

J. Brady Crouch

ConocoPhillips Company
Risk Management & Remediation
Program Manager
600 N. Dairy Ashford, EC3-06-W056
Houston, TX 77079
Phone: 832-486-3016
J.Brady.Crouch@conocophillips.com

Mr. Jim Griswold New Mexico Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

January 30, 2017

Re: NMOCD Case No. 3R-071, 2016 Annual Groundwater Monitoring Report

Dear Mr. Griswold:

Enclosed is the 2016 Annual Groundwater Monitoring Report for the Johnston Federal No. 4 site. This report, prepared by GHD Services, Inc., contains the results of groundwater monitoring activities in 2016.

Please let me know if you have any questions.

Sincerely,

Freph B. Carnel

J. Brady Crouch

Enc

2016 Annual Groundwater Monitoring Report

ConocoPhillips Johnston Federal No. 4 Metering Station San Juan County, New Mexico API# 30-045-10130 NMOCD # 3RP-071

ConocoPhillips Company

December 2016
6121 Indian School Rd NE Suite 200 Albuquerque NM 87110
074925 | 6MN00 | Report No 7

Table of Contents

1.	Introd	uction	. 1
	1.1	Background	. 1
2.	Grour	ndwater Sampling Methodology and Analytical Results	. 2
	2.1	Groundwater Sampling Methodology	. 2
	2.2	Groundwater Analytical Results	2
3.	Conc	usions and Recommendations	3

Figure Index

Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Geological Cross Section
Figure 4	September 2015 Groundwater Potentiometric Surface Ma
Figure 5	September 2015 Benzene Concentration Map

Table Index

Table 1	Site History Timeline
Table 2	Monitoring Well Specifications and Groundwater Elevations
Table 3	Field Parameters Summary
Table 4	Groundwater Laboratory Analytical Results Summary

Appendix Index

Appendix A Groundwater Laboratory Analytical Reports

1. Introduction

This report presents the results of the 2016 annual groundwater monitoring events. Activities were conducted by GHD Services, Inc. (GHD) at the ConocoPhillips Company (ConocoPhillips) Johnston Federal No. 4 Metering Station (hereafter referred to as the "Site").

The Johnston Federal No. 4 wellhead is located approximately 1.5 mile to the southwest of the metering station. The Site is located on both Bureau of Land Management (BLM) and private land, approximately 13 miles east-northeast of Aztec, San Juan County, New Mexico, in Unit Letter M, Section 27, Township 31N, Range 9W (Figure 1). Geographic coordinates for the Site are 36.8626° North and 107.7723° West. A Site Plan is included as Figure 2.

1.1 Background

Burlington Resources (Burlington) conducted initial site assessments of two production pits in August 1998. Soil from the separator pit was collected and analyzed for total petroleum hydrocarbons (TPH). The concentration of TPH in separator pit (Production Pit #1, Figure 2) soil was found to be below New Mexico Oil Conservation Division (NMOCD) recommended action levels for this constituent, and the pit was subsequently granted closure by NMOCD. Soil from the tank drain pit (Production Pit #2, Figure 2) was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels. Based on laboratory results, approximately 3,055 cubic yards of hydrocarbon-impacted soil was excavated in December 1998. Once complete, the excavation was backfilled with clean fill material, and the NMOCD granted pit closure.

A groundwater monitoring well, MW 1, was installed at the Site to a depth of 50 feet below ground surface (bgs) in May of 1999. Burlington sampled MW 1 on a quarterly basis until the acquisition of Burlington by ConocoPhillips in March of 2006. Following the acquisition, Tetra Tech, Inc. (Tetra Tech) began sampling MW 1 in November 2007. In August 2008, three additional groundwater monitoring wells (MW 2, MW 3 and MW 4) were installed under the supervision of Tetra Tech by WDC Exploration and Drilling of Peralta, NM. Based on information obtained during monitoring well installation in 2008, a generalized geologic cross section was completed for the Site and is presented as Figure 3. Monitoring wells MW 1, MW 2, MW 3, and MW 4 were incorporated into an annual sampling schedule beginning on October 24, 2008.

El Paso CGP Company (El Paso) is a co-producer on the Site well pad and owns additional Site monitoring wells, wells from which free product is being recovered. El Paso groundwater impacts are down gradient from the ConocoPhillips monitoring wells.

On June 15, 2011, Site consulting responsibilities were transferred from Tetra Tech to GHD (formerly CRA) of Albuquerque, NM.

A historical timeline for the Site is presented in Table 1.

2. Groundwater Sampling Methodology and Analytical Results

2.1 Groundwater Sampling Methodology

Groundwater Elevation Measurements

On September 14, 2016, groundwater elevation measurements were obtained for monitoring wells MW 1, MW 2, MW 3, and MW 4 using an oil/water interface probe. A 0.01 foot thickness of light non-aqueous phase liquid, or free product, was measured on the groundwater surface in well MW-1. Groundwater elevations are detailed in Table 2. A groundwater potentiometric surface map based on the September 2016 data is presented as Figure 4. Based on this data, groundwater flow is to the east and is consistent with historical data at the Site.

Groundwater sampling

Groundwater samples for the 2016 annual monitoring event were collected from monitoring wells MW 2, MW 3, and MW 4 on September 14, 2016. Approximately three well volumes were purged from each monitoring well with a dedicated polyethylene 1.5 inch bailer prior to sampling. While bailing each well, groundwater parameter data, including temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential were collected using a multi parameter Sonde. Field parameters are summarized on Table 3.

Groundwater samples were placed in laboratory prepared bottles, packed on ice, and shipped under chain of custody documentation to Pace Analytical Services, Inc. of Lenexa, Kansas. The samples were analyzed for the presence of BTEX in accordance with Environmental Protection Agency (EPA) Method 8260, naphthalene by EPA Method 8270, sulfate by EPA Method 300.0, and for dissolved manganese and iron by EPA Method 6010.

No sample was collected from MW-1 due to the presence of free product.

2.2 **Groundwater Analytical Results**

The NMWQCC mandates that groundwater quality in New Mexico be protected, and has issued groundwater quality standards in Title 20, Chapter 6, Part 2, Section 3103 of the New Mexico Administrative Code (20.6.2.3103 NMAC). Groundwater quality standards have been set for the protection of human health, domestic water supply, and irrigation use. Exceedances of NMWQCC groundwater quality standards in Site monitoring wells are discussed below. Results are summarized in Table 4.

September 2016

- Benzene
 - The NMWQCC standard for benzene is 0.01 milligrams per liter (mg/L). The groundwater samples collected from MW-2, MW-3 and MW-4 were below NMWQCC standards.

Toluene

 The NMWQCC standard for toluene is 0.75 mg/L. The groundwater samples collected from MW-2, MW-3 and MW-4 were below NMWQCC standards.

Ethylbenzene

 The NMWQCC standard for ethylbenzene is 0.75 mg/L. The groundwater samples collected from MW-2, MW-3 and MW-4 were below NMWQCC standards.

Xylenes

 The NMWQCC standard for total xylenes is 0.620 mg/L. The groundwater samples collected from MW-2, MW-3 and MW-4 were below NMWQCC standards.

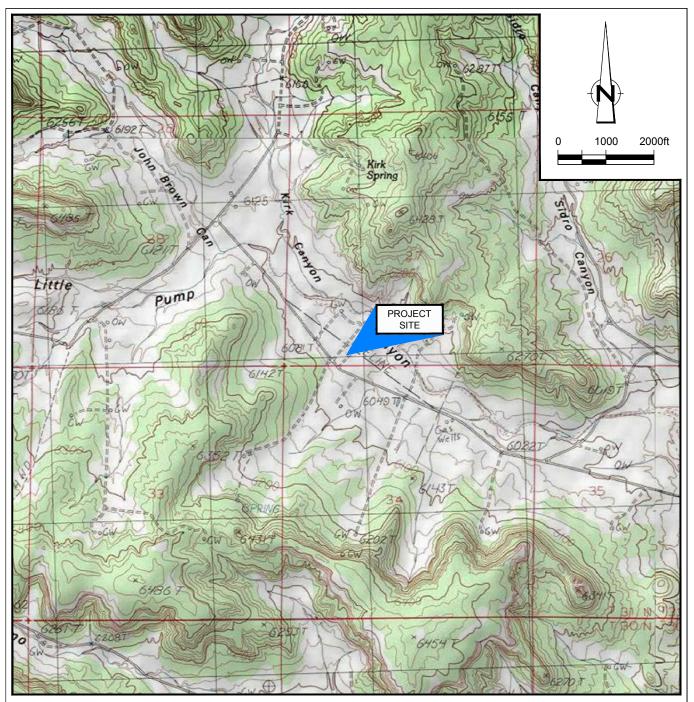
Naphthalene

 The NMWQCC standard for naphthalene is 0.03 mg/L. The groundwater samples collected from MW-2, MW-3 and MW-4 were below NMWQCC standards.

Sulfate

 The NMWQCC standard for sulfate is 600 mg/L. The groundwater samples collected from MW 2, MW 3, and MW 4 exceeded the standard for sulfate with concentrations of 1270 mg/L, 671 mg/L, and 943 mg/L, respectively.

Dissolved Manganese


The NMWQCC standard for dissolved manganese is 0.2 mg/L. The groundwater samples collected from MW 3, and MW 4 exceeded the standard for dissolved manganese with concentrations 0.48 mg/L, and 2.0 mg/L, respectively.

3. Conclusions and Recommendations

Concentrations of BTEX, naphthalene, sulfate, and dissolved manganese continue to be detected above NMWQCC groundwater quality standards in Site monitoring wells. GHD recommends continued annual sampling of Site monitoring wells until monitored groundwater quality parameters approach NMWQCC standards. GHD will begin a quarterly sampling schedule once parameters are near or below NMWQCC standards or background levels.

The next groundwater monitoring event at the Site is scheduled for September 2017 and will include analyses for BTEX, naphthalenes, dissolved manganese, dissolved iron, and sulfate.

Figures

SOURCE: USGS 7.5 MINUTE QUAD "TURLEY, NEW MEXICO"

LAT/LONG: 36.8626° NORTH, 107.7723° WEST COORDINATE: NAD83 DATUM, U.S. FOOT STATE PLANE ZONE - NEW MEXICO WEST

Figure 1

SITE LOCATION MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

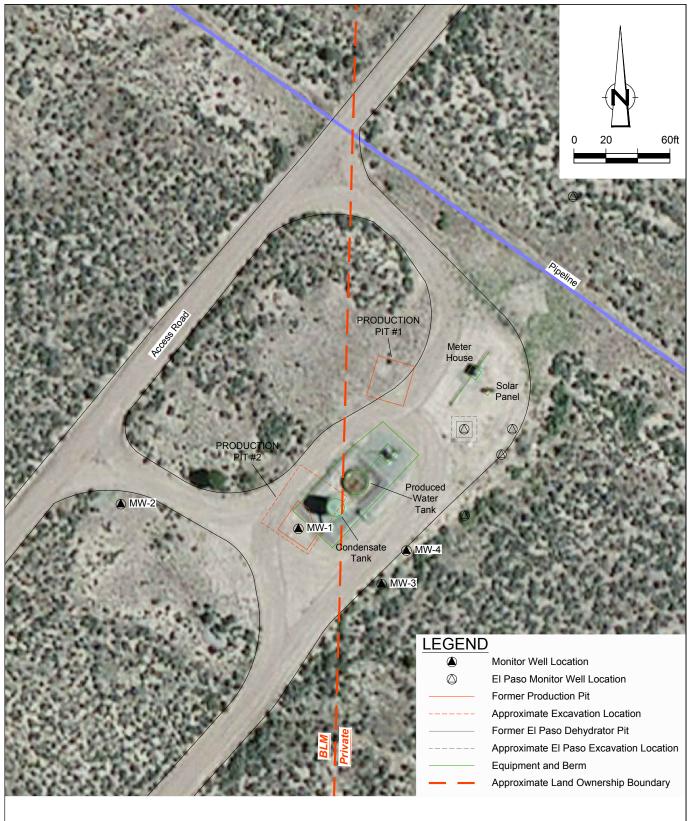
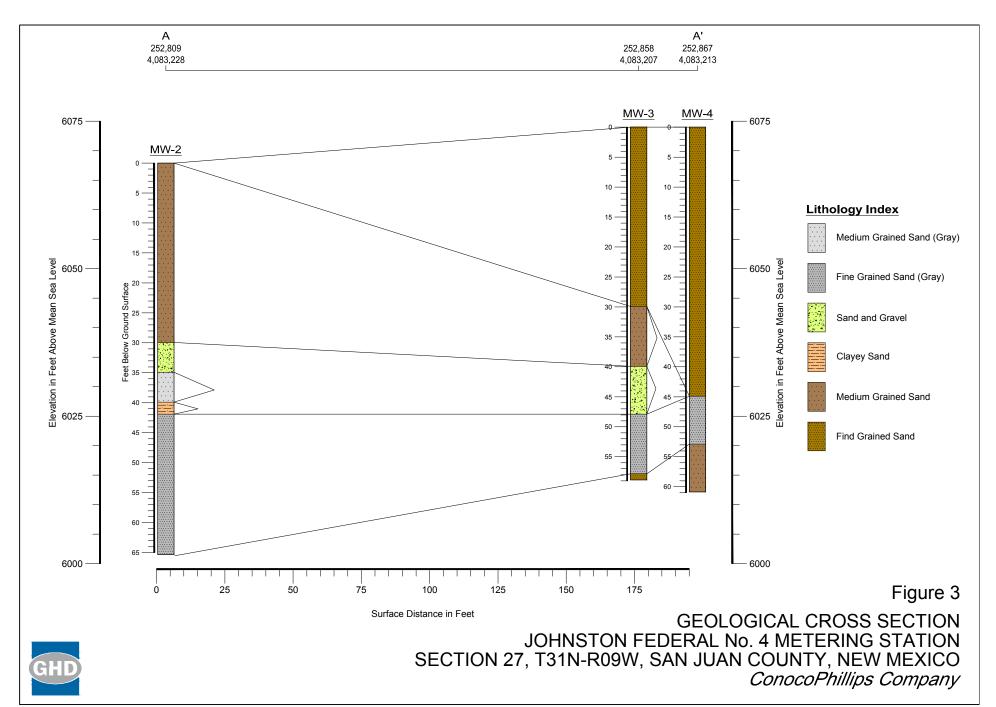



Figure 2

SECTION 27, T

SITE PLAN JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

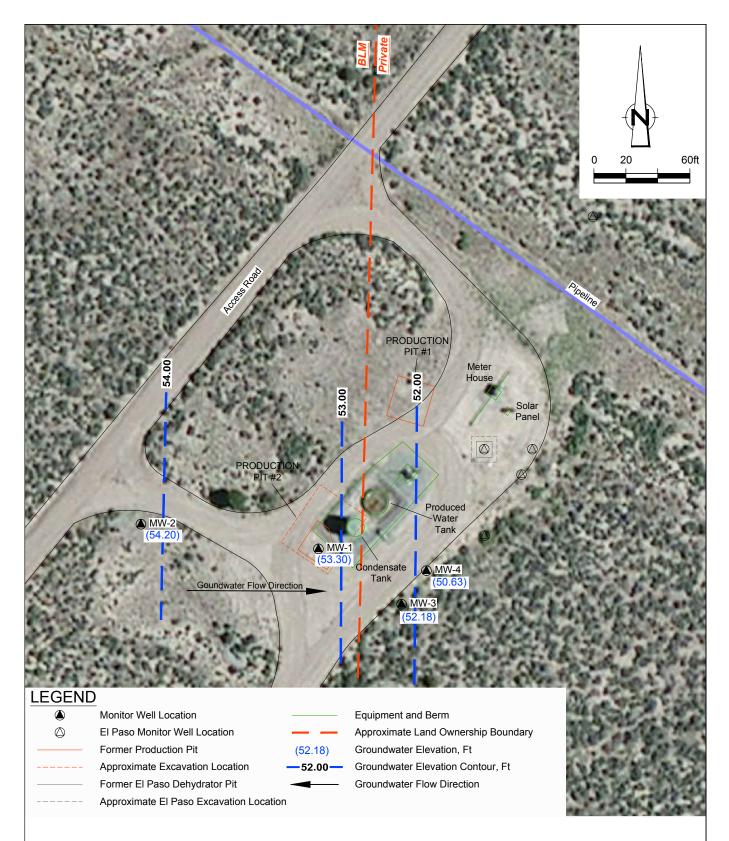


Figure 4

SEPTEMBER 2016 GROUNDWATER POTENTIOMETRIC SURFACE MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

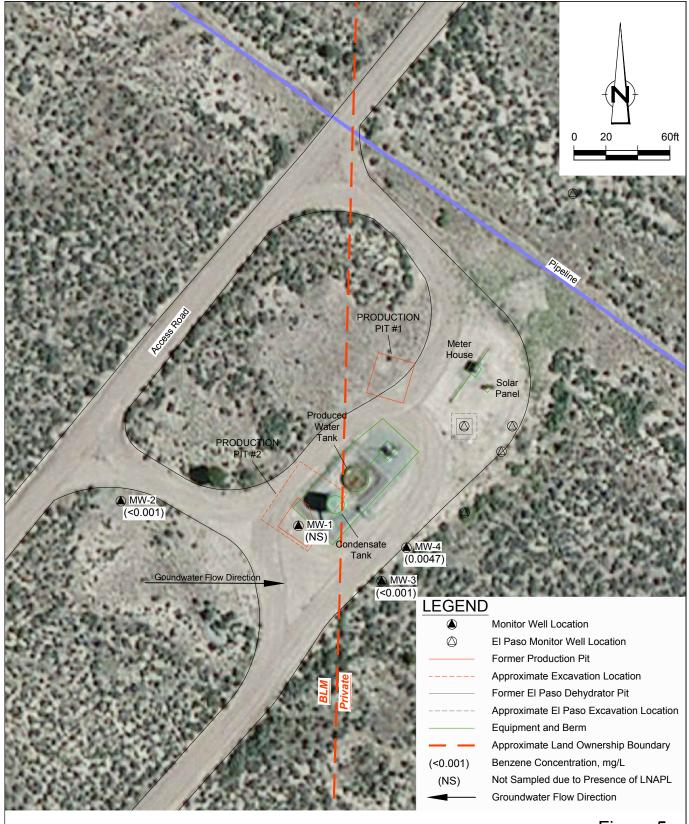


Figure 5

SEPTEMBER 2016 BENZENE CONCENTRATION MAP JOHNSTON FEDERAL No. 4 METERING STATION SECTION 27, T31N-R09W, SAN JUAN COUNTY, NEW MEXICO ConocoPhillips Company

Tables

Table 1

Site History Timeline ConocoPhillips Company Johnston Federal No. 4 Metering Station San Juan County, New Mexico

Date/Time Period	Event/Action	Description/Comments				
August 1952	Well Spudded	Well was spudded by Anderson-Prichard Oil Corporation on August 21, 1952.				
April 1961	Transfer of Well Ownership	Ownership of the well transferred from Anderson-Prichard Oil Corporation to Union Texas Natural Gas Corporation on April 26, 1961.				
September 1971	Transfer of Well Ownership	Meridian Oil Inc., a wholly-owned subsidiary of Burlington Resources, took over operation of well from Union Texas Petroleum Corporation on September 17, 1991.				
August 1994	Initial Site Assesment	El Paso Energy conducted a site assessment of a former unlined pit near the metering station.				
September 1994	Pit Excavation	El Paso Energy excavated ~60 cubic yards of soil from their former unlined pit.				
August 1995	Monitor Well Installation	El Paso contracted Philip Environmental Services Corporation to install a monitor well in the vicinity of their former pit on August 9, 1995.				
December 1995	Monitor Well Installation	El Paso contracted Philip Environmental Services Corporation to install two downgradient monitor wells between December 12 and 15, 1995.				
August 1997	Product Removal	El Paso Energy commenced product removal from their MW-1 on August 26, 1997.				
September 1997	Piezometer Installation	El Paso contracted Philip Environmental Services Corp. to install 3 temporary piezometers on September 15, 1997.				
July 1998	NMOCD Communication With Site Operators	New Mexico Oil Conservation Division (NMOCD) issued a response letter to El Paso Field Services (EPFS) on July 8, 1998, indicating that they would be sending letters to the operators of the sites (including Burlington Resources) and that EPFS should work cooperatively with the operators on investigation and remediation activities.				
July 1998	NMOCD Requests Groundwater Investigation by Burlington Resources	NMOCD issued a letter to Burlington Resources on July 9, 1998, referencing work done at the Site by EPFS and requiring Burlington Resources (BR) to immediately implement their previously approved pit closure plan. The letter also required BR to submit a comprehensive groundwater investigation and remediation plan for all pit closure Sites in the San Juan Basin that encounter groundwater.				
August 1998	Burlington Resources Granted Closure of Pit #1	Burlington Resources sampled Pit #1 on August 10, 1998 and laboratory analytical results indicated closure was warranted.				
August 1998	Initial Site Assessment	Initial site assessment conducted on the site separator pit. Soil from this area was collected and analyzed for total petroleum hydrocarbons (TPH) and was found to contain TPH below NMOCD recommended action levels. The pit was subsequently granted closed status by NMOCD.				
August 1998	Initial Site Assessment	Initial site assessment conducted on the tank drain pit. Soil from this area was collected and analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX) and for TPH. Concentrations of these constituents were found to be above NMOCD recommended action levels.				
December 1998	Pit Excavation	Burlington Resources excavated ~3,055 cubic yards of hydrocarbon-impacted soil from Pit #2 (58 ft x 45 ft x 30 ft deep), starting on December 17, 1998. The excavation extended to ~30 feet below ground surface (practical extent). The bottom of the excavation was sampled on December 28, 1998.				
May 1999	Monitor Well Installation	Monitor Well MW-1 installed to a depth of 50 feet below ground surface (bgs); the screened interval was placed from 35 to 50 feet bgs, and was installed in the center of pit #2. Burlington Resources began monitoring MW-1 on a quarterly basis.				
June 1999	Confirmation of Groundwater Impacts	Laboratory analysis of groundwater from MW-1 shows levels of benzene, toluene, and total xylenes in excess of New Mexico Water Quality Control Commission (NMWQCC) groundwater quality standards. Burlington Resources notified NMOCD via E-mail on June 1, 1999.				
July 2001	NMOCD Communication With Site Operators	NMOCD response letter sent to EPFS on July 18, 2001 again urges EPFS to work cooperatively with the operators to investigate and remediate contaminated groundwater.				

Table 1

Site History Timeline ConocoPhillips Company Johnston Federal No. 4 Metering Station San Juan County, New Mexico

Date/Time Period	Event/Action	Description/Comments
April 2003	NMOCD Requests Monitor Well Installation	NMOCD response letter to EPFS sent on April 3, 2003, requires EPFS to install additional monitor wells to determine the real extent of groundwater impacts.
March 2006	Acquisition of Burlington Resources by ConocoPhilips Company	ConocoPhillips Company acquired Burlington Resources on March 31, 2006.
November 2007 and January 2008	3rd and 4th Quarter 2007 Groundwater Monitoring	Johnston Federal No. 4 Monitoring Station groundwater sampled during November 2007 and January 2008 by Tetra Tech.
March 2008	Reporting	2007 Annual Groundwater Monitoring Report submitted to NMOCD.
March 2008	Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX.
April 2008	NMOCD Requests Further Investigation	NMOCD indicates additional investigation and sampling is necessary for closure consideration during a meeting with Glenn Von Gonten.
April 2008	1st Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX in MW-1 on April 30, 2008. Note: Prior to this date the location of MW-1 was not clear and the incorrect well was sampled. This was the first quarter that ConocoPhillips MW-1 was sampled. BTEX constituents were found to be above NMWQCC standards in MW-1.
July 2008	2nd Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly groundwater monitoring at the Site for BTEX in MW-1.
August 2008	Groundwater Monitor Well Installation	Monitor Wells MW-2, MW-3, and MW-4 installed under the supervision of Tetra Tech by WDC Exploration and Wells of Peralta, NM.
October 2008	3rd Quarter 2008 groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the Site for MW-1 through MW-4. MW-2, MW-3 and MW-4 groundwater samples are analyzed for baseline parameters including major ions, total metals, semi-volatile organic compounds (SVOCs), volatile organic compounds (VOCs) including BTEX, diesel range organics, and gasoline range organics as requested by the NMOCD. In addition, an expanded list (beyond BTEX analysis) of VOCs were included for MW 1.
January 2009	4th Quarter 2008 Groundwater Monitoring	Tetra Tech conducts quarterly monitoring at the Site for MW-1 through MW-4. The groundwater sample obtained for MW-1 is analyzed for baseline parameters including major ions, total metals, SVOCs, VOCs, diesel range organics, and gasoline range organics. As of January 2009, baseline parameters have been collected for all 4 groundwater monitor wells at the Site.
September 25, 2009	2009 Annual Groundwater Monitoring	Tetra Tech conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Fe and Mn and sulfate.
September 22, 2010	2010 Annual Groundwater Monitoring	Tetra Tech conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn and sulfate.
June 15, 2011	Transfer of Site Consulting Responsibilities	Site consulting responsibilities tranferred from Tetra Tech, Inc. to Conestoga-Rovers & Associates, Inc. (CRA) of Albuquerque, NM.
September 28, 2011	2011 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
September 26, 2012	2012 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
August 23, 2013 - August 27, 2013	Dual-Phase Extraction	AcuVac, under CRA oversight, performs three days of dual-phase extraction on MW-1.
September 17, 2013	2013 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
September 23, 2014	2014 Annual Groundwater Monitoring	CRA conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved Mn, dissolved Fe, and sulfate.
November 12, 2014 - November 13, 2014	Dual-Phase Extraction	AcuVac, under CRA oversight, performs two days of dual-phase extraction on MW-1.
December 17, 2014	2014 Post-MDPE Groundwater Monitoring	CRA conducts post-MDPE groundwater monitoring at the Site for MW-1, MW-3, and MW-4 with analyses for BTEX and naphthalene.
January 8, 2015	2015 Post-MDPE Groundwater Monitoring	CRA conducts post-MDPE groundwater monitoring at the Site for MW-1 with analyses for BTEX and naphthalene.
April 20, 2015 - April 23, 2015	Dual-Phase Extraction	AcuVac, under CRA oversight, performs four days of dual-phase extraction on MW-1.
June 18, 2015	2015 Post-MDPE Groundwater Monitoring	GHD conducts post-MDPE groundwater monitoring at the Site for MW-1 and MW-4 with analyses for BTEX and naphthalene.
September 22, 2015	2015 Annual Groundwater Monitoring	GHD conducts annual groundwater monitoring at the Site for MW-1 through MW-4 with analyses for BTEX, naphthalene, dissolved, Mn, dissolved Fe and sulfate.
September 14, 2016	2016 Annual Groundwater Monitoring	GHD conducts annual groundwater monitoring at the Site for MW-2 through MW-4 with analyses for BTEX, naphthalene, dissolved, Mn, dissolved Fe and sulfate. MW-1 not sampled due to presense of product on the water table.

Table 2 Page 1 of 2

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Johnston Federal No. 4 San Juan County, New Mexico

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to LNAPL (ft below TOC)	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				25/05/1999		NM	NM
				1/09/1999		47.02	52.98
				1/12/1999		46.96	53.04
				18/01/2000		44.05	55.95
				17/05/2000		46.90	53.10
				8/09/2000		46.91	53.09
				20/12/2000		46.88	53.12
				27/03/2001		NM	NM
				27/06/2001		47.05	52.95
				17/09/2001		46.93	53.07
				19/12/2001		46.97	53.03
				25/03/2002		46.99	53.01
				25/06/2002		47.01	52.99
				24/09/2002		46.98	53.02
				30/12/2002		47.40	52.60
				27/03/2003		NM	NM
				27/06/2003		NM	NM
				10/10/2003		NM	NM
				10/12/2003		NM	NM
				16/03/2004		47.28	52.72
				22/06/2004		47.06	52.94
				30/09/2004		47.24	52.76
				13/12/2004		47.14	52.86
				23/03/2005		46.91	53.09
MW-1	51.79	35 - 50	100	22/06/2005		46.93	53.07
				28/10/2005		46.87	53.13
				14/12/2005		46.72	53.28
				20/03/2006		46.75	53.25
				21/06/2006		46.84	53.16
				20/10/2006		46.89	53.11
				13/12/2006		46.92	53.08
				9/11/2007		NM	NM
				15/01/2008		NM	NM
				30/04/2008		46.45	53.55
				23/07/2008		46.63	53.37
				24/10/2008		46.60	53.40
				29/01/2009		46.57	53.43
				23/04/2009		46.40	53.60
				25/09/2009		46.52	53.48
				22/09/2010		46.60	53.40
				28/09/2011		46.65	53.35
				26/09/2012		46.80	53.20
				17/09/2013		46.88	53.12
				23/09/2014		46.94	53.06
				17/12/2014		46.94	53.06
				8/01/2015		46.92	53.08
				18/06/2015		46.94	53.06
				22/09/2015		46.91	53.09
				14/09/2016	46.70	46.71	53.30

Table 2 Page 2 of 2

Monitoring Well Specifications and Groundwater Elevations ConocoPhillips Company Johnston Federal No. 4 San Juan County, New Mexico

Well ID	Total Depth (ft bgs)	Screen Interval (ft)	*Elevation (ft) (TOC)	Date Measured	Depth to LNAPL (ft below TOC)	Depth to Groundwater (ft below TOC)	Relative Groundwater Elevation
				24/10/2008		42.85	54.86
				29/01/2009		42.83	54.88
				23/04/2009		42.75	54.96
				25/09/2009		42.82	54.89
				22/09/2010		43.01	54.70
				28/09/2011		43.14	54.57
MW-2	65.5	41.5 - 61.5	97.71	26/09/2012		43.33	54.38
				17/09/2013		43.51	54.20
				23/09/2014		43.56	54.15
				17/12/2014		43.59	54.12
				18/06/2015		43.57	54.14
				22/09/2015		43.58	54.13
				14/09/2016		43.51	54.20
				24/10/2008		43.91	50.74
				29/01/2009		41.97	52.68
				23/04/2009		41.87	52.78
				25/09/2009		42.04	52.61
				22/09/2010		42.17	52.48
				28/09/2011		42.22	52.43
MW-3	59	35 - 55	94.65	26/09/2012		42.36	52.29
				17/09/2013		42.47	52.18
				23/09/2014		42.70	51.95
				17/12/2014		42.62	52.03
				18/06/2015		43.67	50.98
				22/09/2015		42.65	52.00
				14/09/2016		42.47	52.18
				24/10/2008		43.11	51.68
				29/01/2009		43.11	51.68
				23/04/2009		43.06	51.73
				25/09/2009		43.20	51.59
				22/09/2010		43.39	51.40
				28/09/2011		43.45	51.34
MW-4	61	37 - 57	94.79	26/09/2012		43.57	51.22
				17/09/2013		43.65	51.14
				23/09/2014		44.81	49.98
				17/12/2014		44.80	49.99
				18/06/2015		45.85	48.94
				22/09/2015		44.73	50.06
				14/09/2016		44.16	50.63

Notes:

ft = Feet

TOC = Top of casing

bgs = below ground surface

LNAPL = light non aqueoud phase liquid
When LNAPL present: GW Elevation + (LNAPL Thickness X LNAPL Density [0.75])

NM = Not Measured

^{*} Elevation relative to the TOC of MW-1, set at arbitrary 100 feet.

Table 3

Field Parameters Summary ConocoPhillips Company Johnston Federal No. 4 San Juan County, New Mexico

					Conductivity	DO	ORP	Volume			
Well ID	Sample Date	Temperature (°C)	рΗ	TDS (g/L)	(μS/cm)	(mg/L)	(mV)	(gallons)			
	23/09/2014		No p	arameters c	collected due to LNA	APL sheen.					
MW-1	18/06/2015	No parameters collected due to LNAPL sheen.									
10100-1	9//22/2015	No parameters collected due to LNAPL sheen.									
	14/09/2016	No parameters collected due to LNAPL sheen. /2014 15.00 7.22 1.50 2310 11.30 57.0 9.50									
	23/09/2014	15.00	7.22	1.50	2310	11.30	57.0	9.50			
1 444.0	23/09/2014	14.80	7.18	1.50	2360	10.89	63.0	10.00			
	23/09/2014	14.80	7.17	1.50	2360	10.70	67.0	10.50			
MW-2	22/09/2015	13.95	7.62	0.80	1235	12.50	59.2	9.00			
	22/09/2015	13.69	6.98	1.48	2276	5.62	82.6	9.50			
	22/09/2015	13.55	6.64	1.48	2273	5.05	93.0	10.00			
	14/09/2016	13.53	7.26	1.53	2368	5.10	6.9	10.00			
	23/09/2014	15.70	7.01	1.20	1820	10.13	-104.0	6.25			
MW-3	23/09/2014	15.70	7.01	1.20	1840	9.12	-127.0	6.75			
	23/09/2014	15.70	7.01	1.20	1850	8.48	-137.0	7.25			
	17/12/2014	14.76	7.48	1.379	2123	2.40	-149.1	5.75			
	17/12/2014	14.72	7.48	1.402	2158	2.66	-159.7	6.25			
	17/12/2014	14.78	7.49	1.441	2218	2.39	-164.0	6.75			
	22/09/2015	15.11	7.71	0.735	1130	9.05	5.7	6.25			
	22/09/2015	15.07	7.50	1.321	2032	4.70	-53.7	6.75			
	22/09/2015	15.07	7.32	1.314	2021	2.34	-79.2	7.25			
	14/09/2016	14.91	7.21	1.206	1856	2.01	-158.8	7.00			
	23/09/2014	16.40	6.65	1.400	2130	10.81	-124.0	3.50			
	23/09/2014	16.00	6.72	1.400	2110	9.17	-136.0	4.00			
	23/09/2014	15.80	6.77	1.300	2110	8.42	-142.0	4.50			
	23/09/2014	15.90	6.81	1.300	2110	8.10	-150.0	5.00			
	17/12/2014	14.79	7.22	1.508	2320	4.74	-145.4	6.25			
	17/12/2014	14.91	7.35	1.511	2324	3.70	-158.7	6.75			
	17/12/2014	14.98	7.37	1.509	2323	2.94	-166.6	7.25			
M\\/-4	18/06/2015	15.65	6.67	1.421	2186	2.52	-133.8	6.00			
MW-4	18/06/2015	15.49	6.68	1.420	2184	2.44	-130.2	6.25			
	18/06/2015	15.38	6.71	1.419	2183	2.20	-129.3	6.50			
	18/06/2015	15.38	6.72	1.418	2182	2.21	-146.6	6.75			
	18/06/2015	15.37	6.73	1.417	2184	2.05	-140.1	7.00			
	22/09/2015	15.17	7.15	1.327	2042	2.45	-105.6	6.50			
	22/09/2015	15.14	6.89	1.328	2043	2.07	-12.5	7.00			
	22/09/2015	15.13	6.82	1.326	2041	2.04	-126.5	7.50			
	14/09/2016	14.92	7.23	1.363	2096	7.69	-205.4	5.00			

Notes:

TDS = total dissolved solids DO = dissolved oxygen

ORP = oxidation-reduction potential

Well ID	Sample ID	Date	Sample Type	Benzene (mg/L)	Toluene (mg/L)	Ethylbenzene (mg/L)	Xylenes (total) (mg/L)	Napthalene (mg/L)	Sulfate (mg/L)	Iron (dissolved) (mg/L)	Manganese (dissolved) (mg/L)
	NMWQCC Groundwater Quality S	Standards		0.01	0.75	0.75	0.62	0.03	600	1	0.2
	MW-1	5/25/1999	(orig)	8.7	2.9	2.8	2.9				
	MW-1	12/1/1999	(orig)	4.7	1.3	0.9	10				
	MW-1 MW-1	1/18/2000 5/17/2000	(orig) (orig)	3.6 6.9	0.82 1.1	0.84 1.5	7.5 17				
	MW-1	9/8/2000	(orig)	4.6	0.62	0.93	10				
	MW-1	12/20/2000	(orig)	< 0.0002	0.0005	0.034	0.061				
	MW-1	3/27/2001	(orig)	5.43	0.641	0.991	9.83				
	MW-1	6/27/2001	(orig)	5.87	0.9	0.99	10.4				
	MW-1	9/17/2001	(orig)	5.91	0.75	0.98	10.7				
	MW-1 MW-1	12/19/2001 3/25/2002	(orig)	7.2 5.52	0.65 0.83	1.02 1.19	11.3 10.5				
	MW-1	6/26/2002	(orig)	0.516	0.0662	0.0787	0.863				
	MW-1	9/24/2002	(orig)	5.31	8	0.88	13.96				
	MW-1	12/30/2002	(orig)	7.66	10.2	0.76	14.14				
	MW-1	6/22/2004	(orig)	6.16	8.1	0.47	15.84				
	MW-1	3/20/2006	(orig)	3.17	3.74	1.06	30.13				
	MW-1 MW-1	6/21/2006 12/13/2006	(orig) (orig)	4.9 5.3	3.28 7.2	0.448 0.87	2.39 15.45				
	MW-1	3/27/2007	(orig)	6.87	5.72	0.21	12.16				
	MW-1	6/25/2007	(orig)	5.68	1.83	0.4	9.48				
MW-1	MW-1	4/30/2008	(orig)	6.3	1.8	0.28 J	8.6				
10100-1	MW-1	7/23/2008	(orig)	7.1	2.2	0.45	10.6				
	MW-1	10/24/2008	(orig)	6	2.1	0.4	9	0.044			
	MW-1 MW-1	1/29/2009 9/25/2009	(orig)	6.7 3.9	2.2 1.5	0.63 0.68	14.5 9.8	0.061 0.04	315 429	< 0.02	1.11
	MW-1	9/22/2010	(orig)	3.5	0.98	0.63	7.5	0.049	190	< 0.02	0.752
	GW-074925-092811-CM-004	9/28/2011	(orig)	3.36	1.05	0.667	6.81	0.037	202	< 0.05	0.774
	GW-074925-092811-CM-005	9/28/2011	(Duplicate)	3.43	1.12	0.779	8.29				
	GW-074925-092612-CM-MW-1	9/26/2012	(orig)	3.07	0.599	0.577	5.16	0.0398	113	< 0.05	0.67
						al Phase Extraction E					
	GW-074925-091713-CM-MW-1 GW-074925-091713-CM-DUP	9/17/2013 9/17/2013	(orig) (Duplicate)	4.69 4.70	7.55 7.21	1.17 1.04	11.0 9.97	0.0365	371	< 0.05	0.89
	GW-074925-091713-CM-DOP GW-074925-092314-SP-MW-1	9/17/2013	(orig)	2.970	4.250	0.778	6.89	0.0446	155	<0.050	0.85
	GW-074925-092314-SP-DUP	9/23/2014	(Duplicate)	2.820	3.880	0.754	6.690				
			(==p==,			ual Phase Extraction					
	GW-074925-010815-JW-MW-1	1/8/2015	(orig)	4.35	6.15	1.07	10.0	0.0787			
	GW-074925-061815-CB-MW-1	6/18/2015	(orig)	4.05	6.26	1.04	10.8	0.0625			
	GW-074925-061815-CB-DUP	6/18/2015	(Duplicate)	4.34	6.46	0.933 Phase Extraction Ev	11.1				
	GW-074925-092215-CB-MW-1	9/22/2015	(orig)	3.360	4.570	0.741	8.620	0.0504	44.2	< 0.050	0.72
	GW-074925-092215-CB-DUP	9/22/2015	(Duplicate)	3.370	4.280	0.724	7.980				
		9/14/2016						ense of LNAPL			
	MW-2	10/24/2008	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005	< 0.005	974		
	MW-2	1/29/2009	(orig)	< 0.0005	< 0.0005	< 0.0005	< 0.0005				
	MW-2	9/25/2009	(orig)	< 0.001	< 0.001	< 0.001	< 0.002	< 0.001	1260	< 0.02	0.04
	MW-2 GW-074925-092811-CM-002	9/22/2010 9/28/2011	(orig)	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.001 < 0.003	< 0.001 < 0.0001	1350 1290	2.49	0.0074 0.0956
MW-2	GW-074925-092612-CM-MW-2	9/26/2012	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1210	< 0.05	< 0.005
	GW-074925-091713-CM-MW-2	9/17/2013	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1230	< 0.05	< 0.005
	GW-074925-092314-SP-MW-2	9/23/2014	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.00045	1190	< 0.05	< 0.005
	GW-074925-092215-CB-MW-2	9/22/2015	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.0005	1210	< 0.050	< 0.005
	GW-074925-091516-CM-MW-2	9/14/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.00045	1270	< 0.050	< 0.005
	MW-3 MW-3	10/24/2008 1/29/2009	(orig)	0.02 0.012	< 0.0005 < 0.0005	< 0.0005 < 0.0005	0.024 0.005	< 0.005	714		
	MW-3	9/25/2009	(orig) (orig)	0.012	< 0.0005	< 0.0005	< 0.005	< 0.001	1070	< 0.02	1.24
	MW-3	9/22/2010	(orig)	0.0042	< 0.001	< 0.001	< 0.002	< 0.001	1060		1.11
	GW-074925-092811-CM-003	9/28/2011	(orig)	0.0038	< 0.001	< 0.001	< 0.003	< 0.0001	809	1.58	0.704
MW-3	GW-074925-092612-CM-MW-3	9/26/2012	(orig)	0.0016	< 0.001	< 0.001	< 0.003	< 0.0005	892	0.063	0.67
	GW-074925-091713-CM-MW-3	9/17/2013	(orig)	0.0012	< 0.001	< 0.001	< 0.003	< 0.0005	808	0.80	0.67
	GW-074925-092314-SP-MW-3 GW-074925-121714-CM-MW-3	9/23/2014	(orig)	< 0.001 < 0.001	< 0.001	< 0.001	< 0.003	< 0.00053 < 0.00045	598	0.83	0.65
	GW-074925-121714-CM-MW-3 GW-074925-092215-CB-MW-3	12/17/2014 9/22/2015	(orig)	< 0.001	< 0.001 < 0.001	< 0.001 < 0.001	< 0.003 < 0.003	< 0.00045	943	0.079	0.79
	GW-074925-091516-CM-MW-3	09/14/2016	(orig)	< 0.001	< 0.001	< 0.001	< 0.003	< 0.00045	671	0.079	0.48
	MW-4	10/24/2008	(orig)	0.024	< 0.0005	0.006	0.01	< 0.005	678		
	MW-4	1/29/2009	(orig)	0.11	0.006	0.009	0.147	< 0.005			
	MW-4	9/25/2009	(orig)	0.0088	< 0.001	0.0057	0.002	< 0.001	968	0.508	1.24
	MW-4	9/22/2010	(orig)	0.019	0.005	0.0069	0.0057	< 0.001	1040		1.27
	GW-074925-092811-CM-001	9/28/2011	(orig)	0.0256	0.0078	0.0017	0.0106	< 0.0001	960	0.532	1.82
	GW-074925-092612-CM-MW-4	9/26/2012	(orig)	0.0124	0.0023	< 0.001	< 0.003	< 0.0005	949	0.57	1.5
	GW-074925-092612-CM-DUP	9/26/2012	(Duplicate)	0.0130	0.0022	< 0.001	0.0031		<u> </u>		
MW-4	GW-074925-091713-CM-MW-4	9/17/2013	(orig)	0.0065	< 0.001	al Phase Extraction E < 0.001		< 0.0005	925	0.51	1.6
I	GW-074925-091713-CM-MW-4 GW-074925-092314-SP-MW-4	9/17/2013	(orig) (orig)	0.0065	< 0.001	0.001	< 0.003 < 0.003	< 0.0005	925	0.51	2.2
	511 01 1020 032014 OF WWY-4	. 0,20,2014	(Sing)			ual Phase Extraction		. 0.00000	, 500	. 0.00	
	GW-074925-121714-CM-MW-4	12/17/2014	(orig)	0.003	< 0.001	< 0.001	< 0.003	< 0.00045			
	GW-074925-092314-CM-DUP	12/17/2014		0.0039	< 0.001	< 0.001	< 0.003				
			,			Phase Extraction Ev					
	GW074925-061815-CB-MW-4	6/18/2015	(orig)	0.0039	< 0.001	< 0.001	< 0.003	< 0.00045 < 0.0005	 011	 0.21	
	GW-074925-092215-CB-MW-4 GW-074925-091516-CM-MW-4	9/22/2015 9/14/2016	(orig)	0.0018 0.0047	< 0.001 < 0.001	< 0.001 < 0.001	< 0.003 < 0.003	< 0.0005	911 943	0.21 0.24	1.9 2.0
		. 5, 1, 1, 2010	(Sing)	0.0041	1 0.001		- 0.000	- 0.000-0		U.ET	

NMWQCC = New Mexico Water Quality Control Commission
mg/L = milligrams per liter (parts per million)
<0.7 = Bellow laboratory detection limit of 0.7 mg/L
J = Estimated value between MDL and PQL
Bold = concentrations that exceed the NMWQCC groundwater quality standard

Appendices

Appendix A Groundwater Laboratory Analytical Reports

October 03, 2016

Christine Mathews GHD Services, Inc. 6212 Indian School Rd. NE St2 Albuquerque, NM 87110

RE: Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Dear Christine Mathews:

Enclosed are the analytical results for sample(s) received by the laboratory on September 16, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Alice Spiller

alice.spiller@pacelabs.com

alice Spiller

Project Manager

Enclosures

cc: Angela Bown, GHD Services, Inc, Jeffrey Walker, GHD Services, Inc

CERTIFICATIONS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116

Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

Kansas Field Laboratory Accreditation: # E-92587

SAMPLE SUMMARY

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Lab ID	Sample ID	Matrix	Date Collected	Date Received
60227944001	GW-074925-091516-CM-MW-2	Water	09/14/16 13:50	09/16/16 09:10
60227944002	GW-074925-091516-CM-MW-3	Water	09/14/16 14:25	09/16/16 09:10
60227944003	GW-074925-091516-CM-MW-4	Water	09/14/16 14:30	09/16/16 09:10
60227944004	GW-074925-091516-CM-DUP	Water	09/14/16 00:00	09/16/16 09:10
60227944005	TB-074925-091516-CM-001	Water	09/14/16 14:30	09/16/16 09:10

SAMPLE ANALYTE COUNT

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Lab ID	Sample ID	Method	Analysts	Analytes Reported
60227944001	GW-074925-091516-CM-MW-2	EPA 6010	JGP	2
		EPA 8270C by SIM	JMT	3
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227944002	GW-074925-091516-CM-MW-3	EPA 6010	JGP	2
		EPA 8270C by SIM	JMT	3
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227944003	GW-074925-091516-CM-MW-4	EPA 6010	JGP	2
		EPA 8270C by SIM	JMT	3
		EPA 8260	JTK	8
		EPA 300.0	OL	1
60227944004	GW-074925-091516-CM-DUP	EPA 8260	JTK	8
60227944005	TB-074925-091516-CM-001	EPA 8260	JTK	8

PROJECT NARRATIVE

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Method: EPA 6010

Description: 6010 MET ICP, Dissolved
Client: GHD Services_COP NM
Date: October 03, 2016

General Information:

3 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3010 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Lenexa, KS 66219 (913)599-5665

PROJECT NARRATIVE

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Method: EPA 8270C by SIM
Description: 8270 MSSV PAH by SIM
Client: GHD Services_COP NM
Date: October 03, 2016

General Information:

3 samples were analyzed for EPA 8270C by SIM. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3510C with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 446943

S0: Surrogate recovery outside laboratory control limits.

- LCS (Lab ID: 1828466)
 - 2-Fluorobiphenyl (S)
- MS (Lab ID: 1828469)
 - 2-Fluorobiphenyl (S)
- MSD (Lab ID: 1828470)
 - 2-Fluorobiphenyl (S)
 - Terphenyl-d14 (S)

S3: Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

- BLANK (Lab ID: 1828465)
 - 2-Fluorobiphenyl (S)
 - Terphenyl-d14 (S)
- GW-074925-091516-CM-MW-2 (Lab ID: 60227944001)
 - 2-Fluorobiphenyl (S)
- GW-074925-091516-CM-MW-3 (Lab ID: 60227944002)
 - 2-Fluorobiphenyl (S)
- GW-074925-091516-CM-MW-4 (Lab ID: 60227944003)
 - 2-Fluorobiphenyl (S)
 - Terphenyl-d14 (S)

PROJECT NARRATIVE

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Method:EPA 8270C by SIMDescription:8270 MSSV PAH by SIMClient:GHD Services_COP NMDate:October 03, 2016

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Method: EPA 8260

Description: 8260 MSV UST, Water
Client: GHD Services_COP NM
Date: October 03, 2016

General Information:

5 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 447494

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

QC Batch: 447653

A matrix spike/matrix spike duplicate was not performed due to insufficient sample volume.

Additional Comments:

PROJECT NARRATIVE

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Method: EPA 300.0

Description: 300.0 IC Anions 28 Days
Client: GHD Services_COP NM
Date: October 03, 2016

General Information:

3 samples were analyzed for EPA 300.0. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

Sample: GW-074925-091516-CM- MW-2	Lab ID: 602	27944001	Collected: 09/14/1	16 13:50	Received: 09	/16/16 09:10 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	10 Preparation Met	hod: EP	A 3010			
Iron, Dissolved	ND	mg/L	0.050	1	09/23/16 11:55	09/26/16 15:36	7439-89-6	
Manganese, Dissolved	ND	mg/L	0.0050	1	09/23/16 11:55	09/26/16 15:36	7439-96-5	
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	70C by SIM Prepara	ation M	ethod: EPA 35100			
Naphthalene <i>Surrogates</i>	ND	ug/L	0.45	1	09/19/16 00:00	09/21/16 12:51	91-20-3	
2-Fluorobiphenyl (S)	96	%	39-85	1	09/19/16 00:00	09/21/16 12:51	321-60-8	S3
Terphenyl-d14 (S)	95	%	48-95	1	09/19/16 00:00	09/21/16 12:51	1718-51-0	
3260 MSV UST, Water	Analytical Meth	nod: EPA 82	260					
Benzene	ND	ug/L	1.0	1		09/23/16 02:29	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/23/16 02:29	100-41-4	
Toluene	ND	ug/L	1.0	1		09/23/16 02:29	108-88-3	
Xylene (Total) Surrogates	ND	ug/L	3.0	1		09/23/16 02:29	1330-20-7	
Toluene-d8 (S)	99	%	80-120	1		09/23/16 02:29	2037-26-5	
4-Bromofluorobenzene (S)	105	%	77-130	1		09/23/16 02:29	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	81-127	1		09/23/16 02:29	17060-07-0	
Preservation pH	1.0		1.0	1		09/23/16 02:29		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	1270	mg/L	100	100		09/30/16 22:44	14808-79-8	

ANALYTICAL RESULTS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

Sample: GW-074925-091516-CM- MW-3	Lab ID: 602	27944002	Collected: 09/14/1	6 14:25	Received: 09	9/16/16 09:10 N	/latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Meth	nod: EP	A 3010			
Iron, Dissolved	0.22	mg/L	0.050	1	09/23/16 11:55	09/26/16 15:40	7439-89-6	
Manganese, Dissolved	0.48	mg/L	0.0050	1	09/23/16 11:55	09/26/16 15:40	7439-96-5	
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	270C by SIM Prepara	ation Me	ethod: EPA 35100			
Naphthalene Surrogates	ND	ug/L	0.45	1	09/19/16 00:00	09/21/16 13:10	91-20-3	
2-Fluorobiphenyl (S)	88	%	39-85	1	09/19/16 00:00	09/21/16 13:10	321-60-8	S3
Terphenyl-d14 (S)	92	%	48-95	1	09/19/16 00:00	09/21/16 13:10	1718-51-0	
8260 MSV UST, Water	Analytical Meth	nod: EPA 82	260					
Benzene	ND	ug/L	1.0	1		09/22/16 10:55	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/22/16 10:55	100-41-4	
Toluene	ND	ug/L	1.0	1		09/22/16 10:55	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/22/16 10:55	1330-20-7	
Surrogates								
Toluene-d8 (S)	98	%	80-120	1		09/22/16 10:55		
4-Bromofluorobenzene (S)	106	%	77-130	1		09/22/16 10:55		
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		09/22/16 10:55		
Preservation pH	1.0		1.0	1		09/22/16 10:55		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	671	mg/L	50.0	50		09/30/16 22:58	14808-79-8	

ANALYTICAL RESULTS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

Sample: GW-074925-091516-CM- MW-4	Lab ID: 602	27944003	Collected: 09/14/1	16 14:30	Received: 09	9/16/16 09:10 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, Dissolved	Analytical Meth	nod: EPA 60	010 Preparation Met	hod: EP	A 3010			
Iron, Dissolved	0.24	mg/L	0.050	1	09/23/16 11:55	09/26/16 15:44	7439-89-6	
Manganese, Dissolved	2.0	mg/L	0.0050	1	09/23/16 11:55	09/26/16 15:44	7439-96-5	
8270 MSSV PAH by SIM	Analytical Meth	nod: EPA 82	270C by SIM Prepara	ation Me	ethod: EPA 35100			
Naphthalene Surrogates	ND	ug/L	0.45	1	09/19/16 00:00	09/21/16 13:29	91-20-3	
2-Fluorobiphenyl (S)	96	%	39-85	1	09/19/16 00:00	09/21/16 13:29	321-60-8	S3
Terphenyl-d14 (S)	98	%	48-95	1	09/19/16 00:00	09/21/16 13:29	1718-51-0	S3
8260 MSV UST, Water	Analytical Meth	nod: EPA 82	260					
Benzene	4.7	ug/L	1.0	1		09/23/16 02:44	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/23/16 02:44	100-41-4	
Toluene	ND	ug/L	1.0	1		09/23/16 02:44	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/23/16 02:44	1330-20-7	
Surrogates								
Toluene-d8 (S)	97	%	80-120	1		09/23/16 02:44		
4-Bromofluorobenzene (S)	106	%	77-130	1		09/23/16 02:44		
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		09/23/16 02:44	17060-07-0	
Preservation pH	1.0		1.0	1		09/23/16 02:44		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.00					
Sulfate	943	mg/L	100	100		09/30/16 23:12	14808-79-8	

ANALYTICAL RESULTS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

Sample: GW-074925-091516-CM- DUP	Lab ID: 602	27944004	Collected: 09/14/1	6 00:00	Received: 0	9/16/16 09:10	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Met	hod: EPA 826	60					
Benzene	5.8	ug/L	1.0	1		09/23/16 02:58	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/23/16 02:58	100-41-4	
Toluene	ND	ug/L	1.0	1		09/23/16 02:58	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/23/16 02:58	1330-20-7	
Surrogates								
Toluene-d8 (S)	99	%	80-120	1		09/23/16 02:58	2037-26-5	
4-Bromofluorobenzene (S)	103	%	77-130	1		09/23/16 02:58	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	81-127	1		09/23/16 02:58	17060-07-0	
Preservation pH	1.0		1.0	1		09/23/16 02:58	}	

ANALYTICAL RESULTS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

Sample: TB-074925-091516-CM-001	Lab ID: 602	27944005	Collected: 09/14/1	6 14:30	Received: 09	9/16/16 09:10 N	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV UST, Water	Analytical Meth	nod: EPA 826	0					
Benzene	ND	ug/L	1.0	1		09/23/16 03:13	71-43-2	
Ethylbenzene	ND	ug/L	1.0	1		09/23/16 03:13	100-41-4	
Toluene	ND	ug/L	1.0	1		09/23/16 03:13	108-88-3	
Xylene (Total)	ND	ug/L	3.0	1		09/23/16 03:13	1330-20-7	
Surrogates								
Toluene-d8 (S)	98	%	80-120	1		09/23/16 03:13	2037-26-5	
4-Bromofluorobenzene (S)	107	%	77-130	1		09/23/16 03:13	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	81-127	1		09/23/16 03:13	17060-07-0	
Preservation pH	1.0		1.0	1		09/23/16 03:13		

Qualifiers

Analyzed

(913)599-5665

QUALITY CONTROL DATA

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

QC Batch: 447699 Analysis Method: EPA 6010

QC Batch Method: EPA 3010 Analysis Description: 6010 MET Dissolved

Associated Lab Samples: 60227944001, 60227944002, 60227944003

METHOD BLANK: 1831364 Matrix: Water

Associated Lab Samples: 60227944001, 60227944002, 60227944003

Blank Reporting
Parameter Units Result Limit

Iron, Dissolved mg/L ND 0.050 09/26/16 15:09

Manganese, Dissolved mg/L ND 0.0050 09/26/16 15:09

LABORATORY CONTROL SAMPLE: 1831365

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers mg/L Iron, Dissolved 10 10 100 80-120 Manganese, Dissolved mg/L 1.0 100 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1831366 1831367

	6	60227942002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Iron, Dissolved	mg/L	2870 ug/L	10	10	11.3	11.4	85	85	75-125	0	20	
Manganese, Dissolved	mg/L	5.9	1	1	6.7	6.7	80	78	75-125	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

QC Batch: 447494 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 60227944002

METHOD BLANK: 1830525 Matrix: Water

Associated Lab Samples: 60227944002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/22/16 05:57	
Ethylbenzene	ug/L	ND	1.0	09/22/16 05:57	
Toluene	ug/L	ND	1.0	09/22/16 05:57	
Xylene (Total)	ug/L	ND	3.0	09/22/16 05:57	
1,2-Dichloroethane-d4 (S)	%	99	81-127	09/22/16 05:57	
4-Bromofluorobenzene (S)	%	105	77-130	09/22/16 05:57	
Toluene-d8 (S)	%	97	80-120	09/22/16 05:57	

LABORATORY CONTROL SAMPLE:	1830526					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	20	19.9	99	79-116	
Ethylbenzene	ug/L	20	17.9	90	81-110	
Toluene	ug/L	20	18.9	95	82-111	
Xylene (Total)	ug/L	60	52.3	87	80-111	
1,2-Dichloroethane-d4 (S)	%			94	81-127	
4-Bromofluorobenzene (S)	%			103	77-130	
Toluene-d8 (S)	%			100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

QC Batch: 447653 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV UST-WATER

Associated Lab Samples: 60227944001, 60227944003, 60227944004, 60227944005

METHOD BLANK: 1831148 Matrix: Water
Associated Lab Samples: 60227944001, 60227944003, 60227944004, 60227944005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	09/23/16 00:14	
Ethylbenzene	ug/L	ND	1.0	09/23/16 00:14	
Toluene	ug/L	ND	1.0	09/23/16 00:14	
Xylene (Total)	ug/L	ND	3.0	09/23/16 00:14	
1,2-Dichloroethane-d4 (S)	%	98	81-127	09/23/16 00:14	
4-Bromofluorobenzene (S)	%	105	77-130	09/23/16 00:14	
Toluene-d8 (S)	%	99	80-120	09/23/16 00:14	

LABORATORY CONTROL SAMPLE:	1831149					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L		20.5	102	79-116	
Ethylbenzene	ug/L	20	18.5	93	81-110	
Toluene	ug/L	20	19.2	96	82-111	
Xylene (Total)	ug/L	60	53.4	89	80-111	
1,2-Dichloroethane-d4 (S)	%			98	81-127	
4-Bromofluorobenzene (S)	%			101	77-130	
Toluene-d8 (S)	%			100	80-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

QC Batch: 446943 Analysis Method: EPA 8270C by SIM

QC Batch Method: EPA 3510C Analysis Description: 8270 Water PAH by SIM MSSV

Associated Lab Samples: 60227944001, 60227944002, 60227944003

METHOD BLANK: 1828465 Matrix: Water

Associated Lab Samples: 60227944001, 60227944002, 60227944003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Naphthalene	ug/L	ND	0.50	09/20/16 16:33	
2-Fluorobiphenyl (S)	%	101	39-85	09/20/16 16:33	S3
Terphenyl-d14 (S)	%	100	48-95	09/20/16 16:33	S3

LABORATORY CONTROL SAMPLE:	1828466					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Naphthalene	ug/L		10	100	40-106	
2-Fluorobiphenyl (S)	%			94	39-85	S0
Terphenyl-d14 (S)	%			90	48-95	

MATRIX SPIKE & MATRIX SI	PIKE DUPLICA	ATE: 18284	69		1828470							
			MS	MSD								
	6	0227863005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Naphthalene	ug/L	1.4	9.1	9.1	10	10.5	95	101	35-117	5	48	
2-Fluorobiphenyl (S)	%						90	97	39-85		78	S0
Terphenyl-d14 (S)	%						84	102	48-95		79	S0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

QC Batch: 448685 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 60227944001, 60227944002, 60227944003

METHOD BLANK: 1835745 Matrix: Water

Associated Lab Samples: 60227944001, 60227944002, 60227944003

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L ND 1.0 09/30/16 20:36

LABORATORY CONTROL SAMPLE: 1835746

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Sulfate mg/L 4.7 94 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1835747 1835748

MS MSD 60227942002 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual Sulfate 80-120 mg/L 2550 1000 1000 3620 3590 107 104 15

MATRIX SPIKE SAMPLE: 1835749 60227942003 Spike MS MS % Rec % Rec Parameter Units Result Conc. Result Limits Qualifiers 2240 101 80-120 Sulfate mg/L 1000 3250

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 447494

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 447653

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 10/03/2016 08:08 AM

S0 Surrogate recovery outside laboratory control limits.

Surrogate recovery exceeded laboratory control limits. Analyte presence below reporting limits in associated samples.

Results unaffected by high bias.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 074925 COP Johnston Fed

Pace Project No.: 60227944

Date: 10/03/2016 08:08 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
60227944001	GW-074925-091516-CM-MW-2	EPA 3010	447699	EPA 6010	447798
60227944002	GW-074925-091516-CM-MW-3	EPA 3010	447699	EPA 6010	447798
60227944003	GW-074925-091516-CM-MW-4	EPA 3010	447699	EPA 6010	447798
60227944001	GW-074925-091516-CM-MW-2	EPA 3510C	446943	EPA 8270C by SIM	447216
60227944002	GW-074925-091516-CM-MW-3	EPA 3510C	446943	EPA 8270C by SIM	447216
60227944003	GW-074925-091516-CM-MW-4	EPA 3510C	446943	EPA 8270C by SIM	447216
60227944001	GW-074925-091516-CM-MW-2	EPA 8260	447653		
60227944002	GW-074925-091516-CM-MW-3	EPA 8260	447494		
60227944003	GW-074925-091516-CM-MW-4	EPA 8260	447653		
60227944004	GW-074925-091516-CM-DUP	EPA 8260	447653		
60227944005	TB-074925-091516-CM-001	EPA 8260	447653		
60227944001	GW-074925-091516-CM-MW-2	EPA 300.0	448685		
60227944002	GW-074925-091516-CM-MW-3	EPA 300.0	448685		
60227944003	GW-074925-091516-CM-MW-4	EPA 300.0	448685		

Sample Condition Upon Receipt ESI Tech Spec Client

Client Name: GHD GP NM			
Courier: FedEx/2 UPS □ VIA □ Clay □ P	EX 🗆 ECI 🗆 Pa	ace Xroads	□ Client □ Other □
Tracking #: . 7044 & 57.7845 Pace	Shipping Label Used?	Yes X No □	
Custody Seal on Cooler/Box Present: Yes ✓ No □	Seals intact: Yes	No □	
	Foam □	None □	Other □
Thermometer Used: T-266 / T-239 Type	e of Ice: We Blue N	one	
Cooler Temperature (°C): As-read 2.5 Corr. Facto	r CF +1.1 CF -0.1 Corrected	34	
Temperature should be above freezing to 6°C	### UPS VIA Clay PEX ECI Pace Xroads Client Other ### A # #		
Chain of Custody present:	Yes ONO ON/A		
Chain of Custody relinquished:	□Yes □No □N/A		
Samples arrived within holding time:	Yes No N/A		
Short Hold Time analyses (<72hr):	□Yes 7No □N/A		
Rush Turn Around Time requested:	□Yes ☑No □N/A		
Sufficient volume:	ØYes □No □N/A		
Correct containers used:	AYes DNo DN/A		
Pace containers used:	ØYes □No □N/A		
Containers intact:	✓Yes □No □N/A		
Unpreserved 5035A / TX1005/1006 soils frozen in 48hrs?	□Yes □No ⊅N/A		
Filtered volume received for dissolved tests?	Pres ONo PN/A		
Sample labels match COC: Date / time / ID / analyses	Yes □No □N/A		
Samples contain multiple phases? Matrix: wat?	□Yes □No ►N/A		
Containers requiring pH preservation in compliance?	✓Yes □No □N/A		
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>9 Sulfide, NaOH>10 Cyanide)			
(Exceptions: VOA, Micro, O&G, KS TPH, OK-DRO) Cyanide water sample checks: 🗡 N/A			
Lead acetate strip turns dark? (Record only)	□Yes □No		
Potassium iodide test strip turns blue/purple? (Preserve)	□Yes □No		
Trip Blank present:	☑Yes □No □N/A		
Headspace in VOA vials (>6mm):	□Yes ØNo □N/A		
Samples from USDA Regulated Area: State;	□Yes □No ØN/A		
Additional labels attached to 5035A / TX1005 vials in the field?	□Yes □No ØN/A		
Client Notification/ Resolution: Copy COC to C	Client? Y / N	Field Data Require	ed? Y / N
Person Contacted: Date/Tii	me:		
Comments/ Resolution:			
		<u></u>	Start: 1430 Start:
			End: 1435 End:
Project Manager Review: alice	Date	09/16/16	Temp: Temp:

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Invoice Information:

Section S

Required Project Information:

Section B

Required Client Information:

Samples Intact (Y/N)	Custody Sealed Cooler (Y/N)	Received on Ice (Y/N)	TEMP in C	9	1/51/6	: Signed:	ПАО	26. [0]		M)	91 J	aul aul	m	m)	7	יבצ:	9MA2 to	A SMAM Some Name of Small The organization of Small The organization of Small	IIA9								Page 23 of 23	
7	ОИВПТЮИЅ	SAMPLE C	9-2	TIME	J/01/P		NOITALI -02.6	11	LED BY	CCEPT	Ay	M		Sht		_	TAG PS/P	oHi	1	A I A A I A	NO NISI	DAMA)		s.	тизммоз	о тамої пада		
	/2 (v <u>e</u> yg)1	7				Dissolved Fe,Mn X X B270 PAH SIM Naphihaler	Sulfate by 300.0	Analyses	П	Na2S2O3 Methanol	NaOH	COUCUS CON HOI	HN03	Unpreserved	L	SAMPLE TEMP AT COLLECTION	OEHI SZHI OSCI		TIME	3TAQ	SAMPLE TYPE	M 100 M 2-MU M 2	Wipe Arr Other (M-M- (M-M- (M-M-)	-9/5 -9/h -9/h)-9/!-	r box.	(-, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	ms2	4
+	b 6 t i	V Location	(AVA)	(N/A)	alysis Filtered	enA baisaupa	Relabs	Test Y/N			02 "	nager; 8644	et Ma :# 9		Pace	COLLECTION		Fed EN	COFFE	255 COP J	GRAB C=COMP)	S TW	XIRTAM SW gnikhnQ system 1918W Hobert bioOstics	-	кеч	STAO-M	:918-808	:auou
		ory Agency	Regulat						2					ntion: pany h ess: Quote	moJ nbbA				Bown	er, Angela	il Walk		H E	7	q NE SE	envices COP 1 10 10 Inews@ghd.co	1 S1S9 148 MM ₍₈₀	