

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 07:55

832460

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4260		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0440	J	0.0197	0.100	0.100	1	05/05/2016 15:36	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	524		5.19	1.00	100	100	05/09/2016 06:08	WG869680
Fluoride	1.53		0.00990	0.100	0.100	1	05/09/2016 05:53	WG869680
Sulfate	2070		7.74	5.00	500	100	05/09/2016 06:08	WG869680

Qc

Gl

Cn

Metals (ICPMS) by Method 6020

ivictals (ici ivis) by ivi								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/I		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00710	J	0.00125	0.00200	0.0100	5	05/07/2016 04:55	WG869289
Arsenic, Dissolved	0.00738	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 21:44	WG869245
Barium	0.0247	J	0.00180	0.00500	0.0250	5	05/07/2016 04:55	WG869289
Barium,Dissolved	0.0263		0.00180	0.00500	0.0250	5	05/06/2016 14:03	WG869245
Calcium	410		0.230	1.00	5.00	5	05/07/2016 04:55	WG869289
Chromium	0.282		0.00270	0.00200	0.0100	5	05/07/2016 04:55	WG869289
Chromium, Dissolved	0.0266		0.00270	0.00200	0.0100	5	05/05/2016 21:44	WG869245
Iron	0.331	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 04:55	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 21:44	WG869245
Lead	0.00330	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 04:55	WG869289
Lead,Dissolved	0.00351	J	0.00120	0.00200	0.0100	5	05/05/2016 21:44	WG869245
Manganese	0.751		0.00125	0.00500	0.0250	5	05/07/2016 04:55	WG869289
Manganese,Dissolved	0.776		0.00125	0.00500	0.0250	5	05/05/2016 21:44	WG869245
Potassium	0.666	J	0.185	1.00	5.00	5	05/07/2016 04:55	WG869289
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 04:55	WG869289
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:44	WG869245
Sodium	509		0.550	1.00	5.00	5	05/07/2016 04:55	WG869289

⁸Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	2.36		0.0314	0.100	0.100	1	05/06/2016 02:26	WG870384
(S) a,a,a-Trifluorotoluene(FID)	88.3				62.0-128		05/06/2016 02:26	WG870384

⁹Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/04/2016 09:27	WG868987
Benzene	0.530		0.00331	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Bromoform	U		0.00469	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Bromomethane	U		0.00866	0.00500	0.0500	10	05/04/2016 09:27	WG868987
n-Butylbenzene	0.00421	<u>J</u>	0.00361	0.00100	0.0100	10	05/04/2016 09:27	WG868987
sec-Butylbenzene	0.0161		0.00365	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Carbon disulfide	U		0.00275	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/04/2016 09:27	WG868987

Collected date/time: 04/28/16 07:55

Unadj. MQL

MQL

Dilution Analysis

Volatile Organic Compounds (GC/MS) by Method 8260B Result

Qualifier

Batch

	Result	Qualifier	SDL	Ollauj. MQL	IVIQL	Dilution	Allalysis	Batcii
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Chloroethane	U		0.00453	0.00500	0.0500	10	05/04/2016 09:27	WG868987
Chloroform	U		0.00324	0.00500	0.0500	10	05/04/2016 09:27	WG868987
Chloromethane	U		0.00276	0.00250	0.0250	10	05/04/2016 09:27	WG868987
,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/04/2016 09:27	WG868987
is-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/04/2016 09:27	WG868987
rans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/04/2016 09:27	WG868987
cis-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/04/2016 09:27	WG868987
rans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/04/2016 09:27	WG868987
Ethylbenzene	0.0160		0.00384	0.00100	0.0100	10	05/04/2016 09:27	WG868987
sopropylbenzene	0.0745		0.00326	0.00100	0.0100	10	05/04/2016 09:27	WG868987
o-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/04/2016 09:27	WG868987
-Butanone (MEK)	U		0.0393	0.0100	0.100	10	05/04/2016 09:27	WG868987
-Hexanone	U		0.0382	0.0100	0.100	10	05/04/2016 09:27	WG868987
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/04/2016 09:27	WG868987
-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/04/2016 09:27	WG868987
Methyl tert-butyl ether	0.105		0.00367	0.00100	0.0100	10	05/04/2016 09:27	WG868987
laphthalene	U		0.0100	0.00500	0.0500	10	05/04/2016 09:27	WG868987
-Propylbenzene	0.0955		0.00349	0.00100	0.0100	10	05/04/2016 09:27	WG868987
ityrene	U		0.00307	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/04/2016 09:27	WG868987
etrachloroethene	U		0.00372	0.00100	0.0100	10	05/04/2016 09:27	WG868987
oluene	0.0132	J	0.00780	0.00500	0.0500	10	05/04/2016 09:27	WG868987
,1,1-Trichloroethane	U	_	0.00319	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/04/2016 09:27	WG868987
richloroethene	U		0.00398	0.00100	0.0100	10	05/04/2016 09:27	WG868987
,2,4-Trimethylbenzene	0.142		0.00373	0.00100	0.0100	10	05/04/2016 09:27	WG868987
3,5-Trimethylbenzene	U		0.00387	0.00100	0.0100	10	05/04/2016 09:27	WG868987
'inyl chloride	U		0.00259	0.00100	0.0100	10	05/04/2016 09:27	WG868987
-Xylene	U		0.00341	0.00100	0.0100	10	05/04/2016 09:27	WG868987
n&p-Xylene	0.142		0.00719	0.00100	0.0100	10	05/04/2016 09:27	WG868987
lylenes, Total	0.142		0.0106	0.00300	0.0300	10	05/04/2016 09:27	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 09:27	WG868987
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 09:27	WG868987
(S) 4-Bromofluorobenzene	107				80.1-120		05/04/2016 09:27	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	9.13		0.0247	0.100	0.100	1	05/04/2016 17:16	WG869259
(S) o-Terphenyl	110				50.0-150		05/04/2016 17:16	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4040		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0400	<u>J J6</u>	0.0197	0.100	0.100	1	05/05/2016 15:37	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	519		5.19	1.00	100	100	05/09/2016 07:10	WG869680
Fluoride	1.53		0.00990	0.100	0.100	1	05/09/2016 06:54	WG869680
Sulfate	1980		7.74	5.00	500	100	05/09/2016 07:10	WG869680

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Metals (ICI MS) by Metalou 0020									
·	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Arsenic	0.00736	J	0.00125	0.00200	0.0100	5	05/07/2016 05:03	WG869289	
Arsenic, Dissolved	0.00836	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 21:47	WG869245	
Barium	0.0245	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 05:03	WG869289	
Barium, Dissolved	0.0249	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 14:06	WG869245	
Calcium	408		0.230	1.00	5.00	5	05/07/2016 05:03	WG869289	
Chromium	0.306		0.00270	0.00200	0.0100	5	05/07/2016 05:03	WG869289	
Chromium, Dissolved	0.0272		0.00270	0.00200	0.0100	5	05/05/2016 21:47	WG869245	
Iron	0.628		0.0750	0.100	0.500	5	05/07/2016 05:03	WG869289	
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 21:47	WG869245	
Lead	0.00316	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 05:03	WG869289	
Lead, Dissolved	0.00377	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 21:47	WG869245	
Manganese	0.750		0.00125	0.00500	0.0250	5	05/07/2016 05:03	WG869289	
Manganese, Dissolved	0.808		0.00125	0.00500	0.0250	5	05/05/2016 21:47	WG869245	
Potassium	0.618	<u>J</u>	0.185	1.00	5.00	5	05/07/2016 05:03	WG869289	
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 05:03	WG869289	
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:47	WG869245	
Sodium	515		0.550	1.00	5.00	5	05/07/2016 05:03	WG869289	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	2.65		0.0314	0.100	0.100	1	05/06/2016 02:49	WG870384
(S) a,a,a-Trifluorotoluene(FID)	87.1				62.0-128		05/06/2016 02:49	WG870384

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 (- / - /						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/04/2016 09:48	WG868987
Benzene	0.557		0.00331	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Bromoform	U		0.00469	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Bromomethane	U		0.00866	0.00500	0.0500	10	05/04/2016 09:48	WG868987
n-Butylbenzene	0.00450	<u>J</u>	0.00361	0.00100	0.0100	10	05/04/2016 09:48	WG868987
sec-Butylbenzene	0.0165		0.00365	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Carbon disulfide	U		0.00275	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/04/2016 09:48	WG868987

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Chloroethane	U		0.00453	0.00500	0.0500	10	05/04/2016 09:48	WG868987
Chloroform	U		0.00324	0.00500	0.0500	10	05/04/2016 09:48	WG868987
Chloromethane	U		0.00276	0.00250	0.0250	10	05/04/2016 09:48	WG868987
1,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/04/2016 09:48	WG868987
cis-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/04/2016 09:48	WG868987
trans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/04/2016 09:48	WG868987
cis-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/04/2016 09:48	WG868987
trans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Ethylbenzene	0.0161		0.00384	0.00100	0.0100	10	05/04/2016 09:48	WG868987
sopropylbenzene	0.0771		0.00326	0.00100	0.0100	10	05/04/2016 09:48	WG868987
p-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/04/2016 09:48	WG868987
2-Butanone (MEK)	U		0.0393	0.0100	0.100	10	05/04/2016 09:48	WG868987
2-Hexanone	U		0.0382	0.0100	0.100	10	05/04/2016 09:48	WG868987
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/04/2016 09:48	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/04/2016 09:48	WG868987
Methyl tert-butyl ether	0.0945		0.00367	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Naphthalene	U		0.0100	0.00500	0.0500	10	05/04/2016 09:48	WG868987
n-Propylbenzene	0.0984		0.00349	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Styrene	U		0.00307	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Tetrachloroethene	U		0.00372	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Toluene	0.0128	<u>J</u>	0.00780	0.00500	0.0500	10	05/04/2016 09:48	WG868987
1,1,1-Trichloroethane	U		0.00319	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Trichloroethene	U		0.00398	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,2,4-Trimethylbenzene	0.147		0.00373	0.00100	0.0100	10	05/04/2016 09:48	WG868987
1,3,5-Trimethylbenzene	U		0.00387	0.00100	0.0100	10	05/04/2016 09:48	WG868987
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/04/2016 09:48	WG868987
o-Xylene	U		0.00341	0.00100	0.0100	10	05/04/2016 09:48	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

0.147

0.147

105

103

103

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.65		0.0247	0.100	0.100	1	05/04/2016 17:33	WG869259
(S) o-Terphenyl	108				50.0-150		05/04/2016 17:33	WG869259

0.00100

0.00300

0.0100

0.0300

90.0-115

79.0-121

80.1-120

10

10

0.00719

0.0106

05/04/2016 09:48

05/04/2016 09:48

05/04/2016 09:48

05/04/2016 09:48

05/04/2016 09:48

WG868987

WG868987

WG868987

WG868987

WG868987

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:10

832460

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2270		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0580	J	0.0197	0.100	0.100	1	05/05/2016 15:40	WG870055

Wet Chemistry by Method 9012B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U	J3 J6	0.00180	0.00500	0.00500	1	05/12/2016 15:24	WG870326

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	368		1.04	1.00	20.0	20	05/09/2016 17:53	WG869680
Fluoride	1.38		0.00990	0.100	0.100	1	05/09/2016 07:25	WG869680
Sulfate	584		1.55	5.00	100	20	05/09/2016 17:53	WG869680

Αl

СС

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/03/2016 11:01	WG869159
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:34	WG869207

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00489	J	0.00125	0.00200	0.0100	5	05/07/2016 05:06	WG869289
Arsenic, Dissolved	0.00578	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 21:50	WG869245
Barium	0.0439		0.00180	0.00500	0.0250	5	05/07/2016 05:06	WG869289
Barium,Dissolved	0.0492		0.00180	0.00500	0.0250	5	05/06/2016 14:09	WG869245
Boron	0.695		0.0150	0.0200	0.200	10	05/07/2016 09:14	WG870589
Boron,Dissolved	0.708		0.0150	0.0200	0.200	10	05/11/2016 11:55	WG869245
Cadmium	U		0.000800	0.00100	0.00500	5	05/07/2016 05:06	WG869289
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/05/2016 21:50	WG869245
Calcium	203		0.230	1.00	5.00	5	05/07/2016 05:06	WG869289
Chromium	U		0.00270	0.00200	0.0100	5	05/07/2016 05:06	WG869289
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 21:50	WG869245
Cobalt	U		0.00130	0.00200	0.0100	5	05/07/2016 05:06	WG869289
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/05/2016 21:50	WG869245
Iron	0.0770	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 05:06	WG869289
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 21:50	WG869245
Lead	U		0.00120	0.00200	0.0100	5	05/07/2016 05:06	WG869289
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 21:50	WG869245
Manganese	0.269		0.00125	0.00500	0.0250	5	05/07/2016 05:06	WG869289
Manganese, Dissolved	0.300		0.00125	0.00500	0.0250	5	05/05/2016 21:50	WG869245
Nickel	0.00686	J	0.00175	0.00200	0.0100	5	05/07/2016 05:06	WG869289
Nickel, Dissolved	0.00842	J	0.00175	0.00200	0.0100	5	05/05/2016 21:50	WG869245
Potassium	2.19	J	0.185	1.00	5.00	5	05/07/2016 05:06	WG869289
Selenium	U		0.00190	0.00200	0.0100	5	05/07/2016 05:06	WG869289
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 21:50	WG869245
Sodium	347		0.550	1.00	5.00	5	05/07/2016 05:06	WG869289

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:10

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	U		0.00165	0.0100	0.0500	5	05/07/2016 05:06	WG869289
Uranium, Dissolved	U		0.00165	0.0100	0.0500	5	05/05/2016 21:50	WG869245
Vanadium	0.00245	<u>J</u>	0.000900	0.00500	0.0250	5	05/07/2016 05:06	WG869289
Vanadium, Dissolved	0.00123	<u>J</u>	0.000900	0.00500	0.0250	5	05/05/2016 21:50	WG869245

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.75		0.0314	0.100	0.100	1	05/06/2016 03:12	WG870384
(S) a,a,a-Trifluorotoluene(FID)	94.7				62.0-128		05/06/2016 03:12	WG870384

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.200	0.0500	1.00	20	05/04/2016 10:09	WG868987
Benzene	0.196		0.00662	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Bromodichloromethane	U		0.00760	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Bromoform	U		0.00938	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Bromomethane	U		0.0173	0.00500	0.100	20	05/04/2016 10:09	WG868987
n-Butylbenzene	U		0.00722	0.00100	0.0200	20	05/04/2016 10:09	WG868987
sec-Butylbenzene	U		0.00730	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Carbon disulfide	U		0.00550	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Carbon tetrachloride	U		0.00758	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Chlorobenzene	U		0.00696	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Chlorodibromomethane	U		0.00654	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Chloroethane	U		0.00906	0.00500	0.100	20	05/04/2016 10:09	WG868987
Chloroform	U		0.00648	0.00500	0.100	20	05/04/2016 10:09	WG868987
Chloromethane	U		0.00552	0.00250	0.0500	20	05/04/2016 10:09	WG868987
,2-Dibromoethane	U		0.00762	0.00100	0.0200	20	05/04/2016 10:09	WG868987
,1-Dichloroethane	U		0.00518	0.00100	0.0200	20	05/04/2016 10:09	WG868987
2-Dichloroethane	U		0.00722	0.00100	0.0200	20	05/04/2016 10:09	WG868987
1-Dichloroethene	U		0.00796	0.00100	0.0200	20	05/04/2016 10:09	WG868987
is-1,2-Dichloroethene	U		0.00520	0.00100	0.0200	20	05/04/2016 10:09	WG868987
ans-1,2-Dichloroethene	U		0.00792	0.00100	0.0200	20	05/04/2016 10:09	WG868987
2-Dichloropropane	U		0.00612	0.00100	0.0200	20	05/04/2016 10:09	WG868987
is-1,3-Dichloropropene	U		0.00836	0.00100	0.0200	20	05/04/2016 10:09	WG868987
rans-1,3-Dichloropropene	U		0.00838	0.00100	0.0200	20	05/04/2016 10:09	WG868987
thylbenzene	U		0.00768	0.00100	0.0200	20	05/04/2016 10:09	WG868987
sopropylbenzene	0.0219		0.00652	0.00100	0.0200	20	05/04/2016 10:09	WG868987
-Isopropyltoluene	U		0.00700	0.00100	0.0200	20	05/04/2016 10:09	WG868987
-Butanone (MEK)	U		0.0786	0.0100	0.200	20	05/04/2016 10:09	WG868987
-Hexanone	U		0.0764	0.0100	0.200	20	05/04/2016 10:09	WG868987
Methylene Chloride	U		0.0200	0.00500	0.100	20	05/04/2016 10:09	WG868987
-Methyl-2-pentanone (MIBK)	U		0.0428	0.0100	0.200	20	05/04/2016 10:09	WG868987
Methyl tert-butyl ether	0.0535		0.00734	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Naphthalene	U		0.0200	0.00500	0.100	20	05/04/2016 10:09	WG868987
-Propylbenzene	0.0206		0.00698	0.00100	0.0200	20	05/04/2016 10:09	WG868987
tyrene	U		0.00614	0.00100	0.0200	20	05/04/2016 10:09	WG868987
1,1,2-Tetrachloroethane	U		0.00770	0.00100	0.0200	20	05/04/2016 10:09	WG868987
1,2,2-Tetrachloroethane	U		0.00260	0.00100	0.0200	20	05/04/2016 10:09	WG868987
etrachloroethene	U		0.00744	0.00100	0.0200	20	05/04/2016 10:09	WG868987
oluene	U		0.0156	0.00500	0.100	20	05/04/2016 10:09	WG868987
1,1-Trichloroethane	U		0.00638	0.00100	0.0200	20	05/04/2016 10:09	WG868987
1,2-Trichloroethane	U		0.00766	0.00100	0.0200	20	05/04/2016 10:09	WG868987
Frichloroethene	U		0.00796	0.00100	0.0200	20	05/04/2016 10:09	WG868987

MW-49

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:10

Volatile Organic Compounds (GC/MS) by Method 8260B

9	1	, ,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
1,2,4-Trimethylbenzene	0.0305		0.00746	0.00100	0.0200	20	05/04/2016 10:09	WG868987	
1,3,5-Trimethylbenzene	U		0.00774	0.00100	0.0200	20	05/04/2016 10:09	WG868987	
Vinyl chloride	U		0.00518	0.00100	0.0200	20	05/04/2016 10:09	WG868987	
o-Xylene	U		0.00682	0.00100	0.0200	20	05/04/2016 10:09	WG868987	
m&p-Xylene	0.0540		0.0144	0.00100	0.0200	20	05/04/2016 10:09	WG868987	
Xylenes, Total	0.0540	<u>J</u>	0.0212	0.00300	0.0600	20	05/04/2016 10:09	WG868987	
(S) Toluene-d8	105				90.0-115		05/04/2016 10:09	WG868987	
(S) Dibromofluoromethane	102				79.0-121		05/04/2016 10:09	WG868987	
(S) 4-Bromofluorobenzene	103				80.1-120		05/04/2016 10:09	WG868987	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.63		0.0247	0.100	0.100	1	05/04/2016 17:49	WG869259
(S) o-Terphenyl	114				50.0-150		05/04/2016 17:49	WG869259

WG86981		540 C-2011		Q	UALITY	CONTF		MARY			ONE LAB. NATIONWIDE.	*
Method Blank												1
(MB) R3134196-1 05/												Ср
A	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								10
515561764 501145	Ü		2.02	10.0								³ Ss
L832460-01 O	riginal Sample	(OS) • Dup	licate (D	UP)								4
(OS) L832460-01 05												[†] Cn
Amalida	Original Result		Dilution	-		JP RPD Limits						5
Analyte Dissolved Solids	mg/l 2900	mg/l 2870		1.21	5							⁵ Sr
Dissolved Solids	2300	2070	,	1.21	3							⁶ Qc
Laboratory Cor	ntral Cample (roton. C	antral Camp	do Dunlinat	~ /I CCD)						QC
(LCS) R3134196-2 0					Duplicat	e (LCSD)						7GI
(LC3) R3134190-2 U:	Spike Amount		LCSD Resu		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		8 Al
Dissolved Solids	8800	8490	8480	96.5	96.4	85.0-115			0.118	5		
												⁹ Sc

SDG:

L832460

DATE/TIME:

05/12/16 18:43

PAGE:

23 of 54

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG87005	_					Y CONTR		MMARY			ONE LAB. NATIONWIDE.	*
Wet Chemistry by						L832460-01,02,03	,05,06,07,08					
Method Blank (,											1 Cp
(MB) R3134124-1 05/												Ch
•	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100								10
Nude-Nune	U		0.0137	0.100								³ Ss
L832447-01 Or	iginal Sample (OS) • Dupl	icate (D	UP)								
(OS) L832447-01 05.			,									^⁴ Cn
(00) 2002	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁵ Sr
Nitrate-Nitrite	0.125	ND	1	30.0	<u>J P1</u>	20						
												⁶ Qc
L832460-01 Or	riginal Sample ((OS) • Dup	licate (D	UP)								
(OS) L832460-01 05	-	, , ,	`									⁷ GI
()	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ Al
Nitrate-Nitrite	0.0420	ND	1	13.0	7	20						
												⁹ Sc
Laboratory Cor	ntrol Sample (L	CS) • Labo	ratory C	Control Sar	nple Duplic	cate (LCSD)						
(LCS) R3134124-2 05	5/05/16 15:08 • (LCSE	O) R3134124-3	05/05/16 1	15:09								
	Spike Amount		LCSD Res				LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	5.11	5.04	102	101	90.0-110			1.00	20		
L832447-04 Or	riginal Sample	(OS) • Mat	rix Spike	e (MS)								
(OS) L832447-04 05	5/05/16 15:15 • (MS) R	3134124-5 05	/05/16 15:16	6								
	Spike Amount	Original Resul	t MS Result	t MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	<u>Qualifica</u>					
Nitrate-Nitrite	5.00	0.301	5.82	110	1	90.0-110						

SDG: L832460

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 18:43 PAGE: 24 of 54

$\underset{\underline{\text{L832460-01,02,03,05,06,07,08}}}{\text{QUALITY CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832460-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832460-0	7 05/05/16 15:37	 (MS) R3134124-7 	05/05/16 15:38 •	(MSD) R3134124-8	05/05/16 15:39

(00) 2002 100 07 00/00/1	25) 2502 100 07 00700710 10.07 (110) 11010 112 17 00700710 10.00 (1110)											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0400	4.48	4.51	89.0	89.0	1	90.0-110	<u>J6</u>	<u>J6</u>	1.00	20

WG87032 Wet Chemistry by				C	(TIJAU)	Y CONTR		UMMA	RY			ONE LAB. NATIONWIDE.	*
Method Blank ((MB)												1 _
(MB) R3136186-1 05/1	12/16 15:17												Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
Cyanide	0.00294	Ī	0.00180	0.00500									3
													3 Ss
L832450-04 O	riginal Sample	(OS) • Dup	licate (DL	JP)									⁴ Cn
(OS) L832450-04 05	5/12/16 15:22 • (DUP)	R3136186-4 0	5/12/16 15:23										Cn
	Original Result		Dilution D			DUP RPD Limits							5
Analyte	mg/l	mg/l	%			%							⁵Sr
Cyanide	U	ND	1 0.	000		20							C
													[®] Qc
Laboratory Cor	ntrol Sample (L	CS) • Labo	ratory Co	ntrol Sam	ple Duplica	ate (LCSD)							7
(LCS) R3136186-2 05	5/12/16 15:18 • (LCSD)	R3136186-3 (05/12/16 15:19										GI (
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	. Rec. Limits	LCS Qua	lifier LCSD 0	Qualifier RPD	RPD Lim	ts		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			⁸ Al
Cyanide	0.100	0.0916	0.104	92.0	104	90.0-110			13.0	20			
													⁹ Sc
L832460-08 O	riginal Sample	(OS) • Mat	rix Spike ('MS) • Mat	rix Spike [Duplicate (MS	SD)						
(OS) L832460-08 05		, ,	<u> </u>	,		' '	,						
(11, 2002 .00 00 00		Original Result		MSD Resul		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Cyanide	0.200	U	0.00566	0.178	3.00	89.0	1	90.0-110	<u>J6</u>	J3 J6	188	20	

vet Chemistry by	80 / Method 9056A			G		Y CONTR		MMARY				ONE LAB. NATIONWIDE.	1
Method Blank (1
MB) R3135217-1 05/0	, ,												
,	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									1
Chloride	U		0.0519	1.00									<u> </u>
Fluoride	U		0.0099	0.100									3
Sulfate	U		0.0774	5.00									4
_832 <u>472-06</u> OI	riginal Sample ((OS) • Dup!	licate (DU	JP)									4
OS) L832472-06 05	5/09/16 14:17 • (DUP) F												5
Analyte	Original Result mg/l	DUP Result mg/l	Dilution DU %			DUP RPD Limits %							6
Fluoride	0.645	0.660	1 2			15							
	ntrol Sample (LC				ple Duplica	ate (LCSD)							8
LC3) K3133217-2 00	Spike Amount		LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limi	ts		
Analyte	•	mg/l	mg/l	%	%	%			%	%			-
	mg/l	mg/i			70	70			70	/0			19
-	40.0	39.3	39.2	98	98	80-120			0	15			9
Chloride				98 99									9
Chloride Fluoride Sulfate	40.0	39.3	39.2		98	80-120			0	15			0
Chloride Fluoride Sulfate	40.0 8.00	39.3 7.88 39.6	39.2 7.88 39.6	99 99	98 98	80-120 80-120			0	15 15			
Chloride Fluoride Sulfate	40.0 8.00 40.0	39.3 7.88 39.6 (OS) • Matr	39.2 7.88 39.6 rix Spike (99 99 (MS)	98 98	80-120 80-120			0	15 15			
Chloride Cluoride Sulfate _832460-02 O	40.0 8.00 40.0 Original Sample 15/09/16 04:20 • (MS)	39.3 7.88 39.6 (OS) • Matr	39.2 7.88 39.6 rix Spike (99 99 (MS)	98 98	80-120 80-120	MS Qualifier		0	15 15			9
Chloride Fluoride Sulfate L832460-02 O	40.0 8.00 40.0 Original Sample 15/09/16 04:20 • (MS)	39.3 7.88 39.6 (OS) • Matr	39.2 7.88 39.6 rix Spike (99 99 (MS)	98 98 99	80-120 80-120 80-120	MS Qualifier		0	15 15			9
Chloride Fluoride Sulfate L832460-02 O (OS) L832460-02 O Analyte	40.0 8.00 40.0 Original Sample 5/09/16 04:20 • (MS) Spike Amount	39.3 7.88 39.6 (OS) • Matr R3135217-4 05 Original Result	39.2 7.88 39.6 rix Spike (5/09/16 04:36 MS Result	99 99 (MS) 86 MS Rec.	98 98 99	80-120 80-120 80-120 Rec. Limits	MS Qualifier		0	15 15			
Chloride Fluoride Sulfate	40.0 8.00 40.0 Original Sample 5/09/16 04:20 • (MS) Spike Amount mg/l	39.3 7.88 39.6 (OS) • Matr R3135217-4 OS Original Result mg/l	39.2 7.88 39.6 rix Spike (5/09/16 04:36 MS Result mg/I	99 99 (MS) 36 MS Rec. %	98 98 99	80-120 80-120 80-120 Rec. Limits	MS Qualifier		0	15 15			

SDG: L832460 DATE/TIME:

05/12/16 18:43

PAGE: 27 of 54

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

$\underset{\underline{\text{L832460-01,02,03,05,06,07,08}}}{\text{QUALITY CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832462-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

06 05/09/16 11:01 • (MS) R3135	217-5 05/09/16 11:16 • (MSF	D) R3135217-6 05/09/16 11:32

(03) 632402-06 03/09/16	0 11.01 • (IVIS) KS	0133217-3 03/0	ווי סו /פּני (וויוי) • סו.ווי	5D) K3133217-0	05/09/10 11.5.	2							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	0.107	51.1	51.0	102	102	1	80-120			0	15	
Fluoride	5.00	U	5.16	5.10	103	102	1	80-120			1	15	
Sulfate	50.0	U	51.2	51 5	102	103	1	80-120			1	15	

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG871228 L832460-01 Wet Chemistry by Method 9056A Method Blank (MB) (MB) R3135448-1 05/10/16 11:38 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l mg/l 0.0519 Chloride U 1.00 Fluoride U 0.0099 0.100 Ss Cn L832435-04 Original Sample (OS) • Duplicate (DUP) (OS) L832435-04 05/10/16 22:04 • (DUP) R3135448-4 05/10/16 22:28 Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits Sr Analyte mg/l mg/l Chloride 159 10 6 15 Fluoride 0.780 0.847 10 8 15 GI Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3135448-2 05/10/16 11:52 • (LCSD) R3135448-3 05/10/16 12:07 ΑI Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits % % % % % Analyte mg/l mg/l mg/l Sc

L832654-01 Original Sample	(OS) • Matrix Spike (MS) •	Matrix Spike Duplicate (MSD)
----------------------------	----------------------------	------------------------------

38.9

7.79

97

97

97

97

(OS) L832654-01 05/11/16	01:06 • (MS) R3	135448-5 05/1	11/16 01:20 • (M	SD) R3135448-	6 05/11/16 01:3	5									
	Spike Amount Original Result MS Result MSD Result MS Res. MSD Rec. Dilution Rec. Limits <u>MS Qualifier</u> MSD Qualifier RPD RPD Limits														
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%			
Chloride	50.0	6.61	56.5	56.3	100	99	1	80-120			0	15			
Fluoride	5.00	0.283	5.14	5.29	97	100	1	80-120			3	15			

80-120

80-120

40.0

8.00

38.8

7.79

Chloride

Fluoride

0

15

15

Mercury by Metho) d 7470A			QL	JALITY	CONTR L832460		UMMA	RY			ONE LAB. NATIONWID	DE.
Method Blank (MB)												1
(MB) R3133255-1 05/													_ Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									² Tc
Analyte Mercury	mg/l U		mg/l 0.000049	mg/l 0.000200									
Welculy	U		0.000043	0.000200									³ Ss
Laboratory Con	tral Sampla (I	CS) a Labo	raton/Con	tral Sample	o Dunlicat	0 (I CSD)							
(LCS) R3133255-2 05					= Dahiicare	e (LCSD)							— ^⁴ Cn
(200) 1.0.00200 2 3	Spike Amount	•	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	ifier LCSD 0	Qualifier RPD	RPD Limi	ts		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			⁵ Sr
Mercury	0.00300	0.00298	0.00292	99	97	80-120			2	20			6
													⁶ Qc
L832391-01 Orig	ginal Sample (OS) • Matri:	x Spike (M:	S) • Matrix	Spike Dup	olicate (MSE))						7
(OS) L832391-01 05/						10:46							— ′GI
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	4	%			%	%	_ Al
Mercury	0.00300	ND	0.00307	0.00291	102	97	1	75-125			5	20	
													0
													⁹ Sc
													⁹ Sc
													⁹ Sc
													⁹ Sc
													⁹ Sc
													[®] Sc
													⁹ Sc
													⁹ Sc
													⁹ Sc
													⁹ Sc
													°Sc
													Sc
													Sc
													Sc
													°Sc

SDG: L832460

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 18:43 PAGE: 30 of 54

WG869207				Ql	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWIDE.	¥
Method Blank (N	IB)					203240	<u> </u>						¹ Cp
(MB) R3133626-1 05/0-	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte Mercury,Dissolved	mg/l U		mg/l 0.000049	mg/l 0.000200									² Tc
													³ Ss
Laboratory Conti					e Duplicat	e (LCSD)							⁴ Cn
(LC3) K3133020-2 U3/		t LCS Result	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qual	ifier LCSD (Qualifier RPD	RPD Limi	ts		
Analyte	mg/l	mg/l	mg/l	%	%	%			% 7	%			³Sr
Mercury,Dissolved	0.00300	0.00284	0.00263	95	88	80-120			/	20			⁶ Qc
L832603-17 Orig	inal Sample	(OS) • Matr	ix Spike (N	ЛS) • Matrix	Spike Du	plicate (MS	D)						QC.
(OS) L832603-17 05/0	4/16 12:13 • (MS) F	R3133626-4 05	/04/16 12:16 •	(MSD) R313362	26-5 05/04/16	12:18							⁷ GI
Analyte	Spike Amount mg/l	t Original Result mg/l	t MS Result mg/l	MSD Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	RPD Limits %	8 Al
Mercury, Dissolved	0.00300	U	0.00254	0.00254	85	85	1	75-125			0	20	
													⁹ Sc

SDG: L832460 PAGE: 31 of 54

DATE/TIME:

05/12/16 18:43

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

WG869245 Metals (ICPMS) by M	ethod 6020			Ql		CONTR 2460-01,02,03	OL SUN	MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MI	3)											1
(MB) R3134386-1 05/05	,											Ср
(IVID) R3134300-1 U3/U3/	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l	WD Qualifier	mg/l	mg/l								² Tc
Arsenic, Dissolved	U		0.00025	0.00200								
Cadmium, Dissolved	U		0.00016	0.00100								3 Ss
Chromium, Dissolved	U		0.00054	0.00200								35
Cobalt, Dissolved	U		0.00026	0.00200								4
Iron,Dissolved	U		0.015	0.100								Cn
Lead, Dissolved	U		0.00024	0.00200								
Manganese, Dissolved	0.00079		0.00025	0.00500								⁵ Sr
Nickel, Dissolved	U		0.00035	0.00200								J J
Selenium, Dissolved	U		0.00038	0.00200								6
Uranium, Dissolved	U		0.00033	0.0100								[°] Qc
Vanadium, Dissolved	U		0.00018	0.00500								
												⁷ GI │
Method Blank (MI	3)											8
(MB) R3134488-1 05/06	/16 13:13											Al
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								Sc
Barium, Dissolved	U		0.00036	0.00500								
Method Blank (MI	3)											
(MB) R3135630-1 05/11/1	6 10:25											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								
Boron, Dissolved	U		0.0015	0.0200								
Laboratory Contro	ol Sample (L	.CS) • Labo	ratory Con	trol Sampl	e Duplicate	e (LCSD)						
(LCS) R3134386-2 05/0	5/16 20:40 • (LC:	SD) R3134386-	3 05/05/16 20	:42								
,	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Arsenic, Dissolved	0.0500	0.0504	0.0500	101	100	80-120			1	20		
Cadmium, Dissolved	0.0500	0.0529	0.0530	106	106	80-120			0	20		
Chromium, Dissolved	0.0500	0.0488	0.0496	98	99	80-120			2	20		
0.1.11.011												

20

DATE/TIME: 05/12/16 18:43

PAGE: 32 of 54

Cobalt, Dissolved

0.0500

ACCOUNT: TRC Solutions - Austin, TX

0.0497

0.0511

102

PROJECT: 249545.0000.0000 000

80-120

SDG: L832460

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

GI

Αl

Metals (ICPMS) by Method 6020

L832460-01,02,03,05,06,07,08

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3134386-2 05/05/16 20:40 • (LCSD) R3134386-3 05/05/16 20:42													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
Iron,Dissolved	5.00	4.70	4.79	94	96	80-120			2	20			
Lead,Dissolved	0.0500	0.0506	0.0506	101	101	80-120			0	20			
Manganese, Dissolved	0.0500	0.0485	0.0485	97	97	80-120			0	20			
Nickel, Dissolved	0.0500	0.0505	0.0516	101	103	80-120			2	20			
Selenium, Dissolved	0.0500	0.0482	0.0502	96	100	80-120			4	20			
Uranium,Dissolved	0.0500	0.0505	0.0506	101	101	80-120			0	20			
Vanadium, Dissolved	0.0500	0.0476	0.0490	95	98	80-120			3	20			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134488-2 05/0	06/16 13:16 • (LCSE) R3134488-3	05/06/16 13:19	9										
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits <u>LCS Qualifier</u> <u>LCSD Qualifier</u> RPD RPD Limits														
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				
Barium,Dissolved	0.0500	0.0522	0.0509	104	102	80-120			2	20				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3135630-2 05/11/16	10:30 • (LCSD)	R3135630-3	05/11/16 10:35							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Boron,Dissolved	0.0500	0.0465	0.0471	93	94	80-120			1	20

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-01 05/05	5/16 20:45 • (MS)	R3134386-5 0	5/05/16 20:50	• (MSD) R31343	386-6 05/05/1	16 20:53						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic, Dissolved	0.0100	U	0.0573	0.0573	115	115	5	75-125			0	20
Cadmium, Dissolved	0.0100	U	0.0565	0.0565	113	113	5	75-125			0	20
Chromium, Dissolved	0.0100	U	0.0550	0.0537	110	107	5	75-125			2	20
Cobalt, Dissolved	0.0100	U	0.0550	0.0531	110	106	5	75-125			3	20
Iron,Dissolved	1.00	U	5.36	5.24	107	105	5	75-125			2	20
Lead,Dissolved	0.0100	U	0.0553	0.0540	111	108	5	75-125			2	20
Manganese, Dissolved	0.0100	0.00200	0.0528	0.0521	102	100	5	75-125			1	20
Nickel, Dissolved	0.0100	0.00196	0.0557	0.0538	107	104	5	75-125			3	20

 ACCOUNT:
 PROJECT:
 SDG:
 DATE/TIME:
 PAGE:

 TRC Solutions - Austin, TX
 249545,0000,0000
 L832460
 05/12/16 18:43
 33 of 54

QUALITY CONTROL SUMMARY L832460-01,02,03,05,06,07,08

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-01 05/05/10	5 20:45 • (MS) I	R3134386-5 05	5/05/16 20:50	 (MSD) R31343 	86-6 05/05/16	20:53						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Selenium, Dissolved	0.0100	0.0141	0.0709	0.0703	114	112	5	75-125			1	20
Uranium, Dissolved	0.0100	0.0264	0.0802	0.0776	108	102	5	75-125			3	20
Vanadium, Dissolved	0.0100	0.0111	0.0658	0.0637	109	105	5	75-125			3	20

L832409-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-01 05/11/16	10:40 • (MS) R3	3135630-5 05/	/11/16 10:50 • (N	ISD) R3135630	-6 05/11/16 10:	55						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Barium, Dissolved	0.00500	0.0125	0.0605	0.0621	96	99	10	75-125			3	20
Boron, Dissolved	0.00500	0.525	0.597	0.593	144	137	10	75-125	V	V	1	20

Тс

$\underset{\underline{\text{L832460-01,02,03,05,06,07,08}}}{\text{QUALITY CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

Тс

GI

ΔI

Metals (ICPMS) by Method 6020

Method Blank (MB)

metrica Biariit (···-/			
(MB) R3134620-1 05/	/07/16 03:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	0.00076		0.00036	0.00500
Cadmium	U		0.00016	0.00100
Calcium	0.1		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	0.0157		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	U		0.00025	0.00500
Nickel	0.000446		0.00035	0.00200
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	0.00102		0.00018	0.00500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134620-2 05/0	7/16 04:01 • (LCS	D) R3134620-3	3 05/07/16 04:0	04						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic	0.0500	0.0526	0.0503	105	101	80-120			4	20
Barium	0.0500	0.0527	0.0506	105	101	80-120			4	20
Cadmium	0.0500	0.0549	0.0523	110	105	80-120			5	20
Calcium	5.00	5.44	5.35	109	107	80-120			2	20
Chromium	0.0500	0.0547	0.0516	109	103	80-120			6	20
Cobalt	0.0500	0.0554	0.0523	111	105	80-120			6	20
Iron	5.00	5.33	5.08	107	102	80-120			5	20
Lead	0.0500	0.0541	0.0520	108	104	80-120			4	20
Manganese	0.0500	0.0541	0.0516	108	103	80-120			5	20
Nickel	0.0500	0.0550	0.0543	110	109	80-120			1	20
Potassium	5.00	5.37	5.14	107	103	80-120			4	20
Selenium	0.0500	0.0542	0.0510	108	102	80-120			6	20
Sodium	5.00	5.57	5.26	111	105	80-120			6	20
Uranium	0.0500	0.0543	0.0522	109	104	80-120			4	20
Vanadium	0.0500	0.0548	0.0516	110	103	80-120			6	20

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: TRC Solutions - Austin, TX 249545.0000.0000 000 L832460 05/12/16 18:43 35 of 54

Vanadium

QUALITY CONTROL SUMMARY L832460-01,02,03,05,06,07,08

ONE LAB. NATIONWIDE.

20

Metals (ICPMS) by Method 6020

L832409-23 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832409-23 05/07/	16 04:07 • (MS)	R3134620-5 0	5/07/16 04:12 •	(MSD) R31346:	20-6 05/07/16	04:15						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00316	0.0614	0.0566	116	107	5	75-125			8	20
Barium	0.0100	3.44	3.70	3.66	519	435	5	75-125	\vee	$\underline{\vee}$	1	20
Cadmium	0.0100	U	0.0577	0.0550	115	110	5	75-125			5	20
Calcium	1.00	130	143	141	254	214	5	75-125	\vee	\vee	1	20
Chromium	0.0100	U	0.0575	0.0564	115	113	5	75-125			2	20
Cobalt	0.0100	U	0.0579	0.0549	116	110	5	75-125			5	20
Potassium	1.00	1.73	7.52	7.37	116	113	5	75-125			2	20
Iron	1.00	0.328	6.10	5.83	115	110	5	75-125			4	20
Lead	0.0100	U	0.0594	0.0565	119	113	5	75-125			5	20
Manganese	0.0100	0.0363	0.0960	0.0924	120	112	5	75-125			4	20
Nickel	0.0100	0.00359	0.0583	0.0540	109	101	5	75-125			8	20
Selenium	0.0100	0.00207	0.0304	0.0538	57	103	5	75-125	<u>J6</u>	<u>J3</u>	56	20
Sodium	1.00	450	479	469	569	380	5	75-125	\vee	V	2	20
Uranium	0.0100	U	0.0584	0.0575	117	115	5	75-125			2	20

0.0100

0.00763

0.0650

0.0632

115

75-125

WG87058				Ql	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWIDE.	*
Method Blank						2832400	7-08						1
(MB) R3134666-1 05													- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									Tc.
Boron	U		0.0015	0.0200									3 Ss
Laboratory Co	ntrol Sample (Lo	CS) • Labo	ratory Con	itrol Sampl	e Duplicat	e (LCSD)							35
	05/07/16 08:35 • (LCS					- (/							· 🏻 Cn
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	ifier LCSD 0	Qualifier RPD	RPD Lim	its		-
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			Sr
Boron	0.0500	0.0478	0.0491	96	98	80-120			3	20			6
													[©] Qc
	riginal Sample	. ,		·	· .		SD)						7 GI
(OS) L832450-04 0	5/07/16 08:45 • (MS)	Original Result		MSD Result	MS Rec.	/16 08:59 MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	% Kec.	%	Dilution	%	Wis Qualifier	WSD Qualifier	%	%	8 Al
Boron	0.00500	0.689	0.704	0.712	31	47	10	75-125	V	V	1	20	- AI
									_	_			9
													Sc

SDG: L832460

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 18:43 PAGE: 37 of 54

WG869044 Volatile Organic Com	pounds (GC) I	by Method 8	015D/GRO	Ql	JALITY	CONTR L832460-0		UMMA	RY			ONE LAB. NATIONWIDE.	装
Method Blank (MB))												1
(MB) R3134064-3 05/05/1	16 03:24												Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									Tc
TPH (GC/FID) Low Fraction	U DL 00 3		0.0314	0.100 <i>62.0-128</i>									3
(S) a,a,a-Trifluorotoluene(FIL	D) 99.3			62.0-128									³Ss
Laboratory Contro			-		e Duplicate	e (LCSD)							⁴ Cn
(LCS) R3134064-1 05/05/16 02:19 • (LCSD) R3134064-2 05/05/16 02:41													5
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	ifier LCSD Q		RPD Limi	ts		⁵ Sr
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			6
TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FIL)	5.50	5.96	5.71	108 <i>101</i>	104 100	67.0-132 62.0-128			4.20	20			[®] Qc
(3) a,a,a-milaorotoidenetrit	2)			101	100	02.0=120							
1 022 400 02 Out with		(OC) Mat	··· Cailea (A	1C) Matui	· Cailea De	unlinete (MC	. []						⁷ Gl
L832460-02 Origin		,		,			D)						8
(OS) L832460-02 05/05/				MSD Result	4064-5 05/05 MS Rec.	/16 04:07 MSD Rec.	Dilution	Rec. Limits	MC Ovelless	MCD Ovelifier	RPD	RPD Limits	Al
Analyte	mg/l	Original Result mg/l	mg/l	mg/l	MS Rec. %	MSD Rec.	Dilution	%	MS Qualifier	MSD Qualifier	кри %	%	
TPH (GC/FID) Low Fraction	5.50	U	4.30	4.12	78.2	74.8	1	50.0-143			4.43	20	"Sc
(S) a,a,a-Trifluorotoluene(FIL			1.00	1.12	99.3	98.8	•	62.0-128			1.10	20	
1,7	,												

SDG: L832460

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 18:43 PAGE: 38 of 54

Volatile Organic Comp	pounds (GC) !	by Method 8	015D/GRO	QL		CONTR 832460-01,03,		UMMAI	RY			ONE LA	AB. NATIONWIDE.	¥
Method Blank (MB))													1 _
(MB) R3134272-3 05/05/16	6 20:05													C
	MB Result	MB Qualifier	MB MDL	MB RDL										2_
Analyte	mg/l		mg/l	mg/l										To
TPH (GC/FID) Low Fraction	U		0.0314	0.100										<u> </u>
(S) a,a,a-Trifluorotoluene(FID)) 102			62.0-128										3 Ss
Laboratory Control	Sample (Lo	CS) • Labor	ratory Conf	trol Sample	e Duplicate	(LCSD)								⁴ Cı
(LCS) R3134272-1 05/05/1														5
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD Q	<u>Jualifier</u> RPD	RPD Limi	ts			Sr
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				
TPH (GC/FID) Low Fraction	5.50	5.72	5.74	104	104	67.0-132			0.480	20				⁶ Q
(S) a,a,a-Trifluorotoluene(FID))			101	101	62.0-128								
														⁷ G
L832472-09 Origin	nal Sample	(OS) • Matr	rix Spike (N	1S) • Matrix	Spike Dur	olicate (MSI)							
(OS) L832472-09 05/05/1	16 23:22 • (MS)	R3134272-4 0	5/05/16 22:13 •	(MSD) R31342	72-5 05/05/16	22:36								8 Al
	•	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		9 Sc
TRULICC/FIDUL and Free attent	5.50	2.09	6.24	5.37	75.4	59.6	1	50.0-143			15.0	20		30
TPH (GC/FID) Low Fraction		2.03												
(S) a,a,a-Trifluorotoluene(FID		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						
		2.03			99.6	99.7		62.0-128						

SDG: L832460

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 18:43 PAGE: 39 of 54

$\underset{\underline{\text{L832460-01,02,04,05,06,07,08}}}{\text{QUALITY CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(MB) R3134190-3 05/04/16	6 05:51			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832460

DATE/TIME: 05/12/16 18:43

PAGE: 40 of 54

$\underset{\underline{\text{L832460-01,02,04,05,06,07,08}}}{\text{QUALITY CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

/IB) R3134190-3 05/04/16	6 05:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
nalyte	mg/l		mg/l	mg/l	
etrachloroethene	U		0.000372	0.00100	
oluene	U		0.000780	0.00500	
1,1-Trichloroethane	U		0.000319	0.00100	
1,2-Trichloroethane	U		0.000383	0.00100	
ichloroethene	U		0.000398	0.00100	
2,4-Trimethylbenzene	U		0.000373	0.00100	
3,5-Trimethylbenzene	U		0.000387	0.00100	
nyl chloride	U		0.000259	0.00100	
ylenes, Total	U		0.00106	0.00300	
Xylene	U		0.000341	0.00100	
&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	105			90.0-115	
(S) Dibromofluoromethane	104			79.0-121	
(S) 4-Bromofluorobenzene	103			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.129	0.124	103	99.5	28.7-175			3.50	20.9
Benzene	0.0250	0.0265	0.0276	106	110	73.0-122			4.18	20
Bromodichloromethane	0.0250	0.0268	0.0276	107	110	75.5-121			2.61	20
Bromoform	0.0250	0.0255	0.0260	102	104	71.5-131			2.11	20
Bromomethane	0.0250	0.0336	0.0356	134	142	22.4-187			5.75	20
n-Butylbenzene	0.0250	0.0256	0.0275	102	110	75.9-134			7.09	20
sec-Butylbenzene	0.0250	0.0249	0.0267	99.5	107	80.6-126			7.27	20
Carbon disulfide	0.0250	0.0246	0.0256	98.4	102	53.0-134			3.79	20
Carbon tetrachloride	0.0250	0.0252	0.0264	101	105	70.9-129			4.58	20
Chlorobenzene	0.0250	0.0261	0.0275	104	110	79.7-122			5.41	20
Chlorodibromomethane	0.0250	0.0266	0.0273	107	109	78.2-124			2.43	20
Chloroethane	0.0250	0.0297	0.0309	119	124	41.2-153			3.80	20
Chloroform	0.0250	0.0272	0.0279	109	112	73.2-125			2.81	20
Chloromethane	0.0250	0.0276	0.0289	111	116	55.8-134			4.35	20
1,2-Dibromoethane	0.0250	0.0266	0.0272	106	109	79.8-122			2.26	20
1.1-Dichloroethane	0.0250	0.0269	0.0279	108	112	71.7-127			3.73	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832460

DATE/TIME: 05/12/16 18:43 PAGE: 41 of 54

GI

$\underset{\underline{\text{L832460-01,02,04,05,06,07,08}}}{\text{QUALITY CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134190-1 05/04/16	6 04:27 • (LCSE) R3134190-2	05/04/16 04:4	8							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0276	0.0279	110	112	65.3-126			1.25	20	
1,1-Dichloroethene	0.0250	0.0250	0.0260	100	104	59.9-137			3.89	20	
cis-1,2-Dichloroethene	0.0250	0.0276	0.0282	111	113	77.3-122			2.17	20	
trans-1,2-Dichloroethene	0.0250	0.0277	0.0289	111	116	72.6-125			4.39	20	
1,2-Dichloropropane	0.0250	0.0264	0.0269	105	108	77.4-125			1.94	20	
cis-1,3-Dichloropropene	0.0250	0.0273	0.0281	109	112	77.7-124			2.79	20	
trans-1,3-Dichloropropene	0.0250	0.0280	0.0284	112	113	73.5-127			1.11	20	
Ethylbenzene	0.0250	0.0250	0.0270	100	108	80.9-121			7.84	20	
2-Hexanone	0.125	0.140	0.139	112	111	59.4-151			0.190	20	
Isopropylbenzene	0.0250	0.0255	0.0270	102	108	81.6-124			5.79	20	
p-Isopropyltoluene	0.0250	0.0256	0.0275	102	110	77.6-129			7.06	20	
2-Butanone (MEK)	0.125	0.142	0.140	114	112	46.4-155			2.02	20	
Methylene Chloride	0.0250	0.0268	0.0277	107	111	69.5-120			3.15	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.138	0.135	110	108	63.3-138			1.89	20	
Methyl tert-butyl ether	0.0250	0.0268	0.0269	107	108	70.1-125			0.340	20	
Naphthalene	0.0250	0.0242	0.0254	96.8	102	69.7-134			4.75	20	
n-Propylbenzene	0.0250	0.0260	0.0276	104	110	81.9-122			5.91	20	
Styrene	0.0250	0.0274	0.0289	110	116	79.9-124			5.15	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0249	0.0262	99.5	105	78.5-125			5.05	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0258	0.0264	103	105	79.3-123			2.10	20	
Tetrachloroethene	0.0250	0.0253	0.0269	101	108	73.5-130			6.15	20	
Toluene	0.0250	0.0257	0.0267	103	107	77.9-116			3.95	20	
1,1,1-Trichloroethane	0.0250	0.0267	0.0280	107	112	71.1-129			4.72	20	
1,1,2-Trichloroethane	0.0250	0.0264	0.0271	105	108	81.6-120			2.69	20	
Trichloroethene	0.0250	0.0257	0.0269	103	108	79.5-121			4.40	20	
1,2,4-Trimethylbenzene	0.0250	0.0252	0.0268	101	107	79.0-122			6.06	20	
1,3,5-Trimethylbenzene	0.0250	0.0254	0.0269	101	108	81.0-123			5.96	20	
Vinyl chloride	0.0250	0.0276	0.0284	110	114	61.5-134			2.89	20	
Xylenes, Total	0.0750	0.0762	0.0806	102	107	79.2-122			5.61	20	
o-Xylene	0.0250	0.0255	0.0267	102	107	79.1-123			4.75	20	
m&p-Xylenes	0.0500	0.0508	0.0539	102	108	78.5-122			6.03	20	
(S) Toluene-d8				106	105	90.0-115					
(S) Dibromofluoromethane				106	105	79.0-121					
(S) 4-Bromofluorobenzene				102	102	80.1-120					

ACCOUNT:	
TRC Solutions - Austin,	T>

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832460-01,02,04,05,06,07,08

L832460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	//6 08:03 • (MS) R3134190-4 05/04/16 06:18 • (MSD) R3134190-5 05/04/16 06:39											
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0437	0.0610	34.9	48.8	1	25.0-156		<u>J3</u>	33.1	21.5
Benzene	0.0250	U	0.0184	0.0261	73.6	104	1	58.6-133		<u>J3</u>	34.7	20
Bromodichloromethane	0.0250	U	0.0197	0.0268	78.9	107	1	69.2-127		<u>J3</u>	30.5	20
Bromoform	0.0250	U	0.0187	0.0258	74.6	103	1	66.3-140		<u>J3</u>	32.1	20
Bromomethane	0.0250	U	0.0218	0.0317	87.3	127	1	16.6-183		<u>J3</u>	36.8	20.5
n-Butylbenzene	0.0250	U	0.0192	0.0262	76.9	105	1	64.8-145		<u>J3</u>	30.7	20
sec-Butylbenzene	0.0250	U	0.0181	0.0255	72.5	102	1	66.8-139		<u>J3</u>	33.7	20
Carbon disulfide	0.0250	U	0.0147	0.0207	58.9	82.8	1	34.9-138		<u>J3</u>	33.7	20
Carbon tetrachloride	0.0250	U	0.0175	0.0251	70.1	101	1	60.6-139		<u>J3</u>	35.7	20
Chlorobenzene	0.0250	U	0.0192	0.0261	76.6	105	1	70.1-130		<u>J3</u>	30.8	20
Chlorodibromomethane	0.0250	U	0.0197	0.0266	78.8	107	1	71.6-132		<u>J3</u>	29.9	20
Chloroethane	0.0250	U	0.0204	0.0281	81.4	112	1	33.3-155		<u>J3</u>	31.9	20
Chloroform	0.0250	0.000943	0.0198	0.0280	75.5	108	1	66.1-133		<u>J3</u>	34.2	20
Chloromethane	0.0250	U	0.0174	0.0244	69.4	97.5	1	40.7-139		<u>J3</u>	33.7	20
1,2-Dibromoethane	0.0250	U	0.0194	0.0263	77.5	105	1	73.8-131		<u>J3</u>	30.5	20
1,1-Dichloroethane	0.0250	U	0.0189	0.0268	75.4	107	1	64.0-134		<u>J3</u>	34.8	20
1,2-Dichloroethane	0.0250	U	0.0198	0.0276	79.1	111	1	60.7-132		<u>J3</u>	33.1	20
1,1-Dichloroethene	0.0250	U	0.0169	0.0239	67.4	95.4	1	48.8-144		<u>J3</u>	34.4	20
cis-1,2-Dichloroethene	0.0250	U	0.0194	0.0270	77.6	108	1	60.6-136		<u>J3</u>	32.8	20
trans-1,2-Dichloroethene	0.0250	U	0.0189	0.0266	75.5	106	1	61.0-132		<u>13</u>	33.8	20
1,2-Dichloropropane	0.0250	U	0.0192	0.0261	76.8	104	1	69.7-130		<u>J3</u>	30.3	20
cis-1,3-Dichloropropene	0.0250	U	0.0196	0.0265	78.5	106	1	71.1-129		<u>J3</u>	29.6	20
trans-1,3-Dichloropropene	0.0250	U	0.0203	0.0274	81.2	110	1	66.3-136		<u>13</u>	29.9	20
Ethylbenzene	0.0250	U	0.0181	0.0252	72.5	101	1	62.7-136		<u>J3</u>	32.6	20
2-Hexanone	0.125	U	0.0817	0.114	65.4	91.3	1	59.4-154		<u>J3</u>	33.2	20.1
Isopropylbenzene	0.0250	U	0.0183	0.0257	73.2	103	1	67.4-136		<u>J3</u>	33.8	20
p-Isopropyltoluene	0.0250	U	0.0187	0.0262	74.9	105	1	62.8-143		<u>J3</u>	33.3	20
2-Butanone (MEK)	0.125	U	0.0709	0.100	56.7	80.2	1	45.0-156		<u>13</u>	34.3	20.8
Methylene Chloride	0.0250	U	0.0190	0.0264	76.1	106	1	61.5-125		<u>J3</u>	32.7	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.0976	0.135	78.1	108	1	60.7-150		<u>J3</u>	32.5	20
Methyl tert-butyl ether	0.0250	U	0.0194	0.0274	77.4	110	1	61.4-136		<u>J3</u>	34.4	20
Naphthalene	0.0250	U	0.0175	0.0248	70.1	99.2	1	61.8-143		<u>73</u>	34.4	20
n-Propylbenzene	0.0250	U	0.0189	0.0262	75.7	105	1	63.2-139		<u>J3</u>	32.3	20
Styrene	0.0250	U	0.0202	0.0274	80.7	110	1	68.2-133		J3	30.4	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0185	0.0252	74.0	101	1	70.5-132		<u>J3</u>	30.9	20
	0.0250	U	0.0194	0.0269	77.7	108	1	64.9-145		J3	32.3	20

249545.0000.0000 000

SDG: L832460 DATE/TIME:

PAGE: 43 of 54

(S) 4-Bromofluorobenzene

$\underset{\underline{L832460-01,02,04,05,06,07,08}}{\mathsf{QUALITY}}\mathsf{CONTROL}\underset{\mathsf{SUMMARY}}{\mathsf{SUMMARY}}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832460-02 05/04/	16 08:03 • (MS)	R3134190-4 0	5/04/16 06:18 •	(MSD) R31341	90-5 05/04/16	6 06:39						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0178	0.0248	71.3	99.2	1	57.4-141		<u>J3</u>	32.7	20
Toluene	0.0250	U	0.0181	0.0250	72.4	100	1	67.8-124		<u>J3</u>	32.1	20
1,1,1-Trichloroethane	0.0250	U	0.0187	0.0272	74.7	109	1	58.7-134		<u>J3</u>	37.2	20
1,1,2-Trichloroethane	0.0250	U	0.0195	0.0267	78.2	107	1	74.1-130		<u>J3</u>	31.1	20
Trichloroethene	0.0250	U	0.0181	0.0252	72.3	101	1	48.9-148		<u>J3</u>	33.0	20
1,2,4-Trimethylbenzene	0.0250	U	0.0184	0.0256	73.7	102	1	60.5-137		<u>J3</u>	32.5	20
1,3,5-Trimethylbenzene	0.0250	U	0.0185	0.0257	73.9	103	1	67.9-134		<u>J3</u>	32.6	20
Vinyl chloride	0.0250	U	0.0179	0.0255	71.6	102	1	44.3-143		<u>J3</u>	35.0	20
Xylenes, Total	0.0750	U	0.0555	0.0760	74.0	101	1	65.6-133		<u>J3</u>	31.2	20
o-Xylene	0.0250	U	0.0185	0.0255	73.9	102	1	67.1-133		<u>J3</u>	31.8	20
m&p-Xylenes	0.0500	U	0.0370	0.0505	74.0	101	1	64.1-133		<u>J3</u>	30.8	20
(S) Toluene-d8					105	105		90.0-115				
(S) Dibromofluoromethane					103	106		79.0-121				

102

101

80.1-120

QUALITY CONTROL SUMMARY L832460-03

ONE LAB. NATIONWIDE.

²Tc

GI

ΑI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(MB) R3134517-2 05/06/16				
(NIB) K3134317-2 U3/U6/16	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l	MB Qualifier	mg/l	mg/l
Acetone	U		0.0100	0.0500
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000380	0.00100
Bromomethane	U		0.000469	0.00500
n-Butylbenzene	U		0.000866	0.00100
	U		0.000365	0.00100
sec-Butylbenzene				
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
Methyl tert-butyl ether	U		0.000367	0.00100
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Naphthalene	U		0.00100	0.00500
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100
n-Propylbenzene	U		0.000349	0.00100
Tetrachloroethene	U		0.000372	0.00100
Styrene	U		0.000307	0.00100
1,1,2-Tetrachloroethane	U		0.000385	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832460

DATE/TIME: 05/12/16 18:43

PAGE: 45 of 54

QUALITY CONTROL SUMMARY L832460-03

ONE LAB. NATIONWIDE.

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

- Wethod Blank (WB)				
(MB) R3134517-2 05/06/16	6 06:02			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Toluene	U		0.000780	0.00500
1,1,1-Trichloroethane	U		0.000319	0.00100
1,1,2-Trichloroethane	U		0.000383	0.00100
Trichloroethene	U		0.000398	0.00100
1,2,4-Trimethylbenzene	U		0.000373	0.00100
Vinyl chloride	U		0.000259	0.00100
1,3,5-Trimethylbenzene	U		0.000387	0.00100
Xylenes, Total	U		0.00106	0.00300
o-Xylene	U		0.000341	0.00100
m&p-Xylenes	U		0.000719	0.00100
(S) Toluene-d8	104			90.0-115
(S) Dibromofluoromethane	103			79.0-121
(S) 4-Bromofluorobenzene	99.8			80.1-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134517-1 05/06/	16 04:59 • (LCSE) R3134517-3	05/06/16 07:41							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.137	0.125	109	99.9	28.7-175			9.14	20.9
Bromodichloromethane	0.0250	0.0288	0.0252	115	101	75.5-121			13.4	20
Bromoform	0.0250	0.0265	0.0232	106	92.8	71.5-131			13.2	20
Bromomethane	0.0250	0.0370	0.0340	148	136	22.4-187			8.55	20
n-Butylbenzene	0.0250	0.0277	0.0250	111	100	75.9-134			10.1	20
sec-Butylbenzene	0.0250	0.0267	0.0237	107	94.8	80.6-126			11.7	20
Carbon disulfide	0.0250	0.0268	0.0235	107	94.1	53.0-134			13.1	20
Carbon tetrachloride	0.0250	0.0277	0.0247	111	98.6	70.9-129			11.8	20
Chlorobenzene	0.0250	0.0279	0.0244	112	97.8	79.7-122			13.3	20
Chlorodibromomethane	0.0250	0.0280	0.0242	112	96.9	78.2-124			14.4	20
Chloroethane	0.0250	0.0328	0.0300	131	120	41.2-153			9.05	20
Chloroform	0.0250	0.0294	0.0261	118	105	73.2-125			11.8	20
Chloromethane	0.0250	0.0294	0.0268	118	107	55.8-134			9.10	20
1,2-Dibromoethane	0.0250	0.0283	0.0242	113	97.0	79.8-122			15.6	20
1,1-Dichloroethane	0.0250	0.0295	0.0262	118	105	71.7-127			11.7	20
1,2-Dichloroethane	0.0250	0.0298	0.0262	119	105	65.3-126			12.7	20
1,1-Dichloroethene	0.0250	0.0282	0.0251	113	101	59.9-137			11.6	20

TRC Solutions - Austin, TX

249545.0000.0000 000

L832460

DATE/TIME:

PAGE: 46 of 54

QUALITY CONTROL SUMMARY L832460-03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
cis-1,2-Dichloroethene	0.0250	0.0295	0.0263	118	105	77.3-122			11.5	20	
rans-1,2-Dichloroethene	0.0250	0.0296	0.0265	118	106	72.6-125			11.0	20	
l,2-Dichloropropane	0.0250	0.0289	0.0251	116	100	77.4-125			14.2	20	
cis-1,3-Dichloropropene	0.0250	0.0294	0.0256	117	102	77.7-124			13.7	20	
rans-1,3-Dichloropropene	0.0250	0.0298	0.0261	119	104	73.5-127			13.3	20	
Ethylbenzene	0.0250	0.0273	0.0238	109	95.1	80.9-121			13.8	20	
2-Hexanone	0.125	0.144	0.130	115	104	59.4-151			10.1	20	
sopropylbenzene	0.0250	0.0272	0.0239	109	95.7	81.6-124			12.7	20	
o-Isopropyltoluene	0.0250	0.0272	0.0246	109	98.4	77.6-129			10.3	20	
2-Butanone (MEK)	0.125	0.154	0.136	123	109	46.4-155			12.1	20	
Methylene Chloride	0.0250	0.0290	0.0253	116	101	69.5-120			13.3	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.147	0.128	117	103	63.3-138			13.5	20	
Methyl tert-butyl ether	0.0250	0.0287	0.0255	115	102	70.1-125			12.0	20	
Naphthalene	0.0250	0.0265	0.0229	106	91.8	69.7-134			14.3	20	
n-Propylbenzene	0.0250	0.0275	0.0246	110	98.6	81.9-122			11.0	20	
Styrene	0.0250	0.0285	0.0253	114	101	79.9-124			12.2	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0269	0.0232	108	93.0	78.5-125			14.6	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0267	0.0238	107	95.3	79.3-123			11.5	20	
Fetrachloroethene	0.0250	0.0274	0.0238	110	95.4	73.5-130			14.0	20	
Foluene	0.0250	0.0278	0.0241	111	96.6	77.9-116			13.9	20	
1,1,1-Trichloroethane	0.0250	0.0293	0.0260	117	104	71.1-129			12.0	20	
,1,2-Trichloroethane	0.0250	0.0280	0.0240	112	96.2	81.6-120			15.2	20	
Frichloroethene	0.0250	0.0291	0.0247	116	98.9	79.5-121			16.1	20	
1,2,4-Trimethylbenzene	0.0250	0.0263	0.0239	105	95.5	79.0-122			9.81	20	
1,3,5-Trimethylbenzene	0.0250	0.0270	0.0240	108	96.0	81.0-123			11.8	20	
/inyl chloride	0.0250	0.0300	0.0274	120	110	61.5-134			9.04	20	
Kylenes, Total	0.0750	0.0816	0.0716	109	95.5	79.2-122			13.1	20	
o-Xylene	0.0250	0.0271	0.0236	108	94.4	79.1-123			13.8	20	
m&p-Xylenes	0.0500	0.0545	0.0480	109	96.0	78.5-122			12.8	20	
(S) Toluene-d8				105	105	90.0-115					
(S) Dibromofluoromethane				106	109	79.0-121					
(S) 4-Bromofluorobenzene				97.8	100	80.1-120					

249545.0000.0000 000

L832460

DATE/TIME: 05/12/16 18:43

PAGE: 47 of 54

QUALITY CONTROL SUMMARY 1832460-03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832643-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832643-09 05/06/1	(OS) L832643-09 05/06/16 12:57 • (MS) R3134517-4 05/06/16 08:20 • (MSD) R3134517-5 05/06/16 08:40													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Acetone	0.125	U	0.0583	0.0525	46.7	42.0	1	25.0-156			10.5	21.5		
Bromodichloromethane	0.0250	U	0.0240	0.0219	95.9	87.6	1	69.2-127			9.08	20		
Bromoform	0.0250	0.00207	0.0240	0.0220	87.9	79.8	1	66.3-140			8.69	20		
Bromomethane	0.0250	U	0.0288	0.0254	115	102	1	16.6-183			12.4	20.5		
n-Butylbenzene	0.0250	U	0.0236	0.0212	94.2	84.9	1	64.8-145			10.5	20		
sec-Butylbenzene	0.0250	U	0.0225	0.0200	90.2	80.0	1	66.8-139			12.0	20		
Carbon disulfide	0.0250	U	0.0187	0.0162	74.9	64.6	1	34.9-138			14.7	20		
Carbon tetrachloride	0.0250	U	0.0229	0.0205	91.7	81.8	1	60.6-139			11.4	20		
Chlorobenzene	0.0250	U	0.0231	0.0209	92.4	83.7	1	70.1-130			9.88	20		
Chlorodibromomethane	0.0250	U	0.0235	0.0214	93.9	85.4	1	71.6-132			9.43	20		
Chloroethane	0.0250	U	0.0264	0.0225	106	89.8	1	33.3-155			16.2	20		
Chloroform	0.0250	U	0.0250	0.0221	99.9	88.5	1	66.1-133			12.1	20		
Chloromethane	0.0250	U	0.0229	0.0198	91.8	79.1	1	40.7-139			14.8	20		
1,2-Dibromoethane	0.0250	U	0.0230	0.0215	91.9	86.0	1	73.8-131			6.64	20		
1,1-Dichloroethane	0.0250	U	0.0247	0.0217	98.6	86.9	1	64.0-134			12.6	20		
1,2-Dichloroethane	0.0250	U	0.0250	0.0225	100	89.9	1	60.7-132			10.9	20		
1,1-Dichloroethene	0.0250	U	0.0223	0.0190	89.3	76.0	1	48.8-144			16.1	20		
cis-1,2-Dichloroethene	0.0250	U	0.0244	0.0216	97.6	86.2	1	60.6-136			12.4	20		
trans-1,2-Dichloroethene	0.0250	U	0.0202	0.0142	80.9	56.8	1	61.0-132		<u>J3 J6</u>	35.0	20		
1,2-Dichloropropane	0.0250	U	0.0239	0.0217	95.8	86.6	1	69.7-130			10.1	20		
cis-1,3-Dichloropropene	0.0250	U	0.0194	0.0118	77.8	47.0	1	71.1-129		<u>J3 J6</u>	49.3	20		
trans-1,3-Dichloropropene	0.0250	U	0.0150	0.00499	60.1	20.0	1	66.3-136	<u>J6</u>	<u>J3 J6</u>	100	20		
Ethylbenzene	0.0250	U	0.0222	0.0200	88.7	80.1	1	62.7-136			10.2	20		
2-Hexanone	0.125	U	0.0996	0.0973	79.7	77.8	1	59.4-154			2.36	20.1		
Isopropylbenzene	0.0250	U	0.0225	0.0201	90.0	80.5	1	67.4-136			11.1	20		
p-Isopropyltoluene	0.0250	U	0.0233	0.0206	93.2	82.4	1	62.8-143			12.3	20		
2-Butanone (MEK)	0.125	U	0.0921	0.0882	73.7	70.5	1	45.0-156			4.40	20.8		
Methylene Chloride	0.0250	U	0.0239	0.0210	95.5	83.9	1	61.5-125			13.0	20		
4-Methyl-2-pentanone (MIBK)	0.125	U	0.122	0.116	97.4	93.1	1	60.7-150			4.52	20		
Methyl tert-butyl ether	0.0250	U	0.0243	0.0223	97.4	89.2	1	61.4-136			8.72	20		
Naphthalene	0.0250	U	0.0221	0.0207	88.5	82.9	1	61.8-143			6.54	20		
n-Propylbenzene	0.0250	U	0.0233	0.0207	93.3	83.0	1	63.2-139			11.7	20		
Styrene	0.0250	U	0.00390	0.00126	15.6	5.02	1	68.2-133	<u>J6</u>	<u>J3 J6</u>	103	20		
1,1,1,2-Tetrachloroethane	0.0250	U	0.0223	0.0202	89.2	80.7	1	70.5-132			9.96	20		

1,1,2,2-Tetrachloroethane

Tetrachloroethene

PROJECT: 249545.0000.0000 000

L832460

DATE/TIME:

PAGE: 48 of 54

0.0250

0.0250

U

U

0.0236

0.0220

0.0218

0.0199

94.4

87.9

87.1

79.5

64.9-145

57.4-141

8.07

20

20

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY L832460-03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832643-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Toluene	0.0250	U	0.0223	0.0201	89.3	80.5	1	67.8-124			10.3	20
1,1,1-Trichloroethane	0.0250	U	0.0242	0.0215	96.6	86.1	1	58.7-134			11.6	20
1,1,2-Trichloroethane	0.0250	U	0.0236	0.0218	94.2	87.4	1	74.1-130			7.54	20
Trichloroethene	0.0250	U	0.0223	0.0202	89.2	80.7	1	48.9-148			10.1	20
1,2,4-Trimethylbenzene	0.0250	0.000580	0.0227	0.0200	88.6	77.9	1	60.5-137			12.6	20
1,3,5-Trimethylbenzene	0.0250	U	0.0223	0.0194	89.2	77.4	1	67.9-134			14.1	20
Vinyl chloride	0.0250	U	0.0225	0.0172	89.9	68.8	1	44.3-143		<u>J3</u>	26.6	20
Xylenes, Total	0.0750	U	0.0672	0.0602	89.6	80.3	1	65.6-133			11.0	20
o-Xylene	0.0250	U	0.0223	0.0198	89.2	79.4	1	67.1-133			11.7	20
n&p-Xylenes	0.0500	U	0.0449	0.0404	89.8	80.7	1	64.1-133			10.6	20
(S) Toluene-d8					105	104		90.0-115				
(S) Dibromofluoromethane					108	107		79.0-121				

100

101

80.1-120

QUALITY CONTROL SUMMARY L832460-03

ONE LAB. NATIONWIDE.

Ss

GI

ΑI

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134703-3 05/07/16	6 01:08			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.000331	0.00100
(S) Toluene-d8	100			90.0-115
(S) Dibromofluoromethane	98.1			79.0-121
(S) 4-Bromofluorobenzene	89.0			80.1-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3134703-1 05/06/16 23:26 • (LCSD) R3134703-2 05/06/16 23:46														
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits				
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				
Benzene	0.0250	0.0245	0.0245	97.8	98.0	73.0-122			0.220	20				
(C) T-110				004	00.0	00 0 445								

(S) Toluene-d8 99.2 90.0-115 98.1 79.0-121 (S) Dibromofluoromethane 99.3 98.6 (S) 4-Bromofluorobenzene 85.7 88.0 80.1-120

L832643-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832643-09 05/07/10	(OS) L832643-09 05/07/16 02:50 • (MS) R3134703-4 05/07/16 01:29 • (MSD) R3134703-5 05/07/16 01:49													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Benzene	0.0250	U	0.0240	0.0241	96.0	96.3	1	58.6-133			0.360	20		
(S) Toluene-d8					99.6	98.7		90.0-115						
(S) Dibromofluoromethane					101	99.8		79.0-121						
(S) 4-Bromofluorobenzene					86.4	86.4		80.1-120						

MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 108 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133525-2 05/03/16 13:25 • (LCSD) R3133525-3 05/03/16 13:42 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.75 1.71 117 114 2.53 20 (S) o-Terphenyl 50.0-150 108 104 GI Αl

SDG:

L832460

DATE/TIME:

05/12/16 18:43

QUALITY CONTROL SUMMARY
L832460-01,02,03,05,06,07,08

WG869259

Method Blank (MB) (MB) R3133525-1 05/03/16 13:09

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

MB MDL

MB RDL

PROJECT:

249545.0000.0000 000

MB Result

ACCOUNT:

TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE.

PAGE:

51 of 54

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Langui Marca (4-11		Te	Billing Inform	nation:	-		7.3.5	1	1122			lysis / Co	ntaine	er / Preser	rvative			C	Chain of Custody	Page of
npany Name/Address: RC Solutions - Austi	in. TX		Account	ts Pay	able					I		103		4 3	Sou	3		1	36 L	1
	, 17	12	21 Griffin	n Road	d North	1 1 1		-		A		£.	1	2	MOP	4		>	YL	
5 E. Huntland Dr, Ste 250 ustin, TX 78752		W . 7	Windsor	, 61 (,0095							HP	12	HNO3 (125mIHDPE-NoPres	- 250mIHDPE-H2SO4		Se,U	YOUR LAB O	同的說如何
port to:			Email To:	_	1	16	TO SERVICE	1				m00	НОВ	PET	5mll	OPE		d'iN	Mount Juliet, TN 37122 Phone: 615-758-5858	202611
port to: peer@trcsolutions.com	27.1		speer@t			om	198 3	4	100		2000	9-5	N-O	모	9- 12	볼	1	Mu,	Phone: 800-767-5859 Fax: 615-758-5859	回線性
oject TEL Spring 2016 -	Team G C	⊅₩			ted: Act	resia,	M	1				Mn,St	EAm	500mlHDPE-HNO3	Sulfate-	. 250n	S	Fe,Hg	1#18324	60
	Client Project #			720000000000000000000000000000000000000	Lab Project # TRCATX-TEL SPRING				-BT		5	As,Ba,Cr,Fe,Pb,Mn,Se	HDP	Na-	Fluoride, S	NO3) -	250mIHDPE-NoPres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	G071	ATY
ollected by (print):	Site/Facility ID #	II	isia	P.O. #	電子	Tien	1,30		- 40mlAmb-HCI-BT	- 40mlAmb-HCI	- 40mlAmb-HCl	a,Cr,F	. 250n	Cations-Total Ca, K,	e, Flu	Nitrate/Nitrite (NO2NO3)	DPE-	Ba,Cd	Acctnum: TRC. Template: T11	
ollected by (signature):	100	ab MUST Be I	THE RESERVE OF THE PARTY OF THE	1	Date Re	tesults Need	nded	1	Amk	Ami	IIAn	B's	(N:	Ital	Anions- Chloride,	rite	HIM	s,B,	Prelogin: P549	
Suptr Udl	Same Da	by	200%	- 1	Email?	No _Yes	5	-	Oml	0ml	40ш	S. A	e (c	s-To	- Chi	Nit	250r		TSR: Chris	McCord
mmediately	Next Day Two Day	y	50%				or I	No. of		2-4	- 09	Tot./Diss.	pine	ions	ons	rate	100	Tot/Diss.	Cooler: Shipped Via:	No. of the last of
acked on Ice N Y	Comp/Grab	Matrix *		199	Date	Tim		Cntrs	DRO	GRO	V8260	Tot.	Cys	Cat	Ani	Z Z	TDS	To	Rem./Contaminant	
Sample ID	1	GW		-	28/16	103	30	12	/	1	1	/		1	V	V	V			-61
TEL-3		JW	1 100	1	28/16		45	17	/	V	V	V		V	V	V	V		A MARCHAN	03
EB-TEL-01	94		as E	1	128/16	STATE OF THE PARTY OF	40	12	/	1	V	V		V	V	V	V	1	1	0
TEL-Z	21	2.00		_	28/16		-	1			1			Gran		1/18				(a contractor
Trip Blank-TEL-		1		-	28/16	-	55	17	V	V	V	V		V	V	V	V	-		05
TEL-1	+	1 200	4 10	-	128/16		155	17	1	V	V	V		V	V	V	V	L		CHEMINATE STATE
The second secon				_	128/16		300	12	1	V	V	V	1000	V	V	V	V	100	1	0
DUP-TEL-01	1	1		_	1/28/18	1	010	13	/	V	V	43	V	V	V	1	V	V	1 1	90
mw-49	V	4	2 11		-011	1000	11-12-		100	746							100	100	1	
11/2	7	100		2 7322		E .			1	1		1.16							Little	
			CE COL		TA	6711	017	76	1610	0		рН	##	Ten	np		The same	1,28		
* Matrix: SS - Soil GW - Groundwate	er WW - Waste\	Water DW -	- Drinking W.	ater OT	- Other	6711	101	27	15-	72	3			Oth	400		He	fold#		2000
Remarks: Log all metals by	6020. Disso	olved me	etals are	field fi	filtered.	10711	103	3351	6/2	7	100	Flow_	es retire	oth urned via:	100000000000000000000000000000000000000	PS PS	- 10	ondition	n: (la)	b use only)
Relinquished by : (Signature)		Date:	ALC: A ST	Time:	115	Received b	by: (Sign.	ature)	100					□ Cour	urier [0				JW
A CONTRACTOR OF THE PARTY OF TH	lde	Date:	28/16	7 Time:		Received b	by: (Signa	ature)	Sept.	100 A	The same	Temp:	and the same of	°C E	Bottles R	Received				0
Relinquished by : (Signature)	LEE LE	South:			07190			-			발발	3.1		10 20	84	0 :		COC Sea	cked: NC	CF: NNA
Relinquished by : (Signature)	- 4	Date:	4000	Time:	4 1	Received t	for lab b	y: (Sign	nature	1		Date:	50		Time:	60	100	42	ERCO!	STEEL STEEL
1	V	100				his	17	m	- Tu	RM	1	17	67	W	XI	14		-	-	F1207

ANALYTICAL REPORT May 10, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832462

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: NCL Spring 2016

Site: NCL - NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth June

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Ε	LAB.	NATIONWIDE.	

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
MW-56 L832462-01	6
NCL-34A L832462-02	8
MW-108 L832462-03	10
NCL-31 L832462-04	12
NCL-32 L832462-05	14
EB-NCL-01 L832462-06	16
NCL-44 L832462-07	18
Qc: Quality Control Summary	20
Gravimetric Analysis by Method 2540 C-2011	20
Wet Chemistry by Method 353.2	22
Wet Chemistry by Method 9056A	28
Metals (ICPMS) by Method 6020	30
Volatile Organic Compounds (GC/MS) by Method 8260B	33
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	38
GI: Glossary of Terms	39
Al: Accreditations & Locations	40

⁹Sc: Chain of Custody

41

SAMPLE SUMMARY

ONE	ΙΔΒ	NATIONWIDE
OIVL	LAD.	INATIONVIDE

MW-56 L832462-01 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 12:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 18:43	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:05	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 18:06	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 10:31	05/04/16 10:31	BMB
Wet Chemistry by Method 353.2	WG870055	1	05/05/16 15:41	05/05/16 15:41	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 07:56	05/09/16 07:56	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 08:12	05/09/16 08:12	CM
NCL-34A L832462-02 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 08:25	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 18:59	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:08	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	20	05/02/16 21:06	05/05/16 22:31	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	50	05/04/16 10:52	05/04/16 10:52	BMB
Wet Chemistry by Method 353.2	WG870487	10	05/09/16 15:36	05/09/16 15:36	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 08:27	05/09/16 08:27	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 08:42	05/09/16 08:42	CM
MW-108 L832462-03 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 09:25	Received date/tim 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			1 1 10	1 1 11:	

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869818	1	05/04/16 18:18	05/04/16 18:59	MMF
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:02	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:10	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 18:40	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	50	05/04/16 11:13	05/04/16 11:13	BMB
Wet Chemistry by Method 353.2	WG870487	10	05/09/16 15:37	05/09/16 15:37	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 09:44	05/09/16 09:44	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 08:58	05/09/16 08:58	CM
			Collected by	Collected date/time	Received date/time

NCL-31 L832462-04 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869819	1	05/05/16 03:04	05/05/16 04:22	JM
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:05	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:12	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 18:56	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 11:34	05/04/16 11:34	BMB
Wet Chemistry by Method 353.2	WG870487	10	05/09/16 15:38	05/09/16 15:38	DR
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 09:59	05/09/16 09:59	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 10:15	05/09/16 10:15	CM

Collected by

SU / HM1 Team

Collected date/time

04/29/16 09:00

04/28/16 10:40

ONE LAB. NATIONWIDE.

SAMPLE SUMMARY

			Collected by	Collected date/time	Received date/time	
NCL-32 L832462-05 GW			SU / HM1 Team	04/28/16 11:40	04/29/16 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG869819	1	05/05/16 03:04	05/05/16 04:22	JM	
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:07	ST	
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:15	JDG	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 19:13	JNS	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 11:55	05/04/16 11:55	BMB	
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 06:44	05/06/16 06:44	ASK	
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 10:30	05/09/16 10:30	CM	
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 10:46	05/09/16 10:46	CM	
			Collected by	Collected date/time	Received date/time	
EB-NCL-01 L832462-06 GW			SU / HM1 Team	04/28/16 12:20	04/29/16 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG869819	1	05/05/16 03:04	05/05/16 04:22	JM	
Metals (ICPMS) by Method 6020	WG869321	1	05/02/16 21:41	05/06/16 19:10	ST	
Metals (ICPMS) by Method 6020	WG870075	1	05/05/16 17:34	05/09/16 11:38	JDG	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 19:30	JNS	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 19:30		

Ss

BMB

ASK

 CM

Received date/time

04/29/16 09:00

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Volatile Organic Compounds (GC/MS) by Method 8260B

Method	Batch D		Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869819	1	05/05/16 03:04	05/05/16 04:22	JM
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:13	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:24	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869259	1	05/02/16 21:06	05/04/16 20:53	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 12:37	05/04/16 12:37	BMB
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 06:46	05/06/16 06:46	ASK
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 14:02	05/09/16 14:02	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 11:47	05/09/16 11:47	CM

WG868987

WG870056

WG869680

1

10

1

05/04/16 12:16

05/06/16 06:45

05/09/16 11:01

Collected by

SU / HM1 Team

05/04/16 12:16

05/06/16 06:45

05/09/16 11:01

Collected date/time

04/28/16 13:00

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

3 Ss

Chris McCord

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3790		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.76		0.0197	0.100	0.100	1	05/05/2016 15:41	WG870055

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	403		5.19	1.00	100	100	05/09/2016 08:12	WG869680
Fluoride	1.10		0.00990	0.100	0.100	1	05/09/2016 07:56	WG869680
Sulfate	1970		7.74	5.00	500	100	05/09/2016 08:12	WG869680

Metals (ICI MS) by Metalod 0020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.00777	J	0.00125	0.00200	0.0100	5	05/06/2016 18:43	WG869321		
Arsenic,Dissolved	0.00737	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 11:05	WG870075		
Barium	0.0203	J	0.00180	0.00500	0.0250	5	05/06/2016 18:43	WG869321		
Barium,Dissolved	0.0158	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 11:05	WG870075		
Calcium	559	\vee	0.230	1.00	5.00	5	05/06/2016 18:43	WG869321		
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 18:43	WG869321		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:05	WG870075		
ron	U		0.0750	0.100	0.500	5	05/06/2016 18:43	WG869321		
ron,Dissolved	0.112	<u>J</u>	0.0750	0.100	0.500	5	05/09/2016 11:05	WG870075		
_ead	U		0.00120	0.00200	0.0100	5	05/06/2016 18:43	WG869321		
_ead,Dissolved	0.00132	<u>J</u>	0.00120	0.00200	0.0100	5	05/09/2016 11:05	WG870075		
Manganese	0.373		0.00125	0.00500	0.0250	5	05/06/2016 18:43	WG869321		
Manganese,Dissolved	0.331		0.00125	0.00500	0.0250	5	05/09/2016 11:05	WG870075		
Potassium	2.32	<u>J 01</u>	0.185	1.00	5.00	5	05/06/2016 18:43	WG869321		
Selenium	0.00381	J	0.00190	0.00200	0.0100	5	05/06/2016 18:43	WG869321		
Selenium, Dissolved	0.00369	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 11:05	WG870075		
Sodium	379	\vee	0.550	1.00	5.00	5	05/06/2016 18:43	WG869321		

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00777	<u>J</u>	0.00125	0.00200	0.0100	5	05/06/2016 18:43	WG869321
Arsenic, Dissolved	0.00737	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 11:05	WG870075
Barium	0.0203	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 18:43	WG869321
Barium, Dissolved	0.0158	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 11:05	WG870075
Calcium	559	\vee	0.230	1.00	5.00	5	05/06/2016 18:43	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 18:43	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:05	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 18:43	WG869321
Iron,Dissolved	0.112	<u>J</u>	0.0750	0.100	0.500	5	05/09/2016 11:05	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 18:43	WG869321
Lead, Dissolved	0.00132	<u>J</u>	0.00120	0.00200	0.0100	5	05/09/2016 11:05	WG870075
Manganese	0.373		0.00125	0.00500	0.0250	5	05/06/2016 18:43	WG869321
Manganese, Dissolved	0.331		0.00125	0.00500	0.0250	5	05/09/2016 11:05	WG870075
Potassium	2.32	<u>J 01</u>	0.185	1.00	5.00	5	05/06/2016 18:43	WG869321
Selenium	0.00381	J	0.00190	0.00200	0.0100	5	05/06/2016 18:43	WG869321
Selenium, Dissolved	0.00369	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 11:05	WG870075
Sodium	379	\vee	0.550	1.00	5.00	5	05/06/2016 18:43	WG869321

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 10:31	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 10:31	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 10:31	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 10:31	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 10:31	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 10:31	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 10:31	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 10:31	WG868987

10

Collected date/time: 04/28/16 12:00

Volatile Organic Compounds (GC/MS) by Method 8260B

NE LAB. NATIONWIDE.	
---------------------	--

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 10:31	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:31	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 10:31	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 10:31	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 10:31	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 10:31	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 10:31	WG868987
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 10:31	WG868987
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 10:31	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 10:31	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 10:31	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 10:31	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 10:31	WG868987
Methyl tert-butyl ether	0.0160		0.000367	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 10:31	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 10:31	WG868987
I,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 10:31	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 10:31	WG868987
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 10:31	WG868987
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:31	WG868987
I,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 10:31	WG868987
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 10:31	WG868987
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 10:31	WG868987
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 10:31	WG868987
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 10:31	WG868987
(S) Toluene-d8	106				90.0-115		05/04/2016 10:31	WG868987
(S) Dibromofluoromethane	105				79.0-121		05/04/2016 10:31	WG868987
(S) 4-Bromofluorobenzene	103				80.1-120		05/04/2016 10:31	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.07		0.0247	0.100	0.100	1	05/04/2016 18:06	WG869259
(S) o-Terphenyl	109				50.0-150		05/04/2016 18:06	WG869259



ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 08:25

L832462

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1540		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.265	J	0.197	0.100	1.00	10	05/09/2016 15:36	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	416		5.19	1.00	100	100	05/09/2016 08:42	WG869680
Fluoride	1.31		0.00990	0.100	0.100	1	05/09/2016 08:27	WG869680
Sulfate	82.2		0.0774	5.00	5.00	1	05/09/2016 08:27	WG869680

Cn

Metals (ICPMS) by Method 6020

ivietais (iCFIVIS) by iv	/ieti10d 0020							
<u> </u>	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00184	J	0.00125	0.00200	0.0100	5	05/06/2016 18:59	WG869321
Arsenic, Dissolved	U		0.00125	0.00200	0.0100	5	05/09/2016 11:08	WG870075
Barium	0.854		0.00180	0.00500	0.0250	5	05/06/2016 18:59	WG869321
Barium, Dissolved	0.616		0.00180	0.00500	0.0250	5	05/09/2016 11:08	WG870075
Calcium	347		0.230	1.00	5.00	5	05/06/2016 18:59	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 18:59	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:08	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 18:59	WG869321
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:08	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 18:59	WG869321
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:08	WG870075
Manganese	0.0185	<u>J</u>	0.00125	0.00500	0.0250	5	05/06/2016 18:59	WG869321
Manganese,Dissolved	0.0172	<u>J</u>	0.00125	0.00500	0.0250	5	05/09/2016 11:08	WG870075
Potassium	2.20	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 18:59	WG869321
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 18:59	WG869321
Selenium,Dissolved	0.00268	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 11:08	WG870075
Sodium	140		0.550	1.00	5.00	5	05/06/2016 18:59	WG869321

⁶Qc

Gl

Ål

⁹Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.500	0.0500	2.50	50	05/04/2016 10:52	WG868987
Benzene	3.25		0.0166	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Bromodichloromethane	U		0.0190	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Bromoform	U		0.0234	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Bromomethane	U		0.0433	0.00500	0.250	50	05/04/2016 10:52	WG868987
n-Butylbenzene	U		0.0180	0.00100	0.0500	50	05/04/2016 10:52	WG868987
sec-Butylbenzene	0.0190	J	0.0182	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Carbon disulfide	U		0.0138	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Carbon tetrachloride	U		0.0190	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Chlorobenzene	U		0.0174	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Chlorodibromomethane	U		0.0164	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Chloroethane	U		0.0226	0.00500	0.250	50	05/04/2016 10:52	WG868987
Chloroform	U		0.0162	0.00500	0.250	50	05/04/2016 10:52	WG868987
Chloromethane	U		0.0138	0.00250	0.125	50	05/04/2016 10:52	WG868987
1,2-Dibromoethane	U		0.0190	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,1-Dichloroethane	U		0.0130	0.00100	0.0500	50	05/04/2016 10:52	WG868987

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE

Collected date/time: 04/28/16 08:25

Volatile Organic Compounds (GC/MS) by Method 8260B

RESULTS - 02	ONE LAB. NATIONWIDE.	
3		

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.0180	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,1-Dichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 10:52	WG868987
cis-1,2-Dichloroethene	U		0.0130	0.00100	0.0500	50	05/04/2016 10:52	WG868987
trans-1,2-Dichloroethene	U		0.0198	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,2-Dichloropropane	U		0.0153	0.00100	0.0500	50	05/04/2016 10:52	WG868987
cis-1,3-Dichloropropene	U		0.0209	0.00100	0.0500	50	05/04/2016 10:52	WG868987
trans-1,3-Dichloropropene	U		0.0210	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Ethylbenzene	0.0758		0.0192	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Isopropylbenzene	0.100		0.0163	0.00100	0.0500	50	05/04/2016 10:52	WG868987
p-Isopropyltoluene	U		0.0175	0.00100	0.0500	50	05/04/2016 10:52	WG868987
2-Butanone (MEK)	U		0.196	0.0100	0.500	50	05/04/2016 10:52	WG868987
2-Hexanone	U		0.191	0.0100	0.500	50	05/04/2016 10:52	WG868987
Methylene Chloride	U		0.0500	0.00500	0.250	50	05/04/2016 10:52	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.107	0.0100	0.500	50	05/04/2016 10:52	WG868987
Methyl tert-butyl ether	U		0.0184	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Naphthalene	U		0.0500	0.00500	0.250	50	05/04/2016 10:52	WG868987
n-Propylbenzene	0.112		0.0174	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Styrene	U		0.0154	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,1,1,2-Tetrachloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,1,2,2-Tetrachloroethane	U		0.00650	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Tetrachloroethene	U		0.0186	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Toluene	U		0.0390	0.00500	0.250	50	05/04/2016 10:52	WG868987
1,1,1-Trichloroethane	U		0.0160	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,1,2-Trichloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Trichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,2,4-Trimethylbenzene	0.102		0.0186	0.00100	0.0500	50	05/04/2016 10:52	WG868987
1,3,5-Trimethylbenzene	U		0.0194	0.00100	0.0500	50	05/04/2016 10:52	WG868987
Vinyl chloride	U		0.0130	0.00100	0.0500	50	05/04/2016 10:52	WG868987
o-Xylene	U		0.0170	0.00100	0.0500	50	05/04/2016 10:52	WG868987
m&p-Xylene	0.188		0.0360	0.00100	0.0500	50	05/04/2016 10:52	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

0.188

104

104

103

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	19.2		0.494	0.100	2.00	20	05/05/2016 22:31	WG869259
(S) o-Terphenyl	112	J7			50.0-150		05/05/2016 22:31	WG869259

0.00300

0.150

90.0-115

79.0-121

80.1-120

50

05/04/2016 10:52

05/04/2016 10:52

05/04/2016 10:52

05/04/2016 10:52

WG868987

WG868987

WG868987

WG868987

0.0530

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2120		2.82	10.0	10.0	1	05/04/2016 18:59	WG869818

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.304	J	0.197	0.100	1.00	10	05/09/2016 15:37	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	79.6		0.0519	1.00	1.00	1	05/09/2016 09:44	WG869680
Fluoride	2.04		0.00990	0.100	0.100	1	05/09/2016 09:44	WG869680
Sulfate	981		7.74	5.00	500	100	05/09/2016 08:58	WG869680

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00454	J	0.00125	0.00200	0.0100	5	05/06/2016 19:02	WG869321
Arsenic, Dissolved	0.00281	J	0.00125	0.00200	0.0100	5	05/09/2016 11:10	WG870075
Barium	0.0481		0.00180	0.00500	0.0250	5	05/06/2016 19:02	WG869321
Barium, Dissolved	0.0408		0.00180	0.00500	0.0250	5	05/09/2016 11:10	WG870075
Calcium	333		0.230	1.00	5.00	5	05/06/2016 19:02	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:02	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:10	WG870075
Iron	0.206	J	0.0750	0.100	0.500	5	05/06/2016 19:02	WG869321
Iron,Dissolved	0.154	J	0.0750	0.100	0.500	5	05/09/2016 11:10	WG870075
Lead	0.00209	J	0.00120	0.00200	0.0100	5	05/06/2016 19:02	WG869321
Lead,Dissolved	0.00173	J	0.00120	0.00200	0.0100	5	05/09/2016 11:10	WG870075
Manganese	0.0501		0.00125	0.00500	0.0250	5	05/06/2016 19:02	WG869321
Manganese,Dissolved	0.0367		0.00125	0.00500	0.0250	5	05/09/2016 11:10	WG870075
Potassium	1.28	J	0.185	1.00	5.00	5	05/06/2016 19:02	WG869321
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 19:02	WG869321
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 11:10	WG870075
Sodium	92.6		0.550	1.00	5.00	5	05/06/2016 19:02	WG869321

Αl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.500	0.0500	2.50	50	05/04/2016 11:13	WG868987
Benzene	0.504		0.0166	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Bromodichloromethane	U		0.0190	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Bromoform	U		0.0234	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Bromomethane	U		0.0433	0.00500	0.250	50	05/04/2016 11:13	WG868987
n-Butylbenzene	U		0.0180	0.00100	0.0500	50	05/04/2016 11:13	WG868987
sec-Butylbenzene	U		0.0182	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Carbon disulfide	U		0.0138	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Carbon tetrachloride	U		0.0190	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Chlorobenzene	U		0.0174	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Chlorodibromomethane	U		0.0164	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Chloroethane	U		0.0226	0.00500	0.250	50	05/04/2016 11:13	WG868987
Chloroform	U		0.0162	0.00500	0.250	50	05/04/2016 11:13	WG868987
Chloromethane	U		0.0138	0.00250	0.125	50	05/04/2016 11:13	WG868987
1,2-Dibromoethane	U		0.0190	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,1-Dichloroethane	U		0.0130	0.00100	0.0500	50	05/04/2016 11:13	WG868987

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 09:25

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.0180	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,1-Dichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 11:13	WG868987
cis-1,2-Dichloroethene	U		0.0130	0.00100	0.0500	50	05/04/2016 11:13	WG868987
trans-1,2-Dichloroethene	U		0.0198	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,2-Dichloropropane	U		0.0153	0.00100	0.0500	50	05/04/2016 11:13	WG868987
cis-1,3-Dichloropropene	U		0.0209	0.00100	0.0500	50	05/04/2016 11:13	WG868987
trans-1,3-Dichloropropene	U		0.0210	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Ethylbenzene	U		0.0192	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Isopropylbenzene	0.0360	<u>J</u>	0.0163	0.00100	0.0500	50	05/04/2016 11:13	WG868987
p-Isopropyltoluene	U		0.0175	0.00100	0.0500	50	05/04/2016 11:13	WG868987
2-Butanone (MEK)	U		0.196	0.0100	0.500	50	05/04/2016 11:13	WG868987
2-Hexanone	U		0.191	0.0100	0.500	50	05/04/2016 11:13	WG868987
Methylene Chloride	U		0.0500	0.00500	0.250	50	05/04/2016 11:13	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.107	0.0100	0.500	50	05/04/2016 11:13	WG868987
Methyl tert-butyl ether	U		0.0184	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Naphthalene	U		0.0500	0.00500	0.250	50	05/04/2016 11:13	WG868987
n-Propylbenzene	0.0380	<u>J</u>	0.0174	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Styrene	U		0.0154	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,1,1,2-Tetrachloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,1,2,2-Tetrachloroethane	U		0.00650	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Tetrachloroethene	U		0.0186	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Toluene	U		0.0390	0.00500	0.250	50	05/04/2016 11:13	WG868987
1,1,1-Trichloroethane	U		0.0160	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,1,2-Trichloroethane	U		0.0192	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Trichloroethene	U		0.0199	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,2,4-Trimethylbenzene	0.0599		0.0186	0.00100	0.0500	50	05/04/2016 11:13	WG868987
1,3,5-Trimethylbenzene	U		0.0194	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Vinyl chloride	U		0.0130	0.00100	0.0500	50	05/04/2016 11:13	WG868987
o-Xylene	U		0.0170	0.00100	0.0500	50	05/04/2016 11:13	WG868987
m&p-Xylene	0.0795		0.0360	0.00100	0.0500	50	05/04/2016 11:13	WG868987
Xylenes, Total	0.0795	<u>J</u>	0.0530	0.00300	0.150	50	05/04/2016 11:13	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 11:13	WG868987
(S) Dibromofluoromethane	105				79.0-121		05/04/2016 11:13	WG868987
(S) 4-Bromofluorobenzene	104				80.1-120		05/04/2016 11:13	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	9.20		0.0247	0.100	0.100	1	05/04/2016 18:40	WG869259
(S) o-Terphenyl	102				50.0-150		05/04/2016 18:40	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 10:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3020		2.82	10.0	10.0	1	05/05/2016 04:22	WG869819	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.385	J	0.197	0.100	1.00	10	05/09/2016 15:38	WG870487

Wet Chemistry by Method 9056A

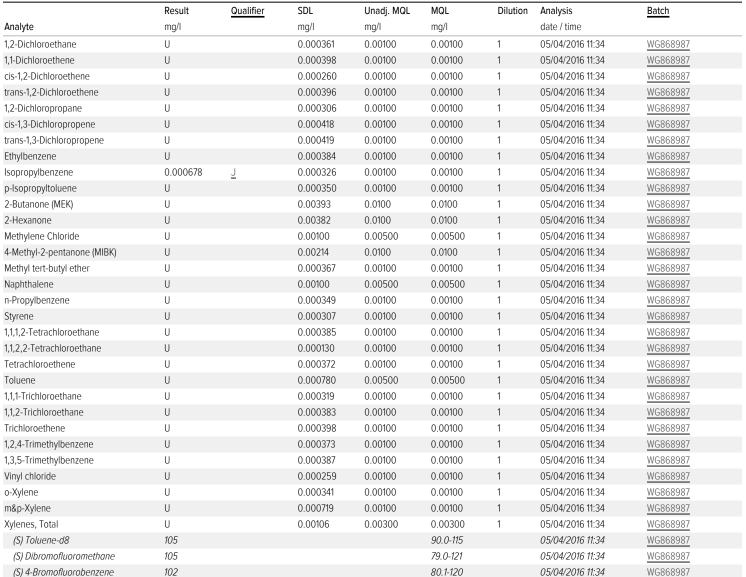
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	78.9		0.0519	1.00	1.00	1	05/09/2016 09:59	WG869680
Fluoride	1.14		0.00990	0.100	0.100	1	05/09/2016 09:59	WG869680
Sulfate	1420		7.74	5.00	500	100	05/09/2016 10:15	WG869680

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00495	J	0.00125	0.00200	0.0100	5	05/06/2016 19:05	WG869321
Arsenic,Dissolved	0.00599	J	0.00125	0.00200	0.0100	5	05/09/2016 11:12	WG870075
Barium	0.0241	J	0.00180	0.00500	0.0250	5	05/06/2016 19:05	WG869321
Barium, Dissolved	0.0178	J	0.00180	0.00500	0.0250	5	05/09/2016 11:12	WG870075
Calcium	340		0.230	1.00	5.00	5	05/06/2016 19:05	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:05	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:12	WG870075
Iron	0.838		0.0750	0.100	0.500	5	05/06/2016 19:05	WG869321
Iron,Dissolved	0.866		0.0750	0.100	0.500	5	05/09/2016 11:12	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 19:05	WG869321
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:12	WG870075
Manganese	1.85		0.00125	0.00500	0.0250	5	05/06/2016 19:05	WG869321
Manganese, Dissolved	1.90		0.00125	0.00500	0.0250	5	05/09/2016 11:12	WG870075
Potassium	0.272	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 19:05	WG869321
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 19:05	WG869321
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 11:12	WG870075
Sodium	109		0.550	1.00	5.00	5	05/06/2016 19:05	WG869321

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:34	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:34	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:34	WG868987
sec-Butylbenzene	0.000595	J	0.000365	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:34	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:34	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:34	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:34	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:34	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:34	WG868987



Collected date/time: 04/28/16 10:40

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.87		0.0247	0.100	0.100	1	05/04/2016 18:56	WG869259
(S) o-Terphenyl	106				50.0-150		05/04/2016 18:56	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 11:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2740		2.82	10.0	10.0	1	05/05/2016 04:22	WG869819

Ss

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:44	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	206		5.19	1.00	100	100	05/09/2016 10:46	WG869680
Fluoride	2.05		0.00990	0.100	0.100	1	05/09/2016 10:30	WG869680
Sulfate	1340		7.74	5.00	500	100	05/09/2016 10:46	WG869680

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0108		0.00125	0.00200	0.0100	5	05/06/2016 19:07	WG869321
Arsenic, Dissolved	0.00412	J	0.00125	0.00200	0.0100	5	05/09/2016 11:15	WG870075
Barium	0.227		0.00180	0.00500	0.0250	5	05/06/2016 19:07	WG869321
Barium, Dissolved	0.0632		0.00180	0.00500	0.0250	5	05/09/2016 11:15	WG870075
Calcium	697		0.230	1.00	5.00	5	05/06/2016 19:07	WG869321
Chromium	0.0660		0.00270	0.00200	0.0100	5	05/06/2016 19:07	WG869321
Chromium, Dissolved	0.00772	<u>J</u>	0.00270	0.00200	0.0100	5	05/09/2016 11:15	WG870075
Iron	9.75		0.0750	0.100	0.500	5	05/06/2016 19:07	WG869321
Iron,Dissolved	1.65		0.0750	0.100	0.500	5	05/09/2016 11:15	WG870075
Lead	0.0681		0.00120	0.00200	0.0100	5	05/06/2016 19:07	WG869321
Lead,Dissolved	0.00736	J	0.00120	0.00200	0.0100	5	05/09/2016 11:15	WG870075
Manganese	1.77		0.00125	0.00500	0.0250	5	05/06/2016 19:07	WG869321
Manganese, Dissolved	1.32		0.00125	0.00500	0.0250	5	05/09/2016 11:15	WG870075
Potassium	7.60		0.185	1.00	5.00	5	05/06/2016 19:07	WG869321
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 19:07	WG869321
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 11:15	WG870075
Sodium	115		0.550	1.00	5.00	5	05/06/2016 19:07	WG869321

Qc

Αl

Gl

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:55	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:55	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:55	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:55	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:55	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:55	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:55	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:55	WG868987

0

Collected date/time: 04/28/16 11:40

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB.	NATIONWIDE.	

		Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Company Comp	Analyte	mg/l	·	mg/l	mg/l	mg/l		date / time	
Case 12-Dichloroethene	1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Parallel	1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:55	WG868987
1,2 Dichloropropane	cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Cas-1,3-Dichloropropene	trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Paral Para	1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Ethybenzene U 0.000384 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylplenzene U 0.000326 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene U 0.000350 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene U 0.000393 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene U 0.00393 0.0100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene U 0.00382 0.0100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene Chloride U 0.000382 0.0100 0.00500 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene Chloride U 0.00000 0.00500 0.00500 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene Chloride U 0.000751 U 0.000100 0.00500 0.00500 1 05/04/2016 11:55 WG868987 0-1-bpropylplouene (MBK) U 0.000367 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000370 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000370 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000370 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000374 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenzene U 0.000374 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0-1-bpropylbenze	cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Sopropy Benzene U	trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Description	Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 11:55	WG868987
2-Butanone (MEK) U 0.00393 0.0100 0.0100 1 05/04/2016 11:55 WG868987 2-Hexanone U 0.00382 0.0100 0.0100 1 05/04/2016 11:55 WG868987 Methylene Chloride U 0.00100 0.00500 0.00500 1 05/04/2016 11:55 WG868987 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/04/2016 11:55 WG868987 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/04/2016 11:55 WG868987 4-Methyl-tert-butyl ether 0.000751	Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 11:55	WG868987
2-Hexanone	p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Methylene Chloride U 0.00100 0.00500 0.00500 1 05/04/2016 11:55 WG868987 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 0.5/04/2016 11:55 WG868987 Methyl tetr-butyl ether 0.000751 J 0.000367 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Naphthalene U 0.000349 0.00100 0.00500 1 0.5/04/2016 11:55 WG868987 Naphthalene U 0.000349 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Styrene U 0.000387 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 J.1,12-Tetrachloroethane U 0.000385 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Tetrachloroethane U 0.000372 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Tetrachloroethane U 0.000372 0.00100 0.00100 1 0.5/04/2016 11:55 </td <td>2-Butanone (MEK)</td> <td>U</td> <td></td> <td>0.00393</td> <td>0.0100</td> <td>0.0100</td> <td>1</td> <td>05/04/2016 11:55</td> <td>WG868987</td>	2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 11:55	WG868987
##Hethyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/04/2016 11:55 WG868987 Methyl tert-butyl ether 0.000751 J 0.000367 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000367 0.00100 0.00500 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000349 0.00100 0.00500 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000385 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000385 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000385 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000373 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000374 0.00100 0.00100 1 0.05/04/2016 11:55 WG868987 Naphthalene U 0.000788 0.00100 0.00100 1 0.05/04/2016 1	2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 11:55	WG868987
Methyl tert-butyl ether 0.000751 J 0.000367 0.00100 0.00100 1 05/04/2016 11:55 WG888937 Naphthalene U 0.00100 0.00500 0.00500 1 05/04/2016 11:55 WG868987 Styrene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Styrene U 0.00037 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,12-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Interachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG86987 Intertachloroethane U 0.000780 0.00500 0.00100 1 05/04/2016 11:55 WG86987 Intertachloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Intertachloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 W	Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 11:55	WG868987
Naphthalene U 0.00100 0.00500 0.00500 1 05/04/2016 11:55 WG868987 n-Propylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Styrene U 0.000307 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,2,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Toluene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,1-Trichloroethane U 0.000378 0.00500 0.00500 1 05/04/2016 11:55 WG868987 L1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,2-Trichloroethane U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,2-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 L1,3-5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Urinyl chloride U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Urinyl chloride U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 WG868987 WG868987 WG868987 WG868987 WG86898888888888888888888888888888888888	4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 11:55	WG868987
n-Propylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Styrene U 0.000307 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Tetrachloroethane U 0.000310 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Toluene U 0.000372 0.00100 0.00500 1 05/04/2016 11:55 WG868987 Toluene U 0.000379 0.00500 1 05/04/2016 11:55 WG868987 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Trichloroethane U 0.000339 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Trichloroethane U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Virily chloride U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Virily chloride U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Virily chloride U 0.000381 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Virily chloride U 0.000381 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Virily chloride U 0.000381 0.00100 0.00100 1 05/04/2016 11:55 WG868987 WG868987 WG868987 WG868987 WG868987 (S) Toluene-d8 104 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987	Methyl tert-butyl ether	0.000751	J	0.000367	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Styrene U 0.000307 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,2,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,2,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,1-Trichloroethane U 0.000780 0.00500 0.00500 1 0.00042016 11:55 WG868987 1.1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,1-Trichloroethane U 0.000383 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,2-Trimethylbenzene U 0.000373 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,2-Trimethylbenzene U 0.000373 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.000387 0.00100 0.00100 1 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.00042016 11:55 WG868987 1.1,3-Trimethylbenzene U 0.00042016 11:55 WG868987	Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 11:55	WG868987
1,1,2-Tetrachloroethane	n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 11:55	WG868987
1,1,2,2-Tetrachloroethane	Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Tetrachloroethene U 0.000372 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Toluene U 0.000780 0.00500 0.00500 1 05/04/2016 11:55 WG868987 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.0000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000388 0.00100 0.00100 1 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000	1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Toluene U 0.000780 0.00500 0.00500 1 05/04/2016 11:55 WG868987 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,2,4-Trimethylbenzene U 0.000398 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Tri	1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 11:55	WG868987
I,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 I,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Trichloroethene U 0.000398 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 I,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Vinyl chloride U 0.000259 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 v-Xylene U 0.000341 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Xylenes, Total U 0.000719 0.00100 0.00100 1 0.5/04/2016 11:55 WG868987 Xylene-d8 104 0.00106 0.00300 0.00300 1 0.5/04/2016 11:55 WG868987 (S) Toluene-d8 104 79.0-121 0.5/04/2016 11:55 WG868987	Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 11:55	WG868987
1,1,2-Trichloroethane	Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 11:55	WG868987
Trichloroethene U 0.000398 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,3,5-Trimethylbenzene U 0.000259 0.00100 0.00100 1 05/04/2016 11:55 WG868987 1,0,00000000000 0.00100 1 05/04/2016 11:55 WG868987 1,0,0000000000000000000000000000000000	1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 11:55	WG868987
1,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/04/2016 11:55 WG868987 I,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/04/2016 11:55 WG868987 v-Xylene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 xylenes, Tylene U 0.000719 0.00100 0.00100 1 05/04/2016 11:55 WG868987 xylenes, Total U 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 90.0-115 05/04/2016 11:55 WG868987 (S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 11:55	WG868987
I,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/04/2016 11:55 WG868987 vo-Xylene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 xylenes, Total U 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 90.0-115 05/04/2016 11:55 WG868987 (S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Vinyl chloride U 0.000259 0.00100 0.00100 1 05/04/2016 11:55 WG868987 v-Xylene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 xylenes, Total U 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 90.0-115 05/04/2016 11:55 WG868987 (S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 11:55	WG868987
D-Xylene U 0.000341 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0.00100 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0.00100 0.00100 0.00100 0.00100 1 05/04/2016 11:55 WG868987 0.00100 0.	1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 11:55	WG868987
wasp-Xylene U 0.000719 0.00100 0.00100 1 05/04/2016 11:55 WG868987 Xylenes, Total U 0.00106 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 90.0-115 05/04/2016 11:55 WG868987 (S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 11:55	WG868987
Xylenes, Total U 0.00106 0.00300 0.00300 1 05/04/2016 11:55 WG868987 (S) Toluene-d8 104 90.0-115 05/04/2016 11:55 WG868987 (S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 11:55	WG868987
(S) Toluene-d8 104 90.0-115 05/04/2016 11:55 WG868987 (S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 11:55	WG868987
(S) Dibromofluoromethane 102 79.0-121 05/04/2016 11:55 WG868987	Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 11:55	WG868987
···	(S) Toluene-d8	104				90.0-115		05/04/2016 11:55	WG868987
(S) 4-Bromofluorobenzene 102 80.1-120 05/04/2016 11:55 WG868987	(S) Dibromofluoromethane	102				79.0-121		05/04/2016 11:55	WG868987
	(S) 4-Bromofluorobenzene	102				80.1-120		05/04/2016 11:55	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	4.05		0.0247	0.100	0.100	1	05/04/2016 19:13	WG869259
(S) o-Terphenyl	95.0				50.0-150		05/04/2016 19:13	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 12:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	54.0		2.82	10.0	10.0	1	05/05/2016 04:22	WG869819	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:45	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	0.107	<u>J</u>	0.0519	1.00	1.00	1	05/09/2016 11:01	WG869680
Fluoride	U		0.00990	0.100	0.100	1	05/09/2016 11:01	WG869680
Sulfate	U		0.0774	5.00	5.00	1	05/09/2016 11:01	WG869680

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.000250	0.00200	0.00200	1	05/06/2016 19:10	WG869321
Arsenic, Dissolved	U		0.000250	0.00200	0.00200	1	05/09/2016 11:38	WG870075
Barium	U		0.000360	0.00500	0.00500	1	05/06/2016 19:10	WG869321
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/09/2016 11:38	WG870075
Calcium	U		0.0460	1.00	1.00	1	05/06/2016 19:10	WG869321
Chromium	U		0.000540	0.00200	0.00200	1	05/06/2016 19:10	WG869321
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/09/2016 11:38	WG870075
Iron	U		0.0150	0.100	0.100	1	05/06/2016 19:10	WG869321
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/09/2016 11:38	WG870075
Lead	U		0.000240	0.00200	0.00200	1	05/06/2016 19:10	WG869321
Lead,Dissolved	0.000451	J	0.000240	0.00200	0.00200	1	05/09/2016 11:38	WG870075
Manganese	0.00117	<u>J</u>	0.000250	0.00500	0.00500	1	05/06/2016 19:10	WG869321
Manganese, Dissolved	U		0.000250	0.00500	0.00500	1	05/09/2016 11:38	WG870075
Potassium	U		0.0370	1.00	1.00	1	05/06/2016 19:10	WG869321
Selenium	U		0.000380	0.00200	0.00200	1	05/06/2016 19:10	WG869321
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/09/2016 11:38	WG870075
Sodium	0.152	J	0.110	1.00	1.00	1	05/06/2016 19:10	WG869321

Cn

Volatile Organic	Compounds	(GC/MS)	by N	lethod	8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 12:16	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 12:16	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 12:16	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 12:16	WG868987
Chloroform	0.000727	<u>J</u>	0.000324	0.00500	0.00500	1	05/04/2016 12:16	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 12:16	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 12:16	WG868987

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

WG868987

05/04/2016 12:16

Collected date/time: 04/28/16 12:20

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:16	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:16	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:16	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:16	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 12:16	WG868987
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:16	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 12:16	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:16	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:16	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:16	WG868987
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:16	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:16	WG868987
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:16	WG868987
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:16	WG868987
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 12:16	WG868987
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 12:16	WG868987
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 12:16	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 12:16	WG868987
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 12:16	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.119		0.0247	0.100	0.100	1	05/04/2016 19:30	WG869259
(S) o-Terphenyl	104				50.0-150		05/04/2016 19:30	WG869259

80.1-120

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 13:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2120		2.82	10.0	10.0	1	05/05/2016 04:22	WG869819	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:46	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	234		5.19	1.00	100	100	05/09/2016 11:47	WG869680
Fluoride	1.59		0.00990	0.100	0.100	1	05/09/2016 14:02	WG869680
Sulfate	965		7.74	5.00	500	100	05/09/2016 11:47	WG869680

Metals (ICPMS) by Method 6020

Analyte Mesult Qualifier SDL Unadj. MQL MQL Dilution Analysis Batch Analyte mg/l mg/l mg/l mg/l date / time Arsenic 0.0459 0.00125 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Arsenic, Dissolved 0.0362 0.00125 0.00200 0.0100 5 05/06/2016 19:13 WG870075 Barium 0.0371 0.00180 0.00500 0.0250 5 05/06/2016 19:13 WG869021 Barium, Dissolved 0.0257 0.00180 0.00500 0.0250 5 05/06/2016 19:13 WG869021 Chromium U 0.0237 0.00180 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Iron, Dissolved U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Lead U	Wetals (ICI Wis) by N	1100 0020							
Arsenic 0.0459 0.00125 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Arsenic, Dissolved 0.0362 0.00125 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Barium 0.0371 0.00180 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Barium, Dissolved 0.0257 0.00180 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Calcium 414 0.230 1.00 5.00 5 05/06/2016 19:13 WG869321 Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Iron, Dissolved U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG870075 Lead U 0.00120 0.00200 0.0100 5 05/06/2016 19:13 WG870075 Lead U <th></th> <th>Result</th> <th>Qualifier</th> <th>SDL</th> <th>Unadj. MQL</th> <th>MQL</th> <th>Dilution</th> <th>Analysis</th> <th>Batch</th>		Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Arsenic,Dissolved 0.0362 0.00125 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Barium 0.0371 0.00180 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Barium,Dissolved 0.0257 0.00180 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Calcium 414 0.230 1.00 5.00 5 05/06/2016 19:13 WG869321 Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Chromium,Dissolved U 0.00270 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Iron, Dissolved 1.82 0.0750 0.100 0.500 5 05/06/2016 19:13 WG869321 Lead U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Lead,Dissolved U 0.00120 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Manganese 1	Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Barium 0.0371 0.00180 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Barium,Dissolved 0.0257 0.00180 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Calcium 414 0.230 1.00 5.00 5 05/06/2016 19:13 WG869321 Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Chromium,Dissolved U 0.00270 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Iron 1.82 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead U 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead,Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 2 </td <td>Arsenic</td> <td>0.0459</td> <td></td> <td>0.00125</td> <td>0.00200</td> <td>0.0100</td> <td>5</td> <td>05/06/2016 19:13</td> <td>WG869321</td>	Arsenic	0.0459		0.00125	0.00200	0.0100	5	05/06/2016 19:13	WG869321
Barium,Dissolved 0.0257 0.00180 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Calcium 414 0.230 1.00 5.00 5 05/06/2016 19:13 WG869321 Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Chromium,Dissolved U 0.00270 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Iron 1.82 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Lead,Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/09/2016 11:24 WG869321 Selenium,Dissolved	Arsenic, Dissolved	0.0362		0.00125	0.00200	0.0100	5	05/09/2016 11:24	WG870075
Calcium 414 0.230 1.00 5.00 5 05/06/2016 19:13 WG869321 Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Iron 1.82 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/09/2016 11:24 WG870075 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321	Barium	0.0371		0.00180	0.00500	0.0250	5	05/06/2016 19:13	WG869321
Chromium U 0.00270 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Iron 1.82 0.0750 0.100 0.500 5 05/06/2016 19:13 WG869321 Iron, Dissolved 1.33 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead U 0.00120 0.00200 0.0100 5 05/09/2016 19:13 WG869321 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 19:13 WG869321 Manganese 1.11 0.00125 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Mospanese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium, Dissolved	Barium, Dissolved	0.0257		0.00180	0.00500	0.0250	5	05/09/2016 11:24	WG870075
Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Iron 1.82 0.0750 0.100 0.500 5 05/06/2016 19:13 WG869321 Iron, Dissolved 1.33 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead U 0.00120 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Manganese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG870075	Calcium	414		0.230	1.00	5.00	5	05/06/2016 19:13	WG869321
Iron 1.82 0.0750 0.100 0.500 5 05/06/2016 19:13 WG869321 Iron, Dissolved 1.33 0.0750 0.100 0.500 5 05/09/2016 11:24 WG870075 Lead U 0.00120 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Manganese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:13	WG869321
Iron,Dissolved	Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:24	WG870075
Lead U 0.00120 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Manganese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Iron	1.82		0.0750	0.100	0.500	5	05/06/2016 19:13	WG869321
Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/09/2016 11:24 WG870075 Manganese 1.11 0.00125 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Manganese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Iron,Dissolved	1.33		0.0750	0.100	0.500	5	05/09/2016 11:24	WG870075
Manganese 1.11 0.00125 0.00500 0.0250 5 05/06/2016 19:13 WG869321 Manganese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 19:13	WG869321
Manganese, Dissolved 0.938 0.00125 0.00500 0.0250 5 05/09/2016 11:24 WG870075 Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:24	WG870075
Potassium 2.62 J 0.185 1.00 5.00 5 05/06/2016 19:13 WG869321 Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Manganese	1.11		0.00125	0.00500	0.0250	5	05/06/2016 19:13	WG869321
Selenium U 0.00190 0.00200 0.0100 5 05/06/2016 19:13 WG869321 Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Manganese, Dissolved	0.938		0.00125	0.00500	0.0250	5	05/09/2016 11:24	WG870075
Selenium, Dissolved U 0.00190 0.00200 0.0100 5 05/09/2016 11:24 WG870075	Potassium	2.62	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 19:13	WG869321
<u></u>	Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 19:13	WG869321
Sodium 98.3 0.550 1.00 5.00 5 05/06/2016 19:13 <u>WG869321</u>	Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 11:24	WG870075
	Sodium	98.3		0.550	1.00	5.00	5	05/06/2016 19:13	WG869321

Αl

Volatile Organic Co	mpounds (GC	C/MS) by Me	ethod 8260)B				
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 12:37	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 12:37	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 12:37	WG868987
sec-Butylbenzene	0.00144		0.000365	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 12:37	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 12:37	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 12:37	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 12:37	WG868987

ONE LAB. NATIONWIDE.

WG868987

05/04/2016 12:37

Collected date/time: 04/28/16 13:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:37	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:37	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:37	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:37	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Isopropylbenzene	0.00618		0.000326	0.00100	0.00100	1	05/04/2016 12:37	WG868987
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:37	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 12:37	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:37	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:37	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:37	WG868987
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:37	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:37	WG868987
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:37	WG868987
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:37	WG868987
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 12:37	WG868987
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 12:37	WG868987
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 12:37	WG868987
(S) Toluene-d8	105				90.0-115		05/04/2016 12:37	WG868987
(S) Dibromofluoromethane	103				79.0-121		05/04/2016 12:37	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	7.59		0.0247	0.100	0.100	1	05/04/2016 20:53	WG869259
(S) o-Terphenyl	108				50.0-150		05/04/2016 20:53	WG869259

80.1-120

WG869818 Gravimetric Analy		540 C-2011		Q	UALITY	CONTRO		IMARY			ONE LAB. NATIONWIDE	*
Method Blank ((MB)											1
(MB) R3134196-1 05/												- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								_ Tc
Dissolved Solids	U		2.82	10.0								3 Ss
L832460-01 Or	riginal Sample	(OS) • Dup	licate (D	DUP)								4
(OS) L832460-01 05	/04/16 18:59 • (DUP)	R3134196-4 C	5/04/16 18	3:59								- Cn
	Original Result		Dilution	-		UP RPD Limits						5
Analyte	mg/l	mg/l		%	%							_ Sr
Dissolved Solids	2900	2870	1	1.21	5							6
												[°] Qc
Laboratory Cor	ntrol Sample (L	CS) • Labo	ratory C	Control Samp	le Duplicat	e (LCSD)						7
(LCS) R3134196-2 05	04/16 18:59 • (LCSI)	D) R3134196-3	05/04/16 1	18:59								- 'GI
	Spike Amount		LCSD Res		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		8
Analyte Dissolved Solids	mg/l 8800	mg/l 8490	mg/l 8480	% 96.5	% 96.4	% 85.0-115			0.118	5		_ Al
Dissolved Solids	8800	0490	0400	90.3	90.4	65.0-115			0.116	5		9
												Sc

SDG: L832462

DATE/TIME:

05/10/16 14:20

PAGE:

20 of 41

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG869819 Gravimetric Analysi	s by Method 25	640 C-2011		Q	UALITY	CONTR		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (M	1B)											1
(MB) R3134369-1 05/05	5/16 04:22											- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								
Jissolved Solids	0		2.02	10.0								3 Ss
L832462-04 Oriç	ginal Sample	(OS) • Dup	olicate (Dl	JP)								4
(OS) L832462-04 05/0												- [†] Cn
Analyte	Original Result mg/l	DUP Result mg/l	Dilution D	_	UP Qualifier DU %	JP RPD Limits						⁵ Sr
Dissolved Solids	3020	3060		.32	5							
												⁶ Qc
Laboratory Conti	rol Sample (I	CS) • Labo	ratory Co	introl Samn	le Dunlicate	e (LCSD)						40
(LCS) R3134369-2 05/0					пе Варпеак	(2002)						⁻ ⁷ Gl
	Spike Amount		LCSD Result	t LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits		8
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		. SAI
Dissolved Solids	8800	8420	8700	95.7	98.9	85.0-115			3.27	5		
												⁹ Sc

WG870055 Wet Chemistry by Me	thad 353 2			(TIJAUÇ	Y CONTR		MARY		ONE LAB. NATION	WIDE.
Method Blank (ME						2002102	<u> </u>				
(MB) R3134124-1 05/05/16	,										Ср
(IVID) K3134124-1 U3/U3/IV	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l	IND Guanna.	mg/l	mg/l							² Tc
Nitrate-Nitrite	U		0.0197	0.100							
											³ Ss
L832447-01 Origin	al Sample (OS) • Dupl	icate (DL	JP)							4 _
(OS) L832447-01 05/05/	6 15:11 • (DUP) R	3134124-4 05	/05/16 15:12								— Cn
	Original Result	DUP Result	Dilution [DUP Qualifier	DUP RPD Limits					5
Analyte	mg/l	mg/l	C	%		%					[°] Sr
Nitrate-Nitrite	0.125	ND	1 3	30.0	<u>J P1</u>	20					6
											[®] Qc
L832460-01 Origin	nal Sample ((OS) • Dupl	iicate (Dl	JP)							7
(OS) L832460-01 05/05/	16 15:26 • (DUP)	R3134124-6 0	5/05/16 15:2	28							´GI
	Original Result		Dilution [DUP Qualifier	DUP RPD Limits					
Analyte	mg/l	mg/l		%		%					⁸ Al
Nitrate-Nitrite	0.0420	ND	1 1	13.0	ī	20					9
Laboratory Contro	l Sample (I (CS) • Labo	ratory Co	ontrol Sam	nnle Dunlic	rate (LCSD)					⁹ Sc
(LCS) R3134124-2 05/05/					pic bap	idic (ECCE)					
(ECS) NO 10 T12 T-2 00 100 1	Spike Amount	-	LCSD Resul		LCSD Rec	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Nitrate-Nitrite	5.00	5.11	5.04	102	101	90.0-110			1.00	20	
L832447-04 Origin	nal Sample	(OS) • Matr	ix Spike	(MS)							
(OS) L832447-04 05/05/	16 15:15 • (MS) R	3134124-5 05	/05/16 15:16								
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier				
Analyte	mg/l	mg/l	mg/l	%		%	4				
Nitrate-Nitrite	5.00	0.301	5.82	110	1	90.0-110					

SDG: L832462

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/10/16 14:20 PAGE: 22 of 41

QUALITY CONTROL SUMMARY L832462-01

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832460-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832460-07	05/05/16 15:37	 (MS) R3134124-7 	05/05/16 15:38	(MSD) R3134124-8	05/05/16 15:39

(00) 2002 100 07 00/00/1	0 10.07 (1110) 11	(01011217 00)	00/10/10:00		0 00/00/10 10							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0400	4.48	4.51	89.0	89.0	1	90.0-110	<u>J6</u>	<u>J6</u>	1.00	20

WG870056 Wet Chemistry by Meth	hod 353.2			(QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)												1
(MB) R3134255-1 05/06/16	06:40											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Nitrate-Nitrite	U		0.0197	0.100								
												³ Ss
L832468-03 Origin	al Sample	(OS) • Dup	licate (C)UP)								4_
(OS) L832468-03 05/06/1	6 06:48 • (DUP) R3134255-4	05/06/16 (J6:49								Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						°Sr
Nitrate-Nitrite	5.71	5.54	10	3.00		20						
												⁶ Qc
L832472-08 Origin	al Sample	(OS) • Dup	licate (D)UP)								7
(OS) L832472-08 05/06/1	6 07:09 • (DUP) R3134255-6	05/06/16 0	J7:10								GI
	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits						0
Analyte	mg/l	mg/l		%		%						°AI
Nitrate-Nitrite	U	ND	10	0.000		20						9
Laboratory Control	Sample (Lo	CS) • Labor	ratory C	ontrol Sar	nple Duplic	ate (LCSD)						Sc
(LCS) R3134255-2 05/06/	16 06:41 • (LCSI	D) R3134255-3	05/06/16	06:42								
	Spike Amount	LCS Result	LCSD Resu	ult LCS Rec.	. LCSD Rec	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		!
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	4.88	4.97	98.0	99.0	90.0-110			2.00	20		ļ
L832468-05 Origin		. ,										
(OS) L832468-05 05/06/1	6 06:55 • (MS)	R3134255-5 C	J5/06/16 OF	6:56								
	Spike Amount	Original Result	MS Result	t MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	5.00	U	4.34	9.00	10	90.0-110	<u>J6</u>					
												!

SDG: L832462

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/10/16 14:20 PAGE: 24 of 41

QUALITY CONTROL SUMMARY $\frac{1832462\cdot05,06,07}{}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832472-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-12 05/06/16 07:14 • (MS) R3134255-7 05/06/16 07:20 • (MSD) R3134255-8 05/06/16 07:21			
	(OS) L 832472-12 D5/06/16 D7:14	. (MS) P3134255-7 05/06/16 07:20	MSD) P3134255-8 05/06/16 07:21

(00) 2002 172 12 00/00/10	07.11 (1110) 14	3.0.200 / 00/	00/10 07:20	(11100) 11010 120		07.21						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	U	4.11	4.15	8.00	8.00	10	90.0-110	<u>J6</u>	<u>J6</u>	1.00	20

WC070407						V CONTR		414400			ONE LAB MATIONWINE	36
WG870487 Wet Chemistry by Met	hod 353.2			(JUALII	Y CONTR L832462-02		MMARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB))											1
(MB) R3135143-5 05/09/10	3 15:16											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								² Tc
Nitrate-Nitrite	U		0.0197	0.100								3 Ss
L832409-26 Origin	nal Sample	(OS) • Dup	licate (Dl	JP)								4
(OS) L832409-26 05/09/	16 15:25 • (DUP) R3135143-8 C)5/09/16 15:3	ıî								Cn
	Original Result		Dilution D		DUP Qualifier	DUP RPD Limits						5 .
Analyte	mg/l	mg/l	%			%						sr
Nitrate-Nitrite	0.377	ND	10 2	2.00	<u>7</u>	20						6
L832603-23 Origir	nal Sample	(OS) • Dup	licate (Dl	JP)								[°] Qc
(OS) L832603-23 05/09/												⁷ GI
,	Original Result		Dilution D		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l	%			%						⁸ Al
Nitrate-Nitrite	0.0480	ND	1 14	43	<u>J P1</u>	20						9_
Laboratory Control	Sample (Lo	CS) • Laboi	ratory Co	ntrol Sar	nple Duplic	cate (LCSD)						Sc
(LCS) R3135143-6 05/09/1	16 15:17 • (LCSD)) R3135143-7 C	5/09/16 15:18	3								
	Spike Amount		LCSD Result				LCS Qualifier	LCSD Qualifier		RPD Limits		İ
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	4.74	4.74	95.0	95.0	90.0-110			0.000	20		
L832603-22 Origin	nal Sample	(OS) • Mati	rix Spike	(MS)								
(OS) L832603-22 05/09/	16 16:11 • (MS) R	3135143-9 05/	09/16 16:13									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	5.00	0.0770	4.50	88.0	1	90.0-110	<u>J6</u>					

SDG: L832462

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/10/16 14:20 PAGE: 26 of 41

QUALITY CONTROL SUMMARY $\frac{1832462\cdot02,03,04}{}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-26 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832603-26	5 05/09/16 16:24 • (MS) R3135143-11	05/09/16 16:25 • (MSD) R3135143-12 05/09/16 16:26	

(00) 2002000 20 00/00//	0 10.2 1 (11.0) 1	(0.001.01.00	70071010.20	(11102) 110100110	12 00/00/10	.0.20						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0650	0.407	0.393	7.00	7.00	1	90.0-110	<u>J6</u>	<u>J6</u>	4.00	20

WG869680 Wet Chemistry by Me	thod 9056A			Q	UALITY L832	CONTR 2462-01,02,03		IMARY		ONE LAB. NATION	NWIDE.	映
Method Blank (MB)										1	
(MB) R3135217-1 05/09/16	5 01:00											Ср
,	MB Result	MB Qualifier	MB MDL	MB RDL							2	=
Analyte	mg/l		mg/l	mg/l								Тс
Chloride	U		0.0519	1.00								_
Fluoride	U		0.0099	0.100							3	Ss
Sulfate	U		0.0774	5.00								_
L832472-06 Origin	nal Sample	(OS) • Dup	licate (DUF	^D)								Cn
(OS) L832472-06 05/09/	16 14:17 • (DUP)	R3135217-7 05	5/09/16 14:33								5	Sr
	Original Result	DUP Result		P RPD D		P RPD Limits					L	
Analyte	mg/l	mg/l	%		%						6	Qc
Fluoride	0.645	0.660	1 2		15							Q.C
Laboratory Contro	l Sample (L	CS) • Laboi	ratory Con	trol Samp	le Duplicate	(LCSD)					7	GI
(LCS) R3135217-2 05/09/				<u> </u>	<u> </u>						8	Al
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		AI
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	9	<u> </u>
Chloride	40.0	39.3	39.2	98	98	80-120			0	15		Sc
Fluoride	8.00	7.88	7.88	99	98	80-120			0	15		
Sulfate	40.0	39.6	39.6	99	99	80-120			0	15		
L832460-02 Origi	nal Sample	(OS) • Mati	rix Spike (N	ЛS)								
(OS) L832460-02 05/09/	/16 04:20 • (MS)	R3135217-4 0	5/09/16 04:36									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Chloride	50.0	0.0574	51.5	103	1	80-120						
Fluoride	5.00	U	5.13	103	1	80-120						
Sulfate	50.0	U	52.1	104	1	80-120						
L832462-06 Origi	nal Cample	(OS) - Mati	riv Spiko (N	1C)								
(OS) L832462-06 05/09/		` '	' '	v13)								
(03) 2832402-00 03/03/		Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%	Dilation	%	Qualifier					
. u.o., cc	···ly/i	9/1	9/1	7.0		,,,						

SDG: L832462

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/10/16 14:20

PAGE: 28 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832462-06 Original Sample (OS) • Matrix Spike (MS)

(UC) 1 833463-06	05/09/16 11:01	(MS) R3135217-5	05/09/16 11:16

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	·
Chloride	50.0	0.107	51.1	102	1	80-120	
Fluoride	5.00	U	5.16	103	1	80-120	
Sulfate	50.0	U	51.2	102	1	80-120	

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

	· /				
(MB) R3134603-1	05/06/16 18:35				
	MB Result	MB Qualifier	MB MDL	MB RDL	Ī
Analyte	mg/l		mg/l	mg/l	
Arsenic	U		0.00025	0.00200	
Barium	U		0.00036	0.00500	
Calcium	U		0.046	1.00	
Chromium	U		0.00054	0.00200	
Iron	0.032		0.015	0.100	
Lead	U		0.00024	0.00200	
Manganese	0.000577		0.00025	0.00500	
Potassium	U		0.037	1.00	
Selenium	U		0.00038	0.00200	T .
Sodium	U		0.11	1.00	

(LCS) R3134603-2 05/06	5/16 18:38 • (LCSI	D) R3134603-3	3 05/06/16 18:4	-0							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0515	0.0506	103	101	80-120			2	20	
Barium	0.0500	0.0521	0.0514	104	103	80-120			1	20	
Calcium	5.00	5.19	5.18	104	104	80-120			0	20	
Chromium	0.0500	0.0517	0.0505	103	101	80-120			2	20	
ron	5.00	5.08	4.98	102	100	80-120			2	20	
Lead	0.0500	0.0516	0.0520	103	104	80-120			1	20	
Manganese	0.0500	0.0517	0.0507	103	101	80-120			2	20	
Potassium	5.00	5.11	4.98	102	100	80-120			3	20	
Selenium	0.0500	0.0513	0.0505	103	101	80-120			2	20	
Sodium	5.00	5.23	5.12	105	102	80-120			2	20	

L832462-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832462-01 05/06/	16 18:43 • (MS) R	3134603-5 05	/06/16 18:48 •	(MSD) R313460	05/06/16	18:51						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00777	0.0644	0.0628	113	110	5	75-125			3	20
Barium	0.0100	0.0203	0.0773	0.0789	114	117	5	75-125			2	20
Calcium	1.00	559	562	555	62	0	5	75-125	\vee	\vee	1	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
TRC Solutions - Austin, TX	249545.0000.0000 000	L832462	05/10/16 14:20	30 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832462-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832462-01 05/06/16	5 18:43 • (MS) R	3134603-5 05	/06/16 18:48 • (MSD) R313460	3-6 05/06/16 1	18:51						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chromium	0.0100	U	0.0569	0.0563	114	113	5	75-125			1	20
Potassium	1.00	2.32	7.76	7.88	109	111	5	75-125			2	20
Iron	1.00	U	5.67	5.68	113	114	5	75-125			0	20
Lead	0.0100	U	0.0575	0.0569	115	114	5	75-125			1	20
Manganese	0.0100	0.373	0.426	0.424	105	103	5	75-125			0	20
Selenium	0.0100	0.00381	0.0590	0.0601	110	112	5	75-125			2	20
Sodium	100	379	382	384	65	108	5	75-125	V		1	20

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

⁶Qc

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134963-1 05/09	9/16 10:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic, Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	0.0259		0.015	0.100	
Lead, Dissolved	0.000687		0.00024	0.00200	
Manganese, Dissolved	0.0003		0.00025	0.00500	
Selenium,Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134963-2 05/0	9/16 10:30 • (LCS	D) R3134963-	3 05/09/16 10:3	33							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic,Dissolved	0.0500	0.0512	0.0534	102	107	80-120			4	20	
Barium, Dissolved	0.0500	0.0517	0.0524	103	105	80-120			1	20	
Chromium, Dissolved	0.0500	0.0534	0.0550	107	110	80-120			3	20	
Iron,Dissolved	5.00	5.23	5.38	105	108	80-120			3	20	
Lead,Dissolved	0.0500	0.0524	0.0538	105	108	80-120			3	20	
Manganese,Dissolved	0.0500	0.0518	0.0526	104	105	80-120			1	20	
Selenium, Dissolved	0.0500	0.0506	0.0519	101	104	80-120			2	20	

L832447-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832447-01 05/09/	16 10:35 • (MS) R	3134963-5 05	/09/16 10:40 •	(MSD) R313496	63-6 05/09/16	10:42						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00646	0.0536	0.0585	94	104	5	75-125			9	20
Barium,Dissolved	0.0100	0.0161	0.0606	0.0636	89	95	5	75-125			5	20
Chromium, Dissolved	0.0100	U	0.0489	0.0497	98	99	5	75-125			2	20
Iron,Dissolved	1.00	U	4.68	5.46	94	109	5	75-125			15	20
Lead,Dissolved	0.0100	U	0.0486	0.0513	97	103	5	75-125			5	20
Manganese,Dissolved	0.0100	0.319	0.326	0.350	14	63	5	75-125	$\underline{\vee}$	$\underline{\vee}$	7	20
Selenium Dissolved	0.0100	0.00234	0.0506	0.0560	96	107	5	75-125			10	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832462

DATE/TIME: 05/10/16 14:20

PAGE: 32 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method	Blank	(MB)
--------	-------	------

(MB) R3134190-3 05/04/16				
(MD) 1(3134130-3 03/04/10	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l	mb quamer	mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832462

DATE/TIME: 05/10/16 14:20 PAGE: 33 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134190-3 05/04/16	6 05:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	105			90.0-115	
(S) Dibromofluoromethane	104			79.0-121	
(S) 4-Bromofluorobenzene	103			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.129	0.124	103	99.5	28.7-175			3.50	20.9
Benzene	0.0250	0.0265	0.0276	106	110	73.0-122			4.18	20
Bromodichloromethane	0.0250	0.0268	0.0276	107	110	75.5-121			2.61	20
Bromoform	0.0250	0.0255	0.0260	102	104	71.5-131			2.11	20
Bromomethane	0.0250	0.0336	0.0356	134	142	22.4-187			5.75	20
n-Butylbenzene	0.0250	0.0256	0.0275	102	110	75.9-134			7.09	20
sec-Butylbenzene	0.0250	0.0249	0.0267	99.5	107	80.6-126			7.27	20
Carbon disulfide	0.0250	0.0246	0.0256	98.4	102	53.0-134			3.79	20
Carbon tetrachloride	0.0250	0.0252	0.0264	101	105	70.9-129			4.58	20
Chlorobenzene	0.0250	0.0261	0.0275	104	110	79.7-122			5.41	20
Chlorodibromomethane	0.0250	0.0266	0.0273	107	109	78.2-124			2.43	20
Chloroethane	0.0250	0.0297	0.0309	119	124	41.2-153			3.80	20
Chloroform	0.0250	0.0272	0.0279	109	112	73.2-125			2.81	20
Chloromethane	0.0250	0.0276	0.0289	111	116	55.8-134			4.35	20
1,2-Dibromoethane	0.0250	0.0266	0.0272	106	109	79.8-122			2.26	20
1.1-Dichloroethane	0.0250	0.0269	0.0279	108	112	71.7-127			3.73	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832462

DATE/TIME: 05/10/16 14:20 PAGE: 34 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134190-1 05/04/16	6 04:27 • (LCSE) R3134190-2	05/04/16 04:4	8							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0276	0.0279	110	112	65.3-126			1.25	20	
1,1-Dichloroethene	0.0250	0.0250	0.0260	100	104	59.9-137			3.89	20	
cis-1,2-Dichloroethene	0.0250	0.0276	0.0282	111	113	77.3-122			2.17	20	
trans-1,2-Dichloroethene	0.0250	0.0277	0.0289	111	116	72.6-125			4.39	20	
1,2-Dichloropropane	0.0250	0.0264	0.0269	105	108	77.4-125			1.94	20	
cis-1,3-Dichloropropene	0.0250	0.0273	0.0281	109	112	77.7-124			2.79	20	
trans-1,3-Dichloropropene	0.0250	0.0280	0.0284	112	113	73.5-127			1.11	20	
Ethylbenzene	0.0250	0.0250	0.0270	100	108	80.9-121			7.84	20	
2-Hexanone	0.125	0.140	0.139	112	111	59.4-151			0.190	20	
Isopropylbenzene	0.0250	0.0255	0.0270	102	108	81.6-124			5.79	20	
p-Isopropyltoluene	0.0250	0.0256	0.0275	102	110	77.6-129			7.06	20	
2-Butanone (MEK)	0.125	0.142	0.140	114	112	46.4-155			2.02	20	
Methylene Chloride	0.0250	0.0268	0.0277	107	111	69.5-120			3.15	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.138	0.135	110	108	63.3-138			1.89	20	
Methyl tert-butyl ether	0.0250	0.0268	0.0269	107	108	70.1-125			0.340	20	
Naphthalene	0.0250	0.0242	0.0254	96.8	102	69.7-134			4.75	20	
n-Propylbenzene	0.0250	0.0260	0.0276	104	110	81.9-122			5.91	20	
Styrene	0.0250	0.0274	0.0289	110	116	79.9-124			5.15	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0249	0.0262	99.5	105	78.5-125			5.05	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0258	0.0264	103	105	79.3-123			2.10	20	
Tetrachloroethene	0.0250	0.0253	0.0269	101	108	73.5-130			6.15	20	
Toluene	0.0250	0.0257	0.0267	103	107	77.9-116			3.95	20	
1,1,1-Trichloroethane	0.0250	0.0267	0.0280	107	112	71.1-129			4.72	20	
1,1,2-Trichloroethane	0.0250	0.0264	0.0271	105	108	81.6-120			2.69	20	
Trichloroethene	0.0250	0.0257	0.0269	103	108	79.5-121			4.40	20	
1,2,4-Trimethylbenzene	0.0250	0.0252	0.0268	101	107	79.0-122			6.06	20	
1,3,5-Trimethylbenzene	0.0250	0.0254	0.0269	101	108	81.0-123			5.96	20	
Vinyl chloride	0.0250	0.0276	0.0284	110	114	61.5-134			2.89	20	
Xylenes, Total	0.0750	0.0762	0.0806	102	107	79.2-122			5.61	20	
o-Xylene	0.0250	0.0255	0.0267	102	107	79.1-123			4.75	20	
m&p-Xylenes	0.0500	0.0508	0.0539	102	108	78.5-122			6.03	20	
(S) Toluene-d8				106	105	90.0-115					
(S) Dibromofluoromethane				106	105	79.0-121					
(S) 4-Bromofluorobenzene				102	102	80.1-120					

TRC Solutions - Austin, TX

249545.0000.0000 000

L832462

05/10/16 14:20

PAGE: 35 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832460-02 05/04/1	16 08:03 • (MS)	R3134190-4 0	5/04/16 06:18	• (MSD) R31341	90-5 05/04/	16 06:39						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0437	0.0610	34.9	48.8	1	25.0-156		<u>J3</u>	33.1	21.5
Benzene	0.0250	U	0.0184	0.0261	73.6	104	1	58.6-133		<u>J3</u>	34.7	20
Bromodichloromethane	0.0250	U	0.0197	0.0268	78.9	107	1	69.2-127		<u>J3</u>	30.5	20
Bromoform	0.0250	U	0.0187	0.0258	74.6	103	1	66.3-140		<u>J3</u>	32.1	20
Bromomethane	0.0250	U	0.0218	0.0317	87.3	127	1	16.6-183		<u>J3</u>	36.8	20.5
n-Butylbenzene	0.0250	U	0.0192	0.0262	76.9	105	1	64.8-145		<u>J3</u>	30.7	20
sec-Butylbenzene	0.0250	U	0.0181	0.0255	72.5	102	1	66.8-139		<u>J3</u>	33.7	20
Carbon disulfide	0.0250	U	0.0147	0.0207	58.9	82.8	1	34.9-138		<u>J3</u>	33.7	20
Carbon tetrachloride	0.0250	U	0.0175	0.0251	70.1	101	1	60.6-139		<u>J3</u>	35.7	20
Chlorobenzene	0.0250	U	0.0192	0.0261	76.6	105	1	70.1-130		<u>J3</u>	30.8	20
Chlorodibromomethane	0.0250	U	0.0197	0.0266	78.8	107	1	71.6-132		<u>J3</u>	29.9	20
Chloroethane	0.0250	U	0.0204	0.0281	81.4	112	1	33.3-155		<u>J3</u>	31.9	20
Chloroform	0.0250	0.000943	0.0198	0.0280	75.5	108	1	66.1-133		<u>J3</u>	34.2	20
Chloromethane	0.0250	U	0.0174	0.0244	69.4	97.5	1	40.7-139		<u>J3</u>	33.7	20
1,2-Dibromoethane	0.0250	U	0.0194	0.0263	77.5	105	1	73.8-131		<u>J3</u>	30.5	20
1,1-Dichloroethane	0.0250	U	0.0189	0.0268	75.4	107	1	64.0-134		<u>J3</u>	34.8	20
1,2-Dichloroethane	0.0250	U	0.0198	0.0276	79.1	111	1	60.7-132		<u>J3</u>	33.1	20
1,1-Dichloroethene	0.0250	U	0.0169	0.0239	67.4	95.4	1	48.8-144		<u>J3</u>	34.4	20
cis-1,2-Dichloroethene	0.0250	U	0.0194	0.0270	77.6	108	1	60.6-136		<u>J3</u>	32.8	20
trans-1,2-Dichloroethene	0.0250	U	0.0189	0.0266	75.5	106	1	61.0-132		<u>J3</u>	33.8	20
1,2-Dichloropropane	0.0250	U	0.0192	0.0261	76.8	104	1	69.7-130		<u>J3</u>	30.3	20
cis-1,3-Dichloropropene	0.0250	U	0.0196	0.0265	78.5	106	1	71.1-129		<u>J3</u>	29.6	20
trans-1,3-Dichloropropene	0.0250	U	0.0203	0.0274	81.2	110	1	66.3-136		<u>J3</u>	29.9	20
Ethylbenzene	0.0250	U	0.0181	0.0252	72.5	101	1	62.7-136		<u>J3</u>	32.6	20
2-Hexanone	0.125	U	0.0817	0.114	65.4	91.3	1	59.4-154		<u>J3</u>	33.2	20.1
Isopropylbenzene	0.0250	U	0.0183	0.0257	73.2	103	1	67.4-136		<u>J3</u>	33.8	20
p-Isopropyltoluene	0.0250	U	0.0187	0.0262	74.9	105	1	62.8-143		<u>J3</u>	33.3	20
2-Butanone (MEK)	0.125	U	0.0709	0.100	56.7	80.2	1	45.0-156		<u>J3</u>	34.3	20.8
Methylene Chloride	0.0250	U	0.0190	0.0264	76.1	106	1	61.5-125		<u>J3</u>	32.7	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.0976	0.135	78.1	108	1	60.7-150		<u>J3</u>	32.5	20
Methyl tert-butyl ether	0.0250	U	0.0194	0.0274	77.4	110	1	61.4-136		<u>J3</u>	34.4	20
Naphthalene	0.0250	U	0.0175	0.0248	70.1	99.2	1	61.8-143		<u>J3</u>	34.4	20
n-Propylbenzene	0.0250	U	0.0189	0.0262	75.7	105	1	63.2-139		<u>J3</u>	32.3	20
Styrene	0.0250	U	0.0202	0.0274	80.7	110	1	68.2-133		<u>J3</u>	30.4	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0185	0.0252	74.0	101	1	70.5-132		<u>J3</u>	30.9	20

0.0250

1,1,2,2-Tetrachloroethane

U

0.0194

PROJECT: 249545.0000.0000 000

77.7

0.0269

SDG: L832462

64.9-145

DATE/TIME: 05/10/16 14:20 20

PAGE: 36 of 41

QUALITY CONTROL SUMMARY L832462-01,02,03,04,05,06,07

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0178	0.0248	71.3	99.2	1	57.4-141		J3	32.7	20
Toluene	0.0250	U	0.0181	0.0250	72.4	100	1	67.8-124		<u>J3</u>	32.1	20
1,1,1-Trichloroethane	0.0250	U	0.0187	0.0272	74.7	109	1	58.7-134		<u>J3</u>	37.2	20
1,1,2-Trichloroethane	0.0250	U	0.0195	0.0267	78.2	107	1	74.1-130		<u>J3</u>	31.1	20
Trichloroethene	0.0250	U	0.0181	0.0252	72.3	101	1	48.9-148		<u>J3</u>	33.0	20
1,2,4-Trimethylbenzene	0.0250	U	0.0184	0.0256	73.7	102	1	60.5-137		<u>J3</u>	32.5	20
1,3,5-Trimethylbenzene	0.0250	U	0.0185	0.0257	73.9	103	1	67.9-134		<u>J3</u>	32.6	20
Vinyl chloride	0.0250	U	0.0179	0.0255	71.6	102	1	44.3-143		<u>J3</u>	35.0	20
Xylenes, Total	0.0750	U	0.0555	0.0760	74.0	101	1	65.6-133		<u>J3</u>	31.2	20
o-Xylene	0.0250	U	0.0185	0.0255	73.9	102	1	67.1-133		<u>J3</u>	31.8	20
m&p-Xylenes	0.0500	U	0.0370	0.0505	74.0	101	1	64.1-133		<u>J3</u>	30.8	20
(S) Toluene-d8					105	105		90.0-115				
(S) Dibromofluoromethane					103	106		79.0-121				
(S) 4-Bromofluorobenzene					101	102		80.1-120				

Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133525-2 05/03/16 13:25 • (LCSD) R3133525-3 05/03/16 13:42 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.75 1.71 117 114 2.53 20 (S) o-Terphenyl 50.0-150 108 104 GI Αl

SDG:

L832462

DATE/TIME:

05/10/16 14:20

QUALITY CONTROL SUMMARY

<u>L832462-01,02,03,04,05,06,07</u>

WG869259

Method Blank (MB) (MB) R3133525-1 05/03/16 13:09

TPH (GC/FID) High Fraction

(S) o-Terphenyl

Analyte

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

MB MDL

mg/l

0.0247

MB Qualifier

MB RDL

mg/l

0.100

50.0-150

PROJECT:

249545.0000.0000 000

MB Result

U

108

ACCOUNT:

TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE.

PAGE:

38 of 41

Тс

Ss

GLOSSARY OF TERMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:	and the same	1000	Billing Info	rmation:		51	D EA	6		Arrah Zis	/ Conta	iner / Pr	eservat	ive	- 12		Chain of Custody	Pageof_
TRC Solutions - Aus	stin, TX			nts Payable	1.17					E7 110 S (1011)	-596	- 1	1000		100		ma T	CC
505 E. Huntland Dr, Ste 250 Austin, TX 78752	E. Huntland Dr, Ste 250			riffin Road North Isor, CT 06095				7.30		500mIHDPE-HNO3		03 %	Sulfate- 125mIHDPE-NoPres	SO4 N		e,U,V		25C
Report to: jspeer@trcsolutions.com			Email To:	tresolutions.	com	G V	STATE OF THE PARTY			500mlF	нов	- 500miHDPE-HNO3	25mlHD	DPE-H	15	Ni,Pb,S	12065 Lebenon Rd Mount Juliet, TN 37122 Phone: 615-758-5858	
Project Description: NCL Spring 2016	- Team H C	ĮΗ		City/State Collected: A	Hesia, NA)	ВТ			As,Ba,Cr,Fe,Pb,Mn,Se -	- 250mlHDPEAmb-NaOH	MIMO	fate- 1	0mlHi		Hg,Mn,	Phone: 800-767-585 Fax: 615-758-5859	回编辑
Phone: 512-684-3170 Fax:	Client Project	1	2	Lab Project # TRCATX-N	CL SPRING	Mark 3						Na - 500		Nitrate/Nitrite (NO2NO3) - 250mIHDPE-H2SO4	Pres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	B20	2462
Collected by (print): Scott Ucle + HM1 Team	Site/Facility ID		esia	P.O.#	P.O.#			- 40mlAmb-HCI	- 40mlAmb-HCI	a,Cr,Fe	250mll		Anions- Chloride, Fluoride,	NOSNO	- 250miHDPE-NoPres	Cd,Co	Acctnum: TRO	
Collected by (signature): Scott Udd	Same D		Notified)	Date I	P.O.# Date Results Needed Email?NoYes FAX?NoYes of		IAmt	IAm	mIAn	As,Ba		otal C	loride	rite (I	mIHD	s,B,Ba	Template: T1* Prelogin: P54	
Immediately Packed on Ice N Y	Next Da	·	50%					0 - 40	Tot./Diss.	Cyanide (CN)	Cations-Total Ca, K,	ns-Ch	ate/Nit		Tot/Diss. A	TSR: Chris	McCord	
Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V8260	Tot/	Cya	Cati	Anio	Nitra	TDS	Tot/E	Shipped Via:	Sample # (lab only
MW-56	-26	GW	PE	4/28/16	1200	10	1		1	1		1	1	V	1/	N	nem y contaminant	- 01
NCL-34A	101			4/28/16	825	10	1		V	V		1	1	V	V			62
mw-108	desir!		CONT.	4/28/16	925	13	1		V	1	1	V	V	V	V		4949 H	03
NCL-31				4/28/14	1040	10	V		1	V		V	V	V	1			04
NCL-32				4/28/11	1140	10	V		1	V		V	V	V	V		4.4	05
EB-NCL-01				4/28/16	1220	10	1		1	V	100	1	1	V	1		Silver of the	06
NCL -44	4	1		4/28/16	1300	10	/	1 29	V	1		V	/	V	/			57
where the Parishment	E all	Trabasa.	6.4	12													7.1	
* Matrix: \$\$ - Soil GW - Groundwater	WW - WasteWa	iter DW - D	rinking Wate	r OT Other	67110	128	371	95		pH		Tem						
Remarks: Log all metals by 6				100	671101					Flow_		_ Othe		24	Hol	d#	To all the	
Relinquished by : (Signature)	le	Date: 1/2	8)16	ime: 14/5 R	eceived by: (Signat	ure)	A.	2				ed via:			Con	dition	(lab u	se only)
Relinquished by (Signature)		Date:		lme: R	eceived by: (Signat	ure)		10.11.7 17.11		Temp:		°C Bo		celved:	500	Sealt	ntact: V	(OE)
elinquished by : (Signature) Date:		Time: Received for lab by: (Signature)						Date; Time:				COC Seal Intact: Y N NA pH Checked: NCF:						

ANALYTICAL REPORT

TRC Solutions - Austin, TX

Sample Delivery Group: L832468

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: NCL Spring 2016

Site: NCL - NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth June

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

¹ Cp: Cover Page	1
² Tc: Table of Contents	2
³ Ss: Sample Summary	3
⁴ Cn: Case Narrative	5
⁵ Sr: Sample Results	6
MW-45 L832468-01	6
TRIP BLANK-NCL-01 L832468-02	9
NCL-49 L832468-03	10
DUP-NCL-01 L832468-04	12
MW-54A L832468-05	14
MW-53 L832468-06	16
⁶ Qc: Quality Control Summary	18
Gravimetric Analysis by Method 2540 C-2011	18
Wet Chemistry by Method 353.2	20
Wet Chemistry by Method 9012B	22
Wet Chemistry by Method 9056A	23
Mercury by Method 7470A	25
Metals (ICPMS) by Method 6020	27
Volatile Organic Compounds (GC/MS) by Method 8260B	32
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	42
⁷ Gl: Glossary of Terms	43
⁸ Al: Accreditations & Locations	44

⁹Sc: Chain of Custody

45

Ss

Cn

Sr

[°]Qc

GI

Αl

Sc

			Collected by	Collected date/time	Received date/time
MW-45 L832468-01 GW			SU / HM1 Team	04/26/16 17:45	04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869072	1	05/02/16 13:50	05/02/16 14:22	
Mercury by Method 7470A	WG869159	1	05/02/16 11:44	05/03/16 11:04	NJB
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:36	NJB
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:05	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:26	JDG
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 11:00	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 03:14	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 12:58	05/04/16 12:58	BMB
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 06:47	05/06/16 06:47	ASK
Wet Chemistry by Method 9012B	WG870326	1	05/06/16 12:26	05/12/16 15:29	DR
Wet Chemistry by Method 9056A	WG868879	1	05/02/16 17:37	05/02/16 17:37	CM
Wet Chemistry by Method 9056A	WG868879	50	05/02/16 17:52	05/02/16 17:52	CM
TRIP BLANK-NCL-01 L832468-02 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 00:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
V. I. W. O			date/time	date/time	2142
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 07:42	05/04/16 07:42	BMB
NCL-49 L832468-03 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 16:30	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
Gravimetric Analysis by Method 2540 C-2011	WG869072	1	05/02/16 13:50	05/02/16 14:22	
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:08	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:28	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 03:32	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 13:19	05/04/16 13:19	BMB
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 06:48	05/06/16 06:48	ASK
Wet Chemistry by Method 9056A	WG868881	1	05/02/16 11:47	05/02/16 11:47	CM
Wet Chemistry by Method 9056A	WG868881	50	05/02/16 12:01	05/02/16 12:01	CM
			Collected by	Collected date/time	Received date/time
DUP-NCL-01 L832468-04 GW			SU / HM1 Team	04/26/16 15:00	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869072	1	05/02/16 13:50	05/02/16 14:22	
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:10	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:31	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 03:51	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 13:40	05/04/16 13:40	BMB
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 06:54	05/06/16 06:54	ASK
Wet Chemistry by Method 9056A	WG868881	1	05/02/16 12:16	05/02/16 12:16	CM
Wet Chemistry by Method 9056A	WG868881	50	05/02/16 14:00	05/02/16 14:00	CM
MW-54A L832468-05 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 17:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:28	ST

MW-54A L832468-05 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 17:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:33	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 04:09	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868987	1	05/04/16 14:01	05/04/16 14:01	BMB
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 06:55	05/06/16 06:55	ASK
Wet Chemistry by Method 9056A	WG868881	1	05/02/16 14:15	05/02/16 14:15	CM
Wet Chemistry by Method 9056A	WG868881	50	05/02/16 14:30	05/02/16 14:30	CM
MW-53 L832468-06 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 15:40	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:31	ST
Metals (ICPMS) by Method 6020	WG870075	5	05/05/16 17:34	05/09/16 11:35	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869251	1	05/02/16 16:48	05/05/16 04:27	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG869009	1	05/05/16 20:56	05/05/16 20:56	ACG
Wet Chemistry by Method 353.2	WG870056	20	05/06/16 06:58	05/06/16 06:58	ASK
Wet Chemistry by Method 9056A	WG868881		05/02/16 14:45	05/02/16 14:45	CM

50

05/02/16 15:00

05/02/16 15:00

 CM

Wet Chemistry by Method 9056A

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:45

832468

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4760		2.82	10.0	10.0	1	05/02/2016 14:22	WG869072	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:47	WG870056

Ss

Wet Chemistry by Method 9012B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00180	0.00500	0.00500	1	05/12/2016 15:29	WG870326

СС

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	524		2.60	1.00	50.0	50	05/02/2016 17:52	WG868879
Fluoride	1.51		0.00990	0.100	0.100	1	05/02/2016 17:37	WG868879
Sulfate	2710		3.87	5.00	250	50	05/02/2016 17:52	WG868879

Αl

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/03/2016 11:04	WG869159
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:36	WG869207

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00752	J	0.00125	0.00200	0.0100	5	05/06/2016 21:05	WG869318
Arsenic, Dissolved	0.00368	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 11:26	WG870075
Barium	0.0191	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:05	WG869318
Barium,Dissolved	0.0185	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 11:26	WG870075
Boron	0.671		0.00750	0.0200	0.100	5	05/06/2016 21:05	WG869318
Boron,Dissolved	0.596	<u>01</u>	0.0150	0.0200	0.200	10	05/09/2016 11:00	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 21:05	WG869318
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/09/2016 11:26	WG870075
Calcium	689		0.230	1.00	5.00	5	05/06/2016 21:05	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:05	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:26	WG870075
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 21:05	WG869318
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/09/2016 11:26	WG870075
Iron	4.14		0.0750	0.100	0.500	5	05/06/2016 21:05	WG869318
Iron,Dissolved	1.25		0.0750	0.100	0.500	5	05/09/2016 11:26	WG870075
Lead	0.00443	J	0.00120	0.00200	0.0100	5	05/06/2016 21:05	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:26	WG870075
Manganese	0.633		0.00125	0.00500	0.0250	5	05/06/2016 21:05	WG869318
Manganese, Dissolved	0.561		0.00125	0.00500	0.0250	5	05/09/2016 11:26	WG870075
Nickel	0.00631	J	0.00175	0.00200	0.0100	5	05/06/2016 21:05	WG869318
Nickel, Dissolved	0.00391	J	0.00175	0.00200	0.0100	5	05/09/2016 11:26	WG870075
Potassium	6.33		0.185	1.00	5.00	5	05/06/2016 21:05	WG869318
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 21:05	WG869318
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 11:26	WG870075
Sodium	429		0.550	1.00	5.00	5	05/06/2016 21:05	WG869318

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:45

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	U		0.00165	0.0100	0.0500	5	05/06/2016 21:05	WG869318
Uranium,Dissolved	U		0.00165	0.0100	0.0500	5	05/09/2016 11:26	WG870075
Vanadium	0.00188	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 21:05	WG869318
Vanadium, Dissolved	0.00103	J	0.000900	0.00500	0.0250	5	05/09/2016 11:26	WG870075

l	
	⁵ Sr

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 12:58	WG868987	
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 12:58	WG868987	
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 12:58	<u>WG868987</u>	
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 12:58	WG868987	
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 12:58	WG868987	
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 12:58	WG868987	
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 12:58	WG868987	
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:58	WG868987	
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:58	WG868987	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:58	WG868987	
Methyl tert-butyl ether	0.00152		0.000367	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:58	WG868987	
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:58	WG868987	
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
o-Xylene	U		0.000233	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
m&p-Xylene	U		0.000311	0.00100	0.00100	1	05/04/2016 12:58	WG868987	
Xylenes, Total	U		0.000713	0.00300	0.00300	1	05/04/2016 12:58	WG868987	
(S) Toluene-d8	103		0.00100	0.00000	90.0-115		05/04/2016 12:58	WG868987	
19) Toluche do	100				30.0-113		00/01/201012.00	¥¥5500507	
ACCOUN	IT:		PROJEC	CT:	SDG	i:	DATE/TIME	:	PAG

MW-45

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:45

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 (- / - /						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
(S) Dibromofluoromethane	104				79.0-121		05/04/2016 12:58	WG868987
(S) 4-Bromofluorobenzene	99.6				80.1-120		05/04/2016 12:58	WG868987

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.11		0.0247	0.100	0.100	1	05/05/2016 03:14	WG869251
(S) o-Terphenyl	111				50.0-150		05/05/2016 03:14	WG869251

Ss

Collected date/time: 04/26/16 00:00

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

L832468

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 07:42	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 07:42	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 07:42	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 07:42	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 07:42	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 07:42	WG868987
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 07:42	WG868987
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 07:42	WG868987
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 07:42	WG868987
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:42	WG868987
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 07:42	WG868987
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 07:42	WG868987
2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 07:42	WG868987
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 07:42	WG868987
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 07:42	WG868987
thylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 07:42	WG868987
opropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 07:42	WG868987
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 07:42	WG868987
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 07:42	WG868987
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 07:42	WG868987
lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 07:42	WG868987
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 07:42	WG868987
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 07:42	WG868987
laphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 07:42	WG868987
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 07:42	WG868987
ityrene	U		0.000313	0.00100	0.00100	1	05/04/2016 07:42	WG868987
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 07:42	WG868987
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 07:42	WG868987
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 07:42	WG868987
Foluene	U		0.000372	0.00500	0.00500	1	05/04/2016 07:42	WG868987
,1,1-Trichloroethane	U		0.000780	0.00300	0.00300	1	05/04/2016 07:42	WG868987
1,2-Trichloroethane	U		0.000313	0.00100	0.00100	1	05/04/2016 07:42	WG868987
richloroethene	U		0.000383	0.00100	0.00100	1	05/04/2016 07:42	WG868987
2,4-Trimethylbenzene	U		0.000338	0.00100	0.00100	1	05/04/2016 07:42	WG868987
3,5-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 07:42	WG868987
inyl chloride	U		0.000387	0.00100	0.00100	1	05/04/2016 07:42	WG868987
-Xylene	U		0.000239	0.00100	0.00100	1	05/04/2016 07:42	WG868987
n&p-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 07:42	WG868987
	U		0.000719	0.00100	0.00100			
(ylenes, Total (S) Toluene-d8	105		0.00106	0.00300	90.0-115	1	05/04/2016 07:42	WG868987
1 /							05/04/2016 07:42	WG868987
(S) Dibromofluoromethane	105				79.0-121		05/04/2016 07:42	WG868987

Ss

Cn

СС

Gl

Αl

³Sc

103

(S) 4-Bromofluorobenzene

80.1-120

WG868987

05/04/2016 07:42

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2820		2.82	10.0	10.0	1	05/02/2016 14:22	WG869072

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Nitrate-Nitrite	5.71		0.197	0.100	1.00	10	05/06/2016 06:48	WG870056	

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	119		2.60	1.00	50.0	50	05/02/2016 12:01	WG868881
Fluoride	0.685		0.00990	0.100	0.100	1	05/02/2016 11:47	WG868881
Sulfate	1570		3.87	5.00	250	50	05/02/2016 12:01	WG868881

Qc

Cn

Metals (ICPMS) by Method 6020

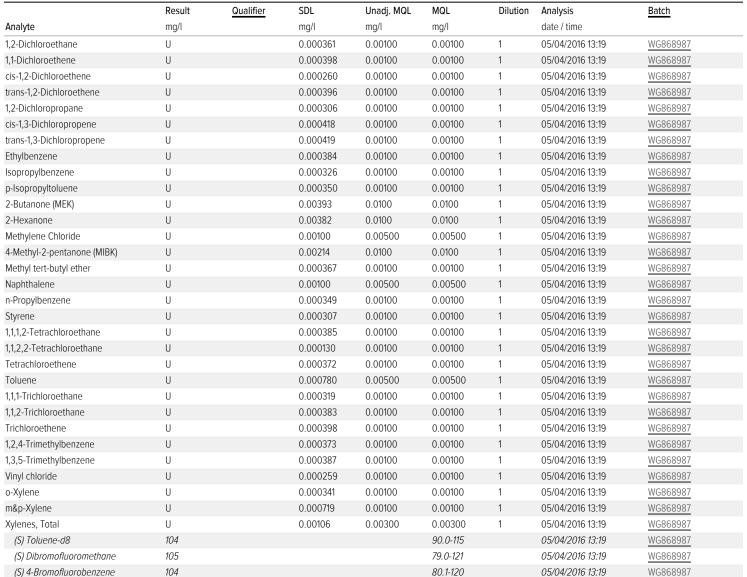
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00188	J	0.00125	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Arsenic, Dissolved	0.00163	J	0.00125	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Barium	0.0150	J	0.00180	0.00500	0.0250	5	05/06/2016 21:08	WG869318
Barium, Dissolved	0.0136	J	0.00180	0.00500	0.0250	5	05/09/2016 11:28	WG870075
Calcium	468		0.230	1.00	5.00	5	05/06/2016 21:08	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 21:08	WG869318
Iron,Dissolved	0.204	<u>J</u>	0.0750	0.100	0.500	5	05/09/2016 11:28	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Manganese	U		0.00125	0.00500	0.0250	5	05/06/2016 21:08	WG869318
Manganese,Dissolved	0.00168	J	0.00125	0.00500	0.0250	5	05/09/2016 11:28	WG870075
Potassium	0.749	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:08	WG869318
Selenium	0.00518	J	0.00190	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Selenium,Dissolved	0.00498	J	0.00190	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Sodium	136		0.550	1.00	5.00	5	05/06/2016 21:08	WG869318

Gl

Αl

Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00188	<u>J</u>	0.00125	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Arsenic, Dissolved	0.00163	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Barium	0.0150	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:08	WG869318
Barium, Dissolved	0.0136	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 11:28	WG870075
Calcium	468		0.230	1.00	5.00	5	05/06/2016 21:08	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 21:08	WG869318
Iron,Dissolved	0.204	<u>J</u>	0.0750	0.100	0.500	5	05/09/2016 11:28	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Manganese	U		0.00125	0.00500	0.0250	5	05/06/2016 21:08	WG869318
Manganese, Dissolved	0.00168	<u>J</u>	0.00125	0.00500	0.0250	5	05/09/2016 11:28	WG870075
Potassium	0.749	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:08	WG869318
Selenium	0.00518	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 21:08	WG869318
Selenium, Dissolved	0.00498	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 11:28	WG870075
Sodium	136		0.550	1.00	5.00	5	05/06/2016 21:08	WG869318

Sc


Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 13:19	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 13:19	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 13:19	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 13:19	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 13:19	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 13:19	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 13:19	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 13:19	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 13:19	WG868987

Collected date/time: 04/26/16 16:30

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0890	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 03:32	WG869251
(S) o-Terphenyl	104				50.0-150		05/05/2016 03:32	WG869251

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2790		2.82	10.0	10.0	1	05/02/2016 14:22	WG869072	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	5.63		0.197	0.100	1.00	10	05/06/2016 06:54	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	119		2.60	1.00	50.0	50	05/02/2016 14:00	WG868881
Fluoride	0.685		0.00990	0.100	0.100	1	05/02/2016 12:16	WG868881
Sulfate	1580		3.87	5.00	250	50	05/02/2016 14:00	WG868881

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00178	J	0.00125	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Arsenic, Dissolved	0.00155	Ţ	0.00125	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Barium	0.0134	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:10	WG869318
Barium, Dissolved	0.0143	Ţ	0.00180	0.00500	0.0250	5	05/09/2016 11:31	WG870075
Calcium	470		0.230	1.00	5.00	5	05/06/2016 21:10	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 21:10	WG869318
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:31	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Manganese	U		0.00125	0.00500	0.0250	5	05/06/2016 21:10	WG869318
Manganese, Dissolved	U		0.00125	0.00500	0.0250	5	05/09/2016 11:31	WG870075
Potassium	0.792	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:10	WG869318
Selenium	0.00483	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Selenium, Dissolved	0.00471	Ţ	0.00190	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Sodium	137		0.550	1.00	5.00	5	05/06/2016 21:10	WG869318

Qc

Αl

Gl

	Result	Qualifier	JUL	Ollauj. MQL	MAC	Dilution	Alidiysis	Daten
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00178	J	0.00125	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Arsenic, Dissolved	0.00155	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Barium	0.0134	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:10	WG869318
Barium, Dissolved	0.0143	J	0.00180	0.00500	0.0250	5	05/09/2016 11:31	WG870075
Calcium	470		0.230	1.00	5.00	5	05/06/2016 21:10	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 21:10	WG869318
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:31	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Manganese	U		0.00125	0.00500	0.0250	5	05/06/2016 21:10	WG869318
Manganese, Dissolved	U		0.00125	0.00500	0.0250	5	05/09/2016 11:31	WG870075
Potassium	0.792	J	0.185	1.00	5.00	5	05/06/2016 21:10	WG869318
Selenium	0.00483	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 21:10	WG869318
Selenium, Dissolved	0.00471	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 11:31	WG870075
Sodium	137		0.550	1.00	5.00	5	05/06/2016 21:10	WG869318

Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 13:40	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 13:40	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 13:40	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 13:40	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 13:40	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 13:40	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 13:40	WG868987

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

WG868987

WG868987

WG868987

WG868987

WG868987

WG868987

WG868987

05/04/2016 13:40

05/04/2016 13:40

05/04/2016 13:40

05/04/2016 13:40

05/04/2016 13:40

05/04/2016 13:40

05/04/2016 13:40

Collected date/time: 04/26/16 15:00

L832468

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:40	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 13:40	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 13:40	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 13:40	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 13:40	WG868987
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 13:40	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 13:40	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 13:40	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 13:40	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 13:40	WG868987
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 13:40	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 13:40	WG868987
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 13:40	WG868987
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 13:40	WG868987
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 13:40	WG868987

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

106

106

103

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0664	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 03:51	WG869251
(S) o-Terphenyl	100				50.0-150		05/05/2016 03:51	WG869251

0.00100

0.00100

0.00100

0.00300

0.000259

0.000341

0.000719

0.00106

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1780		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U	J6	0.197	0.100	1.00	10	05/06/2016 06:55	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	176		2.60	1.00	50.0	50	05/02/2016 14:30	WG868881
Fluoride	1.12		0.00990	0.100	0.100	1	05/02/2016 14:15	WG868881
Sulfate	625		3.87	5.00	250	50	05/02/2016 14:30	WG868881

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00343	J	0.00125	0.00200	0.0100	5	05/06/2016 21:28	WG869318
Arsenic, Dissolved	0.00314	Ţ	0.00125	0.00200	0.0100	5	05/09/2016 11:33	WG870075
Barium	0.0189	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:28	WG869318
Barium, Dissolved	0.0175	Ţ	0.00180	0.00500	0.0250	5	05/09/2016 11:33	WG870075
Calcium	381		0.230	1.00	5.00	5	05/06/2016 21:28	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:28	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:33	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 21:28	WG869318
Iron,Dissolved	0.354	<u>J</u>	0.0750	0.100	0.500	5	05/09/2016 11:33	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:28	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:33	WG870075
Manganese	0.512		0.00125	0.00500	0.0250	5	05/06/2016 21:28	WG869318
Manganese,Dissolved	0.477		0.00125	0.00500	0.0250	5	05/09/2016 11:33	WG870075
Potassium	0.303	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:28	WG869318
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 21:28	WG869318
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 11:33	WG870075
Sodium	69.4		0.550	1.00	5.00	5	05/06/2016 21:28	WG869318

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 14:01	WG868987
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 14:01	WG868987
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 14:01	WG868987
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 14:01	WG868987
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 14:01	WG868987
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 14:01	WG868987
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 14:01	WG868987
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 14:01	WG868987

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane Trichloroethene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

WG868987

Collected date/time: 04/26/16 17:20

Volatile Organic Com	pounds (GC	C/MS) by Me	ethod 8260)B				
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 14:01	WG868987
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 14:01	WG868987
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 14:01	WG868987
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 14:01	WG868987
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 14:01	WG868987
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 14:01	WG868987
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 14:01	WG868987
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 14:01	WG868987
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 14:01	WG868987
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 14:01	WG868987
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 14:01	WG868987
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 14:01	WG868987
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 14:01	WG868987
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 14:01	WG868987
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 14:01	WG868987
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 14:01	WG868987
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 14:01	WG868987

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

05/04/2016 14:01

0.000780

0.000319

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

U

U

U

U

U

105

104

104

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.34		0.0247	0.100	0.100	1	05/05/2016 04:09	WG869251
(S) o-Terphenyl	110				50.0-150		05/05/2016 04:09	WG869251

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2890		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	25.3		0.394	0.100	2.00	20	05/06/2016 06:58	WG870056

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	346		2.60	1.00	50.0	50	05/02/2016 15:00	WG868881
Fluoride	1.06		0.00990	0.100	0.100	1	05/02/2016 14:45	WG868881
Sulfate	1340		3.87	5.00	250	50	05/02/2016 15:00	WG868881

Metals (ICPMS) by Method 6020

	Result	<u>Qualifier</u>	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00193	J	0.00125	0.00200	0.0100	5	05/06/2016 21:31	WG869318
Arsenic, Dissolved	0.00166	J	0.00125	0.00200	0.0100	5	05/09/2016 11:35	WG870075
Barium	0.0308		0.00180	0.00500	0.0250	5	05/06/2016 21:31	WG869318
Barium,Dissolved	0.0246	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 11:35	WG870075
Calcium	459		0.230	1.00	5.00	5	05/06/2016 21:31	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:31	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 11:35	WG870075
Iron	U		0.0750	0.100	0.500	5	05/06/2016 21:31	WG869318
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 11:35	WG870075
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:31	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 11:35	WG870075
Manganese	1.07		0.00125	0.00500	0.0250	5	05/06/2016 21:31	WG869318
Manganese,Dissolved	0.605		0.00125	0.00500	0.0250	5	05/09/2016 11:35	WG870075
Potassium	1.42	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:31	WG869318
Selenium	0.00617	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 21:31	WG869318
Selenium,Dissolved	0.00498	J	0.00190	0.00200	0.0100	5	05/09/2016 11:35	WG870075
Sodium	161		0.550	1.00	5.00	5	05/06/2016 21:31	WG869318

Qc

Gl

Αl Sc

5	05/06/2016 21:31	WG869318
5	05/06/2016 21:31	WG869318
5	05/09/2016 11:35	WG870075
5	05/06/2016 21:31	WG869318

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 20:56	WG869009
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 20:56	WG869009
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 20:56	WG869009
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 20:56	WG869009
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 20:56	WG869009
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 20:56	WG869009
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 20:56	WG869009

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:40

L832468

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:56	WG869009
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 20:56	WG869009
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 20:56	WG869009
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 20:56	WG869009
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 20:56	WG869009
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 20:56	WG869009
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 20:56	WG869009
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 20:56	WG869009
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 20:56	WG869009
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 20:56	WG869009
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 20:56	WG869009
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,1,2,2-Tetrachloroethane	U	<u>J4</u>	0.000130	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 20:56	WG869009
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 20:56	WG869009
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 20:56	WG869009
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 20:56	WG869009
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 20:56	WG869009
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 20:56	WG869009
(S) Toluene-d8	102				90.0-115		05/05/2016 20:56	WG869009
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 20:56	WG869009
(S) 4-Bromofluorobenzene	98.6				80.1-120		05/05/2016 20:56	WG869009

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.316		0.0247	0.100	0.100	1	05/05/2016 04:27	WG869251
(S) o-Terphenyl	103				50.0-150		05/05/2016 04:27	WG869251

Method Blank (ME (MB) R3133392-1 05/02/ Analyte Dissolved Solids L832199-06 Origin (OS) L832199-06 05/02/ Analyte Dissolved Solids	MB Result mg/l U nal Sample (2/16 14:22 • (DUP) Original Result mg/l 2180	R3133392-4 (05/02/16 14		DUP Qualifier	DUP RPD Limits %						¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ C
Analyte Dissolved Solids L832199-06 Origin (OS) L832199-06 05/02/	MB Result mg/l U nal Sample (2/16 14:22 • (DUP) Original Result mg/l 2180	OS) • Dup R3133392-4 (DUP Result mg/l	mg/l 2.82 licate (D 05/02/16 14 Dilution	mg/l 10.0 DUP) 4:22 DUP RPD %	DUP Qualifier	%						² Tc ³ Ss ⁴ Cn
Dissolved Solids L832199-06 Origin (OS) L832199-06 05/02/	mg/l U nal Sample (2/16 14:22 • (DUP) Original Result mg/l 2180	OS) • Dup R3133392-4 (DUP Result mg/l	mg/l 2.82 licate (D 05/02/16 14 Dilution	mg/l 10.0 DUP) 4:22 DUP RPD %	DUP Qualifier	%						³ Ss ⁴ Cn
Dissolved Solids L832199-06 Origin (OS) L832199-06 05/02/	U nal Sample (2/16 14:22 • (DUP) Original Result mg/l 2180	R3133392-4 (DUP Result mg/l	2.82 licate (D 05/02/16 14 Dilution	10.0 DUP) 4:22 DUP RPD %	DUP Qualifier	%						³ Ss ⁴ Cn
L832199-06 Origii (OS) L832199-06 05/02/	nal Sample (2/16 14:22 • (DUP) Original Result mg/l 2180	R3133392-4 (DUP Result mg/l	licate (D 05/02/16 14 Dilution	0UP) 4:22 DUP RPD %	DUP Qualifier	%						⁴ Cn
(OS) L832199-06 05/02/	2/16 14:22 • (DUP) Original Result mg/l 2180	R3133392-4 (DUP Result mg/l	05/02/16 14 Dilution	4:22 DUP RPD %	DUP Qualifier	%						⁴ Cn
Analyte	Original Result mg/l 2180	DUP Result mg/l	Dilution	DUP RPD %	DUP Qualifier	%						
· ·	mg/l 2180	mg/l		%	DUP Qualifier	%						5
· ·	2180		1									1 0
Dissolved Solids		2140	1	1.62		5						°Sr
												6 _
	-101-/1/	00\ - -				(1 000)						⁶ Qc
Laboratory Contro (LCS) R3133392-2 05/02					ipie Dupiic	ate (LCSD)						7 GI
,LC3) K3133392-2 03/02	Spike Amount		LCSD Res		LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		8 Al
Dissolved Solids	8800	8660	8630	98.4	98.1	85.0-115			0.347	5		/ (1
												⁹ Sc

SDG:

L832468

DATE/TIME:

05/12/16 19:04

PAGE:

18 of 45

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG869073 Gravimetric Analys		540 C-2011		G	UALITY	CONTF		MMARY			ONE LAB. NATIONWIDE.	*
Method Blank (N	ИВ)											1
(MB) R3133357-1 05/0												Ср
Analisto	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								
												3 Ss
L832468-05 Ori	iginal Sample	(OS) • Dup	olicate (D	DUP)								4
(OS) L832468-05 05/	•											⁴Cn
Analysis	Original Resul		Dilution	DUP RPD %		OUP RPD Limits						⁵ Sr
Analyte Dissolved Solids	mg/l 1780	mg/l 1780	1	0.000								Sr
DISSOIVED SOIIDS	1700	1700		0.000	J							6
												[°] Qc
Laboratory Cont					ple Duplicat	te (LCSD)						7 GI
(LCS) R3133357-2 05/	/02/16 14:55 • (LCS Spike Amount		05/02/16 LCSD Res		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		Gi
Analyte	mg/l	mg/l	mg/l	wit LC3 Rec. %	%	%	LC3 Qualifier	LC3D Qualifier	%	%		8 Al
												Al
Dissolved Solids	8800	8730	8740	99.2	99.3	85.0-115			0.114	5		
Dissolved Solids	8800	8730	8740	99.2	99.3	85.0-115			0.114	5		°Sc

WG870056				(QUALIT	Y CONTR	OL SUN	имаry			ONE LAB. NATIONWIDE.	*
Wet Chemistry by Met	hod 353.2					L832468-01,03						
Method Blank (MB))											1
(MB) R3134255-1 05/06/1												Ср
Analyta	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100								10
												³ Ss
L832468-03 Origin	nal Sample	(OS) • Dup	licate (DU	JP)								4
(OS) L832468-03 05/06/	16 06:48 • (DUF	P) R3134255-4	05/06/16 06	:49								*Cn
	Original Result		Dilution D		DUP Qualifier	DUP RPD Limits						5_
Analyte	mg/l 5.71	mg/l	40 3			%						Sr
Nitrate-Nitrite	5./1	5.54	10 3	.00		20						6
L832472-08 Origin	nal Samplo	(OS) - Dun	licato (DI	ID\								⁻ Qc
(OS) L832472-08 05/06/												7GI
(03) 2032 472 00 03/00/	Original Result	•	Dilution D		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l	%	,		%						8 Al
Nitrate-Nitrite	U	ND	10 0	.000		20						9
Laboratory Contro	l Sample (Lo	CS) • Laboi	ratory Co	ntrol San	nple Duplic	ate (LCSD)						Sc
(LCS) R3134255-2 05/06	/16 06:41 • (LCS	D) R3134255-3	05/06/16 0	6:42								
	Spike Amount		LCSD Result				LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l 5.00	mg/l 4.88	mg/l 4.97	% 98.0	99.0	90.0-110			2.00	% 20		
Nitrate-Nitrite	5.00	4.88	4.97	98.0	99.0	90.0-110			2.00	20		
L832468-05 Origin	nal Sample	(OS) • Mati	ix Spike	(MS)								
(OS) L832468-05 05/06/	16 06:55 • (MS)	R3134255-5 (05/06/16 06:	56								
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	5.00	U	4.34	9.00	10	90.0-110	<u>J6</u>					

DATE/TIME:

05/12/16 19:04

PAGE:

20 of 45

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

$\underset{\underline{\text{L832468-01,03,04,05,06}}}{\text{QUALITY}} \underset{\underline{\text{CONTROL}}{\text{SUMMARY}}}{\text{SUMMARY}}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832472-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-12 05/06/16 07:14 • (MS) R3134255-7 05/06/16 07:20 • (MSD) R3134255-8 05/06/16 07:21			
	(OS) 1 832/172-12 O5/06/16 O7:1/	1 . (MS) P3134255-7 05/06/16 07:20 .	MSD) P313/1255-8 05/06/16 07:21

(00) 2002 172 12 00/00/10	07.11 (1110)110	3.0.200 / 00/	00/10 07.20	(11102) 11010 120	0 0 00/00/10	07.21						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	U	4.11	4.15	8.00	8.00	10	90.0-110	<u>J6</u>	<u>J6</u>	1.00	20

WG87032	~			Q	UALIT\	Y CONTR		UMMA	RY			ONE LAB. NATION	WIDE.	
Method Blank (MB)												1 _	
(MB) R3136186-1 05/1	12/16 15:17												<u> —</u> Ср)
	MB Result	MB Qualifier	MB MDL	MB RDL									2	$\bar{-}$
Analyte	mg/l		mg/l	mg/l									² Tc	
Cyanide	0.00294	ī	0.00180	0.00500									2	_
													³Ss	
L832450-04 Oi	riginal Sample	(OS) • Dup	licate (Dl	JP)									4	_
(OS) L832450-04 05	5/12/16 15:22 • (DUP)	R3136186-4 0	5/12/16 15:23	}									—— [‡] Cr	1
	Original Result	DUP Result	Dilution D	UP RPD [OUP Qualifier	DUP RPD Limits							-	=
Analyte	mg/l	mg/l	%	5		%							⁵ Sr	
Cyanide	U	ND	1 0	.000		20								_
													⁶ Qd	
Laboratory Con	ntrol Sample (Lo	CS) • Laboi	ratory Co	ntrol Samp	ole Duplica	ate (LCSD)							7	Ξ
(LCS) R3136186-2 05	5/12/16 15:18 • (LCSD)	R3136186-3 0	5/12/16 15:19										´GI	
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qua	lifier LCSD C	Qualifier RPD	RPD Limi	ts			ᆜ
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			⁸ Al	
Cyanide	0.100	0.0916	0.104	92.0	104	90.0-110			13.0	20				
													⁹ Sc	
L832460-08 O	riginal Sample	(OS) • Mati	rix Snike	(MS) • Mat	rix Snike Γ	Dunlicate (M9	SDI						50	
(OS) L832460-08 05		· /	<u> </u>	,	<u> </u>		,							
(03) 1032400-06 05		Original Result		MSD Result		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	% %	%	Dilution	%	mo qualifier	mob dualifier	%	%		
Cyanide	0.200	U	0.00566	0.178	3.00	89.0	1	90.0-110	<u>J6</u>	J3 J6	188	20		
•									_					

WG8688 Wet Chemistry	379 by Method 9056A			(QUALITY	CONTR L832468		1MARY			ONE LAB. NATIONWIDE.	*
Method Blan	ık (MB)											1
(MB) R3133150-1 (05/02/16 09:53											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Тс
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								3 Ss
Sulfate	U		0.0774	5.00								
												4 Cn
1 221226-03	Original Sample (OS) - Dun	vlicate (DI	ID/								Cn
	05/02/16 12:06 • (DUP)	, , ,										⁵ Sr
(U3) L031000-03	Os/02/16 12:06 • (DOP) Original Result		Dilution D		DUP Qualifier D	OUP RPD Limits) Ji
Analyte	mg/l	mg/l		%	bor Qualifier b							6
Sulfate	309	307	10 1		15							[°] Qc
Junate		307				,						
												⁷ Gl
L831886-04	Original Sample (OS) • Dup!	licate (DU	JP)								
(OS) L831886-04	05/02/16 19:21 • (DUP) F											8 Al
	Original Result		Dilution D			OUP RPD Limits						
Analyte	mg/l	mg/l		%	%							⁹ Sc
Sulfate	342	341	10 0	J	15	ō						50
	Cantral Cample (CCI - Lahc	~~~+on/C(antral Car	and Duplica	1 (CCD)						
Laboratory C		-2) . rano	Talory Co	Huor Jan	Thie Dublicar	.e (LCSD)						
Laboratory C		- 201001EO 0	25/22/46 10:	~~					DDD	RPD Limits		
	2 05/02/16 10:07 • (LCSE				I CSD Rec	Par Limits	LCS Qualifier	LCCD Qualifier	ODII			
(LCS) R3133150-2	2 05/02/16 10:07 • (LCSE Spike Amount	LCS Result	LCSD Result		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD %	%		
(LCS) R3133150-2 Analyte	2 05/02/16 10:07 • (LCSE Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	lt LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
(LCS) R3133150-2	2 05/02/16 10:07 • (LCSE Spike Amount	LCS Result	LCSD Result	lt LCS Rec.			LCS Qualifier	LCSD Qualifier				
(LCS) R3133150-2 Analyte Chloride	2 05/02/16 10:07 • (LCSE Spike Amount mg/l 40.0	LCS Result mg/l 39.9	LCSD Result mg/l 39.9	lt LCS Rec. % 100	% 100	% 80-120	LCS Qualifier	LCSD Qualifier	%	% 15		
(LCS) R3133150-2 Analyte Chloride Fluoride	2: 05/02/16 10:07 • (LCSE Spike Amount mg/l 40.0 8.00	LCS Result mg/l 39.9 8.05	mg/l 39.9 8.05	100 101	% 100 101	% 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 0 0	% 15 15		
(LCS) R3133150-2 Analyte Chloride Fluoride	2: 05/02/16 10:07 • (LCSE Spike Amount mg/l 40.0 8.00	LCS Result mg/l 39.9 8.05	mg/l 39.9 8.05	100 101	% 100 101	% 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 0 0	% 15 15		
(LCS) R3133150-2 Analyte Chloride Fluoride	2: 05/02/16 10:07 • (LCSE Spike Amount mg/l 40.0 8.00	LCS Result mg/l 39.9 8.05	mg/l 39.9 8.05	100 101	% 100 101	% 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 0 0	% 15 15		

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 19:04 PAGE: 23 of 45

WG868881				(QUALITY			MARY			ONE LAB. NATIONWIDE.	果
Wet Chemistry by Met						L832468-03,0	04,05,06					
Method Blank (MB))											¹ Cp
(MB) R3133189-1 05/02/16												СР
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Chloride	U		0.0519	1.00								3
Fluoride	U		0.0099 0.0774	0.100								°Ss
Sulfate	U		0.0774	5.00								
												⁴Cn
L832472-10 Origin	al Sample (OS) • Dupli	cate (DUF	(د								
(OS) L832472-10 05/02/10	6 12:31 • (DUP) I	R3133189-4 05	/02/16 12:46									⁵ Sr
	Original Result		Dilution DU	JP RPD	DUP Qualifier [OUP RPD Limits						
Analyte	mg/l	mg/l	%		ę	%						6
Chloride	U	0.000	1 0		1	5						Qc
Fluoride	U	0.000	1 0		1	5						7
Sulfate	U	0.000	1 0		1	5						GI
Laboratory Control (LCS) R3133189-2 05/02/1		D) R3133189-3 (nple Duplica	te (LCSD)	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		⁸ Al
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.9	39.9	100	100	80-120			0	15		
Fluoride	8.00	8.04	8.03	101	100	80-120			0	15		
Sulfate	40.0	40.2	40.2	101	101	80-120			0	15		
L832472-17 Origina (OS) L832472-17 05/02/16	' '		' '	IS)								
(00) 2002 112 11 00. 12. 11		Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	Quaimer					
Chloride	50.0	U	49.3	99	1	80-120						
Fluoride	5.00	U	5.00	100	1	80-120						
Sulfate	50.0	U	49.8	100	1	80-120						
Sunate	00.5		10.5		•							

DATE/TIME: 05/12/16 19:04

PAGE: 24 of 45

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

WG869159 Mercury by Method	7470A			Ql	JALITY	CONTR L832468		ММА	RY			ONE LAB. NATIONWIDE.	景
Method Blank (MI	B)												1 _
(MB) R3133255-1 05/03													. Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									. Tc
Mercury	U		0.000049	0.000200									3 Ss
Laboratory Contro	ol Sample (L	.CS) • Labo	ratory Cor	ıtrol Sampl	e Duplicate	e (LCSD)							4
(LCS) R3133255-2 05/0													Cn
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD	Qualifier RPD	RPD Limi	ts		5
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			. Sr
Mercury	0.00300	0.00298	0.00292	99	97	80-120			2	20			⁶ Qc
L832391-01 Origin	nal Sample (OS) • Matri	x Spike (M	S) • Matrix	Spike Dup	licate (MSE))						-
(OS) L832391-01 05/03/													· ′Gl
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution Re		MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	%				%	%	. l°Al
Mercury	0.00300	ND	0.00307	0.00291	102	97	1 75	5-125			5	20	
													⁹ Sc
													_

PAGE: 25 of 45

DATE/TIME:

05/12/16 19:04

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

Method Blank (MB	WG869207 Mercury by Method 74	470A			Ql	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWIDE.	*
Analyte mg/l	Method Blank (MB)	3)												- ¹ Cp
Analyte Mercury, Dissolved U		MB Result	MB Qualifier											2
CLCS) R3133626-2 O5/04/16 12:09 * (LCSD) R3133626-3 O5/04/16 12:11 LCSD Result RPD RPD Limits														2
Spike Amount LCS Result LCSD Result RPD RPD Limits						e Duplicat	e (LCSD)							4
Mercury, Dissolved 0.00300 0.00284 0.00263 95 88 80-120 7 20		Spike Amount	t LCS Result	LCSD Result	LCS Rec.			LCS Qua	ifier LCSD			ts		-
Figure Continue														_ Sr
Cost	Mercury, Dissolved	0.00300	0.00284	0.00263	95	88	80-120			7	20			⁶ Qc
Spike Amount Original Result MS Qualifier MS Qualifi								D)						7
Analyte mg/l mg/l mg/l %	(OS) L832603-17 05/04/10							50.00	5 11	****	1100 0 . 110	222	222 11 11	Gi
Mercury, Dissolved 0.00300 U 0.00254 0.00254 85 85 1 75-125 0 20	Analyta							Dilution		MS Qualifier	MSD Qualifier			8
														_ Al

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/12/16 19:04 PAGE: 26 of 45

$\underset{\underline{\text{L832468-01,03,04,05,06}}}{\text{QUALITY}} \underset{\underline{\text{CONTROL}}{\text{SUMMARY}}}{\text{SUMMARY}}$

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

metriod Biariit (1410)					
(MB) R3134607-1 05/	06/16 20:46					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/l		mg/l	mg/l		
Arsenic	U		0.00025	0.00200		
Barium	U		0.00036	0.00500		
Boron	U		0.0015	0.0200		
Cadmium	U		0.00016	0.00100		
Calcium	0.0807		0.046	1.00		
Chromium	U		0.00054	0.00200		
Cobalt	U		0.00026	0.00200		
Iron	0.0188		0.015	0.100		
Lead	U		0.00024	0.00200		
Manganese	0.000451		0.00025	0.00500		
Nickel	0.000359		0.00035	0.00200		
Potassium	U		0.037	1.00		
Selenium	U		0.00038	0.00200		
Sodium	U		0.11	1.00		
Uranium	U		0.00033	0.0100		
Vanadium	0.0002		0.00018	0.00500		

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134607-2 05	5/06/16 20:49 • (LCS	SD) R3134607	-3 05/06/16 20	:51							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0508	0.0521	102	104	80-120			2	20	
Barium	0.0500	0.0533	0.0507	107	101	80-120			5	20	
Boron	0.0500	0.0444	0.0463	89	93	80-120			4	20	
Cadmium	0.0500	0.0531	0.0542	106	108	80-120			2	20	
Calcium	5.00	5.24	5.21	105	104	80-120			1	20	
Chromium	0.0500	0.0519	0.0507	104	101	80-120			2	20	
Cobalt	0.0500	0.0529	0.0514	106	103	80-120			3	20	
Iron	5.00	5.07	4.96	101	99	80-120			2	20	
Lead	0.0500	0.0519	0.0516	104	103	80-120			1	20	
Manganese	0.0500	0.0519	0.0503	104	101	80-120			3	20	
Nickel	0.0500	0.0540	0.0514	108	103	80-120			5	20	
Potassium	5.00	5.08	5.01	102	100	80-120			2	20	
Selenium	0.0500	0.0505	0.0501	101	100	80-120			1	20	
Sodium	5.00	5 11	5.07	10.2	101	80-120			1	20	

TRC Solutions - Austin, TX

05/12/16 19:04

QUALITY CONTROL SUMMARY L832468-01,03,04,05,06

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134607-2	05/06/16 20:49	(LCSD) R3134607-3	05/06/16 20:51

(LCS) R3134607-2 05/06/	/16 20:49 • (LCS	D) R3134607-	3 05/06/16 20	:51						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Uranium	0.0500	0.0519	0.0521	104	104	80-120			0	20
Vanadium	0.0500	0.0511	0.0501	102	100	80-120			2	20

Ss

Sr

Тс

L832488-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Arsenic	0.0100	0.0106	0.0724	0.0674	124	114	5	75-125			7	20	
Barium	0.0100	0.0200	0.0795	0.0765	119	113	5	75-125			4	20	
Boron	0.0100	0.714	0.764	0.773	99	117	5	75-125			1	20	
Cadmium	0.0100	U	0.0582	0.0555	116	111	5	75-125			5	20	
Calcium	1.00	728	723	691	0	0	5	75-125	V	\vee	5	20	
Chromium	0.0100	U	0.0570	0.0536	114	107	5	75-125			6	20	
Cobalt	0.0100	0.00303	0.0596	0.0560	113	106	5	75-125			6	20	
Potassium	1.00	27.9	34.8	32.1	138	84	5	75-125	V		8	20	
Iron	1.00	4.56	10.2	9.59	113	101	5	75-125			6	20	
Lead	0.0100	U	0.0572	0.0546	114	109	5	75-125			5	20	
Manganese	0.0100	2.70	2.81	2.66	223	0	5	75-125	V	V	5	20	
Nickel	0.0100	0.0148	0.0715	0.0653	113	101	5	75-125			9	20	
Selenium	0.0100	U	0.0584	0.0563	117	113	5	75-125			4	20	
Sodium	1.00	3230	3300	3120	1300	0	5	75-125	<u>∨</u>	V	5	20	
Uranium	0.0100	0.0168	0.0762	0.0716	119	110	5	75-125	_	_	6	20	
Vanadium	0.0100	0.00265	0.0609	0.0578	116	110	5	75-125			5	20	

GI

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

L	8	3	2	4	6	8	-	0	1	,	0	3	,	0	4	,	0	5	, (0

(MB) R3134963-1 05/09	9/16 10:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/l		mg/l	mg/l	To
Arsenic, Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	3 Ss
Cadmium, Dissolved	U		0.00016	0.00100	
Chromium, Dissolved	U		0.00054	0.00200	4
Cobalt, Dissolved	U		0.00026	0.00200	Cr
Iron,Dissolved	0.0259		0.015	0.100	\vdash
Lead,Dissolved	0.000687		0.00024	0.00200	⁵ Sr
Manganese, Dissolved	0.0003		0.00025	0.00500	
Nickel, Dissolved	U		0.00035	0.00200	6
Selenium, Dissolved	U		0.00038	0.00200	⁶ Q
Uranium,Dissolved	U		0.00033	0.0100	
Vanadium, Dissolved	0.000218		0.00018	0.00500	7 GI

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134963-2 05/09/16 10:30 • (LCSD) R3134963-3 05/09/16 10:33	
--	--

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic,Dissolved	0.0500	0.0512	0.0534	102	107	80-120			4	20	
Barium, Dissolved	0.0500	0.0517	0.0524	103	105	80-120			1	20	
Cadmium, Dissolved	0.0500	0.0547	0.0572	109	114	80-120			5	20	
Chromium, Dissolved	0.0500	0.0534	0.0550	107	110	80-120			3	20	
Cobalt, Dissolved	0.0500	0.0554	0.0568	111	114	80-120			2	20	
Iron,Dissolved	5.00	5.23	5.38	105	108	80-120			3	20	
Lead, Dissolved	0.0500	0.0524	0.0538	105	108	80-120			3	20	
Manganese, Dissolved	0.0500	0.0518	0.0526	104	105	80-120			1	20	
Nickel, Dissolved	0.0500	0.0553	0.0560	111	112	80-120			1	20	
Selenium, Dissolved	0.0500	0.0506	0.0519	101	104	80-120			2	20	
Uranium,Dissolved	0.0500	0.0516	0.0530	103	106	80-120			3	20	
Vanadium Dissolved	0.0500	0.0522	0.0541	104	108	80-120			4	20	

Αl

Sc

$\underset{\underline{\text{L832468-01,03,04,05,06}}}{\text{QUALITY}} \underset{\underline{\text{CONTROL}}{\text{SUMMARY}}}{\text{SUMMARY}}$

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832447-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	5	%	mo quamier	mos quamer	%	%
Arsenic, Dissolved	0.0100	0.00646	0.0536	0.0585	94	104	5	75-125			9	20
Barium,Dissolved	0.0100	0.0161	0.0606	0.0636	89	95	5	75-125			5	20
Cadmium, Dissolved	0.0100	U	0.0473	0.0523	95	105	5	75-125			10	20
Chromium, Dissolved	0.0100	U	0.0489	0.0497	98	99	5	75-125			2	20
Cobalt, Dissolved	0.0100	U	0.0484	0.0505	97	101	5	75-125			4	20
Iron,Dissolved	1.00	U	4.68	5.46	94	109	5	75-125			15	20
Lead,Dissolved	0.0100	U	0.0486	0.0513	97	103	5	75-125			5	20
Manganese,Dissolved	0.0100	0.319	0.326	0.350	14	63	5	75-125	V	$\underline{\vee}$	7	20
Nickel, Dissolved	0.0100	0.00490	0.0531	0.0509	96	92	5	75-125			4	20
Selenium,Dissolved	0.0100	0.00234	0.0506	0.0560	96	107	5	75-125			10	20
Uranium,Dissolved	0.0100	0.0181	0.0628	0.0668	89	97	5	75-125			6	20
Vanadium, Dissolved	0.0100	0.0109	0.0559	0.0602	90	99	5	75-125			7	20

Metals (ICPMS) by	Method 6020					L832468	3-01						
Method Blank (N	√B)												1
MB) R3134973-1 05/0)9/16 10:45												C
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									² T
Boron,Dissolved	U		0.0015	0.0200									3,
Laboratory Cont					e Duplicat	.e (LCSD)							4
(LCS) R3134973-2 05/					I CCD Dos	Des Limite	LCS Our	"S LCCD	Qualifier RPD	RPD Limit	-14		Ľ
Analyte	Spike Amount mg/l	mg/l	LCSD Result mg/l	LCS Rec. %	LCSD Rec. %	Rec. Limits %	LCS Quali	itter LCSD G	Walifier RPD %	KPD LIMII %	ts		5
Boron,Dissolved	0.0500	0.0484	0.0502	97	100	80-120			4	20			
30f0ff,DISSolved	0.0500	U.U404	0.0502	91	100	8U-12U			4	20			6)
					_								ຶ່(
L832468-01 Orio		· · · · · · · · · · · · · · · · · · ·))						7
OS) L832468-01 05/0							Dilution	Dan Limita	MC Ovelliere	MCD Ourlifer	DDD	DDD 1::t-	Ľ
Analyte	mg/l	Original Result mg/l	mg/l	MSD Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	RPD Limits %	8
Boron,Dissolved	0.00500	0.596	0.642	0.644	92	95	10	75-125			0	20	°
301011,D15501veu	0.00500	0.550	U.042	U.U 111	92	30	IU	/3-123			U	20	_
													9
													L
													L

DATE/TIME:

05/12/16 19:04

PROJECT: 249545.0000.0000 000

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE:

31 of 45

WG870591

ACCOUNT:

TRC Solutions - Austin, TX

$\begin{array}{c} \text{QUALITY} \underset{\underline{\text{L332468-01,02,03,04,05}}}{\text{CONTROL SUMMARY}} \end{array}$

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134190-3 05/04/16 05:51											
	MB Result	MB Qualifier	MB MDL	MB RDL							
Analyte	mg/l		mg/l	mg/l							
Acetone	U		0.0100	0.0500							
Benzene	U		0.000331	0.00100							
Bromodichloromethane	U		0.000380	0.00100							
Bromoform	U		0.000469	0.00100							
Bromomethane	U		0.000866	0.00500							
n-Butylbenzene	U		0.000361	0.00100							
sec-Butylbenzene	U		0.000365	0.00100							
Carbon disulfide	U		0.000275	0.00100							
Carbon tetrachloride	U		0.000379	0.00100							
Chlorobenzene	U		0.000348	0.00100							
Chlorodibromomethane	U		0.000327	0.00100							
Chloroethane	U		0.000453	0.00500							
Chloroform	U		0.000324	0.00500							
Chloromethane	U		0.000276	0.00250							
1,2-Dibromoethane	U		0.000381	0.00100							
1,1-Dichloroethane	U		0.000259	0.00100							
1,2-Dichloroethane	U		0.000361	0.00100							
1,1-Dichloroethene	U		0.000398	0.00100							
cis-1,2-Dichloroethene	U		0.000260	0.00100							
trans-1,2-Dichloroethene	U		0.000396	0.00100							
1,2-Dichloropropane	U		0.000306	0.00100							
cis-1,3-Dichloropropene	U		0.000418	0.00100							
trans-1,3-Dichloropropene	U		0.000419	0.00100							
Ethylbenzene	U		0.000384	0.00100							
2-Hexanone	U		0.00382	0.0100							
Isopropylbenzene	U		0.000326	0.00100							
p-Isopropyltoluene	U		0.000350	0.00100							
2-Butanone (MEK)	U		0.00393	0.0100							
Methylene Chloride	U		0.00100	0.00500							
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100							
Methyl tert-butyl ether	U		0.000367	0.00100							
Naphthalene	U		0.00100	0.00500							
n-Propylbenzene	U		0.000349	0.00100							
Styrene	U		0.000307	0.00100							
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100							
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100							

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832468

DATE/TIME: 05/12/16 19:04

PAGE: 32 of 45

$\begin{array}{c} \text{QUALITY} \underset{\underline{\text{L332468-01,02,03,04,05}}}{\text{CONTROL SUMMARY}} \end{array}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134190-3 05/04/16	6 05:51				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	105			90.0-115	
(S) Dibromofluoromethane	104			79.0-121	
(S) 4-Bromofluorobenzene	103			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.129	0.124	103	99.5	28.7-175			3.50	20.9
Benzene	0.0250	0.0265	0.0276	106	110	73.0-122			4.18	20
Bromodichloromethane	0.0250	0.0268	0.0276	107	110	75.5-121			2.61	20
Bromoform	0.0250	0.0255	0.0260	102	104	71.5-131			2.11	20
Bromomethane	0.0250	0.0336	0.0356	134	142	22.4-187			5.75	20
n-Butylbenzene	0.0250	0.0256	0.0275	102	110	75.9-134			7.09	20
sec-Butylbenzene	0.0250	0.0249	0.0267	99.5	107	80.6-126			7.27	20
Carbon disulfide	0.0250	0.0246	0.0256	98.4	102	53.0-134			3.79	20
Carbon tetrachloride	0.0250	0.0252	0.0264	101	105	70.9-129			4.58	20
Chlorobenzene	0.0250	0.0261	0.0275	104	110	79.7-122			5.41	20
Chlorodibromomethane	0.0250	0.0266	0.0273	107	109	78.2-124			2.43	20
Chloroethane	0.0250	0.0297	0.0309	119	124	41.2-153			3.80	20
Chloroform	0.0250	0.0272	0.0279	109	112	73.2-125			2.81	20
Chloromethane	0.0250	0.0276	0.0289	111	116	55.8-134			4.35	20
1,2-Dibromoethane	0.0250	0.0266	0.0272	106	109	79.8-122			2.26	20
1.1-Dichloroethane	0.0250	0.0269	0.0279	108	112	71.7-127			3.73	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832468

DATE/TIME: 05/12/16 19:04

PAGE: 33 of 45

$\begin{array}{c} \text{QUALITY} \underset{\underline{\text{L332468-01,02,03,04,05}}}{\text{CONTROL SUMMARY}} \end{array}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134190-1 05/04/16	6 04:27 • (LCSE) R3134190-2	05/04/16 04:4	8							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0276	0.0279	110	112	65.3-126			1.25	20	
1,1-Dichloroethene	0.0250	0.0250	0.0260	100	104	59.9-137			3.89	20	
cis-1,2-Dichloroethene	0.0250	0.0276	0.0282	111	113	77.3-122			2.17	20	
trans-1,2-Dichloroethene	0.0250	0.0277	0.0289	111	116	72.6-125			4.39	20	
1,2-Dichloropropane	0.0250	0.0264	0.0269	105	108	77.4-125			1.94	20	
cis-1,3-Dichloropropene	0.0250	0.0273	0.0281	109	112	77.7-124			2.79	20	
trans-1,3-Dichloropropene	0.0250	0.0280	0.0284	112	113	73.5-127			1.11	20	
Ethylbenzene	0.0250	0.0250	0.0270	100	108	80.9-121			7.84	20	
2-Hexanone	0.125	0.140	0.139	112	111	59.4-151			0.190	20	
Isopropylbenzene	0.0250	0.0255	0.0270	102	108	81.6-124			5.79	20	
p-Isopropyltoluene	0.0250	0.0256	0.0275	102	110	77.6-129			7.06	20	
2-Butanone (MEK)	0.125	0.142	0.140	114	112	46.4-155			2.02	20	
Methylene Chloride	0.0250	0.0268	0.0277	107	111	69.5-120			3.15	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.138	0.135	110	108	63.3-138			1.89	20	
Methyl tert-butyl ether	0.0250	0.0268	0.0269	107	108	70.1-125			0.340	20	
Naphthalene	0.0250	0.0242	0.0254	96.8	102	69.7-134			4.75	20	
n-Propylbenzene	0.0250	0.0260	0.0276	104	110	81.9-122			5.91	20	
Styrene	0.0250	0.0274	0.0289	110	116	79.9-124			5.15	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0249	0.0262	99.5	105	78.5-125			5.05	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0258	0.0264	103	105	79.3-123			2.10	20	
Tetrachloroethene	0.0250	0.0253	0.0269	101	108	73.5-130			6.15	20	
Toluene	0.0250	0.0257	0.0267	103	107	77.9-116			3.95	20	
1,1,1-Trichloroethane	0.0250	0.0267	0.0280	107	112	71.1-129			4.72	20	
1,1,2-Trichloroethane	0.0250	0.0264	0.0271	105	108	81.6-120			2.69	20	
Trichloroethene	0.0250	0.0257	0.0269	103	108	79.5-121			4.40	20	
1,2,4-Trimethylbenzene	0.0250	0.0252	0.0268	101	107	79.0-122			6.06	20	
1,3,5-Trimethylbenzene	0.0250	0.0254	0.0269	101	108	81.0-123			5.96	20	
Vinyl chloride	0.0250	0.0276	0.0284	110	114	61.5-134			2.89	20	
Xylenes, Total	0.0750	0.0762	0.0806	102	107	79.2-122			5.61	20	
o-Xylene	0.0250	0.0255	0.0267	102	107	79.1-123			4.75	20	
m&p-Xylenes	0.0500	0.0508	0.0539	102	108	78.5-122			6.03	20	
(S) Toluene-d8				106	105	90.0-115					
(S) Dibromofluoromethane				106	105	79.0-121					
(S) 4-Bromofluorobenzene				102	102	80.1-120					

ACCOUNT:	
TRC Solutions - Austin,	ΤX

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832468-01,02,03,04,05

L832460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0194

	Snike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	Dilation	%	ms qualifier	MSD Guanner	%	%
Acetone	0.125	U	0.0437	0.0610	34.9	48.8	1	25.0-156		J3	33.1	21.5
Benzene	0.0250	U	0.0184	0.0261	73.6	104	1	58.6-133		<u>J3</u>	34.7	20
Bromodichloromethane	0.0250	U	0.0197	0.0268	78.9	107	1	69.2-127		<u>J3</u>	30.5	20
Bromoform	0.0250	U	0.0187	0.0258	74.6	103	1	66.3-140		<u>J3</u>	32.1	20
Bromomethane	0.0250	U	0.0218	0.0317	87.3	127	1	16.6-183		J3	36.8	20.5
n-Butylbenzene	0.0250	U	0.0192	0.0262	76.9	105	1	64.8-145		J3	30.7	20
sec-Butylbenzene	0.0250	U	0.0181	0.0255	72.5	102	1	66.8-139		<u>J3</u>	33.7	20
Carbon disulfide	0.0250	U	0.0147	0.0207	58.9	82.8	1	34.9-138		<u>J3</u>	33.7	20
Carbon tetrachloride	0.0250	U	0.0175	0.0251	70.1	101	1	60.6-139		<u>J3</u>	35.7	20
Chlorobenzene	0.0250	U	0.0192	0.0261	76.6	105	1	70.1-130		<u>J3</u>	30.8	20
Chlorodibromomethane	0.0250	U	0.0197	0.0266	78.8	107	1	71.6-132		<u>J3</u>	29.9	20
Chloroethane	0.0250	U	0.0204	0.0281	81.4	112	1	33.3-155		<u>J3</u>	31.9	20
Chloroform	0.0250	0.000943	0.0198	0.0280	75.5	108	1	66.1-133		<u>J3</u>	34.2	20
Chloromethane	0.0250	U	0.0174	0.0244	69.4	97.5	1	40.7-139		<u>J3</u>	33.7	20
,2-Dibromoethane	0.0250	U	0.0194	0.0263	77.5	105	1	73.8-131		<u>J3</u>	30.5	20
,1-Dichloroethane	0.0250	U	0.0189	0.0268	75.4	107	1	64.0-134		<u>J3</u>	34.8	20
,2-Dichloroethane	0.0250	U	0.0198	0.0276	79.1	111	1	60.7-132		<u>J3</u>	33.1	20
,1-Dichloroethene	0.0250	U	0.0169	0.0239	67.4	95.4	1	48.8-144		<u>J3</u>	34.4	20
cis-1,2-Dichloroethene	0.0250	U	0.0194	0.0270	77.6	108	1	60.6-136		<u>J3</u>	32.8	20
rans-1,2-Dichloroethene	0.0250	U	0.0189	0.0266	75.5	106	1	61.0-132		<u>J3</u>	33.8	20
l,2-Dichloropropane	0.0250	U	0.0192	0.0261	76.8	104	1	69.7-130		<u>J3</u>	30.3	20
cis-1,3-Dichloropropene	0.0250	U	0.0196	0.0265	78.5	106	1	71.1-129		<u>J3</u>	29.6	20
rans-1,3-Dichloropropene	0.0250	U	0.0203	0.0274	81.2	110	1	66.3-136		<u>J3</u>	29.9	20
Ethylbenzene	0.0250	U	0.0181	0.0252	72.5	101	1	62.7-136		<u>J3</u>	32.6	20
2-Hexanone	0.125	U	0.0817	0.114	65.4	91.3	1	59.4-154		<u>J3</u>	33.2	20.1
sopropylbenzene	0.0250	U	0.0183	0.0257	73.2	103	1	67.4-136		<u>J3</u>	33.8	20
o-Isopropyltoluene	0.0250	U	0.0187	0.0262	74.9	105	1	62.8-143		<u>J3</u>	33.3	20
2-Butanone (MEK)	0.125	U	0.0709	0.100	56.7	80.2	1	45.0-156		<u>J3</u>	34.3	20.8
Methylene Chloride	0.0250	U	0.0190	0.0264	76.1	106	1	61.5-125		<u>J3</u>	32.7	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.0976	0.135	78.1	108	1	60.7-150		<u>J3</u>	32.5	20
Methyl tert-butyl ether	0.0250	U	0.0194	0.0274	77.4	110	1	61.4-136		<u>J3</u>	34.4	20
Naphthalene	0.0250	U	0.0175	0.0248	70.1	99.2	1	61.8-143		<u>J3</u>	34.4	20
n-Propylbenzene	0.0250	U	0.0189	0.0262	75.7	105	1	63.2-139		<u>J3</u>	32.3	20
Styrene	0.0250	U	0.0202	0.0274	80.7	110	1	68.2-133		<u>J3</u>	30.4	20
,1,1,2-Tetrachloroethane	0.0250	U	0.0185	0.0252	74.0	101	1	70.5-132		<u>J3</u>	30.9	20

0.0250

U

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

77.7

0.0269

SDG: L832468

64.9-145

DATE/TIME: 05/12/16 19:04

20

PAGE: 35 of 45

$\begin{array}{c} {\sf QUALITY} \underset{\underline{\tt L832468-01,02,03,04,05}}{{\sf CONTROL}} {\sf SUMMARY} \end{array}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832460-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832460-02 05/04/1	16 08:03 • (MS)	R3134190-4 05	5/04/16 06:18 •	(MSD) R313419	0-5 05/04/16	06:39						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0178	0.0248	71.3	99.2	1	57.4-141		J3	32.7	20
Toluene	0.0250	U	0.0181	0.0250	72.4	100	1	67.8-124		<u>J3</u>	32.1	20
1,1,1-Trichloroethane	0.0250	U	0.0187	0.0272	74.7	109	1	58.7-134		<u>J3</u>	37.2	20
1,1,2-Trichloroethane	0.0250	U	0.0195	0.0267	78.2	107	1	74.1-130		<u>J3</u>	31.1	20
Trichloroethene	0.0250	U	0.0181	0.0252	72.3	101	1	48.9-148		<u>J3</u>	33.0	20
1,2,4-Trimethylbenzene	0.0250	U	0.0184	0.0256	73.7	102	1	60.5-137		<u>J3</u>	32.5	20
1,3,5-Trimethylbenzene	0.0250	U	0.0185	0.0257	73.9	103	1	67.9-134		<u>J3</u>	32.6	20
Vinyl chloride	0.0250	U	0.0179	0.0255	71.6	102	1	44.3-143		<u>J3</u>	35.0	20
Xylenes, Total	0.0750	U	0.0555	0.0760	74.0	101	1	65.6-133		<u>J3</u>	31.2	20
o-Xylene	0.0250	U	0.0185	0.0255	73.9	102	1	67.1-133		<u>J3</u>	31.8	20
m&p-Xylenes	0.0500	U	0.0370	0.0505	74.0	101	1	64.1-133		<u>J3</u>	30.8	20
(S) Toluene-d8					105	105		90.0-115				
(S) Dibromofluoromethane					103	106		79.0-121				
(S) 4-Bromofluorobenzene					101	102		80.1-120				

QUALITY CONTROL SUMMARY L832468-06

ONE LAB. NATIONWIDE.

²Tc

GI

ΔI

Method Blank (MB) (MB) R3134400-3 05/05/16 18:29

Volatile Organic Compounds (GC/MS) by Method 8260B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100
, , ,				

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832468

DATE/TIME: 05/12/16 19:04

PAGE: 37 of 45

QUALITY CONTROL SUMMARY L832468-06

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134400-3 05/05/1	6 18:29				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	102			90.0-115	
(S) Dibromofluoromethane	104			79.0-121	
(S) 4-Bromofluorobenzene	98.8			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134400-1 05/0:	5/16 17:12 • (LCSD) R3134400-2	05/05/16 17:32	<u> </u>							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.0942	0.0987	75.4	79.0	28.7-175			4.68	20.9	
Benzene	0.0250	0.0213	0.0220	85.0	87.9	73.0-122			3.29	20	
Bromodichloromethane	0.0250	0.0221	0.0217	88.3	86.9	75.5-121			1.56	20	
Bromoform	0.0250	0.0208	0.0210	83.2	84.2	71.5-131			1.13	20	
Bromomethane	0.0250	0.0294	0.0292	117	117	22.4-187			0.410	20	
n-Butylbenzene	0.0250	0.0232	0.0243	92.9	97.3	75.9-134			4.72	20	
sec-Butylbenzene	0.0250	0.0213	0.0221	85.1	88.4	80.6-126			3.78	20	
Carbon disulfide	0.0250	0.0213	0.0218	85.2	87.2	53.0-134			2.30	20	
Carbon tetrachloride	0.0250	0.0216	0.0212	86.2	85.0	70.9-129			1.49	20	
Chlorobenzene	0.0250	0.0229	0.0231	91.6	92.3	79.7-122			0.690	20	
Chlorodibromomethane	0.0250	0.0217	0.0218	86.6	87.2	78.2-124			0.620	20	
Chloroethane	0.0250	0.0232	0.0233	92.8	93.2	41.2-153			0.420	20	
Chloroform	0.0250	0.0224	0.0231	89.7	92.6	73.2-125			3.17	20	
Chloromethane	0.0250	0.0203	0.0209	81.1	83.7	55.8-134			3.07	20	
1,2-Dibromoethane	0.0250	0.0225	0.0228	90.0	91.2	79.8-122			1.33	20	
1,1-Dichloroethane	0.0250	0.0227	0.0232	90.6	92.7	71.7-127			2.30	20	

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
TRC Solutions - Austin, TX	249545.0000.0000 000	L832468	05/12/16 19:04	38 of 45

QUALITY CONTROL SUMMARY L832468-06

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

			1 000 D					1000 0 110		DDD II II
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
1,2-Dichloroethane	0.0250	0.0240	0.0251	95.9	100	65.3-126			4.54	20
1,1-Dichloroethene	0.0250	0.0237	0.0238	94.6	95.3	59.9-137			0.680	20
cis-1,2-Dichloroethene	0.0250	0.0224	0.0227	89.5	90.9	77.3-122			1.57	20
trans-1,2-Dichloroethene	0.0250	0.0214	0.0222	85.5	88.9	72.6-125			3.90	20
1,2-Dichloropropane	0.0250	0.0209	0.0219	83.8	87.5	77.4-125			4.31	20
cis-1,3-Dichloropropene	0.0250	0.0221	0.0219	88.3	87.8	77.7-124			0.630	20
trans-1,3-Dichloropropene	0.0250	0.0217	0.0223	86.7	89.2	73.5-127			2.81	20
Ethylbenzene	0.0250	0.0223	0.0229	89.3	91.6	80.9-121			2.61	20
2-Hexanone	0.125	0.101	0.105	81.0	84.1	59.4-151			3.81	20
Isopropylbenzene	0.0250	0.0217	0.0224	86.8	89.7	81.6-124			3.21	20
p-Isopropyltoluene	0.0250	0.0218	0.0228	87.2	91.2	77.6-129			4.43	20
2-Butanone (MEK)	0.125	0.0926	0.0956	74.1	76.5	46.4-155			3.16	20
Methylene Chloride	0.0250	0.0208	0.0212	83.3	85.0	69.5-120			1.95	20
4-Methyl-2-pentanone (MIBK)	0.125	0.0977	0.101	78.1	81.0	63.3-138			3.60	20
Methyl tert-butyl ether	0.0250	0.0218	0.0222	87.3	88.7	70.1-125			1.67	20
Naphthalene	0.0250	0.0194	0.0212	77.6	84.7	69.7-134			8.83	20
n-Propylbenzene	0.0250	0.0230	0.0235	92.2	93.8	81.9-122			1.79	20
Styrene	0.0250	0.0227	0.0228	91.0	91.4	79.9-124			0.430	20
1,1,1,2-Tetrachloroethane	0.0250	0.0215	0.0217	85.8	86.8	78.5-125			1.09	20
1,1,2,2-Tetrachloroethane	0.0250	0.0192	0.0200	76.8	80.2	79.3-123	<u>J4</u>		4.22	20
Tetrachloroethene	0.0250	0.0230	0.0230	91.9	91.9	73.5-130	_		0.0300	20
Toluene	0.0250	0.0214	0.0216	85.5	86.3	77.9-116			0.930	20
1,1,1-Trichloroethane	0.0250	0.0214	0.0225	85.5	90.0	71.1-129			5.06	20
1,1,2-Trichloroethane	0.0250	0.0222	0.0220	88.6	87.9	81.6-120			0.770	20
Trichloroethene	0.0250	0.0224	0.0218	89.7	87.3	79.5-121			2.62	20
1,2,4-Trimethylbenzene	0.0250	0.0220	0.0223	87.8	89.2	79.0-122			1.59	20
1,3,5-Trimethylbenzene	0.0250	0.0215	0.0220	85.8	87.9	81.0-123			2.42	20
Vinyl chloride	0.0250	0.0227	0.0231	90.7	92.4	61.5-134			1.91	20
Xylenes, Total	0.0750	0.0666	0.0681	88.8	90.8	79.2-122			2.18	20
o-Xylene	0.0250	0.0224	0.0230	89.7	91.9	79.1-123			2.38	20
m&p-Xylenes	0.0500	0.0442	0.0451	88.4	90.3	78.5-122			2.08	20
(S) Toluene-d8				105	104	90.0-115				
(S) Dibromofluoromethane				105	105	79.0-121				
(S) 4-Bromofluorobenzene				101	101	80.1-120				

249545.0000.0000 000

L832468

DATE/TIME:

PAGE: 39 of 45

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832468-06

L832468-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832468-06 05/05/	16 20:56 • (MS)	R3134400-4 C	05/05/16 19:01	 (MSD) R31344 	00-5 05/05/1	6 19:20						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0511	0.0488	40.9	39.1	1	25.0-156			4.49	21.5
Benzene	0.0250	U	0.0194	0.0188	77.6	75.4	1	58.6-133			2.85	20
Bromodichloromethane	0.0250	U	0.0218	0.0211	87.1	84.3	1	69.2-127			3.27	20
Bromoform	0.0250	U	0.0202	0.0191	80.9	76.5	1	66.3-140			5.57	20
Bromomethane	0.0250	U	0.0229	0.0203	91.7	81.2	1	16.6-183			12.2	20.5
n-Butylbenzene	0.0250	U	0.0228	0.0223	91.3	89.0	1	64.8-145			2.53	20
sec-Butylbenzene	0.0250	U	0.0209	0.0199	83.6	79.5	1	66.8-139			4.96	20
Carbon disulfide	0.0250	U	0.0141	0.0133	56.4	53.1	1	34.9-138			5.96	20
Carbon tetrachloride	0.0250	U	0.0189	0.0186	75.8	74.4	1	60.6-139			1.89	20
Chlorobenzene	0.0250	U	0.0210	0.0203	84.0	81.3	1	70.1-130			3.30	20
Chlorodibromomethane	0.0250	U	0.0205	0.0196	81.9	78.5	1	71.6-132			4.31	20
Chloroethane	0.0250	U	0.0197	0.0188	78.7	75.0	1	33.3-155			4.81	20
Chloroform	0.0250	U	0.0305	0.0296	122	119	1	66.1-133			2.99	20
Chloromethane	0.0250	U	0.0167	0.0156	66.8	62.6	1	40.7-139			6.50	20
1,2-Dibromoethane	0.0250	U	0.0209	0.0198	83.8	79.2	1	73.8-131			5.59	20
1,1-Dichloroethane	0.0250	U	0.0210	0.0202	83.9	80.7	1	64.0-134			3.90	20
1,2-Dichloroethane	0.0250	U	0.0221	0.0210	88.3	84.2	1	60.7-132			4.83	20
1,1-Dichloroethene	0.0250	U	0.0202	0.0190	80.9	76.0	1	48.8-144			6.34	20
cis-1,2-Dichloroethene	0.0250	U	0.0201	0.0200	80.3	80.2	1	60.6-136			0.150	20
trans-1,2-Dichloroethene	0.0250	U	0.0187	0.0180	74.8	72.2	1	61.0-132			3.53	20
1,2-Dichloropropane	0.0250	U	0.0195	0.0193	77.9	77.2	1	69.7-130			0.950	20
cis-1,3-Dichloropropene	0.0250	U	0.0197	0.0191	78.9	76.3	1	71.1-129			3.32	20
trans-1,3-Dichloropropene	0.0250	U	0.0199	0.0191	79.8	76.3	1	66.3-136			4.43	20
Ethylbenzene	0.0250	U	0.0225	0.0212	90.1	84.8	1	62.7-136			6.04	20
2-Hexanone	0.125	U	0.0862	0.0843	68.9	67.5	1	59.4-154			2.14	20.1
Isopropylbenzene	0.0250	U	0.0210	0.0202	84.1	80.9	1	67.4-136			3.87	20
p-Isopropyltoluene	0.0250	U	0.0217	0.0210	86.8	83.8	1	62.8-143			3.51	20
2-Butanone (MEK)	0.125	U	0.0680	0.0683	54.4	54.6	1	45.0-156			0.390	20.8
Methylene Chloride	0.0250	U	0.0180	0.0175	72.0	69.9	1	61.5-125			2.96	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.0972	0.0980	77.7	78.4	1	60.7-150			0.810	20
Methyl tert-butyl ether	0.0250	U	0.0202	0.0196	80.7	78.3	1	61.4-136			3.02	20
Naphthalene	0.0250	U	0.0214	0.0220	85.7	88.1	1	61.8-143			2.76	20
n-Propylbenzene	0.0250	U	0.0223	0.0218	89.2	87.0	1	63.2-139			2.43	20
Styrene	0.0250	U	0.0212	0.0202	84.7	81.0	1	68.2-133			4.46	20

0.0250

0.0250

U

0.0206

0.0190

0.0195

0.0185

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

82.3

75.9

77.9

74.2

70.5-132

64.9-145

5.58

2.27

20

20

(S) 4-Bromofluorobenzene

QUALITY CONTROL SUMMARY L832468-06

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832468-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0202	0.0193	80.9	77.2	1	57.4-141			4.62	20
Toluene	0.0250	U	0.0223	0.0214	89.2	85.7	1	67.8-124			4.02	20
1,1,1-Trichloroethane	0.0250	U	0.0202	0.0199	80.8	79.6	1	58.7-134			1.44	20
1,1,2-Trichloroethane	0.0250	U	0.0206	0.0200	82.5	79.8	1	74.1-130			3.29	20
Trichloroethene	0.0250	U	0.0196	0.0188	78.3	75.3	1	48.9-148			3.91	20
1,2,4-Trimethylbenzene	0.0250	U	0.0246	0.0236	98.3	94.4	1	60.5-137			4.06	20
1,3,5-Trimethylbenzene	0.0250	U	0.0218	0.0209	87.3	83.7	1	67.9-134			4.25	20
Vinyl chloride	0.0250	U	0.0177	0.0169	70.9	67.5	1	44.3-143			4.96	20
Xylenes, Total	0.0750	U	0.0691	0.0661	92.1	88.2	1	65.6-133			4.33	20
o-Xylene	0.0250	U	0.0239	0.0229	95.6	91.5	1	67.1-133			4.40	20
m&p-Xylenes	0.0500	U	0.0452	0.0433	90.3	86.5	1	64.1-133			4.30	20
(S) Toluene-d8					103	103		90.0-115				
(S) Dibromofluoromethane					104	102		79.0-121				

100

Тс

80.1-120

$\begin{array}{c} \text{QUALITY} \underset{\underline{\text{L332468-01,03,04,05,06}}}{\text{CONTROL SUMMARY}} \end{array}$

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Method Blank (MB)

(MB) R3133569-1 05/03/1	5 13:27			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
TPH (GC/FID) High Fraction	U		0.0247	0.100
(S) o-Terphenyl	116			50.0-150

²Tc

GLOSSARY OF TERMS

RMS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
J4	The associated batch QC was outside the established quality control range for accuracy.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crvpto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:	The fire	11.	Billing Info	rmatio	n: 35	77				A	malysis,	Contai	ner / Pre	eservati	ve	- 4		Chain of Custody	Page
TRC Solutions - Austin, TX 505 E. Huntland Dr, Ste 250 Austin, TX 78752 Report to:		21 Griff	Accounts Payable 1 Griffin Road North //indsor, CT 06095						- 500mIHDPE-HNO3	212	NO3 \$	Sulfate-125mlHDPE-NoPres	م 2804		Se,U,V	LIA-B SIC	S		
		Email To: speer@)trcso	lutions.c	om					- 500m	NaOH	Cations-Total Ca, K, Na - 500mIHDPE-HNO3	125mlHI	- 250mIHDPE-H2SO4		n,Ni,Pb	12065 Lebanon Rd Mount Juliet, TN 3712 Phone: 615-758-5858 Phone: 800-767-5859	2 8	
		1.76	City/ Colle	State cted: Ar	tesla, Ni	N				n,Se	Amb-		0mlH	Hate-	50mll		M,BH,	L# L 83	746
Phone: 512-684-3170 Client Project #		3		Project # CATX-NO	CL SPRING		BT			As,Ba,Cr,Fe,Pb,Mn,Se	IHDPE,	Na - 50	ride, Su	03) - 2	oPres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	G068	-	
Collected by (print): Scott Ude + Hm 1 Team	Site/Facility ID NCL - Na			P.O.				P-HCI-	P-HCI	nb-HC	a,Cr,F	a,Cr,F	Ca, K, I	le, Fluo	NOZN	DPE-No	3a,Cd,C	Acctnum: TRC Template: T11	
Collected by (signature): Stati Udd Immediately Packed on Ice N Y	Rush? (U Same D Next D Two Da	ay	Notified) 200% 100% 50% 25%	-	Email?	_NoYes	No.	- 40mlAmb-HCI-BT	- 40mIAmb-HC	V8260 - 40mIAmb-HCI	Tot./Diss. As,B	Cyanide (CN) - 250mlHDPEAmb-NaOH	ions-Total	Anions- Chloride, Fluoride,	Nitrate/Nitrite (NO2NO3)	TDS - 250mlHDPE-NoPres	Tot/Diss. As,B,R	Prelogin: P549 TSR: Chris Cooler:	
Sample ID	Comp Grab	Matrix *	Depth		Date	Time	Cntrs	DRO	GRO	V826	Tot.	Cya	Cati	Anic	Nitr	TDS	Tot	Shipped Via: Rem./Contaminant	Sample
MW-45		GW		4	126/16	1745	11	/		/		/	/	/	/	/	V		
Trip Blank - NCL-0	1	1	1 - 1	4	26/16	-	1			V	1		-		E.		S. S. S.		
NCL-49		4		4	120/16	1630	10	1		V	1		~	/	V	/		MILE N	
DUP-NCL-01				4	126/16	1500	10	/		V	V		V	V	V	V	1_		
MW-54A	- 1			4/	26/16	1720	10	/		/	1	THE REAL PROPERTY.	V	V	V	V	1	A 1100	
MW-53	1	1	30 1	4	26/16	1540	10	/	1	V	V		V	V	V	V		201	
4		25				L K												91	
A Despert of the State			17 to	+	-								# 1					1 1	
* Matrix: SS - Soil GW - Groundwater Remarks: Log all metals by 6			A STATE OF S		200	_ <	The) -			pH .		Ten		246	L Ac	044	313703	83
Relinquished by : (Signature)	110	Date:	17/16	Time:	100 R	eceived by: (Signa eceived by: (Signa	鹽	ů.			pd s	edEx	ned via:	ier C		- 1	ondition	(lab u	ise only
Relinquished by : (Signature)		Date:		Time:	R	eceived by: (Sign	ture)	5		TH	Temp:		CB	52	eceived	565	OC Seal	Intact: _/v_	N

ANALYTICAL REPORT May 17, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832472

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: EP Spring 2016

EP NAVAJO-ARTESIA Site:

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth men

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
³ Ss: Sample Summary	4
¹ Cn: Case Narrative	14
Sr: Sample Results	15
MW-83 L832472-01	15
TRIP BLANK-EP-02 L832472-02	17
MW-4A L832472-03	18
MW-123 L832472-04	20
MW-10 L832472-05	22
MW-22A L832472-06	24
DUP-EP-02 L832472-07	26
MW-88 L832472-08	28
MW-5A L832472-09	30
EB-EP-03 L832472-10	32
MW-7A L832472-11	34
DUP-EP-01 L832472-12	36
OCD-8A L832472-13	38
MW-73 L832472-14	41
TRIP BLANK-EP-01 L832472-15	43
MW-74 L832472-16	44
EB-EP-01 L832472-17	46
MW-79 L832472-18	48
EB-EP-04 L832472-19	50
MW-6A L832472-20	52
OCD-7AR L832472-21	54
OCD-6 L832472-22	56
MW-72 L832472-23	58
MW-2A L832472-24	60
MW-122 L832472-25	62
MW-121 L832472-26	64
MW-124 L832472-27	66
EB-EP-02 L832472-28	68
MW-18A L832472-29	70
MW-70 L832472-30	73
OCD-1R L832472-31	75
OCD-2A L832472-32	77
OCD-3 L832472-33	79
OCD-4 1832472-34	81

OCD-5 L832472-35	83
MW-11A L832472-36	85
MW-15 L832472-37	87
⁶ Qc: Quality Control Summary	89
Gravimetric Analysis by Method 2540 C-2011	89
Wet Chemistry by Method 353.2	94
Wet Chemistry by Method 9012B	100
Wet Chemistry by Method 9056A	101
Mercury by Method 7470A	109
Metals (ICPMS) by Method 6020	111
Volatile Organic Compounds (GC) by Method 8015D/GRO	121
Volatile Organic Compounds (GC/MS) by Method 8260B	126
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	141
⁷ GI: Glossary of Terms	143
⁸ Al: Accreditations & Locations	144
⁹ Sc: Chain of Custody	145

ONE LAB. NATIONWIDE.

MW-83 L832472-01 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 13:10	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:29	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:29	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	5	05/02/16 16:48	05/04/16 08:55	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 07:21	05/05/16 07:21	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 01:05	05/04/16 01:05	DAH
Wet Chemistry by Method 353.2					ASK
, ,	WG870056	10	05/06/16 06:59	05/06/16 06:59	
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 04:05	05/09/16 04:05	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 03:19	05/09/16 03:19	CM
TRIP BLANK-EP-02 L832472-02 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 00:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 00:25	05/04/16 00:25	DAH
MW-4A L832472-03 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 12:15	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:31	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:31	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	5	05/02/16 16:48	05/04/16 08:36	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 07:43	05/05/16 07:43	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 01:25	05/04/16 01:25	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:00	05/06/16 07:00	ASK
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 14:48	05/09/16 14:48	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 15:03	05/09/16 15:03	CM
MW-123 L832472-04 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 11:15	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:34	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:34	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 15:35	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 08:04	05/05/16 08:04	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 01:46	05/04/16 01:46	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:01	05/06/16 07:01	ASK
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 15:19	05/09/16 15:19	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 15:34	05/09/16 15:34	CM
MW-10 L832472-05 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 10:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Motals (ICDMS) by Mathad 6030	WCGCGGG	_	05/02/10 10:25	05/05/10 10:41	IDC

SAMPLE SUMMARY

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020

WG869307

WG870076

05/03/16 19:35

05/05/16 13:23

5

5

05/05/16 13:41

05/05/16 16:41

JDG

JDG

SAMPLE SUMMARY

ONE	LAB.	NATIONWIDE

MW-10 L832472-05 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 10:20	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 19:47	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 15:53	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 08:26	05/05/16 08:26	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 02:06	05/04/16 02:06	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:02	05/06/16 07:02	ASK
Wet Chemistry by Method 9056A	WG869680	10	05/09/16 15:50	05/09/16 15:50	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 16:05	05/09/16 16:05	CM
MW-22A L832472-06 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 09:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:43	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:43	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 16:11	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 03:35	05/06/16 03:35	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 02:26	05/04/16 02:26	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:07	05/06/16 07:07	ASK
Wet Chemistry by Method 9056A	WG869680	1	05/09/16 14:17	05/09/16 14:17	CM
Wet Chemistry by Method 9056A	WG869680	100	05/09/16 16:51	05/09/16 16:51	CM
DUP-EP-02 L832472-07 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 10:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:46	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:45	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 16:29	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/06/16 03:58	05/06/16 03:58	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 02:46	05/04/16 02:46	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:08	05/06/16 07:08	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 02:06	05/07/16 02:06	CSU
Wet Chemistry by Method 9056A	WG869689	50	05/07/16 02:21	05/07/16 02:21	CSU
MW-88 L832472-08 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 08:10	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:48	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:48	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 06:47	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 09:30	05/05/16 09:30	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 03:06	05/04/16 03:06	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:09	05/06/16 07:09	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 02:36	05/07/16 02:36	CSU
Wat Chamistry, by Mathad OOFCA	MCCCCCCO	Ε0	05/07/10 02:51	05/07/40 02:51	CCII

05/07/16 02:51

05/07/16 02:51

CSU

Wet Chemistry by Method 9056A

WG869689

50

SAMPLE SUMMARY

ONE	LAB.	NATIONWIDE

			Collected by	Collected date/time	Received date/time
MW-5A L832472-09 GW			SU / HM1 Team	04/26/16 17:50	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	10	05/03/16 19:35	05/05/16 14:30	JDG
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:50	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:50	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 16:47	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870384	1	05/05/16 23:22	05/05/16 23:22	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 03:27	05/04/16 03:27	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:11	05/06/16 07:11	ASK
Wet Chemistry by Method 9056A	WG868881	1	05/02/16 15:15	05/02/16 15:15	CM
Wet Chemistry by Method 9056A	WG868881	100	05/02/16 15:30	05/02/16 15:30	CM
			Collected by	Collected date/time	Received date/time
EB-EP-03 L832472-10 GW			SU / HM1 Team	04/26/16 18:10	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	1	05/03/16 19:35	05/07/16 11:15	JDG
Metals (ICPMS) by Method 6020	WG870076	1	05/05/16 13:23	05/07/16 11:29	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 17:05	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 10:13	05/05/16 10:13	LRL

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Volatile Organic Compounds (GC/MS) by Method 8260B

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:55	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:55	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 17:24	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 10:35	05/05/16 10:35	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 04:06	05/04/16 04:06	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:13	05/06/16 07:13	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 03:06	05/07/16 03:06	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 03:50	05/07/16 03:50	CSU

WG868984

WG870056

WG868881

DUP-EP-01 L832472-12 GW

Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 13:58	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:57	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 17:42	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 10:56	05/05/16 10:56	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 04:27	05/04/16 04:27	DAH
Wet Chemistry by Method 353.2	WG870056	10	05/06/16 07:14	05/06/16 07:14	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 04:05	05/07/16 04:05	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 04:20	05/07/16 04:20	CSU

05/04/16 03:46

05/06/16 07:12

05/02/16 12:31

Collected by

Collected by

SU / HM1 Team

SU / HM1 Team

1

10

1

05/04/16 03:46

05/06/16 07:12

05/02/16 12:31

04/26/16 16:35

Collected date/time

Collected date/time

04/26/16 12:00

DAH

ASK

 CM

Received date/time

Received date/time

04/29/16 09:00

04/29/16 09:00

SAM

ONE	IAD	NIAT	IONW	///
OINE	LAD.	INAI	IOIV	1100

IPLE SUMMARY	ONE LAB. NATIO

OCD-8A L832472-13 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 15:35	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	•
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Mercury by Method 7470A	WG869159	1	05/02/16 11:44	05/03/16 11:07	NJB
Mercury by Method 7470A	WG869579	1	05/03/16 18:43	05/04/16 09:32	NJB
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:00	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 17:00	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 09:47	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 11:43	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 18:00	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 11:18	05/05/16 11:18	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 04:47	05/04/16 04:47	DAH
Net Chemistry by Method 353.2	WG870056	10	05/06/16 07:22	05/06/16 07:22	ASK
Net Chemistry by Method 9012B	WG870326	1	05/06/16 12:26	05/12/16 15:30	DR
Net Chemistry by Method 9056A	WG869689	1	05/07/16 04:35	05/07/16 04:35	SAM
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 05:50	05/07/16 05:50	SAM
MW-73 L832472-14 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 14:50	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:02	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 17:02	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 18:18	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869044	1	05/05/16 11:39	05/05/16 11:39	LRL
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 05:07	05/04/16 05:07	DAH
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:14	05/06/16 08:14	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 06:34	05/07/16 06:34	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 06:49	05/07/16 06:49	CSU

Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 00:45	05/04/16 00:45	DAH
			date/time	date/time	
Method	Batch	Dilution	Preparation	Analysis	Analyst
TRIP BLANK-EP-01 L832472-15 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 00:00	Received date/time 04/29/16 09:00
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 06:49	05/07/16 06:49	CSU
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 06:34	05/07/16 06:34	CSU
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:14	05/06/16 08:14	ASK
Volatile Organic compounds (Ge/MS) by Method 0200b	W000030 1		03/04/10 03.07	03/04/10 03.07	DAIT

	Collected by	Collected date/time	Received date/time
MW-74 L832472-16 GW	SU / HM1 Team	04/26/16 15:45	04/29/16 09:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:10	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 17:09	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	20	05/02/16 16:48	05/05/16 04:46	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 18:47	05/03/16 18:47	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 05:27	05/04/16 05:27	DAH
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:16	05/06/16 08:16	ASK
Wet Chemistry by Method 9056A	WG869276	1	05/03/16 14:00	05/03/16 14:00	SAM
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 18:29	05/10/16 18:29	CM

³Ss

ONE	LAB.	NATIONWIDE

EB-EP-01 L832472-17 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 16:05	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869073	1	05/02/16 14:23	05/02/16 14:55	
Metals (ICPMS) by Method 6020	WG869307	1	05/03/16 19:35	05/07/16 11:17	JDG
Metals (ICPMS) by Method 6020	WG870076	1	05/05/16 13:23	05/07/16 11:32	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 18:55	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 19:08	05/03/16 19:08	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 05:46	05/04/16 05:46	DAH
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:19	05/06/16 08:19	ASK
Wet Chemistry by Method 9056A	WG868881	1	05/02/16 13:31	05/02/16 13:31	СМ
MW-79 L832472-18 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 16:45	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869074	1	05/02/16 15:20	05/02/16 15:59	
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:12	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 17:14	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 20:26	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 19:30	05/03/16 19:30	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 06:06	05/04/16 06:06	DAH
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:20	05/06/16 08:20	ASK
Wet Chemistry by Method 9056A	WG869276	1	05/03/16 14:15	05/03/16 14:15	SAM
Wet Chemistry by Method 9056A	WG869276	50	05/03/16 14:59	05/03/16 14:59	SAM
EB-EP-04 L832472-19 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 17:10	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869074	1	05/02/16 15:20	05/02/16 15:59	
Metals (ICPMS) by Method 6020	WG869307	1	05/03/16 19:35	05/07/16 11:27	JDG
Metals (ICPMS) by Method 6020	WG870076	1	05/05/16 13:23	05/07/16 11:34	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 20:44	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 19:51	05/03/16 19:51	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 06:26	05/04/16 06:26	DAH
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:25	05/06/16 08:25	ASK
Wet Chemistry by Method 9056A	WG869276	1	05/03/16 18:28	05/03/16 18:28	SAM
MW-6A L832472-20 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 08:10	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869534	1	05/03/16 18:05	05/03/16 18:57	MMF
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:16	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 17:18	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 07:05	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 20:13	05/03/16 20:13	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868984	1	05/04/16 06:46	05/04/16 06:46	DAH

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

05/06/16 08:26

05/07/16 07:04

05/07/16 07:19

05/06/16 08:26

05/07/16 07:04

05/07/16 07:19

ASK

SAM

SAM

WG870057

WG869689

WG869689

10

1

100

ONE LAB. NATIONWIDE.

- 100	M.
- 31	
9	

OCD-7AR L832472-21 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 09:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869541	1	05/04/16 03:25	05/04/16 03:49	JM
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:19	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 17:21	JDG
iemi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 07:23	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 20:34	05/03/16 20:34	JAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 13:12	05/04/16 13:12	BMB
Vet Chemistry by Method 353.2	WG870057	10	05/06/16 08:27	05/06/16 08:27	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 07:34	05/07/16 07:34	CSU
Vet Chemistry by Method 9056A	WG869689	100	05/07/16 07:49	05/07/16 07:49	CSU
OCD-6 L832472-22 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 09:55	Received date/tim 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	•
Gravimetric Analysis by Method 2540 C-2011	WG869541	1	05/04/16 03:25	05/04/16 03:49	JM
Metals (ICPMS) by Method 6020	WG869307	5	05/03/16 19:35	05/05/16 14:21	JDG
Metals (ICPMS) by Method 6020	WG870076	5	05/05/16 13:23	05/05/16 16:20	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 07:42	JNS
olatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 20:56	05/03/16 20:56	JAH
olatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 13:31	05/04/16 13:31	BMB
Vet Chemistry by Method 353.2	WG870057	10	05/06/16 08:28	05/06/16 08:28	ASK
Vet Chemistry by Method 9056A	WG869689	10	05/07/16 09:41	05/07/16 09:41	SAM
Vet Chemistry by Method 9056A	WG869689	100	05/07/16 09:59	05/07/16 09:59	SAM
ver chemistry by Method 9030A	WG009009	100	03/07/10 09.59	03/07/10 09.59	SAIVI
MW-72 L832472-23 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 10:45	Received date/tim 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
2	W0000E44				15.4
Gravimetric Analysis by Method 2540 C-2011	WG869541	1	05/04/16 03:25	05/04/16 03:49	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:32	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:15	JDG
semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 08:00	JNS
olatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/03/16 21:17	05/03/16 21:17	JAH
olatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 13:50	05/04/16 13:50	BMB
Vet Chemistry by Method 353.2	WG870057	10	05/06/16 08:29	05/06/16 08:29	ASK
Vet Chemistry by Method 9056A	WG869689	1	05/07/16 10:14	05/07/16 10:14	SAM
Vet Chemistry by Method 9056A	WG869689	100	05/07/16 10:29	05/07/16 10:29	SAM
MW-2A L832472-24 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 11:35	Received date/tim 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	20	05/03/16 19:00	05/07/16 11:43	JDG
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:34	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:17	JDG
iemi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/03/16 17:40	05/04/16 08:18	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 00:03	05/04/16 00:03	JAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 14:09	05/04/16 14:09	BMB
Not L nomictly by Mothod 353 7	WG870057	10	05/06/16 08:30	05/06/16 08:30	ASK
	11100000		05/07/40 :: ::	0 = 10 = 14 0	
Wet Chemistry by Method 353.2 Wet Chemistry by Method 9056A Wet Chemistry by Method 9056A	WG869689 WG869689	1 100	05/07/16 10:44 05/07/16 10:59	05/07/16 10:44 05/07/16 10:59	SAM SAM

ONE	ΙΛR	NIATI	ONWIE	٦F
OINE	LAD.	IVALI	OINVVIL	ノロ

MW-122 L832472-25 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 12:35	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:37	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:20	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 14:43	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 00:24	05/04/16 00:24	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 14:28	05/04/16 14:28	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:31	05/06/16 08:31	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 11:13	05/07/16 11:13	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 11:28	05/07/16 11:28	CSU
MW-121 L832472-26 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 13:25	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:44	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:27	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 15:01	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 00:46	05/04/16 00:46	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 14:48	05/04/16 14:48	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:32	05/06/16 08:32	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 04:50	05/07/16 04:50	SAM
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 05:05	05/07/16 05:05	SAM
MW-124 L832472-27 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 17:25	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869074	1	05/02/16 15:20	05/02/16 15:59	
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:47	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:29	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 21:03	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 01:07	05/04/16 01:07	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 15:07	05/04/16 15:07	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:38	05/06/16 08:38	ASK
Wet Chemistry by Method 9056A	WG869276	1	05/03/16 15:14	05/03/16 15:14	SAM
Wet Chemistry by Method 9056A	WG869276	50	05/03/16 15:29	05/03/16 15:29	SAM
EB-EP-02 L832472-28 GW			Collected by SU / HM1 Team	Collected date/time 04/26/16 17:40	Received date/time 04/29/16 09:00
	D : 1	D." .:			
Method	Batch	Dilution	Preparation	Analysis	Analyst

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Gravimetric Analysis by Method 2540 C-2011

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

WG869074

WG869316

WG870080

WG869252

WG869702

WG868985

WG870057

WG869276

date/time

05/02/16 15:20

05/03/16 19:00

05/05/16 17:40

05/02/16 16:48

05/04/16 13:55

05/04/16 15:25

05/06/16 08:39

05/03/16 15:44

1

1

1

1

1

1

10

date/time

05/02/16 15:59

05/07/16 11:41

05/09/16 12:06

05/03/16 21:21

05/04/16 13:55

05/04/16 15:25

05/06/16 08:39

05/03/16 15:44

JDG

JDG

JNS

BMB

 BMB

ASK

SAM

ONE	ΙΔΒ	NATIONWID
OINL	LAD.	MAHONVID


OINL	LAD.	INH	1101	A A A	DL

04/29/16 09:00

Received date/time

04/29/16 09:00

04/29/16 09:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869074	1	05/02/16 15:20	05/02/16 15:59	
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:54	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:33	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869252	1	05/02/16 16:48	05/03/16 21:57	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 01:29	05/04/16 01:29	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 16:03	05/04/16 16:03	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:41	05/06/16 08:41	ASK
Wet Chemistry by Method 9056A	WG869276	1	05/03/16 17:29	05/03/16 17:29	SAM
Wet Chemistry by Method 9056A	WG869276	50	05/03/16 17:44	05/03/16 17:44	SAM

OCD-1R L832472-31 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:57	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:37	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 15:19	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 01:50	05/04/16 01:50	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 16:22	05/04/16 16:22	BMB
Net Chemistry by Method 353.2	WG870057	10	05/06/16 08:42	05/06/16 08:42	ASK
Net Chemistry by Method 9056A	WG869689	1	05/07/16 15:19	05/07/16 15:19	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 15:34	05/07/16 15:34	CSU
			Collected by	Collected date/time	Received date/time

OCD-2A L832472-32 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:59	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 12:40	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 15:37	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869045	1	05/04/16 02:11	05/04/16 02:11	JAH

SU / HM1 Team

Collected by

SU / HM1 Team

SU / HM1 Team

04/26/16 16:40

Collected date/time

04/27/16 08:50

04/27/16 08:00

ONE	IΔR	NATIONWIDE

OCD-2A L832472-32 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 08:50	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Saton	Silation	date/time	date/time	, mary se
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 16:41	05/04/16 16:41	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:43	05/06/16 08:43	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 15:49	05/07/16 15:49	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 16:04	05/07/16 16:04	CSU
			Collected by	Collected date/time	Received date/time
OCD-3 L832472-33 GW			SU / HM1 Team	04/27/16 09:40	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 04:02	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 16:30	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 15:55	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869702	1	05/04/16 14:16	05/04/16 14:16	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 16:59	05/04/16 16:59	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:44	05/06/16 08:44	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 16:19	05/07/16 16:19	CSU
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 16:34	05/07/16 16:34	CSU
			Collected by	Collected date/time	Received date/time
OCD-4 L832472-34 GW			SU / HM1 Team	04/27/16 10:30	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	20	05/03/16 19:00	05/07/16 11:48	JDG
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 04:04	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 16:33	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 16:13	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869702	1	05/04/16 17:03	05/04/16 17:03	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868985	1	05/04/16 17:18	05/04/16 17:18	BMB
Wet Chemistry by Method 353.2	WG870057	10	05/06/16 08:50	05/06/16 08:50	ASK
Wet Chemistry by Method 9056A	WG869689	1	05/07/16 16:49	05/07/16 16:49	SAM
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 17:04	05/07/16 17:04	SAM
			Collected by	Collected date/time	Received date/time
OCD-5 L832472-35 GW			SU / HM1 Team	04/27/16 11:15	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			1 1 10	1 1 11:	

Gravimetric Analysis by Method 2540 C-2011

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

WG869542

WG869316

WG869316

WG870080

WG869254

WG869702

WG869976

WG870059

WG869689

WG869689

date/time

1

20

5

5

1

1

1

10

1

100

05/04/16 03:52

05/03/16 19:00

05/03/16 19:00

05/05/16 17:40

05/02/16 16:49

05/04/16 17:24

05/04/16 22:28

05/06/16 15:26

05/07/16 08:04

05/07/16 08:20

date/time

05/04/16 04:11

05/07/16 11:51

05/06/16 04:07

05/09/16 16:35

05/04/16 17:45

05/04/16 17:24

05/04/16 22:28

05/06/16 15:26

05/07/16 08:04

05/07/16 08:20

JM JDG

JDG

JDG

JNS

BMB

LRL

 ASK

SAM

SAM

ONE LAB. NATIONWIDE.

100	uf.
а	
-	-

MW-11A L832472-36 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 12:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 03:22	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 16:37	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 18:03	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869702	1	05/04/16 17:45	05/04/16 17:45	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG869976	1	05/04/16 22:45	05/04/16 22:45	LRL
Net Chemistry by Method 353.2	WG870059	10	05/06/16 15:28	05/06/16 15:28	ASK
Net Chemistry by Method 9056A	WG869689	1	05/07/16 17:19	05/07/16 17:19	SAM
Wet Chemistry by Method 9056A	WG869689	100	05/07/16 18:04	05/07/16 18:04	SAM
MW-15 L832472-37 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 13:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869542	1	05/04/16 03:52	05/04/16 04:11	JM
Metals (ICPMS) by Method 6020	WG869316	5	05/03/16 19:00	05/06/16 04:14	JDG
Metals (ICPMS) by Method 6020	WG870080	5	05/05/16 17:40	05/09/16 16:40	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869254	1	05/02/16 16:49	05/04/16 18:21	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/03/16 22:39	05/03/16 22:39	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG869976	1	05/04/16 23:02	05/04/16 23:02	LRL
volatile Organic compounds (OC/MS) by Method 6200b	W0003370		00/01/10 20.02	03/01/10 23.02	LIVE

WG869689

WG869689

1

50

05/07/16 18:33

05/07/16 18:48

SAMPLE SUMMARY

CSU

CSU

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

05/07/16 18:33

05/07/16 18:48

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²Tc

3 Ss

Chris McCord

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 13:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4980		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 06:59	WG870056

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	769		5.19	1.00	100	100	05/09/2016 03:19	WG869680
Fluoride	4.80		0.00990	0.100	0.100	1	05/09/2016 04:05	WG869680
Sulfate	3770		7.74	5.00	500	100	05/09/2016 03:19	WG869680

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0313		0.00125	0.00200	0.0100	5	05/05/2016 13:29	WG869307
Arsenic,Dissolved	0.0282		0.00125	0.00200	0.0100	5	05/05/2016 16:29	WG870076
Barium	0.0248	J	0.00180	0.00500	0.0250	5	05/05/2016 13:29	WG869307
Barium,Dissolved	0.0207	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:29	WG870076
Calcium	483		0.230	1.00	5.00	5	05/05/2016 13:29	WG869307
Chromium	0.0153		0.00270	0.00200	0.0100	5	05/05/2016 13:29	WG869307
Chromium, Dissolved	0.00814	<u>J</u>	0.00270	0.00200	0.0100	5	05/05/2016 16:29	WG870076
Iron	5.63		0.0750	0.100	0.500	5	05/05/2016 13:29	WG869307
Iron,Dissolved	3.77		0.0750	0.100	0.500	5	05/05/2016 16:29	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:29	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:29	WG870076
Manganese	0.573		0.00125	0.00500	0.0250	5	05/05/2016 13:29	WG869307
Manganese,Dissolved	0.532		0.00125	0.00500	0.0250	5	05/05/2016 16:29	WG870076
Potassium	36.7		0.185	1.00	5.00	5	05/05/2016 13:29	WG869307
Selenium	0.00364	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 13:29	WG869307
Selenium,Dissolved	0.00520	J	0.00190	0.00200	0.0100	5	05/05/2016 16:29	WG870076
Sodium	563		0.550	1.00	5.00	5	05/05/2016 13:29	WG869307

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.310		0.0314	0.100	0.100	1	05/05/2016 07:21	WG869044
(S) a,a,a-Trifluorotoluene(FID)	99.3				62.0-128		05/05/2016 07:21	WG869044

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	769		5.19	1.00	100	100	05/09/2016 03:19	WG869680
Fluoride	4.80		0.00990	0.100	0.100	1	05/09/2016 04:05	WG869680
Sulfate	3770		7.74	5.00	500	100	05/09/2016 03:19	WG869680

Metals (ICPMS) by Method 6020

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.310		0.0314	0.100	0.100	1	05/05/2016 07:21	WG869044
(S) a,a,a-Trifluorotoluene(FID)	99.3				62.0-128		05/05/2016 07:21	WG869044

7	Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte		Qualifier			mg/l	Dilution	date / time	Batch
Analyte	mg/l		mg/l	mg/l	IIIg/I		uate / time	
Acetone	0.0120	<u>J</u>	0.0100	0.0500	0.0500	1	05/04/2016 01:05	WG868984
Benzene	0.00114		0.000331	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 01:05	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 01:05	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 01:05	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 13:10

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 01:05	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 01:05	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 01:05	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 01:05	WG868984
I,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 01:05	WG868984
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 01:05	WG868984
I,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 01:05	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 01:05	WG868984
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 01:05	WG868984
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 01:05	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 01:05	WG868984
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 01:05	WG868984
sopropylbenzene	0.00143		0.000326	0.00100	0.00100	1	05/04/2016 01:05	WG868984
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 01:05	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 01:05	WG868984
?-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 01:05	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 01:05	WG868984
I-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 01:05	WG868984
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 01:05	WG868984
n-Propylbenzene	0.000365	<u>J</u>	0.000349	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 01:05	WG868984
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 01:05	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 01:05	WG868984
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 01:05	WG868984
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 01:05	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 01:05	WG868984
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 01:05	WG868984
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 01:05	WG868984
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 01:05	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 01:05	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 01:05	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 01:05	WG868984
(C) T / 10								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

103

102

97.3

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	26.0		0.124	0.100	0.500	5	05/04/2016 08:55	WG869252
(S) o-Terphenyl	122				50.0-150		05/04/2016 08:55	WG869252

90.0-115

79.0-121

80.1-120

05/04/2016 01:05

05/04/2016 01:05

05/04/2016 01:05

WG868984

WG868984

Collected date/time: 04/27/16 00:00

SAMPLE RESULTS - 02

TS - 02 ONE LAB. NATIONWIDE.

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 00:25	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 00:25	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 00:25	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 00:25	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 00:25	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 00:25	WG868984
hloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 00:25	WG868984
2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 00:25	WG868984
1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 00:25	WG868984
2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 00:25	WG868984
1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 00:25	WG868984
s-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 00:25	WG868984
ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 00:25	WG868984
2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 00:25	WG868984
s-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 00:25	WG868984
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 00:25	WG868984
hylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 00:25	WG868984
opropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 00:25	WG868984
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 00:25	WG868984
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 00:25	WG868984
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 00:25	WG868984
lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 00:25	WG868984
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 00:25	WG868984
ethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 00:25	WG868984
aphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 00:25	WG868984
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 00:25	WG868984
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 00:25	WG868984
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 00:25	WG868984
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 00:25	WG868984
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 00:25	WG868984
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 00:25	WG868984
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 00:25	WG868984
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 00:25	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 00:25	WG868984
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 00:25	WG868984
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 00:25	WG868984
inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 00:25	WG868984
-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 00:25	WG868984
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 00:25	WG868984
ylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 00:25	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 00:25	WG868984
(S) Dibromofluoromethane	101				79.0-121		05/04/2016 00:25	WG868984

Ss

Cn

СС

Gl

Αl

Sc

98.4

(S) 4-Bromofluorobenzene

80.1-120

05/04/2016 00:25

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	5090		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:00	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1860		5.19	1.00	100	100	05/09/2016 15:03	WG869680
Fluoride	1.78		0.00990	0.100	0.100	1	05/09/2016 14:48	WG869680
Sulfate	2990		7.74	5.00	500	100	05/09/2016 15:03	WG869680

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.188		0.00125	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Arsenic,Dissolved	0.174		0.00125	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Barium	0.0125	J	0.00180	0.00500	0.0250	5	05/05/2016 13:31	WG869307
Barium,Dissolved	0.0128	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:31	WG870076
Calcium	507		0.230	1.00	5.00	5	05/05/2016 13:31	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Iron	3.21		0.0750	0.100	0.500	5	05/05/2016 13:31	WG869307
Iron,Dissolved	2.99		0.0750	0.100	0.500	5	05/05/2016 16:31	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Manganese	2.39		0.00125	0.00500	0.0250	5	05/05/2016 13:31	WG869307
Manganese,Dissolved	2.29		0.00125	0.00500	0.0250	5	05/05/2016 16:31	WG870076
Potassium	4.03	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 13:31	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Selenium,Dissolved	0.00269	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Sodium	1060		0.550	1.00	5.00	5	05/05/2016 13:31	WG869307

Qc

Gl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyto		Qualifier		-		Dilution	date / time	Batch
Analyte	mg/l		mg/l	mg/l	mg/l			
Arsenic	0.188		0.00125	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Arsenic, Dissolved	0.174		0.00125	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Barium	0.0125	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 13:31	WG869307
Barium, Dissolved	0.0128	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:31	WG870076
Calcium	507		0.230	1.00	5.00	5	05/05/2016 13:31	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Iron	3.21		0.0750	0.100	0.500	5	05/05/2016 13:31	WG869307
Iron,Dissolved	2.99		0.0750	0.100	0.500	5	05/05/2016 16:31	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Manganese	2.39		0.00125	0.00500	0.0250	5	05/05/2016 13:31	WG869307
Manganese, Dissolved	2.29		0.00125	0.00500	0.0250	5	05/05/2016 16:31	WG870076
Potassium	4.03	J	0.185	1.00	5.00	5	05/05/2016 13:31	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:31	WG869307
Selenium, Dissolved	0.00269	J	0.00190	0.00200	0.0100	5	05/05/2016 16:31	WG870076
Sodium	1060		0.550	1.00	5.00	5	05/05/2016 13:31	WG869307

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.402		0.0314	0.100	0.100	1	05/05/2016 07:43	WG869044
(S) a,a,a-Trifluorotoluene(FID)	99.1				62.0-128		05/05/2016 07:43	WG869044

Αl

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 01:25	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 01:25	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 01:25	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 01:25	WG868984

Collected date/time: 04/27/16 12:15

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 01:25	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 01:25	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 01:25	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 01:25	WG868984
I,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 01:25	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 01:25	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 01:25	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 01:25	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 01:25	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 01:25	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 01:25	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 01:25	WG868984
sopropylbenzene	0.00698		0.000326	0.00100	0.00100	1	05/04/2016 01:25	WG868984
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 01:25	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 01:25	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 01:25	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 01:25	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 01:25	WG868984
Methyl tert-butyl ether	0.000605	<u>J</u>	0.000367	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 01:25	WG868984
n-Propylbenzene	0.000357	<u>J</u>	0.000349	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 01:25	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 01:25	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 01:25	WG868984
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 01:25	WG868984
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Frichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 01:25	WG868984
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 01:25	WG868984
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 01:25	WG868984
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 01:25	WG868984
o-Xylene	0.000352	<u>J</u>	0.000341	0.00100	0.00100	1	05/04/2016 01:25	WG868984
m&p-Xylene	0.00166	_	0.000719	0.00100	0.00100	1	05/04/2016 01:25	WG868984
Kylenes, Total	0.00201	<u>J</u>	0.00106	0.00300	0.00300	1	05/04/2016 01:25	WG868984
(S) Toluene-d8	103	_			90.0-115		05/04/2016 01:25	WG868984
(S) Dibromofluoromethane	103				79.0-121		05/04/2016 01:25	WG868984
(S) 4-Bromofluorobenzene	97.1				80.1-120		05/04/2016 01:25	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.76		0.124	0.100	0.500	5	05/04/2016 08:36	WG869252
(S) o-Terphenyl	104				50.0-150		05/04/2016 08:36	WG869252

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 11:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5850		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:01	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1880		5.19	1.00	100	100	05/09/2016 15:34	WG869680
Fluoride	1.09		0.00990	0.100	0.100	1	05/09/2016 15:19	WG869680
Sulfate	2410		7.74	5.00	500	100	05/09/2016 15:34	WG869680

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0275		0.00125	0.00200	0.0100	5	05/05/2016 13:34	WG869307
Arsenic,Dissolved	0.0254		0.00125	0.00200	0.0100	5	05/05/2016 16:34	WG870076
Barium	0.0242	J	0.00180	0.00500	0.0250	5	05/05/2016 13:34	WG869307
Barium,Dissolved	0.0211	J	0.00180	0.00500	0.0250	5	05/05/2016 16:34	WG870076
Calcium	570		0.230	1.00	5.00	5	05/05/2016 13:34	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:34	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:34	WG870076
Iron	U		0.0750	0.100	0.500	5	05/05/2016 13:34	WG869307
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 16:34	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:34	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:34	WG870076
Manganese	2.92		0.00125	0.00500	0.0250	5	05/05/2016 13:34	WG869307
Manganese, Dissolved	2.85		0.00125	0.00500	0.0250	5	05/05/2016 16:34	WG870076
Potassium	3.73	J	0.185	1.00	5.00	5	05/05/2016 13:34	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:34	WG869307
Selenium,Dissolved	0.00220	J	0.00190	0.00200	0.0100	5	05/05/2016 16:34	WG870076
Sodium	1320		0.550	1.00	5.00	5	05/05/2016 13:34	WG869307

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.83		0.0314	0.100	0.100	1	05/05/2016 08:04	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.1				62.0-128		05/05/2016 08:04	WG869044

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 01:46	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 01:46	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 01:46	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 01:46	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 01:46	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 01:46	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 01:46	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 01:46	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 01:46	WG868984

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAM

Collected date/time: 04/27/16 11:15

Volatile Organic Compounds (GC/MS) by Method 8

1PLE	RESUL	TS - 04			ONE LAB. NATIONWIDE.	*
8260B						1
	Unadj. MQL	MQL	Dilution	Analysis	Batch	Ср
	mg/l	mg/l		date / time		

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

05/04/2016 01:46

WG868984

WG868984

WG868984

WG868984

WG868984

WG868984

WG868984

WG868984

WG868984 WG868984

WG868984

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		L
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 01:46	WG868984	2
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 01:46	WG868984	3
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 01:46	WG868984	
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 01:46	WG868984	L
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 01:46	WG868984	4
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 01:46	WG868984	5
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 01:46	WG868984	6
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 01:46	WG868984	7
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 01:46	WG868984	L
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 01:46	WG868984	8
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 01:46	WG868984	9
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 01:46	WG868984	
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 01:46	WG868984	L
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 01:46	WG868984	
Methyl tert-butyl ether	0.00143		0.000367	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 01:46	WG868984	
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 01:46	WG868984	
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 01:46	WG868984	
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 01:46	WG868984	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

U

U

U

104

103

99.3

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.82		0.0247	0.100	0.100	1	05/03/2016 15:35	WG869252
(S) o-Terphenyl	108				50.0-150		05/03/2016 15:35	WG869252

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

Тс

Ss

Cn

Qc

Gl

Αl

Sc

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 10:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5120		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:02	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1530		5.19	1.00	100	100	05/09/2016 16:05	WG869680
Fluoride	0.826		0.00990	0.100	0.100	1	05/09/2016 15:50	WG869680
Sulfate	2220		7.74	5.00	500	100	05/09/2016 16:05	WG869680

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0196		0.00125	0.00200	0.0100	5	05/05/2016 13:41	WG869307
Arsenic, Dissolved	0.0247		0.00125	0.00200	0.0100	5	05/05/2016 16:41	WG870076
Barium	0.0123	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 13:41	WG869307
Barium,Dissolved	0.0174	Ţ	0.00180	0.00500	0.0250	5	05/05/2016 16:41	WG870076
Calcium	523		0.230	1.00	5.00	5	05/05/2016 13:41	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:41	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:41	WG870076
Iron	U		0.0750	0.100	0.500	5	05/05/2016 13:41	WG869307
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 16:41	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:41	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:41	WG870076
Manganese	2.83		0.00125	0.00500	0.0250	5	05/05/2016 13:41	WG869307
Manganese,Dissolved	2.60		0.00125	0.00500	0.0250	5	05/05/2016 19:47	WG870076
Potassium	3.83	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 13:41	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:41	WG869307
Selenium,Dissolved	0.00211	Ţ	0.00190	0.00200	0.0100	5	05/05/2016 16:41	WG870076
Sodium	1110		0.550	1.00	5.00	5	05/05/2016 13:41	WG869307

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.06		0.0314	0.100	0.100	1	05/05/2016 08:26	WG869044
(S) a,a,a-Trifluorotoluene(FID)	97.8				62.0-128		05/05/2016 08:26	WG869044

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 02:06	WG868984			
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 02:06	WG868984			
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 02:06	WG868984			
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 02:06				

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 10:20

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u></u>
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 02:06	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 02:06	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 02:06	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 02:06	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 02:06	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 02:06	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 02:06	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 02:06	WG868984
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 02:06	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 02:06	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 02:06	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 02:06	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 02:06	WG868984
Methyl tert-butyl ether	0.00216		0.000367	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 02:06	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 02:06	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 02:06	WG868984
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 02:06	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 02:06	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 02:06	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 02:06	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 02:06	WG868984
(S) Dibromofluoromethane	103				79.0-121		05/04/2016 02:06	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

98.9

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.19		0.0247	0.100	0.100	1	05/03/2016 15:53	WG869252
(S) o-Terphenyl	104				50.0-150		05/03/2016 15:53	WG869252

80.1-120

WG868984

05/04/2016 02:06

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 09:00

L832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6190		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

²Tc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:07	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1890		5.19	1.00	100	100	05/09/2016 16:51	WG869680
Fluoride	0.645		0.00990	0.100	0.100	1	05/09/2016 14:17	WG869680
Sulfate	2340		7.74	5.00	500	100	05/09/2016 16:51	WG869680

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Arsenic	0.0449		0.00125	0.00200	0.0100	5	05/05/2016 13:43	WG869307
Arsenic, Dissolved	0.0383		0.00125	0.00200	0.0100	5	05/05/2016 16:43	WG870076
Barium	0.0174	J	0.00180	0.00500	0.0250	5	05/05/2016 13:43	WG869307
Barium, Dissolved	0.0157	J	0.00180	0.00500	0.0250	5	05/05/2016 16:43	WG870076
Calcium	548		0.230	1.00	5.00	5	05/05/2016 13:43	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:43	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:43	WG870076
Iron	4.42		0.0750	0.100	0.500	5	05/05/2016 13:43	WG869307
Iron,Dissolved	2.37		0.0750	0.100	0.500	5	05/05/2016 16:43	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:43	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:43	WG870076
Manganese	6.06		0.00125	0.00500	0.0250	5	05/05/2016 13:43	WG869307
Manganese,Dissolved	5.83		0.00125	0.00500	0.0250	5	05/05/2016 16:43	WG870076
Potassium	4.08	J	0.185	1.00	5.00	5	05/05/2016 13:43	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:43	WG869307
Selenium,Dissolved	0.00242	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 16:43	WG870076
Sodium	1440		0.550	1.00	5.00	5	05/05/2016 13:43	WG869307

⁴Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	3.53		0.0314	0.100	0.100	1	05/06/2016 03:35	WG870384
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/06/2016 03:35	WG870384

SS 4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 02:26	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 02:26	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 02:26	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 02:26	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 09:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 02:26	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 02:26	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 02:26	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 02:26	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 02:26	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 02:26	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 02:26	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 02:26	WG868984
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 02:26	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 02:26	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 02:26	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 02:26	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 02:26	WG868984
Methyl tert-butyl ether	0.00907		0.000367	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 02:26	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 02:26	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 02:26	WG868984
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 02:26	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 02:26	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 02:26	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 02:26	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 02:26	WG868984
(S) Dibromofluoromethane	102				79.0-121		05/04/2016 02:26	WG868984
(0) 4.5								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

3440

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	7.43		0.0247	0.100	0.100	1	05/03/2016 16:11	WG869252
(S) o-Terphenyl	116				50.0-150		05/03/2016 16:11	WG869252

80.1-120

05/04/2016 02:26

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 10:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6160		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:08	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1900		2.60	1.00	50.0	50	05/07/2016 02:21	WG869689
Fluoride	0.660		0.00990	0.100	0.100	1	05/07/2016 02:06	WG869689
Sulfate	2560		3.87	5.00	250	50	05/07/2016 02:21	WG869689

СС

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0455		0.00125	0.00200	0.0100	5	05/05/2016 13:46	WG869307
Arsenic, Dissolved	0.0370		0.00125	0.00200	0.0100	5	05/05/2016 16:45	WG870076
Barium	0.0167	J	0.00180	0.00500	0.0250	5	05/05/2016 13:46	WG869307
Barium, Dissolved	0.0171	J	0.00180	0.00500	0.0250	5	05/05/2016 16:45	WG870076
Calcium	541		0.230	1.00	5.00	5	05/05/2016 13:46	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:46	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:45	WG870076
Iron	4.46		0.0750	0.100	0.500	5	05/05/2016 13:46	WG869307
Iron,Dissolved	2.39		0.0750	0.100	0.500	5	05/05/2016 16:45	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:46	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:45	WG870076
Manganese	6.20		0.00125	0.00500	0.0250	5	05/05/2016 13:46	WG869307
Manganese, Dissolved	5.87		0.00125	0.00500	0.0250	5	05/05/2016 16:45	WG870076
Potassium	4.04	Ţ	0.185	1.00	5.00	5	05/05/2016 13:46	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:46	WG869307
Selenium,Dissolved	0.00218	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 16:45	WG870076
Sodium	1440		0.550	1.00	5.00	5	05/05/2016 13:46	WG869307

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	4.02		0.0314	0.100	0.100	1	05/06/2016 03:58	WG870384
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/06/2016 03:58	WG870384

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 02:46	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 02:46	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 02:46	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 02:46	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 10:00

832472

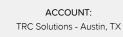
Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 02:46	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 02:46	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 02:46	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 02:46	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 02:46	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 02:46	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 02:46	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 02:46	WG868984
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 02:46	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 02:46	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 02:46	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 02:46	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 02:46	WG868984
Methyl tert-butyl ether	0.00887		0.000367	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 02:46	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 02:46	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 02:46	WG868984
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 02:46	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 02:46	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 02:46	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 02:46	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 02:46	WG868984
(S) Dibromofluoromethane	104				79.0-121		05/04/2016 02:46	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

3420

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	7.66		0.0247	0.100	0.100	1	05/03/2016 16:29	WG869252
(S) o-Terphenyl	116				50.0-150		05/03/2016 16:29	WG869252



(S) 4-Bromofluorobenzene

80.1-120

05/04/2016 02:46

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:10

L832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5800		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:09	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1610		2.60	1.00	50.0	50	05/07/2016 02:51	WG869689
Fluoride	1.22		0.00990	0.100	0.100	1	05/07/2016 02:36	WG869689
Sulfate	2600		3.87	5.00	250	50	05/07/2016 02:51	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00976	J	0.00125	0.00200	0.0100	5	05/05/2016 13:48	WG869307
Arsenic,Dissolved	0.00969	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 16:48	WG870076
Barium	0.0107	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 13:48	WG869307
Barium,Dissolved	0.0111	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:48	WG870076
Calcium	417		0.230	1.00	5.00	5	05/05/2016 13:48	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:48	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:48	WG870076
Iron	U		0.0750	0.100	0.500	5	05/05/2016 13:48	WG869307
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 16:48	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:48	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:48	WG870076
Manganese	0.844		0.00125	0.00500	0.0250	5	05/05/2016 13:48	WG869307
Manganese,Dissolved	0.852		0.00125	0.00500	0.0250	5	05/05/2016 16:48	WG870076
Potassium	3.10	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 13:48	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:48	WG869307
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 16:48	WG870076
Sodium	1220		0.550	1.00	5.00	5	05/05/2016 13:48	WG869307

⁴Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/05/2016 09:30	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.0				62.0-128		05/05/2016 09:30	WG869044

°Ss

	,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 03:06	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 03:06	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 03:06	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 03:06	WG868984

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:10

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 03:06	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 03:06	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 03:06	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 03:06	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 03:06	WG868984
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 03:06	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 03:06	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 03:06	WG868984
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 03:06	WG868984
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 03:06	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 03:06	WG868984
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 03:06	WG868984
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 03:06	WG868984
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 03:06	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 03:06	WG868984
?-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 03:06	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 03:06	WG868984
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 03:06	WG868984
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 03:06	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 03:06	WG868984
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 03:06	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 03:06	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 03:06	WG868984
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 03:06	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 03:06	WG868984
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 03:06	WG868984
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 03:06	WG868984
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 03:06	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 03:06	WG868984
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 03:06	WG868984
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 03:06	WG868984
(C) T / 10								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

103

103

96.4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.636		0.0247	0.100	0.100	1	05/04/2016 06:47	WG869254
(S) o-Terphenyl	109				50.0-150		05/04/2016 06:47	WG869254

90.0-115

79.0-121

80.1-120

05/04/2016 03:06

05/04/2016 03:06

05/04/2016 03:06

WG868984

WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	13700		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.72		0.197	0.100	1.00	10	05/06/2016 07:11	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	3010		5.19	1.00	100	100	05/02/2016 15:30	WG868881
Fluoride	3.11		0.00990	0.100	0.100	1	05/02/2016 15:15	WG868881
Sulfate	5610		7.74	5.00	500	100	05/02/2016 15:30	WG868881

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.213		0.00125	0.00200	0.0100	5	05/05/2016 13:50	WG869307
Arsenic, Dissolved	0.179		0.00125	0.00200	0.0100	5	05/05/2016 16:50	WG870076
Barium	0.0149	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 13:50	WG869307
Barium,Dissolved	0.0128	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:50	WG870076
Calcium	472		0.230	1.00	5.00	5	05/05/2016 13:50	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:50	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:50	WG870076
Iron	8.10		0.0750	0.100	0.500	5	05/05/2016 13:50	WG869307
Iron,Dissolved	6.87		0.0750	0.100	0.500	5	05/05/2016 16:50	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:50	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:50	WG870076
Manganese	1.34		0.00125	0.00500	0.0250	5	05/05/2016 13:50	WG869307
Manganese, Dissolved	1.33		0.00125	0.00500	0.0250	5	05/05/2016 16:50	WG870076
Potassium	7.39		0.185	1.00	5.00	5	05/05/2016 13:50	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:50	WG869307
Selenium,Dissolved	0.00262	J	0.00190	0.00200	0.0100	5	05/05/2016 16:50	WG870076
Sodium	2990		1.10	1.00	10.0	10	05/05/2016 14:30	WG869307

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	2.09		0.0314	0.100	0.100	1	05/05/2016 23:22	WG870384
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/05/2016 23:22	WG870384

Ss

	,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 03:27	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 03:27	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 03:27	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 03:27	WG868984

Collected date/time: 04/26/16 17:50

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u> </u>
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 03:27	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 03:27	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 03:27	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 03:27	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 03:27	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 03:27	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 03:27	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 03:27	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 03:27	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 03:27	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 03:27	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 03:27	WG868984
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 03:27	WG868984
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 03:27	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 03:27	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 03:27	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 03:27	WG868984
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 03:27	WG868984
Methyl tert-butyl ether	0.00212		0.000367	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 03:27	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 03:27	WG868984
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 03:27	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 03:27	WG868984
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 03:27	WG868984
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 03:27	WG868984
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 03:27	WG868984
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 03:27	WG868984
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 03:27	WG868984
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 03:27	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 03:27	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 03:27	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 03:27	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 03:27	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.92		0.0247	0.100	0.100	1	05/03/2016 16:47	WG869252
(S) o-Terphenyl	107				50.0-150		05/03/2016 16:47	WG869252

(S) 4-Bromofluorobenzene

80.1-120

05/04/2016 03:27

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 18:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3.00	J	2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:12	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	U		0.0519	1.00	1.00	1	05/02/2016 12:31	WG868881
Fluoride	U		0.00990	0.100	0.100	1	05/02/2016 12:31	WG868881
Sulfate	U		0.0774	5.00	5.00	1	05/02/2016 12:31	WG868881

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.000570	J	0.000250	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Arsenic,Dissolved	0.000594	J	0.000250	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 11:15	WG869307
Barium,Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 11:29	WG870076
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 11:15	WG869307
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Iron	U		0.0150	0.100	0.100	1	05/07/2016 11:15	WG869307
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 11:29	WG870076
Lead	U		0.000240	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Manganese	0.000252	J	0.000250	0.00500	0.00500	1	05/07/2016 11:15	WG869307
Manganese,Dissolved	0.000385	J	0.000250	0.00500	0.00500	1	05/07/2016 11:29	WG870076
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 11:15	WG869307
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Sodium	U		0.110	1.00	1.00	1	05/07/2016 11:15	WG869307

Ss

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.000570	J	0.000250	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Arsenic, Dissolved	0.000594	<u>J</u>	0.000250	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 11:15	WG869307
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 11:29	WG870076
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 11:15	WG869307
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Iron	U		0.0150	0.100	0.100	1	05/07/2016 11:15	WG869307
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 11:29	WG870076
Lead	U		0.000240	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Manganese	0.000252	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 11:15	WG869307
Manganese, Dissolved	0.000385	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 11:29	WG870076
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 11:15	WG869307
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 11:15	WG869307
Selenium, Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 11:29	WG870076
Sodium	U		0.110	1.00	1.00	1	05/07/2016 11:15	WG869307

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/05/2016 10:13	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.9				62.0-128		05/05/2016 10:13	WG869044

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 03:46	WG868984	
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 03:46	WG868984	
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 03:46	WE	

SAMPLE DESILITS - 10

ONE LAB. NATIONWIDE.

EB-EP-U3 Collected date/time: 04/26	5/16 18:10		SAMPLE	RESUI	L15 - 10			ONE LAB. NATIONWIDE.	
Volatile Organic Con	npounds (GC/	MS) by Me	ethod 8260E	3					1
Analyte	Result mg/l	Qualifier	SDL mg/l	Unadj. MQL mg/l	MQL mg/l	Dilution	Analysis date / time	<u>Batch</u>	C
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 03:46	WG868984	2 _T
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 03:46	WG868984	3
Chloroform	0.000742	<u>J</u>	0.000324	0.00500	0.00500	1	05/04/2016 03:46	WG868984	³ S:
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 03:46	WG868984	느
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 03:46	WG868984	⁴ C
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 03:46	WG868984	L
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 03:46	WG868984	5
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 03:46	WG868984	⁵ Sı
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 03:46	WG868984	⁶ Q
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 03:46	WG868984	
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 03:46	WG868984	7
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 03:46	WG868984	G
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 03:46	WG868984	\vdash

1,1-Dichloroethane	U	0.000259	0.00100	0.00100	1	05/04/2016 03:46	WG868984
1,2-Dichloroethane	U	0.000361	0.00100	0.00100	1	05/04/2016 03:46	WG868984
1,1-Dichloroethene	U	0.000398	0.00100	0.00100	1	05/04/2016 03:46	WG868984
cis-1,2-Dichloroethene	U	0.000260	0.00100	0.00100	1	05/04/2016 03:46	WG868984
rans-1,2-Dichloroethene	U	0.000396	0.00100	0.00100	1	05/04/2016 03:46	WG868984
,2-Dichloropropane	U	0.000306	0.00100	0.00100	1	05/04/2016 03:46	WG868984
cis-1,3-Dichloropropene	U	0.000418	0.00100	0.00100	1	05/04/2016 03:46	WG868984
rans-1,3-Dichloropropene	U	0.000419	0.00100	0.00100	1	05/04/2016 03:46	WG868984
Ethylbenzene	U	0.000384	0.00100	0.00100	1	05/04/2016 03:46	WG868984
sopropylbenzene	U	0.000326	0.00100	0.00100	1	05/04/2016 03:46	WG868984
o-Isopropyltoluene	U	0.000350	0.00100	0.00100	1	05/04/2016 03:46	WG868984
2-Butanone (MEK)	U	0.00393	0.0100	0.0100	1	05/04/2016 03:46	WG868984
2-Hexanone	U	0.00382	0.0100	0.0100	1	05/04/2016 03:46	WG868984
Methylene Chloride	U	0.00100	0.00500	0.00500	1	05/04/2016 03:46	WG868984
1-Methyl-2-pentanone (MIBK)	U	0.00214	0.0100	0.0100	1	05/04/2016 03:46	WG868984
Methyl tert-butyl ether	U	0.000367	0.00100	0.00100	1	05/04/2016 03:46	WG868984
Naphthalene	U	0.00100	0.00500	0.00500	1	05/04/2016 03:46	WG868984
n-Propylbenzene	U	0.000349	0.00100	0.00100	1	05/04/2016 03:46	WG868984
Styrene	U	0.000307	0.00100	0.00100	1	05/04/2016 03:46	WG868984
,1,1,2-Tetrachloroethane	U	0.000385	0.00100	0.00100	1	05/04/2016 03:46	WG868984
,1,2,2-Tetrachloroethane	U	0.000130	0.00100	0.00100	1	05/04/2016 03:46	WG868984
Tetrachloroethene	U	0.000372	0.00100	0.00100	1	05/04/2016 03:46	WG868984
Toluene	U	0.000780	0.00500	0.00500	1	05/04/2016 03:46	WG868984
,1,1-Trichloroethane	U	0.000319	0.00100	0.00100	1	05/04/2016 03:46	WG868984
,1,2-Trichloroethane	U	0.000383	0.00100	0.00100	1	05/04/2016 03:46	WG868984
richloroethene	U	0.000398	0.00100	0.00100	1	05/04/2016 03:46	WG868984
,2,4-Trimethylbenzene	U	0.000373	0.00100	0.00100	1	05/04/2016 03:46	WG868984
,3,5-Trimethylbenzene	U	0.000387	0.00100	0.00100	1	05/04/2016 03:46	WG868984
/inyl chloride	U	0.000259	0.00100	0.00100	1	05/04/2016 03:46	WG868984
o-Xylene	U	0.000341	0.00100	0.00100	1	05/04/2016 03:46	WG868984
m&p-Xylene	U	0.000719	0.00100	0.00100	1	05/04/2016 03:46	WG868984
(ylenes, Total	U	0.00106	0.00300	0.00300	1	05/04/2016 03:46	WG868984
(S) Toluene-d8	103			90.0-115		05/04/2016 03:46	WG868984
(S) Dibromofluoromethane	104			79.0-121		05/04/2016 03:46	WG868984
(S) 4-Bromofluorobenzene	99.1			80.1-120		05/04/2016 03:46	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0593	<u>J</u>	0.0247	0.100	0.100	1	05/03/2016 17:05	WG869252
(S) o-Terphenyl	104				50.0-150		05/03/2016 17:05	WG869252

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	7620		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:13	WG870056

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	2500		5.19	1.00	100	100	05/07/2016 03:50	WG869689
Fluoride	1.24		0.00990	0.100	0.100	1	05/07/2016 03:06	WG869689
Sulfate	3360		7.74	5.00	500	100	05/07/2016 03:50	WG869689

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0382		0.00125	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Arsenic, Dissolved	0.0224		0.00125	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Barium	0.0170	J	0.00180	0.00500	0.0250	5	05/05/2016 13:55	WG869307
Barium, Dissolved	0.0170	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:55	WG870076
Calcium	459		0.230	1.00	5.00	5	05/05/2016 13:55	WG869307
Chromium	0.00370	<u>J</u>	0.00270	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Iron	6.35		0.0750	0.100	0.500	5	05/05/2016 13:55	WG869307
Iron,Dissolved	2.63		0.0750	0.100	0.500	5	05/05/2016 16:55	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Manganese	0.682		0.00125	0.00500	0.0250	5	05/05/2016 13:55	WG869307
Manganese, Dissolved	0.634		0.00125	0.00500	0.0250	5	05/05/2016 16:55	WG870076
Potassium	4.18	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 13:55	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Sodium	1810		0.550	1.00	5.00	5	05/05/2016 13:55	WG869307

Metals (ICPMS) by Method 6020

Qc

	Result	Qualifier	SDL	unadj. MQL	MAL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0382		0.00125	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Arsenic, Dissolved	0.0224		0.00125	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Barium	0.0170	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 13:55	WG869307
Barium, Dissolved	0.0170	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:55	WG870076
Calcium	459		0.230	1.00	5.00	5	05/05/2016 13:55	WG869307
Chromium	0.00370	<u>J</u>	0.00270	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Iron	6.35		0.0750	0.100	0.500	5	05/05/2016 13:55	WG869307
Iron,Dissolved	2.63		0.0750	0.100	0.500	5	05/05/2016 16:55	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Manganese	0.682		0.00125	0.00500	0.0250	5	05/05/2016 13:55	WG869307
Manganese, Dissolved	0.634		0.00125	0.00500	0.0250	5	05/05/2016 16:55	WG870076
Potassium	4.18	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 13:55	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:55	WG869307
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 16:55	WG870076
Sodium	1810		0.550	1.00	5.00	5	05/05/2016 13:55	WG869307

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.251		0.0314	0.100	0.100	1	05/05/2016 10:35	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.3				62.0-128		05/05/2016 10:35	WG869044

Gl Αl

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 04:06	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 04:06	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 04:06	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 04:06	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:35

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 04:06	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 04:06	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 04:06	WG868984
I,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 04:06	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 04:06	WG868984
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 04:06	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 04:06	WG868984
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 04:06	WG868984
thylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 04:06	WG868984
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 04:06	WG868984
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 04:06	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 04:06	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 04:06	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 04:06	WG868984
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 04:06	WG868984
Methyl tert-butyl ether	0.00168		0.000367	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 04:06	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 04:06	WG868984
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 04:06	WG868984
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 04:06	WG868984
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 04:06	WG868984
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 04:06	WG868984
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 04:06	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 04:06	WG868984
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 04:06	WG868984
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 04:06	WG868984
inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 04:06	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 04:06	WG868984
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 04:06	WG868984
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 04:06	WG868984
(S) Toluene-d8	104				90.0-115		05/04/2016 04:06	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

103

97.5

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.22		0.0247	0.100	0.100	1	05/03/2016 17:24	WG869252
(S) o-Terphenyl	107				50.0-150		05/03/2016 17:24	WG869252

79.0-121

80.1-120

WG868984

WG868984

05/04/2016 04:06

05/04/2016 04:06

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	7540		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U	<u>J6</u>	0.197	0.100	1.00	10	05/06/2016 07:14	WG870056

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	2550		5.19	1.00	100	100	05/07/2016 04:20	WG869689
Fluoride	1.24		0.00990	0.100	0.100	1	05/07/2016 04:05	WG869689
Sulfate	3710		7.74	5.00	500	100	05/07/2016 04:20	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

metale (ref me) by n								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0305		0.00125	0.00200	0.0100	5	05/05/2016 13:58	WG869307
Arsenic, Dissolved	0.0226		0.00125	0.00200	0.0100	5	05/05/2016 16:57	WG870076
Barium	0.0158	J	0.00180	0.00500	0.0250	5	05/05/2016 13:58	WG869307
Barium, Dissolved	0.0174	J	0.00180	0.00500	0.0250	5	05/05/2016 16:57	WG870076
Calcium	423		0.230	1.00	5.00	5	05/05/2016 13:58	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 13:58	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:57	WG870076
Iron	4.43		0.0750	0.100	0.500	5	05/05/2016 13:58	WG869307
Iron,Dissolved	2.56		0.0750	0.100	0.500	5	05/05/2016 16:57	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 13:58	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:57	WG870076
Manganese	0.588		0.00125	0.00500	0.0250	5	05/05/2016 13:58	WG869307
Manganese, Dissolved	0.642		0.00125	0.00500	0.0250	5	05/05/2016 16:57	WG870076
Potassium	3.94	J	0.185	1.00	5.00	5	05/05/2016 13:58	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 13:58	WG869307
Selenium, Dissolved	0.00207	J	0.00190	0.00200	0.0100	5	05/05/2016 16:57	WG870076
Sodium	1690		0.550	1.00	5.00	5	05/05/2016 13:58	WG869307

355

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.269		0.0314	0.100	0.100	1	05/05/2016 10:56	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.3				62.0-128		05/05/2016 10:56	WG869044

)3
ı	4	

ů.		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 04:27	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 04:27	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 04:27	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 04:27	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 12:00

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U	0.000348	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Chlorodibromomethane	U	0.000327	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Chloroethane	U	0.000453	0.00500	0.00500	1	05/04/2016 04:27	WG868984
Chloroform	U	0.000324	0.00500	0.00500	1	05/04/2016 04:27	WG868984
Chloromethane	U	0.000276	0.00250	0.00250	1	05/04/2016 04:27	WG868984
I,2-Dibromoethane	U	0.000381	0.00100	0.00100	1	05/04/2016 04:27	WG868984
I,1-Dichloroethane	U	0.000259	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,2-Dichloroethane	U	0.000361	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,1-Dichloroethene	U	0.000398	0.00100	0.00100	1	05/04/2016 04:27	WG868984
is-1,2-Dichloroethene	U	0.000260	0.00100	0.00100	1	05/04/2016 04:27	WG868984
rans-1,2-Dichloroethene	U	0.000396	0.00100	0.00100	1	05/04/2016 04:27	WG868984
I,2-Dichloropropane	U	0.000306	0.00100	0.00100	1	05/04/2016 04:27	WG868984
cis-1,3-Dichloropropene	U	0.000418	0.00100	0.00100	1	05/04/2016 04:27	WG868984
rans-1,3-Dichloropropene	U	0.000419	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Ethylbenzene	U	0.000384	0.00100	0.00100	1	05/04/2016 04:27	WG868984
sopropylbenzene	U	0.000326	0.00100	0.00100	1	05/04/2016 04:27	WG868984
-Isopropyltoluene	U	0.000350	0.00100	0.00100	1	05/04/2016 04:27	WG868984
-Butanone (MEK)	U	0.00393	0.0100	0.0100	1	05/04/2016 04:27	WG868984
2-Hexanone	U	0.00382	0.0100	0.0100	1	05/04/2016 04:27	WG868984
Methylene Chloride	U	0.00100	0.00500	0.00500	1	05/04/2016 04:27	WG868984
1-Methyl-2-pentanone (MIBK)	U	0.00214	0.0100	0.0100	1	05/04/2016 04:27	WG868984
Methyl tert-butyl ether	0.00168	0.000367	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Naphthalene	U	0.00100	0.00500	0.00500	1	05/04/2016 04:27	WG868984
n-Propylbenzene	U	0.000349	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Styrene	U	0.000307	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,1,1,2-Tetrachloroethane	U	0.000385	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,1,2,2-Tetrachloroethane	U	0.000130	0.00100	0.00100	1	05/04/2016 04:27	WG868984
etrachloroethene	U	0.000372	0.00100	0.00100	1	05/04/2016 04:27	WG868984
oluene	U	0.000780	0.00500	0.00500	1	05/04/2016 04:27	WG868984
,1,1-Trichloroethane	U	0.000319	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,1,2-Trichloroethane	U	0.000383	0.00100	0.00100	1	05/04/2016 04:27	WG868984
richloroethene	U	0.000398	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,2,4-Trimethylbenzene	U	0.000373	0.00100	0.00100	1	05/04/2016 04:27	WG868984
,3,5-Trimethylbenzene	U	0.000387	0.00100	0.00100	1	05/04/2016 04:27	WG868984
/inyl chloride	U	0.000259	0.00100	0.00100	1	05/04/2016 04:27	WG868984
o-Xylene	U	0.000341	0.00100	0.00100	1	05/04/2016 04:27	WG868984
n&p-Xylene	U	0.000719	0.00100	0.00100	1	05/04/2016 04:27	WG868984
Kylenes, Total	U	0.00106	0.00300	0.00300	1	05/04/2016 04:27	WG868984
(0) T (10							

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

104

105

97.0

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.32		0.0247	0.100	0.100	1	05/03/2016 17:42	WG869252
(S) o-Terphenyl	108				50.0-150		05/03/2016 17:42	WG869252

90.0-115

79.0-121

80.1-120

05/04/2016 04:27

05/04/2016 04:27

05/04/2016 04:27

WG868984

WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	11000		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 07:22	WG870056

Cn

Wet Chemistry by Method 9012B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00180	0.00500	0.00500	1	05/12/2016 15:30	WG870326

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	3480		5.19	1.00	100	100	05/07/2016 05:50	WG869689
Fluoride	1.88		0.00990	0.100	0.100	1	05/07/2016 04:35	WG869689
Sulfate	3630		7.74	5.00	500	100	05/07/2016 05:50	WG869689

Αl

СС

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/03/2016 11:07	WG869159
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 09:32	WG869579

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0618		0.00125	0.00200	0.0100	5	05/05/2016 14:00	WG869307
Arsenic, Dissolved	0.0651		0.00125	0.00200	0.0100	5	05/05/2016 17:00	WG870076
Barium	0.0199	J	0.00180	0.00500	0.0250	5	05/05/2016 14:00	WG869307
Barium, Dissolved	0.0222	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 17:00	WG870076
Boron	0.813		0.0150	0.0200	0.200	10	05/07/2016 09:47	WG870589
Boron,Dissolved	0.816		0.0150	0.0200	0.200	10	05/09/2016 11:43	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/05/2016 14:00	WG869307
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/05/2016 17:00	WG870076
Calcium	762		0.230	1.00	5.00	5	05/05/2016 14:00	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:00	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:00	WG870076
Cobalt	U		0.00130	0.00200	0.0100	5	05/05/2016 14:00	WG869307
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/05/2016 17:00	WG870076
Iron	8.89		0.0750	0.100	0.500	5	05/05/2016 14:00	WG869307
Iron,Dissolved	9.02		0.0750	0.100	0.500	5	05/05/2016 17:00	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:00	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:00	WG870076
Manganese	3.80		0.00125	0.00500	0.0250	5	05/05/2016 14:00	WG869307
Manganese,Dissolved	3.89		0.00125	0.00500	0.0250	5	05/05/2016 17:00	WG870076
Nickel	0.0306		0.00350	0.00200	0.0200	10	05/07/2016 09:47	WG870589
Nickel, Dissolved	0.0331		0.00350	0.00200	0.0200	10	05/09/2016 11:43	WG870591
Potassium	9.09		0.185	1.00	5.00	5	05/05/2016 14:00	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 14:00	WG869307
Selenium,Dissolved	0.00226	J	0.00190	0.00200	0.0100	5	05/05/2016 17:00	WG870076
Sodium	2410		0.550	1.00	5.00	5	05/05/2016 14:00	WG869307

PAGE:

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:35

Metals (ICPMS) by Method 6020

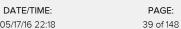
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/I		mg/l	mg/l	mg/l		date / time				
Uranium	U		0.00165	0.0100	0.0500	5	05/05/2016 14:00	WG869307			
Uranium, Dissolved	U		0.00165	0.0100	0.0500	5	05/05/2016 17:00	WG870076			
Vanadium	0.00190	<u>J</u>	0.000900	0.00500	0.0250	5	05/05/2016 14:00	WG869307			
Vanadium, Dissolved	0.00186	J	0.000900	0.00500	0.0250	5	05/05/2016 17:00	WG870076			

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.726		0.0314	0.100	0.100	1	05/05/2016 11:18	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.0				62.0-128		05/05/2016 11:18	WG869044

Cn


	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 04:47	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 04:47	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 04:47	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 04:47	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 04:47	WG868984
-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 04:47	WG868984
ec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 04:47	WG868984
arbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 04:47	WG868984
arbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 04:47	WG868984
hlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 04:47	WG868984
hlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 04:47	WG868984
hloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 04:47	WG868984
hloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 04:47	WG868984
hloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 04:47	WG868984
2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 04:47	WG868984
1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 04:47	WG868984
2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 04:47	WG868984
1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 04:47	WG868984
s-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 04:47	WG868984
ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 04:47	WG868984
2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 04:47	WG868984
s-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 04:47	WG868984
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 04:47	WG868984
hylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 04:47	WG868984
opropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 04:47	WG868984
Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 04:47	WG868984
Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 04:47	WG868984
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 04:47	WG868984
ethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 04:47	WG868984
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 04:47	WG868984
ethyl tert-butyl ether	0.00475		0.000367	0.00100	0.00100	1	05/04/2016 04:47	WG868984
aphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 04:47	WG868984
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 04:47	WG868984
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 04:47	WG868984
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 04:47	WG868984
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 04:47	WG868984
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 04:47	WG868984
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 04:47	WG868984
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 04:47	WG868984
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 04:47	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 04:47	WG868984

OCD-8A

SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:35

Volatile Organic Compounds (GC/MS) by Method 8260B

voiatile Organic Con	volatile Organic Compounds (GC/MS) by Method 8260B										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
1,2,4-Trimethylbenzene	0.000482	<u>J</u>	0.000373	0.00100	0.00100	1	05/04/2016 04:47	WG868984			
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 04:47	WG868984			
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 04:47	WG868984			
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 04:47	WG868984			
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 04:47	WG868984			
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 04:47	WG868984			
(S) Toluene-d8	105				90.0-115		05/04/2016 04:47	WG868984			
(S) Dibromofluoromethane	103				79.0-121		05/04/2016 04:47	WG868984			
(S) 4-Bromofluorobenzene	96.7				80.1-120		05/04/2016 04:47	WG868984			

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.26		0.0247	0.100	0.100	1	05/03/2016 18:00	WG869252
(S) o-Terphenyl	112				50.0-150		05/03/2016 18:00	WG869252

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 14:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	9360		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.501	<u>J P1</u>	0.197	0.100	1.00	10	05/06/2016 08:14	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	2790		5.19	1.00	100	100	05/07/2016 06:49	WG869689
Fluoride	1.96		0.00990	0.100	0.100	1	05/07/2016 06:34	WG869689
Sulfate	5090		7.74	5.00	500	100	05/07/2016 06:49	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Arsenic	0.0990		0.00125	0.00200	0.0100	5	05/05/2016 14:02	WG869307	
Arsenic,Dissolved	0.0843		0.00125	0.00200	0.0100	5	05/05/2016 17:02	WG870076	
Barium	0.0114	J	0.00180	0.00500	0.0250	5	05/05/2016 14:02	WG869307	
Barium,Dissolved	0.0109	Ţ	0.00180	0.00500	0.0250	5	05/05/2016 17:02	WG870076	
Calcium	597		0.230	1.00	5.00	5	05/05/2016 14:02	WG869307	
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:02	WG869307	
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:02	WG870076	
Iron	8.28		0.0750	0.100	0.500	5	05/05/2016 14:02	WG869307	
Iron,Dissolved	3.67		0.0750	0.100	0.500	5	05/05/2016 17:02	WG870076	
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:02	WG869307	
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:02	WG870076	
Manganese	3.17		0.00125	0.00500	0.0250	5	05/05/2016 14:02	WG869307	
Manganese,Dissolved	3.00		0.00125	0.00500	0.0250	5	05/05/2016 17:02	WG870076	
Potassium	2.32	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 14:02	WG869307	
Selenium	0.00201	J	0.00190	0.00200	0.0100	5	05/05/2016 14:02	WG869307	
Selenium,Dissolved	0.00314	J	0.00190	0.00200	0.0100	5	05/05/2016 17:02	WG870076	
Sodium	2240		0.550	1.00	5.00	5	05/05/2016 14:02	WG869307	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0990		0.00125	0.00200	0.0100	5	05/05/2016 14:02	WG869307
Arsenic, Dissolved	0.0843		0.00125	0.00200	0.0100	5	05/05/2016 17:02	WG870076
Barium	0.0114	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 14:02	WG869307
Barium, Dissolved	0.0109	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 17:02	WG870076
Calcium	597		0.230	1.00	5.00	5	05/05/2016 14:02	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:02	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:02	WG870076
Iron	8.28		0.0750	0.100	0.500	5	05/05/2016 14:02	WG869307
Iron,Dissolved	3.67		0.0750	0.100	0.500	5	05/05/2016 17:02	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:02	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:02	WG870076
Manganese	3.17		0.00125	0.00500	0.0250	5	05/05/2016 14:02	WG869307
Manganese, Dissolved	3.00		0.00125	0.00500	0.0250	5	05/05/2016 17:02	WG870076
Potassium	2.32	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 14:02	WG869307
Selenium	0.00201	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 14:02	WG869307
Selenium, Dissolved	0.00314	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 17:02	WG870076
Sodium	2240		0.550	1.00	5.00	5	05/05/2016 14:02	WG869307

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.925		0.0314	0.100	0.100	1	05/05/2016 11:39	WG869044
(S) a,a,a-Trifluorotoluene(FID)	98.4				62.0-128		05/05/2016 11:39	WG869044

Cn

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 05:07	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 05:07	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 05:07	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 05:07	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 14:50

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 05:07	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 05:07	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 05:07	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:07	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 05:07	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 05:07	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 05:07	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 05:07	WG868984
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 05:07	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 05:07	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 05:07	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 05:07	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 05:07	WG868984
Methyl tert-butyl ether	0.00270		0.000367	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 05:07	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 05:07	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,2,4-Trimethylbenzene	0.00171		0.000373	0.00100	0.00100	1	05/04/2016 05:07	WG868984
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 05:07	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 05:07	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 05:07	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 05:07	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 05:07	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

105

97.9

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.17		0.0247	0.100	0.100	1	05/03/2016 18:18	WG869252
(S) o-Terphenyl	118				50.0-150		05/03/2016 18:18	WG869252

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

05/04/2016 05:07

05/04/2016 05:07

WG868984

Collected date/time: 04/26/16 00:00

SAMPLE RESULTS - 15

ONE LAB. NATIONWIDE.

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 00:45	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 00:45	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 00:45	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 00:45	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 00:45	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 00:45	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 00:45	WG868984
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 00:45	WG868984
1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 00:45	WG868984
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 00:45	WG868984
1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 00:45	WG868984
is-1,2-Dichloroethene	U		0.000350	0.00100	0.00100	1	05/04/2016 00:45	WG868984
ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 00:45	WG868984
2-Dichloropropane	U		0.000336	0.00100	0.00100	1	05/04/2016 00:45	WG868984
is-1,3-Dichloropropene	U		0.000300	0.00100	0.00100	1	05/04/2016 00:45	WG868984
ans-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 00:45	WG868984
thylbenzene	U		0.000419	0.00100	0.00100	1	05/04/2016 00:45	WG868984
opropylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 00:45	WG868984
-Isopropyltoluene	U		0.000320	0.00100	0.00100	1	05/04/2016 00:45	WG868984
-Butanone (MEK)	U		0.000330	0.0100	0.00100	1	05/04/2016 00:45	WG868984
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 00:45	WG868984
lethylene Chloride	U		0.00362	0.0100	0.0100	1	05/04/2016 00:45	WG868984
,	U		0.00100	0.00500	0.00500	1	05/04/2016 00:45	WG868984 WG868984
-Methyl-2-pentanone (MIBK)								
lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 00:45	WG868984
laphthalene Drandhanna	U		0.00100	0.00500	0.00500	1	05/04/2016 00:45	WG868984
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 00:45	WG868984
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 00:45	WG868984
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 00:45	WG868984
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 00:45	WG868984
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 00:45	WG868984
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 00:45	WG868984
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 00:45	WG868984
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 00:45	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 00:45	WG868984
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 00:45	WG868984
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 00:45	WG868984
inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 00:45	WG868984
-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 00:45	WG868984
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 00:45	WG868984
(ylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 00:45	WG868984
(S) Toluene-d8	103				90.0-115		05/04/2016 00:45	WG868984
(S) Dibromofluoromethane	101				79.0-121		05/04/2016 00:45	WG868984
(C) 4 D	100				00 1 120		05/04/2010 00:45	MCOCOOOA

Ss

Cn

Gl

Αl

Sc

(S) 4-Bromofluorobenzene

100

80.1-120

WG868984

05/04/2016 00:45

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	8280		2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.796	J	0.197	0.100	1.00	10	05/06/2016 08:16	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1640		5.19	1.00	100	100	05/10/2016 18:29	WG870882
Fluoride	7.44		0.00990	0.100	0.100	1	05/03/2016 14:00	WG869276
Sulfate	3100		7.74	5.00	500	100	05/10/2016 18:29	WG870882

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.136		0.00125	0.00200	0.0100	5	05/05/2016 14:10	WG869307
Arsenic,Dissolved	0.135		0.00125	0.00200	0.0100	5	05/05/2016 17:09	WG870076
Barium	0.0151	J	0.00180	0.00500	0.0250	5	05/05/2016 14:10	WG869307
Barium,Dissolved	0.0133	J	0.00180	0.00500	0.0250	5	05/05/2016 17:09	WG870076
Calcium	632		0.230	1.00	5.00	5	05/05/2016 14:10	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:10	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:09	WG870076
Iron	0.756		0.0750	0.100	0.500	5	05/05/2016 14:10	WG869307
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 17:09	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:10	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:09	WG870076
Manganese	2.19		0.00125	0.00500	0.0250	5	05/05/2016 14:10	WG869307
Manganese, Dissolved	2.20		0.00125	0.00500	0.0250	5	05/05/2016 17:09	WG870076
Potassium	35.6		0.185	1.00	5.00	5	05/05/2016 14:10	WG869307
Selenium	0.0150		0.00190	0.00200	0.0100	5	05/05/2016 14:10	WG869307
Selenium,Dissolved	0.0155		0.00190	0.00200	0.0100	5	05/05/2016 17:09	WG870076
Sodium	2080		0.550	1.00	5.00	5	05/05/2016 14:10	WG869307

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.20		0.0314	0.100	0.100	1	05/03/2016 18:47	WG869045
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 18:47	WG869045

Ss

	,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 05:27	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 05:27	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 05:27	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 05:27	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:45

832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 05:27	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 05:27	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 05:27	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:27	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 05:27	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 05:27	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 05:27	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 05:27	WG868984
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 05:27	WG868984
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 05:27	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 05:27	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 05:27	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 05:27	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 05:27	WG868984
Methyl tert-butyl ether	0.000972	<u>J</u>	0.000367	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Naphthalene	U	_	0.00100	0.00500	0.00500	1	05/04/2016 05:27	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 05:27	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,2,4-Trimethylbenzene	0.00216		0.000373	0.00100	0.00100	1	05/04/2016 05:27	WG868984
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 05:27	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 05:27	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 05:27	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 05:27	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

104

104

99.0

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	18.4		0.494	0.100	2.00	20	05/05/2016 04:46	WG869252
(S) o-Terphenyl	148	<u>J7</u>			50.0-150		05/05/2016 04:46	WG869252

90.0-115

79.0-121

80.1-120

WG868984

WG868984

WG868984

05/04/2016 05:27

05/04/2016 05:27

05/04/2016 05:27

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3.00	J	2.82	10.0	10.0	1	05/02/2016 14:55	WG869073

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.450	J	0.197	0.100	1.00	10	05/06/2016 08:19	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	U		0.0519	1.00	1.00	1	05/02/2016 13:31	WG868881
Fluoride	U		0.00990	0.100	0.100	1	05/02/2016 13:31	WG868881
Sulfate	U		0.0774	5.00	5.00	1	05/02/2016 13:31	WG868881

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.000636	J	0.000250	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Arsenic,Dissolved	0.000579	J	0.000250	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 11:17	WG869307
Barium,Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 11:32	WG870076
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 11:17	WG869307
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Iron	U		0.0150	0.100	0.100	1	05/07/2016 11:17	WG869307
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 11:32	WG870076
Lead	U		0.000240	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Manganese	0.000293	J	0.000250	0.00500	0.00500	1	05/07/2016 11:17	WG869307
Manganese,Dissolved	0.000505	J	0.000250	0.00500	0.00500	1	05/07/2016 11:32	WG870076
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 11:17	WG869307
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Sodium	U		0.110	1.00	1.00	1	05/07/2016 11:17	WG869307

	Result	Qualifier	SDL	unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.000636	<u>J</u>	0.000250	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Arsenic, Dissolved	0.000579	<u>J</u>	0.000250	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 11:17	WG869307
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/07/2016 11:32	WG870076
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 11:17	WG869307
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Iron	U		0.0150	0.100	0.100	1	05/07/2016 11:17	WG869307
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 11:32	WG870076
Lead	U		0.000240	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Manganese	0.000293	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 11:17	WG869307
Manganese, Dissolved	0.000505	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 11:32	WG870076
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 11:17	WG869307
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 11:17	WG869307
Selenium, Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 11:32	WG870076
Sodium	U		0.110	1.00	1.00	1	05/07/2016 11:17	WG869307

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 19:08	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/03/2016 19:08	WG869045

Cn

9	,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 05:46	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 05:46	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 05:46	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 05:46	WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:05

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 05:46	WG868984
Chloroform	0.000729	<u>J</u>	0.000324	0.00500	0.00500	1	05/04/2016 05:46	WG868984
Chloromethane	U	_	0.000276	0.00250	0.00250	1	05/04/2016 05:46	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 05:46	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 05:46	WG868984
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 05:46	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:46	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 05:46	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 05:46	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 05:46	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 05:46	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 05:46	WG868984
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 05:46	WG868984
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 05:46	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 05:46	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 05:46	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 05:46	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 05:46	WG868984
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 05:46	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 05:46	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 05:46	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 05:46	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 05:46	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Frichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 05:46	WG868984
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 05:46	WG868984
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 05:46	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 05:46	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 05:46	WG868984
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 05:46	WG868984
(C) T / (C)								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

104

105

99.1

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0856	<u>J</u>	0.0247	0.100	0.100	1	05/03/2016 18:55	WG869252
(S) o-Terphenyl	107				50.0-150		05/03/2016 18:55	WG869252

90.0-115

79.0-121

80.1-120

05/04/2016 05:46

05/04/2016 05:46

05/04/2016 05:46

WG868984

WG868984

WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:45

L832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	5320		2.82	10.0	10.0	1	05/02/2016 15:59	WG869074	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.87		0.197	0.100	1.00	10	05/06/2016 08:20	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1390		2.60	1.00	50.0	50	05/03/2016 14:59	WG869276
Fluoride	7.08		0.00990	0.100	0.100	1	05/03/2016 14:15	WG869276
Sulfate	2040		3.87	5.00	250	50	05/03/2016 14:59	WG869276

Metals (ICPMS) by Method 6020

Metals (ICI MS) by Metalou 0020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.0113		0.00125	0.00200	0.0100	5	05/05/2016 14:12	WG869307		
Arsenic, Dissolved	0.00557	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 17:14	WG870076		
Barium	0.0181	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 14:12	WG869307		
Barium, Dissolved	0.0166	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 17:14	WG870076		
Calcium	603		0.230	1.00	5.00	5	05/05/2016 14:12	WG869307		
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:12	WG869307		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:14	WG870076		
Iron	0.882		0.0750	0.100	0.500	5	05/05/2016 14:12	WG869307		
Iron,Dissolved	0.130	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 17:14	WG870076		
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:12	WG869307		
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:14	WG870076		
Manganese	3.00		0.00125	0.00500	0.0250	5	05/05/2016 14:12	WG869307		
Manganese, Dissolved	2.91		0.00125	0.00500	0.0250	5	05/05/2016 17:14	WG870076		
Potassium	8.43		0.185	1.00	5.00	5	05/05/2016 14:12	WG869307		
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 14:12	WG869307		
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 17:14	WG870076		
Sodium	1140		0.550	1.00	5.00	5	05/05/2016 14:12	WG869307		

°Qc

Gl

°AI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 19:30	WG869045
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 19:30	WG869045

⁹Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u> </u>
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 06:06	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 06:06	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 06:06	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 06:06	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 06:06	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 06:06	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 06:06	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 06:06	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:06	WG868984

Analyte

Chlorobenzene

SAMPLE RE

Collected date/time: 04/26/16 16:45

Unadj. MQL

mg/l

0.00100

MQL

mg/l

0.00100

Volatile Organic Compounds (GC/MS) by Method 8260B Result

mg/l

U

Qualifier

SDL

mg/l

0.000348

ESULTS - 18	ONE LAB. NATIONWIDE.
2472	

Batch

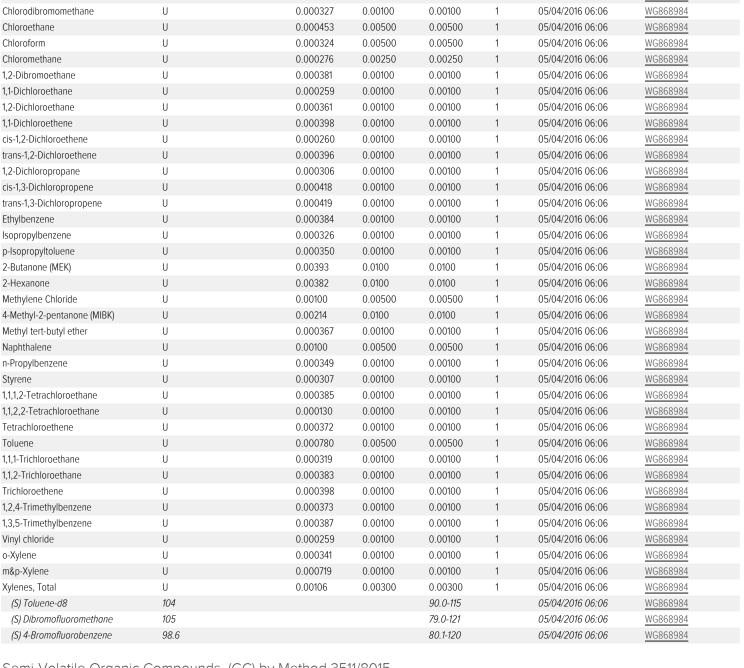
WG868984

Analysis

date / time

05/04/2016 06:06

Dilution



Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.516		0.0247	0.100	0.100	1	05/03/2016 20:26	WG869252
(S) o-Terphenyl	109				50.0-150		05/03/2016 20:26	WG869252

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	U		2.82	10.0	10.0	1	05/02/2016 15:59	WG869074

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.414	J	0.197	0.100	1.00	10	05/06/2016 08:25	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	U		0.0519	1.00	1.00	1	05/03/2016 18:28	WG869276
Fluoride	U		0.00990	0.100	0.100	1	05/03/2016 18:28	WG869276
Sulfate	U		0.0774	5.00	5.00	1	05/03/2016 18:28	WG869276

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.000724	J	0.000250	0.00200	0.00200	1	05/07/2016 11:27	WG869307
Arsenic,Dissolved	0.000660	<u>J</u>	0.000250	0.00200	0.00200	1	05/07/2016 11:34	WG870076
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 11:27	WG869307
Barium,Dissolved	0.000419	<u>J</u>	0.000360	0.00500	0.00500	1	05/07/2016 11:34	WG870076
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 11:27	WG869307
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 11:27	WG869307
Chromium, Dissolved	0.000630	<u>J</u>	0.000540	0.00200	0.00200	1	05/07/2016 11:34	WG870076
Iron	U		0.0150	0.100	0.100	1	05/07/2016 11:27	WG869307
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/07/2016 11:34	WG870076
Lead	U		0.000240	0.00200	0.00200	1	05/07/2016 11:27	WG869307
Lead,Dissolved	0.000254	<u>J</u>	0.000240	0.00200	0.00200	1	05/07/2016 11:34	WG870076
Manganese	0.000259	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 11:27	WG869307
Manganese,Dissolved	0.000458	<u>J</u>	0.000250	0.00500	0.00500	1	05/07/2016 11:34	WG870076
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 11:27	WG869307
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 11:27	WG869307
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/07/2016 11:34	WG870076
Sodium	U		0.110	1.00	1.00	1	05/07/2016 11:27	WG869307

Cn

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 19:51	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/03/2016 19:51	WG869045

3	1 (-	- / - /						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 06:26	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 06:26	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 06:26	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Carbon tetrachioride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:26	WG86

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:10

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	 	mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 06:26	WG868984
Chloroform	0.000629	J	0.000324	0.00500	0.00500	1	05/04/2016 06:26	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 06:26	WG868984
I,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:26	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 06:26	WG868984
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 06:26	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 06:26	WG868984
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 06:26	WG868984
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 06:26	WG868984
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 06:26	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 06:26	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 06:26	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 06:26	WG868984
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 06:26	WG868984
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 06:26	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 06:26	WG868984
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 06:26	WG868984
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 06:26	WG868984
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:26	WG868984
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 06:26	WG868984
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 06:26	WG868984
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 06:26	WG868984
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 06:26	WG868984
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 06:26	WG868984
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 06:26	WG868984
(S) Toluene-d8	104				90.0-115		05/04/2016 06:26	WG868984
(0) 0.11								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

104

97.3

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0312	<u>J</u>	0.0247	0.100	0.100	1	05/03/2016 20:44	WG869252
(S) o-Terphenyl	103				50.0-150		05/03/2016 20:44	WG869252

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

05/04/2016 06:26

05/04/2016 06:26

WG868984

WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4290		2.82	10.0	10.0	1	05/03/2016 18:57	WG869534

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.461	J	0.197	0.100	1.00	10	05/06/2016 08:26	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1300		5.19	1.00	100	100	05/07/2016 07:19	WG869689
Fluoride	1.52		0.00990	0.100	0.100	1	05/07/2016 07:04	WG869689
Sulfate	2360		7.74	5.00	500	100	05/07/2016 07:19	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00953	J	0.00125	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Arsenic, Dissolved	0.00932	J	0.00125	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Barium	0.0158	J	0.00180	0.00500	0.0250	5	05/05/2016 14:16	WG869307
Barium, Dissolved	0.0156	J	0.00180	0.00500	0.0250	5	05/05/2016 17:18	WG870076
Calcium	449		0.230	1.00	5.00	5	05/05/2016 14:16	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Iron	0.0787	J	0.0750	0.100	0.500	5	05/05/2016 14:16	WG869307
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 17:18	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Manganese	0.505		0.00125	0.00500	0.0250	5	05/05/2016 14:16	WG869307
Manganese, Dissolved	0.491		0.00125	0.00500	0.0250	5	05/05/2016 17:18	WG870076
Potassium	1.74	J	0.185	1.00	5.00	5	05/05/2016 14:16	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Sodium	835		0.550	1.00	5.00	5	05/05/2016 14:16	WG869307

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00953	J	0.00125	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Arsenic, Dissolved	0.00932	J	0.00125	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Barium	0.0158	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 14:16	WG869307
Barium, Dissolved	0.0156	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 17:18	WG870076
Calcium	449		0.230	1.00	5.00	5	05/05/2016 14:16	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Iron	0.0787	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 14:16	WG869307
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/05/2016 17:18	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Manganese	0.505		0.00125	0.00500	0.0250	5	05/05/2016 14:16	WG869307
Manganese, Dissolved	0.491		0.00125	0.00500	0.0250	5	05/05/2016 17:18	WG870076
Potassium	1.74	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 14:16	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 14:16	WG869307
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/05/2016 17:18	WG870076
Sodium	835		0.550	1.00	5.00	5	05/05/2016 14:16	WG869307

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 20:13	WG869045
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 20:13	WG869045

Ss

	,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 06:46	WG868984
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 06:46	WG868984
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 06:46	WG868984
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 06:46	WG868984

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 20

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:10

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 06:46	WG868984
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 06:46	WG868984
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 06:46	WG868984
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 06:46	WG868984
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 06:46	WG868984
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 06:46	WG868984
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 06:46	WG868984
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Ethylbenzene	0.00116		0.000384	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Isopropylbenzene	0.000386	<u>J</u>	0.000326	0.00100	0.00100	1	05/04/2016 06:46	WG868984
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 06:46	WG868984
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 06:46	WG868984
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 06:46	WG868984
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 06:46	WG868984
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 06:46	WG868984
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 06:46	WG868984
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 06:46	WG868984
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 06:46	WG868984
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 06:46	WG868984
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 06:46	WG868984

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

J

U

U

U

U

U

103

103

97.6

0.00119

0.00119

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	4.81		0.0247	0.100	0.100	1	05/04/2016 07:05	WG869254
(S) o-Terphenyl	110				50.0-150		05/04/2016 07:05	WG869254

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

05/04/2016 06:46

WG868984

WG868984

WG868984

WG868984

WG868984 WG868984

WG868984

WG868984

WG868984

WG868984

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 09:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	8480		2.82	10.0	10.0	1	05/04/2016 03:49	WG869541	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.03		0.197	0.100	1.00	10	05/06/2016 08:27	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	2550		5.19	1.00	100	100	05/07/2016 07:49	WG869689
Fluoride	2.78		0.00990	0.100	0.100	1	05/07/2016 07:34	WG869689
Sulfate	4740		7.74	5.00	500	100	05/07/2016 07:49	WG869689

Qc

Cn

Metals (ICPMS) by Method 6020

Arsenic,Dissolved 0.127 0.00125 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Barium 0.0145 J 0.00180 0.00500 0.0250 5 05/05/2016 14:19 WG89307 Barium, Dissolved 0.0133 J 0.00180 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Calcium 694 0.230 1.00 5.00 5 05/05/2016 14:19 WG869307 Chromium U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG870076 Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG870076 Manganese<	Twettais (ICI Wis) by N	7101100 0020							
Arsenic 0.150 0.00125 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Arsenic, Dissolved 0.127 0.00125 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Barium 0.0145 J 0.00180 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Barium, Dissolved 0.0133 J 0.00180 0.00500 0.0250 5 05/05/2016 14:19 WG870076 Calcium 694 0.230 1.00 5.00 5 05/05/2016 14:19 WG869307 Chromium U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG870076 Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG870076 Ma		Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Arsenic,Dissolved 0.127 0.00125 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Barium 0.0145 J 0.00180 0.00500 0.0250 5 05/05/2016 14:19 WG89307 Barium,Dissolved 0.0133 J 0.00180 0.00500 0.0250 5 05/05/2016 17:21 WG890076 Calcium 694 0.230 1.00 5.00 5 05/05/2016 14:19 WG869307 Chromium U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Iron,Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Iron,Dissolved 0.217 J 0.0750 0.100 0.500 5 05/05/2016 14:19 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Lead,Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 <th>Analyte</th> <th>mg/l</th> <th></th> <th>mg/l</th> <th>mg/l</th> <th>mg/l</th> <th></th> <th>date / time</th> <th></th>	Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Barium 0.0145	Arsenic	0.150		0.00125	0.00200	0.0100	5	05/05/2016 14:19	WG869307
Barium, Dissolved 0.0133 J 0.00180 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Calcium 694 0.230 1.00 5.00 5 05/05/2016 14:19 WG869307 Chromium U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG869307 Icad U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG869307 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 <td>Arsenic,Dissolved</td> <td>0.127</td> <td></td> <td>0.00125</td> <td>0.00200</td> <td>0.0100</td> <td>5</td> <td>05/05/2016 17:21</td> <td>WG870076</td>	Arsenic,Dissolved	0.127		0.00125	0.00200	0.0100	5	05/05/2016 17:21	WG870076
Calcium 694 0.230 1.00 5.00 5 05/05/2016 14:19 WG869307 Chromium U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG869307 Iron, Dissolved 0.217 J 0.0750 0.100 0.500 5 05/05/2016 17:21 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.0	Barium	0.0145	J	0.00180	0.00500	0.0250	5	05/05/2016 14:19	WG869307
Chromium U 0.00270 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG869307 Iron, Dissolved 0.217 J 0.0750 0.100 0.500 5 05/05/2016 17:21 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307	Barium,Dissolved	0.0133	J	0.00180	0.00500	0.0250	5	05/05/2016 17:21	WG870076
Chromium, Dissolved U 0.00270 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG869307 Iron, Dissolved 0.217 J 0.0750 0.100 0.500 5 05/05/2016 17:21 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Manganese, Dissolved 2.20 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076 <td>Calcium</td> <td>694</td> <td></td> <td>0.230</td> <td>1.00</td> <td>5.00</td> <td>5</td> <td>05/05/2016 14:19</td> <td>WG869307</td>	Calcium	694		0.230	1.00	5.00	5	05/05/2016 14:19	WG869307
Iron 2.89 0.0750 0.100 0.500 5 05/05/2016 14:19 WG869307 0.00, Dissolved 0.217 J 0.0750 0.100 0.500 5 0.5/05/2016 17:21 WG870076 0.217 J 0.00120 0.00200 0.0100 5 0.5/05/2016 14:19 WG869307 0.218	Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:19	WG869307
Iron, Dissolved 0.217 J 0.0750 0.100 0.500 5 05/05/2016 17:21 WG870076 Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Manganese, Dissolved 2.20 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 17:21	WG870076
Lead U 0.00120 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Lead,Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Manganese,Dissolved 2.20 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium,Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Iron	2.89		0.0750	0.100	0.500	5	05/05/2016 14:19	WG869307
Lead, Dissolved U 0.00120 0.00200 0.0100 5 05/05/2016 17:21 WG870076 Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Manganese, Dissolved 2.20 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Iron,Dissolved	0.217	J	0.0750	0.100	0.500	5	05/05/2016 17:21	WG870076
Manganese 2.25 0.00125 0.00500 0.0250 5 05/05/2016 14:19 WG869307 Manganese, Dissolved 2.20 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:19	WG869307
Manganese, Dissolved 2.20 0.00125 0.00500 0.0250 5 05/05/2016 17:21 WG870076 Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 17:21	WG870076
Potassium 6.27 0.185 1.00 5.00 5 05/05/2016 14:19 WG869307 Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Manganese	2.25		0.00125	0.00500	0.0250	5	05/05/2016 14:19	WG869307
Selenium 0.00195 J 0.00190 0.00200 0.0100 5 05/05/2016 14:19 WG869307 Selenium, Dissolved 0.00360 J 0.00190 0.00200 0.0100 5 05/05/2016 17:21 WG870076	Manganese,Dissolved	2.20		0.00125	0.00500	0.0250	5	05/05/2016 17:21	WG870076
Selenium, Dissolved 0.00360 <u>J</u> 0.00190 0.00200 0.0100 5 05/05/2016 17:21 <u>WG870076</u>	Potassium	6.27		0.185	1.00	5.00	5	05/05/2016 14:19	WG869307
- · · · · · · · · · · · · · · · · · · ·	Selenium	0.00195	J	0.00190	0.00200	0.0100	5	05/05/2016 14:19	WG869307
Sodium 2580 0.550 1.00 5.00 5 05/05/2016 14:19 WG869307	Selenium,Dissolved	0.00360	J	0.00190	0.00200	0.0100	5	05/05/2016 17:21	WG870076
	Sodium	2580		0.550	1.00	5.00	5	05/05/2016 14:19	WG869307

Αl

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.443		0.0314	0.100	0.100	1	05/03/2016 20:34	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/03/2016 20:34	WG869045

Gl

		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 13:12	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 13:12	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 13:12	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 13:12	WG868985

SAMPLE RESU

Ss

Cn

СС

Gl

Αl

Sc

Collected date/time: 04/27/16 09:00

Volatile Organic Compounds (GC/MS) by Method 8260B

JLTS - 21	ONE LAB. NATIONWIDI

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 13:12	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 13:12	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 13:12	WG868985
I,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 13:12	WG868985
I,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:12	WG868985
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 13:12	WG868985
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 13:12	WG868985
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 13:12	WG868985
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 13:12	WG868985
thylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 13:12	WG868985
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 13:12	WG868985
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 13:12	WG868985
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 13:12	WG868985
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 13:12	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 13:12	WG868985
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 13:12	WG868985
Methyl tert-butyl ether	0.00141		0.000367	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 13:12	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 13:12	WG868985
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 13:12	WG868985
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 13:12	WG868985
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 13:12	WG868985
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:12	WG868985
,2,4-Trimethylbenzene	0.00104		0.000373	0.00100	0.00100	1	05/04/2016 13:12	WG868985
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 13:12	WG868985
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 13:12	WG868985
-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 13:12	WG868985
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 13:12	WG868985
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 13:12	WG868985
(S) Toluene-d8	104				90.0-115		05/04/2016 13:12	WG868985
(S) Dibromofluoromethane	104				79.0-121		05/04/2016 13:12	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

95.4

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.24		0.0247	0.100	0.100	1	05/04/2016 07:23	WG869254
(S) o-Terphenyl	108				50.0-150		05/04/2016 07:23	WG869254

80.1-120

05/04/2016 13:12

WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 09:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	10600		2.82	10.0	10.0	1	05/04/2016 03:49	WG869541

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.22		0.197	0.100	1.00	10	05/06/2016 08:28	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	4440		5.19	1.00	100	100	05/07/2016 09:59	WG869689
Fluoride	2.47		0.00990	0.100	0.100	1	05/07/2016 09:41	WG869689
Sulfate	3410		7.74	5.00	500	100	05/07/2016 09:59	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0139		0.00125	0.00200	0.0100	5	05/05/2016 14:21	WG869307
Arsenic,Dissolved	0.0118		0.00125	0.00200	0.0100	5	05/05/2016 16:20	WG870076
Barium	0.0214	J	0.00180	0.00500	0.0250	5	05/05/2016 14:21	WG869307
Barium,Dissolved	0.0208	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 16:20	WG870076
Calcium	866		0.230	1.00	5.00	5	05/05/2016 14:21	WG869307
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:21	WG869307
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/05/2016 16:20	WG870076
Iron	2.39		0.0750	0.100	0.500	5	05/05/2016 14:21	WG869307
Iron,Dissolved	2.00		0.0750	0.100	0.500	5	05/05/2016 16:20	WG870076
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 14:21	WG869307
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/05/2016 16:20	WG870076
Manganese	2.22		0.00125	0.00500	0.0250	5	05/05/2016 14:21	WG869307
Manganese,Dissolved	2.14	\vee	0.00125	0.00500	0.0250	5	05/05/2016 16:20	WG870076
Potassium	17.0		0.185	1.00	5.00	5	05/05/2016 14:21	WG869307
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 14:21	WG869307
Selenium,Dissolved	0.00282	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 16:20	WG870076
Sodium	2700		0.550	1.00	5.00	5	05/05/2016 14:21	WG869307

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.0939	J	0.0314	0.100	0.100	1	05/03/2016 20:56	WG869045
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 20:56	WG869045

9	'	- / - /						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 13:31	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 13:31	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 13:31	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 13:31	WG868985

Ol

Collected date/time: 04/27/16 09:55

Volatile Organic Compounds (GC/MS) by Method 8260B

NIE	IAR	NATIONWIDE.
INL	LAD.	NATIONVIDE.

Ss

Cn

[°]Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 13:31	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 13:31	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 13:31	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 13:31	WG868985
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 13:31	WG868985
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 13:31	WG868985
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 13:31	WG868985
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:31	WG868985
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 13:31	WG868985
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 13:31	WG868985
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 13:31	WG868985
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 13:31	WG868985
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 13:31	WG868985
thylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 13:31	WG868985
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 13:31	WG868985
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 13:31	WG868985
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 13:31	WG868985
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 13:31	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 13:31	WG868985
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 13:31	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 13:31	WG868985
laphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 13:31	WG868985
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 13:31	WG868985
ityrene	U		0.000307	0.00100	0.00100	1	05/04/2016 13:31	WG868985
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 13:31	WG868985
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 13:31	WG868985
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 13:31	WG868985
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 13:31	WG868985
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 13:31	WG868985
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 13:31	WG868985
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:31	WG868985
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 13:31	WG868985
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 13:31	WG868985
inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 13:31	WG868985
-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 13:31	WG868985
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 13:31	WG868985
ylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 13:31	WG868985
(S) Toluene-d8	102				90.0-115		05/04/2016 13:31	WG868985
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 13:31	WG868985
(S) 4-Bromofluorobenzene	100				80.1-120		05/04/2016 13:31	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.11		0.0247	0.100	0.100	1	05/04/2016 07:42	WG869254
(S) o-Terphenyl	108				50.0-150		05/04/2016 07:42	WG869254

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 10:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	9140		2.82	10.0	10.0	1	05/04/2016 03:49	WG869541

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.88		0.197	0.100	1.00	10	05/06/2016 08:29	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	3310		5.19	1.00	100	100	05/07/2016 10:29	WG869689
Fluoride	5.88		0.00990	0.100	0.100	1	05/07/2016 10:14	WG869689
Sulfate	3400		7.74	5.00	500	100	05/07/2016 10:29	WG869689

ivietais (ICFIVIS) by IV	VICTIOG 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0318		0.00125	0.00200	0.0100	5	05/06/2016 03:32	WG869316
Arsenic, Dissolved	0.0269		0.00125	0.00200	0.0100	5	05/09/2016 12:15	WG870080
Barium	0.0195	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 03:32	WG869316
Barium, Dissolved	0.0185	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:15	WG870080
Calcium	700		0.230	1.00	5.00	5	05/06/2016 03:32	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:32	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:15	WG870080
Iron	7.20		0.0750	0.100	0.500	5	05/06/2016 03:32	WG869316
Iron,Dissolved	5.04		0.0750	0.100	0.500	5	05/09/2016 12:15	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:32	WG869316
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:15	WG870080
Manganese	4.86		0.00125	0.00500	0.0250	5	05/06/2016 03:32	WG869316
Manganese, Dissolved	4.98		0.00125	0.00500	0.0250	5	05/09/2016 12:15	WG870080
Potassium	8.82		0.185	1.00	5.00	5	05/06/2016 03:32	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:32	WG869316
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 12:15	WG870080
Sodium	2060		0.550	1.00	5.00	5	05/06/2016 03:32	WG869316

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Chromium	U	0.00270	0.00200	0.0100	5	05/06/2016 03:32	WG869316			
Chromium, Dissolved	U	0.00270	0.00200	0.0100	5	05/09/2016 12:15	WG870080			
Iron	7.20	0.0750	0.100	0.500	5	05/06/2016 03:32	WG869316			
Iron,Dissolved	5.04	0.0750	0.100	0.500	5	05/09/2016 12:15	WG870080			
Lead	U	0.00120	0.00200	0.0100	5	05/06/2016 03:32	WG869316			
Lead, Dissolved	U	0.00120	0.00200	0.0100	5	05/09/2016 12:15	WG870080			
Manganese	4.86	0.00125	0.00500	0.0250	5	05/06/2016 03:32	WG869316			
Manganese, Dissolved	4.98	0.00125	0.00500	0.0250	5	05/09/2016 12:15	WG870080			
Potassium	8.82	0.185	1.00	5.00	5	05/06/2016 03:32	WG869316			
Selenium	U	0.00190	0.00200	0.0100	5	05/06/2016 03:32	WG869316			
Selenium, Dissolved	U	0.00190	0.00200	0.0100	5	05/09/2016 12:15	WG870080			
Sodium	2060	0.550	1.00	5.00	5	05/06/2016 03:32	WG869316			
Volatile Organic Compounds (GC) by Method 8015D/GRO										

Ss

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 21:17	WG869045
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 21:17	WG869045

		⁴Cn
--	--	-----

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 13:50	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 13:50	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 13:50	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 13:50	WG868985

Ol

Collected date/time: 04/27/16 10:45

Volatile Organic Compounds (GC/MS) by Method 8260B

NE	LAB.	NATIONWIDE.	

Тс

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u> </u>
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 13:50	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 13:50	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 13:50	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:50	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 13:50	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 13:50	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 13:50	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 13:50	WG868985
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 13:50	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 13:50	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 13:50	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 13:50	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 13:50	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 13:50	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 13:50	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 13:50	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 13:50	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 13:50	WG868985
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 13:50	WG868985
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 13:50	WG868985
(S) Toluene-d8	104				90.0-115		05/04/2016 13:50	WG868985
(S) Dibromofluoromethane	104				79.0-121		05/04/2016 13:50	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

97.8

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.950		0.0247	0.100	0.100	1	05/04/2016 08:00	WG869254
(S) o-Terphenyl	106				50.0-150		05/04/2016 08:00	WG869254

80.1-120

05/04/2016 13:50

WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 11:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	20700		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.501	J	0.197	0.100	1.00	10	05/06/2016 08:30	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	8400		5.19	1.00	100	100	05/07/2016 10:59	WG869689
Fluoride	1.53		0.00990	0.100	0.100	1	05/07/2016 10:44	WG869689
Sulfate	7640		7.74	5.00	500	100	05/07/2016 10:59	WG869689

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0154		0.00125	0.00200	0.0100	5	05/06/2016 03:34	WG869316
Arsenic, Dissolved	0.0140		0.00125	0.00200	0.0100	5	05/09/2016 12:17	WG870080
Barium	0.0228	J	0.00180	0.00500	0.0250	5	05/06/2016 03:34	WG869316
Barium,Dissolved	0.0223	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:17	WG870080
Calcium	933		0.230	1.00	5.00	5	05/06/2016 03:34	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:34	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:17	WG870080
Iron	3.37		0.0750	0.100	0.500	5	05/06/2016 03:34	WG869316
Iron,Dissolved	2.64		0.0750	0.100	0.500	5	05/09/2016 12:17	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:34	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:17	WG870080
Manganese	2.50		0.00125	0.00500	0.0250	5	05/06/2016 03:34	WG869316
Manganese,Dissolved	2.31		0.00125	0.00500	0.0250	5	05/09/2016 12:17	WG870080
Potassium	7.35		0.185	1.00	5.00	5	05/06/2016 03:34	WG869316
Selenium	0.00432	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 03:34	WG869316
Selenium, Dissolved	0.00347	J	0.00190	0.00200	0.0100	5	05/09/2016 12:17	WG870080
Sodium	5280		2.20	1.00	20.0	20	05/07/2016 11:43	WG869316

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 00:03	WG869045
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/04/2016 00:03	WG869045

	[°] Ss
ı	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 14:09	WG868985		
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 14:09	WG868985		
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 14:09	WG868985		
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 14:09	WG868985		
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 14:09	WG868985		
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 14:09	WG868985		
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 14:09	WG868985		
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 14:09	WG868985		
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 14:09	WG868985		

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 24

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 11:35

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 14:09	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 14:09	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 14:09	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 14:09	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 14:09	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 14:09	WG868985
I,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 14:09	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 14:09	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 14:09	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 14:09	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 14:09	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 14:09	WG868985
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 14:09	WG868985
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 14:09	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 14:09	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 14:09	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 14:09	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 14:09	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 14:09	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 14:09	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 14:09	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 14:09	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 14:09	WG868985
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 14:09	WG868985
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 14:09	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 14:09	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 14:09	WG868985
			0.000341	0.00100	0.00100	1	05/04/2016 14:09	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

103

106

95.5

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.212		0.0247	0.100	0.100	1	05/04/2016 08:18	WG869254
(S) o-Terphenyl	104				50.0-150		05/04/2016 08:18	WG869254

0.00100

0.00300

0.000719

0.00106

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

WG868985

WG868985

WG868985

WG868985

WG868985

05/04/2016 14:09

05/04/2016 14:09

05/04/2016 14:09

05/04/2016 14:09

05/04/2016 14:09

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6700		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.499	J	0.197	0.100	1.00	10	05/06/2016 08:31	WG870057

Ss

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1920		5.19	1.00	100	100	05/07/2016 11:28	WG869689
Fluoride	3.57		0.00990	0.100	0.100	1	05/07/2016 11:13	WG869689
Sulfate	3430		7.74	5.00	500	100	05/07/2016 11:28	WG869689

Qc

Gl

Metals (ICPMS) by Method 6020

Result Qualifier SDL Unadj. MQL Analyte mg/l mg/l mg/l Arsenic 0.00444 J 0.00125 0.00200 Arsenic, Dissolved 0.00405 J 0.00125 0.00200 Barium 0.0291 0.00180 0.00500 Barium, Dissolved 0.0280 0.00180 0.00500 Calcium 549 0.230 1.00 Chromium U 0.00270 0.00200		Dilution	Analysis	
Arsenic 0.00444 J 0.00125 0.00200 Arsenic, Dissolved 0.00405 J 0.00125 0.00200 Barium 0.0291 0.00180 0.00500 Barium, Dissolved 0.0280 0.00180 0.00500 Calcium 549 0.230 1.00 Chromium U 0.00270 0.00200			Allalysis	<u>Batch</u>
Arsenic, Dissolved 0.00405 J 0.00125 0.00200 Barium 0.0291 0.00180 0.00500 Barium, Dissolved 0.0280 0.00180 0.00500 Calcium 549 0.230 1.00 Chromium U 0.00270 0.00200	mg/l		date / time	
Barium 0.0291 0.00180 0.00500 Barium, Dissolved 0.0280 0.00180 0.00500 Calcium 549 0.230 1.00 Chromium U 0.00270 0.00200	0.0100	5	05/06/2016 03:37	WG869316
Barium, Dissolved 0.0280 0.00180 0.00500 Calcium 549 0.230 1.00 Chromium U 0.00270 0.00200	0.0100	5	05/09/2016 12:20	WG870080
Calcium 549 0.230 1.00 Chromium U 0.00270 0.00200	0.0250	5	05/06/2016 03:37	WG869316
Chromium U 0.00270 0.00200	0.0250	5	05/09/2016 12:20	WG870080
	5.00	5	05/06/2016 03:37	WG869316
	0.0100	5	05/06/2016 03:37	WG869316
Chromium, Dissolved U 0.00270 0.00200	0.0100	5	05/09/2016 12:20	WG870080
Iron 0.610 0.0750 0.100	0.500	5	05/06/2016 03:37	WG869316
lron,Dissolved 0.541 <u>B</u> 0.0750 0.100	0.500	5	05/09/2016 12:20	WG870080
Lead U 0.00120 0.00200	0.0100	5	05/06/2016 03:37	WG869316
Lead,Dissolved U 0.00120 0.00200	0.0100	5	05/09/2016 12:20	WG870080
Manganese 1.50 0.00125 0.00500	0.0250	5	05/06/2016 03:37	WG869316
Manganese, Dissolved 1.39 0.00125 0.00500	0.0250	5	05/09/2016 12:20	WG870080
Potassium 4.78 <u>J</u> 0.185 1.00	5.00	5	05/06/2016 03:37	WG869316
Selenium U 0.00190 0.00200	0.0100	5	05/06/2016 03:37	WG869316
Selenium,Dissolved U 0.00190 0.00200	0.0100	5	05/09/2016 12:20	WG870080
Sodium 1350 0.550 1.00	5.00	_	05/06/2016 03:37	WG869316

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 00:24	WG869045
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/04/2016 00:24	WG869045

Sc

=								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 14:28	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 14:28	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 14:28	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 14:28	WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:35

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 14:28	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 14:28	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 14:28	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 14:28	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 14:28	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 14:28	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 14:28	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 14:28	WG868985
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 14:28	WG868985
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 14:28	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 14:28	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 14:28	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 14:28	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 14:28	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 14:28	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 14:28	WG868985
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 14:28	WG868985
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 14:28	WG868985
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 14:28	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 14:28	WG868985
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 14:28	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 14:28	WG868985
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 14:28	WG868985
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 14:28	WG868985
(S) Toluene-d8	102				90.0-115		05/04/2016 14:28	WG868985
(S) Dibromofluoromethane	102				79.0-121		05/04/2016 14:28	WG868985
(0) 4.5								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

97.1

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.824		0.0247	0.100	0.100	1	05/04/2016 14:43	WG869254
(S) o-Terphenyl	106				50.0-150		05/04/2016 14:43	WG869254

80.1-120

WG868985

05/04/2016 14:28

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 13:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5550		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.13		0.197	0.100	1.00	10	05/06/2016 08:32	WG870057

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1520		5.19	1.00	100	100	05/07/2016 05:05	WG869689
Fluoride	4.34		0.00990	0.100	0.100	1	05/07/2016 04:50	WG869689
Sulfate	3790		7.74	5.00	500	100	05/07/2016 05:05	WG869689

Metals (ICPMS) by Method 6020

Tivictals (ICI IVIS) by IV	1100 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0443		0.00125	0.00200	0.0100	5	05/06/2016 03:44	WG869316
Arsenic, Dissolved	0.0369		0.00125	0.00200	0.0100	5	05/09/2016 12:27	WG870080
Barium	0.0179	J	0.00180	0.00500	0.0250	5	05/06/2016 03:44	WG869316
Barium, Dissolved	0.0134	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:27	WG870080
Calcium	718		0.230	1.00	5.00	5	05/06/2016 03:44	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:44	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:27	WG870080
Iron	0.530		0.0750	0.100	0.500	5	05/06/2016 03:44	WG869316
Iron,Dissolved	0.174	ВЈ	0.0750	0.100	0.500	5	05/09/2016 12:27	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:44	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:27	WG870080
Manganese	3.56		0.00125	0.00500	0.0250	5	05/06/2016 03:44	WG869316
Manganese, Dissolved	2.92		0.00125	0.00500	0.0250	5	05/09/2016 12:27	WG870080
Potassium	3.39	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 03:44	WG869316
Selenium	0.00777	J	0.00190	0.00200	0.0100	5	05/06/2016 03:44	WG869316
Selenium, Dissolved	0.00792	J	0.00190	0.00200	0.0100	5	05/09/2016 12:27	WG870080
Sodium	968		0.550	1.00	5.00	5	05/06/2016 03:44	WG869316

Gl

Αl

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 00:46	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/04/2016 00:46	WG869045

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 14:48	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 14:48	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 14:48	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 14:48	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 14:48	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 14:48	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 14:48	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 14:48	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 14:48	WG868985

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane Trichloroethene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

Toluene

SAMPLE RESULTS - 26

ONE LAB. NATIONWIDE.

WG868985

Collected date/time: 04/27/16 13:25

001100100 001071111101 017277	.0 .0.20			2002.72						
Volatile Organic Compounds (GC/MS) by Method 8260B										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 14:48	WG868985		
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 14:48	WG868985		
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 14:48	WG868985		
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 14:48	WG868985		
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 14:48	WG868985		
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 14:48	WG868985		
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 14:48	WG868985		
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 14:48	WG868985		
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 14:48	WG868985		
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 14:48	WG868985		

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

1

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

05/04/2016 14:48

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

U

U

U

U

U

U

102

103

96.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.456		0.0247	0.100	0.100	1	05/04/2016 15:01	WG869254
(S) o-Terphenyl	98.8				50.0-150		05/04/2016 15:01	WG869254

0.000372

0.000780

0.000319

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:25

L832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	9800		2.82	10.0	10.0	1	05/02/2016 15:59	WG869074	

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.415	J	0.197	0.100	1.00	10	05/06/2016 08:38	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1490		2.60	1.00	50.0	50	05/03/2016 15:29	WG869276
Fluoride	1.20		0.00990	0.100	0.100	1	05/03/2016 15:14	WG869276
Sulfate	1720		3.87	5.00	250	50	05/03/2016 15:29	WG869276

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Metals (ICI Ma) by Metalou 0020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.00477	J	0.00125	0.00200	0.0100	5	05/06/2016 03:47	WG869316		
Arsenic, Dissolved	0.00255	J	0.00125	0.00200	0.0100	5	05/09/2016 12:29	WG870080		
Barium	0.0288		0.00180	0.00500	0.0250	5	05/06/2016 03:47	WG869316		
Barium, Dissolved	0.0198	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:29	WG870080		
Calcium	929		0.230	1.00	5.00	5	05/06/2016 03:47	WG869316		
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:47	WG869316		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:29	WG870080		
Iron	4.08		0.0750	0.100	0.500	5	05/06/2016 03:47	WG869316		
Iron,Dissolved	2.70		0.0750	0.100	0.500	5	05/09/2016 12:29	WG870080		
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:47	WG869316		
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:29	WG870080		
Manganese	0.749		0.00125	0.00500	0.0250	5	05/06/2016 03:47	WG869316		
Manganese, Dissolved	0.601		0.00125	0.00500	0.0250	5	05/09/2016 12:29	WG870080		
Potassium	8.45		0.185	1.00	5.00	5	05/06/2016 03:47	WG869316		
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:47	WG869316		
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 12:29	WG870080		
Sodium	2150		0.550	1.00	5.00	5	05/06/2016 03:47	WG869316		

4Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 01:07	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/04/2016 01:07	WG869045

³Ss

		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 15:07	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 15:07	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 15:07	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 15:07	WG868985

m&p-Xylene Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 27

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:25

Volatile Organic Compounds (GC/MS) by Method 8260B

<u> </u>	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 15:07	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 15:07	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 15:07	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 15:07	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 15:07	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 15:07	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 15:07	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 15:07	WG868985
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 15:07	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 15:07	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 15:07	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 15:07	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 15:07	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 15:07	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 15:07	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 15:07	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 15:07	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 15:07	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 15:07	WG868985
0 1/1			0.000740	0.00400				

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

102

103

95.6

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/03/2016 21:03	WG869252
(S) o-Terphenyl	105				50.0-150		05/03/2016 21:03	WG869252

0.00100

0.00300

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

0.000719

0.00106

05/04/2016 15:07

05/04/2016 15:07

05/04/2016 15:07

05/04/2016 15:07

05/04/2016 15:07

WG868985

WG868985

WG868985

WG868985

WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	U		2.82	10.0	10.0	1	05/02/2016 15:59	WG869074	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.408	J	0.197	0.100	1.00	10	05/06/2016 08:39	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	U		0.0519	1.00	1.00	1	05/03/2016 15:44	WG869276
Fluoride	U		0.00990	0.100	0.100	1	05/03/2016 15:44	WG869276
Sulfate	U		0.0774	5.00	5.00	1	05/03/2016 15:44	WG869276

Metals (ICI MS) by Metalod 6020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.000656	J	0.000250	0.00200	0.00200	1	05/07/2016 11:41	WG869316		
Arsenic,Dissolved	0.000615	Ţ	0.000250	0.00200	0.00200	1	05/09/2016 12:06	WG870080		
Barium	U		0.000360	0.00500	0.00500	1	05/07/2016 11:41	WG869316		
Barium,Dissolved	U		0.000360	0.00500	0.00500	1	05/09/2016 12:06	WG870080		
Calcium	U		0.0460	1.00	1.00	1	05/07/2016 11:41	WG869316		
Chromium	U		0.000540	0.00200	0.00200	1	05/07/2016 11:41	WG869316		
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/09/2016 12:06	WG870080		
ron	U		0.0150	0.100	0.100	1	05/07/2016 11:41	WG869316		
lron,Dissolved	U		0.0150	0.100	0.100	1	05/09/2016 12:06	WG870080		
Lead	U		0.000240	0.00200	0.00200	1	05/07/2016 11:41	WG869316		
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/09/2016 12:06	WG870080		
Manganese	0.000472	J	0.000250	0.00500	0.00500	1	05/07/2016 11:41	WG869316		
Manganese,Dissolved	0.000556	J	0.000250	0.00500	0.00500	1	05/09/2016 12:06	WG870080		
Potassium	U		0.0370	1.00	1.00	1	05/07/2016 11:41	WG869316		
Selenium	U		0.000380	0.00200	0.00200	1	05/07/2016 11:41	WG869316		
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/09/2016 12:06	WG870080		
Sodium	U		0.110	1.00	1.00	1	05/07/2016 11:41	WG869316		

Qc

Metals (ICPMS) by Method 6020

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 13:55	WG869702
(S) a,a,a-Trifluorotoluene(FID)	99.0				62.0-128		05/04/2016 13:55	WG869702

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 15:25	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 15:25	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 15:25	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 15:25	WG868985

Cn

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 17:40

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 15:25	WG868985
Chloroform	0.000730	<u>J</u>	0.000324	0.00500	0.00500	1	05/04/2016 15:25	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 15:25	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 15:25	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 15:25	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 15:25	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 15:25	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 15:25	WG868985
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 15:25	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 15:25	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 15:25	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 15:25	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 15:25	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 15:25	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 15:25	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 15:25	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 15:25	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 15:25	WG868985
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 15:25	WG868985
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 15:25	WG868985
(S) Toluene-d8	102				90.0-115		05/04/2016 15:25	WG868985
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 15:25	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

100

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/03/2016 21:21	WG869252
(S) o-Terphenyl	102				50.0-150		05/03/2016 21:21	WG869252

80.1-120

WG868985

05/04/2016 15:25

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:40

L832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	20500		2.82	10.0	10.0	1	05/02/2016 15:59	WG869074

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.371	<u>J</u>	0.197	0.100	1.00	10	05/06/2016 08:40	WG870057

Wet Chemistry by Method 9012B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00180	0.00500	0.00500	1	05/12/2016 15:31	WG870326

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	6820		5.19	1.00	100	100	05/03/2016 16:29	WG869276
Fluoride	2.83		0.00990	0.100	0.100	1	05/03/2016 17:14	WG869276
Sulfate	6360		7.74	5.00	500	100	05/03/2016 16:29	WG869276

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/03/2016 11:15	WG869159
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 09:38	WG869579

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00644	J	0.00125	0.00200	0.0100	5	05/06/2016 03:52	WG869316
Arsenic, Dissolved	0.00629	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 12:31	WG870080
Barium	0.0155	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 03:52	WG869316
Barium, Dissolved	0.0157	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:31	WG870080
Boron	3.14		0.0150	0.0200	0.200	10	05/07/2016 09:52	WG870589
Boron, Dissolved	2.87		0.0150	0.0200	0.200	10	05/09/2016 11:48	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 03:52	WG869316
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/09/2016 12:31	WG870080
Calcium	704		0.230	1.00	5.00	5	05/06/2016 03:52	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:52	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:31	WG870080
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 03:52	WG869316
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/09/2016 12:31	WG870080
Iron	0.358	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 03:52	WG869316
Iron,Dissolved	0.333	ВJ	0.0750	0.100	0.500	5	05/09/2016 12:31	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:52	WG869316
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:31	WG870080
Manganese	0.366		0.00125	0.00500	0.0250	5	05/06/2016 03:52	WG869316
Manganese, Dissolved	0.335		0.00125	0.00500	0.0250	5	05/09/2016 12:31	WG870080
Nickel	0.0121	<u>J</u>	0.00350	0.00200	0.0200	10	05/07/2016 09:52	WG870589
Nickel, Dissolved	0.00835	<u>J</u>	0.00175	0.00200	0.0100	5	05/09/2016 12:31	WG870080
Potassium	46.6		0.185	1.00	5.00	5	05/06/2016 03:52	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:52	WG869316
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 12:31	WG870080
Sodium	4730		2.20	1.00	20.0	20	05/07/2016 11:46	WG869316

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:40

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.0417	<u>J</u>	0.00165	0.0100	0.0500	5	05/06/2016 03:52	WG869316
Uranium, Dissolved	0.0410	<u>J</u>	0.00165	0.0100	0.0500	5	05/09/2016 12:31	WG870080
Vanadium	0.00258	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 03:52	WG869316
Vanadium, Dissolved	0.00163	J	0.000900	0.00500	0.0250	5	05/09/2016 12:31	WG870080

Ì	⁵ Cr
	21

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 15:44	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 15:44	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 15:44	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 15:44	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 15:44	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 15:44	WG868985
1.2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 15:44	WG868985
cis-1,2-Dichloroethene	U		0.000350	0.00100	0.00100	1	05/04/2016 15:44	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,2-Dichloropropane	U		0.000336	0.00100	0.00100	1	05/04/2016 15:44	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 15:44	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 15:44	WG868985
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 15:44	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 15:44	WG868985
2-Hexanone	U		0.00333	0.0100	0.0100	1	05/04/2016 15:44	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 15:44	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 15:44	WG868985
Methyl tert-butyl ether	0.000490	J	0.000367	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Naphthalene	U	2	0.00100	0.00500	0.00500	1	05/04/2016 15:44	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Styrene	U		0.000313	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Toluene	U		0.000372	0.00500	0.00500	1	05/04/2016 15:44	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 15:44	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 15:44	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 15:44	WG868985
m&p-Xylene	U		0.000311	0.00100	0.00100	1	05/04/2016 15:44	WG868985
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 15:44	WG868985
(S) Toluene-d8	103				90.0-115		05/04/2016 15:44	WG868985
1-7 - 5								
ACCOUNT:			PROJECT	:	SDG:		DATE/TIME:	PAG

MW-18A

SAMPLE RESULTS - 29

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 15:40

Volatile Organic Compounds (GC/MS) by Method 8260B

Totalia organia com		-, , ,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
(S) Dibromofluoromethane	107				79.0-121		05/04/2016 15:44	WG868985	
(S) 4-Bromofluorobenzene	96.6				80.1-120		05/04/2016 15:44	WG868985	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.460		0.0247	0.100	0.100	1	05/03/2016 21:39	WG869252
(S) o-Terphenyl	108				50.0-150		05/03/2016 21:39	WG869252

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5730		2.82	10.0	10.0	1	05/02/2016 15:59	WG869074

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.416	<u>J</u>	0.197	0.100	1.00	10	05/06/2016 08:41	WG870057

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1370		2.60	1.00	50.0	50	05/03/2016 17:44	WG869276
Fluoride	0.775		0.00990	0.100	0.100	1	05/03/2016 17:29	WG869276
Sulfate	2240		3.87	5.00	250	50	05/03/2016 17:44	WG869276

СС

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0238		0.00125	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Arsenic, Dissolved	0.0228		0.00125	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Barium	0.0147	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 03:54	WG869316
Barium, Dissolved	0.0147	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:33	WG870080
Calcium	720		0.230	1.00	5.00	5	05/06/2016 03:54	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Iron	6.19		0.0750	0.100	0.500	5	05/06/2016 03:54	WG869316
Iron,Dissolved	5.40		0.0750	0.100	0.500	5	05/09/2016 12:33	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Manganese	0.543		0.00125	0.00500	0.0250	5	05/06/2016 03:54	WG869316
Manganese, Dissolved	0.513		0.00125	0.00500	0.0250	5	05/09/2016 12:33	WG870080
Potassium	5.46		0.185	1.00	5.00	5	05/06/2016 03:54	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Sodium	908		0.550	1.00	5.00	5	05/06/2016 03:54	WG869316

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0238		0.00125	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Arsenic, Dissolved	0.0228		0.00125	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Barium	0.0147	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 03:54	WG869316
Barium, Dissolved	0.0147	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:33	WG870080
Calcium	720		0.230	1.00	5.00	5	05/06/2016 03:54	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Iron	6.19		0.0750	0.100	0.500	5	05/06/2016 03:54	WG869316
Iron,Dissolved	5.40		0.0750	0.100	0.500	5	05/09/2016 12:33	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Manganese	0.543		0.00125	0.00500	0.0250	5	05/06/2016 03:54	WG869316
Manganese, Dissolved	0.513		0.00125	0.00500	0.0250	5	05/09/2016 12:33	WG870080
Potassium	5.46		0.185	1.00	5.00	5	05/06/2016 03:54	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:54	WG869316
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 12:33	WG870080
Sodium	908		0.550	1.00	5.00	5	05/06/2016 03:54	WG869316

Volatile Organic Compounds	(GC) by Method 8015D/GRO
----------------------------	--------------------------

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.46		0.0314	0.100	0.100	1	05/04/2016 01:29	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/04/2016 01:29	WG869045

Cn

_								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 16:03	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 16:03	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 16:03	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 16:03	WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/26/16 16:40

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 16:03	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 16:03	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 16:03	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 16:03	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 16:03	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 16:03	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 16:03	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 16:03	WG868985
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 16:03	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 16:03	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 16:03	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 16:03	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 16:03	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 16:03	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 16:03	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 16:03	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 16:03	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 16:03	WG868985
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 16:03	WG868985
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 16:03	WG868985
(S) Toluene-d8	104				90.0-115		05/04/2016 16:03	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

105

97.1

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.896		0.0247	0.100	0.100	1	05/03/2016 21:57	WG869252
(S) o-Terphenyl	107				50.0-150		05/03/2016 21:57	WG869252

79.0-121

80.1-120

05/04/2016 16:03

05/04/2016 16:03

WG868985

WG868985

PAGE:

74 of 148

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	8960		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.928	J	0.197	0.100	1.00	10	05/06/2016 08:42	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	2570		5.19	1.00	100	100	05/07/2016 15:34	WG869689
Fluoride	2.90		0.00990	0.100	0.100	1	05/07/2016 15:19	WG869689
Sulfate	3550		7.74	5.00	500	100	05/07/2016 15:34	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Wetals (ISI MS) By Wetals 6020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.00729	J	0.00125	0.00200	0.0100	5	05/06/2016 03:57	WG869316		
Arsenic,Dissolved	0.00566	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 12:37	WG870080		
Barium	0.0141	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 03:57	WG869316		
Barium,Dissolved	0.0159	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:37	WG870080		
Calcium	641		0.230	1.00	5.00	5	05/06/2016 03:57	WG869316		
Chromium	0.105		0.00270	0.00200	0.0100	5	05/06/2016 03:57	WG869316		
Chromium, Dissolved	0.0508		0.00270	0.00200	0.0100	5	05/09/2016 12:37	WG870080		
Iron	1.54		0.0750	0.100	0.500	5	05/06/2016 03:57	WG869316		
Iron,Dissolved	0.905		0.0750	0.100	0.500	5	05/09/2016 12:37	WG870080		
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:57	WG869316		
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:37	WG870080		
Manganese	0.462		0.00125	0.00500	0.0250	5	05/06/2016 03:57	WG869316		
Manganese, Dissolved	0.599		0.00125	0.00500	0.0250	5	05/09/2016 12:37	WG870080		
Potassium	4.54	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 03:57	WG869316		
Selenium	0.00420	J	0.00190	0.00200	0.0100	5	05/06/2016 03:57	WG869316		
Selenium,Dissolved	0.00328	<u>J</u>	0.00190	0.00200	0.0100	5	05/09/2016 12:37	WG870080		
Sodium	2220		0.550	1.00	5.00	5	05/06/2016 03:57	WG869316		

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 01:50	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/04/2016 01:50	WG869045

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 16:22	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 16:22	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 16:22	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 16:22	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 16:22	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 16:22	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 16:22	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 16:22	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 16:22	WG868985

Naphthalene

Styrene

Toluene

n-Propylbenzene

Tetrachloroethene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

SAMPLE RESULTS - 31

ONE LAB. NATIONWIDE.

WG868985

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

105

108

100

Collected date/time: 04/27/1	16 08:00			L832472						
Volatile Organic Com	pounds (GC	C/MS) by Me	ethod 8260)B					Г	
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	_	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		L	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 16:22	WG868985	F:	
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 16:22	WG868985	3	
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 16:22	WG868985	L	
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 16:22	WG868985	L	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 16:22	WG868985	(
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 16:22	WG868985	F	
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 16:22	WG868985	L	
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 16:22	WG868985		
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 16:22	WG868985	F	
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 16:22	WG868985	Ç	
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 16:22	WG868985	L	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 16:22	WG868985		
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 16:22	WG868985		

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

1

1

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

05/04/2016 16:22

0.00100

0.000349

0.000307

0.000385

0.000130

0.000372

0.000780

0.000319

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.241		0.0247	0.100	0.100	1	05/04/2016 15:19	WG869254
(S) o-Terphenyl	99.8				50.0-150		05/04/2016 15:19	WG869254

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	5870		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.417	J	0.197	0.100	1.00	10	05/06/2016 08:43	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1800		5.19	1.00	100	100	05/07/2016 16:04	WG869689
Fluoride	0.705		0.00990	0.100	0.100	1	05/07/2016 15:49	WG869689
Sulfate	2750		7.74	5.00	500	100	05/07/2016 16:04	WG869689

Cn

Metals (ICPMS) by Method 6020

Analyte	Result mg/l	Qualifier	SDL	Unadi MOI				
Analyto	ma/l			Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	3, .		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00640	J	0.00125	0.00200	0.0100	5	05/06/2016 03:59	WG869316
Arsenic,Dissolved	0.00460	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 12:40	WG870080
Barium	0.0209	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 03:59	WG869316
Barium, Dissolved	0.0237	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 12:40	WG870080
Calcium	678		0.230	1.00	5.00	5	05/06/2016 03:59	WG869316
Chromium	0.00304	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 03:59	WG869316
Chromium, Dissolved	0.00345	J	0.00270	0.00200	0.0100	5	05/09/2016 12:40	WG870080
Iron	5.47		0.0750	0.100	0.500	5	05/06/2016 03:59	WG869316
Iron,Dissolved	4.22		0.0750	0.100	0.500	5	05/09/2016 12:40	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:59	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 12:40	WG870080
Manganese	1.66		0.00125	0.00500	0.0250	5	05/06/2016 03:59	WG869316
Manganese,Dissolved	1.41		0.00125	0.00500	0.0250	5	05/09/2016 12:40	WG870080
Potassium	5.98		0.185	1.00	5.00	5	05/06/2016 03:59	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:59	WG869316
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 12:40	WG870080
Sodium	1340		0.550	1.00	5.00	5	05/06/2016 03:59	WG869316

Qc

Gl

Αl

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 02:11	WG869045
(S) a,a,a-Trifluorotoluene(FID)	104				62.0-128		05/04/2016 02:11	WG869045

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 16:41	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 16:41	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 16:41	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 16:41	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 16:41	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 16:41	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 16:41	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 16:41	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 16:41	WG868985

Trichloroethene

Vinyl chloride

o-Xylene

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

SAMPLE RESULTS - 32

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 08:50

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	—
Analyte	mg/l	Qualifier	mg/l	mg/l	mg/l	Dilution	date / time	Batch	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 16:41	WG868985	Ì
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 16:41	WG868985	
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 16:41	WG868985	l
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 16:41	WG868985	ì
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 16:41	WG868985	ſ
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 16:41	WG868985	l l
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 16:41	WG868985	- [
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 16:41	WG868985	
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 16:41	WG868985	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 16:41	WG868985	
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 16:41	WG868985	
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 16:41	WG868985	
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 16:41	WG868985	
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 16:41	WG868985	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

U

U

103

104

96.4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0682	<u>J</u>	0.0247	0.100	0.100	1	05/04/2016 15:37	WG869254
(S) o-Terphenyl	96.1				50.0-150		05/04/2016 15:37	WG869254

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

05/04/2016 16:41

WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 09:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5890		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Nitrate-Nitrite	U	P1	0.197	0.100	1.00	10	05/06/2016 08:44	WG870057	

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1640		5.19	1.00	100	100	05/07/2016 16:34	WG869689
Fluoride	0.899		0.00990	0.100	0.100	1	05/07/2016 16:19	WG869689
Sulfate	3080		7.74	5.00	500	100	05/07/2016 16:34	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00389	J	0.00125	0.00200	0.0100	5	05/06/2016 04:02	WG869316
Arsenic, Dissolved	0.00135	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 16:30	WG870080
Barium	0.0214	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 04:02	WG869316
Barium, Dissolved	0.0219	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 16:30	WG870080
Calcium	746		0.230	1.00	5.00	5	05/06/2016 04:02	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:02	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:30	WG870080
Iron	1.23		0.0750	0.100	0.500	5	05/06/2016 04:02	WG869316
Iron,Dissolved	0.0865	ВJ	0.0750	0.100	0.500	5	05/09/2016 16:30	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:02	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:30	WG870080
Manganese	0.0524		0.00125	0.00500	0.0250	5	05/06/2016 04:02	WG869316
Manganese, Dissolved	0.0382		0.00125	0.00500	0.0250	5	05/09/2016 16:30	WG870080
Potassium	14.5		0.185	1.00	5.00	5	05/06/2016 04:02	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 04:02	WG869316
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:30	WG870080
Sodium	1100		0.550	1.00	5.00	5	05/06/2016 04:02	WG869316

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 14:16	WG869702
(S) a,a,a-Trifluorotoluene(FID)	99.5				62.0-128		05/04/2016 14:16	WG869702

Volatile Organic Compounds (GC/MS) by Method 8260B

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 16:59	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 16:59	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 16:59	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 16:59	WG868985

ONE LAB. NATIONWIDE.

Collected date/time: 04/2	27/16 09:40		SAMPL	L832472	_15 - 3	3		ONE LAB. NATIONWIDE.	-
Volatile Organic Co	mpounds (G0	C/MS) by Me	ethod 8260)B					1
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	C
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 16:59	WG868985	² Tc
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 16:59	WG868985	
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 16:59	WG868985	3
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 16:59	WG868985	Ss
Chloromothano	11		0.000276	0.003E0	0.00250	1	05/04/2016 16:50	MCocodor	

Chloroethane	U	0.000453	0.00500	0.00500	1	05/04/2016 16:59	WG868985
Chloroform	U	0.000324	0.00500	0.00500	1	05/04/2016 16:59	WG868985
Chloromethane	U	0.000276	0.00250	0.00250	1	05/04/2016 16:59	WG868985
1,2-Dibromoethane	U	0.000381	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,1-Dichloroethane	U	0.000259	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,2-Dichloroethane	U	0.000361	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,1-Dichloroethene	U	0.000398	0.00100	0.00100	1	05/04/2016 16:59	WG868985
cis-1,2-Dichloroethene	U	0.000260	0.00100	0.00100	1	05/04/2016 16:59	WG868985
trans-1,2-Dichloroethene	U	0.000396	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,2-Dichloropropane	U	0.000306	0.00100	0.00100	1	05/04/2016 16:59	WG868985
cis-1,3-Dichloropropene	U	0.000418	0.00100	0.00100	1	05/04/2016 16:59	WG868985
trans-1,3-Dichloropropene	U	0.000419	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Ethylbenzene	U	0.000384	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Isopropylbenzene	U	0.000326	0.00100	0.00100	1	05/04/2016 16:59	WG868985
p-Isopropyltoluene	U	0.000350	0.00100	0.00100	1	05/04/2016 16:59	WG868985
2-Butanone (MEK)	U	0.00393	0.0100	0.0100	1	05/04/2016 16:59	WG868985
2-Hexanone	U	0.00382	0.0100	0.0100	1	05/04/2016 16:59	WG868985
Methylene Chloride	U	0.00100	0.00500	0.00500	1	05/04/2016 16:59	WG868985
4-Methyl-2-pentanone (MIBK)	U	0.00214	0.0100	0.0100	1	05/04/2016 16:59	WG868985
Methyl tert-butyl ether	U	0.000367	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Naphthalene	U	0.00100	0.00500	0.00500	1	05/04/2016 16:59	WG868985
n-Propylbenzene	U	0.000349	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Styrene	U	0.000307	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,1,1,2-Tetrachloroethane	U	0.000385	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,1,2,2-Tetrachloroethane	U	0.000130	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Tetrachloroethene	U	0.000372	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Toluene	U	0.000780	0.00500	0.00500	1	05/04/2016 16:59	WG868985
1,1,1-Trichloroethane	U	0.000319	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,1,2-Trichloroethane	U	0.000383	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Trichloroethene	U	0.000398	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,2,4-Trimethylbenzene	U	0.000373	0.00100	0.00100	1	05/04/2016 16:59	WG868985
1,3,5-Trimethylbenzene	U	0.000387	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Vinyl chloride	U	0.000259	0.00100	0.00100	1	05/04/2016 16:59	WG868985
o-Xylene	U	0.000341	0.00100	0.00100	1	05/04/2016 16:59	WG868985
m&p-Xylene	U	0.000719	0.00100	0.00100	1	05/04/2016 16:59	WG868985
Xylenes, Total	U	0.00106	0.00300	0.00300	1	05/04/2016 16:59	WG868985
(S) Toluene-d8	103			90.0-115		05/04/2016 16:59	WG868985
(S) Dibromofluoromethane	103			79.0-121		05/04/2016 16:59	WG868985
(S) 4-Bromofluorobenzene	97.3			80.1-120		05/04/2016 16:59	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/04/2016 15:55	WG869254
(S) o-Terphenyl	94.4				50.0-150		05/04/2016 15:55	WG869254

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 10:30

832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	12700		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.446	<u>J</u>	0.197	0.100	1.00	10	05/06/2016 08:50	WG870057

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	5320		5.19	1.00	100	100	05/07/2016 17:04	WG869689
Fluoride	0.608		0.00990	0.100	0.100	1	05/07/2016 16:49	WG869689
Sulfate	3610		7.74	5.00	500	100	05/07/2016 17:04	WG869689

Metals (ICPMS) by Method 6020

- Ivietais (iCi ivis) by it	1100 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00209	J	0.00125	0.00200	0.0100	5	05/06/2016 04:04	WG869316
Arsenic,Dissolved	0.00176	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 16:33	WG870080
Barium	0.0226	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 04:04	WG869316
Barium,Dissolved	0.0263		0.00180	0.00500	0.0250	5	05/09/2016 16:33	WG870080
Calcium	927		0.230	1.00	5.00	5	05/06/2016 04:04	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:04	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:33	WG870080
Iron	0.855		0.0750	0.100	0.500	5	05/06/2016 04:04	WG869316
Iron,Dissolved	0.800		0.0750	0.100	0.500	5	05/09/2016 16:33	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:04	WG869316
Lead,Dissolved	0.00146	<u>J</u>	0.00120	0.00200	0.0100	5	05/09/2016 16:33	WG870080
Manganese	0.119		0.00125	0.00500	0.0250	5	05/06/2016 04:04	WG869316
Manganese, Dissolved	0.149		0.00125	0.00500	0.0250	5	05/09/2016 16:33	WG870080
Potassium	36.2		0.185	1.00	5.00	5	05/06/2016 04:04	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 04:04	WG869316
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:33	WG870080
Sodium	3400		2.20	1.00	20.0	20	05/07/2016 11:48	WG869316

Qc 7GI

Ål

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 17:03	WG869702
(S) a,a,a-Trifluorotoluene(FID)	99.3				62.0-128		05/04/2016 17:03	WG869702

⁹Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

=								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 17:18	WG868985
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 17:18	WG868985
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 17:18	WG868985
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 17:18	WG868985

Collected date/time: 04/27/16 10:30

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.	¥

Ss

Cn

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 17:18	WG868985
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 17:18	WG868985
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 17:18	WG868985
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 17:18	WG868985
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 17:18	WG868985
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 17:18	WG868985
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 17:18	WG868985
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 17:18	WG868985
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 17:18	WG868985
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 17:18	WG868985
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 17:18	WG868985
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 17:18	WG868985
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 17:18	WG868985
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 17:18	WG868985
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 17:18	WG868985
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 17:18	WG868985
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 17:18	WG868985
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 17:18	WG868985
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 17:18	WG868985
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 17:18	WG868985
(S) Toluene-d8	103				90.0-115		05/04/2016 17:18	WG868985
(S) Dibromofluoromethane	106				79.0-121		05/04/2016 17:18	WG868985
(S) 4-Bromofluorobenzene	94.7				80.1-120		05/04/2016 17:18	WG868985

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/04/2016 16:13	WG869254
(S) o-Terphenyl	91.2				50.0-150		05/04/2016 16:13	WG869254

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 11:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	9960		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.222	J	0.197	0.100	1.00	10	05/06/2016 15:26	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	5030		5.19	1.00	100	100	05/07/2016 08:20	WG869689
Fluoride	0.774	J3 J6	0.00990	0.100	0.100	1	05/07/2016 08:04	WG869689
Sulfate	3780		7.74	5.00	500	100	05/07/2016 08:20	WG869689

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0126		0.00125	0.00200	0.0100	5	05/06/2016 04:07	WG869316
Arsenic, Dissolved	0.00259	J	0.00125	0.00200	0.0100	5	05/09/2016 16:35	WG870080
Barium	0.0279		0.00180	0.00500	0.0250	5	05/06/2016 04:07	WG869316
Barium,Dissolved	0.0240	J	0.00180	0.00500	0.0250	5	05/09/2016 16:35	WG870080
Calcium	900		0.230	1.00	5.00	5	05/06/2016 04:07	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:07	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:35	WG870080
Iron	15.4		0.0750	0.100	0.500	5	05/06/2016 04:07	WG869316
Iron,Dissolved	1.16		0.0750	0.100	0.500	5	05/09/2016 16:35	WG870080
Lead	0.00177	J	0.00120	0.00200	0.0100	5	05/06/2016 04:07	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:35	WG870080
Manganese	0.267		0.00125	0.00500	0.0250	5	05/06/2016 04:07	WG869316
Manganese,Dissolved	0.216		0.00125	0.00500	0.0250	5	05/09/2016 16:35	WG870080
Potassium	41.2		0.185	1.00	5.00	5	05/06/2016 04:07	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 04:07	WG869316
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:35	WG870080
Sodium	2960		2.20	1.00	20.0	20	05/07/2016 11:51	WG869316

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 17:24	WG869702
(S) a,a,a-Trifluorotoluene(FID)	99.2				62.0-128		05/04/2016 17:24	WG869702

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·	,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 22:28	WG869976
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 22:28	WG869976
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 22:28	WG869976
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 22:28	WG869976

Collected date/time: 04/27/16 11:15

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB	NATIONWIDE.	

Тс

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 22:28	WG869976
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 22:28	WG869976
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 22:28	WG869976
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 22:28	WG869976
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 22:28	WG869976
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 22:28	WG869976
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 22:28	WG869976
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 22:28	WG869976
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 22:28	WG869976
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 22:28	WG869976
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 22:28	WG869976
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 22:28	WG869976
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 22:28	WG869976
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 22:28	WG869976
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 22:28	WG869976
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 22:28	WG869976
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 22:28	WG869976
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 22:28	WG869976
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 22:28	WG869976
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 22:28	WG869976
(S) Toluene-d8	107				90.0-115		05/04/2016 22:28	WG869976
(S) Dibromofluoromethane	110				79.0-121		05/04/2016 22:28	WG869976

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0576	<u>J</u>	0.0247	0.100	0.100	1	05/04/2016 17:45	WG869254
(S) o-Terphenyl	96.7				50.0-150		05/04/2016 17:45	WG869254

(S) 4-Bromofluorobenzene

80.1-120

05/04/2016 22:28

WG869976

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:00

L832472

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	18600		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.715	<u>J J6</u>	0.197	0.100	1.00	10	05/06/2016 15:28	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	9440		5.19	1.00	100	100	05/07/2016 18:04	WG869689
Fluoride	0.414	<u>J6</u>	0.00990	0.100	0.100	1	05/07/2016 17:19	WG869689
Sulfate	3510		7.74	5.00	500	100	05/07/2016 18:04	WG869689

Cn

Metals (ICPMS) by Method 6020

vietais (ICFIVIS) by IVIETITION 0020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	U		0.00125	0.00200	0.0100	5	05/06/2016 03:22	WG869316		
Arsenic, Dissolved	0.00133	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 16:37	WG870080		
Barium	0.0301		0.00180	0.00500	0.0250	5	05/06/2016 03:22	WG869316		
Barium, Dissolved	0.0321		0.00180	0.00500	0.0250	5	05/09/2016 16:37	WG870080		
Calcium	1280	\vee	0.230	1.00	5.00	5	05/06/2016 03:22	WG869316		
Chromium	0.00353	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 03:22	WG869316		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:37	WG870080		
Iron	0.416	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 03:22	WG869316		
Iron,Dissolved	0.887		0.0750	0.100	0.500	5	05/09/2016 16:37	WG870080		
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 03:22	WG869316		
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:37	WG870080		
Manganese	0.876	$\underline{\vee}$	0.00125	0.00500	0.0250	5	05/06/2016 03:22	WG869316		
Manganese, Dissolved	0.903		0.00125	0.00500	0.0250	5	05/09/2016 16:37	WG870080		
Potassium	19.0		0.185	1.00	5.00	5	05/06/2016 03:22	WG869316		
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 03:22	WG869316		
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:37	WG870080		
Sodium	5150	EV	0.550	1.00	5.00	5	05/06/2016 03:22	WG869316		

°Qc

Gl

°AI

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 17:45	WG869702
(S) a,a,a-Trifluorotoluene(FID)	99.6				62.0-128		05/04/2016 17:45	WG869702

⁹Sc

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u>—</u>
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 22:45	WG869976
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 22:45	WG869976
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 22:45	WG869976
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 22:45	WG869976

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 36

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:00

hiorodenzene U 0.000348 0.00100 0.00100 1 05/04/2016 22:45 WG869976 hiorodenzene U 0.000327 0.00100 0.00100 1 05/04/2016 22:45 WG869976 hiorodenzene U 0.0000327 0.00100 0.00100 1 05/04/2016 22:45 WG869976 hiorodenzene U 0.000034 0.00500 0.00500 1 05/04/2016 22:45 WG869976 hioromethane U 0.000324 0.00500 0.00500 1 05/04/2016 22:45 WG869976 hioromethane U 0.000324 0.00500 0.00500 1 05/04/2016 22:45 WG869976 hioromethane U 0.000331 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1.000000000000000000000000000000000000		Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Thiorodibromomethane U 0,000327 0,00100 0,00100 1 0,5104/2016 22:45 0,6869976 1	Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Thioroethane U 0.000453 0.00500 0.00500 1 05/04/2016 22:45 WG869976 hibrorform U 0.000324 0.00500 0.00500 1 05/04/2016 22:45 WG869976 10/0706000000000000000000000000000000000	Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Theorem National Brown of the Comment of the Commen	Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Altoromethane U 0.000276 0.00250 0.00250 1 0.504/2016 22:45 WG869976 22-01bitromethane U 0.000381 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000381 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000381 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000381 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000388 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000388 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000384 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000380 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000382 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000382 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000382 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000387 0.00100 0.00100 1 0.504/2016 22:45 WG869976 1-Dichloroethane U 0.000388 0.00	Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 22:45	WG869976
2-Dibromoethane U	Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 22:45	WG869976
1-Dichloroethane	Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 22:45	WG869976
2-Dichloroethane U 0.000361 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloroethene U 0.000398 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloroethene U 0.000398 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloroethene U 0.000396 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropthene U 0.000396 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000396 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000396 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000348 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00500 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00500 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1-Dichloropropane U 0.0	2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Description	1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 22:45	WG869976
is-1,2-Dichloroethene U 0.000260 0.00100 0.00100 1 05/04/2016 22:45 WG869976 cans-1,2-Dichloroethene U 0.000396 0.00100 0.00100 1 05/04/2016 22:45 WG869976 2-Dichloropropane U 0.000306 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-1,3-Dichloropropene U 0.000418 0.00100 0.00100 1 05/04/2016 22:45 WG869976 thylbenzene U 0.000344 0.00100 0.00100 1 05/04/2016 22:45 WG869976 sopropylbenzene U 0.000326 0.00100 0.00100 1 05/04/2016 22:45 WG869976 -I-sopropylbenzene U 0.000326 0.00100 0.00100 1 05/04/2016 22:45 WG869976 -I-sopropylbenzene U 0.00333 0.0100 0.0100 1 05/04/2016 22:45 WG869976 -I-businene (MEK) U 0.00333 0.0100 0.0100 1 05/04/2016 22:45 WG869976	2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 22:45	WG869976
ans-1,2-Dichloroethene U 0.000396 0.00100 0.00100 1 05/04/2016 22:45 WG869976 22-Dichloropropane U 0.000306 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-1,3-Dichloropropene U 0.000418 0.00100 0.00100 1 05/04/2016 22:45 WG869976 ans-1,3-Dichloropropene U 0.000419 0.00100 0.00100 1 05/04/2016 22:45 WG869976 thyloenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000326 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000382 0.0100 0.0100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.00382 0.0100 0.0100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000382 0.0100 0.0100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000367 0.00100 0.00500 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000367 0.00100 0.00500 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000367 0.00100 0.00500 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000367 0.00100 0.00500 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.00037 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 is-propylbenzene U 0.0	,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 22:45	WG869976
2-Dichloropropane U 0.000306 0.00100 0.00100 1 05/04/2016 22:45 W6869976 is-1,3-Dichloropropene U 0.000418 0.00100 0.00100 1 05/04/2016 22:45 W6869976 ans-1,3-Dichloropropene U 0.000419 0.00100 0.00100 1 05/04/2016 22:45 W6869976 thylbenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 W6869976 thylbenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000326 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000382 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.00393 0.0100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.00393 0.0100 0.0100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.00382 0.0100 0.0100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000382 0.0100 0.0100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000382 0.0100 0.0100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00500 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 W6869976 opropylbenzene	is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 22:45	WG869976
ss-1,3-Dichloropropene U 0.000418 0.00100 0.00100 1 05/04/2016 22:45 WG869976 dans-1,3-Dichloropropene U 0.000419 0.00100 0.00100 1 05/04/2016 22:45 WG869976 thylbenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 WG869976 derpropylbenzene U 0.000326 0.00100 0.00100 1 05/04/2016 22:45 WG869976 -I-bustone U 0.00350 0.00100 0.00100 1 0.5/04/2016 22:45 WG869976 -Butanone (MEK) U 0.00393 0.0100 0.0100 1 0.5/04/2016 22:45 WG869976 Hethylene Chloride U 0.00382 0.0100 0.0100 1 0.5/04/2016 22:45 WG869976 Methyl-2-pentanone (MIBK) U 0.00100 0.00500 0.00500 1 0.5/04/2016 22:45 WG869976 Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 0.5/04/2016 22:45 WG869976<	ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 22:45	WG869976
ans-1,3-Dichloropropene U 0.000419 0.00100 0.00100 1 05/04/2016 22:45 WG869976 thylbenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 WG869976 0.00100	2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 22:45	WG869976
hylbenzene U 0.000384 0.00100 0.00100 1 05/04/2016 22:45 WG869976 opropylbenzene U 0.000326 0.00100 0.00100 1 05/04/2016 22:45 WG869976 disopropylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 disopropylbenzene U 0.000350 0.00100 0.00100 1 05/04/2016 22:45 WG869976 disopropylbenzene U 0.00393 0.0100 0.0100 1 05/04/2016 22:45 WG869976 dethylene Chloride U 0.00382 0.0100 0.0100 1 05/04/2016 22:45 WG869976 dethylene Chloride U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 dethylene Chloride U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 dethylene Chloride U 0.000367 0.00100 0.0100 1 05/04/2016 22:45 WG869976 dethyl tert-butyl ether U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 WG869976 dethylene Chloride U 0.000367 0.00100 0.00500 1 05/04/2016 22:45 WG869976 dethylene U 0.000349 0.00100 0.00500 1 05/04/2016 22:45 WG869976 dethylene U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 dethylene U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 dethylene U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 detrachloroethane U 0.000379 0.00100 0.001	s-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Depropylbenzene U	nns-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Sepropytoluene U 0.000350 0.00100 0.00100 1 0.5/04/2016 22:45 WG869976 U 0.00393 0.0100 0.0100 1 0.5/04/2016 22:45 WG869976 U 0.00382 0.0100 0.0100 1 0.5/04/2016 22:45 WG869976 U 0.00382 0.0100 0.00500 1 0.05/04/2016 22:45 WG869976 U 0.00100 0.00500 0.00500 1 0.05/04/2016 22:45 WG869976 U 0.00214 0.0100 0.0100 1 0.05/04/2016 22:45 WG869976 U 0.000367 0.00100 0.00100 1 0.05/04/2016 22:45 WG869976 U 0.000367 0.00100 0.00500 1 0.05/04/2016 22:45 WG869976 U 0.000367 0.00100 0.00500 1 0.05/04/2016 22:45 WG869976 U 0.000349 0.00100 0.00100 1 0.05/04/2016 22:45 WG869976 U 0.000385 0.00100 0.00100 1 0.05/04/2016 22:45 WG869976 U 0.000372 0.00100 0.00100 1 0.05/04/2016 22:45 WG869976 U 0.000379 0.00100 0.00100 1 0.05/04/2016 22:45 WG869976 U 0.000379 0.00100 0.00100 1 0.05/04/2016 22:45 WG869976 U 0.000379 0.00000 0.00100 1 0.000376 0.000000 0.00000 0.00000 1 0.0000000000	hylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Butanone (MEK) U 0.00393 0.0100 0.0100 1 05/04/2016 22:45 WG869976 Hexanone U 0.00382 0.0100 0.0100 1 05/04/2016 22:45 WG869976 ethylene Chloride U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/04/2016 22:45 WG869976 ethyl tert-butyl ether U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 WG869976 ephylhalene U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 express U 0.000349 0.00100 0.00500 1 05/04/2016 22:45 WG869976 express U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.00037 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 express U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	opropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 22:45	WG869976
Hexanone U 0.00382 0.0100 0.0100 1 05/04/2016 22:45 WG869976 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00100 0.00100 1 05/04/2016 22:45 WG869976 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00100 0.00100 0	Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 22:45	WG869976
tethylene Chloride U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00500 1 05/04/2016 22:45 WG869976 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00500 0.00500 1 05/04/2016 22:45 WG869976 0.00500 0.00500 0.00500 0.00500 1 05/	·Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 22:45	WG869976
Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 WG869976 aphthalene U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000349 0.00100 0.00500 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.00037 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl tert-butyl ether U 0.000379 0.00100 0.00100 1 05/04/2016 22:45 WG869976 lethyl t	-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 22:45	WG869976
lethyl tert-butyl ether U 0.000367 0.00100 0.00100 1 05/04/2016 22:45 WG869976 aphthalene U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 tyrene U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 tyrene U 0.00037 0.00100 0.00100 1 05/04/2016 22:45 WG869976 0.00100 0.00100 0.0	lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 22:45	WG869976
aphthalene U 0.00100 0.00500 0.00500 1 05/04/2016 22:45 WG869976 Propylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 tyrene U 0.000307 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000380 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 22:45	WG869976
Propylbenzene U 0.000349 0.00100 0.00100 1 05/04/2016 22:45 WG869976 tyrene U 0.000307 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2,2-Tetrachloroethane U 0.000130 0.00100 0.00100 1 05/04/2016 22:45 WG869976 etrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 oluene U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 22:45	WG869976
tyrene U 0.000307 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2,2-Tetrachloroethane U 0.000130 0.00100 1 05/04/2016 22:45 WG869976 etrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 oluene U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	aphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 22:45	WG869976
1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2,2-Tetrachloroethane U 0.000130 0.00100 1 05/04/2016 22:45 WG869976 etrachloroethene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 oluene U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane	-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 22:45	WG869976
1,2,2-Tetrachloroethane U 0.000130 0.00100 0.00100 1 05/04/2016 22:45 WG869976 etrachloroethane U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 oluene U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 22:45	WG869976
etrachloroethene U 0.000372 0.00100 0.00100 1 05/04/2016 22:45 WG869976 oluene U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 22:45	WG869976
bluene U 0.000780 0.00500 0.00500 1 05/04/2016 22:45 WG869976 1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 22:45 WG869976 1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 22:45	WG869976
,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/04/2016 22:45 WG869976 ,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 22:45	WG869976
1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/04/2016 22:45 WG869976	oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 22:45	WG869976
· ——	1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 22:45	WG869976
richloroethene U 0.000398 0.00100 0.00100 1 05/04/2016 22:45 <u>WG869976</u>	,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 22:45	WG869976
	richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 22:45	WG869976

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

U

105

109

103

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/04/2016 18:03	WG869254
(S) o-Terphenyl	92.0				50.0-150		05/04/2016 18:03	WG869254

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

05/04/2016 22:45

WG869976

WG869976

WG869976

WG869976

WG869976

WG869976

WG869976

WG869976

WG869976

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 13:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4720		2.82	10.0	10.0	1	05/04/2016 04:11	WG869542

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	3.99		0.197	0.100	1.00	10	05/06/2016 15:30	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	611		2.60	1.00	50.0	50	05/07/2016 18:48	WG869689
Fluoride	2.01		0.00990	0.100	0.100	1	05/07/2016 18:33	WG869689
Sulfate	1240		3.87	5.00	250	50	05/07/2016 18:48	WG869689

Tweetals (FCF 1VIS) By It	1100 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0216		0.00125	0.00200	0.0100	5	05/06/2016 04:14	WG869316
Arsenic, Dissolved	0.0204		0.00125	0.00200	0.0100	5	05/09/2016 16:40	WG870080
Barium	0.0203	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 04:14	WG869316
Barium, Dissolved	0.0217	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 16:40	WG870080
Calcium	487		0.230	1.00	5.00	5	05/06/2016 04:14	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:14	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:40	WG870080
Iron	U		0.0750	0.100	0.500	5	05/06/2016 04:14	WG869316
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 16:40	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:14	WG869316
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:40	WG870080
Manganese	0.887		0.00125	0.00500	0.0250	5	05/06/2016 04:14	WG869316
Manganese, Dissolved	0.874		0.00125	0.00500	0.0250	5	05/09/2016 16:40	WG870080
Potassium	5.53		0.185	1.00	5.00	5	05/06/2016 04:14	WG869316
Selenium	0.00201	J	0.00190	0.00200	0.0100	5	05/06/2016 04:14	WG869316
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:40	WG870080
Sodium	795		0.550	1.00	5.00	5	05/06/2016 04:14	WG869316

Metals (ICPMS) by Method 6020

Αl Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.203		0.0314	0.100	0.100	1	05/03/2016 22:39	WG869046
(S) a,a,a-Trifluorotoluene(FID)	92.0				62.0-128		05/03/2016 22:39	WG869046

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 23:02	WG869976
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 23:02	WG869976
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 23:02	WG869976
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 23:02	WG869976

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 13:00

L832472

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 23:02	WG869976
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 23:02	WG869976
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 23:02	WG869976
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 23:02	WG869976
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 23:02	WG869976
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 23:02	WG869976
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 23:02	WG869976
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 23:02	WG869976
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 23:02	WG869976
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 23:02	WG869976
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 23:02	WG869976
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 23:02	WG869976
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 23:02	WG869976
Methyl tert-butyl ether	0.000602	<u>J</u>	0.000367	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 23:02	WG869976
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 23:02	WG869976
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 23:02	WG869976
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 23:02	WG869976
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 23:02	WG869976
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 23:02	WG869976
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 23:02	WG869976

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

105

108

100

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.549		0.0247	0.100	0.100	1	05/04/2016 18:21	WG869254
(S) o-Terphenyl	104				50.0-150		05/04/2016 18:21	WG869254

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

90.0-115

79.0-121

80.1-120

WG869976

WG869976

WG869976

05/04/2016 23:02

05/04/2016 23:02

05/04/2016 23:02

WG86907		540 C-2011		C		CONTF		MARY			ONE LAB. NATIONWIDE.	*
Method Blank ((MB)											1
(MB) R3133357-1 05/	/02/16 14:55											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								10
5.550ived Solids	J		2.02	10.0								³ Ss
L832468-05 Oi	riginal Sample	(OS) • Dup	olicate (D	DUP)								4
(OS) L832468-05 05												*Cn
Analyte	Original Result mg/l	t DUP Result mg/l	Dilution	DUP RPD %		DUP RPD Limits %						⁵ Sr
Dissolved Solids	1780	1780	1	0.000		5						31
												⁶ Qc
Laboratory Con	ntrol Sample (I	CS) • Labo	raton/ C	ontrol Sam	ınle Dunlica	ita (I CSD)						QC
Laboratory Cor	itioi Sampic (L	CO) · Labe	латогу С		ipic Dupiica	ite (LCSD)						⁷ Gl
(LCS) R3133357-2 05	5/02/16 14:55 • (LCS	D) R3133357-3	05/02/16	14:55								
(LCS) R3133357-2 05	5/02/16 14:55 • (LCS Spike Amount		05/02/16 LCSD Res		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		Oi
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		8 Al
	Spike Amount	LCS Result	LCSD Res	ult LCS Rec.			LCS Qualifier	LCSD Qualifier				⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		8
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	ult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al

WG86907 Gravimetric Analy		540 C-2011		Q		CONTF		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)											1
(MB) R3133371-1 05/0)2/16 15:59											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								TC
Dissolved Solids	0		2.02	10.0								³ Ss
L832037-01 Or	iginal Sample	(OS) • Dup	olicate (DI	JP)								
(OS) L832037-01 05.	/02/16 15:59 • (DUP)	R3133371-4	05/02/16 15:5	59								[‡] Cn
	Original Result		Dilution			OUP RPD Limits						5
Analyte	mg/l	mg/l		%	9							⁵ Sr
Dissolved Solids	5890	5840	1	0.853	5)						⁶ Qc
Laboratory Cor	ntrol Sample (I	CS) • Labo	oratory Co	ontrol Samr	nle Dunlica	te (LCSD)						טאָט
(LCS) R3133371-2 05					0.0 2 4 5 0 4	(2002)						⁷ Gl
	Spike Amount		LCSD Resu		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier		RPD Limits		0
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		°AI
Dissolved Solids	8800	8680	8670	98.6	98.5	85.0-115			0.115	5		0
												Sc

DATE/TIME:

05/17/16 22:18

PAGE:

90 of 148

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG86953	' - '	540 C-2011		(Y CONTF					ONE LAB. NATIONWIDE.	*
Method Blank (MB)											1
(MB) R3133743-1 05/0	03/16 18:57											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								² Tc
Dissolved Solids	U		2.82	10.0								3
												Ss
L832447-04 Or	riginal Sample	(OS) • Dui	olicate ([DUP)								4
(OS) L832447-04 05	<u> </u>	` '	`									*Cn
(00) -00-111 01 00	Original Resul	•		DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁵ Sr
Dissolved Solids	8730	8710	1	0.229		5						\square
												⁶ Qc
L832887-01 Ori	iginal Sample	(OS) • Dup	olicate (E	UP)								
(OS) L832887-01 05/	<u> </u>	, , ,										⁷ GI
(,	Original Resul			DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ AI
Dissolved Solids	1720	1710	1	0.583		5						
												⁹ Sc
Laboratory Con	atrol Samplo (I	CS) a Labo	oraton/(Control San	nnlo Dunlic	cato (LCSD)						50
					Thie Dublic	late (LCSD)						
(LCS) R3133743-2 05	·	•			I CCD Da	- Dan Limita	LCC Ovalifian	LCCD Oelifia-	DDD	DDD Limite		
Analyte	Spike Amount	mg/l	LCSD Re mg/l	sult LCS Rec.	LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits %		
Dissolved Solids	mg/l 8800	8700	8720	98.9	99.1	% 85.0-115			0.230	5		
DISSUIVED SUITES	0000	0700	0/20	30.3	33.1	03.0-113			0.230	5		

WG869541 Gravimetric Analysis	s by Method 25	540 C-2011		(YTIJAUÇ	CONTR		ИMARY			ONE LAB. NATIONWIDE.	*
Method Blank (M	IB)					<u> </u>						1 _
(MB) R3133873-1 05/04	1/16 03:49											. Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte	mg/l		mg/l	mg/l								. Tc
Dissolved Solids	U		2.82	10.0								3 Ss
L832453-01 Orig	inal Sample ((OS) • Dup	licate (D	DUP)								
(OS) L832453-01 05/04	4/16 03:49 • (DUP	R3133873-4	05/04/16 C)3:49								· Cn
	Original Result		Dilution	DUP RPD		DUP RPD Limits						5 _
Analyte	mg/l	mg/l		%		%						Sr
Dissolved Solids	848	835	1	1.58		5						6
Laboratory Contr	rol Sample (L	CS) • Labo	ratory (Control Sam	nple Duplica	nte (LCSD)						[®] Qc
(LCS) R3133873-2 05/0					1	, ,						· GI
	Spike Amount	LCS Result	LCSD Res		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		. l°Al
Dissolved Solids	8800	8920	8690	101	98.8	85.0-115			2.61	5		
												⁹ Sc

DATE/TIME:

05/17/16 22:18

PAGE:

92 of 148

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

Method Blank (MB) State MB Qualifier MB MDL MB RDL MB			,	SUMMARY ,35,36,37	CONTRO -24,25,26,31,32		(540 C-2011		WG869542 Gravimetric Analys
MB R3133869-1 O5/O4/16 O4:11 MB Result MB MB MB MB MB MB MB M										1B)	Method Blank (N
Manalyte mg/l mg/										,	,
Dissolved Solids U 2.82 10.0 L832472-24 Original Sample (OS) * Duplicate (DUP) (OS) L832472-24 Original Result Dip Rational Dip Result Result Dip Result Result Dip Result Dip Result Result Dip Result Result Result Dip Result									MB Qualifier		
L832472-24 Original Sample (OS) + Duplicate (DUP) COS L832472-24 O5/04/16 04:11 + (DUP) R3133869-4 O5/04/16 O4:11 + (DUP) R9D Limits DUP RPD Limits Sample (DUP) R9D Limits Sa											
Cos L832472-24 O5/O4/16 O4:11 • (DUP) R3133869-4 O5/O4/16 O4:11 • Original Result DUP Result Dilution DUP RPD DUP Qualifier DUP RPD Limits							10.0	2.82		U	Dissolved Solids
Malyte mg/l							IP)	olicate (DU	(OS) • Dup	ginal Sample	L832472-24 Ori
Analyte											(OS) L832472-24 05/
Dissolved Solids 20700 20400 1 1.56 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133869-2 05/04/16 04:11 • (LCSD) R3133869-3 05/04/16 04:11 Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % %					P RPD Limits					-	Analyto
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133869-2 05/04/16 04:11 • (LCSD) R3133869-3 05/04/16 04:11 Spike Amount LCS Result LCSD Result LCSD Result LCSD Result LCSD Result LCSD Result Rec. Limits LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % %											
(LCS) R3133869-2 05/04/16 04:11 • (LCSD) R3133869-3 05/04/16 04:11 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits											
(LCS) R3133869-2 05/04/16 04:11 • (LCSD) R3133869-3 05/04/16 04:11 • (LCSD Result LCS Result LCS Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % %											
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % %					e (LCSD)	ple Duplicate					
Analyte mg/l mg/l % % % % %		DDD Limits	or DDD	ualifier LCSD Qualifier	Pac Limits	I CSD Pac			•		(LCS) R3133869-2 05
				danner ECSD Guanner						•	Analyte
		5	0.796		85.0-115	99.5	100			8800	Dissolved Solids

DATE/TIME:

05/17/16 22:18

PAGE:

93 of 148

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

Wet Chemistry b	56 y Method 353.2					CONTF					ONE LAB. NATIONWIDE.	-
Method Blank	(MB)											1
(MB) R3134255-1 05	5/06/16 06:40											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100								Тс
Nitrate-Nitrite	U		0.0197	0.100								³ Ss
L832468-03 C	Original Sample	(OS) • Dup	olicate (D	UP)								33
	05/06/16 06:48 • (DUF	, ,	,									^⁴ Cn
(,	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁵ Sr
Nitrate-Nitrite	5.71	5.54	10	3.00		20						
												⁶ Qc
L832472-08 C	Original Sample	(OS) • Dup	licate (D	UP)								7
(OS) L832472-08 0	5/06/16 07:09 • (DUF) R3134255-6	05/06/16 0	7:10								GI
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ Al
Nitrate-Nitrite	U	ND	10	0.000		20						
												⁹ Sc
Laboratory Co	ntrol Sample (Lo	CS) • Labo	ratory Co	ontrol Sam	nple Duplica	ite (LCSD)						
(LCS) R3134255-2	05/06/16 06:41 • (LCS	D) R3134255-3	3 05/06/16	06:42								
	Spike Amount		LCSD Resu		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifie	-	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
	5.00	4.88	4.97	98.0	99.0	90.0-110			2.00	20		
Nitrate-Nitrite												
Nitrate-Nitrite	Original Sample	(OS) • Mat	rix Spike	(MS)								
Nitrate-Nitrite	Original Sample 05/06/16 06:55 • (MS)	· '	· ·	· '								
Nitrate-Nitrite	05/06/16 06:55 • (MS)	· '	05/06/16 06	· '	Dilution	Rec. Limits	MS Qualifier					
Nitrate-Nitrite	05/06/16 06:55 • (MS)	R3134255-5	05/06/16 06	5:56	Dilution	Rec. Limits	MS Qualifier					
Nitrate-Nitrite L832468-05 C (OS) L832468-05 C	05/06/16 06:55 • (MS) Spike Amount	R3134255-5 Original Resul	05/06/16 06 t MS Result	5:56 MS Rec.	Dilution		MS Qualifier					
Nitrate-Nitrite L832468-05 C (OS) L832468-05 C Analyte	95/06/16 06:55 • (MS) Spike Amount mg/l	R3134255-5 Original Resul	05/06/16 06 t MS Result mg/l	5:56 MS Rec.		%						

DATE/TIME:

05/17/16 22:18

PAGE: 94 of 148

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY <u>L832472-01,03,04,05,06,07,08,09,10,11,12,13</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832472-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-12 05/06/16 07:14 • (MS) R3134255-7 05/06/16 07:20 • (MSD) R3134255-8 05/06/16 07:21			
	(OS) 1 832/172-12 O5/06/16 O7:1/	1 • (MS) P3134255-7 05/06/16 07:20 .	MSD) P313/1255-8 05/06/16 07:21

(,		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	0.500	U	4.11	4.15	80.6	81.4	10	90.0-110	J6	J6	0.993	20

Analyte mg/l Nitrate-Nitrite U L832472-14 Original Science (OS) L832472-14 05/06/16 08:1 Original Science Original Science Analyte mg/l Nitrate-Nitrite 0.50 L832472-33 Original Science (OS) L832472-33 05/06/16 08:2	Gample (OS) n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06/16 08:15 Dilution DU % 0 132	MB RDL mg/l 0.100		DUP RPD Limits %			3,34		ONE	LAB. NATIONWIDE.	¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc	
(MB) R3134279-3 05/06/16 08: MB Analyte mg/ Nitrate-Nitrite U L832472-14 Original Sc (OS) L832472-14 05/06/16 08: Orig Analyte mg/ Nitrate-Nitrite 0.56 (OS) L832472-33 Original Sc (OS) L832472-33 05/06/16 08:	Sample (OS 14 · (DUP) R313 13 iginal Result DU 14 15 15 15 15 15 15 15	n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ng/l .0.0197 ate (DUP .06/16 08:15 .01ilution	mg/l 0.100		%							² Tc
MB Analyte mg/ Nitrate-Nitrite U L832472-14 Original Se (OS) L832472-14 O5/06/16 O8:1 Analyte mg/ Nitrate-Nitrite 0.50 L832472-33 Original Se (OS) L832472-33 Os/06/16 O8:1 (OS) L832472-33 Os/06/16 O8:1 OS) L832472-33 Os/06/16 O8:1 OS) L832472-33 Os/06/16 O8:1 OS) L832472-33 Os/06/16 O8:1 OS US US US US US US US	Sample (OS 14 · (DUP) R313 13 iginal Result DU 14 15 15 15 15 15 15 15	n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ng/l .0.0197 ate (DUP .06/16 08:15 .01ilution	mg/l 0.100		%							² Tc
Analyte mg/l Nitrate-Nitrite U L832472-14 Original Science (OS) L832472-14 05/06/16 08:1 Original Science Original Science Analyte mg/l Nitrate-Nitrite 0.50 L832472-33 Original Science (OS) L832472-33 05/06/16 08:2	Sample (OS)::14 • (DUP) R313 iginal Result DU y/l mg 501 ND Sample (OS):3:44 • (DUP) R3'	n 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ng/l .0.0197 ate (DUP .06/16 08:15 .01ilution	mg/l 0.100		%							³ Ss ⁴ Cn ⁵ Sr
Nitrate-Nitrite U L832472-14 Original Sc (OS) L832472-14 05/06/16 08:1 Original Sc Nitrate-Nitrite 0.56 L832472-33 Original Sc (OS) L832472-33 05/06/16 08:1	Sample (OS)::14 • (DUP) R313 iginal Result DU g/l mg 501 ND Sample (OS	0 • Duplica 34279-9 05/0 JP Result D g/1 10	0.0197 ate (DUP) 06/16 08:15 0ilution DU % 0 132	0.100 0.100 P RPD		%							³ Ss ⁴ Cn ⁵ Sr
L832472-14 Original Society (OS) L832472-14 O5/06/16 O8:10 Original Society (OS) L832472-33 Original Society (OS) L832472-33 O5/06/16 O8:10 OS) L832472-33 O5/06/16 OS)	::14 • (DUP) R313 iginal Result DU g/l mg 501 ND Sample (OS) • Duplica 34279-9 05/0 JP Result D y/I	ate (DUP) 06/16 08:15 0ilution DU % 0 132	P RPD		%							⁴ Cn
(OS) L832472-14 05/06/16 08:1 Orig Analyte mg/ Nitrate-Nitrite 0.50 L832472-33 Original S (OS) L832472-33 05/06/16 08:	::14 • (DUP) R313 iginal Result DU g/l mg 501 ND Sample (OS	34279-9 05/c JP Result D J/I 0 10	06/16 08:15 Dilution DU % 0 132	IP RPD		%							⁵ Sr
Analyte Orig Nitrate-Nitrite 0.56 L832472-33 Original S (OS) L832472-33 05/06/16 08:	iginal Result DU mg 501 ND Sample (OS) 3:44 • (DUP) R3	JP Result D g/I) 10	Dilution DU % 0 132 ate (DUF	IP RPD		%							⁵ Sr
Analyte mg/s Nitrate-Nitrite 0.50 L832472-33 Original S (OS) L832472-33 05/06/16 08:	g/l mg 501 ND Sample (OS 3:44 • (DUP) R3*	g/I) 10 (S) • Duplica	% 0 132 ate (DUF	2		%							6
Nitrate-Nitrite 0.50 L832472-33 Original S (OS) L832472-33 05/06/16 08:	501 ND Sample (OS 3:44 • (DUP) R3) 10 5) • Duplica	0 132 ate (DUF		<u>P1</u>								6
L832472-33 Original S (OS) L832472-33 05/06/16 08:	Sample (OS	S) • Duplica	ate (DUF		<u>P1</u>	20							⁶ Qc
(OS) L832472-33 05/06/16 08:	3:44 • (DUP) R3			P)									Qc_
(OS) L832472-33 05/06/16 08:	3:44 • (DUP) R3			[_]									
• •		134279-10 05											7 GI
					DUD O - 1'5'	DUD DDD Liveir							GI
Analyte mg/	iginal Result DU g/I mg		Dilution DU %	IP KPD	DUP Qualifier	DUP RPD Limits %							8
Nitrate-Nitrite U	ND		0 115		J P1	20							Al
													9 Sc
Laboratory Control Sar	imple (LCS)	• Laborat	tory Con	ntrol Sam	nple Duplic	ate (LCSD)							50
(LCS) R3134279-4 05/06/16 08	8:11 • (LCSD) R3	3134279-5 05	5/06/16 08:1	12									
·	ike Amount LC		.CSD Result	LCS Rec.	LCSD Re		LCS Qualifier	LCSD Qualifie	•	RPD Limits			
Analyte mg/			ng/l	%	%	%			%	%			
Nitrate-Nitrite 5.00	00 5.1	/ 5	5.26	103	105	90.0-110			2.00	20			
L832472-16 Original Sa	Sample (OS) • Matrix S	Spike (N	1S)									
(OS) L832472-16 05/06/16 08:	:16 • (MS) R3134	4279-6 05/06	6/16 08:18										
Spil	ike Amount Ori	iginal Result M	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier						
Analyte mg/	g/l mg	g/l m	ng/l	%		%	<u>gaamer</u>						
Nitrate-Nitrite 5.00	00 0.7	796 5	54.9	108	10	90.0-110							

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 96 of 148

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

 $\underline{\textbf{L832472-14,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34}}$

L832472-34 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(00) 1022/172 2/	1 05/06/16 00:50	. (MC) D212/1270 7	0E/06/16 00:E1	 (MSD) R3134279-8 	0E/06/16 00·E2

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.446	54.9	55.4	109	110	10	90.0-110			1.00	20

									_			má
WG870059 Wet Chemistry by Met	hod 353.2			(QUALIT	Y CONTR L832472-35		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)												1
(MB) R3134522-1 05/06/10	5 15:21											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Nitrate-Nitrite	0.0230		0.0197	0.100								3
												Ss
L832472-35 Origin	al Sample	(OS) • Dup	licate (Dl	JP)								4
(OS) L832472-35 05/06/1												Cn
Accelor	Original Result		Dilution [DUP Qualifier	DUP RPD Limits						5
Analyte Nitrate-Nitrite	mg/l 0.222	mg/l ND	10 1	9.0	J	20						Sr
Niddle-Nidite	0.222	ND	10 1	5.0	3	20						6
1000540.04.0 : :	10 1	(00) 5		10)								Qc
L832546-01 Origin												⁷ Gl
(OS) L832546-01 05/06/1					DUD Ourlifier	DUP RPD Limits						Gi
Analyte	Original Result mg/l	mg/l	Dilution D		DUP Qualifier	%						8
Nitrate-Nitrite	1.62	1.62		0.000		20						Al
												9 Sc
Laboratory Control	Sample (Le	CS) • Labo	ratory Co	ntrol Sam	nple Duplic	ate (LCSD)						30
(LCS) R3134522-2 05/06/	16 15:22 • (LCS	D) R3134522-3	05/06/16 1	5:23								
	Spike Amount		LCSD Resul		LCSD Rec		LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	4.95	4.92	99.0	98.0	90.0-110			1.00	20		
L832472-36 Origin	al Sample	(OS) - Matr	iv Spiko	(NAC)								
(OS) L832472-36 05/06/1		` '		, ,								
(US) L8324/2-36 U5/U6/I		Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%	Dilution	%	Qualifier					
Nitrate-Nitrite	5.00	0.715	39.4	77.0	10	90.0-110	<u>J6</u>					
THE COLUMN TO TH	0.00	0.710	00.1	77.0		30.0 110	<u> </u>					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 98 of 148

QUALITY CONTROL SUMMARY $\frac{\text{L832472-35,36,37}}{\text{CONTROL}}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

		(MSD) R3134522-8	

(00) 2002 000 01 00/00/10	3 10.00 (1110) 11	01010227 00	,00,1010.00	(11102) 11010 102	2 0 00,00,10	.0.00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0490	4.68	4.49	93.0	89.0	1	90.0-110		<u>J6</u>	4.00	20

WG870326 Wet Chemistry by	~			(TIJAUG	Y CONTE		UMMA	RY			ONE LAB. NATIONWI	DE. 🧩
Method Blank (N	MB)												1
(MB) R3136186-1 05/12	12/16 15:17												— ГСр
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
Cyanide	0.00294	<u> </u>	0.00180	0.00500									3 _
													³ Ss
L832450-04 Or	riginal Sample	(OS) • Dup	licate (D	UP)									4_
(OS) L832450-04 05	5/12/16 15:22 • (DUP)	R3136186-4 0	5/12/16 15:2	!3									— Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							5
Analyte	mg/l	mg/l		%		%							⁵ Sr
Cyanide	U	ND	1	0.000		20							
													⁶ Qc
Laboratory Con	itrol Sample (L	CS) • Labo	ratory Co	ontrol Sam	nple Duplic	cate (LCSD)							7
(LCS) R3136186-2 05/	i/12/16 15:18 • (LCSD)	R3136186-3 C	5/12/16 15:1	9									— GI
	Spike Amount	LCS Result	LCSD Resu	ılt LCS Rec.	LCSD Re	c. Rec. Limits	LCS Qua	lifier LCSD G	<u>ualifier</u> RPD	RPD Lim	its		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			⁸ Al
Cyanide	0.100	0.0916	0.104	92.0	104	90.0-110			13.0	20			
													⁹ Sc
L832460-08 Or	riginal Sample	(OS) • Mat	rix Spike	e (MS) • Ma	atrix Spike	Duplicate (M:	SD)						
(OS) L832460-08 05	5/12/16 15:24 • (MS) F	3136186-5 05	/12/16 15:25	• (MSD) R313	6186-6 05/12/	/16 15:26							
	Spike Amount	Original Result	MS Result	MSD Resi	ult MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Cyanide	0.200	U	0.00566	0.178	3.00	89.0	1	90.0-110	<u>J6</u>	<u>J3 J6</u>	188	20	

WG86888 Wet Chemistry by				G	UALITY	CONTR		MARY			ONE LAB. NATIONWIDE.	*
						2032472-0	5,10,17					
Method Blank (,											¹ Cp
(MB) R3133189-1 05/0												'
Acaba	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte	mg/l U		mg/l	mg/l								10
Chloride Fluoride	U		0.0519 0.0099	1.00 0.100								3
Sulfate	U		0.0099	5.00								°Ss
Suilate	U		0.0774	3.00								-
												⁴Cn
L832472-10 Ori	ginal Sample (OS) • Dupli	icate (DUF)								
(OS) L832472-10 05/	02/16 12:31 • (DUP) F	R3133189-4 05	6/02/16 12:46									⁵ Sr
,	Original Result		Dilution DU	P RPD	DUP Qualifier DU	JP RPD Limits						
Analyte	mg/l	mg/l	%		%							6
Chloride	U	0.000	1 0		15							Qc
Fluoride	U	0.000	1 0		15							7
Sulfate	U	0.000	1 0		15							GI
Laboratory Con (LCS) R3133189-2 05) R3133189-3			ple Duplicate	e (LCSD)	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		⁹ Sc
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.9	39.9	100	100	80-120			0	15		
Fluoride	8.00	8.04	8.03	101	100	80-120			0	15		
Sulfate	40.0	40.2	40.2	101	101	80-120			0	15		
L832472-17 Ori	ginal Sample (OS) • Matri:	x Spike (M	IS)								
(OS) L832472-17 05/	02/16 13:31 • (MS) R3	133189-5 05/0	02/16 13:45									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Chloride	50.0	U	49.3	99	1	80-120						
Fluoride	5.00	U	5.00	100	1	80-120						
Sulfate	50.0	U	49.8	100	1	80-120						

DATE/TIME: 05/17/16 22:18 PAGE: 101 of 148

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

WG869276 Wet Chemistry by Metl	hod 9056A			(Y CONTR		1MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)												1
(MB) R3133681-1 05/03/16	08:24											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								² Tc
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								3 Ss
Sulfate	U		0.0774	5.00								
												⁴ Cn
L832033-01 Origina	al Sample (OS) • Dup!	icate (D	UP)								
(OS) L832033-01 05/03/16	5 10:44 • (DUP)	R3133681-4 0	5/03/16 12:	.15								⁵ Sr
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						6
Chloride	40.3	41.7	10	3		15						[°] Qc
Fluoride	U	0.000	10	0		15						7
Sulfate	112	115	10	3		15						GI
L832472-19 Origina (OS) L832472-19 05/03/16		R3133681-7 05	5/03/16 18:4		DUP Qualifier	DUP RPD Limits						⁸ Al
Analyte	mg/l	mg/l		%		%						
Chloride	U	0.000	1	0		15						ļ
Fluoride	U	0.000		0		15						
Sulfate	U	0.000	1	0		15						
Laboratory Control	Sample (Lo	CS) • Labo	ratory C	Control San	nple Duplic	ate (LCSD)						
(LCS) R3133681-2 05/03/1	6 08:39 • (LCSI	D) R3133681-3	05/03/16 (ე8:54								
	Spike Amount	LCS Result	LCSD Resu		. LCSD Rec		LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.8	39.7	99	99	80-120			0	15		
Fluoride	8.00	8.01	7.99	100	100	80-120			0	15		
Sulfate	40.0	40.1	40.0	100	100	80-120			0	15		

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 102 of 148

QUALITY CONTROL SUMMARY <u>L832472-16,18,19,27,28,29,30</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832472-28 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-28	05/03/16 15:44 •	(MS) R3133681-5	05/03/16 15:59 • (MS	D) R3133681-6	05/03/16 16:14

(03) 2032-172 20 03/03/10	7 13.44 (1413) 10	3133001 3 03/	05/10 15.55 - (1	100) 100001	0 03/03/10 10								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	50.0	U	49.6	49.8	99	100	1	80-120			1	15	
Fluoride	5.00	U	5.02	5.01	100	100	1	80-120			0	15	
Sulfate	50.0	U	50.0	50.0	100	100	1	80-120			0	15	

wer onemistry by	O y Method 9056A			(YTIJAUÇ	CONTR		MARY			ONE LAB. NATIONWIDE.	鞅
Method Blank	(MB)											1
(MB) R3135217-1 05	,											Ср
(,	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								² Tc
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								3 Ss
Sulfate	U		0.0774	5.00								4
L832472-06 C	Original Sample	(OS) • Dup	licate (DI	UP)								Cn
	5/09/16 14:17 • (DUP)											⁵ Sr
	Original Result	DUP Result	Dilution [DUP RPD	DUP Qualifier [DUP RPD Limits						
Analyte	mg/l	mg/l	Q.	%	Ç	%						⁶ Qc
Fluoride	0.645	0.660	1 2	2	1	15						QC
L832472-06 C	Original Sample	(OS) • Dun	licate (DI	LJP)								⁷ Gl
	5/09/16 16:51 • (DUP)	R3135217-8 0	5/09/16 17:0)7								8 Al
	Original Result		Dilution [DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						9
												1501
Chloride Sulfate	1890 2340	1930 2410		2 3		15 15						Sc
Sulfate Laboratory Co	2340 ntrol Sample (L0	2410 CS) • Labor	100 3 ratory Co	3 ontrol Sam	1	15						Sc
Sulfate Laboratory Co	2340 ntrol Sample (LC 5/09/16 01:15 • (LCSD	2410 CS) • Labor 0) R3135217-3	100 3 ratory Cc 05/09/16 01:	3 ontrol Sam	1 nple Duplica	ite (LCSD)	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0	2340 ntrol Sample (L0 5/09/16 01:15 • (LCSD Spike Amount	2410 CS) • Labor D) R3135217-3 C LCS Result	100 3 ratory Co 05/09/16 01:: LCSD Resul	3 ontrol Sam	1	15	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits		Sc
Sulfate Laboratory Co	2340 ntrol Sample (LC 5/09/16 01:15 • (LCSD	2410 CS) • Labor 0) R3135217-3	100 3 ratory Cc 05/09/16 01:	ontrol Sam 31 It LCS Rec.	1 nple Duplica LCSD Rec.	ate (LCSD)	LCS Qualifier	LCSD Qualifier				Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte	2340 ntrol Sample (LC 5/09/16 01:15 • (LCSD Spike Amount mg/l	2410 CS) • Labor D) R3135217-3 C LCS Result mg/l	100 3 ratory Cc 05/09/16 01:: LCSD Resul mg/l	ontrol Sam 31 It LCS Rec.	nple Duplica LCSD Rec. %	te (LCSD) Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride	2340 ntrol Sample (LC 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0	2410 CS) • Labor O) R3135217-3 (LCS Result mg/l 39.3	ratory Co 05/09/16 01:: LCSD Resul mg/l 39.2	ontrol Sam 31 It LCS Rec. 98	nple Duplica LCSD Rec. %	Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifier	%	% 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate	2340 ntrol Sample (LCSD 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0	2410 CS) • Labor D) R3135217-3 (LCS Result mg/l 39.3 7.88 39.6	ratory Cc 05/09/16 01:: LCSD Resul mg/l 39.2 7.88 39.6	33 Dontrol Sam 31 It LCS Rec. 98 99 99	LCSD Rec. 98 98	Rec. Limits % 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 0 0	% 15 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate L832460-02 C	2340 ntrol Sample (LCS 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0 Original Sample	2410 CS) • Labor 0) R3135217-3 (ratory Cc 05/09/16 01:: LCSD Resul mg/l 39.2 7.88 39.6	33 control Sam (31) It LCS Rec. 98 99 99	LCSD Rec. 98 98	Rec. Limits % 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 0 0	% 15 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate L832460-02 C	2340 ntrol Sample (LCSD 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0 Original Sample (5/09/16 04:20 • (MS)	2410 CS) • Labor 0) R3135217-3 (ratory Co 05/09/16 01: LCSD Resul mg/l 39.2 7.88 39.6 rix Spike 5/09/16 04:3	33 control Sam (31) It LCS Rec. 98 99 99	LCSD Rec. 98 98	Rec. Limits % 80-120 80-120		LCSD Qualifier	% 0 0	% 15 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate L832460-02 C	2340 ntrol Sample (LCSD 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0 Original Sample (5/09/16 04:20 • (MS)	2410 CS) • Labor R3135217-3 (LCS Result mg/l 39.3 7.88 39.6 (OS) • Matri R3135217-4 0	ratory Co 05/09/16 01: LCSD Resul mg/l 39.2 7.88 39.6 rix Spike 5/09/16 04:3	33 pontrol Sam 331 It LCS Rec. 98 99 99 90 (MS)	LCSD Rec. % 98 98 99	Rec. Limits % 80-120 80-120 80-120	LCS Qualifier MS Qualifier	LCSD Qualifier	% 0 0	% 15 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate L832460-02 C (OS) L832460-02 0	2340 ntrol Sample (LCSD 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0 Driginal Sample (25/09/16 04:20 • (MS) Spike Amount mg/l 40.0 40.0	2410 CS) • Labor R3135217-3 (LCS Result mg/l 39.3 7.88 39.6 (OS) • Mati	ratory Co 05/09/16 01:: LCSD Resul mg/l 39.2 7.88 39.6 rix Spike	33 Dontrol Sam 331 It LCS Rec. 98 99 99 (MS) 36 MS Rec.	LCSD Rec. % 98 98 99	Rec. Limits % 80-120 80-120		LCSD Qualifier	% 0 0	% 15 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate L832460-02 C (OS) L832460-02 0 Analyte	2340 ntrol Sample (LCSD 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/09/16 04:20 • (MS) Spike Amount mg/l	2410 CS) • Labor R3135217-3 (LCS Result mg/l 39.3 7.88 39.6 (OS) • Mati	ratory Cc 05/09/16 01:: LCSD Resul mg/l 39.2 7.88 39.6 rix Spike 5/09/16 04:3 t MS Result mg/l	33 Dontrol Sam 331 It LCS Rec. 98 99 99 (MS) 366 MS Rec. %	LCSD Rec. % 98 98 99	Rec. Limits % 80-120 80-120 80-120 Rec. Limits		LCSD Qualifier	% 0 0	% 15 15		Sc
Sulfate Laboratory Co (LCS) R3135217-2 0 Analyte Chloride Fluoride Sulfate L832460-02 C (OS) L832460-02 0 Analyte	2340 ntrol Sample (LCSD 5/09/16 01:15 • (LCSD Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/09/16 04:20 • (MS) Spike Amount mg/l	2410 CS) • Labor R3135217-3 (LCS Result mg/l 39.3 7.88 39.6 (OS) • Mati	ratory Cc 05/09/16 01:: LCSD Resul mg/l 39.2 7.88 39.6 rix Spike 5/09/16 04:3 t MS Result mg/l	31 Dontrol Sam 31 It LCS Rec. 98 99 99 (MS) 36 MS Rec. % 103	LCSD Rec. % 98 98 99	Rec. Limits % 80-120 80-120 80-120 Rec. Limits			% 0 0	% 15 15	PAGE:	Sc

$\underset{\underline{\text{L832472-01,03,04,05,06}}}{\text{QUALITY}} \underset{\underline{\text{CONTROL SUMMARY}}}{\text{CONTROL SUMMARY}}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832460-02 Original Sample (OS) • Matrix Spike (MS)

(OS) L832460-02	05/09/16 04:20	 (MS) R3135217-4 	05/09/16 04:36

,		Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Fluoride	5.00	U	5.13	103	1	80-120	
Sulfate	50.0	U	52.1	104	1	80-120	

Тс

L832462-06 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832462-06 O5/09/1	6 11:01 • (MS) R	3135217-5 05/0	09/16 11:16 • (M	SD) R3135217-6	05/09/16 11:3	2						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	0.107	51.1	51.0	102	102	1	80-120			0	15
Fluoride	5.00	U	5.16	5.10	103	102	1	80-120			1	15
Sulfate	50.0	U	51.2	51.5	102	103	1	80-120			1	15

WG869689 Wet Chemistry by Metl	hod 9056A					Y CONTROL SUMMARY 2,13,14,20,21,22,23,24,25,26,31,32,33,34,35,36,37	*
Method Blank (MB)							¹ Cp
(MB) R3135222-1 05/07/16							СР
Analyte	MB Result mg/l	MB Qualifier	MB MDL mg/l	MB RDL mg/l			² Tc
Chloride	0.204	<u>J</u>	0.0519	1.00			
Fluoride	U	_	0.0099	0.100			3 Ss
Sulfate	U		0.0774	5.00			55
L922472 26 Origin	al Cample	(OS) Duo	liaata (I	21 1D/			⁴ Cn
L832472-26 Origin							5
(OS) L832472-26 05/07/16	6 04:50 • (DUP) Original Result	•		05:20 DUP RPD	DUP Qualifier	DUP RPD Limits	sr
Analyte	mg/l	mg/l	Dilution	% %	DUP Qualifier	%	6
Fluoride	4.34	4.31	1	1		15	[°] Qc
							7
L832472-26 Origin		, ,	`	,			GI
(OS) L832472-26 05/07/10							⁸ Al
	Original Result		Dilution	DUP RPD	DUP Qualifier		
Analyte	mg/l	mg/l		%		%	⁹ Sc
Chloride Sulfate	1520 3790	1480 3710	100 100	2		15 15	
Sullate	3/90	3/10	100	2		15	
L832472-37 Origina (OS) L832472-37 05/07/16				-			
(US) L8324/2-3/ US/U//IR	Original Result			9:03 DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l	Dilution	%	Doi Guanne.	%	
Fluoride	2.01	1.92	1	5		15	
L832472-37 Origina	al Sample (OS) • Dupl	licate ([DUP)			
(OS) L832472-37 05/07/16							
	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Chloride	611	544	50	12		15	
Sulfate	1240	1160	50	7		15	

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 106 of 148

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869689 $\underline{\textbf{L832472-07,08,11,12,13,14,20,21,22,23,24,25,26,31,32,33,34,35,36,37}$ Wet Chemistry by Method 9056A Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3135222-2 05/07/16 01:06 • (LCSD) R3135222-3 05/07/16 01:21 Spike Amount LCS Result LCSD Result RPD Limits LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l % % % % % Chloride 40.0 39.6 99 99 80-120 0 15 39.6 Fluoride 8.00 8.01 8.01 100 100 80-120 0 15 80-120 Sulfate 40.0 40.0 40 1 100 100 0 15 L832472-35 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832472-35 05/07/16 08:04 • (MS) R3135222-6 05/07/16 08:35 • (MSD) R3135222-7 05/07/16 09:22 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier **RPD** Limits % Analyte mg/l % mg/l mg/l mg/l Fluoride 5.00 0.774 4.48 5.40 74 93 80-120 <u>J3</u> 19 15 <u>J6</u> L832472-36 Original Sample (OS) • Matrix Spike (MS) (OS) L832472-36 05/07/16 17:19 • (MS) R3135222-8 05/07/16 18:18 MS Qualifier Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits Analyte mg/l mg/l % Fluoride 5.00 0.414 2.99 52 80-120 <u>J6</u>

Тс

Ss

Cn

Sr

GI

ΑI

Sc

	<u> </u>				□ 0 / \LII			******				
Wet Chemistry	by Method 9056A					L83247	72-16					
Method Blan	k (MB)											
(MB) R3136016-1	05/09/16 23:45											
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								
Chloride	U		0.0519	1.00								
Sulfate	U		0.0774	5.00								
1 932/199 01 (Original Sample	(OS) - Dur	dicato (F	JI IDI								
(OS) L832488-01	05/10/16 11:35 • (DUP)				DUD Olifian	DUD DDD I :it-						
Analyte	-	t DUP Result	Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %						
Chloride	mg/l 3690	mg/l 3620	100	2		15						
Sulfate	2510	2500	100	0		15						
Sunate	2010	2000	100	v								
L832422-15 (Original Sample	(OS) • Dup	licate ([DUP)								
(OS) L832422-15	05/10/16 16:38 • (DUP)	R3136016-7 C	5/10/16 16:	54								
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						
Chloride	569	559	10	2		15						
Sulfate	164	155	10	5		15						1
Laborator: C	Control Comple /	CC) Laba	roton.	Control Cor	mala Dunii	cata (I CCD)						
	Control Sample (L				Tible Dublic	rate (LC2D)						
(LCS) R3136016-2	05/10/16 00:01 • (LCS											
		LCS Result	LCSD Re				LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

WG870882

40.0

40.0

50.0

50.0

ACCOUNT:

TRC Solutions - Austin, TX

Chloride

Sulfate

Analyte

Chloride

Sulfate

40.2

40.2

mg/l

U

39.7

39.8

L832422-03 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

mg/l

49.3

49.2

(OS) L832422-03 05/10/16 17:09 • (MS) R3136016-8 05/10/16 17:25 • (MSD) R3136016-9 05/10/16 17:41 Spike Amount Original Result MS Result

100

100

MSD Result

mg/l

49.3

49.2

99

99

MS Rec.

99

PROJECT:

249545.0000.0000 000

80-120

80-120

MSD Rec.

%

99

98

Dilution Rec. Limits

80-120

80-120

SDG:

L832472

15

15

MSD Qualifier

RPD

0

0

DATE/TIME:

05/17/16 22:18

RPD Limits

PAGE:

108 of 148

15

15

MS Qualifier

WG869159				QI	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWIDE.	*
Method Blank (N						L832472-	13,29						
(MB) R3133255-1 05/0													- Cp
(MD) 10100200 1 00.0	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									_ ² Tc
Mercury	U		0.000049	0.000200									
													³ Ss
Laboratory Cont	rol Sample (L	.CS) • Labo	ratory Con	itrol Sampl	e Duplicat	.e (LCSD)							- ⁴ Cn
(LCS) R3133255-2 05													- Cn
Analyte	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	lifier LCSD C	Qualifier RPD	RPD Limi	its		⁵ Sr
Mercury	mg/l 0.00300	mg/l 0.00298	mg/l 0.00292	99	97	% 80-120			%	% 20			- 51
Welcury	0.00300	0.00230	0.00232	95	51	00-120			۷.	20			6
													[®] Qc
L832391-01 Orig	inal Sample (OS) • Matri	x Spike (M	S) • Matrix	Spike Dup	olicate (MSE)						7
(OS) L832391-01 05/0													- ⁷ GI
A 1 - 5_		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier		RPD Limits	8
Analyte	mg/l	mg/l ND	mg/l	mg/l	102	%	1	% 75-125			% 5	% 20	_ Al
Mercury	0.00300	Nυ	0.00307	0.00291	IUZ	97	ı	/5-125			5	20	a
													Sc

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 109 of 148

Mercury by Method	7470A					L832472-	13,29						
Method Blank (M	ЛВ)												1,
MB) R3133555-2 05/0	J4/16 09:17												
	MB Result	MB Qualifier	MB MDL	MB RDL									2.
nalyte	mg/l		mg/l	mg/l									1
Mercury,Dissolved	U		0.000049	0.000200									3,
		- 51											35
aboratory Conti					e Duplicate	e (LCSD)							4
LCS) R3133555-3 05/	/04/16 09:27 • (LCS Spike Amount		4 05/04/16 09 LCSD Result		LCSD Rec.	Rec. Limits	LCS Quali	iifier LCSD (Qualifier RPD	RPD Limi	iits		L
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			5
Mercury,Dissolved	0.00300	0.00285	0.00298	95	99	80-120			5	20			
													6
_832472-13 Orig	rinal Sample ((OS) • Matri	ix Spike (N	۸S۱ • Matrix	Snike Dur	nlicate (MS	.D)						
OS) L832472-13 05/0-													7
30, 200		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	<u> </u>
ınalyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	8
Mercury,Dissolved	0.00300	U	0.00258	0.00264	86	88	1	75-125			2	20	
													9
													Ľ

DATE/TIME:

05/17/16 22:18

PROJECT: 249545.0000.0000 000

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE: 110 of 148

WG869579

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY <u>L832472-01,03,04,05,06,07,08,09,10,11,12,13,14,16,17,18,19,20,21,22</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134068-1 05	/05/16 13:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Cadmium	U		0.00016	0.00100
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	U		0.015	0.100
Lead	0.0012		0.00024	0.00200
Manganese	U		0.00025	0.00500
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	0.000218		0.00018	0.00500

GI

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134068-2 05/05/16 13:15 • (LCSD) R3134068-3 05/05/16 13:17

(LCS) R3134068-2 ()5/U5/16 13:15 • (LCSL	J) R3134068-	3 05/05/16 13:17	/							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0481	0.0464	96	93	80-120			4	20	
Barium	0.0500	0.0493	0.0501	99	100	80-120			2	20	
Cadmium	0.0500	0.0502	0.0493	100	99	80-120			2	20	
Calcium	5.00	4.92	5.02	98	100	80-120			2	20	
Chromium	0.0500	0.0503	0.0509	101	102	80-120			1	20	
Cobalt	0.0500	0.0509	0.0520	102	104	80-120			2	20	
Iron	5.00	4.93	5.01	99	100	80-120			2	20	
Lead	0.0500	0.0505	0.0502	101	100	80-120			1	20	
Manganese	0.0500	0.0496	0.0509	99	102	80-120			3	20	
Potassium	5.00	4.91	4.88	98	98	80-120			1	20	
Selenium	0.0500	0.0474	0.0491	95	98	80-120			4	20	
Sodium	5.00	5.22	5.14	104	103	80-120			1	20	
Uranium	0.0500	0.0492	0.0500	98	100	80-120			2	20	
Vanadium	0.0500	0.0497	0.0500	99	100	80-120			1	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 111 of 148

QUALITY CONTROL SUMMARY <u>L832472-01,03,04,05,06,07,08,09,10,11,12,13,14,16,17,18,19,20,21,22</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832472-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-17 05/07/16 11:17 • (MS) R3134667-2 05/07/16 11:22 • (MSD) R3134667-3 05/07/16 11:24												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0500	0.000636	0.0479	0.0522	95	103	1	75-125			9	20
Barium	0.0500	U	0.0491	0.0504	98	101	1	75-125			3	20
Cadmium	0.0500	U	0.0506	0.0541	101	108	1	75-125			7	20
Calcium	5.00	U	4.98	5.21	100	104	1	75-125			5	20
Chromium	0.0500	U	0.0493	0.0507	99	101	1	75-125			3	20
Cobalt	0.0500	U	0.0511	0.0524	102	105	1	75-125			3	20
Potassium	5.00	U	4.80	5.06	96	101	1	75-125			5	20
Iron	5.00	U	4.77	4.93	95	99	1	75-125			3	20
Lead	0.0500	U	0.0488	0.0501	98	100	1	75-125			3	20
Manganese	0.0500	0.000293	0.0482	0.0501	96	100	1	75-125			4	20
Selenium	0.0500	U	0.0486	0.0511	97	102	1	75-125			5	20
Sodium	5.00	U	5.20	5.35	104	107	1	75-125			3	20
Uranium	0.0500	U	0.0485	0.0491	97	98	1	75-125			1	20
Vanadium	0.0500	0.000184	0.0487	0.0499	97	99	1	75-125			2	20

QUALITY CONTROL SUMMARY <u>L832472-23,24,25,26,27,28,29,30,31,32,33,34,35,36,37</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134375-7 05	6/06/16 03:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Cadmium	U		0.00016	0.00100
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	U		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	U		0.00025	0.00500
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	0.000203		0.00018	0.00500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134375-8	05/06/16 03:17	• (LCSD) R3134375-9	05/06/16 03:19
------------------	----------------	---------------------	----------------

(LCS) R3134375-8 (05/06/16 03:17 • (LCSL	J) K3134375-5	05/06/16 03:1	19							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0501	0.0480	100	96	80-120			4	20	
Barium	0.0500	0.0489	0.0484	98	97	80-120			1	20	
Cadmium	0.0500	0.0522	0.0500	104	100	80-120			4	20	
Calcium	5.00	5.12	4.94	102	99	80-120			4	20	
Chromium	0.0500	0.0529	0.0518	106	104	80-120			2	20	
Cobalt	0.0500	0.0537	0.0524	107	105	80-120			2	20	
Iron	5.00	5.20	5.07	104	101	80-120			3	20	
Lead	0.0500	0.0506	0.0499	101	100	80-120			1	20	
Manganese	0.0500	0.0524	0.0508	105	102	80-120			3	20	
Potassium	5.00	4.92	4.74	98	95	80-120			4	20	
Selenium	0.0500	0.0500	0.0480	100	96	80-120			4	20	
Sodium	5.00	4.88	4.69	98	94	80-120			4	20	
Uranium	0.0500	0.0502	0.0498	100	100	80-120			1	20	
Vanadium	0.0500	0.0513	0.0507	103	101	80-120			1	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 113 of 148

GI

QUALITY CONTROL SUMMARY <u>L832472-23,24,25,26,27,28,29,30,31,32,33,34,35,36,37</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832472-36 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-36 05/06/16 03:22 • (MS) R3134375-11 05/06/16 03:27 • (MSD) R3134375-12 05/06/16 03:29												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	U	0.0613	0.0596	123	119	5	75-125			3	20
Barium	0.0100	0.0301	0.0845	0.0823	109	104	5	75-125			3	20
Cadmium	0.0100	U	0.0559	0.0527	112	105	5	75-125			6	20
Calcium	1.00	1280	1340	1300	1190	387	5	75-125	\vee	\vee	3	20
Chromium	0.0100	0.00353	0.0576	0.0567	108	106	5	75-125			2	20
Cobalt	0.0100	U	0.0539	0.0522	108	104	5	75-125			3	20
Potassium	1.00	19.0	24.5	24.1	110	103	5	75-125			1	20
Iron	1.00	0.416	5.67	5.62	105	104	5	75-125			1	20
Lead	0.0100	U	0.0547	0.0533	109	107	5	75-125			3	20
Manganese	0.0100	0.876	0.942	0.931	133	111	5	75-125	\vee		1	20
Selenium	0.0100	U	0.0549	0.0556	110	111	5	75-125			1	20
Sodium	1.00	5150	5350	5210	3990	1170	5	75-125	EV	EV	3	20
Uranium	0.0100	U	0.0573	0.0546	115	109	5	75-125			5	20
Vanadium	0.0100	U	0.0550	0.0546	110	109	5	75-125			1	20

QUALITY CONTROL SUMMARY <u>L832472-01,03,04,05,06,07,08,09,10,11,12,13,14,16,17,18,19,20,21,22</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134180-1 05/05	/16 16:13				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium, Dissolved	U		0.00036	0.00500	
Cadmium, Dissolved	U		0.00016	0.00100	
Chromium, Dissolved	U		0.00054	0.00200	
Cobalt, Dissolved	U		0.00026	0.00200	
Iron,Dissolved	U		0.015	0.100	
Lead,Dissolved	0.000304		0.00024	0.00200	
Manganese, Dissolved	0.000472		0.00025	0.00500	
Selenium, Dissolved	0.000395		0.00038	0.00200	
Uranium, Dissolved	U		0.00033	0.0100	
Vanadium, Dissolved	0.00021		0.00018	0.00500	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134180-2 05/05	5/16 16:15 • (LCSD) R3134180-3	05/05/16 16:17								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic, Dissolved	0.0500	0.0496	0.0457	99	91	80-120			8	20	
Barium,Dissolved	0.0500	0.0482	0.0474	96	95	80-120			2	20	
Cadmium, Dissolved	0.0500	0.0526	0.0486	105	97	80-120			8	20	
Chromium, Dissolved	0.0500	0.0501	0.0493	100	99	80-120			2	20	
Cobalt, Dissolved	0.0500	0.0508	0.0506	102	101	80-120			0	20	
Iron,Dissolved	5.00	4.86	4.85	97	97	80-120			0	20	
Lead,Dissolved	0.0500	0.0499	0.0483	100	97	80-120			3	20	
Manganese, Dissolved	0.0500	0.0494	0.0489	99	98	80-120			1	20	
Selenium, Dissolved	0.0500	0.0485	0.0484	97	97	80-120			0	20	
Uranium, Dissolved	0.0500	0.0484	0.0476	97	95	80-120			2	20	
Vanadium Dissolved	0.0500	0.0495	0.0491	99	98	80-120			1	20	

L832472-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-22 05/0	5/16 16:20 • (MS)	R3134180-5 05	5/05/16 16:24	• (MSD) R313418	30-6 05/05/10	6 16:27							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Arsenic Dissolved	0.0100	0.0118	0.0645	0.0665	106	109	5	75-125			3	20	

ACCOUNT:

PROJECT: TRC Solutions - Austin, TX 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 115 of 148

QUALITY CONTROL SUMMARY <u>L832472-01,03,04,05,06,07,08,09,10,11,12,13,14,16,17,18,19,20,21,22</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832472-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-22 05/05/16	6 16:20 • (MS) F	R3134180-5 05	/05/16 16:24 • ((MSD) R313418	0-6 05/05/16	16:27					_
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	R
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%
Barium, Dissolved	0.0100	0.0208	0.0707	0.0737	100	106	5	75-125			4

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Barium, Dissolved	0.0100	0.0208	0.0707	0.0737	100	106	5	75-125			4	20
Cadmium, Dissolved	0.0100	U	0.0509	0.0533	102	107	5	75-125			5	20
Chromium, Dissolved	0.0100	U	0.0504	0.0520	101	104	5	75-125			3	20
Cobalt, Dissolved	0.0100	U	0.0501	0.0517	100	103	5	75-125			3	20
Iron,Dissolved	1.00	2.00	7.00	7.27	100	106	5	75-125			4	20
Lead, Dissolved	0.0100	U	0.0509	0.0523	102	105	5	75-125			3	20
Manganese, Dissolved	0.0100	2.14	2.19	2.31	95	332	5	75-125		$\underline{\vee}$	5	20
Selenium, Dissolved	0.0100	0.00282	0.0536	0.0582	102	111	5	75-125			8	20
Uranium,Dissolved	0.0100	U	0.0518	0.0527	104	105	5	75-125			2	20
Vanadium, Dissolved	0.0100	0.000921	0.0511	0.0537	100	106	5	75-125			5	20

QUALITY CONTROL SUMMARY <u>L832472-23,24,25,26,27,28,29,30,31,32,33,34,35,36,37</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

3)				
16 11:59				
MB Result	MB Qualifier	MB MDL	MB RDL	
mg/l		mg/l	mg/l	
U		0.00025	0.00200	
U		0.00036	0.00500	
U		0.00016	0.00100	
U		0.00054	0.00200	
U		0.00026	0.00200	
0.0559		0.015	0.100	
U		0.00024	0.00200	
0.000728		0.00025	0.00500	
0.00081		0.00035	0.00200	
U		0.00038	0.00200	
U		0.00033	0.0100	
U		0.00018	0.00500	
	16 11:59 MB Result mg/l U U U U U 0.0559 U 0.000728 0.00081 U	MB Result mg/l U U U U U U U 0.0559 U 0.000728 0.00081 U U	MB Result MB Qualifier mg/l mg/l mg/l 0.00025 U 0.00025 U 0.00036 U 0.00054 U 0.00026 U 0.00026 U 0.00026 U 0.00025 U 0.00026 U 0.00028 U 0.00038 U 0.00038	MB Result MB Qualifier MB MDL mg/l mg/l mg/l U 0.00025 0.00200 U 0.00036 0.00500 U 0.00054 0.00200 U 0.00059 0.00500 U 0.00056 0.00200 U 0.00026 0.00200 U 0.00026 0.00200 U 0.00028 0.00200 U 0.000728 0.00025 0.00500 U 0.00038 0.00200 U 0.00038 0.00200 U 0.00038 0.00200

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3134964-2	05/09/16 12	2:01 • (LCSD)	R3134964-3	05/09/16 12:03	

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic, Dissolved	0.0500	0.0499	0.0509	100	102	80-120			2	20	
Barium, Dissolved	0.0500	0.0489	0.0488	98	98	80-120			0	20	
Cadmium, Dissolved	0.0500	0.0538	0.0541	108	108	80-120			0	20	
Chromium, Dissolved	0.0500	0.0509	0.0515	102	103	80-120			1	20	
Cobalt, Dissolved	0.0500	0.0527	0.0528	105	106	80-120			0	20	
Iron,Dissolved	5.00	5.03	5.05	101	101	80-120			0	20	
Lead,Dissolved	0.0500	0.0499	0.0509	100	102	80-120			2	20	
Manganese, Dissolved	0.0500	0.0499	0.0498	100	100	80-120			0	20	
Nickel, Dissolved	0.0500	0.0529	0.0538	106	108	80-120			2	20	
Selenium, Dissolved	0.0500	0.0499	0.0502	100	100	80-120			1	20	
Uranium,Dissolved	0.0500	0.0492	0.0505	98	101	80-120			3	20	
Vanadium.Dissolved	0.0500	0.0498	0.0503	100	101	80-120			1	20	

ΑI

Sc

QUALITY CONTROL SUMMARY <u>L832472-23,24,25,26,27,28,29,30,31,32,33,34,35,36,37</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832472-28 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-28 05/09/1	6 12:06 • (MS) F	R3134964-5 05	5/09/16 12:10 •	MSD) R313496	4-6 05/09/16	12:13						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic, Dissolved	0.0500	0.000615	0.0503	0.0500	99	99	1	75-125			1	20
Barium, Dissolved	0.0500	U	0.0496	0.0490	99	98	1	75-125			1	20
Cadmium, Dissolved	0.0500	U	0.0530	0.0532	106	106	1	75-125			1	20
Chromium, Dissolved	0.0500	U	0.0504	0.0518	101	104	1	75-125			3	20
Cobalt, Dissolved	0.0500	U	0.0524	0.0529	105	106	1	75-125			1	20
Iron,Dissolved	5.00	U	5.01	5.05	100	101	1	75-125			1	20
Lead,Dissolved	0.0500	U	0.0504	0.0500	101	100	1	75-125			1	20
Manganese, Dissolved	0.0500	0.000556	0.0500	0.0493	99	97	1	75-125			1	20
Nickel, Dissolved	0.0500	0.000529	0.0526	0.0528	104	105	1	75-125			0	20
Selenium, Dissolved	0.0500	U	0.0505	0.0492	101	98	1	75-125			2	20
Uranium, Dissolved	0.0500	U	0.0495	0.0493	99	99	1	75-125			0	20
Vanadium, Dissolved	0.0500	0.000196	0.0496	0.0501	99	100	1	75-125			1	20

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG870589 L832472-13,29 Metals (ICPMS) by Method 6020 Method Blank (MB) (MB) R3134666-1 05/07/16 08:30 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l Boron U 0.0015 0.0200 Nickel U 0.00035 0.00200 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134666-2 05/07/16 08:35 • (LCSD) R3134666-3 05/07/16 08:40 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % Boron 0.0500 0.0478 0.0491 96 98 80-120 3 20 Nickel 0.0500 0.0517 0.0517 103 103 80-120 0 20 GI L832450-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832450-04 05/07/16 08:45 • (MS) R3134666-5 05/07/16 08:54 • (MSD) R3134666-6 05/07/16 08:59 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % % % % Analyte mg/l mg/l mg/l mg/l % Sc Boron 0.00500 0.689 0.704 0.712 31 47 10 75-125 20 0.0516 0.00500 0.0574 U 115 103 Nickel 10 75-125 20

SDG:

L832472

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/17/16 22:18

PAGE:

119 of 148

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG870591 L832472-13,29 Metals (ICPMS) by Method 6020 Method Blank (MB) (MB) R3134973-1 05/09/16 10:45 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l mg/l U 0.0015 0.0200 Boron, Dissolved Nickel, Dissolved U 0.00035 0.00200 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134973-2 05/09/16 10:50 • (LCSD) R3134973-3 05/09/16 10:55 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l Boron, Dissolved 0.0500 0.0484 0.0502 97 100 80-120 20 Nickel, Dissolved 0.0500 0.0530 0.0543 106 109 80-120 20 GI L832468-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:14 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % % % % % Analyte mg/l mg/l mg/l mg/l Sc Boron, Dissolved 0.00500 0.596 0.642 0.644 92 95 75-125 0 20 Nickel, Dissolved 0.00500 0.00560 0.0580 0.0600 109 75-125 105 10 20

SDG:

L832472

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/17/16 22:18

PAGE:

120 of 148

WG869044 Volatile Organic Comp	sounds (GC)	by Method 8	015D/GPO	Ql		CONTR			RY			ONE LAB. NATIONWIDE.	樂
		by wethou o	0130/680		L032-17	2-01,03,04,03,	J0,10,11,12	.,13,14					
Method Blank (MB)	<u> </u>												- ¹ Cp
(MB) R3134064-3 05/05/1		100	· ID MDI	*4D DD1									
Analyte	MB Result mg/l	MB Qualifier	MB MDL mg/l	MB RDL mg/l									² Tc
TPH (GC/FID) Low Fraction	U		0.0314	0.100									
(S) a,a,a-Trifluorotoluene(FIL			0.0511	62.0-128									3 C C
1-7-5	2)												Ss
						\							4
Laboratory Control			-		e Duplicate	e (LCSD)							- [*] Cn
(LCS) R3134064-1 05/05/1							-				_		5
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD Q	Qualifier RPD	RPD Limi	ıts		⁵ Sr
Analyte	mg/l	mg/l	mg/l	%	%	% 67.0.122			%	%			
TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	5.50	5.96	5.71	108 101	104 100	67.0-132 62.0-128			4.20	20			⁶ Qc
(3) U,U,U-IIIIIuOrotoiuerie ₍₁ i.b.	טן			101	100	02.0-120							
													7 GI
L832460-02 Origin	nal Sample	(OS) • Mat	rix Spike (N	vs) • Matrix	x Spike Dι	uplicate (MS	D)						
(OS) L832460-02 05/05/													- 8 Al
(-)		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	9
TPH (GC/FID) Low Fraction	5.50	U	4.30	4.12	78.2	74.8	1	50.0-143			4.43	20	Sc
(S) a,a,a-Trifluorotoluene(FIE	D)				99.3	98.8		62.0-128					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 121 of 148

WG869045 Volatile Organic Comp	pounds (GC)	by Method 8(015D/GRO			CONTR 18,19,20,21,22,3							ONE LAB. NATIONWIDE	E. 💥
Method Blank (MB)														_ ¹ Cp
(1415) 113.00 12.2.	MB Result	MB Qualifier	MB MDL	MB RDL										
Analyte	mg/l		mg/l	mg/l										² Tc
TPH (GC/FID) Low Fraction	U		0.0314	0.100										
(S) a,a,a-Trifluorotoluene(FID				62.0-128										³ Ss
Laboratory Control					e Duplicate	e (LCSD)								_ Cn
(LCS) R3133498-1 05/03/1	16 10:48 • (LCSD Spike Amount	•	05/03/16 11:09 LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualif	ior LCSD	Qualifier	RPD	RPD Limi	ite		⁵ Sr
Analyte	mg/l	mg/l	mg/l	%	%	%	LOO 444	<u>ei</u> <u>1001</u>		%	%	.13		
TPH (GC/FID) Low Fraction	5.50	6.39	6.05	116	110	67.0-132				5.55	20			6
(S) a,a,a-Trifluorotoluene(FID		0.55	0.00	104	105	62.0-128				3.55				[®] Qc
(-) -1	/													
														⁷ GI
L832472-16 Origina	al Sample ((OS) • Matrix	x Spike (M ^c	S) • Matrix	Spike Dur	licate (MSC)))							
(OS) L832472-16 05/03/16	â 18:47 • (MS) R	3133498-4 05/	/03/16 21:39 • (°	MSD) R313349	8-5 05/03/16	22:00								- 8 Al
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qu	ualifier	MSD Qualifier	RPD	RPD Limits	/
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%				%	%	9
TPH (GC/FID) Low Fraction	5.50	1.20	7.86	7.80	121	120	1	50.0-143				0.790	20	− °Sc
(S) a,a,a-Trifluorotoluene(FIE))				105	105		62.0-128						

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 122 of 148

WG869046 Volatile Organic Comp	pounds (GC)	by Method 8	015D/GRO	Ql	JALITY	CONTR		JMMA	.RY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)													,
													 Cp
(MB) R3133660-3 05/03/1	6 19:07 MB Result	MB Qualifier	MB MDL	MB RDL									
Analyte	mg/l	ND Qualifier	mg/l	mg/l									² Tc
TPH (GC/FID) Low Fraction	0.0316		0.0314	0.100									- [
(S) a,a,a-Trifluorotoluene(FIE			0.0311	62.0-128									3
(-/ -/-/-	,												³Ss
													4
Laboratory Control	Sample (L	CS) • Labor	atory Cont	trol Sample	e Duplicate	e (LCSD)							_ TCn
(LCS) R3133660-1 05/03/1	6 18:01 • (LCSD) R3133660-2	05/03/16 18:23	3									-
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD C	Qualifier RPD	RPD Lim	its		⁵ Sr
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			_
TPH (GC/FID) Low Fraction	5.50	5.37	5.38	97.6	97.8	67.0-132			0.180	20			⁶ Qc
(S) a,a,a-Trifluorotoluene(FID))			101	101	62.0-128							
													⁷ GI
L832472-37 Origin	al Cample	(OS) - Matr	iv Snike (N	۱۲۱ - Matrix	v Snika Du	nlicato (MS	D)						Gi
		` '	' '		<u> </u>	' '	7)						8
(OS) L832472-37 05/03/10							53 55	- 0.444	110 O NE		777		[°] Al
* salaa		Original Result		MSD Result	MS Rec.	MSD Rec. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier		RPD Limits %	
Analyte	mg/l	mg/l	mg/l	mg/l							4.79		- ⁹ Sc
TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	5.50	0.203	4.04	4.23	69.7 98.4	73.3 98.7	1	50.0-143 62.0-128			4.78	20	
(S) a,a,a-1111111101010101111111111111111111))				98.4	98.7		62.0-128					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 123 of 148

WG869702 Volatile Organic Comp	pounds (GC)	by Method 8	015D/GRO	Ql	JALITY	CONTR			4RY			ONE LAB. NATIONW	WIDE.
Method Blank (MB))												1
(MB) R3133815-4 05/04/16													
,	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² T
TPH (GC/FID) Low Fraction	U		0.0314	0.100									
(S) a,a,a-Trifluorotoluene(FID	0) 99.2			62.0-128									3 5
Laboratory Control	l Sample (L	CS) • Labo	ratory Con	trol Sampl	e Duplicate	e (LCSD)							4
(LCS) R3133815-2 05/04/1													
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	ifier LCSD	Qualifier RPD	RPD Limi	ts		[°] S
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
TPH (GC/FID) Low Fraction	5.50	5.64	5.83	103	106	67.0-132			3.35	20			6
(S) a,a,a-Trifluorotoluene(FID))			98.0	99.7	62.0-128							
													7
L832099-05 Origin	nal Samplo	(OS) a Mat	riv Sniko (1	MC) . Matri	v Sniko Du	unlicato (MAS	: '''						(
							יחי						
(OS) L832099-05 05/04/1							Dil die	2	MS O - I'S	1100 0	200	200 11-11-	Ĭ A
A 1 + -		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier	RPD	RPD Limits	-
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%		12.15	%	%	°S
TPH (GC/FID) Low Fraction	5.50	ND	5.87	7.99	107 100	145	1	50.0-143		<u>J3 J5</u>	30.6	20	
(S) a,a,a-Trifluorotoluene(FID))				100	101		62.0-128					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 124 of 148

WG870384 Volatile Organic Com	pounds (GC)	by Method 8	015D/GRO	Ql	JALITY	CONTR L832472-06		JMI	MARY				ONE LAB. NATIONW	WIDE.
Method Blank (MB)	3)													1
(MB) R3134272-3 05/05/1														— Ср
(1112)	MB Result	MB Qualifier	MB MDL	MB RDL										2
Analyte	mg/l		mg/l	mg/l										² Tc
TPH (GC/FID) Low Fraction	U		0.0314	0.100										
(S) a,a,a-Trifluorotoluene(FIL	D) 102			62.0-128										³Ss
Laboratory Contro	l Sample (L	.CS) • Labo	ratory Con	trol Sampl	e Duplicate	e (LCSD)								⁴ Cn
(LCS) R3134272-1 05/05/	16 18:55 • (LCSI	D) R3134272-2	05/05/16 19:18	3										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	fier	LCSD Qualifier	_	RPD Lim	its		⁵ Sr
Analyte	mg/l	mg/l	mg/l	%	%	%				%	%			
TPH (GC/FID) Low Fraction	5.50	5.72	5.74	104	104	67.0-132				0.480	20			⁶ Qc
(S) a,a,a-Trifluorotoluene(FIL	D)			101	101	62.0-128								
														⁷ Gl
L832472-09 Origin				-			D)							
(OS) L832472-09 05/05/														*AI
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Li	imits MS	Qualifier	MSD Qualifier		RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%				%	%	⁹ Sc
TPH (GC/FID) Low Fraction	5.50	2.09	6.24	5.37	75.4	59.6	1	50.0-1				15.0	20	
(S) a,a,a-Trifluorotoluene(FIL	0)				99.6	99.7		62.0-1	28					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 22:18 PAGE: 125 of 148

QUALITY CONTROL SUMMARY <u>L832472-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

MB) R3134035-3 05/03/16				
(NIB) K3134033-3 03/03/16	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l	WID Qualifier	mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000331	0.00100
Bromoform	U		0.000380	0.00100
Bromomethane	U		0.000409	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000365	0.00100
Carbon tetrachloride	U		0.000275	0.00100
Chlorobenzene	U		0.000379	0.00100
Chlorodibromomethane	U		0.000348	0.00100
Chloroethane	U		0.000327	0.00500
Chloroform	U		0.000453	0.00500
Chloromethane	U		0.000324	0.00250
1,2-Dibromoethane	U		0.000276	0.00100
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
	U		0.000361	
1,1-Dichloroethene				0.00100
cis-1,2-Dichloroethene trans-1,2-Dichloroethene	U		0.000260 0.000396	0.00100 0.00100
	U			
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 126 of 148

QUALITY CONTROL SUMMARY <u>L832472-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134035-3 05/03/1	6 22:37				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	103			90.0-115	
(S) Dibromofluoromethane	103			79.0-121	
(S) 4-Bromofluorobenzene	98.6			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134035-1 05/03/16 20:5	6 • (LCSD) R3134035-2 05/03/16 21:16
--------------------------------	--------------------------------------

(LC3) R3134033-1 05/03	3/10 20.30 • (LC3	D) K3134033-	2 05/05/16 21.1	O							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.0968	0.0993	77.5	79.4	28.7-175			2.49	20.9	
Benzene	0.0250	0.0282	0.0274	113	110	73.0-122			2.67	20	
Bromodichloromethane	0.0250	0.0268	0.0268	107	107	75.5-121			0.120	20	
Bromoform	0.0250	0.0257	0.0258	103	103	71.5-131			0.0700	20	
Bromomethane	0.0250	0.0258	0.0257	103	103	22.4-187			0.290	20	
n-Butylbenzene	0.0250	0.0310	0.0300	124	120	75.9-134			3.17	20	
sec-Butylbenzene	0.0250	0.0277	0.0275	111	110	80.6-126			0.920	20	
Carbon disulfide	0.0250	0.0296	0.0290	118	116	53.0-134			2.16	20	
Carbon tetrachloride	0.0250	0.0263	0.0260	105	104	70.9-129			1.11	20	
Chlorobenzene	0.0250	0.0268	0.0261	107	104	79.7-122			2.73	20	
Chlorodibromomethane	0.0250	0.0255	0.0248	102	99.0	78.2-124			3.15	20	
Chloroethane	0.0250	0.0260	0.0252	104	101	41.2-153			3.14	20	
Chloroform	0.0250	0.0273	0.0267	109	107	73.2-125			2.55	20	
Chloromethane	0.0250	0.0298	0.0292	119	117	55.8-134			2.17	20	
1,2-Dibromoethane	0.0250	0.0258	0.0255	103	102	79.8-122			1.16	20	
1,1-Dichloroethane	0.0250	0.0278	0.0274	111	109	71.7-127			1.60	20	

TRC Solutions - Austin, TX

249545.0000.0000 000

DATE/TIME: 05/17/16 22:18

PAGE: 127 of 148

QUALITY CONTROL SUMMARY <u>L832472-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134035-1 05/03/1	6 20:56 • (LCS	D) R3134035-:	2 05/03/16 21:1	6							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0256	0.0257	102	103	65.3-126			0.400	20	
1,1-Dichloroethene	0.0250	0.0282	0.0272	113	109	59.9-137			3.42	20	
cis-1,2-Dichloroethene	0.0250	0.0276	0.0271	110	109	77.3-122			1.52	20	
trans-1,2-Dichloroethene	0.0250	0.0285	0.0275	114	110	72.6-125			3.33	20	
1,2-Dichloropropane	0.0250	0.0273	0.0271	109	109	77.4-125			0.420	20	
cis-1,3-Dichloropropene	0.0250	0.0277	0.0274	111	110	77.7-124			1.20	20	
trans-1,3-Dichloropropene	0.0250	0.0249	0.0247	99.7	99.0	73.5-127			0.800	20	
Ethylbenzene	0.0250	0.0272	0.0264	109	106	80.9-121			3.03	20	
2-Hexanone	0.125	0.136	0.139	109	111	59.4-151			2.02	20	
Isopropylbenzene	0.0250	0.0279	0.0272	111	109	81.6-124			2.23	20	
p-Isopropyltoluene	0.0250	0.0277	0.0272	111	109	77.6-129			2.13	20	
2-Butanone (MEK)	0.125	0.135	0.143	108	114	46.4-155			5.67	20	
Methylene Chloride	0.0250	0.0274	0.0272	110	109	69.5-120			0.750	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.137	0.144	110	115	63.3-138			5.01	20	
Methyl tert-butyl ether	0.0250	0.0270	0.0283	108	113	70.1-125			4.79	20	
Naphthalene	0.0250	0.0218	0.0228	87.4	91.0	69.7-134			4.06	20	
n-Propylbenzene	0.0250	0.0277	0.0267	111	107	81.9-122			3.59	20	
Styrene	0.0250	0.0287	0.0276	115	110	79.9-124			4.07	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0262	0.0258	105	103	78.5-125			1.34	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0263	0.0265	105	106	79.3-123			0.800	20	
Tetrachloroethene	0.0250	0.0258	0.0252	103	101	73.5-130			2.45	20	
Toluene	0.0250	0.0276	0.0269	110	108	77.9-116			2.60	20	
1,1,1-Trichloroethane	0.0250	0.0277	0.0276	111	110	71.1-129			0.220	20	
1,1,2-Trichloroethane	0.0250	0.0257	0.0256	103	103	81.6-120			0.230	20	
Trichloroethene	0.0250	0.0262	0.0256	105	103	79.5-121			2.32	20	
1,2,4-Trimethylbenzene	0.0250	0.0270	0.0265	108	106	79.0-122			1.75	20	
1,3,5-Trimethylbenzene	0.0250	0.0274	0.0269	110	108	81.0-123			1.84	20	
Vinyl chloride	0.0250	0.0273	0.0269	109	108	61.5-134			1.39	20	
Xylenes, Total	0.0750	0.0825	0.0797	110	106	79.2-122			3.40	20	
o-Xylene	0.0250	0.0275	0.0268	110	107	79.1-123			2.45	20	
m&p-Xylenes	0.0500	0.0550	0.0529	110	106	78.5-122			3.88	20	
(S) Toluene-d8				103	104	90.0-115					
(S) Dibromofluoromethane				104	104	79.0-121					
(S) 4-Bromofluorobenzene				98.0	97.5	80.1-120					

PROJECT: 249545.0000.0000 000

L832472

DATE/TIME:

PAGE: 128 of 148

QUALITY CONTROL SUMMARY <u>L832472-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832472-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0281

0.0280

(OS) L832472-01 05/04/16	6 01:05 • (MS) F	23134035-4 05	5/03/16 23:25	 (MSD) R31340 	035-5 05/03/	/16 23:45						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	0.0120	0.0866	0.0888	59.7	61.5	1	25.0-156			2.51	21.5
Benzene	0.0250	0.00114	0.0287	0.0288	110	111	1	58.6-133			0.430	20
Bromodichloromethane	0.0250	U	0.0272	0.0274	109	109	1	69.2-127			0.530	20
Bromoform	0.0250	U	0.0268	0.0267	107	107	1	66.3-140			0.380	20
Bromomethane	0.0250	U	0.0260	0.0263	104	105	1	16.6-183			1.01	20.5
n-Butylbenzene	0.0250	U	0.0312	0.0314	125	126	1	64.8-145			0.750	20
sec-Butylbenzene	0.0250	U	0.0282	0.0284	113	113	1	66.8-139			0.450	20
Carbon disulfide	0.0250	U	0.0287	0.0308	115	123	1	34.9-138			7.08	20
Carbon tetrachloride	0.0250	U	0.0263	0.0277	105	111	1	60.6-139			5.22	20
Chlorobenzene	0.0250	U	0.0270	0.0271	108	108	1	70.1-130			0.360	20
Chlorodibromomethane	0.0250	U	0.0259	0.0259	103	104	1	71.6-132			0.100	20
Chloroethane	0.0250	U	0.0261	0.0266	104	106	1	33.3-155			1.81	20
Chloroform	0.0250	U	0.0273	0.0276	109	110	1	66.1-133			0.870	20
Chloromethane	0.0250	U	0.0295	0.0299	118	119	1	40.7-139			1.25	20
1,2-Dibromoethane	0.0250	U	0.0265	0.0264	106	106	1	73.8-131			0.430	20
1,1-Dichloroethane	0.0250	U	0.0278	0.0282	111	113	1	64.0-134			1.32	20
1,2-Dichloroethane	0.0250	U	0.0260	0.0261	104	104	1	60.7-132			0.410	20
1,1-Dichloroethene	0.0250	U	0.0254	0.0284	102	114	1	48.8-144			11.1	20
cis-1,2-Dichloroethene	0.0250	U	0.0277	0.0280	111	112	1	60.6-136			1.04	20
trans-1,2-Dichloroethene	0.0250	U	0.0283	0.0283	113	113	1	61.0-132			0.150	20
1,2-Dichloropropane	0.0250	U	0.0275	0.0279	110	112	1	69.7-130			1.34	20
cis-1,3-Dichloropropene	0.0250	U	0.0278	0.0278	111	111	1	71.1-129			0.130	20
trans-1,3-Dichloropropene	0.0250	U	0.0262	0.0258	105	103	1	66.3-136			1.29	20
Ethylbenzene	0.0250	U	0.0276	0.0278	110	111	1	62.7-136			0.860	20
2-Hexanone	0.125	U	0.139	0.135	111	108	1	59.4-154			3.17	20.1
Isopropylbenzene	0.0250	0.00143	0.0292	0.0292	111	111	1	67.4-136			0.180	20
p-Isopropyltoluene	0.0250	U	0.0282	0.0281	113	112	1	62.8-143			0.360	20
2-Butanone (MEK)	0.125	U	0.118	0.116	94.2	92.6	1	45.0-156			1.67	20.8
Methylene Chloride	0.0250	U	0.0275	0.0275	110	110	1	61.5-125			0.240	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.148	0.144	118	115	1	60.7-150			2.55	20
Methyl tert-butyl ether	0.0250	U	0.0279	0.0287	112	115	1	61.4-136			2.64	20
Naphthalene	0.0250	U	0.0229	0.0234	91.8	93.8	1	61.8-143			2.14	20
n-Propylbenzene	0.0250	0.000365	0.0283	0.0285	112	113	1	63.2-139			0.890	20
Styrene	0.0250	U	0.0286	0.0289	115	116	1	68.2-133			0.940	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0268	0.0268	107	107	1	70.5-132			0.160	20

0.0250

U

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

112

SDG: L832472

64.9-145

DATE/TIME: 05/17/16 22:18

0.250

20

PAGE: 129 of 148

WG868984 QUALITY CONTROL SUMMARY Volatile Organic Compounds (GC/MS) by Method 82608 L832472-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

ONE LAB. NATIONWIDE.

L832472-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0265	0.0268	106	107	1	57.4-141			1.01	20
Toluene	0.0250	U	0.0276	0.0276	110	110	1	67.8-124			0.0400	20
1,1,1-Trichloroethane	0.0250	U	0.0282	0.0288	113	115	1	58.7-134			2.08	20
1,1,2-Trichloroethane	0.0250	U	0.0262	0.0263	105	105	1	74.1-130			0.420	20
Trichloroethene	0.0250	U	0.0264	0.0266	106	106	1	48.9-148			0.780	20
1,2,4-Trimethylbenzene	0.0250	U	0.0274	0.0274	110	110	1	60.5-137			0.0700	20
1,3,5-Trimethylbenzene	0.0250	U	0.0278	0.0278	111	111	1	67.9-134			0.130	20
Vinyl chloride	0.0250	U	0.0271	0.0276	108	111	1	44.3-143			1.93	20
Xylenes, Total	0.0750	U	0.0826	0.0831	110	111	1	65.6-133			0.600	20
o-Xylene	0.0250	U	0.0278	0.0278	111	111	1	67.1-133			0.0300	20
m&p-Xylenes	0.0500	U	0.0548	0.0553	110	111	1	64.1-133			0.920	20
(S) Toluene-d8					103	103		90.0-115				
(S) Dibromofluoromethane					103	103		79.0-121				
(S) 4-Bromofluorobenzene					97.9	97.0		80.1-120				

QUALITY CONTROL SUMMARY <u>L832472-21,22,23,24,25,26,27,28,29,30,31,32,33,34</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

Benzene U 0.000331 0.00100 Bromodichloromethane U 0.000380 0.00100 Bromomethane U 0.000469 0.00100 Bromomethane U 0.00086 0.00500 n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Analyte mg/l mg/l Acetone U 0.0100 0.0500 Benzene U 0.00031 0.00100 Bromodichloromethane U 0.000380 0.00100 Bromomethane U 0.000469 0.00100 Bromomethane U 0.00086 0.00500 n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Acetone U 0.0100 0.0500 Benzene U 0.000331 0.00100 Bromodichloromethane U 0.000380 0.00100 Bromoform U 0.000469 0.00100 Bromomethane U 0.000866 0.00500 n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Benzene U 0.000331 0.00100 Bromodichloromethane U 0.000380 0.00100 Bromoform U 0.000469 0.00100 Bromomethane U 0.00086 0.00500 n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Bromodichloromethane U 0.000380 0.00100 Bromoform U 0.000469 0.00100 Bromomethane U 0.000866 0.00500 n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Bromoform U 0.000469 0.00100 Bromomethane U 0.000866 0.00500 n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Bromomethane U 0.00866 0.00500 n-Butylbenzene U 0.00361 0.00100 sec-Butylbenzene U 0.00365 0.00100 Carbon disulfide U 0.000275 0.00100	
n-Butylbenzene U 0.000361 0.00100 sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
sec-Butylbenzene U 0.000365 0.00100 Carbon disulfide U 0.000275 0.00100	
Carbon disulfide U 0.000275 0.00100	
Carbon tetrachloride II 0.000379 0.00100	
0.00070 0.0000	
Chlorobenzene U 0.000348 0.00100	
Chlorodibromomethane U 0.000327 0.00100	
Chloroethane U 0.000453 0.00500	
Chloroform U 0.000324 0.00500	
Chloromethane U 0.000276 0.00250	
1,2-Dibromoethane U 0.000381 0.00100	
1,1-Dichloroethane U 0.000259 0.00100	
1,2-Dichloroethane U 0.000361 0.00100	
1,1-Dichloroethene U 0.000398 0.00100	
cis-1,2-Dichloroethene U 0.000260 0.00100	
trans-1,2-Dichloroethene U 0.000396 0.00100	
1,2-Dichloropropane U 0.000306 0.00100	
cis-1,3-Dichloropropene U 0.000418 0.00100	
trans-1,3-Dichloropropene U 0.000419 0.00100	
Ethylbenzene U 0.000384 0.00100	
2-Hexanone U 0.00382 0.0100	
Isopropylbenzene U 0.000326 0.00100	
p-Isopropyltoluene U 0.000350 0.00100	
2-Butanone (MEK) U 0.00393 0.0100	
Methylene Chloride U 0.00100 0.00500	
4-Methyl-2-pentanone (MiBK) U 0.00214 0.0100	
Methyl tert-butyl ether U 0.000367 0.00100	
Naphthalene U 0.00100 0.00500	
n-Propylbenzene U 0.000349 0.00100	
Styrene U 0.000307 0.00100	
1,1,1,2-Tetrachloroethane U 0.000385 0.00100	
1,1,2,2-Tetrachloroethane U 0.000130 0.00100	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 131 of 148

QUALITY CONTROL SUMMARY <u>L832472-21,22,23,24,25,26,27,28,29,30,31,32,33,34</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3133628-3 05/04/1	6 09:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	103			90.0-115	
(S) Dibromofluoromethane	100			79.0-121	
(S) 4-Bromofluorobenzene	96.5			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LC3) R3133626-1 U3/U	+/10 Uo.31 • (LC3L	J) K3133020-2	2 05/04/16 06.4	+9							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.197	0.192	157	154	28.7-175			2.38	20.9	
Benzene	0.0250	0.0259	0.0253	104	101	73.0-122			2.34	20	
Bromodichloromethane	0.0250	0.0244	0.0241	97.7	96.3	75.5-121			1.42	20	
Bromoform	0.0250	0.0250	0.0245	100	97.8	71.5-131			2.33	20	
Bromomethane	0.0250	0.0213	0.0215	85.1	86.0	22.4-187			1.12	20	
n-Butylbenzene	0.0250	0.0223	0.0229	89.4	91.6	75.9-134			2.48	20	
sec-Butylbenzene	0.0250	0.0230	0.0226	91.9	90.5	80.6-126			1.46	20	
Carbon disulfide	0.0250	0.0240	0.0226	96.1	90.3	53.0-134			6.31	20	
Carbon tetrachloride	0.0250	0.0239	0.0234	95.7	93.7	70.9-129			2.07	20	
Chlorobenzene	0.0250	0.0241	0.0235	96.3	93.9	79.7-122			2.54	20	
Chlorodibromomethane	0.0250	0.0242	0.0244	96.8	97.5	78.2-124			0.780	20	
Chloroethane	0.0250	0.0231	0.0226	92.4	90.3	41.2-153			2.28	20	
Chloroform	0.0250	0.0254	0.0249	102	99.7	73.2-125			1.96	20	
Chloromethane	0.0250	0.0286	0.0279	115	112	55.8-134			2.62	20	
1,2-Dibromoethane	0.0250	0.0240	0.0238	96.1	95.3	79.8-122			0.830	20	
1,1-Dichloroethane	0.0250	0.0273	0.0265	109	106	71.7-127			2.77	20	

TRC Solutions - Austin, TX

L832472

DATE/TIME:

PAGE: 132 of 148

QUALITY CONTROL SUMMARY <u>L832472-21,22,23,24,25,26,27,28,29,30,31,32,33,34</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133628-1 05/04/1	6 08:31 • (LCSE) R3133628-2	05/04/16 08:4	19							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0252	0.0250	101	100	65.3-126			0.630	20	
1,1-Dichloroethene	0.0250	0.0237	0.0227	94.7	90.9	59.9-137			4.14	20	
cis-1,2-Dichloroethene	0.0250	0.0253	0.0248	101	99.3	77.3-122			1.92	20	
trans-1,2-Dichloroethene	0.0250	0.0255	0.0246	102	98.2	72.6-125			3.79	20	
1,2-Dichloropropane	0.0250	0.0283	0.0274	113	109	77.4-125			3.26	20	
cis-1,3-Dichloropropene	0.0250	0.0268	0.0258	107	103	77.7-124			4.11	20	
trans-1,3-Dichloropropene	0.0250	0.0263	0.0256	105	103	73.5-127			2.68	20	
Ethylbenzene	0.0250	0.0236	0.0231	94.5	92.2	80.9-121			2.41	20	
2-Hexanone	0.125	0.145	0.142	116	114	59.4-151			1.66	20	
Isopropylbenzene	0.0250	0.0223	0.0218	89.2	87.3	81.6-124			2.18	20	
p-Isopropyltoluene	0.0250	0.0227	0.0225	90.7	89.9	77.6-129			0.960	20	
2-Butanone (MEK)	0.125	0.188	0.184	150	147	46.4-155			1.98	20	
Methylene Chloride	0.0250	0.0242	0.0236	96.6	94.5	69.5-120			2.19	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.153	0.151	122	121	63.3-138			1.05	20	
Methyl tert-butyl ether	0.0250	0.0255	0.0259	102	104	70.1-125			1.87	20	
Naphthalene	0.0250	0.0225	0.0240	89.8	95.8	69.7-134			6.44	20	
n-Propylbenzene	0.0250	0.0233	0.0228	93.4	91.2	81.9-122			2.39	20	
Styrene	0.0250	0.0234	0.0237	93.5	94.9	79.9-124			1.54	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0241	0.0238	96.2	95.0	78.5-125			1.23	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0251	0.0239	100	95.5	79.3-123			4.99	20	
Tetrachloroethene	0.0250	0.0237	0.0229	94.7	91.7	73.5-130			3.25	20	
Toluene	0.0250	0.0250	0.0242	100	96.9	77.9-116			3.39	20	
1,1,1-Trichloroethane	0.0250	0.0242	0.0242	96.9	96.7	71.1-129			0.160	20	
1,1,2-Trichloroethane	0.0250	0.0248	0.0245	99.1	97.9	81.6-120			1.21	20	
Trichloroethene	0.0250	0.0258	0.0249	103	99.7	79.5-121			3.49	20	
1,2,4-Trimethylbenzene	0.0250	0.0232	0.0227	92.7	90.7	79.0-122			2.12	20	
1,3,5-Trimethylbenzene	0.0250	0.0229	0.0225	91.5	90.1	81.0-123			1.57	20	
Vinyl chloride	0.0250	0.0245	0.0236	98.1	94.6	61.5-134			3.67	20	
Xylenes, Total	0.0750	0.0706	0.0687	94.2	91.6	79.2-122			2.82	20	
o-Xylene	0.0250	0.0237	0.0231	94.7	92.3	79.1-123			2.55	20	
m&p-Xylenes	0.0500	0.0470	0.0456	93.9	91.2	78.5-122			2.96	20	
(S) Toluene-d8				102	102	90.0-115					
(S) Dibromofluoromethane				102	103	79.0-121					
(S) 4-Bromofluorobenzene				96.7	96.3	80.1-120					

PROJECT:

DATE/TIME:

PAGE: 133 of 148

QUALITY CONTROL SUMMARY <u>L832472-21,22,23,24,25,26,27,28,29,30,31,32,33,34</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832472-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-22 05/04/1	6 13:31 • (MS) R	3133628-4 05	/04/16 10:59 •	(MSD) R31336:	28-5 05/04/1	6 11:18						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0993	0.0978	79.5	78.3	1	25.0-156			1.55	21.5
Benzene	0.0250	U	0.0267	0.0262	107	105	1	58.6-133			1.81	20
Bromodichloromethane	0.0250	U	0.0245	0.0246	97.8	98.3	1	69.2-127			0.510	20
Bromoform	0.0250	U	0.0244	0.0247	97.6	98.9	1	66.3-140			1.31	20
Bromomethane	0.0250	U	0.0207	0.0206	82.7	82.4	1	16.6-183			0.460	20.5
n-Butylbenzene	0.0250	U	0.0237	0.0237	94.8	94.8	1	64.8-145			0.0100	20
sec-Butylbenzene	0.0250	U	0.0230	0.0227	91.9	90.6	1	66.8-139			1.41	20
Carbon disulfide	0.0250	U	0.0233	0.0233	93.3	93.1	1	34.9-138			0.300	20
Carbon tetrachloride	0.0250	U	0.0247	0.0242	99.0	96.9	1	60.6-139			2.19	20
Chlorobenzene	0.0250	U	0.0232	0.0234	92.8	93.5	1	70.1-130			0.670	20
Chlorodibromomethane	0.0250	U	0.0231	0.0232	92.5	92.7	1	71.6-132			0.240	20
Chloroethane	0.0250	U	0.0224	0.0219	89.8	87.7	1	33.3-155			2.30	20
Chloroform	0.0250	U	0.0259	0.0256	103	102	1	66.1-133			0.990	20
Chloromethane	0.0250	U	0.0257	0.0250	103	100	1	40.7-139			2.83	20
1,2-Dibromoethane	0.0250	U	0.0240	0.0239	95.8	95.5	1	73.8-131			0.360	20
1,1-Dichloroethane	0.0250	U	0.0277	0.0276	111	110	1	64.0-134			0.410	20
1,2-Dichloroethane	0.0250	U	0.0251	0.0253	100	101	1	60.7-132			0.930	20
1,1-Dichloroethene	0.0250	U	0.0238	0.0229	95.2	91.7	1	48.8-144			3.73	20
cis-1,2-Dichloroethene	0.0250	U	0.0253	0.0254	101	102	1	60.6-136			0.440	20
trans-1,2-Dichloroethene	0.0250	U	0.0254	0.0249	101	99.4	1	61.0-132			2.03	20
1,2-Dichloropropane	0.0250	U	0.0283	0.0284	113	114	1	69.7-130			0.460	20
cis-1,3-Dichloropropene	0.0250	U	0.0253	0.0256	101	102	1	71.1-129			1.17	20
trans-1,3-Dichloropropene	0.0250	U	0.0266	0.0268	106	107	1	66.3-136			0.830	20
Ethylbenzene	0.0250	U	0.0229	0.0229	91.4	91.7	1	62.7-136			0.280	20
2-Hexanone	0.125	U	0.112	0.114	89.8	91.5	1	59.4-154			1.94	20.1
Isopropylbenzene	0.0250	U	0.0222	0.0223	88.7	89.1	1	67.4-136			0.380	20
p-Isopropyltoluene	0.0250	U	0.0220	0.0219	88.1	87.6	1	62.8-143			0.610	20
2-Butanone (MEK)	0.125	U	0.139	0.142	111	113	1	45.0-156			2.19	20.8
Methylene Chloride	0.0250	U	0.0243	0.0243	97.4	97.0	1	61.5-125			0.380	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.152	0.153	121	123	1	60.7-150			1.24	20
Methyl tert-butyl ether	0.0250	U	0.0273	0.0278	109	111	1	61.4-136			2.07	20
Naphthalene	0.0250	U	0.0246	0.0250	98.3	100	1	61.8-143			1.75	20
n-Propylbenzene	0.0250	U	0.0229	0.0227	91.7	90.8	1	63.2-139			0.970	20
Styrene	0.0250	U	0.0224	0.0222	89.7	89.0	1	68.2-133			0.760	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0235	0.0235	94.2	93.8	1	70.5-132			0.350	20

1,1,2,2-Tetrachloroethane

249545.0000.0000 000

L832472

DATE/TIME:

PAGE: 134 of 148

0.0250

U

0.0254

0.0255

102

102

64.9-145

0.130

20

QUALITY CONTROL SUMMARY <u>L832472-21,22,23,24,25,26,27,28,29,30,31,32,33,34</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832472-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0227	0.0228	90.8	91.0	1	57.4-141			0.260	20
Toluene	0.0250	U	0.0252	0.0249	101	99.7	1	67.8-124			0.920	20
1,1,1-Trichloroethane	0.0250	U	0.0254	0.0251	101	100	1	58.7-134			0.990	20
1,1,2-Trichloroethane	0.0250	U	0.0244	0.0242	97.5	96.7	1	74.1-130			0.770	20
Trichloroethene	0.0250	U	0.0256	0.0250	102	99.8	1	48.9-148			2.41	20
1,2,4-Trimethylbenzene	0.0250	U	0.0226	0.0227	90.5	90.7	1	60.5-137			0.160	20
1,3,5-Trimethylbenzene	0.0250	U	0.0229	0.0227	91.6	91.0	1	67.9-134			0.730	20
Vinyl chloride	0.0250	U	0.0228	0.0222	91.2	88.8	1	44.3-143			2.72	20
Xylenes, Total	0.0750	U	0.0693	0.0690	92.4	92.0	1	65.6-133			0.490	20
o-Xylene	0.0250	U	0.0233	0.0230	93.4	92.1	1	67.1-133			1.40	20
m&p-Xylenes	0.0500	U	0.0460	0.0460	92.0	91.9	1	64.1-133			0.0300	20
(S) Toluene-d8					102	102		90.0-115				
(S) Dibromofluoromethane					102	103		79.0-121				
(S) 4-Bromofluorobenzene					94.4	96.2		80.1-120				

QUALITY CONTROL SUMMARY $\frac{\text{L832472-35,36,37}}{\text{CONTROL}}$

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

(MB) R3133943-3 05/04/16 18:58

Volatile Organic Compounds (GC/MS) by Method 8260B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analisto		MD Qualifier		
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100
,,,,z,z reademoroculaire	0		0.000100	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 136 of 148

QUALITY CONTROL SUMMARY L832472-35,36,37

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3133943-3 05/04/1	6 18:58				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Frichloroethene	U		0.000398	0.00100	
,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Kylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
n&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	107			90.0-115	
(S) Dibromofluoromethane	108			79.0-121	
(S) 4-Bromofluorobenzene	104			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3133943-1	05/04/16 17:49	· (LCSD) R3133943-2	05/04/16 18:06
-----------------	----------------	---------------------	----------------

(LCS) R3133943-1 U5/U2	+/16 17:49 • (LCSL) K3133943-2	05/04/16 18:06)							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.151	0.153	121	122	28.7-175			0.860	20.9	
Benzene	0.0250	0.0241	0.0247	96.4	99.0	73.0-122			2.60	20	
Bromodichloromethane	0.0250	0.0244	0.0250	97.4	99.9	75.5-121			2.49	20	
Bromoform	0.0250	0.0238	0.0237	95.2	94.9	71.5-131			0.370	20	
Bromomethane	0.0250	0.0252	0.0283	101	113	22.4-187			11.7	20	
n-Butylbenzene	0.0250	0.0240	0.0241	95.8	96.6	75.9-134			0.740	20	
sec-Butylbenzene	0.0250	0.0242	0.0257	96.8	103	80.6-126			6.11	20	
Carbon disulfide	0.0250	0.0227	0.0249	90.7	99.6	53.0-134			9.42	20	
Carbon tetrachloride	0.0250	0.0221	0.0239	88.6	95.6	70.9-129			7.62	20	
Chlorobenzene	0.0250	0.0237	0.0243	94.9	97.1	79.7-122			2.23	20	
Chlorodibromomethane	0.0250	0.0242	0.0242	96.6	96.7	78.2-124			0.140	20	
Chloroethane	0.0250	0.0249	0.0274	99.6	110	41.2-153			9.58	20	
Chloroform	0.0250	0.0245	0.0253	98.0	101	73.2-125			3.35	20	
Chloromethane	0.0250	0.0251	0.0272	100	109	55.8-134			8.27	20	
1,2-Dibromoethane	0.0250	0.0240	0.0230	96.1	92.0	79.8-122			4.38	20	
1,1-Dichloroethane	0.0250	0.0248	0.0256	99.3	102	71.7-127			3.06	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832472

DATE/TIME: 05/17/16 22:18

PAGE: 137 of 148

QUALITY CONTROL SUMMARY $\frac{\text{L832472-35,36,37}}{\text{CONTROL}}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3133943-1 05/04/1	6 17:49 • (LCSD) R3133943-2	05/04/16 18:06	5							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0242	0.0243	97.0	97.0	65.3-126			0.0600	20	
1,1-Dichloroethene	0.0250	0.0254	0.0273	102	109	59.9-137			7.01	20	
cis-1,2-Dichloroethene	0.0250	0.0245	0.0259	97.9	104	77.3-122			5.78	20	
trans-1,2-Dichloroethene	0.0250	0.0248	0.0267	99.1	107	72.6-125			7.36	20	
1,2-Dichloropropane	0.0250	0.0244	0.0250	97.4	99.9	77.4-125			2.53	20	
cis-1,3-Dichloropropene	0.0250	0.0250	0.0243	99.8	97.2	77.7-124			2.65	20	
trans-1,3-Dichloropropene	0.0250	0.0242	0.0236	96.7	94.6	73.5-127			2.22	20	
Ethylbenzene	0.0250	0.0237	0.0246	94.9	98.5	80.9-121			3.70	20	
2-Hexanone	0.125	0.127	0.119	101	95.0	59.4-151			6.51	20	
Isopropylbenzene	0.0250	0.0246	0.0259	98.2	103	81.6-124			5.19	20	
p-Isopropyltoluene	0.0250	0.0243	0.0259	97.0	104	77.6-129			6.55	20	
2-Butanone (MEK)	0.125	0.113	0.108	90.8	86.1	46.4-155			5.22	20	
Methylene Chloride	0.0250	0.0235	0.0253	94.1	101	69.5-120			7.49	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.127	0.124	102	99.6	63.3-138			1.98	20	
Methyl tert-butyl ether	0.0250	0.0241	0.0245	96.3	97.9	70.1-125			1.65	20	
Naphthalene	0.0250	0.0256	0.0255	103	102	69.7-134			0.550	20	
n-Propylbenzene	0.0250	0.0245	0.0259	97.9	104	81.9-122			5.67	20	
Styrene	0.0250	0.0240	0.0249	96.1	99.5	79.9-124			3.52	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0230	0.0240	91.8	96.1	78.5-125			4.57	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0242	0.0244	96.7	97.5	79.3-123			0.900	20	
Fetrachloroethene	0.0250	0.0244	0.0248	97.7	99.3	73.5-130			1.59	20	
Toluene	0.0250	0.0242	0.0249	96.7	99.4	77.9-116			2.76	20	
1,1,1-Trichloroethane	0.0250	0.0253	0.0274	101	110	71.1-129			7.79	20	
1,1,2-Trichloroethane	0.0250	0.0237	0.0234	94.9	93.6	81.6-120			1.38	20	
Trichloroethene	0.0250	0.0248	0.0251	99.1	101	79.5-121			1.42	20	
1,2,4-Trimethylbenzene	0.0250	0.0239	0.0253	95.8	101	79.0-122			5.51	20	
1,3,5-Trimethylbenzene	0.0250	0.0236	0.0251	94.5	100	81.0-123			6.06	20	
/inyl chloride	0.0250	0.0266	0.0293	106	117	61.5-134			9.56	20	
(ylenes, Total	0.0750	0.0717	0.0750	95.6	100	79.2-122			4.52	20	
o-Xylene	0.0250	0.0237	0.0251	94.6	100	79.1-123			5.78	20	
m&p-Xylenes	0.0500	0.0480	0.0499	96.0	99.8	78.5-122			3.88	20	
(S) Toluene-d8				106	108	90.0-115					
(S) Dibromofluoromethane				103	105	79.0-121					
(S) 4-Bromofluorobenzene				98.6	101	80.1-120					

PROJECT: 249545.0000.0000 000

SDG: L832472 DATE/TIME:

PAGE: 138 of 148

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832423-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832423-02 05/04/1	16 21:01 • (MS) F	3133943-4 05	/04/16 19:35 •	(MSD) R313394	3-5 05/04/16	19:52						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	0.0427	0.105	0.0964	49.8	42.9	1	25.0-156			8.55	21.5
Benzene	0.0250	U	0.0243	0.0228	97.4	91.1	1	58.6-133			6.61	20
Bromodichloromethane	0.0250	U	0.0243	0.0232	97.3	92.8	1	69.2-127			4.72	20
Bromoform	0.0250	U	0.0230	0.0231	92.2	92.6	1	66.3-140			0.420	20
Bromomethane	0.0250	U	0.0275	0.0239	110	95.7	1	16.6-183			14.0	20.5
n-Butylbenzene	0.0250	0.00119	0.0251	0.0243	95.8	92.4	1	64.8-145			3.49	20
sec-Butylbenzene	0.0250	0.00165	0.0266	0.0253	99.9	94.5	1	66.8-139			5.25	20
Carbon disulfide	0.0250	0.000429	0.0255	0.0219	100	85.8	1	34.9-138			15.2	20
Carbon tetrachloride	0.0250	U	0.0243	0.0209	97.0	83.6	1	60.6-139			14.9	20
Chlorobenzene	0.0250	U	0.0238	0.0232	95.0	92.7	1	70.1-130			2.49	20
Chlorodibromomethane	0.0250	U	0.0232	0.0234	92.6	93.6	1	71.6-132			1.10	20
Chloroethane	0.0250	U	0.0273	0.0233	109	93.3	1	33.3-155			15.6	20
Chloroform	0.0250	U	0.0249	0.0231	99.6	92.6	1	66.1-133			7.30	20
Chloromethane	0.0250	U	0.0271	0.0226	108	90.6	1	40.7-139			17.7	20
1,2-Dibromoethane	0.0250	U	0.0223	0.0225	89.4	90.0	1	73.8-131			0.690	20
1,1-Dichloroethane	0.0250	U	0.0253	0.0233	101	93.1	1	64.0-134			8.52	20
1,2-Dichloroethane	0.0250	U	0.0237	0.0231	95.0	92.4	1	60.7-132			2.73	20
1,1-Dichloroethene	0.0250	U	0.0270	0.0238	108	95.1	1	48.8-144			12.7	20
cis-1,2-Dichloroethene	0.0250	U	0.0255	0.0236	102	94.5	1	60.6-136			7.43	20
trans-1,2-Dichloroethene	0.0250	U	0.0261	0.0235	104	93.9	1	61.0-132			10.4	20
1,2-Dichloropropane	0.0250	U	0.0243	0.0229	97.4	91.8	1	69.7-130			5.90	20
cis-1,3-Dichloropropene	0.0250	U	0.0241	0.0239	96.2	95.4	1	71.1-129			0.790	20
trans-1,3-Dichloropropene	0.0250	U	0.0232	0.0233	92.9	93.1	1	66.3-136			0.190	20
Ethylbenzene	0.0250	0.00223	0.0263	0.0252	96.4	91.8	1	62.7-136			4.48	20
2-Hexanone	0.125	U	0.0913	0.0967	73.0	77.4	1	59.4-154			5.80	20.1
Isopropylbenzene	0.0250	0.00198	0.0275	0.0260	102	96.0	1	67.4-136			5.59	20
p-Isopropyltoluene	0.0250	0.00132	0.0291	0.0278	111	106	1	62.8-143			4.72	20
2-Butanone (MEK)	0.125	0.00960	0.0817	0.0804	57.7	56.7	1	45.0-156			1.52	20.8
Methylene Chloride	0.0250	U	0.0244	0.0221	97.8	88.6	1	61.5-125			9.86	20
4-Methyl-2-pentanone (MIBK)	0.125	0.00432	0.125	0.120	96.9	92.3	1	60.7-150			4.71	20
Methyl tert-butyl ether	0.0250	U	0.0239	0.0225	95.5	89.8	1	61.4-136			6.12	20
Naphthalene	0.0250	0.00705	0.0299	0.0307	91.5	94.4	1	61.8-143			2.41	20
n-Propylbenzene	0.0250	0.00362	0.0292	0.0277	102	96.4	1	63.2-139			5.16	20
Styrene	0.0250	U	0.0245	0.0240	97.9	95.9	1	68.2-133			2.13	20

PROJECT: 249545.0000.0000 000 SDG:

DATE/TIME:

PAGE: 139 of 148

0.0250

0.0250

U

U

0.0232

0.0239

0.0224

0.0234

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

92.9

95.7

89.6

93.6

70.5-132

64.9-145

3.60

2.25

20

20

QUALITY CONTROL SUMMARY $\frac{\text{L832472-35,36,37}}{\text{CONTROL}}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832423-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0246	0.0238	98.3	95.3	1	57.4-141			3.09	20
Toluene	0.0250	U	0.0251	0.0232	101	92.9	1	67.8-124			7.89	20
1,1,1-Trichloroethane	0.0250	U	0.0275	0.0241	110	96.4	1	58.7-134			13.3	20
1,1,2-Trichloroethane	0.0250	U	0.0225	0.0228	90.1	91.2	1	74.1-130			1.24	20
Trichloroethene	0.0250	U	0.0242	0.0230	96.8	92.0	1	48.9-148			5.08	20
1,2,4-Trimethylbenzene	0.0250	0.0204	0.0443	0.0424	95.7	87.9	1	60.5-137			4.50	20
1,3,5-Trimethylbenzene	0.0250	0.00399	0.0286	0.0270	98.3	92.2	1	67.9-134			5.47	20
Vinyl chloride	0.0250	U	0.0291	0.0246	116	98.6	1	44.3-143			16.6	20
Xylenes, Total	0.0750	0.00712	0.0805	0.0774	97.8	93.8	1	65.6-133			3.82	20
o-Xylene	0.0250	0.00401	0.0283	0.0273	97.1	93.0	1	67.1-133			3.70	20
m&p-Xylenes	0.0500	0.00311	0.0522	0.0502	98.1	94.1	1	64.1-133			3.89	20
(S) Toluene-d8					110	106		90.0-115				
(S) Dibromofluoromethane					106	103		79.0-121				
(S) 4-Bromofluorohenzene					103	102		80 1-120				

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG869252 $\textbf{Semi-Volatile Organic Compounds (GC) by Method 3511/8015} \quad \underline{ 1832472-01,03,04,05,06,07,09,10,11,12,13,14,16,17,18,19,27,28,29,30} \\$ Method Blank (MB) (MB) R3133570-1 05/03/16 10:44 MB Result MB MDL MB RDL MB Qualifier Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 89.1 50.0-150 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133570-2 05/03/16 11:02 • (LCSD) R3133570-3 05/03/16 11:20 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Rec. Limits Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.54 1.46 102 97.2 5.28 20 (S) o-Terphenyl 101 50.0-150 103

Тс

Ss

Cn

Sr

GI

ΑI

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG869254 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 <u>L832472-08,20,21,22,23,24,25,26,31,32,33,34,35,36,37</u> Method Blank (MB) (MB) R3133571-1 05/03/16 12:33 MB Result MB MDL MB RDL MB Qualifier Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 91.5 50.0-150 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133571-2 05/03/16 12:51 • (LCSD) R3133571-3 05/03/16 13:09 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Rec. Limits Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.48 1.53 98.4 102 3.61 20 (S) o-Terphenyl 102 50.0-150 103

Тс

Ss

Cn

Sr

GI

ΑI

GLOSSARY OF TERMS

ЛS

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:	DO SERVICE		Billing Infor	rmation:					A	nelyss / Container / Preservative							Chain of Custody Page of		
TRC Solutions - Aust	tin, TX			nts Payable	1 .			- 4		03			u)	247		<2	MAT	CC	
505 E. Huntland Dr, Ste 250 Austin, TX 78752			in Road North	h					500mIHDPE-HNO3		35	125mlHDPE-NoPres	04 N			L-A-B S-C	J.E.N.C.E.		
		(2.3		물	215	NO	IDPE	H2S		Se,	YOUR'L'AB'	O'F CHOTCE			
Report to: speer@trcsolutions.com	87 1 3	Email To:	trcsolutions.co	m Servers		-10		m009	HOE	PE-H	25mlH	DPE-		Ni,Pb	12065 Lebanon Rd Mount Juliet, TN 3712 Phone: 615-758-5858				
Project EP Spring 2016	Н	opeene	City/State Collected: A					N-qui	- 500mIHDPE-HNO3		- 250mIHDPE-H2SO4		Hg,Mn,	Phone: 800-767-5859 Fax: 615-758-5859	10 PM				
Phone: 512-684-3170	Client Project i		HE T	Lab Project # TRCATX-EP SPRING						Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	HDPEA	- 250miHDPEAmb-NaOH Ca, K, Na - 500miHDPE-I	ide, Sulfate-)3) - 25(- 250mIHDPE-NoPres	Tot/Diss. As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	G069		
Collected by (print):	Site/Facility ID		MUNICIPAL SECTION	P.O. #	7.05	- 40mlAmb-HCI-BT	ᅙ	HC	E.	00m	X,	Fluoride,)ZN	E-N	O'PC	Acctnum: TRC	ATX		
Scott Ude + HMI Team Collected by (signature):	Navajo- A	7/15-26-27-1		Date Re	+qu	1-9-	dm	Ba,(Ca		N)	IDPI	Ba,0	Template: T11	1232-1			
Sunt Udy	Rush? (Li	ab MUST Be	200%				IAn	IA.	Jm[A	As,	CN	otal	Chloride,	itrite	0mlH	s,B,	Prelogin: P549		
mmediately Packed on Ice N Y	Next Di Two Da Three D	y	100% 50% 25%	Email?NoYes No. of				0 - 40mlAmb-HCI	V8260 - 40mIAmb-HCI	/Diss.	Cyanide (CN)	Cations-Total Ca,	Anions- Ch	Nitrate/Nitrite (NO2NO3)	3 - 250	Diss. A	TSR: Chris McCord Cooler: 1 1/10 42 Shipped Via:		
Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V82	Tot	cys	Cat	Ani	Nitr	TDS	Tot	Rem./Contaminant	Sample # (lab only)	
MW-83		GW	100	4/27/16	1310	K	~	V	/	1		V	V	V	V			-01	
Trip Blank-EP-02		1		4/27/16	_	1			/		NEW TOWN							00	
mw-4A		. Hest		4/20/16	1215	12	V	~	V	V		V	V	V	V		-1-14	03	
MW-123				4/27/16	1115	17	/	V	V	V		V	V	V	V			04	
mw-10	700	1.2	TOPING!	4/27/16	1020	12	/	V	V	V		1	V	V	V			09	
MW-22A	100	1		4/27/16	900	17	1	~	V	V		1	V	V	V		4	04	
DUP-EP-02		1000	h -1	4/27/16	1000	12	/	V	V	V		V	V	V	V		area of	0	
MW-88	6-3	A SECTION		4/27/16	810	17	1	V	1	V	181	~	V	V	V	131	1:37	08	
MW-5A			And in case of	4/26/16	1750	11	1	V	/	V	100	1	V	V	V		100	09	
EB-EP-03	1	4	100	4/20/16	1810	12	~	~	V	V		~	1	V	1		The second	10	
Matrix: SS - Soil GW - Groundwater	03351	ater DW - D	Le 71/2	01276346 er 01-Other	6711a	271	23	30	6	7112	215	7 63 7 5	51	6	1113	178	262		
Matrix: SS-Soil GW-Groundwater	20. Dissol	Ved met	als are fi	eld filtered.	671103	35.5	10	05				7 5 Oth		6	l L C	Id#	16362		
Relinquished by : (Signature)		Date:	oficial.		ceived by: (Signa	T.	á	0	-			ned via:		5	Co	ndition	; (lab u	se only)	
Gutt tide	100	10000	7/16	1400	- E - 1				12	₩ F	edEx	□ Couri	Marin Control				N	u v	
Relinquished by: (Signature)	and the second	Date:	-	Time: Re	eceived by: (Signa	ture)	1		1	Temp:	-	°C Bo	ttles Re	-	C	C Seal	1	N NA	
AND THE STATE OF	by: (Signature) Date: Time: Received for lab by:						200	265	L	13	LAGS.		40		COLUMN TO SERVICE	Check			

Company Name/Address:		3	1	Billing Info	rmation	n:	100		3	State	A	nalysis /	Contai	ner / Pre	servati	ve			Chain of Custody	Page of
TRC Solutions - Aus	tin, T	X		Accou					963	100		03	13		S				MAT	CC
505 E. Huntland Dr, Ste 250 Austin, TX 78752							th				500mIHDPE-HNO3	212	Z		12504 P		Se,U,V	LAND SA	OF CHOIC	
Report to:							1 10		- 3		Om I	HO			PET		,Pb,	12065 Lebanon Rd Mount Juliet, TN 371		
speer@trcsolutions.com		2	1 1	speer@			om	2	36	2		100	Cyanide (CN) - 250mIHDPEAmb-NaOH	IDP	ate- 125r	- 250mIHDPE-H2SO4		N'uy	Phone: 615-758-585 Phone: 800-767-585	
Project EP Spring 2016 -	Team-	CO	H		City/S Colle	cted: A	rtesia, NV	7						늘				Hg,N	Fax: 615-758-5859	
Phone: 512-684-3170	Client Pr	oject #			Lab P	roject#	1 10					W,	PEA	500	Sulf	- 25	co	Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	1# 183	2472
ax:					TRCATX-EP SPRING							As,Ba,Cr,Fe,Pb,Mn,Se	НОР	Na -	ide,	03)	Pre	o,Cr	Table #	
Collected by (print):	Site/Fac			ME (1)	P.O.		Party of	- 40mlAmb-HCI-BT	⁻	- 40mIAmb-HCI	Zr,Fe	lm0	Ca, K, N	luori	SNC	ON-	D'p	Acctnum: TRO	CATX	
Collected by (signature):	11 2000		rtesia	Notified) Date Results Needed						후	di	3a,0	-25	Ca,	de, F	S	DPE	Ва,с	Template: T1	11232
Sutt Ude	THE PERSON	<i>h?</i> (Li Same D	ab MUST Be	200%					IAn	- 40mlAmb-HCI	mIA	As,	CN	Cations-Total	hlori	Nitrate/Nitrite (NO2NO3)	250mlHDPE-NoPres	As,B,	Prelogin: P54	
mmediately	- 12	Next Da	ry	100%			_No _Yes	No.	40m	40m	- 40	Tot./Diss.	de (T-sr	s-C	N.	250		TSR: Chris	
Packed on Ice N Y		Three D	ay	25%		FAX?	NoYes	of	0		V8260	io.	anic	tion	ions	rate	200	Tot/Diss.	Cooler: 4	7/16 40
Sample ID	Comp	Grab	Matrix *	Depth		Date	Time	Cntrs	DRO	GRO	V8.	Tol	S	Ca	An	ž	TDS	Tot	Rem./Contaminant	Sample # (lab only
MW-7A	74		GW	25元		26/18		12	/	V	/	/		V	V	V	V	0		-1
DUP-EP-01			1		4	126/16	1200	12	/	V	V	1		V	V	V	V		17 11 1	
OCD-8A			with the		4	26/16	1535	13	V	V	1		1	V	V	V	V	V		13
mw-73	e IT		192 Q 10		4	126/16	1450	12	V	1	V	V		V	V	V	1		10 33	14
Trip Blank- EP-01				Liens	4	126/16					V					1		31		1:
MW-74	2	-		The day	4	126/16	1545	12	/	V	~	V		V	V	V	V	72	R mary &	16
EB-EP-01	at P				4/	trulib	1605	17	V	V	V	V		V	V	V	V	1 3		
mw-79	***		St. Laborator	to I	4	26/16	1645	12	/	V	V	V		V	V	V	V	1	V-1	118
EB-EP-04					4	126/14	1710	17	1	V	V	V		V	1	V	V	117		19
mw-6A	19	V	1	J	4	27/10	810	12	V	1	V	V	13	V	V	V	V		G-49	20
Matrix: SS - Soil GW - Groundwater	ww.w	astaW:	ater DW - D	inking Wate	or OT	Other		912				рН	L	Tem	0	E 11/8	1.0	-	The second	
				545			1					1.09				1	Hol	d#	100	1076
telinquished by : (Signature)	020. DI	5501	Date:	tals are field filtered. Time: Received by: (Signature)						Sept.	1	Flow_	s return	_ Othe			100	dition:	(lah)	use only)
Sun Ude	H/27)16 1400								Ø.		1 3	B 1000		☐ Courie					(All of the second seco	MIY
elinquished by: (Signature)								rure)	1		1	Temp:	_	°C Bo	and the same		100			1
E Landau Barrier	一种的一种的一种,一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一种的一						100	1	1	B.	315		4	38		_	C Seal I		NNA	
elinquished by : (Signature)	y : (Signature) Date: Time: Received for lab by:						: (Signa	ture)			Date:	1	Tin	ne:	1	pH	Checke	d: NCF:		

TRC Solutions - Austir			Billing Info	rmation:	1 68				A	natysis /	Contai	ner / Pre	servativ	/e			Chain of Custody	Page 2 of
	n, TX			nts Payable	. 1					103	-		Se	1.		<2	MIL	CCC
505 E. Huntland Dr, Ste 250 Austin, TX 78752	E. Huntland Dr, Ste 250 Windso					in Road North r, CT 06095					>12	NO3 &	Anions- Chloride, Fluoride, Sulfate- 125mlHDPE-NoPres	- 250mIHDPE-H2SO4 N		Mar.	YOUR LAB	OF CHOIC
eport to: speer@trcsolutions.com	1 - 5		Email To: ispeer@	tresolutions.co				500mIHDPE-HNO3	ТаОН	DPE-H	25mlH	DPE-I		'Ni,Pb	12065 Lebanon Rd Mount Juliet, TN 37: Phone: 615-758-585 Phone: 800-767-585	a X		
roject EP Spring 2016 - Te	EP Spring 2016 - Team C CTH				tesia, Ni	n		77		- eS'u	V-qu	- 500mIHDPE-HNO3	fate- 1	90mlH		Hg,Mn	Fax: 615-758-5859	
hone: 512-684-3170 Cli	Client Project #			Lab Project # TRCATX-EP	ВТ			As, Ba, Cr, Fe, Pb, Mn, Se	HDPE/	Na - 50	ride, Sul	03) - 25	250mIHDPE-NoPres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	L# 1832 Table#	410		
27 0.0000000	ite/Facility ID		₹a	P.O. #	+Ci-	HCI	р-нс	Cr,F	250m	Ca, K,	Fluo	IOZN	PE-N	Cd,C	Acctnum: TRO			
Collected by (signature):	Rush? (La	ab MUST Be		Date Re	40mlAmb-HCI-BT	Amp	- 40mlAmb-HC	Is,Ba	- (N	tal C	oride	rite (N	nIHD.	,B,Ba	Template: T1 Prelogin: P54			
Scott UoU mmediately Packed on Ice N Y V	Same D Next Da Two Da Three D	ay	200% 100% 50% 25%	Email?N		No. of	1	0 - 40mlAmb-HCI	50 - 40n	Tot./Diss. A	Cyanide (CN) - 250mlHDPEAmb-NaOH	Cations-Total	ons-Chi	Nitrate/Nitrite (NO2NO3)	STATE OF	Tot/Diss. As	TSR: Chris	A STATE OF THE PARTY OF THE PAR
Sample ID C	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V8260	Tot.	Cya	Cat	Anie	Nitr	TDS	Tot	Shipped Via: Rem./Contaminant	Sample # (lab only
OCD-7AR	-1	GW	0.	4/27/16	900	12	/	V	1	1		V	V	V	V			-21
OCD-6		1	· 2 (kg	4/27/16	955	12	1	V	V	V		V	V	V	V			22
MW-72		- The		4/27/16	1045	12	/	V	V	V		V	V	V	~		3	23
mw-2A	-	1	4	4/27/16	1135	15	/	V	V	2		V	V	V	·		10-4	24
MW-122	200			4/27/16	1235	12	/	V	V	V		v	1	V	V		1.00	29
MW-121	344	9 -	F-5000	4/27/16	1325	12	V	V	V	V		V	V	V	V			24
mw-124	25	fig. to	att on	4/26/16	1725	12	V	~	~	V		V	V	V	V			2-
EB-EP-OZ	100	-	DEC.	4/26/16	1740	12	1	V	V	1		V	V	V	V		1	28
MW-18A	JE (15)		1000	4/20/10	1540	13	V		V		V	1	1	V	V	V	1	29
mw-70	1	1	1	4/26/16	1640	12	/	V	V	V		1	V	V	/	N.		30

Company Name/Address:		1,11	Line.	Billing Info	rmation	1	Asmak .		340	3	A		Contai	ner / Pre	servativ	/e	100	11	Chain of Cust	ody Page 1 of
TRC Solutions - Aus	tin, T	X		Accou		ayable ad Norti			- 52			103			se			<7	34	ECC
D5 E. Huntland Dr, Ste 250 Windsor, CT 06095 ustin, TX 78752												- 500mIHDPE-HNO3	>12	NO3 2	Sulfate-125mlHDPE-NoPres	H2SO4 2		Se,U,V		S-C-I-E-N-C-E
Report to:		F		Email To:		100		13		1	190	00ml	НО	H	mIHI	PE-H		Pb	12065 Lebanon Mount Juliet, T	N 37122
speer@trcsolutions.com						lutions.co	om	1/2		107	Total .		-Na	다	125	유		Mn,N	Phone: 615-756 Phone: 800-76 Fax: 615-758-5	7-5859
roject EP Spring 2016 -	Team ((J	H		City/S Colle	tesia, N	M	100	e Pi		J,Se	Amb	0mI	fate-	50ml	200	Hg,N	1#) 6	Lines.	
thone: 512-684-3170	Client Pro	oject	1.7	111	Lab Project # TRCATX-EP SPRING							As,Ba,Cr,Fe,Pb,Mn,Se	- 250miHDPEAmb-NaOH	Na - 500mIHDPE-HNO3		03) - 25	oPres	Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,	Table #	32472
collected by (print): Scott Ude + HMI Tan	Site/Faci Navaj		# Artesia		P.O. #					40mIAmb-HCI	nb-HC	a,Cr,F	-250m	Ca, K,	e, Fluoride,	(NO2N	DPE-N	3a,Cd,C	Acctnum: Template:	TRCATX
Collected by (signature):	-0.200	h? (L	ab MUST Be	Notified)		Date Results Needed				IAm	nIA	As,B	Cyanide (CN)	Cations-Total Ca, K,	Anions-Chloride,	rite	S - 250mIHDPE-NoPres	m	Prelogin: F	2549272
SCAT UC4 mmediately Packed on Ice NY_		Vext D wo Da hree (ay		Email?NoYes NoYes of				0 - 40mlAmb-HCI-BT	1	V8260 - 40mlAmb-HC	Tot./Diss. /				Nitrate/Nitrite (NO2NO3) - 250mIHDPE-H2SO4		Tot/Diss. As,	TSR: Chris McCord Cooler: 17/16	
Sample ID	Comp	rab	Matrix *	Depth		Date	Time	Cntrs	DRO	GRO	V82	Tot.	S	Cat	Ani	Nit	TDS	Tot	Rem./Contam	
OCP-IR			GW		4	-27-16	800	17	~	V	V	V	138	V	V	V	V		and the	31
OCP-ZA	and I	F	1	170	4	27/16	850	1	~	V	V	V		V	V	V	V			32
OCD-3	3	E		A NOTE	4	91/16	940	1	V	V	V	V		V	V	V	V			33
0CD-4					4	27/16	1030		/	V	V	V		V		V	V		Section 20	34
OCD-5	ZT A	1	1	-VEdit	4	127/16	1115	1	~	V	V	V	MA	V	·V	V	V			39
-MW 11A			0.00		4	27/16	1200	1	1	1	V		V	V	V	V	V	V	- 3	14
MW-11A	200	- +		No.	41	27/16	1200		~	1	V	V		V	V	V	V	1874	- 3	36
mw-15	,		4	- 1	41	41175	1300	4	~	V	V	V		V	/	~	V		2200	31
	(1)		1. 1. 12	17 July		E S	7.79									TA		BAT .	E.	
Matrix: SS - Soil GW - Groundwater	ww-wa	steW	ater DW - D	rinking Wa	ter OT -	Other	de 7					рН _	1	Ten	ıp			000		
Remarks: Log all metals by 6	020. Di	sso	lved met	als are t	ield fi	iltered.						Flow_	Ė,	_ Oth	er		Но	ld#		
telinquished by : (Signature)	1		Date:	7/16	Time:		eceived by: (Sign	ature)	鱼			0.000		ned via:			Co	ndition		(lab use only)
telinquished by: (Signature)	2021		Date:	1	Time:	131	eceived by: (Sign	4	K			Temp:	5	°C Bo	ttles Re	Links II		C Seal		Y_N_NA
linquished by : (Signature) Date:					Time:	R	ecgived for lab b	ature)	120	1	Date:	1	To	me:		100	Check	>12	NCF:	

ANALYTICAL REPORT May 17, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832488

Samples Received: 04/29/2016

Project Number: 249545.0000.0000 000

Description: EP Spring 2016

EP NAVAJO-ARTESIA Site:

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth men

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	7
Sr: Sample Results	8
MW-120 L832488-01	8
MW-81 L832488-02	10
MW-80 L832488-03	12
MW-84 L832488-04	14
MW-82 L832488-05	16
MW-78 L832488-06	18
MW-77 L832488-07	20
MW-76 L832488-08	22
MW-3 L832488-09	24
DUP-EP-03 L832488-10	26
MW-75 L832488-11	28
MW-87 L832488-12	30
TRIP BLANK-EP-03 L832488-13	32
MW-1R L832488-14	33
Qc: Quality Control Summary	35
Gravimetric Analysis by Method 2540 C-2011	35
Wet Chemistry by Method 353.2	37
Wet Chemistry by Method 9056A	41
Metals (ICPMS) by Method 6020	45
Volatile Organic Compounds (GC) by Method 8015D/GRO	48
Volatile Organic Compounds (GC/MS) by Method 8260B	49
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	54
GI: Glossary of Terms	55

⁸Al: Accreditations & Locations

⁹Sc: Chain of Custody

56

57

04/29/16 09:00

Received date/time

Received date/time

04/29/16 09:00

04/29/16 09:00

SAMPL

ONELAR	NATIONWIDE
ONE LAD.	NATIONWIDE

Collected date/time

04/27/16 15:10

Collected date/time

Collected date/time

04/27/16 16:55

04/27/16 16:00

LE SUMMARY ONE LAB. NATION

Collected by

SU / HM1 Team

Collected by

Collected by

SU / HM1 Team

SU / HM1 Team

MW-120 L832488-01 GW			SU / HM1 Team	04/27/16 14:20	04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:34	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 14:54	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	1	05/03/16 22:14	05/05/16 21:06	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/03/16 23:01	05/03/16 23:01	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 08:52	05/04/16 08:52	BMB
Wet Chemistry by Method 353.2	WG870059	10	05/06/16 15:31	05/06/16 15:31	ASK
Wet Chemistry by Method 9056A	WG870882	1	05/10/16 03:48	05/10/16 03:48	CM
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 11:35	05/10/16 11:35	CM
			Collected by	Collected date/time	Received date/time

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:36	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 14:57	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	1	05/03/16 22:14	05/05/16 21:24	JNS
olatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/03/16 23:23	05/03/16 23:23	JHH
olatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 09:12	05/04/16 09:12	BMB
Vet Chemistry by Method 353.2	WG870059	50	05/06/16 16:00	05/06/16 16:00	ASK
Vet Chemistry by Method 9056A	WG870882	1	05/10/16 04:20	05/10/16 04:20	CM
Vet Chemistry by Method 9056A	WG870882	100	05/10/16 12:07	05/10/16 12:07	CM

MW-80 L832488-03 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:39	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:00	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	1	05/03/16 22:14	05/05/16 21:42	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 01:55	05/04/16 01:55	JHH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 09:32	05/04/16 09:32	BMB
Wet Chemistry by Method 353.2	WG870059	10	05/06/16 15:37	05/06/16 15:37	ASK
Net Chemistry by Method 9056A	WG870882	1	05/10/16 04:36	05/10/16 04:36	CM
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 12:23	05/10/16 12:23	CM

MW-84 L832488-04 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:42	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:08	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	20	05/03/16 22:14	05/06/16 05:57	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 02:17	05/04/16 02:17	JHH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 09:52	05/04/16 09:52	BMB
Wet Chemistry by Method 353.2	WG870059	10	05/06/16 15:38	05/06/16 15:38	ASK
Wet Chemistry by Method 9056A	WG870882	1	05/10/16 04:52	05/10/16 04:52	CM
Net Chemistry by Method 9056A	WG870882	100	05/10/16 12:39	05/10/16 12:39	CM

ONE LAB. NATIONWIDE.

	SAMPLE SU	JMMAF	AO	ONE LAB. NATIONWIDE.		
MW-82 L832488-05 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 17:50	Received date/time 04/29/16 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11		
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:44	ST	
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:10	LAT	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	1	05/03/16 22:14	05/05/16 22:01	JNS	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 02:39	05/04/16 02:39	JHH	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 10:12	05/04/16 10:12	BMB	
Wet Chemistry by Method 353.2	WG870059	10	05/06/16 15:39	05/06/16 15:39	ASK	
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 13:27	05/10/16 13:27	CM	
Wet Chemistry by Method 9056A	WG872424	10	05/15/16 19:53	05/15/16 19:53	CM	
MW-78 L832488-06 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 17:30	Received date/time 04/29/16 09:00	
Method	Batch	Dilution	Preparation	Analysis	Analyst	
			date/time	date/time		
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM	
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:47	ST	
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:13	LAT	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	50	05/03/16 22:14	05/06/16 06:15	JNS	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 03:01	05/04/16 03:01	JHH	

BMB

ASK

CM

 CM

Received date/time

Received date/time

04/29/16 09:00

04/29/16 09:00

'Ss

Cn

Sr

Qc

Gl

Αl

Sc

MW-77 L832488-07 GW

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Volatile Organic Compounds (GC/MS) by Method 8260B

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:50	ST
Metals (ICPMS) by Method 6020	WG870083	10	05/05/16 20:28	05/09/16 14:57	LAT
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:16	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	50	05/03/16 22:14	05/06/16 06:34	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 03:24	05/04/16 03:24	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 10:53	05/04/16 10:53	BMB
Wet Chemistry by Method 353.2	WG870059	10	05/06/16 15:41	05/06/16 15:41	ASK
Wet Chemistry by Method 9056A	WG870882	1	05/10/16 06:11	05/10/16 06:11	CM
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 13:58	05/10/16 13:58	CM

WG868989

WG870059

WG870882

WG870882

1

10

1

100

05/04/16 10:33

05/06/16 15:40

05/10/16 05:55

05/10/16 13:42

Collected by

Collected by

SU / HM1 Team

SU / HM1 Team

05/04/16 10:33

05/06/16 15:40

05/10/16 05:55

05/10/16 13:42

04/27/16 14:30

Collected date/time

Collected date/time

04/27/16 16:40

MW-76 L832488-08 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 21:52	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:19	LAT
semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	5	05/03/16 22:14	05/06/16 04:07	JNS
olatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 03:46	05/04/16 03:46	JHH
olatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 11:13	05/04/16 11:13	BMB
Vet Chemistry by Method 353.2	WG870059	10	05/06/16 15:42	05/06/16 15:42	ASK
Vet Chemistry by Method 9056A	WG870882	1	05/10/16 06:27	05/10/16 06:27	CM
Vet Chemistry by Method 9056A	WG870882	100	05/10/16 14:14	05/10/16 14:14	CM

SAME

PLE SUMMARY $$	ONE LAB. NATIO
----------------	----------------

	SAMPLE SU	JIVIIVIAI	ONE LAB. NA HONWIL		
MW-3 L832488-09 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 15:25	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 22:04	ST
Metals (ICPMS) by Method 6020	WG870083	1	05/05/16 20:28	05/09/16 15:00	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	5	05/03/16 22:14	05/06/16 12:43	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 04:08	05/04/16 04:08	JHH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 11:33	05/04/16 11:33	BMB
Net Chemistry by Method 353.2	WG870059	10	05/06/16 15:43	05/06/16 15:43	ASK
Net Chemistry by Method 9056A	WG870882	1	05/10/16 06:43	05/10/16 06:43	CM
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 14:30	05/10/16 14:30	CM
DUP-EP-03 L832488-10 GW			Collected by SU / HM1 Team	Collected date/time 04/27/16 12:00	Received date/time 04/29/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869544	1	05/04/16 04:54	05/04/16 05:11	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 22:07	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:24	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	5	05/03/16 22:14	05/06/16 12:25	JNS

JHH

BMB

ASK

CM

 CM

'Ss

Cn

Sr

Qc

Gl

Αl

Received date/time Collected by Collected date/time SU / HM1 Team 04/27/16 17:10 04/29/16 09:00 MW-75 L832488-11 GW

WG869046

WG868989

WG870059

WG870882

WG870882

1

1

10

1

100

05/04/16 04:30

05/04/16 11:53

05/06/16 15:49

05/10/16 06:59

05/10/16 14:46

05/04/16 04:30

05/04/16 11:53

05/06/16 15:49

05/10/16 06:59

05/10/16 14:46

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869546	1	05/04/16 05:13	05/04/16 05:57	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 22:10	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:27	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	5	05/03/16 22:14	05/06/16 03:49	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 04:52	05/04/16 04:52	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 12:13	05/04/16 12:13	BMB
Wet Chemistry by Method 353.2	WG871208	10	05/10/16 17:35	05/10/16 17:35	ASK
Wet Chemistry by Method 9056A	WG870882	1	05/10/16 07:15	05/10/16 07:15	CM
Wet Chemistry by Method 9056A	WG872424	50	05/15/16 20:08	05/15/16 20:08	CM

MW-87 L832488-12 GW	Collected by	Collected date/time	Received date/time
	SU / HM1 Team	04/27/16 16:15	04/29/16 09:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869546	1	05/04/16 05:13	05/04/16 05:57	JM
Metals (ICPMS) by Method 6020	WG869318	5	05/02/16 19:47	05/06/16 20:54	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 14:44	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	1	05/03/16 22:14	05/06/16 00:09	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 05:14	05/04/16 05:14	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868989	1	05/04/16 12:33	05/04/16 12:33	BMB
Wet Chemistry by Method 353.2	WG871208	10	05/10/16 17:36	05/10/16 17:36	ASK
Wet Chemistry by Method 9056A	WG870882	1	05/10/16 07:31	05/10/16 07:31	CM
Wet Chemistry by Method 9056A	WG870882	100	05/10/16 15:34	05/10/16 15:34	CM
	Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Wet Chemistry by Method 353.2 Wet Chemistry by Method 9056A	Gravimetric Analysis by Method 2540 C-2011 WG869546 Metals (ICPMS) by Method 6020 WG870083 Metals (ICPMS) by Method 6020 WG870083 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869613 Volatile Organic Compounds (GC) by Method 8015D/GRO WG869046 Volatile Organic Compounds (GC/MS) by Method 8260B WG868989 Wet Chemistry by Method 353.2 WG871208 Wet Chemistry by Method 9056A WG870882	Gravimetric Analysis by Method 2540 C-2011 WG869546 1 Metals (ICPMS) by Method 6020 WG869318 5 Metals (ICPMS) by Method 6020 WG870083 5 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869613 1 Volatile Organic Compounds (GC) by Method 8015D/GRO WG869046 1 Volatile Organic Compounds (GC/MS) by Method 8260B WG868989 1 Wet Chemistry by Method 353.2 WG871208 10 Wet Chemistry by Method 9056A WG870882 1	Gravimetric Analysis by Method 2540 C-2011 WG869546 1 05/04/16 05:13 Metals (ICPMS) by Method 6020 WG869318 5 05/02/16 19:47 Metals (ICPMS) by Method 6020 WG870083 5 05/05/16 20:28 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869613 1 05/03/16 22:14 Volatile Organic Compounds (GC) by Method 8015D/GRO WG869046 1 05/04/16 05:14 Volatile Organic Compounds (GC/MS) by Method 8260B WG869899 1 05/04/16 12:33 Wet Chemistry by Method 353.2 WG871208 10 05/10/16 17:36 Wet Chemistry by Method 9056A WG870882 1 05/10/16 07:31	Gravimetric Analysis by Method 2540 C-2011 WG869546 1 05/04/16 05:13 05/04/16 05:57 Metals (ICPMS) by Method 6020 WG869318 5 05/02/16 19:47 05/06/16 20:54 Metals (ICPMS) by Method 6020 WG870083 5 05/05/16 20:28 05/07/16 14:44 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869613 1 05/03/16 22:14 05/06/16 00:09 Volatile Organic Compounds (GC) by Method 8015D/GRO WG869046 1 05/04/16 05:14 05/04/16 05:14 Volatile Organic Compounds (GC/MS) by Method 8260B WG868989 1 05/04/16 12:33 05/04/16 12:33 Wet Chemistry by Method 353.2 WG871208 10 05/10/16 17:36 05/10/16 17:36 Wet Chemistry by Method 9056A WG870882 1 05/10/16 07:31 05/10/16 07:31

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

	Collected by SU / HM1 Team	Collected date/time 04/27/16 00:00	Received date/time 04/29/16 09:00
Dilution	Preparation	Analysis	Analyst
	date/time	date/time	
1	05/04/16 07:10	05/04/16 07:10	ВМВ
	Collected by SU / HM1 Team	Collected date/time 04/27/16 15:20	Received date/time 04/29/16 09:00
Dilution	Preparation	Analysis	Analyst
	date/time	date/time	
1	05/04/16 05:13	05/04/16 05:57	JM
5	05/02/16 19:47	05/06/16 22:12	ST
5	05/05/16 20:28	05/07/16 15:29	LAT
1	05/03/16 22:14	05/06/16 00:27	JNS
1	05/04/16 12:53	05/04/16 12:53	BMB
10	05/06/16 16:05	05/06/16 16:05	ASK
1	05/10/16 07:47	05/10/16 07:47	CM
			CM
	Dilution 1 5 5 1 1 1 10 11	Dilution Preparation date/time 1 05/04/16 07:10 Collected by SU / HM1 Team Dilution Preparation date/time 1 05/04/16 05:13 5 05/02/16 19:47 5 05/05/16 20:28 1 05/03/16 22:14 1 05/04/16 12:53 10 05/06/16 16:05	Dilution Preparation date/time Analysis date/time 1 05/04/16 07:10 05/04/16 07:10 Collected by SU / HM1 Team Collected date/time 04/27/16 15:20 Dilution Preparation date/time Analysis date/time 1 05/04/16 05:13 05/04/16 05:57 5 05/02/16 19:47 05/06/16 22:12 5 05/05/16 20:28 05/07/16 15:29 1 05/03/16 22:14 05/06/16 00:27 1 05/04/16 12:53 05/04/16 12:53 10 05/06/16 16:05 05/06/16 16:05

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

²Tc

³Ss

Chris McCord
Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	9100		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 15:31	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	3690		5.19	1.00	100	100	05/10/2016 11:35	WG870882
Fluoride	2.56		0.00990	0.100	0.100	1	05/10/2016 03:48	WG870882
Sulfate	2510		7.74	5.00	500	100	05/10/2016 11:35	WG870882

Metals (ICPMS) by Method 6020

Metals (ICI MS) by Metalod 0020										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.0138		0.00125	0.00200	0.0100	5	05/06/2016 21:34	WG869318		
Arsenic,Dissolved	0.00838	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:54	WG870083		
Barium	0.0176	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:34	WG869318		
Barium, Dissolved	0.0155	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:54	WG870083		
Calcium	939		0.230	1.00	5.00	5	05/06/2016 21:34	WG869318		
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:34	WG869318		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:54	WG870083		
Iron	7.32		0.0750	0.100	0.500	5	05/06/2016 21:34	WG869318		
Iron,Dissolved	3.28		0.0750	0.100	0.500	5	05/07/2016 14:54	WG870083		
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:34	WG869318		
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:54	WG870083		
Manganese	2.14		0.00125	0.00500	0.0250	5	05/06/2016 21:34	WG869318		
Manganese,Dissolved	1.85		0.00125	0.00500	0.0250	5	05/07/2016 14:54	WG870083		
Potassium	4.25	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:34	WG869318		
Selenium	0.00511	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 21:34	WG869318		
Selenium,Dissolved	0.00538	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 14:54	WG870083		
Sodium	1910		0.550	1.00	5.00	5	05/06/2016 21:34	WG869318		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.0845	J	0.0314	0.100	0.100	1	05/03/2016 23:01	WG869046
(S) a,a,a-Trifluorotoluene(FID)	94.5				62.0-128		05/03/2016 23:01	WG869046

Ss

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	0.0108	<u>J</u>	0.0100	0.0500	0.0500	1	05/04/2016 08:52	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 08:52	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 08:52	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 08:52	WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:20

832488

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 08:52	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 08:52	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 08:52	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 08:52	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 08:52	WG868989
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 08:52	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:52	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 08:52	WG868989
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 08:52	WG868989
I,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 08:52	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 08:52	WG868989
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 08:52	WG868989
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 08:52	WG868989
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 08:52	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 08:52	WG868989
?-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 08:52	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 08:52	WG868989
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 08:52	WG868989
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 08:52	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 08:52	WG868989
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 08:52	WG868989
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 08:52	WG868989
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 08:52	WG868989
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 08:52	WG868989
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 08:52	WG868989
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 08:52	WG868989
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 08:52	WG868989
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 08:52	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 08:52	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 08:52	WG868989
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 08:52	WG868989
(C) T / 10								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

101

98.7

86.1

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.82		0.0247	0.100	0.100	1	05/05/2016 21:06	WG869613
(S) o-Terphenyl	112				50.0-150		05/05/2016 21:06	WG869613

90.0-115

79.0-121

80.1-120

05/04/2016 08:52

05/04/2016 08:52

05/04/2016 08:52

WG868989

WG868989

WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6730		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	105		0.985	0.100	5.00	50	05/06/2016 16:00	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1120		5.19	1.00	100	100	05/10/2016 12:07	WG870882
Fluoride	5.93		0.00990	0.100	0.100	1	05/10/2016 04:20	WG870882
Sulfate	2790		7.74	5.00	500	100	05/10/2016 12:07	WG870882

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0300		0.00125	0.00200	0.0100	5	05/06/2016 21:36	WG869318
Arsenic, Dissolved	0.0226		0.00125	0.00200	0.0100	5	05/07/2016 14:57	WG870083
Barium	0.0212	J	0.00180	0.00500	0.0250	5	05/06/2016 21:36	WG869318
Barium, Dissolved	0.0137	J	0.00180	0.00500	0.0250	5	05/07/2016 14:57	WG870083
Calcium	687		0.230	1.00	5.00	5	05/06/2016 21:36	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:36	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:57	WG870083
Iron	0.136	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 21:36	WG869318
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:57	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:36	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:57	WG870083
Manganese	0.106		0.00125	0.00500	0.0250	5	05/06/2016 21:36	WG869318
Manganese, Dissolved	0.00553	J	0.00125	0.00500	0.0250	5	05/07/2016 14:57	WG870083
Potassium	12.2		0.185	1.00	5.00	5	05/06/2016 21:36	WG869318
Selenium	0.0467		0.00190	0.00200	0.0100	5	05/06/2016 21:36	WG869318
Selenium,Dissolved	0.0426		0.00190	0.00200	0.0100	5	05/07/2016 14:57	WG870083
Sodium	1690		0.550	1.00	5.00	5	05/06/2016 21:36	WG869318

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u> </u>
TPH (GC/FID) Low Fraction	0.0339	<u>J</u>	0.0314	0.100	0.100	1	05/03/2016 23:23	WG869046
(S) a,a,a-Trifluorotoluene(FID)	92.9				62.0-128		05/03/2016 23:23	WG869046

Ss

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 09:12	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 09:12	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 09:12	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 09:12	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 09:12	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 09:12	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 09:12	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 09:12	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 09:12	WG868989

Toluene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 02

Collected date/time: 04/27/16 15:10

832488

Volatile Organic Compounds (GC/MS) by Method 8260B

ΓS - 02	ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Qc

GI

Al

Sc

WG868989

05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12

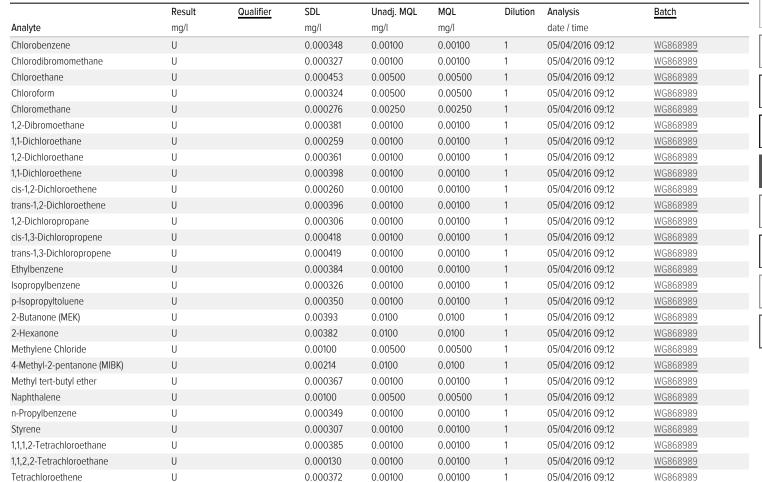
05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12


05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12

05/04/2016 09:12

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00500

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

1

1

1

1

1

0.000780

0.000319

0.000383

0.000398

0.000373

0.000387

0.000259

0.000341

0.000719

0.00106

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

U

U

U

U

U

U

U

100

99.8

88.6

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.64		0.0247	0.100	0.100	1	05/05/2016 21:24	WG869613
(S) o-Terphenyl	122				50.0-150		05/05/2016 21:24	WG869613

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6340		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Тс

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.523	<u>J</u>	0.197	0.100	1.00	10	05/06/2016 15:37	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1970		5.19	1.00	100	100	05/10/2016 12:23	WG870882
Fluoride	3.30		0.00990	0.100	0.100	1	05/10/2016 04:36	WG870882
Sulfate	2270		7.74	5.00	500	100	05/10/2016 12:23	WG870882

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00788	J	0.00125	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Arsenic, Dissolved	0.00359	J	0.00125	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Barium	0.0185	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:39	WG869318
Barium, Dissolved	0.0171	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:00	WG870083
Calcium	875		0.230	1.00	5.00	5	05/06/2016 21:39	WG869318
Chromium	0.0465		0.00270	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Iron	1.34		0.0750	0.100	0.500	5	05/06/2016 21:39	WG869318
Iron,Dissolved	0.173	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 15:00	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Manganese	0.234		0.00125	0.00500	0.0250	5	05/06/2016 21:39	WG869318
Manganese,Dissolved	0.162		0.00125	0.00500	0.0250	5	05/07/2016 15:00	WG870083
Potassium	4.07	J	0.185	1.00	5.00	5	05/06/2016 21:39	WG869318
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Selenium,Dissolved	0.00232	J	0.00190	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Sodium	1240		0.550	1.00	5.00	5	05/06/2016 21:39	WG869318

Cn

Metals (ICPMS) by Method 6020

Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
				1119/1	mg/i		uate / time	
Arsenic	0.00788	J	0.00125	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Arsenic, Dissolved	0.00359	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Barium	0.0185	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:39	WG869318
Barium, Dissolved	0.0171	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:00	WG870083
Calcium	875		0.230	1.00	5.00	5	05/06/2016 21:39	WG869318
Chromium	0.0465		0.00270	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Iron	1.34		0.0750	0.100	0.500	5	05/06/2016 21:39	WG869318
Iron,Dissolved	0.173	J	0.0750	0.100	0.500	5	05/07/2016 15:00	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Manganese	0.234		0.00125	0.00500	0.0250	5	05/06/2016 21:39	WG869318
Manganese, Dissolved	0.162		0.00125	0.00500	0.0250	5	05/07/2016 15:00	WG870083
Potassium	4.07	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 21:39	WG869318
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 21:39	WG869318
Selenium, Dissolved	0.00232	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 15:00	WG870083
Sodium	1240		0.550	1.00	5.00	5	05/06/2016 21:39	WG869318

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 01:55	WG869046
(S) a,a,a-Trifluorotoluene(FID)	92.6				62.0-128		05/04/2016 01:55	WG869046

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 09:32	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 09:32	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 09:32	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 09:32	WG868989

Collected date/time: 04/27/16 16:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 09:32	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 09:32	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 09:32	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:32	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 09:32	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 09:32	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 09:32	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 09:32	WG868989
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 09:32	WG868989
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 09:32	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 09:32	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 09:32	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 09:32	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 09:32	WG868989
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 09:32	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 09:32	WG868989
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 09:32	WG868989
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:32	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 09:32	WG868989
I,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 09:32	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 09:32	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 09:32	WG868989
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 09:32	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 09:32	WG868989
(S) Dibromofluoromethane	99.4				79.0-121		05/04/2016 09:32	WG868989
(S) 4-Bromofluorobenzene	88.0				80.1-120		05/04/2016 09:32	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.317		0.0247	0.100	0.100	1	05/05/2016 21:42	WG869613
(S) o-Terphenyl	108				50.0-150		05/05/2016 21:42	WG869613

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	9480		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 15:38	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1410		5.19	1.00	100	100	05/10/2016 12:39	WG870882
Fluoride	5.54		0.00990	0.100	0.100	1	05/10/2016 04:52	WG870882
Sulfate	4550		7.74	5.00	500	100	05/10/2016 12:39	WG870882

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.115		0.00125	0.00200	0.0100	5	05/06/2016 21:42	WG869318
Arsenic, Dissolved	0.0867		0.00125	0.00200	0.0100	5	05/07/2016 15:08	WG870083
Barium	0.0173	J	0.00180	0.00500	0.0250	5	05/06/2016 21:42	WG869318
Barium, Dissolved	0.0146	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:08	WG870083
Calcium	643		0.230	1.00	5.00	5	05/06/2016 21:42	WG869318
Chromium	0.00771	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 21:42	WG869318
Chromium, Dissolved	0.00527	J	0.00270	0.00200	0.0100	5	05/07/2016 15:08	WG870083
Iron	1.27		0.0750	0.100	0.500	5	05/06/2016 21:42	WG869318
Iron,Dissolved	0.682		0.0750	0.100	0.500	5	05/07/2016 15:08	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:42	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:08	WG870083
Manganese	3.30		0.00125	0.00500	0.0250	5	05/06/2016 21:42	WG869318
Manganese, Dissolved	2.98		0.00125	0.00500	0.0250	5	05/07/2016 15:08	WG870083
Potassium	10.2		0.185	1.00	5.00	5	05/06/2016 21:42	WG869318
Selenium	0.00714	J	0.00190	0.00200	0.0100	5	05/06/2016 21:42	WG869318
Selenium,Dissolved	0.00813	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 15:08	WG870083
Sodium	1840		0.550	1.00	5.00	5	05/06/2016 21:42	WG869318

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.519		0.0314	0.100	0.100	1	05/04/2016 02:17	WG869046
(S) a,a,a-Trifluorotoluene(FID)	94.5				62.0-128		05/04/2016 02:17	WG869046

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 09:52	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 09:52	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 09:52	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 09:52	WG868989

Collected date/time: 04/27/16 16:55

832488

Volatile Organic Compounds (GC/MS) by Method 8260B

² Tc
³Ss

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 09:52	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 09:52	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 09:52	WG868989
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 09:52	WG868989
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:52	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 09:52	WG868989
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 09:52	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 09:52	WG868989
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 09:52	WG868989
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 09:52	WG868989
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 09:52	WG868989
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 09:52	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 09:52	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 09:52	WG868989
I-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 09:52	WG868989
Methyl tert-butyl ether	0.00129		0.000367	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 09:52	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 09:52	WG868989
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 09:52	WG868989
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 09:52	WG868989
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 09:52	WG868989
inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 09:52	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 09:52	WG868989
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 09:52	WG868989
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 09:52	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 09:52	WG868989
(S) Dibromofluoromethane	97.7				79.0-121		05/04/2016 09:52	WG868989
(S) 4-Bromofluorobenzene	86.6				80.1-120		05/04/2016 09:52	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	83.8		0.494	0.100	2.00	20	05/06/2016 05:57	WG869613
(S) o-Terphenyl	0.000	J7			50.0-150		05/06/2016 05:57	WG869613

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:50

832488

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5410		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.262	J	0.197	0.100	1.00	10	05/06/2016 15:39	WG870059

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1360		5.19	1.00	100	100	05/10/2016 13:27	WG870882
Fluoride	12.1		0.0990	0.100	1.00	10	05/15/2016 19:53	WG872424
Sulfate	2350		7.74	5.00	500	100	05/10/2016 13:27	WG870882

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0510		0.00125	0.00200	0.0100	5	05/06/2016 21:44	WG869318
Arsenic,Dissolved	0.0400		0.00125	0.00200	0.0100	5	05/07/2016 15:10	WG870083
Barium	0.0387		0.00180	0.00500	0.0250	5	05/06/2016 21:44	WG869318
Barium,Dissolved	0.0326		0.00180	0.00500	0.0250	5	05/07/2016 15:10	WG870083
Calcium	350		0.230	1.00	5.00	5	05/06/2016 21:44	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:44	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:10	WG870083
Iron	0.414	J	0.0750	0.100	0.500	5	05/06/2016 21:44	WG869318
Iron,Dissolved	0.121	J	0.0750	0.100	0.500	5	05/07/2016 15:10	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:44	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:10	WG870083
Manganese	1.76		0.00125	0.00500	0.0250	5	05/06/2016 21:44	WG869318
Manganese,Dissolved	1.64		0.00125	0.00500	0.0250	5	05/07/2016 15:10	WG870083
Potassium	9.87		0.185	1.00	5.00	5	05/06/2016 21:44	WG869318
Selenium	0.00199	J	0.00190	0.00200	0.0100	5	05/06/2016 21:44	WG869318
Selenium,Dissolved	0.00331	J	0.00190	0.00200	0.0100	5	05/07/2016 15:10	WG870083
Sodium	1790		0.550	1.00	5.00	5	05/06/2016 21:44	WG869318

Gl

°Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.334		0.0314	0.100	0.100	1	05/04/2016 02:39	WG869046
(S) a,a,a-Trifluorotoluene(FID)	95.0				62.0-128		05/04/2016 02:39	WG869046

⁹Sc

_								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 10:12	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 10:12	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 10:12	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 10:12	WG868989

ONE

Collected date/time: 04/27/16 17:50

Volatile Organic Compounds (GC/MS) by Method 8260B

Ε	LAB.	NATIONWIDE.	
_	L/ (D.	TO THOUSANDE.	

Ss

Cn

СС

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 10:12	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 10:12	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 10:12	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:12	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 10:12	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 10:12	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 10:12	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 10:12	WG868989
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 10:12	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 10:12	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 10:12	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 10:12	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 10:12	WG868989
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 10:12	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 10:12	WG868989
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 10:12	WG868989
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 10:12	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 10:12	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 10:12	WG868989
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 10:12	WG868989
(S) Toluene-d8	102				90.0-115		05/04/2016 10:12	WG868989
(S) Dibromofluoromethane	101				79.0-121		05/04/2016 10:12	WG868989
(S) 4-Bromofluorobenzene	87.8				80.1-120		05/04/2016 10:12	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	8.41		0.0247	0.100	0.100	1	05/05/2016 22:01	WG869613
(S) o-Terphenyl	120				50.0-150		05/05/2016 22:01	WG869613

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	5270		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 15:40	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	72.5		0.0519	1.00	1.00	1	05/10/2016 05:55	WG870882
Fluoride	9.96		0.00990	0.100	0.100	1	05/10/2016 05:55	WG870882
Sulfate	2690		7.74	5.00	500	100	05/10/2016 13:42	WG870882

Metals (ICPMS) by Method 6020

metale (i.e. me, ey metale delle											
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Arsenic	0.0210		0.00125	0.00200	0.0100	5	05/06/2016 21:47	WG869318			
Arsenic,Dissolved	0.0116		0.00125	0.00200	0.0100	5	05/07/2016 15:13	WG870083			
Barium	0.0445		0.00180	0.00500	0.0250	5	05/06/2016 21:47	WG869318			
Barium, Dissolved	0.0382		0.00180	0.00500	0.0250	5	05/07/2016 15:13	WG870083			
Calcium	659		0.230	1.00	5.00	5	05/06/2016 21:47	WG869318			
Chromium	0.0761		0.00270	0.00200	0.0100	5	05/06/2016 21:47	WG869318			
Chromium, Dissolved	0.0490		0.00270	0.00200	0.0100	5	05/07/2016 15:13	WG870083			
Iron	14.8		0.0750	0.100	0.500	5	05/06/2016 21:47	WG869318			
Iron,Dissolved	11.2		0.0750	0.100	0.500	5	05/07/2016 15:13	WG870083			
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:47	WG869318			
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:13	WG870083			
Manganese	0.946		0.00125	0.00500	0.0250	5	05/06/2016 21:47	WG869318			
Manganese,Dissolved	0.773		0.00125	0.00500	0.0250	5	05/07/2016 15:13	WG870083			
Potassium	22.9		0.185	1.00	5.00	5	05/06/2016 21:47	WG869318			
Selenium	0.0141		0.00190	0.00200	0.0100	5	05/06/2016 21:47	WG869318			
Selenium,Dissolved	0.0124		0.00190	0.00200	0.0100	5	05/07/2016 15:13	WG870083			
Sodium	540		0.550	1.00	5.00	5	05/06/2016 21:47	WG869318			

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.269		0.0314	0.100	0.100	1	05/04/2016 03:01	WG869046
(S) a,a,a-Trifluorotoluene(FID)	94.2				62.0-128		05/04/2016 03:01	WG869046

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, -						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/I		mg/l	mg/l	mg/l		date / time	
Acetone	0.0152	<u>J</u>	0.0100	0.0500	0.0500	1	05/04/2016 10:33	WG868989
Benzene	0.00275		0.000331	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 10:33	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 10:33	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 10:33	WG868989

Cn

Qc

0

Collected date/time: 04/27/16 17:30

Volatile Organic Compounds (GC/MS) by Method 8260B

DNE I	LAB.	NATIONWIDE.	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 10:33	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 10:33	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 10:33	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 10:33	WG868989
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 10:33	WG868989
1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 10:33	WG868989
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 10:33	WG868989
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:33	WG868989
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 10:33	WG868989
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 10:33	WG868989
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 10:33	WG868989
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 10:33	WG868989
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 10:33	WG868989
thylbenzene	0.000942	<u>J</u>	0.000384	0.00100	0.00100	1	05/04/2016 10:33	WG868989
sopropylbenzene	0.00168	_	0.000326	0.00100	0.00100	1	05/04/2016 10:33	WG868989
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 10:33	WG868989
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 10:33	WG868989
-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 10:33	WG868989
lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 10:33	WG868989
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 10:33	WG868989
lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 10:33	WG868989
aphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 10:33	WG868989
-Propylbenzene	0.00152		0.000349	0.00100	0.00100	1	05/04/2016 10:33	WG868989
tyrene	U		0.000307	0.00100	0.00100	1	05/04/2016 10:33	WG868989
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 10:33	WG868989
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 10:33	WG868989
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 10:33	WG868989
oluene	0.00125	J	0.000780	0.00500	0.00500	1	05/04/2016 10:33	WG868989
1,1-Trichloroethane	U	_	0.000319	0.00100	0.00100	1	05/04/2016 10:33	WG868989
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 10:33	WG868989
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:33	WG868989
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 10:33	WG868989
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 10:33	WG868989
'inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 10:33	WG868989
-Xylene	0.00135		0.000341	0.00100	0.00100	1	05/04/2016 10:33	WG868989
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 10:33	WG868989
ylenes, Total	0.00135	<u>J</u>	0.00106	0.00300	0.00300	1	05/04/2016 10:33	WG868989
(S) Toluene-d8	99.5	_			90.0-115		05/04/2016 10:33	WG868989
(S) Dibromofluoromethane	99.3				79.0-121		05/04/2016 10:33	WG868989
(S) 4-Bromofluorobenzene	87.9				80.1-120		05/04/2016 10:33	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	63.2		1.24	0.100	5.00	50	05/06/2016 06:15	WG869613
(S) o-Terphenyl	0.000	<u>J7</u>			50.0-150		05/06/2016 06:15	WG869613

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	7110		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.406	J	0.197	0.100	1.00	10	05/06/2016 15:41	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	378		5.19	1.00	100	100	05/10/2016 13:58	WG870882
Fluoride	3.03		0.00990	0.100	0.100	1	05/10/2016 06:11	WG870882
Sulfate	4010		7.74	5.00	500	100	05/10/2016 13:58	WG870882

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0749		0.00125	0.00200	0.0100	5	05/06/2016 21:50	WG869318
Arsenic, Dissolved	0.0594		0.00250	0.00200	0.0200	10	05/09/2016 14:57	WG870083
Barium	0.0136	J	0.00180	0.00500	0.0250	5	05/06/2016 21:50	WG869318
Barium, Dissolved	0.00881	J	0.00360	0.00500	0.0500	10	05/09/2016 14:57	WG870083
Calcium	589		0.230	1.00	5.00	5	05/06/2016 21:50	WG869318
Chromium	0.0132		0.00270	0.00200	0.0100	5	05/06/2016 21:50	WG869318
Chromium, Dissolved	0.0122	<u>J</u>	0.00540	0.00200	0.0200	10	05/09/2016 14:57	WG870083
Iron	12.2		0.0750	0.100	0.500	5	05/06/2016 21:50	WG869318
Iron,Dissolved	10.7		0.150	0.100	1.00	10	05/09/2016 14:57	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:50	WG869318
Lead,Dissolved	U		0.00240	0.00200	0.0200	10	05/09/2016 14:57	WG870083
Manganese	0.687		0.00125	0.00500	0.0250	5	05/06/2016 21:50	WG869318
Manganese, Dissolved	0.599		0.00250	0.00500	0.0500	10	05/09/2016 14:57	WG870083
Potassium	82.9		0.185	1.00	5.00	5	05/06/2016 21:50	WG869318
Selenium	0.0137		0.00190	0.00200	0.0100	5	05/06/2016 21:50	WG869318
Selenium,Dissolved	0.0110		0.00190	0.00200	0.0100	5	05/07/2016 15:16	WG870083
Sodium	1610		0.550	1.00	5.00	5	05/06/2016 21:50	WG869318

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.968		0.0314	0.100	0.100	1	05/04/2016 03:24	WG869046
(S) a,a,a-Trifluorotoluene(FID)	93.1				62.0-128		05/04/2016 03:24	WG869046

	³Ss	
I		

•								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	0.0313	J	0.0100	0.0500	0.0500	1	05/04/2016 10:53	WG868989
Benzene	0.00287		0.000331	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 10:53	WG868989
n-Butylbenzene	0.000463	J	0.000361	0.00100	0.00100	1	05/04/2016 10:53	WG868989
sec-Butylbenzene	0.00348		0.000365	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 10:53	WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 14:30

832488

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u> </u>
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 10:53	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 10:53	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 10:53	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:53	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 10:53	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 10:53	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 10:53	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Ethylbenzene	0.00300		0.000384	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Isopropylbenzene	0.0230		0.000326	0.00100	0.00100	1	05/04/2016 10:53	WG868989
p-Isopropyltoluene	0.00264		0.000350	0.00100	0.00100	1	05/04/2016 10:53	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 10:53	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 10:53	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 10:53	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 10:53	WG868989
Methyl tert-butyl ether	0.00647		0.000367	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 10:53	WG868989
n-Propylbenzene	0.00578		0.000349	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Toluene	0.00138	<u>J</u>	0.000780	0.00500	0.00500	1	05/04/2016 10:53	WG868989
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,2,4-Trimethylbenzene	0.00267		0.000373	0.00100	0.00100	1	05/04/2016 10:53	WG868989
1,3,5-Trimethylbenzene	0.00161		0.000387	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 10:53	WG868989
o-Xylene	0.000583	<u>J</u>	0.000341	0.00100	0.00100	1	05/04/2016 10:53	WG868989
m&p-Xylene	0.00332	_	0.000719	0.00100	0.00100	1	05/04/2016 10:53	WG868989
Xylenes, Total	0.00390		0.00106	0.00300	0.00300	1	05/04/2016 10:53	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 10:53	WG868989
(S) Dibromofluoromethane	99.6				79.0-121		05/04/2016 10:53	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

81.0

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	101		1.24	0.100	5.00	50	05/06/2016 06:34	WG869613
(S) o-Terphenyl	0.000	J7			50.0-150		05/06/2016 06:34	WG869613

80.1-120

WG868989

05/04/2016 10:53

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5220		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 15:42	WG870059

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1180		5.19	1.00	100	100	05/10/2016 14:14	WG870882
Fluoride	2.96		0.00990	0.100	0.100	1	05/10/2016 06:27	WG870882
Sulfate	2250		7.74	5.00	500	100	05/10/2016 14:14	WG870882

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

ivietais (iCi ivis) by iv								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0610		0.00125	0.00200	0.0100	5	05/06/2016 21:52	WG869318
Arsenic,Dissolved	0.0455		0.00125	0.00200	0.0100	5	05/07/2016 15:19	WG870083
Barium	0.0140	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 21:52	WG869318
Barium,Dissolved	0.0120	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:19	WG870083
Calcium	531		0.230	1.00	5.00	5	05/06/2016 21:52	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 21:52	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:19	WG870083
Iron	4.68		0.0750	0.100	0.500	5	05/06/2016 21:52	WG869318
Iron,Dissolved	3.62		0.0750	0.100	0.500	5	05/07/2016 15:19	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 21:52	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:19	WG870083
Manganese	1.07		0.00125	0.00500	0.0250	5	05/06/2016 21:52	WG869318
Manganese,Dissolved	0.856		0.00125	0.00500	0.0250	5	05/07/2016 15:19	WG870083
Potassium	29.4		0.185	1.00	5.00	5	05/06/2016 21:52	WG869318
Selenium	0.00298	J	0.00190	0.00200	0.0100	5	05/06/2016 21:52	WG869318
Selenium,Dissolved	0.00464	J	0.00190	0.00200	0.0100	5	05/07/2016 15:19	WG870083
Sodium	1110		0.550	1.00	5.00	5	05/06/2016 21:52	WG869318

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.759		0.0314	0.100	0.100	1	05/04/2016 03:46	WG869046
(S) a,a,a-Trifluorotoluene(FID)	95.0				62.0-128		05/04/2016 03:46	WG869046

· ·		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:13	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:13	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:13	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:13	WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:40

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:13	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:13	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:13	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:13	WG868989
I,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:13	WG868989
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 11:13	WG868989
I,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:13	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 11:13	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 11:13	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 11:13	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 11:13	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 11:13	WG868989
sopropylbenzene	0.0108		0.000326	0.00100	0.00100	1	05/04/2016 11:13	WG868989
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 11:13	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 11:13	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 11:13	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 11:13	WG868989
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 11:13	WG868989
Methyl tert-butyl ether	0.00756		0.000367	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 11:13	WG868989
n-Propylbenzene	0.000356	J	0.000349	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Styrene	U	_	0.000307	0.00100	0.00100	1	05/04/2016 11:13	WG868989
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 11:13	WG868989
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 11:13	WG868989
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 11:13	WG868989
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 11:13	WG868989
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Frichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:13	WG868989
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 11:13	WG868989
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 11:13	WG868989
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 11:13	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 11:13	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 11:13	WG868989
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 11:13	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

101

86.2

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	24.1		0.124	0.100	0.500	5	05/06/2016 04:07	WG869613
(S) o-Terphenyl	104				50.0-150		05/06/2016 04:07	WG869613

79.0-121

80.1-120

WG868989

WG868989

05/04/2016 11:13

05/04/2016 11:13

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6260		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.404	<u>J</u>	0.197	0.100	1.00	10	05/06/2016 15:43	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1360		5.19	1.00	100	100	05/10/2016 14:30	WG870882
Fluoride	1.87		0.00990	0.100	0.100	1	05/10/2016 06:43	WG870882
Sulfate	2640		7.74	5.00	500	100	05/10/2016 14:30	WG870882

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Metals (CLIMS) by Metalou 0020											
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Arsenic	0.0388		0.00125	0.00200	0.0100	5	05/06/2016 22:04	WG869318			
Arsenic,Dissolved	0.0299		0.000250	0.00200	0.00200	1	05/09/2016 15:00	WG870083			
Barium	0.0175	J	0.00180	0.00500	0.0250	5	05/06/2016 22:04	WG869318			
Barium, Dissolved	0.0146		0.000360	0.00500	0.00500	1	05/09/2016 15:00	WG870083			
Calcium	728		0.230	1.00	5.00	5	05/06/2016 22:04	WG869318			
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 22:04	WG869318			
Chromium, Dissolved	0.00103	J	0.000540	0.00200	0.00200	1	05/09/2016 15:00	WG870083			
Iron	0.677		0.0750	0.100	0.500	5	05/06/2016 22:04	WG869318			
Iron,Dissolved	0.388		0.0150	0.100	0.100	1	05/09/2016 15:00	WG870083			
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 22:04	WG869318			
Lead,Dissolved	0.000300	J	0.000240	0.00200	0.00200	1	05/09/2016 15:00	WG870083			
Manganese	2.61		0.00125	0.00500	0.0250	5	05/06/2016 22:04	WG869318			
Manganese, Dissolved	2.49		0.000250	0.00500	0.00500	1	05/09/2016 15:00	WG870083			
Potassium	5.64		0.185	1.00	5.00	5	05/06/2016 22:04	WG869318			
Selenium	0.00580	J	0.00190	0.00200	0.0100	5	05/06/2016 22:04	WG869318			
Selenium,Dissolved	0.00429		0.000380	0.00200	0.00200	1	05/09/2016 15:00	WG870083			
Sodium	1160		0.550	1.00	5.00	5	05/06/2016 22:04	WG869318			

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.499		0.0314	0.100	0.100	1	05/04/2016 04:08	WG869046
(S) a,a,a-Trifluorotoluene(FID)	95.5				62.0-128		05/04/2016 04:08	WG869046

Volatile Organic Compounds (GC/MS) by Method 8260B

o .		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:33	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:33	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:33	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:33	WG868989

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:25

1832488

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:33	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:33	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:33	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:33	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 11:33	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 11:33	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 11:33	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 11:33	WG868989
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 11:33	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 11:33	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 11:33	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 11:33	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 11:33	WG868989
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 11:33	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 11:33	WG868989
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 11:33	WG868989
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 11:33	WG868989
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 11:33	WG868989
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 11:33	WG868989
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 11:33	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 11:33	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 11:33	WG868989
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 11:33	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 11:33	WG868989
(S) Dibromofluoromethane	97.3				79.0-121		05/04/2016 11:33	WG868989
* *								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

86.6

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	10.2		0.124	0.100	0.500	5	05/06/2016 12:43	WG869613
(S) o-Terphenyl	111				50.0-150		05/06/2016 12:43	WG869613

80.1-120

WG868989

05/04/2016 11:33

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	6240		2.82	10.0	10.0	1	05/04/2016 05:11	WG869544

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.231	J	0.197	0.100	1.00	10	05/06/2016 15:49	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1290		5.19	1.00	100	100	05/10/2016 14:46	WG870882
Fluoride	1.87		0.00990	0.100	0.100	1	05/10/2016 06:59	WG870882
Sulfate	2530		7.74	5.00	500	100	05/10/2016 14:46	WG870882

Qc

Gl

Metals (ICPMS) by Method 6020

Tweetals (ICI WIS) by I	100100000							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0348		0.00125	0.00200	0.0100	5	05/06/2016 22:07	WG869318
Arsenic, Dissolved	0.0246		0.00125	0.00200	0.0100	5	05/07/2016 15:24	WG870083
Barium	0.0168	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 22:07	WG869318
Barium, Dissolved	0.0141	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:24	WG870083
Calcium	690		0.230	1.00	5.00	5	05/06/2016 22:07	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 22:07	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:24	WG870083
Iron	0.612		0.0750	0.100	0.500	5	05/06/2016 22:07	WG869318
Iron,Dissolved	0.401	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 15:24	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 22:07	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:24	WG870083
Manganese	2.62		0.00125	0.00500	0.0250	5	05/06/2016 22:07	WG869318
Manganese, Dissolved	2.13		0.00125	0.00500	0.0250	5	05/07/2016 15:24	WG870083
Potassium	5.47		0.185	1.00	5.00	5	05/06/2016 22:07	WG869318
Selenium	0.00575	J	0.00190	0.00200	0.0100	5	05/06/2016 22:07	WG869318
Selenium, Dissolved	0.00615	J	0.00190	0.00200	0.0100	5	05/07/2016 15:24	WG870083
Sodium	1140		0.550	1.00	5.00	5	05/06/2016 22:07	WG869318

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.490		0.0314	0.100	0.100	1	05/04/2016 04:30	WG869046
(S) a,a,a-Trifluorotoluene(FID)	94.8				62.0-128		05/04/2016 04:30	WG869046

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 11:53	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 11:53	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 11:53	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 11:53	WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 12:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 11:53	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 11:53	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 11:53	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:53	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 11:53	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 11:53	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 11:53	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 11:53	WG868989
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 11:53	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 11:53	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 11:53	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 11:53	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 11:53	WG868989
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 11:53	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 11:53	WG868989
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 11:53	WG868989
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 11:53	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 11:53	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 11:53	WG868989
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 11:53	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 11:53	WG868989
(S) Dibromofluoromethane	98.9				79.0-121		05/04/2016 11:53	WG868989
(S) 4-Bromofluorobenzene	89.3				80.1-120		05/04/2016 11:53	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	9.97		0.124	0.100	0.500	5	05/06/2016 12:25	WG869613
(S) o-Terphenyl	115				50.0-150		05/06/2016 12:25	WG869613

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5940		2.82	10.0	10.0	1	05/04/2016 05:57	WG869546

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/10/2016 17:35	WG871208

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1530		2.60	1.00	50.0	50	05/15/2016 20:08	WG872424
Fluoride	7.62		0.00990	0.100	0.100	1	05/10/2016 07:15	WG870882
Sulfate	1940		3.87	5.00	250	50	05/15/2016 20:08	WG872424

Metals (ICPMS) by Method 6020

ivietais (iCi ivis) by iv								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.183		0.00125	0.00200	0.0100	5	05/06/2016 22:10	WG869318
Arsenic,Dissolved	0.125		0.00125	0.00200	0.0100	5	05/07/2016 15:27	WG870083
Barium	0.0218	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 22:10	WG869318
Barium,Dissolved	0.0176	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:27	WG870083
Calcium	374		0.230	1.00	5.00	5	05/06/2016 22:10	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 22:10	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:27	WG870083
ron	2.52		0.0750	0.100	0.500	5	05/06/2016 22:10	WG869318
ron,Dissolved	1.08		0.0750	0.100	0.500	5	05/07/2016 15:27	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 22:10	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:27	WG870083
Manganese	1.01		0.00125	0.00500	0.0250	5	05/06/2016 22:10	WG869318
Manganese,Dissolved	0.907		0.00125	0.00500	0.0250	5	05/07/2016 15:27	WG870083
Potassium	21.5		0.185	1.00	5.00	5	05/06/2016 22:10	WG869318
Selenium	0.00310	<u>J</u>	0.00190	0.00200	0.0100	5	05/06/2016 22:10	WG869318
Selenium,Dissolved	0.00374	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 15:27	WG870083
Sodium	1640		0.550	1.00	5.00	5	05/06/2016 22:10	WG869318

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.39		0.0314	0.100	0.100	1	05/04/2016 04:52	WG869046
(S) a,a,a-Trifluorotoluene(FID)	94.5				62.0-128		05/04/2016 04:52	WG869046

Ss

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 12:13	WG868989
Benzene	0.00134		0.000331	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 12:13	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 12:13	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 12:13	WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 17:10

L832488

L032400

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	<u> </u>	mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 12:13	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 12:13	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 12:13	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:13	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:13	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:13	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:13	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Isopropylbenzene	0.00144		0.000326	0.00100	0.00100	1	05/04/2016 12:13	WG868989
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:13	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 12:13	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:13	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:13	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:13	WG868989
Methyl tert-butyl ether	0.00577		0.000367	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:13	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:13	WG868989
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:13	WG868989
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:13	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 12:13	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 12:13	WG868989
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 12:13	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 12:13	WG868989
(S) Dibromofluoromethane	99.0				79.0-121		05/04/2016 12:13	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	18.2		0.124	0.100	0.500	5	05/06/2016 03:49	WG869613
(S) o-Terphenyl	99.0				50.0-150		05/06/2016 03:49	WG869613

(S) 4-Bromofluorobenzene

80.1-120

05/04/2016 12:13

WG868989

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 16:15

832488

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	12000		2.82	10.0	10.0	1	05/04/2016 05:57	WG869546

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/10/2016 17:36	WG871208

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	4180		5.19	1.00	100	100	05/10/2016 15:34	WG870882
Fluoride	1.40		0.00990	0.100	0.100	1	05/10/2016 07:31	WG870882
Sulfate	4310		7.74	5.00	500	100	05/10/2016 15:34	WG870882

Cn

Metals (ICPMS) by Method 6020

Wetals (ICI WIS) by IV								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0106		0.00125	0.00200	0.0100	5	05/06/2016 20:54	WG869318
Arsenic,Dissolved	0.00841	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:44	WG870083
Barium	0.0200	<u>J 01</u>	0.00180	0.00500	0.0250	5	05/06/2016 20:54	WG869318
Barium, Dissolved	0.0178	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:44	WG870083
Calcium	728	\vee	0.230	1.00	5.00	5	05/06/2016 20:54	WG869318
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 20:54	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:44	WG870083
Iron	4.56		0.0750	0.100	0.500	5	05/06/2016 20:54	WG869318
Iron,Dissolved	3.82	<u>01</u>	0.0750	0.100	0.500	5	05/07/2016 14:44	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 20:54	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:44	WG870083
Manganese	2.70	\vee	0.00125	0.00500	0.0250	5	05/06/2016 20:54	WG869318
Manganese, Dissolved	2.39	\vee	0.00125	0.00500	0.0250	5	05/07/2016 14:44	WG870083
Potassium	27.9	\vee	0.185	1.00	5.00	5	05/06/2016 20:54	WG869318
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 20:54	WG869318
Selenium,Dissolved	0.00215	J	0.00190	0.00200	0.0100	5	05/07/2016 14:44	WG870083
Sodium	3230	V	0.550	1.00	5.00	5	05/06/2016 20:54	WG869318

Qc 7GI

°Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.0421	<u>J</u>	0.0314	0.100	0.100	1	05/04/2016 05:14	WG869046
(S) a,a,a-Trifluorotoluene(FID)	92.6				62.0-128		05/04/2016 05:14	WG869046

⁹Sc

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 12:33	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 12:33	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 12:33	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 12:33	WG868989

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 12

Collected date/time: 04/27/16 16:15

Volatile Organic Compounds (GC/MS) by Method 8260B

Тс

Ss

Cn

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 12:33	WG868989
Chloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 12:33	WG868989
Chloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 12:33	WG868989
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:33	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:33	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:33	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:33	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 12:33	WG868989
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:33	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 12:33	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:33	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:33	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:33	WG868989
Methyl tert-butyl ether	0.000646	<u>J</u>	0.000367	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:33	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:33	WG868989
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:33	WG868989
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:33	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:33	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 12:33	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

99.7

102

89.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.449		0.0247	0.100	0.100	1	05/06/2016 00:09	WG869613
(S) o-Terphenyl	110				50.0-150		05/06/2016 00:09	WG869613

0.00100

0.00300

0.00100

0.00300

90.0-115

79.0-121

80.1-120

1

0.000719

0.00106

WG868989

WG868989

WG868989

WG868989

WG868989

05/04/2016 12:33

05/04/2016 12:33

05/04/2016 12:33

05/04/2016 12:33

05/04/2016 12:33

Collected date/time: 04/27/16 00:00

SAMPLE RESULTS - 13

ONE LAB. NATIONWIDE.

.832488

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/04/2016 07:10	WG868989
Benzene	U		0.000331	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Bromoform	U		0.000469	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Bromomethane	U		0.000866	0.00500	0.00500	1	05/04/2016 07:10	WG868989
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/04/2016 07:10	WG868989
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Chloroethane	U		0.000453	0.00500	0.00500	1	05/04/2016 07:10	WG868989
hloroform	U		0.000324	0.00500	0.00500	1	05/04/2016 07:10	WG868989
hloromethane	U		0.000276	0.00250	0.00250	1	05/04/2016 07:10	WG868989
2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/04/2016 07:10	WG868989
1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/04/2016 07:10	WG868989
2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 07:10	WG868989
1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:10	WG868989
s-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 07:10	WG868989
ans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 07:10	WG868989
2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 07:10	WG868989
s-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 07:10	WG868989
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 07:10	WG868989
hylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 07:10	WG868989
opropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 07:10	WG868989
Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 07:10	WG868989
lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 07:10	WG868989
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 07:10	WG868989
ethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 07:10	WG868989
aphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 07:10	WG868989
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 07:10	WG868989
tyrene	U		0.000313	0.00100	0.00100	1	05/04/2016 07:10	WG868989
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 07:10	WG868989
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 07:10	WG868989
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 07:10	WG868989
oluene	U		0.000780	0.00500	0.00500	1	05/04/2016 07:10	WG868989
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 07:10	WG868989
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 07:10	WG868989
richloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 07:10	WG868989
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 07:10	WG868989
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 07:10	WG868989
inyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 07:10	WG868989
Xylene	U		0.000233	0.00100	0.00100	1	05/04/2016 07:10	WG868989
n&p-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 07:10	WG868989
ylenes, Total	U		0.000713	0.00100	0.00100	1	05/04/2016 07:10	WG868989
(S) Toluene-d8	101		0.00100	0.00300	90.0-115		05/04/2016 07:10	WG868989
(S) Dibromofluoromethane	99.8				79.0-121		05/04/2016 07:10	WG868989
(S) A B	99.0				79.0-121		05/04/2010 07:10	WC0C0000

Ss

Cn

СС

Gl

Αl

Sc

(S) 4-Bromofluorobenzene

89.0

80.1-120

WG868989

05/04/2016 07:10

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	10100		2.82	10.0	10.0	1	05/04/2016 05:57	WG869546

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	U		0.197	0.100	1.00	10	05/06/2016 16:05	WG870059

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	3330		5.19	1.00	100	100	05/10/2016 16:22	WG870882
Fluoride	0.603	<u>J6</u>	0.00990	0.100	0.100	1	05/10/2016 07:47	WG870882
Sulfate	3320		7.74	5.00	500	100	05/10/2016 16:22	WG870882

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00917	J	0.00125	0.00200	0.0100	5	05/06/2016 22:12	WG869318
Arsenic,Dissolved	0.00311	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 15:29	WG870083
Barium	0.0301		0.00180	0.00500	0.0250	5	05/06/2016 22:12	WG869318
Barium,Dissolved	0.0252		0.00180	0.00500	0.0250	5	05/07/2016 15:29	WG870083
Calcium	1030		0.230	1.00	5.00	5	05/06/2016 22:12	WG869318
Chromium	0.0188		0.00270	0.00200	0.0100	5	05/06/2016 22:12	WG869318
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:29	WG870083
Iron	9.67		0.0750	0.100	0.500	5	05/06/2016 22:12	WG869318
Iron,Dissolved	3.72		0.0750	0.100	0.500	5	05/07/2016 15:29	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 22:12	WG869318
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 15:29	WG870083
Manganese	2.94		0.00125	0.00500	0.0250	5	05/06/2016 22:12	WG869318
Manganese,Dissolved	2.64		0.00125	0.00500	0.0250	5	05/07/2016 15:29	WG870083
Potassium	6.54		0.185	1.00	5.00	5	05/06/2016 22:12	WG869318
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 22:12	WG869318
Selenium,Dissolved	0.00216	<u>J</u>	0.00190	0.00200	0.0100	5	05/07/2016 15:29	WG870083
Sodium	2090		0.550	1.00	5.00	5	05/06/2016 22:12	WG869318

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B											
Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch				
mg/l		mg/l	mg/l	mg/l		date / time					
U		0.0100	0.0500	0.0500	1	05/04/2016 12:53	WG868989				
U		0.000331	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000380	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000469	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000866	0.00500	0.00500	1	05/04/2016 12:53	WG868989				
U		0.000361	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000365	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000275	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000379	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000348	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000327	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000453	0.00500	0.00500	1	05/04/2016 12:53	WG868989				
U		0.000324	0.00500	0.00500	1	05/04/2016 12:53	WG868989				
U		0.000276	0.00250	0.00250	1	05/04/2016 12:53	WG868989				
U		0.000381	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
U		0.000259	0.00100	0.00100	1	05/04/2016 12:53	WG868989				
	Result mg/l U U U U U U U U U U U U U	Result Qualifier mg/l U U U U U U U U U U U U U U U U U U	Result Qualifier SDL mg/l mg/l U 0.0100 U 0.000380 U 0.000469 U 0.000866 U 0.000361 U 0.000365 U 0.000379 U 0.000348 U 0.000327 U 0.000324 U 0.000324 U 0.000276 U 0.000381	Result mg/l Qualifier mg/l SDL mg/l Unadj. MQL mg/l U 0.0100 0.0500 U 0.000331 0.00100 U 0.000380 0.00100 U 0.000469 0.00100 U 0.000366 0.00500 U 0.000361 0.00100 U 0.000365 0.00100 U 0.000375 0.00100 U 0.000379 0.00100 U 0.000348 0.00100 U 0.000327 0.00100 U 0.000327 0.00500 U 0.000324 0.00500 U 0.000324 0.00500 U 0.000381 0.00100	Result Qualifier SDL Unadj. MQL MQL mg/l mg/l mg/l mg/l mg/l U 0.0100 0.0500 0.0500 U 0.000331 0.00100 0.00100 U 0.000469 0.00100 0.00100 U 0.000866 0.00500 0.00500 U 0.000361 0.00100 0.00100 U 0.000365 0.00100 0.00100 U 0.000375 0.00100 0.00100 U 0.000379 0.00100 0.00100 U 0.000348 0.00100 0.00100 U 0.000327 0.00100 0.00100 U 0.000324 0.00500 0.00500 U 0.000324 0.00500 0.00500 U 0.000326 0.00250 0.00250	Result mg/l Qualifier mg/l SDL mg/l Unadj. MQL mg/l MQL mg/l Dilution mg/l U 0.0100 0.0500 0.0500 1 U 0.000331 0.00100 0.00100 1 U 0.000380 0.00100 0.00100 1 U 0.000469 0.00100 0.00100 1 U 0.000366 0.00500 0.00500 1 U 0.000361 0.00100 0.00100 1 U 0.000365 0.00100 0.00100 1 U 0.000375 0.00100 0.00100 1 U 0.000379 0.00100 0.00100 1 U 0.000348 0.00100 0.00100 1 U 0.000327 0.00100 0.00100 1 U 0.000327 0.00100 0.00500 1 U 0.000324 0.00500 0.00500 1 U 0.000324 0.00500 0.00500 1	Result Qualifier SDL Unadj. MQL MQL Dilution Analysis mg/l mg/l mg/l mg/l date / time U 0.0100 0.0500 0.0500 1 05/04/2016 12:53 U 0.000331 0.00100 0.00100 1 05/04/2016 12:53 U 0.000380 0.00100 0.00100 1 05/04/2016 12:53 U 0.000469 0.00100 0.00100 1 05/04/2016 12:53 U 0.000866 0.00500 0.00500 1 05/04/2016 12:53 U 0.000361 0.00100 0.00100 1 05/04/2016 12:53 U 0.000365 0.00100 0.00100 1 05/04/2016 12:53 U 0.000275 0.00100 0.00100 1 05/04/2016 12:53 U 0.000379 0.00100 0.00100 1 05/04/2016 12:53 U 0.000348 0.00100 0.00100 1 05/04/2016 12:53 U 0.000327 </td				

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/27/16 15:20

L832488

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:53	WG868989
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/04/2016 12:53	WG868989
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/04/2016 12:53	WG868989
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/04/2016 12:53	WG868989
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/04/2016 12:53	WG868989
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/04/2016 12:53	WG868989
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/04/2016 12:53	WG868989
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/04/2016 12:53	WG868989
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/04/2016 12:53	WG868989
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/04/2016 12:53	WG868989
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Naphthalene	U		0.00100	0.00500	0.00500	1	05/04/2016 12:53	WG868989
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Styrene	U		0.000307	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Toluene	U		0.000780	0.00500	0.00500	1	05/04/2016 12:53	WG868989
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/04/2016 12:53	WG868989
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/04/2016 12:53	WG868989
o-Xylene	U		0.000341	0.00100	0.00100	1	05/04/2016 12:53	WG868989
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/04/2016 12:53	WG868989
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/04/2016 12:53	WG868989
(S) Toluene-d8	101				90.0-115		05/04/2016 12:53	WG868989
(S) Dibromofluoromethane	101				79.0-121		05/04/2016 12:53	WG868989
(S) 4-Bromofluorobenzene	88.0				80.1-120		05/04/2016 12:53	WG868989

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.163		0.0247	0.100	0.100	1	05/06/2016 00:27	WG869613
(S) o-Terphenyl	107				50.0-150		05/06/2016 00:27	WG869613

WG869544 Gravimetric Analysis I	by Method 25	i40 C-2011		(Y CONTI					ONE LAB. NATIONWIDE.	鞅
Method Blank (MB))							_				1 _
(MB) R3133877-1 05/04/16	6 05:11											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Dissolved Solids	U		2.82	10.0								3 Ss
L832488-01 Origin	al Sample (OS) • Dup	licate (D	DUP)								
(OS) L832488-01 05/04/1	6 05:11 • (DUP) I	R3133877-4 0	5/04/16 05	5:11								^⁴ Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						°Sr
Dissolved Solids	9100	9460	1	3.88		5						6
												°Qc
Laboratory Control					iple Duplica	ate (LCSD)						⁷ Gl
			05/04/16	∩5·11								
(LCS) R3133877-2 05/04/					I CSD Boc	Doc Limits	LCS Qualifier	LCSD Qualifier	DDD	DDD Limits		
	Spike Amount	LCS Result	LCSD Re		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits		8
Analyte Dissolved Solids				sult LCS Rec.			LCS Qualifier	LCSD Qualifier				8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		⁸ Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res	sult LCS Rec.	%	%	LCS Qualifier	LCSD Qualifier	%	%		

SDG:

L832488

DATE/TIME:

05/17/16 20:49

PAGE:

35 of 58

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DUP Qualifier DUP RPD Limits %	Tc 2 Tc 3 Ss 4 Cn
	² Tc ³ Ss ⁴ Cn
	³ Ss ⁴ Cn
	³ Ss ⁴ Cn
	⁴ Cn
	⁴ Cn
9/2	5_
5	⁵ Sr
5	6 _
	ိဳQc
nple Duplicate (LCSD)	7 01
	— GI
	8
	Al
0.0	9_
	Sc
mple	LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits % % 99.8 85.0-115 3.12 5

SDG:

L832488

DATE/TIME:

05/17/16 20:49

PAGE:

36 of 58

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

Wet Chemistry by	9 Mathad 353 3			(Y CONTR 8-01,02,03,04,05					ONE LAB. NATIONWIDE.	*
					L83248	8-01,02,03,04,03	,06,07,08,09,	10,14				
Method Blank (N	,											¹ Cp
(MB) R3134522-1 05/0	06/16 15:21 MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l	WD Qualifier	mg/l	mg/l								² Tc
Nitrate-Nitrite	0.0230		0.0197	0.100								
												³ Ss
L832472-35 Ori	iginal Sample	(OS) • Dup!	licate (DU	P)								4
(OS) L832472-35 05/	/06/16 15:26 • (DUP)	R3134522-4 (05/06/16 15:2	7								Cn
	Original Result	DUP Result	Dilution DU	JP RPD	DUP Qualifier	DUP RPD Limits						_
Analyte	mg/l	mg/l	%			%						°Sr
Nitrate-Nitrite	0.222	ND	10 19.	0	<u>1</u>	20						6
												[®] Qc
L832546-01 Ori	ginal Sample ((OS) • Dupl	icate (DUF	(د								7
(OS) L832546-01 05/9	06/16 15:51 • (DUP)	R3134522-6 0	5/06/16 15:52									GI
	Original Result		Dilution DU		DUP Qualifier	DUP RPD Limits						8
Analyte Nitrate-Nitrite	mg/l 1.62	mg/l 1.62	1 0.0	000		% 20						Al
Niu die-Niu ite	1.02	1.02	1 0.0	100		20						9
		00)										Sc
Laboratory Con					nple Duplica	ate (LCSD)						
(LCS) R3134522-2 05	5/06/16 15:22 • (LCS Spike Amount		05/06/16 15: LCSD Result	:23 LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifie	er RPD	RPD Limits		
	mg/l	mg/l	mg/l	%	%	%	LCS Qualifier	LCSD Qualifie	% %	%		
Analyte			4.92	99.0	98.0	90.0-110			1.00	20		
Analyte Nitrate-Nitrite	5.00	4.95	7.32									
	5.00	4.95	4.32									
Nitrate-Nitrite				√S)								
Nitrate-Nitrite L832472-36 Ori	iginal Sample	(OS) • Matr	ix Spike (N									
Nitrate-Nitrite L832472-36 Ori	iginal Sample /06/16 15:28 • (MS) F	(OS) • Matr R3134522-5 05	ix Spike (N 5/06/16 15:29		Dilution	Rec. Limits	MS					
<u> </u>	iginal Sample /06/16 15:28 • (MS) F	(OS) • Matr	ix Spike (N 5/06/16 15:29		Dilution	Rec. Limits	MS Qualifier					

SDG: L832488

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/17/16 20:49 PAGE: 37 of 58

WG870059

$\underset{\underline{1832488-01,02,03,04,05,06,07,08,09,10,14}}{\mathsf{QUALITY}} \mathsf{CONTROL} \, \, \mathsf{SUMMARY}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(UZ) 1 8336U3-U1	05/06/16 15:52	. /MC\ D212/E22 7	0E/06/16 1E-E0	 (MSD) R3134522-8 	05/06/16 15:50

(,	()			,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0490	4.68	4.49	93.0	89.0	1	90.0-110		J6	4.00	20

												and .
WG871208 Wet Chemistry by Met	had 252 2			(QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)						2032400	11,12					
. ,												¹ Cp
(MB) R3135460-1 05/10/16												
A L	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100								10
Nitrate-Nitrite	U		0.0197	0.100								3
												Ss
L832641-01 Origina	al Sample (0	OS) • Duplio	cate (Dl	JP)								4 0-1
(OS) L832641-01 05/10/16	, ,		/10/16 17:48	8								Cn
	Original Result	DUP Result	Dilution		DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						sr
Nitrate-Nitrite	1.27	1.26	1	1.00		20						
												[©] Qc
L832795-02 Origin	nal Sample	(OS) • Dup	licate (C)UP)								
(OS) L832795-02 05/10/1		, ,	,									⁷ GI
(03) 1632/95-02 05/10/1	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%	DOI Guanner	%						8 Al
Nitrate-Nitrite	0.451	0.456		1.00		20						AI
												9
Laboratory Control	Cample /I /	CC) Labor	roton (C	Control Con	nnla Dunlis	cata (LCCD)						Sc
	' '				Tiple Duplic	late (LC3D)						
(LCS) R3135460-2 05/10/1					LCSD Rec	B. Harris	1000 - 110	1.000.0 .115	DDD	RPD Limits		
Analyte	Spike Amount mg/l		LCSD Resu	uit LCS Rec.	%	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD %	KPD LIMITS %		
Nitrate-Nitrite	5.00	mg/l 4.88	mg/l 4.84	98.0	97.0	90.0-110			1.00	20		
Will die-Willie	3.00	4.00	7.07	30.0	37.0	30.0-110			1.00	20		
L832641-02 Origin	al Sample (OS) • Matri	x Spike	(MS)								
(OS) L832641-02 05/10/16	3 17:49 • (MS) R3	3135460-5 05/	10/16 17:50)								
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	<u>qualifici</u>					
Nitrate-Nitrite	5.00	1.26	5.82	91.0	1	90.0-110						
												ļ
												ļ

SDG: L832488 DATE/TIME:

05/17/16 20:49

PAGE:

39 of 58

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY LB32488-11,12

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832800-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832800-01	05/10/16 18:05 • (MS) R313	5460-7 05/10/16 18:10 •	(MSD) R3135460-8 (35/10/16 18:11

(, (, (, (, (, (, (, (, (, (, (, (
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	ND	4.64	4.67	91.0	91.0	1	90.0-110			1.00	20

	882				QUALIT	Y CONTR	ROL SUN	/MARY			ONE LAB. NATIONWIDE.	*
Wet Chemistry	by Method 9056A				L832488	1-01,02,03,04,05,0	6,07,08,09,10,	11,12,14				
Method Blan	nk (MB)											1
(MB) R3136016-1												Ср
Accele	MB Result	MB Qualifier	MB MDL									2 _T
Analyte Chloride	mg/l U		mg/l 0.0519	mg/l 1.00								Тс
Fluoride	U		0.0519	0.100								3
Sulfate	U		0.0033	5.00								Ss
												4 _
1000400 01	Original	(00)	liant - 'F	אווטי								Cn
	Original Sample	, , ,										5_
(US) L832488-01	05/10/16 03:48 • (DUP) Original Result			4:04 DUP RPD	DUP Qualifier	DUP RPD Limits						Sr
Analyte	Original Result mg/l	mg/l	DIIUTION	DUP RPD %	DOP QUAIITIER	W RPD Limits						6.
Fluoride	2.56	2.53	1	1		15						[°] Qc
												7
1.000 15	0.44.1.5	(00) -	P	X1.15;								⁷ Gl
	Original Sample											0
(OS) L832488-01	05/10/16 11:35 • (DUP) F											⁸ Al
Analyta	Original Result	t DUP Result mg/l	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l					0/						
Chlorida			100	%		% 15						⁹ Sc
Chloride Sulfate	3690	3620	100	2		15						⁹ Sc
Chloride Sulfate			100 100									⁹ Sc
Sulfate	3690 2510	3620 2500		2		15						⁹ Sc
Sulfate Original San	3690 2510 mple (OS) • Duplic	3620 2500 Cate (DUP)		2		15						⁹ Sc
Sulfate Original San	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54	3620 2500 cate (DUP)	100	2	DUD C. "T	15 15						⁹ Sc
Original San (OS) • (DUP) R31	3690 2510 mple (OS) • Duplic	3620 2500 cate (DUP) 4 t DUP Result		2 0 DUP RPD	DUP Qualifier	15 15 DUP RPD Limits						⁹ Sc
Original San (OS) • (DUP) R31 Analyte	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54	3620 2500 cate (DUP) 4 t DUP Result mg/l	100 Dilution	2 0 DUP RPD %	DUP Qualifier	15 15 DUP RPD Limits %						⁹ Sc
Original San (OS) • (DUP) R31	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54	3620 2500 cate (DUP) 4 t DUP Result	100	2 0 DUP RPD	DUP Qualifier	15 15 DUP RPD Limits						⁹ Sc
Original San (OS) • (DUP) R31 Analyte Chloride	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54	3620 2500 cate (DUP) 4 t DUP Result mg/l 559	Dilution	2 0 DUP RPD %	DUP Qualifier	15 15 DUP RPD Limits %						⁹ Sc
Sulfate Original San (OS) • (DUP) R31 Analyte Chloride Fluoride	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54	3620 2500 cate (DUP) 4 t DUP Result mg/l 559 0.553	Dilution 10 10	2 0 DUP RPD % 2 6	DUP Qualifier	DUP RPD Limits % 15 15						⁹ Sc
Original San (OS) • (DUP) R31 Analyte Chloride Fluoride Sulfate	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54 Original Result	3620 2500 Cate (DUP) 4 t DUP Result mg/l 559 0.553 155	Dilution 10 10 10	2 0 DUP RPD % 2 6 5	ī	15 15 DUP RPD Limits % 15 15						⁹ Sc
Sulfate Original San (OS) • (DUP) R31 Analyte Chloride Fluoride Sulfate Laboratory C	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54 Original Result	3620 2500 cate (DUP) 4 t DUP Result mg/l 559 0.553 155	Dilution 10 10 10 10 retory (DUP RPD % 2 6 5	ī	15 15 DUP RPD Limits % 15 15						⁹ Sc
Original San (OS) • (DUP) R31 Analyte Chloride Fluoride Sulfate Laboratory C	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54 Original Result	3620 2500 2500 26te (DUP) 4 t DUP Result mg/l 559 0.553 155 CS) • Labo D) R3136016-3	Dilution 10 10 10 10 00 10 10 10 10	2 0 DUP RPD % 2 6 5 Control Sat 00:17	mple Duplic	DUP RPD Limits % 15 15 15 15 cate (LCSD)						⁹ Sc
Original San (OS) • (DUP) R31 Analyte Chloride Fluoride Sulfate Laboratory C (LCS) R3136016-2	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54 Original Result	3620 2500 2500 4 t DUP Result mg/l 559 0.553 155 CS) • Labo D) R3136016-3 LCS Result	Dilution 10 10 10 10 10 Copratory C Copratory C LCSD Res	2 0 DUP RPD % 2 6 5 Control Sai	mple Duplic	DUP RPD Limits % 15 15 15 15 cate (LCSD)	LCS Qualifier	LCSD Qualifier		RPD Limits		⁹ Sc
Original San (OS) • (DUP) R31 Analyte Chloride Fluoride Sulfate Laboratory C (LCS) R3136016-2 Analyte	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54 Original Result Control Sample (L 05/10/16 00:01 • (LCSE Spike Amount mg/l	3620 2500 2500 4 t DUP Result mg/l 559 0.553 155 CCS) • Labo D) R3136016-3 LCS Result mg/l	Dilution 10 10 10 oratory C O5/10/16 C LCSD Remg/l	2 0 DUP RPD % 2 6 5 Control Sai	<u>J</u> mple Duplic c. LCSD Re %	DUP RPD Limits % 15 15 15 15 cate (LCSD) ec. Rec. Limits %	LCS Qualifier	LCSD Qualifier	%	%		⁹ Sc
Original San (OS) • (DUP) R31 Analyte Chloride Fluoride Sulfate Laboratory C (LCS) R3136016-2	3690 2510 mple (OS) • Duplic 136016-7 05/10/16 16:54 Original Result	3620 2500 2500 4 t DUP Result mg/l 559 0.553 155 CS) • Labo D) R3136016-3 LCS Result	Dilution 10 10 10 10 10 Copratory C Copratory C LCSD Res	2 0 DUP RPD % 2 6 5 Control Sai	mple Duplic	DUP RPD Limits % 15 15 15 15 cate (LCSD)	LCS Qualifier	LCSD Qualifier				⁹ Sc

SDG: L832488 DATE/TIME: 05/17/16 20:49 PAGE: 41 of 58

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY L832488-01,02,03,04,05,06,07,08,09,10,11,12,14

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

" COL DO100010 0	05/10/10 00 01	// COD) DO400040 0	05 40 40 00 47
(LCS) R3136016-2	05/10/16 00:01	(LCSD) R3136016-3	05/10/16 00:17

(ECS) NS150010-2 05/10/10	263) N3130010-2										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Sulfate	40.0	40.2	39.8	100	99	80-120			1	15	

Тс

L832488-14 Original Sample (OS) • Matrix Spike (MS)

(OS) L832488-14 05/10/16 07:47 • (MS) R3136016-5 05/10/16 09:50

, ,	Spike Amount			MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Fluoride	5.00	0.603	4.08	70	1	80-120	<u>J6</u>

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3136016-8 05/10/16 17:25 • (MSD) R3136016-9 05/10/16 17:41											
	Spike Amount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	49.3	49.3	99	99	1	80-120			0	15
Fluoride	5.00	4.86	4.89	97	98	1	80-120			1	15
Sulfate	50.0	49.2	49.2	98	98	1	80-120			0	15

GI

WG8724	24 by Method 9056A			C	QUALIT	Y CONTR		MARY			ONE LAB. NATIONWIDE.	*
Method Blank	< (MB)											1
(MB) R3136920-1	05/15/16 05:48											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								² Tc
Chloride	U		0.0519	1.00								3
Fluoride Sulfate	U		0.0099 0.0774	0.100 5.00								Ss
Sullate	U		0.0774	5.00								4
												[‡] Cn
	Original Sample											5
(OS) L832644-02	05/15/16 22:08 • (DUP				DUD 0 115	D. I.D. D. D. I. I.						Sr
Analyte	Original Result mg/l	DUP Result mg/l	Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %						6
Chloride	6.31	6.26	1			15						°Qc
Cilionae	0.51	0.20		ı		15						
												⁷ GI
	Original Sample	· / /	`									
(OS) L832644-09	05/16/16 00:37 • (DUP)											⁸ Al
A l . l .	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte Chloride	mg/l 4.92	mg/l 4.87	1	%		15						°Sc
Cilionae	4.92	4.0/	1	I		15						
Laboratory C	ontrol Sample (L	CS) • Labor	ratory Co	ontrol Sam	ple Duplic	ate (LCSD)						
(LCS) R3136920-2	05/15/16 06:03 • (LCS											
	Spike Amount		LCSD Resu		LCSD Rec		LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride Fluoride	40.0 8.00	39.2 7.90	39.2 7.97	98 99	98 100	80-120 80-120			0	15 15		
Sulfate	40.0	39.7	39.7	99	99	80-120			0	15		
I 832644-01 (Original Sample (OS) • Matri	x Snike	(MS)								
	05/15/16 20:38 • (MS) R											
(US) LOSZ044-UT		Original Result		MS Rec.	Dilution	Rec. Limits	MS Qualifier					
		mg/l	mg/l	мs кес. %	Dilution	%	Qualifier					
Analista				70		7n						
Analyte Chloride	mg/l 50.0	6.62	16.3	19	1	80-120	<u>J6</u>					

SDG: L832488 DATE/TIME: 05/17/16 20:49 PAGE: 43 of 58

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY LB32488-05,11

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832644-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832644-12	05/16/16 01:08 •	(MS) R3136920-7	05/16/16 01:22 •	(MSD) R3136920-8	05/16/16 01:37

(/												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	6.37	16.2	16.0	20	19	1	80-120	J6	J6	1	15

QUALITY CONTROL SUMMARY <u>1832488-01,02,03,04,05,06,07,08,09,10,11,12,14</u>

ONE LAB. NATIONWIDE.

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134607-1 (05/06/16 20:46				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic	U		0.00025	0.00200	
Barium	U		0.00036	0.00500	
Calcium	0.0807		0.046	1.00	
Chromium	U		0.00054	0.00200	
Iron	0.0188		0.015	0.100	
Lead	U		0.00024	0.00200	
Manganese	0.000451		0.00025	0.00500	
Potassium	U		0.037	1.00	
Selenium	U		0.00038	0.00200	
Sodium	U		0.11	1.00	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134607-2 05/	/06/16 20:49 • (LCS	SD) R3134607	-3 05/06/16 20	:51							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0508	0.0521	102	104	80-120			2	20	
Barium	0.0500	0.0533	0.0507	107	101	80-120			5	20	
Calcium	5.00	5.24	5.21	105	104	80-120			1	20	
Chromium	0.0500	0.0519	0.0507	104	101	80-120			2	20	
Iron	5.00	5.07	4.96	101	99	80-120			2	20	
Lead	0.0500	0.0519	0.0516	104	103	80-120			1	20	
Manganese	0.0500	0.0519	0.0503	104	101	80-120			3	20	
Potassium	5.00	5.08	5.01	102	100	80-120			2	20	
Selenium	0.0500	0.0505	0.0501	101	100	80-120			1	20	
Sodium	5.00	5 11	5.07	102	101	80 ₋ 120			1	20	

L832488-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832488-12 05/06/16 20:54 • (MS) R3134607-5 05/06/16 20:59 • (MSD) R3134607-6 05/06/16 21:02												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.0106	0.0724	0.0674	124	114	5	75-125			7	20
Barium	0.0100	0.0200	0.0795	0.0765	119	113	5	75-125			4	20
Calcium	1.00	728	723	691	0	0	5	75-125	\vee	$\underline{\vee}$	5	20

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: TRC Solutions - Austin, TX 249545.0000.0000 000 L832488 05/17/16 20:49 45 of 58

QUALITY CONTROL SUMMARY L832488-01,02,03,04,05,06,07,08,09,10,11,12,14

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832488-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832488-12 05/06/1	6 20:54 • (MS) F	R3134607-5 05	5/06/16 20:59	 (MSD) R31346 	607-6 05/06/16	5 21:02						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chromium	0.0100	U	0.0570	0.0536	114	107	5	75-125			6	20
Potassium	1.00	27.9	34.8	32.1	138	84	5	75-125	\vee		8	20
Iron	1.00	4.56	10.2	9.59	113	101	5	75-125			6	20
Lead	0.0100	U	0.0572	0.0546	114	109	5	75-125			5	20
Manganese	0.0100	2.70	2.81	2.66	223	0	5	75-125	\vee	\vee	5	20
Selenium	0.0100	U	0.0584	0.0563	117	113	5	75-125			4	20
Sodium	1.00	3230	3300	3120	1300	0	5	75-125	\vee	\vee	5	20

QUALITY CONTROL SUMMARY L832488-01,02,03,04,05,06,07,08,09,10,11,12,14

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134748-1 05/07	7/16 14:35				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic, Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	U		0.015	0.100	
Lead,Dissolved	U		0.00024	0.00200	
Manganese, Dissolved	0.000535		0.00025	0.00500	
Selenium,Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134748-2 05/07	7/16 14:38 • (LCSE	D) R3134748-3	05/07/16 14:41							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic, Dissolved	0.0500	0.0432	0.0440	86	88	80-120			2	20
Barium, Dissolved	0.0500	0.0473	0.0477	95	95	80-120			1	20
Chromium, Dissolved	0.0500	0.0459	0.0473	92	95	80-120			3	20
Iron,Dissolved	5.00	4.48	4.67	90	93	80-120			4	20
Lead,Dissolved	0.0500	0.0457	0.0463	91	93	80-120			1	20
Manganese,Dissolved	0.0500	0.0457	0.0471	91	94	80-120			3	20
Selenium, Dissolved	0.0500	0.0447	0.0464	89	93	80-120			4	20

L832488-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832488-12 05/07/	16 14:44 • (MS) R	3134748-5 05/	07/16 14:49 • ((MSD) R3134748	3-6 05/07/16 1	4:52						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00841	0.0637	0.0631	111	109	5	75-125			1	20
Barium,Dissolved	0.0100	0.0178	0.0675	0.0717	99	108	5	75-125			6	20
Chromium, Dissolved	0.0100	U	0.0537	0.0526	107	105	5	75-125			2	20
Iron,Dissolved	1.00	3.82	9.17	9.28	107	109	5	75-125			1	20
Lead,Dissolved	0.0100	U	0.0539	0.0533	108	107	5	75-125			1	20
Manganese,Dissolved	0.0100	2.39	2.59	2.63	401	479	5	75-125	$\underline{\vee}$	$\underline{\vee}$	1	20
Selenium Dissolved	0.0100	0.00215	0.0557	0.0575	107	111	5	75-125			3	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832488

DATE/TIME: 05/17/16 20:49

PAGE: 47 of 58 GI

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869046 L832488-01,02,03,04,05,06,07,08,09,10,11,12 Volatile Organic Compounds (GC) by Method 8015D/GRO Method Blank (MB) (MB) R3133660-3 05/03/16 19:07 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l mg/l TPH (GC/FID) Low Fraction 0.0316 0.0314 0.100 (S) a,a,a-Trifluorotoluene(FID) 93.4 62.0-128 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133660-1 05/03/16 18:01 • (LCSD) R3133660-2 05/03/16 18:23 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % TPH (GC/FID) Low Fraction 5.50 5.37 5.38 97.6 97.8 67.0-132 0.180 20 62.0-128 (S) a,a,a-Trifluorotoluene(FID) 101 101 GI L832472-37 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832472-37 05/03/16 22:39 • (MS) R3133660-4 05/03/16 23:45 • (MSD) R3133660-5 05/04/16 00:07 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % Analyte mg/l mg/l mg/l mg/l % % % Sc TPH (GC/FID) Low Fraction 0.203 4.04 4.23 69.7 73.3 50.0-143 4.78 20 5.50 (S) a,a,a-Trifluorotoluene(FID) 98.7 62.0-128 98.4

SDG:

L832488

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/17/16 20:49

PAGE:

48 of 58

QUALITY CONTROL SUMMARY <u>1832488-01,02,03,04,05,06,07,08,09,10,11,12,13,14</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134151-3 05/04/16	06:39			
(112) 11010 11010 00/01/10	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832488

DATE/TIME: 05/17/16 20:49

PAGE: 49 of 58

QUALITY CONTROL SUMMARY <u>L832488-01,02,03,04,05,06,07,08,09,10,11,12,13,14</u>

ONE LAB. NATIONWIDE.

PAGE:

50 of 58

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

MB) R3134151-3 05/04/16	06:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Frichloroethene	U		0.000398	0.00100	
l,2,4-Trimethylbenzene	U		0.000373	0.00100	
,3,5-Trimethylbenzene	U		0.000387	0.00100	
/inyl chloride	U		0.000259	0.00100	
Kylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
n&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	100			90.0-115	
(S) Dibromofluoromethane	99.4			79.0-121	
(S) 4-Bromofluorobenzene	89.9			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134151-1 05/04/16 05:17 • (LCSD) R3	134151-2 05/04/16 05:38
---	-------------------------

(LCS) R3134151-1 U5/U4/	10 US.17 • (LCSD)	1K3134151-2 (05:38								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.0985	0.103	78.8	82.0	28.7-175			3.97	20.9	
Benzene	0.0250	0.0262	0.0255	105	102	73.0-122			2.50	20	
Bromodichloromethane	0.0250	0.0239	0.0237	95.5	94.8	75.5-121			0.740	20	
Bromoform	0.0250	0.0245	0.0253	98.0	101	71.5-131			3.25	20	
Bromomethane	0.0250	0.0333	0.0338	133	135	22.4-187			1.65	20	
n-Butylbenzene	0.0250	0.0251	0.0248	100	99.2	75.9-134			1.22	20	
sec-Butylbenzene	0.0250	0.0231	0.0233	92.5	93.0	80.6-126			0.610	20	
Carbon disulfide	0.0250	0.0267	0.0267	107	107	53.0-134			0.350	20	
Carbon tetrachloride	0.0250	0.0208	0.0209	83.4	83.5	70.9-129			0.180	20	
Chlorobenzene	0.0250	0.0251	0.0248	100	99.3	79.7-122			0.870	20	
Chlorodibromomethane	0.0250	0.0245	0.0249	98.1	99.7	78.2-124			1.56	20	
Chloroethane	0.0250	0.0334	0.0341	134	136	41.2-153			2.08	20	
Chloroform	0.0250	0.0243	0.0241	97.1	96.5	73.2-125			0.610	20	
Chloromethane	0.0250	0.0301	0.0298	120	119	55.8-134			0.740	20	
1,2-Dibromoethane	0.0250	0.0245	0.0246	97.8	98.6	79.8-122			0.790	20	
1,1-Dichloroethane	0.0250	0.0268	0.0265	107	106	71.7-127			1.14	20	

ACCOUNT: PROJECT: SDG: DATE/TIME: TRC Solutions - Austin, TX 249545.0000.0000 000 L832488 05/17/16 20:49

QUALITY CONTROL SUMMARY <u>1832488-01,02,03,04,05,06,07,08,09,10,11,12,13,14</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134151-1 05/04/16 05:17 • (LCSD) R3134151-2 05/04/16 05:38											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0232	0.0235	93.0	94.0	65.3-126			1.05	20	
1,1-Dichloroethene	0.0250	0.0277	0.0275	111	110	59.9-137			0.430	20	
cis-1,2-Dichloroethene	0.0250	0.0260	0.0255	104	102	77.3-122			2.04	20	
trans-1,2-Dichloroethene	0.0250	0.0257	0.0254	103	101	72.6-125			1.17	20	
1,2-Dichloropropane	0.0250	0.0279	0.0280	112	112	77.4-125			0.260	20	
cis-1,3-Dichloropropene	0.0250	0.0266	0.0269	106	107	77.7-124			0.960	20	
trans-1,3-Dichloropropene	0.0250	0.0262	0.0265	105	106	73.5-127			1.29	20	
Ethylbenzene	0.0250	0.0249	0.0245	99.7	97.8	80.9-121			1.95	20	
2-Hexanone	0.125	0.134	0.139	107	111	59.4-151			3.44	20	
Isopropylbenzene	0.0250	0.0240	0.0236	95.9	94.5	81.6-124			1.43	20	
p-Isopropyltoluene	0.0250	0.0237	0.0237	94.7	95.0	77.6-129			0.310	20	
2-Butanone (MEK)	0.125	0.128	0.133	102	107	46.4-155			4.17	20	
Methylene Chloride	0.0250	0.0253	0.0249	101	99.8	69.5-120			1.34	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.142	0.150	113	120	63.3-138			5.45	20	
Methyl tert-butyl ether	0.0250	0.0236	0.0245	94.4	97.9	70.1-125			3.64	20	
Naphthalene	0.0250	0.0229	0.0233	91.5	93.1	69.7-134			1.79	20	
n-Propylbenzene	0.0250	0.0249	0.0244	99.8	97.6	81.9-122			2.19	20	
Styrene	0.0250	0.0253	0.0249	101	99.7	79.9-124			1.63	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0246	0.0247	98.5	98.9	78.5-125			0.420	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0234	0.0244	93.6	97.6	79.3-123			4.19	20	
Tetrachloroethene	0.0250	0.0244	0.0238	97.7	95.1	73.5-130			2.66	20	
Toluene	0.0250	0.0249	0.0248	99.4	99.1	77.9-116			0.300	20	
1,1,1-Trichloroethane	0.0250	0.0231	0.0237	92.2	94.9	71.1-129			2.81	20	
1,1,2-Trichloroethane	0.0250	0.0238	0.0244	95.2	97.4	81.6-120			2.33	20	
Trichloroethene	0.0250	0.0248	0.0244	99.4	97.4	79.5-121			1.97	20	
1,2,4-Trimethylbenzene	0.0250	0.0234	0.0230	93.6	92.2	79.0-122			1.57	20	
1,3,5-Trimethylbenzene	0.0250	0.0230	0.0231	92.2	92.3	81.0-123			0.170	20	
Vinyl chloride	0.0250	0.0304	0.0299	122	119	61.5-134			1.74	20	
Xylenes, Total	0.0750	0.0740	0.0726	98.6	96.8	79.2-122			1.84	20	
o-Xylene	0.0250	0.0243	0.0240	97.3	96.0	79.1-123			1.31	20	
m&p-Xylenes	0.0500	0.0497	0.0486	99.3	97.3	78.5-122			2.10	20	
(S) Toluene-d8				99.6	100	90.0-115					
(S) Dibromofluoromethane				100	101	79.0-121					
(S) 4-Bromofluorobenzene				86.9	86.7	80.1-120					

ACCOUNT:	
TRC Solutions - Austin,	ΤX

QUALITY CONTROL SUMMARY <u>L832488-01,02,03,04,05,06,07,08,09,10,11,12,13,14</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832524-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832524-08 05/04/1	16 07:30 • (MS)	R3134151-4 05	/04/16 07:51 •	(MSD) R313415	51-5 05/04/16	08:12						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0571	0.0609	45.7	48.7	1	25.0-156			6.51	21.5
Benzene	0.0250	0.00200	0.0241	0.0246	88.2	90.4	1	58.6-133			2.21	20
Bromodichloromethane	0.0250	U	0.0209	0.0221	83.5	88.3	1	69.2-127			5.66	20
Bromoform	0.0250	U	0.0218	0.0236	87.1	94.6	1	66.3-140			8.25	20
Bromomethane	0.0250	U	0.0260	0.0270	104	108	1	16.6-183			3.94	20.5
n-Butylbenzene	0.0250	U	0.0222	0.0231	88.8	92.3	1	64.8-145			3.91	20
sec-Butylbenzene	0.0250	U	0.0202	0.0210	81.0	84.0	1	66.8-139			3.65	20
Carbon disulfide	0.0250	U	0.0197	0.0200	78.8	80.2	1	34.9-138			1.64	20
Carbon tetrachloride	0.0250	U	0.0176	0.0182	70.5	72.9	1	60.6-139			3.32	20
Chlorobenzene	0.0250	U	0.0218	0.0225	87.1	90.1	1	70.1-130			3.31	20
Chlorodibromomethane	0.0250	U	0.0214	0.0224	85.4	89.6	1	71.6-132			4.82	20
Chloroethane	0.0250	U	0.0282	0.0289	113	116	1	33.3-155			2.40	20
Chloroform	0.0250	U	0.0218	0.0223	87.1	89.0	1	66.1-133			2.14	20
Chloromethane	0.0250	U	0.0233	0.0240	93.0	96.0	1	40.7-139			3.18	20
1,2-Dibromoethane	0.0250	U	0.0216	0.0228	86.4	91.3	1	73.8-131			5.56	20
1,1-Dichloroethane	0.0250	U	0.0236	0.0242	94.3	97.0	1	64.0-134			2.82	20
1,2-Dichloroethane	0.0250	U	0.0211	0.0215	84.4	86.1	1	60.7-132			2.00	20
1,1-Dichloroethene	0.0250	U	0.0238	0.0241	95.1	96.5	1	48.8-144			1.53	20
cis-1,2-Dichloroethene	0.0250	U	0.0228	0.0232	91.4	92.9	1	60.6-136			1.63	20
trans-1,2-Dichloroethene	0.0250	U	0.0217	0.0217	86.7	86.9	1	61.0-132			0.230	20
1,2-Dichloropropane	0.0250	U	0.0247	0.0254	98.7	102	1	69.7-130			2.83	20
cis-1,3-Dichloropropene	0.0250	U	0.0232	0.0245	92.7	98.0	1	71.1-129			5.66	20
trans-1,3-Dichloropropene	0.0250	U	0.0233	0.0246	93.0	98.4	1	66.3-136			5.61	20
Ethylbenzene	0.0250	0.00213	0.0241	0.0243	87.7	88.6	1	62.7-136			0.910	20
2-Hexanone	0.125	U	0.102	0.108	81.7	86.5	1	59.4-154			5.74	20.1
Isopropylbenzene	0.0250	U	0.0207	0.0215	82.7	86.0	1	67.4-136			3.86	20
p-Isopropyltoluene	0.0250	U	0.0207	0.0215	83.0	85.9	1	62.8-143			3.46	20
2-Butanone (MEK)	0.125	U	0.0921	0.0968	73.7	77.4	1	45.0-156			4.91	20.8
Methylene Chloride	0.0250	U	0.0218	0.0222	87.3	88.7	1	61.5-125			1.60	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.133	0.140	106	112	1	60.7-150			5.52	20
Methyl tert-butyl ether	0.0250	U	0.0213	0.0223	85.1	89.1	1	61.4-136			4.66	20
Naphthalene	0.0250	U	0.0199	0.0222	79.5	88.8	1	61.8-143			11.0	20
n-Propylbenzene	0.0250	0.000377	0.0216	0.0225	85.1	88.6	1	63.2-139			4.01	20
Styrene	0.0250	U	0.0219	0.0227	87.4	90.8	1	68.2-133			3.85	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0216	0.0223	86.3	89.0	1	70.5-132			3.08	20

0.0250

1,1,2,2-Tetrachloroethane

U

0.0216

0.0233

PROJECT: 249545.0000.0000 000

86.5

93.1

SDG: L832488

64.9-145

DATE/TIME: 05/17/16 20:49

7.32

20

PAGE: 52 of 58

GI

QUALITY CONTROL SUMMARY <u>1832488-01,02,03,04,05,06,07,08,09,10,11,12,13,14</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832524-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0206	0.0211	82.5	84.5	1	57.4-141			2.48	20
Toluene	0.0250	U	0.0219	0.0228	87.6	91.0	1	67.8-124			3.78	20
,1,1-Trichloroethane	0.0250	U	0.0197	0.0203	79.0	81.1	1	58.7-134			2.70	20
1,1,2-Trichloroethane	0.0250	U	0.0217	0.0225	86.7	89.9	1	74.1-130			3.67	20
Frichloroethene	0.0250	U	0.0210	0.0217	84.1	86.7	1	48.9-148			3.07	20
1,2,4-Trimethylbenzene	0.0250	0.00596	0.0259	0.0266	79.6	82.7	1	60.5-137			2.89	20
1,3,5-Trimethylbenzene	0.0250	0.000768	0.0208	0.0213	80.0	82.2	1	67.9-134			2.63	20
Vinyl chloride	0.0250	U	0.0243	0.0249	97.3	99.4	1	44.3-143			2.15	20
Xylenes, Total	0.0750	0.00361	0.0670	0.0688	84.5	86.9	1	65.6-133			2.65	20
o-Xylene	0.0250	0.00124	0.0222	0.0229	84.0	86.7	1	67.1-133			2.95	20
n&p-Xylenes	0.0500	0.00237	0.0448	0.0459	84.8	87.1	1	64.1-133			2.49	20
(S) Toluene-d8					99.4	99.9		90.0-115				
(S) Dibromofluoromethane					102	101		79.0-121				
(S) 4-Bromofluorobenzene					86.1	85.6		80 1-120				

QUALITY CONTROL SUMMARY <u>1832488-01,02,03,04,05,06,07,08,09,10,11,12,14</u>

ONE LAB. NATIONWIDE.

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Method Blank (MB)

(MB) R3133989-1 05/04/	16 12:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
TPH (GC/FID) High Fraction	U		0.0247	0.100
(S) o-Terphenyl	93.7			50.0-150

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Deminions
Sample Delivery Group.
Method Detection Limit.
Reported Detection Limit.
Not detected at the Sample Detection Limit.
Relative Percent Difference.
Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Recovery.
Sample Detection Limit.
Method Quantitation Limit.
Unadjusted Method Quantitation Limit.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

	RC Solutions - Austin, TX Account			ts Payable n Road North	s Payable Road North				_	-	ontain	er / Pres	200	12			Chain of Custody	SC
05 E. Huntland Dr, Ste 250 Windsor ustin, TX 78752			, CT 06095	C1 00033					500mIHDPE-HNO3		- 500mIHDPE-HNO3	Chloride, Fluoride, Sulfate- 125mlHDPE-NoPres	- 250mIHDPE-H2SO4		V,U,aS,d	YOUR LAB	[m]:592 [m]	
ort to:			trcsolutions.com						500r	aOF	PE-	25ml	PPE		N,N,	Mount Juliet, TN 37122 Phone: 615-759-5858 Phone: 800-767-5859		
speer@trcsolutions.com	2.40	1000	speer@	City/State	1.72					1	N-qi	볼	te- 1	핕		Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	Fax: 615-758-5859	
roject EP Spring 2016 -	Feam 6	н		Collected: Art	estas NV	n				An,S	Am	00	ulfa	250			L# L832"	100
hone: 512-684-3170	Client Project #			Lab Project # TRCATX-EP SPRING			18·1		75	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	- 250mIHDPEAmb-NaOH	, Na - 5	oride, S	Anions- Chloride, Fluoride, 3 Nitrate/Nitrite (NO2NO3) -	- 250mIHDPE-NoPres	,Co,Cr,	B202 Acctnum: TRCATX	
Collected by (print):	Site/Facility ID			P.O. #		- 40mlAmb-HCI-BT	무	P-H(,Cr,	250r	a, K	Flu	NO2	PE-	a,Cd	Template: T11		
Scott Ude + Him Team	Navajo- A	b MUST Be	Notified)	Date Results Needed			dm	/mb	IAm	s,Ba	- (N	tal	bride	ite (HIL	m	Prelogin: P54	
Collected by (signature):	Same D	8y	200%	200%				- 40mIAmb-HCI	- 40mIAmb-HCI	S. A	e (Cl	3-Tot	Chic	/Nitr	250m	s. As,	TSR: Chris	
Immediately	Two Da	y	50%	FAX?No		No. of		0-4	- 09	/Dis	Cyanide (CN)	Cations-Total Ca, K,	Anions-	trate	TDS-	Tot/Diss.	Cooler: 41-	1110 40
Packed on Ice N Y Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V8260	Tot	ठ		A	ž	F	2	Rem./Contaminant	DY RESIDENCE
* MW-120		GW	U	4/27/16	1420	12	~	V	/	1		V	V	V	V			-01
· mw-81			HARRY.	4/27/10	1510	1	V	V	V	V		1	V	V		-		0
110 A 11 A 1 A 2 MAY SELECT A 12 A 1	12, 11		The state of	4/27/16	1400		1	1	1	V		V	/	V	V			U
* MW-80 * MW-84	7 19	11	1	4/27/16	1655		V	V	V	V	199	V	V	V	V			0
MW-87		22	64.0	4/27/14	1750		V	V	V	V		V	V	V	V		F 149	0
				4/27/10	1730		1	V	V	V		V	V	V	~		E ANEX	0
MW-78 MW-77				4/27/16	1430		V	V	1	V	1	/	V	V	V		7/25 r	0
MW-76	1	-89	- 10/4/1-31	4/27/10	1640		1	V	V	V	-	V	V	~	1	-		0
- mw-3	To the state of	1 8		4/27/16	1525		~	V	1	V	100	V	V	V	1			1
Dup-EP-03	1		,	4/27/16	1200	1	1	~	V	V	100	V	V	V	1			10 8 2 7 3
	V	A	50.0	6	7110118	27	14			рН		Te	mp			100		Charles .
* Matrix: SS - Soil GW - Groundwate	er WW - Waste	Water DW	Drinking W	eter OT - Other	711058	26	051	268	i.	Flow		Ot	her	7		fold#		1122
Remarks: Log all metals by	6020. Diss	Date:	etais are	Time: R	eceived by: (Sig	nature) (4)	-00	17.5	Samp	les ret	urned via	: 01	IPS	0	Condition	on: (lat	use only)
Relinquished by : (Signature)	1,	100 C. L. St. of Lot of	28/16	0900		腦	MB.		13	P	FedEx	□ Cou	ırier	0	_			Jw,
Relinquished by : (Signature)	~	Date:	0 1 10	Time: R	eceived by: (Sig	navure	1			Temp		°C	Bottles 15	Receive	000000	200	eal Intact:Y	N NA
	1				1	hu ter	nontrino!		11	3. Date			Time:	0	The second of the	pH Che	CONTRACTOR OF THE PARTY OF THE	
Relinquished by : (Signature)	SF 74	Date:		Time:	eceived for lab	DA: (218	gnature)	1		1A	20			9/00	0	42		

Company Name/Address:	49 9 3	0.16	Billing Info	rmation:	y- Wake	5 3	Too	1000	100	Affailysis	/ Conta	nor / De	otonia	Maria	1000		Tet a sec	7
TRC Solutions - Aus 505 E. Huntland Dr, Ste 250 Austin, TX 78752	nts Payable în Road North ir, CT 06095						- 500mIHDPE-HNO3	Conta	د ک	Anions - Chloride, Fluoride, Sulfate - 125mIHDPE-NoPres	42		'Se,U,V	Chain of Custo	ESC			
Report to: jspeer@trcsolutions.com			Email To:	trcsolutions.	com	PI.				500ml	нов	500mIHDPE-HNO3	5mIHE	- 250mIHDPE-H2SO4		Ni,Pb,	12065 Lebanon F Mount Juliet, TN Phone: 615-758-	37122
Project Description: EP Spring 2016 - Team B C H				City/State Collected: /	City/State Collected: Artesia, NM					Se-i	N-qm	MIHD	ate-12	MIHD		g,Mn,	Phone: 800-767- Fax: 615-758-585	5859 50000 1
Phone: 512-684-3170 Fax:	Client Project	"		Lab Project # TRCATX-EP SPRING			BT		_	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	HDPEA	-	ide, Sulf	3) - 25(Pres	Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	Table #	42488
Collected by (print): Scott Ude + HMI Team	Site/Facility IC		Bre-	P.O.#		HCI-E	HC	-HCI	Cr,Fe	50mll	ı, K, Na	Fluori	OZNO	E-NoF	cd,Co,	Acctnum: TF	RCATX	
Collected by (signature):	Same		200%		Results Needed		40mlAmb-HCI-BT	GRO - 40mlAmb-HCI	V8260 - 40mlAmb-HCI	As,Ba,	CN) -2	Cations-Total Ca,	lloride, l	Nitrate/Nitrite (NO2NO3)	- 250mIHDPE-NoPres	As,B,Ba,	Template: T	549243
Immediately Packed on Ice N Y	Next D	ay		FAX?NoYes		No.	100	0 - 40	50 - 40	/Diss.	anide (I-suoi	oris-Ct	ate/Nit		Tot/Diss. A	TSR: Chr	is McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRC	V826	Tot.	Cya	Cati	Anic	Nitr	TDS	Tot/	Shipped Via:	
MW-75		GW	E. t.	4/27/16	1710	IZ	1	V	V	V	Sin	V	V	V	1		Rem./Contamina	nt Sample # (lab on)
MW-87				4/27/18	1615	12	1	V	V	V		V	1	V	V			10
Trip Blank-EP-03		18 2		4/27/11	-	1			1									.3
mw-IR	J	1	l'al	4/27/16	1520	10	V		V	V		V	V	V	V			14
				100	100													
	Casa on N	1.1	1	136	Professional Control	110		- 2				74.8		- 精				
	Sept Winds	- 4545	-26.6C	E SECTION AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSO						S/ -1	W.	165.0						
	and the same											EN				714		TO VALUE OF
* Matrix: SS - Soil GW - Groundwater				\$ -0.00 EXECUTED				多0個 人。		рН _		Tem	p					
Relinquished by: (Signature) Date: 4 28			. 1	Service Control	leceived by: (Signa	ture)	4		401603	Samples		Other	□ UPS	-	Con	dition:	(lab	use only)
Relinquished by : (Signature) Date:			Control of the last	SECTION AND ADDRESS OF THE PARTY OF THE PART	eceived by: (Signa	ture)	7			Temp:	2000	C Bot		elved:				
Relinquished by : (Signature) Date:		T		Time: Received for lab by (Signatu			ture)			Date: Time: 4 2 9 1/ 0 1/ 0 1/ 0 1/ 0				COC SealIntact:YNNA pH Checked: NCF:				

ANALYTICAL REPORT May 20, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832603

Samples Received: 04/30/2016

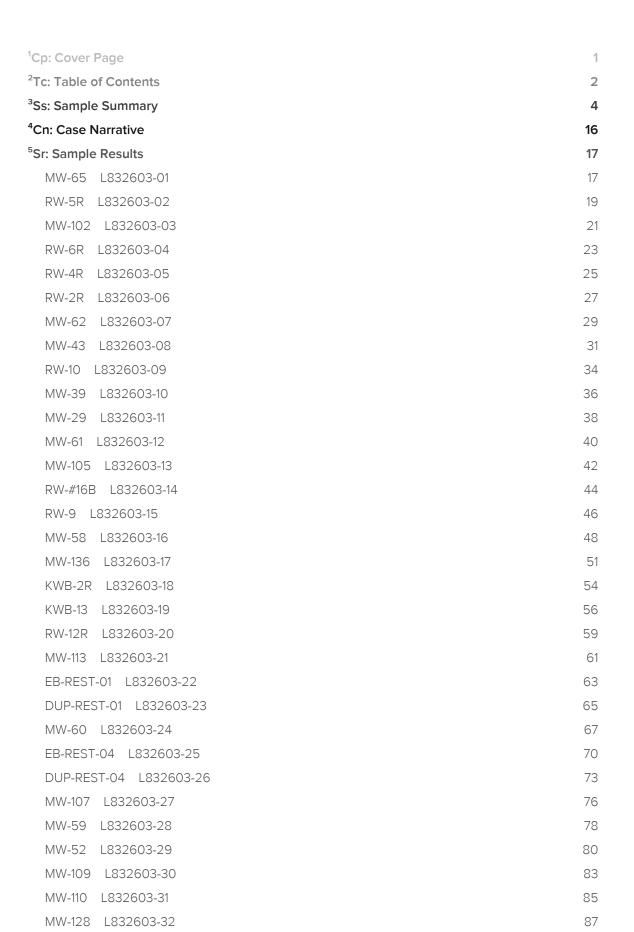
Project Number: 249545.0000.0000 000

Description: REST Spring 2016

REST - NAVAJO-ARTESIA Site:

Julie Speer Report To:

505 E. Huntland Dr, Ste 250


Austin, TX 78752

Entire Report Reviewed By:

Mark W. Beasley

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

MW-28 L832603-33

MW-66 L832603-34

89

92

TABL

E OF CONTENTS	ONE LAB. NATIONWIDE.

2	T	C	

00
⁴ Cn

1	5
	Šr

 CM

Received date/time

Analyst

JM

JDG

JD

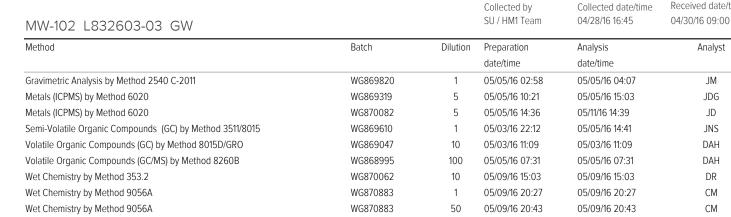
JNS

DAH

DAH

DR

CM


 CM

Received date/time

04/30/16 09:00

NAV. 05 1 000000 04 0W			Collected by SU / HM1 Team	Collected date/time 04/28/16 15:15	Received date/time 04/30/16 09:00
MW-65 L832603-01 GW			307111111111111111111111111111111111111	0 1/20/10 10:10	0 1/30/10 03:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 14:51	JD
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 14:35	JD
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	5	05/03/16 22:12	05/05/16 17:44	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	10	05/03/16 10:48	05/03/16 10:48	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	10	05/05/16 06:51	05/05/16 06:51	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870521	100	05/06/16 14:29	05/06/16 14:29	BMB
Wet Chemistry by Method 353.2	WG870059	1	05/06/16 15:53	05/06/16 15:53	ASK
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 18:51	05/09/16 18:51	CM
Wet Chemistry by Method 9056A	WG870883	50	05/09/16 19:07	05/09/16 19:07	CM
			Collected by	Collected date/time	Received date/tim
RW-5R L832603-02 GW			SU / HM1 Team	04/28/16 16:00	04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:01	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 14:37	JD
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 14:23	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	20	05/05/16 07:11	05/05/16 07:11	DAH
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 14:24	05/09/16 14:24	DR
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 20:11	05/09/16 20:11	CM
W - CL - :	1110070000	F0	05/00/40 40 00	05/00/40 40 22	014

SAMPLE SUMMARY

WG870883

50

05/09/16 19:23

Collected by

SU / HM1 Team

05/09/16 19:23

Collected date/time

04/28/16 17:40

NVV-0N L032003-04 OVV	RW-6R	L832603-04	GW
-----------------------	-------	------------	----

Wet Chemistry by Method 9056A

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:05	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 14:49	JD
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 14:59	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	1	05/05/16 07:51	05/05/16 07:51	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870521	25	05/06/16 14:53	05/06/16 14:53	BMB
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 15:04	05/09/16 15:04	DR
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 20:58	05/09/16 20:58	CM
Wet Chemistry by Method 9056A	WG870883	50	05/09/16 21:14	05/09/16 21:14	CM
Wet Chemistry by Method 9056A	WG871228	5	05/10/16 22:56	05/10/16 22:56	SAM

²Tc

Ss

Cn

Sr

[°]Qc

GI

Αl

Sc

			Collected by SU / HM1 Team	Collected date/time 04/28/16 18:30	Received date/time 04/30/16 09:00
RW-4R L832603-05 GW	B	D.: .:			
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:13	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 15:43	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 15:18	JNS
/olatile Organic Compounds (GC/MS) by Method 8260B	WG870521	1	05/06/16 15:17	05/06/16 15:17	BMB
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 15:06	05/09/16 15:06	DR
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 21:30	05/09/16 21:30	CM
Wet Chemistry by Method 9056A	WG870883	50	05/09/16 21:46	05/09/16 21:46	CM
RW-2R L832603-06 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 17:40	Received date/time 04/30/16 09:00
	Datab	Dilution	Duranastina	Ameliate	A. a. b. a. b
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	і 5	05/05/16 02.58	05/05/16 04.07	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 15:45	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	5	05/03/16 22:12	05/06/16 04:25	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869010 WG869047	25	05/03/16 11:30	05/03/16 11:30	DAH
		50			ВМВ
/olatile Organic Compounds (GC/MS) by Method 8260B	WG870521		05/06/16 15:42	05/06/16 15:42	
Vet Chemistry by Method 353.2	WG870062	10	05/09/16 15:07	05/09/16 15:07	DR
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 22:02	05/09/16 22:02	CM
Wet Chemistry by Method 9056A	WG870883	50	05/09/16 22:18	05/09/16 22:18	СМ
MW-62 L832603-07 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 16:50	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:44	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 15:47	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 15:36	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	25	05/03/16 11:50	05/03/16 11:50	DAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG870521	25	05/06/16 16:06	05/06/16 16:06	BMB
Net Chemistry by Method 353.2	WG870062	10	05/09/16 14:35	05/09/16 14:35	DR
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 23:06	05/09/16 23:06	CM
Wet Chemistry by Method 9056A	WG870883	50	05/09/16 23:22	05/09/16 23:22	CM
MW-43 L832603-08 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 15:55	Received date/time 04/30/16 09:00
	Batch	Dilution	SU / HM1 Team Preparation	04/28/16 15:55 Analysis	
Method			SU / HM1 Team Preparation date/time	04/28/16 15:55 Analysis date/time	Analyst
Method Gravimetric Analysis by Method 2540 C-2011	WG869820	1	SU / HM1 Team Preparation date/time 05/05/16 02:58	04/28/16 15:55 Analysis date/time 05/05/16 04:07	04/30/16 09:00 Analyst JM
Method Gravimetric Analysis by Method 2540 C-2011		1 1	Preparation date/time 05/05/16 02:58 05/03/16 12:30	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43	04/30/16 09:00 Analyst JM NJB
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A	WG869820	1 1 1	SU / HM1 Team Preparation date/time 05/05/16 02:58	04/28/16 15:55 Analysis date/time 05/05/16 04:07	04/30/16 09:00 Analyst JM
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A	WG869820 WG869207	1 1 1 5	Preparation date/time 05/05/16 02:58 05/03/16 12:30	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43	04/30/16 09:00 Analyst JM NJB
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A Metals (ICPMS) by Method 6020	WG869820 WG869207 WG869861	1 1 1	Preparation date/time 05/05/16 02:58 05/03/16 12:30 05/04/16 18:28	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43 05/05/16 16:36	O4/30/16 09:00 Analyst JM NJB TRB
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG869820 WG869207 WG869861 WG869319	1 1 1 5	Preparation date/time 05/05/16 02:58 05/03/16 12:30 05/04/16 18:28 05/05/16 10:21	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43 05/05/16 16:36 05/05/16 15:20	O4/30/16 09:00 Analyst JM NJB TRB JDG
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG869820 WG869207 WG869861 WG869319 WG870082	1 1 1 5 5	Preparation date/time 05/05/16 02:58 05/03/16 12:30 05/04/16 18:28 05/05/16 10:21 05/05/16 14:36	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43 05/05/16 16:36 05/05/16 15:20 05/11/16 15:50	JM NJB TRB JDG
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A Metals (ICPMS) by Method 6020	WG869820 WG869207 WG869861 WG869319 WG870082 WG870589	1 1 1 5 5	Preparation date/time 05/05/16 02:58 05/03/16 12:30 05/04/16 18:28 05/05/16 10:21 05/05/16 14:36 05/06/16 14:41	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43 05/05/16 16:36 05/05/16 15:20 05/11/16 15:50 05/07/16 09:57	JM NJB TRB JDG JDG LAT
Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869820 WG869207 WG869861 WG869319 WG870082 WG870589 WG870591	1 1 1 5 5 10	Preparation date/time 05/05/16 02:58 05/03/16 12:30 05/04/16 18:28 05/05/16 10:21 05/05/16 14:36 05/06/16 14:41 05/06/16 16:27	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43 05/05/16 16:36 05/05/16 15:20 05/11/16 15:50 05/07/16 09:57 05/09/16 11:53	JM NJB TRB JDG JDG LAT JDG
MW-43 L832603-08 GW Method Gravimetric Analysis by Method 2540 C-2011 Mercury by Method 7470A Mercury by Method 7470A Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG869820 WG869207 WG869861 WG869319 WG870082 WG870589 WG870591 WG869610	1 1 1 5 5 10 10	Preparation date/time 05/05/16 02:58 05/03/16 12:30 05/04/16 18:28 05/05/16 10:21 05/05/16 14:36 05/06/16 14:41 05/06/16 16:27 05/03/16 22:12	04/28/16 15:55 Analysis date/time 05/05/16 04:07 05/04/16 12:43 05/05/16 16:36 05/05/16 15:20 05/11/16 15:50 05/07/16 09:57 05/09/16 11:53 05/05/16 15:54	JM NJB TRB JDG JDG LAT JDG JNS

SAMPLE SUMMARY

ONE I	ΛR	NATIO	NIWIDE

MW-43 L832603-08 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 15:55	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	,
Wet Chemistry by Method 9056A	WG870883	1	05/09/16 23:37	05/09/16 23:37	CM
Wet Chemistry by Method 9056A	WG870883	50	05/09/16 23:52	05/09/16 23:52	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:32	05/06/16 02:32	NJM
RW-10 L832603-09 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 15:10	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869820	1	05/05/16 02:58	05/05/16 04:07	JM
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:22	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 15:52	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 16:13	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	5	05/03/16 12:32	05/03/16 12:32	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	1	05/05/16 06:32	05/05/16 06:32	DAH
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 14:37	05/09/16 14:37	DR
Wet Chemistry by Method 9056A	WG871228	1	05/10/16 23:39	05/10/16 23:39	SAM
Wet Chemistry by Method 9056A	WG871228	50	05/10/16 23:54	05/10/16 23:54	SAM
MW-39 L832603-10 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 14:25	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:24	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 15:54	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	5	05/03/16 22:12	05/06/16 12:07	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	5	05/03/16 12:53	05/03/16 12:53	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	25	05/05/16 09:29	05/05/16 09:29	DAH
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 14:38	05/09/16 14:38	DR
Wet Chemistry by Method 9056A	WG871228	1	05/11/16 00:08	05/11/16 00:08	SAM
Wet Chemistry by Method 9056A	WG871228	50	05/11/16 00:23	05/11/16 00:23	SAM
NAVA 20 1 022 022 44			Collected by SU / HM1 Team	Collected date/time 04/28/16 14:55	Received date/time 04/30/16 09:00
MW-29 L832603-11 GW			227	1,20,10100	200, .0 00.00
Method	Batch	Dilution	Preparation	Analysis	Analyst

Gravimetric Analysis by Method 2540 C-2011

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

WG869821

WG869319

WG870082

WG869610

WG869047

WG870521

WG870062

WG871015

WG871015

date/time

1

5

5

1

1

1

50

05/05/16 10:34

05/05/16 10:21

05/05/16 14:36

05/03/16 22:12

05/03/16 10:27

05/06/16 12:53

05/09/16 14:39

05/16/16 10:57

05/16/16 09:50

date/time

05/05/16 11:33

05/05/16 15:26

05/11/16 15:57

05/05/16 16:49

05/03/16 10:27

05/06/16 12:53

05/09/16 14:39

05/16/16 10:57

05/16/16 09:50

MMF

JDG

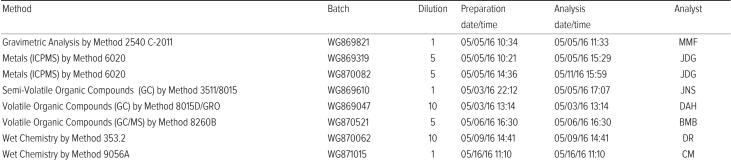
JDG

JNS

DAH

BMB

DR


 CM

CM

ONE LAB. NATION	1

ONE L	AB.	NATIONWIDE.

MW-61 L832603-12 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 18:30	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:29	JDG

Wet Chemistry by Method 9056A WG871015 50 05/16/16 11:24 05/16/16 11:24 CM Received date/time Collected by Collected date/time

04/30/16 09:00 SU / HM1 Team 04/28/16 17:25 MW-105 L832603-13 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:31	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 16:11	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	5	05/03/16 22:12	05/06/16 04:44	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	25	05/03/16 13:35	05/03/16 13:35	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	250	05/05/16 10:28	05/05/16 10:28	DAH
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 14:42	05/09/16 14:42	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 11:37	05/16/16 11:37	CM
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 11:51	05/16/16 11:51	CSU

Received date/time Collected by Collected date/time SU / HM1 Team 04/28/16 16:35 04/30/16 09:00 RW-#16B L832603-14 GW

Batch	Dilution	Preparation	Analysis	Analyst
		date/time	date/time	
WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
WG869319	5	05/05/16 10:21	05/05/16 15:33	JDG
WG870082	5	05/05/16 14:36	05/11/16 16:13	JDG
WG869610	1	05/03/16 22:12	05/05/16 17:26	JNS
WG868995	1	05/05/16 10:48	05/05/16 10:48	DAH
WG870062	10	05/09/16 14:47	05/09/16 14:47	DR
WG871015	1	05/16/16 12:04	05/16/16 12:04	CM
WG871015	50	05/16/16 12:17	05/16/16 12:17	CM
	WG869319 WG870082 WG869610 WG868995 WG870062 WG871015	WG869319 5 WG870082 5 WG869610 1 WG868995 1 WG870062 10 WG871015 1	WG869821 1 05/05/16 10:34 WG869319 5 05/05/16 10:21 WG870082 5 05/05/16 14:36 WG869610 1 05/03/16 22:12 WG868995 1 05/05/16 10:48 WG870062 10 05/09/16 14:47 WG871015 1 05/16/16 12:04	WG869821 1 05/05/16 10:34 05/05/16 11:33 WG869319 5 05/05/16 10:21 05/05/16 15:33 WG870082 5 05/05/16 14:36 05/11/16 16:13 WG869610 1 05/03/16 22:12 05/05/16 17:26 WG868995 1 05/05/16 10:48 05/05/16 10:48 WG870062 10 05/09/16 14:47 05/09/16 14:47 WG871015 1 05/16/16 12:04 05/16/16 12:04

Collected by Received date/time Collected date/time SU / HM1 Team 04/28/16 15:45 04/30/16 09:00 RW-9 L832603-15 GW

lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
ravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
letals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:47	JDG
letals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 16:15	JDG
emi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 19:16	JNS
olatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	10	05/03/16 13:56	05/03/16 13:56	DAH
olatile Organic Compounds (GC/MS) by Method 8260B	WG870521	5	05/06/16 16:54	05/06/16 16:54	BMB
let Chemistry by Method 353.2	WG870062	10	05/09/16 14:48	05/09/16 14:48	DR
et Chemistry by Method 9056A	WG871015	1	05/16/16 12:31	05/16/16 12:31	CM
et Chemistry by Method 9056A	WG871015	50	05/16/16 19:10	05/16/16 19:10	CSU

Collected by

Υ	ONE LAB. NATIONWI
ĭ	ONE LAB. NATIONWI

Collected date/time

ONE	IAR	NATIONWIDE.
OIVL	LAD.	INATION VIDE.

Received date/time

			CUITCULA T	0.4/20/40.40.20	0.4/20/40 00 00
MW-58 L832603-16 GW			SU / HM1 Team	04/28/16 18:20	04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:45	NJB
Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 16:39	TRB
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:49	JD
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 16:18	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:02	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 11:57	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 19:34	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	10	05/05/16 11:28	05/05/16 11:28	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870521	50	05/06/16 17:18	05/06/16 17:18	BMB
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 14:50	05/09/16 14:50	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 13:11	05/16/16 13:11	CM
Wet Chemistry by Method 9056A	WG871015	10	05/16/16 20:04	05/16/16 20:04	CSU
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 13:24	05/16/16 13:24	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:35	05/06/16 02:35	NJM
			Collected by	Collected date/time	Received date/time

	Collected by	Collected date/time	Received date/time
MW-136 L832603-17 GW	SU / HM1 Team	04/28/16 15:20	04/30/16 09:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:13	NJB
Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 16:41	TRB
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:52	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 16:20	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:06	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:02	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 19:52	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	1	05/03/16 14:17	05/03/16 14:17	DAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868995	1	05/05/16 11:48	05/05/16 11:48	DAH
Net Chemistry by Method 353.2	WG870062	10	05/09/16 14:52	05/09/16 14:52	DR
Net Chemistry by Method 9056A	WG871015	1	05/16/16 13:38	05/16/16 13:38	CM
Net Chemistry by Method 9056A	WG871015	50	05/16/16 13:51	05/16/16 13:51	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:38	05/06/16 02:38	NJM

Received date/time Collected by Collected date/time SU / HM1 Team 04/28/16 17:25 04/30/16 09:00 KWB-2R L832603-18 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:54	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 16:22	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 20:11	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870521	1	05/06/16 17:42	05/06/16 17:42	BMB
Wet Chemistry by Method 353.2	WG870062	1	05/09/16 14:53	05/09/16 14:53	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 14:05	05/16/16 14:05	CM
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 14:18	05/16/16 14:18	CM

_				_					_	
C	Λ	NЛ	DΙ		Sl	I N I	N I	Λ	\mathbf{D}	V
J,	$\boldsymbol{\vdash}$	IVI	Гι		$\mathcal{S}_{\mathcal{L}}$	ועוע	171	⊣	Γ	

SAMPLE SUMMAR	RY.	ONE	E LAB. NATIONWIDE.
	Collected by	Collected date/time	Received date/time
	SU / HM1 Team	04/28/16 16:20	04/30/16 09:00

1 (.11

KWB-13 L832603-19 GW			SU / HM1 Team	04/28/16 16:20	04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869821	1	05/05/16 10:34	05/05/16 11:33	MMF
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:47	NJB
Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 16:26	TRB
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:56	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/11/16 16:27	JDG
Metals (ICPMS) by Method 6020	WG870082	5	05/05/16 14:36	05/18/16 15:53	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:11	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:07	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 20:29	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868995	1	05/05/16 12:27	05/05/16 12:27	DAH
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 15:00	05/09/16 15:00	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 14:31	05/16/16 14:31	CM
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 14:45	05/16/16 14:45	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:44	05/06/16 02:44	NUM
			Collected by	Collected date/time	Received date/time
RW-12R L832603-20 GW			SU / HM1 Team	04/28/16 17:50	04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869825	1	05/05/16 13:36	05/05/16 14:25	MMF
Metals (ICP) by Method 6010B	WG873945	1	05/19/16 17:01	05/19/16 21:25	LTB
Metals (ICP) by Method 6010B	WG873946	1	05/19/16 17:08	05/19/16 22:01	LTB
Metals (ICPMS) by Method 6020	WG869319	5	05/05/16 10:21	05/05/16 15:59	JDG
Metals (ICPMS) by Method 6020	WG870082	10	05/05/16 14:36	05/11/16 15:13	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869610	1	05/03/16 22:12	05/05/16 20:47	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870521	5	05/06/16 18:06	05/06/16 18:06	ВМВ
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 15:01	05/09/16 15:01	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 15:39	05/16/16 15:39	CM
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 14:58	05/16/16 14:58	CM
MW-113 L832603-21 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 16:40	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG869825	1	05/05/16 13:36	05/05/16 14:25	MMF
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:10	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 13:35	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 15:22	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	1	05/03/16 14:38	05/03/16 14:38	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 05:34	05/05/16 05:34	BMB
Wet Chemistry by Method 353.2	WG870062	10	05/09/16 15:02	05/09/16 15:02	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 15:52	05/16/16 15:52	CM
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 16:19	05/16/16 16:19	CSU
EB-REST-01 L832603-22 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 16:55	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869825	1	05/05/16 13:36	05/05/16 14:25	MMF
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 13.36	05/06/16 09:41	LAT
Metals (ICPMS) by Method 6020	WG870081	5 1	05/02/16 22:26	05/09/16 09:41	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 13.53	05/05/16 15:38	JNS
Semi-volatile organic compounts (GC) by Method 3311/8013	MAGOAMI	I	03/03/10 22.13	03/03/10 13.36	CNIC

EB-REST-01 L832603-22 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 16:55	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869702	1	05/04/16 18:06	05/04/16 18:06	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 06:43	05/05/16 06:43	BMB
Wet Chemistry by Method 353.2	WG870487	1	05/09/16 16:11	05/09/16 16:11	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 17:10	05/16/16 17:10	CSU
DUP-REST-01 L832603-23 GW			Collected by SU / HM1 Team	Collected date/time 04/28/16 15:00	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG869825	1	05/05/16 13:36	05/05/16 14:25	MMF
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:13	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 13:47	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 15:55	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	1	05/03/16 15:19	05/03/16 15:19	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 07:00	05/05/16 07:00	BMB
Wet Chemistry by Method 353.2	WG870487	1	05/09/16 16:14	05/09/16 16:14	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 18:30	05/16/16 18:30	CSU
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 17:50	05/16/16 17:50	CSU
MW-60 L832603-24 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 08:25	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:50	NJB
Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 16:44	TRB
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:16	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 13:49	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:16	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:12	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 16:11	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869995	1	05/05/16 05:32	05/05/16 05:32	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870398	1	05/06/16 00:39	05/06/16 00:39	LRL
Wet Chemistry by Method 353.2	WG870487	1	05/09/16 16:16	05/09/16 16:16	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 18:43	05/16/16 18:43	CSU
Wet Chemistry by Method 9056A	WG871015	50	05/16/16 18:57	05/16/16 18:57	NJM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:47	05/06/16 02:47	NJM
EB-REST-04 L832603-25 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 09:10	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:52	NJB
Mercury by Method 7470A Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 16:47	TRB
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:18	LAT
Metals (ICPMS) by Method 6020	WG870081	1	05/05/16 13:53	05/09/16 10:13	JDG
notatio por morby metriou ouzu	WG870589	10	05/06/16 14:41	05/07/16 10:21	LAT
	WOOL 000	10			
Metals (ICPMS) by Method 6020	WGR70501	1	()5/()6/16 16:27	()5/()9/16 13:00	
Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG870591 WG869611	1	05/06/16 16:27 05/03/16 22:13	05/09/16 13:00 05/05/16 16:27	JDG INS
Metals (ICPMS) by Method 6020	WG870591 WG869611 WG869047	1 1 1	05/06/16 16:2/ 05/03/16 22:13 05/03/16 16:01	05/09/16 13:00 05/05/16 16:27 05/03/16 16:01	JNS DAH

²Tc

Ss

Cn

Sr

[°]Qc

GI

Αl

Sc

²Tc

Ss

Cn

Sr

[°]Qc

GI

Αl

Sc

					D
EB-REST-04 L832603-25 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 09:10	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Wet Chemistry by Method 353.2	WG870487	1	05/09/16 16:17	05/09/16 16:17	DR
Wet Chemistry by Method 9056A	WG871015	1	05/16/16 19:24	05/16/16 19:24	CSU
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:56	05/06/16 02:56	NJM
DUP-REST-04 L832603-26 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 10:00	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 12:54	NJB
• •	WG869861	1	05/04/16 18:28	05/05/16 16:54	TRB
Mercury by Method 7470A Metals (ICPMS) by Method 6020		5		05/06/16 10:21	LAT
, , ,	WG869320		05/02/16 22:26		
Metals (ICPMS) by Method 6020	WG870081	5 10	05/05/16 13:53	05/07/16 13:59 05/07/16 10:26	JDG LAT
Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41		JDG
	WG870591		05/06/16 16:27	05/09/16 12:21	
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 16:44	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869995	1	05/05/16 05:54	05/05/16 05:54	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 07:52	05/05/16 07:52	BMB
Wet Chemistry by Method 353.2	WG870487	1	05/09/16 16:24	05/09/16 16:24	DR
Wet Chemistry by Method 9056A	WG871034	1	05/10/16 21:49	05/10/16 21:49	CM
Wet Chemistry by Method 9056A	WG871034	50	05/10/16 22:08	05/10/16 22:08	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:59	05/06/16 02:59	NJM
MW-107 L832603-27 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 11:05	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	· ····
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:24	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:01	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 17:00	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869047	1	05/03/16 18:41	05/03/16 18:41	DAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 08:09	05/05/16 08:09	BMB
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870398	50	05/06/16 01:01	05/06/16 01:01	LRL
Wet Chemistry by Method 353.2	WG870487	10	05/09/16 16:18	05/09/16 16:18	DR
Wet Chemistry by Method 9056A	WG871034	1	05/10/16 22:24	05/10/16 22:24	CM
Wet Chemistry by Method 9056A	WG871034	50	05/10/16 22:40	05/10/16 22:40	СМ
MW-59 L832603-28 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 10:15	Received date/time 04/30/16 09:00
	Datch	Dilution	Proparation	Analysis	Analyst
Method		Dilution	Preparation	Analysis	Analyst
Method	Batch		date/time	date/time	
		1	date/time	date/time	16.4
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020	WG870203 WG869320	5	05/06/16 22:55 05/02/16 22:26	05/06/16 23:56 05/06/16 10:26	LAT
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020	WG870203 WG869320 WG870081	5 5	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04	LAT JDG
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG870203 WG869320 WG870081 WG869611	5 5 1	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53 05/03/16 22:13	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04 05/05/16 17:17	LAT JDG JNS
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG870203 WG869320 WG870081 WG869611 WG869047	5 5 1 1	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53 05/03/16 22:13 05/03/16 19:02	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04 05/05/16 17:17 05/03/16 19:02	LAT JDG JNS DAH
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B	WG870203 WG869320 WG870081 WG869611 WG869047 WG868996	5 5 1 1	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53 05/03/16 22:13 05/03/16 19:02 05/05/16 08:27	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04 05/05/16 17:17 05/03/16 19:02 05/05/16 08:27	LAT JDG JNS DAH BMB
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Volatile Organic Compounds (GC/MS) by Method 8260B	WG870203 WG869320 WG870081 WG869611 WG869047 WG868996 WG870398	5 5 1 1 1	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53 05/03/16 22:13 05/03/16 19:02 05/05/16 08:27 05/06/16 01:24	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04 05/05/16 17:17 05/03/16 19:02 05/05/16 08:27 05/06/16 01:24	LAT JDG JNS DAH BMB LRL
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Volatile Organic Compounds (GC/MS) by Method 8260B Wet Chemistry by Method 353.2	WG870203 WG869320 WG870081 WG869611 WG869047 WG868996 WG870398 WG870487	5 5 1 1 1 1	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53 05/03/16 22:13 05/03/16 19:02 05/05/16 08:27 05/06/16 01:24 05/09/16 16:19	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04 05/05/16 17:17 05/03/16 19:02 05/05/16 08:27 05/06/16 01:24 05/09/16 16:19	LAT JDG JNS DAH BMB LRL DR
Gravimetric Analysis by Method 2540 C-2011 Metals (ICPMS) by Method 6020 Metals (ICPMS) by Method 6020 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 Volatile Organic Compounds (GC) by Method 8015D/GRO Volatile Organic Compounds (GC/MS) by Method 8260B Volatile Organic Compounds (GC/MS) by Method 8260B	WG870203 WG869320 WG870081 WG869611 WG869047 WG868996 WG870398	5 5 1 1 1	05/06/16 22:55 05/02/16 22:26 05/05/16 13:53 05/03/16 22:13 05/03/16 19:02 05/05/16 08:27 05/06/16 01:24	05/06/16 23:56 05/06/16 10:26 05/07/16 14:04 05/05/16 17:17 05/03/16 19:02 05/05/16 08:27 05/06/16 01:24	LAT JDG JNS DAH BMB LRL

ONE	LAR	NATIONWID	1

MW 52 1 022002 20 CW			Collected by SU / HM1 Team	Collected date/time 04/29/16 10:50	Received date/time 04/30/16 09:00
MW-52 L832603-29 GW					
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 13:01	NJB
Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 16:57	TRB
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:29	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:06	JDG
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:30	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:26	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 17:33	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 01:09	05/03/16 01:09	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 08:44	05/05/16 08:44	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 09:26	05/10/16 09:26	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 00:31	05/11/16 00:31	CM
Wet Chemistry by Method 9056A	WG871034	50	05/11/16 00:47	05/11/16 00:47	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 03:08	05/06/16 03:08	NJM
			Collected by	Collected date/time	Received date/time
M/M 100 1 022602 20 C/M			SU / HM1 Team	04/29/16 10:05	04/30/16 09:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:32	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:08	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 17:50	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 01:30	05/03/16 01:30	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	5	05/05/16 09:01	05/05/16 09:01	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 09:27	05/10/16 09:27	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 01:03	05/11/16 01:03	CM
Wet Chemistry by Method 9056A	WG871034	50	05/11/16 01:19	05/11/16 01:19	CM

MW-110 L832603-31 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:34	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:11	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 18:06	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 01:52	05/03/16 01:52	JAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 09:18	05/05/16 09:18	BMB
Net Chemistry by Method 353.2	WG870500	10	05/10/16 09:28	05/10/16 09:28	DR
Net Chemistry by Method 9056A	WG871034	1	05/10/16 22:55	05/10/16 22:55	CM
Wet Chemistry by Method 9056A	WG872424	50	05/15/16 20:23	05/15/16 20:23	CM
			Collected by	Collected date/time	Received date/t

MW-128 L832603-32 GW

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870203	1	05/06/16 22:55	05/06/16 23:56	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:46	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:13	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 19:29	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 02:13	05/03/16 02:13	JAH

Collected by

SU / HM1 Team

SU / HM1 Team

Received date/time

04/30/16 09:00

04/30/16 09:00

Collected date/time

04/29/16 09:20

04/29/16 11:25

ONE	IAR	NIAT	IONW

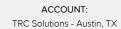
Method Batch Dilution Preparation date/time Cate/Plane Analysis Analyst	MW-128 L832603-32 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 11:25	Received date/time 04/30/16 09:00
Valiable Organic Compounds (CCMS) by Method 82608 WG878986 1 05/05/16 09.36 05/05/16 09.36 DBMB Valiable Organic Compounds (CCMS) by Method 82608 WG878038 20 05/05/16 01.46 DS/05/16 09.39 DR Wat Chemisty by Method 39.32 WG878034 1 0 05/15/16 01.35 O5/15/16 01.35 CM Wat Chemisty by Method 9056A WG878034 1 0 05/15/16 01.35 O5/15/16 01.35 CM Wat Chemisty by Method 9056A WG878034 1 0 05/15/16 01.35 O5/15/16 01.35 CM Wat Chemisty by Method 9056A WG878034 1 0 05/15/16 01.35 O5/15/16 01.35 CM Wet Chemisty by Method 9056A WG878034 1 0 05/15/16 01.35 O5/15/16 01.35 CM Wet Chemisty by Method 9056A WG878034 1 0 05/05/16 01.30 O5/15/16 01.35 O4/20/16 09.00 Wethod Batch	Method	Batch	Dilution	•	•	Analyst
Vacatilate Organic Compounds (COMS) by Method 3512 WG870398 70 O500676 0146 O510676 0149 PR	Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1			BMB
West Chemistry by Method 9356A WG870500 10 O507016 00229 DR O51016 00229						
West Chemistry by Method 9056A WG877034 1						
Method Seath Method 9056A W6877474 10 O519516 71.38 O519516 71.38 Collected data-blame Collected data-blame Method Collected data-blame Collected data-blame Method Method 9540 C-2011 W6870358 1 O519616 72.37 O509616 72.30 J.M. Method 7470A W6869207 1 O509616 72.37 O509616 72.30 J.M. Method 7470A W6869207 1 O509616 72.37 O509616 72.30 J.M. Method 7470A W6869207 1 O509616 72.37 O509616 70.30 J.M. Method 7470A W6869207 1 O509616 72.37 O509616 70.30 J.M. Method 7470A W6869207 1 O509616 72.37 O509616 70.34 L.A.T. Method 5020 W6870308 5 O502616 72.22 O509616 10.48 L.A.T. Method 5020 W6870308 1 O509616 74.41 O509716 70.48 L.A.T. Method 5020 W6870599 10 O509616 74.41 O509716 70.48 L.A.T. Method 5020 W6870599 10 O509616 74.41 O509716 70.48 L.A.T. W6180 (CPMS) by Method 5020 W6870599 10 O509616 70.41 O509616 70.41 J.D.G. W6870599 W6870590 W6870590 W6870590 O509616 70.41 J.D.G. W6870590 W6870590 U509616 70.34 D509616 70.34 J.A.T. W6180 (CPMS) by Method 80501GRO W686901 O509616 70.34 D509616 70.34 J.A.T. W6180 (CPMS) by Method 80501GRO W686901 O509616 70.34 D509616 70.34 J.A.T. W6180 (CPMS) by Method 80501GRO W686901 O509616 70.34 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 D509616 70.34 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 D509616 70.34 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 D509616 70.34 J.A.T. W6180 (CPMS) by Method 9056A W6870304 J.A.T. U509616 70.34 J.A.T. W6180 (CPMS) by Method 90506 W6870309						
Method Batch Dilution Preparation Analysis Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analysis Analyst Analyst Analyst Analysis Analyst Analysis Analyst Analysis Analyst Analysis Analyst Analysis Analyst Analysis Anal						
Metalic (CPMS) by Method 6204	MW-28 L832603-33 GW			,		Received date/time 04/30/16 09:00
Gravimetric Analysis by Method 2540 C-2011 WG870358 1	Method	Batch	Dilution	•	•	Analyst
Mercury by Method 7470A W6869207 1 05/03/16 12:30 05/04/16 13:03 NJB Mercury by Method 7470A W6869861 1 05/04/16 18:28 05/05/16 16:59 TRB Metals (MCPM5) by Method 6020 W6870881 5 05/05/16 22:26 05/05/16 10:48 LAT Metals (MCPM5) by Method 6020 W6870881 5 05/05/16 13:53 05/07/16 14:16 JDG Metals (CPMS) by Method 6020 W6870889 10 05/05/16 13:53 05/07/16 14:16 JDG Metals (CPMS) by Method 6020 W6870881 10 05/05/16 13:52 05/07/16 10:48 LAT Metals (CPMS) by Method 6020 W6870881 10 05/05/16 16:27 05/07/16 10:48 LAT Metals (CPMS) by Method 6020 W6870881 10 05/05/16 16:27 05/07/16 10:49 LAT Metals (CPMS) by Method 8020 W6870881 10 05/05/16 16:27 05/07/16 10:49 LAT Metals (CPMS) by Method 8020 W6870891 10 05/05/16 02:34 05/07/16 10:34 JAH Wolatile Organic Compounds (GC) by Method 8015D/GRO W6869618 10 05/05/16 02:34 05/07/16 02:34 JAH Wolatile Organic Compounds (GC) by Method 80508 W686996 10 05/05/16 03:31 05/07/16 03:33 DR Wet Chemistry by Method 9056A W6871034 1 05/10/16 02:54 05/10/16 03:13 DR Wet Chemistry by Method 9056A W6871034 1 05/05/16 03:11 05/05/16 03:11 DF W6869 03:10 05/05/16 03:10 05/05/16 03:10 05/05/16 03:10 05/05/16 03:10 05/05/16 03:10 05/05/16 03:10 05/05/16 03:10 05/05/16 03:10	Gravimetric Analysis by Method 2540 C-2011	WG870358	1			JM
Mercury by Method 7470A W6869861 1 05/04/16 18:28 05/05/16 16:59 TRR Metals (CPM5) by Method 6020 W6869320 5 05/02/16 22:26 05/06/16 14:48 LAT Metals (CPM5) by Method 6020 W687081 5 05/05/16 13:33 05/07/16 14:48 LAT Metals (CPM5) by Method 6020 W6870589 10 05/06/16 14:41 05/07/16 10:48 LAT Metals (CPM5) by Method 6020 W6870589 10 05/06/16 16:27 05/09/16 12:41 JDG Metals (CPM5) by Method 6020 W6870589 10 05/06/16 16:27 05/09/16 12:41 JDG Metals (CPM5) by Method 6020 W6870581 10 05/06/16 16:27 05/09/16 12:41 JDG Metals (CPM5) by Method 8075D/GRO W6869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC) by Method 8075D/GRO W6869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8075D/GRO W6869089 10 05/03/16 09:31 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8075D/GRO W6870034 10 05/03/16 09:31 05/03/16 09:31 DR Reference with the compounds (GC/MS) by Method 8075D/GRO W6871034 10 05/03/16 03:31 05/03/16 09:31 DR Reference with the compounds (GC/MS) by Method 8075D/GRO W6871034 10 05/03/16 03:31 05/03/16 03:31 DR Reference with the compounds (GC/MS) by Method 8075D/GRO W6871034 10 05/03/16 03:31 05/03/16 03:31 DR Reference with the compounds (GC/MS) by Method 8055D/GRO W6871034 10 05/03/16 03:31 05/03/16 03:31 DR Reference with the compounds (GC/MS) by Method 9055D/GRO W6871034 50 05/03/16 03:31 05/03/16 03:31 DR Reference with the compounds (GC/MS) by Method 9055D/GRO W6871034 50 05/03/16 03:31 05/03/16 03:31 DR Reference with the compounds (GC/MS) by Method 9055D/GRO W6871034 10 05/03/16 03:33 05/03/16 03:31 DR Reference with the compounds (GC/MS) by Method 9055D/GRO W6869303 50 05/03/16 03:33 05/03/16 17:02 DR Reference with the compounds (GC/MS) by Method 9055D/GRO W6869303 50 05/03/16 03:33 05/03/16 17:02 DR Reference with the compounds (G						
Metals (ICPMS) by Method 6020 WG87031 5 05/02/16 22-26 05/06/16 10-48 LAT Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13-53 05/07/16 14-16 JDG MG810(PMS) by Method 6020 WG870589 10 05/06/16 14-41 05/07/16 14-64 JDG MG810 (PMS) by Method 6020 WG870591 10 05/06/16 14-41 05/07/16 15-02 AAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16-27 05/09/16 12-41 JDG Gemt-Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 10 05/03/16 02-31 05/07/16 15-02 AAT Volatile Organic Compounds (GC) by Method 8015D/GRO WG8699648 10 05/03/16 02-34 05/03/16 02-34 JAH Volatile Organic Compounds (GCMS) by Method 8015D/GRO WG869968 10 05/03/16 09-33 05/03/16 02-34 JAH Volatile Organic Compounds (GCMS) by Method 82608 WG871034 1 05/17/16 02-54 05/17/1						
Metals (CPMS) by Method 6020 W687081 5 05/05/16 13:53 05/07/16 14:16 JDG Metals (CPMS) by Method 6020 W6870589 10 05/06/16 16:27 05/09/16 12:41 JDG Metals (CPMS) by Method 6020 W6870591 10 05/06/16 16:27 05/09/16 12:41 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 W6869611 5 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8015D/GRO W6869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8015D/GRO W6869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8015D/GRO W6869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8015D/GRO W6870304 10 05/05/16 09:31 05/05/16 09:33 DR W6410nd 3532 W6870304 10 05/05/16 09:31 05/05/16 09:31 DR W6410nd 3512 W6870304 10 05/05/16 09:31 05/05/16 09:31 DR W6410nd 3512 W6870304 10 05/05/16 09:31 05/05/16 03:10 CM W6410nd 3512 W6410nd 3512 W6870304 10 05/05/16 03:11 W6870304 W6870304						
Metals (CPMS) by Method 6020 W6870589 10 05/06/16 14:41 05/07/16 10:48						
Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:41 JDG Semi-Volatile Organic Compounds (GC) by Method 35118015 WG869611 5 05/03/16 22:31 05/07/16 15:02 AAT Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC)MS) by Method 8260B WG868996 10 05/05/16 09:53 05/05/16 09:53 BMB Wet Chemistry by Method 9056A WG871034 1 05/10/16 09:31 05/10/16 09:31 DR WG871034 1 05/10/16 09:31 05/10/16 09:31 DR WG871034 1 05/10/16 09:31 05/10/16 09:31 DR WG871034 DR WG8710						
Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869048 10 05/03/16 02:34 05/03/16 02:34 JAH						
Volatile Organic Compounds (GC) by Method 8015D/GRO W6869048 10 05/03/16 02:34 05/03/16 02:34 JAH Volatile Organic Compounds (GC/MS) by Method 8260B W6868996 10 05/05/16 09:53 05/05/16 09:53 BMB Wet Chemistry by Method 353.2 W6870500 10 05/05/16 09:53 05/07/16 09:51 DR Wet Chemistry by Method 9056A W6871034 1 05/17/16 02:54 05/17/16 02:54 CM Wet Chemistry by Method 9056A W6871034 50 05/17/16 03:10 05/17/16 03:10 CM Wet Chemistry by Method D 7511-09e2 W6869397 1 05/06/16 03:11 05/06/16 03:11 NJM Wet Chemistry by Method D 7511-09e2 W6869397 1 05/06/16 03:11 05/06/16 03:11 NJM Wethod W687034 M64704 W6869361 M64704 W						AAT
Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 09:53 05/05/16 09:53 DR						JAH
Wet Chemistry by Method 353.2 W6870500 10 05/10/16 09:31 DR Wet Chemistry by Method 9056A W6871034 1 05/11/16 02:54 CM Wet Chemistry by Method 9056A W6871034 50 05/11/16 03:10 05/11/16 03:10 CM Wet Chemistry by Method D 7511-09e2 WG869397 1 05/06/16 03:11 05/06/16 03:11 NJM MW-66 L832603-34 GW Batch Dilution Preparation date/time Collected date/time date/time Collected date/time Q4/30/16 09:00 Method Batch Dilution Preparation date/time Analysis Analysis Analysis Mercury by Method 7470A WG870358 1 05/06/16 22:37 05/06/16 23:30 JM Metcally by Method 7470A WG869207 1 05/03/16 12:30 05/04/16 13:06 NJB Metals (ICPMS) by Method 6020 WG869380 1 05/06/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG87081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870899 10 <td< td=""><td>Volatile Organic Compounds (GC/MS) by Method 8260B</td><td>WG868996</td><td>10</td><td>05/05/16 09:53</td><td>05/05/16 09:53</td><td>BMB</td></td<>	Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	10	05/05/16 09:53	05/05/16 09:53	BMB
Wet Chemistry by Method 9056A WG871034 1 05/11/16 02:54 CM Wet Chemistry by Method 9056A WG871034 50 05/11/16 03:10 05/11/16 03:10 CM Wet Chemistry by Method D 7511-09e2 WG8869397 1 05/06/16 03:11 05/06/16 03:11 NJM MW-66 L832603-34 GW Eatch Dilution Preparation Analysis Analysis Method Batch Dilution Preparation Analysis Analysis Gravimetric Analysis by Method 2540 C-2011 WG870358 1 05/06/16 22:37 05/06/16 23:30 JM Mercury by Method 7470A WG870358 1 05/06/16 12:30 05/04/16 13:06 NJB Metals (ICPMS) by Method 6020 WG869861 1 05/04/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG87081 5 05/05/16 18:25 05/07/16 10:51 LAT Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870581 1 05/06/16 16:		WG870500	10	05/10/16 09:31	05/10/16 09:31	DR
Wet Chemistry by Method 9056A WG871034 50 05/11/16 03:10 05/11/16 03:10 CM Wet Chemistry by Method D 7511-09e2 WG869397 1 05/06/16 03:11 05/06/16 03:11 NJM MW-66 L832603-34 GW Collected by SU / HMI Team D4/29/16 09:40 Collected by SU / HMI Team D4/29/16 09:40 Collected by SU / HMI Team D4/29/16 09:40 Collected by Method 2540 C4/29/16 09:40 Collected by Method 2540 C4/2011 Method D4/29/16 09:40 Method D4/29/16 09:40 Method D4/29/16 09:40 Analysis D4/29/16 09:40 Analysis D4/29/16 09:40 Method A4/20 Analysis D4/29/16 09:40 Method 2540 C-2011 Method 3740 Method 3740 Method 3740 Mesked 202 1 05/06/16 22:37 05/06/16 23:30 JM Method 7470A Mesked 202 1 05/03/16 12:30 05/04/16 13:06 NJB Method 7470A Mesked 202 1 05/03/16 12:30 05/06/16 12:02 TRB Metals (ICPMS) by Method 6020 Mesked 202 5 05/02/16 18:28 05/05/16 13:02 TRB Metals (ICPMS) by Method 6020 Mesked 202 5 05/05/16 13:53 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 Mesked 202 <td< td=""><td></td><td>WG871034</td><td>1</td><td>05/11/16 02:54</td><td>05/11/16 02:54</td><td>CM</td></td<>		WG871034	1	05/11/16 02:54	05/11/16 02:54	CM
Number N		WG871034	50	05/11/16 03:10	05/11/16 03:10	CM
MW-66 L832603-34 GW SU / HM1 Team 04/29/16 09:40 04/30/16 09:00 Method Batch Dilution date/time Preparation date/time Analysis date/time Gravimetric Analysis by Method 2540 C-2011 WG870358 1 05/06/16 22:37 05/06/16 23:30 JM Mercury by Method 7470A WG8698207 1 05/03/16 12:30 05/04/16 13:06 NJB Metals (ICPMS) by Method 6020 WG869320 5 05/04/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG869320 5 05/02/16 22:26 05/06/16 16:51 LAT Metals (ICPMS) by Method 6020 WG870589 10 05/05/16 13:53 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 16:27 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 16:27 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/07/16 10:52 JAH Volatile Organic Compounds (GC) by Method 3511/8015 WG869048 1 0	Wet Chemistry by Method D 7511-09e2	WG869397	1		05/06/16 03:11	NJM
Gravimetric Analysis by Method 2540 C-2011 WG870358 1 05/06/16 22:37 05/06/16 23:30 JM Mercury by Method 7470A WG869207 1 05/03/16 12:30 05/04/16 13:06 NJB Mercury by Method 7470A WG869861 1 05/04/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG869320 5 05/02/16 22:26 05/06/16 10:51 LAT Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 02:56 05/05/16 20:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 10 05/05/16 10:10 05/05/16 10:10 BMB	MW-66 L832603-34 GW			,		Received date/time 04/30/16 09:00
Gravimetric Analysis by Method 2540 C-2011 WG870358 1 05/06/16 22:37 05/06/16 23:30 JM Mercury by Method 7470A WG869207 1 05/03/16 12:30 05/04/16 13:06 NJB Mercury by Method 7470A WG869861 1 05/04/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG869320 5 05/02/16 22:26 05/06/16 10:51 LAT Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 16:27 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 22:13 05/05/16 20:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870304 1 05/11/16 03:26 05/11/16 03:26 CM Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:42 05/11/16 03:42 CM	Method	Batch	Dilution	Preparation	Analysis	Analyst
Mercury by Method 7470A WG869207 1 05/03/16 12:30 05/04/16 13:06 NJB Mercury by Method 7470A WG869861 1 05/04/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG869320 5 05/02/16 22:26 05/06/16 10:51 LAT Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 02:56 05/05/16 20:02 JNS Volatile Organic Compounds (GC/MS) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870500 10 05/06/16 02:08 05/10/16 09:36 D7/01/16 09:36 <td></td> <td></td> <td></td> <td>date/time</td> <td>date/time</td> <td></td>				date/time	date/time	
Mercury by Method 7470A WG869861 1 05/04/16 18:28 05/05/16 17:02 TRB Metals (ICPMS) by Method 6020 WG869320 5 05/02/16 22:26 05/06/16 10:51 LAT Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 02:56 05/03/16 02:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:42 05/11/16 03:42 05/11/16 03:4	Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020 WG869320 5 05/02/16 22:26 05/06/16 10:51 LAT Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 22:13 05/05/16 20:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:42 05/11/16 03:42 CM	Mercury by Method 7470A	WG869207	1	05/03/16 12:30	05/04/16 13:06	NJB
Metals (ICPMS) by Method 6020 WG870081 5 05/05/16 13:53 05/07/16 14:18 JDG Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 02:56 05/03/16 02:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:42 05/11/16 03:42 CM	Mercury by Method 7470A	WG869861	1	05/04/16 18:28	05/05/16 17:02	TRB
Metals (ICPMS) by Method 6020 WG870589 10 05/06/16 14:41 05/07/16 10:52 LAT Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 22:13 05/05/16 20:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:42 05/11/16 03:42 CM	Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:51	LAT
Metals (ICPMS) by Method 6020 WG870591 10 05/06/16 16:27 05/09/16 12:45 JDG Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 22:13 05/05/16 20:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:42 05/11/16 03:42 CM	Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:18	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015 WG869611 1 05/03/16 22:13 05/05/16 20:02 JNS Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:26 05/11/16 03:26 CM Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 05/11/16 03:42 CM	Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:52	LAT
Volatile Organic Compounds (GC) by Method 8015D/GRO WG869048 1 05/03/16 02:56 05/03/16 02:56 JAH Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:26 05/11/16 03:42 CM Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 05/11/16 03:42 CM	Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:45	JDG
Volatile Organic Compounds (GC/MS) by Method 8260B WG868996 10 05/05/16 10:10 05/05/16 10:10 BMB Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 D5/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:26 05/11/16 03:26 CM Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 05/11/16 03:42 CM	Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 20:02	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B WG870398 100 05/06/16 02:08 05/06/16 02:08 LRL Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:26 05/11/16 03:26 CM Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 05/11/16 03:42 CM	Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 02:56	05/03/16 02:56	JAH
Wet Chemistry by Method 353.2 WG870500 10 05/10/16 09:36 05/10/16 09:36 DR Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:26 05/11/16 03:26 CM Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 05/11/16 03:42 CM		WG868996		05/05/16 10:10	05/05/16 10:10	
Wet Chemistry by Method 9056A WG871034 1 05/11/16 03:26 05/11/16 03:26 CM Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 05/11/16 03:42 CM		WG870398		05/06/16 02:08	05/06/16 02:08	
Wet Chemistry by Method 9056A WG871034 10 05/11/16 03:42 CM		WG870500	10		05/10/16 09:36	
Wet Chemistry by Method D 7511-09e2 WG869397 1 05/06/16 03:14 05/06/16 03:14 N IM						
10000007 1 0070070 00711 0001	Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 03:14	05/06/16 03:14	NJM

TRIP BLANK-REST-04	1832603-35	GW
==,		.

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 05:16	05/05/16 05:16	BMB

Collected by

SU / HM1 Team


Collected date/time

04/29/16 00:00

Received date/time

04/30/16 09:00

MW-99 L832603-36 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 08:45	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:54	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:25	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 20:19	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	10	05/03/16 03:17	05/03/16 03:17	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	10	05/05/16 10:27	05/05/16 10:27	BMB
/olatile Organic Compounds (GC/MS) by Method 8260B	WG870398	100	05/06/16 02:30	05/06/16 02:30	LRL
Wet Chemistry by Method 353.2	WG870500	1	05/10/16 10:05	05/10/16 10:05	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 03:58	05/11/16 03:58	CM
Wet Chemistry by Method 9056A	WG871034	10	05/11/16 04:14	05/11/16 04:14	CM
RW-#17A L832603-37 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 09:40	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Batteri	Dilation	date/time	date/time	raidiyət
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:56	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:27	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 20:35	JNS
					JAH
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 03:55	05/03/16 03:55	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 10:45	05/05/16 10:45	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 09:39	05/10/16 09:39	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 04:30	05/11/16 04:30	CM
Wet Chemistry by Method 9056A	WG871034	50	05/11/16 04:46	05/11/16 04:46	CM
MW-135 L832603-38 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 11:25	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 10:59	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:30	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 20:52	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 04:16	05/03/16 04:16	JAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 11:02	05/05/16 11:02	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 09:40	05/10/16 09:40	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 05:33	05/11/16 05:33	CM
Wet Chemistry by Method 9056A	WG871034	100	05/11/16 05:49	05/11/16 05:49	СМ
MW-115 L832603-39 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 08:50	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 11:02	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:32	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 21:08	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 04:38	05/03/16 04:38	JAH
V 1 (1 0 1 0 1 0 1 (00/MC) 1 M (1 1 0000D					

Volatile Organic Compounds (GC/MS) by Method 8260B

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

WG868996

WG870500

WG871034

WG871034

05/05/16 11:19

05/10/16 09:41

05/11/16 06:37

05/11/16 06:53

1

10

1

50

05/05/16 11:19

05/10/16 09:41

05/11/16 06:37

05/11/16 06:53

BMB

DR

 CM

 CM

SAMP

PLE	SUMMARY	ONE L

ONE	IΔR	NATIONWIDE.
OIVL	LAD.	INATION VIDE.

MW-114 L832603-40 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 09:45	04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 11:04	LAT
Metals (ICPMS) by Method 6020	WG870081	5	05/05/16 13:53	05/07/16 14:34	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869611	1	05/03/16 22:13	05/05/16 21:25	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 04:59	05/03/16 04:59	JAH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868996	1	05/05/16 11:36	05/05/16 11:36	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 09:43	05/10/16 09:43	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 07:41	05/11/16 07:41	CM
Wet Chemistry by Method 9056A	WG871034	50	05/11/16 08:29	05/11/16 08:29	CM
			Collected by	Collected date/time	Received date/time
MW-125 L832603-41 GW			SU / HM1 Team	04/29/16 08:55	04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869320	5	05/02/16 22:26	05/06/16 11:07	LAT

WG870081

WG869611

WG869048

WG868993

WG870500

WG871034

WG872424

5

1

1

1

10

1

50

05/05/16 13:53

05/03/16 22:13

05/03/16 05:21

05/05/16 00:48

05/10/16 09:44

05/11/16 08:44

05/15/16 21:53

Collected by

SU / HM1 Team

05/07/16 14:37

05/05/16 21:42

05/03/16 05:21

05/05/16 00:48

05/10/16 09:44

05/11/16 08:44

05/15/16 21:53

Collected date/time

04/29/16 09:45

	_
⁹ Sc	

JDG

JNS

JAH

BMB

DR

CM

 CM

Received date/time

04/30/16 09:00

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

Wet Chemistry by Method 353.2

Wet Chemistry by Method 9056A

Wet Chemistry by Method 9056A

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870358	1	05/06/16 22:37	05/06/16 23:30	JM
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:15	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:37	LAT
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/09/16 15:05	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869613	1	05/03/16 22:14	05/06/16 00:46	JNS
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG869048	1	05/03/16 05:42	05/03/16 05:42	JAH
/olatile Organic Compounds (GC/MS) by Method 8260B	WG868993	1	05/05/16 01:08	05/05/16 01:08	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 09:49	05/10/16 09:49	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 09:16	05/11/16 09:16	CM
Wet Chemistry by Method 9056A	WG871034	50	05/11/16 09:32	05/11/16 09:32	CM

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

2

²Tc

Mark W. Beasley

Technical Service Representative

Sample Narrative

L832603-20 - Selenium was analyzed by ICP 6010 due to matrix interference by ICPMS 6020

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:15

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1750		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0490	J J6	0.0197	0.100	0.100	1	05/06/2016 15:53	WG870059

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	394		2.60	1.00	50.0	50	05/09/2016 19:07	WG870883
Fluoride	1.28		0.00990	0.100	0.100	1	05/09/2016 18:51	WG870883
Sulfate	0.323	<u>J</u>	0.0774	5.00	5.00	1	05/09/2016 18:51	WG870883

Qc

Metals (ICPMS) by Method 6020

ivietais (iCFIVIS) by it	VICTIOG 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0142		0.00125	0.00200	0.0100	5	05/05/2016 14:51	WG869319
Arsenic, Dissolved	0.0128		0.00125	0.00200	0.0100	5	05/11/2016 14:35	WG870082
Barium	3.42	\vee	0.00180	0.00500	0.0250	5	05/05/2016 14:51	WG869319
Barium, Dissolved	3.30		0.00180	0.00500	0.0250	5	05/11/2016 14:35	WG870082
Calcium	155	\vee	0.230	1.00	5.00	5	05/05/2016 14:51	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 14:51	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 14:35	WG870082
Iron	2.09		0.0750	0.100	0.500	5	05/05/2016 14:51	WG869319
Iron,Dissolved	2.03		0.0750	0.100	0.500	5	05/11/2016 14:35	WG870082
Lead	0.00124	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 14:51	WG869319
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 14:35	WG870082
Manganese	0.748	\vee	0.00125	0.00500	0.0250	5	05/05/2016 14:51	WG869319
Manganese, Dissolved	0.750		0.00125	0.00500	0.0250	5	05/11/2016 14:35	WG870082
Potassium	0.691	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 14:51	WG869319
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 14:51	WG869319
Selenium, Dissolved	0.00698	<u>J</u>	0.00190	0.00200	0.0100	5	05/11/2016 14:35	WG870082
Sodium	311	\vee	0.550	1.00	5.00	5	05/05/2016 14:51	WG869319

Gl

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	19.6		0.314	0.100	1.00	10	05/03/2016 10:48	WG869047
(S) a,a,a-Trifluorotoluene(FID)	90.5				62.0-128		05/03/2016 10:48	WG869047

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/05/2016 06:51	WG868995
Benzene	9.73		0.0331	0.00100	0.100	100	05/06/2016 14:29	WG870521
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Bromoform	U		0.00469	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Bromomethane	U		0.00866	0.00500	0.0500	10	05/05/2016 06:51	WG868995
n-Butylbenzene	0.00732	<u>J</u>	0.00361	0.00100	0.0100	10	05/05/2016 06:51	WG868995
sec-Butylbenzene	0.00821	<u>J</u>	0.00365	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Carbon disulfide	U		0.00275	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/05/2016 06:51	WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:15

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Chloroethane	U		0.00453	0.00500	0.0500	10	05/05/2016 06:51	WG868995
Chloroform	U		0.00324	0.00500	0.0500	10	05/05/2016 06:51	WG868995
Chloromethane	U		0.00276	0.00250	0.0250	10	05/05/2016 06:51	WG868995
,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 06:51	WG868995
is-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/05/2016 06:51	WG868995
rans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/05/2016 06:51	WG868995
is-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/05/2016 06:51	WG868995
rans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Ethylbenzene	0.288		0.00384	0.00100	0.0100	10	05/05/2016 06:51	WG868995
sopropylbenzene	0.0444		0.00326	0.00100	0.0100	10	05/05/2016 06:51	WG868995
-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/05/2016 06:51	WG868995
2-Butanone (MEK)	U		0.0393	0.0100	0.100	10	05/05/2016 06:51	WG868995
2-Hexanone	U		0.0382	0.0100	0.100	10	05/05/2016 06:51	WG868995
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/05/2016 06:51	WG868995
I-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/05/2016 06:51	WG868995
Methyl tert-butyl ether	3.71		0.0367	0.00100	0.100	100	05/06/2016 14:29	WG870521
laphthalene	0.155		0.0100	0.00500	0.0500	10	05/05/2016 06:51	WG868995
-Propylbenzene	0.0577		0.00349	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Styrene	U		0.00307	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/05/2016 06:51	WG868995
etrachloroethene	U		0.00372	0.00100	0.0100	10	05/05/2016 06:51	WG868995
oluene	0.0211	<u>J</u>	0.00780	0.00500	0.0500	10	05/05/2016 06:51	WG868995
,1,1-Trichloroethane	U		0.00319	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/05/2016 06:51	WG868995
richloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 06:51	WG868995
,2,4-Trimethylbenzene	0.0309		0.00373	0.00100	0.0100	10	05/05/2016 06:51	WG868995
3,5-Trimethylbenzene	0.0165		0.00387	0.00100	0.0100	10	05/05/2016 06:51	WG868995
/inyl chloride	U		0.00259	0.00100	0.0100	10	05/05/2016 06:51	WG868995
-Xylene	0.0149		0.00341	0.00100	0.0100	10	05/05/2016 06:51	WG868995
n&p-Xylene	0.0822		0.00719	0.00100	0.0100	10	05/05/2016 06:51	WG868995
Kylenes, Total	0.0971		0.0106	0.00300	0.0300	10	05/05/2016 06:51	WG868995
(S) Toluene-d8	102				90.0-115		05/05/2016 06:51	WG868995
(C) T / (C)								

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

<u>J1</u>

108

114

162

97.4

101

(S) Toluene-d8

(S) Dibromofluoromethane

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	10.6		0.124	0.100	0.500	5	05/05/2016 17:44	WG869610
(S) o-Terphenyl	135				50.0-150		05/05/2016 17:44	WG869610

90.0-115

79.0-121

79.0-121

80.1-120

80.1-120

WG870521

WG870521

WG868995

WG868995

WG870521

05/06/2016 14:29

05/06/2016 14:29

05/05/2016 06:51

05/05/2016 06:51

05/06/2016 14:29

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:00

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	399		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.495	J	0.197	0.100	1.00	10	05/09/2016 14:24	WG870062

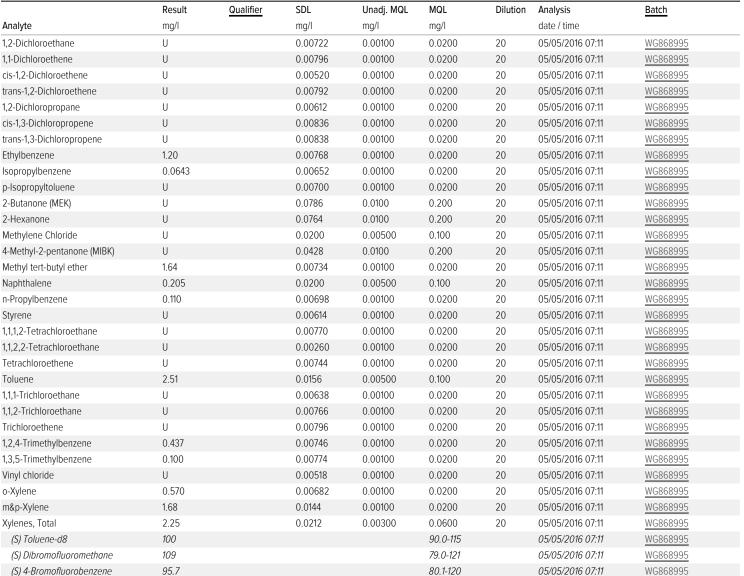
Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	262		2.60	1.00	50.0	50	05/09/2016 19:23	WG870883
Fluoride	0.564		0.00990	0.100	0.100	1	05/09/2016 20:11	WG870883
Sulfate	0.655	J	0.0774	5.00	5.00	1	05/09/2016 20:11	WG870883

Cn

Metals (ICPMS) by Method 6020

Wetals (ICI WIS) by N	victiloa 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00183	J	0.00125	0.00200	0.0100	5	05/05/2016 15:01	WG869319
Arsenic, Dissolved	0.00182	J	0.00125	0.00200	0.0100	5	05/11/2016 14:37	WG870082
Barium	0.0282		0.00180	0.00500	0.0250	5	05/05/2016 15:01	WG869319
Barium, Dissolved	0.0307		0.00180	0.00500	0.0250	5	05/11/2016 14:37	WG870082
Calcium	4.61	J	0.230	1.00	5.00	5	05/05/2016 15:01	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:01	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 14:37	WG870082
Iron	U		0.0750	0.100	0.500	5	05/05/2016 15:01	WG869319
Iron,Dissolved	0.146	J	0.0750	0.100	0.500	5	05/11/2016 14:37	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:01	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 14:37	WG870082
Manganese	0.0191	J	0.00125	0.00500	0.0250	5	05/05/2016 15:01	WG869319
Manganese, Dissolved	0.0193	J	0.00125	0.00500	0.0250	5	05/11/2016 14:37	WG870082
Potassium	0.364	J	0.185	1.00	5.00	5	05/05/2016 15:01	WG869319
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 15:01	WG869319
Selenium, Dissolved	0.00542	J	0.00190	0.00200	0.0100	5	05/11/2016 14:37	WG870082
Sodium	203		0.550	1.00	5.00	5	05/05/2016 15:01	WG869319


⁷Gl

°AI

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.200	0.0500	1.00	20	05/05/2016 07:11	WG868995
Benzene	3.48		0.00662	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Bromodichloromethane	U		0.00760	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Bromoform	U		0.00938	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Bromomethane	U		0.0173	0.00500	0.100	20	05/05/2016 07:11	WG868995
n-Butylbenzene	0.0117	<u>J</u>	0.00722	0.00100	0.0200	20	05/05/2016 07:11	WG868995
sec-Butylbenzene	0.0130	<u>J</u>	0.00730	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Carbon disulfide	U		0.00550	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Carbon tetrachloride	U		0.00758	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Chlorobenzene	U		0.00696	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Chlorodibromomethane	U		0.00654	0.00100	0.0200	20	05/05/2016 07:11	WG868995
Chloroethane	U		0.00906	0.00500	0.100	20	05/05/2016 07:11	WG868995
Chloroform	U		0.00648	0.00500	0.100	20	05/05/2016 07:11	WG868995
Chloromethane	U		0.00552	0.00250	0.0500	20	05/05/2016 07:11	WG868995
1,2-Dibromoethane	U		0.00762	0.00100	0.0200	20	05/05/2016 07:11	WG868995
1,1-Dichloroethane	U		0.00518	0.00100	0.0200	20	05/05/2016 07:11	WG868995

Collected date/time: 04/28/16 16:00

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	7.39		0.0247	0.100	0.100	1	05/05/2016 14:23	WG869610
(S) o-Terphenyl	125				50.0-150		05/05/2016 14:23	WG869610

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1530		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.339	J	0.197	0.100	1.00	10	05/09/2016 15:03	WG870062

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	245		2.60	1.00	50.0	50	05/09/2016 20:43	WG870883
Fluoride	0.901		0.00990	0.100	0.100	1	05/09/2016 20:27	WG870883
Sulfate	2.35	<u>J</u>	0.0774	5.00	5.00	1	05/09/2016 20:27	WG870883

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0117		0.00125	0.00200	0.0100	5	05/05/2016 15:03	WG869319
Arsenic,Dissolved	0.0109		0.00125	0.00200	0.0100	5	05/11/2016 14:39	WG870082
Barium	7.71		0.00180	0.00500	0.0250	5	05/05/2016 15:03	WG869319
Barium,Dissolved	7.68		0.00180	0.00500	0.0250	5	05/11/2016 14:39	WG870082
Calcium	127		0.230	1.00	5.00	5	05/05/2016 15:03	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:03	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 14:39	WG870082
Iron	0.222	J	0.0750	0.100	0.500	5	05/05/2016 15:03	WG869319
Iron,Dissolved	0.100	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 14:39	WG870082
Lead	0.00339	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:03	WG869319
Lead,Dissolved	0.00205	<u>J</u>	0.00120	0.00200	0.0100	5	05/11/2016 14:39	WG870082
Manganese	0.0308		0.00125	0.00500	0.0250	5	05/05/2016 15:03	WG869319
Manganese,Dissolved	0.0321		0.00125	0.00500	0.0250	5	05/11/2016 14:39	WG870082
Potassium	0.372	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:03	WG869319
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 15:03	WG869319
Selenium,Dissolved	0.00549	J	0.00190	0.00200	0.0100	5	05/11/2016 14:39	WG870082
Sodium	437		0.550	1.00	5.00	5	05/05/2016 15:03	WG869319

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	26.2		0.314	0.100	1.00	10	05/03/2016 11:09	WG869047
(S) a,a,a-Trifluorotoluene(FID)	89.5				62.0-128		05/03/2016 11:09	WG869047

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		1.00	0.0500	5.00	100	05/05/2016 07:31	WG868995
Benzene	10.8		0.0331	0.00100	0.100	100	05/05/2016 07:31	WG868995
Bromodichloromethane	U		0.0380	0.00100	0.100	100	05/05/2016 07:31	WG868995
Bromoform	U		0.0469	0.00100	0.100	100	05/05/2016 07:31	WG868995
Bromomethane	U		0.0866	0.00500	0.500	100	05/05/2016 07:31	WG868995
n-Butylbenzene	U		0.0361	0.00100	0.100	100	05/05/2016 07:31	WG868995
sec-Butylbenzene	U		0.0365	0.00100	0.100	100	05/05/2016 07:31	WG868995
Carbon disulfide	U		0.0275	0.00100	0.100	100	05/05/2016 07:31	WG868995
Carbon tetrachloride	U		0.0379	0.00100	0.100	100	05/05/2016 07:31	WG868995

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

WG868995

WG868995

WG868995

WG868995

WG868995

WG868995

WG868995 WG868995

WG868995

WG868995

WG868995

WG868995

Collected date/time: 04/28/16 16:45

Corrected date/time. 04/28/	10 10.45			L032003					
Volatile Organic Com	pounds (G0	C/MS) by Me	ethod 826	OB					
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l	·	mg/l	mg/l	mg/l		date / time	<u> </u>	
Chlorobenzene	U		0.0348	0.00100	0.100	100	05/05/2016 07:31	WG868995	2
Chlorodibromomethane	U		0.0327	0.00100	0.100	100	05/05/2016 07:31	WG868995	L
Chloroethane	U		0.0453	0.00500	0.500	100	05/05/2016 07:31	WG868995	3
Chloroform	U		0.0324	0.00500	0.500	100	05/05/2016 07:31	WG868995	3 5
Chloromethane	U		0.0276	0.00250	0.250	100	05/05/2016 07:31	WG868995	_
1,2-Dibromoethane	U		0.0381	0.00100	0.100	100	05/05/2016 07:31	WG868995	4
1,1-Dichloroethane	U		0.0259	0.00100	0.100	100	05/05/2016 07:31	WG868995	
1,2-Dichloroethane	U		0.0361	0.00100	0.100	100	05/05/2016 07:31	WG868995	5
1,1-Dichloroethene	U		0.0398	0.00100	0.100	100	05/05/2016 07:31	WG868995	5
cis-1,2-Dichloroethene	U		0.0260	0.00100	0.100	100	05/05/2016 07:31	WG868995	
trans-1,2-Dichloroethene	U		0.0396	0.00100	0.100	100	05/05/2016 07:31	WG868995	6
1,2-Dichloropropane	U		0.0306	0.00100	0.100	100	05/05/2016 07:31	WG868995	
cis-1,3-Dichloropropene	U		0.0418	0.00100	0.100	100	05/05/2016 07:31	WG868995	7
trans-1,3-Dichloropropene	U		0.0419	0.00100	0.100	100	05/05/2016 07:31	WG868995	
Ethylbenzene	0.858		0.0384	0.00100	0.100	100	05/05/2016 07:31	WG868995	<u> </u>
Isopropylbenzene	0.0503	<u>J</u>	0.0326	0.00100	0.100	100	05/05/2016 07:31	WG868995	8
p-Isopropyltoluene	U		0.0350	0.00100	0.100	100	05/05/2016 07:31	WG868995	
2-Butanone (MEK)	U		0.393	0.0100	1.00	100	05/05/2016 07:31	WG868995	9
2-Hexanone	U		0.382	0.0100	1.00	100	05/05/2016 07:31	WG868995	95
Methylene Chloride	U		0.100	0.00500	0.500	100	05/05/2016 07:31	WG868995	
4-Methyl-2-pentanone (MIBK)	U		0.214	0.0100	1.00	100	05/05/2016 07:31	WG868995	
Methyl tert-butyl ether	2.07		0.0367	0.00100	0.100	100	05/05/2016 07:31	WG868995	
Naphthalene	0.278	<u>J</u>	0.100	0.00500	0.500	100	05/05/2016 07:31	WG868995	
n-Propylbenzene	0.0846	<u>J</u>	0.0349	0.00100	0.100	100	05/05/2016 07:31	WG868995	
Styrene	U		0.0307	0.00100	0.100	100	05/05/2016 07:31	WG868995	
1,1,1,2-Tetrachloroethane	U		0.0385	0.00100	0.100	100	05/05/2016 07:31	WG868995	
1,1,2,2-Tetrachloroethane	U		0.0130	0.00100	0.100	100	05/05/2016 07:31	WG868995	
Tetrachloroethene	U		0.0372	0.00100	0.100	100	05/05/2016 07:31	WG868995	
Toluene	0.541		0.0780	0.00500	0.500	100	05/05/2016 07:31	WG868995	

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.100

0.300

90.0-115

79.0-121

80.1-120

100

100

100

100

100

100

100

100

100

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

05/05/2016 07:31

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

U

U

0.402

0.110

0.0881

0.544

0.632

100

106

97.4

U

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	9.69		0.0247	0.100	0.100	1	05/05/2016 14:41	WG869610
(S) o-Terphenyl	108				50.0-150		05/05/2016 14:41	WG869610

0.0319

0.0383

0.0398

0.0373

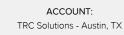
0.0387

0.0259

0.0341

0.0719

0.106



ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 17:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1470		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.485	<u>J P1</u>	0.197	0.100	1.00	10	05/09/2016 15:04	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	405		2.60	1.00	50.0	50	05/09/2016 21:14	WG870883
Fluoride	0.747		0.00990	0.100	0.100	1	05/09/2016 20:58	WG870883
Sulfate	104		0.387	5.00	25.0	5	05/10/2016 22:56	WG871228

Cn

Metals (ICPMS) by Method 6020

Metals (ICFMS) by Method 6020										
	Result	<u>Qualifier</u>	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.0712		0.00125	0.00200	0.0100	5	05/05/2016 15:05	WG869319		
Arsenic, Dissolved	0.0615		0.00125	0.00200	0.0100	5	05/11/2016 14:49	WG870082		
Barium	0.480		0.00180	0.00500	0.0250	5	05/05/2016 15:05	WG869319		
Barium, Dissolved	0.384		0.00180	0.00500	0.0250	5	05/11/2016 14:49	WG870082		
Calcium	191		0.230	1.00	5.00	5	05/05/2016 15:05	WG869319		
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:05	WG869319		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 14:49	WG870082		
Iron	3.70		0.0750	0.100	0.500	5	05/05/2016 15:05	WG869319		
Iron,Dissolved	3.37		0.0750	0.100	0.500	5	05/11/2016 14:49	WG870082		
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:05	WG869319		
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 14:49	WG870082		
Manganese	0.553		0.00125	0.00500	0.0250	5	05/05/2016 15:05	WG869319		
Manganese, Dissolved	0.537		0.00125	0.00500	0.0250	5	05/11/2016 14:49	WG870082		
Potassium	0.356	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:05	WG869319		
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 15:05	WG869319		
Selenium, Dissolved	0.00213	<u>J</u>	0.00190	0.00200	0.0100	5	05/11/2016 14:49	WG870082		
Sodium	226		0.550	1.00	5.00	5	05/05/2016 15:05	WG869319		

Qc

Αl

Gl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 07:51	WG868995
Benzene	0.218		0.00828	0.00100	0.0250	25	05/06/2016 14:53	WG870521
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 07:51	WG868995
n-Butylbenzene	0.00138		0.000361	0.00100	0.00100	1	05/05/2016 07:51	WG868995
sec-Butylbenzene	0.00590		0.000365	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 07:51	WG868995
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 07:51	WG868995
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 07:51	WG868995
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 07:51	WG868995

0

Collected date/time: 04/28/16 17:40

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LA	AB. NA	NOITA	WIDE.	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:51	WG868995
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 07:51	WG868995
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 07:51	WG868995
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 07:51	WG868995
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Ethylbenzene	0.00474		0.000384	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Isopropylbenzene	0.00797		0.000326	0.00100	0.00100	1	05/05/2016 07:51	WG868995
p-Isopropyltoluene	0.000401	<u>J</u>	0.000350	0.00100	0.00100	1	05/05/2016 07:51	WG868995
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 07:51	WG868995
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 07:51	WG868995
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 07:51	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 07:51	WG868995
Methyl tert-butyl ether	2.68		0.00918	0.00100	0.0250	25	05/06/2016 14:53	WG870521
Naphthalene	0.00574		0.00100	0.00500	0.00500	1	05/05/2016 07:51	WG868995
n-Propylbenzene	0.00731		0.000349	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Toluene	0.00683		0.000780	0.00500	0.00500	1	05/05/2016 07:51	WG868995
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,2,4-Trimethylbenzene	0.00555		0.000373	0.00100	0.00100	1	05/05/2016 07:51	WG868995
1,3,5-Trimethylbenzene	0.00111		0.000387	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 07:51	WG868995
o-Xylene	0.00275		0.000341	0.00100	0.00100	1	05/05/2016 07:51	WG868995
m&p-Xylene	0.00472		0.000719	0.00100	0.00100	1	05/05/2016 07:51	WG868995
Xylenes, Total	0.00747		0.00106	0.00300	0.00300	1	05/05/2016 07:51	WG868995
(S) Toluene-d8	102				90.0-115		05/05/2016 07:51	WG868995
(S) Toluene-d8	106				90.0-115		05/06/2016 14:53	WG870521
(S) Dibromofluoromethane	113				79.0-121		05/06/2016 14:53	WG870521
(S) Dibromofluoromethane	111				79.0-121		05/05/2016 07:51	WG868995
(S) 4-Bromofluorobenzene	97.7				80.1-120		05/05/2016 07:51	WG868995
(S) 4-Bromofluorobenzene	102				80.1-120		05/06/2016 14:53	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	4.20		0.0247	0.100	0.100	1	05/05/2016 14:59	WG869610
(S) o-Terphenyl	109				50.0-150		05/05/2016 14:59	WG869610

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 18:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1810		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.346	J	0.197	0.100	1.00	10	05/09/2016 15:06	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	351		2.60	1.00	50.0	50	05/09/2016 21:46	WG870883
Fluoride	1.06		0.00990	0.100	0.100	1	05/09/2016 21:30	WG870883
Sulfate	470		3.87	5.00	250	50	05/09/2016 21:46	WG870883

Metals (ICPMS) by Method 6020

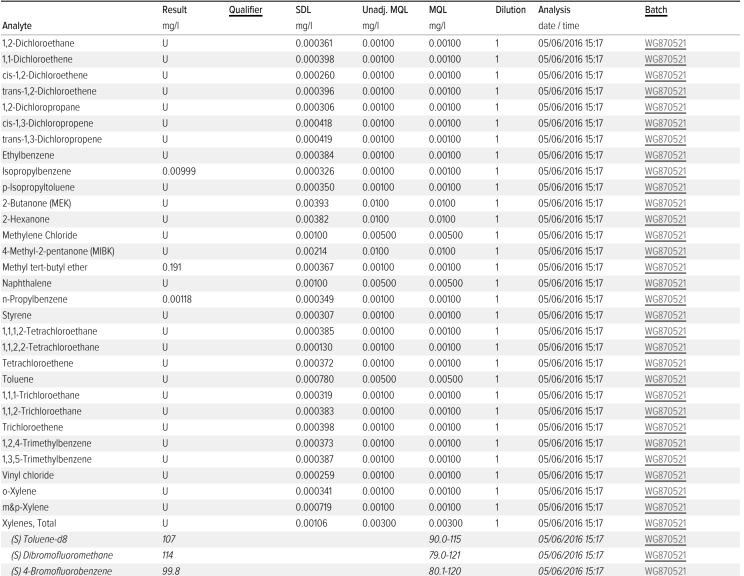
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00440	J	0.00125	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Arsenic,Dissolved	0.00323	J	0.00125	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Barium	0.0623		0.00180	0.00500	0.0250	5	05/05/2016 15:13	WG869319
Barium,Dissolved	0.0564		0.00180	0.00500	0.0250	5	05/11/2016 15:43	WG870082
Calcium	207		0.230	1.00	5.00	5	05/05/2016 15:13	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Iron	0.181	J	0.0750	0.100	0.500	5	05/05/2016 15:13	WG869319
Iron,Dissolved	0.119	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:43	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Manganese	0.0728		0.00125	0.00500	0.0250	5	05/05/2016 15:13	WG869319
Manganese,Dissolved	0.0702		0.00125	0.00500	0.0250	5	05/11/2016 15:43	WG870082
Potassium	2.00	J	0.185	1.00	5.00	5	05/05/2016 15:13	WG869319
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Selenium,Dissolved	0.00236	J	0.00190	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Sodium	290		0.550	1.00	5.00	5	05/05/2016 15:13	WG869319

Gl

Αl

Qc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00440	<u>J</u>	0.00125	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Arsenic, Dissolved	0.00323	<u>J</u>	0.00125	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Barium	0.0623		0.00180	0.00500	0.0250	5	05/05/2016 15:13	WG869319
Barium, Dissolved	0.0564		0.00180	0.00500	0.0250	5	05/11/2016 15:43	WG870082
Calcium	207		0.230	1.00	5.00	5	05/05/2016 15:13	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Iron	0.181	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 15:13	WG869319
Iron,Dissolved	0.119	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:43	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Manganese	0.0728		0.00125	0.00500	0.0250	5	05/05/2016 15:13	WG869319
Manganese, Dissolved	0.0702		0.00125	0.00500	0.0250	5	05/11/2016 15:43	WG870082
Potassium	2.00	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:13	WG869319
Selenium	U		0.00190	0.00200	0.0100	5	05/05/2016 15:13	WG869319
Selenium, Dissolved	0.00236	J	0.00190	0.00200	0.0100	5	05/11/2016 15:43	WG870082
Sodium	290		0.550	1.00	5.00	5	05/05/2016 15:13	WG869319


Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/06/2016 15:17	WG870521
Benzene	0.0140		0.000331	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Bromoform	U		0.000469	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Bromomethane	U		0.000866	0.00500	0.00500	1	05/06/2016 15:17	WG870521
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/06/2016 15:17	WG870521
sec-Butylbenzene	0.00269		0.000365	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Carbon disulfide	0.000466	<u>J</u>	0.000275	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/06/2016 15:17	WG870521
Chloroethane	U		0.000453	0.00500	0.00500	1	05/06/2016 15:17	WG870521
Chloroform	U		0.000324	0.00500	0.00500	1	05/06/2016 15:17	WG870521
Chloromethane	U		0.000276	0.00250	0.00250	1	05/06/2016 15:17	WG870521
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/06/2016 15:17	WG870521
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/06/2016 15:17	WG870521

Collected date/time: 04/28/16 18:30

Volatile Organic Compounds (GC/MS) by Method 8260B

ONF	IAR	NATIONWIDE.	
	LAD.	NATION VIDE.	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.03		0.0247	0.100	0.100	1	05/05/2016 15:18	WG869610
(S) o-Terphenyl	114				50.0-150		05/05/2016 15:18	WG869610

PAGE:

26 of 187

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 17:40

832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3810		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.281	J	0.197	0.100	1.00	10	05/09/2016 15:07	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	430		2.60	1.00	50.0	50	05/09/2016 22:18	WG870883
Fluoride	2.09		0.00990	0.100	0.100	1	05/09/2016 22:02	WG870883
Sulfate	2200		3.87	5.00	250	50	05/09/2016 22:18	WG870883

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00552	J	0.00125	0.00200	0.0100	5	05/05/2016 15:15	WG869319
Arsenic,Dissolved	0.00883	J	0.00125	0.00200	0.0100	5	05/11/2016 15:45	WG870082
Barium	0.171		0.00180	0.00500	0.0250	5	05/05/2016 15:15	WG869319
Barium,Dissolved	0.0206	<u>J</u>	0.00180	0.00500	0.0250	5	05/11/2016 15:45	WG870082
Calcium	875		0.230	1.00	5.00	5	05/05/2016 15:15	WG869319
Chromium	0.00750	J	0.00270	0.00200	0.0100	5	05/05/2016 15:15	WG869319
Chromium, Dissolved	0.00400	ВJ	0.00270	0.00200	0.0100	5	05/11/2016 15:45	WG870082
Iron	2.25		0.0750	0.100	0.500	5	05/05/2016 15:15	WG869319
Iron,Dissolved	0.770		0.0750	0.100	0.500	5	05/11/2016 15:45	WG870082
Lead	0.0153		0.00120	0.00200	0.0100	5	05/05/2016 15:15	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:45	WG870082
Manganese	0.0705		0.00125	0.00500	0.0250	5	05/05/2016 15:15	WG869319
Manganese,Dissolved	0.0466		0.00125	0.00500	0.0250	5	05/11/2016 15:45	WG870082
Potassium	5.80		0.185	1.00	5.00	5	05/05/2016 15:15	WG869319
Selenium	0.422		0.00190	0.00200	0.0100	5	05/05/2016 15:15	WG869319
Selenium,Dissolved	0.00516	J	0.00190	0.00200	0.0100	5	05/11/2016 15:45	WG870082
Sodium	396		0.550	1.00	5.00	5	05/05/2016 15:15	WG869319

⁷Gl

Al 9

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	20.8		0.785	0.100	2.50	25	05/03/2016 11:30	WG869047
(S) a,a,a-Trifluorotoluene(FID)	92.7				62.0-128		05/03/2016 11:30	WG869047

⁹Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.500	0.0500	2.50	50	05/06/2016 15:42	WG870521
Benzene	5.86		0.0166	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Bromodichloromethane	U		0.0190	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Bromoform	U		0.0234	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Bromomethane	U		0.0433	0.00500	0.250	50	05/06/2016 15:42	WG870521
n-Butylbenzene	U		0.0180	0.00100	0.0500	50	05/06/2016 15:42	WG870521
sec-Butylbenzene	U		0.0182	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Carbon disulfide	0.0186	<u>J</u>	0.0138	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Carbon tetrachloride	U		0.0190	0.00100	0.0500	50	05/06/2016 15:42	WG870521

Collected date/time: 04/28/16 17:40

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.

Ss

Cn

СС

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.0174	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Chlorodibromomethane	U		0.0164	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Chloroethane	U		0.0226	0.00500	0.250	50	05/06/2016 15:42	WG870521
Chloroform	U		0.0162	0.00500	0.250	50	05/06/2016 15:42	WG870521
Chloromethane	U		0.0138	0.00250	0.125	50	05/06/2016 15:42	WG870521
1,2-Dibromoethane	U		0.0190	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,1-Dichloroethane	U		0.0130	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,2-Dichloroethane	U		0.0180	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,1-Dichloroethene	U		0.0199	0.00100	0.0500	50	05/06/2016 15:42	WG870521
cis-1,2-Dichloroethene	0.555		0.0130	0.00100	0.0500	50	05/06/2016 15:42	WG870521
trans-1,2-Dichloroethene	U		0.0198	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,2-Dichloropropane	U		0.0153	0.00100	0.0500	50	05/06/2016 15:42	WG870521
cis-1,3-Dichloropropene	U		0.0209	0.00100	0.0500	50	05/06/2016 15:42	WG870521
trans-1,3-Dichloropropene	U		0.0210	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Ethylbenzene	0.591		0.0192	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Isopropylbenzene	0.0332	<u>J</u>	0.0163	0.00100	0.0500	50	05/06/2016 15:42	WG870521
p-Isopropyltoluene	U		0.0175	0.00100	0.0500	50	05/06/2016 15:42	WG870521
2-Butanone (MEK)	U		0.196	0.0100	0.500	50	05/06/2016 15:42	WG870521
2-Hexanone	U		0.191	0.0100	0.500	50	05/06/2016 15:42	WG870521
Methylene Chloride	U		0.0500	0.00500	0.250	50	05/06/2016 15:42	WG870521
4-Methyl-2-pentanone (MIBK)	U		0.107	0.0100	0.500	50	05/06/2016 15:42	WG870521
Methyl tert-butyl ether	0.0226	<u>J</u>	0.0184	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Naphthalene	0.145	Ţ	0.0500	0.00500	0.250	50	05/06/2016 15:42	WG870521
n-Propylbenzene	0.0412	J	0.0174	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Styrene	U		0.0154	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,1,1,2-Tetrachloroethane	U		0.0192	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,1,2,2-Tetrachloroethane	U		0.00650	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Tetrachloroethene	U		0.0186	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Toluene	0.0569	<u>J</u>	0.0390	0.00500	0.250	50	05/06/2016 15:42	WG870521
1,1,1-Trichloroethane	U	_	0.0160	0.00100	0.0500	50	05/06/2016 15:42	WG870521
I,1,2-Trichloroethane	U		0.0192	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Trichloroethene	0.0285	<u>J</u>	0.0199	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,2,4-Trimethylbenzene	0.188	_	0.0186	0.00100	0.0500	50	05/06/2016 15:42	WG870521
1,3,5-Trimethylbenzene	0.0419	<u>J</u>	0.0194	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Vinyl chloride	U	_	0.0130	0.00100	0.0500	50	05/06/2016 15:42	WG870521
o-Xylene	0.0461	<u>J</u>	0.0170	0.00100	0.0500	50	05/06/2016 15:42	WG870521
m&p-Xylene	0.253	_	0.0360	0.00100	0.0500	50	05/06/2016 15:42	WG870521
Kylenes, Total	0.299		0.0530	0.00300	0.150	50	05/06/2016 15:42	WG870521
(S) Toluene-d8	108				90.0-115		05/06/2016 15:42	WG870521
(S) Dibromofluoromethane	114				79.0-121		05/06/2016 15:42	WG870521
(S) 4-Bromofluorobenzene	99.1				80.1-120		05/06/2016 15:42	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	17.3		0.124	0.100	0.500	5	05/06/2016 04:25	WG869610
(S) o-Terphenyl	152	<u>J1</u>			50.0-150		05/06/2016 04:25	WG869610

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3830		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.322	J	0.197	0.100	1.00	10	05/09/2016 14:35	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	276		2.60	1.00	50.0	50	05/09/2016 23:22	WG870883
Fluoride	1.92		0.00990	0.100	0.100	1	05/09/2016 23:06	WG870883
Sulfate	1850		3.87	5.00	250	50	05/09/2016 23:22	WG870883

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00321	J	0.00125	0.00200	0.0100	5	05/05/2016 15:44	WG869319
Arsenic, Dissolved	0.00286	<u>J</u>	0.00125	0.00200	0.0100	5	05/11/2016 15:47	WG870082
Barium	0.0390		0.00180	0.00500	0.0250	5	05/05/2016 15:44	WG869319
Barium, Dissolved	0.0329		0.00180	0.00500	0.0250	5	05/11/2016 15:47	WG870082
Calcium	481		0.230	1.00	5.00	5	05/05/2016 15:44	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:44	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:47	WG870082
Iron	U		0.0750	0.100	0.500	5	05/05/2016 15:44	WG869319
Iron,Dissolved	0.152	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:47	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:44	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:47	WG870082
Manganese	U		0.00125	0.00500	0.0250	5	05/05/2016 15:44	WG869319
Manganese,Dissolved	0.00388	ВJ	0.00125	0.00500	0.0250	5	05/11/2016 15:47	WG870082
Potassium	1.42	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:44	WG869319
Selenium	0.00935	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 15:44	WG869319
Selenium,Dissolved	0.00392	Ţ	0.00190	0.00200	0.0100	5	05/11/2016 15:47	WG870082
Sodium	456		0.550	1.00	5.00	5	05/05/2016 15:44	WG869319

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	7.81		0.785	0.100	2.50	25	05/03/2016 11:50	WG869047
(S) a,a,a-Trifluorotoluene(FID)	96.5				62.0-128		05/03/2016 11:50	WG869047

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.250	0.0500	1.25	25	05/06/2016 16:06	WG870521
Benzene	1.12		0.00828	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Bromodichloromethane	U		0.00950	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Bromoform	U		0.0117	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Bromomethane	U		0.0216	0.00500	0.125	25	05/06/2016 16:06	WG870521
n-Butylbenzene	U		0.00902	0.00100	0.0250	25	05/06/2016 16:06	WG870521
sec-Butylbenzene	U		0.00912	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Carbon disulfide	0.00903	J	0.00688	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Carbon tetrachloride	U		0.00948	0.00100	0.0250	25	05/06/2016 16:06	WG870521

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

SAMPLE RESULTS - 07

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:50

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/I		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00870	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Chlorodibromomethane	U		0.00818	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Chloroethane	U		0.0113	0.00500	0.125	25	05/06/2016 16:06	WG870521
Chloroform	U		0.00810	0.00500	0.125	25	05/06/2016 16:06	WG870521
Chloromethane	U		0.00690	0.00250	0.0625	25	05/06/2016 16:06	WG870521
I,2-Dibromoethane	U		0.00952	0.00100	0.0250	25	05/06/2016 16:06	WG870521
I,1-Dichloroethane	U		0.00648	0.00100	0.0250	25	05/06/2016 16:06	WG870521
1,2-Dichloroethane	U		0.00902	0.00100	0.0250	25	05/06/2016 16:06	WG870521
I,1-Dichloroethene	U		0.00995	0.00100	0.0250	25	05/06/2016 16:06	WG870521
cis-1,2-Dichloroethene	U		0.00650	0.00100	0.0250	25	05/06/2016 16:06	WG870521
rans-1,2-Dichloroethene	U		0.00990	0.00100	0.0250	25	05/06/2016 16:06	WG870521
,2-Dichloropropane	U		0.00765	0.00100	0.0250	25	05/06/2016 16:06	WG870521
is-1,3-Dichloropropene	U		0.0104	0.00100	0.0250	25	05/06/2016 16:06	WG870521
rans-1,3-Dichloropropene	U		0.0105	0.00100	0.0250	25	05/06/2016 16:06	WG870521
thylbenzene	0.356		0.00960	0.00100	0.0250	25	05/06/2016 16:06	WG870521
sopropylbenzene	0.0729		0.00815	0.00100	0.0250	25	05/06/2016 16:06	WG870521
o-Isopropyltoluene	U		0.00875	0.00100	0.0250	25	05/06/2016 16:06	WG870521
?-Butanone (MEK)	U		0.0982	0.0100	0.250	25	05/06/2016 16:06	WG870521
?-Hexanone	U		0.0955	0.0100	0.250	25	05/06/2016 16:06	WG870521
Methylene Chloride	U		0.0250	0.00500	0.125	25	05/06/2016 16:06	WG870521
l-Methyl-2-pentanone (MIBK)	U		0.0535	0.0100	0.250	25	05/06/2016 16:06	WG870521
Methyl tert-butyl ether	U		0.00918	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Naphthalene	0.236		0.0250	0.00500	0.125	25	05/06/2016 16:06	WG870521
n-Propylbenzene	0.132		0.00872	0.00100	0.0250	25	05/06/2016 16:06	WG870521
Styrene	U		0.00768	0.00100	0.0250	25	05/06/2016 16:06	WG870521
,1,1,2-Tetrachloroethane	U		0.00962	0.00100	0.0250	25	05/06/2016 16:06	WG870521
,1,2,2-Tetrachloroethane	U		0.00325	0.00100	0.0250	25	05/06/2016 16:06	WG870521
etrachloroethene	U		0.00930	0.00100	0.0250	25	05/06/2016 16:06	WG870521
oluene	U		0.0195	0.00500	0.125	25	05/06/2016 16:06	WG870521
,1,1-Trichloroethane	U		0.00798	0.00100	0.0250	25	05/06/2016 16:06	WG870521
,1,2-Trichloroethane	U		0.00958	0.00100	0.0250	25	05/06/2016 16:06	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

0.502

0.114

U

U

1.80

1.80

107

113

103

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	7.54		0.0247	0.100	0.100	1	05/05/2016 15:36	WG869610
(S) o-Terphenyl	130				50.0-150		05/05/2016 15:36	WG869610

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.0250

0.0250

0.0250

0.0250

0.0250

0.0250

0.0750

90.0-115

79.0-121

80.1-120

25

25

25

25

25

25

25

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

05/06/2016 16:06

WG870521

WG870521

WG870521

WG870521

WG870521

WG870521

WG870521

WG870521

WG870521 WG870521

0.00995

0.00932

0.00968

0.00648

0.00852

0.0180

0.0265

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:55

832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4820		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.270	J	0.197	0.100	1.00	10	05/09/2016 14:36	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1010		2.60	1.00	50.0	50	05/09/2016 23:52	WG870883
Fluoride	2.27		0.00990	0.100	0.100	1	05/09/2016 23:37	WG870883
Sulfate	747		3.87	5.00	250	50	05/09/2016 23:52	WG870883

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:32	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:36	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:43	WG869207

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0106		0.00125	0.00200	0.0100	5	05/05/2016 15:20	WG869319
Arsenic, Dissolved	0.0128		0.00125	0.00200	0.0100	5	05/11/2016 15:50	WG870082
Barium	0.251		0.00180	0.00500	0.0250	5	05/05/2016 15:20	WG869319
Barium, Dissolved	0.0745		0.00180	0.00500	0.0250	5	05/11/2016 15:50	WG870082
Boron	1.78		0.0150	0.0200	0.200	10	05/07/2016 09:57	WG870589
Boron, Dissolved	1.65		0.0150	0.0200	0.200	10	05/09/2016 11:53	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/05/2016 15:20	WG869319
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/11/2016 15:50	WG870082
Calcium	178		0.230	1.00	5.00	5	05/05/2016 15:20	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:20	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:50	WG870082
Cobalt	U		0.00130	0.00200	0.0100	5	05/05/2016 15:20	WG869319
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/11/2016 15:50	WG870082
Iron	0.163	J	0.0750	0.100	0.500	5	05/05/2016 15:20	WG869319
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 15:50	WG870082
Lead	0.00151	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:20	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:50	WG870082
Manganese	0.274		0.00125	0.00500	0.0250	5	05/05/2016 15:20	WG869319
Manganese, Dissolved	0.290		0.00125	0.00500	0.0250	5	05/11/2016 15:50	WG870082
Nickel	0.00625	<u>J</u>	0.00350	0.00200	0.0200	10	05/07/2016 09:57	WG870589
Nickel, Dissolved	0.00561	<u>B J</u>	0.00175	0.00200	0.0100	5	05/11/2016 15:50	WG870082
Potassium	0.956	J	0.185	1.00	5.00	5	05/05/2016 15:20	WG869319
Selenium	0.205		0.00190	0.00200	0.0100	5	05/05/2016 15:20	WG869319
Selenium, Dissolved	0.00670	J	0.00190	0.00200	0.0100	5	05/11/2016 15:50	WG870082
Sodium	812		0.550	1.00	5.00	5	05/05/2016 15:20	WG869319

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:55

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	U		0.00165	0.0100	0.0500	5	05/05/2016 15:20	WG869319
Uranium, Dissolved	U		0.00165	0.0100	0.0500	5	05/11/2016 15:50	WG870082
Vanadium	0.00455	<u>J</u>	0.000900	0.00500	0.0250	5	05/05/2016 15:20	WG869319
Vanadium, Dissolved	0.00283	<u>J</u>	0.000900	0.00500	0.0250	5	05/11/2016 15:50	WG870082

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	31.6		1.57	0.100	5.00	50	05/03/2016 12:11	WG869047
(S) a,a,a-Trifluorotoluene(FID)	95.8				62.0-128		05/03/2016 12:11	WG869047

Gl

Αl

Sc

PAGE:

32 of 187

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		2.50	0.0500	12.5	250	05/05/2016 09:10	WG868995
Benzene	12.4		0.0828	0.00100	0.250	250	05/05/2016 09:10	WG868995
Bromodichloromethane	U		0.0950	0.00100	0.250	250	05/05/2016 09:10	WG868995
Bromoform	U		0.117	0.00100	0.250	250	05/05/2016 09:10	WG868995
Bromomethane	U		0.216	0.00500	1.25	250	05/05/2016 09:10	WG868995
n-Butylbenzene	U		0.0902	0.00100	0.250	250	05/05/2016 09:10	WG868995
sec-Butylbenzene	U		0.0912	0.00100	0.250	250	05/05/2016 09:10	WG868995
Carbon disulfide	U		0.0688	0.00100	0.250	250	05/05/2016 09:10	WG868995
Carbon tetrachloride	U		0.0948	0.00100	0.250	250	05/05/2016 09:10	WG868995
Chlorobenzene	U		0.0870	0.00100	0.250	250	05/05/2016 09:10	WG868995
Chlorodibromomethane	U		0.0818	0.00100	0.250	250	05/05/2016 09:10	WG868995
Chloroethane	U		0.113	0.00500	1.25	250	05/05/2016 09:10	WG868995
Chloroform	U		0.0810	0.00500	1.25	250	05/05/2016 09:10	WG868995
Chloromethane	U		0.0690	0.00250	0.625	250	05/05/2016 09:10	WG868995
I,2-Dibromoethane	U		0.0952	0.00100	0.250	250	05/05/2016 09:10	WG868995
,1-Dichloroethane	U		0.0648	0.00100	0.250	250	05/05/2016 09:10	WG868995
,2-Dichloroethane	U		0.0902	0.00100	0.250	250	05/05/2016 09:10	WG868995
,1-Dichloroethene	U		0.0995	0.00100	0.250	250	05/05/2016 09:10	WG868995
cis-1,2-Dichloroethene	U		0.0650	0.00100	0.250	250	05/05/2016 09:10	WG868995
rans-1,2-Dichloroethene	U		0.0990	0.00100	0.250	250	05/05/2016 09:10	WG868995
,2-Dichloropropane	U		0.0765	0.00100	0.250	250	05/05/2016 09:10	WG868995
cis-1,3-Dichloropropene	U		0.104	0.00100	0.250	250	05/05/2016 09:10	WG868995
rans-1,3-Dichloropropene	U		0.105	0.00100	0.250	250	05/05/2016 09:10	WG868995
Ethylbenzene	0.968		0.0960	0.00100	0.250	250	05/05/2016 09:10	WG868995
sopropylbenzene	U		0.0815	0.00100	0.250	250	05/05/2016 09:10	WG868995
o-Isopropyltoluene	U		0.0875	0.00100	0.250	250	05/05/2016 09:10	WG868995
2-Butanone (MEK)	U		0.982	0.0100	2.50	250	05/05/2016 09:10	WG868995
2-Hexanone	U		0.955	0.0100	2.50	250	05/05/2016 09:10	WG868995
Methylene Chloride	U		0.250	0.00500	1.25	250	05/05/2016 09:10	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.535	0.0100	2.50	250	05/05/2016 09:10	WG868995
Methyl tert-butyl ether	U		0.0918	0.00100	0.250	250	05/05/2016 09:10	WG868995
Naphthalene	U		0.250	0.00500	1.25	250	05/05/2016 09:10	WG868995
n-Propylbenzene	0.110	J	0.0872	0.00100	0.250	250	05/05/2016 09:10	WG868995
Styrene	U		0.0768	0.00100	0.250	250	05/05/2016 09:10	WG868995
I,1,1,2-Tetrachloroethane	U		0.0962	0.00100	0.250	250	05/05/2016 09:10	WG868995
1,1,2,2-Tetrachloroethane	U		0.0325	0.00100	0.250	250	05/05/2016 09:10	WG868995
Tetrachloroethene	U		0.0930	0.00100	0.250	250	05/05/2016 09:10	WG868995
Toluene	1.66		0.195	0.00500	1.25	250	05/05/2016 09:10	WG868995
1,1,1-Trichloroethane	U		0.0798	0.00100	0.250	250	05/05/2016 09:10	WG868995
1,1,2-Trichloroethane	U		0.0958	0.00100	0.250	250	05/05/2016 09:10	WG868995
Trichloroethene	U		0.0995	0.00100	0.250	250	05/05/2016 09:10	WG868995

MW-43

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:55

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	0.502		0.0932	0.00100	0.250	250	05/05/2016 09:10	WG868995
1,3,5-Trimethylbenzene	0.112	<u>J</u>	0.0968	0.00100	0.250	250	05/05/2016 09:10	WG868995
Vinyl chloride	U		0.0648	0.00100	0.250	250	05/05/2016 09:10	WG868995
o-Xylene	0.626		0.0852	0.00100	0.250	250	05/05/2016 09:10	WG868995
m&p-Xylene	1.23		0.180	0.00100	0.250	250	05/05/2016 09:10	WG868995
Xylenes, Total	1.86		0.265	0.00300	0.750	250	05/05/2016 09:10	WG868995
(S) Toluene-d8	100				90.0-115		05/05/2016 09:10	WG868995
(S) Dibromofluoromethane	105				79.0-121		05/05/2016 09:10	WG868995
(S) 4-Bromofluorobenzene	98.2				80.1-120		05/05/2016 09:10	WG868995

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	6.24		0.0247	0.100	0.100	1	05/05/2016 15:54	WG869610
(S) o-Terphenyl	102				50.0-150		05/05/2016 15:54	WG869610

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:10

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3330		2.82	10.0	10.0	1	05/05/2016 04:07	WG869820	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.21		0.197	0.100	1.00	10	05/09/2016 14:37	WG870062

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	159		2.60	1.00	50.0	50	05/10/2016 23:54	WG871228
Fluoride	4.28		0.00990	0.100	0.100	1	05/10/2016 23:39	WG871228
Sulfate	2040		3.87	5.00	250	50	05/10/2016 23:54	WG871228

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00175	J	0.00125	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Arsenic, Dissolved	U		0.00125	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Barium	0.0372		0.00180	0.00500	0.0250	5	05/05/2016 15:22	WG869319
Barium, Dissolved	0.0324		0.00180	0.00500	0.0250	5	05/11/2016 15:52	WG870082
Calcium	638		0.230	1.00	5.00	5	05/05/2016 15:22	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Iron	1.27		0.0750	0.100	0.500	5	05/05/2016 15:22	WG869319
Iron,Dissolved	0.0776	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:52	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Manganese	0.266		0.00125	0.00500	0.0250	5	05/05/2016 15:22	WG869319
Manganese, Dissolved	0.237		0.00125	0.00500	0.0250	5	05/11/2016 15:52	WG870082
Potassium	13.2		0.185	1.00	5.00	5	05/05/2016 15:22	WG869319
Selenium	0.0404		0.00190	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Selenium, Dissolved	0.0121		0.00190	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Sodium	176		0.550	1.00	5.00	5	05/05/2016 15:22	WG869319

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00175	J	0.00125	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Arsenic, Dissolved	U		0.00125	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Barium	0.0372		0.00180	0.00500	0.0250	5	05/05/2016 15:22	WG869319
Barium, Dissolved	0.0324		0.00180	0.00500	0.0250	5	05/11/2016 15:52	WG870082
Calcium	638		0.230	1.00	5.00	5	05/05/2016 15:22	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Iron	1.27		0.0750	0.100	0.500	5	05/05/2016 15:22	WG869319
Iron,Dissolved	0.0776	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:52	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Manganese	0.266		0.00125	0.00500	0.0250	5	05/05/2016 15:22	WG869319
Manganese, Dissolved	0.237		0.00125	0.00500	0.0250	5	05/11/2016 15:52	WG870082
Potassium	13.2		0.185	1.00	5.00	5	05/05/2016 15:22	WG869319
Selenium	0.0404		0.00190	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Selenium, Dissolved	0.0121		0.00190	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Sodium	176		0.550	1.00	5.00	5	05/05/2016 15:22	WG869319

Qc

Gl

Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Iron	1.27		0.0750	0.100	0.500	5	05/05/2016 15:22	WG869319
Iron,Dissolved	0.0776	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:52	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Manganese	0.266		0.00125	0.00500	0.0250	5	05/05/2016 15:22	WG869319
Manganese, Dissolved	0.237		0.00125	0.00500	0.0250	5	05/11/2016 15:52	WG870082
Potassium	13.2		0.185	1.00	5.00	5	05/05/2016 15:22	WG869319
Selenium	0.0404		0.00190	0.00200	0.0100	5	05/05/2016 15:22	WG869319
Selenium, Dissolved	0.0121		0.00190	0.00200	0.0100	5	05/11/2016 15:52	WG870082
Sodium	176		0.550	1.00	5.00	5	05/05/2016 15:22	WG869319

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.157	0.100	0.500	5	05/03/2016 12:32	WG869047
(S) a,a,a-Trifluorotoluene(FID)	98.9				62.0-128		05/03/2016 12:32	WG869047

9
Sc

=								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 06:32	WG868995
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 06:32	WG868995
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 06:32	WG868995
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 06:32	WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:10

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 06:32	WG868995
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 06:32	WG868995
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 06:32	WG868995
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 06:32	WG868995
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 06:32	WG868995
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 06:32	WG868995
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 06:32	WG868995
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 06:32	WG868995
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 06:32	WG868995
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 06:32	WG868995
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 06:32	WG868995
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 06:32	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 06:32	WG868995
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 06:32	WG868995
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 06:32	WG868995
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 06:32	WG868995
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 06:32	WG868995
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 06:32	WG868995
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 06:32	WG868995
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 06:32	WG868995
(S) Toluene-d8	97.8				90.0-115		05/05/2016 06:32	WG868995
(S) Dibromofluoromethane	102				79.0-121		05/05/2016 06:32	WG868995

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

97.5

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.66		0.0247	0.100	0.100	1	05/05/2016 16:13	WG869610
(S) o-Terphenyl	107				50.0-150		05/05/2016 16:13	WG869610

80.1-120

05/05/2016 06:32

WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 14:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4010		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.530	J	0.197	0.100	1.00	10	05/09/2016 14:38	WG870062

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	305		2.60	1.00	50.0	50	05/11/2016 00:23	WG871228
Fluoride	2.68		0.00990	0.100	0.100	1	05/11/2016 00:08	WG871228
Sulfate	951		3.87	5.00	250	50	05/11/2016 00:23	WG871228

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0195		0.00125	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Arsenic,Dissolved	0.0176		0.00125	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Barium	0.0209	J	0.00180	0.00500	0.0250	5	05/05/2016 15:24	WG869319
Barium,Dissolved	0.0192	J	0.00180	0.00500	0.0250	5	05/11/2016 15:54	WG870082
Calcium	113		0.230	1.00	5.00	5	05/05/2016 15:24	WG869319
Chromium	0.00407	J	0.00270	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Iron	0.0932	J	0.0750	0.100	0.500	5	05/05/2016 15:24	WG869319
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 15:54	WG870082
Lead	0.00124	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Manganese	0.0161	<u>J</u>	0.00125	0.00500	0.0250	5	05/05/2016 15:24	WG869319
Manganese, Dissolved	0.0166	J	0.00125	0.00500	0.0250	5	05/11/2016 15:54	WG870082
Potassium	0.459	J	0.185	1.00	5.00	5	05/05/2016 15:24	WG869319
Selenium	0.0192		0.00190	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Selenium,Dissolved	0.00222	J	0.00190	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Sodium	1290		0.550	1.00	5.00	5	05/05/2016 15:24	WG869319

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0195		0.00125	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Arsenic, Dissolved	0.0176		0.00125	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Barium	0.0209	<u>J</u>	0.00180	0.00500	0.0250	5	05/05/2016 15:24	WG869319
Barium, Dissolved	0.0192	<u>J</u>	0.00180	0.00500	0.0250	5	05/11/2016 15:54	WG870082
Calcium	113		0.230	1.00	5.00	5	05/05/2016 15:24	WG869319
Chromium	0.00407	<u>J</u>	0.00270	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Iron	0.0932	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 15:24	WG869319
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 15:54	WG870082
Lead	0.00124	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Manganese	0.0161	<u>J</u>	0.00125	0.00500	0.0250	5	05/05/2016 15:24	WG869319
Manganese, Dissolved	0.0166	J	0.00125	0.00500	0.0250	5	05/11/2016 15:54	WG870082
Potassium	0.459	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:24	WG869319
Selenium	0.0192		0.00190	0.00200	0.0100	5	05/05/2016 15:24	WG869319
Selenium, Dissolved	0.00222	J	0.00190	0.00200	0.0100	5	05/11/2016 15:54	WG870082
Sodium	1290		0.550	1.00	5.00	5	05/05/2016 15:24	WG869319

Volatile Organic Compounds	G(GC) by Method 8015D/GRO
----------------------------	---------------------------

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	5.16		0.157	0.100	0.500	5	05/03/2016 12:53	WG869047
(S) a,a,a-Trifluorotoluene(FID)	87.0				62.0-128		05/03/2016 12:53	WG869047

Sample Narrative:

8015D/GRO L832603-10 WG869047: Sample cannot be ran at a lower dilution due to foaming.

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.250	0.0500	1.25	25	05/05/2016 09:29	WG868995
Benzene	2.14		0.00828	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Bromodichloromethane	U		0.00950	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Bromoform	U		0.0117	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Bromomethane	U		0.0216	0.00500	0.125	25	05/05/2016 09:29	WG868995
n-Butylbenzene	U		0.00902	0.00100	0.0250	25	05/05/2016 09:29	WG868995

Collected date/time: 04/28/16 14:25

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE	LAB.	NATIONWIDE.	
0.1=	_,		

Ss

Cn

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
sec-Butylbenzene	U		0.00912	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Carbon disulfide	U		0.00688	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Carbon tetrachloride	U		0.00948	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Chlorobenzene	U		0.00870	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Chlorodibromomethane	U		0.00818	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Chloroethane	U		0.0113	0.00500	0.125	25	05/05/2016 09:29	WG868995
Chloroform	U		0.00810	0.00500	0.125	25	05/05/2016 09:29	WG868995
Chloromethane	U		0.00690	0.00250	0.0625	25	05/05/2016 09:29	WG868995
1,2-Dibromoethane	U		0.00952	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,1-Dichloroethane	U		0.00648	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,2-Dichloroethane	U		0.00902	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,1-Dichloroethene	U		0.00995	0.00100	0.0250	25	05/05/2016 09:29	WG868995
cis-1,2-Dichloroethene	U		0.00650	0.00100	0.0250	25	05/05/2016 09:29	WG868995
trans-1,2-Dichloroethene	U		0.00990	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,2-Dichloropropane	U		0.00765	0.00100	0.0250	25	05/05/2016 09:29	WG868995
cis-1,3-Dichloropropene	U		0.0104	0.00100	0.0250	25	05/05/2016 09:29	WG868995
trans-1,3-Dichloropropene	U		0.0105	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Ethylbenzene	0.0211	J	0.00960	0.00100	0.0250	25	05/05/2016 09:29	WG868995
sopropylbenzene	0.0339		0.00815	0.00100	0.0250	25	05/05/2016 09:29	WG868995
p-Isopropyltoluene	U		0.00875	0.00100	0.0250	25	05/05/2016 09:29	WG868995
2-Butanone (MEK)	U		0.0982	0.0100	0.250	25	05/05/2016 09:29	WG868995
2-Hexanone	U		0.0955	0.0100	0.250	25	05/05/2016 09:29	WG868995
Methylene Chloride	U		0.0250	0.00500	0.125	25	05/05/2016 09:29	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.0535	0.0100	0.250	25	05/05/2016 09:29	WG868995
Methyl tert-butyl ether	U		0.00918	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Naphthalene	U		0.0250	0.00500	0.125	25	05/05/2016 09:29	WG868995
n-Propylbenzene	0.0386		0.00872	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Styrene	U		0.00768	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,1,1,2-Tetrachloroethane	U		0.00962	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,1,2,2-Tetrachloroethane	U		0.00325	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Tetrachloroethene	U		0.00930	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Toluene	0.0293	<u>J</u>	0.0195	0.00500	0.125	25	05/05/2016 09:29	WG868995
1,1,1-Trichloroethane	U		0.00798	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,1,2-Trichloroethane	U		0.00958	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Trichloroethene	U		0.00995	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,2,4-Trimethylbenzene	0.0526		0.00932	0.00100	0.0250	25	05/05/2016 09:29	WG868995
1,3,5-Trimethylbenzene	U		0.00968	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Vinyl chloride	U		0.00648	0.00100	0.0250	25	05/05/2016 09:29	WG868995
o-Xylene	0.0365		0.00852	0.00100	0.0250	25	05/05/2016 09:29	WG868995
m&p-Xylene	0.145		0.0180	0.00100	0.0250	25	05/05/2016 09:29	WG868995
Xylenes, Total	0.181		0.0265	0.00300	0.0750	25	05/05/2016 09:29	WG868995
(S) Toluene-d8	100				90.0-115		05/05/2016 09:29	WG868995
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 09:29	WG868995

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

97.5

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	12.5		0.124	0.100	0.500	5	05/06/2016 12:07	WG869610
(S) o-Terphenyl	127				50.0-150		05/06/2016 12:07	WG869610

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 09:29

WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 14:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3830		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.105	<u>J6</u>	0.0197	0.100	0.100	1	05/09/2016 14:39	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	134		2.60	1.00	50.0	50	05/16/2016 09:50	WG871015
Fluoride	1.04		0.00990	0.100	0.100	1	05/16/2016 10:57	WG871015
Sulfate	2620		3.87	5.00	250	50	05/16/2016 09:50	WG871015

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.00125	0.00200	0.0100	5	05/05/2016 15:26	WG869319
Arsenic, Dissolved	U		0.00125	0.00200	0.0100	5	05/11/2016 15:57	WG870082
Barium	0.0182	J	0.00180	0.00500	0.0250	5	05/05/2016 15:26	WG869319
Barium, Dissolved	0.0210	J	0.00180	0.00500	0.0250	5	05/11/2016 15:57	WG870082
Calcium	465		0.230	1.00	5.00	5	05/05/2016 15:26	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:26	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:57	WG870082
Iron	U		0.0750	0.100	0.500	5	05/05/2016 15:26	WG869319
Iron,Dissolved	0.185	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 15:57	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:26	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:57	WG870082
Manganese	0.485		0.00125	0.00500	0.0250	5	05/05/2016 15:26	WG869319
Manganese,Dissolved	0.487		0.00125	0.00500	0.0250	5	05/11/2016 15:57	WG870082
Potassium	1.29	J	0.185	1.00	5.00	5	05/05/2016 15:26	WG869319
Selenium	0.0141		0.00190	0.00200	0.0100	5	05/05/2016 15:26	WG869319
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/11/2016 15:57	WG870082
Sodium	210		0.550	1.00	5.00	5	05/05/2016 15:26	WG869319

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 10:27	WG869047
(S) a,a,a-Trifluorotoluene(FID)	97.3				62.0-128		05/03/2016 10:27	WG869047

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/06/2016 12:53	WG870521
Benzene	U		0.000331	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Bromoform	U		0.000469	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Bromomethane	U		0.000866	0.00500	0.00500	1	05/06/2016 12:53	WG870521
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/06/2016 12:53	WG870521
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Carbon disulfide	0.000551	J	0.000275	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/06/2016 12:53	WG870521

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Αl

Sc

Collected date/time: 04/28/16 14:55

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Chloroethane	U		0.000453	0.00500	0.00500	1	05/06/2016 12:53	WG870521
Chloroform	U		0.000324	0.00500	0.00500	1	05/06/2016 12:53	WG870521
Chloromethane	U		0.000276	0.00250	0.00250	1	05/06/2016 12:53	WG870521
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 12:53	WG870521
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/06/2016 12:53	WG870521
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/06/2016 12:53	WG870521
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/06/2016 12:53	WG870521
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/06/2016 12:53	WG870521
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/06/2016 12:53	WG870521
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/06/2016 12:53	WG870521
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/06/2016 12:53	WG870521
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/06/2016 12:53	WG870521
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/06/2016 12:53	WG870521
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Naphthalene	U		0.00100	0.00500	0.00500	1	05/06/2016 12:53	WG870521
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Styrene	U		0.000307	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Toluene	U		0.000780	0.00500	0.00500	1	05/06/2016 12:53	WG870521
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/06/2016 12:53	WG870521
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/06/2016 12:53	WG870521
o-Xylene	U		0.000341	0.00100	0.00100	1	05/06/2016 12:53	WG870521
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/06/2016 12:53	WG870521
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/06/2016 12:53	WG870521
(S) Toluene-d8	107				90.0-115		05/06/2016 12:53	WG870521
(S) Dibromofluoromethane	115				79.0-121		05/06/2016 12:53	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

99.6

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.27		0.0247	0.100	0.100	1	05/05/2016 16:49	WG869610
(S) o-Terphenyl	121				50.0-150		05/05/2016 16:49	WG869610

80.1-120

05/06/2016 12:53

WG870521

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 18:30

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2680		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.552	J	0.197	0.100	1.00	10	05/09/2016 14:41	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	240		2.60	1.00	50.0	50	05/16/2016 11:24	WG871015
Fluoride	2.65		0.00990	0.100	0.100	1	05/16/2016 11:10	WG871015
Sulfate	2120		3.87	5.00	250	50	05/16/2016 11:24	WG871015

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

metals (iet me) sy metals dele										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	U		0.00125	0.00200	0.0100	5	05/05/2016 15:29	WG869319		
Arsenic, Dissolved	U		0.00125	0.00200	0.0100	5	05/11/2016 15:59	WG870082		
Barium	0.0192	J	0.00180	0.00500	0.0250	5	05/05/2016 15:29	WG869319		
Barium,Dissolved	0.0205	J	0.00180	0.00500	0.0250	5	05/11/2016 15:59	WG870082		
Calcium	439		0.230	1.00	5.00	5	05/05/2016 15:29	WG869319		
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:29	WG869319		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 15:59	WG870082		
Iron	U		0.0750	0.100	0.500	5	05/05/2016 15:29	WG869319		
Iron,Dissolved	0.103	J	0.0750	0.100	0.500	5	05/11/2016 15:59	WG870082		
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:29	WG869319		
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 15:59	WG870082		
Manganese	0.0664		0.00125	0.00500	0.0250	5	05/05/2016 15:29	WG869319		
Manganese,Dissolved	0.0620		0.00125	0.00500	0.0250	5	05/11/2016 15:59	WG870082		
Potassium	2.82	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:29	WG869319		
Selenium	0.0101		0.00190	0.00200	0.0100	5	05/05/2016 15:29	WG869319		
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/11/2016 15:59	WG870082		
Sodium	278		0.550	1.00	5.00	5	05/05/2016 15:29	WG869319		

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	2.60		0.314	0.100	1.00	10	05/03/2016 13:14	WG869047
(S) a.a.a-Trifluorotoluene(FID)	91.6				62.0-128		05/03/2016 13:14	WG869047

•		, -						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/06/2016 16:30	WG870521
Benzene	0.493		0.00166	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Bromoform	U		0.00234	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Bromomethane	U		0.00433	0.00500	0.0250	5	05/06/2016 16:30	WG870521
n-Butylbenzene	0.00378	<u>J</u>	0.00180	0.00100	0.00500	5	05/06/2016 16:30	WG870521
sec-Butylbenzene	0.00730		0.00182	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Carbon disulfide	0.00218	<u>J</u>	0.00138	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/06/2016 16:30	WG870521

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 18:30

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Chloroethane	U		0.00226	0.00500	0.0250	5	05/06/2016 16:30	WG870521
Chloroform	U		0.00162	0.00500	0.0250	5	05/06/2016 16:30	WG870521
Chloromethane	U		0.00138	0.00250	0.0125	5	05/06/2016 16:30	WG870521
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/06/2016 16:30	WG870521
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/06/2016 16:30	WG870521
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/06/2016 16:30	WG870521
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/06/2016 16:30	WG870521
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Ethylbenzene	0.0292		0.00192	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Isopropylbenzene	0.0787		0.00163	0.00100	0.00500	5	05/06/2016 16:30	WG870521
p-Isopropyltoluene	0.00375	<u>J</u>	0.00175	0.00100	0.00500	5	05/06/2016 16:30	WG870521
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/06/2016 16:30	WG870521
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/06/2016 16:30	WG870521
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/06/2016 16:30	WG870521
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/06/2016 16:30	WG870521
Methyl tert-butyl ether	U		0.00184	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Naphthalene	0.0340		0.00500	0.00500	0.0250	5	05/06/2016 16:30	WG870521
n-Propylbenzene	0.110		0.00174	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Styrene	U		0.00154	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Toluene	0.0185	<u>J</u>	0.00390	0.00500	0.0250	5	05/06/2016 16:30	WG870521
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,2,4-Trimethylbenzene	0.139		0.00186	0.00100	0.00500	5	05/06/2016 16:30	WG870521
1,3,5-Trimethylbenzene	U		0.00194	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Vinyl chloride	U		0.00130	0.00100	0.00500	5	05/06/2016 16:30	WG870521
o-Xylene	0.00263	J	0.00170	0.00100	0.00500	5	05/06/2016 16:30	WG870521
m&p-Xylene	0.223		0.00360	0.00100	0.00500	5	05/06/2016 16:30	WG870521
Xylenes, Total	0.226		0.00530	0.00300	0.0150	5	05/06/2016 16:30	WG870521
(S) Toluene-d8	108				90.0-115		05/06/2016 16:30	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

112

99.3

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.59		0.0247	0.100	0.100	1	05/05/2016 17:07	WG869610
(S) o-Terphenyl	120				50.0-150		05/05/2016 17:07	WG869610

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

05/06/2016 16:30

05/06/2016 16:30

WG870521

WG870521

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 17:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1300		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.414	J	0.197	0.100	1.00	10	05/09/2016 14:42	WG870062

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	42.0		0.0519	1.00	1.00	1	05/16/2016 11:37	WG871015
Fluoride	1.48		0.00990	0.100	0.100	1	05/16/2016 11:37	WG871015
Sulfate	278		3.87	5.00	250	50	05/16/2016 11:51	WG871015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0197		0.00125	0.00200	0.0100	5	05/05/2016 15:31	WG869319
Arsenic, Dissolved	0.0139		0.00125	0.00200	0.0100	5	05/11/2016 16:11	WG870082
Barium	1.31		0.00180	0.00500	0.0250	5	05/05/2016 15:31	WG869319
Barium,Dissolved	1.22		0.00180	0.00500	0.0250	5	05/11/2016 16:11	WG870082
Calcium	257		0.230	1.00	5.00	5	05/05/2016 15:31	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:31	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:11	WG870082
Iron	0.286	J	0.0750	0.100	0.500	5	05/05/2016 15:31	WG869319
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 16:11	WG870082
Lead	0.00176	J	0.00120	0.00200	0.0100	5	05/05/2016 15:31	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:11	WG870082
Manganese	0.195		0.00125	0.00500	0.0250	5	05/05/2016 15:31	WG869319
Manganese, Dissolved	0.188		0.00125	0.00500	0.0250	5	05/11/2016 16:11	WG870082
Potassium	4.55	J	0.185	1.00	5.00	5	05/05/2016 15:31	WG869319
Selenium	0.00947	J	0.00190	0.00200	0.0100	5	05/05/2016 15:31	WG869319
Selenium, Dissolved	0.00327	<u>J</u>	0.00190	0.00200	0.0100	5	05/11/2016 16:11	WG870082
Sodium	52.6		0.550	1.00	5.00	5	05/05/2016 15:31	WG869319

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	33.6		0.785	0.100	2.50	25	05/03/2016 13:35	WG869047
(S) a,a,a-Trifluorotoluene(FID)	91.8				62.0-128		05/03/2016 13:35	WG869047

Ss

9	,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		2.50	0.0500	12.5	250	05/05/2016 10:28	WG868995
Benzene	13.5		0.0828	0.00100	0.250	250	05/05/2016 10:28	WG868995
Bromodichloromethane	U		0.0950	0.00100	0.250	250	05/05/2016 10:28	WG868995
Bromoform	U		0.117	0.00100	0.250	250	05/05/2016 10:28	WG868995
Bromomethane	U		0.216	0.00500	1.25	250	05/05/2016 10:28	WG868995
n-Butylbenzene	U		0.0902	0.00100	0.250	250	05/05/2016 10:28	WG868995
sec-Butylbenzene	U		0.0912	0.00100	0.250	250	05/05/2016 10:28	WG868995
Carbon disulfide	U		0.0688	0.00100	0.250	250	05/05/2016 10:28	WG868995
Carbon tetrachloride	U		0.0948	0.00100	0.250	250	05/05/2016 10:28	WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 17:25

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.0870	0.00100	0.250	250	05/05/2016 10:28	WG868995
Chlorodibromomethane	U		0.0818	0.00100	0.250	250	05/05/2016 10:28	WG868995
Chloroethane	U		0.113	0.00500	1.25	250	05/05/2016 10:28	WG868995
Chloroform	U		0.0810	0.00500	1.25	250	05/05/2016 10:28	WG868995
Chloromethane	U		0.0690	0.00250	0.625	250	05/05/2016 10:28	WG868995
1,2-Dibromoethane	U		0.0952	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,1-Dichloroethane	U		0.0648	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,2-Dichloroethane	U		0.0902	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,1-Dichloroethene	U		0.0995	0.00100	0.250	250	05/05/2016 10:28	WG868995
cis-1,2-Dichloroethene	U		0.0650	0.00100	0.250	250	05/05/2016 10:28	WG868995
trans-1,2-Dichloroethene	U		0.0990	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,2-Dichloropropane	U		0.0765	0.00100	0.250	250	05/05/2016 10:28	WG868995
cis-1,3-Dichloropropene	U		0.104	0.00100	0.250	250	05/05/2016 10:28	WG868995
trans-1,3-Dichloropropene	U		0.105	0.00100	0.250	250	05/05/2016 10:28	WG868995
Ethylbenzene	2.02		0.0960	0.00100	0.250	250	05/05/2016 10:28	WG868995
Isopropylbenzene	0.104	<u>J</u>	0.0815	0.00100	0.250	250	05/05/2016 10:28	WG868995
p-Isopropyltoluene	U		0.0875	0.00100	0.250	250	05/05/2016 10:28	WG868995
2-Butanone (MEK)	U		0.982	0.0100	2.50	250	05/05/2016 10:28	WG868995
2-Hexanone	U		0.955	0.0100	2.50	250	05/05/2016 10:28	WG868995
Methylene Chloride	U		0.250	0.00500	1.25	250	05/05/2016 10:28	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.535	0.0100	2.50	250	05/05/2016 10:28	WG868995
Methyl tert-butyl ether	U		0.0918	0.00100	0.250	250	05/05/2016 10:28	WG868995
Naphthalene	U		0.250	0.00500	1.25	250	05/05/2016 10:28	WG868995
n-Propylbenzene	0.104	J	0.0872	0.00100	0.250	250	05/05/2016 10:28	WG868995
Styrene	U		0.0768	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,1,1,2-Tetrachloroethane	U		0.0962	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,1,2,2-Tetrachloroethane	U		0.0325	0.00100	0.250	250	05/05/2016 10:28	WG868995
Tetrachloroethene	U		0.0930	0.00100	0.250	250	05/05/2016 10:28	WG868995
Toluene	U		0.195	0.00500	1.25	250	05/05/2016 10:28	WG868995
1,1,1-Trichloroethane	U		0.0798	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,1,2-Trichloroethane	U		0.0958	0.00100	0.250	250	05/05/2016 10:28	WG868995
Trichloroethene	U		0.0995	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,2,4-Trimethylbenzene	0.103	<u>J</u>	0.0932	0.00100	0.250	250	05/05/2016 10:28	WG868995
1,3,5-Trimethylbenzene	U	_	0.0968	0.00100	0.250	250	05/05/2016 10:28	WG868995
Vinyl chloride	U		0.0648	0.00100	0.250	250	05/05/2016 10:28	WG868995
o-Xylene	U		0.0852	0.00100	0.250	250	05/05/2016 10:28	WG868995
m&p-Xylene	0.379		0.180	0.00100	0.250	250	05/05/2016 10:28	WG868995
Xylenes, Total	0.379	J	0.265	0.00300	0.750	250	05/05/2016 10:28	WG868995
(S) Toluene-d8	99.8	_			90.0-115		05/05/2016 10:28	WG868995
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 10:28	WG868995
(S) 4-Bromofluorobenzene	95.4				80.1-120		05/05/2016 10:28	WG868995

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	21.2		0.124	0.100	0.500	5	05/06/2016 04:44	WG869610
(S) o-Terphenyl	130				50.0-150		05/06/2016 04:44	WG869610

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:35

832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5610		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.45		0.197	0.100	1.00	10	05/09/2016 14:47	WG870062

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	416		2.60	1.00	50.0	50	05/16/2016 12:17	WG871015
Fluoride	3.01		0.00990	0.100	0.100	1	05/16/2016 12:04	WG871015
Sulfate	3360		3.87	5.00	250	50	05/16/2016 12:17	WG871015

Metals (ICPMS) by Method 6020

Metals (let Ms) by Metals doze										
·	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Arsenic	0.0115		0.00125	0.00200	0.0100	5	05/05/2016 15:33	WG869319		
Arsenic,Dissolved	0.0122		0.00125	0.00200	0.0100	5	05/11/2016 16:13	WG870082		
Barium	0.0138	J	0.00180	0.00500	0.0250	5	05/05/2016 15:33	WG869319		
Barium,Dissolved	0.0126	<u>J</u>	0.00180	0.00500	0.0250	5	05/11/2016 16:13	WG870082		
Calcium	604		0.230	1.00	5.00	5	05/05/2016 15:33	WG869319		
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:33	WG869319		
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:13	WG870082		
ron	U		0.0750	0.100	0.500	5	05/05/2016 15:33	WG869319		
ron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 16:13	WG870082		
ead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:33	WG869319		
.ead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:13	WG870082		
Manganese	0.406		0.00125	0.00500	0.0250	5	05/05/2016 15:33	WG869319		
Manganese,Dissolved	0.379		0.00125	0.00500	0.0250	5	05/11/2016 16:13	WG870082		
Potassium	1.15	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:33	WG869319		
Selenium	0.0223		0.00190	0.00200	0.0100	5	05/05/2016 15:33	WG869319		
Selenium, Dissolved	0.00842	J	0.00190	0.00200	0.0100	5	05/11/2016 16:13	WG870082		
Sodium	502		0.550	1.00	5.00	5	05/05/2016 15:33	WG869319		

⁶Qc

ÅI

Gl

[®]Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 10:48	WG868995
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 10:48	WG868995
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 10:48	WG868995
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 10:48	WG868995
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 10:48	WG868995
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 10:48	WG868995
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 10:48	WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:35

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 10:48	WG868995
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 10:48	WG868995
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 10:48	WG868995
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 10:48	WG868995
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 10:48	WG868995
p-lsopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 10:48	WG868995
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 10:48	WG868995
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 10:48	WG868995
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 10:48	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 10:48	WG868995
Methyl tert-butyl ether	0.0186		0.000367	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 10:48	WG868995
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 10:48	WG868995
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 10:48	WG868995
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 10:48	WG868995
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 10:48	WG868995
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 10:48	WG868995
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 10:48	WG868995
(S) Toluene-d8	101				90.0-115		05/05/2016 10:48	WG868995
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 10:48	WG868995

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	2.29		0.0247	0.100	0.100	1	05/05/2016 17:26	WG869610
(S) o-Terphenyl	112				50.0-150		05/05/2016 17:26	WG869610

80.1-120

(S) 4-Bromofluorobenzene

05/05/2016 10:48

WG868995

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:45

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3370		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821	

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.73		0.197	0.100	1.00	10	05/09/2016 14:48	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	313		2.60	1.00	50.0	50	05/16/2016 19:10	WG871015
Fluoride	1.69		0.00990	0.100	0.100	1	05/16/2016 12:31	WG871015
Sulfate	1440		3.87	5.00	250	50	05/16/2016 19:10	WG871015

Cn

Metals (ICPMS) by Method 6020

Tweetals (ref fwis) by h	1100 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00476	J	0.00125	0.00200	0.0100	5	05/05/2016 15:47	WG869319
Arsenic,Dissolved	0.00328	<u>J</u>	0.00125	0.00200	0.0100	5	05/11/2016 16:15	WG870082
Barium	0.0550		0.00180	0.00500	0.0250	5	05/05/2016 15:47	WG869319
Barium,Dissolved	0.0453		0.00180	0.00500	0.0250	5	05/11/2016 16:15	WG870082
Calcium	336		0.230	1.00	5.00	5	05/05/2016 15:47	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:47	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:15	WG870082
Iron	0.169	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 15:47	WG869319
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 16:15	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:47	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:15	WG870082
Manganese	0.441		0.00125	0.00500	0.0250	5	05/05/2016 15:47	WG869319
Manganese,Dissolved	0.397		0.00125	0.00500	0.0250	5	05/11/2016 16:15	WG870082
Potassium	1.96	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:47	WG869319
Selenium	0.00735	J	0.00190	0.00200	0.0100	5	05/05/2016 15:47	WG869319
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/11/2016 16:15	WG870082
Sodium	356		0.550	1.00	5.00	5	05/05/2016 15:47	WG869319

⁷Gl

⁸Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.492	<u>J</u>	0.314	0.100	1.00	10	05/03/2016 13:56	WG869047
(S) a,a,a-Trifluorotoluene(FID)	91.9				62.0-128		05/03/2016 13:56	WG869047

⁹Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/06/2016 16:54	WG870521
Benzene	0.466		0.00166	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Bromoform	U		0.00234	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Bromomethane	U		0.00433	0.00500	0.0250	5	05/06/2016 16:54	WG870521
n-Butylbenzene	0.00303	J	0.00180	0.00100	0.00500	5	05/06/2016 16:54	WG870521
sec-Butylbenzene	0.0126		0.00182	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Carbon disulfide	0.00169	<u>J</u>	0.00138	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/06/2016 16:54	WG870521

SAMPLE R

Collected date/time: 04/28/16 15:45

Volatile Organic Compounds (GC/MS) by Method 8260B

RESULTS - 15	ONE LAB. NATIONWID
000000	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Chloroethane	U		0.00226	0.00500	0.0250	5	05/06/2016 16:54	WG870521
Chloroform	U		0.00162	0.00500	0.0250	5	05/06/2016 16:54	WG870521
Chloromethane	U		0.00138	0.00250	0.0125	5	05/06/2016 16:54	WG870521
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/06/2016 16:54	WG870521
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/06/2016 16:54	WG870521
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/06/2016 16:54	WG870521
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/06/2016 16:54	WG870521
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Ethylbenzene	0.00775		0.00192	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Isopropylbenzene	0.0698		0.00163	0.00100	0.00500	5	05/06/2016 16:54	WG870521
p-Isopropyltoluene	U		0.00175	0.00100	0.00500	5	05/06/2016 16:54	WG870521
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/06/2016 16:54	WG870521
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/06/2016 16:54	WG870521
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/06/2016 16:54	WG870521
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/06/2016 16:54	WG870521
Methyl tert-butyl ether	0.00656		0.00184	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Naphthalene	0.00554	<u>J</u>	0.00500	0.00500	0.0250	5	05/06/2016 16:54	WG870521
n-Propylbenzene	0.0367		0.00174	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Styrene	U		0.00154	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Toluene	U		0.00390	0.00500	0.0250	5	05/06/2016 16:54	WG870521
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,2,4-Trimethylbenzene	0.0283		0.00186	0.00100	0.00500	5	05/06/2016 16:54	WG870521
1,3,5-Trimethylbenzene	U		0.00194	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Vinyl chloride	U		0.00130	0.00100	0.00500	5	05/06/2016 16:54	WG870521
o-Xylene	U		0.00170	0.00100	0.00500	5	05/06/2016 16:54	WG870521
m&p-Xylene	0.0708		0.00360	0.00100	0.00500	5	05/06/2016 16:54	WG870521
Xylenes, Total	0.0708		0.00530	0.00300	0.0150	5	05/06/2016 16:54	WG870521
(S) Toluene-d8	108				90.0-115		05/06/2016 16:54	WG870521
(S) Dibromofluoromethane	114				79.0-121		05/06/2016 16:54	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	3.44		0.0247	0.100	0.100	1	05/05/2016 19:16	WG869610
(S) o-Terphenyl	123				50.0-150		05/05/2016 19:16	WG869610

(S) 4-Bromofluorobenzene

80.1-120

05/06/2016 16:54

WG870521

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 18:20

832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1510		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.518	<u>J</u>	0.197	0.100	1.00	10	05/09/2016 14:50	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	278	<u>J</u>	130	1.00	2500	50	05/16/2016 13:24	WG871015
Fluoride	1.24		0.00990	0.100	0.100	1	05/16/2016 13:11	WG871015
Sulfate	134		0.774	5.00	50.0	10	05/16/2016 20:04	WG871015

Cn

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:35	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:39	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:45	WG869207

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0135		0.00125	0.00200	0.0100	5	05/05/2016 15:49	WG869319
Arsenic, Dissolved	0.0109		0.00125	0.00200	0.0100	5	05/11/2016 16:18	WG870082
Barium	0.744		0.00180	0.00500	0.0250	5	05/05/2016 15:49	WG869319
Barium, Dissolved	0.632		0.00180	0.00500	0.0250	5	05/11/2016 16:18	WG870082
Boron	0.518		0.0150	0.0200	0.200	10	05/07/2016 10:02	WG870589
Boron, Dissolved	0.519		0.0150	0.0200	0.200	10	05/09/2016 11:57	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/05/2016 15:49	WG869319
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/11/2016 16:18	WG870082
Calcium	262		0.230	1.00	5.00	5	05/05/2016 15:49	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:49	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:18	WG870082
Cobalt	U		0.00130	0.00200	0.0100	5	05/05/2016 15:49	WG869319
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/11/2016 16:18	WG870082
Iron	1.06		0.0750	0.100	0.500	5	05/05/2016 15:49	WG869319
Iron,Dissolved	0.429	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 16:18	WG870082
Lead	0.00297	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:49	WG869319
Lead,Dissolved	0.00166	J	0.00120	0.00200	0.0100	5	05/11/2016 16:18	WG870082
Manganese	0.391		0.00125	0.00500	0.0250	5	05/05/2016 15:49	WG869319
Manganese, Dissolved	0.357		0.00125	0.00500	0.0250	5	05/11/2016 16:18	WG870082
Nickel	U		0.00175	0.00200	0.0100	5	05/05/2016 15:49	WG869319
Nickel, Dissolved	0.00864	<u>B J</u>	0.00175	0.00200	0.0100	5	05/11/2016 16:18	WG870082
Potassium	0.421	J	0.185	1.00	5.00	5	05/05/2016 15:49	WG869319
Selenium	0.00524	J	0.00190	0.00200	0.0100	5	05/05/2016 15:49	WG869319
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/11/2016 16:18	WG870082
Sodium	123		0.550	1.00	5.00	5	05/05/2016 15:49	WG869319

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 18:20

Volatile Organic Compounds (GC/MS) by Method 8260B

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Uranium	U		0.00165	0.0100	0.0500	5	05/05/2016 15:49	WG869319			
Uranium, Dissolved	U		0.00165	0.0100	0.0500	5	05/11/2016 16:18	WG870082			
Vanadium	0.00259	<u>J</u>	0.000900	0.00500	0.0250	5	05/05/2016 15:49	WG869319			
Vanadium, Dissolved	0.00201	J	0.000900	0.00500	0.0250	5	05/11/2016 16:18	WG870082			

⁵Sr	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/05/2016 11:28	WG868995
Benzene	4.12		0.0166	0.00100	0.0500	50	05/06/2016 17:18	WG870521
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Bromoform	U		0.00469	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Bromomethane	U		0.00866	0.00500	0.0500	10	05/05/2016 11:28	WG868995
n-Butylbenzene	0.00944	J	0.00361	0.00100	0.0100	10	05/05/2016 11:28	WG868995
sec-Butylbenzene	0.0112	_	0.00365	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Carbon disulfide	U		0.00275	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Chloroethane	U		0.00453	0.00500	0.0500	10	05/05/2016 11:28	WG868995
Chloroform	U		0.00324	0.00500	0.0500	10	05/05/2016 11:28	WG868995
Chloromethane	U		0.00276	0.00250	0.0250	10	05/05/2016 11:28	WG868995
1,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 11:28	WG868995
cis-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/05/2016 11:28	WG868995
trans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/05/2016 11:28	WG868995
cis-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/05/2016 11:28	WG868995
trans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Ethylbenzene	1.11		0.00384	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Isopropylbenzene	0.0594		0.00326	0.00100	0.0100	10	05/05/2016 11:28	WG868995
p-lsopropyltoluene	0.00813	J	0.00350	0.00100	0.0100	10	05/05/2016 11:28	WG868995
2-Butanone (MEK)	U	_	0.0393	0.0100	0.100	10	05/05/2016 11:28	WG868995
2-Hexanone	U		0.0382	0.0100	0.100	10	05/05/2016 11:28	WG868995
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/05/2016 11:28	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/05/2016 11:28	WG868995
Methyl tert-butyl ether	0.200		0.00367	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Naphthalene	0.257		0.0100	0.00500	0.0500	10	05/05/2016 11:28	WG868995
n-Propylbenzene	0.105		0.00349	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Styrene	U		0.00307	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Tetrachloroethene	U		0.00372	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Toluene	0.00806	J	0.00780	0.00500	0.0500	10	05/05/2016 11:28	WG868995
1,1,1-Trichloroethane	U	_	0.00319	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Trichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,2,4-Trimethylbenzene	0.753		0.00373	0.00100	0.0100	10	05/05/2016 11:28	WG868995
1,3,5-Trimethylbenzene	0.0179		0.00387	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/05/2016 11:28	WG868995
o-Xylene	0.0183		0.00341	0.00100	0.0100	10	05/05/2016 11:28	WG868995
m&p-Xylene	0.830		0.00719	0.00100	0.0100	10	05/05/2016 11:28	WG868995
Xylenes, Total	0.848		0.0106	0.00300	0.0300	10	05/05/2016 11:28	WG868995
(S) Toluene-d8	101				90.0-115		05/05/2016 11:28	WG868995

MW-58

SAMPLE RESULTS - 16

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 18:20

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

versure engance compounds (e.g., me, e.g., e.g., me, me, e.g., e.g									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
(S) Toluene-d8	108				90.0-115		05/06/2016 17:18	WG870521	
(S) Dibromofluoromethane	113				79.0-121		05/06/2016 17:18	WG870521	
(S) Dibromofluoromethane	125	<u>J1</u>			79.0-121		05/05/2016 11:28	WG868995	
(S) 4-Bromofluorobenzene	95.4				80.1-120		05/05/2016 11:28	WG868995	
(S) 4-Bromofluorobenzene	101				80.1-120		05/06/2016 17:18	WG870521	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	6.27		0.0247	0.100	0.100	1	05/05/2016 19:34	WG869610
(S) o-Terphenyl	128				50.0-150		05/05/2016 19:34	WG869610

Cn

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:20

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4250		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	9.76		0.197	0.100	1.00	10	05/09/2016 14:52	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	336		2.60	1.00	50.0	50	05/16/2016 13:51	WG871015
Fluoride	1.23		0.00990	0.100	0.100	1	05/16/2016 13:38	WG871015
Sulfate	2870		3.87	5.00	250	50	05/16/2016 13:51	WG871015

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:38	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:41	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:13	WG869207

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00280	J	0.00125	0.00200	0.0100	5	05/05/2016 15:52	WG869319
Arsenic, Dissolved	0.00242	<u>J</u>	0.00125	0.00200	0.0100	5	05/11/2016 16:20	WG870082
Barium	0.0270		0.00180	0.00500	0.0250	5	05/05/2016 15:52	WG869319
Barium, Dissolved	0.0113	<u>J</u>	0.00180	0.00500	0.0250	5	05/11/2016 16:20	WG870082
Boron	0.695		0.0150	0.0200	0.200	10	05/07/2016 10:06	WG870589
Boron, Dissolved	0.661		0.0150	0.0200	0.200	10	05/09/2016 12:02	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/05/2016 15:52	WG869319
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/11/2016 16:20	WG870082
Calcium	699		0.230	1.00	5.00	5	05/05/2016 15:52	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:52	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:20	WG870082
Cobalt	0.00132	J	0.00130	0.00200	0.0100	5	05/05/2016 15:52	WG869319
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/11/2016 16:20	WG870082
Iron	0.599		0.0750	0.100	0.500	5	05/05/2016 15:52	WG869319
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/11/2016 16:20	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:52	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:20	WG870082
Manganese	0.0591		0.00125	0.00500	0.0250	5	05/05/2016 15:52	WG869319
Manganese, Dissolved	0.00291	<u>B J</u>	0.00125	0.00500	0.0250	5	05/11/2016 16:20	WG870082
Nickel	U		0.00350	0.00200	0.0200	10	05/07/2016 10:06	WG870589
Nickel, Dissolved	0.00772	<u>B J</u>	0.00175	0.00200	0.0100	5	05/11/2016 16:20	WG870082
Potassium	2.95	J	0.185	1.00	5.00	5	05/05/2016 15:52	WG869319
Selenium	0.0112		0.00190	0.00200	0.0100	5	05/05/2016 15:52	WG869319
Selenium, Dissolved	0.00664	<u>J</u>	0.00190	0.00200	0.0100	5	05/11/2016 16:20	WG870082
Sodium	149		0.550	1.00	5.00	5	05/05/2016 15:52	WG869319

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:20

L832603

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.0702		0.00165	0.0100	0.0500	5	05/05/2016 15:52	WG869319
Uranium, Dissolved	0.0698		0.00165	0.0100	0.0500	5	05/11/2016 16:20	WG870082
Vanadium	0.0197	<u>J</u>	0.000900	0.00500	0.0250	5	05/05/2016 15:52	WG869319
Vanadium, Dissolved	0.0188	<u>J</u>	0.000900	0.00500	0.0250	5	05/11/2016 16:20	WG870082

Cp 2

²Tc

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 14:17	WG869047
(S) a,a,a-Trifluorotoluene(FID)	98.5				62.0-128		05/03/2016 14:17	WG869047

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 11:48	WG868995
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 11:48	WG868995
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 11:48	WG868995
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 11:48	WG868995
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 11:48	WG868995
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 11:48	WG868995
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 11:48	WG868995
1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 11:48	WG868995
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 11:48	WG868995
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:48	WG868995
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 11:48	WG868995
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 11:48	WG868995
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 11:48	WG868995
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 11:48	WG868995
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 11:48	WG868995
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 11:48	WG868995
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 11:48	WG868995
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 11:48	WG868995
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 11:48	WG868995
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 11:48	WG868995
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 11:48	WG868995
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 11:48	WG868995
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 11:48	WG868995
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 11:48	WG868995
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 11:48	WG868995
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 11:48	WG868995
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 11:48	WG868995
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 11:48	WG868995
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 11:48	WG868995
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:48	WG868995

MW-136

SAMPLE RESULTS - 17

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:20

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
1,2,4-Trimethylbenzene	0.000416	J	0.000373	0.00100	0.00100	1	05/05/2016 11:48	WG868995			
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 11:48	WG868995			
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 11:48	WG868995			
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 11:48	WG868995			
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 11:48	WG868995			
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 11:48	WG868995			
(S) Toluene-d8	99.8				90.0-115		05/05/2016 11:48	WG868995			
(S) Dibromofluoromethane	102				79.0-121		05/05/2016 11:48	WG868995			
(S) 4-Bromofluorobenzene	96.5				80.1-120		05/05/2016 11:48	WG868995			

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.162		0.0247	0.100	0.100	1	05/05/2016 19:52	WG869610
(S) o-Terphenyl	106				50.0-150		05/05/2016 19:52	WG869610

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 17:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2910		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0340	J J6	0.0197	0.100	0.100	1	05/09/2016 14:53	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	207		2.60	1.00	50.0	50	05/16/2016 14:18	WG871015
Fluoride	0.485		0.00990	0.100	0.100	1	05/16/2016 14:05	WG871015
Sulfate	1460		3.87	5.00	250	50	05/16/2016 14:18	WG871015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00401	J	0.00125	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Arsenic, Dissolved	0.00506	J	0.00125	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Barium	0.0326		0.00180	0.00500	0.0250	5	05/05/2016 15:54	WG869319
Barium,Dissolved	0.0278		0.00180	0.00500	0.0250	5	05/11/2016 16:22	WG870082
Calcium	322		0.230	1.00	5.00	5	05/05/2016 15:54	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Iron	0.883		0.0750	0.100	0.500	5	05/05/2016 15:54	WG869319
Iron,Dissolved	1.17		0.0750	0.100	0.500	5	05/11/2016 16:22	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Manganese	0.898		0.00125	0.00500	0.0250	5	05/05/2016 15:54	WG869319
Manganese,Dissolved	0.863		0.00125	0.00500	0.0250	5	05/11/2016 16:22	WG870082
Potassium	0.456	J	0.185	1.00	5.00	5	05/05/2016 15:54	WG869319
Selenium	0.00551	J	0.00190	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Sodium	325		0.550	1.00	5.00	5	05/05/2016 15:54	WG869319

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00401	J	0.00125	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Arsenic, Dissolved	0.00506	J	0.00125	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Barium	0.0326		0.00180	0.00500	0.0250	5	05/05/2016 15:54	WG869319
Barium, Dissolved	0.0278		0.00180	0.00500	0.0250	5	05/11/2016 16:22	WG870082
Calcium	322		0.230	1.00	5.00	5	05/05/2016 15:54	WG869319
Chromium	U		0.00270	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Iron	0.883		0.0750	0.100	0.500	5	05/05/2016 15:54	WG869319
Iron,Dissolved	1.17		0.0750	0.100	0.500	5	05/11/2016 16:22	WG870082
Lead	U		0.00120	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Manganese	0.898		0.00125	0.00500	0.0250	5	05/05/2016 15:54	WG869319
Manganese, Dissolved	0.863		0.00125	0.00500	0.0250	5	05/11/2016 16:22	WG870082
Potassium	0.456	<u>J</u>	0.185	1.00	5.00	5	05/05/2016 15:54	WG869319
Selenium	0.00551	<u>J</u>	0.00190	0.00200	0.0100	5	05/05/2016 15:54	WG869319
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/11/2016 16:22	WG870082
Sodium	325		0.550	1.00	5.00	5	05/05/2016 15:54	WG869319

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/06/2016 17:42	WG870521
Benzene	0.0558		0.000331	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Bromoform	U		0.000469	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Bromomethane	U		0.000866	0.00500	0.00500	1	05/06/2016 17:42	WG870521
n-Butylbenzene	0.00205		0.000361	0.00100	0.00100	1	05/06/2016 17:42	WG870521
sec-Butylbenzene	0.00350		0.000365	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Carbon disulfide	0.000363	J	0.000275	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Chloroethane	U		0.000453	0.00500	0.00500	1	05/06/2016 17:42	WG870521
Chloroform	U		0.000324	0.00500	0.00500	1	05/06/2016 17:42	WG870521
Chloromethane	U		0.000276	0.00250	0.00250	1	05/06/2016 17:42	WG870521
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/06/2016 17:42	WG870521

0

Collected date/time: 04/28/16 17:25

Volatile Organic Compounds (GC/MS) by Method 8260B

JNIE I AR	NATIONWIDE.	
JINE LAD.	NATIONWIDE.	4

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 17:42	WG870521
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/06/2016 17:42	WG870521
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/06/2016 17:42	WG870521
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/06/2016 17:42	WG870521
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Ethylbenzene	0.0483		0.000384	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Isopropylbenzene	0.0187		0.000326	0.00100	0.00100	1	05/06/2016 17:42	WG870521
p-Isopropyltoluene	0.000603	<u>J</u>	0.000350	0.00100	0.00100	1	05/06/2016 17:42	WG870521
2-Butanone (MEK)	U	_	0.00393	0.0100	0.0100	1	05/06/2016 17:42	WG870521
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/06/2016 17:42	WG870521
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/06/2016 17:42	WG870521
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/06/2016 17:42	WG870521
Methyl tert-butyl ether	0.0231		0.000367	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Naphthalene	0.00806		0.00100	0.00500	0.00500	1	05/06/2016 17:42	WG870521
n-Propylbenzene	0.0314		0.000349	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Styrene	U		0.000307	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Toluene	0.00152	J	0.000780	0.00500	0.00500	1	05/06/2016 17:42	WG870521
1,1,1-Trichloroethane	U	_	0.000319	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,2,4-Trimethylbenzene	0.0497		0.000373	0.00100	0.00100	1	05/06/2016 17:42	WG870521
1,3,5-Trimethylbenzene	0.000489	<u>J</u>	0.000387	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Vinyl chloride	U	_	0.000259	0.00100	0.00100	1	05/06/2016 17:42	WG870521
o-Xylene	0.00189		0.000341	0.00100	0.00100	1	05/06/2016 17:42	WG870521
m&p-Xylene	0.0496		0.000719	0.00100	0.00100	1	05/06/2016 17:42	WG870521
Xylenes, Total	0.0515		0.00106	0.00300	0.00300	1	05/06/2016 17:42	WG870521
(S) Toluene-d8	107				90.0-115		05/06/2016 17:42	WG870521
(S) Dibromofluoromethane	114				79.0-121		05/06/2016 17:42	WG870521
(S) 4-Bromofluorobenzene	97.8				80.1-120		05/06/2016 17:42	WG870521

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.49		0.0247	0.100	0.100	1	05/05/2016 20:11	WG869610
(S) o-Terphenyl	114				50.0-150		05/05/2016 20:11	WG869610

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3720		2.82	10.0	10.0	1	05/05/2016 11:33	WG869821

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	13.7		0.197	0.100	1.00	10	05/09/2016 15:00	WG870062

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	148		2.60	1.00	50.0	50	05/16/2016 14:45	WG871015
Fluoride	0.630		0.00990	0.100	0.100	1	05/16/2016 14:31	WG871015
Sulfate	2500		3.87	5.00	250	50	05/16/2016 14:45	WG871015

Cn

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:44	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:26	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:47	WG869207

Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00484	J	0.00125	0.00200	0.0100	5	05/05/2016 15:56	WG869319
Arsenic, Dissolved	0.00290	<u>J</u>	0.00125	0.00200	0.0100	5	05/11/2016 16:27	WG870082
Barium	0.0459		0.00180	0.00500	0.0250	5	05/05/2016 15:56	WG869319
Barium, Dissolved	0.0210	<u>J</u>	0.00180	0.00500	0.0250	5	05/11/2016 16:27	WG870082
Boron	0.384		0.0150	0.0200	0.200	10	05/07/2016 10:11	WG870589
Boron, Dissolved	0.416		0.0150	0.0200	0.200	10	05/09/2016 12:07	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/05/2016 15:56	WG869319
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/11/2016 16:27	WG870082
Calcium	626		0.230	1.00	5.00	5	05/05/2016 15:56	WG869319
Chromium	0.00621	<u>J</u>	0.00270	0.00200	0.0100	5	05/05/2016 15:56	WG869319
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/11/2016 16:27	WG870082
Cobalt	0.00161	<u>J</u>	0.00130	0.00200	0.0100	5	05/05/2016 15:56	WG869319
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/11/2016 16:27	WG870082
Iron	4.00		0.0750	0.100	0.500	5	05/05/2016 15:56	WG869319
Iron,Dissolved	0.483	<u>J</u>	0.0750	0.100	0.500	5	05/11/2016 16:27	WG870082
Lead	0.00403	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:56	WG869319
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/11/2016 16:27	WG870082
Manganese	0.0747		0.00125	0.00500	0.0250	5	05/05/2016 15:56	WG869319
Manganese, Dissolved	0.00842	ВJ	0.00125	0.00500	0.0250	5	05/11/2016 16:27	WG870082
Nickel	U		0.00350	0.00200	0.0200	10	05/07/2016 10:11	WG870589
Nickel, Dissolved	U		0.00175	0.00200	0.0100	5	05/18/2016 15:53	WG870082
Potassium	2.26	J	0.185	1.00	5.00	5	05/05/2016 15:56	WG869319
Selenium	0.0188		0.00190	0.00200	0.0100	5	05/05/2016 15:56	WG869319
Selenium, Dissolved	0.0140		0.00190	0.00200	0.0100	5	05/11/2016 16:27	WG870082
Sodium	258		0.550	1.00	5.00	5	05/05/2016 15:56	WG869319

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:20

/16 16:20

Volatile Organic Compounds (GC/MS) by Method 8260B

832603

Metals	s (ICPM	S) by I	Method	6020
--------	---------	---------	--------	------

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.0261	<u>J</u>	0.00165	0.0100	0.0500	5	05/05/2016 15:56	WG869319
Uranium, Dissolved	0.0245	<u>J</u>	0.00165	0.0100	0.0500	5	05/11/2016 16:27	WG870082
Vanadium	0.0304		0.000900	0.00500	0.0250	5	05/05/2016 15:56	WG869319
Vanadium, Dissolved	0.0201	<u>J</u>	0.000900	0.00500	0.0250	5	05/11/2016 16:27	WG870082

Ср

³Ss

⁴Cn

5	Sr	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 12:27	WG868995
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 12:27	WG868995
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 12:27	WG868995
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 12:27	WG868995
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 12:27	WG868995
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 12:27	WG868995
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 12:27	WG868995
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 12:27	WG868995
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 12:27	WG868995
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 12:27	WG868995
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 12:27	WG868995
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 12:27	WG868995
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 12:27	WG868995
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 12:27	WG868995
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 12:27	WG868995
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 12:27	WG868995
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 12:27	WG868995
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 12:27	WG868995
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 12:27	WG868995
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 12:27	WG868995
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 12:27	WG868995
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 12:27	WG868995
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 12:27	<u>WG868995</u>
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 12:27	<u>WG868995</u>
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 12:27	WG868995
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 12:27	WG868995
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 12:27	WG868995
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 12:27	<u>WG868995</u>

101

(S) Toluene-d8

90.0-115

WG868995

05/05/2016 12:27

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:20

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 (, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
(S) Dibromofluoromethane	102				79.0-121		05/05/2016 12:27	WG868995
(S) 4-Bromofluorobenzene	97.3				80.1-120		05/05/2016 12:27	WG868995

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0505	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 20:29	WG869610
(S) o-Terphenyl	101				50.0-150		05/05/2016 20:29	WG869610

Ss

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 17:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3130		2.82	10.0	10.0	1	05/05/2016 14:25	WG869825	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.326	J	0.197	0.100	1.00	10	05/09/2016 15:01	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	174		2.60	1.00	50.0	50	05/16/2016 14:58	WG871015
Fluoride	0.334		0.00990	0.100	0.100	1	05/16/2016 15:39	WG871015
Sulfate	1610		3.87	5.00	250	50	05/16/2016 14:58	WG871015

Metals (ICP) by Method 6010B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Selenium	U		0.00740	0.0100	0.0100	1	05/19/2016 21:25	WG873945
Selenium, Dissolved	U		0.00740	0.0100	0.0100	1	05/19/2016 22:01	WG873946

Metals (ICPMS) by Method 6020								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.00125	0.00200	0.0100	5	05/05/2016 15:59	WG869319
Arsenic, Dissolved	U		0.00250	0.00200	0.0200	10	05/11/2016 15:13	WG870082
Barium	0.0512		0.00180	0.00500	0.0250	5	05/05/2016 15:59	WG869319
Barium,Dissolved	0.0398	J	0.00360	0.00500	0.0500	10	05/11/2016 15:13	WG870082
Calcium	448		0.230	1.00	5.00	5	05/05/2016 15:59	WG869319
Chromium	0.0453		0.00270	0.00200	0.0100	5	05/05/2016 15:59	WG869319
Chromium, Dissolved	0.0149	ВJ	0.00540	0.00200	0.0200	10	05/11/2016 15:13	WG870082
Iron	0.213	<u>J</u>	0.0750	0.100	0.500	5	05/05/2016 15:59	WG869319
Iron,Dissolved	U		0.150	0.100	1.00	10	05/11/2016 15:13	WG870082
Lead	0.00204	<u>J</u>	0.00120	0.00200	0.0100	5	05/05/2016 15:59	WG869319
Lead,Dissolved	0.00310	<u>J</u>	0.00240	0.00200	0.0200	10	05/11/2016 15:13	WG870082
Manganese	0.547		0.00125	0.00500	0.0250	5	05/05/2016 15:59	WG869319
Manganese,Dissolved	0.489		0.00250	0.00500	0.0500	10	05/11/2016 15:13	WG870082
Potassium	0.437	J	0.185	1.00	5.00	5	05/05/2016 15:59	WG869319
Sodium	181		0.550	1.00	5.00	5	05/05/2016 15:59	WG869319

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u></u>
Acetone	U		0.0500	0.0500	0.250	5	05/06/2016 18:06	WG870521
Benzene	0.424		0.00166	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Bromoform	U		0.00234	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Bromomethane	U		0.00433	0.00500	0.0250	5	05/06/2016 18:06	WG870521
n-Butylbenzene	U		0.00180	0.00100	0.00500	5	05/06/2016 18:06	WG870521
sec-Butylbenzene	0.00471	J	0.00182	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Carbon disulfide	0.00186	<u>J</u>	0.00138	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/06/2016 18:06	WG870521
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/06/2016 18:06	WG870521

Ss

Cn

1,1,2-Trichloroethane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Trichloroethene

Vinyl chloride

m&p-Xylene

Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

o-Xylene

SAMPLE RESULTS - 20

ONE LAB. NATIONWIDE.

WG870521

Collected date/time: 04/28/16 17:50

Volatile Organic Compounds (GC/MS) by Method 8260B									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	· <u></u>	
Chloroethane	U		0.00226	0.00500	0.0250	5	05/06/2016 18:06	WG870521	2_
Chloroform	U		0.00162	0.00500	0.0250	5	05/06/2016 18:06	WG870521	L
Chloromethane	U		0.00138	0.00250	0.0125	5	05/06/2016 18:06	WG870521	3
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/06/2016 18:06	WG870521	3 5
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/06/2016 18:06	WG870521	4
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/06/2016 18:06	WG870521	5
trans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/06/2016 18:06	WG870521	5
1,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/06/2016 18:06	WG870521	6
trans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
Ethylbenzene	0.00606		0.00192	0.00100	0.00500	5	05/06/2016 18:06	WG870521	7
Isopropylbenzene	0.0359		0.00163	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
p-Isopropyltoluene	U		0.00175	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/06/2016 18:06	WG870521	8 /
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/06/2016 18:06	WG870521	
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/06/2016 18:06	WG870521	9
4-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/06/2016 18:06	WG870521	9 9
Methyl tert-butyl ether	0.00568		0.00184	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
Naphthalene	U		0.00500	0.00500	0.0250	5	05/06/2016 18:06	WG870521	
n-Propylbenzene	0.0482		0.00174	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
Styrene	U		0.00154	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
1,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/06/2016 18:06	WG870521	
Toluene	U		0.00390	0.00500	0.0250	5	05/06/2016 18:06	WG870521	
1,1,1-Trichloroethane	U		0.00160	0.00100	0.00500	5	05/06/2016 18:06	WG870521	

U

U

U

U

U

0.0140

0.0140

107

112

101

0.0145

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.38		0.0247	0.100	0.100	1	05/05/2016 20:47	WG869610
(S) o-Terphenyl	113				50.0-150		05/05/2016 20:47	WG869610

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00100

0.00300

0.00500

0.00500

0.00500

0.00500

0.00500

0.00500

0.00500

0.0150

90.0-115

79.0-121

80.1-120

5

5

5

5

5

5

5

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

05/06/2016 18:06

0.00192

0.00199

0.00186

0.00194

0.00130

0.00170

0.00360

0.00530

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2370		2.82	10.0	10.0	1	05/05/2016 14:25	WG869825

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.393	J	0.197	0.100	1.00	10	05/09/2016 15:02	WG870062

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	199	<u>P1</u>	2.60	1.00	50.0	50	05/16/2016 16:19	WG871015
Fluoride	0.294	<u>J3</u>	0.00990	0.100	0.100	1	05/16/2016 15:52	WG871015
Sulfate	1090	<u>P1</u>	3.87	5.00	250	50	05/16/2016 16:19	WG871015

СС

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00282	J	0.00125	0.00200	0.0100	5	05/06/2016 10:10	WG869320
Arsenic, Dissolved	0.00282	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 13:35	WG870081
Barium	0.0251		0.00180	0.00500	0.0250	5	05/06/2016 10:10	WG869320
Barium,Dissolved	0.0218	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 13:35	WG870081
Calcium	314		0.230	1.00	5.00	5	05/06/2016 10:10	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:10	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 13:35	WG870081
Iron	0.270	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:10	WG869320
Iron,Dissolved	0.178	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 13:35	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:10	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 13:35	WG870081
Manganese	0.734		0.00125	0.00500	0.0250	5	05/06/2016 10:10	WG869320
Manganese,Dissolved	0.723	\vee	0.00125	0.00500	0.0250	5	05/07/2016 13:35	WG870081
Potassium	0.611	J	0.185	1.00	5.00	5	05/06/2016 10:10	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:10	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 13:35	WG870081
Sodium	154		0.550	1.00	5.00	5	05/06/2016 10:10	WG869320

Cn

Volatile Organic Compour	nds (GC) by Method 8	8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.581		0.0314	0.100	0.100	1	05/03/2016 14:38	WG869047
(S) a,a,a-Trifluorotoluene(FID)	93.5				62.0-128		05/03/2016 14:38	WG869047

Ss

	, ,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 05:34	WG868996
Benzene	0.0136		0.000331	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 05:34	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 05:34	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 05:34	WG868996

Collected date/time: 04/28/16 16:40

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB.	NATIONWIDE.
0.12 2, 10.	

Ss

Cn

Gl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 05:34	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 05:34	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 05:34	WG868996
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 05:34	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 05:34	WG868996
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 05:34	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 05:34	WG868996
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Ethylbenzene	0.00354		0.000384	0.00100	0.00100	1	05/05/2016 05:34	WG868996
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 05:34	WG868996
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 05:34	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 05:34	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 05:34	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 05:34	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 05:34	WG868996
Methyl tert-butyl ether	0.0143		0.000367	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 05:34	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 05:34	WG868996
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,2,4-Trimethylbenzene	0.000753	<u>J</u>	0.000373	0.00100	0.00100	1	05/05/2016 05:34	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 05:34	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 05:34	WG868996
m&p-Xylene	0.00518		0.000719	0.00100	0.00100	1	05/05/2016 05:34	WG868996
Xylenes, Total	0.00518		0.00106	0.00300	0.00300	1	05/05/2016 05:34	WG868996
(S) Toluene-d8	106				90.0-115		05/05/2016 05:34	WG868996
(S) Dibromofluoromethane	105				79.0-121		05/05/2016 05:34	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.156		0.0247	0.100	0.100	1	05/05/2016 15:22	WG869611
(S) o-Terphenyl	99.7				50.0-150		05/05/2016 15:22	WG869611

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 05:34

WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 16:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	32.0		2.82	10.0	10.0	1	05/05/2016 14:25	WG869825	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0770	<u>J J6</u>	0.0197	0.100	0.100	1	05/09/2016 16:11	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	U		0.0519	1.00	1.00	1	05/16/2016 17:10	WG871015
Fluoride	U		0.00990	0.100	0.100	1	05/16/2016 17:10	WG871015
Sulfate	U		0.0774	5.00	5.00	1	05/16/2016 17:10	WG871015

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.00125	0.00200	0.0100	5	05/06/2016 09:41	WG869320
Arsenic, Dissolved	U		0.000250	0.00200	0.00200	1	05/09/2016 10:10	WG870081
Barium	U		0.00180	0.00500	0.0250	5	05/06/2016 09:41	WG869320
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/09/2016 10:10	WG870081
Calcium	U		0.230	1.00	5.00	5	05/06/2016 09:41	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 09:41	WG869320
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/09/2016 10:10	WG870081
Iron	U		0.0750	0.100	0.500	5	05/06/2016 09:41	WG869320
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/09/2016 10:10	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 09:41	WG869320
Lead,Dissolved	U		0.000240	0.00200	0.00200	1	05/09/2016 10:10	WG870081
Manganese	0.00146	J	0.00125	0.00500	0.0250	5	05/06/2016 09:41	WG869320
Manganese,Dissolved	0.000429	J	0.000250	0.00500	0.00500	1	05/09/2016 10:10	WG870081
Potassium	U		0.185	1.00	5.00	5	05/06/2016 09:41	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 09:41	WG869320
Selenium,Dissolved	U		0.000380	0.00200	0.00200	1	05/09/2016 10:10	WG870081
Sodium	U		0.550	1.00	5.00	5	05/06/2016 09:41	WG869320

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 18:06	WG869702
(S) a,a,a-Trifluorotoluene(FID)	99.2				62.0-128		05/04/2016 18:06	WG869702

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 06:43	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 06:43	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 06:43	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 06:43	WG868996

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Αl

Sc

Collected date/time: 04/28/16 16:55

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 06:43	WG868996
Chloroform	0.000632	J	0.000324	0.00500	0.00500	1	05/05/2016 06:43	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 06:43	WG868996
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 06:43	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 06:43	WG868996
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 06:43	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 06:43	WG868996
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 06:43	WG868996
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 06:43	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 06:43	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 06:43	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 06:43	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 06:43	WG868996
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 06:43	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 06:43	WG868996
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 06:43	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 06:43	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 06:43	WG868996
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 06:43	WG868996
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 06:43	WG868996
(S) Toluene-d8	105				90.0-115		05/05/2016 06:43	WG868996
(S) Dibromofluoromethane	107				79.0-121		05/05/2016 06:43	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

104

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0266	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 15:38	WG869611
(S) o-Terphenyl	96.6				50.0-150		05/05/2016 15:38	WG869611

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 06:43

WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:00

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2400		2.82	10.0	10.0	1	05/05/2016 14:25	WG869825

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0480	J P1	0.0197	0.100	0.100	1	05/09/2016 16:14	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	207		2.60	1.00	50.0	50	05/16/2016 17:50	WG871015
Fluoride	0.389		0.00990	0.100	0.100	1	05/16/2016 18:30	WG871015
Sulfate	1080		3.87	5.00	250	50	05/16/2016 17:50	WG871015

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00306	J	0.00125	0.00200	0.0100	5	05/06/2016 10:13	WG869320
Arsenic, Dissolved	0.00251	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 13:47	WG870081
Barium	0.0289		0.00180	0.00500	0.0250	5	05/06/2016 10:13	WG869320
Barium,Dissolved	0.0233	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 13:47	WG870081
Calcium	327		0.230	1.00	5.00	5	05/06/2016 10:13	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:13	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 13:47	WG870081
Iron	0.347	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:13	WG869320
Iron,Dissolved	0.191	J	0.0750	0.100	0.500	5	05/07/2016 13:47	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:13	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 13:47	WG870081
Manganese	0.823		0.00125	0.00500	0.0250	5	05/06/2016 10:13	WG869320
Manganese,Dissolved	0.675		0.00125	0.00500	0.0250	5	05/07/2016 13:47	WG870081
Potassium	0.612	J	0.185	1.00	5.00	5	05/06/2016 10:13	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:13	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 13:47	WG870081
Sodium	167		0.550	1.00	5.00	5	05/06/2016 10:13	WG869320

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.627		0.0314	0.100	0.100	1	05/03/2016 15:19	WG869047
(S) a,a,a-Trifluorotoluene(FID)	92.9				62.0-128		05/03/2016 15:19	WG869047

9	,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 07:00	WG868996
Benzene	0.0148		0.000331	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 07:00	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 07:00	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 07:00	WG868996

ONE LAB. NATIONWIDE.

L832603

Collected date/time: 04/28/16 15:00

Volatile Organic Compounds (GC/MS) by Method 8260B

Analyte mg/l mg/l mg/l date / three Chlorobrenee U 0.000348 0.00100 0.00000 1 0.50525016 0700 WG868996 Chlorocharone U 0.000327 0.00500 0.00500 1 0.5052016 0700 WG868996 Chlorocharone U 0.000324 0.00500 0.00500 1 0.5052016 0700 WG868996 Chlorocharone U 0.000276 0.00250 0.00500 1 0.5052016 0700 WG868996 Chlorocharone U 0.000276 0.00250 0.00500 1 0.5052016 0700 WG868996 1.2-Dichlorocharone U 0.000259 0.00100 0.00000 1 0.5052016 0700 WG868996 1.2-Dichlorocharone U 0.000391 0.00100 0.00100 1 0.5052016 0700 WG868996 1.2-Dichlorocharone U 0.000398 0.00100 0.00000 1 0.5052016 0700 WG868996 5.1-Dichlorocharone U 0.000398 0.0010		Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Chlorodithonomethane	Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorodithonomethane	Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Chloroform U 0,000324 0,00500 0,00500 1 0,505/2016 07:00 WG868996 Chloromethane U 0,000276 0,00250 0,00250 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000381 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000381 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000381 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000381 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000389 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000389 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000389 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000384 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000384 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000384 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000384 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000384 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000384 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroptopane U 0,000386 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000387 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000387 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000388 0,00100 0,00100 1 0,505/2016 07:00 WG868996 11-Dichloroethane U 0,000388 0,00100 0,00100 1 0,505/2016 07:00 WG86899	Chlorodibromomethane	U		0.000327	0.00100	0.00100	1		WG868996
Chloromethane	Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 07:00	WG868996
1.2-Dibromoethane	Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 07:00	WG868996
11-Dichloroethane U 0.000259 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 11-Dichloroethane U 0.000361 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-2-Dichloroethene U 0.000360 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-2-Dichloroethene U 0.000396 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-2-Dichloroethene U 0.000396 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-2-Dichloroethene U 0.000396 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-3-Dichloropane U 0.000348 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-3-Dichloropropene U 0.000418 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-3-Dichloropropene U 0.000418 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:51-3-Dichloropropene U 0.000364 0.000364 0.000364 0.000360 0.00100 0.00100 1 0.5055/2016 07:00 WG868996 0:5055/2016 07:00 WG868996 0:50	Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 07:00	WG868996
1.2-Dichloroethane U 0.000361 0.00100 0.00100 1 0.50552016 07:00 W6868996 1.1-Dichloroethene U 0.000398 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-12-Dichloroethene U 0.000396 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-12-Dichloroethene U 0.000396 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloroethene U 0.000396 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloroethene U 0.000396 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropane U 0.000418 0.000041 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000418 0.000041 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000384 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000384 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000384 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000384 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000384 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000384 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000382 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000393 0.0100 0.0100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000393 0.0100 0.0100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloropropene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloroethene U 0.000397 0.00100 0.00100 1 0.50552016 07:00 W6868996 Cista-13-Dichloroethene U 0.000397 0.00100 0.00100 1 0.50552016 0	1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 07:00	WG868996
11-Dichloroethene	1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 07:00	WG868996
cis-12-Dichloroethene U 0.000260 0.01000 0.01000 1 0.5/05/2016 07:00 WG868396 trans-12-Dichloroethene U 0.000396 0.01000 0.00100 1 0.5/05/2016 07:00 WG868396 cis-13-Dichloropropene U 0.000348 0.00100 0.00100 1 0.5/05/2016 07:00 WG868396 Ethybenzene 0.000344 0.00049 0.00100 0.00100 1 0.5/05/2016 07:00 WG868396 Ethybenzene 0.00364 0.000384 0.00100 0.00100 1 0.5/05/2016 07:00 WG868396 Ethybenzene U 0.000350 0.01000 0.01000 1 0.5/05/2016 07:00 WG868396 P-bopropytolulene U 0.000350 0.0100 0.0100 1 0.5/05/2016 07:00 WG868396 2-Hexanone U 0.00332 0.0100 0.0100 1 0.5/05/2016 07:00 WG868396 4-Hexhyl-2-pentanone (MIBK) U 0.00322 0.0100 0.0100 1 0.5/05/2016 07:00 WG8	1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 07:00	WG868996
trans-1,2-Dichloroethene U 0.000396 0.00100 0.00100 1 05/05/2016 07:00 WG668996 1,2-Dichloropropane U 0.000306 0.00100 0.00100 1 05/05/2016 07:00 WG688996 ctans-1,3-Dichloropropene U 0.000418 0.00100 0.00100 1 05/05/2016 07:00 WG688996 Ethybenzene 0.00364 0.000384 0.00100 0.00100 1 0.5/05/2016 07:00 WG688996 Esporopylbenzene U 0.000326 0.00100 0.00100 1 0.5/05/2016 07:00 WG688996 2-Butanone (MEK) U 0.00332 0.0100 0.0100 1 0.5/05/2016 07:00 WG688996 2-Hexanone U 0.00382 0.0100 0.0100 1 0.5/05/2016 07:00 WG688996 2-Hexanone U 0.00382 0.0100 0.0100 1 0.5/05/2016 07:00 WG688996 4-Hexanone U 0.00382 0.0100 0.0100 1 0.5/05/2016 07:00 WG688996	1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:00	WG868996
1,2-Dichloropropane	cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 07:00	WG868996
cis-13-Dichloropropene U 0.000418 0.00100 0.01000 1 0.5/05/2016 07:00 WG868996 trans-13-Dichloropropene U 0.000419 0.00100 0.00100 1 0.5/05/2016 07:00 WG868996 Isbrybenzene 0.00364 0.000326 0.00100 0.00100 1 0.5/05/2016 07:00 WG868996 Isbryopyltoluene U 0.000326 0.00100 0.00100 1 0.5/05/2016 07:00 WG868996 2-Butanone (MEK) U 0.00333 0.0100 0.0100 1 0.5/05/2016 07:00 WG868996 2-Hexanone U 0.00382 0.0100 0.0100 1 0.5/05/2016 07:00 WG868996 4-Methyle-Choide U 0.00100 0.00500 0.00500 1 0.5/05/2016 07:00 WG868996 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 0.5/05/2016 07:00 WG868996 Methyler L-bulyl ether 0.0143 0.00237 0.00100 0.00100 1 0.5/05/2016 07:00	trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 07:00	WG868996
trans-1,3-Dichloropropene U 0.000419 0.00100 0.00100 1 0.5/05/2016 07:00 WG868396 Ethylbenzene 0.00364 0.000384 0.00100 0.00100 1 0.5/05/2016 07:00 WG868396 Isopropylbenzene U 0.000350 0.00100 0.00100 1 0.5/05/2016 07:00 WG868396 P-bsopropylbulene U 0.000350 0.00100 0.0100 1 0.5/05/2016 07:00 WG868396 2-Butanone (MEK) U 0.00382 0.0100 0.0100 1 0.5/05/2016 07:00 WG868396 4-Hexanone U 0.00100 0.00500 0.0500 1 0.5/05/2016 07:00 WG868396 Methylene Chloride U 0.00100 0.00500 0.0500 1 0.5/05/2016 07:00 WG868396 Methylene Chloride U 0.00124 0.0000 0.0100 1 0.5/05/2016 07:00 WG868396 Hethyl tether 0.0143 0.00100 0.0100 1 0.5/05/2016 07:00 WG868396 <	1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Ethylbenzene 0.00364 0.000384 0.00100 0.00100 1 05/05/2016 07:00 WG868996	cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Sepropy Benzene	trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 07:00	WG868996
P-IsopropyItoluene	Ethylbenzene	0.00364		0.000384	0.00100	0.00100	1	05/05/2016 07:00	WG868996
2-Butanone (MEK) U 0.00393 0.0100 0.0100 1 05/05/2016 07:00 WG868996 2-Hexanone U 0.00382 0.0100 0.0100 1 05/05/2016 07:00 WG868996 Methylene Chloride U 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/05/2016 07:00 WG868996 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/05/2016 07:00 WG868996 Methylene Chloride U 0.00367 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 Methylene Chloride U 0.00367 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 Methylene Chloride U 0.00367 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 Methylene Chloride U 0.000349 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 0.00500 0.00500 0.00500 0.00500 1 05/05/2016 07:00 WG868996 0.00500 0.00	Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 07:00	WG868996
2-Hexanone	p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Methylene Chloride U 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 4-Methyl-2-pentanone (MIBK) U 0.00214 0.0100 0.0100 1 05/05/2016 07:00 WG868996 Methyl tert-butyl ether 0.0143 0.000367 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 n-Propylbenzene U 0.000349 0.00100 0.00100 1 05/05/2016 07:00 WG868996 11,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 11,12-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 11,12-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00	2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 07:00	WG868996
4-Methyl-2-pentanone (MIBK) U 0,00214 0,0100 0,0100 1 05/05/2016 07:00 WG868996 Methyl tert-butyl ether 0,0143 0,000367 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,00100 0,00500 0,00500 1 05/05/2016 07:00 WG868996 n-Propylbenzene U 0,000349 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000349 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,00037 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000385 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000385 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000385 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000385 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000372 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000372 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000383 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000383 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000388 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000381 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000381 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000381 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000381 0,00100 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000381 0,00000 0,00100 1 05/05/2016 07:00 WG868996 Naphthalene U 0,000381 0,000381 0,00000 0,00100 1 05/05/2016 07:00 WG868996 Naphthal	2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 07:00	WG868996
Methyl tert-butyl ether 0.0143 0.000367 0.00100 0.01000 1 05/05/2016 07:00 WG868996 Naphthalene U 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 In-Propylbenzene U 0.000349 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Styrene U 0.000307 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Tetrachloroethane U 0.000332 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 <td>Methylene Chloride</td> <td>U</td> <td></td> <td>0.00100</td> <td>0.00500</td> <td>0.00500</td> <td>1</td> <td>05/05/2016 07:00</td> <td>WG868996</td>	Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 07:00	WG868996
Naphthalene U 0.00100 0.00500 0.00500 1 05/05/2016 07:00 WG868996 n-Propylbenzene U 0.000349 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Styrene U 0.000377 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000780 0.00500 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 <td>4-Methyl-2-pentanone (MIBK)</td> <td>U</td> <td></td> <td>0.00214</td> <td>0.0100</td> <td>0.0100</td> <td>1</td> <td>05/05/2016 07:00</td> <td>WG868996</td>	4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 07:00	WG868996
n-Propylbenzene U 0.000349 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2,2-Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000372 0.00100 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 0-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.000719 0.00100 0.00100 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00100 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 0.00300 1 05/05/2016 07:00 WG868996 0-Xylene 0.00531 0.00106 0.00300 0.00300 1 0.00300 1 0.005/05/2016 07:00 WG868996 0.Xylenes, Total	Methyl tert-butyl ether	0.0143		0.000367	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Styrene U 0.000307 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2,2-Tetrachloroethane U 0.000130 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000780 0.00500 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene U 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996<	Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 07:00	WG868996
1,1,1,2-Tetrachloroethane U 0.000385 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2,2-Tetrachloroethane U 0.000130 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000780 0.00500 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000387 0.00100 0.00	n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 07:00	WG868996
1,1,2,2-Tetrachloroethane U 0.000130 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Tetrachloroethane U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000780 0.00500 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100	Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Tetrachloroethene U 0.000372 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Toluene U 0.000780 0.00500 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethene U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene 0.000813 J 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00079 0.00100 0.00100 1 05/05	1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Toluene U 0.000780 0.00500 0.00500 1 05/05/2016 07:00 WG868996 1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethene U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene 0.000813 U 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 0-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 m&p-Xylene 0.00531 0.000719 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 07:00	WG868996
1,1,1-Trichloroethane U 0.000319 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethane U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene 0.000813 J 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 07:00	WG868996
1,1,2-Trichloroethane U 0.000383 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Trichloroethene U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene 0.000813 J 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 07:00	WG868996
Trichloroethene U 0.000398 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,2,4-Trimethylbenzene 0.000813 J 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 m&p-Xylene 0.00531 0.000719 0.00100 0.00300 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 07:00	WG868996
1,2,4-Trimethylbenzene 0.000813 J 0.000373 0.00100 0.00100 1 05/05/2016 07:00 WG868996 1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 m&p-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 07:00	WG868996
1,3,5-Trimethylbenzene U 0.000387 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 m&p-Xylene 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Vinyl chloride U 0.000259 0.00100 0.00100 1 05/05/2016 07:00 WG868996 o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 m&p-Xylene 0.00531 0.00109 0.00100 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	1,2,4-Trimethylbenzene	0.000813	J	0.000373	0.00100	0.00100	1	05/05/2016 07:00	WG868996
o-Xylene U 0.000341 0.00100 0.00100 1 05/05/2016 07:00 WG868996 m&p-Xylene 0.00531 0.00109 0.00100 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 07:00	WG868996
m&p-Xylene 0.00531 0.00719 0.00100 0.00100 1 05/05/2016 07:00 WG868996 Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 07:00	WG868996
Xylenes, Total 0.00531 0.00106 0.00300 0.00300 1 05/05/2016 07:00 WG868996	o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 07:00	WG868996
· ·	m&p-Xylene	0.00531		0.000719	0.00100	0.00100	1	05/05/2016 07:00	WG868996
(S) Toluene-d8 108 90.0-115 05/05/2016 07:00 WG868996	Xylenes, Total	0.00531		0.00106	0.00300	0.00300	1	05/05/2016 07:00	WG868996
	(S) Toluene-d8	108				90.0-115		05/05/2016 07:00	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

108

108

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.180		0.0247	0.100	0.100	1	05/05/2016 15:55	WG869611
(S) o-Terphenyl	97.7				50.0-150		05/05/2016 15:55	WG869611

79.0-121

80.1-120

05/05/2016 07:00

05/05/2016 07:00

WG868996

WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:25

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3980		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0410	J	0.0197	0.100	0.100	1	05/09/2016 16:16	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	212		2.60	1.00	50.0	50	05/16/2016 18:57	WG871015
Fluoride	0.568		0.00990	0.100	0.100	1	05/16/2016 18:43	WG871015
Sulfate	2090		3.87	5.00	250	50	05/16/2016 18:57	WG871015

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:47	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:44	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:50	WG869207

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0111		0.00125	0.00200	0.0100	5	05/06/2016 10:16	WG869320
Arsenic, Dissolved	0.00902	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 13:49	WG870081
Barium	0.0203	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 10:16	WG869320
Barium, Dissolved	0.0184	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 13:49	WG870081
Boron	0.438		0.0150	0.0200	0.200	10	05/07/2016 10:16	WG870589
Boron, Dissolved	0.439		0.0150	0.0200	0.200	10	05/09/2016 12:12	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 10:16	WG869320
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 13:49	WG870081
Calcium	446		0.230	1.00	5.00	5	05/06/2016 10:16	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:16	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 13:49	WG870081
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 10:16	WG869320
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 13:49	WG870081
Iron	0.105	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:16	WG869320
Iron,Dissolved	0.139	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 13:49	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:16	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 13:49	WG870081
Manganese	0.364		0.00125	0.00500	0.0250	5	05/06/2016 10:16	WG869320
Manganese, Dissolved	0.333		0.00125	0.00500	0.0250	5	05/07/2016 13:49	WG870081
Nickel	U		0.00175	0.00200	0.0100	5	05/06/2016 10:16	WG869320
Nickel, Dissolved	U		0.00175	0.00200	0.0100	5	05/07/2016 13:49	WG870081
Potassium	0.624	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:16	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:16	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 13:49	WG870081
Sodium	227		0.550	1.00	5.00	5	05/06/2016 10:16	WG869320

Cn

Αl

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:25

Metals (ICPMS) by Method 6020

(/ -)											
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch			
Analyte	mg/l		mg/l	mg/l	mg/l		date / time				
Uranium	0.00235	J	0.00165	0.0100	0.0500	5	05/06/2016 10:16	WG869320			
Uranium,Dissolved	0.00241	<u>J</u>	0.00165	0.0100	0.0500	5	05/07/2016 13:49	WG870081			
Vanadium	0.000910	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 10:16	WG869320			
Vanadium, Dissolved	U		0.000900	0.00500	0.0250	5	05/07/2016 13:49	WG870081			

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.575		0.0314	0.100	0.100	1	05/05/2016 05:32	WG869995
(S) a,a,a-Trifluorotoluene(FID)	90.6				62.0-128		05/05/2016 05:32	WG869995

PAGE:

68 of 187

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	0.0368	<u>J</u>	0.0100	0.0500	0.0500	1	05/06/2016 00:39	WG870398
Benzene	0.00473		0.000331	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Bromoform	U		0.000469	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Bromomethane	U		0.000866	0.00500	0.00500	1	05/06/2016 00:39	WG870398
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/06/2016 00:39	WG870398
sec-Butylbenzene	0.00309		0.000365	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Carbon disulfide	0.00442		0.000275	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Chloroethane	U		0.000453	0.00500	0.00500	1	05/06/2016 00:39	WG870398
Chloroform	U		0.000324	0.00500	0.00500	1	05/06/2016 00:39	WG870398
Chloromethane	U		0.000276	0.00250	0.00250	1	05/06/2016 00:39	WG870398
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 00:39	WG870398
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/06/2016 00:39	WG870398
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/06/2016 00:39	WG870398
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/06/2016 00:39	WG870398
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Ethylbenzene	0.000604	J	0.000384	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Isopropylbenzene	0.0194	_	0.000326	0.00100	0.00100	1	05/06/2016 00:39	WG870398
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/06/2016 00:39	WG870398
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/06/2016 00:39	WG870398
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/06/2016 00:39	WG870398
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/06/2016 00:39	WG870398
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/06/2016 00:39	WG870398
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Naphthalene	U		0.00100	0.00500	0.00500	1	05/06/2016 00:39	WG870398
n-Propylbenzene	0.00162		0.000349	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Styrene	U		0.000307	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Toluene	U		0.000780	0.00500	0.00500	1	05/06/2016 00:39	WG870398
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/06/2016 00:39	WG870398
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/06/2016 00:39	WG870398
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 00:39	WG870398

MW-60

SAMPLE RESULTS - 24

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:25

Volatile Organic Compounds (GC/MS) by Method 8260B

Volume Organic Compounds (CO/WS) by Welhou 0200B										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/06/2016 00:39	WG870398		
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/06/2016 00:39	WG870398		
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/06/2016 00:39	WG870398		
o-Xylene	U		0.000341	0.00100	0.00100	1	05/06/2016 00:39	WG870398		
m&p-Xylene	0.00283		0.000719	0.00100	0.00100	1	05/06/2016 00:39	WG870398		
Xylenes, Total	0.00283	J	0.00106	0.00300	0.00300	1	05/06/2016 00:39	WG870398		
(S) Toluene-d8	101				90.0-115		05/06/2016 00:39	WG870398		
(S) Dibromofluoromethane	101				79.0-121		05/06/2016 00:39	WG870398		
(S) 4-Bromofluorobenzene	96.6				80.1-120		05/06/2016 00:39	WG870398		

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.21		0.0247	0.100	0.100	1	05/05/2016 16:11	WG869611
(S) o-Terphenyl	107				50.0-150		05/05/2016 16:11	WG869611

GI

TS - 25 ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:10

832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	63.0		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0390	J	0.0197	0.100	0.100	1	05/09/2016 16:17	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	U		0.0519	1.00	1.00	1	05/16/2016 19:24	WG871015
Fluoride	U		0.00990	0.100	0.100	1	05/16/2016 19:24	WG871015
Sulfate	0.252	<u>J</u>	0.0774	5.00	5.00	1	05/16/2016 19:24	WG871015

Cn

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:56	WG869397

Αl

СС

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:47	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:52	WG869207

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	U		0.00125	0.00200	0.0100	5	05/06/2016 10:18	WG869320
Arsenic, Dissolved	U		0.000250	0.00200	0.00200	1	05/09/2016 10:13	WG870081
Barium	U		0.00180	0.00500	0.0250	5	05/06/2016 10:18	WG869320
Barium, Dissolved	U		0.000360	0.00500	0.00500	1	05/09/2016 10:13	WG870081
Boron	0.0795	J	0.0150	0.0200	0.200	10	05/07/2016 10:21	WG870589
Boron, Dissolved	0.0532		0.00150	0.0200	0.0200	1	05/09/2016 13:00	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 10:18	WG869320
Cadmium, Dissolved	U		0.000160	0.00100	0.00100	1	05/09/2016 10:13	WG870081
Calcium	U		0.230	1.00	5.00	5	05/06/2016 10:18	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:18	WG869320
Chromium, Dissolved	U		0.000540	0.00200	0.00200	1	05/09/2016 10:13	WG870081
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 10:18	WG869320
Cobalt, Dissolved	U		0.000260	0.00200	0.00200	1	05/09/2016 10:13	WG870081
Iron	U		0.0750	0.100	0.500	5	05/06/2016 10:18	WG869320
Iron,Dissolved	U		0.0150	0.100	0.100	1	05/09/2016 10:13	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:18	WG869320
Lead, Dissolved	U		0.000240	0.00200	0.00200	1	05/09/2016 10:13	WG870081
Manganese	0.00259	<u>J</u>	0.00125	0.00500	0.0250	5	05/06/2016 10:18	WG869320
Manganese, Dissolved	0.000440	<u>J</u>	0.000250	0.00500	0.00500	1	05/09/2016 10:13	WG870081
Nickel	U		0.00175	0.00200	0.0100	5	05/06/2016 10:18	WG869320
Nickel, Dissolved	0.000423	<u>J</u>	0.000350	0.00200	0.00200	1	05/09/2016 10:13	WG870081
Potassium	U		0.185	1.00	5.00	5	05/06/2016 10:18	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:18	WG869320
Selenium, Dissolved	U		0.000380	0.00200	0.00200	1	05/09/2016 10:13	WG870081
Sodium	U		0.550	1.00	5.00	5	05/06/2016 10:18	WG869320

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:10

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	U		0.00165	0.0100	0.0500	5	05/06/2016 10:18	WG869320
Uranium, Dissolved	U		0.000330	0.0100	0.0100	1	05/09/2016 10:13	WG870081
Vanadium	0.000912	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 10:18	WG869320
Vanadium, Dissolved	0.000317	<u>J</u>	0.000180	0.00500	0.00500	1	05/09/2016 10:13	WG870081

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 16:01	WG869047
(S) a,a,a-Trifluorotoluene(FID)	98.9				62.0-128		05/03/2016 16:01	WG869047

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 07:35	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 07:35	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 07:35	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 07:35	WG868996
Chloroform	0.000701	J	0.000324	0.00500	0.00500	1	05/05/2016 07:35	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 07:35	WG868996
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 07:35	WG868996
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 07:35	WG868996
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 07:35	WG868996
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:35	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 07:35	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 07:35	WG868996
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 07:35	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 07:35	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 07:35	WG868996
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 07:35	WG868996
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 07:35	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 07:35	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 07:35	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 07:35	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 07:35	WG868996
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 07:35	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 07:35	WG868996
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 07:35	WG868996
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 07:35	WG868996
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 07:35	WG868996
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 07:35	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:35	WG868996

EB-REST-04

SAMPLE RESULTS - 25

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:10

Volatile Organic Compounds (GC/MS) by Method 8260B

9	1	, ,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 07:35	WG868996	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 07:35	WG868996	
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 07:35	WG868996	
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 07:35	WG868996	
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 07:35	WG868996	
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 07:35	WG868996	
(S) Toluene-d8	106				90.0-115		05/05/2016 07:35	WG868996	
(S) Dibromofluoromethane	108				79.0-121		05/05/2016 07:35	WG868996	
(S) 4-Bromofluorobenzene	105				80.1-120		05/05/2016 07:35	WG868996	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	U		0.0247	0.100	0.100	1	05/05/2016 16:27	WG869611
(S) o-Terphenyl	97.1				50.0-150		05/05/2016 16:27	WG869611

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:00

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	3200		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0650	<u>J J6</u>	0.0197	0.100	0.100	1	05/09/2016 16:24	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	190		2.60	1.00	50.0	50	05/10/2016 22:08	WG871034
Fluoride	1.00		0.00990	0.100	0.100	1	05/10/2016 21:49	WG871034
Sulfate	2140		3.87	5.00	250	50	05/10/2016 22:08	WG871034

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:59	WG869397

Gl

Αl

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:54	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 12:54	WG869207

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0121		0.00125	0.00200	0.0100	5	05/06/2016 10:21	WG869320
Arsenic, Dissolved	0.00871	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 13:59	WG870081
Barium	0.0193	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 10:21	WG869320
Barium, Dissolved	0.0169	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 13:59	WG870081
Boron	0.449		0.0150	0.0200	0.200	10	05/07/2016 10:26	WG870589
Boron,Dissolved	0.431		0.0150	0.0200	0.200	10	05/09/2016 12:21	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 10:21	WG869320
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 13:59	WG870081
Calcium	447		0.230	1.00	5.00	5	05/06/2016 10:21	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:21	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 13:59	WG870081
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 10:21	WG869320
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 13:59	WG870081
Iron	0.165	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:21	WG869320
Iron,Dissolved	0.170	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 13:59	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:21	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 13:59	WG870081
Manganese	0.377		0.00125	0.00500	0.0250	5	05/06/2016 10:21	WG869320
Manganese,Dissolved	0.339		0.00125	0.00500	0.0250	5	05/07/2016 13:59	WG870081
Nickel	U		0.00175	0.00200	0.0100	5	05/06/2016 10:21	WG869320
Nickel, Dissolved	U		0.00175	0.00200	0.0100	5	05/07/2016 13:59	WG870081
Potassium	0.588	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:21	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:21	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 13:59	WG870081
Sodium	226		0.550	1.00	5.00	5	05/06/2016 10:21	WG869320

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:00

Metals (ICPMS) by Method 6020

, ,								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.00254	<u>J</u>	0.00165	0.0100	0.0500	5	05/06/2016 10:21	WG869320
Uranium, Dissolved	0.00239	<u>J</u>	0.00165	0.0100	0.0500	5	05/07/2016 13:59	WG870081
Vanadium	0.00110	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 10:21	WG869320
Vanadium, Dissolved	0.00129	<u>J</u>	0.000900	0.00500	0.0250	5	05/07/2016 13:59	WG870081

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.396		0.0314	0.100	0.100	1	05/05/2016 05:54	WG869995
(S) a,a,a-Trifluorotoluene(FID)	90.5				62.0-128		05/05/2016 05:54	WG869995

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	n Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 07:52	WG868996
Benzene	0.00565		0.000331	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 07:52	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 07:52	WG868996
sec-Butylbenzene	0.00268		0.000365	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Carbon disulfide	0.000403	<u>J</u>	0.000275	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 07:52	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 07:52	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 07:52	WG868996
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 07:52	WG868996
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 07:52	WG868996
2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 07:52	WG868996
1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:52	WG868996
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 07:52	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 07:52	WG868996
2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 07:52	WG868996
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 07:52	WG868996
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 07:52	WG868996
thylbenzene	0.000533	J	0.000384	0.00100	0.00100	1	05/05/2016 07:52	WG868996
opropylbenzene	0.0162	_	0.000326	0.00100	0.00100	1	05/05/2016 07:52	WG868996
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 07:52	WG868996
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 07:52	WG868996
-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 07:52	WG868996
lethylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 07:52	WG868996
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 07:52	WG868996
lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 07:52	WG868996
laphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 07:52	WG868996
-Propylbenzene	0.00159		0.000349	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 07:52	WG868996
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 07:52	WG868996
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 07:52	WG868996
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 07:52	WG868996
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 07:52	WG868996
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 07:52	WG868996
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Frichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:52	WG868996

Cn

DUP-REST-04

SAMPLE RESULTS - 26

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	0.000402	J	0.000373	0.00100	0.00100	1	05/05/2016 07:52	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 07:52	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 07:52	WG868996
m&p-Xylene	0.00272		0.000719	0.00100	0.00100	1	05/05/2016 07:52	WG868996
Xylenes, Total	0.00272	<u>J</u>	0.00106	0.00300	0.00300	1	05/05/2016 07:52	WG868996
(S) Toluene-d8	109				90.0-115		05/05/2016 07:52	WG868996
(S) Dibromofluoromethane	110				79.0-121		05/05/2016 07:52	WG868996
(S) 4-Bromofluorobenzene	103				80.1-120		05/05/2016 07:52	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.19		0.0247	0.100	0.100	1	05/05/2016 16:44	WG869611
(S) o-Terphenyl	107				50.0-150		05/05/2016 16:44	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1850		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.376	J	0.197	0.100	1.00	10	05/09/2016 16:18	WG870487

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	277		2.60	1.00	50.0	50	05/10/2016 22:40	WG871034
Fluoride	1.67		0.00990	0.100	0.100	1	05/10/2016 22:24	WG871034
Sulfate	6.07		0.0774	5.00	5.00	1	05/10/2016 22:24	WG871034

Metals (ICPMS) by Method 6020

Metals (ICPMS) by Method 6020									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Arsenic	0.0100		0.00125	0.00200	0.0100	5	05/06/2016 10:24	WG869320	
Arsenic, Dissolved	0.00187	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:01	WG870081	
Barium	10.2		0.00180	0.00500	0.0250	5	05/06/2016 10:24	WG869320	
Barium, Dissolved	2.06		0.00180	0.00500	0.0250	5	05/07/2016 14:01	WG870081	
Calcium	727		0.230	1.00	5.00	5	05/06/2016 10:24	WG869320	
Chromium	0.00340	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 10:24	WG869320	
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:01	WG870081	
Iron	1.78		0.0750	0.100	0.500	5	05/06/2016 10:24	WG869320	
Iron,Dissolved	0.278	J	0.0750	0.100	0.500	5	05/07/2016 14:01	WG870081	
Lead	0.00200	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 10:24	WG869320	
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:01	WG870081	
Manganese	0.454		0.00125	0.00500	0.0250	5	05/06/2016 10:24	WG869320	
Manganese, Dissolved	0.0956		0.00125	0.00500	0.0250	5	05/07/2016 14:01	WG870081	
Potassium	3.22	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:24	WG869320	
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:24	WG869320	
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:01	WG870081	
Sodium	381		0.550	1.00	5.00	5	05/06/2016 10:24	WG869320	

Gl

Αl

Qc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0100		0.00125	0.00200	0.0100	5	05/06/2016 10:24	WG869320
Arsenic, Dissolved	0.00187	Ţ	0.00125	0.00200	0.0100	5	05/07/2016 14:01	WG870081
Barium	10.2		0.00180	0.00500	0.0250	5	05/06/2016 10:24	WG869320
Barium, Dissolved	2.06		0.00180	0.00500	0.0250	5	05/07/2016 14:01	WG870081
Calcium	727		0.230	1.00	5.00	5	05/06/2016 10:24	WG869320
Chromium	0.00340	Ţ	0.00270	0.00200	0.0100	5	05/06/2016 10:24	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:01	WG870081
Iron	1.78		0.0750	0.100	0.500	5	05/06/2016 10:24	WG869320
Iron,Dissolved	0.278	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 14:01	WG870081
Lead	0.00200	Ţ	0.00120	0.00200	0.0100	5	05/06/2016 10:24	WG869320
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:01	WG870081
Manganese	0.454		0.00125	0.00500	0.0250	5	05/06/2016 10:24	WG869320
Manganese, Dissolved	0.0956		0.00125	0.00500	0.0250	5	05/07/2016 14:01	WG870081
Potassium	3.22	Ţ	0.185	1.00	5.00	5	05/06/2016 10:24	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:24	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:01	WG870081
Sodium	381		0.550	1.00	5.00	5	05/06/2016 10:24	WG869320

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	4.89		0.0314	0.100	0.100	1	05/03/2016 18:41	WG869047
(S) a,a,a-Trifluorotoluene(FID)	91.8				62.0-128		05/03/2016 18:41	WG869047

	• •							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 08:09	WG868996
Benzene	1.28		0.0166	0.00100	0.0500	50	05/06/2016 01:01	WG870398
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 08:09	WG868996
n-Butylbenzene	0.000878	J	0.000361	0.00100	0.00100	1	05/05/2016 08:09	WG868996
sec-Butylbenzene	0.00613		0.000365	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 08:09	WG868996

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Αl

Sc

Collected date/time: 04/29/16 11:05

L832603

L032003

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 08:09	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 08:09	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 08:09	WG868996
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 08:09	WG868996
I,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 08:09	WG868996
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 08:09	WG868996
I,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 08:09	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 08:09	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 08:09	WG868996
I,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 08:09	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 08:09	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Ethylbenzene	0.00466		0.000384	0.00100	0.00100	1	05/05/2016 08:09	WG868996
sopropylbenzene	0.0417		0.000326	0.00100	0.00100	1	05/05/2016 08:09	WG868996
o-Isopropyltoluene	0.00123		0.000350	0.00100	0.00100	1	05/05/2016 08:09	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 08:09	WG868996
?-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 08:09	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 08:09	WG868996
1-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 08:09	WG868996
Methyl tert-butyl ether	2.44		0.0184	0.00100	0.0500	50	05/06/2016 01:01	WG870398
Naphthalene	0.00773		0.00100	0.00500	0.00500	1	05/05/2016 08:09	WG868996
n-Propylbenzene	0.0602		0.000349	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 08:09	WG868996
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 08:09	WG868996
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Toluene	0.00399	<u>J</u>	0.000780	0.00500	0.00500	1	05/05/2016 08:09	WG868996
,1,1-Trichloroethane	U	_	0.000319	0.00100	0.00100	1	05/05/2016 08:09	WG868996
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Frichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 08:09	WG868996
,2,4-Trimethylbenzene	0.00111		0.000373	0.00100	0.00100	1	05/05/2016 08:09	WG868996
,3,5-Trimethylbenzene	0.000591	<u>J</u>	0.000387	0.00100	0.00100	1	05/05/2016 08:09	WG868996
/inyl chloride	U	-	0.000259	0.00100	0.00100	1	05/05/2016 08:09	WG868996
o-Xylene	0.00145		0.000341	0.00100	0.00100	1	05/05/2016 08:09	WG868996
n&p-Xylene	0.00427		0.000719	0.00100	0.00100	1	05/05/2016 08:09	WG868996
Kylenes, Total	0.00572		0.00106	0.00300	0.00300	1	05/05/2016 08:09	WG868996
(S) Toluene-d8	108				90.0-115		05/05/2016 08:09	WG868996
(S) Toluene-d8	97.6				90.0-115		05/06/2016 01:01	WG870398
(S) Dibromofluoromethane	97.7				79.0-121		05/06/2016 01:01	WG870398
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 08:09	WG868996
(S) 4-Bromofluorobenzene	101				80.1-120		05/05/2016 08:09	WG868996
(C) 4.D	22.2				004400		05/00/0040 04 04	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

96.9

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	6.80		0.0247	0.100	0.100	1	05/05/2016 17:00	WG869611
(S) o-Terphenyl	97.0				50.0-150		05/05/2016 17:00	WG869611

(S) 4-Bromofluorobenzene

80.1-120

05/06/2016 01:01

WG870398

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:15

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3300		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.374	<u>J</u>	0.197	0.100	1.00	10	05/09/2016 16:19	WG870487

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	126		2.60	1.00	50.0	50	05/11/2016 00:15	WG871034
Fluoride	1.28		0.00990	0.100	0.100	1	05/10/2016 23:59	WG871034
Sulfate	1790		3.87	5.00	250	50	05/11/2016 00:15	WG871034

Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	· · · · · · · · · · · · · · · · · · ·	mg/l	mg/l	mg/l		date / time	
Arsenic	0.0763		0.00125	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Arsenic, Dissolved	0.0145		0.00125	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Barium	0.113		0.00180	0.00500	0.0250	5	05/06/2016 10:26	WG869320
Barium, Dissolved	0.0221	J	0.00180	0.00500	0.0250	5	05/07/2016 14:04	WG870081
Calcium	2370		0.230	1.00	5.00	5	05/06/2016 10:26	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Iron	0.976		0.0750	0.100	0.500	5	05/06/2016 10:26	WG869320
Iron,Dissolved	0.121	J	0.0750	0.100	0.500	5	05/07/2016 14:04	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Manganese	2.34		0.00125	0.00500	0.0250	5	05/06/2016 10:26	WG869320
Manganese,Dissolved	0.466		0.00125	0.00500	0.0250	5	05/07/2016 14:04	WG870081
Potassium	2.61	J	0.185	1.00	5.00	5	05/06/2016 10:26	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Sodium	711		0.550	1.00	5.00	5	05/06/2016 10:26	WG869320

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0763		0.00125	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Arsenic, Dissolved	0.0145		0.00125	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Barium	0.113		0.00180	0.00500	0.0250	5	05/06/2016 10:26	WG869320
Barium, Dissolved	0.0221	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:04	WG870081
Calcium	2370		0.230	1.00	5.00	5	05/06/2016 10:26	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Iron	0.976		0.0750	0.100	0.500	5	05/06/2016 10:26	WG869320
Iron,Dissolved	0.121	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 14:04	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Manganese	2.34		0.00125	0.00500	0.0250	5	05/06/2016 10:26	WG869320
Manganese, Dissolved	0.466		0.00125	0.00500	0.0250	5	05/07/2016 14:04	WG870081
Potassium	2.61	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:26	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:26	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:04	WG870081
Sodium	711		0.550	1.00	5.00	5	05/06/2016 10:26	WG869320

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 19:02	WG869047
(S) a,a,a-Trifluorotoluene(FID)	96.6				62.0-128		05/03/2016 19:02	WG869047

Cn

	• •							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 08:27	WG868996
Benzene	0.00329		0.000331	0.00100	0.00100	1	05/06/2016 01:24	WG870398
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 08:27	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 08:27	WG868996
sec-Butylbenzene	0.00186		0.000365	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 08:27	WG868996

Collected date/time: 04/29/16 10:15

832603

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE LAB. NATIONWIDE.

Ss

Cn

Gl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	Qualifier	mg/l	mg/l	mg/l	Dilution	date / time	batch
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Chlorodibromomethane	U		0.000348	0.00100	0.00100	1	05/05/2016 08:27	WG868996
			0.000327	0.00100		1	05/05/2016 08:27	WG868996
Chloroethane	U				0.00500			
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 08:27	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 08:27	WG868996
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 08:27	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 08:27	WG868996
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 08:27	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 08:27	WG868996
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Isopropylbenzene	0.0111		0.000326	0.00100	0.00100	1	05/05/2016 08:27	WG868996
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 08:27	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 08:27	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 08:27	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 08:27	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 08:27	WG868996
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/06/2016 01:24	WG870398
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 08:27	WG868996
n-Propylbenzene	0.000518	<u>J</u>	0.000349	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Styrene	U	_	0.000307	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 08:27	WG868996
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 08:27	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Vinyl chloride	U		0.000357	0.00100	0.00100	1	05/05/2016 08:27	WG868996
o-Xylene	U		0.000233	0.00100	0.00100	1	05/05/2016 08:27	WG868996
m&p-Xylene	U		0.000311	0.00100	0.00100	1	05/05/2016 08:27	WG868996
Xylenes, Total	U		0.000719	0.00100	0.00100	1	05/05/2016 08:27	WG868996
(S) Toluene-d8	106		0.00100	0.00300	90.0-115	1	05/05/2016 08:27	WG868996
(S) Toluerie-a8								
1 /	102				90.0-115		05/06/2016 01:24	WG870398
(S) Dibromofluoromethane	100				79.0-121		05/06/2016 01:24	WG870398
(S) Dibromofluoromethane	108				79.0-121		05/05/2016 08:27	WG868996
(S) 4-Bromofluorobenzene	104				80.1-120		05/05/2016 08:27	WG868996
(S) 4-Bromofluorobenzene	93.9				80.1-120		05/06/2016 01:24	WG870398

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.919		0.0247	0.100	0.100	1	05/05/2016 17:17	WG869611
(S) o-Terphenyl	105				50.0-150		05/05/2016 17:17	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:50

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1920		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.73		0.197	0.100	1.00	10	05/10/2016 09:26	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	160		2.60	1.00	50.0	50	05/11/2016 00:47	WG871034
Fluoride	1.79		0.00990	0.100	0.100	1	05/11/2016 00:31	WG871034
Sulfate	995		3.87	5.00	250	50	05/11/2016 00:47	WG871034

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 03:08	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:57	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 13:01	WG869207

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0193		0.00125	0.00200	0.0100	5	05/06/2016 10:29	WG869320
Arsenic, Dissolved	0.00370	J	0.00125	0.00200	0.0100	5	05/07/2016 14:06	WG870081
Barium	0.0436		0.00180	0.00500	0.0250	5	05/06/2016 10:29	WG869320
Barium, Dissolved	0.00904	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:06	WG870081
Boron	0.736		0.0150	0.0200	0.200	10	05/07/2016 10:30	WG870589
Boron, Dissolved	0.749		0.0150	0.0200	0.200	10	05/09/2016 12:26	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 10:29	WG869320
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 14:06	WG870081
Calcium	778		0.230	1.00	5.00	5	05/06/2016 10:29	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:29	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:06	WG870081
Cobalt	0.00155	<u>J</u>	0.00130	0.00200	0.0100	5	05/06/2016 10:29	WG869320
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 14:06	WG870081
Iron	0.158	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:29	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:06	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 10:29	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:06	WG870081
Manganese	0.230		0.00125	0.00500	0.0250	5	05/06/2016 10:29	WG869320
Manganese, Dissolved	0.0350		0.00125	0.00500	0.0250	5	05/07/2016 14:06	WG870081
Nickel	0.0263		0.00175	0.00200	0.0100	5	05/06/2016 10:29	WG869320
Nickel, Dissolved	0.00641	J	0.00175	0.00200	0.0100	5	05/07/2016 14:06	WG870081
Potassium	1.20	J	0.185	1.00	5.00	5	05/06/2016 10:29	WG869320
Selenium	0.00545	J	0.00190	0.00200	0.0100	5	05/06/2016 10:29	WG869320
Selenium, Dissolved	U	_	0.00190	0.00200	0.0100	5	05/07/2016 14:06	WG870081
Sodium	1350		0.550	1.00	5.00	5	05/06/2016 10:29	WG869320

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:50

L832603

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Uranium	0.0438	<u>J</u>	0.00165	0.0100	0.0500	5	05/06/2016 10:29	WG869320	
Uranium,Dissolved	0.00809	<u>J</u>	0.00165	0.0100	0.0500	5	05/07/2016 14:06	WG870081	
Vanadium	0.123		0.000900	0.00500	0.0250	5	05/06/2016 10:29	WG869320	
Vanadium, Dissolved	0.0260		0.000900	0.00500	0.0250	5	05/07/2016 14:06	WG870081	

²Tc

²Tc

³Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 01:09	WG869048
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 01:09	WG869048

⁶Qc

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u>——</u>
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 08:44	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 08:44	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 08:44	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 08:44	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 08:44	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 08:44	WG868996
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 08:44	WG868996
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 08:44	WG868996
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 08:44	WG868996
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 08:44	WG868996
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 08:44	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 08:44	WG868996
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 08:44	WG868996
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 08:44	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 08:44	WG868996
thylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 08:44	WG868996
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 08:44	WG868996
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 08:44	WG868996
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 08:44	WG868996
?-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 08:44	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 08:44	WG868996
I-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 08:44	WG868996
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 08:44	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 08:44	WG868996
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 08:44	WG868996
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 08:44	WG868996
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 08:44	WG868996
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 08:44	WG868996
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 08:44	WG868996
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 08:44	WG868996

MW-52

SAMPLE RESULTS - 29

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:50

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 08:44	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 08:44	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 08:44	WG868996
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 08:44	WG868996
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 08:44	WG868996
(S) Toluene-d8	104				90.0-115		05/05/2016 08:44	WG868996
(S) Dibromofluoromethane	106				79.0-121		05/05/2016 08:44	WG868996
(S) 4-Bromofluorobenzene	102				80.1-120		05/05/2016 08:44	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.324		0.0247	0.100	0.100	1	05/05/2016 17:33	WG869611
(S) o-Terphenyl	102				50.0-150		05/05/2016 17:33	WG869611

Gl

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:05

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	2190		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.384	J	0.197	0.100	1.00	10	05/10/2016 09:27	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	204		2.60	1.00	50.0	50	05/11/2016 01:19	WG871034
Fluoride	1.90		0.00990	0.100	0.100	1	05/11/2016 01:03	WG871034
Sulfate	848		3.87	5.00	250	50	05/11/2016 01:19	WG871034

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Arsenic	0.0331		0.00125	0.00200	0.0100	5	05/06/2016 10:32	WG869320
Arsenic,Dissolved	0.00707	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:08	WG870081
Barium	0.299		0.00180	0.00500	0.0250	5	05/06/2016 10:32	WG869320
Barium,Dissolved	0.0472		0.00180	0.00500	0.0250	5	05/07/2016 14:08	WG870081
Calcium	707		0.230	1.00	5.00	5	05/06/2016 10:32	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:32	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:08	WG870081
Iron	0.677		0.0750	0.100	0.500	5	05/06/2016 10:32	WG869320
Iron,Dissolved	0.0876	J	0.0750	0.100	0.500	5	05/07/2016 14:08	WG870081
Lead	0.00147	J	0.00120	0.00200	0.0100	5	05/06/2016 10:32	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:08	WG870081
Manganese	0.624		0.00125	0.00500	0.0250	5	05/06/2016 10:32	WG869320
Manganese, Dissolved	0.147		0.00125	0.00500	0.0250	5	05/07/2016 14:08	WG870081
Potassium	4.01	J	0.185	1.00	5.00	5	05/06/2016 10:32	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:32	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:08	WG870081
Sodium	2200		0.550	1.00	5.00	5	05/06/2016 10:32	WG869320

°Qc

Gl

°Al

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	1.93		0.0314	0.100	0.100	1	05/03/2016 01:30	WG869048
(S) a,a,a-Trifluorotoluene(FID)	86.0				62.0-128		05/03/2016 01:30	WG869048

⁹Sc

_								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0500	0.0500	0.250	5	05/05/2016 09:01	WG868996
Benzene	0.532		0.00166	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Bromodichloromethane	U		0.00190	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Bromoform	U		0.00234	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Bromomethane	U		0.00433	0.00500	0.0250	5	05/05/2016 09:01	WG868996
n-Butylbenzene	0.00210	<u>J</u>	0.00180	0.00100	0.00500	5	05/05/2016 09:01	WG868996
sec-Butylbenzene	0.00501		0.00182	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Carbon disulfide	U		0.00138	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Carbon tetrachloride	U		0.00190	0.00100	0.00500	5	05/05/2016 09:01	WG868996

Ol

Collected date/time: 04/29/16 10:05

Volatile Organic Compounds (GC/MS) by Method 8260B

NE LAB. NATIONWIDE.

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00174	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Chlorodibromomethane	U		0.00164	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Chloroethane	U		0.00226	0.00500	0.0250	5	05/05/2016 09:01	WG868996
Chloroform	U		0.00162	0.00500	0.0250	5	05/05/2016 09:01	WG868996
Chloromethane	U		0.00138	0.00250	0.0125	5	05/05/2016 09:01	WG868996
1,2-Dibromoethane	U		0.00190	0.00100	0.00500	5	05/05/2016 09:01	WG868996
1,1-Dichloroethane	U		0.00130	0.00100	0.00500	5	05/05/2016 09:01	WG868996
1,2-Dichloroethane	U		0.00180	0.00100	0.00500	5	05/05/2016 09:01	WG868996
1,1-Dichloroethene	U		0.00199	0.00100	0.00500	5	05/05/2016 09:01	WG868996
cis-1,2-Dichloroethene	U		0.00130	0.00100	0.00500	5	05/05/2016 09:01	WG868996
rans-1,2-Dichloroethene	U		0.00198	0.00100	0.00500	5	05/05/2016 09:01	WG868996
I,2-Dichloropropane	U		0.00153	0.00100	0.00500	5	05/05/2016 09:01	WG868996
cis-1,3-Dichloropropene	U		0.00209	0.00100	0.00500	5	05/05/2016 09:01	WG868996
rans-1,3-Dichloropropene	U		0.00210	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Ethylbenzene	0.00864		0.00192	0.00100	0.00500	5	05/05/2016 09:01	WG868996
sopropylbenzene	0.0375		0.00163	0.00100	0.00500	5	05/05/2016 09:01	WG868996
o-Isopropyltoluene	U		0.00175	0.00100	0.00500	5	05/05/2016 09:01	WG868996
2-Butanone (MEK)	U		0.0196	0.0100	0.0500	5	05/05/2016 09:01	WG868996
2-Hexanone	U		0.0191	0.0100	0.0500	5	05/05/2016 09:01	WG868996
Methylene Chloride	U		0.00500	0.00500	0.0250	5	05/05/2016 09:01	WG868996
1-Methyl-2-pentanone (MIBK)	U		0.0107	0.0100	0.0500	5	05/05/2016 09:01	WG868996
Methyl tert-butyl ether	U		0.00184	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Naphthalene	U		0.00500	0.00500	0.0250	5	05/05/2016 09:01	WG868996
n-Propylbenzene	0.0359		0.00174	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Styrene	U		0.00154	0.00100	0.00500	5	05/05/2016 09:01	WG868996
I,1,1,2-Tetrachloroethane	U		0.00192	0.00100	0.00500	5	05/05/2016 09:01	WG868996
1,1,2,2-Tetrachloroethane	U		0.000650	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Tetrachloroethene	U		0.00186	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Toluene	0.00837	J	0.00390	0.00500	0.0250	5	05/05/2016 09:01	WG868996
I,1,1-Trichloroethane	U	_	0.00160	0.00100	0.00500	5	05/05/2016 09:01	WG868996
1,1,2-Trichloroethane	U		0.00192	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Trichloroethene	U		0.00199	0.00100	0.00500	5	05/05/2016 09:01	WG868996
,2,4-Trimethylbenzene	0.00418	<u>J</u>	0.00186	0.00100	0.00500	5	05/05/2016 09:01	WG868996
1,3,5-Trimethylbenzene	U	_	0.00194	0.00100	0.00500	5	05/05/2016 09:01	WG868996
/inyl chloride	U		0.00130	0.00100	0.00500	5	05/05/2016 09:01	WG868996
o-Xylene	U		0.00170	0.00100	0.00500	5	05/05/2016 09:01	WG868996
m&p-Xylene	0.0142		0.00360	0.00100	0.00500	5	05/05/2016 09:01	WG868996
Kylenes, Total	0.0142	<u>J</u>	0.00530	0.00300	0.0150	5	05/05/2016 09:01	WG868996
(S) Toluene-d8	105	_			90.0-115		05/05/2016 09:01	WG868996
(S) Dibromofluoromethane	105				79.0-121		05/05/2016 09:01	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	5.92		0.0247	0.100	0.100	1	05/05/2016 17:50	WG869611
(S) o-Terphenyl	132				50.0-150		05/05/2016 17:50	WG869611

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 09:01

WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:20

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1360		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.765	J	0.197	0.100	1.00	10	05/10/2016 09:28	WG870500

Cn

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	99.0		0.0519	1.00	1.00	1	05/10/2016 22:55	WG871034
Fluoride	1.53		0.00990	0.100	0.100	1	05/10/2016 22:55	WG871034
Sulfate	2100		3.87	5.00	250	50	05/15/2016 20:23	WG872424

Qc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0854		0.00125	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Arsenic,Dissolved	0.0178		0.00125	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Barium	0.300		0.00180	0.00500	0.0250	5	05/06/2016 10:34	WG869320
Barium,Dissolved	0.0519		0.00180	0.00500	0.0250	5	05/07/2016 14:11	WG870081
Calcium	555		0.230	1.00	5.00	5	05/06/2016 10:34	WG869320
Chromium	0.00399	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Iron	2.77		0.0750	0.100	0.500	5	05/06/2016 10:34	WG869320
Iron,Dissolved	0.330	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 14:11	WG870081
Lead	0.00565	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Manganese	6.26		0.00125	0.00500	0.0250	5	05/06/2016 10:34	WG869320
Manganese,Dissolved	1.25		0.00125	0.00500	0.0250	5	05/07/2016 14:11	WG870081
Potassium	1.19	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:34	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Sodium	1380		0.550	1.00	5.00	5	05/06/2016 10:34	WG869320

Αl

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0854		0.00125	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Arsenic, Dissolved	0.0178		0.00125	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Barium	0.300		0.00180	0.00500	0.0250	5	05/06/2016 10:34	WG869320
Barium, Dissolved	0.0519		0.00180	0.00500	0.0250	5	05/07/2016 14:11	WG870081
Calcium	555		0.230	1.00	5.00	5	05/06/2016 10:34	WG869320
Chromium	0.00399	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Iron	2.77		0.0750	0.100	0.500	5	05/06/2016 10:34	WG869320
Iron,Dissolved	0.330	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 14:11	WG870081
Lead	0.00565	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Manganese	6.26		0.00125	0.00500	0.0250	5	05/06/2016 10:34	WG869320
Manganese, Dissolved	1.25		0.00125	0.00500	0.0250	5	05/07/2016 14:11	WG870081
Potassium	1.19	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:34	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:34	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:11	WG870081
Sodium	1380		0.550	1.00	5.00	5	05/06/2016 10:34	WG869320

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.735		0.0314	0.100	0.100	1	05/03/2016 01:52	WG869048
(S) a,a,a-Trifluorotoluene(FID)	89.8				62.0-128		05/03/2016 01:52	WG869048

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 09:18	WG868996
Benzene	0.0132		0.000331	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 09:18	WG868996
n-Butylbenzene	0.00224		0.000361	0.00100	0.00100	1	05/05/2016 09:18	WG868996
sec-Butylbenzene	0.00576		0.000365	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 09:18	WG868996

Collected date/time: 04/29/16 09:20

Volatile Organic Compounds (GC/MS) by Method 8260B

ONFIAR	NATIONWIDE.
OTTE LIND.	TO CHOITE

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 09:18	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 09:18	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 09:18	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 09:18	WG868996
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 09:18	WG868996
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 09:18	WG868996
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 09:18	WG868996
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 09:18	WG868996
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 09:18	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 09:18	WG868996
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 09:18	WG868996
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 09:18	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 09:18	WG868996
thylbenzene	0.000927	J	0.000384	0.00100	0.00100	1	05/05/2016 09:18	WG868996
sopropylbenzene	0.0260		0.000326	0.00100	0.00100	1	05/05/2016 09:18	WG868996
-lsopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 09:18	WG868996
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 09:18	WG868996
-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 09:18	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 09:18	WG868996
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 09:18	WG868996
lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 09:18	WG868996
laphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 09:18	WG868996
-Propylbenzene	0.0212		0.000349	0.00100	0.00100	1	05/05/2016 09:18	WG868996
tyrene	U		0.000307	0.00100	0.00100	1	05/05/2016 09:18	WG868996
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 09:18	WG868996
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 09:18	WG868996
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 09:18	WG868996
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 09:18	WG868996
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 09:18	WG868996
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 09:18	WG868996
richloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 09:18	WG868996
2,4-Trimethylbenzene	0.000871	<u>J</u>	0.000373	0.00100	0.00100	1	05/05/2016 09:18	WG868996
3,5-Trimethylbenzene	0.000525	<u>J</u>	0.000387	0.00100	0.00100	1	05/05/2016 09:18	WG868996
'inyl chloride	U	_	0.000259	0.00100	0.00100	1	05/05/2016 09:18	WG868996
-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 09:18	WG868996
n&p-Xylene	0.000733	<u>J</u>	0.000719	0.00100	0.00100	1	05/05/2016 09:18	WG868996
ylenes, Total	U	_	0.00106	0.00300	0.00300	1	05/05/2016 09:18	WG868996
(S) Toluene-d8	109				90.0-115		05/05/2016 09:18	WG868996
(S) Dibromofluoromethane	107				79.0-121		05/05/2016 09:18	WG868996
(C) A Brown florench and a	00.0				004400		05/05/00/00 00 10	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

96.6

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.55		0.0247	0.100	0.100	1	05/05/2016 18:06	WG869611
(S) o-Terphenyl	114				50.0-150		05/05/2016 18:06	WG869611

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 09:18

WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:25

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	1580		2.82	10.0	10.0	1	05/06/2016 23:56	WG870203	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	1.28	<u>P1</u>	0.197	0.100	1.00	10	05/10/2016 09:29	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	266		0.519	1.00	10.0	10	05/15/2016 21:38	WG872424
Fluoride	1.22		0.00990	0.100	0.100	1	05/11/2016 01:35	WG871034
Sulfate	286		0.774	5.00	50.0	10	05/15/2016 21:38	WG872424

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

Wetals (ICI WIS) by IV	71Ct1100 0020							
·	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.341		0.00125	0.00200	0.0100	5	05/06/2016 10:46	WG869320
Arsenic, Dissolved	0.0646		0.00125	0.00200	0.0100	5	05/07/2016 14:13	WG870081
Barium	0.372		0.00180	0.00500	0.0250	5	05/06/2016 10:46	WG869320
Barium, Dissolved	0.0812		0.00180	0.00500	0.0250	5	05/07/2016 14:13	WG870081
Calcium	1010		0.230	1.00	5.00	5	05/06/2016 10:46	WG869320
Chromium	0.00347	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 10:46	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:13	WG870081
Iron	15.4		0.0750	0.100	0.500	5	05/06/2016 10:46	WG869320
Iron,Dissolved	2.77		0.0750	0.100	0.500	5	05/07/2016 14:13	WG870081
Lead	0.00336	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 10:46	WG869320
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:13	WG870081
Manganese	12.9		0.00125	0.00500	0.0250	5	05/06/2016 10:46	WG869320
Manganese, Dissolved	2.52		0.00125	0.00500	0.0250	5	05/07/2016 14:13	WG870081
Potassium	1.92	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:46	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:46	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:13	WG870081
Sodium	560		0.550	1.00	5.00	5	05/06/2016 10:46	WG869320

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	0.620		0.0314	0.100	0.100	1	05/03/2016 02:13	WG869048
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 02:13	WG869048

³Ss

9	,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 09:36	WG868996
Benzene	0.0231		0.000331	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 09:36	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 09:36	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 09:36	WG868996

10

Collected date/time: 04/29/16 11:25

Volatile Organic Compounds (GC/MS) by Method 8260B

NE LAB.	NATIONWIDE.	
		_

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	·	mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 09:36	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 09:36	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 09:36	WG868996
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 09:36	WG868996
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 09:36	WG868996
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 09:36	WG868996
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 09:36	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 09:36	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 09:36	WG868996
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 09:36	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 09:36	WG868996
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Ethylbenzene	0.00494		0.000384	0.00100	0.00100	1	05/05/2016 09:36	WG868996
sopropylbenzene	0.00111		0.000326	0.00100	0.00100	1	05/05/2016 09:36	WG868996
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 09:36	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 09:36	WG868996
?-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 09:36	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 09:36	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 09:36	WG868996
Methyl tert-butyl ether	0.846		0.00734	0.00100	0.0200	20	05/06/2016 01:46	WG870398
Naphthalene	0.00104	<u>J</u>	0.00100	0.00500	0.00500	1	05/05/2016 09:36	WG868996
n-Propylbenzene	0.00135	_	0.000349	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 09:36	WG868996
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 09:36	WG868996
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 09:36	WG868996
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 09:36	WG868996
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 09:36	WG868996
1,2,4-Trimethylbenzene	0.00209		0.000373	0.00100	0.00100	1	05/05/2016 09:36	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 09:36	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 09:36	WG868996
n&p-Xylene	0.00153		0.000719	0.00100	0.00100	1	05/05/2016 09:36	WG868996
Kylenes, Total	0.00153	<u>J</u>	0.00106	0.00300	0.00300	1	05/05/2016 09:36	WG868996
(S) Toluene-d8	107	_			90.0-115		05/05/2016 09:36	WG868996
(S) Toluene-d8	98.5				90.0-115		05/06/2016 01:46	WG870398
(S) Dibromofluoromethane	100				79.0-121		05/06/2016 01:46	WG870398
(S) Dibromofluoromethane	107				79.0-121		05/05/2016 09:36	WG868996
(S) 4-Bromofluorobenzene	103				80.1-120		05/05/2016 09:36	WG868996
	95.7				80.1-120		05/06/2016 01:46	
(S) 4-Bromofluorobenzene	95./				8U.1-12U		U3/U6/2U16 U1:46	WG870398

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	2.45		0.0247	0.100	0.100	1	05/05/2016 19:29	WG869611
(S) o-Terphenyl	106				50.0-150		05/05/2016 19:29	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:25

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3040		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.470	J	0.197	0.100	1.00	10	05/10/2016 09:31	WG870500

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	135		2.60	1.00	50.0	50	05/11/2016 03:10	WG871034
Fluoride	1.42		0.00990	0.100	0.100	1	05/11/2016 02:54	WG871034
Sulfate	672		3.87	5.00	250	50	05/11/2016 03:10	WG871034

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 03:11	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 16:59	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 13:03	WG869207

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0610		0.00125	0.00200	0.0100	5	05/06/2016 10:48	WG869320
Arsenic, Dissolved	0.0116		0.00125	0.00200	0.0100	5	05/07/2016 14:16	WG870081
Barium	0.331		0.00180	0.00500	0.0250	5	05/06/2016 10:48	WG869320
Barium, Dissolved	0.0685		0.00180	0.00500	0.0250	5	05/07/2016 14:16	WG870081
Boron	1.23		0.0150	0.0200	0.200	10	05/07/2016 10:48	WG870589
Boron, Dissolved	1.15		0.0150	0.0200	0.200	10	05/09/2016 12:41	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 10:48	WG869320
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 14:16	WG870081
Calcium	1500		0.230	1.00	5.00	5	05/06/2016 10:48	WG869320
Chromium	0.00274	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 10:48	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:16	WG870081
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 10:48	WG869320
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 14:16	WG870081
Iron	0.342	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:48	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:16	WG870081
Lead	0.0520		0.00120	0.00200	0.0100	5	05/06/2016 10:48	WG869320
Lead,Dissolved	0.00812	<u>J</u>	0.00120	0.00200	0.0100	5	05/07/2016 14:16	WG870081
Manganese	0.164		0.00125	0.00500	0.0250	5	05/06/2016 10:48	WG869320
Manganese, Dissolved	0.0342		0.00125	0.00500	0.0250	5	05/07/2016 14:16	WG870081
Nickel	0.0226		0.00175	0.00200	0.0100	5	05/06/2016 10:48	WG869320
Nickel, Dissolved	0.00599	<u>J</u>	0.00175	0.00200	0.0100	5	05/07/2016 14:16	WG870081
Potassium	4.06	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 10:48	WG869320
Selenium	0.00220	J	0.00190	0.00200	0.0100	5	05/06/2016 10:48	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:16	WG870081
Sodium	450		0.550	1.00	5.00	5	05/06/2016 10:48	WG869320

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:25

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Uranium	U		0.00165	0.0100	0.0500	5	05/06/2016 10:48	WG869320	
Uranium, Dissolved	U		0.00165	0.0100	0.0500	5	05/07/2016 14:16	WG870081	
Vanadium	0.0158	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 10:48	WG869320	
Vanadium, Dissolved	0.00371	<u>J</u>	0.000900	0.00500	0.0250	5	05/07/2016 14:16	WG870081	

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	4.83		0.314	0.100	1.00	10	05/03/2016 02:34	WG869048
(S) a,a,a-Trifluorotoluene(FID)	98.5				62.0-128		05/03/2016 02:34	WG869048

Gl

Αl

Sc

PAGE:

90 of 187

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/05/2016 09:53	WG868996
Benzene	1.37		0.00331	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Bromoform	U		0.00469	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Bromomethane	U		0.00866	0.00500	0.0500	10	05/05/2016 09:53	WG868996
n-Butylbenzene	U		0.00361	0.00100	0.0100	10	05/05/2016 09:53	WG868996
sec-Butylbenzene	0.00530	<u>J</u>	0.00365	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Carbon disulfide	0.00301	J	0.00275	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Carbon tetrachloride	U	_	0.00379	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Chloroethane	U		0.00453	0.00500	0.0500	10	05/05/2016 09:53	WG868996
Chloroform	U		0.00324	0.00500	0.0500	10	05/05/2016 09:53	WG868996
Chloromethane	U		0.00276	0.00250	0.0250	10	05/05/2016 09:53	WG868996
,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/05/2016 09:53	WG868996
,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/05/2016 09:53	WG868996
,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/05/2016 09:53	WG868996
,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 09:53	WG868996
cis-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/05/2016 09:53	WG868996
rans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/05/2016 09:53	WG868996
,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/05/2016 09:53	WG868996
cis-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/05/2016 09:53	WG868996
rans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Ethylbenzene	0.0276		0.00384	0.00100	0.0100	10	05/05/2016 09:53	WG868996
sopropylbenzene	0.0433		0.00326	0.00100	0.0100	10	05/05/2016 09:53	WG868996
o-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/05/2016 09:53	WG868996
2-Butanone (MEK)	U		0.0393	0.0100	0.100	10	05/05/2016 09:53	WG868996
2-Hexanone	U		0.0382	0.0100	0.100	10	05/05/2016 09:53	WG868996
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/05/2016 09:53	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/05/2016 09:53	WG868996
Methyl tert-butyl ether	0.261		0.00367	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Naphthalene	0.0247	<u>J</u>	0.0100	0.00500	0.0500	10	05/05/2016 09:53	WG868996
n-Propylbenzene	0.0577	_	0.00349	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Styrene	U		0.00307	0.00100	0.0100	10	05/05/2016 09:53	WG868996
,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/05/2016 09:53	WG868996
,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Tetrachloroethene	U		0.00372	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Toluene	0.0350	<u>J</u>	0.00780	0.00500	0.0500	10	05/05/2016 09:53	WG868996
I,1,1-Trichloroethane	U	_	0.00319	0.00100	0.0100	10	05/05/2016 09:53	WG868996
1,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/05/2016 09:53	WG868996
Trichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 09:53	WG868996

MW-28

SAMPLE RESULTS - 33

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:25

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

Volume organic compounds (como) by memor ozoob									
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
1,2,4-Trimethylbenzene	0.113		0.00373	0.00100	0.0100	10	05/05/2016 09:53	WG868996	
1,3,5-Trimethylbenzene	0.00861	J	0.00387	0.00100	0.0100	10	05/05/2016 09:53	WG868996	
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/05/2016 09:53	WG868996	
o-Xylene	0.00496	J	0.00341	0.00100	0.0100	10	05/05/2016 09:53	WG868996	
m&p-Xylene	0.156		0.00719	0.00100	0.0100	10	05/05/2016 09:53	WG868996	
Xylenes, Total	0.161		0.0106	0.00300	0.0300	10	05/05/2016 09:53	WG868996	
(S) Toluene-d8	107				90.0-115		05/05/2016 09:53	WG868996	
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 09:53	WG868996	
(S) 4-Bromofluorobenzene	102				80.1-120		05/05/2016 09:53	WG868996	

²Tc

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	17.0		0.124	0.100	0.500	5	05/07/2016 15:02	WG869611
(S) o-Terphenyl	126				50.0-150		05/07/2016 15:02	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	942		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

Тс

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.363	J	0.197	0.100	1.00	10	05/10/2016 09:36	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	134		0.519	1.00	10.0	10	05/11/2016 03:42	WG871034
Fluoride	1.36		0.00990	0.100	0.100	1	05/11/2016 03:26	WG871034
Sulfate	0.591	<u>J</u>	0.0774	5.00	5.00	1	05/11/2016 03:26	WG871034

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 03:14	WG869397

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/05/2016 17:02	WG869861
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/04/2016 13:06	WG869207

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0148		0.00125	0.00200	0.0100	5	05/06/2016 10:51	WG869320
Arsenic, Dissolved	0.00279	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:18	WG870081
Barium	12.7		0.00180	0.00500	0.0250	5	05/06/2016 10:51	WG869320
Barium, Dissolved	2.37		0.00180	0.00500	0.0250	5	05/07/2016 14:18	WG870081
Boron	0.378		0.0150	0.0200	0.200	10	05/07/2016 10:52	WG870589
Boron, Dissolved	0.321		0.0150	0.0200	0.200	10	05/09/2016 12:45	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 10:51	WG869320
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 14:18	WG870081
Calcium	600		0.230	1.00	5.00	5	05/06/2016 10:51	WG869320
Chromium	0.00289	J	0.00270	0.00200	0.0100	5	05/06/2016 10:51	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:18	WG870081
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 10:51	WG869320
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 14:18	WG870081
Iron	4.74		0.0750	0.100	0.500	5	05/06/2016 10:51	WG869320
Iron,Dissolved	0.715		0.0750	0.100	0.500	5	05/07/2016 14:18	WG870081
Lead	0.00659	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 10:51	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:18	WG870081
Manganese	1.13		0.00125	0.00500	0.0250	5	05/06/2016 10:51	WG869320
Manganese, Dissolved	0.224		0.00125	0.00500	0.0250	5	05/07/2016 14:18	WG870081
Nickel	0.121		0.00175	0.00200	0.0100	5	05/06/2016 10:51	WG869320
Nickel, Dissolved	0.00421	<u>J</u>	0.00175	0.00200	0.0100	5	05/07/2016 14:18	WG870081
Potassium	4.83	J	0.185	1.00	5.00	5	05/06/2016 10:51	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:51	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:18	WG870081
Sodium	740		0.550	1.00	5.00	5	05/06/2016 10:51	WG869320

Ss

СС

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:40

Metals (ICPMS) by Method 6020

metals (i.e. ms) by metals a sole										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Uranium	U		0.00165	0.0100	0.0500	5	05/06/2016 10:51	WG869320		
Uranium, Dissolved	U		0.00165	0.0100	0.0500	5	05/07/2016 14:18	WG870081		
Vanadium	0.00670	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 10:51	WG869320		
Vanadium, Dissolved	0.00166	<u>J</u>	0.000900	0.00500	0.0250	5	05/07/2016 14:18	WG870081		

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	6.09		0.0314	0.100	0.100	1	05/03/2016 02:56	WG869048
(S) a,a,a-Trifluorotoluene(FID)	84.0				62.0-128		05/03/2016 02:56	WG869048

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/05/2016 10:10	WG868996
Benzene	3.09		0.0331	0.00100	0.100	100	05/06/2016 02:08	WG870398
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Bromoform	U		0.00469	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Bromomethane	U		0.00866	0.00500	0.0500	10	05/05/2016 10:10	WG868996
n-Butylbenzene	0.00609	J	0.00361	0.00100	0.0100	10	05/05/2016 10:10	WG868996
sec-Butylbenzene	0.00771	J	0.00365	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Carbon disulfide	U		0.00275	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Chloroethane	U		0.00453	0.00500	0.0500	10	05/05/2016 10:10	WG868996
Chloroform	U		0.00324	0.00500	0.0500	10	05/05/2016 10:10	WG868996
Chloromethane	U		0.00276	0.00250	0.0250	10	05/05/2016 10:10	WG868996
I,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/05/2016 10:10	WG868996
,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/05/2016 10:10	WG868996
,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/05/2016 10:10	WG868996
,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 10:10	WG868996
is-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/05/2016 10:10	WG868996
rans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/05/2016 10:10	WG868996
,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/05/2016 10:10	WG868996
is-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/05/2016 10:10	WG868996
rans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/05/2016 10:10	WG868996
thylbenzene	0.0181		0.00384	0.00100	0.0100	10	05/05/2016 10:10	WG868996
sopropylbenzene	0.0337		0.00326	0.00100	0.0100	10	05/05/2016 10:10	WG868996
o-Isopropyltoluene	U		0.00350	0.00100	0.0100	10	05/05/2016 10:10	WG868996
2-Butanone (MEK)	U		0.0393	0.0100	0.100	10	05/05/2016 10:10	WG868996
2-Hexanone	U		0.0382	0.0100	0.100	10	05/05/2016 10:10	WG868996
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/05/2016 10:10	WG868996
1-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/05/2016 10:10	WG868996
Methyl tert-butyl ether	1.48		0.00367	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Naphthalene	0.0638		0.0100	0.00500	0.0500	10	05/05/2016 10:10	WG868996
n-Propylbenzene	0.0523		0.00349	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Styrene	U		0.00307	0.00100	0.0100	10	05/05/2016 10:10	WG868996
,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/05/2016 10:10	WG868996
,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/05/2016 10:10	WG868996
etrachloroethene	U		0.00372	0.00100	0.0100	10	05/05/2016 10:10	WG868996
oluene	U		0.00780	0.00500	0.0500	10	05/05/2016 10:10	WG868996
,1,1-Trichloroethane	U		0.00319	0.00100	0.0100	10	05/05/2016 10:10	WG868996
I,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Trichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 10:10	WG868996

MW-66

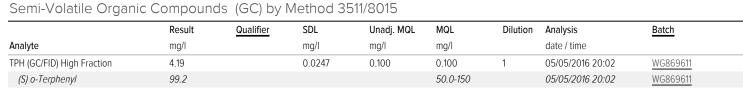
SAMPLE RESULT

Collected date/time: 04/29/16 09:40

L832603

TS - 34	ONE LAB. NATIONWIDE.

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	0.00940	J	0.00373	0.00100	0.0100	10	05/05/2016 10:10	WG868996
1,3,5-Trimethylbenzene	U		0.00387	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/05/2016 10:10	WG868996
o-Xylene	U		0.00341	0.00100	0.0100	10	05/05/2016 10:10	WG868996
m&p-Xylene	0.0285		0.00719	0.00100	0.0100	10	05/05/2016 10:10	WG868996
Xylenes, Total	0.0285	J	0.0106	0.00300	0.0300	10	05/05/2016 10:10	WG868996
(S) Toluene-d8	104				90.0-115		05/05/2016 10:10	WG868996
(S) Toluene-d8	102				90.0-115		05/06/2016 02:08	WG870398
(S) Dibromofluoromethane	102				79.0-121		05/06/2016 02:08	WG870398
(S) Dibromofluoromethane	105				79.0-121		05/05/2016 10:10	WG868996
(S) 4-Bromofluorobenzene	103				80.1-120		05/05/2016 10:10	WG868996
(S) 4-Bromofluorobenzene	95.7				80.1-120		05/06/2016 02:08	WG870398



ONE LAB. NATIONWIDE.

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	<u></u>
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 05:16	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 05:16	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 05:16	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 05:16	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 05:16	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 05:16	WG868996
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 05:16	WG868996
I,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 05:16	WG868996
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 05:16	WG868996
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 05:16	WG868996
is-1,2-Dichloroethene	U		0.000330	0.00100	0.00100	1	05/05/2016 05:16	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 05:16	WG868996
,2-Dichloropropane	U		0.000336	0.00100	0.00100	1	05/05/2016 05:16	WG868996
is-1,3-Dichloropropene	U		0.000300	0.00100	0.00100	1	05/05/2016 05:16	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 05:16	WG868996
ithylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 05:16	WG868996
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 05:16	WG868996
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 05:16	WG868996
-Butanone (MEK)	U		0.00333	0.0100	0.0100	1	05/05/2016 05:16	WG868996
-Hexanone	U		0.00333	0.0100	0.0100	1	05/05/2016 05:16	WG868996
Methylene Chloride	U		0.00302	0.00500	0.00500	1	05/05/2016 05:16	WG868996
-Methyl-2-pentanone (MIBK)	U		0.00100	0.0100	0.00300	1	05/05/2016 05:16	WG868996
Methyl tert-butyl ether	U		0.00214	0.00100	0.00100	1	05/05/2016 05:16	WG868996
Naphthalene	U		0.000307	0.00500	0.00500	1	05/05/2016 05:16	WG868996
n-Propylbenzene	U		0.00100	0.00300	0.00300	1	05/05/2016 05:16	WG868996
Styrene	U		0.000349	0.00100	0.00100	1	05/05/2016 05:16	WG868996
,1,1,2-Tetrachloroethane	U		0.000307	0.00100	0.00100	1	05/05/2016 05:16	WG868996
1,2,2-Tetrachloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 05:16	WG868996
etrachloroethene	U		0.000130	0.00100	0.00100	1	05/05/2016 05:16	WG868996
oluene	U		0.000372	0.00500	0.00100	1	05/05/2016 05:16	WG868996
1,1-Trichloroethane	U		0.000780	0.00300	0.00300	1	05/05/2016 05:16	WG868996
1,2-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 05:16	WG868996
richloroethene	U		0.000383	0.00100	0.00100	1	05/05/2016 05:16	WG868996
2,4-Trimethylbenzene	U		0.000398	0.00100	0.00100	1	05/05/2016 05:16	WG868996
•			0.000373	0.00100	0.00100			WG868996
3,5-Trimethylbenzene	U		0.000387	0.00100		1	05/05/2016 05:16	
/inyl chloride	U				0.00100	1	05/05/2016 05:16	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 05:16	WG868996
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 05:16	WG868996
(ylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 05:16	WG868996
(S) Toluene-d8	109				90.0-115		05/05/2016 05:16	WG868996

Ss

Cn

СС

Gl

Αl

Sc

108

108

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

79.0-121

80.1-120

WG868996

WG868996

05/05/2016 05:16

05/05/2016 05:16

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:45

832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	1410		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0330	<u>J J6</u>	0.0197	0.100	0.100	1	05/10/2016 10:05	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	208		0.519	1.00	10.0	10	05/11/2016 04:14	WG871034
Fluoride	0.866		0.00990	0.100	0.100	1	05/11/2016 03:58	WG871034
Sulfate	153		0.774	5.00	50.0	10	05/11/2016 04:14	WG871034

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	VICTIOG 0020							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0491		0.00125	0.00200	0.0100	5	05/06/2016 10:54	WG869320
Arsenic, Dissolved	0.00883	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:25	WG870081
Barium	5.05		0.00180	0.00500	0.0250	5	05/06/2016 10:54	WG869320
Barium, Dissolved	0.981		0.00180	0.00500	0.0250	5	05/07/2016 14:25	WG870081
Calcium	805		0.230	1.00	5.00	5	05/06/2016 10:54	WG869320
Chromium	0.00682	<u>J</u>	0.00270	0.00200	0.0100	5	05/06/2016 10:54	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:25	WG870081
Iron	4.55		0.0750	0.100	0.500	5	05/06/2016 10:54	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:25	WG870081
Lead	0.0193		0.00120	0.00200	0.0100	5	05/06/2016 10:54	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:25	WG870081
Manganese	1.20		0.00125	0.00500	0.0250	5	05/06/2016 10:54	WG869320
Manganese, Dissolved	0.236		0.00125	0.00500	0.0250	5	05/07/2016 14:25	WG870081
Potassium	6.37		0.185	1.00	5.00	5	05/06/2016 10:54	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 10:54	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:25	WG870081
Sodium	1100		0.550	1.00	5.00	5	05/06/2016 10:54	WG869320

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	18.1		0.314	0.100	1.00	10	05/03/2016 03:17	WG869048
(S) a,a,a-Trifluorotoluene(FID)	99.6				62.0-128		05/03/2016 03:17	WG869048

SS 4 Cp

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.100	0.0500	0.500	10	05/05/2016 10:27	WG868996
Benzene	5.59		0.0331	0.00100	0.100	100	05/06/2016 02:30	WG870398
Bromodichloromethane	U		0.00380	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Bromoform	U		0.00469	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Bromomethane	U		0.00866	0.00500	0.0500	10	05/05/2016 10:27	WG868996
n-Butylbenzene	0.00756	<u>J</u>	0.00361	0.00100	0.0100	10	05/05/2016 10:27	WG868996
sec-Butylbenzene	0.00922	<u>J</u>	0.00365	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Carbon disulfide	U		0.00275	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Carbon tetrachloride	U		0.00379	0.00100	0.0100	10	05/05/2016 10:27	WG868996

Collected date/time: 04/29/16 08:45

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

ONE	IΔR	NATIONWIDE.
OIVL	LAD.	INATION VIDE.

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.00348	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Chlorodibromomethane	U		0.00327	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Chloroethane	U		0.00453	0.00500	0.0500	10	05/05/2016 10:27	WG868996
Chloroform	U		0.00324	0.00500	0.0500	10	05/05/2016 10:27	WG868996
Chloromethane	U		0.00276	0.00250	0.0250	10	05/05/2016 10:27	WG868996
1,2-Dibromoethane	U		0.00381	0.00100	0.0100	10	05/05/2016 10:27	WG868996
1,1-Dichloroethane	U		0.00259	0.00100	0.0100	10	05/05/2016 10:27	WG868996
1,2-Dichloroethane	U		0.00361	0.00100	0.0100	10	05/05/2016 10:27	WG868996
1,1-Dichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 10:27	WG868996
cis-1,2-Dichloroethene	U		0.00260	0.00100	0.0100	10	05/05/2016 10:27	WG868996
rans-1,2-Dichloroethene	U		0.00396	0.00100	0.0100	10	05/05/2016 10:27	WG868996
1,2-Dichloropropane	U		0.00306	0.00100	0.0100	10	05/05/2016 10:27	WG868996
cis-1,3-Dichloropropene	U		0.00418	0.00100	0.0100	10	05/05/2016 10:27	WG868996
trans-1,3-Dichloropropene	U		0.00419	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Ethylbenzene	0.629		0.00384	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Isopropylbenzene	0.0459		0.00326	0.00100	0.0100	10	05/05/2016 10:27	WG868996
p-Isopropyltoluene	0.00375	J	0.00350	0.00100	0.0100	10	05/05/2016 10:27	WG868996
2-Butanone (MEK)	U	_	0.0393	0.0100	0.100	10	05/05/2016 10:27	WG868996
2-Hexanone	U		0.0382	0.0100	0.100	10	05/05/2016 10:27	WG868996
Methylene Chloride	U		0.0100	0.00500	0.0500	10	05/05/2016 10:27	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.0214	0.0100	0.100	10	05/05/2016 10:27	WG868996
Methyl tert-butyl ether	1.99		0.0367	0.00100	0.100	100	05/06/2016 02:30	WG870398
Naphthalene	0.0656		0.0100	0.00500	0.0500	10	05/05/2016 10:27	WG868996
n-Propylbenzene	0.0706		0.00349	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Styrene	U		0.00307	0.00100	0.0100	10	05/05/2016 10:27	WG868996
I,1,1,2-Tetrachloroethane	U		0.00385	0.00100	0.0100	10	05/05/2016 10:27	WG868996
,1,2,2-Tetrachloroethane	U		0.00130	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Tetrachloroethene	U		0.00372	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Toluene	0.0427	<u>J</u>	0.00780	0.00500	0.0500	10	05/05/2016 10:27	WG868996
1,1,1-Trichloroethane	U	_	0.00319	0.00100	0.0100	10	05/05/2016 10:27	WG868996
I,1,2-Trichloroethane	U		0.00383	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Trichloroethene	U		0.00398	0.00100	0.0100	10	05/05/2016 10:27	WG868996
I,2,4-Trimethylbenzene	0.498		0.00373	0.00100	0.0100	10	05/05/2016 10:27	WG868996
I,3,5-Trimethylbenzene	0.0129		0.00387	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Vinyl chloride	U		0.00259	0.00100	0.0100	10	05/05/2016 10:27	WG868996
o-Xylene	0.0843		0.00341	0.00100	0.0100	10	05/05/2016 10:27	WG868996
m&p-Xylene	0.531		0.00719	0.00100	0.0100	10	05/05/2016 10:27	WG868996
Kylenes, Total	0.615		0.0106	0.00300	0.0300	10	05/05/2016 10:27	WG868996
(S) Toluene-d8	105				90.0-115		05/05/2016 10:27	WG868996
(S) Toluene-d8	98.0				90.0-115		05/06/2016 02:30	WG870398
(S) Dibromofluoromethane	99.9				79.0-121		05/06/2016 02:30	WG870398
					79.0-121		05/05/2016 10:27	WG868996
(S) Dibromofluoromethane	104				, 0.0 12.		00,00,20,00,20	
(S) Dibromofluoromethane (S) 4-Bromofluorobenzene	104				80.1-120		05/05/2016 10:27	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	4.29		0.0247	0.100	0.100	1	05/05/2016 20:19	WG869611
(S) o-Terphenyl	106				50.0-150		05/05/2016 20:19	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:40

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5880		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	4.77		0.197	0.100	1.00	10	05/10/2016 09:39	WG870500

Ss

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	377		2.60	1.00	50.0	50	05/11/2016 04:46	WG871034
Fluoride	2.22		0.00990	0.100	0.100	1	05/11/2016 04:30	WG871034
Sulfate	3400		3.87	5.00	250	50	05/11/2016 04:46	WG871034

Qc

Gl

Αl

Sc

Cn

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0522		0.00125	0.00200	0.0100	5	05/06/2016 10:56	WG869320
Arsenic, Dissolved	0.00847	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:27	WG870081
Barium	0.119		0.00180	0.00500	0.0250	5	05/06/2016 10:56	WG869320
Barium, Dissolved	0.0228	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:27	WG870081
Calcium	2840		0.230	1.00	5.00	5	05/06/2016 10:56	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 10:56	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:27	WG870081
Iron	0.197	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 10:56	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:27	WG870081
Lead	0.0385		0.00120	0.00200	0.0100	5	05/06/2016 10:56	WG869320
Lead,Dissolved	0.00650	J	0.00120	0.00200	0.0100	5	05/07/2016 14:27	WG870081
Manganese	3.55		0.00125	0.00500	0.0250	5	05/06/2016 10:56	WG869320
Manganese, Dissolved	0.652		0.00125	0.00500	0.0250	5	05/07/2016 14:27	WG870081
Potassium	28.7		0.185	1.00	5.00	5	05/06/2016 10:56	WG869320
Selenium	0.0714		0.00190	0.00200	0.0100	5	05/06/2016 10:56	WG869320
Selenium,Dissolved	0.0133		0.00190	0.00200	0.0100	5	05/07/2016 14:27	WG870081
Sodium	1800		0.550	1.00	5.00	5	05/06/2016 10:56	WG869320

Metals (ICPMS) by Method 6020

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 03:55	WG869048
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 03:55	WG869048

		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 10:45	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 10:45	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 10:45	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 10:45	WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:40

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 10:45	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 10:45	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 10:45	WG868996
I,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 10:45	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 10:45	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 10:45	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 10:45	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 10:45	WG868996
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 10:45	WG868996
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 10:45	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 10:45	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 10:45	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 10:45	WG868996
I-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 10:45	WG868996
Methyl tert-butyl ether	0.195		0.000367	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 10:45	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 10:45	WG868996
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 10:45	WG868996
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 10:45	WG868996
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 10:45	WG868996
richloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 10:45	WG868996
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 10:45	WG868996
inyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 10:45	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 10:45	WG868996
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 10:45	WG868996
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 10:45	WG868996
(S) Toluene-d8	104				90.0-115		05/05/2016 10:45	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

107

103

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	1.75		0.0247	0.100	0.100	1	05/05/2016 20:35	WG869611
(S) o-Terphenyl	103				50.0-150		05/05/2016 20:35	WG869611

79.0-121

80.1-120

WG868996

WG868996

05/05/2016 10:45

05/05/2016 10:45

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:25

L832603

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	5320		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358	

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	34.7		0.197	0.100	1.00	10	05/10/2016 09:40	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	1010		5.19	1.00	100	100	05/11/2016 05:49	WG871034
Fluoride	0.993		0.00990	0.100	0.100	1	05/11/2016 05:33	WG871034
Sulfate	2470		7.74	5.00	500	100	05/11/2016 05:49	WG871034

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0216		0.00125	0.00200	0.0100	5	05/06/2016 10:59	WG869320
Arsenic,Dissolved	0.00339	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:30	WG870081
Barium	0.303		0.00180	0.00500	0.0250	5	05/06/2016 10:59	WG869320
Barium,Dissolved	0.0105	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:30	WG870081
Calcium	2780		0.230	1.00	5.00	5	05/06/2016 10:59	WG869320
Chromium	0.0130		0.00270	0.00200	0.0100	5	05/06/2016 10:59	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:30	WG870081
Iron	5.54		0.0750	0.100	0.500	5	05/06/2016 10:59	WG869320
Iron,Dissolved	0.149	J	0.0750	0.100	0.500	5	05/07/2016 14:30	WG870081
Lead	0.00566	<u>J</u>	0.00120	0.00200	0.0100	5	05/06/2016 10:59	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:30	WG870081
Manganese	0.225		0.00125	0.00500	0.0250	5	05/06/2016 10:59	WG869320
Manganese,Dissolved	0.00261	J	0.00125	0.00500	0.0250	5	05/07/2016 14:30	WG870081
Potassium	5.74		0.185	1.00	5.00	5	05/06/2016 10:59	WG869320
Selenium	0.128		0.00190	0.00200	0.0100	5	05/06/2016 10:59	WG869320
Selenium,Dissolved	0.0244		0.00190	0.00200	0.0100	5	05/07/2016 14:30	WG870081
Sodium	2640		0.550	1.00	5.00	5	05/06/2016 10:59	WG869320

⁴Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	D !!	0 1:5	CDI		1401	D:1 ::	A 1 :	D
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 04:16	WG869048
(S) a.a.a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 04:16	WG869048

³Ss

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 11:02	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 11:02	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 11:02	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 11:02	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 11:02	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 11:02	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 11:02	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 11:02	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 11:02	WG868996

m&p-Xylene Xylenes, Total

(S) Toluene-d8

(S) Dibromofluoromethane

(S) 4-Bromofluorobenzene

SAMPLE RESULTS - 38

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:25

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B										
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>		
Analyte	mg/l		mg/l	mg/l	mg/l		date / time			
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 11:02	WG868996		
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 11:02	WG868996		
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 11:02	WG868996		
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
o-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 11:02	WG868996		
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 11:02	WG868996		
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 11:02	WG868996		
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 11:02	WG868996		
Methyl tert-butyl ether	0.00197		0.000367	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 11:02	WG868996		
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 11:02	WG868996		
I,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
I,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 11:02	WG868996		
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 11:02	WG868996		

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

U

105

107

102

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.162		0.0247	0.100	0.100	1	05/05/2016 20:52	WG869611
(S) o-Terphenyl	99.2				50.0-150		05/05/2016 20:52	WG869611

0.00100

0.00300

0.00100

0.00300

90.0-115

79.0-121

80.1-120

0.000719

0.00106

05/05/2016 11:02

05/05/2016 11:02

05/05/2016 11:02

05/05/2016 11:02

05/05/2016 11:02

WG868996

WG868996

WG868996

WG868996

WG868996

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:50

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5390		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.375	J	0.197	0.100	1.00	10	05/10/2016 09:41	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	153		2.60	1.00	50.0	50	05/11/2016 06:53	WG871034
Fluoride	1.93	<u>J6</u>	0.00990	0.100	0.100	1	05/11/2016 06:37	WG871034
Sulfate	2020		3.87	5.00	250	50	05/11/2016 06:53	WG871034

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.0230		0.00125	0.00200	0.0100	5	05/06/2016 11:02	WG869320
Arsenic,Dissolved	0.00477	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:32	WG870081
Barium	0.0415		0.00180	0.00500	0.0250	5	05/06/2016 11:02	WG869320
Barium,Dissolved	0.00839	J	0.00180	0.00500	0.0250	5	05/07/2016 14:32	WG870081
Calcium	2410		0.230	1.00	5.00	5	05/06/2016 11:02	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 11:02	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:32	WG870081
Iron	0.134	J	0.0750	0.100	0.500	5	05/06/2016 11:02	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:32	WG870081
Lead	0.00135	J	0.00120	0.00200	0.0100	5	05/06/2016 11:02	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:32	WG870081
Manganese	0.308		0.00125	0.00500	0.0250	5	05/06/2016 11:02	WG869320
Manganese, Dissolved	0.0600		0.00125	0.00500	0.0250	5	05/07/2016 14:32	WG870081
Potassium	2.64	J	0.185	1.00	5.00	5	05/06/2016 11:02	WG869320
Selenium	0.00217	J	0.00190	0.00200	0.0100	5	05/06/2016 11:02	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:32	WG870081
Sodium	1290		0.550	1.00	5.00	5	05/06/2016 11:02	WG869320

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 04:38	WG869048
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 04:38	WG869048

Ss

	,							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 11:19	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 11:19	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 11:19	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 11:19	WG868996

Collected date/time: 04/29/16 08:50

L832603

Volatile Organic Compounds (GC/MS) by Method 8260B

	- 39	ONE LAB. NATIONWIDE.
--	------	----------------------

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 11:19	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 11:19	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 11:19	WG868996
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:19	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 11:19	WG868996
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 11:19	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 11:19	WG868996
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 11:19	WG868996
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 11:19	WG868996
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 11:19	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 11:19	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 11:19	WG868996
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 11:19	WG868996
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 11:19	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 11:19	WG868996
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 11:19	WG868996
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 11:19	WG868996
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 11:19	WG868996
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 11:19	WG868996
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 11:19	WG868996
(S) Toluene-d8	106				90.0-115		05/05/2016 11:19	WG868996
(S) Dibromofluoromethane	111				79.0-121		05/05/2016 11:19	WG868996
(S) 4-Bromofluorobenzene	103				80.1-120		05/05/2016 11:19	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0616	J	0.0247	0.100	0.100	1	05/05/2016 21:08	WG869611
(S) o-Terphenyl	101				50.0-150		05/05/2016 21:08	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3710		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.416	J	0.197	0.100	1.00	10	05/10/2016 09:43	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	88.6		2.60	1.00	50.0	50	05/11/2016 08:29	WG871034
Fluoride	1.87		0.00990	0.100	0.100	1	05/11/2016 07:41	WG871034
Sulfate	1170		3.87	5.00	250	50	05/11/2016 08:29	WG871034

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/I	mg/l		date / time	
Arsenic	0.00344	J	0.00125	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Arsenic, Dissolved	0.00298	J	0.00125	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Barium	0.0155	J	0.00180	0.00500	0.0250	5	05/06/2016 11:04	WG869320
Barium, Dissolved	0.0148	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:34	WG870081
Calcium	681		0.230	1.00	5.00	5	05/06/2016 11:04	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Iron	U		0.0750	0.100	0.500	5	05/06/2016 11:04	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:34	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Manganese	1.15		0.00125	0.00500	0.0250	5	05/06/2016 11:04	WG869320
Manganese, Dissolved	1.00		0.00125	0.00500	0.0250	5	05/07/2016 14:34	WG870081
Potassium	2.59	J	0.185	1.00	5.00	5	05/06/2016 11:04	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Sodium	126		0.550	1.00	5.00	5	05/06/2016 11:04	WG869320

Gl

Αl

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00344	<u>J</u>	0.00125	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Arsenic, Dissolved	0.00298	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Barium	0.0155	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 11:04	WG869320
Barium, Dissolved	0.0148	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:34	WG870081
Calcium	681		0.230	1.00	5.00	5	05/06/2016 11:04	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Iron	U		0.0750	0.100	0.500	5	05/06/2016 11:04	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:34	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Manganese	1.15		0.00125	0.00500	0.0250	5	05/06/2016 11:04	WG869320
Manganese, Dissolved	1.00		0.00125	0.00500	0.0250	5	05/07/2016 14:34	WG870081
Potassium	2.59	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 11:04	WG869320
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 11:04	WG869320
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/07/2016 14:34	WG870081
Sodium	126		0.550	1.00	5.00	5	05/06/2016 11:04	WG869320

Sc

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 04:59	WG869048
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 04:59	WG869048

Qc

	•							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 11:36	WG868996
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 11:36	WG868996
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 11:36	WG868996
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 11:36	WG868996

Collected date/time: 04/29/16 09:45

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Cn

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 11:36	WG868996
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 11:36	WG868996
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 11:36	WG868996
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 11:36	WG868996
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 11:36	WG868996
I,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 11:36	WG868996
I,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:36	WG868996
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 11:36	WG868996
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 11:36	WG868996
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 11:36	WG868996
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 11:36	WG868996
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 11:36	WG868996
thylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 11:36	WG868996
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 11:36	WG868996
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 11:36	WG868996
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 11:36	WG868996
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 11:36	WG868996
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 11:36	WG868996
I-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 11:36	WG868996
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 11:36	WG868996
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 11:36	WG868996
,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 11:36	WG868996
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 11:36	WG868996
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 11:36	WG868996
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 11:36	WG868996
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 11:36	WG868996
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 11:36	WG868996
richloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 11:36	WG868996
,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 11:36	WG868996
,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 11:36	WG868996
/inyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 11:36	WG868996
-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 11:36	WG868996
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 11:36	WG868996
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 11:36	WG868996
(S) Toluene-d8	105				90.0-115		05/05/2016 11:36	WG868996
(S) Dibromofluoromethane	109				79.0-121		05/05/2016 11:36	WG868996
(S) 4-Bromofluorobenzene	101				80.1-120		05/05/2016 11:36	WG868996

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0317	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 21:25	WG869611
(S) o-Terphenyl	101				50.0-150		05/05/2016 21:25	WG869611

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:55

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	4440		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.537	J	0.197	0.100	1.00	10	05/10/2016 09:44	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	342		2.60	1.00	50.0	50	05/15/2016 21:53	WG872424
Fluoride	1.18		0.00990	0.100	0.100	1	05/11/2016 08:44	WG871034
Sulfate	2900		3.87	5.00	250	50	05/15/2016 21:53	WG872424

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

ivietais (iCFIVIS) by iv								
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00408	<u>J</u>	0.00125	0.00200	0.0100	5	05/06/2016 11:07	WG869320
Arsenic,Dissolved	0.00391	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 14:37	WG870081
Barium	0.00922	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 11:07	WG869320
Barium,Dissolved	0.0101	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 14:37	WG870081
Calcium	577		0.230	1.00	5.00	5	05/06/2016 11:07	WG869320
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 11:07	WG869320
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 14:37	WG870081
Iron	U		0.0750	0.100	0.500	5	05/06/2016 11:07	WG869320
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 14:37	WG870081
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 11:07	WG869320
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/07/2016 14:37	WG870081
Manganese	0.438		0.00125	0.00500	0.0250	5	05/06/2016 11:07	WG869320
Manganese,Dissolved	0.412		0.00125	0.00500	0.0250	5	05/07/2016 14:37	WG870081
Potassium	1.39	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 11:07	WG869320
Selenium	0.00410	J	0.00190	0.00200	0.0100	5	05/06/2016 11:07	WG869320
Selenium,Dissolved	0.00379	J	0.00190	0.00200	0.0100	5	05/07/2016 14:37	WG870081
Sodium	245		0.550	1.00	5.00	5	05/06/2016 11:07	WG869320

	Result	Qualifier	SDL	Unadi, MQL	MQL	Dilution	Analysis	Batch
Auralista		Qualifier				Dilution	. ,	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 05:21	WG869048
(S) a.a.a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 05:21	WG869048

Ss Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

Volatile Organic Compounds (GC) by Method 8015D/GRO

9		, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 00:48	WG868993
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 00:48	WG868993
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 00:48	WG868993
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 00:48	WG868993

Collected date/time: 04/29/16 08:55

Volatile Organic Compounds (GC/MS) by Method 8260B

Ss

Cn

СС

Gl

Αl

Sc

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 00:48	WG868993
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 00:48	WG868993
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 00:48	WG868993
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 00:48	WG868993
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 00:48	WG868993
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 00:48	WG868993
,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 00:48	WG868993
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 00:48	WG868993
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 00:48	WG868993
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 00:48	WG868993
is-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 00:48	WG868993
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 00:48	WG868993
thylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 00:48	WG868993
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 00:48	WG868993
-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 00:48	WG868993
-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 00:48	WG868993
-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 00:48	WG868993
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 00:48	WG868993
-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 00:48	WG868993
lethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 00:48	WG868993
laphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 00:48	WG868993
-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 00:48	WG868993
tyrene	U		0.000307	0.00100	0.00100	1	05/05/2016 00:48	WG868993
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 00:48	WG868993
1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 00:48	WG868993
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 00:48	WG868993
oluene	U		0.000780	0.00500	0.00500	1	05/05/2016 00:48	WG868993
1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 00:48	WG868993
1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 00:48	WG868993
richloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 00:48	WG868993
2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 00:48	WG868993
3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 00:48	WG868993
finyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 00:48	WG868993
-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 00:48	WG868993
n&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 00:48	WG868993
Kylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 00:48	WG868993
(S) Toluene-d8	102				90.0-115		05/05/2016 00:48	WG868993
(S) Dibromofluoromethane	103				79.0-121		05/05/2016 00:48	WG868993
(6) 4.5	07.0				00 4 400		05/05/00/00 00 40	

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

87.6

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0578	<u>J</u>	0.0247	0.100	0.100	1	05/05/2016 21:42	WG869611
(S) o-Terphenyl	99.3				50.0-150		05/05/2016 21:42	WG869611

(S) 4-Bromofluorobenzene

80.1-120

05/05/2016 00:48

WG868993

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 09:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4580		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.473	J	0.197	0.100	1.00	10	05/10/2016 09:49	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	500		2.60	1.00	50.0	50	05/11/2016 09:32	WG871034
Fluoride	1.33		0.00990	0.100	0.100	1	05/11/2016 09:16	WG871034
Sulfate	3300		3.87	5.00	250	50	05/11/2016 09:32	WG871034

СС

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00422	J	0.00125	0.00200	0.0100	5	05/06/2016 19:15	WG869321
Arsenic,Dissolved	0.00339	J	0.00125	0.00200	0.0100	5	05/07/2016 15:37	WG870083
Barium	0.0231	J	0.00180	0.00500	0.0250	5	05/06/2016 19:15	WG869321
Barium,Dissolved	0.00902	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:37	WG870083
Calcium	719		0.230	1.00	5.00	5	05/06/2016 19:15	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:15	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:37	WG870083
Iron	0.800		0.0750	0.100	0.500	5	05/06/2016 19:15	WG869321
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 15:37	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 19:15	WG869321
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 15:05	WG870083
Manganese	0.0396		0.00125	0.00500	0.0250	5	05/06/2016 19:15	WG869321
Manganese,Dissolved	0.00791	J	0.00125	0.00500	0.0250	5	05/07/2016 15:37	WG870083
Potassium	1.63	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 19:15	WG869321
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 19:15	WG869321
Selenium,Dissolved	0.00564	J	0.00190	0.00200	0.0100	5	05/07/2016 15:37	WG870083
Sodium	259		0.550	1.00	5.00	5	05/06/2016 19:15	WG869321

Volatile Organic	Compounds	(GC) by	√ Method	8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 05:42	WG869048
(S) a,a,a-Trifluorotoluene(FID)	102				62.0-128		05/03/2016 05:42	WG869048

Volatile Organic Compounds (GC/MS) by Method 8260B

9	,	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 01:08	WG868993
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 01:08	WG868993
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 01:08	WG868993
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 01:08	WG868993

Cn

ONE LAB. NATIONWIDE.

IVI VV - I I O Collected date/time: 04/29	9/16 09:45		SAMPLE	E RESUL 1832603	_15 - 4	2		ONE LAB. NATIONWIDE.	4
Volatile Organic Cor		C/MS) by Me	ethod 8260						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch	(
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 01:08	WG868993	2 _T
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 01:08	WG868993	L'
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 01:08	WG868993	3
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 01:08	WG868993	3 5
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 01:08	WG868993	<u> </u>
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 01:08	WG868993	4
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 01:08	WG868993	L
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 01:08	WG868993	5
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 01:08	WG868993	5
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 01:08	WG868993	
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 01:08	WG868993	6
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 01:08	WG868993	L
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 01:08	WG868993	7

Gl

Αl

Ciliororori	O	0.000021	0.00000	0.00000		03/03/2010 01.00	1100000000
Chloromethane	U	0.000276	0.00250	0.00250	1	05/05/2016 01:08	WG868993
I,2-Dibromoethane	U	0.000381	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,1-Dichloroethane	U	0.000259	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,2-Dichloroethane	U	0.000361	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,1-Dichloroethene	U	0.000398	0.00100	0.00100	1	05/05/2016 01:08	WG868993
cis-1,2-Dichloroethene	U	0.000260	0.00100	0.00100	1	05/05/2016 01:08	WG868993
trans-1,2-Dichloroethene	U	0.000396	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,2-Dichloropropane	U	0.000306	0.00100	0.00100	1	05/05/2016 01:08	WG868993
cis-1,3-Dichloropropene	U	0.000418	0.00100	0.00100	1	05/05/2016 01:08	WG868993
trans-1,3-Dichloropropene	U	0.000419	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Ethylbenzene	U	0.000384	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Isopropylbenzene	U	0.000326	0.00100	0.00100	1	05/05/2016 01:08	WG868993
p-Isopropyltoluene	U	0.000350	0.00100	0.00100	1	05/05/2016 01:08	WG868993
2-Butanone (MEK)	U	0.00393	0.0100	0.0100	1	05/05/2016 01:08	WG868993
2-Hexanone	U	0.00382	0.0100	0.0100	1	05/05/2016 01:08	WG868993
Methylene Chloride	U	0.00100	0.00500	0.00500	1	05/05/2016 01:08	WG868993
4-Methyl-2-pentanone (MIBK)	U	0.00214	0.0100	0.0100	1	05/05/2016 01:08	WG868993
Methyl tert-butyl ether	U	0.000367	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Naphthalene	U	0.00100	0.00500	0.00500	1	05/05/2016 01:08	WG868993
n-Propylbenzene	U	0.000349	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Styrene	U	0.000307	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,1,1,2-Tetrachloroethane	U	0.000385	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,1,2,2-Tetrachloroethane	U	0.000130	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Tetrachloroethene	U	0.000372	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Toluene	U	0.000780	0.00500	0.00500	1	05/05/2016 01:08	WG868993
1,1,1-Trichloroethane	U	0.000319	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,1,2-Trichloroethane	U	0.000383	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Trichloroethene	U	0.000398	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,2,4-Trimethylbenzene	U	0.000373	0.00100	0.00100	1	05/05/2016 01:08	WG868993
1,3,5-Trimethylbenzene	U	0.000387	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Vinyl chloride	U	0.000259	0.00100	0.00100	1	05/05/2016 01:08	WG868993
o-Xylene	U	0.000341	0.00100	0.00100	1	05/05/2016 01:08	WG868993
m&p-Xylene	U	0.000719	0.00100	0.00100	1	05/05/2016 01:08	WG868993
Xylenes, Total	U	0.00106	0.00300	0.00300	1	05/05/2016 01:08	WG868993
(S) Toluene-d8	100			90.0-115		05/05/2016 01:08	WG868993
(S) Dibromofluoromethane	101			79.0-121		05/05/2016 01:08	WG868993
(S) 4-Bromofluorobenzene	86.2			80.1-120		05/05/2016 01:08	WG868993
							_

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.112		0.0247	0.100	0.100	1	05/06/2016 00:46	WG869613
(S) o-Terphenyl	106				50.0-150		05/06/2016 00:46	WG869613

WG869820 Gravimetric Analys		540 C-2011		G		Y CONTF					ONE LAB. NATIONWIDE.	*
Method Blank (I	MB)							_				1
(MB) R3134377-1 05/0	05/16 04:07											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Dissolved Solids	U		2.82	10.0								3 Ss
L832493-14 Ori	ginal Sample (OS) • Dup	licate (D	UP)								
(OS) L832493-14 05/	05/16 04:07 • (DUP) R3134377-4	05/05/16 0	4:07								^⁴ Cn
	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						⁵Sr
Dissolved Solids	1080	1060	1	2.12		5						6
1 -11		CC) - -				-1- (LCCD)						[©] Qc
Laboratory Con					pie Duplic	rate (LCSD)						7 GI
(LCS) R3134377-2 05	705/16 04:07 • (LCS Spike Amount		LCSD Res		LCSD Red	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		8 Al
Dissolved Solids	8800	8220	8380	93.4	95.2	85.0-115			1.93	5		,
												⁹ Sc

	.22			QUA			OL SUN				ONE LAB. NATIONWIDE.	*
N								_				1
	.33											Ср
Analyte n	-			MB RDL								² Tc
Dissolved Solids U	ng/l	m		mg/l 10.0								10
Dissolved Solids C	,	2.1	,,,	10.0								³ Ss
L832603-10 Original	Sample (C	S) • Duplica	ite (DUP)									4
(OS) L832603-10 05/05/16 11	' '	, ,	, ,									⁴Cn
	Original Result [lution DUP F	RPD <u>DUP Qua</u>		RPD Limits						5
•		ng/l	%		%							⁵ Sr
Dissolved Solids 4	1010	090 1	1.98		5							6
												[©] Qc
Laboratory Control S	ample (LC:	S) • Laborato	ory Contr	ol Sample D	uplicate	(LCSD)						7
(LCS) R3134729-2 05/05/16 1											·	GI
	Spike Amount I	.CS Result LC ng/l m		LCS Rec. LC	SD Rec.	Rec. Limits %	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits %		8
	-		J	103 10		85.0-115			0.999	5		Al
												⁹ Sc
												Sc

WG869825 Gravimetric Analysis	by Method 25	540 C-2011		Q	UALITY	CONTF		ИМАRY			ONE LAB. NATIONWIDE.	*
Method Blank (ME	B)											1
(MB) R3134730-1 05/05/	/16 14:25											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2_
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								Tc
DISSOIVED SOIIDS	U		2.82	10.0								³ Ss
L832603-20 Orig	jinal Sample	(OS) • Dup	olicate (D	UP)								
(OS) L832603-20 05/05												[*] Cn
	Original Result		Dilution I	_		JP RPD Limits						5
Analyte Dissolved Solids	mg/l 3130	mg/l 3110		% 0.802	5							⁵ Sr
Dissolved Solids	3130	3110	'	J.602	5							6
												[°] Qc
Laboratory Contro					le Duplicate	e (LCSD)						⁷ Gl
(LCS) R3134730-2 05/09	5/16 14:25 • (LCS) Spike Amount		CSD Resul		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		Gi
Analyte	mg/l	mg/l	mg/l	%	%	%	LC3 Qualifier	LC3D Qualifier	%	%		8 Al
Dissolved Solids	8800	8860	8880	101	101	85.0-115			0.225	5		
												⁹ Sc
												Sc

WG870203 Gravimetric Analysi		540 C-2011		Q	UALITY		OL SUN				ONE LAB. NATIONWIDE.	*
Method Blank (M	1B)											1
(MB) R3134743-1 05/06	6/16 23:56											Ср
A1 -	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Dissolved Solids	mg/l U		mg/l 2.82	mg/l 10.0								10
												³ Ss
L832603-24 Ori	ginal Sample	(OS) • Dup	olicate (DI	JP)								4
(OS) L832603-24 05/0												[‡] Cn
	Original Result		Dilution [_		JP RPD Limits						5
Analyte Dissolved Solids	mg/l 3980	mg/l 3830	1 3	6 1.97	% 5							⁵ Sr
Jissoived Solids	3380	3630	,	1.37	3							6
			_									[°] Qc
Laboratory Conti				· ·	le Duplicate	e (LCSD)						⁷ Gl
(LCS) R3134743-2 05/0	Spike Amount		LCSD Resul		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		01
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		8 Al
Dissolved Solids	8800	8450	8810	96.0	100	85.0-115			4.17	5		
												a
												Sc

SDG:

L832603

DATE/TIME:

05/20/16 13:57

PAGE:

113 of 187

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

Method Blank (MB) (MB) R3134744-1 05/06/16 23:30 MB R mg/l Dissolved Solids U							
MB R Analyte mg/l							1
Analyte mg/l	esult <u>MB Qualifier</u>						- Cp
		MB MDL MB RD	L				² Tc
Dissolved Solids 0		mg/l mg/l 2.82 10.0					. IC
		2.02 10.0					³ Ss
L832603-33 Original Sa	ample (OS) • Dup	olicate (DUP)					4 6 72
(OS) L832603-33 05/06/16 23:3							- Cn
Origii Analyte mg/l	nal Result DUP Result	Dilution DUP RPD %	DUP Qualifier DUP RPD Limits %				⁵ Sr
Dissolved Solids 3040		1 4.89	5				, 51
Sissoned Solids Co.10	2500		Ü				⁶ Qc
Laboratory Control Sam			ample Duplicate (LCSD)				7 ()
(LCS) R3134744-2 05/06/16 23:3	30 • (LCSD) R3134744-3 Amount LCS Result	3 05/06/16 23:30 LCSD Result LCS Re	ec. LCSD Rec. Rec. Limits	LCC Overliffer LCCD Overliffer	RPD	RPD Limits	GI GI
Analyte mg/l	mg/l	mg/l %	ec. LCSD Rec. Rec. Limits %	LCS Qualifier LCSD Qualifier		%	8 Al
Dissolved Solids 8800		8340 93.9	94.8 85.0-115		0.964	5	. Al
							9 Sc

											made
WG870059 Wet Chemistry by Me	thod 353.2			(QUALITY	CONTR <u>L832603</u>		MARY		ONE LAB. NATIONWIDE.	*
Method Blank (MB)										1
(MB) R3134522-1 05/06/1	<u> </u>										. Ср
,	MB Result	MB Qualifier	MB MDL	MB RDL							2
Analyte	mg/l		mg/l	mg/l							Tc
Nitrate-Nitrite	0.0230		0.0197	0.100							2
											Ss
L832472-35 Origin	nal Sample	(OS) • Dup	licate (D	UP)							4
(OS) L832472-35 05/06/			05/06/16 15	5:27							Cn
	Original Result		Dilution			DUP RPD Limits					5 _
Analyte	mg/l	mg/l		%		%					. Sr
Nitrate-Nitrite	0.222	ND	10	19.0	7	20					6
											Qc
L832546-01 Origin	ial Sample (OS) • Dupl	icate (DI	UP)							7 01
(OS) L832546-01 05/06/											GI
A I	Original Result		Dilution			DUP RPD Limits %					8
Analyte	mg/l 1.62	mg/l 1.62		0.000		% 20					. Al
Nitrate-Nitrite	1.02	1.02	ı	0.000	•	20					9
		00)									Sc
Laboratory Contro					iple Duplica	ite (LCSD)					
(LCS) R3134522-2 05/06		-			LCCD D	Dec Harris	1000 - 115	1000 0 -115	000	DDD Livery	
Analyte	Spike Amount mg/l	mg/l	mg/l	ult LCS Rec.	LCSD Rec. %	Rec. Limits %	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits %	
Nitrate-Nitrite	5.00	4.95	4.92	99.0	98.0	90.0-110			1.00	20	
Wildle-Willle	3.00	4.55	4.32	33.0	36.0	30.0-110			1.00	20	
L832472-36 Origin	al Cample	(OS) - Matr	iv Spiko	(MC)							
	<u>'</u>	` '		, ,							ı
(OS) L832472-36 05/06/					D.1	Dec 12 colo	MS				
	•	Original Result			Dilution	Rec. Limits	MS Qualifier				
Analyte	mg/l	mg/l	mg/l	%	10	%	IC				
Nitrate-Nitrite	5.00	0.715	39.4	77.0	10	90.0-110	<u>J6</u>				

SDG: L832603

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 115 of 187

WG870059

QUALITY CONTROL SUMMARY L832603-01

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(00) 1 022602 0	1 OF/OR/16 1E-E2	(MC) D2124E22 7	OE /OC /1C 1E-E0	(MSD) R3134522-8	0E/06/16 1E-E0

(00) 2002000 01 00/00/10	3 10.00 (11.0) 11	0101022 / 00	(00/10/10:00		_ 0 00/00/10	0.00						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0490	4.68	4.49	93.0	89.0	1	90.0-110		<u>J6</u>	4.00	20

W007000						\		41.4.4.5.\(366
WG870062 Wet Chemistry by Met	:hod 353.2					Y CONTR 05,06,07,08,09,10			,21		ONE LAB. NATIONWIDE.	-
Method Blank (MB)											1
(MB) R3135141-2 05/09/16	3 14:20											Ср
	MB Result	MB Qualifier	MB MDL	MB RDL								2
Analyte	mg/l		mg/l	mg/l								Tc
Nitrate-Nitrite	U		0.0197	0.100								2
												Ss
L832603-16 Origin	al Sample ((OS) • Dupl	icate (Dl	JP)								4
(OS) L832603-16 05/09/1	6 14:50 • (DUP)	R3135141-6 05	5/09/16 14:51	1								Cn
	Original Result	DUP Result	Dilution [DUP Qualifier	DUP RPD Limits						5
Analyte	mg/l	mg/l		%		%						³ Sr
Nitrate-Nitrite	0.518	ND	10 1	15.0	<u>J</u>	20						6
												°Qc
L832603-04 Origin	nal Sample	(OS) • Dup	licate (D	UP)								7
(OS) L832603-04 05/09/	16 15:04 • (DUP) R3135141-9 0	5/09/16 15:0)5								GI
	Original Result	DUP Result	Dilution [DUP RPD	DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁸ Al
Nitrate-Nitrite	0.485	ND	10 3	35.0	<u>J P1</u>	20						
												⁹ Sc
Laboratory Contro	l Sample (L	CS) • Laboi	ratory Co	ontrol Sam	nple Duplic	ate (LCSD)						
(LCS) R3135141-3 05/09/1	6 14:21 • (LCSD)	R3135141-4 05	5/09/16 14:2:	2								
	Spike Amount		LCSD Resul		LCSD Red		LCS Qualifier	LCSD Qualifier		RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Nitrate-Nitrite	5.00	4.85	4.80	97.0	96.0	90.0-110			1.00	20		
L832603-11 Origina	al Sample (OS) • Matrix	k Spike (I	MS)								
(OS) L832603-11 05/09/16	5 14:39 • (MS) R	3135141-5 05/0	9/16 14:40									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	5.00	0.105	2.94	57.0	1	90.0-110	<u>J6</u>					

SDG: L832603

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 117 of 187

WG870062

QUALITY CONTROL SUMMARY <u>L832603-02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20,21</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 832603-18 05/09/16 14:53 • (MS) R3135141-7 05/09/16 14:54 • (MSD) R3135141-8 05/09/16 14:55	(OS) L 832603-19	2 05/09/16 1/:53	. (MS) D31351/1_7	05/09/16 14:54	(MSD) P31351/1-9	05/09/16 14:55

(11)		Original Result			MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0340	4.20	4.24	83.0	84.0	1	90.0-110	J6	J6	1.00	20

WG870487				(Y CONTR		MMARY			ONE LAB. NATIONWIDE.	*
Wet Chemistry by	Method 353.2					L832603-22,23,24	1,25,26,27,28					
Method Blank (N	1B)											¹ Cp
(MB) R3135143-5 05/0	9/16 15:16											СР
	MB Result	MB Qualifier	MB MDL	MB RDL								² Tc
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100								I C
Nitiate-mitite	U		0.0197	0.100								3 C -
												Ss
L832409-26 Or	<u> </u>	` ' '										⁴ Cn
(OS) L832409-26 05/												CII
Amalida	Original Result		Dilution	DUP RPD %	DUP Qualifier	DUP RPD Limits %						5
Analyte Nitrate-Nitrite	mg/l 0.377	mg/l ND	10	2.00	J	20						[°] Sr
Niti ate-initite	0.377	ND	10	2.00	2	20						6
												Qc
L832603-23 Ori	ginal Sample	(OS) • Dup	olicate (E	DUP)								7 01
(OS) L832603-23 05/												GI
A 1 - 1 -	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						8
Analyte Nitrate-Nitrite	mg/l 0.0480	mg/l ND	1	% 143	J P1	% 20						Al
Niu die-Millite	0.0460	ND	'	143	<u>3 F I</u>	20						9
												Sc
Laboratory Conf					nple Duplic	cate (LCSD)						
(LCS) R3135143-6 05/												
Amelida	Spike Amount		LCSD Res	ult LCS Rec. %	LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD %	RPD Limits %		
Analyte Nitrate-Nitrite	mg/l 5.00	mg/l 4.74	mg/l 4.74	95.0	95.0	90.0-110			0.000	20		
Niti ate-initite	3.00	4./4	4.74	95.0	33.0	90.0-110			0.000	20		
L832603-22 Or			· ·	, ,								
(OS) L832603-22 05/	09/16 16:11 • (MS) R	3135143-9 05	/09/16 16:13	3								
	Spike Amount	Original Resul	t MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						
Nitrate-Nitrite	5.00	0.0770	4.50	88.0	1	90.0-110	<u>J6</u>					

SDG: L832603 DATE/TIME:

05/20/16 13:57

PAGE: 119 of 187

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

WG870487

QUALITY CONTROL SUMMARY L832603-22,23,24,25,26,27,28

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-26 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832603-26	5 05/09/16 16:24 • (MS) R3135143	-11 05/09/16 16:25 • (MSD) R3135143-12 05/09/16 16:26

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Nitrate-Nitrite	5.00	0.0650	0.407	0.393	7.00	7.00	1	90.0-110	<u>J6</u>	<u>J6</u>	4.00	20

WG870500				(Y CONTR						ONE LAB. NATIONWIDE.	米
Wet Chemistry by M					L832603-	29,30,31,32,33,34	4,36,37,38,	39,40,41,42					
Method Blank (M	,												1 Cp
(MB) R3135269-2 05/10	0/16 09:21 MB Result	MB Qualifier	MB MDL	MB RDL									
Analyte	mg/l	Mb Qualifier	mg/l	mg/l									² Tc
Nitrate-Nitrite	U		0.0197	0.100									
													³ Ss
L832603-32 Orio	ginal Sample	(OS) • Dur	olicate ([OUP)									4
(OS) L832603-32 05/10		, ,	`										- Cn
(,	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits							5
Analyte	mg/l	mg/l		%		%							_ sr
Nitrate-Nitrite	1.28	ND	10	94.0	<u>J P1</u>	20							6
													[®] Qc
L832616-02 Orig	jinal Sample ((OS) • Dup	licate (D	JUP)									7
(OS) L832616-02 05/10)/16 09:51 • (DUP)	R3135269-6 (05/10/16 09):52									- GI
	Original Result		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits							8
Analyte Nitrata Nitrita	mg/l	mg/l	10	%	1	%							_ Al
Nitrate-Nitrite	0.503	ND	10	0.000	<u> 7</u>	20							9
													[®] Sc
Laboratory Contr					ple Duplic	ate (LCSD)							
(LCS) R3135269-3 05/1		-			LOCD	D 11	1000 -1	. 1000	DDD	DDD 11			
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Res mg/l	sult LCS Rec.	LCSD Rec	c. Rec. Limits	LCS Quali	fier LCSD G	Qualifier RPD %	RPD Lim	its		
Nitrate-Nitrite	5.00	4.63	4.72	93.0	94.0	90.0-110			2.00	20			-
L832616-03 Orig	inal Samnla I	(∩S) _a Mati	riv Snike	\/\/\C\ • Ma	riv Snika F	Nunlicate (MS	D)						
(OS) L832616-03 05/10		, ,		· '	· ·		<i>D</i>)						-
(03) 2032010-03 03/10		Original Result				MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Nitrate-Nitrite	5.00	0.0520	3.74	3.58	74.0	70.0	1	90.0-110	<u>J6</u>	<u>J6</u>	4.00	20	_

SDG: L832603

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 121 of 187

WG870500

QUALITY CONTROL SUMMARY <u>L832603-29,30,31,32,33,34,36,37,38,39,40,41,42</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-36 Original Sample (OS) • Matrix Spike (MS)

(OS) L832603-36 05/10/16 10:05 • (MS) R3135269-9 05/10/16 10:06

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Nitrate-Nitrite	5.00	0.0330	0.531	10.0	1	90.0-110	<u>J6</u>

WG870883				(Y CONTR					ONE LAB. NATIONWIDE.	景
Method Blank (N						, . , . , . , . , . , . , .		-				
												¹ Cp
(MB) R3135310-1 05/0		MD Ovelifier	MD MDI	MD DDI								
Analyto	MB Result	MB Qualifier	MB MDL mg/l	MB RDL								² Tc
Analyte Chloride	mg/l U		0.0519	mg/l 1.00								
Fluoride	U		0.0099	0.100								3
Sulfate	U		0.0033	5.00								Ss
Sunate	Ü		0.077	0.00								4
L832548-01 Ori	ainal Sample (OS) • Dupl	icate (Dl	JP)								*Cn
(OS) L832548-01 05/												⁵ Sr
(00) 20020 10 01 00/	Original Result		Dilution		DUP Qualifier	DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						6 _
Chloride	26.3	26.3	1	0		15						[°] Qc
Fluoride	ND	0.0689	1	0		15						-
												GI
L832548-03 Or	iginal Sample	(OS) • Dup	licate (D	UP)								8 Al
(OS) L832548-03 05/	/10/16 00:21 • (DUP)	R3135310-6 0	5/10/16 00:	36								
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits						9
Analyte	mg/l	mg/l		%		%						Sc
Chloride	3.33	0.564		142	<u>P1</u>	15						
Fluoride	ND	0.000		0		15						
Sulfate	5.11	0.752	1	149	<u>P1</u>	15						
Laboratory Con (LCS) R3135310-2 05/					nple Duplic	cate (LCSD)						
(200) 110100010 2 00/	Spike Amount		LCSD Resu		LCSD Re	c. Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.3	39.4	98	98	80-120			0	15		
Fluoride	8.00	7.87	7.88	98	99	80-120			0	15		
Sulfate	40.0	39.7	39.6	99	99	80-120			0	15		
L832548-02 Or	iginal Sample	(OS) • Mati	ix Spike	(MS)								
(OS) L832548-02 05	/09/16 16:28 • (MS)	R3135310-5 05	5/09/16 17:16	6								
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%	Quaimer					
	a	3''	9	,,								

SDG: L832603

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 123 of 187

QUALITY CONTROL SUMMARY <u>L832603-01,02,03,04,05,06,07,08</u> ONE LAB. NATIONWIDE. WG870883 Wet Chemistry by Method 9056A 80-120 **Endyte** 509.6 1396 829.8 ÿ8 Fluoride 5.00 ND 4.70 93 80-120 50.0 19.1 67.9 98 80-120 Sulfate L832548-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

⁶Qc

Тс

Ss

⁸Al

(OS) 2632340-04 OS/10/10 OO:31 + [NIS] KS133310-7 OS/10/10 OI:00 + [NISD] KS133310-6 OS/10/10 OI:31												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	ND	51.3	51.4	101	101	1	80-120			0	15
Fluoride	5.00	ND	4.81	4.80	95	95	1	80-120			0	15
Sulfate	50.0	8.61	59.3	59.0	101	101	1	80-120			1	15

WG871015 Wet Chemistry by Meth	nod 9056A			(Y CONTR				ONE LAB. NATION	WIDE.
Method Blank (MB)											1
(MB) R3137141-1 05/16/16 0	7:45										— Ср
,	MB Result	MB Qualifier	MB MDL	MB RDL							2
Analyte	mg/l		mg/l	mg/l							Tc Tc
Chloride	U		0.0519	1.00							
Fluoride	U		0.0099	0.100							³ Ss
Sulfate	U		0.0774	5.00							
											4 Cn
L832409-13 Origina	al Sample (OS) • Dupl	icate (D	UP)							Cn
(OS) L832409-13 05/16/16	10:03 • (DUP) F	R3137141-5 05.	/16/16 10:4:	3							— ⁵Sr
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/l	mg/l		%		%					⁶ Qc
Chloride	126	134	50	7		15					QC
Fluoride	U	0.000		0		15					7
Sulfate	2520	2340	50	7		15					GI
											8
L832603-21 Origina	al Sample (OS) • Dupl	icate (D	·UP)							Al
(OS) L832603-21 05/16/16	15:52 • (DUP) F	R3137141-6 05	/16/16 16:0!	5							9
	Original Result				DUP Qualifier	DUP RPD Limits					Sc
Analyte	mg/l	mg/l		%		%					
Fluoride	0.294	0.506	1	53	<u>J3</u>	15					
L832603-21 Origina	al Sample (OS) • Dupl	licate (D	UP)							
(OS) L832603-21 05/16/16	16:19 • (DUP) R	:3137141-7 05/	16/16 16:32								
	Original Result	DUP Result		DUP RPD	DUP Qualifier	DUP RPD Limits					
Analyte	mg/l	mg/l		%		%					
Chloride	199	39.2		134	<u>J P1</u>	15					
Sulfate	1090	190	50	141	<u>J P1</u>	15					
I -baratan/Cantral	Cample /I /		+-n/C	`-n+val Can	- ala Dunlie	// CCD)					
Laboratory Control					ibie Dabiic	ate (LCSD)					
(LCS) R3137141-2 05/16/16											
	Spike Amount		LCSD Resu		LCSD Red		LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Chloride	40.0	39.7	39.8	99	100	80-120			0	15	
Fluoride	8.00	7.85	7.87	98	98	80-120			0	15	

DATE/TIME:

05/20/16 13:57

PAGE: 125 of 187

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY <u>L832603-11,12,13,14,15,16,17,18,19,20,21,22,23,24,25</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

CS) R3137141-3	05/16/16 07:59	 (LCSD) R3137141-3 	05/16/16 08:12

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Sulfate	40.0	39.9	40.1	100	100	80-120			0	15

L832435-15 Original Sample (OS) • Matrix Spike (MS)

(OS) L832435-15 O5/16/16	09:09 • (MS) R	(313/141-4 05/1	6/16 09:23				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	17.6	66.6	98	1	80-120	
Fluoride	5.00	0.982	5.50	90	1	80-120	

L832603-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

· /	, ,			,								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	U	51.9	52.1	104	104	1	80-120			0	15
Fluoride	5.00	U	5.22	5.16	104	103	1	80-120			1	15
Sulfate	50.0	U	50.1	50.2	100	100	1	80-120			0	15

Тс

Ss

Sr

GI

QUALITY CONTROL SUMMARY WG871034 Wet Chemistry by Method 9056A $\underline{\textbf{L832603-26,27,28,29,30,31,32,33,34,36,37,38,39,40,41,42}}$ Method Blank (MB) (MB) R3136187-1 05/10/16 20:12 MB MDL MB RDL MB Result MB Qualifier Analyte mg/l mg/l mg/l Chloride 0.0519 1.00 U Fluoride U 0.0099 0.100 0.0774 5.00 Sulfate П L832603-31 Original Sample (OS) • Duplicate (DUP) (OS) L832603-31 05/10/16 22:55 • (DUP) R3136187-4 05/10/16 23:43 Original Result DUP Result Dilution DUP RPD **DUP Qualifier DUP RPD Limits** Analyte mg/l mg/l % Chloride 99.0 98.5 15 1.53 Fluoride 1.52 L832603-38 Original Sample (OS) • Duplicate (DUP) (OS) L832603-38 05/11/16 05:33 • (DUP) R3136187-6 05/11/16 06:05 DUP Qualifier DUP RPD Limits Original Result DUP Result Dilution DUP RPD Analyte mg/l % % Fluoride 0.993 0.988 15 0 L832603-38 Original Sample (OS) • Duplicate (DUP) (OS) L832603-38 05/11/16 05:49 • (DUP) R3136187-7 05/11/16 06:21 Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits Analyte mg/l mg/l % % 1010 Chloride 1020 100 15 Sulfate 2470 2500 100 15

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

GI

Αl

Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
TRC Solutions - Austin, TX	249545.0000.0000 000	L832603	05/20/16 13:57	127 of 187

Rec. Limits

80-120

80-120

80-120

LCS Qualifier LCSD Qualifier RPD

RPD Limits

15

15

15

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCSD Result

mg/l

38.6

7.60

38.6

LCS Rec.

97

96

97

LCSD Rec.

96

95

97

(LCS) R3136187-2 05/10/16 20:28 • (LCSD) R3136187-3 05/10/16 20:44 Spike Amount LCS Result

mg/l

39.0

7.68

39.0

mg/l

40.0

8.00

40.0

Analyte

Chloride

Fluoride

Sulfate

Analyte Fluoride

QUALITY CONTROL SUMMARY <u>1832603-26,27,28,29,30,31,32,33,34,36,37,38,39,40,41,42</u>

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832603-32 Original Sample (OS) • Matrix Spike (MS)

(OS) L832603-32 05/11/16 01:35 • (MS) R3136187-5 05/11/16 02:38

Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
mg/l	mg/l	mg/l	%		%	
5.00	1.22	5.71	90	1	80-120	

Тс

Cn

L832603-39 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832603-39 05/11/16 06:37 • (MS) R3136187-8 05/11/16 07:09 • (MSD) R3136187-9 05/11/16 07:25

(00) L0	32003 33 03/11/10	00.57 - (1115) 13	3130107 0 037	11) 10 07.03 1 (11	150) ((515010)	3 03/11/10 07.2							
		Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte		mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Fluoride		5.00	193	5 48	6.13	71	84	1	80-120	16		11	15

QUALITY CONTROL SUMMARY WG871228 Wet Chemistry by Method 9056A L832603-04,09,10 Method Blank (MB) (MB) R3135448-1 05/10/16 11:38 MB MDL MB RDL MB Result MB Qualifier Analyte mg/l mg/l mg/l 0.0519 1.00 Chloride U Fluoride U 0.0099 0.100 0.0774 Sulfate U 5.00 L832435-04 Original Sample (OS) • Duplicate (DUP) (OS) L832435-04 05/10/16 22:04 • (DUP) R3135448-4 05/10/16 22:28 Original Result DUP Result Dilution DUP RPD **DUP Qualifier DUP RPD Limits** Analyte % mg/l mg/l Chloride 150 159 10 6 15 Fluoride 0.780 0.847 10 8 15 Sulfate 199 215 10 8 15 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3135448-2 05/10/16 11:52 • (LCSD) R3135448-3 05/10/16 12:07 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD **RPD Limits** Analyte mq/l % % mq/l mg/l Chloride 40.0 38.9 97 97 80-120 0 15 Fluoride 8.00 7.79 7 79 97 97 80-120 0 15 Sulfate 40.0 39.2 98 80-120 0 15

L832654-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

mg/l

56.5

5.14

68.7

MSD Result

mg/l

56.3

5.29

69.0

MS Rec.

100

97

98

MSD Rec.

%

99

100

98

Dilution Rec. Limits

80-120

80-120

80-120

(OS) L832654-01 05/11/16 01:06 • (MS) R3135448-5 05/11/16 01:20 • (MSD) R3135448-6 05/11/16 01:35

Spike Amount Original Result MS Result

mg/l

6.61

0.283

19.9

mg/l

50.0

5.00

50.0

Analyte

Chloride

Fluoride

Sulfate

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

GI

Αl

Sc

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
TRC Solutions - Austin, TX	249545.0000.0000 000	L832603	05/20/16 13:57	129 of 187

MSD Qualifier

RPD

%

0

3

0

RPD Limits

%

15

15

15

MS Qualifier

WG87242	24 y Method 9056A				QUALITY	CONTR		/MARY			10	NE LAB. NATIONWIDE.	*
Method Blank						2002000	.,,						
(MB) R3136920-1 0	,												1 C
(MB) K3136920-1 U	5/15/16 05:48 MB Result	MB Qualifier	MB MDL	MB RDL									
Analyte	mg/l		mg/l	mg/l									² Tc
Chloride	U		0.0519	1.00									
Sulfate	U		0.0774	5.00									³ Ss
L832644-02 C	Original Sample	(OS) • Dupl	licate (DU	JP)									⁴ Cr
(OS) L832644-02 C	05/15/16 22:08 • (DUP)	R3136920-5 ()5/15/16 22:2	:3									
	Original Result	DUP Result	Dilution DU			UP RPD Limits							⁵ Sr
Analyte	mg/l	mg/l	%		%								
Chloride	6.31	6.26	1 1		15	5							⁶ Q
L832644-09 C	Original Sample	(OS) • Dupl	icate (DU	IP)									⁷ Gl
(OS) L832644-09 (05/16/16 00:37 • (DUP)				DUD 0 115 D								8
	Original Result	DUP Result	Dilution DL	UP RPD		UP RPD Limits							⁸ Al
Analyte				UP RPD	DUP Qualifier DI %								a
Analyte Chloride Laboratory Co	Original Result	DUP Result mg/l 4.87 CS) • Labor D) R3136920-3	Dilution DU % 1 1 1 atory Cor 05/15/16 06	ntrol Sam	% 15	5	LCS Qualifier	LCSD Qualific	r RPD	RPD Limits			⁸ Al
Analyte Chloride Laboratory Co (LCS) R3136920-2	Original Result mg/l 4.92 ontrol Sample (LC 05/15/16 06:03 • (LCS)	DUP Result mg/l 4.87 CS) • Labor D) R3136920-3	Dilution DU % 1 1 ratory Cor	ntrol Sam	% 15 nple Duplicat	se (LCSD)	LCS Qualifier	LCSD Qualifie	r RPD	RPD Limits			a
Analyte Chloride Laboratory Co (LCS) R3136920-2	Original Result mg/l 4.92 Ontrol Sample (LC 05/15/16 06:03 • (LCS) Spike Amount	DUP Result mg/l 4.87 CS) • Labor D) R3136920-3 LCS Result	Dilution	ntrol Sam 6:18 LCS Rec.	% 15 nple Duplicat LCSD Rec.	se (LCSD)	LCS Qualifier	LCSD Qualifie	-				9
Analyte Chloride Laboratory Co (LCS) R3136920-2	Original Result mg/l 4.92 Ontrol Sample (LC 05/15/16 06:03 • (LCS) Spike Amount mg/l	DUP Result mg/l 4.87 CS) • Labor D) R3136920-3 LCS Result mg/l	Dilution DU % 1 1 atory Cor 05/15/16 06 LCSD Result mg/l	ntrol Sam 5:18 LCS Rec. %	% 15 nple Duplicat LCSD Rec. %	Rec. Limits	LCS Qualifier	LCSD Qualifie	%	%			a
Analyte Chloride Laboratory Co (LCS) R3136920-2 (Analyte Chloride Sulfate	Original Result mg/l 4.92 Ontrol Sample (LC 05/15/16 06:03 • (LCS) Spike Amount mg/l 40.0	DUP Result mg/l 4.87 CS) * Labor D) R3136920-3 LCS Result mg/l 39.2 39.7	Dilution DU %	ntrol Sam 5:18 LCS Rec. % 98 99	% 15 nple Duplicat LCSD Rec. % 98	Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifie	% 0	% 15			a
Analyte Chloride Laboratory Co (LCS) R3136920-2 (Analyte Chloride Sulfate L832644-01 O	Original Result mg/l 4.92 Ontrol Sample (LC 05/15/16 06:03 • (LCS) Spike Amount mg/l 40.0 40.0	DUP Result mg/l 4.87 4.87 CS) • Labor D) R3136920-3 LCS Result mg/l 39.2 39.7 OS) • Matrix	Dilution DI %	ntrol Sam 5:18 LCS Rec. % 98 99	% 15 nple Duplicat LCSD Rec. % 98	Rec. Limits % 80-120		LCSD Qualifie	% 0	% 15			a
Analyte Chloride Laboratory Co (LCS) R3136920-2 Analyte Chloride Sulfate L832644-01 O	Original Result mg/l 4.92 Ontrol Sample (LC 05/15/16 06:03 • (LCSI Spike Amount mg/l 40.0 40.0 Original Sample (F	DUP Result mg/l 4.87 4.87 CS) • Labor D) R3136920-3 LCS Result mg/l 39.2 39.7 OS) • Matrix	Dilution DI %	ntrol Sam 5:18 LCS Rec. % 98 99	% 15 nple Duplicat LCSD Rec. % 98	Rec. Limits % 80-120		LCSD Qualifie	% 0	% 15			9
Analyte Chloride Laboratory Co (LCS) R3136920-2 Analyte Chloride Sulfate L832644-01 O	Original Result mg/l 4.92 Ontrol Sample (LC 05/15/16 06:03 • (LCSI Spike Amount mg/l 40.0 40.0 Original Sample (F	DUP Result mg/l 4.87 CS) • Labor D) R3136920-3 LCS Result mg/l 39.2 39.7 OS) • Matrix 3136920-4 05.	Dilution DI %	ntrol Sam 5:18 LCS Rec. % 98 99	% 15 nple Duplicat LCSD Rec. % 98 99	Rec. Limits % 80-120 80-120	LCS Qualifier MS Qualifier	LCSD Qualifie	% 0	% 15			a

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 130 of 187

$\underset{\underline{\text{L832603-31,32,41}}}{\mathsf{QUALITY}} \ \underset{\underline{\text{CONTROL}}}{\mathsf{SUMMARY}}$

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9056A

L832644-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	6.37	16.2	16.0	20	19	1	80-120	<u>J6</u>	<u>J6</u>	1	15

WG86939 Wet Chemistry b	97 by Method D 7511-0	9e2			QUALITY L832603	CONTR 3-08,16,17,19,2			YY.			ONE	LAB. NATIONWIDE.	*
Method Blank	< (MB)													1
MB) R3136159-1 0	5/06/16 01:23													- Cp
1 b do	MB Result	MB Qualifier	MB MDL	MB RDL										² Tc
Analyte Cyanide	mg/l U		mg/l 0.0012	mg/l 0.00500										
yamas	-		V											³Ss
_832419-02 C	Original Sample (OS) • Dupl	icate (DI	UP)										4
	05/06/16 01:41 • (DUP) I													· TCr
	Original Result			DUP RPD		UP RPD Limits								5
Analyte	mg/l	mg/l		%	%									. Sr
Cyanide	ND	0.000	1	0	20)								6
														[°] Q
	Original Sample													7 _
OS) L832603-26	05/06/16 02:59 • (DUF	•			-: 15 0 1/5 . DI									G
Analyte	Original Result mg/l		Dilution	DUP RPD %	DUP Qualifier DU %	UP RPD Limits								8
Cyanide	U	mg/l 0.000 CS) • Labor	1	0	20	0								9
Cyanide Laboratory Co	*	0.000 CS) • Labor D) R3136159-3	1 ratory Co	ontrol Sam	20	0	LCS Qual	lifier LCSD Q	ualifier RPD	RPD Limit	rs			9 9 S
Cyanide Laboratory Co	0 ontrol Sample (L0 05/06/16 01:26 • (LCSE	0.000 CS) • Labor D) R3136159-3	1 ratory Co 05/06/16 0	ontrol Sam	20 nple Duplicate	e (LCSD)	LCS Qual	ifier LCSD Q	ualifier RPD %	RPD Limit %	rs.			9
Cyanide Laboratory Co LCS) R3136159-2 (U ontrol Sample (L0 05/06/16 01:26 • (LCSE Spike Amount	0.000 CS) • Labor D) R3136159-3 LCS Result	1 ratory Co 05/06/16 0 LCSD Resu	ontrol Sam 01:29 ult LCS Rec.	20 nple Duplicate LCSD Rec.	e (LCSD)	LCS Qual	ifier LCSD Q			is.			9
Cyanide Laboratory Co LCS) R3136159-2 (Analyte Cyanide L832791-03 C	U ontrol Sample (LC) 05/06/16 01:26 • (LCSE Spike Amount mg/l 0.100 Original Sample (05/06/16 01:47 • (MS) R	0.000 CS) • Labor D) R3136159-3 LCS Result mg/l 0.0980 OS) • Matri:	1 ratory Co 05/06/16 0 LCSD Resu mg/l 0.0990 × Spike /06/16 01:58	ontrol Sam 0:29 ult LCS Rec. % 98	LCSD Rec. % 99 rrix Spike Dup	e (LCSD) Rec. Limits % 86-114 plicate (MSE		lifier LCSD Q Rec. Limits	%	%	RPD %	RPD Limits		9
_aboratory	U ontrol Sample (LC 05/06/16 01:26 • (LCSE Spike Amount mg/l 0.100 Original Sample (05/06/16 01:47 • (MS) R Spike Amount	0.000 CS) • Labor D) R3136159-3 LCS Result mg/l 0.0980 OS) • Matri: 3136159-5 O5/ Original Result	1 ratory Cc 05/06/16 0 LCSD Resu mg/l 0.0990 × Spike	ontrol Sam O:29 Jit LCS Rec. % 98 (MS) • Mat 9 • (MSD) R313 MSD Resu	LCSD Rec. % 99 erix Spike Dup 16159-6 05/06/16 ult MS Rec.	Rec. Limits % 86-114 plicate (MSE) 0 02:02 MSD Rec.	D)	Rec. Limits	% 1	% 20	RPD			
Cyanide Laboratory Co LCS) R3136159-2 (Analyte Cyanide L832791-03 C OS) L832791-03 C	U ontrol Sample (LC 05/06/16 01:26 • (LCSE Spike Amount mg/l 0.100 Original Sample (05/06/16 01:47 • (MS) R Spike Amount mg/l	0.000 CS) • Labor D) R3136159-3 LCS Result mg/l 0.0980 OS) • Matri: 3136159-5 O5/ Original Result mg/l	1 ratory Co 05/06/16 0 LCSD Resu mg/l 0.0990 × Spike /06/16 01:58 MS Result mg/l	ontrol Sam D1:29 Jit LCS Rec. 98 (MS) • Mat 9 • (MSD) R313 MSD Resu mg/l	LCSD Rec. % 99 erix Spike Dup 16159-6 05/06/16 ult MS Rec. %	Rec. Limits % 86-114 plicate (MSE) 6 02:02 MSD Rec. %	D) Dilution	Rec. Limits	% 1	% 20	RPD %	%		9

Method Blank (MB) MB Result	Mercury by Method				Qt		03-08,16,17,19,2			IX I				
MB Result MB Qualifier MB MDL MB RDL mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l									,,.					
MB Result MB Qualifier MB MDL MB MDL MB MDL mg/l mg		-												
Marked mg/l	VIB) R3133020-1 U3/U		MB Qualifier	MB MDL	MB RDL									
Aboratory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD) Duplica	nalyte													2_
Laboratory Control Sample (LCS) * Laboratory Control Sample Duplicate (LCSD) LCS) R3133626-2 05/04/16 12:09 * (LCSD) R3133626-3 05/04/16 12:11 Spike Amount LCS Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % Mercury, Dissolved 0.00300 0.00284 0.00263 95 88 80-120 7 20 L832603-17 Original Sample (OS) * Matrix Spike (MS) * Matrix Spike Duplicate (MSD) OS) L832603-17 05/04/16 12:13 * (MS) R3133626-4 05/04/16 12:16 * (MSD) R3133626-5 05/04/16 12:18 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l mg/l % % % % % Mercury, Dissolved 0.00300 U 0.00254 0.00254 85 85 1 75-125 0 20	Mercury,Dissolved													
Laboratory Control Sample (LCS) * Laboratory Control Sample Duplicate (LCSD) LCS) R3133626-2 05/04/16 12:09 * (LCSD) R3133626-3 05/04/16 12:11 Spike Amount LCS Result LCSD Result LCSD Rec. LCSD Rec. Rec. Limits LCS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % Mercury, Dissolved 0.00300 0.00284 0.00263 95 88 80-120 7 20 L832603-17 Original Sample (OS) * Matrix Spike (MS) * Matrix Spike Duplicate (MSD) OS) L832603-17 05/04/16 12:13 * (MS) R3133626-4 05/04/16 12:16 * (MSD) R3133626-5 05/04/16 12:18 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l mg/l % % % % % Mercury, Dissolved 0.00300 U 0.00254 0.00254 85 85 1 75-125 0 20														3
Spike Amount LCS Result LCS Qualifier RPD RPD Limits	aboratory Cont	rol Sample (L	CS) . I aho	ratory Cor	atrol Sampl	o Dunlicat	(I CSD)							L
Spike Amount LCS Result LCS Result LCS Result LCS Res. LCSD Res. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits			-			2 Duplicate	2 (LCJD)							4
Analyte mg/l mg/l mg/l % % % % % % % % % % Mercury,Dissolved 0.00300 0.00284 0.00263 95 88 80-120 7 20 L832603-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832603-17 05/04/16 12:13 • (MS) R3133626-4 05/04/16 12:16 • (MSD) R3133626-5 05/04/16 12:18 Spike Amount Original Result MS Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l mg/l % % % % % % % % % % Mercury,Dissolved 0.00300 U 0.00254 0.00254 85 85 1 75-125 0 0 20	_C3) K31330Z0-Z U3/					LCSD Rec.	Rec. Limits	LCS Qua'	ifier LCSD (Qualifier RPD	RPD Lim	its		Ļ
Mercury, Dissolved 0.00300 0.00284 0.00263 95 88 80-120 7 20 L832603-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) 7 20 L832603-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) 7 20 Fig. 4	nalyte													5
L832603-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) 7 (OS) L832603-17 OF,04/16 12:13 • (MS) R3133626-4 OF,04/16 12:16 • (MSD) R3133626-5 OF,04/16 12:18 Spike Amount Original Result MS	Mercury,Dissolved	0.00300	0.00284	0.00263	95	88	80-120			7	20			
L832603-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) 7 (OS) L832603-17 OF,04/16 12:13 • (MS) R3133626-4 OF,04/16 12:16 • (MSD) R3133626-5 OF,04/16 12:18 Spike Amount Original Result MS														6
(OS) L832603-17 05/04/16 12:13 • (MS) R3133626-4 05/04/16 12:16 • (MSD) R3133626-5 05/04/16 12:18 Spike Amount Original Result MS Result MS Result MS Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits	832603-17 Orio	ninal Sample ((OS) • Matri	ix Spike (N	AS) • Matrix	Spike Du	nlicate (MS	D)						
Spike Amount Original Result MS Result MSD Result MSD Result MSD Rec. Dilution Rec. Limits MSD Qualifier MSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % % % % % % % % % % % % % % % %								-/						7
Mercury, Dissolved 0.00300 U 0.00254 0.00254 85 85 1 75-125 0 20	00,							Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Mercury,Dissolved 0.00300 U 0.00254 0.00254 85 85 1 75-125 0 20														8
	Mercury,Dissolved	0.00300	U	0.00254	0.00254	85	85	1	75-125			0	20	
														9
														L

PROJECT: 249545.0000.0000 000

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE: 133 of 187

DATE/TIME:

05/20/16 13:57

WG869207

ACCOUNT: TRC Solutions - Austin, TX

WG86986				Ql		CONTR			RY			ONE LAB. NATIONWIDE.	*
Mercury by Metho	d 7470A				L83260	3-08,16,17,19,2	4,25,26,29	9,33,34					
Method Blank (MB)												¹ Cp
(MB) R3134185-1 05/	05/16 16:13												СР
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
Mercury	U		0.000049	0.000200									3 Ss
Laboratory Cor	ntrol Sample (L	CS) • Labo	ratory Con	trol Sampl	e Duplicat	e (LCSD)							4
(LCS) R3134185-2 05	i/05/16 16:16 • (LCSE) R3134185-3 (05/05/16 16:23	3									*Cn
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	fier LCSD 0	Qualifier RPD	RPD Limi	ts		5
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			[°] Sr
Mercury	0.00300	0.00296	0.00311	99	104	80-120			5	20			6
													[°] Qc
L832603-19 Or							D)						⁷ Gl
(OS) L832603-19 05		R3134185-4 05 Original Result		(MSD) R313418 MSD Result		16:31 MSD Rec.	Dilution	Dan Limita	MC Ossellifier	MCD Ovelifier	DDD	RPD Limits	Gi
Analyte	mg/l	mg/l	mg/l	mg/l	MS Rec. %	wsb кес. %	Dilution	Rec. Limits %	MS Qualifier	MSD Qualifier	RPD %	%	8
Mercury	0.00300	U	0.00280	0.00269	93	90	1	75-125			4	20	°AI
Mercury	0.00300	0	0.00200	0.00203	33	30	'	73-123			7	20	9
													Sc

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 134 of 187

WG87394	VG873945 QUALITY CONTROL SUMMARY ONE LAB. NATIONW L832603-20								WIDE.				
Method Blank						1032003	1-20						1 _
(MB) R3138455-1 05	/19/16 21:06												— C
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									² Tc
Selenium	U		0.0074	0.0100									³ S 9
Laboratory Cor	ntrol Sample (L	.CS) • Labo	ratory Cor	ıtrol Sampl	le Duplicat	te (LCSD)							4
(LCS) R3138455-2 0	•												— Cı
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	lifier LCSD C	Qualifier RPD	RPD Limi	its		5_
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			Sr
Selenium	1.00	1.03	1.03	103	103	80-120			0	20			⁶ Q
L832409-25 O	riginal Sample	(OS) • Mat	irix Spike (f	MS) • Matri	ıx Spike Dı	uplicate (M:	SD)						7
(OS) L832409-25 0	5/19/16 21:14 • (MS) R	3138455-5 05	5/19/16 21:19 • (N	MSD) R313845									— 'GI
		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	°AI
Selenium	1.00	U	0.827	0.978	83	98	1	75-125			17	20	
													⁹ Sc
													L

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 135 of 187

metals (i.e., b) metals	d 6010B					L832603	-20						
Method Blank (MB))												1
(MB) R3138456-1 05/19/16	21:42												[C
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									² To
Selenium,Dissolved	U		0.0074	0.0100									3 C
Laboratory Control	Sample (Lo	CS) • Laboi	ratory Con	trol Sample	e Duplicate	e (LCSD)							Ss 4
(LCS) R3138456-2 05/19/1													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	fier LCSD G	Qualifier RPD	RPD Limi	ts		-
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			[°] Sr
Selenium, Dissolved	1.00	1.02	1.04	102	104	80-120			2	20			
													⁶ Q
L832409-25 Origir	nal Sample	(OS) • Mati	rix Spike (N	ИS) • Matrix	spike Du	plicate (MS	D)						-
(OS) L832409-25 05/19/1	6 21:50 • (MS) F	23138456-5 05	5/19/16 21:56 •	(MSD) R313845	6-6 05/19/16	21:58							′G
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	[°] Al
Selenium, Dissolved	1.00	U	0.657	0.922	66	92	1	75-125	<u>J6</u>	<u>J3</u>	34	20	
													⁹ Sc
													-

PROJECT: 249545.0000.0000 000

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

PAGE: 136 of 187

DATE/TIME:

05/20/16 13:57

WG873946

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY <u>L832603-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134123-1 05	6/05/16 14:44				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic	U		0.00025	0.00200	
Barium	U		0.00036	0.00500	
Cadmium	U		0.00016	0.00100	
Calcium	U		0.046	1.00	
Chromium	U		0.00054	0.00200	
Cobalt	U		0.00026	0.00200	
Iron	U		0.015	0.100	
Lead	0.000458		0.00024	0.00200	
Manganese	U		0.00025	0.00500	
Nickel	U		0.00035	0.00200	
Potassium	U		0.037	1.00	
Selenium	U		0.00038	0.00200	
Sodium	U		0.11	1.00	
Uranium	U		0.00033	0.0100	
Vanadium	0.000218		0.00018	0.00500	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134123-2 05	CS) R3134123-2 05/05/16 14:47 • (LCSD) R3134123-3 05/05/16 14:49												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits			
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
Arsenic	0.0500	0.0491	0.0484	98	97	80-120			1	20			
Barium	0.0500	0.0486	0.0510	97	102	80-120			5	20			
Cadmium	0.0500	0.0510	0.0508	102	102	80-120			1	20			
Calcium	5.00	4.93	4.73	99	95	80-120			4	20			
Chromium	0.0500	0.0498	0.0511	100	102	80-120			3	20			
Cobalt	0.0500	0.0506	0.0522	101	104	80-120			3	20			
Iron	5.00	4.89	5.03	98	101	80-120			3	20			
Lead	0.0500	0.0505	0.0509	101	102	80-120			1	20			
Manganese	0.0500	0.0491	0.0500	98	100	80-120			2	20			
Nickel	0.0500	0.0490	0.0505	98	101	80-120			3	20			
Potassium	5.00	4.79	4.86	96	97	80-120			1	20			
Selenium	0.0500	0.0480	0.0490	96	98	80-120			2	20			
Sodium	5.00	5.13	5.14	103	103	80-120			0	20			
Uranium	0.0500	0.0490	0.0497	98	99	80-120			1	20			
Vanadium	0.0500	0.0495	0.0504	99	101	80-120			2	20			

TRC Solutions - Austin, TX

SDG: L832603 DATE/TIME:

QUALITY CONTROL SUMMARY <u>L832603-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832603-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832603-01 05/05/16 14:51 • (MS) R3134123-5 05/05/16 14:56 • (MSD) R3134123-6 05/05/16 14:58													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Arsenic	0.0100	0.0142	0.0644	0.0651	100	102	5	75-125			1	20	
Barium	0.0100	3.42	3.61	3.65	382	478	5	75-125	$\underline{\vee}$	\vee	1	20	
Cadmium	0.0100	U	0.0512	0.0510	102	102	5	75-125			0	20	
Calcium	1.00	155	166	170	220	296	5	75-125	$\underline{\vee}$	\vee	2	20	
Chromium	0.0100	U	0.0528	0.0536	106	107	5	75-125			1	20	
Cobalt	0.0100	U	0.0526	0.0544	105	109	5	75-125			3	20	
Potassium	1.00	0.691	6.28	6.18	112	110	5	75-125			2	20	
Iron	1.00	2.09	7.32	7.51	105	109	5	75-125			3	20	
Lead	0.0100	0.00124	0.0558	0.0540	109	105	5	75-125			3	20	
Manganese	0.0100	0.748	0.807	0.835	118	174	5	75-125		\vee	3	20	
Nickel	0.0100	0.00281	0.0544	0.0530	103	100	5	75-125			3	20	
Selenium	0.0100	U	0.0545	0.0543	109	109	5	75-125			0	20	
Sodium	1.00	311	325	330	274	381	5	75-125	$\underline{\vee}$	\vee	2	20	
Uranium	0.0100	U	0.0533	0.0526	107	105	5	75-125			1	20	
Vanadium	0.0100	0.00248	0.0538	0.0559	103	107	5	75-125			4	20	

QUALITY CONTROL SUMMARY <u>L832603-21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40,41</u>

ONE LAB. NATIONWIDE.

Тс

GI

ΔI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134379-1 05/	/06/16 09:33			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Cadmium	U		0.00016	0.00100
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	0.0422		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	0.00119		0.00025	0.00500
Nickel	U		0.00035	0.00200
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	0.00022		0.00018	0.00500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3134379-2 05/06/16 09:36 • (LCSD) R3134379-3 05/06/16 09:39												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Arsenic	0.0500	0.0517	0.0520	103	104	80-120			1	20		
Barium	0.0500	0.0535	0.0510	107	102	80-120			5	20		
Cadmium	0.0500	0.0547	0.0547	109	109	80-120			0	20		
Calcium	5.00	5.20	5.24	104	105	80-120			1	20		
Chromium	0.0500	0.0514	0.0508	103	102	80-120			1	20		
Cobalt	0.0500	0.0519	0.0520	104	104	80-120			0	20		
Iron	5.00	5.06	5.03	101	101	80-120			1	20		
Lead	0.0500	0.0521	0.0527	104	105	80-120			1	20		
Manganese	0.0500	0.0520	0.0537	104	107	80-120			3	20		
Nickel	0.0500	0.0524	0.0527	105	105	80-120			1	20		
Potassium	5.00	4.99	5.10	100	102	80-120			2	20		
Selenium	0.0500	0.0539	0.0535	108	107	80-120			1	20		
Sodium	5.00	5.09	5.18	102	104	80-120			2	20		
Uranium	0.0500	0.0516	0.0520	103	104	80-120			1	20		
Vanadium	0.0500	0.0504	0.0507	101	101	80-120			1	20		

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 139 of 187

QUALITY CONTROL SUMMARY <u>L832603-21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40,41</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832603-22 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832603-22 05/06/16 09:41 • (MS) R3134379-5 05/06/16 09:47 • (MSD) R3134379-7 05/06/16 11:18													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Arsenic	0.0100	U	0.0562	0.0526	112	105	5	75-125			7	20	
Barium	0.0100	U	0.0592	0.0528	118	106	5	75-125			11	20	
Cadmium	0.0100	U	0.0567	0.0554	113	111	5	75-125			2	20	
Calcium	1.00	U	5.77	5.85	115	117	5	75-125			1	20	
Chromium	0.0100	U	0.0571	0.0522	114	104	5	75-125			9	20	
Cobalt	0.0100	U	0.0577	0.0547	115	109	5	75-125			5	20	
Potassium	1.00	U	5.51	5.08	110	102	5	75-125			8	20	
Iron	1.00	U	5.73	5.42	115	108	5	75-125			6	20	
Lead	0.0100	U	0.0581	0.0568	116	114	5	75-125			2	20	
Manganese	0.0100	0.00146	0.0601	0.0532	117	104	5	75-125			12	20	
Nickel	0.0100	U	0.0553	0.0498	111	100	5	75-125			10	20	
Selenium	0.0100	U	0.0598	0.0729	120	146	5	75-125		<u>J5</u>	20	20	
Sodium	1.00	U	5.73	5.72	115	114	5	75-125			0	20	
Uranium	0.0100	U	0.0559	0.0566	112	113	5	75-125			1	20	
Vanadium	0.0100	U	0.0560	0.0524	112	105	5	75-125			7	20	

QUALITY CONTROL SUMMARY L832603-42

ONE LAB. NATIONWIDE.

GI

Metals (ICPMS) by Method 6020 Method Blank (MB)

۱	٧	_	C1	ľ	_	u		u	١	 `	١	ľ	٧	١	_	'/	

	, ,				
(MB) R3134603-1	05/06/16 18:35				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic	U		0.00025	0.00200	
Barium	U		0.00036	0.00500	
Calcium	U		0.046	1.00	
Chromium	U		0.00054	0.00200	
ron	0.032		0.015	0.100	
_ead	U		0.00024	0.00200	
Manganese	0.000577		0.00025	0.00500	
Potassium	U		0.037	1.00	
Selenium	U		0.00038	0.00200	
Sodium	U		0.11	1.00	

(LCS) R3134603-2 0	5/06/16 18:38 • (LCSI	D) R3134603-	3 05/06/16 18:4	10						·
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic	0.0500	0.0515	0.0506	103	101	80-120			2	20
Barium	0.0500	0.0521	0.0514	104	103	80-120			1	20
Calcium	5.00	5.19	5.18	104	104	80-120			0	20
Chromium	0.0500	0.0517	0.0505	103	101	80-120			2	20
Iron	5.00	5.08	4.98	102	100	80-120			2	20
Lead	0.0500	0.0516	0.0520	103	104	80-120			1	20
Manganese	0.0500	0.0517	0.0507	103	101	80-120			2	20
Potassium	5.00	5.11	4.98	102	100	80-120			3	20
Selenium	0.0500	0.0513	0.0505	103	101	80-120			2	20
Sodium	5.00	5.23	5.12	105	102	80-120			2	20

L832462-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832462-01 05/06/1	6 18:43 • (MS) R	3134603-5 05	/06/16 18:48 • ((MSD) R313460	3-6 05/06/16	18:51						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	0.00777	0.0644	0.0628	113	110	5	75-125			3	20
Barium	0.0100	0.0203	0.0773	0.0789	114	117	5	75-125			2	20
Calcium	1.00	559	562	555	62	Λ	5	75-125	\/	\/	1	20

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: TRC Solutions - Austin, TX 249545.0000.0000 000 L832603 05/20/16 13:57 141 of 187

Manganese

Selenium

Sodium

QUALITY CONTROL SUMMARY L832603-42

ONE LAB. NATIONWIDE.

20

20

20

0

Metals (ICPMS) by Method 6020

0.0100

0.0100

1.00

0.373

0.00381

379

L832462-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.426

0.0590

382

0.424

0.0601

384

105

110

65

		, ,				· ·						
(OS) L832462-01 05/06/	16 18:43 • (MS) F	R3134603-5 05	5/06/16 18:48 •	(MSD) R313460	03-6 05/06/16	18:51						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chromium	0.0100	U	0.0569	0.0563	114	113	5	75-125			1	20
Potassium	1.00	2.32	7.76	7.88	109	111	5	75-125			2	20
Iron	1.00	U	5.67	5.68	113	114	5	75-125			0	20
Lead	0.0100	U	0.0575	0.0569	115	114	5	75-125			1	20

5

75-125

75-125

75-125

103

112

108

Cn

QUALITY CONTROL SUMMARY <u>L832603-21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40,41</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134751-1 05/07	/16 13:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Cadmium, Dissolved	U		0.00016	0.00100	
Chromium, Dissolved	U		0.00054	0.00200	
Cobalt, Dissolved	U		0.00026	0.00200	
Iron,Dissolved	U		0.015	0.100	
Lead,Dissolved	U		0.00024	0.00200	
Manganese, Dissolved	U		0.00025	0.00500	
Nickel, Dissolved	U		0.00035	0.00200	
Selenium, Dissolved	U		0.00038	0.00200	
Uranium,Dissolved	U		0.00033	0.0100	
Vanadium, Dissolved	0.000208		0.00018	0.00500	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134751-2 05/07/16 13:31 • (LCSD) R3134751-3 05/07/16 13:33

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic,Dissolved	0.0500	0.0484	0.0469	97	94	80-120			3	20	
Barium, Dissolved	0.0500	0.0491	0.0470	98	94	80-120			4	20	
Cadmium, Dissolved	0.0500	0.0514	0.0501	103	100	80-120			3	20	
Chromium, Dissolved	0.0500	0.0497	0.0490	99	98	80-120			2	20	
Cobalt, Dissolved	0.0500	0.0516	0.0509	103	102	80-120			1	20	
Iron,Dissolved	5.00	4.80	4.72	96	94	80-120			2	20	
Lead, Dissolved	0.0500	0.0490	0.0482	98	96	80-120			1	20	
Manganese, Dissolved	0.0500	0.0483	0.0474	97	95	80-120			2	20	
Nickel, Dissolved	0.0500	0.0521	0.0507	104	101	80-120			3	20	
Selenium, Dissolved	0.0500	0.0467	0.0468	93	94	80-120			0	20	
Uranium,Dissolved	0.0500	0.0485	0.0479	97	96	80-120			1	20	
Vanadium Dissolved	0.0500	0.0496	0.0481	99	96	80-120			3	20	

ΑI

Sc

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

QUALITY CONTROL SUMMARY

<u>L832603-21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40,41</u>

L832603-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00282	0.0544	0.0509	103	96	5	75-125			7	20
Barium,Dissolved	0.0100	0.0218	0.0743	0.0685	105	93	5	75-125			8	20
Cadmium,Dissolved	0.0100	U	0.0535	0.0495	107	99	5	75-125			8	20
Chromium, Dissolved	0.0100	U	0.0484	0.0452	97	90	5	75-125			7	20
Cobalt, Dissolved	0.0100	0.00162	0.0499	0.0477	97	92	5	75-125			4	20
ron,Dissolved	1.00	0.178	4.83	4.53	93	87	5	75-125			6	20
Lead,Dissolved	0.0100	U	0.0499	0.0472	100	94	5	75-125			5	20
Manganese,Dissolved	0.0100	0.723	0.751	0.722	58	0	5	75-125	\vee	\vee	4	20
Nickel,Dissolved	0.0100	0.00313	0.141	0.0480	276	90	5	75-125	<u>J5</u>	<u>J3</u>	99	20
Selenium,Dissolved	0.0100	U	0.0491	0.0457	98	91	5	75-125			7	20
Jranium,Dissolved	0.0100	0.0134	0.0629	0.0592	99	92	5	75-125			6	20
Vanadium Dissolved	0.0100	0.000941	0.0475	0.0467	93	91	5	75-125			2	20

GI

QUALITY CONTROL SUMMARY <u>L832603-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20</u>

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

MB) R3135821-7 05/11/	16 15:04				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Cadmium,Dissolved	U		0.00016	0.00100	
Chromium, Dissolved	0.000678	<u>J</u>	0.00054	0.00200	
Cobalt, Dissolved	U		0.00026	0.00200	
Iron,Dissolved	U		0.015	0.100	
Lead,Dissolved	U		0.00024	0.00200	
Manganese,Dissolved	0.000262	J	0.00025	0.00500	
Nickel,Dissolved	0.000892	<u>J</u>	0.00035	0.00200	
Selenium, Dissolved	U		0.00038	0.00200	
Uranium,Dissolved	U		0.00033	0.0100	
Vanadium,Dissolved	U		0.00018	0.00500	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3135821-8 05/11/	/16 15:06 • (LCSD)) R3135821-9	05/11/16 15:11							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic, Dissolved	0.0500	0.0445	0.0461	89	92	80-120			4	20
Barium, Dissolved	0.0500	0.0469	0.0465	94	93	80-120			1	20
Cadmium, Dissolved	0.0500	0.0465	0.0481	93	96	80-120			3	20
Chromium, Dissolved	0.0500	0.0477	0.0490	95	98	80-120			3	20
Cobalt, Dissolved	0.0500	0.0500	0.0496	100	99	80-120			1	20
Iron,Dissolved	5.00	4.68	4.79	94	96	80-120			2	20
Lead, Dissolved	0.0500	0.0461	0.0468	92	94	80-120			1	20
Manganese,Dissolved	0.0500	0.0473	0.0481	95	96	80-120			2	20
Nickel, Dissolved	0.0500	0.0487	0.0496	97	99	80-120			2	20
Selenium, Dissolved	0.0500	0.0452	0.0470	90	94	80-120			4	20
Uranium, Dissolved	0.0500	0.0455	0.0462	91	92	80-120			2	20
Vanadium,Dissolved	0.0500	0.0469	0.0483	94	97	80-120			3	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 145 of 187

ΑI

Sc

QUALITY CONTROL SUMMARY L832603-42

ONE LAB. NATIONWIDE.

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134748-1 05/07	7/16 14:35				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium,Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	U		0.015	0.100	
Lead,Dissolved	U		0.00024	0.00200	
Manganese,Dissolved	0.000535		0.00025	0.00500	
Selenium, Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

LCS) R3134748-2 05/07	7/16 14:38 • (LCSE	D) R3134748-3	05/07/16 14:41								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
alyte	mg/l	mg/l	mg/l	%	%	%			%	%	
nic,Dissolved	0.0500	0.0432	0.0440	86	88	80-120			2	20	
ium,Dissolved	0.0500	0.0473	0.0477	95	95	80-120			1	20	
omium,Dissolved	0.0500	0.0459	0.0473	92	95	80-120			3	20	
Dissolved	5.00	4.48	4.67	90	93	80-120			4	20	
d,Dissolved	0.0500	0.0457	0.0463	91	93	80-120			1	20	
iganese,Dissolved	0.0500	0.0457	0.0471	91	94	80-120			3	20	
nium,Dissolved	0.0500	0.0447	0.0464	89	93	80-120			4	20	

L832488-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832488-12 05/07	7/16 14:44 • (MS) R	3134748-5 05/	07/16 14:49 •	(MSD) R313474	3-6 05/07/16	14:52						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00841	0.0637	0.0631	111	109	5	75-125			1	20
Barium, Dissolved	0.0100	0.0178	0.0675	0.0717	99	108	5	75-125			6	20
Chromium, Dissolved	0.0100	U	0.0537	0.0526	107	105	5	75-125			2	20
Iron,Dissolved	1.00	3.82	9.17	9.28	107	109	5	75-125			1	20
Lead,Dissolved	0.0100	U	0.0539	0.0533	108	107	5	75-125			1	20
Manganese,Dissolved	0.0100	2.39	2.59	2.63	401	479	5	75-125	$\underline{\vee}$	$\underline{\vee}$	1	20
Selenium Dissolved	0.0100	0.00215	0.0557	0.0575	107	111	5	75-125			3	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 146 of 187

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG870589 L832603-08,16,17,19,24,25,26,29,33,34 Metals (ICPMS) by Method 6020 Method Blank (MB) (MB) R3134666-1 05/07/16 08:30 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l mg/l Boron U 0.0015 0.0200 Nickel U 0.00035 0.00200 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134666-2 05/07/16 08:35 • (LCSD) R3134666-3 05/07/16 08:40 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % Boron 0.0500 0.0478 0.0491 96 98 80-120 3 20 Nickel 0.0500 0.0517 0.0517 103 103 80-120 0 20 GI L832450-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832450-04 05/07/16 08:45 • (MS) R3134666-5 05/07/16 08:54 • (MSD) R3134666-6 05/07/16 08:59 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % % % % Analyte mg/l mg/l mg/l mg/l % Sc Boron 0.00500 0.689 0.704 0.712 31 47 10 75-125 20 0.00500 0.0574 103 U 0.0516 115 Nickel 10 75-125 20

SDG:

L832603

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/20/16 13:57

PAGE:

147 of 187

WG870591 Metals (ICPMS) by Me	thod 6020			QL		CONTR 3-08,16,17,19,24			RY			ONE LAB. NATIONWIE	IDE.
Method Blank (MB))												1 _
(MB) R3134973-1 05/09/16	ô 10:45												— Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									Tc
Boron, Dissolved	U		0.0015	0.0200									3
													³Ss
Laboratory Control	l Sample (L	.CS) • Labo	ratory Con	trol Sample	e Duplicate	e (LCSD)							4
(LCS) R3134973-2 05/09/	/16 10:50 • (LCS	D) R3134973-3	05/09/16 10:5	55									— Cn
	Spike Amount		LCSD Result		LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD C	Qualifier RPD	RPD Limi	ts		5
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			sr
Boron, Dissolved	0.0500	0.0484	0.0502	97	100	80-120			4	20			6
													[°] Qc
L832468-01 Origin		, ,))						7 (1
(OS) L832468-01 05/09/1								_			_		— GI
A 1 4_		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution		MS Qualifier	MSD Qualifier	RPD	RPD Limits	8
Analyte Boron, Dissolved	mg/l 0.00500	mg/l 0.596	mg/l 0.642	mg/l 0.644	92	95	10	% 75-125			0	20	Al
B0f0f,Dissolved	0.00500	0.590	0.642	0.044	92	95	IU	/5-125			0	20	a
													[®] Sc

DATE/TIME:

05/20/16 13:57

PAGE: 148 of 187

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869047 $\underline{\textbf{L832603-01,03,06,07,08,09,10,11,12,13,15,17,21,23,25,27,28}}$ Volatile Organic Compounds (GC) by Method 8015D/GRO Method Blank (MB) (MB) R3133680-3 05/03/16 07:10 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) Low Fraction 0.0314 0.100 U (S) a,a,a-Trifluorotoluene(FID) 98.4 62.0-128 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133680-1 05/03/16 06:08 • (LCSD) R3133680-2 05/03/16 06:29 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % % TPH (GC/FID) Low Fraction 5.50 5.82 5.97 106 109 67.0-132 2.64 20 62.0-128 (S) a,a,a-Trifluorotoluene(FID) 98.1 98.8 GI L832603-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832603-11 05/03/16 10:27 • (MS) R3133680-4 05/03/16 09:24 • (MSD) R3133680-5 05/03/16 09:45 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % % Analyte mg/l mg/l mg/l mg/l % % % Sc TPH (GC/FID) Low Fraction U 5.84 5.91 106 108 50.0-143 1.32 20 5.50 (S) a,a,a-Trifluorotoluene(FID) 98.3 97.9 62.0-128

SDG:

L832603

DATE/TIME:

05/20/16 13:57

PAGE:

149 of 187

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY ONE LAB. NATIONWIDE. WG869048 L832603-29,30,31,32,33,34,36,37,38,39,40,41,42 Volatile Organic Compounds (GC) by Method 8015D/GRO Method Blank (MB) (MB) R3133716-3 05/02/16 22:47 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) Low Fraction 0.0314 0.100 U (S) a,a,a-Trifluorotoluene(FID) 103 62.0-128 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133716-1 05/02/16 21:43 • (LCSD) R3133716-2 05/02/16 22:04 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % TPH (GC/FID) Low Fraction 5.50 5.44 5.21 98.9 94.8 67.0-132 4.21 20 62.0-128 (S) a,a,a-Trifluorotoluene(FID) 103 103 GI L832603-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832603-29 05/03/16 01:09 • (MS) R3133716-4 05/03/16 00:05 • (MSD) R3133716-5 05/03/16 00:26 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % Analyte mg/l mg/l mg/l mg/l % % % Sc TPH (GC/FID) Low Fraction U 4.65 84.5 84.5 50.0-143 0.0100 20 5.50 4.65 (S) a,a,a-Trifluorotoluene(FID) 102 103 62.0-128

SDG:

L832603

DATE/TIME:

05/20/16 13:57

PAGE:

150 of 187

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG869702 Volatile Organic Comp	oounds (GC) l	by Method 80	D15D/GRO	QL	JALITY	CONTR L832603		UMMA	RY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)													¹ Cp
(MB) R3133815-4 05/04/16													СР
	MB Result	MB Qualifier	MB MDL	MB RDL									² To
Analyte	mg/l		mg/l	mg/l									Tc
TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	U 1 00 2		0.0314	0.100 <i>62.0-128</i>									3
(3) a,a,a-millaorotoidenen ib,) 33.2			02.0-120									³Ss
Laboratory Control	Sample (Lo	CS) • Labor	ratory Con	trol Sample	e Duplicate	e (LCSD)							⁴ Cn
(LCS) R3133815-2 05/04/16					'	, ,							
(===)	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	ifier LCSD Q	ualifier RPD	RPD Lim	its		⁵ Sr
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
TPH (GC/FID) Low Fraction	5.50	5.64	5.83	103	106	67.0-132			3.35	20			⁶ Qc
(S) a,a,a-Trifluorotoluene(FID))			98.0	99.7	62.0-128							QC
													7
L832099-05 Origin	nal Samnla	(OS) • Mati	riv Snika (N	1S) • Matrix	, Snika Du	nlicato (MS	:D)						GI
(OS) L832099-05 05/04/1					-								8
(05) 1832099-05 05/04/1		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	Al
Analyte	mg/l	mg/l	mg/l	mg/l	%	% %	Dilution	%	MS Qualifier	MSD Qualifier	%	%	0
TPH (GC/FID) Low Fraction	5.50	ND	5.87	7.99	107	145	1	50.0-143		<u>J3 J5</u>	30.6	20	Sc
(S) a,a,a-Trifluorotoluene(FID))				100	101		62.0-128					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 151 of 187

WG869995 Volatile Organic Com	ipounds (GC)	by Method 8	3015D/GRO	Ql	JALITY	CONTR		UMMA	RY			ONE LAB. NATIONWI	/IDE.
Method Blank (MB	3)												1
(MB) R3134127-3 05/05/16	•												— Ср
(1115) 11010 1121 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
TPH (GC/FID) Low Fraction	U		0.0314	0.100									
(S) a,a,a-Trifluorotoluene(FIL	D) 94.2			62.0-128									³ Ss
Laboratory Contro					e Duplicate	e (LCSD)							⁴ Cn
(LCS) R3134127-1 05/05/1	•	•											5
	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qual	ifier LCSD C	Qualifier RPD		imits		°Sr
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			$- \vdash$
TPH (GC/FID) Low Fraction	5.50	5.10	5.13	92.7	93.2	67.0-132			0.570	0 20			⁶ Qc
(S) a,a,a-Trifluorotoluene(FIL	D)			102	102	62.0-128							
													⁷ Gl
L832603-24 Origin	nal Sample	(OS) • Mat	rix Snike (1	MS) • Matri	x Snike Du	inlicate (MS	(D)						
	-	, ,					,D)						8
(OS) L832603-24 05/05/		•					Dilution	Dee Limita	MC Ouglific	MCD Qualifi	חמת	DDD Limite	Al
Analisto	•	t Original Result		MSD Result	MS Rec. %	MSD Rec. %	Dilution	Rec. Limits %	MS Qualifie	er MSD Qualifie	er RPD %	RPD Limits %	
Analyte TPH (GC/FID) Low Fraction	mg/l 5.50	mg/l 0.575	mg/l 4.15	mg/l 3.60	64.9	55.1	1	50.0-143			14.0	20	Sc
(S) a,a,a-Trifluorotoluene(FIL		0.575	4.15	3.00	98.1	98.1	ı	62.0-128			14.0	20	
(3) 0,0,0-11111001010101011111111))				90.1	30.1		02.0-120					

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/20/16 13:57 PAGE: 152 of 187

QUALITY CONTROL SUMMARY L832603-41,42

ONE LAB. NATIONWIDE.

²Tc

GI

ΑI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(MB) R3134152-3 05/04/16							
(NB) K3134152-3 U5/U4/10	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte		WB Qualifier	mg/l	mg/l			
Acetone	mg/l U		0.0100	0.0500			
	U						
Benzene			0.000331	0.00100			
Bromodichloromethane	U		0.000380	0.00100			
Bromoform	U		0.000469	0.00100			
Bromomethane	U		0.000866	0.00500			
n-Butylbenzene	U		0.000361	0.00100			
sec-Butylbenzene	U		0.000365	0.00100			
Carbon disulfide	U		0.000275	0.00100			
Carbon tetrachloride	U		0.000379	0.00100			
Chlorobenzene	U		0.000348	0.00100			
Chlorodibromomethane	U		0.000327	0.00100			
Chloroethane	U		0.000453	0.00500			
Chloroform	U		0.000324	0.00500			
Chloromethane	U		0.000276	0.00250			
1,2-Dibromoethane	U		0.000381	0.00100			
1,1-Dichloroethane	U		0.000259	0.00100			
1,2-Dichloroethane	U		0.000361	0.00100			
1,1-Dichloroethene	U		0.000398	0.00100			
cis-1,2-Dichloroethene	U		0.000260	0.00100			
trans-1,2-Dichloroethene	U		0.000396	0.00100			
1,2-Dichloropropane	U		0.000306	0.00100			
cis-1,3-Dichloropropene	U		0.000418	0.00100			
trans-1,3-Dichloropropene	U		0.000419	0.00100			
Ethylbenzene	U		0.000384	0.00100			
2-Hexanone	U		0.00382	0.0100			
Isopropylbenzene	U		0.000326	0.00100			
p-Isopropyltoluene	U		0.000350	0.00100			
2-Butanone (MEK)	U		0.00393	0.0100			
Methylene Chloride	U		0.00100	0.00500			
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100			
Methyl tert-butyl ether	U		0.000367	0.00100			
Naphthalene	U		0.00100	0.00500			
n-Propylbenzene	U		0.000349	0.00100			
Styrene	U		0.000307	0.00100			
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100			
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100			

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 153 of 187

QUALITY CONTROL SUMMARY L832603-41,42

ONE LAB. NATIONWIDE.

GI

PAGE:

154 of 187

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

metriod Blank (MB)					
(MB) R3134152-3 05/04/16	6 18:40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	100			90.0-115	
(S) Dibromofluoromethane	99.4			79.0-121	
(S) 4-Bromofluorobenzene	88.4			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134152-1 05/04	/16 17:18 • (LCSD)	R3134152-2 (05/04/16 17:39							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.0995	0.0988	79.6	79.1	28.7-175			0.730	20.9
Benzene	0.0250	0.0267	0.0264	107	106	73.0-122			1.06	20
Bromodichloromethane	0.0250	0.0247	0.0249	98.8	99.8	75.5-121			0.960	20
Bromoform	0.0250	0.0252	0.0258	101	103	71.5-131			2.40	20
Bromomethane	0.0250	0.0353	0.0344	141	138	22.4-187			2.64	20
n-Butylbenzene	0.0250	0.0268	0.0260	107	104	75.9-134			3.08	20
sec-Butylbenzene	0.0250	0.0247	0.0246	98.9	98.4	80.6-126			0.590	20
Carbon disulfide	0.0250	0.0276	0.0270	110	108	53.0-134			2.29	20
Carbon tetrachloride	0.0250	0.0216	0.0212	86.4	84.6	70.9-129			2.11	20
Chlorobenzene	0.0250	0.0260	0.0264	104	106	79.7-122			1.51	20
Chlorodibromomethane	0.0250	0.0249	0.0254	99.8	102	78.2-124			1.81	20
Chloroethane	0.0250	0.0356	0.0345	142	138	41.2-153			3.09	20
Chloroform	0.0250	0.0254	0.0255	102	102	73.2-125			0.410	20
Chloromethane	0.0250	0.0309	0.0308	124	123	55.8-134			0.310	20
l,2-Dibromoethane	0.0250	0.0244	0.0250	97.4	100	79.8-122			2.65	20
1,1-Dichloroethane	0.0250	0.0281	0.0278	112	111	71.7-127			0.900	20

ACCOUNT: PROJECT: SDG: DATE/TIME: TRC Solutions - Austin, TX 249545.0000.0000 000 L832603 05/20/16 13:57

QUALITY CONTROL SUMMARY L832603-41,42

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134152-1 05/04/16	5 17:18 • (LCSD)	R3134152-2	05/04/16 17:39								
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0239	0.0238	95.5	95.3	65.3-126			0.140	20	
1,1-Dichloroethene	0.0250	0.0290	0.0286	116	114	59.9-137			1.30	20	
cis-1,2-Dichloroethene	0.0250	0.0267	0.0267	107	107	77.3-122			0.230	20	
trans-1,2-Dichloroethene	0.0250	0.0265	0.0266	106	106	72.6-125			0.160	20	
1,2-Dichloropropane	0.0250	0.0290	0.0293	116	117	77.4-125			0.980	20	
cis-1,3-Dichloropropene	0.0250	0.0276	0.0276	110	110	77.7-124			0.100	20	
trans-1,3-Dichloropropene	0.0250	0.0267	0.0267	107	107	73.5-127			0.140	20	
Ethylbenzene	0.0250	0.0263	0.0264	105	105	80.9-121			0.310	20	
2-Hexanone	0.125	0.133	0.136	107	109	59.4-151			2.13	20	
Isopropylbenzene	0.0250	0.0253	0.0253	101	101	81.6-124			0.0600	20	
p-Isopropyltoluene	0.0250	0.0253	0.0255	101	102	77.6-129			0.550	20	
2-Butanone (MEK)	0.125	0.127	0.130	102	104	46.4-155			2.27	20	
Methylene Chloride	0.0250	0.0259	0.0260	104	104	69.5-120			0.280	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.142	0.143	113	115	63.3-138			1.16	20	
Methyl tert-butyl ether	0.0250	0.0247	0.0244	98.7	97.6	70.1-125			1.09	20	
Naphthalene	0.0250	0.0214	0.0218	85.5	87.3	69.7-134			2.09	20	
n-Propylbenzene	0.0250	0.0263	0.0264	105	105	81.9-122			0.280	20	
Styrene	0.0250	0.0261	0.0266	104	106	79.9-124			1.86	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0257	0.0259	103	104	78.5-125			0.990	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0239	0.0239	95.7	95.7	79.3-123			0.0300	20	
Tetrachloroethene	0.0250	0.0254	0.0250	101	100	73.5-130			1.22	20	
Toluene	0.0250	0.0256	0.0256	102	102	77.9-116			0.000	20	
1,1,1-Trichloroethane	0.0250	0.0245	0.0243	98.0	97.0	71.1-129			0.960	20	
1,1,2-Trichloroethane	0.0250	0.0245	0.0246	98.0	98.3	81.6-120			0.330	20	
Trichloroethene	0.0250	0.0259	0.0256	104	102	79.5-121			1.30	20	
1,2,4-Trimethylbenzene	0.0250	0.0244	0.0245	97.6	98.0	79.0-122			0.480	20	
1,3,5-Trimethylbenzene	0.0250	0.0243	0.0244	97.4	97.5	81.0-123			0.110	20	
Vinyl chloride	0.0250	0.0314	0.0310	126	124	61.5-134			1.21	20	
Xylenes, Total	0.0750	0.0768	0.0778	102	104	79.2-122			1.22	20	
o-Xylene	0.0250	0.0254	0.0258	102	103	79.1-123			1.54	20	
m&p-Xylenes	0.0500	0.0514	0.0520	103	104	78.5-122			1.06	20	
(S) Toluene-d8				99.7	99.8	90.0-115					
(S) Dibromofluoromethane				101	101	79.0-121					
(S) 4-Bromofluorobenzene				86.7	87.3	80.1-120					

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 155 of 187

QUALITY CONTROL SUMMARY L832603-41,42

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832598-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0202

0.0208

(OS) L832598-01 05/04/16	6 20:23 • (MS)	R3134152-4 05	5/04/16 19:01 •	(MSD) R313415	2-5 05/04/16	5 19:21						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	ND	0.0773	0.0792	61.9	63.3	1	25.0-156			2.31	21.5
Benzene	0.0250	ND	0.0174	0.0182	69.7	72.7	1	58.6-133			4.24	20
Bromodichloromethane	0.0250	ND	0.0186	0.0195	74.5	78.1	1	69.2-127			4.76	20
Bromoform	0.0250	ND	0.0203	0.0211	81.1	84.6	1	66.3-140			4.18	20
Bromomethane	0.0250	ND	0.0158	0.0160	63.2	63.9	1	16.6-183			1.09	20.5
n-Butylbenzene	0.0250	ND	0.0198	0.0204	79.2	81.6	1	64.8-145			3.00	20
sec-Butylbenzene	0.0250	ND	0.0179	0.0183	71.8	73.0	1	66.8-139			1.70	20
Carbon disulfide	0.0250	ND	0.00755	0.00780	30.2	31.2	1	34.9-138	<u>J6</u>	<u>J6</u>	3.27	20
Carbon tetrachloride	0.0250	ND	0.0143	0.0149	57.2	59.6	1	60.6-139	<u>J6</u>	<u>J6</u>	4.02	20
Chlorobenzene	0.0250	ND	0.0185	0.0193	73.9	77.4	1	70.1-130			4.53	20
Chlorodibromomethane	0.0250	ND	0.0194	0.0206	77.5	82.5	1	71.6-132			6.30	20
Chloroethane	0.0250	ND	0.0189	0.0193	75.5	77.1	1	33.3-155			2.16	20
Chloroform	0.0250	ND	0.0186	0.0190	74.3	76.1	1	66.1-133			2.47	20
Chloromethane	0.0250	ND	0.0126	0.0130	50.4	52.1	1	40.7-139			3.28	20
1,2-Dibromoethane	0.0250	ND	0.0188	0.0195	75.0	77.9	1	73.8-131			3.75	20
1,1-Dichloroethane	0.0250	ND	0.0194	0.0202	77.8	80.9	1	64.0-134			3.90	20
1,2-Dichloroethane	0.0250	ND	0.0171	0.0180	68.6	72.0	1	60.7-132			4.86	20
1,1-Dichloroethene	0.0250	ND	0.0164	0.0169	65.7	67.7	1	48.8-144			3.04	20
cis-1,2-Dichloroethene	0.0250	ND	0.0184	0.0191	73.6	76.3	1	60.6-136			3.60	20
trans-1,2-Dichloroethene	0.0250	ND	0.0150	0.0154	59.9	61.7	1	61.0-132	<u>J6</u>		2.92	20
1,2-Dichloropropane	0.0250	ND	0.0212	0.0225	84.9	89.9	1	69.7-130			5.82	20
cis-1,3-Dichloropropene	0.0250	ND	0.0199	0.0209	79.6	83.7	1	71.1-129			4.94	20
trans-1,3-Dichloropropene	0.0250	ND	0.0200	0.0213	80.1	85.1	1	66.3-136			6.05	20
Ethylbenzene	0.0250	ND	0.0179	0.0186	71.6	74.5	1	62.7-136			4.01	20
2-Hexanone	0.125	ND	0.107	0.111	85.9	88.8	1	59.4-154			3.32	20.1
Isopropylbenzene	0.0250	ND	0.0180	0.0184	71.8	73.6	1	67.4-136			2.39	20
p-Isopropyltoluene	0.0250	ND	0.0182	0.0185	72.7	74.1	1	62.8-143			1.90	20
2-Butanone (MEK)	0.125	ND	0.105	0.110	84.3	88.1	1	45.0-156			4.49	20.8
Methylene Chloride	0.0250	ND	0.0169	0.0172	67.4	68.8	1	61.5-125			1.98	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.122	0.126	97.7	101	1	60.7-150			3.43	20
Methyl tert-butyl ether	0.0250	ND	0.0187	0.0196	74.8	78.3	1	61.4-136			4.55	20
Naphthalene	0.0250	ND	0.0177	0.0189	70.7	75.5	1	61.8-143			6.58	20
n-Propylbenzene	0.0250	ND	0.0184	0.0189	73.8	75.5	1	63.2-139			2.33	20
Styrene	0.0250	ND	0.0188	0.0196	75.1	78.5	1	68.2-133			4.37	20
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0194	0.0201	77.5	80.3	1	70.5-132			3.64	20

0.0250

ND

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

80.6

83.1

SDG: L832603

64.9-145

DATE/TIME: 05/20/16 13:57

3.09

20

PAGE: 156 of 187

QUALITY CONTROL SUMMARY L832603-41,42

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832598-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	ND	0.0157	0.0166	63.0	66.3	1	57.4-141			5.12	20
Toluene	0.0250	ND	0.0173	0.0182	69.3	72.8	1	67.8-124			4.89	20
1,1,1-Trichloroethane	0.0250	ND	0.0171	0.0177	68.5	70.7	1	58.7-134			3.13	20
1,1,2-Trichloroethane	0.0250	ND	0.0195	0.0208	78.0	83.3	1	74.1-130			6.64	20
Trichloroethene	0.0250	ND	0.0166	0.0171	66.3	68.5	1	48.9-148			3.22	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0174	0.0177	69.5	70.8	1	60.5-137			1.77	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0172	0.0176	68.9	70.5	1	67.9-134			2.21	20
Vinyl chloride	0.0250	ND	0.0146	0.0151	58.4	60.4	1	44.3-143			3.28	20
Xylenes, Total	0.0750	ND	0.0527	0.0551	70.3	73.5	1	65.6-133			4.48	20
o-Xylene	0.0250	ND	0.0179	0.0185	71.6	74.0	1	67.1-133			3.33	20
m&p-Xylenes	0.0500	ND	0.0348	0.0366	69.6	73.3	1	64.1-133			5.06	20
(S) Toluene-d8					99.3	100		90.0-115				
(S) Dibromofluoromethane					99.8	98.8		79.0-121				
(S) 4-Bromofluorohenzene					85.7	<i>85.4</i>		80 1-120				

QUALITY CONTROL SUMMARY L832603-01,02,03,04,08,09,10,13,14,16,17,19

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134288-3 05/05/16 04:33

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 158 of 187

QUALITY CONTROL SUMMARY L832603-01,02,03,04,08,09,10,13,14,16,17,19

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134288-3 05/05/1	6 04:33				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	98.8			90.0-115	
(S) Dibromofluoromethane	101			79.0-121	
(S) 4-Bromofluorobenzene	96.1			80.1-120	

GI

ΔI

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

	., -	0110101	J CI	0.0	(-0.		-0.00.	aro. y	001161	<u> </u>
(LCS) R31342	288-1	05/05/16	02:55	• (L	CSD)	R3134	1288-2	05/05/1	6 03:14	
				_						

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.0989	0.115	79.1	92.3	28.7-175			15.4	20.9	
Benzene	0.0250	0.0225	0.0233	89.8	93.0	73.0-122			3.51	20	
Bromodichloromethane	0.0250	0.0215	0.0225	85.8	90.0	75.5-121			4.70	20	
Bromoform	0.0250	0.0187	0.0205	74.8	81.9	71.5-131			9.03	20	
Bromomethane	0.0250	0.0277	0.0284	111	114	22.4-187			2.47	20	
n-Butylbenzene	0.0250	0.0228	0.0238	91.2	95.1	75.9-134			4.24	20	
sec-Butylbenzene	0.0250	0.0222	0.0231	88.9	92.6	80.6-126			4.12	20	
Carbon disulfide	0.0250	0.0204	0.0214	81.7	85.8	53.0-134			4.82	20	
Carbon tetrachloride	0.0250	0.0207	0.0215	82.6	86.0	70.9-129			4.05	20	
Chlorobenzene	0.0250	0.0221	0.0228	88.4	91.2	79.7-122			3.11	20	
Chlorodibromomethane	0.0250	0.0214	0.0225	85.4	90.0	78.2-124			5.25	20	
Chloroethane	0.0250	0.0256	0.0260	102	104	41.2-153			1.69	20	
Chloroform	0.0250	0.0228	0.0238	91.0	95.2	73.2-125			4.44	20	
Chloromethane	0.0250	0.0201	0.0208	80.3	83.4	55.8-134			3.71	20	
1,2-Dibromoethane	0.0250	0.0207	0.0225	82.9	89.9	79.8-122			8.10	20	
1,1-Dichloroethane	0.0250	0.0229	0.0236	91.7	94.3	71.7-127			2.85	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 159 of 187

QUALITY CONTROL SUMMARY L832603-01,02,03,04,08,09,10,13,14,16,17,19

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134288-1 05/05/1	6 02:55 • (LCS	D) R3134288-2	2 05/05/16 03:	14							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0211	0.0223	84.4	89.2	65.3-126			5.55	20	
1,1-Dichloroethene	0.0250	0.0228	0.0236	91.0	94.4	59.9-137			3.68	20	
cis-1,2-Dichloroethene	0.0250	0.0233	0.0242	93.2	96.9	77.3-122			3.80	20	
trans-1,2-Dichloroethene	0.0250	0.0230	0.0239	92.0	95.7	72.6-125			3.99	20	
1,2-Dichloropropane	0.0250	0.0206	0.0214	82.6	85.7	77.4-125			3.68	20	
cis-1,3-Dichloropropene	0.0250	0.0223	0.0231	89.3	92.4	77.7-124			3.43	20	
trans-1,3-Dichloropropene	0.0250	0.0213	0.0228	85.2	91.1	73.5-127			6.65	20	
Ethylbenzene	0.0250	0.0219	0.0227	87.7	90.7	80.9-121			3.44	20	
2-Hexanone	0.125	0.105	0.125	83.7	99.9	59.4-151			17.6	20	
Isopropylbenzene	0.0250	0.0219	0.0229	87.7	91.5	81.6-124			4.14	20	
p-Isopropyltoluene	0.0250	0.0229	0.0240	91.7	96.0	77.6-129			4.62	20	
2-Butanone (MEK)	0.125	0.103	0.124	82.0	99.0	46.4-155			18.7	20	
Methylene Chloride	0.0250	0.0222	0.0232	88.9	92.8	69.5-120			4.25	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.0965	0.117	77.2	93.3	63.3-138			18.8	20	
Methyl tert-butyl ether	0.0250	0.0212	0.0237	84.8	94.7	70.1-125			11.0	20	
Naphthalene	0.0250	0.0194	0.0223	77.6	89.2	69.7-134			13.9	20	
n-Propylbenzene	0.0250	0.0227	0.0233	91.0	93.4	81.9-122			2.58	20	
Styrene	0.0250	0.0226	0.0238	90.3	95.1	79.9-124			5.18	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0218	0.0224	87.1	89.4	78.5-125			2.66	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0204	0.0228	81.7	91.1	79.3-123			10.9	20	
Tetrachloroethene	0.0250	0.0212	0.0216	84.8	86.2	73.5-130			1.68	20	
Toluene	0.0250	0.0213	0.0220	85.2	88.0	77.9-116			3.21	20	
1,1,1-Trichloroethane	0.0250	0.0226	0.0235	90.2	93.9	71.1-129			4.01	20	
1,1,2-Trichloroethane	0.0250	0.0212	0.0227	84.6	90.8	81.6-120			7.07	20	
Trichloroethene	0.0250	0.0208	0.0219	83.4	87.7	79.5-121			5.08	20	
1,2,4-Trimethylbenzene	0.0250	0.0220	0.0225	87.9	90.0	79.0-122			2.32	20	
1,3,5-Trimethylbenzene	0.0250	0.0221	0.0229	88.6	91.5	81.0-123			3.22	20	
Vinyl chloride	0.0250	0.0232	0.0240	92.8	96.0	61.5-134			3.43	20	
Xylenes, Total	0.0750	0.0658	0.0674	87.7	89.9	79.2-122			2.50	20	
o-Xylene	0.0250	0.0215	0.0220	85.9	88.0	79.1-123			2.40	20	
m&p-Xylenes	0.0500	0.0443	0.0454	88.6	90.8	78.5-122			2.55	20	
(S) Toluene-d8				100	102	90.0-115					
(S) Dibromofluoromethane				102	104	79.0-121					
(S) 4-Bromofluorobenzene				96.4	97.1	80.1-120					

ACCOUNT:										
TRC Solutions - Austin,	TΧ									

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832603-01,02,03,04,08,09,10,13,14,16,17,19

L832603-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0206

0.0201

(OS) L832603-09 05/05/1		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%	Dilution	%	MS Qualifier	MOD Guanner	%	%
Acetone	0.125	U	0.0513	0.0481	41.0	38.5	1	25.0-156			6.34	21.5
Benzene	0.0250	U	0.0220	0.0209	88.2	83.6	1	58.6-133			5.31	20
Bromodichloromethane	0.0250	U	0.0212	0.0201	84.9	80.5	1	69.2-127			5.31	20
Bromoform	0.0250	U	0.0191	0.0180	76.3	72.2	1	66.3-140			5.53	20
Bromomethane	0.0250	U	0.0289	0.0255	116	102	1	16.6-183			12.7	20.5
n-Butylbenzene	0.0250	U	0.0232	0.0223	92.8	89.0	1	64.8-145			4.19	20
sec-Butylbenzene	0.0250	U	0.0219	0.0208	87.6	83.4	1	66.8-139			4.92	20
Carbon disulfide	0.0250	U	0.0206	0.0199	82.3	79.5	1	34.9-138			3.49	20
Carbon tetrachloride	0.0250	U	0.0207	0.0199	82.9	79.5	1	60.6-139			4.18	20
Chlorobenzene	0.0250	U	0.0214	0.0206	85.8	82.6	1	70.1-130			3.77	20
Chlorodibromomethane	0.0250	U	0.0206	0.0199	82.2	79.7	1	71.6-132			3.11	20
Chloroethane	0.0250	U	0.0262	0.0244	105	97.7	1	33.3-155			6.95	20
Chloroform	0.0250	U	0.0227	0.0217	90.9	86.7	1	66.1-133			4.69	20
Chloromethane	0.0250	U	0.0208	0.0196	83.2	78.6	1	40.7-139			5.73	20
1,2-Dibromoethane	0.0250	U	0.0207	0.0196	82.9	78.6	1	73.8-131			5.40	20
1,1-Dichloroethane	0.0250	U	0.0228	0.0216	91.0	86.4	1	64.0-134			5.22	20
1,2-Dichloroethane	0.0250	U	0.0208	0.0197	83.2	78.8	1	60.7-132			5.46	20
1,1-Dichloroethene	0.0250	U	0.0228	0.0219	91.2	87.7	1	48.8-144			3.89	20
cis-1,2-Dichloroethene	0.0250	U	0.0229	0.0219	91.5	87.6	1	60.6-136			4.42	20
trans-1,2-Dichloroethene	0.0250	U	0.0229	0.0221	91.7	88.5	1	61.0-132			3.52	20
1,2-Dichloropropane	0.0250	U	0.0203	0.0198	81.4	79.2	1	69.7-130			2.75	20
cis-1,3-Dichloropropene	0.0250	U	0.0218	0.0209	87.3	83.6	1	71.1-129			4.38	20
trans-1,3-Dichloropropene	0.0250	U	0.0210	0.0199	84.1	79.8	1	66.3-136			5.23	20
Ethylbenzene	0.0250	U	0.0218	0.0205	87.4	81.9	1	62.7-136			6.46	20
2-Hexanone	0.125	U	0.0864	0.0826	69.1	66.0	1	59.4-154			4.52	20.1
Isopropylbenzene	0.0250	U	0.0216	0.0205	86.2	81.9	1	67.4-136			5.21	20
p-Isopropyltoluene	0.0250	U	0.0226	0.0215	90.4	86.2	1	62.8-143			4.72	20
2-Butanone (MEK)	0.125	U	0.0807	0.0753	64.5	60.2	1	45.0-156			6.91	20.8
Methylene Chloride	0.0250	U	0.0226	0.0213	90.5	85.2	1	61.5-125			6.06	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.102	0.0978	81.3	78.2	1	60.7-150			3.89	20
Methyl tert-butyl ether	0.0250	U	0.0217	0.0206	86.9	82.6	1	61.4-136			5.07	20
Naphthalene	0.0250	U	0.0198	0.0192	79.0	76.9	1	61.8-143			2.68	20
n-Propylbenzene	0.0250	U	0.0224	0.0215	89.6	86.1	1	63.2-139			4.05	20
Styrene	0.0250	U	0.0211	0.0199	84.5	79.7	1	68.2-133			5.90	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0209	0.0198	83.7	79.2	1	70.5-132			5.47	20

1,1,2,2-Tetrachloroethane

249545.0000.0000 000

L832603

DATE/TIME:

0.0250

U

82.4

80.5

64.9-145

2.30

20

QUALITY CONTROL SUMMARY L832603-01,02,03,04,08,09,10,13,14,16,17,19

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832603-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0211	0.0197	84.3	78.9	1	57.4-141			6.66	20
Toluene	0.0250	U	0.0211	0.0200	84.6	80.0	1	67.8-124			5.55	20
1,1,1-Trichloroethane	0.0250	U	0.0226	0.0216	90.6	86.3	1	58.7-134			4.79	20
1,1,2-Trichloroethane	0.0250	U	0.0212	0.0200	84.7	80.2	1	74.1-130			5.47	20
Trichloroethene	0.0250	U	0.0207	0.0197	83.0	78.7	1	48.9-148			5.25	20
1,2,4-Trimethylbenzene	0.0250	U	0.0215	0.0202	85.8	80.8	1	60.5-137			6.06	20
1,3,5-Trimethylbenzene	0.0250	U	0.0215	0.0206	86.0	82.5	1	67.9-134			4.22	20
Vinyl chloride	0.0250	U	0.0240	0.0225	96.2	89.8	1	44.3-143			6.83	20
Xylenes, Total	0.0750	U	0.0645	0.0604	86.0	80.5	1	65.6-133			6.57	20
o-Xylene	0.0250	U	0.0208	0.0197	83.1	78.8	1	67.1-133			5.38	20
m&p-Xylenes	0.0500	U	0.0437	0.0407	87.4	81.4	1	64.1-133			7.14	20
(S) Toluene-d8					102	102		90.0-115				
(S) Dibromofluoromethane					103	102		79.0-121				
(S) 4-Bromofluorohenzene					95.7	94 0		80 1-120				

QUALITY CONTROL SUMMARY <u>L832603-21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

victioa Biariit (IVIB)							
(MB) R3134200-3 05/05/1							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Acetone	U		0.0100	0.0500			
Benzene	U		0.000331	0.00100			
Bromodichloromethane	U		0.000380	0.00100			
Bromoform	U		0.000469	0.00100			
Bromomethane	U		0.000866	0.00500			
n-Butylbenzene	U		0.000361	0.00100			
sec-Butylbenzene	U		0.000365	0.00100			
Carbon disulfide	U		0.000275	0.00100			
Carbon tetrachloride	U		0.000379	0.00100			
Chlorobenzene	U		0.000348	0.00100			
Chlorodibromomethane	U		0.000327	0.00100			
Chloroethane	U		0.000453	0.00500			
Chloroform	U		0.000324	0.00500			
Chloromethane	U		0.000276	0.00250			
1,2-Dibromoethane	U		0.000381	0.00100			
1,1-Dichloroethane	U		0.000259	0.00100			
1,2-Dichloroethane	U		0.000361	0.00100			
1,1-Dichloroethene	U		0.000398	0.00100			
cis-1,2-Dichloroethene	U		0.000260	0.00100			
trans-1,2-Dichloroethene	U		0.000396	0.00100			
1,2-Dichloropropane	U		0.000306	0.00100			
cis-1,3-Dichloropropene	U		0.000418	0.00100			
trans-1,3-Dichloropropene	U		0.000419	0.00100			
Ethylbenzene	U		0.000384	0.00100			
2-Hexanone	U		0.00382	0.0100			
Isopropylbenzene	U		0.000326	0.00100			
p-Isopropyltoluene	U		0.000350	0.00100			
2-Butanone (MEK)	U		0.00393	0.0100			
Methylene Chloride	U		0.00100	0.00500			
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100			
Methyl tert-butyl ether	U		0.000367	0.00100			
Naphthalene	U		0.00100	0.00500			
n-Propylbenzene	U		0.000349	0.00100			
Styrene	U		0.000307	0.00100			
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100			
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100			

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 163 of 187

QUALITY CONTROL SUMMARY <u>L832603-21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134200-3 05/05/16	6 04:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Tetrachloroethene	U		0.000372	0.00100
Toluene	U		0.000780	0.00500
1,1,1-Trichloroethane	U		0.000319	0.00100
1,1,2-Trichloroethane	U		0.000383	0.00100
Trichloroethene	U		0.000398	0.00100
1,2,4-Trimethylbenzene	U		0.000373	0.00100
1,3,5-Trimethylbenzene	U		0.000387	0.00100
Vinyl chloride	U		0.000259	0.00100
Xylenes, Total	U		0.00106	0.00300
o-Xylene	U		0.000341	0.00100
m&p-Xylenes	U		0.000719	0.00100
(S) Toluene-d8	107			90.0-115
(S) Dibromofluoromethane	110			79.0-121
(S) 4-Bromofluorobenzene	105			80.1-120
. ,				

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

		,	,		
(LCS) R3134200-1	05/05/16 03:03	• (LCSD)	R3134200-2	05/05/16 03:20	_

(LCS) R3134200-1 05/0:	3/10 U3.U3 • (LCS	ען א א נט	2 05/05/16 03	.20							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.127	0.123	102	98.2	28.7-175			3.33	20.9	
Benzene	0.0250	0.0226	0.0221	90.6	88.4	73.0-122			2.44	20	
Bromodichloromethane	0.0250	0.0230	0.0229	92.1	91.5	75.5-121			0.650	20	
Bromoform	0.0250	0.0222	0.0218	88.7	87.0	71.5-131			1.92	20	
Bromomethane	0.0250	0.0243	0.0232	97.1	92.9	22.4-187			4.47	20	
n-Butylbenzene	0.0250	0.0223	0.0228	89.3	91.2	75.9-134			2.11	20	
sec-Butylbenzene	0.0250	0.0223	0.0229	89.2	91.7	80.6-126			2.82	20	
Carbon disulfide	0.0250	0.0206	0.0202	82.6	80.8	53.0-134			2.15	20	
Carbon tetrachloride	0.0250	0.0207	0.0203	82.7	81.2	70.9-129			1.90	20	
Chlorobenzene	0.0250	0.0220	0.0226	88.1	90.4	79.7-122			2.52	20	
Chlorodibromomethane	0.0250	0.0226	0.0228	90.3	91.1	78.2-124			0.820	20	
Chloroethane	0.0250	0.0231	0.0228	92.3	91.2	41.2-153			1.16	20	
Chloroform	0.0250	0.0235	0.0228	94.1	91.2	73.2-125			3.14	20	
Chloromethane	0.0250	0.0230	0.0224	92.1	89.6	55.8-134			2.74	20	
1,2-Dibromoethane	0.0250	0.0222	0.0223	88.8	89.3	79.8-122			0.540	20	
1,1-Dichloroethane	0.0250	0.0237	0.0229	94.7	91.8	71.7-127			3.14	20	

ACCOUNT: PROJECT: TRC Solutions - Austin, TX

249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 164 of 187

QUALITY CONTROL SUMMARY <u>L832603-21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40</u>

ONE LAB. NATIONWIDE.

Тс

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

1.2 Dichloroethane 0.0250 0.0239 0.0227 95.7 90.7 65.3-126 5.40 20 1.1 Dichloroethene 0.0250 0.0235 0.0231 94.0 92.4 59.9137 1.71 20 cst-2.0-Chloroethene 0.0250 0.0235 0.0229 94.1 91.7 73.422 2.52 20 1.2-Dichloroethene 0.0250 0.0238 0.0224 91.2 89.4 77.4125 1.99 20 cis.3-Dichloropropene 0.0250 0.0236 0.0233 94.6 93.0 77.7124 1.67 20 cis.3-Dichloropropene 0.0250 0.0236 0.0233 94.6 93.0 77.7124 1.67 20 cis.3-Dichloropropene 0.0250 0.0234 0.0228 93.7 91.1 73.5127 2.81 20 Ethyloerenene 0.0250 0.0231 0.0218 85.4 87.7 80.9121 2.66 20 2-becanoryphotherene 0.0250 0.0224 0.0230 89.	LCS) R3134200-1 05/05/1	6 03:03 • (LCS	D) R3134200	-2 05/05/16 03	:20							
1,2 Dichioroethane 0,2520 0,0239 0,0227 95,7 90.7 65,3126 5,40 20 1,1 Dichioroethane 0,0250 0,0235 0,0231 94.0 92.4 59,9137 1.71 20 cst-2,1-Ochioroethane 0,0250 0,0235 0,0229 93.1 91.4 72,6125 1,75 20 1,2-Dichioroptopane 0,0250 0,0238 0,0224 91.2 89.4 77,4125 1.99 20 cst-3,3-Dichioroptopane 0,0250 0,0236 0,0233 94.6 83.0 77,7124 1.67 20 trans-1,3-Dichioroptopane 0,0250 0,0236 0,0233 94.6 83.0 77,7124 1.67 20 trans-1,3-Dichioroptopene 0,0250 0,0234 0,0228 93.7 91.1 73,5-127 2.81 20 Ethlybenzene 0,0250 0,0213 0,029 83.8 87.7 80-9121 2.66 20 2-bearona (MEK) 0,15 0,116 0.11 99		Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
	ınalyte	mg/l	mg/l	mg/l	%	%	%			%	%	
cs-12-Dichloroethene 0.0250 0.0235 0.0229 94.1 91.7 77.3-122 2.52 20 trans-12-Dichloroethene 0.0250 0.0238 0.0229 93.1 91.4 72.6-125 175 20 L2-Dichloropropene 0.0250 0.0238 0.0224 91.2 89.4 77.4-124 167 20 ctars-13-Dichloropropene 0.0250 0.0234 0.0228 93.7 91.1 73.5-127 2.81 20 Elhyberzene 0.0250 0.0234 0.029 85.4 87.7 80.9-121 2.66 20 2-Hasanone 0.125 0.116 0.111 92.9 88.8 59.4-151 4.60 20 2-Hosporybotholene 0.0250 0.0224 0.0230 89.7 92.1 81.6-124 2.62 20 2-Butanone (MEK) 0.125 0.103 0.033 92.2 83.8 69.102 3.4 4.6 2.0 2-Butanone (MEK) 0.125 0.172 0.023 90	,2-Dichloroethane	0.0250	0.0239	0.0227	95.7	90.7	65.3-126			5.40	20	
trans-1,2-Dichloroethene 0,0250 0,0233 0,0229 93.1 91.4 72.6-125 1,75 20 1,2-Dichloropropane 0,0250 0,0228 0,0224 91.2 89.4 77.4-125 1.99 20 cta-1,3-Dichloropropene 0,0250 0,0238 0,0238 93.7 91.1 73.5-127 2.81 20 Ethylorenee 0,0250 0,0231 0,029 85.4 87.7 80.9-121 2.66 20 Lebranone 0,125 0.116 0.111 92.9 88.8 93.4151 4.60 20 Skopropylbenzene 0,0250 0.024 0.0233 89.7 92.1 81.6124 2.62 2.0 2-butanone (MEK) 0.125 0.103 0.0233 90.2 83.8 69.5120 3.40 2.0 2-butanone (MEK) 0.125 0.103 0.023 89.7 81.4 74.7 46.4152 4.9 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0<	,1-Dichloroethene	0.0250	0.0235	0.0231	94.0	92.4	59.9-137			1.71	20	
1.2-Dichloropropane 0.0250 0.0228 0.0224 91.2 89.4 77.4-125 1.99 20 cis-1.3-Dichloropropene 0.0250 0.0234 0.0233 94.6 93.0 77.7-124 167 20 Ethlybenzene 0.0250 0.0234 0.0228 93.7 91.1 73.5-127 2.81 20 2-Hexanone 0.125 0.116 0.111 92.9 88.8 59.4-151 4.60 20 2-Hexanone 0.0250 0.0224 0.0230 89.7 92.1 81.6-124 2.62 20 2-Pebrayoryblouene 0.0250 0.0225 0.0233 90.2 93.3 77.6-129 3.40 20 2-Butanone (MEK) 0.125 0.103 0.0934 82.1 74.7 46.4-155 9.40 20 4-Methyl-2-pentanone (MISK) 0.125 0.117 0.108 94.0 85.4 70.1-125 9.71 20 4-Methyl-2-pentanone (MISK) 0.0250 0.0225 0.0213 90.2 87.8 69.5-120 27.1 20 Naphthalene 0.0250 </td <td>is-1,2-Dichloroethene</td> <td>0.0250</td> <td>0.0235</td> <td>0.0229</td> <td>94.1</td> <td>91.7</td> <td>77.3-122</td> <td></td> <td></td> <td>2.52</td> <td>20</td> <td></td>	is-1,2-Dichloroethene	0.0250	0.0235	0.0229	94.1	91.7	77.3-122			2.52	20	
cis.1.3-Dichloropropene 0.0250 0.0236 0.0233 94.6 93.0 77.7124 1.67 20 trans-1.3-Dichloropropene 0.0250 0.0234 0.0228 93.7 91.1 73.5-127 2.81 20 Ethylbenzene 0.0250 0.0251 0.0219 85.4 87.7 80.9121 2.66 20 2-Hexanone 0.125 0.16 0.111 92.9 88.8 59.4-151 4.60 20 Sopropylbenzene 0.0250 0.0224 0.0230 89.7 92.1 81.6-124 2.62 20 Sebatonone (MKK) 0.125 0.033 0.033 90.2 93.3 77.6-129 3.40 20 Methylene Chloride 0.0250 0.0226 0.0219 90.2 87.8 69.5-120 2.71 20 Methylene Chloride 0.0250 0.0225 0.0213 90.2 87.8 69.5-120 2.71 20 Methylene Chloride 0.0250 0.0225 0.0213 90.2 <	rans-1,2-Dichloroethene	0.0250	0.0233	0.0229	93.1	91.4	72.6-125			1.75	20	
trans-1,3-Dichloropropene 0.0250 0.0234 0.0228 93.7 91.1 73.5-127 2.81 20 Ethyberacee 0.0250 0.0213 0.0219 85.4 87.7 80.9-121 2.66 20 2-Hexanone 0.125 0.116 0.111 92.9 88.8 59.4-151 4.60 20 Sopropylbracee 0.0250 0.0224 0.0230 89.7 92.1 81.6-124 2.62 20 p-Isopropyltolluene 0.0250 0.0225 0.0233 90.2 93.3 77.6-129 3.40 20 2-Butanone (MEK) 0.125 0.103 0.0934 82.1 74.7 46.4-155 9.40 20 4-Methyl-Ceptarlande (MIBK) 0.125 0.117 0.108 94.0 86.4 63.3-138 8.36 20 Methyl tert-butyl ether 0.0250 0.0225 0.0213 90.0 85.4 70.125 5.23 20 Naphthalene 0.0250 0.0229 0.0235 91.4 <	,2-Dichloropropane	0.0250	0.0228	0.0224	91.2	89.4	77.4-125			1.99	20	
Ethybenzene 0.0250 0.0213 0.0219 85.4 87.7 80.9-121 2.666 20 2-Hexanone 0.125 0.116 0.111 92.9 88.8 59.4-151 4.60 20 spropryblenzene 0.0250 0.0224 0.0230 89.7 92.1 81.6-124 2.62 20 p-bopropylloulene 0.0250 0.0225 0.0233 90.2 93.3 77.6-129 3.40 20 2-Butanone (MEK) 0.125 0.103 0.0934 82.1 74.7 46.4-155 9.40 20 Methylene Chloride 0.0250 0.0226 0.0219 90.2 87.8 69.5-120 2.71 20 Methylene Chloride 0.0250 0.0225 0.0213 90.0 88.4 70.1-125 5.23 20 Methylene Chloride 0.0250 0.0225 0.0213 90.0 88.4 70.1-125 5.23 20 Methylene Chloride 0.0250 0.0225 0.0213 90.0 88.4 70.1-125 5.23 20 Methylene Chloride 0.0250 0.0225 0.0213 90.0 88.4 70.1-125 5.23 20 Methylene 0.0250 0.0225 0.0213 90.0 88.4 70.1-125 5.23 20 Naphthalene 0.0250 0.0228 0.0238 90.7 93.1 79.9-124 2.84 2.66 20 n-Propylbenzene 0.0250 0.0227 0.0233 90.7 93.1 79.9-124 2.64 2.0 1.11,2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 1.11,2-Tetrachloroethane 0.0250 0.0220 0.0221 88.9 88.4 79.3-123 0.520 20 1.11,2-Tetrachloroethane 0.0250 0.0220 0.0221 88.2 89.4 73.5-130 1.11 20 1.11,1-Tichloroethane 0.0250 0.0220 0.0221 88.2 89.4 73.5-130 1.11 20 1.11,1-Tichloroethane 0.0250 0.0220 0.0221 88.2 89.4 73.5-130 1.11 20 1.11,1-Tichloroethane 0.0250 0.0220 0.0221 88.2 89.4 73.5-130 1.11 20 1.11,1-Tichloroethane 0.0250 0.0220 0.0221 88.2 89.4 73.5-130 1.11 20 1.11,1-Tichloroethane 0.0250 0.0220 0.0221 88.2 89.4 73.5-130 1.11 20 1.11,1-Tichloroethane 0.0250 0.0220 0.0221 88.4 88.0 81.6-120 0.430 20 1.11,1-Tichloroethane 0.0250 0.0221 0.0228 88.4 88.0 81.6-120 0.430 20 1.11,1-Tichloroethane 0.0250 0.0221 0.0228 88.4 89.0 81.6-120 0.430 2.0 1.12,1-Timethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.88 20 1.13,5-Timethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.88 20 1.13,5-Timethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.88 20 1.13,5-Timethylbenzene 0.0250 0.0266 0.02678 88.0 90.4 79.2-122 2.84 20 1.14,1-Timethylbenzene 0.0250 0.0260 0.0260 0.0678 88.0 90.4 79.2-122 2.2 2.74 20 1.14,0-Xylenes, Total	is-1,3-Dichloropropene	0.0250	0.0236	0.0233	94.6	93.0	77.7-124			1.67	20	
2-Hexanone 0.125 0.116 0.111 92.9 88.8 59.4·151 4.60 20 20 20 20 20 20 20 20 20 20 20 20 20	rans-1,3-Dichloropropene	0.0250	0.0234	0.0228	93.7	91.1	73.5-127			2.81	20	
ksporppylbenzene 0.0250 0.0224 0.0230 89.7 92.1 81.6-124 2.62 20 p-bsporppylboluene 0.0250 0.0225 0.0233 90.2 93.3 77.6-129 3.40 20 2-Butanone (MEK) 0.125 0.103 0.0934 82.1 74.7 46.4155 9.40 20 Methylene Chloride 0.0250 0.0226 0.0219 90.2 87.8 69.5-120 2.71 20 4-Methyl-ter-butyl ether 0.0250 0.0225 0.0213 90.0 85.4 70.1-125 5.23 20 Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7-134 2.96 20 N-Propylbenzene 0.0250 0.0229 0.0235 91.4 94.0 81.9-122 2.84 20 Mill-12-Tetrachloroethane 0.0250 0.0221 0.0235 91.4 94.0 81.9-122 1.73 20 Mill-12-Tetrachloroethane 0.0250 0.0212 0.0221	thylbenzene	0.0250	0.0213	0.0219	85.4	87.7	80.9-121			2.66	20	
p-Isopropyltoluene 0.0250 0.0251 0.0233 90.2 93.3 77.6129 3.40 20 2-Butanone (MEK) 0.125 0.103 0.0934 82.1 74.7 46.4155 9.40 20 Methylene Chloride 0.0250 0.0226 0.0219 90.2 87.8 69.5-120 2.71 20 4-Methylene Chloride 0.0250 0.025 0.0117 0.108 94.0 86.4 63.3-138 8.36 20 Methylene Chloride 0.0250 0.0250 0.0213 90.0 85.4 70.1-125 5.23 20 Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7-134 2.96 20 Naphthalene 0.0250 0.0229 0.0235 91.4 94.0 81.9-122 2.84 20 Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9-144 2.64 2.64 20 11.12.2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 11.12.2-Tetrachloroethane 0.0250 0.0224 88.2 89.4 79.3-123 0.520 20 11.12.1-Tetrachloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0233 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-16 0.310 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.6 89.2 77.9-16 0.300 20 11.12.1-Tichloroethane 0.0250 0.0224 0.0223 89.1 91.6 79.5-121 0.860 20 11.12.1-Tichloroethane 0.0250 0.0221 0.0228 88.4 88.0 816-120 0.430 20 11.12.1-Tichloroethane 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.84 20 11.3.5-Timethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 11.12.1-Tichloridene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 11.12.1-Tichloridene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 11.12.1-Tichloridene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 11.12.1-Tichloridene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 11.12.1-Tichloridene 0.0250 0.0260 0.0262 0.0274 0.0274 0.0274 0.0275 0.0275 0.0275 0.0275 0.0275 0.0275 0.0275 0	-Hexanone	0.125	0.116	0.111	92.9	88.8	59.4-151			4.60	20	
Zebulanone (MEK) 0.125 0.103 0.0934 82.1 74.7 46.4155 9.40 20 Methylene Chloride 0.0250 0.0226 0.0219 90.2 87.8 69.5-120 2.71 20 4-Methyl-2-pentanone (MIBK) 0.125 0.117 0.108 94.0 86.4 63.3-138 8.36 20 Methyl terl-butyl ether 0.0250 0.0225 0.0213 90.0 85.4 70.125 5.23 20 Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7134 2.96 20 n-Propylbenzene 0.0250 0.0227 0.0233 90.7 93.1 79.9-124 2.64 20 Styrene 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 1,1,2-Tertachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 0.520 20 Tetrachloroethane 0.0250 0.0224 0.0223	sopropylbenzene	0.0250	0.0224	0.0230	89.7	92.1	81.6-124			2.62	20	
Methylene Chloride 0.0250 0.0226 0.0219 90.2 87.8 69.5120 2.71 20 4-Methyl-2-pentanone (MIBK) 0.125 0.117 0.108 94.0 86.4 63.3-138 8.36 20 Methyl tert-butyl ether 0.0250 0.0225 0.0213 90.0 85.4 70.1-125 5.23 20 Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7-134 2.96 20 n-Propylbenzene 0.0250 0.0229 0.0235 91.4 94.0 81.9-122 2.84 20 Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9-124 2.64 20 1,12.2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 1,12.2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 0.520 20 Tetrachloroethane 0.0250 0.0224 88.	-Isopropyltoluene	0.0250	0.0225	0.0233	90.2	93.3	77.6-129			3.40	20	
4-Methyl-2-pentanone (MIBK) 0.125 0.117 0.108 94.0 86.4 63.3-138 8.36 20 Methyl tert-butyl ether 0.0250 0.0225 0.0213 90.0 85.4 70.1-125 5.23 20 Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7-134 2.96 20 Styrene 0.0250 0.0229 0.0235 91.4 94.0 81.9-122 2.84 20 Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9-124 2.64 20 11,12,2-Tetrachloroethane 0.0250 0.0212 0.0213 87.7 86.1 78.5-125 1.73 20 11,12,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 20 Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-130 1.41 20 Toluene 0.0250 0.0224 88.2 89.4 <t< td=""><td>-Butanone (MEK)</td><td>0.125</td><td>0.103</td><td>0.0934</td><td>82.1</td><td>74.7</td><td>46.4-155</td><td></td><td></td><td>9.40</td><td>20</td><td></td></t<>	-Butanone (MEK)	0.125	0.103	0.0934	82.1	74.7	46.4-155			9.40	20	
Methyl tert-butyl ether 0.0250 0.0225 0.0213 90.0 85.4 70.1-125 5.23 20 Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7-134 2.96 20 n-Propylbenzene 0.0250 0.0229 0.0235 91.4 94.0 81.9-122 2.84 20 Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9-124 2.64 20 1,1,2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 1,1,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 20 Tetrachloroethane 0.0250 0.0224 0.0223 89.5 89.2 77.9-116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0225 96.0 94.0 71.1-129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0224 90	Methylene Chloride	0.0250	0.0226	0.0219	90.2	87.8	69.5-120			2.71	20	
Naphthalene 0.0250 0.0238 0.0231 95.1 92.4 69.7·134 2.96 20 n-Propylbenzene 0.0250 0.0229 0.0235 91.4 94.0 81.9·122 2.84 20 Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9·124 2.64 20 1,1,2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5·125 1.73 20 1,1,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3·123 0.520 20 Tetrachloroethane 0.0250 0.0220 0.0224 88.2 89.4 73.5·130 1.41 20 Tolluene 0.0250 0.0224 0.0223 89.5 89.2 77.9·116 0.310 20 1,1.2-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1·129 2.16 20 1,2-4-Trimethylbenzene 0.0250 0.0221 0.0224 90.3	-Methyl-2-pentanone (MIBK)	0.125	0.117	0.108	94.0	86.4	63.3-138			8.36	20	
n-Propylbenzene 0.0250 0.0229 0.0235 91.4 94.0 81.9-122 2.84 20 Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9-124 2.64 20 1,1,1,2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 1,1,2,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 20 Tetrachloroethene 0.0250 0.0220 0.0224 88.2 89.4 73.5-130 1.41 20 Toluene 0.0250 0.0224 0.0223 89.5 89.2 77.9-116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1-129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 1,2,4-Trimethylbenzene 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Vinyl chloride 0.0250 0.0260 0.0260 88.0 90.4 79.2-122 2.74 20 0-Xylenes, Total 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	Methyl tert-butyl ether	0.0250	0.0225	0.0213	90.0	85.4	70.1-125			5.23	20	
Styrene 0.0250 0.0227 0.0233 90.7 93.1 79.9·124 2.64 20 1,1,1,2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5·125 1.73 20 1,1,2,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3·123 0.520 20 Tetrachloroethane 0.0250 0.0220 0.0224 88.2 89.4 73.5·130 1.41 20 Toluene 0.0250 0.0224 0.0223 89.5 89.2 77.9·116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1·129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6·120 0.430 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.5·121 0.860 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228	laphthalene	0.0250	0.0238	0.0231	95.1	92.4	69.7-134			2.96	20	
1,1,1,2-Tetrachloroethane 0.0250 0.0212 0.0215 84.7 86.1 78.5-125 1.73 20 1,1,2,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 20 Tetrachloroethane 0.0250 0.0220 0.0224 88.2 89.4 73.5-130 1.41 20 Tolluene 0.0250 0.0224 0.0223 89.5 89.2 77.9-116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1-129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 1,2,4-Trimethylbenzene 0.0250 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Villenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 0-Xylenes 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	-Propylbenzene	0.0250	0.0229	0.0235	91.4	94.0	81.9-122			2.84	20	
1,1,2,2-Tetrachloroethane 0.0250 0.0220 0.0221 87.9 88.4 79.3-123 0.520 20 Tetrachloroethene 0.0250 0.0220 0.0224 88.2 89.4 73.5-130 1.41 20 Toluene 0.0250 0.0224 0.0223 89.5 89.2 77.9-116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0225 96.0 94.0 71.129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 1,2,4-Trimethylbenzene 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Vylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 0-Xylene 0.0250 <td>tyrene</td> <td>0.0250</td> <td>0.0227</td> <td>0.0233</td> <td>90.7</td> <td>93.1</td> <td>79.9-124</td> <td></td> <td></td> <td>2.64</td> <td>20</td> <td></td>	tyrene	0.0250	0.0227	0.0233	90.7	93.1	79.9-124			2.64	20	
Tetrachloroethene 0.0250 0.0220 0.0224 88.2 89.4 73.5-130 1.41 20 Toluene 0.0250 0.0224 0.0223 89.5 89.2 77.9-116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1-129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 Trichloroethene 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0	1,1,2-Tetrachloroethane	0.0250	0.0212	0.0215	84.7	86.1	78.5-125			1.73	20	
Toluene 0.0250 0.0224 0.0223 89.5 89.2 77.9-116 0.310 20 1,1,1-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1-129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 Trichloroethene 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 0-Xylene 0.0250 0.0217 0.0225 86.7	1,2,2-Tetrachloroethane	0.0250	0.0220	0.0221	87.9	88.4	79.3-123			0.520	20	
1,1,1-Trichloroethane 0.0250 0.0240 0.0235 96.0 94.0 71.1-129 2.16 20 1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 Trichloroethane 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 0-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	etrachloroethene	0.0250	0.0220	0.0224	88.2	89.4	73.5-130			1.41	20	
1,1,2-Trichloroethane 0.0250 0.0221 0.0220 88.4 88.0 81.6-120 0.430 20 Trichloroethene 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	oluene	0.0250	0.0224	0.0223	89.5	89.2	77.9-116			0.310	20	
Trickloroethene 0.0250 0.0226 0.0224 90.3 89.6 79.5-121 0.860 20 1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	,1,1-Trichloroethane	0.0250	0.0240	0.0235	96.0	94.0	71.1-129			2.16	20	
1,2,4-Trimethylbenzene 0.0250 0.0223 0.0229 89.1 91.6 79.0-122 2.84 20 1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	1,2-Trichloroethane	0.0250	0.0221	0.0220	88.4	88.0	81.6-120			0.430	20	
1,3,5-Trimethylbenzene 0.0250 0.0221 0.0228 88.4 91.1 81.0-123 2.98 20 Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	richloroethene	0.0250	0.0226	0.0224	90.3	89.6	79.5-121			0.860	20	
Vinyl chloride 0.0250 0.0242 0.0237 96.8 94.7 61.5-134 2.18 20 Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	2,4-Trimethylbenzene	0.0250	0.0223	0.0229	89.1	91.6	79.0-122			2.84	20	
Xylenes, Total 0.0750 0.0660 0.0678 88.0 90.4 79.2-122 2.74 20 o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	3,5-Trimethylbenzene	0.0250	0.0221	0.0228	88.4	91.1	81.0-123			2.98	20	
o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	finyl chloride	0.0250	0.0242	0.0237	96.8	94.7	61.5-134			2.18	20	
o-Xylene 0.0250 0.0217 0.0225 86.7 90.1 79.1-123 3.85 20	Cylenes, Total	0.0750	0.0660	0.0678	88.0	90.4	79.2-122			2.74	20	
,		0.0250	0.0217	0.0225	86.7	90.1	79.1-123			3.85	20	
	•	0.0500	0.0443	0.0453	88.6	90.5	78.5-122			2.19	20	
(S) Toluene-d8 106 105 90.0-115	(S) Toluene-d8				106	105	90.0-115					
(S) Dibromofluoromethane 107 104 79,0-121	(S) Dibromofluoromethane				107	104	79.0-121					
(S) 4-Bromofluorobenzene 99.1 100 80.1-120	(S) 4-Bromofluorobenzene				99.1	100	80.1-120					

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

 $\underline{\textbf{L832603-21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40}}$

L832603-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0239

0.0255

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits MS Qualifi	er MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%		%	%
cetone	0.125	U	0.101	0.103	80.9	82.4	1	25.0-156		1.93	21.5
Benzene	0.0250	0.0136	0.0371	0.0362	93.9	90.6	1	58.6-133		2.28	20
Bromodichloromethane	0.0250	U	0.0240	0.0246	96.1	98.3	1	69.2-127		2.26	20
Bromoform	0.0250	U	0.0230	0.0239	92.0	95.8	1	66.3-140		4.06	20
Bromomethane	0.0250	U	0.0266	0.0258	106	103	1	16.6-183		2.88	20.5
n-Butylbenzene	0.0250	U	0.0227	0.0224	90.6	89.5	1	64.8-145		1.27	20
ec-Butylbenzene	0.0250	U	0.0239	0.0240	95.5	95.9	1	66.8-139		0.350	20
Carbon disulfide	0.0250	U	0.0227	0.0223	90.6	89.0	1	34.9-138		1.78	20
Carbon tetrachloride	0.0250	U	0.0226	0.0222	90.6	88.7	1	60.6-139		2.14	20
Chlorobenzene	0.0250	U	0.0227	0.0230	91.0	92.1	1	70.1-130		1.20	20
Chlorodibromomethane	0.0250	U	0.0229	0.0238	91.5	95.3	1	71.6-132		4.04	20
Chloroethane	0.0250	U	0.0257	0.0256	103	102	1	33.3-155		0.620	20
Chloroform	0.0250	U	0.0275	0.0272	110	109	1	66.1-133		1.32	20
Chloromethane	0.0250	U	0.0254	0.0247	102	98.7	1	40.7-139		2.92	20
2-Dibromoethane	0.0250	U	0.0217	0.0228	86.8	91.1	1	73.8-131		4.76	20
1-Dichloroethane	0.0250	U	0.0249	0.0244	99.7	97.6	1	64.0-134		2.07	20
,2-Dichloroethane	0.0250	U	0.0241	0.0244	96.4	97.4	1	60.7-132		1.09	20
,1-Dichloroethene	0.0250	U	0.0252	0.0250	101	99.8	1	48.8-144		0.970	20
is-1,2-Dichloroethene	0.0250	U	0.0248	0.0244	99.3	97.6	1	60.6-136		1.77	20
rans-1,2-Dichloroethene	0.0250	U	0.0247	0.0243	98.8	97.1	1	61.0-132		1.68	20
,2-Dichloropropane	0.0250	U	0.0241	0.0238	96.3	95.4	1	69.7-130		0.950	20
is-1,3-Dichloropropene	0.0250	U	0.0236	0.0240	94.5	95.8	1	71.1-129		1.45	20
rans-1,3-Dichloropropene	0.0250	U	0.0233	0.0237	93.2	94.9	1	66.3-136		1.82	20
thylbenzene	0.0250	0.00354	0.0257	0.0260	88.6	89.8	1	62.7-136		1.24	20
-Hexanone	0.125	U	0.0897	0.0984	71.7	78.7	1	59.4-154		9.27	20.1
sopropylbenzene	0.0250	U	0.0239	0.0240	95.4	96.0	1	67.4-136		0.530	20
-lsopropyltoluene	0.0250	U	0.0242	0.0243	96.9	97.0	1	62.8-143		0.120	20
P-Butanone (MEK)	0.125	U	0.0804	0.0853	64.3	68.3	1	45.0-156		5.96	20.8
Methylene Chloride	0.0250	U	0.0250	0.0247	100	98.6	1	61.5-125		1.39	20
-Methyl-2-pentanone (MIBK)	0.125	U	0.121	0.131	96.9	105	1	60.7-150		7.60	20
lethyl tert-butyl ether	0.0250	0.0143	0.0394	0.0396	100	101	1	61.4-136		0.470	20
laphthalene	0.0250	U	0.0244	0.0254	97.8	102	1	61.8-143		3.92	20
-Propylbenzene	0.0250	U	0.0241	0.0243	96.3	97.2	1	63.2-139		0.950	20
tyrene	0.0250	U	0.0240	0.0245	95.9	97.9	1	68.2-133		2.05	20
1,1,2-Tetrachloroethane	0.0250	U	0.0223	0.0228	89.0	91.3	1	70.5-132		2.53	20

TRC Solutions - Austin, TX

1,1,2,2-Tetrachloroethane 0.0250

PROJECT: 249545.0000.0000 000

64.9-145

DATE/TIME:

PAGE:

U

95.8

102

20

WG868996 QUALITY CONTROL SUMMARY Volatile Organic Compounds (GC/MS) by Method 82608 L832603-21,22,23,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40

ONE LAB. NATIONWIDE.

L832603-21 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0219	0.0220	87.5	88.0	1	57.4-141			0.580	20
Toluene	0.0250	U	0.0238	0.0237	95.1	94.6	1	67.8-124			0.530	20
1,1,1-Trichloroethane	0.0250	U	0.0262	0.0259	105	103	1	58.7-134			1.51	20
1,1,2-Trichloroethane	0.0250	U	0.0226	0.0237	90.6	94.6	1	74.1-130			4.38	20
Trichloroethene	0.0250	U	0.0226	0.0227	90.3	90.7	1	48.9-148			0.510	20
1,2,4-Trimethylbenzene	0.0250	0.000753	0.0246	0.0249	95.5	96.8	1	60.5-137			1.32	20
1,3,5-Trimethylbenzene	0.0250	U	0.0236	0.0237	94.4	94.9	1	67.9-134			0.480	20
Vinyl chloride	0.0250	U	0.0267	0.0263	107	105	1	44.3-143			1.36	20
Xylenes, Total	0.0750	0.00518	0.0741	0.0742	91.9	92.1	1	65.6-133			0.160	20
o-Xylene	0.0250	U	0.0233	0.0233	93.4	93.4	1	67.1-133			0.0100	20
m&p-Xylenes	0.0500	0.00518	0.0508	0.0509	91.2	91.4	1	64.1-133			0.220	20
(S) Toluene-d8					110	110		90.0-115				
(S) Dibromofluoromethane					108	108		79.0-121				
(S) 4-Bromofluorohenzene					102	104		80 1-120				

QUALITY CONTROL SUMMARY L832603-24,27,28,32,34,36

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(MB) R3134389-3 05/05/	16 18:28				
(,	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Acetone	U		0.0100	0.0500	
Benzene	U		0.000331	0.00100	
Bromodichloromethane	U		0.000380	0.00100	
Bromoform	U		0.000469	0.00100	
Bromomethane	U		0.000866	0.00500	
n-Butylbenzene	U		0.000361	0.00100	
sec-Butylbenzene	U		0.000365	0.00100	
Carbon disulfide	U		0.000275	0.00100	
Carbon tetrachloride	U		0.000379	0.00100	
Chlorobenzene	U		0.000348	0.00100	
Chlorodibromomethane	U		0.000327	0.00100	
Chloroethane	U		0.000453	0.00500	
Chloroform	U		0.000324	0.00500	
Chloromethane	U		0.000276	0.00250	
1,2-Dibromoethane	U		0.000381	0.00100	
1,1-Dichloroethane	U		0.000259	0.00100	
1,2-Dichloroethane	U		0.000361	0.00100	
1,1-Dichloroethene	U		0.000398	0.00100	
cis-1,2-Dichloroethene	U		0.000260	0.00100	
trans-1,2-Dichloroethene	U		0.000396	0.00100	
1,2-Dichloropropane	U		0.000306	0.00100	
cis-1,3-Dichloropropene	U		0.000418	0.00100	
trans-1,3-Dichloropropene	U		0.000419	0.00100	
Ethylbenzene	U		0.000384	0.00100	
2-Hexanone	U		0.00382	0.0100	
sopropylbenzene	U		0.000326	0.00100	
p-Isopropyltoluene	U		0.000350	0.00100	
2-Butanone (MEK)	U		0.00393	0.0100	
Methylene Chloride	U		0.00100	0.00500	
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	
Methyl tert-butyl ether	U		0.000367	0.00100	
Naphthalene	U		0.00100	0.00500	
n-Propylbenzene	U		0.000349	0.00100	
Styrene	U		0.000307	0.00100	
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 168 of 187

QUALITY CONTROL SUMMARY L832603-24,27,28,32,34,36

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134389-3 05/05/1	6 18:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	96.7			90.0-115	
(S) Dibromofluoromethane	102			79.0-121	
(S) 4-Bromofluorobenzene	90.2			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134389-1 05/05/16 17:00 • (LCSD) R3134389-2 05/05/1	3 17:22
---	---------

(LC3) K3134369-1 03/03	3/10 17.00 • (LC3L) K3134363-2	. 03/03/10 17.2.	2							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.197	0.202	158	161	28.7-175			2.28	20.9	
Benzene	0.0250	0.0276	0.0277	110	111	73.0-122			0.390	20	
Bromodichloromethane	0.0250	0.0254	0.0255	102	102	75.5-121			0.320	20	
Bromoform	0.0250	0.0245	0.0263	98.1	105	71.5-131			6.88	20	
Bromomethane	0.0250	0.0387	0.0380	155	152	22.4-187			1.84	20	
n-Butylbenzene	0.0250	0.0291	0.0285	116	114	75.9-134			2.03	20	
sec-Butylbenzene	0.0250	0.0288	0.0289	115	115	80.6-126			0.350	20	
Carbon disulfide	0.0250	0.0262	0.0262	105	105	53.0-134			0.130	20	
Carbon tetrachloride	0.0250	0.0257	0.0262	103	105	70.9-129			1.91	20	
Chlorobenzene	0.0250	0.0289	0.0295	116	118	79.7-122			1.74	20	
Chlorodibromomethane	0.0250	0.0255	0.0272	102	109	78.2-124			6.13	20	
Chloroethane	0.0250	0.0331	0.0343	133	137	41.2-153			3.50	20	
Chloroform	0.0250	0.0271	0.0266	108	106	73.2-125			1.72	20	
Chloromethane	0.0250	0.0256	0.0260	102	104	55.8-134			1.62	20	
1,2-Dibromoethane	0.0250	0.0269	0.0280	108	112	79.8-122			3.98	20	
1,1-Dichloroethane	0.0250	0.0263	0.0259	105	104	71.7-127			1.40	20	

TRC Solutions - Austin, TX

DATE/TIME:

PAGE:

QUALITY CONTROL SUMMARY L832603-24,27,28,32,34,36

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134389-1 05/05/1	6 17:00 • (LCSE) R3134389-2	05/05/16 17:2	2							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0238	0.0242	95.0	97.0	65.3-126			2.04	20	
1,1-Dichloroethene	0.0250	0.0255	0.0249	102	99.6	59.9-137			2.21	20	
cis-1,2-Dichloroethene	0.0250	0.0280	0.0284	112	114	77.3-122			1.57	20	
trans-1,2-Dichloroethene	0.0250	0.0286	0.0288	114	115	72.6-125			0.540	20	
1,2-Dichloropropane	0.0250	0.0260	0.0260	104	104	77.4-125			0.0900	20	
cis-1,3-Dichloropropene	0.0250	0.0249	0.0254	99.7	101	77.7-124			1.80	20	
trans-1,3-Dichloropropene	0.0250	0.0245	0.0253	97.9	101	73.5-127			3.43	20	
Ethylbenzene	0.0250	0.0297	0.0293	119	117	80.9-121			1.31	20	
2-Hexanone	0.125	0.158	0.163	127	131	59.4-151			3.30	20	
Isopropylbenzene	0.0250	0.0289	0.0284	116	114	81.6-124			1.82	20	
p-lsopropyltoluene	0.0250	0.0284	0.0284	114	113	77.6-129			0.110	20	
2-Butanone (MEK)	0.125	0.149	0.159	119	127	46.4-155			6.62	20	
Methylene Chloride	0.0250	0.0277	0.0279	111	111	69.5-120			0.420	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.120	0.126	96.4	101	63.3-138			4.44	20	
Methyl tert-butyl ether	0.0250	0.0251	0.0270	100	108	70.1-125			7.25	20	
Naphthalene	0.0250	0.0235	0.0245	93.9	97.9	69.7-134			4.14	20	
n-Propylbenzene	0.0250	0.0290	0.0291	116	117	81.9-122			0.370	20	
Styrene	0.0250	0.0282	0.0284	113	113	79.9-124			0.600	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0269	0.0270	108	108	78.5-125			0.0600	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0272	0.0283	109	113	79.3-123			3.97	20	
Tetrachloroethene	0.0250	0.0281	0.0283	112	113	73.5-130			0.580	20	
Toluene	0.0250	0.0269	0.0272	108	109	77.9-116			1.01	20	
1,1,1-Trichloroethane	0.0250	0.0270	0.0271	108	109	71.1-129			0.510	20	
1,1,2-Trichloroethane	0.0250	0.0277	0.0286	111	115	81.6-120			3.21	20	
Trichloroethene	0.0250	0.0277	0.0271	111	109	79.5-121			2.01	20	
1,2,4-Trimethylbenzene	0.0250	0.0283	0.0286	113	115	79.0-122			1.03	20	
1,3,5-Trimethylbenzene	0.0250	0.0286	0.0285	114	114	81.0-123			0.300	20	
Vinyl chloride	0.0250	0.0260	0.0261	104	104	61.5-134			0.140	20	
Xylenes, Total	0.0750	0.0874	0.0878	117	117	79.2-122			0.430	20	
o-Xylene	0.0250	0.0290	0.0289	116	116	79.1-123			0.240	20	
m&p-Xylenes	0.0500	0.0584	0.0588	117	118	78.5-122			0.770	20	
(S) Toluene-d8				100	101	90.0-115					
(S) Dibromofluoromethane				97.9	100	79.0-121					
(S) 4-Bromofluorobenzene				95.2	98.2	80.1-120					

QUALITY CONTROL SUMMARY L832603-24,27,28,32,34,36

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832660-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0256

0.0266

(OS) L832660-07 05/06/1	16 00:17 • (MS)	R3134389-4 05	5/05/16 19:05	• (MSD) R31343	889-5 05/05/	16 19:26						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	U	0.0824	0.0893	65.9	71.4	1	25.0-156			8.03	21.5
Benzene	0.0250	U	0.0219	0.0228	87.6	91.3	1	58.6-133			4.14	20
Bromodichloromethane	0.0250	U	0.0217	0.0227	86.6	90.8	1	69.2-127			4.63	20
Bromoform	0.0250	U	0.0221	0.0232	88.4	92.6	1	66.3-140			4.71	20
Bromomethane	0.0250	U	0.0248	0.0264	99.0	106	1	16.6-183			6.56	20.5
n-Butylbenzene	0.0250	U	0.0242	0.0261	96.7	104	1	64.8-145			7.65	20
sec-Butylbenzene	0.0250	U	0.0247	0.0260	99.0	104	1	66.8-139			4.86	20
Carbon disulfide	0.0250	U	0.0144	0.0146	57.6	58.4	1	34.9-138			1.48	20
Carbon tetrachloride	0.0250	U	0.0207	0.0222	82.8	88.7	1	60.6-139			6.80	20
Chlorobenzene	0.0250	U	0.0243	0.0250	97.4	100	1	70.1-130			2.66	20
Chlorodibromomethane	0.0250	U	0.0227	0.0235	90.8	94.1	1	71.6-132			3.61	20
Chloroethane	0.0250	U	0.0238	0.0251	95.3	100	1	33.3-155			5.01	20
Chloroform	0.0250	U	0.0224	0.0234	89.7	93.5	1	66.1-133			4.25	20
Chloromethane	0.0250	U	0.0166	0.0176	66.5	70.3	1	40.7-139			5.57	20
1,2-Dibromoethane	0.0250	U	0.0227	0.0236	90.7	94.3	1	73.8-131			3.91	20
1,1-Dichloroethane	0.0250	U	0.0212	0.0222	84.7	88.6	1	64.0-134			4.53	20
1,2-Dichloroethane	0.0250	U	0.0200	0.0210	80.2	84.0	1	60.7-132			4.69	20
1,1-Dichloroethene	0.0250	U	0.0184	0.0190	73.7	76.2	1	48.8-144			3.31	20
cis-1,2-Dichloroethene	0.0250	U	0.0226	0.0237	90.3	94.7	1	60.6-136			4.67	20
trans-1,2-Dichloroethene	0.0250	U	0.0209	0.0219	83.6	87.7	1	61.0-132			4.83	20
1,2-Dichloropropane	0.0250	0.00129	0.0217	0.0224	81.7	84.5	1	69.7-130			3.16	20
cis-1,3-Dichloropropene	0.0250	U	0.0198	0.0211	79.0	84.5	1	71.1-129			6.67	20
trans-1,3-Dichloropropene	0.0250	0.000717	0.0202	0.0222	77.9	86.1	1	66.3-136			9.59	20
Ethylbenzene	0.0250	U	0.0244	0.0255	97.6	102	1	62.7-136			4.58	20
2-Hexanone	0.125	U	0.110	0.118	87.8	94.5	1	59.4-154			7.31	20.1
Isopropylbenzene	0.0250	U	0.0241	0.0255	96.4	102	1	67.4-136			5.52	20
p-Isopropyltoluene	0.0250	U	0.0242	0.0256	96.9	102	1	62.8-143			5.50	20
2-Butanone (MEK)	0.125	U	0.0942	0.0982	75.4	78.5	1	45.0-156			4.14	20.8
Methylene Chloride	0.0250	U	0.0224	0.0232	89.5	92.6	1	61.5-125			3.44	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.104	0.112	83.2	89.6	1	60.7-150			7.50	20
Methyl tert-butyl ether	0.0250	U	0.0218	0.0236	87.3	94.6	1	61.4-136			8.00	20
Naphthalene	0.0250	U	0.0207	0.0234	83.0	93.5	1	61.8-143			11.9	20
n-Propylbenzene	0.0250	U	0.0241	0.0251	96.5	100	1	63.2-139			3.89	20
Styrene	0.0250	U	0.0231	0.0240	92.3	95.9	1	68.2-133			3.81	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0237	0.0244	94.8	97.7	1	70.5-132			3.06	20

1,1,2,2-Tetrachloroethane 0.0250

102

107

64.9-145

4.01

20

QUALITY CONTROL SUMMARY L832603-24,27,28,32,34,36

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832660-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0225	0.0235	90.0	93.9	1	57.4-141			4.23	20
Toluene	0.0250	U	0.0230	0.0231	92.2	92.5	1	67.8-124			0.340	20
1,1,1-Trichloroethane	0.0250	U	0.0221	0.0230	88.5	92.0	1	58.7-134			3.91	20
1,1,2-Trichloroethane	0.0250	U	0.0248	0.0257	99.1	103	1	74.1-130			3.54	20
Trichloroethene	0.0250	U	0.0214	0.0227	85.5	90.7	1	48.9-148			5.88	20
1,2,4-Trimethylbenzene	0.0250	U	0.0241	0.0251	96.3	100	1	60.5-137			4.00	20
1,3,5-Trimethylbenzene	0.0250	U	0.0242	0.0251	96.7	100	1	67.9-134			3.73	20
Vinyl chloride	0.0250	U	0.0174	0.0184	69.6	73.5	1	44.3-143			5.45	20
Xylenes, Total	0.0750	U	0.0730	0.0750	97.4	100	1	65.6-133			2.69	20
o-Xylene	0.0250	U	0.0245	0.0250	98.0	100	1	67.1-133			2.08	20
m&p-Xylenes	0.0500	U	0.0485	0.0500	97.1	100	1	64.1-133			3.00	20
(S) Toluene-d8					98.7	99.6		90.0-115				
(S) Dibromofluoromethane					99.2	101		79.0-121				
(S) 4-Bromofluorobenzene					96.0	95.7		80.1-120				

QUALITY CONTROL SUMMARY <u>L832603-01,04,05,06,07,11,12,15,16,18,20</u>

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

(MB) R3134420-3 05/06/16 10:21

Volatile Organic Compounds (GC/MS) by Method 8260B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 173 of 187

QUALITY CONTROL SUMMARY <u>L832603-01,04,05,06,07,11,12,15,16,18,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134420-3 05/06/1	16 10:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	106			90.0-115	
(S) Dibromofluoromethane	114			79.0-121	
(S) 4-Bromofluorobenzene	100			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LC3) R3134420-1 05/06	0/10 U6.21 • (LC3L	J) K313442U-2	2 03/00/10 06.4	+5							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Acetone	0.125	0.146	0.149	117	119	28.7-175			1.53	20.9	
Benzene	0.0250	0.0265	0.0257	106	103	73.0-122			3.11	20	
Bromodichloromethane	0.0250	0.0246	0.0242	98.5	96.7	75.5-121			1.87	20	
Bromoform	0.0250	0.0241	0.0243	96.5	97.1	71.5-131			0.710	20	
Bromomethane	0.0250	0.0375	0.0376	150	150	22.4-187			0.200	20	
n-Butylbenzene	0.0250	0.0260	0.0256	104	102	75.9-134			1.79	20	
sec-Butylbenzene	0.0250	0.0224	0.0224	89.5	89.6	80.6-126			0.0600	20	
Carbon disulfide	0.0250	0.0236	0.0233	94.4	93.0	53.0-134			1.41	20	
Carbon tetrachloride	0.0250	0.0238	0.0228	95.2	91.3	70.9-129			4.22	20	
Chlorobenzene	0.0250	0.0228	0.0228	91.2	91.1	79.7-122			0.100	20	
Chlorodibromomethane	0.0250	0.0232	0.0236	92.7	94.2	78.2-124			1.65	20	
Chloroethane	0.0250	0.0313	0.0302	125	121	41.2-153			3.70	20	
Chloroform	0.0250	0.0258	0.0256	103	102	73.2-125			0.910	20	
Chloromethane	0.0250	0.0266	0.0269	106	107	55.8-134			0.880	20	
1,2-Dibromoethane	0.0250	0.0249	0.0250	99.6	100	79.8-122			0.460	20	
1,1-Dichloroethane	0.0250	0.0269	0.0258	108	103	71.7-127			4.33	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832603

DATE/TIME: 05/20/16 13:57

PAGE: 174 of 187

QUALITY CONTROL SUMMARY <u>L832603-01,04,05,06,07,11,12,15,16,18,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134420-1 05/06/1	6 08:21 • (LCSI	D) R3134420-2	05/06/16 08:4	45							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0264	0.0256	106	103	65.3-126			3.12	20	
1,1-Dichloroethene	0.0250	0.0243	0.0243	97.0	97.2	59.9-137			0.150	20	
cis-1,2-Dichloroethene	0.0250	0.0258	0.0259	103	104	77.3-122			0.340	20	
trans-1,2-Dichloroethene	0.0250	0.0252	0.0245	101	97.9	72.6-125			3.08	20	
1,2-Dichloropropane	0.0250	0.0265	0.0256	106	102	77.4-125			3.68	20	
cis-1,3-Dichloropropene	0.0250	0.0277	0.0271	111	109	77.7-124			1.96	20	
trans-1,3-Dichloropropene	0.0250	0.0273	0.0268	109	107	73.5-127			1.97	20	
Ethylbenzene	0.0250	0.0221	0.0223	88.3	89.4	80.9-121			1.19	20	
2-Hexanone	0.125	0.147	0.149	118	119	59.4-151			1.08	20	
Isopropylbenzene	0.0250	0.0219	0.0217	87.4	86.8	81.6-124			0.800	20	
p-Isopropyltoluene	0.0250	0.0221	0.0224	88.4	89.7	77.6-129			1.42	20	
2-Butanone (MEK)	0.125	0.171	0.170	137	136	46.4-155			0.230	20	
Methylene Chloride	0.0250	0.0262	0.0254	105	101	69.5-120			3.14	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.149	0.148	119	119	63.3-138			0.450	20	
Methyl tert-butyl ether	0.0250	0.0293	0.0287	117	115	70.1-125			2.00	20	
Naphthalene	0.0250	0.0260	0.0255	104	102	69.7-134			1.85	20	
n-Propylbenzene	0.0250	0.0232	0.0231	92.7	92.5	81.9-122			0.190	20	
Styrene	0.0250	0.0246	0.0247	98.3	98.9	79.9-124			0.670	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0219	0.0218	87.7	87.3	78.5-125			0.460	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0258	0.0261	103	104	79.3-123			1.33	20	
Tetrachloroethene	0.0250	0.0199	0.0201	79.8	80.3	73.5-130			0.600	20	
Toluene	0.0250	0.0236	0.0234	94.5	93.6	77.9-116			0.940	20	
1,1,1-Trichloroethane	0.0250	0.0240	0.0239	96.1	95.8	71.1-129			0.340	20	
1,1,2-Trichloroethane	0.0250	0.0249	0.0245	99.5	98.0	81.6-120			1.54	20	
Trichloroethene	0.0250	0.0220	0.0222	87.9	88.6	79.5-121			0.780	20	
1,2,4-Trimethylbenzene	0.0250	0.0228	0.0230	91.3	91.9	79.0-122			0.670	20	
1,3,5-Trimethylbenzene	0.0250	0.0228	0.0232	91.0	92.7	81.0-123			1.78	20	
Vinyl chloride	0.0250	0.0283	0.0274	113	110	61.5-134			2.94	20	
Xylenes, Total	0.0750	0.0680	0.0675	90.7	90.0	79.2-122			0.740	20	
o-Xylene	0.0250	0.0230	0.0229	91.9	91.4	79.1-123			0.590	20	
m&p-Xylenes	0.0500	0.0450	0.0447	90.1	89.3	78.5-122			0.820	20	
(S) Toluene-d8				109	109	90.0-115					
(S) Dibromofluoromethane				113	113	79.0-121					
(S) 4-Bromofluorobenzene				99.4	102	80.1-120					

249545.0000.0000 000

L832603

DATE/TIME:

PAGE:

QUALITY CONTROL SUMMARY <u>L832603-01,04,05,06,07,11,12,15,16,18,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832603-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0274

0.0275

(OS) L832603-11 05/06/16		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	ws rec. %	MSD Rec.	Dilution	%	MS Qualifier	MSD Qualifier	ж г Б %	%
	0.125	U	0.0867			68.0	1	25.0-156			1.86	21.5
Acetone				0.0851	69.3		1					
Benzene	0.0250	U	0.0271	0.0269	108	108	1	58.6-133			0.530	20
Bromodichloromethane	0.0250	U	0.0250	0.0260	99.9	104	1	69.2-127			3.81	20
Bromoform	0.0250	U	0.0247	0.0252	98.7	101	1	66.3-140			2.05	20
Bromomethane	0.0250	U	0.0166	0.0167	66.3	66.9	1	16.6-183			0.870	20.5
n-Butylbenzene	0.0250	U	0.0258	0.0263	103	105	1	64.8-145			1.92	20
sec-Butylbenzene	0.0250	U	0.0223	0.0229	89.4	91.6	1	66.8-139			2.52	20
Carbon disulfide	0.0250	0.000551	0.0257	0.0255	101	99.8	1	34.9-138			0.720	20
Carbon tetrachloride	0.0250	U	0.0235	0.0241	94.0	96.6	1	60.6-139			2.70	20
Chlorobenzene	0.0250	U	0.0229	0.0232	91.7	92.9	1	70.1-130			1.34	20
Chlorodibromomethane	0.0250	U	0.0239	0.0245	95.7	98.0	1	71.6-132			2.43	20
Chloroethane	0.0250	U	0.0316	0.0321	126	128	1	33.3-155			1.54	20
Chloroform	0.0250	U	0.0269	0.0268	107	107	1	66.1-133			0.370	20
Chloromethane	0.0250	U	0.0285	0.0283	114	113	1	40.7-139			0.510	20
1,2-Dibromoethane	0.0250	U	0.0260	0.0263	104	105	1	73.8-131			1.10	20
1,1-Dichloroethane	0.0250	U	0.0269	0.0272	108	109	1	64.0-134			1.16	20
1,2-Dichloroethane	0.0250	U	0.0275	0.0278	110	111	1	60.7-132			1.17	20
1,1-Dichloroethene	0.0250	U	0.0255	0.0252	102	101	1	48.8-144			1.01	20
cis-1,2-Dichloroethene	0.0250	U	0.0269	0.0264	107	106	1	60.6-136			1.62	20
trans-1,2-Dichloroethene	0.0250	U	0.0256	0.0260	102	104	1	61.0-132			1.76	20
1,2-Dichloropropane	0.0250	U	0.0270	0.0273	108	109	1	69.7-130			1.17	20
cis-1,3-Dichloropropene	0.0250	U	0.0274	0.0282	110	113	1	71.1-129			2.81	20
trans-1,3-Dichloropropene	0.0250	U	0.0272	0.0287	109	115	1	66.3-136			5.39	20
Ethylbenzene	0.0250	U	0.0223	0.0230	89.1	92.0	1	62.7-136			3.22	20
2-Hexanone	0.125	U	0.131	0.132	105	105	1	59.4-154			0.660	20.1
Isopropylbenzene	0.0250	U	0.0221	0.0225	88.3	90.0	1	67.4-136			1.87	20
p-lsopropyltoluene	0.0250	U	0.0222	0.0229	88.9	91.6	1	62.8-143			2.99	20
2-Butanone (MEK)	0.125	U	0.140	0.139	112	111	1	45.0-156			0.670	20.8
Methylene Chloride	0.0250	U	0.0271	0.0266	108	106	1	61.5-125			1.99	20
4-Methyl-2-pentanone (MIBK)	0.125	U	0.158	0.159	126	127	1	60.7-150			0.780	20
Methyl tert-butyl ether	0.0250	U	0.0310	0.0311	124	124	1	61.4-136			0.240	20
Naphthalene	0.0250	U	0.0270	0.0278	108	111	1	61.8-143			3.00	20
n-Propylbenzene	0.0250	U	0.0229	0.0237	91.6	94.9	1	63.2-139			3.54	20
Styrene	0.0250	U	0.0244	0.0252	97.6	101	1	68.2-133			3.16	20
1,1,1,2-Tetrachloroethane	0.0250	U	0.0223	0.0228	89.2	91.3	1	70.5-132			2.29	20
.,.,.=	0200	-	0220	3.0220	JU.2	51.5		. 5.0 .02				

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

109

110

SDG: L832603

64.9-145

DATE/TIME:

PAGE: 176 of 187

0.0250

U

0.400

20

QUALITY CONTROL SUMMARY <u>L832603-01,04,05,06,07,11,12,15,16,18,20</u>

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832603-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	U	0.0199	0.0201	79.6	80.5	1	57.4-141			1.05	20
Toluene	0.0250	U	0.0242	0.0246	96.7	98.3	1	67.8-124			1.62	20
1,1,1-Trichloroethane	0.0250	U	0.0242	0.0248	96.9	99.4	1	58.7-134			2.47	20
1,1,2-Trichloroethane	0.0250	U	0.0254	0.0256	102	102	1	74.1-130			0.870	20
Trichloroethene	0.0250	U	0.0225	0.0229	90.0	91.7	1	48.9-148			1.87	20
1,2,4-Trimethylbenzene	0.0250	U	0.0229	0.0236	91.7	94.4	1	60.5-137			2.98	20
1,3,5-Trimethylbenzene	0.0250	U	0.0225	0.0232	90.0	92.9	1	67.9-134			3.08	20
Vinyl chloride	0.0250	U	0.0288	0.0288	115	115	1	44.3-143			0.0300	20
Xylenes, Total	0.0750	U	0.0684	0.0701	91.3	93.5	1	65.6-133			2.44	20
o-Xylene	0.0250	U	0.0231	0.0237	92.5	95.0	1	67.1-133			2.63	20
m&p-Xylenes	0.0500	U	0.0453	0.0464	90.6	92.8	1	64.1-133			2.34	20
(S) Toluene-d8					108	109		90.0-115				
(S) Dibromofluoromethane					114	113		79.0-121				
(S) 4-Bromofluorobenzene					99.9	99.1		80.1-120				

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG869610 Semi-Volatile Organic Compounds (GC) by Method 3511/8015 L832603-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20 Method Blank (MB) (MB) R3133988-1 05/04/16 13:48 MB Result MB MDL MB RDL MB Qualifier Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 90.0 50.0-150 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133988-2 05/04/16 14:06 • (LCSD) R3133988-3 05/04/16 14:24 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.56 1.58 104 105 0.930 20 (S) o-Terphenyl 101 50.0-150 105

Тс

Ss

Cn

Sr

GI

ΑI

$\begin{array}{c} \text{WG869611} & \text{QUALITY CONTROL SUMMARY} \\ \text{Semi-Volatile Organic Compounds} & \text{(GC) by Method 3511/8015} \end{array} \\ \underline{\text{L832603-21,22,23,24,25,26,27,28,29,30,31,32,33,34,36,37,38,39,40,41}} \\ \end{array}$ ONE LAB. NATIONWIDE. Method Blank (MB) (MB) R3133910-1 05/04/16 11:48 MB Result MB MDL MB RDL MB Qualifier Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 102 50.0-150 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133910-2 05/04/16 12:04 • (LCSD) R3133910-3 05/04/16 12:21 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Rec. Limits Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.55 1.54 103 103 0.280 20

50.0-150

101

100

(S) o-Terphenyl

Тс

Ss

Cn

Sr

GI

(S) o-Terphenyl 93.7 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133989-2 05/04/16 13:11 • (LCSD) R3133989-3 05/04/16 13:30 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.57 1.57 104 105 0.280 20 (S) o-Terphenyl 50.0-150 103 102 GI Αl

SDG:

L832603

DATE/TIME:

05/20/16 13:57

QUALITY CONTROL SUMMARY

L832603-42

WG869613

Analyte

Method Blank (MB) (MB) R3133989-1 05/04/16 12:53

TPH (GC/FID) High Fraction

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

MB MDL

mg/l

0.0247

MB Qualifier

MB RDL

PROJECT:

249545.0000.0000 000

mg/l 0.100

MB Result

mg/l

ACCOUNT:

TRC Solutions - Austin, TX

U

ONE LAB. NATIONWIDE.

PAGE:

180 of 187

Тс

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

RC Solutions - Aust	in, TX	:]		ts Payable n Road North	L.	-					Contain	er / Pres	100	ir		200	Chain of Custody	SC Page Lof
05 E. Huntland Dr, Ste 250 ustin, TX 78752				Windsor, CT 06095						500mIHDPE-HNO3		NO3 F	125mIHDPE-NoPres			As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	YOUR LAB	OF CHOICE
port to:		10. 2	Email To:		BT-Z-26	74.				m00	HO	PE-H	5mlH	PE-		Ni,Pt	12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-585	17/2
peer@trcsolutions.com		4- 1	speer@t	tresolutions.cor	\dashv	200			1. 1	N-C	유	9- 12	표		,Mn,	Phone: 800-767-585 Fax: 615-758-5859		
oject REST Spring 2016	-Team G	HES		City/State Collected: Art	esia, NN	1				√n,Se	EAmt	500mIHDPE-HNO3	ulfate	250m		Fe,Hg	L# L83	2663
none: 512-684-3170	Client Project #	1. 1 to	1.0	Lab Project # TRCATX-REST SPRING			-BT		5	As,Ba,Cr,Fe,Pb,Mn,Se	nIHDP	Na -	oride, S	NO3) -	NoPres	,Co,Cr,	Tal A1	
ollected by (print):	Site/Facility ID	# avajo- A	rtesia	P.O. #			DH-qu	nb-HC	H-qm	Ba,Cr,	-250r	Ca, K,	de, Flu	(NO2	1DPE-	,Ba,Cd	Acctnum: TRO	11394
Seed UCA		ıy	200% 100% 50%	Email?! FAX?No		No.	- 40mlAmb-HCI-BT	- 40mlAmb-HCl	0 - 40mlAmb-HCl	Jiss. As,	Cyanide (CN) - 250miHDPEAmb-NaOH	Cations-Total	Anions- Chloride, Fluoride, Sulfate-	Nitrate/Nitrite (NO2NO3) - 250mlHDPE-H2SO4	- 250mIHDPE-NoPres	ot/Diss. As,B	Prelogin: P54 TSR: Chris Cooler:	
acked on Ice N Y	Comp/Grab	Matrix *	25%	Date	Time	of Cntrs	DRO	GRO	V8260	Tot./Diss.	Cyar	Catio	Anio	Nitra	TDS	Totil	Shipped Via: Rem./Contaminan	t Sample # (lab only)
Sample ID	Comparad	GW	2.0	4/28/16	1515	12	V	V	V	V		1	V	V	V	100	HS. All	-0
MW-65	2. 180	Gw	No.	4/28/16	1600	10	1	-	1	1	160	1	1	V	V			0
RW-5R		-	1	4/28/16	1645	12	V	1	1	1	1935	V	V	V	V			0
MW-102		25	1	4/28/16	1740	10	1	Ť	/	1		V	V	V	V		門是山東州	01
RW-6			1	4/28/16	1830	10	1		1	1	1	1	V	V	V		The Late	0,
RW-4				4/28/16	1740	12	1	/	1	1	1	1	V	1	V		12 15	04
Rw-2			-	4/28/16	1650	12	100	1	V	V	100	1	1	V	V			0
MW-62			-	4/28/16	1555	12	THE REAL PROPERTY.	V	1		V	1	V	V	V	V	/	0
Mw-43				4/28/16	1510	17	1	1	1	1	100	1	V	V	V			0
RW-10	1	1	100	4/28/16	1425	12	V	V	1	1	-	1	V	V	V		7 19	11
mw-39		-				112			13	рН		To	mp					
* Matrix: SS - Soil GW - Groundwate Remarks: Log all metals by										Flow		Ot	her		. 8	iold#		
Relinquished by : (Signature)		Date:	9/16	Time: R	eceived by: (Sign	nature)	胍			100000000000000000000000000000000000000		urned via	urier			ondition	on: (ta	b use only)
Relinquished by: (Signature)		Date:	Druger H	3 KURAN	eceived by: (Sign	nature)	民			Temp	1	"C	Bottles 4	Received 87	0	-	al Intact:Y	
Relinquished by . (Signature)	700	Date:		Time:	eceived for lab	1861:60	nature)			Date	130	11	Time:	7000		LZ) 712 NO	CF1

Nome/Address			Billing Information:							nalesis /	Contain	er / Pre	servatio	ve -			Chain of Custody	Page Cof
ompany Name/Address: FRC Solutions - Aus' 505 E. Huntland Dr, Ste 250 Austin, TX 78752	tin, TX	21 Griffin		nts Payable in Road North r, CT 06095	1	No.				- 500mIHDPE-HNO3	2	2	Sulfate- 125mlHDPE-NoPres	12		Se,U,V	製	ESC
leport to: speer@trcsolutions.com			Email To:	ail To: eer@trcsolutions.com						500mIHE	аОН	- 500mIHDPE-HNO3	25mIHDP	250mIHDPE-H2SO4		,Ni,Pb,Se	12065 Lebanon Rd Mount Juliet, TN 33 Phone: 615-758-58 Phone: 800-767-58	58 17 62 1
Project REST Spring 2016	- Team G	CTH	John C.	City/State Collected: A	10711-06	1				- eS'u	Amb-N	0mlHD	Ifate- 1.	50mlH		Hg,Mn	Fax: 618-758-5859	
Phone: 512-684-3170	Client Project			Lab Project # TRCATX-RE	ST SPRING	The second	ВТ			e,Pb,Mı	- 250mIHDPEAmb-NaOH	Na - 50	ride, Su	1	oPres	B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	Table #	7007
Collected by (print): Scot+ Udc + HMI Tran	Site/Facility III		rtesia	P.O.#			P-HCI-	ID-HCI	nb-HC	a,Cr,F	-250m	Ca, K,	le, Fluo	(NO2N	DPE-N	3a,Cd,C	Acctnum: TR	
Collected by (signature): Sladd UC4 Immediately Packed on Ice N Y	Rush? (I	ay	Notified) 200% 100% 50% 25%	Email?	No _Yes	No. of	0 - 40mlAmb-HCI-BT	0 - 40mlAmb-HCI	60 - 40mlAmb-HC	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	Cyanide (CN)	Cations-Total Ca, K, Na	Anions- Chloride, Fluoride,	Nitrate/Nitrite (NO2NO3)	S - 250mIHDPE-NoPres	Tot/Diss. As,B,E	Prelogin: P5 TSR: Chri Cooler: Shipped Via:	49622
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V8260	Tot	Cy	Cat	Ani	ž.	TDS	Tot	Rem./Contaminar	t Sample # (lab only
mw-29	S. C.	GW	7	4/28/16	1455	12	~	/	1	V		V	V	V	V			11
MW-61			1	4/28/16	1830	12	V	V	V	V	100	V	V	V	V			12
MW-105			1	4/28/16		12	~	V	/	V		V	1	V	V		No. 1	13
RW-#16B			1	4/28/16		10	/	9 1	V	V		V	V	V	~	_	-	14
1RW-9				4/28/16	1545	12	1	V	/	V		V	V	V	1	L.,	1 1 1	15
MW-58				4/28/16	1850	n	~		/	_	/	V	V	V	~	V		16
MW-136	- P	1	9 10	4/28/16	1520	10	V	V	~		/	V	V	1	V	V		17
KWB-2R				4/28/16	1725	10	V	6	/	1		V	V	V	V			18
KWB-13	-		the state of	4/28/16	1620	N	V		V	200	~	V	1	V	1	V	100	
RW-12R	V	V	13 5	4 28/11	1750	10	1		V	V		V	V	V	V		1	2
* Matrix: SS - Soil GW - Groundwater Remarks: Log all metals by 6										pH .		Ten		e Z	Но	ld#		
Relinquished by : (Signature)		Date:	29/16	1500 R	eceived by: (Sign	題	粮		75	100		ned via:	ier C			ndition	(la	o use only)
Relinquished by : (Signature)	ASE TO	Date:		Time: R	eceived by: (Sign	ature)	1			Temp:	0	°C B		eceived:	800 00		Intact: Y	

Company Name/Address:	1214 (122-018		Billing Info	rmation:					1	Analysis ,	/ Contai	ner / Pr	eservat	ive	-31		Chain of Custod	Page 3 of
TRC Solutions - Aus	stin, TX			nts Payable in Road Nort	, /ti, -		题			03/			S	1		100	ma T	CC
505 E. Huntland Dr, Ste 250 Austin, TX 78752)			Windsor, CT 06095						HDPE-HN	712	103 12	Sulfate- 125mlHDPE-NoPres	2504 6		V,U,es,	State of the same	25C
Report to: speer@trcsolutions.com			Email To: speer@trcsolutions.com							500ml	нов	PE-HI	25mlHC	250mIHDPE-H2SO4		,Ni,Pb,	12065 Lebanon Rd Mount Juliet, TN 3: Phone: 615-753-58	
Project REST Spring 201	6 - Team-G	-C7H		City/State Collected: Ar	tesia, A	IN)				- es'	N-dm.	mIHC	ate- 1	- HIMO		lg,Mn	Phone: 800-767-58 Fax: 615-758-5859	
Phone: 512-684-3170 Fax:	Client Project		1	Lab Project # TRCATX-RE	ST SPRING	3	3T			,Pb,Mn	- 250mIHDPEAmb-NaOH	la - 500	de, Sulf	1	Pres	,Cr,Fe,F	L# 18	32603
Collected by (print): Scot+ Ude + HM1 Team	Site/Facility IC		rtesia	P.O.#			-HCI-E	HCI	P-HCI	,Cr,Fe	250mll	a, K, N	Fluori	OZNC	E-No	Cd,Co	Acctnum: TR	CATX
Collected by (signature): Subtl UC4 Immediately Packed on Ice N Y	Rush? (I	Day	Notified) 200% 50% 55%	Email?N		No.	40mlAmb-HCI-BT	GRO - 40mlAmb-HCI	- 40mlAmb-HC	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se - 500mIHDPE-HNO3	Cyanide (CN) -	Cations-Total Ca, K, Na - 500mIHDPE-HNO3	Anions- Chloride, Fluoride,	Nitrate/Nitrite (NO2NO3)	250mIHDPE-NoPres	Tot/Diss. As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	Template: T1 Prelogin: P54 TSR: Chris Cooler:	
Sample ID	Comp Grab	1	Depth	Date	Time	Of	DRO.	GRO	V8260	Tot./D	Cyani	Catio	Anion	Nitrat	TDS -	Tot/Dis	Shipped Via:	
MW-113		GW		4/28/16	1640	12	1	V	V	V	733	V	V	V	V		Nem./Contaminant	Sample # (lab only
EB-REST-01		7		4/28/16	1655	12	1	V	V	V		V	1	V	V		-	22
DUP-REST-01			2.0	4/28/16	1500	12	1	V	V	V		1	V	V	V		4 1	2
MW-60			1	4/29/16	825	13	1	V	V		1	V	V	V	V	1		21
EB-REST-04				4/29/16	910	13	1	V	V		1	V	1	V	1	1		24
DUP- REST-04				4/29/16	1000	13	V	V	1		V	~	V	V	V	1		21
MW-107				4/29/16	1105	12	V	V	V	/		1	V	V	V			2
MW-59		7		4/29/16	1015	12	1	V	V	1		/	/	V	1	65	100	28
mw-52		Losan		4/29/16	1050	13	V	1	V		V	V	1	1	1	V		29
mw-109	7	1		4/29/16	1005	12	1	1	V	/	描述	/	V	V	V	FF.	E 18	30
Matrix: SS - Soil GW - Groundwater										pH _ Flow_		_ Tem			Hol	d#		
elinquished by : (Signature)	4	Date: 4/2	9/16	1500	elved by: (Signa		A			Samples	return	ed via: Courie	□ UPS		Con	dition:	(lab (ise only 7
elinquished by: (Signature)		Date:	1	ime: Rec	eived by: (Signa	ture)	5			Temp:		C Bot	tles Red	ceived:	COC	Seal In	itact: v	_N _ NA
telinquished by : (Signature)	400	Date:	Time: Received for lab by: (Sig			/Signa	COC Sear to				Table 1995	NA						

Company Name/Address:				Billing Info	rmatio	in:						A	halysis /	Contair	ner / Pre	servativ	re	- 13		Chain of Cu	stody	Pageof
TRC Solutions - Aus	tin, TX					ayable					4		103		1	sə	.1		7	The same		CC
505 E. Huntland Dr, Ste 250 Austin, TX 78752						oad Noi T 06095							- 500mIHDPE-HNO3	The	INO3 C	125mIHDPE-NoPres	H2SO4 7		V,U,eS,		L'AB'	I-E-N-C-E-
speer@trcsolutions.com			26	Email To:	speer@trcsolutions.com								- 500m	NaOH	500mIHDPE-HNO3	125mlH	HDPE-I		n,Ni,Pb	12065 Leband Mount Juliet, Phone: 615-7 Phone: 800-7	TN 3712 58-5858 67-5859	
roject REST Spring 2016	- Team	G.	CZH	H		Collected: Artesia, NM					- 19		n,Se	Amb-	0mlH	Sulfate-	50ml		M,BH,	Fax: 615-758	3527	2603
Phone: 512-684-3170	Client Proj	ect #		- 1	10000	Project # CATX-F	RES	T SPRING	1	.BT			As, Ba, Cr, Fe, Pb, Mn, Se	Cyanide (CN) - 250miHDPEAmb-NaOH	Na-	Fluoride, Su	Nitrate/Nitrite (NO2NO3) - 250miHDPE-H2SO4	oPres	As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,	Table #	U	P (00)
Collected by (print): Scot+ Ude + HM) Team	Site/Facilit			rtesia	P.O.	P.O. #			-HCI	P-HCI	nb-HC	a,Cr,F	250m	Ca, K,		NO2N	DE-N	a,Cd,C	Acctnum: Template			
Collected by (signature): Scott UCL	Sai	me Da	ay	Notified)		I E		ults Needed		40mlAmb-HCI-BT	GRO - 40mlAmb-HCI	- 40mlAmb-HCI		(CN)-	Total	Chloride,	litrite (250mIHDPE-NoPres	As,B,B	Prelogin:	P549	
mmediately Packed on Ice N Y	Tw	ot Day o Day ree Di	·	100% 50% 25%				o —Yes —Yes	No. of	100	0-40	60 - 4	Tot./Diss.	anide	Cations-Total	Anions- C	rate/N	200	Tot/Diss.	Cooler: Shipped V		
Sample ID	Comp.Gr	D	Matrix *	Depth		Date		Time	Cntrs	DRO	GR	V8260	Tot	Ç	Ca	Ani	ž	TDS	Tot	Rem./Conta	$\overline{}$	Sample # (lab only
mw-110	1	-	GW	1000	4	129/1	b	920	12	1	V	V	V		V	1	V	V		100	12	31
MW-128			1		4	129/1	6	1725	12	1	V	V	V		V	V	V	V			13	32
mw-28					4	129/1	6	1025	13	V	V	V		1	V	1	V	V	V		I.E.	3
mw-66				P	4	129/11	6	940	13	V	V	V		V	V	V	V	V	V	3.6	48	32
Trip Blank-REST-	04				L	1/29/1	6	-	1			V				BY						31
mw-99					4	1/29/1	6	845	13	V	1	V	V	100	V	V	V	V	19	100		3
RW-#17A				4	4	129/16	6	940	12	V	1	V	1	TO SE	V	/	V	V			187	3
MW-135		1	12	100		1/29/1	_	1125	12	/	V	V	V	1960	V	V	V	1	_			38
MW-115					-	112911	-	850	12	V	V	1	V		V	V	V	V	13	30		50
mw-114	V		V		1	1/29/1	16	945	12	V	V	V	V		1	1	V	V		233		Ч
* Matrix: SS - Soil GW - Groundwater	ww - Was	teW	ater DW -	Drinking Wa	ter OT	r - Other							pH .	100	Ten	np				4	15	
Remarks: Log all metals by 6													Flow	1	_ Oth	er		Но	ld#			
Relinquished by : (Signature)	100		Date:		Time:		of the	eived by: (Signa	ture)	ıń.			Sampl	es retur	ned via:	□ UP	S	Co	ndition:	100	(lab u	se only)
Selt UC	u		1	29/16	1	500	16			10			-		Cour							2m,
Relinquished by : (Signature)			Date:		Time:		Rec	eived by: (Sign.	ture)	1			Temp:	130	C B	ottles Re	7	100	C Seal	Intact	Y	N NA
Relinquished by : (Signature)	e e e		Date:		Time:		Rec	elved for late by	: (Sign	ature)			Date:	3011		me:	-0	рН	Checke	d:	NCF;	

Company Name/Address:			Billing Info	rmation:	No. 1	1 19	196		A	nalysis /	Conta	iner / Pr	eservati	lve	W.		Chain of Custody	Page Sof
TRC Solutions - Aus	tin, TX			nts Payable	1.04					18	1		S				MAT	CC
505 E. Huntland Dr, Ste 250 Austin, TX 78752			21 Griffin Road North Windsor, CT 06095							- 500mIHDPE-HNO3		103 2	Sulfate-1125mIHDPE-NoPres	2804		V,U,es	L-A-B S-C	
Report to:			Email To:	-1-		7				0ml	H	±	mIHI	T		Pb,s	12065 Lebanon Rd Mount Juliet, TN 371	FE152621
speer@trcsolutions.com		131	speer@	trcsolutions.	om					- 50	Nac	DPE	1125	효		n,Ni	Phone: 615-758-5856 Phone: 800-767-5855	1000
Project REST Spring 2016	6 - Team -E	CTH	Collected: Artesia, N			a, NM				Se,	-qui	H	fate-1	0ml		Hg,M	Fax: 615-758-5859	70/-7
Phone: 512-684-3170	Client Project #		7-1	Lab Project # TRCATX-R			3T			,Pb,Mr	- 250mIHDPEAmb-NaOH	la - 500		3) - 25	Pres	,Cr,Fe,	Table#	74607
Collected by (print):	Site/Facility ID		tosia	P.O.#	34.12		HCI-E	HCI	HC	Cr,Fe	50ml	, X	Fluor	OZNC	E-No	Cd,Cc	Acctnum: TRO	CATX
Scott Ude + Am I Team Collected by (signature):	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW	b MUST Be		Date I	Results Needed	77	-dm/	-dm/	Amt	,Ba,	1)-2	al Ca	ride,	N) es	НОР	3,Ba,	Template: T11 Prelogin: P54	
Switt Udy mmediately Packed on ice N Y	Same D Next Da Two Da Three D	y	200% 50% 25%	188	_NoYes	No.	- 40mIAmb-HCI-BT	- 40mlAmb-HCI	V8260 - 40mlAmb-HC	Tot./Diss. As,Ba,Cr,Fe,Pb,Mn,Se	Cyanide (CN)	Cations-Total Ca, K, Na - 500mIHDPE-HNO3	Anions- Chloride, Fluoride,	Nitrate/Nitrite (NO2NO3) - 250mIHDPE-H2SO4	- 250mIHDPE-NoPres	Tot/Diss. As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	TSR: Chris Cooler:	
Sample ID	Comp Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V826	Tot./	Cya	Cati	Anio	Nitra	TDS	Tot	Shipped Via:	Sample # (lab on)
MW-125		GW		4/29/16	855	1/2	V	V	V	V	R.	V	V	V	V		32-2	41
mw-116	V	V		4/29/16	945	12	1	V	V	V		V	/	V	V			40
			18	4	1.00								TO THE	71197				
-1			i i tr	- 6	the je									1.45				Market L
	-			- X	-	-		-					BOE .	1				
20K		-		1 2					5 9 9 3	-		-						
4 27	7			1 1	- 1			\vdash									de la company	
	ra a	1000	- 1		10					- 19					100		49	
			La tha			17	NE			1.3	100	100			201	200		21 32 1
Matrix: SS - Soil GW - Groundwater	WW - WasteW	ater DW - D	rinking Wat	er OT - Other						рН		Tem	p					
Remarks: Log all metals by 6			912									Othe			Hol	d#		1927
Relinquished by : (Signature)	(Date: 4/29		Time: R	eceived by: (Signa	ture)	A.			Sample	s retur	ned via:	□ UP:		Cor	dition:	(lab u	se only)
Relinquished by: (Signature)	AMILIA SEC	Date:		Time: R	eceived by: (Sign:	rure)	2			Temp:		°C Bo	ttles Re	7	CO	C Seal I	ntact: V	N NA
AND THE RESIDENCE OF THE PARTY																		

ANALYTICAL REPORT May 13, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832616

Samples Received: 04/30/2016

Project Number: 249545.0000.0000 000

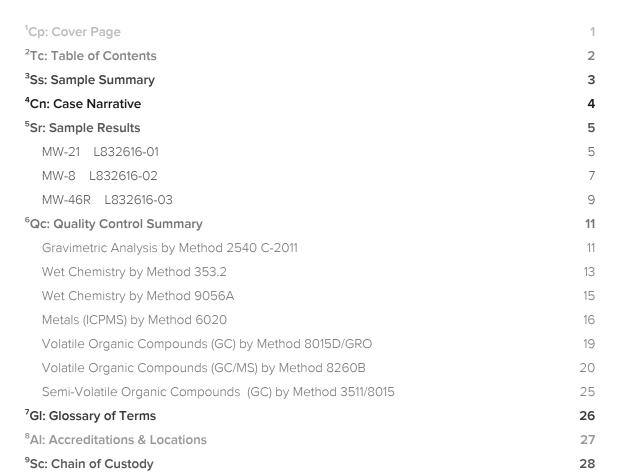
Description: TMD Spring 2016

Site: TMD NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752


Entire Report Reviewed By: Chu, forth June

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

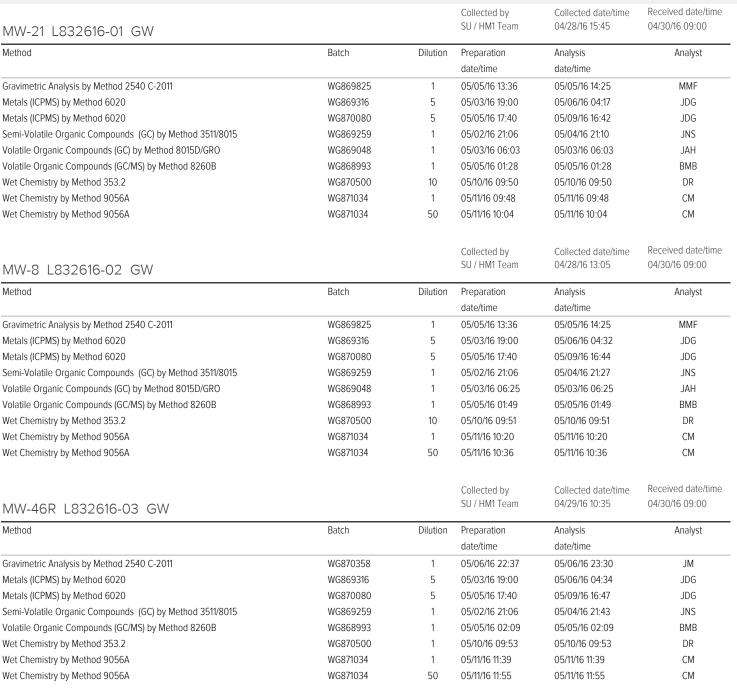
TABLE OF CONTENTS

	Track.
)F	- 39

CAMPIE

ONE LAB. NATIONWI

SAMPLE SUMMA	ARY	ON	E LAB. NATIONWIDE.
	Collected by	Collected date/time	Received date/time



All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Cn

Ss

Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 15:45

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	5720		2.82	10.0	10.0	1	05/05/2016 14:25	WG869825

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	15.0		0.197	0.100	1.00	10	05/10/2016 09:50	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	516		2.60	1.00	50.0	50	05/11/2016 10:04	WG871034
Fluoride	1.69		0.00990	0.100	0.100	1	05/11/2016 09:48	WG871034
Sulfate	3150		3.87	5.00	250	50	05/11/2016 10:04	WG871034

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00607	J	0.00125	0.00200	0.0100	5	05/06/2016 04:17	WG869316
Arsenic,Dissolved	0.00583	J	0.00125	0.00200	0.0100	5	05/09/2016 16:42	WG870080
Barium	0.0100	J	0.00180	0.00500	0.0250	5	05/06/2016 04:17	WG869316
Barium,Dissolved	0.0104	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 16:42	WG870080
Calcium	590		0.230	1.00	5.00	5	05/06/2016 04:17	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:17	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:42	WG870080
Iron	U		0.0750	0.100	0.500	5	05/06/2016 04:17	WG869316
Iron,Dissolved	0.283	ВJ	0.0750	0.100	0.500	5	05/09/2016 16:42	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:17	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:42	WG870080
Manganese	0.354		0.00125	0.00500	0.0250	5	05/06/2016 04:17	WG869316
Manganese, Dissolved	0.323		0.00125	0.00500	0.0250	5	05/09/2016 16:42	WG870080
Potassium	2.31	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 04:17	WG869316
Selenium	0.0327		0.00190	0.00200	0.0100	5	05/06/2016 04:17	WG869316
Selenium,Dissolved	0.0327		0.00190	0.00200	0.0100	5	05/09/2016 16:42	WG870080
Sodium	440		0.550	1.00	5.00	5	05/06/2016 04:17	WG869316

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 06:03	WG869048
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 06:03	WG869048

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 (-	- / - /						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 01:28	WG868993
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 01:28	WG868993
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 01:28	WG868993
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 01:28	WG868993

Ss

Analyte

SA

Unadj. MQL

mg/l

MQL

mg/l

Collected date/time: 04/28/16 15:45

Volatile Organic Compounds (GC/MS) by Metho Result

mg/l

Qualifier

mg/l

AMPLE	RESULTS - 01	ONE LAB. NATIONWIDE.	
od 8260B			

Dilution Analysis

date / time

Batch

Chlorobenzene	U	0.000348	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Chlorodibromomethane	U	0.000327	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Chloroethane	U	0.000453	0.00500	0.00500	1	05/05/2016 01:28	WG868993
Chloroform	U	0.000324	0.00500	0.00500	1	05/05/2016 01:28	WG868993
Chloromethane	U	0.000276	0.00250	0.00250	1	05/05/2016 01:28	WG868993
,2-Dibromoethane	U	0.000381	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,1-Dichloroethane	U	0.000259	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,2-Dichloroethane	U	0.000361	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,1-Dichloroethene	U	0.000398	0.00100	0.00100	1	05/05/2016 01:28	WG868993
cis-1,2-Dichloroethene	U	0.000260	0.00100	0.00100	1	05/05/2016 01:28	WG868993
rans-1,2-Dichloroethene	U	0.000396	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,2-Dichloropropane	U	0.000306	0.00100	0.00100	1	05/05/2016 01:28	WG868993
cis-1,3-Dichloropropene	U	0.000418	0.00100	0.00100	1	05/05/2016 01:28	WG868993
rans-1,3-Dichloropropene	U	0.000419	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Ethylbenzene	U	0.000384	0.00100	0.00100	1	05/05/2016 01:28	WG868993
sopropylbenzene	U	0.000326	0.00100	0.00100	1	05/05/2016 01:28	WG868993
o-Isopropyltoluene	U	0.000350	0.00100	0.00100	1	05/05/2016 01:28	WG868993
?-Butanone (MEK)	U	0.00393	0.0100	0.0100	1	05/05/2016 01:28	WG868993
!-Hexanone	U	0.00382	0.0100	0.0100	1	05/05/2016 01:28	WG868993
Methylene Chloride	U	0.00100	0.00500	0.00500	1	05/05/2016 01:28	WG868993
l-Methyl-2-pentanone (MIBK)	U	0.00214	0.0100	0.0100	1	05/05/2016 01:28	WG868993
Methyl tert-butyl ether	0.0101	0.000367	0.00100	0.00100	1	05/05/2016 01:28	WG868993
laphthalene	U	0.00100	0.00500	0.00500	1	05/05/2016 01:28	WG868993
n-Propylbenzene	U	0.000349	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Styrene	U	0.000307	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,1,1,2-Tetrachloroethane	U	0.000385	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,1,2,2-Tetrachloroethane	U	0.000130	0.00100	0.00100	1	05/05/2016 01:28	WG868993
etrachloroethene	U	0.000372	0.00100	0.00100	1	05/05/2016 01:28	WG868993
oluene	U	0.000780	0.00500	0.00500	1	05/05/2016 01:28	WG868993
,1,1-Trichloroethane	U	0.000319	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,1,2-Trichloroethane	U	0.000383	0.00100	0.00100	1	05/05/2016 01:28	WG868993
richloroethene	U	0.000398	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,2,4-Trimethylbenzene	U	0.000373	0.00100	0.00100	1	05/05/2016 01:28	WG868993
,3,5-Trimethylbenzene	U	0.000387	0.00100	0.00100	1	05/05/2016 01:28	WG868993
/inyl chloride	U	0.000259	0.00100	0.00100	1	05/05/2016 01:28	WG868993
o-Xylene	U	0.000341	0.00100	0.00100	1	05/05/2016 01:28	WG868993
n&p-Xylene	U	0.000719	0.00100	0.00100	1	05/05/2016 01:28	WG868993
Kylenes, Total	U	0.00106	0.00300	0.00300	1	05/05/2016 01:28	WG868993
(S) Toluene-d8	101			90.0-115		05/05/2016 01:28	WG868993
(S) Dibromofluoromethane	100			79.0-121		05/05/2016 01:28	WG868993
(S) 4-Bromofluorobenzene	86.3			80.1-120		05/05/2016 01:28	WG868993

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.190		0.0247	0.100	0.100	1	05/04/2016 21:10	WG869259
(S) o-Terphenyl	101				50.0-150		05/04/2016 21:10	WG869259

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 13:05

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3690		2.82	10.0	10.0	1	05/05/2016 14:25	WG869825

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.503	J	0.197	0.100	1.00	10	05/10/2016 09:51	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	275		2.60	1.00	50.0	50	05/11/2016 10:36	WG871034
Fluoride	2.02		0.00990	0.100	0.100	1	05/11/2016 10:20	WG871034
Sulfate	2380		3.87	5.00	250	50	05/11/2016 10:36	WG871034

Qc

Gl

Αl

Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00885	J	0.00125	0.00200	0.0100	5	05/06/2016 04:32	WG869316
Arsenic,Dissolved	0.00676	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 16:44	WG870080
Barium	0.0117	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 04:32	WG869316
Barium,Dissolved	0.0113	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 16:44	WG870080
Calcium	377		0.230	1.00	5.00	5	05/06/2016 04:32	WG869316
Chromium	0.107		0.00270	0.00200	0.0100	5	05/06/2016 04:32	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:44	WG870080
Iron	0.397	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 04:32	WG869316
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 16:44	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:32	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:44	WG870080
Manganese	0.538		0.00125	0.00500	0.0250	5	05/06/2016 04:32	WG869316
Manganese,Dissolved	0.504		0.00125	0.00500	0.0250	5	05/09/2016 16:44	WG870080
Potassium	1.69	Ţ	0.185	1.00	5.00	5	05/06/2016 04:32	WG869316
Selenium	0.00622	J	0.00190	0.00200	0.0100	5	05/06/2016 04:32	WG869316
Selenium,Dissolved	0.00716	Ţ	0.00190	0.00200	0.0100	5	05/09/2016 16:44	WG870080
Sodium	295		0.550	1.00	5.00	5	05/06/2016 04:32	WG869316

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadi, MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	Qualifier	mg/l	mg/l	mg/l	Bildiloii	date / time	Baten
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/03/2016 06:25	WG869048
(S) a,a,a-Trifluorotoluene(FID)	103				62.0-128		05/03/2016 06:25	WG869048

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

9	1	, ,						
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 01:49	WG868993
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 01:49	WG868993
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 01:49	WG868993
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 01:49	WG868993

ONE LAB. NATIONWIDE.

Collected date/time: 04/28/16 13:05

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 01:49	WG868993
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 01:49	WG868993
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 01:49	WG868993
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 01:49	WG868993
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 01:49	WG868993
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 01:49	WG868993
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 01:49	WG868993
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 01:49	WG868993
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 01:49	WG868993
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 01:49	WG868993
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 01:49	WG868993
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 01:49	WG868993
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 01:49	WG868993
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 01:49	WG868993
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 01:49	WG868993
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 01:49	WG868993
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 01:49	WG868993
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 01:49	WG868993
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 01:49	WG868993
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 01:49	WG868993
(S) Toluene-d8	101				90.0-115		05/05/2016 01:49	WG868993
(S) Dibromofluoromethane	101				79.0-121		05/05/2016 01:49	WG868993

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

87.7

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.230		0.0247	0.100	0.100	1	05/04/2016 21:27	WG869259
(S) o-Terphenyl	100				50.0-150		05/04/2016 21:27	WG869259

80.1-120

05/05/2016 01:49

WG868993

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:35

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3980		2.82	10.0	10.0	1	05/06/2016 23:30	WG870358

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.0520	J J6	0.0197	0.100	0.100	1	05/10/2016 09:53	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	290		2.60	1.00	50.0	50	05/11/2016 11:55	WG871034
Fluoride	1.47		0.00990	0.100	0.100	1	05/11/2016 11:39	WG871034
Sulfate	2470		3.87	5.00	250	50	05/11/2016 11:55	WG871034

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00317	J	0.00125	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Arsenic, Dissolved	0.00276	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Barium	0.0140	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 04:34	WG869316
Barium,Dissolved	0.0134	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 16:47	WG870080
Calcium	645		0.230	1.00	5.00	5	05/06/2016 04:34	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Iron	0.159	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 04:34	WG869316
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 16:47	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Manganese	0.125		0.00125	0.00500	0.0250	5	05/06/2016 04:34	WG869316
Manganese,Dissolved	0.105		0.00125	0.00500	0.0250	5	05/09/2016 16:47	WG870080
Potassium	1.26	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 04:34	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Selenium,Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Sodium	168		0.550	1.00	5.00	5	05/06/2016 04:34	WG869316

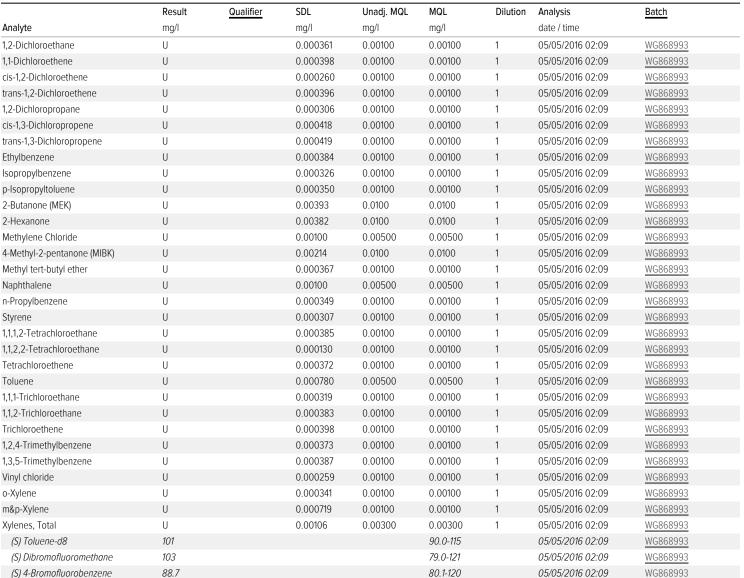
Qc

Αl

Gl

	Result	<u>Qualifier</u>	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00317	J	0.00125	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Arsenic, Dissolved	0.00276	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Barium	0.0140	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 04:34	WG869316
Barium, Dissolved	0.0134	<u>J</u>	0.00180	0.00500	0.0250	5	05/09/2016 16:47	WG870080
Calcium	645		0.230	1.00	5.00	5	05/06/2016 04:34	WG869316
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Iron	0.159	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 04:34	WG869316
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/09/2016 16:47	WG870080
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Manganese	0.125		0.00125	0.00500	0.0250	5	05/06/2016 04:34	WG869316
Manganese, Dissolved	0.105		0.00125	0.00500	0.0250	5	05/09/2016 16:47	WG870080
Potassium	1.26	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 04:34	WG869316
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 04:34	WG869316
Selenium, Dissolved	U		0.00190	0.00200	0.0100	5	05/09/2016 16:47	WG870080
Sodium	168		0.550	1.00	5.00	5	05/06/2016 04:34	WG869316

Sc


Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 02:09	WG868993
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 02:09	WG868993
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 02:09	WG868993
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 02:09	WG868993
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 02:09	WG868993
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 02:09	WG868993
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 02:09	WG868993
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 02:09	WG868993
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 02:09	WG868993

Collected date/time: 04/29/16 10:35

Volatile Organic Compounds (GC/MS) by Method 8260B

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.0622	<u>J</u>	0.0247	0.100	0.100	1	05/04/2016 21:43	WG869259
(S) o-Terphenyl	101				50.0-150		05/04/2016 21:43	WG869259

Method Blank (MB)	
MB Result MB Qualifier MB MDL mg/l	
Analyte mg/l mg/l mg/l lossolved Solids U 2.82 10.0	
Dissolved Solids U 2.82 10.0 L832603-20 Original Sample (OS) • Duplicate (DUP) (OS) L832603-20 05/05/16 14:25 • (DUP) R3134730-4 05/05/16 14:25 Original Result DUP Result DIUP RPD DUP Qualifier Wight William DUP RPD DUP Qualifier Wight William DUP RPD DUP Qualifier Wight William DUP RPD DUP Qualifier William Qualifier Willia	
L832603-20 Original Sample (OS) • Duplicate (DUP) (OS) L832603-20 05/05/16 14:25 • (DUP) R3134730-4 05/05/16 14:25 Original Result DUP Result DIUP Result DUP RPD DUP RDD DUP RDD DUP RDD DUP RDD Limits Analyte mg/l mg/l bluton W	
(OS) L832603-20 O5/05/16 14:25 • (DUP) R3134730-4 O5/05/16 14:25 Original Result DUP Result Dilution DUP RPD DUP Qualifier W Mg/l Mg/l 10 0.802 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134730-2 O5/05/16 14:25 • (LCSD) R3134730-3 O5/05/16 14:25	
Original Result along DUP Result mg/l Dilution bup Result mg/l DUP RPD billimits DUP RPD billimits Dissolved Solids 3130 3110 1 0.802 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) EUCS) R3134730-2 05/05/16 14:25 • (LCSD) R3134730-3 05/05/16 14:25 • (LCSD) R3134730-3	
Analyte mg/l mg/l % % Dissolved Solids 3130 3110 1 0.802 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134730-2 05/05/16 14:25 • (LCSD) R3134730-3 05/05/16 14:25	
Dissolved Solids 3130 3110 1 0.802 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134730-2 05/05/16 14:25 • (LCSD) R3134730-3 05/05/16 14:25	
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134730-2 05/05/16 14:25 • (LCSD) R3134730-3 05/05/16 14:25	
(LCS) R3134730-2 05/05/16 14:25 • (LCSD) R3134730-3 05/05/16 14:25	
(LCS) R3134730-2 05/05/16 14:25 • (LCSD) R3134730-3 05/05/16 14:25	
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits	
Analyte mg/l mg/l % % % % % Dissolved Solids 8800 8860 8880 101 101 85.0-115 0.225 5	
DISSOIVED SOILOS 8800 8800 8880 IUI IUI 85.0-115 0.225 5	

SDG:

L832616

DATE/TIME:

05/13/16 16:06

PAGE:

11 of 28

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

Method Blank (MB) MB Result MB Qualifier MB MDL MB RDL		Cp Tc Ss Cn
MB R3134744-1 05/06/16 23:30 MB Result MB Qualifier MB MDL MB RDL mg/l m		Tc Ss
MB Result MB Qualifier mg/l m		Ss
Dissolved Solids U 2.82 10.0 L832603-33 Original Sample (OS) • Duplicate (DUP) (OS) L832603-33 05/06/16 23:30 • (DUP) R3134744-4 05/06/16 23:30 Original Result DUP Result Dilution DUP RPD DUP Qualifier Mg/l mg/l % DUP RPD DUP Qualifier Mg/l % Dissolved Solids 3040 2900 1 4.89 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		Ss
L832603-33 Original Sample (OS) • Duplicate (DUP) (OS) L832603-33 05/06/16 23:30 • (DUP) R3134744-4 05/06/16 23:30 Original Result DUP Result Dilution DUP RPD DUP Qualifier W mg/l mg/l % 5 Dissolved Solids 3040 2900 1 4.89 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		
(OS) L832603-33 O5/06/16 23:30 • (DUP) R3134744-4 O5/06/16 23:30 Original Result DUP Result Dilution DUP RPD DUP Qualifier Wight Solids Object Ontrol Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) R3134744-2 O5/06/16 23:30 • (LCSD) R3134744-3 O5/06/16 23:30		
Original Result DUP Result DIUP Repult DIUP RPD DUP Qualifier DUP RPD DUP Qualifier DUP RPD DUP RPD DUP RPD DUP RPD DUP RPD DUP RPD Limits W Analyte mg/l mg/l wight mg/l wight % 5 Dissolved Solids Dissolved Solids Dup Repult	L	Cn
Analyte mg/l mg/l % % Dissolved Solids 3040 2900 1 4.89 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		
Dissolved Solids 3040 2900 1 4.89 5 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		_
Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		Sr
(LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		
(LCS) R3134744-2 05/06/16 23:30 • (LCSD) R3134744-3 05/06/16 23:30		Qc
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD		GI
	RPD Limits	_
Analyte mg/l mg/l % % %		Al
Dissolved Solids 8800 8260 8340 93.9 94.8 85.0-115 0.964	5 <u> </u>	_
	S	Sc
	L	

SDG:

L832616

DATE/TIME:

05/13/16 16:06

PAGE:

12 of 28

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

WG870500 Wet Chemistry by Me	thod 353.2			(QUALIT	Y CONTF		UMMA	RY			ONE LAB. NATIOI	NWIDE.
Method Blank (ME	3)												1
(MB) R3135269-2 05/10/													—— Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									Тс
Nitrate-Nitrite	U		0.0197	0.100									³Ss
L832603-32 Origi	nal Sample	(OS) • Dur	olicate (Γ)UP)									4
(OS) L832603-32 05/10/	/16 09:29 • (DUP Original Result				DUP Qualifier	DUP RPD Limits							[*] Cn
Analyte	mg/l	mg/l		%		%							⁵ Sr
Nitrate-Nitrite	1.28	ND	10	94.0	<u>J P1</u>	20							
													⁶ Qc
L832616-02 Origin	nal Sample	(OS) • Dup	licate (D	UP)									7 01
(OS) L832616-02 05/10/													GI
Analyte	Original Result	It DUP Result mg/l		DUP RPD %	DUP Qualifier	DUP RPD Limits %							8
Nitrate-Nitrite	0.503	ND		0.000	J	20							Al
	*****				_								⁹ Sc
Laboratory Contro	ol Sample (L	C.S) • Labo	ratory C	`ontrol Sar	nnle Duplic	ate (LCSD)							30
(LCS) R3135269-3 05/10					10.0 2 2 2 2								—
	Spike Amount	LCS Result	LCSD Resu				LCS Qua	alifier LCSD (Qualifier RPD	RPD Lim	its		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
Nitrate-Nitrite	5.00	4.63	4.72	93.0	94.0	90.0-110			2.00	20			
L832616-03 Origin	nal Sample	(OS) • Mat	rix Spike	e (MS) • Ma	ıtrix Spike [Duplicate (MS	SD)						
(OS) L832616-03 05/10/													
	•	t Original Result				MSD Rec.	Dilution		MS Qualifier	MSD Qualifier		RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Nitrate-Nitrite	5.00	0.0520	3.74	3.58	74.0	70.0	1	90.0-110	<u>J6</u>	<u>J6</u>	4.00	20	
	ACCOUNT.				DDO IFCT.			SDC:		DATE	TIME.	D	A 05.
	ACCOUNT: olutions - Austin, T>	X		24954	PROJECT: 45.0000.0000 00	00		SDG: L832616			E/TIME: 16 16:06		AGE: of 28

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-36 Original Sample (OS) • Matrix Spike (MS)

(UC) 1 033603 36	05/10/16 10:05	(MS) R3135269-9	OE/10/16 10:06

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Nitrate-Nitrite	5.00	0.0330	0.531	10.0	1	90.0-110	<u>J6</u>

WG87103 Wet Chemistry	by Method 9056A			Q	JALITI	CONTR L832616-01		VIIVIAIN I					ONE LAB. NATIONWII	
Method Blan	k (MB)													1
(MB) R3136187-1 ()5/10/16 20:12													— Ch
	MB Result	MB Qualifier	MB MDL	MB RDL										² T0
Analyte	mg/l		mg/l	mg/l										
Chloride Fluoride	U U		0.0519 0.0099	1.00 0.100										3
Sulfate	U		0.0099	5.00										Ss
Juliate	Ü		0.0774	3.00										4
0000000000	0::::::	(20)	: /DI	ID)										Cr
	Original Sample (, ,	,	·										5_
(OS) L832603-31	05/10/16 22:55 • (DUP)													°Sr
Analyte	Original Result mg/l		Dilution [оор кро <u>ос</u> %		DUP RPD Limits %								c
Chloride	99.0	mg/l 98.5	1 1			15								— l°Qa
Fluoride	1.53	1.52	1 1			15								_
Laboratory C	Control Sample (LC	CS) • Labor	atory Co	ntrol Sampl	le Duplica	ite (LCSD)								GI 8 AI
	05/10/16 20:28 • (LCSE	D) R3136187-3 (05/10/16 20:	:44	·									8 8 Al
(LCS) R3136187-2	05/10/16 20:28 • (LCSE Spike Amount	D) R3136187-3 (LCS Result	05/10/16 20: LCSD Resul	:44 t LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Lim	iits			8 Al
(LCS) R3136187-2 Analyte	05/10/16 20:28 • (LCSE Spike Amount mg/l	D) R3136187-3 (LCS Result mg/l	05/10/16 20: LCSD Resul mg/l	t LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	%	%	iits			8
(LCS) R3136187-2 Analyte Chloride	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0	D) R3136187-3 (LCS Result mg/l 39.0	05/10/16 20: LCSD Resul mg/l 38.6	t LCS Rec. % 97	LCSD Rec. %	Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifier	%	% 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00	D) R3136187-3 (LCS Result mg/l 39.0 7.68	05/10/16 20: LCSD Resul mg/l 38.6 7.60	2.44 t LCS Rec. % 97 96	LCSD Rec. % 96 95	Rec. Limits % 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 1 1	% 15 15	iits			8 Al
	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0	D) R3136187-3 (LCS Result mg/l 39.0	05/10/16 20: LCSD Resul mg/l 38.6	t LCS Rec. % 97	LCSD Rec. %	Rec. Limits % 80-120	LCS Qualifier	LCSD Qualifier	%	% 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0	05/10/16 20: LCSD Resul mg/l 38.6 7.60 38.6	244 t LCS Rec. % 97 96 97	LCSD Rec. % 96 95	Rec. Limits % 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) * Matr	05/10/16 20: LCSD Resul mg/l 38.6 7.60 38.6 7ix Spike	244 t LCS Rec. % 97 96 97	LCSD Rec. % 96 95	Rec. Limits % 80-120 80-120	LCS Qualifier	LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R3	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) * Matr	05/10/16 20: LCSD Resul mg/l 38.6 7.60 38.6 7:x Spike	244 t LCS Rec. % 97 96 97	LCSD Rec. % 96 95	Rec. Limits % 80-120 80-120		LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32 (OS) L832603-32	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R3	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) • Matr 3136187-5 05/1	05/10/16 20: LCSD Resul mg/l 38.6 7.60 38.6 7:x Spike	244 t LCS Rec. % 97 96 97 (MS)	LCSD Rec. % 96 95 97	Rec. Limits % 80-120 80-120 80-120	LCS Qualifier MS Qualifier	LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R3 Spike Amount	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) * Matr 3136187-5 05/1 Original Result	05/10/16 20: LCSD Resul mg/l 38.6 7.60 38.6 7ix Spike 11/16 02:38 MS Result	244 t LCS Rec. % 97 96 97 (MS)	LCSD Rec. % 96 95 97	Rec. Limits % 80-120 80-120 80-120		LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte Fluoride	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R3 Spike Amount mg/l 5.00	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) * Matr 3136187-5 05/1 Original Result mg/l 1.22	05/10/16 20 LCSD Resul mg/l 38.6 7.60 38.6 rix Spike 11/16 02:38 MS Result mg/l 5.71	144 t LCS Rec. 97 96 97 (MS) MS Rec. 90	LCSD Rec. % 96 95 97 Dilution	Rec. Limits % 80-120 80-120 80-120 Rec. Limits % 80-120	MS Qualifier	LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte Fluoride L832603-39	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R3 Spike Amount mg/l 5.00	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) * Matr 3136187-5 O5/l Original Result mg/l 1.22 (OS) * Matr	05/10/16 20 LCSD Resul mg/l 38.6 7.60 38.6 rix Spike 11/16 02:38 MS Result mg/l 5.71	### CS Rec. ### 97 96 97 (MS) MS Rec. ### 90 (MS) • Matri.	LCSD Rec. % 96 95 97 Dilution	Rec. Limits % 80-120 80-120 80-120 Rec. Limits % 80-120	MS Qualifier	LCSD Qualifier	% 1 1	% 15 15	its			8 Al
(LCS) R3136187-2 Analyte Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte Fluoride L832603-39	05/10/16 20:28 • (LCSE Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R3 Spike Amount mg/l 5.00 Original Sample 05/11/16 06:37 • (MS) R	D) R3136187-3 (LCS Result mg/l 39.0 7.68 39.0 (OS) * Matr 3136187-5 O5/l Original Result mg/l 1.22 (OS) * Matr	05/10/16 20 LCSD Resul mg/l 38.6 7.60 38.6 rix Spike 11/16 02:38 MS Result mg/l 5.71	### CS Rec. ### 97 96 97 (MS) MS Rec. ### 90 (MS) • Matri.	LCSD Rec. % 96 95 97 Dilution	Rec. Limits % 80-120 80-120 80-120 Rec. Limits % 80-120	MS Qualifier		% 1 1	% 15 15	RPD	RPD Lin	nite	8 Al

71

PROJECT: 249545.0000.0000 000

6.13

Fluoride

5.00

ACCOUNT:

TRC Solutions - Austin, TX

1.93

5.48

84

80-120

SDG: L832616 DATE/TIME: 05/13/16 16:06

PAGE:

15 of 28

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134375-7 O	5/06/16 03:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Iron	U		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	U		0.00025	0.00500
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134375-8 05/06/	16 03:17 • (LCSI	D) R3134375-9	05/06/16 03:1	9						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Arsenic	0.0500	0.0501	0.0480	100	96	80-120			4	20
Barium	0.0500	0.0489	0.0484	98	97	80-120			1	20
Calcium	5.00	5.12	4.94	102	99	80-120			4	20
Chromium	0.0500	0.0529	0.0518	106	104	80-120			2	20
Iron	5.00	5.20	5.07	104	101	80-120			3	20
Lead	0.0500	0.0506	0.0499	101	100	80-120			1	20
Manganese	0.0500	0.0524	0.0508	105	102	80-120			3	20
Potassium	5.00	4.92	4.74	98	95	80-120			4	20
Selenium	0.0500	0.0500	0.0480	100	96	80-120			4	20
Sodium	5.00	4 88	4 69	98	94	80-120			4	20

L832472-36 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-36 05/06/1	6 03:22 • (MS) I	R3134375-11 0	5/06/16 03:27	• (MSD) R31343	375-12 05/06/1	6 03:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic	0.0100	U	0.0613	0.0596	123	119	5	75-125			3	20
Barium	0.0100	0.0301	0.0845	0.0823	109	104	5	75-125			3	20
Calcium	1.00	1280	1340	1300	1190	387	5	75-125	V	V	3	20

ACCOUNT:	
TRC Solutions - Austin, TX	

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832472-36 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-36 05/06/1	6 03:22 • (MS)	R3134375-11 0	5/06/16 03:27	• (MSD) R31343	75-12 05/06/1	6 03:29						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chromium	0.0100	0.00353	0.0576	0.0567	108	106	5	75-125			2	20
Potassium	1.00	19.0	24.5	24.1	110	103	5	75-125			1	20
Iron	1.00	0.416	5.67	5.62	105	104	5	75-125			1	20
Lead	0.0100	U	0.0547	0.0533	109	107	5	75-125			3	20
Manganese	0.0100	0.876	0.942	0.931	133	111	5	75-125	\vee		1	20
Selenium	0.0100	U	0.0549	0.0556	110	111	5	75-125			1	20
Sodium	100	5150	5350	5210	3990	1170	5	75-125	FV	FV	3	20

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

⁶Qc

GI

Metals (ICPMS) by Method 6020

Method Blank (MB)

(MB) R3134964-1 05/09	9/16 11:59				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Arsenic,Dissolved	U		0.00025	0.00200	
Barium, Dissolved	U		0.00036	0.00500	
Chromium, Dissolved	U		0.00054	0.00200	
Iron,Dissolved	0.0559		0.015	0.100	
Lead, Dissolved	U		0.00024	0.00200	
Manganese, Dissolved	0.000728		0.00025	0.00500	
Selenium,Dissolved	U		0.00038	0.00200	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134964-2 05/0	9/16 12:01 • (LCSE	D) R3134964-3	3 05/09/16 12:0	3							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic, Dissolved	0.0500	0.0499	0.0509	100	102	80-120			2	20	
Barium, Dissolved	0.0500	0.0489	0.0488	98	98	80-120			0	20	
Chromium, Dissolved	0.0500	0.0509	0.0515	102	103	80-120			1	20	
Iron,Dissolved	5.00	5.03	5.05	101	101	80-120			0	20	
Lead,Dissolved	0.0500	0.0499	0.0509	100	102	80-120			2	20	
Manganese, Dissolved	0.0500	0.0499	0.0498	100	100	80-120			0	20	
Selenium, Dissolved	0.0500	0.0499	0.0502	100	100	80-120			1	20	

L832472-28 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832472-28 05/09	9/16 12:06 • (MS)	R3134964-5 0!	5/09/16 12:10 •	(MSD) R313496	64-6 05/09/16	12:13						
(,	, ,	Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0500	0.000615	0.0503	0.0500	99	99	1	75-125			1	20
Barium, Dissolved	0.0500	U	0.0496	0.0490	99	98	1	75-125			1	20
Chromium, Dissolved	0.0500	U	0.0504	0.0518	101	104	1	75-125			3	20
Iron,Dissolved	5.00	U	5.01	5.05	100	101	1	75-125			1	20
Lead,Dissolved	0.0500	U	0.0504	0.0500	101	100	1	75-125			1	20
Manganese,Dissolved	0.0500	0.000556	0.0500	0.0493	99	97	1	75-125			1	20
Selenium, Dissolved	0.0500	U	0.0505	0.0492	101	98	1	75-125			2	20

ACCOUNT: TRC Solutions - Austin, TX

249545.0000.0000 000

L832616

DATE/TIME: 05/13/16 16:06

PAGE: 18 of 28

PROJECT:

SDG:

WG869048 Volatile Organic Comp	oounds (GC)	by Method 8	015D/GRO	Ql	JALITY	CONTR L832616-0		UMMA	.RY			ONE LAB. NATIONWIDE.	*
Method Blank (MB)	J												1
(MB) R3133716-3 05/02/16													- Cp
(/	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
TPH (GC/FID) Low Fraction	U		0.0314	0.100									<u> </u>
(S) a,a,a-Trifluorotoluene(FID,	1) 103			62.0-128									3 Ss
Laboratory Control	Sample (L	.CS) • Labo	ratory Con	trol Sampl	e Duplicate	e (LCSD)							⁴ Cn
(LCS) R3133716-1 05/02/16	21:43 • (LCSD)	R3133716-2 0	5/02/16 22:04	,									_
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Quali	ifier LCSD C	Qualifier RPD	RPD Limi	its		Sr
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%			
TPH (GC/FID) Low Fraction	5.50	5.44	5.21	98.9	94.8	67.0-132			4.21	20			⁶ Qc
(S) a,a,a-Trifluorotoluene(FID,)			103	103	62.0-128							- Care
L832603-29 Origin (OS) L832603-29 05/03/h	16 01:09 • (MS) I Spike Amount	R3133716-4 05 Original Result	5/03/16 00:05 • t MS Result	(MSD) R31337 MSD Result	716-5 05/03/16 MS Rec.	6 00:26 MSD Rec.	Dilution		MS Qualifier	MSD Qualifier		RPD Limits	8 Al
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	⁹ Sc
TPH (GC/FID) Low Fraction	5.50	U	4.65	4.65	84.5	84.5	1	50.0-143			0.0100	20	
(S) a,a,a-Trifluorotoluene(FID,	1				102	103		62.0-128					

SDG: L832616

PROJECT: 249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME: 05/13/16 16:06

PAGE:

19 of 28

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(MB) R3134152-3 05/04/16	6 18:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832616

DATE/TIME: 05/13/16 16:06

PAGE: 20 of 28

QUALITY CONTROL SUMMARY LB32616-01,02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

TVICTIOG BIGTIK (IVIB	/				
(MB) R3134152-3 05/04/1	5 18:40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Tetrachloroethene	U		0.000372	0.00100	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
Trichloroethene	U		0.000398	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	100			90.0-115	
(S) Dibromofluoromethane	99.4			79.0-121	
(S) 4-Bromofluorobenzene	88.4			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134152-1 05/04/16	5 17:18 • (LCSD)	R3134152-2 0	5/04/16 17:39							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.0995	0.0988	79.6	79.1	28.7-175			0.730	20.9
Benzene	0.0250	0.0267	0.0264	107	106	73.0-122			1.06	20
Bromodichloromethane	0.0250	0.0247	0.0249	98.8	99.8	75.5-121			0.960	20
Bromoform	0.0250	0.0252	0.0258	101	103	71.5-131			2.40	20
Bromomethane	0.0250	0.0353	0.0344	141	138	22.4-187			2.64	20
n-Butylbenzene	0.0250	0.0268	0.0260	107	104	75.9-134			3.08	20
sec-Butylbenzene	0.0250	0.0247	0.0246	98.9	98.4	80.6-126			0.590	20
Carbon disulfide	0.0250	0.0276	0.0270	110	108	53.0-134			2.29	20
Carbon tetrachloride	0.0250	0.0216	0.0212	86.4	84.6	70.9-129			2.11	20
Chlorobenzene	0.0250	0.0260	0.0264	104	106	79.7-122			1.51	20
Chlorodibromomethane	0.0250	0.0249	0.0254	99.8	102	78.2-124			1.81	20
Chloroethane	0.0250	0.0356	0.0345	142	138	41.2-153			3.09	20
Chloroform	0.0250	0.0254	0.0255	102	102	73.2-125			0.410	20
Chloromethane	0.0250	0.0309	0.0308	124	123	55.8-134			0.310	20
1,2-Dibromoethane	0.0250	0.0244	0.0250	97.4	100	79.8-122			2.65	20
1,1-Dichloroethane	0.0250	0.0281	0.0278	112	111	71.7-127			0.900	20

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832616

DATE/TIME: 05/13/16 16:06 PAGE: 21 of 28

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134152-1 05/04/16	5 17:18 • (LCSD)	R3134152-2	05/04/16 17:39							<u> </u>	
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0239	0.0238	95.5	95.3	65.3-126			0.140	20	
1,1-Dichloroethene	0.0250	0.0290	0.0286	116	114	59.9-137			1.30	20	
cis-1,2-Dichloroethene	0.0250	0.0267	0.0267	107	107	77.3-122			0.230	20	
trans-1,2-Dichloroethene	0.0250	0.0265	0.0266	106	106	72.6-125			0.160	20	
1,2-Dichloropropane	0.0250	0.0290	0.0293	116	117	77.4-125			0.980	20	
cis-1,3-Dichloropropene	0.0250	0.0276	0.0276	110	110	77.7-124			0.100	20	
trans-1,3-Dichloropropene	0.0250	0.0267	0.0267	107	107	73.5-127			0.140	20	
Ethylbenzene	0.0250	0.0263	0.0264	105	105	80.9-121			0.310	20	
2-Hexanone	0.125	0.133	0.136	107	109	59.4-151			2.13	20	
Isopropylbenzene	0.0250	0.0253	0.0253	101	101	81.6-124			0.0600	20	
p-lsopropyltoluene	0.0250	0.0253	0.0255	101	102	77.6-129			0.550	20	
2-Butanone (MEK)	0.125	0.127	0.130	102	104	46.4-155			2.27	20	
Methylene Chloride	0.0250	0.0259	0.0260	104	104	69.5-120			0.280	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.142	0.143	113	115	63.3-138			1.16	20	
Methyl tert-butyl ether	0.0250	0.0247	0.0244	98.7	97.6	70.1-125			1.09	20	
Naphthalene	0.0250	0.0214	0.0218	85.5	87.3	69.7-134			2.09	20	
n-Propylbenzene	0.0250	0.0263	0.0264	105	105	81.9-122			0.280	20	
Styrene	0.0250	0.0261	0.0266	104	106	79.9-124			1.86	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0257	0.0259	103	104	78.5-125			0.990	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0239	0.0239	95.7	95.7	79.3-123			0.0300	20	
Tetrachloroethene	0.0250	0.0254	0.0250	101	100	73.5-130			1.22	20	
Toluene	0.0250	0.0256	0.0256	102	102	77.9-116			0.000	20	
1,1,1-Trichloroethane	0.0250	0.0245	0.0243	98.0	97.0	71.1-129			0.960	20	
1,1,2-Trichloroethane	0.0250	0.0245	0.0246	98.0	98.3	81.6-120			0.330	20	
Trichloroethene	0.0250	0.0259	0.0256	104	102	79.5-121			1.30	20	
1,2,4-Trimethylbenzene	0.0250	0.0244	0.0245	97.6	98.0	79.0-122			0.480	20	
1,3,5-Trimethylbenzene	0.0250	0.0243	0.0244	97.4	97.5	81.0-123			0.110	20	
Vinyl chloride	0.0250	0.0314	0.0310	126	124	61.5-134			1.21	20	
Xylenes, Total	0.0750	0.0768	0.0778	102	104	79.2-122			1.22	20	
o-Xylene	0.0250	0.0254	0.0258	102	103	79.1-123			1.54	20	
m&p-Xylenes	0.0500	0.0514	0.0520	103	104	78.5-122			1.06	20	
(S) Toluene-d8				99.7	99.8	90.0-115					
(S) Dibromofluoromethane				101	101	79.0-121					
(S) 4-Bromofluorobenzene				86.7	87.3	80.1-120					

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832598-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

0.0202

0.0208

(OS) L832598-01 05/04/16	6 20:23 • (MS)	R3134152-4 05	5/04/16 19:01 •	(MSD) R313415	2-5 05/04/16	5 19:21						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	ND	0.0773	0.0792	61.9	63.3	1	25.0-156			2.31	21.5
Benzene	0.0250	ND	0.0174	0.0182	69.7	72.7	1	58.6-133			4.24	20
Bromodichloromethane	0.0250	ND	0.0186	0.0195	74.5	78.1	1	69.2-127			4.76	20
Bromoform	0.0250	ND	0.0203	0.0211	81.1	84.6	1	66.3-140			4.18	20
Bromomethane	0.0250	ND	0.0158	0.0160	63.2	63.9	1	16.6-183			1.09	20.5
n-Butylbenzene	0.0250	ND	0.0198	0.0204	79.2	81.6	1	64.8-145			3.00	20
sec-Butylbenzene	0.0250	ND	0.0179	0.0183	71.8	73.0	1	66.8-139			1.70	20
Carbon disulfide	0.0250	ND	0.00755	0.00780	30.2	31.2	1	34.9-138	<u>J6</u>	<u>J6</u>	3.27	20
Carbon tetrachloride	0.0250	ND	0.0143	0.0149	57.2	59.6	1	60.6-139	<u>J6</u>	<u>J6</u>	4.02	20
Chlorobenzene	0.0250	ND	0.0185	0.0193	73.9	77.4	1	70.1-130			4.53	20
Chlorodibromomethane	0.0250	ND	0.0194	0.0206	77.5	82.5	1	71.6-132			6.30	20
Chloroethane	0.0250	ND	0.0189	0.0193	75.5	77.1	1	33.3-155			2.16	20
Chloroform	0.0250	ND	0.0186	0.0190	74.3	76.1	1	66.1-133			2.47	20
Chloromethane	0.0250	ND	0.0126	0.0130	50.4	52.1	1	40.7-139			3.28	20
1,2-Dibromoethane	0.0250	ND	0.0188	0.0195	75.0	77.9	1	73.8-131			3.75	20
1,1-Dichloroethane	0.0250	ND	0.0194	0.0202	77.8	80.9	1	64.0-134			3.90	20
1,2-Dichloroethane	0.0250	ND	0.0171	0.0180	68.6	72.0	1	60.7-132			4.86	20
1,1-Dichloroethene	0.0250	ND	0.0164	0.0169	65.7	67.7	1	48.8-144			3.04	20
cis-1,2-Dichloroethene	0.0250	ND	0.0184	0.0191	73.6	76.3	1	60.6-136			3.60	20
trans-1,2-Dichloroethene	0.0250	ND	0.0150	0.0154	59.9	61.7	1	61.0-132	<u>J6</u>		2.92	20
1,2-Dichloropropane	0.0250	ND	0.0212	0.0225	84.9	89.9	1	69.7-130			5.82	20
cis-1,3-Dichloropropene	0.0250	ND	0.0199	0.0209	79.6	83.7	1	71.1-129			4.94	20
trans-1,3-Dichloropropene	0.0250	ND	0.0200	0.0213	80.1	85.1	1	66.3-136			6.05	20
Ethylbenzene	0.0250	ND	0.0179	0.0186	71.6	74.5	1	62.7-136			4.01	20
2-Hexanone	0.125	ND	0.107	0.111	85.9	88.8	1	59.4-154			3.32	20.1
Isopropylbenzene	0.0250	ND	0.0180	0.0184	71.8	73.6	1	67.4-136			2.39	20
p-Isopropyltoluene	0.0250	ND	0.0182	0.0185	72.7	74.1	1	62.8-143			1.90	20
2-Butanone (MEK)	0.125	ND	0.105	0.110	84.3	88.1	1	45.0-156			4.49	20.8
Methylene Chloride	0.0250	ND	0.0169	0.0172	67.4	68.8	1	61.5-125			1.98	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.122	0.126	97.7	101	1	60.7-150			3.43	20
Methyl tert-butyl ether	0.0250	ND	0.0187	0.0196	74.8	78.3	1	61.4-136			4.55	20
Naphthalene	0.0250	ND	0.0177	0.0189	70.7	75.5	1	61.8-143			6.58	20
n-Propylbenzene	0.0250	ND	0.0184	0.0189	73.8	75.5	1	63.2-139			2.33	20
Styrene	0.0250	ND	0.0188	0.0196	75.1	78.5	1	68.2-133			4.37	20
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0194	0.0201	77.5	80.3	1	70.5-132			3.64	20

0.0250

ND

1,1,2,2-Tetrachloroethane

PROJECT: 249545.0000.0000 000

80.6

83.1

SDG: L832616

64.9-145

DATE/TIME: 05/13/16 16:06

3.09

20

PAGE: 23 of 28

QUALITY CONTROL SUMMARY L832616-01,02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832598-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	ND	0.0157	0.0166	63.0	66.3	1	57.4-141			5.12	20
Toluene	0.0250	ND	0.0173	0.0182	69.3	72.8	1	67.8-124			4.89	20
1,1,1-Trichloroethane	0.0250	ND	0.0171	0.0177	68.5	70.7	1	58.7-134			3.13	20
1,1,2-Trichloroethane	0.0250	ND	0.0195	0.0208	78.0	83.3	1	74.1-130			6.64	20
Trichloroethene	0.0250	ND	0.0166	0.0171	66.3	68.5	1	48.9-148			3.22	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0174	0.0177	69.5	70.8	1	60.5-137			1.77	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0172	0.0176	68.9	70.5	1	67.9-134			2.21	20
Vinyl chloride	0.0250	ND	0.0146	0.0151	58.4	60.4	1	44.3-143			3.28	20
Xylenes, Total	0.0750	ND	0.0527	0.0551	70.3	73.5	1	65.6-133			4.48	20
o-Xylene	0.0250	ND	0.0179	0.0185	71.6	74.0	1	67.1-133			3.33	20
m&p-Xylenes	0.0500	ND	0.0348	0.0366	69.6	73.3	1	64.1-133			5.06	20
(S) Toluene-d8					99.3	100		90.0-115				
(S) Dibromofluoromethane					99.8	98.8		79.0-121				
(S) 4-Bromofluorohenzene					85.7	85.4		80 1 ₋ 120				

(MB) R3133525-1 05/03/16 13:09 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 108 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3133525-2 05/03/16 13:25 • (LCSD) R3133525-3 05/03/16 13:42 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.75 1.71 117 114 2.53 20 (S) o-Terphenyl 50.0-150 108 104 GI Αl

SDG:

L832616

DATE/TIME:

05/13/16 16:06

PROJECT:

249545.0000.0000 000

QUALITY CONTROL SUMMARY

L832616-01,02,03

WG869259

Method Blank (MB)

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

ACCOUNT:

TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE.

PAGE:

25 of 28

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

7 ISSIC VIGILIONS ON	
SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Description
The same analyte is found in the associated blank.
The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
The identification of the analyte is acceptable; the reported value is an estimate.
The sample matrix interfered with the ability to make any accurate determination; spike value is low.
RPD value not applicable for sample concentrations less than 5 times the reporting limit.
The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE. * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
FPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Тс

ompany Name/Address:	ri 15-55	- 50	Billing Infor	rmation:	3	1 /1	1.7	ells.		A	naldis/	Contai	ner / Pre	servati	ve	1.110		Chain of Custody	Page of _
TRC Solutions - Aust	tin, TX			nts Paya					3	38	03		7 70	sa		33		MAT	CC
505 E. Huntland Dr, Ste 250 Austin, TX 78752				21 Griffin Road North Windsor, CT 06095					- 500mIHDPE-HNO3		- 500mHDPE-HNO3	Sulfate-1125mlHDPE-NoPres	1280472		V,U,aS,	L-A-B S-C	OL GHORS		
seport to:		1. [3]	Email To:							4	10m	НО	표	5mlF	PE-F		i,Pb	12065 Lebanon Rd Mount Juliet, TN 3712	
speer@trcsolutions.com			speer@	tresolution	100	om	ky:3					-Na	다 면	1125	H	300	N'u	Phone: 615-758-5858 Phone: 800-767-5859 Fax: 615-758-5859	
Project TMD Spring 2016	-Team D	:JH		City/State Collected	Ar	tesia, NI	n				n,Se	Amb	0ml	fate-	50ml		Hg,N	1000	2616
Phone: 512-684-3170	Client Project #			1.0	Lab Project # TRCATX-TMD SPRING		BT			As,Ba,Cr,Fe,Pb,Mn,Se	HDPE/	K, Na - 50		03) - 25	oPres	Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	G07		
Collected by (print): See+ Ude + HMI Term	Site/Facility ID	#	eia	P.O. #	P.O. # Date Results Needed		HC	HC.	3-HC	Cr,F	50m		Chloride, Fluoride,	OZN	N-B	Cd,C	Acctnum: TRC	AIX	
Collected by (signature):		ush? (Lab MUST Be Notified).			Notified) Date Results No			-dm)	/mb	Aml	,Ba,	1)-2	al C	ride,	le (N	HDF	B,Ba	Template: T11 Prelogin: P54	District Management
Scott Ud4	Same D Next Da Two Da Three D	y	200% 100% 50%	20.5	800 m 15 s	No _Yes	No.	- 40mIAmb-HCI-BT	- 40mlAmb-HCI	V8260 - 40mlAmb-HCI	Tot./Diss. As	Cyanide (CN) - 250mlHDPEAmb-NaOH	Cations-Total Ca,	ons-Chlo	Nitrate/Nitrite (NO2NO3) - 250miHDPE-H2SO4	- 250mIHDPE-NoPres	ot/Diss. As,B,	TSR: Chris	McCord
Sample ID	Comp Grab	Matrix *	Depth	Dat	e	Time	Cntrs	DRO	GRO	V826	Tot.	Cya	Cati	Anions-	Nitr	TDS	Tot	Shipped Via: Rem./Contaminant	Sample # (lab only
MW-21		GW		4/21		1545	12	1	1	1	/		1	1	V	/			-01
mw-8	4	1		4/2	8/16	1305	12	/	V	V	1		1	1	1	1		ALC: NO.	60
MW-46R	1	1		4/2		1035	10	V	19	V	V		~	1	V.	V	172	0 4	0,
		1 2						68	3				L	100					March 1
129				-		and a	116			389		540							
and the second				-	_	1 1	-				_			8	- 2		-	V. FURA	
					<u>_</u>	\$1000	100									123			E 37261
All the same of th	- 11- FE	2,6100					-		-						734			The Last	
			- P									200	2.5	100	100	100			
	-45°	255		- 31	5.04		1			1888		192			1.6	1000	_	5077	
* Matrix: SS - Soil GW - Groundwater	ww - WasteW	ater DW - D	rinking Wat	er OT - Oth	er						рН _	-	Ten	np	10				12000
Remarks: Log all metals by 6	020. Disso	lved met	als are f	ield filte	red.						Flow_		Oth	er		Но	ld#		
Relinquished by : (Signature)	(Date: 4/2	116	Time: 1501	EDWALD TO	eceived by: (Signa	iture)	ń.			100		ned via:			Co	ndition	: (lab c	ise only)
Relinquished by : (Signature)		Date:		Time:	Re	ceived by: (Signa	ture)	P			Temp:	WEST OF	°C B	ottles Re	ecelved:		15		0
Control of the Contro		100	化电影 医化二乙酰胺			1	-60	DAS.			17/1			7	1000	CC	C Spal	Intact: Y	N NA

ANALYTICAL REPORT May 13, 2016

TRC Solutions - Austin, TX

Sample Delivery Group: L832621

Samples Received: 04/30/2016

Project Number: 249545.0000.0000 000

Description: NCL Spring 2016

Site: NCL NAVAJO-ARTESIA

Report To: Julie Speer

505 E. Huntland Dr, Ste 250

Austin, TX 78752

Entire Report Reviewed By: Chu, forth June

Chris McCord

Technical Service Representative Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

44

TABLE OF CONTENTS

LAB.	NATIONWIDE.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
¹ Cn: Case Narrative	4
Sr: Sample Results	5
MW-55 L832621-01	5
MW-18 L832621-02	8
NCL-33 L832621-03	11
Qc: Quality Control Summary	13
Gravimetric Analysis by Method 2540 C-2011	13
Wet Chemistry by Method 353.2	14
Wet Chemistry by Method 9056A	16
Wet Chemistry by Method D 7511-09e2	19
Mercury by Method 7470A	20
Metals (ICPMS) by Method 6020	22
Volatile Organic Compounds (GC) by Method 8015D/GRO	28
Volatile Organic Compounds (GC/MS) by Method 8260B	29
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	40
GI: Glossary of Terms	42
³ Al: Accreditations & Locations	43

⁹Sc: Chain of Custody

SAMPLE SUMMARY

Collected date/time

Received date/time

MW-55 L832621-01 GW			SU / HM1 Team	04/29/16 10:40	04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870365	1	05/06/16 11:00	05/06/16 11:20	JM
Mercury by Method 7470A	WG869159	1	05/02/16 11:44	05/03/16 11:30	NJB
Mercury by Method 7470A	WG869862	1	05/04/16 18:29	05/05/16 17:38	TRB
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:18	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:40	LAT
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/09/16 15:08	LAT
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 10:57	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:50	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869931	1	05/05/16 08:23	05/06/16 00:44	JNS
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG869046	1	05/04/16 07:48	05/04/16 07:48	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868993	1	05/05/16 02:30	05/05/16 02:30	BMB
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 10:02	05/10/16 10:02	DR
Wet Chemistry by Method 9056A	WG871034	1	05/11/16 12:11	05/11/16 12:11	CM
Wet Chemistry by Method 9056A	WG871034	50	05/11/16 12:27	05/11/16 12:27	CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:11	05/06/16 02:11	ASK
MW-18 L832621-02 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 11:30	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	. ,
Gravimetric Analysis by Method 2540 C-2011	WG870365	1	05/06/16 11:00	05/06/16 11:20	JM
Mercury by Method 7470A	WG869159	1	05/02/16 11:44	05/03/16 11:33	NJB
Mercury by Method 7470A	WG869862	1	05/04/16 18:29	05/05/16 17:46	TRB
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:21	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:43	LAT
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/09/16 15:10	LAT
Metals (ICPMS) by Method 6020	WG870589	10	05/06/16 14:41	05/07/16 11:02	LAT
Metals (ICPMS) by Method 6020	WG870591	10	05/06/16 16:27	05/09/16 12:55	JDG
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG869931	1	05/05/16 08:23	05/06/16 01:01	JNS
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868998	1	05/05/16 07:24	05/05/16 07:24	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870333	1	05/05/16 23:49	05/05/16 23:49	ACG
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 10:03	05/10/16 10:03	DR
Wet Chemistry by Method 9056A	WG870300 WG871035	10	05/11/16 04:10	05/11/16 04:10	CM
	WG871035	I EO	05/11/16 04:10	05/11/16 04:10	
Wet Chemistry by Method 9056A		50			CM
Wet Chemistry by Method D 7511-09e2	WG869397	1	05/06/16 02:14	05/06/16 02:14	ASK
NCL-33 L832621-03 GW			Collected by SU / HM1 Team	Collected date/time 04/29/16 08:40	Received date/time 04/30/16 09:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
mediou	Datell	Dilution	date/time	date/time	Allalyst
Gravimetric Analysis by Method 2540 C-2011	WG870365	1	05/06/16 11:00	05/06/16 11:20	JM
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:23	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:45	LAT
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/09/16 15:13	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG870603	1	05/06/16 23:19	05/07/16 13:24	AAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868998	1	05/05/16 07:48	05/05/16 07:48	JHH

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Gravimetric Analysis by Method 2540 C-2011	WG870365	1	05/06/16 11:00	05/06/16 11:20	JM
Metals (ICPMS) by Method 6020	WG869321	5	05/02/16 21:41	05/06/16 19:23	ST
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/07/16 15:45	LAT
Metals (ICPMS) by Method 6020	WG870083	5	05/05/16 20:28	05/09/16 15:13	LAT
Semi-Volatile Organic Compounds (GC) by Method 3511/8015	WG870603	1	05/06/16 23:19	05/07/16 13:24	AAT
Volatile Organic Compounds (GC/MS) by Method 8260B	WG868998	1	05/05/16 07:48	05/05/16 07:48	JHH
Volatile Organic Compounds (GC/MS) by Method 8260B	WG870333	1	05/06/16 00:10	05/06/16 00:10	ACG
Wet Chemistry by Method 353.2	WG870500	10	05/10/16 10:04	05/10/16 10:04	DR
Wet Chemistry by Method 9056A	WG871035	1	05/11/16 04:40	05/11/16 04:40	CM
Wet Chemistry by Method 9056A	WG871035	50	05/11/16 04:55	05/11/16 04:55	CM

果

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times. All MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

³Ss

⁴Cn

⁵Sr

⁶Qc

Chris McCord
Technical Service Representative

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:40

832621

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l	mg/l		date / time		
Dissolved Solids	4200		2.82	10.0	10.0	1	05/06/2016 11:20	WG870365	

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	2.26		0.197	0.100	1.00	10	05/10/2016 10:02	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	442		2.60	1.00	50.0	50	05/11/2016 12:27	WG871034
Fluoride	1.04		0.00990	0.100	0.100	1	05/11/2016 12:11	WG871034
Sulfate	2080		3.87	5.00	250	50	05/11/2016 12:27	WG871034

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	U		0.00120	0.00500	0.00500	1	05/06/2016 02:11	WG869397

Αl

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	0.0000514	J	0.0000490	0.000200	0.000200	1	05/03/2016 11:30	WG869159
Mercury, Dissolved	U	J6 O1	0.0000490	0.000200	0.000200	1	05/05/2016 17:38	WG869862

⁹Sc

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00933	J	0.00125	0.00200	0.0100	5	05/06/2016 19:18	WG869321
Arsenic, Dissolved	0.00504	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 15:40	WG870083
Barium	0.0157	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 19:18	WG869321
Barium, Dissolved	0.0110	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:40	WG870083
Boron	1.31		0.0150	0.0200	0.200	10	05/07/2016 10:57	WG870589
Boron, Dissolved	1.26		0.0150	0.0200	0.200	10	05/09/2016 12:50	WG870591
Cadmium	0.000891	J	0.000800	0.00100	0.00500	5	05/06/2016 19:18	WG869321
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/09/2016 15:08	WG870083
Calcium	472		0.230	1.00	5.00	5	05/06/2016 19:18	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:18	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:40	WG870083
Cobalt	0.00141	<u>J</u>	0.00130	0.00200	0.0100	5	05/06/2016 19:18	WG869321
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 15:40	WG870083
Iron	0.128	<u>J</u>	0.0750	0.100	0.500	5	05/06/2016 19:18	WG869321
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 15:40	WG870083
Lead	0.00168	J	0.00120	0.00200	0.0100	5	05/06/2016 19:18	WG869321
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 15:08	WG870083
Manganese	0.151		0.00125	0.00500	0.0250	5	05/06/2016 19:18	WG869321
Manganese, Dissolved	0.0251		0.00125	0.00500	0.0250	5	05/07/2016 15:40	WG870083
Nickel	U		0.00350	0.00200	0.0200	10	05/07/2016 10:57	WG870589
Nickel, Dissolved	0.00242	J	0.00175	0.00200	0.0100	5	05/07/2016 15:40	WG870083
Potassium	0.829	J	0.185	1.00	5.00	5	05/06/2016 19:18	WG869321
Selenium	0.00896	J	0.00190	0.00200	0.0100	5	05/06/2016 19:18	WG869321
Selenium, Dissolved	0.0134		0.00190	0.00200	0.0100	5	05/07/2016 15:40	WG870083
Sodium	253		0.550	1.00	5.00	5	05/06/2016 19:18	WG869321

Analyte

Uranium

Vanadium

Uranium, Dissolved

Vanadium, Dissolved

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

WG869321

WG870083

Collected date/time: 04/29/16 10:40

0.00500

0.00500

0.0250

0.0250

5

Metals (ICPMS) by Method 6020

Qualifier

SDL

mg/l 0.00165

0.00165

0.000900

0.000900

Result

0.0460

0.0445

0.0244

0.0187

mg/l

Unadj. MQL	MQL	Dilution	Analysis	Batch	
mg/l	mg/l		date / time		_
0.0100	0.0500	5	05/06/2016 19:18	WG869321	2.
0.0100	0.0500	5	05/09/2016 15:08	WG870083	

05/06/2016 19:18

05/07/2016 15:40

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) Low Fraction	U		0.0314	0.100	0.100	1	05/04/2016 07:48	WG869046
(S) a,a,a-Trifluorotoluene(FID)	93.0				62.0-128		05/04/2016 07:48	WG869046

Cn

Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B Qualifier

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l	·	mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 02:30	WG868993
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 02:30	WG868993
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 02:30	WG868993
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 02:30	WG868993
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 02:30	WG868993
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 02:30	WG868993
,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 02:30	WG868993
,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 02:30	WG868993
,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 02:30	WG868993
1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 02:30	WG868993
is-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 02:30	WG868993
rans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 02:30	WG868993
,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 02:30	WG868993
tis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 02:30	WG868993
rans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 02:30	WG868993
sopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 02:30	WG868993
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 02:30	WG868993
!-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 02:30	WG868993
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 02:30	WG868993
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 02:30	WG868993
l-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 02:30	WG868993
Methyl tert-butyl ether	0.0163		0.000367	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 02:30	WG868993
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 02:30	WG868993
1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 02:30	WG868993
,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 02:30	WG868993
etrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 02:30	WG868993
,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 02:30	WG868993
,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Frichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 02:30	WG868993

MW-55

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 10:40

Volatile Organic Compounds (GC/MS) by Method 8260B

voiatile Organic Con	ipourius (GC	JIVIS) DY IVIE	eliiou 8260	/D				
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 02:30	WG868993
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 02:30	WG868993
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 02:30	WG868993
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 02:30	WG868993
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 02:30	WG868993
(S) Toluene-d8	101				90.0-115		05/05/2016 02:30	WG868993
(S) Dibromofluoromethane	102				79.0-121		05/05/2016 02:30	WG868993
(S) 4-Bromofluorobenzene	88.8				80.1-120		05/05/2016 02:30	WG868993

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	0.691		0.0247	0.100	0.100	1	05/06/2016 00:44	WG869931
(S) o-Terphenyl	104				50.0-150		05/06/2016 00:44	WG869931

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:30

L832621

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	2920		2.82	10.0	10.0	1	05/06/2016 11:20	WG870365

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	42.6		0.197	0.100	1.00	10	05/10/2016 10:03	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	178		2.60	1.00	50.0	50	05/11/2016 04:25	WG871035
Fluoride	1.39		0.00990	0.100	0.100	1	05/11/2016 04:10	WG871035
Sulfate	1600		3.87	5.00	250	50	05/11/2016 04:25	WG871035

Wet Chemistry by Method D 7511-09e2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Cyanide	0.00200	<u>J</u>	0.00120	0.00500	0.00500	1	05/06/2016 02:14	WG869397

Gl

Mercury by Method 7470A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Mercury	U		0.0000490	0.000200	0.000200	1	05/03/2016 11:33	WG869159
Mercury, Dissolved	U		0.0000490	0.000200	0.000200	1	05/05/2016 17:46	WG869862

⁹Sc

Αl

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00395	J	0.00125	0.00200	0.0100	5	05/06/2016 19:21	WG869321
Arsenic, Dissolved	0.00307	<u>J</u>	0.00125	0.00200	0.0100	5	05/07/2016 15:43	WG870083
Barium	0.0207	<u>J</u>	0.00180	0.00500	0.0250	5	05/06/2016 19:21	WG869321
Barium, Dissolved	0.0146	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:43	WG870083
Boron	1.36		0.0150	0.0200	0.200	10	05/07/2016 11:02	WG870589
Boron, Dissolved	1.35		0.0150	0.0200	0.200	10	05/09/2016 12:55	WG870591
Cadmium	U		0.000800	0.00100	0.00500	5	05/06/2016 19:21	WG869321
Cadmium, Dissolved	U		0.000800	0.00100	0.00500	5	05/07/2016 15:43	WG870083
Calcium	504		0.230	1.00	5.00	5	05/06/2016 19:21	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:21	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:43	WG870083
Cobalt	U		0.00130	0.00200	0.0100	5	05/06/2016 19:21	WG869321
Cobalt, Dissolved	U		0.00130	0.00200	0.0100	5	05/07/2016 15:43	WG870083
Iron	U		0.0750	0.100	0.500	5	05/06/2016 19:21	WG869321
Iron,Dissolved	U		0.0750	0.100	0.500	5	05/07/2016 15:43	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 19:21	WG869321
Lead, Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 15:10	WG870083
Manganese	0.0157	<u>J</u>	0.00125	0.00500	0.0250	5	05/06/2016 19:21	WG869321
Manganese, Dissolved	0.00725	<u>J</u>	0.00125	0.00500	0.0250	5	05/07/2016 15:43	WG870083
Nickel	U		0.00350	0.00200	0.0200	10	05/07/2016 11:02	WG870589
Nickel, Dissolved	U		0.00175	0.00200	0.0100	5	05/07/2016 15:43	WG870083
Potassium	3.69	<u>J</u>	0.185	1.00	5.00	5	05/06/2016 19:21	WG869321
Selenium	0.0153		0.00190	0.00200	0.0100	5	05/06/2016 19:21	WG869321
Selenium, Dissolved	0.0200		0.00190	0.00200	0.0100	5	05/07/2016 15:43	WG870083
Sodium	107		0.550	1.00	5.00	5	05/06/2016 19:21	WG869321

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:30

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Uranium	0.0480	J	0.00165	0.0100	0.0500	5	05/06/2016 19:21	WG869321
Uranium,Dissolved	0.0405	<u>J</u>	0.00165	0.0100	0.0500	5	05/09/2016 15:10	WG870083
Vanadium	0.0200	<u>J</u>	0.000900	0.00500	0.0250	5	05/06/2016 19:21	WG869321
Vanadium, Dissolved	0.0177	<u>J</u>	0.000900	0.00500	0.0250	5	05/07/2016 15:43	WG870083

	_
⁵Sr	

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
cetone	U		0.0100	0.0500	0.0500	1	05/05/2016 07:24	WG868998
enzene	U		0.000331	0.00100	0.00100	1	05/05/2016 07:24	WG868998
romodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 07:24	WG868998
romoform	U		0.000469	0.00100	0.00100	1	05/05/2016 07:24	WG868998
romomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 07:24	WG868998
Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 07:24	WG868998
ec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 07:24	WG868998
arbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 07:24	WG868998
arbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 07:24	WG868998
hlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 07:24	WG868998
nlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 07:24	WG868998
lloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 07:24	WG868998
nloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 07:24	WG868998
nloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 07:24	WG868998
2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 07:24	WG868998
l-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 07:24	WG868998
2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 07:24	WG868998
-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:24	WG868998
s-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/05/2016 23:49	WG870333
nns-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 07:24	WG868998
?-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 07:24	WG868998
s-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 07:24	WG868998
ans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 07:24	WG868998
hylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 07:24	WG868998
propylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 07:24	WG868998
Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 07:24	WG868998
Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 07:24	WG868998
Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 07:24	WG868998
ethylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 07:24	WG868998
Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 07:24	WG868998
ethyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 07:24	WG868998
phthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 07:24	WG868998
Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 07:24	WG868998
yrene	U		0.000307	0.00100	0.00100	1	05/05/2016 07:24	WG868998
,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 07:24	WG868998
,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 07:24	WG868998
trachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 07:24	WG868998
luene	U		0.000780	0.00500	0.00500	1	05/05/2016 07:24	WG868998
,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 07:24	WG868998
,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 07:24	WG868998
chloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 23:49	WG870333
,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 07:24	WG868998
,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 07:24	WG868998
nyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 07:24	WG868998
Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 07:24	WG868998
&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 07:24	WG868998
vlenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 07:24	WG868998
(S) Toluene-d8	106				90.0-115		05/05/2016 07:24	WG868998

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 11:30

L832621

Volatile Organic Compounds (GC/MS) by Method 8260B

	<u> </u>							
	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
(S) Toluene-d8	105				90.0-115		05/05/2016 23:49	WG870333
(S) Dibromofluoromethane	104				79.0-121		05/05/2016 23:49	WG870333
(S) Dibromofluoromethane	111				79.0-121		05/05/2016 07:24	WG868998
(S) 4-Bromofluorobenzene	99.9				80.1-120		05/05/2016 07:24	WG868998
(S) 4-Bromofluorobenzene	103				80.1-120		05/05/2016 23:49	WG870333

Cn

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	2.02		0.0247	0.100	0.100	1	05/06/2016 01:01	WG869931
(S) o-Terphenyl	103				50.0-150		05/06/2016 01:01	WG869931

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:40

832621

Gravimetric Analysis by Method 2540 C-2011

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Dissolved Solids	3200		2.82	10.0	10.0	1	05/06/2016 11:20	WG870365

²Tc

Wet Chemistry by Method 353.2

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Nitrate-Nitrite	0.367	J	0.197	0.100	1.00	10	05/10/2016 10:04	WG870500

Wet Chemistry by Method 9056A

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Chloride	280		2.60	1.00	50.0	50	05/11/2016 04:55	WG871035
Fluoride	2.82		0.00990	0.100	0.100	1	05/11/2016 04:40	WG871035
Sulfate	1370		3.87	5.00	250	50	05/11/2016 04:55	WG871035

Cn

Metals (ICPMS) by Method 6020

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Arsenic	0.00444	J	0.00125	0.00200	0.0100	5	05/06/2016 19:23	WG869321
Arsenic, Dissolved	0.00228	<u>J</u>	0.00125	0.00200	0.0100	5	05/09/2016 15:13	WG870083
Barium	0.0246	J	0.00180	0.00500	0.0250	5	05/06/2016 19:23	WG869321
Barium, Dissolved	0.0202	<u>J</u>	0.00180	0.00500	0.0250	5	05/07/2016 15:45	WG870083
Calcium	622		0.230	1.00	5.00	5	05/06/2016 19:23	WG869321
Chromium	U		0.00270	0.00200	0.0100	5	05/06/2016 19:23	WG869321
Chromium, Dissolved	U		0.00270	0.00200	0.0100	5	05/07/2016 15:45	WG870083
Iron	0.770		0.0750	0.100	0.500	5	05/06/2016 19:23	WG869321
Iron,Dissolved	0.134	<u>J</u>	0.0750	0.100	0.500	5	05/07/2016 15:45	WG870083
Lead	U		0.00120	0.00200	0.0100	5	05/06/2016 19:23	WG869321
Lead,Dissolved	U		0.00120	0.00200	0.0100	5	05/09/2016 15:13	WG870083
Manganese	0.188		0.00125	0.00500	0.0250	5	05/06/2016 19:23	WG869321
Manganese, Dissolved	0.146		0.00125	0.00500	0.0250	5	05/07/2016 15:45	WG870083
Potassium	7.58		0.185	1.00	5.00	5	05/06/2016 19:23	WG869321
Selenium	U		0.00190	0.00200	0.0100	5	05/06/2016 19:23	WG869321
Selenium, Dissolved	0.0156		0.00190	0.00200	0.0100	5	05/07/2016 15:45	WG870083
Sodium	113		0.550	1.00	5.00	5	05/06/2016 19:23	WG869321

⁶Qc

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
Acetone	U		0.0100	0.0500	0.0500	1	05/05/2016 07:48	WG868998
Benzene	U		0.000331	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Bromodichloromethane	U		0.000380	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Bromoform	U		0.000469	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Bromomethane	U		0.000866	0.00500	0.00500	1	05/05/2016 07:48	WG868998
n-Butylbenzene	U		0.000361	0.00100	0.00100	1	05/05/2016 07:48	WG868998
sec-Butylbenzene	U		0.000365	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Carbon disulfide	U		0.000275	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Carbon tetrachloride	U		0.000379	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Chlorobenzene	U		0.000348	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Chlorodibromomethane	U		0.000327	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Chloroethane	U		0.000453	0.00500	0.00500	1	05/05/2016 07:48	WG868998
Chloroform	U		0.000324	0.00500	0.00500	1	05/05/2016 07:48	WG868998
Chloromethane	U		0.000276	0.00250	0.00250	1	05/05/2016 07:48	WG868998
1,2-Dibromoethane	U		0.000381	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,1-Dichloroethane	U		0.000259	0.00100	0.00100	1	05/05/2016 07:48	WG868998

ONE LAB. NATIONWIDE.

Collected date/time: 04/29/16 08:40

L832621

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
1,2-Dichloroethane	U		0.000361	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,1-Dichloroethene	U		0.000398	0.00100	0.00100	1	05/05/2016 07:48	WG868998
cis-1,2-Dichloroethene	U		0.000260	0.00100	0.00100	1	05/06/2016 00:10	WG870333
trans-1,2-Dichloroethene	U		0.000396	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,2-Dichloropropane	U		0.000306	0.00100	0.00100	1	05/05/2016 07:48	WG868998
cis-1,3-Dichloropropene	U		0.000418	0.00100	0.00100	1	05/05/2016 07:48	WG868998
trans-1,3-Dichloropropene	U		0.000419	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Ethylbenzene	U		0.000384	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Isopropylbenzene	U		0.000326	0.00100	0.00100	1	05/05/2016 07:48	WG868998
p-Isopropyltoluene	U		0.000350	0.00100	0.00100	1	05/05/2016 07:48	WG868998
2-Butanone (MEK)	U		0.00393	0.0100	0.0100	1	05/05/2016 07:48	WG868998
2-Hexanone	U		0.00382	0.0100	0.0100	1	05/05/2016 07:48	WG868998
Methylene Chloride	U		0.00100	0.00500	0.00500	1	05/05/2016 07:48	WG868998
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100	0.0100	1	05/05/2016 07:48	WG868998
Methyl tert-butyl ether	U		0.000367	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Naphthalene	U		0.00100	0.00500	0.00500	1	05/05/2016 07:48	WG868998
n-Propylbenzene	U		0.000349	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Styrene	U		0.000307	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Tetrachloroethene	U		0.000372	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Toluene	U		0.000780	0.00500	0.00500	1	05/05/2016 07:48	WG868998
1,1,1-Trichloroethane	U		0.000319	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,1,2-Trichloroethane	U		0.000383	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Trichloroethene	U		0.000398	0.00100	0.00100	1	05/06/2016 00:10	WG870333
1,2,4-Trimethylbenzene	U		0.000373	0.00100	0.00100	1	05/05/2016 07:48	WG868998
1,3,5-Trimethylbenzene	U		0.000387	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Vinyl chloride	U		0.000259	0.00100	0.00100	1	05/05/2016 07:48	WG868998
o-Xylene	U		0.000341	0.00100	0.00100	1	05/05/2016 07:48	WG868998
m&p-Xylene	U		0.000719	0.00100	0.00100	1	05/05/2016 07:48	WG868998
Xylenes, Total	U		0.00106	0.00300	0.00300	1	05/05/2016 07:48	WG868998
(S) Toluene-d8	106				90.0-115		05/05/2016 07:48	WG868998
(S) Toluene-d8	106				90.0-115		05/06/2016 00:10	WG870333
(S) Dibromofluoromethane	106				79.0-121		05/06/2016 00:10	WG870333
(S) Dibromofluoromethane	111				79.0-121		05/05/2016 07:48	WG868998
(S) 4-Bromofluorobenzene	103				80.1-120		05/05/2016 07:48	WG868998

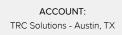
Semi-Volatile Organic Compounds (GC) by Method 3511/8015

106

(S) 4-Bromofluorobenzene

	Result	Qualifier	SDL	Unadj. MQL	MQL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l	mg/l		date / time	
TPH (GC/FID) High Fraction	4.53		0.0247	0.100	0.100	1	05/07/2016 13:24	WG870603
(S) o-Terphenyl	113				50.0-150		05/07/2016 13:24	WG870603

80.1-120



WG870333

05/06/2016 00:10

WG870365 Gravimetric Analysis		540 C-2011			QUALIT		NTRO 621-01,02,		MARY			ONE LAB. NATIONWIDE.	₩
Method Blank (M	B)												1
(MB) R3134745-1 05/06	,												Ср
	MB Result	MB Qualifier	MB MDL	MB RDL									2
Analyte	mg/l		mg/l	mg/l									² Tc
Dissolved Solids	U		2.82	10.0									3
													³ Ss
L832621-01 Origi													⁴ Cn
(OS) L832621-01 05/06					DUD 0 115								CII
Analisto	Original Result		Dilution	DUP RPD %	DUP Qualifier	DUP RPD Li %	mits						⁵ Sr
Analyte Dissolved Solids	mg/l 4200	mg/l 4230	1	0.831		5							21
Dissolved Solids	1200	1230		0.031		3							⁶ Qc
Laboratory Contr	ral Campla /l		· · · · · · · · · · · · · · · · · · ·	Cantral Can	nala Dunli	acto (LCC	D)						J.
Laboratory Contr					пріе Бирік	late (LC3	ט)						⁷ Gl
(LCS) R3134745-2 05/0	•				LCSD Re	c. Rec. I	imits L	.CS Qualifier	LCSD Qualifier	RPD	RPD Limits		Oi
	06/16 11:20 • (LCSE Spike Amount mg/l		LCSD Re mg/l		LCSD Re	c. Rec. I	imits <u>L</u>	.CS Qualifier	LCSD Qualifier	RPD %	RPD Limits		8
Analyte	Spike Amount	LCS Result	LCSD Re	sult LCS Rec.				.CS Qualifier	LCSD Qualifier				8 AI
Analyte Dissolved Solids	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al
Analyte	Spike Amount mg/l	LCS Result mg/l	LCSD Re mg/l	sult LCS Rec.	%	%		.CS Qualifier	LCSD Qualifier	%	%		8 Al

WG870500 Wet Chemistry by				(QUALIT'	Y CONTR L832621-01,		UMMAI	ξΥ.			ON	NE LAB. NATION	WIDE.	*
Method Blank (I	(MB)														1
(MB) R3135269-2 05															Ср
A-alida	MB Result	MB Qualifier	MB MDL	MB RDL											² Tc
Analyte Nitrate-Nitrite	mg/l U		mg/l 0.0197	mg/l 0.100										— ļ	
	-		***												³ Ss
L832603-32 Or	riginal Sample	(OS) • Dupl	licate (Dl	JP)										ا آ _	4
(OS) L832603-32 05															Cn
Analyte	Original Result	DUP Result mg/l	Dilution D		DUP Qualifier	DUP RPD Limits %								[⁵ Sr
Analyte Nitrate-Nitrite	1.28	MD/I		94.0	J P1	20									21
William There	20	No	10	4.0	<u>51.</u>	20									⁶ Qc
L832616-02 Ori	iginal Sample (OS) • Dupli	icate (DU	JP)										1	7
(OS) L832616-02 05/														_	GI
Analyte	Original Result	DUP Result mg/l	Dilution D		DUP Qualifier	DUP RPD Limits %								-	8
Anaivre	mg/i	mg/i	A.	D .										1	
Nitrate-Nitrite	0.503 ntrol Sample (LC	ND	10 0	0.000	ا <u>ا</u> mple Duplic	20									⁹ Sc
· .	ntrol Sample (LC 5/10/16 09:23 • (LCSE	ND CS) • Labor D) R3135269-4	10 0 ratory Co 05/10/16 09	ontrol San 9:24	mple Duplic	ate (LCSD)	LCS Qua	"" LCSD ()	-BE DDD	9DD Limit					9
Nitrate-Nitrite Laboratory Con (LCS) R3135269-3 05	ntrol Sample (LC 5/10/16 09:23 • (LCSE Spike Amount	ND CS) • Labor D) R3135269-4 LCS Result	10 0 ratory Co 05/10/16 09 LCSD Result	ontrol San 9:24	mple Duplic	ate (LCSD)	LCS Qual	lifier LCSD Q	ualifier RPD %	RPD Limit %	is				9
Nitrate-Nitrite Laboratory Con	ntrol Sample (LC 5/10/16 09:23 • (LCSE	ND CS) • Labor D) R3135269-4	10 0 ratory Co 05/10/16 09	ontrol San 9:24 t LCS Rec.	nple Duplic	ate (LCSD) Rec. Limits	LCS Qual	lifier LCSD Qi			'S				9
Nitrate-Nitrite Laboratory Con (LCS) R3135269-3 05 Analyte	ntrol Sample (LC 5/10/16 09:23 • (LCSE Spike Amount mg/l 5.00 riginal Sample (v 1/10/16 09:53 • (MS) R	ND CS) • Labor D) R3135269-4 LCS Result mg/l 4.63 OS) • Matri.	10 0 ratory Co 05/10/16 09 LCSD Result mg/l 4.72 × Spike (I	9:24 t LCS Rec. % 93.0	nple Duplic LCSD Rec % 94.0 ttrix Spike D 135269-8 05/10	ate (LCSD) Rec. Limits % 90.0-110 Duplicate (MSE	D)	lifier LCSD Qi Rec. Limits	%	%	ts RPD %	RPD Limit %	S		9
Nitrate-Nitrite Laboratory Con (LCS) R3135269-3 05 Analyte Nitrate-Nitrite L832616-03 Ori (OS) L832616-03 05/	ntrol Sample (LC 5/10/16 09:23 • (LCSE Spike Amount mg/l 5.00 riginal Sample (v 1/10/16 09:53 • (MS) R Spike Amount	ND ND Salasses ND ND ND ND NB	10 0 ratory Co 05/10/16 09 LCSD Result mg/l 4.72 × Spike (I 5/10/16 09:54 MS Result	9:24 t LCS Rec. % 93.0 (MS) • Ma 4 • (MSD) R3'	nple Duplic LCSD Rec % 94.0 strix Spike D 135269-8 05/10 MS Rec.	ate (LCSD) Rec. Limits % 90.0-110 Duplicate (MSE) 0/16 09:55 MSD Rec.	D)	Rec. Limits	% 2.00	% 20	RPD		s		9
Nitrate-Nitrite Laboratory Con (LCS) R3135269-3 05 Analyte Nitrate-Nitrite L832616-03 Ori (OS) L832616-03 05/ Analyte	ntrol Sample (LC 5/10/16 09:23 • (LCSE Spike Amount mg/l 5.00 riginal Sample (v 5/10/16 09:53 • (MS) R Spike Amount mg/l	ND ND R3135269-4 LCS Result mg/l 4.63 OS) • Matri: R3135269-7 05 Original Result mg/l	10 0 ratory Co 05/10/16 09 LCSD Result mg/l 4.72 × Spike (I 6/10/16 09:54 MS Result mg/l	9:24 t LCS Rec. % 93.0 (MS) • Ma 4 • (MSD) R3* MSD Res mg/l	nple Duplic LCSD Rec % 94.0 strix Spike D 135269-8 05/10 MS Rec. %	ate (LCSD) Rec. Limits % 90.0-110 Duplicate (MSE) 0/16 09:55 MSD Rec. %	Dilution	Rec. Limits	% 2.00	% 20 MSD Qualifier	RPD %	%	s		9

QUALITY CONTROL SUMMARY L832621-01,02,03

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 353.2

L832603-36 Original Sample (OS) • Matrix Spike (MS)

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Nitrate-Nitrite	5.00	0.0330	0.531	10.0	1	90.0-110	<u>J6</u>

WG87103	34 by Method 9056A			Q	UALITY	CONTF		MMAR	Y.			ONE LAB. NATIONWIDE	*
Method Blan	k (MB)												1
(MB) R3136187-1 C)5/10/16 20:12												- Cp
	MB Result	MB Qualifier	MB MDL	MB RDL									2_
Analyte	mg/l		mg/l	mg/l									_ Tc
Chloride	U		0.0519	1.00									
Fluoride	U		0.0099	0.100									Ss
Sulfate	U		0.0774	5.00									4
L832603-31 (Original Sample ((OS) • Dup	licate (DU	P)									Cn
(OS) L832603-31	05/10/16 22:55 • (DUP)	R3136187-4 ()5/10/16 23:43										• Sr
	Original Result		Dilution DI		UP Qualifier DU	JP RPD Limits							
Analyte	mg/l	mg/l	%		%								6
Chloride	99.0	98.5	1 1		15								Qc
Fluoride	1.53	1.52	1 1		15								7
	ontrol Sample (L 05/10/16 20:28 • (LCSE			<u> </u>	ie Duplicate	e (LCSD)							. ⁸ A
							1000 115			222			
Δnalvte	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifie	r LCSD Qua		RPD Limits			0
Analyte Chloride	Spike Amount mg/l	LCS Result mg/l	LCSD Result mg/l	LCS Rec.	%	%	LCS Qualifie	r <u>LCSD Qua</u>	%	%			⁹ Sc
Analyte Chloride Fluoride	Spike Amount	LCS Result	LCSD Result	LCS Rec.			LCS Qualifie	r LCSD Qua					0
Chloride	Spike Amount mg/l 40.0	LCS Result mg/l 39.0	LCSD Result mg/l 38.6	LCS Rec. % 97	% 96	% 80-120	LCS Qualifie	r LCSD Qua	% 1	% 15			0
Chloride Fluoride Sulfate L832603-32	Spike Amount mg/l 40.0 8.00 40.0 Original Sample	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (LCS Rec. % 97 96 97	% 96 95	% 80-120 80-120	LCS Qualifie	r LCSD Qua	% 1 1	% 15 15			0
Chloride Fluoride Sulfate L832603-32	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R:	39.0 7.68 39.0 (OS) • Mat	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (//11/16 02:38	97 96 97 98	% 96 95 97	% 80-120 80-120 80-120		r LCSD Qua	% 1 1	% 15 15			0
Chloride Fluoride Sulfate L832603-32 (OS) L832603-32	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R: Spike Amount	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat 3136187-5 05 Original Result	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (//11/16 02:38 It MS Result	LCS Rec.	% 96 95	% 80-120 80-120 80-120 Rec. Limits	LCS Qualifie	r LCSD Qui	% 1 1	% 15 15			0
Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R: Spike Amount mg/l	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat 3136187-5 05 Original Resul	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (//11/16 02:38 it MS Result mg/l	LCS Rec. % 97 96 97 MS) MS Rec. %	% 96 95 97 Dilution	% 80-120 80-120 80-120 Rec. Limits %		r LCSD Qui	% 1 1	% 15 15			0
Chloride Fluoride Sulfate L832603-32 (OS) L832603-32	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R: Spike Amount	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat 3136187-5 05 Original Result	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (//11/16 02:38 It MS Result	LCS Rec.	% 96 95 97	% 80-120 80-120 80-120 Rec. Limits		r LCSD Qua	% 1 1	% 15 15			0
Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte Fluoride	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R: Spike Amount mg/l	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat 3136187-5 O5 Original Resul mg/l 1.22	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (//11/16 02:38 it MS Result mg/l 5.71	LCS Rec. % 97 96 97 MS) MS Rec. % 90	% 96 95 97 Dilution	% 80-120 80-120 80-120 Rec. Limits % 80-120	MS Qualifier	r LCSD Qua	% 1 1	% 15 15			0
Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte Fluoride L832603-39	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R: Spike Amount mg/l 5.00 Original Sample	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat 3136187-5 05 Original Resul mg/l 1.22 (OS) • Mat 33136187-8 05	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (7/11/16 02:38 It MS Result mg/l 5.71 trix Spike (5/11/16 07:09 •	LCS Rec. % 97 96 97 MS) MS Rec. % 90 MS) • Matri (MSD) R313618	% 96 95 97 Dilution 1 1 ix Spike Du 7-9 05/11/16 07	% 80-120 80-120 80-120 Rec. Limits % 80-120	MS Qualifier		% 1 1 1	% 15 15 15			0
Chloride Fluoride Sulfate L832603-32 (OS) L832603-32 Analyte Fluoride L832603-39	Spike Amount mg/l 40.0 8.00 40.0 Original Sample 05/11/16 01:35 • (MS) R: Spike Amount mg/l 5.00 Original Sample	LCS Result mg/l 39.0 7.68 39.0 (OS) • Mat 3136187-5 05 Original Resul mg/l 1.22 (OS) • Mat	LCSD Result mg/l 38.6 7.60 38.6 trix Spike (7/11/16 02:38 It MS Result mg/l 5.71 trix Spike (5/11/16 07:09 •	LCS Rec. % 97 96 97 MS) MS Rec. % 90 MS) • Matri	% 96 95 97 Dilution	% 80-120 80-120 80-120 Rec. Limits % 80-120	MS Qualifier	ec. Limits	% 1 1	% 15 15 15	RPD %	RPD Limits	0

84

80-120

SDG: L832621 15

PAGE: 16 of 44

DATE/TIME: 05/13/16 19:30

Fluoride

5.00

ACCOUNT: TRC Solutions - Austin, TX

1.93

5.48

6.13

71

PROJECT: 249545.0000.0000 000

WG871035 Wet Chemistry by Me	thod 9056A			(QUALITY	/ CONTR		ИMARY			ONE LAB. NATIONWIDE.	*
Method Blank (ME	3)											1 _
(MB) R3135955-1 05/11/10												Ср
,	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/l		mg/l	mg/l								² Tc
Chloride	U		0.0519	1.00								
Fluoride	U		0.0099	0.100								³ Ss
Sulfate	U		0.0774	5.00								
												⁴ Cn
L832625-42 Orig	inal Sample	(OS) • Dup	olicate (D	UP)								CII
(OS) L832625-42 05/11/												⁵ Sr
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier [DUP RPD Limits						
Analyte	mg/l	mg/l		%		%						⁶ Qc
Fluoride	U	0.000	1	0	1	15						QC -
Sulfate	2.39	2.32	1	3	<u>J</u> 1	15						7
												GI
L832644-10 Origii	aal Camplo	(OS) - Dun	licato (DI	ID)								
		. , .		· ·								°AI
(OS) L832644-10 05/11/1					DUD Ouglifion	DUP RPD Limits						
Analisto	Original Result		Dilution	%		MUP RPD LIMITS						⁹ Sc
Analyte Chloride	mg/l 1.31	mg/l 1.38		5		76 15						
Fluoride	0.102	0.100		2		15						
Sulfate	6.35	6.28		1		15 15						
Suildle	0.33	0.20	ı	1		.5						
Laboratory Contro	ol Sample (L	.CS) • Labo	ratory Co	ontrol San	nple Duplica	ite (LCSD)						
(LCS) R3135955-2 05/11/												
(===)	Spike Amount	•	LCSD Resu		LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Chloride	40.0	39.1	39.1	98	98	80-120			0	15		
Fluoride	8.00	7.76	7.80	97	98	80-120			0	15		
Sulfate	40.0	39.5	39.6	99	99	80-120			0	15		
L832644-03 Origi	and Cample	(OC) - Mat	··iv Spiko	(1.10)								
		, ,		` '								
(OS) L832644-03 05/11/							MS					
		Original Resul		MS Rec.	Dilution	Rec. Limits	Qualifier					
Analyte	mg/l	mg/l	mg/l	%		%						

SDG: L832621

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX DATE/TIME: 05/13/16 19:30 PAGE: 17 of 44

WG8710	35 by Method 9056	A		(QUALIT	Y CONT	ROL SUMMARY	ONE LAB. NATIONWIDE.
Andyte	5.96	0 9/3	g:9/ 1	98	1	80-120		1
Sulfate	50.0	62.1	111	98	1	80-120	<u>E</u>	
								2

L832644-11 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832644-11 05/11/16 1	S) L832644-11 05/11/16 12:45 • (MS) R3135955-7 05/11/16 13:00 • (MSD) R3135955-8 05/11/16 13:15													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Chloride	50.0	1.73	52.3	52.5	101	101	1	80-120			0	15		
Fluoride	5.00	0.119	4.95	4.90	97	96	1	80-120			1	15		
Sulfate	50.0	26.6	76.5	76.3	100	99	1	80-120			0	15		

GI

WG8693 Wet Chemistry	97 by Method D 7511-0	19e2		(TIJAUÇ	Y CONTE		UMMA	.RY			ONE LAB. NA	TIONWIDE.	*
Method Blank	k (MB)													1
(MB) R3136159-1 C	05/06/16 01:23													Ср
	MB Result	MB Qualifier	MB MDL	MB RDL										2
Analyte	mg/l		mg/l	mg/l										² Tc
Cyanide	U		0.0012	0.00500										2
														³ Ss
L832419-02 (Original Sample ((OS) • Dup	licate (DI	JP)										4
(OS) L832419-02	05/06/16 01:41 • (DUP)	R3136159-4 0	5/06/16 01:4	14										Cn
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits								-
Analyte	mg/l	mg/l		%		%								Sr
Cyanide	ND	0.000	1	0		20								
														⁶ Qc
Laboratory C	ontrol Sample (L	CS) • Labo	ratory C	ontrol Sam	nple Duplic	cate (LCSD)								-
(LCS) R3136159-2	05/06/16 01:26 • (LCSI	D) R3136159-3	05/06/16 0	1:29										[′] Gl
	Spike Amount	LCS Result	LCSD Resu	ılt LCS Rec.	LCSD Re	c. Rec. Limits	LCS Qua	lifier LCSD (Qualifier RPD	RPD Lim	its			
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				⁸ Al
Cyanide	0.100	0.0980	0.0990	98	99	86-114			1	20				
														⁹ Sc
1 832791-03 (Original Sample (OS) • Matr	riv Snika	(MS) • Mat	riv Snika [Dunlicato (MS	:D)							50
		,		` '		, ,	,0,							
(OS) L832/91-03	05/06/16 01:47 • (MS) R						Dil ii	Dec 12 com	MC O - I'C -	MCD O III	DDD	DDD 11		
Analida	·	Original Resul		MSD Resu		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
Cyanide	0.100	0.00300	0.110	0.107	107	104	1	64-136			3	20		

WG869159 Mercury by Method				Ql	JALITY	CONTR L832621-0		ММА	RY				ONE LAB. NATION	WIDE.
Method Blank (M	1B)													1
(MB) R3133255-1 05/0	3/16 10:26													Ср
	MB Result	MB Qualifier	MB MDL	MB RDL										2
Analyte	mg/l		mg/l	mg/l										² Tc
Mercury	U		0.000049	0.000200										3 Ss
Laboratory Cont	rol Sample (L	CS) • Labor	ratory Con	trol Sampl	e Duplicate	e (LCSD)								4
(LCS) R3133255-2 05/											200			— Cn
A1-+0	Spike Amount		LCSD Result	LCS Rec.	LCSD Rec. %	Rec. Limits %	LCS Qualifier	LCSD Q	<u>ualifier</u> F	RPD %	RPD Limit %	.S		5 C ×
Analyte	mg/l 0.00300	mg/l 0.00298	mg/l 0.00292	99	97	80-120				2	20			sr
Mercury	0.00300	0.00298	0.00292	99	97	80-120			2	2	20			⁶ Qc
L832391-01 Orig))							7
(OS) L832391-01 05/03														´GI
		Original Result		MSD Result	MS Rec.	MSD Rec.		ec. Limits	MS Qua	ıalifier	MSD Qualifier	RPD	RPD Limits	8
Analyte	mg/l	mg/l ND	mg/l	mg/l	%	97	1 75	5-125				5	% 20	Al
Mercury	0.00300	ND	0.00307	0.00291	102	97	1 1)-125				5	20	9
														Sc

SDG: L832621 PAGE: 20 of 44

DATE/TIME:

05/13/16 19:30

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

Analyte mg/l mg/l mg/l % %	Dualifier LCSD Qualifier RPD RPD Limits Some section of Rec. Limits MS Qualifier RPD RPD Limits On Rec. Limits MS Qualifier RPD RPD Limits Some section of RPD RPD Limits RPD RPD Limits
MB Result mg/l mg	Dualifier LCSD Qualifier RPD RPD Limits Solvent Specific RPD RPD Limits Solvent Specific RPD RPD Limits RPD RPD Limits To compare the specific RPD RPD Limits To compare the specific RPD RPD Limits
Laboratory Control Sample (LCS) + Laboratory Control Sample Duplicate (LCSD)	Oualifier LCSD Qualifier RPD RPD Limits % % 9 20 On Rec, Limits MS Qualifier RPD RPD Limits
CLCS R3134183-2 O5/05/16 17:33 • (LCSD R3134183-3 O5/05/16 17:35 Spike Amount LCS Result LCSD Result LCS Res. LCSD Rec. Rec. Limits LCS Qualification Rect. LCSD Rec. Rec. Limits LCS Qualification Rect. Rec. Limits LCS Qualification Rect. Rec. Limits LCS Qualification Rect. Rec. Limits Rect. Oualifier LCSD Qualifier RPD RPD Limits S	
Analyte	Oualifier LCSD Qualifier RPD RPD Limits ### ### ### ### ####################
Mercury,Dissolved 0.00300 0.00291 0.00317 97 106 80-120	9 20 on Rec, Limits MS Qualifier MSD Qualifier RPD RPD Limits
L832621-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832621-01 05/05/16 17:38 • (MS) R3134183-4 05/05/16 17:41 • (MSD) R3134183-5 05/05/16 17:43 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution mg/l mg/l mg/l % %	on Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits
(OS) L832621-01 05/05/16 17:38 • (MS) R3134183-4 05/05/16 17:41 • (MSD) R3134183-5 05/05/16 17:43 Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution mg/l mg/l mg/l % %	on Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits
Analyte mg/l mg/l mg/l % %	
	% % %
Mercury Dissolved 0.00300 II 0.000825 0.000785 27 26 1	75-125 <u>J6</u> <u>J6</u> 5 20

SDG: L832621

DATE/TIME:

05/13/16 19:30

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

PAGE:

21 of 44

QUALITY CONTROL SUMMARY L832621-01,02,03

ONE LAB. NATIONWIDE.

Method Blank (MB)

Metals (ICPMS) by Method 6020

TVICTIOG DIGITI	((IVID)			
(MB) R3134603-1 (05/06/16 18:35			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Arsenic	U		0.00025	0.00200
Barium	U		0.00036	0.00500
Cadmium	U		0.00016	0.00100
Calcium	U		0.046	1.00
Chromium	U		0.00054	0.00200
Cobalt	U		0.00026	0.00200
Iron	0.032		0.015	0.100
Lead	U		0.00024	0.00200
Manganese	0.000577		0.00025	0.00500
Potassium	U		0.037	1.00
Selenium	U		0.00038	0.00200
Sodium	U		0.11	1.00
Uranium	U		0.00033	0.0100
Vanadium	0.000203		0.00018	0.00500

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134603-2	05/06/16 18:38 •	(LCSD) R3134603-3	05/06/16 18:40
------------------	------------------	-------------------	----------------

(LC3) K3134003-2	03/00/10 18.38 • (EC3	D) K3134003-	3 03/00/10 10.4	10							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Arsenic	0.0500	0.0515	0.0506	103	101	80-120			2	20	
Barium	0.0500	0.0521	0.0514	104	103	80-120			1	20	
Cadmium	0.0500	0.0542	0.0528	108	106	80-120			3	20	
Calcium	5.00	5.19	5.18	104	104	80-120			0	20	
Chromium	0.0500	0.0517	0.0505	103	101	80-120			2	20	
Cobalt	0.0500	0.0526	0.0518	105	104	80-120			2	20	
Iron	5.00	5.08	4.98	102	100	80-120			2	20	
Lead	0.0500	0.0516	0.0520	103	104	80-120			1	20	
Manganese	0.0500	0.0517	0.0507	103	101	80-120			2	20	
Potassium	5.00	5.11	4.98	102	100	80-120			3	20	
Selenium	0.0500	0.0513	0.0505	103	101	80-120			2	20	
Sodium	5.00	5.23	5.12	105	102	80-120			2	20	
Uranium	0.0500	0.0525	0.0528	105	106	80-120			1	20	
Vanadium	0.0500	0.0510	0.0504	102	101	80-120			1	20	

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

PAGE: 22 of 44

GI

QUALITY CONTROL SUMMARY L832621-01,02,03

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832462-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

S) L832462-01 05/06/16 18:43 • (MS) R3134603-5 05/06/16 18:48 • (MSD) R3134603-6 05/06/16 18:51													
Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
mg/l	mg/l	mg/l	mg/l	%	%		%			%	%		
0.0100	0.00777	0.0644	0.0628	113	110	5	75-125			3	20		
0.0100	0.0203	0.0773	0.0789	114	117	5	75-125			2	20		
0.0100	U	0.0594	0.0561	119	112	5	75-125			6	20		
1.00	559	562	555	62	0	5	75-125	$\underline{\vee}$	\vee	1	20		
0.0100	U	0.0569	0.0563	114	113	5	75-125			1	20		
0.0100	0.00673	0.0638	0.0627	114	112	5	75-125			2	20		
1.00	2.32	7.76	7.88	109	111	5	75-125			2	20		
1.00	U	5.67	5.68	113	114	5	75-125			0	20		
0.0100	U	0.0575	0.0569	115	114	5	75-125			1	20		
0.0100	0.373	0.426	0.424	105	103	5	75-125			0	20		
0.0100	0.00381	0.0590	0.0601	110	112	5	75-125			2	20		
1.00	379	382	384	65	108	5	75-125	V		1	20		
0.0100	0.0249	0.0815	0.0820	113	114	5	75-125			1	20		
0.0100	0.0280	0.0850	0.0842	114	112	5	75-125			1	20		
	Spike Amount mg/l 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100 0.0100	Spike Amount mg/l Original Result mg/l 0.0100 0.00777 0.0100 0.0203 0.0100 U 1.00 559 0.0100 U 0.0100 2.00673 1.00 2.32 1.00 U 0.0100 U 0.0100 0.373 0.0100 0.00381 1.00 379 0.0100 0.0249	Spike Amount Original Result MS Result mg/l mg/l mg/l 0.0100 0.00777 0.0644 0.0100 0.0203 0.0773 0.0100 U 0.0594 1.00 559 562 0.0100 U 0.0669 0.0100 0.00673 0.0638 1.00 2.32 7.76 1.00 U 5.67 0.0100 U 0.0575 0.0100 0.373 0.426 0.0100 379 382 0.0100 0.0249 0.0815	Spike Amount Original Result mg/l mg/l mg/l MS Result mg/l mg/l MSD Result mg/l 0.0100 0.00777 0.0644 0.0628 0.0100 0.0203 0.0773 0.0789 0.0100 U 0.0594 0.0561 1.00 559 562 555 0.0100 U 0.0569 0.0563 0.0100 0.00673 0.0638 0.0627 1.00 2.32 7.76 7.88 1.0100 U 0.0575 0.0569 0.0100 0.373 0.426 0.424 0.0100 0.00381 0.0590 0.0601 1.00 379 382 384 0.0100 0.0249 0.0815 0.0820	Spike Amount Original Result MS Result MSD Result MS Rec. mg/l mg/l mg/l % 0.0100 0.00777 0.0644 0.0628 113 0.0100 0.0203 0.0773 0.0789 114 0.0100 U 0.0594 0.0561 119 1.00 559 562 555 62 0.0100 U 0.0569 0.0563 114 0.0100 0.00673 0.0638 0.0627 114 1.00 2.32 7.76 7.88 109 1.010 U 5.67 5.68 113 0.0100 U 0.0575 0.0569 115 0.0100 0.373 0.426 0.424 105 0.0100 0.00381 0.0590 0.0601 110 1.00 379 382 384 65 0.0100 0.0249 0.0815 0.0820 113	Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. mg/l mg/l mg/l % % 0.0100 0.00777 0.0644 0.0628 113 110 0.0100 0.0203 0.0773 0.0789 114 117 0.0100 U 0.0594 0.0561 119 112 1.00 559 562 555 62 0 0.0100 U 0.0569 0.0563 114 113 0.0100 0.00673 0.0638 0.0627 114 112 1.00 2.32 7.76 7.88 109 111 0.0100 U 0.0575 0.0569 115 114 0.0100 0.373 0.426 0.424 105 103 0.0100 0.00381 0.0590 0.0601 110 112 1.00 379 382 384 65 108 0.0100 0.0249 <td>Spike Amount mg/l Original Result mg/l MSD Result mg/l 0.0100 0.0203 0.0644 0.0628 113 110 5 0.0100 0.00673 0.0638 0.0627 114 112 5 1.00 0.032 7.76 7.88 109 111 5 0.0100 U 0.0575 0.0569 115 114 5 0.0100 0.373 0.426 0.424 105 103 5 0.0100 0.00381 0.0590 0.</td> <td>Spike Amount Original Result MS Result MSD Result MS Result MSD Result % 25-125 0.0100 U 0.00673 0.0638 0.0627 114 112 5 75-125</td> <td>Spike Amount mg/l MS Result mg/l MSD Resu</td> <td>Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier mg/l mg/l mg/l % % 5 75-125 MSD Qualifier MSD Qualifier 0.0100 0.00777 0.0644 0.0628 113 110 5 75-125 0.0100 0.0203 0.0773 0.0561 119 112 5 75-125 0.0100 U 0.0594 0.0561 119 112 5 75-125 0.0100 U 0.0569 0.0563 114 113 5 75-125 0.0100 U 0.0638 0.0627 114 112 5 75-125 <t< td=""><td>Spike Amount Original Result MSD Result <th< td=""></th<></td></t<></td>	Spike Amount mg/l Original Result mg/l MSD Result mg/l 0.0100 0.0203 0.0644 0.0628 113 110 5 0.0100 0.00673 0.0638 0.0627 114 112 5 1.00 0.032 7.76 7.88 109 111 5 0.0100 U 0.0575 0.0569 115 114 5 0.0100 0.373 0.426 0.424 105 103 5 0.0100 0.00381 0.0590 0.	Spike Amount Original Result MS Result MSD Result MS Result MSD Result % 25-125 0.0100 U 0.00673 0.0638 0.0627 114 112 5 75-125	Spike Amount mg/l MS Result mg/l MSD Resu	Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier mg/l mg/l mg/l % % 5 75-125 MSD Qualifier MSD Qualifier 0.0100 0.00777 0.0644 0.0628 113 110 5 75-125 0.0100 0.0203 0.0773 0.0561 119 112 5 75-125 0.0100 U 0.0594 0.0561 119 112 5 75-125 0.0100 U 0.0569 0.0563 114 113 5 75-125 0.0100 U 0.0638 0.0627 114 112 5 75-125 <t< td=""><td>Spike Amount Original Result MSD Result <th< td=""></th<></td></t<>	Spike Amount Original Result MSD Result <th< td=""></th<>		

QUALITY CONTROL SUMMARY L832621-01,02,03

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020 Method Blank (MB)

	ID)		
(MB) R3134748-1 05/07/1	⁷ /16 14:35		
	MB Result MB Qualifie	er MB MDL	MB RDL
Analyte	mg/l	mg/l	mg/l
Arsenic, Dissolved	U	0.00025	0.00200
Barium, Dissolved	U	0.00036	0.00500
Cadmium, Dissolved	U	0.00016	0.00100
Chromium, Dissolved	U	0.00054	0.00200
Cobalt, Dissolved	U	0.00026	0.00200
Iron,Dissolved	U	0.015	0.100
Lead,Dissolved	U	0.00024	0.00200
Manganese, Dissolved	0.000535	0.00025	0.00500
Nickel, Dissolved	U	0.00035	0.00200
Selenium, Dissolved	U	0.00038	0.00200
Uranium,Dissolved	U	0.00033	0.0100
Vanadium, Dissolved	0.000251	0.00018	0.00500
ickel,Dissolved elenium,Dissolved ranium,Dissolved	U U U	0.00035 0.00038 0.00033	0.00200 0.00200 0.0100

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134748-2 05/0	5) R3134748-2 05/07/16 14:38 • (LCSD) R3134748-3 05/07/16 14:41													
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits				
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%				
Arsenic,Dissolved	0.0500	0.0432	0.0440	86	88	80-120			2	20				
Barium,Dissolved	0.0500	0.0473	0.0477	95	95	80-120			1	20				
Cadmium,Dissolved	0.0500	0.0463	0.0468	93	94	80-120			1	20				
Chromium, Dissolved	0.0500	0.0459	0.0473	92	95	80-120			3	20				
Cobalt, Dissolved	0.0500	0.0469	0.0487	94	97	80-120			4	20				
Iron,Dissolved	5.00	4.48	4.67	90	93	80-120			4	20				
Lead,Dissolved	0.0500	0.0457	0.0463	91	93	80-120			1	20				
Manganese,Dissolved	0.0500	0.0457	0.0471	91	94	80-120			3	20				
Nickel, Dissolved	0.0500	0.0472	0.0489	94	98	80-120			4	20				
Selenium,Dissolved	0.0500	0.0447	0.0464	89	93	80-120			4	20				
Uranium,Dissolved	0.0500	0.0465	0.0469	93	94	80-120			1	20				
Vanadium Dissolved	0.0500	0.0452	0.0474	٩n	95	80 ₋ 120			5	20				

TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

QUALITY CONTROL SUMMARY LB32621-01,02,03

ONE LAB. NATIONWIDE.

Metals (ICPMS) by Method 6020

L832488-12 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Arsenic,Dissolved	0.0100	0.00841	0.0637	0.0631	111	109	5	75-125			1	20
Barium,Dissolved	0.0100	0.0178	0.0675	0.0717	99	108	5	75-125			6	20
Cadmium,Dissolved	0.0100	U	0.0514	0.0524	103	105	5	75-125			2	20
Chromium, Dissolved	0.0100	U	0.0537	0.0526	107	105	5	75-125			2	20
Cobalt, Dissolved	0.0100	0.00244	0.0550	0.0557	105	106	5	75-125			1	20
ron,Dissolved	1.00	3.82	9.17	9.28	107	109	5	75-125			1	20
Lead,Dissolved	0.0100	U	0.0539	0.0533	108	107	5	75-125			1	20
Manganese,Dissolved	0.0100	2.39	2.59	2.63	401	479	5	75-125	$\underline{\vee}$	$\underline{\vee}$	1	20
Nickel, Dissolved	0.0100	0.0132	0.0634	0.0644	101	102	5	75-125			1	20
Selenium, Dissolved	0.0100	0.00215	0.0557	0.0575	107	111	5	75-125			3	20
Uranium,Dissolved	0.0100	0.0140	0.0702	0.0704	112	113	5	75-125			0	20
Vanadium, Dissolved	0.0100	0.00256	0.0551	0.0581	105	111	5	75-125			5	20

ONE LAB. NATIONWIDE. QUALITY CONTROL SUMMARY WG870589 L832621-01,02 Metals (ICPMS) by Method 6020 Method Blank (MB) (MB) R3134666-1 05/07/16 08:30 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l Boron U 0.0015 0.0200 Nickel U 0.00035 0.00200 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134666-2 05/07/16 08:35 • (LCSD) R3134666-3 05/07/16 08:40 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr LCSD Qualifier RPD Rec. Limits LCS Qualifier Analyte mg/l mg/l mg/l % Boron 0.0500 0.0478 0.0491 96 98 80-120 3 20 Nickel 0.0500 0.0517 0.0517 103 103 80-120 0 20 GI L832450-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832450-04 05/07/16 08:45 • (MS) R3134666-5 05/07/16 08:54 • (MSD) R3134666-6 05/07/16 08:59 ΑI Spike Amount Original Result MS Result MSD Result MS Rec. MSD Rec. Dilution Rec. Limits MS Qualifier MSD Qualifier RPD RPD Limits % % % % Analyte mg/l mg/l mg/l mg/l % Sc Boron 0.00500 0.689 0.704 0.712 31 47 10 75-125 20 0.00500 0.0574 U 0.0516 115 103 Nickel 10 75-125 20

SDG:

L832621

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/13/16 19:30

PAGE:

26 of 44

Method Blank (MB)
MB Result MB Qualifier MB MDL MB RDL mg/l mg/l
Boron, Dissolved U 0.0015 0.0200 Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134973-2 05/09/16 10:50 • (LCSD) R3134973-3 05/09/16 10:55 Spike Amount LCS Result LCSD Result LCSD Result LCSD Rec. LCSD Rec. LCSD Rec. Limits LCS Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % % % % % % % % % % % % % % % %
(LCS) R3134973-2 05/09/16 10:50 • (LCSD) R3134973-3 05/09/16 10:55 Spike Amount LCS Result LCS Result LCS Res. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l mg/l % % % % % % % % % % % % % % % % % %
Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD RPD Limits Analyte mg/l mg/l % % % % % %
Boron,Dissolved 0.0500 0.0484 0.0502 97 100 80-120 4 20
L832468-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD) (OS) L832468-01 05/09/16 11:00 • (MS) R3134973-5 05/09/16 11:09 • (MSD) R3134973-6 05/09/16 11:14
Spike Amount Original Result MSD Result MSD Result MSD Rec. Dilution Rec. Limits MS Qualifier RPD RPD Limits
Analyte mg/l mg/l mg/l % % % % % %
Boron, Dissolved 0.00500 0.596 0.642 0.644 92 95 10 75-125 0 20

SDG: L832621

PROJECT:

249545.0000.0000 000

ACCOUNT:

TRC Solutions - Austin, TX

DATE/TIME:

05/13/16 19:30

PAGE:

27 of 44

WG869046 Volatile Organic Comp	oounds (GC)	by Method 8	015D/GRO	QL	JALITY	CONTR L832621		UMM.	ARY				ONE LAB. NATIONV	WIDE.
Method Blank (MB)														1
Analyte	MB Result	MB Qualifier	MB MDL mg/l	MB RDL mg/l										2_
TPH (GC/FID) Low Fraction	0.0316		0.0314	0.100										
(S) a,a,a-Trifluorotoluene(FID)	93.4			62.0-128										3
														4
Laboratory Control					e Duplicate	e (LCSD)								40
(LCS) R3133660-1 05/03/10					L CCD Dos	Dog Limits	LCC Oual	E 100	'D Cuplifier DDD		DDD I im			5
Analyte	Spike Amount mg/l	mg/l	LCSD Result mg/l	LCS Rec.	LCSD Rec. %	Rec. Limits %	LCS Qual	TIEI LCS	D Qualifier RPD		RPD Limi %	ıts		٥
TPH (GC/FID) Low Fraction	5.50	5.37	5.38	97.6	97.8	67.0-132			0.18		20			6
(S) a,a,a-Trifluorotoluene(FID)	¹⁾			101	101	62.0-128								
														7
L832472-37 Origina	al Sample	(OS) • Matr	ix Spike (N	1S) • Matrix	Spike Dur	plicate (MSI	D)							Ľ
(OS) L832472-37 05/03/16														8
Analyte	Spike Amount mg/l	Original Result mg/l	mg/l	MSD Result mg/l	MS Rec. %	MSD Rec. %	Dilution	Rec. Limit	s MS Qualif	ier MSD 0	ualifier	RPD %	RPD Limits %	
TPH (GC/FID) Low Fraction	5.50	0.203	4.04	4.23	69.7	73.3	1	50.0-143				4.78	20	° <
(S) a,a,a-Trifluorotoluene(FID					98.4	98.7		62.0-128						

SDG: L832621 DATE/TIME:

05/13/16 19:30

PAGE: 28 of 44

PROJECT: 249545.0000.0000 000

ACCOUNT: TRC Solutions - Austin, TX

QUALITY CONTROL SUMMARY L832621-01

ONE LAB. NATIONWIDE.

²Tc

GI

Method Blank (MB) (MB) R3134152-3 05/04/16 18:40

Volatile Organic Compounds (GC/MS) by Method 8260B

	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Acetone	U		0.0100	0.0500
Benzene	U		0.000331	0.00100
Bromodichloromethane	U		0.000380	0.00100
Bromoform	U		0.000469	0.00100
Bromomethane	U		0.000866	0.00500
n-Butylbenzene	U		0.000361	0.00100
sec-Butylbenzene	U		0.000365	0.00100
Carbon disulfide	U		0.000275	0.00100
Carbon tetrachloride	U		0.000379	0.00100
Chlorobenzene	U		0.000348	0.00100
Chlorodibromomethane	U		0.000327	0.00100
Chloroethane	U		0.000453	0.00500
Chloroform	U		0.000324	0.00500
Chloromethane	U		0.000276	0.00250
1,2-Dibromoethane	U		0.000381	0.00100
1,1-Dichloroethane	U		0.000259	0.00100
1,2-Dichloroethane	U		0.000361	0.00100
1,1-Dichloroethene	U		0.000398	0.00100
cis-1,2-Dichloroethene	U		0.000260	0.00100
trans-1,2-Dichloroethene	U		0.000396	0.00100
1,2-Dichloropropane	U		0.000306	0.00100
cis-1,3-Dichloropropene	U		0.000418	0.00100
trans-1,3-Dichloropropene	U		0.000419	0.00100
Ethylbenzene	U		0.000384	0.00100
2-Hexanone	U		0.00382	0.0100
Isopropylbenzene	U		0.000326	0.00100
p-Isopropyltoluene	U		0.000350	0.00100
2-Butanone (MEK)	U		0.00393	0.0100
Methylene Chloride	U		0.00100	0.00500
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100
Methyl tert-butyl ether	U		0.000367	0.00100
Naphthalene	U		0.00100	0.00500
n-Propylbenzene	U		0.000349	0.00100
Styrene	U		0.000307	0.00100
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100
, , ,				

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

PAGE: 29 of 44

QUALITY CONTROL SUMMARY L832621-01

ONE LAB. NATIONWIDE.

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134152-3 05/04/16	6 18:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Tetrachloroethene	U		0.000372	0.00100
Toluene	U		0.000780	0.00500
1,1,1-Trichloroethane	U		0.000319	0.00100
1,1,2-Trichloroethane	U		0.000383	0.00100
Trichloroethene	U		0.000398	0.00100
1,2,4-Trimethylbenzene	U		0.000373	0.00100
1,3,5-Trimethylbenzene	U		0.000387	0.00100
Vinyl chloride	U		0.000259	0.00100
Xylenes, Total	U		0.00106	0.00300
o-Xylene	U		0.000341	0.00100
m&p-Xylenes	U		0.000719	0.00100
(S) Toluene-d8	100			90.0-115
(S) Dibromofluoromethane	99.4			79.0-121
(S) 4-Bromofluorobenzene	88.4			80.1-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134152-1 05/04	.CS) R3134152-1 05/04/16 17:18 • (LCSD) R3134152-2 05/04/16 17:39											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%		
Acetone	0.125	0.0995	0.0988	79.6	79.1	28.7-175			0.730	20.9		
Benzene	0.0250	0.0267	0.0264	107	106	73.0-122			1.06	20		
Bromodichloromethane	0.0250	0.0247	0.0249	98.8	99.8	75.5-121			0.960	20		
Bromoform	0.0250	0.0252	0.0258	101	103	71.5-131			2.40	20		
Bromomethane	0.0250	0.0353	0.0344	141	138	22.4-187			2.64	20		
n-Butylbenzene	0.0250	0.0268	0.0260	107	104	75.9-134			3.08	20		
sec-Butylbenzene	0.0250	0.0247	0.0246	98.9	98.4	80.6-126			0.590	20		
Carbon disulfide	0.0250	0.0276	0.0270	110	108	53.0-134			2.29	20		
Carbon tetrachloride	0.0250	0.0216	0.0212	86.4	84.6	70.9-129			2.11	20		
Chlorobenzene	0.0250	0.0260	0.0264	104	106	79.7-122			1.51	20		
Chlorodibromomethane	0.0250	0.0249	0.0254	99.8	102	78.2-124			1.81	20		
Chloroethane	0.0250	0.0356	0.0345	142	138	41.2-153			3.09	20		
Chloroform	0.0250	0.0254	0.0255	102	102	73.2-125			0.410	20		
Chloromethane	0.0250	0.0309	0.0308	124	123	55.8-134			0.310	20		
1,2-Dibromoethane	0.0250	0.0244	0.0250	97.4	100	79.8-122			2.65	20		
,1-Dichloroethane	0.0250	0.0281	0.0278	112	111	71.7-127			0.900	20		

ACCOUNT: PROJECT: SDG: DATE/TIME: PAGE: TRC Solutions - Austin, TX 249545.0000.0000 000 L832621 05/13/16 19:30 30 of 44

QUALITY CONTROL SUMMARY L832621-01

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

` '	(====)	R3134152-2 (
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
1,2-Dichloroethane	0.0250	0.0239	0.0238	95.5	95.3	65.3-126			0.140	20	
1,1-Dichloroethene	0.0250	0.0290	0.0286	116	114	59.9-137			1.30	20	
cis-1,2-Dichloroethene	0.0250	0.0267	0.0267	107	107	77.3-122			0.230	20	
trans-1,2-Dichloroethene	0.0250	0.0265	0.0266	106	106	72.6-125			0.160	20	
1,2-Dichloropropane	0.0250	0.0290	0.0293	116	117	77.4-125			0.980	20	
cis-1,3-Dichloropropene	0.0250	0.0276	0.0276	110	110	77.7-124			0.100	20	
trans-1,3-Dichloropropene	0.0250	0.0267	0.0267	107	107	73.5-127			0.140	20	
Ethylbenzene	0.0250	0.0263	0.0264	105	105	80.9-121			0.310	20	
2-Hexanone	0.125	0.133	0.136	107	109	59.4-151			2.13	20	
Isopropylbenzene	0.0250	0.0253	0.0253	101	101	81.6-124			0.0600	20	
p-Isopropyltoluene	0.0250	0.0253	0.0255	101	102	77.6-129			0.550	20	
2-Butanone (MEK)	0.125	0.127	0.130	102	104	46.4-155			2.27	20	
Methylene Chloride	0.0250	0.0259	0.0260	104	104	69.5-120			0.280	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.142	0.143	113	115	63.3-138			1.16	20	
Methyl tert-butyl ether	0.0250	0.0247	0.0244	98.7	97.6	70.1-125			1.09	20	
Naphthalene	0.0250	0.0214	0.0218	85.5	87.3	69.7-134			2.09	20	
n-Propylbenzene	0.0250	0.0263	0.0264	105	105	81.9-122			0.280	20	
Styrene	0.0250	0.0261	0.0266	104	106	79.9-124			1.86	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0257	0.0259	103	104	78.5-125			0.990	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0239	0.0239	95.7	95.7	79.3-123			0.0300	20	
Tetrachloroethene	0.0250	0.0254	0.0250	101	100	73.5-130			1.22	20	
Toluene	0.0250	0.0256	0.0256	102	102	77.9-116			0.000	20	
1,1,1-Trichloroethane	0.0250	0.0245	0.0243	98.0	97.0	71.1-129			0.960	20	
1,1,2-Trichloroethane	0.0250	0.0245	0.0246	98.0	98.3	81.6-120			0.330	20	
Trichloroethene	0.0250	0.0259	0.0256	104	102	79.5-121			1.30	20	
1,2,4-Trimethylbenzene	0.0250	0.0244	0.0245	97.6	98.0	79.0-122			0.480	20	
1,3,5-Trimethylbenzene	0.0250	0.0243	0.0244	97.4	97.5	81.0-123			0.110	20	
Vinyl chloride	0.0250	0.0314	0.0310	126	124	61.5-134			1.21	20	
Xylenes, Total	0.0750	0.0768	0.0778	102	104	79.2-122			1.22	20	
o-Xylene	0.0250	0.0254	0.0258	102	103	79.1-123			1.54	20	
m&p-Xylenes	0.0500	0.0514	0.0520	103	104	78.5-122			1.06	20	
(S) Toluene-d8				99.7	99.8	90.0-115					
(S) Dibromofluoromethane				101	101	79.0-121					
(S) 4-Bromofluorobenzene				86.7	87.3	80.1-120					

PROJECT: 249545.0000.0000 000

L832621

DATE/TIME: 05/13/16 19:30 PAGE: 31 of 44

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832621-0

L832598-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832598-01 05/04/1	6 20:23 • (MS) I	R3134152-4 05	5/04/16 19:01 •	(MSD) R313415	2-5 05/04/16	19:21						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	ND	0.0773	0.0792	61.9	63.3	1	25.0-156			2.31	21.5
Benzene	0.0250	ND	0.0174	0.0182	69.7	72.7	1	58.6-133			4.24	20
Bromodichloromethane	0.0250	ND	0.0186	0.0195	74.5	78.1	1	69.2-127			4.76	20
Bromoform	0.0250	ND	0.0203	0.0211	81.1	84.6	1	66.3-140			4.18	20
Bromomethane	0.0250	ND	0.0158	0.0160	63.2	63.9	1	16.6-183			1.09	20.5
n-Butylbenzene	0.0250	ND	0.0198	0.0204	79.2	81.6	1	64.8-145			3.00	20
sec-Butylbenzene	0.0250	ND	0.0179	0.0183	71.8	73.0	1	66.8-139			1.70	20
Carbon disulfide	0.0250	ND	0.00755	0.00780	30.2	31.2	1	34.9-138	<u>J6</u>	<u>J6</u>	3.27	20
Carbon tetrachloride	0.0250	ND	0.0143	0.0149	57.2	59.6	1	60.6-139	<u>J6</u>	<u>J6</u>	4.02	20
Chlorobenzene	0.0250	ND	0.0185	0.0193	73.9	77.4	1	70.1-130			4.53	20
Chlorodibromomethane	0.0250	ND	0.0194	0.0206	77.5	82.5	1	71.6-132			6.30	20
Chloroethane	0.0250	ND	0.0189	0.0193	75.5	77.1	1	33.3-155			2.16	20
Chloroform	0.0250	ND	0.0186	0.0190	74.3	76.1	1	66.1-133			2.47	20
Chloromethane	0.0250	ND	0.0126	0.0130	50.4	52.1	1	40.7-139			3.28	20
1,2-Dibromoethane	0.0250	ND	0.0188	0.0195	75.0	77.9	1	73.8-131			3.75	20
1,1-Dichloroethane	0.0250	ND	0.0194	0.0202	77.8	80.9	1	64.0-134			3.90	20
1,2-Dichloroethane	0.0250	ND	0.0171	0.0180	68.6	72.0	1	60.7-132			4.86	20
1,1-Dichloroethene	0.0250	ND	0.0164	0.0169	65.7	67.7	1	48.8-144			3.04	20
cis-1,2-Dichloroethene	0.0250	ND	0.0184	0.0191	73.6	76.3	1	60.6-136			3.60	20
trans-1,2-Dichloroethene	0.0250	ND	0.0150	0.0154	59.9	61.7	1	61.0-132	<u>J6</u>		2.92	20
1,2-Dichloropropane	0.0250	ND	0.0212	0.0225	84.9	89.9	1	69.7-130			5.82	20
cis-1,3-Dichloropropene	0.0250	ND	0.0199	0.0209	79.6	83.7	1	71.1-129			4.94	20
trans-1,3-Dichloropropene	0.0250	ND	0.0200	0.0213	80.1	85.1	1	66.3-136			6.05	20
Ethylbenzene	0.0250	ND	0.0179	0.0186	71.6	74.5	1	62.7-136			4.01	20
2-Hexanone	0.125	ND	0.107	0.111	85.9	88.8	1	59.4-154			3.32	20.1
Isopropylbenzene	0.0250	ND	0.0180	0.0184	71.8	73.6	1	67.4-136			2.39	20
p-Isopropyltoluene	0.0250	ND	0.0182	0.0185	72.7	74.1	1	62.8-143			1.90	20
2-Butanone (MEK)	0.125	ND	0.105	0.110	84.3	88.1	1	45.0-156			4.49	20.8
Methylene Chloride	0.0250	ND	0.0169	0.0172	67.4	68.8	1	61.5-125			1.98	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.122	0.126	97.7	101	1	60.7-150			3.43	20
Methyl tert-butyl ether	0.0250	ND	0.0187	0.0196	74.8	78.3	1	61.4-136			4.55	20
Naphthalene	0.0250	ND	0.0177	0.0189	70.7	75.5	1	61.8-143			6.58	20
n-Propylbenzene	0.0250	ND	0.0184	0.0189	73.8	75.5	1	63.2-139			2.33	20
Styrene	0.0250	ND	0.0188	0.0196	75.1	78.5	1	68.2-133			4.37	20

0.0250

ND

ND

0.0194

0.0202

0.0201

0.0208

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane 0.0250

77.5

80.6

80.3

83.1

70.5-132

64.9-145

3.64

3.09

20

20

QUALITY CONTROL SUMMARY L832621-01

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832598-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Tetrachloroethene	0.0250	ND	0.0157	0.0166	63.0	66.3	1	57.4-141			5.12	20
Toluene	0.0250	ND	0.0173	0.0182	69.3	72.8	1	67.8-124			4.89	20
1,1,1-Trichloroethane	0.0250	ND	0.0171	0.0177	68.5	70.7	1	58.7-134			3.13	20
1,1,2-Trichloroethane	0.0250	ND	0.0195	0.0208	78.0	83.3	1	74.1-130			6.64	20
Trichloroethene	0.0250	ND	0.0166	0.0171	66.3	68.5	1	48.9-148			3.22	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0174	0.0177	69.5	70.8	1	60.5-137			1.77	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0172	0.0176	68.9	70.5	1	67.9-134			2.21	20
Vinyl chloride	0.0250	ND	0.0146	0.0151	58.4	60.4	1	44.3-143			3.28	20
Xylenes, Total	0.0750	ND	0.0527	0.0551	70.3	73.5	1	65.6-133			4.48	20
o-Xylene	0.0250	ND	0.0179	0.0185	71.6	74.0	1	67.1-133			3.33	20
m&p-Xylenes	0.0500	ND	0.0348	0.0366	69.6	73.3	1	64.1-133			5.06	20
(S) Toluene-d8					99.3	100		90.0-115				
(S) Dibromofluoromethane					99.8	98.8		79.0-121				
(S) 4-Bromofluorohenzene					85.7	85.4		80 1 ₋ 120				

QUALITY CONTROL SUMMARY $\frac{1832621-02,03}{}$

ONE LAB. NATIONWIDE.

²Tc

GI

ΑI

Method Blank (MB)

Volatile Organic Compounds (GC/MS) by Method 8260B

(ME) PO(0.40.40.0.0.05/05/4							
(MB) R3134040-3 05/05/1							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Acetone	U		0.0100	0.0500			
Benzene	U		0.000331	0.00100			
Bromodichloromethane	U		0.000380	0.00100			
Bromoform	U		0.000469	0.00100			
Bromomethane	U		0.000866	0.00500			
n-Butylbenzene	U		0.000361	0.00100			
sec-Butylbenzene	U		0.000365	0.00100			
Carbon disulfide	U		0.000275	0.00100			
Carbon tetrachloride	U		0.000379	0.00100			
Chlorobenzene	U		0.000348	0.00100			
Chlorodibromomethane	U		0.000327	0.00100			
Chloroethane	U		0.000453	0.00500			
Chloroform	U		0.000324	0.00500			
Chloromethane	U		0.000276	0.00250			
1,2-Dibromoethane	U		0.000381	0.00100			
1,1-Dichloroethane	U		0.000259	0.00100			
1,2-Dichloroethane	U		0.000361	0.00100			
1,1-Dichloroethene	U		0.000398	0.00100			
trans-1,2-Dichloroethene	U		0.000396	0.00100			
1,2-Dichloropropane	U		0.000306	0.00100			
cis-1,3-Dichloropropene	U		0.000418	0.00100			
rans-1,3-Dichloropropene	U		0.000419	0.00100			
Ethylbenzene	U		0.000384	0.00100			
2-Hexanone	U		0.00382	0.0100			
Isopropylbenzene	U		0.000326	0.00100			
p-Isopropyltoluene	U		0.000350	0.00100			
2-Butanone (MEK)	U		0.00393	0.0100			
Methylene Chloride	U		0.00100	0.00500			
4-Methyl-2-pentanone (MIBK)	U		0.00214	0.0100			
Methyl tert-butyl ether	U		0.000367	0.00100			
Naphthalene	U		0.00100	0.00500			
n-Propylbenzene	U		0.000349	0.00100			
Styrene	U		0.000307	0.00100			
1,1,1,2-Tetrachloroethane	U		0.000385	0.00100			
1,1,2,2-Tetrachloroethane	U		0.000130	0.00100			
Tetrachloroethene	U		0.000372	0.00100			

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

PAGE: 34 of 44

QUALITY CONTROL SUMMARY L832621-02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

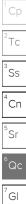
(MB) R3134040-3 05/05/1	6 02:10				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Toluene	U		0.000780	0.00500	
1,1,1-Trichloroethane	U		0.000319	0.00100	
1,1,2-Trichloroethane	U		0.000383	0.00100	
1,2,4-Trimethylbenzene	U		0.000373	0.00100	
1,3,5-Trimethylbenzene	U		0.000387	0.00100	
Vinyl chloride	U		0.000259	0.00100	
Xylenes, Total	U		0.00106	0.00300	
o-Xylene	U		0.000341	0.00100	
m&p-Xylenes	U		0.000719	0.00100	
(S) Toluene-d8	107			90.0-115	
(S) Dibromofluoromethane	112			79.0-121	
(S) 4-Bromofluorobenzene	101			80.1-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

		1 (/		, .	
(LCS) R3134040-1	05/05/16 00	:09 • (LCS	D) R3134	040-2	05/05/16	00:33

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Acetone	0.125	0.151	0.146	121	116	28.7-175			3.79	20.9
Benzene	0.0250	0.0253	0.0253	101	101	73.0-122			0.110	20
Bromodichloromethane	0.0250	0.0238	0.0241	95.1	96.6	75.5-121			1.55	20
Bromoform	0.0250	0.0247	0.0238	98.6	95.2	71.5-131			3.53	20
Bromomethane	0.0250	0.0357	0.0377	143	151	22.4-187			5.49	20
n-Butylbenzene	0.0250	0.0255	0.0253	102	101	75.9-134			0.740	20
sec-Butylbenzene	0.0250	0.0224	0.0225	89.6	89.9	80.6-126			0.340	20
Carbon disulfide	0.0250	0.0220	0.0213	88.1	85.2	53.0-134			3.38	20
Carbon tetrachloride	0.0250	0.0231	0.0234	92.3	93.6	70.9-129			1.43	20
Chlorobenzene	0.0250	0.0228	0.0226	91.0	90.5	79.7-122			0.640	20
Chlorodibromomethane	0.0250	0.0239	0.0240	95.5	95.9	78.2-124			0.410	20
Chloroethane	0.0250	0.0289	0.0285	115	114	41.2-153			1.42	20
Chloroform	0.0250	0.0257	0.0255	103	102	73.2-125			0.930	20
Chloromethane	0.0250	0.0246	0.0234	98.5	93.7	55.8-134			4.90	20
1,2-Dibromoethane	0.0250	0.0251	0.0248	101	99.4	79.8-122			1.20	20
,1-Dichloroethane	0.0250	0.0257	0.0251	103	100	71.7-127			2.53	20
,2-Dichloroethane	0.0250	0.0262	0.0261	105	104	65.3-126			0.240	20
,1-Dichloroethene	0.0250	0.0233	0.0229	93.3	91.6	59.9-137			1.86	20

ACCOUNT: TRC Solutions - Austin, TX


PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

PAGE: 35 of 44

QUALITY CONTROL SUMMARY L832621-02,03

ONE LAB. NATIONWIDE.

Тс

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134040-1 05/05/1	6 00:09 • (LCS	D) R3134040-	2 05/05/16 00	:33							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
trans-1,2-Dichloroethene	0.0250	0.0246	0.0234	98.2	93.5	72.6-125			4.94	20	
1,2-Dichloropropane	0.0250	0.0251	0.0249	100	99.7	77.4-125			0.780	20	
cis-1,3-Dichloropropene	0.0250	0.0265	0.0270	106	108	77.7-124			1.66	20	
trans-1,3-Dichloropropene	0.0250	0.0266	0.0267	106	107	73.5-127			0.430	20	
Ethylbenzene	0.0250	0.0219	0.0221	87.7	88.6	80.9-121			0.970	20	
2-Hexanone	0.125	0.148	0.147	118	118	59.4-151			0.420	20	
Isopropylbenzene	0.0250	0.0221	0.0218	88.2	87.1	81.6-124			1.30	20	
p-Isopropyltoluene	0.0250	0.0229	0.0227	91.5	90.8	77.6-129			0.760	20	
2-Butanone (MEK)	0.125	0.171	0.171	137	137	46.4-155			0.140	20	
Methylene Chloride	0.0250	0.0255	0.0246	102	98.4	69.5-120			3.78	20	
4-Methyl-2-pentanone (MIBK)	0.125	0.148	0.149	118	119	63.3-138			0.940	20	
Methyl tert-butyl ether	0.0250	0.0288	0.0281	115	113	70.1-125			2.36	20	
Naphthalene	0.0250	0.0258	0.0262	103	105	69.7-134			1.35	20	
n-Propylbenzene	0.0250	0.0230	0.0231	91.8	92.3	81.9-122			0.560	20	
Styrene	0.0250	0.0247	0.0248	98.6	99.2	79.9-124			0.580	20	
1,1,1,2-Tetrachloroethane	0.0250	0.0224	0.0223	89.6	89.1	78.5-125			0.590	20	
1,1,2,2-Tetrachloroethane	0.0250	0.0261	0.0258	104	103	79.3-123			0.890	20	
Tetrachloroethene	0.0250	0.0198	0.0195	79.1	78.1	73.5-130			1.29	20	
Toluene	0.0250	0.0230	0.0231	92.0	92.2	77.9-116			0.280	20	
1,1,1-Trichloroethane	0.0250	0.0240	0.0242	96.0	96.7	71.1-129			0.720	20	
1,1,2-Trichloroethane	0.0250	0.0241	0.0243	96.3	97.0	81.6-120			0.720	20	
1,2,4-Trimethylbenzene	0.0250	0.0230	0.0230	91.8	92.1	79.0-122			0.340	20	
1,3,5-Trimethylbenzene	0.0250	0.0228	0.0228	91.2	91.4	81.0-123			0.150	20	
Vinyl chloride	0.0250	0.0265	0.0253	106	101	61.5-134			4.60	20	
Xylenes, Total	0.0750	0.0681	0.0675	90.7	90.0	79.2-122			0.810	20	
o-Xylene	0.0250	0.0231	0.0232	92.6	92.7	79.1-123			0.140	20	
m&p-Xylenes	0.0500	0.0449	0.0443	89.8	88.7	78.5-122			1.30	20	
(S) Toluene-d8				107	107	90.0-115					
(S) Dibromofluoromethane				113	112	79.0-121					
(S) 4-Bromofluorobenzene				102	102	80.1-120					

L832636-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L832636-29 05/05/16 04:10 • (MS) R3134040-4 05/05/16 02:34 • (MSD) R3134040-5 05/05/16 02:58												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/I	%	%		%			%	%

ACCOUNT: TRC Solutions - Austin, TX

PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

PAGE: 36 of 44

QUALITY CONTROL SUMMARY L832621-02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832636-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Acetone	0.125	ND	0.0729	0.0713	58.3	57.1	1	25.0-156			2.16	21.5
Benzene	0.0250	ND	0.0190	0.0190	76.1	76.1	1	58.6-133			0.0400	20
Bromodichloromethane	0.0250	ND	0.0206	0.0215	82.3	85.9	1	69.2-127			4.22	20
Bromoform	0.0250	ND	0.0214	0.0226	85.6	90.3	1	66.3-140			5.35	20
Bromomethane	0.0250	ND	0.0181	0.0184	72.3	73.4	1	16.6-183			1.53	20.5
n-Butylbenzene	0.0250	ND	0.0221	0.0225	88.4	90.0	1	64.8-145			1.90	20
sec-Butylbenzene	0.0250	ND	0.0200	0.0205	80.0	81.9	1	66.8-139			2.35	20
Carbon disulfide	0.0250	ND	0.00583	0.00618	23.3	24.7	1	34.9-138	<u>J6</u>	<u>J6</u>	5.87	20
Carbon tetrachloride	0.0250	0.00214	0.0161	0.0164	55.7	56.9	1	60.6-139	<u>J6</u>	<u>J6</u>	1.78	20
Chlorobenzene	0.0250	ND	0.0191	0.0196	76.5	78.3	1	70.1-130	_	_	2.32	20
Chlorodibromomethane	0.0250	ND	0.0214	0.0215	85.7	86.1	1	71.6-132			0.470	20
Chloroethane	0.0250	ND	0.0164	0.0179	65.5	71.6	1	33.3-155			9.01	20
Chloroform	0.0250	ND	0.0218	0.0218	87.2	87.2	1	66.1-133			0.0800	20
Chloromethane	0.0250	ND	0.00969	0.0106	38.8	42.5	1	40.7-139	<u>J6</u>		9.28	20
1,2-Dibromoethane	0.0250	ND	0.0204	0.0211	81.5	84.3	1	73.8-131			3.29	20
1,1-Dichloroethane	0.0250	0.00102	0.0214	0.0217	81.4	82.9	1	64.0-134			1.64	20
1,2-Dichloroethane	0.0250	ND	0.0206	0.0205	82.5	81.9	1	60.7-132			0.760	20
1,1-Dichloroethene	0.0250	0.00175	0.0154	0.0162	54.5	57.8	1	48.8-144			5.29	20
trans-1,2-Dichloroethene	0.0250	ND	0.0149	0.0155	59.5	61.8	1	61.0-132	<u>J6</u>		3.74	20
1,2-Dichloropropane	0.0250	0.00217	0.0210	0.0218	75.4	78.3	1	69.7-130			3.42	20
cis-1,3-Dichloropropene	0.0250	ND	0.0207	0.0217	82.9	86.7	1	71.1-129			4.50	20
trans-1,3-Dichloropropene	0.0250	0.00101	0.0213	0.0233	81.0	89.0	1	66.3-136			9.02	20
Ethylbenzene	0.0250	ND	0.0179	0.0182	71.7	72.9	1	62.7-136			1.66	20
2-Hexanone	0.125	ND	0.114	0.119	91.1	94.8	1	59.4-154			3.98	20.1
Isopropylbenzene	0.0250	ND	0.0187	0.0192	74.9	76.8	1	67.4-136			2.45	20
p-lsopropyltoluene	0.0250	ND	0.0194	0.0200	77.6	79.9	1	62.8-143			3.03	20
2-Butanone (MEK)	0.125	ND	0.116	0.117	92.5	93.3	1	45.0-156			0.880	20.8
Methylene Chloride	0.0250	ND	0.0183	0.0187	73.3	74.7	1	61.5-125			1.94	20
4-Methyl-2-pentanone (MIBK)	0.125	ND	0.131	0.137	104	109	1	60.7-150			4.50	20
Methyl tert-butyl ether	0.0250	ND	0.0241	0.0244	96.2	97.6	1	61.4-136			1.35	20
Naphthalene	0.0250	ND	0.0231	0.0240	92.6	96.0	1	61.8-143			3.67	20
n-Propylbenzene	0.0250	ND	0.0197	0.0200	78.6	80.0	1	63.2-139			1.81	20
Styrene	0.0250	ND	0.0208	0.0211	83.0	84.4	1	68.2-133			1.66	20
1,1,1,2-Tetrachloroethane	0.0250	ND	0.0206	0.0205	82.4	81.8	1	70.5-132			0.760	20
1,1,2,2-Tetrachloroethane	0.0250	ND	0.0245	0.0251	98.1	101	1	64.9-145			2.51	20
Tetrachloroethene	0.0250	ND	0.0144	0.0147	57.7	58.9	1	57.4-141			1.91	20

PROJECT: 249545.0000.0000 000

SDG: L832621

DATE/TIME: 05/13/16 19:30

PAGE: 37 of 44

GI

QUALITY CONTROL SUMMARY $\frac{1832621-02,03}{}$

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

L832636-29 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	3134040-4 05/05/16 02:34	

	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Toluene	0.0250	ND	0.0174	0.0183	69.8	73.1	1	67.8-124			4.64	20
1,1,1-Trichloroethane	0.0250	0.0156	0.0339	0.0323	73.0	66.8	1	58.7-134			4.70	20
1,1,2-Trichloroethane	0.0250	ND	0.0217	0.0221	86.7	88.4	1	74.1-130			1.90	20
1,2,4-Trimethylbenzene	0.0250	ND	0.0195	0.0198	77.9	79.4	1	60.5-137			1.90	20
1,3,5-Trimethylbenzene	0.0250	ND	0.0195	0.0199	78.0	79.4	1	67.9-134			1.73	20
Vinyl chloride	0.0250	ND	0.0119	0.0133	47.7	53.0	1	44.3-143			10.6	20
Xylenes, Total	0.0750	ND	0.0546	0.0562	72.8	74.9	1	65.6-133			2.78	20
o-Xylene	0.0250	ND	0.0189	0.0195	75.4	77.9	1	67.1-133			3.19	20
m&p-Xylenes	0.0500	ND	0.0358	0.0367	71.5	73.4	1	64.1-133			2.56	20
(S) Toluene-d8					107	108		90.0-115				
(S) Dibromofluoromethane					111	110		79.0-121				
(S) 4-Bromofluorobenzene					101	101		80.1-120				

QUALITY CONTROL SUMMARY L832621-02,03

ONE LAB. NATIONWIDE.

Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

(MB) R3134283-3 05/05/16	MB) R3134283-3 05/05/16 17:41						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
cis-1,2-Dichloroethene	U		0.000260	0.00100			
Trichloroethene	U		0.000398	0.00100			
(S) Toluene-d8	104			90.0-115			
(S) Dibromofluoromethane	107			79.0-121			
(S) 4-Bromofluorobenzene	103			80.1-120			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3134283-1 U5/U5/1	10 10:17 • (LCSD)) R3134283-2	05/05/10 10:38							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
cis-1,2-Dichloroethene	0.0250	0.0271	0.0239	109	95.4	77.3-122			12.9	20
Trichloroethene	0.0250	0.0259	0.0227	104	90.9	79.5-121			13.1	20
(S) Toluene-d8				105	105	90.0-115				
(S) Dibromofluoromethane				106	106	79.0-121				
(S) 4-Bromofluorobenzene				98.9	102	80.1-120				

L832445-17 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(US) L632445-17 US/US/16	3 13.30 • (IVIS) IX	.5154205-4 05/	03/10 10.30 •	(NOD) NOD+20	3-3 03/03/10	13.17						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
cis-1,2-Dichloroethene	0.0250	U	0.0223	0.0223	89.1	89.1	1	60.6-136			0.080.0	20
Trichloroethene	0.0250	0.00799	0.0280	0.0273	79.9	77.3	1	48.9-148			2.35	20
(S) Toluene-d8					105	104		90.0-115				
(S) Dibromofluoromethane					107	108		79.0-121				
(S) 4-Bromofluorobenzene					102	102		80.1-120				

(MB) R3134267-1 05/05/16 23:54 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l TPH (GC/FID) High Fraction 0.100 U 0.0247 (S) o-Terphenyl 106 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134267-2 05/06/16 00:11 • (LCSD) R3134267-3 05/06/16 00:28 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD Analyte mg/l mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.66 1.68 111 112 0.780 20 (S) o-Terphenyl 50.0-150 103 101 GI Αl

QUALITY CONTROL SUMMARY

L832621-01,02

WG869931

Method Blank (MB)

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

ONE LAB. NATIONWIDE.

(MB) R3134780-1 05/07/16 12:29 MB Result MB MDL MB RDL MB Qualifier Тс Analyte mg/l mg/l 0.100 TPH (GC/FID) High Fraction U 0.0247 (S) o-Terphenyl 88.5 50.0-150 Ss Cn Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD) (LCS) R3134780-2 05/07/16 12:47 • (LCSD) R3134780-3 05/07/16 13:05 Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. RPD Limits Sr Rec. Limits LCS Qualifier LCSD Qualifier RPD mg/l Analyte mg/l mg/l TPH (GC/FID) High Fraction 50.0-150 1.50 1.50 1.50 99.7 100 0.600 20 (S) o-Terphenyl 50.0-150 107 104 GI Αl

SDG:

L832621

DATE/TIME:

05/13/16 19:30

PROJECT:

249545.0000.0000 000

QUALITY CONTROL SUMMARY

L832621-03

WG870603

Method Blank (MB)

Semi-Volatile Organic Compounds (GC) by Method 3511/8015

ACCOUNT:

TRC Solutions - Austin, TX

ONE LAB. NATIONWIDE.

PAGE:

41 of 44

GLOSSARY OF TERMS

ONE LAB. NATIONWIDE.

Abbreviations and Definitions

SDG	Sample Delivery Group.
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
ND,U	Not detected at the Sample Detection Limit.
RPD	Relative Percent Difference.
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
Rec.	Recovery.
SDL	Sample Detection Limit.
MQL	Method Quantitation Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
O1	The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.*** Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Conneticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
Indiana	C-TN-01	Pennsylvania	68-02979
Iowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA - ISO 17025	1461.01	AIHA	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

Company Name/Address:		19	Billing Info	rmation:	-80 July 1750	47	6		A	nalysis /	/ Contain	ner/Pre	servati	ve	5. J.	. Fe	Chain of Custody	Pageof
TRC Solutions - Aus 505 E. Huntland Dr, Ste 250 Austin, TX 78752			Accounts Payable 21 Griffin Road North Windsor, CT 06095						- 500mIHDPE-HNO3			Sulfate- 125mlHDPE-NoPres	94		۷٬۲	*F	SC	
			2 1							H	ALL	NO3	IDPE	H2S(Se,L		OF CHOICE
Report to: jspeer@trcsolutions.com	- Tarlity of		Email To: ispeer@trcsolutions.com						- 500m	NaOH	EAmb-NaOH 500mIHDPE-HNO3	125mlH	1DPE-1		n,Ni,Pb	12065 Lebanon Rd Mount Juliet, TN 371 Phone: 615-758-5851 Phone: 800-767-5851	1796	
Project NCL Spring 2016	- Team H	CJH		City/State Collected: Artesia, NM					n,Se	Amb-	0mlH	fate-	100c		Hg,M	Fax: 615-758-5859	7/-21	
Phone: 512-684-3170 Fax:	Fax;			Lab Project # TRCATX-NCL SPRING		BT	ЭТ		As,Ba,Cr,Fe,Pb,Mn,Se	- 250mIHDPEAmb-NaOH	Na - 50		Nitrate/Nitrite (NO2NO3) - 250mlHDPE-H2SO4	Pres	ToVDiss. As,B,Ba,Cd,Co,Cr,Fe,Hg,Mn,Ni,Pb,Se,U,V	Service Control	G074	
Collected by (print): Scott Udc + HMI Team	\$500 P. S.		esia	P.O.#		- 40mlAmb-HCI-BT	HC	- 40mlAmb-HCl	a,Cr,F	250m	X.	Fluo	NOSN	250mIHDPE-NoPres	a,Cd,C	Acctnum: TRC		
Collected by (signature):		ab MUST Be	Notified)	Date F	Results Needed		IAmt	- 40mlAmb-HCI	mIAn	As,B	CN)	otal	loride	trite (mIHD	B,B,S	Prelogin: P54	9626
Immediately Packed on Ice N Y	Next I	ay	100% 50% 25%		_NoYes NoYes	No. of	0 - 40m		60 - 40	Tot./Diss.	Cyanide (CN)	Cations-Total Ca,	Anions - Chloride, Fluoride,	rate/Ni	100	Diss. A	Cooler:	McCord
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	DRO	GRO	V8260	Tot	Š	Cat	Ani	ž ž	TDS	Tot	Shipped Via: Rem./Contaminant	Sample # (lab only)
mw-55	is the second	GW	The second	4/29/16	1040	10	1	V	V		1	V	V	1	V	1		-01
mw-18			Petr Ro	4/29/16	1130	11	V		1		~	V	V	V	V	~	100	0 0
NCL-33	V	4	10/11/	4/29/16	840	10	~		~	V		V	V	V	/	-/36		03
- Parent				1			1100											
	47			100					1						1919	1		BEAST Sha
The state of the s	SAN TO	700	1	R		4										7.86		
								179	(A)			SEA GREEN						
	The second			1	W. T.		180									17.	1 7	ar an area
* Matrix: SS - Soil GW - Groundwater	ww - WasteV	Vater DW - D	rinking Wat	er OT - Other						pH .		Ten	np			00/00/00		
Remarks: Log all metals by 6	020. Disso	WHEN SHEET OF	als are f	A CONTRACTOR OF THE PARTY OF TH						Flow_		_ Oth	Acres Maria		- 100	ld #		
Relinquished by : (Signature)	de		9/16	1500	teceived by: (Sign		亂			E		ned via:	er 🗆		Co	ndition:	(lab t	ise only) 69
Relinquished by (Signature)		Date:		Time:	Received by: (Sign	ature)	R			Temp:	1	°C Bo	3 C	celved:	со	C Seal I	Market Street, Square and Street	_NNA
Relinquished by : (Signature)		Date:	- y - 10	Time:	eceived for lab b	Sign	ature)	120		Date	3011		me:	00	pH	Checke	d: NCF:	

Appendix B, Table B.1 - Summary of Groundwater Analytical Data - Total Petroleum Hydrocarbons 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

					HollyFrontier Na	vajo Refining L
			roup: nalyte: Units:	GRO mg/L	DRO	DRO - EP
		CG	WSL:	mg/L	mg/L 0.200	mg/L 0.400
Area	Well ID	CGWSL So Date	Dup		NMED TPH	NMED TPH
	KWB-13	Apr-13			<0.052	
		Apr-14 Apr-15			<0.020 0.0630 J	
-	MW-17	Apr-16			0.0505 J	
dient	NP-5	Apr-14 Apr-13			0.038 J <0.053	
Cross-Gradient	DA 0450	Apr-15			0.0387 J	
-SSO-	RA-3156	Apr-13 Nov-13				
0		Apr-14 Apr-16				
-	MW-136	Oct-15		<0.0314	0.0721 J	
		Apr-16 Oct-16		<0.0314 <0.0314	0.162 0.118	
	MW-1R	Apr-13		-0.0014	0.110	<0.052
		Apr-13 Apr-14	FD			<0.052 <0.020
		Apr-15				0.124
-	MW-2A	Apr-16 Apr-14	\vdash	0.13		0.163 <0.020
	WWV-ZA	Nov-14		<0.031		0.250
		Apr-15 Oct-15		<0.0310 0.0363 J		0.295 0.260
		Apr-16		< 0.0314		0.212
-	MW-3	Oct-16 Apr-14		0.0435 JB 0.0493 J		0.195 1.00
	10100-0	Nov-14		0.540		9.10
		Nov-14 Apr-15	FD	0.520 0.134		9.20 8.50
		Apr-15	FD	0.151 J		8.60
		Oct-15 Oct-15	FD	3.59 0.839		11.2 10.2
		Apr-16		0.499		10.2
		Apr-16 Oct-16	FD	0.490 0.611		9.97 11.0
L		Oct-16	FD	0.571		10.5
	MW-4A	Apr-14 Nov-14		0.342 H 0.350		3.40 3.80
		Apr-15		0.130		5.60
		Oct-15 Apr-16		3.44 0.402		9.81 8.76
		Oct-16		0.396		5.84
	MW-4B	Apr-13 Apr-15		0.102 0.119		0.360 1.31
f	MW-5A	Apr-14		4.48 H		6.10
		Nov-14 Apr-15		0.900 1.19		2.00 4.30
		Oct-15		1.72		2.31
		Apr-16 Oct-16		2.09 1.17		8.92 3.08
Ī	MW-5B	Apr-13		1.78		7.10
-	MW-5C	Apr-15 Apr-13		1.14 0.065		11.00 0.220
<u>s</u>		Apr-15		<0.0310		0.580
Evaporation Ponds	MW-6A	Mar-13 Apr-14		0.190 0.238		3.00 1.50
tion		Apr-15		<0.0310		4.50
oora	MW-6B	Apr-16 Mar-13	\vdash	<0.0314 <0.0500		4.81 <0.053
Eva		Mar-13	FD	<0.0500		<0.054
-	MW-7A	Apr-15 Apr-14		<0.0310 0.463 H		0.386 0.930
		Nov-14		0.360		1.10
		Nov-14 Apr-15	FD	0.370 0.201		1.10 1.20
		Apr-15	FD	0.19 J		1.20
		Oct-15 Oct-15	FD	0.347 0.417		1.06 1.13
		Apr-16		0.251		1.22
		Apr-16 Oct-16	FD	0.269 0.235		1.32 1.21
Ļ	MM 7D	Oct-16	FD	0.212		1.25
	MW-7B	Apr-13 Apr-15	Н	<0.0500 <0.0310		<0.053 0.120
ſ	MW-10	Apr-14		1.08		2.00
		Nov-14 Apr-15	H	0.910 0.41 J		2.20 2.60
		Oct-15	П	0.730 1.06		1.79 3.19
		Apr-16 Oct-16	H	1.06		3.19 2.65
ſ	MW-11A	Apr-14 Nov-14	П	<0.0100		<0.021
		Apr-15		<0.0310		0.0558 J
		Oct-15 Apr-16	H	<0.0314		<0.0247
		Oct-16				
ſ	MW-11B	Mar-13 Apr-15	H	<0.0500 <0.0310		<0.052 <0.0250
ŀ	MW-12	Apr-14	団	-0.0510		<0.020
F	MW-13 MW-15	Apr-14	П	<0.0500		<0.020
	CI - VVIVI	Mar-13 Apr-14	Н	<0.0500 0.149		0.200 0.570
		Apr-15	П	<0.16 0.203		1.01 0.549
ŀ	MW-18A	Apr-16 Apr-14	H	0.203		<0.020
		Nov-14	П	_		0.074 J
		Apr-15 Oct-15	Ы			0.0770 J 0.215
		Apr-16				0.460

	-	Analyte Gr	oup:	up: TPH			
			alyte: Inits:	GRO mg/L	DRO mg/L	DRO - EP mg/L	
		CGV CGWSL Soi	VSL:		0.200 NMED TPH	0.400 NMED TPH	
Area	Well ID MW-18B		Dup	0.100		<0.052	
		Apr-15		<0.0310		0.280	
	MW-22A	Apr-14 Nov-14		3.46 3.30		5.80 5.60	
		Nov-14	FD	4.30		5.30	
		Apr-15 Apr-15	FD	2.57 3.80		5.80 6.39	
		Oct-15 Oct-15	FD	3.63 3.31		4.56 4.46	
		Apr-16		3.53		7.43	
		Apr-16 Oct-16	FD	4.02 3.48		7.66 5.73	
-	MW-22B	Oct-16 Apr-13	FD	3.25 1.99		6.18 3.00	
-	MW-70	Apr-15		2.34		5.60	
	10100-70	Apr-14 Nov-14		1.42 1.20		0.530 0.720	
		Apr-15 Oct-15		1.27 J 1.37		0.790 0.599	
		Apr-16 Oct-16		1.46 1.32		0.896 0.772	
F	MW-72	Nov-13		0.093		<0.051	
		Apr-14 Apr-15		0.092 <0.0310		0.760 1.30	
-	MW-73	Apr-16 Oct-13		<0.0314 1.22		0.950 3.10	
	10100-75	Apr-14		0.985		4.80	
		Apr-15 Apr-16		0.378 0.925		4.00 5.17	
	MW-74	Apr-14 Nov-14		1.09 0.680		28.0 30.0	
		Apr-15		0.0910 J		38.0	
		Oct-15 Apr-16		3.23 1.20		18.9 18.4	
	MW-75	Oct-16 Apr-14		0.135 1.66		64.3 9.00	
		Nov-14		2.50		13.0	
		Apr-15 Oct-15		2.31 10.9		22.0 19.6	
		Apr-16 Oct-16		1.39 2.46		18.2 16.6	
F	MW-76	Apr-14		0.856		4.60	
		Nov-14 Apr-15		1.10 0.356 J		23.0 21.0	
		Oct-15 Apr-16		0.773 0.759		25.2 24.1	
		Oct-16		2.19		43.7	
spuo	MW-77	Apr-14 Nov-14		1.13 1.30		39.0 91.0	
Evaporation Ponds		Apr-15 Oct-15		0.893 2.68		140 173	
oorat		Apr-16		0.968		101	
Eva _F	MW-78	Oct-16 Mar-13		1.53 J 0.373		86.1 6.40	
		Apr-14 Apr-15		0.333 J 0.279		29.0 67.0	
		Apr-16		0.269		63.2	
	MW-79	Apr-14 Nov-14		0.076 0.055 J		1.30 0.590	
		Apr-15 Oct-15		<0.0310 0.0383 J		0.560 0.575	
		Apr-16		<0.0314		0.516	
-	MW-80	Oct-16 Mar-13		0.0513 J <0.0500		0.413 0.054	
		Apr-14 Apr-15		0.0489 J <0.0310		0.200 0.750	
		Apr-16		< 0.0314		0.317	
	MW-81	Mar-13 Mar-13	FD	<0.0500 <0.0500		0.140 0.150	
		Apr-14 Apr-15		0.0318 J <0.0310		3.60 8.00	
	MAY CO	Apr-16		0.0339 J		8.64	
	MW-82	Mar-13 Apr-14		1.30 0.611		2.70 4.20	
		Apr-14 Apr-15	FD	0.649 0.361		4.20 14.0	
	184/52	Apr-16		0.334		8.41	
	MW-83	Apr-14 Nov-14		0.489 J 0.430		20.0 22.0	
		Apr-15 Oct-15		0.278 6.26		31.0 40.3	
		Apr-16		0.310		26.0 28.9	
	MW-84	Oct-16 Apr-14		0.234 0.607		27.0	
		Nov-14 Apr-15		0.610 0.613		75.0 62.0	
		Oct-15		1.96		82.1	
		Apr-16 Oct-16		0.519 1.58 J		83.8 95.3	
	MW-87	Apr-14 Nov-14		<0.0100 <0.031		0.230 0.120	
		Apr-15		<0.0310		0.390	
		Oct-15 Apr-16		0.0451 J 0.0421 J		0.251 0.449	
	MW-88	Oct-16 Apr-14		<0.0314 0.0497 J		0.405 0.370	
	19199-00	Nov-14		0.048 J		0.570	
		Apr-15 Oct-15		<0.0310 <0.0314		0.610 0.455	
		Apr-16		<0.0314		0.636	
		Oct-16		0.0848 J		0.635	

Appendix B, Table B.1 - Summary of Groundwater Analytical Data - Total Petroleum Hydrocarbons 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

	A	nalyte:			
		Units:	GRO mg/L	DRO mg/L	DRO - EP mg/L
	CGWSL S	GWSL:		0.200 NMED TPH	0.400 NMED TPH
Well ID	Date	Dup		NWLD II II	
MW-120	Apr-14 Nov-14		0.073 0.057 J		0.230 2.40
	Apr-15		<0.0310		3.09
	Oct-15 Apr-16		0.181 0.0845 J		1.30 1.82
	Oct-16		<0.0314		0.920
MW-121	Apr-14		<0.0100 <0.031		0.092
ŀ	Nov-14 Apr-15		<0.0310		0.510 0.565
	Oct-15		<0.0314		0.460
	Apr-16 Oct-16		<0.0314 0.0514 JB		0.456 0.593
MW-122	Apr-14		0.0289 J		<0.021
ŀ	Nov-14 Apr-15		<0.031 <0.0310		5.50 4.79
	Oct-15		0.0340 J		6.06
	Apr-16 Oct-16		<0.0314 0.0443 JB		0.824 0.412
MW-123	Apr-14		<0.0100		2.80
	Nov-14		1.60		2.70
ŀ	Apr-15 Oct-15		1.90 1.24		3.60 2.13
	Apr-16		1.83		3.82
MW-124	Oct-16 Apr-14	+	1.50 < 0.0100		3.53 <0.021
· [Nov-14		<0.031		<0.022
ŀ	Apr-15 Oct-15	+	<0.0310 J <0.0314		0.0550 J 0.0298 J
]	Apr-16		< 0.0314		< 0.0247
OCD-1R	Oct-16 Apr-14	+	<0.0314 <0.0100		<0.0247 <0.021
202-111	Nov-14		<0.031		0.230
ļ	Apr-15 Oct-15	+	<0.0310 <0.0314		0.242 0.266
ļ	Apr-16		<0.0314		0.266
000.04	Oct-16		0.0450 J		0.267
OCD-2A	Apr-14 Nov-14		<0.0100 <0.031		<0.020 0.093 J
	Apr-15		<0.0310		0.104
ŀ	Oct-15 Apr-16		<0.0314 <0.0314		0.0455 J 0.0682 J
	Oct-16		0.0333 J		0.0722 J
OCD-3	Apr-14 Nov-14		<0.0100 <0.031		<0.021 0.07 J
	Apr-15		<0.0310		0.0484 J
	Oct-15		<0.0314		0.0251 J
<u> </u>	Apr-16 Oct-16		<0.0314 <0.0314		<0.0247 <0.0247
OCD-4	Apr-14	1	<0.0100		<0.021
ŀ	Nov-14 Apr-15	+	<0.031 <0.0310		0.065 J 0.0464 J
	Oct-15		<0.0314		<0.0247
ŀ	Apr-16 Oct-16	+	<0.0314 <0.0314		<0.0247 <0.0247
OCD-5	Apr-14		0.127		<0.021
ŀ	Apr-14 Nov-14	FD	0.140 0.260		<0.021 0.540
	Apr-15		<0.0310		0.218
ŀ	Oct-15 Apr-16	+	0.0402 J <0.0314		0.0951 J 0.0576 J
<u> </u>	Oct-16		0.0391 J		0.0423 J
OCD-6	Apr-14 Nov-14	$+\Box$	0.297 <0.031		0.820 0.540
ļ	Apr-15		0.0819 J		1.00
	Oct-15 Apr-16	+	1.88 0.0939		1.09 1.11
	Oct-16	ᆂ	0.0939		1.11
OCD-7AR	Apr-14		0.889		4.00
ŀ	Apr-14 Nov-14	FD	0.883 0.760		4.10 3.50
	Apr-15	1	0.715		4.29
ŀ	Oct-15 Apr-16	+	1.20 0.443		4.12 5.24
	Oct-16		1.08		5.28
OCD-7B	Mar-13 Apr-15	+	<0.0500 <0.0310		<0.052 0.120
OCD-8A	Apr-14		0.728		2.90
	Apr-14 Nov-14	FD	0.764 0.660		2.80 1.80
ŀ	Apr-15	L	0.491		2.60
	Oct-15		0.648 0.726		2.74 3.26
	Apr-16 Oct-16		0.726		3.26
OCD-8B	Apr-13	\perp	0.298		0.890
KWB-1A		+	<0.0310	<0.021	0.840
	Nov-14			0.15 J	
		+		0.0932 J 0.114	-
ļ	Apr-16			0.114	
KWP 10	Oct-16	\blacksquare		0.166	
KWB-1C		+		<0.044 0.113	
KWB-7	Nov-14			1.00	
ŀ		+		1.43 0.721	
ļ	Apr-16			1.22	
	Oct-16	$+\Box$		1.06	
KW	B-1C //B-7	Oct-16 D-8B Apr-13 Apr-15 Apr-15 Apr-16 Apr-16 Oct-16 Apr-16 Oct-17 Apr-15 Apr-16 Oct-16 Apr-15 Apr-15 Apr-15 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16 Oct-16	Oct-16 D-88	Oct-16 0.714 D-8B Apr-13 0.298 Apr-13 0.298 Apr-15 <0.0310 B-1A Apr-14	Oct-16

	illery, Artesia, iv	Analyte G	roup:	TPH					
		Ar	nalyte:	GRO	DRO	DRO - EP			
			Units:	mg/L	mg/L	mg/L			
		CGWSL Se			0.200 NMED TPH	0.400 NMED TPH			
Area	Well ID KWB-10R	Date Nov-14	Dup		12.0	<u> </u>			
	11112 1011	Apr-15			9.16				
		Oct-15 Apr-16	+		4.65 5.24				
ļ	KWB-11A	Oct-16		<0.031	7.50 0.710				
	KWD-11A	Nov-14 Nov-14	FD	0.290	0.860				
		Apr-15 Oct-15		0.339 0.217	1.87 0.646				
		Apr-16		0.267	3.74				
ŀ	KWB-11B	Oct-16 Apr-14	+	0.223 B 2.74	1.36 3.20				
		Nov-14 Apr-15		<0.031 <0.0310	<0.022 0.0365 J				
		Oct-15		<0.0314	<0.0247				
		Apr-16 Oct-16	+	<0.0314 0.0565 JB	<0.0247 0.0388 J				
	KWB-12A	Nov-14	FD	<0.031 <0.031	<0.022 0.074 J				
		Nov-14 Apr-15		<0.0310	0.0310 J				
		Apr-15 Oct-15	FD	<0.0310 <0.0314	0.305 <0.0247				
		Apr-16		< 0.0314	0.0377 J				
ŀ	KWB-12B	Oct-16 Apr-14	+	0.0348 JB <0.0100	0.0329 J <0.021				
		Apr-14 Nov-14	FD	<0.0100 <0.031	<0.021 <0.022				
		Apr-15	Ш	<0.0310	0.0740 J				
		Oct-15 Oct-15	FD	<0.0314 <0.0314	<0.0247 0.0372 J	<u> </u>			
		Apr-16 Apr-16	FD	<0.0314 <0.0314	<0.0247				
		Oct-16		0.0581 JB	<0.0247 0.0351 J				
ŀ	KWB-P4	Oct-16 Apr-13	FD	0.0416 JB	0.0806 J <0.052				
ļ		Apr-15			0.0820 J				
	MW-57	Apr-14 Nov-14	+	0.350 0.047 J	0.780 0.26 J				
		Apr-15 Oct-15		<0.0310 <0.0314	0.200 0.242				
		Apr-16		< 0.0314	0.198				
ŀ	MW-58	Oct-16 Nov-14		0.0467 JB	0.103 7.80				
		Apr-15			9.00				
		Oct-15 Apr-16	+		5.11 6.27				
ery	MW-111	Oct-16 Apr-14		2.36	7.78 1.30				
Field East of Refinery	10100-1111	Nov-14		1.70	2.00				
st of		Apr-15 Oct-15	-	1.37 0.674	1.90 2.10				
d Ea		Apr-16		1.31 1.13	2.04 2.04				
Fie	MW-112	Oct-16 Nov-14		28.00	2.04				
	MW-113	Apr-14 Nov-14		17.30 2.40	0.230 0.640				
		Nov-14	FD	2.70	0.820				
		Apr-15 Apr-15	FD	<0.0310 <0.0310	0.330 0.241				
		Oct-15 Oct-15	FD	<0.0314 <0.0314	0.115 0.0917 J				
		Apr-16		0.581	0.156				
		Apr-16 Oct-16	FD	0.627 0.215 B	0.180 0.236				
ļ	MW-125	Oct-16	FD	0.218 B	0.188				
	IVIVV-125	Apr-14 Nov-14	\Box	0.0383 J <0.031	<0.021 0.047 J				
		Apr-15 Oct-15	H	<0.0310 J <0.0314	<0.0250 B 0.0523 J				
		Apr-16	Ħ	< 0.0314	0.0578 J				
ŀ	MW-126A	Oct-16 Apr-14	${f \pm}$	<0.0314 0.142	0.0756 J 0.710				
		Nov-14 Apr-15	F	0.410 <0.0310	0.880 0.757				
		Oct-15	H	0.640	0.569				
		Apr-16 Oct-16	\vdash	0.202 0.702	0.751 0.924				
ľ	MW-126B	Apr-14	Ш	0.079	0.340				
		Nov-14 Apr-15	H	<0.031 <0.0310	0.280 0.392	<u> </u>			
		Oct-15 Apr-16	F	<0.0314 <0.0314	0.140 0.361				
Ĺ		Oct-16	Ħ	0.0546 JB	0.346				
	MW-127	Apr-14 Nov-14	\vdash	37.70 6.10	3.50 1.30				
		Apr-15	П	9.73	1.68				
		Oct-15 Apr-16	± 1	6.54 6.40	0.585 1.43				
ļ	MW-128	Oct-16 Apr-14		3.81 B 3.19	1.22 2.10				
	14144-120	Nov-14	\Box	1.20	2.40				
		Apr-15 Oct-15	\vdash	1.23 J 0.644	3.00 1.78	ļ			
		Apr-16	П	0.620	2.45				
ŀ	MW-129	Oct-16 Nov-14	H	0.907 4.60	2.75 2.70				
		Apr-15		3.29 4.11 J	2.45 1.31				
		Oct-15							
		Oct-15 Apr-16 Oct-16		2.70	1.68 1.68				

Appendix B, Table B.1 - Summary of Groundwater Analytical Data - Total Petroleum Hydrocarbons 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico lyte Group: TPH Analyte Group:

	HollyFrontier Navajo Refining LL								
			alyte:	GRO	TPH DRO	DRO - EP			
			Inits: VSL:	mg/L	mg/L 0.200	mg/L 0.400			
		CGWSL Soi			NMED TPH	NMED TPH			
Area	Well ID KWB-10R		Dup		40.0				
	KWD-IUK	Nov-14 Apr-15			12.0 9.16				
		Oct-15			4.65				
		Apr-16 Oct-16			5.24 7.50				
	KWB-11A	Nov-14		<0.031	0.710				
		Nov-14	FD	0.290	0.860				
		Apr-15 Oct-15		0.339 0.217	1.87 0.646				
		Apr-16		0.267	3.74				
ŀ	KWB-11B	Oct-16 Apr-14		0.223 B 2.74	1.36 3.20				
		Nov-14		<0.031	<0.022				
		Apr-15		<0.0310 <0.0314	0.0365 J <0.0247				
		Oct-15 Apr-16		<0.0314	<0.0247				
ļ		Oct-16		0.0565 JB	0.0388 J				
	KWB-12A	Nov-14 Nov-14	FD	<0.031 <0.031	<0.022 0.074 J				
		Apr-15		<0.0310	0.0310 J				
		Apr-15	FD	<0.0310	0.305				
		Oct-15 Apr-16		<0.0314 <0.0314	<0.0247 0.0377 J				
ļ		Oct-16		0.0348 JB	0.0329 J				
	KWB-12B	Apr-14 Apr-14	FD	<0.0100 <0.0100	<0.021 <0.021				
		Nov-14	. 5	<0.031	<0.022				
		Apr-15 Oct-15	_	<0.0310 <0.0314	0.0740 J <0.0247				
		Oct-15 Oct-15	FD	<0.0314	<0.0247 0.0372 J				
		Apr-16		<0.0314	<0.0247				
		Apr-16 Oct-16	FD	<0.0314 0.0581 JB	<0.0247 0.0351 J				
Ĺ		Oct-16	FD	0.0416 JB	0.0806 J				
Ī	KWB-P4	Apr-13			<0.052				
ŀ	MW-57	Apr-15 Apr-14		0.350	0.0820 J 0.780				
		Nov-14		0.047 J	0.26 J				
		Apr-15 Oct-15		<0.0310 <0.0314	0.200 0.242				
		Apr-16		<0.0314	0.198				
ļ	101/50	Oct-16		0.0467 JB	0.103				
	MW-58	Nov-14 Apr-15			7.80 9.00				
		Oct-15			5.11				
		Apr-16 Oct-16			6.27 7.78				
ner)	MW-111	Apr-14		2.36	1.30				
Ref		Nov-14		1.70	2.00				
st of		Apr-15 Oct-15		1.37 0.674	1.90 2.10				
Field East of Refinery		Apr-16		1.31	2.04				
je je	104/440	Oct-16		1.13	2.04				
	MW-112 MW-113	Nov-14 Apr-14		28.00 17.30	2.20 0.230				
		Nov-14		2.40	0.640				
		Nov-14 Apr-15	FD	2.70 <0.0310	0.820 0.330				
		Apr-15	FD	<0.0310	0.330				
		Oct-15		<0.0314	0.115				
		Oct-15 Apr-16	FD	<0.0314 0.581	0.0917 J 0.156				
		Apr-16	FD	0.627	0.180				
		Oct-16 Oct-16	FD	0.215 B 0.218 B	0.236 0.188				
ŀ	MW-125	Apr-14	עיי	0.218 B 0.0383 J	<0.021				
	-	Nov-14		<0.031	0.047 J				
		Apr-15 Oct-15	-	<0.0310 J <0.0314	<0.0250 B 0.0523 J				
		Apr-16		< 0.0314	0.0578 J				
ļ	MW-126A	Oct-16 Apr-14		<0.0314 0.142	0.0756 J 0.710				
	14144-12UM	Nov-14		0.142	0.880				
		Apr-15		<0.0310	0.757				
		Oct-15 Apr-16	-	0.640 0.202	0.569 0.751				
l		Oct-16		0.702	0.924				
ſ	MW-126B	Apr-14 Nov-14		0.079	0.340 0.280				
		Apr-15		<0.031 <0.0310	0.280				
		Oct-15		<0.0314	0.140				
		Apr-16 Oct-16		<0.0314 0.0546 JB	0.361 0.346				
ŀ	MW-127	Apr-14		37.70	3.50				
		Nov-14		6.10	1.30				
		Apr-15 Oct-15	-	9.73 6.54	1.68 0.585				
		Apr-16		6.40	1.43				
ļ	MW-128	Oct-16	_	3.81 B	1.22				
	IVIVV-128	Apr-14 Nov-14		3.19 1.20	2.10 2.40				
		Apr-15		1.23 J	3.00				
		Oct-15 Apr-16		0.644	1.78 2.45				
		Apr-16 Oct-16	-	0.620 0.907	2.45 2.75				
ľ	MW-129	Nov-14		4.60	2.70				
		Apr-15 Oct-15	-	3.29 4.11 J	2.45 1.31				
		Apr-16		2.70	1.68				
		Oct-16		2.17	1.68				

Area	Well ID MW-130			GRO mg/L	DRO mg/L 0.200	DRO - EP mg/L 0.400
Area		CGWSL S Date	SWSL: ource:		mg/L 0.200	mg/L 0.400
Area		CGWSL S Date	ource:		0.200	0.400
Area		Date				
_	MW-130	Apr-14	Dup		NMED TPH	NMED TPH
		Nov-14		<0.0100	0.330	
		Apr-15		<0.031 <0.0310 J	0.700 0.960	
		Oct-15		<0.0314	0.508	
		Apr-16 Oct-16		<0.0314 0.200	1.08	
	MW-131	Apr-14		26.20	3.40	
		Nov-14		9.10 7.68	3.70 2.80	
		Apr-15 Oct-15		6.76	4.00	
╵		Apr-16		9.16	2.12	
. 1	MW-133	Oct-16 Nov-14		6.31 9.40	1.86 2.80	
		Apr-15		11.3	3.10	
	MW-134	Apr-14 Nov-14		<0.0100 <0.031	<0.021 0.064 J	
		Apr-15		<0.0310	0.100	
		Apr-15	FD	<0.0310	0.0886 J	
		Oct-15 Oct-15	FD	<0.0314 <0.0314	0.0503 J 0.0457 J	
		Apr-16		0.0420 J	0.0971 J	
ery		Apr-16 Oct-16	FD	<0.0314 <0.0314	0.0774 J 0.184	
Sefin		Oct-16	FD	<0.0314	0.135	
of F	MW-135	Apr-14		<0.0100	<0.021	
East of Refiner		Nov-14 Apr-15	+	<0.031 <0.0310	0.310 0.0823 J	
Field		Oct-15		<0.0314	0.0571 J	
ш		Apr-16 Oct-16	+	<0.0314 0.0638 JB	0.162 0.147	
. -	RA-4196	Apr-14		0.0000 00	V. 147	
		Apr-15				
		Oct-15 Apr-16				
L		Oct-16				
	RA-4798	Apr-14	FD			
		Apr-14 Nov-14	FU			
		Apr-15				
		Oct-15 Apr-16				
L		Oct-16				
· -	RW-12R RW-13R	Apr-16 Apr-16			1.38 0.808	
. -	RW-18	Apr-18 Apr-13			0.000	
		Apr-14				
		Apr-15 Apr-16				
	RW-20	Apr-15			2.10	
	RW-22 MW-23	Apr-15 Apr-14		32.1	5.40 6.00	
	WWW-25	Nov-14		39.0	6.00	
		Apr-15		31.1	6.79	
		Oct-15 Apr-16		34.0 34.7	41.8 28.7	
ıL		Oct-16		37.1	21.2	
	MW-29	Apr-14 Nov-14		<0.0100 B <0.031	0.51 1.20	
		Apr-15		<0.0310	1.20	
		Oct-15		0.0738 J <0.0314	0.658 1.27	
		Apr-16 Oct-16		<0.0314	1.04	
	MW-39	Oct-13		2.37	4.60	
		Apr-15 Oct-15	\vdash	0.147 0.0759 J	5.20 3.83	
		Apr-16		5.16	12.5	
· -	MW-40	Oct-16		7.24 0.919	9.26	
	1V1VV-4U	Apr-13 Apr-14	Ħ	1.01	1.70 0.880	
		Apr-15		0.735	4.50	
H	MW-41	Apr-16 Oct-13	\vdash	1.03 0.083	4.92 1.30	
rery	•	Apr-14		0.233	0.300	
North Refinery		Apr-15 Apr-16	\vdash	0.103 0.171	1.60 2.26	
å F	MW-42	Oct-13		3.17	4.80	
ž		Apr-14	ĻΠ	2.90	1.40	
		Apr-15 Apr-16		1.37 0.737	7.00 5.88	
	MW-43	Apr-14		2.89	1.20	
		Nov-14 Apr-15	\vdash	4.80 2.65	7.40 8.04	
		Oct-15		30.5	9.95	
		Apr-16	H	31.6 38.0	6.24 6.51	
H	MW-59	Oct-16 Apr-13	\vdash	0.130	<0.052	
	-	Apr-14		0.247	0.068	
		Apr-15 Apr-16	\vdash	<0.0310 <0.0314	0.860 0.919	
. -	MW-60	Apr-16 Apr-14	L	0.658	0.110	
		Nov-14		0.540	0.630	
		Apr-15 Apr-15	FD	0.238 0.228	1.10 1.00	
		Oct-15		0.241	0.803	
		Oct-15 Apr-16	FD	0.249 0.575	0.627 1.21	
		Apr-16	FD	0.396	1.19	
		Oct-16 Oct-16	FD	0.331 0.251	0.628 0.573	

Appendix B, Table B.1 - Summary of Groundwater Analytical Data - Total Petroleum Hydrocarbons 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

				ŀ	HollyFrontier Nav	/ajo Refining
		Analyte Gr			TPH	
			alyte: Inits:	GRO	DRO	DRO - EP
		CGV		mg/L 	mg/L 0.200	mg/L 0.400
Area	Well ID	CGWSL Sou	ırce: Dup		NMED TPH	NMED TPH
	MW-61	Apr-14		10.9 J	3.40	
		Nov-14 Apr-15		11.00 6.77	6.40 9.40	
		Oct-15 Apr-16		5.13 2.60	3.32 3.59	
		Oct-16		4.21	3.55	
Ī	MW-62	Apr-14 Nov-14		7.37 42.00	2.00 29.0	
		Apr-15		21.10	36.9	
		Oct-15 Apr-16		18.50 7.81	7.62 7.54	
		Oct-16		11.3	4.72	
	MW-67	Nov-14 Apr-15		0.81 0.78	4.20 8.40	
		Oct-15		2.16	5.18	
		Apr-16 Oct-16		1.29 1.03	11.1 9.36	
Ī	MW-90	Apr-14 Nov-14		0.317 0.210	1.40 2.30	
		Apr-15		0.242	7.68	
		Oct-15 Apr-16		0.166 0.119	0.992 4.03	
		Oct-16		< 0.0314	1.11	
	MW-91	Apr-14 Nov-14		11.90 7.90	2.90 11.0	
		Apr-15		14.70	15.9	
		Oct-15 Apr-16	-	12.20 22.10	20.3 22.2	
ļ	MM/ 00	Oct-16		20.6	16.3	
	MW-92	Apr-16 Oct-16		5.50 6.05	20.4 22.8	
ı	MW-93	Apr-14		9.90	14.0	
		Nov-14 Apr-15		6.50 3.67	11.0 15.3	
		Oct-15		5.14 1.06	16.5 7.83	
		Apr-16 Oct-16		2.57	8.66	
	MW-94	Nov-14 Oct-15		5.50 6.12	9.40 25.6	
		Apr-16		7.91	8.69	
-	MW-95	Oct-16 Apr-13		6.83 0.053	9.76 3.40	
neny	14144-55	Apr-14		0.093	1.10	
North Refinery		Apr-15 Apr-16		<0.0310 0.129	7.58 8.06	
orth	MW-96	Apr-14		25.8	2.20	
z		Nov-14 Apr-15		26.0 45.1	10.0 12.0	
		Oct-15		24.3	9.23	
		Apr-16 Oct-16		25.3 20.0	10.8 7.74	
ŀ	MW-98	Apr-14		32.1	2.20	
		Apr-14 Nov-14	FD	32.5 26.0	2.70 5.40	
		Apr-15		19.3	7.06	
		Oct-15 Apr-16		18.6 14.7	6.38 6.88	
-	MW-137	Oct-16 Oct-15		20.0 30.0	4.97 20.1	
		Apr-16		33.8	11.8	
-	MW-138	Oct-16 Oct-15		30.9 5.08	9.65 6.73	
	10177-100	Apr-16		4.86	15.5	
-	RW-1	Oct-16 Apr-15	_	2.28 2.95 J	10.3 12.0	
ŀ	RW-1R	Apr-16		2.13	8.54	
-	RW-2 RW-2R	Apr-15 Apr-16	-	18.30 20.8	19.7 17.3	
ŀ	RW-7	Apr-15		1.05	9.70	
-	RW-7R RW-8	Apr-16 Apr-15	-	0.0588 J	1.97 7.30	
ŀ	RW-9	Apr-13		4.14	2.30	
		Apr-14 Apr-15	-	3.26 2.55	0.480 3.20	
ļ	RW-10	Apr-16		0.492 J	3.44	
	IXVV-1U	Apr-13 Apr-14		<0.0500 <0.0100	0.650 0.150	
		Apr-15		<0.0310	4.80	
ŀ	RW-16	Apr-16 Apr-13		<0.157	3.66 0.580	
		Apr-14 Apr-14	FD		0.110 0.230	
		Apr-15			1.90	
-	RW-17	Apr-16 Apr-13		<0.0500	2.29 0.290	
		Apr-14		<0.0100	0.110	
		Apr-15 Apr-16	-	<0.0310 <0.0314	1.20 1.75	
	MW-117	Apr-14		<0.0100	<0.022	
		Nov-14 Nov-14	FD	<0.031 <0.031	0.029 J 0.12 J	
Field		Apr-15		<0.0310	0.0323 J	
ject		Oct-15 Apr-16	-	<0.0314 <0.0314	<0.0247 <0.0247	
North RO Reject Field	MM 410	Oct-16		<0.0314	0.0265 J	
# R	MW-118	Apr-14 Nov-14	-	<0.0100 <0.031	<0.021 0.032 J	
Nor		Apr-15		<0.0310	0.0307 J	
		Oct-15 Apr-16		<0.0314 <0.0314	<0.0247 0.0248 J	
		Oct-16		<0.0314	<0.0247	

		Analyte G	roup:			
			nalyte:			
			Units:	GRO ma/l	DRO mg/l	DRO - EP
			WSL:	mg/L 	mg/L 0.200	mg/L 0.400
		CGWSL S	ource:		NMED TPH	NMED TPH
Area	Well ID MW-119	Date Apr-14	Dup	<0.0100	<0.020	
Reject d	10100-113	Apr-14	FD	<0.0100	<0.021	
윤		Nov-14		<0.031	0.053 J	
Field		Apr-15 Oct-15		<0.0310 <0.0314	0.0353 J <0.0247	
North		Apr-16		<0.0314	<0.0247	
_		Oct-16		0.0557 JB	0.0570 J	
	MW-18	Oct-13 Apr-14	-		0.580 0.280	
		Apr-15			2.41	
_		Apr-16			2.02	
	MW-45	Apr-14 Nov-14			0.270 0.860	
		Apr-15			1.10	
		Oct-15			0.874	
		Apr-16 Oct-16	-		1.11 1.15	
-	MW-53	Apr-13			<0.053	
		Apr-14			<0.021	
		Apr-15			0.296	
ŀ	MW-54A	Apr-16 Apr-14	1		0.316 0.570	
		Nov-14			2.60	
		Apr-15			2.93	
		Oct-15 Apr-16			3.29 3.34	
		Oct-16	1		3.24	
Ī	MW-54B	Apr-13		<0.0500	0.63	
Ļ	MW-55	Apr-15		<0.0310	2.47 <0.020	
	IVIVV-00	Apr-14 Apr-14	FD	<0.0100 <0.0100	<0.020	
		Nov-14	1	< 0.031	0.120	
		Apr-15		<0.0310	0.227	
		Oct-15 Apr-16		<0.0314 <0.0314	0.300 0.691	
		Oct-16		<0.0314	0.354	
	MW-56	Apr-14			0.290	
		Nov-14	-		0.800	
		Apr-15 Oct-15			1.62 0.680	
		Apr-16			1.07	
L		Oct-16			1.18	
	MW-108	Apr-14 Nov-14			3.00 7.70	
		Apr-15	1		9.03	
		Oct-15			7.89	
NC		Apr-16 Oct-16			9.20	
	NCL-31	Apr-14	+		15.2 0.65	
		Nov-14			2.00	
		Apr-15			2.38	
		Oct-15 Apr-16			2.10 1.87	
		Oct-16			24.2	
	NCL-32	Nov-14			2.30	
		Apr-15 Oct-15			2.80 7.50	
		Apr-16			4.05	
		Oct-16			1.20	
	NCL-33	Apr-14			3.70	
		Nov-14 Apr-15			4.60 5.30	
		Oct-15			4.53	
		Apr-16	lacksquare		6.55	
F	NCL-34A	Oct-16 Nov-14	\vdash		5.70 5.30	
	NOL-U4A	Apr-15	+		10.0	
		Oct-15			5.11	
		Apr-16			19.2	
F	NCL-44	Oct-16 Apr-14	\vdash		10.8 1.50	
		Nov-14			3.90	
		Apr-15			5.50	
		Oct-15	\vdash		6.17 7.59	
		Apr-16 Oct-16	+		7.59 8.88	
ľ	NCL-49	Apr-14			<0.020	
		Nov-14	F.		0.042 J	
		Nov-14 Apr-15	FD		0.028 J 0.0967 J	
		Apr-15	FD		0.0832 J	
		Oct-15	-		0.0770 J	
		Oct-15 Apr-16	FD		0.0960 J 0.0890 J	
		Apr-16	FD		0.0664 J	
		Oct-16			0.0712 J	
-	KWB-2R	Oct-16	FD		0.0626 J 5.50	
	1111 0-211	Nov-14 Apr-15			5.20	
چ		Oct-15			3.95	
ijue		Apr-16	\blacksquare		1.49	
- Re	KWB-5	Oct-16 Nov-14			1.84 1.80	
South Refinery	5-0	Apr-15	L		2.30	
S		Oct-15 Apr-16			1.39 2.36	

Appendix B, Table B.1 - Summary of Groundwater Analytical Data - Total Petroleum Hydrocarbons 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

		Analyte G	roun.	-	HollyFrontier Nav	rajo rtelililig L
			nalyte:	200		222 52
			Units:	GRO mg/L	DRO mg/L	DRO - EP mg/L
		CGWSL S	SWSL:		0.200 NMED TPH	0.400 NMED TPH
Area	Well ID	Date	Dup		NWLD IFII	NWLD IFTI
	KWB-6	Nov-14 Apr-15			1.80 4.50	
		Oct-15			1.41	
		Apr-16 Oct-16			3.75 1.78	
-	MW-28	Apr-14		6.32	3.00	
		Nov-14 Apr-15		16.00 7.85 J	3.70 13.0	
		Oct-15		9.88	16.2	
		Apr-16		4.83	17.0 22.2	
-	MW-48	Oct-16 Nov-14	+	6.13 4.5 J	4.00	
		Apr-15		3.65 J	3.90	
		Oct-15 Apr-16	+ 1	2.99	2.97 15.3	
ļ	MM/ FO	Oct-16		15.8	7.81	
	MW-50	Apr-14 Nov-14		0.0223 J 0.0263 J	0.120 0.36 J	
		Apr-15		0.032 J	0.902	
		Oct-15 Apr-16		<0.0310 J <0.0314	0.642 1.10	
	101/ 50	Oct-16		<0.0314	1.02	
	MW-52	Apr-14 Apr-14	FD	0.0386 J 136	0.170 0.330	
		Nov-14	П	90.7	0.28 J	
		Apr-15 Oct-15	╁┤	27.00 33.10	0.370 0.158	
		Apr-16		19.6	0.324	
ŀ	MW-64	Oct-16 Apr-16	+	19.2	0.367 12.3	
Ĺ		Oct-16			12.0	
	MW-65	Nov-14 Apr-15	+		15.00 12.40	
		Apr-16	П		10.6	
-	MW-66	Oct-16 Apr-14	+	6.64	7.99 2.10	
	WW-00	Nov-14		23.00	3.30	
		Apr-15 Oct-15		8.18 8.74	4.51 1.40	
		Apr-16		6.09	4.19	
-	MW-99	Oct-16 Nov-14	+	7.32 14.0	4.24	
	WW-99	Apr-15		6.76	2.50 1.94	
		Oct-15 Apr-16		19.4 18.1	1.87 4.29	
		Oct-16		17.8 B	2.26	
Ī	MW-101	Apr-14		4.56	4.30	
<u>></u>		Nov-14 Apr-15	+ 1	1.40 0.18	5.30 6.00	
Refinery		Oct-15		0.0803 J	5.08	
South F		Apr-16 Oct-16		0.614 0.208	5.84 2.95	
S	MW-102	Nov-14		36.00	9.50	
		Apr-15 Oct-15	+	24.50 31.40	9.96 11.4	
		Apr-16		26.2	9.69	
-	MW-103	Oct-16 Apr-13	+	31.5 3.31	14.8 5.40	
		Apr-14		1.43 J	5.90	
		Apr-15 Apr-16		4.15 3.55	8.66 7.35	
	MW-104	Apr-14		1.42	0.72	
		Apr-14 Nov-14	FD	1.42 1.3 J	0.69 0.70	
		Nov-14	FD	1.40	0.62	
		Apr-15 Apr-15	FD	0.78	0.81 0.79	
		Oct-15		1.05	1.06	
		Oct-15 Apr-16	FD	1.18 0.797	3.00 2.23	
		Apr-16	FD	0.775	2.19	
		Oct-16 Oct-16	FD	1.35	2.55 2.68	
ı	MW-105	Nov-14	Í	14.00	7.80	
		Apr-15 Oct-15	+	6.50 4.37	3.74 2.31	
		Apr-16		33.6	21.2	
-	MW-106	Oct-16 Apr-14	+	43.7 27.90	8.66 2.10	
	50	Apr-15		1.52	3.40	
		Oct-15 Apr-16	+	23.80	19.6 19.5	
Ĺ		Oct-16	ш	27.1	21.8	
	MW-107	Apr-14 Nov-14	+	7.32 17.00	4.90 4.90	
		Apr-15		9.85	7.20	
		Oct-15	+1	14.9 J 4.89	4.72 6.80	
		Apr-16 Oct-16		17.7	6.80 7.24	
Ī	MW-109	Apr-14	\Box	2.02	2.70	
		Nov-14 Apr-15	+	1.00 2.36	3.70 8.10	
		Oct-15		1.46	0.842	
		Apr-16 Oct-16	╁┼	1.93 2.12	5.92 3.19	
ŀ	MW-110	Apr-14	ш	2.05	1.20	
		Nov-14 Apr-15	+	0.47 1.12	0.820 2.20	
			-		<0.0247	
		Oct-15 Apr-16		1.48 0.735	1.55	

	iery, Artesia, iv	Analyte 0	Group:		TPH	
		А	nalyte:	GRO	DRO	DRO - EP
		CC	Units:	mg/L	mg/L	mg/L
		CGWSL S		1	0.200 NMED TPH	0.400 NMED TPI
Area	Well ID RA-313	Date Apr-13	Dup		1	
	104-010	Apr-14				
ery		Apr-15 Apr-16				
South Refinery	RW-4	Apr-15			3.72	
£ -	RW-4R RW-5R	Apr-16 Apr-15	+		5.03 6.42	
S		Apr-16			7.39	
-	RW-6 RW-6R	Apr-15 Apr-16			11.40 4.20	
	MW-114	Apr-14		<0.0100	<0.020	
		Nov-14 Apr-15		<0.031 <0.0310 J	0.032 J <0.0250 B	
		Oct-15		<0.0314	<0.0247	
므		Apr-16 Oct-16		<0.0314 <0.0314	0.0317 J 0.0410 J	
Reject Field	MW-115	Apr-14		<0.0100	<0.021	
sejec		Nov-14 Apr-15		<0.031 <0.0310 J	0.110 <0.0250 B	
8		Oct-15		0.0324 J	0.103	
South RO		Apr-16 Oct-16		<0.0314 <0.0314	0.0616 J 0.0582 J	
S	MW-116	Apr-14		<0.0100	<0.021	
		Nov-14 Apr-15		<0.031 <0.0310 J	0.026 J <0.0250 B	
		Oct-15		<0.0314	0.0607 J	
		Apr-16 Oct-16		<0.0314 <0.0314	0.112 0.0868 J	
T	MW-49	Apr-14		1.99	5.60	
		Nov-14 Apr-15		1.00 0.65	7.00 8.60	
		Oct-15		1.58	7.66	
		Apr-16 Oct-16		1.75 2.82	8.63 9.26	
	TEL-1	Apr-14		0.384 J	8.70	
		Apr-14 Nov-14	FD	0.35 0.20	7.70 6.00	
		Apr-15		0.18	9.80	
		Oct-15 Apr-16		0.15 0.153	7.46 8.51	
L		Oct-16		0.193	3.58	
	TEL-2	Apr-14 Nov-14		6.08 J 1.7 J	17.0 18.0	
		Apr-15		5.12	20.0	
		Oct-15 Apr-16		2.86 3.12	18.7 J 18.1	
E		Oct-16		3.08	17.0	
	TEL-3	Apr-14 Nov-14		0.971 J 0.45	8.30 6.30	
		Apr-15		0.43	9.40	
		Oct-15 Apr-16		0.63 1.05	5.86 14.1	
		Oct-16		0.589	4.22	
	TEL-4	Apr-14		3.11 J	8.60 7.40	
		Nov-14 Nov-14	FD	3.30 2.80	5.70	
		Apr-15	FD	2.09 2.26	8.40 8.50	
		Apr-15 Oct-15	FD	2.77	4.98	
		Oct-15	FD	2.70	5.73	
		Apr-16 Apr-16	FD	2.36 2.65	9.13 8.65	
		Oct-16		2.52	6.36	
+	MW-8	Oct-16 Oct-13	FD	2.72 <0.0500	6.66 < 0.052	
		Apr-14		<0.0100	<0.021	
		Apr-15 Apr-16		<0.0310 <0.0314	0.380 0.230	
Ī	MW-16	Apr-13			<0.052	
		Apr-14 Apr-15			0.058 0.340	
Ī	MW-20	Apr-13			< 0.053	
		Apr-14 Apr-14	FD		<0.020 <0.020	
		Apr-15			0.150	
}	MW-21	Apr-16 Apr-14		<0.0100	0.149 <0.020	
		Nov-14		<0.031	0.092 J	
		Apr-15 Oct-15	+	<0.0310 <0.0314	0.180 0.194	
۵		Apr-16		< 0.0314	0.190	
TMD	MW-25	Oct-16 Apr-13		<0.0314	0.132 <0.052	
	-	Apr-14			<0.020	
		Apr-15 Apr-16			0.690 0.348	
ľ	MW-26	Apr-13			< 0.053	
		Apr-14 Apr-15			<0.020 0.0530 J	
L		Apr-16			0.103	
ſ	MW-27	Apr-13 Apr-14	HĪ		<0.052 <0.021	
		Apr-15			0.110	
-	MW-46R	Apr-16 Apr-14	+		0.134 <0.021	
		Nov-14			0.042 J	
		Apr-15 Apr-16	+		0.0540 J 0.0622 J	
- 1		Oct-16	+		0.0622 J 0.0459 J	

Appendix B, Table B.1 - Summary of Groundwater Analytical Data - Total Petroleum Hydrocarbons

2016 Annual Groundwater Report

HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

		A	nalyte:	GRO	DRO	DRO - EP		
			Units:	mg/L	mg/L	mg/L		
		C	GWSL:	mg/L	0.200	0.400		
		CGWSL S	-		NMED TPH	NMED TPH		
Area	Well ID	Date	Dup		1111120 11111	1111120 11 11		
	MW-68	Apr-13			< 0.052			
		Apr-14			<0.020			
		Apr-15			0.130			
		Apr-16			0.162			
r	MW-71	Oct-13			0.096			
		Apr-14			<0.021			
		Apr-15			0.0930 J			
		Apr-16			0.0252 J			
F	MW-89	Apr-13			0.058			
_		Apr-14			0.210			
TMD		Apr-15			2.40			
=		Apr-16			3.38			
r	NP-1	Apr-14						
		Nov-14						
		Apr-15						
		Oct-15						
		Apr-16						
		Oct-16						
Г	NP-2	Apr-13		< 0.0500	< 0.052			
Γ	NP-6	Apr-13						
		Apr-15						
	UG-1	Apr-13		< 0.0500	< 0.053			
		Apr-14		<0.0100	<0.021			
		Apr-15		< 0.0310	<0.0250 B			
		Apr-16		< 0.0314	0.0302 J			
Г	UG-2	Apr-13		< 0.0500	< 0.052			
Ħ		Apr-13	FD	<0.0500	< 0.053			
<u>e</u> .		Apr-14		<0.0100	<0.020			
ïä		Apr-15		<0.0310	<0.0250 B			
Up-Gradient		Apr-16		< 0.0314	0.0692 J			
⊃ _	UG-3R	Apr-13		<0.0500	< 0.053			
		Apr-14		<0.0100	<0.020			
		Apr-14	FD	<0.0100	<0.020			
		Apr-15		<0.0310	<0.0250 B			
		Apr-16		< 0.0314	< 0.0247			

		Analyte	Group:	TPH							
		,	Analyte:	GRO	DRO	DRO - EP					
			Units:	mg/L	mg/L	mg/L					
		С	GWSL:		0.200	0.400					
		CGWSL	Source:		NMED TPH	NMED TPH					
Area	Well ID	Date	Dup								

Definitions

х Reported concentration, X, exceeds the CGWSL х

Analyte detected above the detection limit at a concentration equal to X

Analyte not detected at detection limit equal to x. Analyte not detected at detection limit equal to x, but x exceeds the CGWSL.

Blank cell indicates a sample was collected from the well during the indicated sampling event, but the analyte was not analyzed.

NMED Risk Assessment Guidance for Site Investigations and Remediation, February 2012, Table 6-2 TPH Screening Guidelines for Potable

Abbreviations

NMED TPH

< x

CGWSL Critical Groundwater Screening Level (see Table 3)

CGWSL Source Source for CGWSL value (see Table 3)

DRO diesel range organics DRO-EP

diesel range organics data from wells located in the Evaporation Ponds area FD

field duplicate sample GRO gasoline range organics mg/L milligrams per liter

NMED TW

NMED Risk Assessment Guidance for Site Investigations and Remediation, July 2015, Table A-1, Tap Water Screening Level

United States Environmental Protection Agency Tap Water screening level, "Regional Screening Levels for Chemical Contaminants at Superfund USEPA TW

USEPA MCL

United States Environmental Protection Agency Maximum Contaminant Level, "Regional Screening Levels for Chemical Contaminants at Superfund Sites", November 2015 WQCC HH NMED Groundwater standard for human health exposure, NMAC 20.6.2.3103.A

TPH total petroleum hydrocarbons

Lab Footnote

Analyte was also detected in the associated method blank

Е The sample concentration exceeds machine calibration.

н The reported result is from a sample analyzed outside of Holding Time.

Indicates an estimated value. J

J3 The associated batch QC was outside the established quality control range for precision.

The associated batch QC was outside the established quality control range for accuracy. The sample matrix interfered with the ability to make any accurate determination; spike value is high.

The sample matrix interfered with the ability to make any accurate determination; spike value is low.

01 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

The sample concnetration is rejected based on data validation.

The sample concentration is too high to evaluate accurate spike recoveries.

Appendix B, Table B.2 - Summary of Groundwater Analytical Data - Total Metals

2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

Analyte Group **Total Metals** Analyte Arsenic Barium Boron Cadmium Cobalt Chromium Iron Manganese Mercury Nickel Selenium Uranium Vanadium Linit mg/L mg/L 1.00 mg/L 0.75 mg/l 0.005 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L **CGWSI** 0.050 0.050 1.00 0.015 0.200 0.002 0.200 0.0631 CGWSL Source JSEPA MC WOCC HH WOCC Irr JSEPA MCL WQCC Irr WQCC HH WOCC HH WOCC HH NMED TW Area Well ID Date Dur Apr-13 Apr-14 0.00259 J 0.0145 0.00121 J 0.0126 0.0172 Apr-15 Apr-16 0.0118 0.122 0.0459 0.0182 0.00621 J 12.3 4.00 0.019 0.00403 0.399 0.0747 **0.0144** <0.00175 0.011 0.0188 0.0426 0.0304 0.384 <0.005 0.00161 J 0.0261 J MW-17 Apr-14 < 0.00200 0.0152 < 0.00200 < 0.100 0.00724 < 0.00500 0.0104 Crossgradient Apr-13 0.0135 Apr-15 0.00288 0.0159 0.00109 J 0.437 0.000415 0.00318 J 0.0125 Apr-13 Nov-13 Apr-14 Oct-15 0.00381 0.103 0.00365 1.18 0.00218 0.204 <4.9E-05 0.00425 0.00463 0.0212 0.0270 0.0134 0.00280 J 0.00284 0.695 0.512 <0.005 **0.00132 J** <0 0.0591 0.0112 B <4.9E-05 <4.9E-05 0.0112 0.00562 0.0702 0.0197 J 0.0176 0.000279 J 0.00118 JE 0.0892 JB 0.00094 JE 0.0018 MW-1F Apr-13 < 0.0250 < 0.0250 1.64 < 0.0250 < 0.0250 1.59 Apr-14 Apr-15 0.00335 J 0.0214 < 0.00200 2.39 < 0.00140 1.38 <0.00200 <0.00190 < 0.00120 0.00366 0.0240 J 2.14 J 0.0188 Apr-14 0.0194 J 0.0222 J 0.737 J 1.21 0.048 0.0078 3.10 <0.0012 1.50 0.0051 J 0.0155 J 0.571 J 1.98 0.0255 J Apr-15 Oct-15 <0.00240 <0.00540 0.00962 0.0154 0.0241 0.0228 J 0.588 3.37 2.88 0.00153 J Apr-16 Oct-16 0.00798 0.0208 0.00105 J 0.146 < 0.00024 1.43 0.00056 J MW-3 Apr-14 Nov-14 0.0298 0.0081 0.022 J 0.022 J 0.570 0.019 0.035 2.20 Nov-14 0.006 0.340 J < 0.0012 2.50 Apr-15 Apr-15 0.0288 0.0186 J 0.0215 0.108 0.112 0.000346 0.00198 J 0.0806 J Oct-15 0.0248 0.0157 0.366 0.000298 1.29 0.00892 Oct-15 0.0281 0.0158 0.00107.1 0.559 0.000371 0.00804 2.61 0.00580 J Apr-16 0.0388 0.0175 J < 0.0027 0.67 < 0.0012 Apr-16 0.0348 0.0168 J < 0.00270 0.612 < 0.00120 2.62 0.00575 J 0.000868 J 0.000241 J 0.0553 0.0152 0.000869 J 0.000692 J 1.60 0.00263 0.147 0.057 0.108 J MW-4A Apr-14 Nov-14 0.0121 2 31 <0.00140 <0.0012 2 24 0.820 3.15 Apr-15 0.0139 J 0.00570 J < 0.00120 < 0.00190 Oct-15 0.112 0.188 0.014 0.0125 J 0.00126 J <0.00024 0.000588 J Apr-16 Oct-16 <0.00190 0.000608 J 0.172 0.0121 0.000815 J 1.08 0.000566 1.69 MW-0.0371 <0.0250 0.101 0.0349 3.60 0.00189 8.68 Apr-14 Nov-14 0.106 0.064 <0.00500 <0.0027 7.10 4.40 1.74 MW-54 0.0142 J <0.00500 0.0040 J 0.014 J Apr-15 0.0938 0.0128 J < 0.00540 5.62 < 0.00240 1.84 0.0705 0.000685 J 0.000954 J Apr-16 0.213 0.0149 J 8.10 1.34 Oct-16 0.0638 0.0117 < 0.000540 4.19 0.000445 J 0.000606 J 0.122 <0.0250 Apr-13 0.0112 J 0.00277 J 3.87 0.00197 J Apr-15 6.11 < 0.00120 1.04 MW-5C Apr-13 0.0139 0.0166 <0.0100 0.943 Apr-15 0.0145 0.0200 J < 0.0012 0.975 < 0.00190 Mar-13 Apr-14 <0.00500 MW-6A 0.00788 0.0143 < 0.00500 0.660 0.277 < 0.00500 0.00234 J Evaporation Apr-15 0.0129 0.0308 0.155 < 0.0012 1.40 0.0308 0.00953 0.0158 J < 0.00270 < 0.0012 0.505 1.54 0.0139 < 0.00500 <0.0050 2.39 Mar-13 < 0.00500 Mar-13 Apr-15 0.0537 0.0163 <0.00500 <0.00110 1.69 <0.00500 2.43 <0.00500 <0.000760 0.0333 Apr-14 0.0152 < 0.00200 2.99 < 0.00140 0.509 < 0.00200 Nov-14 0.021 < 0.0012 < 0.0019 0.0027 J Apr-15 0.019 0.0149 0.000895 0.984 1.11 0.000620 J Apr-15 Oct-15 0.0194 0.0156 0.996 0.000288 0.000494 1.06 0.00131 J 0.00116 J Oct-15 0.0253 0.0159 0.00114 J 2.86 0.000524 0.629 0.000647 J Apr-16 Apr-16 0.0382 0.0170 J 0.00370 J <0.0012 <0.00190 0.0305 0.0158 J 4.43 0.588 Oct-16 Oct-16 0.0181 0.00184 J 0.000527 J 0.563 0.000402 J 0.0159 1.66 Apr-13 < 0.0250 <1.00 < 0.0250 0.397 0.00588 0.000702 J < 0.000380 0.188 Apr-14 0.0211 0.0134 < 0.00200 <0.100 < 0.00140 2.70 <0.00200 Nov-14 0.019 0.021 0.00092 JB 0.140 0.00098 J 2.40 0.0015 J Apr-15 Oct-15 <0.00270 <0.0750 <0.000540 **0.0570 J** 0.0173 0.0124 2.55 0.0196 0.0123 J 2.83 MW-11/ Apr-14 < 0.0100 0.0321 < 0.0100 2.50 1.56 < 0.0100 <0.00500 0.0410 J <0.0100 <0.300 <0.00480 0.912 <0.00760 Apr-15 Oct-15 < 0.00125 0.0301 0.00353 J 0.416 J < 0.0012 0.876 V < 0.00190 Oct-16 0.316 MW-11 Mar-13 < 0.0250 < 0.0250 < 0.0250 3.25 <0.0250 < 0.0250 0.00453 J 0.0189 J Apr-15 0.427 MW-12 Apr-14 < 0.00500 0.0194 0.441 J 0.200 0.0172 J MW-13 <0.00200 Mar-13 0.0337 0.0218 < 0.0100 Apr-14 0.0605 0.0279 0.0217 0.0236 J 0.00381 J < 0.00140 0.363 0.861 0.00535 J Apr-15 Apr-16 0.0216 0.0203 J <0.07 0.887 0.00201 J Apr-14 Nov-14 0.0034 0.016 0.00080 JB 1.10 0.00030 J 0.076 <4.9E-05 0.0065 B 0.0069 0.0047 J Apr-15 Oct-15 0.0041 0.0129 0.000794 J 0.379 0.0221 <4.9E-05 0.00225 0.0503 0.00652 0.00485 0.000262 0.00108 J 0.00644 J 0.0155 J 0.358 J 0.366 0.0121 J 0.0417 J 0.00258 J 0.00411 0.0166 <0.00016 <0.000260 <0.000540 <0.00024 0.576 <4 9F-05 0.00618 0.000448.1 0.00128.1

Appendix B, Table B.2 - Summary of Groundwater Analytical Data - Total Metals 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

	А	nalyte Gr	roup:	Total Metals													
Analyte Units				Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron mg/l	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
	CGWSI			mg/L 0.010	mg/L 1.00	mg/L 0.75	mg/l 0.005	mg/L 0.050	mg/L 0.050	mg/L 1.00	mg/L 0.015	mg/L 0.200	mg/L 0.002	mg/L 0.200	mg/L 0.050	mg/L 0.030	mg/L 0.0631
	C	GWSL So		USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH		USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID	Date	Dup														
	MW-18B	Apr-13		<0.0100	0.0126				<0.0100	<0.400	<0.0100	0.572			<0.0100		
	MW-22A	Apr-15 Apr-14		0.012 0.0568	0.0125 0.0153				0.000942 J <0.00200	0.139 2.19	0.000814 J <0.00140	0.789 3.61			<0.000380 <0.00200		
	WWW-ZZ/N	Nov-14		0.060	0.019				0.00081 JB	6.90	<0.00024	6.00			0.0016 J		
		Nov-14	FD	0.064	0.018 J				0.0030 J	8.10	<0.0012	6.30			<0.0019		
		Apr-15 Apr-15	FD	0.0545 0.0362	0.0179 J 0.0147 J				<0.00270 <0.00270	2.34 2.89	<0.00120 <0.00120	5.18 4.36			<0.00190 <0.00190		
		Oct-15		0.0482	0.0166				<0.000540	4.62	<0.000240	5.86			0.000966 J		
		Oct-15	FD	0.0479	0.0165				<0.000540	4.54	<0.000240	5.81			0.000979 J		
		Apr-16 Apr-16	FD	0.0449 0.0455	0.0174 J 0.0167				<0.00270 <0.00270	4.42 4.46	<0.00120 <0.00120	6.06 6.20			<0.00190 <0.00190		
		Oct-16	<u> </u>	0.0452	0.0179				0.000678 J	5.41	<0.000240	7.28			0.000938 J		
		Oct-16	FD	0.0447	0.0183				0.000633 J	5.26	<0.000240	7.15			0.000874 J		
	MW-22B	Apr-13 Apr-15		0.0343 0.0389	<0.0250 0.0160 J				<0.0250 <0.00270	1.78 2.32	<0.0250 0.00134 J	3.37 4.32			<0.0250 <0.00190		
	MW-70	Apr-14		0.0286	0.0157				<0.00270	3.36	<0.001343	0.262			<0.00190		
		Nov-14		0.021	0.020				0.00055 J	2.50	<0.00024	0.730			0.00044 J		
		Apr-15 Oct-15		0.0252 0.0163	0.0151 0.0166				0.000653 J <0.000540	3.29 2.99	<0.000240 <0.000240	0.222 0.227			<0.000380 <0.000380		
		Apr-16		0.0238	0.0147 J				<0.00270	6.19	<0.00120	0.543			<0.00190		
	104/70	Oct-16		0.0189	0.0162				<0.000540	4.69	<0.000240	0.381			<0.000380		
	MW-72	Nov-13 Apr-14		0.0929 0.048	0.0186 0.0154				<0.0100 <0.00100	20.9 7.13	<0.00500 <0.000700	5.26 5.69			<0.0100 <0.00100		
1		Apr-15		0.149	0.0321				<0.00270	32.3	<0.00120	3.05			0.0155		
1	14147 75	Apr-16	L	0.0318	0.0195 J				<0.00270	7.20	<0.00120	4.86			<0.00190		
	MW-73	Oct-13 Apr-14	1	0.108 0.0982	0.012 0.0132 J				<0.00500 <0.00500	9.29 5.71	<0.00500 <0.00350	3.09 2.77	1		<0.00500 <0.00500		
		Apr-15		0.0757	0.00999 J				<0.00270	2.40	<0.00120	2.61			0.00233 J		
	N 47 47	Apr-16	L	0.0990	0.0114 J				<0.00270	8.28	<0.00120	3.17			0.00201 J		
1	MW-74	Apr-14 Nov-14	 	0.0599 0.062	0.0137 J 0.014				<0.00500 0.00074 JB	<0.250 0.110	<0.00350 <0.00024	1.18 0.88	1		0.193 0.250		
1		Apr-15	L	0.0549	0.00894 J				<0.00270	0.175 J	<0.00120	0.406			0.480		
		Oct-15		0.0733	0.0127				<0.00108	<0.030	<0.000480	1.17			0.0608		
1		Apr-16 Oct-16	\vdash	0.136 0.0699	0.0151 J 0.0147				<0.00270 0.00120 J	0.756 0.203 B	<0.00120 <0.000240	2.19 0.0907			0.0150 0.585		
	MW-75	Apr-14		0.299	0.0166				0.00120 J	4.01	<0.00140	1.10			0.00288 J		
		Nov-14		0.350	0.016				0.0019	4.20	0.00029 J	0.960			0.0025		
		Apr-15 Oct-15		0.400 0.328	0.0183 J 0.0149				0.00396 J 0.00155 J	10.7 3.75	<0.00120 <0.000240	0.901 0.821			0.00311 J 0.00248		
		Apr-16		0.183	0.0218 J				<0.00270	2.52	<0.00120	1.01			0.00240 0.00310 J		
		Oct-16		0.275	0.0150				0.00156 J	3.29	<0.000240	0.916			0.00245		
	MW-76	Apr-14 Nov-14	<u> </u>	0.0712 0.100	0.0151 0.018				0.00181 J 0.0027	4.00 5.10	<0.000700 0.00046 J	1.06 1.80			0.00301 J 0.0049		
		Apr-15		0.0777	0.0127 J				<0.0027	4.04	<0.00120	1.10			0.00258 J		
		Oct-15		0.0582	0.0143				0.00126 J	3.75	0.000242 J	0.753			0.0025		
		Apr-16 Oct-16		0.0610 0.0818	0.0140 J 0.0163				<0.00270 0.00266	4.68 6.79	<0.00120 <0.000240	1.07 1.25			0.00298 J 0.00582		
ø	MW-77	Apr-14	t	0.0765	0.0138				0.00200 0.00884 J	9.80	<0.000240	1.06			0.0113		
Evaporation Ponds		Nov-14		0.054	0.013 J				0.0097	9.80	0.0013 J	0.770			0.021		
lo o		Apr-15 Oct-15		0.0928 0.0500	0.0158 J 0.0132 J				0.0144 0.00980 J	14.9 8.54	<0.00120 <0.00120	0.666 0.703			0.0135 0.0119		
orat		Apr-16		0.0749	0.0136 J				0.0132	12.2	<0.00120	0.687			0.0137		
vap		Oct-16		0.0505	0.0120 JB				0.00899 J	7.87	<0.00120	0.706			0.00996 J		
ш	MW-78	Mar-13 Apr-14		<0.0250 0.0217	0.0284 0.0388				0.0843 0.0476	<1.00 7.58	<0.00500 0.00107 J	0.491 1.46			<0.0250 0.0105		
		Apr-15		0.0211	0.0318				0.133	12.3	<0.00120	1.29			0.0156		
	104/70	Apr-16		0.0210	0.0445				0.0761	14.8	<0.00120	0.946			0.0141		
	MW-79	Apr-14 Nov-14		0.0188 0.0073	0.0138 0.020				<0.00200 0.00065 JB	0.108 J 0.230	<0.00140 <0.00024	1.34 4.00			0.00675 J 0.0017 J		
		Apr-15		0.00807 J	0.0154 J				<0.00270	0.276 J	<0.00120	1.46			<0.00190		
		Oct-15		0.0126	0.0165 0.0181 J				<0.00108	3.03	<0.000480 <0.00120	3.76			0.00144 J <0.00190		
		Apr-16 Oct-16		0.0113 0.0208	0.0181 J				<0.00270 <0.000540	0.882 5.37	<0.00120	3.00 3.68 V			<0.00190		
	MW-80	Mar-13		<0.0250	<0.0250				<0.0250	1.31	<0.0100	0.583			<0.0250		
1		Apr-14		0.0143 0.0187	0.016 0.0151 J				<0.00200 <0.00270	2.10 1.73	<0.00140 <0.00120	0.703 0.555			<0.00200 <0.00190		
		Apr-15 Apr-16		0.0187 0.00788 J	0.0151 J 0.0185 J				<0.00270 0.0465	1.73	<0.00120	0.555			<0.00190		
	MW-81	Mar-13		<0.0250	< 0.0250				<0.0250	<1.00	<0.0100	2.14			<0.0250		
		Mar-13 Apr-14	FD	<0.0250 0.0188	<0.0250 0.0162				<0.0250 <0.00200	<1.00 <0.100	<0.0100 <0.00140	2.08 0.137	-		<0.0250 0.00757 J		
1		Apr-14 Apr-15	L	0.0188	0.0162 0.0131 J				<0.00200	0.183 J	<0.00140	0.137			0.00757 3		
1		Apr-16		0.030	0.0212 J				< 0.00270	0.136 J	<0.00120	0.106			0.0467		
	MW-82	Mar-13 Apr-14	 	0.105 0.133	<0.0250 0.021				<0.0250 <0.00200	1.80 3.06	<0.0250 0.000773 J	1.55 1.33	 		<0.0250 <0.00200		
		Apr-14	FD	0.126	0.021				<0.00200	2.73	<0.00140	1.36			<0.00200		
1		Apr-15		0.0929	0.0302				0.00570 J	1.68	<0.00120	1.38			0.00302 J		
	MW-83	Apr-16 Apr-14		0.0510 0.0388	0.0387 0.0197				<0.00270 0.00430 J	0.414 J 4.65	<0.00120 0.000914 J	1.76 0.986			0.00199 J 0.00977		
		Nov-14	L	0.03	0.046				0.0089	12.0	0.00037 J	0.700			0.0075		
1		Apr-15		0.0304	0.0116 J				0.0115	8.98	<0.00120	0.863			0.00376 J		
1		Oct-15 Apr-16	 	0.0215 0.0313	0.0403 0.0248 J				0.00791 0.0153	1.87 5.63	0.000860 J <0.00120	0.170 0.573	1		0.00806 0.00364 J		
		Oct-16	L	0.0131	0.121				0.00973	1.85	0.00141 JB	0.434			0.00925		
	MW-84	Apr-14		0.114	0.0144				0.00416 J	3.21	<0.000700	3.58			0.00577 J		
1		Nov-14 Apr-15	-	0.083 0.116	0.029 0.0135 J				0.019 B 0.00500 J	1.60 2.54	<0.00024 <0.00120	3.60 2.83	1		0.014 0.00452 J		
		Oct-15		0.0827	0.0249 J				0.022	0.397 J	<0.00240	2.74			0.0308		
		Apr-16	H	0.115	0.0173 J				0.00771 J	1.27	<0.00120	3.30			0.00714 J		
1	MW-87	Oct-16 Apr-14	H	0.0981 0.00862 J	0.0189 0.0168				0.00917 <0.0250	0.868 0.789	<0.000240 <0.00140	2.71 0.103	-		0.0110 < 0.00200		
		Nov-14	L	0.0024	0.027				0.00082 JB	0.200	<0.00024	1.50			0.0014 J		
		Apr-15	L	0.00635	0.0184				0.000789 J	0.194	<0.000240	0.102			0.00115 J		_
		Oct-15 Apr-16	1	0.00702 0.0106	0.0322 0.0200 JO1				<0.000540 <0.00270	11.8 4.56	<0.000240 <0.00120	6.04 2.70 V	1		0.00131 J <0.00190		
1		Oct-16	L	0.00673	0.0179				<0.000540	1.53	<0.000240	0.731			<0.000380		
	MW-88	Apr-14		0.0106	0.0115				<0.00200	<0.100	<0.00140	0.796			<0.00200		
1		Nov-14 Apr-15	\vdash	0.012 0.0231	0.021 0.0132 J				<0.00054 <0.00270	1.40 2.11	<0.00024 <0.00120	1.60 1.42			0.0015 J <0.00190		
1		Oct-15		0.00917	0.01323				<0.00270	0.0268 J	<0.00120	0.772			<0.000380		
1		Apr-16	L	0.00976 J	0.0107 J				<0.00270	< 0.0750	<0.00120	0.844			<0.00190		
1		Oct-16	<u> </u>	0.00911	0.0104				0.000551 J	<0.0150	<0.000240	0.976	1		<0.000380	l	

Appendix B, Table B.2 - Summary of Groundwater Analytical Data - Total Metals 2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

Color Colo	Analyte Group:			Total Metals													
March Marc		Units:			Barium												
The column The																	
Move Color																	
WATER Colored Colore	_			USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Month Mont	Area	Well ID	Date Dup														
March Marc		MW-120	Apr-14	0.0307	0.0335				0.00217 J	8.09	0.00213 J	1.19			<0.00200		
Company Comp																	
March Marc																	
Decision Company Com									<0.000540								
Wilson W																	
No. Co.		101/ 404															
April		IVIVV-121															
Court Cour																	
March Marc																	
West Company																	
No. 1																	
Color		MW-122	Apr-14	0.00917 J	0.0406				<0.00200	5.37	0.00144 J	2.09			<0.00200		
Col.			Nov-14														
Married 1,000 1,																	
Min																	
Min																	
Total		MW-123															
Page 12 0.0000		14144-120															
Col-10																	
Column																	
Windle				0.0275	0.0242 J				<0.00270	<0.0750	<0.00120	2.92					
Tenn																	
Page 15	1	MW-124															
Col.						 					0.00051 J						
Col.						 											
Col.	1																
Cornel C						1											
No. No. No. No. No. No		OCD-1R															
April 0.00662 0.0076 0																	
COLD COMPAT COLD											<0.00240						
OCD-36 0.000242	1		Oct-15	0.00447	0.0184				<0.00108	0.593	<0.000480	1.59			0.00229 J		
COCAM April 0.000323 0.0118 0.000000 0.428 0.000140 0.8683 0.000000 0.0000000 0.0000000 0.00000000																	
No. 16																	
April 0.00001 0.00001 0.00001 0.00000 0.00000 0.00000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.00000000		OCD-2A															
Col.																	
April Cocker Co	"																
Agr-16 0.00389	ģ																
Agr-16 0.00389	P.																
Agr-16 0.00389	Ę.	OCD-3			0.0198					1.69		0.134					
Agr-16 0.00389	ora		Nov-14						< 0.0027	2.2 V	< 0.0012	0.160 J					
Agr-16 0.00389	/ap			0.00421 J	0.0198 J					1.69		0.165			<0.00190		
Oct-16	ш																
CCD-4																	
No14 0.0098 J 0.028 J 0.028 -0.0027 3.80 -0.0012 0.310 -0.00919		0.00 4															
Rg-15		OCD-4															
Col-15																	
Rpt-16																	
OCL-5 Q-1-14 Q-1078 Q-																	
## Apr-14 FD 0.04991 0.0281																	
Nov-14		OCD-5	Apr-14	0.00738 J	0.0206				<0.00200	2.47	<0.00140	0.411			< 0.00200		
April 5			Apr-14 FD	0.00491 J	0.0211				<0.00200	1.28		0.364			<0.00200		
Oct-16																	
Apr-16 0.0128 0.0278 0.000270 15.6 0.00077 0.2677 0.000240 0.2987 0.000380 0.000380 0.0000380 0.0003																	
CCD-6																	
OCD-6																	
Nov-14		OCD-6															
April Apri	1	202-0															
Col.																	
April 0.0139 0.0214 0.000270 2.39 0.00120 2.22 0.00090 0.00090 0.0016 0.00120 0.0023 0.00090 0.000																	
CCD-7AR Apr-14 0.158 0.0147	1			0.0139													
Apr-14 FD 0.165 0.0152	1																
Nov-14		OCD-7AR				ļ											
Apr-15																	
Col.	1																
Apr-16	1																
OCD-78 Mar-13	1																
OCD-78 Mar-13									0.000837 J		<0.000240						
OCD-8A Apr-14 FD 0.0683 0.0218		OCD-7B		<0.00500	0.016				<0.00500	<0.200		0.0246			<0.00500		
Apr-14 FD 0.0683 0.0218	1																
Nov-14	1	OCD-8A															
Apr-15						 											
Cot-15	1																
Apr-16	1																
CC-16 CO-68 Apr-13 CO-68 Apr-13 CO-68 Apr-14 CO-68 Apr-15 CO-68 Apr-16 CO-68 CO-68 Apr-16 CO-68						0.813	<0.005	<0.00130								<0.00165	
OCD-88 Apr-13 <0.0250 <0.0250 <0.0250 <1.00 <0.0250 0.417 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.0250 <0.00525 <0.00525 <0.00525 <0.00525 <0.00525 <0.00525 <0.00525 <0.00600 <0.00600 <0.00770 <0.000700 0.371 <0.000700 0.371 <0.000700 0.371 <0.000700 0.371 <0.00076 <0.00525 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 <0.00600 0.640 <0.00600 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.640 <0.00600 0.645 <0.00600 0.645 <0.006000 0.00600 0.677 0.000600 0.677 0.000600 0.0077 0.00000 0.00121 0.000000 0.00133 0.00133 0.000133 0.00121 0.000600 0.000600 0.000600 0.000600 0.000600 0.000600 0.000600 0.00600 0.00600 0.000600 0.00	1																0.00130 J
RWB-1A Apr-14 0.00126 0.0141 0.000872 J 0.239 0.000392 J 5.98 0.000382 J 0.000382 J 0.000382 J 0.000383 0.000100 0.0223 0.000740 0.000700 0.000710 0.0000710 0.000710 0.000710 0.000710 0.000710 0.000710 0.0	1	OCD-8B															
KWB-1A Apr-14 0.0041 J 0.010	L																
Nov-14		KWB-1A	Apr-14	0.00441 J	0.010				<0.00100	0.0770 J	<0.000700	0.371			<0.00100		
Col.15	1			0.0035										0.0082			0.037
Apr-16 0.00401 J 0.0131 0.741 <0.005 0.0142 <0.00270 <0.00750 <0.00120 0.552 <4.9E-05 0.0100 0.00528 J 0.0247 J 0.0258	1																
Apr-16 0.0104 0.0550 0.503 <0.005 0.00739 J <0.00270 1.42 <0.00120 3.48 <4.9E-05 0.0121 <0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 <0.00016 0.00298 <0.000540 0.677 0.000441 J 3.04 <4.9E-05 0.0107 <0.000380 0.00286 J 0.000901 J	ž															0.55	
Apr-16 0.0104 0.0550 0.503 <0.005 0.00739 J <0.00270 1.42 <0.00120 3.48 <4.9E-05 0.0121 <0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 <0.00016 0.00298 <0.000540 0.677 0.000441 J 3.04 <4.9E-05 0.0107 <0.000380 0.00286 J 0.000901 J	fine																
Apr-16 0.0104 0.0550 0.503 <0.005 0.00739 J <0.00270 1.42 <0.00120 3.48 <4.9E-05 0.0121 <0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 <0.00016 0.00298 <0.000540 0.677 0.000441 J 3.04 <4.9E-05 0.0107 <0.000380 0.00286 J 0.000901 J	å	KWP 10				0.608 O1V	~ 0.00016	u.U143					\4.9E-U5	U.UU846		U.U188	U.U204
Apr-16 0.0104 0.0550 0.503 <0.005 0.00739 J <0.00270 1.42 <0.00120 3.48 <4.9E-05 0.0121 <0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 <0.00016 0.00298 <0.000540 0.677 0.000441 J 3.04 <4.9E-05 0.0107 <0.000380 0.00286 J 0.000901 J	t of	KWB-1C				 											
Apr-16 0.0104 0.0550 0.503 <0.005 0.00739 J <0.00270 1.42 <0.00120 3.48 <4.9E-05 0.0121 <0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 <0.00016 0.00298 <0.000540 0.677 0.000441 J 3.04 <4.9E-05 0.0107 <0.000380 0.00286 J 0.000901 J	as	KWR-7											<2 NF-N4	0 0237			0.0139
Apr-16 0.0104 0.0550 0.503 <0.005 0.00739 J <0.00270 1.42 <0.00120 3.48 <4.9E-05 0.0121 <0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 <0.00016 0.00298 <0.000540 0.677 0.000441 J 3.04 <4.9E-05 0.0107 <0.000380 0.00286 J 0.000901 J	泉																
Apr-16 0.0104 0.0550 0.503 < 0.005 0.00739 J < 0.00270 1.42 < 0.00120 3.48 < 4.9E-05 0.0121 < 0.00190 0.00299 J 0.00196 J Oct-16 0.00597 0.0560 0.455 < 0.00016	iξ																
			Apr-16	0.0104	0.0550				<0.00270	1.42	<0.00120	3.48	<4.9E-05	0.0121	<0.00190		0.00196 J
KWB-8 Oct-16 0.00109 J 0.139 0.665 <0.00016 <0.000260 0.00071 JB 0.672 0.00387 0.997 <4.9E-05 J6 0.00102 JB 0.000475 J 0.000746 J 0.00122 JB 0.000475 J 0.000746 J 0.00122 JB 0.001475 J 0																	0.000901 J
		KWB-8	Oct-16	0.00109 J	0.139	0.665	<0.00016	<0.000260	0.00071 JB	0.672	0.00387	0.997	<4.9E-05 J6	0.00102 JB	0.000475 J	0.000746 J	0.00122 J

	Α	nalyte Group								Metals	1					
		Analyte Units	Arsenic mg/L	Barium mg/L	Boron mg/L	mg/l	Cobalt mg/L	Chromium mg/L	Iron mg/L	Lead mg/L	Manganese mg/L	Mercury	Nickel mg/L	Selenium mg/L	Uranium mg/L	Vanadium
		CGWSL	0.010	1.00	0.75	0.005	0.050	0.050	1.00	0.015	0.200	mg/L 0.002	0.200	0.050	0.030	mg/L 0.0631
	C	GWSL Source	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom			WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID	Date Dup)													
	KWB-10R		0.036	3.40				0.001	8.20	0.0042	0.190			0.00052 J		
		Apr-15 Oct-15	0.0259 0.0217	3.50 3.72				<0.000540 <0.000540	7.48 5.84	0.00172 J 0.00109 J	0.149 0.157			<0.000380 <0.000380		
		Apr-16	0.0226	4.31				<0.00270	7.43	0.00131 J	0.199			<0.00190		
		Oct-16	0.0301	0.816				0.000798 JB	6.11	0.00102 J	0.161			<0.000380		
	KWB-11A		0.002	0.028				0.00076 JB	<0.05 <0.05	0.0061 B	0.160	<4.9E-05 <4.9E-05	0.0039	0.0079		0.013
		Nov-14 FD Apr-15	0.002 0.00251 J	0.028 0.0240 J				<0.00054 <0.00270	<0.05	0.0055 0.00825 J	0.160 0.294	<4.9E-05	0.0042 0.00675 J	0.0082 0.00262 J		0.012 0.0122 J
		Oct-15	0.00266	0.0267				<0.000540	<0.0150	0.00515	0.191	<4.9E-05	0.00461	0.00776		0.0112
		Apr-16	0.00231 J	0.00508	0.502	< 0.005	0.00175 J	<0.00270	<0.0750	0.00851 J	0.222	<4.9E-05	0.00476 J	0.00852 J	0.0326 J	0.0118 J
	KWB-11B	Oct-16 Apr-14	0.0022 0.00157 J	0.0227 0.0117	0.449	<0.00016	0.00194 J	<0.000540 <0.00100	<0.0150 <0.0500	0.00525 0.000903 J	0.212 <0.00250	<4.9E-05 J3J6O <4.0E-05	0.00476 B <0.00100	0.00529 0.00848	0.0217	0.0102 0.00741
		Nov-14	0.0011 J	0.013				< 0.0027	<0.05	0.00090 JB	0.0030 J	<4.9E-05	<0.00035	0.0073		0.0081
		Apr-15	0.00147 J	0.0127				0.00116 J	<0.0150	<0.000240	0.00271 J	<4.9E-05	<0.000350	0.00783		0.00806
		Oct-15 Apr-16	0.00185 J <0.00125	0.0134 0.0135 J	0.173 JJ6O1	<0.005	<0.00130	0.000703 J <0.00270	<0.0150 0.121 J	<0.000240 <0.00120	0.000257 J 0.00188 J	<4.9E-05 <4.9E-05	<0.000350 <0.00175	0.00769 0.00949 J	0.00987 J	0.00812 0.00814 J
		Oct-16	0.00109 J	0.0116	0.105	<0.00016	<0.000260	<0.000540	<0.0150	<0.000240	0.00080 J	<4.9E-05 J3	0.000559 JB		0.0101	0.00727
	KWB-12A	Nov-14	0.0014 J	0.017				0.00086 JB	<0.0500	<0.00024	0.0011 J	<4.9E-05	0.00074 J	0.0052		0.013
		Nov-14 FD Apr-15	0.0016 J 0.00160 J	0.010 0.0168				0.00060 J 0.00164 J	<0.0500 0.269	<0.00024 0.000780 J	0.0016 J 0.00353 J	<4.9E-05 <4.9E-05	0.00065 J 0.000930 J	0.0046 0.00435		0.012 0.0108
		Apr-15 FD	0.00145 J	0.0138				<0.000540	<0.0150	< 0.000240	0.000251 J	<4.9E-05	0.000503 J	0.00375		0.01
		Oct-15	0.00242	0.017				0.000659 J	0.0285 J	<0.000240	0.000862 J	<4.9E-05	0.000959 J	0.00368		0.0139
1		Apr-16 Oct-16	0.00162 J 0.00159 J	0.0164 J 0.0156	0.695 0.481	<0.005 <0.00016	<0.00130 <0.000260	<0.00270 0.00159 JB	<0.0750 <0.0150	<0.00120 0.000256 J	<0.00125 <0.000250	<4.9E-05 J3	<0.00175 0.000739 J	0.00370 J 0.00360	0.0331 J 0.0288	0.0132 J 0.0110
	KWB-12B		0.00286 J	0.00926	5.401	2.200.0	1.130200	<0.00100	<0.0500	< 0.0002303	< 0.00250	<4.0E-05	<0.00100	0.00318 J	0.0200	0.0110
		Apr-14 FD	0.00240 J	0.0108				<0.00100	<0.0500	<0.000700	<0.00250	<4.0E-05	<0.00100	0.00363 J		0.0136
		Nov-14 Apr-15	0.0015 J 0.00151 J	0.013 0.00823		 		0.00086 JB 0.000588 J	<0.05 <0.0150	<0.00024 <0.000240	0.0027 J 0.000826 J	<4.9E-05 <4.9E-05	0.00071 J 0.000469 J	0.0042 0.00348		0.013 0.0108
		Oct-15	0.00181 J	0.00823				< 0.000540	0.0175 J	<0.000240	0.000826 J	<4.9E-05	0.000469 J	0.00346		0.0108
1		Oct-15 FD	0.00237	0.0118				0.000599 J	0.0312 J	<0.000240	<0.000250 B	<4.9E-05	0.000565 J	0.00361		0.0129
		Apr-16 FD	0.00178 J 0.00165 J	0.0130 J 0.0116 J	0.712 0.651	<0.005 <0.005	<0.00130 <0.00130	<0.00270 <0.00270	<0.0750 <0.0750	<0.00120 <0.00120	0.00441 J 0.00434 J	<4.9E-05 <4.9E-05	<0.00175 <0.00175	0.00307 J 0.00301 J	0.0302 J 0.0282 J	0.0125 J 0.0117 J
		Oct-16	0.00165 J	0.01163	0.464	<0.00016	<0.00130	0.00136 JB	0.0358 J	<0.00120	0.00434 3	<4.9E-05 J3	0.000824 J	0.003013	0.0262 3	0.0117 3
		Oct-16 FD	0.00161 J	0.0108	0.533	<0.00016	<0.000260	0.00147 JB	0.0369 J	0.000299 J	0.0104	<4.9E-05 J3	0.000703 J	0.00295	0.0265	0.0114
	KWB-P4	Apr-13 Apr-15	1		1			-		-	-		-			-
	MW-57	Apr-13	0.0889	2.17				0.0456	38.8	0.0269	2.73			0.00342 J		
		Nov-14	0.0055	0.052				0.0015	1.00	0.0019 J	1.30			0.0088		
		Apr-15	0.00495	0.0267				0.00104 J	0.658	0.000946 J	0.192			0.03		
		Oct-15 Apr-16	0.0066 0.00654 J	0.0339 0.0344				<0.000540 0.00322 J	0.301 0.881	0.000729 J 0.00266 J	0.852 0.378			0.0159 0.0131		
		Oct-16	0.00564	0.0253				0.000798 JB	0.559	0.000516 J	0.104			0.0169		
	MW-58	Nov-14	0.0078	0.670				0.00083 J	0.66	0.0058	0.094	<4.9E-05	0.0015 J	0.00040 J		0.0043 J
		Apr-15 Oct-15	0.0121 0.0081	0.819 1.03				<0.000540 <0.000540	1.76 1.29	0.00339 0.00190 J	0.0946 0.117	<4.9E-05 <4.9E-05	0.00140 J 0.00108 J	<0.000380 <0.000380		0.00229 J <0.000180 B
		Apr-16	0.0135	0.744	0.518	<0.005	<0.00130	<0.00270	1.06	0.00297 J	0.391	<4.9E-05	<0.00175	0.00524 J	<0.00165	0.00259 J
∑.		Oct-16	0.00683	0.915	0.455	<0.00016	0.000318 J	0.00108 JB	1.01	0.00234	0.114	<4.9E-05 J3	0.00133 J	<0.000380	<0.000330	0.00451 J
East of Refinery	MW-111	Apr-14 Nov-14	0.0114 0.014	0.254 0.22				0.00252 J 0.0024	7.64 8.00	0.000856 J 0.0013 J	1.57 1.60			<0.00100 0.00046 J		
of R		Apr-15	0.0201	0.147				0.00167 J	5.03	0.00141 J	1.72			<0.000380		
ast		Oct-15	0.0144	0.127				0.00239	7.14	0.00205	1.52			<0.000380		
Б		Apr-16 Oct-16	0.0131 0.0108	0.0926 0.0757				<0.00270 0.000976 JB	6.67 6.14	<0.00120 0.00031 J	1.66 1.41			<0.00190 <0.000380		
Field	MW-112		0.005	7.60				0.0021	5.80	0.0013 J	0.31			0.0018 J		
	MW-113	Apr-14	0.00326 J	0.0882				0.00423 J	1.87	0.00211 J	0.408			<0.00200		
		Nov-14 FD	0.0088	0.047 0.048				0.00059 J <0.00054	0.680 0.700	0.00025 J <0.00024	1.90 1.90			0.00044 J 0.00070 J		
		Apr-15	0.00294	0.033				0.00171 J	0.559	0.000733 J	0.918			0.0025		
		Apr-15 FD		0.0518				0.00221	1.01	0.000872 J	0.857			<0.000380		
		Oct-15 FD	0.00366 0.00379	0.0242 0.0233				<0.000540 <0.000540	0.196 0.203	<0.000240 <0.000240	0.765 0.767			<0.000380 <0.000380		
		Apr-16	0.00282 J	0.0251				<0.00270	0.270 J	<0.00120	0.734			<0.00190		
		Apr-16 FD		0.0289				<0.00270	0.347 J	<0.00120	0.823			<0.00190		
1		Oct-16 FD	0.00138 J 0.00125 J	0.0249 0.0245	1			<0.000540 <0.000540	1.17 O1 1.13	<0.000240 <0.000240	1.36 O1V 1.37		-	<0.000380 <0.000380		-
	MW-125	Apr-14	0.001233 0.00471 J	0.011				<0.00100	0.0544 J	<0.000700	0.470			<0.00100 B		
		Nov-14	0.0036	0.0092				0.00056 J	< 0.05	<0.00024	0.420			0.0033		
		Apr-15 Oct-15	0.00369 0.0044	0.00961 0.00911	1	-		<0.000540 <0.000540	<0.0150 0.0196 J	<0.000240 <0.000240	0.405 0.371		-	0.00581 J 0.00409		-
		Apr-16	0.00408 J	0.00922 J				<0.00270	<0.0750	<0.00120	0.438			0.00410 J		
	MMA/ 100:	Oct-16	0.00383	0.00806				0.000898 JB	<0.0150	<0.000240	0.370			0.00253		
	MW-126A	Apr-14 Nov-14	0.00322 J 0.0021	0.0163 0.028	1	-		0.00131 J 0.0017	0.463 1.70	0.00132 J 0.0010 J	0.194 0.79		-	0.00175 J 0.00053 J		-
		Apr-15	0.0027	0.0185				0.00164 J	1.02	0.000293 J	0.824			<0.000380		
		Oct-15	0.00195 J	0.0146				<0.000540	0.786	<0.000240	0.642			<0.000380		
1		Apr-16 Oct-16	0.00222 0.00257	0.0174 0.0109	1			<0.00270 <0.000540	0.803 0.299	<0.00120 <0.000240	0.797 0.371		-	<0.00190 <0.000380		-
	MW-126B		0.00299 J	0.0182				<0.00100	1.32	<0.000700	0.918			<0.00100		
		Nov-14	0.0039	0.017				0.0013	0.390	0.00064 J	0.098			0.0026		
		Apr-15 Oct-15	0.00377 J 0.00442	0.0110 J 0.0116	1			<0.00270 0.000580 J	<0.0750 0.154	<0.00120 0.000342 J	0.0892 0.0609			0.00215 J 0.00206		
1		Apr-16	0.00430 J	0.0133 J				< 0.00270	0.170 J	<0.00120	0.0744			0.00285 J		
	1027	Oct-16	0.00404	0.00919				<0.000540	0.0351 J	<0.000240	0.0539			0.00133 J		
	MW-127	Apr-14 Nov-14	0.00433 J 0.0064	0.785 1.20	 			0.00192 J 0.0035	1.66 3.90	0.000968 J 0.002	0.156 0.140			<0.00100 0.0012 J		
		Apr-15	0.00626	0.534				0.0035	1.64	0.002 0.00138 J	0.140			<0.00123		
1		Oct-15	0.00499	0.116				<0.000540	0.323	<0.000240	0.0943			<0.000380		
		Apr-16 Oct-16	0.00535 J 0.00453	0.137 0.0797	 			<0.00270 <0.000540	0.357 J 0.296	<0.00120 <0.000240	0.103 0.101			<0.00190 <0.000380		
1	MW-128		0.00453	0.0797				0.000540 0.00181 J	3.53	0.00132 J	2.33			<0.000380		
		Nov-14	0.062	0.094				0.0051	5.00	0.013	2.60			0.0012 J		
		Apr-15	0.052	0.0783	ļ			0.000905 J	2.94	0.00246	2.42			<0.000380 B		
		Oct-15 Apr-16	0.0552 0.341	0.0772 0.372				<0.000540 0.00347 J	2.65 15.4	<0.000240 0.00336 J	2.31 12.9			<0.000380 <0.00190		
		Oct-16	0.0643	0.0676				0.00182 JB	3.12	0.00222	2.11			<0.000380		
	MW-129		0.027	0.660				0.0045	7.80	0.0044	1.20			0.0032		
1		Apr-15 Oct-15	0.0338 0.0271	0.498 0.546				0.00227 <0.000540	6.42 5.07	0.00277 0.000292 J	1.21			<0.000380 <0.000380		
		Apr-16	0.0272	0.593				<0.00270	5.49	<0.00120	1.10			<0.00190		
		Oct-16	0.0236	0.607				0.000625 JB	4.79	0.000529 J	1.00			<0.000380		

Appendix B, Table B.2 - Summary of Groundwater Analytical Data - Total Metals

2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

Analyte Group **Total Metals** Analyte Arsenic Barium Boron Cadmium Cobalt Chromium Iron Manganese Mercury Nickel Selenium Uranium Vanadium Lead Linit mg/L mg/L mg/L 1.00 mg/L 0.75 mg/l 0.005 mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L **CGWSI** 0.050 0.050 1.00 0.015 0.200 0.002 0.200 0.0631 CGWSL Source JSEPA MCI WOCC HH WOCC Irr JSEPA MCI WQCC Irr WQCC HH WOCC HH WQCC HH WQCC HH NMED TW Area Well ID Date Dur Apr-14 Nov-14 Apr-15 0.0046 0.00718 0.026 0.0025 1.20 0.0012 J 0.120 0.0037 0.00205 0.143 Oct-15 0.00477 0.0195 0.000567 J 0.162 0.000362 0.0921 0.00224 0.00449 J 0.00403 0.451 J 0.104 Apr-16 0.00575 J 0.00675 MW-13 Apr-14 0.0196 2.37 0.00159 J 2.25 3.80 0.00106 0.378 0.023 0.00050 J Apr-15 0.022 2.67 0.000747 J 2.34 0.000919 0.316 Oct-15 0.0261 2.88 0.00371 4.71 **0.00294** <0.00120 0.337 < 0.000380 Apr-16 <0.00190 0.0207 1.34 Oct-16 2.69 < 0.000540 < 0.00024 0.285 <0.000380 MW-133 Nov-14 0.019 0.00897 0.130 0.157 0.00060 J 0.00080 0.380 < 0.00038 Apr-15 0.00124 J MW-13 0.00701 J 0.0059 Apr-14 0.0168 0.581 0.031 0.00570 J 0.00024 J 0.0024 0.03 0.0120 Apr-15 0.00881 J 0.0143 J 0.00285 J 0.00148 J 0.234 J 0.131 0.00773 0.0197 Apr-15 Oct-15 0.00575 0.0107 < 0.000240 0.00795 0.0129 Oct-15 0.0063 0.00964 0.000709 J <0.015 <0.00024 0.00594 0.00807 0.00566 0.00131 0.00812 J 0.00555 J Oct-16 0.00511 0.00827 0.00158 JB 0.0181 JB < 0.00024 0.00886 0.00647 Oct-16 0.00475 0.00833 0.000513 0.00817 0.00416 0.0344 0.00454 J 0.0856 0.00227 0.0799 Apr-14 Field East of Nov-14 0.0088 0.00871 J 0.410 0.018 0.0100 0.420 0.038 0.0168 0.413 0.0337 Apr-15 1.52 0.00144 Oct-15 0.00442 0.058 0.00319 0.0438 0.0399 Apr-16 Oct-16 0.128 0.0216 0.303 0.0130 5.54 0.00566 J 0.225 0.00394 0.00149 JE 0.598 Apr-14 <0.000500 Apr-15 Oct-15 Apr-16 Oct-16 Apr-14 0.000731 Apr-14 0.00136 J Apr-15 Oct-15 Apr-16 Oct-16 0.0453 RW-13R Apr-16 0.00922 J 0.0165 0.572 1.26 Apr-13 Apr-14 <0.00500 <0.00140 RW-18 0.015 0.0137 <0.00500 0.496 0.295 J <0.00500 0.0124 0.00496 J 0.00572 0.011 Apr-15 0.00379 0.00400 J 0.0105 0.000703 J < 0.0150 < 0.000240 0.00988 0.0124 0.00436 RW-20 Apr-15 0.00375 J 0.527 1.75 0.00354 J 0.872 RW-22 0.00248 0.816 0.0032 0.140 0.00397 0.845 0.00234 Apr-14 0.00898 9.23 0.00224 0.0877 0.00280 J Nov-14 Apr-15 0.022 0.100 0.0014 B 0.059 J 0.00075 0.210 0.0164 0.319 0.212 0.560 0.00336 0.125 Oct-15 0.0104 11.0 0.00113 J 0.0742 J 0.00578 0.089 0.00109 J Apr-16 Oct-16 0.0113 12.8 12.0 0.0186 0.0334 0.105 0.184 0.00711 0.0019 J 0.00836 0.00093 J Apr-14 0.000900 < 0.00100 0.228 0.558 J 0.00119 J 0.020 0.00062 JB 0.00037 Apr-15 0.000896 0.017 0.0678 J <0.0002 0.382 <0.000540 <0.0150 0.00165 J Oct-15 0.00100 J 0.0161 <0.00120 Apr-16 Oct-16 0.00165 J 0.0156 0.000619 JB 0.0168 J 0.000465 0.374 0.000713 J MW-3 0.0147 Apr-15 0.00256 0.0228 J 0.208 <0.000540 0.0199 J Oct-15 0.00156 J 0.0222 < 0.00240 0.186 0.00266 Apr-16 Oct-16 0.00124 J 0.000867 0.0161 J 0.0211 0.0195 0.0274 0.0209 J 0.0145 0.00407 J 0.0932 s 0.00128 JB 0.016 J 0.0192 0.00146 J 0.0284 0.0278 0.0479 0.0451 MW-40 Apr-13 < 0.0100 <0.0100 <0.400 < 0.00500 < 0.0100 0.00202 J 0.00157 Apr-1 Apr-15 0.00122 J 0.0336 < 0.00270 0.345 J 0.00213 0.0398 < 0.00190 Apr-16 < 0.00270 0.00311 <0.00190 <0.0050 <0.00500 Oct-13 0.00849 0.016 0.832 Apr-14 Apr-15 0.00475 J 0.014 <0.00100 **0.0729 J** <0.00270 **0.136 J** < 0.000700 0.854 0.00163 J Refinery 0.00591 0.0203 J <0.00120 Apr-16 0.00578 J 0.0210 J < 0.00270 < 0.0750 < 0.0012 0.888 < 0.00190 0.00973 0.012 0.213 0.527 0.152 0.189 North MW-42 Oct-13 0.0252 < 0.00500 < 0.00500 0.000766 0.00168 J Apr-14 0.00935 J 0.0242 J 0.00393 J <0.00120 Apr-16 0.00814.1 0.0274 <0.00270 0 182 J 0 197 Apr-14 0.0106 0.103 0.470 Nov-14 Apr-15 0.009 0.0134 0.420 0.0013 < 0.0500 0.0018 J 0.370 <4.9E-05 0.0059 0.022 O1J6 0.00062 J Oct-15 0.018 0.108 0.00111 J 0.0583 J 0.000577 0.157 <4.9E-05 0.00465 0.000853 J 0.00386 J Apr-16 Oct-16 0.0106 0.251 1.78 <0.0008 <0.00016 < 0.00130 0.00151 0.274 0.00625 J 0.205 0.0211 <0.00165 **0.00455** J <4.9E-05 0.00946 0.089 0.00666 MW-59 0.506 Apr-13 0.0274 0.0168 0.164 0.00432 J 0.00573 J Apr-14 0.0324 0.0172 0.0144 0.0163 <0.00100 0.464 0.465 0.000394 Apr-15 < 0.000540 Apr-16 0.0763 0.113 < 0.00270 0.976 2.34 < 0.00190 Apr-1 0.00662 Nov-14 0.0026 0.017 0.00065 J 0.065 J 0.00046 0.380 0.0016 J 0.014 0.00029 J Apr-15 Apr-15 0.00464 0.340 0.0177 J **0.000305** < 0.00024 <4.9E-05 0.000695 <0.000540 0.00128 J 0.000907 <4.9E-05 Oct-15 0.00884 0.0167 < 0.000540 0.286 0.332 0.000645 0.014 **0.000516 J** <0.00175 Oct-15 Apr-16 0.0088 <0.000380 0.00115 J <0.00190 0.00235 J 0.000910 J 0.342 0.438 0.0203 J 0.105 J 0.364 Apr-16 FD 0.0121 0.0193 J 0.449 <0.005 <0.00130 <0.00270 **0.165 J** < 0.00120 <4.9E-05 < 0.00175 <0.00190 0.00254 J 0.00110 J <0.00016 0.000490 J 0.00133 JB 0.151 B 0.000403 J</p>
<0.00016 0.000589 J 0.00129 JB 0.148 B 0.000342 J</p> <4.9E-05</p>
0.00178 JB
<0.000380</p>
0.00252 J
0.000388 J
<4.9E-05</p>
0.00135 JB
<0.000380</p>
0.00251 J
0.000307 J 0.00457 0.00478 0.0154 0.0147 0.347

	4	nalyte Gr	oup:							Total	Metals						
		Ana	alyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
		CGV	Jnits:	mg/L 0.010	mg/L 1.00	mg/L 0.75	mg/l 0.005	mg/L 0.050	mg/L 0.050	mg/L 1.00	mg/L 0.015	mg/L 0.200	mg/L 0.002	mg/L 0.200	mg/L 0.050	mg/L 0.030	mg/L 0.0631
	C	GWSL So		USEPA MCL	WQCC HH		USEPA MCL	WQCC Irr	WQCC HH		USEPA MCL			WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID	Date	Dup														
	MW-61	Apr-14 Nov-14		0.00127 J	0.0305				<0.00100	0.0734 J	<0.000700 B	0.0226			<0.00100 0.0087		
		Apr-15		0.002 0.00463 J	0.053 0.0499 J				0.00081 J <0.00270	<0.05 <0.15	0.0012 J <0.00240	0.0044 J 0.00444 J			0.0087		
		Oct-15		0.00107 J	0.0246				0.00119 J	0.0828 J	0.00122 J	0.0416			0.00688		
		Apr-16 Oct-16		<0.00125 0.000831 J	0.0192 J 0.0223				<0.00270 0.00145 JB	<0.0750 0.0204 J	<0.00120 0.000914 J	0.0664 0.0746			0.0101 < 0.000380		
	MW-62	Apr-14		0.00288 J	0.0679				<0.00100	0.0711 J	<0.000700	0.00786			0.00279 J		
		Nov-14		0.010	9.30				0.0021	0.260	0.0098	0.100			0.0019 J		
		Apr-15 Oct-15		0.0136 0.00293	9.30 0.0235				0.00149 J <0.000540	0.0542 J 0.0154 J	0.00419 0.000278 J	0.0677 0.00266 J			0.0187 0.00587		
		Apr-16		0.00321 J	0.0390				<0.00270	<0.0750	<0.00120	<0.00125			0.00935 J		
	MW-67	Oct-16 Nov-14		0.0115 0.0018 J	0.0252 0.120				0.000596 JE 0.00074 J	0.0385 J <0.0500	0.000715 J 0.00094 J	0.00213 J 0.130	<4.9E-05	0.0033	<0.000380 0.014		0.00036 J
	WWW-07	Apr-15		0.00103	0.140				<0.000743	0.0384 J	0.00034 J	0.080	<4.9E-05	0.0033 0.00198 J			0.00108 J
		Oct-15		0.0063	0.129	0.474	40.00E	-0.00400	0.000623 J	<0.0150	0.00100 J	0.0785	<4.9E-05	0.000885 J		<0.00165	0.00164 J
		Apr-16 Oct-16		0.0101 0.0103	0.229 0.161	0.471 0.451	<0.005 <0.00016	<0.00130 <0.000260	<0.00270 0.000671 JB	<0.0750 0.0242 J	0.00135 J 0.00127 J	0.117 0.104	<4.9E-05 <4.9E-05	<0.00175 0.000689 J	<0.00190 0.000479 J	<0.000330	0.00139 J 0.000595 J
	MW-90	Apr-14		0.00439 J	0.0183				<0.00100	0.0589 J	0.000780 J	0.0745			<0.00100		
		Nov-14 Apr-15		0.011 0.00709	0.014 0.0233				0.00067 J <0.000540	0.410 0.473	<0.00024 0.000242 J	0.052 0.345			0.021 0.00172 J		
		Oct-15		0.00703	0.0126				<0.000540	1.56	<0.000242 3	0.0504			0.0334		
		Apr-16		0.0111	0.0140 J				<0.00270	1.34	<0.00120	0.166			0.00262 J		
	MW-91	Oct-16 Apr-14		0.0103 0.00394 J	0.00945 0.130				<0.000540 <0.00100	0.201 0.117 J	0.000244 J 0.00191 J	0.0186 0.00450 J			0.0663 < 0.00100		
	•	Nov-14		0.0047	0.094				0.00099 J	<0.0500	0.0013 J	0.026			0.0098		
		Apr-15 Oct-15	-	0.00509 0.00552	0.094 0.0824				<0.000540 <0.000540	0.0957 J 0.0165 J	0.00236 0.0027	0.00502 0.00246 J			0.0138 0.0248		—
		Apr-16	E	0.00552 0.00660 J	0.0824				<0.000540	< 0.0750	0.0027 0.00376 J	0.00246 J 0.00267 J			<0.00740		
	MAL OC	Oct-16		0.0088	0.0554				<0.000540	<0.0150	0.0034	0.00304 JB			0.00063 J		
	MW-92	Apr-16 Oct-16	-	0.00316 J 0.00732	3.44 O1V 2.81				<0.00270 0.00101 JB	0.328 J 0.0744 J	<0.00120 0.00183 J	0.0363 0.0274			0.00207 J 0.00172 J		
	MW-93	Apr-14		0.00671	0.0823				0.00329 J	0.163 J	0.00288 J	0.0471			0.00282 J		
		Nov-14 Apr-15	_	0.003 0.00687 J	0.052 0.0346				0.0065 0.00442 J	3.20 1.83	0.0054 0.00126 J	1.30 0.227			0.013 0.0646		
		Oct-15		0.00502	0.0486				0.00365	1.29	0.00327	0.120			0.0709		
		Apr-16 Oct-16		0.0137 0.00195 JJ3J6	0.0231 J				0.00907 J	0.858	<0.00120	0.0663			0.0242		
	MW-94	Nov-14		0.00195 33330	0.0263 0.780				0.00337 B 0.0014	1.19 0.081 J	0.00112 J <0.00024	0.335 0.0065			0.0119 J3J6 0.0012 J		-
		Oct-15		0.0215	1.57				0.00144 J	< 0.0150	<0.000240	0.00194 J			0.000935 J		
		Apr-16 Oct-16		0.0286 0.0115	0.353 0.635				<0.00270 0.00119 JB	<0.0750 0.0159 J	<0.00120 0.000255 J	0.00666 J 0.00631			<0.00190 0.000962 J		
>	MW-95	Apr-13		<0.00500	0.130				<0.00500	1.02	< 0.00500	0.0567			<0.00500		
Refinery		Apr-14 Apr-15		<0.00100 0.00133 J	0.126 0.0762				<0.00100 <0.000540	0.0549 J 0.0357 J	<0.000700 0.000477 J	0.0419 0.0247			<0.00100 0.000381 J		
- Re		Apr-16		0.00175 J	0.0736				<0.00270	<0.0750	<0.00120	0.0214 J			<0.00190		
North	MW-96	Apr-14 Nov-14		0.00469 J	0.109				<0.00100	<0.0500	<0.000700	0.00250 J			<0.00100		
1		Apr-15		0.0049 0.00421	0.073 0.126				0.0021 0.000816 J	0.370 0.0338 J	0.00089 J 0.000576 J	0.110 0.00352 J			0.0019 J 0.000731 J		
		Oct-15		0.00397	0.158				0.000655 J	0.132	0.000953 J	0.00236 J			0.000640 J		
		Apr-16 Oct-16		0.00463 J 0.00238	0.155 0.106				<0.00270 <0.000540	<0.0750 0.0573 J	<0.00120 <0.000240	0.00174 J 0.0070			0.00330 J 0.000695 J		
	MW-98	Apr-14		0.00167 J	0.0156				<0.00100	<0.00500	0.00919	0.0259			0.00335 J		
		Apr-14 Nov-14	FD	0.00177 J 0.00068 J	0.0145 0.017				<0.00100 0.0011	<0.00500 0.064 J	0.00934 0.0079	0.0267 0.027			0.00464 J 0.020		
		Apr-15		< 0.00250	0.0177 J				<0.00270	< 0.0750	0.00894 J	0.0192 J			0.108		
		Oct-15 Apr-16		0.00109 J 0.00199 J	0.0149 0.0204 J				0.000932 J <0.00270	0.0339 J <0.0750	0.00659 0.00934 J	0.0213 0.0312			0.00514 <0.00190		
		Oct-16		0.00110 J	0.015				0.000797 JB		0.00734	0.0233			0.000906 J		
	MW-137	Oct-15 Apr-16		0.0525	0.127	0.002	<0.005	<0.00130	0.00326 <0.00270	1.63	0.00596	0.120	<4.9E-05 <4.9E-05	0.00874 0.0101	0.00218	<0.00165	0.00904
		Oct-16		0.0893 0.0345	0.0567 0.0453	0.982 0.799	<0.00016	<0.00130	0.000628 JB	0.0953 J 0.0169 J	0.00601 J 0.00436	0.144 0.120	<4.9E-05	0.0161	0.00327 J 0.00368	<0.000330	0.00840 J 0.00529
	MW-138	Oct-15		0.00728	0.131		.0.005	0.00400	0.00218	2.54	0.00195 J	0.249	<4.9E-05	0.0042	0.000743 J	0.00405	0.00705
		Apr-16 Oct-16		0.00777 J 0.00609	0.220 0.0947	1.56 1.01	<0.005 <0.00016	<0.00130 <0.000260	<0.00270 0.000775 JB	0.221 J 0.0178 J	<0.00120 0.000407 J	0.164 0.143	<4.9E-05 <4.9E-05	0.00598 J 0.00523	<0.00190 0.00284	<0.00165 <0.000330	0.00531 J 0.00306 J
	RW-1	Apr-15		0.00607	0.0305				0.0029	0.216	0.000495 J	0.126			0.00302 J		
	RW-1R RW-2	Apr-16 Apr-15		0.00695 J 0.0264	0.0414 0.0245 J				<0.00270 0.00553 J	17.1 0.381 J	0.00149 J 0.00233 J	0.317 0.313			0.00246 J 0.0705		—
	RW-2R	Apr-15		0.0264 0.00552 J	0.0245 J 0.171	 			0.00553 J	2.25	0.00233 3	0.0705			0.0705		
	RW-7	Apr-15		0.00239 J	0.508			_	<0.00270	0.0976 J	<0.00120	0.028			<0.00190		
	RW-7R RW-8	Apr-16 Apr-15		0.0154 0.00556 J	0.0293 0.0889				<0.00270 <0.00270	1.09 0.427 J	<0.00120 <0.00120	1.22 0.0556			<0.00190 0.00200 J		
	RW-9	Apr-13		< 0.0100	0.0703				<0.0100	<0.400	<0.00500	0.288			<0.0100		
		Apr-14 Apr-15		0.00434 J 0.00392	0.047 0.0397				<0.00100 0.00102 J	0.942 0.257	<0.000700 0.000449 J	0.417 0.460			0.00250 J 0.0144		
		Apr-16		0.00476 J	0.0550				<0.00270	0.169 J	<0.00120	0.441			0.00735 J		
	RW-10	Apr-13 Apr-14	L	<0.00500 0.00174 J	0.0215 0.0185				<0.00500 <0.00100	1.79 5.22	<0.00500 <0.000700	0.224 0.217			<0.00500 0.00143 J		H
		Apr-15	E	0.00174 J 0.00171 J	0.0258				0.000561 J	0.454	<0.000240	0.217			0.00517		
	D/4/ 10	Apr-16		0.00175 J	0.0372				<0.00270	1.27	<0.00120	0.266			0.0404		
	RW-16	Apr-13 Apr-14		0.0167 0.0127	0.0163 0.0141				<0.00500 <0.00100	<0.200 0.174 J	<0.00500 0.000789 J	0.485 0.576			<0.00500 0.00272 J		
		Apr-14	FD	0.0132	0.0147			_	<0.00100	0.184 J	<0.000700	0.596			0.00278 J		
		Apr-15 Apr-16	-	0.0171 0.0115	0.0138 J 0.0138 J	-			<0.00270 <0.00270	<0.0750 <0.0750	<0.00120 <0.00120	0.421 0.406			<0.00190 0.0223		
	RW-17	Apr-13		0.0107	0.0244				<0.00500	0.462	0.00563	0.704			<0.00500		
		Apr-14 Apr-15	\vdash	0.00888	0.0228 0.0274		-		<0.00100 <0.00270	0.471 0.0850 J	0.019 0.00425 J	0.675 0.121			0.00156 J 0.0361		
		Apr-16		0.0522	0.119				<0.00270	0.197 J	0.0385	3.55			0.0714		
	MW-117	Apr-14 Nov-14		0.00366 J 0.0025	0.017 0.02				0.00210 J 0.0031	0.780 0.950	0.00109 J 0.00072 J	0.033 0.014			<0.00100 B 0.0077		H ===
_		Nov-14	FD	0.0024	0.016				0.0024	0.710	0.00086 J	0.014			0.0079		
Reject Field		Apr-15 Oct-15		0.00249 J 0.00351	0.0162 J 0.0214				<0.00270 0.00364	0.492 J 1.42	<0.00120 0.00113 J	0.00809 J 0.0149			0.0168 0.00486		H —
ject		Apr-16	Н	0.00266 J	0.0186 J	<u> </u>			<0.00270	0.684	<0.00120	0.0103 J			0.00857 J		
) Re	MANAY 2.22	Oct-16		0.00312	0.0249				0.00417 B	1.57	0.00137 J	0.0171			0.00403		
h RO	MW-118	Apr-14 Nov-14	\vdash	0.0109 0.012	0.0147 0.033				0.00312 J 0.0032	0.952 1.10	0.00266 J 0.0010 J	0.0526 0.020			<0.00100 0.0065		
North		Apr-15		0.00977 J	0.0180 J				<0.00270	0.253 J	0.00175 J	0.00454 J			0.00863 J		
		Oct-15 Apr-16		0.0117 0.0108	0.0131 0.0139 J				0.00137 J <0.00270	0.155 0.426 J	0.000329 J <0.00120	0.00223 J 0.00480 J			0.00509 0.00645 J		
<u></u>		Oct-16		0.0117	0.01393				0.000649 JB		<0.000240	0.000302 J			0.000433		

	А	nalyte Gr	oup:							Total	Metals						
			alyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
			Jnits:	mg/L	mg/L	mg/L	mg/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	_	CGI		0.010	1.00	0.75	0.005	0.050	0.050	1.00	0.015	0.200	0.002	0.200	0.050	0.030	0.0631
_		GWSL So	_	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID	Date	Dup														
ಕ	MW-119	Apr-14		0.00470 J	0.0126				0.00119 J	0.350	<0.000700	0.0148			<0.00100 B		
North RO Reject Field	I	Apr-14 Nov-14	FD	0.00446 J 0.0062	0.0126 0.06	 	-		0.00114 J 0.0042	0.341 2.30	<0.000700 0.0016 J	0.0136 0.062			<0.00100 B 0.0013 J	-	
e 0		Apr-15		0.00398 J	0.0156 J				<0.0042	0.309 J	<0.00103	0.002 0.0151 J			< 0.00133		
E IÈ		Oct-15		0.00417	0.0105				0.000744 J	0.0886 J	<0.000240	0.00485 J			0.00189 J		
F		Apr-16		0.00315 J	0.00645 J				<0.00270	< 0.0750	<0.00120	<0.00125			0.00259 J		
z		Oct-16		0.00404	0.00979				< 0.000540	0.0660 J	< 0.000240	0.0019 J			0.00334		
	MW-18	Oct-13		< 0.00500	0.025				< 0.00500	<0.200	< 0.00500	0.017	<2.0E-04	< 0.00500	0.00853		0.02
		Apr-14		0.00313 J	0.0168				<0.00100	0.146 J	<0.000700	0.0203	<4.0E-05	0.00151 J	0.0112		0.0172
		Apr-15		0.00321	0.0167				0.00108 J	<0.0150	<0.000240	0.00671	<4.9E-05	0.00120 J	0.00947		0.0147
	L	Apr-16		0.00395 J	0.0207 J	1.36	<0.005	<0.00130	<0.00270	<0.0750	<0.00120	0.0157 J	<4.9E-05	<0.00350	0.0153	0.0480 J	0.0200 J
	MW-45	Apr-14 Nov-14	-	0.00268 J 0.0028	0.0159				<0.00100 <0.00054 B	0.786	0.00443 J <0.00024 B	0.535	<4.0E-05 <4.9E-05	0.00736	0.00191 J 0.00071 J		0.00217 J 0.00030 J
		Apr-15		0.0028	0.018 0.0185				<0.000540	0.820 1.66	0.00527	0.6 0.534	<4.9E-05	0.0083	<0.000713		0.00030 J 0.000411 J
		Oct-15		0.00373	0.0216				0.000591 J	0.600	0.00667	0.551	<4.9E-05	0.00472	<0.000380		0.000411 J
		Apr-16		0.00752 J	0.0191 J	0.671	< 0.005	<0.00130	<0.00270	4.14	0.00443 J	0.633	<4.9E-05	0.00631 J	< 0.00190	< 0.00165	0.00188 J
		Oct-16		0.00346	0.0182	0.636	< 0.00016	<0.000260	<0.000540	0.942	0.000647 J	0.576	<4.9E-05	0.00513 B	<0.000380	0.000909 J	0.000251 J
	MW-53	Apr-13		<0.00500	0.0267				< 0.00500	<0.200	<0.0100	1.00			<0.00500		
		Apr-14		0.00217 J	0.0232				<0.00100	<0.00500	<0.000700	0.778			0.00141 J		
		Apr-15	_	0.00179 J	0.0256				<0.000540	0.0338 J	0.000252 J	1.20			0.00566		
	100/544	Apr-16	-	0.00193 J	0.0308				<0.00270	<0.0750	<0.00120	1.07			0.00617 J		
	MW-54A	Apr-14 Nov-14	 	0.00532 0.0045	0.0181 0.019	 			<0.00100 <0.00054 B	0.0714 J 0.079 J	0.000847 J <0.00024 B	0.495 0.450			0.00134 J <0.00038	 	
1	Ī	Apr-15	1	0.0045	0.019				<0.00054 B <0.000540	0.079 J 0.0537 J	<0.00024 B	0.450			<0.00038 0.000509 J		
	Ī	Oct-15		0.00312	0.0173				0.000898 J	< 0.0150	0.00110 J	0.488			0.000309 J		
1	Ī	Apr-16		0.00343 J	0.0189 J				<0.00270	<0.0750	<0.00120	0.512			<0.00190		
1	L	Oct-16	L	0.00236	0.0158				<0.000540	<0.0150	<0.000240	0.437			0.000709 J		
1	MW-54B	Apr-13		<0.00500	0.0183				<0.00500	<0.200	<0.00500	0.145			<0.00500		
1	L	Apr-15	_	0.0022	0.0165				<0.000540	0.0520 J	<0.000240	0.165			0.000400 J		
	MW-55	Apr-14	-	0.00506	0.0106	ļ			<0.00100	0.0618 J	<0.000700	0.195	<4.0E-05	0.00498 J	0.0245		0.0176
		Apr-14 Nov-14	FD	0.00484 J	0.00952	 			<0.00100 <0.00054 B	<0.0500	<0.000700	0.185	<4.0E-05 <4.9E-05	0.00409 J	0.0238	 	0.0177
		Apr-15	 	0.0045 0.00457	0.013 0.011				<0.00054 B 0.00108 J	0.056 J 0.0483 J	<0.00024 B <0.000240	0.093 0.139	<4.9E-05	0.0025 0.00268	0.013 0.019		0.017 0.0147
		Oct-15	l –	0.00457	0.0118				0.00108 J	<0.0483 3	<0.000240	0.0468	<4.9E-05	0.00266 0.00168 J	0.00934		0.0147
		Apr-16		0.00933 J	0.0157 J	1.31	0.000891 J	0.00141 J	<0.00270	0.128 J	0.00168 J	0.151	5.14E-05 J	<0.00350	0.00354 0.00896 J	0.0460 J	0.0244 J
		Oct-16		0.00543	0.0140	1.21	<0.00016	0.00068 J	0.00168 J	0.0587 JB	0.000582 J	0.113	5.31E-05 J	0.00314 B	0.00746	0.0335	0.0170
	MW-56	Apr-14		0.00689	0.0137				<0.00100	< 0.0500	0.000927 J	0.36			0.00495 J		
		Nov-14		0.0067	0.014				<0.00054 B	0.061 J	<0.00024 B	0.35			0.0031		
		Apr-15		0.00727	0.0143				<0.000540	0.0230 J	0.000739 J	0.293			0.00372		
		Oct-15		0.00731	0.0166				<0.000540	<0.0150	0.000392 J	0.321			0.00491		
		Apr-16		0.00777 J	0.0203 J				<0.00270	<0.0750	<0.00120	0.373			0.00381 J		
	MW-108	Oct-16	1	0.00721	0.0138				<0.000540	<0.0150	0.000540 J	0.282			0.00125 J		
	WW-108	Apr-14 Nov-14		0.00320 J 0.0061	0.046 0.049				0.00333 J <0.00054 B	0.310 < 0.0500	0.00196 J <0.00024 B	0.0338 0.045			0.00115 J 0.0012 J		
		Apr-15	 	0.00462	0.0387				0.00259	0.0411 J	0.00155 J	0.0256			<0.000380		
		Oct-15		0.00399	0.0482				0.00226	0.0288 J	0.00157 J	0.0239			0.00234		
႕		Apr-16		0.00454 J	0.481				< 0.00270	0.206 J	0.00209 J	0.0501			< 0.00190		
NS NS		Oct-16		0.0102	0.0462				0.00732	3.13	0.0101	0.182			0.00126 J		
	NCL-31	Apr-14		0.011	0.0229				<0.00100	1.02	0.00104 J	1.83			0.00110 J		
		Nov-14		0.026	0.021				<0.00054 B	0.950	<0.00024 B	2.00			0.00059 J		
		Apr-15 Oct-15	-	0.00847 0.00655	0.0224				0.000989 J 0.00175 J	0.834	0.000803 J	1.70			<0.000380 <0.000380		
		Apr-16		0.00655 0.00495 J	0.0334 0.0241 J				<0.00175 3	1.49 0.838	0.00140 J <0.00120	2.28 1.85			<0.00190		
		Oct-16		0.0428	0.022				0.000711 JB		0.000493 J	2.48			<0.000380		
	NCL-32	Nov-14		0.013	0.200				0.0084	1.40	<0.00024 B	0.470			0.00044 J		
		Apr-15		0.00446 J	0.0556				0.00960 J	1.39	0.0167	0.968			< 0.00190		
		Oct-15		0.00653	0.129				0.028	4.57	0.0289	1.34			0.000884 J		
		Apr-16		0.0108	0.227				0.0660	9.75	0.0681	1.77			<0.00190		
	NCL-33	Oct-16		0.00428	0.0254				0.00312	0.407 B	0.00296	1.06			0.00138 J		
	NCL-33	Apr-14 Nov-14		0.00230 J 0.0019 J	0.0246 0.032				<0.00100 <0.00054 B	2.98 3.60	<0.000700 <0.00024 B	0.0896 0.110			0.00142 J 0.00067 J		
		Apr-15		0.00133 0.00407 J	0.032 0.0247 J				<0.00270	2.26	0.00569 J	0.108			<0.00190		
		Oct-15	t	0.00385	0.0274				<0.000540	2.49	0.000259 J	0.117			0.000519 J		
		Apr-16		0.00444 J	0.0246 J				<0.00270	0.770	<0.00120	0.188			<0.00190		
		Oct-16		0.00593	0.0224				0.00187 J	1.93	0.000459 J	0.128			0.00217		
1	NCL-34A		L	0.00042 J	0.260				0.00078 J	< 0.05	0.00066 J	0.053			<0.00038		
1	Ī	Apr-15	 	<0.00120	0.547	ļ	-		<0.00270	<0.0750	0.00183 J	0.0369			<0.00190	l	
	Ī	Oct-15 Apr-16	 	0.00218 J 0.00184 J	0.382 0.854	 			<0.00270 <0.00270	<0.0750 <0.0750	0.00136 J <0.00120	0.042 0.0185 J			0.00641 J <0.00190	 	
1	Ī	Oct-16	t	0.00184 J 0.000745 J	0.854				<0.00270	<0.0750	<0.00120	0.0185 J			0.0142		
	NCL-44	Apr-14		0.0007433	0.0276				<0.00100	1.25	<0.000240	0.656			0.00142 0.00122 J		
1	1	Nov-14		0.042	0.031				<0.00054 B	1.20	0.00064 J	0.680			0.00065 J		
	Ī	Apr-15		0.0617	0.0311				<0.00270	1.47	0.00123 J	0.703			<0.00190		
	Ī	Oct-15		0.070	0.0306				0.00105 J	2.09	0.000414 J	0.723			<0.000380		
	Ī	Apr-16	1	0.0459	0.0371				<0.00270	1.82	<0.00120	1.11			<0.00190		
	NCL-49	Oct-16		0.049	0.0276	-			0.00165 JB <0.00100	1.78 < 0.0500	0.000521 J <0.000700	0.896 <0.00250			0.000394 J		
1	INCL-49	Apr-14 Nov-14	\vdash	0.00187 J 0.0014 J	0.0115 0.012	 			<0.00100 <0.00054 B	<0.0500	<0.000700 <0.00024 B	<0.00250 0.0011 J			0.00451 J 0.0032	-	
1	Ī	Nov-14	FD	0.0014 J	0.012				<0.00054 B	<0.0500	<0.00024 B	0.0011 J			0.0032		
1	Ī	Apr-15	Ť	0.00151 J	0.0109				<0.000540	0.0232 J	0.000252 J	0.00215 J			0.00279		
1	Ī	Apr-15	FD	0.00145 J	0.0106				< 0.000540	< 0.0150	< 0.000240	0.00146 J			0.00281		
1	Ī	Oct-15		0.00218	0.0118				<0.000540	<0.0150	<0.000240	0.000528 J			0.00363		
1	Ī	Oct-15	FD	0.00208	0.0116				<0.000540	<0.0150	<0.000240	0.000279 J			0.00365		
1	Ī	Apr-16 Apr-16	ED	0.00188 J 0.00178 J	0.0150 J 0.0134 J	ļ	-		<0.00270 <0.00270	<0.0750 <0.0750	<0.00120 <0.00120	<0.00125 <0.00125			0.00518 J 0.00483 J	l	
1	Ī	Apr-16 Oct-16	רט	0.00178 J 0.00156 J	0.0134 J 0.0116				<0.00270	<0.0750	<0.00120	<0.00125 0.000460 JB			0.00483 J 0.00551		
1	Ī	Oct-16	FD	0.00136 J	0.0116				<0.000540	<0.0150	<0.000240	0.000460 JB 0.000493 JB			0.00549		
	KWB-2R	Nov-14	Ť	0.00137 3	0.089				0.00060 J	0.570	0.0039	0.310			0.00048 J		
1	1	Apr-15	T	0.00281	0.274				0.000702 J	0.329	0.00468	0.356			<0.000380		
>	Ī	Oct-15		0.0039	0.259				0.000641 J	0.0295 J	0.00195 J	0.0529			<0.000380		
<u>a</u>	Ī	Apr-16		0.00401 J	0.0326				<0.00270	0.883	<0.00120	0.898			0.00551 J		
South Refinery	10.475	Oct-16		0.00325	0.0343				0.00113 JB	0.465	0.000548 J	0.609			<0.000380		
Ę	KWB-5	Nov-14	⊢	0.024	3.70	 			0.00059 J	5.40	0.00042 J	2.30			0.00082 J		
Sot	Ī	Apr-15 Oct-15	+-	0.0225 0.0209	3.42 3.65	 			<0.000540 <0.000540	3.39 3.22	0.000632 J 0.000340 J	1.57 1.59			<0.000380 <0.000380	 	
		Apr-16	l –	0.0209	3.63				<0.000340	4.28	<0.00120	1.82			<0.00190		-
1	I	Oct-16		0.0232	3.82				<0.00270	3.13	<0.00120	1.60			<0.00130		
_	•	•	•			•											

	А	nalyte Gr									Metals						
			alyte:	Arsenic	Barium	Boron ma//	Cadmium	Cobalt	Chromium	Iron mg/l	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
		CGI	Jnits: NSL:	mg/L 0.010	mg/L 1.00	mg/L 0.75	mg/l 0.005	mg/L 0.050	mg/L 0.050	mg/L 1.00	mg/L 0.015	mg/L 0.200	mg/L 0.002	mg/L 0.200	mg/L 0.050	mg/L 0.030	mg/L 0.0631
		GWSL So	urce:	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom		WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID		Dup														
	KWB-6	Nov-14 Apr-15		0.0095 0.00621	0.160 0.294				0.00073 J <0.000540	0.770 0.870	0.0010 J 0.00182 J	2.20 2.16			0.0013 J <0.000380		-
		Oct-15		0.00021	0.136				<0.000540	0.558	0.00132 J	2.04	<4.9E-05	0.00186 J	<0.000380		0.00239 J
		Apr-16		0.00703 J	0.327				<0.00270	0.546	0.00143 J	2.55			<0.00190		
	MW-28	Oct-16 Apr-14		0.00915 0.00429 J	0.0891 0.142				0.00095 JB <0.00100	0.303 < 0.00500	0.00103 J <0.000700 B	1.87 0.0397	<2.0E-04	0.00817	<0.000380 <0.00100		<0.000900 E
	10100-20	Nov-14		0.004233	0.100				0.0017 B	0.073 J	0.0045	0.100	<4.9E-05	0.0056	0.0020 J		0.0099
		Apr-15		0.00912 J	0.0772				0.000931 J	0.0712 J	0.011	0.0685	<4.9E-05	0.00489	0.0204 J		0.00634
		Oct-15 Apr-16		0.00936 0.0610	0.0484 0.331	1.23	<0.005	<0.00130	0.000931 J 0.00274 J	0.0744 J 0.342 J	0.0136 0.0520	0.0261 0.164	<4.9E-05 <4.9E-05	0.0036 0.0226	0.0205 0.00220 J	<0.00165	0.00557 0.0158 J
		Oct-16		0.0154	0.0424	1.27	<0.00016	0.000289 J	0.00213 B	0.0951 JB	0.0168	0.0375	<4.9E-05	0.00387 B	0.000605 J	<0.000330	0.00701
	MW-48	Nov-14		0.033	0.350				0.0031	1.40	0.012	2.00			0.0014 J		
		Apr-15 Oct-15		0.004 0.0108	0.0204 J 0.367				<0.000540 0.000690 J	0.562 0.131	0.000320 J 0.00215	0.0948 J 1.24			<0.000380 B 0.00487		+
		Apr-16		0.0125	2.77				< 0.00270	0.177 J	0.00371 J	0.390			<0.00190		
	MW-50	Oct-16		0.0107 <0.00100	1.18				0.00119 JB <0.00100	0.166	0.00173 J	0.565			0.00052 J		
	10100-50	Apr-14 Nov-14		0.00100	0.0199 0.024				0.00060 J	0.123 J 3.70	0.00124 J 0.0010 J	1.32 1.50			<0.00100 0.00040 J		
		Apr-15		0.00138 J	0.0226				<0.000540	0.471	0.00102 J	1.53			<0.000380		
		Oct-15 Apr-16		0.00166 J 0.00234 J	0.0219 0.0141 JB				<0.000540 <0.00270	0.0271 J 0.0916 J	0.000889 J <0.00120	1.37 0.214			0.000495 J 0.0994		+
		Oct-16		0.00434	0.0207				<0.000540	0.160	0.000413 J	0.295			0.0704		
	MW-52	Apr-14	ED	0.00373 J	0.00923				<0.00100	<0.0500	<0.000700	0.036	<4.0E-05	0.00268 J	0.00103 J		0.0236
		Apr-14 Nov-14	FD	0.00349 J 0.0033	0.00988				0.00143 J 0.00057 J	0.0709 J <0.05	<0.000700 0.00076 J	0.0324 0.060	<4.0E-05 <4.9E-05	0.00206 J 0.0067	0.00124 J 0.002		0.0238 0.025
		Apr-15		0.00318	0.0098				<0.000540	0.0256 J	<0.000240	0.0478	<4.9E-05	0.00625	<0.000380 B		0.0253
		Oct-15 Apr-16		0.00429 0.0193	0.0129 0.0436	0.736	<0.005	0.00155 J	0.000582 J <0.00270	0.0180 J 0.158 J	<0.000240 <0.00120	0.0446 0.230	<4.9E-05 <4.9E-05	0.00684 0.0263	0.00187 J 0.00545 J	0.0438 J	0.0262 0.123
		Oct-16		0.00343	0.0436	0.736	<0.00016	0.00155 J	0.000547 JB	<0.0150	<0.00120	0.0484	<4.9E-05 J3	0.0263	0.00545 J	0.04383	0.0243
	MW-64	Apr-16		0.0333	2.26				<0.00270	<0.0750	0.00187 J	0.0599			<0.00190		
	MW-65	Oct-16 Nov-14		0.0302 0.058	2.41 0.370				0.000897 JB 0.00074 J	0.0566 JB 8.60	0.00105 J 0.0019 J	0.048 2.20			0.000493 J 0.00042 J		-
		Apr-15		0.0186	3.08				<0.000540	2.88	0.00153 J	0.790			<0.000380		
		Apr-16		0.0142	3.42 V				<0.00270	2.09	0.00124 J	0.748 V			<0.00190		
	MW-66	Oct-16 Apr-14		0.0120 0.00300 J	2.97 1.90		1		0.00121 JB <0.00100	1.66 0.397 J	0.00103 J <0.000700	0.605 0.335	<4.0E-05	0.00857	<0.000380 <0.00100		<0.000900
		Nov-14		0.0029	2.20				0.00076 J	1.40	0.0026	0.280	<4.9E-05	0.0068	0.0015 J		0.00084 J
		Apr-15 Oct-15		0.00298	2.35				<0.000540 <0.000540	0.635 0.792	0.000902 J 0.000430 J	0.189 0.220	<4.9E-05 <4.9E-05	0.00613 0.00743	<0.000380 <0.000380		0.000941 J 0.00175 J
		Apr-16		0.0037 0.0148	2.00 12.7	0.378	<0.005	<0.00130	0.00289 J	4.74	0.000430 J	1.13	<4.9E-05	0.00743	<0.000360	<0.00165	0.00175 J
		Oct-16		0.00269	1.88	0.283	<0.00016	<0.000260	0.000733 JB		0.000342 J	0.216	<4.9E-05 J3	0.00497	<0.000380	<0.000330	0.000342 J
	MW-99	Nov-14 Apr-15		0.012 0.00289	0.430 0.159				0.0019 0.000639 J	1.20 0.457	0.0038 0.00571	0.29 0.0802			<0.00038 0.000808 J		
		Oct-15		0.00203	0.133				0.000832 J	0.382	0.00371 0.00153 J	0.0002			<0.000380		
		Apr-16		0.0491	5.05				0.00682 J	4.55	0.0193	1.20			<0.00190		
	MW-101	Oct-16 Apr-14		0.00635 0.0320 J	1.14 <0.000900 B				0.00128 JB <0.00100	0.208 1.42 J	0.0015 J <0.000700	0.354 1.12			<0.000380 <0.00100		
		Nov-14		0.049	0.089				0.00061 J	1.80	0.00065 J	0.98			0.0012 J		
neny		Apr-15 Oct-15		0.0939 0.056	0.0501 0.0382				0.000581 J <0.000540	3.58 2.59	<0.000240 <0.00240	1.08 1.13			<0.000380 0.00344 J		
South Refinery		Apr-16		0.0293	0.0302				<0.00270	1.38	<0.00240	1.13			<0.003443		
outh	100	Oct-16		0.0783	0.0366				0.00145 JB	2.56	0.000266 J	1.06			<0.000380		
Ø	MW-102	Nov-14 Apr-15		0.012 0.010	0.250 6.21				0.0016 < 0.000540	0.100 J 0.138	0.0026 0.00344	0.049 0.0431			0.0013 J <0.000380		
		Oct-15		0.0123	0.423				0.00106 J	0.0723 J	0.00263	0.0273			0.000393 J		
		Apr-16 Oct-16		0.0117 0.0132	7.71 0.427				<0.00270 0.002 B	0.222 J 0.094 JB	0.00339 J 0.00223	0.0308 0.0214			<0.00190 <0.000380		
	MW-103	Apr-13		<0.00500	0.823				<0.00500	<0.200	<0.0100	<0.00500			<0.00500		
		Apr-14		0.00270 J	1.47				<0.00100 B	<0.0500	<0.000700 B	0.00278 J			<0.00100		
		Apr-15 Apr-16		0.00617 J 0.00594 J	9.36 26.8				<0.0110 <0.00270	<0.300 <0.0750	<0.00480 0.00148 J	0.0125 J 0.0262			0.0607 J <0.00190		+
	MW-104	Apr-14		<0.00100	<0.000900 B				<0.00100	<0.0500	<0.000700	0.038			<0.00100		
		Apr-14 Nov-14	FD	<0.00100	0.0188				<0.00100 <0.00054	<0.0500 <0.0500	<0.000700 <0.000240	0.0216			<0.00100 B		
		Nov-14 Nov-14	FD	0.0018 J 0.0017 J	0.030 0.029				0.00054 0.00075 J	<0.0500	<0.000240	0.031 0.032			<0.00038 0.00095 J		1
		Apr-15		0.000408 J	0.0195				<0.000540	0.0945 J	0.000364 J	0.0228			<0.000380		
		Apr-15 Oct-15	FD	0.000400 J 0.00150 J	0.0196 0.0229				<0.000540 0.000591 J	0.0490 J 0.0385 J	<0.000240 <0.000240	0.0217 0.0148			<0.000380 <0.000380		
		Oct-15	FD	0.00149 J	0.0218				<0.000540	<0.0150	<0.000240	0.0142			<0.000380		
		Apr-16 Apr-16	ED	0.00165 J 0.00195 J	0.0343 O1 0.0319				<0.00270 <0.00270	<0.0750 <0.0750	<0.00120 <0.00120	0.0113 J 0.00995 J			<0.00190 J3J6 <0.00190	3	
		Oct-16	L . U	0.00195 J 0.0164	0.0319				0.00270 0.00128 JB		<0.00120	0.00995 J 0.00278 J			<0.00190		
		Oct-16	FD	0.0194	0.0290				0.00132 JB	0.019 JB	<0.000240	0.00277 J			<0.000380		
	MW-105	Nov-14 Apr-15		0.011	0.120 0.108				0.0027 0.00184 J	0.870 2.55	0.0025 0.00279	0.270 0.105		-	0.012 < 0.000380		1
		Oct-15		0.00849	0.214				0.00221	1.07	0.00562	0.0917			0.0108 J		
		Apr-16		0.0197	1.31				<0.00270	0.286 J	0.00176 J	0.195			0.00947 J		
	MW-106	Oct-16 Apr-14	-	0.0121 0.00755	1.15 0.030		1		0.00154 JB 0.00115 J	0.265 0.101 J	0.00118 J 0.00337 J	0.117 0.0124			<0.000380 0.00320 J		
		Apr-15		0.00491	0.089				0.00283	1.16	0.0296	0.147			0.00957		
		Oct-15		0.00726	0.0451		1		0.00385 < 0.00270	0.650 <0.0750	0.00907	0.0119			0.00522 <0.00190		1
		Apr-16 Oct-16		0.0150 0.0152	0.0379 0.0232		1		<0.00270 0.00143 JB		0.00274 J 0.00305 B	0.0113 J 0.00515 B			<0.00190 0.000476 J		
	MW-107	Apr-14		0.00688	2.74				<0.00100	10.1	<0.000700	0.270			<0.00100		
		Nov-14 Apr-15		0.015 0.0107	0.520 1.75		 		0.00097 J <0.000540	3.80 0.787	0.00049 J 0.000331 J	0.390 0.158			<0.00038 <0.000380 B		1
		Oct-15		0.00883	1.55				0.000625 J	0.767	0.000259 J	0.178			<0.000380		
		Apr-16		0.0100	10.2				0.00340 J	1.78	0.00200 J	0.454			<0.00190		L
	MW-109	Oct-16 Apr-14		0.00388 0.0223	1.30 0.562				0.00093 JB 0.00194 J	0.158 1.64	0.000595 J <0.000700	0.0896 0.345			<0.000380 <0.00100		-
		Nov-14		0.0077	0.094				0.00076 J	0.460	<0.00024	0.180			<0.00038		
		Apr-15		0.00554	0.101				<0.000540	0.154	<0.000240	0.140 J			<0.000380 B		
		Oct-15 Apr-16	-	0.00134 J 0.0331	0.112 0.299				0.000783 J <0.00270	0.102 0.677	0.000334 J 0.00147 J	0.127 0.624			0.00328 <0.00190		-
		Oct-16		0.00269	0.0617				<0.000540	0.090 J	<0.000240	0.0821			<0.000380		
	MW-110	Apr-14 Nov-14	-	0.0281 0.051	0.0599 0.048				<0.00100 0.00074 J	1.32	<0.000700 <0.00024	1.44 1.80			<0.00100 0.00038 J		
		Apr-15		0.00924	0.0617				0.000649 J	0.379	0.000690 J	0.612			<0.000380 B		
		Oct-15		0.013	0.0765				0.000557 J 0.00399 J	0.321	0.000523 J	0.882			<0.000380 <0.00190		
		Apr-16 Oct-16	\vdash	0.0854 0.0344	0.300 0.048		 		<0.00399 J <0.000540	2.77 0.730	0.00565 J 0.000412 J	6.26 1.67			<0.00190		
										,	,						

	А	nalyte Gr	oup:							Total	Metals						
			alyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
		CGI	Jnits: NSL:	mg/L 0.010	mg/L 1.00	mg/L 0.75	mg/l 0.005	mg/L 0.050	mg/L 0.050	mg/L 1.00	mg/L 0.015	mg/L 0.200	mg/L 0.002	mg/L 0.200	mg/L 0.050	mg/L 0.030	mg/L 0.0631
		GWSL So	-	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr		WQCC Dom	USEPA MCL			WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID RA-313	Date Apr-13	Dup		1										1	1	
	104-515	Apr-14															
≥		Apr-15															
South Refinery	RW-4	Apr-16 Apr-15		0.00183 J	0.0521				<0.000540	0.0744 J	0.000665 J	0.104			<0.000380		
ŧ.	RW-4R	Apr-16		0.00440 J	0.0623				<0.00270	0.181 J	<0.00120	0.0728			<0.00190		
Sol	RW-5R	Apr-15 Apr-16		0.00136 J 0.00183 J	0.0259 0.0282				<0.000540 <0.00270	0.0952 J <0.0750	0.000336 J <0.00120	0.0177 0.0191 J			<0.000380 <0.00190		
	RW-6	Apr-15		0.0332	1.66				<0.000540	13.8	0.000574 J	0.280			<0.000380		
	RW-6R MW-114	Apr-16 Apr-14		0.0712 0.00292 J	0.480 0.0153				<0.00270 <0.00100	3.70 0.0777 J	<0.00120 <0.000700	0.553 1.20			<0.00190 <0.00100 B		
	10100-11-	Nov-14		0.0031	0.026				0.0023	0.810	0.00055 J	1.20			0.0018 J		
		Apr-15 Oct-15		0.00279 0.00355	0.0165 0.0134				0.000896 J <0.000540	0.361 0.0486 J	0.000317 J <0.000240	0.927 0.905			<0.000380 B 0.000757 J		
		Apr-16		0.00333 0.00344 J	0.0155 J				<0.00270	< 0.0750	<0.00120	1.15			<0.00190		
eld	MW-115	Oct-16 Apr-14		0.00327 0.00444 J	0.0119 0.0102				0.00115 JB <0.00100	<0.0150 0.0685 J	0.000617 J <0.000700	0.899 0.0262			0.00839 <0.00100 B		
Reject Field	10100-1113	Nov-14		0.0034	0.0102				0.00086 J	0.130	0.000700	0.0202			0.0028		
Rej		Apr-15 Oct-15		0.00697 J 0.00761	0.0118 0.0119				<0.000540 0.000763 J	0.0684 J 0.0367 J	<0.000240 <0.000240	0.120 0.124			<0.000380 B 0.000590 J		
8		Apr-16		0.00761	0.0415				<0.00270	0.0367 J	0.000240	0.124			0.000390 J		
South	NOV 440	Oct-16		0.00838	0.00908				0.000944 JB	0.116 B	0.000381 J	0.146			<0.000380		
0,	MW-116	Apr-14 Nov-14		0.00442 J 0.0038	0.0102 0.0098				<0.00100 0.0010 J	0.108 J 0.11	<0.000700 <0.00024	0.00627 0.0042 J			<0.00100 B 0.0055		
		Apr-15		0.00521	0.00931			_	<0.000540	<0.0150	<0.000240 0.00183 J	0.00454 J			<0.000380 B 0.000668 J		
1		Oct-15 Apr-16	H	0.00825 0.00422 J	0.0434 0.0231 J				0.00542 <0.00270	2.45 0.800	<0.00183 J <0.00120	0.0815 0.0396			<0.00190		
	NAV. 15	Oct-16		0.00720	0.0118			_	0.000922 JB	0.119	0.000397 J	0.0506	-4.05.05		0.000738 J		10 000000
	MW-49	Apr-14 Nov-14		0.00457 J 0.0055	0.0409 0.100				<0.00100 0.0082	<0.0500 3.40	<0.000700 0.012	0.302 0.330	<4.0E-05 <4.9E-05	0.00856 0.02	0.00113 J 0.0019 J		<0.000900 B 0.011
		Apr-15		0.00433	0.0514				0.00147 J	0.530	0.00133 J	0.269	<4.9E-05	0.00842	<0.000380		0.00195 J
		Oct-15 Apr-16		<0.000250 B 0.00489 J	0.0429 0.0439	0.695	<0.005	<0.00130	<0.000540 <0.00270	0.0195 J 0.0770 J	0.000453 J <0.00120	0.209 0.269	<4.9E-05 <4.9E-05	0.0074 0.00686 J	0.0117 <0.00190	<0.00165	0.00145 J 0.00245 J
		Oct-16		0.00505	0.0449	0.642	<0.00016	<0.000260	0.000766 JB	0.127	0.000423 J	0.223	<4.9E-05 J6	0.00867	<0.000380	<0.000330	0.000357 J
	TEL-1	Apr-14 Apr-14	FD	0.00402 J 0.00372 J	0.0117 0.0108 J				<0.00100 <0.00100	<0.0500 <0.0500	0.00109 J <0.000700	0.0827 0.0751 J			<0.00100 B <0.00100 B		
		Nov-14		0.0026	0.011				0.00090 J	<0.0500	<0.00024	0.140			<0.00038		
		Apr-15 Oct-15		0.00537 <0.000250 B	0.0119 <0.000360 B	<u> </u>			0.00501 0.00318	0.0741 J 0.0506 J	<0.000240 <0.000240	0.0523 0.103			<0.000380 0.00798 J		
		Apr-16		0.00407 J	0.0126 J				0.0269	0.104 J	<0.00120	0.199			<0.00190		
	TEL-2	Oct-16 Apr-14		0.00256 0.0115	0.00987 0.0729				0.00911 B 0.00127 J	0.0829 J <0.0500	0.0003 J 0.00248 J	0.216 0.00988			<0.000380 0.00593		
		Nov-14		0.012	0.110				0.0017	<0.05	0.0024	0.013			0.0011 J		
		Apr-15 Oct-15		0.0132 0.0118	0.185 0.153				0.00134 J 0.00178 J	0.0326 J 0.0291 J	0.00276 0.00242	0.0101 0.00753			0.000383 J 0.00679		
<u></u>		Apr-16		0.0101	0.127				0.00303 J	<0.0750	0.00131 J	0.0212 J			<0.00190		
E	TEL-3	Oct-16 Apr-14		0.0147 0.00330 J	0.0773 0.0147				0.00209 B 0.00723	0.0279 J 0.0610 J	0.00145 J <0.000700	0.0144 0.0122			0.000618 J <0.00100 B		
	TLL-3	Nov-14		0.00330 J	0.0147				0.00723	0.0610 J	<0.000700	0.0122			<0.00038		
		Apr-15 Oct-15		0.00354 <0.000250 B	0.0145 <0.000360 B				0.00466 0.00613	0.0738 J 0.0417 J	0.000599 J 0.000435 J	0.00827 0.0139			<0.000380 0.00966		
		Apr-16		0.00876 J	0.0208 J				0.0269	0.171 J	<0.00120	0.00661 J			<0.00190		
	TEL-4	Oct-16		0.00126 J 0.0128	0.0156 0.0376				0.138 0.223	0.456 0.0921 J	0.000368 J <0.000700 B	0.0133 0.408			<0.000380 0.00103 J		
	IEL-4	Apr-14 Nov-14		0.0128	0.0376				0.223	0.0921 J	<0.000700 B	0.408			<0.00038		
		Nov-14 Apr-15	FD	0.010 0.00613	0.042 0.0244				0.51 0.419	0.130 1.57	<0.00024 B 0.00227	0.280 0.872			<0.00038 <0.000380		
		Apr-15	FD	0.00598	0.0233				0.599	2.41	0.00262	0.860			0.000420 J		
		Oct-15	FD	0.0106 0.00929	0.0338 0.0326				0.315 0.281	0.107 0.107	0.00255 0.00206	0.406 0.412			0.0201 0.0135		
		Apr-16	ID	0.00323 0.00710 J	0.0320 0.0247 J				0.282	0.331 J	0.00200 0.00330 J	0.751			<0.00190		
		Apr-16	FD	0.00736 J	0.0245 J				0.306	0.628	0.00316 J	0.750			<0.00190 0.000883 J		
L		Oct-16	FD	0.00784 0.00700	0.0190 0.0199	<u> </u>			0.688 0.389	1.93 1.07	0.00263 0.00241	0.508 0.501			<0.000380		
	MW-8	Oct-13 Apr-14		0.00929 0.00884 J	0.0123 0.0114				0.0986	0.307 <0.100	<0.00500 <0.00140	0.584			0.0158		
1		Apr-15		0.00884 J 0.0108	0.0107				0.0212 0.234	<0.100 0.779	0.000470 J	0.557 0.507			0.0237 0.0188		
	MAN 40	Apr-16		0.00885 J	0.0117 J			-	0.107	0.397 J	<0.00120 <0.0100	0.538			0.00622 J <0.0100		
1	MW-16	Apr-13 Apr-14		<0.0100 0.00470 J	0.0162 0.0151	<u> </u>			<0.0100 <0.00200	<0.400 <0.100	<0.00140	0.052 0.244			<0.0100 0.00322 J		
1	MW 00	Apr-15		0.00500 J	0.0174 J				<0.00270	<0.0750	<0.00120	0.0950 J			0.00213 J		
	MW-20	Apr-13 Apr-14		<0.0100 0.00750 J	0.0101 0.00905 J				<0.0100 <0.00200	<0.400 <0.100	<0.0100 <0.00140	0.251 0.0906			0.016 0.0179		
1		Apr-14	FD	0.00865 J	0.0103				<0.00200	<0.100	<0.00140	0.080			0.017		
1		Apr-15 Apr-16		0.00621 0.00628 J	0.0104 0.0113 J				<0.000540 <0.00270	0.0746 J <0.0750	<0.000240 <0.00120	0.00743 0.00814 J			0.0289 0.0305	 	
	MW-21	Apr-14		0.00724 J	0.00373 J				<0.00200	<0.100	<0.00140	0.432			0.0259		
1		Nov-14 Apr-15		0.0054 0.00656 J	0.008 0.0100 J				0.00078 J <0.00270	<0.05 <0.0750	<0.00024 <0.00120	0.820 0.323 J			0.018 0.0258		
		Oct-15		0.00635	0.00939				<0.000540	<0.0150	<0.000240	0.658			0.029		
TMD		Apr-16 Oct-16		0.00607 J 0.00613	0.0100 J 0.0079				<0.00270 <0.000540	<0.0750 <0.0150	<0.00120 <0.000240	0.354 0.616			0.0327 0.0287		
F	MW-25	Apr-13		<0.0100	0.0121				<0.0100	<0.400	<0.0100	0.129			<0.0100		
		Apr-14 Apr-15		0.00502 J 0.00984 J	0.0265 0.0187 J				<0.00500 <0.00270	<0.250 <0.0750	<0.00350 <0.00120	1.09 0.582 J			<0.00500 0.0204		
1		Apr-16		0.00582 J	0.0148 J				0.00332 J	< 0.0750	<0.00120	0.889			<0.00190		
	MW-26	Apr-13 Apr-14	H	<0.0100 0.00413 J	<0.0100 0.00878 J				<0.0100 <0.00200	<0.400 <0.100	<0.0100 <0.00140	0.212 0.731			<0.0100 0.0241	ļ <u> </u>	
		Apr-15		0.00351	0.00944				<0.000540	0.0811 J	<0.000240	0.613			0.0197		
1	MW-27	Apr-16 Apr-13		0.00384 J <0.00500	0.0101 J 0.0145				<0.00270 <0.00500	<0.0750 <0.200	<0.00120 <0.00500	0.847 0.0102			0.0194 0.0199		
	1V1 V V - Z I	Apr-14		0.00249 J	0.0166				<0.00100	<0.00500	<0.000700	0.00554			0.0192		
1		Apr-15 Apr-16		0.00239 0.00228 J	0.0235 0.0179 J				<0.000540 <0.00270	<0.0150 <0.0750	<0.000240 <0.00120	0.0318 0.0186 J			0.018 0.0127		
	MW-46R	Apr-14		0.00338 J	0.0259				0.00222 J	0.621	<0.000700	0.0998			<0.00100 B		
1		Nov-14 Apr-15		0.0042 0.00307	0.024 0.0188				0.0028 0.00106 J	1.10 0.297	0.00083 J 0.000608 J	0.140 0.116			0.0034 0.00116 J		
1		Apr-15 Apr-16		0.00317 J	0.0140 J				<0.00270	0.159 J	<0.00120	0.125			<0.00190		
		Oct-16		0.00314	0.0150				0.000894 JB	0.196	0.000459 J	0.137			0.00154 J		

Appendix B, Table B.2 - Summary of Groundwater Analytical Data - Total Metals

2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico

	Δ	nalyte Gr	oun.							Total	Metals						
			alyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
			Jnits:	mg/L	mg/L	mg/L	ma/l	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CGI	NSL:	0.010	1.00	0.75	0.005	0.050	0.050	1.00	0.015	0.200	0.002	0.200	0.050	0.030	0.0631
	C	GWSL So	urce:	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID	Date	Dup														
7404	MW-68	Apr-13	Dup	< 0.00500	0.0147		ı ı		<0.00500	0.279	<0.00500	<0.00500			0.0314	ı	
		Apr-14		0.00325 J	0.0142				<0.00200	<0.100	<0.00140	<0.00500			0.0248		
		Apr-15		0.00292	0.0159				<0.000540	0.0594 J	0.000524 J	0.00131 J			0.0123		
		Apr-16		0.00314 J	0.0133 J				<0.00270	< 0.0750	<0.00120	0.0393			0.00339 J		
	MW-71	Oct-13		0.00536	0.00969				< 0.00500	<0.200	< 0.00500	< 0.00500	<2.0E-04	< 0.00500	0.0417		0.0251
		Apr-14		0.00458 J	0.0086				< 0.00100	< 0.0500	< 0.000700	< 0.00250	<4.0E-05	0.00123 J	0.0452		0.0252
		Apr-15		0.00411	0.00897				0.000581 J	0.0373 J	< 0.000240	0.000898 J	<4.9E-05	0.00134 J	0.0349		0.0229
		Apr-16		0.00436 J	0.0103 J	0.689 V	< 0.005	< 0.00130	< 0.00270	< 0.0750	< 0.00120	< 0.00125	<4.9E-05	< 0.00175	0.0370	0.0605	0.0257
	MW-89	Apr-13		0.0132	0.0134				< 0.00500	< 0.200	< 0.00500	0.670			< 0.00500		
		Apr-14		0.0128	0.014				< 0.00100	0.195 J	< 0.000700	0.537			0.0188		
TMD		Apr-15		0.00900 J	0.0144 J				< 0.00270	0.12 J	< 0.00120	0.0710 J			0.0275		
-		Apr-16		0.00839 J	0.0155 J				< 0.00270	0.228 J	< 0.00120	0.0788			0.0311	< 0.00100	
	NP-1	Apr-14															
		Nov-14															
		Apr-15															
		Oct-15															
		Apr-16															
		Oct-16															
	NP-2	Apr-13															
	NP-6	Apr-13															
_		Apr-15															
	UG-1	Apr-13		<0.00500	0.0137				<0.00500	<0.200	<0.00500	<0.00500	<2.0E-04	<0.00500	<0.00500		0.0111
		Apr-14		0.00158 J	0.0128				0.00159 J	0.0832 J	<0.000700	0.00575	<4.0E-05	0.00121 J	0.00728		0.0135
		Apr-15		0.00113 J <0.00125	0.0137		<0.005	<0.00130	0.00242 <0.00270	0.0262 J <0.0750	<0.000240 <0.00120	0.000764 J <0.00125	<4.9E-05 <4.9E-05	<0.000350 B <0.00175			0.0105
		Apr-16			0.0136 J	0.574	<0.005	<0.00130							0.0140	0.0252 J	0.0107 J
	UG-2	Apr-13 Apr-13	FD	<0.00500 <0.00500	0.0172				<0.00500	<0.200 <0.200	<0.00500	0.0801	<2.0E-04 <2.0E-04	0.0125	<0.00500 0.00581		0.0148
ŧ		_	Fυ	0.00385 J	0.0182 0.0167				<0.00500	0.673	<0.00500	0.0711 0.488	<4.0E-05	0.0121 0.0256	0.00581 0.00209 J		0.0166 0.0082
ë		Apr-14		0.00385 J	0.0167		-		<0.00100	<0.0150	<0.000700	0.488	<4.0E-05	0.0256	<0.00209 J		0.0082
Upgradient		Apr-15 Apr-16		0.00205 0.00202 J	0.0150 J	0.343	<0.005	<0.00130	<0.000540	<0.0150	<0.00120	0.011	<4.9E-05	0.00527	0.00380 B	0.0156 J	0.0115 0.0123 J
ಕ್ರ	UG-3R	Apr-13	-	<0.00500	0.0150 J	0.343	~0.003	-0.00130	<0.00270	<0.200	<0.00120	<0.00500	<4.9E-03	<0.00500	<0.00500	J.U130 J	0.0123 3
	0G-3R	Apr-13 Apr-14	-	0.00500 0.00184 J	0.0149				<0.00500	<0.200	<0.00500	<0.00500	<4.0E-05	<0.00500	0.00534	-	0.00815
	l	Apr-14 Apr-14	FD	0.00164 J	0.017				<0.00100	<0.0500	<0.000700	<0.00250	<4.0E-05	<0.00100	0.00534	<u> </u>	0.0109
		Apr-15	10	0.00107 3	0.0595		 		0.00368	2.05	0.000626 J	0.0725	<4.9E-05	<0.00100 <0.000350 B		 	0.0135
		Apr-16		0.00238 0.00182 J	0.0393 0.0198 J	0.295	<0.005	<0.00130	< 0.00300	<0.0750	< 0.00120	0.00141 J	<4.9E-05	0.00188 J	0.00386 J	0.0122 J	0.0104 J
	UG-4	Apr-16		<0.00102 0	0.0184 J	1.19	<0.005	<0.00130	<0.00270	<0.0750	<0.00120	0.00752 J	<4.9E-05	0.00203 J	0.00634 J	0.0364 J	0.00749 J
	00-4	Apr=10		-0.00123	0.01040	1.19	-0.000	-0.00100	-0.00270	-0.0730	-0.00120	0.00702 0	*7.5L*03	0.002033	0.000343	0.00040	0.007433

Definitions

Reported concentration, X, exceeds the CGWSL.

Analyte detected above the detection limit at a concentration equal to X

Analyte not detected at detection limit equal to x.

Analyte not detected at detection limit equal to x, but x exceeds the CGWSL.

Blank cell indicates a sample was collected from the well during the indicated sampling event, but the analyte was not analyzed.

Abbreviations CGWSL

Х

Critical Groundwater Screening Level (see Table 3)

CGWSL Source Source for CGWSL value (see Table 3)

FD field duplicate sample mg/L milligrams per liter

NMED TW NMED Risk Assessment Guidance for Site Investigations and Remediation, July 2015, Table A-1, Tap Water Screening Level

USEPA MCL United States Environmental Protection Agency Maximum Contaminant Level, "Regional Screening Levels for Chemical Contaminants at Superfund Sites", November 2015

WQCC Dom NMED Groundwater standard for domestic exposure taken from 20.6.2.3103.B WQCC HH NMED Groundwater standard for human health exposure, NMAC 20.6.2.3103.A

WQCC Irr NMED Groundwater standard for irrigation exposure

Lab Footnote

- Analyte was also detected in the associated method blank.
- The associated batch QC was outside the established quality control range for precision.
- The sample matrix interfered with the ability to make any accurate determination; spike value is low.
- 01 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.
- The sample concentration is too high to evaluate accurate spike recoveries.

		Analyte Gr	roun.				IN	avajo Reili	nery, Artes	Dissolve							1
	•	An	alyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
			Jnits: WSL:	mg/l 0.01	mg/l 1.00	mg/l 0.75	mg/l 0.005	mg/l 0.05	mg/l 0.05	mg/l 1.00	mg/l 0.015	mg/l 0.2	mg/l 0.002	mg/l 0.2	mg/l 0.05	mg/l 0.03	mg/l 0.0631
Area		GWSL So		USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Alcu	Well ID KWB-13	Date Apr-13	Dup	<0.00500	0.0161				<0.00500	<0.200	<0.00500	<0.00500	<0.000200	<0.00500	0.0145		0.0206
ŧ		Apr-14 Apr-15		0.00276 J 0.00376	0.0156 0.0439				0.00107 J 0.00125 J	<0.0780 0.34	<0.000700 0.00143 J	<0.00250 0.0462	<4.2E-05	<0.00100 0.00136 J	0.0136 0.0117		0.0188 0.0173
Cross-Gradient		Apr-16		0.00370 0.0029 J	0.0210 J	0.416	<0.000800	<0.0013	<0.00270	0.483 J	<0.00120	0.00842 JB	<4.90E-05	< 0.00175	0.0140	0.0245 J	0.0201 J
S-G	MW-17 NP-5	Apr-14 Apr-13		0.00217 J <0.0100	0.0139 < 0.0100				0.00184 J <0.0100	<0.0780 <0.400	<0.000700 <0.0100	<0.00250 <0.0100			0.00918 0.0148		
Ş	INF-5	Apr-15		0.00306	0.0076				<0.000540	<0.0150	<0.000240	0.000511 J			0.0128		
	MW-136	Apr-15 Apr-16		0.00283 0.00242 J	0.0107 0.0113 J	0.661	<0.000160 <0.000800	<0.0013	<0.000540 <0.00270	0.0239 J <0.075	<0.000240 <0.00120	0.00574 0.00291 JB	<4.90E-05	0.00110 J 0.00772 JB	0.00362 0.00664 J	0.0698	0.0158 0.0188 J
	MW-1R	Apr-13	FD	< 0.00500	0.0195	0.001	10.000000	10.0010	<0.00500	1.53	<0.00500	1.37	11.002 00	0.007.72.02	<0.00500	0.0000	0.01000
		Apr-13 Apr-14		<0.00500 <0.00200	0.02 0.0194				<0.00500 <0.00200	1.55	<0.00500 <0.00140	1.38			<0.00500 <0.00200		
		Apr-15		0.00264 J	0.0229 J				<0.00270	2.58	<0.00120	2.14			<0.00190		
	MW-2A	Apr-16 Mar-13		0.00311 J 0.0437	0.0252 0.0236				<0.00270 <0.0100	3.72 5.95	<0.00120 <0.0100	2.64 2.87			0.00216 J <0.0100		
	WWV-ZA	Apr-14		0.0437 0.0148 J	0.0230 0.0210 J				<0.00500	< 0.390	0.00423 J	1.27			0.00624 J		
		Apr-15 Apr-16		0.0116 0.014	0.0216 0.0223 J				<0.000540 <0.00270	0.201 2.64	<0.000240 <0.00120	1.83 2.31			0.00186 J 0.00347 J		
	MW-3	Apr-14		0.0285	0.02233				<0.00270	<0.156	<0.00120	0.325			0.0429		
		Apr-15 Apr-15	FD	0.0253 0.0269	0.0171 0.018				<0.000540 <0.000540	<0.0150 <0.0150	<0.000240 <0.000240	1.30 1.37			0.0955 0.095		
		Apr-16	FD	0.0246	0.016 0.0141 J				<0.00270	0.401 J	<0.00120	2.13			0.00615 J		
		Apr-16		0.0299	0.0146				0.00103 J	0.388	0.0003 J	2.49			0.00429		
	MW-4A	Apr-13 Apr-14		0.0618 0.0786	0.0123 0.0121				<0.00500 <0.00200	1.46 0.614	<0.00500 <0.00140	1.59 2.36			<0.00500 <0.00200		
		Apr-15		0.104	0.0113				0.000987 J	1.89	<0.000240	2.73			0.000614 J		
	MW-5A	Apr-16 Apr-13		0.174 0.14	0.0128 J <0.0250				<0.00270 <0.0250	2.99 8.10	<0.00120 <0.0250	2.29 1.03			0.00269 J <0.0250		
	v-3A	Apr-14		0.0796	0.0106 J				<0.00500	5.40	< 0.00350	1.62			<0.00500		
		Apr-15 Apr-16		0.0848	0.0107				0.000957 J <0.00270	4.500	<0.000240 <0.00120	1.58			0.000860 J		
	MW-5B	Apr-16 Apr-13		0.179 0.109	0.0128 J <0.0100				<0.00270	6.87 0.618	<0.00120	1.33 2.17			0.00262 J <0.0100		
		Apr-15		0.198	0.0104				0.000978 J	4.71	<0.000240	3.49			0.00197 J		
	MW-5C	Apr-13 Apr-15		0.0137 0.0124	0.014 0.0172				<0.00500 0.00115 J	1.08 0.77	<0.00500 0.000449 J	0.9 0.687			<0.00500 <0.000380		
	MW-6A	Mar-13		0.00642	0.0136				<0.00500	0.571	<0.00500	0.297			<0.00500		
		Apr-14 Apr-15		0.0102 0.0114	0.0252 0.0331				<0.00200 <0.000540	<0.156 0.0527 J	<0.00140 0.000400 J	1.2			0.0157 0.0318		
		Apr-16		0.00932 J	0.0156 J				< 0.00270	<0.075	<0.00120	0.491			<0.00190		
	MW-6B	Mar-13 Mar-13	FD	0.0336 0.032	0.0173 0.0145				<0.00500 <0.00500	1.23 1.24	<0.00500 <0.00500	3.03 2.84			<0.00500 <0.00500		
		Apr-15		0.0319	0.0186				<0.00540	1.21	<0.000240	3.52			<0.00380		
	MW-7A	Apr-13		0.0264	<0.0250				<0.0250 <0.00200	5.61	<0.0250 < 0.00140	0.392 0.541			<0.0250		
		Apr-14 Apr-15	FD	0.0239 0.0141	0.0167 0.0149				0.000544 J	2.34 <0.0150	<0.00140	0.997			<0.00200 0.000601 J		
		Apr-15	9	0.0172	0.0148				0.000890 J	0.676	<0.000240	0.994			0.000532 J		
		Apr-16 Apr-16	FD	0.0226 0.0224	0.0174 J 0.0170 J				<0.00270 <0.00270	2.56 2.63	<0.00120 <0.00120	0.642 0.634			0.00207 J <0.00190		
	MW-7B	Apr-13		<0.0100	0.0114				<0.0100	<0.400	<0.0100	0.358			<0.0100		
	MW-10	Apr-15 Apr-13		0.00529 <0.0250	0.011 <0.0250				<0.000540 <0.0250	0.0879 J <1.00	<0.000240 <0.0250	0.541 J 2.27			<0.000380 <0.0250		
	10100-10	Apr-14		0.0195	0.0114				<0.0230	<0.156	<0.0230	2.75			<0.0230		
		Apr-15		0.0191	0.0130 J				<0.00270	<0.0750	<0.00120	2.53			<0.00190		
Evaporation Ponds	MW-11A	Apr-16 Mar-13		0.0247 <0.0250	0.0174 J 0.0251				<0.00270 <0.0250	<0.075 3.95	<0.00120 <0.0250	2.60 1.83			0.00211 J <0.0250		
- P		Apr-14		<0.00500	0.037				<0.00500	0.924 J	<0.00350	1.84			<0.00500		
ratio		Apr-15 Apr-16		<0.00250 0.00133 J	0.0338 J 0.0321				<0.00540 <0.00270	<0.150 0.887	<0.00240 <0.00120	0.846 0.903			<0.00380 <0.00190		
/apc	MW-11B	Mar-13		<0.0250	<0.0250				<0.0250	3.62	<0.0250	0.365			<0.0250		
ú	MW-12	Apr-15 Apr-14		0.00458 J <0.00200	0.0187 J 0.0204				<0.00270 <0.00200	3.59 <0.156	<0.00120 <0.00140	0.376 0.183			<0.00190 0.0208		
	MW-13	Apr-14		<0.00200	0.0334				<0.00200	<0.156	<0.00140	0.173			<0.00200		
	MW-15	Mar-13 Apr-14		0.0242 0.0589	0.0157 0.0186				<0.0100 0.0144	<0.400 <0.156	<0.0100 <0.00140	1.60 0.33			<0.0100 0.00547 J		
		Apr-15		0.0268	0.0219 J				<0.00270	0.0762 J	<0.00140	0.814			0.0211		
	MW-18A	Apr-16 Apr-13		0.0204 <0.0250	0.0217 J <0.0250				<0.00270 <0.0250	<0.075 9.20	<0.00120 <0.0250	0.874 2.58	<0.000200	<0.0250	<0.00190 <0.0250		<0.0250
	1V1 V - 1 OM	Apr-14		<0.0100	0.0166 J				<0.0100	<0.780	<0.00700	0.176	<4.2E-05	<0.0100	0.0323 J		<0.00900
		Apr-15		0.00341	0.0116 0.0157 J	2.87	<0.000800	<0.0013	<0.000540	<0.0150 0.333 JB	<0.000240	0.009	<4.90E-05	0.00194 J 0.00835 J	0.0464	0.0410 J	0.00420 J 0.00163 J
	MW-18B	Apr-16 Apr-13		0.00629 J 0.00781	0.0157 J 0.0119	2.01	~0.000000	~0.0013	<0.00270 <0.00500	<0.200	<0.00120 <0.00500	0.335 0.657	~+.∂UE-U5	v.vvo35 J	<0.00190 <0.00500	0.0410 J	0.00103 J
		Apr-15		0.0104	0.0116				<0.000540	0.0398 J	<0.000240	0.72			<0.000380		
	MW-22A	Apr-13 Apr-14		0.0397 0.0418	<0.0250 0.0154				<0.0250 <0.00200	2.55 0.271 J	<0.0250 < 0.00140	5.34 3.58			<0.0250 0.00322 J		
		Apr-15	FD	0.0369	0.0171				<0.000540	0.901	<0.000240	5.08			0.00105 J		
		Apr-15 Apr-16	FD	0.0376 0.037	0.0162 J 0.0171 J				<0.00270 <0.00270	0.537 2.39	<0.00120 <0.00120	5.37 5.87			<0.00190 0.00218 J		
		Apr-16		0.037	0.01713 0.0157 J				<0.00270	2.37	<0.00120	5.83			0.00218 J		
	MW-22B	Apr-13		0.0288	<0.0250				<0.0250	1.98	<0.0250	3.41			<0.0250		
	MW-70	Apr-15 Apr-13		0.0383 0.0192	0.0154 J 0.0153				<0.00270 <0.00500	2.2 1.87	<0.00120 <0.00500	4.64 0.402			<0.00190 <0.00500		
		Apr-14		0.024	0.0154				<0.00100	0.922	<0.000700	0.302			<0.00100		
		Apr-15 Apr-16		0.0196 0.0228	0.0139 0.0147 J				<0.000540 <0.00270	1.57 5.40	<0.000240 <0.00120	0.213 0.513			<0.000380 <0.00190		
	MW-72	Mar-13		0.055	0.0142				<0.00500	21.8	<0.00500	5.31			<0.00500		
		Apr-14 Apr-15		0.0258 0.0306	0.0146 J 0.0226				<0.00500 0.000575 J	3.89 1.19	<0.00350 <0.000240	5.16 2.89			<0.00500 0.0117		
		Apr-15 Apr-16		0.0306	0.0226 0.0185 J				<0.00270	5.04	<0.000240	4.98			<0.00190		
	MW-73	Mar-13		0.108	0.0104				<0.00500	6.66	<0.00500	2.91			<0.00500		
		Apr-14 Apr-15		0.0986 0.064	0.0102 J 0.0109				<0.00500 0.000772 J	4.67 0.0580 J	<0.00350 <0.000240	2.62 2.36			<0.00500 0.00193 J		
	N 40 44	Apr-16		0.0843	0.0109 J				<0.00270	3.67	<0.00120	3.00			0.00314 J		
	MW-74	Mar-13 Apr-14		0.111 0.0606	0.0128 0.0121 J				<0.00500 <0.00500	1.48 <0.390	<0.00500 <0.00350	2.64 1.07			0.00876 0.162		
		Apr-15		0.0515	0.0103				<0.000540	0.0650 J	<0.000240	0.392			0.48		
	MW-75	Apr-16 Mar-13		0.135 0.191	0.0133 J 0.013				<0.00270 <0.00500	<0.075 1.43	<0.00120 <0.00500	2.20 0.902			0.0155 < 0.00500		
		Apr-14		0.152	0.0155				<0.00200	0.719	<0.00140	1.03			0.00292 J		
		Apr-15 Apr-16		0.355 0.125	0.0186 0.0176 J				0.003 < 0.00270	9.82 1.08	<0.000240 <0.00120	0.861 0.907			0.00261 0.00374 J		
	MW-76	Mar-13		0.0559	0.0123				<0.00500	2.60	<0.00500	0.619			<0.00500		
		Apr-14		0.0521 0.0628	0.0128 0.012				0.00128 J 0.00133 J	2.95 3.53	<0.000700 <0.000240	1.00 0.98			0.00139 J 0.00214		
		Apr-15 Apr-16		0.0628	0.012 0.0120 J				<0.00133 J	3.53	<0.000240	0.98			0.00214 0.00464 J		
		10							2.00210	J.V.	2.00120	3.000					

Value Color							Na	avajo Retii	nery, Artes								
Colored Colo	Aı	Ars	senic	В	arium	Boron	Cadmium	Cobalt	Chromium			Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
March Marc															mg/l 0.05	mg/l 0.03	mg/l 0.0631
Month															WQCC HH	WQCC HH	NMED TW
Dept.	0	0.0	0641	0	0.0117				0.0057	3.48	< 0.00500	0.824	<0.000200	0.0129	0.00744		0.00656
Month Mont	(0.	.067	(0.011				0.00747 J	7.09	0.00176 J	0.909			0.0123		
March Marc															0.0127 0.011		
Month	0	0.0	0126	(0.030				0.0815	0.798	<0.00500	0.489			0.00963		
March Marc															0.00708 0.0122		
Part 1									0.049						0.0124		
MAY-00 0.009907 0.0198 0.0198 0.0198 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000000															0.00861 J		
March Marc															0.00120 J		
April 0.00729 0.0072															<0.00190 <0.00500		
Mary	0.0	0.00	0720 J	0	0.0155				<0.00200	<0.156		0.403			0.00238 J		
Mary March															0.000949 J 0.00232 J		
April	(0.	.005	0	0.0151				<0.00500	<0.200	<0.00500	2.170			<0.00500		
April Apri															<0.00500 0.00945 J		
Miny	0	0.0	0188	0	0.0144				0.000736 J	0.0190 J	< 0.000240	0.0128			0.0229		
## April D 0.071 0.0113															0.0426 < 0.00500		
Min	(0.	.071	0	0.0183				<0.00200	0.54	<0.00140	1.39			<0.00200		
MW-35 MW-15 0.9889 0.9755 0.90000 0.977 0.000000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.000000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.00000 0.977 0.977 0.00000 0.977															<0.00200 0.00265		
April 0.0292	0	0.0	0400	0	0.0326				<0.00270	0.121 J	<0.00120	1.64			0.00331 J		
Age-15 0.0223 0.0227 0.00004 0.741 0.000															0.00511 0.00741		
Miles 10 10 10 10 10 10 10 1	0	0.0	0253	0	0.0129				0.00766	6.99	< 0.000240	0.741			0.00376		
Apr-15															0.0052 J 0.00513		
MW-87 Apr-16 0.0887 0.0144 0.00227 0.0882 0.00200 2.98 0.00200 0.00207 Apr-16 0.00880 0.0184 0.00784 0.00200 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200 0.0205 0.00200	0	0.0	0779	0	0.0127				0.00293 J	0.324 J	<0.00140	3.28			0.00690 J		
WW-87 Apr-13															0.005 0.00813 J		
Apr-16	<0	<0.	.0250	<0	0.0250				<0.0250	<1.00	<0.0250	0.0302			<0.0250		
Month Mont															<0.00500 0.00110 J		
Apr-16	0.0	0.00	0841 J	0.0	0178 J				<0.00270	3.82 O1	<0.00120	2.39 V			0.00215 J		
Apr-16															<0.0250 <0.00200		
MW-120 Agr-14 0.01932 0.00984 J 0.002000 3.76 0.00196 J 1.27 0.0050									<0.00270						<0.00190		
April 0.00794 0.0915 0.0015 0.0025 0															<0.00190		
MW-121 Apr-14 0.0339 0.017															0.0324		
MW-123 Apr-14 0.0276 0.0270 0.0270 0.0270 0.0070 0.0070 0.0010 2.46 0.0010 Apr-16 0.0224 0.0210 0.0210 0.00270 0.0075 0.00120 2.67 0.0010 Apr-16 0.0254 0.0211 0.0024 0.00270 0.00270 0.0075 0.00120 2.58 0.00 0.00024 0.000254 0.00241 0.000200 0.613 0.001040 0.518 0.000 0.000254 0.00254 0.00120 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.000200 0.000200 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.000200 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020															0.00538 J		
MW-123 Apr-14 0.0276 0.0270 0.0270 0.0270 0.0070 0.0070 0.0010 2.46 0.0010 Apr-16 0.0224 0.0210 0.0210 0.00270 0.0075 0.00120 2.67 0.0010 Apr-16 0.0254 0.0211 0.0024 0.00270 0.00270 0.0075 0.00120 2.58 0.00 0.00024 0.000254 0.00241 0.000200 0.613 0.001040 0.518 0.000 0.000254 0.00254 0.00120 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.000200 0.000200 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.000200 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020															0.005113		
MW-123 Apr-14 0.0276 0.0270 0.0270 0.0270 0.0070 0.0070 0.0010 2.46 0.0010 Apr-16 0.0224 0.0210 0.0210 0.00270 0.0075 0.00120 2.67 0.0010 Apr-16 0.0254 0.0211 0.0024 0.00270 0.00270 0.0075 0.00120 2.58 0.00 0.00024 0.000254 0.00241 0.000200 0.613 0.001040 0.518 0.000 0.000254 0.00254 0.00120 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.00020 0.000254 0.000200 0.000200 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020 0.000200 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020															0.00792 J		
MW-123 Apr-14 0.0276 0.0270 0.0210 0.00200 0.0156 0.00102 2.67 0.0010 Apr-16 0.0224 0.0210 0.0210 0.00270 0.0075 0.00120 2.67 0.0010 Apr-16 0.0254 0.0211 0.0241 0.00200 0.613 0.00040 0.518 0.000 0.00040 Apr-15 0.00039 0.0171 0.000540 0.861 0.000240 0.703 0.000 0.000540 0.861 0.000240 0.703 0.000 0.000540 0.861 0.000240 0.703 0.00040 0.518 0.00040															0.00200		
April 0.0274 0.0210 0.0254 0.0211 0.00270 0.0750 0.00120 2.67 0.00120 0.00	0.0	0.00	0405 J		0.028				<0.00270	0.541 B	<0.00120	1.39			<0.00190		
Apr-16															<0.00200 <0.00190		
April 0.00199 0.017	0	0.0	0254	0.0	0211 J							2.85			0.0022 J		
April 0.00255 J 0.0198 J -0.00270 2.70 -0.00120 0.601 -0.002															<0.00200 <0.000380		
Apr-15				0.0	0198 J				< 0.00270		<0.00120				<0.00190		
Apr-16															0.00716 J 0.0204		
Apr-14 <0,00200 0.0203 <0,00200 <0.156 <0,00140 0.440 <0.00200 Apr-15 0.00181 0.01818															0.0204 0.00328 J		
April															<0.00500 <0.00200		
OCD-3 Mar-13 <0.00500 0.00500 0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00500 <0.00572 <0.00500 <0.00500 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.00500 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050															<0.00200		
Apr-14															<0.00190 <0.00500		
Apr-16	-	-							.0.00000	0.450	0.00440				<0.00200		
OCD-4 Mar-13															<0.00190 <0.00190		
Apr-16															<0.0250		
Apr-16															<0.00500 <0.00190		
Apr-14 FD <0.00500 0.0241 J															<0.00190		
Apr-14															<0.0250 <0.00500		
Apr-16	0.0	0.00	0550 J	0.0	0243 J				<0.00500	1.61	< 0.00350	0.375			<0.00500		
OCD-6 Mar-13															<0.00190 <0.00190		
Apr-15	0	0.0	0374	<0	0.0250				<0.0250	12.4	<0.0250	2.33			<0.0250		
Apr-16															<0.00500 0.000955 J		
Apr-14 FD 0.131 0.0125	0	0.0	0118	0.0	0208 J				< 0.00270	2.00	<0.00120	2.14 V			0.00282 J		
Apr-14															<0.0250 0.00271 J		
Apr-16		0	0.13	0	0.0119				0.00204 J	1.73	<0.00140	2.77			0.00234 J		
CCD-78 Mar-13 < 0.00500 0.0155 < 0.00500 < 0.200 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0.00500 < 0															0.00179 J 0.00360 J		
OCD-8A Apr-13 FD 0.116 < 0.0250	<0.	<0.0	00500	0	0.0155				<0.00500	<0.200	<0.00500	<0.00500			<0.00500		
Apr-13													<0.000200	<0.0250	<0.000380 <0.0250		<0.0250
Apr-14 0.0791 0.024 0.00200 8.18 <0.00140 3.45 8.0E-05 J 0.0285 <0.00000 0.000000000000000000000000	(0.	.107	<0	0.0250				<0.0250	8.51	<0.0250	3.18	<0.000200	<0.0250	<0.0250		<0.0250
Apr-15 0.0543 0.0315 0.000744 J 11.00 <0.000240 6.40 0.0562 0.000															<0.00200		0.00193 J 0.00185 J
OCD-8B Apr-13 < 0.0250 < 0.0250 < 0.0250 < 0.0250 0.617 < 0.00 Apr-15 0.0113 0.012 0.000653 J 0.200 < 0.000240	0	0.0	0543	0	0.0315				0.000744 J	11.00	<0.000240	6.40		0.0562	0.000889 J		0.000737 J
Apr-15 0.0113 0.012 0.000653 J 0.200 <0.000240 5.18 0.000						0.816	<0.000800	<0.0013					<4.90E-05	0.0331	0.00226 J	<0.00165	0.00186 J
KWB-1A Apr-13 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.010	0	0.0	0113	(0.012				0.000653 J	0.200	<0.000240	5.18			<0.0250 0.000497 J		
Colored Colo	<0	<0.	.0100	<0	0.0100				<0.0100	<0.400	<0.0100	0.349	<0.000200		<0.0100		0.0193 0.0197
Apr-16 0.00279 0.00849 0.647 <0.000160 0.00479 <0.00054 <0.0150 0.000318 J 0.398 <4.9E-05 J6 0.01 0.0068 0.0131 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0100 <0.0	0.	0.0	00328	0	0.0084				<0.000540	<0.0150	<0.000240	0.371		0.01	0.00336		0.0226
No.0100 No.0						0.647	<0.000160	0.00479					<4.9E-05 J6	0.01	0.00669 B < 0.0100	0.0217	0.0217
# KWR-7 Apr.13 <0.00500 0.0429	0.	0.0	00297	0	0.0087				<0.000540	<0.0150	0.000528 J	0.451			0.00155 J		
NULTURE NULTUR			00500		0.0429				<0.00500	<0.200	<0.00500	1.72	<0.000200	0.0201	<0.00500		0.0116
Apr-15 0.0191 0.0628						0.472	<0.000800	0.00568 J					<4.90E-05		0.000486 J <0.00190	0.00299 J	0.00111 J 0.00229 J
KWB-10R Apr-15 0.0247 3.15 <0.000540 7.25 0142 J 0.151 0.0006	0	0.0	0247		3.15				<0.000540	7.25	0142 J	0.151			0.000839 J		
													<0.000200	<0.00500	0.00194 JB 0.00781		0.0126

							INC	avajo Refir	iery, Artes								
		Analyte Gro		Arconic	Darium	Boron	Cadmium	Cohalt	Chromium	Dissolve		Manganoso	Moreury	Nickel	Solonium	Uranium	Vanadium
		Analy Uni		Arsenic mg/l	Barium mg/l	Boron mg/l	Cadmium mg/l	Cobalt mg/l	Chromium mg/l	lron mg/l	Lead mg/l	Manganese mg/l	Mercury mg/l	Mickel mg/l	Selenium mg/l	mg/l	Vanadium mg/l
		CGW		0.01	1.00	0.75	0.005	0.05	0.05	1.00	0.015	0.2	0.002	0.2	0.05	0.03	0.0631
		GWSL Sour		USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID		Oup														
		Apr-15		0.00241	0.0217	0.477	<0.000800	0.00202 J	<0.000540 <0.00270	<0.0150	0.00817	0.265	<4.00E.0E	0.00442 0.00547 J	0.0026 0.00847 J	0.0209 J	0.0123
	KWB-11B	Apr-16 Apr-13	-	0.00234 J <0.00500	0.0283 0.0149	0.477	<0.000800	0.00202 J	<0.00270	<0.075 <0.200	0.00533 J <0.00500	0.240 <0.00500	<4.90E-05 <0.000200	<0.00547 3	0.00847 J 0.0106	0.0209 J	0.0134 J 0.00824
	IKW D-11D	Apr-14		0.00165 J	0.0142				<0.00100	<0.0780	<0.000700	<0.00250	<4.2E-05	<0.00100	0.00946		0.0079
		Apr-15		0.00139 J	0.0135				0.000786 J	< 0.0150	<0.000240	0.000825 J		0.000504 J	0.00972		0.00811
		Apr-16		0.00144 J	0.0119 J	0.154 J	<0.000800	<0.0013	<0.00270	<0.075	<0.00120	<0.00125	<4.90E-05	<0.00175	0.00845 J	0.00958 J	0.00947 J
	KWB-12A		FD	0.00150 J	0.0128				<0.000540	<0.0150	<0.000240	0.000359 J		0.000473 J	0.00374		0.00955
		Apr-15		0.00167 J	0.016		*0.000000	+0.0040	<0.000540	0.0156 J	<0.000240		*4.00E.0E	0.000471 J	0.00445		0.0112
	KWB-12B	Apr-16 Apr-13 F	FD	0.00191 J <0.0100	0.0184 J <0.0100	0.621	<0.000800	<0.0013	<0.00270 <0.0100	<0.075 <0.400	<0.00120 <0.0100	<0.00125 <0.0100	<4.90E-05 <0.000200	<0.00175 <0.0100	0.00383 J <0.0100	0.0337 J	0.0143 J 0.013
	KWD-12D	Apr-13	U	<0.0100	<0.0100				<0.0100	<0.400	<0.0100	<0.0100	<0.000200	<0.0100	<0.0100		0.0132
			FD	0.00222 J	0.0101				<0.00200	<0.156	<0.00140	<0.00500	<4.2E-05	<0.00200	0.00341 J		0.0134
		Apr-14		0.00336 J	0.00906				<0.00100	<0.0780	<0.000700	<0.00250	<4.2E-05	<0.00100	0.00460 J		0.0133
		Apr-15		0.00169 J	0.00905				<0.000540	<0.0150	<0.000240	0.000656 J		0.000442 J	0.00404		0.0112
			FD	0.00196 J	0.0132 J	0.625	<0.000800	<0.0013	<0.00270	< 0.075	<0.00120	0.0047 J	<4.90E-05	<0.00175 <0.00175	0.00397 J	0.0322 J	0.0141 J
	MW-57	Apr-16 Apr-13	-	0.00196 J 0.014	0.0159 J 0.0245	0.625	<0.000800	<0.0013	<0.00270	<0.075 0.84	<0.00120 <0.00500	0.00501 J 0.53	<4.90E-05	<0.00175	0.00398 J <0.00500	0.0325 J	0.0152 J
	10100-07	Apr-14	-	0.056	0.065				<0.00100	2.67	0.000734 J	1.98			<0.00100		
		Apr-15		0.00508	0.0171				<0.000540	0.385	<0.000240	0.188			0.0331		
		Apr-16		0.00424 J	0.0144 J				< 0.00270	< 0.075	<0.00120	0.388			0.0116		
	MW-58	Apr-15		0.0116	0.89				<0.000540	1.33	0.00259	0.0974		0.000747 J	0.000588 J		0.00237 J
		Apr-16		0.0109	0.632	0.519	<0.000800	<0.0013	<0.00270	0.429 J	0.00166 J	0.357	<4.90E-05	0.00864 JB	<0.00190	<0.00165	0.00201 J
1	MW-111	Apr-13	_	0.0132	0.179				<0.00500	5.56	<0.00500	1.86	<0.000200	0.00559	<0.00500		<0.00500
1	I	Apr-14 Apr-15	+	0.0126 0.0123	0.222				<0.00100 <0.000540	6.74 5.920	<0.000700 <0.000240	1.68 1.60			0.00119 J <0.000380		
	1	Apr-16	一	0.0123	0.239				< 0.000340	6.540	< 0.000240	1.680			<0.00190		
1	MW-113	Apr-13	Ţ١	<0.00500	0.017				< 0.00500	<0.200	<0.00500	0.383	<0.000200	<0.00500	<0.00500		0.0103
1	I	Apr-14	I	0.00267 J	0.018				<0.00100	0.0871 J	<0.000700	0.387			<0.00100		
1	I		FD	0.00413	0.0254				<0.000540	0.35	<0.000240	0.946			0.000388 J		
1	I	Apr-15	FD	0.00445	0.0248				<0.000540 <0.00270	0.341 0.191 J	<0.000240 <0.00120	0.917 0.675			0.00328 <0.00190		
>	1	Apr-16 F Apr-16	ייט	0.00251 J 0.00282 J	0.0233 J 0.0218 J				<0.00270	0.191 J 0.178 J	<0.00120	0.675 0.723 V			<0.00190		
Refinery	MW-125	Apr-14	_	0.00406 J	0.00914				<0.00100	<0.0780	<0.000700	0.395			0.00773		
Se Se		Apr-15		0.00367	0.00842 J				<0.000540	< 0.0150	<0.000240	0.385			0.00797 J		
t of		Apr-16		0.00391 J	0.0101 J				<0.00270	<0.075	<0.00120	0.412			0.00379 J		
East of	MW-126A	Apr-14		0.00366 J 0.00257	0.0136 0.0159				<0.00100	<0.0780	<0.000700	0.174			0.00270 J <0.000380		
Field		Apr-15 Apr-16	-	0.00257 0.00221 J	0.0159 0.0178 J				0.000604 J <0.00270	1.17 0.714	<0.000240	0.829 0.820			0.00299 J		
iΞ	MW-126B	Apr-14	_	0.00344 J	0.0168				0.00379 J	1.17	< 0.000700	0.930			0.00115 J		
		Apr-15		0.00384	0.0102				0.000682 J	0.0320 J	<0.000240	0.0807			0.00222		
	101/ 407	Apr-16		0.00350 J	0.00925				0.00119 J	<0.0150	<0.00024	0.0661			0.00538 JB		
	MW-127	Apr-14 Apr-15	1	0.00400 J 0.00374	0.191 0.204				<0.00100 0.000841 J	0.685 0.486	<0.000700 0.000441 J	0.155 0.0919			0.00106 J <0.000380		
		Apr-16	-	0.00374 0.00441 J	0.115				< 0.00270	0.480 0.258 J	< 0.00120	0.103			0.00298 J		
	MW-128	Apr-14		0.0563	0.0808				<0.00100	2.92	<0.000700	2.29			<0.00100		
		Apr-15		0.045	0.0674 J				<0.000540	2.23	<0.000240	2.20			0.00455 J		
	MW-129	Apr-16		0.0646	0.0812				<0.00270	2.77 4.93	<0.00120 <0.000240	2.52			<0.00190 <0.000380		
	10100-129	Apr-15 Apr-16	1	0.0279 0.0256	0.536 0.614				<0.000540 <0.00270	5.58	<0.00120	1.11			0.00253 J		
	MW-130	Apr-14		0.00434 J	0.0238				<0.00100	0.0912 J	<0.000700	0.13			0.00713		
		Apr-15		0.00464	0.0233 0.0198 J				0.00155 J	0.446 J 0.116 J	0.00165 J	0.119			0.00337 J		
	MW-131	Apr-16 Apr-14	-	0.00450 J 0.0205	2.21				<0.00270 <0.00100	1.56	<0.00120	0.103 0.384			0.0126 0.00118 J		
		Apr-15		0.0219	2.82				<0.000540	1.84	0.000414 J	0.323			<0.000380		
		Apr-16		0.0218	2.76				<0.00270	1.46	<0.00120	0.322			0.00271 J		
	MW-133 MW-134	Apr-15		0.0102	0.138				<0.000540	2.59	0.000513 J	0.290			0.00325		
	IVIVV-134	Apr-14 Apr-15 F	FD	0.00761 J 0.00571	0.00947 J 0.00941				<0.00200 0.00147 J	<0.156 0.182	<0.00140	0.0169 0.00509			0.00508 J 0.0134		
		Apr-15		0.00634 J	0.0115 J				<0.00270	<0.0750	<0.00120	0.00504 J			0.0180		
			FD	0.00504 J	0.00916 J				<0.00270	<0.075	<0.00120	0.00888 J			0.00888 J		
	MW-135	Apr-16		0.00551 J	0.0107 J				<0.00270	< 0.075	<0.00120	0.00802 J			0.00963 J		
	MVV-135	Apr-14 Apr-15	1	0.00316 J 0.00291	0.0122 0.0106				<0.00100 0.000881 J	<0.0780 <0.0150	<0.000700	0.0111 0.00329 J			0.0349		
		Apr-16	_	0.00339 J	0.0105 J				<0.00270	0.149 J	<0.00120	0.00261 J			0.0244		
	RW-12R	Apr-16		< 0.00250	0.0398 J				0.0149 JB	< 0.150	0.0031 J	0.489			< 0.00740		
	RW-13R	Apr-16		0.00890 J	0.0888				<0.00270	0.470 J	<0.00120	1.36			<0.00190		
	RW-18	Apr-13		<0.0250	<0.0250				<0.0250	<1.00	<0.0250	<0.0250			<0.0250		
1	I	Apr-14 Apr-16	+	0.00353 J 0.00399	0.0108 0.00975		-		<0.00200 0.000707 J	<0.156 <0.0150	<0.00140 <0.00024	<0.00500 0.00112 J			0.00964 J 0.00511 B	-	
1	RW-20	Apr-16 Apr-15	+	0.00399 0.00171 J	0.00975				< 0.000707 3	0.0150	<0.00024	0.001123			0.00511 B		
L	RW-22	Apr-15	J	<0.00250	0.802				<0.00540	0.394 J	0305 J	0.886			0.0326		
	MW-23	Apr-13	コ	0.0089	8.59				<0.00500	<0.200	<0.00500	0.0924			<0.00500		
1	I	Apr-14 Apr-15	-	0.0101 0.0206	9.4 0.215				<0.00100 0.000653 J	<0.0780 0.16	0.0107 0.000295 J	0.09 0.203			<0.00100 0.000997 J		
1	I	Apr-15 Apr-16	┪	0.0206	10.9				0.000653 J	0.16 0.0206 J	0.000295 J 0.000319 J	0.203			0.000997 J 0.00164 JB		
1	MW-29	Apr-13	7	0.00311	0.0165				< 0.00500	<0.200	< 0.00500	0.525			< 0.00500		
1		Apr-14	寸	0.00753	0.014				<0.00100	0.241	<0.000700	0.624 J			<0.00100		
		Apr-15		0.000886 J	0.0185				<0.000540	<0.0150	<0.000240	0.378			0.00432		
1		Apr-16		<0.00125	0.0210 J				<0.00270	0.185 J	<0.00120	0.487			<0.00190		
1	MW-39	Apr-15	_[0.00174 J	0.0226				<0.000540	<0.0150	0.000389 J <0.00120				0.00533 0.00222 J		
	MW-40	Apr-16 Apr-13	-	0.0176 <0.00500	0.0192 J 0.0262				<0.00270 <0.00500	<0.075 <0.200	<0.00120	0.0166 J 0.048			<0.00500		
1		Apr-14	寸	0.00257 J	0.0262				<0.00100	<0.0780	<0.000700	0.0424			0.00270 J		
∑ie		Apr-15		0.000999 J	0.027				<0.000540	0.2	<0.000240	0.0375			0.000388 J		
je je	N 40 4 7 4 4	Apr-16	_[0.000937 J	0.0253				<0.00054	< 0.0150	<0.00024	0.0214			0.00176 JB		
Æ.	MW-41	Apr-13 Apr-14	\dashv	0.007 0.0064	0.0145 0.0141				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	0.777 0.847			<0.00500 0.00316 J		
North Refinery	1	Apr-15		0.00448	0.0141				<0.00100	0.0163 J	<0.000700	0.791			< 0.003183		
_		Apr-16		0.00459	0.0177				< 0.00054	0.0198 J	<0.00024	0.74			0.00129 JB		
1	MW-42	Apr-13	耳	0.0112	0.0231				<0.00500	0.416	<0.00500	0.201			<0.00500		
1	1	Apr-14 Apr-15	+	0.0135 0.0074	0.03				<0.00100 0.000790 J	0.33 0.142	<0.000700 0.000322 J	0.189 0.152			0.00429 J 0.000534 J		
1		Apr-16	+	0.0074	0.0204				< 0.000790 3	0.0401 J	< 0.000322 3	0.132			0.000534 J 0.00121 JB		
1	MW-43	Apr-13		0.01	0.0722				<0.00500	<0.200	<0.00500	0.432	<0.000200	<0.00500	<0.00500		<0.00500
1		Apr-14	_[0.0102	0.0931				<0.00100	<0.0780	<0.000700	0.439		0.00357 J	<0.00100		0.00397 J
1	I	Apr-15 Apr-16	-	0.0114 0.0128	0.25 0.0745	1.65	<0.000800	<0.0013	<0.000540 <0.00270	<0.0150 <0.075	<0.000240 <0.00120	0.374 0.290	<4.9E-05	0.00384 0.00561 JB	0.000428 J 0.0067 J	<0.00165	0.000695 J 0.00283 J
1	MW-59	Apr-13	7	0.0128	0.0745	1.00	10.000000	-0.0010	<0.00270	<0.200	<0.00120	0.484	17.0L=0J	5.00001 JB	<0.00500	-0.00103	3.00203 3
1		Apr-14	コ	0.0324	0.0145				<0.00100	0.152 J	<0.000700	0.48			0.00267 J		
1		Apr-15 Apr-16	-	0.0177 0.0145	0.0137 J 0.0221 J				<0.000540 <0.00270	0.126 0.121 J	<0.00120 <0.00120	0.427 0.466			0.00859 J <0.00190		
Ь		Apr-10	1	0.0140	U.U.L.I U				-0.00210	0.1213	-0.00120	V.+00			-0.00180		

	,	Analyte Group				Na	avajo Refir	nery, Artes	Dissolve							
	•	Analyte	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
		Units: CGWSL	mg/l : 0.01	mg/l 1.00	mg/l 0.75	mg/l 0.005	mg/l 0.05	mg/l 0.05	mg/l 1.00	mg/l 0.015	mg/l 0.2	mg/l 0.002	mg/l 0.2	mg/l 0.05	mg/l 0.03	mg/l 0.0631
Area	Well ID	GWSL Source Date Dup	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCI	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
	MW-60	Apr-13 FD Apr-13	0.0128 0.0131	0.0229 0.0219				<0.0100 <0.0100	<0.400 <0.400	<0.0100 <0.0100	0.326 0.34	<0.000200 <0.000200	<0.0100 <0.0100	<0.0100 <0.0100		<0.0100 <0.0100
		Apr-14 Apr-15 FD	0.00796 0.00160 J	0.02 0.0177				<0.00100 <0.000540	0.136 J 0.127	<0.000700 0.000283 J	0.334 0.349	-0.000E00	<0.00100 0.000977 J	0.00214 J		<0.000900
		Apr-15	0.0171 J	0.0260 J		.0.000000	.0.0040	<0.000540	0.116 J	0.000316 J	0.321	105.05	0.000587 J	0.0470 J		0.000471 J
		Apr-16 FD Apr-16	0.00871 J 0.00902 J	0.0169 J 0.0184 J	0.431 0.439	<0.008000	<0.0013 <0.0013	<0.00270 <0.00270	0.170 J 0.139 J	<0.00120 <0.00120	0.339 0.333	<4.9E-05 <4.9E-05	<0.00175 <0.00175	<0.00190 <0.00190	0.00239 J 0.00241 J	0.00129 J <0.000900
	MW-61	Apr-13 Apr-14	<0.00500 0.00159 J	0.027 0.031				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 0.00173 J	0.0213 0.0235			<0.00500 <0.00100		
		Apr-15 Apr-16	0.00381 <0.00125	0.0442 0.0205 J				<0.000540 <0.00270	<0.0150 0.103 J	<0.000240 <0.00120	0.00470 J 0.062			0.000496 J <0.00190		
	MW-62	Apr-13 Apr-14	<0.00500 0.00406 J	0.704 0.0689				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	0.00658 0.00390 J			<0.00500 0.00135 J		
		Apr-15	0.011	9.93				0.000662 J	<0.0150	0.000487 J	0.0688			0.000755 J		
	MW-67	Apr-16 Apr-15	0.00286 J 0.00402	0.0329 0.129				<0.00270 <0.000540	0.152 J 0.0443 J	<0.00120 0.000620 J	0.00388 JB 0.0816		0.00369	0.00392 J <0.000380		0.000753 J
	MW-90	Apr-16 Apr-13	0.011 < 0.00500	0.231 0.0174	0.458	<0.000800	<0.0013	<0.00270 <0.00500	0.156 J <0.200	<0.00120 <0.00500	0.133 0.0673	<4.9E-05	0.00267 J	0.00609 J <0.00500	<0.00165	0.00283 J
		Apr-14 Apr-15	0.00379 J 0.00775	0.0166 0.0207				<0.00100 0.000646 J	<0.0780 0.187	0.000729 J <0.000240	0.0754 0.338			<0.00100 0.00101 J		
	MW-91	Apr-16 Apr-14	0.00739 J 0.00323 J	0.0116 J 0.115				<0.00270 <0.00100	<0.075 <0.0780	<0.00120 0.00144 J	0.16			0.00584 J <0.00100		
	10100-51	Apr-15	0.00974	0.0899				<0.000540	0.0216 J	0.00281	0.00489 J			<0.000380		
	MW-92	Apr-16 Apr-16	0.00741 JJ3J6 0.00285 J	0.065 O1 3.57				<0.00270 <0.00270	<0.075 0.217 J	0.00386 J <0.00120	0.00359 J 0.0349			<0.00740 J3J <0.00190	0	
	MW-93	Apr-13 Apr-14	0.00801 0.00718	0.0634 0.085				<0.00500 0.00207 J	<0.200 <0.0780	<0.00500 0.00113 J	0.0187 0.04			<0.00500 0.00186 J		
		Apr-15 Apr-16	0.0124 0.01	0.0327 0.0197				0.00341 0.00692	0.0375 J 0.219	0.000293 J 0.000301 J	0.215 0.054			0.00468 0.018		
	MW-94 MW-95	Apr-16	0.0163 < 0.00500	0.356 0.124				<0.00270 <0.00500	<0.075 0.56	<0.00120 <0.00500				0.0334 < 0.00500		
>		Apr-13 Apr-14	< 0.00100	0.118				<0.00300 <0.00100 <0.000540	<0.0780	<0.000700	0.0413			< 0.00100		
Refinery	101:	Apr-15 Apr-16	0.00134 J 0.00164 J	0.0681 0.0732				<0.00270	0.0255 J <0.075	<0.000240	0.0368			<0.000380 0.00486 J		
	MW-96	Apr-13 Apr-14	<0.00500 0.00477 J	0.152 0.114				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	<0.00500 <0.00250			<0.00500 <0.00100		
North		Apr-15 Apr-16	0.00499 0.00429 J	0.113 0.141				0.000705 J <0.00270	0.0345 J <0.075	<0.000240 <0.00120	0.00338 J 0.00127 J			0.000787 J 0.00330 J		
	MW-98	Apr-13 Apr-14 FD	<0.00500 0.00239 J	0.0152 0.016				<0.00500 0.00142 J	<0.200 <0.0780	0.0102 0.00986	0.0293 0.0274			<0.00500 0.00200 J		
		Apr-14	0.00226 J 0.00139 J	0.0145				<0.00100	<0.0780	0.00912	0.0273			0.00155 J		
		Apr-15 Apr-16	0.00153 J	0.0151 0.02				<0.000540 0.00107 J	<0.0150 <0.0150	0.00908 0.00629	0.0259 0.0222			0.000446 J 0.00216 B		
	MW-137 MW-138	Apr-16 Apr-16	0.0671 0.0062	0.0397 0.169	0.76 1.08	<0.000160 <0.000160	<0.00026 <0.00026	0.000810 J <0.00054	<0.0150 0.0158 J	0.00429 <0.00024	0.103 0.13	<4.9E-05 <4.9E-05	0.00729 0.00484	0.00345 B 0.00157 JB		0.00646 0.00403 J
	RW-1 RW-1R	Apr-15 Apr-16	0.00426 0.00435 J	0.0301 0.0367				0.00131 J <0.00270	0.0744 J 11.3	0.000323 J <0.00120	0.12 0.301			0.00136 J <0.00190		
	RW-2 RW-2R	Apr-15 Apr-16	0.0194 0.00883 J	0.0174 0.0206 J				0.00494 0.00400 JB	0.0471 J 0.77	0.000546 J <0.00120	0.285 0.0466			0.00133 J 0.00516 J		
	RW-7 RW-7R	Apr-15 Apr-16	0.00249 0.0136	0.404 0.0303				0.000879 J <0.00270	<0.0150 0.509	0.000482 J <0.00120	0.0266			0.0165 0.00396 J		
	RW-8	Apr-15	0.00521	0.0797				<0.000540	0.163	0.000591 J	0.0744			<0.000380		
	RW-9	Apr-13 Apr-14	<0.00500 0.0061	0.0629 0.0494				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	0.286 0.404			<0.00500 0.00393 J		
		Apr-15 Apr-16	0.00358 0.00328 J	0.0468 0.0453				<0.000540 <0.00270	0.179 <0.075	0.000454 J <0.00120	0.501 0.397			0.000418 J <0.00190		
	RW-10	Apr-13 Apr-14	<0.00500 0.00273 J	0.0185 0.0186				<0.00500 <0.00100	<0.200 0.132 J	<0.00500 <0.000700	0.223 0.212			<0.00500 0.00268 J		
		Apr-15	0.00177 J	0.0275				< 0.000540	0.0573 J	< 0.000240	0.25			0.00598		
	RW-16	Apr-16 Apr-13	<0.00125 0.0158	0.0324 0.0167				<0.00270 <0.00500	0.0776 J <0.200	<0.00120 <0.00500	0.237 0.498			0.0121 <0.00500		
		Apr-14 FD Apr-14	0.0127 0.0126	0.0141 0.0139				<0.00100 <0.00100	0.139 J 0.125 J	<0.000700 <0.000700	0.611 0.601			0.00300 J 0.00304 J		
		Apr-15 Apr-16	0.0133 0.0122	0.0143 0.0126 J				0.00101 J <0.00270	0.0234 J <0.075	0.000255 J <0.00120	0.400 0.379			0.00931 0.00842 J		
	RW-17	Apr-13 Apr-14	0.00825 0.0104	0.0256 0.0219				<0.00500 <0.00200	0.325 0.54	<0.00500 0.00417 J	0.71 0.743			<0.00500 <0.00200		
		Apr-15	0.00838	0.0211 0.0228 J				0.000835 J <0.00270	<0.0150 <0.075	0.00228	0.0992			0.0393		
	MW-117	Apr-16 Feb-13	0.00847 J 0.00498 J	0.0235	<0.000800		0.0141	<0.00120	<0.078	0.0065 J <0.00070	0.108	<4.2E-05	0.00413 J	0.00427 J		
		May-13 Sept-13	0.00367 J 0.00559	0.0113 0.0108	<0.000800		<0.0010 <0.00100	<0.00100 <0.00100	<0.078 <0.0780	<0.00070 <0.000700	0.00978 J 0.00502	<4.2E-05 <4.2E-05	<0.00100 0.00189 J	0.00585 0.00316 J		
		Nov-13 Apr-14	0.00347 J 0.00328 J	0.0108 <0.000900 B		<0.000800		<0.00100 <0.00100	0.110 J <0.0780	0.00125 J <0.000700		<4.2E-05	0.00305 J	0.00380 J 0.00425 J		
		Apr-15 Apr-16	0.00241 0.00260 J	0.00887 0.00993 J				0.000697 J <0.00270	0.0963 J	<0.000240 <0.00120	0.00160 J			0.0166 0.00912 J		
ield -ii	MW-118	Feb-13	0.011	0.0145		<0.000800		<0.00120	<0.075 <0.078	<0.00070	0.0232	4.2E-05 J	0.00173 J	0.00861		
RO Reject Field		May-13 Sep-13	0.0146 0.0156	0.00919 0.0099		<0.000800 <0.000800		<0.00100 <0.00100	<0.078 <0.0780	<0.00070 <0.000700	<0.00250 <0.00250	<4.2E-05 <4.2E-05	0.00184 J 0.00131 J	0.0129		
O Re		Nov-13 Apr-14	0.0125 0.00974	0.00964 <0.000900 B		<0.000800		0.00105 J <0.00100	0.179 J <0.0780	0.00107 J <0.000700	0.0121	<4.2E-05	0.00214 J	0.00108 J		
North R		Apr-15 Apr-16	0.00984 0.011	0.00952 0.00885 J				0.00131 J <0.00270	0.0698 J <0.075	<0.000240 <0.00120	0.00169 J <0.00125			0.00799 0.00607 J		
2	MW-119	Feb-13 May-13	0.00294 J 0.00537	0.00981 0.00625		<0.000800		<0.00120 <0.00100	<0.078 <0.078	<0.00070 <0.00070	0.0424 <0.00250	<4.2E-05 <4.2E-05	0.00174 J 0.00163 J			
		Sep-13	0.00595 0.00438 J	0.00864 0.010		<0.000800		<0.00100 <0.00100 0.00116 J	<0.0780	<0.00070 <0.000700 <0.000700	< 0.00250	<4.2E-05	0.00140 J 0.00222 J	0.0066		
		Nov-13 Apr-14 FD	0.00461 J	<0.000900 B		~v.uuu800		<0.00100	0.185 J <0.0780	<0.000700	< 0.00250		v.vu222 J	0.00402 J		
		Apr-14 Apr-15	0.00468 J 0.00374	<0.000900 B 0.00758				<0.00100 0.000834 J	<0.0780 0.262	<0.000700 <0.000240	0.00863			0.00393 J <0.000380		
\vdash	MW-18	Apr-16 Apr-13 FD	0.00338 J <0.00500	0.00748 J 0.02				<0.00270 <0.00500	<0.075 <0.200	<0.00120 <0.00500	<0.00125 <0.00500	<0.000200	<0.00500	0.00271 J 0.00965		0.0157
		Apr-13 Apr-14	<0.00500 0.00488 J	0.0184 0.0183				<0.00500 0.00170 J	<0.200 <0.0780	<0.00500 0.000942 J	0.00555 0.011	<0.000200 <4.2E-05	<0.00500 0.00102 J	0.00971 0.0136		0.0156 0.0161
		Apr-15	0.0035	0.0171				0.00131 J	0.0182 J	< 0.000240	0.00643		0.00135 J	0.0129		0.0157
	MW-45	Apr-16 Apr-13	0.00307 J <0.00500	0.0146 J 0.0179	1.35	<0.000800	<0.0013	<0.00270 <0.00500	<0.075 0.76	<0.00120 <0.00500	0.00725 J 0.538	<4.9E-05 <0.000200	<0.00175 0.00743	0.020 <0.00500	0.0405 J	0.0177 J <0.00500
		Apr-14 Apr-15	0.00354 J 0.00359	0.0163 0.0174				<0.00100 <0.000540	0.69	<0.000700 <0.000240	0.54 0.526	<4.2E-05	0.00756 0.00635	0.00198 J 0.000904 J		<0.000900 0.000284 J
		Apr-16	0.00368 J	0.0185 J	0.596 O1	<0.000800	<0.0013	<0.00270	1.25	<0.00120	0.561	<4.9E-05	0.00635 0.00391 J	<0.00190		0.000284 J 0.00103 J
NCL	MW-53	Apr-13 Apr-14	<0.00500 0.00316 J	0.0238 0.0213				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	0.826 0.532			<0.00500 0.00135 J		
		Apr-15 Apr-16	0.00167 J 0.00166 J	0.021 0.0246 J				<0.000540 <0.00270	<0.0150 <0.075	<0.000240 <0.00120	0.80 0.605			0.00627 0.00498 J		
	MW-54A	Apr-13	<0.00500	0.0183				<0.00500	<0.200	<0.00500	0.498			<0.00500		
		Apr-14 Apr-15	0.0062 0.00289	0.0182 0.0178				<0.00100 <0.000540	<0.0780 <0.0150	<0.000700 <0.000240	0.49 0.46			0.00228 J 0.0029		\vdash
	MW-54B	Apr-16 Apr-13	0.00314 J <0.00500	0.0175 J 0.0157				<0.00270 <0.00500	0.354 J <0.200	<0.00120 <0.00500	0.477 0.138			<0.00190 <0.00500		
	IVIVV-34B	Apr-13 Apr-15	<0.00500 0.00205	0.0157				<0.00500	<0.200 0.0456 J	<0.00500	0.138 0.164			<0.00500 0.00289		
			-													

						140	avajo Refir	ieiy, Aites								
	,	Analyte Group: Analyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Dissolve Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
		Units:	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		CGWSL:	0.01	1.00	0.75	0.005	0.05	0.05	1.00	0.015	0.2	0.002	0.2	0.05	0.03	0.0631
Area		GWSL Source:	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Alcu	Well ID MW-55	Date Dup Apr-13	<0.00500	0.00863				<0.00500	<0.200	<0.00500	0.0285	<0.000200	<0.00500	0.0195		0.0165
		Apr-14 FD	0.00659	0.00871				<0.00100	<0.0780	<0.000700	0.060	<4.2E-05	0.00345 J	0.0272		0.0156
		Apr-14	0.00641	0.00965				<0.00100	<0.0780	<0.000700	0.0595	<4.2E-05	0.00400 J	0.0253		0.0156
		Apr-15	0.00452	0.00832				0.00119 J	<0.0150	<0.000240	0.0421		0.00209	0.023		0.0141
	MW-56	Apr-16 Apr-13	0.00504 J 0.00602	0.0110 J 0.0134	1.26	<0.000800	<0.0013	<0.00270 <0.00500	<0.075 <0.200	<0.00120 <0.00500	0.0251 0.344	4.9E-05 J6O	0.00242 J	0.0134 <0.00500	0.0445 J	0.0187 J
	10100-30	Apr-13	0.00883	0.0134				<0.00300	<0.200	<0.000700	0.344			0.00579		
		Apr-15	0.00709	0.0136				<0.000540	<0.0150	0.000483 J	0.286			0.00334		
		Apr-16	0.00737 J	0.0158 J				<0.00270	0.112 J	0.00132 J	0.331			0.00369 J		
	MW-108	Apr-13	<0.00500	0.0403				<0.00500	<0.200	<0.00500	0.0169			<0.00500		
		Apr-14 Apr-15	0.00326 J 0.00343	0.0457 0.0299				0.00207 J 0.00223	<0.0780 <0.0150	0.000952 J 0.00105 J	0.029 0.0224			<0.00100 0.0184		
		Apr-16	0.00281 J	0.0408				< 0.00270	0.154 J	0.00173 J	0.0367			<0.00190		
	NCL-31	Apr-13	0.0122	0.021				<0.00500	0.89	<0.00500	1.870			<0.00500		
		Apr-14	0.0112	0.0194				<0.00100	0.94	<0.000700	1.59			<0.00100		
		Apr-15 Apr-16	0.00908 0.00599 J	0.0141 0.0178 J				<0.000540 <0.00270	0.731 0.866	0.000439 J <0.00120	1.59			0.00311 < 0.00190		
NCL	NCL-32	Apr-15	0.00262	0.0355				0.00120 J	0.42	0.000769 J	0.878			<0.000380		
~		Apr-16	0.00412 J	0.0632				0.00772 J	1.65	0.00736 J	1.32			<0.00190		
	NCL-33	Apr-13	<0.00500	0.0269				<0.00500	2.48	<0.00500	0.0848			<0.00500		
		Apr-14 Apr-15	0.00264 J 0.00311	0.0247 0.0223				<0.00100 <0.000540	2.68 1.49	<0.000700 <0.000240	0.0855 0.104			0.00104 J 0.000538 J		
		Apr-16	0.00311 0.00228 J	0.0202 J				<0.00270	0.134 J	<0.000240	0.146			0.000336 3		
	NCL-34A	Apr-15	0.000947 J	0.492				< 0.000540	<0.0150	<0.000240	0.0338			<0.000380		
1	Luci	Apr-16	<0.00125	0.616				<0.00270	<0.075	<0.00120	0.0172 J			0.00268 J		
1	NCL-44	Apr-13	0.0354 0.0372	0.0279 0.029	-			<0.00500 <0.00100	1.3 1.21	<0.00500 <0.000700	0.753 0.661			<0.00500 <0.00100	1	-
1	I	Apr-14 Apr-15	0.0372	0.029				<0.00100	1.21	<0.000700	0.663			<0.00100		
1	<u></u>	Apr-16	0.0362	0.0257	<u> </u>			<0.00270	1.33	<0.00120	0.938			<0.00190		<u> </u>
	NCL-49	Apr-13	< 0.00500	0.0111				<0.00500	<0.200	<0.00500	<0.00500			0.00506		
1	I	Apr-14	0.00338 J	0.0112				<0.00100	<0.0780	<0.000700	<0.00250			0.00503		
1	I	Apr-15 FD Apr-15	0.00152 J 0.00145 J	0.0102 0.0104				<0.000540 <0.000540	<0.0150 0.0227 J	<0.000240 <0.000240	<0.000250 0.000312 J			0.00364 0.00471	1	
1	I	Apr-16 FD	0.00145 J	0.0104 0.0143 J				<0.00270	<0.075	<0.00120	< 0.0003123			0.00471 0.00471 J	1	
_		Apr-16	0.00163 J	0.0136 J				<0.00270	0.204 J	<0.00120	0.00168 J			0.00498 J		
	KWB-2R	Apr-15	0.00249	0.273				<0.000540	0.216	0.000989 J	0.419			0.000612 J		
	KWB-5	Apr-16 Apr-15	0.00506 J 0.0227	0.028 3.64				<0.00270 <0.000540	1.17 3.64	<0.00120 0.000353 J	0.863 1.74			<0.00190 <0.000380		
		Apr-16	0.0237	3.61				<0.00270	4.22	<0.00120	1.85			<0.00190		
	KWB-6	Apr-15	0.00581	0.293				<0.000540	0.629	0.00116 J	2.18			<0.000380		
	MW-28	Apr-16 Apr-13	0.00454 <0.00500	0.245 0.0467				<0.00054 <0.00500	0.332 <0.200	0.000729 J <0.00500	2.13 0.0328	<0.000200	0.00631	0.00226 B < 0.00500		<0.00500
	WW-20	Apr-14	0.00396 J	0.131				<0.00100	<0.0780	0.00126 J	0.0374	<4.2E-05 J	0.00839	<0.00100		<0.000900
		Apr-15	0.0130 J	0.0644 J		*0.000000	-0.0040	0.000923 J	0.0283 J	0.012	0.0647	-4.05.05	0.00417	0.0699 J	-0.00405	0.00527
	MW-48	Apr-16 Apr-15	0.0116 0.00412	0.0685 0.580 J	1.15	<0.000800	<0.0013	<0.00270 0.000777 J	<0.075 0.255	0.00812 J 0.00139 J	0.0342 0.242 J	<4.9E-05	0.00599 J	<0.00190 0.00302 J	<0.00165	0.00371 J
		Apr-16	0.00857 J	2.64				< 0.00270	< 0.075	0.00134 J	0.402			0.00321 J		
	MW-50	Apr-13	0.005	0.02				<0.00500	<0.200	<0.00500	1.210			<0.00500		
		Apr-14 Apr-15	<0.00100 0.00146 J	0.02 0.0223				<0.00100 <0.000540	<0.0780 0.0396 J	0.000770 J 0.000670 J	1.38 1.62			<0.00100 <0.000380		
		Apr-16	0.00273 J	0.0143 J				< 0.00270	0.104 J	<0.00120	0.276			0.0837		
	MW-52	Apr-13	<0.00500	0.00941				<0.00500	<0.200	<0.00500	0.0729	<0.000200	<0.00500	<0.00500		0.0237
		Apr-14 FD Apr-14	0.00352 J 0.00375 J	0.009				<0.00100 <0.00100	<0.0780 <0.0780	<0.000700 <0.000700	0.034 0.033	<4.2E-05 <4.2E-05	0.00416 J 0.00448 J	0.00225 J 0.00265 J		0.025 0.0256
		Apr-15	0.00397	0.00909				<0.000540	< 0.0150	<0.000240	0.0341		0.00635	0.00124 J		0.0268
	104/04	Apr-16	0.00370 J	0.00904 J	0.749	<0.000800	<0.0013	<0.00270	< 0.075	<0.00120	0.035	<4.9E-05	0.00641 J	<0.00190	0.00809 J	0.026
	MW-64 MW-65	Apr-16 Apr-15	0.0321 0.0202	2.24 3.38				<0.00270 <0.000540	<0.075 2.64	<0.00120 0.000681 J	0.0624 0.814			0.00232 J 0.000425 J		
		Apr-16	0.0128	3.3				<0.00270	2.030	<0.00120	0.75			0.00698 J		
	MW-66	Apr-13	<0.00500	1.72				<0.00500	0.452	<0.00500	0.286	<0.000200 <4.2E-05 J	0.00912	<0.00500		<0.00500
		Apr-14 Apr-15	0.00139 J 0.00297	1.47 2.17				<0.00100 <0.000540	0.480 J 0.549	<0.000700 <0.000240	0.294 0.201	<4.2E-05 J	0.00861 0.00565	<0.00100 <0.000380		<0.000900 0.000494 J
		Apr-16	0.00279 J	2.37	0.321	<0.000800	<0.0013	<0.00270	0.715	<0.00120	0.224	<4.9E-05	0.00421 J	<0.00190	<0.00165	0.00166 J
	MW-99	Apr-15	0.00305	0.155				<0.000540	0.317	0.00200 J	0.0828			0.000714 J		
	MW-101	Apr-16 Apr-13	0.00883 J 0.0113	0.981 0.104				<0.00270 <0.00500	<0.075 0.5	<0.00120 <0.00500	0.236 0.928			<0.00190 <0.00500		
1		Apr-14	0.0378 J	0.0718				0.00404 J	1.64 J	<0.000700	1.16			< 0.00100		
jery	I	Apr-15	0.0767	0.0565				<0.000540	2.2 1.11	<0.000240	1.13 1.09			0.000395 J		
	MW-102	Apr-16 Apr-15	0.021 0.0102	0.0758 6.52	 			0.000621 J <0.000540	1.11 0.0780 J	<0.00024 0.00273	0.0433			0.00105 JB 0.0031		
Refi		Apr-16	0.0109	7.68				<0.00270	0.100 J	0.00205 J	0.0321			0.00549 J		
South	MW-103	Apr-13 Apr-14	<0.00500 <0.00100	0.821 0.988	-			<0.00500 <0.00100	<0.200 <0.0780	<0.00500 0.00106 J	<0.00500 <0.00250			<0.00500 <0.00100		-
ŏ	I	Apr-14 Apr-15	0.00491	8.03				< 0.000540	< 0.0150	0.000809 J	0.00250			0.000642 J	<u> </u>	
1	MAT (- :	Apr-16	0.00489 J	21.4				< 0.00270	< 0.075	< 0.00120	0.0227 J			<0.00190		
1	MW-104	Apr-13 Apr-14 FD	<0.00500 <0.00100	0.0194 0.019	-			<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	0.0247 0.0215			<0.00500 <0.00100		-
		Apr-14 T D	<0.00100	0.0195				< 0.00100	<0.0780	<0.000700	0.0215			<0.00100		
		Apr-15 FD	0.000422 J	0.0182				< 0.000540	< 0.0150	< 0.000240	0.0213			<0.000380		
		Apr-15 FD	0.000481 J 0.00158 J	0.0212 0.0241	-			<0.000540 0.000672 J	0.0279 J <0.0150	<0.000240 <0.00024	0.0222 0.00789			0.000603 J 0.00352 B	 	-
		Apr-16 FD	0.00188 J	0.0241				0.000672 J	<0.0150	0.00482	0.00779			0.156 O1		
1	MW-105	Apr-15	0.00829	0.114				0.000786 J	2.07	0.000320 J	0.111			0.00103 J		
1	MW-106	Apr-16 Apr-13	0.0139 0.00677	1.220 0.0276	 			<0.00270 <0.00500	<0.075 <0.200	<0.00120 <0.00500	0.188 0.0134			0.00327 J <0.00500	-	
1		Apr-13	0.0092	0.0276				0.00126 J	<0.200	0.00309 J	0.0134			0.00300 0.00137 J		
1	I	Apr-15	0.00361	0.0936				< 0.000540	0.172	0.00129 J	0.146			0.00795		
1	MW-107	Apr-16 Apr-13	0.0112 0.00762	0.0323 2.24				<0.00270 <0.00500	<0.075 9.4	0.00207 J <0.00500	0.00654 J 0.292			0.0103 < 0.00500		
1		Apr-14	0.00681	2.58				<0.00100	10.8	< 0.000700	0.289			< 0.00100		
1		Apr-15	0.01	1.53 J				0.000581 J	0.59	<0.00120	0.15			0.00457 J		
	MW-109	Apr-16 Apr-13	0.00187 J 0.0269	2.06 0.576				<0.00270 <0.00500	0.278 J 0.784	<0.00120 <0.00500	0.0956 0.402			<0.00190 <0.00500	1	
	103	Apr-14	0.0226	0.396				< 0.00100	0.603	<0.000700	0.332			0.00138 J		
		Apr-15	0.00369	0.0313				<0.000540	0.155	<0.000240	0.162 J			0.00235 J		
1	MW-110	Apr-16 Apr-13	0.00707 J 0.0355	0.0472 0.0643	-			<0.00270 <0.00500	0.0876 J 1.30	<0.00120 <0.00500	0.147 2.39			<0.00190 <0.00500	1	-
1	110	Apr-14	0.0307	0.0633				< 0.00100	1.08	<0.000700	1.60			0.00133 J		
1	I	Apr-15	0.00892	0.0573				<0.000540	0.117	<0.000240	0.667			<0.00101		
1	RW-4	Apr-16 Apr-15	0.0178 0.00189 J	0.0519 0.0573				<0.00270 <0.000540	0.330 J 0.0571 J	<0.00120 <0.000240	1.25 0.11			<0.00190 0.000503 J		
1	RW-4R	Apr-16	0.00323 J	0.0564	<u> </u>			<0.00270	0.119 J	<0.00120	0.0702			0.00236 J		<u> </u>
1	RW-5R	Apr-15	0.00136 J	0.0275				<0.000540	0.0247 J	<0.000240	0.0167			<0.000380		
	RW-6	Apr-16 Apr-15	0.00182 J 0.0354	0.0307 0.857	 			<0.00270 0.000677 J	0.146 J 17.5	<0.00120 0.00129 J	0.0193 J 0.284			0.00542 J <0.000380		
L	RW-6R	Apr-16	0.0615	0.384				< 0.00270	3.37	< 0.00120	0.537			0.00213 J		

				1			Na	avajo Refii	iery, Artes								
		Analyte G	roup:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Dissolve Iron		Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
			Units:	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
		CG	SWSL:	0.01	1.00	0.75	0.005	0.05	0.05	1.00	0.015	0.2	0.002	0.2	0.05	0.03	0.0631
A ***		CGWSL S		USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Area	Well ID MW-114	Date Feb-13	Dup	0.00561	0.0204		<0.000800		<0.00120	<0.078	<0.00070	1.51	<4.2E-05	0.00651	0.00222 J		
	10100-114	May-13		0.00301 0.00437 J	0.0129		<0.000800		<0.00120	<0.078	<0.00070	0.844	<4.2E-05	0.00031 0.00410 J			
		Sep-13		0.00502	0.017		<0.000800		< 0.00100	<0.0780	< 0.000700	1.42	<4.2E-05	0.00558	0.00245 J		
		Nov-13		0.00539	0.0112		<0.000800		0.00119 J	0.167 J	<0.000700	0.035		0.00369 J			
		Apr-14	1	0.00297 J	0.0136				<0.00100	<0.0780 <0.0150	<0.000700 <0.000240	1.13	ļ		<0.00100		
		Apr-15 Apr-16		0.00273 0.00298 J	0.0127 J 0.0148 J				<0.000540 <0.00270	<0.0150	<0.000240	0.894 1.00			0.00180 J <0.00190		
	MW-115	Feb-13		0.00499 J	0.0309		<0.000800		<0.00120	<0.078	<0.00070	0.255	<4.2E-05	0.00483 J			
9		May-13	FD	0.00427 J	0.011		<0.000800		< 0.00100	<0.078	< 0.00070	0.023	<4.2E-05	0.00225 J	0.00734		
E .		May-13		0.00478 J	0.0107		<0.000800		<0.00100	<0.078	<0.00070	0.0267	<4.2E-05	<0.00100	0.00654 J		
<u>.e</u>		Sep-13 Nov-13		0.00467 J 0.00616	0.011 0.011		<0.000800		<0.00100 <0.00100	<0.0780 <0.0780	<0.000700 <0.000700	0.0362 0.0249	<4.2E-05	0.00208 J 0.00206 J			
ě		Apr-14		0.00368 J	0.0087		₹0.000000		<0.00100	<0.0780	<0.000700	0.0246		0.002003	0.00366 J		
8		Apr-15		0.00797 J	0.00965 J				0.000735 J	0.0283 J	<0.000240	0.102			0.00313		
South RO Reject Field		Apr-16		0.00477 J	0.00839 J				<0.00270	< 0.075	<0.00120	0.060			<0.00190		
တိ	MW-116	Feb-13		0.00274 J	0.0161		<0.000800		<0.00120 0.00119 J	<0.078	<0.00070	0.044	0.000131 J				
		May-13 Sep-13	FD	0.00502 0.00467 J	0.0111 0.00946		<0.000800		<0.001193	0.201 <0.0780	<0.00070 <0.000700	0.0342	0.0000460 J 0.0000600 J				
		Sep-13		0.00535	0.00928		<0.000800		<0.00100	<0.0780	< 0.000700		0.0000610 J		0.00493 J		
		Nov-13	FD	0.00526	0.011		<0.000800		<0.00100	0.132 J	<0.000700	0.0058		0.00144 J			
		Nov-13	\vdash	0.00525	0.00989		<0.000800		<0.00100	<0.0780	<0.000700 <0.000700	0.0092		0.00245 J			
		Apr-14 Apr-15	\vdash	0.00348 J 0.00507	0.0095 0.00904 J				<0.00100 0.000586 J	<0.0780 <0.0150	<0.000700	<0.00250 0.00316 J		1	0.00563 0.00417 J		
1		Apr-16		0.00307 0.00339 J	0.00904 J				< 0.00270	<0.0130	<0.000240	0.00316 J		l	0.00564 J		
	MW-49	Apr-13	FD	0.00734	0.0398				< 0.00500	<0.200	< 0.00500	0.301	<0.000200	0.0093	< 0.00500		<0.00500
		Apr-13	oxdot	0.007	0.0402				<0.00500	<0.200	<0.00500	0.294	<0.000200	0.00912	<0.00500		<0.00500
		Apr-14 Apr-15	\vdash	0.00460 J 0.00329	0.0376 0.0394				<0.00100 <0.000540	<0.0780 0.0291 J	<0.000700 0.000467 J	0.333 0.240	<4.2E-05	0.00825 0.00656	<0.00100 0.00302 J		<0.000900 0.000493 J
		Apr-16		0.00329 0.00578 J	0.0394	0.708	<0.000800	<0.0013	<0.000340	< 0.02913	<0.00120	0.300	<4.9E-05	0.00842 J	< 0.00302 3	<0.00165	0.000493 J
	TEL-1	Apr-13		0.00553	0.012			2.30.0	< 0.00500	<0.200	< 0.00500	0.147			< 0.00500	2.20.00	
		Apr-14	FD	0.00428 J	0.0131 J				<0.00100	<0.0780	< 0.000700	0.0909 J			0.00110 J		
		Apr-14		0.00400 J	0.013				<0.00100	<0.0780	<0.000700	0.0837			<0.00100		
		Apr-15 Apr-16	1	0.0048 0.00441 J	0.0113 0.0119 J				0.00301 0.014	0.0488 J 0.075 J	<0.00120 <0.00120	0.052 0.204	ļ		0.00161 J <0.00190		
	TEL-2	Apr-13		0.004413	0.01193				<0.00500	< 0.200	<0.00120	0.204			<0.00500		
		Apr-14		0.0119	0.0745				<0.00100	<0.0780	0.00246 J	0.0107			<0.00100		
핃		Apr-15		0.0173	0.0887				0.00111 J	0.0269 J	0.00254	0.00915			0.0136		
	TEL 0	Apr-16		0.012	0.0483				<0.00270	< 0.075	0.00137 J	0.0224 J			<0.00190		
	TEL-3	Apr-13 Apr-14		<0.00500 0.00303 J	0.014 0.0129				<0.00500 0.00193 J	<0.200	<0.00500 <0.000700	0.0121 0.0105			<0.00500 <0.00100		
		Apr-14		0.00639	0.0123				0.00193 3	0.0316 J	0.000406 J	0.00717			0.0219		
		Apr-16		0.00979 J	0.0234 J				0.00350 J	<0.075	<0.00120	0.00813 J			<0.00190		
	TEL-4	Apr-13		0.00967	0.0299				0.00864	<0.200	< 0.00500	0.577			<0.00500		
		Apr-14 Apr-15	FD	0.0125 0.00568	0.0349 0.022				0.00884 0.0298	<0.0780 0.149	0.00196 J 0.00143 J	0.444 0.835			<0.00100		
		Apr-15	Fυ	0.00563	0.0228				0.0236	0.0279 J	0.00143 J	0.792			<0.000380 0.000882 J		
		Apr-16	FD	0.00836 J	0.0249 J				0.0272	< 0.075	0.00377 J	0.808			< 0.00190		
		Apr-16		0.00738 J	0.0263				0.0266	<0.075	0.00351 J	0.776			<0.00190		
	MW-8	Apr-13		<0.0100	0.0114				<0.0100	<0.400	<0.0100	0.584			0.0213		
		Apr-14 Apr-15		0.00898 0.00679	0.0116 0.01				<0.00100 0.000644 J	<0.0780 <0.0150	<0.000700 <0.000240	0.587 0.464			0.0295 0.0174		
	MW-16	Apr-13		< 0.0100	0.0167				<0.0100	<0.400	<0.0100	0.0509			< 0.0174		
		Apr-14		0.00546	0.0144				<0.00100	<0.0780	<0.000700	0.125			<0.00100		
		Apr-15		0.00465 J	0.0151 J				<0.00270	<0.0750	<0.00120	0.0513			0.00213 J		
	MW-20	Apr-13 Apr-14	FD	<0.0100 0.00848	<0.0100 0.0103				<0.0100 <0.00100	<0.400 <0.0780	<0.0100 <0.000700	0.0569 0.0647			0.0153 0.022		
		Apr-14	10	0.00931	0.00977				<0.00100	<0.0780	<0.000700	0.0645			0.0205		
		Apr-15		0.00586	0.00926				< 0.000540	0.0359 J	< 0.000240	0.00169 J			0.0254		
	104: -:	Apr-16		0.00646 J	0.0112 J				<0.00270	< 0.075	<0.00120	0.00432 J			0.0266		
	MW-21	Apr-13 Apr-14	\vdash	<0.0100 0.00845	<0.0100 0.00996				<0.0100 <0.00100	<0.400 <0.0780	<0.0100 <0.000700	0.272 0.422			0.0319 0.0368		
		Apr-14 Apr-15	\vdash	0.00845 0.00681 J	0.00996 0.00852 J				<0.00100	<0.0780	<0.00120	0.422			0.0368		
	MW-25	Apr-13		< 0.00500	0.0106				< 0.00500	<0.200	< 0.00500	0.0832			< 0.00500		
		Apr-14		0.00575 J	0.0277				< 0.00200	<0.156	<0.00140	0.121			0.00885 J		
		Apr-15 Apr-16	\vdash	0.0104	0.0196 J				<0.00270 <0.00270	<0.0750 <0.075	<0.00120 <0.00120	0.218			0.0204 0.00234 J		
	MW-26	Apr-16 Apr-13	H	0.00646 J <0.0100	0.0161 J <0.0100				<0.00270	<0.400	<0.00120	0.319 V 0.0589		 	<0.0100		
	20	Apr-14		0.00617 J	0.00866 J				<0.00200	<0.400	<0.0100	0.52			0.0309		
TMD		Apr-15		0.00338	0.00842				< 0.000540	<0.0150	< 0.000240	0.470			0.0184		
F	NAV 07	Apr-16	igspace	0.00363 J	0.00913 J				<0.00270	< 0.075	<0.00120	0.534			0.0186		
	MW-27	Apr-13 Apr-14	\vdash	<0.00500 0.00355 J	0.0168 0.015				<0.00500 <0.00100	<0.200 <0.0780	<0.00500 <0.000700	0.0118 0.00617	 	 	0.0262 0.0193		
		Apr-14 Apr-15	\vdash	0.00355 J	0.015				<0.00100	<0.0780	<0.000700	0.00617			0.0193		
	<u></u>	Apr-16		0.00249 J	0.0185 J				<0.00270	<0.075	< 0.00120	0.0164 J			0.0132		
	MW-46R	Apr-13		<0.00500	0.0121				<0.00500	<0.200	<0.00500	0.0424			0.006		
		Apr-14	\vdash	0.00348 J	0.012				<0.00100	0.0908 J	<0.000700 <0.000240	0.0925 0.102			0.00666		
	MW-68	Apr-15 Apr-13	\vdash	0.00293 < 0.00500	0.0127 0.0138				<0.000540 <0.00500	0.0873 J <0.200	<0.000240	0.102 <0.00500			0.00102 J 0.0316		
	7-00	Apr-14		0.00413 J	0.0135				<0.00300	<0.200	<0.000700	<0.00300			0.0310		
		Apr-15		0.00272	0.0154				< 0.000540	0.0904 J	< 0.000240	0.00126 J			0.0115		
	104:-:	Apr-16		0.00267 J	0.0122 J				<0.00270	< 0.075	<0.00120	0.0388	*0.00000	40.0100	0.00200 J		0.007
1	MW-71	Apr-13	FD	<0.0100 <0.0100	0.0107 0.0107				<0.0100 <0.0100	<0.400 <0.400	<0.0100 <0.0100	<0.0100 <0.0100	<0.000200 <0.000200	<0.0100 <0.0100	0.0421 0.0405	-	0.024 0.0245
1		Apr-13 Apr-14	\vdash	0.00573	0.0107				<0.0100	<0.400	<0.000700	<0.00250	<4.2E-05	0.00155 J	0.0499		0.0245
1		Apr-15		0.00387	0.00817				< 0.000540	< 0.0150	< 0.000240	0.000487 J		0.00116 J	0.0336		0.0215
		Apr-16		0.00436 J	0.00939 J	0.649	<0.000800	<0.0013	< 0.00270	< 0.075	<0.00120	< 0.00125	<4.9E-05	<0.00175	0.0345	0.0588	0.0244 J
	MW-89	Apr-13	\vdash	0.0127	0.0122				<0.00500 <0.00100	<0.200	<0.00500	0.707			<0.00500		
		Apr-14 Apr-15	\vdash	0.00959 0.00928 J	0.0135 0.0167 J	1			<0.00100	<0.0780 <0.0750	<0.000700 <0.00120	0.53 0.0732	 		0.0182 0.0291		
		Apr-16		0.00328 J					<0.00270	0.165 J	<0.00120	0.0732			0.0332		
						•							-	-		•	•

										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	JA:00						
		Α	nalyte G	roup:							Dissolve	d Metals						
			Ar	alyte:	Arsenic	Barium	Boron	Cadmium	Cobalt	Chromium	Iron	Lead	Manganese	Mercury	Nickel	Selenium	Uranium	Vanadium
			l	Jnits:	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
			CG	WSL:	0.01	1.00	0.75	0.005	0.05	0.05	1.00	0.015	0.2	0.002	0.2	0.05	0.03	0.0631
		CC	SWSL S	ource:	USEPA MCL	WQCC HH	WQCC Irr	USEPA MCL	WQCC Irr	WQCC HH	WQCC Dom	USEPA MCL	WQCC Dom	WQCC HH	WQCC Irr	WQCC HH	WQCC HH	NMED TW
Ar	ea Well	IID	Date	Dup														
	UG-	-1	Apr-13		< 0.00500	0.0121				< 0.00500	< 0.200	< 0.00500	< 0.00500	< 0.000200	< 0.00500	< 0.00500		0.0108
		П	Apr-14		0.00288 J	0.012				0.00187 J	< 0.0780	< 0.000700	< 0.00250	<4.2E-05	< 0.00100	0.00635		0.0107
			Apr-15		0.00124 J	0.0133				0.000833 J	< 0.0150	< 0.000240	0.000689 J		0.00139 J	0.0101 J		0.0109
			Apr-16		< 0.00125	0.0144 J	0.525 O1V	<0.00800	< 0.00130	< 0.00270	< 0.075	< 0.00120	< 0.00125	<4.9E-05	0.00179 J	0.0133	0.0264 J	0.0114 J
	UG-	-2	Apr-13	FD	< 0.00500	0.0153				< 0.00500	<0.200	< 0.00500	0.0514	< 0.000200	0.00997	< 0.00500		0.0173
1	!		Apr-13		<0.00500	0.0153				< 0.00500	<0.200	< 0.00500	0.0521	< 0.000200	0.0102	<0.00500		0.0181
1 -	}		Apr-14		0.00625	0.0147				< 0.00100	0.334	< 0.000700	0.346	<4.2E-05	0.0537	0.00369 J		0.0142
1 3	3		Apr-15		0.00205	0.015				< 0.000540	< 0.0150	< 0.000240	0.00934		0.00543	0.00373 J		0.0116
	<u>ر</u>		Apr-16		0.00226 J	0.0153 J	0.315	<0.00800	< 0.00130	< 0.00270	< 0.075	< 0.00120	0.0142 J	<4.9E-05	0.00595 J	0.00342 J	0.0156 J	0.0129 J
1 5	UG-3	3R	Apr-13		<0.00500	0.0143				<0.00500	<0.200	< 0.00500	<0.00500	< 0.000200	< 0.00500	<0.00500		0.00822
		L	Apr-14	FD	0.00310 J	0.0172				<0.00100	<0.0780	<0.000700	< 0.00250	<4.2E-05	<0.00100	0.00460 J		0.00834
		L	Apr-14		0.00253 J	0.0175				<0.00100	<0.0780	<0.000700	< 0.00250	<4.2E-05	<0.00100	0.00422 J		0.00799
		L	Apr-15		0.00157 J	0.0193				<0.000540	0.0534 J	< 0.000240	0.00492 J		0.00114 J	0.00375 J		0.00934
			Apr-16		0.00171 J	0.0187 J	0.278	<0.00800	< 0.00130	< 0.00270	< 0.075	< 0.00120	0.00182 J	<4.9E-05	< 0.00175	0.00406 J	0.0126 J	0.0102 J
	UG-	-4	Apr-16		0.00144 J	0.0210 J	1.21	< 0.000800	< 0.00130	< 0.00270	< 0.075	< 0.00120	< 0.00125	<4.9F-05	< 0.00175	0.00673 J	0.0365 J	0.00794 J

Definitions

X Reported concentration, X, exceeds the CGWSL.

X Analyte detected above the detection limit at a concentration equal to X

< x Analyte not detected at detection limit equal to x.</p>

x Analyte not detected at detection limit equal to x, but x exceeds the CGWSL.

Blank cell indicates a sample was collected from the well during the indicated sampling event, but the analyte was not analyzed.

Abbreviations

CGWSL Critical Groundwater Screening Level (see Table 3)

CGWSL Source Source for CGWSL value (see Table 3)

FD field duplicate sample mg/L milligrams per liter

NMED TW NMED Risk Assessment Guidance for Site Investigations and Remediation, July 2015, Table A-1, Tap Water Screening Level

USEPA MCL United States Environmental Protection Agency Maximum Contaminant Level, "Regional Screening Levels for Chemical Contaminants at Superfund Sites", November 2015

WQCC Dom NMED Groundwater standard for domestic exposure taken from 20.6.2.3103.B WQCC HH NMED Groundwater standard for human health exposure, NMAC 20.6.2.3103.A

WQCC Irr NMED Groundwater standard for irrigati

Lab Footnote

B Analyte was also detected in the associated method blank.

J Indicates an estimated value.

J3 The associated batch QC was outside the established quality control range for precision.

J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.

O1 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

V The sample concentration is too high to evaluate accurate spike recoveries.

		naluto Grou	n-		,.	,		rtesia Refinery,						-
	А	nalyte Grou Analyt	e: 1,1,1-Tri- chloroethane	1,1,2,2-Tetra- chloroethane	1,1,2-Tri- chloroethane	1,1-Dichloro- ethane	1,1-Dichloro- ethene	Volatile Organ 1,2,4- Trimethyl- benzene	1,2-Dibromo- ethane	1,2-Dichloro- ethane	1,2-Dichloro- propane	1,3,5- Trimethyl- benzene	2-Butanone	2-Phenyl- butane
		Unit CGWS	L: 6.00E-02	mg/L 1.00E-02	mg/L 5.00E-03	mg/L 2.50E-02	mg/L 7.00E-03	mg/L 1.50E-02	mg/L 5.00E-05	mg/L 5.00E-03	mg/L 5.00E-03	mg/L 1.20E-01	mg/L 5.56E+00	mg/L
Area		Date Du		WQCC HH	USEPA MCL	WQCC HH	USEPA MCL	USEPA TW	USEPA MCL	USEPA MCL	USEPA MCL	USEPA TW	NMED TW	
Alea	KWB-13	Apr-13	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Apr-14 Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 0.00302	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 0.000456 J	<0.0010 <0.00390	<0.000360
		Apr-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
ient	MW-17 NP-5	Apr-14 Apr-13	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
Crossgradient	DA 2450	Apr-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.000804 J	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
ross	RA-3156	Apr-13 Nov-13	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.0050 <0.0050
0		Apr-14 Apr-16	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000383	<0.00040 <0.000259	<0.00050 <0.000398	<0.00050 <0.000373	<0.00040 <0.000381	<0.00050 <0.000361	<0.00070 <0.000306	<0.00060 <0.000387	<0.0010 <0.00393	<0.000365
	MW-136	Oct-15	< 0.000319	< 0.00013	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	< 0.00393	< 0.000365
		Apr-16 Oct-16	<0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-1R	Apr-13	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.010	<0.0050
		Apr-13 FI Apr-14	0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
		Apr-15	< 0.000319	<0.00013	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000360
	MW-2A	Apr-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15	< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	<0.000306	< 0.000387	<0.00393	< 0.000365
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-3	Apr-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Nov-14 F	O.00032	<0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038 <0.00038	<0.00036	<0.00031	<0.00039	<0.0039	
		Apr-15 FI	<0.000319 D <0.000319	<0.000130 <0.000130	<0.000380 <0.000380	<0.000260 <0.000260	<0.000400 <0.000400	<0.000370 <0.000370	<0.000380 <0.000380	<0.000360 <0.000360	<0.000310 <0.000310	<0.000390 <0.000390	<0.00390 <0.00390	<0.000360 <0.000360
		Oct-15	<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	< 0.000306	< 0.000387	< 0.00393	< 0.000365
		Oct-15 FI Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Apr-16 FI Oct-16	0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Oct-16 FI	O.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	<0.000306	<0.000387	<0.00393	0.000367 J
	MW-4A	Apr-14 Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	0.0028 J <0.0039	
		Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.000502 J <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.000502 J <0.000365
	MW-4B	Oct-16 Apr-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	0.000553 J <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	0.000607 J <0.0050
		Apr-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
	MW-5A	Apr-14 Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	0.0025 J <0.0039	
		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Apr-16	< 0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-5B	Oct-16 Apr-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
	104.50	Apr-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.000976 J	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
	MW-5C	Apr-13 Apr-15	<0.0050 <0.000319	<0.0050 <0.000130	<0.0050 <0.000380	<0.0050 <0.000260	<0.0050 <0.000400	<0.0050 <0.000370	<0.0050 <0.000380	<0.0050 <0.000360	<0.0050 <0.000310	<0.0050 <0.000390	<0.010 <0.00390	<0.0050 <0.000360
Evaporation Ponds	MW-6A	Mar-13 Apr-14	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
ion		Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
poral	MW-6B	Apr-16 Mar-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
Eva		Mar-13 FI		<0.0050	<0.0050	<0.0050 <0.000260	<0.0050	<0.0050 <0.000370	<0.0050	<0.0050	<0.0050	<0.0050 <0.000390	<0.010	<0.0050
	MW-7A	Apr-15 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000380 <0.00050	<0.000260	<0.000400 <0.00050	<0.000370	<0.000380 <0.00040	<0.000360 <0.00050	<0.000310 <0.00070	<0.000390	<0.00390 0.0018 J	<0.000360
		Nov-14 FI	<0.00032 D <0.00032	<0.00013 <0.00013	<0.00038 <0.00038	<0.00026 <0.00026	<0.00040 <0.00040	<0.00037 <0.00037	<0.00038 <0.00038	<0.00036 <0.00036	<0.00031 <0.00031	<0.00039 <0.00039	<0.0039 <0.0039	
		Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Apr-15 FI Oct-15	< 0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Oct-15 FI Apr-16	O <0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Apr-16 FI	O.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	< 0.00393	< 0.000365
		Oct-16 FI	<0.000319 D <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-7B	Apr-13 Apr-15	<0.0050 <0.000319	<0.0050 <0.000130	<0.0050 <0.000380	<0.0050 <0.000260	<0.0050 <0.000400	<0.0050 <0.000370	<0.0050 <0.000380	<0.0050 <0.000360	<0.0050 <0.000310	<0.0050 <0.000390	<0.010 <0.00390	<0.0050 <0.000360
	MW-10	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	2.200000
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	< 0.00393	<0.000365
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-11A	Apr-14 Nov-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
1		Oct-15 Apr-16	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.01	<0.000365
	MW-11B	Oct-16 Mar-13	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Apr-15	<0.0030	<0.000130	<0.0030	<0.000260	<0.0030	<0.00370	<0.00380	<0.00360	<0.00310	<0.0030	<0.00390	<0.00360
1	MW-12 MW-13	Apr-14 Apr-14		<u> </u>										
1	MW-15	Mar-13	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
1		Apr-14 Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
	MW-18A	Apr-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
	1V1VV-10/A	Nov-14	<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038	<0.00036	< 0.00031	< 0.00039	<0.0039	
		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Apr-16	<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	< 0.00393	< 0.000365
_	J	Oct-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365

	Α	nalyte Grou	o:					Volatile Organi						
		Analyt		1,1,2,2-Tetra- chloroethane	1,1,2-Tri- chloroethane	1,1-Dichloro- ethane	1,1-Dichloro- ethene	1,2,4- Trimethyl- benzene	1,2-Dibromo- ethane	1,2-Dichloro- ethane	1,2-Dichloro- propane	1,3,5- Trimethyl- benzene	2-Butanone	2-Phenyl- butane
		Unit CGWS GWSL Sourc	L: 6.00E-02 e: WQCC HH	mg/L 1.00E-02 WQCC HH	mg/L 5.00E-03 USEPA MCL	mg/L 2.50E-02 WQCC HH	mg/L 7.00E-03 USEPA MCL	mg/L 1.50E-02 USEPA TW	mg/L 5.00E-05 USEPA MCL	mg/L 5.00E-03 USEPA MCL	mg/L 5.00E-03 USEPA MCL	mg/L 1.20E-01 USEPA TW	mg/L 5.56E+00 NMED TW	mg/L
Area	Well ID MW-18B	Apr-13	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
	MW-22A	Apr-15 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000380 <0.00050	<0.000260 <0.00040	<0.000400 <0.00050	<0.000370 <0.00050	<0.000380 <0.00040	<0.000360 <0.00050	<0.000310 <0.00070	<0.000390 <0.00060	<0.00390 0.0070 J	<0.000360
		Nov-14 FI	<0.00032 0 <0.00032	<0.00013 <0.00013	<0.00038 <0.00038	<0.00026 <0.00026	<0.00040 <0.00040	<0.00037 <0.00037	<0.00038 <0.00038	<0.00036 <0.00036	<0.00031 <0.00031	<0.00039 <0.00039	<0.0039 <0.0039	
		Apr-15 FI	<0.000319 0 <0.000319	<0.000130 <0.000130	<0.000380 <0.000380	<0.000260 <0.000260	<0.000400 <0.000400	<0.000370 <0.000370	<0.000380 <0.000380	<0.000360 <0.000360	<0.000310 <0.000310	<0.000390 <0.000390	<0.00390 <0.00390	<0.000360 <0.000360
		Oct-15 FI	< 0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.000428 J 0.000479 J
		Apr-16 FI	< 0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Oct-16 FI	<0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.00066 J <0.000365
	MW-22B	Apr-13 Apr-15	<0.0050 <0.000319	<0.0050 <0.000130	<0.0050 <0.000380	<0.0050 <0.00260	<0.0050 <0.000400	<0.0050 <0.000370	<0.0050 <0.000380	<0.0050 <0.00360	<0.0050 <0.000310	<0.0050 <0.00390	<0.010 <0.00390	<0.0050 0.000381 J
	MW-70	Apr-14	<0.00050 <0.00032	<0.000130 <0.00013	<0.00050 <0.00038	<0.000200 <0.00040 <0.00026	<0.00040 <0.00040	<0.00050 <0.00037	<0.000300 <0.00040 <0.00038	<0.00050 <0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	0.0036 J <0.0039	0.0003013
		Apr-15	< 0.000319	<0.000130	< 0.000380	<0.000260	<0.000400	< 0.000370	<0.000380	<0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.00013 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-72	Oct-16 Nov-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.00365 <0.0050
		Apr-14 Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
	MW-73	Apr-16 Oct-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 0.0053	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
		Apr-14 Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	0.0021 J 0.00171	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	0.0028 J <0.00390	<0.000360
	MW-74	Apr-16 Apr-14	<0.000319 <0.000319	<0.000130 <0.00013	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365
		Nov-14 Apr-15	<0.000319 <0.000319	<0.00013 <0.00013	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.00013 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-75	Oct-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	0.000718 J 0.0019 J	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 0.0036 J	<0.000365
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	0.0012 0.000710 J	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.00252 <0.000373	<0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-76	Oct-16	<0.000319 <0.000319 <0.00050	<0.000130 <0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	0.000373 0.000631 J <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.000306 <0.00070	0.00103 <0.00060	0.00429 J 0.0038 J	0.00138
	IVIVV-70	Apr-14 Nov-14	<0.0016	<0.00065	< 0.0019	< 0.0013	<0.0020	0.0026 J	<0.0019	<0.0018	<0.0015	<0.0019	<0.02	0.000400.1
		Apr-15 Oct-15	<0.000319 <0.000319	0.000308 J <0.000130	0.000384 J <0.000383	<0.000260	<0.000400 <0.000398	0.000699 J 0.000531 J	<0.000380	<0.000360 <0.000361	<0.000310 <0.000306	0.000697 J 0.000499 J	<0.00390 <0.00393	0.000429 J 0.000493 J
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 0.00187	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 0.00166	<0.00393 <0.00393	<0.000365 0.00055 J
Evaporation Ponds	MW-77	Apr-14 Nov-14	<0.00050 <0.0016	<0.00050 <0.00065	<0.00050 <0.0019	<0.00040 <0.0013	<0.00050 <0.0020	0.0019 J 0.0053	<0.00040 <0.0019	<0.00050 <0.0018	<0.00070 <0.0015	0.0019 J 0.0044 J	0.0066 J <0.02	
ation F		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.00333 0.00348	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	0.00239 0.00223	<0.00390 <0.00393	0.0039 0.00394
vapora		Apr-16 Oct-16	<0.000319 <0.00319	<0.000130 <0.00130	<0.000383 <0.00383	<0.000259 <0.00259	<0.000398 <0.00398	<0.000373 0.00432 J	<0.00381 <0.00381	<0.000361 <0.00361	<0.000306 <0.00306	0.00161 <0.00387	<0.00393 <0.0393	0.00348 0.00392 J
ú	MW-78	Mar-13 Apr-14	<0.025 <0.00050	<0.025 < 0.00050	<0.025 < 0.00050	<0.025 <0.00040	<0.025 <0.00050	<0.025 < 0.00050	<0.025 <0.00040	<0.025 <0.00050	<0.025 <0.00070	<0.025 <0.00060	<0.050 0.011	<0.025
		Apr-15 Apr-16	<0.000319 <0.000319	0.000305 J <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.00132 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	0.000829 J <0.000387	<0.00390 <0.00393	0.000558 J <0.000365
	MW-79	Apr-14 Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-80	Mar-13 Apr-14	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
		Apr-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
	MW-81	Mar-13 FI	< 0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.0050 <0.0050
		Apr-14 Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
	MW-82	Apr-16 Mar-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373	<0.000381	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393	<0.000365 <0.0050
		Apr-14 FI	<0.00050	<0.00050 <0.00050	<0.0050 <0.00050 <0.00050	<0.00040 <0.00040	<0.0050 <0.00050 <0.00050	<0.0050 <0.00050 <0.00050	<0.0030 <0.00040 <0.00040	<0.0050 <0.00050 <0.00050	<0.00070 <0.00070	<0.00060 <0.00060	0.0037 J 0.0031 J	2.0000
		Apr-15 Apr-16	<0.00030 <0.000319 <0.000319	<0.00030 <0.000130 <0.000130	<0.00030 <0.000380 <0.000383	<0.00040 <0.000260 <0.000259	<0.00030 <0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.00070 <0.000310 <0.000306	<0.000390 <0.000387	<0.00313 <0.00390 <0.00393	<0.000360 <0.000365
	MW-83	Apr-16 Apr-14 Nov-14	<0.000319 <0.00050 <0.00032	<0.000130 <0.00050 <0.00013	<0.00050 <0.00038	<0.000259 <0.00040 <0.00026	<0.00050 <0.00040	<0.000373 <0.00050 <0.00037	<0.000381 <0.00040 <0.00038	<0.000361 <0.00036	<0.000306 <0.00070 <0.00031	<0.000387 <0.00060 <0.00039	0.00393 0.0039 <0.0039	-0.00000
		Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.00038 <0.000380 <0.000381	<0.000360 <0.000361	<0.000310	<0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383	<0.000259 <0.000259	<0.000398	<0.000373	<0.000381	< 0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393	<0.000365 <0.000365
	MW-84	Oct-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373	<0.000381	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387	<0.00393 0.0054 J	<0.000365
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013	<0.00038	<0.000260	<0.00040	<0.000370	<0.00038	<0.000360	<0.000310	<0.00039	0.0042 J <0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259	<0.000398 <0.000398	<0.000373	<0.000381	<0.000361	<0.000306 <0.000306	<0.000387	<0.00393	<0.000365 <0.000365
	MW-87	Oct-16 Apr-14	<0.00319 <0.00050	<0.00130 <0.00050	<0.00383 <0.00050	<0.00259	<0.00398 <0.00050	<0.00373	<0.00381	<0.00361	<0.00306	<0.00387	<0.0393	<0.000365
		Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-88	Oct-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
<u></u>		Oct-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365

	,	nalida Crauni						rtesia Refinery,						
	,	Analyte Group: Analyte:	1,1,1-Tri- chloroethane	1,1,2,2-Tetra- chloroethane	1,1,2-Tri- chloroethane	1,1-Dichloro- ethane	1,1-Dichloro- ethene	1,2,4- Trimethyl- benzene	1,2-Dibromo- ethane	1,2-Dichloro- ethane	1,2-Dichloro- propane	1,3,5- Trimethyl- benzene	2-Butanone	2-Phenyl- butane
		Units: CGWSL:	mg/L 6.00E-02	mg/L 1.00E-02	mg/L 5.00E-03	mg/L 2.50E-02	mg/L 7.00E-03	mg/L 1.50E-02	mg/L 5.00E-05	mg/L 5.00E-03	mg/L 5.00E-03	mg/L 1.20E-01	mg/L 5.56E+00	mg/L
		GWSL Source:	WQCC HH	WQCC HH	USEPA MCL	WQCC HH	USEPA MCL	USEPA TW	USEPA MCL	USEPA MCL	USEPA MCL	USEPA TW	NMED TW	
Area	Well ID MW-120	Date Dup Apr-14	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Nov-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15 Oct-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Apr-16	< 0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	< 0.000361	<0.000306	< 0.000387	<0.00393	< 0.000365
	MW-121	Oct-16	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
	10100-121	Apr-14 Nov-14	<0.00030	<0.00030	<0.00038	<0.00040	<0.00040	<0.00037	<0.00040 <0.00038	<0.00036	<0.00070	<0.00039	<0.0010	
		Apr-15	<0.000319 <0.000319	<0.000130	<0.000380	<0.000260 <0.000259	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	<0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Oct-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-122	Apr-14 Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	< 0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Oct-16	< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	< 0.00393	<0.000365
	MW-123	Apr-14 Nov-14	<0.000319 <0.000319	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039
		Apr-15	<0.000319	<0.000319	<0.00013	<0.000380	<0.000260	<0.00040	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390
		Oct-15	<0.000319 <0.000319	<0.000319 <0.000130	<0.000130 <0.000383	<0.000383 <0.000259	<0.000259 <0.000398	<0.000398 <0.000373	<0.000373 <0.000381	<0.000381 <0.000361	<0.000361 <0.000306	<0.000306 <0.000387	<0.000387 <0.00393	<0.00393 <0.000365
		Apr-16 Oct-16	<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-124	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070 <0.00031	<0.00060	<0.0010	
1		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15	< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	<0.000306	< 0.000387	<0.00393	<0.000365
	L	Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	OCD-1R	Apr-14	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Nov-14 Apr-15	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Oct-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	OCD-2A	Apr-14	< 0.00050	<0.00050	<0.00050	<0.00040	<0.00050	< 0.00050	<0.00040	< 0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
sp		Oct-15	< 0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	< 0.000365
Evaporation Ponds		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
ation	OCD-3	Apr-14	<0.000519	<0.000130	<0.00050	<0.000239	<0.000590	<0.00050	<0.000301	<0.00050	<0.000300	<0.00060	<0.00393	<0.000303
pors		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
Š		Oct-15	<0.000319	<0.000130	<0.000383	<0.000259	<0.000400	<0.000370	<0.000380	<0.000361	<0.000310	<0.000390	<0.00390	<0.000365
		Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	OCD-4	Oct-16 Apr-14	<0.000519	<0.000130	<0.00050	<0.000239	<0.000598	<0.000573	<0.000381	<0.00050	<0.000306	<0.000367	<0.00393	<0.000303
		Nov-14	<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038	<0.00036	<0.00031	<0.00039	<0.0039	*0.000000
		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Apr-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	OCD-5	Oct-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
		Apr-14 FD	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15	<0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365 <0.000365
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130	<0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365
	OCD-6	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398 <0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
1	OCD-7AR	Apr-14 FD	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00040 <0.00040	<0.00050 <0.00050	0.0017 J 0.0016 J	<0.00040 <0.00040	<0.00050 <0.00050	<0.00070 <0.00070	<0.00060 <0.00060	0.0034 J 0.0026 J	
		Apr-14 FD Nov-14	<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	0.0016 J 0.00054 J	<0.00040	<0.00036	<0.00031	<0.00080	<0.0039	
1		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.00013	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.000760 J 0.00129	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360
1		Apr-16	< 0.000319	< 0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	< 0.000306	<0.000387	< 0.00393	<0.000365
	OCD-7B	Oct-16 Mar-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	0.00172 < 0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
1		Apr-15	< 0.000319	<0.000130	<0.000380	<0.0050	<0.000400	<0.000370	<0.000380	<0.0050	<0.000310	< 0.000390	<0.00390	<0.0050
	OCD-8A	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	0.0010 J	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
1		Apr-14 FD Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.000370 J	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
1		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.000454 J 0.000482 J	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
1	000.05	Oct-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	0.00108	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
1	OCD-8B	Apr-13 Apr-15	<0.0050 <0.000319	<0.0050 <0.000130	<0.0050 <0.000380	<0.0050 <0.000260	<0.0050 <0.000400	<0.0050 <0.000370	<0.0050 <0.000380	<0.0050 <0.000360	<0.0050 <0.000310	<0.0050 <0.000390	<0.010 <0.00390	<0.0050 <0.000360
	KWB-1A	Apr-14	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.010	<0.0050
1		Nov-14 Apr-15	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
ž		Oct-15	< 0.00032	<0.00013	<0.00038	<0.00026	<0.00040	< 0.00037	<0.00038	<0.00036	<0.00031	< 0.00039	<0.0039	
efine		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
of R	KWB-1C	Apr-13	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010	<0.0050
East of Refinery	KWB-7	Apr-15 Nov-14	<0.000319 <0.0032	<0.000130 <0.0013	<0.000380 <0.0038	<0.000260 <0.0026	<0.000400 <0.0040	<0.000370 0.210	<0.000380 <0.0038	<0.000360 <0.0036	<0.000310 <0.0031	<0.000390 0.0085 J	<0.00390 <0.039	<0.000360
Field E	IVAND-1	Apr-15	< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.0766	<0.000380	<0.000360	<0.000310	0.000982 J	<0.00390	0.0104
芷		Oct-15	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	0.00557	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	0.00808
1	L	Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.0482 0.007	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	0.00903 0.000877 J	<0.00393 J4 <0.00393	0.00607 0.00691
<u> </u>	KWB-8	Oct-16	<0.0638	<0.0260	<0.0766	<0.0518	<0.0796	0.17 J	<0.0762	<0.0722	<0.0612	<0.0774	<0.786	<0.0730

March Marc		А	nalyte Grou	ıp:					Verifing LLO, Ai	Volatile Organ						
West		-	,											1,3,5-		
Color			Analy												2 Putanana	
March Marc			Uni													
March Marc				SL: 6.00	E-02	1.00E-02	5.00E-03	2.50E-02	7.00E-03		5.00E-05	5.00E-03	5.00E-03	1.20E-01		
March March Color Colo	Δrea				C HH	WQCC HH	USEPA MCL	WQCC HH	USEPA MCL	USEPA IW	USEPA MCL	USEPA MCL	USEPA MCL	USEPA IW	NMED IW	
Column C	74.04		Nov-14	<0.0												
Mile																
March March Color Colo				<0.	0160											
		10MD 444														0.00903 J
April Color Colo		KWB-11A														
March Marc			Apr-15	<0.00	00319	<0.000130	<0.000380	<0.000260	<0.000400	0.0658	<0.000380	< 0.000360	<0.000310	0.00168		
Column C																
			Oct-16	<0.0	00319	<0.000130	<0.000383	< 0.000259	<0.000398	0.0341	<0.000381	<0.000361	<0.000306	0.000945 J	<0.00393	
March Marc		KWB-11B														
				<0.00	00319	<0.000130	<0.000380	<0.000260	<0.000400			< 0.000360	<0.000310	< 0.000390	<0.00390	
Column C																
Page 15 10 10 10 10 10 10 10		KWB-12A														
Col.									< 0.000400							<0.000360
Part																
Col.																
Paper Pape																<0.000365
The column The	1	KWB-12B												<0.00060 <0.00060		
Col. 15	1		Nov-14	<0.0	0032	<0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038	< 0.00036	<0.00031	<0.00039	<0.0039	.0.00====
Control Cont																
Part	1		Oct-15 F	D <0.00	00319	<0.000130	<0.000383	< 0.000259	<0.000398	0.000895 J	<0.000381	< 0.000361	<0.000306	<0.000387	<0.00393	< 0.000365
Col. 16																
Wilson	1		Oct-16	<0.0	00319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	<0.00393	< 0.000365
Apr. 16	1	KWR-P/														
No. 1		KWB-I 4									<0.000380			<0.000390		
## Age 15 0.000019 0.000003 0.000003 0.0000000 0.0000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 0.0		MW-57														
Apr-16 A																<0.000360
Dec 16 0.000010																
Page-15																
Cel. 15		MW-58	Nov-14	<0.0	080		<0.0096	< 0.0065	<0.01	0.860	<0.0095	<0.0090	<0.0076	0.098	<0.098	
Age-16																
WW-117 Apr-14 -0.00550 -0.00050 -0.00050 -0.00050 -0.00050 -0.00050 -0.00070 -0.00050 -0.00070 -0.00050 -0			Apr-16	<0.0	0319	<0.00130	<0.00383	< 0.00259	<0.00398	0.753	<0.00381	<0.00361	< 0.00306	0.0179	< 0.0393	0.0112
MW-113	hery	MW-111														0.00811
MW-113	Refi		Nov-14	<0.0	0032	< 0.00013	<0.00038	<0.00026	<0.00040	0.0074	<0.00038	<0.00036	<0.00031	0.0017	<0.0039	
MW-113	st of															
MW-113	Ëä		Apr-16	<0.0	00319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	0.000539 J	< 0.000306	<0.000387	< 0.00393	< 0.000365
MW-113	Field	M\W_112														<0.000365
Ng-14 FD C000312 C000313 C00038 C000260 C000400 C000307 C000308 C000308 C0003030 C0003															<0.0010	
Agr-15 C																
Oct-16			Apr-15			<0.000130						0.000497 J		< 0.000390		
Coch FP Coch Co																
Apr-16 FD 0,000319 0,000319 0,000318 0,000381 0,000381 0,000381 0,000381 0,000387 0,000387 0,000383 0,000381 0,000381 0,000381 0,000387 0,000387 0,000383 0,000481 0,000381 0,000387 0,0003																
Col-16 Col-000319 Col-000310 Col-000383 Col-000259 Col-000398 Col-000381 Col-000381 Col-000381 Col-000387 Col-00383 Col-000381 Col-0003																<0.000365
MW-126 FD 0,000319 0,000318 0,000338 0,000398 0,000398 0,000381 0,000381 0,000381 0,000387 0,000398 0,000318 0,0003										0.00977	<0.000381	<0.000361				<0.000365 0.000418 J
Nov-14	1	M/M/ 405	Oct-16 F									<0.000361				0.000379 J
Oct-15		IVIVV-125					<0.00038	<0.00026								
Apr-16	1															
MW-126A Apr-14 C-0.00031 C-0.00038	1			<0.0	00319			< 0.000259					< 0.000306			
Nov-14	1	MMA/ 4004	Oct-16													<0.000365
Apr-15	1	1VIVV-120A		<0.0	0032	< 0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038	<0.00036	<0.00031	<0.00039	<0.0039	
Apr-16			Apr-15								<0.000380					
MW-128 Apr-16 <0.000319 <0.000130 <0.000383 <0.000259 <0.000388 <0.000373 <0.000381 <0.000361 <0.000366 <0.000366 <0.00037 <0.00037 <0.000361 <0.000366 <0.00037 <0.00037 <0.00038 <0.00036 <0.000036 <0.000038 <0.000038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038 <0.00038	1			<0.0	00319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	< 0.000387	<0.00393 J4	
Nov-14		MMA/ 400=	Oct-16													
Apr-15	1	ww-126B														
Apr-16	1		Apr-15	<0.00	00319	<0.000130	<0.000380	<0.000260	<0.000400	0.000409 J	<0.000380	< 0.000360	<0.000310	<0.000390	<0.00390	
MW-127 Apr-14																
Nov-14	1	MM/ 10=	Oct-16	<0.0	00319	<0.000130	<0.000383	< 0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	
Apr-15		IVIVV-12/														
Apr-16	1		Apr-15	<0.00	00319	<0.000130	<0.000380	<0.000260	<0.000400	0.126	<0.000380	0.000418 J	<0.000310	0.00854	<0.00390	
NW-128	1															
Nov-14			Oct-16	<0.0	0319	<0.00130	<0.00383	< 0.00259	<0.00398	0.0332	<0.00381	<0.00361	<0.00306	<0.00387	< 0.0393	
Apr-15	1	MW-128														
Apr-16 <0.000319 <0.000330 <0.000383 <0.000259 <0.000398 0.00039 <0.000381 <0.000361 <0.000366 <0.000365 <0.000387 <0.000393 <0.000365 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385 <0.000385			Apr-15	<0.00	00319	<0.000130	<0.000380	<0.000260	<0.000400	0.00374	<0.000380	< 0.000360	<0.000310	0.000551 J	<0.00390	0.000814 J
Oct-16 <0.000319 <0.000310 <0.000383 <0.000259 <0.000398 <0.00197 <0.000381 <0.000361 <0.000366 <0.000367 <0.000387 <0.000393 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.000365 <0.00036	1															
Apr:15 <0.000319 <0.000380 <0.000380 <0.000380 <0.000390 <0.000370 <0.000390 <0.000390 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <	1			<0.0	00319	<0.000130	<0.000383	< 0.000259	<0.000398	0.00197	<0.000381	<0.000361	< 0.000306	<0.000387	< 0.00393	
Oct-15 < 0.0319 < 0.0130 < 0.0383 < 0.0259 < 0.0398 < 0.0373 < 0.0381 < 0.0361 < 0.0366 < 0.0387 < 0.393 < 0.0365 Apr-16 < 0.000319		MW-129														0.00402
	1			<0.0	319	<0.0130	<0.0383	<0.0259	<0.0398	< 0.0373	<0.0381	<0.0361	<0.0306	<0.0387	< 0.393	< 0.0365
	1															
		1	Out-10	~ 0.0	UUJ 19	~U.UUU 13U	~0.000383	~0.000259	~0.000398	0.00143	~0.000381	~v.000301	~0.000300	v.v004/9J	~0.00393	0.00105

		Analyte Gro	oun.I			i toliyFi	omen wavaju r	Refining LLC, Ai	Volatile Organi						
	-	analyte or	Jup.						1,2,4-	ic compound.			1,3,5-		
		Ana	ilyte:	1,1,1-Tri- chloroethane	1,1,2,2-Tetra- chloroethane	1,1,2-Tri- chloroethane	1,1-Dichloro- ethane	1,1-Dichloro- ethene	Trimethyl- benzene	1,2-Dibromo- ethane	1,2-Dichloro- ethane	1,2-Dichloro- propane	Trimethyl- benzene	2-Butanone	2-Phenyl- butane
			nits:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	_	CGW GWSL Sou		6.00E-02 WQCC HH	1.00E-02 WQCC HH	5.00E-03 USEPA MCL	2.50E-02 WQCC HH	7.00E-03 USEPA MCL	1.50E-02 USEPA TW	5.00E-05 USEPA MCL	5.00E-03 USEPA MCL	5.00E-03 USEPA MCL	1.20E-01 USEPA TW	5.56E+00 NMED TW	
Area	Well ID	Date I	Dup												
	MW-130	Apr-14 Nov-14		<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	<0.000390	<0.00390	<0.000360
		Oct-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-131	Oct-16 Apr-14		<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 0.23	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 0.066	<0.00393 0.0078 J	<0.000365
	10100-131	Nov-14		<0.0032	<0.0013	<0.0038	<0.0026	<0.0040	0.058	<0.0038	< 0.0036	<0.0031	0.016	<0.039	
		Apr-15 Oct-15	-	<0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.0486 0.0231	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	0.0119 0.00694	<0.00390 <0.00393	0.00366 0.00437
		Apr-16		<0.000319 <0.00160	<0.000130	<0.000383	< 0.000259	<0.000398	0.0212	<0.000381	<0.000361	< 0.000306	0.00562	<0.00393 J4	0.00318
	MW-133	Oct-16 Nov-14		<0.00160	<0.000650 <0.013	<0.00192 <0.038	<0.00130 <0.026	<0.00199 <0.04	0.0133 0.280	<0.00190 <0.038	<0.00180 <0.036	<0.00153 <0.031	0.00398 J 0.053 J	<0.0196 <0.39 J4J3	0.00269 J
	MW-134	Apr-15		<0.0319 <0.00050	<0.0130 <0.00050	<0.0380 <0.00050	<0.0260 <0.00040	<0.0400 <0.00050	0.138 < 0.00050	<0.0380 <0.00040	<0.0360 <0.00050	<0.0310 <0.00070	<0.0390 <0.00060	<0.39 <0.0010	<0.0360
	IVIVV-134	Apr-14 Nov-14		<0.00030	<0.00050	<0.00038	<0.00040	<0.00050	<0.00037	<0.00040	<0.00036	<0.00070	<0.00080	<0.0010	
		Apr-15 Apr-15	FD	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000380	<0.000260 <0.000260	<0.000400 <0.000400	<0.000370 <0.000370	<0.000380 <0.000380	<0.000360 <0.000360	<0.000310 <0.000310	<0.000390 <0.000390	<0.00390 <0.00390	<0.000360 <0.000360
		Oct-15		<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	<0.000306	< 0.000387	<0.00393	< 0.000365
		Oct-15 Apr-16	FD	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393 J4	<0.000365 <0.000365
ery			FD	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 J4 <0.00393	<0.000365 <0.000365
Refin		Oct-16	FD	<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
Field East of Refinery	MW-135	Apr-14 Nov-14	\exists	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
J Eas		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.000793 J	<0.000380	< 0.000360	<0.000310	<0.000390	<0.00390	<0.000360
Fiel		Oct-15 Apr-16	_	<0.000319 <0.000319	<0.00013 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	RA-4196	Oct-16 Apr-14		<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
	101-1130	Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	-	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	RA-4798	Oct-16 Apr-14		<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
	KA-4/90	Apr-14	FD	<0.00050	< 0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14 Apr-15		<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	0.0015 0.00311	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15		<0.000319	<0.000130 <0.000130	<0.000383	< 0.000259	<0.000398	<0.000373 <0.000373	<0.000381 <0.000381	0.00154 0.00221	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393	<0.000365 <0.000365
		Apr-16 Oct-16		<0.000319 <0.000319	<0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373	<0.000381	0.00232	<0.000306	<0.000387	<0.00393 <0.00393	<0.000365
	RW-12R RW-13R		_	<0.00160 <0.000319	<0.000650 <0.000130	<0.00192 <0.000383	<0.00130 <0.000259	<0.00199 <0.000398	0.0145 0.0443	<0.00190 <0.000381	<0.00180 0.000758 J	<0.00153 <0.000306	<0.00194 0.00539	<0.0196 <0.00393	0.00471 J 0.00270
	RW-18	Apr-13		<0.000319	<0.00013	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.010	<0.0050
		Apr-14 Apr-15		<0.000319 <0.000319	<0.00013 <0.00013	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
	RW-20	Apr-16 Apr-15		<0.000319 <0.00319	<0.000130 <0.00130	<0.000383 <0.00380	<0.000259 <0.00260	<0.000398 <0.00400	<0.000373 0.539	<0.00381 <0.00380	<0.000361 <0.00360	<0.000306 <0.00310	<0.000387 0.113	<0.00393 <0.0390	<0.000365 0.00931 J
lacksquare	RW-22	Apr-15		<0.00319	< 0.00130	<0.00380	<0.00260	<0.00400	0.575	<0.00380	<0.00360	<0.00310	0.0853	<0.0390	0.00967 J
	MW-23	Apr-14 Nov-14		<0.010 <0.016	<0.010 <0.0065	<0.010 <0.019	<0.0080 <0.013	<0.010 <0.02	0.020 J 0.37	<0.0080 <0.019	<0.010 <0.018	<0.014 <0.015	<0.012 0.069	<0.020 <0.2	
		Apr-15 Oct-15		<0.00798 <0.000319	<0.00320 <0.000130	<0.00960 <0.000383	<0.00650 <0.000259	<0.0100 0.00126	0.473 0.000677 J	<0.00950 J <0.000381	<0.00900 J <0.000361	<0.00760 0.00206	0.0997 <0.000387	<0.0980 J <0.00393	<0.00910 0.0152
		Apr-16		<0.00160	<0.000650	<0.00192	<0.00130	<0.00199	<0.00186	<0.00190	<0.00180	< 0.00153	<0.00194	<0.0196	0.0225
	MW-29	Oct-16 Apr-14		<0.00798 <0.00050	<0.00325 <0.00050	<0.00958 <0.00050	<0.00648 <0.00040	<0.00995 <0.00050	<0.00932 <0.00050	<0.00952 <0.00040	<0.00902 <0.00050	<0.00765 <0.00070	<0.00968 <0.00060	<0.0982 <0.0010	0.0201 J
		Nov-14 Apr-15		<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 0.000819 J	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	0.000750 J
		Oct-15		< 0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	<0.000306	< 0.000387	<0.00393	0.000791 J
		Apr-16 Oct-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-39	Oct-13 Apr-15		<0.0050 <0.000319	<0.0050 <0.000130	<0.0050 <0.000380	<0.0050 <0.000260	<0.0050 <0.000400	0.064 <0.000370	<0.0050 <0.000380	<0.0050 <0.000360	<0.0050 <0.000310	<0.0050 <0.000390	<0.010 <0.00390	0.0068 0.000987 J
		Oct-15		< 0.000319	<0.000130	<0.000383	<0.000259	<0.000398	0.000527 J	<0.000381	< 0.000361	<0.000310	< 0.000387	< 0.00393	0.000697 J
		Apr-16 Oct-16	_	<0.00798 <0.0319	<0.00325 <0.0130	<0.00958 <0.0383	<0.00648 <0.0259	<0.00995 <0.0398	0.0526 0.0673 J	<0.00952 <0.0381	<0.00902 <0.0361	<0.00765 <0.0306	<0.00968 <0.0387	<0.0982 <0.393	<0.00912 <0.0365
	MW-40	Apr-13		<0.000319 <0.000319	<0.00013 <0.00013	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.013
		Apr-14 Apr-15		< 0.000319	<0.00013	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	< 0.00393	0.0046
	MW-41	Apr-16 Oct-13	-	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	0.000760 J <0.0050	<0.00381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	0.0146 <0.0050
rery	"	Apr-14		<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	
Refinery		Apr-15 Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000380 <0.000381	<0.000361	<0.000306	<0.000387	<0.00393	0.0022 0.00444
North	MW-42	Oct-13 Apr-14	7	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	0.11 0.063	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	0.0064
1		Apr-15		<0.00319	<0.00130	<0.00380	<0.00260	<0.00400	0.0247	<0.00380	<0.00360	<0.00310	<0.00390	<0.0390	0.00592 J
	MW-43	Apr-16 Apr-14	_	<0.00160 <0.00050	<0.000650 <0.00050	<0.00192 <0.00050	<0.00130 <0.00040	<0.00199 <0.00050	0.0169 0.029	<0.00190 <0.00040	<0.00180 <0.00050	<0.00153 0.0032 J	<0.00194 0.0015 J	<0.0196 <0.0010	0.00562
		Nov-14 Apr-15	7	<0.0032 <0.00319	<0.0013 <0.00130	<0.0038 <0.00380	<0.0026 <0.00260	<0.0040 <0.00400	0.027 0.0576	<0.0038 <0.00380 J	<0.0036 <0.00360 J	<0.0031 0.00376 J	<0.0039 0.00448 J	<0.039 <0.0390 J	0.00912 J
		Oct-15		<0.00319	<0.00130	<0.00383	<0.00259	<0.00398	0.477	<0.00381	<0.00361	0.00782 J	0.101	<0.0393	0.00763 J
1	L	Apr-16 Oct-16	_	<0.0798 <0.0798	<0.0325 <0.0325	<0.0958 <0.0958	<0.0648 <0.0648	<0.0995 <0.0995	0.502 0.433	<0.0952 <0.0952	<0.0902 <0.0902	<0.0765 <0.0765	0.112 J <0.0968	<0.982 <0.982	<0.0912 <0.0912
1	MW-59	Apr-13 Apr-14		<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
1		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	<0.000390	<0.00390	0.00132
1	MW-60	Apr-16 Apr-14	_	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 0.0029 J	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	0.00186
		Nov-14 Apr-15		<0.00032 <0.000319	<0.00013 0.000307 J	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 0.000879 J	<0.00038 <0.000380	<0.00036 0.000376 J	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	0.00249
		Apr-15	FD	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.000430 J	<0.000380	<0.000360	<0.000310	< 0.000390	<0.00390	0.00112
1		Oct-15 Oct-15	FD	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.00287 0.00293
			_				< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	< 0.000306	< 0.000387	< 0.00393	0.00309
		Apr-16	FD	<0.000319	<0.000130	<0.000383									
		Apr-16 Oct-16	FD FD	<0.000319 <0.000319 <0.000319 <0.000319	<0.000130 <0.000130 <0.000130 <0.000130	<0.000383 <0.000383 <0.000383 <0.000383	<0.000259 <0.000259 <0.000259 <0.000259	<0.000398 <0.000398 <0.000398	0.000402 J 0.000948 J 0.000618 J	<0.000381 <0.000381 <0.000381	<0.000361 <0.000361 <0.000361	<0.000306 <0.000306 <0.000306	<0.000387 <0.000387 <0.000387	<0.00393 <0.00609 J <0.00393	0.00268 0.00328 0.00312

	Δ	nalyte Gro	up:			-	-	Verifiling ELO, Al	Volatile Organi						
		Analy	yte:	1,1,1-Tri- chloroethane	1,1,2,2-Tetra- chloroethane	1,1,2-Tri- chloroethane	1,1-Dichloro- ethane	1,1-Dichloro- ethene	1,2,4- Trimethyl- benzene	1,2-Dibromo- ethane	1,2-Dichloro- ethane	1,2-Dichloro- propane	1,3,5- Trimethyl- benzene	2-Butanone	2-Phenyl- butane
		Un CGW: GWSL Sour	SL: rce:	mg/L 6.00E-02 WQCC HH	mg/L 1.00E-02 WQCC HH	mg/L 5.00E-03 USEPA MCL	mg/L 2.50E-02 WQCC HH	mg/L 7.00E-03 USEPA MCL	mg/L 1.50E-02 USEPA TW	mg/L 5.00E-05 USEPA MCL	mg/L 5.00E-03 USEPA MCL	mg/L 5.00E-03 USEPA MCL	mg/L 1.20E-01 USEPA TW	mg/L 5.56E+00 NMED TW	mg/L
Area	Well ID MW-61	Date D Apr-14)up	<0.0025	<0.0025	<0.0025	<0.0020	<0.0025	0.200	<0.0020	<0.0025	<0.0035	0.0058 J	<0.0050	
		Nov-14 Apr-15	4	<0.016 <0.00319	<0.0065 <0.00130	<0.019 <0.00380	<0.013 <0.00260	<0.02 <0.00400	0.430 0.531	<0.019 <0.00380 J	<0.018 <0.00360 J	<0.015 < 0.00310	0.100 0.130	<0.2 <0.0390 J	0.0168
		Oct-15	_	<0.00319	<0.00130	<0.00383	< 0.00259	<0.00398	0.233	<0.00381	<0.00361	<0.00306	<0.00387	<0.0393	0.0115
		Apr-16 Oct-16	-	<0.00160 <0.00798	<0.000650 <0.00325	<0.00192 <0.00958	<0.00130 <0.00648	<0.00199 <0.00995	0.139 0.119	<0.00190 <0.00952	<0.00180 <0.00902	<0.00153 <0.00765	<0.00194 <0.00968	<0.0196 <0.0982	0.00730 0.0114 J
	MW-62	Apr-14	#	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	0.27 E	<0.00040	<0.00050	<0.00070	0.060	<0.0010	0.01140
		Nov-14 Apr-15	-	<0.016 <0.00319	<0.0065 <0.00130	<0.019 < 0.00380	<0.013 <0.00260	<0.02 < 0.00400	<0.019 < 0.00370	<0.019 <0.00380 J	<0.018 <0.00360 J	<0.015 <0.00310	<0.019 <0.00390	<0.2 <0.0390 J	0.0144
		Oct-15	_	<0.00638 <0.00798	<0.00260 <0.00325	<0.00766	<0.00518 <0.00648	<0.00796	0.662	<0.00762	<0.00722	<0.00612	0.158	<0.0786 <0.0982	0.0202 <0.00912
		Apr-16 Oct-16	_	<0.00798 <0.0319 J6	<0.00325 <0.0130 J6	<0.00958 <0.0383 J6	<0.0059 J6	<0.00995 <0.0398 J6	0.502 0.62 J6	<0.00952 <0.0381 J6	<0.00902 <0.0361 J6	<0.00765 <0.0306 J6	0.114 0.149 J6	<0.393 J6	<0.00912 <0.0365 J6
	MW-67	Nov-14 Apr-15		<0.0050 <0.0016	<0.0050 <0.00065	<0.0050 <0.0019	<0.0050 <0.0013	<0.0050 <0.0020	0.029 0.0050 J	<0.0050 <0.0019	<0.0050 <0.0018	<0.0050 <0.0015	<0.0050 <0.0019	<0.010 <0.02 J4	0.014
		Oct-15	#	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.00108	<0.000380	<0.000360	<0.000310	< 0.000390	<0.00390	0.00907
		Apr-16 Oct-16	+	<0.00638 <0.00319	<0.00260 <0.00130	<0.00766 <0.00383	<0.00518 <0.00259	<0.00796 <0.00398	<0.00746 0.0108	<0.00762 <0.00381	<0.00722 <0.00361	<0.00612 <0.00306	<0.00774 <0.00387	<0.0786 <0.0393	<0.00730 0.00716 J
	MW-90	Apr-14		<0.00050	<0.00050	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Nov-14 Apr-15	-	<0.00032 <0.000319	<0.00013 <0.000130	<0.000380	<0.000260	<0.00040	<0.00037 <0.000370	<0.00038	<0.000360	<0.00031	<0.00039	<0.0039	0.00285
		Oct-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.00206 0.000888 J
		Oct-16		<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	<0.000373	<0.000381	< 0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-91	Apr-14 Nov-14	\dashv	<0.0025 < 0.08	<0.0025 <0.032	<0.0025 <0.096	<0.0020 <0.065	<0.0025 <0.1	0.220 0.18 J	<0.0020 <0.095	<0.0025 <0.09	<0.0035 <0.076	0.064 <0.097	<0.0050 <0.98 J4J3	
		Apr-15	_	<0.00319	<0.00130	<0.00380	<0.00260	<0.00400	0.184	<0.00380	<0.00360	<0.00310	0.0476	<0.0390	0.00796 J
		Oct-15 Apr-16	Ⅎ	<0.00798 <0.0160	<0.00325 <0.00650	<0.00958 <0.0192	<0.00648 <0.0130	<0.00995 <0.0199	0.226 0.266	<0.00952 <0.00190	<0.00902 <0.0180	<0.00765 <0.0153	0.0626 0.0719	<0.0982 <0.196	0.0134 J <0.0182
	MW-92	Oct-16 Apr-16	7	<0.0798 < 0.000319	<0.0325 <0.000130	<0.0958 <0.000383	<0.0648 <0.000259	<0.0995 <0.000398	0.218 J 0.0588	<0.0952 <0.000381	<0.0902 <0.000361	<0.0765 <0.000306	<0.0968 0.0174	<0.982 <0.00393	<0.0912 0.00699
		Oct-16		<0.00638	<0.00260	<0.00766	<0.00518	<0.00796	0.0308	< 0.00762	<0.00722	<0.00612	0.00835 J	<0.0786	<0.00730
	MW-93	Apr-14 Nov-14	4	<0.0025 <0.016	<0.0025 <0.0065	<0.0025 <0.019	<0.0020 <0.013	<0.0025 <0.02	0.370 0.240	<0.0020 <0.019	<0.0025 <0.018	<0.0035 <0.015	0.076 0.046 J	<0.0050 <0.2	_
		Apr-15	#	<0.00319	<0.00130	<0.00380	<0.00260	<0.00400 <0.00398	0.206	<0.00380 J	<0.00360 J	<0.00310	0.0368	<0.0390 J	0.00716 J
		Oct-15 Apr-16		<0.00319 <0.00160	<0.00130 <0.000650	<0.00383 <0.00192	<0.00259 <0.00130	<0.00398	0.241 0.0331	<0.00381 <0.00190	<0.00361 <0.00180	<0.00306 <0.00153	0.0414 0.00543	<0.0393 <0.0196	0.00653 J 0.00208 J
	MW-94	Oct-16 Nov-14	4	<0.00319 <0.0064	<0.00130 <0.0026	<0.00383 <0.0077	<0.00259 <0.0052	<0.00398 <0.0080	0.103 0.540	<0.00381 <0.0076	<0.00361 <0.0072	<0.00306 <0.0061	0.0146 0.12	<0.0393 <0.079 J4	0.00379 J
	10100=34	Oct-15		<0.00319	<0.00130	<0.00383	< 0.00259	<0.00398	0.432	<0.00381	<0.00361	<0.00306	0.0857	<0.0393	0.0283
		Apr-16 Oct-16	4	<0.0160 <0.00160	<0.00650 <0.000650	<0.0192 < 0.00192	<0.0130 <0.00130	<0.0199 < 0.00199	0.489 0.458	<0.0190 <0.00190	<0.0180 <0.00180	<0.0153 <0.00153	0.100 0.0917	<0.196 J4 <0.0196	0.0403 J 0.0303
≥	MW-95	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.010	<0.0050
North Refinery		Apr-14 Apr-15	+	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	0.00288
₽	MW-96	Apr-16 Apr-14	4	<0.000319 <0.012	<0.000130 <0.012	<0.000383 <0.012	<0.000259 <0.010	<0.000398 <0.012	<0.000373 0.019 J	<0.000381 <0.010	<0.000361 <0.012	<0.000306 <0.018	<0.000387 <0.015	<0.00393 J4 <0.025	0.00330
≥	10100-30	Nov-14		<0.0080	<0.0032	<0.0096	<0.0065	<0.01	<0.0093	<0.0095	<0.0090	<0.0076	< 0.0097	<0.098	
		Apr-15 Oct-15	+	<0.000319 <0.16	<0.000130 <0.0650	<0.000380 <0.192	<0.000260 <0.13	<0.000400 <0.199	0.000553 J <0.186	<0.000380 <0.19	<0.000360 <0.18	<0.000310 <0.153	<0.000390 <0.194	<0.00390 < 1.96	0.00551 <0.182
		Apr-16		<0.00638	<0.00260	<0.00766	<0.00518	< 0.00796	<0.00746	< 0.00762	<0.00722	<0.00612	< 0.00774	<0.0786	0.0104 J
	MW-98	Oct-16 Apr-14	┪	<0.0160 <0.0050	<0.00650 <0.0050	<0.0192 <0.0050	<0.0130 <0.0040	<0.0199 <0.0050	<0.0186 0.440	<0.0190 <0.0040	<0.0180 <0.0050	<0.0153 <0.0070	<0.0194 0.1	<0.196 0.046 J	<0.0182
			FD	<0.0050 < 0.08	<0.0050 <0.032	<0.0050 <0.096	<0.0040 <0.065	<0.0050 < 0.1	0.460 0.340	<0.0040 <0.095	<0.0050 <0.09	<0.0070 <0.076	0.1 <0.097	<0.010 <0.98	
		Apr-15	1	<0.00798	<0.00320	<0.00960	< 0.00650	<0.0100	0.360	<0.00950 J	<0.00900 J	<0.00760	0.087	<0.0980 J	0.00919 J
		Oct-15 Apr-16	+	<0.00798 <0.0319	<0.00325 <0.0130	<0.00958 <0.0383	<0.00648 <0.0259	<0.00995 <0.0398	0.380 0.177	<0.00952 <0.0381	<0.00902 <0.0361	<0.00765 <0.0306	0.0836 0.0462 J	<0.0982 <0.393	<0.00912 <0.0365
	MM/ 407	Oct-16	4	<0.0319	<0.0130	<0.0383	<0.0259	<0.0398	0.299	<0.0381	< 0.0361	<0.0306	0.0823 J 0.102	<0.393	<0.0365
	MW-137	Oct-15 Apr-16	1	<0.0319 <0.0798	<0.0130 <0.0325	<0.0383 <0.0958	<0.0259 <0.0648	<0.0398 <0.0995	0.437 0.460	<0.0381 <0.0952	<0.0361 <0.0902	<0.0306 <0.0765	0.102 J	<0.393 <0.982	<0.0365 <0.0912
	MW-138	Oct-16	4	<0.0798 <0.00638	<0.0325 <0.00260	<0.0958 <0.00766	<0.0648 <0.00518	<0.0995 <0.00796	0.421 0.0792	<0.0952 <0.00762	<0.0902 <0.00722	<0.0765 <0.00612	<0.0968 0.0189 J	<0.982 <0.0786	<0.0912 0.0144 J
		Apr-16	_	< 0.00319	<0.00130	<0.00383	< 0.00259	<0.00398	<0.00373	<0.00381	< 0.00361	< 0.00306	<0.00387	< 0.0393	0.0138
	RW-1	Oct-16 Apr-15	+	<0.00319 <0.0160	<0.00130 <0.00650	<0.00383 <0.0190	<0.00259 <0.0130	<0.00398 <0.0200	<0.00373 <0.0190	<0.00381 <0.0190	<0.00361 <0.0180	<0.00306 <0.0150	<0.00387 <0.0190	<0.0393 <0.2	0.0115 <0.0180
	RW-1R	Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	0.000763 J	0.00369	<0.000381	<0.000361	<0.000306	0.000516 J	<0.00393	0.000968 J
	RW-2R	Apr-15 Apr-16	Ⅎ	<0.00319 <0.0160	<0.00130 <0.00650	<0.00380 <0.0192	<0.00260 <0.0130	<0.00400 < 0.0199	0.330 0.188	<0.00380 J <0.0190	<0.00360 J <0.0180	<0.00310 <0.0153	0.0772 0.0419 J	<0.0390 J <0.196	0.012 <0.0182
	RW-7 RW-7R	Apr-15 Apr-16	7	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.0818 < 0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	0.000663 J <0.000387	<0.00390 <0.00393 J4	0.0146 <0.000365
	RW-8	Apr-15	1	<0.00319	<0.00130	<0.00380	<0.00260	<0.00400	0.00710 J	<0.00380	<0.00360	<0.00310	<0.00390	<0.0390	0.00942 J
	RW-9	Apr-13 Apr-14	7	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	0.007 0.0065	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	0.02
		Apr-15	#	<0.0160	<0.00650	<0.0190	<0.0130	<0.0200	<0.0190	<0.0190	<0.0180	<0.0150	<0.0190	<0.2	<0.0180
	RW-10	Apr-16 Apr-13	Ⅎ	<0.00160 <0.0050	<0.000650 <0.0050	<0.00192 <0.0050	<0.00130 <0.0050	<0.00199 <0.0050	0.0283 < 0.0050	<0.00190 <0.0050	<0.00180 <0.0050	<0.00153 <0.0050	<0.00194 <0.0050	<0.0196 <0.010	0.0126 <0.0050
		Apr-14 Apr-15	7	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
		Apr-16	╛	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	< 0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	RW-16	Apr-13 Apr-14	\dashv	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00040 <0.00040	<0.00050 <0.00050	<0.00050 <0.00050	<0.00040 <0.00040	<0.00050 <0.00050	<0.00070 <0.00070	<0.00060 <0.00060	<0.0010 <0.0010	
		Apr-14 F	FD	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	< 0.000370	<0.000380	<0.000360	<0.000310	< 0.000390	<0.00390	<0.000360 <0.000360
		Apr-15 Apr-16	Ⅎ	<0.000319 <0.000319	<0.00013 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000360
	RW-17	Apr-13 Apr-14	7	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
		Apr-15	⇉	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	< 0.000370	<0.000380	<0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
\vdash	MW-117	Apr-16 Apr-14	\dashv	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
		Nov-14		<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	< 0.00037	<0.00038	<0.00036	<0.00031	< 0.00039	<0.0039	
ple:		Apr-15	FD	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 0.00285	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 0.000897 J	<0.0039 J4J3 <0.00390	<0.000360
ect F		Oct-15 Apr-16	寸	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
RO Reject Field		Oct-16	#	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
th RC	MW-118	Apr-14 Nov-14	Ⅎ	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
North		Apr-15 Oct-15	7	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.000863 J <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Apr-16	⇉	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	< 0.000306	<0.000387	<0.00393	< 0.000365
L	j	Oct-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365

		nalyte Gro				,.		Refining LLC, Ai	Volatile Organ						
	,	Anai		1,1,1-Tri-	1,1,2,2-Tetra-	1,1,2-Tri-	1,1-Dichloro-	1,1-Dichloro-	1,2,4- Trimethyl-	1,2-Dibromo-	1,2-Dichloro-	1,2-Dichloro-	1,3,5- Trimethyl-		2-Phenyl-
				chloroethane	chloroethane	chloroethane	ethane	ethene	benzene	ethane	ethane	propane	benzene	2-Butanone	butane
		CGW	nits: /SL:	mg/L 6.00E-02	mg/L 1.00E-02	mg/L 5.00E-03	mg/L 2.50E-02	mg/L 7.00E-03	mg/L 1.50E-02	mg/L 5.00E-05	mg/L 5.00E-03	mg/L 5.00E-03	mg/L 1.20E-01	mg/L 5.56E+00	mg/L
Δrea	Well ID	GWSL Sou Date	rce: Dup	WQCC HH	WQCC HH	USEPA MCL	WQCC HH	USEPA MCL	USEPA TW	USEPA MCL	USEPA MCL	USEPA MCL	USEPA TW	NMED TW	
	MW-119	Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
North RO Reject Field		Apr-14 Nov-14	FD	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
RS Field		Apr-15 Oct-15		<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
£ 5		Apr-16		< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	< 0.000365
-	MW-18	Oct-16 Oct-13	_	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
		Apr-14		<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
		Apr-15 Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000380 <0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-45	Apr-14 Nov-14		<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Oct-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387	<0.00393	<0.000365
	MW-53	Oct-16 Apr-13	-	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
		Apr-14		<0.00050	< 0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130 J4	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
	MW-54A	Apr-14 Nov-14		<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	0.000428 J
1		Oct-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.000742 J <0.000365
	MW-54B	Oct-16 Apr-13	\exists	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 <0.010	<0.000365 <0.0050
1		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.00360
	MW-55	Apr-14 Apr-14	FD	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00040 <0.00040	<0.00050 <0.00050	<0.00050 <0.00050	<0.00040 <0.00040	<0.00050 <0.00050	<0.00070 <0.00070	<0.00060 <0.00060	<0.0010 <0.0010	
		Nov-14 Apr-15	\exists	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	< 0.000387	<0.00393	< 0.000365
		Apr-16 Oct-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.0599 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-56	Apr-14 Nov-14		<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
		Oct-15 Apr-16	-	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-108	Oct-16 Apr-14		<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 0.00063 J	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 0.031	<0.000381 <0.00040	<0.000361 0.0098	<0.000306 <0.00070	<0.000387 0.0034 J	<0.00393 <0.0010	<0.000365
	100	Nov-14		<0.0016	< 0.00065	<0.0019	< 0.0013	<0.0020	0.039	<0.0019	<0.0018	<0.0015	0.0046 J	<0.02	
		Apr-15 Oct-15		<0.00319 <0.00319	<0.00130 <0.00130	<0.00380 <0.00383	<0.00260 <0.00259	<0.00400 <0.00398	0.0465 0.0616	<0.00380 <0.00381	<0.00360 <0.00361	<0.00310 <0.00306	0.00603 J 0.00805 J	<0.0390 <0.0393	0.00565 J 0.00655 J
NC		Apr-16 Oct-16		<0.0160 <0.00798	<0.00650 <0.00325	<0.0192 <0.00958	<0.0130 <0.00648	<0.0199 <0.00995	0.0599 0.0561	<0.0190 <0.00952	<0.0180 <0.00902	<0.0153 <0.00765	<0.0194 <0.00968	<0.196 <0.0982	<0.0182 <0.00912
	NCL-31	Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	-0.000 IL
		Nov-14 Apr-15	-	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	0.000683 J
		Oct-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.00164 0.000595 J
		Oct-16		<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	0.000554 J	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	NCL-32	Nov-14 Apr-15		<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15 Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	NOL 22	Oct-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	NCL-33	Apr-14 Nov-14		<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15 Oct-15		<0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398 J	<0.000370 <0.000373	<0.000380 <0.000381 J	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
		Apr-16		<0.000319 <0.000319	<0.000130	<0.000383 <0.000383	<0.000259	<0.000398 <0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387 <0.000387	<0.00393	< 0.000365
	NCL-34A	Oct-16 Nov-14		<0.0016	<0.000130 <0.00065	<0.0019	<0.000259 <0.0013	<0.0020	<0.000373 0.11	<0.000381 <0.0019	<0.000361 <0.0018	<0.000306 <0.0015	<0.0019	<0.00393 <0.02	<0.000365
		Apr-15 Oct-15	\dashv	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.0979 0.0589	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	0.00122 0.000423 J	<0.00390 <0.00393	0.0159 0.0174
1		Apr-16 Oct-16		<0.0160 <0.0319	<0.00650 <0.0130	<0.0192 <0.0383	<0.0130 <0.0259	<0.0199 <0.0398	0.102 0.0754 J	<0.0190 <0.0381	<0.0180 <0.0361	<0.0153 <0.0306	<0.0194 <0.0387	<0.196 <0.393	0.0190 J <0.0365
	NCL-44	Apr-14		<0.00050	< 0.00050	<0.00050	<0.00040	< 0.00050	<0.00050	<0.00040	< 0.00050	<0.00070	<0.00060	<0.0010	-5.0000
1		Nov-14 Apr-15	_	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	0.000390 J
		Oct-15 Apr-16	\exists	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.000419 J 0.00144
	NO: :	Oct-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	0.000672 J
1	NCL-49	Apr-14 Nov-14	\exists	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
			FD	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Apr-15	FD	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	< 0.000370	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	<0.000360
			FD	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
		Apr-16 Apr-16	FD	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.00762 <0.000381	<0.00722 <0.000361	<0.00612 <0.000306	<0.00774 <0.000387	<0.0786 <0.00393	<0.000365 <0.000365
		Oct-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	KWB-2R	Nov-14	FD	<0.000319 <0.0080	<0.000130 <0.0032	<0.000383 <0.0096	<0.000259 <0.0065	<0.000398 <0.01	<0.000373 0.790	<0.000381 <0.0095	<0.000361 <0.0090	<0.000306 <0.0076	<0.000387 0.039	<0.00393 <0.098	<0.000365
_		Apr-15 Oct-15	\dashv	<0.00319 <0.0319	<0.00130 <0.0130	<0.00380 <0.0383	<0.00260 <0.0259	<0.00400 <0.0398	0.307 0.317	<0.00380 <0.0381	<0.00360 <0.0361	<0.00310 <0.0306	<0.00390 <0.0387	<0.0390 <0.393	0.0107 <0.0365
Refinery		Apr-16		<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.0497	<0.000381	<0.000361 <0.000361	<0.000306 <0.000306	0.000489 J	<0.00393 <0.00393	0.00350
# Re	KWB-5	Oct-16 Nov-14		<0.0032	< 0.0013	<0.0038	<0.0026	< 0.0040	0.0347 <0.0037	<0.00381 <0.0038	< 0.0036	<0.0031	0.000427 J <0.0039	<0.039	0.00588
South		Apr-15 Oct-15	-1	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.0158 0.00334	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	0.00419 0.00179	<0.00390 <0.00393	0.00291 0.00314
		Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	0.00535	<0.000381	<0.000361	< 0.000306	0.000901 J	<0.00393	0.00242
Щ	<u> </u>	Oct-16		<0.00160	<0.000650	<0.00192	<0.00130	<0.00199	<0.00186	<0.00190	<0.00180	<0.00153	<0.00194	<0.0196	<0.00182

March Control Contro		4	nalyte Gro	up:			-		Verifiling LLO, Al	Volatile Organ						
March Marc									1,1-Dichloro-	1,2,4- Trimethyl-	1,2-Dibromo-	1,2-Dichloro-		Trimethyl-	2-Butanone	
No.			CGW GWSL Sou	/SL: irce:	6.00E-02	1.00E-02	5.00E-03	2.50E-02	7.00E-03	1.50E-02	5.00E-05	5.00E-03	5.00E-03	1.20E-01	5.56E+00	mg/L
March Marc	Area			Dup	<0.0032	<0.0013	<0.0038	<0.0026	<0.0040	0.260	<0.0038	<0.0036	<0.0031	0.047	<0.039	
Moral Column Co			Apr-15		<0.00798	<0.00320	<0.00960	<0.00650	<0.0100	0.680	<0.00950	0.0119 J	<0.00760	0.124	<0.0980	
March 1,000 1,00				-												
Sec. 14 4.500 4.000 4.			Oct-16		<0.00638	<0.00260	<0.00766	<0.00518	<0.00796	0.292	< 0.00762	<0.00722	<0.00612	0.0449	<0.0786	
Section Column		MW-28														
Month Control Contro			Apr-15		<0.0319	<0.0130	<0.0380	< 0.0260	<0.0400	0.0950 J	<0.0380	<0.0360	<0.0310	<0.0390	< 0.39	
167.4 1.0 1.																
Part			Oct-16		<0.0160	<0.00650	<0.0192	<0.0130	<0.0199	0.253	<0.0190	<0.0180	0.0789	0.0202 J	<0.196	<0.0182
Column		MW-48														0.00641 J
March Column Co			Oct-15		<0.00160	<0.000650	<0.00192	< 0.00130	< 0.00199	0.211	<0.00190	<0.00180	<0.00153	0.00235 J	<0.0196	0.011
							<0.00192							0.0284		
Page 2		MW-50		_												
Marcon			Apr-15		< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	
The color																
Part Fig. 6,00000 0,00000		MM/ FO	Oct-16													0.000625 J
Part		IVIVV-52		FD												
Col.																<0.000360
Marcial Control Cont	1		Oct-15		< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	<0.00393	<0.000365
Marcol April Colores Colores																
Mary March	1	MW-64	Apr-16		<0.0160	< 0.00650	<0.0192	<0.0130	<0.0199	0.666	<0.0190	<0.0180	<0.0153	0.140	<0.196 J4	<0.0182
April	1	MW-65										<0.018		0.022 J		<0.0365
Oct 16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0			Apr-15			< 0.00130	<0.00380			0.0514	<0.00380		<0.00310			
No. 14 40 2022 40 50 15 40 500 40 5			Oct-16											< 0.00774		
## Agr. 15		MW-66				<0.00050						<0.00050				
Age-16			Apr-15		<0.0160	<0.00650	<0.0190	<0.0130	<0.0200	<0.0190	<0.0190	<0.0180	<0.0150	<0.0190	<0.2	
Col. Col. Col. Col																
Apr-15		MM/ 00	Oct-16		<0.000319	< 0.000130	<0.000383	<0.000259	<0.000398	0.00241	<0.000381	< 0.000361	< 0.000306	0.000547 J	<0.00393	
Page-16		WW-99														0.0108 J
No. Col. C																
No14			Oct-16		<0.00638	<0.00260	<0.00766	<0.00518	<0.00796	0.343	< 0.00762	<0.00722	<0.00612	<0.00774	<0.0786	0.00804 J
Page-15 -0.00160 -0.000050 -0.00150		MW-101														
Apr-15	nery		Apr-15				<0.00190				<0.00190 J	<0.00180 J	<0.00150			
Apr-15	Ref					< 0.000130	<0.000383		<0.000398				< 0.000306		<0.00393	
Apr-15	South	MW-102		\dashv												0.000391 J
Apr-16	1 0		Apr-15		< 0.00319	<0.00130	<0.00380	< 0.00260	<0.00400	0.136	<0.00380	0.00548 J	<0.00310	0.0278	<0.0390	
MW-103 Apr-13																
Apr-14		MW-103														
MAP-16		100	Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	0.015	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
MW-104 Apr-14 C-0,00050 C-0,00050 C-0,00060 C-0,00060 C-0,00050																
Nov-14 - 0.00032 -0.00013 -0.00038 -0.00026 -0.00040 -0.00037 -0.00038 -0.00036 -0.00031 -0.00039 -0.00039 -0.		MW-104	Apr-14													
Apr-15				FD												
Apr-15 FD -0,000319 -0,000130 -0,000330 -0				FD												0.032
Oct-16 FD <0.000319 <0.000130 <0.0001383 <0.000259 <0.000339 <0.000331 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381 <0.000381			Apr-15	FD	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	0.0328
Apr-16				FD												
Del-16	1		Apr-16	FD						< 0.000373						
MW-105 Nov-14			Oct-16		<0.00160	< 0.000650	< 0.00192	<0.00130	< 0.00199	<0.00186	<0.00190	<0.00180	< 0.00153	< 0.00194	<0.0196	0.0346
Apr-15	1	MW-105		FD												0.038
Apr-16	1		Apr-15	\exists	<0.00160	<0.000650	<0.00190	< 0.00130	<0.00200	0.0678	<0.00190 J	<0.00180 J	<0.00150	0.0325	<0.0200 J	
MW-106			Apr-16		<0.0798	<0.0325	<0.0958	<0.0648	<0.0995	0.103 J	<0.0952	<0.0902	<0.0765	<0.0968	<0.982	<0.0912
Apr-15	1	MW-106		\dashv												<0.0365
Apr-16	1		Apr-15		< 0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.0173	<0.000380	<0.000360	<0.000310	0.00273	<0.00390	
MW-107 Apr-14 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0070 <0.0050 <0.0070 <0.0051 <0.0050 <0.0070 <0.0051 <0.0050 <0.0070 <0.0050 <0.0070 <0.0050 <0.0070 <0.0050 <0.0070 <0.0050 <0.0070 <0.0050 <0.0070 <0.0031 <0.0035 <0.0039 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0.00390 <0																
Nov-14	1	MW-107		4												<0.0182
DC:15		107	Nov-14		<0.0032	<0.0013	<0.0038	<0.0026	<0.0040	0.031	<0.0038	<0.0036	<0.0031	0.0052 J	<0.039	
Apr-16	1			\dashv												
MW-109 Apr-14 <0.00050	1		Apr-16		<0.000319	< 0.000130	<0.000383	<0.000259	<0.000398	0.00111	<0.000381	< 0.000361	<0.000306	0.000591 J	<0.00393	0.00613
Apr-15	1	MW-109	Apr-14	\exists	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	0.0027 J	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	0.00032
Oct-15 <0.00319 <0.00130 <0.00383 <0.00259 <0.00388 0.00487 J <0.00381 <0.00361 <0.00361 <0.00365 <0.00374 <0.00381 <0.00365 <0.00374 <0.00365 <0.00194 <0.00196 <0.00565 <0.00194 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196 <0.00196	1			-												0.00453 J
Del-16 <0.00638 <0.00260 <0.00766 <0.00746 <0.007762 <0.00762 <0.00762 <0.00762 <0.00774 <0.00730 <0.00730 <0.00730 <0.00730 <0.00730 <0.00746 <0.00752 <0.00762 <0.00774 <0.00774 <0.00786 <0.00730 <0.00730 <0.00730 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00746 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752 <0.00752			Oct-15		<0.00319	<0.00130	<0.00383	< 0.00259	<0.00398	0.00487 J	<0.00381	<0.00361	<0.00306	<0.00387	< 0.0393	0.00396 J
Nov-14 <0.00032 <0.00013 <0.00038 <0.00026 <0.00040 0.001 <0.00038 <0.00031 <0.00039 <0.00039 Apr-15 <0.000319	1	L			<0.00638	<0.00260	<0.00766	<0.00518	<0.00796	<0.00746	<0.00762	<0.00722	<0.00612	< 0.00774	<0.0786	
Apr-15 <0.000319 <0.000130 <0.000280 <0.000400 0.00548 <0.000380 <0.000310 <0.000130 0.000280 <0.000400 0.00548 <0.000380 <0.000360 <0.000130 0.000280 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.000130 <0.0001	1	MW-110		7												
Apr-16 <0.000319 <0.000130 <0.000383 <0.000259 <0.000388 0.000871 J <0.000381 <0.000361 <0.000360 0.000525 J <0.00393 0.00576			Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	0.00548	<0.000380	<0.000360	<0.000310	0.00166	<0.00390	
	1			-												

	Δ	nalyte Group					Refining LLC, Ai	Volatile Organ						
	_	Analyte	: 1,1,1-Tri- chloroethane	1,1,2,2-Tetra- chloroethane	1,1,2-Tri- chloroethane	1,1-Dichloro- ethane	1,1-Dichloro- ethene	1,2,4- Trimethyl- benzene	1,2-Dibromo- ethane	1,2-Dichloro- ethane	1,2-Dichloro- propane	1,3,5- Trimethyl- benzene	2-Butanone	2-Phenyl- butane
		Units CGWSI	6.00E-02	mg/L 1.00E-02	mg/L 5.00E-03	mg/L 2.50E-02	mg/L 7.00E-03	mg/L 1.50E-02	mg/L 5.00E-05	mg/L 5.00E-03	mg/L 5.00E-03	mg/L 1.20E-01	mg/L 5.56E+00	mg/L
Area	Well ID	GWSL Source Date Du		WQCC HH	USEPA MCL	WQCC HH	USEPA MCL	USEPA TW	USEPA MCL	USEPA MCL	USEPA MCL	USEPA TW	NMED TW	
	RA-313	Apr-13	<0.0050 <0.00050	<0.0050	<0.0050	<0.0050 <0.00040	<0.0050	<0.0050 <0.00050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
>		Apr-14 Apr-15	<0.00050	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040	<0.00050 <0.000400	<0.00050	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
finer	RW-4	Apr-16	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361 <0.000360	<0.000306	<0.000387	<0.00393 J4	<0.000365
South Refinery	RW-4R	Apr-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	0.00302 0.00269
Sout	RW-5R	Apr-15 Apr-16	<0.00319 <0.00638	<0.00130 <0.00260	<0.00380 <0.00766	<0.00260 <0.00518	<0.00400 <0.00796	0.298 0.437	<0.00380 <0.00762	<0.00360 <0.00722	<0.00310 <0.00612	0.0558 0.100	<0.0390 <0.0786	0.00691 J 0.0130 J
	RW-6	Apr-15	<0.00319	<0.00130	<0.00380	<0.00260	<0.00400	0.134	<0.00380	<0.00360	<0.00310	0.028	<0.0390	0.00944 J
_	RW-6R MW-114	Apr-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	0.00555 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	0.00111 < 0.00060	<0.00393 <0.0010	0.00590
		Nov-14	<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038	< 0.00036	<0.00031	< 0.00039	<0.0039	
		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 <0.000365
_		Apr-16	< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	< 0.00393	<0.000365
South RO Reject Field	MW-115	Oct-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	<0.000373 <0.00050	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	<0.000387 <0.00060	<0.00393 <0.0010	<0.000365
eject		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
0.		Oct-15	<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	< 0.000365
퇃		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
Sol	MW-116	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Oct-15	<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373 <0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.000373 0.000389 J	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	MW-49	Apr-14 Nov-14	<0.00050 <0.00064	<0.00050 <0.00026	<0.00050 <0.00077	<0.00040 <0.00052	<0.00050 <0.00080	0.022 0.017	<0.00040 <0.00076	<0.00050 <0.00072	<0.00070 <0.00061	0.0018 J 0.0018 J	<0.0010 <0.0079	
		Apr-15	< 0.000319	< 0.000130	<0.000380	<0.000260	<0.000400 J	0.00954	<0.000380	< 0.000360	<0.000310	< 0.000390	<0.00390	0.00245
		Oct-15 Apr-16	<0.000319 <0.00638	<0.000130 <0.00260	<0.000383 <0.00766	<0.000259 <0.00518	<0.000398 <0.00796	0.015 0.0305	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	0.000858 J <0.000387	<0.00393 <0.00393	0.00371 <0.00730
		Oct-16	< 0.0319	<0.0130 J4	<0.0383	<0.0259	<0.0398	0.0457 J	<0.0381	<0.0361	<0.0306	<0.0387	<0.393 J3	<0.0365
	TEL-1	Apr-14 FE	<0.00050 <0.00050	<0.00050 <0.00050	<0.00050 <0.00050	<0.00040 <0.00040	<0.00050 <0.00050	0.0012 J 0.0012 J	<0.00040 <0.00040	<0.00050 <0.00050	<0.00070 <0.00070	<0.00060 <0.00060	<0.0010 <0.0010	
		Nov-14	<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	0.00086 J	<0.00038	<0.00036	<0.00031	< 0.00039	<0.0039	-0.000000
		Apr-15 Oct-15	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	0.00103 0.000971 J	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393	<0.000360 0.00166
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	0.000807 J 0.000939 J	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	0.00174 0.00232
	TEL-2	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	< 0.00050	0.200	<0.00040	<0.00050	<0.00070	0.032	<0.0010	0.00202
		Nov-14 Apr-15	<0.0032 <0.00638	<0.0013 <0.00260	<0.0038 <0.00770	<0.0026 <0.00520	<0.0040 <0.00800 J	0.140 0.138	<0.0038 <0.00760	<0.0036 <0.00720	<0.0031 <0.00610	0.026 0.0198 J	<0.039 <0.0790	<0.00730
		Oct-15	<0.00160	<0.000650 <0.000130	<0.00192 <0.000383	<0.00130 <0.000259	<0.00199 <0.000398	0.138	<0.00190	<0.00180 <0.000361	<0.00153 <0.000306	0.0109	<0.0196 <0.00393	0.00649
TEL		Apr-16 Oct-16	<0.000319 <0.00319	<0.00130	<0.00383	< 0.00259	<0.00398	0.125 0.0976	<0.000381 <0.00381	<0.00361	<0.00306	0.0143 0.00929 J	< 0.0393	0.00662 0.00607 J
	TEL-3	Apr-14 Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	0.027 0.016	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	0.0029 J 0.0017	<0.0010 <0.0039	
		Apr-15	<0.00319	<0.00130	<0.00380	<0.00260	<0.00400	0.0104	<0.00380	< 0.00360	<0.00310	<0.00390	<0.0390	0.00899 J
		Oct-15 Apr-16	<0.000319 <0.00798	<0.000130 <0.00325	<0.000383 <0.00958	<0.000259 <0.00648	<0.000398 <0.00995	0.0213 0.0128 J	<0.000381 <0.00952	<0.000361 <0.00902	<0.000306 <0.00765	0.00128 <0.00968	<0.00393 <0.0982	0.0111 0.0108 J
	TEL-4	Oct-16 Apr-14	<0.000319 <0.00050	<0.000130 <0.00050	<0.000383 <0.00050	<0.000259 <0.00040	<0.000398 <0.00050	0.0157 0.099	<0.000381 <0.00040	<0.000361 <0.00050	<0.000306 <0.00070	0.00115 <0.00060	<0.00393 <0.0010	0.00596
		Nov-14	<0.0064	<0.0026	<0.0077	<0.0052	<0.0080	0.110	<0.0076	<0.0072	<0.0061	< 0.0077	<0.079	
		Nov-14 FE Apr-15	<0.0064 <0.00319	<0.0026 <0.00130	<0.0077 <0.00380	<0.0052 <0.00260	<0.0080 <0.00400	0.110 0.0742	<0.0076 <0.00380	<0.0072 <0.00360	<0.0061 <0.00310	<0.0077 <0.00390	<0.079 <0.0390	0.0117
		Apr-15 FE	<0.00319 <0.000319	<0.00130 <0.000130	<0.00380 <0.000383	<0.00260 <0.000259	<0.00400 <0.000398	0.0758 0.074	<0.00380	<0.00360 <0.000361	<0.00310 <0.000306	<0.00390 0.000524 J	<0.0390 <0.00393	0.0118 0.0119
		Oct-15 FE	<0.00319	<0.00130	<0.00383	< 0.00259	<0.00398	0.0861	<0.000381 <0.00381	< 0.00361	<0.00306	<0.00387	<0.0393	0.0145
		Apr-16 FF	<0.00319	<0.00130 <0.00130	<0.00383	<0.00259 <0.00259	<0.00398 <0.00398	0.142 0.147	<0.00381 <0.00381	<0.00361 <0.00361	<0.00306	<0.00387 <0.00387	<0.0393 <0.0393	0.0161 0.0165
		Oct-16	<0.00319	<0.00130	<0.00383	<0.00259	<0.00398	0.0775	<0.00381	<0.00361	<0.00306	<0.00387	<0.0393	0.0111
	MW-8	Oct-16 FE Oct-13	<0.00319 <0.0050	<0.00130 <0.0050	<0.00383 <0.0050	<0.00259 <0.0050	<0.00398 <0.0050	0.105 <0.0050	<0.00381 <0.0050	<0.00361 <0.0050	<0.00306 <0.0050	<0.00387 <0.0050	<0.0393 <0.010	0.0162 <0.0050
		Apr-14	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
		Apr-15 Apr-16	< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-16	Apr-13 Apr-14	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
	100	Apr-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380 J	<0.000360 J	<0.000310	<0.000390	<0.00390 J	<0.000360
	MW-20	Apr-13 Apr-14	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00070	<0.0050 <0.00060	<0.010 <0.0010	<0.0050
		Apr-14 FE Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
		Apr-16	< 0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	< 0.000306	<0.000387	<0.00393 J4	<0.000365
	MW-21	Apr-14 Nov-14	<0.00050 <0.00032	<0.00050 <0.00013	<0.00050 <0.00038	<0.00040 <0.00026	<0.00050 <0.00040	<0.00050 <0.00037	<0.00040 <0.00038	<0.00050 <0.00036	<0.00070 <0.00031	<0.00060 <0.00039	<0.0010 <0.0039	
		Apr-15	<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380 J	<0.000360 J	<0.000310	<0.000390	<0.00390 J	<0.000360
_		Oct-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
TMD	MW-25	Oct-16 Apr-13	<0.000319 <0.0050	<0.000130 J4 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 J3 <0.010	<0.000365 <0.0050
	14144-23	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 J <0.000381	<0.000360 J <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 J <0.00393 J4	<0.000360 <0.000365
	MW-26	Apr-13	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.010	<0.0050
		Apr-14 Apr-15	<0.00050 <0.000319	<0.00050 <0.000130	<0.00050 <0.000380	<0.00040 <0.000260	<0.00050 <0.000400	<0.00050 <0.000370	<0.00040 <0.000380	<0.00050 <0.000360	<0.00070 <0.000310	<0.00060 <0.000390	<0.0010 <0.00390	<0.000360
	MW-27	Apr-16 Apr-13	<0.000319 <0.0050	<0.000130 <0.0050	<0.000383 <0.0050	<0.000259 <0.0050	<0.000398 <0.0050	<0.000373 <0.0050	<0.000381 <0.0050	<0.000361 <0.0050	<0.000306 <0.0050	<0.000387 <0.0050	<0.00393 J4 <0.010	<0.000365 <0.0050
1	14144-71	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15 Apr-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000380 <0.000383	<0.000260 <0.000259	<0.000400 <0.000398	<0.000370 <0.000373	<0.000380 <0.000381	<0.000360 <0.000361	<0.000310 <0.000306	<0.000390 <0.000387	<0.00390 <0.00393 J4	<0.000360 <0.000365
	MW-46R	Apr-14	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	0.00074 J	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14 Apr-15	<0.00032 <0.000319	<0.00013 <0.000130	<0.00038 <0.000380	<0.00026 <0.000260	<0.00040 J <0.000400	<0.00037 <0.000370	<0.00038 <0.000380	<0.00036 <0.000360	<0.00031 <0.000310	<0.00039 <0.000390	<0.0039 <0.00390	<0.000360
		Apr-16 Oct-16	<0.000319 <0.000319	<0.000130 <0.000130	<0.000383 <0.000383	<0.000259 <0.000259	<0.000398 <0.000398	<0.000373 <0.000373	<0.000381 <0.000381	<0.000361 <0.000361	<0.000306 <0.000306	<0.000387 <0.000387	<0.00393 <0.00393	<0.000365 <0.000365
	I	JUI-10	-0.000019	-0.000100	-0.000000	-0.000203	-0.000000	-0.000010	-0.000001	-0.000001	-0.000000	-0.000007	-0.00000	-0.000000

	4	Analyte Gr	oup:			-	-		Volatile Organ	ic Compounds	i				
		•	•						1,2,4-	·			1,3,5-		
		An	alyte:	1,1,1-Tri-	1,1,2,2-Tetra-	1,1,2-Tri-	1,1-Dichloro-	1,1-Dichloro-	Trimethyl-	1,2-Dibromo-	1,2-Dichloro-	1,2-Dichloro-	Trimethyl-		2-Phenyl-
				chloroethane	chloroethane	chloroethane	ethane	ethene	benzene	ethane	ethane	propane	benzene	2-Butanone	butane
		ı	Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CG	WSL:	6.00E-02	1.00E-02	5.00E-03	2.50E-02	7.00E-03	1.50E-02	5.00E-05	5.00E-03	5.00E-03	1.20E-01	5.56E+00	
		GWSL So		WQCC HH	WQCC HH	USEPA MCL	WQCC HH	USEPA MCL	USEPA TW	USEPA MCL	USEPA MCL	USEPA MCL	USEPA TW	NMED TW	
Area	Well ID	Date	Dup												
	MW-68	Apr-13		< 0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
		Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-71	Oct-13		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
		Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	MW-89	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
0		Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
TMD		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380 J	<0.000360 J	<0.000310	<0.000390	<0.00390 J	<0.000360
_		Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393 J4	<0.000365
	NP-1	Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Nov-14		<0.00032	<0.00013	<0.00038	<0.00026	<0.00040	<0.00037	<0.00038	<0.00036	<0.00031	<0.00039	<0.0039	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	0.000581 J	<0.000310	<0.000390	<0.00390	<0.000360
		Oct-15		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	0.000431 J	<0.000306	<0.000387	<0.00393	<0.000365
		Apr-16		<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	<0.000373	<0.000381	0.000526 J	<0.000306	<0.000387	<0.00393 J4	<0.000365
		Oct-16		<0.000319	<0.000130 J4	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	0.000446 J	<0.000306	<0.000387	<0.00393 J3	<0.000365
	NP-2	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
	NP-6	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380 J	<0.000360 J	<0.000310	<0.000390	<0.00390 J	<0.000360
	UG-1	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
		Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
		Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	< 0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	UG-2	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
Ħ		Apr-13	FD	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
<u>e</u> .		Apr-14		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
gra		Apr-15		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
Upgradient		Apr-16		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
1	UG-3R	Apr-13	\vdash	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.010	<0.0050
1		Apr-14		<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	
1		Apr-14	FD	<0.00050	<0.00050	<0.00050	<0.00040	<0.00050	<0.00050	<0.00040	<0.00050	<0.00070	<0.00060	<0.0010	.0.000000
1		Apr-15		<0.000319	<0.000130	<0.000380	<0.000260	<0.000400	<0.000370	<0.000380	<0.000360	<0.000310	<0.000390	<0.00390	<0.000360
1	110.4	Apr-16		<0.000319	<0.000130	<0.000383	<0.000259	<0.000398	<0.000373	<0.000381	<0.000361	<0.000306	<0.000387	<0.00393	<0.000365
	UG-4	Apr-16		<0.000319	<0.000130	<0.000383	< 0.000259	<0.000398	< 0.000373	<0.000381	< 0.000361	<0.000306	< 0.000387	<0.00393	<0.000365

March Marc		Δ	nalyte Grou	ın:		,.			tesia Refinery,						
Value Valu		A	Analy	te: 4-Methyl-2- Pentanone			dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	dibromo- methane			methane
March Color Colo		0	CGWS	SL: 1.24E+00	14.1	0.005	8.00E-02	7.54E-03	8.10E-01	0.005	1.00E-01	8.00E-02	2.09E+01	0.080	0.0203
March 1,000 1,00	Area				TIVIED TVV	USEPA MICE	USEF A WICE	NIVIED IVV	INIVILD IVV	USEPA MICE	OSEFA WICE	OSEF A WICE	INIVILD IVV	USEPA WICE	NIVIED I W
March Colored Colore		KWB-13													
The column				<0.00210			<0.000380	<0.000870	<0.000280		<0.000350	<0.000330	<0.000450		
The column The		M/M/ 17			<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
West Colored Colore	lient				<0.010	<0.0050		<0.0050	<0.010	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050
West Colored Colore	grac	DA 3156													
West Colored Colore	Cross	TVA-5150	Nov-13	<0.010	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
March Marc	ľ														
Company Comp		MW-136	Oct-15	<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
Min															
March Colored Colore		MW-1R	Apr-13	<0.010	<0.010		< 0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	<0.0050	<0.0050		<0.0050
March Colored Colore															
Mint			Apr-15	<0.00214	<0.0100	< 0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		MW-2A													
Col.			Nov-14	<0.0021	<0.01	< 0.00033	<0.00038	<0.00087 J4	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045	<0.00032	<0.00028
March Marc															
No. Company			Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
		MW-3		< 0.0010		<0.00060	<0.00060		<0.00090	<0.00060	<0.00040	<0.00050	< 0.00050	<0.00060	<0.00050
Part 1	1		Nov-14	<0.0021	<0.01	< 0.00033	<0.00038		<0.00028	<0.00038		< 0.00033	<0.00045 J4	<0.00032	<0.00028
Control Cont	1		Apr-15	<0.00210	0.0120 J	0.000609 J	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
Control Cont	1														
Part Fig. College			Oct-15 F	D <0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	< 0.000453	<0.000324	<0.000276
County C															
Min-Val. April			Oct-16	<0.00214	<0.0100 J3	<0.000331	<0.000380	<0.000866 J4	0.000282 J	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
Nov-14 C-00021 C-011 0.00033 C-000030 C-000		MW-4A													
Col. 16 0.00214			Nov-14	<0.0021	<0.01	0.0013	<0.00038		<0.00028	<0.00038	<0.00035	< 0.00033	<0.00045 J4	<0.00032	<0.00028
MM-48 M-19 3															
MW-48 Ag-13															
Miles		MW-4B		<0.010	<0.010	< 0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050
New 14		MW-54													
Chi-16 <		14144-57-4	Nov-14	<0.0021	<0.01	<0.00033	<0.00038		<0.00028	<0.00038	<0.00035	<0.00033	<0.00045 J4	<0.00032	<0.00028
Agr-16															
## W-58 Agr-13			Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	<0.000327	< 0.000453	< 0.000324	<0.000276
May 16 40 00210 40 000303 40 000080 40 0		MW-5B													
Page		104 50	Apr-15		<0.0100	< 0.000330		<0.000870		<0.000380	<0.000350		<0.000450	<0.000320	<0.000280
Wil-RA Mar-13		MW-5C													
May-74 C	spuo	MW-6A													
May-74 C	on P														
May-74 C	orati	MW 6B													
May-74 C	Evap	WWW-OD	Mar-13 F	D <0.010	<0.010	<0.0050	< 0.0050	< 0.0050	<0.010	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Nov-14 C		MW-7A		-0.0040	0.0044.1	-0.00000	40.00000	40.000000	40.00000	.0.00000	40.00040	-0.00050	.0.00050	-0.00000	.0.00050
Apr-15			Nov-14	<0.0021	<0.01	< 0.00033	<0.00038	<0.00087 J4	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045	<0.00032	<0.00028
April FD 0.00210 0.0184 0.000330 0.000380	1														
Oct-15 FD			Apr-15 F	D <0.00210	0.0184 J	< 0.000330	<0.000380		<0.000280	<0.000380	<0.000350		<0.000450	<0.000320	<0.000280
Apr-16 FD <0.00214 <0.0101 <0.000331 <0.000380 <0.000866 <0.000275 <0.000379 <0.000348 <0.000327 <0.000453 <0.000324 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.000276 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.00002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.0002776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.000277776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.00027776 <0.000	1			D <0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
Oct-16	1														
MW-7B	1		Oct-16	<0.00214	<0.0100 J3	<0.000331	<0.000380	<0.000866 J4	0.000279 J	< 0.000379	<0.000348	<0.000327	< 0.000453	< 0.000324	<0.000276
MW-10	1	MW-7B													
Nov-14			Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
Apr-15	1	IVIVV-10													
Apr-16	1		Apr-15	<0.00210	<0.0100	< 0.000330	<0.000380	< 0.000870	<0.000280	<0.000380	< 0.000350	< 0.000330	<0.000450	<0.000320 J	<0.000280
MW-11A Apr-14	1		Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
Nov-14	1	MW-11A													
Cot-15 Cot-16 C			Nov-14												
Apr-16	1			<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
MW-11B Mar-13			Apr-16	<0.01	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
MW-12	1	MW-11B			<0.010	<0.0050				<0.0050				<0.0050	<0.0050
MW-13			Apr-15												
MW-15	1			\pm											
Apr-15	1		Mar-13												
MW-18A Apr-14 < 0.0010 < 0.0020 < 0.00060 < 0.00050 < 0.00090 < 0.00040 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00050 < 0.00			Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
Nov-14		MW-18A													
Oct-15 < 0.00214 < 0.0100 < 0.000331 < 0.000380 < 0.000275 < 0.000379 < 0.000348 < 0.000327 < 0.000324 < 0.000276 Apr-16 < 0.00214	1	1V1VV-10/A	Nov-14	<0.0021	<0.01	< 0.00033	<0.00038	<0.00087 J4	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045	<0.00032	<0.00028
Apr-16 < 0.00214 < 0.0100 < 0.000331 < 0.000380 < 0.000866 < 0.000275 < 0.000379 < 0.000348 < 0.000327 < 0.000337 < 0.000343 < 0.000324 < 0.000276															
Oct-16 /a>	1		Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
	Щ		Oct-16	<0.00214	<0.0100 J3	<0.000331	<0.000380	<0.000866 J4	0.000378 J	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276

	4	nalyte Group:			1101191	rontier Navajo F		Volatile Organ						1
	•	Analyte	4-Methyl-2- Pentanone	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- dibromo- methane	Chloro-ethane	Chloroform	Chloro- methane
		Units: CGWSL: GWSL Source:	mg/L 1.24E+00 NMED TW	mg/L 14.1 TMED TW	mg/L 0.005 USEPA MCL	mg/L 8.00E-02 USEPA MCL	mg/L 7.54E-03 NMED TW	mg/L 8.10E-01 NMED TW	mg/L 0.005 USEPA MCL	mg/L 1.00E-01 USEPA MCL	mg/L 8.00E-02 USEPA MCL	mg/L 2.09E+01 NMED TW	mg/L 0.080 USEPA MCL	mg/L 0.0203 NMED TW
Area	Well ID MW-18B	Apr-13	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
	-	Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
	MW-22A	Apr-14 Nov-14	<0.0010 <0.0021	0.019 <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087 J4	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Nov-14 FD	<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	< 0.00035	<0.00033	<0.00045	<0.00032	<0.00028
		Apr-15 FD	<0.00210 <0.00210	<0.0100 <0.0100	<0.000330 <0.000330	<0.000380 <0.000380	<0.000870 <0.000870	<0.000280 <0.000280	<0.000380 <0.000380	<0.000350 <0.000350	<0.000330 <0.000330	<0.000450 <0.000450	<0.000320 J <0.000320	<0.000280 <0.000280
		Oct-15	<0.00214	<0.0100	<0.000330	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	< 0.000324	<0.000276
		Oct-15 FD Apr-16	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Apr-16 FD	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
		Oct-16	<0.00214	<0.0100 J4	<0.000331	<0.000380	<0.000866	0.000948 J	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
	MW-22B	Oct-16 FD Apr-13	<0.00214 <0.010	<0.0100 J4 <0.010	<0.000331 <0.0050	<0.000380 <0.0050	<0.000866 <0.0050	<0.000275 <0.010	<0.000379 <0.0050	<0.000348 <0.0050	<0.000327 <0.0050	<0.000453 <0.0050	<0.000324 <0.0050	<0.000276 <0.0050
		Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320 J	<0.000280
	MW-70	Apr-14 Nov-14	<0.0010 <0.0021	0.011 <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087 J4	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 J <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16	<0.00214	<0.0100 J3	< 0.000331	<0.000380	<0.000866 J4	0.000292 J	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
	MW-72	Nov-13	<0.010 <0.0010	0.014	<0.0050	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 <0.00090	<0.0050	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050	<0.0050 <0.00050
		Apr-14 Apr-15	<0.0010	<0.0020 <0.0100	<0.00060 <0.000330	<0.00080	<0.000870	<0.00090	<0.00060 <0.000380	<0.00040	<0.00030	<0.000450	<0.00060 <0.000320	<0.00050
	MW-73	Apr-16	<0.00214	<0.0100	<0.000331	<0.000380 <0.0050	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327 <0.0050	<0.000453 <0.0050	<0.000324	<0.000276
	IVIVV-/3	Oct-13 Apr-14	<0.010 <0.0010	<0.010 0.0092 J	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	<0.010 <0.00090	<0.0050 <0.00060	<0.0050 <0.00040	<0.0050	<0.0050	<0.0050 <0.00060	<0.0050 <0.00050
		Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
	MW-74	Apr-16 Apr-14	<0.00214 <0.00214	<0.0100 0.020	<0.000331 <0.00060	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14	< 0.00214	0.011 J	<0.00033	<0.00038	<0.00087 J4	<0.00028	<0.00038	< 0.00035	<0.00033	<0.00045	<0.00032	<0.00028
		Apr-15 Oct-15	<0.00214 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866 J	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16	<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	< 0.000324	<0.000276
	MW-75	Oct-16 Apr-14	<0.00214 <0.0010	0.0111 JJ4 0.043	<0.000331 0.0011 J	<0.000380 <0.00060	<0.000866 <0.00050	0.000538 J <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14	<0.0021	< 0.05	<0.0016	<0.0019	<0.0043 J4	<0.0014	<0.0019	<0.0017	<0.0016	<0.0023	<0.0016	<0.0014
		Apr-15 Oct-15	<0.00210 <0.00214	<0.1 <0.0100	<0.00330 <0.000331	<0.00380 <0.000380	<0.00870 <0.000866	<0.00280 <0.000275	<0.00380 <0.000379	<0.00350 <0.000348	<0.00330 <0.000327	<0.00450 <0.000453	<0.00320 <0.000324	<0.00280 <0.000276
		Apr-16	<0.00214	<0.0100	0.00134	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
	MW-76	Oct-16 Apr-14	<0.00214 <0.0010	0.0156 JJ4 0.019	<0.000331 <0.00060	<0.000380 <0.00060	<0.000866 <0.00050	0.00111 < 0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
	10100-70	Nov-14	<0.011	< 0.05	0.0049 J	<0.0019	<0.0043 J4	<0.0014	<0.0019	<0.0017	<0.0016	< 0.0023	<0.0016	<0.0014
		Apr-15 Oct-15	<0.00210 <0.00214	0.0203 J <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	0.000328 J <0.000276
		Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
"	MW-77	Oct-16	<0.00214 <0.0010	0.0147 JJ4 0.041	0.00227 0.0020 J	<0.000380 <0.00060	<0.000866 <0.00050	0.000396 J <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
ond	IVIVV-77	Apr-14 Nov-14	<0.0010	0.041 0.056 J	0.0020 3	<0.0019	<0.00030 <0.0043 J4	<0.00090	<0.0000	<0.00040	<0.00050	<0.00030	<0.00060	<0.00030
e P		Apr-15 Oct-15	<0.00210 <0.00214	0.135 0.0357 J	0.00962 0.00156	<0.000380 <0.000380	<0.000870 <0.000866	0.00204 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
orati		Apr-16	<0.00214	0.0313 J	0.00130	<0.000380	<0.000866	< 0.000275	<0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
Evaporation Ponds	MW-78	Oct-16	<0.0214 <0.050	<0.100 J4 0.067	<0.00331 <0.025	<0.00380 <0.025	<0.00866 <0.025	<0.00275 <0.050	<0.00379 <0.025	<0.00348 <0.025	<0.00327 <0.025	<0.00453 <0.025	<0.00324 <0.025	<0.00276 <0.025
	IVIVV-70	Mar-13 Apr-14	<0.0010	0.067	0.0031 J	<0.00060	<0.0050	<0.00090	<0.00060	<0.0040	<0.0050	<0.0050	<0.00060	<0.0050
		Apr-15	0.00230 J <0.00214	0.0649	0.0114	<0.000380 <0.000380	<0.000870 <0.000866	0.000862 J <0.000275	<0.000380	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320	0.000450 J
	MW-79	Apr-16 Apr-14	<0.00214	0.0152 J <0.0020	0.00275 <0.00060	<0.00060	<0.00050	<0.000275	<0.000379 <0.00060	<0.000348	<0.000527	<0.000455	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14	<0.0021	<0.01	<0.00033	<0.00038	<0.00087 J4	<0.00028	<0.00038	<0.00035	<0.00033	< 0.00045	<0.00032	<0.00028
		Apr-15 Oct-15	<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866 J	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
	MW-80	Oct-16 Mar-13	<0.00214 <0.010	<0.0100 J4 <0.010	<0.000331 <0.0050	<0.000380 <0.0050	<0.000866 <0.0050	0.00104 <0.010	<0.000379 <0.0050	<0.000348 <0.0050	<0.000327 <0.0050	<0.000453 <0.0050	<0.000324 <0.0050	<0.000276 <0.0050
		Apr-14	<0.0010	0.0045 J	<0.00060	<0.00060	<0.00050 <0.000870	<0.00090	<0.00060 <0.000380	<0.00040	<0.00050	<0.00050	<0.00060	< 0.00050
		Apr-15 Apr-16	<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870	<0.000280 <0.000275	<0.000380	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
	MW-81	Mar-13	<0.010	<0.010	<0.0050 <0.0050	<0.0050	<0.0050 <0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050 <0.0050	<0.0050
		Mar-13 FD Apr-14	<0.010 <0.0010	<0.010 <0.0020	<0.00060	<0.0050 <0.00060	<0.00050	<0.010 <0.00090	<0.0050 <0.00060	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.00060	<0.0050 <0.00050
		Apr-15	<0.00210 <0.00214	<0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450	<0.000320	<0.000280
	MW-82	Apr-16 Mar-13	<0.010	<0.0100 0.012	<0.0050	<0.0050	<0.0050	<0.010	<0.00379 <0.0050	<0.0050	<0.0050	<0.000453 <0.0050	<0.000324 <0.0050	<0.000276 <0.0050
		Apr-14 FD	<0.0010 <0.0010	0.015 0.0097 J	<0.00060 <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.00090 <0.00090	<0.00060 <0.00060	<0.00040 <0.00040	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050
		Apr-14 FD Apr-15	<0.00210	<0.0100	0.000339 J	<0.000380	<0.000870	<0.000280	<0.00080	<0.000350	< 0.000330	<0.000450	<0.000320	<0.00030
	MW-83	Apr-16	<0.00214 <0.0010	<0.0100	<0.000331	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324	<0.000276 <0.00050
	10100-03	Apr-14 Nov-14	<0.0021	0.021 0.019 J	<0.00060 <0.00033	<0.00080	<0.00087 J4	<0.00028	<0.00080	<0.00035	< 0.00033	<0.00045	<0.00060 <0.00032	<0.00050
		Apr-15	<0.00210	0.0235 J	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280 <0.000276
		Oct-15 Apr-16	<0.00214 <0.00214	0.0103 J 0.0120 J	<0.000331 0.00114	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276
	MM 04	Oct-16	<0.00214	<0.0100 J3	0.000449 J	<0.000380	<0.000866 J4	<0.000275 <0.00090	<0.000379	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453	<0.000324	<0.000276
	MW-84	Apr-14 Nov-14	<0.0010 <0.0021	0.043 0.037 J	<0.00060 0.00070 J	<0.00060 <0.00038	<0.00050 <0.00087 J4	<0.00028	<0.00060 <0.00038	<0.00035	<0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15	<0.00210 <0.00214	0.0263 J	0.000664 J	<0.000380 <0.000380	<0.000870 <0.000866 J	<0.000280 <0.000275	<0.000380	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320	<0.000280
		Oct-15 Apr-16	<0.00214	0.0166 J <0.0100	<0.000331 <0.000331	<0.000380	<0.000866	< 0.000275	<0.000379 <0.000379	<0.000348	<0.000327	<0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MAY OF	Oct-16	<0.0214	<0.100 J4	< 0.00331	<0.00380	<0.00866	<0.00275	< 0.00379	<0.00348	<0.00327	< 0.00453	<0.00324	<0.00276
	MW-87	Apr-14 Nov-14	<0.0010 <0.0021	<0.0020 <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087 J4	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 J <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16	<0.00214	<0.0100 J3	< 0.000331	<0.000380	<0.000866 J4	0.000317 J	< 0.000379	<0.000348	<0.000327	< 0.000453	< 0.000324	<0.000276
	MW-88	Apr-14 Nov-14	<0.0010 <0.0021	<0.0020 <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087 J4	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	<u> </u>	Apr-16 Oct-16	<0.00214	<0.0100 J4	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276

Appendix B, Table B.4 - Summary of Groundwater Analytical Data - Volatile Organic Compounds

2016 Annual Groundwater Report HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico Analyte Group Volatile Organic Compound Carbon Chloro-Chloroform Analyte 4-Methyl-2 Acetone Carbon Chlorodichloro-Bromodibromo-Chloro-ethan Tetrachloride methane Pentanone methane Disulfide methane mg/L CGWSL 0.005 8.00E-0 CGWSL Source NMED TW TMED TW USEPA MC NMED TW NMED TW USEPA MCI USEPA MC NMED TW NMED TW <0.00050 <0.00028 <0.0010 <0.00087 J4 < 0.00033 <0.00028 < 0.00033 < 0.00045 Apr-15 < 0.0021 0.0158 J < 0.000330 < 0.000380 < 0.000870 <0.000280 <0.000380 <0.000350 < 0.000330 < 0.000450 < 0.000320 < 0.000280 <0.00210 <0.000866 < 0.000275 <0.000348 < 0.000453 <0.000379 < 0.000331 Apr-16 < 0.00214 0.0108 J <0.000380 <0.000866 < 0.000275 < 0.000379 < 0.000348 < 0.00032 < 0.000453 Oct-16 < 0.000866 < 0.000327 <0.0010 <0.00050 Apr-14 < 0.0020 < 0.00060 < 0.00050 Nov-14 < 0.0021 < 0.00038 <0.00087 J4 <0.00038 < 0.00035 < 0.00033 Oct-15 <0.00214 <0.0100 < 0.000331 <0.000380 <0.000866 J <0.000275 <0.000379 <0.000348 < 0.000327 <0.000453 <0.000324 <0.000276 < 0.000866 < 0.000348 <0.0010 <0.0021 <0.00210 Apr-14 <0.0020 <0.00050 <0.00087 < 0.00060 < 0.00040 0.0115 J <0.000870 <0.000450 <0.000320 Apr-15 Oct-15 < 0.000330 < 0.000380 < 0.000280 < 0.00214 < 0.000866. < 0.000348 < 0.000327 Apr-16 <0.00214 <0.0100 <0.000866 < 0.000327 < 0.000324 < 0.000276 < 0.00214 <0.0100 J3 < 0.000379 < 0.000276 Apr-14 <0.0010 <0.00060 <0.00060 Nov-14 < 0.0021 < 0.00038 < 0.00087 < 0.00035 < 0.00033 <0.00210 <0.00214 <0.000380 <0.000350 <0.000379 <0.000348 <0.000360 <0.000380 <0.000870 <0.000380 <0.000866 <0.000330 <0.000327 <0.000280 Oct-15 < 0.000365 < 0.000331 < 0.000276 Apr-16 < 0.00214 < 0.0100 <0.000331 <0.000380 <0.000866 <0.000275 <0.000379 <0.000348 < 0.000327 < 0.000453 < 0.000324 < 0.000276 lov-14 < 0.0021 <0.0021 <0.00038 <0.00087 <0.00038 <0.00035 < 0.00033 <0.00210 < 0.000870 <0.000380 <0.000350 Apr-15 < 0.00210 < 0.000327 Oct-15 < 0.00214 < 0.00214 <0.000380 <0.000866 < 0.000275 <0.000379 <0.000348 <0.000453 <0.000324 <0.000276 Oct-16 < 0.00214 <0.0100 J3 <0.000331 <0.000380 <0.000866 J4 < 0.000275 < 0.000379 < 0.000348 < 0.000327 < 0.000453 < 0.000324 < 0.000276 <0.010 <0.0021 <0.00210 <0.00214 Apr-15 < 0.0100 < 0.000330 < 0.000380 < 0.000350 <0.000450 <0.000320 <0.000280 <0.000866 <0.000866 <0.000379 <0.000348 <0.000379 <0.000348 <0.0100 < 0.000453 < 0.000324 < 0.000276 Apr-16 < 0.0100 < 0.000331 < 0.00214 Apr-14 <0.0010 <0.0020 <0.00060 <0.00050 <0.00090 <0.00060 <0.00040 <0.00050 <0.00060 <0.00050 <0.002 <0.0100 <0.000380 Apr-15 <0.000320 J < 0.000330 Oct-15 < 0.00214 < 0.0100 < 0.000380 <0.000866 J < 0.000275 < 0.000379 < 0.000348 < 0.000327 <0.000453 <0.000324 <0.000276 <0.0100 <0.000324 <0.000276 Evaporation OCD-3 Apr-14 <0.0010 <0.0020 < 0.00060 < 0.00050 < 0.00090 < 0.00040 < 0.00050 < 0.00050 <0.002 Apr-15 < 0.00210 < 0.0100 < 0.000380 < 0.000320 Oct-15 <0.0100 <0.000866.1 <0.000348 < 0.00214 <0.000866 Apr-16 < 0.0100 < 0.000331 < 0.000379 Oct-16 < 0.00214 <0.000331 <0.000380 <0.000866 < 0.000327 <0.0010 <0.0021 <0.00060 <0.00038 <0.00050 <0.00087 <0.00040 <0.00035 <0.00050 <0.00045 Apr-14 <0.0020 <0.00060 <0.00060 <0.00060 < 0.01 < 0.00033 <0.00028 < 0.00038 < 0.00033 < 0.00032 <0.00028 <0.00210 <0.00214 < 0.0100 < 0.00032 Oct-15 < 0.000276 < 0.00214 < 0.000331 < 0.000866 < 0.000379 < 0.000348 < 0.000453 < 0.000324 < 0.000276 OCD-5 Apr-14 <0.0010 0.014 <0.00060 <0.00060 <0.00050 <0.00090 <0.00060 <0.00040 < 0.00050 <0.00050 <0.00060 <0.00050 Apr-14 < 0.00038 < 0.00028 <0.010 <0.00210 < 0.000380 < 0.000870 < 0.000280 < 0.000350 < 0.000330 < 0.000450 Apr-16 < 0.00214 < 0.0100 < 0.000331 <0.000380 <0.000866 < 0.000275 <0.000379 <0.000348 < 0.000327 <0.000453 <0.000324 <0.000276 < 0.00214 Oct-16 Apr-14 <0.0010 < 0.0020 <0.00050 < 0.00090 <0.00060 < 0.00040 < 0.00050 < 0.00050 <0.0021 <0.00210 <0.00214 <0.00038 <0.000380 <0.00087 <0.00028 < 0.00035 < 0.00033 < 0.00045 Apr-15 Oct-15 < 0.0100 < 0.000379 Apr-16 < 0.00214 <0.000380 <0.000866 < 0.000275 <0.000348 < 0.000327 <0.000453 <0.000348 < 0.000327 <0.0010 Apr-14 Nov-14 < 0.0021 <0.00038 <0.00087 <0.00028 <0.00038 < 0.00035 <0.00028 <0.00210 <0.00214 <0.0100 <0.01 <0.000380 <0.00038 <0.000870 <0.000280 <0.000275 <0.000350 <0.000348 <0.000330 <0.000327 Apr-16 < 0.000379 < 0.000276 <0.00214 <0.000380 <0.000866.14 <0.000275 <0.000348 <0.000327 <0.000453 Mar-13 <0.010 <0.0050 < 0.0050 <0.0050 < 0.0050 <0.0050 <0.00210 < 0.0100 < 0.0010 Apr-14 < 0.0020 < 0.00060 < 0.00060 <0.00060 < 0.00050 Apr-14 <0.0010 <0.0020 < 0.00060 < 0.00050 < 0.00090 < 0.00040 < 0.00050 Apr-15 < 0.00210 < 0.0100 < 0.000870 < 0.000280 <0.000380 < 0.000350 < 0.000330 <0.000450 <0.000320 < 0.000280 < 0.00214 <0.000866 <0.00214 <0.000866 < 0.000327 Apr-16 <0.0100 Oct-16 OCD-8 < 0.00210 Nov-14 < 0.01 < 0.00033 < 0.00038 < 0.00028 <0.0010 < 0.0100 Oct-15 < 0.0100 Field East of Refinery Apr-16 < 0.00210 < 0.0100 < 0.000331 < 0.000380 <0.000866 < 0.000275 < 0.000379 < 0.000348 < 0.000327 < 0.000453 < 0.000324 < 0.000276 Oct-16 < 0.00214 Apr-13 < 0.0050 < 0.0050 < 0.00210 < 0.000870 < 0.000280 0.077 Nov-14 <0.1 <0.0087 <0.0038 < 0.0032 <0.0028 <0.00210 <0.00214 Apr-15 < 0.0100 0.929 <0.000380 < 0.000870 < 0.00280 < 0.000380 < 0.000350 < 0.000330 <0.000450 <0.000320 < 0.000280 < 0.000453 <0.0100 Apr-16 < 0.00214 < 0.0100 0.0365 < 0.000380 < 0.000866 0.0364

<0.0550 **<0.0758**

< 0.173

11.5

	Δ	nalyte Gro	oup:				-	Verilling LLO, Al	Volatile Organ						
		Ana		4-Methyl-2-	Acetone	Benzene	Bromo- dichloro-	Bromo-	Carbon	Carbon Tetrachloride	Chloro-	Chloro- dibromo-	Chloro-ethane	Chloroform	Chloro- methane
		CGW		Pentanone mg/L 1.24E+00	mg/L 14.1	mg/L 0.005	methane mg/L 8.00E-02	methane mg/L 7.54E-03	Disulfide mg/L 8.10E-01	mg/L 0.005	mg/L 1.00E-01	methane mg/L 8.00E-02	mg/L 2.09E+01	mg/L 0.080	mg/L 0.0203
Area		GWSL Sou Date	ırce: Dup	NMED TW	TMED TW	USEPA MCL	USEPA MCL	NMED TW	NMED TW	USEPA MCL	USEPA MCL	USEPA MCL	NMED TW	USEPA MCL	NMED TW
Alea	KWB-10R	Nov-14	Dup	<0.054	<0.25 J3	5.10	<0.0095	<0.022	<0.0069	<0.0095	<0.0087	<0.0082	<0.011	<0.0081	<0.0069
		Apr-15 Oct-15		<0.0210 <0.00214	<0.1 <0.0100	5.65 6.77	<0.00380 <0.000380	<0.00870 <0.000866	<0.00280 <0.0275	<0.00380 <0.000379	<0.00350 <0.000348	<0.00330 <0.000327	<0.00450 <0.000453	<0.00320 <0.000324	<0.00280 <0.000276
		Apr-16		<0.107	<0.500	5.26	<0.0190	<0.0433	0.0329 J	<0.0190	<0.0174	<0.0164	<0.0226	<0.0162	<0.0138
	KWB-11A	Oct-16 Nov-14		<0.0428 <0.0021	<0.200 <0.01	0.565 0.0078	<0.00760 <0.00038	<0.0173 <0.00087	<0.00550 <0.00028	<0.00758 <0.00038	<0.00696 <0.00035	<0.00654 <0.00033	<0.00906 <0.00045	<0.00648 <0.00032	<0.00552 <0.00028
		Nov-14	FD	<0.0021	<0.01	0.0072	<0.00038	<0.00087	<0.00028	<0.00038	< 0.00035	< 0.00033	<0.00045	< 0.00032	<0.00028
		Apr-15 Oct-15		<0.00210 <0.00214	0.0176 J <0.0100	0.0248 0.00571	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16		< 0.00214	<0.0100	0.00541	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
	KWB-11B	Oct-16 Apr-14		<0.00214 <0.0010	<0.0100 <0.0020	0.00725 < 0.00060	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14		<0.0021	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032	<0.00028
		Apr-15 Oct-15		<0.00210 <0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16 Oct-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	KWB-12A	Nov-14		<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	< 0.00035	< 0.00033	< 0.00045	<0.00032	<0.00028
		Nov-14 Apr-15	FD	<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Apr-15	FD	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	< 0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	KWB-12B	Oct-16 Apr-14		<0.00214 <0.0010	<0.0100 <0.0020	<0.000331 <0.00060	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
	INVID-12B	Apr-14	FD	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276 <0.000276 J
		Oct-15 Apr-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 J <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 J <0.000276
		Apr-16 Oct-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16	FD	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	0.000435 J	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
	KWB-P4	Apr-13 Apr-15		<0.010 <0.00210	<0.010 <0.0100	<0.0050 <0.000330	<0.0050 <0.000380	<0.0050 <0.000870	<0.010 <0.000280	<0.0050 <0.000380	<0.0050 <0.000350	<0.0050 <0.000330	<0.0050 <0.000450	<0.0050 <0.000320	<0.0050 <0.000280
	MW-57	Apr-14		<0.0010	<0.0020	0.0013 J	<0.00060	< 0.00050	<0.00090	<0.00060	<0.00040	<0.00050	< 0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 <0.0100	0.006 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	0.00123 J <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16		<0.00214	<0.0100	0.000681 J	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	< 0.000276
	MW-58	Nov-14 Apr-15		<0.054 <0.0210	<0.25 <0.1	7.40 6.03	<0.0095 <0.00380	<0.022 J4 <0.00870	<0.0069 <0.00280	<0.0095 <0.00380	<0.0087 <0.00350	<0.0082 <0.00330	<0.011 <0.00450	<0.0081 <0.00320	<0.0069 <0.00280
		Oct-15		<0.214	<1	6.89	<0.0380	<0.0866	<0.0275	<0.0379	<0.0348	< 0.0327	< 0.0453	< 0.0324	<0.0276
≥		Apr-16 Oct-16		<0.0214 <0.00214	<0.100 <0.0100	4.12 5.92	<0.00380 <0.000380	<0.00866 <0.000866	<0.00275 0.000345 J V3	<0.00379 <0.000379	<0.00348 <0.000348	<0.00327 <0.000327	<0.00453 <0.000453	<0.00324 <0.000324	<0.00276 <0.000276
Field East of Refinery	MW-111	Apr-14 Nov-14		<0.0010 <0.0021	0.054 <0.01	0.110 0.180	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045 J4	<0.00060 <0.00032	<0.00050 <0.00028
of R		Apr-15		<0.00210	<0.0100	0.0755	<0.000380	<0.000870	<0.000280	<0.000380	< 0.000350	< 0.000330	< 0.000450	< 0.000320	<0.000280
East		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	0.0243 0.0299	<0.000380 <0.000380	<0.000866 <0.000866	<0.00688 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
Pield	MW-112	Oct-16 Nov-14		<0.00214 <0.054	<0.0100 <0.25	0.0432 8.50	<0.000380 <0.0095	<0.000866 <0.022 J4	<0.000275 <0.0069	<0.000379 <0.0095	<0.000348 <0.0087	<0.000327 <0.0082	<0.000453 <0.011	<0.000324 <0.0081	<0.000276 <0.0069
	MW-113	Apr-14		<0.0010	<0.0020	2.30	<0.00060	<0.00050	<0.00090	<0.00060	<0.0007	<0.0002	<0.00050	<0.0060	<0.00050
		Nov-14 Nov-14	FD	<0.0021 <0.021	<0.01 <0.1	1.50 1.20	<0.00038 <0.0038	<0.00087 <0.0087	<0.00028 <0.0028	<0.00038 <0.0038	<0.00035 <0.0035	<0.00033 <0.0033	<0.00045 J4 <0.0045	<0.00032 <0.0032	<0.00028 <0.0028
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	< 0.000350	<0.000330	< 0.000450	< 0.000320	<0.000280
		Apr-15 Oct-15	FD	<0.00210 <0.00214	<0.0100 <0.0100	0.000402 J 0.000477 J	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275 J	<0.000380 <0.000379 J	<0.000350 <0.000348	<0.000330 <0.000327 J	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
			FD	<0.00214 <0.00214	<0.0100 <0.0100	0.000533 J 0.0136	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
			FD	<0.00214	<0.0100	0.0148	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
		Oct-16 Oct-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	0.00660 0.00588	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-125	Apr-14 Nov-14		<0.0010 <0.0021	<0.0020 B <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045 J4	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	< 0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16	\dashv	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MM 100:	Oct-16		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	< 0.000276
	MW-126A	Apr-14 Nov-14		<0.0010 <0.0021	<0.0020 <0.01	0.0034 J <0.00033	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15 Oct-15	Ī	<0.00210 <0.00214	<0.0100 0.0351 J	<0.000330 0.0447	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16		< 0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
	MW-126B	Oct-16 Apr-14	-	<0.00214 <0.0010	<0.0100 <0.0020	0.0503 <0.00060	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14		<0.0021	<0.01 J3	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035 <0.000350	<0.00033	< 0.00045	<0.00032	<0.00028
		Apr-15 Oct-15		<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16 Oct-16	\exists	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	0.000321 J <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-127	Apr-14		<0.0010	0.019	6.80	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 J3 <0.0100	1.80 4.41	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.0140	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15 Apr-16		<0.0428 <0.00214	<0.2 <0.0100	1.51 2.01	<0.00760 <0.000380	<0.0173 <0.000866	<0.00550 0.000424 J	<0.00758 <0.000379	<0.00696 <0.000348	<0.00654 <0.000327	<0.00906 <0.000453	<0.00648 <0.000324	<0.00552 <0.000276
		Oct-16		<0.0214	<0.100	0.644	<0.00380	<0.00866	<0.00275	< 0.00379	<0.00348	< 0.00327	<0.00453	<0.00324	< 0.00276
1	MW-128	Apr-14 Nov-14	\exists	<0.0010 <0.0021	<0.0020 0.016 JJ3	0.240 0.120	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	0.0028 J <0.00028
1		Apr-15		<0.00210	<0.0100	0.297	<0.000380	<0.000870	0.000321 J	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16		<0.0428 <0.00214	<0.2 <0.0100	0.0297 0.0231	<0.00760 <0.000380	<0.0173 <0.000866	<0.00550 <0.000275	<0.00758 < 0.000379	<0.00696 <0.000348	<0.00654 <0.000327	<0.00906 <0.000453	<0.00648 <0.000324	<0.00552 <0.000276
	MW-129	Oct-16		<0.00214 <0.021	<0.0100	0.109	<0.000380 <0.0038	<0.000866	<0.000275 <0.0028	< 0.000379	<0.000348 <0.0035	<0.000327 <0.0033	<0.000453 <0.0045	<0.000324	<0.000276
	10100-129	Nov-14 Apr-15		<0.00210	<0.1 <0.0100	0.084 0.0372	<0.000380	<0.0087 < 0.000870	<0.0280	<0.0038 <0.000380	< 0.000350	<0.000330	<0.000450	<0.0032 <0.000320	<0.0028 <0.000280
		Oct-15 Apr-16	\dashv	<0.214 <0.00214	<1.0 <0.0100	<0.0331 <0.0166	<0.0380 <0.000380	<0.0866 <0.000866	<0.0275 0.000295 J	<0.0379 < 0.000379	<0.0348 <0.000348	<0.0327 <0.000327	<0.0453 <0.000453	<0.0324 <0.000324	<0.0276 <0.000276
		Oct-16		<0.00214	<0.0100	0.00791	<0.000380	<0.000866	<0.0002933	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276

	4	nalyte G	oup:				•		Volatile Organ	Artesia, New M					
		An	alyte:	4-Methyl-2- Pentanone	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- dibromo- methane	Chloro-ethane	Chloroform	Chloro- methane
			Jnits: WSL:	mg/L 1.24E+00	mg/L 14.1	mg/L 0.005	mg/L 8.00E-02	mg/L 7.54E-03	mg/L 8.10E-01	mg/L 0.005	mg/L 1.00E-01	mg/L 8.00E-02	mg/L 2.09E+01	mg/L 0.080	mg/L 0.0203
Aron	Well ID	GWSL So	urce:	NMED TW	TMED TW	USEPA MCL	USEPA MCL	NMED TW	NMED TW	USEPA MCL	USEPA MCL	USEPA MCL	NMED TW	USEPA MCL	NMED TW
Aico	MW-130	Apr-14	Dup	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 J3 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	< 0.000453	< 0.000324	< 0.000276
		Apr-16 Oct-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-131	Apr-14 Nov-14		<0.0010 <0.021	0.016 <0.1 J3	3.10 1.80	<0.00060 <0.0038	<0.00050 <0.0087	<0.00090 <0.0028	<0.00060 <0.0038	<0.00040 <0.0035	<0.00050 <0.0033	<0.00050 <0.0045	<0.00060 <0.0032	<0.00050 <0.0028
		Apr-15		<0.00210	<0.0100	1.91	<0.000380	<0.000870	<0.000280	<0.000380	< 0.000350	< 0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	2.19 2.42	<0.000380 <0.000380	<0.000866 <0.000866	<0.0138 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MM/ 400	Oct-16		<0.0107	< 0.0500	1.58	<0.00190	<0.00433	<0.00138	<0.00190	<0.00174	<0.00164	<0.00226	<0.00162	<0.00138
	MW-133	Nov-14 Apr-15		<0.21 <0.21	<1 <1	0.620 0.788	<0.038 <0.0380	<0.087 <0.0870	<0.028 <0.0280	<0.038 <0.0380	<0.035 <0.0350	<0.033 <0.0330	<0.045 <0.0450	<0.032 <0.0320	<0.028 <0.0280
	MW-134	Apr-14 Nov-14		<0.0010 <0.0021	<0.0020 <0.01 J3	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15		<0.00210	<0.0100	< 0.000330	<0.000380	<0.000870	<0.000280	<0.000380	< 0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Apr-15 Oct-15	FD	<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Oct-15	FD	<0.00214	<0.0100	<0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 0.000390 J	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453	<0.000324 <0.000324	<0.000276
≥		Apr-16 Apr-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453 <0.000453	<0.000324	<0.000276 <0.000276
East of Refiner)		Oct-16 Oct-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
of R	MW-135	Apr-14	Ĭ	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
East		Nov-14 Apr-15	Н	<0.0021 <0.00210	<0.01 J3 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
Field		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	0.000328 J <0.000276
		Oct-16		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
	RA-4196	Apr-14 Apr-15		<0.0010 <0.00210	<0.0020 <0.0100	<0.00060 <0.000330	<0.00060 <0.000380	<0.00050 <0.000870	<0.00090 <0.000280	<0.00060 <0.000380	<0.00040 <0.000350	<0.00050 <0.000330	<0.00050 <0.000450	<0.00060 <0.000320	<0.00050 <0.000280
		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
	RA-4798	Apr-14 Apr-14	FD	<0.0010 <0.0010	<0.0020 <0.0020	<0.00060 <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.00090 <0.00090	<0.00060 <0.00060	<0.00040 <0.00040	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 J3 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	< 0.000453	<0.000324	<0.000276
		Apr-16 Oct-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	RW-12R RW-13R	Apr-16 Apr-16		<0.0107 <0.00214	<0.0500 <0.0100	0.424 0.878	<0.00190 <0.000380	<0.00433 <0.000866	0.00186 J <0.000275	<0.00190 <0.000379	<0.00174 <0.000348	<0.00164 <0.000327	<0.00226 <0.000453	<0.00162 <0.000324	<0.00138 <0.000276
	RW-18	Apr-13		< 0.00214	<0.010	< 0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
		Apr-14 Apr-15		<0.00214 <0.00214	<0.0020 <0.0100	<0.00060 <0.000330	<0.00060 <0.000380	<0.00050 <0.000870	<0.00090 <0.000280	<0.00060 <0.000380	<0.00040 <0.000350	<0.00050 <0.000330	<0.00050 <0.000450	<0.00060 <0.000320	<0.00050 <0.000280
	RW-20	Apr-16 Apr-15		<0.00214 <0.0210	<0.0100 <0.1	<0.000331 1.87	<0.000380 <0.00380	<0.000866 <0.00870	0.000636 J <0.00280	<0.000379 <0.00380	<0.000348 <0.00350	<0.000327 <0.00330	<0.000453 <0.00450	<0.000324 <0.00320	<0.000276 <0.00280
	RW-22	Apr-15		<0.0210	<0.1	4.07	<0.00380	<0.00870	<0.00280	<0.00380	< 0.00350	<0.00330	<0.00450	< 0.00320	<0.00280
	MW-23	Apr-14 Nov-14		<0.020 <0.11	<0.040 <0.5	11.0 15.0	<0.012 <0.019	<0.010 <0.043	<0.018 <0.014	<0.012 <0.019	<0.0080 <0.017	<0.010 <0.016	<0.010 <0.023	<0.012 <0.016	<0.010 <0.014
		Apr-15 Oct-15		<0.0540 <0.00214	<0.25 0.06	11.6 20.3	<0.00950 <0.000380	<0.0220 <0.000866	0.0664 0.000766 J	<0.00950 < 0.000379	<0.00870 <0.000348	<0.00820 J <0.000327	<0.0110 <0.000453	<0.00810 <0.000324	<0.00690 <0.000276
		Apr-16		<0.0107 <0.0535	< 0.0500	15.5	<0.00190 <0.00950	<0.00433 <0.0216	0.00185 J <0.00688	<0.00190 <0.00948	<0.00174 <0.00870	<0.00164 <0.00818	<0.00226 <0.0113	<0.00162 <0.00810	<0.00138
	MW-29	Oct-16 Apr-14		<0.0010	<0.250 J3 <0.0020	12.2 <0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00010	<0.00050	<0.0060	<0.00690 <0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 J3 <0.000870	0.00030 J 0.000401 J	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 0.000551 J	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16		<0.00214	<0.0100 J3	<0.000331	<0.000380	<0.000866	< 0.000275	<0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
	MW-39	Oct-13 Apr-15		<0.010 <0.00210	<0.010 <0.0100	0.330 <0.000330	<0.0050 <0.000380	<0.0050 <0.000870	<0.010 0.000372 J	<0.0050 <0.000380	<0.0050 <0.000350	<0.0050 <0.000330	<0.0050 <0.000450	<0.0050 <0.000320	<0.0050 <0.000280
		Oct-15 Apr-16		<0.00214 <0.0535	<0.0100 <0.250	<0.000331 2.14	<0.000380 <0.00950	<0.000866 <0.0117	0.00117 <0.00688	<0.000379 <0.00948	<0.000348 <0.00870	<0.000327 <0.00818	<0.000453 <0.0113	<0.000324 <0.00810	<0.000276 <0.00690
	104/ 12	Oct-16		<0.214	<1.00 J3	3.62	<0.0380	<0.0866	<0.0275	<0.0379	<0.0348	< 0.0327	< 0.0453	<0.0324	<0.0276
	MW-40	Apr-13 Apr-14		<0.00214 <0.00214	<0.010 0.0055 J	0.021 0.011	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 <0.00090	<0.0050 <0.00060	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050
		Apr-15 Apr-16	H	<0.00214 <0.00214	<0.0100 <0.0100	0.0198 0.0112	<0.000380 <0.000380	<0.000870 J <0.000866	0.000595 J 0.00126	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
>	MW-41	Oct-13		<0.010 <0.0010	<0.010 0.0049 J	<0.0050 0.018	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 <0.00090	<0.0050 <0.00060	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.0060	<0.0050 <0.00050
Refinery		Apr-14 Apr-15		<0.00210	<0.0100	0.0019	<0.000380	<0.000870	0.000349 J	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
North Re	MW-42	Apr-16 Oct-13		<0.00214 <0.010	<0.0100 <0.010	0.00360 0.700	<0.000380 <0.0050	<0.000866 <0.0050	0.00136 <0.010	<0.000379 <0.0050	<0.000348 <0.0050	<0.000327 <0.0050	<0.000453 <0.0050	<0.000324 <0.0050	<0.000276 <0.0050
ž		Apr-14 Apr-15		<0.0010 <0.0210	<0.0020 <0.1	0.540 0.216	<0.00060 <0.00380	<0.00050 <0.00870	0.0013 J <0.00280	<0.00060 <0.00380	<0.00040 <0.00350	<0.00050 <0.00330	<0.00050 <0.00450	<0.00060 <0.00320	<0.00050 <0.00280
		Apr-16		<0.0107	< 0.0500	0.103	<0.00190	< 0.00433	0.00212 J	< 0.00190	<0.00174	<0.00164	<0.00226	< 0.00162	<0.00138
	MW-43	Apr-14 Nov-14		<0.0010 <0.021	<0.0020 <0.1	0.350 1.10	<0.00060 <0.0038	<0.00050 < 0.0087	0.0010 J 0.0037 J	<0.00060 <0.0038	<0.00040 <0.0035	<0.00050 <0.0033	<0.00050 <0.0045	<0.00060 <0.0032	<0.00050 <0.0028
		Apr-15 Oct-15		<0.0210 <0.0214	0.17 J <0.1	0.992 13.0	<0.00380 <0.00380	<0.00870 <0.00866	0.0262 0.00398 J	<0.00380 <0.00379	<0.00350 <0.00348	<0.00330 J <0.00327	<0.00450 <0.00453	<0.00320 <0.00324	<0.00280 <0.00276
		Apr-16		< 0.535	<2.50	12.4	<0.0950	<0.216	<0.0688	<0.0948	<0.0870	<0.0818	<0.113	<0.0810	<0.0690
	MW-59	Oct-16 Apr-13		<0.535 <0.010	<2.50 J3 <0.010	12.4 0.037	<0.0950 <0.0050	<0.216 <0.0050	<0.0688 <0.010	<0.0948 <0.0050	<0.0870 <0.0050	<0.0818 <0.0050	<0.113 <0.0050	<0.0810 <0.0050	<0.0690 <0.0050
		Apr-14 Apr-15		<0.0010 <0.00210	<0.0020 <0.0100	0.013 0.0119	<0.00060 <0.000380	<0.00050 <0.000870	<0.00090 0.000870 J	<0.00060 <0.000380	<0.00040 <0.000350	<0.00050 <0.000330	<0.00050 <0.000450	<0.00060 <0.000320	<0.00050 <0.000280
	MANAY CO	Apr-16		<0.00214	<0.0100	0.00329	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
	MW-60	Apr-14 Nov-14		<0.0010 <0.0021	<0.0020 <0.01	0.030 0.0032	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 0.00041 J	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15 Apr-15	FD	<0.00210 <0.00210	0.0397 J <0.0100	0.0127 J 0.00829 J	<0.000380 <0.000380	<0.000870 <0.000870	0.00178 0.00374	<0.000380 <0.000380	<0.000350 <0.000350	<0.000330 <0.000330	<0.000450 <0.000450	<0.000320 <0.000320	<0.000280 <0.000280
		Oct-15 Oct-15	FD	<0.00214 <0.00214	<0.0100 <0.0100	0.00326 0.00307	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 0.000361 J	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Apr-16		<0.00214	0.0368 J	0.00473	<0.000380	<0.000866	0.00442	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
		Apr-16 Oct-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	0.00565 0.00898	<0.000380 <0.000380	<0.000866 <0.000866	0.000403 J 0.000392 J	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	l	Oct-16	FD	<0.00214	<0.0100	0.00574	<0.000380	<0.000866	0.00037 J	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276

	Δ.	nalyte Group				,		tesia Refinery, Volatile Organ						
	-	Analyte	4-Methyl-2- Pentanone	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- dibromo- methane	Chloro-ethane	Chloroform	Chloro- methane
Aroa	C Well ID	Units CGWSL GWSL Source Date Dup	mg/L 1.24E+00 NMED TW	mg/L 14.1 TMED TW	mg/L 0.005 USEPA MCL	mg/L 8.00E-02 USEPA MCL	mg/L 7.54E-03 NMED TW	mg/L 8.10E-01 NMED TW	mg/L 0.005 USEPA MCL	mg/L 1.00E-01 USEPA MCL	mg/L 8.00E-02 USEPA MCL	mg/L 2.09E+01 NMED TW	mg/L 0.080 USEPA MCL	mg/L 0.0203 NMED TW
Alea	MW-61	Apr-14	<0.0050	<0.010	1.60	<0.0030	<0.0025	<0.0045	<0.0030	<0.0020	<0.0025	<0.0025	0.059	<0.0025
		Nov-14	<0.11 <0.0210	<0.5	1.30	<0.019 <0.00380	<0.043	<0.014	<0.019	<0.017 <0.00350	<0.016 <0.00330 J	<0.023 <0.00450	<0.016	<0.014
		Apr-15 Oct-15	<0.0210	0.254 J <0.1	1.74 J 0.681	<0.00380	<0.00870 <0.00866	0.0258 0.00867 J	<0.00380 <0.00379	<0.00330	<0.00330 3	<0.00453	<0.00320 <0.00324	<0.00280 <0.00276
		Apr-16	< 0.0107	<0.0500	0.493	<0.00190	<0.00433	0.00218 J	<0.00190	<0.00174	<0.00164	<0.00226	<0.00162	<0.00138
	MW-62	Oct-16 Apr-14	<0.0535 <0.0010	<0.250 <0.0020	0.501 1.00	<0.00950 <0.00060	<0.0216 <0.00050	<0.00688 0.0026 J	<0.00948 <0.00060	<0.00870 <0.00040	<0.00818 <0.00050	<0.0113 <0.00050	<0.00810 <0.00060	<0.00690 <0.00050
		Nov-14	<0.11	<0.5	17.0	<0.019	<0.043	<0.014	<0.019	<0.017	<0.016	<0.023 J4	<0.016	<0.014
		Apr-15 Oct-15	<0.0210 <0.0428	0.106 J <0.2	12.8 1.50	<0.00380 <0.00760	<0.00870 <0.0173	0.0336 0.0161 J	<0.00380 <0.00758	<0.00350 <0.00696	<0.00330 J <0.00654	<0.00450 <0.00906	<0.00320 <0.00648	<0.00280 <0.00552
		Apr-16	< 0.0535	<0.250	1.12	< 0.00950	<0.0117	0.00903 J	<0.00948	<0.00870	<0.00818	< 0.0113	<0.00810	<0.00690
	MW-67	Oct-16 Nov-14	<0.214 J6 <0.010	<1.00 J6 <0.05 J4	3.28 J6 0.140	<0.0380 J6 <0.0019	<0.0866 <0.0043	<0.0275 J6 0.0024 J	<0.0379 J6 <0.0019	<0.0348 J6 <0.0017	<0.0327 J6 <0.0016	<0.0453 <0.0023	<0.0324 J6 <0.0016	<0.0276 J6 <0.0014
		Apr-15	<0.011	<0.0100	0.143	<0.000380	<0.000870	0.00159	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16	<0.0021 <0.0428	<0.2 <0.100	0.172 0.223	<0.00760 <0.00380	<0.0173 <0.00866	<0.00550 0.00300 J	<0.00758 <0.00379	<0.00696 <0.00348	<0.00654 <0.00327	<0.00906 <0.00453	<0.00648 <0.00324	<0.00552 <0.00276
		Oct-16	<0.0214	<0.100 J3	0.214	<0.00380	<0.00866	0.00328 J	< 0.00379	<0.00348	< 0.00327	< 0.00453	< 0.00324	< 0.00276
	MW-90	Apr-14 Nov-14	<0.0010 <0.0021	<0.0020 <0.01	0.0035 J 0.015	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 0.00037 J	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045 J4	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15	<0.0021	<0.0100	0.0125	<0.000380	<0.000870	0.00171	<0.000380	<0.000350	<0.000330	<0.000450	<0.00032	<0.000280
		Oct-15 Apr-16	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 0.00662	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 J <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 J <0.000276
		Oct-16	<0.00214	<0.0100 J3	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
1	MW-91	Apr-14 Nov-14	<0.0050 <0.54	0.027 J < 2.5	2.20 2.50	<0.0030 <0.095	<0.0025 <0.22	0.0079 J <0.069	<0.0030 <0.095	<0.0020 <0.087	<0.0025 <0.082	<0.0025 <0.11	<0.0030 <0.081	<0.0025 <0.069
		Apr-15	<0.0021	<0.1	2.91	<0.00380	<0.00870	0.0151	<0.00380	< 0.00350	<0.00330	<0.00450	<0.00320	<0.00280
1		Oct-15 Apr-16	<0.0535 <0.107	<0.25 <0.500	3.47 3.85	<0.00950 <0.0190	<0.0216 <0.0433	0.00849 J <0.0138	<0.00948 <0.0190	<0.00870 <0.0174	<0.00818 <0.0164	<0.0113 <0.0226	<0.00810 <0.0162	<0.00690 <0.0138
1		Oct-16	< 0.535	<2.50 J3	3.85	<0.0950	<0.216	<0.0688	<0.0948	<0.0870	<0.0818	<0.113	<0.0162	<0.0690
	MW-92	Apr-16 Oct-16	<0.00214 <0.0428	<0.0100 <0.200 J3	2.87 2.05	<0.000380 <0.00760	<0.000866 <0.0173	0.000589 J <0.00550	<0.000379 <0.00758	<0.000348 <0.00696	<0.000327 <0.00654	<0.000453 <0.00906	<0.000324 <0.00648	<0.000276 <0.00552
	MW-93	Apr-14	<0.0428	<0.200 J3 <0.010	1.80	<0.00760	<0.0173	0.0059 J	<0.00758	<0.00696	<0.0054	<0.00906	<0.00648	<0.00552
1		Nov-14	<0.11	<0.5	1.30	<0.019	<0.043	0.014 J	<0.019	<0.017	<0.016 <0.00330 J	<0.023 J4	<0.016	<0.014
		Apr-15 Oct-15	<0.0210 <0.0214	<0.1 <0.1	0.734 J 1.21	<0.00380 <0.00380	<0.00870 <0.00866	0.0188 0.00341 J	<0.00380 <0.00379	<0.00350 <0.00348	< 0.00327	<0.00450 <0.00453	<0.00320 <0.00324	<0.00280 <0.00276
		Apr-16	<0.0107	<0.0500 <0.100 J3	0.258 0.567	<0.00190	<0.00433 <0.00866	0.00216 J <0.00275	<0.00190 <0.00379	<0.00174 <0.00348	<0.00164	<0.00226 <0.00453	<0.00162 <0.00324	<0.00138
	MW-94	Oct-16 Nov-14	<0.0214 <0.043	<0.100 J3 <0.2 J4	0.567	<0.00380 <0.0076	<0.00866	<0.00275 0.02	<0.00379 <0.0076	<0.00348	<0.00327 <0.0065	<0.00453	<0.00324	<0.00276 <0.0055
		Oct-15	<0.0214	<0.1	0.339	<0.00380	<0.00866	0.00445 J	<0.00379	<0.00348	<0.00327	<0.00453	<0.00324	<0.00276
		Apr-16 Oct-16	<0.107 <0.0107	<0.500 <0.0500 J3	0.417 0.297	<0.0190 <0.00190	<0.0433 <0.00433	0.0155 J 0.00479 J	<0.0190 < 0.00190	<0.0174 <0.00174	<0.0164 <0.00164	<0.0226 <0.00226	<0.0162 <0.00162	<0.0138 <0.00138
≥	MW-95	Apr-13	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
North Refinery		Apr-14 Apr-15	<0.0010 <0.0021	<0.0020 <0.0100	<0.00060 0.00148	<0.00060 <0.000380	<0.00050 <0.000870	<0.00090 0.00181	<0.00060 <0.000380	<0.00040 <0.000350	<0.00050 <0.000330	<0.00050 <0.000450	<0.00060 <0.000320	<0.00050 <0.000280
₩ ₩		Apr-16	<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	0.000427 J	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
No	MW-96	Apr-14 Nov-14	<0.025 <0.054	<0.050 <0.25	0.056 J <0.0083	<0.015 <0.0095	<0.012 <0.022 J3	<0.022 <0.0069	<0.015 <0.0095	<0.010 <0.0087	<0.012 <0.0082	<0.012 <0.011	<0.015 <0.0081	<0.012 <0.0069
		Apr-15	<0.0021	<0.0100	0.00288	<0.000380	<0.000870	0.00168	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Oct-15 Apr-16	< 1.07 <0.0428	<5.0 <0.200	<0.166 <0.000331	<0.19 <0.00760	<0.433 <0.0173	<0.138 <0.00550	<0.19 <0.00758	<0.174 <0.00696	<0.164 <0.00654	<0.226 <0.00906	<0.162 <0.0648	<0.138 <0.00552
	MW-98	Oct-16	<0.107 <0.010	<0.500 J3	<0.0166	<0.0190 <0.0060	<0.0433	<0.0138	<0.0190	<0.0174 <0.0040	<0.0164 <0.0050	<0.0226	<0.0162	<0.0138
	10100-90	Apr-14 FD	<0.010	0.038 J 0.059 J	5.80 6.10	<0.0060	<0.0050 <0.0050	0.016 J <0.0090	<0.0060 <0.0060	<0.0040	<0.0050	<0.0050 <0.0050	<0.0060 <0.0060	<0.0050 <0.0050
		Nov-14	<0.54	< 2.5	4.80	<0.095	<0.22	<0.069	<0.095	<0.087	<0.082	<0.11 J4	<0.081	<0.069 <0.00690
		Apr-15 Oct-15	<0.0540 <0.0535	<0.25 <0.25	4.17 4.79	<0.00950 <0.00950	<0.0220 <0.0216	0.102 0.0344	<0.00950 <0.00948	<0.00870 <0.00870	<0.00820 J <0.00818	<0.0110 <0.0113	<0.00810 <0.00810	<0.00690
		Apr-16	<0.214 <0.214	<1.00 <1.00 J3	4.07	<0.0380 <0.0380	<0.0866 <0.0866	0.0306 J <0.0275	<0.0379	<0.0348 <0.0348	<0.0327 <0.0327	<0.0453 <0.0453	<0.0324	<0.0276
	MW-137	Oct-16 Oct-15	<0.214	<1.00 33	3.59 9.44	<0.0380	<0.0866	<0.0275	<0.0379 <0.0379	<0.0348	<0.0327	<0.0453	<0.0324 <0.0324	<0.0276 <0.0276
		Apr-16 Oct-16	<0.535 <0.535	<2.50 <2.50 J3	9.65 10.5	<0.0950 <0.0950	<0.216 <0.216	0.0722 J <0.0688	<0.0948 <0.0948	<0.0870 <0.0870	<0.0818 <0.0818	<0.113 <0.113	<0.0810 <0.0810	<0.0690 <0.0690
	MW-138	Oct-15	<0.0428	<0.2	1.54	<0.00760	<0.0173	<0.00550	<0.00758	<0.00696	<0.00654	<0.00906	<0.00648	<0.00552
		Apr-16 Oct-16	<0.0214 <0.0214	<0.100 <0.100 J3	1.46 0.494	<0.00380 <0.00380	<0.00866 <0.00866	0.00332 J <0.00275	<0.00379 <0.00379	<0.00348 <0.00348	<0.00327 <0.00327	<0.00453 <0.00453	<0.00324 <0.00324	<0.00276 <0.00276
	RW-1	Apr-15	<0.11	<0.5	0.962	<0.0190	<0.0430	<0.0140	<0.0190	<0.0170	<0.0160	<0.0230	<0.0160	<0.0140
1	RW-1R RW-2	Apr-16 Apr-15	<0.00214 <0.0210	<0.0100 0.334 J	0.426 5.34	<0.000380 <0.00380	<0.000866 <0.00870	0.000422 J 0.00899 J	<0.000379 <0.00380	<0.000348 <0.00350	<0.000327 <0.00330 J	<0.000453 <0.00450	<0.000324 <0.00320	<0.000276 <0.00280
1	RW-2R	Apr-15 Apr-16	<0.0210	<0.500	5.86	<0.0190	<0.00870	0.0186 J	<0.00380	<0.0174	<0.0164	<0.00450	<0.00320	<0.00280
1	RW-7 RW-7R	Apr-15 Apr-16	<0.00210 <0.00214	<0.0100 <0.0100	0.0535 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	0.00171 0.000326 J	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
1	RW-8	Apr-16 Apr-15	<0.00214	<0.0100	<0.000331 0.0412	<0.00380	<0.00870	<0.00280	<0.00379	<0.00348	<0.00327	<0.00453	<0.00324	<0.00276
1	RW-9	Apr-13	<0.010 <0.0010	<0.010 <0.0020	1.10 0.680	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 0.0015 J	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050
1		Apr-14 Apr-15	<0.11	<0.5	0.680	<0.0190	<0.0430	<0.0015 J <0.0140	<0.00060	<0.00040 <0.0170	<0.00050	<0.0230	<0.00060	<0.00050
1	RW-10	Apr-16	<0.0107 <0.010	<0.0500 <0.010	0.466	<0.00190 <0.0050	<0.00433 <0.0050	0.00169 J <0.010	<0.00190 <0.0050	<0.00174 <0.0050	<0.00164 <0.0050	<0.00226 <0.0050	<0.00162	<0.00138 <0.0050
	1744-10	Apr-13 Apr-14	<0.0010	<0.0020	<0.0050 <0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.0050 <0.00060	<0.00050
1		Apr-16	<0.00210 <0.00214	0.01 J <0.0100	<0.000330	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320	<0.000280
	RW-16	Apr-16 Apr-13	<0.0010	<0.0100 <0.010	<0.000331 <0.0050	<0.0050	< 0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.000324 <0.0050	<0.000276 <0.0050
		Apr-14 FD	<0.0010 <0.00210	<0.0020 <0.0020	<0.00060 <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.00090 <0.00090	<0.00060 <0.00060	<0.00040 <0.00040	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050
		Apr-14 FD Apr-15	<0.00214	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.00080	<0.000280
	RW-17	Apr-16 Apr-13	<0.00214 <0.010	<0.0100 <0.010	<0.000331 <0.0050	<0.000380 <0.0050	<0.000866 <0.0050	<0.000275 <0.010	<0.000379 <0.0050	<0.000348 <0.0050	<0.000327 <0.0050	<0.000453 <0.0050	<0.000324 <0.0050	<0.000276 <0.0050
1	1244-17	Apr-14	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
1		Apr-15 Apr-16	<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
\vdash	MW-117	Apr-14	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
1		Nov-14	<0.0021 <0.0021	<0.01 <0.01	<0.00033	<0.00038 <0.00038	<0.00087 <0.00087	<0.00028 <0.00028	<0.00038 <0.00038	<0.00035 <0.00035	<0.00033 <0.00033	<0.00045 J4 <0.00045	<0.00032	<0.00028
eld		Nov-14 FD Apr-15	<0.0021	<0.0100	<0.00033 <0.000330	<0.000380	<0.000870	<0.00028	<0.000380	<0.000350	<0.000330	<0.000450	<0.00032 <0.000320	<0.00028 <0.000280
Reject Field		Oct-15 Apr-16	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
Reje		Oct-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
8	MW-118	Apr-14	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050 <0.00087	<0.00090	<0.00060	<0.00040 <0.00035	<0.00050	<0.00050	<0.00060	<0.00050
North		Nov-14 Apr-15	<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.000870	<0.00028 <0.000280	<0.00038 <0.000380	< 0.000350	<0.00033 <0.000330	<0.00045 J4 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
_		Oct-15	<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	<0.000453	<0.000324	< 0.000276
1		Apr-16 Oct-16	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
				2.0.00	2.000001				2.000010				2.0000ET	000E10

						i ioliyi i	onuei ivavajo i	Refining LLC, A							
	А	.nalyte Gr An	oup:	4-Methyl-2- Pentanone	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	Volatile Organ Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- dibromo- methane	Chloro-ethane	Chloroform	Chloro- methane
			Jnits:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		GWSL So		1.24E+00 NMED TW	14.1 TMED TW	0.005 USEPA MCL	8.00E-02 USEPA MCL	7.54E-03 NMED TW	8.10E-01 NMED TW	0.005 USEPA MCL	1.00E-01 USEPA MCL	8.00E-02 USEPA MCL	2.09E+01 NMED TW	0.080 USEPA MCL	0.0203 NMED TW
Area	MW-119	Apr-14	Dup	<0.0010	<0.0020 B	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
North RO Reject Field		Apr-14 Nov-14	FD	<0.0010 <0.0021	<0.0020 <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045 J4	<0.00060 <0.00032	<0.00050 <0.00028
RO F		Apr-15		<0.00210	<0.0100	< 0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
f –		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
z	NAVA 40	Oct-16		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
	MW-18	Oct-13 Apr-14		<0.010 <0.0010	<0.010 0.0045 J	<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 <0.00090	<0.0050 <0.00060	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050
		Apr-15 Apr-16		<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	0.000695 J <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
	MW-45	Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214 <0.00214	<0.0100	< 0.000331	<0.000380	<0.000866 <0.00866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	< 0.000276
		Apr-16 Oct-16		<0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.00380 <0.000380	<0.00866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.00327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-53	Apr-13 Apr-14		<0.010 <0.0010	<0.010 <0.0020	<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 <0.00090	<0.0050 <0.00060	<0.0050 <0.00040	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
	MW-54A	Apr-16 Apr-14		<0.00214 <0.0010	<0.0100 <0.0020	<0.000331 <0.00060	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14		<0.0021	<0.01	< 0.00033	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045	<0.00032	<0.00028
		Apr-15 Oct-15		<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
1		Apr-16 Oct-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-54B	Apr-13		<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050
1	MW-55	Apr-15 Apr-14		<0.00210 <0.0010	0.0128 J <0.0020	<0.000330 <0.00060	<0.000380 <0.00060	<0.000870 <0.00050	<0.000280 <0.00090	<0.000380 <0.00060	<0.000350 <0.00040	<0.000330 <0.00050	<0.000450 <0.00050	<0.000320 <0.00060	<0.000280 <0.00050
1		Apr-14	FD	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
		Apr-16 Oct-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-56	Apr-14		<0.0010 <0.0021	<0.0020 <0.01	<0.00060	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060	<0.00050 <0.00028
		Nov-14 Apr-15		<0.00210	<0.0100	<0.00033 <0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	< 0.000330	<0.000450	<0.00032 <0.000320	<0.000280
		Oct-15 Apr-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	<0.000453	< 0.000324	<0.000276
	MW-108	Apr-14 Nov-14		0.0012 J <0.011	0.0079 J <0.05	0.390 0.410	<0.00060 <0.0019	<0.00050 <0.0043	0.0020 J 0.014	0.009 <0.0019	<0.00040 <0.0017	<0.00050 <0.0016	<0.00050 <0.0023	0.0037 J <0.0016	<0.00050 <0.0014
		Apr-15		<0.0210 <0.0214	<0.1	0.423 0.394	<0.00380 <0.00380	<0.00870 <0.00866	0.0317 0.00291 J	<0.00380	<0.00350 <0.00348	<0.00330 <0.00327	<0.00450 <0.00453	<0.00320	<0.00280
NCL		Oct-15 Apr-16		<0.107	<0.1 <0.500	0.594	<0.00380	<0.0088	<0.002913	<0.00379 <0.0190	<0.00346	<0.00327	<0.0226	<0.00324 <0.0162	<0.00276 <0.0138
Z	NCL-31	Oct-16 Apr-14		<0.0535 <0.0010	<0.250 <0.0020	0.362 <0.00060	<0.00950 <0.00060	<0.0216 <0.00050	0.0137 J <0.00090	<0.00948 0.0094	<0.00870 <0.00040	<0.00818 <0.00050	<0.0113 <0.00050	<0.00810 <0.00060	<0.00690 <0.00050
		Nov-14		<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035	< 0.00033	< 0.00045	<0.00032	<0.00028
		Apr-15 Oct-15		<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16 Oct-16		<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	NCL-32	Nov-14		<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045	<0.00032	<0.00028
		Apr-15 Oct-15		<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	< 0.000276
	NCL-33	Oct-16 Apr-14		<0.00214 <0.0010	<0.0100 <0.0020	<0.000331 <0.00060	<0.000380 <0.00060	<0.000866 <0.00050	<0.000275 <0.00090	<0.000379 <0.00060	<0.000348 <0.00040	<0.000327 <0.00050	<0.000453 <0.00050	<0.000324 <0.00060	<0.000276 <0.00050
		Nov-14		<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045	<0.00032	<0.00028
		Oct-15		<0.0021 <0.00214	<0.0100	<0.00105	<0.000380	<0.000870	<0.000280 <0.000275 J	<0.000380 <0.000379 J	<0.000350 <0.000348 J	<0.000330 <0.000327 J	<0.000450 <0.000453	<0.000320	<0.000280 <0.000276 J
		Apr-16 Oct-16	H	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	NCL-34A	Nov-14		<0.011	<0.05	0.270	<0.0019	< 0.0043	<0.0014	< 0.0019	<0.0017	<0.0016	< 0.0023	<0.0016	<0.0014
		Apr-15 Oct-15	H	<0.0021 <0.00214	<0.0100 <0.0100	1.21 0.695 J	<0.000380 <0.000380	<0.000870 <0.000866	0.00152 0.00167	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
		Apr-16 Oct-16		<0.107 <0.214	<0.500 <1.00	3.25 1.13	<0.0190 <0.0380	<0.0433 <0.0866 J3	<0.0138 <0.0275	<0.0190 <0.0379	<0.0174 <0.0348	<0.0164 <0.0327	<0.0226 <0.0453	<0.0162 <0.0324	<0.0138 <0.0276
	NCL-44	Apr-14		< 0.0010	<0.0020	0.0011 J	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	< 0.00050	<0.00060	<0.00050
		Nov-14 Apr-15		<0.0021 <0.00210	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	<0.00028 <0.000280	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
		Apr-16 Oct-16	Н	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 0.00032 J	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	NCL-49	Apr-14		<0.0010	<0.0020	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050	<0.00090	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050	<0.00050 <0.00045	<0.00060	<0.00050 <0.00028
		Nov-14 Nov-14	FD	<0.0021 <0.0021	<0.01 <0.01	<0.00033	<0.00038	<0.00087 <0.00087	<0.00028 <0.00028	<0.00038	<0.00035	<0.00033 <0.00033	< 0.00045	<0.00032 <0.00032	<0.00028
		Apr-15 Apr-15	FD	<0.00210 <0.00210	<0.0100 <0.0100	<0.000330 <0.000330	<0.000380 <0.000380	<0.000870 <0.000870	<0.000280 <0.000280	<0.000380 <0.000380	<0.000350 <0.000350	<0.000330 <0.000330	<0.000450 <0.000450	<0.000320 <0.000320	<0.000280 <0.000280
1		Oct-15		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	< 0.000324	<0.000276
I		Oct-15 Apr-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Apr-16 Oct-16	FD	<0.00214 <0.00214	<0.0100 <0.0100	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
L		Oct-16	FD	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	<0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
	KWB-2R	Nov-14 Apr-15	H	<0.054 <0.0210	<0.25 J3 <0.1	4.40 1.98	<0.0095 <0.00380	<0.022 <0.00870	<0.0069 <0.00280	<0.0095 <0.00380	<0.0087 <0.00350	<0.0082 <0.00330	<0.011 <0.00450	<0.0081 <0.00320	<0.0069 <0.00280
χ̈́		Oct-15		<0.214	<1	4.00	<0.0380	<0.0866	<0.0275	<0.0379	<0.0348	< 0.0327	< 0.0453	< 0.0324	<0.0276
Refinery		Apr-16 Oct-16	H	<0.00214 <0.00214	<0.0100 <0.0100	0.0558 0.398	<0.000380 <0.000380	<0.000866 <0.000866	0.000363 J <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
Ħ.	KWB-5	Nov-14		<0.021	<0.1 J3	0.410	<0.0038	<0.0087	<0.0028	<0.0038	<0.0035	< 0.0033	< 0.0045	< 0.0032	<0.0028
South		Apr-15 Oct-15		<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 1.2 J	<0.000380 <0.000380	<0.000870 <0.000866	<0.000280 <0.000275	<0.000380 <0.000379	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320 <0.000324	<0.000280 <0.000276
1		Apr-16 Oct-16	H	<0.00214 <0.0107	<0.0100 <0.0500	0.688 0.367	<0.000380 <0.00190	<0.000866 <0.00433	<0.000275 <0.00138	<0.000379 <0.00190	<0.000348 <0.00174	<0.000327 <0.00164	<0.000453 <0.00226	<0.000324 <0.00162	<0.000276 <0.00138
Щ	l	OUI-10	ш	~0.0107	\U.U0UU	0.367	~0.00190	~U.UU433	~U.UU130	<u>~0.00190</u>	~0.00174	~0.00 I04	~U.UUZZU	NU.00102	\U.UU138

	,	nalyte Gro	up:					Verifing LLO, Ai	Volatile Organ						
		Anal	yte:	4-Methyl-2- Pentanone	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- dibromo- methane	Chloro-ethane	Chloroform	Chloro- methane
		Ur CGW GWSL Sour	SL: rce:	mg/L 1.24E+00 NMED TW	mg/L 14.1 TMED TW	mg/L 0.005 USEPA MCL	mg/L 8.00E-02 USEPA MCL	mg/L 7.54E-03 NMED TW	mg/L 8.10E-01 NMED TW	mg/L 0.005 USEPA MCL	mg/L 1.00E-01 USEPA MCL	mg/L 8.00E-02 USEPA MCL	mg/L 2.09E+01 NMED TW	mg/L 0.080 USEPA MCL	mg/L 0.0203 NMED TW
Area	Well ID KWB-6	Nov-14)up	<0.021	<0.1	5.1	<0.0038	<0.0087 J4	<0.0028	<0.0038	<0.0035	<0.0033	<0.0045	<0.0032	<0.0028
		Apr-15		< 0.0540	< 0.25	15.9	< 0.00950	<0.0220	<0.00690	<0.00950	<0.00870	<0.00820	<0.0110	<0.00810	<0.00690
		Oct-15 Apr-16		< 1.07 <0.0107	< 5 <0.0500	8.61 12.4	<0.19 <0.00190	<0.433 <0.00433	<0.138 0.00197 J	<0.19 < 0.00190	<0.174 <0.00174	<0.164 <0.00164	<0.226 <0.00226	<0.162 <0.00162	<0.138 < 0.00138
		Oct-16		<0.0428	<0.200	3.41	<0.00760	<0.0173	<0.00550	<0.00758	<0.00696	<0.00654	<0.00906	<0.00648	< 0.00552
	MW-28	Apr-14 Nov-14		<0.0010 <0.054	<0.0020 B 0.56 J	0.810 3.30	<0.00060 <0.0095	<0.00050 <0.022	<0.00090 <0.0069	<0.00060 <0.0095	<0.00040 <0.0087	<0.00050 <0.0082	<0.00050 <0.011	<0.00060 <0.0081	<0.00050 <0.0069
		Apr-15		<0.21	<1	3.02	<0.0380	<0.0870	0.0471 J	<0.0380	< 0.0350	< 0.0330	< 0.0450	<0.0320	<0.0280
		Oct-15 Apr-16		<0.214 <0.0214	<1 <0.100	3.05 1.37	<0.0380 <0.00380	<0.0866 <0.00866	<0.0275 0.00301 J	<0.0379 <0.00379	<0.0348 <0.00348	<0.0327 <0.00327	<0.0453 <0.00453	<0.0324 <0.00324	<0.0276 <0.00276
		Oct-16		<0.107	<0.500	2.55	<0.0190	<0.0433	0.0152 J	<0.0190	<0.0174	<0.0164	<0.0226	< 0.0162	<0.0138
	MW-48	Nov-14 Apr-15	-	<0.054 <0.0210	<0.25 J3 <0.1	0.140 0.890	<0.0095 <0.00380	<0.022 <0.00870	<0.0069 0.00704 J	<0.0095 <0.00380	<0.0087 <0.00350	<0.0082 <0.00330	<0.011 <0.00450	<0.0081 <0.00320	<0.0069 <0.00280
		Oct-15		<0.0107	<0.0500	0.204 J	<0.00190	< 0.00433	<0.00138	< 0.00190	< 0.00174	< 0.00164	<0.00226	<0.00162	<0.00138
		Apr-16 Oct-16	-	<0.0428 <0.0107	<0.200 <0.0500	7.17 5.12	<0.00760 <0.00190	<0.0173 <0.00433	<0.00550 <0.00138	<0.00758 <0.00190	<0.00696 <0.00174	<0.00654 <0.00164	<0.00906 <0.00226	<0.0648 <0.00162	<0.00552 <0.00138
	MW-50	Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15	-	<0.0021 <0.0021	<0.01 <0.0100	<0.00033 <0.000330	<0.00038 <0.000380	<0.00087 <0.000870	0.00031 J 0.0011	<0.00038 <0.000380	<0.00035 <0.000350	<0.00033 <0.000330	<0.00045 <0.000450	<0.00032 <0.000320	<0.00028 <0.000280
		Oct-15		<0.00214	<0.0100	<0.000331 J	<0.000380 J	0.000881 J	0.000553 J	<0.000379 J	<0.000348 J	<0.000327 J	<0.000453	<0.000324 J	<0.000276
		Apr-16 Oct-16	-	<0.00214 <0.00214	<0.0100 <0.0100 J3	<0.000331 <0.000331	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
	MW-52	Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	< 0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
1		Apr-14 I Nov-14	FD	<0.0010 <0.0021	<0.0020 <0.01	<0.00060 <0.00033	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15 Oct-15	4	<0.00210 <0.00214	<0.0100 <0.0100	<0.000330 <0.000331	<0.000380 <0.000380	<0.000870 <0.000866 J	<0.000280 <0.000275 J	<0.000380	<0.000350 <0.000348	<0.000330 <0.000327	<0.000450 <0.000453	<0.000320	<0.000280
		Apr-16		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	<0.000379 J <0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324 <0.000324	<0.000276 J <0.000276
	MW-64	Oct-16 Apr-16	4	<0.00214 <0.107	<0.0100 <0.500	<0.000331 25.3	<0.000380 <0.0190	<0.000866 <0.0433	<0.000275 <0.0138	<0.000379 <0.0190	<0.000348 <0.0174	<0.000327 <0.0164	<0.000453 <0.0226	<0.000324 <0.0162	<0.000276 <0.0138
1		Oct-16		<0.214	<1.00	30.9	<0.0380	<0.0866	< 0.0275	<0.0379	<0.0348	< 0.0327	< 0.0453	< 0.0324	<0.0276
	MW-65	Nov-14 Apr-15	_	<0.11 <0.0021	<0.5 J3 <0.1	8.90 9.99	<0.019 <0.00380	<0.043 <0.00870	<0.014 <0.00280	<0.019 <0.00380	<0.017 <0.00350	<0.016 <0.00330	<0.023 <0.00450	<0.016 <0.00320	<0.014 <0.00280
		Apr-16		<0.0214	<0.100	9.73	<0.00380	<0.00866	<0.00275	< 0.00379	<0.00348	< 0.00327	< 0.00453	< 0.00324	< 0.00276
	MW-66	Oct-16 Apr-14		<0.0428 0.0031 J	<0.200 <0.0020 B	8.04 0.890	<0.00760 <0.00060	<0.0173 <0.00050	<0.00550 <0.00090	<0.00758 <0.00060	<0.00696 <0.00040	<0.00654 <0.00050	<0.00906 <0.00050	<0.00648 <0.00060	<0.00552 <0.00050
		Nov-14		<0.021	<0.1	6.50	<0.0038	<0.0087	<0.0028	<0.0038	<0.0035	< 0.0033	<0.0045 J4	<0.0032	<0.0028
		Apr-15 Oct-15	+	<0.11 <0.00214	<0.5 <0.0100	3.16 4.1 J	<0.0190 <0.000380	<0.0430 <0.000866	<0.0140 0.000371 J	<0.0190 < 0.000379	<0.0170 <0.000348	<0.0160 <0.000327	<0.0230 <0.000453	<0.0160 J <0.000324	<0.0140 <0.000276
		Apr-16 Oct-16		<0.0214 <0.00214	<0.100 <0.0100	3.09 3.80	<0.00380 <0.000380	<0.00866 <0.000866	<0.00275 <0.000275	<0.00379 <0.000379	<0.00348 <0.000348	<0.00327 <0.000327	<0.00453 <0.000453	<0.00324 <0.000324	<0.00276 <0.000276
	MW-99	Nov-14		<0.021	<0.1 J3	2.60	<0.0038	<0.0087	<0.0028	<0.0038	< 0.0035	< 0.0033	<0.0045	< 0.0032	<0.0028
		Apr-15 Oct-15	\dashv	<0.0540 <0.0535	<0.25 <0.25	0.973 7.28	<0.00950 <0.00950	<0.0220 <0.0216	0.00720 J <0.00688	<0.00950 <0.00948	<0.00870 <0.00870	<0.00820 <0.00818	<0.0110 <0.0113	<0.00810 J <0.00810	<0.00690 <0.00690
		Apr-16		<0.0214	<0.100	5.59	<0.00380	<0.00866	<0.00275	< 0.00379	<0.00348	< 0.00327	< 0.00453	< 0.00324	< 0.00276
	MW-101	Oct-16 Apr-14		<0.0428 <0.0010	<0.200 <0.0020 B	5.08 1.10	<0.00760 <0.00060	<0.0173 <0.00050	<0.00550 <0.00090	<0.00758 <0.00060	<0.00696 <0.00040	<0.00654 <0.00050	<0.00906 <0.00050	<0.00648 <0.00060	<0.00552 <0.00050
>		Nov-14		<0.021	<0.1	0.220	<0.0038	<0.0087	<0.0028	<0.0038	< 0.0035	< 0.0033	<0.0045 J4 <0.00230	<0.0032	<0.0028
iliner		Apr-15 Oct-15		<0.0110 <0.0107	<0.0500 <0.0500	0.0187 <0.00166	<0.00190 <0.00190	<0.00430 <0.00433	<0.00140 <0.00138	<0.00190 <0.00190	<0.00170 <0.00174	<0.00160 J <0.00164	<0.00230	<0.00160 <0.00162	<0.00140 <0.00138
South Refinery		Apr-16 Oct-16	_	<0.00214 <0.00214	<0.0100 <0.0100	0.0664 J6 0.000845 J	<0.000380 <0.000380	<0.000866 <0.000866	<0.000275 <0.000275	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
Sou	MW-102	Nov-14		<0.11	<0.5 J3	11.0	<0.019	<0.043	<0.014	<0.019	< 0.017	<0.016	< 0.023	<0.016	<0.014
		Apr-15 Oct-15	-	<0.0210 <0.214	<0.1 <1.00	9.83 12.3	<0.00380 <0.0380	<0.00870 <0.0866	0.00959 J <0.0275	<0.00380 <0.0379	<0.00350 <0.0348	<0.00330 <0.0327	<0.00450 <0.0453	<0.00320 <0.0324	<0.00280 <0.0276
		Apr-16		<0.214	<1.00	10.8	<0.0380	<0.0866	< 0.0275	<0.0379	<0.0348	< 0.0327	< 0.0453	< 0.0324	<0.0276
	MW-103	Oct-16 Apr-13	\dashv	<0.214 <0.010	<1.00 <0.010	13.2 0.580	<0.0380 <0.0050	<0.0866 <0.0050	<0.0275 <0.010	<0.0379 <0.0050	<0.0348 <0.0050	<0.0327 <0.0050	<0.0453 <0.0050	<0.0324 <0.0050	<0.0276 <0.0050
		Apr-14 Apr-15		<0.0010 <0.00210	<0.0020 <0.0100	0.760 <0.000330	<0.00060 <0.000380	<0.00050 <0.000870	<0.00090 0.000597 J	<0.00060 <0.000380	<0.00040 <0.000350	<0.00050 <0.000330	<0.00050 <0.000450	<0.00060 <0.000320	<0.00050 <0.000280
		Apr-16		<0.0107	< 0.0500	1.35	<0.00190	<0.00433	0.00139 J	<0.00190	<0.00174	<0.00164	<0.00226	<0.00162	<0.00138
	MW-104		FD	<0.0010 <0.0010	<0.0020 <0.0020	0.056 0.058	<0.00060 <0.00060	<0.00050 <0.00050	<0.00090 <0.00090	<0.00060 <0.00060	<0.00040 <0.00040	<0.00050 <0.00050	<0.00050 <0.00050	0.140 0.140	<0.00050 <0.00050
		Nov-14		<0.0021	<0.01	0.094	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035	<0.00033	<0.00045 J4	0.014	<0.00028
		Nov-14 I Apr-15	FD	<0.021 <0.00210	<0.1 <0.0100	0.110 0.0243	<0.0038 <0.000380	<0.0087 <0.000870	<0.0028 0.000469 J	<0.0038 <0.000380	<0.0035 <0.000350	<0.0033 <0.000330	<0.0045 <0.000450	<0.0032 0.00516 J	<0.0028 <0.000280
		Apr-15 I Oct-15	FD	<0.00210 <0.0107	<0.0100 <0.0500	0.0242 0.257	<0.000380 <0.00190	<0.000870 <0.00433	0.000723 J 0.00268 J	<0.000380 <0.00190	<0.000350 <0.00174	<0.000330 <0.00164	<0.000450 <0.00226	0.00513 J <0.00162	<0.000280 <0.00138
		Oct-15	FD	<0.00214	<0.0100	0.309	<0.000380	<0.000866	0.000979 J	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
		Apr-16 I	FD	<0.00214 <0.00214	<0.0100 J3 <0.0100	0.0707 0.0685	<0.000380 <0.000380	<0.000866 <0.000866	0.00110 0.00109	<0.000379 <0.000379	<0.000348 <0.000348	<0.000327 <0.000327	<0.000453 <0.000453	<0.000324 <0.000324	<0.000276 <0.000276
		Oct-16 I	FD	<0.0107 <0.0107	<0.0500 <0.0500	0.341 0.284	<0.00190 <0.00190	<0.00433 <0.00433	0.00182 J 0.00181 J	<0.00190 <0.00190	<0.00174 <0.00174	<0.00164 <0.00164	<0.00226 <0.00226	<0.00162 <0.00162	<0.00138 <0.00138
	MW-105	Nov-14		<0.54	< 2.5	3.40	<0.095	<0.22 J4	< 0.069	<0.095	<0.087	<0.082	<0.11	<0.081	<0.069
		Apr-15 Oct-15	-	<0.0110 <0.0214	0.126 J <0.1	1.71 0.580	<0.00190 <0.00380	<0.00430 <0.00866	<0.00140 0.00557 J	<0.00190 <0.00379	<0.00170 <0.00348	<0.00160 J <0.00327	<0.00230 <0.00453	<0.00160 <0.00324	<0.00140 <0.00276
		Apr-16		< 0.535	<2.50	13.5	<0.0950	<0.216	<0.0688	<0.0948	<0.0870	<0.0818	<0.113	<0.0810	<0.0690
	MW-106	Oct-16 Apr-14	ᅥ	<0.214 <0.020	<1.00 <0.040	18.2 9.30	<0.0380 <0.012	<0.0866 <0.010	<0.0275 0.019 J	<0.0379 <0.012	<0.0348 <0.0080	<0.0327 <0.010	<0.0453 <0.010	<0.0324 <0.012	<0.0276 < 0.010
		Apr-15		<0.00210 <0.214	0.0270 J	0.395	<0.000380	<0.000870 <0.0866	<0.000280	<0.000380 <0.0379	<0.000350 <0.0348	<0.000330	<0.000450 <0.0453	<0.000320	<0.000280 <0.0276
		Oct-15 Apr-16		<0.0535	<1.0 <0.250	10.4 12.7	<0.0380 <0.00950	<0.0117	0.0914 J 0.0107 J	<0.00948	<0.00870	<0.0327 <0.00818	<0.0113	<0.0324 <0.00810	<0.00690
	MW-107	Oct-16 Apr-14	-	<0.107 <0.010	<0.500 <0.020	11.3 7.00	<0.0190 <0.0060	<0.0433 <0.0050 J	<0.0138 <0.0090	<0.0190 <0.0060	<0.0174 <0.0040	<0.0164 <0.0050	<0.0226 <0.0050	<0.0162 <0.0060	<0.0138 <0.0050
		Nov-14		<0.021	<1.0	8.20	<0.0038	<0.0087	<0.0028	<0.0038	< 0.0035	< 0.0033	<0.0045 J4	<0.0032	<0.0028
		Apr-15 Oct-15	-	<0.0210 <0.214	<0.1 <1.0	5.32 6.29	<0.00380 <0.0380	<0.00870 <0.0866	0.00287 J <0.0275	<0.00380 <0.0379	<0.00350 <0.0348	<0.00330 <0.0327	<0.00450 <0.0453	<0.00320 <0.0324	<0.00280 <0.0276
		Apr-16 Oct-16		<0.00214 <0.0107	<0.0100 <0.0500	1.28 6.35	<0.000380 <0.00190	<0.000866 <0.00433	<0.000275 <0.00138	<0.000379 <0.00190	<0.000348 <0.00174	<0.000327 <0.00164	<0.000453 <0.00226	<0.000324 <0.00162	<0.000276 <0.00138
	MW-109	Apr-14		<0.0010	<0.0020	0.310	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
		Nov-14 Apr-15	-[<0.0021 J5J3 <0.0210	<0.01 <0.1	0.280 0.621	<0.00038 J5J3 <0.00380	<0.00087 J3 <0.00870	0.00054 J <0.00280	<0.00038 J3 <0.00380	<0.00035 J5J3 <0.00350	<0.00033 J5J3 <0.00330	<0.00045 J4J6 <0.00450	<0.00032 J5J3 <0.00320	0.0010 J <0.00280
		Oct-15		<0.0214	<0.1 J	0.845 J	<0.00380	<0.00866	<0.00275	< 0.00379	<0.00348	< 0.00327	< 0.00453	<0.00324	< 0.00276
	L	Apr-16 Oct-16	_	<0.0107 <0.0428	<0.0500 <0.200	0.532 0.995	<0.00190 <0.00760	<0.00433 <0.0173	<0.00138 <0.00550	<0.00190 <0.00758	<0.00174 <0.00696	<0.00164 <0.00654	<0.00226 <0.00906	<0.00162 <0.00648	<0.00138 <0.00552
	MW-110	Apr-14 Nov-14		<0.0010 <0.0021	<0.0020 <0.01	0.081 0.0015	<0.00060 <0.00038	<0.00050 <0.00087	<0.00090 <0.00028	<0.00060 <0.00038	<0.00040 <0.00035	<0.00050 <0.00033	<0.00050 <0.00045 J4	<0.00060 <0.00032	<0.00050 <0.00028
		Apr-15		<0.00210	<0.0100	0.132	<0.000380	<0.000870	0.00129	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
1		Oct-15 Apr-16	4	<0.0107 <0.00214	<0.0500 J <0.0100	0.348 J 0.0132	<0.00190 <0.000380	<0.00433 <0.000866	<0.00138 <0.000275	<0.00190 <0.000379	<0.00174 <0.000348	<0.00164 <0.000327	<0.00226 <0.000453	<0.00162 <0.000324	<0.00138 <0.000276
		Oct-16		<0.00214	<0.0100	0.000511 J	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
_					·		·	_	·		·				

Property	Α	nalyte Group:			•		Refining LLC, Ai	Volatile Organ							
Value Valu			Analyte:	Pentanone			dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	dibromo- methane			methane
Fig. Col.		C	CGWSL:	1.24E+00	14.1	0.005	8.00E-02	7.54E-03	8.10E-01	0.005	1.00E-01	8.00E-02	2.09E+01	0.080	0.0203
Part	Area	Well ID	Date Dup												
Part		RA-313													
March Marc	≥		Apr-15	<0.00210	<0.0100			<0.000870	<0.000280		< 0.000350	<0.000330	< 0.000450		<0.000280
March Marc	eline	RW-4													
March Marc	÷.	RW-4R	Apr-16	<0.00214	<0.0100	0.0140	<0.000380	<0.000866	0.000466 J	<0.000379	<0.000348	<0.000327	<0.000453	< 0.000324	<0.000276
March Marc	Sou	RW-5R													
Wilson				<0.0021	<0.1	0.636	<0.00380	<0.00870	0.00771 J	<0.00380	< 0.00350	< 0.00330	< 0.00450	<0.00320	<0.00280
The color of the	_														
The color of the			Nov-14	<0.0021	<0.01	< 0.00033	<0.00038	<0.00087	<0.00028	<0.00038	< 0.00035	< 0.00033	<0.00045 J4	< 0.00032	<0.00028
Marie Colore Co															
The color			Apr-16	< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
	leld Field	MW-115													
	ect F	10100-110		<0.0021	<0.01		<0.00038	<0.00087	<0.00028		< 0.00035	< 0.00033	<0.00045 J4		
	Rej														
	28		Apr-16	< 0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	< 0.000324	<0.000276
	Sout	MW-116													
Mode March March	1		Nov-14	<0.0021	<0.01	< 0.00033	<0.00038	<0.00087	<0.00028	<0.00038	< 0.00035	< 0.00033	<0.00045 J4	< 0.00032	<0.00028
March Marc															
Min	1		Apr-16	< 0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	< 0.000324	<0.000276
No14	\vdash	MW-49													
Tel. Gold			Nov-14	< 0.0043	<0.02	0.170	<0.00076	<0.0017	0.0035	<0.00076	<0.00070	< 0.00065	< 0.00091	<0.00065	<0.00055
Page 16															
Fig. Apr. 14 Fig. Co. 1010 cd. 0000 cd. 000000 cd. 0000000 cd. 000000 cd. 0000000 cd. 000000 cd. 0000000 cd. 000000 cd. 000000 cd. 0000000 cd. 0000000 cd. 0000000 cd. 000000 cd. 000000 cd. 000000 cd. 000000 cd.			Apr-16	<0.0428	<0.200	0.196	<0.00760	<0.0173	< 0.00550	<0.00758	<0.00696	< 0.00654	<0.00906	<0.0648	<0.00552
Part Fig. Colored		TFL-1													
Apr. 15			Apr-14 FD	<0.0010	<0.0020 B	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	< 0.00050	<0.00050	<0.00060	<0.00050
Dec 15 0.00214 0.01010 0.000000 0.000000 0.0000000 0.000000															
Dec 16			Oct-15	<0.00214	<0.0100	0.000378 J	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
Fig. 2															
Part		TEL-2	Apr-14	<0.0010	0.0071 J	1.20	<0.00060	<0.00050	0.0039 J	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
Del															
Feb. Col. 16	١.		Oct-15												
Nov-14 -0.0021 -0.0038 -0.000038 -0.00038 -0.00038 -0.00038 -0.00038 -0.00038 -	ΤĒΙ			<0.0214	<0.100	0.962	<0.00380	<0.00866	0.00325 J	< 0.00379	<0.00348	< 0.00327	<0.00453	<0.00324	<0.00276
Rp-15		TEL-3													
Paper Pape			Apr-15	<0.0210	<0.1	0.0206	<0.00380	<0.00870	0.00471 J	<0.00380	< 0.00350	<0.00330	< 0.00450	<0.00320	<0.00280
Test															
Nov.+14			Oct-16	< 0.00214	0.0156 J	0.0123	<0.000380	<0.000866	0.000488 J	<0.000379	<0.000348	<0.000327	<0.000453	< 0.000324	<0.000276
Nov-14 FD CO CO CO CO CO CO CO C		TEL-4													
Apr-15 FD 0.0214 0.0150 0.216 J 0.158 0.00380 0.00870 0.00971 0.00379 0.000330 0.00330 0.00030 0.000320 0.000234 0.000276			Nov-14 FD	<0.043	<0.2	1.20	<0.0076	<0.017	0.038	<0.0076	<0.0070	< 0.0065	<0.0091	<0.0065	<0.0055
Del-15															
Apr-16							<0.000380								
Cot-16 C															
MW-8 Ca-13			Apr-16 FD	0.02	-0.100	0.001	-0.0000	-0.00000	-0.00E10	-0.00010	10.00010	0.00	0.00100	-0.000L1	10.00E10
Apr-14			Oct-16 FD	<0.0214	<0.100	0.479	<0.00380	<0.00866	0.00628 J	< 0.00379	<0.00348	<0.00327	< 0.00453	<0.00324	<0.00276
Apr-15		MW-8													
MW-16 Apr-13			Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
Apr-14	1	MW-16													
NW-20			Apr-14	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
Apr-14 C		MW-20													
MW-21			Apr-14	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
MW-21															
Next		104/	Apr-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	<0.000327	<0.000453	< 0.000324	<0.000276
Apr-15		iviVV-21					<0.00038				< 0.00035				
Apr-16	1		Apr-15			<0.00033				<0.000380				<0.000320	<0.000280
NW-26 Apr-13 -0.0010 -0.0020 -0.00060 -0.00060 -0.00050 -0.0050 -	0		Apr-16	< 0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
Apr-14	Ψ	MW-25													
Apr-16		20	Apr-14	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
MW-26 Apr-13															
Apr-15		MW-26	Apr-13	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050
Apr-16															
Apr-14		104/	Apr-16	< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276
Apr-15 <0.00210		MW-27													
MW-46R Apr-14 <0.0010 <0.0020 <0.00060 <0.00060 <0.00050 <0.00090 <0.00040 <0.00040 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00033 <0.00035 <0.00035 <0.000330 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035			Apr-15	<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
Nov-14 <0.0021 <0.001 <0.00033 <0.00038 <0.00038 <0.00028 <0.00038 <0.00035 <0.00033 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.00035 <0.		MW-46R													
Apr-16 < 0.00214 < 0.0100 < 0.000331 < 0.000380 < 0.000866 < 0.000275 < 0.000379 < 0.000348 < 0.000327 < 0.000327 < 0.000328 < 0.000328 < 0.000328			Nov-14	<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028 J	<0.00038	< 0.00035	<0.00033	< 0.00045	< 0.00032	<0.00028
Oct-16 <0.00214 <0.0100 <0.000331 <0.000380 <0.000866 <0.000275 <0.000379 <0.000348 <0.000327 <0.000327 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329 <0.000329	1		Apr-16	< 0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	<0.000276
	L		Oct-16	<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	<0.000379	<0.000348	<0.000327	<0.000453	<0.000324	<0.000276

	Analyte Gro					HollyFi	roniler Navajo i	Refining LLC, Ar	tesia Reilnery,	Artesia, New IVI	exico				
	Α	nalyte Gr	roup:					1	Volatile Organ	ic Compounds					
		An	alyte:	4-Methyl-2- Pentanone	Acetone	Benzene	Bromo- dichloro- methane	Bromo- methane	Carbon Disulfide	Carbon Tetrachloride	Chloro- benzene	Chloro- dibromo- methane	Chloro-ethane	Chloroform	Chloro- methane
		l	Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CG	WSL:	1.24E+00	14.1	0.005	8.00E-02	7.54E-03	8.10E-01	0.005	1.00E-01	8.00E-02	2.09E+01	0.080	0.0203
	C	GWSL So	urce:	NMED TW	TMED TW	USEPA MCL	USEPA MCL	NMED TW	NMED TW	USEPA MCL	USEPA MCL	USEPA MCL	NMED TW	USEPA MCL	NMED TW
Area	Well ID	Date	Dup												
	MW-68	Apr-13		<0.010	<0.010	< 0.0050	<0.0050	< 0.0050	<0.010	<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
		Apr-14		<0.0010	< 0.0020	<0.00060	<0.00060	< 0.00050	<0.00090	<0.00060	<0.00040	< 0.00050	< 0.00050	<0.00060	< 0.00050
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	< 0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
		Apr-16		< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
	MW-71	Oct-13		<0.010	<0.010	<0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
		Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	< 0.00050
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	< 0.000380	<0.000350	< 0.000330	<0.000450	<0.000320	<0.000280
		Apr-16		< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	< 0.000276
	MW-89	Apr-13		<0.010	<0.010	<0.0050	< 0.0050	<0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050
		Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	< 0.00050	<0.00090	<0.00060	<0.00040	< 0.00050	< 0.00050	<0.00060	< 0.00050
TMD		Apr-15		<0.00210	<0.0100	<0.00033	<0.000380	<0.000870	0.000752 J	< 0.000380	<0.000350	<0.000330 J	<0.000450	< 0.000320	<0.000280
F		Apr-16		< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	< 0.000276
	NP-1	Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	< 0.00050	<0.00090	<0.00060	<0.00040	< 0.00050	< 0.00050	<0.00060	< 0.00050
		Nov-14		<0.0021	<0.01	<0.00033	<0.00038	<0.00087	<0.00028	<0.00038	<0.00035	< 0.00033	< 0.00045	< 0.00032	<0.00028
		Apr-15		<0.00210	< 0.0100	<0.000330	<0.000380	<0.000870	<0.000280	< 0.000380	<0.000350	< 0.000330	< 0.000450	<0.000320	<0.000280
		Oct-15		<0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.00275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	< 0.000276
		Apr-16		< 0.00214	<0.0100	<0.000331	<0.000380	<0.000866	< 0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	< 0.000276
		Oct-16		<0.00214	<0.0100 J3	<0.000331	<0.000380	<0.000866 J3	<0.000275	< 0.000379	<0.000348	<0.000327	<0.000453 J3	< 0.000324	0.00103 JB
	NP-2	Apr-13		<0.010	<0.010	<0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
	NP-6	Apr-13		<0.010	<0.010	<0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	0.00376	< 0.000380	<0.000350	<0.000330 J	< 0.000450	<0.000320	<0.000280
	UG-1	Apr-13		<0.010	<0.010	<0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
		Apr-14		<0.0010	< 0.0020	<0.00060	<0.00060	< 0.00050	< 0.00090	<0.00060	<0.00040	< 0.00050	< 0.00050	<0.00060	< 0.00050
		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	< 0.000870	<0.000280	< 0.000380	<0.000350	< 0.000330	< 0.000450	<0.000320	<0.000280
		Apr-16		<0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	< 0.000324	<0.000276
	UG-2	Apr-13		<0.010	<0.010	<0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	<0.0050	<0.0050	< 0.0050
±		Apr-13	FD	<0.010	<0.010	<0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
<u>ē</u> .		Apr-14		<0.010	< 0.0020	<0.00060	<0.00060	< 0.00050	<0.00090	<0.00060	<0.00040	< 0.00050	< 0.00050	<0.00060	< 0.00050
Upgradient		Apr-15		<0.0010	<0.0100	<0.000330	<0.000380	<0.000870	0.000348 J	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
рд		Apr-16		<0.00210	<0.0100	<0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	<0.000453	<0.000324	< 0.000276
1	UG-3R	Apr-13		<0.010	<0.010	<0.0050	< 0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050
		Apr-14		<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	<0.00050
1		Apr-14	FD	<0.0010	<0.0020	<0.00060	<0.00060	<0.00050	<0.00090	<0.00060	<0.00040	<0.00050	<0.00050	<0.00060	< 0.00050
1		Apr-15		<0.00210	<0.0100	<0.000330	<0.000380	<0.000870	<0.000280	<0.000380	<0.000350	<0.000330	<0.000450	<0.000320	<0.000280
1		Apr-16		< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	< 0.000327	< 0.000453	<0.000324	<0.000276
1	UG-4	Apr-16		< 0.00214	<0.0100	< 0.000331	<0.000380	<0.000866	<0.000275	< 0.000379	<0.000348	<0.000327	< 0.000453	< 0.000324	<0.000276

		nalyte Grou	un•F			,	onaoi riarajo i	Refining LLC, Ar	Volatile Organi						
	ŕ	Analy	1	cis-1,2- Dichloro-	cis-1,3- Dichloro-		Dichloro-	Ethyl-	Isopropyl-	ic Compound	Methyl N-	MTBE	Naphthalene	N-Butyl-	N-Propyl-
		Un		ethene mg/L	propene mg/L	Cymene mg/L	methane mg/L	benzene mg/L	benzene mg/L	m,p-Xylene mg/L	Butyl Ketone mg/L	mg/L	mg/L	benzene mg/L	benzene mg/L
		CGWS GWSL Sour	SL:	0.070 USEPA MCL	4.70E-03 USEPA TW		0.005 USEPA MCL	0.700	4.47E-01 WQCC TW			0.143 WQCC TW	0.030 WQCC HH		
Area	Well ID	Date D	up												
	KWB-13	Apr-13 Apr-14		<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
		Apr-15		<0.000260	<0.000420	< 0.000350	<0.00100	< 0.000380	<0.000330	0.00254	<0.00380	<0.000370	0.00317 J	<0.000360	0.000373 J
	MW-17	Apr-16 Apr-14		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
Crossgradient	NP-5	Apr-13		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
ssgra	RA-3156	Apr-15 Apr-13	1	<0.000260 <0.0050	<0.000420 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000380 <0.0050	<0.000330 <0.0050	<0.000720 <0.010	<0.00380 <0.010	<0.000370 <0.0050	<0.00100 <0.0050	<0.000360 <0.0050	<0.000350 <0.0050
Š		Nov-13 Apr-14		<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 <0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
	MW-136	Oct-15 Apr-16	-	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	100/45	Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
	MW-1R	Apr-13 F	FD	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.0050 <0.0050	<0.0050 <0.0050	<0.010 <0.010	<0.010 <0.010	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050
		Apr-14 Apr-15		<0.00060 <0.000260	<0.00060 <0.000420	<0.00050 <0.000350	<0.0010 <0.00100	<0.00050 <0.000380	<0.00050 <0.000330	<0.00060 <0.000720	<0.0010 <0.00380	<0.00060 <0.000370	<0.00070 <0.00100	<0.0010 <0.000360	<0.00050 <0.000350
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	< 0.000349
	MW-2A	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038 J5	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-3	Oct-16 Apr-14	4	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	<0.000367 <0.00060	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
	•	Nov-14		<0.00026	<0.00042 <0.00042	<0.00035 <0.00035	<0.0010	<0.00038	0.00034 J 0.00046 J	<0.00072	<0.0038 <0.0038	<0.00037	<0.0010	<0.00036 <0.00036	<0.00035 <0.00035
		Nov-14 F Apr-15	FD	<0.00026 <0.000260	<0.000420	<0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.000330	<0.000720	<0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.000360	< 0.000350
		Apr-15 F Oct-15	FD	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 0.00247	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Oct-15 F	FD	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	0.00199	< 0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
			FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16 F	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	0.00327 0.00305	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-4A	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	0.0026 0.00159	<0.00072 0.00227	<0.0038 <0.00380	0.00044 J 0.000461 J	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	0.00613 0.00698	0.00237 0.00166	<0.00382 <0.00382	0.000641 J 0.000605 J	<0.00100 <0.00100	<0.000361 <0.000361	0.000436 J 0.000357 J
	101/ 45	Oct-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	0.0069	0.00278	<0.00382	0.000516 J	<0.00100	<0.000361	0.000434 J
	MW-4B	Apr-13 Apr-15		<0.0050 <0.000260	<0.0050 <0.000420	<0.0050 <0.000350	<0.010 <0.00100	<0.0050 0.000462 J	<0.0050 0.000845 J	<0.010 <0.000720	<0.010 <0.00380	<0.0050 <0.000370	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
	MW-5A	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	0.0032 J 0.00081 J	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.00138	<0.00100	<0.000360	<0.000350
		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00174 0.00212	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-5B	Oct-16 Apr-13	4	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	0.00130 < 0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.00148	<0.00100	<0.000360	<0.000350
	MW-5C	Apr-13 Apr-15	-	<0.0050 <0.000260	<0.0050 < 0.000420	<0.0050 <0.000350	<0.010 < 0.00100	<0.0050 <0.000380	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	<0.0050 0.000507 J	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
Evaporation Ponds	MW-6A	Mar-13		<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
on P		Apr-14 Apr-15		<0.000260	<0.000420	< 0.000350	<0.00100	<0.000380	0.000440 J	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
oorat	MW-6B	Apr-16 Mar-13	-	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	0.00116 <0.0050	0.000386 J <0.0050	<0.000719 <0.010	<0.00382 <0.010	<0.000367 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
Eva			FD	<0.0050	<0.0050 < 0.000420	<0.0050 <0.000350	<0.010	<0.0050	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	<0.0050	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
	MW-7A	Apr-15 Apr-14		<0.000260 <0.00060	<0.000420	<0.00050	<0.00100 <0.0010	<0.000380 <0.00050	<0.00050	<0.000720	<0.0010	<0.000370 0.0018 J	<0.00100	<0.0010	<0.00050
		Nov-14 F	FD	<0.00026 <0.00026	<0.00042 <0.00042	<0.00035 <0.00035	<0.0010 <0.0010	<0.00038 <0.00038	<0.00033 <0.00033	<0.00072 <0.00072	<0.0038 <0.0038	0.002 0.0025	<0.0010 <0.0010	<0.00036 <0.00036	<0.00035 <0.00035
		Apr-15		<0.000260	<0.000420 <0.000420	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380	<0.000330 <0.000330	<0.000720 <0.000720	<0.00380 <0.00380	0.00194	<0.00100	<0.000360 <0.000360	<0.000350 <0.000350
		Oct-15	FD	<0.000260 <0.000260	<0.000418	<0.000350	<0.00100	<0.000380 <0.000384	<0.000326	<0.000719	<0.00382	0.00185 0.00175	<0.00100 <0.00100	<0.000361	< 0.000349
		Oct-15 F Apr-16	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00174 0.00168	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
			FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00168 0.00188	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16 F	FD	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00166	<0.00100	<0.000361	< 0.000349
	MW-7B	Apr-13 Apr-15	-	<0.0050 <0.000260	<0.0050 < 0.000420	<0.0050 <0.000350	<0.010 < 0.00100	<0.0050 <0.000380	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	<0.0050 <0.000370	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
	MW-10	Apr-14]	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	0.0020 J 0.0018	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Nov-14 Apr-15		<0.000260	<0.000420	< 0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.00195	<0.00100	< 0.000360	< 0.000350
		Oct-15 Apr-16	_	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00201 0.00216	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-11A	Oct-16 Apr-14	7	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	0.0019 <0.00060	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
		Nov-14													
		Apr-15 Oct-15	_	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Apr-16 Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	MW-11B	Mar-13		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
1	MW-12	Apr-15 Apr-14	\dashv	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
	MW-13 MW-15	Apr-14 Mar-13	7	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
	IVIVV-10	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-15 Apr-16		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	0.000387 J <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.000809 J 0.000602 J	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-18A	Apr-14 Nov-14]	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	< 0.000350
		Oct-15 Apr-16	\dashv	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 0.000490 J	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.000586 J	<0.00100	<0.000361	<0.000349

	Δ	nalyte G	oup:					Verilling LLO, Al	Volatile Organ						-
		-	alyte:	cis-1,2- Dichloro- ethene	cis-1,3- Dichloro- propene	Cymene	Dichloro- methane	Ethyl- benzene	Isopropyl- benzene	m,p-Xylene	Methyl N- Butyl Ketone	MTBE	Naphthalene	N-Butyl- benzene	N-Propyl- benzene
	0		Units: WSL:	mg/L 0.070 USEPA MCL	mg/L 4.70E-03 USEPA TW	mg/L	mg/L 0.005 USEPA MCL	mg/L 0.700 USEPA MCL	mg/L 4.47E-01 WQCC TW	mg/L	mg/L	mg/L 0.143 WQCC TW	mg/L 0.030 WQCC HH	mg/L	mg/L
Area	Well ID		Dup	OSEFA WICE	OOLIATIV		USEFA WICE	USEF A WICE	WQOOTW			WQCCTW	WQCCTIII		
	MW-18B	Apr-13 Apr-15		<0.0050 <0.000260	<0.0050 <0.000420	<0.0050 <0.000350	<0.010 < 0.00100	<0.0050 <0.000380	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	<0.0050 <0.000370	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
	MW-22A	Apr-15 Apr-14		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.0055	<0.00100	<0.000360	<0.00050
		Nov-14		<0.00026	<0.00042	< 0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	0.008	<0.0010	<0.00036	<0.00035
		Nov-14 Apr-15	FD	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	0.0099 0.00557	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Apr-15	FD	<0.000260	<0.000420	< 0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.00733	<0.00100	<0.000360	< 0.000350
		Oct-15 Oct-15	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00928 0.00967	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	0.00907	<0.00100	< 0.000361	< 0.000349
		Apr-16 Oct-16	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00887 0.00805	<0.00100 <0.00100	<0.000361 0.000576 J	<0.000349 <0.000349
		Oct-16	FD	< 0.000260	<0.000418	<0.000350	<0.00100	<0.000384	< 0.000326	<0.000719	<0.00382	0.0062	<0.00100	< 0.000361	<0.000349
	MW-22B	Apr-13 Apr-15		<0.0050 <0.000260	<0.0050 <0.000420	<0.0050 <0.000350	<0.010 <0.00100	<0.0050 <0.000380	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	0.0065 0.00634	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
	MW-70	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-72	Nov-13		<0.0050	<0.0050 <0.00060	<0.0050 <0.00050	<0.010	<0.0050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050	<0.0050	<0.0050 <0.0010	<0.0050 <0.00050
		Apr-14 Apr-15		<0.00060 <0.000260	<0.000420	<0.000350	<0.0010 <0.00100	<0.00050 <0.000380	<0.00030	<0.000720	<0.0010	<0.00060 <0.000370	<0.00070 <0.00100	<0.0010	<0.000350
	MW-73	Apr-16 Oct-13		<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	<0.000367 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
	10100-/3	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	0.0016 J	<0.00070	<0.0010	<0.00050
		Apr-15 Apr-16		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.0029 0.00270	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-74	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	< 0.00050
		Nov-14 Apr-15	H	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	0.00053 J <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15		<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	< 0.000326	< 0.000719	< 0.00382	0.000826 J	<0.00100	< 0.000361	< 0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.000972 J <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-75	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	0.0047 J	<0.00070	<0.0010	< 0.00050
		Nov-14 Apr-15		<0.0013 <0.00260	<0.0021 <0.00420	<0.0018 <0.00350	<0.0050 <0.0100	<0.0019 <0.00380	0.012 0.00731 J	<0.0036 <0.00720	<0.019 <0.0380	0.0028 J 0.00935 J	<0.0050 <0.0100	<0.0018 <0.00360	<0.0017 <0.00350
		Oct-15		<0.000260	<0.000418	0.000623 J	<0.00100	< 0.000384	0.0101	<0.000719	<0.00382	0.00463	<0.00100	< 0.000361	0.00116
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 0.000603 J	<0.00100 <0.00100	<0.000384 <0.000384	0.00144 0.0167	<0.000719 <0.000719	<0.00382 <0.00382	0.00577 0.00407	<0.00100 <0.00100	<0.000361 0.000385 J	<0.000349 0.00123
	MW-76	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	0.0037 J	<0.00070	<0.0010	< 0.00050
		Nov-14 Apr-15		<0.0013 <0.000260	<0.0021 <0.000420	<0.0018 <0.000350	<0.0050 <0.00100	<0.0019 <0.000380	0.02 0.0161	<0.0036 <0.000720	<0.019 <0.00380	0.013 0.0122	<0.0050 <0.00100	<0.0018 <0.000360	<0.0017 0.000534 J
		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	0.023 0.0108	<0.000719 <0.000719	<0.00382 <0.00382	0.00839 0.00756	<0.00100 <0.00100	<0.000361 <0.000361	0.000663 J 0.000356 J
		Oct-16		< 0.000260	<0.000418	< 0.000350	<0.00100	0.000437 J	0.0276	0.00214	<0.00382	0.0245	<0.00100	< 0.000361	0.00125
spuc	MW-77	Apr-14 Nov-14		<0.00060 <0.0013	<0.00060 <0.0021	<0.00050 0.0036 J	<0.0010 <0.0050	0.0016 J 0.0072	<0.00050 0.031	0.0027 J 0.0066 J	<0.0010 <0.019	0.0069 0.0091	<0.00070 <0.0050	<0.0010 <0.0018	0.0028 J 0.022
P P		Apr-15		<0.000260	<0.000420	0.00285	<0.00100	0.00363	0.0274	0.0043	<0.00380	0.0131	<0.00100	< 0.000360	0.0108
oratic		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	0.0031 0.00264	<0.00100 <0.00100	0.00533 0.00300	0.0291 0.0230	0.00476 0.00332	<0.00382 <0.00382	0.00722 0.00647	<0.00100 <0.00100	0.000743 J 0.000463 J	0.00989 0.00578
Evaporation Ponds	104/ 70	Oct-16		<0.00260	<0.00418	< 0.00350	<0.0100	0.00766 J	0.0259	<0.00719	<0.00382	0.00552 J	<0.0100	< 0.00361	0.0122
ш	MW-78	Mar-13 Apr-14		<0.025 <0.00060	<0.025 <0.00060	<0.025 <0.00050	<0.050 < 0.0010	<0.025 0.0013 J	<0.025 <0.00050	<0.050 <0.00060	<0.050 <0.0010	<0.025 <0.00060	<0.025 <0.00070	<0.025 <0.0010	<0.025 0.0018 J
		Apr-15 Apr-16		<0.000260 <0.000260	<0.000420 <0.000418	0.000443 J <0.000350	<0.00100 <0.00100	0.00262 0.000942 J	0.00348 0.00168	0.00146 <0.000719	<0.00380 <0.00382	0.000629 J <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	0.0039 0.00152
	MW-79	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15		<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	<0.000326	<0.000719	< 0.00382	< 0.000367	<0.00100	<0.000361	< 0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-80	Mar-13		<0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
		Apr-14 Apr-15		<0.00060 <0.000260	<0.00060 <0.000420	<0.00050 <0.000350	<0.0010 <0.00100	<0.00050 <0.000380	<0.00050 <0.000330	<0.00060 <0.000720	<0.0010 <0.00380	<0.00060 <0.000370	<0.00070 <0.00100	<0.0010 <0.000360	<0.00050 <0.000350
	MW-81	Apr-16 Mar-13		<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	<0.000367 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
		Mar-13	FD	<0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	< 0.0050	<0.010	<0.010	<0.0050	<0.0050	< 0.0050	< 0.0050
		Apr-14 Apr-15		<0.00060 <0.000260	<0.00060 <0.000420	<0.00050 <0.000350	<0.0010 <0.00100	<0.00050 <0.000380	<0.00050 <0.000330	<0.00060 <0.000720	<0.0010 <0.00380	<0.00060 <0.000370	<0.00070 <0.00100	<0.0010 <0.000360	<0.00050 <0.000350
	M/M/ 00	Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	<0.000349
	MW-82	Mar-13 Apr-14		<0.0050 <0.00060	<0.0050 < 0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
		Apr-14	FD	<0.00060	<0.00060 <0.000420	<0.00050 <0.000350	<0.0010 <0.00100	<0.00050 <0.000380	<0.00050 <0.000330	<0.00060 <0.000720	<0.0010 <0.00380	<0.00060 <0.000370	<0.00070 <0.00100	<0.0010 <0.000360	<0.00050 <0.000350
		Apr-15 Apr-16		<0.000260 <0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	<0.000349
	MW-83	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 0.00044 J	<0.00050 0.0028	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 0.0016
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	0.00159	<0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	0.000534 J
		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	0.00192 0.00143	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	0.000461 J 0.000365 J
1	MM/ 0/	Oct-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	0.00145	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	0.000696 J
	MW-84	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 0.00098 J	<0.00050 0.00052 J	<0.00060 <0.00072	<0.0010 <0.0038	0.0020 J 0.0025	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	0.000574 J <0.000384	0.000575 J <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.00279 0.00125	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	0.00129	<0.00100	< 0.000361	< 0.000349
	MW-87	Oct-16 Apr-14		<0.00260 <0.00060	<0.00418 <0.00060	<0.00350 <0.00050	<0.010 <0.0010	<0.00384 <0.00050	<0.00326 <0.00050	<0.00719 <0.00060	<0.00382 <0.0010	<0.00367 <0.00060	<0.0100 <0.00070	<0.00361 <0.0010	<0.00349 <0.00050
		Nov-14		<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	< 0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.000569 J 0.000696 J	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	0.000646 J	<0.00100	< 0.000361	< 0.000349
	MW-88	Oct-16 Apr-14		<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	0.00107 <0.00060	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
		Nov-14		<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
ь—		OGI-10		~u.uuu20U	-0.000410	-0.000330	~U.UU 1UU	~v.000384	-0.000320	-0.000718	-0.00002	~v.UUU30/	~U.UU 1UU	-0.000301	-0.000348

		nalyte Group:					tellillig LLC, Al	Volatile Organ						
	•	Analyte:	cis-1,2- Dichloro- ethene	cis-1,3- Dichloro- propene	Cymene	Dichloro- methane	Ethyl- benzene	Isopropyl- benzene	m,p-Xylene	Methyl N- Butyl Ketone	MTBE	Naphthalene	N-Butyl- benzene	N-Propyl- benzene
		Units: CGWSL: GWSL Source:	mg/L 0.070 USEPA MCL	mg/L 4.70E-03 USEPA TW	mg/L 	mg/L 0.005 USEPA MCL	mg/L 0.700 USEPA MCL	mg/L 4.47E-01 WQCC TW	mg/L 	mg/L 	mg/L 0.143 WQCC TW	mg/L 0.030 WQCC HH	mg/L 	mg/L
Area		Date Dup	.0.0000	.0.00000	.0.00050	.0.0040	-0.00050	.0.00050	.0.00000	.0.0040	.0.00000	0.0026 J	.0.0040	-0.00050
	MW-120	Apr-14 Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.0026 3	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-121	Apr-14	<0.000260	<0.00060	<0.00050	<0.00100	<0.00050	<0.00050	<0.000713	<0.00302	<0.00060	<0.00100	<0.000301	<0.000549
		Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	< 0.00033	< 0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
		Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	MW-122	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000384	<0.000326	< 0.000719	<0.00382	<0.000370	<0.00100	<0.000361	< 0.000349
		Apr-16	< 0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
	MW-123	Oct-16	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	<0.000367 0.0014 J	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
	10100-123	Apr-14 Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	0.00143	<0.00070	<0.00036	<0.00035
		Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.00124	<0.00100	<0.000360	< 0.000350
1		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00126 0.00143	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
1		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00143	<0.00100	<0.000361	<0.000349
1	MW-124	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
1		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
1		Oct-15	< 0.000260	<0.000418	<0.000350	<0.00100	< 0.000384	<0.000326	< 0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	< 0.000349
1		Apr-16	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
1	OCD-1R	Oct-16 Apr-14	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	<0.000367 <0.00060	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
1	555-110	Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	< 0.00037	<0.0010	<0.00036	< 0.00035
1		Apr-15	<0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418	<0.000350	<0.00100 <0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367 <0.000367	<0.00100	<0.000361	<0.000349
		Oct-16	< 0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
	OCD-2A	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
sp		Oct-15	< 0.000260	<0.000418	<0.000350	<0.00100	< 0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	< 0.000349
Pon		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
tion	OCD-3	Apr-14	<0.000200	<0.000410	<0.00050	<0.00100	<0.00050	<0.000520	<0.00060	<0.00302	<0.000367	<0.0070	<0.000301	<0.000549
Evaporation Ponds		Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
Eva		Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	< 0.000349
	000.4	Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	OCD-4	Apr-14 Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15	< 0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	< 0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	OCD-5	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-14 FD Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15	< 0.000260	<0.000420	<0.000350	<0.00100	< 0.000380	<0.000330	<0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	< 0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	OCD-6		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
1		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
1	OCD-7AR		<0.000260	<0.000418	<0.00050	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367 0.0015 J	<0.00100	<0.000361	<0.000349
1		Apr-14 FD	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	0.0018 J	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	0.0022 0.00196	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
1		Oct-15	<0.00026	<0.000418	<0.00035	<0.001	< 0.000384	<0.000326	< 0.000719	<0.00382	0.00202	<0.001	<0.000361	< 0.000349
		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00141 0.00179	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
1	OCD-7B	Mar-13	<0.0050	<0.0050	<0.0050	<0.00100	<0.0050	<0.0050	<0.000719	<0.00362	<0.0050	<0.00100	<0.0050	<0.0050
1		Apr-15	< 0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	< 0.000350
1	OCD-8A	Apr-14 FD	<0.00060 <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.0010 <0.0010	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.0010 <0.0010	0.0044 J 0.0047 J	<0.00070 <0.00070	<0.0010 <0.0010	<0.00050 <0.00050
		Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	< 0.00033	<0.00072	<0.0038	0.004	<0.0010	<0.00036	<0.00035
1		Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.00498 0.0051	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.0051	<0.00100	<0.000361	<0.000349
	000	Oct-16	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00507	<0.00100	< 0.000361	<0.000349
1	OCD-8B	Apr-13 Apr-15	<0.0050 <0.000260	<0.0050 < 0.000420	<0.0050 <0.000350	<0.010 <0.00100	<0.0050 <0.000380	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	<0.0050 0.00155	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
	KWB-1A	Apr-14	<0.000200	<0.00060	<0.00050	<0.00100	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.0070	<0.0010	<0.00050
		Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
>		Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
iner		Apr-16	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
Ref	KWD 40	Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
Field East of Refinery	KWB-1C	Apr-13 Apr-15	<0.0050 <0.000260	<0.0050 <0.000420	<0.0050 <0.000350	<0.010 <0.00100	<0.0050 <0.000380	<0.0050 <0.000330	<0.010 <0.000720	<0.010 <0.00380	<0.0050 <0.000370	<0.0050 <0.00100	<0.0050 <0.000360	<0.0050 <0.000350
Ea	KWB-7	Nov-14	<0.0026	<0.0042	0.0066 J	<0.01	0.073	0.042	0.036	<0.038	0.013	0.03 J	0.0037 J	0.048
rield		Apr-15	<0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100	0.0285 0.024	0.0338 0.0223	0.00342 0.000839 J	<0.00380 <0.00382	0.0225	0.012	0.00299 0.00143	0.0317
1		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418	<0.000350 0.000952 J	<0.00100 <0.00100	0.024	0.0223	0.000839 J 0.0218	<0.00382	0.00677 0.0104	0.00225 J 0.0141	0.00143	0.0221 0.0193
1		Oct-16	<0.000260	<0.000418	< 0.000350	<0.00100	0.0167	0.0228	0.0196	<0.00382	0.00582	0.0012 JJ4	0.000757 J	0.0158
<u> </u>	KWB-8	Oct-16	<0.0520	<0.0836	<0.0700	<0.200	0.828	<0.0652	1.01	<0.764	<0.0734	<0.200 J4	<0.0722	<0.0698

	А	nalyte Gro	up:					Verilling LLO, Al	Volatile Organ						
	-	,		cis-1,2-	cis-1,3-		Dichloro-			, , , , , , , , , , , , , , , , , , , ,					
		Anal	lyte:	Dichloro-	Dichloro-	_	methane	Ethyl- benzene	Isopropyl-		Methyl N-	MTBE	Naphthalene	N-Butyl-	N-Propyl-
		Ui	nits:	ethene mg/L	propene mg/L	Cymene mg/L	mg/L	mg/L	benzene mg/L	m,p-Xylene mg/L	Butyl Ketone mg/L	mg/L	mg/L	benzene mg/L	benzene mg/L
		CGW		0.070	4.70E-03		0.005	0.700	4.47E-01			0.143	0.030		
		GWSL Sou		USEPA MCL	USEPA TW		USEPA MCL	USEPA MCL	WQCC TW			WQCC TW	WQCC HH		
Area	Well ID KWB-10R	Date I Nov-14	Dup	<0.0065	<0.01	0.013 J	<0.025	0.400	0.04	0.9	<0.096	5.20	0.190	0.011 J	0.062
	KWD-10K	Apr-15		<0.00260	<0.00420	0.00673 J	<0.023	0.528	0.0484	1.04	<0.0380	3.87	0.138	0.0113	0.069
		Oct-15		<0.000260	<0.000418	0.00543	<0.00100	0.523	0.0478	0.828	<0.00382	4.66	0.186	0.01	0.0699
		Apr-16 Oct-16		<0.0130 <0.00520	<0.0209 <0.00836	<0.0175 <0.00700	<0.0500 <0.0200	0.437 0.513	0.0442 J 0.04	0.645 0.664	<0.191 <0.0764	3.71 3.62	0.150 J 0.133	<0.0180 0.0099 J	0.0616 0.0607
	KWB-11A	Nov-14		<0.00026	<0.00042	0.00062 J	<0.0200	<0.00038	0.0029	0.0017 J	<0.0038	0.0012	0.015	0.00094 J	<0.00035
			FD	<0.00026	<0.00042	0.00056 J	<0.0010	<0.00038	0.0024	0.0015 J	<0.0038	0.0015	0.019	0.00092 J	<0.00035
		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	0.000951 J 0.000552 J	0.00102 J <0.00100	<0.000380 <0.000384	<0.000330 0.00301	0.00188 0.0013	<0.00380 <0.00382	0.00648 0.00434	0.0233 0.0165	<0.000360 0.00126	<0.000350 <0.000349
		Apr-16		<0.000260	<0.000418	0.000374 J	<0.00100	<0.000384	0.000412 J	<0.000719	<0.00382	0.00477	0.0134	0.00134	< 0.000349
	1011D 11D	Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	0.00244	0.0011	<0.00382	0.00416	0.00936 J4	0.000858 J	<0.000349
	KWB-11B	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	0.0065 <0.00035	<0.0010 <0.0010	0.020 <0.00038	0.031 <0.00033	0.0043 J <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	0.011 <0.0010	0.017 <0.00036	0.046 <0.00035
		Apr-15		<0.000260	<0.000420	< 0.000350	0.00106 J	<0.000380	<0.000330	<0.000720	<0.00380	0.00121	<0.00100	< 0.000360	< 0.000350
		Oct-15		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Apr-16 Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	0.00153 J J4	<0.000361	<0.000349
	KWB-12A	Nov-14		<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
		Nov-14 Apr-15	FD	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
			FD	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382 <0.00382	<0.000367	<0.00100	<0.000361	<0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	KWB-12B	Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	< 0.00050
			FD	<0.00060	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042	<0.000350	<0.0010	<0.00038 <0.000380	<0.00033	<0.00072	<0.00380	<0.00037	<0.0010	<0.000360	<0.00035
		Oct-15		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	< 0.000349
		Oct-15 Apr-16	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 J <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	0.00157 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Apr-16	FD	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	< 0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
		Oct-16	ED	<0.000260	<0.000418	<0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349 0.000638 J
	KWB-P4	Oct-16 Apr-13	FD	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 < 0.010	<0.000384	0.000337 J <0.0050	<0.000719 <0.010	<0.00382 <0.010	<0.000367 <0.0050	0.0139 < 0.0050	<0.000361 <0.0050	<0.00638 J <0.0050
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	< 0.000380	<0.000330	<0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	<0.000350
	MW-57	Apr-14		<0.00060	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010	<0.00050	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	0.0010 J	<0.0010 <0.00036	<0.00050 <0.00035
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042	<0.000350	<0.0010 <0.00100	<0.00038 0.000667 J	<0.00033	0.00072	<0.00380	<0.00037	<0.0010 0.00156 J	<0.000360	<0.000350
		Oct-15		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100 J4	<0.000361 <0.000361	<0.000349 <0.000349
	MW-58	Nov-14		<0.0065	<0.01	<0.0088	<0.025	2.40	0.066	1.6	<0.096	<0.0092	0.48	<0.0090	0.100
		Apr-15		<0.00260 <0.0260	<0.00420 <0.0418	0.00770 J	<0.0100 <0.1	1.98 2.00	0.0732 0.0720 J	2.08	<0.0380	0.0187	0.318	0.00921 J	0.112
		Oct-15 Apr-16		<0.0260	<0.0418	<0.0350 0.00813 J	<0.0100	1.11	0.0720 J	2.12 0.830	<0.382 <0.0382	<0.0367 0.200	0.354 J 0.257	<0.0361 0.00944 J	0.125 0.105
∑ _e		Oct-16		<0.000260	<0.000418	0.00572	<0.00100	1.10	0.053	0.873	<0.00382	0.0468	0.0867	0.00517	0.093
Field East of Refinery	MW-111	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	0.0085 0.026	0.0013 J 0.0024	0.0046 J 0.022	<0.0010 <0.0038	2.00 1.6 E	0.0016 J 0.0064 J4	<0.0010 <0.00036	0.00082 J 0.0022
of R		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	0.00824	0.000607 J	0.00723	<0.00380	< 0.000370	0.00294 J	<0.000360	0.000827 J
ast		Oct-15		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	0.00615 0.00122	0.000862 J 0.000887 J	0.00113 < 0.000719	<0.00382 <0.00382	1.32	0.00645 <0.00100	<0.000361 <0.000361	0.000839 J 0.000690 J
무		Apr-16 Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	0.00122	0.000887 J	0.00177 J	<0.00382	1.54 1.29	0.00100 0.00103 J	<0.000361	0.000690 J
iΞ	MW-112	Nov-14		<0.0065	<0.01	<0.0088	<0.025	0.970	0.057	1.4	<0.096	1.00	0.200	<0.0090	0.100
	MW-113	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	0.0015 J 0.00094 J	<0.0010 <0.0010	0.400 0.007	0.013 0.0097	0.82 0.086	<0.0010 <0.0038	0.01 0.02	<0.00070 0.048 J4	<0.0010 0.00081 J	0.011 0.0033
			FD	<0.0026	<0.0042	< 0.0035	<0.01	0.007 0.0079 J	0.0097 J	0.085	<0.038	0.019	0.032 J	<0.0036	< 0.0035
		Apr-15	,	<0.000260	<0.000420	<0.000350	0.00114 J	<0.000380	<0.000330	<0.000720	<0.00380	0.0178	<0.00100	<0.000360	<0.000350
		Apr-15 Oct-15	FD	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.0158 0.0158	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Oct-15	FD	<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	<0.000326	0.000723 J	<0.00382	0.0176	<0.00100	<0.000361	<0.000349
		Apr-16 Apr-16	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	0.00354 0.00364	<0.000326 <0.000326	0.00518 0.00531	<0.00382 <0.00382	0.0143 0.0143	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16		<0.000260	<0.000418	<0.000350	< 0.00100	0.0199	0.0014	0.0143	<0.00382	0.0137	0.00208 JJ4	<0.000361	0.00181
	101/ 405		FD	<0.000260	<0.000418	<0.000350	<0.00100	0.0175	0.00137	0.0127	<0.00382	0.0143	0.00200 JJ4	<0.000361	0.00163
	MW-125	Apr-14 Nov-14		<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010 J4	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15 Apr-16	-	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
	MW-126A	Apr-14		<0.00060	<0.00060 <0.00042	<0.00050	<0.0010	<0.00050	<0.00050	0.0035 J <0.00072	<0.0010 <0.0038	<0.00060	0.0013 J	<0.0010	<0.00050
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	0.016 <0.000330	<0.00072	<0.0038	<0.00037 <0.000370	<0.0010 <0.00100	<0.00036 <0.000360	0.0032 <0.000350
		Oct-15		<0.000260	<0.000418	<0.000350	<0.00100	0.00475	0.0208	0.0103	<0.00382	< 0.000367	<0.00100	< 0.000361	0.0104
		Apr-16 Oct-16	-	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	0.000495 J 0.0591	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100 J4	<0.000361 <0.000361	<0.000349 0.00794
	MW-126B			<0.000260	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00100 34	<0.0010	<0.00050
		Nov-14		<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
		Apr-15 Oct-15	-	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
	MW-127	Oct-16 Apr-14	-	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 0.0049 J	<0.00100 <0.0010	<0.000384 0.930	0.000426 J 0.049	<0.000719 0.54	<0.00382 <0.0010	<0.000367 1.40	<0.00100 J4 0.140	<0.000361 0.013	<0.000349 0.081
		Nov-14		<0.00026	<0.00042	0.0018	<0.0010	0.240	0.012	0.082	<0.0038	0.760	0.040	0.0013	0.02
		Apr-15	\Box	<0.000260	<0.000420	0.00159	<0.00100	0.424	0.0213	0.153	<0.00380	0.868	0.0658	0.00251	0.0335
		Oct-15 Apr-16		<0.00520 <0.000260	<0.00836 <0.000418	<0.00700 <0.000350	<0.0200 <0.00100	0.299 0.348	0.0183 J 0.0198	0.0856 0.112	<0.0764 <0.00382	0.730 0.629	0.0415 J 0.0425	<0.00722 0.00229	0.0305 0.0325
		Oct-16		<0.00260	<0.00418	<0.00350	<0.0100	0.120	0.012	0.0387	<0.00382	0.575	<0.0100 J4	< 0.00361	0.0189
	MW-128	Apr-14 Nov-14	-	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	0.043 0.012	0.0063 0.0023	0.014 0.0055	<0.0010 <0.0038	1.30 0.95 E	0.012 0.0061	0.0029 J <0.00036	0.01 0.0032
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	0.0114	0.0031	0.00326	<0.00380	1.60	0.0081 0.00346 J	0.000372 J	0.00369
		Oct-15		< 0.00520	<0.00836	<0.00700	<0.0200	<0.00768	<0.00652	<0.0144	<0.0764	0.86	<0.0200	<0.00722	<0.00698
		Apr-16 Oct-16	_	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	0.00494 0.00408	0.00111 0.000965 J	0.00153 0.0037	<0.00382 <0.00382	0.846 0.832	0.00104 J 0.00225 J	<0.000361 <0.000361	0.00135 0.00136
	MW-129	Nov-14		<0.0026	<0.0042	< 0.0035	<0.01	0.025	0.0044 J	0.043	<0.038	5.4 E	<0.01	<0.0036	0.0048 J
		Apr-15 Oct-15		<0.000260 <0.0260	<0.000420 <0.0418	<0.000350 <0.0350	<0.00100 <0.1	0.00131 <0.0384	0.00198 <0.0326	0.00245 <0.0719	<0.00380 <0.382	7.04 5.79	0.00407 J <0.1	0.000458 J <0.0361	0.000956 J <0.0349
		Apr-16	-	<0.0260	<0.0418 <0.000418	<0.0350	<0.1 <0.00100	<0.0384	<0.0326 0.00172	<0.0719 0.00199	<0.382	5.79 4.59	<0.1 0.00534	<0.0361 0.000444 J	<0.0349 0.000863 J
		Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	0.000985 J	0.00144	0.00124	<0.00382	4.73	0.00186 JJ4	<0.000361	0.000383 J

	4	Analyte Gr	oun.			1 Ioliyi I	Tonuer Navajo i	Refining LLC, Ar	Volatile Organi						
	-	analyte Of	oup.	cis-1,2-	cis-1,3-		Dichloro-	Ethyl-	Volutile Organi	ic compound.	ĺ				
		Ana	alyte:	Dichloro- ethene	Dichloro- propene	Cymene	methane	benzene	Isopropyl- benzene	m,p-Xylene	Methyl N- Butyl Ketone	MTBE	Naphthalene	N-Butyl- benzene	N-Propyl- benzene
			Jnits:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	0	CGV GWSL So		0.070	4.70E-03 USEPA TW		0.005	0.700 USEPA MCL	4.47E-01 WQCC TW			0.143	0.030		
Area	Well ID		Dup	USEPA MCL	USEPATW		USEPA MCL	USEPA MICL	WQCCTW			WQCC TW	WQCC HH		
	MW-130			<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14 Apr-15		<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	0.0012 0.000510 J	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15		<0.000260	<0.000418	<0.000350	<0.00100	< 0.000384	<0.000326	<0.000719	<0.00382	0.000449 J	<0.00100	<0.000361	<0.000349
		Apr-16 Oct-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.000538 J 0.0013	<0.00100 0.00112 J	<0.000361 <0.000361	<0.000349 <0.000349
	MW-131	Apr-14		<0.00060	<0.00060	0.006	<0.0010	0.210	0.036	0.47	<0.0010	5.30	0.058	0.031	0.084
		Nov-14 Apr-15		<0.0026 <0.000260	<0.0042 <0.000420	0.0036 J 0.00103	<0.01 < 0.00100	0.067 0.0692	0.016 0.0162	0.12 0.084	<0.038 <0.00380	5.6 E 5.23	0.043 J 0.0468	0.0056 J 0.00368	0.030 0.028
		Oct-15		<0.000260	<0.000418	0.00105	<0.00100	0.048	0.022	0.0615	<0.00382	4.54	0.0589	0.00375	0.037
		Apr-16 Oct-16		<0.000260 <0.00130	<0.000418 <0.00209	0.000697 J <0.00175	<0.00100 <0.00500	0.0535 0.0324	0.0183 0.015	0.0513 0.0431	<0.00382 <0.0191	3.69 4.09	0.0353 0.0135 JJ4	0.00308 0.00183 J	0.0315 0.0241
	MW-133	Nov-14		<0.026	<0.042	<0.035	<0.1	0.300	0.057 J	0.18 J	<0.38	5.60	<0.1	<0.036	0.084 J
	MW-134	Apr-15		<0.0260	<0.0420 <0.00060	<0.0350 <0.00050	<0.1 <0.0010	0.199 <0.00050	<0.0330 <0.00050	0.108 <0.00060	<0.38 <0.0010	6.67 <0.00060	<0.1 <0.00070	<0.0360 <0.0010	0.0451 J <0.00050
	10100-134	Apr-14 Nov-14		<0.00060 <0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0010	<0.00037	<0.00070	<0.00036	<0.00035
		Apr-15	FD	<0.000260 <0.000260	<0.000420 <0.000420	<0.000350 <0.000350	0.00122 J <0.00100	<0.000380 <0.000380	<0.000330 <0.000330	<0.000720 <0.000720	<0.00380 <0.00380	<0.000370 <0.000370	<0.00100 <0.00100	<0.000360 <0.000360	<0.000350 <0.000350
		Apr-15 Oct-15	FD	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00382	<0.000370	<0.00100	<0.000361	<0.000330
		Oct-15	FD	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
>		Apr-16 Apr-16	FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
finer		Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	< 0.000719	<0.00382 <0.00382	< 0.000367	<0.00100	< 0.000361	<0.000349
f Re	MW-135	Oct-16 Apr-14	FD	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	<0.000367 <0.00060	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
Field East of Refinery		Nov-14		<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	< 0.00035
Š		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.000829 J 0.000608 J	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
Fie	1	Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00197	<0.00100	< 0.000361	<0.000349
	RA-4196	Oct-16 Apr-14		<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	0.000685 J 0.0026 J	<0.00100 J4 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
		Apr-15		< 0.000260	<0.000420	< 0.000350	0.00114 J	<0.000380	<0.000330	<0.000720	<0.00380	0.00173	<0.00100	<0.000360	< 0.000350
		Oct-15 Apr-16		<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00394 0.00507	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	< 0.000719	<0.00382	0.00657	<0.00100 J4	<0.000361	<0.000349
	RA-4798	Apr-14 Apr-14	FD	<0.00060 <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.0010 <0.0010	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.0010 <0.0010	0.01 0.0027 J	<0.00070 <0.00070	<0.0010 <0.0010	<0.00050 <0.00050
		Nov-14	ID	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	< 0.00033	<0.00072	<0.0038	0.0027 3	<0.00070	<0.00036	< 0.00035
		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	0.00127 J <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	0.0163 0.00858	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00030	<0.00100	<0.000361	<0.000349
	DW 40D	Oct-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.0124	<0.00100 J4	<0.000361	<0.000349
	RW-12R RW-13R			<0.00130 <0.000260	<0.00209 <0.000418	<0.00175 0.000561 J	<0.00500 <0.00100	0.00606 0.0691	0.0359 0.0117	0.014 0.0939	<0.0191 <0.00382	0.00568 0.0779	<0.00500 0.0148	<0.00180 0.00124	0.0482 0.0183
	RW-18	Apr-13		< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.0050	<0.010	<0.010	< 0.0050	< 0.0050	<0.0050	<0.0050
		Apr-14 Apr-15		<0.00060 <0.000260	<0.00060 <0.000420	<0.00050 <0.000350	<0.0010 <0.00100	<0.00050 <0.000380	<0.00050 <0.000330	<0.00060 <0.000720	<0.0010 <0.00380	<0.00060 <0.000370	<0.00070 <0.00100	<0.0010 <0.000360	<0.00050 <0.000350
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	< 0.000361	<0.000349
	RW-20 RW-22	Apr-15 Apr-15		<0.00260 <0.00260	<0.00420 <0.00420	0.00401 J 0.00521 J	<0.0100 <0.0100	0.973 1.09	0.0456 0.0525	1.3 0.85	<0.0380 <0.0380	0.209 0.178	0.183 0.164	0.00846 J 0.00856 J	0.098 0.103
	MW-23	Apr-14		<0.012	<0.012	<0.010	<0.020	0.320	0.097 J	0.035 J	<0.020	<0.012	0.200	<0.020	0.150
		Nov-14 Apr-15		<0.013 <0.00650	<0.021 <0.0100	<0.018 <0.00880	<0.05 <0.0250	0.190 0.146	0.048 J 0.0652	0.9 1.19	<0.19 <0.0960 J	0.019 J 0.0253	0.12 J 0.15 J	<0.018 <0.00900	0.068 0.0952
		Oct-15		<0.00030	<0.000418	0.000898 J	<0.0230	0.519	0.121	0.00568	<0.00382	0.0233	0.13 J	0.0134	0.181
		Apr-16 Oct-16		<0.00130	<0.00209 <0.0104	<0.00175 <0.00875	<0.00500 <0.0250	0.179 0.168	0.161 0.124	0.0147 <0.0180	<0.0191 <0.0955	0.0297	0.193 0.220	0.0254 0.0257	0.268 0.216
	MW-29	Apr-14		<0.00650 <0.00060	<0.00060	<0.00075	<0.0250	<0.00050	<0.00050	<0.00060	<0.0955	0.0433 < 0.00060	0.220 0.0026 J	<0.0010	<0.00050
		Nov-14		<0.00026	<0.00042	0.0022 <0.000350	<0.0010	<0.00038	0.002	<0.00072	<0.0038 <0.00380	<0.00037	<0.0010	<0.00036 <0.000360	<0.00035
		Apr-15 Oct-15		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350	<0.00100 <0.00100	<0.000380 <0.000384	0.00109 0.000961 J	<0.000720 <0.000719	<0.00380	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360	<0.000350 <0.000349
		Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	MW-39	Oct-16 Oct-13	\vdash	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 0.0072	0.000398 J 0.032	<0.000719 0.045	<0.00382 <0.010	0.000424 J <0.0050	<0.00100 <0.0050	<0.000361 0.0053	<0.000349 0.04
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	0.000713 J	0.00675	0.00121	<0.00380	< 0.000370	<0.00100	<0.000360	< 0.000350
		Oct-15 Apr-16	\vdash	<0.000260 <0.00650	<0.000418 <0.0104	<0.000350 <0.00875	<0.00100 <0.0250	0.000727 J 0.0211 J	0.006 0.0339	0.00115 0.145	<0.00382 <0.0955	<0.000367 <0.00918	0.00583 <0.0250	<0.000361 <0.00902	<0.000349 0.0386
	NA44 12	Oct-16		<0.0260	<0.0418	< 0.0350	<0.100	<0.0384	0.0418 J	0.161	<0.382	< 0.0367	<0.100	< 0.0361	0.0499 J
	MW-40	Apr-13 Apr-14		<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	0.072 0.047	<0.010 0.0056 J	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 0.0028 J	<0.0050 <0.0010	0.015 0.0062
		Apr-15		<0.000260	<0.000420	< 0.000350	<0.00100	0.000399 J	0.0308	0.00606	<0.00380	< 0.000370	<0.00100	<0.000360	0.00319
	MW-41	Apr-16 Oct-13		<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	0.000609 J <0.0050	0.0775 <0.0050	0.0144 <0.010	<0.00382 <0.010	<0.000367 <0.0050	<0.00100 <0.0050	0.000770 J <0.0050	0.00468 <0.0050
легу		Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	0.014	<0.00060 <0.000720	<0.0010	0.0036 J	0.0026 J	<0.0010	< 0.00050
Refinery		Apr-15 Apr-16		<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	0.00844 0.0170	<0.000720	<0.00380 <0.00382	0.0044 0.00384	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 0.00125
North F	MW-42	Oct-13		<0.0050	<0.0050	<0.0050	<0.010	< 0.0050	0.041	0.22	<0.010	0.021	< 0.0050	<0.0050	0.042
ž		Apr-14 Apr-15		<0.00060 <0.00260	<0.00060 <0.00420	0.0011 J <0.00350	<0.0010 0.0106 J	0.0030 J <0.00380	0.039 0.0326	0.11 0.0484	<0.0010 <0.0380	0.022 0.0145	0.0043 J <0.0100	<0.0010 <0.00360	0.033 0.0205
				<0.00130	<0.00209	<0.00175	<0.00500	<0.00192	0.0325	0.0380	<0.0191	0.0114	<0.00500	<0.00180	0.0138
		Apr-16					<0.0010	0.015 0.021	0.052 0.05	0.14 0.16	<0.0010 <0.038	0.014 0.011	0.005 <0.01	0.0077 <0.0036	0.054 0.046
	MW-43	Apr-14		<0.00060 <0.0026	<0.00060 <0.0042	0.0017 J <0.0035	< 0.01								0.0702
	MW-43	Apr-14 Nov-14 Apr-15		<0.0026 <0.00260	<0.0042 <0.00420	<0.0035 <0.00350	<0.0100 J	0.0483	0.0617	0.278	<0.0380 J	0.0162	<0.0100 J	0.00396 J	
	MW-43	Apr-14 Nov-14 Apr-15 Oct-15		<0.0026 <0.00260 <0.00260	<0.0042 <0.00420 <0.00418	<0.0035 <0.00350 <0.00350	<0.0100 J <0.0100	0.0483 0.179	0.0642	1.15	<0.0382	0.0274	0.212	0.00458 J	0.0949
		Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16		<0.0026 <0.00260 <0.00260 <0.0650 <0.0650	<0.0042 <0.00420 <0.00418 <0.104 <0.104	<0.0035 <0.00350 <0.00350 <0.0875 <0.0875	<0.0100 J <0.0100 <0.250 <0.250	0.0483 0.179 0.968 0.810	0.0642 <0.0815 <0.0815	1.15 1.23 1.26	<0.0382 <0.955 <0.955	0.0274 <0.0918 <0.0918	0.212 <0.250 <0.250	0.00458 J <0.0902 <0.0902	0.0949 0.110 J 0.0908 J
	MW-43	Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13		<0.0026 <0.00260 <0.00260 <0.0650 <0.0650 <0.0050	<0.0042 <0.00420 <0.00418 <0.104 <0.104 <0.0050	<0.0035 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050	<0.0100 J <0.0100 <0.250 <0.250 <0.010	0.0483 0.179 0.968 0.810 <0.0050	0.0642 <0.0815 <0.0815 <0.0050	1.15 1.23 1.26 <0.010	<0.0382 <0.955 <0.955 <0.010	0.0274 <0.0918 <0.0918 <0.0050	0.212 <0.250 <0.250 <0.0050	0.00458 J <0.0902 <0.0902 <0.0050	0.0949 0.110 J 0.0908 J <0.0050
		Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15		<0.0026 <0.00260 <0.00260 <0.0050 <0.0650 <0.0050 <0.00060 <0.00060	<0.0042 <0.00420 <0.00418 <0.104 <0.104 <0.0050 <0.00060 <0.000420	<0.0035 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350	<0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.0010	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.000380	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.00736	1.15 1.23 1.26 <0.010 <0.00060 <0.000720	<0.0382 <0.955 <0.955 <0.010 <0.0010 <0.00380	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.000370	0.212 <0.250 <0.250 <0.0050 <0.00070 <0.00100	0.00458 J <0.0902 <0.0902 <0.0050 <0.0010 <0.000360	0.0949 0.110 J 0.0908 J <0.0050 0.00066 J 0.000389 J
	MW-59	Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16		<0.0026 <0.00260 <0.00260 <0.00260 <0.0650 <0.0650 <0.0050 <0.00060 <0.000260 <0.000260	<0.0042 <0.00420 <0.00418 <0.104 <0.104 <0.0050 <0.00060 <0.000420 <0.000418	<0.0035 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350	<0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.00100	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.000380 <0.000384	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.00736 0.0111	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.000719	<0.0382 <0.955 <0.955 <0.010 <0.0010 <0.00380 <0.00382	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.000370 <0.000367	0.212 <0.250 <0.250 <0.0050 <0.00070 <0.00100 <0.00100	0.00458 J <0.0902 <0.0902 <0.0050 <0.0010 <0.000360 <0.000361	0.0949 0.110 J 0.0908 J <0.0050 0.00066 J 0.000389 J 0.000518 J
		Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-14 Nov-14		<0.0026 <0.00260 <0.00260 <0.0050 <0.0650 <0.0050 <0.0050 <0.00060 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260	<0.0042 <0.00420 <0.00418 <0.104 <0.104 <0.0050 <0.00060 <0.000420 <0.000418 <0.00060 <0.00042	<0.0035 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350 <0.000350 <0.00035	<0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.0010 <0.00100 <0.00100 <0.0010 <0.0010	0.0483 0.179 0.968 0.810 <0.00050 <0.00050 <0.000380 <0.000384 0.0019 J <0.00038	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.00736 0.0111 0.018 0.013	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.000719 0.0063 J <0.00072	<0.0382 <0.955 <0.955 <0.010 <0.0010 <0.00380 <0.00382 <0.0038	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.000370 <0.000367 <0.00060 <0.00037	0.212 <0.250 <0.250 <0.0050 <0.00070 <0.00100 <0.00100 0.0041 J <0.0010	0.00458 J <0.0902 <0.0902 <0.0050 <0.0010 <0.000360 <0.000361 <0.00036	0.0949 0.110 J 0.0908 J <0.0050 0.00066 J 0.000389 J 0.000518 J 0.0041 J 0.00092 J
	MW-59	Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-14 Nov-14 Apr-15		<0.0026 <0.00260 <0.00260 <0.0050 <0.0650 <0.0050 <0.00060 <0.000260 <0.000260 <0.000260 <0.00026 <0.00026	 <0.0042 <0.00420 <0.00418 <0.104 <0.104 <0.0050 <0.0060 <0.00420 <0.00060 <0.000420 <0.00042 <0.00042 	<0.0035 <0.00350 <0.00350 <0.00875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050	<0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.0010 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.00038 <0.000384 0.0019 J <0.00038 0.000627 J	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.00736 0.0111 0.018 0.013	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.000719 0.0063 J <0.00072 0.0028	<0.0382 <0.955 <0.955 <0.010 <0.0010 <0.00380 <0.00382 <0.0038 <0.0038	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.000370 <0.00037 <0.00037 <0.00037	0.212 <0.250 <0.250 <0.0050 <0.00070 <0.00100 0.0041 J <0.0010 <0.00100	0.00458 J <0.0902 <0.0902 <0.0050 <0.0010 <0.000360 <0.00036 <0.00036 <0.00036	0.0949 0.110 J 0.0908 J <0.0050 0.00066 J 0.000389 J 0.000518 J 0.0041 J 0.00092 J 0.00228
	MW-59	Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-14 Nov-14 Nov-15 Apr-15 Oct-15	FD	<0.0026 <0.00260 <0.00260 <0.00260 <0.0650 <0.0650 <0.00050 <0.000060 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260	 <0.0042 <0.00420 <0.00418 <0.104 <0.050 <0.0050 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.000420 <0.000420 	<0.0035 <0.00350 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350	 <0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.00100 <0.00100 	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.000380 <0.000384 0.00038 0.000627 J 0.000450 J 0.000384 J	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.00736 0.0111 0.018 0.013 0.0148 J 0.00798 J 0.0182	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.000719 0.0063 J <0.00072 0.0028 0.00163 0.00176	<0.0382 <0.955 <0.955 <0.955 <0.010 <0.0010 <0.00380 <0.00382 <0.0010 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.000370 <0.000367 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370	0.212 <0.250 <0.250 <0.250 <0.00070 <0.00100 <0.00100 <0.0010 <0.0010 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100	0.00458 J <0.0902 <0.0902 <0.0050 <0.0050 <0.0010 <0.000361 <0.00036 <0.000360 <0.000360 <0.000360 <0.000360 <0.000360 <0.000360	0.0949 0.110 J 0.0908 J <0.00050 0.00066 J 0.000389 J 0.000518 J 0.00041 J 0.00092 J 0.000228 0.00113 0.0012
	MW-59	Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-14 Nov-14 Apr-15 Apr-15 Oct-15	FD	<0.0026 <0.00260 <0.00260 <0.0650 <0.0650 <0.0050 <0.00060 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260	<.0.0042 <0.00420 <0.00418 <0.104 <0.104 <0.1050 <0.00060 <0.000420 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042	<0.0035 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350	 <0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.00100 <0.00100 <0.00100 	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.000384 0.0019 J <0.00038 0.000627 J 0.000450 J 0.000394 J 0.000395 J	0.0642 <0.0815 <0.0855 <0.0050 0.0061 0.00736 0.0111 0.013 0.0148 J 0.00798 J 0.0179	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.000719 <0.00072 0.0063 J <0.00072 0.00163 0.00163 0.00176	<0.0382 <0.955 <0.955 <0.010 <0.0010 <0.00380 <0.00382 <0.0038 <0.00380 <0.00380 <0.00380 <0.00380 <0.00382	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.00037 <0.00037 <0.00037 <0.00037 <0.00037 <0.00037 <0.00037 <0.00037 <0.00037	0.212 <0.250 <0.250 <0.050 <0.00070 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100	0.00458 J -(0.0902 -(0.0050 -(0.0050 -(0.0010 -(0.00360 -(0.00360 -(0.00360 -(0.00361 -(0.00361 -(0.00361 -(0.00361 -(0.00361 -(0.00361 -(0.00361	0.0949 0.110 J 0.0908 J <0.0050 0.00066 J 0.000389 J 0.000518 J 0.00041 J 0.00092 J 0.00228 0.00113 0.0012
	MW-59	Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-14 Nov-14 Nov-15 Apr-15 Oct-15		<0.0026 <0.00260 <0.00260 <0.00260 <0.0650 <0.0650 <0.00050 <0.000060 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260	 <0.0042 <0.00420 <0.00418 <0.104 <0.050 <0.0050 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.00042 <0.000420 <0.000420 	<0.0035 <0.00350 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350	 <0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.00100 <0.00100 	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.000380 <0.000384 0.00038 0.000627 J 0.000450 J 0.000384 J	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.00736 0.0111 0.018 0.013 0.0148 J 0.00798 J 0.0182	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.000719 0.0063 J <0.00072 0.0028 0.00163 0.00176	<0.0382 <0.955 <0.955 <0.955 <0.010 <0.0010 <0.00380 <0.00382 <0.0010 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380	0.0274 <0.0918 <0.0918 <0.0050 <0.00060 <0.000370 <0.000367 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370	0.212 <0.250 <0.250 <0.250 <0.00070 <0.00100 <0.00100 <0.0010 <0.0010 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100	0.00458 J <0.0902 <0.0902 <0.0050 <0.0050 <0.0010 <0.000361 <0.00036 <0.000360 <0.000360 <0.000360 <0.000360 <0.000360 <0.000360	0.0949 0.110 J 0.0908 J <0.00050 0.00066 J 0.000389 J 0.000518 J 0.00041 J 0.00092 J 0.000228 0.00113 0.0012
	MW-59	Apr-14 Nov-14 Apr-15 Oct-15 Oct-16 Apr-16 Oct-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-14 Nov-14 Apr-15 Oct-15 Oct-15 Apr-16	FD	<0.0026 <0.00260 <0.00260 <0.00260 <0.0050 <0.0650 <0.0050 <0.00060 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260 <0.000260	 <0.0042 <0.00420 <0.00418 <0.104 <0.1004 <0.0060 <0.00060 <0.000420 <0.000420 <0.000420 <0.000418 <0.000420 <0.000420 <0.000418 <0.000418 <0.000418 <0.000418 <0.000418 <0.000418 <0.000418 <0.000418 	<0.0035 <0.00350 <0.00350 <0.00350 <0.0875 <0.0875 <0.0050 <0.00050 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350 <0.000350	 <0.0100 J <0.0100 <0.250 <0.250 <0.010 <0.0010 <0.00100 <0.00100 <0.00100 <0.00100 	0.0483 0.179 0.968 0.810 <0.0050 <0.00050 <0.000380 <0.000384 0.0019 J 0.000387 J 0.000384 0.000384 0.000384 0.000627 J 0.000384 J	0.0642 <0.0815 <0.0815 <0.0050 0.0061 0.011 0.018 0.013 0.0148 J 0.00798 J 0.0182 0.0179 0.0194	1.15 1.23 1.26 <0.010 <0.00060 <0.000720 <0.00073 <0.00072 0.0003 3 <0.00072 0.0018 0.00163 0.00176 0.00181 0.00283	 <0.0382 <0.955 <0.910 <0.0010 <0.0010 <0.00380 <0.00382 <0.0010 <0.00380 <0.00380 <0.00380 <0.00380 <0.00380 <0.00382 <0.00382 <0.00382 <0.00382 <0.00382 <0.00382 	0.0274 <0.0918 <0.09050 <0.00060 <0.000370 <0.00037 <0.00037 <0.00037 <0.000370 <0.000370 <0.000370 <0.000370 <0.000370 <0.000367 <0.000367	0.212 <0.250 <0.250 <0.0050 <0.00070 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100 <0.00100	0.00458 J <pre>-0.0902</pre> <pre><0.0902</pre> <pre><0.0050</pre> <pre><0.0010</pre> <pre><0.00360</pre> <0.00036 <0.00036 <0.00036 <0.00036 <0.00036 <0.00036 <0.000361 <0.000361 <0.000361 <0.000361 <0.000361 <0.000361	0.0949 0.110 J 0.0908 J <0.0050 0.00066 J 0.000389 J 0.000518 J 0.00041 J 0.00092 J 0.000228 0.00113 0.0012 0.00128 0.00162

Apr-16	Area Well ID	Analyte:	Dichloro- ethene	Dichloro-			Ethyl-		ic Compounds					
Analysis	Area Well ID	Units	ethene	Dichloro-				Income and						
Covers C	Area Well ID					methane	benzene				MTBE	Naphthalene		N-Propy
COMPANS	Area Well ID		ma/L				ma/L				ma/L	mg/L		benzene mg/L
Mary	Area Well ID		0.070	4.70E-03		0.005	0.700	4.47E-01			0.143	0.030		
Miles Mile			USEPA MCL	USEPA TW		USEPA MCL	USEPA MCL	WQCC TW			WQCC TW	WQCC HH		
Part			<0.0030	<0.0030	0.0045 J	<0.0050	0.11	0.065	0.41	<0.0050	<0.0030	0.140	0.0059 J	0.083
Cot-15														0.160
Month Mont													0.00782 J 0.00529 J	0.201 0.137
MW-92 Ag-1-16													0.00378 J	0.110
No.1-16	MW-62													0.145 0.110
Cel-15	"""	Nov-14	<0.013	<0.021	<0.018	< 0.05	0.910	0.14	0.08 J	<0.19	0.025 J	0.42 J4	<0.018	0.210
April														0.167 0.244
MW-97 Nov-14					<0.00875									0.132
Apr-16	10000												<0.0361 J6	0.234 J
Oct-16	MVV-67													0.019 0.0234
MW-90		Oct-15	<0.00520	<0.00836	<0.00700	<0.0200	<0.00768	0.0301	<0.0144	<0.0764	0.924		<0.00722	<0.00698
MW-90 Apr-14 <0,00006														0.0120 0.0167
Apr-16	MW-90) Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	0.027	<0.00060	<0.0010	<0.00060	0.0025 J	<0.0010	0.0026
Coci-16														0.0038
MW-91 Ag-14 0.0036 0.00048 0.000380 0.00100 0.000384 0.000752 0.000719 0.00382 0.00367 0.003							< 0.000384							0.000834
WW-91 Apr-14													<0.000361	0.00142 <0.00034
Nov-14	MW-91													0.110
Delta	1	Nov-14	<0.065	<0.1	<0.088	<0.25	0.17 J	0.1 J	0.54	< 0.96	<0.092	<0.25	<0.09	0.11 J
MW-92 Apr-16	1													0.0882 0.119
MW-92 Apr-16 0.064	1	Apr-16	<0.0130	<0.0209	<0.0175	<0.0500	0.899	0.118	1.33	<0.191	<0.0184	0.124 J	<0.0180	0.140
MW-94 Nov-14 <0.0030	MW-92													0.113 J 0.0510
Nov-14		Oct-16	0.0968	<0.00836	<0.00700	<0.0200	0.400	0.0242	0.0947	<0.0764	0.134	0.174	<0.00722	0.0329
## Apr-15	MW-93													0.110 0.074
Ce:15	1			<0.00420	0.00479 J	<0.0100 J		0.0425					0.00461 J	0.074
MW-96 No.14 -0.0052 -0.00418 -0.00350 -0.0140 -0.0144 -0.0258 -0.25 -0.0382 -0.00367 -0.0326 -0.00361 -0													0.00496 J	0.0743
MW-94 Nov-14														0.00919
Apr-16	MW-94	Nov-14	< 0.0052	<0.0084	0.0200	<0.02	0.58	0.084	0.31	<0.076	1.30	0.220	0.04	0.13
No. Ci-16 Ci-16 Ci-10														0.0923 0.120
Apr-14	1 L	Oct-16	<0.00130	<0.00209	0.0163	<0.00500	0.564	0.0705	0.202	<0.0191	2.01	0.128	0.0207	0.104
Apr-15	MW-95													<0.0050
Apr-15	efine												<0.0010	<0.00035
Apr-15	£													< 0.00034
DC:15 < 0.13 < 0.209 < 0.175 < 0.5 < 0.192 < 0.163 < 0.36 < 1.91 39.2 < 0.5 < 0.18	S 10100-90													0.070 J 0.044
Apr-16 <0.00520														0.0395
NW-98 Apr-14 C C C C C C C C C														<0.174 0.0861
Apr-14 FD <0.0060 <0.0060 <0.0050 <0.010 <0.0078 2 <0.010 <0.0060 <0.0060 <0.010 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.010 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060 <0.0060	l	Oct-16	< 0.0130	<0.0209	<0.0175	<0.0500	<0.0192	0.0675	< 0.0360	<0.191	39.6	<0.0500	<0.0180	0.0551
Nov-14	MW-98													0.11 0.11
Oct-15 <0.00650		Nov-14	<0.065	<0.1	<0.088	<0.25	0.630	<0.082	1.6	< 0.96	<0.092	0.45 JJ4	<0.09	0.097 J
Apr-16 <0.0260														0.0968
MW-137 Oct-15 <0.0260 <0.0418 <0.0350 <0.1 1.59 0.0997 J 0.881 <0.382 0.0606 J 0.215 J <0.0361 Apr-16 <0.0650 <0.104 <0.0875 <0.250 1.65 0.0044 <0.0957 <0.050 <0.104 <0.0957 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951 <0.0951				<0.0418	< 0.0350					<0.382				0.0527
Apr-16 <0.0650	MM/ 12													0.08 J 0.143
	IVIVV-137													0.143 0.159 J
	MM/ 400		<0.0650	<0.104 <0.00836	<0.0875	<0.250 <0.0200	1.54 0.569	0.0962 J	0.757	< 0.955	<0.0918 0.0926	<0.250 0.0894 J	<0.0902 0.00966 J	0.136 J
	IVIVV-130		<0.00320		<0.00700			0.0664	0.00736 J	<0.0764			0.00366 J	0.0973 0.0867
Oct-16 <0.00260														0.0664
70.10								0.0.00					0.000511 J	0.0175
RW-2 Apr-15 0.619 <0.00420 0.00554 J <0.0100 J 1.02 0.0551 0.445 <0.0380 J <0.00370 0.157 J 0.0106	RW-2	Apr-15	0.619	<0.00420	0.00554 J	<0.0100 J	1.02	0.0551	0.445	<0.0380 J	<0.00370	0.157 J	0.0106	0.0813
RW-2R Apr-16														0.0412
RW-7R Apr-16 <0.000260 <0.000418 <0.000350 <0.00100 <0.000384 <0.000326 <0.000719 <0.00382 0.0687 <0.00100 <0.000361	RW-7R	Apr-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.0687	<0.00100	< 0.000361	< 0.00034
RW-8 Apr-15 < 0.00260 < 0.00420 < 0.00350														0.00788
Apr-14 <0.00060 <0.00060 0.0013 J <0.0010 0.0015 J 0.1 0.024 <0.0010 0.0034 J 0.0075 0.0099	100-9											0.0075		0.035
Apr-15 < 0.0130 <0.0210 <0.0180 0.0564 J <0.0190 0.0643 <0.0360 <0.19 <0.0180 <0.0500 <0.0180	1			<0.0210										0.0179
Apr-16 <0.00130 <0.00209 <0.00175 <0.00500 0.00775 0.0698 0.0708 <0.0191 0.00656 0.00554 0.00303 	RW-10													0.0367 < 0.0050
Apr-14 < 0.00060		Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
	1	Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	0.00120 J <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100	<0.000360 <0.000361	<0.00035
Apr-16 <0.000260 <0.000418 <0.000350 <0.00100 <0.000384 <0.000326 <0.000719 <0.00382 <0.000367 <0.00100 <0.000361	RW-16	Apr-13	< 0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.0050	<0.010	<0.010	0.0051	<0.0050	<0.0050	<0.0050
RW-16 Apr-13 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <														<0.00050
RW-16 Apr-13 <0.0050 <0.0050 <0.0050 <0.0010 <0.0050 <0.0050 <0.0010 <0.0050 <0.0010 <0.0050 <0.0010 <0.0050 <0.0010 <0.0050 <0.0010 <0.0050 <0.0010 <0.0050 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <0.0010 <		Apr-15	<0.000260	<0.000420	<0.000350	0.00114 J	<0.000380	<0.000330	<0.000720	<0.00380	0.019	<0.00100	<0.000360	< 0.00035
RW-16	D\N/ 47	Apr-16	<0.000260	<0.000418 <0.0050	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.0186	<0.00100 <0.0050	<0.000361	<0.00034
RW-16	1204-17	Apr-13 Apr-14	<0.0050	<0.00060	<0.00050	<0.0010	<0.0050	<0.00050	<0.00060	<0.0010	0.0031 J	<0.0050	<0.0010	< 0.00050
RW-16	1	Apr-15	< 0.000260	<0.000420	<0.000350	0.00112 J	<0.000380	<0.000330	<0.000720	<0.00380	0.00772	<0.00100	<0.000360	<0.00035
RW-16 Apr-13 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050 <0.0050	MW-11													<0.00034
RW-16	[]	Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	< 0.00037	<0.0010 J4	<0.00036	<0.0003
RW-16	p	Nov-14 FD Apr-15	<0.00026 <0.000260			<0.0010 <0.00100	<0.00038 <0.000380				<0.00037 <0.000370	<0.0010 0.00150 J		<0.00035
RW-16	i E	Oct-15	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.00034
RW-16	Zejer	Apr-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100 <0.00100 IA	<0.000361	<0.00034
RW-16	O MW 11		<0.000260	<0.000418	<0.00050	<0.00100	<0.000384	<0.00050	<0.000719	<0.00382	<0.000367	<0.00100 J4	<0.000361	<0.00034
RW-16	€ 10100-11G	Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010 J4	<0.00036	<0.0003
RW-16	₹ WW-11													<0.00035
RW-16	North &													<0.00034
RW-16	North Park												<0.000361	< 0.00034

		nalyte Grou	a.		rionyi	Torraci Havajo I	Refining LLC, Ai	Volatile Organ						1
	,	inalyte Grou	cis-1,2-	cis-1,3-		D: 11		Voiatile Organi	ic Compounds	<u> </u>				
		Analyt	e: Dichloro-	Dichloro-		Dichloro- methane	Ethyl- benzene	Isopropyl-		Methyl N-	MTBE	Naphthalene	N-Butyl-	N-Propyl-
		Unit	ethene s: mg/L	propene mg/L	Cymene mg/L	mg/L	mg/L	benzene mg/L	m,p-Xylene mg/L	Butyl Ketone mg/L	mg/L	mg/L	benzene mg/L	benzene mg/L
		CGWS		4.70E-03		0.005	0.700	4.47E-01			0.143	0.030		
		GWSL Source		USEPA TW		USEPA MCL	USEPA MCL	WQCC TW			WQCC TW	WQCC HH		
Area	Well ID MW-119	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
North RO Reject Field		Apr-14 FI	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
o 등		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	<0.0010 J4 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
₹ ₩ iŢ		Oct-15	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	< 0.000370	<0.00100	<0.000361	< 0.000349
Š		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100 J4	<0.000361 <0.000361	<0.000349 <0.000349
-	MW-18	Oct-16	<0.000260	<0.0050	<0.0050	<0.00100	<0.0050	<0.0050	<0.000719	<0.00362	<0.0050	<0.00100 34	<0.0050	<0.0050
		Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	< 0.00070	<0.0010	<0.00050
		Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-45	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	0.0043 J	<0.00070	<0.0010	<0.00050
		Nov-14	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	0.0048 0.00356	<0.0010 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Apr-15 Oct-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000384	<0.000330	<0.000720	<0.00380	0.00356	<0.00100	<0.000361	<0.000330
		Apr-16	<0.000418	<0.000418	<0.000326	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00152	<0.00100	<0.000361	<0.000349
	MW-53	Oct-16 Apr-13	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	0.00206 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
		Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	< 0.00070	<0.0010	<0.00050
		Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-54A	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038 <0.00380	<0.00037	<0.0010	<0.00036	<0.00035
	1	Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
	MW-54B	Oct-16 Apr-13	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	<0.000367 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
		Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	< 0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	<0.000350
	MW-55	Apr-14 FI	<0.00060 O <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.0010 <0.0010	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.0010 <0.0010	<0.00060 <0.00060	<0.00070 <0.00070	<0.0010 <0.0010	<0.00050 <0.00050
		Nov-14 Ft	<0.00080	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0010	0.00049 J	<0.00070	<0.0010	<0.00035
		Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00433 0.0163	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.00521	<0.00100	< 0.000361	<0.000349
	MW-56	Apr-14 Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	0.0057 0.004	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15	<0.00020	<0.000420	<0.000350	<0.0010	<0.000380	<0.000330	<0.00072	<0.00380	0.0129	<0.0010	< 0.000360	<0.000350
		Oct-15	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719	<0.00382 <0.00382	0.00975 0.0160	<0.00100 <0.00100	<0.000361	<0.000349 <0.000349
		Apr-16 Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719 <0.000719	<0.00382	0.00819	<0.00100	<0.000361 <0.000361	<0.000349
	MW-108	Apr-14	<0.00060	<0.00060	0.0019 J	<0.0010	0.0049 J	0.023	0.051	<0.0010	<0.00060	0.0092	0.0029 J	0.021
		Nov-14 Apr-15	<0.0013 <0.00260	<0.0021 <0.00420	0.0028 J <0.00350	<0.0050 <0.0100	0.0056 0.0101	0.024 0.033	0.056 0.0665	<0.019 <0.0380	<0.0018 <0.00370	0.012 J 0.0113 J	0.0027 J <0.00360	0.025 0.0311
		Oct-15	< 0.00260	<0.00418	< 0.00350	<0.0100	0.00812 J	0.0345	0.081	<0.0382	< 0.00367	0.0166 J	<0.00361	0.0346
NCL		Apr-16 Oct-16	<0.0130 <0.00650	<0.0209 <0.0104	<0.0175 <0.00875	<0.0500 <0.0250	<0.0192 <0.00960	0.0360 J 0.0293	0.0795 0.0721	<0.00382 <0.0955	<0.0184 <0.00918	<0.0500 <0.0250	<0.0180 <0.00902	0.0380 J 0.0319
-	NCL-31	Apr-14	<0.00060	<0.00060	<0.00070	<0.0010	<0.00050	0.00055 J	<0.00060	<0.0010	0.00060 J	0.0021 J	<0.0010	<0.00050
		Nov-14	<0.00026	<0.00042 <0.000420	<0.00035	<0.0010	<0.00038	0.0087	<0.00072	<0.0038 <0.00380	0.00078 J 0.000497 J	<0.0010	<0.00036	0.00041 J <0.000350
		Apr-15 Oct-15	<0.000260 <0.000260	<0.000420	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	0.000622 J 0.00689	<0.000720 <0.000719	<0.00380	< 0.000497 3	<0.00100 <0.00100	<0.000360 <0.000361	<0.000330
		Apr-16	<0.000260	<0.000418 <0.000418	<0.000350	<0.00100	<0.000384	0.000678 J	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	NCL-32	Oct-16 Nov-14	<0.000260 <0.00026	<0.000418	<0.000350 <0.00035	<0.00100 <0.0010	<0.000384 <0.00038	0.00483 < 0.00033	<0.000719 <0.00072	<0.00382 <0.0038	<0.000367 <0.00037	<0.00100 <0.0010	<0.000361 <0.00036	<0.000349 <0.00035
		Apr-15	<0.000260	<0.000420	< 0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.000476 J 0.000751 J	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	0.000385 J	<0.00100	<0.000361	<0.000349
	NCL-33	Apr-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Nov-14 Apr-15	<0.00026	<0.000420	< 0.000350	<0.00100	< 0.000380	<0.00033	<0.00072	<0.00380	<0.00037 0.000806 J	<0.0010	<0.000360	<0.000350
		Oct-15	<0.000260	<0.000418	<0.000350	<0.00100 J	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	NCL-34A	Nov-14	<0.0013	<0.0021	0.0082	< 0.0050	0.0048 J	0.091	0.1	<0.019	<0.0018	< 0.0050	0.0066	0.091
	1	Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	0.00696 0.00732	<0.00100 <0.00100	0.00565 0.00215	0.0929 0.0851	0.094 0.0653	<0.00380 <0.00382	<0.00730 0.00168	0.00636 <0.00100	0.00713 0.00646	0.101 0.0857
1	1	Apr-16	<0.0130	<0.0209	<0.0175	<0.0500	0.0758	0.100	0.188	<0.0382	<0.0184	<0.0500	<0.0180	0.112
1	NCL-44	Oct-16 Apr-14	<0.0260 <0.00060	<0.0418 <0.00060	<0.0350 <0.00050	<0.100 < 0.0010	<0.0384 <0.00050	0.0901 J 0.0013 J	0.111 <0.00060	<0.382 <0.0010	<0.0367 <0.00060	<0.100 0.0026 J	<0.0361 <0.0010	0.0971 J <0.00050
		Nov-14	<0.00026	<0.00042	< 0.00035	<0.0010	<0.00038	0.0018	< 0.00072	<0.0038	0.00058 J	<0.0010	<0.00036	<0.00035
	1	Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	0.000652 J 0.000446 J	<0.000720 <0.000719	<0.00380 <0.00382	0.000410 J <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	1	Apr-16	<0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	0.00618	< 0.000719	<0.00382	<0.000367	<0.00100	< 0.000361	< 0.000349
	No. :	Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	0.00177	<0.000719	<0.00382	<0.000367	<0.00100	< 0.000361	< 0.000349
	NCL-49	Apr-14 Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
	1	Nov-14 FI	< 0.00026	<0.00042	< 0.00035	<0.0010	<0.00038	< 0.00033	<0.00072	<0.0038	< 0.00037	<0.0010	<0.00036	<0.00035
I		Apr-15 FI	<0.000260 <0.000260	<0.000420 <0.000420	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000380	<0.000330 <0.000330	<0.000720 <0.000720	<0.00380 <0.00380	<0.000370 <0.000370	<0.00100 <0.00100	<0.000360 <0.000360	<0.000350 <0.000350
1		Oct-15	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
1		Oct-15 FI Apr-16	0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
1		Apr-16 FI		<0.000418	< 0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	< 0.000361	< 0.000349
1		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
H	KWB-2R	Oct-16 FI Nov-14	<0.000260 <0.0065	<0.000418 <0.01	<0.000350 <0.0088	<0.00100 <0.025	<0.000384 2.90	<0.000326 0.082	<0.000719 0.71	<0.00382 <0.096	<0.000367 0.034	<0.00100 0.510	<0.000361 0.01 J	<0.000349 0.16
1		Apr-15	< 0.00260	<0.00420	0.00468 J	<0.0100	0.992	0.0698	0.224	<0.0380	0.0186	0.0260 J	0.00730 J	0.119
iery		Oct-15 Apr-16	<0.0260 <0.000260	<0.0418 < 0.000418	<0.0350 0.000603 J	<0.1 <0.00100	1.72 0.0483	0.0921 J 0.0187	0.448 0.0496	<0.382 <0.00382	<0.0367 0.0231	<0.1 0.00806	<0.0361 0.00205	0.169 0.0314
Refinery		Oct-16	<0.000260	<0.000418	0.000596 J	<0.00100	0.0130	0.033	0.027	<0.00382	0.0184	0.0044 J	0.00303	0.0544
South F	KWB-5	Nov-14	<0.0026 <0.000260	<0.0042 <0.000420	<0.0035 0.000613 J	<0.01 < 0.00100	0.0095 J 0.0395	0.0066 J 0.0146	<0.0072 0.0323	<0.038 <0.00380	9.9 E <0.000370	0.023 J 0.0392	<0.0036 0.0022	0.011 0.0226
Sol	1	Apr-15 Oct-15	<0.000260	<0.000420	0.000613 J 0.000434 J	<0.00100	0.0395	0.0146	0.0323	<0.00380	<0.000370 10.7	0.0392	0.0022	0.0226
	1	Apr-16	<0.000260	<0.000418	<0.000350	<0.00100	0.00678	0.0105	0.0123	<0.00382	12.6	0.0114	0.00148	0.0181
	1	Oct-16	< 0.00130	<0.00209	<0.00175	<0.00500	<0.00192	0.0086	<0.00360	<0.0191	9.88	0.00511 JJ4	<0.00180	0.0132

	4	nalyte Group:	I					Volatile Organ	ic Compounds	1				
	-	maryte Group.	cis-1,2-	cis-1,3-	I			Volutile Organi	ic compounds				I	
		Analyte:	Dichloro-	Dichloro-		Dichloro-	Ethyl-	Isopropyl-		Methyl N-	MTBE	Naphthalene	N-Butyl-	N-Propyl-
		•	ethene	propene	Cymene	methane	benzene	benzene	m,p-Xylene	Butyl Ketone			benzene	benzene
		Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CGWSL:	0.070	4.70E-03		0.005	0.700	4.47E-01			0.143	0.030		
		GWSL Source:	USEPA MCL	USEPA TW		USEPA MCL	USEPA MCL	WQCC TW			WQCC TW	WQCC HH		
Area	Well ID		.0.000	.0.0040	0.0040.1	-0.04	0.040		2.22	.0.000	0.100	2 200	.0.000	0.050
	KWB-6	Nov-14 Apr-15	<0.0026 <0.00650	<0.0042 <0.0100	0.0042 J <0.00880	<0.01 <0.0250	0.810 2.04	0.04 0.0738	0.93 2.71	<0.038 <0.0960	0.160 0.119	0.098 0.239	<0.0036 <0.00900	0.058 0.121
		Oct-15	<0.13	<0.209	<0.175	<0.5	0.831	<0.163	1.03	< 1.91	9.07	<0.5	<0.18	<0.174
		Apr-16	<0.00130	<0.00209	0.00591	<0.00500	0.799	0.0477	1.64	<0.0191	0.138	0.137	0.00837	0.0883
		Oct-16	< 0.00520	<0.00836	<0.00700	<0.0200	0.241	0.0173 J	0.394	< 0.0764	0.135	0.0549 J	<0.00722	0.032
	MW-28	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	0.0052	0.019	0.0080 J	<0.0010	3.60	0.0042 J	0.0013 J	0.02
		Nov-14	<0.0065	< 0.01	<0.0088	< 0.025	0.150	0.066	0.22	<0.096	2.00	0.06 J	<0.0090	0.081
		Apr-15 Oct-15	<0.0260 <0.0260	<0.0420 <0.0418	<0.0350 <0.0350	<0.1 <0.1	0.0625 J 0.0441 J	0.0689 J 0.0671 J	0.194 0.243	<0.38 <0.382	1.33 1.11	<0.1 <0.1	<0.0360 <0.0361	0.0744 J 0.0890 J
		Apr-16	<0.00260	<0.00418	<0.00341	<0.0100	0.0276	0.0433	0.156	<0.0382	0.261	0.0247 J	<0.00361	0.0577
		Oct-16	< 0.0130	<0.0209	< 0.0175	< 0.0500	0.0796	0.0876	0.338	<0.191	0.630	0.0504 J	0.0552	0.117
	MW-48	Nov-14	<0.0065	<0.01	<0.0088	<0.025	0.075	0.041	0.12	<0.096	1.10	0.028 J	<0.0090	0.068
		Apr-15	<0.00260	<0.00420	<0.00350	<0.0100	0.158	0.0361	0.143	<0.0380	0.223	0.0245 J	<0.00360	0.0478
		Oct-15	<0.00130	<0.00209	0.00472 J <0.00700	<0.00500	0.0655	0.0549	0.119	<0.0191 <0.0764	0.832	0.0128 J	0.0065 <0.00722	0.0857
		Apr-16 Oct-16	<0.00520 <0.00130	<0.00836 <0.00209	0.0052	<0.0200 <0.00500	0.790 0.448	0.0670 0.0689	0.671 0.502	<0.0764	0.326 0.851	0.101 0.0832	0.00722	0.0983 0.111
	MW-50	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Nov-14	< 0.00026	< 0.00042	0.00086 J	<0.0010	<0.00038	< 0.00033	< 0.00072	<0.0038	< 0.00037	<0.0010	< 0.00036	< 0.00035
		Apr-15	< 0.000260	<0.000420	< 0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	0.00219	<0.00100	<0.000360	<0.000350
		Oct-15	<0.000260 J	<0.000418 J	<0.000350 J	<0.00100	<0.000384 J	<0.000326 J	<0.000719 J	<0.00382	<0.000367	<0.00100 J	<0.000361 J	<0.000349
		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-52	Apr-14	<0.000200	<0.000418	<0.00050	<0.00100	<0.00050	<0.00050	<0.000713	<0.00302	<0.00060	<0.0070	<0.000301	<0.000549
	52	Apr-14 FD	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
	1	Nov-14	<0.00026	<0.00042	< 0.00035	<0.0010	<0.00038	< 0.00033	<0.00072	<0.0038	<0.00037	<0.0010	<0.00036	<0.00035
	1	Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
	l	Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 J <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	1	Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349
	MW-64	Apr-16	<0.00200	<0.0209	<0.0175	<0.0500	3.11	0.0817	5.26	<0.00382	0.666	0.195 J	<0.0180	0.122
		Oct-16	<0.0260	<0.0418	<0.0350	<0.100	2.61	0.0602 J	3.79	<0.382	0.531	0.140 J	<0.0361	0.0878 J
	MW-65	Nov-14	<0.013	<0.021	<0.018	<0.05	1.20	0.053	0.18	<0.19	3.40	0.22 J	<0.018	0.083
	1	Apr-15	<0.00260	<0.00420	<0.00350	<0.0100	1.03	0.0578	0.135	<0.0380	3.22	0.239	0.0101	0.085
	1	Apr-16 Oct-16	<0.00260 <0.00520	<0.00418 <0.00836	<0.00341 <0.00700	<0.0100 <0.0200	0.288 0.0574	0.0444 0.045	0.0822 0.0205 J	<0.0382 <0.0764	3.71 2.70	0.155 0.194	0.00732 J 0.00791 J	0.0577 0.0628
	MW-66	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	0.0039 J	0.03	0.0055 J	<0.0010	2.30	0.055	0.0069	0.038
		Nov-14	<0.0026	<0.0042	<0.0035	<0.01	0.19	0.079	0.1	<0.038	1.90	0.22 J4	0.01 J	0.12
		Apr-15	<0.0130	<0.0210	<0.0180	<0.0500	0.0615	0.0266 J	0.0668	<0.19	1.66	0.0617 J	<0.0180	0.0342 J
		Oct-15	<0.000260	<0.000418	<0.000350	<0.00100	0.0234	0.0565	0.0281	<0.00382	2.42	0.133	0.007	0.0807
		Apr-16 Oct-16	<0.00260 <0.000260	<0.00418 <0.000418	<0.00341 <0.000350	<0.0100 <0.00100	0.0181 0.0214	0.0337 0.0617	0.0285 0.0228	<0.0382 <0.00382	1.48	0.0638 0.0979	0.00609 J 0.00948	0.0523 0.104
	MW-99	Nov-14	<0.0026	<0.00410	0.0083 J	<0.01	0.59	0.037	0.69	<0.038	3.4 E	0.044 J	0.0065 J	0.052
		Apr-15	< 0.00650	<0.0100	<0.00880	< 0.0250	0.252	0.0295	0.622	<0.0960	0.0799	0.0376 J	<0.00900	0.0338
		Oct-15	<0.00650	<0.0104	0.0122 J	<0.0250	0.551	0.0559	0.509	<0.0955	3.96	0.0453 J	0.0104 J	0.0768
		Apr-16 Oct-16	<0.00260 <0.00520	<0.00418 <0.00836	0.00375 J <0.00700	<0.0100 <0.0200	0.629 0.635	0.0459 0.0462	0.531 0.591	<0.0382 <0.0764	1.99 2.45	0.0656 0.0343 J	0.00756 J <0.00722	0.0706 0.071
	MW-101	Apr-14	<0.00320 <0.0013 R	<0.00060	<0.00050	<0.0010	0.015	0.0074	0.011	<0.0010	<0.00060	0.0029 J	<0.0012	0.0032 J
_		Nov-14	<0.0026	<0.0042	< 0.0035	<0.01	0.0050 J	0.0078 J	<0.0072	<0.038	0.120	0.01 JJ4	< 0.0036	0.0050 J
Je J		Apr-15	<0.00130	<0.00210	<0.00180	<0.00500 J	0.00202 J	0.00279 J	<0.00360	<0.0190 J	0.113	<0.00500 J	<0.00180	<0.00170
Sefi		Oct-15 Apr-16	<0.00130 <0.000260	<0.00209 <0.000418	<0.00175 <0.000350	<0.00500 <0.00100	<0.00192 0.00176	<0.00163 0.00564	<0.00360 <0.000719	<0.0191 <0.00382	0.0981 0.119	<0.00500 <0.00100	<0.00180 0.000427 J	<0.00174 0.00597
South Refinery		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	0.000381 J	<0.000719	<0.00382	0.104	<0.00100	<0.000361	<0.000349
Sot	MW-102	Nov-14	<0.013	<0.021	<0.018	<0.05	0.990	0.04 J	1.3	<0.19	2.00	0.18 J	<0.018	0.057
		Apr-15	<0.00260	<0.00420	<0.00350	<0.0100	0.602	0.0207	0.598	<0.0380	1.88	0.129	<0.00360	0.0257
		Oct-15 Apr-16	<0.0260 <0.0260	<0.0418 <0.0418	<0.0350 <0.0350	<0.1 <0.100	1.04 0.858	0.0583 J 0.0503 J	1.06 0.544	<0.382 <0.382	2.12	0.256 J 0.278 J	<0.0361 <0.0361	0.0897 J 0.0846 J
		Oct-16	<0.0260	<0.0418	<0.0350	<0.100	1.03	0.0524 J	0.624	<0.382	1.61	0.278 J	<0.0361	0.0814 J
	MW-103	Apr-13	<0.0050	<0.0050	< 0.0050	<0.010	0.036	0.02	<0.010	<0.010	<0.0050	0.013	<0.0050	0.024
		Apr-14	<0.00060	<0.00060 <0.000420	0.0036 J	<0.0010	0.150	0.031	0.012	<0.0010	<0.00060	0.051	0.0061	0.046
		Apr-15 Apr-16	<0.000260 <0.00130	<0.000420	0.00207 <0.00175	<0.00100 <0.00500	0.0879 0.0508	0.0247 0.0220	0.00819 <0.00360	<0.00380 <0.0191	0.000441 J <0.00184	0.022 0.0108 J	0.00291 0.00286 J	0.0357 0.0311
	MW-104		<0.00060	<0.00060	< 0.00050	0.020	0.0012 J	0.052	<0.00060	<0.0010	<0.00060	0.0030 J	<0.0010	0.0046 J
		Apr-14 FD	<0.00060	<0.00060	<0.00050	0.021	0.0013 J	0.052	<0.00060	<0.0010	<0.00060	0.0027 J	<0.0010	0.0043 J
	1	Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	0.0021	0.037	<0.00072	<0.0038	0.00049 J	0.0018 JJ4	0.00050 J	0.0074
	1	Nov-14 FD Apr-15	<0.0026 <0.000260	<0.0042 <0.000420	<0.0035 <0.000350	<0.01 <0.00100	<0.0038 <0.000380	0.046 0.0432	<0.0072 <0.000720	<0.038 <0.00380	<0.0037 0.00138	<0.01 <0.00100	<0.0036 <0.000360	0.0097 J 0.00324
	1	Apr-15 FD	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380 0.000481 J	0.0432	<0.000720	<0.00380	0.00138	<0.00100	<0.000360	0.00324
	1	Oct-15	<0.00130	<0.00209	< 0.00175	<0.00500	0.0126	0.0449	<0.00360	<0.0191	0.00189 J	<0.00500	<0.00180	0.00458 J
	1	Oct-15 FD	<0.000260	<0.000418	<0.000350	<0.00100	0.0117	0.0406	0.000722 J	<0.00382	0.00199	0.00132 J	0.000449 J	0.00402
	1	Apr-16 FD	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	0.00108 0.00107	0.0535 J6 0.0602	<0.000719 <0.000719	<0.00382 <0.00382	0.00130 0.00120	<0.00100 <0.00100	0.000558 J 0.000602 J	0.00447 0.00513
		Oct-16	<0.00130	<0.000418	<0.000350	<0.00100	0.00107	0.0602	<0.000719	<0.00382	<0.00120	<0.00100	0.000602 J	0.00513
	L	Oct-16 FD	<0.00130	<0.00209	<0.00175	<0.00500	0.00721	0.0475	<0.00360	<0.0191	0.00509	<0.00500	0.00422 J	0.005 J
	MW-105	Nov-14	<0.065	<0.1	<0.088	<0.25	0.580	<0.082	0.23 J	<0.96	<0.092	<0.25	< 0.09	<0.087
	1	Apr-15	<0.00130	<0.00210	0.00604	<0.00500 J	0.545	0.0573	0.205	<0.0190 J	<0.00180	0.0623 J	0.00866	0.0639
	1	Oct-15 Apr-16	<0.00260 <0.0650	<0.00418 <0.104	0.00614 J <0.0875	<0.0100 <0.250	0.188 2.02	0.0321 0.104 J	0.109 0.379	<0.0382 <0.955	<0.00367 <0.0918	0.0299 J <0.250	0.00651 J <0.0902	0.0349 0.104 J
	1	Apr-16 Oct-16	<0.0650	<0.104	<0.0875	<0.250	2.02	0.104 J 0.136	0.379	<0.382	<0.0918	<0.250 0.129 J	<0.0902	0.104 J 0.147
	MW-106	Apr-14	<0.012	<0.012	<0.010	<0.020	0.160	0.036 J	0.29	<0.020	0.047 J	0.083 J	<0.020	0.047 J
		Apr-15	<0.000260	<0.000420	0.000357 J	0.00100 J	0.0206	0.00691	0.0475	<0.00380	<0.000370	0.0126	0.000406 J	0.00815
		Oct-15 Apr-16	<0.0260 <0.00650	<0.0418 <0.0104	<0.0350 <0.00875	<0.1 <0.0250	0.0823 J 0.0446	<0.0326 0.0329	0.217 0.203	<0.382 <0.0955	0.0397 J 0.0580	0.113 J 0.0442 J	<0.0361 <0.00902	<0.0349 0.0430
		Oct-16	<0.00030	<0.0104	<0.00675	\0.0250	0.0446 0.044 J	0.0329 0.0469 J	0.203	<0.0955	0.109	0.0442 J	<0.0180	0.0430
	MW-107	Apr-14	<0.0060	<0.0060	< 0.0050	<0.010	0.048 J	0.024 J	0.12	<0.010	1.6 J	0.110	<0.010	0.031 J
		Nov-14	<0.0026	<0.0042	<0.0035	<0.01	0.300	0.042	0.12	<0.038	2.3 E	0.15 J4	<0.0036	0.057
	1	Apr-15	<0.00260	<0.00420	<0.00350	<0.0100	0.00658 J	0.0107	0.0146	<0.0380	1.77	0.0157 J	<0.00360	<0.00350
		Oct-15 Apr-16	<0.0260 <0.000260	<0.0418 <0.000418	<0.0350 0.00123	<0.1 <0.00100	0.0403 J 0.00466	0.0454 J 0.0417	0.0867 J 0.00427	<0.382 <0.00382	2.77 2.44	<0.1 0.00773	<0.0361 0.000878 J	0.0689 J 0.0602
	<u> </u>	Oct-16	<0.00130	<0.00209	<0.00175	<0.00500	0.0192	0.0457	0.00857 J	<0.0191	3.05	0.0614	0.00182 J	0.0693
	MW-109	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	0.050	0.011	0.0059 J	<0.0010	<0.00060	0.0036 J	0.0020 J	0.01
	1	Nov-14	<0.00026 J3	<0.00042 J5J3	<0.00035 J3	<0.0010	0.020	0.028	0.0027 J3	<0.0038 J5J3	<0.00037 J3	0.0026 JJ4J5J	0.0013 J5J3	0.021
	1	Apr-15 Oct-15	<0.00260 <0.00260	<0.00420 <0.00418	<0.00350 <0.00350	<0.0100 <0.0100	0.019 0.0126	0.0351 0.0344	0.0176 0.0176	<0.0380 <0.0382	<0.00370 <0.00367	<0.0100 <0.0100	<0.00360 <0.00361	0.0297 0.0305
	1	Apr-16	<0.00260	<0.00209	<0.00330	<0.0100	0.00864	0.0344	0.0176	<0.0362	<0.00367	<0.0100	0.00210 J	0.0359
	L	Oct-16	<0.00520	<0.00836	<0.00700	<0.0200	0.0115 J	0.0438	<0.0144	<0.0764	<0.00734	<0.0200	<0.00722	0.0452
	MW-110	Apr-14	<0.00060	<0.00060	0.0017 J	< 0.0010	0.070	0.021	0.028	<0.0010	<0.00060	0.013	0.0021 J	0.02
		Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	0.0016	0.0022	<0.00072	<0.0038	<0.00037	0.0017 JJ4	<0.00036	0.0015
		Apr-15 Oct-15	<0.000260 <0.00130	<0.000420 <0.00209	0.000563 J 0.00315 J	<0.00100 <0.00500	0.00609 0.182	0.0331 0.0305	0.00624 0.0298	<0.00380 <0.0191	<0.000370 <0.00184	0.00482 J 0.00731 J	0.00231 0.00291 J	0.0279 0.0347
1	1	Apr-16	<0.00130	<0.00209	<0.003133	<0.00300	0.000927 J	0.0260	0.000733 J	<0.00382	<0.00104	<0.00100	0.002313	0.0212
L		Oct-16	<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	0.00078 J	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349

	Δ	nalyte Group:			1101131		Refining LLC, Ai	Volatile Organi						
	,	Analyte	cis-1,2- Dichloro-	cis-1,3- Dichloro-		Dichloro-	Ethyl-	Isopropyl-	ic compounds	Methyl N-	MTBE	Naphthalene	N-Butyl-	N-Propyl-
		Units	ethene mg/L	propene mg/L	Cymene mg/L	methane mg/L	benzene mg/L	benzene mg/L	m,p-Xylene mg/L	Butyl Ketone mg/L	mg/L	mg/L	benzene mg/L	benzene mg/L
Aros	C Well ID	CGWSL: GWSL Source: Date Dup		4.70E-03 USEPA TW		0.005 USEPA MCL	0.700 USEPA MCL	4.47E-01 WQCC TW			0.143 WQCC TW	0.030 WQCC HH		
Aica	RA-313	Apr-13 Apr-14	<0.0050 <0.00060	<0.0050 <0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
ery		Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	0.00129 J <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
South Refinery	RW-4 RW-4R	Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	0.00245 <0.000384	0.00966 0.00999	<0.000720 <0.000719	<0.00380 <0.00382	0.0902 0.191	<0.00100 <0.00100	0.000393 J <0.000361	0.00458 0.00118
South	RW-5R	Apr-15	<0.00260	<0.00420	<0.00350	<0.0100	1.03	0.0398	1.39	<0.0380	2.15	0.174	0.00606 J	0.0598
"	RW-6	Apr-16 Apr-15	<0.00520 <0.00260	<0.00836 <0.00420	<0.00700 <0.00350	<0.0200 <0.0100	1.20 0.0476	0.0643 0.0173	1.68 0.102	<0.0764 <0.0380	1.64 2.27	0.205 0.0602	0.0117 J 0.00738 J	0.110 0.0237
	RW-6R MW-114	Apr-16 Apr-14	<0.000260 <0.00060	<0.000418 <0.00060	0.000401 J <0.00050	<0.00100 <0.0010	0.00474 <0.00050	0.00797 <0.00050	0.00472 <0.00060	<0.00382 <0.0010	2.68 <0.00060	0.00574 <0.00070	0.00138 <0.0010	0.00731 < 0.00050
		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380	<0.00037 <0.000370	0.0012 JJ4 <0.00100	<0.00036 <0.000360	<0.00035 <0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
ple!	MW-115	Oct-16 Apr-14	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 <0.00050	<0.00100 <0.0010	<0.000384 <0.00050	<0.000326 <0.00050	<0.000719 <0.00060	<0.00382 <0.0010	<0.000367 <0.00060	<0.00100 <0.00070	<0.000361 <0.0010	<0.000349 <0.00050
South RO Reject Field	10100-113	Nov-14	<0.00026	<0.00042	<0.00035	<0.0010	<0.00038	<0.00033	<0.00072	<0.0038	<0.00037	<0.0010 J4	<0.00036	< 0.00035
SO Re		Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
u‡		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
S	MW-116	Apr-14 Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	<0.00050 <0.00038	<0.00050 <0.00033	<0.00060 <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010 J4	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15 Oct-15	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
		Apr-16	<0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100	<0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	< 0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	MW-49	Oct-16 Apr-14	<0.000260 <0.00060	<0.00060	0.00090 J	<0.00100 <0.0010	<0.000384 0.0043 J	0.018	0.034	<0.0010	<0.000367 0.049	0.0054	0.0032 J	0.015
		Nov-14 Apr-15	<0.00052 <0.000260	<0.00084 <0.000420	0.00095 J 0.000537 J	<0.0020 <0.00100 J	0.0036 0.00274	0.022 0.014	0.026 0.0175	<0.0076 <0.00380	0.055 0.0553 J	0.0031 J 0.00117 J	0.0026 0.00116	0.019 0.00957
		Oct-15 Apr-16	<0.000260 <0.00520	<0.000418 <0.00836	0.000770 J <0.00700	<0.00100 <0.0200	0.00457 <0.00768	0.0247 0.0219	0.038 0.0540	<0.00382 <0.0764	0.0447 0.0535	0.00255 J <0.0200	0.00158 < 0.00722	0.0157 0.0206
	TEL-1	Oct-16 Apr-14	<0.0260 <0.00060	<0.0418 <0.00060	<0.0350 <0.00050	<0.100 <0.0010	<0.0384 <0.00050	<0.0326 0.0020 J	0.0831 J <0.00060	<0.382 <0.0010	0.0628 J 0.0039 J	<0.100 0.0029 J	<0.0361 <0.0010	<0.0349 <0.00050
		Apr-14 FD Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	0.0021 J <0.00035	<0.0010 <0.0010	<0.00050 0.00047 J	0.0019 J 0.0013	<0.00060 <0.00072	<0.0010 <0.0038	0.0040 J 0.0018	0.0029 J <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15	<0.000260	<0.000420	< 0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380 <0.00382	0.00478	<0.00100	<0.000360	< 0.000350
		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 0.000718 J	0.000924 J 0.00136	<0.000719 <0.000719	<0.00382	0.00245 0.00229	0.00102 J <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
	TEL-2	Oct-16 Apr-14	<0.000260 <0.00060	<0.000418 <0.00060	<0.000350 0.0055	<0.00100 <0.0010	0.000666 J 0.015	0.001 0.05	<0.000719 0.24	<0.00382 <0.0010	0.000724 J 0.011	<0.00100 0.023	<0.000361 0.0089	<0.000349 0.064
		Nov-14 Apr-15	<0.0026 <0.00520	<0.0042 <0.00840	0.0043 J <0.00700	<0.01 <0.0200 J	0.0099 J 0.0119 J	0.043 0.0407	0.18 0.171	<0.038 <0.0760	0.012 0.0113 JJ3	0.017 J <0.0200	0.0040 J <0.00720	0.051 0.0462
_		Oct-15 Apr-16	<0.00130 <0.000260	<0.00209 <0.000418	0.00397 J 0.00438	<0.00500 <0.00100	0.00577 0.00692	0.0405 0.0380	0.146 0.136	<0.0191 <0.00382	0.011 0.0156	0.00630 J 0.00966	0.00382 J 0.00424	0.0487 0.0484
Ξ	TEL-3	Oct-16 Apr-14	<0.00260 <0.00060	<0.00418 <0.00060	<0.00350 0.0015 J	<0.010 < 0.0010	0.00418 J <0.00050	0.0325 0.06	0.116 0.018	<0.0382 <0.0010	0.0110 0.0030 J	<0.0100 0.0034 J	0.00404 J <0.0010	0.0376 0.013
	122 0	Nov-14 Apr-15	<0.00026 <0.00260	<0.00042 <0.00420	0.00088 J <0.00350	<0.0010 <0.0100	0.00068 J <0.00380	0.05 0.0471	0.012 0.00929 J	<0.0038 <0.0380	<0.00037 0.00560 J	0.0010 J <0.0100	0.0016 <0.00360	0.0087 0.00541 J
		Oct-15	<0.000260	<0.000418	0.00128	<0.00100	0.000880 J	0.0605	0.0171	<0.00382	0.000964 J	0.00123 J	0.00133	0.0092
		Apr-16 Oct-16	<0.00650 <0.000260	<0.0104 < 0.000418	<0.00875 0.000629 J	<0.0250 <0.00100	<0.00960 0.000539 J	0.0593 0.0336	<0.0180 0.00823	<0.0955 <0.00382	0.0445 0.00109	<0.0250 0.00107 J	<0.00902 0.00134	<0.00872 0.00792
	TEL-4	Apr-14 Nov-14	<0.00060 <0.0052	<0.00060 < 0.0084	0.0029 J <0.0070	<0.0010 <0.02	0.0035 J 0.0087 J	0.044 0.048	0.06 0.12	<0.0010 <0.076	0.120 0.064	0.0035 J <0.02	0.0073 < 0.0072	0.072 0.068
		Nov-14 FD Apr-15	<0.0052 <0.00260	<0.0084 <0.00420	<0.0070 <0.00350	<0.02 <0.0100	0.0085 J <0.00380	0.048 0.0332	0.12 0.0394	<0.076 <0.0380	0.066 0.140	<0.02 <0.0100	<0.0072 0.00396 J	0.067 0.0523
		Apr-15 FD Oct-15	<0.00260 <0.000260	<0.00420 <0.000418	<0.00350 0.00179	<0.0100 <0.00100	<0.00380 0.00655	0.0334 0.053	0.0407 0.0703	<0.0380 <0.00382	0.142 0.00902	<0.0100 0.00422 J	0.00405 J 0.00309	0.0535 0.0633
		Oct-15 FD Apr-16	<0.00260 <0.00260	<0.00418 <0.00418	<0.00350 <0.00341	<0.0100 <0.0100	0.00756 J 0.016	0.0625 0.0745	0.0837 0.142	<0.0382 <0.0382	0.0127 0.105	<0.0100 <0.0100	0.00385 J 0.00421 J	0.0751 0.0955
		Apr-16 FD Oct-16	<0.00260 <0.00260	<0.00418 <0.00418	<0.00341 <0.00350	<0.0100 <0.0100	0.0161 <0.00384	0.0771 0.0503	0.147 0.0668	<0.0382 <0.0382	0.0945 0.0415	<0.0100 <0.0100	0.00450 J 0.00422 J	0.0984 0.0666
	104/0	Oct-16 FD	< 0.00260	<0.00418	<0.00350	<0.0100	<0.00384	0.07	0.0863	<0.0382	0.0476	<0.0100	<0.00361	0.086
	MW-8	Oct-13 Apr-14	<0.010 <0.00060	<0.0050 <0.00060	<0.0050	<0.010 <0.0010	<0.010 <0.00050	<0.0050 <0.00050	<0.0050	<0.0050 <0.0010	<0.0050 0.0014 J	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
		Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-16	Apr-13 Apr-14	<0.0050 <0.00060	<0.0050 < 0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
	MW-20	Apr-15 Apr-13	<0.000260 <0.0050	<0.000420 <0.0050	<0.000350 <0.0050	<0.00100 J <0.010	<0.000380 <0.0050	<0.000330 <0.0050	<0.000720 <0.010	<0.00380 J <0.010	<0.000370 <0.0050	<0.00100 J <0.0050	<0.000360 <0.0050	<0.000350 <0.0050
		Apr-14 FD	<0.00060 <0.00060	<0.00060 <0.00060	<0.00050 <0.00050	<0.0010 <0.0010	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.0010 <0.0010	<0.00060 <0.00060	<0.00070 <0.00070	<0.0010 <0.0010	<0.00050 <0.00050
		Apr-15 Apr-16	<0.00000 <0.000260 <0.000260	<0.000420 <0.000418	<0.000350 J <0.000350	<0.0010	<0.00030 <0.000380 <0.000384	<0.000330 J <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00070 <0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-21	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	0.0051	<0.00070	< 0.0010	< 0.00050
		Nov-14 Apr-15	<0.00026 <0.000260	<0.00042 <0.000420	<0.00035 <0.000350	<0.0010 <0.00100 J	<0.00038 <0.000380	<0.00033 <0.000330	<0.00072 <0.000720	<0.0038 <0.00380 J	0.006 0.00729	<0.0010 <0.00100 J	<0.00036 <0.000360	<0.00035 <0.000350
_		Oct-15 Apr-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	0.00636 0.0101	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349
TMD	MW-25	Oct-16 Apr-13	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	0.0112 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
		Apr-14 Apr-15	<0.00060 <0.000260	<0.00060 <0.000420	<0.00050 <0.000350	<0.0010 <0.00100 J	<0.00050 <0.000380	<0.00050 <0.000330	<0.00060 <0.000720	<0.0010 <0.00380 J	<0.00060 <0.000370	<0.00070 <0.00100 J	<0.0010 <0.000360	<0.00050 <0.000350
	MW-26	Apr-16 Apr-13	<0.000260 <0.0050	<0.000418 <0.0050	<0.000350 <0.0050	<0.00100 <0.010	<0.000384 <0.0050	<0.000326 <0.0050	<0.000719 <0.010	<0.00382 <0.010	<0.00367 <0.0050	<0.00100 <0.0050	<0.000361 <0.0050	<0.000349 <0.0050
	19199-20	Apr-14	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-27	Apr-13 Apr-14	<0.0050 <0.00060	<0.0050 < 0.00060	<0.0050 <0.00050	<0.010 < 0.0010	<0.0050 <0.00050	<0.0050 <0.00050	<0.010 <0.00060	<0.010 <0.0010	<0.0050 <0.00060	<0.0050 <0.00070	<0.0050 <0.0010	<0.0050 <0.00050
		Apr-15 Apr-16	<0.000260 <0.000260	<0.000420 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000380 <0.000384	<0.000330 <0.000326	<0.000720 <0.000719	<0.00380 <0.00382	<0.000370 <0.000367	<0.00100 <0.00100	<0.000360 <0.000361	<0.000350 <0.000349
	MW-46R	Apr-14 Nov-14	<0.00060 <0.00026	<0.00060 <0.00042	<0.00050 <0.00035	<0.0010 <0.0010	0.00086 J <0.00038	<0.00050 <0.00033	0.0015 J <0.00072	<0.0010 <0.0038	<0.00060 <0.00037	<0.00070 <0.0010	<0.0010 <0.00036	<0.00050 <0.00035
		Apr-15	<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	< 0.000370	<0.00100	<0.000360	<0.000350
		Apr-16 Oct-16	<0.000260 <0.000260	<0.000418 <0.000418	<0.000350 <0.000350	<0.00100 <0.00100	<0.000384 <0.000384	<0.000326 <0.000326	<0.000719 <0.000719	<0.00382 <0.00382	<0.000367 <0.000367	<0.00100 <0.00100	<0.000361 <0.000361	<0.000349 <0.000349

		Analyte Gr		1		,.	-,	Kellillig LLC, Al	Volatile Organ						
	,	Analyte Gr	oup:	-:- 4.0			1		voiatile Organ	ic compounds	,			-	
		۸۰۰	alyte:	cis-1,2- Dichloro-	cis-1,3- Dichloro-		Dichloro-	Ethyl-			NA-45- 4 N	MTBE	Naphthalene	N. D. d. I	N. Daniel
		An	aiyte:	ethene		0	methane	benzene	Isopropyl-	V.d	Methyl N-	MIBE	Napriinalene	N-Butyl-	N-Propyl-
			Units:		propene	Cymene	mg/L	mg/L	benzene	m,p-Xylene	Butyl Ketone		/1	benzene	benzene
			WSL:	mg/L 0.070	mg/L 4.70E-03	mg/L	0.005	0.700	mg/L 4.47E-01	mg/L	mg/L	mg/L 0.143	mg/L 0.030	mg/L 	mg/L
	_	GWSL So		USEPA MCL	USEPA TW		USEPA MCL	USEPA MCL	WQCC TW			WQCC TW	WQCC HH		
Aroo	Well ID	Date		USEPA MCL	USEPATW		USEPA MICL	USEPA MICL	WQCCTW			WQCCTW	WQCCHH		
Area	MW-68	Apr-13	Dup	<0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
	10100-00	Apr-14	\vdash	<0.0000	<0.00060	<0.0050	<0.010	<0.0050	<0.0050	<0.00060	<0.010	<0.00060	<0.00070	<0.0030	<0.0050
		Apr-15		<0.000260	<0.000420	<0.00030	<0.0010	<0.00030	<0.00030	<0.000720	<0.00380	<0.000370	<0.00100	<0.00360	<0.000350
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	<0.000326	< 0.000719	<0.00382	< 0.000370	<0.00100	<0.000361	< 0.000349
	MW-71	Oct-13		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
	10100-71	Apr-14	\vdash	<0.00060	<0.0000	<0.0000	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	<0.000326	< 0.000719	<0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
	MW-89	Apr-13		<0.0050	<0.0050	< 0.0050	<0.010	<0.0050	<0.0050	<0.010	< 0.010	<0.0050	<0.0050	<0.0050	< 0.0050
		Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
TMD		Apr-15		< 0.000260	< 0.000420	< 0.000350	<0.00100 J	<0.000380	< 0.000330	< 0.000720	<0.00380 J	< 0.000370	<0.00100 J	<0.000360	< 0.000350
=		Apr-16		<0.000260	< 0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	< 0.00382	< 0.000367	<0.00100	< 0.000361	< 0.000349
	NP-1	Apr-14		< 0.00060	< 0.00060	< 0.00050	<0.0010	< 0.00050	< 0.00050	<0.00060	< 0.0010	0.0056	< 0.00070	<0.0010	< 0.00050
		Nov-14		< 0.00026	< 0.00042	< 0.00035	< 0.0010	<0.00038	< 0.00033	< 0.00072	<0.0038	0.084	< 0.0010	< 0.00036	< 0.00035
		Apr-15		< 0.000260	< 0.000420	< 0.000350	<0.00100 J	< 0.000380	< 0.000330	< 0.000720	< 0.00380	0.204	< 0.00100	< 0.000360	< 0.000350
		Oct-15		< 0.000260	<0.000418	< 0.000350	<0.00100	<0.000384	< 0.000326	< 0.000719	<0.00382	0.291	<0.00100	<0.000361	< 0.000349
		Apr-16		<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	< 0.000326	< 0.000719	<0.00382	0.213	<0.00100	< 0.000361	< 0.000349
		Oct-16		<0.000260	<0.000418	< 0.000350	<0.00100	< 0.000384	<0.000326	<0.000719	<0.00382	0.283	<0.00100	< 0.000361	< 0.000349
	NP-2	Apr-13		< 0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	< 0.0050
	NP-6	Apr-13		< 0.0050	< 0.0050	< 0.0050	<0.010	< 0.0050	< 0.0050	<0.010	<0.010	< 0.0050	<0.0050	<0.0050	< 0.0050
		Apr-15		< 0.000260	< 0.000420	< 0.000350	<0.00100 J	<0.000380	< 0.000330	< 0.000720	<0.00380 J	0.00878	<0.00100 J	<0.000360	< 0.000350
	UG-1	Apr-13		< 0.0050	<0.0050	<0.0050	<0.010	< 0.0050	<0.0050	<0.010	<0.010	< 0.0050	< 0.0050	<0.0050	< 0.0050
		Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	< 0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	< 0.000360	<0.000350
		Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
	UG-2	Apr-13		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	< 0.0050
ŧ		Apr-13	FD	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
. <u>च</u>		Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
Jrac		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
Upgradient		Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
1	UG-3R	Apr-13		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.0050	<0.010	<0.010	<0.0050	<0.0050	<0.0050	<0.0050
I		Apr-14		<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-14	FD	<0.00060	<0.00060	<0.00050	<0.0010	<0.00050	<0.00050	<0.00060	<0.0010	<0.00060	<0.00070	<0.0010	<0.00050
		Apr-15		<0.000260	<0.000420	<0.000350	<0.00100	<0.000380	<0.000330	<0.000720	<0.00380	<0.000370	<0.00100	<0.000360	<0.000350
I	110.6	Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	< 0.000367	<0.00100	<0.000361	<0.000349
	UG-4	Apr-16		<0.000260	<0.000418	<0.000350	<0.00100	<0.000384	<0.000326	<0.000719	<0.00382	<0.000367	<0.00100	<0.000361	<0.000349

	,	Analyte Grou	p:			Tionyi Tona	ier Navajo Refir		ic Compounds				
		Analy Uni	te: o-Xyl		Styrene (Monomer) mg/L	Tetra- chloroethene mg/L	Toluene mg/L	Total Xylenes mg/L	trans-1,2-Di- chloroethene mg/L	trans-1,3- Dichloro- propene mg/L	Tribromo- methane mg/L	Trichloro- ethene mg/L	Vinyl Chloride mg/L
		CGWS	L: 0.19	93	1.00E-01	5.00E-03	0.750	0.620	1.00E-01	4.70E-03		5.00E-03	1.00E-03
Area		GWSL Source Date Di		CTW	USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCC HH
	KWB-13	Apr-13	<0.00		<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
		Apr-14 Apr-15	<0.00		<0.00050 <0.000310	<0.00060 <0.000370	<0.00050 <0.000780	<0.0015 0.00254 J	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 <0.000260
		Apr-16	<0.00		<0.00100	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
ent	MW-17 NP-5	Apr-14 Apr-13	<0.00	150	<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
Crossgradient		Apr-15	<0.000	340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
òsso	RA-3156	Apr-13 Nov-13	<0.00		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.015 <0.015	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0020 <0.0020
Ö		Apr-14	<0.00	050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
	MW-136	Apr-16 Oct-15	<0.000		<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16	<0.000	0341	<0.00100	< 0.000372	<0.000780	<0.00106	<0.000396	<0.000419	< 0.000469	<0.000398	< 0.000259
-	MW-1R	Oct-16 Apr-13	<0.00		<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
	10100-110	Apr-13 F	O.00	050	<0.0050	< 0.0050	< 0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
		Apr-14 Apr-15	<0.00		<0.00050 <0.000310	<0.00060 <0.000370	<0.00050 <0.000780	<0.0015 <0.00110	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 <0.000260
		Apr-16	<0.000		<0.00100	<0.000372	<0.000780	<0.00110	<0.000396	<0.000419	<0.000470	<0.000398	<0.000259
	MW-2A	Apr-14 Nov-14	<0.00		<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15	<0.000		<0.000310	<0.000370	<0.000780	<0.00110	<0.00040	<0.000420	<0.000470	<0.00040	<0.000260
1		Oct-15 Apr-16	<0.000		<0.000307 <0.00100	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
1		Oct-16	< 0.000	0341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
1	MW-3	Apr-14 Nov-14	<0.00		<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
1		Nov-14 F	O.00	034	<0.00031	<0.00037	<0.00078	<0.0011	<0.00040	<0.00042		<0.00040	<0.00026
		Apr-15 F	<0.000 D <0.000		<0.000310 <0.000310	<0.000370 <0.000370	<0.000780 <0.000780	<0.00110 <0.00110	<0.000400 <0.000400	<0.000420 <0.000420	<0.000470 <0.000470	<0.000400 <0.000400	<0.000260 <0.000260
		Oct-15	<0.000	341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	< 0.000259
		Oct-15 F Apr-16	O.000 <0.000		<0.000307 <0.00100	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16 F	O.000	0341	<0.00100	<0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	<0.000469	<0.000398	< 0.000259
		Oct-16 F	<0.000 D <0.000		<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-4A	Apr-14	<0.00		<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Nov-14 Apr-15	<0.00 0.000 6		<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 0.00293 J	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15	<0.000		<0.000307	<0.000372	<0.000780	0.00237 J	<0.000396	<0.000419	<0.000469 <0.000469	<0.000398	<0.000259
		Apr-16 Oct-16	0.0003		<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	0.00201 J 0.00365	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-4B	Apr-13 Apr-15	<0.00		<0.0050 <0.000310	<0.0050 <0.000370	<0.0050 <0.000780	<0.015 <0.00110	<0.0050 <0.000400	<0.0050 <0.000420	<0.0050 <0.000470	<0.0050 <0.000400	<0.0020 <0.000260
	MW-5A	Apr-13	<0.00		<0.000510	<0.00060	<0.000780	<0.00110	<0.000400	<0.000420	~0.000470	<0.000400	<0.00040
		Nov-14 Apr-15	<0.00		<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15	<0.000		<0.000310	< 0.000372	<0.000780	<0.00110	< 0.000396	<0.000420	< 0.000469	<0.000398	<0.000259
		Apr-16 Oct-16	<0.000		<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-5B	Apr-13	<0.00	050	<0.0050	< 0.0050	<0.0050	<0.015	< 0.0050	<0.0050	< 0.0050	< 0.0050	<0.0020
	MW-5C	Apr-15 Apr-13	<0.000		<0.000310 <0.0050	<0.000370 <0.0050	<0.000780 <0.0050	<0.00110 <0.015	<0.000400 <0.0050	<0.000420 <0.0050	<0.000470 <0.0050	<0.000400 <0.0050	<0.000260 <0.0020
s		Apr-15	<0.000	340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
Evaporation Ponds	MW-6A	Mar-13 Apr-14	<0.00 0.00 1		<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050	<0.015 0.0016 J	<0.0050 <0.00040	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	<0.0020 <0.00040
tion		Apr-15	0.0009	920 J	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
oora	MW-6B	Apr-16 Mar-13	0.00		<0.00100 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	0.00119 J <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
Eval		Mar-13 F	O.00	050	<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.0020
	MW-7A	Apr-15 Apr-14	<0.000	٥٥٥	<0.000310 <0.00050	<0.000370 <0.00060	<0.000780 <0.00050	<0.00110 <0.0015	<0.000400 <0.00040	<0.000420 <0.00060	<0.000470	<0.000400 <0.00050	<0.000260 <0.00040
1		Nov-14	<0.00		<0.00031	<0.00037	<0.00078	<0.0011	<0.00040	<0.00042		<0.00040	<0.00026
		Nov-14 F Apr-15	O.000		<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Apr-15 F Oct-15		340	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Oct-15 F	O.000	341	<0.000307	< 0.000372	<0.000780	<0.00106	< 0.000396	<0.000419	< 0.000469	<0.000398	< 0.000259
		Apr-16 F	<0.000 D <0.000		<0.00100 <0.00100	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
1		Oct-16	<0.000	0341	< 0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	<0.000469	<0.000398	< 0.000259
1	MW-7B	Oct-16 F Apr-13	O.000		<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
		Apr-15	<0.000	340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
	MW-10	Apr-14 Nov-14	<0.00		<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
1		Apr-15	<0.000	340	<0.000310 J	< 0.000370	<0.000780 J	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16	<0.000		<0.000307 <0.00100	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	M/M/ 44.5	Oct-16	<0.000	0341	< 0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	<0.000419 <0.00060	<0.000469	<0.000398	<0.000259
	MW-11A	Apr-14 Nov-14	<0.00	UUU	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	~0.00000		<0.00050	<0.00040
		Apr-15 Oct-15	<0.000	340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Apr-16	<0.00	0341	<0.00100	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
1	MW-11B	Oct-16 Mar-13	<0.00	150	<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
1		Apr-15	<0.000		<0.00310	<0.0030	<0.0030	<0.00110	<0.0030	<0.0030	<0.0030	<0.0030	<0.0020
	MW-12 MW-13		+										
	MW-15	Mar-13	<0.00		<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
		Apr-14 Apr-15	<0.00		<0.00050 <0.000310	<0.00060 <0.000370	<0.00050 <0.000780	<0.0015 <0.00110	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 <0.000260
		Apr-16	<0.00	0341	<0.00100	< 0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	<0.000470	<0.000398	<0.000259
1	MW-18A	Apr-14 Nov-14	<0.00		<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
1		Apr-15	<0.000	340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
1		Oct-15 Apr-16	<0.000		<0.000307 <0.00100	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16	<0.000		<0.00100	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259

	Α	nalyte Gr	oup:						ic Compounds				
		-	alyte:	o-Xylene	Styrene (Monomer)	Tetra- chloroethene	Toluene	Total Xylenes	trans-1,2-Di- chloroethene	trans-1,3- Dichloro- propene	Tribromo- methane	Trichloro- ethene	Vinyl Chloride
		l CG\ GWSL So		mg/L 0.193 WQCC TW	mg/L 1.00E-01 USEPA MCL	mg/L 5.00E-03 USEPA MCL	mg/L 0.750 WQCC HH	mg/L 0.620 WQCC HH	mg/L 1.00E-01 USEPA MCL	mg/L 4.70E-03 USEPA TW	mg/L USEPA TW	mg/L 5.00E-03 USEPA MCL	mg/L 1.00E-03 WQCC HH
Area	Well ID MW-18B	Apr-13	Dup	<0.0050	<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
	MW-22A	Apr-15 Apr-14		<0.000340 <0.00050	<0.000310 <0.00050	<0.000370 <0.00060	<0.000780 <0.00050	<0.00110 <0.0015	<0.000400 <0.00040	<0.000420 <0.00060	<0.000470	<0.000400 <0.00050	<0.000260 <0.00040
		Nov-14 Nov-14	FD	<0.00034 <0.00034	<0.00031 <0.00031	<0.00037 <0.00037	<0.00078 <0.00078	<0.0011 <0.0011	<0.00040 <0.00040	<0.00042 <0.00042		<0.00040 <0.00040	<0.00026 <0.00026
		Apr-15 Apr-15	FD	<0.000340 <0.000340	<0.000310 J <0.000310	<0.000370 <0.000370	<0.000780 J <0.000780	<0.00110 <0.00110	<0.000400 <0.000400	<0.000420 <0.000420	<0.000470 <0.000470	<0.000400 <0.000400	<0.000260 <0.000260
		Oct-15 Oct-15	FD	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16 Apr-16	FD	<0.000341 <0.000341	<0.00100 <0.00100	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16 Oct-16	FD	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-22B	Apr-13 Apr-15		<0.0050 <0.000340	<0.0050 <0.000310 J	<0.0050 <0.000370	<0.0050 <0.000780 J	<0.015 <0.00110	<0.0050 <0.000400	<0.0050 <0.000420	<0.0050 <0.000470	<0.0050 <0.000400	<0.0020 <0.000260
	MW-70	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 <0.000341	<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-72	Nov-13 Apr-14		<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050	<0.015 <0.0015	<0.0050 <0.00040	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	< 0.0020 <0.00040
		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.00100	<0.000370 <0.000372	<0.000780 <0.000780	<0.0010 <0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-73	Oct-13 Apr-14		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0060	<0.0050 <0.0050	<0.00106 <0.015 <0.0015	<0.0050 <0.0040	<0.000419 <0.0050 <0.00060	<0.0050	<0.0050 <0.0050	<0.00239 <0.0020 <0.00040
		Apr-14 Apr-15 Apr-16		<0.000340 <0.000341	<0.00030 <0.000310 <0.00100	<0.000370 <0.000372	<0.000780 <0.000780	<0.0013 <0.00110 <0.00106	<0.00040 <0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.00030 <0.000400 <0.000398	<0.000260 <0.000259
	MW-74	Apr-16 Apr-14 Nov-14		<0.000341 <0.00050 <0.00034	<0.00100 <0.00050 <0.00031	<0.000372 <0.00060 <0.00037	<0.000780 <0.00078	<0.00106 <0.0015 <0.0011	<0.00040 <0.00040	<0.000419 <0.00060 <0.00042	-0.000409	<0.000398 <0.00050 <0.00040	<0.000259 <0.00040 <0.00026
		Apr-15		<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16		<0.000341	<0.000307 <0.00100	<0.000372 <0.000372	<0.000780	<0.00106 <0.00106	<0.000396 <0.000396 <0.000396	<0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259
	MW-75	Oct-16 Apr-14		<0.000341 <0.00050	<0.000307 <0.00050	<0.000372 <0.00060 <0.0019	<0.000780 <0.00050	<0.00106 <0.0015	<0.00040	<0.000419	<0.000469	<0.000398 <0.00050	<0.000259
		Apr-15		<0.0017	<0.0015 <0.00310	<0.00370	<0.0039	<0.0053 <0.0110	<0.0020 <0.00400	<0.0021	<0.00470	<0.0020 <0.00400	<0.0013
		Oct-15 Apr-16		<0.000341	<0.000307 <0.00100	<0.000372 <0.000372	<0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419	<0.000469 <0.000469	<0.000398	<0.000259
	MW-76	Oct-16 Apr-14		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106 <0.0015	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
		Apr-15		<0.0017	<0.0015 <0.000310	<0.0019	<0.0039	<0.0053 <0.00110	<0.0020 <0.000400	<0.0021	<0.000470	<0.0020	<0.0013
		Oct-15 Apr-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419	<0.000469	<0.000398	<0.000259
Ponds	MW-77	Oct-16 Apr-14		<0.000341	<0.000307 <0.00050 <0.0015	<0.000372 <0.00060 <0.0019	<0.000780 0.0011 J	0.00214 J 0.0027 J	<0.000396 <0.00040 <0.0020	<0.000419 <0.00060 <0.0021	<0.000469	<0.000398 <0.00050 <0.0020	<0.000259
on Po		Apr-15		0.0036 J 0.00101 0.00112	<0.000310	<0.000370	0.0073 J 0.00216 J	0.01 J 0.00531 0.00589	<0.0020 <0.000400 <0.000396	<0.0021 <0.000420 <0.000419	<0.000470 <0.000469	<0.0020 <0.000400 <0.000398	<0.0013 <0.000260 <0.000259
Evaporation		Oct-15 Apr-16 Oct-16		0.00112 0.000583 J <0.00341	<0.000307 <0.00100 <0.00307	<0.000372 <0.000372 <0.00372	0.00386 J 0.00138 J <0.00780	0.00390 <0.0106	<0.000396 <0.00396 <0.00396	<0.000419 <0.000419 <0.00419	<0.000469 <0.000469	<0.000398 <0.000398 <0.00398	<0.000259 <0.000259
Eva	MW-78	Mar-13 Apr-14		<0.00341 <0.0025 0.0021 J	<0.0050 <0.0050	<0.00072 <0.00060	<0.00760 <0.025 0.0014 J	<0.075 0.0021 J	<0.0055 <0.0055 <0.00040	<0.00413 <0.005 <0.00060	<0.025	<0.0050 <0.0050	<0.00233 <0.010 <0.00040
		Apr-15 Apr-16		0.00356 0.00135	<0.000310 <0.00100	<0.000370 <0.000372	0.00385 J 0.00125 J	0.00502 0.00135 J	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-79	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042	.0.000100	<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 <0.000341	<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-80	Mar-13 Apr-14		<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0060	<0.0050 <0.0050	<0.015 <0.0015	<0.0050 <0.00040	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	<0.0020 <0.0040
		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.00100	<0.000370 <0.000372	<0.000780 <0.000780	<0.0010	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-81	Mar-13 Mar-13	FD	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.015 <0.015	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.0050 <0.0050	<0.00239 <0.0020 <0.0020
		Apr-14 Apr-15		<0.00000 <0.00050 <0.000340	<0.00050 <0.000310	<0.0000 <0.00060 <0.000370	<0.00050 <0.000780	<0.0015 <0.00110	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00000 <0.00050 <0.000400	<0.0020 <0.00040 <0.000260
	MW-82	Apr-16 Mar-13		<0.000341 <0.0050	<0.00100 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
		Apr-14 Apr-14	FD	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050	<0.0015 <0.0015	<0.00040 <0.00040	<0.00060 <0.00060		<0.00050 <0.00050	<0.00040 <0.00040
		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.00100	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-83	Apr-14 Nov-14		<0.00050 0.00087 J	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 0.0011 J	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		0.000607 J <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 0.000569 J	<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-84	Apr-14 Nov-14		<0.00050 0.00055 J	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 <0.00341	<0.00100 <0.00307	<0.000372 <0.00372	<0.00780 <0.00780	<0.00106 <0.0106	<0.00396 <0.00396	<0.000419 <0.00419	<0.000469 <0.000469	<0.000398 <0.00398	<0.000259 <0.00259
	MW-87	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 <0.000341	<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-88	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 <0.000341	<0.00100 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
-													

Appendix B, Table B.4 - Summary of Groundwater Analytical Data - Volatile Organic Compounds

2016 Annual Groundwater Report

HollyFrontier Navajo Refining LLC, Artesia Refinery, Artesia, New Mexico Analyte Group olatile Orga ic Compound: Total o-Xylene Styrene Tetratrans-1,2-Di Tribromo Trichloro-Analyt Dichloro-Xylenes hloroethe methane ethene /invl Chloric (Monom mg/L mg/L mg/L 1.00E-01 mg/L mg/L mg/L mg/L mg/L mg/L 5.00E-03 mg/L 1.00E-03 CGWSL 0.193 5.00E 0.750 1.00E-0 CGWSL Source USEPA MC USEPA MO WQCC WQCC H JSEPA MC USEPA TW JSFPA TV USEPA MC WQCC HH <0.00050 <0.00034 <0.0015 <0.00050 < 0.0003 <0.00078 < 0.00040 < 0.00042 < 0.00040 < 0.00026 < 0.000470 Apr-15 < 0.000340 < 0.000310 < 0.000370 <0.000780 < 0.00110 <0.000400 < 0.000420 < 0.000400 < 0.000260 <0.000307 < 0.000372 <0.000396 < 0.000419 <0.000469 <0.000398 Oct-15 < 0.000341 <0.000780 <0.00106 Apr-16 < 0.00034 < 0.00100 < 0.000372 < 0.000780 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 <0.000341 <0.000307 <0.000780 <0.00106 < 0.000419 < 0.000469 <0.000398 < 0.000259 Oct-16 MW-12 <0.00050 <0.00040 <0.00060 < 0.00050 < 0.00040 Apr-14 < 0.00050 < 0.00050 < 0.0015 < 0.00034 < 0.00031 < 0.00037 <0.00078 <0.0011 < 0.00040 < 0.00042 < 0.00040 < 0.00026 Nov-14 Oct-15 < 0.000341 < 0.000307 < 0.000372 <0.000780 < 0.00106 < 0.000396 < 0.000419 <0.000469 < 0.000398 < 0.000259 Apr-16 <0.000341 <0.00100 < 0.000780 <0.00106 < 0.000396 < 0.000419 < 0.000398 < 0.0007 <0.00106 MW-122 Apr-14 < 0.00050 < 0.00050 < 0.00060 < 0.00050 < 0.0015 < 0.00040 < 0.00060 < 0.00050 < 0.00040 <0.00031 <0.000310 <0.00037 <0.000370 <0.00040 <0.000400 <0.00034 <0.00042 <0.000420 Apr-15 < 0.000340 <0.000780 < 0.00110 < 0.000372 < 0.000396 < 0.000419 < 0.000469 < 0.000398 <0.000469 Apr-16 < 0.000341 <0.00100 < 0.000372 < 0.000780 <0.00106 < 0.000396 < 0.000419 < 0.000398 < 0.000259 Oct-16 < 0.000341 < 0.000307 < 0.00078 < 0.00106 < 0.000419 < 0.000469 < 0.000398 < 0.000259 MW-12 Apr-14 <0.00050 < 0.00050 <0.0015 Nov-14 < 0.00034 < 0.00031 < 0.00037 < 0.00078 < 0.0011 < 0.00040 < 0.00042 < 0.00040 <0.00026 <0.000340 <0.000341 <0.000370 <0.000372 <0.000780 <0.000780 <0.00110 <0.000400 <0.000396 <0.000420 <0.000419 Apr-15 Oct-15 <0.000310 <0.000470 <0.000400 <0.000398 <0.000260 < 0.000469 < 0.000307 < 0.000259 Apr-16 < 0.000341 < 0.00100 < 0.000372 < 0.000780 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 MW-12 Apr-14 < 0.00050 <0.00060 ov-14 < 0.00034 <0.00078 <0.00040 <0.00042 < 0.00040 <0.00026 < 0.00037 <0.000420 < 0.000400 < 0.000260 Apr-15 < 0.000340 < 0.00037 < 0.000780 < 0.00110 Oct-15 < 0.000341 < 0.000307 < 0.000372 <0.000780 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 <0.000419 Oct-16 < 0.000341 < 0.000307 < 0.000372 < 0.000780 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 OCD-1 <0.00050 <0.00050 < 0.00031 < 0.00078 < 0.00042 < 0.00040 < 0.00034 < 0.0011 < 0.00040 < 0.000470 Apr-15 < 0.000340 < 0.000310 < 0.000370 < 0.000780 < 0.00110 < 0.000400 < 0.000420 < 0.000260 <0.000307 <0.000419 <0.000419 <0.000470 <0.000469 <0.000469 <0.000780 <0.00106 < 0.000372 < 0.000396 < 0.000398 Apr-16 < 0.000341 <0.000780 < 0.00106 < 0.000259 < 0.000419 < 0.000469 OCD-2 Apr-14 <0.00050 < 0.00050 <0.00060 <0.00050 < 0.0015 <0.00040 <0.00060 <0.00050 <0.00040 < 0.00034 < 0.00031 < 0.0003 <0.00078 <0.0011 <0.00040 < 0.00042 < 0.00040 < 0.0002 <0.000400 Apr-15 <0.00110 <0.000780 Oct-15 < 0.000341 < 0.000307 < 0.000372 <0.000780 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 <0.000780 Apr-16 Oct-16 <0.000341 <0.000307 <0.00106 <0.000469 <0.000398 <0.000396 <0.000419 <0.000259 < 0.00034 <0.00106 < 0.00046 < 0.000398 Evaporation <0.00050 <0.00034 <0.00050 <0.0015 OCD-: < 0.00050 < 0.00060 < 0.00040 <0.00060 < 0.00050 < 0.00040 Apr-14 Nov-14 <0.0003 <0.00042 <0.00078 Apr-15 < 0.000340 < 0.000310 < 0.000780 < 0.00110 < 0.000420 < 0.000400 Oct-15 <0.000372 <0.000396 <0.000419 <0.000469 <0.000398 <0.000259 <0.000780 < 0.00030 < 0.00037 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 Apr-16 < 0.000341 < 0.000780 < 0.00106 <0.000780 Oct-16 < 0.000341 < 0.000307 < 0.000372 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 OCD-<0.00060 <0.00042 Apr-14 <0.00050 <0.00050 <0.0015 <0.00040 <0.00040 Nov-14 < 0.00034 < 0.00031 < 0.00037 <0.00078 <0.0011 < 0.00040 <0.00026 <0.000310 <0.000370 < 0.000420 < 0.000470 Oct-15 < 0.000419 < 0.000469 < 0.000398 < 0.000341 < 0.00030 < 0.00037 < 0.000780 < 0.00106 < 0.000396 Apr-16 < 0.000341 < 0.000307 < 0.00037 < 0.000780 < 0.00106 < 0.000419 < 0.000469 < 0.000398 < 0.00106 OCD-5 Apr-14 < 0.00050 < 0.00050 < 0.00060 < 0.00050 < 0.0015 < 0.00040 <0.00060 < 0.00050 <0.00040 <0.00050 <0.0015 Apr-14 < 0.00050 < 0.00050 <0.00040 <0.00060 < 0.00050 < 0.00034 < 0.0003 < 0.0003 < 0.00078 < 0.0011 < 0.00040 < 0.00042 < 0.00040 < 0.0002 <0.000470 <0.000340 <0.000310 < 0.00037 <0.00078 < 0.00110 <0.000400 < 0.000420 < 0.000400 Apr-15 Oct-15 <0.000341 <0.000780 <0.00106 Apr-16 < 0.000341 < 0.000307 < 0.000372 <0.000780 < 0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 Oct-16 <0.000341 < 0.00030 < 0.000780 <0.00106 < 0.000419 < 0.000259 OCD-6 Apr-14 < 0.00050 < 0.00050 < 0.00060 < 0.00050 < 0.0015 < 0.00040 <0.00060 < 0.00050 <0.00040 < 0.00034 < 0.00031 < 0.00037 < 0.00078 <0.0011 < 0.00040 < 0.00042 < 0.00040 < 0.00026 <0.0011 Apr-15 <0.0003 Oct-15 < 0.000341 < 0.000307 < 0.000780 < 0.00106 < 0.000419 < 0.000469 < 0.000398 Apr-16 < 0.000341 < 0.000307 < 0.000372 <0.000396 <0.000419 <0.000469 <0.000398 <0.000259 <0.00030 <0.000419 <0.000398 < 0.00046 < 0.000259 Oct-16 < 0.000341 < 0.000780 < 0.00106 OCD-7A Apr-14 Apr-14 <0.00050 <0.00050 <0.0015 <0.00060 <0.00050 <0.00040 <0.00040 <0.00060 Nov-14 < 0.00034 < 0.00031 < 0.0003 < 0.00078 <0.0011 < 0.0004 < 0.00042 < 0.00040 <0.00026 Apr-15 Oct-15 <0.000340 <0.000341 <0.000310 <0.000307 <0.00037 <0.00037 <0.000780 <0.00078 <0.00110 <0.000400 <0.000396 < 0.000420 < 0.000470 <0.000400 <0.000398 < 0.000260 <0.000469 Apr-16 < 0.000341 < 0.000780 < 0.00106 <0.000372 <0.000396 <0.000419 <0.000469 <0.000398 <0.000259 OCD-<0.0020 Mar-13 <0.0050 <0.0050 < 0.0050 < 0.0050 <0.015 < 0.0050 <0.0050 <0.0050 <0.0050 Apr-15 <0.000340 <0.000370 < 0.000780 < 0.000400 < 0.000470 < 0.000400 OCD-< 0.00050 < 0.00040 < 0.00050 Apr-14 < 0.00050 < 0.00050 < 0.0015 Apr-14 <0.00050 <0.00034 <0.00050 < 0.00050 < 0.00060 <0.0015 < 0.00040 < 0.00060 < 0.00050 < 0.00040 Apr-15 < 0.000340 < 0.000310 < 0.000370 <0.000780 < 0.00110 < 0.000400 < 0.000420 < 0.000470 < 0.000400 < 0.000260 <0.00106 <0.000469 <0.000469 <0.000398 <0.000398 <0.000341 <0.00037 < 0.000419 Oct-15 < 0.000307 <0.000396 < 0.000419 < 0.000372 < 0.000259 Apr-16 < 0.000341 <0.000780 < 0.00106 Oct-16 < 0.000341 < 0.000307 < 0.00078 <0.00106 < 0.000419 < 0.000469 < 0.000398 < 0.000259 OCD-8 **<0.0050 <**0.00042 Apr-13 <0.005 < 0.00078 < 0.00047 < 0.000400 Apr-15 < 0.000340 < 0.00110 Apr-14 <0.00050 <0.00060 Nov-14 < 0.00034 <0.00031 <0.000310 < 0.00037 < 0.00078 < 0.0011 <0.00040 <0.000400 < 0.00042 < 0.00040 <0.000470 < 0.000340 < 0.000370 < 0.000420 < 0.000400 <0.000260 < 0.000341 Oct-15 <0.000780 <0.00106 Refinery Apr-16 < 0.000341 < 0.000307 < 0.000372 < 0.000780 <0.00106 < 0.000396 < 0.000419 < 0.000469 < 0.000398 < 0.000259 <0.00106 Apr-13 < 0.0050 < 0.0050 < 0.015 <0.0050 <0.0020 <0.000340 < 0.000370 <0.000780 < 0.000400 < 0.000470 < 0.000400 < 0.00 Field East 0.051 Nov-14 0.015 < 0.0031 < 0.003 <0.0078 < 0.0040 < 0.0042 < 0.0040 <0.0026 < 0.000470 Apr-15 0.00377 < 0.000310 < 0.000370 0.00213 J 0.00718 <0.000400 < 0.000420 < 0.000400 <0.000469 0.000608 <0.000307 < 0.000372 0.00145 <0.000396 <0.000419 <0.000398 < 0.000259 <0.000780 Apr-16 0.00167 < 0.00030 < 0.000372 < 0.00078 0.0235 < 0.000396 <0.000419 J4 < 0.000469 < 0.000398 < 0.000259 <0.000372 0.00155 0.0196 <0.000396 <0.000419 <0.000469 < 0.0614 < 0.0792 Oct-16 0.150 J <0.0744 1.48 1.16 <0.0838 < 0.0938 < 0.0796 < 0.0518

	Α	nalyte Grou	ıp:		,	iei ivavajo iveili		ic Compounds		-		
		Analy		Styrene (Monomer)	Tetra- chloroethene	Toluene	Total Xylenes	trans-1,2-Di- chloroethene	trans-1,3- Dichloro- propene	Tribromo- methane	Trichloro- ethene	Vinyl Chloride
		Un CGW		mg/L 1.00E-01	mg/L 5.00E-03	mg/L 0.750	mg/L 0.620	mg/L 1.00E-01	mg/L 4.70E-03	mg/L	mg/L 5.00E-03	mg/L 1.00E-03
Area		GWSL Sour		USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCC HH
	KWB-10R	Nov-14	0.320	<0.0077	<0.0093 <0.00370	0.180 0.141	1.200 1.38	<0.0099	<0.01	<0.00470	<0.01	<0.0065 <0.00260
		Apr-15 Oct-15	0.343 0.254	<0.00310 <0.000307	<0.000372	0.124	1.08	<0.00400 <0.000396	<0.00420 <0.000419	<0.000469	<0.00400 <0.000398	<0.000259
		Apr-16 Oct-16	0.184 0.196	<0.0154 <0.00614	<0.0186 <0.00744	0.0937 J 0.110	0.829 0.860	<0.0198 <0.00792	<0.0210 <0.00838	<0.0234 <0.00938	<0.0199 <0.00796	<0.0130 <0.00518
	KWB-11A	Nov-14 F	0.00076 J D 0.00068 J	<0.00031 <0.00031	<0.00037 <0.00037	<0.00078 <0.00078	0.0025 J 0.0022 J	<0.00040 <0.00040	<0.00042 <0.00042		<0.00040 <0.00040	<0.00026 <0.00026
		Apr-15	0.000869 J	<0.000310 J	<0.000370	<0.000780	0.00275 J	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16	0.000511 J 0.000423 J		<0.000372 <0.000372	<0.000780 <0.000780	0.00181 J <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	KWB-11B	Oct-16 Apr-14	0.000483 J <0.00050	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 <0.00050	0.00158 J 0.0043 J	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
		Nov-14	<0.00034	<0.00031	<0.00037	<0.00078	<0.0011	<0.00040	<0.00042	.0.000470	<0.00040	<0.00026
		Apr-15 Oct-15	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	KWB-12A	Nov-14	<0.00034 D <0.00034	<0.00031 <0.00031	<0.00037 <0.00037	<0.00078 <0.00078	<0.0011 <0.0011	<0.00040 <0.00040	<0.00042 <0.00042		<0.00040 <0.00040	<0.00026 <0.00026
		Apr-15	<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Apr-15 F Oct-15	O.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
İ	KWB-12B	Apr-14	<0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.000700 <0.00050 <0.00050	<0.0015 <0.0015	<0.00040 <0.00040	<0.00060 <0.00060		<0.00050 <0.00050	<0.00040 <0.00040
		Nov-14	<0.00034	< 0.00031	<0.00037	<0.00078	<0.0011	<0.00040	<0.00042		<0.00040	<0.00026
		Apr-15 Oct-15	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
İ			D 0.000692 J <0.000341		<0.000372 <0.000372	<0.000780 <0.000780	0.00226 J <0.00106	<0.000396 J <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 J <0.000259
İ			D <0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372 <0.000372	<0.000780 <0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16 F	D <0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	KWB-P4	Apr-13 Apr-15	<0.0050 <0.000340	<0.0050 <0.000310	<0.0050 <0.000370	<0.0050 <0.000780	<0.015 <0.00110	<0.0050 <0.000400	<0.0050 <0.000420	<0.0050 <0.000470	<0.0050 <0.000400	<0.0020 <0.000260
	MW-57	Apr-14 Nov-14	<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15	0.000561 J	<0.000310	<0.000370	< 0.000780	0.00197 J	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-58	Oct-16 Nov-14	<0.000341 0.076	<0.000307 <0.0077	<0.000372 <0.0093	<0.000780 <0.02	<0.00106 1.60	<0.000396 <0.0099	<0.000419 <0.01	<0.000469	<0.000398 <0.01	<0.000259 <0.0065
		Apr-15 Oct-15	0.083 0.0603 J	<0.00310 <0.0307	<0.00370 <0.0372	0.0174 J <0.0780	2.16 2.18	<0.00400 <0.0396	<0.00420 <0.0419	<0.00470 <0.0469	<0.00400 <0.0398	<0.00260 <0.0259
		Apr-16	0.0183	<0.00307	< 0.00372	0.00806 J	0.848	<0.00396	<0.00419	< 0.00469	<0.00398	<0.00259
Refinery	MW-111	Oct-16 Apr-14	0.0201 0.0011 J	<0.000307 <0.00050	<0.000372 <0.00060	0.0159 0.0011 J	0.893 0.0057 J	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
of Re		Nov-14 Apr-15	0.0052 0.00158	<0.00031 <0.000310	<0.00037 <0.000370	0.0016 J <0.000780	0.027 0.00881	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
East of		Oct-15 Apr-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	0.00113 J <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
Field	MM/ 440	Oct-16	<0.000341	<0.000307	< 0.000372	<0.000780	0.00177 J	<0.000396	< 0.000419	10.000100	<0.000398	<0.000259 <0.0065
_	MW-112 MW-113	Nov-14 Apr-14	0.600 0.090 J	<0.0077 <0.00050	<0.0093 <0.00060	0.730 0.064	2.00 0.910	<0.0099 <0.00040	<0.01 <0.00060		<0.01 <0.00050	<0.00040
		Nov-14 F	0.016 D 0.015	<0.00031 <0.0031	<0.00037 <0.0037	0.0046 J <0.0078	0.100 0.100	<0.00040 <0.0040	<0.00042 <0.0042		<0.00040 <0.0040	<0.00026 <0.0026
		Apr-15 F	<0.000340 D <0.000340	<0.000310 <0.000310	<0.000370 <0.000370	<0.000780 <0.000780	<0.00110 <0.00110	<0.000400 <0.000400	<0.000420 <0.000420	<0.000470 <0.000470	<0.000400 <0.000400	<0.000260 <0.000260
		Oct-15	<0.000341 D <0.000341	<0.000307 <0.000307	<0.000372 J <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 J <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16	< 0.000341	<0.000307	< 0.000372	<0.000780	0.00518	<0.000396	< 0.000419	<0.000469	<0.000398	<0.000259
		Apr-16 F Oct-16	D <0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	0.00531 0.0143	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
ĺ	MW-125	Oct-16 F Apr-14	O <0.000341 <0.00050	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 <0.00050	0.0127 <0.0015	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
ĺ		Nov-14 Apr-15	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
ĺ		Oct-15	<0.000341	<0.000310 <0.000307 <0.000307	<0.000370 <0.000372 <0.000372	<0.000780	<0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000470 <0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
i		Apr-16 Oct-16	<0.000341 <0.000341	<0.000307	<0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
i	MW-126A	Apr-14 Nov-14	0.0011 J <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	0.0022 J <0.00078	0.0045 J <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
i		Apr-15 Oct-15	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 0.000858 J	<0.00110 0.0103	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
İ		Apr-16 Oct-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 J4 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
İ	MW-126B	Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060	-0.000409	<0.00050	<0.00040
İ		Nov-14 Apr-15	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
ĺ		Oct-15 Apr-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
i	MW-127	Oct-16 Apr-14	<0.000341 0.330		<0.000372 <0.00060	<0.000780 2.40	<0.00106 0.870	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
i	121	Nov-14	0.068	<0.00031	<0.00037	0.150	0.150	<0.00040	<0.00042	<0.000.170	<0.00040	<0.00026
i		Apr-15 Oct-15	0.142 0.0552	<0.000310 <0.00614	<0.000370 <0.00744	0.183 0.216	0.296 0.141	<0.000400 <0.00792	<0.000420 <0.00838	<0.000470 <0.00938	<0.000400 <0.00796	<0.000260 <0.00518
İ		Apr-16 Oct-16	0.0375 0.0127	<0.000307 <0.00307	<0.000372 <0.00372	0.287 0.0877	0.149 0.0514	<0.000396 <0.00396	<0.000419 J4 <0.00419	<0.000469 <0.00469	<0.000398 <0.00398	<0.000259 <0.00259
Ī	MW-128	Apr-14	<0.00050	<0.00050	<0.00060	0.0019 J	0.014 J	<0.00040	<0.00060		<0.00050	<0.00040
İ		Apr-15	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	0.00092 J 0.000928 J	0.0055 0.00326	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
i		Oct-15	<0.00682	<0.00614 <0.000307	<0.00744 <0.000372	<0.0156 <0.000780	<0.0212 0.00153 J	<0.00792 <0.000396	<0.00838 < 0.000419	<0.00938 <0.000469	<0.0004 <0.000398	<0.00518 <0.000259
		Apr-16	< 0.000341	<0.000307								
	MW-129	Oct-16	<0.000341	<0.000307	<0.000372	<0.000780	0.0037 0.059	<0.000396 <0.0040	<0.000419 <0.0042	<0.000469	<0.000398 <0.0040	<0.000259 <0.0026
	MW-129	Oct-16 Nov-14 Apr-15	<0.000341 0.016 0.00112	<0.000307 <0.0031 <0.000310	<0.000372 <0.0037 <0.000370	<0.000780 0.071 <0.000780	0.059 0.00357	<0.0040 <0.000400	<0.0042 <0.000420	<0.000470	<0.0040 <0.000400	<0.0026 <0.000260
	MW-129	Oct-16 Nov-14	<0.000341 0.016	<0.000307 <0.0031 <0.000310 <0.0307 <0.000307	<0.000372 <0.0037	<0.000780 0.071	0.059	<0.0040	<0.0042		<0.0040	<0.0026

		Analyte G	roup:			-			ic Compounds	sia, New Mexic			
		An	alyte:	o-Xylene	Styrene (Monomer)	Tetra- chloroethene	Toluene	Total Xylenes	trans-1,2-Di- chloroethene	trans-1,3- Dichloro- propene	Tribromo- methane	Trichloro- ethene	Vinyl Chloride
			Units: WSL:	mg/L 0.193	mg/L 1.00E-01	mg/L 5.00E-03	mg/L 0.750	mg/L 0.620	mg/L 1.00E-01	mg/L 4.70E-03	mg/L 	mg/L 5.00E-03	mg/L 1.00E-03
Δrea	Well ID	GWSL So	Dup	WQCC TW	USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCC HH
	MW-130	Apr-14		<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Nov-14 Apr-15		<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15 Apr-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16		<0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	<0.000469	<0.000398	< 0.000259
	MW-131	Apr-14 Nov-14		0.180 0.065	<0.00050 <0.0031	<0.00060 <0.0037	1.40 0.310	0.650 0.180	<0.00040 <0.0040	<0.00060 <0.0042		<0.00050 <0.0040	<0.00040 <0.0026
		Apr-15 Oct-15		0.0606 0.0243	<0.000310 <0.000307	<0.000370 <0.000372	0.215 0.0522	0.145 0.0859	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16		0.0370	<0.000307	<0.000372	0.142	0.0883	<0.000396	<0.000419 J4	<0.000469	<0.000398	<0.000259
	MW-133	Oct-16 Nov-14		0.0182 0.038 J	<0.00154 <0.031	<0.00186 <0.037	0.0299 0.1 J	0.0613 0.22 J	<0.00198 <0.04	<0.00210 <0.042	<0.00234	<0.00199 <0.04	<0.00130 <0.026
	MW-134	Apr-15 Apr-14		<0.0340 <0.00050	<0.0310 <0.00050	<0.0370 <0.00060	<0.0780 <0.00050	<0.11 <0.0015	<0.0400 <0.00040	<0.0420 <0.00060	<0.0470	<0.0400 <0.00050	<0.0260 <0.00040
	IVIVV-10-	Nov-14		<0.00034	<0.00031	< 0.00037	<0.00078	<0.0011	<0.00040	<0.00042		<0.00040	<0.00026
		Apr-15 Apr-15	FD	<0.000340 <0.000340	<0.000310 <0.000310	<0.000370 <0.000370	<0.000780 <0.000780	<0.00110 <0.00110	<0.000400 <0.000400	<0.000420 <0.000420	<0.000470 <0.000470	<0.000400 <0.000400	<0.000260 <0.000260
		Oct-15 Oct-15	FD	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16		<0.00100	< 0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419 J4	< 0.000469	<0.000398	< 0.000259
nery		Apr-16 Oct-16	FD	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 J4 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
Refi	MW-135	Oct-16 Apr-14	FD	<0.000341 <0.00050	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 <0.00050	<0.00106 <0.0015	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
Field East of Refinery		Nov-14		<0.00034	<0.00031	< 0.00037	<0.00078	<0.0011	<0.00040	<0.00042	40.000.7=2	<0.00040	<0.00026
ald E		Apr-15 Oct-15	H	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
ΙĒ		Apr-16 Oct-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	RA-4196	Apr-14		<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	RA-4798	Apr-14		<0.00050	<0.00050	<0.00060	< 0.00050	<0.0015	<0.00040	<0.00060	0.000100	<0.00050	<0.00040
		Apr-14 Nov-14	FD	<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	< 0.000469	<0.000398	< 0.000259
	RW-12R	Oct-16 Apr-16		<0.000341 <0.00170	<0.000307 <0.00154	<0.000372 <0.00186	<0.000780 <0.00390	<0.00106 0.0140 J	<0.000396 <0.00198	<0.000419 <0.00210	<0.000469 <0.00234	<0.000398 <0.00199	<0.000259 <0.00130
	RW-13R RW-18	Apr-16 Apr-13		0.0139 < 0.0050	<0.000307 <0.0050	<0.000372 <0.0050	0.0175 <0.0050	0.108 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
	144-10	Apr-14		<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	RW-20 RW-22	Apr-15 Apr-15		0.059 0.0952	<0.00310 <0.00310	<0.00370 <0.00370	0.211 0.216	1.35 0.945	<0.00400 <0.00400	<0.00420 <0.00420	<0.00470 <0.00470	<0.00400 <0.00400	<0.00260 <0.00260
	MW-23	Apr-14		<0.010	<0.010	<0.012	<0.010	0.035 J	<0.0080	<0.012	<0.00470	<0.010	<0.0080
		Nov-14 Apr-15		0.17 0.181	<0.015 <0.00770	<0.019 <0.37	0.52 0.431	1.10 1.37	<0.02 <0.00990	<0.021 <0.0100	<0.0120 J	<0.02 <0.0100	<0.013 <0.00650
		Oct-15 Apr-16		0.00237 0.00284 J	<0.000307 <0.00154	<0.000372 <0.00186	0.00501 0.00412 J	0.00805 0.0176	<0.000396 <0.00198	<0.000419 <0.00210	<0.000469 <0.00234	<0.000398 <0.00199	<0.000259 <0.00130
	101100	Oct-16		<0.00852	<0.00768	<0.00930	<0.0195	< 0.0265	<0.00990	<0.0105	<0.0117	<0.00995	<0.00648
	MW-29	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-39	Oct-13		0.001	<0.0050	<0.0050	0.0093	0.086	<0.000396 <0.0050	<0.0050	<0.0050	<0.0050	<0.0020
		Apr-15 Oct-15		0.00632 0.0053	<0.000310 <0.000307	<0.000370 <0.000372	0.00137 J 0.00108 J	0.00753 0.00645	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16 Oct-16		0.0365 0.0428 J	<0.00768 <0.0307	<0.00930 <0.0372	0.0293 J <0.0780	0.181 0.204 J	<0.00990 <0.0396	<0.0105 <0.0419	<0.0117 <0.0469	<0.00995 <0.0398	<0.00648 <0.0259
	MW-40	Apr-13		< 0.0050	<0.0050	< 0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0020
		Apr-14 Apr-15	H	<0.00050 <0.000340	<0.00050 <0.000310	<0.00060 <0.000370	<0.00050 <0.000780	0.0056 J 0.00606	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 0.000999 J
	MW-41	Apr-16 Oct-13		<0.000341 <0.0050	<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	0.0144 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
nery		Apr-14		<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
Refinery		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
North	MW-42	Oct-13 Apr-14	F	<0.0050 0.0011 J	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 0.0023 J	0.220 0.110	<0.0050 <0.00040	<0.0050 < 0.00060	<0.0050	<0.0050 <0.00050	<0.0020 < 0.00040
1		Apr-15		< 0.00340	<0.00310	<0.00370	<0.00780	0.0484	<0.00400	<0.00420	<0.00470	<0.00400	<0.00260
	MW-43	Apr-16 Apr-14		<0.00170 0.014	<0.00154 <0.00050	<0.00186 <0.00060	<0.00390 0.029	0.0380 0.160	<0.00198 <0.00040	<0.00210 <0.00060	<0.00234	<0.00199 <0.00050	<0.00130 < 0.00040
		Nov-14 Apr-15		0.012 0.0227	<0.0031 <0.00310	<0.0037 <0.00370	0.03 J 0.0538	0.170 0.300	<0.0040 <0.00400	<0.0042 <0.00420	<0.00470 J	<0.0040 <0.00400	<0.0026 <0.00260
		Oct-15		0.333	< 0.00307	< 0.00372	0.808	1.48	<0.00396	<0.00419	<0.00469	<0.00398	<0.00259
		Apr-16 Oct-16		0.626 0.555	<0.0768 <0.0768	<0.0930 <0.0930	1.66 0.618 J	1.86 1.81	<0.0990 <0.0990	<0.105 <0.105	<0.117 <0.117	<0.0995 <0.0995	<0.0648 <0.0648
	MW-59	Apr-13 Apr-14		<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050	<0.015 <0.0015	<0.0050 <0.00040	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	<0.0020 < 0.00040
		Apr-15		<0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
	MW-60	Apr-16 Apr-14		<0.000341 <0.00050	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 <0.00050	<0.00106 0.0063 J	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
		Nov-14 Apr-15	HĪ	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 0.00280 J	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Apr-15	FD	< 0.000340	<0.000310	<0.000370	<0.000780	0.00163 J	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15	FD	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	0.00176 J 0.00181 J	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16 Apr-16	FD	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	0.00283 J 0.00272 J	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16		< 0.000341	< 0.000307	<0.000372	<0.000780	0.00736	<0.000396	<0.000419	<0.000469	<0.000398	< 0.000259
Щ	!	Oct-16	Fυ	<0.000341	<0.000307	<0.000372	<0.000780	0.00552	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259

March 1969		Analyte Group						ic Compounds	isia, ivew iviexio			
Company Comp							Total	trans-1,2-Di-	trans-1,3- Dichloro-			Vinyl Chloride
March March Date	(CGWSL	0.193	1.00E-01	5.00E-03	0.750	0.620	1.00E-01	4.70E-03		5.00E-03	mg/L 1.00E-03 WQCC HH
Marce	ea Well ID	Date Dup	i	<0.0025	<0.0030			<0.0020	<0.0030		<0.0025	<0.0020
March Marc		Nov-14	<0.017	<0.015	<0.019	<0.039	1.20	<0.02	<0.021		<0.02	<0.013
Description Company												<0.00260 <0.00259
March Color Colo												<0.00130
March	MW-62				<0.00060		0.72	<0.00040	<0.00060	NO.0117	<0.00050	<0.00040
March Marc										<0.00470.1		<0.013 <0.00260
March Marc		Oct-15	0.00886 J	<0.00614	<0.00744	<0.0156	1.73	<0.00792	<0.00838	<0.00938	<0.00796 J	<0.00518
Montal												<0.00648 <0.0259 J6
March County Co	MW-67		<0.0017			<0.0039	0.0084 J			+0.000470		<0.0013
Mary Mary												<0.00260
March Marc												<0.00259
April 0.000340 0.000370 0.000370 0.000370 0.000370 0.000360 0.000460 0	MW-90	Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060	<0.00403	<0.00050	<0.00040
Cut 15										<0.000470		<0.00026 <0.000260
March Marc		Oct-15	<0.000341	< 0.000307	< 0.000372	<0.000780	<0.00106	<0.000396 J	<0.000419	<0.000469	<0.000398	< 0.000259
March Agent Agent Control												<0.000259 <0.000259
April	MW-91	Apr-14	0.036			0.410	0.580					<0.0020
March Marc										<0.00470		<0.005
Mary Mary		Oct-15										<0.00648 <0.0130
March Marc		Oct-16	0.310	<0.0768	<0.0930	3.33	1.58	<0.0990	<0.105	<0.117	<0.0995	<0.0648
March Marc	MW-92											0.000399 J <0.00518
Page 15 0.009983 -0.00310	MW-93	Apr-14	0.015 J	<0.0025	<0.0030	0.019 J	0.610	<0.0020	<0.0030	10.00000	<0.0025	<0.0020
Col-16										<0.00470 J		<0.013 <0.00260
Mary Mary		Oct-15	0.011	< 0.00307	< 0.00372	0.0170 J	0.494	< 0.00396	<0.00419	<0.00469	<0.00398	<0.00259
Part Part												<0.00130
Mary 16	MW-94									<0.00460		<0.0052
Part Part												<0.0130
## Apr-14 40,00050	MW-95											<0.00130
MW-98	<u> </u>	Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
WW-96 Apr-14 < 0.012 < 0.015 0.016 0.016 0.0030 0.007 < 0.016 0.016 0.026 < 0.0026 < 0.0026 < 0.0026 < 0.0026 < 0.0026 < 0.0027 < 0.00040 < 0.0016 < 0.0017 < 0.00040 < 0.0017 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 < 0.00040 <	D E											<0.000260 <0.000259
Agr-15	MW-96	Apr-14	<0.012	<0.012	<0.015	0.015 J	<0.038	<0.010	<0.015		<0.012	<0.010
April	2									<0.000470		<0.0065 <0.000260
MV-98 MV-9												<0.13
Agr-14 D												<0.00318
No-14	MW-98											<0.0040
Oct-15 0.0316		Nov-14	<0.085	< 0.077	<0.093	0.280 J	1.60	<0.099	<0.1		<0.1	<0.065
Apr-16												<0.00650 <0.00648
MW-137 Oct-15 0.480		Apr-16					0.865					<0.0259
Oct-16	MW-137											<0.0259
MW-138 Oct-15												<0.0648 <0.0648
	MW-138	Oct-15	<0.00682	<0.00614	<0.00744	<0.0156	0.0339 J	<0.00792	<0.00838	<0.00938	<0.00796	<0.00518
RW-1R Apr-16 0.00110 0.000307 0.00258 0.00542 0.0122 0.0250 0.000410 0.000469 0.00959 0.0018												<0.00259 <0.00259
RW-2R Apr-15												<0.0130
RW-2R Apr-16 0.0461 J												<0.00116
RW-7R Apr-16		7 tp1 10										<0.0130
RW-9												<0.000259
Apr-14						<0.00780	<0.0110					<0.00260
RW-10 Apr-16 <0.00170 <0.00184 <0.00186 <0.00390 <0.00708 <0.00198 <0.00210 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.00190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0.000190 <0	1744-8	Apr-14	<0.00050	<0.00050	<0.00060	0.0019 J	0.024	<0.00040	<0.00060	< 0.00234	<0.00050	<0.00040
RW-10										<0.0230		<0.0130 <0.00130
Apr-15	RW-10	Apr-13	<0.0050	< 0.0050	< 0.0050	<0.0050	<0.015	< 0.0050	<0.0050	<0.0050	<0.0050	<0.0020
RW-16										<0.000470		<0.00040 <0.000260
Apr-14	DW/ 40	Apr-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
Apr-14 FD <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00060 <0.000040 <0.000060 <0.000060 <0.000060 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0.00050 <0	KW-16	Apr-14			<0.00060	<0.00050	<0.0015	<0.00040	<0.00060	<0.0050		<0.0020 < 0.00040
Apr-16		Apr-14 FD								<0.000470		<0.00040 <0.000260
Apr-14		Apr-16	< 0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
Apr-15	RW-17									<0.0050		<0.0020 <0.00040
MW-117		Apr-15	<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420		<0.000400	<0.000260
Nov-14 <0.00034 <0.00031 <0.00037 <0.00078 <0.0011 <0.00040 <0.00042 <0.00042 <0.00040 <0.00040 <0.00040 <0.00042 <0.00040 <0.00040 <0.00042 <0.00040 <0.00040 <0.00042 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <0.00040 <	MW-117									<0.000469		<0.000259 <0.00040
Apr.15		Nov-14	<0.00034	<0.00031	<0.00037	<0.00078	<0.0011	<0.00040	<0.00042		<0.00040	<0.00026
Apr-16 Co.000341 Co.00037 Co.000372 Co.000780 Co.00016 Co.000396 Co.00019 Co.000398 Co.0001 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.00019 Co.000396 Co.000	<u> </u>									<0.000470		<0.00026 <0.000260
MW-118	500											<0.000259 <0.000259
Nov-14		Oct-16	< 0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419		<0.000398	<0.000259
Apr-15 <0.000340 <0.000310 <0.000370 <0.000780 <0.00110 <0.000400 <0.000420 <0.000470 <0.000470 <0.000400 <0.000420 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470 <0.000470	MW-118											<0.00040 <0.00026
Oct-15 <0.000341 <0.000372 <0.000780 <0.00106 <0.000396 <0.000419 <0.000469 <0.000398 <0.0002 Apr-16 <0.000341		Apr-15	<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420		<0.000400	<0.000260
												<0.000259 <0.000259
												<0.000259

					HollyFronti			ia Refinery, Arte		0		
	Α	Analyte Group	-	1	1			ic Compounds	trans-1,3-			I
		Analyte	o-Xylene	Styrene	Tetra-	Toluene	Total Xylenes	trans-1,2-Di-	Dichloro-	Tribromo-	Trichloro-	
		Units	: mg/L	(Monomer) mg/L	chloroethene mg/L	mg/L	mg/L	chloroethene mg/L	propene mg/L	methane	ethene mg/L	Vinyl Chloride mg/L
		CGWSL	: mg/L : 0.193	1.00E-01	5.00E-03	0.750	0.620	1.00E-01	4.70E-03	mg/L	5.00E-03	1.00E-03
_		GWSL Source		USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCC HH
Area	Well ID MW-119	Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
Reject d		Apr-14 FD		<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
RO R Field		Nov-14 Apr-15	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
£i≟		Oct-15	<0.000341	<0.000307	<0.000372	<0.000780	<0.00110	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
North		Apr-16 Oct-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	MW-18	Oct-18	<0.0050	<0.0050	<0.0050	<0.000780	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
		Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15 Apr-16	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-45	Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Nov-14 Apr-15	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15	<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000396	<0.000420	<0.000470	<0.000398	<0.000259
		Apr-16	<0.000341	< 0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-53	Oct-16 Apr-13	<0.000341 <0.0050	<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
		Apr-14	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15 Apr-16	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-54A	Apr-14	<0.00050	<0.00050	<0.00060	<0.000760	<0.0015	<0.00040	<0.00060	<0.000469	<0.00050	<0.00040
		Nov-14	<0.00034	<0.00031	<0.00037 <0.000370	<0.00078	<0.0011	<0.00040	<0.00042	-0.000470	<0.00040	<0.00026
		Apr-15 Oct-15	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-54B	Oct-16 Apr-13	<0.000341 <0.0050	<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
		Apr-15	<0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
	MW-55	Apr-14 FD	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050	<0.0015 <0.0015	<0.00040 <0.00040	<0.00060 <0.00060		<0.00050 <0.00050	<0.00040 <0.00040
		Nov-14	<0.00034	<0.00030	<0.00037	<0.00030	<0.0013	<0.00040	<0.00042		<0.00040	<0.00046
		Apr-15	<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420 <0.000419	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-56	Apr-14 Nov-14	<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15	< 0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-108	Apr-14	0.0028 J	<0.00050	<0.00060	0.0065	0.054	<0.00040	<0.00060		<0.00050	<0.00040
		Nov-14 Apr-15	0.0031 J 0.00412 J	<0.0015 <0.00310	<0.0019 <0.00370	0.0078 J 0.00956 J	0.059 0.0706	<0.0020 <0.00400	<0.0021 <0.00420	<0.00470	<0.0020 <0.00400	<0.0013 <0.00260
		Oct-15	0.00444 J	<0.00307	<0.00372	0.00978 J	0.0855	<0.00396	<0.00419	<0.00469	<0.00398	<0.00259
NCL		Apr-16 Oct-16	<0.0170 <0.00852	<0.0154 <0.00768	<0.0186 <0.00930	<0.0390 <0.0195	0.0795 J 0.0721 J	<0.0198 <0.00990	<0.0210 <0.0105	<0.0234 <0.0117	<0.0199 <0.00995	<0.0130 <0.00648
-	NCL-31	Apr-14	<0.00052	<0.00050	<0.00060	<0.0050	<0.0015	<0.00040	<0.00060	40.0117	<0.00050	<0.00040
		Nov-14	<0.00034	<0.00031	<0.00037	<0.00078	<0.0011	<0.00040	<0.00042	<0.000470	<0.00040	<0.00026
		Apr-15 Oct-15	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16	<0.000341	< 0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259
	NCL-32	Oct-16 Nov-14	<0.000341 <0.00034	<0.000307 <0.00031	<0.000372 <0.00037	<0.000780 <0.00078	<0.00106 <0.0011	<0.000396 <0.00040	<0.000419 <0.00042	<0.000469	<0.000398	<0.000259 <0.00026
		Apr-15	< 0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16	<0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Oct-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	NCL-33	Apr-14	<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050	<0.0015	<0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040
		Nov-14 Apr-15	<0.00034	<0.000310	<0.00037	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.000420	<0.000470	<0.000400	<0.00026 <0.000260
		Oct-15	<0.000341	<0.000307	<0.000372 J	<0.000780 J	<0.00106	<0.000396 J	<0.000419	<0.000469 J	<0.000398	<0.000259 J
		Apr-16 Oct-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	NCL-34A	Nov-14	< 0.0017	<0.0015	<0.0019	< 0.0039	0.1	<0.0020	<0.0021		<0.0020	<0.0013
		Apr-15 Oct-15	0.00121 0.000477 J	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	0.0952 0.0658	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16	<0.0170	< 0.0154	<0.0186	< 0.0390	0.188	<0.0198	<0.0210	< 0.0234	<0.0199	<0.0130
	NCL-44	Oct-16 Apr-14	<0.0341 <0.00050	<0.0307 <0.00050	<0.0372 <0.00060	<0.0780 <0.00050	0.111 J <0.0015	<0.0396 <0.00040	<0.0419 <0.00060	<0.0469	<0.0398 <0.00050	<0.0259 <0.00040
	NOL-44	Nov-14	<0.00034	<0.00031	<0.00037	<0.00078	<0.0013	<0.00040	<0.00042		<0.00040	<0.00046
		Apr-15 Oct-15	<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	NO. 40	Oct-16	<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	NCL-49	Apr-14 Nov-14	<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Nov-14 FD	< 0.00034	<0.00031	< 0.00037	<0.00078	<0.0011	<0.00040	<0.00042	.0.002:-2	<0.00040	<0.00026
		Apr-15 FD	<0.000340 <0.000340	<0.000310 <0.000310	<0.000370 <0.000370	<0.000780 <0.000780	<0.00110 <0.00110	<0.000400 <0.000400	<0.000420 <0.000420	<0.000470 <0.000470	<0.000400 <0.000400	<0.000260 <0.000260
		Oct-15	< 0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	< 0.000396	<0.000419	<0.000469	<0.000398	< 0.000259
		Oct-15 FD Apr-16	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16 FD	<0.000341	< 0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	< 0.000469	<0.000398	<0.000259
		Oct-16 ED	<0.000341	<0.000307 <0.000307	<0.000372	<0.000780	<0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259
_	KWB-2R	Oct-16 FD Nov-14	<0.000341 0.031	<0.000307	<0.000372 <0.0093	<0.000780 0.035 J	<0.00106 0.740	<0.000396	<0.000419 <0.01	~0.000409	<0.00398	<0.000259 <0.0065
		Apr-15	0.0115	<0.00310	< 0.00370	0.0140 J	0.236	<0.00400	<0.00420	<0.00470	<0.00400	<0.00260
Ž		Oct-15 Apr-16	<0.0341 0.00189	<0.0307 <0.000307	<0.0372 <0.000372	<0.0780 0.00152 J	0.448 0.0515	<0.0396 <0.000396	<0.0419 < 0.000419	<0.0469 <0.000469	<0.0398 <0.000398	<0.0259 <0.000259
9	Ī	Oct-16	0.00185	< 0.000307	<0.000372	0.00290 J	0.0289	<0.000396	< 0.000419	<0.000469	<0.000398	<0.000259
Refine				-0.0004	< 0.0037	< 0.0078	<0.011	< 0.0040	< 0.0042	T	< 0.0040	< 0.0026
uth Refinery	KWB-5	Nov-14 Apr-15	<0.0034 0.00713	<0.0031						<0.000470	<0.000400	< 0.000360
South Refine	KWB-5	Apr-15 Oct-15	0.00713 0.00312	<0.000310 <0.000307	<0.000370 <0.000372	0.013 0.00578	0.0394 0.0166	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
South Refine	KWB-5	Apr-15	0.00713	<0.000310	<0.000370	0.013	0.0394	<0.000400	<0.000420			

	4	nalyte Gr	oup:				ei Navajo Neili		ic Compounds				
		Ana	alyte:	o-Xylene	Styrene	Tetra-	Toluene	Total Xylenes	trans-1,2-Di-	trans-1,3- Dichloro-	Tribromo-	Trichloro-	
			Jnits:	mg/L	(Monomer) mg/L	chloroethene mg/L	mg/L	mg/L	chloroethene mg/L	propene mg/L	methane mg/L	ethene mg/L	Vinyl Chloride mg/L
	0	CGV	NSL:	0.193	1.00E-01	5.00E-03	0.750	0.620	1.00E-01	4.70E-03		5.00E-03	1.00E-03 WQCC HH
Area		GWSL So Date	Dup	WQCC TW	USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCCHH
	KWB-6	Nov-14 Apr-15		0.200 0.760	<0.0031 <0.00770	<0.0037 <0.00930	0.530 1.70	1.10 3.47	<0.0040 <0.00990	<0.0042 <0.0100	<0.0120	<0.0040 <0.0100	<0.0026 <0.00650
		Oct-15		0.297 J	<0.154	<0.186	<0.39	1.33 J	<0.198	<0.21	<0.234	<0.199	<0.13
		Apr-16 Oct-16		0.243 0.0232	<0.00154 <0.00614	<0.00186 <0.00744	0.120 0.0167 J	1.88 0.417	<0.00198 <0.00792	<0.00210 <0.00838	<0.00234 <0.00938	<0.00199 <0.00796	<0.00130 <0.00518
	MW-28	Apr-14 Nov-14		0.00053 J <0.0085	<0.00050 <0.0077	<0.00060 <0.0093	0.0053 0.054 J	0.0086 J 0.22	<0.00040 <0.0099	<0.00060 <0.01		<0.00050 <0.01	<0.00040 <0.0065
		Apr-15		< 0.0340	<0.0310	<0.0370	<0.0780	0.194 J	<0.0400	<0.0420	<0.0470	<0.0400	<0.0260
		Oct-15 Apr-16		<0.0341 0.00496 J	<0.0307 <0.00307	<0.0372 <0.00372	<0.0780 0.0350 J	0.243 J 0.161	<0.0396 <0.00396	<0.0419 < 0.00419	<0.0469 <0.00469	<0.0398 <0.00398	<0.0259 <0.00259
	NAVA 40	Oct-16		<0.0170	<0.0154	<0.0186	0.0683 J	0.338	<0.0198	<0.0210	10.0004	<0.0199	<0.0130
	MW-48	Nov-14 Apr-15		0.01 J 0.00973 J	<0.0077 <0.00310	<0.0093 < 0.00370	0.03 J 0.0146 J	0.13 0.153	<0.0099 <0.00400	<0.01 < 0.00420	<0.0234 <0.00470	<0.01 < 0.00400	<0.0065 <0.00260
		Oct-15 Apr-16		0.00658 0.0788	<0.00154 <0.00614	<0.00186 <0.00744	0.0120 J 0.214	0.125 0.750	<0.00198 <0.00792	<0.00210 <0.00838	<0.00234 <0.00938	<0.00199 <0.00796	<0.00130 <0.00518
		Oct-16		0.0356	<0.00154	<0.00186	0.214	0.538	<0.00198	<0.00210	<0.00234	<0.00199	<0.00130
	MW-50	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307 J	<0.000370 <0.000372 J	<0.000780 <0.000780 J	<0.00110 <0.00106 J	<0.000400 <0.000396 J	<0.000420 <0.000419 J	<0.000470 <0.000469 J	<0.000400 <0.000398 J	<0.000260 <0.000259
		Apr-16		<0.000341	< 0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	< 0.000469	<0.000398	<0.000259
	MW-52	Oct-16 Apr-14		<0.000341 <0.00050	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 <0.00050	<0.00106 <0.0015	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
1		Apr-14	FD	<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Nov-14 Apr-15		<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15 Apr-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 J <0.000780	<0.00106 <0.00106	<0.000396 J <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 J <0.000259
	MANA CA	Oct-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-64	Apr-16 Oct-16		2.44 1.51	<0.0154 <0.0307	<0.0186 <0.0372	18.8 11.6	7.70 5.30	<0.0198 <0.0396	<0.0210 J4 <0.0419	<0.0234 <0.0469	<0.0199 <0.0398	<0.0130 <0.0259
	MW-65	Nov-14 Apr-15		0.025 J 0.0228	<0.015 <0.00310	<0.019 < 0.00370	<0.039 0.0294 J	0.210 0.158	<0.02 <0.00400	<0.021 < 0.00420	<0.00470	<0.02 < 0.00400	<0.013 <0.00260
1		Apr-16		0.0149	< 0.00307	< 0.00372	0.0211 J	0.0971	<0.00396	<0.00419	<0.00469	<0.00398	< 0.00259
	MW-66	Oct-16 Apr-14		0.00937 J 0.0014 J	<0.00614 <0.00050	<0.00744 <0.00060	0.0271 J 0.0027 J	0.0298 J 0.0069 J	<0.00792 <0.00040	<0.00838 <0.00060	<0.00938	<0.00796 <0.00050	<0.00518 <0.00040
		Nov-14 Apr-15		0.015 <0.0170	<0.0031 <0.0150 J	<0.0037 <0.0190	0.052 <0.0390 J	0.120 0.0668 J	<0.0040 <0.0200	<0.0042 <0.0210	<0.0230	<0.0040 <0.0200	<0.0026 <0.0130
		Oct-15		0.0039	<0.000307	< 0.000372	0.00722	0.032	<0.000396	<0.000419	< 0.000469	<0.000398	<0.000259
		Apr-16 Oct-16		<0.00341 0.00365	<0.00307 <0.000307	<0.00372 <0.000372	<0.0078 0.0109	0.0285 J 0.0265	<0.00396 <0.000396	<0.00419 <0.000419	<0.00469 <0.000469	<0.00398 <0.000398	<0.00259 <0.000259
	MW-99	Nov-14 Apr-15		0.15 0.315	<0.0031 <0.00770 J	<0.0037 <0.00930	0.58 0.149 J	0.840 0.937	<0.0040 <0.00990	<0.0042 <0.0100	<0.0120	<0.0040 <0.0100	<0.0026 <0.00650
		Oct-15		0.0953	<0.00768	<0.00930	0.221	0.604	<0.00990	<0.0105	<0.0117	<0.00995	<0.00648
		Apr-16 Oct-16		0.0843 0.108	<0.00307 <0.00614	<0.00372 <0.00744	0.0427 J 0.190	0.615 0.699	<0.00396 <0.00792	<0.00419 <0.00838	<0.00469 <0.00938	<0.00398 <0.00796	<0.00259 <0.00518
	MW-101	Apr-14 Nov-14		<0.00050 <0.0034	<0.00050 <0.0031	<0.00060 <0.0037	0.0038 J <0.0078	0.011 J <0.011	<0.00040 <0.0040	<0.00060 <0.0042		<0.00050 <0.0040	<0.00040 <0.0026
nery		Apr-15		<0.00170	<0.00150	<0.00190	<0.00390	<0.00530	<0.00200	<0.00210	<0.00230 J	<0.00200	<0.00130
Refi		Oct-15 Apr-16		<0.00170 <0.000341	<0.00154 <0.000307	<0.00186 <0.000372	<0.00390 <0.000780	<0.00530 <0.00106	<0.00198 <0.000396	<0.00210 <0.000419	<0.00234 <0.000469	<0.00199 <0.000398	<0.00130 < 0.000259
South Refinery	MW-102	Oct-16 Nov-14		<0.000341 0.54	<0.000307 <0.015	<0.000372 <0.019	<0.000780 2.00	<0.00106 1.80	<0.000396 <0.02	<0.000419 <0.021	<0.000469	<0.000398 <0.02	<0.000259 <0.013
0,		Apr-15 Oct-15		0.247 0.361	<0.00310 <0.0307	<0.00370 <0.0372	1.45 1.20	0.846 1.43	<0.00400 <0.0396	<0.00420 <0.0419	<0.00470 <0.0469	<0.00400 <0.0398	<0.00260 <0.0259
		Apr-16		0.0881 J	< 0.0307	< 0.0372	0.541	0.632	<0.0396	<0.0419	< 0.0469	<0.0398	<0.0259
	MW-103	Oct-16 Apr-13		0.0952 J <0.0050	<0.0307 <0.0050	<0.0372 <0.0050	0.626 0.006	0.719 <0.015	<0.0396 <0.0050	<0.0419 <0.0050	<0.0469 <0.0050	<0.0398 <0.0050	<0.0259 <0.0020
		Apr-14 Apr-15		0.0045 J 0.00549	<0.00050 <0.000310	<0.00060 <0.000370	0.0094 0.0154	0.017 0.0137	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 <0.000260
		Apr-16		0.00422 J	<0.00154	<0.00186	0.0153 J	<0.00530	<0.00198	<0.00210	<0.00234	<0.00199	<0.00130
	MW-104	Apr-14 Apr-14	FD	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050	<0.0015 <0.0015	<0.00040 <0.00040	<0.00060 <0.00060		<0.00050 <0.00050	<0.00040 <0.00040
1		Nov-14 Nov-14	FD	<0.00034 <0.0034	<0.00031 <0.0031	<0.00037 <0.0037	<0.00078 <0.0078	<0.0011 <0.011	<0.00040 <0.0040	<0.00042 <0.0042		<0.00040 <0.0040	<0.00026 <0.0026
		Apr-15		<0.000340	<0.000310 J	< 0.000370	<0.000780 J	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
1		Apr-15 Oct-15	FD	<0.000340 <0.00170	<0.000310 J <0.00154	<0.000370 <0.00186	<0.000780 J <0.00390	<0.00110 <0.00530	<0.000400 <0.00198	<0.000420 <0.00210	<0.000470 <0.00234	<0.000400 <0.00199	<0.000260 <0.00130
		Oct-15 Apr-16	FD	<0.000341 <0.000341	0.000881 J <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
		Apr-16 Oct-16	FD	<0.000341 <0.00170	<0.000307 <0.00154	<0.000372 <0.00186	<0.000780 <0.00390	<0.00106 <0.00530	<0.000396 <0.00198	<0.000419 <0.00210	<0.000469 <0.00234	<0.000398 <0.00199	<0.000259 <0.00130
		Oct-16	FD	<0.00170	<0.00154	<0.00186	<0.00390	<0.00530	<0.00198	<0.00210	<0.00234	<0.00199	<0.00130
	MW-105	Nov-14 Apr-15		<0.085 0.00965	<0.077 <0.00150	<0.093 <0.0190	<0.2 0.0314	<0.26 0.214	<0.099 <0.00200	<0.1 <0.00210	<0.00230 J	<0.1 <0.00200	<0.065 <0.00130
		Oct-15 Apr-16		<0.00341 <0.0852	<0.00307 <0.0768	<0.00372 <0.0930	<0.00780 <0.195	0.109 0.379 J	<0.00396 <0.0990	<0.00419 <0.105	<0.00469 <0.117	<0.00398 <0.0995	<0.00259 <0.0648
	MANAY 400	Oct-16		< 0.0341	< 0.0307	< 0.0372	<0.0780	0.683	<0.0396	<0.0419	<0.0469	<0.0398	<0.0259
	MW-106	Apr-14 Apr-15		0.024 J 0.00393	<0.010 <0.000310	<0.012 < 0.000370	0.35 0.042	0.31 0.0514	<0.0080 <0.000400	<0.012 < 0.000420	<0.000470	<0.010 < 0.000400	<0.0080 < 0.000260
		Oct-15 Apr-16		<0.0341 <0.00852	<0.0307 <0.00768	<0.0372 <0.00930	0.216 J 0.124 J	0.217 J 0.203	<0.0396 <0.00990	<0.0419 <0.0105	<0.0469 <0.0117	<0.0398 <0.00995	<0.0259 <0.00648
	MW-107	Oct-16		<0.0170	<0.0154 <0.0050	<0.0186 <0.0060	0.146 J 0.017 J	0.297	<0.0198 <0.0040	<0.0210 <0.0060	<0.0234	<0.0199 < 0.0050	<0.0130
1	IVIVV-1U/	Apr-14 Nov-14		<0.0050 0.0035 J	<0.0031	<0.0037	0.02 J	0.12 J 0.12	<0.0040	<0.0042		<0.0040	<0.0040 <0.0026
1		Apr-15 Oct-15		<0.00340 0.0431 J	<0.00310 <0.0307	<0.00370 <0.0372	0.0106 J <0.0780	0.0146 J 0.13 J	<0.00400 <0.0396	<0.00420 <0.0419	<0.00470 <0.0469	<0.00400 <0.0398	<0.00260 <0.0259
1		Apr-16 Oct-16		0.00145 0.00265 J	<0.000307 <0.00154	<0.000372 <0.00186	0.00399 J 0.00800 J	0.00572 0.0112 J	<0.000396 <0.00198	<0.000419 <0.00210	<0.000469 <0.00234	<0.000398 <0.00199	<0.000259 <0.00130
	MW-109	Apr-14		<0.00050	<0.00050	<0.00060	0.0045 J	0.0059 J	<0.00040	<0.00060	-0.00234	<0.00050	<0.00040
1		Nov-14 Apr-15		0.00036 JJ5J3 <0.00340	<0.00031 J5J3 <0.00310	<0.00037 J3 <0.00370	0.0057 J3 0.0117 J	0.0031 J3J5 0.0176 J	<0.00040 <0.00400	<0.00042 J5J3 <0.00420	<0.00470	<0.00040 J3 <0.00400	<0.0026 <0.00260
Ī		Oct-15 Apr-16		<0.00341 <0.00170	<0.00307 <0.00154	<0.00372 <0.00186	0.0141 J 0.00837 J	0.0176 J 0.0142 J	<0.00396 <0.00198	<0.00419 <0.00210	<0.00469 <0.00234	<0.00398 <0.00199	<0.00259 <0.00130
1		Oct-16		<0.00682	<0.00614	<0.00744	< 0.0156	<0.0212	<0.00792	<0.00838	<0.00234	<0.00796	<0.00518
	MW-110	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	0.0023 J <0.00078	0.028 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
1		Apr-15 Oct-15		<0.000340 <0.00170	<0.000310 <0.00154	<0.000370 <0.00186	0.00352 J 0.00464 J	0.00624 0.0298	<0.000400 <0.00198	<0.000420 <0.00210	<0.000470 <0.00234	<0.000400 <0.00199	<0.000260 <0.00130
		Apr-16		<0.000341	< 0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
Щ_	l	Oct-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259

		naluta Cr				HollyFront		ning LLC, Artesi			0		
	А	nalyte Gro Ana	·	o-Xylene	Styrene (Monomer)	Tetra- chloroethene	Toluene	Total Xylenes	trans-1,2-Di- chloroethene	trans-1,3- Dichloro- propene	Tribromo- methane	Trichloro- ethene	Vinyl Chloride
		CGV		mg/L 0.193	mg/L 1.00E-01	mg/L 5.00E-03	mg/L 0.750	mg/L 0.620	mg/L 1.00E-01	mg/L 4.70E-03	mg/L 	mg/L 5.00E-03	mg/L 1.00E-03
Area	Well ID	GWSL Sou Date		WQCC TW	USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCC HH
	RA-313	Apr-13 Apr-14		<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050	<0.015 <0.0015	<0.0050 <0.00040	<0.0050 < 0.00060	<0.0050	<0.0050 <0.00050	<0.0020 < 0.00040
J.		Apr-15		< 0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
Refinery	RW-4	Apr-16 Apr-15		<0.000341 <0.000340	<0.000307 <0.000310 J	<0.000372 <0.000370	<0.000780 <0.000780 J	<0.00106 <0.00110	<0.000396 <0.000400	<0.000419 J4 <0.000420	<0.000469 <0.000470	<0.000398 <0.000400	<0.000259 <0.000260
South F	RW-4R RW-5R	Apr-16 Apr-15		<0.000341 0.522	<0.000307 <0.00310	<0.000372 <0.00370	<0.000780 2.26	<0.00106 1.91	<0.000396 <0.00400	<0.000419 <0.00420	<0.000469 <0.00470	<0.000398 <0.00400	<0.000259 <0.00260
So		Apr-16		0.570	<0.00614	<0.00744	2.51	2.25	<0.00792	<0.00838	<0.00938	<0.00796	<0.00518
	RW-6 RW-6R	Apr-15 Apr-16		0.0558 0.00275	<0.00310 <0.000307	<0.00370 <0.000372	0.0126 J 0.00683	0.158 0.00747	<0.00400 <0.000396	<0.00420 <0.000419	<0.00470 <0.000469	<0.00400 <0.000398	<0.00260 <0.000259
	MW-114	Apr-14 Nov-14		<0.00050 <0.00034	<0.00050 <0.00031	<0.00060 <0.00037	<0.00050 <0.00078	<0.0015 <0.0011	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15		<0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398	<0.000259 <0.000259
Field	MW-115	Oct-16 Apr-14		<0.000341 <0.00050	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 <0.00050	<0.00106 <0.0015	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
Reject f		Nov-14		<0.00034	<0.00031	< 0.00037	<0.00078	<0.0011	<0.00040	<0.00042		<0.00040	<0.00026
RO Re		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
ı#R		Apr-16 Oct-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
South	MW-116	Apr-14		<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060	10.000100	<0.00050	<0.00040
		Nov-14 Apr-15		<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15 Apr-16	Ξ	<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	104/ :-	Oct-16		<0.000341	< 0.000307	<0.000372	<0.000780	<0.00106	< 0.000396	< 0.000419	<0.000469	<0.000398	<0.000259
	MW-49	Apr-14 Nov-14		<0.00050 <0.00068	<0.00050 <0.00061	<0.00060 <0.00074	0.0040 J 0.0029 J	0.034 0.026	<0.00040 <0.00079	<0.00060 <0.00084		<0.00050 <0.00080	<0.00040 <0.00052
		Apr-15 Oct-15		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 0.00201 J	0.0175 0.038	<0.000400 J <0.000396	<0.000420 <0.000419	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
		Apr-16		<0.00682	< 0.00614	<0.00744	<0.0156	0.0540 J	<0.00792	<0.00838	<0.00938	< 0.00796	<0.00518
	TEL-1	Oct-16 Apr-14		<0.0341 0.0024 J	<0.0307 <0.00050	<0.0372 <0.00060	<0.0780 0.0010 J	<0.106 0.0024 J	<0.0396 <0.00040	<0.0419 < 0.00060	<0.0469	<0.0398 <0.00050	<0.0259 < 0.00040
		Apr-14 Nov-14	FD	0.0023 J 0.0022	<0.00050 <0.00031	<0.00060 <0.00037	0.0011 J 0.00099 J	0.0023 J 0.0022 J	<0.00040 <0.00040	<0.00060 <0.00042		<0.00050 <0.00040	<0.00040 <0.00026
		Apr-15		0.00214	<0.000310	<0.000370	<0.000780	0.00214 J	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Oct-15 Apr-16		0.00197 0.00160	<0.000307 <0.000307	<0.000372 <0.000372	0.00108 J 0.000793 J	0.00197 J 0.00160 J	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
	TEL-2	Oct-16 Apr-14		0.00183 0.018	<0.000307 <0.00050	<0.000372 <0.00060	<0.000780 0.043	0.00183 J 0.260	<0.000396 <0.00040	<0.000419 <0.00060	<0.000469	<0.000398 <0.00050	<0.000259 <0.00040
	TEE-2	Nov-14		0.016	<0.0031	< 0.0037	0.034 J	0.200	<0.0040	<0.0042		<0.0040	<0.0026
		Apr-15 Oct-15		0.0182 J 0.0097	<0.00610 <0.00154	<0.00740 <0.00186	0.0372 J 0.0186 J	0.189 0.155	<0.00790 <0.00198	<0.00840 < 0.00210	<0.00940 <0.00234	<0.00800 < 0.00199	<0.00520 <0.00130
TEL		Apr-16 Oct-16		0.0102 0.0066 J	<0.000307 <0.00307	<0.000372 <0.00372	0.0243 0.0218 J	0.146 0.123	<0.000396 <0.00396	<0.000419 <0.00419	<0.000469 <0.00469	<0.000398 <0.00398	<0.000259 <0.00259
	TEL-3	Apr-14		0.0032 J	<0.00050	<0.00060	<0.00050	0.021	<0.00040	<0.00060		<0.00050	<0.00040
		Nov-14 Apr-15	-	0.0023 < 0.00340	<0.00031 <0.00310	<0.00037 <0.00370	0.0010 J <0.00780	0.014 <0.0110	<0.00040 <0.00400	<0.00042 <0.00420	<0.00470	<0.00040 <0.00400	<0.00026 <0.00260
		Oct-15 Apr-16		0.00316 <0.00852	<0.000307 <0.00768	<0.000372 <0.00930	0.00154 J <0.0195	0.0202 <0.0265	<0.000396 <0.00990	<0.000419 <0.0105	<0.000469 <0.0117	<0.000398 <0.00995	<0.000259 <0.00648
	TE: 4	Oct-16		0.00232	<0.000307	<0.000372	0.00119 J	0.0105	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	TEL-4	Apr-14 Nov-14		0.0013 J <0.0068	<0.00050 <0.0061	<0.00060 <0.0074	0.0046 J <0.016	0.061 0.120	<0.00040 <0.0079	<0.00060 < 0.0084		<0.00050 < 0.0080	<0.00040 <0.0052
		Nov-14 Apr-15	FD	<0.0068 <0.00340	<0.0061 <0.00310	<0.0074 <0.00370	<0.016 <0.00780	0.120 0.0394	<0.0079 <0.00400	<0.0084 < 0.00420	<0.00470	<0.0080 <0.00400	<0.0052 <0.00260
			FD	<0.00340 0.00162	<0.00310 <0.000307	<0.00370 <0.000372	<0.00780 0.00623	0.0407 0.0719	<0.00400 <0.000396	<0.00420 <0.000419	<0.00470 <0.000469	<0.00400 <0.000398	<0.00260 <0.000259
		Oct-15	FD	< 0.00341	< 0.00307	< 0.00372	0.00878 J	0.0837	< 0.00396	<0.00419	<0.00469	<0.000398	<0.00259
		Apr-16 Apr-16	FD	<0.00341 <0.00341	<0.00307 <0.00307	<0.00372 <0.00372	0.0132 J 0.0128 J	0.142 0.147	<0.00396 <0.00396	<0.00419 <0.00419	<0.00469 <0.00469	<0.00398 <0.00398	<0.00259 <0.00259
		Oct-16 Oct-16	FD	<0.00341 <0.00341	<0.00307 <0.00307	<0.00372 <0.00372	<0.00780 <0.00780	0.0668 0.0863	<0.00396 <0.00396	<0.00419 <0.00419	<0.00469 <0.00469	<0.00398 <0.00398	<0.00259 <0.00259
	MW-8	Oct-13	10	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020	10.00 100	454	399
		Apr-14 Apr-15		<0.00050 <0.000340	<0.00050 <0.000310	<0.00060 <0.000370	<0.00050 <0.000780	<0.0015 <0.00110	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 <0.000260
	MW-16	Apr-16 Apr-13		<0.000341 <0.0050	<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.000419 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
		Apr-14		<0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060	<0.000470 J	<0.00050	<0.00040
	MW-20	Apr-15 Apr-13		<0.000340 <0.0050	<0.000310 <0.0050	<0.00370 <0.0050	<0.000780 <0.0050	<0.00110 <0.015	<0.000400 <0.0050	<0.000420 <0.0050	<0.000470 J <0.0050	<0.000400 <0.0050	<0.000260 <0.0020
		Apr-14 Apr-14	FD	<0.00050 <0.00050	<0.00050 <0.00050	<0.00060 <0.00060	<0.00050 <0.00050	<0.0015 <0.0015	<0.00040 <0.00040	<0.00060 <0.00060		<0.00050 <0.00050	<0.00040 <0.00040
		Apr-15 Apr-16		< 0.000340	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.00100 J4	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260
	MW-21	Apr-14		<0.000341 <0.00050	<0.00050	<0.00060	<0.000780 <0.00050	<0.0015	<0.00040	<0.00060	~u.uuu409	<0.00050	<0.00040
		Nov-14 Apr-15	\exists	<0.00034 <0.000340	<0.00031 <0.000310	<0.00037 <0.000370	<0.00078 <0.000780	<0.0011 <0.00110	<0.00040 <0.000400	<0.00042 <0.000420	<0.000470 J	<0.00040 <0.000400	<0.00026 <0.000260
		Oct-15 Apr-16		<0.000341 <0.000341	<0.000307 <0.000307	<0.000372 <0.000372	<0.000780 <0.000780	<0.00106 <0.00106	<0.000396 <0.000396	<0.000419 <0.000419	<0.000469 <0.000469	<0.000398 <0.000398	<0.000259 <0.000259
TMD		Oct-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-25	Apr-13 Apr-14	-1	<0.0050 <0.00050	<0.0050 <0.00050	<0.0050 <0.00060	<0.0050 <0.00050	<0.015 <0.0015	<0.0050 <0.00040	<0.0050 <0.00060	<0.0050	<0.0050 <0.00050	<0.0020 < 0.00040
		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.00100 J4	<0.000470 J <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
	MW-26	Apr-13		<0.0050	<0.0050	<0.0050	<0.0050	<0.015	<0.0050	<0.0050	<0.0050	<0.0050	<0.0020
		Apr-14 Apr-15		<0.00050 <0.000340	<0.00050 <0.000310	<0.00060 <0.000370	<0.00050 <0.000780	<0.0015 <0.00110	<0.00040 <0.000400	<0.00060 <0.000420	<0.000470	<0.00050 <0.000400	<0.00040 <0.000260
	MW-27	Apr-16 Apr-13		<0.000341 <0.0050	<0.000307 <0.0050	<0.000372 <0.0050	<0.000780 <0.0050	<0.00106 <0.015	<0.000396 <0.0050	<0.00100 J4 <0.0050	<0.000469 <0.0050	<0.000398 <0.0050	<0.000259 <0.0020
	WITT = 2.1	Apr-14		< 0.00050	<0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15 Apr-16		<0.000340 <0.000341	<0.000310 <0.000307	<0.000370 <0.000372	<0.000780 <0.000780	<0.00110 <0.00106	<0.000400 <0.000396	<0.000420 <0.00100 J4	<0.000470 <0.000469	<0.000400 <0.000398	<0.000260 <0.000259
			-	< 0.00050	< 0.00050	<0.00060	< 0.00050	< 0.0015	<0.00040	<0.00060		<0.00050	<0.00040
	MW-46R	Apr-14 Nov-14					<0.00079	<0.0011	<0.00040	<u td="" uuu\u<=""><td></td><td><0 00040</td><td>< 0 00005 1</td></u>		<0 00040	< 0 00005 1
	MW-46R	Apr-14 Nov-14 Apr-15 Apr-16		<0.00034 <0.000340 <0.000341	<0.00031 <0.000310 <0.000307	<0.00037 <0.000370 <0.000372	<0.00078 <0.000780 <0.000780	<0.0011 <0.00110 <0.00106	<0.00040 <0.000400 <0.000396	<0.00042 <0.000420 <0.000419	<0.000470 <0.000469	<0.00040 <0.000400 <0.000398	<0.00026 J <0.000260 <0.000259

Appendix B, Table B.4 - Summary of Groundwater Analytical Data - Volatile Organic Compounds

2016 Annual Groundwater Report
HollvFrontier Navaio Refining LLC, Artesia Refinery, Artesia, New Mexico

						HollyFronti	er Navajo Retir	ing LLC, Artesi	a Refinery, Arte	sia, New Mexic	0		
	A	nalyte Gro	up:					Volatile Organ	ic Compounds	i			
		Anal	yte:	o-Xylene	Styrene (Monomer)	Tetra- chloroethene	Toluene	Total Xylenes	trans-1,2-Di- chloroethene	trans-1,3- Dichloro- propene	Tribromo- methane	Trichloro- ethene	Vinyl Chloride
		Ur	nits:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CGW		0.193	1.00E-01	5.00E-03	0.750	0.620	1.00E-01	4.70E-03	-	5.00E-03	1.00E-03
		GWSL Sour		WQCC TW	USEPA MCL	USEPA MCL	WQCC HH	WQCC HH	USEPA MCL	USEPA TW	USEPA TW	USEPA MCL	WQCC HH
Area	Well ID	Date D)up										
	MW-68	Apr-13		<0.0050	<0.0050	< 0.0050	< 0.0050	<0.015	< 0.0050	< 0.0050	<0.000469	<0.0050	<0.0020
		Apr-14		<0.00050	< 0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		< 0.00050	<0.00040
		Apr-15		<0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Apr-16		<0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	< 0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	MW-71	Oct-13		<0.0050	<0.0050	< 0.0050	<0.0050	<0.015	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0020
		Apr-14		<0.00050	<0.00050	<0.00060	< 0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15		<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Apr-16		< 0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	< 0.000419	<0.000469	<0.000398	< 0.000259
	MW-89	Apr-13		<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.015	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0020
		Apr-14		<0.00050	<0.00050	<0.00060	< 0.00050	< 0.0015	<0.00040	<0.00060		<0.00050	<0.00040
TMD		Apr-15		0.000538 J	< 0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470 J	<0.000400	<0.000260
-		Apr-16		< 0.000341	< 0.000307	< 0.000372	<0.000780	< 0.00106	<0.000396	<0.00100 J4	<0.000469	<0.000398	< 0.000259
	NP-1	Apr-14		<0.00050	< 0.00050	<0.00060	< 0.00050	< 0.0015	< 0.00040	<0.00060		< 0.00050	<0.00040
		Nov-14		<0.00034	<0.00031	< 0.00037	<0.00078	< 0.0011	<0.00040	<0.00042		<0.00040	<0.00026
		Apr-15		< 0.000340	<0.000310 J	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	< 0.00047	<0.000400	<0.000260
		Oct-15		<0.000341	< 0.000307	< 0.000372	<0.000780	<0.00106	< 0.000396	< 0.000419	< 0.000469	<0.000398	< 0.000259
		Apr-16		<0.000341	< 0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.00100 J4	<0.000469	<0.000398	< 0.000259
		Oct-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	NP-2	Apr-13		<0.0050	<0.0050	< 0.0050	< 0.0050	<0.015	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0020
	NP-6	Apr-13		<0.0050	< 0.0050	< 0.0050	< 0.0050	<0.015	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0020
		Apr-15		<0.000340	< 0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470 J	<0.000400	<0.000260
	UG-1	Apr-13		<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.015	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0020
		Apr-14		<0.00050	< 0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15		<0.000340	< 0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
		Apr-16		<0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	UG-2	Apr-13		<0.0050	<0.0050	< 0.0050	<0.0050	<0.015	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0020
=		Apr-13 I	FD	<0.0050	<0.0050	< 0.0050	< 0.0050	<0.015	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0020
<u>ē</u> .		Apr-14		<0.00050	< 0.00050	<0.00060	<0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
<u>a</u>		Apr-15		<0.000340	<0.000310	<0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
Upgradient		Apr-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
_	UG-3R	Apr-13		<0.0050	<0.0050	< 0.0050	< 0.0050	<0.015	<0.0050	< 0.0050	<0.0050	<0.0050	<0.0020
1		Apr-14		<0.00050	< 0.00050	<0.00060	< 0.00050	<0.0015	<0.00040	<0.00060		< 0.00050	<0.00040
I		Apr-14	FD	<0.00050	<0.00050	<0.00060	< 0.00050	<0.0015	<0.00040	<0.00060		<0.00050	<0.00040
		Apr-15		<0.000340	<0.000310	< 0.000370	<0.000780	<0.00110	<0.000400	<0.000420	<0.000470	<0.000400	<0.000260
I		Apr-16		<0.000341	<0.000307	<0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259
	UG-4	Apr-16		<0.000341	<0.000307	< 0.000372	<0.000780	<0.00106	<0.000396	<0.000419	<0.000469	<0.000398	<0.000259

Definitions

Х Reported concentration, X, exceeds the CGWSL.

Х Analyte detected above the detection limit at a concentration equal to X

< x Analyte not detected at detection limit equal to x. Analyte not detected at detection limit equal to x, but x exceeds the CGWSL.

Blank cell indicates a sample was collected from the well during the indicated sampling event, but the analyte was not analyzed.

Abbreviations

1,2,4-TMB 1,2,4-trimethylbenzene 1,3,5-TMB 1,3,5-trimethylbenzene cis-1,2-DCE cis-1,2-dichloroethene

Critical Groundwater Screening Level (see Table 3) CGWSL

CGWSL Source Source for CGWSL value (see Table 3)

FD field duplicate sample mg/L milligrams per liter MTBE methyl tert-butyl ether

NMED TPH NMED Risk Assessment Guidance for Site Investigations and Remediation, February 2012, Table 6-2 TPH Screening Guidelines for Potable Groundwater

NMED TW NMED Risk Assessment Guidance for Site Investigations and Remediation, July 2015, Table A-1, Tap Water Screening Level

USEPA TW United States Environmental Protection Agency Tap Water screening level, "Regional Screening Levels for Chemical Contaminants at Superfund Sites", November 2015 LISEPA MCI United States Environmental Protection Agency Maximum Contaminant Level, "Regional Screening Levels for Chemical Contaminants at Superfund Sites", November 2015 WQCC HH NMED Groundwater standard for human health exposure, NMAC 20.6.2.3103.A

Analyte was also detected in the associated method blank.

The sample concentration exceeds machine calibration.

Н The reported result is from a sample analyzed outside of Holding Time.

Indicates an estimated value.

J3 The associated batch QC was outside the established quality control range for precision.

J4 The associated batch QC was outside the established quality control range for accuracy. J5

The sample matrix interfered with the ability to make any accurate determination; spike value is high.

J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low. 01 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

R The sample concnetration is rejected based on data validation.

The sample concentration is too high to evaluate accurate spike recoveries.

		Analyte Group				Water Qualit	y Parameters				Cyanide
	•	Analyte Analyte	Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
		Units	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	C	CGWSL GWSL Source		250 WQCC Dom	1.60 WQCC HH			600 WQCC Dom	1,000 WQCC Dom	10.0 USEPA MCL	0.200 USEPA MCL
Area	Well ID	Date Dup	1	WQCC Dolli	WQCCTIII	l	l	WQCC Dolli	WQCC Doill	OSEF A WICE	USEF A WICE
	KWB-13	Apr-13	457	141	0.701	1.31	176	1,820	3,910	14.1	<0.0200
		Apr-14	418	158	0.580	0.724	143	1,820	3,750	14.6	<0.00500 H <0.00180
		Apr-15 Apr-16	474 626	788 148	0.704 0.630	6.65 2.26 J	148 258	1,970 2,500	3,060 3,720	15.3 13.7	<0.00180
	MW-17	Apr-14	395	174	1.19	2.31	72.2	1,200	2,340	2.19	0.00120
Crossgradient	NP-5	Apr-13	465	413	2.58	< 0.400	253	3,090	5,980	2.33	
grac		Apr-15	448	993	2.13	0.484 J	209	3,030	6,060 J	1.38	
SSC	RA-3156	Apr-13	516	245	<0.500	3.03	162	1,560	3,050	6.62	
ŏ		Nov-13 Apr-14	537 <0.500	238 278	0.208 0.299	3.06 2.67	169	1,450 1,800	3,390 3,280	9.09 7.89	
		Apr-14 Apr-16	370	1,140	0.478	3.67 J	695	1,070	3,050	<0.197	
•	MW-136	Oct-15	706	265	1.56	3.20	144	2,740	4,020	22.1	<0.00180
		Apr-16	699	336	1.23	2.95 J	149	2,870	4,250	9.76	<0.00120
		Oct-16	651	355	1.66	2.81	140	2,530	4,400	12.4	0.00188 J
	MW-1R	Apr-13 FD	633 592	1,650 1,610	0.877 0.869	4.56 4.66	816 904	1,980 1,920	5,460 5,400	<1.00 <1.00	
		Apr-14	540	1,560	0.567	4.00	1,010	1,900	5,740	<0.150	
		Apr-15	765 J	1,970	0.821	4.52 J	1,080 J	2,400	5,020	<0.0200	
		Apr-16	1,030	3,330	0.603 J6	6.54	2,090	3,320	10,100	<0.197	
	MW-2A	Apr-14	794	5,440	2.19	6.58	3,440	4,310	16,200	<0.150	
		Nov-14 Apr-15	944	4,900 6,730	2.30	5.80 7.71 J	4,780	3,900	13,000	1.30 0.0404 J	
		Oct-15	677	3,870	1.06 2.14	5.85	2,590	4,830 3,670	14,200 10,500	0.0390 J	
		Apr-16	933	8,400	1.53	7.35	5,280	7,640	20,700	0.501 J	
l		Oct-16	598	3,290	3.43	4.91	2,270	3,450	9,660	0.122	
ſ	MW-3	Apr-14	827	2,300	1.39	6.57	1,300	1,930	7,400	9.07	
		Nov-14 ED	760 780	2,000	1.70	6.80	1,200	2,600	7,200	4.80	
		Nov-14 FD Apr-15	780 839	2,600 33.2	2.20 2.10	7.00 6.16	1,200 1,850	2,700 25.0	7,100 12,200	5.20 24.5	
		Apr-15 FD	927	3,270	1.60	6.80	1,790	3,000	17,800	20.2	
		Oct-15	613	1,950	1.99	7.17	1,220	2,810	6,140	0.182	
		Oct-15 FD	636	1,920	1.84	7.11	1,210	2,730	6,480	0.0580 J	
		Apr-16 ED	728 690	1,360	1.87	5.64	1,160	2,640	6,260	0.404 J	
		Apr-16 FD Oct-16	690 574	1,290 1,290	1.87 2.21	5.47 5.69	1,140 865	2,530 2,380	6,240 5,180	0.231 J 0.052 J	
		Oct-16 FD	591	1,270	2.20	5.85	854	2,380	5,040	0.049 J	
ı	MW-4A	Apr-14	571	,,	1.47	4.24	990	_,	5,600	0.199 J	
		Nov-14	690	1,400	1.60	5.10	1,000	2,500	5,700	0.960	
		Apr-15	660	1,560	1.29	4.12 J	1,080	2,850	7,470	<0.0200	
		Oct-15	394	1,380	1.92	5.23	1,010	2,110	4,290	0.0530 J	
		Apr-16 Oct-16	507 393	1,860 1,510	1.78 2.06	4.03 J 4.06	1,060 890	2,990 1,970	5,090 4,610	<0.197 0.064 J	
ŀ	MW-4B	Apr-13	371	928	0.870	3.64	556	1,330	3,660	<1.00	
		Apr-15	367	1,110	0.963	2.32	696	1,340	3,410 J	<0.0200	
	MW-5A	Apr-14	562	4,710	3.03	6.58	4,230	8,160	18,100	<0.150	
		Nov-14	580	3,300	1.90	6.40	4,200	8,100	16,000	<0.02	
		Apr-15	519	4,100	1.53	6.15 J	4,220	9,370	17,000	<0.0200	
		Oct-15 Apr-16	513 472	4,760 3,010	1.78 3.11	7.27 7.39	4,500 2,990	8,480 5,610	17,800 13,700	0.0450 J 1.72	
		Oct-16	500	3,500	3.43	6.34	3,880	7,950	16,300	0.044 JJ6	
ŀ	MW-5B	Apr-13	473	1,840	2.20	10.8	1,600	2,950	7,500	2.93	
Į.		Apr-15	482	1,590	1.41	9.01	1,580	3,510	5,980	<0.0200	
	MW-5C	Apr-13	420	639	1.20	4.21	446	1,580	3,620	<1.00	
2	MW-6A	Apr-15 Mar-13	427 301	585 980	0.910 2.05	3.97 J 1.36	485 735	2,020 1,610	3,290 3,950	<0.0200 <1.00	
Evaporation Ponds	WW-OA	Apr-14	762	1,620	1.31	2.44	998	1,980	5,600	0.245 J	
=		Apr-15	809	2,010	1.85	2.14 J	1,090	2,240	6,500	0.875	
ä		Apr-16	449	1,300	1.52	1.74 J	835	2,360	4,290	0.461 J	
3	MW-6B	Mar-13	530	1,370	0.533	4.31	710	1,640	4,480	<1.00	
Š		Mar-13 FD	478	1,420	0.814	4.87	753	1,690	4,510	<1.00	
ŀ	MW-7A	Apr-15 Apr-14	568 469	1,740 2,670	0.669 J 1.19	5.09 4.46	873 1,750	2,280 3,290	4,760 7,760	<0.0200 <0.150	
	IVIVV-/A	Nov-14	760	3,600	0.690	5.20	2,600	4,100	11,000	<0.150 <0.02 J6	
		Nov-14 FD	770	1,800	1.20	5.20	2,500	2,100	11,000	<0.02	
		Apr-15	609	3,080	0.693	4.18	2,060	3,620	9,840	<0.0200	
		Apr-15 FD	593	3,100	0.996	4.21	2,060	3,190	9,300	0.0262 J	
		Oct-15 FD	403 404	2,470 2,230	1.08 1.12	3.96 3.95	1,590 1,690	4,020 3,150	7,100 7,180	<0.0197 <0.0197	
		Apr-16	459	2,230	1.12	3.95 4.18 J	1,810	3,360	7,180	<0.0197	
		Apr-16 FD	423	2,550	1.24	3.94 J	1,690	3,710	7,540	<0.197 J6	
		Oct-16	406	2,790	1.49	4.22	1,600	3,420	7,460	0.026 J	
ļ	MW-7B	Oct-16 FD Apr-13	395	2,240	1.45	4.01	1,550 O1V	2,790	7,340	0.047 J	
- [IVIVV-/B	Apr-13 Apr-15	545 556	1,030 1,060	3.09 0.795	6.66 6.27	540 672	1,800 2,200	4,280 4,640	<1.00 <0.0200	
ŀ	MW-10	Apr-14	545	1,660	0.551	4.06	1,060	2,290	5,540	<0.150	
	-	Nov-14	750	1,700	0.88 J6	4.30	1,200 V	2,800	5,900	0.230	
J			466	1,380	0.919	3.54 J	941	2,110	5,030	<0.0200	
		Apr-15									
		Oct-15	518	1,580	0.783	3.68	1,080	2,620	5,340	0.28 J	
		Oct-15 Apr-16	518 523	1,580 1,530	0.826	3.83 J	1,110	2,220	5,120	<0.197	
	MW-11A	Oct-15 Apr-16 Oct-16	518 523 647	1,580 1,530 2,100	0.826 1.18	3.83 J 3.54	1,110 1,180	2,220 3,740	5,120 6,550	<0.197 0.097 J	
	MW-11A	Oct-15 Apr-16	518 523	1,580 1,530	0.826	3.83 J	1,110	2,220	5,120	<0.197	
	MW-11A	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15	518 523 647 1,250 2,600 1,630	1,580 1,530 2,100 12,400 17,000 11,800	0.826 1.18 0.647 <0.0099 0.0639 J	3.83 J 3.54 22.9 21.0 19 J	1,110 1,180 5,140 8,300 6,090	2,220 3,740 2,410 3,000 2,910	5,120 6,550 25,400 30,000 24,900 J	<0.197 0.097 J 0.488 J 15.0 1.47	
	MW-11A	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15	518 523 647 1,250 2,600 1,630 1,200	1,580 1,530 2,100 12,400 17,000 11,800 9,930	0.826 1.18 0.647 <0.0099 0.0639 J 0.152	3.83 J 3.54 22.9 21.0 19 J 20.3	1,110 1,180 5,140 8,300 6,090 5,260	2,220 3,740 2,410 3,000 2,910 3,780	5,120 6,550 25,400 30,000 24,900 J 18,300	<0.197 0.097 J 0.488 J 15.0 1.47 0.265	
	MW-11A	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16	518 523 647 1,250 2,600 1,630 1,200 1,280 V	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0	1,110 1,180 5,140 8,300 6,090 5,260 5,150	2,220 3,740 2,410 3,000 2,910 3,780 3,510	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6	
•		Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB	
•	MW-11A	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Mar-13	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230 855	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,560	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8 35.2	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600 15,100	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB <1.00	
•		Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB	
	MW-11B	Oct-15 Apr-16 Oct-16 Apr-14 Apr-14 Apr-15 Oct-15 Apr-16 Oct-16 Mar-13 Apr-15	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230 V 1,230 855	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,560 6,000	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8 35.2 36.6	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340 4,040	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030 3,860	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600 15,100 12,700	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB <1.00 <0.0200	
•	MW-11B	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Mar-13 Apr-15 Apr-16 Apr-14 Mar-13	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230 855 1,070 728 682 771	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,560 6,000 2,460 1,780 2,640	0.826 1.18 0.647 -(0.0099 0.0639 J 0.152 0.414 J6 0.752 -(0.500 0.562 0.685 0.354 2.13	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8 35.2 36.6 5.57 5.56 6.02	1,110 1,180 8,300 6,090 5,260 4,850 3,340 4,040 1,280 914 1,240	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030 3,860 2,490 2,180	5,120 6,550 25,400 30,000 24,900 J 18,300 16,600 15,100 12,700 7,960 6,520 8,120	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB <1.00 <0.0200 4.10 0.463 J 13.3	
	MW-11B MW-12 MW-13	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Mar-13 Apr-15 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14	518 523 647 1,250 2,600 1,630 1,280 V 1,280 V 1,230 855 1,070 728 682 771	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,560 2,460 1,780 2,640 2,960	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562 0.685 0.354 2.13	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8 35.2 36.6 5.57 5.56 6.02	1,110 1,180 5,140 8,300 6,990 5,150 4,850 3,340 4,040 1,280 914 1,240	2,220 3,740 2,410 3,000 2,910 3,510 3,250 3,030 3,860 2,490 2,180 1,770	5,120 6,550 25,400 30,000 24,900 J 18,600 16,600 15,100 12,700 7,960 6,520 8,120 19,900	<0.197 0.087 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB <1.00 <0.0200 4.10 0.463 J 4.02	
	MW-11B MW-12 MW-13	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-15 Oct-16 Mar-13 Apr-15 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-15	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230 855 1,070 728 682 771 449 565	1,580 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,560 6,000 2,460 1,780 2,640 2,960 2,150	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562 0.685 0.354 2.13 2.33 2.12	3.83 J 3.54 22.9 21.0 21.0 19.J 20.3 19.0 20.8 35.2 36.6 6.02 6.02 5.68 5.01	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340 4,040 1,280 914 1,240 1,300	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030 3,860 2,480 2,180 2,180 2,180 2,000	5,120 6,550 25,400 30,000 24,900 J 18,300 16,600 15,100 12,700 7,960 6,520 8,120 19,900 5,470	<0.197 0.097 J 0.488 J 15.0 15.0 1.47 0.265 0.715 JJ6 <0.048 JB <1.00 <0.0200 0.463 J 13.3 13.3 40.2 16.0	
	MW-11B MW-12 MW-13 MW-15	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-16 Oct-16 Mar-13 Apr-15 Apr-14 Apr-15 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-15 Apr-14 Apr-16	518 523 647 1,250 2,600 1,630 1,280 V 1,230 855 1,070 728 682 771 849 565	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,180 6,560 6,000 2,460 1,780 2,940 2,940 2,950 2,150 611	0.826 0.847 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562 0.885 0.354 2.13 2.33 2.12	3.83 J 3.54 22.9 21.0 19. J 20.3 19. 0 20.8 35.2 36.6 5.57 5.56 6.02 5.68	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340 4,040 1,280 914 1,240 1,420 1,300 795	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030 3,860 2,490 2,180 1,770 2,000 1,240	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600 15,100 12,700 7,960 6,520 8,120 19,900 5,470 4,720	<0.197 J 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB <1.00 <0.0200 4.10 0.463 J 13.3 40.2 16.0 3.99	<0.00200
	MW-11B MW-12 MW-13	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-15 Apr-15 Oct-16 Mar-13 Apr-15 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-15	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230 855 1,070 728 682 771 449 565	1,580 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,560 6,000 2,460 1,780 2,640 2,960 2,150	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562 0.685 0.354 2.13 2.33 2.12	3.83 J 3.54 22.9 21.0 21.0 19.J 20.3 19.0 20.8 35.2 36.6 6.02 6.02 5.68 5.01	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340 4,040 1,280 914 1,240 1,300	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030 3,860 2,480 2,180 2,180 2,180 2,000	5,120 6,550 25,400 30,000 24,900 J 18,300 16,600 15,100 12,700 7,960 6,520 8,120 19,900 5,470	<0.197 0.097 J 0.488 J 15.0 15.0 1.47 0.265 0.715 JJ6 <0.048 JB <1.00 <0.0200 0.463 J 13.3 13.3 40.2 16.0	<0.00500
	MW-11B MW-12 MW-13 MW-15	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15 Oct-16 Oct-16 Apr-15 Oct-16 Apr-16 Oct-16 Mar-13 Apr-15 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-15 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16	518 523 647 1,250 2,600 1,630 1,280 V 1,280 V 1,230 855 1,070 728 682 771 849 565 487	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,440 9,180 6,550 6,000 2,460 1,780 2,640 2,960 2,150 611	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562 0.685 0.354 2.13 2.13 2.12 2.01	3.83 J 3.54 22.9 21.0 21.0 20.3 19.0 20.8 35.2 36.6 5.57 5.56 6.02 5.68 5.01 61.4	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340 4,040 1,280 914 1,420 1,300 795 6,620	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,030 3,860 2,490 2,180 2,180 1,770 2,000 1,240 6,760	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600 15,100 12,700 7,960 6,520 8,120 19,900 5,470 4,720 27,700	<0.197 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 0.048 JB <1.00 <0.0200 4.10 0.463 J 13.3 40.2 16.0 2.65	
	MW-11B MW-12 MW-13 MW-15	Oct-15 Apr-16 Oct-16 Apr-14 Apr-14 Apr-15 Oct-15 Apr-16 Oct-16 Mar-13 Apr-15 Apr-16 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-16 Apr-16 Apr-16 Apr-14 Apr-14 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-14 Apr-16 Apr-14 Apr-16 Apr-14 Apr-14 Apr-15 Apr-16 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14 Apr-14	518 523 647 1,250 2,600 1,630 1,200 1,280 V 1,230 855 1,070 728 682 771 849 565 487 723 855	1,580 1,530 2,100 12,400 17,000 11,800 9,930 9,180 6,560 6,000 2,460 1,780 2,960 2,150 611 10,200 12,000	0.826 1.18 0.647 <0.0099 0.0639 J 0.152 0.414 J6 0.752 <0.500 0.562 0.685 0.354 2.13 2.33 2.12 2.01 3.63 <0.0099	3.83 J 3.54 22.9 21.0 19 J 20.3 19.0 20.8 35.2 36.6 5.57 5.56 6.02 5.68 5.01 5.53 6.4 6.4	1,110 1,180 5,140 8,300 6,090 5,260 5,150 4,850 3,340 4,040 1,280 914 1,240 1,300 795 6,620 7,500	2,220 3,740 2,410 3,000 2,910 3,780 3,510 3,250 3,250 3,930 2,490 2,180 1,770 2,000 1,240 6,760	5,120 6,550 25,400 30,000 24,900 J 18,300 18,600 15,100 12,700 7,960 6,520 8,120 19,900 5,470 4,720 27,700	<0.197 J 0.097 J 0.488 J 15.0 1.47 0.265 0.715 JJ6 <0.048 JB <1.00 <0.0200 4.10 0.463 J 13.3 13.3 40.2 16.0 3.99 2.661 <0.002	<0.0018

		Analyte Gi	roup:				Water Qualit	y Parameters				Cyanide
			alyte:	Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
			Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	(CG) CGWSL So	WSL:		250 WQCC Dom	1.60 WQCC HH			600 WQCC Dom	1,000 WQCC Dom	10.0 USEPA MCL	0.200 USEPA MCL
Area		Date	Dup		WQOO BOIII	WQOOTIII	l	l	WQOO BOIII	WQOO DOM	OOL! A WOL	OOL! A WOL
	MW-18B	Apr-13		592	803	1.10	6.32	474	1,870	4,060	<1.00	
	1011001	Apr-15		581	763	0.931	5.91	460	1,840	4,410	0.0280 J	
	MW-22A	Apr-14 Nov-14		514 610	2,290 2,000	0.766 0.580	4.02 3.90	1,290 1,400	2,540 2,600	6,640 6,600	<0.150 <0.02	
		Nov-14	FD	720	1,700	0.770	3.9 J	1,700	2,200	6,600	<0.02	
		Apr-15		549	2,150	0.758	3.79 J	1,450	2,500	7,270	<0.0200	
		Apr-15	FD	494	2,020	0.682	3.16 J	1,240	2,590	6,630	<0.0200	
		Oct-15	FD	529 527	1,980 1,970	0.621 0.610	3.64 3.65	1,480 1,640	2,660 2,650	6,330 6,090	0.358 J 0.441 J	
		Apr-16	10	548	1,890	0.645	4.08 J	1,440	2,340	6,190	<0.197	
		Apr-16	FD	541	1,900	0.660	4.04 J	1,440	2,560	6,160	<0.197	
		Oct-16		570	1,940	0.752	3.96	1,490	2,380	6,970	0.219 B	
	MW-22B	Oct-16 Apr-13	FD	563 530	2,030 1,470	0.733 0.619	3.88 4.48	1,450 932	2,400 2,240	7,220 5,460	0.049 JB <1.00	
	IVIVV=ZZD	Apr-15		477	1,400	0.823	4.02 J	1,150	2,170	5,590	<0.0200	
	MW-70	Apr-14		697	1,310	0.560	5.38	729	2,950	5,080	0.210 J	
		Nov-14		700			5.50	730				
		Apr-15 Oct-15		695 756	1,240	0.740	4.90 5.51	774 782	2,230	5,700	<0.0200 J	
		Apr-16		720	1,370	0.775	5.46	908	2,240	5,730	0.416 J	
		Oct-16								,		
	MW-72	Nov-13		753	3,540	6.26	9.43	2,340	2,200	9,890	<0.500	
		Apr-14 Apr-15		795 896	4,350 5,240	6.27 3.91	9.87 13.3	2,440 3,030	3,020 3,800	10,300 12,900	3.10 6.37	
		Apr-16		700	3,310	5.88	8.82	2,060	3,400	9,140	1.88	
1	MW-73	Oct-13		571	2,110	2.19	2.73	2,430	3,140	9,720	<0.500	
1		Apr-14	\vdash	590	2,260	2.09	2.54	2,160	3,510	9,120	<0.150	
-	1	Apr-15 Apr-16	\vdash	659 597	2,480 2,790	1.94 1.96	3.12 J 2.32 J	2,200 2,240	4,560 5,090	9,360 9,360	0.757 0.501 J	
1	MW-74	Apr-14		656	1,970	8.66	45.6	2,240	4,050	8,940	67.0	
		Nov-14		670	1,600	6.40	45.0	2,300	4,400	8,700	420	
-	1	Apr-15	\vdash	552	1,170	6.02	39.4	2,230	4,450	9,360	176	
1		Oct-15 Apr-16	-	558 632	1,810 1,640	6.19 7.44	39.2 35.6	2,330 2,080	4,140 3,100	8,720 8,280	12.3 0.796 J	
		Oct-16		566	1,900	8.61	44.9	3,120	4,880	10,200	211	
	MW-75	Apr-14		379	1,610	8.37	21.4	1,550	1,930	6,180	<0.150	
		Nov-14	L	410	1,400	6.90	20.0	1,500	2,400	5,700	<0.02	
		Apr-15 Oct-15		372 352	11.8 J 1,550	8.20 7.80	20.3 19.3	1,490 1,560	14.2 J 2,510	4,020 5,280	<0.2 0.0590 J	
		Apr-16		374	1,530	7.62	21.5	1,640	1,940	5,940	<0.197	
		Oct-16		351	1,400	7.88	17.5	1,480	2,080	6,000	0.0490 JB	
	MW-76	Apr-14		470	1,200	3.16	30.0	980	1,730	4,980	<0.150	
		Nov-14		610 558	1,300	3.00	31.0 29.7	1,100	2,800 22 J	6,000 4,650	<0.02 <0.2	
		Apr-15 Oct-15		445	18.1 J 1,370	3.15 3.10	28.0	1,120 1,070	2,480	4,840	0.0310 J	
		Apr-16		531	1,180	2.96	29.4	1,110	2,250	5,220	<0.197	
		Oct-16		553	1,200	3.26	28.6	1,130	2,490	6,010	0.0470 JB	
spu	MW-77	Apr-14 Nov-14		627 630	781 500	3.50 2.70	72.1	1,540	3,390	8,060	2.85 <0.02	
8		Apr-15		609	10.8 J	4.21	84.0 72.1	1,300 1,410	4,100 37.7 J	8,200 5,350	<0.2	
ţi		Oct-15		557	433	2.42	82.5	1,490	4,820	7,510	0.211	
Evaporation Ponds		Apr-16		589	378	3.03	82.9	1,610	4,010	7,110	0.4060 J	
, ag	MM/ 70	Oct-16		579	294	3.14	82.1	1,380	4,000	7,850	0.0470 JB	
ш	MW-78	Mar-13 Apr-14		286 542	655 215	19.7 10.9	22.7 25.2	660 524	2,270 2,650	5,260 5,760	2.51 <0.150	
		Apr-15		576	63.2	0.0979 J	18.9	320	19.6 J	2,560	4.24	
		Apr-16		659	72.5	9.96	22.9	540	2,690	5,270	<0.197	
	MW-79	Apr-14		599	1,810	8.56	9.27	1,510	2,690	6,920	12.5	
		Nov-14 Apr-15		650 649	1,600 1,570	5.80 5.52	8.60 7.98	1,100 1,150	2,500 2,930	5,600 5,660	2.90 1.9 J	
		Oct-15		517	1,440	6.43	7.61	857	2,440	5,210	0.147	
		Apr-16		603	1,390	7.08	8.43	1,140	2,040	5,320	1.87	
	MM/ 00	Oct-16		525 V	1,380	7.01	7.28	869 V	2,000	5,180	0.070 JB	
	MVV-80	Apr-14		635 645	1,310 1,470	3.82 3.62	4.02 3.84	911 983	2,260 2,070	5,130 6,080	<1.00 2.73	
		Apr-15		693	1,600	3.15	3.08 J	1,210	2,700	5,600	0.519	
1		Apr-16		875	1,970	3.30	4.07 J	1,240	2,270	6,340	0.523 J	
-	MW-81	Mar-13	-	560	1,260	7.57	6.47	915	2,070	4,950	12.2	
-		Mar-13 Apr-14	רט	563 111	1,280 1,140	7.66 8.13	6.57 9.51	903 255	2,120 2,350	5,040 6,500	4.61 79.1	
		Apr-15		583	1,110	6.20	9.40	1,380	2,800	6,260	99.5	
-		Apr-16		687	1,120	5.93	12.2	1,690	2,790	6,730	105	
1	MW-82	Mar-13 Apr-14	1	298 279	1,520	19.2	10.3 9.55	1,890 1,800	2,600 3,910	6,270 6,260	<1.00 <0.150	
-		Apr-14 Apr-14	FD	279	2,880 1,510	18.2 18.0	9.55	1,800	2,070	5,460	<0.150	
-		Apr-15	Ė	284	1,110	10.7	9.28	1,700	2,200	5,770	<0.0200	
		Apr-16	L	350	1,360	12.1	9.87	1,790	2,350	5,410	0.262 J	
	MW-83	Apr-14 Nov-14	-	484 520	271 14.0	4.58 3.90	53.8 56.0	616 410	3,920 4,200	7,400 6,400	4.54 <0.02	
1		Apr-15		520 566	14.0 55.5	3.90	56.0 58.4	364	4,200 32.7 J	6,400 4,810	<0.02	
1		Oct-15	L	388	202	7.32	34.0	271	3,210	4,530	0.0860 J	
-		Apr-16	L	483	769	4.80	36.7	563	3,770	4,980	<0.197	
-	MW-84	Oct-16 Apr-14	-	417 698	11.0 1,620	6.99 6.07	45.9 8.80	139 1,750	3,300 3,660	4,610 10,500	0.101 <0.150	
	10100-0-4	Nov-14		610	1,300	5.20	14.0	1,600	5,800	11,000	0.140	
		Apr-15		555	1,460	4.41	7.41	1,480	4,620	4,230	<0.2	
		Oct-15		596	1,070	8.23	17.0	1,580	7,300	12,400	4.83	
-		Apr-16 Oct-16	-	643 561	1,410 1,230	5.54 5.96	10.2 12.2	1,840 1,460	4,550 5,280	9,480 9,560	<0.197 0.048 J	
-	MW-87	Apr-14		662	5,340	1.50	28.6	3,120	4,760	13,600	2.11	
-		Nov-14		750			26.0	2,700				
-		Apr-15	L	740	4,880	1.19	27.3	3,190	4,390	13,800	0.241	
		Oct-15	-	737 728 V	4 190	1.40	26.5	3,250 3 230 V	4,310	12 000	<0.107	
		Apr-16 Oct-16		728 V	4,180	1.40	27.9 V	3,230 V	4,310	12,000	<0.197	
1	MW-88	Apr-14		377	2,000	1.26	3.11	1,330	2,820	7,340	<0.150	
-		Nov-14		570			3.00	1,300				
		Apr-15	-	519 397	3,000	1.80	2.66 J	2,250	4,970	11,000	<0.0200	
		Oct-15 Apr-16		397 417	1,610	1.22	3.03 3.10 J	1,270 1,220	2,600	5,800	<0.197	
1	<u></u>	Oct-16	L		.,			.,•	_,	-,		

March Company Section Sectio			Analyte Gro	oup:				Water Qualit	y Parameters				Cyanide
March 1985			Ana	lyte:	Calcium	Chloride	Fluoride			Sulfate	TDS	Nitrate/Nitrite	
COURT COUR													
Minor Mino		C											
No. 12 N	Area	Well ID										1	
March Marc		MW-120											
Court Sept													
Mar. Mar.													
Windle													
Parc 1		104 404											
Part Part		IVIVV-121											
Mary Mary													
Mar. 128 1.58													
## 1971 April 482 1370 338 5.44 1,689 2,198 5.140 0.150 ## 1971 April 482 1370 338 5.44 1,689 1,580 1,580 1,580 ## 1971 April 482 1370 338 1,180 1,180 ## 1971 April 482 1,180 1,180 1,180 ## 1971 April 482 1,180 1,180 1,180 ## 1971 April 482 1,180 1,180 1,180 1,180 ## 1971 April 482 1,180 1,180 1,180 1,180 1,180 1,180 ## 1971 April 482 1,180 1,180 1,180 1,180 1,180 1,180 1,180 1,180 ## 1971 April 482 1,180 1													
No. 14		MW-122											
Col. 10 382 C.980 3.29 A.98 A.98 C.980 C.580 C.580 D. 200 D. 1													
April Sep													
Month													
No.													
## April 922 1,869 1.16 3.84 1,119 2,220 5,689 -0,000 ## April 786 1,160 1,111 3.11 1,110 2,220 4,690 -0,277 ## April 786 3,889 1,20 3,891 1,910 2,200 4,990 0,447 ## April 786 3,890 1,20 3,891 1,910 2,200 4,990 0,447 ## April 786 3,890 0,860 7,10 1,700 3,900 1,900 -0,100 ## April 786 3,200 0,860 7,10 1,700 3,900 0,800 -0,100 ## April 786 3,200 0,860 7,10 1,700 3,900 0,900 -0,100 ## April 786 3,200 1,10 4,10 1,700 3,900 0,419 1,100 ## April 786 3,200 1,10 4,10 1,700 3,900 0,419 1,10 ## April 786 3,200 1,10 4,10 1,700 3,900 0,419 1,10 ## April 786 3,200 1,10 4,10 1,700 3,900 0,419 1,10 ## April 787 3,200 1,10 4,10 4,10 1,700 3,900 1,500 1,10 ## April 787 3,200 1,10 4,10 4,10 4,700 4,800 1,10 ## April 787 3,200 3,30 4,10 4,10 4,700 4,800 1,10 ## April 787 3,200 3,30 4,10 4,10 4,700 4,800 1,10 ## April 787 3,200 3,30 4,1		MW-123											
Mon-12 Mon-													
## April 976 1,889 1.99 3.72 1,339 2.40 5,889 40.197													
## MY-124 Agr-14													
No. 1			Oct-16		510	1,600	1.20	3.59	1,090	2,420	4,990	0.047 J	
Age-15 7780 3,3460 0,932	1	MW-124											
Col. 15													
Age-16 929 1,499 120 8.45 2,190 1,720 8.950 0.415 1.											10,100		
Control Report 686 3.840 3.440 4.82 3.000 3.410 11,400 0.880 J	1		Apr-16		929	1,490	1.20	8.45	2,150	1,720	9,800	0.415 J	
No. 14		OCD 4D											
Paper Pape	1	OCD-1R											
Col. Col.													
Col. Col. 701 2,560 3.36 4.76 1.600 3.660 8.900 0.053 B Col. Col. April 662 2,460 0.770 4.78 1.460 2,260 7.700 Col. C	1		Oct-15		641	3,100	2.78	4.86	2,660	3,710	9,160	0.144	
OCD-24 Apr-14 662 2.499 0.770 4.78 1.460 2.696 7.300 -0.150 Apr-15 788 2.990 0.969 6.05 1.600 2.740 0.340 0.264 D. 2015 D. 2													
No.14 1.00		OCD-2A											
Barrier Fig.		000 27				2,100	00			2,000	1,000	-0.100	
April Graph April Grap						2,960	0.969			2,740	8,340	0.264	
COC-3	spu					1 000	0.705			2.750	E 970	0.447.1	
CCD-3	Po				676	1,000	0.705	5.50	1,340	2,750	5,670	0.417 3	
Apr-16	ţion	OCD-3			514	990	0.768	13.4	680	2,000	5,160	<0.150	
Apr-16	oora												
Apr-16	vap					1,610	1.02			2,240	6,070	0.0878 J	
Oct-16 S18 S,370 O.787 37.1 2,520 2,880 12,990 0.150 Oct-15 Oct-15 S,331 O.506 38.5 3,590 4,550 Oct-15	"					1.640	0.899			3.080	5.890	< 0.197	
Nov-14						,			,	.,	.,		
Apr-15		OCD-4				5,370	0.787			2,880	12,900	<0.150	
Coch-15						5 950	0.506			4 550	12 000	<0.0200	
Apr-16 927 5,320 0,608 36,2 3,400 3,610 12,700 0,446 J						3,030	0.300			4,550	12,300	10.0200	
OCD-5			Apr-16			5,320	0.608			3,610	12,700	0.446 J	
April FD 694 5,250 0.670 35.1 2,400 2,970 11,900 <0.150													
Nov-14		OCD-5		FD									
Oct-15				10									
Apr-16													
Oct-16													
OCD-6													
Apr-16		OCD-6											
Oct-15	1		Nov-14		780	2,900	2.50	11.0	1,700	2,600	7,700	<0.02	
Apr-16													
OCD-7AR	1												
OCD-78R			Oct-16										
Nov-14	1	OCD-7AR											
Apr-15				ΗD									
Cot-15	1												
Col. Col.			Oct-15		635	2,490	2.55	5.83	2,870	4,500	8,960	0.025 J	
OCD-78 Mar-13 552 867 1.33 12.2 650 2.270 4.670 <1.00	1												
Apr-15		OCD-7B											
Apr-14	1	230,10											
Nov-14		OCD-8A	Apr-14		671	3,200	2.04	8.7	2,170	3,690	10,300	<0.150	
Apr-15	1			FD									
Cot-15													
Apr-16 762 3,480 1.88 9.09 2,410 3,630 11,000 <0.197 <0.00180 Oct-16 680 3,270 2.39 9.22 2,380 3,660 9,600 0.0870 J 0.00182 J OCD-88 Apr-13 716 2,180 0.980 8.75 1,330 2,880 7,400 <1.00 Apr-15 680 2,020 0.934 9.51 1,520 2,910 7,110 0.0233 J KWB-1A Apr-14 583 459 0.916 1.28 206 2,440 5,180 <0.150 <0.00500 Apr-14 590 470 1.00 0.99 J 220 2,800 4,500 1.40 <0.00500 Apr-15 596 555 1.17 1.01 202 3,400 5,320 4.22 <0.00180 Apr-16 619 575 1.26 1.37 J 271 3,080 4,990 4.61 <0.00180 Apr-16 619 575 1.26 1.37 J 271 3,080 4,990 4.61 <0.00180 Apr-15 619 1,160 25.3 1.23 210 2,920 5,340 0.180 KWB-1 Apr-15 619 1,160 25.3 1.23 210 2,920 5,340 0.180 Apr-15 619 1,160 25.3 1.23 210 2,920 5,340 0.180 Apr-15 279 301 0.754 0.209 J 238 886 2,100 <0.02 <0.00180 Apr-16 325 281 0.917 0.236 J 248 953 2,830 <0.0580 J8 <0.0197 0.00500 J Oct-16 3355 420 0.933 0.194 J 281 1,160 3,030 0.0580 J8 <0.0197 0.00500 J Oct-16 355 420 0.933 0.194 J 281 1,160 3,030 0.0580 J8 <0.00180 J8 J8 J8 J8 J8 J8 J8 J8 J8 J8 J8 J8 J8	1												
OCD-8B Apr-13 716 2,180 0.980 8.75 1,330 2,880 7,400 <1.00 Apr-15 680 2,020 0.934 9.51 1,520 2,910 7,110 0.0233 J Nov-14 590 470 1.00 0.99 J 220 2,800 4,500 1.40 <0.00500 Apr-15 596 555 1.17 1.01 202 3,400 5,320 4.22 <0.00180 Apr-16 619 575 1.26 1.37 J 271 3,080 4,990 4.81 <0.00180 Apr-16 619 575 1.26 1.37 J 271 3,080 4,990 4.81 <0.00180 Cot-16 553 553 1.21 1.21 274 2,950 4,600 0.514 B <0.00180 KWB-1C Apr-13 474 380 1.03 5.68 161 2,150 4,420 1.75 Apr-15 619 1,160 25.3 1.23 210 2,900 5,340 0.180 KWB-1 C Apr-15 619 1,160 25.3 1.23 210 2,900 5,340 0.180 Cot-16 325 281 0.917 0.236 J 288 886 2,100 <0.02 <0.00180 Cot-16 325 281 0.917 0.236 J 248 953 2,830 <0.197 0.00500 J Cot-16 3355 420 0.933 0.194 J 281 1,160 3,030 0.0580 JB <0.00180 J Cot-16 3355 420 0.933 0.194 J 281 1,160 3,030 0.0580 JB <0.00180 JB Cot-16 3,030 0.0580 JB <0.00180 JB Cot-16 3,030 0.0580 JB <0.00180 JB Cot-16 3,030 0.0580 JB <0.00180 JB Cot-16 3,030 0.0580 JB <0.00180 JB Cot-16 3,030 0.0580 JB Cot-16 3,030 0.0580 JB Cot-16 3,00180 JB			Apr-16		762	3,480	1.88	9.09	2,410	3,630	11,000	<0.197	<0.00180
Nov-14 S83 459 0.916 1.28 206 2,440 5,180 <0.150 <0.00503 Nov-14 S90 470 1.00 0.99 220 2,800 4,500 1.40 <0.00180 Nov-14 S90 470 1.00 0.99 220 2,800 4,500 1.40 <0.00180 Nov-14 S90 470 1.00 0.99 220 2,800 4,500 1.40 <0.00180 Nov-14 S96 S55 1.17 1.01 202 3,400 5,320 4.22 <0.00180 Nov-14 S69 S65 1.17 1.01 202 3,400 5,320 4.22 <0.00180 Nov-14 S69 S65 S61	1	005.55											0.00182 J
KWB-1A		OCD-8B											
Nov-14	\vdash	KWB-1A											<0.00500
Cct-15 549 539 1.15 1.09 230 2,800 4,580 0.666 J <0.00180		1	Nov-14		590	470	1.00	0.99 J	220	2,800	4,500	1.40	<0.0018
Apr-16 619 575 1.26 1.37 J 271 3,080 4,990 4.61 < 0.00120	1												
RVB-1C Apr-13 474 380 1.03 5.68 161 2,150 4,420 1.75	ery												
RVB-1C Apr-13 474 380 1.03 5.68 161 2,150 4,420 1.75	efin												
Apr-15 619 1,160 25.3 1.23 210 2,920 5,340 0.180	of R	KWB-1C	Apr-13		474	380	1.03	5.68	161	2,150	4,420	1.75	. ,
Apr-15 279 301 0.754 0.209 J 238 886 2,100 <0.2 <0.00180 J Oct-15 320 358 0.813 0.152 J 252 1,120 2,570 0.202 J <0.00180 J Apr-16 325 281 0.917 0.236 J 248 953 2,830 <0.197 0.00500 J Oct-16 355 420 0.933 0.194 J 281 1,160 3,030 0.0580 JB <0.00180	ast c		Apr-15		619	1,160	25.3	1.23	210	2,920	5,340	0.180	
Apr-16 325 281 0.917 0.236 J 248 953 2,830 <0.197 0.00500 J Oct-16 355 420 0.933 0.194 J 281 1,160 3,030 0.0580 JB <0.00180	В	KWB-7											
Apr-16 325 281 0.917 0.236 J 248 953 2,830 <0.197 0.00500 J Oct-16 355 420 0.933 0.194 J 281 1,160 3,030 0.0580 JB <0.00180	<u></u>												
Oct-16 355 420 0.933 0.194 J 281 1,160 3,030 0.0580 JB <0.00180	1												
KWB-8 Oct-16 251 579 0.467 0.351 J 443 701 3,120 0.0380 JB <0.00900	1		Oct-16		355	420	0.933	0.194 J	281	1,160	3,030	0.0580 JB	<0.00180
		KWB-8	Oct-16		251	579	0.467	0.351 J	443	701	3,120	0.0380 JB	<0.00900

	Analyte Group:	0.1.1				y Parameters	0.15.1	700	APP APP TO	Cyanide
	Analyte: Units:	Calcium mg/L	Chloride mg/L	Fluoride mg/L	Potassium mg/L	Sodium mg/L	Sulfate mg/L	TDS mg/L	Nitrate/Nitrite mg/L	Cyanide mg/L
(CGWSL: CGWSL Source:		250 WQCC Dom	1.60 WQCC HH			600 WQCC Dom	1,000 WQCC Dom	10.0 USEPA MCL	0.200 USEPA MCI
ea Well ID	Date Dup		WQOO BOIII				WQOO BOIII	WQOO DOIII	GOE! A MOE	OOLI A WOL
KWB-10R	Nov-14	170 132	190	0.590	0.51 J 0.44 J	160 141	<0.077	1,200	<0.02	
	Apr-15 Oct-15	132	800 192	19.7 1.31	0.44 J 0.491 J	136	1.03 J 0.117 J	1,190 1,090	<0.2 0.0420 J	
	Apr-16	149	190	1.42	0.573 J	153	<0.0774	1,090	<0.197	
KWB-11A	Oct-16 Nov-14	148 720	189 1,200	1.28 0.590	0.548 J 0.79 J	135 400	110 1,100	1,160 4,700	0.364 B 47.0	<0.0018
KWD-11A	Nov-14 FD	740	1,500	0.590	0.75 J	430	1,400	4,500	46.0	<0.0018
	Apr-15	568	1,270	0.580	0.305 J	370	2,280	4,020	15.7	<0.00180 J
	Oct-15 Apr-16	710	1,620 1,600	0.660 0.642	0.748 J 0.797 J	406 426	1,570 1,570	5,320 5,840	49.3 42.4	<0.00180 0.023
	Oct-16	647	1,460	0.742	0.719 J	450	1,590	5,940	30.9	<0.00180
KWB-11B	Apr-14	396	291	0.291	2.15	77.4	1,250	2,480	2.25	<0.00500 H <0.0018
	Nov-14 Apr-15	450 469	240 275	0.400 0.318	2.20 2.12	86.0 93.0	1,400 1,760	2,100 2,630	2.40 2.80	<0.0018 <0.00180 J
	Oct-15	410	247	0.467	2.07	80.6	1,340	2,350	2.17	<0.00180
	Apr-16 Oct-16	438 408	218 239	0.441 0.479	2.11 JO1 2.00	81.3 V 81.0	1,200 1,290	2,160 2,410	2.43 2.17	<0.00120 <0.00180
KWB-12A	Nov-14	590	140	0.470	0.89 J	140	2,300	3,400	4.30	<0.0018
	Nov-14 FD	610	130	0.450	0.67 J	150	2,400	3,700	4.30	<0.0018
	Apr-15 FD	528 493	668 133	18.5 0.605	0.723 J 0.63 J	128 123	2,380 2,110	3,660 3,630	4.31 4.34	<0.00180 <0.00180
	Oct-15	560	138	0.618	0.963 J	155	2,730	3,490	4.55	<0.00180
	Apr-16	579 549	539	0.879	0.811 J	155	2,360	3,670	6.18	<0.00180
KWB-12B	Oct-16 Apr-14	549 526	163 122	0.757 0.296	1.15 0.756	161 138	2,400 2,130	3,930 3,800	7.34 5.56	<0.00180 <0.00500
	Apr-14 FD	569	129	0.291	0.795	143	2,070	3,620	5.55	<0.00500
	Nov-14 Apr-15	650 549	120 689	0.310 20.2	0.720 J 0.523 J	170 130	2,400 2,520	3,600 3,730	4.50 3.80	<0.0018 <0.00180
	Apr-15 Oct-15	549	124	0.398	0.523 J 0.537 J	130	2,520	3,730	3.80 4.77	<0.00180
	Oct-15 FD	538	123	0.430	0.569 J	127	2,450	3,270	4.82	<0.00180
	Apr-16 FD	528 500	121 108	0.438 0.459	0.466 J 0.445 J	132 123	2,520 1,930	3,600 3,930	6.42 4.30	<0.00120 <0.00120
	Oct-16	497	129	0.500	0.565 J	128	2,210	3,620	5.44	<0.00180
KINID DA	Oct-16 FD	505	116	0.474	0.584 J	129	2,190	3,740	5.56	<0.00180
KWB-P4	Apr-13 Apr-15									
MW-57	Apr-14	674	152	0.395	11.2	118	464	1,700	<0.150	
	Nov-14 Apr-15	570 641	540 1,430	1.80 22.3	1.20 1.57	440 460	1,900 2,890	4,100 6,010	2.70 16.2	
	Oct-15	487	541	1.69	1.16	342	2,050	3,330	12.9	
	Apr-16	593	386	2.02	1.59 J	368	2,350	3,660	11.0	
MW-58	Oct-16 Nov-14	538 340	210 140	2.99 1.40	2.00 0.55 J	387 66.0	2,710 160	4,730 1,300	33.3 <0.02	<0.0018
10100-30	Apr-15	200	149	1.15	0.317 J	58.8	9.63	1,150	<0.2	<0.00180
	Oct-15	234	239	1.35	0.459 J	71.5	4.8 J	1,240	<0.197	<0.00180
	Apr-16 Oct-16	262 210	278 J 174	1.24 1.57	0.421 J 0.392 J	123 94.2	134 3.77 J	1,510 1,140	0.518 J 0.062 JB	<0.00120 <0.00180
MW-111	Apr-14	214	525	1.01	0.456	198	235	2,020	0.153 J	
	Nov-14 Apr-15	260 270	510 427	2.00 1.01	0.49 J 0.521 J	220 172	250 294	1,700 1,600	<0.02 <0.0200	
	Oct-15	227	408	1.51	0.415 J	222	473 J	1,530	0.0220 J	
	Apr-16	248	402	1.33	<0.185	229	355	2,130	0.0640 J	
MW-112	Oct-16 Nov-14	224 190	426 230	1.39 1.00	0.222 JB 0.31 J	192 190	390 5.40	1,820 1,200	0.088 JB <0.02	
MW-113	Apr-14	300	205	0.282	1.45	152	693	2,440	<0.150	
	Nov-14 FD	300 320	180 190	0.560 0.490	0.4 J 0.4 J	160 170	800 860	1,900 2,000	<0.02 <0.02	
	Nov-14 FD Apr-15	285	194	0.606	0.4 J 0.526 J	151	957	2,000	<0.0200	
	Apr-15 FD	259	191	0.607	0.622 J	132	877	1,980	<0.0200	
	Oct-15 FD	287 288	197 197	0.503 0.493	0.528 J 0.529 J	153 156	1,000 998	2,020 2,140	0.243 J <0.197	
	Apr-16	314	199	0.294 J3	0.611 J	154	1,090	2,370	0.393 J	
	Apr-16 FD	327	207	0.389	0.612 J	167	1,080	2,400	0.0480 J	
	Oct-16 FD	298 V 299	182 195	0.488 0.594	0.429 J 0.408 J	156 160	925 945	2,150 2,240	0.047 JB 0.051 JB	
MW-125	Apr-14	636	361	1.17	1.56	297	2,700	4,960	0.399 J	
	Nov-14	610 523 J	340	1.0000	1.30 1.21	260 217	2,900	4,100	0.200 0.295	
	Apr-15 Oct-15	523 J 524	329 316	1.17 1.22	1.21	217 224	2,680 2,750	4,700 4,200	0.295 0.348 J	
	Apr-16	577	342	1.18	1.39 J	245	2,900	4,440	0.537 J	
MW-126A	Oct-16 Apr-14	530 472	294 331	1.25 0.599	1.33 3.09	220 197	2,660 2,080	4,370 4,510	0.247 B <0.150	-
WW-120A	Nov-14	360	190	0.599	0.66 J	180	1,400	2,400	<0.130	
	Apr-15	355	898	0.833	0.602 J	189	1,530	2,900	<0.2	
	Oct-15 Apr-16	281 342	200 245	1.03 1.02	0.511 J 0.465 J	178 124	1,300 1,270	2,500 2,360	<0.197 0.258 J	
	Oct-16	192	78.9	1.28	0.379 J	132	875	1,860	0.139 B	
MW-126B	Apr-14 Nov-14	354 600	341 290	0.795 0.680	0.531 2.40	196 210	1,600 2,400	4,030 3,500	<0.150 0.390	
	Apr-15	548	319	0.680	2.40 2.1 J	196	2,400	3,500	0.390 0.684 J	
	Oct-15	531	295	0.850	2.18	201	2,330	4,060	0.438 J	
	Apr-16 Oct-16	574 542	314 286	0.837 0.862	2.54 J 2.19	214 220	2,700 2,210	3,590 3,650	0.737 JB 0.295 B	-
MW-127	Apr-14	185	275	0.950	0.612	145	392	2,040	<0.150	
	Nov-14	290	240	0.930	0.99 J	160	620	1,800	<0.02	
	Apr-15 Oct-15	238 234	209 243	0.902 1.06	0.579 J 0.256 J	147 143	511 642	1,750 1,900	<0.2 <0.197	
	Apr-16	244	245	1.10	0.335 J	153	552	1,910	<0.197	
MMM 400	Oct-16	248	237	1.14	0.282 J	146	713	3,840	0.049 JB	
MW-128	Apr-14 Nov-14	207 250	283 320	0.991 1.10	0.515 1.20	106 110	172 250	1,380 1,400	<0.150 <0.02	
	Apr-15	214 J	307	1.22	0.414 J	104	290	1,490	<0.0200	
	Oct-15 Apr-16	202	282	1.22	0.341 J	105	280	1,560	<0.197	<u> </u>
	Oct-16	1010 203	266 249	1.22 1.28	1.92 J 0.586 J	560 108	286 280	1,580 1,470	1.28 0.046 JB	
MW-129	Nov-14	270	320	0.980	0.8 J	210	52.0	1,300	<0.02	
10100-129	Apr-15	192	302	0.900	0.53 J	195	69.4	1,330	<0.2	
WW-129		169	313	1 02	0.315 1	194	57 R	1 280	<0.107	1
10100-129	Oct-15 Apr-16	169 170	313 300	1.08 1.10	0.315 J 0.331 J	194 210	57.8 44.1	1,280 1,520	<0.197 <0.197	

		Analyte Group:			-	Water Quality	y Parameters			1	Cyanide
	•	Analyte:	Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
		Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CGWSL:	-	250	1.60			600	1,000	10.0	0.200
		Date Dup		WQCC Dom	WQCC HH			WQCC Dom	WQCC Dom	USEPA MCL	USEPA MCL
Area	Well ID MW-130	Apr-14	321	316	0.533	1.34	284	1,020	3,080	0.975 J	
	10100-130	Nov-14	310	250	0.730	1.00	310	1,200	2,600	0.350	
		Apr-15	81.8 J	259	0.952	6.71	125	1,080	3,710	0.471	
		Oct-15	261	237	0.829	0.688 J	293	1,200	2,380	0.495 J	
		Apr-16	281	293	0.907	0.870 J	324	1,030	2,570	3.82 J6	
		Oct-16	260	253	0.914	0.695 J	285	1,110	2,600	0.631	
	MW-131	Apr-14	147	337	0.637	0.573	150	12.2	1,360	<0.150	
		Nov-14	200 168	290 271	0.470 0.683	0.64 J 0.328 J	160 157	8.30 9.57	1,200	<0.02 <0.0200	
		Apr-15 Oct-15	197	295	0.787	0.622 J	161	16.1	1,980 1,180	0.0380 J	
		Apr-16	158	288	0.774	0.238 J	167	9.49	1,250	<0.197	
		Oct-16	158	291	0.868	0.250 J	158	9.61	1,270	0.053 JB	
	MW-133	Nov-14	200	170	1.10	0.46 J	140 V	140	1,300	<0.02	
		Apr-15	163	174	1.19	0.323 J	122	116	1,190	<0.2	
	MW-134	Apr-14	569	459	0.952	1.94	273	2,650	5,540	2.64	
		Nov-14 Apr-15	660 840	580 767	0.910 1.24	1.80 2.21 J	310 454	3,100 3,470	4,600 5,520	7.40 8.15	
		Apr-15 FD	710	752	1.35	1.46	307	3,380	6,400	8.04	
		Oct-15	532	521	1.31	1.60	302	2,980	5,040	3.33	
		Oct-15 FD	529	516	1.32	1.58	301	3,030	4,690	2.98	
		Apr-16	576 V	498	1.24	1.70 J	311 V	2,800	4,560	2.79	
Š		Apr-16 FD	565	497	1.24	1.69 J	303	2,780	4,910	2.73	
East of Refinery		Oct-16 ED	518 512	460	1.23	1.60	288	2,980	5,020	2.10	
8	MW-135	Oct-16 FD Apr-14	512 618	473 1,030	1.18 0.739	1.58 1.58	286 507	2,910 2,090	4,860 5,700	2.28 47.3	
t of	1V1 VV - 135	Apr-14 Nov-14	618 840	1,030	0.739	2.80	570	2,090	5,700	47.3 69.0	
Eas		Apr-15	848	1,100	0.764	1.42 J	552	2,170	5,040	67.8	
Field		Oct-15	677	1,380	1.17	1.32	544	2,460	5,800	76.9	
iΨ		Apr-16	2780	1,010	0.993	5.74	2,640	2,470	5,320	34.7	
1	D/	Oct-16	590	1,310	1.18	0.993 J	624	2,500	5,980	58.9	
1	RA-4196	Apr-14	813	137	0.375	2.15	00.4	1,100	2,600	<0.150	
1	1	Apr-15 Oct-15	391 417	144 145	0.410	2.07 2.26	93.4 104	1,400 1,470	2,170	<0.0200 0.269 J	
1		Apr-16	417	145	0.324 0.344	2.26 2.36 J	104	1,470	2,290 2,800	0.269 J 0.0700 J	
		Oct-16	382	151	0.299	2.11	103	1,310	2,410	0.0490 JBJ6	
	RA-4798	Apr-14	412	137	0.389	2.07		1,270	2,340	2.73	
		Apr-14 FD	489	146	0.370	2.49		1,150	2,280	<0.150	
		Nov-14	400	150	0.330	2.20	110	1,400	2,200	1.50	
		Apr-15	465	183	0.415	2.21	128	1,740	2,740	0.936	
		Oct-15 Apr-16	396 449	142 142	0.335 0.347	2.12 2.40 J	105 117	1,520 1,290	2,230 2,290	1.53 1.28	
		Oct-16	437	174	0.359	2.27	129	1,560	2,880	0.930	
	RW-12R	Apr-16	448	174	0.334	0.437 J	181	1,610	3,130	0.326 J	
	RW-13R	Apr-16	202	222	0.691	0.346 J	167	341	1,190	0.0460 J	
	RW-18	Apr-13	474	411	2.400	1.13	226	3,230	5,820	3.24	
		Apr-14	545	347	1.78	0.984	218	2,860	5,600	3.33	
		Apr-15	482	232	2.46	1.30	230	3,670	4,440	6.55	<0.00120
	RW-20	Apr-16 Apr-15	542 228	193 256	2.85 0.53	1.13 J <0.18	186 228	3,800 125	4,640 1,430	2.79 <0.2	<0.00120
	RW-22	Apr-15	184	402	0.86	0.319 J	274	78.4	1,680	<0.2	
	MW-23	Apr-14	88.3	509	1.33	1.12	483	24.0	1,940	<0.150	
		Nov-14	260	920	2.40	1.30	740	740	4,000	<0.02	
		Apr-15	222	864	1.63	0.562 J	577	509	3,030	0.0259 J	
		Oct-15	114	480	1.72	1.92	463	29.9	2,190	2.7 J	
		Apr-16 Oct-16	110 259	500 445	1.81 1.58	2.14 J 2.16	561 430	1.84 J 0.536 J	1,990 2,140	<0.197 <0.197	
	MW-29	Apr-14	539	319	2.66	9.84	293	2,450	4,860	<0.150	
	-	Nov-14	570	320	1.80	4.60	300	2,500	4,100	<0.02 J6	
		Apr-15	427	283	0.795	1.52	207	2,100	1,000	<0.0200	
		Oct-15	397	115	0.722	0.823 J	167	2,080	3,330	<0.197	
		Apr-16	465	134	1.04	1.29 J	210	2,620	3,830	0.105 J6	
1	MW-39	Oct-16	398	282 385	0.919	0.964 J	227 1,080	1,660 893	3,210 3,600	0.502 J	
1	IVIVV-39	Oct-13 Apr-15	89.9 509	385 190	2.31 3.09	0.353 3.62 J	1,080	1,380	2,640	<0.500 <0.2	
1		Oct-15	432	152	2.48	3.14	133	1,660	2,960	0.300 J	
1	Ī	Apr-16	113	305	2.68	0.459 J	1,290			0.530 J	
1		Oct-16	189	334			1,230	951	4,010	0.550 5	
1	MW-40	A 40			2.35	0.546 J	1,510	2,360	5,950	<0.197	
	-	Apr-13	374	153	1.34	1.34	1,510 109	2,360 1,220	5,950 2,720	<0.197 <1.00	
		Apr-14	386	153 179	1.34 1.28	1.34 1.56	1,510 109 124	2,360 1,220 1,340	5,950 2,720 2,700	<0.197 <1.00 <0.150	
		Apr-14 Apr-15		153	1.34	1.34 1.56 1.89 J	1,510 109	2,360 1,220 1,340 1,380	5,950 2,720 2,700 2,640	<0.197 <1.00	
	MW-41	Apr-14	386 571	153 179 298	1.34 1.28 1.66	1.34 1.56	1,510 109 124 134	2,360 1,220 1,340	5,950 2,720 2,700	<0.197 <1.00 <0.150 <0.2	
ery		Apr-14 Apr-15 Apr-16 Oct-13 Apr-14	386 571 504 232 242	153 179 298 146 373 275	1.34 1.28 1.66 1.70 1.05	1.34 1.56 1.89 J 1.76 J 0.404 0.444	1,510 109 124 134 127 425 387	2,360 1,220 1,340 1,380 1,680 1,170 1,450	5,950 2,720 2,700 2,640 2,670 3,140 3,760	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150	
efinery		Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15	386 571 504 232 242 313	153 179 298 146 373 275 290	1.34 1.28 1.66 1.70 1.05 0.747 1.07	1.34 1.56 1.89 J 1.76 J 0.404 0.444	1,510 109 124 134 127 425 387 501	2,360 1,220 1,340 1,380 1,680 1,170 1,450	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200	
h Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16	386 571 504 232 242 313 258	153 179 298 146 373 275 290	1.34 1.28 1.66 1.70 1.05 0.747 1.07	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J	1,510 109 124 134 127 425 387 501 453	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,410 1,180	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.197	
Jorth Refinery		Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13	386 571 504 232 242 313 258 233	153 179 298 146 373 275 290 312 697	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535	1,510 109 124 134 127 425 387 501 453	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,410 1,180 862	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.197 <0.500	
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16	386 571 504 232 242 313 258	153 179 298 146 373 275 290	1.34 1.28 1.66 1.70 1.05 0.747 1.07	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J	1,510 109 124 134 127 425 387 501 453	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,410 1,180	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.197	
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14	386 571 504 232 242 313 258 233 248	153 179 298 146 373 275 290 312 697 914	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560	1,510 109 124 134 127 425 387 501 453 455 508	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,410 1,180 862 954	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.150	
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16	386 571 504 232 242 313 258 233 248 309 295 205	153 179 298 146 373 275 290 312 697 914 562 457 886	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531	2,360 1,220 1,340 1,380 1,880 1,680 1,410 1,450 1,410 1,180 862 954 1,110 1,090 218	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,440 3,010 2,650	<0.197 <1.00 <0.160 <0.150 <0.2 <0.197 <0.150 <0.0200 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0210 <0.150 <0.0210 <0.150 <0.0210 <0.150	<0.0500
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-14 Apr-15 Apr-14 Apr-15 Apr-14 Apr-15 Apr-14 Apr-15 Apr-14 Apr-14	386 571 504 232 242 313 258 233 248 309 295 205	153 179 298 146 373 275 290 312 697 914 562 457 886 750	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,1410 1,180 862 954 1,110 1,090 218 98.0	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,300	<0.197 <1.00 <0.150 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0500 <0.150 <0.0500 <0.150 <0.0500 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.0500 <0.150 <0.0200 <0.197 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.	0.0025 J
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-14 Apr-14 Apr-14 Apr-14	386 571 504 232 242 313 258 233 248 309 295 205 200	153 179 298 146 373 275 290 312 697 914 562 457 886 750	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780	1.34 1.56 1.89 J 1.76 J 0.404 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596	1,510 109 124 134 127 425 387 501 453 455 508 601 601 531 590 V	2,360 1,220 1,340 1,380 1,580 1,170 1,450 1,410 1,180 862 954 1,110 218 96.0 218	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,230 2,230 2,230	<0.197 <0.197 <0.150 <0.2 <0.197 <0.500 <0.150 <0.200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200	0.0025 J <0.00180
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-14 Apr-15 Apr-14 Apr-15 Apr-14 Apr-15 Apr-14 Apr-15 Apr-14 Apr-14	386 571 504 232 242 313 258 233 248 309 295 205	153 179 298 146 373 275 290 312 697 914 562 457 886 750	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780	1.34 1.56 1.89 J 1.76 J 0.404 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,1410 1,180 862 954 1,110 1,090 218 98.0	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,300	<0.197 <1.00 <0.150 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0500 <0.150 <0.0500 <0.150 <0.0500 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.0500 <0.150 <0.0200 <0.197 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.0500 <0.	0.0025 J
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-16 Apr-14 Apr-15 Apr-14 Apr-16 Apr-14 Apr-16 Apr-14 Apr-16 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Ap	386 571 504 232 242 313 258 233 248 309 295 205 200 186 241	153 179 288 146 373 275 290 312 697 914 562 457 886 750 726	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.760 0.779 2.19	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.579 J 0.617 J 0.611 J <0.18	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V	2,360 1,220 1,340 1,380 1,170 1,450 1,170 1,450 1,180 862 954 1,110 1,090 218 96.0	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,300 2,290 4,160	<0.197 <1.00 <0.150 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0	0.0025 J <0.00180 0.081
North Refinery	MW-41	Apr-14 Apr-15 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-17 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18	386 571 504 232 242 313 258 233 248 309 295 200 186 241 178 241 178 241 247	153 179 288 146 373 275 290 312 697 914 552 457 886 750 726 984 1,010	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.611 J 0.956 J 1.26 0.956 J 1.23	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152	2,360 1,220 1,340 1,380 1,170 1,450 1,170 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,300 2,290 4,160 4,820 4,470 3,320	<0.197 <1.00 <0.150 <0.150 <0.2 <0.150 <0.197 <0.500 <0.150 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.197 <0.0200 <0.197 <0.0200 <0.197 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.197 <0.197 <0.197 <0.197	0.0025 J <0.00180 0.081 <0.00120
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-16 Apr-17	386 571 504 232 242 313 258 233 248 309 295 205 200 186 241 178 212	153 179 298 146 147 373 275 290 312 697 914 562 457 886 750 726 984 1,010 855	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.709 2.19 2.27 2.00	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596 0.61 J <0.18 1.23 0.956 J 1.23	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,410 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,890	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,290 4,160 4,820 4,470 3,320 3,3420	<0.197 <1.00 <0.150 <0.150 <0.2 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.0200 <0.197 <0.0200 <0.197 <0.0200 <0.197 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200 <0.0200	0.0025 J <0.00180 0.081 <0.00120
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-17 Apr-17 Apr-17	386 571 504 232 242 313 258 295 205 200 186 241 178 212 478 489 J	153 179 298 146 373 275 290 312 697 914 562 457 886 750 984 1,010 855 197 176	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.23	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596 0.61 J <0.18 1.28 0.956 J 1.23 0.657 0.657	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 156 139	2,360 1,220 1,340 1,380 1,660 1,170 1,450 1,410 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,790 1,790	5,950 2,720 2,700 2,640 2,640 3,760 2,710 2,630 3,610 3,440 3,440 3,440 3,440 3,440 4,460 4,820 4,470 3,320 3,420 3,300	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.200 <0.197 <0.500 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 J 0.270 J 0.150 <0.150 <0.0241 J	0.0025 J <0.00180 0.081 <0.00120
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Apr-16 Apr-16 Apr-16 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-17 Apr-18	386 571 504 232 242 313 258 233 248 309 295 200 186 241 178 241 247 248 349 349 241 241 241 248 249 241 249 241 249 241 249 249 249 249 249 249 249 249 249 249	153 179 288 146 373 275 290 312 697 914 562 457 726 984 1,010 855 197 176	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.23	1.34 1.56 1.89 J 1.76 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.611 J <0.18 1.28 0.956 J 1.29 0.657 0.643 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 668 812 664 152 156 139 711	2,360 1,220 1,340 1,380 1,170 1,450 1,170 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,890 1,790	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,440 3,010 2,650 2,300 2,290 4,160 4,820 4,470 3,320 3,420 3,300 3,300 3,300	<0.197 <1.00 <0.150 <0.150 <0.2 <0.150 <0.197 <0.500 <0.150 <0.0200 <0.197 <0.0200 <0.197 <0.0200 <0.197 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 J 0.270 J 0.270 J 0.374 J 0.374 J	0.0025 J <0.00180 0.081 <0.00120 <0.0180
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-17 Apr-17 Apr-17	386 571 504 232 242 313 258 295 205 200 186 241 178 212 478 489 J	153 179 298 146 373 275 290 312 697 914 562 457 886 750 984 1,010 855 197 176	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.23	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596 0.61 J <0.18 1.28 0.956 J 1.23 0.657 0.657	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 156 139	2,360 1,220 1,340 1,380 1,660 1,170 1,450 1,410 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,790 1,790	5,950 2,720 2,700 2,640 2,640 3,760 2,710 2,630 3,610 3,440 3,440 3,440 3,440 3,440 4,460 4,820 4,470 3,320 3,420 3,300	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.200 <0.197 <0.500 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 J 0.270 J 0.150 <0.150 <0.0241 J	0.0025 J <0.00180 0.081 <0.00120
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-17 Apr-17 Apr-18	386 571 504 232 242 313 258 309 295 205 205 200 186 241 178 212 489 J 2,370 374 530 411 J	153 179 288 146 373 275 290 312 697 914 562 457 886 750 726 984 1,010 855 197 176 178	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.23 1.28 2.50 1.10 0.968	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596 0.61 J <0.18 1.26 0.956 J 1.23 0.657 0.643 0.489 J 0.586 0.63 J 0.586 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 668 812 664 152 156 139 711 181 240	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,180 862 954 1,110 1,190 218 98.0 122 677 747 619 1,790 1,890 1,760 1,900 1,860 1,900	5,950 2,720 2,700 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,650 2,300 2,290 4,160 4,620 4,470 3,320 3,320 3,300 3,340 3,440 3,440 3,440 3,400 3,530	<0.197 <1.00 <0.150 <0.2 <0.150 <0.150 <0.197 <0.500 <0.150 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.0200 <0.197 <0.500 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.197 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.02 <0.02	0.0025 J <0.00180 0.081 <0.00120 <0.0180 0.140 J <0.0018
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-16 Apr-17 Apr-16 Apr-17 Apr-16 Apr-17 Ap	386 571 504 232 232 313 258 309 295 205 200 186 241 178 212 478 514 489 J 2,370 374 530 411 J	153 179 298 146 373 275 290 373 275 290 312 697 914 562 457 886 750 726 984 1,010 855 197 176 176 177 178 238 200	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.709 2.19 2.27 2.00 1.06 0.475 1.23 1.28 2.50 1.10 0.968	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596 0.61 J <0.18 1.26 0.956 J 1.23 0.657 0.643 0.489 J 2.61 J 0.586 0.63 J 0.586 0.63 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 156 139 711 181 240 190	2,360 1,220 1,340 1,380 1,680 1,170 1,450 1,410 1,180 862 954 1,110 1,990 218 98.0 1,212 677 747 619 1,790 1,790 1,790 1,790 1,860 1,900 1,910 1,910	5,950 2,720 2,640 2,640 3,760 2,710 2,530 3,610 3,440 3,440 3,440 4,820 4,470 3,320 3,300 3,300 3,300 3,340 3,440 3,440 3,400 3,510	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.500 <0.150 <0.0200 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0374 J 0.374 J 0.374 J 0.374 J 0.374 J 0.374 J 0.02 <0.02 <0.02 <0.02 <0.02 <0.0241 J 0.374 J 0.37	0.0025 J <0.00180 0.081 <0.00120 <0.0180 0.140 J <0.0018 <0.0018 <0.00180
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-14 Apr-15 Apr-16 Apr-15 Apr-16 Apr-14 Apr-15 Apr-16 Oct-15 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-17 Apr-16 Apr-18 Apr-15 Apr-16 Apr-17 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15	386 571 504 232 242 313 258 233 248 309 205 200 186 241 178 212 478 514 489 J 2,370 374 530 411 J 403 J 395	153 179 288 146 373 275 290 312 697 914 552 457 886 750 726 886 1,010 884 1,010 176 176 178 200 198 200	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.28 2.50 1.10 0.968 1.07	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J <0.18 1.28 0.956 J 1.29 0.657 0.643 0.499 J 2.61 J 0.586 0.586 0.586 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 158 139 711 181 181 190 186	2,360 1,220 1,340 1,380 1,1680 1,170 1,450 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,890 1,790 1,890 1,990 1,810 1,910	5,950 2,720 2,700 2,640 2,700 2,640 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,550 2,300 2,290 4,160 4,820 4,470 3,320 3,420 3,340 3,340 3,340 3,340 3,340 3,350 3,370 3,550 3,710 3,566	<0.197 <1.00 <0.150 <0.150 <0.2 <0.150 <0.150 <0.0200 <0.197 <0.500 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.024 J <0.0374 J <0.150 <0.024 J <0.0374 J <0.150 <0.02 <0.2 <0.2 <0.2 <0.2 <0.197	0.0025 J <0.00180 0.081 <0.00120 <0.0180 0.140 J <0.0018 <0.00180 <0.00180 <0.00180
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-16 Apr-17 Apr-16 Apr-16 Apr-17 Apr-18 Ap	386 571 504 232 242 313 258 248 309 295 205 205 200 186 241 178 212 478 514 489 J 2,370 3,74 530 411 J 403 J 395 416	153 179 288 146 373 275 290 312 697 914 562 457 886 750 726 984 1,010 855 197 176 178 238 200 198 241 209	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.709 2.19 2.27 2.00 1.06 0.475 1.23 1.28 2.50 1.107 0.968 1.07 0.996	1.34 1.56 1.89 J 1.76 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.596 0.61 J <0.18 1.28 0.956 J 1.23 0.657 0.643 0.489 J 2.61 J 0.586 0.63 J 0.586 0.63 J 0.586 0.63 J 0.586 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 156 139 711 181 240 190 186 185	2,360 1,220 1,340 1,380 1,880 1,170 1,450 1,410 1,180 862 954 1,110 218 96.0 1,090 218 96.0 1,22 677 747 619 1,790 1,760 1,760 1,900 1,810 1,910 1,910 1,910 1,910	5,950 2,720 2,640 2,640 2,670 3,140 3,760 2,710 2,530 3,610 3,440 3,440 3,440 3,440 3,440 3,440 3,440 3,300 3,300 3,300 3,300 3,440 3,440 3,440 3,400 3,550 3,560	<.197 <1.00 <1.100 <1.100 <1.150 <0.2 <1.150 <0.2 <1.150 <0.150 <0.0200 <0.150 <0.150 <0.0200 <0.150 <0.150 <0.0200 <0.150 <0.150 <0.0200 <0.150 <0.150 <0.0200 <0.150 <0.150 <0.0200 <0.197 <1.00 <0.197 <1.00 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.150 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0.0241 <0	0.0025 J <0.00180 0.081 <0.00120 <0.0180 0.140 J <0.0018 <0.0018 <0.00180
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-14 Apr-15 Apr-16 Apr-15 Apr-16 Apr-14 Apr-15 Apr-16 Oct-15 Apr-16 Apr-16 Apr-16 Apr-17 Apr-16 Apr-17 Apr-16 Apr-18 Apr-15 Apr-16 Apr-17 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15 Apr-15	386 571 504 232 242 313 258 233 248 309 205 200 186 241 178 212 478 514 489 J 2,370 374 530 411 J 403 J 395	153 179 288 146 373 275 290 312 697 914 552 457 886 750 726 886 1,010 884 1,010 176 176 178 200 198 200	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.28 2.50 1.10 0.968 1.07	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J <0.18 1.28 0.956 J 1.28 0.956 J 1.29 0.643 J 0.586 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J 0.586 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 158 139 711 181 181 190 186	2,360 1,220 1,340 1,380 1,1680 1,170 1,450 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,890 1,790 1,890 1,990 1,810 1,910	5,950 2,720 2,700 2,640 2,700 2,640 3,140 3,760 2,710 2,530 3,610 3,440 3,010 2,550 2,300 2,290 4,160 4,820 4,470 3,320 3,420 3,340 3,340 3,340 3,340 3,340 3,350 3,370 3,550 3,710 3,566	<0.197 <1.00 <0.150 <0.150 <0.2 <0.150 <0.150 <0.0200 <0.197 <0.500 <0.197 <0.500 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0200 <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.0270 J <0.150 <0.024 J <0.0374 J <0.150 <0.024 J <0.0374 J <0.150 <0.02 <0.2 <0.2 <0.2 <0.2 <0.197	0.0025 J <0.00180 0.081 <0.00120 <0.0180 0.140 J 0.140 J <0.00180 <0.00180 <0.00180 <0.00180 <0.00180 <0.00180 <0.00180
North Refinery	MW-41 MW-42 MW-43	Apr-14 Apr-15 Apr-16 Oct-13 Apr-16 Oct-13 Apr-15 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Oct-13 Apr-14 Apr-15 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Apr-17 Apr-17 Apr-17 Apr-17 Apr-17 Apr-18	386 571 504 232 242 313 258 293 248 309 295 205 200 186 241 178 212 478 514 489 J 2,370 374 530 411 J 403 J 395 416 446	153 179 288 146 373 275 290 312 697 914 552 457 886 750 726 984 1,010 885 197 176 178 209 198 209 210	1.34 1.28 1.66 1.70 1.05 0.747 1.07 1.04 0.987 0.545 0.962 0.867 0.250 0.780 0.709 2.19 2.27 2.00 1.06 0.475 1.23 1.28 2.50 1.10 0.968 1.07 0.968 1.07 0.968 1.07	1.34 1.56 1.89 J 1.76 J 0.404 0.444 0.648 J 0.393 J 0.535 0.560 0.579 J 0.617 J 0.61 J <0.18 1.26 0.956 J 1.23 0.657 0.643 0.489 J 2.61 J 0.588 J 0.588 J 0.589 J	1,510 109 124 134 127 425 387 501 453 455 508 611 601 531 590 V 511 658 812 664 152 156 139 711 181 240 190 186 185 191 J	2,360 1,220 1,340 1,380 1,660 1,170 1,450 1,410 1,180 862 954 1,110 1,090 218 98.0 122 677 747 619 1,790 1,890 1,760 1,790 1,890 1,810 1,910	5,950 2,7720 2,640 2,670 3,140 3,760 2,710 2,650 3,610 3,440 3,440 3,440 3,440 3,440 4,820 4,470 3,320 3,420 3,340 3,300 3,300 3,300 3,300 3,500 3,500 3,500 3,560 3,660 3,660	<0.197 <1.00 <0.150 <0.2 <0.197 <0.500 <0.150 <0.200 <0.197 <0.500 <0.197 <0.500 <0.197 <0.500 <0.197 <0.500 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 <0.150 <0.0200 <0.197 J 0.270 J 0.270 J 0.374 J 0.374 J 0.374 J 0.374 J 0.374 J 0.374 J 0.376 J 0.02 <0.02 <0.150 <0.02 <0.150 <0.02 <0.150 <0.0241 J 0.374 J 0.374 J 0.374 J 0.374 J 0.374 J 0.376 J 0.0241 J 0.376 J 0.0276 J 0.0276 J 0.0276 J 0.0410 J	0.0025 J <0.00180 0.081 <0.00120 <0.0180 0.140 J <0.0018 <0.00180 <0.00180 <0.00180 <0.00180 <0.00180 <0.00180 <0.00180

		Analyte Gro	up:			,	Water Quality					Cyanide
		Anal	yte:	Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
		CGW	nits:	mg/L 	mg/L 250	mg/L 1.60	mg/L 	mg/L 	mg/L 600	mg/L 1,000	mg/L 10.0	mg/L 0.200
		CGWSL Sou	rce:		WQCC Dom	WQCC HH			WQCC Dom	WQCC Dom	USEPA MCL	USEPA MCL
Area	Well ID MW-61	Apr-14	Jup	365	520	0.813	0.629	420	1,070	3,400	<0.150	
		Nov-14		470	250	1.50	1.10	290	930	2,700	<0.02	
		Apr-15 Oct-15	_	457 375	287 179	1.30 2.61	1.1 J 2.28	349 286	1,280 2,080	2,910 2,520	<0.2 <0.197	
		Apr-16		439	240	2.65	2.82 J	278	2,120	2,680	0.552 J	
	MW-62	Oct-16 Apr-14	_	409 285	115 240	3.14 1.11	3.89 1.12	226 224	1,400 440	2,430 3,430	<0.197 <0.150	
	10100-02	Nov-14		160	470	1.60	1.80	480	5.50	2,100	<0.02	
		Apr-15		126 425	485 273	1.52	1.72	478 399	21.0	1,930	<0.0200 <0.197	
		Oct-15 Apr-16		481	276	1.93 1.92	1.31 1.42 J	456	1,900 1,850	4,050 3,830	0.322 J	
		Oct-16		371	243	1.79	1.15	359	1,390	3,460	<0.197	
	MW-67	Nov-14 Apr-15		240 194	170 208	0.610 0.698	0.59 J 0.531 J	160 160	380 329	1,600 1,510	<0.02 <0.2	<0.0018 <0.00180
		Oct-15		192	225	0.589	0.533 J	177	311	1,450	<0.197	<0.00180
		Apr-16 Oct-16	-	202 205	312 310	0.548 0.620	0.427 J 0.574 J	218 211	281 303	1,790 1,880	<0.197 <0.0197 J6	0.0440 J <0.0180
	MW-90	Apr-14		270	162	0.892	0.928	185	1,070	2,600	<0.150	10.0100
		Nov-14		520	160	9.30	3.50	500	6,200	8,800	4.80	
		Apr-15 Oct-15		302 481	104 22.7	2.73 6.77	1.63 2.07	286 135	2,230 4,530	3,800 5,130	<0.2 3.44	
		Apr-16		411	85.9	6.25	1.69 J	246	3,250	5,180	0.377 J	
	MW-91	Oct-16 Apr-14		534 251	74.7 29.0	8.22 0.933	1.84 0.435	142 38.8	3,610 240	5,730 1,540	14.7 <0.150	
	14144-91	Nov-14		460	36.0	1.30	1.00	37.0	830	2,000	<0.150	
		Apr-15 Oct-15	\Box	355	32.8	1.40	0.523 J	30.8	643	1,980	<0.2	
		Apr-16		361 379	35.7 37.1	1.34	0.686 J 0.464 J	35.0 36.6	854 776	2,280 2,270	<1.97 0.320 J	
	1000	Oct-16		366	37.4	1.45	0.525 J	35.1	862	2,260	<0.0197	
	MW-92	Apr-16 Oct-16	_	130 O1 134	415 539	1.30 1.63	1.73 J 2.02	450 O1V 454	24.1 14.6	2,310 2,150	0.602 J <0.985	
	MW-93	Apr-14		414	173	1.16	3.11	103	645	2,130	<0.150	
		Nov-14	\Box	640 579	200	3.10	4.70 2.58 J	130	1,700	3,100	<0.02 <0.0200	
		Apr-15 Oct-15		579 516	221 251	2.23	2.58 J 5.23	126 133	2,050 3,070	3,080 3,080	<0.0200 2.92 J	
		Apr-16		677	206	3.06	1.76 J	164	2,130	3,270	<0.197	
	MW-94	Oct-16 Nov-14	_	553 V 190	200 230	2.78 0.590	3.45 O1 0.58 J	167 V 370	1,630 240	3,260 2,600	<0.197 <0.02	
	10100-5-4	Oct-15		109	245	1.01	0.224 J	355	75.8	2,530	<0.197	
		Apr-16		124 137	217 172	1.02 1.04	0.189 J	532	199 175	2,980	<0.197	
	MW-95	Oct-16 Apr-13		177	207	0.569	0.467 J 0.541	319 136	169	2,530 1,450	<0.0197 <1.00	
Refinery		Apr-14		177	226	0.560	0.494	143	160	1,440	<0.150	
Refi		Apr-15 Apr-16	_	178 191	275 280	1.02 0.805	0.655 J 0.518 J	177 180	359 326	1,680 1,670	<0.2 <0.197	
North	MW-96	Apr-14		154	146	0.606	0.891	234	286	1,750	<0.150	
Ž		Nov-14		390	220	1.80	1.90	310	1,200	3,000	<0.02	
		Apr-15 Oct-15		208 230	884 190	1.19 1.23	1.03 1.21	224 244	1,730 583	1,680 1,990	0.211 J 0.202 J	
		Apr-16		187	159	1.18	1.10 J	234	255	1,590	0.313 J	
	MW-98	Oct-16 Apr-14	-	210 471	169 36.3	1.19 0.962	1.03 0.218	225 92.1	456 1,800	1,990 3,360	0.023 J <0.150	
	10100-50		FD	475	38.0	1.02	0.229	92.8	1,810	3,390	<0.150	
		Nov-14 Apr-15		460	32.0	1.90 1.29	0.2 J	81.0	1,600 2,010	2,800	<0.02	
		Oct-15		497 427	41.6 55.7	1.53	<0.18 0.134 J	91.5 74.9	1,790	3,040 3,340	<0.0200 <0.197	
		Apr-16		539	74.2	1.43	<0.185	89.6	1,690	3,040	<0.197	
	MW-137	Oct-16 Oct-15	-	450 142	88.0 390	1.52	0.241 J 1.90	72.7 1,320	1,610 1,090	3,370 3,880	<0.197 <0.197	0.144
	14144-107	Apr-16		178	343	1.87	2.43 J	1,740	2,160	3,950	<0.197	0.348 J
	100	Oct-16		142	445	1.32	1.23	960	1,040	3,550	<0.197	<0.0450
	MW-138	Oct-15 Apr-16	_	139 160	490 571	1.08	1.75 2.03 J	410 568	154 164	1,920 2,180	<0.197 <0.197	<0.00180 0.0290 J
		Oct-16		138	527	0.927	1.84	426	122	2,380	<0.197	<0.0450
	RW-1 RW-1R	Apr-15 Apr-16		358 505	224 180	1.33 1.38	3.57 6.39	210 203	1,330 1,500	2,410 2,990	<0.2 0.422 J	
	RW-2	Apr-15		726	365	1.75	5.55 J	383	3,510	5,310	<0.2	
	RW-2R	Apr-16		875	430	2.09	5.80	396	2,200	3,810	0.281 J	
	RW-7 RW-7R	Apr-15 Apr-16	-	252 262	237 186	1.15 0.651	1.88 J 0.651 J	192 110	19.0 624	1,500 878	<0.2 <0.197	
	RW-8	Apr-15		227	115	0.801	0.353 J	209	473	1,600	<0.2	
	RW-9	Apr-13		262	292	1.46	1.95	314	775 1.260	2,670	<1.00	
		Apr-14 Apr-15	-	291 315	318 313	1.10	1.57 1.69	306 318	1,260 1,310	3,380 3,150	<0.150 <0.2	
		Apr-16		336	313	1.69	1.96 J	356	1,440	3,370	1.73	
	RW-10	Apr-13 Apr-14		343 324	190 231	2.38	6.78 5.84	236 227	1,730 2,060	3,190 3,420	<1.00 <0.150	
		Apr-15		494	187	3.34	9.04	172	2,010	3,290	0.639	
	D\A/ 10	Apr-16	\Box	638	159	4.28	13.2	176	2,040	3,330	1.21	
	RW-16	Apr-13 Apr-14		580 531	451 452	4.54 3.74	1.14 0.799	522 430	2,700 2,680	5,350 5,130	<1.00 <0.150	
		Apr-14	FD	556	429	3.89	0.767	455	2,550	5,150	<0.150	
		Apr-15 Apr-16		641 604	534 416	4.61 3.01	1.69 J 1.15 J	594 502	3,220 3,360	5,430 5,610	2.87 2.45	
	RW-17	Apr-13		598	505	2.19	4.13	383	2,960	5,470	<1.00	
		Apr-14	\Box	585 683	524	1.84	3.88	405 631	3,280	6,100	<0.150	
		Apr-15 Apr-16		683 2,840	494 377	2.58 2.22	9.10 28.7	631 1,800	4,180 3,400	5,840 5,880	31.6 4.77	
	MW-117	Apr-14		646	97.0	3.03	9.29	167	2,140	4,980	<0.150	
		Nov-14 Nov-14	FD	610 640	96.0 96.0	3.00 2.40	5.20 5.00	110 98.0	2,000 2,200	3,000 3,300	0.650 0.640	
		1107-14	ט י	613	96.0 87.2	3.79	5.00	102	2,200	3,670	0.640 0.372 J	
plei		Apr-15		478	55.4	3.40	6.44	109	1,690	2,980	0.779 J	
sct Field		Oct-15										
Reject Field		Oct-15 Apr-16		554 592	94.4 272	3.45 3.57	5.82 6.90	112 115	2,060 2,240	3,390 3,590	0.349 0.137 JB6	
RO Reject	MW-118	Oct-15 Apr-16 Oct-16 Apr-14		554 592 732	94.4 272 92.3	3.45 3.57 5.58	6.90 6.15	115 134	2,240 2,190	3,590 5,200	0.137 JB6 <0.150	
RO Reject	MW-118	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14		554 592 732 670	94.4 272 92.3 160	3.45 3.57 5.58 4.9 J6	6.90 6.15 6.20	115 134 140	2,240 2,190 2,700	3,590 5,200 3,700	0.137 JB6 <0.150 0.98	
Reject	MW-118	Oct-15 Apr-16 Oct-16 Apr-14		554 592 732	94.4 272 92.3	3.45 3.57 5.58	6.90 6.15	115 134	2,240 2,190	3,590 5,200	0.137 JB6 <0.150	
RO Reject	MW-118	Oct-15 Apr-16 Oct-16 Apr-14 Nov-14 Apr-15		554 592 732 670 601	94.4 272 92.3 160 767	3.45 3.57 5.58 4.9 J6 4.14	6.90 6.15 6.20 5.30	115 134 140 153	2,240 2,190 2,700 2,510	3,590 5,200 3,700 3,960	0.137 JB6 <0.150 0.98 1.70	

		Analyte Group:				Water Quality	/ Parameters				Cyanide
	•	Analyte:	Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
		Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	(:CGWSL :CGWSL Source		250 WQCC Dom	1.60 WQCC HH			600 WQCC Dom	1,000 WQCC Dom	10.0 USEPA MCL	0.200 USEPA MCL
rea	Well ID	Date Dup		WQCC Dolli	WQCCHH			WQCC Dolli	WQCC Doill	USEFA WICE	USEFA WICE
,	MW-119	Apr-14	680	235	2.61	1.13	140	1,980	4,200	0.176 J	
1		Apr-14 FD	655	216	2.62	1.08	136	1,830	4,140	0.174 J	
Field		Nov-14 Apr-15	670 590	49.0 48.2	2.60 1.99	1.80 0.232 J	77.0 54.5	2,300 2,040	3,200 3,030	<0.02 0.292 J	
ιĚ		Oct-15	624	152	2.65	0.985 J	86.3	2,290	3,500	0.437 J	
		Apr-16	595	191	2.50	0.614 J	101	1,900	3,330	0.518 J	
		Oct-16	619	280	2.91	0.991 J	132	2,010	3,690	0.189 B	
	MW-18	Oct-13	456	114	2.26	13.3 2.89	64.7	1,450	3,260	21.3	<0.0200
		Apr-14 Apr-15	507 407	159 185	0.954 1.45	7.18	83.2 66.7	1,830 1,600	3,700 3,110 J	35.2 36.1	<0.00500 <0.00180
		Apr-16	504	178	1.39	3.69 J	107	1,600	2,920	42.6	0.00200 J
	MW-45	Apr-14	524	441	0.877	4.12	348	2,130	4,640	<0.150	<0.00500
		Nov-14	590 605	470	1.50	4.60	360	2,000	4,300	<0.02	<0.0018
		Apr-15 Oct-15	610	1,260 454	1.44 1.37	4.47 5.02	346 376	2,580 2,910	5,300 J 4,660	<0.0200 0.0290 J	<0.00180
		Apr-16	689	524	1.51	6.33	429	2,710	4,760	<0.197	<0.00180
		Oct-16	640	546	1.48 J6	5.30	392	2,810	4,730	0.377 B	0.00953
	MW-53	Apr-13	284	107	1.20	1.06	103	1,080	2,570	<1.00	
		Apr-14 Apr-15	290 348	95.4 1,010	0.827 0.922	0.935 1.16	87.6 104	1,190 1,290	2,060 2810 J	<0.150 34.5	
		Apr-16	459	346	1.06	1.42 J	161	1,340	2,890	25.3	
	MW-54A	Apr-14	354	211	0.600	0.275	69.2	666	1,800	<0.150	
		Nov-14	370	190	1.20	0.38 J	74.0	680	1,900	0.85 J	
		Apr-15 Oct-15	318 356	192 210	1.10 1.10	0.276 J 0.33 J	62.9 70.2	712 796	2,080 J 2,140	0.450 4.32 J	
		Apr-16	381	176	1.10	0.303 J	69.4	625	1,780	<0.197 J6	
		Oct-16	331	175	0.997	0.254 J	61.5	670	1,770	0.134 J6B	
	MW-54B	Apr-13	345	176	<0.500	1.16	48.8	747	2,050	<1.00	
	MW-55	Apr-15	307 560	166 357	0.613 1.14	0.767 J 0.926	48.0 233	752	1,890 J	0.0276 J 9.61	<0.00500
	CC-VVIVI	Apr-14 FD	573	357 445	1.14	0.926	233	2,670 2,600	5,100 5,360	9.61	<0.00500
		Nov-14	610	190	2.40	0.9 J	130	2,300	3,600	6.5 J	<0.0018
		Apr-15	627	266	1.88	0.692 J	167	2,940	4,910 J	15.5	<0.00180
		Oct-15 Apr-16	411 472	216 442	1.85 1.04	0.756 J 0.829 J	166 253	2,300 2,080	4,000 4,200	5.57 2.26	<0.00180 <0.00120
		Oct-16	465	219	2.09	0.829 J 0.732 J	253 174	2,080	3,810	3.65	<0.00120
	MW-56	Apr-14	559	365	0.639	1.88	237	1,840	4,320	2.32	10.00100
		Nov-14	540	340	1.20	2.10	250	1,900	3,500	<0.02	
		Apr-15	485	927	1.11	1.90	272	1,900	3,640 J	1.28	
		Oct-15 Apr-16	514 559 V	399 403	1.12 1.10	2.05 2.32 JO1	342 379 V	2,490 1,970	4,080 3,790	4.34 2.76	
		Oct-16	446 V	263	1.19	1.97	317 V	1,910	4,110	0.151 B	
	MW-108	Apr-14	316	101	1.58	1.07	89.3	1,130	2,820	<0.150	
		Nov-14	350	82.0	3.30	3.20	110	1,200	2,500	0.190	
		Apr-15 Oct-15	289 298	78.8 77.5	2.52 2.30	1.50 1.31	76.8 88.9	962 1,090	2,540 J 2,530	<0.39 <0.197	
Ý		Apr-16	333	79.6	2.04	1.28 J	92.6	981	2,120	0.304 J	
2		Oct-16	343	112	2.75	3.88	116	1,340	2,830	0.046 JB	
	NCL-31	Apr-14	267	69.6	0.776	0.321	112	1,030	2,300	<0.150	
		Nov-14 Apr-15	380 266	160 89.5	1.40 1.25	0.43 J 0.22 J	150 100	1,300 1,240	2,600 2,670 J	0.110 <0.2	
		Oct-15	392	129	1.20	0.418 J	125	2,100	3,220	<0.197	
		Apr-16	340	78.9	1.14	0.272 J	109	1,420	3,020	0.385 J	
		Oct-16	445	67.8	1.57	0.564 J	148	2,400	3,820	0.084 JB	
	NCL-32	Nov-14 Apr-15	440 446	460 177	4.60 1.92	19.0 4.15 J	82.0 92.6	800 1,050	2,000 2,250	0.570 <0.2	
		Oct-15	540	329	1.57	4.15 3	97.0	1,430	2,280	<0.197	
		Apr-16	697	206	2.05	7.60	115	1,340	2,740	<0.197	
		Oct-16	390	128	1.48	3.26	102	1,220	2,230	1.77	
	NCL-33	Apr-14	358	302	1.83	3.78	105	557	1,920	<0.150	
		Nov-14 Apr-15	450 431	340 281	2.60 2.58	5.00 4.31 J	110 111	720 800	2,100 2,280	<0.02	
		Oct-15	419	404	2.49	4.86	119	847	2,140	<0.0200	
		Apr-16	622	280	2.82	7.58	113	1,370	3,200	0.367 J	
	NCI 211	Oct-16	462	400	2.65	5.28	109	900	2,790	0.075 JB	
	NCL-34A	Nov-14 Apr-15	250 275	180 249	1.40 1.36	0.86 J 0.57 J	120 117	100 110	1,200 1,490	<0.02 <0.2	-
		Oct-15	202	182	1.43	0.877 J	103	104 J	1,250	0.284 J	
		Apr-16	347	416	1.31	2.20 J	140	82.2	1,540	0.265 J	
	NO	Oct-16	249	238	1.43	1.27	107	95.0	1,370	0.047 JB	
	NCL-44	Apr-14 Nov-14	265 290	149 850	1.20 1.80	2.06 2.20	66.0 70.0	454 450	1,720 1,500	<0.150 <0.02	
		Apr-15	269	161	1.78	1.64 J	73.4	468	2,510	<0.02	
		Oct-15	276	182	1.69	2.07	71.4	633	1,890	<0.197	
		Apr-16	414	234	1.59	2.62 J	98.3	965	2,120	<0.197	
	NCL-49	Oct-16 Apr-14	373 430	222 104	1.67 0.501	2.29 0.625	94.9 116	1,030 1,680	2,130 3,000	0.081 JB 5.21	
	NOL-48	Nov-14	440	98.0	0.650	0.625 0.72 J	120	1,500	2,600	4.30	
		Nov-14 FD	430	98.0	0.590	0.75 J	120	1,700	2,600	4.50	
		Apr-15	377	109	1.64	0.552 J	105	1,400	2,840 J	4.53	
		Apr-15 FD Oct-15	380 406	395 112	0.531 0.593	0.589 J 0.607 J	105 115	1,650 1,770	2,850 J 2,830	4.50 5.79	
		Oct-15 FD	406	112	0.593	0.607 J 0.613 J	115	1,770	2,830	5.79	-
		Apr-16	468	119	0.685	0.749 J	136	1,570	2,820	5.71	
		Apr-16 FD	470	119	0.685	0.792 J	137	1,580	2,790	5.63	
		Oct-16	425	128	0.600	0.590 J	120	1,700	2,770	6.08	
-	K/MB 3D	Oct-16 FD Nov-14	429 330	130	0.600	0.597 J	122	1,670	3,290	6.01 <0.02	
	KWB-2R	Apr-15	330 233	160 259	1.20 0.879	1.20 0.777 J	200 267	1,200 884	2,600 2,450	<0.02 <0.2	
_		Oct-15	168	228	1.21	1.23	296	418	1,970	<0.197	
utn Kerinery		Apr-16	322	207	0.485	0.456 J	325	1,460	2,910	0.0340 JJ6	
100		Oct-16	275	215	0.901	0.433 J	282	1,150	2,850	0.0740 JB	
	KWB-5	Nov-14	270	570 518	0.770	1.00	210	12.0	1,500	0.200	
SO.		Apr-15 Oct-15	237 228	518 575	0.687 0.853	1.79 1.60	198 203	8.08 6.81	1,500 1,540	<0.0200 0.243 J	
,,	1										
,,		Apr-16	252	5,800	0.392	1.66 J	222	235 J	1,760	0.0400 J	

Analyte Group			oup:	: Water Quality Parameters								Cyanide
	•		alyte:	Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
			Jnits:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
	(CGV CGWSL So			250 WQCC Dom	1.60 WQCC HH			600 WQCC Dom	1,000 WQCC Dom	10.0 USEPA MCL	0.200 USEPA MCL
Area			Dup		WQCC Dolli	WQCCTIII	<u> </u>		WQCC Dolli	WQCC Dolli	OSEF A WICE	OSEFA WICE
	KWB-6	Nov-14		260	240	0.800	0.2 J	150	330	1,600	0.370	
		Apr-15 Oct-15		212 229	305 265	0.366 0.935	0.22 J 0.181 J	193 144	16.2 264	1,460 1,410	0.148 0.273 J	
		Apr-16		246	313	1.03	0.181 J	199	83.1	1,410	<0.197	
		Oct-16		232	280	0.977	0.219 JB	109	275	1,590	0.077 JB	
	MW-28	Apr-14		164	157	1.02	0.382	102	166	1,560	<0.150	0.0500 J
		Nov-14		590	140	0.730	0.92 J	96.0	1,300	3,000	<0.02	<0.0018
		Apr-15 Oct-15		439 J 379	160 159	1.59	0.685 J 0.632 J	89.5 92.7	1,080 1,060	2,760 3,000	<0.39 0.211 J	0.0132 0.0108
		Apr-16		1500	135	1.42	4.06 J	450	672	3,040	0.470 J	<0.00120
		Oct-16		480	147	1.40	0.640 J	74.0	1,320	1,900	0.046 JB	<0.0180
	MW-48	Nov-14		190	410	0.290	2.40	380	260	1,800	<0.02	
		Apr-15 Oct-15		258 J 186	161 391	0.498 0.644	0.68 J 2.61	276 355	47.6 235	725 1,940	<0.2 <0.197	
		Apr-16		234	1110	1.45	1.80 J	314	20.5	2,950	<0.197	
		Oct-16		200	580	1.07	1.18	339	239	2,270	0.030 JB	
	MW-50	Apr-14		410	172	0.671	2.36	130	1,300	2,910	<0.150	
		Nov-14 Apr-15		450 450	200 259	0.830 0.966	2.30 2.18	160 178	1,600 1,680	2,800 2,860	<0.02 <0.2	
		Oct-15		403	226	0.899	2.29	175	1,740	2,770	2.61 J	
		Apr-16		645	491	3.96	8.60	969	4,280	4,580	150	
		Oct-16		546	511	3.86 J6	12.4	912	4,690	9,320	0.594	
	MW-52	Apr-14 Apr-14	FD	156 161	223 225	1.57 1.51	0.204 0.186 J	257 218	820 821	2,580 2,510	1.19 1.38	<0.00500 H <0.00500 H
		Nov-14	''	190	150	1.50	0.186 J	320	990	2,000	1.90	<0.00300 H
1	1	Apr-15		168 J	158	1.88	0.252 J	267	832	3,740	1.54	<0.00180
- 1	1	Oct-15	<u> </u>	196	144	1.76	0.242 J	285	998	2,040	3.13	<0.00180
- 1		Apr-16 Oct-16	-	778 194	160 144	1.79 1.77	1.20 J 0.262 J	1,350 278	995 1,100	1,920 2,370	1.73 1.04	<0.00120 0.00182 J
1	MW-64	Apr-16		109	379	1.08	0.754 J	396	39.9	1,510	<0.197	5.50102 0
		Oct-16		109	356	0.855	0.689 J	361	4.08 J	1,650	0.079 JB	
- 1	MW-65	Nov-14		260	470	0.720	0.89 J	290	310	1,900	<0.02	
		Apr-15 Apr-16		147 155 V	382 394	1.21	0.783 J 0.691 J	257 311 V	<0.0770 0.323 J	1,410 1,750	0.0613 J 0.0490 JJ6	
		Oct-16		157	356	1.48	1.46	287	0.431 J	1,780	0.219 B	
1	MW-66	Apr-14		151	209	1.12	0.785	180	<0.200 B	1,170	<0.150	<0.00500 B
		Nov-14		140	150	1.20	1.00	160	0.51 J	990	<0.02	<0.0018
		Apr-15 Oct-15		120 134	141 201	1.53 1.34	0.858 J 0.742 J	134 163	0.596 J 0.11 J	948 1,090	0.0292 J <0.197	<0.00180 0.00180 J
		Apr-16		600	134	1.36	4.83 J	740	0.591 J	942	0.363 J	<0.00120
		Oct-16		131	174	1.42	0.770 J	155	0.327 J	1,020	0.048 JB	<0.00180
	MW-99	Nov-14		170	180	0.420	3.90	170	140	1,100	<0.02	
		Apr-15		48.7	33.4	0.328	5.30	23.9	41.3	267	0.789	
		Oct-15 Apr-16		176 805	249 208	0.706 0.866	0.955 J 6.37	215 1,100	127 153	1,390 1,410	<0.197 0.0330 JJ6	
		Oct-16		137	192	0.656	3.60	168	39.0	1,200	0.035 JB	
	MW-101	Apr-14		209	217	0.779	0.504	153	161	1,440	<0.150	
>		Nov-14 Apr-15		280 188	230 201	1.00 0.708	0.81 J	150 141	340	1,600	<0.02 <0.2	
Refinery		Oct-15		188	236	0.708	0.485 J 0.483 J	138	188 206	1,340 1,470	0.23 J	
Rei		Apr-16		220	239	0.940	0.522 J	169	168	1,270	0.197 J	
South		Oct-16		183	229	1.00	0.509 J	112	191	1,400	0.127 B	
S	MW-102	Nov-14		290	220	0.610	0.8 J	430	590	2,200	<0.02	
		Apr-15 Oct-15		94.4 193	175 219	0.825 1.13	0.419 J 0.683 J	357 385	1.75 J 296	1,470 1,750	0.0642 J <0.197	
		Apr-16		127	245	0.901	0.372 J	437	2.35 J	1,530	0.339 J	
		Oct-16		176	271	1.28	0.772 J	418	217	1,740	0.062 JBJ6	
	MW-103	Apr-13		19.2	661	6.88	0.759	1,120	82.2	2,800	<1.00	
		Apr-14 Apr-15		24.5 192	1,040 7,890	7.45 3.44	0.831 2.46 J	1,420 6,710	<10.0 B 19.6	3,820 12,500	<0.150 <0.0200	
		Apr-16		193	13,700	5.44	3.73 J	7,960	2.24 J	21,100	0.430 J	
	MW-104	Apr-14		232	86.0	2.26	5.06	95.7	690	1,390	< 0.150	
		Apr-14	FD	235	82.4	2.24	5.52	91.9	679	1,440	<0.150	
		Nov-14 Nov-14	FD	230 230	54.0 54.0	2.10 1.80	6.00 6.30	69.0 67.0	710 800	1,300 1,300	<0.02 <0.02	
		Apr-15	٦	208	31.4	1.67	4.73	42.7	856	1,070	<0.0200	
1		Apr-15	FD	207	31.0	2.12	4.63	42.3	679	1,130	0.185	
- 1		Oct-15	EL	169	21.0	2.01	4.92	38.6	510	912	<0.197	
- 1	1	Oct-15 Apr-16	FD	170 179 V	21.6 25.9	2.07	4.86 4.96 JJ5O1	40.3 43.6 V	473 408	925 819	<0.197 0.455 JB	
		Apr-16	FD	178	25.6	2.51	5.16	44.7	439	809	0.286 JB	
		Oct-16	_	165	72.9	1.94	4.77	38.4	322	975	0.064 JB	
1	MW-105	Oct-16 Nov-14	FD	164 660	73.4 37.0	1.90 0.960	4.78 7.00	37.9 29.0	323 1,300	928 2,400	0.082 JB <0.02	
	14144-100	Apr-15		111	25.3	0.960 0.7 J	4.26	17.2	263	530	<0.2	
	1	Oct-15		148	13.4	0.330	4.41	12.0	297	664	0.221 J	
		Apr-16		257	42.0	1.48	4.55 J	52.6	278	1,300	0.414 J	
	MW 106	Oct-16 Apr-14		227 400	12.7 160	1.00	4.97 1.90	20.7 195	20.6 1,500	1,050 3,350	0.105 B <0.150	
	MW-106	Apr-14 Apr-15		197	280	6.81	10.4	162	559	1,400	22.3	
1		Oct-15		373	148	1.76	2.43	221	1,790	3,420	<0.197	
- 1		Apr-16		422	185	1.51	4.40 J	271	1,380	3,120	<0.197	
- 1	MW-107	Oct-16 Apr-14		347 144	216 261	1.30	1.37 0.562	75.2	1,410 <0.200 B	3,080 1,250	0.053 JB <0.150	
		Nov-14		230	300	1.70	0.73 J	83.0	160	1,200	<0.02	
		Apr-15		160 J	291	1.54	0.583 J	73.1	27.1	1,220	<0.0200	
		Oct-15		176	297	1.67	0.88 J	76.9	102	1,390	<0.197	
		Apr-16 Oct-16		727 186	277 271	1.67 1.82	3.22 J 0.965 J	381 80.1	6.07 72.4	1,850 1,480	0.376 J 0.170 B	
- 1	MW-109	Apr-14		92.9	393	1.82	0.965 J 0.634	80.1 465	237	1,480	<0.170 B <0.150	
- 1		Nov-14		280	270	2.40	1.30	490	920	2,500	<0.02	
- 1		Apr-15		192 J	261	2.04	0.929 J	406	931	2,910	<0.39	
		Oct-15 Apr-16		181 707	232 204	1.81 1.90	0.862 J 4.01 J	438 2,200	950 848	2,170 2,190	<0.197 0.384 J	
		Oct-16		153	204	2.06	0.802 J	431	751	2,190	0.036 JB	
1	MW-110	Apr-14		79.0	92.4	1.25	0.129 J	249	364	1,260	<0.150	
1	1	Nov-14		100	86.0	1.50	0.14 J	270	1,100	1,200	<0.02	
- 1	1	Apr-15 Oct-15	_	107 J 174	93.8 136	1.64 1.62	0.244 J 0.268 J	244 294	283 787	1,420 1,680	<0.0200 <0.197	
- 1		Apr-16		174 555	99.0	1.62	0.268 J 1.19 J	1,380	2,100	1,680	<0.197 0.765 J	
L	<u></u>	Oct-16		115	97.6	1.50	0.150 J	276	555	1,430	0.062 JB	

Proceedings			Analyte Group:				Water Qualit	y Parameters				Cyanide
March Marc			Analyte	Calcium			Potassium	Sodium				Cyanide
Court Cour												
The color of the		C										
Part Part												
Page 198		RA-313						16.4				
No. No.								17.8				
No. No.	iner											
No. No.	Ref											
No. No.	£											
March Marc	δ										0.495 J	
## WORLD WALL ## ## ## ## ## ## ##												
No.	-											
The color of the		10100-111-										
April Sept												
100-115												
## Nov-14 \$96 \$240 \$170 \$1,60 \$230 \$2250 \$3,700 \$0.746 \$140	모											
## Nov-14 \$96 \$240 \$170 \$1,60 \$230 \$2250 \$3,700 \$0.746 \$140	Ē	MW-115										
## Nov-14 \$96 \$240 \$170 \$1,60 \$230 \$2250 \$3,700 \$0.746 \$140	ejec											
## Nov-14 \$96 \$240 \$170 \$1,60 \$230 \$2250 \$3,700 \$0.746 \$140	0 8											
## Nov-14 \$96 \$240 \$170 \$1,60 \$230 \$2250 \$3,700 \$0.746 \$140	E.											
## Nov-14 \$96 \$240 \$170 \$1,60 \$230 \$2250 \$3,700 \$0.746 \$140	Sout	MW-116										
Part	1		Nov-14	580	240	1.70	1.60	230	2,200	3,700	0.740	
### Page 16 779 900 1.33 1.83 229 3.300 4.980 0.473 0.002007 ### Page 17 19 19 19 19 19 19 19	1											
Miles	1											
Page Page	L	L		569	196	2.91	4.26	114	2,040	3,500		
Page 15		MW-49										
Page	1											
Page 14 353 228 2.00 1.59 4.00	1		Oct-15	192	381	1.45	2.48	326	621	2,260	<0.197	0.00280 J
FEL-1	1											
Fig. 14 EU 389 224 1.90 1.30 427 1.370 3.140 0.150 1.50		TFI-1										<0.00900
No.14	1		Apr-14 FD								<0.150	
Part Part												
Page 16												
FEL-2 April 158 312 1.22 1.42 376 554 2,340 < 0.02 April 200 300 1.40 1.30 390 580 2,240 < 0.02 April 5 164 949 0.914 0.945 372 489 2,330 < 0.02 April 5 164 949 0.914 0.945 372 489 2,330 < 0.02 April 5 164 349 0.914 0.945 372 489 2,330 < 0.02 April 7 April 17 388 371 1.18 1.10 404 680 2.460 < 0.197 April 17 37 373 373 372 489 2.2720 0.0460 3 4 4 4 4 4 4 4 4 4												
Nov-14		TEL-2										
Part 19												
Page												
Tel. April Fig. Sept.												
TEL-3	핕											
Apr-15		TEL-3										
Coct-15												
Apr-16												
TEL-4 Apr-14 332 588 0.429 0.575 585 1,480 4,480 <0.150				473								
Nov-14 380		TE: 4										
Nov-14 FD 380 480 1.30 0.62 3 520 2.100 4.100 <0.02		IEL-4										
Apr-15 FD 288 535 0.689 0.411 J 281 1.140 3.300 <0.2			Nov-14 FD									
Oct-15 412 347 2.55 0.934 6.57 4.000 7.150 0.385 0.0ct-15 FD 417 353 3.14 0.95 6.93 4.040 6.590 0.197												
Oct-15 FD 417 333 3.14 0.95 J 693 4,040 6,590 <0.197 Apr-16 Apr-16 410 524 1.53 0.666 J 509 2.070 4.260 0.0440 J Apr-16 FD 408 519 1.53 0.666 J 509 2.070 4.260 0.0440 J Apr-16 FD 408 519 1.53 0.668 J 519 1.990 4.040 0.0400 J6 0.0400 J6 0.0410 J6 0.0410 J7 0.0416 J7												
Apr-16 FD 408 519 1.53 0.618 J 515 1.980 4.040 0.0400 JB Cot-16 370 336 1.89 0.613 J 465 2.290 5.350 0.0340 JB Cot-16 FD 370 347 1.58 0.808 J 454 2.240 5.370 0.0360 JB Cot-13 4.54 3397 3.158 0.808 J 4.54 2.240 5.370 0.0360 JB Cot-13 4.54 4.54 3.360 2.311 1.91 4.101 2.5800 4.960 5.333 4.701 4.701 4.86 3.33 1.78 2.05 3.88 2.710 5.060 5.20 4.701 1.101 4.701				417	353	3.14	0.95 J	693	4,040	6,590	<0.197	
No. Col. Feb. Feb. F												
MW-8	1											
Apr-14	<u></u>		Oct-16 FD	370	347	1.58	0.608 J	454	2,240	5,370	0.0360 JB	
Apr-15	1	MW-8										
MW-16	1											
MW-20 Apr-14	1		Apr-16		275	2.02		295	2,380	3,690	0.503 J	
MW-20	1	MW-16										
Apr-13	1											
Apr-14 FD 487 440 1.72 0.419 247 2.700 4.840 6.50 Apr-16 594 515 2.18 0.370 J 274 2,790 4,880 8.09 MW-21 Apr-14 510 537 1.70 0.491 97.1 2,970 5,560 22.6 Nov-14 600 450 2.40 1.90 430 2,900 5,200 17.0 Apr-15 542 481 1.90 1.81 J 468 3,210 5,210 17.0 Oct-16 530 550 1.75 2.00 436 3,520 5,190 16.5 Apr-16 590 516 1.69 2.31 440 3,150 5,720 15.0 Oct-16 543 474 1.74 1.91 429 3,150 4,240 12.0 MW-25 Apr-13 325 776 1.36 3.70 469 1,320 3,120 41.00 Apr-15 896 6,780 1.03 8.34 3,710 5,740 11,700 0.0974 J Apr-16 647 4,130 1.13 6.61 2,670 4,100 11,800 0.125 MW-26 Apr-13 497 378 1.83 4.86 352 2,580 4,720 41.00 MW-27 Apr-16 725 1,260 1.86 5.75 695 4,520 8,730 0.301 MW-27 Apr-16 725 1,260 1.86 5.75 695 4,520 8,730 0.301 MW-27 Apr-16 725 1,260 1.86 5.75 695 4,520 8,730 0.301 MW-27 Apr-16 470 234 1.19 9.36 156 3,950 3,680 0.268 Apr-16 607 246 0.928 11.2 128 2,320 3,600 0.0637 Apr-16 470 234 1.19 9.36 156 3,950 3,600 0.0637 Apr-16 607 246 0.928 11.2 128 2,320 3,600 0.0637 Apr-16 607 246 0.928 11.2 128 2,320 3,600 0.002 Apr-16 607 246 0.928 11.2 128 2,320 3,600 0.0637 Apr-16 599 288 1.24 1.81 1.82 152 2,590 3,980 0.069 0.062 Apr-16 607 246 0.928 11.2 128 2,320 3,600 0.0394 J Nov-14 660 290 1.90 2.30 170 2,300 3,800 0.002 Apr-16 605 290 1.90 2.30 170 2,300 3,800 0.002		MW-20	Apr-13		347				2,730	5,020		
Apr-16	1											
MW-21 Apr-14 510 537 1.70 0.491 97.1 2,970 5,560 22.6 Nov-14 600 450 2.40 1.90 430 2,900 5,200 17.0 Apr-15 542 481 1.90 1.81 J 468 3,210 5,210 17.0 Oct-15 530 550 1.75 2.00 436 3,520 5,190 16.5 Apr-16 590 516 1.69 2.31 440 3,150 5,720 15.0 Oct-16 543 474 1.74 1.91 429 3,150 5,720 15.0 Oct-16 543 474 1.74 1.91 429 3,150 4,240 12.0 Apr-14 985 4,440 0.635 6.80 1,220 2,060 11,700 0.0974 J Apr-15 896 6,780 1.03 8.34 3,710 5,740 17,000 0.0974 J Apr-16 647 4,130 1.13 6.61 2,670 4,100 11,800 0.125 Apr-13 497 378 1.83 4.86 3,522 2,580 4,720 <1.00 Apr-14 718 953 2.16 6.01 662 4,330 8,280 0.252 J Apr-15 698 1,130 1.15 5.42 704 5,550 8,660 0.268 Apr-16 725 1,260 1.86 5.75 695 4,520 8,730 0.301 MW-27 Apr-13 350 139 1.44 9.67 139 1,320 2,420 <1.00 Apr-15 607 246 0.928 11.2 128 2,320 3,640 0.703 Apr-15 607 246 0.928 11.2 128 2,320 3,640 0.703 Apr-15 607 246 0.928 11.2 128 2,320 3,640 0.703 Apr-15 607 246 0.928 11.2 128 2,320 3,640 0.703 Apr-16 470 234 1.19 9.36 156 3,950 3,150 0.687 Apr-16 645 290 1.90 2.30 170 2,300 3,800 0.002 Apr-16 645 290 1.47 1.26 J 168 2,470 3,980 0.052 J Apr-16 645 290 1.47 1.26 J 168 2,470 3,980 0.062 J 6	1		Apr-15	510	429	1.51	0.398 J	232	3,490	4,790	5.08	
Nov-14	1	1 MA:										
Apr-15	1	MW-21										
Name	1		Apr-15	542	481	1.90	1.81 J	468		5,210	17.0	
MW-26 Apr-13 Apr-14 Apr-15 Apr-16 Apr-15 Apr-16 Apr-15 Apr-16 Ap	1								3,520	5,190		
MW-25	₽											
Apr-15 896 6,780 1.03 8.34 3,710 5,740 17,000 0.0974 J	É	MW-26	Apr-13	325	776	1.36	3.70	469	1,320	3,120	<1.00	
Apr-16	1											
MW-26	1											
Apr-15 698	1		Apr-13	497	378	1.83	4.86	352	2,580	4,720	<1.00	
Apr-16 725	1											
MW-27 Apr-13 350 139 1.44 9.67 139 1,320 2,420 <1.00 Apr-14 431 148 0.983 9.89 159 1,600 2,600 0.632 J Apr-15 607 246 0.928 11.2 128 2,320 3,640 0.703 Apr-16 470 234 1.19 9.36 156 3,950 3,150 0.687 Apr-16 592 191 1.61 1.56 165 2,120 4,540 0.394 J Nov-14 650 290 1.90 2.30 170 2,300 3,800 <0.02 Apr-16 645 290 1.47 1.28 152 2,590 3,980 0.169 Apr-16 645 290 1.47 1.26 J 168 2,470 3,980 0.052 J 6	1											
Apr-15 607 246 0.928 11.2 128 2,320 3,640 0.703 Apr-16 470 234 1.19 9.36 156 3,950 3,150 0.687 MW-46R Apr-14 592 191 1.61 1.56 165 2,120 4,540 0.394 J Nov-14 650 290 1.90 2.30 170 2,300 3,800 <0.02	1		Apr-13	350	139	1.44	9.67	139	1,320	2,420	<1.00	
Apr-16	1											
MW-46R Apr-14 592 191 1.61 1.56 165 2,120 4,540 0.394 J Nov-14 650 290 1.90 2.30 170 2,300 3,800 <0.02	1											
Apr-15 599 288 1.24 1.82 152 2,590 3,980 0.169 Apr-16 645 290 1.47 1.26 J 168 2,470 3,980 0.052 JJ6	1	MW-46R	Apr-14	592	191	1.61	1.56	165	2,120	4,540	0.394 J	
Apr-16 645 290 1.47 1.26 J 168 2,470 3,980 0.052 JJ6	1											
	1											
	L											

Analyte Group:			Water Quality Parameters								Cyanide
Analyte:			Calcium	Chloride	Fluoride	Potassium	Sodium	Sulfate	TDS	Nitrate/Nitrite	Cyanide
		Units:	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
		CGWSL:		250	1.60			600	1,000	10.0	0.200
CGWSL Source:				WQCC Dom	WQCC HH			WQCC Dom	WQCC Dom	USEPA MCL	USEPA MCL
Area	Well ID	Date Dup									
	MW-68	Apr-13	376	426	1.68	5.57	238	1,380	3,240	7.58	
		Apr-14	375	299	1.79	4.84	207	1,330	2,920	5.10	
		Apr-15	552	397	1.15	4.65	242	2,610	4,460	4.52	
		Apr-16	489	263	1.75	5.58	206	1,840	2,980	0.51	
	MW-71	Oct-13	656	1,080	1.49	3.76	472	2,790	6,250	52.3	< 0.0200
		Apr-14	558	887	1.39	4.15	399	2,740	6,280	53.6	< 0.00500
		Apr-15	642	906	1.09	3.59	447	3,150	6,110	50.6	<0.00180
		Apr-16	669	907	1.62	3.72 J	502	2,890	5,450	45.6	<0.00180
I	MW-89	Apr-13	456	200	2.48	9.81	150	1,530	2,960	<1.00	
_		Apr-14	542	248	2.40	10.5	188	2,030	3,360	1.34	
TMD		Apr-15	528	324	3.61	13.5	302	2,200	3,720	2.34	
-		Apr-16	556	399	3.58	12.0	299	1,490	3,640	3.64	
	NP-1	Apr-14	439	434	1.82	4.95	352	2,560	4,820	11.6	
		Nov-14									
		Apr-15	473	436	2.06	3.53 J	451	2,930	4,450	8.41	
		Oct-15									
		Apr-16	470	391	1.96	3.12 J	403	2,620	4,460	0.494 J	
		Oct-16									
	NP-2	Apr-13	517	379	1.70	1.63	258	2,660	5,160	1.74	
	NP-6 Apr-13										
		Apr-15									
Upgradient	UG-1	Apr-13	466	132	0.620	1.62	79.8	1,580	3,090	7.80	< 0.0200
		Apr-14	474	126	0.580	1.59	79.6	1,720	2,960	10.1	< 0.00500
		Apr-15	455 J	133	0.865	1.11	84.6	1,880	2,920	14.4	<0.00180
		Apr-16	512	102	0.926	1.07 J	99.7	1,920	4,050	17.0	0.00432 J
	UG-2	Apr-13	331	137	1.16	2.52	123	1,090	2,410	4.44	<0.0200
		Apr-13 FD	338	136	1.13	2.52	117	1,080	2,400	4.59	<0.0200
		Apr-14	403	97.1	1.14	1.75	104	1,530	2,660	3.77	<0.00500
		Apr-15	337 J	72.2	1.65	1.73	82.6	1,080	1,170	4.62	<0.00180
bd		Apr-16	402	86.5	1.75	2.04 J	103	1,210	2,240	5.46	0.00511
دا	UG-3R	Apr-13	270	20.9	0.561	1.57	42.0	785	1,590	1.11	<0.0200
		Apr-14	422	46.8	0.492	1.65	56.9	1,480	2,340	2.26	<0.00500
		Apr-14 FD	389	46.8	0.496	1.53	53.6	1,500	2,400	2.20	<0.00500
		Apr-15	420 J	27.5	0.716	2.36	59.1	1,450	1,420	1.03	<0.00180
		Apr-16	440	47.7	0.690	1.86	75.8	1,350	2,340	1.73	<0.00180
l	UG-4	Apr-16	590	49.2	0.668	1.99 J	224	2,480	4,140	0.407	<0.00180

Definitions

Х Reported concentration, X, exceeds the CGWSL.

Analyte detected above the detection limit at a concentration equal to X

< x Analyte not detected at detection limit equal to x.

Analyte not detected at detection limit equal to x, but x exceeds the CGWSL.

Blank cell indicates a sample was collected from the well during the indicated sampling event, but the analyte was not analyzed.

Abbreviations

mg/L milligrams per liter

CGWSL Critical Groundwater Screening Level (see Table 3)

CGWSL Source Source for CGWSL value (see Table 3)

WQCC Dom NMED Groundwater standard for domestic exposure taken from 20.6.2.3103.B WQCC HH NMED Groundwater standard for human health exposure, NMAC 20.6.2.3103.A

United States Environmental Protection Agency Maximum Contaminant Level, "Regional Screening Levels for Chemical Contaminants at Superfund Sites", November 2015 USEPA MCL

FD field duplicate sample

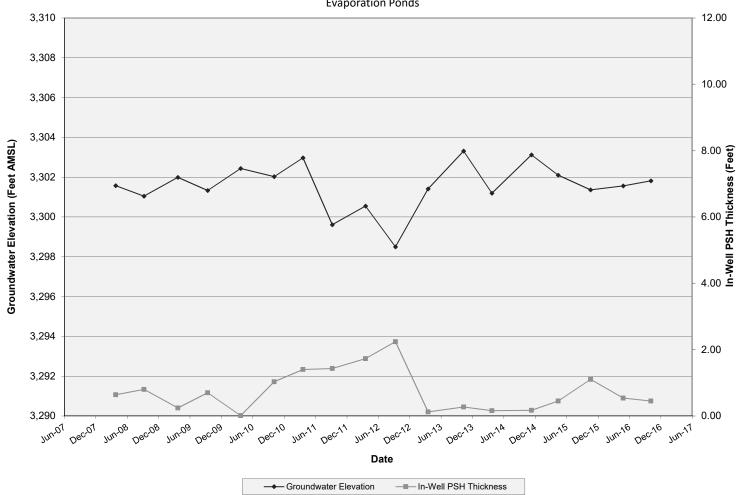
Lab Footnote

Indicates an estimated value.

В Analyte was also detected in the associated method blank.

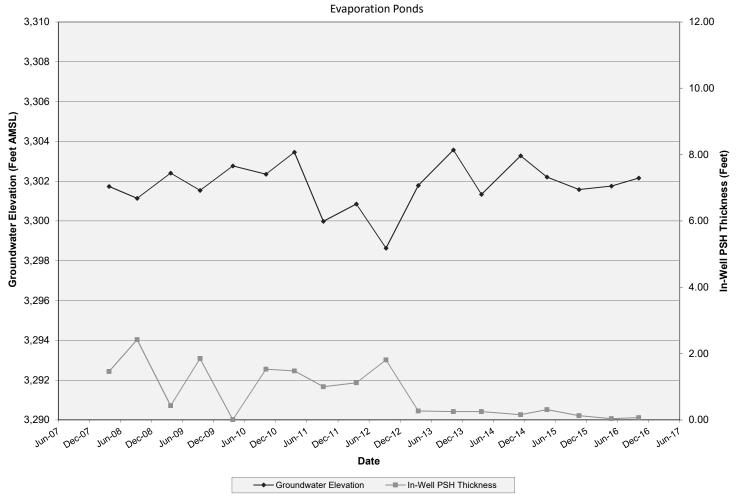
The reported result is from a sample analyzed outside of Holding Time. Н

J3 The associated batch QC was outside the established quality control range for precision.

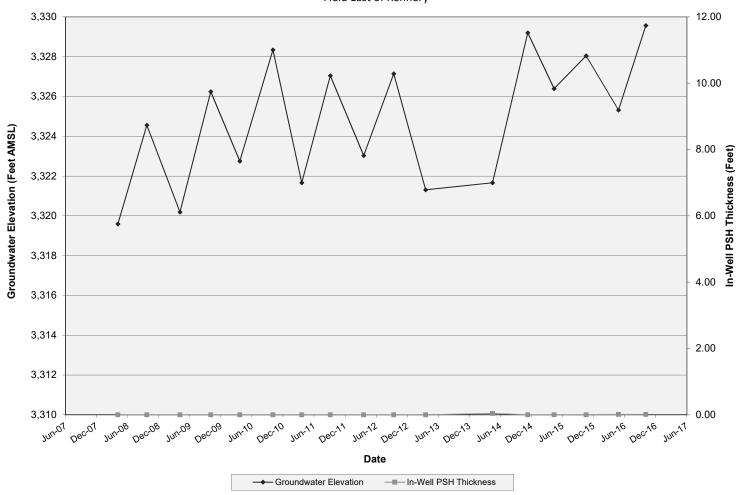

The sample matrix interfered with the ability to make any accurate determination; spike value is high. J5 J6 The sample matrix interfered with the ability to make any accurate determination; spike value is low.

01 The analyte failed the method required serial dilution test and/or subsequent post-spike criteria. These failures indicate matrix interference.

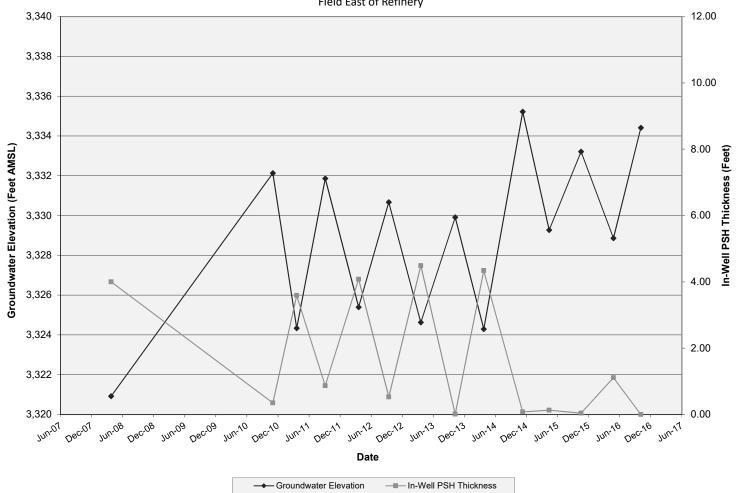
The sample concentration is too high to evaluate accurate spike recoveries.

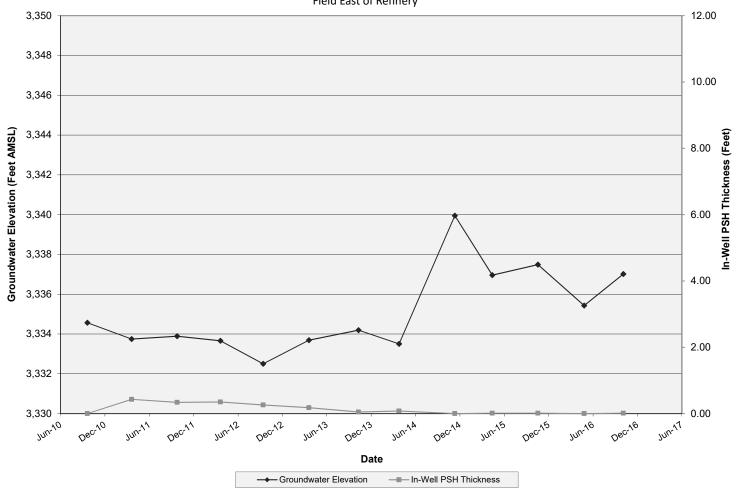

MW-85: Groundwater Elevations and In-Well PSH Thicknesses

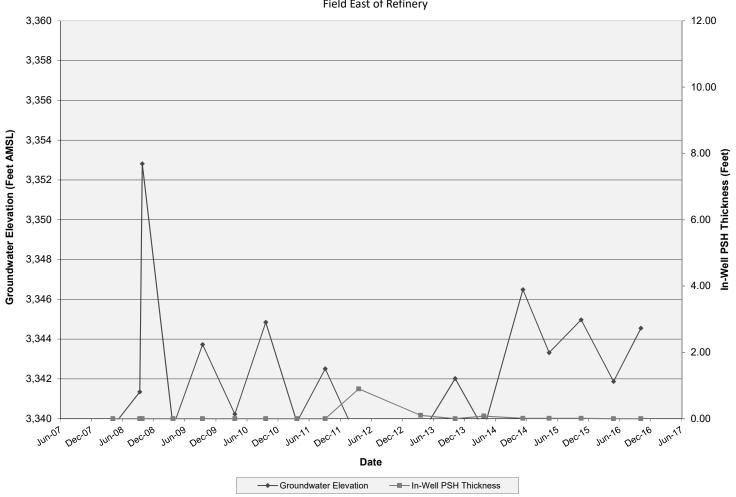
HollyFrontier Navajo Refining LLC - Artesia Refinery Evaporation Ponds

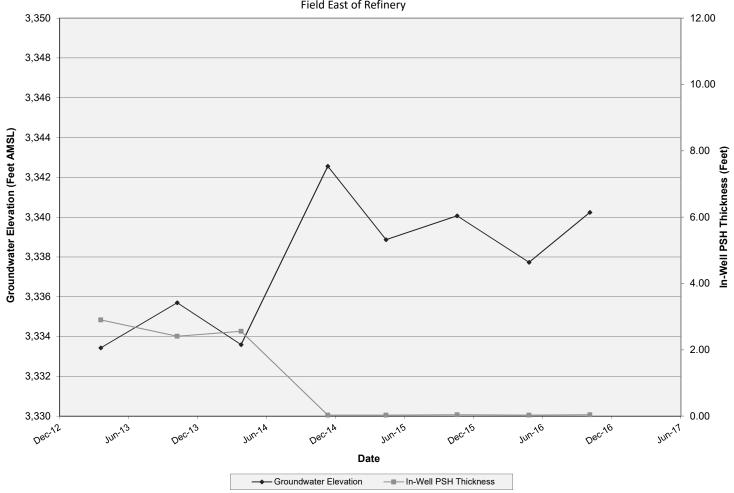


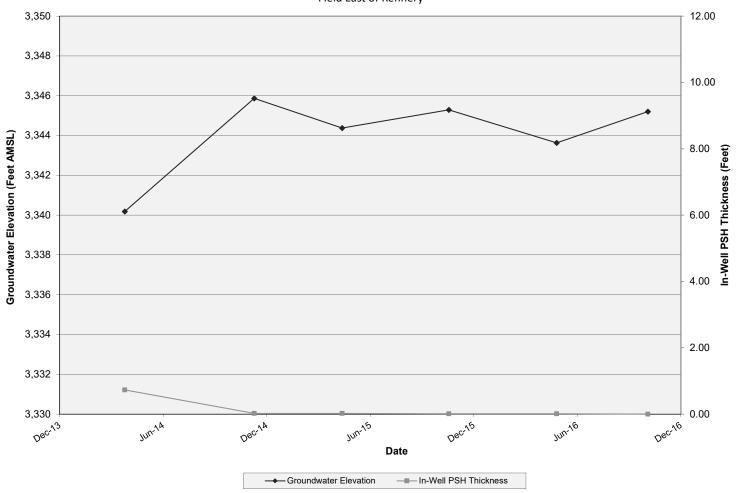
MW-86: Groundwater Elevations and In-Well PSH Thicknesses

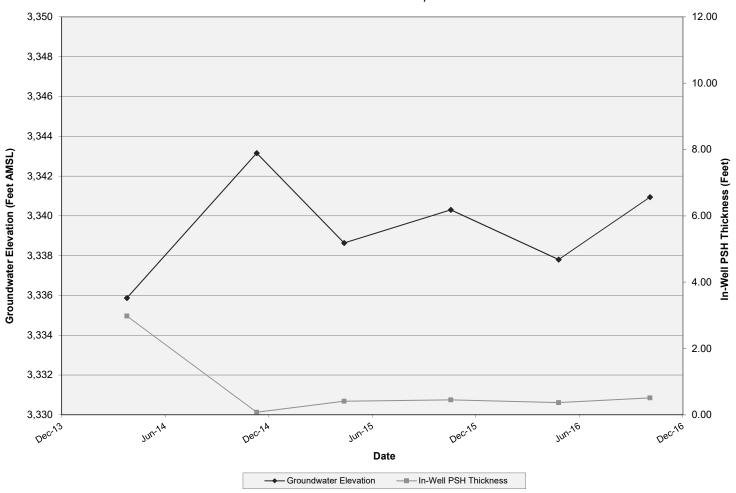

HollyFrontier Navajo Refining LLC - Artesia Refinery Evaporation Ponds

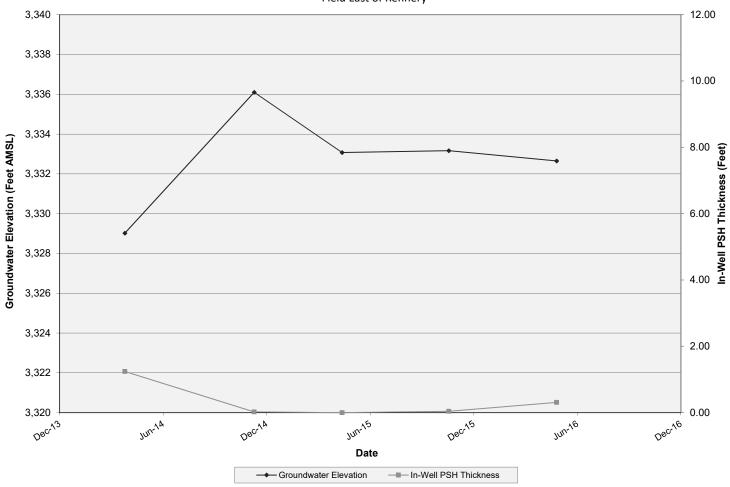

KWB-7: Groundwater Elevations and In-Well PSH Thicknesses

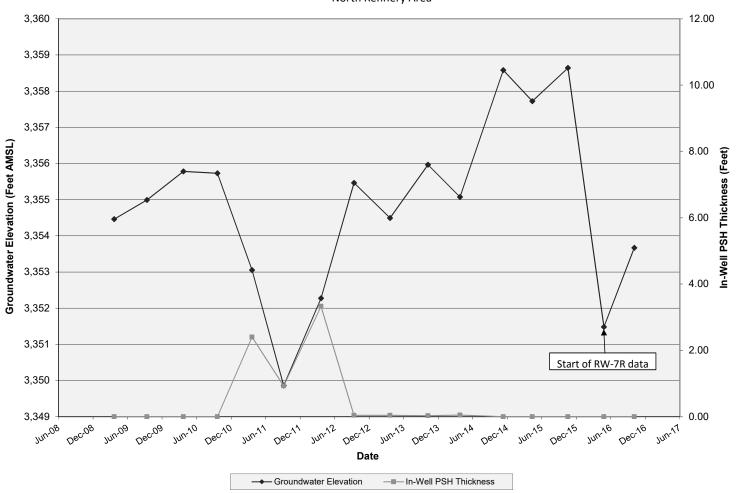

KWB-8: Groundwater Elevations and In-Well PSH Thicknesses

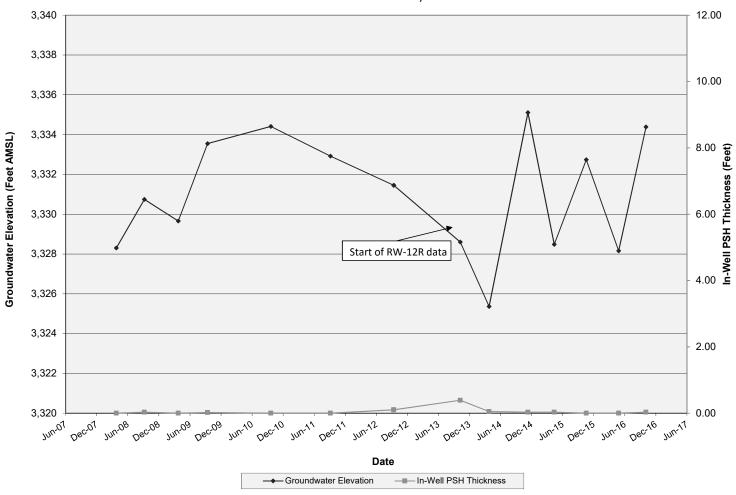

KWB-10R: Groundwater Elevations and In-Well PSH Thicknesses

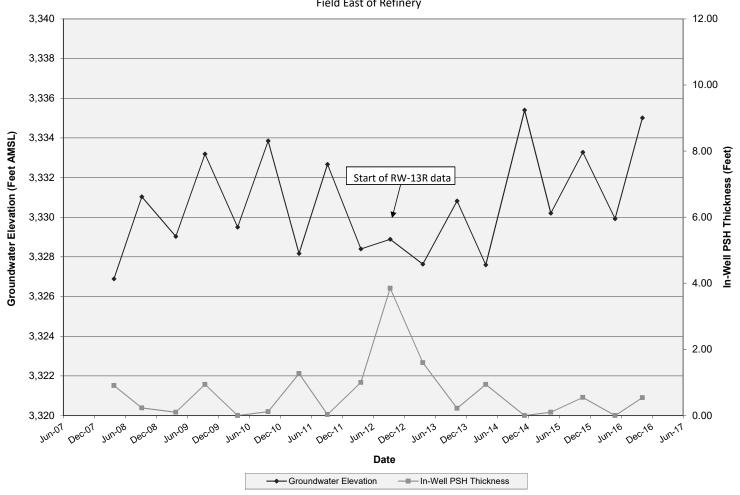

MW-58: Groundwater Elevations and In-Well PSH Thicknesses


MW-112: Groundwater Elevations and In-Well PSH Thicknesses

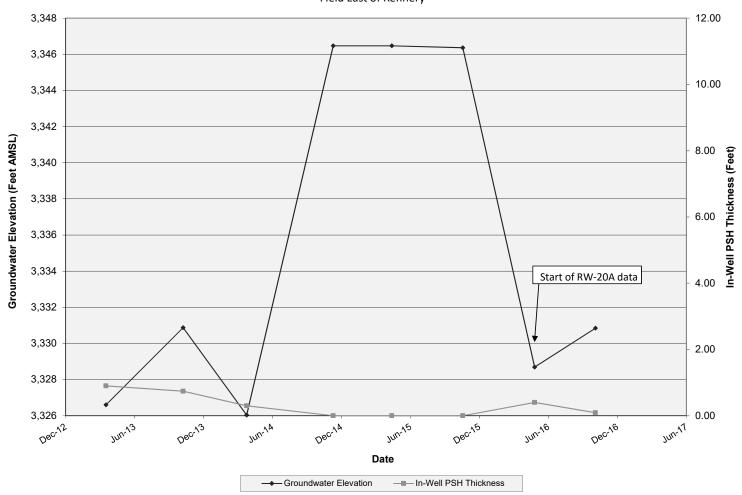

MW-129: Groundwater Elevations and In-Well PSH Thicknesses

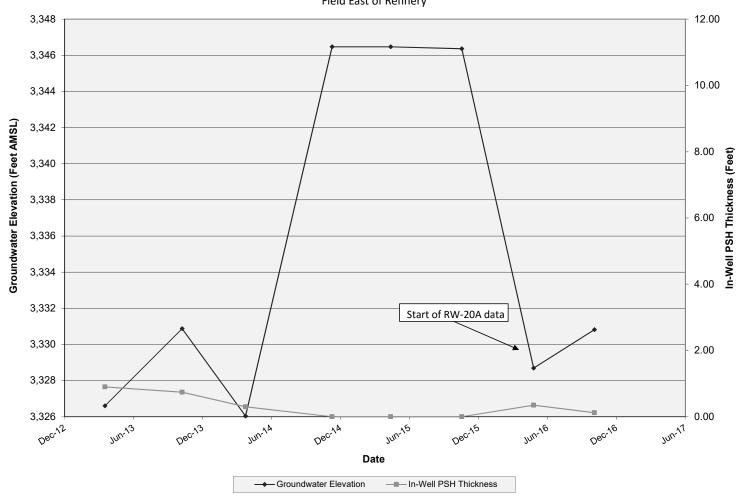

MW-132: Groundwater Elevations and In-Well PSH Thicknesses

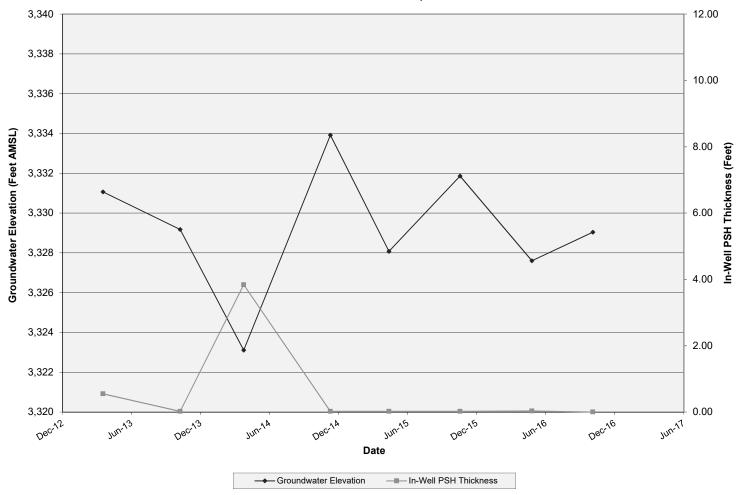

MW-133: Groundwater Elevations and In-Well PSH Thicknesses


RW-7 and RW-7R: Groundwater Elevations and In-Well PSH Thicknesses

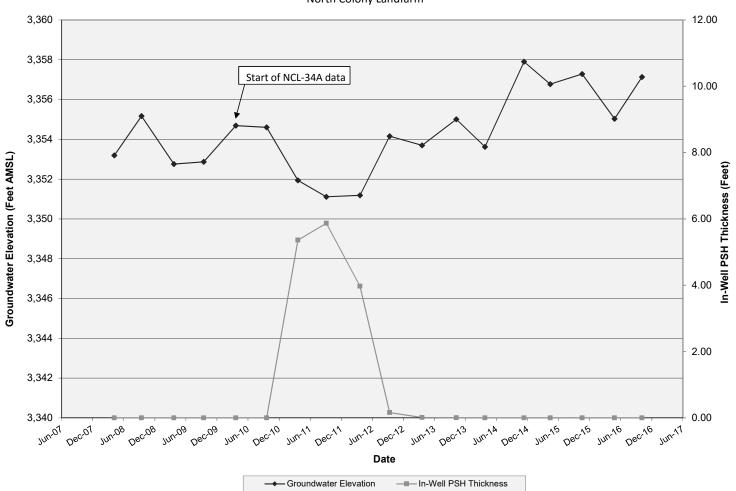
RW-12 & RW-12R: Groundwater Elevations and In-Well PSHThicknesses


RW-13 & RW-13R: Groundwater Elevations and In-Well PSH Thicknesses


RW-14 & RW-14R: Groundwater Elevations and In-Well PSH Thicknesses

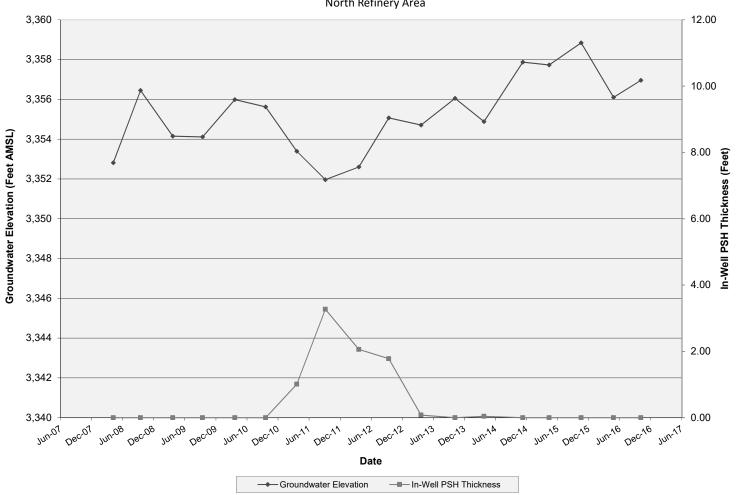

RW-20 & RW-20A: Groundwater Elevations and In-Well PSH Thicknesses

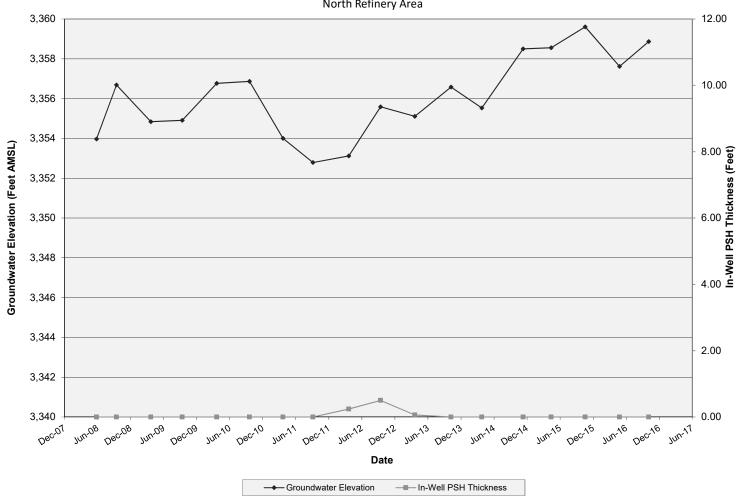
RW-20 & RW-20B: Groundwater Elevations and In-Well PSH Thicknesses

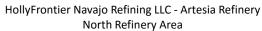


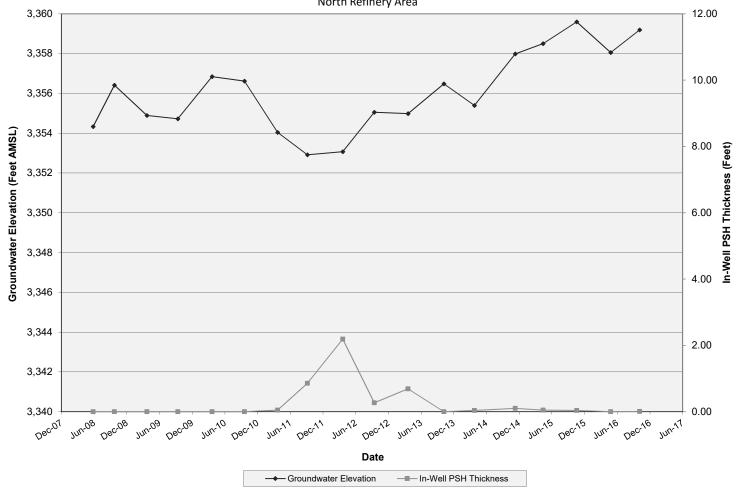
RW-22: Groundwater Elevations and In-Well PSH Thicknesses

NCL-34 and NCL-34A: Groundwater Elevations and In-Well PSH Thicknesses

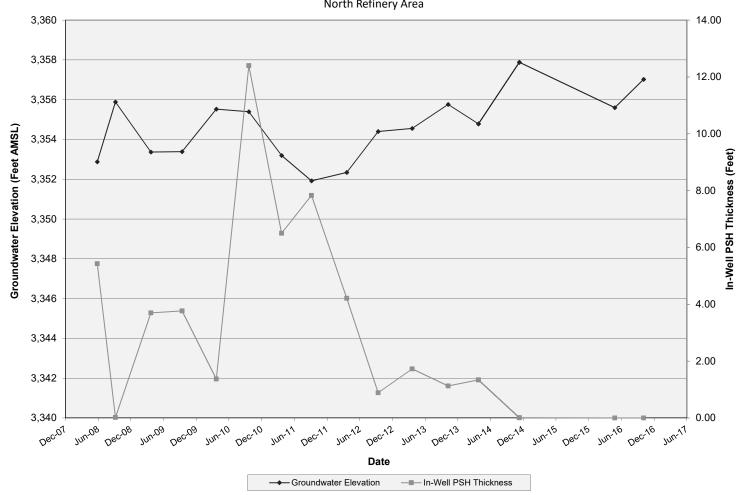

HollyFrontier Navajo Refining LLC - Artesia Refinery North Colony Landfarm


MW-39: Groundwater Elevations and In-Well PSH Thicknesses

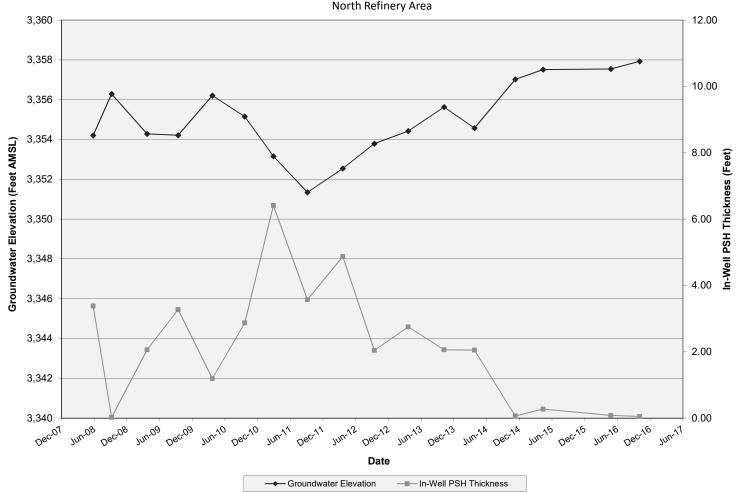

MW-67: Groundwater Elevations and In-Well PSH Thicknesses

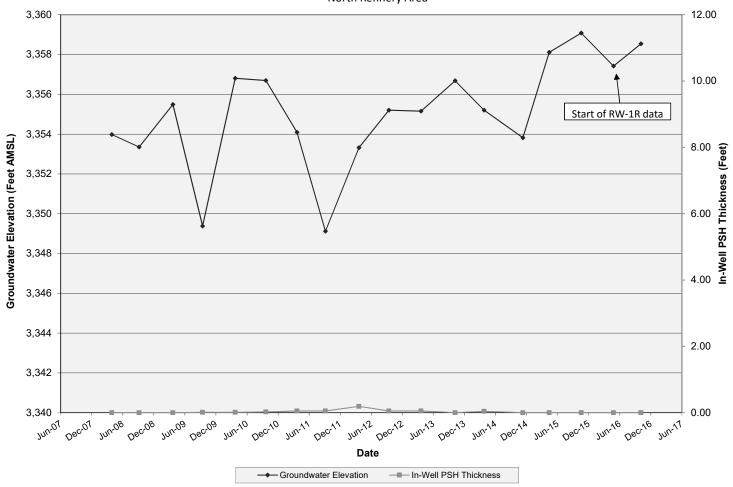


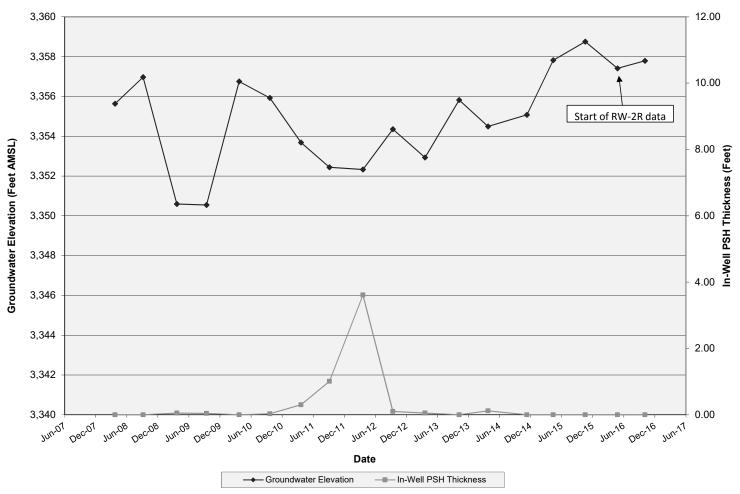
MW-91: Groundwater Elevations and In-Well PSH Thicknesses

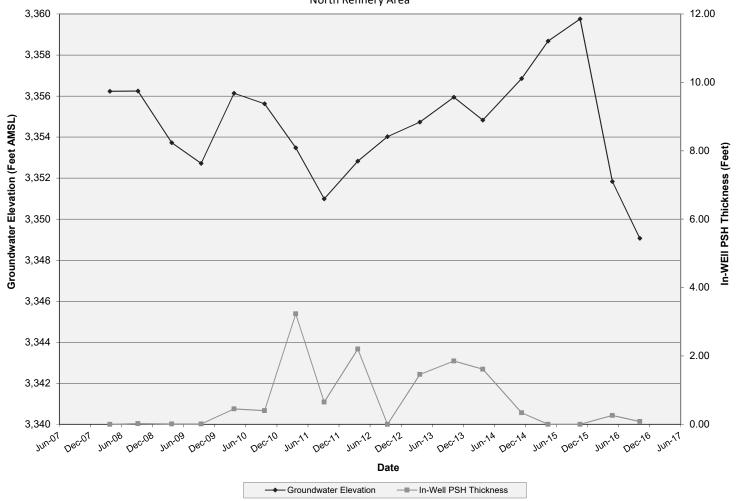


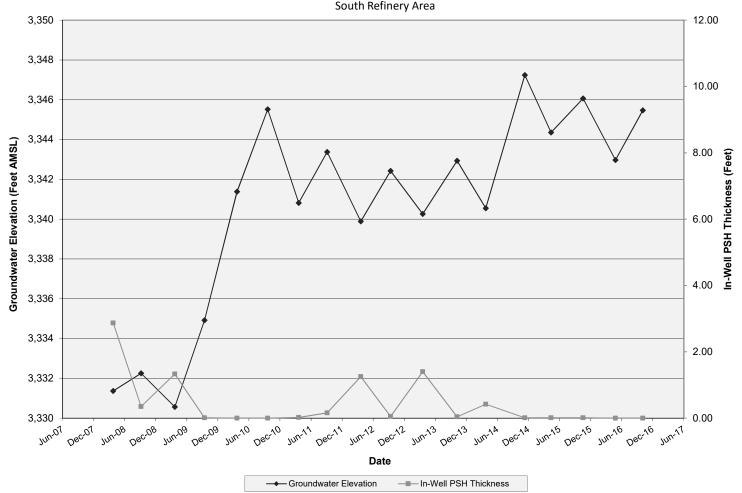
MW-92: Groundwater Elevations and In-Well PSH Thicknesses

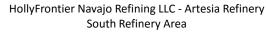


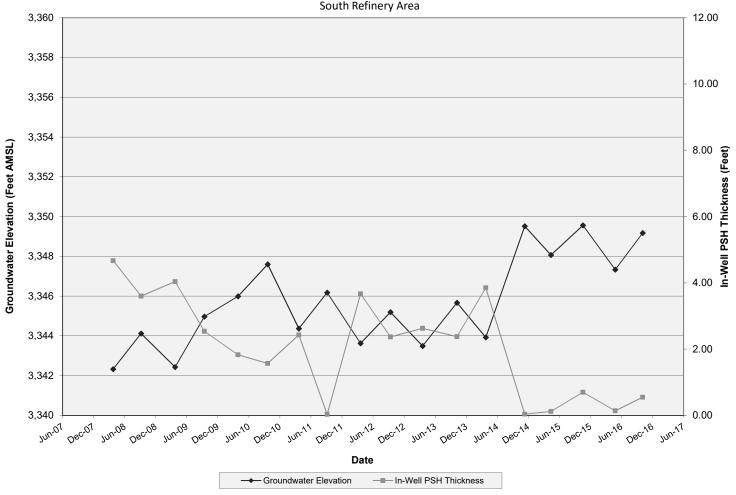

MW-94: Groundwater Elevations and In-Well PSH Thicknesses


MW-97: Groundwater Elevations and In-Well PSH Thicknesses

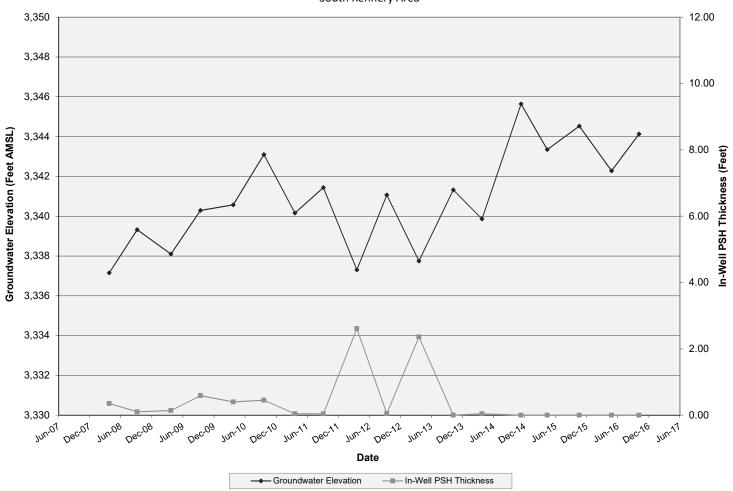

RW-1 and RW-1R: Groundwater Elevations and In-Well PSH Thicknesses


RW-2 and RW-2R: Groundwater Elevations and In-Well PSH Thicknesses

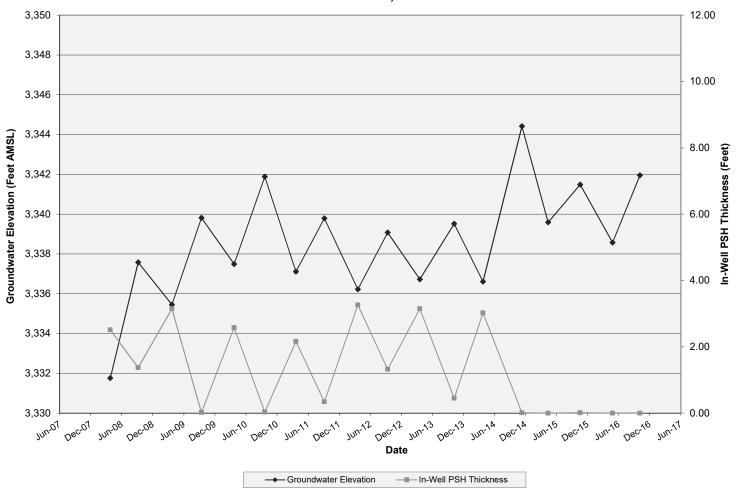

RW-8: Groundwater Elevations and In-Well PSH Thicknesses

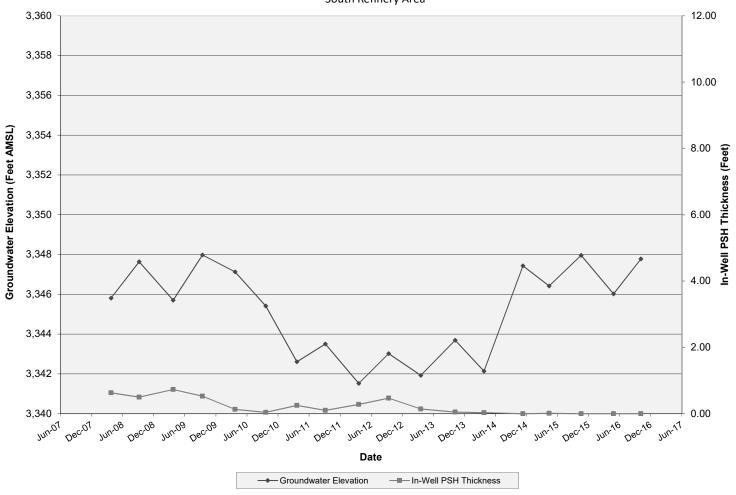


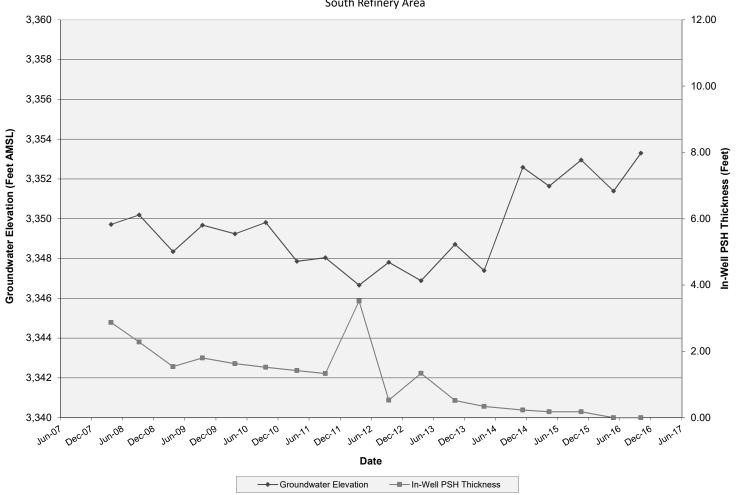
KWB-2R: Groundwater Elevations and In-Well PSH Thicknesses

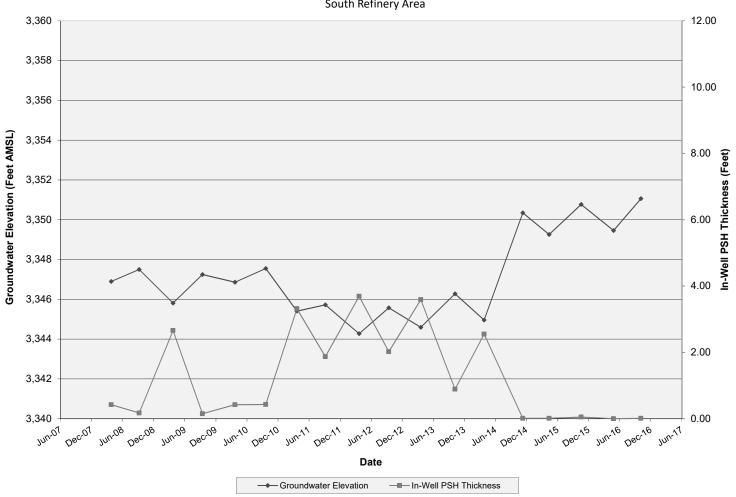


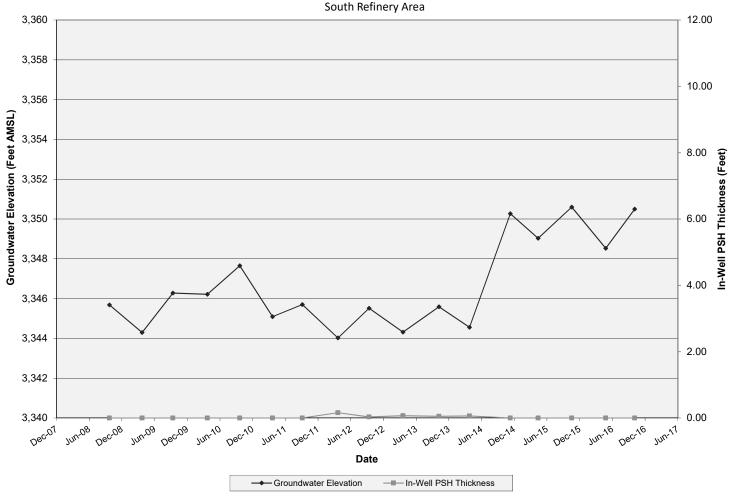
KWB-4: Groundwater Elevations and In-Well PSH Thicknesses

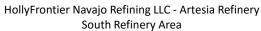


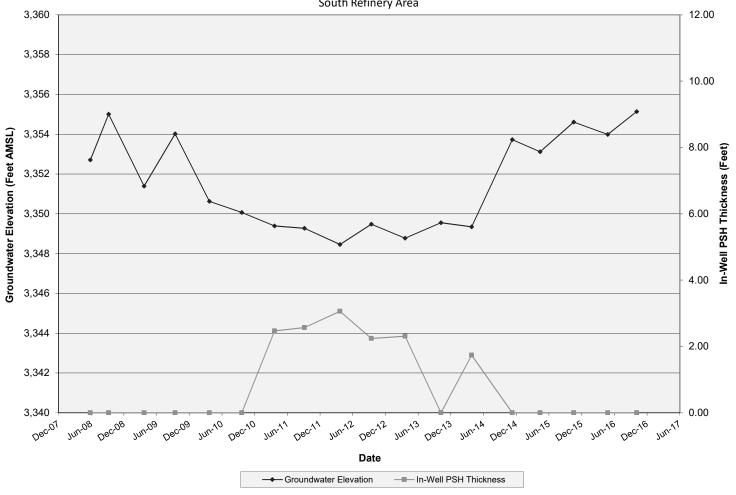

KWB-5: Groundwater Elevations and In-Well PSH Thicknesses


KWB-6: Groundwater Elevations and In-Well PSH Thicknesses

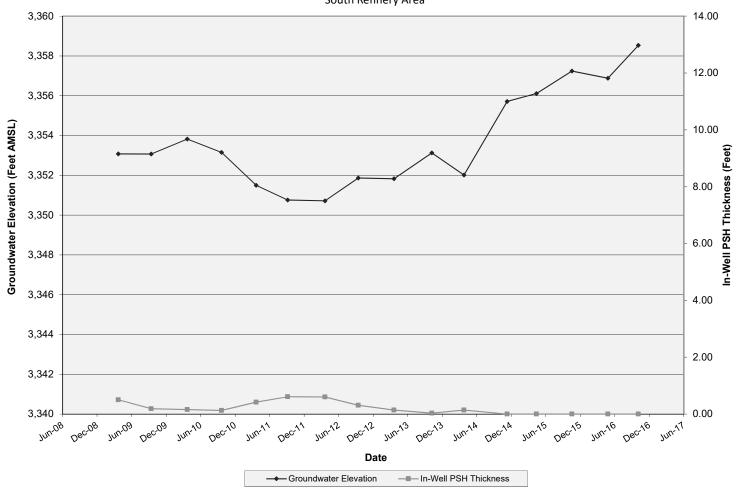

MW-48: Groundwater Elevations and In-Well PSH Thicknesses


MW-64: Groundwater Elevations and In-Well PSH Thicknesses


MW-65: Groundwater Elevations and In-Well PSH Thicknesses

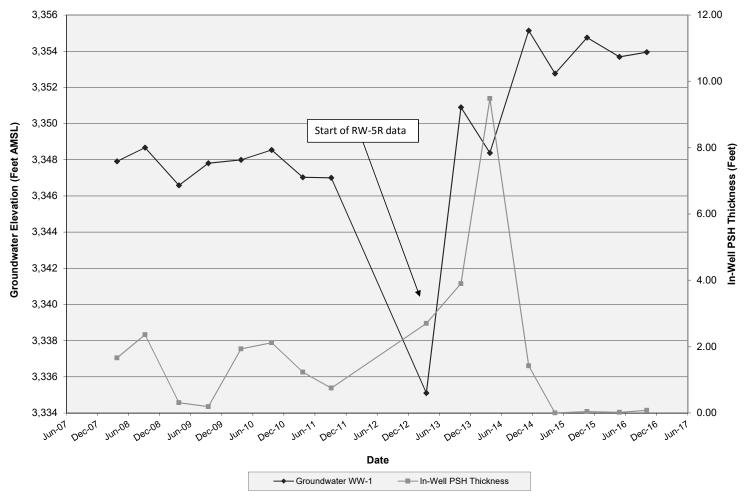


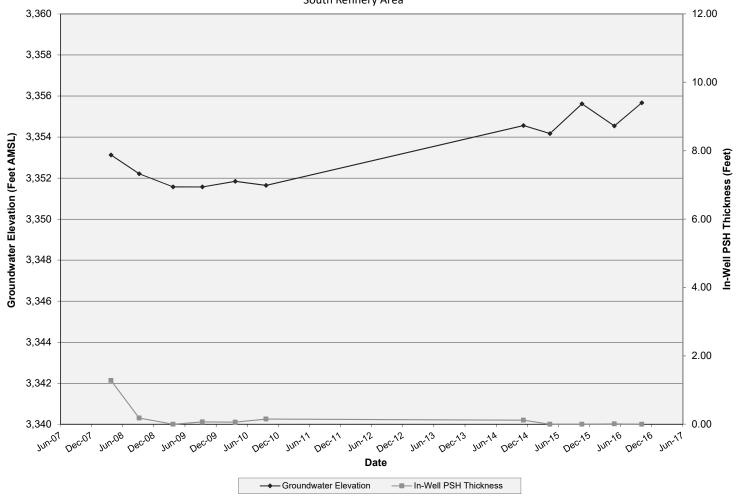
MW-99: Groundwater Elevations and In-Well PSH Thicknesses

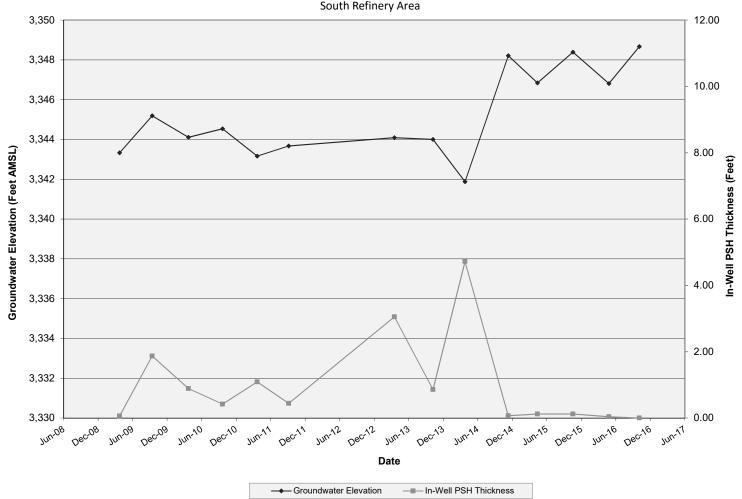


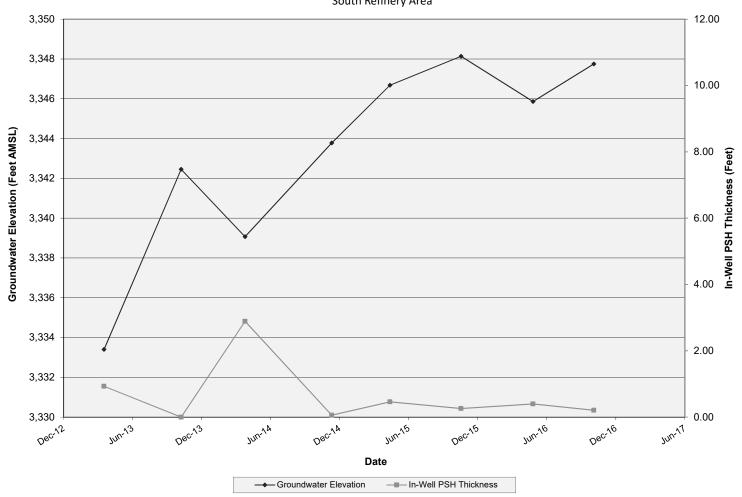
MW-102: Groundwater Elevations and In-Well PSH Thicknesses



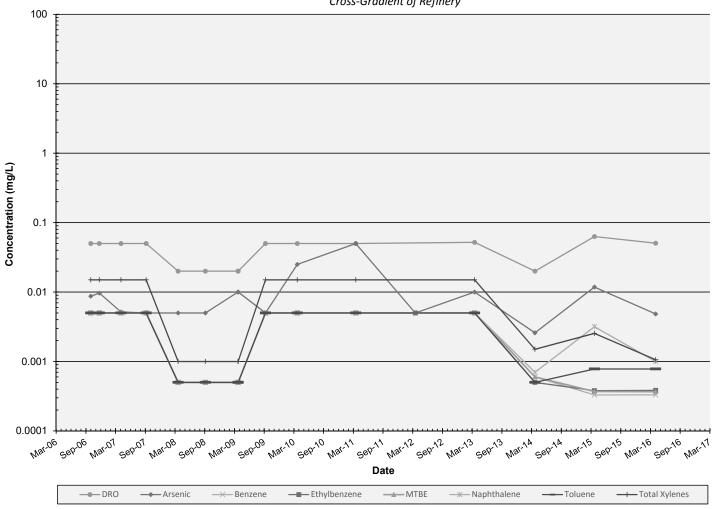

MW-105: Groundwater Elevations and In-Well PSH Thicknesses


RW-4 and RW-4R: Groundwater Elevations and In-Well PSH Thicknesses


RW-5 & RW-5R: Groundwater Elevations and In-Well PSH Thicknesses

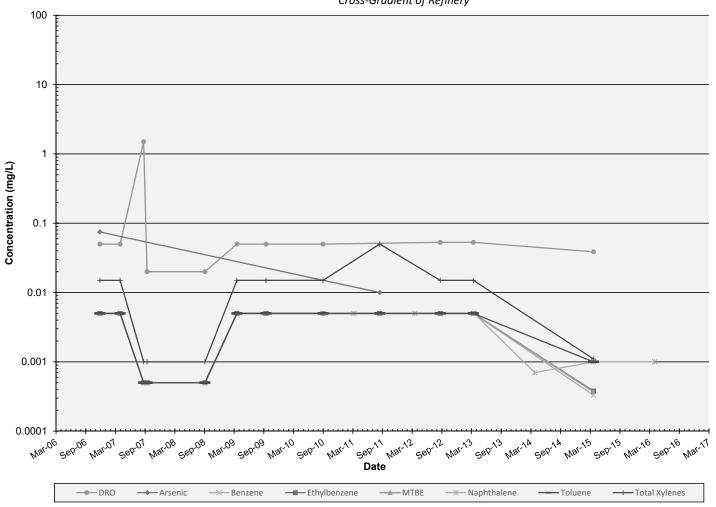

RW-6: Groundwater Elevations and In-Well PSH Thicknesses

RW-15C: Groundwater Elevations and In-Well PSH Thicknesses


RW-19: Groundwater Elevations and In-Well PSH Thicknesses

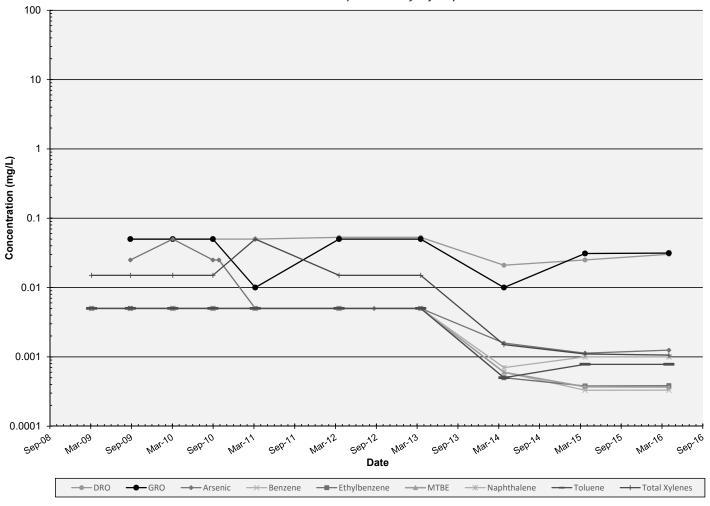
KWB-13R: COC Concentrations

HollyFrontier Navajo Refining LLC - Artesia Refinery

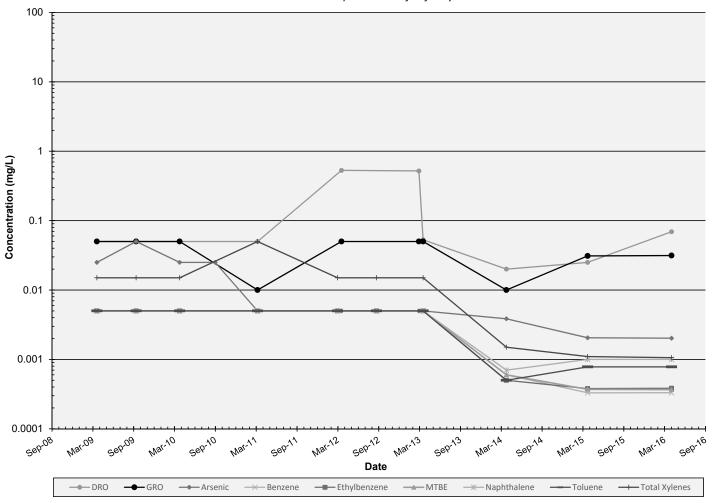

Cross-Gradient of Refinery

NP-5: COC Concentrations

HollyFrontier Navajo Refining LLC - Artesia Refinery

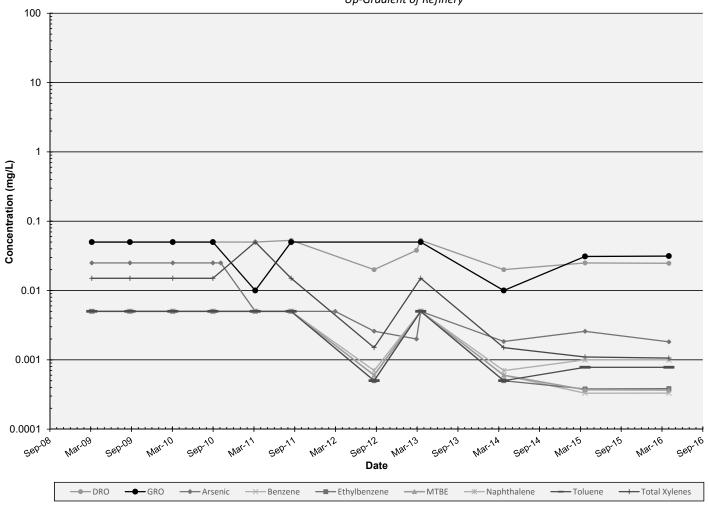

Cross-Gradient of Refinery

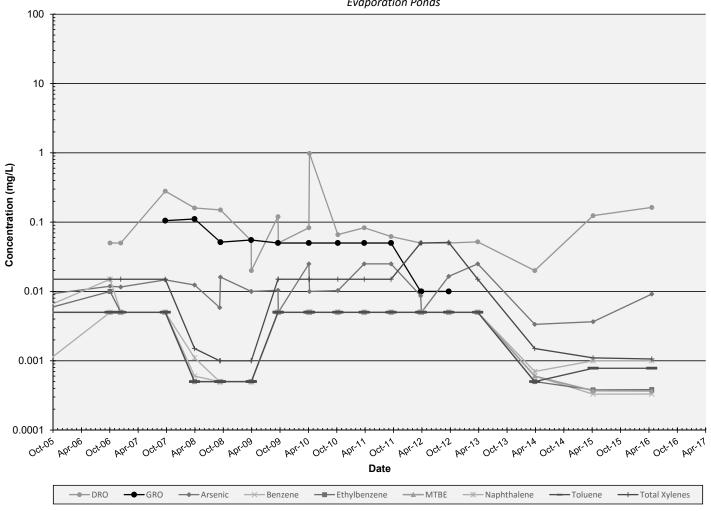
UG-1: COC Concentrations


HollyFrontier Navajo Refining LLC - Artesia Refinery

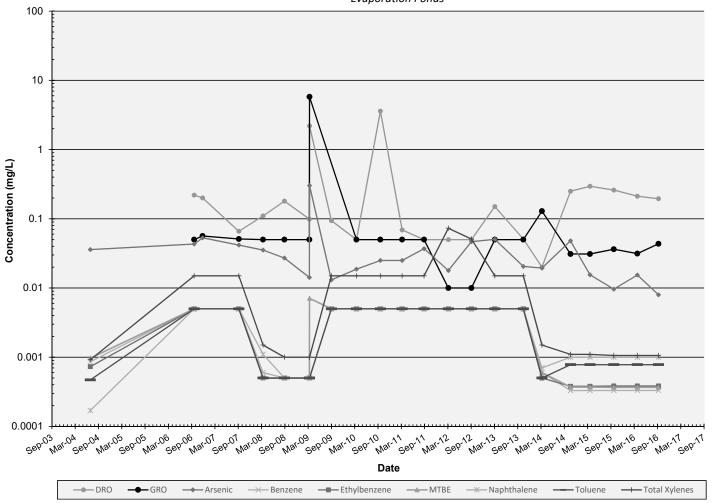
Up-Gradient of Refinery

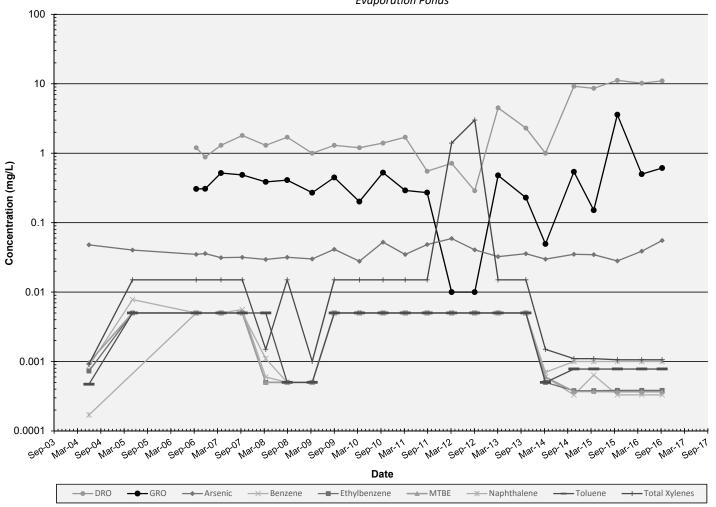
UG-2: COC Concentrations

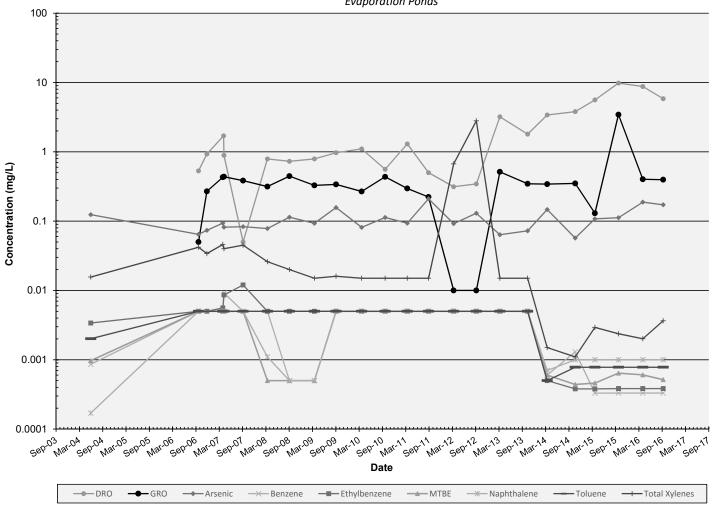

HollyFrontier Navajo Refining LLC - Artesia Refinery Up-Gradient of Refinery

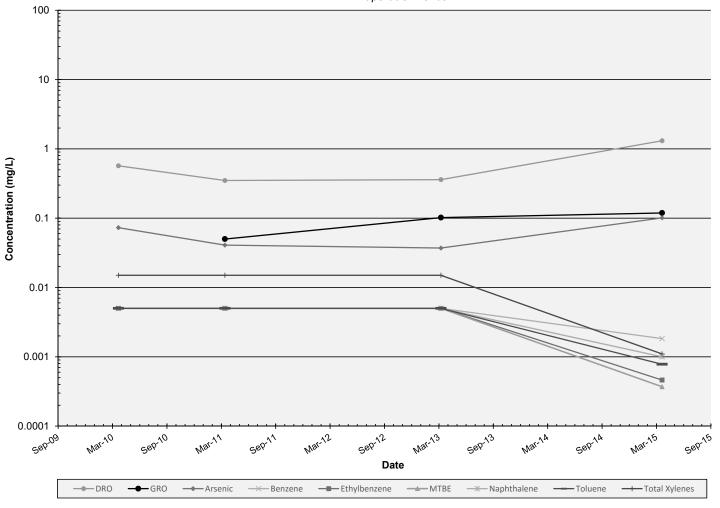

UG-3R: COC Concentrations

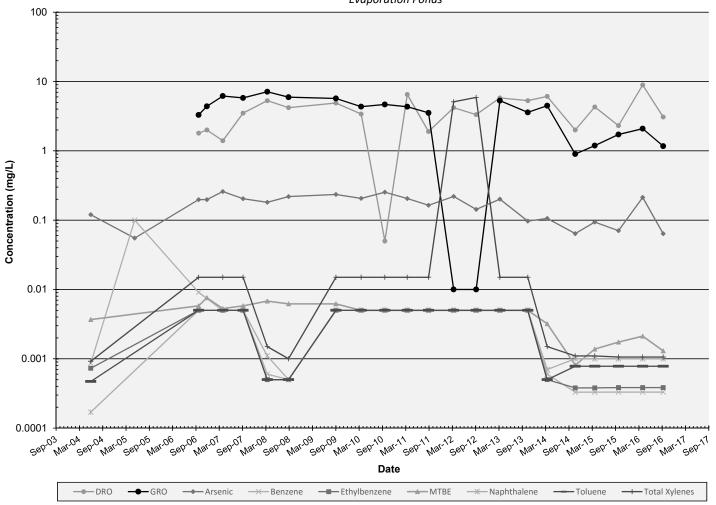
HollyFrontier Navajo Refining LLC - Artesia Refinery

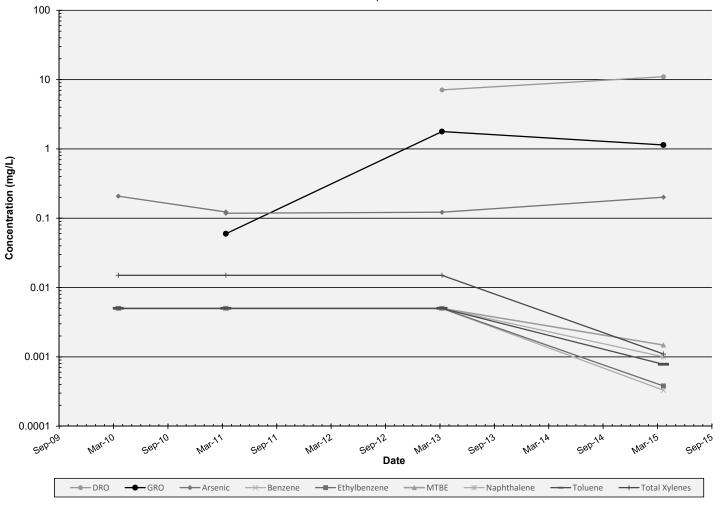

Up-Gradient of Refinery

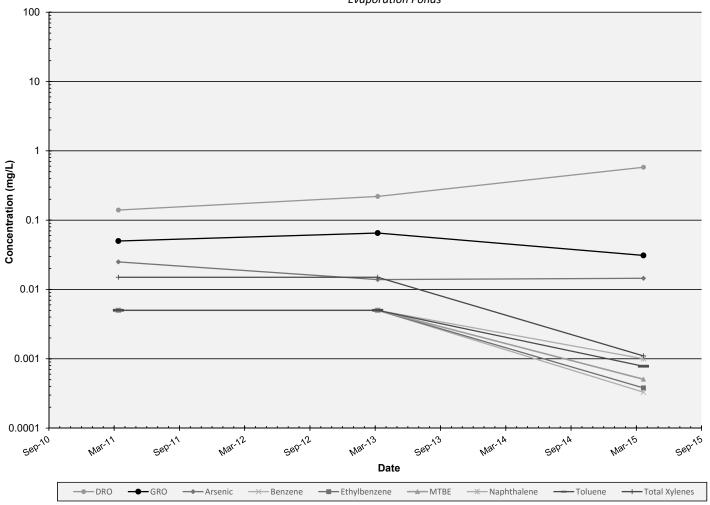

MW-1R: COC Concentrations

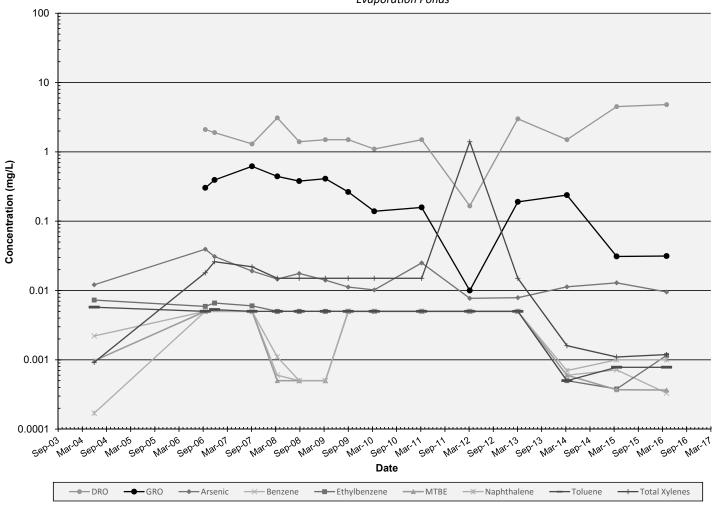

MW-2A: COC Concentrations

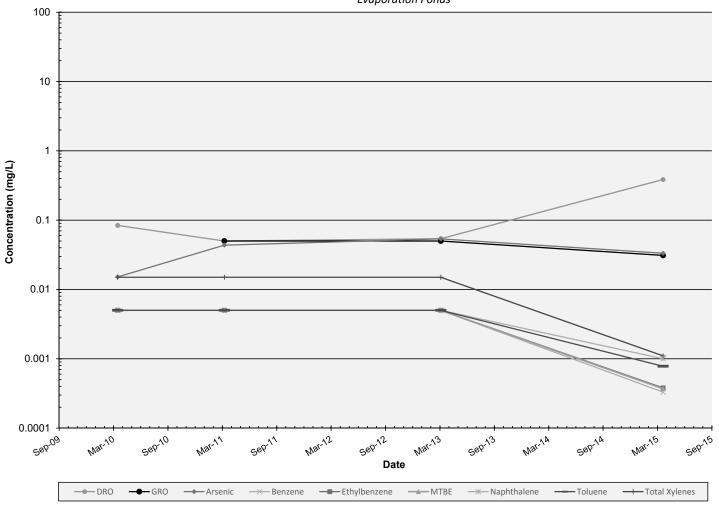

MW-3: COC Concentrations

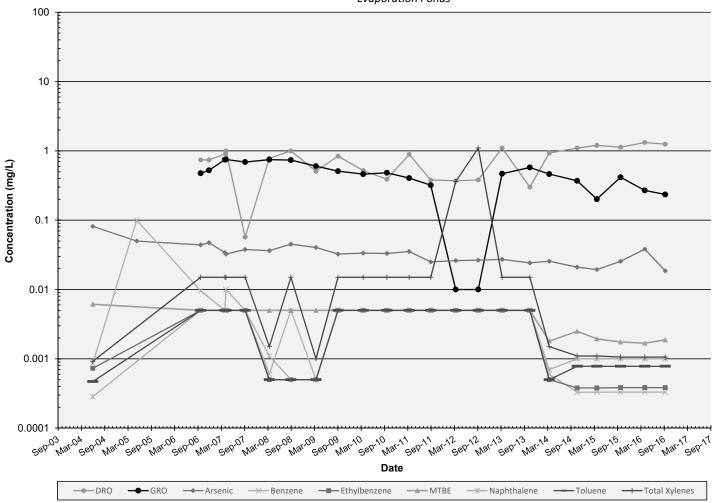

MW-4A: COC Concentrations

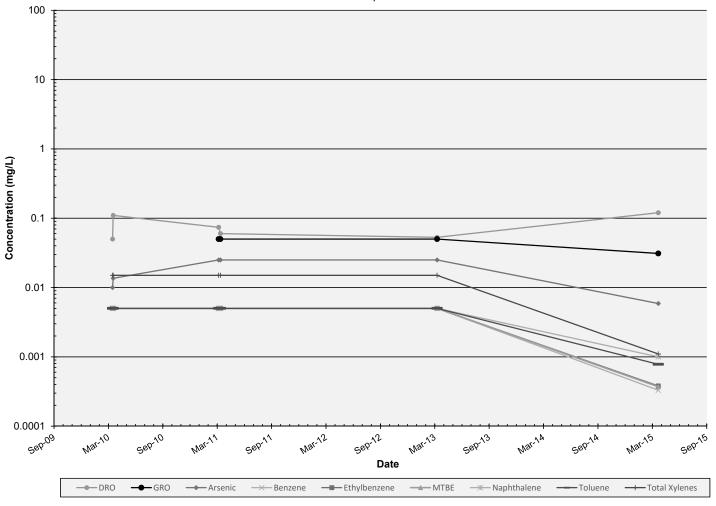

MW-4B: COC Concentrations

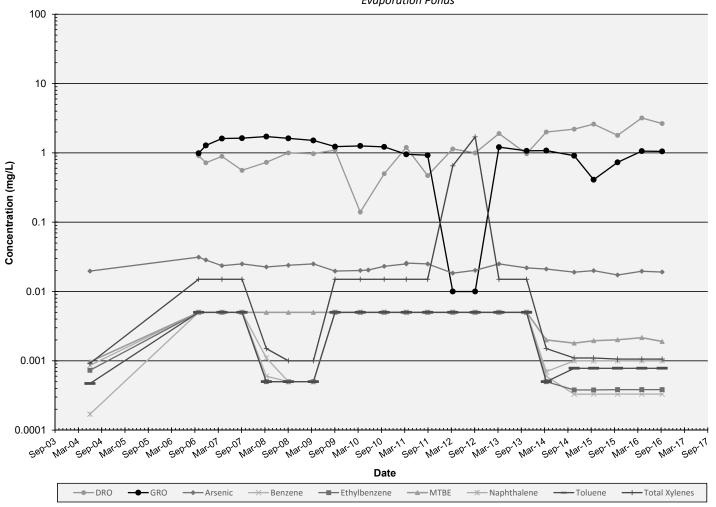

MW-5A: COC Concentrations

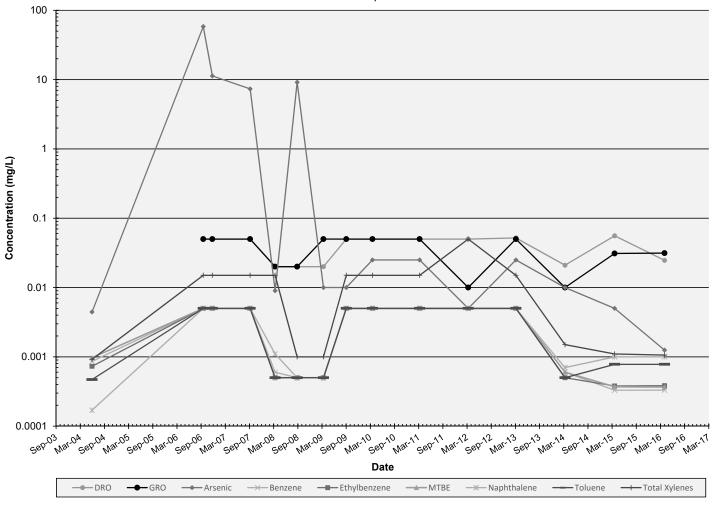

MW-5B: COC Concentrations

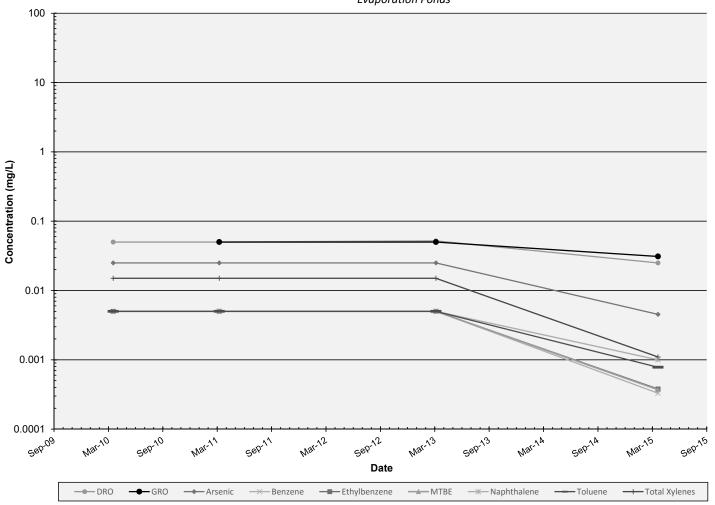

MW-5C: COC Concentrations

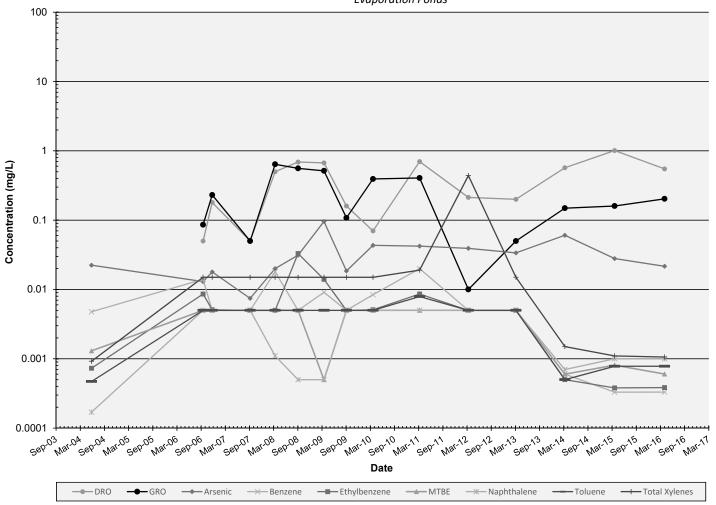

MW-6A: COC Concentrations

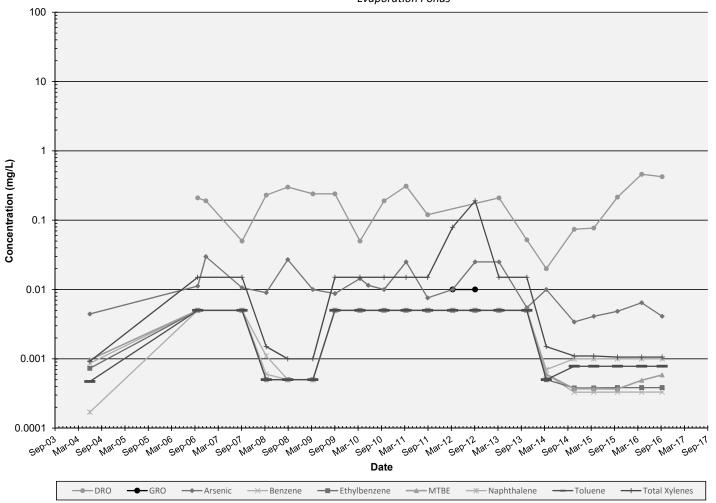

MW-6B: COC Concentrations

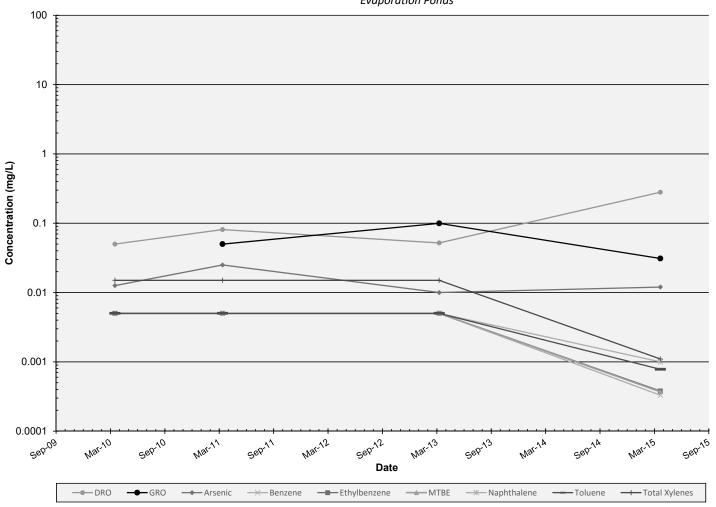

MW-7A: COC Concentrations

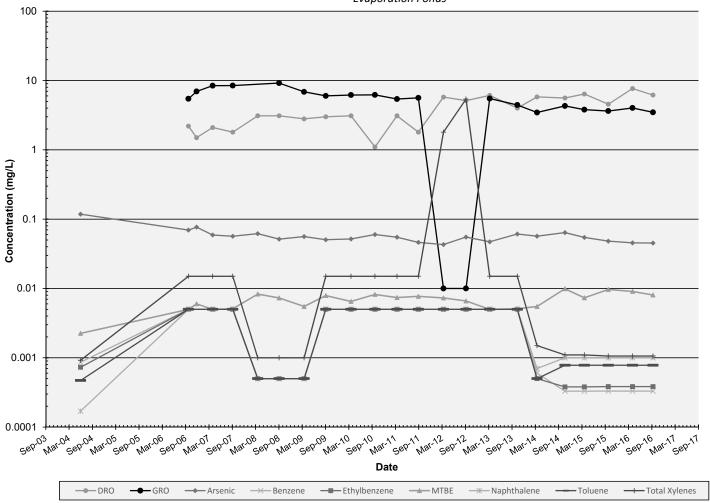

MW-7B: COC Concentrations

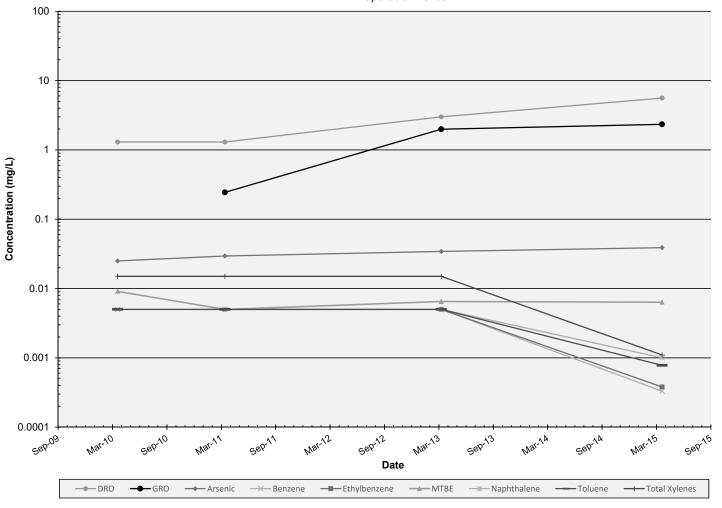

MW-10: COC Concentrations

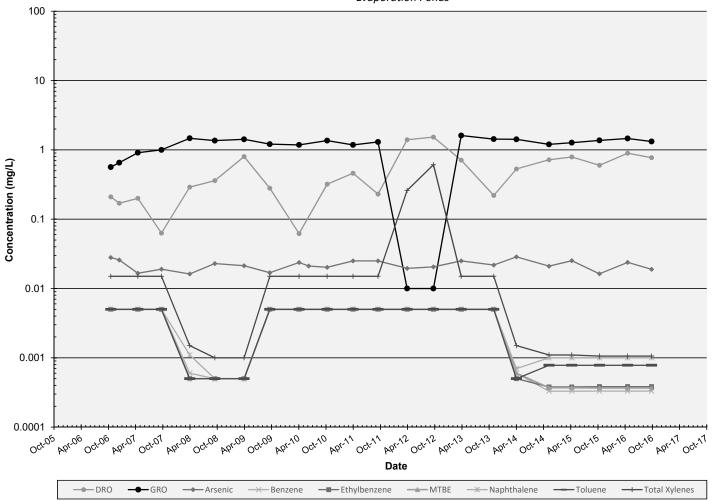

MW-11A: COC Concentrations

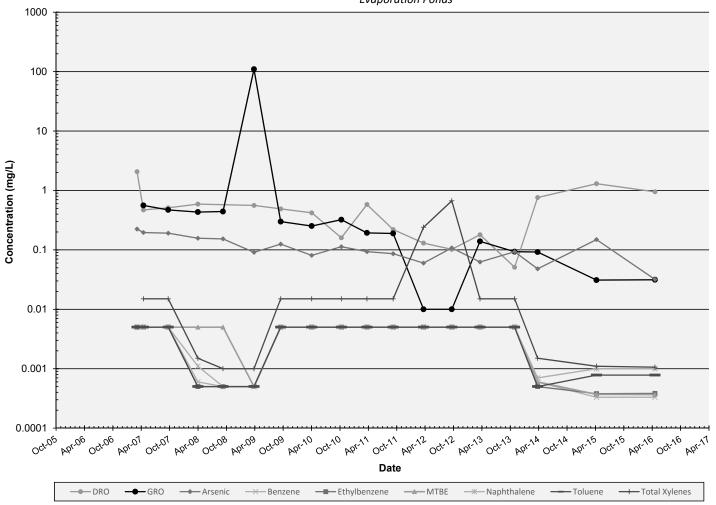

MW-11B: COC Concentrations

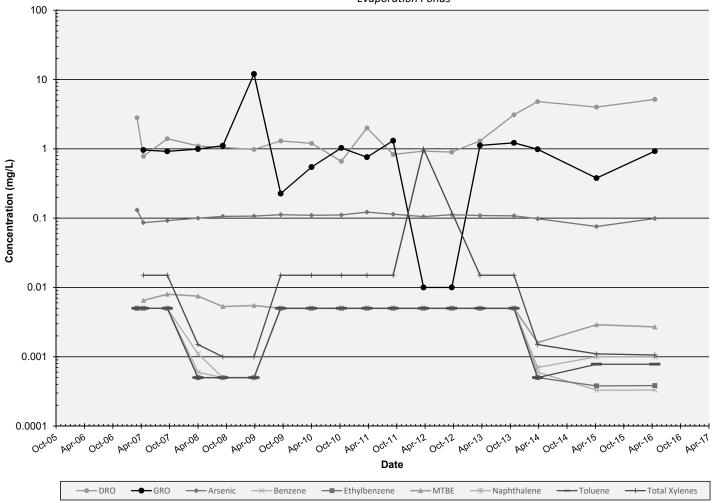

MW-15: COC Concentrations

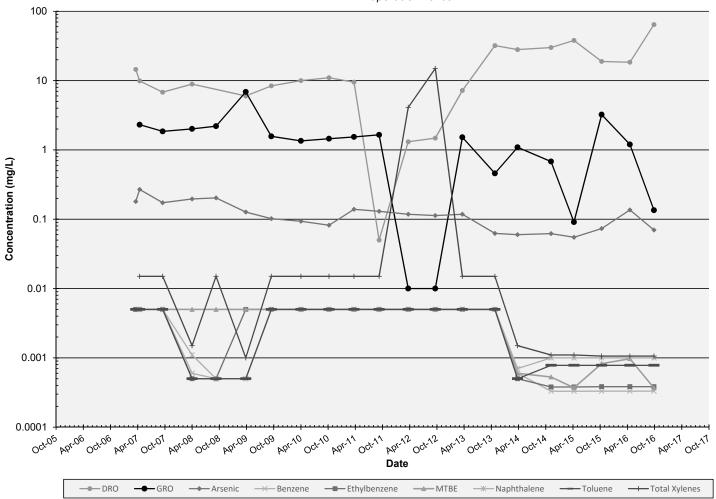

MW-18A: COC Concentrations

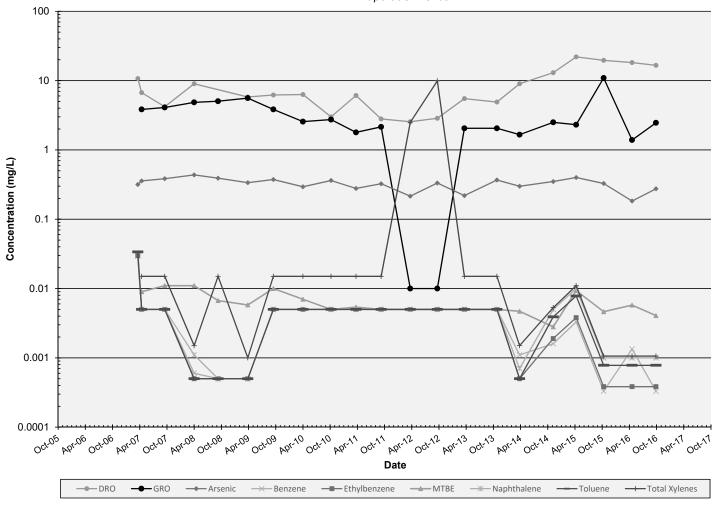

MW-18B: COC Concentrations

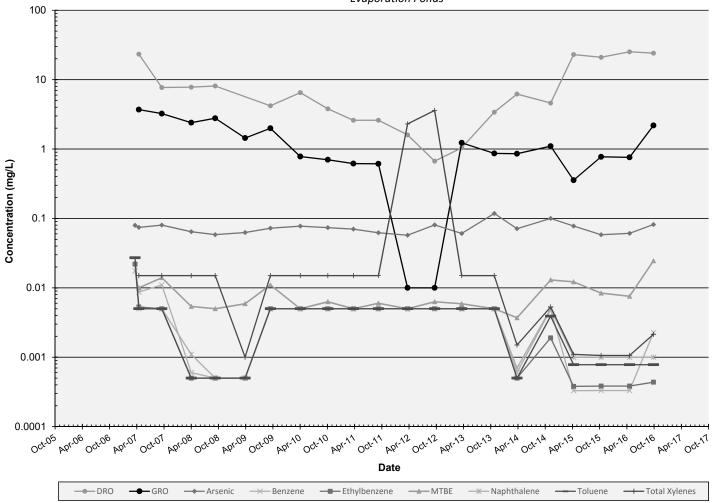

MW-22A: COC Concentrations


MW-22B: COC Concentrations


MW-70: COC Concentrations


MW-72: COC Concentrations


MW-73: COC Concentrations


MW-74: COC Concentrations

MW-75: COC Concentrations

MW-76: COC Concentrations

