UIC - I - 8-1, 2 & 3 WDWs-1, 2 & 3 PERMITS, RENEWALS, & MODS (11 of 18) 2017

APPENDIX 2.7-1

CHRONOLOGY OF FIELD ACTIVITIES

Monday, July 6, 1998

Brian Rogers traveled to Artesia, New Mexico. Met with the drilling contractor during move-in and rig-up. L&M's Rig No. 1 was moved in and rigged up the steel mud pits, pumps, and substructure.

Tom Ball traveled to Artesia, New Mexico. Rigged up L&M's Rig No. 1.

<u>Tuesday, July 7, 1998</u>

Tom Ball arrived on site. Continued to rig up. Nippled up the blowout preventer and flow line. The location had been prepared for the selected rig. A divided reserve pit, lined with a 6-mil plastic and fenced, was complete. An extension was welded onto the 9-5/8 inch surface casing with a rental 9-5/8" sow x 11" 3000 flange to the blowout preventer. A cellar was completed with a rathole and mousehole.

Brian Rogers arrived on site. Continued nippling up the blowout preventer and flow line. Went in the hole with Kelly to 40 feet. Did not tag cement. Filled the hole with water. Picked up a Smith 8-3/4 inch FDSH+ (Journal Bearing bit with gauge protection) dressed with 13-13-13-blank (Serial No. LS0625). Went in the hole. Attempted to test the hydril. Test failed. Pulled out of the hole with the bit and drill collar. Closed blind rams and attempted to test. Test failed. Ordered out a replacement hydril. Nippled down the flow line and blowout preventers.

Wednesday, July 8, 1998

Tom Ball arrived on site. Replaced the ring gasket on the flange. Received the replacement Hydril. Nippled up same. Tested casing to 1000 psi for 30 minutes. Test okay. Started at 1600 hours. Picked up the bit and 13 drill collars. Tagged top plug at 374 feet. Washed the cement from 374 feet to 445 feet.

Brian Rogers arrived on site. Went in the hole with 13 drill collars. Worked through the cement plug at 445 feet. Tallied 4-1/2 inch drillpipe and went in the hole to 1620 feet. 0115 hours, closed the pipe rams and pressured up the well system to 750 psi at the standpipe. 0115 hours, Test No. 1 at 750 psi. 0145 hours, Test No. 1 ended at 690 psi. Pressure loss was -60 psi per 30 minutes. 0150 hours, Test No. 2 started at 900 psi. 0220 hours, Test No. 2 ended at 865 psi. Pressure loss was -35 psi per 30 minutes (-3.89%).

Continued in the hole with the 4-1/2 inch drillpipe. Tagged the top of plug at 2188 feet with 10 feet out on Joint No. 72 and no kelly. Picked up kelly and drilled cement plug to 2301 feet. 0700 hours, changed shifts.

Thursday, July 9, 1998

Tom Ball arrived on site. Drilled the cement to 2465 feet. Washed to 2521 feet. Ran mud sweep. Totco survey was 1° at 2481 feet. Washed to 3543 feet. Survey at 3441 feet was $1-1/4^{\circ}$. Drilled 3543 feet to 3573 feet. Went in the hole to 4200 feet. Washed down the bridges to 4440 feet.

Brian Rogers arrived on site. 1900 hours to 2200 hours, drilled to 4479 feet. Survey at 4432 feet was $1-3/4^{\circ}$. 2200 hours to 2400 hours, went in the hole. Tagged to the top of the cement at 5092 feet. Drilled cement from 5092 feet to 5220 feet (128 feet). Washed to 5296 feet. Swept the hole clean and surveyed at 5277 feet, $4-1/4^{\circ}$. 0130 hours to 0300 hours, washed in the hole 5317 feet to 5785 feet. Tagged. Circulated hole for one hour while moving the drill collar and drillpipe on the rack. 0400 hours to 0430 hours, drilled cement from 5785 feet to 5840 feet (55 feet). Felt spotty. 0430 hours to 0530 hours, went in the hole with the pipe to 6265 feet. Tagged hard. Picked up to circulate with the kelly. The pipe stuck at 6240 feet. Rigged up the kelly. Circulated with full returns. Worked the pipe. Mixed gelled pill for the sweep.

Friday, July 10, 1998

Tom Ball arrived on site. Pumped sweep while working the pipe 140,000 lbs down to 40,000 pounds (pipe weight 115,000 pounds). Circulated heavy concentration of drilling detergent around the drill collars. Did not free pipe. Pipe was stuck near the bit from stretch calculations. Spotted 50 barrels of oil with 30 barrels around the drill collars. Worked the pipe and moved 2 barrels oil each hour.

Brian Rogers arrived on site. 1900 hours, pumped two barrels (20 strokes) and worked pipe, 40,000 pounds to 190,000 pounds. 1930 hours, the pipe was free. Circulated and rotated the kelly down. Continued washing in the hole. 2015 hours, tagged hard cement at 6395 feet. Drilled cement with \pm 15,000 pounds WOB, 52 strokes per minute, 900 psi, 8.6 ppg, 45-second viscosity, 10.5 pH. Drilled to 6475 feet. Washed from 6475 feet to 6635 feet. Tagged hard cement at 6635 feet. Drilled to 6650 feet. Washed in the hole to 6745 feet. Spotted the gelled pill and swept the hole. Attempted to survey at 6705 feet. Failed twice. Mud was too thick and would not allow the tool to be lowered into the well before setting. Continued washing in the hole to 6808 feet. Mud was extremely thick. Jet mud to reserve

pit and added fresh water to dilute. Rotated and worked the pipe while conditioning the mud. Surveyed at 6768 feet, $3-1/2^{\circ}$.

Saturday, July 11, 1998

Tom Ball arrived on site. Continued to wash in the hole. Circulated and conditioned the mud as the pipe was worked downhole. Washed to 7274 feet and circulated to thin the mud. 1545 hours, tagged the cement at 7613 feet. 1545 hours to 1725 hours, short tripped 16 stands. No bridges or tight spots. 1725 hours to 1830 hours, surveyed at 7571 feet, $1-3/4^{\circ}$. 1830 hours to 1900 hours, drilled the cement at 7613 feet.

Brian Rogers arrived on site. 1900 hours, drilled the cement at 7613 feet. 2115 hours, broke out of the cement at 7726 feet (113 feet). Continued washing in the hole. Mud weight was 8.7 pounds per gallon (ppg), viscosity was 34 seconds, pH was 12, string weight was 130,000 pounds. 0200 hours, washed in the hole to tag cement at 8293 feet. 0200 hours to 0320 hours, drilled cement at 8293 feet to 8385 feet (92 feet). Conditioned mud with SAPP and Desco, as needed. Added premix at suction while drilling. Set marker in the pit. Did not observe loss of circulation or pit gain while washing to 8635 feet. Slowly regained full returns. Circulated the hole clean. Spotted a 25-barrel (42 viscosity) gelled pill for sweep. Mud weight was 8.9 ppg, 37 viscosity. Survey at 8604 feet was 1-1/4°.

Sunday, July 12, 1998

E.

Tom Ball arrived on site. Installed an overflow for the reserve pit. Lined over flow with 6-mil plastic. Circulated the well clean. 1930 hours to 1330 hours, washed in the hole at 8635 feet to 9160 feet. 1330 hours, attained total depth of 9160.95 feet. 1330 hours to 1700 hours, circulated and swept the hole clean. 1700 hours to 1900 hours, short tripped 20 stands. No fill, bridges, or tight spots observed. 1900 hours, changed shift.

Brian Rogers arrived on site. 1900 hours to 2100 hours, circulated well and tallied seven inch casing. 2100 hours to 2115 hours, spotted a gelled pill. 2115 hours to 2130 hours, pumped gelled pill out of the drillpipe and into the bottom of the hole. 2200 hours, started pulling drillpipe out of the hole. Strapped the pipe as it was pulled from the well. Survey at 9160 feet was 1°. 2400 hours, moved in and rigged up Schlumberger. 0300 hours, pulled out of the hole. Went in the hole with 9-5/8 inch casing cement bond log, gamma ray, and casing collar locator logging tool to log 2548 feet to 400 feet. Correlated depths to the gamma ray curve/casing setting depth on the Halliburton spectral density, dual-spaced neutron log, dated September 8, 1993.

Monday, July 13, 1998

Tom Ball arrived on site. Performed a fracture identification survey with gamma ray from 9144 feet to 4000 feet. Integrated the four-arm caliper survey from 9144 feet to 2555 feet. Calculated the cement volume from the log and added 20% excess cement. Went in the hole with drillpipe and broke circulation at 5000 feet and 7000 feet. Continued in the hole. Good returns with no lost circulation.

Brian Rogers arrived on site. Set bit at 9115 feet and circulated the hole. Monitored returns. Swept the hole with 100 barrels, 40-second viscosity gelled pill. Monitored returns. Spotted a viscous gel pill at 9105 feet. Rigged up a lay-down machine. Pulled out of the hole. Laid down drillpipe and drill collars.

Tuesday, July 14, 1998

Tom Ball arrived on site. Rigged up Bull Rogers' casing crews. Picked up a seven inch packoff float shoe, Baker weld to the Bottom Joint No. 1. Ran two joints, float collar at 9007 feet and differential valve (DV) tool at 5498 feet. All equipment was Baker welded to the pipe. Ran Joint Nos. 1-50, 29 lb/ft N-80; Joint Nos. 51-84, 29 lb/ft, P-110; Joint Nos. 85-259, 26 lb/ft, P110. Torque turned and monitored each connection. 1550 hours, positioned float shoe at 9094 feet. Circulated well and reciprocated pipe for one seven inch casing volume. 1615 hours, dropped the ball and set a packoff float shoe at 9094 feet. Moved in and rigged up Halliburton. Cemented 7 inch casing with 20 barrels of fresh water, 12 barrels of mud flush, 20 barrels of fresh water, 12 barrels of Super Flush, 20 barrels of fresh water, and 600 sacks (171 barrels) modified Class H + 0.4% CFR-3 plus five pounds per sack (lb/sx) Gilsonite + 0.5% Halad-344, + one lb/sx of salt mixed at 13.0 ppg (yield at 1.66 ft³ per sack). Displaced with 150 barrels of fresh water and 194 barrels of mud, Did not bump plug. Floats were holding. Dropped dart and opened the DV tool at 824 psi. Circulated well with good returns throughout.

Brian Rogers arrived on site. Circulated through the DV tool for eight hours. Observed 42 barrels (142 sacks) of cement circulated to the surface. 0310 hours, pumped 20 barrels of fresh water, 12 barrels of super flush, 20 barrels of fresh water, Mixed (103 barrels) 220 sacks interfill C (lead slurry) at 11.7 ppg, followed by 163 barrels (550 sacks) Modified Class H + 0.5% Halad-344 + 0.1% HR7 + 0.4% CFR-3, + 5 lb/sx Gilsonite + one lb/sx salt at 13.0 ppg. Released the closing plug and displaced with 210 barrels of fresh water. Landed the plug and closed the DV tool with 3000 psi. Checked flowback. Okay. Tool closed. Circulated 35 barrels (75 sacks) to the surface. Picked up 1 inch tremie line and lowered to 20 feet (could not work past 7 inch collar) and cemented the 9-5/8" x 7" annulus

with 20 sacks of premium cement containing 3% calcium chloride. Waited on cement. Cleaned the mud pits.

Wednesday, July 15, 1998

Brian Rogers arrived on site. Waited on cement. Mud pits were clean. 1215 hours, slacked off on casing and cut to remove the blowout preventers. 1500 hours, released the drilling rig. Installed the seven inch Larkin Type R tubinghead. Returned the surplus mud inventory and inspected 13 drill collars. Rigged down the drilling rig.

<u>Thursday, July 16, 1998</u>

Brian Rogers arrived on site. Rigged down, moved out the drilling rig. Installed anchors and stabilized the seven inch casing with cement and filled in the rathole and mousehole. Delivered two 6-1/8 inch bits an coordinated completion operations.

Monday, July 20, 1998

Brian Rogers arrived on site. Moved in and rigged up Real Well Service's completion rig; Star Tool Company's pump, tank, pipe racks, catwalk, power swivel, and tools; and Knight Oil Tools' 2-7/8 inch, 6.50 lb/ft, N-80 work string. Purchased wellhead valves and fittings. Picked up the 6-1/8 inch bit, sub, six drill collars, and x-over (BHA at 183.80 feet) on the 2-7/8 inch work string. Went in the hole to tag soft bottom at 5455 feet. Picked up and pressure tested the well system above the DV tool at 5498 feet as shown below in Test Nos. 1 and 2:

Pressure Test No. 1 above DV tool at 5498 feet. Bottom of work string at 5450 feet:

Time (hours)	Pressure (psig)	ΔP (psi)
1441	1580	
1446	1574	-6
1451	1571	-3
1456	1568	-3
1501	1565	-3
1506	1563	-2
1511	1561	-2
	TOTAL	-19 psi/ 30 minutes

Time (hours)	Pressure (psig)	ΔP (psi)
1516	1559	*-
1521	1558	-1
1526	1556	-2
1531	1555	-1
1536	1555	0
1541	1554	-1
1546	1553	-1
	TOTAL	-6 psi/ 30 minutes

Pressure Test No. 2 above DV tool at 5498 feet. Bottom of work string at 5450 feet:

Washed in the hole to tag the top of the DV at 5498 feet. Drilled out the DV tool part way, circulated the tubing clean, and installed the TIW valve. 1900 hours, shut down for the night.

Note: Monitored the well system pressures using an Adalet digital pressure gauge (Catalog No. XIHFGCXZ-54967) with an Iniex Certificate Rating No. EX88B103703U. Pressure range was 0 to 2000 psig.

Tuesday, July 21, 1998

Brian Rogers arrived on site. 0700 hours, finished drilling out the DV tool. Went into the hole to tag soft bottom at 8896 feet. Drilled and washed in the hole to 9004 feet. Circulated the well clean. Picked up and pressure tested the well system above the top of the float collar, as shown below in Test Nos. 3 and 4.

Pressure Test No. 3 above the float collar at 9007 feet. Bottom of the work string at 8972 feet.

Time (hours)	Pressure (psig)	ΔP (psi)
1405	1600	
1410	1592	-8
1415	1588	-4
1420	1584	-4
1425	1580	-4
1430	1577	-3
1435	1575	-2
	TOTAL	-25 psi/ 30 minutes

Pressure Test No. 4 above the float collar at 9007 feet. Bottom of the work string at 8972 feet:

Time (hours)	Pressure (psig)	ΔP (psi)
1440	1573	w w
1445	1571	-2
1450	1569	-2
1455	1568	-1
1500	1567	-1
1505	1566	-1
1510	1565	-1
	TOTAL	-8 psi/ 30 minutes

Monitored the well system pressures using an Adalet digital pressure gauge (Catalog No. XIHFGCXZ-54967) with an Iniex Certificate Rating No. EX88B103703U. Pressure range was 0 to 2000 psig.

Pulled out of the hole. Laid down the drill collars. Cleaned out the rig tank and filled it with clean fresh water.

Wednesday, July 22, 1998

Brian Rogers arrived on site. 0700 hours, went in the hole with a bit and scraper to 8823 feet. Reverse circulated bottoms up. Pickled the wellbore with six barrels 15% HCl (inhibited) pumped down the tubing and up the casing. Displaced the well with an 8.7 ppg brine water. Laid down 11 joints and tripped out of the hole. Secured the well for the night. Loaded the storage tank with 500 barrels of 8.7 ppg brine.

Thursday, July 23, 1998

Brian Rogers arrived on site. 0600 hours, moved in and rigged up Wedge Wireline. Performed a differential temperature survey from the surface to total depth. Performed a cement bond log from 8997 feet to 135 feet. Cement bond log performed with 1000 psi applied to the well system. Conducted a casing inspection survey from 8997 feet to the surface.

Friday, July 24, 1998

Brian Rogers arrived on site. Moved in and rigged up Wedge Wireline with eight 4 inch retrievable cased-hole perforating guns. Perforated selected intervals at two jet shots per foot as follows:

Run No.	Feet		
1	8470 to 8476		
	8460 to 8464		
2	8430 to 8446		
3	8419 to 8423		
	8400 to 8410		

Run No. Feet			
4	8360 to 8366		
	8370 to 8378		
5	8280 to 8302		
6	8260 to 8270		
7&8	8220 to 8254		

All shots were fired. Fluid level dropped from the surface to ± 1380 feet. Bottom-hole pressure at 8220 feet was measured at 3176 psia. A static gradient survey was performed as the tool was pulled out of the well. Static stays were conducted at 6000 feet, 3000 feet, 1500 feet, and at the surface. The well was secured for the night.

Saturday, July 25, 1998

Brian Rogers arrived on site. 0700 hours, strapped in the hole with nine joints 2-7/8" work string (287.56 feet), Arrow X-1 packer (6.25 feet), seating nipple (one foot), and 133 joints 2-7/8 inch work string (8178.32 feet) to set the end of the tubing below the bottom perforation (8476 feet) at 8479 feet. Packer element was at 8189 feet. Rigged up swab line and went into the hole to tag the fluid level at 1700 feet. Swab tested the perforated interval and recovered two tubing volumes of fluid. Strong hydrogen sulfide smell was observed while swabbing. Retained samples of the formation water for analysis. A total of 139 barrels of fluid was recovered. Secured the well for the night.

Sunday, July 26, 1998

Brian Rogers arrived on site. 0700 hours, set end of tubing at 8158 feet (top perforation was 8220 feet). Moved in and rigged up Dowell Schlumberger and performed step rate test using 8.7 ppg brine water. Results of Step Rate Test No. 1 (before acid) are as follows:

Rate (bpm)	Volume Pumped (barrels)	Pressure (psig)	Friction Pressure (psig)	Pump-in Pressure (psig)
2	50	560	285	+ 275
4	35	2020	734	+ 1286
4.85	35	2673	1020	+ 1653
5	3	+ 2850	1020	+ 1830

Maximum allowable pump-in = 8220 ft x 0.2 psi/ft = 1644 psig.

Acidized perforations 8220 feet to 8476 feet in four stages as follows:

Spotted acid (9.5 barrels) across perforations and pulled out of the hole to set end of the tubing at 8158 feet. Stage 1: 27 barrels of 15% HCl + 20 barrels of gelled salt for block at 800 pounds; Stage 2: 27 barrels of 15% HCl + 26 barrels of 8.7 brine pad + 21 barrels of gelled salt for block at 800 pounds; Stage 3: 27 barrels of 15% HCl + 26 barrels of 8.7 brine pad + 20 barrels of gelled salt for block at 800 pounds; Stage 3: 27 barrels of 15% HCl + 26 barrels of 15% HCl + 26 barrels of 8.7 brine pad + 20 barrels of gelled salt for block at 800 pounds; Stage 4: 27 barrels of 15% HCl + 65 barrels of 8.7 brine for displacement at 10 bpm and 2450 psi. Allowed acid to soak for two hours and performed Step Rate Test No. 2. Results of Step Rate Test No. 2 are:

Rate (bpm)	Volume Pumped (Barrels)	Pressure (psig)	Friction Pressure (psig)	Pump-in Pressure (psig)
4	20	86	734	-648
7	130	1085	1632	-547
10	35	2674	2774	-100
12	50	3948	3875	+ 73

Well went on a vacuum following both tests.

Laid down nine joints and pulled out of the hole with the tubing and the packer.

Monday, July 27, 1998

Brian Rogers arrived on site. Moved in and rigged up Wedge Wireline with eight 4 inch retrievable cased-hole perforating guns. Perforated selected intervals at two jet shots per foot as follows: 8170 feet to 8188 feet, 8160 feet to 8164 feet, 8118 feet to 8127 feet, 8132 feet to 8140 feet, 8066 feet to 8080 feet, 8050 feet to 8056 feet, 7974 feet to 8030 feet, and 7924 feet to 7942 feet. Started loading the tanks with an 8.7 ppg brine water. Secured the well and shut down for the night.

Tuesday, July 28, 1998

Brian Rogers arrived on site. Went into the hole with an Arrow retrievable bridge plug and packer on the work string. Tool hung up at 4830 feet. Pulled out of the hole. Lower slip cage on the plug was broken. Called for a replacement. Went into the hole with a 6-1/8 inch bit on the work string. Did not encounter any obstructions. Pulled out of the hole. Went into the hole with a replacement retrievable bridge plug and packer on 88 stands. Had mechanical failure on rig. Shut down. Secured the well for the night.

Wednesday, July 29, 1998

Brian Rogers arrived on site. Went into the hole with an Arrow retrievable bridge plug and packer. Set the retrievable bridge plug at 8214 feet. Set the packer at 8193 feet. Pressure tested between the packers at 500 psi. Tested okay. Pulled up the hole. Set the packer at 7852 feet. Swab tested the perforated interval and recovered 112 barrels (more than two tubing volumes). Moved in and rigged up Dowell Schlumberger to perform Step Rate Test No. 1 using an 8.7 ppg brine water. Acidized perforations 7924 feet to 8188 feet in four stages as follows: (1) 30 barrels 15% HCl + 10 barrels of gelled salt at 500 pounds; (2) 30

barrels 15% HCl + 20 barrels 8.7 brine pad + 16 barrels of gelled salt for block at 800 pounds; (3) 30 barrels 15% HCl + 20 barrels 8.7 brine pad + 21 barrels of gelled salt for block at 1000 pounds; and (4) 30 barrels 15% HCl + 60 barrels 8.7 brine for displacement at 6.5 bpm and 1050 psi.

Allowed acid to soak for one hour and performed Step Rate Test No. 2. Lowered the retrieving head onto the retrievable bridge plug. Unset the retrievable bridge plug and pulled out of the hole with the tools. Laid down the retrievable bridge plug and the packer. Secured the well for the night.

All storage tanks were loaded with an 8.7 ppg brine, totaling 7840 barrels.

Rate (bpm)	Volume Pumped (barrels)	Pressure (psig)	Friction Pressure (psig)	Pump-in Pressure (psig)
2	47	400	275	125
4	15	1780	706	1074
4.36	2	2416	706	1710

Results of Step Rate Test No. 1 (before acid):

Maximum allowable pump-in = 7924 ft x 0.2 psi/ft = 1585 psig.

Step Rate Test No. 2 (after 5000 gallons 15% HCl acid):

Rate (bpm)			Friction Pressure (psig)	Pump-in Pressure (psig)	
4	25	7	706	-700	
7	25	1070	1570	-500	

Well went on a vacuum following both tests.

Thursday, July 30, 1998

Brian Rogers arrived on site. 0600 hours, moved in and rigged up Wedge Dia-Log with a digital quartz surface readout gauge, Eccosse Tex, Serial No. 009, 0 psia to 5000 psia and a Z.I. Probe memory recorder, Serial No. P59, 0 psia to 5000 psia with a casing collar

ENVIROCORP

locator for depth control. 0700 hours, went into the hole and correlated logging depths to the July 23, 1998, cement bond log. Set the surface readout gauge at 7924 feet (top perforation). 0830 hours, bottom-hole pressure was 2928.16 psia at 125.41°F. Moved in and rigged up Halliburton's pump truck and booster pump. 0920 hours, started pumping 8.7 ppg brine at 10 bpm. Well on vacuum at surface. 2153 hours, final bottom-hole pressure injection pressure at 7924 feet was 3071.85 psia at 90.80°F. Shut down injection. Pumped a total of 7490 barrels of 8.7 ppg brine while monitoring the bottom-hole pressure. Monitored the pressure falloff.

Friday, July 31, 1998

Brian Rogers arrived on site. 0700 hours, discontinued the pressure falloff test. Pulled out of the hole making static gradient stops at 6000 feet, 3000 feet, 1700 feet and at the surface. Rigged up a differential temperature tool and casing collar locator and conducted a survey from the surface to wireline total depth at 8997 feet. Pulled out of the hole and laid down the temperature tool. Picked up a dual detector gamma ray tool configured with an upper detector, ejector, casing collar locator, and lower detector. Went into the hole. Performed a pre-survey baseline 7800 feet to wireline total depth at 8997 feet. Conducted a fiveminute statistical survey at 7904 feet. Performed two injection profile surveys at 1 bpm. Conducted two stationary surveys at 7904 feet, pumping at 10 bpm. No upward migration was observed behind the casing. Performed a post-survey baseline. Rigged down and moved out wireline and pump equipment. Note: Released all 16 frac tanks at 0900 hours.

Saturday, August 1, 1998

Brian Rogers arrived on site. Laid down the 2-7/8 inch work string and returned to Knight Oil Tools. Delivered 197 joints, new 4-1/2 inch, 11.60 lb/ft, N-80, SMLS, R3, LT&C injection tubing.

Sunday, August 2, 1998

Brian Rogers arrived on site. Picked up an Arrow Model X-1 (7" x 3.5") retrievable packer (minimum ID = 3.0 inches) with a wireline reentry guide on bottom and a X/O 3.5 EUE 8rd pin x 4-1/2" LTC box on top. Total length was 9.01 feet. Made up and went in the hole with 193 joints, 4-1/2 inch, 11.60 lb/ft, N-80, SMLS, R3, LT&C injection tubing. Set the packer at 7879 feet and loaded the annulus with 8.7 ppg corrosion inhibited brine water. Slacked off 15,000-pound compression on the packer. Pressure tested the annulus at 600 psi. Lost 90 psi/30 minutes. Repressurized the annulus and lost 20 psi/30 minutes. Released the pump truck and left the annulus open during stabilization. Shut down for the night.

Monday, August 3, 1998

Brian Rogers arrived on site. Pressurized the annulus to 700 psi and monitored overnight. Notified the New Mexico Oil Conservation Division (OCD) of the test to begin at 0700 hours on Tuesday, August 4, 1998. Returned the rental tools and moved out the tanks.

Tuesday, August 4, 1998

Brian Rogers arrived on site. Continued monitoring the annulus pressure. 0700 hours, annulus pressure was 702 psig. 0900 hours, the OCD representatives witnessed the annulus pressure test. Mr. E. L. Gonzales and Gerry Williams represented the OCD. 0900 hours, started the annulus pressure test at 704 psig. 0930 hours, ended the annulus pressure test at 705 psig. Pressure change was +1 psi/30-minute period (0.14%), which is within the regulatory guidelines.

Rigged down and released the completion unit and all ancillary equipment.

. .

APPENDIX 4.1-1

BOTTOM-HOLE PRESSURE FIELD DATA RECORDED DURING THE INJECTIVITY/FALLOFF TEST FOR WDW-1

APPENDIX 4.1-1 Navajo Refining Company Pressure Falloff Data

Well Name : WDW-1 Started on : 07/30/1998 Ended on : 07/31/1998

Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperature (°F)
0.0000	2927.912	123.434	0.6672	2928.221	125.592	0.6842	2928,235	125.607
0.0003	2927.912	123,439	0.6675	2928.214	125,587	0.6844	2928.196	125.584
0.0006	2927.904	123.444	0.6678	2928.214	125.587	0.6847	2928.211	125.589
0.0008	2927.904	123,444	0.6681	2928.211	125.584	0.6850	2928.207	125.592
0.0011	2927,903	123,459	0.6683	2928.211	125.589	0,6853	2928.231	125,604
0.0014	2927.899	123.457	0.6686	2928,214	125.587	0.6856	2928.207	125.592
0.0017	2927.899	123,467	0.6689	2928.238	125.604	0.6858	2928.218	125.594
0.0019	2927.877	123,462	0.6692	2928.183	125,569	0.6861	2928.203	125.589
0.0022	2927.894	123.474	0.6694	2928.231	125.599	0.6864	2928.218	125.594
0.0025	2927.886	123.485	0.6697	2928.208	125.582	0.6867	2928.210	125.594
0.0028	2927.889	123.487	0.6700	2928.221	125.597	0.6869	2928.231	125.604
0.0031	2927.892	123.500	0.6703	2928.208	125.582	0.6872	2928.200	125.587
0.0033	2927.881	123.497	0.6706	2928.225	125.594	0,6875	2928.214	125.592
0.0200	2927.845	123.822	0.6708	2928.214	125.592	0.6878	2928.224	125.599
0.0367	2927.879	124.129	0.6711	2928.214	125.587	0.6881	2928.210	125.594
0.0533	2927.914	124.377	0.6714	2928.214	125.587	0.6883	2928.207	125.592
0.0700	2927.958	124.595	0.6717	2928 207	125.587	0.6886	2928.211	125.589
.0867	2928.012	124.782	0.6719	2928.225	125,594	0.6889	2928.224	125.604
.1033	2928.041	124.924	0.6722	2928.207	125.587	0.6892		125.592
.1200	2928.073	125.036	0.6725	2928.236	125.597	0.6894	2928.214 2928.218	125.594
.1367	2928.096	125.124	0.6728	2928.194	125.577	0.6897	2928.199	125.592
.1533	2928.120	125.208	0.6731	2928.235	125.602			
.1700	2928.117				125.584	0.6900	2928.214	125.592
.1867	2928.131	125.256 125.299	0.6733	2928.211		0.6903	2928.220	125.602
.2033		125.352	0.6736 0.6739	2928.221	125.592	0.6906	2928.218	125.594
	2928.158			2928.204	125.584	0.6908	2928.207	125.592
	2928.158	125.379	0.6742	2928.232	125.594	0.6911	2928.210	125.594
	2928.162	125.410	0.6744	2928.214	125.592	0.6914	2928.224	125.599
	2928.178	125.438	0.6747	2928.221	125.592	0.6917	2928.213	125.597
	2928.169	125.448	0.6750	2928.218	125.589	0.6919	2928.203	125.589
	2928.184	125.470	0.6753	2928.214	125.587	0.6922	2928.218	125.594
	2928.195	125.483	0.6756	2928.221	125.592	0.6925	2928.213	125.597
	2928.211	125.501	0.6758	2928.207	125.587	0.6928	2928.220	125.602
	2928.202	125.506	0.6761	2928.228	125.597	0.6931	2928.221	125.597
	2928, 191	125.508	0.6764	2928.214	125.592	0.6933	2928.203	125.589
	2928.208	125.521	0.6767	2928.207	125.587	0.6936	2928.213	125.597
3867	2928.207	125.526	0.6769	2928.228	125.597	0.6939	2928.224	125.599
4033	2928.193	125.521	0.6772	2928.204	125.584	0.6942	2928.217	125.599
	2928.203	125.534	0.6775	2928.221	125.597	0.6944	2928.207	125.592
	2928.205	125.541	0.6778	2928.207	125.587	0.6947	2928.218	125.594
	2928.190	125.546	0.6781	2928.228	125.597	0.6950	2928.217	125.599
	2928.199	125.559	0.6783	2928.214	125.592	0.6953	2928.210	125.594
	2928.220	125.574	0.6786	2928.211	125.589	0.6956	2928.227	125.607
	2928.196	125.556	0.6789	2928.214	125.592	0.6958	2928.218	125.594
	2928.189	125.556	0.6792	2928.218	125.594	0.6961	2928.203	125.589
	2928.209	125.572	0.6794	2928.214	125.592	0.6964	2928.224	125.604
	928.219	125.584	0.6797	2928.218	125.589	0.6967	2928.213	125.597
	928.232	125.594	0.6800	2928.210	125.594	0.6969	2928.224	125.599
	928.215	125.582	0.6803	2928.214	125.587	0.6972	2928.200	125.587
	928.202	125.572	0.6806	2928.224	125.599	0.6975	2928.220	125.602
	928.205	125.574	0.6808	2928.214	125.592	0.6978	2928.217	125.599
	928.212	125.579	0.6811	2928.214	125.592	0.6981	2928.210	125.594
	928.219	125.584	0.6814	2928.214	125.592	0.6983	2928.220	125.602
	928.218	125.594		2928.221	125.597		2928.207	125.592
	928.214	125.587		2928,203	125.589		2928.224	125.604
	928.214	125.587	0.6822	2928.218	125.594	0.6992	2928.210	125.594
656 2	928.208	125.577	0.6825	2928.221	125.597		2928.224	125.599
	928.218	125.594	0.6828	2928.200	125.587	0.6997	2928.196	125.589
	928.221	125.592		2928.228	125.602	0.7000	2928.234	125.612
	928.218	125.589		2928.204	125.584		2928.213	125.597
	928.201	125.577		2928.217	125.599		2928.213	125.597
	928.218	125.594		2928.211	125,589	0.7008	2928.210	125.594

Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperature (°F)	Time Pressure (Psia)	Temperatur (°F)
0.7011	2928.217	125.599	0.7219	2928.915	125.602	0.7428 2936.534	125.574
0.7014	2928.220	125.602	0.7222		125.607	0.7431 2936.687	125.572
0.7017	2928.220 2928.210	125.602 125.594	0.7225 0.7228	2929.026 2929.083	125.607 125.599	0.7433 2936.808	125.584
0.7022	2928.207	125.592	0.7231	2929.138	125.607	0.7436 2936.935 0.7439 2937.105	125.562 125.572
0.7025	2928.230	125.610	0.7233	2929.192	125.597	0.7442 2937.249	125.562
0.7028	2928.209	125,599	0.7236	2929.276	125.615	0.7444 2937.452	125.574
0.7031 0.7033	2928.220	125.602	0.7239	2929.315	125.599	0.7447 2937.648	125.564
0.7033	2928.210 2928.217	125.594 125.599	0.7242 0.7244	2929.375 2929.449	125.599 125.599	0.7450 2937.816 0.7453 2938.067	125.562
0.7039	2928.213	125.602	0.7247	2929.526	125.612	0.7453 2938.067 0.7456 2938.285	125.559 125.572
0.7042	2928.217	125.599	0.7250	2929.580	125.602	0.7458 2938.499	125.564
0.7044	2928.217	125.599	0.7253	2929.672	125.615	0.7461 2938.740	125.549
0.7047 0.7050	2928.213	125.597 125.602	0.7256	2929.719	125.594	0.7464 2938.964	125.554
0.7053	2928.220 2928.224	125.604	0.7258 0.7261	2929.803 2929.867	125.607 125.604	0.7467 2939.239 0.7469 2939.503	125.559
0.7056	2928.217	125.599	0.7264	2929.938	125.602	0.7472 2939.693	125.567 125.541
.7058	2928.202	125.594	0.7267	2930.021	125.597	0.7475 2940.009	125.554
	2928.224	125.604	0.7269	2930.105	125.610	0.7478 2940.275	125.546
	2928.220 2928.220	125.602 125.602	0.7272 0.7275	2930.187 2930.252	125.610	0.7481 2940.555	125.554
.7069	2928.202	125.594	0.7278	2930.252	125.602 125.597	0.7483 2940.929 0.7486 2941.198	125.549
	2928.213	125.597	0.7281	2930.427	125.604	0.7489 2941.552	125.539 125.546
.7075	2928.224	125.604	0.7283	2930.517	125.604	0.7492 2941.918	125.546
	2928.217	125.599	0.7286	2930.602	125.612	0.7494 2942.199	125.539
,7083	2928.209 2928.217	125.599 125.599	0.7289 0.7292	2930.693 2930.771	125.597 125.599	0.7497 2942.610 0.7500 2942.928	125.539
	2928.209	125.599	0.7294	2930.876	125.599	0.7500 2942.928 0.7503 2943.233	125.536 125.541
.7089	2928.228	125,602	0.7297	2930.986	125.615	0.7506 2943.578	125.531
	2928.213	125.602	0.7300	2931.084	125,604	0.7508 2943.777	125.529
	2928.209 2928.224	125.599	0.7303	2931.164	125.592	0.7511 2944.113	125.529
	2928.217	125.604 125.599	0.7306 0.7308	2931.282 2931.387	125.602 125.602	0.7514 2944.344 0.7517 2944.557	125.534
	2928.217	125.599	0.7311	2931.502	125.610	0.7519 2944.823	125.526 125.519
.7106 2	2928.209	125.599	0.7314	2931.596	125.607	0.7522 2944.906	125.513
	2928.220	125.602	0.7317	2931.684	125.589	0.7525 2945.171	125.544
	2928.213 2928.227	125.597 125.607	0.7319 0.7322	2931.802 2931.902	125.599 125.602	0.7528 2945.240 0.7531 2945.321	125.501
	2928.210	125,594	0.7325	2931.999	125.607	0.7533 2945.559	125.506 125.521
	2928.235	125.607	0.7328	2932.064	125.589	0.7536 2945.596	125.526
.7122 2	2928.218	125.594	0.7331	2932.160	125.604	0.7539 2945.647	125.498
	1928.238 1928.228	125.610 125.597	0.7333 0.7336	2932.232 2932.313	125.597 125.607	0.7542 2945.746	125.516
	928.235	125.602	0.7339	2932.345	125.587	0.7544 2945.845 0.7547 2945.852	125.496 125.506
	928.231	125.599	0.7342	2932.398	125.582	0.7550 2945.953	125.503
	928.260	125.610	0.7344	2932.513	125.617	0.7553 2945.980	125.496
	928.236	125.597	0.7347	2932.568	125.602	0.7556 2945.995	125.496
	928.250 928.261	125.597 125.604	0.7350 0.7353	2932.628 2932.710	125.592 125.597	0.7558 2946.076 0.7561 2946.059	125.501
7147 2	928.262	125.599	0.7356	2932.789	125.594	0.7564 2946.064	125,488 125,481
7150 2	928.279	125.607	0.7358	2932.859	125.597	0.7567 2946.118	125.498
	928.280	125.602	0.7361	2932.930	125.594	0.7569 2946.123	125.486
	928.298 928.292	125.604 125.594	0.7364 0.7367	2933.021 2933.082	125.594 125.584	0.7583 2946.342	125.470
	928.313	125.610		2933.191	125.599	0.7597 2946.994 0.7611 2947.771	125.450 125.445
7164 29	928.332	125.607	0.7372	2933.271	125.592	0.7625 2948.461	125.420
	928.275	125.554	0,7375	2933.372	125.594	0.7639 2948.858	125.415
	28.406	125.640	0.7378	2933.469	125.584	0.7653 2948.980	125.385
	928.380 928.381	125.610 125.599	0.7381 0.7383	2933.596 2933.711	125.589 125.592	0.7667 2949.150 0.7681 2949.417	125.372 125.321
	28.410	125.604		2933.853	125.592	0.7694 2949.969	125.326
7181 29	28.412	125.594	0.7389	2933.992	125.584	0,7708 2950,390	125.296
	28.469	125.615	0.7392	2934.154	125.582	0.7722 2950.584	125.268
7186 29 7189 29	28.464 28.514	125.594 125.615	0.7394 0.7397	2934.347 2934.537	125.587	0.7736 2950.593 0.7750 2950.695	125.258
	28.527	125.597	0.7400	2934.721	125.589 125.582	0.7750 2950.695 0.7764 2950.717	125.213 125.190
194 29	28.560	125.604	0.7403	2934.927	125.579	0.7778 2951.029	125.167
197 29	28.594	125.602	0.7406	2935.135	125.584	0.7792 2951.606	125.142
200 29	28.634	125.610		2935.341	125.582	0.7806 2952.135	125.124
	28.657 28.716	125.599 125.610		2935.516 2935.723	125.584 125.572	0.7819 2952.151 0.7833 2952.090	125.081 125.053
	28.736	125.597		2935.905	125.579	0.7847 2952.004	125.023
	28.783	125.610 125.599		2936.066	125.577	0.7861 2952.313	124.987
	28.822		0.7422	2936.261	125.577	0.7875 2952.483	124.937

.

Time	Pressure (Psia)	Temperature (°f)	Time Pressur (Psia)	e Temperature (°F)	Time Pressure (Psia)	Temperatur (°F)
				NILL		
0.79 03 0.7917	2952.953	124.876	0.8944 2957.8		0.9986 2957.772	116.631
0.7931	2953.042 2953.086	124.8 38 124.805	0.8958 2957.6		1.0000 2958.427	116.577
0.7944	2953.169	124.805	0.8972 2957.3		1.0014 2959.110	116.551
0.7958	2953.278	124.722	0.8986 2957.1 0.9000 2957.3		1.0028 2959.156	116.469
0.7972	2953.527	124.696	0.9014 2957.4		1.0042 2958.985	116.389
0.7986	2953.581	124.643	0.9028 2957.5	74 120.656	1.0056 2958.925 1.0069 2960.832	116.345
0.8000	2953.920	124.613	0.9042 2957.3		1.0069 2960.832 1.0083 2962.101	116.339
0.8014	2954.069	124.575	0.9056 2956.6		1.0097 2964.754	116.333
0,8028	2954.117	124.534	0.9069 2955.7	92 120.460	1.0111 2966.967	116.327
0.8042	2954.151	124.494	0.9083 2955.0		1.0125 2968.985	116.255 116.211
0.8056	2954.156	124.443	0.9097 2954.1		1.0139 2970.896	116.180
0.8069	2954.193	124.405	0.9111 2953.3	31 120.288	1.0153 2972.739	116.137
0.8083	2954.189	124.370	0.9125 2952.5		1.0167 2974.210	116.095
0.8097	2954.570	124.316	0.9139 2951.4		1.0181 2976.977	116.049
0.8111	2954.921	124.278	0.9153 2950.8	18 120.112	1.0194 2978.117	115.998
D.8125 D.8139	2955.347	124.235	0.9167 2950.1	120.028	1.0208 2980.255	115.952
0.8153	2955.368 2955.231	124.169	0.9181 2950.0		1.0222 2982.153	115.911
.8167	2954.919	124.152 124.093	0.9194 2950.24		1.0236 2984.456	115.832
.8181	2955.019	124.053	0.9208 2950.8 0.9222 2951.8		1.0250 2986.898	115.721
.8194	2955.359	123.997	0.9222 2951.83	13 119.800 12 119.754	1.0264 2988.887	115.525
	2955.763	123.954	0.9250 2953.64		1.0278 2993.896	115.296
	2955.726	123.901	0.9264 2954.26	5 119.613	1.0292 2995.964 1.0306 2997.171	115.027
	2955.528	123.855	0.9278 2955.34		1.0306 2997.171 1.0319 2999.813	114.998
.8250	2955.282	123.797	0.9292 2956.81		1.0333 3001.492	114.735
	2955.435	123.761	0.9306 2958.86		1.0347 3011.142	115.290 115.320
.8278	2955.962	123,700	0.9319 2960.63	7 119.391	1.0361 3015.741	115.377
.8292	2956.361	123.660	0.9333 2961.32		1.0375 3007.901	116.068
	2956.432	123.604	0.9347 2961.39	1 119.255	1.0389 3018.019	116.347
	2956.200	123.566	0,9361 2960,98		1.0403 3018.755	117.125
	2955.780	123.500	0.9375 2960.51		1.0417 3018.801	117, 119
	2955.514	123.459	0.9389 2959.94		1.0431 3017.091	117.473
	2955.708 2956.395	123.406 123.342	0.9403 2959.64		1.0444 3017.476	117.980
.8389 2	2956.842	123,304	0.9417 2959.29 0.9431 2958.92		1.0458 3017.145	117.703
	2957.140	123.251	0.9431 2958.92 0.9444 2958.67		1.0472 3017.984 1.0486 3012.824	117.881
	2956.879	123.198	0.9458 2958.46		1.0486 3012.824 1.0500 3012.926	117.259
	2956.312	123.144	0.9472 2958.42		1.0514 3013.444	117.698 117.466
8444 2	2956.119	123.076	0.9486 2958.35	5 118.668	1.0528 3013.021	117.467
	2956.432	123.027	0.9500 2958.03	2 118.627	1.0542 3015.803	117.279
	2957.045	122.997	0.9514 2957.89		1.0556 3018.625	117.169
	2957.226	122.903	0.9528 2957.84		1.0569 3014.113	117.325
	957.202	122.875	0.9542 2958.12		1.0583 3018.374	116.198
	956.952	122.814	0.9556 2958.23		1.0597 3017.375	116.322
	956.556 956.357	122.761	0.9569 2958.132		1.0611 3016.556	116.394
	957.170	122.715 122.651	0.9583 2957.91 0.9597 2957.622		1.0625 3018.841	116.978
	957.904	122.611	0.9597 2957.622 0.9611 2957.602		1.0639 3013.757 1.0653 3017.574	116.861
	958.026	122.544	0.9625 2957.599	118.073		117.857
	957.821	122.483	0.9639 2957.851		1.0667 3016.946 1.0681 3017,526	117.635 117.771
	957.392	122.422	0.9653 2957.711		1.0694 3018.244	117,516
	956.841	122.382	0.9667 2957.627		1.0708 3019,199	116.794
639 29	956,793	122.305	0.9681 2957.565		1.0722 3019.124	116.383
	956.997	122.265	0.9694 2957.845		1.0736 3019.331	116.438
	957,455	122.198	0.9708 2958.126	117,737	1.0742 3019.550	116.744
	957.569	122.132	0.9722 2958.239		1.0783 3018.981	116,123
	957.542	122.081	0.9736 2958.267		1.0825 3016.417	115.808
	957.231	122.020	0.9750 2958.097	117.572	1.0867 3020.184	115.714
	257.063	121.959	0.9764 2957.674	117.513	1.0908 3020.730	115.556
	957.150 957.417	121.916	0.9778 2957.626	117.457	1.0950 3018.411	111.400
	957.4 17 957.46 1	121.852 121.788	0.9792 2958.149	117.403	1.0992 3021.348	111.126
	57.437	121.725	0.9806 2958.800 0.9819 2959.014	117.325 117.290	1.1033 3018.552	111.506
	57.331	121.681	0.9833 2958.896	117.225	1.1075 3019.752	111.173
	57.143	121.613	0.9847 2958.507	117,179	1.1117 3019.509 1.1158 3018.809	111.124
	57.406	121.557	0.9861 2958.154	117.127	1.1200 3021.578	110.957 110.478
	57.795	121.501	0.9875 2957.775	117.063	1.1242 3020.136	109.912
	57.838	121.442	0.9889 2957.828	117.019	1.1283 3020.964	109.987
361 29	57.710	121.383	0.9903 2958.438	116.955	1.1325 3021.163	109.687
	57.324	121.322	0.9917 2958.908	116.906	1.1367 3020.681	109.491
	57.073	121.256	0.9931 2958.983	116.852	1.1408 3021.506	108.302
03 29:	57.414	121.192	0.9944 2958.689	116.796	1.1450 3024.089	107.316
917 29	57.747 57.890	121.138 121.072	0.9958 2958.214 0.9972 2957.764	116.747 116.690	1.1492 3023.971 1.1533 3023.281	105.586 105.557

Time	Pressure	lemperature	Time	Pressure	Temperature	Time	Pressure	Temperatu
	(Psia)	(°F)		(Psia)	(°F)	*	(Psia)	(°F)
1.1575	3023.140	106.178	1.526 1.534	3038.751	89.824	2.1514		83,582
1,1617	3023.929	107.811 107.693	1.534	3038.824	89.686	2.1597	3043.861	83.937
1,1700	3024.548 3023.795	107.720	1.5431	3036.912 3036.623	89.571 89.490	2.1681 2.1764	3041.760	83.981
1.1742	3023.765	107.105	1.5597	3037.738	89.373	2.1764		83.917 83.956
1.1783	3023.765 3023.355	106.822	1.5681	3036.297	89.286	2.1931	3043.226	83,538
1.1825	3024.549	106.277	1.5764	3037.434	89.394	2.2014	3043.226 3042.726 3043.066	83.909
1.1867	3025.226	105.650	1.5847	3035.125	89.082	2.2097	3043.066	83.917
1.1908 1.1950	3026.732 3024.874	105.276 105.712	1.5931	3035.666	89.038 89.003	2.2181 2.2264	3043.071 3043.461 3043.209	83.162
1.1992	3027.866	105.525	1.6097	3035.659	88.916	2.2347	3043.401	83.417 83.699
1.2033	3025.389 3025.660	105.162	1.6181	3038.110	88.829	2.2431 2.2514 2.2597	3043.886	83.931
1.2075	3025.660	104.956	1.6264	3039.499	88.961	2.2514	3043.886 3042.495	83.926
1.2117	3025.544	104.650	1.6347	3037.330	88.752	2.2597	3044.604	83.989
1 2200	3025.892 3026.531	104.426 104.151	1.6431	3037.409	88.583 88.510	2.2681 2.2764	3044.086 3043.688	83.950 83.753
1.2242	3024.534	103,890	1.6597	3038.173	88.412	2,2847	3042.371	83.989
1.2242	3025.066 3025.537	103.615 103.493	1.6431 1.6514 1.6597 1.6681	3037.409 3040.908 3038.173 3037.366 3038.583	88.412 88.284 88.232	2.2847 2.2931	3042.371 3043.476 3045.483 3045.507	83.994
1.2325	3025.537	103.493	1.6764	3038.583	88.232	2.3014	3045.483	83.948
1,2367 1,2408	3025.488	103.102	1.6847	3038.404 3039.049	88.090 87.850 87.796	2.3097	3045.507	84.000
.2450	3026.308 3025.981	102.850 102.585	1.7014	3039.678	87.796	2.3181 2.3264	3044.056 3045.295	84.005 84.137
.2492	3025.807	102.578	1,7097	3039.370	87.637	2,3347	3044.419	84.033
. 2533	3026.400	102.114	1 7181	3040.737 3039.796	87.512	2.3347 2.3431 2.3514	3045.022	84.000 84.258
.2575	3026.094	101.867	1.7264	3039.796	87.512 87.373 87.184	2.3514	3045.022 3044.383 3043.324	84.258
.2658	3025.542 3028,294	101.440	1.7347	3038,973 3040,045	87.017	2.3597 2.3681	3043.324 3042.898	84.077 84.077
.2700	3026.430	101.187	1.7514	3039.806	86.903	2.3764	3041.400	84.195
.2742	3028.150	100,922	1.7597	3039.804	86.766	2,3847	3041.271	84.397
.2783 .2825	3028.556	100.696	1.7681	3040.195	86.673	2,3931	3042.685	84.484
.2825	3028.904 3027.725	100.483	1.7764	3039.878	86.473 86.356	2.4014	3043.691	84.191
.2908	3027.367	100.185 99.996	1.7847 1.7931	3038.912	86 328	2.4097 2.4181	3043,496 3042,208	84.297 84.228
.2950	3027.972	99.941	1.8014	3038.322 3039.569	86.241	2.4264	3041.602	84.297
.2992 3	3029.438	99.524	1.8097	3038.612	86.328 86.241 86.090	2.4347	3041.343 3041.845 3042.751	84.310
.3033 3 .3075 3	3029,510 3029,722	99570	1.8181 1.8264	3038.244 3038.553	85.907	2.4431	3041.845	84.360
.3117 3	5029.722	99.386 98.881 98.609	1.8347	3038.958	85.855 85.721	2.4514 2.4597	3041,123	84.228 84.277
3158	5027.983	98.609	1.8431	3039.434	85.630 85.526 85.359 85.318	2.4681	3043.033	84.255
.3200 3	027.983 027.677	98.406 98.230 98.080 97.797	1.8431 1.8514	3039.434 3039.398	85.526	2.4764	3043.033 3042.552 3041.961	84.165
.3242 3 .3283 3	028.238 028.190	98.230	1.8597	3040.171	85.441	2.4847 2.4931	3041.961	84.449
.3325 3	029.915	97.797	1.8764	3041.009 3041.993	85.318	2.5014	3043.229 3042.517 3042.448	84.121 84.066
,3367 3	030,180	97.033	1,8847	3037.846	85.175 85.327 85.085 84.925 84.873 84.020	2.5097	3042,448	84,091
3408 3	030.952	97.616	1.8931	3036.729	85.327	2.5181	3041.935	83.992
3450 3 3492 3	031.439	97.160	1.9014	3034.890 3035.590	85.085	2.5264	3042.856	83.945
3533 3	029.839 029.834	96.921 96.720 96.490	1.9097 1.9181	3036.662	84.923	2.5347 2.5431	3043.422 3041.623	83.901
3575 3	032,410	96.490	1.9264	3036.072	84.020	2.5514	3044.156	83.857 83.761
3617 3	030.239	96.299	1.9347	3037.825	84.785	2.5597	3044.138	83.711
	032.472	96.084	1.9431	3038.485	84.799	2.5681	3043.213	83.667
3700 3 3742 3	034.314 032.960	95.870 95.671	1.9514 1.9597	3038.499 3038.805	84.684 84.645	2.5764 2.5847	3043.504 3044.707	83.585 83.576
	031.984	95.469	1.9681	3041.017	84.591	2.5931	3044.258	83.447
3825 3	033.338	95.335	1.9764	3039,103	84.544	2.6014	3043.549	83.464
	034.104	94.999	1.9847	3040.425	84.522		3044.815	83.414
	032.794 033.671	94.889 94.765	1.9931 2.0014	3042.733 3043.406	84.500 84.407	2.6181 2.6264	3045.537 3046.855	83,312 83,296
3992 30	033.674	94.320	2.0097	3040.577	84.398		3043.623	83.221
4033 30	033.823	94.326	2.0181	3045.565	84.913	2,6431	3043.977	83,656
4058 30	035.134	94.186	2.0264	3042.995	84.321	2.6514	3043.534	83.133
	033.250 035.015	93.776 93.296	2.0347 2.0431	3043.057	84.723 84.231		3042.998	83.100
4308 30	34.955	93.005	2.0514	3044.380 3042.977	84.102		3044.393 3043.873	83,056 83,252
4392 30	35.091	92.594	2,0597	3045.221	84.192	2.6847	3042.308	83.252
475 30	37.052	92.270	2,0681	3044.350	84.168		3043.370	83.131
	35.447	92.118		3045.273	84,137		3042.106	83.147
	37.855 35.232	91.782 91.517		3045.161 3041.219	84.099 84.030		3042.819 3045.122	82.861 82.852
	35.322	91.674		3042.338	84.113		3043.116	82.167
847 30	36.387	90.845	2.1097	3042.890	84.014	2.7347	3044.347	82.862
	38.930	90.623		3043.374	83.994		3044.093	82.811
	37,500	90.405		3042.878	83.978		3043.776	82.657
	37.682 38.093	90.215 89.995		3041.991 3039.606	83.975 83.382		3043.144 3042.837	82.615 82.778
181 30								021110
181 30								

Time 	Pressure (Psia)	Temperature (°f)	Time	Pressure (Psia)	Temperature (°F)	Time Pressure (Psia)	Temperatu (°F)
2.7764	3044.088	82.728	3,7300	3052.430	85.282	4.9636 3050.159	D/ 700
2.7847	3043.743	82.972	3.7467	3051.838	85.257	4.9803 3046.631	86,700 86,689
z.7931	3043.438	82.000	3.7633	3051.778	85.216	4.9969 3045.079	86.670
2,8014	3041.471	82.624	3.7800	3050,998	85.282	5.0136 3045.848	86.624
	3042.180	82.739	3.7967	3050.755	85,608	5.0303 3048.133	86.646
	3043.030	82.329	3.8133	3054.032	85.397	5.0469 3048.508	86.575
	3043.897 3043.851	82.025 82.665	3.8300	3053.021	85.414	5.0636 3048.016	86.564
	3043.827	82.646	3.8467 3.8633	3052.927 3053.045	85.739 85.504	5.0803 3049.940 5.0969 3050.082	86.577
	3043.657	82.704	3.8800	3051.540	85.564	5.0969 3050.082 5.1136 3050.649	86.605 86.553
2.8597	3042.292	82.759	3.8967	3054.196	85.685	5.1303 3051.024	86.512
2.8681	3043.461	82.720	3.9133	3052.310	85.723	5.1469 3049.343	86.479
	3042.224	82.772	3.9300	3053.646	85.479	5.1636 3050.472	86.523
	3044.702	82.912	3.9467	3052.703	86.174	5.1803 3049.409	86.509
	3042.674	82.748	3.9633	3051.997	86.008	5.1969 3051.556	86.539
	3042.667 3042.508	82.726 82.753	3.9800 3.9967	3052.528 3053.634	86.454	5.2136 3049.948	86.536
	3043.637	82.511	4.0133	3052.678	86.317 86.224	5.2303 3050.280 5.2469 3049.901	86.575
	3041.833	82.753	4.0300	3051.165	86.153	5.2636 3051.438	86.580 86.640
	3042.665	82.411	4.0467	3051.147	87.085	5.2803 3053.698	86.657
.9431 3	3041.757	82.814	4.0633	3050.755	87.012	5.2969 3052.255	86.719
	3042.854	82.593	4.0800	3050.658	87.173	5.3136 3052.829	86.780
	5042.363	82.717	4.0967	3051.353	87.378	5.3303 3052.729	86.867
	3044.638 3044.493	82.830	4.1133	3053.614	87.392	5.3469 3052.330	86.930
	1044.495 1043.438	82.087 82.367	4.1300 4.1467	3055.224 3050.471	87.463 87.386	5.3636 3051.326 5.3803 3049.407	86.985
	043.282	82.872	4.1633	3052.273	87,446	5.3803 3049.407 5.3969 3051.986	87.105 87.247
.0014 3	041.746	82,186	4.1800	3051.510	87.304	5.4136 3053.035	87.310
	040.899	82.833	4.1967	3050.180	87.405	5.4303 3052.592	87.531
	041.585	82.951	4.2133	3049.304	87.045	5.4469 3055.729	87.752
	042.053	82.954	4.2300	3051.355	86.864	5.4636 3054.580	87.313
	040.582	82.913 83.034	4.2467 4.2633	3050.774	86.673	5.4803 3055.518	88.338
	041.299	83.062	4,2800	3050.729 3051.275	86.534 86.348	5.4969 3056.766 5.5136 3058.369	88.281 88.515
	042.729	83.064	4.2967	3052.208	86.194	5.5303 3056.976	88.624
.0644 3	042.914	83.380	4.3133	3053.225	86.049	5.5469 3054.276	88.712
	043.342	83.180	4.3300	3054.157	85.896	5.5636 3055.348	88,657
	042.185	83.252	4.3467	3052.284	85.729	5.5803 3057.091	88.600
	043.144	83.610	4.3633	3051.154	85.767	5.5969 3057.154	88.420
	044.276 044.367	83.758 83.788	4.3800 4.3967	3049.935 3049.195	85.611 85.493	5.6136 3057.515 5.6303 3056.112	88.235
	045.007	83.810	4.4133	3049.593	85.430	5.6469 3056.574	88.066 87.823
1811 30	045.209	83.214	4.4300	3051.028	85.375	5.6636 3057.765	87.615
1978 30	046.833	83.656	4.4467	3049.987	85.403	5.6803 3056.989	87.463
	49.644	83.964	4.4633	3049.325	85.246	5.6969 3059.323	87,250
	046.539	84.394		3048.921	85.183	5.7136 3052.330	87.080
)50.614)49.021	84.244 84.151	4.4803 4.4969	3050.515 3049.733	85.268 85.252	5.7303 3055.072	86.930
	48.756	84.574	4.5136	3048.830	85.145	5.7469 3054.807 5.7636 3056.186	86.799 86.621
	47.335	84,750		3048.368	85.175	5.7803 3056.285	86.525
3133 30	49.331	84.997		3049.562	85.244	5.7969 3059.622	86.312
	48.990	84.873		3051,426	85.194	5.8136 3059.826	86.457
	49.280	85.038		3050.590	85.213	5.8303 3059.311	86.233
	47.765	84.871		3049.895	85.271	5.8389 3058.792	86,167
	48.272 49.124	85.008 85.019		3053,192	85.255	5.8556 3057.597	86.142
	49.177	85.038	4.6469	3052.078 3052.681	85.312 85.353	5.8722 3056.813 5.8889 3059.578	86.098 86.044
	49.410	85,052	4.6636	3051.436	85.463	5.9056 3057.426	85.970
467 30	49.138	85.052		3048.765	85.562	5.9222 3058.054	85.923
633 30	49.792	85.158		3050.467	85.564	5.9389 3056.522	85,940
	49.545	86.048	4.7136	3050.647	85.737	5.9556 3057.658	85.923
	49.490 49.762	85.952 85.723	4.7303 4.7469	3051.339	85.838 86.057	5.9722 3056.761 5.9889 3055.153	85.882
	49.841	85.308		3051.653 3050.594	86.181	5.9889 3055.153 6.0056 3055.280	85.920 85.940
	48.697	85.074		3051.686	86.298	6.0222 3057.643	85.923
633 304	49.177	85.368		3051.355	86,440	6.0389 3060.250	85.978
800 304	47.381	85.378	4.8136 3	3050.615	86.539	6.0556 3054.375	86.033
967 304	9.007	85.019	4.8303 3	3047.648	86.605	6.0722 3055.430	86.098
	9.731	85.180		5047.671	86.695	6.0889 3055.999	86.208
	49-625 10 209	85.661		3049.646	86.709	6.1056 3057.295	86.276
	50.298 59.042	85.159 85.148		3050,338 3051,481	86.758 86.752	6.1222 3059.083 6.1389 3057.820	86.438 86.558
	8.232	85.139		5051.481 5051.716	86.763	6.1556 3057.509	86.763
					00.100		
	9.957	85.183	4.9303 3	053.402	86.791	6.1722 3057.783	86.933

i

Time	Pressure (Psia)	Temperature (°F)	Time	Pr essure (Psia)	Temperature (°F)	Time Pressure (Psia)	Temperatur (°F)
6.2056	3058.084	87.394	7.4408	3060.812	90.308	8.6908 3057.271	04 (05
6.2222	3058.719	87.637	7.4575	3060.811	90.615	8.6908 3057.271 8.7075 3055.253	91.495 91.352
6.2389	3057.404	87.894	7.4742	3060.176	90.617	8.7242 3057.361	91,295
6.2556	3058.265	88.197	7.4908	3059.929	90.631	8.7408 3057.642	91 195
6.2722 6.2889	3057.987	88.398	7.5075	3057.564	90.861	8.7575 3058.939	91.075
6.2889	3058.386 3057.976	88.551	7.5242	3061.129	91.062	8.7742 3061.209	91.000
6.3030	3057.978	88.703 88.684	7.5408 7.5575	3061.180 3060.650	91.208 91.909	8.7908 3059.166	91.013
6.3222 6.3389 6.3556	3060.048	88.793	7.5742	3060.746	91,975	8.8075 3058.057 8.8242 3058.193	90.964 90.812
6.3556	3060.656	88.793 88.758	7.5908	3060.177	91.590	8.8408 3056.277	90.812
6.3722	3060.785	88.638	7,6075	3060.307	91.674	8.8575 3056.803	90,900
6.3889	3058.583	88.592	7.6242	3062.727	91.723	8.8742 3058.675	90.062
6.4056	3056.252	88.475	7.6408	3059.009	91.739	8.8908 3060.719	90.766
6.4222 6.4389	3060.231 3058.454	88.379 88.267	7.6575 7.6742	3058.792 3058.808	91.726 91.769	8.9075 3061.221	90.810
6.4556	3058.410	88.180	7.6908	3060.375	91.780	8.9242 3061.086 8.9408 3060.782	90.850
5.4722	3057.377	88.047	7.7075	3056.728	91.799	8.9575 3061.430	90.403 90.703
	3057.845	87.992	7.7242	3059.133	91.777	8.9742 3059.534	91.021
5.5056	3059.517	87.899	7.7408	3056.258	91.834	8.9908 3062.381	91.162
5.5222	3061.076	87.831	7.7575	3058.459	91,799	9.0075 3061.406	91.238
	3059.939	87.738	7.7742	3056.764	91.476	9.0242 3060.401	91.387
5.5722	3059.673	87.651	7.7908	3056.631	91.077	9.0408 3061.894	91.571
	3061.874 3060.659	87.667 87.561	7.8075 7.8242	3058.991 3059.292	91.842 91.869	9.0575 3062.645	91.815
.6056	3060.060	87.525	7.8408	3058.386	91,985	9.0742 3063.075 9.0908 3063.479	92.026 92.286
.6222	3057.875	87.457	7.8575	3058.021	91.991	9.1075 3065.755	92.613
.6389	3059.385	87.435	7,8742	3058,444	91.512	9.1242 3066.590	92.918
.6556	3060.672	87.424	7.8908	3058.608	92.021	9.1408 3063.935	93.261
.6722	3059.781	87.337	7.9075	3058.002	92.067	9.1575 3065.623	93.650
	3061.686 3061.056	87.345 87.433	7.9242 7.9408	3057.604	92.280	9.1742 3067.499	93.946
.7222	3060.234	87.400	7.9575	3057.931 3057.931	92.215 92.251	9.1908 3068.557 9.2075 3068.100	94.216
	3062.373	87.482	7.9742	3060.932	92.318	9.2242 3067.748	94.436 94.485
.7556 3	3061.115	87.452	7,9908	3058.629	92.903	9.2408 3067.413	94.480
.7722	3060.753	87.515	8.0075	3057,258	92.475	9.2575 3065.157	94.412
	3059.322	87.539	8.0242	3060.492	92.440	9.2742 3066.536	94.318
	3059.726 3061.977	87.599 87.678	8.0408 8.0575	3060.750 3059.308	92.616 92.718	9.2908 3067.631 9.3075 3065.674 9.3242 3069.410	94.170
.8389 3	3060.193	87.763	8.0742	3059.817	92.824	9.3075 3065.674 9.3242 3069.410	93.968 93.747
.8556 3	3060.230	87.842	8.0908	3057.458	92.894	9.3408 3067.098	93.528
.8722 3	5059.938	87.976	8.1075	3057.458 3057.320	92.219	9.3575 3066.980	93.364
.8889 3	5057.843	88.142	8.1242	3057.928	92.345	9.3742 3068.198	93.126
.9056 3	5060.619	88.284	8.1408	3058.671	92.994	9.3908 3066.476	92.940
	062.188 1059.951	88.436 88.660	8,1575 8,1742	3058.861 3058,028	93.283 93.648	9.4075 3068.926 9.4242 3067.596	92.778
	057.811	88,842	8.1908	3058.168	93.585	9.4408 3065.438	92.553 92.410
9722 3	058,086	88.973	8.2075	3058.067	93.771	9.4575 3066.773	92.213
.9889 3	060.646	89.125	8.2242	3059.409	93.916	9.4742 3066.150	92.156
	055.850	89.229	8.2408	3059.373	94.035	9.4908 3062.874	92.091
	056.868	89.272	8.2575	3063.637	94.226	9.5075 3066.233	91.939
	057.698 059.821	89.332 89.376	8.2/42	3063.749	94.927	9.5242 3065.744	91.969
	061.181	89.406		3064.091 3063.377	94.898 95.155	9.5408 3066.357 9.5575 3065.514	91,904 91,845
	059.448	89.362		3063.190	95.155	9.5742 3066.710	91.788
	060.363	89.435		3062.925	95.381	9.5908 3068.191	91.761
	058.949	89,446	8.3575	3063.098	95.970	9.6075 3066.280	91,728
	059.304	89.425		3062.569	95.714	9.6242 3066.925	91.777
	060.328	89.433		3059.613	95.348	9.6408 3068.180	91.755
	D61.714 D62.085	89.571 89.493	8.4075 8.4242	3060.685 3061.353	95.940 95.756	9.6575 3067.760	91.774
	061.729	89.529		3061.834	95.534	9.6742 3068.075 9.6908 3067.114	91.758 91.717
2075 30	061.807	89.877		3062.265	95.347	9.7075 3066.758	91.810
2242 30	062.704	89.520		3061.771	94.751	9.7242 3068.269	91.926
2408 30	061.664	89.230		3062.548	94.690	9.7408 3067.216	91.926
	061.543	89.152	8.5075	3062.693	94.443	9.7575 3068.622	91.945
)61.263)63.188	89.040 89.672		3062.338 3063.956	93.930 93.556	9.7742 3068.853	92.013
	61.533	89.691		5063.528	93.194	9.7908 3064.671 9.8075 3064.622	91.967 92.159
	62.009	89.740		3063.386	92.725	9.8242 3066.186	92.459
408 30	62.764	89.735	8.5908 3	5062.462	92.656	9.8408 3066.512	92.261
575 30	65.635	89.941		5065.505	92.418	9.8575 3065.120	92.386
	63.368	89.941		3063.6 3 4	92.686	9.8742 3066.778	92.562
000 70	60.067	90.012	8.6408 3	061.454	92.053	9.8908 3067.148	92.586
	60.302	90.115		059.610	91.977	9.9075 3066.679	92.645

÷

ĭime	Pressure (Psia)	Temperature (°F)	Time Pressure (Psia)	Temperature (°F)	Time Pressure (Psia)	Te mpe ratur (°F)
9.9408	3067.109	92.897	11,1908 3068,090	89.974	12.4408 3075.559	86.577
9.9575	3067.073	93.202	11.2075 3069.125	89.968	12,4575 3074,530	86.618
9.9742	3066.307	93.315	11.2242 3068.899	89.947	12,4742 3074,979	86,607
7.9908	3066,481	93.404	11.2408 3068.394	89.933	12.4908 3074.833	86.575
	3068.025	93.590	11.2575 3066.408	89.903	12.5075 3076.600	86.643
	3068.577	94.022	11.2742 3068.777	89.952	12.5242 3075.087	86.498
	3066.137 3066.909	93.935 94.178	11.2908 3069.252 11.3075 3067.561	89.985	12.5408 3075.438	86.064
	3065.875	94.315	11.3242 3066.398	90.020 90.066	12.5575 3075.022 12.5742 3075.219	86.465
	3068.625	94.375	11.3408 3067.536	90.126	12.5908 3075.122	86.446 86.367
	3068.123	94,528	11.3575 3066.323	90.237	12.6075 3074.793	86.353
	3067.381	94.407	11.3742 3067.538	90,226	12.6242 3046.591	86.339
	3067.812	94.275	11.3908 3065.623	90.367	12.6408 3011.372	86.287
	3068.601	94.224	11.4075 3069.189	90.419	12.6433 3015.056	86.427
	3066.908 3067.231	94.059 93.854	11.4242 3067.737 11.4408 3069.502	90.571 90.758	12.6436 3015.329 12.6439 3016.249	86.175
	3067.318	93.650	11.4575 3068.592	90.910	12.6442 3017.002	86.435 86.369
	3064.288	93,539	11.4742 3068.419	91.162	12.6444 3017.489	86,167
	3064.215	93.339	11.4908 3067.618	91.206	12.6447 3017.918	86.735
	3063.793	93.194	11.5075 3068.415	91.422	12.6450 3019.651	86.525
	3064.216	93.372	11.5242 3069.106	91.615	12.6453 3020.694	86.317
	3065.438	92.807	11.5408 3069.803	92.031	12.6456 3021.832	86.484
	3069.127	92.713	11.5575 3070.423	92.315	12.6458 3022.917	86.424
3.3242	3067.208 3070.536	92.345	11.5742 3072.575	92.456	12.6461 3023.740	86.304
	3067.712	92.383 92.253	11.5908 3070.472 11.6075 3069.708	92.664 92.156	12.6464 3024.128 12.6467 3025.468	86.296 86.375
	3068.163	92.029	11.6242 3070.427	92.691	12,6469 3026,277	86.263
	3067.055	92.004	11.6408 3071.865	92.575	12.6472 3026.679	86.337
	3069.578	92.099	11.6575 3071.152	92.191	12.6475 3027.435	86.317
	3068.679	91.785	11.6742 3067.785	91.985	12.6478 3028.048	86.334
	3071.913	91.820	11.6908 3069.490	91.685	12.6481 3028.619	86.328
	3073.201	91.677	11.7075 3070.776	91.390	12.6483 3029.769	86.274
	3072.445 3072.565	91.647 91.878	11.7242 3070.897 11.7408 3071.436	91.272 90.538	12.6486 3030.742 12.6489 3030.997	86.399
	3073.824	91.711	11.7575 3072.568	90.139	12.6492 3032.000	86.293 86.298
.5242 3	3074.177	91.590	11.7742 3072.516	89.773	12.6494 3032.051	86.298
.5408 3	3071.608	91.471	11.7908 3068.239	89.318	12.6497 3032.223	86.326
	3070.959	91.509	11.8075 3068.467	89.226	12.6500 3034.044	86,378
	3070.764	91.531	11.8242 3068.557	88.613	12.6503 3034.468	86.320
	3073.096 3071.159	91.506 91.653	11.8408 3068.895 11.8575 3068.670	88.352	12.6506 3035.256	86.309
	5072.777	91.682	11.8742 3069.740	88.082 87.831	12.6508 3035.795 12.6511 3035.959	86.306 86.383
	5071.086	91.746	11.8908 3069.286	87.689	12.6514 3035.105	86.304
.6575 3	5070.939	91.948	11.9075 3070.070	87.444	12.6517 3035.654	86.287
	5070.328	92.056	11.9242 3070.297	87.244	12.6519 3036.930	86.353
	071.822	92.307	11.9408 3070.239	87.072	12.6522 3037.325	86.304
	072.232	92.656	11.9575 3070.832	86.884	12.6525 3038.330	86.246
	5069.797 5071.714	92.678 93.072	11.9742 3070.095 11.9908 3070.566	86.025 86.692	12.6528 3037.590 12.6531 3037.941	86.405 86.326
	071.573	93.196	12.0075 3070.772	86.446	12.6533 3038.054	86.334
	068.343	93.391	12.0242 3069.519	86.389	12.6536 3037.840	86.334
	069.877	93.493	12.0408 3070.886	86.265	12.6539 3040.107	86.290
	067.356	93.520	12.0575 3071.867	86.230	12.6542 3040.824	86.555
	068.069	93.582	12.0742 3073.390	86.186	12.6544 3041.117	86.408
	069.349 067.341	93.428	12.0908 3073.844	86.096	12.6547 3041.216	86.290
	067.541	93.516 93.053	12.1075 3072.016 12.1242 3073.813	86.030 86.014	12.6550 3039.648 12.6553 3039.240	86.315 86.279
	066.575	92,848	12.1408 3073.938	85.953	12.6556 3041.112	86.304
	065.131	92,540	12.1575 3073.434	85.948	12.6558 3041.673	86.380
	065.492	92.310	12.1742 3072.785	85.899	12.6561 3042.608	86,298
408 30	066.298	91.905	12.1908 3074.881	85.929	12.6564 3042.223	86.331
	068.507	91.923	12.2075 3075.575	85.893	12.6567 3040.360	86.153
	067.556	91.617	12.2242 3074.177	85.948	12.6569 3041.516	86.383
	066.910	91.425	12.2408 3074.501	85.915	12.6572 3044.474	86.410
075 30 0242 30		91.214 90.964	12.2575 3072.843 12.2742 3074.960	85.983 86.087	12.6575 3044.411 12.6578 3043.845	86.356 86.304
	071.600	90.897	12.2908 3074.526	86.559	12.6581 3043.241	86.317
575 30		90.739	12.3075 3074.018	86.202	12.6583 3043.338	86.315
0742 30	68.605	90.571	12.3242 3074.554	86.265	12.6586 3043.965	86.372
908 30		90.452	12.3408 3073.849	86.337	12.6589 3044.060	86.282
075 30		90.376	12.3575 3074.641	86.391	12.6592 3045.908	86.339
242 30		90.245 90.142	12.3742 3074.731 12.3908 3075.619	86.482	12.6594 3046.452	86.268 86.421
/00 70		YU. 14Z		86.575	12.6597 3045.627	00.421
408 30		90,090	12.4075 3073.700	86.462	12.6600 3043.927	86.233

Time	Pressure	Temperature	Time	Pressure	Temperature	Time	Pressure	Temperature
<u>_</u>	(Psia)	(°F)	··	(Psia)	(°F)		(Psia)	(*F)
12.6606	3045.188	86.246	12.8206	3074.289	86.451	13,2939	3069.575	90.528
12.6608	3047.291	86.276		3072.556	86,479	13,2942	3069.670	90.519
12.6611	3045.929	86.350	12.8539	3072.593	86.050	13,2944	3069.802	94 049
	3044.858	86.378	12.8706	3072.926	86.183	13.2947	3069.184	90.259
	3046.621	86.328		3073.772	86.629		3070.109	90.587
	3047.507	86.263		3073,265	86.304		3069.957	90.454
	3048.854	86.402	12,9206	3072.788	86.047		3069.531	90.536
	3047.634	86.290		3072.335	86.156	13.2958	3069.372	90.598
	3046.591	86.309		3072.764	86.065		3068.524	90.525
	3047.244	86.331		3073.509	86.843		3068.657	90.487
	3049.520	86.213		3073.217	87.037		3069.673	90.598
	3050.042	86.416		3073.426	87.863		3069.434	90.741
	3048.207	86.372		3074.675	87.411	13.2972	3069.800	90.568
	3046.919	86.323		3074.774	87.626		3069.961	90.449
	3047.677 3048.662	86.241 86.342		3073.653 3072.921	87.801		3069.702	90.682
	3049.281	86.380		3072.715	88.210		3070.522	90.465
	3048.211	86.265		3072.923	88.682 88.464		3069.889	90.576
	3048.174	86.337		3072.149	88.611		3070.079 3070.661	90.522
	3049.965	86.309		3071.611	88.580		3069.390	90.568
	3050.420	86.361		3070.229	89.085		3069.108	90.566 90.568
	3049.830	86.323		3070.311	89.748	13.2997		90.460
	3049.143	86.317		3070.243	89.762	13.3000		90.617
	3049.823	86.293		3072,074	89.868	13.3003		90.473
	3051.353	86.271		3071.697	90.058	13,3006		90.650
	3051.499	86.424	13.2372	3072.195	90.240	13.3008		90.574
	3051.413	86.339		3071.670	90.270	13.3011		90.506
2.6681 3	3051.346	86.290		3070.499	90.384	13.3014		90.736
	3049.452	86.265		3070.002	90.443	13,3017		90.430
	3050.276	86.378	13.2811	3069.367	90.538	13.3019	3070.682	90.571
	3051.744	86.391		3070.407	90,706	13,3022	3070.068	90.528
	3050.750	86.260		3070.317	90.639	13.3025		90.541
	3050.261	86.326	13.2819		90.492	13.3028		90.655
	3051.317	86.361	13.2822		90.495	13.3031		90.533
	051.896	86.312	13.2825		90.457	13.3033		90.625
	5051.111	86.331	13.2828		90.465	13.3036		90.509
	1050.756	86.293	13.2831		90.503	13.3039		90.536
	052.371 052.109	86.378 86.282	13.2833 13.2836		90.121	13.3042		90.642
	053.111	86.279	13.2839		90.075 90.484	13.3044 13.3047		90.528
	053.347	86,369	13.2842		90.378	13.3050		90.579 90.547
	053.159	86.345	13.2844		90.563	13,3053		90.568
.6722 3		86.394	13.2847		90.484	13.3056		90.666
.6725 3		86.224	13.2850		90.541	13,3058		90.506
.6728 3		86,298	13.2853		90.400	13.3061		90.582
.6731 3		86.372	13.2856		90.560		3068.005	90.604
.6733 3		86.358	13.2858		90.441		3069.465	90.536
.6736 3		86.282	13.2861		90.509	13.3069		90.666
6739 30		86.317	13.2864		90.427	13.3072		90.471
6742 30		86.408	13.2867		90.606	13.3075		90.008
6744 30	052.358	86.375	13.2869	1069.522	90.473	13.3078 3		90.511
6747 30		86.265	13.2872	069.510	90.479	13.3081 3		90.609
	053.396	86.342	13.2875	068.922	90.479	13.3083 3	5071.036	90.495
	054.092	86.285	13.2878	069.363	90.525	13.3086 3		90.560
6756 30		86.254	13.2881		90.557	13.3089 3		90.650
6758 30		86.367	13.2883		90.433	13.3092 3		90.623
6761 30		86.369	13.2886 3		90.492	13.3094 3		90.595
6764 30		86.378	13.2889 3		90.776	13.3097 3		90.492
6819 30		86.364	13.2892 3		90.536	13.3100 3		90.701
6875 30 6871 70		86.345	13.2894 3		90.435	13.3103 3		90.650
6931 30 6986 30		86.342	13.2897 3		90.557	13.3106 3		90.555
7042 30		86.287 86.361	13.2900 3		90.471	13.3108 3 13.3111 3	071.302	90.606
			13.2903 3 13.2906 3		90.522			90.593
7097 30 7153 30		86.369 86.315	13.2908 3		90.509 90.503	13.3114 3 13.3117 3	071.017	90.639 90.549
7208 30		86.293	13.2908 3		90.544	13.3119 3	071.011	
			13.2914 3			13.3122 3		90.582 90.633
7264 30 7319 30		86.413 86.345			90.400			
7319 30 7375 30		86.389	13,2917 3		90.595	13,3125 3		90.585
7375 30 7431 30		86.405	13.2919 3 13.2922 3		90.465 90.620	13.3128 3 13.3131 3		90.669 90.547
7486 30		86.304	13.2922 3		90.500	13.3133 3		90.547
waa ili		86,181	13.2928 3		90.498	13.3136 3	071 554	90.647
	U7.11J	00,101	13,4740 3	JUT.JUG	70.970			
7539 30		86 701		160 757	00 528	יד בוזכו דו	171 853	00 570
7539 30 7706 30 7872 30	70.451	86.391 86.479	13.2931 3 13.2933 3		90.538 90.593	13.3139 3 13.3142 3		90.579 90.606

Jime I	Pressure (Psia)	Temperature (°F)	Ті ле	Pressure (Psia)	Temperature (°f)	Time	Pressure (Psia)	Temperatu (°F)
13.3147	3071.910	90,655	13, 3356	3073.063	90.723	13 3564	3072,208	90.734
13.3150		90.614		3072.561	90.726	13.3567	3072.393	90.734
13.3153		90.614		3072.314	90,685	13.3569	3071.941	90.736
13.3156		90.642		3072.953	90.704	13.3572	3072.363	90.807
13.3158	3071.233	90.617	13.3367	3073.070	90.696	13.3575	3072.122	90.712
13.3161		90.628	13.3369	3072.678	90.652	13.3578	3071.525	90.723
13.3164 13.3167		90.633 90.806	13.5572	3073.070 3073.074	90.742	13.3581	3071.989	90.769
13.3169	3072 615	90,666	13.33/3	3072.919	90.709 90.682		3071.733 3072.027	90.859
13.3172 3		90.726	13.3381	3073.368	90.655	13 3589	3073.179	90.766 90.726
13.3175 3	3072.551	90.525		3072.508	90.736		3071.512	90.785
3.3178 3	5071.914	90.623	13.3386	3072.826	90.745	13.3594	3073,951	90.755
3.3181 3		90.865		3071.836	90.938		3071.780	90.717
3.3183 3	5071.47Z	90.669		3071.487	90.734	13.3600	3071.980	90.826
3.3186 3 3.3189 3		90.587 90.644		3071.719 3071.895	90.636 90.693		3073.267	90.745
3.3192 3		90.606	13.3377	3070.984	90.717	13.3000	3073.303 3073.177	90.810 90.747
3.3194 3		90.723		3072.567	90.717		3073.146	90.804
3.3197 3		90,614	13.3406	3072.669	90.709		3072.789	90.799
3.3200 3	070.990	90.571		3071.512	90.693		3072.714	90.783
3.3203 3	071.301	90.717		3072.524	90,680	13.3619	3071.960	90.750
3.3206 3	072.342	90.492		3073.234	90.758		3071.389	90.764
3.3208 3	072.041	90.723		3072.316	90.709		3071.282	90.769
3.3211 3 3.3214 3		90.701		3073.399	90.717		3071.109	90.902
3.3217 3	072.505	90.623 90.617	13.3422	3072.999 3072.632	90.693 90.793	13.3631 13.3633	3070.774	90.696
3.3219 3		90.623		3072.188	90.685	13.3636		90.774 90.728
5.3222 30	071.956	90.652	13.3431	3072.635	90.734	13.3639	3071.628	90.861
3.3225 30	072.437	90.631	13.3433	3072.490	90.685	13.3642	3071.328	90.766
3.3228 30	072.603	90.914	13.3436	3073.628	90.745	13.3644	3071.444	90.769
1.3231 30 1.3233 30	J72.569	90.828	13.3439		90.693	13.3647		90.736
.3236 30	170 KNQ	90.755 90.652	13.3442 13.3444		90.987 90.699	13.3650 13.3653		90.945
.3239 30	071.866	90.590	13.3447		90.952	13.3656	3072.598	90.704 90.845
.3242 30	070.756	90,717	13.3450		90.769	13.3658	3071.085	90.701
.3244 30		90.631	13,3453		90.666	13,3661	3072.975	90.880
.3247 30		90.582	13.3456	3072.048	90.777	13.3664	3071.448	90.717
.3250 30 .3253 30		90.720 90.644	13.3458		90.685 90.753	13.3667	5070-678	90.769
.3256 30		90.696	13.3461 13.3464		90.690	13.3669 13.3672	3072.223 2071 010	90.842 90.810
.3258 30	71.254	90.536	13.3467		90.731	13,3675	3070.810	90.761
.3261 30	72.923	90.761	13.3469	3071.616	90.051	13.3678		90.804
.3264 30		90.631	13.3472		90.663	13.3681		90.785
.3267 30	71.183	90.644	13.3475		90.769	13.3683		90.812
.3269 30 .3272 30	72.074	90.623 90.764	13.3478 13.3481		90.769	13.3686		90.008
.3275 30		90.669	13.3483		90.650 90.005	13.3689 1 13.3692 1		90.826 90.831
.3278 30	72.288	90.541	13.3486		90.712	13.3694 3		90.747
3281 30	72.269	90.731	13.3489		90.821	13.3697		90.766
3283 30		90.717	13.3492	3072.975	90,761	13.3700 3		90.878
3286 30		90.658	13.3494 3	5071.426	90.579	13.3703 3		90.745
3289 30		90.647	13.3497		90.804	13.3706 3		90.793
3292 307 3294 307		90.671 90.704	13.3500 3 13.3503 3		90.981	13.3708 3		90.853
3297 307		90.563	13.3506 3		90.829 90.701	13.3711 3 13.3714 3		90.796 90.864
3300 307		90.723	13.3508 3		90.685	13.3717 3		90.745
3303 307		90.647	13.3511 3		90.804	13.3719 3		90.736
3306 307	72.812	90,780	13.3514 3	072.966	90,726	13.3722 3	071.595	90.929
3308 307		90.487	13.3517 3		90.761	13.3725 3		90.796
3311 307		90.254	13.3519 3		90.720	13.3728 3		90.804
3314 307 3317 307		90.745 90.701	13.3522 3 13.3525 3		90.766 90.726	13.3731 3 13.3733 3		90.878
3319 307	1.292	90.636	13.3528 3		90,742	13.3736 3		90.723 90.850
3322 307	1.146	90,957	13.3531 3		90.761	13.3739 3		90.818
3325 307	1.188	90.628	13.3533 3	073.366	90.769	13.3742 3		90.823
3328 307	1.021	90.617	13.3536 3	073.170	90.682	13.3744 3	068,753	90.856
3331 307		90.739	13.3539 3		90.875	13.3747 3		90.766
3333 307		90.677	13.3542 3		90.576	13.3750 3	069.693	90.878
3336 307 3339 307		90.680 90.992	13.3544 3 13.3547 3		90.878 90.807	13.3753 3 13.3756 3		90.777 90.818
3342 307		90.612	13.3550 3		90.707	13.3758 3		90.861
344 307		90.791	13.3553 3	073.027	90.769	13.3761 3		90.755
347 307		90.506	13.3556 3	073.229	90.747	13.3764 3		90.861
350 307	3.574	90.812	13.3558 3	073.411	90.758	13.3767 30	070.747	90.793
353 307		90,642	13.3561 30		90.761	13.3769 30		

			 ,					······
Тіте 	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperature (°F)	Tîme	Pressure (Psia)	Temperatu (°f)
13.3772	3070.879	90,747	13 308	1 3033.661	90.883	17 / 190	2978.349	
	3071.741	90.840	13.3983	3 3032.650	90.886	13.4192	2977.880	90.943 90.948
	3070.426	90.772	13,3986	5 3031.605	90.894	13.4194	2977.377	90.943
	3070.447	90.727		7 3030.531	90.883	13.4197	2976.900	90.940
	3070.613	90.490	13.3992	2 3029.541	90.897	13.4200	2976.460	90.964
	3071.313	90.812		3028.481	90.878	13.4203	2975.983	90.953
	3070.718 3070.975	90.821		7 3027.510 3026.536	90.894		2975.476	90.934
13 3794	3071.262	90.859 90.840		3025.527	90.897 90.897		2975.065	90.959
	3070.486	90.834		3024.527	90.878		2974.611 2974.144	90.956
	3071.297	90.796		3023.626	90.907	13.4214	2973.687	90.951 90.943
13.3803	3071.384	90.826		3022.622	90.883		2973.285	90.945
3.3806	3070.873	90,848		3021.716	90.902	13.4222	2972.864	90.967
3.3808	3070.546	90.842	13.4017	3020.773	90.894	13.4225	2972.401	90.948
	3071.594	90.840	13.4019	3019.857	90.905	13,4228	2972.004	90.964
	3070.604	90.780	13.4022	3018.929	90.897	13.4231	2971.576	90.956
	3071.435	90.918		3018.019	90.894	13.4233		90.959
	3071.062 3071.571	90.823		3017.140	90.897		2970.767	90.964
	3071.262	90.859 90.812	13.4031	3016.289 3015.372	90.910	13.4239	2970.341	90.953
7 7828	3070.750	90.707		3014.528	90.888 90.902	13.4242 13.4244	2969.931	90.951
	3070.846	90.964		3013.694	90.905	13.4247		90.981
	3071.309	90.864		3012.827	90.902	13.4250		90.962 90.956
3.3836	3070.924	90.886		3012.013	90.907	13.4253		90.959
	3071,764	90.783	13.4047	3011.157	90.891	13.4256		90.975
	3071.922	90.861	13.4050	3010.393	90.915	13.4258	2967.659	90.972
	3071.323	90.883		3009.568	90.907	13.4261	2967.243	90.951
	3071.607	90.804		3008.742	90.899	13.4264	2966.917	90,970
	3070.648	90.880		3007,959	90.902	13.4267		90.981
5.5855 5	5070.995 5070.919	90.823		3007.222	90.921	13.4269	2966.213	90.975
0.0000 J 7959 T	1069.965	90.845		3006.424	90.915	13.4272	2965.832	90.964
	5070.609	90.878 90.902		3005.640 3004.879	90.902 90.905	13.4275	2965.496	90.970
	071.626	90.826		3004.163	90.915	13.4278 13.4281	2903.133 704/ 97/	90.972
5.3867 3		90.867		3003.410	90.918	13.4283	2964.470	90.986 90.964
5.3869 3	070.879	90.812		3002.660	90.907	13.4286	2964 146	90.972
5.3872 3		90.869	13.4081	3001.946	90.915	13.4289	2963.825	90,978
3.3875 3		90.842		3001.205	90.913	13.4292	2963.521	90.989
.3878 3		90.880		3000.505	90.921	13.4294	2963.160	90.962
.3881 3 .3883 3		90.812 90.883		2999.763	90.902	13.4297	2962.855	90.975
.3886 3	071 898	90.856	13.4092 13.4094		90.921 90.921	13.4300 2 13.4303 2	2962.585	90.991
.3889 3	071.538	90.872	13.4097		90.918	13.4306 2		90.986 90.978
.3892 3	071.067	90,872	13.4100		90.915	13.4308 2		90.975
.3894 30		90.853	13.4103		90.926		961.380	90,994
.3897 30	070.029	90.872	13.4106		90.924	13.4314 2	961.083	90.989
.3900 30		90.848	13.4108		90.913	13.4317 2	960.775	90.978
.3903 30		90.883		2994.327	90.929	13.4319 2	960.496	90.986
.3906 30 .3908 30		90.845 90.875	13.4114 13.4117	2993.680	90.929	13.4322 2	960.221	90.989
.3911 30		90.867	13.4119	2992.993	90.913	13.4325 2		90.997
3914 30		90.869	13.4122		90.926 90.926	13.4328 2 13.4331 2	737,073 050 784	90,981
3917 30		90.867	13.4125		90.932	13.4333 2		90.983 91.000
3919 30		90,872	13.4128		90.921	13.4336 2		90.991
3922 30		90.872	13.4131		90.918	13.4339 2		91.000
3925 30		90.869	13.4133		90.934	13.4342 2		90.981
3928 30		90.880	13.4136		90,924	13,4344 2		90,991
3931 30		90.861	13.4139		90.945	13.4347 2	957.872	91,005
3933 30		90.875	13.4142 2		90.913	13.4350 2		91.005
3936 30 7070 70		90.878	13.4144		90.937	13.4353 2		90.983
3939 30 3942 30		90.878 90.872	13.4147 2 13.4150 2		90.940	13.4356 29	757.145 DE4 017	91.002
3944 30		90.886	13.4153 2		90.940 90.913	13.4358 29 13.4361 29		91.008 91.002
3947 30		90.869	13.4156 2		90,951	13.4364 29		90.989
3950 30		90.878	13.4158 2	2984.069	90.937	13.4367 29		91.005
3953 30/	44.987	90.872	13.4161 2		90.937	13.4369 29		91.000
3956 304		90.886	13.4164 2	982.951	90.918	13.4372 29	955.781	91.013
3958 304		90.875	13.4167 2		90.951	13.4375 29	55.557	91.008
3961 304		90.888	13.4169 2		90.945	13.4378 29		90.997
3964 304		90.880	13.4172 2		90.940	13.4381 29		91.010
3967 303 3969 303		90.880 90.886	13.4175 2		90.934	13.4383 29		91.016
		90.886	13.4178 2 13.4181 2		90.943 90.948	13.4386 29 13.4389 29		91.005 91.010
1972 in 1		/ / / / / / / / / / / / / / / / / / / /		7 1 7 1 W V I	70.770	(3,4307 27		211010
3972 303 3975 303	35.850	90.880	13.4183 2	979.341	90.937	13.4392 29	54.301	91.013

Time	Pressure (Psia)	Temperature (°F)	Time Pressure (Psia)	Temperature (°F)	Time Pressure (Psia)	Temperatur (°F)
13.4397	2953.925	91.021	13.4606 2944.488	91.084	13.4814 2940.177	04.445
	2953.693	91.000	13.4608 2944.435	91.103	13.4817 2940.168	91.162
13.4403	2953.527	91.013	13.4611 2944.295	91.067	13.4819 2940.129	91.173 91.176
	2953.336	91.013	13.4614 2944.273	91.103	13.4822 2940.060	91.162
3.4408	2953.205	91.046	13.4617 2944.176	91.094	13.4825 2940.053	91.178
	2952.921	90.989	13.4619 2944.123	91.105	13.4828 2939.999	91.173
	2952.818	91.032	13.4622 2944.010	91.092	13.4831 2939.982	91.184
3.4417	2952.609	91.019	13.4625 2943.936	91.092	13.4833 2939.945	91.184
	2952.427	91.016	13.4628 2943.870	91.100	13.4836 2939.835	91.149
3.4422	2952.268 2952.075	91.021	13.4631 2943.814	91.113	13.4839 2939.847	91.178
	2951.954	91.013 91.035	13.4633 2943.720 13.4636 2943.598	91.103	13.4842 2939.823	91.181
	2951.755	91.027	13.4639 2943.579	91.073 91.113	13.4844 2939.788	91.187
3.4433	2951.618	91.032	13.4642 2943.479	91.092	13.4847 2939.744 13.4850 2939.695	91.187
3.4436	2951.400	91.010	13.4644 2943.481	91.132	13.4853 2939.652	91.176 91.173
3.4439	2951.276	91.027	13.4647 2943.292	91.078	13.4856 2939.628	91.184
3.4442	2951.147	91.040	13.4650 2943.298	91.113	13.4858 2939.609	91.189
	2950.964	91.029	13.4653 2943.220	91.111	13.4861 2939.575	91.195
3.4447	2950.807	91.024	13.4656 2943.098	91.089	13.4864 2939.496	91.176
3.4450	2950.645	91.024	13.4658 2943.110	91.127	13.4867 2939.479	91.178
3.4453	2950.543	91.048	13.4661 2942.991	91.103	13.4869 2939.465	91.195
	2950.361	91.029	13.4664 2942.912	91.100	13.4872 2939.425	91.189
	2950.216 2950.098	91.035 91.043	13.4667 2942.904 13.4669 2942.785	91.127	13.4875 2939.411	91.206
	2949.914	91.027	13.4672 2942.749	91.103 91.119	13.4878 2939.366 13.4881 2939.299	91.197
	2949.801	91.037	13.4675 2942.677	91.116	13.4883 2939.250	91.181
3.4469	2949.664	91.043	13.4678 2942.604	91,108	13.4886 2939.293	91.178 91.214
5.4472 2	2949.511	91.032	13.4681 2942.572	91.127	13.4889 2939.189	91.181
	2949.404	91.054	13.4683 2942.478	91.116	13.4892 2939.225	91.216
	2949.246	91.032	13.4686 2942.462	91.135	13.4894 2939.153	91,197
.4481	2949.139	91.054	13.4689 2942.361	91.116	13.4897 2939.104	91.187
.4485 2	2948.978	91.035	13.4692 2942.279	91.108	13.4900 2939.086	91.197
	2948.861 2948.734	91.043	13.4694 2942.233	91.119	13.4903 2939.055	91.200
.4407 2	948.630	91.046	13.4697 2942.227	91.143	13.4906 2939.058	91.214
. 4472 2	948.483	91.054 91.046	13.4700 2942.133 13.4703 2942.066	91.124 91.124	13.4908 2938.988	91.200
	948.360	91.043	13.4706 2941.977	91.108	13.4911 2938.976 13.4914 2938.935	91.206
	948.238	91.048	13.4708 2941.956	91.124	13.4917 2938.893	91.203
	948.142	91.056	13.4711 2941.922	91.138	13.4919 2938.898	91.200 91.219
	948.017	91.056	13.4714 2941.868	91.141	13.4922 2938.836	91.206
	947.879	91.046	13.4717 2941.776	91.119	13.4925 2938.842	91.216
.4511 2		91.051	13.4719 2941.753	91.138	13.4928 2938.772	91.203
	947.666	91.054	13.4722 2941.696	91.135	13.4931 2938.753	91.208
	947.568 947.450	91.065	13.4725 2941.632	91.132	13.4933 2938.734	91.214
.4522 2	747.4JU 067 317	91.065 91.046	13.4728 2941.588 13.4731 2941.549	91.132	13.4936 2938.692	91.211
4525 29	947.231	91.062	13.4733 2941.472	91.143 91.130	13.4939 2938.713 13.4942 2938.638	91.230
4528 29	247.119	91.065	13.4736 2941.413	91.130	13.4944 2938.605	91.214 91.208
4531 29		91.054	13.4739 2941.415	91.154	13.4947 2938.554	91.200
4533 29	746.895	91.059	13.4742 2941.330	91.141	13.4950 2938.587	91.230
4536 29	46.797	91.062	13.4744 2941.301	91.149	13.4953 2938.550	91.230
4539 29		91.070	13.4747 2941.219	91.132	13.4956 2938.518	91.225
4542 29		91.070	13.4750 2941.178	91.138	13.4958 2938.473	91.216
4544 29 4547 29		91.067	13.4753 2941.149	91.146	13.4961 2938.449	91.219
4550 29		91.051 91.075	13.4756 2941.100	91.151	13.4964 2938.410	91.214
4553 29		91.065	13.4758 2941.079 13.4761 2940.981	91.159 91.135	13.4967 2938.406	91.227
4556 29		91.086	13.4764 2940.920	91.130	13.4969 2938.409 13.4972 2938.346	91.241
4558 29		91.056	13.4767 2940.949	91.165	13.4975 2938.329	91.227 91.230
4561 29	45.931	91.084	13.4769 2940.870	91.154	13.4978 2938.280	91.230
4564 29		91.059	13.4772 2940.853	91.165	13.4981 2938.261	91.225
4567 29		91.089	13.4775 2940.761	91,143	13.4983 2938.258	91.235
4569 29		91.065	13.4778 2940.706	91.138	13.4986 2938.240	91.241
4572 29		91.078	13.4781 2940.700	91.162	13.4989 2938.192	91.235
4575 29 578 20		91.075	13.4783 2940.664	91.162	13.4992 2938.175	91.238
578 29		91.075	13.4786 2940.620	91.162	13.4994 2938.113	91.216
581 29 583 29		91.089 91.073	13.4789 2940.558	91.157	13.4997 2938.113	91.233
586 29		91.084	13.4792 2940.485 13.4794 2940.502	91.138 91.170	13.5000 2938.116 13.5003 2938.117	91.246
589 294		91.084	13.4797 2940.453	91.168	13.5006 2938.037	91.262 91.235
592 294		91.089	13.4800 2940.396	91.165	13.5008 2938.008	91.235
594 294		91.092	13.4803 2940.374	91.173	13.5011 2937.980	91.233
597 294	4.723	91.075	13.4806 2940.285	91.149	13.5014 2937.958	91.233
	/ // .	04 004				
600 294 603 294		91.086 91.089	13.4808 2940.263 13.4811 2940.259	91.157 91.178	13.5017 2937.954 13.5019 2937.930	91.246

•

Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperatur (°F)
13.5022	2937.928	91.260	13,5519	2935.153	91.420	13, 7111	2932.555	91.994
13.5025		91.249		2935.137	91.447	13.7153	2932.523	92.004
13.5028		91.246		2935.086	91.447	13.7194	2932.497	92.010
13.5031	2937.797	91.233		2935.052	91.460	13.7236	2932.450	92.013
13.5033	2937.812	91.249		2934.968	91.447	13.7278	2932.426	92.031
13.5036 13.5039		91.262		2934.949	91.460	13.7319	2932.377	92.029
13.5042		91.254 91.268		2934,890 2934,883	91.460	13./361	2932.343	92.034
13,5044	2937.664	91,225		2934.802	91.485 91.468	13.7403	2932.334 2932.282	92.053
13.5047		91.257		2934.785	91.487	13,7486	2932.270	92.053 92.067
13.5050 2	2937.673	91.257		2934.691	91.468	13.7528	2932.236	92.072
13.5053		91.260		2934.677	91.485	13.7569	2932.192	92.072
3.5056 2		91.271		2934.636	91.490		2932.190	92.091
3.5058 2		91.268		2934.581	91.485		2932.151	92.094
3,5061 2 3,5064 2		91.241 91.254		2934.565 2934.541	91.504 91.514	13.7694	2932.131	92.099
3.5067 2		91.260		2934.341	91.509	13.//30	2932.090 2932.080	92.096
3.5069 2		91.260		2934,448	91.520	13 7810	2932.058	92.115 92.123
3.5072 2	937.516	91,276	13.5769	2934.416	91.523	13,7861	2932.051	92.140
3.5075 2		91.273	13.5783	2934.375	91.528		2932.037	92.148
3.5078 2		91.271		2934.346	91.536		2932.023	92.156
3.5081 2		91.254	13.5811	2934.329	91.547	13.7986	2931.978	92.156
3.5083 2		91.260		2934.302	91.552	13.8028	2931.969	92.167
3.5086 2 3.5089 2	937.400	91.276 91.268		2934.273	91.560		2931.949	92.172
3.5092 2	937.392	91.292	13 5867	2934.216 2934.194	91.558 91.566	13.8111	2931.917	92.175
3.5094 2		91.260	13,5881	2934,180	91.574	13.8194		92.178 92.175
3.5097 2	937.317	91.276		2934.133	91.577	13.8236		92.180
3.5100 2		91.268	13.5908	2934.094	91.579	13,8278	2931.797	92.186
3.5103 2		91.273		2934.060	91.585	13.8319	2931.790	92.202
3.5106 2		91.279		2934.003	91.574	13.8361	2931.778	92.207
3.5108 24 3.5111 29		91.287 91.287		2934.012 2933.959	91.598	13.8403	2931.772	92.224
3.5114 29		91.273	13.3904	2933.943	91.590 91.601	13.8444 13.8486	2931.732	92.218
5.5117 29	237.180	91.281	13,5992		91.615	13.8528	2931.716	92.232 92.245
5.5119 29	937.150	91.273	13,6006		91.596	13,8569		92,240
5.5122 29		91.281	13.6019		91.628	13.8611	2931.692	92.264
3.5125 29	237.137	91.290	13.6033		91.623	13.8653		92.264
1.5128 29	137.122	91.298	13.6047		91.628	13.8694		92.264
.5133 29		91.284 91.281	13.6061 13.6075		91.644 91.650	13.8736 13.8778		92.261
.5136 29		91.276	13.6089		91.647	13.8819		92.283 92.270
.5139 29		91.281	13.6103		91.653	13.8861		92.291
.5142 29		91.300	13.6117		91.658	13.8903		92.307
.5144 29		91.284	13.6131		91.663	13.8944	2931.533	92.302
.5147 29		91.309	13.6144		91.669	13.8986		92.324
.5150 29		91.295	13.6158		91.680	13.9028		92.305
.5153 29 .5156 29		91.284 91.295	13.6172 13.6186		91.685	13.9069		92.334
5158 29		91.287	13.6200	2933.373	91.685 91.690	13.9111 2 13.9153 2		92.324 92.332
.5172 29		91.300	13.6214		91.701	13.9181 2		92.332
5186 29		91.311	13.6228		91.701	13.9264 2		92.345
5200 293	36.641	91.309	13.6242		91.707	13.9347 2		92.359
5214 29		91.311	13.6256		91.715	13.9431 2		92.356
5228 29		91.311	13.6269		91.726	13.9514 2		92.388
5242 293		91.330	13.6278		91.720	13.9597 2		92.378
5256 293 5269 293		91.333 91.330	13.6319 2		91.742	13.9681 2		92.388
5283 293		91.336	13.6361 2 13.6403 2	1733.330 1777 75%	91.755 91.758	13.9764 2 13.9825 2		92.416
5297 293		91.349	13.6444 2		91.801	13.9908 2		92.397 92.413
5311 293		91.352	13.6486 2		91.810	13,9992 2		92.434
5325 293		91.360	13.6528 2		91.818	14.0075 2	931.141	92.437
5339 293		91.368	13.6569 2		91.818	14.0158 2	931.110	92.440
5353 293		91.360	13.6611 2		91.828	14.0242 2		92.464
5367 293 5381 293		91.371	13.6653 2		91.850	14.0325 2		92.483
5394 293		91.363 91.390	13.6694 2 13.6736 2		91.875 91.877	14.0408 2		92.472
5408 293	5.604	91.393	13.6778 2		91.891	14.0492 2 14.0575 2		92.491 92.478
5422 293	5.553	91.401	13.6819 2		91.893	14.0658 2		92.497
5436 293		91.398	13.6861 2	932.774	91.921	14.0742 2		92.510
5450 293	5.443	91.409	13.6903 2	932.753	91.945	14.0825 2	930.919	92.505
5464 293		91.425	13.6944 2		91.942	14.0908 2		92.516
		91.411	17 (00/ 3	077 477	91.964	14.0992 2	330.013	92.537
5478 293 5492 293		91.436	13.6986 2 13.7028 2		91.975	14.1075 2		92.529

ĭime ────	Pressure (Psia)	Temperature (°F)	Ťime	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperatur (°F)
14,1242	2930.802	92.537	16 7692	2929.787	93.212	15 7744	2929.175	05 404
	2930.815	92.564		2929.802	93.237	15 7031	2929.149	95.101 95.160
	2930.778	92.564		2929.794	93.245	15.8097	2929.159	95.252
	2930.758	92.570	14.7742	2929.795	93.261	15.8264	2929.128	95.332
	2930.752	92.586	14.7825	2929.776	93.266	15.8431	2929.106	95.402
	2930.754	92.599		2929.739	93.258	15.8597	2929.083	95.459
	2930.720	92.597		2929.711	93.264	15.8764	2929.095	95.531
14.1020 1/ 1008	2930.678 2930.706	92.594 92.621		2929.741 2929.734	93.288 93.296	15.8931	2929.101	95.580
	2930.649	92.610		2929.744	93.318		2929.110 2929.104	95.625 95.663
	2930.634	92.618		2929.737	93.326	15.9431	2929.112	95.709
	2930.588	92.613	14.8408	2929.690	93.320		2929.154	95.773
	2930.580	92.621	14.8492	2929.702	93.339		2929.106	95.808
	2930.566	92.629		2929.710	93.355	15.9931	2929.051	95.851
	2930.531 2930.534	92.626 92.648		2929.690 2929.683	93.361 93.369	16.0097	2929.066	95.913
	2930.549	92.672	14.8825	2929.671	93.374	16.0204	2929.008 2928.961	95.942 96.015
	2930.552	92.686		2929.671	93.391	16.0597	2928.970	96.168
	2930.483	92.672	14.8992	2929.651	93.396	16.0764	2928.959	96.302
	2930.439	92.664	14.9075	2929.659	93.412	16.0931	2928,970	96.398
	2930.474	92.699		2929.624	93.409	16.1097	2928.983	96.468
	2930.477	92.721	14.9242	2929.632	93.426		2929.030	96.535
	2930.462	92.729		2929.646	93.450		2929.050	96.575
	2930.475 2930.411	92.764 92.745	14,9400	2929.625 2929.622	93.450 93.461	16.1597		96.600
	2930.367	92.745	14.9533	2929.590	93.447	16.1764 16.1931	2929.003	96.600 96.567
4.3408 2	2930.360	92.761		2929.652	93,517	16.2097		96.648
4.3492 2	2930.395	92.797		2929.605	93.520	16.2264		96.720
4.3575 2	2930.341	92.783	15.0033	2929.588	93.539	16.2431	2928.968	96.790
4.3658 2	2930.323	92.786		2929.598	93.569	16.2597	2929.011	96.851
4.3742 2	2930.336	92.805 92.783	15.0264		93.544	16.2764		96.881
	2930.297	92.824	15.0431 15.0597		93.582 93.593	16.2931 16.3097		96.905 96.932
.3992 2		92.818	15.0764		93.633	16.3264	2929.015	96.916
	930.236	92.818	15.0931	2929,500	93,668	16.3431	2929.023	96.916
.4158 2		92.851	15.1097		93.703	16.3597	2928.985	96.894
.4242 2	930.249	92.853 92.856	15.1264		93.714	16.3764		96.908
	930.209	92.864	15.1431 15.1597		93.771 93.795	16.3931 16.4097		96.913 96.892
.4492 2		92.875	15,1764	2929.422	93.811	16.4264		96.841
.4575 2	930.190	92.894	15.1931		93.838	16.4431		96.774
.4658 2		92.888	15.2097		93.873	16.4597	2929.056	96.843
.4742 2		92.913	15.2264		93,908	16.4764		96.827
4825 2		92.899 92.915	15.2431 15.2597		93.954	16.4931		96.843
.4992 2		92.921	15.2764		94.000 94.022	16.5097 16.5264	2928.90U 2028 000	96.897 96.926
.5075 2		92.932		2929.380	94.076	16.5431		97.036
.5158 29		92.951	15.3097		94.108	16.5597	2928.848	97.170
.5242 29		92.934	15.3264		94.159	16.5764	2928.859	97.310
.5325 29		92.942	15.3431		94.183	16.5931	2928.814	97.409
.5408 29 .5492 29	930.047 130.049	92.956	15.3597		94.243	16.6097 2		97.529
.5575 29		92.969 92.975	15.3764 2 15.3931 2		94.305 94.356	16.6264 2 16.6431 2		97.612 97.636
5658 29		92.978	15.4097 2		94.380	16.6597 2		97.657
5742 29		93,007	15.4264 2		94.428	16.6764		97.647
5825 29		93.007	15.4431 2		94.488	16.6931 2		97.625
5908 29		93.002	15.4597 2		94.504	16.7097 2		97.639
5992 29		93.032	15.4764 2		94.539	16.7264 2		97.724
6075 29		93.021	15.4931 2		94.587	16.7431 2		97.786
6158 29 6242 29		93.045 93.053	15.5097 2 15.5264 2		94.617 94.649	16.7597 2 16.7764 2		97.853 97.895
6325 29		93.037	15.5431 2		94.681	16.7931 2		97.936
6408 29		93.034	15.5597 2		94.743	16.8097 2		97.930
6492 2 9	29.865	93.042	15.5764 2	929.230	94.781	16.8264 2	928.859	97.909
6575 29		93.067	15.5931 2		94.846	16.8431 2		97.845
6658 29 47/2 20		93.096	15.6097 2		94.886	16.8597 2		97.778
6742 29. 6825 29.		93.131 93.110	15.6264 2 15.6431 2		94.921 94.945	16.8764 2 16.8931 2		97.692 97.660
6908 29		93.137	15.6597 2		94.964	16.9097 2		97.660
6992 293	29.835	93.134	15.6764 2		94.967	16.9264 2		97.708
7075 293	29.848	93.161	15.6931 2	929.197	94.991	16.9431 2	928.798	97.732
	20 870	93.185	15.7097 2	929.192	95.012	16.9597 2	928.779	97.751
7158 292						41 07/1 0	000 0CC	07 707
7158 292 7242 292 7325 292	29.863	93.202 93.196	15.7264 2 15.7431 2	929.169	95.029 95.058	16.9764 2 16.9931 2		97.797 97.831

Time	Pressure (Psia)	Temperature (°F)		ressure (Psia)	Temperature (°f)	Time	Pressure (Psia)	Temperatu (°F)
17 0344	2928.783	07 070	40.0/50					
	2928.787	97.970 98.010		2928.583 2928.605	98.825		2928.435	99.93 2
	2928.756	98,064		2928,583	98.855 98.884	19.5314	2928.454 2928.407	99.934
	2928.758	98.166		2928.583	98.913		2928.407	99.916
	2928.716	98.267	18.3325	2928.571	98.940		2928.479	99.927 99.910
17.1097	2928.730	98.371	18.3492	2928.536	98.967	19.5981	2928.476	99.892
	2928.758	98.425	18.3658	2928.542	98.991	19.6147	2928.462	99.913
	2928.803	98.446	18.3825	2928.542	98.991	19.6314	2928.445	99.929
	2928.802	98.417	18.3992	2928.576	99.007		2928.432	99.934
	2928.798 2928.799	98.414 98.406	18.4158 18.4325	2928.563	98.999		2928.484	99.956
7 2097	2928.779	98.411		2928.550	98.980 99.039	19.6814	2928.513	99.977
7.2264	2928.802	98,417	18.4658		99.089	19.0901	2928.432 2928.460	99.956
7.2431	2928.824	98.395	18.4814		99.097	19.7314	2928,490	99.993 99.993
7.2597	2928.790	98.393	18.4981	2928.573	99.097		2928.478	100.004
	2928.757	98.433	18.5147		99.084	19.7647	2928.386	100.036
	2928.722	98.497	18.5314		99.063	19.7814	2928.400	100.129
	2928.739 2928.768	98.540 98.540	18.5481		99.087		2928.448	100.246
7 3431	2928.785	98.540 98.516	18.5647 18.5814	2928.374	99.119		2928.387	100.283
7.3597	2928.759	98.438	18.5981		99.119 99.167		2928.404 2928.464	100.331
7.3764	2928.758	98.358	18.6147		99.177		2928.409	100.374
7.3931	2928.744	98.313	18.6314		99.188		2928.403	100.509
7.4097	2928.746	98.296	18.6481	2928.540	99.167		2928,447	100.595
7.4264	2928.741	98.264	18.6647		99.170	19.9147	2928,392	100,605
7.4431 7	2928.722	98.232	18.6814		99.177	19.9314	2928.428	100.712
7 4766 3	2928.731 2928.700	98.200 98.166	18.6981 2 18.7147 2		99.255		2928.442	100.754
	2928.681	98,184	18.7314 2		99.263 99.271	19.9647 19.9814	2928.437	100.738
	2928.693	98.187	18.7481		99.300	19,9981	2920,400	100.746 100.741
.5264 2	2928.704	98.168	18.7647	928.557	99.316	20.0147		100.693
2.5431 2	928.701	98.171	18.7814 2	2928.522	99.322	20.0314	2928,427	100.733
.5597 2	2928.731	98.141	18.7981 2		99.407	20.0481	2928.433	100,770
	928.716 928.694	98.149 98.208	18.8147 2		99.497	20.0647		100.783
	928.674	98.243	18.8314 2 18.8481 2		99.540 99.612	20.0814		100.813
.6264 2	928.642	98.305	18.8647 2		99.676	20.0981 20.1147		100.794
	928.663	98.379	18.8814 2		99.695	20.1314		100.743 100.693
.6597 2	928.676	98.403	18.8981 2	928.521	99,676	20.1481		100.661
.6764 2	928.659	98.398	18.9147 2	928.508	99.681	20.1647	2928.492	100.629
.7097 2	928.637	98.435	18.9314 2		99.721	20.1814		100.571
.7158 2	928 674	98.494 98.521	18.9481 2 18.9647 2		99.852 99.937	20,1981		100.557
.7325 2	928.663	98.585	18,9814 2		99.985	20.2147 20.2314		100.525 100.536
.7492 2	928.646	98.588	18,9981 2		99.996	20.2481		100.563
.7658 2	928.680	98.561	19.0147 2		99.932	20.2647		100.597
.7825 29	928.680	98.532	19.0314 2		99.966	20.2814		100.597
7992 29	928.676	98.529	19.0481 2		99.948	20.2981		100.648
.8158 29 .8325 29	20.024	98.588 98.692	19.0647 29 19.0814 29		99.961	20.3147 2		100.664
8492 29		98.759	19.0981 29		100.009 100.004	20.3314 2 20.3481 2	(728.400 2029 //3	100.696 100.767
8658 29		98.799	19.1147 29		100.030	20.3647 2	928.448	100.762
8825 29	28.608	98.801	19.1314 29		100.006	20.3814 2		100.786
8992 29		98.788	19.1481 29		99.977	20.3981 2		100.884
9158 29		98,772	19.1647 29		99.937	20.4147 2		100.951
9325 29 9492 29		98.743 98.764	19,1814 29		99.852	20.4314 2		100.932
9658 29		98.823	19.1981 29 19.2147 29		99.804 99.796	20.4481 2 20.4647 2		100.906
9825 29		98.916	19.2314 29		99.719	20.4847 2		100,890 100,868
9992 29		98.953	19.2481 29		99.711	20.4981 2		100.866
0158 29		98.927	19.2647 29		99.727	20.5147 2		100,948
0325 29		98.908	19.2814 29		99.716	20,5314 2	928.378	101.047
0492 29		98.889	19.2981 29		99.724	20.5481 2		101.150
0658 29 0825 29		98.903 98.884	19.3147 29 19.3314 29		99.716	20.5647 2		101.190
0825 29 0992 29		98.873	19.3314 29		99.684 99.703	20.5814 2		101.225 101.227
1158 29		98.852	19.3647 29		99.679	20.5981 2 20.6147 2		101.227
1325 29		98.871	19.3814 29		99.727	20.6314 2		101.193
1492 29	28.529	98.879	19.3981 29		99.684	20.6481 2		101.155
658 292		98.916	19.4147 29	28.463	99.711	20.6647 2	928.474	101.145
825 292		98.879	19.4314 29		99.761	20.6814 29		101.089
992 292 158 292		98.849 98.865	19.4481 292		99.801	20.6981 29		101.031
			19.4647 293		99.817	20.7147 29		101.028
325 292	28.577	98.868	19.4814 292	78.429	99.823	20.7314 29	128.442	101.070

i

Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	Temperature (°F)	Time	Pressure (Psia)	2	Temperature ("F)
20.7647	2928.421	101.166	22.0147	2928.415	103.541	23.4411	85.526	85.027	
20,7814	2928.409	101.206		2928.435	103.536		85,494	84.783	
	2928.396	101.211	22.0481	2928,441	103,530	23,4578	85.449	84.560	
	2928.423	101.248		2928.461	103.485	23.4661	85,433	84.382	
	2928.436	101.264		2928.449	103.443	23,4744		84.217	
	2928.411	101.267		2928.446	103.419		85.384	84.052	
	2928.445 2928.432	101.339 101.365		2928.447	103.525	23.4911		83.906	
	2928.431	101.331		2928.375 2928.393	103.610 103.673	23,4994 23,5078		83.774	
	2928.475	101.317	22 1647	2928.393	103.734	23.5161		83.651 83.554	
	2928.462	101.344	22.1814	2928.421	103.795	23.5244		83.458	
	2928,406	101.410		2928,425	103.758	23,5269		83.428	
	2928.394	101.541	22.2147	2928.440	103.744	23.5283	85.301	83.398	
	2928.377	101.618		2928.438	103.713	23.5339	83.839	86.632	
	2928.382	101.620		2928.442	103.702	23.5353		86.807	
	2928.434 2928.464	101.607 101.599	22.204/	2928.470 2928.416	103.697 103.660	23.5367 23.5381		85.931	
	2928.405	101.633		2928.415	103.747	23.5394		86.640 83.340	
	2928.406	101.716		2928.374	103.784	23.5408		83.398	
	2928.413	101.750	22.3314	2928.364	103.840	23.5422		83.337	
	2928.408	101.769	22.3481	2928.420	103.921	23.5436		83.296	
	2928.407	101.846	22.3647	2928.430	103.932	23.5450	68.907	83.232	
	2928.456	101.883	22.3814	2928.391	103.948	23.5464		83.307	
	2928.432 2928.410	101.947 101.994		2928.397	104.035	23.5478		83.331	
	2928.412	102.047		2928.374 2928.354	104.122 104.212	23.5492 23.5533	64.3// 8	83.243	
	2928.428	102.066		2928.354	104.304	23.5561		33.070	
	2928.430	102.045		2928.411	104.326	23.5589		83.142	
.2314 2	2928.479	102.013		2928.453	104.289	23,5603		33.144	
	2928.459	101.976		2928.419	104.194	23.5617	50.721 8	33.086	
.2647 2	2928.455	101.952		2928.449	104.141	23.5644		32.902	
	2928.440 2928.431	101.939	22.5314		104.091	23.5658		33.020	
	2928.433	101.933 101.952	22,5647	2928.409	104.104 104.101	23.5672 23.5686		33.053 32.938	
.3314 2	928.447	101.973	22.5814	2928.426	104.101	23.5756		32.935	
.3481 2	928.403	101,973	22.5981	2928.395	104.056	23.5769		12.761	
	928.380	102.016	22.6147		104.386	23,5797	30.942 8	2.979	
	928.395	102.098	22.6208		104.885	23,5811		12.841	
.3981 2 .4147 2		102.148 102.172	22.7767 22.7850	2051.202	105.796 105.415	23.5825	27.830 8	2.885	
.4314 2	928.418	102.220	22,7933		105.040	23,5839 23,5853	20.109 0	2.734	
	928.425	102.241	22,8017		104.721	23.5867		2.949	
.4647 2	928.452	102.222	22,8100		104.415	23.5881		2.789	
	928.446	102.201	22.8183		104.159	23.5894	20.172 8	2.794	
.4981 2		102.193	22.8267		103.927	23.5908		2.814	
.5147 29 .5314 29		102.233	22.8350		103.697	23.5922		2.767	
5481 29		102.381 102.456	22.8433 22.8517		103.506 103.313	23.5936		2.759	
5647 29		102.538	22.8600		103.171	23.5950 23.5964		2.800 2.808	
5814 29		102.585	22.8683		103.020	23.5978		2.731	
5981 29		102.596	22.8767		102.893		14.123 8		
6147 29		102.570	22.8850 2	2050.661	102.792		14.123. 82		`
6314 29		102.577	22.8933		102.670				
6481 29 6647 29		102.628	22.8964 2		102,628				
6814 29		102.609 102.577		80.106 91.531 80.042 91.124					
6981 29		102.617		79.972 90.728					
7147 29		102.652		79.937 90.408					
7314 29		102.699		79.880 90.082					
7481 29		102.816	23.2150 6	79.814 89.786					
7647 29		102.927		79.770 89.528					
7814 29		103.033		79.731 89.291					
7981 29 8147 29		103.186 103.345		79.708 89.093 79.678 88.902					
8314 29		103.432		79.647 88.725					
8481 29		103.501		79.740 88.570					
8647 29		103.496	23,2733 6	79.716 88.445					
8814 29	28.434	103.469	23.2817 6	79.704 88.316					
8981 292		103.451		79.684 88.197					
9147 293		103,406		79.667 88.093					
/314 29/	28.454	103.358 103.361		79.658 87.997 79.623 87.886					
481 292									
9481 292 9647 292 9814 292	28.449	103.395	23.3233 6	79.621 87.812 5.500 85.570					

i

1.

.

Sec.

APPENDIX 4.1.2-1

PANSYSTEM2 VERSION 2.5, WELL TEST ANALYSIS REPORT, WDW-1

í

APPENUIX 4.1.2-1

·····				
	Envirocorp Services & Technology, Inc.	Report File:	WDW1.PAN	
AND TECHNOLOGY, MC, HOUSTON, TZ, - SOUTH BORD, BL	PanSystem Version 2.5	Analysis Date:	9/15/1998	
BATON ROUGE LA	Well Test Analysis Report	·····		
Company	Navajo Refining C	ompany		
Location	Artesia, New Mexic	со		
Well	WDW-1			
Test Type	Injection/Falloff			
Test Date	July 30 - 31, 1998			
Gauge Type/Serial #	Eccossetex/009			
Gauge Depth	7924 Feet			
Injection Interval	7924 - 8115 Feet; 8	3220 - 8476 Feet		
Completion Type	Perforated			
Top of Fill	8997 Feet	8997 Feet		
Last Stabilization New Completion				
Analyst	LKM			
Envirocorp Project No	D. 70A4614	70A4614		

i

Reservoir Description

Fluid type : Water Well orientation : Vertical Number of wells : 1 Number of layers : 1

Layer Parameters Data

	Layer 1
Formation thickness	253.00 ft
Average formation porosity	0.10
Water saturation	0.00
Gas saturation	0.00
Formation compressibility	0.0000 psi-1
Total system compressibility	8.4000e-6 psi-1
Layer pressure	2925.3599 psia
Temperature	0.0000 deg F

Well Parameters Data

1

	WDW-1
Well radius	0.3696 ft
Distance from observation to active well	0.0000 ft
Wellbore storage coefficient	0.1038 bbi/psi
Well offset - x direction	0.00 ft
Well offset - y direction	0.00 ft

Fluid Parameters Data

	Layer 1
Oil gravity	0.0000 API
Gas gravity	0.0000 sp grav
Gas-oil ratio (produced)	0.0000 scf/STB
Water cut	0.0000
Water salinity	0.0000 ppm
Check Pressure	0.0000 psia
Check Temperature	0.0000 deg F
Gas-oil ratio (solution)	0.0000 scf/STB
Bubble-point pressure	0.0000 psia
Oil density	0.000 lb/ft3
Oil viscosity	0.000 cp
Oil formation volume factor	0.000 RB/STB

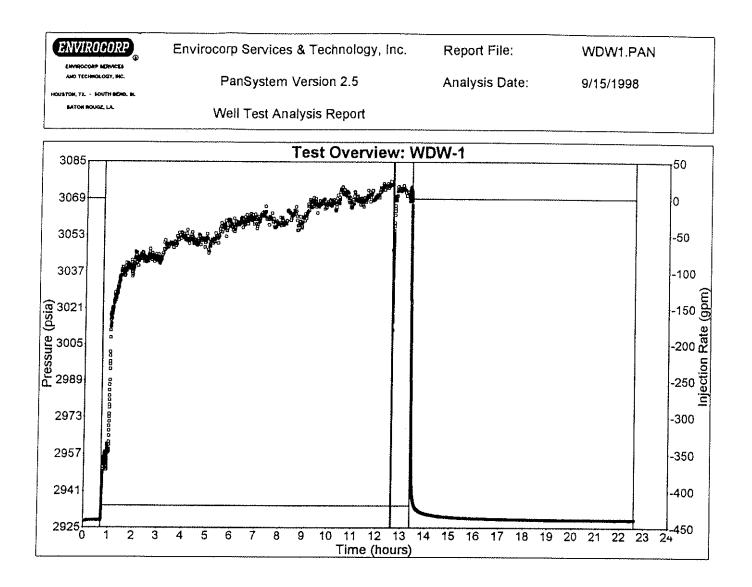
PanSystem - Copyright (C) 1998 Edinburgh Petroleum Services Ltd.

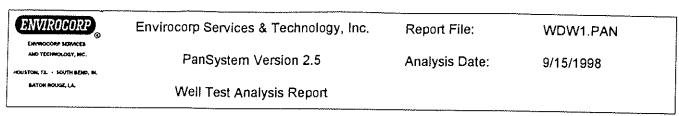
Fluid Parameters Data (cont)

	Layer 1
Gas density	0.000 lb/ft3
Gas viscosity	0.0 cp
Gas formation volume factor	0.000 ft3/scf
Water density	0.000 lb/ft3
Water viscosity	0.530 ср
Water formation volume factor	1.000 RB/STB
Oil compressibility	0.0000 psi-1
Initial Gas compressibility	0.0000 psi-1
Water compressibility	0.0000 psi-1

Layer 1 Correlations

Not Used


Layer 1 Model Data


Layer 1 Model Type : Radial homogeneous

	Layer 1
Permeability	1130.00 md
Skin factor (Well 1)	30.1678

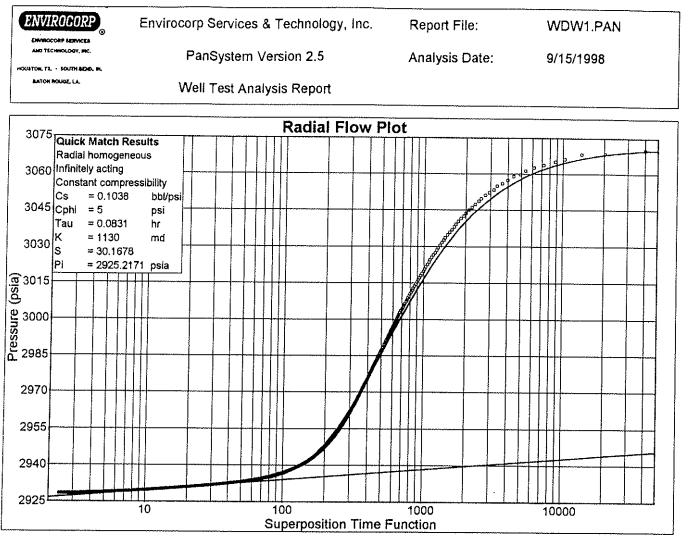
Rate Change Data

Time	Pressure	Rate
Hours	psia	gpm
0.71330	2928.2310	0.0000
12.60750	3074,7930	-420.0000
12.64080	3011.3721	-200.0000
13.38939	3071.6079	-420.0000
22.59810	2928.3950	0.0000

3075				Ca	rtesian	Plot: V	VDW-1					
3060										Radia	Match Result homogeneou aly acting	ıs
3045										Const Cs Cphi Tau	ant compress = 0.1038 = 5 = 0.0024	bbl/psi psi
3030										K S	= 0.0831 = 1130 = 30.1678	hr md
G 3015 S 3000 3000 2985 2985										PI	= 2925.2171	psia
a 3000												-
2985												
2970												
2955												
2940											_	
2925 <u> </u> _1	0	1	2	3	4 Elapse	5 ed Time (6 hours)	7	8	9	10	11

Cartesian Plot: WDW-1 Model Results

Radial homogeneous Infinitely acting


i

	Value
Wellbore storage coefficient	0.1309 bbl/psi
Dimensionless wellbore storage	1035.9075

Cartesian Plot: WDW-1 Line Details

Line type : Wellbore storage Slope : -4582.2 Intercept : 3071.68 Coefficient of Determination : 0.997527

Number of Intersections = 0

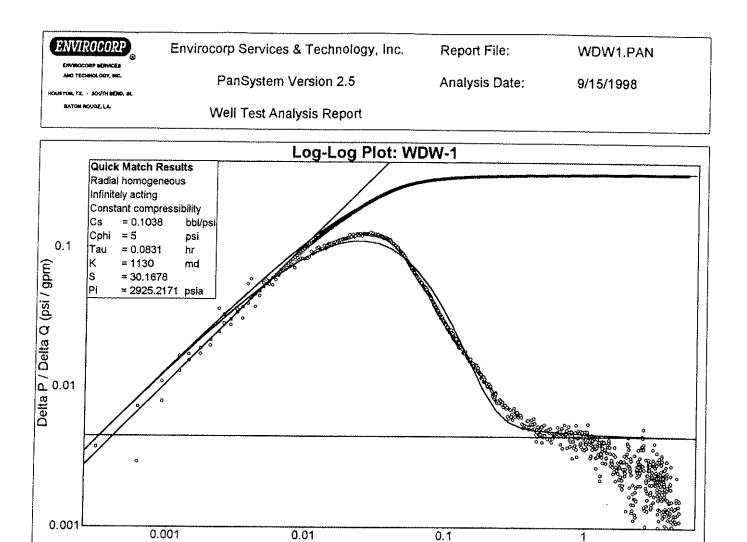
Radial Flow Plot Model Results Radial homogeneous

Infinitely acting

	Value
Permeability	1125.5867 md
Permeability-thickness	2.8477e5 md.ft
Radius of investigation	4424.9595 ft
Flow efficiency	0.2247
dP skin (constant rate)	113.3868 psi
Skin factor	29.9633
Extrapolated pressure	2925.3599 psia

Radial Flow Plot Line Details

Line type : Radial flow Slope : 4.35671 Intercept : 2925.36 Coefficient of Determination : 0.996956


ENVIROCORP	Envirocorp Services & Technology, Inc.	Report File:	WDW1.PAN
AND TECHNOLOGY, MC.	PanSystem Version 2.5	Analysis Date:	9/15/1998
BAYON ROUGE, LA.	Well Test Analysis Report		

	Radial flow
Extrapolated pressure	2925.3599 psia
Pressure at dt = 1 hour	2930.2690 psia

Number of Intersections = 0

ł

{

Equivalent Time (hours)

Log-Log Plot: WDW-1 Model Results Radial homogeneous

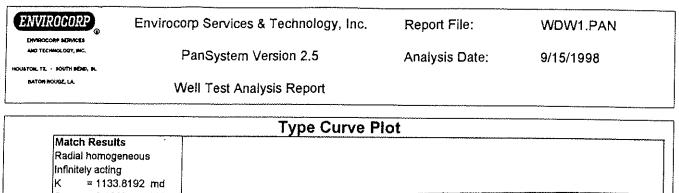
Infinitely acting

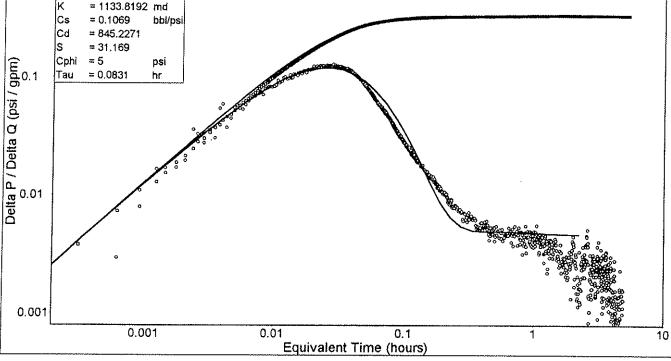
	Value
Wellbore storage coefficient	0.1305 bbl/psi
Dimensionless wellbore storage	1032.4241
Permeability	1130.6444 md
Permeability-thickness	2.8605e5 md.ft
Skin factor	30,1285

1 (-1...

Log-Log Plot: WDW-1 Line Details Line type : Radial flow Slope : 0 Intercept : 0.00448484 Coefficient of Determination : Not Used

Line type : Wellbore storage Slope : 1 Intercept : 10.9468 Coefficient of Determination : Not Used


ENVIROCORP	Envirocorp Services & Technology, Inc.	Report File:	WDW1.PAN
ENVIROCORP ADVICES AMD TECHNOLOGY, MC. HOUSTONL TE SOUTH BEND, M.	PanSystem Version 2.5	Analysis Date:	9/15/1998
BATCH ROUGE, LA.	Well Test Analysis Report		


Number of Intersections = 0

ł

,

•

Type Curve Plot Model Results

Radial homogeneous Infinitely acting

	Value
Permeability	1133.8192 md
Wellbore storage coefficient	0.1069 bbl/psi
Dimensionless wellbore storage	845.2271
Skin factor	31.169

Type Curve Details

Stage 1 File Name : C:\pan25\typecurv\radhomog.tch Axis Type : Td/Cd

	Stage 1
Match point - X	-3.1743
Match point - Y	3.5836
Curve Number	13.0000
Curve Value	1.0000e30

APPENDIX H

WDW-2 CONSTRUCTION INFORMATION

į

REENTRY AND COMPLETION REPORT WASTE DISPOSAL WELL NO. 2

NAVAJO REFINING COMPANY ARTESIA, NEW MEXICO

Subsurface Project No. 70A4955

July 1999

Prepared By:

SUBSURFACE TECHNOLOGY, INC. Houston, Texas

EXEC	UTIVE SUMMARY	⁄ii
1.0 IN	TRODUCTION	1
2.0 SU	MMARY OF DAILY OPERATIONS	2
2.1	Cement Squeeze the Perforations	3
2.2	8-5/8 Inch Mechanical Integrity Testing	3
2.3	Preparation of the Drillsite	4
2.4	Mobilization of the Drilling Equipment	
2.5	Reentry Operations	4
2.6	Installation of the Protection Casing	5
2.7	Testing and Completion Operations	6
2.8	Perforating and Testing the Cisco/Canyon Formations	7
2.9	Perforating and Testing the L. Wolfcamp/Cisco Formations	3
2.10) Injectivity Testing	3
2.11	Installation of the Injection Tubing and Packer)
2.12	Chronology of Field Activities	•
3.0 ME	CHANICAL INTEGRITY TESTING)
3.1	5-1/2 inch Protection Casing Inspection Log10)
3.2	5-1/2 inch Protection Casing Pressure Test)
3.3	Cement Bond Logging10	1
	3.3.1 8-5/8 inch Cement Bond Log	
	3.3.2 5-1/2 inch Cement Bond Log	
3.4	Radioactive Tracer Survey	
3.5	Annular Pressure Test	
3.6	Differential Temperature Survey	

TABLE OF CONTENTS

)

4.	.0 RE	ESERVOIR EVALUATION	14
	4.1		
		4.1.1 Static Gradient Survey and Bottom-Hole Pressure Analysis	
		4.1.2 Analysis of the Falloff Test	
5.(0 RE(GULATORY COMPLIANCE	18
	5.1	Siting	
	5.2	Casing and Cementing	
	5.3	Tubing and Packer	
	5.4	Description of the Logging Program and Tests in the Surface	
		and Long-String Sections of WDW-2	20
		5.4.1 Directional Surveys	20
		5.4.2 Logging Program	
	5.5	Mechanical Integrity Testing	
	5.6	Pressure Tests Conducted on WDW-2	22
	5.7	Physical and Chemical Characteristics of the Formation Fluids	22
	5.8	Regulatory Witnessing	
6.0	CER	TIFICATION	24

TABLES

- TABLE 2.0-I:Detailed Tubular Program, WDW-2
- TABLE 2.6-I: 5-1/2 inch Protection Casing Detail
- TABLE 2.7-I: Plugged-Back Record
- TABLE 2.9-I: Perforation Record

- TABLE 2.11-I: 3-1/2 inch Injection Tubing Detail
- TABLE 4.1.1-I: Static Gradient Survey
- TABLE 5.2-I:
 Cementing Program for WDW-2
- TABLE 5.4.1-I: Deviation Survey Record

FIGURES

- FIGURE 1.0-1: Well Location and Acreage Dedication Plat, WDW-2
- FIGURE 2.0-1: Plugged-Back Wellbore Schematic, The Eastland Oil Company Chukka Federal, Well No. 2
- FIGURE 2.0-2: Current Wellbore Schematic, WDW-2
- FIGURE 2.7-1: Protection Casing Pressure Test Chart, WDW-2
- FIGURE 2.11-1: Schematic of Weatherford Completion Tools (Arrow) Model X-1 Retrievable Packer
- FIGURE 3.5-1: Annular Pressure Test Chart, WDW-2
- FIGURE 4.1.1-1: Bottom-Hole Static Gradient Survey, WDW-2
- FIGURE 4.1.2-1: Test Overview for WDW-2
- FIGURE 4.1.2-2: Log-Log Plot with Derivative for WDW-2
- FIGURE 4.1.2-3: Homer Plot of Falloff Data for WDW-2
- FIGURE 4.1.2-4: Expanded Horner Plot of Falloff Data for WDW-2
- FIGURE 4.1.2-5: Cartesian Plot with Simulated Results Overlaid
- FIGURE 4.1.2-6: Homer Plot with Simulated Results Overlaid
- FIGURE 4.1.2-7: Log-Log Plot with Simulated Results Overlaid

iv

APPENDICES

- APPENDIX 1.0-1: Approval Letter from the New Mexico Water Quality Control Commission, dated May 3, 1999
- APPENDIX 1.0-2 Approval Letters from the Department of the Interior, Bureau of Land Management, dated April 27, 1999
- APPENDIX 2.0-1: Original Well Installation Sundry Notices and Reports on Wells
- APPENDIX 2.0-2: Plug-Back Sundry Notices and Reports on Wells
- APPENDIX 2.5-1 Letter to Bureau of Land Management, Dated May 17, 1999
- APPENDIX 2.6-1 Long-String Casing, Mill Test Report
- APPENDIX 2.8-1: Formation Fluid Analysis
- APPENDIX 2.11-1: Packer Fluid Corrosion Inhibitor
- APPENDIX 2.11-2: Injection Tubing, Mill Test, and Inspection Reports
- APPENDIX 2.12-1: Chronology of Field Activities
- APPENDIX 4.1-1: Bottom-Hole Pressure Field Data Recorded During the Injectivity/Falloff Test for WDW-2
- APPENDIX 4.1.2-1: PanSystem2, Well Test Analysis Report, WDW-2

EXHIBITS

- EXHIBIT 2.0-1: Long-String Hole, Dual Laterlog, Dated August 27, 1973
- EXHIBIT 2.0-2: Long-String Hole, Compensated Neutron Formation Density Log, Dated August 27, 1973

v

EXHIBIT 2.2-1: Surface Casing Cement Bond/Variable Density Log

- EXHIBIT 2.2-2 Letter to Notify Regulatory Agencies of the Surface Casing Cement Bond/Variable Density Log and Pressure Test Results, Dated May 10, 1999
- EXHIBIT 2.5-1: Long-String Hole, Caliper/Gamma Ray Log
- EXHIBIT 2.5-2 Circumferential Acoustic Scanning Log (Fracture Finder Log) and Letter of Interpretation
- EXHIBIT 3.1-1: Protection Casing Inspection Log
- EXHIBIT 3.3.2-1: Protection Casing Cement Bond/Variable Density Log
- EXHIBIT 3.3.2-2: Letter of Interpretation of the Protection Casing Cement Bond/Variable Density Log
- EXHIBIT 3.4-1: Radioactive Tracer Log, Conducted on June 5, 1999
- EXHIBIT 3.4-2: Injection Profile Analysis Log
 - EXHIBIT 3.6-1: First Differential Temperature Survey, Conducted on May 28, 1999
 - EXHIBIT 3.6-2: Second Differential Temperature Survey, Conducted on June 5, 1999

EXECUTIVE SUMMARY

Navajo Refining Company (Navajo) contracted Subsurface Technology, Inc. (Subsurface), formerly Envirocorp Services & Technology, Inc., to prepare an application for permit to reenter a producing Class II well and conduct injection testing within the Wolfcamp, Cisco, and Canyon Formations. The Application for Permit to Drill or Deepen was submitted to the Department of the Interior, Bureau of Land Management (BLM), on April 13, 1999. A permit modification was submitted to the State of New Mexico Oil Conservation Commission (OCD) in April 1999.

The BLM granted approval for the reentry and testing by letter, dated April 27, 1999. The OCD granted approval for the reentry and testing on the wellbore by letter dated May 3, 1999. In April 1999, Navajo contracted Subsurface to prepare a detailed engineering plan to reenter, test and complete The Eastland Oil Company, Chukka Federal No. 2.

Under contract with Navajo, Subsurface commenced field operations on May 5, 1999. The existing location was cleared and a pad was constructed for the drilling and completion rigs. Initially a completion rig was moved in and rigged up. The existing well pumping equipment was removed and the perforations from 1446 feet to 1462 feet were squeezed with cement. A 7-7/8 inch bit was lowered into the wellbore to drill and wash to 1922 feet. The 8-5/8 inch surface casing was successfully pressure tested to 660 psi prior to drilling out the cement plug across the shoe. A cement bond log confirmed continuous cement with good bond behind the 8-5/8 inch surface casing. The completion rig was released and moved off site.

The top 10 feet of the 8-5/8 inch casing was replaced before the installation of the blowout preventer assembly. A lined reserve pit was constructed for the containment of drill cuttings and fluids. A rotary drilling rig was moved in and rigged up. The BLM and the OCD were notified, and verbally approved the commencement of reentry operations on May 13, 1999. A 7-7/8 inch bit was lowered into the wellbore to drill out cement plugs within the 8-5/8 inch surface casing.

1

EXECUTIVE SUMMARY (Continued)

The 7-7/8 inch bit was lowered into the open-hole portion of the wellbore and cement plugs were drilled out to a total reentry depth of 8992 feet. A fracture identification log, 4-arm caliper, and gamma-ray log were conducted within the open-hole portion of the wellbore.

The 5-1/2 inch protection casing was installed with cement circulated through the annular space from bottom to the surface using a two-stage pump and plug method on May 19, 1999. Good returns were observed at the surface while cementing. The rotary drilling equipment was released and moved off site.

A completion rig and blowout preventers were moved in and rigged up on May 24, 1999. A 4-3/4 inch bit was lowered into the wellbore to clean out and pressure test the 5-1/2 inch protection casing. On May 25, 1999, the 5-1/2 inch casing was successfully pressure tested to 1514 pounds per square inch gauge (psig) above the differential valve tool at 5785 feet. On May 26, 1999, the 5-1/2 inch casing was successfully pressure tested to 1504 psig from surface to the plugged-back total depth of 8770 feet.

The wellbore was displaced with a clean brine fluid and a baseline temperature and casing inspection surveys were performed. A cement bond log was performed over the length of the 5-1/2 inch protection casing. The injection interval (Cisco/Canyon Formations) was perforated from 7826 feet to 8399 feet at two jet shots per foot. A sample of the formation fluid was obtained for analysis and the lower injection interval was stimulated using 5000 gallons of 15% HCl acid and rock salt as a diverter.

The injection interval (L. Wolfcamp/Cisco Formations) was perforated from 7570 feet to 7736 feet at two jet shots per foot. A retrievable bridge plug and packer were set to isolate the newly perforated interval. A sample of the formation fluid was obtained for analysis and the perforations were stimulated using 5000 gallons of 15% HCl acid and rock salt as a diverter. The packer and bridge plug were removed from the wellbore in preparation for the pressure buildup portion of the falloff test.

On June 4, 1999 and June 5, 1999, an injection pressure buildup and falloff test was conducted. Upon completion of the falloff test a differential temperature log was conducted

1

EXECUTIVE SUMMARY (Continued)

from surface to a total depth of 8736 feet. A radioactive tracer log was conducted and the results obtained from the survey confirmed external mechanical integrity of the wellbore.

A 3-1/2 inch outside diameter (OD) injection tubing and packer were installed in the well to 7528 feet. An extended annular pressure test was performed to confirm stabilization within the well system. On June 8, 1999, an annular pressure test was performed in accordance with the requirements of the OCD. The OCD witnessed the annular pressure test that successfully confirmed internal mechanical integrity at a pressure of 753 psig.

Upon conclusion of the annular pressure test, all equipment was rigged down and moved out.

į

1.0 INTRODUCTION

Navajo reentered, tested and completed The Eastland Oil Company, Chukka Federal No. 2 wellbore for injection of plant waste effluent. The name of the new waste disposal well will be designated as Navajo Refining Company Waste Disposal Well No. 2 (WDW-2). The wellbore is located in Section 12, T18S, R27E, Unit Letter E, approximately 11 miles east-southeast of Artesia, in Eddy County, New Mexico. A Well Location and Acreage Dedication Plat of the well location is shown on Figure 1.0-1. The construction and testing of this well were performed in compliance with the provisions of the New Mexico Water Quality Control Commission Regulations (NMWQCCR), dated November 15, 1996, Subpart V, Section Nos. 5204 and 5205, and the United States Environmental Protection Agency Code of Federal Regulations, 40 CFR 146.12, Subpart B.

Subsurface was contracted by Navajo to reenter and test WDW-2. The construction and testing of this Non-Commercial Class I Nonhazardous Waste Disposal Well were permitted by the Department of the Interior, Bureau of Land Management (BLM), and the New Mexico Energy, Minerals, and Natural Resources Department, OCD by letters dated May 3, 1999 (Appendix 1.0-1) and April 27, 1999 (Appendix 1.0-2). All work associated with WDW-2 was completed in accordance with the provisions specified in the permit approved by the BLM and OCD.

The work for WDW-2 was designated as Subsurface's Project No. 70A4955. This report summarizes all work performed on WDW-2 and includes the filing of the necessary documents.

2.0 SUMMARY OF DAILY OPERATIONS

The original wellbore was designated as the Amoco Production Company, Diamond Federal Gas Com. Well No. 1, installed July 18, 1973. The OCD Sundry Notices and Reports on Wells are presented in Appendix 2.0-1. The wellbore was constructed with a 13-3/8 inch OD conductor casing set at 40 feet and cemented to surface. An 11 inch hole was drilled to a depth of 1995 feet. Open-hole logs were conducted to include resistivity, spontaneous potential, porosity, and gamma ray, as presented in Exhibits 2.0-1 and 2.0-2. An 8-5/8 inch surface casing was set at 1995 feet and cemented to surface. A 7-7/8 inch hole was drilled to a depth of 10,372 feet to test potentially productive hydrocarbon zones. Subsequently, the wellbore was abandoned on August 31, 1973.

On August 29, 1985, Fred Pool Drilling Inc. submitted an Application for Permit to Drill or Deepen to the BLM. The wellbore was reentered to 1912 feet and completed as a producing oil well with perforations from 1446 feet to 1462 feet, as noted in the Sundry Notices and Reports on Wells (Appendix 2.0-2). The name of the wellbore was changed to the Chukka Federal Well No. 2. Figure 2.0-1 is the plugged-back wellbore schematic.

The Chukka Federal Well No. 2 continued to operate as a producing oil well from September 1985 to May 5, 1999. The Operator changed from Fred Pool Drilling, Inc. to The Eastland Oil Company prior to purchase by Navajo Refining Company in April 1999.

Navajo Refining Company submitted and received approval for the reentry, testing, and completion of the Chukka Federal Well No. 2 from the BLM on April 27, 1999.

On Monday, May 3, 1999, OCD approved the Application for Permit to Drill or Deepen Navajo Refining Company's (Navajo) WDW-2, formerly the Chukka Federal No. 2 operated by The Eastland Oil Company.

)

Subsurface Technology, Inc.

The reentry, testing, and completion operations for WDW-2 are presented in this section. Details of certain operations are referenced in the text and included as figures, exhibits, tables, and appendices.

Figure 2.0-2 is the current wellbore schematic for WDW-2. Table 2.0-I contains the detailed tubular program for WDW-2.

2.1 Cement Squeeze the Perforations

From May 5, 1999 to May 8, 1999, Navajo initiated field operations. The existing pumping equipment, rods, and tubing were removed from the wellbore. The perforations from 1446 feet to 1462 feet were squeezed using 100 sacks of Class 'H' cement. Approximately 50 sacks of cement were displaced into the perforated interval. The cement was allowed to cure and drilled out to a total depth of 1922 feet (1911 feet below ground level).

2.2 8-5/8 Inch Mechanical Integrity Testing

On Sunday, May 9, 1999, the 8-5/8 inch surface casing, set from 1955 feet (KB) to surface, was pressure tested for internal mechanical integrity between 1922 feet (KB) and 30 feet (KB) using a packer set at 30 feet. The 8-5/8 inch surface casing was pressure tested to 660 pounds per square inch (psi) and monitored at the surface for one hour. The fluid used for testing was a clean fresh water fluid. A pressure loss of 1 psi (0.15%) was observed during the first 30 minutes of the test. A pressure loss of 2 psi (0.30%) was observed during the last 30 minutes of the test. The results from the pressure test confirmed internal mechanical integrity of the 8-5/8 inch surface casing from 1922 feet (KB) to 30 feet (KB).

On Sunday, May 9, 1999, Halliburton Logging Services completed a Cement Bond Log and Microseismogram (same as a variable density log), CBL/MSG, survey within the 8-5/8 inch casing from a wireline total depth of 1919 feet (KB) to the surface (Exhibit 2.2-1). The results from the survey indicate a continuous column of cement from 1922 feet to surface with good bonding characteristics. The cement behind the 8-5/8 inch casing will provide an effective hydraulic seal to

Subsurface Technology, Inc.

prevent the movement of groundwater fluids into the underground source of drinking water with a base at 473 feet.

The workover rig was rigged down. A letter requesting regulatory approval for the surface casing pressure test and CBL/MSG log was submitted to the OCD for review and approval (Exhibit 2.2-2).

From Monday, May 10, 1999 to Tuesday, May 11, 1999, the 8-5/8 inch riser was replaced and the reserve pit was excavated.

2.3 Preparation of the Drillsite

On May 12, 1999, a 6 millimeter, high density, polyethylene liner was installed in the reserve pit. The rathole and mouseholes were installed in accordance with Patterson Rig 47 specifications.

2.4 Mobilization of the Drilling Equipment

On May 13, 1999, Patterson moved in and rigged up the drilling rig. A rental wellhead was installed and the blowout prevention equipment was installed and tested in accordance with The United States Department of the Interior, Bureau of Land Management, Onshore Order No. 2 Specifications (Appendix 2.5-1).

2.5 Reentry Operations

On May 14, 1999, a 7-7/8 inch bit was lowered into the 8-5/8 inch casing to drill out the 100-foot cement plug from 1922 feet to 2093 feet. The drillpipe was washed into the wellbore to 2898 feet. A deviation survey at 2898 feet indicated ¼-degree inclination. The wellbore was washed out to 3830 feet. A deviation survey at 3838 feet indicated ¼-degree inclination. The wellbore was washed and reamed to 4783 feet. A deviation survey at 4783 feet indicated ½-degree inclination. The wellbore was washed and reamed to 5082 feet.

On May 15, 1999, the cement plug at 5450 feet was tagged. The blowout prevention equipment was successfully tested in accordance with Section III(A) of

the Conditions for Approval attached to the Application for Permit to Drill or Deepen, approved April 27, 1999. The BLM was notified by letter of the blowout prevention equipment pressure test results on May 17, 1999 (Appendix 2.5-1). The wellbore was washed and reamed to 6106 feet. A deviation survey at 6106 feet indicated an inclination of 3/4 degree. The wellbore was washed and reamed to 6500 feet. The mud weight was increased to 8.7 pounds per gallon (ppg).

On May 16, 1999, the wellbore was washed and reamed to 6633 feet. A deviation survey at 6633 feet indicated an inclination of 1/2 degree. The wellbore was washed and reamed to 7269 feet and the mud weight was increased to 8.9 ppg. At 7500 feet, a small amount of gas was circulated out of the wellbore and the mud weight was increased to 9.1 ppg. The wellbore was washed reamed to 8100 feet. There was no indication of a cement plug from 7435 feet to 7534 feet.

On May 17, 1999, the wellbore was washed and reamed to total depth at 8992 feet. The wellbore was circulated clean and a short trip to 1900 feet did not indicate tight spots, bridges, or excessive drag on the drillpipe. The drillpipe, drill collars, and bit were removed from the hole.

On May 18, 1999, Halliburton Logging Services performed a 4-arm caliper survey from 8901 feet to 1800 feet (Exhibit 2.5-1), and a fracture identification survey from 8900 feet to 4000 feet (Exhibit 2.5-2). Cement volumes were calculated using the 4-arm caliper survey with 20% excess.

The bit, drill collars, and drillpipe were lowered into the hole to tag 30 feet of fill. The wellbore was circulated clean and the drillpipe was pulled out of the hole and laid down.

2.6 Installation of the Protection Casing

On May 19, 1999, 119 joints of 5-1/2 inch, 17 lb/ft, L-80, LTC, new, seamless, Range 3 protection casing were installed in WDW-2 (Table 2.6-I). The Mill Test Report from the manufacturer is included in Appendix 2.6-1. The packoff float shoe was set at 8869 feet, float collar at 8788 feet, and DV tool at 5792 feet. The

]

Subsurface Technology, Inc.

BLM was notified of the cementing operations. Halliburton cemented the first stage using 20 barrels of fresh water, 12 barrels of Super Flush, 20 barrels of water, and 575 sacks of modified Class 'H' cement (yield = 1.71 ft^3 /sack at 13.0 ppg). The DV tool was opened and a total of 20 sacks of cement was displaced to the surface. A total of 18 hours was allotted to wait on cement to cure above 500 psi compressive strength.

On May 20, 1999, the second stage was successfully completed with 20 barrels of water, 12 barrels of Super Flush, 20 barrels of water, 300 sacks of Interfill 'C' (yield = 2.77 lb/sack at 11.7 ppg), and 695 sacks of modified 'H' cement (yield = 1.71 lb/sack at 13.0 ppg). The DV tool was closed with 3300 psi and a total of 150 sacks of cement was displaced to the reserve pit. Mr. J.D. Whitlock, representing the BLM, was on site and witnessed the second stage cementing operations. The cement was allowed to cure for 12 hours.

On May 21, 1999, the blowout preventers were removed and the rig was released. A Larkin Type 'R' 5-1/2 inch by 3-1/2 inch wellhead was installed. Ready-mix cement was used to stabilize the 5-1/2 inch casing and the location was cleaned up in preparation of completion operations.

From May 22, 1999 to May 23, 1999, preparations were performed prior to completion activities.

2.7 Testing and Completion Operations

On May 24, 1999, Key Energy Services, Inc. moved in and rigged up a completion rig, pump, tank, power swivel, and 2-7/8 inch EUE 8rd work string. A 6 inch manual blowout preventer was installed for pressure control. A piece of pipe was lost in the hole during rig-up operations.

On May 25, 1999, the lost piece of pipe was successfully washed over and retrieved from the wellbore. A 4-3/4 inch outside diameter rock bit and six 3-1/2 inch drill collars were lowered into the wellbore on the 2-7/8 inch work string. The well system was pressurized to 1514 psig and monitored for testing. A loss of 17

Ì

psi per 30 minutes was observed (-1.15%) during the pressure test. The DV tool was drilled out.

On May 26, 1999, the bit was lowered into the well to wash and drill to a total plugged-back depth of 8770 feet (Table 2.7-I). The wellbore was circulated clean, pressurized to 1584 psig, and monitored for testing. A loss of 16 psi per 30 minutes was observed (-1.01%) during the pressure test (Figure 2.7-1).

On May 27, 1999, a bit and scraper were lowered into the wellbore to 8569 feet. A total of 500 gallons of 15% HCl inhibited acid preceded displacement of 250 barrels of 8.7 ppg clean brine water. Fluid returns were circulated to the reserve pit.

On May 28, 1999, a differential temperature survey was conducted within the 5-1/2 inch protection casing from surface to 8769 feet. The well system was pressurized to 1000 psig and a cement bond survey, concurrent with a casing inspection survey, was conducted from 8769 feet to 100 feet.

2.8 Perforating and Testing the Cisco/Canyon Formations

On May 29, 1999, the wellbore was perforated within the injection interval at two jet shots per foot, 120 degree phasing, using retrievable casing guns. The selected intervals were determined from the Compensated Neutron-Formation Density Log, dated August 27, 1973, as follows: 7826-34 feet, 7858-80 feet, 7886-7904 feet, 7916-36 feet, 7944-64 feet, 7990-8042 feet, 8096-8116 feet, 8191-8201 feet, 8304-8319 feet, 8395-99 feet. This interval has been designated Zone 1. The wellbore fluid level dropped during the perforating operations.

On May 30, 1999, Zone 1 was swab tested and a formation fluid sample was retrieved for analysis. The results from the laboratory analysis on the Zone 1 formation fluid sample are presented in Appendix 2.8-1.

On May 31, 1999, the injection interval from 7820 feet to 8392 feet (Zone 1) was stimulated with 5000 gallons of inhibited 15% HCl acid. A total of 2300 pounds of

}

Subsurface Technology, Inc.

salt was used as diverter during the stimulation operations. A final test rate indicated WDW-2 can accept an 8.7 ppg brine water at 7 bpm on a vacuum.

2.9 Perforating and Testing the L. Wolfcamp/Cisco Formations

On June 1, 1999, the wellbore was perforated within the injection interval at two jet shots per foot, 120-degree phasing, using retrievable casing guns. The selected intervals were determined from the Compensated Neutron-Formation Density Log, dated August 27, 1973, as follows: 7570 feet to 7620 feet and 7676 feet to 7736 feet. This interval has been designated Zone 2. The wellbore fluid level remained at approximately 1300 feet during the perforating operations. A complete record of the perforated intervals is presented in Table 2.9-I.

On June 2, 1999, Zone 2 was swab tested and a formation fluid sample was retrieved for analysis. The results from the laboratory analysis on the Zone 2 formation fluid sample are presented in Appendix 2.8-1.

On June 3, 1999, the injection interval from 7570 feet to 7736 feet (Zone 2) was stimulated with 5000 gallons of inhibited 15% HCl acid. A total of 2300 pounds of salt was used as a diverter during the stimulation operations. A final test rate indicated WDW-2 can accept an 8.7 ppg brine water at 7 barrels per minute (bpm) on a vacuum.

2.10 Injectivity Testing

j.

On June 4, 1999, an electric wireline unit was moved in and rigged up with a digital quartz surface readout and memory backup pressure gauge. Both gauges were run into the well to a depth of 7570 feet. The initial bottom-hole pressure was 2843.86 pounds per square inch absolute (psia) at 124°F. Injection of an 8.7 ppg brine water was initiated at 10 bpm on a vacuum and continued for 12.75 hours. The final injection pressure was 2939 psia at 88°F. Injection of brine was discontinued and the bottom-hole pressure falloff was monitored at the surface.

On June 5, 1999, the pressure falloff was discontinued and the tools were removed from the wellbore while making gradient stops at 6000 feet, 4500 feet, 3000 feet, 1500 feet, and at the surface. A differential temperature survey was performed from the surface to a wireline total depth of 8736 feet (top of fill). A radioactive tracer survey confirmed external mechanical integrity of the 5-1/2 inch protection casing and provided an injection profile across the perforated intervals.

2.11 Installation of the Injection Tubing and Packer

On June 6,1999, a 5-1/2" x 3.5" Weatherford (Arrow) Model X-1 packer (Figure 2.11-1) was lowered into the wellbore on the 3-1/2 injection tubing (Table 2.11-I). The annulus was displaced with an 8.7 ppg corrosion inhibited brine water as packer fluid. The corrosion inhibitor was a Unichem TECHNI-HIB 370, as presented in the product information and Material Safety Data Sheets presented in Appendix 2.11-1. Mill test and inspection reports for the 3-1/2 inch injection tubing are presented in Appendix 2.11-2. The packer was set 7528 feet with 18,000 pounds of compression and the annulus was pressurized to 771 psig. The annular pressure was monitored for stabilization through June 7, 1999.

On June 8, 1999, an annulus pressure test was performed. The OCD elected to witness the test. The annulus was pressurized at 752 psig and monitored for 30 minutes. The final test pressure was 753 psig, an increase of 1 psi (0.13%), which is within the 10% allowed by the regulations. Upon the conclusion of the annulus pressure test the rig and ancillary equipment were rigged down and moved off site.

The installation of WDW-2 was completed on June 8, 1999. The wellhead was secured and the well remained shut in pending approval of the permit by the OCD.

2.12 Chronology of Field Activities

Appendix 2.12-1 is a Chronology of Field Activities from the Field Activity Reports.

ì

3.0 MECHANICAL INTEGRITY TESTING

The demonstration of the mechanical integrity of WDW-2, required by NMWQCCR Subpart V, Section 5204(A) to (D) and Section 5205(A)(1)(a), included a casing inspection log of the 5-1/2 inch protection casing, pressure testing of the 5-1/2 inch protection casing, cement bond log of the 8-5/8 inch and 5-1/2 inch casings, a radioactive tracer survey, a differential temperature survey, and an annular pressure test. Results of these tests demonstrated that the well had internal and external mechanical integrity.

3.1 5-1/2 Inch Protection Casing Inspection Log

On May 28, 1999, Halliburton Logging Services conducted a casing inspection log from 8769 feet to the surface (Exhibit 3.1-1). A Circumferential Acoustic Scanning Tool was used to conduct the casing inspection survey. The data obtained from the survey may be used as a baseline for future comparison.

3.2 5-1/2 Inch Protection Casing Pressure Test

The protection casing was successfully pressure tested to 752 psig on June 8, 1999, for 30 minutes. A pressure gain of 1 psi was observed, as indicated on the pressure test chart shown on Figure 3.5-1.

3.3 Cement Bond Logging

A cement bond log was conducted within the 8-5/8 inch surface casing during the reentry operations from 1910 feet to the surface. Upon installation of the 5-1/2 inch protection casing, a cement bond log was conducted. A total of two strings of casing were successfully installed and cemented across the base of the underground source of drinking water (USDW).

3.3.1 8-5/8 inch Cement Bond Log

On May 9, 1999, a cement bond with variable density log was performed within the 9-5/8 protection casing from 1910 feet to the surface (Exhibit 2.2-1). The data obtained from the cement bond log confirmed a continuous column of cement with

good bonding characteristics behind the 8-5/8 protection casing from 1910 feet to 116 feet. The hydraulic coupling was lost above 116 feet and the tool would not respond. A letter of interpretation of the surface casing cement bond/variable density log is presented as Exhibit 2.2-2.

3.3.2 5-1/2 Inch Cement Bond Log

A cement bond with variable density log was conducted on the 5-1/2 inch protection casing on May 28, 1999 (Exhibit 3.3.2-1). As indicated on the log, a continuous column of cement extends from the base of the protection casing from a plugged-back depth of 8769 feet to the surface. Cement bonding was indicated to be sufficient for completion of the well. A letter of interpretation of the protection casing cement bond/variable density log is presented as Exhibit 3.3.2-2.

The adequacy of the cement above the top of the perforations was successfully confirmed in the subsequent radioactive tracer survey discussed in Section 3.4 and differential temperature survey discussed in section 3.6.

The results obtained from the cement bond and variable density logs conducted on the surface casing and the protection casing established that a continuous column of cement, with good compressive strength and cement bond, existed behind both casings. The installation of two casing strings across the base of the USDW, both of which demonstrate a continuous column of cement from surface to bottom, assures protection of the USDW.

3.4 Radioactive Tracer Survey

A radioactive tracer survey for WDW-2 was performed on June 5, 1999, following the reservoir evaluation testing operations and prior to the installation of the injection packer. The radioactive tracer survey consisted of running statistical checks, two baseline gamma ray surveys, and ejecting four slugs of radioactive material. Two (2) of the slug tests were stationary time-drive surveys and two were moving surveys. The radioactive tracer log, conducted June 5, 1999, is presented as Exhibit 3.4-1. An

)

injection profile analysis log is presented as Exhibit 3.4-2. All tests were conducted while injecting a nonhazardous brine water into the well.

The radioactive tracer tool was lowered into the well to tag the total depth at 8743 feet. A pre-survey baseline gamma ray log was conducted from 8743 feet to 7460 feet. A pre-survey statistical check was performed at 7550 feet (20 feet above the top perforation) for five minutes.

The moving surveys were conducted with the radioactive tracer tool initially positioned at 7460 feet (above the intended packer setting depth). The injection of a nonhazardous brine was initiated at a rate of 1/2 bpm. A slug of radioactive material was ejected and verified for intensity. The slug's downward movement was recorded by logging upward through the slug intermittently as it moved downward and dissipated into the perforated interval. This test was repeated at an injection rate of 1/2 bpm. The results obtained from the moving surveys determined that the ejected radioactive material was exiting into the permitted injection interval; therefore, mechanical integrity was confirmed between the intended packer setting depth and the top of the injection interval.

The injection of a nonhazardous brine was increased to 10 bpm. The radioactive tracer tool was positioned with the bottom detector at 7550 feet, which is 20 feet above the top of the top perforation, and a stationary time-drive survey was conducted. The tool remained stationary across the interval and the well was monitored for upward migration above 7550 feet for 15 minutes. This test was repeated and monitored for upward migration above 7550 feet for 15 minutes. No upward migration of radioactive material was observed during either survey.

A post-survey baseline gamma ray log was performed from 8727 feet to 7453 feet, with no residual radioactive material.

3.5 Annular Pressure Test

The official annular pressure test was conducted on June 8, 1999. The injection packer and tubing had been installed and the wellbore allowed to attain a thermal equilibrium.

1

Subsurface Technology, Inc.

A Barton circular chart recorder (Serial Number 0323), scaled from 0 psig to 1000 psig, was installed to monitor the annulus pressure. The OCD representative, Mr. Van Barton, was present to witness the annulus pressure test. At 0800 hours, the initial annulus pressure was 752 psig. At 0830 hours, the final annulus pressure was 753 psig. This represents a pressure gain of 1.00 psi in 30 minutes, which is within the limit of 10% in 15 minutes allowed by the OCD. An annulus pressure test chart is presented as Figure 3.5-1.

3.6 Differential Temperature Survey

A baseline differential temperature survey was performed on May 28, 1999 (Exhibit 3.6-1) following the cleanout of the 5-1/2 inch protection casing to 8770 feet. On June 5, 1999, a second differential temperature survey was performed following the reservoir evaluation testing, which included 12-hour injection of an 8.7 ppg brine water into the permitted injection interval (Exhibit 3.6-2).

As indicated on the May 28, 1999 baseline differential temperature log, the wellbore temperature increased steadily from 77.0 degrees at the surface to 154.0 degrees at 8769 feet. A temperature gradient of 0.01 degrees per foot was observed.

On June 5, 1999, a second differential temperature log was performed following the injection of brine water into the injection interval. A temperature gradient of .01 degrees per foot was observed from surface to the top perforation at 7570 feet. A significant cooling anomaly was observed within the perforated injection interval as temperatures cooled to 97.5 degrees. The data obtained from the differential temperature survey confirmed external mechanical integrity of the 5-1/2 inch protection casing and may be used for comparison during future surveys.

i

4.0 **RESERVOIR EVALUATION**

4.1 Bottom-Hole Pressure Testing

The bottom-hole pressure testing which was conducted on WDW-2, following the completion of the well, was designed to obtain the best estimate of permeability and transmissibility in the reservoir. The pressure testing on WDW-2 consisted of a static gradient survey and an injectivity/falloff test. Appendix 4.1-1 lists the time and pressure data recorded during the static gradient survey, injection period, and falloff period.

4.1.1 Static Gradient Survey and Bottom-Hole Pressure Analysis

On June 5, 1999, static gradient measurements were performed after conducting the injection/falloff test on WDW-2. Pressure data from the gradient stops made at the surface, 1500 feet, 3000 feet, 4500, 6000 feet, and 7570 feet are shown on Table 4.1.1-I. The gradient data are presented graphically as Figure 4.1.1-1. The static fluid gradient at 7570 feet was determined to be 0.429 psi per foot. The fluid level was at approximately 1292 feet.

4.1.2 Analysis of the Falloff Test

On June 4, 1999, a HP surface readout digital quartz pressure transducer with memory tool backup was positioned at 7570 feet in WDW-2 and allowed to stabilize for approximately 45 minutes. Injection into WDW-2 commenced at 0912 hours at an injection rate of 428.4 gallons per minute (gpm). WDW-2 was shut in at 2156 hours and the bottom-hole pressure and temperature were recorded for 7.2 hours.

The pressure data obtained during the falloff test were analyzed with the assistance of the commercially available pressure transient analysis software program "PanSystem2, Version 2.5". Appendix 4.1.2-1 contains the output from this software program. Figure 4.1.2-1 shows the pressure response recorded by the pressure tool from the time the tool was in place through the 7.2-hour shutin period. Figure 4.1.2-2 is a log-log diagnostic plot of the falloff data, showing change in pressure and pressure

derivative versus equivalent shutin time. The radial flow period is denoted on Figure 4.1.2-2.

The reservoir permeability was determined from the radial flow region of the superposition Horner plot (Figure 4.1.2-3). The radial flow regime begins at a Horner time of 16.9 and continues to 8.6. Figure 4.1.2-4 shows an expanded view of the superposition Horner plot. The slope of the radial flow period was determined to be 1.563604 psi per cycle.

An estimate of mobility-thickness, kh/μ , for the reservoir was determined from the following equation:

$$\frac{k h}{\mu} = 162.6 \frac{q B}{m}$$

where,

 kh/μ = mobility-thickness, md-ft/cp

q = flow rate, barrels per day

 μ = viscosity, centipoise

B = formation volume factor, reservoir vol/surface vol

m = slope of semi-log straight line, psi/cycle

Using an injection rate of 428.4 gpm (14,688 barrels per day) and the information previously mentioned results in a mobility-thickness of 1,527,413 md-ft/cp:

$$\frac{k h}{\mu} = 162.6 \frac{(14,688)(1.0)}{1.563604}$$

$$= 1,527,413 \text{ md-ft/cp}$$

Multiplying this value by the viscosity, μ , results in transmissibility, kh:

k h =
$$\left(\frac{k h}{\mu}\right) \mu$$

= (1,527,413) (0.53)
= 809,529 m d - f t

And finally, permeability is determined by dividing transmissibility by the formation thickness. The formation thickness is 299 feet, which results in a permeability of 2707 md.

$$k = \frac{(k h)}{h}$$
$$= \frac{809,529}{299}$$

The skin factor was determined from the following equation:

$$s = 1.151 \left[\frac{p_{wf} - p_{1 hr}}{m_{1}} - \log \left(\frac{k_{p}}{\phi \mu c_{i} r_{w}^{2}} \right) + 3.23 \right]$$

where,

s = formation skin damage at open perforations, dimensionless

1.151 = constant

 p_{wf} = flowing pressure immediately prior to shutin, psi

- $p_{1 hr}$ = pressure determined by extrapolating the first radial flow semi-log line to a Δt of one hour, psi
- m_1 = slope of the first radial flow semi-log line, psi/cycle
- k_p = permeability of the formation opposite the open perforations, md
- ϕ = porosity of the injection interval, fraction

- μ = viscosity of the fluid the pressure transient is traveling through, centipoise
- $c_1 = \text{total compressibility of the formation plus fluid, psi^{-1}$
- $r_w = radius of the wellbore, feet$
- 3.23 = constant

The final flowing pressure, p_{wf} , was 2939.42 psia. The pressure determined by extrapolating the radial flow semi-log line to a Δt of one hour, $p_{1 hr}$, was 2846.23 psi. The porosity of the injection interval, ϕ , is 0.10 and the total compressibility, c_{t} , is 8.4 x 10⁻⁶ psi⁻¹. The wellbore radius, r_{w} , is 0.3281 feet. Using these values in addition to the previously determined parameters, m and k, results in a skin of 59.9:

$$s = 1.151 \left[\frac{2939.42 - 2846.23}{1.563604} - \log \left(\frac{2707}{(0.10)(0.53)(8.4 \times 10^{-6})(0.3281)^2} \right) + 3.23 \right]$$

= 59.9

The "Auto-Match" feature of PanSystem2 was used to improve upon the reservoir parameters. The final results of the auto-match are shown on Figures 4.1.2-5 through 4.1.2-7. These figures show the falloff data in cartesian, superposition Horner, and log-log formats with the simulated pressures overlaid.

(

RE-ENTRY AND COMPLETION REPORT WASTE DISPOSAL WELL NO. 3

NAVAJO REFINING COMPANY Artesia, New Mexico

SUBSURFACE PROJECT NO. 70F5826

December 2006

PREPARED BY

SUBSURFACE CONSTRUCTION CORP. 6925 Portwest Dr., Suite 110 Houston, Texas77024

February 5, 2006

Mr. Darrell Moore Navajo Refining Company P.O. Box 159 Artesia, NM 88211

RE: Re-Entry and Completion Report Waste Disposal Well No. 3; Subsurface Project No. 70F5826

Dear Darrell:

Enclosed are four (4) copies of the above-referenced report. Four copies have been included for your records and for the State of New Mexico Energy Minerals and Natural Resources Department, Oil Conservation Division.

If you should have any questions, please feel free to contact me at (713) 880-4640.

Very truly yours,

Rusty L. Smith Project Engineer, EIT

r roject Engine

RLS/bl

Enclosures

Moore1_Ltr

Subsurface Construction Corp.

6925 Portwest Drive Suite 110 Houston TX 77024 713/880-4640 Fax 713/880-3248 1-800-535-4105

TABLE OF CONTENTS

	EXE	CUTIVE SUMMARY vii
1.0) INTI	RODUCTION1
2.0	SUM	MARY OF DAILY OPERATIONS1
	2.1	LOCATION CLEARING AND RIG MOBILIZATION2
	2.2	DRILLING OF CAST IRON BRIDGE PLUGS AND CEMENT SQUEEZING OF THE PERFORATIONS3
	2.3	LOGGING AND PERFORATING THE INJECTION INTERVAL6
	2.4	FORMATION SAMPLE COLLECTION AND INJECTION TESTING OF THE WELL
	2.5	FINDING AND REPAIRING CASING LEAKS
	2.6	RUNNING THE 4-1/2-INCH, 11.6 LB/FT TUBING AND SETTING THE PACKER
	2.7	INSTALLATION OF THE WELLHEAD9
	2.8	PRESSURE BUILD UP AND FALLOFF TESTING10
	2.9	LOCATION CLEAN UP AND STATE REQUIRED TESTING11
3.0	MECI	HANICAL INTEGRITY TESTING12
	3.1 C	ALIPER CASING INSPECTION LOG12
	3.2 C	EMENT BOND LOG12
	3.3 C.	ASING PRESSURE TESTING

ĺ

	3.4 ANNULUS PRESSURE TEST	14
	3.5 RADIOACTIVE TRACER SURVEY	15
	3.6 DIFFERENTIAL TEMPERATURE SURVEY	16
4.0	RESERVOIR EVALUATION	16
	4.1 PRESSURE FALLOFF TEST	17
	4.2 STATIC GRADIENT SURVEY	19
5.0	REGULATOR COMPLIANCE	20
	5.1 SITING	20
	5.2 CASING CEMENTING	20
	5.3 TUBING AND PACKER	20
	5.4 DIRECTIONAL SURVEYS	21
	5.5 LOGGING PROGRAM	21
	5.6 MECHANICAL INTEGRITY TESTING	22
	5.7 PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE FORMATION FLUIDS	22
	5.8 REGULATORY WITNESSING	23
6.0	FUTURE TESTING RECOMENDATIONS	23

TABLES

TABLE 2.0-1:	Current Wellbore	e Casing	Configuration
--------------	------------------	----------	---------------

TABLE 2.1-1: Pipe Tally of the 2 7/8-inch Work String

i

- TABLE 2.1-2:
 Casing Pressure Test Data
- TABLE 2.4-1: Pump-in Injection Test Pressures and Rates Data
- TABLE 2.7-1: Pipe Tally of the 4 1/2-inch Tubing
- TABLE 2.8-1: Pump-in Pressure Build Up Pressures and Rates Data
- TABLE 2.9-1: Annulus Pressure Test Data
- TABLE 4.2-1: Static Gradient Results

FIGURES

- FIGURE 2.0-1: Schematic of Current Wellbore Configuration
- FIGURE 2.7-1: Superior Wellhead Schematic
- FIGURE 2.9-1: Graph of Annulus Pressure Data
- FIGURE 4.1-1: Plot of Pressure from Bottom Hole Pressure Gauge
- FIGURE 4.1-2: Cartesian Plot of Pressure Falloff Data
- FIGURE 4.1-3 Log-Log Diagnostic Plot
- FIGURE 4.1-4: Horner Plot
- FIGURE 4.1-5: Expanded Horner Plot
- FIGURE 4.2-1: Static Gradient Plot
- FIGURE 5.3-1: Kenco Schematic of Packer System

APPENDICES

APPENDIX 2.0-1: Chronology of Field Activities

- APPENDIX 2.0-2: Well Location and Acreage Dedication Plat
- APPENDIX 2.0-3: United States Department of Interior Bureau of Land Management Application for Permit to Drill or Re-enter June 29, 2006
- APPENDIX 2.0-4: State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division Application for Permit to Drill, Re-enter, Deepen, Plugback, or add a Zone Dated June 29, 2006
- APPENDIX 2.0-5: United States Department of Interior Bureau of Land Management Sundry Notices and Reports on Wells Dated June 29, 2006
- APPENDIX 2.0-6: State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division Approval of Discharge Permit UIC-CIL-008-3 Dated June 23, 2004
- APPENDIX 2.1-1: Halliburton Treatment Report for First Cement Squeeze
- APPENDIX 2.1-2: Halliburton Treatment Report for Second Cement Squeeze
- APPENDIX 2.1-3: Key Pumping Service Treatment Report for Third Cement Squeeze
- APPENDIX 2.2-1: Cement Bond Log (CBL/VDL)
- APPENDIX 2.2-2: Temperature Log
- APPENDIX 2.2-3: Casing Inspection Log

- APPENDIX 2.7-1: Circular Pressure Chart from 300 PSI for Annulus Pressure Test
- APPENDIX 2.8-1: Petroplex Pumping Service Treatment Report
- APPENDIX 2.9-1: Radioactivity Tracer Log
- APPENDIX 3.4-1: Gauge Calibration Certificate
- APPENDIX 3.5-1: Letter of Interpretation for Radioactive Tracer Test
- APPENDIX 4.1-1: Pan System Output
- APPENDIX 4.1-2: Raw Data from Bottom Hole Pressure Tool
- APPENDIX 5.5-1: Dual Induction Laterolog
- APPENDIX 5.5-2: Spectral Density Dual Spaced Neutron Log

ATTACHMENTS

- ATTACHMENT 1.0-1: Well Reentry Procedure
- ATTACHMENT 3.2-1: Correspondence with State of New Mexico Energy Minerals and Natural Resources Oil Conservation Division
- ATTACHMENT 5.4-1 State Record of Deviation Survey

EXECUTIVE SUMMARY

Navajo Refining Company (Navajo) contracted Subsurface Technology, Inc. (Subsurface), to prepare an Application for Permit and to Re-enter a Plugged and Abandoned (P&A) Oil and Gas Well. The Application for Permit to Drill or Re-enter and the Sundry Notices and Reports on Wells was submitted to the Department of the Interior, Bureau of Land Management (BLM), on June 29, 2006, and approved. The Application for Permit to Drill, Re-enter, Deepen, Plug Back, or add a Zone was submitted to the State of New Mexico Oil Conservation Commission (OCD) on June 29, 2006, and approved.

Subsurface prepared an engineering plan to re-enter the P&A' oil and gas well formally owned by Mewbourne Oil Company. The original well name was Caulk Bluff Federal No. 1 (API number 30-015-26575), and a Change of Operator application was submitted to the OCD on December 5, 2000, and approved under the well name of WDW-3. Under contract to Navajo, Subsurface commenced field operations on September 25, 2006. The existing location was cleared and prepared for re-entry operations. An earthen lined reserve pit was dug to catch returns. All depths, unless stated, are referenced to workover rig floor at six feet to seven feet above ground level. The rig floor was moved from six feet to seven feet after drilling out the cast iron bridge plugs.

A workover rig and reverse unit was placed on location and the existing wellhead was removed. The first cast iron bridge plug (CIBP) at 7010 feet was drilled and the perforated interval from 7050 feet to 7102 feet was squeezed off with neat cement and successfully pressured tested to six hundred eighty pounds per square inch gauge pressure (680 psig). The second and third CIBP at 7190 feet and 7279 feet was drilled. There appeared to be ten feet of cement on top of the third CIBP. The perforated interval from 7262 feet to 7278 feet and from 7304 feet to 7314 feet was squeezed with neat cement. The squeezed interval was pressure tested to 920 psig and would not hold. A second cement squeeze was performed across the perforated interval from 7262 feet to 7278 feet and from 7304. The interval was pressured tested to 630 psig and continued to lose pressure at a rate of two pounds per square inch every thirty minutes (2 psi/30 min). The fourth CIBP at 7595 feet was drilled and at 7838 feet a cement plug was

encountered and drilled through. Cement was tagged twenty nine (29) feet above the top of the liner at 9022 feet. The hole was circulated clean and prepared for logging.

A Cement Bond Log (CBL), Variable Density Log (VDL), caliper log, and temperature survey were performed. The CBL/VDL showed that the top of the cement (TOC) behind the 7-inch casing was located 900 feet from the surface. The OCD was notified and approved the existing well condition. The casing was perforated from 7660 feet to 8450 feet and from 8540 feet to 8620 feet at 2-JSPF on sixty degree (60°) phasing.

A packer was set at 7546 feet with 2 7/8-inch PH-6 tubing, the well was swabbed back and samples of the formation fluid were recovered. It was estimated that two hundred twenty six barrels (226 bbls) of formation fluid was returned to the surface. A pressure test on the annulus between the 7-inch and 2-7/8-inch was performed at 660 psig with the annulus losing pressure at a rate of 8 psi/hr.

An injection test was performed on the well down the 2-7/8-inch tubing with the annulus open to the bottom of the well. The open annulus will allow for the calculation of the bottom hole pressure while pumping down the 2-7/8-inch tubing with out the influence of tubing friction pressure on the bottom hole calculations. The injection rates were from two barrels per minute (2 bpm) to ten barrels per minute (10 bpm). From the data collected during the injection test it appears that the well will be able to accept an injection rate up to 10 bpm at the permitted pressure of 1550 psig with 4-1/2-inch, 11.6 pound per foot (11.6 lb/ft) tubing in the wellbore.

At the request of the OCD, Subsurface went back into the wellbore with a retrievable bridge plug (RBP) to test the casing and isolate any leaks to within 1000 feet. The RBP was set at 7550 feet and the packer was set at 6985 feet to isolate the squeezed interval from 7050 feet to 7314 feet. The squeezed interval was pressure tested to 490 psig and the annulus to 632 psig. The squeezed interval was losing pressure at a rate of 6 psi/hr and the annulus was gaining pressure due to thermal affects. The RBP was moved up the wellbore to 1255 feet and casing pressure tested to 569 psig. The casing above 1255 feet was losing pressure at a rate of 2 psi/hr. The casing leaks were isolated to the squeezed interval from 7050 feet to 7314 feet and in the interval from surface to 1255 feet. The

OCD was called and approved the 300PSI sealing application to stop the casing leaks across the two intervals.

The 4-1/2-inch tubing was run into the wellbore and the Arrow X-1 packer was set at 7575.73 feet with 37,000 lbs of tension. Prior to running the 4-1/2-inch tubing a new Superior hanging spool was installed. Prior to setting the tubing packer, the annulus between the 4-1/2-inch tubing and the 7-inch casing was filled with inhibited brine, with the 300psi sealant across the squeezed perforations and across the upper section of the 7-inch casing. Once the packer was set and tubing hung off in the spool, a new Superior wellhead was installed and the P-seals were pressure tested to 3000 psig. After the wellhead was assembled the annulus was squeezed at 545 psig for four hours (4 hrs), as specified by the sealant manufacture representative on site. The annulus was then pressure tested to 480 psig overnight with no pressure loss. The workover rig was disassembled and moved off location with all associated equipment.

A 12-hr pump-in and falloff test was performed down the 4-1/2-inch tubing. To maintain a surface injection pressure that was below the permitted pressure of 1550 psi the injection rate was lowered to 9 bpm at the end of the pump-in procedure. The BHP gauge was placed at 8630 feet for 14 hrs to monitor BHP. When the gauge was pulled, five minute (5 min) gradient stops were made every 1000 feet with the first stop at 7000 feet. The equipment used to perform the falloff testing was moved off location to prepare for mechanical integrity testing (MIT).

The MIT consisted of an annulus pressure test and a radioactive tracer survey. The temperature survey was performed during the CBL/VDL logging event and will be used as a baseline for any future temperature surveys. The annulus pressure test was performed at 530 psia and lost 2.5 psi over a one-hour period, which was within the OCD requirements of five percent (5%) over a 30 minute time interval. The radioactive tracer survey showed no signs of fluid flow out of the permitted interval above 7650 feet. The OCD witnessed the annular pressure test and the first half of the radioactive tracer survey.

The annulus monitoring system will be installed and tested in March 2007. After the installation of the well annulus monitoring system, the well will be turned over to Navajo for injection.

1.0 INTRODUCTION

Navajo re-entered, tested, and completed WDW-3 for the injection of plant waste effluent. The well is located in Section 1, Township18 South, Range 27 East (S1-T18S-R27E) approximately 11.5 miles east-southeast of Artesia, New Mexico in Eddy County. A Well Location and Acreage Dedication plat of the well location is located in Appendix 2.0-2. The construction and testing of this well was performed in compliance with the provisions of the New Mexico Water Quality Control Commission Regulations (NMWOCCR) Subpart V, Section Nos. 5204 and 5205, New Mexico Oil Conservation Division Underground Injection Control (UIC) Program Manual, and the Environmental Protection Agency (EPA) Code of Federal Regulations 40 CFR 16.12, Subpart B.

Subsurface was contracted by Navajo to re-enter and test WDW-3. The construction and testing of this Non-Commercial Class I Nonhazardous Waste Disposal Well was permitted by the BLM and the OCD. All work associated with WDW-3 was completed in accordance with the provisions specified in the permit approved by the BLM and OCD.

The following report and contracted work on WDW-3 was designated as Subsurface Project No. 70F5826. The following report summarizes all work performed on the WDW-3 and includes the fillings of the necessary documents. The report is broken down into four parts Summary of Daily Activities, Mechanical Integrity Testing, Reservoir Evaluation, and Regulatory Compliance. For continuity this report is written in the same structure as the report completed on WDW-2. The well reentry procedure can be found in 1.0-1.

2.0 SUMMARY OF DAILY OPERATIONS

The reentry, testing, and completion operations for WDW-3 are presented in this section. Details of certain operations are referenced in the text and included as figures, exhibits, tables, and appendices. Appendix 2.0-1 contains a Chronology of Field Activities from the Field Activity Reports.

The original wellbore was designated as the Mewbourne Oil Company, Chalk Bluff Federal No. 1 (API No. 30-015-26575), installed March 7, 1991, as a producing oil & gas well. The wellbore was constructed with 13-3/8-inch, 54.5 lb/ft surface casing set to 400 feet in a 17-1/2-inch hole and was cemented to the surface. A 9-5/8-inch, 36 lb/ft intermediate casing was set at 2600 feet in a 12-1/4-inch hole and cemented to the surface. The 7-inch, 26 lb/ft and 29 lb/ft production casing was set at 9450 feet in an 8-3/4-inch hole and was cemented to 900 feet below ground level (GL). On March 7, 1991, the well was deepened to 10,119 feet and a 4-1/2inch, 11.6 lb/ft liner was installed from 9051 feet to 10,119 feet and cemented in place with 175 sks of cement. The well was plugged and abandoned on August 14, 1995. The well was acquired by Navajo on November 27, 2000. The current well configuration is presented in Figure 2.0-1 and Table 2.0-1.

Navajo submitted the application to recomplete the well to both the BLM and the OCD on June 6, 2006, and received approval from the OCD on August 11, 2006, (Appendix 2.0-3 and Appendix 2.0-4). The Sundry Notices and Reports on New Wells notification was submitted to the BLM on June 6, 2006, (Appendix 2.0-5). The New Mexico Energy, Minerals and Natural Resources Department sent a letter of approval to discharge according to UIC-CLI-008-3 on June 23, 2004, which was later modified to raise the top of the injection interval from 7750 feet to 7650 feet (Appendix 2.0-6)

2.1 LOCATION CLEARING AND RIG MOBILIZATION

On September 27, 2006, Banta's roustabout crew arrived at the job site with two back holes and a three man crew. The location was cleared of all overgrowth and a thirty feet by thirty feet by five feet (30 ft x 30 ft x 5 ft) lined pit was dug to hold returns. An eight foot by seven foot by three foot (8 ft x 7 ft x 3 ft) cellar was dug around the wellhead in order to inspect the lower section of the wellhead for repairs. New valves and fittings were installed on the existing wellhead. Rig support equipment started to arrive at the job site.

On September 28, 2006, the roustabout crew framed in the cellar and the Basic workover rig arrived at the job site. The rig was spotted and the remaining support

equipment arrived at the job site. The derrick was erected and the rig crew repaired the sand line break and replaced the drilling line. The 2-7/8-inch work string was tallied at 9413.59 feet with a bottom hole assembly of 126.45 feet (See Table 2.1-1).

On September 29, 2006, the wellhead was inspected by a Superior Wellhead technician and was found to be an eleven inch, three thousand pound, by seven inch, five thousand pound $(11^3 \times 7^5)$ Cameron type spool. The Cameron type spool attached to the wellhead had been discontinued and Superior suggested that the spool be replaced. The remaining support equipment arrived at the job site and was rigged up for drilling. The annular blow out preventer (BOP) was attached up to the wellhead and the rig crew went into the wellbore with 2-7/8-inch, 7.9 lb/ft, PH-6 tubing, four 4-3/4-inch drill collars, 46.67 lb/ft, and a 6-1/8-inch Baker Hughes Rock bit. The rig crew tagged bottom at 7001 feet.

2.2 DRILLING OF CAST IRON BRIDGE PLUGS AND CEMENT SQUEEZING OF THE PERFORATIONS

On September 30, 2006, the sand line brake on the rig would not hold and operations were shut down until the brake was repaired. On October 1, 2006, first CIBP was drilled out with no show of cement or drilling mud. The second CIBP was tagged at 7190 feet. The well was circulated clean with brine water and an injection test was performed. The rig crew tripped out of the hole (TOOH) with the work string and tripped into the hole (TIH) with the work string excluding the bit and drill collars (open ended) to spot cement for squeeze operations.

On October 2, 2006, the first cement squeeze was executed across the perforations from 7050 feet to 7102 feet. Halliburton spotted eighty sacks (80 sks) of Premium Plus neat 14.8 ppg cement across the perforations. The rig crew pulled nine stands to get out of the cement and circulated out any excessive that was trapped in the work string. Halliburton was able to pump four barrels (4 bbls) of cement into the formation before reaching a squeeze pressure of 2000 psig. The well was shut-in over night with 680 psig left on the wellhead.

On October 3, 2006, the rig crew tagged cement at 6873 feet assuming the hole was full of cement to the CIBP. At 7190 feet there were 12.1 bbls of cement left in the wellbore. The total amount of cement spotted in the wellbore was 18.7 bbls leaving 6.6 bbls of cement either place in the formation or circulated out of the wellbore. It was estimated that 3.5 bbls were circulated out of the tubing during the clean out, leaving 3.1 bbls placed into the formation (Halliburton Report Appendix 2.1-1). The cement in the wellbore was drilled out to the top of CIBP at 7190 feet and the well was pressure tested to 578 psig. The well lost 123 psi over a thirteen and half hour period at 9.1 psi/hr (1.58%).

On October 4, 2006, the second CIBP was drilled out and the third CIBP was tagged at 7278.96 feet. It was estimated that there was 9 feet of cement on top of the third CIBP. The third CIBP was drilled out and the formation started to take fluid at a rate of 1.0 bpm to 1.25 bpm. It was estimated that during circulation 180 bbls of 8.7 ppg brine was lost to the formation. The fourth CIBP was tagged at 7591 feet. The hole was circulated clean to prepare for the second cement squeeze operation. A pump-in test was performed and the well would take fluid at a rate of 4.5 bpm at 710 psig. The rig crew TOOH with collars and bit and TIH open ended to spot cement for squeeze operations.

On October 5, 2006, the bottom of the work string was placed at 7321 feet. Halliburton pumped 100 sks of 14.8 ppg Premium Plus neat cement across the perforations. The rig crew pulled ten stands and Halliburton started to squeeze into the formation using a hesitation squeeze method. The cement was squeezed into the formation in seven stages 10 minutes apart with 1.5 bbls of cement pumped between each stage. After the first stage the wellhead pressure was 78 psig and after the seventh stage the wellhead pressure was 1973 psig. The well was shut-in with 1970 psig for 2 hours and then was bled off and an additional eight stands were pulled and the tubing was circulated to clear the tubing of any excessive cement (see Halliburton Report Appendix 2.1-2). The well was shut-in over night with 930 psig on the wellhead.

On October 6, 2006, the rig crew drilled through soft cement and tagged bottom at 7554 feet, which was 37 feet above the previous spot at 7591 feet. The well would

4

not hold pressure and squeeze perforation were taking fluid at 25 gpm with 920 psig on the wellhead. A second cement squeeze was required to seal off the perforations.

On October 7, 2006, Halliburton was not available to do the third squeeze job so Key Pumping Services was called and performed the third cement squeeze. Rig crew TOOH with collars and bit and TIH open ended (without collars and bit). The bottom of the work string was placed at 7290 feet. On October 8, 2006, Key Pumping Services placed 80 sks of 14.8 ppg Premium Plus neat cement across the perforations. The rig crew pulled eight stands of pipe and circulated the pipe free of excessive cement. Key Pumping Services pumped 6 bbls of cement into the formation at 750 psig. At a squeeze pressure of 1975 and additional 1.5 bbls was pumped into the formation. Key Pumping Service stopped pumping for 10 min to allow the pressure to fall then pumped another 1.5 bbls into the formation before the formation refused to take any addition fluid at 1940 psig (see Key's Report in Appendix 2.1-3). The well was shut-in for the night with 1830 psig on the wellhead.

On October 9, 2006, Rig crew tagged hard cement at 6981 feet and drilled hard cement to 7312 feet. The estimated amount of cement left in the pipe was 12.7 bbls out of a total of 18.8 bbls pumped with no sign of returned cement. The rig crew tagged bottom at 7559 feet and the wellbore was circulated clean. On October 10, 2006, the casing was pressure tested for twelve hours with a starting pressure 630 psig. At the end of the twelve hour period, the pressure was 568 psig. The wellhead pressure was recorded every thirty minutes and, after six hours the rate of pressure loss was maintaining 2 psi/ 30 minutes. The annulus valve between the 7-inch casing and the 9-5/8-inch casing was opened and contained pressure. A gauge was placed on the 7-inch by 9-5/8-inch annulus and monitored for 18 hours with no apparent increase in pressure (Table 2.1-2). The 7-inch by 9-5/8-inch annulus was initially bled off before the BOP was placed on the wellhead.

On October 11, 2006, rig crew drilled through the fourth CIBP at 7595 feet and while drilling though the plug the plug dropped to 7776 feet. At 7780 feet mud contaminated cement was encountered. At 7838 feet the rig crew had drilled though the cement plug and TIH to the top of the 4-1/2-inch liner (TOL). The rig crew

tagged bottom at 9022 feet 28 feet above the TOL. It appears that there is a 28 foot cement plug across the top of the liner at 9051 feet. The wellbore was circulated clean from 9022 feet to surface. On October 12, 2006 the rig crew TIH with a casing scraper and circulated the hole to prepare for logging. Wood Group Logging Services arrived at the job site and spotted equipment.

2.3 LOGGING AND PERFORATING THE INJECTION INTERVAL

On October 13, 2006, Wood Group ran a CBL/VDL log, temperature survey, and a caliper log. The CBL/VDL log showed top of cement behind the 7-inch casing at 900 feet below the ground level (Appendix 2.3-1). The temperature log showed no major anomalies throughout the wellbore (Appendix 2.3-2). The caliper log showed some minor ware in the casing wall below the top of the injection interval (Appendix 2.3-3).

The CBL/VDL log was difficult to evaluate due to the fast formation responses. It appears that there is cement behind the 7-inch casing from the packer at 7575 feet up to 1500 feet with areas that appear to have a micro annulus. Isolation from 1500 feet to 1000 feet is spotty with little or no cement. From 900 feet to the surface, the CBL and VDL show no cement behind the casing.

The temperature survey showed no anomalies in the temperature curve. The fluid level in the well was found at 296 feet. The static bottom hole temperature (BHT) at 7575 feet was 126° F, at 8140 feet the BHT was 132.5° F, and at 9020 feet the BHT was 142.6° F.

The caliper log showed 7-inch, 29 lb/ft casing and 7-inch, 26 lb/ft casing mixed throughout the casing string. A bad spot in the 7-inch casing string was discovered at 7604 feet. There appears to be some additional corrosion from 8662 feet to 8705 feet.

From October 14, 2006 through October 15, 2006, Wood Group perforated the intervals from 7660 feet to 8450 feet and from 8540 feet to 8620 feet. Perforating was done using a 40 foot steel hollow carrier gun that produced a 0.5-inch hole at

two shots per foot on 60° phasing. On the first day 12 perforating runs were made completing the interval from 8540 feet to 8620 feet and 400 feet of the interval from 8050 feet to 8450 feet. On the second day 10 perforating runs were made completing the interval from 7660 feet to 8050 feet. There were no misfires during both days and all perforating charges went off as planned.

2.4 FORMATION SAMPLE COLLECTION AND INJECTION TESTING OF THE WELL

On October 15, 2006, the well was swabbed back from 2400 feet to surface to collect formation samples. Four samples were collected at different volumes of returned fluid. The first sample was collected after twelve runs estimated volume at 151 bbls. The second sample was taken after fourteen runs estimated volume at 201 bbls, and the fourth sample was taken after eighteen runs estimated volume of 226 bbls. Samples were delivered to the Navajo Refining Facility in Artesia, New Mexico. Between runs seven through nine hydrogen sulfide gas was encountered and all personnel not active in the swabbing process were moved off the location. The formation fluid sample lab results can be found in Appendix 2.4-1. A standard API water analysis of the formation water samples and brine water samples was completed by Texas Oil Tech Laboratories.

On October 18, 2006, Key Pumping services arrived at the job site to perform the injection test. Key Pumping services started the injection testing down 2-7/8-inch, PH-6 tubing. Key's pump truck broke down after pumping 80 bbls. Key Pumping services returned on October 19, 2006. The wellhead was shut-in with the bottom of the pipe left open ended. Pressure gauges were placed on the annulus and on the wellhead. Key Pumping services circulated the wellbore at 2 bpm and caught returns after 37 bbls. The test commenced starting at 2 bpm and increasing in 1 bpm increments to 10 bpm. Both the wellhead pressure and annulus pressure were monitored during the testing. The annulus pressure will allow for a calculation of the BHP with out the affect of the 2-7/8-inch pipe friction. The brine fluid weight that was pumped into the well was measured at 8.6 ppg.

Key pumping was able to reach 10 bpm for a short five minute period before the deck engine over heated and the pump shut down. The wellhead tubing pressure at 10 bpm was 5087 psig the annulus pressure was estimated at 660 psig. With a hydrostatic pressure of 3488.16 psi calculated to 7800 feet, the BHP is 4148 psi. The pressure gradient is 0.53 psi/ft, which is below the fracture gradient. According to the data collected from the annulus pressure gauge, it appears that it would be possible to pump into the well at 10 bpm and still stay below the fracture gradient and the permitted wellhead pressure of 1550 psig (Table 2.4-1).

2.5 FINDING AND REPAIRING CASING LEAKS

The State of New Mexico OCD requested that Navajo Refining try to find all the casing leaks to within 1000 feet. For two days from October 20, 2006 to October 22, 2006, a retrievable bridge plug (RBP) and packer were placed in the wellbore to isolate sections of the casing within 1000 foot intervals. The additional testing that was performed after each perforation cement squeeze revealed that there were two intervals that were suspect of casing leaks; the interval across the squeezed perforations and the interval from 1000 feet to surface.

The first suspected interval was across the squeezed perforations. The RBP was set at 7550 feet and the packer was set at 6985 feet. The isolated interval was pressure tested to 490 psig and the annulus between the 2-7/8-inch tubing to the packer was pressure tested to 632 psig. The pressure loss across the squeezed interval stabilized after two hours and was losing 6 psi/hr. The annulus gained pressure due to thermal affects and would not stabilize.

The next suspect interval in the casing was in the upper 1000 feet to surface interval. The RBP was set at 1255 feet and the entire casing interval form 1255 feet to surface was pressure tested to 570 psig. The pressure stabilized after two hours and maintained a pressure loss of 2 psi/hr over a twelve hour period. The two tested intervals accounted for the majority of the 7-inch casing leaks. The OCD was called and approved the pumping of a sealant treatment provided by 300 PSI, Inc. as a solution to sealing off the 7-inch casing leaks. The treatment would be pumped ahead of and be hind the inhibited packer fluid.

2.6 RUNNING THE 4 1/2-INCH 11.6 LB/FT TUBING AND SETTING THE PACKER

On October 23, 2006, Superior Wellhead replaced the existing Cameron spool with a new Superior Wellhead spool. The BOP was reseated and Allen's Casing Crews started into the hole with the Weatherford Arrow X-1 7-inch by 3-inch packer. The Packer would not go past 50 feet before getting hung up in the casing. The packer was pulled and examined, and it was discovered Weatherford had brought out the wrong packer. Kenco, out of Artesia, was called and they delivered a new Arrow X-1, 7-inch by 2-7/8-inch (Figure 2.6-1) packer to the location. The Weatherford packer was made with a 3-inch EUE thread and the Kenco packer had a 2-7/8-inch REG thread. As a result of the Weatherford cross over not threading up to Kenco's packer, Kenco had an integral cross over made and brought to the location.

On October 24, 2006, Allen's Casing crew started into the wellbore with 4-1/2-inch tubing and Arrow X-1 packer. The tubing was torqued to specifications at 1600 lbs. The bottom of the packer was set at 7575.73 feet with 37,000 lbs of tension on the packer. Before the packer was set the wellbore was circulated with approximately 240 bbls. 300PSI pumped 23.8 bbls of sealant followed by 95 bbls of 8.7 ppg inhibited brine (55 gals Baker Petrolite CRW 132 inhibitor fluid) and 14.29 bbls of sealant. At the end of the pumping the packer was set with 37,000 lbs of tension and the slips placed into the hanging spool. The BOP was removed and the wellhead installed.

2.7 INSTALLATION OF THE WELLHEAD

On October 25, 2006, the rig crew finished rigging up the wellhead. Superior arrived and pressure tested the P-seals to 3000 psig. The rig crew filled the annulus with 2.5 bbls of 8.7 ppg brine water and 300 psi applied 545 psig to the 4-1/2-inch by 7-inch annulus using nitrogen. The pressure was maintained for four hours. The pressure was bled off and the annulus was pressure tested to 490 psig with brine for one-hour and recorded on a circular chart (Appendix 2.7-1). The annulus was bled down and retested overnight to 480 psig with no pressure loss. From October 25,

2006 to October 28, 2006, the rig was demobilized and moved off location with all support equipment. Key Energy services started moving frac tanks onto the location for the pressure build up and falloff testing. The pipe tally for the 4-1/2-inch tubing can be found in Table 2.7-1. A schematic of the as-built wellhead can be located in Figure 2.7-1.

2.8 PRESSURE BUILD UP AND FALLOFF TESTING

On November 2, 2006, Key Energy services placed fourteen frac tanks on the location and were in the process of filling them. On November 3, 2006, Banta Roustabout service installed the pump-in flange on the wellhead. Six temperatures were taken at the mid-point in the frac tanks to determine the brine fluid temperature, so that the stress that would be applied to the packer, due to temperature changes in the wellbore could be calculated. The average water temperature of brine that would be used to perform the pump-in procedure portion of the pressure build up was 60.6° F. The shear pins in the packer were set at 80,000 lbs and the maximum amount of shear stress that would be applied to the packer was determined to be less than 60,000 lbs. All the brine located in the frac tanks were treated with biocide and the tanks were rolled with a Key vacuum truck.

On November 4, 2006, Petroplex Pumping service rigged up to the injection side of the wellhead and a Kcy Energy kill truck rigged up to the annulus side of the wellhead. The kill truck will maintain 700 psig on the annulus in order to help reduce tubing and packer stresses. Petroplex Pumping service started pumping at 3 bpm and after 28 bbls the well caught pressure at 162 psig. The rate was slowly increased to 10 bpm with a wellhead pressure of 1278 psig. The rate was maintained at 10 bpm until the wellhead pressure started to approach the 1400 psig mark and at that time the rate was decreased to 9 bpm at a wellhead pressure of 1170 psig. Based on strap measurements from the frac tanks it was estimated that 6700 bbls of 8.8 ppg brine were pumped into the well (Table 2.8-1 and Appendix 2.8-1).

Two hours prior to ending the pumping procedure, Schlumberger Slickline service lowered a bottom-hole pressure gauge into the well at 8630 feet. While lowering

the tool, the rate was decreased to 5 bpm in order to get the tool passed through the upper section of the wellbore. At 9:00 PM pumping was stopped with the BHP tool at 8630 feet, and the well was closed in with 50 psig on the annulus and no pressure on the wellhead. On November 5, 2006, at 10:20 a.m. Schlumberger Slickline service started out of the hole, with the BHP gauge taking gradient stops every 1000 feet, starting at 7000 feet. Once the BHP tool was out of the wellbore the annulus was bled down and the well shut-in (Appendix 4.1-2). All but one frac tank were removed from the location.

2.9 LOCATION CLEANUP AND STATE REQUIRED TESTING

On November 13, 2006, Banta Roustabout service cleared the location of debris, hauled off trash, filled in cellar with pea gravel, removed diesel contaminated soil around the location, and leveled the location. The well cuttings and contaminated soils were placed in the reserve pit. The returned solids that remain in the reserve pit will have to be profiled prior to disposal and cannot be disposed of under the oil field exemption. The cuttings and returned solids that remain in the reserve pit will be hauled off once the profile of the material is complete.

On November 14, 2006, Wood Group was unable to rig up to the wellhead due to high winds and the OCD delayed testing until November 15, 2006.

On November 15, 2006, Wood Group logging services, Petroplex Pumping services, and OCD inspectors arrived at the job site. Wood Group Logging services performed an annulus pressure test, and radioactive tracer survey. Petroplex Pumping services provided pumps for the annulus pressure test and the chase down portion of the radioactive tracer survey.

The 4-1/2-inch by 7-inch annulus was pressure tested to 530 psia over a one-hour period and lost 1.99 psi. This represents a 0.37% pressure loss which is well within the OCD requirement of 5% for 30 minutes at a minimum pressure of 300 psig. The annulus pressure test was witnessed by the OCD representatives. The radioactive tracer test was run without any sign of radioactive material being pumped out of the injection interval. The first part of the radioactive tracer survey was witnessed by

the OCD representatives (Appendix 2.8-1, Attachment 2.8-1, Table 2.8-1, Figure 2.8-1). At the end of the job the annulus was again pressure tested to 300 psig and held pressure for 1-1/2-hrs before being bled off.

3.0 MECHANICAL INTEGRITY TESTING

The demonstration of the mechanical integrity of WDW-3, required by New Mexico Water Quality Control Commission Regulations (NMWQCCR) Subpart V, Section 5204 (A) to (D) and Section 5205(A)(1)(a), included a casing caliper inspection on the 7-inch protective casing, pressure testing of the 7-inch protective casing, CBL/VDL of the 7-inch casing, a radioactive tracer survey, a differential temperature survey, and an annulus pressure test. Results of these tests demonstrated that the well had internal and external mechanical integrity.

3.1 CALIPER CASING INSPECTION LOG

On October 13, 2006, Wood Group Logging services ran a caliper log to determine the condition of the existing casing wall thickness and to check for anomalies (Appendix 2.2-3). Overall the 7-inch protective casing looked good. The caliper log revealed that there was 26 lb/ft and 29 lb/ft casing in the wellbore. There was one anomaly found that occurred at 7604 feet, which appeared to be a gouge in the casing wall. The upper section of the 7-inch casing string appeared to be in better condition than the lower section. There appeared to be some corrosion and scale build up in a section of the casing just above and below the 8700 feet. The data obtained from the caliper log may be used as a baseline for future comparisons.

3.2 CEMENT BOND LOGGING

On October 13, 2006, Wood Group Logging services ran a CBL/VDL log (Exhibit 2.2-1). The CBL/VDL revealed cement had not been circulated to the surface behind the 7-inch protective casing, as was indicated in the state records. The TOC behind the 7-inch protective casing was located at 900 feet and the cement bond quality was poor down to 1200 feet. There were indications on the log that a micro annulus may be present below the 1200 foot interval. The intervals above the

injection interval from 2662 feet to 2160 feet, from 4876 feet to 5372 feet, and from 6750 feet to 7600 feet indicated that there was good bonding between the 7-inch casing and the cement to isolate the injection interval. The OCD was called and they approved the existing wellbore for injection and did not request that any additional cement be placed behind the 7-inch casing (Attachment 3.2-1).

3.3 CASING PRESSURE TESTING

After performing each perforation squeeze, the wellbore was drilled out and the casing was pressure tested. The casing pressure test that was performed across the squeezed interval from 7050 feet to 7102 feet had a loss rate of 9.1 psi/hr with a starting pressure of 580 psig. The pressure was run for 13.5 hours with the final reading at 455 psig.

The second perforation squeeze was over the perforated interval from 7262 feet to 7278 feet and 7304 feet to 7314 feet. The second cement squeeze would not hold pressure. A third cement squeeze was performed across the interval and the casing was pressure tested to 630 psig for a period of 12 hours. The final casing pressure was 568 psig with a average pressure loss of 2 psi/hr.

The OCD was notified of the pressure losses on the casing pressure test and requested that Navajo attempt to isolate the leakoff in the casing to within 500 feet to 1000 feet. A 2-7/8-inch by 7-inch packer and an RBP were run into the wellbore to isolate the squeezed interval. The RBP was set at 7550 feet and the packer was set at 6985 feet. The annulus between the 2-7/8-inch work string and the 7-inch protective casing was pressure tested to 632 psig and appeared to gain pressure due to a thermal heating effect in the wellbore. The tubing was pressure tested to 490 psig with a loss rate of 6 psi/hr down the 2-7/8-inch tubing.

The 7-inch protection casing interval from 900 feet to the surface did not appear to have cement behind it, therefore, it was necessary to determine if that interval mechanically sound. The RPB was set at the shallowest point possible at 1255 feet and the casing was pressure tested to 570 psig. Over a 13 hour period the wellhead pressure dropped to 540 psig with a loss rate of 2 psi/hr.

The request by the OCD was completed. The intervals across the squeezed perforations and the interval from 1255 feet to surface both showed signs of a casing leak. The leak-off rate across both intervals was small and within the regulator requirements of 5%. Again the OCD was contacted and they requested that Navajo attempt to seal off the leaks. A casing sealant was pumped with the inhibited brine down the 4-1/2-inch by 7-inch annulus before setting the 2-7/8-inch by 7-inch Arrow X-1 injection packer. The sealant treatment was performed by 300PSI Inc. and approved by the OCD (Attachment 3.2-1). The packer was set and the sealant was squeezed. An annulus pressure test was recorded with the initial annulus pressure at 490 psig, after one-hour the annulus pressure maintained 490 psig, there was no measurable loss over the one-hour period. A copy of the chart is in Appendix 2.7-1.

3.4 ANNULUS PRESSURE TEST

The State of New Mexico required an annulus pressure test which was performed on November 15, 2006, in conjunction with a radioactive survey. The well was allowed to sit idle for 10 days to attain a thermal equilibrium in the wellbore prior to running the annulus pressure test. Wood Group Logging service monitored the annulus pressure and Petroplex Pumping Service provided the pressure pumping equipment. The OCD representatives were present to witness the annular pressure test.

The annulus was pressurized using a high pressure, low volume triplex pump isolated from the pressure source. The official annular pressure test began at 11:32:30 AM at a pressure of 530.94 psia. The tubing pressure was 0 psi. After one-hour, the pressure decreased to 528.95 psia. This represents a loss of 1.99 psi, or 0.37%, which complies with the OCD allowable of 5% per 30-minute test period at a minimum test pressure of 300 psi. The annulus pressure test data are presented as Table 2.9-1. The pressure gauge calibration certificate is presented as Appendix 3.4-1.

3.5 RADIOACTIVE TRACER SURVEY

A radioactive tracer survey was performed on the WDW-3 on November 15, 2006, following the annulus pressure test. The first part of the radioactive tracer survey was witnessed by the OCD representatives. The radioactive tracer survey consisted of running two statistical checks, two baseline gamma ray surveys, and injecting four slugs of radioactive material. Two (2) of the slugs were injected during the time-drive surveys and two were injected during the moving surveys. All tests were conducted while injecting nonhazardous brine water into the well. Wood Group Logging service performed the logging services and Petroplex Pumping service provided the pumping equipment.

The radioactive tracer tool was lowered to a total depth of 9,020 feet and a presurvey baseline log was then run from 9,020 feet to 7,350 feet. Five-minute statistical surveys were conducted at 7,550 feet and at 7,640 feet.

The injection rate was set at 102 gallons per minute (gpm) and a slug of radioactive iodine was ejected at 7,375 feet. A total of seven passes were made during the first moving survey, until the slug dissipated into the permitted injection interval from 7,650 feet to 8,830 feet.

The radioactive tracer tool was repositioned at 7,375 feet and a second slug of radioactive iodine was ejected. The injection rate was 102 gpm. A total of five passes were made during the second moving survey, until the slug dissipated into the permitted injection interval from 7,650 feet to 8,894 feet.

The first stationary time-drive survey was performed with the lower detector at 7,640 feet with an injection rate of 102 gpm. A slug of radioactive iodine was ejected and monitored on time drive for 15 minutes.

The second stationary time-drive survey was performed with the lower detector at 7,640 feet. The injection of brine water was maintained at 102 gpm. A 2-second slug of radioactive iodine was ejected and monitored on time-drive for 15 minutes.

No upward fluid movement was observed during the two chase downs or the two time-drive surveys. There does not appear to be any upward movement of fluid out of the injection interval from 7,650 feet to 8,884 feet.

Injection into WDW-3 was terminated and a post-survey gamma ray log was run from 9,016 to 7,342 feet. The initial and post-survey gamma ray logs were comparable.

The radioactive tracer log is presented as Appendix 2.9-1. The corresponding letter of interpretation of the radioactive tracer log, dated November 27, 2006, by Wood Group is presented as Appendix 3.5-1.

3.6 DIFFERENTIAL TEMPERATURE SURVEY

A baseline differential temperature survey was performed on October 13, 2006, (Exhibit 2.2-2) after the CBL/VDL logging run. The baseline differential temperature survey will be used to evaluate future temperature surveys to confirm mechanical integrity of the well. No anomalies were observed during the differential temperature survey.

The temperature log was run from 9020 feet to the surface. The fluid level in the wellbore was at 296 feet with 8.6 ppg brine water in the wellbore. The wellbore temperature at 560 feet was 68.1° F, at 1000 feet the wellbore was temperature 74.6° F, at 7650 feet the temperature was 127° F, at 8850 feet the temperature was 140.2° F, and at 9020 feet the temperature was 142.9° F. The gradient from 7650 feet to 9020 feet was 1.16° F / 100 ft.

4.0 RESERVOIR EVALUATION

The bottom-hole pressure testing, which was conducted on the WDW-3 following the completion of the well, was designed to obtain the best estimate of the permeability and mobility-thickness in the reservoir. The pressure testing consisted of an injection falloff test and a gradient survey. Petroplex Pumping Service

provided the pumping equipment for the injection period of the testing and Schlumberger Slickline Services provided the BHP equipment.

The calculated value for the skin does not appear to correspond with the pump-in surface pressure values or the injection test valves. It is possible that the offset wells, WDW-1 and WDW-2, influenced the bottom hole pressure response of the bottom hole pressure gauge during the pressure falloff test. Historically, the calculation for the permeability appears to be in the range that was anticipated from previous falloff testing conducted on WDW-1 and WDW-2. WDW-1 and WDW-2 are completed in the same zone of interest.

Due to the proximity of WDW-3 to both the WDW-1 and the WDW-2 and the procedure used by Navajo for injecting into the wells, consideration needs to be given to monitoring the bottom hole pressure in the two offset wells while performing a fallout test the target well. This should allow for a better understanding of the pressure behavior in the reservoir.

4.1 PRESSURE FALLOFF TEST

Petroplex Pumping Services rigged up on WDW-3 on November 4, 2006. Injection into WDW-3 was initiated at 0919 hours at an injection rate of 126 gpm. The injection rate was gradually increased to 420 gpm. At 1800 hours, Schlumberger rigged up and the injection rate was decreased to 210 gpm in order to run the bottom-hole pressure gauges into the well. The tandem memory gauges were positioned at 8,630 feet below ground level and the injection rate was increased to 378 gpm.

At 2100 hours, the injection pumps began to lose suction and WDW-3 was subsequently shut in. The final injection rate was 189 gpm with a final injection pressure at 8,630 feet of 4,577.59 psia.

The pressure falloff test was terminated after 13.57 hours with a final shut-in pressure of 3,804.87 psia. Gradient stops were made at 1000-foot intervals while removing the pressure gauges from the well.

The pressure data obtained from the falloff test were analyzed with the assistance of the commercially available PanSystem pressure transient analysis software. The PanSystem output for the falloff analysis has been included as Appendix 4.1-1 and includes the input reservoir parameters used in the reservoir analysis. The pressure and temperature data recorded during the pressure falloff testing are included as Appendix 4.1-2.

Figure 4.1-1 shows the pressure response recorded by the bottom-hole pressure gauge from the time the tool was in place through the 13.57-hour shut in period. Figure 4.1-2 is a cartesian plot of the pressure falloff data. The superposition time function was used to account for the rate changes during the pressure build up portion of the testing. Figure 4.1-3 is a log-log diagnostic plot of the falloff data, showing change in pressure and pressure derivative versus equivalent shut in time.

The reservoir permeability was determined from the radial flow region of the superposition Horner plot, Figure 4.1-4. The radial flow regime occurs between Horner times of 486 and 196. Figure 4.1-5 shows an expanded view of the radial flow regime. The slope of the radial flow period was determined to be 0.473785 psi/cycle.

An estimate of mobility-thickness, kh/μ , for the reservoir was determined to be 2,223,895 md-ft/cp from the following equation:

$$\frac{\mathrm{kh}}{\mathrm{\mu}} = 162.6 \, \frac{\mathrm{q\,B}}{\mathrm{m}}$$

where,

kh/µ	ι ==	formation mobility-thickness, millidarcy-feet/centipoise
q	_	rate prior to shut in (6,480 bbl/day)
В	=	formation volume factor (1.0 reservoir bbl/surface bbl)
m	=	slope of the infinite acting radial flow period (0.473785 psi/cycle)

Substituting,

$$\frac{k h}{\mu} = 162.6 \frac{(6, 480)(1.0)}{0.473785}$$
$$= 2,223,895 \text{ md-ft/cp}$$

The permeability-thickness, kh, was determined to be 1,601,204 md-ft by multiplying the mobility-thickness by 0.72 centipoise, the viscosity of the reservoir fluid (μ res).

kh =
$$\left(\frac{kh}{\mu}\right)\mu_{res}$$

= $(2,223,895)(0.72)$
= 1,601,204 md-ft

The average reservoir permeability was determined to be 1,840 md using the total perforated interval thickness of 870 feet:

$$k = \frac{(kh)}{h} = \frac{1,601,204}{870} = 1,840 \,\mathrm{md}$$

4.2 STATIC GRADIENT SURVEY

On November 5, 2006, the pressure gauges were removed from WDW-3. Static gradient stops were made at 8,630 feet, 7,000 feet, 6,000 feet, 5,000 feet, 4,000 feet, 3,000 feet, 2,000 feet, 1,000 feet, and at the surface. The bottom-hole pressure and temperature after 13.57 hours of shut in at 8,630 feet were 3,804.87 psia and 135.88° F, respectively. The static fluid level was determined to be at 420 feet.

A summary of the static gradient survey results is provided in Table 4.2-1 and are graphically depicted in Figure 4.2-1.

5.0 Regulatory Compliance

The construction of WDW-3 was performed in accordance with the regulatory considerations and standards specified in the approved modification to the Discharge Plan UIC-CLI-008-3 Dated June 23, 2004; the OCD Permit, Dated June 29, 2006; the BLM Sundry Notices and Reports on Wells Dated June 29, 2006; NMWQCCR, Subpart V, Section Nos. 5204 and 5205; and the United States Environmental Protection Agency 40 CFR 146.12.

5.1 Siting

Navajo re-entered, tested, and completed a plugged and abandoned wellbore located in Section 1, T18S, R27E, Unit Letter N, approximately 11 miles east-southeast of Artesia, in Eddy County, New Mexico. The modification to Discharge Plan UIC-CLI-008-3 includes provisions for the location, depth of the injection interval, and specific reentry and completion requirements. The Navajo WDW-3 will inject plant effluent into a the Cisco and Brushy Canyon formations, which are beneath the lowermost formation contained within one quarter of a mile of the wellbore, with ground water having 10,000 mg/l total dissolved solids or less. A plat of the Navajo WDW-3 well location is shown in Appendix 2.0-2.

5.2 Casing Cementing

The existing casing and wellbore configuration was used and the only modifications to the wellbore were the removal of four existing CIBP's in the original wellbore configuration and the squeeze cementing of existing perforations. Table 2.0-1 and Figure 2.0-1 contain a detailed description of the current wellbore configuration.

5.3 Tubing and Packer

The Installation of the tubing and packer were in accordance with NMWQCCR Subpart V, Section 5205(B)(3).

The WDW-3 injection tubing is a 4-1/2-inch, 11.6 lb/ft, J-55, LTC 8rd connection, carbon steel pipe. The injection tubing was connected into the Arrow X-1, 2-7/8-inch by 7-inch packer via an integral 2-7/8-inch by 4-1/2-inch crossover. The packer was set with 37,000 lbs of tension in a competent area of the 7-inch casing with the bottom of the packer at 7575 feet, which is approximately 85 feet above the upper most perforation. The tubing was designed and selected based on its ability to withstand the chemical affect of the injectorate and its burst pressure, collapse pressure, and tensile stresses, which may be experienced during the operational life of the well. Table 2.0-1 is a detailed tubular list of the existing pipe and the installed pipe. Figure 5.3-1 is a schematic of the Kenco packer system, and Table 2.6-1 is an inspection tally of the tubing that was used. All the injection tubing that was placed in the well was inspected and threads cleaned prior to installation.

5.4 Directional Surveys

Deviation checks were obtained prior to re-entering WDW-3 and were based on prior deviation surveys obtained from state records, which were in accordance with NMWQCCR Subpart V, Section 5205 (A)(4)(a). Attachment 5.4-1 contains the deviation surveys that were obtained from the State of New Mexico record archives submitted to the OCD.

5.5 Logging Program

The logging program for WDW-3 was completed in accordance with the regulations specified in NMQCCR Subpart V, Section 5205(A)(4)(b).

Type of Log	Type of Hole Logged	Interval Logged (ft)	Document Reference
Dual Induction	205504	205504 (10)	
Laterolog	Open Hole	2595 - 9448	Appendix 5.5-1
Spectral Density Dual			
Spaced Neutron Log	Open Hole	0 - 9448	Appendix 5.5-2
Cement Bond Log			
(CBL/VDL)	Cased Hole	0 - 9020	Appendix 2.2-1
Temperature Log	Cased Hole	0-9020	Appendix 2.2-2
Casing Inspection			
Caliper Log	Cased Hole	0 – 9000	Appendix 2.2-3
Radioactive Tracer			
Survey	Cased Hole	7375 - 9008	Appendix 2.9-1

5.6 MECHANICAL INTEGRITY TESTING

The demonstration of the mechanical integrity of the WDW-3, required by NMWQCCR Subpart V, Section 5204 (A) to (D) and Section 5202 (A)(1)(a), is discussed in detail in Section 3.0 of this report. The associated logs and interpretation of the results obtained from the mechanical tests are also included in Section 3.0 of this report.

5.7 PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE FORMATION FLUIDS

In accordance with NMWQCCR Subpart V, Section 5202(A)(3)(h), an analysis describing the physical and chemical characteristics of the formation fluids, extracted from the Cisco and Upper Canyon Formation, is presented as Appendix 2.3-1.

The well materials used to construct WDW-3 were compatible with fluids which the material may be expected to come into contact. Well material would be deemed to have compatibility as long as the materials used in the construction of the well meet or exceed standards developed for such materials by the American Petroleum

Institute (API), The American Society for Testing Materials (ASTM), or comparable standards acceptable to the NMWQCCR.

5.8 REGULATORY WITNESSING

In accordance with NMWQCCR Subpart V, Section 5205(A)(5), notification prior to commencement of the reentry, cementing and casing, well logging, and mechanical integrity testing was communicated with the BLM, Carlsbad, New Mexico and the OCD, Artesia, New Mexico offices. The BLM and the OCD had an opportunity to witness all installations, logging, and testing as required in the Application for Permit to Drill, Re-enter, Deepen, Plugback, or Add a Zone and in NMWQCCR Section 5205(A)(5).

6.0 FUTURE TEST RECOMMENDATIONS

As stated earlier, due to the proximity of WDW-3 to both the WDW-1 and the WDW-2 and the procedure used by Navajo for injecting into the wells, consideration needs to be given to monitoring the bottom hole pressure in the two offset wells while performing a fallout test in the target well (WDW-3). This should allow for a better understanding of the pressure behavior in the reservoir. This may further enhance reservoir pressure forecast and increase Navajo's ability to proactively respond to reservoir and wellbore conditions.

A proposed procedure for falloff testing on the three injection wells, consist of placing BHP gauges in each well prior to starting injection into WDW-3. The injection period would consist of maintaining a constant injection rate into WDW-3 for a period 24 hours. At the end of the 24-hour injection period, shut-in WDW-3 and shift the waste injection stream to WDW-1. This would be in line with the current Navajo injection procedures. Continue injection into WDW-1 for 12 hours, and then shift the injection stream to WDW-2 for a period of 12 hours. At the end of the 12 hour injection period in WDW-2 shut down injection operations and remove the BHP tools from each wellbore. Once the BHP gauges have been removed from the wells, return to normal injection operations.

APPENDIX 2.0-1

CHRONOLOGY OF FIELD ACTIVITIES

APPENDIX 2.0-1

CHRONOLOGY OF FIELD ACTIVITIES

Tuesday, July 25, 2006

Rusty Smith, with Subsurface Construction, Inc. traveled to Artesia, New Mexico and met with David Alvarado, District Manager of Basic Energy, to inspect the two rigs that they will have available on August 7th. Only one rig was available; the other could not be released. The Cooper 500 with a 250K lb derrick was the rig that was inspected. The rig was well maintained, has no pipe racks, work string, and no power swivel. The rig is used mainly for workover operations. Inspected the well site where the workover rig unit will be located. Well site needs to be scraped clean and the barbed wire fence, which surrounds the area where the old tank used to be, needs to be removed. The wellhead needs some work. Pictures of the Basic rig and well location were taken.

Wednesday, July 26, 2006

Rusty Smith left Artesia, New Mexico and traveled to Farmington, New Mexico. The rig and well location inspection summary were completed and e-mailed to Subsurface personnel for review. Included in the inspection summary were photos of the rig and location.

Wednesday, August 30, 2006

Subsurface personnel traveled to Artesia, New Mexico to meet with David Alvarado, District Manager of Basic Energy, to develop a location layout for equipment and assist Joe Konicki. Talked with Julian Carrillo, the rig tool pusher, because David Alvarado was on vacation, and he informed Subsurface that the rig was no longer available because Yates Energy had changed its position and would not release it. Set up meetings with Darrel Moore and the new Project Engineer at the Navajo plant to discuss the current job situation and introduce Joe Konicki. Joe and I talked with Key Energy about the possibility of acquiring a rig.

70F5826/Navajo/Re-entry Completion Report WDW-3

CHRONOLOGY OF FIELD ACTIVITIES (Cont'd.)

Thursday, August 31, 2006

Rusty Smith measured the current WAMS units on Disposal Well No. 1 and Disposal Well No. 2 and acquired photos of Well No. 1 WAMS and the current well configuration. The well location inspection summary was completed. All photos, drawings, and the inspection summary were e-mailed to Subsurface personnel for review. Rusty Smith and Joe Konicki. left Artesia, New Mexico for Houston, Texas.

Monday, September 25, 2006

Rusty Smith traveled to Artesia, New Mexico to prepare the location for the reentry project on WDW–3, formally owned by Mewbourne Oil Company and known as Chalk Bluff Federal No. 1. The sundry notice to the BLM for the transfer of ownership was submitted on May 5, 2003. The OCD Change of Operator Notice was submitted on October 5, 2000.

Tuesday, September 26, 2006

Subsurface personnel called Knight Oil Tools & Rental and spoke with Francisco about work string and pipe. He wanted to know what type of crossovers, bit sub, safety clamp, and elevators would be needed. Spoke with Basic and they did not have any handling tools for the PH6 tubing and would need elevators and a safety valve. Knight said that they would provide elevators and a safety valve with the work string. Talked with Allen, of Key Fishing Tools, and he said that they would provide all the crossovers and bit subs. Basic was in agreement with the supplied tools.

Banta Oilfield Services will arrive tomorrow to clear the location and dig 30 foot x 30 foot x 3 foot pit. Key Energy Services will deliver tanks tomorrow and start filling them up. Portable toilets will arrive tomorrow from Sani-Tech Rentals. Young's Mobile Homes will deliver a small office trailer on Thursday. Knight Oil Tools will provide

CHRONOLOGY OF FIELD ACTIVITIES (Cont'd.)

work string, elevators, and the safety valve to be delivered September 27, 2006. Key Fishing Tools and Rental will provide reverse unit, subs, collars, bit, BOP (Allen), which are scheduled to arrive on Thursday, after noon. The rig is also scheduled to arrive on Thursday. Steve L., with Halliburton, has been notified and will need 48 hours notice. Contacted Aztec Rental about a fork lift and they will send account information to the office to be filled out by Subsurface's accountant. Once the account is approved, they will deliver a fork lift on September 27, 2006.

Wednesday, September 27, 2006

Subsurface personnel arrived at the job site at 7:00 a.m. MST. Banta's roustabout crew called and said that were having problems finding the location. Therefore, I met them at the ATOKA compressor station and led them to the location. Banta arrived with two backhoes and proceeded to clear the location of over growth and remove all fencing. Key Energy arrived at the job site with three frac tanks, two sets of pipe racks, catwalk, and Knight Oil Tools arrived with 150 joints of 2-7/8-inch PH-6 tubing. Knight Oil Tools will not charge for the pipe until the remaining 148 joints pipe and tools are delivered. Aztec Rental arrived on the job site with an extended boom fork lift. Julian, with Basic, called and said that they should be able to move onto the location by noon tomorrow.

The roustabout crew dug a 30 feet x 30 feet x 5 feet lined pit, cleared the location of over growth, removed the barbed wire fence, and dug out cell. The roustabout crew will return tomorrow to frame in the cellar. Key will start filling the frac tanks tomorrow and Knight Oil Tools will deliver the remaining pipe and handling tools. Subsurface left the jobsite at 6:30 p.m.

Thursday, September 28, 2006

Subsurface personnel arrived at the location at 7:20 a.m. MST. The roustabout crew arrived at 8:00 a.m. The roustabout crew completed the cellar. The Basic rig crew arrived on the location at 12:30 p.m. with a mechanic to repair the sand line brake. The

rig crew raised the derrick and replaced the drilling line. Rig mats had to be placed under the derrick for support. The rig mats were acquired from G&L Tools a division of Basic Energy Services. The rig crew completed repairs on the rig and left the location at 7:20 p.m. Key finished loading the frac tanks with water and brine. Key delivered the reverse unit and open top flow back tank, and the reverse unit operator will arrive tomorrow with BOP, collars, and handling tools.

Knight had problems getting the remaining work string delivered before nightfall. Knight will have the remaining pipe delivered in the morning. Young's delivered a 10 foot x 30 foot office trailer and Aztec delivered a light plant to the location. Superior Wellhead was notified and will have a man on the job site in the morning to inspect the hanger and wellhead before installing the BOP. The 150 joints of 2-7/8-inch PH-6 tubing were tallied at 4691.06 ft. Subsurface left the location at 7:45 p.m.

Friday, September 29, 2006

Subsurface personnel arrived on the jobsite at 6:45 a.m. MST. Basic rig crew arrived on location at 7:30 a.m. Subsurface and Basic crews spotted catwalk & pipe racks. The last load of pipe from Knight Tools arrived at the location with handling tools. The rig crew moved pipe and off-loaded pipe onto the pipe racks. The BOP from Key Energy arrived at the job site and was flanged up to the wellhead. The Superior wellhead technician arrived at the job and inspected the tubing hanger spool and found it to be $11_3 \times 7_5$ Cameron hanger and profile. The Superior wellhead technician suggested that the tubing hanger spool be replaced as the Cameron spool has been discontinued and is hard to find parts for. Key Energy's reverse unit operator arrived at the job site with 3-1/2-inch collars and handling tools.

The reverse unit (pump & tank) were rigged up to the wellhead. Portable toilets arrived at the job site. The rig crew tallied the top layer of PH-6 tubing, drill collars, bit, and started into the hole with the BHA at 1:30 p.m. The first plug was tagged at 7001 feet, at

7:10 p.m. The rig crew pulled a single joint of tubing from the wellbore, the well was shut in, and operations were shut down for the night.

Saturday, September 30, 2006

Subsurface personnel arrived on the jobsite at 7:20 a.m. MST. Basic rig crew arrived on location at 7:30 a.m. Basic rig crew and Key's reverse unit operator rigged up the swivel. At 10:30 a.m., Basic could not get the brake to hold on the sand line. Operations were shut down until Basic could repair the brake on the sand line and the reverse unit operator was put on stand by. Basic estimated that it will take all day to repair the brake. Basic finished repairing the brake at 7:00 p.m. Drilling operations will commence Sunday morning. Halliburton was notified to be ready to perform a perforation squeeze job on Monday. Pipe tally was checked and verified at 297 joints of 2-7/8-inch tubing for a total footage of 9413.59 feet, including the BHA at 126.45 feet. The well was shut in and operations were shut down for the night.

Sunday, October 1, 2006

Subsurface personnel arrived on the job site at 7:20 a.m. MST. Basic rig crew arrived on location at 7:30 a.m. At 8:00 a.m. Key's reverse unit operator started to drill out CIBP after circulating bottoms up (40 bbls) and there did not appear to be any cement on top of the plug. Current ROP is about 1 ft/hr while circulating returns to pit. The reverse unit operator will change over to tank once fluid cleans up. The returns appear to contain trace amounts of oil with no mud. RPM on the swivel is at 50 with a pump pressure between 250 psi to 300 psi with brine water. Drilled through plug at 9:45 a.m. and circulated hole clean. Rig crew started back into hole to tag second plug. Tagged second plug at 7190 feet, rig crew hooked up swivel to circulate hole and perform an injection test. The injection test revealed the following: 1 bpm at 300 psi, 1.5 bpm at 550 psi, and 2 bpm at 980 psi. After the pump-in test, the falloff went from ISIP of 950 psi to 200 psi in 22 minutes. Key Energy Service removed 250 bbls of water from earthen pit.

Rig crew tripped out of hole (TOOH) with pipe to prepare for cement squeeze job. Rig crew tripped in hole (TIH) open ended with tubing to spot cement for squeeze job, with bottom of the tubing at 7101.49 feet. Contacted Halliburton and ordered 80 sks of cement (cmt) for squeeze job into upper perforations.

Monday, October 2, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Halliburton was on the jobsite waiting on cement to arrive. Cement arrived at the location at 7:30 a.m. Halliburton rigged up their cement pump while waiting on a crossover for the PH-6 tubing. Halliburton did not bring a crossover to the PH-6 thread to 8rd, so Key Fishing Tools had one delivered.

Cement squeeze went well at 2000 psi squeeze pressure. Pressured up to 2001 psi. After 10 minutes, pressure fell to 1950 psi and re-pressured to 2007 psi. After one hour, pressure dropped to 1990 psi with 2.2 bbls, released pressure and recovered about 2 bbls. Re-pressured well to 2001 psi and held for 5 minutes at 1990 psi. The ring gasket began to leak around BOP. Halliburton released pressure and recovered 1.9 bbls. Halliburton rigged down and the rig crew TOOH with tubing. Hole remained full while tripping pipe. Rig crew tightened BOP flange head bolts. Key reverse unit operator pressured up well to 680 psi, with no apparent leaks, and the well was shut-in over night, while waiting on cement (WOC).

Tuesday, October 3, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. and TIH with the collars and bit. Rig crew tagged cement at 6873 feet on joint No. 215 plus 20 feet. Assuming hole is full of cement to CIBP at 7190 feet, there are 12.1 bbls of cement in the hole and 6.6 bbls of cement were circulated out and/or squeezed into the formation. It was estimated that 3.5 bbls were circulated out leaving 3.1 bbls of cement having been squeezed into the near wellbore. Rig crew drilled out cement and

circulated hole clean at 4:00 p.m. The well was shut-in to prepare for a pressure test on the squeeze perforation for 12 hours at 500 psi.

Started 500 psi pressure test at 4:30 p.m. Pressured up well to 590 psi and after one hour pressure fell to 530 psi. Re-pressured well to 580 psi and after one hour pressure was at 578 psi. At 5:30 p.m. well was at 578 psi and holding. Shut down operations overnight.

Wednesday, October 4, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. At 7:00 a.m., the pressure on the well was 455 psi. The well lost 123 psi over 13.5 hour, for a 9.1 psi/hr (1.58%/hr) loss. Rig crew rigged up swivel and continued to drill out CIBPs at 7190 feet and (estimated third plug depth) at 7294 feet. While drilling through the second plug at 7190 feet metal cuttings were being retrieved across screen. Third CIBP was found at 7278.96 and it was estimated that there was 9 feet of cement on top of both plugs, which places the second plug at 7199 feet and third plug. At 3:00 p.m., driller punched through the third plug. The formation started taking fluid at a rate of 1.0 to 1.25 bpm while pumping, lost 180 bbls of 8.7 ppg brine water to the formation.

Rig crew TIH and tagged the forth CIBP at 7591 feet then pulled up 20 feet and reversed circulated the wellbore clean. The reverse unit operator completed the pump in test for the perforations from 7262 feet to 7278 feet and from 7304 feet to 7314 feet. The maximum rate was 4.5 bpm (max that the pump could deliver) at 710 psi with no pressure build up. The ISIP was about 580 psi and fell to 170 psi in 9 minutes. At 4:45 p.m., rig crew TOOH with collars and bit. Halliburton will be out tomorrow afternoon with 100 sks of Class C cement to squeeze off perforations. At 7:30 pm, the rig crew was out of the hole with the collars. The well was shutin and operations were shut down.

Thursday, October 5, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:20 a.m. and TIH open ended, placing the bottom of the work string at 7321 feet; 7 feet below the bottom perf at 7314 feet. Key filled fresh water and salt water tanks while we waited for a Halliburton pump truck to arrive. Halliburton arrived on the location at 11:30 a.m. At 12:44 p.m. Lines were pressure tested to 3000 psi. Halliburton broke circulation and caught returns with 6.3 bbls pumped. At 12:52 p.m., Halliburton started mixing cement and pumped 23.5 bbls of cement, followed by 35.5 bbls of fresh water. Rig crew pulled 10 stands (630 feet) and Halliburton started to squeeze the cement into the formation. The squeeze was performed in 7 stages, each 10 minutes apart, pumping approximately 1 to 1.5 bbls per stage.

After the first stage the wellhead pressure was 78 psi. After the 7th and last stage, the wellhead pressure had increased to 1973 psi. A total of 9 bbls were pumped during the squeeze job. The well was shut-in with 1970 psi on the wellhead. Subsurface allowed the well to remain shut-in for an additional 2 hours, after which the wellhead pressure was bled off and 8 stands (500 feet) of pipe were TOOH to insure that no cement remained around the pipe. The well was pressured up to 930 psi and shut-in overnight to WOC.

Friday, October 6, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. and TOOH with work string. The wellhead pressure this morning, after 14 hours, was 850 psi. With a loss of 80 psi over a 14-hour period after the squeeze or 5.7 psi/hr. At 10:00 a.m., rig crew TIH with work string, collars, and a new bit. At 12:30 p.m., rig crew tagged soft cement at 7052 feet and quickly drilled through the cement. At 7092 feet, hard cement was encountered. Rig crew drilled through cement to 7338 feet and tagged bottom at 7554 feet (previous tag 7591 feet). Well would not hold pressure during test and reverse unit operator was able to pump into the well at ~20 to 25

gpm at 920 psi. A second cement squeeze on the second set of perforations will be required. Well was shut in over night.

Saturday, October 7, 2006

Subsurface personnel arrived at the location at 7:20 a.m. MST. Rig crew arrived at 7:30 a.m. and TOOH with work string, collars, and bit. A new Key reverse unit operator arrived at the location. Halliburton was called to confirm a third cement squeeze job. Halliburton informed Subsurface that they would not have a pump truck available until Wednesday. Key Pumping service was contacted and retained to provide the service on Sunday afternoon. Due to unavailability of cement pumping services to do the third cement squeeze, the estimated schedule has been pushed back 2 days.

At 10:50 AM the rig crew had collars and bit out of the hole and TIH with open ended work string to just above the bottom set of perforations at 7314'. The open ended work string was placed at 7290 feet, 24 feet above the bottom set of perforations (1 bbl of casing volume). The well was shut-in while waiting on a cement pump truck to arrive.

Sunday, October 8, 2006

Subsurface personnel arrived at the location at 10:10 a.m. MST. Rig crew arrived at 10:20 a.m. Key Pressure Pumping Services arrived at the location at 10:30 a.m. Key pumping crew rigged up pump and bulk truck. The mix water for the cement squeeze in the frac tank was contaminated with brine water and a load of city water was called in for mix water. At 2:00 p.m., fresh mixed water arrived on location. Key pumping pressure tested lines to 2500 psi and then circulated 12 bbls to fill the wellbore with fluid. At 3:04 p.m., Key started mixing cement and pumped 10 bbls of FW ahead followed by 18.5 bbls of 14.8 ppg cement. The cement was displaced with 35.5 bbls of FW. Rig crew TOOH with 8 stands (500 feet) and the well was reversed circulated with 40 bbls of FW. At 4:03 p.m., Key pumping started to squeeze the well with an initial rate of 0.5 bpm at

750 psi. After 6 bbls the rate was decreased to 0.3 bpm at 1890 psi. After 7.5 bbls at 1975 psi pumping was stopped to allow the pressure to fall.

At the end of 10 minutes, the wellhead pressure had fallen to 1063 psi and pumping was resumed. An additional 1.5 bbls was pumped before the pressure reached 1940 psi. The wellhead pressure fell to 1914 psi after 20 minutes and did not appear to fall any further. The well was shut-in and Key rigged down their pumps. After one hour, the wellhead pressure had fallen to 1860 psi. At 6:00 p.m., the well was shut-in for the night with 1830 psi on the wellhead to WOC.

Monday, October 9, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. and TOOH with open ended work string. Rig crew TIH with work string, collars, and bit to drill out cement. The wellhead pressure this morning after the 80 sk cement squeeze job was 1825 psi. Reverse unit operator tagged cement at 6981 feet and found hard cement at about 7003 feet. At 4:43 p.m., driller broke through the cement at 7312 feet. The estimated cement plug length left in casing was 331 feet or 12.7 bbls out of 18.8 bbls of cement. Driller tagged bottom at 7559 feet, rig crew pulled up off bottom approximately 20 feet, and the reverse unit operator circulated the wellbore. The well was shut-in and pressure tested to 610 psi at 6:45 p.m. for a 12-hour test.

Tuesday, October 10, 2006

Subsurface arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. Wellhead pressure at the end of 13 hours was 480 psig, down from 610 psig; a pressure loss of 130 psi over the 13-hour period. The decision was made by Subsurface personnel to retest the casing after the squeeze for an additional 12 hours. At 8:03 a.m., the wellhead pressure was increased to 630 psig and monitored every thirty minutes. At 9:30 a.m., the 7-inch x 9-5/8-inch annulus valve was opened to see if it had any effect on the casing pressure. Casing pressure fell slightly faster from 2 psi/30 minutes to 5 psi/30

minutes. Once the annulus casing valve was closed, the pressure loss maintained a 2 psi/30 min loss.

When the casing valve was first opened it smelled like natural gas. The annulus casing valve was closed and a pressure gauge placed on the annulus and monitored. At 2:03 p.m., the wellhead pressure was falling at a rate of 2 psi/30 minutes with less than 5 psi on the casing annulus. At 5:03 p.m., wellhead pressure was maintaining a falloff rate of 2 psi/30 minutes. At 8:03 p.m., after 12 hours, the wellhead pressure was 568 psig.

Wednesday, October 11, 2006

Subsurface arrived at the location at 7:00 a.m. MST. The wellhead pressure was 523 psig. At 7:03 a.m., maintaining a 2 psi/30-minute pressure loss. Rig crew arrived at 7:30 a.m. and rigged up swivel and broke circulation. At 8:00 a.m., reverse unit operator tagged bottom and started to drill out plug at a circulation rate of 2 bpm, with 500 psi of pressure. At 9:30 a.m., reverse unit operator tagged the top of the plug at 7595 feet and started to drill through the plug. While drilling out the plug, the plug dropped to 7776 feet and, reverse unit operator continued to drill out the plug. Reverse unit operator drilled 2 feet through the plug and tagged mud contaminated cement at 7780 feet. Continued to drill through the cement.

At 2:00 p.m., reverse unit operator drilled through cement plug at 7838 feet, then circulated for 30 minutes before the rig crew TIH to tag the top of the liner (TOL). The well was taking fluid at a rate of about 1/2 bpm once the cement plug was drilled through. Rig crew tagged cement on TOL at 9022 feet and broke circulation. At 3:30 p.m., the reverse unit operator commenced circulating the hole clean to 9022 feet. Reverse unit operator circulated 347 bbls of 8.6 ppg brine water. At 5:30 p.m., the rig crew started TOOH with work string, bit, and collars. Tomorrow, the rig crew will TIH with casing scraper to prepare the well for logging operations.

Thursday, October 12, 2006

Subsurface arrived on location at 7:00 a.m. MST. Wood Group logging crew was at the job site spotting equipment. Rig crew arrived at the location at 7:30 a.m. and continued to TOOH with work string, collars, and bit. At 10:00 a.m., rig crew TIH with casing scraper to 9022 feet. At 12:30 p.m., rig crew TOOH with casing scraper. At 3:30 p.m., Wood Group Wireline Services rigged up to the wellhead to run the CBL/VDL into the wellbore. At 4:30 p.m., the well was shut-in for the night.

Friday, October 13, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Wood Group logging crew arrived at the job site at 7:10 a.m. Rig crew arrived at the location at 7:30 a.m. and Wood Group started into the wellbore with CBL/VDL logging tool. Fikes Truck Lines arrived at the location with 4-1/2-inch, 11.6 lb/ft, J-55, LTC tubing, from C&R Industries, and the rig crew unloaded 174 joints of tubing. Wood Group completed CBL/VDL logging and ran into the wellbore with the temperature logging tool. The temperature log was completed at 3:00 p.m. with no anomalies. At 3:15 p.m., Wood Group ran the caliper logging tool into the wellbore. The CBL/VDL log showed that the TOC was located at 900 feet with good to fair bonding to 9020 feet. The VDL indicated that cement was placed into the squeezed perforations.

At 6:40 p.m., Wood Group was out of the wellbore with the caliper log and there did not appear to be any major anomalies in the 7-inch casing from 9020 feet to surface. The well was shut-in for the night and Wood Group will be back tomorrow to perforate. The time needed to perforate well was estimated to be two days.

Saturday, October 14, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Wood Group logging crew arrived at the job site at 7:00 a.m. Rig crew arrived at the location at 7:30 a.m. and Wood Group started into the wellbore with a 40 foot perforating gun. Basic provided two men to assist Wood Group as needed with the rig. Wood Group made 12 perforating runs, completing the interval from 8540 feet to 8620 feet and 400 feet of the interval from 8050 feet to 8450 feet. Wood Group will complete the remaining 390 feet tomorrow from 7660 feet to 8050 feet. The well was shutin for the night.

Sunday, October 15, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Wood Group logging crew arrived at the job site at 7:00 a.m. Rig crew arrived at the location at 7:20 a.m. and Wood Group started into the wellbore with a 40 foot perforating gun. Basic provided two men to assist Wood Group as needed with the rig. Wood Group made 10 perforating runs, completing the interval from 7660 feet to 8050 feet. A total of 22 perforating runs were made and there were no misfires during any of the runs. All the retrieved hollow steel carrier guns shot 2-JSPF on a 60° phasing. The two man rig crew assisted Wood Group with rigging down the logging equipment. The well was shutin for the night.

Monday, October 16, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. and started to lay down collars. Kenco packer and operator arrived at the job site at 8:30 a.m.. Kenco did not have the proper x-over for the PH-6 to 8rd and had to wait for a cross-over before the rig crew could run the packer. Cross-over arrived at the location and the rig crew TIH with the 7-inch x 2-7/8-inch packer. Packer was set at 7546 feet and the rig crew started to swab back the well. The first formation fluid sample was taken after 12 runs to 2400 feet (estimated 151 bbls), the second sample was taken

after 14 runs (estimated 176 bbls), the third sample taken after 16 runs (estimated 201 bbls), and fourth sample was taken after 18 runs (estimated 226 bbls). Had H_2S gas present between runs 7 through 9 (estimated at 88 and 113 bbls). Well was shutin over night.

Tuesday, October 17, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:20 a.m. Rig crew loaded collar and swivel onto Key's trailers. While waiting on Key's pump truck to arrive, reverse unit operator pressured up on 2.875-inch x 7-inch annulus with packer set at 7546 feet to perform an annulus pressure test. Initial pressure was 660 psi at 8:15 a.m. After 2 hours the pressure loss started to stabilize at about 4 psi/30 minutes. At 12:30 p.m., Key Pressure Pumping was called to verify that a pump truck was coming. Apparently there was a mix-up by the dispatcher and the pump was sent to another job. Key informed Subsurface that they will have a pump on the jobsite tomorrow afternoon.

At 1:30 p.m., the wind had picked up to a point that the rig crew could not TOOH with the packer and pipe. Therefore, the annulus pressure test will be continued for the remainder of the day. Rig crew worked on rig until 3:30 p.m. and then shut-in the well for the night. Subsurface monitored pressure until 6:30 p.m.

Wednesday, October 18, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:20 a.m.. Reverse unit operator arrived at 7:30 a.m. Subsurface delivered field copies of the logs to Navajo Refining and contacted Darrel Moore. Rusty Smith informed Darrel of the need to contact the State of New Mexico for approval to use the well, even though cement did not come all the way to the surface around the 7-inch x 9-5/8-inch casing annulus (900 feet from the surface). Darrel approved Subsurface's request to

contact the appropriate state officials for approval and to take necessary steps as the State of New Mexico directs.

At 10:30 a.m., the reverse unit operator pressured up the annulus between the tubing and the 7-inch casing to 700 psig for the injection test and left the location. Key Pumping Service arrived at the job site at 3:30 p.m. and started pumping down the 2-7/8-inch tubing at 4:20 p.m. with produced water in the wellbore and 650 psi on the annulus. The initial rate was 2.2 bpm (inline flow meter) at 300 psig on the tubing. After 43 bbls the pressure stabilized at 150 psi, with a total of 50 bbls pumped. The rate was increased to 4.1 bpm with an initial pressure of 830 psi. After 20 bbls, the tubing pressure stabilized at 900 psi. The pump broke down with a total of 80 bbls pumped (tubing volume 43 bbls). The ISIP was about 630 psi. Rig crew shut-in the well for the night and Key Pumping will return tomorrow morning to complete the job. (Note: pump wire harness fell into the drive shaft ripping it apart along with some hydraulic hoses)

Thursday, October 19, 2006

Subsurface personnel arrived at the location at 7:30 a.m. MST. Rig crew arrived at 9:00 a.m. Reverse unit operator arrived at 8:00 a.m.. At 9:00 a.m., Key pumping supervisor called and said that they were 45 minutes out and were given directions to the location. Subsurface released the down hole packer and will monitor both the backside and tubing pressure during the pump-in testing.

Key Pumping circulated the wellbore at 2 bpm to fill the wellbore with fluid & caught returns after 37 bbls. At 2 bpm tubing pressure (Pt) was 183 psig and backside pressure (Pa) was 28 psig. At 3 bpm, Pt was 638 psig & Pa was 148 psig. At 4 bpm, Pt was 1132 psig & Pa was 250 psig. At 5 bpm, Pt was 1678 psig & Pa was 320 psig. At 6 bpm, Pt was 2343 psig & Pa was 408 psig. At 7bpm, Pt was 3108 psig & Pa was 518 psig. At 8 bpm, Pt was 3748 psig and Pa was 535 and at 9 bpm, Pt was 4522 psig Pa was 590 psig. Key was able to reach 10 bpm but the engine over heated and was shut down. The Pt was 5087 psig at shut down and no Pa was recorded but estimated at 660 psig. Well went on

a vacuum once pumping had stopped. The best estimate for ISIP 230 psig total volume of brine water pumped was 280 bbls.

Rig crew started out of the wellbore with the packer and went back into the hole with RBP and packer to test casing below squeezed perforations. We first tested across squeezed perforations and then the annulus above the perforation. RBP was set at 7550 feet packer was set above the RBP and RBP was pressure tested for leaks and packer was released. At 6:00 p.m., 640 psig was left on the annulus with the well shut-in overnight.

Friday, October 20, 2006

Subsurface personnel arrived at the location at 6:45 a.m. MST. At 7:00 a.m., the wellhead had 770 psig from 640 psig over 13 hours, a net pressure build of 130 psi. Rig crew arrived at 7:20 a.m. Subsurface and Navajo Refining received approval from the State of New Mexico after they reviewed the revised procedure and CBL/VDL log to complete the well for injection without additional cementing. The State of New Mexico requested that we try to find the leak in the casing within 500 feet to 1000 feet of the leak. Rig crew pulled 8 stands and one joint of pipe and the packer was set at 6985 feet to isolate the cement squeezed perforated interval. The squeeze interval was initially pressure tested to 490 psig and the annulus was initially pressure tested to 632 psig. The pressure test ran for 5 hours and appeared to stabilize after 2 hours.

After 2 hours, the squeezed interval was losing 6 psi/hr while the annulus was gaining about 0.75 psi/hr due to thermal effects. The final pressure for the squeezed interval was 458 psig and the final pressure for the annulus was 640 psi. At 2:30 p.m., the rig crew picked up the RBP and TOOH to 1255 feet where the RBP was reset. At 5:30 p.m., the casing was pressure tested from surface to 1255 feet with an initial pressure of 570 psig. At 6:00 p.m., the well was shut-in over night with 569 psig on the casing.

Saturday, October 21, 2006

Subsurface personnel arrived at the location at 6:45 a.m. MST. At 7:00 a.m., the wellhead had 540 psig from 569 psig over a 13 hour period, a net pressure loss of 29 psi at a rate of 2 psi/hr with the RBP set at 1255 feet (48 bbl). Rig crew arrived at 7:30 a.m. Continued to monitor pressure to verify loss rate. At 7:30 a.m., pressure was 539 psig and at 8:00 a.m. pressure was 538 psi. Packer hand released RPB and rig crew TOOH with packer and RBP. Charlie's Services inspected the 4-1/2-inch tubing. Rig crew TIH and TOOH with work string and started laying down the work string as they came out of the hole. Charlie's inspection crew found two bad joints of 4-1/2-inch tubing as marked on their tally. Rig crew finished laying down the work string and loaded 4-1/2-inch tubing onto the pipe rack. Well was shut-in for the night.

Sunday, October 22, 2006

Pipe, location, and rig personnel are ready for casing crew. Wellhead, packer, and annulus fluid to arrive on Monday.

Monday, October 23, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew arrived at 7:30 a.m. and replaced the old Cameron 7-1/16-inch 5M x 11-inch 3M spool with a new Superior 7-1/16-inch 5M x 11-inch 3M spool. P-seals were pressure tested for 15 minutes to 3000 psi with no leakoff. BOP was reseated on the new spool to run the casing into the wellbore. At 12:00 p.m., casing crew started into the wellbore with packer and 4-1/2-inch tubing. Packer would not go past the 50-foot mark therefore, packer was pulled out of the hole and inspected.

Weatherford had brought to location, a packer for 7", 24 lb/foot casing. The casing in the wellbore was 7 inches, 29 lb/ft casing. Weather had to go back to Hobbs, New Mexico to

pick up the correct packer. Kenco was called, and they had an Arrow X-1 Packer in the shop. Kenco delivered a new 7-inch Arrow X-1 packer to the job site but brought out the wrong size cross-over. At 4:15 p.m., Weatherford brought out a rebuilt 29 lb/ft packer to replace the 24 lb/ft packer that was originally brought out to location. Kenco will have a cross-over on the job site in the morning and Weatherford was sent back to Hobbs. Kenco will install the packer. The well was shut in for the night.

Tuesday, October 24, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Rig crew and casing crew arrived at 7:30 a.m. The crews started running casing at 8:00 a.m. There were no problems getting Kenco's new Arrow Packer into the wellbore. Kenco also used an integral cross over rather than a sedge and casing collar for a cross. At 2:30 p.m., casing crew ran 7567 feet of casing into the hole and each joint was torqued to specifications at 1600 lbs. The wellbore was circulated full of fluid (240 bbls), then 300 PSI pumped 23.8 bbls of squeeze chemical. The reverse unit operator pumped 95 bbls of inhibited brine water followed by 14.29 bbls of squeeze chemical, leaving 7.23 bbls of brine in the bottom of the annulus. The weight of the brine circulated and the inhibited brine in the annulus was 8.7 ppg. The weight of the squeeze chemical was 10.2 ppg.

At 5:30 p.m., the bottom of the Arrow packer was set at 7575.73 feet with 37K lb in tension within 7 minutes after we stopped pumping with the well taking fluid at ~0.5 bpm. The length of the packer was 7.2 feet and the length of the cross over was 0.54 feet. Casing slips were set in the spool and the BOP was removed and a rough cut made on the casing. Once all equipment was removed from the area the 4-1/2-inch tubing was dressed off and the wellhead installed. At 7:00 p.m., the well was shut-in for the night.

Wednesday, October 25, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Superior Wellhead arrived at the job site at 7:20 a.m. and pressure tested the P-seals to 3000 psig. Rig crew

and casing crew arrived at 7:30 a.m. Rig crew started mobilizing the rig. The reverse unit operator pumped the annulus full with 2.5 bbls. At 10:00 a.m. 300 PSI arrived at the job site and performed a 545 psi squeeze for 4 hours with no pressure loss. At 3:00 p.m., an annulus pressure test was performed and recorded for one hour by 300 PSI, at a pressure of 490 psig on the chart. At 4:00 p.m., the annulus pressure test showed no pressure loss over the hour. Left 480 psig on the annulus (at 4:30 p.m.) overnight to watch for pressure leaks. At 6:00 p.m., annulus was maintaining 480 psig. Well was shut-in for the night.

Thursday, October 26, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. At 7:00 a.m., EL Farmer trucking was at the job site waiting on someone to load the 2-7/8-inch, PH-6 tubing onto the truck. At 7:15 a.m., Subsurface started loading tubing onto the EL Farmer truck. At 7:30 a.m., Renco Equipment arrived at the job site with a fork lift and completed loading up truck. The first truck picked up slips, stabbing tool, safety valve, and 150 joints of pipe. At 8:00 a.m., annulus was maintaining 480 psig and showed no signs of pressure loss over the 14-hour period. The second truck arrived at 8:05 p.m. and was loaded with 147 joints of pipe. At 8:30 a.m., two Key Fishing Tool trucks arrived at the job site to pick up pump, open top tank, pipe racks, BOP, and catwalk. Key Energy delivered 4 frac tanks to the job site and started to fill the tanks with fresh water and brine. At 4:30 p.m., G&L Tool Rental picked up rig mat boards. At 5:30 p.m., annulus was maintaining 480 psig and showed no signs of pressure loss over the night.

Friday, October 27, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Key will not have all 14 frac tanks spotted and filled by this Saturday therefore the pressure build up/falloff test will have to be postponed until Saturday, November 4th, due to the availability of pump trucks to perform the pressure build up portion of the test.

Trailer and light plant will remain on the job site for another week, as we will need the light plant for the 12 hours of pumping. At 10:00 a.m., Medina's Hot Shot service arrived at the job site and delivered a flange, ring gasket, and bolts from Superior Wellhead to cover the injection line valve. At 3:00 p.m., Key delivered one frac tank to the job site and repaired a leak around the bottom valve on one of the tanks that was delivered yesterday.

Saturday, October 28, 2006

Rusty Smith traveled to Houston and will return on Thursday, November 2, 2006 to oversee the pressure build up and falloff test.

Thursday, November 2, 2006

Rusty Smith traveled to Artesia, New, Mexico and arrived at the jobsite at 2:30 p.m. MST. Key had 14 frac tanks on the site and should have them filled by tomorrow afternoon. Tried to find a 1-13/16-inch hammer wrench for flange bolts and could not find any in Artesia. Contacted Banta to install side flange for pump-in test, Banta will have hammer wrenches for flange. Subsurface acquired fuel containers for light plant. Key will roll frac tanks tomorrow.

Friday, November 3, 2006

Subsurface personnel arrived at the location at 7:30 a.m. MST. Banta Roustabout Service arrived at the location at 8:15 a.m. and installed the injection side flange. Six temperatures were taken at midpoint in the frac tanks to determine the current water temperatures. The shear pin in the packer was set at 80K lbs, which is well above the stress being applied due to temperature changes. Petroplex treated all tanks with biocide and Key came out and rolled the tanks with a vacuum truck.

Alex, with Schlumberger Slickline, was on notice for tomorrow at 3:00 p.m. MST. After rolling the tanks, the average water temperature in the tanks was 60.6° F. Key left the job site at 5:30 p.m.

Saturday, November 4, 2006

Subsurface personnel arrived at the location at 6:20 a.m. MST. Petroplex Pumping Service arrived at the location at 7:10 a.m. and started to rig up their pumps. Key's kill truck arrived at 7:12 a.m. and rigged up to the annulus to hold pressure on the annulus. At 9:15 a.m., treating lines were pressure tested to 4400 psi. Started pumping at 9:19 a.m. at 3 bpm to fill hole and after 28 bbls we caught pressure with 162 psig on the wellhead and 535 psig on the annulus. At 9:42 a.m., with 50 bbls into the well, the rate was increased to 5 bpm at 385 psig and 463 psig on the annulus. At 9:55 a.m., the rate was 5 bpm with 525 psig on the wellhead and 118 bbls pumped. At 10:00 a.m., the second pump was brought on line and the first pump was taken out of service due to a leaking hydraulic hole. At 10:10 a.m., the rate was 5 bpm at 700 psig on the wellhead with 215 bbls pumped. At 10:45 a.m., the rate was increased to 10 bpm at 1200 psig and 542 psig on the annulus with 438 bbls pumped. At 110:55 a.m., the rate was being maintained at 10 bpm at 1278 psig with 673 bbls pumped.

Petroplex is sending out another pump to the location. The backup Petroplex pump arrived at 12:10 p.m. and the crew rigged up two additional pumps in the treating line for backup. At 1:00 p.m., the rate was 10 bpm at 1185 psig with 1785 bbls pumped, annulus pressure was 775 psig. At 2:30 p.m., the rate was 10 bpm at 1387 psig with 713 psig on the annulus, 2307 bbls pumped. At 3:30 p.m., the rate was lowered to 9 bpm at 1209 psig with 725 psig on the annulus, 3028 bbls pumped. At 5:30 p.m., the rate was 9 bpm at 1171 psig with 719 psig on the annulus. At 6:00 p.m., Schlumberger arrived at the job site and rigged up the slickline unit. At 7:17 p.m., the rate was lowered to 5 bpm to allow the BHP memory tool into the wellbore. At 7:30 a.m., the rate was increased to 5 bpm at

344 psig. At 7:41 p.m., the rate was increased to 9 bpm at 1104 psig. At 9:00 p.m., the pumps started to lose suction pressure and the pumping job was ended (est. 6700 bbls). Well was closed in with 50 psig on the annulus and no pressure on the wellhead. Petroplex rigged down and left location at 11:00 p.m.

Sunday, November 5, 2006

Subsurface personnel arrived at the location at 8:30 a.m. MST, with 800 psig on the annulus. Schlumberger slickline crew arrived at the location at 10:20 a.m. and started out of the hole with memory tool at 8630 feet (10:35 a.m.), taking gradient stops every 1000 feet for 5 minutes. The length of the tool was 27 feet with the top of the tool placed at 8630 feet. First stop was at 7000 feet at 10:40 a.m.. At 12:35 p.m., Schlumberger completed the rig down process and left location at 1:00 p.m. The office trailer was cleaned out and disconnected from the light plant. The light plant was rigged down and made ready for pickup. The well annulus was bled down and left open and the wellhead shut-in. Schlumberger left their 4-1/2-inch 8rd EUE x 2-7/8-inch female 8rd tubing swedge in the top of the wellhead.

Monday, November 6, 2006

Subsurface personnel traveled to Houston and will return on Monday, November 13, 2006, to oversee the temperature survey, radioactive tracer survey, and annulus pressure test. Called Young's to pickup office trailer, Sani-Tech to pick up portable toilets, and Aztec to pickup light plant. Larry at Key was notified to leave one frac tank on location and pickup the remaining frac tanks. Banta was notified for waste removal of pit and location cleanup for the week of November 13th.

Sunday, November 12, 2006

Rusty Smith traveled to Artesia, New Mexico, and arrived at the job site at 5:00 p.m. MST. Key Energy emptied the frac tank bottoms and the tanks are ready to be

disconnected and picked up. Aztec and Sani-Tech still have not removed the equipment from the location. The equipment was taken off rental on November 6, 2006.

Monday, November 13, 2006

Subsurface arrived at the location at 7:30 a.m. MST. Banta roustabout service arrived at the job site at 8:15 a.m. to remove well cutting and clear location of debris, fill in cellar with gravel, and haul off trash. Navajo refining requires that that all produced cuttings and debris contained in the pit be profiled prior to disposal (cannot be disposed under oil field exemption). Key started to remove frac tanks from the location. The OCD pushed back the annulus pressure test, and radioactive tracer survey one day to November 15th. Wood Group Logging services will arrive tomorrow afternoon for testing on the 15th. Petroplex Pumping will provide a pump truck for the radioactive tracer test.

Tuesday, November 14, 2006

Subsurface personnel arrived at the location at 8:30 a.m. MST. Wayne, with the OCD, was emailed at 5:00 p.m. MST November 13, 2006, informing the OCD of the annulus pressure test and radioactive tracer survey set for November 15, 2006. Included in the email were directions to the well and a short testing procedure. Wood Group and Petroplex were contacted to verify the job for tomorrow. Key has filled one frac tank with one load of brine and three loads of fresh water to chase down the radioactive slug. Wind gusted up to 50 mph and Key could not haul any more frac tanks for the day, in accordance with DOT regulations. Because of the high wind speed Wood Group will rig up tomorrow. OCD called and said that they will arrive at 10:00 a.m. tomorrow morning.

Wednesday, November 15, 2006

Subsurface personnel arrived at the location at 7:00 a.m. MST. Petroplex was on location. At 7:50 a.m., Petroplex hooked up to the frac tank and started to circulate the tank and will circulate for +2 hours. Wood Group started to rig up at 8:30 a.m. and

completed the rig up at 10:00 a.m. OCD representatives arrived at the location to witness the annulus pressure test. The annulus was pressure tested to 530 psia and over a one hour period and lost 2.5 psi. According to the OCD, the well passed the annulus pressure test.

The radioactive survey was started and during the 5-minute check, the upper gamma ray sensor malfunctioned and the sensor had to be pulled and replaced. Once the sensor was replaced, the remainder of the survey went as planned and there did not appear to be any radioactive material above the packer or being pumped out of the injection interval.

There were some undocumented perforations below 8600 feet that were taking fluid. During the first chase down, additional RA material was released as a result of the well being on a vacuum. At the end of the job the annulus was pressure tested to 300 psig and held pressure for 1.5 hours and was then bled off and left open. Wood Group rigged down at 8:30 p.m.

Thursday, November 16, 2006

Subsurface personnel called Key to release frac tank and went to location to check well and sign invoices from Basic and G&L Tools in Artesia, NM. Subsurface personnel travel to Houston, Texas.

Subsurface personnel will return to Artesia in \pm one month to install WAMS. Subsurface is waiting on the unit to be built.

APPENDIX I CALCULATION OF PERMEABILITY FROM DST NO. 5 MEWBOURNE OIL COMPANY, CHALK BLUFF 31, STATE NO. 1

The permeability of the interval tested is calculated to be 597 md, as follows from test data in Attachment VIII-9:

where:

- k = permeaibility, md
- q = production rate (bbl/day)
- B = formation volume factor, (reservoir bbl)/(stock tank bbl)
- μ = viscosity, centipoise (cp)
- m = slope of Horner plot, psi/cycle
- h = reservoir thickness, feet

The production rate, q, is calculated from the total volume of fluid, 78.7 bbl, produced during DST No. 5, which lasted for 90 minutes (the sum of lengths of the first and second flow periods). Using these values, q is equal to 1259 bbl/day. The formation volume factor, B, is assumed to be 1. The viscosity, μ , of reservoir brine with 25,000 ppm chlorides (approximately 2% salinity) at a bottom-hole temperature of 130°F is 0.53 cp, taken from the charge in Attachment VI-7. The slope of the Horner plot, m, is taken form the Horner plot for the second flow period of DST no. 5, or 5.348 psi/cycle (page 22 of Attachment VIII-9). The reservoir thickness, h, is the thickness of the interval tested during DST No. 5, or 34 feet (7851 feet – 7817 feet). Substituting these values into the equation above gives:

$$k = 162 \ \frac{(1259)(1)(0.53)}{(34)(5.348)}$$

= 597 md

INJECTED FLUID MONITORING PLAN

NAVAJO REFINING COMPANY, L.L.C. ARTESIA, NEW MEXICO

SUBSURFACE PROJECT NO. 60A6781

SUBMITTED JUNE 2012

SUBSURFACE TECHNOLOGY, INC. HOUSTON, TEXAS

TABLE OF CONTENTS

1.0	INTRODUCTION 1		
2.0	WAS	ASTE STREAM DESCRIPTION 1	
3.0	INJECTED FLUID CHARACTERIZATION SAMPLING PROGRAM		
	3.1	Sampling Frequency	1
	3.2	Sampling Location	2
	3.3	Sample Collection Equipment	2
	3.4	Sample Containers	2
	3.5	Sampling Methodology	2
	3.6.	Sample Preservation	2
	3.7	Field Measurements	3
	3.8	Sampling Personnel	3
4.0	FIELD DOCUMENTATION		3
	4.1	Water Sampling Log	
	4.2	Sample Container Label	3
	4.3	Chain-of-Custody Form	4
	4.4	Custody Seal	4
	4.5	Field Equipment Calibration Log	4
5.0	QUALITY ASSURANCE/QUALITY CONTROL		4
6.0	SAMPLE CUSTODY AND TRANSPORT		4
7.0	WASTE STREAM ANALYTICAL PROGRAM		
	7.1	Laboratory Requirements	5
	7.2	Analytical Parameters	5
8.0	REPORTING		

1.0 INTRODUCTION

This injected fluid monitoring plan (plan) has been prepared per the requirements of 20.6.2.5207B NMAC. This plan allows for consistent characterization of the injected fluids that are being injected into the three nonhazardous waste injection wells operated by Navajo Refining Company, L.L.C. (Navajo) at their refinery in Artesia, New Mexico. The plan shall be updated as necessary to remain accurate and the analysis remains representative of the fluids being injected into the three nonhazardous waste injection wells.

2.0 INJECTED FLUID DESCRIPTION

The fluid injected into all three Navajo injection wells is comprised of exempt and nonexempt nonhazardous oilfield waste that is generated in the refining process. Waste waters from process units, cooling towers, boilers, streams from water purification units, desalting units, recovered and treated ground water, and general waste waters, all waters will be blended to form the injected fluid into the injection wells.

3.0 INJECTED FLUID CHARACTERIZATION SAMPLING PROGRAM

The following sampling program shall be used to collect a representative sample of the injected fluid for chemical analysis to demonstrate the consistency of the fluid composition.

3.1 Sampling Frequency

The injected fluid shall be sampled on a quarterly basis unless a change in the injected fluid composition occurs as a result of operating changes at the Navajo refinery. If the injected fluid composition does change, a representative sample of the waste stream shall be collected at that time and reported to OCD.

3.2 Sampling Location

A representative sample of the injected fluid shall be obtained from the discharge side of the wastewater transfer pump that sends wastewater to the wellheads. The sample port is located at the refinery's wastewater treatment unit.

3.3 Sample Collection Equipment

The fluid samples shall be collected directly from the sample port on the wastewater transfer line into appropriately prepared sample containers required for specific analyses.

3.4 Sample Containers

The injected fluid sample shall be collected in new and previously unused sample containers as provided by the off-site commercial laboratory performing the analyses.

3.5 Sampling Methodology

The injected fluid sample shall be poured directly into the new and previously unused sample containers provided by the off-site commercial laboratory performing the analyses.

3.6 Sample Preservation

EPA and/or ASTM sampling protocols shall be used, including provisions for preserving samples when required. Sampling personnel shall verify that appropriate preservatives are present in sample containers if required by analytical protocol.

3.7 Field Measurements

Field measurements of pH, specific conductance, and temperature shall be recorded on a representative sample of the injected fluid during each quarterly monitoring event.

3.8 Sampling Personnel

Navajo environmental staff or qualified contractor sampling personnel shall be responsible for collecting the injected fluid samples in accordance with the procedures presented in this plan.

4.0 FIELD DOCUMENTATION

The following procedures shall be implemented to properly document each injected fluid characterization sampling event as described in Section 3.0.

4.1 Water Sampling Log

A water sampling log shall be completed at the time the sample is collected. The type of information to be recorded on the water sampling log includes, but is not limited to, the following:

- Date and time of sampling
- Weather conditions
- Sampling location
- Sampling method
- Sample identification
- Field measurements
- Laboratory analyses
- Sampling personnel

4.2 Sample Container Label

Each laboratory provided sample container shall have a label adhered to the outside of the container providing pertinent information identifying the sample,

location and time the sample was collected, analytical parameters, preservatives, and sampler identification.

4.3 Chain-of-Custody Form

A chain-of-custody form shall be completed and accompany each shipment of samples to the off-site commercial laboratory. Each transfer of sample custody shall be signed by both parties on the chain-of-custody form.

4.4 Custody Seal

A custody seal shall be affixed over the opening of the ice chest used to store and transport samples to the receiving laboratory. The laboratory shall note in their Check-In Form that the seal is properly attached and has not been broken.

4.5 Field Equipment Calibration Log

Calibration and maintenance of field equipment (pH, specific conductance, turbidity, and temperature meters) shall be in compliance with the manufacturers' recommended calibration or maintenance procedures. Field logs shall be completed in the field to properly document all calibration and maintenance activities to field equipment.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

A trip blank will be prepared during each waste stream characterization sampling event as described in Section 3.0.

6.0 SAMPLE CUSTODY AND TRANSPORT

Injected fluid characterization samples shall be maintained in the custody of the sampling personnel until the samples are transported to the laboratory or transferred to a representative of the receiving laboratory. Upon transfer of custody, the chain-of-custody record shall be completed and signed by the sampling personnel. The signed chain-of-custody record shall be placed in a plastic bag inside the shipment cooler containing the properly labeled injected fluid

samples. A signed and dated custody seal shall be placed over the lid of the opening of the sample cooler to indicate if the cooler has been opened during delivery prior to receipt by the laboratory.

The chain-of-custody record shall be signed and returned by the laboratory no later than the date the analytical results are available. If the samples are delivered in person by the sampling personnel or picked up by a laboratory employee, the chain-of-custody record shall be signed by the laboratory representative immediately upon relinquishment of the samples by the sampling personnel. One of the copies shall be maintained by the sampling personnel and the remaining copies kept with the samples.

7.0 WASTE STREAM ANALYTICAL PROGRAM

The following describes the injected fluid characterization analytical program.

7.1 Laboratory Requirements

The laboratory performing the analytical services for this project shall be an accredited laboratory. The laboratory shall possess a quality control/ quality assurance (QA/QC) manual prepared in accordance with the requirements of the NELAC certification program. A current copy of the plan shall be sent by the laboratory to the project manager in charge. When the manual is updated by the laboratory the updated version of the manual shall be sent to the project manager. The previously issued copy of the manual must be archived by the project manager to insure traceability of the data generated using the applicable QA/QC manual.

Navajo is currently utilizing ALS Environmental, a commercial laboratory located in Houston, Texas. ALS is a NELAC accredited laboratory.

7.2 Analytical Parameters and Methods

The injected fluid samples are analyzed for the following listing of parameters that are representative of the injected fluid:

- VOC (EPA Method 8260)
- SVOC (EPA Method 8270)
- Total Metals (EPA Method 6020/7000)
- RCI
- Chloride
- Sulfate
- Alkalinity
- TDS
- pH
- Conductivity

The parameter listing shall be updated as necessary to remain accurate and the waste analysis remains representative of the injected fluid being injected.

8.0 **REPORTING**

The laboratory performing the injected fluid characterization analyses shall generate a report of the analytical results. These analytical results shall be compiled with the field measurement results and tabularized. The results of each waste stream characterization sampling event, including tabularization of analytical results, copies of laboratory reports, and copies of water sampling logs, shall be provided to OCD within 90 days following each sampling episode. The report shall document any obvious fluctuations in the injected fluid composition.

APPENDIX K

INJECTION WELL CLOSURE PLAN HOLLYFRONTIER NAVAJO REFINING LLC (WDW-1)

Final Testing Program

After ceasing injection in the well and prior to commencing physical closure procedures of the injection well, a pressure falloff test will be conducted in order to determine if the transient pressure data have conformed with predicted values within the injection interval. The brine injected for the falloff test will be nonhazardous and will also act as a buffer between the injectate and the well. Appropriate mechanical integrity testing shall also be conducted to ensure the integrity of the long casing string and cement that will remain in the ground after closure. Notify the OCD of mechanical integrity and pressure falloff testing procedures of the long casing string and cement that will remain.

Mechanical Integrity Testing

An annular pressure test and radioactive tracer survey will be conducted prior to removing the injection tubing and packer. Subsequent to tubing and packer removal, a casing inspection and a cement bond/variable density log will be conducted from total depth to the surface.

Pressure Falloff Testing

A wireline unit with pressure control equipment will be rigged up to run in the hole with a surface recording bottom-hole pressure transducer with temperature capabilities to position the transducer at the top of the injection interval. The transducer will be stabilized prior to injecting brine.

Two thousand barrels of brine will be injected at a constant rate. The brine will be compatible with the injection zone reservoir fluid as determined by compatibility testing. The pressure buildup will be recorded. After pumping is ceased, the pressure falloff will be recorded for a minimum of 24 hours after shut in. The pressure derivative curve to will be monitored confirm the test has investigated beyond the wellbore storage effect.

Regulatory Notification

Navajo will notify OCD at least 60 days before commencing plugging and abandonment procedures on any waste disposal well.

Plug and Abandonment Procedures

The balance plug method will be employed to plug and abandon this well. This technique involves displacing the cement through a work string which has been run into the casing. The cement slurry is pumped down the work string and up the annulus to a calculated height which would balance the cement inside and outside the work string. The work string is then slowly pulled out of the cement leaving a solid, uniform plug.

Heavy drilling mud is placed between the cement plugs. This mud establishes a hydrostatic gradient that will exceed the static bottom-hole pressure at the time of plugging and any anticipated pressures which would result from future injection activity in these particular formations.

Finally, after all cement plugs are set, the well casings will be cut off 3 feet below grade and capped by welding a $\frac{1}{2}$ inch steel plate to the outermost casing string.

The plugging and abandonment procedures for a typical well are described as follows:

- 1. Prepare the well and location for plugging. Remove the well monitoring equipment and wellhead injection piping.
- 2. Notify the OCD of the MIT schedule. Conduct an annulus pressure test and a radioactive tracer survey to satisfy OCD mechanical integrity requirements.
- 3. Move in and rig up the frac tanks and pump for the pressure falloff test. Fill frac tanks with 2,000 barrels of brine.
- 4. Rig up the wireline unit with pressure control equipment. Run into the hole with a surface recording bottom-hole pressure transducer with temperature capabilities and position the transducer at the top of the perforated injection interval. Allow the transducer to stabilize prior to injecting brine.
- 5. Commence injecting 2,000 barrels of brine at a constant rate. The brine will be compatible with the injection zone reservoir fluid, as determined by compatibility testing. Record the pressure buildup. Cease pumping and record the pressure

falloff. Measure the pressure falloff for a minimum of 24 hours after shut in. Monitor the pressure derivative curve to confirm the test has investigated beyond the wellbore storage effect.

- 6. Rig down the wireline unit.
- 7. Move in and rig up the well service unit with BOP equipment and a 2 7/8 inch work string.
- 8. Remove the wellhead and install the BOP equipment and stripper head.
- 9. Unseat the seal assembly from the packer and displace the annular fluid by flushing with 200 bbls of brine. Trip out of the hole laying down the 4 $\frac{1}{2}$ -inch injection tubing.
- 10. Rig up the wireline unit and run a casing inspection log and a cement bond/variable density log from total depth to the surface. Pick up and run a wireline set cement retainer at 9,004 feet. Rig down the wireline unit.
- 11. Rig up cement service equipment. Cement shall be Class "A" (or comparable), weighing 15.6 pounds/gallon. Pressure test the surface lines as required.
- 12. Run in the well with the work string and sting into the cement retainer at 9,004 feet. Establish a pump-in rate into the injection perforations and pump 100 sx of Class "A" cement below the retainer. Pull out of the retainer and spot sufficient Class "A" (or comparable) cement slurry to develop a 100-foot plug above the cement retainer. Pull the tubing up above the top of cement and reverse out excess cement. Catch a sample of cement to check curing time and compressive strength. Allow the cement to set overnight (8-hour minimum) before tagging top of plug to confirm proper setup and location. Pressure test the plug to the pressure recommended by the OCD.
- 13. Set a balanced cement plug using Class "A" cement from the top of cement at approximately 9,004 feet to the surface.
- 14. Cut casing strings ±3 feet below ground level.

- Weld a ½ inch steel plate across the 13-3/8-inch casing. Inscribe on plate, in a permanent manner, the following information: (1) operator name, (2) closure date, and (3) UIC permit number.
- 16. Release all equipment and clean up the location.
- 17. Submit closure data to the OCD.

Once closure operations are complete and the well is officially plugged and abandoned, a closure report certifying that the well or wells were closed in accordance with applicable requirements, will be submitted to the OCD within 30 days. The report will include any newly constructed or discovered wells or information, including proposed well data, within the area of review. When plugging and abandonment is complete, Navajo will submit certification to the OCD that the injection well has been closed in accordance with applicable OCD regulations.

APPENDIX K

INJECTION WELL CLOSURE PLAN HOLLYFRONTIER NAVAJO REFINING LLC (WDW-2)

Final Testing Program

After ceasing injection in the well and prior to commencing physical closure procedures of the injection well, a pressure falloff test will be conducted in order to determine if the transient pressure data have conformed with predicted values within the injection interval. The brine injected for the falloff test will be nonhazardous and will also act as a buffer between the injectate and the well. Appropriate mechanical integrity testing shall also be conducted to ensure the integrity of the long casing string and cement that will remain in the ground after closure. Notify the OCD of mechanical integrity and pressure falloff testing procedures of the long casing string and cement that will remain.

Mechanical Integrity Testing

An annular pressure test and radioactive tracer survey will be conducted prior to removing the injection tubing and packer. Subsequent to tubing and packer removal, a casing inspection and a cement bond/variable density log will be conducted from total depth to the surface.

Pressure Falloff Testing

A wireline unit with pressure control equipment will be rigged up to run in the hole with a surface recording bottom-hole pressure transducer with temperature capabilities to position the transducer at the top of the injection interval. The transducer will be stabilized prior to injecting brine.

Two thousand barrels of brine will be injected at a constant rate. The brine will be compatible with the injection zone reservoir fluid as determined by compatibility testing. The pressure buildup will be recorded. After pumping is ceased, the pressure falloff will be recorded for a minimum of 24 hours after shut in. The pressure derivative curve to will be monitored confirm the test has investigated beyond the wellbore storage effect.

Regulatory Notification

Navajo will notify OCD at least 60 days before commencing plugging and abandonment procedures on any waste disposal well.

Plug and Abandonment Procedures

The balance plug method will be employed to plug and abandon this well. This technique involves displacing the cement through a work string which has been run into the casing. The cement slurry is pumped down the work string and up the annulus to a calculated height which would balance the cement inside and outside the work string. The work string is then slowly pulled out of the cement leaving a solid, uniform plug.

Heavy drilling mud is placed between the cement plugs. This mud establishes a hydrostatic gradient that will exceed the static bottom-hole pressure at the time of plugging and any anticipated pressures which would result from future injection activity in these particular formations.

Finally, after all cement plugs are set, the well casings will be cut off 3 feet below grade and capped by welding a $\frac{1}{2}$ inch steel plate to the outermost casing string.

The plugging and abandonment procedures for a typical well are described as follows:

- 1. Prepare the well and location for plugging. Remove the well monitoring equipment and wellhead injection piping.
- 2. Notify the OCD of the MIT schedule. Conduct an annulus pressure test and a radioactive tracer survey to satisfy OCD mechanical integrity requirements.
- 3. Move in and rig up the frac tanks and pump for the pressure falloff test. Fill frac tanks with 2,000 barrels of brine.
- 4. Rig up the wireline unit with pressure control equipment. Run into the hole with a surface recording bottom-hole pressure transducer with temperature capabilities and position the transducer at the top of the perforated injection interval. Allow the transducer to stabilize prior to injecting brine.
- 5. Commence injecting 2,000 barrels of brine at a constant rate. The brine will be compatible with the injection zone reservoir fluid, as determined by compatibility testing. Record the pressure buildup. Cease pumping and record the pressure

falloff. Measure the pressure falloff for a minimum of 24 hours after shut in. Monitor the pressure derivative curve to confirm the test has investigated beyond the wellbore storage effect.

- 6. Rig down the wireline unit.
- 7. Move in and rig up the well service unit with BOP equipment and a 2 7/8 inch work string.
- 8. Remove the wellhead and install the BOP equipment and stripper head.
- 9. Unseat the seal assembly from the packer and displace the annular fluid by flushing with 200 bbls of brine. Trip out of the hole laying down the 4 $\frac{1}{2}$ -inch injection tubing.
- 10. Rig up the wireline unit and run a casing inspection log and a cement bond/variable density log from total depth to the surface. Pick up and run a wireline set cement retainer at 9,004 feet. Rig down the wireline unit.
- 11. Rig up cement service equipment. Cement shall be Class "A" (or comparable), weighing 15.6 pounds/gallon. Pressure test the surface lines as required.
- 12. Run in the well with the work string and sting into the cement retainer at 9,004 feet. Establish a pump-in rate into the injection perforations and pump 100 sx of Class "A" cement below the retainer. Pull out of the retainer and spot sufficient Class "A" (or comparable) cement slurry to develop a 100-foot plug above the cement retainer. Pull the tubing up above the top of cement and reverse out excess cement. Catch a sample of cement to check curing time and compressive strength. Allow the cement to set overnight (8-hour minimum) before tagging top of plug to confirm proper setup and location. Pressure test the plug to the pressure recommended by the OCD.
- 13. Set a balanced cement plug using Class "A" cement from the top of cement at approximately 9,004 feet to the surface.
- 14. Cut casing strings ±3 feet below ground level.

- Weld a ½ inch steel plate across the 13-3/8-inch casing. Inscribe on plate, in a permanent manner, the following information: (1) operator name, (2) closure date, and (3) UIC permit number.
- 16. Release all equipment and clean up the location.
- 17. Submit closure data to the OCD.

Once closure operations are complete and the well is officially plugged and abandoned, a closure report certifying that the well or wells were closed in accordance with applicable requirements, will be submitted to the OCD within 30 days. The report will include any newly constructed or discovered wells or information, including proposed well data, within the area of review. When plugging and abandonment is complete, Navajo will submit certification to the OCD that the injection well has been closed in accordance with applicable OCD regulations.

APPENDIX K

INJECTION WELL CLOSURE PLAN HOLLYFRONTIER NAVAJO REFINING LLC (WDW-3)

Final Testing Program

After ceasing injection in the well and prior to commencing physical closure procedures of the injection well, a pressure falloff test will be conducted in order to determine if the transient pressure data have conformed with predicted values within the injection interval. The brine injected for the falloff test will be nonhazardous and will also act as a buffer between the injectate and the well. Appropriate mechanical integrity testing shall also be conducted to ensure the integrity of the long casing string and cement that will remain in the ground after closure. Notify the OCD of mechanical integrity and pressure falloff testing procedures of the long casing string and cement that will remain.

Mechanical Integrity Testing

An annular pressure test and radioactive tracer survey will be conducted prior to removing the injection tubing and packer. Subsequent to tubing and packer removal, a casing inspection and a cement bond/variable density log will be conducted from total depth to the surface.

Pressure Falloff Testing

A wireline unit with pressure control equipment will be rigged up to run in the hole with a surface recording bottom-hole pressure transducer with temperature capabilities to position the transducer at the top of the injection interval. The transducer will be stabilized prior to injecting brine.

Two thousand barrels of brine will be injected at a constant rate. The brine will be compatible with the injection zone reservoir fluid as determined by compatibility testing. The pressure buildup will be recorded. After pumping is ceased, the pressure falloff will be recorded for a minimum of 24 hours after shut in. The pressure derivative curve to will be monitored confirm the test has investigated beyond the wellbore storage effect.

Regulatory Notification

Navajo will notify OCD at least 60 days before commencing plugging and abandonment procedures on any waste disposal well.

Plug and Abandonment Procedures

The balance plug method will be employed to plug and abandon this well. This technique involves displacing the cement through a work string which has been run into the casing. The cement slurry is pumped down the work string and up the annulus to a calculated height which would balance the cement inside and outside the work string. The work string is then slowly pulled out of the cement leaving a solid, uniform plug.

Heavy drilling mud is placed between the cement plugs. This mud establishes a hydrostatic gradient that will exceed the static bottom-hole pressure at the time of plugging and any anticipated pressures which would result from future injection activity in these particular formations.

Finally, after all cement plugs are set, the well casings will be cut off 3 feet below grade and capped by welding a $\frac{1}{2}$ inch steel plate to the outermost casing string.

The plugging and abandonment procedures for a typical well are described as follows:

- 1. Prepare the well and location for plugging. Remove the well monitoring equipment and wellhead injection piping.
- 2. Notify the OCD of the MIT schedule. Conduct an annulus pressure test and a radioactive tracer survey to satisfy OCD mechanical integrity requirements.
- 3. Move in and rig up the frac tanks and pump for the pressure falloff test. Fill frac tanks with 2,000 barrels of brine.
- 4. Rig up the wireline unit with pressure control equipment. Run into the hole with a surface recording bottom-hole pressure transducer with temperature capabilities and position the transducer at the top of the perforated injection interval. Allow the transducer to stabilize prior to injecting brine.
- 5. Commence injecting 2,000 barrels of brine at a constant rate. The brine will be compatible with the injection zone reservoir fluid, as determined by compatibility testing. Record the pressure buildup. Cease pumping and record the pressure

falloff. Measure the pressure falloff for a minimum of 24 hours after shut in. Monitor the pressure derivative curve to confirm the test has investigated beyond the wellbore storage effect.

- 6. Rig down the wireline unit.
- 7. Move in and rig up the well service unit with BOP equipment and a 2 7/8 inch work string.
- 8. Remove the wellhead and install the BOP equipment and stripper head.
- 9. Unseat the seal assembly from the packer and displace the annular fluid by flushing with 200 bbls of brine. Trip out of the hole laying down the 4 $\frac{1}{2}$ -inch injection tubing.
- 10. Rig up the wireline unit and run a casing inspection log and a cement bond/variable density log from total depth to the surface. Pick up and run a wireline set cement retainer at 9,022 feet. Rig down the wireline unit.
- 11. Rig up cement service equipment. Cement shall be Class "A" (or comparable), weighing 15.6 pounds/gallon. Pressure test the surface lines as required.
- 12. Run in the well with the work string and sting into the cement retainer at 9,022 feet. Establish a pump-in rate into the injection perforations and pump 100 sx of Class "A" cement below the retainer. Pull out of the retainer and spot sufficient Class "A" (or comparable) cement slurry to develop a 100-foot plug above the cement retainer. Pull the tubing up above the top of cement and reverse out excess cement. Catch a sample of cement to check curing time and compressive strength. Allow the cement to set overnight (8-hour minimum) before tagging top of plug to confirm proper setup and location. Pressure test the plug to the pressure recommended by the OCD.
- 13. Set a balanced cement plug using Class "A" cement from the top of cement at approximately 9,022 feet to the surface.
- 14. Cut casing strings ±3 feet below ground level.

- Weld a ½ inch steel plate across the 13-3/8-inch casing. Inscribe on plate, in a permanent manner, the following information: (1) operator name, (2) closure date, and (3) UIC permit number.
- 16. Release all equipment and clean up the location.
- 17. Submit closure data to the TCEQ.

Once closure operations are complete and the well is officially plugged and abandoned, a closure report certifying that the well or wells were closed in accordance with applicable requirements, will be submitted to the OCD within 30 days. The report will include any newly constructed or discovered wells or information, including proposed well data, within the area of review. When plugging and abandonment is complete, Navajo will submit certification to the OCD that the injection well has been closed in accordance with applicable OCD regulations.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION (OCD) WATER QUALITY CONTROL COMMISSION (WQCC) OCD DISCHARGE PERMIT BOND

BOND NO.	6186996
OCD PERMIT	UICI-008-1
AMOUNT OF BOND	<u>\$95,000.00</u>
COUNTY	Eddy County

File with the Oil Conservation Division, 1220 South St. Francis Drive, Santa Fe, NM 87505

KNOW ALL MEN BY THESE PRESENTS:

That <u>Navajo Refining Company</u>, (an individual **if dba must read Example: John Doe dba ABC Services**) (a general partnership) (a corporation), (limited liability company) (limited partnership) organized in the State of <u>New</u> <u>Mexico</u>, and authorized to do business in the State of New Mexico, as PRINCIPAL, and <u>Safeco Insurance Company of</u> <u>America</u>, a corporation organized and existing under the laws of the State of <u>Delaware</u> and authorized to do business in the State of New Mexico, for the use and benefit of the Oil Conservation Division of the Energy, Minerals and Natural Resources Department (or successor agency) (the DIVISION), pursuant to 20.6.2.5210.B(17) NMAC, 20.6.2.5006 NMAC, and 20.6.2.3107.A(11) NMAC, in the sum of <u>\$95,000.00</u>, for the payment of which the PRINCIPAL and SURETY hereby bind themselves, their successors and assigns, jointly and severally, firmly by these presents.

The conditions of this obligation are such that:

WHEREAS, the PRINCIPAL does or may own or operate a "Facility" (identified by location only below) and/or one or more wells (identified by location(s) below) for the injection of fresh and non-fresh water, remediation fluids (i.e., Class I (NH) Disposal Well or Class V Pump & Treat Injection Well), oilfield exempt, non-exempt and/or geothermal produced fluid waste(s) into the subsurface for use in connection with oil, gas and/or geothermal activities, which well is classified as a Division Underground Injection Control Class I, III or V Injection Well pursuant to the 20.6.2.5002 et seq. NMAC, the identification and location(s) of said well(s) being:

	WDW-1	API No. 30- <u>015-27592</u>	, located	<u>660</u> feet from the
South	(Name of Well) (North /South) line and	<u>2,310</u> feet from the	East	(East/ West) line
of Section 31	Township <u>17</u>	(North) (South), Range	28	(East) (West),
NMPM, and Lat	itude <u>32°47'6.77"N</u> Longitude	2 104°12'50.22"W_ County	Eddy	, New Mexico.

NOW, THEREFORE, if the PRINCIPAL and SURETY or either of them, or their successors or assigns or any of them, shall: (a) cause said well(s) to be properly plugged and abandoned when no longer productive or useful for other beneficial purpose in accordance with the WQCC rules and/or orders of the DIVISION; and (b) take all measures necessary, as required by the DIVISION by OCD Permit No. <u>UICI-008-1</u> pursuant to 20.6.2 and 20.6.4 NMAC, as such rules now exist or may hereafter be amended, to prevent contamination of ground water having 10,000 milligrams per liter (mg/l) or less concentration of total dissolved solids (TDS), including, but not limited to, surface and ground water restoration if applicable, and post-operational monitoring.

THEN AND IN THAT EVENT, this obligation shall be null and void; otherwise and in default of complete compliance with any and all of said obligations, the same shall remain in full force and effect.

PRINCIPAL

SURETY

Address

By__

Signature

Address

Title

Attorney-in-Fact

If PRINCIPAL is a corporation, affix Corporate seal here

Corporate surety affix Corporate seal here

STATE OF NEW MEXICO OIL CONSERVATION DIVISION (OCD) WATER QUALITY CONTROL COMMISSION (WQCC) OCD DISCHARGE PERMIT BOND

BOND NO.	6187002
OCD PERMIT	UICI-008-2
AMOUNT OF BOND	<u>\$95,000.00</u>
COUNTY	Eddy County

File with the Oil Conservation Division, 1220 South St. Francis Drive, Santa Fe, NM 87505

KNOW ALL MEN BY THESE PRESENTS:

That <u>Navajo Refining Company</u>, (an individual **if dba must read Example: John Doe dba ABC Services**) (a general partnership) (a corporation), (limited liability company) (limited partnership) organized in the State of <u>New Mexico</u>, and authorized to do business in the State of New Mexico, as PRINCIPAL, and <u>Safeco Insurance Company of America</u>, a corporation organized and existing under the laws of the State of <u>Delaware</u> and authorized to do business in the State of New Mexico, for the use and benefit of the Oil Conservation Division of the Energy, Minerals and Natural Resources Department (or successor agency) (the DIVISION), pursuant to 20.6.2.5210.B(17) NMAC, 20.6.2.5006 NMAC, and 20.6.2.3107.A(11) NMAC, in the sum of <u>\$95,000.00</u>, for the payment of which the PRINCIPAL and SURETY hereby bind themselves, their successors and assigns, jointly and severally, firmly by these presents.

The conditions of this obligation are such that:

WHEREAS, the PRINCIPAL does or may own or operate a "Facility" (identified by location only below) and/or one or more wells (identified by location(s) below) for the injection of fresh and non-fresh water, remediation fluids (i.e., Class I (NH) Disposal Well or Class V Pump & Treat Injection Well), oilfield exempt, non-exempt and/or geothermal produced fluid waste(s) into the subsurface for use in connection with oil, gas and/or geothermal activities, which well is classified as a Division Underground Injection Control Class I, III or V Injection Well pursuant to the 20.6.2.5002 et seq. NMAC, the identification and location(s) of said well(s) being:

	<u>WDW-2</u>	API No. 30- <u>015-</u> 2089	4_, located_	1980 feet from the
	Name of Well)		W. (
North	(North/ South) line and	<u>660</u> feet from the	West	(East/West) line
of Section <u>12</u>	Township18	(North) (South), Range	27	(East) (West),
NMPM, and Lati	tude <u>32°45'49.32"N</u> Longitude	<u>104°14'18.59"W</u> County	Eddy	, New Mexico.

NOW, THEREFORE, if the PRINCIPAL and SURETY or either of them, or their successors or assigns or any of them, shall: (a) cause said well(s) to be properly plugged and abandoned when no longer productive or useful for other beneficial purpose in accordance with the WQCC rules and/or orders of the DIVISION; and (b) take all measures necessary, as required by the DIVISION by OCD Permit No. <u>UICI-008-2</u> pursuant to 20.6.2 and 20.6.4 NMAC, as such rules now exist or may hereafter be amended, to prevent contamination of ground water having 10,000 milligrams per liter (mg/l) or less concentration of total dissolved solids (TDS), including, but not limited to, surface and ground water restoration if applicable, and post-operational monitoring.

THEN AND IN THAT EVENT, this obligation shall be null and void; otherwise and in default of complete compliance with any and all of said obligations, the same shall remain in full force and effect.

PRINCIPAL

Address

Signature

SURETY

Address

Attorney-in-Fact

Title

Bv

If PRINCIPAL is a corporation, affix Corporate seal here Corporate surety affix Corporate seal here

STATE OF NEW MEXICO OIL CONSERVATION DIVISION (OCD) WATER QUALITY CONTROL COMMISSION (WQCC) OCD DISCHARGE PERMIT BOND

BOND NO.	6186995
OCD PERMIT	UICI-008-3
AMOUNT OF BOND	<u>\$95,000.00</u>
COUNTY	Eddy County

File with the Oil Conservation Division, 1220 South St. Francis Drive, Santa Fe, NM 87505

KNOW ALL MEN BY THESE PRESENTS:

That <u>Navajo Refining Company</u>, (an individual **if dba must read Example: John Doe dba ABC Services**) (a general partnership) (a corporation), (limited liability company) (limited partnership) organized in the State of <u>New</u> <u>Mexico</u>, and authorized to do business in the State of New Mexico, as PRINCIPAL, and <u>Safeco Insurance Company of</u> <u>America</u>, a corporation organized and existing under the laws of the State of <u>Delaware</u> and authorized to do business in the State of New Mexico, for the use and benefit of the Oil Conservation Division of the Energy, Minerals and Natural Resources Department (or successor agency) (the DIVISION), pursuant to 20.6.2.5210.B(17) NMAC, 20.6.2.5006 NMAC, and 20.6.2.3107.A(11) NMAC, in the sum of <u>\$95,000.00</u>, for the payment of which the PRINCIPAL and SURETY hereby bind themselves, their successors and assigns, jointly and severally, firmly by these presents.

The conditions of this obligation are such that:

WHEREAS, the PRINCIPAL does or may own or operate a "Facility" (identified by location only below) and/or one or more wells (identified by location(s) below) for the injection of fresh and non-fresh water, remediation fluids (i.e., Class I (NH) Disposal Well or Class V Pump & Treat Injection Well), oilfield exempt, non-exempt and/or geothermal produced fluid waste(s) into the subsurface for use in connection with oil, gas and/or geothermal activities, which well is classified as a Division Underground Injection Control Class I, III or V Injection Well pursuant to the 20.6.2.5002 et seq. NMAC, the identification and location(s) of said well(s) being:

	WDW-3	API No. 30- <u>01</u>	<u>526575</u> , located_	<u>790</u> feet from the
<u>South</u>	Name of Well) (North /South) line and	<u>2250</u> feet fr	om the <u>West</u>	(East/West) line
of Section <u>1</u>	Township18	(North) (South), Ran	ge <u>27</u>	(East) (West),
NMPM, and Lati	tude <u>32°46'16.51"N</u> Longitud	e <u>104°13'59.80"W</u> Cou	unty <u>Eddy</u>	, New Mexico.

NOW, THEREFORE, if the PRINCIPAL and SURETY or either of them, or their successors or assigns or any of them, shall: (a) cause said well(s) to be properly plugged and abandoned when no longer productive or useful for other beneficial purpose in accordance with the WQCC rules and/or orders of the DIVISION; and (b) take all measures necessary, as required by the DIVISION by OCD Permit No. <u>UICI-008-3</u> pursuant to 20.6.2 and 20.6.4 NMAC, as such rules now exist or may hereafter be amended, to prevent contamination of ground water having 10,000 milligrams per liter (mg/l) or less concentration of total dissolved solids (TDS), including, but not limited to, surface and ground water restoration if applicable, and post-operational monitoring.

THEN AND IN THAT EVENT, this obligation shall be null and void; otherwise and in default of complete compliance with any and all of said obligations, the same shall remain in full force and effect.

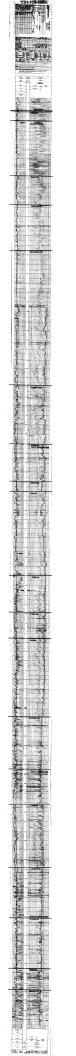
PRINCIPAL

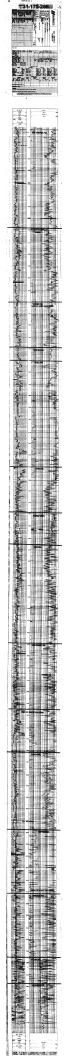
SURETY

Address

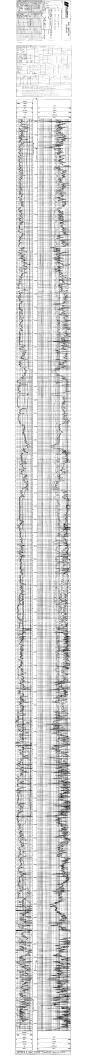
Attorney-in-Fact

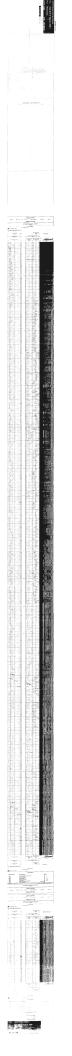
Ву____

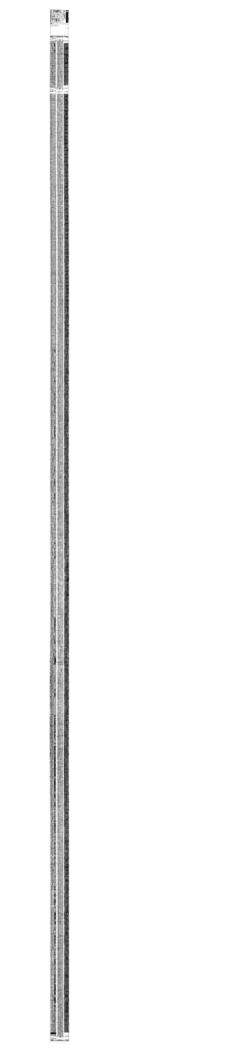

Signature


Address

Title


If PRINCIPAL is a corporation, affix Corporate seal here Corporate surety affix Corporate seal here


Form WQCC-1





APPENDIX N

WDW-2 CASED-HOLE LOGS

APPENDIX O

DRAFT PUBLIC NOTICE

PUBLIC NOTICE

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

In accordance with 20.6.2.3108.F NMAC, Navajo Refining Company, L.L.C. hereby gives public notice of its application to renew the New Mexico Oil Conservation Division (OCD) discharge permit to inject treated non-hazardous waste water effluent from the Artesia Refinery's on-site wastewater system into a Class I (nonhazardous) injection well WDW-2 (API# 30-015-20894). The WDW-2 is located in the SW/4, NW/4 of Section 12, Township 18 South, Range 27 East, NMPM, Eddy County, New Mexico. The WDW-2 is location approximately 10 miles SE of the intersection of US-285 and Hwy 82 or approximately 3 miles South of the intersection of Hwy 82 and CR-204 (Hilltop Road). The Navajo Refinery is located at 501 E. Main Street, Artesia, New Mexico.

Waste water from the refinery is generated from the treatment of waters from the processing of crude oil, including the removal of water entrained in crude oil, the washing of crude oil to remove salts and sediment, water used for heating and cooling during refining, boiler blowdown, and stormwater collected from process portions of the refinery.

Underground injection at WDW-2 occurs within the Lower Wolfcamp, Cisco and Canyon Formations within the injection interval from 7,570 to 8,399 feet (log depth). The injection rate into WDW-2 will not exceed 500 gpm and the maximum allowable surface injection pressure is 1,514 psig. The injected refinery waste water quality is approximately 3,400 mg/L total dissolved solids (TDS). Formation fluid within the permitted injection interval exceeds 10,000 mg/L TDS. Groundwater is first encountered in the area of WDW-2 at a depth of approximately 50 to 150 feet below land surface. The groundwater quality ranges from about 1,500 to 2,200 mg/L TDS.

Persons interested in obtaining further information, submitting comments, or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the New Mexico Oil Conservation Division.

Comments and inquiries on regulations should be directed to:

Director Conservation Division Energy Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Telephone: (505) 476-3440

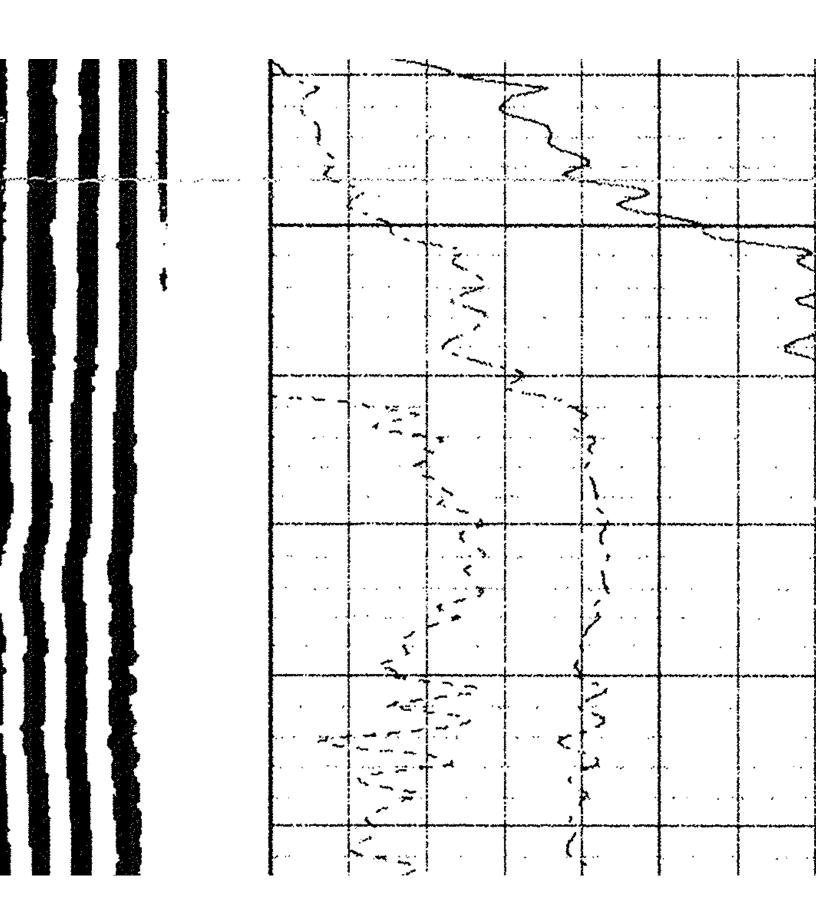
When corresponding, please reference the name of the applicant and the well name.

AVISO PUBLICO ESTADO DE MEXICO DEPARTMENTO DE ENERGIA, MINERALES Y RECURSO NATURALES DIVISION DE CONSERVACION DE PETROLEO

Por medio de la presente La Navajo Company anuncia que de conformidad con los requisitos de las regulaciones de la Comisíon de Control de Calidad del Agua de Nuevo Mexico 20.6.2.3108.F NMAC, esta solicitando a la Division de Conservacíon del Petroleo de Nuevo Mexico (NMOCD) . Departamento del Medio Ambiente, un permiso de descarga para inyectar aguas residuales Artesia Refinery's hacia un pozo de inyección que se llama WDW-2 (API# 30-015-20894). El WDW-2 esta localizado en SW/4, NW/4 de Sección 12, Municipio 18 sur, 27 Este, Condado Eddy, Nuevo Mexico. El WDW-2 esta localizado aproximadamente 10 millas SE de la unidad de US-285 y Hwy 82 (Refineria Artesia) o aproximadamente 3 millas Sur de la unidad de Hwy. 82 y CR-204 (Hilltop Road). La Refineria Navajo se encuentra ubicada en 501 E. Main Street, Artesia, Nuevo Mexico.

La generacion de aguas residuals de la Refineria Artesia es el resultado del agua que se encuentran en al abastecimiento de crudo, el agua que se usa para el enfriamiento y calentamiento, el agua que se usa para retirar las sales del abastecimiento de crudo, y para purgar la caldera.

Las aguas residuals de WDW-2 se injectaran hacia las formaciones de Lower Wolfcamp, Cisco Y Canyon, ubicadas entre 7,570 y 8,399 pies (produndidad de registro). La tasa de inyeccion de WDW-2 no excedera los 500 gpm a una presion de inyeccion que no excedera los 1,514 psig. Estas aguas residuals tendran un contendido de total de solidos disueltos (TDS) de 3,400 partes por millón. Formacion de fluido dentro del interval permitido exceed 10,000 milligramos per litro (mg/L) TDS. En el area en donde se encuentran el pozo (WDW-2), el agua fresco se encuentra a una profundidad de 50 a 150 pies por debajo de la superficie de la tierra con un TDS de 1,500 a 2,200 partes por millón (ppm).


Personas interesadas en obtener mayores informes, presentar sus comentarios o solicitar que se les incluya en las listas de direcciones de una planta en especial para futuros avisos pueden ponerse en contacto con el Jefe del Departamento del Medio Ambiente de la División de Conservacíon de Petroleo de Nuevo Mexico.

Por Favor envien los comentarios y las preguntas a:

Director Oil Conservation Division Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Telefono: (505) 476-3440

Cuando escriban, por favor pongan de referencia el nombre del applicante y del pozo.

2 32 2 32 2 37 2 37 2 37 2 37 2 37 2 37							į	!		i I	C E	;	;	}	723
2 3 2 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3	•	- , , -	- • ·	····	.*	• 、 •			с. К		2	4			
2 3 4 2 3 4 2 3 4 2 3 5 2	·	1. 4.4			****		· · · · · · · · · · · ·	**** ****** * *	lan wa c	Š		, ; ;			75
2 3 4 2 3 4 2 3 4 2 3 5 2											5				92 (
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3															
2 3 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		• •	-		5 • •	•		• ~ •	en la sere					· · /	
233 233 235 230 256 257 230 231 231 231 231 231 231 231 231 231 231			2. c 1		15 K M	·	• •		1. 1 . 1 . 1			1			
233 235 230 256 230 257 231 231 231 231	* 6		••••	****	e y levys haar e			, ',	, 		,	ł			723
233 235 230 256 230 257 231 231 231 231	*****				0.					ليبدد					78.9
2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2								n na manana ya	· · · · · ·			•		[
2 3 1 2 3 0 2 3 0 2 3 1 2 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1		1													
230 257 230 231 231 231 230	۰.							en en en	and a second	Ę		• }]			253
230 257 230 231 231 231 230	*** *~		· · · · ·		*** -***	*****				-					199
250 230 231 231 231 230	**.*	· • • • • • • •				مه بوم ارد و			, a, a , , , , , , , , , , , , , , , ,						
2 30 2 31 2 31 2 30 2 30	• • • • •		ana princ				••**• •••	N 20 N 20 A 20 A 20 A 20 A 20 A 20 A 20	an 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,			1 -			
231 231 230			1 2, 1 1, 1 1, 1 1, 1 1	in the point of a sec		, , , , , , , , , , , , , , , , , , ,		**************************************							56.5
231 231 230										5			; 		08.9
231 230 230		1, ~ .	· • • • •		• •	· · •			· • • •				. پ در استان و		
08.8								1995 - 1	ene per						
	مروحونه	5 	and the				مدرد مرابعه	an an an	an an an tao an				4 - 4		
	• • •	**1 ** 5 ** *	an an ann			** ** * * *									08.9
									· · · · · · · · · · · · · · · · · · ·	1			• ••••• • •		

į. **.** . a e a frank - La e Brange - La e e e e e e tab e ma . - . . • us 🖡 🖉 🦷 🖓 👘 🖓 👘 . 1 . · · · **.** . . . , • • •• . . ļ., į 2 ----. 1. . · • •• 1 1. į į 4 6 6 - 6 - 7

UIC - I - <u>8-2</u>

GENERAL CORRESPONDENCE (WDW-2)

2013 - Present

September 25, 2013

Scott Dawson Deputy Director Oil Conservation Division Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Certified Mail/Return Receipt 7011 3500 0001 4786 1558

RE: Navajo Refining Company Class I Injection Well Permit Renewals

Dear Mr. Dawson:

Navajo Refining Company LLC (Navajo) was issued a Final Discharge Permit for its Class I Non-Hazardous Injection Well, WDW-3 (API No. 30-015-26575), on December 18, 2012; expiring June 1, 2017. Navajo subsequently submitted Renewal Applications for Class I Non-Hazardous Wells WDW-1 (API No. 30-015-27592) and WDW-2 (API No. 30-015-20894) on March 14, 2013 and July 24, 2013, respectively. Navajo hereby respectfully requests that the New Mexico Oil Conservation Division (NM OCD) process the two pending applications for WDW-1 and WDW-2 as soon as possible. In addition, Navajo requests that the two pending applications be issued with the same expiration date as WDW-3, June 1, 2017.

If you have any questions, please do not hesitate to contact me at (575) 746-5487. We appreciate your assistance in this matter.

Sincerely,

Mark a. Hold

Michael W. Holder Environmental Manager Navajo Refining Co. LLC

Elec. Cc: Glenn VonGonten, NM OCD Carl Chavez, NM OCD

Carl Chavez, NM OCD

Env. Files:

Injection Wells, Permit Renewal Request, WDW Class I, Subm' 2013-09-25 Permits. WDW-3. Gaines. Subm. UIC Permit Issuance

Navajo Refining Company, LLC PO Box 159 • Artesia, NM 88211-0159 • (575) 748-3311 http://www.hollyfrontier.com

PUBLIC NOTICE

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

In accordance with 20.6.2.3108.F NMAC, Navajo Refining Company, L.L.C., located at 501 E. Main Street, Artesia, New Mexico, hereby gives public notice of its application to renew the New Mexico Oil Conservation Division (OCD) discharge permit to inject treated non-hazardous waste water effluent from the refinery's on-site wastewater treatment plant into three Class I (nonhazardous) injection wells listed below:

- WDW-1 (API# 30-015-27592). The WDW-1 is located in the SW/4, SE/4 of Section 31, Township 17 South, Range 28 East, NMPM, Eddy County, New Mexico. The WDW-1 is located approximately 11 miles SE of the intersection of I-285 and Hwy 82 or approximately 1 mile SW of the intersection of Hwy 82 and CR-206.
- WDW-2 (API# 30-015-20894). The WDW-2 is located in the SW/4, NW/4 of Section 12, Township 18 South, Range 27 East, NMPM, Eddy County, New Mexico. The WDW- 2 is located approximately 10 miles SE of the intersection of US-285 and Hwy 82 or approximately 3 miles South of the intersection of Hwy 82 and CR-204 (Hilltop Road).
- WDW-3 (API# 30-015-26575). The WDW-3 is located in the SE/4, SW/4 of Section 1, Township 18 South, Range 27 East, NMPM, Eddy County, New Mexico. The WDW-3 is located approximately 14 miles E-SE of the intersection of I-285 and Hwy 82 (Navajo Refinery) or approximately 2.75 miles S of Hwy 82 and CR-225.

Waste water from the refinery is generated from the treatment of waters from the processing of crude oil, including the removal of water entrained in crude oil, the washing of crude oil to remove salts and sediment, water used for heating and cooling during refining, boiler blowdown, and stormwater collected from process portions of the refinery. Underground injection for each of the wells occurs within the Lower Wolfcamp, Cisco and Canyon Formations.

- Underground injection at WDW-1 occurs within the injection interval from 7,924 to 8,476 feet (log depth). The injection rate into WDW-1 will not exceed 500 gpm and the maximum allowable surface injection pressure is 1,585 psig. The injected refinery waste water quality is approximately 3,400 mg/L total dissolved solids (TDS).
- Underground injection at WDW-2 occurs within the injection interval from 7,570 to 8,399 feet (log depth). The injection rate into WDW-2 will not exceed 500 gpm and

the maximum allowable surface injection pressure is 1,514 psig. The injected refinery waste water quality is approximately 3,400 mg/L TDS.

• Underground injection at WDW-3 occurs within the injection interval from 7,660 to 8,620 feet (log depth). The injection rate into WDW-3 will not exceed 500 gpm and the maximum allowable surface injection pressure of 1530 psig.

The injected refinery waste water quality is approximately 3,400 mg/L TDS. Formation fluids within the permitted injection interval exceeds 10,000 mg/L TDS. Groundwater is first encountered in the area of the wells is at a depth range of approximately 50 to 150 feet below land surface. The groundwater quality ranges from about 1,500 to 2,200 mg/L TDS.

Persons interested in obtaining further information, submitting comments, or requesting to be on a facility-specific mailing list for future notices may contact the Environmental Bureau Chief of the New Mexico Oil Conservation Division.

Comments and inquiries on regulations should be directed to:

Director New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Telephone: (505) 476-3440

When corresponding, please reference the name of the applicant and the well name.

AVISO PUBLICO ESTADO DE MEXICO DEPARTMENTO DE ENERGIA, MINERALES Y RECURSO NATURALES DIVISION DE CONSERVACION DE PETROLEO

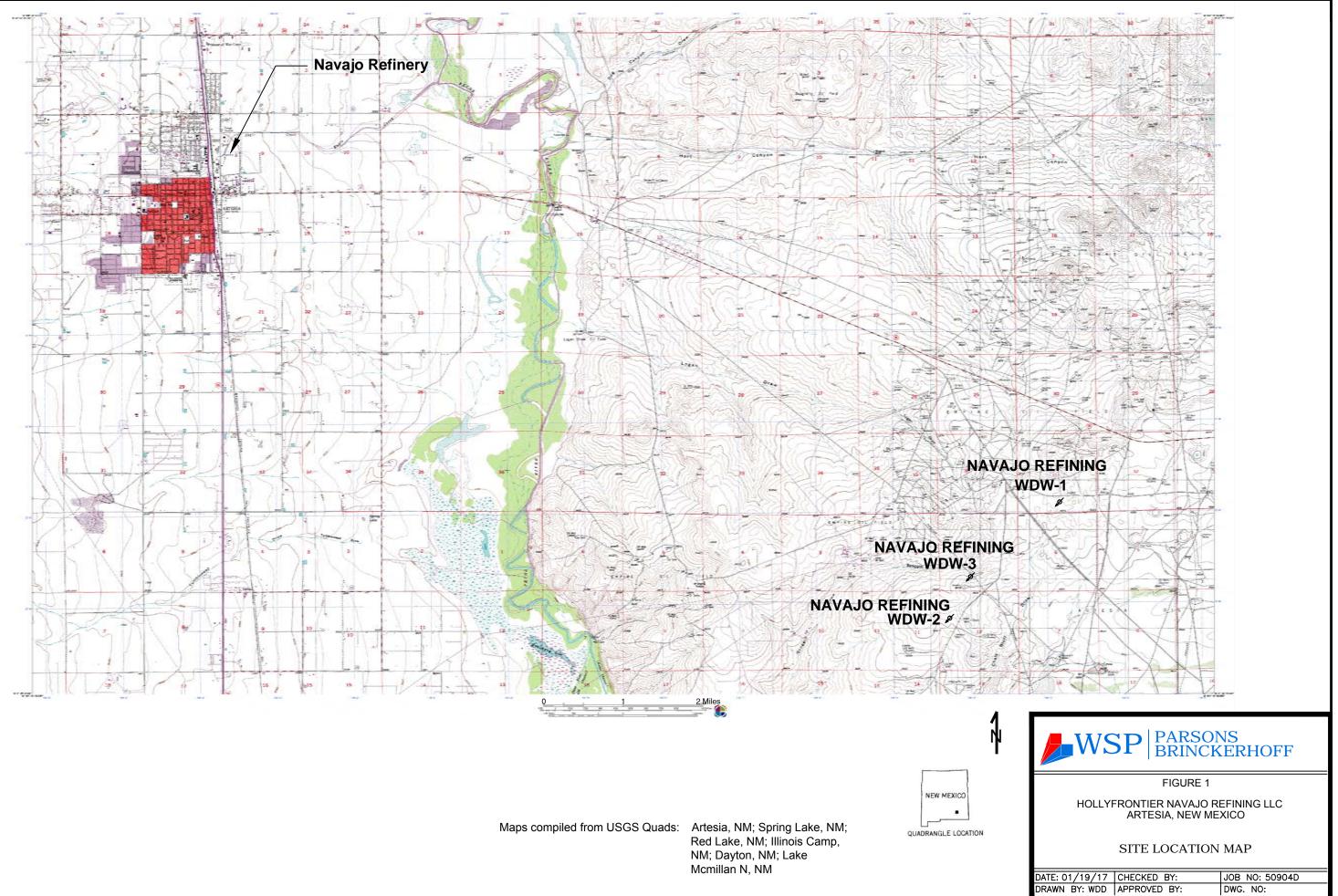
Por medio de la presente, la compania Navajo Refining Company, L.L.C., en 501 E. Main Street, Artesia, Nuevo Mexico, en conformidad con los requisitos de las regulaciones de la Comisíon de Control de Calidad del Agua de Nuevo Mexico 20.6.2.3108.F NMAC, esta solicitando a la Division de Conservacíon del Petroleo de Nuevo Mexico (NMOCD), anuncia al publico el permiso de descarga para inyectar aguas residuals, sin arriesgado, de la Refinería de Navajo:

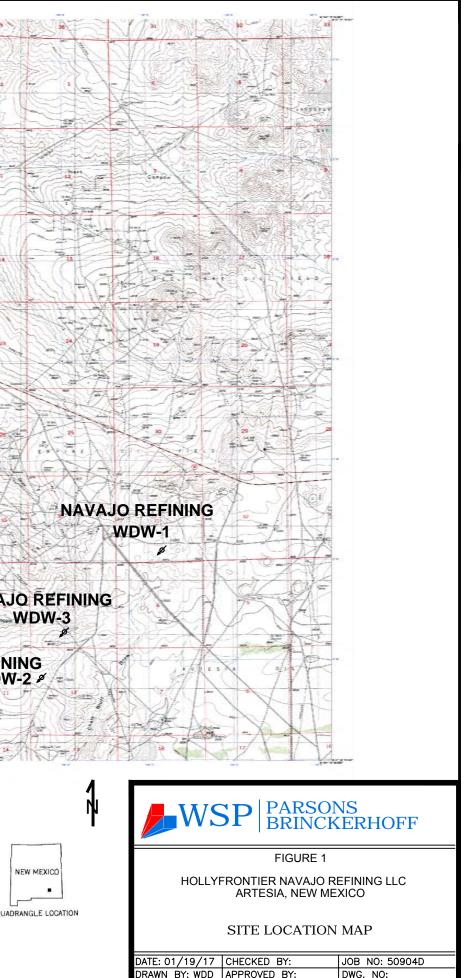
- WDW-1 (API# 30-015-27592). El pozo WDW-1 esta localizado en SO/4, SE/4 de Sección 31, Municipio 17 Sur, Rango 28 Este, Condado Eddy, Nuevo Mexico. El WDW-1 2 esta localizado aproximadamente 11 millas SE de la unidad de I-285 y Hwy 82 o aproximadamente 1 milla SO de la unidad de Hwy 82 y CR-206.
- WDW-2 (API# 30-015-20894). El pozo WDW-2 esta localizado en SO/4, NO/4 de Sección 12, Municipio 18 Sur, Rango 27 Este, Condado Eddy, Nuevo Mexico. El WDW-2 esta localizado aproximadamente 10 millas SE de la unidad de US-285 y Hwy 82 (Refineria Artesia) o aproximadamente 3 millas Sur de la unidad de Hwy. 82 y CR-204 (Hilltop Road).
- WDW-3 (API# 30-015-26575). El pozo WDW-3 esta localizado en SE/4, SO/4 of Sección 1, Municipio 18 Sur, Rango 27 Este, Condado Eddy, Nuevo Mexico. El WDW-3 esta localizado aproximadamente 14 millas este-sur-este de la unidad de I-285 y Hwy 82 (Refinería de Navajo) or aproximadamente 2.75 millas Sur de Hwy 82 y CR-225.

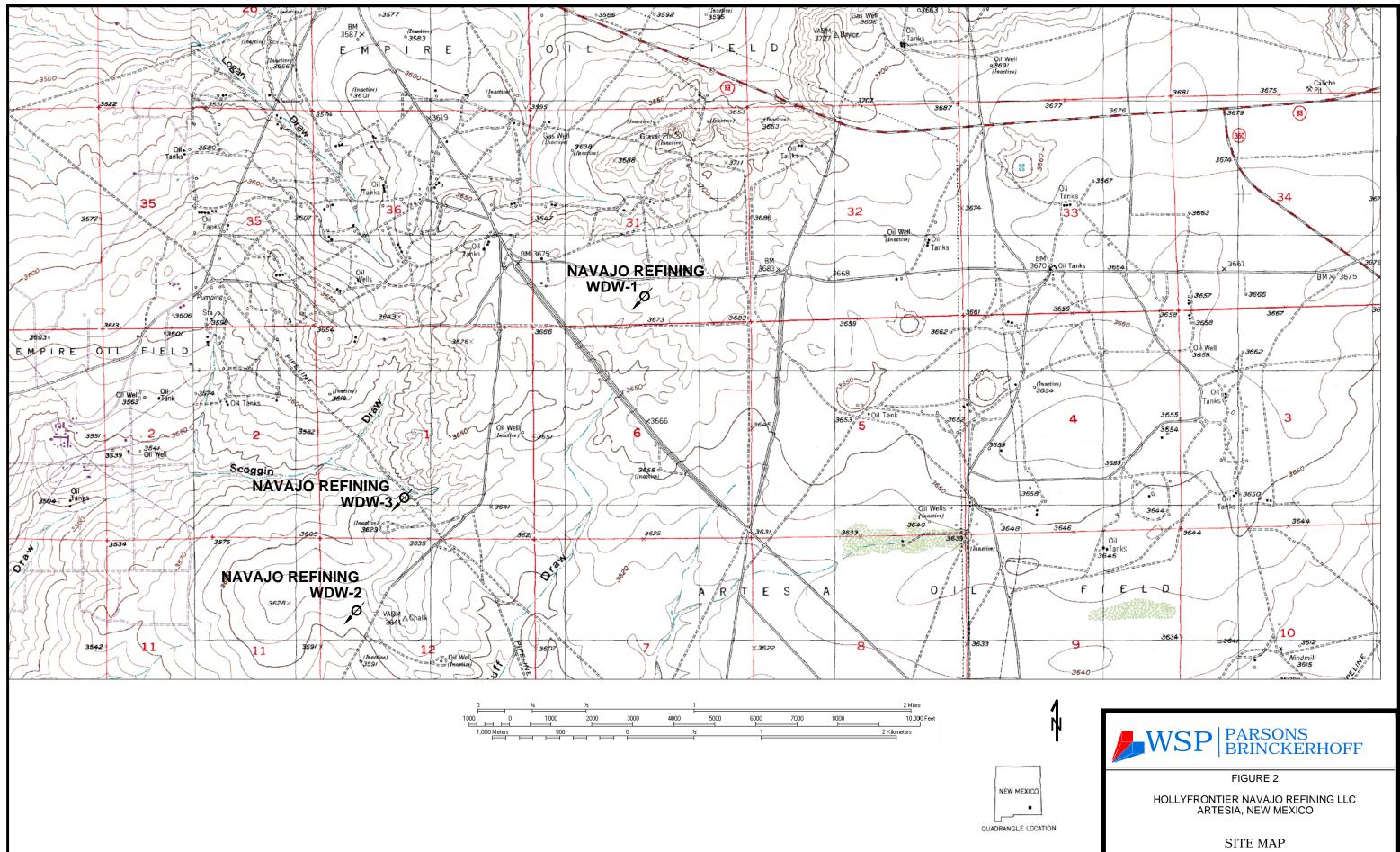
La generacion de aguas residuals de la Refineria de Navajo es el resultado del agua que se encuentran en al abastecimiento de crudo, el agua que se usa para el enfriamiento y calentamiento, el agua que se usa para retirar las sales del abastecimiento de crudo, y para purgar la caldera. Las aguas residuals para se injectaran en cada pozo hacia las formaciones de Wolfcamp (bajo), Cisco, y Canyon,

- Injectaran en WDW-1 ubicada entre 7,924 y 8,496 pies (produndidad de registro). La tasa de injeccion de WDW-1 no excedera los 500 gpm a una presion de inyeccion que no excedera los 1,585 psig. Estas aguas residuals tendran un contendido de total de solidos disueltos (TDS) de 3,400 partes por millón (ppm).
- Injectaran en WDW-2 ubicada entre 7,570 y 8,399 pies (produndidad de registro). La tasa de injeccion de WDW-2 no excedera los 500 gpm a una presion de inyeccion que no excedera los 1,514 psig. Estas aguas residuals tendran un contendido de TDS de 3,400 ppm.

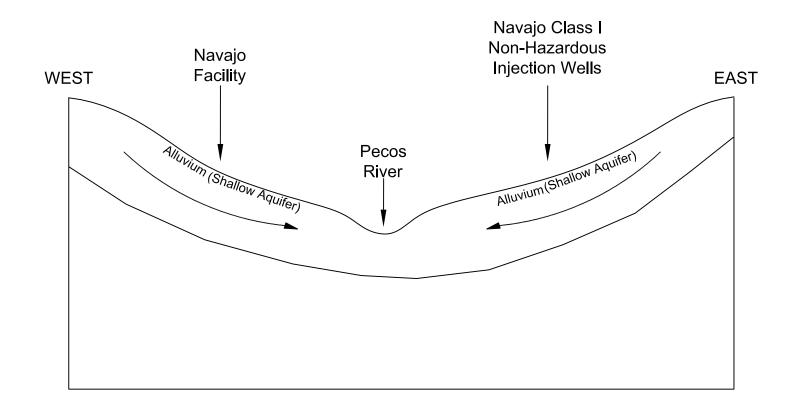
 Injectaran en WDW-3 ubicada entre 7,660 y 8,620 pies (produndidad de registro). La tasa de injeccion de WDW-1 no excedera los 500 gpm a una presion de inyeccion que no excedera los 1,530 psig. Estas aguas residuals tendran un contendido de total de solidos disueltos (TDS) de 3,400 ppm.

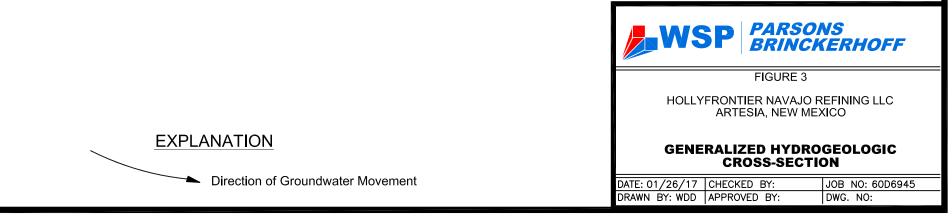

Formacion de fluido dentro del interval permitido exceed 10,000 milligramos per litro (mg/L) TDS. En el area en donde se encuentran el pozo, el agua fresco se encuentra a una profundidad de 50 a 150 pies por debajo de la superficie de la tierra con un TDS de 1,500 a 2,200 partes por millón (ppm).

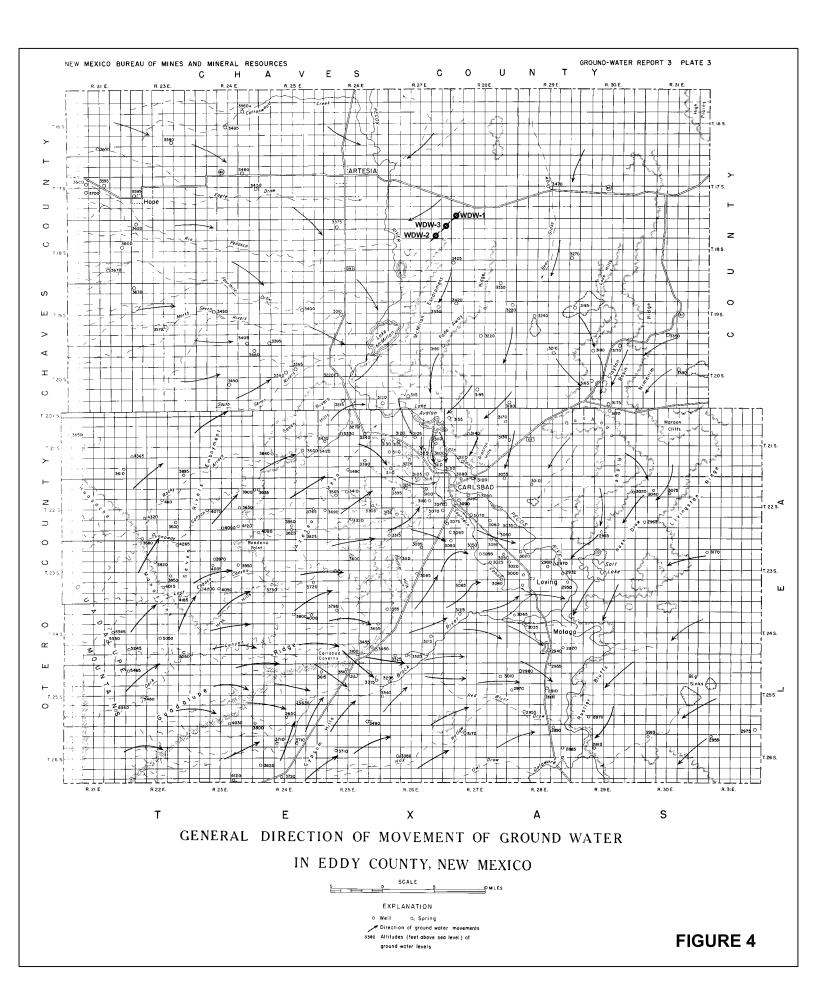

Personas interesadas en obtener mayores informes, presentar sus comentarios o solicitar que se les incluya en las listas de direcciones de una planta en especial para futuros avisos pueden ponerse en contacto con el Jefe del Departamento del Medio Ambiente de la División de Conservacíon de Petroleo de Nuevo Mexico.

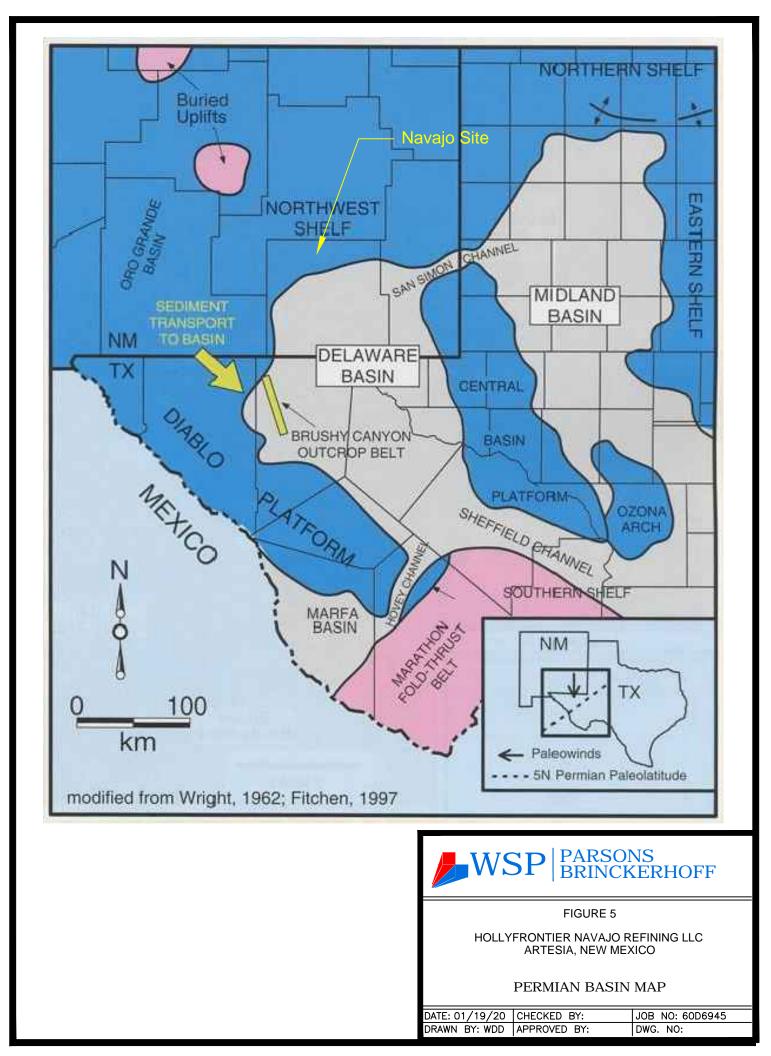

Por Favor envien los comentarios y las preguntas a:

Director New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505 Telefono: (505) 476-3440

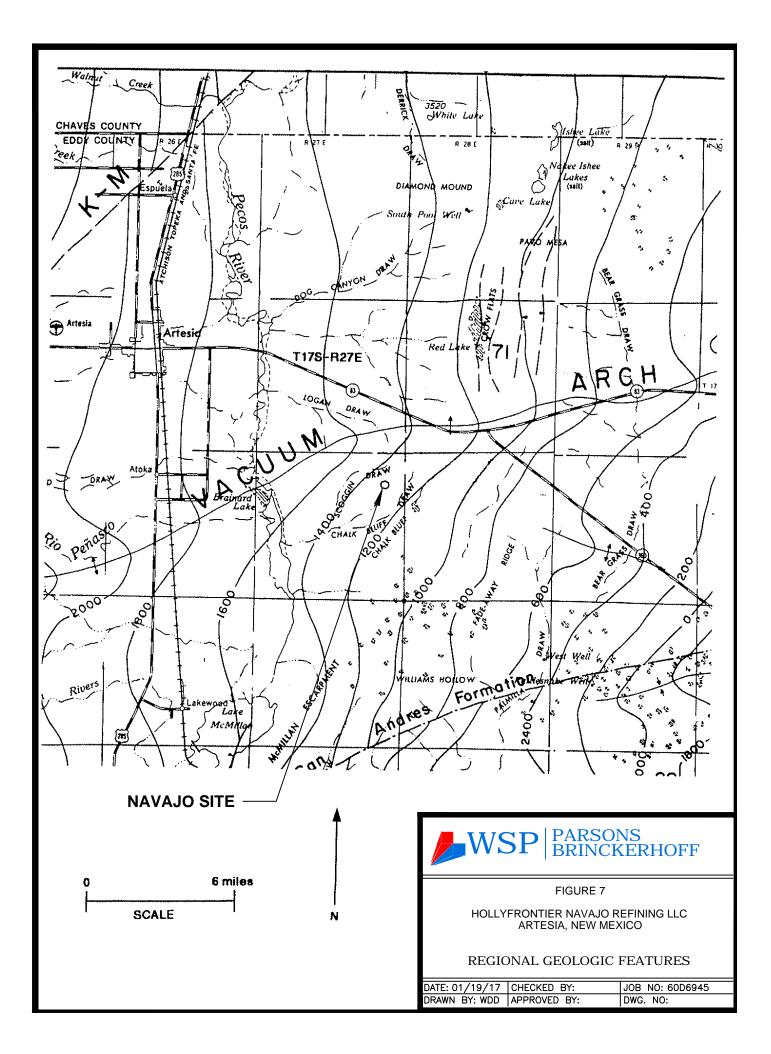

Cuando escriban, por favor pongan de referencia el nombre del applicante y del pozo.

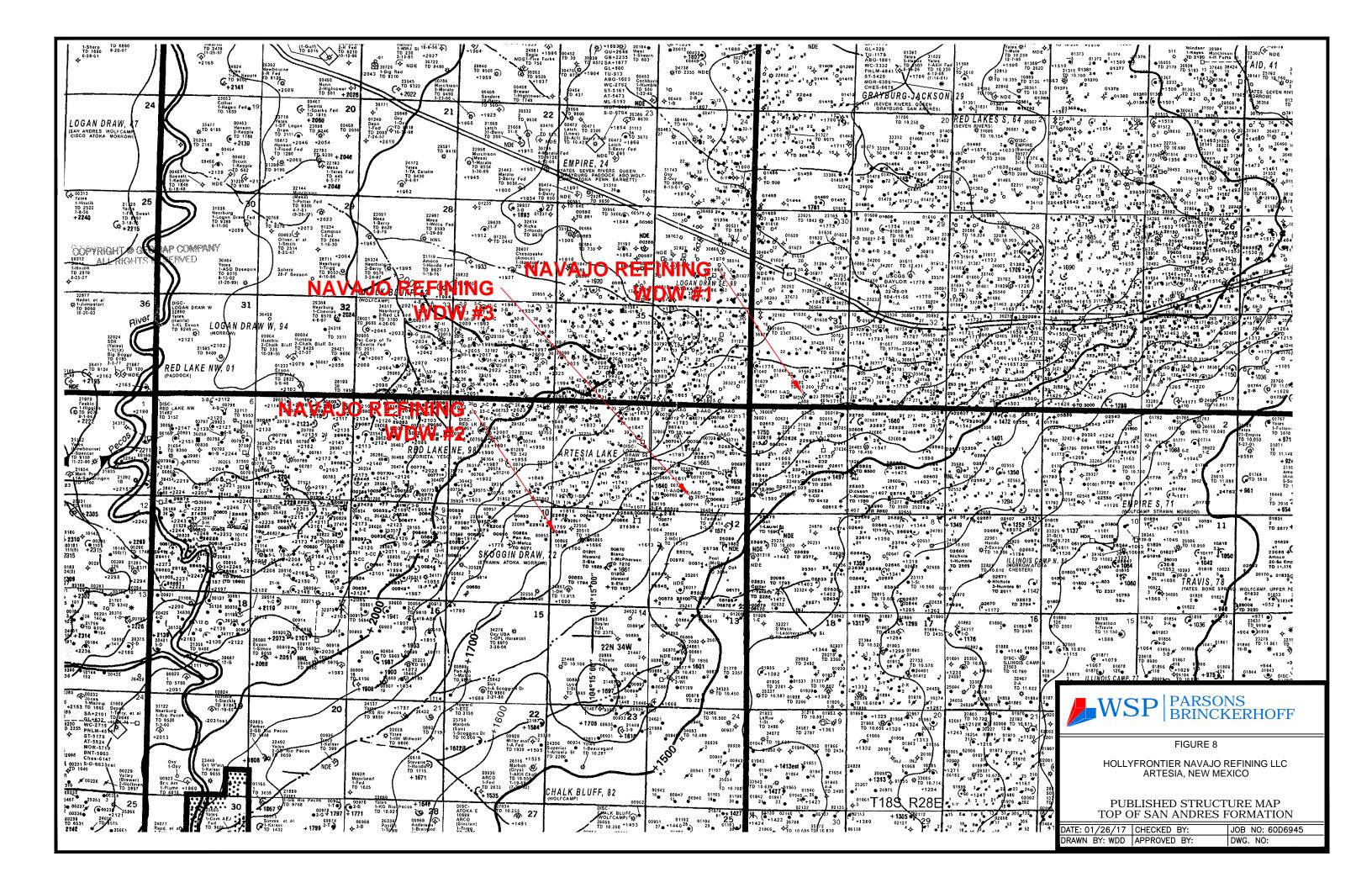


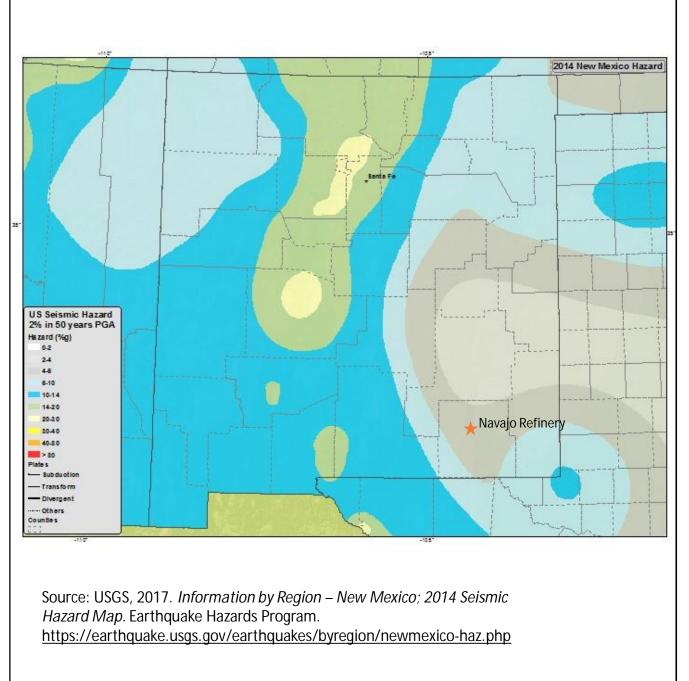



DATE: 01/19/17	CHECKED BY:	JOB NO: 50904D
DRAWN BY: WDD	APPROVED BY:	DWG. NO:

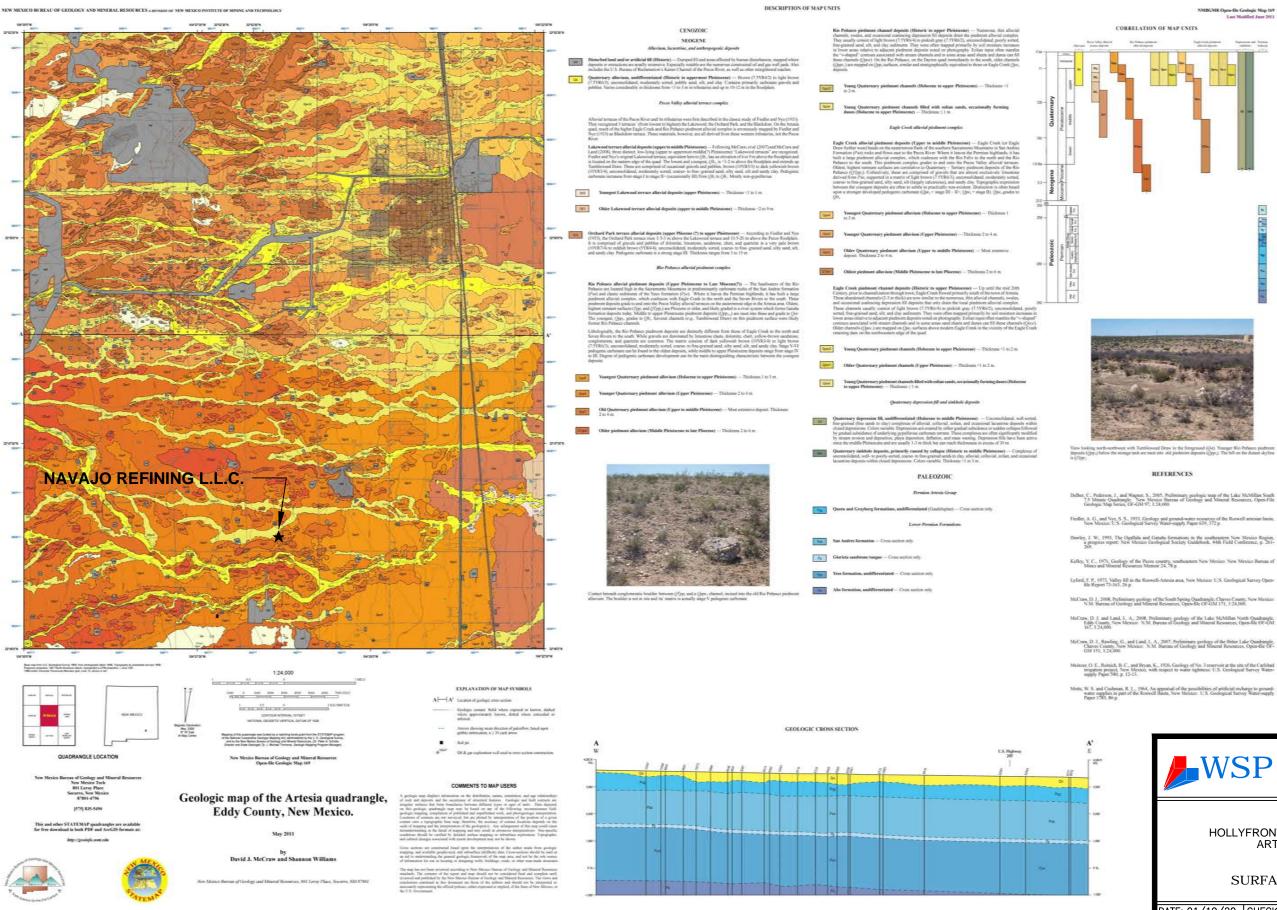
NOT TO SCALE




ORTHW	EST SHE	_F,	CENTRA	L BASIN PLATFORM				
Α	ge		Strata	Oil Plays				
Tria	ssic	_	hinle					
		1 Start	anta Rosa ewey Lake					
	Ochoan	1000	ustler					
			alado Tansill					
-		Grou	Yates					
ar	Guadalupian	Artesia Group	Seven Rivers Queen	Artesia Platform Sandstone				
Ē	Guadalupian	Arte	Grayburg	Upper San Andres and Grayburg Platform - Artesia Vacuum Trend				
Permian			San Andres	Platform - Artesia Vacuum Trend Upper San Andres and Grayburg Platform - Central Basin Platform Trend Northwest Shelf San Andres Platform Carbonate				
			Glorieta					
	Leonardian	Yeso	Paddock Blinebry	Leonard Restricted Platform Carbonate				
		×	Tubb	Platform Carbonate				
		<u>-</u>	Abo	Abo Platform Carbonate				
	Wolfcampian		11.19.19 () () () () () () () () () (
		н	leco ("Wolfcamp")	Wolfcamp Platform Carbonate				
an	Virgilian		Cisco	Northwest Shelf				
Pennsylvanian	Missourian		Canyon	Upper Pennsylvanian Carbonate				
sylv	Des Moinesian	n Strawn		Northwest Shelf Strawn Patch Reef				
enn	Atokan		Atoka					
Ā	Morrowan		Morrow					
Miss.			undivided					
	Upper		Woodford					
Dev.	Middle	1						
	Lower		Thirtyone	Devonian Thirtyone Deepwater Chert				
0.11	Upper		Wristen	Wristen Buildups and Platform Carbonate				
Sil.	Middle							
	Lower		Fusselman	Fusselman Shallow Platform Carbonate				
Ord.	Upper		Montoya					
	Middle		Simpson	Simpson Cratonic Sandstone				
	Lower		Ellenburger	Ellenburger Karst-Modified Restricted Ramp Carbonate				
Can	brian		Bliss					
-	Cambrian Precambrian		eous, metamorphics					


STRATIGRAPHIC COLUMN

Source: Broadhead, et al., 2004. *Play Analysis of Major Oil Reservoirs in the New Mexico Part of the Permian Basin: Enhanced Production Through Advanced Technologies.* New Mexico Bureau of Geology and Mineral Resources. Open File Report 479.


FIGURE 6

WS	SP PARSON BRINCK	NS ERHOFF
	FIGURE 10	
HOLLY	FRONTIER NAVAJO F ARTESIA, NEW ME	
SI	URFACE GEOLOG	IC MAP
DATE: 01/19/20	CHECKED BY:	JOB NO: 60D6945
DRAWN BY: WDD	APPROVED BY:	DWG. NO:

FIGURE 11a PRE-INJECTION SURFACE FACILITIES HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

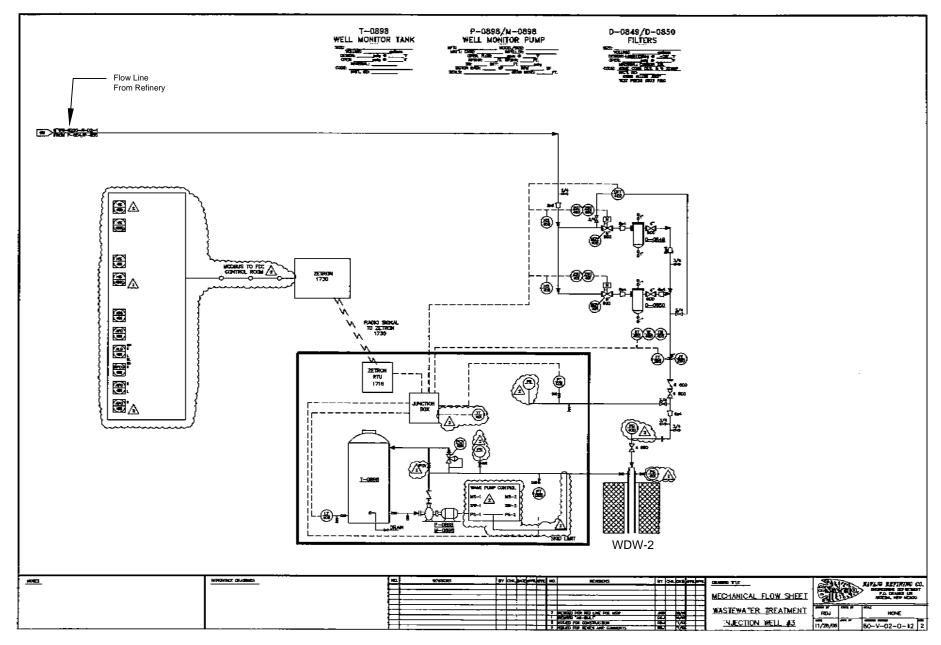


FIGURE 11b PRE-INJECTION SURFACE FACILITIES HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

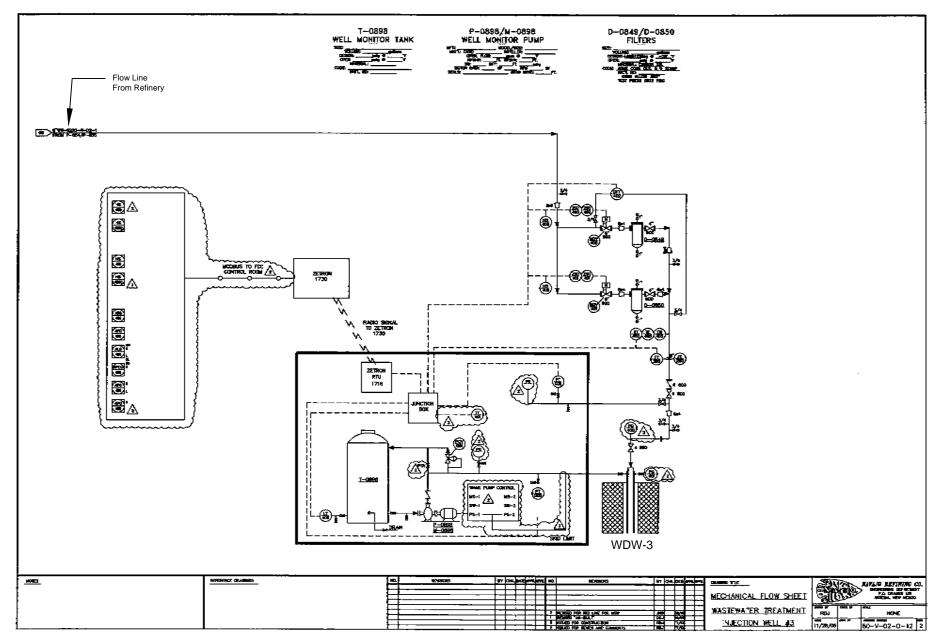
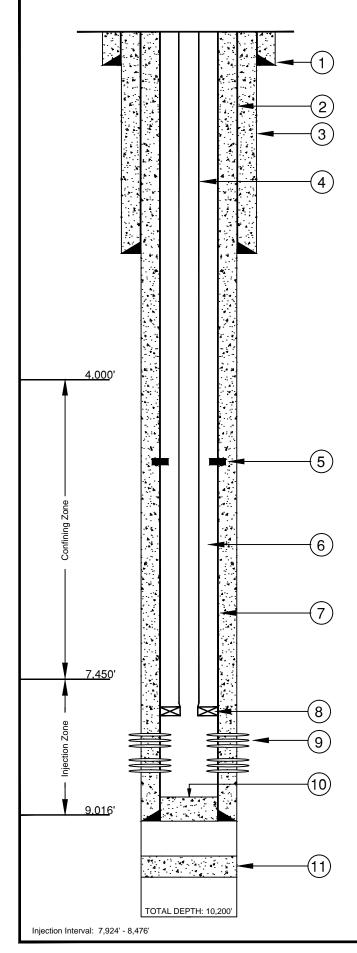



FIGURE 11c PRE-INJECTION SURFACE FACILITIES HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

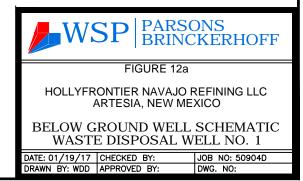
BELOW GROUND DETAILS

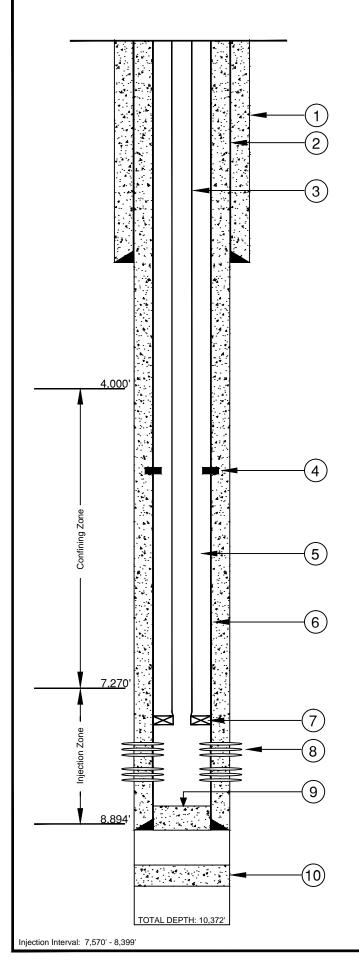
All depths are referenced to the Kelly bushing elevation of 12.5' above ground level. Ground level elevation is 3,678' above mean sea level.

- 1. <u>Surface Casing</u>: 13 $\frac{3}{8}$ ", 48 lb/ft, J-55, ST&C set at 390' in a 17 $\frac{1}{2}$ " hole. Cemented with 150 sx Class C with 3% calcium chloride, 375 sx Class C Litewate w/3% calcium chloride and $\frac{1}{2}$ lb/sx flocele. Circulated 86 sx to surface.
- 2. Intermediate Casing: $9 \frac{1}{2}$ ", 36 lb/ft, J-55, ST&C set at 2,555' in a 12 $\frac{1}{4}$ " hole. Cemented w/800 sx of Class C Lite w/ $\frac{1}{2}$ lb/sx flocele and 2 lb/sx Gilsonite and 12% salt. Followed by 200 sx of Class C w/2% calcium chloride. Circulated 133 sx to surface.
- 3. Base of the USDW at 493'.
- 4. Injection Tubing: 4 1/2", 11.6 lb/ft, N-80, SMLS, R3, LT&C set at 7,879'.
- 5. DV Tool: at 5,498'.
- 6. <u>Annulus Fluid</u>: 8.7 lb/gal brine water mixed w/UniChem Techni-Hib 370 corrosion inhibitor.
- Protection Casing: 7", 29 lb/ft, N-80, LT&C: 9094' to 7031'. 7", 29 lb/ft, P-110, LT&C: 7031' to 5845'. 7", 26 lb/ft, P-110, LT&C; 5,845' to surface. Casing set in 8 ³/₄" hole and cemented in two stages as follows:

First Stage - 600 sx modified Class H w/0.4% CFR-3, 5 lb/sx Gilsonite, 0.5% Halad-344, and 1 lb/sx salt mixed at 13.0 ppg. Opened DV tool at 5,498' and circulated 142 sx to surface.

Second Stage - Lead Slurry: 220 sx Interfill "C" (35:65:6) mixed at 11.7 ppg. Tail Slurry: 550 sx modified Class H w/0.4% CFR-3, 5 lb/sx, Gilsonite, 0.5% Halad-344, 0.1% HR-7, and 1 lb/sx mixed at 13.0 ppg. Circulated 75 sx to surface. Topped out w/20 sx premium plus 3% calcium chloride.


- 8. <u>Packer</u>: 7" x 3.5" EVI Oil Tools (Arrow), Model X-1 retrievable packer set at 7,879'. Minimum I.D. is 3.0". Wireline re-entry guide on bottom. To release: turn $\frac{1}{4}$ turn to the right and pick up.
- 9. Perforations (2 SPF):


Upper Zone - 7,924 - 7,942', 7,974 - 8,030', 8,050 - 8,056', 8,066 - 8,080', 8,118 - 8,127', 8,132 - 8,140', 8,160 - 8,164', 8,170 - 8,188'.

Lower Zone - 8,220 - 8,254', 8,260 - 8,270', 8,280 - 8,302', 8,360 - 8,366', 8,370 - 8,378', 8,400 - 8,410', 8,419 - 8,423', 8,430 - 8,446', 8,460 - 8,464', 8,470 - 8,476'.

10.PBTD: 9,004'.

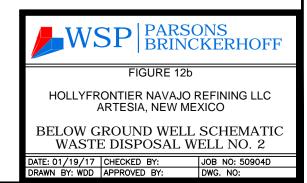
11. Cement Plug: 45 sx Class H from 9624' to 9734'.

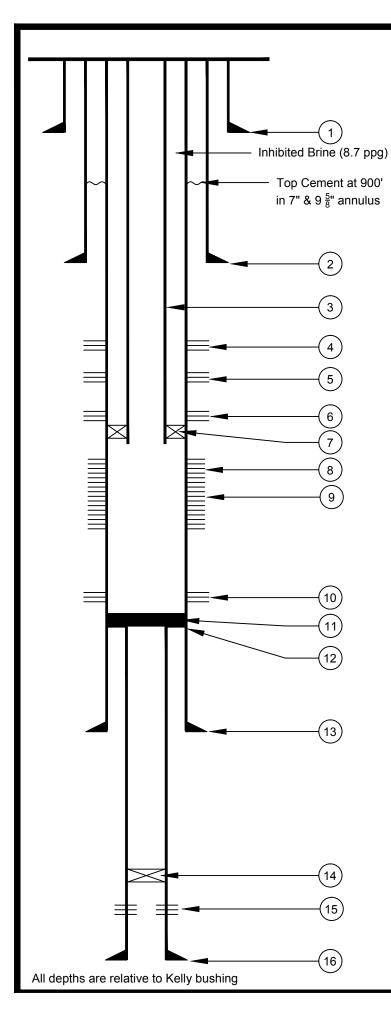
BELOW GROUND DETAILS

All depths are referenced to the Kelly bushing elevation of 13' above ground level. Ground level elevation is 3610' above mean sea level.

- 1. Base of the USDW at 473'.
- 2. <u>Surface Casing</u>: 8 ⁵/₈", 32 lb/ft, set at 1995' in an 11" hole. Cemented to surface with 800 sacks of cement.
- 3. Injection Tubing: 3 ½", 9.2 lb/ft, J-55, smls, NUE 10rd set at 7,528'.
- 4. DV Tool: at 5,785'.
- 5. <u>Annulus Fluid</u>: 8.7 lb/gal brine water mixed w/UniChem Techni-Hib 370 corrosion inhibitor.
- Protection Casing: 5 ½", 17 lb/ft, L-80, LT&C: 8,869' to the surface and set in a 7 ⁷/₈" hole. Casing cemented in two stages as follows:

First Stage - 575 sacks of modified Class "H" with 0.4% CFR-3, 5 lb/sk Gilsonite, 0.5% Halad-344, and 3 lb/sk salt. Mixed at 13.0 ppg. DV tool opened at 5,785 and 20 sacks circulated to surface.

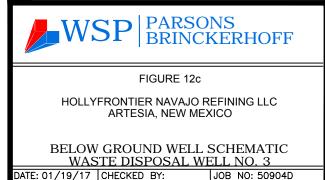

Second Stage - Lead Slurry: 300 sacks of Interfill "C" (35:65:6) mixed at 11.7 ppg. Tail slurry: 695 sacks modified Class "H" with 0.4% CFR-3, 5 lb/sk Gilsonite, 0.5% Halad-344 and 3 lb/sk salt mixed at 13.0 ppg. Circulated 150 sacks to surface. Topped out with 10 yards of Redi-mix.


- 7. <u>Packer</u>: $5\frac{1}{2}$ " x 2 $\frac{7}{8}$ " Weatherford Completion Tools (Arrow) Model X-1 retrievable packer set at 7,528'. Minimum ID is 2.4375". Wireline re-entry guide is on bottom. To release: turn $\frac{1}{4}$ turn to the right and pick up.
- 8. Perforations (2 SPF):

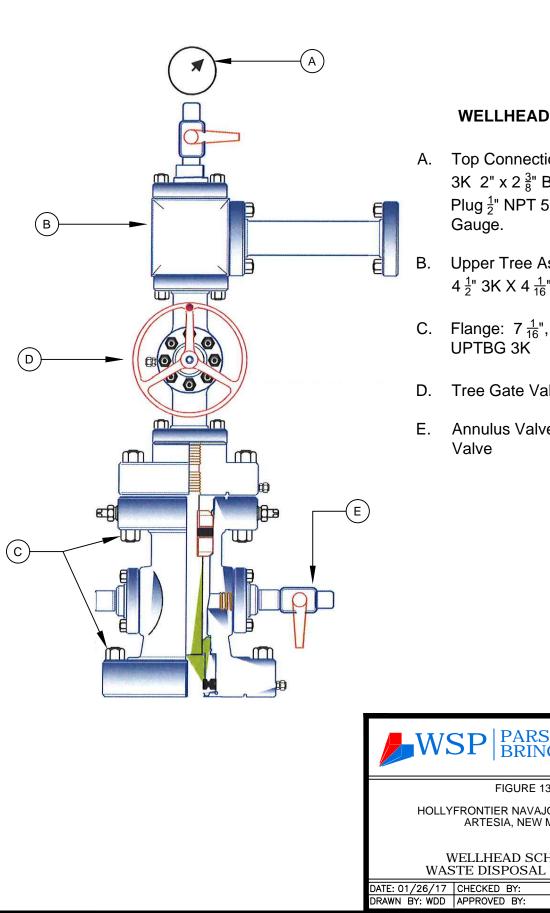
Zone 1: 7,570-7,620'; 7,676-7,736'

Zone 2: 7,826-7,834'; 7,858-7,880'; 7,886-7,904'; 7,916-7,936'; 7,944-7,964'; 7,990-8,042'; 8,096-8,116'; 8,191-8,201'; 8,304-8,319'; 8,395-8,399'.

- 9. <u>PBTD</u>: 8,770'
- 10. Cement Plug: 45 sacks from 9,675' to 9,775'.



BELOW GROUND DETAILS


- 1. <u>Surface Casing</u>: $13\frac{3}{8}$ ", $54\frac{1}{2}$ " lb/ft, J-55 set in a 17 $\frac{1}{2}$ " open hole at 400' and cemented to the surface with 425 sacks of Class C cement.
- 2. <u>First Intermediate Casing</u>: $9\frac{5}{8}$ ", 36 lb/ft, J-55 set in a 12 $\frac{1}{4}$ " open hole at 2604' and cemented to the surface with 1025 sacks Class C cement.
- 3. <u>Injection Tubing</u>: 4 ¹/₂", 11.6 lb/ft, J-55 LT&C set at 7568'.
- 4. Squeeze Perforations: 7050' 7102' with 80 sacks.
- 5. Squeeze Perforations: 7262' 7278' with 100 sacks.
- 6. Squeeze Perforations: 7304' 7314' with 80 sacks.
- Arrow X-1 Packer 7" x 2 ⁷/₈" set at 7575', 37K Tension, no nipples.
- 8. Old Open Perforations: 7676' 7698'.
- 9. Perforations: 7660' 8450', 2 JSPF, 60°, 0.5" 10/14/06.
- 10. Perforations: 8540' 8620', 23 SPF, 60°, 0.5" 10/15/16.
- 11. Cement Plug: top tagged at 9022'.
- 12. Liner Top: $4\frac{1}{2}$ " set at 9051'.
- 13. <u>Second Intermediate Casing</u>: 7", 29 lb/ft, N-80 and P-110 steel set in an 8 $\frac{3}{4}$ " open hole at 9450' with 1350 sacks of Type H cement from 900' to 9450'.
- 14. Cast Iron Bridge Plug set at 9800' with 35' cement.
- 15. Old Perforations: 9861' 9967'

DRAWN BY: WDD APPROVED BY:

16. <u>Production Liner</u>: $4\frac{1}{2}$ ", 17 lb/ft, J-55 set in a 6 $\frac{1}{4}$ " open hole from 9051' to 10119' with 175 sacks Type H cement.

DWG. NO:

WELLHEAD DETAILS

- Top Connection: $2\frac{3}{8}$ " 8rd x $4\frac{1}{16}$ " 3K 2" x $2\frac{3}{8}$ " Ball Valve $2\frac{3}{8}$ " Bull Plug ¹/₂" NPT 5000 LB Pressure
- Upper Tree Assembly: A5PP, 4 ¹/₂" 3K X 4 ¹/₁₆" 3K
- C. Flange: $7\frac{1}{16}$ ", $3\frac{1}{2}$ " 3K X 4 $\frac{1}{16}$ " UPTBG 3K
- Tree Gate Valve: $4\frac{1}{16}$ " 3K
- Annulus Valve: 2" 3K Ball

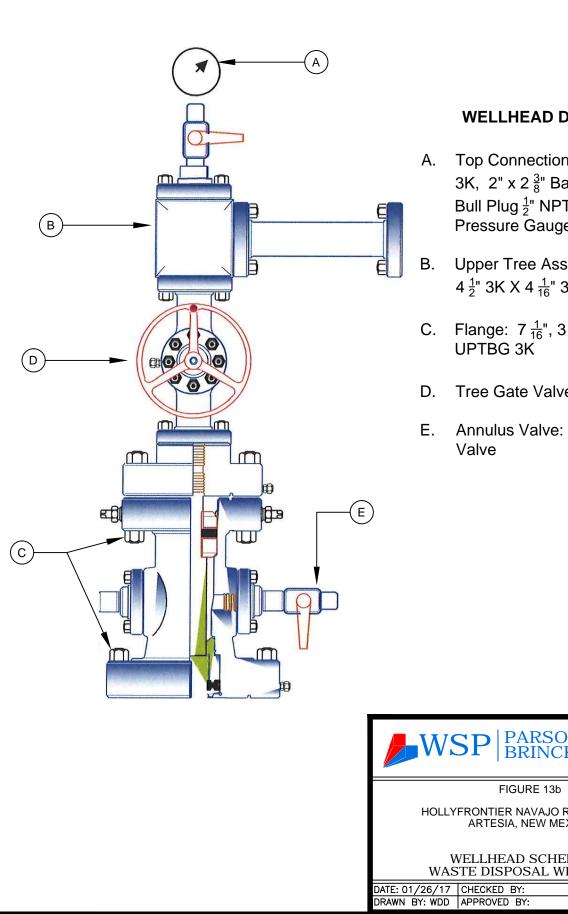


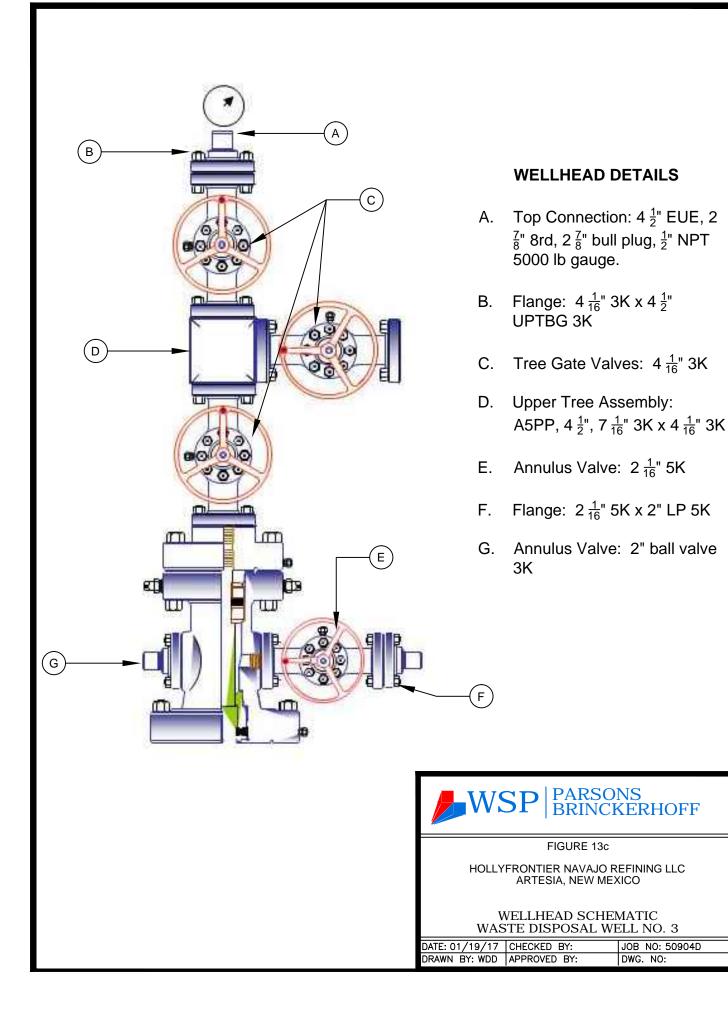
FIGURE 13a

HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

WELLHEAD SCHEMATIC WASTE DISPOSAL WELL NO. 1

JOB NO: 50904D DWG. NO:

WELLHEAD DETAILS


- Top Connection: $2\frac{3}{8}$ " 8rd x $4\frac{1}{16}$ " 3K, 2" x $2\frac{3}{8}$ " Ball Valve, $2\frac{3}{8}$ " Bull Plug ¹/₂" NPT 5000 LB Pressure Gauge.
- Upper Tree Assembly: A5PP, 4 ¹/₂" 3K X 4 ¹/₁₆" 3K
- C. Flange: $7\frac{1}{16}$ ", $3\frac{1}{2}$ " 3K X 4 $\frac{1}{16}$ " UPTBG 3K
- Tree Gate Valve: $4\frac{1}{16}$ " 3K
- Annulus Valve: 2" 3K Ball

HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

WELLHEAD SCHEMATIC WASTE DISPOSAL WELL NO. 2

JOB NO: 50904D DWG. NO:

INTRODUCTION

HollyFrontier Navajo Refining LLC (Navajo), located in Artesia, New Mexico, is applying to renew the discharge permits for Class I Non-hazardous Waste Disposal Well No. 1 (WDW-1), Waste Disposal Well No. 2 (WDW-2), and Waste Disposal Well No. 3 (WDW-3) which is located approximately ten (10) miles to the southeast of the refinery. WDW-1, WDW-2, and WDW-3 were initially permitted by the Oil Conservation Division (OCD) of the New Mexico Energy, Minerals and Natural Resources Department under the Water Quality Act in 1998 and have been operating under Permits UIC-CLI-008-1, UIC-CLI-008-2, and UIC-CLI-008-3.

The Navajo refinery is located at 501 East Main Street in Artesia, Eddy County, New Mexico. The three Class I nonhazardous waste injection wells operated by the refinery are designated WDW-1, WDW-2 and WDW-3. All three wells are permitted to inject nonhazardous waste water into a subsurface Injection Zone consisting of the lower portion of the Wolfcamp Formation and the underlying Cisco and Canyon Formations. The depth and thickness of the Injection Zone at the three Navajo refinery injection wells are as follows:

- WDW-1: 7,450 to 9,016 ft KB
- WDW-2: 7,270 to 8,894 ft KB
- WDW-3: 7,303 to 8,894 ft KB

Please note that the three Navajo injection wells were previously permitted separately coinciding with the life of the regulatory permit issued for each well. These Discharge Permits will expire on June 1, 2017. One technical report has been prepared along with three separate application forms for each of the wells.

Information concerning the locations of oil and gas wells and freshwater wells within the regulatory 1-mile radius area of review (AOR) surrounding the wells were obtained from OCD and New Mexico Water Rights Reporting System, respectively. No corrective action is needed for any of the artificial penetrations within the 1-mile radius AOR.

The regional and local geology have been evaluated, and no problems have been identified that will cause adverse effects as a result of the ongoing injection operations.

Reservoir characteristics of the Injection Zone indicate the reservoir has sufficient properties to accommodate the historical and planned future injection rate, volume and pressure from the three Navajo injection wells. Based on information gathered from the Navajo refinery injection well system, there are no adverse reactions identified with the waste stream and the well components of construction and the Injection Zone matrix and formation fluid.

WDW-1, WDW-2, and WDW-3 meet the construction and operating standards set forth in 20.6.2.5205 NMAC. A procedure to permanently plug and abandon the wells have been included per the requirements of 20.6.2.5209 NMAC.

ID NO	API	Sect	TWP	RNG	NS FTG	EW FTG	WELL NAME	WELL NUMBER	OPERATOR	TOTAL DEPTH (FT)	WELL TYPE	WELL STATUS	DRILLL DATE	PLUG DATE
1	30-015-01636	31	175	28E	330	2310	Pre-Ongard Well #001		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1900
	30-015-01633	31	17S	28E	330	330	Aston & Fair A #001		George A Chase JV dba G&C Service	525	0	Active	12/28/1945	NA
	30-015-01634	31	17S	28E	350	345	Pre-Ongard Well #001		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1901
	30-015-01645	31	175	28E	990	990	Pre-Ongard Well #001		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1900
	30-015-32162 30-015-38512	31 31	17S 17S	28E 28E	460 990	990 940	Enron State #4 Enron State #16		LRE Operating, LLC LRE Operating, LLC	3460 3658	0	Active Active	3/26/2003 8/11/2011	NA NA
	30-015-33994	36	175	23L 27E	915	420	Red Lake 36 A State #002		Apache Corp	3650	0	Active	3/24/2005	NA
	30-015-00646	36	175	27E	990	330	Delhi #007		George A Chase JV dba G&C Service	540	0	Active	3/24/1950	NA
9	30-015-00689	36	17S	27E	1650	330	Gates State #001		George A Chase JV dba G&C Service	557	0	Active	7/22/1951	NA
10	30-015-36978	31	17S	28E	990	330	Enron State #015		LRE Operating, LLC	3700	0	Active	6/25/2009	11/1/2004
11	30-015-00647	36	17S	27E	1650	990	Gates State #002		Aspen Oil Inc.	9999	0	PA	10/3/1952	NA
	30-015-31123	36	175	27E	1980	760	No Bluff State Comm #002		LRE Operating, LLC	10050	G	Active	3/19/2001	NA
	30-015-00669	36	17S	27E 27E	2310 2310	330 990	Homan #001		George A Chase JV dba G&C Service	1804 614	0	Active Active	5/21/1949	NA NA
14 15	30-015-31036 30-015-36116	36 36	17S 17S	27E 27E	2310	1650	Gates State #003 South Red Lake 11 Unit #057		George A Chase JV dba G&C Service Legacy Reserves Operating LLC	2121	0	Active	3/26/2000 4/14/2008	NA
16	30-015-00687	36	175	27E	2303	990	Ramapo #002		Kersey & Co.	9999	G	PA	3/24/1948	6/14/1996
	30-015-05934	36	175	27E	1650	1650	Empire ABO Unit #019A		Apache Corp	5970	0	Active	NA	NA
18	30-015-39325	36	17S	27E	990	2210	Big Boy State #007		COG Operating LLC	5120	0	Active	1/6/2012	NA
19	30-015-00670	36	17S	27E	2970	330	Ramapo #003		Kersey & Co.	9999	0	PA	1/1/1990	6/17/1996
20	30-015-00688	36	17S	27E	2310	330	Ramapo #001		Kersey & Co.	590	0	PA	10/3/1941	6/18/1996
21	30-015-00685	36	175	27E	1650	330	Pre-Ongard Well #020		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1900
22	30-015-39401	36 36	17S	27E	1110 870	630 1560	Empire ABO Unit #417		Apache Corp	6300	0	Active	1/9/2012	NA
23 24	30-015-39323 30-015-01251	36	17S 17S	27E 27E	870 660	1560 1980	Big Boy State #005 Empire ABO Unit #019	+	COG Operating LLC BP America Production Co.	4953 6200	0	Active Plugged. Site Released	4/21/2012 1/1/1900	9/9/2009
	30-015-39324	36	175	27E 27E	480	2210	Big Boy State #006		COG Operating LLC	5072	0	Active	12/18/2011	9/9/2009 NA
26	30-015-39326	36	175	27E	275	1560	Big Boy State #008		COG Operating LLC	NA	0	N	NA	NA
27	30-015-40410	36	17S	28E	615	10	Big Girl 31 State #011H		COG Operating LLC	NA	0	N	NA	NA
28	30-015-00677	36	17S	27E	330	990	Empire ABO Unit #020		BP America Production Co.	6013	0	PA	3/17/1960	9/9/2009
29	30-015-39021	6	18S	28E	40	145	Empire ABO Unit #411		Apache Corp	6312	0	Т	10/31/2011	NA
30	30-015-32309	1	18S	27E	330	1690	AAO Federal #003		Apache Corp	4125	0	Active	3/13/2003	NA
31	30-015-00708	1	185	27E	660	1980	Empire ABO Unit #019B	-	Apache Corp	6078	0	Plugged, Site Released	5/29/1959	5/22/2013
32 33	30-015-01215 30-015-32310	1	18S 18S	27E 27E	667 990	666 990	Empire ABO Unit #020D AAO Federal #004		Apache Corp Apache Corp	6118 4110	0	Active Active	9/23/1959 7/14/2003	NA NA
34	30-015-39898	1	185	27E 27E	1258	1005	Empire ABO Unit #412		Apache Corp	4110 NA	0	Cancelled Apd	NA	NA
35	30-015-33784	1	185	27E	1650	330	AAO Federal #008		Apache Corp	4310	0	Active	2/28/2005	NA
36	30-015-00711	1	18S	27E	1980	660	Empire ABO Unit #020C		Apache Corp	6218	0	Plugged, Site Released	9/1/1959	7/8/2013
37	30-015-22656	1	18S	27E	2400	700	Empire ABO Unit #203		Apache Corp	6225	0	Active	9/13/1978	NA
38	30-015-23116	6	18S	28E	2050	100	Empire ABO Unit #213		Apache Corp	6242	0	Active	3/1/1980	NA
39	30-015-22637	6	18S	28E	2450	400	Empire ABO Unit #212		Apache Corp	6267	0	Active	12/4/1978	NA
40	30-015-21553	1	185	27E 28E	2501	20 660	Empire ABO Unit #201		Apache Corp	6225	0	Active	6/28/1975 12/27/1959	NA
41 42	30-015-02622 30-015-02619	6	18S 18S	28E 28E	2219 1990	660	Empire ABO Unit #21D Empire ABO Unit #021C		Apache Corp Apache Corp	6194 6202	0	Active Active	10/8/1959	NA
	30-015-02613	6	185	28E	990	660	Empire ABO Unit #021C		Apache Corp	6119	0	Active	12/8/1959	NA
	30-015-22012	6	185	28E	1350	1572	Empire ABO Unit #222		Apache Corp	6303	0	Active	2/17/1977	NA
45	30-015-02626	6	18S	28E	1650	1650	Pre-Ongard Well #001		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1900
46	30-015-10107	6	18S	28E	1874	1874	State FX #001		Pre-Ongard Well Operator	1985	0	Active	12/31/9999	NA
	30-015-02620	6	18S	28E	1990	2082	Empire ABO Unit #22D		Alamo Permian Resources, LLC	6206	0	Active	12/31/9999	NA
	30-015-02621	6	185	28E	66	1980	Empire ABO Unit #22E		Apache Corp	6033	0	Active	12/31/9999	NA
	30-015-02625 30-015-02615	6	18S 18S	28E 28E	470 660	2170 660	Empire ABO Unit #23C Empire ABO Unit #24B		Apache Corp Apache Corp	6194 6241	0	Active Active	12/31/9999 12/31/9999	NA
	30-015-02614	6	185	28E	1980	1980	Empire ABO Unit #24B Empire ABO Unit #23B		Apache Corp	6242	0	Active	12/31/9999	NA
	30-015-02611	6	185	28E	2310	2310	Pre-Ongard Well #001		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1900
	30-015-21395	6	185	28E	2630	1300	Empire ABO Unit #211	<u> </u>	Apache Corp	6200	0	Active	11/22/1974	NA
54	30-015-22527	6	185	28E	2630	1930	Empire ABO Unit #223		Apache Corp	6250	0	Approved Temporary Abandonment	4/22/1978	NA
	30-015-02623	6	18S	28E	2248	2075	Empire ABO Unit #022F		Apache Corp	6210	0	Active	1/28/1960	NA
	30-015-23548	6	185	28E	1950	1000	Empire ABO Unit #211A		Apache Corp	6311	0	Active	2/11/1981	NA
	30-015-02628 30-015-02618	6	18S 18S	28E 28E	2260 1647	2270 2076	Empire ABO Unit #023D Pre-Ongard #001		BP America Production Co. Pre-Ongard Well Operator	6310	O G	PA PA	4/3/1960 1/1/1900	12/5/2008 1/1/1900
	30-015-02618	6	185	28E 28E	1647	2076	Empire ABO Unit #231B		BP America Production Co.	۲ 6350	0	PA PA	12/31/9999	8/24/2009
	30-015-02610	6	185	28E	955	1750	Empire ABO Unit #2318 Empire ABO Unit #022C		Apache Corp	6243	0	Active	7/20/1960	8/24/2009 NA
	30-015-02624	6	185	28E	968	2270	Pre-Ongard #001		Pre-Ongard Well Operator	?	0	PA	1/1/1900	1/1/1900
	30-015-02617	6	185	28E	2310	990	Empire ABO Unit #024K		BP America Production Co.	6346	0	PA	12/31/9999	12/12/2002
	30-015-22528	6	185	28E	2300	1570	Empire ABO Unit #232A		BP America Production Co.	6350	0	РА	6/27/1978	10/9/2009
	30-015-22490	6	185	28E	2550	2050	Empire ABO Unit #233		BP America Production Co.	6300	0	РА	7/1/1978	10/9/2009
	30-015-21746	6	185	28E	2610	2713	Empire ABO Unit #221		Apache Corp	6305	0	Active	12/31/9999	NA
	30-015-21737	6	185	28E 28E	2253	1576 660	Empire ABO Unit #232A		BP America Production Co.	6345 6386	0	PA	12/31/9999	10/9/2009
	30-015-23547 30-015-02616	6	18S 18S	28E 28E	1950 1650	660 990	Empire ABO Unit #241 Empire ABO Unit #024C		BP America Production Co. Apache Corp	6386	0	PA Active	12/31/9999 12/31/9999	12/23/2008 NA
		-	185	28E	1750	1600	Empire ABO Unit #024C	1	Apache Corp	600	0	PA	12/31/9999	?
	30-015-22913	6								000		PA	12/31/9999	

ID NO	API	Sect	TWP	RNG	NS FTG	EW FTG	WELL NAME	WELL NUMBER	OPERATOR	TOTAL DEPTH (FT)	WELL TYPE	WELL STATUS	DRILLL DATE	PLUG DATE
71	30-015-21626	6	18S	28E	1361	2531	Empire ABO Unit #231A		Apache Corp	6390	0	Active	12/31/9999	NA
72	30-015-22593	6	18S	28E	1900	2441	Empire ABO Unit #234		BP America Production Co.	6260	0	PA	12/31/9999	12/25/2008
73	30-015-30785	6	18S	28E	430	330	NW State #015		LRE Operating, LLC	3225	0	Active	12/20/1999	NA
74	30-015-20019	6	185	28E	330	330	NW Artesia Unit #016		LRE Operating, LLC	3273	0	Active	12/31/9999	NA
75	30-015-39008	6	185	28E 28E	160	1300	Empire ABO Unit #410		Apache Corp	? 8500	0	N	12/31/9999	NA
76 77	30-015-25522 30-015-10244	5	18S 18S	28E 28E	2240 2310	400 330	Walter Solt State #001 State AG #001		Walter Solt LLC Mack Energy Corp	6365	SWD	Active PA	12/31/9999 12/31/9999	NA 3/27/2001
78	30-015-24485	5	185	28E	1980	990	Illinois Camp A Com #001		Conoco Phillips Co	10450	0	Active	5/28/1983	NA
70	30-015-31086	5	185	28E	1650	990	LP State #001		Marbob Energy Corp	4503	0	PA	7/3/2000	3/11/2008
80	30-015-02602	5	18S	28E	1650	1650	Empire ABO Unit #026D		Apache Corp	6265	0	Active	11/28/1959	NA
81	30-015-22697	5	18S	28E	1080	1914	Empire ABO Unit #261A		BP America Production Co.	6350	0	PA	12/31/9999	6/15/2009
82	30-015-02607	5	18S	28E	660	660	Empire ABO Unit #25C		Apache Corp	6273	0	Plugged, Site Released	2/23/1960	6/25/2013
83	30-015-22750	5	185	28E	660	150	Empire ABO Unit #251		Apache Corp	6250	0	Active	12/31/9999	NA
84	30-015-02605	5	185	28E	330	2271	Empire ABO Unit #27E		BP America Production Co.	6261	0	PA	12/31/9999	6/16/2009
85 86	30-015-02606 30-015-22009	5 32	18S 17S	28E 28E	330 330	1941 2481	Empire ABO Unit #26E Empire ABO Unit #272		Apache Corp Apache Corp	6254 6370	0	Active Active	7/6/1960	NA
87	30-015-21539	32	175	28L	150	1400	Empire ABO Unit #261A		Apache Corp	6220	0	Active	12/31/9999	NA
88	30-015-39007	32	175	28E	70	100	Empire ABO Unit #409		Apache Corp	6400	0	N	12/31/9999	NA
89	30-015-37058	32	17S	28E	330	330	NW State #32		LRE Operating, LLC	3425	0	Active	8/12/2009	NA
90	30-015-37057	32	17S	28E	330	1750	NW State #31		LRE Operating, LLC	3500	0	Active	7/21/2009	NA
91	30-015-01659	32	17S	28E	660	1980	Empire ABO Unit #26A		Apache Corp	6172	0	Active	12/31/9999	NA
92	30-015-01660	32	175	28E	660	660	Empire ABO Unit #25		BP America Production Co.	6187	0	PA	12/31/9999	6/30/2009
93	30-015-30685	32	175	28E	990	990	NW State #007		LRE Operating, LLC	3220	0	Active	8/30/1999	NA
94 95	30-015-10834 30-015-30815	32 32	17S 17S	28E 28E	990 1090	2030 2126	NW Artesia Unit #13 NW State #008		SDX Resources, Inc. LRE Operating, LLC	2006 3310	0	PA Active	12/31/9999 11/18/1999	11/2/2006 NA
95	30-015-30815	32	175	28E 28E	990	760	NW State #008 NW Artesia Unit #012		LRE Operating, LLC	1998	I	Active	12/31/9999	NA
90	30-015-01661	32	173	28E	1650	2310	Empire ABO Unit #26B		Apache Corp	6083	0	Active	12/31/9999	NA
98	30-015-36989	32	175	28E	1630	1710	NW State #30		LRE Operating, LLC	3405	0	Active	7/7/2009	NA
99	30-015-01662	32	17S	28E	1650	990	Empire ABO Unit #25A		Apache Corp	6123	0	Active	12/31/9999	NA
100	30-015-36554	32	17S	28E	1770	550	NW State #29		LRE Operating, LLC	3450	0	Active	1/21/2009	NA
101	30-015-39927	32	17S	28E	1750	1765	AA State #002		Apache Corp	5800	0	N	12/31/9999	NA
102	30-015-30781	32	17S	28E	1900	2146	NW State #005		LRE Operating, LLC	3190		Active	10/28/1999	NA
103	30-015-10818	32	175	28E	2310	2105	NW Artesia #008		SDX Resources, Inc.	2003	0	PA	12/31/9999	11/6/2006
104 105	30-015-30777 30-015-10795	32 32	17S 17S	28E 28E	2310 2310	990 66	NW State #006 NW Arteisa #009		LRE Operating, LLC Lime Rock Resources L.P.	3204 1980	0	Active PA	10/19/1999 12/31/9999	NA 5/28/2008
105	30-015-01657	32	173	28E	2310	1980	AA State #001		Apache Corp	6171	0	Active	7/30/1960	5/28/2008 NA
100	30-015-01671	32	175	28E	2280	978	Empire ABO Unit #25B		BP America Production Co.	6013	0	PA	12/31/9999	7/21/2008
108	30-015-31920	32	17S	28E	990	990	Enron State #002		LRE Operating, LLC	4030	0	Active	9/4/2001	NA
109	30-015-40339	32	17S	28E	99	330	Enron State #018		LRE Operating, LLC	4250	0	N	12/31/9999	NA
110	30-015-35050	32	17S	28E	330	500	Enron State #012		LRE Operating, LLC	3810	0	Active	11/20/2006	NA
111	30-015-01654	32	17S	28E	33	330	Pre-Ongard #001		Pre-Ongard Well Operator	651	0	PA	1/1/1900	1/1/1900
112	30-015-39638	30	175	28E	412	679	Anthoney State #003		LRE Operating, LLC	5039	0	Active	2/21/2012	NA
113 114	30-015-38234 30-015-01616	30 30	17S 17S	28E 28E	430 330	800 990	Anthoney State #002 Blake State #1		LRE Operating, LLC CFM Oil LLC	4823 615	0	Active Active	2/1/2011 12/31/9999	NA
114	30-015-36564	30	175	28E	330	2210	Staley State #009		LRE Operating, LLC	4010	0	Active	12/15/2008	NA
115	30-015-40026	30	175	28E	330	2410	Staley State #005		LRE Operating, LLC	5108	0	Active	3/15/2012	NA
117	30-015-37673	30	175	28E	330	1650	Staley State #012		LRE Operating, LLC	4785	0	Active	5/24/2010	NA
118	30-015-38203	30	17S	28E	330	990	Maple State #008		COG Operating LLC	4750	0	N	12/31/9999	NA
119	30-015-21594	31	17S	28E	330	1650	Powco State #001		Finney Oil Co	650	0	Active	12/31/9999	NA
120	30-015-01638	31	17S	28E	330	990	Pre-Ongard #001		Pre-Ongard Well Operator	2003	0	PA	1/1/1990	1/1/1990
121	30-015-30784	31	175	28E	330	480	NW State #002		LRE Operating, LLC	3300	0	Active	11/11/1999	NA
122 123	30-015-30893 30-015-25621	31	17S 17S	28E 28E	973 980	959 1620	NW State #028 Powco State #002		LRE Operating, LLC Finney Oil Co	2808 734	0	Active Active	9/14/2000 12/31/9999	NA
123	30-015-25621	31 31	175	28E 28E	980 1650	330	NW State #11		LRE Operating, LLC	3205	0	Active	12/31/9999	NA
124	30-015-36343	31	175	28L	1650	2310	Malco State #002		George A Chase JV dba G&C Service	633	0	Active	6/30/2008	NA
126	30-015-10537	31	175	28E	2277	330	NW Artesia Unit #004		LRE Operating, LLC	6200	0	Active	3/3/1966	NA
127	30-015-01652	31	17S	28E	2288	1625	Boling #001		Kersey & Co.	1938	0	Active	12/14/1989	NA
128	30-015-37428	31	17S	28E	1980	1980	Malco State #003		George A Chase JV dba G&C Service	650	0	Active	12/20/2009	NA
129	30-015-01637	31	17S	28E	2310	2310	Malco State #001		George A Chase JV dba G&C Service	1852	0	Active	1/14/1953	NA
130	30-015-01635	31	175	28E	2310	2310	Aston & Fair #001Y		George A Chase JV dba G&C Service	1926	0	Active	12/31/9999	NA
131	30-015-01643	31	175	28E	2310	2360	Empire ABO Unit #22		BP America Production Co.	5971	0	PA	12/31/9999	7/10/2009
132 133	30-015-24887 30-015-02666	31 31	17S 17S	28E 28E	2310 2310	990 330	Hudson Saikin State #002 Hudson Saikin State #001		Alamo Permian Resources, LLC Alamo Permian Resources, LLC	1950 1860	0	Active Active	12/31/9999 12/31/9999	NA
133	30-015-02666	31	175	28E 28E	2310	270	NW State #009		LRE Operating, LLC	3195	0	Active	12/31/9999	NA
134	30-015-10833	31	173	28E	1980	660	NW State #605		LRE Operating, LLC	2000	0	Active	12/31/9999	NA
136	30-015-01644	31	175	28E	1650	330	Empire ABO Unit #24A		BP America Production Co.	6106	0	PA	12/31/9999	6/15/2009
137	30-015-40409	31	17S	28E	1920	330	Big Girl 31 State #009H		COG Operating LLC	8447	0	N	12/31/9999	NA
138	30-015-01650	31	17S	28E	1650	1958	Empire ABO Unit #23A		BP America Production Co.	6094	0	PA	12/31/9999	9/17/2003
139	30-015-01642	31	17S	28E	1650	2310	State FW #001		Alamo Permian Resources, LLC	1937	0	Active	12/31/9999	NA
140	30-015-01651	31	17S	28E	1650	2387	Empire ABO Unit #22B		BP America Production Co.	6046	0	PA	12/31/9999	2/10/2010

ID NO	ΑΡΙ	Sect	TWP	RNG	NS FTG	EW FTG	WELL NAME	WELL NUMBER	OPERATOR	TOTAL DEPTH (FT)	WELL TYPE	
	30-015-01648	31	17S	28E	1651	1089	Empire ABO Unit #21A		BP America Production Co.	5971	0	<u> </u>
	30-015-01640	31	17S	28E	2310	330	Rampo #002		Alamo Permian Resources, LLC	1996	0	
	30-015-39011	31	17S	28E	1190	1320	Empire ABO Unit #419		Apache Corp	6310	0	
	30-015-20042	31	17S	28E	990	660	NW Artesia Unit #011		LRE Operating, LLC	2012	0	+
	30-015-01653 30-015-01639	31 31	17S 17S	28E 28E	990 990	1650 330	Pre-Ongard #001 Ramp #001		Pre-Ongard Well Operator Alamo Permian Resources, LLC	742 1975	0	
	30-015-01639	31	175	28E 28E	735	330	NW State #010		LRE Operating, LLC	3210	0	+
	30-015-01641	31	175 175	28E	660	660	Empire ABO Unit #24		Apache Corp	6122	0	
	30-015-39004	31	175	28E	150	1300	Empire ABO Unit #401		Apache Corp	6400	0	+
	30-015-01649	31	175	28E	660	1939	Empire ABO Unit #23		BP America Production Co.	6094	0	1
151	30-015-27592	31	17S	28E	660	2310	WDW #1		Navajo Refining Co.	10200		1
152	30-015-10118	31	17S	28E	766	2188	State FV #001		Alamo Permian Resources, LLC	1957	0	1
153	30-015-01646	31	17S	28E	660	2082	Empire ABO Unit #22A		BP America Production Co.	6050	0	
	30-015-01647	31	17S	28E	660	660	Empire ABO Unit #21		BP America Production Co.	9999	0	
	30-015-39020	31	17S	28E	140	2560	Empire ABO Unit #408		Apache Corp	6318	0	
	30-015-33473	1	185	27E	1750	1650	AAO Federal #007		Apache Corp	4100	0	
	30-015-25270	12	18S	27E	2310	2310		001	BILL L MILLER	1600	Oil	
	30-015-26017	12	18S	27E	990	1650		010	EASTLAND OIL CO	2040	Oil	PI
	30-015-25100	12	18S 18S	27E 27E	330 1650	1650 1770		001	HARLOW ENTERPRISES LLC	2400 1600	Oil Oil	+
	30-015-25201 30-015-25545	12 12	185	27E 27E	990	990		002	HARLOW ENTERPRISES LLC HARLOW ENTERPRISES LLC	1530	Oil	+
	30-015-25545	12	185	27E 27E	330	2310		003	HARLOW ENTERPRISES LLC	NR	Oil	+
	30-015-25099	12	185	27L 27E	1809	990		006	HARLOW ENTERPRISES LLC	1652	Oil	1
	30-015-00874	12	185	27E	2310	2355		007	HARLOW ENTERPRISES LLC	3664	Oil	1
	30-015-25738	12	185	27E	2310	2310		009	HARLOW ENTERPRISES LLC	1586	Oil	1
166	30-015-26404	12	18S	27E	660	990	FEDERAL T SWD #0	001	LIME ROCK RESOURCES II-A, L.P.	10,141	Salt Water Disposal	1
167	30-015-20894	12	18S	27E	1980	660	WDW #002 #0	002	NAVAJO REFINING CO. PIPELINE DIVISION	10,372	Injection	
168	30-015-00872	12	18S	27E	310	990		001	PRE-ONGARD WELL OPERATOR	594	Oil	Pl
	30-015-20535	12	18S	27E	330	455		002	PRE-ONGARD WELL OPERATOR	6295	Oil	PI
	30-015-06171	12	18S	27E	1069	251		003	PRE-ONGARD WELL OPERATOR	2200	Oil	PI
	30-015-23115	12	185	27E	330	380		003	PRE-ONGARD WELL OPERATOR	6248	Oil	PI
	30-015-00873 30-015-00875	12 12	18S 18S	27E 27E	330 330	330 330		004	PRE-ONGARD WELL OPERATOR PRE-ONGARD WELL OPERATOR	2510 2000	Oil Oil	PI
	30-015-00875	12	185	27E 27E	100	500		004	PRE-ONGARD WELL OPERATOR	1994	Oil	PI
	30-015-25649	12	185	27L 27E	1650	990		008	PRE-ONGARD WELL OPERATOR	2000	Oil	PI
	30-015-00871	12	185	27E	330	330		001	RHONDA OPERATING CO	6253	Oil	PI
	30-015-22833	11	185	27E	450	1175		133B	APACHE CORP	6225	Oil	· · ·
178	30-015-22834	11	18S	27E	225	2280	EMPIRE ABO UNIT #141B #1	141B	APACHE CORP	6225	Oil	
179	30-015-31319	7	18S	27E	2310	330	LAUREL STATE #003 00	03	BILL L. MILLER	1630	Oil	
	30-015-06137	13	18S	27E	250	990		02	PRE-ONGARD WELL OPERATOR	2696	Oil	PI
	30-015-24881	13	185	27E	1880	1830		01	DAVID G. HAMMOND	3020	Oil	PI
	30-015-00888	13	185	27E	1980	1650		01	PRE-ONGARD WELL OPERATOR	2000	Oil	PI
	30-015-00880 30-015-00884	13 13	18S 18S	27E 27E	1650 1650	990 990		01	PRE-ONGARD WELL OPERATOR PRE-ONGARD WELL OPERATOR	2353 2047	Oil Oil	PI
	30-015-25394	13	185	27E 27E	2310	330		102	BILL L. MILLER	1613	Oil	PI
	30-015-25241	13	185	27E	330	1650		01	BILL L. MILLER	2300	Oil	
	30-015-25370	13	185	27E	480	940		02	ALAMO PERMIAN RESOURCES, LLC	1608	Oil	
	30-015-00883	13	18S	27E	990	990		01	ALAMO PERMIAN RESOURCES, LLC	1650	Oil	1
	30-015-00895	14	18S	27E	1650	330		01	ALAMO PERMIAN RESOURCES, LLC	1888	Oil	
	30-015-00891	14	185	27E	990	330		01	PRE-ONGARD WELL OPERATOR	2060	Oil	PI
	30-015-40187	14	18S	27E	660	990		01	YATES PETROLEUM CORP	10500	Gas	
	30-015-36939	14	18S	27E	661	991		01C	YATES PETROLEUM CORP	10,500	Gas	
	30-015-00870	14	185	27E	1980	1980		01	PRE-ONGARD WELL OPERATOR	7270	Oil	PI
	30-015-00866	14	185	27E	1980	660		.31		6120 6208	Oil Oil	PI
	30-015-00865 30-015-20510	14 14	18S 18S	27E 27E	1650 1650	1980 1653		014	PRE-ONGARD WELL OPERATOR PRE-ONGARD WELL OPERATOR	10168	Oil	PI
	30-015-20510	14	185	27E 27E	1050	1053		.31	PRE-ONGARD WELL OPERATOR	6325	Oil	PI
	30-015-00864	14	185	27E	660	1980		14	PRE-ONGARD WELL OPERATOR	6315	Oil	PI
	30-015-22569	14	185	27E	560	2588			BP AMERICA PROD. CO.	6300	Oil	PI
200	30-015-00868	14	18S	27E	660	1980	EMPIRE ABO UNIT #015C 01	15C	BP AMERICA PROD. CO.	6260	Oil	PI
201	30-015-22568	14	18S	27E	400	1450	EMPIRE ABO UNIT #151B 15	51B	BP AMERICA PROD. CO.	6310	Oil	PI
	30-015-22838	14	18S	27E	200	1925			BP AMERICA PROD. CO.	6225	Oil	P
	30-015-00869	14	185	27E	330	653			BP AMERICA PROD. CO.	6225	Oil	PI
	30-015-21807	2	185	27E	275	1243		.32	BP AMERICA PROD. CO.	6200	Oil	PI
	30-015-22608 30-015-22013	2	18S 18S	27E 27E	100 90	1950 1456		.42	BP AMERICA PROD. CO. BP AMERICA PROD. CO.	6200 6303	Oil Oil	PI
206		2	185	27E 27E	320	2602		.53	APACHE CORP	6335	Oil	PI
	30-015-21825		100	-/-							-	
207	30-015-21825 30-015-22808	2	18S	27E	600	1330	EMPIRE ABO UNIT #156 1	.56	BP AMERICA PROD. CO.	6225	Oil	PI
207 3 208 3			185 185	27E 27E	600 660	1330 660		16A	BP AMERICA PROD. CO. BP AMERICA PROD. CO.	6225 6114	Oil Oil	PI

WELL STATUS	DRILLL DATE	PLUG DATE
PA	4/15/1960	8/24/2002
Active	12/31/9999	NA
Active	10/11/2011	NA
Active	12/31/9999	NA
PA	1/1/1900	1/1/1900
Active	12/31/9999	NA
Active	10/12/1999	NA
Active	12/31/9999	NA
N	12/31/9999	NA
PA	12/31/9999	1/14/2010
Active	8/4/1993	NA
Active	12/31/9999	NA
PA	12/31/9999	8/20/2009
PA	12/31/9999	7/23/2005
Т	10/18/2011	NA
Active	10/22/2004	NA
Active	4/23/1985	NA
Plugged, Site Released	12/22/1989	1/23/2003
Active	12/10/1984	NA
Active	3/20/1985	NA
Active	5/19/1986	NA
Active	4/19/1985	NA
Active	8/18/1985	NA
Active	7/28/1948	NA
Active	4/25/1987	NA
Active	6/28/1990	NA
Active	5/5/1999	NA
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Cancelled Apd	NA	NA
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	7/3/1975	4/12/1994
Active	5/23/1979	NA
Active	5/23/1979	NA
Active	10/2/2000	NA
Plugged, Site Released	1/1/1900	1/1/1901
Plugged, Site Released	12/31/9999	7/17/2011
Plugged, Site Released	1/1/1900	1/1/1901
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Active	12/31/9999	NA
	12/31/9999	NA
Active	8/27/1985	NA
Active		NA
Active	12/31/9999	NA
Active	2/8/1945 1/1/1900	
Plugged, Site Released		1/1/1900
Cancelled Apd	4/18/2012	NA
Cancelled Apd	2/20/2009	NA
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	1/1/1900	1/1/1900
Plugged, Site Released	11/1/1978	10/2/2008
Plugged, Site Released	4/6/1958	7/16/2004
Plugged, Site Released	3/1/1979	8/16/2006
Plugged, Site Released	5/6/1979	12/22/2008
Plugged, Site Released	6/30/1959	1/24/2007
Plugged, Site Released	12/31/9999	6/22/2009
Plugged, Site Released	4/1/1979	9/9/2009
Plugged, Site Released	6/1/1977	10/30/2008
Plugged, Site Released	7/1/1976	12/27/2011
Plugged, Site Released	5/1/1979	10/7/2009
Plugged, Site Released	12/12/1958	2/23/2009

ID NO	API	Sect	TWP	RNG	NS FTG	EW FTG	WELL NAME	WELL NUMBER	OPERATOR	TOTAL DEPTH (FT)	WELL TYPE	WELL STATUS	DRILLL DATE	PLUG DATE
	30-015-00730	2	185	27E	660	1980	EMPIRE ABO UNIT	014	APACHE CORP	6152	Oil	Active	9/22/1958	NA
211	30-015-22669	2	185	27E	800	2500	EMPIRE ABO UNIT #154	154	BP AMERICA PROD. CO.	6200	Oil	Plugged, Site Released	1/1/1979	6/30/2009
212	30-015-22885	2	185	27E	1040	2025	EMPIRE ABO UNIT #155	155	APACHE CORP	6202	Oil	Plugged, Site Released	6/1/1979	1/3/2012
214	30-015-21544	2	18S	27E	1100	1322	EMPIRE ABO UNIT #151	151	APACHE CORP	6285	Oil	Plugged, Site Released	5/19/1975	1/6/2012
215	30-015-22914	2	18S	27E	1310	590	EMPIRE ABO UNIT #161	161	APACHE CORP	6225	Oil	Active	6/21/1979	NA
216	30-015-22051	2	18S	27E	1370	2445	EMPIRE ABO UNIT #141A	141A	APACHE CORP	6203	Oil	Plugged, Site Released	6/1/1977	12/21/2011
217	30-015-22609	2	18S	27E	1200	1900	EMPIRE ABO UNIT #212	143	APACHE CORP	6093	Oil	Active		NA
218	30-015-22896	2	18S	27E	1820	2550	EMPIRE ABO UNIT #143A	143A	APACHE CORP	6108	Oil	Active	4/16/1979	NA
219	30-015-00716	2	18S	27E	1980	1830	EMPIRE ABO UNIT #015	015	APACHE CORP	6100	Oil	Active	2/11/1959	NA
220	30-015-32946	2	18S	27E	2210	1650	SCBP STATE #1	001	APACHE CORP	3880	Oil	Active	3/14/2005	NA
221	30-015-35814	2	18S	27E	2063	441	STATE H NO 2	002	MACK ENERGY CORP	7545	Oil	Active	10/31/2007	NA
222	30-015-00704	1	185	27E	1980	660	PRE-ONGARD WELL #017	017	PRE-ONGARD WELL OPERATOR	5960	Oil	Plugged, Site Released	1/1/1900	1/1/1900
223 224	30-015-00706 30-015-34071	1	18S 18S	27E 27E	2310 2169	1980 1963	EMPIRE ABO UNIT #018A AAO FEDERAL #006	018A 006	APACHE CORP APACHE CORP	6087 3977	Oil	Active Active	4/24/1959 7/6/2005	NA NA
224	30-015-21552	1	185	27E 27E	2500	2500	EMPIRE ABO UNIT #191	191	APACHE CORP	6259	Oil	Active	7/23/2013	9/1/1975
225	30-015-22657	1	185	27L 27E	2300	2300	EMPIRE ABO UNIT #191 EMPIRE ABO UNIT #193	191	APACHE CORP	6225	Oil	Active	9/29/1978	NA
220	30-015-36281	1	185	27E	2193	1520	SUN DEVILS FEDERAL	001	MACK ENERGY CORP	6016	Oil	Cancelled Apd	NA	NA
228	30-015-22560	1	185	27E	220	1320	EMPIRE ABO UNIT #192	192	APACHE CORP	6250	Oil	Active	5/30/1978	NA
229	30-015-00696	1	185	27E	1980	1980	EMPIRE ABO UNIT #019Q	19Q	APACHE CORP	6,180	Oil	Plugged, Site Released	7/24/1959	7/12/2013
230	30-015-27163	1	18S	27E	1980	990	CHALK BLUFF FEDERAL #003	COM 003	MEWBOURNE OIL CO.	10,150	Gas	Active	5/10/1981	NA
	30-015-21873	1	185	27E	1526	1470	EMPIRE ABO UNIT #191A	191A	APACHE CORP	6350	Oil	Approved Temporary Abandonment	8/27/1976	NA
	30-015-00699	1	18S	27E	940	330	EMPIRE ABO UNIT #020B	020B	APACHE CORP	6250	Oil	Active	11/16/1961	NA
	30-015-22658	1	18S	27E	1500	2130	EMPIRE ABO UNIT #194	194	APACHE CORP	6325	Oil	Active	10/18/1978	NA
234	30-015-00717	2	18S	27E	1980	660	EMPIRE ABO UNIT #016	016	APACHE CORP	6100	Oil	Active	3/30/1959	NA
235	30-015-34576	1	18S	27E	2060	2160	AAO FEDERAL #010	010	APACHE CORP	4000	Oil	Active	6/2/2006	NA
236	30-015-22559	1	185	27E	2290	2445	EMPIRE ABO UNIT #184	184	APACHE CORP	6200	Oil	Plugged, Site Released	2/1/1979	7/18/2013
237	30-015-20394	1	18S	27E	953	2197	Russell USA #045	019	PRE-ONGARD WELL OPERATOR	870	Oil	Plugged, Site Released	1/1/1900	8/12/2013
238	30-015-00698	1	18S	27E	660	1980	EMPIRE ABO UNIT	191	ARCO PERMIAN	6365	SWD	Plugged, Site Released	10/7/1959	12/8/1989
239	30-015-26575	1	18S	27E	790	2250	WDW #003	003	NAVAJO REFINING	10,119	Injection	Active	12/22/1990	NA
240	30-015-34998	1	18S	27E	890	1650	AAO FEDERAL #012	012	APACHE CORP	4075	Oil	Active	8/13/2006	NA
	30-015-00713	1	18S	27E	995	1644	EMPIRE ABO UNIT #018D	018D	BP AMERICA PROD. CO.	6174	Oil	Plugged, Site Released	10/28/1959	9/27/2003
	30-015-21792	1	18S	27E	1533	2370	EMPIRE ABO UNIT #182	182	APACHE CORP	6369	Oil	Active	5/6/1976	NA
	30-015-00707	1	185	27E	1980	1980	EMPIRE ABO UNIT #018B	018B	APACHE CORP	6163	Oil	Active	4/23/1959	NA
244	30-015-22096	1	185	27E	2370	1510	EMPIRE ABO UNIT #183	183	APACHE CORP	6210	Oil	Active	6/23/1977	NA
245	30-015-21554	1	185	27E	1367	1440	EMPIRE ABO UNIT #181	181	BP AMERICA PROD. CO.	6137	Oil	Plugged, Site Released	11/1/1975	4/17/2003
246 247	30-015-00703	1	185	27E	1980 1980	660 630	EMPIRE ABO UNIT #017A	017A 009	BP AMERICA PROD. CO. APACHE CORP	7705 3950	Oil	Plugged, Site Released	2/16/1959	3/19/2009 NA
247	30-015-34387 30-015-00695	1	18S 18S	27E 27E	1980	330	AAO FEDERAL #009 PRE-ONGARD WELL	009	PRE-ONGARD WELL OPERATOR	1763	Oil	Active Plugged, Site Released	<u>11/7/2005</u> 1/1/1900	1/1/1901
-	30-015-00705	1	185	27E 27E	990	660	EMPIRE ABO UNIT #017B	001 017B	BP AMERICA PROD. CO.	6150	Oil	Plugged, Site Released	3/24/1959	7/21/2004
249	30-015-34555	1	185	27E	890	660	AAO FEDERAL #011	011	APACHE CORP	4100	Oil	Active	2/15/2006	NA
	30-015-22815	1	185	27E	670	330	EMPIRE ABO UNIT #171	171	APACHE CORP	6300	Oil	Active	5/22/1979	NA
252	30-015-00745	2	185	27E	1980	660	STATE H #001	001	MACK ENERGY CORP	5962	Oil	Plugged, Site Released	12/22/1958	3/7/2008
	30-015-27538	11	185	27E	990	660	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	NR	Oil	Cancelled Apd	12/31/9999	NA
	30-015-00662	36	17S	27E	3305	330W	STATE NO. 2		ACREY, B L & F D	600	0	P&A	10/15/1942	10/15/1942
	30-015-00676	36	17S	27E	330N	990W	EMPIRE ABO UNIT #017		LIME ROCK RESOURCES A, L.P.	5797	0	Active	?	NA
256	30-015-00697	1	18S	27E	1980S	660E	EMPIRE ABO UNIT #020K		BP AMERICA PRODUCTION COMPANY	6185	0	P&A	1/5/2003	1/5/2003
	30-015-00709	1	18S	27E	1980N	1980E	EMPIRE ABO UNIT #019C		ALAMO PERMIAN RESOURCES, LLC	6205	0	Active	8/2/1959	NA
	30-015-00710	1	18S	27E	660N	1980W	AAO FEDERAL No. 013		ALAMO PERMIAN RESOURCES, LLC	6200	0	Active	7/21/2004	NA
259	30-015-00712	1	18S	27E	647N	667W	EMPIRE ABO UNIT I NO. 17		ARCO OIL & GAS	5902	0	P&A	1/24/1987	1/24/1987
	30-015-00715	1	18S	27E	330N	330W	SOUTH RED LAKE GRAYBURG UNIT #037		LEGACY RESERVES OPERATING LP	1820		Active	?	NA
	30-015-00718	2	18S	27E	330S	610W	PRE-ONGARD WELL #2	L	PRE-ONGARD WELL OPERATOR	512	0	P&A	?	NA
	30-015-00720	2	18S	27E	990N	1650E	RIVERWOLF UNIT #004	L	BP AMERICA PRODUCTION COMPANY	5881	0	P&A	10/21/1959	12/12/2008
	30-015-00721	2	18S	27E	330N	990E	SOUTH RED LAKE GRAYBURG UNIT #036	<u> </u>	FAIRWAY RESOURCES OPERATING LLC	1705	0	P&A	11/6/1947	NA
	30-015-00724	2	185	27E	990N	330E	EMPIRE ABO UNIT #016B		LIME ROCK RESOURCES A, L.P.	5920	0	Active	?	NA
	30-015-00737	2	185	27E	905N	1601E	SOUTH RED LAKE GRAYBURG UNIT #038		FAIRWAY RESOURCES OPERATING LLC	1685	0	Active	5/23/1948	NA
	30-015-00740	2	185	27E	1650N	2197E	SOUTH RED LAKE GRAYBURG UNIT #040	}	MCQUADRANGLE, LC	5884		P&A	7/10/2002	7/10/2002
	30-015-00741	2	185	27E	2310N	1980E	EMPIRE ABO UNIT #015B			5884	0	Active	6/6/1959	NA
	30-015-00742	2	185	27E	1650N	990E	SOUTH RED LAKE GRAYBURG UNIT 39 WIW		S&J OPERATING COMPANY	1741	0	P&A	2/8/1991	2/8/1991
	30-015-00744	2	185	27E	23105	1640E	STATE 1		COMPTON-SMITH	5962 6849	0	P&A	•	NA
	30-015-01218 30-015-02627	36 6	17S 18S	27E 28E	330S 949S	2310W 990W	EMPIRE ABO UNIT #018 STATE M-AI #002		BP AMERICA PRODUCTION COMPANY RUTH OIL CO. LLC	6849	0	P&A Active	3/11/2009 10/21/1960	3/11/2009 NA
	30-015-02627	36	185	28E 27E	9495 3305	990W 920W	STATE #006	+	ASPEN OIL INC	1343	0	Active	?	NA
	30-015-21623	36	175	27E 27E	330S 360S	455W	STATE #006		GEORGE A CHASE JR & C SERVICE	1343	0	Active	?	NA
273	30-015-21783	30	175	27E 27E	2490N	455W 1299E	EMPIRE ABO UNIT #202	1	ALAMO PERMIAN RESOURCES. LLC	6296	0	Active	5/13/1976	NA
	30-015-22816	1	185	27E 27E	1120S	1440E	EMPIRE ABO UNIT #202 EMPIRE ABO UNIT L #192	1	ARCO OIL & GAS	6350	0	ABANDONED	6/28/1980	6/23/1980
	30-015-25675	7	185	27L 28E	940N	1757W	LAUREL STATE #002	1	EASTLAND OIL CO	1690	0	Active	11/10/1988	NA
	30-015-25997	7	185	28E	940N	1757W	LAUREL STATE #001	1	EASTLAND OIL CO	1690	0	Active	2/23/1987	NA
	30-015-26741	1	185	27E	1650N	1350W	CHALK BLUFF FEDERAL COM #002		MEWBOURNE OIL CO	10140	G	Active	8/24/1991	NA
278			-					1						
	30-015-26943	6	18S	28E	990S	730W	CHALK BLUFF 6 STATE #001		MEWBOURNE OIL CO	10200	G	Active	4/16/1992	NA

NON-FRESHWATER (OIL AND GAS) ARTIFICIAL PENETRATIONS IN AREA OF REVIEW WDW-1, WDW-2, AND WDW-3 HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

ID NO	ΑΡΙ	Sect	TWP	RNG	NS FTG	EW FTG	WELL NAME	WELL NUMBER OPERATOR	TOTAL DEPTH (FT)	WELL TYPE	WELL STATUS	DRILLL DATE	PLUG DATE
281	30-015-31087	6	18S	28E	990S	330W	LP STATE #003	MARBOB ENERGY CORP	446	0	P&A	7/15/2000	3/17/2008
282	30-015-31592	36	17S	27E	330S	2310E	RAMAPO #007	ROJO GRANDE COMPANY LLC	612	0	P&A	12/21/2001	12/21/2001
283	30-015-32307	1	18S	27E	330N	990W	AAO FEDERAL #001	APACHE CORPORATION	3851	0	Active	12/10/2002	NA
284	30-015-32308	1	18S	27E	430N	2310W	AAO FEDERAL #002	APACHE CORPORATION	4150	0	Active	9/19/2002	NA
285	30-015-40429	36	17S	27E	492	806W	Big Boy State #004	4 COG Operating LLC	5015	0	Active	8/28/2014	NA
286	30-015-32959	1	18S	27E	1650N	875W	AAO FEDERAL #005	APACHE CORPORATION	3900	0	Active	10/12/2004	NA
287	30-015-39899	1	18S	27E	1305N	2535W	EMPIRE ABO UNIT #016	APACHE CORPORATION	6300	0	Cancelled Apd	NA	NA
288	30-015-39900	1	18S	27E	1120N	1205W	EMPIRE ABO UNIT #016	APACHE CORPORATION	6300	0	Cancelled Apd	NA	NA
289	30-015-00701	1	18S	27E	330N	330W	SOUTH RED LAKE GRAYBURG UNIT 37 WIW	FAIRWAY RESOURCES OPERATING LLC	NA	0	Plugged, Site Released	NA	NA
290	30-015-02608	5	18S	28E	1660N	330W	State E AI #001	1 Conoco Phillips Co	6265	0	Plugged, Site Released	3/1/1960	1/13/2006
291	30-015-40428	36	17S	27E	200S	485W	Big Boy State #002	2 COG Operating LLC	4990	0	Active	4/27/2013	NA
292	30-015-37045	32	17S	28E	1563S	2207E	Jeffers 32 State #002	2 Vanguard Operating, LLC	5130	0	Active	7/29/2010	NA
293	30-015-32028	2	225	31E	990S	330W	Flora AKF State #004	4 EOG Y Resources, Inc.	8350	0	Active	11/20/2002	NA
294	30-015-34028	6	18S	28E	2285N	1366E	Slider 6 State #001	1 BP America Production Co	10374	0	Plugged, Site Released	6/19/2005	12/23/2008

(ft) - Feet

? - Data Not Available Map ID No. - Refer to Drawing 2

N/A - Not Applicable

Well Type - O=Oil, I=Injection, G=Gas

TABLE 1B

NON-FRESHWATER (OIL AND GAS) WELLS IN AREA OF REVIEW PENETRATING TOP OF INJECTION ZONE WDW-1, WDW-2, AND WDW-3 HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

ID NO	ΑΡΙ	Sect	TWP	RNG	NS FTG	EW FTG	WELL NAME	WELL NUMBER	OPERATOR	TOTAL DEPTH (FT)	WELL TYPE	WELL STATUS	DRILLL DATE	PLUG DATE
12	30-015-31123	36	17S	27E	1980	760	No Bluff State Comm #002	2	LRE Operating, LLC	10,050	G	Active	3/19/2001	NA
76	30-015-25522	5	18S	28E	2240	400	Walter Solt State #001	1	WALTER SOLT LLC	8,500	SWD	Active	1/9/1986	NA
78	30-015-24485	5	18S	28E	1980	990	Illinois Camp A Com #001	1	Conoco Phillips Co	10,450	G	Active	5/28/1983	NA
151	30-015-27592	31	17S	28E	660	2310	WDW-1	1	NAVAJO REFINING	10,200	Ι	Active	34185	NA
166	30-015-26404	12	18S	27E	660	990	FEDERAL T SWD	#001	LIME ROCK RESOURCES II-A, L.P.	10,141	Salt Water Disposal	Active	6/28/1990	NA
167	30-015-20894	12	18S	27E	1980	660	WDW-2	2	NAVAJO REFINING CO. PIPELINE DIV	10,372	Injection	Active	5/5/1999	NA
191	30-015-40187	14	18S	27E	660	990	VIOLET BIV STATE COM	001	YATES PETROLEUM CORP	10,500	Gas	Cancelled Apd	4/18/2012	NA
192	30-015-36939	14	18S	27E	661	991	VIOLET BIV STATE COM	001C	YATES PETROLEUM CORP	10,500	Gas	Cancelled Apd	2/20/2009	NA
193	30-015-00870	14	18S	27E	1980	1980	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	7,270	Oil	Plugged, Site Released	1/1/1900	1/1/1900
196	30-015-20510	14	18S	27E	1650	1653	PRE-ONGARD WELL	001	PRE-ONGARD WELL OPERATOR	10,168	Oil	Plugged, Site Released	1/1/1900	1/1/1900
221	30-015-35814	2	18S	27E	2063	441	STATE H NO 2	002	MACK ENERGY CORP	7,545	Oil	Active	10/31/2007	NA
230	30-015-27163	1	18S	27E	1980	990	CHALK BLUFF FEDERAL #003	COM 003	MEWBOURNE OIL CO.	10,150	Gas	Active	5/10/1981	NA
239	30-015-26575	1	185	27E	790	2250	WDW-3	3	NAVAJO REFINING	10,119	Injection	Active	5/5/1999	NA
246	30-015-00703	1	18S	27E	1980	660	EMPIRE ABO UNIT #017A	017A	BP AMERICA PROD. CO.	7,705	Oil	Plugged, Site Released	2/16/1959	3/19/2009
278	30-015-26741	1	18S	27E	1650N	1350W	CHALK BLUFF FEDERAL COM #002	COM 002	MEWBOURNE OIL CO	10,140	G	Active	8/24/1991	NA
279	30-015-26943	6	18S	28E	990S	730W	CHALK BLUFF 6 STATE #001	1	MEWBOURNE OIL CO	10,200	G	Active	4/16/1992	NA
280	30-015-27286	36	17S	27E	660S	990W	CHALK BLUFF 36 STATE #001	1	MEWBOURNE OIL CO	10,060	0	Active	3/30/1993	NA

Map ID No. - Refer to Drawing 2 Well Type - O=Oil, I=Injection, G=Gas (ft) - Feet N/A - Not Applicable ? - Data Not Available

TABLE 2 INJECTION FLUID CHARACTERIZATION DATA HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

	Feb 2011	May 2011	Aug 2011	Nov 2011	Feb 2012	May 2012	Sept 2012	Nov 2012	Mar 2013
Metals									
Aluminum	6.0	0.438	0.625	0.752	1.87	0.394	1.11	4.04	1.34
Arsenic	0.0557	0.0198	0.0207	0.0365	0.141	0.0791	0.0468	0.070	0.0404
Barium	0.0590	0.0541	0.0796	0.0182	0.0282	0.0202	0.0182	0.0599	0.0860
Boron	0.216	0.353	0.276	0.243	0.335	0.238	0.253	0.286	0.722
Cadmium	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.004	<0.004
Chromium	0.00562	<0.005	<0.005	<0.005	0.00598	<0.005	<0.005	<0.010	<0.010
Copper	0.0265	0.00715	0.00709	<0.005	0.0117	<0.005	0.0108	0.018	<0.010
Lead	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010
Manganese	0.0940	0.0239	0.0559	0.0213	0.0555	0.0524	0.0329	0.0669	<0.832
Mercury	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.002	<0.0002	<0.0002
Molybdenum	0.202	0.168	0.145	0.0443	0.0987	0.154	0.243	0.255	0.182
Nickel	0.0141	0.00605	0.00767	<0.005	0.106	0.0122	0.0112	0.0109	0.0153
Selenium	0.382	0.646	0.465	0.99	0.312	0.690	1.00	0.842	0.924
Silver	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.010	<0.010
Zinc	1.42	0.0884	0.0983	0.012	0.0746	0.0402	0.0560	0.0836	0.0737

All concentrations reported in milligrams per liter (mg/L). < Less than.

TABLE 2 INJECTION FLUID CHARACTERIZATION DATA HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NM

	Feb 2011	May 2011	Aug 2011	Nov 2011	Feb 2012	May 2012	Sept 2012	Nov 2012	Mar 2013
Volatiles									
1,1,1-Trichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1,2,2-Tetrachloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1,2-Trichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1-Dichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,1-Dichloroethene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
1,2-Dichloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
2-Butanone	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.010	<0.010
2-Chloroethyl vinty ether	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.010	<0.010
2-Hexanone	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.010	<0.010
4-Methyl-2-pentanone	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.010	<0.010
Acetone	0.025	<0.010	<0.010	0.200	0.120	<0.010	NA	<0.055	0.016
Benzene	<0.005	<0.005	<0.005	0.200	<0.005	<0.005	<0.005	<0.005	<0.005
Bromodichloromethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Bromoform	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Bromomethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Carbon disulfide	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.010	<0.010
Carbon tetrachloride	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Chlorobenzene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Chloroethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Chloroform	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Chloromethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
cis-1,3-Dichloropropene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Dibromochloromethane	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Ethylbenzene	<0.005	<0.005	<0.005	0.190	<0.005	<0.005	<0.005	<0.005	<0.005
m,p-Xylene	<0.010	<0.010	<0.010	0.360	<0.010	<0.010	NA	<0.010	<0.010
Methylene chloride	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	<0.005	<0.010	<0.010
Styrene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Tetrachloroethene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005
Toluene	<0.005	<0.005	<0.005	0.510	<0.005	<0.005	<0.005	<0.005	<0.005
trans-1,3-Dichloropropene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Trichloroethene	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Vinyl acetate	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010	NA	<0.010	<0.010
Vinyl chloride	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Xylenes, Total	<0.015	<0.015	<0.015	0.560	<0.015	<0.015	<0.015	<0.015	<0.015

All concentrations reported in milligrams per liter (mg/L).

< Less Than.

NA Not Analyzed.

TABLE 2 INJECTION FLUID CHARACTERIZATION DATA HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

	Feb 2011	May 2011	Aug 2011	Nov 2011	Feb 2012	May 2012	Sept 2012	Nov 2012	Mar 2013
Semivolatiles									
1,2,4-Trichlorobenzene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
2,4,5-Trichlorophenol	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
2,4,6-Trichlorophenol	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
2,4-Dinitrotoluene	NA	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
2-Methylnaphthalene	<0.025	<0.005	<0.050	0.040	<0.005	<0.005	<0.0002	<0.005	<0.005
2-Methylphenol	<0.025	<0.005	<0.050	0.29	<0.005	<0.005	NA	<0.005	<0.005
2-Nitroaniline	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
3&4-Methylphenol	<0.025	<0.005	<0.050	0.52	<0.005	<0.005	NA	<0.005	<0.005
3-Nitroaniline	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
4-Nitroaniline	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
4-Nitrophenol	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Acenaphthene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Acenaphthylene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Aniline	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Anthracene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Benz(a)anthracene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	<0.0002	<0.005	<0.005
Benzidine	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Hexachlororthane	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Indeno(1,2,3-cd)pyrene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Isophorone	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Naphthalene	<0.025	<0.005	<0.050	0.038	<0.005	<0.005	<0.0002	<0.005	<0.005
Nitrobenzene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
N-Nitrosodimethylylamine	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
N-Nitosodi-n-propylamine	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
N-Nitrosodiphenylamine	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Pentachlorophenol	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Phenanthrene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Phenol	<0.025	<0.005	<0.050	0.99	<0.005	<0.005	NA	0.013	0.013
Pyrene	<0.025	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005
Pyridine	NA	<0.005	<0.050	<0.005	<0.005	<0.005	NA	<0.005	<0.005

All concentrations reported in milligrams per liter.

< Less Than.

NA Not Analyzed.

TABLE 2 INJECTION FLUID CHARACTERIZATION DATA HOLLYFRONTIER NAVAJO REFINING LLC ARTESIA, NEW MEXICO

	Feb 2011	May 2011	Aug 2011	Nov 2011	Feb 2012	May 2012	Sept 2012	Nov 2012	Mar 2013
Miscellaneous									
Reactive Cyanide (mg/Kg)	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Reactive Sulfide (mg/Kg)	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Chloride (mg/L)	410	213	404	332	519	646	458	401	647
Sulfate (mg/L)	1,510	2,240	2,290	2,350	1,870	2,220	3,460	2,580	2,630
Alkalinity (Total) (mg/L)	441	243	302	217	466	175	284	239	366
Sp. Cond. (umhos/cm)	6,270	4,680	7,380	5,430	5,990	6,650	8,370	6,680	8,110
Ignitability (°F)	>212	>212	>212	>212	>212	>212	>212	>212	>212
pH (S.U.)	7.40	7.85	8.11	7.52	7.30	6.76	7.33	7.63	7.98
TDS (mg/L)	3,310	3,400	4,320	4,840	3,890	3,100 ⁽¹⁾	6,140	4,780	5,500

mg/Kg Milligrams per kilogram.

mg/L Milligrams per liter.

umhos/cm Micromhos per centimeter.

°F Degrees Fahrenheit.

S.U. Standard Units.

> Greater than.

< Less than.

⁽¹⁾ TDS Sample collected in July 2012.

TABLE OF CONTENTS

Introduction

WDW-1

Discharge Permit Application Forms

	WDW-2
	WDW-3
1.0	Underground Injection Control Well Class1
2.0	Operator1
3.0	Location1
4.0	Landowner(s)2
5.0	Facility Description2
6.0	Proposed Discharge Plan (see 20.6.2.3106C NMAC)
7.0	Information for Class I Non-Hazardous Waste Injection Wells and Class III
	Brine Wells (20.6.2.5210 NMAC) 3
	7 (a) Area of Review
	7 (b) Data Tabulation3
	7 (c) Corrective Action
	7 (d) Maps and Cross-Sections4
	7 (e) Geology
	7 (f) Proposed Operating Parameters7
	7 (g) Formation Testing Program7
	7 (h) Fluids and Pressure
	7 (i) Stimulation Program
	7 (j) Injection Procedure
	7 (k) Drawings
	7 (I) Construction
	7 (m) Contingency Plans22
	7 (n) MIT Monitoring Plans (20.6.2.5207 NMAC)22
	7 (o) Additional Monitoring Plans for Class I Non-Hazardous Waste Injection Wells (20.6.2.5207B NMAC)23
	7 (p) Additional Monitoring Plans for Class III Wells (20.6.2.5207C NMAC)23

	7 (q) Financial Assurance	. 23
	7 (r) Logging and Testing Data	24
	7 (s) Mechanical Integrity Data (20.6.2.5204 NMAC)	24
	7 (t) Maximum Pressure and Flow Rate	24
	7 (u) Formation Testing Program Data	. 25
	7 (v) Compatibility	. 25
	7 (w) Area of Review Corrective Actions	25
8.0	Modification(s)	25
	Inspection/Maintenance and Reporting	
10.0	Contingency Plans	26
11.0	Other Information	26
12.0	Filing Fee	26
13.0	Draft Public Notice	26
14.0	Certification	27

TABLES

- TABLE 1A: NON-FRESHWATER (OIL AND GAS) ARTIFICIAL PENETRATIONS IN AREA OF REVIEW
- TABLE 1B:NON-FRESHWATER (OIL AND GAS) WELLS IN AREA OF REVIEW PENETRATING
TOP OF INJECTION ZONE
- TABLE 2: INJECTION FLUID CHARACTERIZATION DATA

FIGURES

- FIGURE 1: SITE LOCATION MAP
- FIGURE 2: SITE MAP
- FIGURE 3: GENERALIZED HYDROGEOLOGIC CROSS-SECTION
- FIGURE 4: GENERALIZED DIRECTION OF MOVEMENT OF GROUNDWATER IN EDDY COUNTY, NEW MEXICO
- FIGURE 5: PERMIAN BASIN MAP
- FIGURE 6: STRATIGRAPHIC COLUMN
- FIGURE 7: REGIONAL GEOLOGIC FEATURES
- FIGURE 8: PUBLISHED STRUCTURE MAP (TOP OF SAN ANDRES FORMATION)
- FIGURE 9: SEISMIC RISK MAP
- FIGURE 10: SURFACE GEOLOGIC MAP
- FIGURE 11: PRE-INJECTION SURFACE FACILITIES

FIGURE 11a – WDW-1

FIGURE 11b - WDW-2

FIGURE 11c-WDW-3

FIGURE 12: BELOW GROUND WELL SCHEMATIC

FIGURE 12a – WDW-1

FIGURE 12b - WDW-2

FIGURE 12c-WDW-3

FIGURE 13: WELLHEAD SCHEMATICS

FIGURE 13a – WDW-1

FIGURE 13b - WDW-2

FIGURE 13c - WDW-3

DRAWINGS

- DRAWING 1: FACILITY MAP
- DRAWING 2: AREA OF REVIEW MAP
- DRAWING 3: FRESHWATER WELLS IN AREA OF REVIEW
- DRAWING 4: GEOLOGIC CROSS-SECTION INDEX MAP
- DRAWING 5: NW-SE DIP GEOLOGIC CROSS-SECTION A-A'
- DRAWING 6: SW-NE STRIKE GEOLOGIC CROSS-SECTION B-B'
- DRAWING 7: NW-SE DIP GEOLOGIC CROSS-SECTION C-C'
- DRAWING 8: STRUCTURE CONTOUR MAP, TOP OF INJECTION ZONE
- DRAWING 9: ISOPACH MAP OF INJECTION ZONE
- DRAWING 10: STRUCTURE CONTOUR MAP, TOP OF UPPER CONFINING ZONE
- DRAWING 11: ISOPACH MAP OF UPPER CONFINING ZONE
- DRAWING 12: CURRENT PRESSURE INCREASE IN INJECTION ZONE
- DRAWING 13: PREDICTED FUTURE PRESSURE INCREASE IN INJECTION ZONE (INJECTION INTO WDW-1 AND WDW-2 ONLY)
- DRAWING 14: PREDICTED FUTURE PRESSURE INCREASE IN INJECTION ZONE (INJECTION INTO WDW-1 AND WDW-3 ONLY)
- DRAWING 15: PREDICTED FUTURE PRESSURE INCREASE IN INJECTION ZONE (INJECTION INTO WDW-2 AND WDW-3 ONLY)
- DRAWING 16: PREDICTED FUTURE PRESSURE INCREASE IN INJECTION ZONE (INJECTION INTO WDW-1, WDW-2 AND WDW-3)

APPENDICES

- APPENDIX A: SURROUNDING LAND OWNERSHIP INFORMATION
- APPENDIX B: AREA OF REVIEW WELL FILES AND SCHEMATICS
- APPENDIX C: USGS EARTHQUAKE DATA
- APPENDIX D: INJECTION FLUID ANALYTICAL DATA
- APPENDIX E: FLUIDS AND PRESSURE CALCULATIONS
 - APPENDIX E-1: HISTORICAL RATES, PRESSURES, AND VOLUMES
 - APPENDIX E-2: PREDICTW EQUATIONS
 - APPENDIX E-3: VISCOSITY CORRELATIONS
 - APPENDIX E-4: COMPRESSIBILITY CORRELATIONS
 - APPENDIX E-5: PREDICTED PRESSURE RISE CALCULATIONS
 - APPENDIX E-6: PREDICTED PLUME CALCULATIONS
- APPENDIX F: FORMATION FLUID ANALYTICAL DATA
 - APPENDIX F-1: FORMATION FLUID ANALYTICAL DATA
 - APPENDIX F-2: COMPATIBILITY ANALYSIS REPORT (2016)
- APPENDIX G: PRESSURE FALL-OFF TEST RESULTS
- APPENDIX H: CONSTRUCTION INFORMATION (WDW-1, WDW-2, AND WDW-3)
- APPENDIX I: INJECTION ZONE PERMEABILITY DATA
- APPENDIX J: INJECTED FLUID MONITORING PLAN
- APPENDIX K: INJECTION WELL CLOSURE PLAN
- APPENDIX L: FINANCIAL ASSURANCE DOCUMENTATION
- APPENDIX M: OPEN-HOLE LOGS (WDW-1, WDW-2, AND WDW-3)
- APPENDIX N: CASED-HOLE LOGS (WDW-1, WDW-2, AND WDW-3)
- APPENDIX O: MODIFICATIONS
- APPENDIX P: DRAFT PUBLIC NOTICE

INTRODUCTION

HollyFrontier Navajo Refining LLC (Navajo), located in Artesia, New Mexico, is applying to renew the discharge permits for Class I Non-hazardous Waste Disposal Well No. 1 (WDW-1), Waste Disposal Well No. 2 (WDW-2), and Waste Disposal Well No. 3 (WDW-3) which is located approximately ten (10) miles to the southeast of the refinery. WDW-1, WDW-2, and WDW-3 were initially permitted by the Oil Conservation Division (OCD) of the New Mexico Energy, Minerals and Natural Resources Department under the Water Quality Act in 1998 and have been operating under Permits UIC-CLI-008-1, UIC-CLI-008-2, and UIC-CLI-008-3.

The Navajo refinery is located at 501 East Main Street in Artesia, Eddy County, New Mexico. The three Class I nonhazardous waste injection wells operated by the refinery are designated WDW-1, WDW-2 and WDW-3. All three wells are permitted to inject nonhazardous waste water into a subsurface Injection Zone consisting of the lower portion of the Wolfcamp Formation and the underlying Cisco and Canyon Formations. The depth and thickness of the Injection Zone at the three Navajo refinery injection wells are as follows:

- WDW-1: 7,450 to 9,016 ft KB
- WDW-2: 7,270 to 8,894 ft KB
- WDW-3: 7,303 to 8,894 ft KB

Please note that the three Navajo injection wells were previously permitted separately coinciding with the life of the regulatory permit issued for each well. These Discharge Permits will expire on June 1, 2017. One technical report has been prepared along with three separate application forms for each of the wells.

Information concerning the locations of oil and gas wells and freshwater wells within the regulatory 1-mile radius area of review (AOR) surrounding the wells were obtained from OCD and New Mexico Water Rights Reporting System, respectively. No corrective action is needed for any of the artificial penetrations within the 1-mile radius AOR.

The regional and local geology have been evaluated, and no problems have been identified that will cause adverse effects as a result of the ongoing injection operations.

Reservoir characteristics of the Injection Zone indicate the reservoir has sufficient properties to accommodate the historical and planned future injection rate, volume and pressure from the three Navajo injection wells. Based on information gathered from the Navajo refinery injection well system, there are no adverse reactions identified with the waste stream and the well components of construction and the Injection Zone matrix and formation fluid.

WDW-1, WDW-2, and WDW-3 meet the construction and operating standards set forth in 20.6.2.5205 NMAC. A procedure to permanently plug and abandon the wells have been included per the requirements of 20.6.2.5209 NMAC.

1.0 Underground Injection Control Well Class

The Navajo refinery Waste Disposal Wells WDW-1, WDW-2, and WDW-3 are classified as Class I Non-Hazardous Waste Injection Wells.

2.0 Operator

The operator information for WDW-1, WDW-2, and WDW-3 is provided below:

Facility Address

HollyFrontier Navajo Refining LLC

501 East Main

Artesia, New Mexico 88210

(575) 748-3310

Contact Person

Randy Dade, Environmental Specialist (575) 746-5281 Lewis.Dade@hollyfrontier.com

3.0 Location

WDW-1 (API No. 30-015-27592) is located 660 feet from the south line and 2,310 feet from the east line of SW/4, SE/4, Section 31, Township 17 South, Range 28 East, Latitude 32°47'6.77"N, Longitude 104°12'50.22"W, in Eddy County, New Mexico.

WDW-2 (API No. 30-015-20894) is located 1,980 feet from the north line and 660 feet from the west line of SW/4, NW/4, Section 12, Township 18 South, Range 27 East, Latitude 32°45'49.32"N, Longitude 104°14'18.59"W, in Eddy County, New Mexico.

WDW-3 is located 790 feet from the south line and 2,250 feet from the west line of SE/4, SW/4, Section 1, Township 18 South, Range 27 East, Latitude 32°46'16.51"N, Longitude 104°13'59.80"W, in Eddy County, New Mexico.

A topographic map showing the location of the Navajo refinery, WDW-1, WDW-2, and WDW-3 is provided as Figure 1. An enlarged version of the topographic map showing the locations of the wells is provided as Figure 2.

4.0 Landowner(s)

The parcel of land where WDW-1 is located is owned by the following:

HollyFrontier Navajo Refining LLC 501 E. Main Street Artesia, New Mexico 88210 (575) 748-3311

The parcels of land where WDW-2 and WDW-3 are located are owned by the following:

U.S. Department of the Interior Bureau of Land Management 620 Greene Street Carlsbad, New Mexico 88220 (575) 887-6544

The parcels of land (Appendix A) where the wells are located are surrounded by state owned, privately owned, and Bureau of Land Management owned land.

5.0 Facility Description

The Class I non-hazardous injection wells WDW-1 and WDW-2 are located approximately 10 miles southeast of the Navajo refinery, and WDW-3 is located approximately 14 miles east of the Navajo refinery, the largest refinery in New Mexico. Drawing 1 presents an aerial photograph of the refinery's location with respect to the wellhead facilities, identifying pertinent features between the sites. The wellhead facilities are located within fenced areas that enclose the well, injection pumps, filters and piping, wellhead annulus monitoring systems (WAMS) on contained concrete pads, and power panels. The pumps and filters are located on a separate, contained concrete pad. No buildings or tanks, other than the 250 gallon glycol tank, are associated with the WAMS units.

6.0 Proposed Discharge Plan (see 20.6.2.3106C NMAC)

This permit renewal application is for three existing Class I Non-Hazardous waste injection wells. Those portions of 20.6.2.3106.C NMAC that are relevant to underground injection, especially 20.6.2.3103.C(8) NMAC, are addressed in Section 7.0 of this document.

- 6(a) is addressed in 7(f)
- 6(b) is addressed in 7(a)
- 6(c) is addressed in 7(d)
- 6(d) is addressed in 7(e)
- 6(e) measurement of flow is determined by a flow meter at each wellhead, with information transmitted electronically to the refinery control room
- 6(f) is addressed in 7(e)
- 6(g) is addressed in 7(e)

7.0 Information for Class I Non-Hazardous Waste Injection Wells and Class III Brine Wells (20.6.2.5210 NMAC)

The following sections present the information required in Subsection B of Section 20.6.2.5210 NMAC.

7 (a) Area of Review

The Area of Review (AOR) consists of a composite area within a 1-mile radius surrounding each well as shown on Drawing 2. Potential sources of information relevant to the locations of non-freshwater artificial penetrations of the injection zone and freshwater wells within the AOR were reviewed.

Non-Freshwater Artificial Penetrations in Area of Review

The locations of non-freshwater artificial penetrations (oil and gas wells, exploratory tests, disposal wells, etc.) within the composite 1-mile radius AOR surrounding WDW-1, WDW-2, and WDW-3 are identified in Drawing 2. A total of 294 non-freshwater artificial penetrations are present.

Each artificial penetration is identified by a Map ID number. Table 1A lists information about non-freshwater artificial penetrations in the AOR.

Of the 294 non-freshwater artificial penetrations identified within the composite AOR, a total of 17 wells were advanced to a depth to penetrate the top of the Injection Zone. Table 1B presents a listing of these wells. Appendix B contains NMOCD well records and constructions schematics for these non-freshwater artificial penetrations.

Freshwater Wells in Area of Review

Based upon information obtained from records maintained by the New Mexico Water Rights Reporting System, no freshwater wells exist within the AOR surrounding WDW-1, WDW-2, or WDW-3.

Drawing 3 presents a topographic map depicting the composite 1-mile radius AOR. The map illustrates surface bodies of water, mines (surface and subsurface), quarries, springs, and other surface features, including roads and residences. No subsurface faults in the AOR are known to have surface expression; therefore, no surface fault traces have been included on this map.

7 (b) Data Tabulation

Table 1A presents a tabulation of the non-freshwater artificial penetrations within the AOR. Table 1B presents a listing of wells that penetrate the Injection Zone. Appendix B contains well records and schematics for the non-freshwater artificial penetrations that penetrate the Injection Zone.

7 (c) Corrective Action

The available records for each of the artificial penetrations that penetrate the top of the Injection Zone within the AOR were evaluated to determine if corrective action would be required to prevent movement of fluids into or between Underground Sources of Drinking Water (USDW) that which could be caused by pressures in the Injection Zone. The USDWs are aquifers containing groundwater with total dissolved solids concentration of less than 10,000 milligrams per liter (mg/L). These records are contained in Appendix B.

No corrective actions are warranted because artificial penetration records reviewed for this permit indicate that the wells have been properly constructed, plugged and/or abandoned and they will prevent movement of fluids into or between USDWs, or they are still operating.

7 (d) Maps and Cross-Sections

Figure 3 presents a generalized hydrogeologic cross-section for the local area. Figure 4 presents a published map indicating the direction of shallow groundwater movement in the local area. The base of the USDW observed at each of the wells is shown in the table below.

	WDW-1 (KB = 3,693 ft MSL)			DW-2 623 ft MSL)	WDW-3 (KB = 3,625 ft MSL)		
	Depth KB (ft)	Depth (ft MSL)	Depth KB (ft)	Depth (ft MSL)	Depth KB (ft)	Depth (ft MSL)	
Base of USDW	493	3,200	473	3,151	475	3,150	

The top of the Injection Zone is separated from the base of the USDW by several thousand feet of lowpermeability carbonates, siltstones, and shale as depicted on the geologic cross-sections presented on Drawings 5, 6 and 7. A map showing the locations of the cross-sections is presented as Drawing 4 (geologic cross-section index map).

7 (e) Geology

The Navajo refinery is located in Eddy County, New Mexico, on the Northwestern Shelf of the larger Permian Basin, as shown on Figure 5. Figure 6 is stratigraphic column presenting the geologic formations relevant to the underground injection operations at the injection well locations. The refinery is located on the southern flank of the Artesia-Vacuum anticline (also referred to as the Vacuum Arch), which trends east to west across the study area as shown Figure 7. Figure 8 is a published regional structural map of the San Andres Formation.

The hree geologic cross-sections presented on Drawings 5, 6, and 7, depict the subsurface geology in the area of the Navajo injection wells. Structural dip of all geologic formations is about 100 feet/mile to the southeast away from the Vacuum Arch depicted on Figure 7.

Injection Zone

The Injection Zone into which all three injection wells at the Navajo refinery are injecting is composed of the lower portion of the Wolfcamp Formation and the underlying Cisco and Canyon Formations. These formations occur in WDW-1, WDW-2, and WDW-3 at the depths shown in the table below.

Injection	WD (KB = 3,69	W-1 93 ft MSL)		DW-2 623 ft MSL)	WDW-3 (KB = 3,625 ft MSL)		
Zone Formations	Depth KB (ft)	Depth (ft MSL)	Depth KB (ft)	Depth (ft MSL)	Depth KB (ft)	Depth (ft MSL)	
Lower Wolfcamp	7,450	3,757	7,270	3,647	7,303	3,678	
Cisco	7,816	4,123	7,645	4,022	7,650	4,025	
Canyon	8,475	4,782	8,390	4,767	8,390	4,765	
Base of Injection Zone (base of Canyon)	9,016	5,323	8,894	5,271	8,894	5,269	

The following are brief descriptions of the three geologic formations that form the Injection Zone.

Lower Portion of Wolfcamp Formation (Permian Age)

The lower portion of the Wolfcamp Formation is a light brown to tan, fine to medium grained, fossiliferous limestone with shale interbeds.

Cisco Formation (Pennsylvanian Age)

The Cisco Formation is a uniform, light-colored, chalky, fossiliferous limestone with shale interbeds.

Canyon Formation (Pennsylvanian Age)

The Canyon Formation is a white to tan to light brown fine grained, chalky, fossiliferous limestone with shale interbeds.

Drawing 8 presents a structure contour map of the Injection Zone and Drawing 9 presents an isopach map of the Injection Zone.

Confining Zone

The Confining Zone overlying the Injection Zone, in descending order, is composed of the Yeso Formation, Abo Formation, and the upper portion of the Wolfcamp Formation. The following are brief descriptions of the three geologic formations that form the Confining Zone.

Yeso Formation (Permian Age)

The Yeso Formation consists of orange shale, light gray to white dolostone, and bedded anhydrite.

Abo Formation (Permian Age)

The Abo Formation is a non-marine to marginal marine red shale and fine-grained sandstone interbedded sequence.

Upper Portion of Wolfcamp Formation (Permian Age)

The upper portion of the Wolfcamp Formation is a light brown to tan, fine to medium grained, fossiliferous limestone with shale interbeds.

Drawing 10 presents a structure contour map of the Confining Zone and Drawing 11 presents an isopach map of the Confining Zone.

Faulting

No evidence has been found of any subsurface faulting within or immediately surrounding the AOR that would provide hydraulic connection between the Injection Zone and the shallow USDW. The nearest documented subsurface fault is the "K-M" fault located approximately 17 miles to the northwest, well outside the geologic study area for the Navajo refinery injection wells.

Seismicity

The southeastern portion of New Mexico is historically an area of low seismicity with naturally occurring earthquakes being rare and of low magnitude. The Navajo refinery is located in one of the areas recognized as having the lowest level of seismic risk in the continental United States (Figure 9).

The potential for earthquakes to occur in the vicinity of the Navajo site are minimal. Appendix C presents a listing of all recorded seismic events within 200 miles of the Navajo refinery for the period from 1973 through 2012.

The injection operations at the Navajo refinery do not have the potential to cause any seismic activity which could alter the confining capability of the subsurface Injection Zone and overlying Confining Zone.

Surface Geology and Flooding Potential

The surface geology of the local area is shown on Figure 10. The Pecos River, located about three miles east of Artesia is the only surface water body in the area of the Navajo refinery. Local annual rainfall is approximately 13.5 inches. As indicated on the topographic map on Figure 1, the land surface elevation

at the refinery is higher than that near the river; therefore, the potential for flooding at the Navajo refinery is minimal.

7 (f) Proposed Operating Parameters

Source and Description of Injection Fluid

The fluid injected into the Navajo injection wells is comprised of exempt and nonexempt non-hazardous oilfield waste that is generated in the refining process. Waste waters from process units, cooling towers, boilers, streams from water purification units, desalting units, recovered and treated ground water, and general waste waters will be blended to form the fluid to be injected into the injection wells. Table 2 and Appendix D present data characterizing the injection fluid.

Average and Maximum Daily Flow Rate and Volume

The maximum permitted composite injection rate into all three Navajo injection wells is 800 gallons per minute (gpm). This rate of injection is equal to 1,152,000 gallons per day or 420,480,000 gallons per year or 2,102,400,000 gallons into the injection zone over the upcoming 5-year permit time frame per well. The historical daily volumes of fluid injected into the three injection wells are summarized in Appendix E-1.

Average and Maximum Surface Injection Pressure

The average wellhead injection pressure is approximately 817 pounds per square inch gauge (psig) and an estimated bottom-hole pressure of 4,167 pounds per square inch absolute (psia). Appendix E-1 includes a tabulation of historical injection rates and associated surface injection pressures.

Maximum Allowable Surface Injection Pressure (MASIP) Calculation

As required by the New Mexico Oil Conservation Division (NMOCD) Proposed Rule 21.B(7), dated October 6, 1997, the maximum operating injection wellhead pressure (MASIP) will not exceed:

- 1,585 psi or 0.2 psi per foot of depth to the top of the injection zone at 7,924 feet in WDW-1;
 MASIP =7,924 feet x 0.2 psi/ft = 1,585 psi
- 1,514 psi or 0.2 psi per foot of depth to the top of the Injection Zone at 7,570 feet in WDW-2; MASIP =7,570 feet x 0.2 psi/ft = 1,514 psi
- 1,460 psi or 0.2 psi per foot of depth to the top of the injection zone at 7,303 feet in WDW-3;
 MASIP = 7,303 feet x 0.2 psi/ft = 1,460 psi

7 (g) Formation Testing Program

Formation testing was conducted during the initial construction of the Navajo refinery injection wells to obtain site-specific data relating to the chemical, physical and radiological characteristics of the injection zone.

The analysis of formation fluids can be found in Appendix F-1. The three wells were converted oil and gas wells and no cores were cut from the confining zone or injection intervals. Correlations were made using data from offset wells.

7 (h) Fluids and Pressure

The following are descriptions of the changes in reservoir conditions that have been observed to-date and the predicted changes over the upcoming 5-year permit time frame for WDW-1, WDW-2, and WDW-3. This information is based on the known historical rates and volumes that have been injected into the wells and the future 5-year emplacement of the permitted maximum volume at the maximum permitted injection rate between the three wells of 800 gpm.

The interface between injected waste and the formation brine (the waste front) expands radially from the wellbores in each well. As fluid is injected, the injection zone will continue to pressurize due to the resistance of fluid movement and the compression of the fluid and rock matrix.

Current Cone of Influence and Waste Plume Front

The maximum lateral spread of the waste front and the predicted pressure rise during the operational life of WDW-1, WDW-2, and WDW-3 to-date were initially calculated and included in the original permit application.

Calculated Cone of Influence (Current)

The current cone of influence within the injection zone is presented on Drawing 12. The current cone of influence is based on the injection operations through December 31, 2016.

Calculated Plume Front Migration (Current)

The radius of the current dispersed plume for the wells are:

- WDW-1: 4,274 feet
- WDW-2: 3,707 feet (WDW-2 is approximately 7,850 feet from WDW-1)
- WDW-3: 2,911 feet (WDW-3 is approximately 7,900 feet from WDW-1)

Future Cone of Influence and Waste Plume Front

The maximum predicted pressure rise during the upcoming 5-year permit time frame for WDW-1, WDW-2, and WDW-3 were calculated using the software program PredictW. The equations used in the program are presented in Appendix E-3.

The plume fronts for each well were calculated using the equations from Warner and Lehr (1977)

Calculated Cone of Influence (5 Years)

The predicted cone of influence can be found on Drawings 13 through 16. The following four analyses were performed for the cone of influence calculations:

- 1. Injection into WDW-1 and WDW-2 with no injection into WDW-3 (Drawing 13).
- 2. Injection into WDW-1 and WDW-3 with no injection into WDW-2 (Drawing 14).
- 3. Injection into WDW-2 and WDW-3 with no injection into WDW-1 (Drawing 15).
- 4. Injection into WDW-1, WDW-2 and WDW-3 (Drawing 16).

The cone of influence is defined as the area with increased injection zone pressures caused by injection of wastes which would be sufficient to cause vertical fluid movement through any wellbore or other conduits into a USDW. This demonstration shows that the conservative worst-case cone of influence of the injection operations is smaller than the regulatory 1-mile composite radius AOR in which artificial penetrations were investigated.

In the worst case, an undocumented abandoned well is imagined to be open to both the injection zone and the base of the USDW. In addition, the well is filled to within 100 feet of the ground surface with formation brine from the injection zone and fresh water from the base of the USDW. The cone of influence can be calculated by comparing the hydraulic heads of the injection zone and the lowermost USDW. It is only where the injection zone head is above the USDW head that fluid movement from the injection zone into the USDW could occur. This worst-case model of the potential effect of injection on the USDW is conservative. No wells within the 1-mile composite radius AOR surrounding the wells are open to both the injection zone and the USDW and they are filled with brine.

On July 25, 1998, formation fluid was swabbed from the perforations of the deeper Cisco interval between 8,220 feet and 8,476 feet in WDW-1. The total dissolved solids (TDS) concentration of the sample was 33,000 milligrams per liter (mg/L), and the specific gravity of the sample at room temperature was 1.034. On July 29, 1998, formation fluid was swabbed from the perforations of the shallower Cisco interval between 7,924 feet and 8,188 feet in WDW-1. The analysis of a sample of this fluid indicated that the TDS concentration of the sample was 18,000 mg/L, and the specific gravity at room temperature was 1.018. The chemical analysis of the formation fluid samples is included as Appendix F-1. These values compare favorably with information from the analysis of fluid retrieved during drill-stem test (DST) No. 5, which was conducted on August 26, 1993 in WDW-1 (Appendix F-1). The salinity of the formation fluid retrieved during DST No. 5 was reported as having a chlorides concentration of 25,000 mg/L. The formation fluid is therefore assumed to have a sodium chloride concentration of 25,000 mg/L. The specific gravity of the formation brine was approximately 1.02.

The pre-injection pressure of the injection interval was measured on July 30, 1998 in WDW-1 to be 2,928 psia at 7,911 feet below ground level (BGL). Using the reservoir brine with the lightest specific gravity (1.018) will yield a high initial pressure, P_i, which is conservative. The pre-injection pressure, P_i, at the top of the injection zone in WDW-1 at 7,924 feet BGL is 2,934 psia, and is calculated as follows:

 $P_{i}(7,924 \text{ feet}) = P_{i}(7,911 \text{ feet}) + (7,924 \text{ feet} - 7,911 \text{ feet}) (0.433 \text{ psi/ft}) (1.018)$ = 2,928 psia + 6 psi = 2,934 psia

The hydraulic head of the lowermost USDW is estimated to be 100 feet BGL. This estimate is reasonably conservative, as it is based on a static water level measurement of 81 feet.

The critical pressure, P_c at 7,924 feet BGL that would be necessary to raise the hydrostatic head of the injection interval to the head of the lowermost USDW at 100 feet BGL is 3,446 psia, and is calculated as follows:

Pc	=	(Top of Injection Zone - Base of USDW) (0.433 psi/ft)(1.018)
		+ (Base of USDW - Head of USDW) (0.433 psi/ft)
	=	(7,924 feet - 493 feet) (0.433 psi/ft) (1.018)
		+ (493 feet - 100 feet) (0.433 psi/ft)
	=	3,446 psia

The critical increase in reservoir pressure, ΔP_c , above the native pressure that is necessary to raise the hydrostatic head of the injection zone to the head of the lowermost USDW is 512 psi, and is calculated as follows:

$$\Delta P_c = P_c - P_i$$

= 3,446 psia - 2,934 psia
= 512 psi

An increase in reservoir pressure greater than 512 psi would be sufficient to raise the head of the Injection zone above the head of the lowermost USDW. The cone of influence is the area around the injection wells within which the increase in reservoir pressure caused by injection is greater than 512 psi.

The gridded pressure increases created with PredictW were contoured using Surfer, a commercial contouring software package. Contour plots of the predicted pressure increase in the injection zone (Drawings 13 through 16) were generated using historical injection rates and volumes and the permitted maximum injection rate of 800 gpm over the upcoming 5-year permit time frame.

Conservative values for reservoir thickness and permeability were used to overestimate the predicted increase in reservoir pressure. The porosity was assumed to be 10 percent. The reservoir was assumed to have a thickness of 85 feet. The permeability of the reservoir was assumed to be 251 millidarcies (md). The modeled permeability-thickness, kh, of 21,335 millidarcy-ft (md-ft) (251 md x 85 feet), is approximately 18 percent of the kh, of 115,670 md-ft, that was determined from the pressure falloff test conducted in WDW-1 between September 21, 2012 and September 23, 2012 (Appendix G). Using a low kh yields a predicted pressure increase that is greater than expected and a cone of influence that is larger than expected.

The viscosity of the formation fluid with TDS concentration of 25,000 ppm at $130 \,^{\circ}$ F is 0.53 cp (Appendix E-3). The compressibility of the pore volume of the formation is c r, is 5.5 x 10^{-6} psi ⁻¹. The compressibility

of the formation fluid is c w, is 2.9 x 10 ⁻⁶ psi ⁻¹. The total compressibility (c t = c r + c w) is 8.4 x 10 ⁻⁶ psi ⁻¹ (Appendix E-4).

Historical injection data for WDW-1, WDW-2 and WDW-3 were used for the injection period from September 23, 1999 (initial injection at the site) through December 31, 2012. WDW-1, WDW-2 and WDW-3 were then modeled as injecting from January 1, 2013 through December 31, 2017 at a continuous rate of 800 gpm distributed among the three wells. The maximum modeled per-well injection rate for any one well is 400 gpm.

The 512-psi pressure-increase contour, which defines the outline of the worst-case cone of influence, is located less than one mile from WDW-1, WDW-2, and WDW-3, as shown on Drawing 16. An improperly abandoned wellbore or other conduit filled with formation fluid that is located farther than one mile from the proposed wells would not transmit sufficient pressure from the injection zone to move fluids into the USDW. Navajo researched public and private sources of information about wells within the 1-mile radius AOR. Information is presented in Section 7 (b) that demonstrates that each of the injection zone penetrations is properly constructed to prevent migration of fluids into the USDW. The output from PredictW is presented in Appendix E-5.

Modeled Plume Front Migration (to December 31, 2022)

The lithologic character of the injection zone, with the resulting hydrodynamic characteristics, is expected to be horizontally uniform. Given the anticipated homogeneity of the injection zone, plume geometry during the active injection phase is expected to be cylindrical.

More than 175 feet of formation is anticipated to exist in the injection zone at the locations of the three Navajo injection wells. Each well is completed in the same interval with 100 to 200 feet of perforations per well. For a conservative estimate of the injection plume size, the plume radius is calculated on the basis of all flow emplaced in an 85-foot thick interval. Based on historical injection data, the volume of fluid injected through January 1, 2017 are listed below. Assuming a continuous injection rate of 400 gpm over a 5-year injection period, the additional future volume which can be injected will be 1,051,200,000 gallons in any well. The following summarizes the plume radii for each well:

WDW-1

- Current plume radius (January 1, 2017): 4,274 feet
- Projected plume radius (January 1, 2022: 5,308 feet

WDW-2 (located approximately 7,850 feet from WDW-1)

- Current plume radius (January 1, 2017): 3,707 feet
- Projected plume radius (January 1, 2022: 4,886 feet

WDW-3 (located approximately 7,900 feet from WDW-1)

- Current plume radius (January 1, 2017): 2,911 feet
- Projected plume radius (January 1, 2022: 4,359 feet

Details of the plume radius calculations for WDW-1, WDW-2, and WDW-3 are presented in Appendix E-6.

7 (i) Stimulation Program

Historical Information

The only stimulation performed on the well has consisted of acid treatments of which the majority was performed through coil tubing pumped across the existing perforation. No fracturing of the injection interval has been performed.

Future Stimulation Programs and Procedures

Currently, no changes are planned in the way the wells are stimulated. Navajo reserves the right to fracture the injection interval with approval from NMOCD. Approximately once every two years an acid stimulation is performed on the wells. The stimulation procedure will consist of pumping 4,000 gallons to 8,000 gallons of 15 percent NEFE Hydrochloric acid through coil tubing at 1 bpm to 2 bpm across the perforations. The acid will be displaced into the formation down the tubing at the highest possible rate.

7 (j) Injection Procedure

Injection into all three Navajo injection wells is on a continuous basis. The injection fluid is routed from the refinery process areas via pipeline to each injection well. Figure 11a, 11b, and 11c present the pre-injection facilities for each well.

Historical Injection Rates and Volumes

The historical rates and volumes can be found in Appendix E-1.

Predicted Injection Rates and Volumes

The maximum permitted composite injection rate into all three Navajo injection wells is 800 gpm. This rate of injection is equal to 1,152,000 gallons per day or 420,480,000 gallons per year or 2,102,400,000 gallons into the injection zone over the upcoming 5-year permit time frame for WDW-1.

The maximum permitted composite injection rate into all three Navajo injection wells is 800 gpm. This rate of injection is equal to 1,152,000 gallons per day or 420,480,000 gallons per year or 2,102,400,000 gallons into the Injection Zone over the upcoming 5-year permit time frame for WDW-2.

The maximum permitted composite injection rate into all three Navajo injection wells is 800 gpm. This rate of injection is equal to 1,152,000 gallons per day or 420,480,000 gallons per year or 2,102,400,000 gallons into the Injection Zone over the upcoming 5-year permit time frame for WDW-3.

7 (k) Drawings

Figures 11a, 11b, and 11c present a schematic of the pre-injection surface facilities. Figures 12a, 12b, and 12c present as-built diagrams of the below-grade portions of the wells. Figure 13a, 13b, and 13c present as-built diagrams of the wellheads.

7 (I) Construction

WDW-1 was converted from the following oil and gas well originally drilled to a depth of 10,200 feet in 1993:

Mewbourne Oil Company Chalk Bluff "31" State Section 31, Township 17 South, Range 28 East (API No. 30-015-27592)

The oil and gas well was re-entered in 1998 and converted to Injection Well WDW-1. Appendix H includes a copy of the report documenting the well conversion that provides relevant information about how the well was originally constructed and how it was converted to an injection well. Figure 12a presents an asbuilt diagram of the below-grade portions of WDW-1. Figure 13a presents an as-built diagram of the WDW-1 wellhead.

WDW-2 was converted from the following oil and gas well originally drilled to a depth of 10,200 feet in 1973:

The Eastland Oil Company Chukka Federal No. 2 Section 12, Township 18 South, Range 27 East (30-015-20894)

The oil and gas well was re-entered in 1999 and converted to Injection Well WDW-2. Appendix H includes excerpts from a report documenting the well conversion that provides relevant information about how the well was originally constructed and how it was converted to an injection well. Figure 12b presents an asbuilt diagram of the below-grade portions of WDW-2. Figure 13b presents an as-built diagram of the WDW-2 wellhead.

WDW-3 was converted from the following oil and gas well originally drilled to a depth of 9,450 feet in 1991:

Mewbourne Oil Company Navajo Chalk Bluff Federal No. 1 Section 1, Township 18 South, Range 27 East (API No. 30-015-26575)

The oil and gas well was converted to an injection well (WDW-3) in 2006. Appendix H includes excerpts from a report documenting the well conversion that provides relevant information about how the well was originally constructed and how it was converted to an injection well. Figure 12c presents an as-built diagram of the below-grade portions of WDW-3. Figure 13c presents an as-built diagram of the WDW-3 wellhead.

General Description of the WDW-1

Size, Type, and Depth of Injection Tubing: The information for the tubing string was obtained from NMOCD records on file with the state and geophysical logs.

- **Tubing**: 4 1/2-inch, 11.6 pound per foot, steel construction, API grade N-80, with long thread connections (LTC) set at 7,879.
- Packer: Arrow X-1, 7-inch by 3 1/2-inch set at 7,879 feet.

Size, Type, and Depth of Casing: There are three casing strings in the well. The information for these casing strings was obtained from NMOCD records on file with the state and geophysical logs.

- **13-3/8-inch**, 48.0 pound per foot, steel construction, API grade J-55, with short thread connections (STC), set at a depth of 390 feet back to surface. The casing was cemented to the surface with 525 sacks of cement. The casing was set in an open hole with a diameter of 17.5 inches. This information was obtained from NMOCD records.
- **9-5/8-inch**, 36.0 pound per foot, steel construction, API grade J-55, STC, set at a depth of 2,555 feet back to surface. The casing was cemented to the surface with 1,000 sacks of cement. The casing was set in an open hole with a diameter of 12.25 inches. This information was obtained from NMOCD records.
- **7-inch**, 29.0 pound per foot, steel construction, API grade N-80, with long thread connections (LTC), set at a depth of 9,094 feet to 7,031 feet; 29.0 pound per foot, steel construction, API grade P-110, LTC from 7,031 feet to 5,845 feet; and 26.0 pound per foot, P-110, LTC at 5,845 feet back to surface. The casing was cemented to the surface with 1,370 sacks of cement. The casing was set in an open hole with a diameter of 8.75 inches.

The original oil and gas well was drilled to a total depth of 10,200 feet. When the well was converted to an injection well in 1999, a cement plug was set from 9,624 to 9,734 feet and 7-inch protection casing was set at 9,094 feet. A bottom plug was installed into the base of the 7-inch casing with the top of the plug tagged at 9,004 feet. The 7-inch protection casing was perforated with a 0.5-inch diameter hole at 2 shots per foot on a 60° phasing. The perforations are located between 7,924 feet and 8,188 feet and from 8,220 feet to 8,476 feet as depicted on Figure 12a.

Pipe Size	Туре	Weight	Depth Ref. to Kelly Bushing Level (12.5 ft above GL)		Hole Size	Cement Volume	Collapse	Yield
(in)		(lb/ft)	Тор	Bottom	(in)	(sks)	(psi)	(psi)
13-3/8	Conductor Casing, J-55	48	Surface	390	17.5	525	1130	2730
9-5/8	Surface Casing	36	Surface	2555	12.25	1000	2020	3520
7	Protection, J-55 Casing, N-80, P-110	29 & 26	Surface	9094	8.75	1390	5410	7240
4-1/2	Injection Tubing, N-80	11.6	Surface	7879	6.184	N/A	4960	5350
7x 2-7/8	Arrow X-1 Packer	N/A	7871	7879	2.5	N/A	N/A	N/A

Current Loading on Pipe and Pipe Specifications for WDW-1

General Description of the WDW-2

Size, Type, and Depth of Injection Tubing: The information for the tubing string was obtained from NMOCD records on file with the state and geophysical logs.

- **Tubing**: 3 1/2-inch, 9.2 pound per foot, steel construction, API grade J-55, with long thread connections (LTC) set at 7,528.
- Packer: Arrow X-1, 5-1/2-inch by 2 7/8-inch set at 7,528 feet.

Size, Type, and Depth of Casing: There are three casing strings in the well. The information for these casing strings was obtained from NMOCD records on file with the state and geophysical logs.

- **8-5/8-inch**, 32.0 pound per foot, steel construction, API grade J-55, STC, set at a depth of 1,995 feet back to surface. The casing was cemented to the surface with 800 sacks of cement. The casing was set in an open hole with a diameter of 11.0 inches. This information was obtained from NMOCD records.
- **5-1/2-inch**, 17.0 pound per foot, steel construction, API grade L-80, with long thread connections (LTC), set at a depth of 8,869 feet. The casing was cemented to the surface in two stages using 1,570 sacks of cement. The casing was set in an open hole with a diameter of 7-7/8 inches.

The original oil and gas well was drilled to a total depth of 10,372 feet. When the well was converted to an injection well in 1999, a cement plug was set at 9,675 to 9,775 feet and 5-1/2-inch protection casing was

set at 8,869 feet. A bottom plug was installed into the base of the 5-1/2-inch casing with the top of the plug tagged at 8,770 feet. The 5-1/2-inch protection casing was perforated with a 0.5-inch diameter hole at 2 shots per foot on a 60° phasing. The perforations are located between 7,570 feet and 7,736 feet and from 7,826 feet to 8,399 feet as depicted on Figure 12b.

and a set of the set o								
Pipe Size	Туре	Weight	eight Depth Ref. to Kelly Bushing Level (12.5 ft above GL)		Hole Size	Cement Volume	Collapse	Yield
(in)		(lb/ft)	Тор	Bottom	(in)	(sks)	(psi)	(psi)
8 5/8	Surface Casing, J-55	32	Surface	1,995	11.0	800	2,530	3,930
5½	Protection Casing, L-80	17	Surface	8,869	7.875	1,570	6,280	7,740
31⁄2	Injection Tubing, J-55	9.2	Surface	7,528	4.892	N/A	N/A	N/A
5½ x2 7/8	Arrow X-1Packer	N/A	7,526	7,528	4.892	N/A	N/A	N/A

Current Loading on Pipe and Pipe Specifications for WDW-2

General Description of the WDW-3

Size, Type, and Depth of Injection Tubing: The information for the tubing string was obtained from NMOCD records on file with the state and geophysical logs.

- **Tubing**: 4-1/2-inch, 11.6 pound per foot, steel construction, API grade J-55, with long thread connections (LTC).
- Packer: Arrow X-1, 7-inch by 2-7/8-inch set in tension (37,000 pounds) at 7,575 feet.
- **Tubing Length**: 7,568 feet with a 0.54-foot, 4-1/2-inch by 2-7/8-inch crossover in the top of the packer. There are no profile nipples in the tubing or the packer as this was not a requirement of the permit.

Size, Type, and Depth of Casing: There are four casing strings in the well and one below the injection interval. The information for these casing strings was obtained from NMOCD records on file with the state and geophysical logs.

- **13-3/8-inch**, 54.5 pound per foot, steel construction, API grade J-55, with short thread connections (STC), set at a depth of 400 feet. The casing was cemented to the surface with 425 sacks of cement. The casing was set in an open hole with a diameter of 17.5 inches. This information was obtained from NMOCD records.
- **9-5/8-inch**, 36 pound per foot, steel construction, API grade J-55, STC, set at a depth of 2,604 feet. The casing was cemented to the surface with 1,025 sacks of cement. The casing was set in an open hole with a diameter of 12.25 inches. This information was obtained from NMOCD records.

• **7-inch**, 26 pound per foot steel construction, API grade N-80 and P-110, STC, set at a depth of 9,450 feet. The casing was cemented with 1,350 sacks of cement to 900 feet from the surface. The casing was set in an open hole with a diameter of 8.75 inches. The top of cement and weight of the pipe was verified with a CBL and caliper log run on October 13, 2006. The remainder of the information was obtained from NMOCD records.

Below the cement plug at 9,022 feet is the top of a 4-1/2-inch liner. The liner is a string of 4-1/2-inch casing installed to a depth of 10,119 feet. There is a cast iron bridge plug set in the liner at 9,800 feet, which is above the original perforations between 9,861 feet and 9,967 feet. The current injection interval is above the plug at 9,022 feet. The cement plug also isolates the lower section of the original wellbore. This information was obtained from NMOCD records.

The top of cement was determined from a CBL that was run in the 7-inch casing string on October 13, 2006. The top of cement in the 7-inch casing was found at 900 feet below the surface. The top of cement in the 9-5/8-inch and 13-3/8-inch casing strings was verified through NMOCD records and volume calculations.

The 7-inch casing was perforated on October 14 and 15, 2006. The casing was perforated with a 0.5-inch diameter hole at 2 shots per foot on a 60° phasing. The perforations are located between 7,660 feet and 8,450 feet and from 8,540 feet to 8,620 feet as depicted on Figure 12c.

The total depth of the well is 10,119 feet with the plug back depth at 9,022 feet. On August 30, 2009, fill was tagged at 8,986 feet.

			Danit	Def te		0.0000000000000000000000000000000000000		
Pipe Size	Туре	Weight	Depth Ref. to Ground Level (ft)		Hole Size	Cement Volume	Collapse	Yield
(in)		(lb/ft)	Тор	Bottom	(in)	(sks)	(psi)	(psi)
13-3/8	Conductor Casing, J-55	54-1/2	Surface	400	17.5	425	1130	2730
9-5/8	Surface Casing	36	Surface	2604	12.25	1025	2020	3520
7	Protection, J-55 Casing, N-80, P-110	26 & 29	Surface	9450	8.75	1350	5410	7240
4-1/2	Injection Tubing, J-55	11.6	Surface	7561	6.184	N/A	4960	5350
7x 2-7/8	Arrow X-1 Packer	N/A	7561	7569	2.5	N/A	N/A	N/A
4-1/2	Liner, N-80	11.6	9051	10119	6.5	175	6350	7780

Current Loading on Pipe and Pipe Specifications for WDW-3

Depth to Injection Zone

The WDW-1 Injection Zone is 7,450 to 9,016 feet (MD below KB), and the Injection Interval (perforated interval) is 7,924 to 8,476 feet (MD below KB) as depicted on Figure 12a.

The WDW-2 Injection Zone is 7,270 to 8,894 feet (MD below KB). And the Injection Interval (perforated interval) is 7,570 to 8,399 feet (MD below KB) as depicted on Figure 12b.

The WDW-3 Injection Zone is 7,303 to 8,894 feet (MD below KB), and the Injection Interval (perforated interval) is 7,660 to 8,620 feet (MD below KB) as depicted on Figure 12c.

Pressures and Other Stresses That May Cause Well Failure

There are no known pressures or stresses that may cause failure in any of the wells.

Hole Size

The borehole advanced for the original oil and gas well that was later converted to WDW-1 was 12.25 inches in diameter.

The borehole advanced for the original oil and gas well that was later converted to WDW-2 was 11.0 inches in diameter.

The borehole advanced for the original oil and gas well that was later converted to WDW-3 was 12.25 inches in diameter.

Well Casing Information

Figures 12a, 12b, and 12c and Appendix H include information about the well casing for each of the wells. The preceding tables ("Current Loading on Pipe and Pie Specifications") provide overviews of the casing information.

Cement Information

Figure 12a, 12b, and 12c and Appendix H include information about the cement in each well.

Rate, Temperature and Volume of Injected Fluid

Average and Maximum Daily Flow Rate and Volume

The average injection rate for all three Navajo injection wells is approximately 400 gpm and the maximum permitted injection rate between the three wells is 800 gpm.

Temperature

The temperature of the injected fluid is within average ambient temperature ranges.

Volume of Injected Fluid

The maximum annual volume of injected fluid, based on a maximum composite injection rate of 800 gpm between the three injection wells is 420,480,000 gallons.

Chemical and Physical Characteristics of Injected Fluid

The fluid injected into the wells is comprised of exempt and nonexempt non-hazardous oilfield waste that is generated in the refining process. Waste waters from process units, cooling towers and boilers, streams from water purification units and desalting units, recovered and treated groundwater, and general wash waters are blended to form the fluid injected. Table 2 and Appendix D present data characterizing the injection fluid.

Chemical and Physical Characteristics of Formation Fluid

Formation testing was conducted during the initial construction of the Navajo refinery injection wells to obtain site-specific data relating to the chemical, physical and radiological characteristics of the Injection Zone. The formation fluid contained in the Injection Zone is compatible with the well construction components and the injected fluid.

Formation fluid information pertinent to the reservoir calculations is included in Appendix E.

Chemical and Physical Characteristics of the Receiving Formation

The Injection Zone is porous carbonates of the lower portion of the Wolfcamp Formation, the Cisco Formation, and the Canyon Formation.

The lower portion of the Wolfcamp Formation (Lower Wolfcamp) is the shallowest porous unit in the proposed injection interval. The Wolfcamp Formation (Permian-Wolf campaign age) consists of light brown to tan, fine to medium-grained, fossiliferous limestones with variegated shale interbeds (Meyer, 1966, page 69). The top of the Wolfcamp Formation was correlated for this study to be below the base of the massive, dense dolomites of the overlying Abo Formation. The base of the Wolfcamp coincides with the top of the Cisco Formation. The thickness of log porosity greater than 5 percent in the entire Wolfcamp Formation ranges from 0 feet to 295 feet in a band three miles wide that trends northeast-southwest across the study area.

The Cisco Formation (Pennsylvanian-Virgilian age) of the Northwest Shelf is described by Meyer (1966, page 59) as consisting of uniform, light colored, chalky, fossiliferous limestones interbedded with variegated shales. Meyer (1966, page 59) also describes the Cisco at the edge of the Permian basin as consisting of biothermal (mound) reefs composed of thick, porous, coarse-grained dolomites. Locally, the Cisco consists of porous dolomite that is 659 feet thick in WDW-1, 745 feet in WDW-2, and 720 feet in WDW-3. The total thickness of intervals with log porosity greater than 5 percent is approximately 310 feet in WDW-1, 580 feet in WDW-2, and 572 feet in WDW-3. The total thickness with log porosity greater than 10 percent is approximately 100 feet in WDW-1, 32 feet in WDW-2, and 65 feet in WDW-3. The thickness of the porous intervals in the Cisco ranges from 0 feet in the northwestern part of the study area to nearly 700 feet in a band three miles wide that trends northeast-southwest.

The Canyon Formation (Pennsylvanian-Missourian age) consists of white to tan to light brown fine grained, chalky, fossiliferous limestone with gray and red shale interbeds (Meyer, 1966, page 53). Locally, the Canyon occurs between the base of the Cisco dolomites and the top of the Strawn Formation (Pennsylvanian-Desmoinesian age). The total thickness of intervals with log porosity greater than 5 percent is 34 feet in WDW-1, 30 feet in WDW-2, and 10 feet in WDW-3. No intervals appear to have log porosity greater than 10 percent in any of the three injection wells.

Permeability measurements that range from less than 100 md to 2,733 md are available for the Lower Wolfcamp-Cisco-Canyon injection zone. Permeability measurements from hydrocarbon-producing intervals in the Wolfcamp, Cisco, and Canyon from Meyer (1966, Table) are summarized in Appendix I. Meyer reported permeabilities in the Cisco of up to 114 millidarcies (md), up to 38 md in the Canyon, and up to 200 md in the Wolfcamp.

Permeability was estimated to be 597 md from DST No. 5 conducted in WDW-1 on August 26, 1993. DST No. 5 was conducted near the top of the Cisco Formation from 7,817 feet to 7,851 feet (Appendix I).

Historical falloff data obtained during the life of the wells shows that the permeability ranges from 500 md to 1,000 md throughout the injection interval.

Chemical and Physical Characteristics of the Confining Zone

The Confining Zone extends from 4,000 feet to 7,450 feet in WDW-1, from 4,120 feet to 7,270 feet in WDW-2, and from 4,030 feet to 7,303 feet in WDW-3. The Confining Zone includes massive low-porosity carbonate beds and layers of shale in the Upper Wolfcamp, Abo, and Yeso Formations that will confine the injected fluids to the permitted Injection Zone (Lower Wolfcamp, Cisco, and Canyon Formations). The formations that comprise the Confining Zone are described below.

The Injection Zone is directly overlain by the confining layers of the upper portion of the Wolfcamp Formation. Three (3) DSTs were conducted in the upper portion of the Wolfcamp in WDW-1, in the interval from 7,016 feet to 7,413 feet, that indicate that the interval has low permeability and can confine injected fluids to the injection zone. An average permeability of 0.36 md was calculated from the data from DST No. 3, as follows:

$$k = 162.6 \frac{q \ B \ \mu}{mh}$$

$$= 162.6 \frac{(20 \ bbl/ \ 89 \ min \ x \ 1440 \ min/day)(1 \)(0.53 \ cp)}{(570.883 \ psi/cycle) \ (7382 \ feet \ - \ 7230 \ feet)}$$

$$= 162.6 \frac{(323.6 \ bpd)(1)(0. \ 53 \ cp)}{(570.883 \ psi/cycle) \ (152 \ feet)}$$

$$= 0.36 \ md$$

A permeability on the order of 0.1 md is at the low end of the permeability range for carbonates, and is at the high end of the permeability range for shales, according to Freeze and Cherry (1979, p. 29).

Therefore, the low-permeability carbonates of the upper Wolfcamp will provide the first level of confinement for the Injection Zone.

The Abo Formation overlies the Wolfcamp and extends from 5,400 feet to 6,890 feet in WDW-1, from 5,506 feet to 6,728 feet in WDW-2, and from 5,380 feet to 6,745 feet in WDW-3. Although the Abo is well known as a major oil producer in the AOR, the producing intervals lie in the upper Abo, whose equivalents are above 6,100 feet in WDW-1 and above 6,200 feet in WDW-2. The deepest Abo test well in the area is located 6,000 feet east (downdip) of WDW-3 and was drilled to 6,412 feet. No Abo production in the area has been established below 6,298 feet, the producing interval in Map ID No. 112, located 3,800 feet southeast (downdip) of WDW-1. The base of the producing interval within the Abo Formation in the AOR, therefore, is over 900 feet above the top of the injection zone. The lower 600 feet of the Abo Formation (below the deepest producing interval in the AOR), consisting primarily of dolomite with an average porosity less than 5 percent and interbedded shale, will serve as the secondary confining layer above the proposed injection zone.

The Yeso Formation, which will provide additional confining capabilities, directly overlies the Abo Formation. The top of the Yeso is not consistently identified in the AOR, according to well records submitted to the NMOCD and available scout tickets. However, the top of the Confining Zone can be considered to extend to the top of the low-porosity limestone interval below the higher-porosity dolomites below the Glorieta Member of the San Andres Formation (at 4,000 feet in WDW-1, 4,120 feet in WDW-2, and 4,030 feet in WDW-3). The Yeso consists of low-porosity carbonates and clastic beds. The Tubb shale, a shale interval that is up to 150 feet thick in some wells in the study area, also occurs in this interval. Although no faults are known to exist in the confining zone within the AOR, the Tubb shale will serve to prevent movement of fluids through a hypothetical unknown fault.

Depth, Thickness and Chemical Characteristics of Penetrated Formations Containing Ground Water

The base of the USDW, groundwater with total dissolved solids concentration with less than 10,000 milligrams per liter (mg/L), occurs at the base of the Tansill Formation. Figure 3 presents a hydrostratigraphic cross-section for the local area. Figure 4 presents a potentiometric surface map indicating the direction of groundwater movement in the freshwater aquifers.

The base of the USDW occurs at the following approximate depths in Navajo's three injection wells:

- WDW-1: approximately 493 feet KB (3,200 feet above mean sea level)
- WDW-2: approximately 473 feet KB (3,150 feet above mean sea level)
- WDW-3: approximately 420 feet KB (3,150 feet above mean sea level)

In the eastern part of the study area, at depth, the Tansill Formation is overlain by the Salado Formation (Permian - Ochoan age). The Salado consists of halite, polyhalite, anhydrite, and potassium salts, which are soluble. The Salado is overlain by the Rustler Formation (Permian - Ochoan age). In the AOR, which straddles the outcrop area of the Salado, and to the east, the Salado has been removed by solution by ground water flowing through the Rustler.

To the east, where the Rustler is present, the Rustler is the USDW. To the west, where the Rustler has been removed by erosion and the Salado has been removed by solution, the Tansill is the USDW. The Tansill Formation and the underlying Yates Formation comprise the Three Twins Member of the Chalk

Bluff Formation known in outcrops in the region (Hendrickson and Jones, 1952, page 20), and listed as a freshwater-producing interval.

The top of the Injection Zone (Lower Wolfcamp, Cisco, and Canyon Formations) is separated from the base of the USDW by several thousand feet of lower permeability carbonates, siltstones and shales as follows:

- WDW-1: 6957 feet (7,450 feet 493 feet)
- WDW-2: 6,797 feet (7,270 feet 473 feet).
- WDW-3: 6,883 feet (7,303 feet 420 feet).

7 (m) Contingency Plans

The wells are equipped with a high-level shutoff switch to prevent operation of the injection pump at pressures greater than the designated MASIP. The wells are equipped with a low pressure shutoff switch that will deactivate the injection pump in the event of a surface leak. In addition, the wells are equipped with a high/low pressure shutdown switch with a pressure sensor on the tubing/casing annulus. This pressure switch is intended to stop the injection pump in the event of 1) a tubing leak, or 2) a casing, packer, or wellhead leak.

If an alarm or shutdown is triggered, the cause of the alarm or shutdown will be immediately investigated.

- Immediately cease injection operations;
- Take all necessary steps to determine the presence or absence of a leak; and
- Provide verbal notification to NMOCD within 24 hours.

If the alarm or shutdown is not related to mechanical integrity and the cause of the alarm or shutdown is corrected, injection operations will be resumed. If the mechanical integrity of the wells are in question, the well will remain out of service until the mechanical integrity of the well is restored to the satisfaction of NMOCD and the agency approves resumption of injection operations.

7 (n) MIT Monitoring Plans (20.6.2.5207 NMAC)

Navajo has an ongoing monitoring program that satisfies all applicable requirements of 20.6.2.5207.NMAC.

- The mechanical integrity of WDW-1, WDW-2, and WDW-3 are demonstrated on an annual basis.
- Continuous monitoring devices are used to provide a record of injection pressure, flow rate, flow volume, and annular pressure.

The results of these monitoring activities are reported to NMED as required by regulation.

7 (o) Additional Monitoring Plans for Class I Non-Hazardous Waste Injection Wells (20.6.2.5207B NMAC)

Appendix J includes an Injected Fluids Monitoring Plan that describes the procedures to be carried out on a quarterly basis to obtain a detailed chemical and physical analysis of a representative sample of the injected fluid, including the quality assurance procedures. The plan will be updated as necessary.

The plan includes the following elements:

- The parameters for which the injected fluid will be analyzed and the rationale for the selection of these parameters; The test methods that will be used to test for these parameters;
- The sampling method that will be used to obtain a representative sample of the injected fluid being analyzed;
- Field sampling documentation methodologies;
- The commercial laboratory who performs the analysis; and
- Method of reporting analytical results to NMOCD.

7 (p) Additional Monitoring Plans for Class III Wells (20.6.2.5207C NMAC)

This section is not applicable; WDW-1, WDW-2, and WDW-3 are not a Class III well.

7 (q) Financial Assurance

Appendix K includes a well closure plans for each well. The estimated plug and abandon cost per well is presented in the table below. This cost estimate has been prepared to reflect the estimated costs that would be incurred by Navajo to abandon the well in accordance with the procedures in Appendix K.

Description of Service	Estimated Cost
Wireline (BHP, RTS, PFOT, Perforate)	\$20,000
Rental Tools	\$5,000
Pumping Service	\$10,000
Cementing Service	\$20,000
Excavating and Welding	\$2,500
Mud/Brine	\$5,000
Frac Tanks	\$2,500
Vacuum Trucks	\$2,500
Miscellaneous	\$2,500
SUBTOTAL	\$70,000
Field Supervision, Project Management, Procurement	\$25,000
Total Estimated Cost	\$95,000

Appendix L includes a copy of the financial assurance instrument that Navajo has established to provide the appropriate monies for plugging and abandoning each well, any groundwater restoration that may be necessary, and any post-operational monitoring that may be required.

7 (r) Logging and Testing Data

Appendix M includes pertinent open-hole logs run on each of well:

- A copy of the original oil and gas well log that was drilled in 1993 and later converted to WDW-1.
- A copy of the original oil and gas well log that was drilled in 1973 and later converted to WDW-2.
- A copy of the original oil and gas well that was drilled in 1991 and later converted to WDW-3.

Appendix N includes copies of pertinent cased-hole logs that were run on each well:

- Logs run as WDW-1 was being converted to disposal services.
- Logs run as WDW-2 was being converted to disposal services.
- Logs run as WDW-3 was being converted to disposal services.

Copies of additional open-hole and cased-hole logs are contained in the following:

- WDW-1, report submitted to NMOCD in September 1998: Reentry and Completion Report, Waste Disposal Well No. 1, Navajo Refining Company, Artesia, New Mexico prepared by Envirocorp Well Services, Inc., Houston, Texas
- WDW-2, report submitted to NMOCD in July 1999: *Reentry and Completion Report, Waste Disposal Well No. 2*, Navajo Refining Company, Artesia, New Mexico prepared by Subsurface Technology, Inc., Houston, Texas

7 (s) Mechanical Integrity Data (20.6.2.5204 NMAC)

Mechanical Integrity Testing (MIT) is conducted on WDW-1, WDW-2, and WDW-3 in 2015 in accordance with NMOCD regulations. Appendix G includes the text portion of the 2015 MIT Report for WDW-1, WDW-2, and WDW-3. Copies of the full MIT report were submitted to NMOCD. Previous annual MIT reports are contained in NMOCD files. The MITs were successful for all three disposal wells.

In addition, Appendix G includes a copy of the text portion of the 2016 Annual Bottomhole Pressure Survey and Pressure Falloff Test for WDW-1.

7 (t) Maximum Pressure and Flow Rate

The maximum injection rate and the maximum surface injection pressure at each of the Class I nonhazardous injection wells (WDW-1, WDW-2, and WDW-3) are as follows:

- Maximum Injection Rate: 500 gpm
- Maximum Surface Injection Pressure: 1,585 psi

7 (u) Formation Testing Program Data

Appendix F-1 includes the results of formation testing that was performed on the well when it was originally drilled as an oil and gas exploratory well.

7 (v) Compatibility

Components of WDW-1, WDW-2, and WDW-3 that are in direct contact with the non-corrosive waste stream and formation fluids in the Injection Interval (e.g., wetted surfaces) are constructed of materials that are compatible with these fluids.

Compatibility tests for Navajo's waste stream were performed by analyzing the chemical reactions between different mixtures of the secondary reverse osmosis reject fluid and the waste water and flue gas scrubber mixture. All testing and analysis were performed by Intertek Group PLC (Intertek) who provide chemical testing and analyses to understand the composition of chemical substances and materials that are used in products, industrial processes and manufacturing (Appendix F-2).

7 (w) Area of Review Corrective Actions

No corrective action plan is required for any of the artificial penetrations identified in the AOR. Artificial penetration records reviewed show those identified within the AOR have been properly constructed, plugged and/or abandoned in order to prevent movement of fluids into or between USDWs which could be caused by pressures in the Injection Zone.

8.0 Modification(s)

A request was issued via correspondence to the NMOCD on September 25, 2013 to process the applications for WDW-1 and WDW-2 so that these permits would be issued with the same expiration date as the WDW-3 permit (June 1, 2017). The permits were processed and thusly issued with the same expiration date of June 1, 2017. Appendix O includes a copy of this correspondence.

There are no other modifications for the three wells or proposed modifications to existing discharge processes.

9.0 Inspection/Maintenance and Reporting

Navajo performs daily visual inspections of their three injection wells and the pipeline and performs required maintenance (PM) activities as scheduled to ensure safe operation of the wells.

Navajo performs routine reporting in accordance with the requirements of 20.6.2.5208.A NMAC for Class I Non-Hazardous waste injection wells.

10.0 Contingency Plans

Navajo Refinery has an Integrated Contingency Plan detailing responses to spills of all types, reporting spills/releases, mitigation and corrective actions, clean up and disposal as applicable. The remote wells (WDW-1, WDW-2, and WDW-3) are equipped with a high-pressure shutoff switch to prevent operation of the injection pump at pressures greater than the designated MASIP. The wells are equipped with a low pressure shutoff switch that will deactivate the injection pump in the event of a surface leak. In addition, the wells are equipped with a high/low pressure shutdown switch with a pressure sensor on the tubing/casing annulus. This pressure switch is intended to stop the injection pump in the event of 1) a tubing leak, or 2) a casing, packer, or wellhead leak.

If an alarm or shutdown is triggered at the wellhead, electronic signals are sent to the Control Room at the refinery notifying of the shutdown and the cause of the alarm or shutdown will be immediately investigated.

Operators will immediately cease injection operations at the wellhead and divert flow to another well; and notify Maintenance and Environmental to take all necessary steps to determine the presence or absence of a leak; and Environmental will provide verbal notification to NMOCD within 24 hours.

If the alarm or shutdown is not related to mechanical integrity and the cause of the alarm or shutdown is corrected, injection operations will be resumed. If the mechanical integrity of the well is in question, the well will remain out of service until the mechanical integrity of the well is restored to the satisfaction of NMOCD and the agency approves resumption of injection operations.

11.0 Other Information

No additional information is required to demonstrate that the discharge permit will not result in concentrations in excess of the standards of 20.6.2.3103 NMAC or the presence of any toxic pollutant at any place of withdrawal of water for present or reasonably foreseeable future use.

12.0 Filing Fee

A check in the amount of \$300, made payable to Water Quality Management Fund, accompanies this permit renewal application document for Class I Injection wells WDW-1, WDW-2, and WDW-3.

13.0 Draft Public Notice

20.6.2.3108.C NMAC requires that Navajo provide notice in accordance with 20.6.2.3108.F NMAC within 30 days of NMOCD deeming the permit renewal application to be administratively complete. Appendix P

includes a draft copy of the public notice that will be published following receipt of written notification from NMOCD that this discharge permit renewal application has been deemed administratively complete.

Navajo understands the requirement to submit to NMOCD within 15 days of completion of public notice requirements of 20.6.2.3108.C NMAC proof of notice, including an affidavit of mailing(s) and the list of property owner(s), proof of publication, and an affidavit of posting, as appropriate.

14.0 Certification

The required certification language is included at the end of the completed NMOCD Discharge Permit Application Form in the front of this permit renewal application document. The appropriate Navajo Refinery authority has signed the form.

TABLES

FIGURES

DRAWINGS

APPENDICES