

ENTERPRISE PRODUCTS PARTNERS L.P. ENTERPRISE PRODUCTS HOLDINGS LLC (General Partner)

March 10, 2017

Submitted via email and Saved on the NMOCD ftp website

Mr. Randy Bayliss New Mexico Energy, Minerals & Natural Resources Department – Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: 2016 Annual Groundwater Monitoring Report (Apex, February 25, 2017) Enterprise Field Services, LLC – Largo Compressor Station Rio Arriba County, New Mexico Groundwater Discharge Plan GW-211 OCD RP: 3R-1001

Dear Mr. Bayliss:

Please find attached, the above-referenced report prepared by Apex TITAN, Inc. (Apex). The report is associated with the Enterprise Field Services, LLC (Enterprise) Largo Compressor Station condensate storage tank release (January 2008) as well as historical impacts in other areas of the facility.

The activities detailed in the attached *Annual Groundwater Monitoring Report* include two (2) semi-annual groundwater monitoring events completed at the site during April/May and October/November 2016, to further evaluate the concentrations of constituents of concern (COCs) in groundwater. Based on analytical results, COC concentrations were identified in groundwater above the New Mexico Water Quality Control Commission (WQCC) *Groundwater Quality Standards* (*GQSs*).

Regulatory oversight of the remediation activities at the site is now being shared by the New Mexico Oil Conservation Division's (OCD's) Santa Fe (District 4) and Aztec (District 3) offices. Enterprise currently plans to continue to perform semi-annual groundwater monitoring activities at the facility, and will work with Mr. Randy Bayliss and Mr. Brandon Powell and their respective OCD offices moving forward, to determine acceptable remediation options for soil and groundwater at the site.

Enterprise appreciates the OCD's continued assistance and guidance with bringing this Site to closure. Should you have any questions, comments or concerns, or require additional information, please feel free to contact me any time at 713-381-8780, or at <u>gemiller@eprod.com</u>.

Sincerely,

Gregory E. Miller, P.G. Supervisor, Environmental

/dep Attachment

Rodney M. Sartor, REM Director, Environmental

cc: Mr. Brandon Powell – NMOCD, Aztec, NM ec: Ms. Liz Scaggs – Apex, Dallas, TX

ANNUAL GROUNDWATER MONITORING REPORT (April/May and October/November 2016 Sampling Events)

GROUNDWATER DISCHARGE PLAN GW-211 OCD RP: 3R-1001

Property:

Largo Compressor Station NE ¼ and SE ¼, S15 T26N R7W Rio Arriba County, New Mexico

February 24, 2017 Apex Project No. 725040112154

Prepared for:

Enterprise Field Services, LLC P.O. Box 4324 Houston, Texas 77210-4324 Attn: Mr. Greg E. Miller, P.G.

Prepared by:

Ranee Deechilly Project Scientist

umm

Kyle Summers, CPG Branch Manager/Senior Geologist

Largo Compressor Station – Annual Groundwater Monitoring Report (April/May and October/November 2016 Sampling Events) Executive Summary

Semi-annual groundwater monitoring events were conducted at the Largo Compressor Station during April/May and October/November 2016 by Apex TITAN, Inc. (Apex). The site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. The site was constructed in the mid-1960s, and is located off of County Road (CR) 379 in Section 15, Township 26 North, Range 7 West in Rio Arriba County, New Mexico. The objective of these groundwater monitoring events was to further evaluate the concentrations of constituents of concern (COCs) in groundwater at the facility. Findings and recommendations based on these activities are as follows:

- During the completion of the April/May and October/November 2016 sampling events, one (1) groundwater sample was collected from each monitoring well utilizing low-flow or bailer sampling techniques. Monitoring well MW-42 was not sampled due to insufficient water during the October/November event, and monitoring well MW-47 has been damaged and was not sampled during either event.
- During the April/May sampling event, the groundwater sample collected from monitoring well MW-37 exhibited a benzene concentration of 820 micrograms per liter (μg/L), which exceeds the Water Quality Control Commission (WQCC) Groundwater Quality Standard (GQS) of 10 μg/L.
- During the October sampling event, the groundwater samples collected from monitoring wells MW-7, MW-15, MW-37, and MW-48 exhibited benzene concentrations ranging from 26 µg/L to 590 µg/L, which exceed the WQCC GQS of 10 µg/L. In addition, the groundwater sample collected from monitoring well MW-37 exhibited a total xylenes concentration of 1,600 µg/L, which exceeds the WQCC GQS of 620 µg/L.
- When compared to 2015 monitoring results, samples from monitoring wells MW-7 and MW-15 exhibited benzene concentration increases during the October/November 2016 monitoring event.
- When compared to 2015 monitoring results, samples from monitoring wells MW-37 and MW-39 exhibited benzene concentration decreases during each of the 2016 monitoring events.

Apex offers the following recommendations:

- Report the groundwater monitoring results to the Oil Conservation Division (OCD);
- Continue the execution of corrective actions to: 1) Reduce the concentrations of COCs in soil to below the OCD *Remediation Action Levels* in Area 3 and; 2) Remove NAPL from groundwater at the Site to the extent practical;
- Reinstall monitoring wells within the primary COC plume areas once the bulk of the affected soils have been removed/remediated;
- Continue semi-annual groundwater monitoring at the Site to evaluate COC concentrations in groundwater.

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Site Description & Background	1
	1.2 Chronology of Events	2
	1.3 Objective	8
	1.4 Standard of Care, Limitations & Reliance	8
2.0	SAMPLING PROGRAM	9
3.0	LABORATORY ANALYTICAL PROGRAM	10
4.0	GROUNDWATER FLOW DIRECTION	10
5.0	DATA EVALUATION	10
	5.1 Groundwater Samples	10
6.0	FINDINGS	12
7.0	RECOMMENDATIONS	13

LIST OF APPENDICES

Appendix A:	Figure 1	Topographic Map
	Figure 2	Site Vicinity Map
	Figure 3	Site Map
	Figure 4A	Groundwater Gradient Map (April 2016)
	Figure 4B	Groundwater Gradient Map (October 2016)
	Figure 5A	Groundwater Quality Standard Exceedance Zone Map (April/May 2016)
	Figure 5B	Groundwater Quality Standard Exceedance Zone Map (October/November 2016)
Appendix B:	Table 1 Table 2	Groundwater Analytical Summary Groundwater Elevations
Appendix C:	Laboratory Chain of C	Analytical Reports & sustody Documentation

ANNUAL GROUNDWATER MONITORING REPORT (April/May and October/November 2016 Sampling Events)

GROUNDWATER DISCHARGE PLAN GW-211 OCD RP: 3R-1001

Largo Compressor Station NE ¼ and SE ¼, S15 T26N R7W Rio Arriba County, New Mexico

Apex Project No. 725040112154

1.0 INTRODUCTION

1.1 Site Description & Background

The Enterprise Field Services, LLC (Enterprise) Largo Compressor Station is located off of County Road (CR) 379 in Section 15, Township 26 North, Range 7 West in Rio Arriba County, New Mexico (36.4855N, 107.5578W), referred to hereinafter as the "Site". The Site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. The Site was constructed in the mid-1960s and currently includes two (2) compressor engines, a dehydration unit and related treater, one (1) bullet storage tank, a new condensate storage tank battery which includes seven (7) new condensate storage tanks, inlet scrubbers, a control room, a storm water retention pond, and an office/shop building.

The Site is subject to regulatory oversight by the New Mexico Energy, Minerals, and Natural Resources Department (EMNRD), Oil Conservation Division (OCD). To address activities related to crude oil/condensate related releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the EMNRD/OCD rules, specifically New Mexico Administrative Code (NMAC) 19.15.29 *Release Notification*. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

The Site location is depicted on Figure 1 of Appendix A which was reproduced from a portion of a United States Geological Survey (USGS) 7.5-minute series topographic map. A Site Vicinity Map, created from an aerial photograph, is provided as Figure 2 of Appendix A.

The areas of known or potential impact at the Site have been previously identified as Areas 1 through 4 in OCD correspondence. Each of the areas is depicted on Figure 3 in relation to pertinent Site features and general Site boundaries. These areas are briefly described below:

Area 1 (Former Condensate Storage Tank Area)

Area 1 is defined as the northwestern portion of the Site and includes the former condensate storage tank battery associated with on-going investigation/monitoring and/or corrective actions since a release from a condensate storage tank valve was reported to the OCD in January 2008. Additional detail regarding the investigative and corrective activities at Area 1 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211)* (Southwest Geoscience (SWG) - March 24, 2011), and the *Corrective Action Pilot Study Report* (SWG – October 10, 2011). The old condensate storage tanks were physically removed from Area 1 during July/August 2012.

During the summer and fall of 2013, Enterprise removed hydrocarbon-affected soils from the former tank battery footprint. These activities are described in the *Remediation Plan (Corrective Action Status Report) Largo Compressor Station* (SWG – March 19, 2014).

Groundwater impact in Area 1 is currently delineated by the groundwater monitoring well network. Additional information pertaining to groundwater impact at the Site is provided in the Annual Groundwater Monitoring Reports, such as the Annual Groundwater Monitoring Report (April/May and October 2015 Sampling Events).

Area 2 (Valve Box Area)

Area 2 includes the new condensate storage tank battery and the immediately surrounding area. This area is in the north central portion of the Site, immediately south of CR 379. During the construction of the new tank battery in June 2009, petroleum hydrocarbon impacted soils and groundwater were encountered in association with a former valve box and related appurtenances. Additional detail and references regarding the investigative and corrective activities at Area 2 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211)* (SWG - March 24, 2011).

Area 3 (Retention Pond Area)

Area 3 encompasses the east portion of the Site including the storm-water retention pond. Historical petroleum hydrocarbon affected soil and groundwater were identified during the construction of the retention pond in July of 2009, which possibly originated from historic oil and contact water treatment and storage in the area of the current retention pond. Additional detail regarding previous investigative and corrective activities at Area 3 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211)* (SWG - March 24, 2011), the *Supplemental Site Investigation & Quarterly Groundwater Monitoring Report (April 2012)* (SWG – June 31, 2012), and the *Interim Corrective Action (Area 3) and Treated Soil Sampling (Area 1) Report (Apex – July 14, 2016).*

Area 4 (Compression & Dehydration Area)

Area 4 comprises the remainder of the Site, which includes the active compression and treatment area comprised of two (2) compressor engines, a dehydration unit and related inlet scrubbers. Soil and groundwater investigation activities pertaining to Area 4 are provided in the *Environmental Site Investigation – Largo Compressor Station (GW-211)* (SWG - March 24, 2011), and the *Supplemental Site Investigation & Quarterly Groundwater Monitoring Report (April 2012)* (SWG – June 31, 2012).

1.2 Chronology of Events

Significant events and related activities associated with the Site, including the results of Site investigation activities and corrective action completed prior to activities described within this report, are provided in the following summary:

January 4, 2008Area 1: Release was discovered resulting from frozen valve failure on
a condensate storage tank. The release flowed into the below-grade
drain tanks, which subsequently overflowed to surrounding
containment. The release was subsequently reported to the OCD.March/April 2008Area 1: Geoprobe Investigation at Largo Compressor Station
(Lodestar – May 16, 2008): Initial field investigation activities were
performed by Lodestar Services, LLC (Lodestar) during March and

April of 2008. Nineteen (19) soil borings (B-1 through B-19) were advanced at the Site with total depths ranging from 14.5 feet below grade surface (bgs) to 21 feet bgs. Five (5) of the 19 soil borings were subsequently converted to 1-inch piezometers (P-1 though P-5). Based on the depth to groundwater and proximity to a surface water body, the Site was classified with a total ranking score greater than 19.

Lodestar collected 29 soil samples from the 19 soil borings and submitted the samples for total petroleum hydrocarbons (TPH) as gasoline range organics (GRO) and diesel range organics (DRO) and benzene, toluene, ethylbenzene, and total xylenes (BTEX) analysis. In addition, five (5) groundwater samples collected from the piezometers were submitted for TPH GRO/DRO and BTEX analysis. Based on the laboratory analytical results, soil samples collected from soil borings B-1, B-2, B-5, and B-14 exhibited TPH GRO/DRO concentrations above the OCD *Remediation Action Level (RAL)*. The groundwater samples collected from piezometers P-1, P-2, and P-3 exhibited benzene, toluene, and/or total xylene concentrations above the Water Quality Control Commission (WQCC) Groundwater Quality Standards (GQSs).

- August/September
2008Area 1: Enterprise submitted a notice that the condensate storage
tank system was scheduled to be upgraded/replaced.
- September/OctoberAreas 1 through 4:
modification from Enterprise with the condition that Enterprise filed an
appropriate closure plan for the old tank battery.
- June/July 2009 Area 2: An area of concern was discovered during construction activities at the new condensate storage tank battery. Source of impact presumed to be valve box from a storage tank formerly utilized at this location. Souder, Miller, & Associates (SMA) assisted with the assessment activities and Foutz & Bursum (F&B) performed the excavation activities. Prior to fully excavating the affected soils, exploratory "potholes" were advanced to investigate the extent of subsurface contamination. Groundwater was encountered at approximately 13 feet bas during these activities. On June 26, 2009, SMA collected one soil confirmation sample from pothole #6 (PH# 6), and submitted it for analysis of TPH GRO/DRO. Based on the laboratory analytical data, the soil confirmation sample PH# 6 did not exhibit TPH GRO/DRO concentrations above the OCD Remediation Action Levels (RALs). SMA also collected a groundwater sample from pothole #1 (PH #1). Based on the laboratory analytical data, benzene was identified at a concentration in excess of the WQCC GQSs. Based on field observations, soil screening data, and laboratory analytical data, F&B excavated the visually impacted soils at which the final excavation was reported to be approximately 100 feet long by 30 feet wide and 13 feet deep. SMA collected a total of four (4) soil confirmation samples on July 1, 2009 from the sidewalls of the Area 2 excavation and one (1) soil confirmation sample from the excavated soils and submitted them for analysis of TPH GRO/DRO. The confirmation soil samples did not exhibit COC concentrations above the OCD RALs. SWG subsequently collected groundwater samples

from this approximate area (TSW-44 and TSW-45) and no groundwater impacts were observed (*Environmental Site Investigation* (*SWG – March 24, 2011*)). The Area 2 excavation was backfilled in July of 2009 with unaffected soil and gravel.

- July 2009 <u>Area 1:</u> Inspection Report New Mexico OCD (July 9, 2009): Onsite inspection by OCD required tank integrity testing, improvement on leak detection monitoring, liner repair, soil and groundwater remediation, and system repair or replacement.
- July 2009Area 1: Response to Inspection Report Enterprise (July 23, 2009):
Enterprise submitted a work plan to perform additional investigation
activities at the Site.
- July/August 2009 <u>Area 3:</u> Historical petroleum hydrocarbon impact was discovered during the construction of a storm-water retention pond at the facility. Initial Form C-141 was submitted to OCD on July 6, 2009.

On July 15, 2009, a cement tank containing water (apparently an old cistern) was unearthed in the vicinity of the planned storm-water retention pond. SMA collected a water sample from the tank, and subsequent BTEX analyses indicated the tank water did not exhibit BTEX concentrations in excess of the WQCC GQSs. Soil confirmation samples were collected below the water table (BWT) on the north side of the retention pond excavation and on the northeast wall (NE Wall) of the retention pond excavation. Analytical results indicated the soil confirmation samples "BWT" and "NE Wall" contained TPH GRO/DRO, benzene, and/or total BTEX concentrations in excess of the OCD *RALs*. Groundwater which was present at the BWT soil sample location was collected (GE) and submitted for analysis of BTEX. Based on the laboratory analytical results, the GE groundwater sample exhibited benzene, toluene and total xylenes concentrations in excess of the WQCC GQSs.

On July 16, 2009, SMA evaluated a total of four (4) test pits, each with a total depth of approximately 13 feet bgs, to the north and east of the retention pond excavation. Groundwater was encountered in each of the test pits at approximately 13 feet bgs. SMA collected one (1) soil sample just above the water table in each of the test pits to field screen for the presence of volatile organic compounds (VOCs). Based on visual observations within the test pits and the field screening results of the collected soils samples, it was concluded that "soil impacts likely extended beyond a reasonable area for excavation" within Area 3. The decision was made to stop extending the excavation and to remove any visibly contaminated soil remaining in the existing excavation of Area 3. SMA subsequently collected a groundwater sample from the southwest corner of the retention pond excavation (SWCRP) and submitted it for analysis of BTEX. Based on the laboratory analytical results, the SWCRP groundwater sample exhibited benzene and total xylenes concentrations above the WQCC GQSs.

The excavated soils, approximately 1,701 cubic yards in total (one source indicates 3,000 cubic yards), were transported off-site and

disposed of at the Envirotech landfarm near Hilltop, New Mexico. In addition, a vacuum truck was utilized to remove approximately 1,120 bbls of hydrocarbon impacted groundwater from the excavation prior to backfill. The excavation was backfilled with approximately 1,360 cubic yards of unaffected material, leaving a four (4) to five (5) foot depression to utilize as the storm-water retention pond.

August 2009Area 1: Report of Subsurface Investigation at Largo Compressor
Station (Lodestar – November 30, 2009): During August 2009,
Lodestar performed a supplemental subsurface field investigation at
the Site. Ten (10) additional soil borings (B-21 through B-30) were
advanced at the Site. In addition, two (2) hand auger borings (HA-1
and HA-2) were advanced within the former condensate storage tank
containment berm. Four (4) of the ten (10) soil borings were
subsequently converted to permanent 2-inch groundwater monitoring
wells (MW-6 through MW-9).

Based on the laboratory analytical results, soil samples collected from soil borings B-22 at 15 feet bgs, B-23 at 15 feet bgs, B-24 at 15 feet bgs, B-29 at 18 feet bgs, and Hand Auger-1 at 14 feet bgs exhibited total BTEX and/or TPH GRO/DRO concentrations above OCD *RALs*. The groundwater samples collected from piezometers P-2 and P-3 and monitoring well MW-7 exhibited benzene, toluene, and/or total xylenes concentrations above the WQCC GQSs. In addition, nonaqueous phase liquid (NAPL) was present in piezometer P-1.

Lodestar concluded that soil and groundwater impact was limited to the bermed area and slightly outside of the bermed area in the downgradient (northwest) direction. Furthermore, the dissolved-phase contamination of the groundwater underlying the Site was migrating slightly to the north-northwest.

NovemberArea 1: November 2009 Groundwater Sampling (Lodestar –
December 17, 2009), Quarterly Groundwater Monitoring Report
(Lodestar – April 20, 2010): Based on the laboratory analytical results,
the groundwater samples collected from the groundwater monitoring
wells MW-7 and P-2 (now referred to as MW-11) exhibited benzene
and/or total xylenes concentrations above the WQCC GQSs. NAPL
was present in piezometer P-1 during each of these two groundwater
monitoring events.

- January 2010 <u>Area 1:</u> Largo Compressor Station Work Plan for Groundwater Remediation GW-211 (Lodestar – December 31, 2009): Enterprise submitted a groundwater remediation work plan for the Site detailing the proposed injection of Oxygen Release Compound (ORC) and utilization of sorbent socks to the OCD.
- February 2010Area 1:The OCD approved the December 31, 2009 work plan
conditions.
- March/April 2010Area 1: Interim Remedial Investigation Report (LTE May 15, 2010):
During March of 2010, LT Environmental, Inc. (LTE), formerly known
as Lodestar, advanced two (2) additional soil borings at the Site with
total depths ranging from approximately 31 to 32 feet bgs.

	Groundwater was encountered in both soil borings with static levels ranging from 20 to 22 feet bgs. The two (2) soil borings were subsequently converted to 2-inch groundwater monitoring wells (MW-15 and MW-16). LTE also replaced piezometer P-1 with a 4-inch groundwater monitoring well (MW-12) which was proposed to be utilized in recovering NAPL by introducing adsorbent socks via the well casing. Piezometers P-2, P-3, P-4, and P-5 were also replaced with 2-inch groundwater monitoring wells MW-11, MW-3R, MW-14, and MW-13, respectively.
	<u>Area 1:</u> During April 2010, LTE collected groundwater samples from the on-Site groundwater monitoring wells for TPH GRO/DRO and BTEX analyses. Based on the laboratory analytical results, the groundwater samples collected from monitoring wells MW-7 and MW- 12 exhibited benzene, toluene, and/or total xylenes concentrations above the WQCC GQSs.
May 2010	Area 1: A final C-141 was submitted to the OCD, indicating the need for additional studies.
	<u>Areas 1 through 4:</u> On May 27, 2010, Enterprise submitted an extension request to the OCD pertaining to investigation activities at the Largo Compressor Station, citing a planned facility-wide investigation.
June 2010	<u>Areas 1 through 4:</u> Proposed Facility-Wide Soil and Groundwater Investigation (LTE – June 8, 2010): Enterprise submitted a work plan to provide a Site-wide assessment of the Largo Compressor Station.
	<u>Areas 1 through 4:</u> The OCD approved the proposed work plan submitted on June 10, 2010 with conditions.
June/July 2010	<u>Area 1:</u> Groundwater Sampling Report (LTE – September 10, 2010): During June of 2010, LTE advanced ten (10) 4-inch boreholes utilizing hollow stem augers. The boreholes were advanced to the north and north-northwest of the containment berm. A slurry of 65% ORC solids and water was poured directly into the hollow stem at each borehole (approximately 30 pounds of ORC per borehole) to create a plug of ORC covering approximately five vertical feet throughout the smear zone. A 2-foot thick bentonite seal was installed above the ORC slurry and the remainder of the borehole was backfilled with clean soil.
	<u>Area 1:</u> During July 2010, LTE collected groundwater samples from the on-Site groundwater monitoring wells and submitted them for TPH GRO/DRO and BTEX analyses. Based on the laboratory analytical results, the groundwater samples collected from monitoring wells MW- 3R, MW-7, MW-11, MW-12, MW-15, and MW-16 exhibited benzene and/or total xylene concentrations above the WQCC GQSs.
November 2010	Areas 1 through 4: During November 2010, Southwest Geoscience (SWG) advanced 17 soil borings across the facility as part of the facility-wide Site investigation. Four (4) of these soil borings were completed as temporary sampling wells to allow the collection of a single groundwater sample prior to plugging and abandonment. The

remaining 13 soil borings were completed as permanent monitoring wells.

February/MarchArea 1:Corrective Action Work Plan (SWG – February 18, 2011):2011Enterprise proposed an in-situ chemical oxidation (ISCO) pilot study at the condensate storage tank area.

<u>Areas 1 through 4:</u> Environmental Site Investigation (SWG – March 24, 2011): Enterprise submitted a report to the OCD documenting the facility-wide investigation findings and subsequent groundwater monitoring results. Analytical results from the investigation confirmed the presence of hydrocarbon affected soil and groundwater in the vicinity of the retention pond (Area 3). Additionally, benzene was identified at concentrations above the WQCC GQSs in groundwater from monitoring well MW-39, in the vicinity of the current compressors (Area 4).

The groundwater sample collected from monitoring well MW-42, which is located on the hydrogeologically up-gradient boundary of the Site, exhibited a total dissolved solids (TDS) concentration of 75,400 micrograms per liter mg/L.

- May 2011
 Area 1: Enterprise performed "pilot study" ISCO activities at the condensate storage tank release area. Approximately 3,500 gallons of injectate were introduced to the substrate near monitoring well MW-12.
- October 2011 <u>Area 1:</u> Corrective Action Pilot Study Report (SWG October 10, 2012): Enterprise submitted a report to the OCD documenting the "pilot study" implementation. Field observations during ISCO activities indicated remaining historically impacted soils.
- March 2012Areas 3 and 4: SSI Work Plan (SWG January 12, 2012): Enterprise
proposed additional field activities to further delineate dissolved-phase
groundwater impact in Areas 3 and 4. Enterprise initiated the
proposed investigative activities by installing six (6) monitoring wells
to further evaluate COCs at the Site.

June 2012Areas 3 and 4: Supplemental Site Investigation
& Quarterly Groundwater Monitoring Report (SWG - June 31, 2012):
Enterprise submitted a report to the OCD which documented the initial
SSI activities for Areas 3 and 4. The report included results from the
quarterly monitoring event that was performed following the
installation of the six (6) additional monitoring wells.

- November 2012
 Area 3:
 Enterprise resumed the supplemental investigation, focusing on additional soil and groundwater COC delineation in Area 3.
- March 2013Area 3: Enterprise submitted the Supplemental Site Investigation
Report (November 2012 and January 2013) (SWG February 22,
2013) to the OCD documenting SSI activities for Area 3. The report
documented soil and groundwater sampling performed during the SSI
activities, and identified a potential second source of impact at the
retention pond area. Enterprise proposed corrective actions for

remediation of soils from Areas 1 and 3 in the *Corrective Action Work Plan (Area 1 and Area 3 – Soils) (SWG – March 11, 2013.)*

- May 2013Areas 1 and 3: Largo Compressor Station Background Sampling
(SWG June 18, 2013): Enterprise performed sampling in the
southeast portion of the Site to evaluate current background soil and
groundwater conditions. These activities were performed in advance
of the proposed acquisition of backfill material from the area, and in
advance of the proposed use of the area for soil treatment.
- June through
November 2013Area 1: Corrective Action Status Report (Area 1 Soils) (SWG –
March 19, 2014): Enterprise submitted a letter report to the OCD
documenting the construction of the treatment cell area and corrective
action activities performed in Area 1.
- August through
October 2014Area 1: Annual Groundwater Monitoring Report (April and October
2014 Sampling Events) and Supplemental Site Investigation Report
(Apex TITAN, INC. (Apex) April 13, 2015): Enterprise installed three
(3) additional groundwater monitoring wells downgradient of
monitoring well MW-47.
- July 2016 <u>Area 3:</u> Interim Corrective Action Report (Area 3) and Treated Soil Sampling (Area 1) Report (Apex – July 14, 2016): Enterprise performed corrective action activities in Area 3 by removing hydrocarbon-affected soils in the vicinity of the retention pond. The treated soils from the former Area 1 remediation were stockpiled for confirmation sampling to make room in the treatment cells for the Area 3 soils.

1.3 Objective

The objective of the groundwater monitoring events was to further evaluate COC concentrations in groundwater at the Site.

1.4 Standard of Care, Limitations & Reliance

Apex's services were performed in accordance with standards customarily provided by a firm rendering the same or similar services in the area during the same time period. Apex makes no warranties, expressed or implied, as to the services performed hereunder. Additionally, Apex does not warrant the work of third parties supplying information used in the report (e.g. laboratories, regulatory agencies, or other third parties). This scope of services was performed in accordance with the scope of work agreed with the client.

Findings, conclusions and recommendations resulting from these services are based upon information derived from the on-Site activities and other services performed under this scope of work and it should be noted that this information is subject to change over time. Certain indicators of the presence of hazardous substances, petroleum products, or other constituents may have been latent, inaccessible, unobservable, or not present during these services, and Apex cannot represent that the Site contains no hazardous substances, toxic materials, petroleum products, or other latent conditions beyond those identified during this scope of services. Environmental conditions at other areas or portions of the Site may vary from those encountered at actual sample locations. Apex's findings and recommendations are based solely upon data available to Apex at the time of these services.

This report has been prepared for the exclusive use of Enterprise, and any authorization for use or reliance by any other party (except a governmental entity having jurisdiction over the Site) is prohibited without the expressed written authorization of Enterprise and Apex. Any unauthorized distribution or reuse is at the client's sole risk. Notwithstanding the foregoing, reliance by authorized parties will be subject to the terms, conditions and limitations stated in the proposal, the report, and Apex's Agreement. The limitation of liability defined in the agreement is the aggregate limit of Apex's liability to the client.

2.0 SAMPLING PROGRAM

Semi-annual groundwater sampling events were conducted during April/May and October/November 2016 by Apex.

Apex's groundwater sampling program consisted of the following:

Prior to sample collection, Apex gauged the depth to fluids in each monitoring well using an interface probe capable of detecting NAPL. Former monitoring wells MW-33 and MW-35, which exhibited NAPL during previous sampling events, were plugged and abandoned during 2015 to facilitate soil remediation activities. Although it is reasonable to assume that NAPL is still present in the vicinity of the retention pond, these monitoring wells are not scheduled for replacement until the soil remediation activities are completed.

Each monitoring well was sampled utilizing either micro-purge low-flow or bailer sampling techniques. Subsequent to the completion of the micro-purge process, one (1) groundwater sample was collected from each monitoring well.

Low-flow refers to the velocity with which groundwater enters the pump intake and that is imparted to the formation pore water in the immediate vicinity of the well screen. It does not necessarily refer to the flow rate of water discharged at the surface which can be affected by flow regulators or restrictions. Water level drawdown provides the best indication of the stress imparted by a given flow-rate for a given hydrological situation. The objective is to pump in a manner that minimizes stress (drawdown) to the system, to the extent practical, taking into account established Site sampling objectives. Flow rates on the order of 0.1 to 0.5 liters per minute (L/min) are maintained during sampling activities, using dedicated or decontaminated sampling equipment. The water level is checked periodically to monitor drawdown in the well as a guide to flow rate adjustment.

The pump intake is placed within the screened interval such that the groundwater recovered is drawn in directly from the formation with little mixing of casing water or disturbance to the sampling zone.

The groundwater samples are collected from each monitoring well once produced groundwater is consistent in color, clarity, pH, dissolved oxygen, oxidation-reduction potential, temperature and conductivity. Measurements are taken every three to five minutes. Stabilization is achieved after key parameters (especially pH and conductivity) have stabilized for three successive readings.

The casing of monitoring well MW-75 is approximately 1.5-inches in diameter, which does not permit the use of the bladder pump for sampling. As a result, this monitoring well was purged of three (3) casing volumes, or until effectively dry, utilizing a disposable bailer. Subsequent to the completion of the purging process and the recovery of groundwater to static or near static levels, one (1) groundwater sample was collected from the monitoring well.

Groundwater samples were collected in laboratory supplied containers and placed on ice in a cooler secured with a custody seal. The sample coolers and completed chain-of-custody forms were relinquished to Hall Environmental Analysis Laboratory (HEAL) in Albuquerque, New Mexico.

3.0 LABORATORY ANALYTICAL PROGRAM

The groundwater samples collected from the monitoring wells during the April/May and October/November 2016 groundwater sampling events were analyzed for BTEX utilizing EPA method SW-846 #8021. The sample containers were pre-preserved with mercuric chloride (HgCl₂).

A summary of the analyte, sample matrix, sample frequency, and EPA-approved methods are presented on the following table.

Analyte	Sample Matrix	No. of Samples (per event)	EPA Method
BTEX	BTEX Groundwater		SW-846 8021

Laboratory results are summarized in Table 1 included in Appendix B. The executed chain-ofcustody form and laboratory data sheets are provided in Appendix C.

4.0 GROUNDWATER FLOW DIRECTION

Each of the monitoring wells has been surveyed for top-of-casing (TOC) elevations. Prior to sample collection, Apex gauged the depth to fluids in each monitoring well. The groundwater flow direction at the Site is generally toward the northwest, with an average gradient of approximately 0.004 feet per foot (ft/ft) across the Site.

Groundwater measurements collected during the April and October 2016 gauging events are presented with TOC elevations in Table 3 (Appendix B). Groundwater gradient maps for the April and October 2016 gauging events are included as Figure 4A and 4B (Appendix A), respectively.

5.0 DATA EVALUATION

The Site is subject to regulatory oversight by the New Mexico EMNRD OCD. To address activities related to crude oil/condensate related releases, the New Mexico EMNRD OCD utilizes the *Guidelines for Remediation of Leaks, Spills and Releases* as guidance, in addition to the EMNRD/OCD rules, specifically NMAC 19.15.29 *Release Notification*. These guidance documents establish investigation and abatement action requirements for sites subject to reporting and/or corrective action.

5.1 Groundwater Samples

Apex compared BTEX concentrations or laboratory method practical quantitation limits (PQLs) associated with the groundwater samples collected from the monitoring wells during the April/May and October/November 2016 sampling events to the New Mexico WQCC *GQSs*. The results of the groundwater sample analyses are summarized in Table 2 of Appendix B. Groundwater Quality Standard Exceedance Zone maps are provided as Figures 5A and 5B of Appendix A.

April/May 2016 Sample Results:

Monitoring well MW-47 was not sampled due to structural damage.

The groundwater sample collected from monitoring well MW-37 exhibited a benzene concentration of 820 micrograms per liter (μ g/L), which exceeds the WQCC GQS of 10 μ g/L. The groundwater samples collected from monitoring wells MW-7, MW-16, MW-39, MW-48, and MW-51 exhibited benzene concentrations ranging from 1.7 μ g/L (MW-51) to 9.8 μ g/L (MW-39), which are below the WQCC GQS of 10 μ g/L. The groundwater samples collected from the remaining monitoring wells did not exhibit benzene concentrations above the laboratory PQLs, which are below the WQCC GQS of 10 μ g/L.

The groundwater samples collected from Site monitoring wells did not exhibit toluene concentrations above the laboratory PQLs, which are below the WQCC GQS of 750 µg/L.

The groundwater samples collected from monitoring wells MW-16, MW-37, and MW-48 exhibited ethylbenzene concentrations ranging from 1.1 μ g/L (MW-16) to 180 μ g/L (MW-37), which are below the WQCC GQS of 750 μ g/L. The groundwater samples collected from the remaining monitoring wells did not exhibit ethylbenzene concentrations above the laboratory PQLs, which are below the WQCC GQS of 750 μ g/L.

The groundwater samples collected from monitoring wells MW-48 and MW-37 exhibited total xylene concentrations of 2.9 μ g/L and 510 μ g/L, respectively, which are below the WQCC GQS of 620 μ g/L. The groundwater samples collected from the remaining monitoring wells did not exhibit total xylene concentrations above the laboratory PQLs, which are below the WQCC GQS of 620 μ g/L.

No data qualifiers were associated with the April/May 2016 analytical results.

October/November 2016 Sample Results:

Monitoring well MW-42 was not sampled due to insufficient water. Monitoring well MW-47 was not sampled due to structural damage.

The groundwater samples collected from monitoring wells MW-7, MW-15, MW-37, and MW-48 exhibited benzene concentrations ranging from 26 μ g/L (MW-48) to 590 μ g/L (MW-37), which exceed the WQCC GQS of 10 μ g/L. The groundwater samples collected from monitoring wells MW-3R, MW-39, and MW-51 exhibited benzene concentrations ranging from 2.8 μ g/L (MW-3R) to 4.9 μ g/L (MW-51), which are below the WQCC GQS of 10 μ g/L. The groundwater samples collected from the remaining monitoring wells did not exhibit benzene concentrations above the laboratory PQLs, which are below the WQCC GQS of 10 μ g/L.

The groundwater samples collected from the monitoring wells did not exhibit toluene concentrations above the laboratory PQLs, which are below the WQCC GQS of 750 μ g/L.

The groundwater samples collected from monitoring wells MW-7, MW-37, and MW-48 exhibited ethylbenzene concentrations ranging from 6.7 μ g/L (MW-7) to 340 μ g/L (MW-37), which are below the WQCC GQS of 750 μ g/L. The groundwater samples collected from the remaining monitoring wells did not exhibit ethylbenzene concentrations above the laboratory PQLs, which are below the WQCC GQS of 750 μ g/L.

The groundwater sample collected from monitoring well MW-37 exhibited a total xylenes concentration of 1,600 μ g/L, which exceeds the WQCC GQS of 620 μ g/L. The groundwater samples collected from monitoring wells MW-7 and MW-48 exhibited total xylene concentrations of 2.3 μ g/L and 26 μ g/L, respectively, which are below the WQCC GQS of 620 μ g/L. The groundwater

samples collected from the remaining monitoring wells did not exhibit total xylene concentrations above the laboratory PQLs, which are below the WQCC GQS of 620 μ g/L.

	Data Qualifier Flags							
Sample ID	Data Qualifier Flag	Comments/Reactions						
MW-3R (collected 10/14/2016)	SW-846 Method 8021 BTEX Surrogate Recovery was outside the accepted recovery limits.	The BTEX data is suitable for use as an estimated value. The surrogate recovery was outside the accepted "high" limit of 130% with a recovery of 568% due to matrix interference.						
MW-15 (collected 10/13/2016)	SW-846 Method 8021 BTEX Surrogate Recovery was outside the accepted recovery limits.	The BTEX data is suitable for use as an estimated value. The surrogate recovery was slightly outside the accepted "high" limit of 130% with a recovery of 142% due to matrix interference.						
MW-54 (collected 10/20/2016)	Sample Diluted Due to Matrix.	The sample was diluted due to matrix interference.						
MW-55 (collected 10/17/2016)	Sample Diluted Due to Matrix.	The sample was diluted due to matrix interference.						

6.0 FINDINGS

Semi-annual groundwater monitoring events were conducted at the Largo Compressor Station during April/May and October/November 2016. The Site is a natural gas compressor station utilized to dehydrate and compress natural gas collected from production wells in the area for transportation via pipeline. The Site was constructed in the mid-1960s, and is located off of CR 379 in Section 15, Township 26 North, Range 7 West in Rio Arriba County, New Mexico. The objectives of the groundwater monitoring events were to further evaluate the concentrations of COCs in groundwater at the Site.

- Former monitoring wells MW-33 and MW-35, which exhibited NAPL during previous sampling events, were plugged and abandoned during 2015 to facilitate soil remediation activities. Although it is reasonable to assume that NAPL is still present in the vicinity of the retention pond, these monitoring wells are not scheduled for replacement until the soil remediation activities are completed.
- During the completion of the April/May and October/November 2016 sampling events, one (1) groundwater sample was collected from each monitoring well utilizing low-flow or bailer sampling techniques. Monitoring well MW-42 was not sampled due to insufficient water during the October/November event, and monitoring well MW-47 has been damaged and was not sampled during either event.
- The groundwater flow direction at the Site is generally towards the northwest, with an average gradient of 0.004 ft/ft across the Site.
- During the April/May sampling event, the groundwater sample collected from monitoring well MW-37 exhibited a benzene concentration of 820 µg/L, which exceeds the WQCC GQS of 10 µg/L.

- During the October/November sampling event, the groundwater samples collected from monitoring wells MW-7, MW-15, MW-37, and MW-48 exhibited benzene concentrations ranging from 26 µg/L to 590 µg/L, which exceed the WQCC GQS of 10 µg/L. In addition, the groundwater sample collected from monitoring well MW-37 exhibited a total xylenes concentration of 1,600 µg/L, which exceeds the WQCC GQS of 620 µg/L.
- When compared to 2015 monitoring results, samples from monitoring wells MW-7 and MW-15 exhibited benzene concentration increases during the October/November 2016 monitoring event.
- When compared to 2015 monitoring results, samples from monitoring wells MW-37 and MW-39 exhibited benzene concentration decreases during each of the 2016 monitoring events.

7.0 RECOMMENDATIONS

Regulatory oversight of the Site is now being shared between the OCD's Santa Fe (District 4) and Aztec (District 3) offices. Enterprise met with OCD District 3 personnel during January and February 2017 and communications are ongoing with regard to remediation activities moving forward.

Based on the results of groundwater monitoring activities, Apex has the following recommendations:

- Report the groundwater monitoring results to the Oil Conservation Division (OCD);
- Continue the execution of corrective actions to: 1) Reduce the concentrations of COCs in soil to below the OCD *Remediation Action Levels* in Area 3 and; 2) Remove NAPL from groundwater at the Site to the extent practical;
- Reinstall monitoring wells within the primary COC plume areas once the bulk of the affected soils have been removed/remediated;
- Continue semi-annual groundwater monitoring at the Site to evaluate COC concentrations in groundwater.

APPENDIX A

Figures

Largo Compressor Station NE1/4 and SE1/4, S15 T26N R7W Rio Arriba County, New Mexico 36.4855N, 107.5578W

Apex TITAN, Inc. 606 South Rio Grande, Suite A Aztec, NM 87410 Phone: (505) 334-5200 A Subsidiary of Apex Companies, LLC

FIGURE 1 **Topographic Map** Smouse Mesa, NM Quadrangle 2013

Project No. 725040112154

Largo Compressor Station NE1/4 and SE1/4, S15 T26N R7W Rio Arriba County, New Mexico 36.4855N, 107.5578W

Apex TITAN, Inc. 606 South Rio Grande, Suite A Aztec, NM 87410 Phone: (505) 334-5200 www.apexcos.com A Subsidiary of Apex Companies, LLC

FIGURE 2 Site Vicinity Map

Project No. 725040112154

APPENDIX B

Tables

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	ТРН	ТРН
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
			Monitoring Wel	Is Installed by Lode	estar			
P-3	4.04.08	NA	780	13	81	20	4.2	<1.0
P-3	8.10.09	NA	35	<1.0	3.8	<2.0	NA	NA
P-3	11.24.09	NA	1.4	<1.0	1.5	<2.0	NA	NA
P-3	2.25.10	NA	3.6	10	2	24	NA	NA
MW-3R (P-3*)	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-3R (P-3*)	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-3R (P-3*)	7.13.10	NA	13	<1.0	1.3	6.4	1.4	1
MW-3R (P-3*)	8.26.10	NA	5.0	<1.0	<1.0	2.3	0.46	<1.0
MW-3R (P-3*)	11.18.10	NA	3.9	<1.0	<1.0	<2.0	0.47	<1.0
MW-3R (P-3*)	2.1.11	NA	2.0	<1.0	<1.0	<2.0	0.16	<1.0
MW-3R (P-3*)	4.18.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-3R (P-3*)	7.28.11	NA	1.5	<1.0	<1.0	7.1	1.50	<1.0
MW-3R (P-3*)	10.27.11	NA	1.1	<1.0	<1.0	<2.0	0.57	<1.0
MW-3R (P-3*)	1.30.12	NA	<1.0	<1.0	<1.0	<2.0	0.16	<1.0
MW-3R (P-3*)	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	0.16	<1.0
MW-3R (P-3*)	7.31.12	NA	<1.0	<1.0	<1.0	<2.0	0.36	<1.0
MW-3R (P-3*)	10.19.12	NA	<1.0	<1.0	1.2	2.8	0.48	<1.0
MW-3R (P-3*)	4.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-3R (P-3*)	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-3R (P-3*)	4.21.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-3R (P-3*)	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-3R (P-3*)	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-3R (P-3*)	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-3R (P-3*)	4.27.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-3R (P-3*)	10.14.16	NA	2.8	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved Solids	Benzene	Toluene	Ethylbenzene	Xylenes	ТРН	TPH
			(µg/L)	(µg/L)	(µg/∟)	(µg/∟)	GRU	DKO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-6	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	2.25.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-6	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	7.13.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-6	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-6	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-6	1.31.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	7.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	7.31.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	10.18.12	8,420	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	4.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	4.22.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-6	10.27.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	4.29.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	4.27.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-6	10.14.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-7	8.10.09	NA	15,000	<100	380	310	NA	NA
MW-7	11.24.09	NA	13,000	<100	150	<200	NA	NA
MW-7	2.25.10	NA	3,000	<10	40	31	NA	NA
MW-7	4.05.10	NA	940	<10	<10	<20	4.2	1.3
MW-7	5.27.10	NA	700	<10	11	<20	NA	NA
MW-7	7.13.10	NA	15,000	<10	130	25	51	4.6
MW-7	8.26.10	NA	5,300	<20	35	<40	18	1.7
MW-7	11.18.10	NA	3,700	<20	62	<40	11	1.2
MW-7	2.1.11	NA	1,800	<1.0	10	4.6	2.2	<1.0
MW-7	4.19.11	NA	250	<1.0	2.9	2.4	0.75	<1.0
MW-7	5.19.11	NA	1,400	<5.0	15.0	<10	4.0	<1.0
MW-7	7.28.11	NA	75	<5.0	200	62.0	45	2.7
MW-7	10.28.11	NA	1,300	<10	140	<20	32	6.1
MW-7	1.31.12	NA	9,000	<10	110	<20	21	4.5
MW-7	4.19.12	NA	790	<10	15	<20	2.7	<1.0
MW-7	7.31.12	NA	2,500	<10	35	<20	6.4	<1.0
MW-7	10.19.12	NA	8,200	<10	130	36.0	32	2.5
MW-7	4.24.13	NA	120	<1.0	2.1	<2.0	0.60	<1.0
MW-7	10.25.13	NA	45	<1.0	<1.0	<2.0	0.19	<1.0
MW-7	4.22.14	NA	43	<1.0	<1.0	3.1	0.13	<1.0
MW-7	10.29.14	NA	2.3	<1.0	<1.0	<2.0	NA	NA
MW-7	5.6.15	NA	24	<1.0	<1.0	<2.0	NA	NA
MW-7	10.28.15	NA	25	<1.0	<1.0	3.6	NA	NA
MW-7	4.27.16	NA	7.0	<1.0	<1.0	<2.0	NA	NA
MW-7	10.14.16	NA	500	<1.0	6.7	2.3	NA	NA

Sample I.D.	Date	Total Dissolved Solids	Benzene	Toluene	Ethylbenzene	Xylenes	ТРН	TPH
			(µg/Ľ)	(µg/∟)	(µg/L)	(µg/∟)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-8	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	2.25.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	7.13.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-8	1.31.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	4.18.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	7.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	7.31.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	10.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	4.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	4.21.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-8	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	10.23.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	4.26.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-8	10.13.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved Solids	Benzene	Toluene	Ethylbenzene	Xylenes	ТРН	TPH
			(µg/Ľ)	(µg/L)	(µg/∟)	(µg/∟)	GRU	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-9	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	2.25.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	< 0.05	<1.0
MW-9	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	7.13.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-9	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	< 0.05	<1.0
MW-9	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-9	1.31.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	7.31.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	10.19.12	NA	<1.0	<1.0	<1.0	<2.0	< 0.050	<1.0
MW-9	4.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	4.22.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-9	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	4.27.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-9	10.14.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(((
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
P-2	4.04.08	NA	15,000	2,100	380	4,600	120	6.8
P-2	8.10.09	NA	9,800	110	170	1,400	NA	NA
P-2	11.24.09	NA	21,000	360	460	2,700	NA	NA
P-2	2.25.10	NA	19,000	380	380	2,800	NA	NA
MW-11 (P-2*)	4.05.10	NA	<1.0	<1.7	<1.0	3.3	0.22	<1.0
MW-11 (P-2*)	5.27.10	NA	4.4	<1.0	<1.0	<2.0	NA	NA
MW-11 (P-2*)	7.13.10	NA	700	4.5	11	56	3.6	1.2
MW-11 (P-2*)	8.26.10	NA	86	<1.0	1.3	4.9	0.4	<1.0
MW-11 (P-2*)	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	0.14	<1.0
MW-11 (P-2*)	2.4.11	NA	21	<1.0	<1.0	<1.0	0.075	<1.0
MW-11 (P-2*)	4.19.11	NA	96	12	1.2	27	0.39	<1.0
MW-11 (P-2*)	7.28.11	NA	46	<1.0	38	76	11	1.7
MW-11 (P-2*)	10.28.11	NA	1,600	<10	31	37	4.6	2.2
MW-11 (P-2*)	1.31.12	NA	470	<10	12	<20	1.3	<1.0
MW-11 (P-2*)	4.19.12	NA	84	<1.0	3.2	<2.0	0.43	<1.0
MW-11 (P-2*)	7.31.12	NA	36	<1.0	2.6	<2.0	0.24	<1.0
MW-11 (P-2*)	10.19.12	NA	1,100	<1.0	11	41	5.3	<1.0
MW-11 (P-2*)	4.24.13	NA	40	<1.0	1.5	<2.0	0.14	<1.0
MW-11 (P-2*)	9.6.13			Monitor wel	I was removed during r	emediation.		

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
P-1	4.04.08	NA	5,700	2,200	310	5,500	53	<1.0
P-1	8.10.09	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
P-1	11.24.09	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
P-1	2.25.10	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-12 (P-1*)	4.05.10	NA	1,300	1,600	110	2,200	20	1.2
MW-12 (P-1*)	5.27.10	NA	3,300	1,800	180	3,200	NA	NA
MW-12 (P-1*)	7.13.10	NA	2,900	330	140	1,700	22	1.0
MW-12 (P-1*)	8.26.10	NA	1,200	420	70	1,300	13	<1.0
MW-12 (P-1*)	11.18.10	NA	1,100	69	61	720	6.3	<1.0
MW-12 (P-1*)	2.4.11	NA	5,900	<50	470	1,600	24	<1.0
MW-12 (P-1*)	4.19.11	NA	4,200	190	<100	330	14	<1.0
MW-12 (P-1*)	5.19.11	NA	1,000	520	36	660	13	15
MW-12 (P-1*)	7.28.11	NA	12,000	2,300	320	3,200	54	3.9
MW-12 (P-1*)	10.28.11	NA	4,900	59	130	3,300	29	7.3
MW-12 (P-1*)	1.31.12	NA	4,400	62	110	1,500	18	11
MW-12 (P-1*)	4.19.12	NA	4,300	53	150	930	22	5.8
MW-12 (P-1*)	7.31.12	NA	4,600	<50	160	920	17	3.3
MW-12 (P-1*)	10.19.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-12 (P-1*)	4.24.13	NA	6,900	150	96	850	23	5.8
MW-12 (P-1*)	9.6.13			Monitor wel	I was removed during r	emediation.		

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
P-5	4.04.08	NA	<1.0	<1.0	<1.0	<2.0	0.1	<1.0
P-5	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
P-5	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
P-5	2.25.10	NA	1.8	6.1	<1.0	11	NA	NA
MW-13 (P-5*)	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-13 (P-5*)	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-13 (P-5*)	7.13.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-13 (P-5*)	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-13 (P-5*)	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-13 (P-5*)	2.3.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	7.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	1.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	7.31.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	10.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	4.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	4.22.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-13 (P-5*)	10.27.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-13 (P-5*)	4.29.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-13 (P-5*)	10.23.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-13 (P-5*)	4.27.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-13 (P-5*)	10.14.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	ТРН
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
P-4	4.04.08	NA	<1.0	<1.0	<1.0	<2.0	0.42	<1.0
P-4	8.10.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
P-4	11.24.09	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
P-4	2.25.10	NA	2.5	7.5	<1.0	14	NA	NA
MW-14 (P-4*)	4.05.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*)	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-14 (P-4*)	7.13.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*)	8.26.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*)	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.05	<1.0
MW-14 (P-4*)	2.1.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	7.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	1.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	4.19.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	7.31.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	10.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	4.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	4.22.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-14 (P-4*)	10.27.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-14 (P-4*)	4.29.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-14 (P-4*)	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-14 (P-4*)	4.27.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-14 (P-4*)	10.13.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
		(iiig/L)					(iiig/L)	(iig/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-15	4.05.10	NA	1.1	<1.0	<1.0	<2.0	<0.05	<1.0
MW-15	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	< 0.05	<1.0
MW-15	7.13.10	NA	490	2.2	7.2	15	3.2	<1.0
MW-15	8.26.10	NA	20	<1.0	<1.0	<2.0	0.095	<1.0
MW-15	11.18.10	NA	8.9	<1.0	<1.0	<2.0	0.19	<1.0
MW-15	2.1.11	NA	16	<1.0	<1.0	<2.0	0.06	<1.0
MW-15	4.18.11	NA	13	<1.0	<1.0	<2.0	0.14	<1.0
MW-15	7.28.11	NA	1500	<1.0	19	20	6.7	<1.0
MW-15	10.28.11	NA	810	<10	<10	<20	2.2	1.0
MW-15	1.30.12	NA	150	<10	<10	<20	0.51	<1.0
MW-15	4.18.12	NA	23	<1.0	1.4	<2.0	0.21	<1.0
MW-15	7.31.12	NA	64	<1.0	1.1	<2.0	0.22	<1.0
MW-15	10.19.12	NA	400	<1.0	7.2	7.8	2.0	<1.0
MW-15	4.24.13	NA	6.4	<1.0	<1.0	<2.0	0.094	<1.0
MW-15	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-15	4.21.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-15	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-15	4.29.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-15	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-15	4.27.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-15	10.13.16	NA	28	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(ma/L)					(ma/L)	(ma/L)
		(9, -)					((9/-//
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-16	4.05.10	NA	3.8	1.5	1.4	11	0.36	<1.0
MW-16	5.27.10	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-16	7.13.10	NA	47	<1.0	<1.0	<2.0	0.3	<1.0
MW-16	8.26.10	NA	16	<1.0	<1.0	<2.0	0.095	<1.0
MW-16	11.18.10	NA	3.4	<1.0	<1.0	<2.0	0.11	<1.0
MW-16	2.1.11	NA	61	<1.0	1.3	2.1	0.20	<1.0
MW-16	4.18.11	NA	34	<1.0	3.7	4.4	0.16	<1.0
MW-16	7.28.11	NA	43	<1.0	1.9	<2.0	0.29	<1.0
MW-16	10.27.11	NA	21	<1.0	<1.0	<2.0	0.19	<1.0
MW-16	1.30.12	NA	10	<1.0	<1.0	<2.0	0.096	<1.0
MW-16	4.18.12	NA	20	<1.0	1.0	<2.0	0.14	<1.0
MW-16	7.31.12	NA	46	<1.0	1.9	<2.0	0.23	<1.0
MW-16	10.19.12	NA	100	<1.0	3.9	<2.0	0.38	<1.0
MW-16	4.24.13	NA	10	<1.0	<1.0	<2.0	0.097	<1.0
MW-16	10.28.13	NA	11	<1.0	1.2	<2.0	0.052	<1.0
MW-16	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-16	10.27.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-16	4.29.15	NA	1.6	<1.0	<1.0	<2.0	NA	NA
MW-16	10.26.15	NA	3.0	<1.0	<1.0	<2.0	NA	NA
MW-16	4.27.16	NA	6.5	<1.0	1.1	<2.0	NA	NA
MW-16	10.14.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
		Monitoring We	Is Installed by Ape	x TITAN (formerly S	Southwest Geoscience)	1		
TSW-31	11.23.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	1.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	10.16.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-32	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-32	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-32	10.23.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-32	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-32	10.19.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-33	1.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.20.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	7.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	10.26.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	1.27.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.18.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	7.30.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	10.19.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.23.13	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	10.23.13	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.21.14	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	10.27.14	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.28.15	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	10.22.15	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-33	4.29.16		Мо	nitoring well rem	noved during Octobe	er 2015 remediat	ion	

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-34	1.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	10.16.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-34	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-34	5.1.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-34	10.23.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-34	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-34	10.19.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-35	1.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.20.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	7.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	10.26.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	1.27.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.18.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	7.30.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	10.19.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.23.13	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	10.23.13	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.21.14	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	10.27.14	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.28.15	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	10.22.15	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-35	4.29.16		Мо	nitoring well rem	noved during Octobe	er 2015 remediat	ion	

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-36	1.31.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	4.20.11	NA	<1.0	2.1	<1.0	<2.0	<0.050	<1.0
MW-36	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	10.17.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-36	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-36	5.1.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-36	10.23.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-36	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-36	10.17.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-37	2.4.11	NA	3,100	6,200	700	7,000	38	3.9
MW-37	4.20.11	NA	2,500	3,600	500	5,100	34	4.2
MW-37	7.28.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	10.26.11	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	1.27.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	4.18.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	7.30.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	10.19.12	NA	NAPL	NAPL	NAPL	NAPL	NAPL	NAPL
MW-37	4.23.13	NA	670	260	230	1,100	13	4.1
MW-37	10.29.13	NA	580	170	150	610	10	7.7
MW-37	4.24.14	NA	740	49	120	450	7.2	4.9
MW-37	10.30.14	NA	770	<20	140	510	NA	NA
MW-37	5.7.15	NA	1,500	220	330	1,300	NA	NA
MW-37	10.23.15	NA	1,000	21	360	2,000	NA	NA
MW-37	5.2.16	NA	820	<10	180	510	NA	NA
MW-37	11.8.16	NA	590	<10	340	1,600	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	ТРН
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-38	1.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	4.20.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	10.17.12	3,000	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-38	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-38	4.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-38	10.22.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-38	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-38	10.19.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-39	1.26.11	NA	1,200	730	37	570	11	<1.0
MW-39	4.19.11	NA	120	<1.0	1.6	5.9	0.33	<1.0
MW-39	7.29.11	NA	27	14	1.9	18	0.80	<1.0
MW-39	10.27.11	NA	260	<1.0	1.2	3.5	0.44	<1.0
MW-39	1.27.12	NA	580	48	4.3	79	1.8	<1.0
MW-39	4.18.12	NA	1,500	620	36	860	12	112
MW-39	7.30.12	NA	170	<2.0	<2.0	8.6	0.58	<1.0
MW-39	10.17.12	NA	13	<2.0	<2.0	<4.0	<0.10	<1.0
MW-39	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-39	10.23.13	NA	18	<1.0	<1.0	<2.0	0.11	<1.0
MW-39	4.23.14	NA	9.6	<1.0	<1.0	<2.0	0.056	<1.0
MW-39	10.29.14	NA	5.5	<1.0	<1.0	<2.0	NA	NA
MW-39	5.7.15	NA	25	<1.0	<1.0	3.1	NA	NA
MW-39	10.29.15	NA	13	<1.0	<1.0	<2.0	NA	NA
MW-39	4.28.16	NA	9.8	<1.0	<1.0	<2.0	NA	NA
MW-39	10.17.16	NA	4.1	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-40 **	1.28.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40 **	4.20.11	NA	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0
MW-40 **	7.28.11	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-40 **	10.26.11	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-40 **	1.27.12	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-40R	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40R	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40R	10.16.12	7,930	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40R	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40R	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40R	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-40R	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-40R	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-40R	10.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-40R	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-40R	10.14.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Qual Groundwater Q	ity Control Commmission quality Standards	NE	10	750	750	620	NE	NE
MW-41	1.31.11	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0
MW-41	4.18.11	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0
MW-41	7.29.11	NA	<5.0	<5.0	<5.0	<10	<0.050	<1.0
MW-41	10.27.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	10.16.12	30,200	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-41	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-41	4.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-41	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-41	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-41	10.19.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quali Groundwater Q	ity Control Commmission uality Standards	NE	10	750	750	620	NE	NE
MW-42	2.4.11	NA	<5.0	<5.0	<5.0	<10	<0.25	NA
MW-42	3.3.11	75,400	NA	NA	NA	NA	NA	NA
MW-42	4.19.11	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0
MW-42	7.28.11	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-42	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-42	1.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-42	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-42	7.30.12	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-42	10.16.12	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-42	4.23.13	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-42	10.23.13	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-42	4.21.14	NA			Insufficient water to	collect sample.		
MW-42	10.29.14	NA	Insufficient water to collect sample.					
MW-42	4.28.15	NA	Insufficient water to collect sample.					
MW-42	10.22.15	NA	Insufficient water to collect sample.					
MW-42	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-42	10.17.16	NA			Insufficient water to	collect sample.		

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-43	1.28.11	NA	<1.0	<1.0	<1.0	<2.0	0.06	<1.0
MW-43	4.19.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	7.29.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	10.26.11	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	1.27.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	10.16.12	7,630	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	4.23.13	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0
MW-43	10.24.13	NA	<5.0	<5.0	<5.0	<10	<0.25	<1.0
MW-43	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-43	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-43	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-43	10.22.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-43	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-43	10.17.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
TSW-44	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
TSW-45	11.18.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
TSW-46	11.23.10	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-47	1.28.11	NA	<5.0	<5.0	<5.0	<10	1.3	2.5
MW-47	4.18.11	NA	<5.0	<5.0	<5.0	<10	2.0	1.2
MW-47	7.28.11	NA	<5.0	<5.0	<5.0	27.0	6.6	1.1
MW-47	10.28.11	NA	<5.0	<5.0	<5.0	<10	1.4	2.7
MW-47	1.30.12	NA	<5.0	<5.0	<5.0	<10	2.6	2.5
MW-47	4.18.12	NA	11	<5.0	16	38	5.5	2.9
MW-47	7.31.12	NA	<10	<10	<10	<20	4.5	2.9
MW-47	10.18.12	NA	<5.0	<5.0	<5.0	91	12	1.8
MW-47	4.24.13	NA	<5.0	<5.0	5.0	<10	6.4	2.3
MW-47	10.24.13	NA	190	<5.0	8.9	<10	9.1	4.7
MW-47	4.28.14	NA	700	<5.0	27	<10	8.5	4.0
MW-47	10.29.14	NA	750	<10	29	<20	NA	NA
MW-47	5.7.15	NA	420	<10	25	<20	NA	NA
MW-47	10.29.15	NA	92	<1.0	21	2.8	NA	NA
MW-47	4.28.16			Mc	nitoring well damag	jed		

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/l)
		(IIIg/L)					(IIIg/L)	(IIIg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-48	4.18.12	NA	290	3,200	360	5,000	25	1.3
MW-48	7.30.12	NA	120	1,100	160	2,900	15	<1.0
MW-48	10.17.12	NA	190	580	150	1,700	8.5	<1.0
MW-48	4.23.13	NA	140	<5.0	170	310	2.9	<1.0
MW-48	10.29.13	NA	67	<5.0	51	83	0.87	<1.0
MW-48	4.28.14	NA	9.2	<1.0	7.8	15	0.25	<1.0
MW-48	10.30.14	NA	48	<1.0	40	60	NA	NA
MW-48	5.7.15	NA	3.1	<1.0	3.8	5.6	NA	NA
MW-48	10.27.15	NA	51	<1.0	33	53	NA	NA
MW-48	4.28.16	NA	2.0	<1.0	1.9	2.9	NA	NA
MW-48	10.17.16	NA	26	<1.0	17	26	NA	NA
MW-49	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-49	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-49	10.17.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-49	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-49	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-49	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-49	10.30.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-49	5.6.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-49	10.27.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-49	4.28.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-49	10.20.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-50	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-50	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-50	10.17.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-50	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-50	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-50	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-50	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-50	4.30.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-50	10.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-50	4.28.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-50	10.14.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA
MW-51	4.18.12	NA	1,200	3,600	150	1,400	19	<1.0
MW-51	7.30.12	NA	51	5.5	17	78	1.3	<1.0
MW-51	10.16.12	NA	14	<1.0	4.8	21	0.16	<1.0
MW-51	4.23.13	NA	3.0	<1.0	1.5	<2.0	0.078	<1.0
MW-51	10.23.13	NA	8.2	<1.0	<1.0	<2.0	0.066	<1.0
MW-51	4.23.14	NA	1.1	<1.0	<1.0	<2.0	<0.050	<1.0
MW-51	10.28.14	NA	5.3	<1.0	<1.0	<2.0	NA	NA
MW-51	5.7.15	NA	2.3	<1.0	<1.0	<2.0	NA	NA
MW-51	10.29.15	NA	4.9	<1.0	<1.0	<2.0	NA	NA
MW-51	5.2.16	NA	1.7	<1.0	<1.0	<2.0	NA	NA
MW-51	10.19.16	NA	4.9	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-52	4.18.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-52	7.30.12	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-52	10.17.12	27,000	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-52	4.23.13	NA	30	<1.0	<1.0	<2.0	0.11	<1.0
MW-52	10.29.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-52	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-52	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-52	4.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-52	10.29.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-52	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-52	10.17.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-53	01.29.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-53	05.03.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-53	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-53	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-53	10.30.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-53	5.6.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-53	10.27.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-53	4.28.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-53	10.17.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-54	01.29.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-54	05.03.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-54	10.24.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-54	4.28.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-54	10.30.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-54	5.6.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-54	10.27.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-54	4.28.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-54	10.20.16	NA	<2.0	<2.0	<2.0	<4.0	NA	NA
MW-55	01.29.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-55	05.03.13	NA	<1.0	<1.0	13	710	1.3	<1.0
MW-55	10.29.13	NA	<1.0	<1.0	1.4	<2.0	<0.050	<1.0
MW-55	4.28.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-55	10.30.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-55	5.6.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-55	10.27.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-55	4.28.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-55	10.17.16	NA	<2.0	<2.0	<2.0	<4.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-75	01.29.13	NA	<2.0	<2.0	<2.0	<4.0	<0.10	<1.0
MW-75	4.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-75	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-75	4.24.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-75	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-75	5.4.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-75	10.26.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-75	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-75	10.19.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-76	6.3.13	14,200	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-76	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-76	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-76	10.28.14	NA	<2.0	<2.0	<2.0	<4.0	NA	NA
MW-76	5.4.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-76	10.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-76	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-76	10.20.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-77	6.3.13	17,900	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-77	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-77	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-77	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-77	5.4.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-77	10.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-77	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-77	10.20.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-79	6.3.13	NA	Dry	Dry	Dry	Dry	Dry	Dry
MW-79	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-79	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-79	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-79	5.4.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-79	10.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-79	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-79	10.20.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-80	6.3.13	13,000	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-80	10.23.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-80	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-80	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-80	5.4.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-80	10.27.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-80	5.2.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-80	10.20.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-83	6.3.13	14,500	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-83	10.25.13	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-83	4.23.14	NA	<1.0	<1.0	<1.0	<2.0	<0.050	<1.0
MW-83	10.28.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-83	5.1.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-83	10.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-83	4.29.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-83	10.19.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-88	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-88	4.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-88	10.22.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-88	4.26.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-88	10.13.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA
MW-89	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-89	4.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-89	10.22.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-89	4.26.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-89	10.13.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Sample I.D.	Date	Total Dissolved	Benzene	Toluene	Ethylbenzene	Xylenes	TPH	TPH
		Solids	(µg/L)	(µg/L)	(µg/L)	(µg/L)	GRO	DRO
		(mg/L)					(mg/L)	(mg/L)
New Mexico Water Quality Control Commmission Groundwater Quality Standards		NE	10	750	750	620	NE	NE
MW-90	10.29.14	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-90	4.28.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-90	10.22.15	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-90	4.26.16	NA	<1.0	<1.0	<1.0	<2.0	NA	NA
MW-90	10.13.16	NA	<1.0	<1.0	<1.0	<1.5	NA	NA

Note: Concentrations in **bold** and yellow exceed the applicable WQCC GQS

µg/L = micrograms per liter

mg/L = milligrams per liter

NA = Not Analyzed

NE = Not Established

NAPL = Non-aqueous phase liquid

* = piezometer well was replaced with associated monitoring well

** = Monitoring well MW-40 was replaced by MW-40R

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	4.5.10		None Observed	21.83	0.0	6095.65
	5.27.10		None Observed	21.82	0.0	6095.66
	6.25.10		None Observed	22.22	0.0	6095.26
	7.13.10		None Observed	22.47	0.0	6095.01
	8.26.10		None Observed	22.24	0.0	6095.24
	11.18.10		None Observed	22.32	0.0	6095.16
	1.25.11		None Observed	22.13	0.0	6095.35
	4.22.11		None Observed	21.99	0.0	6095.49
	7.27.11		None Observed	22.81	0.0	6094.67
	10.26.11		None Observed	22.91	0.0	6094.57
	1.26.12	0447.40	None Observed	22.74	0.0	6094.74
IVIVV-3R	4.19.12	6117.48	None Observed	22.61	0.0	6094.87
	7.31.12		None Observed	22.66	0.0	6094.82
	10.18.12		None Observed	23.04	0.0	6094.44
	4.24.13		None Observed	22.50	0.0	6094.98
	10.23.13		None Observed	21.12	0.0	6096.36
	4.21.14		None Observed	21.97	0.0	6095.51
	10.27.14		None Observed	22.20	0.0	6095.28
	4.28.15		None Observed	21.83	0.0	6095.65
	10.20.15		None Observed	21.96	0.0	6095.52
	4.08.16		None Observed	21.60	0.0	6095.88
	10.07.16		None Observed	22.44	0.0	6095.04
	8.10.09		None Observed	20.28	0.0	6095.19
	11.24.09		None Observed	20.17	0.0	6095.30
	2.25.10		None Observed	19.54	0.0	6095.93
	4.5.10		None Observed	19.11	0.0	6096.36
	5.27.10		None Observed	19.28	0.0	6096.19
	6.25.10		None Observed	19.87	0.0	6095.60
	7.13.10		None Observed	20.09	0.0	6095.38
	8.26.10		None Observed	19.68	0.0	6095.79
	11.18.10		None Observed	19.72	0.0	6095.75
	1.25.11		None Observed	19.51	0.0	6095.96
	4.22.11		None Observed	19.42	0.0	6096.05
	7.27.11		None Observed	20.40	0.0	6095.07
MW-6	10.26.11	6115.47	None Observed	20.43	0.0	6095.04
	1.26.12		None Observed	20.15	0.0	6095.32
	4.19.12		None Observed	Not Gauged	0.0	Not Gauged
	7.31.12		None Observed	19.93	0.0	6095.54
	10.18.12		None Observed	20.47	0.0	6095.00
	4.24.13		None Observed	19.89	0.0	6095.58
	10.23.13		None Observed	19.42	0.0	6096.05
	4.21.14		None Observed	19.34	0.0	6096.13
	10.27.14		None Observed	19.50	0.0	6095.97
	4.28.15		None Observed	19.12	0.0	6096.35
	10.20.15		None Observed	19.32	0.0	6096.15
	4.08.16		None Observed	19.02	0.0	6096.45
	10.07.16		None Observed	19.89	0.0	6095.58

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	8.10.09		None Observed	21.52	0.0	6095.13
	11.24.09		None Observed	21.73	0.0	6094.92
	2.25.10		None Observed	21.42	0.0	6095.23
	4.5.10		None Observed	20.96	0.0	6095.69
	5 27 10		None Observed	20.96	0.0	6095.69
	6 25 10		None Observed	21.32	0.0	6095.33
	7.13.10		None Observed	21.46	0.0	6095.19
	8.26.10		None Observed	21.36	0.0	6095.29
	11.18.10		None Observed	21.42	0.0	6095.23
	1.25.11		None Observed	21.24	0.0	6095.41
	4.22.11		None Observed	21.22	0.0	6095.43
	7.27.11		None Observed	21.80	0.0	6094.85
MW-7	10.26.11	6116.65	None Observed	21.94	0.0	6094.71
	1.26.12		None Observed	21.82	0.0	6094.83
	4.19.12		None Observed	21.70	0.0	6094.95
	7.31.12		None Observed	21.88	0.0	6094.77
	10.18.12		None Observed	22.12	0.0	6094.53
	4.24.13		None Observed	21.65	0.0	6095.00
	10 23 13		None Observed	21.60	0.0	6095.22
	4 21 14		None Observed	21.20	0.0	6095 45
	10 27 14		None Observed	21.39	0.0	6095.26
	4 28 15		None Observed	20.99	0.0	6095.66
	10 20 15		None Observed	21.13	0.0	6095 52
	4 08 16		None Observed	20.79	0.0	6095.86
	10 07 16		None Observed	21.58	0.0	6095.07
	8 10 09		None Observed	23.17	0.0	6095 11
	11 24 00		None Observed	23.43	0.0	6094.85
	2 25 10		None Observed	23.45	0.0	6095.03
	4 5 10		None Observed	22.20	0.0	6095 31
	5 27 10		None Observed	22.85	0.0	6095.43
	6 25 10		None Observed	22.00	0.0	6095.43
	7 13 10		None Observed	23.01	0.0	6095.07
	8 26 10		None Observed	23.23	0.0	6095.05
	11 18 10		None Observed	23.20	0.0	6094 98
	1 25 11		None Observed	23.10	0.0	6095 18
	4 22 11		None Observed	22.10	0.0	6095 34
	7 27 11		None Observed	23.56	0.0	6094 72
MW-8	10.26.11	6118 28	None Observed	23.50	0.0	6094 53
11111 0	1 26 12	0110.20	None Observed	23.64	0.0	6094 64
	4 19 12		None Observed	23.54	0.0	6094 74
	7 31 12		None Observed	23.10	0.0	6095.09
	10 18 12		None Observed	23.13	0.0	6094 32
	10.10.12		None Observed	23.50	0.0	6094.32
	10 22 12		None Observed	23.34	0.0	6094.74
	<u>10.23.13</u> <u>A 21 1</u> A		None Observed	20.00	0.0	6095 37
	10 27 1/		None Observed	22.31	0.0	6094.95
	10.27.14 A 28 15		None Observed	20.00	0.0	6095 /2
	4.20.15		None Observed	22.00	0.0	6005.42
	4 08 16		None Observed	23.10	0.0	60050.10
	10 07 16		None Observed	22.05	0.0	6094.92
	10.07.10			20.00	0.0	0007.02

		Top-of-Casing Elevation	Depth to PSH	Depth to Water	PSH Thickness	Corrected Groundwater
Monitoring Well ID	Measurement Date	(feet)	(feet)	(feet)	(feet)	Elevation ¹
	8.10.09		None Observed	21.95	0.0	6095.88
	11.24.09		None Observed	21.98	0.0	6095.85
	2.25.10		None Observed	21.51	0.0	6096.32
	4.5.10		None Observed	21.00	0.0	6096.83
	5.27.10		None Observed	21.10	0.0	6096.73
	6.25.10		None Observed	21.56	0.0	6096.27
	7.13.10		None Observed	21.77	0.0	6096.06
	8.26.10		None Observed	21.58	0.0	6096.25
	11.18.10		None Observed	21.61	0.0	6096.22
	1.25.11		None Observed	21.43	0.0	6096.40
	4.22.11		None Observed	21.30	0.0	6096.53
	7.27.11		None Observed	22.15	0.0	6095.68
MW-9	10.26.11	6117.83	None Observed	22.25	0.0	6095.58
	1.26.12		None Observed	22.04	0.0	6095.79
	4.19.12		None Observed	21.88	0.0	6095.95
	7.31.12		None Observed	21.98	0.0	6095.85
	10.18.12		None Observed	22.37	0.0	6095.46
	4.24.13		None Observed	21.79	0.0	6096.04
	10.23.13		None Observed	21.39	0.0	6096.44
	4.21.14		None Observed	21.20	0.0	6096.63
	10.27.14		None Observed	21.48	0.0	6096.35
	4.28.15		None Observed	21.06	0.0	6096.77
	10.20.15	-	None Observed	21.27	0.0	6096.56
	4.08.16		None Observed	20.85	0.0	6096.98
	10.07.16		None Observed	21.79	0.0	6096.04
	4.5.10		None Observed	20.57	0.0	6096.08
	5.27.10		None Observed	20.75	0.0	6095.90
	6.25.10		None Observed	21.33	0.0	6095.32
	7.13.10		None Observed	21.54	0.0	6095.11
	8.26.10		None Observed	21.17	0.0	6095.48
	11.18.10		None Observed	21.16	0.0	6095.49
	1.25.11		None Observed	21.02	0.0	6095.63
NAVA/ 11	4.22.11	6116 65	None Observed	20.91	0.0	6095.74
10100-11	7.27.11	0110.05	None Observed	21.89	0.0	6094.76
	10.26.11		None Observed	21.94	0.0	6094.71
	1.26.12		None Observed	21.64	0.0	6095.01
	4.19.12		None Observed	21.49	0.0	6095.16
	7.31.12		None Observed	21.49	0.0	6095.16
	10.18.12		None Observed	21.98	0.0	6094.67
	4.24.13		None Observed	21.40	0.0	6095.25
	9.6.13		Monito	ring well was remove	d during remediation	September 2013.

		Top-of-Casing Elevation	Depth to PSH	Depth to Water	PSH Thickness	Corrected Groundwater
Monitoring Well ID	Measurement Date	(feet)	(feet)	(feet)	(feet)	Elevation ¹
	4.5.10		None Observed	14.88	0.0	6096.36
	5.27.10		None Observed	15.11	0.0	6096.13
	6.25.10		None Observed	15.67	0.0	6095.57
	7.13.10		None Observed	15.91	0.0	6095.33
	8.26.10		None Observed	15.55	0.0	6095.69
	11.18.10		None Observed	16.58	0.0	6094.66
	1.25.11		None Observed	15.73	0.0	6095.51
M\\\/_12	4.22.11	6111 24	None Observed	15.30	0.0	6095.94
	7.27.11	0111.24	None Observed	16.10	0.0	6095.14
	10.26.11		None Observed	16.21	0.0	6095.03
	1.26.12		None Observed	15.99	0.0	6095.25
	4.19.12		None Observed	15.83	0.0	6095.41
	7.31.12		None Observed	15.83	0.0	6095.41
	10.18.12		16.30	16.31	0.01	6094.94
	4.24.13		None Observed	15.68	0.00	6095.56
	9.6.13		Monito	oring well was remove	ed during remediation	September 2013.
	4.5.10		None Observed	19.26	0.0	6096.20
	5.27.10		None Observed	19.47	0.0	6095.99
	6.25.10		None Observed	20.07	0.0	6095.39
	7.13.10		None Observed	20.28	0.0	6095.18
	8.26.10		None Observed	19.86	0.0	6095.60
	11.18.10		None Observed	19.91	0.0	6095.55
	1.25.11		None Observed	19.71	0.0	6095.75
	4.22.11		None Observed	19.65	0.0	6095.81
	7.27.11		None Observed	20.59	0.0	6094.87
	10.26.11		None Observed	20.62	0.0	6094.84
M\\\/_13	1.26.12	6115.46	None Observed	20.34	0.0	6095.12
	4.19.12	0110.40	None Observed	20.19	0.0	6095.27
	7.31.12		None Observed	20.15	0.0	6095.31
	10.18.12		None Observed	20.67	0.0	6094.79
	4.24.13		None Observed	20.10	0.0	6095.36
	10.23.13		None Observed	19.64	0.0	6095.82
	4.21.14		None Observed	19.63	0.0	6095.83
	10.27.14		None Observed	19.77	0.0	6095.69
	4.28.15		None Observed	19.37	0.0	6096.09
	10.20.15		None Observed	19.54	0.0	6095.92
	4.08.16		None Observed	19.24	0.0	6096.22
	10.07.16		None Observed	20.13	0.0	6095.33

		Top-of-Casing Elevation	Depth to PSH	Depth to Water	PSH Thickness	Corrected Groundwater
Monitoring Well ID	Measurement Date	(feet)	(feet)	(feet)	(feet)	Elevation ¹
	4.5.10		None Observed	20.09	0.0	6095.90
	5.27.10		None Observed	20.28	0.0	6095.71
	6.25.10		None Observed	20.94	0.0	6095.05
	7.13.10		None Observed	21.19	0.0	6094.80
	8.26.10		None Observed	20.70	0.0	6095.29
	11.18.10		None Observed	20.73	0.0	6095.26
	1.25.11		None Observed	20.52	0.0	6095.47
	4.22.11		None Observed	20.45	0.0	6095.54
	7.27.11		None Observed	21.47	0.0	6094.52
	10.26.11		None Observed	21.48	0.0	6094.51
MW-14	1.26.12	6115.99	None Observed	21.15	0.0	6094.84
	4.19.12		None Observed	21.00	0.0	6094.99
	7.31.12		None Observed	21.00	0.0	6094.99
	10.18.12		None Observed	21.50	0.0	6094.49
	4.24.13		None Observed	20.91	0.0	6095.08
	10.23.13		None Observed	20.43	0.0	6095.56
	4.21.14		None Observed	21.38	0.0	6094.61
	10.27.14		None Observed	20.58	0.0	6095.41
	4.28.15		None Observed	20.16	0.0	6095.83
	10.20.15		None Observed	20.36	0.0	6095.63
	4.08.16		None Observed	20.05	0.0	6095.94
	10.07.16		None Observed	20.86	0.0	6095.13
	4.5.10		None Observed	20.66	0.0	6095.83
	5.27.10		None Observed	20.82	0.0	6095.67
	6.25.10		None Observed	21.43	0.0	6095.06
	7.13.10		None Observed	21.64	0.0	6094.85
	8.26.10		None Observed	21.25	0.0	6095.24
	11.18.10		None Observed	21.36	0.0	6095.13
	1.25.11		None Observed	21.07	0.0	6095.42
	4.22.11		None Observed	20.95	0.0	6095.54
	7.27.11		None Observed	21.95	0.0	6094.54
	10.26.11		None Observed	21.98	0.0	6094.51
MW-15	1.26.12	6116.49	None Observed	21.70	0.0	6094.79
	4.19.12		None Observed	21.56	0.0	6094.93
	7.31.12		None Observed	Errant Gauge	0.0	Errant Gauge
	10.18.12		None Observed	22.05	0.0	6094.44
	4.24.13		None Observed	21.50	0.0	6094.99
	4.21.14		None Observed	20.92	0.0	6095.57
	10.27.14		None Observed	21.17	0.0	6095.32
	4.28.15		None Observed	20.74	0.0	6095.75
	10.20.15		None Observed	20.90	0.0	6095.59
	4.08.16		None Observed	20.58	0.0	6095.91
	10.07.16		None Observed	21.48	0.0	6095.01

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	4.5.10		None Observed	21.51	0.0	6096.06
	5.27.10		None Observed	51.59	0.0	6065.98
	6.25.10		None Observed	22.10	0.0	6095.47
	7.13.10		None Observed	22.29	0.0	6095.28
	8.26.10		None Observed	22.05	0.0	6095.52
	11.18.10		None Observed	22.11	0.0	6095.46
	1.25.11		None Observed	21.87	0.0	6095.70
	4.22.11		None Observed	21.76	0.0	6095.81
	7.27.11		None Observed	22.66	0.0	6094.91
	10.26.11		None Observed	22.71	0.0	6094.86
M\\\/_16	1.26.12	6117 57	None Observed	22.50	0.0	6095.07
10100-10	4.19.12	0117.57	None Observed	22.38	0.0	6095.19
	7.31.12		None Observed	Errant Gauge	0.0	Errant Gauge
	10.18.12		None Observed	22.82	0.0	6094.75
	4.24.13		None Observed	22.28	0.0	6095.29
	10.23.13		None Observed	21.81	0.0	6095.76
	4.21.14		None Observed	21.67	0.0	6095.90
	10.27.14		None Observed	21.94	0.0	6095.63
	4.28.15		None Observed	21.53	0.0	6096.04
	10.20.15		None Observed	21.70	0.0	6095.87
	4.08.16	-	None Observed	21.33	0.0	6096.24
	10.07.16		None Observed	22.22	0.0	6095.35
	1.25.11		None Observed	12.67	0.0	6097.55
	4.22.11		None Observed	12.49	0.0	6097.73
	7.27.11		None Observed	13.47	0.0	6096.75
	10.26.11		None Observed	13.56	0.0	6096.66
	1.26.12		None Observed	13.23	0.0	6096.99
	4.18.12		None Observed	13.05	0.0	6097.17
	7.30.12		None Observed	14.10	0.0	6096.12
M/M/ 22	10.18.12	6110 22	None Observed	13.59	0.0	6096.63
10100-52	4.23.13	0110.22	None Observed	13.00	0.0	6097.22
	10.23.13		None Observed	12.64	0.0	6097.58
	4.21.14		None Observed	12.47	0.0	6097.75
	10.27.14		None Observed	12.79	0.0	6097.43
	4.28.15		None Observed	12.19	0.0	6098.03
	10.20.15		None Observed	12.54	0.0	6097.68
	4.08.16		None Observed	12.15	0.0	6098.07
	10.07.16		None Observed	12.10	0.0	6098.12

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH	Depth to Water	PSH Thickness	Corrected Groundwater
	1 25 11*	(1001)	16.08	16.44	0.36	6097.83
	1.25.11		16.59	16.60	0.30	6097.03
	7 27 11		16.07	16.72	0.65	6097.45
	10.26.11		15.55	16.15	0.00	6098.28
	1 26 12		15.83	15.84	0.00	6098.19
	4 18 12		Not Gauged	10.04	0.01	Not Gauged
	8 31 12		15.4	17 29	1 89	6098.03
MW-33	10 18 12	6114.02	14.39	17.51	3.12	6098.66
	4 23 13	0	12.31	12.35	0.04	6101 70
	10 23 13		10.92	14.08	3 16	6102.12
	4 21 14		10.47	10.50	0.03	6103.54
	10 27 14		11.82	12.47	0.65	6102.00
	4 28 15		10.44	11.19	0.75	6103.35
	10 20 15		10.45	11.31	0.86	6103.30
	4.08.16		Monitorir	ng well was remove	ed during remediat	ion October 2015.
	1 25 11		None Observed	17 38	0.0	6097 92
	4 22 11		None Observed	17.20	0.0	6098 10
	7 27 11		None Observed	18.23	0.0	6097.07
	10 26 11		None Observed	18.32	0.0	6096.98
	1 26 12		None Observed	17.98	0.0	6097.32
	4 18 12		None Observed	17.78	0.0	6097.52
	7.30.12		None Observed	17.80	0.0	6097.50
	10.18.12		None Observed	18.32	0.0	6096.98
MW-34	4 23 13	6115.3	None Observed	17.70	0.0	6097 60
	10.23.13		None Observed	16.32	0.0	6098.98
	4.21.14		None Observed	17.12	0.0	6098.18
	10.27.14		None Observed	17.33	0.0	6097.97
	4.28.15		None Observed	16.88	0.0	6098.42
	10.20.15		None Observed	16.88	0.0	6098.42
	4.08.16		None Observed	16.81	0.0	6098.49
	10.07.16		None Observed	17.78	0.0	6097.52
	1.25.11*		14.5	14.75	0.25	6097.64
	4.22.11		14.22	14.80	0.58	6097.82
	7.27.11		15.11	16.36	1.25	6096.72
	10.26.11		15.14	16.64	1.50	6096.62
	1.26.12		14.72	14.73	0.01	6097.50
	4.18.12		Not Gauged			Not Gauged
	8.31.12		14.43	17.49	3.06	6096.84
MW-35	10.18.12	6112.22	14.65	17.84	3.19	6096.58
	4.23.13		10.98	13.05	2.07	6100.60
	10.23.13		9.26	12.58	3.72	6102.21
	4.21.14		10.84	11.35	0.51	6101.22
	10.27.14		10.42	10.98	0.56	6101.63
	4.28.15		9.95	10.46	0.51	6102.11
	10.20.15		10.64	11.27	0.63	6101.38
	4.08.16		Monitorir	ng well was remove	ed during remediat	ion October 2015.

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	1.25.11		None Observed	13.80	0.0	6097.68
	4.22.11		None Observed	13.65	0.0	6097.83
	7.27.11		None Observed	14.69	0.0	6096.79
	10.26.11		None Observed	14.45	0.0	6097.03
	1.26.12		None Observed	14.41	0.0	6097.07
	4.18.12		None Observed	14.18	0.0	6097.30
	7.30.12		None Observed	14.10	0.0	6097.38
M\\/-36	10.18.12	6111 48	None Observed	14.76	0.0	6096.72
11111 00	4.23.13	0111.40	None Observed	14.11	0.0	6097.37
	10.23.13		None Observed	13.75	0.0	6097.73
	4.21.14		None Observed	13.58	0.0	6097.90
	10.27.14		None Observed	13.77	0.0	6097.71
	4.28.15		None Observed	13.39	0.0	6098.09
	10.20.15		None Observed	13.65	0.0	6097.83
	4.08.16		None Observed	13.27	0.0	6098.21
	10.07.16		None Observed	14.23	0.0	6097.25
	1.25.11		Sheen	12.91	Sheen	6097.82
	4.22.11		None Observed	12.78	0.0	6097.95
	7.27.11		13.81	13.84	0.03	6096.91
	10.26.11		13.88	13.92	0.04	6096.84
	1.26.12		13.54	13.54	0.01	6097.20
MW-37	4.18.12		Not Gauged			Not Gauged
	7.30.12		Sheen	13.15	Sheen	6097.58
	10.18.12	6110 73	13.89	13.90	0.01	6096.84
	4.23.13	0110.10	None Observed	13.23	0.0	6097.50
	10.23.13		None Observed	12.84	0.0	6097.89
	4.21.14		None Observed	12.72	0.0	6098.01
	10.27.14		None Observed	12.85	0.0	6097.88
	4.28.15		None Observed	12.52	0.0	6098.21
	10.20.15		None Observed	12.78	0.0	6097.95
	4.08.16		None Observed	12.41	0.0	6098.32
	10.07.16		None Observed	13.38	0.0	6097.35
	1.25.11		None Observed	12.06	0.0	6098.37
	4.22.11		None Observed	11.87	0.0	6098.56
	7.27.11		None Observed	13.01	0.0	6097.42
	10.26.11		None Observed	13.10	0.0	6097.33
	1.26.12		None Observed	12.68	0.0	6097.75
	4.18.12		None Observed	12.11	0.0	6098.32
	7.30.12		None Observed	12.24	0.0	6098.19
	10.18.12	0110 10	None Observed	13.01	0.0	6097.42
10100-38	4.23.13	6110.43	None Observed	12.34	0.0	6098.09
	10.23.13		None Observed	11.92	0.0	6098.51
	4.22.13		None Observed	11.00	0.0	6098.63
	4.21.14		None Observed	11.00	0.0	6009 50 6009 50
	10.27.14		None Observed	11.91	0.0	600° °°
	4.28.15		None Observed	11.00	0.0	0090.00 600° 5°
	10.20.15		None Observed	11.00	0.0	6009 01
	4.00.10		None Observed	11.02	0.0	6007.64
	10.07.16		None Observed	12.19	0.0	6097.64

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	1 25 11		None Observed	16.21	0.0	6097 49
	4 22 11		None Observed	17.35	0.0	6096 35
	7 27 11		None Observed	16.43	0.0	6097.27
	10.26.11		None Observed	16.52	0.0	6097.18
	1 26 12		None Observed	16.57	0.0	6097.13
	4 18 12		None Observed	16.61	0.0	6097.09
	7.30.12		None Observed	16.69	0.0	6097.01
	10.18.12	a	None Observed	16.77	0.0	6096.93
MW-39	4.23.13	6113.70	None Observed	16.65	0.0	6097.05
	10.23.13		None Observed	16.25	0.0	6097.45
	4.21.14		None Observed	16.24	0.0	6097.46
	10.29.14		None Observed	16.41	0.0	6097.29
	4.28.15		None Observed	16.11	0.0	6097.59
	10.20.15		None Observed	16.06	0.0	6097.64
	4.08.16		None Observed	15.96	0.0	6097.74
	10.07.16		None Observed	16.21	0.0	6097.49
	1.25.11		None Observed	19,16	0.0	6096.53
	4 22 11		None Observed	Drv	0.0	Dry
MW-40²	7.27.11	6115.69	None Observed	Dry	0.0	Dry
	10.26.11		None Observed	Dry	0.0	Dry
	1.26.12		None Observed	Drv	0.0	Drv
	4.18.12		None Observed	19.58	0.0	6096.03
F	7.30.12		None Observed	19.69	0.0	6095.92
	10.18.12		None Observed	19.96	0.0	6095.65
	4.23.13		None Observed	19.47	0.0	6096.14
	10.23.13		None Observed	19.12	0.0	6096.49
MW-40R	4.21.14	6115.61	None Observed	18.85	0.0	6096.76
	10.27.14		None Observed	19.17	0.0	6096.44
	4.28.15		None Observed	18.71	0.0	6096.90
	10.20.15		None Observed	18.93	0.0	6096.68
	4.08.16		None Observed	18.53	0.0	6097.08
	10.07.16		None Observed	19.45	0.0	6096.16
	1.25.11		None Observed	14.14	0.0	6097.93
	4.22.11		None Observed	14.18	0.0	6097.89
	7.27.11		None Observed	14.08	0.0	6097.99
	10.26.11		None Observed	14.97	0.0	6097.10
	1.26.12		None Observed	14.20	0.0	6097.87
	4.18.12		None Observed	14.27	0.0	6097.80
	7.30.12		None Observed	14.21	0.0	6097.86
	10.18.12	6112.07	None Observed	14.18	0.0	6097.89
10100-41	4.23.13	0112.07	None Observed	14.39	0.0	6097.68
	10.23.13		None Observed	14.23	0.0	6097.84
	4.21.14		None Observed	14.26	0.0	6097.81
	10.27.14		None Observed	14.06	0.0	6098.01
	4.28.15		None Observed	14.09	0.0	6097.98
	10.20.15		None Observed	13.86	0.0	6098.21
	4.08.16		None Observed	13.88	0.0	6098.19
	10.07.16		None Observed	13.72	0.0	6098.35

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	1.25.11		None Observed	24.88	0.0	6096.65
	4.22.11**		None Observed	Errant Gauge	0.0	Errant Gauge
	7.27.11		None Observed	Dry	0.0	Dry
	10.26.11		None Observed	25.16	0.0	6096.37
	1.26.12		None Observed	24.92	0.0	6096.61
	4.18.12		Not Gauged			Not Gauged
	7.30.12		Dry	Dry	Dry	Dry
MNA/-42	10.18.12	6121 53	Dry	Dry	Dry	Dry
10100-42	4.23.13	0121.00	Dry	Dry	Dry	Dry
	10.23.13		Dry	Dry	Dry	Dry
	4.21.14		None Observed	25.02	0.0	6096.51
	10.27.14		None Observed	25.35	0.0	6096.18
	4.28.15		Dry	Dry	Dry	Dry
	10.20.15		None Observed	25.19	0.0	6096.34
	4.08.16***		None Observed	24.79	0.0	6096.74
	10.07.16		Dry	Dry	Dry	Dry
	1.25.11		None Observed	15.41	0.0	6097.51
	4.22.11		None Observed	15.30	0.0	6097.62
	7.27.11		None Observed	16.27	0.0	6096.65
MW-43	10.26.11		None Observed	16.35	0.0	6096.57
	1.26.12		None Observed	16.05	0.0	6096.87
	4.18.12		None Observed	15.87	0.0	6097.05
	7.30.12		None Observed	15.82	0.0	6097.10
	10.18.12	6112 92	None Observed	16.35	0.0	6096.57
	4.23.13	0112.02	None Observed	15.79	0.0	6097.13
	10.23.13		None Observed	15.33	0.0	6097.59
	4.21.14		None Observed	15.19	0.0	6097.73
	10.27.14		None Observed	15.42	0.0	6097.50
	4.28.15		None Observed	15.01	0.0	6097.91
	10.20.15		None Observed	15.28	0.0	6097.64
	4.08.16		None Observed	14.92	0.0	6098.00
	10.07.16		None Observed	15.84	0.0	6097.08
	1.25.11		None Observed	19.22	0.0	6095.19
	4.22.11		None Observed	19.02	0.0	6095.39
	7.27.11		None Observed	19.69	0.0	6094.72
	10.26.11		None Observed	19.86	0.0	6094.55
	1.26.12		None Observed	19.79	0.0	6094.62
	4.19.12		None Observed	19.67	0.0	6094.74
	7.31.12		None Observed	19.87	0.0	6094.54
MW-47	10.18.12	6114.41	None Observed	20.08	0.0	6094.33
	4.24.13		None Observed	19.65	0.0	6094.76
	10.23.13		None Observed	19.38	0.0	6095.03
	4.21.14		None Observed	19.06	0.0	6095.35
	10.27.14		None Observed	19,37	0,0	6095.04
	4,28,15		None Observed	18 95	0.0	6095.46
	10 20 15		None Observed	10.00	0.0	6095.26
	10.20.13		None Observed	19.15	0.0 bopcrach llo	0033.20
	4.00.10			VV	en uarriageu	

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	4.18.12		None Observed			Not Gauged
	7.30.12		None Observed	11.90	0.0	6097.31
	10.18.12		None Observed	12.26	0.0	6096.95
	4.23.13		None Observed	11.60	0.0	6097.61
	10.23.13		None Observed	11.18	0.0	6098.03
MW-48	4.21.14	6109.21	None Observed	11.06	0.0	6098.15
	10.27.14		None Observed	11.19	0.0	6098.02
	4.28.15		None Observed	10.85	0.0	6098.36
	10.20.15		None Observed	11.09	0.0	6098.12
	4.08.16		None Observed	10.75	0.0	6098.46
	10.07.16		None Observed	11.74	0.0	6097.47
	4.18.12		None Observed	12.38	0.0	6097.16
	7.30.12		None Observed	12.22	0.0	6097.32
	10.18.12		None Observed	12.92	0.0	6096.62
	4.23.13**		None Observed	Errant Gauge	0.0	Errant Gauge
	10.23.13		None Observed	11.87	0.0	6097.67
MW-49	4.21.14	6109.54	None Observed	11.77	0.0	6097.77
	10.27.14		None Observed	11.89	0.0	6097.65
	4.28.15		None Observed	11.54	0.0	6098.00
	10.20.15		None Observed	11.81	0.0	6097.73
	4.08.16		None Observed	11.45	0.0	6098.09
	10.20.16		None Observed	12.45	0.0	6097.09
	4.18.12		None Observed	24.64	0.0	6095.98
	7.30.12		None Observed	24.93	0.0	6095.69
	10.18.12		None Observed	25.11	0.0	6095.51
	4.23.13		None Observed	24.57	0.0	6096.05
	10.23.13		None Observed	24.21	0.0	6096.41
MW-50	4.21.14	6120.62	None Observed	23.91	0.0	6096.71
	10.27.14		None Observed	24.36	0.0	6096.26
	4.28.15		None Observed	23.86	0.0	6096.76
	10.20.15		None Observed	24.04	0.0	6096.58
	4.08.16		None Observed	23.58	0.0	6097.04
	10.07.16		None Observed	24.52	0.0	6096.10
	4.18.12		None Observed	18.33	0.0	6095.17
	7.30.12		None Observed	17.47	0.0	6096.03
	10.18.12		None Observed	17.81	0.0	6095.69
	04.23.13		None Observed	17.35	0.0	6096.15
	10.23.13	A / /	None Observed	16.84	0.0	6096.66
MW-51	4.21.14	6113.50	None Observed	16.68	0.0	6096.82
	10.27.14		None Observed	17.08	0.0	6096.42
	4.28.15		None Observed	16.61	0.0	6096.89
	10.20.15		None Observed	16.78	0.0	6096.72
	4.08.16		None Observed	16.36	0.0	6097.14
	10.07.16		None Observed	17.33	0.0	6096.17

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	4.18.12		None Observed	21.11	0.0	6097.87
	7.30.12		None Observed	21.10	0.0	6097.88
	10.18.12		None Observed	21.08	0.0	6097.90
	4.23.13		None Observed	21.25	0.0	6097.73
	10.23.13		None Observed	21.02	0.0	6097.96
MW-52	4.21.14	6118.98	None Observed	21.01	0.0	6097.97
	10.27.14		None Observed	20.91	0.0	6098.07
	4.28.15		None Observed	20.86	0.0	6098.12
	10.20.15		None Observed	20.62	0.0	6098.36
	4.08.16		None Observed	20.66	0.0	6098.32
	10.07.16		None Observed	20.6	0.0	6098.38
	5.3.13		None Observed	12.16	0.0	6097.25
	10.23.13		None Observed	11.72	0.0	6097.69
	4.21.14		None Observed	11.58	0.0	6097.83
MW-53	10.27.14	6109 41	None Observed	11.73	0.0	6097.68
	4.28.15	0100.41	None Observed	11.40	0.0	6098.01
	10.20.15		None Observed	11.66	0.0	6097.75
	4.08.16		None Observed	11.26	0.0	6098.15
	10.07.16		None Observed	12.27	0.0	6097.14
	5.3.13		None Observed	10.29	0.0	6097.33
	10.23.13		None Observed	9.82	0.0	6097.80
	4.21.14		None Observed	9.79	0.0	6097.83
MW-54	10.27.14	6107.62	None Observed	9.80	0.0	6097.82
	4.28.15		None Observed	9.51	0.0	6098.11
	10.20.15		None Observed	9.70	0.0	6097.92
	4.08.16		None Observed	9.40	0.0	6098.22
	10.20.16		None Observed	10.30	0.0	6097.32
	5.3.13		None Observed	9.82	0.0	6097.71
	10.23.13		None Observed	9.45	0.0	6098.08
	4.21.14		None Observed	9.21	0.0	6098.32
MW-55	10.27.14	6107.53	None Observed	9.08	0.0	6098.45
	4.28.15		None Observed	9.01	0.0	6098.52
	10.20.15		None Observed	9.11	0.0	6098.42
	4.08.16		None Observed	9.06	0.0	6098.47
	10.07.16		None Observed	9.51	0.0	6098.02
	4.23.13		None Observed	18.98	0.0	6097.30
	10.23.13		None Observed	18.67	0.0	6097.64
	4.21.14		None Observed	18.35	0.0	6097.93
MW-75	10.27.14	6116.28	None Observed	18.64	0.0	6097.64
	4.28.15		None Observed	18.18	0.0	6098.10
	10.20.15		None Observed	18.49	0.0	6097.79
	4.08.16		None Observed	18.07	0.0	6098.21
	10.07.16		None Observed	19.03	0.0	6097.25

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
	10.23.13		None Observed	25.33	0.0	6098.03
	4.21.14		None Observed	24.73	0.0	6098.63
	10.27.14		None Observed	25.20	0.0	6098.16
MW-76	4.28.15	6123.36	None Observed	24.54	0.0	6098.82
	10.20.15		None Observed	25.03	0.0	6098.33
	4.08.16		None Observed	24.45	0.0	6098.91
	10.07.16		None Observed	25.40	0.0	6097.96
	10.23.13		None Observed	33.13	0.0	6097.84
	4.21.14		None Observed	32.53	0.0	6098.44
	10.27.14		None Observed	32.98	0.0	6097.99
MW-77	4.28.15	6130.97	None Observed	32.37	0.0	6098.60
	10.20.15		None Observed	32.82	0.0	6098.15
	4.08.16		None Observed	32.26	0.0	6098.71
	10.07.16		None Observed	33.19	0.0	6097.78
MW-79	10.23.13		None Observed	30.46	0.0	6097.35
	4.21.14		None Observed	30.05	0.0	6097.76
	10.27.14		None Observed	30.34	0.0	6097.47
	4.28.15	6127.81	None Observed	29.91	0.0	6097.90
	10.20.15		None Observed	30.15	0.0	6097.66
	4.08.16		None Observed	29.69	0.0	6098.12
	10.07.16		None Observed	30.61	0.0	6097.20
	10.23.13		None Observed	26.58	0.0	6097.81
	4.21.14		None Observed	26.12	0.0	6098.27
M\\/_80	10.27.14	6124 30	None Observed	26.47	0.0	6097.92
10100-00	4.28.15	0124.55	None Observed	25.91	0.0	6098.48
	4.08.16		None Observed	25.80	0.0	6098.59
	10.07.16		None Observed	26.72	0.0	6097.67
	10.23.13		None Observed	18.91	0.0	6097.95
	4.21.14		None Observed	18.30	0.0	6098.56
M\\/_83	10.27.14	6116.86	None Observed	18.79	0.0	6098.07
10100-05	4.28.15	0110.00	None Observed	18.14	0.0	6098.72
	4.08.16		None Observed	18.04	0.0	6098.82
	10.07.16		None Observed	18.96	0.0	6097.90
	10.27.14		None Observed	24.16	0.0	6094.49
	4.28.15		None Observed	23.71	0.0	6094.94
MW-88	10.20.15	6118.65	None Observed	23.94	0.0	6094.71
	4.08.16		None Observed	23.49	0.0	6095.16
	10.07.16		None Observed	24.37	0.0	6094.28

TABLE 2Largo Compressor StationGROUNDWATER ELEVATIONS

Monitoring Well ID	Measurement Date	Top-of-Casing Elevation (feet)	Depth to PSH (feet)	Depth to Water (feet)	PSH Thickness (feet)	Corrected Groundwater Elevation ¹
MW-89	10.27.14		None Observed	23.83	0.0	6094.48
	4.28.15		None Observed	23.44	0.0	6094.87
	10.20.15	6118.31	None Observed	23.61	0.0	6094.70
	4.08.16		None Observed	23.26	0.0	6095.05
	10.07.16		None Observed	24.19	0.0	6094.12
	10.27.14		None Observed	23.09	0.0	6094.73
	4.28.15		None Observed	22.73	0.0	6095.09
MW-90	10.20.15	6117.82	None Observed	22.90	0.0	6094.92
	4.08.16		None Observed	22.57	0.0	6095.25
	10.07.16		None Observed	23.45	0.0	6094.37

NA-Not Analyzed

* - Regauged 1.31.11 to confirm product thickness

** - Aberrant gauging data

*** - Well effectively dry

1 - On 11/02/2012, this table was adjusted to reflect July 2012 re-survey and a specific gravity of 0.69 for NAPL

2 - Monitoring well MW-40 was replaced by MW-40R

APPENDIX C

Laboratory Data Sheets & Chain of Custody Documentation

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 06, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1605159

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 9 sample(s) on 5/4/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.		(Client Sample	e ID: MW 7	9
Project: Largo CS			Collection I	Date: 5/2/20	16 9:55:00 AM
Lab ID: 1605159-001	Matrix:	AQUEOUS	Received I	Date: 5/4/20	16 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 3:23:17 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 3:23:17 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 3:23:17 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 3:23:17 PM
Surr: 4-Bromofluorobenzene	113	87.9-146	%Rec	1	5/4/2016 3:23:17 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.		(Client Sample	e ID: MW 80	0
Project: Largo CS			Collection I	Date: 5/2/201	16 10:40:00 AM
Lab ID: 1605159-002	Matrix:	AQUEOUS	Received I	Date: 5/4/202	16 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 4:36:42 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 4:36:42 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 4:36:42 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 4:36:42 PM
Surr: 4-Bromofluorobenzene	113	87.9-146	%Rec	1	5/4/2016 4:36:42 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental	Analysis	Laboratory.	Inc.

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.		0	lient Sampl	e ID: MW 52	2
Project: Largo CS			Collection I	Date: 5/2/201	6 11:50:00 AM
Lab ID: 1605159-003	Matrix:	AQUEOUS	Received I	Date: 5/4/201	6 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 5:01:16 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 5:01:16 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 5:01:16 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 5:01:16 PM
Surr: 4-Bromofluorobenzene	111	87.9-146	%Rec	1	5/4/2016 5:01:16 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.		C	lient Sampl	e ID: MW 51	
Project: Largo CS			Collection 1	Date: 5/2/201	6 12:30:00 PM
Lab ID: 1605159-004	Matrix:	AQUEOUS	Received	Date: 5/4/201	6 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	1.7	1.0	µg/L	1	5/4/2016 5:25:54 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 5:25:54 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 5:25:54 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 5:25:54 PM
Surr: 4-Bromofluorobenzene	112	87.9-146	%Rec	1	5/4/2016 5:25:54 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW 41				
Project: Largo CS			Collection I	Date: 5/2/202	16 1:05:00 PM
Lab ID: 1605159-005	Matrix:	AQUEOUS	Received I	Date: 5/4/20	16 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 5:50:24 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 5:50:24 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 5:50:24 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 5:50:24 PM
Surr: 4-Bromofluorobenzene	109	87.9-146	%Rec	1	5/4/2016 5:50:24 PM

0.114				
Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW 37				
Project: Largo CS	Collection Date: 5/2/2016 1:40:00 PM				
Lab ID: 1605159-006	Matrix:	AQUEOUS	Received I	Date: 5/4/20	16 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	820	10	µg/L	10	5/4/2016 6:39:22 PM
Toluene	ND	10	µg/L	10	5/4/2016 6:39:22 PM
Ethylbenzene	180	10	µg/L	10	5/4/2016 6:39:22 PM
Xylenes, Total	510	20	µg/L	10	5/4/2016 6:39:22 PM
Surr: 4-Bromofluorobenzene	142	87.9-146	%Rec	10	5/4/2016 6:39:22 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental	Analysis	Laboratory.	Inc.
	1 111111 1 1 1 1 1	,	

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW 36				
Project: Largo CS			Collection I	Date: 5/2/201	16 2:10:00 PM
Lab ID: 1605159-007	Matrix:	AQUEOUS	Received I	Date: 5/4/201	16 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 7:28:05 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 7:28:05 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 7:28:05 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 7:28:05 PM
Surr: 4-Bromofluorobenzene	110	87.9-146	%Rec	1	5/4/2016 7:28:05 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.		(Client Sample	e ID: MW 4	3
Project: Largo CS			Collection I	Date: 5/2/20	16 2:40:00 PM
Lab ID: 1605159-008	Matrix:	AQUEOUS	Received I	Date: 5/4/20	16 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 7:52:27 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 7:52:27 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 7:52:27 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 7:52:27 PM
Surr: 4-Bromofluorobenzene	106	87.9-146	%Rec	1	5/4/2016 7:52:27 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Anal	vsis Laboratory, Inc.
	jois Euror utor j, me.

Date Reported: 5/6/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW 42				
Project: Largo CS			Collection I	Date: 5/2/201	6 2:55:00 PM
Lab ID: 1605159-009	Matrix:	AQUEOUS	Received I	Date: 5/4/201	6 7:55:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	5/4/2016 9:58:32 PM
Toluene	ND	1.0	µg/L	1	5/4/2016 9:58:32 PM
Ethylbenzene	ND	1.0	µg/L	1	5/4/2016 9:58:32 PM
Xylenes, Total	ND	2.0	µg/L	1	5/4/2016 9:58:32 PM
Surr: 4-Bromofluorobenzene	113	87.9-146	%Rec	1	5/4/2016 9:58:32 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 10
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc.

WO#: 1605159 06-May-16

Client:	Apex Tit	an, Inc.									
Project:	Largo CS	>									
Sample ID 5M	L RB	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: PB	w	Batch	n ID: B3	3991	F	RunNo: 3	3991				
Prep Date:		Analysis D	ate: 5/	4/2016	S	SeqNo: 1	047362	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromofluo	probenzene	23		20.00		115	87.9	146			
Sample ID 100	NG BTEX LCS	SampT	ype: LC	s	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: LC:	SW	Batch	n ID: B3	3991	F	RunNo: 3	3991				
Prep Date:		Analysis D	ate: 5/	4/2016	5	SeqNo: 1	047363	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		19	1.0	20.00	0	92.7	80	120			
Toluene		20	1.0	20.00	0	98.9	80	120			
Ethylbenzene		20	1.0	20.00	0	99.4	80	120			
Xylenes, Total		61	2.0	60.00	0	101	80	120			
Surr: 4-Bromofluo	orobenzene	24		20.00		120	87.9	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 10 of 10

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Analysis 4901 Fr Albuquerque, TEL: 505-345-3975 FAX: 50; Website: www.hallenvironi	Laboratory lawkins NE NM 87109 5-345-4107 nental.com	Sam	ple Log-In Che	ck List
Client Name: APEX AZTEC Wo	ork Order Number: 160515	9		ReptNo: 1	
Received by/date: 05/cl	lic	0	t Mar	-	
Logged By: Lindsay Mangin 5/4/2	016 7:55:00 AM	0			
Completed By: Lindsay Mangin 5/4/2	5/5/1/1/1/2	0	- ymgo		
Reviewed By:	5104110	_			
A Custody	V [-	No. 🗆	Not Present	
2 Is Chain of Custody complete?	Yes	-		Not Present	
3 How was the sample delivered?	Courie	r			
		÷			
Log In			-		
4. Was an attempt made to cool the samples?	Yes	~	No 🗌	NA	
Were all samples received at a temperature of >0	°C to 6.0°C Yes		No 🗌	NA 🗆	
6. Sample(s) in proper container(s)?	Yes	v	No 🗌		
7 Sufficient sample volume for indicated test(s)?	Yes	/	No 🗆		
8. Are samples (except VOA and ONG) properly pres	erved? Yes		No 🗆		
9. Was preservative added to bottles?	Yes [No 🗹	NA \Box	
10 VOA vials have zero headspace?	Yes	7	No 🗌	No VOA Vials	
11. Were any sample containers received broken?	Yes [No 🗹		
			_	# of preserved bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes	~	No 🗌	for pH: (<2 or >1	2 unless noted)
13. Are matrices correctly identified on Chain of Custo	dy? Yes		No 🗌	Adjusted?	
4. Is it clear what analyses were requested?	Yes 8		No 🗌		
15. Were all holding times able to be met? (If no, notify customer for authorization.)	Yes		No	Checked by:	
· · · · · · · · · · · · · · · · · · ·					
pecial Handling (if applicable)					
16, was client notified of all discrepancies with this on	der? Yes L	-	No 🗆	NA 🖭	
Person Notified: By Whom: Regarding:	Date Via: 🗌 eMail	Phone	e 🗌 Fax	In Person	
Client Instructions:					
17. Additional remarks: 18. <u>Cooler Information</u> Cooler No Temp °C Condition Seal Inta	act Seal No Seal Dat	e Sigr	ned By		
1 1.4 Good Yes	1				

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

May 04, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1605011

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 15 sample(s) on 4/30/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental	l Analysis Laboratory, Inc.	
	1 1 1 1 1 1 1 1 1 1	

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-55						
Project: Largo CS	Collection Date: 4/28/2016 9:50:00 AM						
Lab ID: 1605011-001	Matrix:	AQUEOUS	Received	Date: 4/30/2016 8:03:00 AM			
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES				Analyst:	NSB		
Benzene	ND	1.0	µg/L	1 5/3/2016 12:05:41 AM	A33934		
Toluene	ND	1.0	µg/L	1 5/3/2016 12:05:41 AM	A33934		
Ethylbenzene	ND	1.0	µg/L	1 5/3/2016 12:05:41 AM	A33934		
Xylenes, Total	ND	2.0	µg/L	1 5/3/2016 12:05:41 AM	A33934		
Surr: 4-Bromofluorobenzene	111	87.9-146	%Rec	1 5/3/2016 12:05:41 AM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associa

- Sample Diluted Due to Matrix D
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 16 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-54						
Project: Largo CS			Collection	Date: 4/2	8/2016 10:25:00 AM		
Lab ID: 1605011-002	Matrix:	AQUEOUS	Received	Date: 4/3	0/2016 8:03:00 AM		
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	Batch	
EPA METHOD 8021B: VOLATILES					Analyst	NSB	
Benzene	ND	1.0	µg/L	1	5/3/2016 12:30:13 AM	A33934	
Toluene	ND	1.0	µg/L	1	5/3/2016 12:30:13 AM	A33934	
Ethylbenzene	ND	1.0	µg/L	1	5/3/2016 12:30:13 AM	A33934	
Xylenes, Total	ND	2.0	µg/L	1	5/3/2016 12:30:13 AM	A33934	
Surr: 4-Bromofluorobenzene	109	87.9-146	%Rec	1	5/3/2016 12:30:13 AM	A33934	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits
	S	% Recovery outside of range due to dilution or matrix

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 2 of 16 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-48						
Project: Largo CS			Collection	Date: 4/28/2016 11:00:00 AM			
Lab ID: 1605011-003	Matrix:	AQUEOUS	Received	Date: 4/30/2016 8:03:00 AM			
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES				Analyst:	NSB		
Benzene	2.0	1.0	µg/L	1 5/2/2016 5:08:33 PM	A33934		
Toluene	ND	1.0	µg/L	1 5/2/2016 5:08:33 PM	A33934		
Ethylbenzene	1.9	1.0	µg/L	1 5/2/2016 5:08:33 PM	A33934		
Xylenes, Total	2.9	2.0	µg/L	1 5/2/2016 5:08:33 PM	A33934		
Surr: 4-Bromofluorobenzene	107	87.9-146	%Rec	1 5/2/2016 5:08:33 PM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 3 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-49						
Project: Largo CS			Collection	Date: 4/28/2016 11:35:00 AM			
Lab ID: 1605011-004	Matrix:	AQUEOUS	Received	Date: 4/30/2016 8:03:00 AM			
Analyses	Result	PQL Qua	l Units	DF Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES				Analyst	: NSB		
Benzene	ND	1.0	µg/L	1 5/2/2016 5:33:09 PM	A33934		
Toluene	ND	1.0	µg/L	1 5/2/2016 5:33:09 PM	A33934		
Ethylbenzene	ND	1.0	µg/L	1 5/2/2016 5:33:09 PM	A33934		
Xylenes, Total	ND	2.0	µg/L	1 5/2/2016 5:33:09 PM	A33934		
Surr: 4-Bromofluorobenzene	105	87.9-146	%Rec	1 5/2/2016 5:33:09 PM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Ana
	-		-	

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- 3 Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT:Apex Titan, Inc.Project:Largo CSLab ID:1605011-005	Matrix:	AQUEOUS	Client Sampl Collection I Received I	e ID: M Date: 4/2 Date: 4/3	W-53 28/2016 12:00:00 PM 30/2016 8:03:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analys	: NSB
Benzene	ND	1.0	µg/L	1	5/2/2016 5:57:48 PM	A33934
Toluene	ND	1.0	µg/L	1	5/2/2016 5:57:48 PM	A33934
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 5:57:48 PM	A33934
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 5:57:48 PM	A33934
Surr: 4-Bromofluorobenzene	103	87.9-146	%Rec	1	5/2/2016 5:57:48 PM	A33934

Qualifiers:	*	Value exc	eeds Maxi	mum Contaminant Level.	Η	3
	_					_

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- 3 Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 5 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc. Client Sample ID: MW-40R						
Project: Largo CS			Collection	Date: 4/2	29/2016 1:00:00 PM	
Lab ID: 1605011-006	Matrix:	AQUEOUS	Received	Date: 4/3	80/2016 8:03:00 AM	
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES					Analys	t: NSB
Benzene	ND	1.0	µg/L	1	5/2/2016 6:22:23 PM	A33934
Toluene	ND	1.0	µg/L	1	5/2/2016 6:22:23 PM	A33934
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 6:22:23 PM	A33934
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 6:22:23 PM	A33934
Surr: 4-Bromofluorobenzene	105	87.9-146	%Rec	1	5/2/2016 6:22:23 PM	A33934

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 6 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.
--

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	n, Inc. Client Sample ID: MW-50						
Project: Largo CS	Collection Date: 4/28/2016 1:40:00 PM						
Lab ID: 1605011-007	Matrix:	AQUEOUS	Received	Date: 4/30/2016 8:03:00 AM			
Analyses	Result	PQL Qua	l Units	DF Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES				Analys	st: NSB		
Benzene	ND	1.0	µg/L	1 5/2/2016 6:46:48 PM	A33934		
Toluene	ND	1.0	µg/L	1 5/2/2016 6:46:48 PM	A33934		
Ethylbenzene	ND	1.0	µg/L	1 5/2/2016 6:46:48 PM	A33934		
Xylenes, Total	ND	2.0	µg/L	1 5/2/2016 6:46:48 PM	A33934		
Surr: 4-Bromofluorobenzene	109	87.9-146	%Rec	1 5/2/2016 6:46:48 PM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В
			_

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 7 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-39							
Project: Largo CS			Collection	Date: 4/2	28/2016 2:20:00 PM			
Lab ID: 1605011-008	Matrix:	AQUEOUS	Received	Date: 4/3	80/2016 8:03:00 AM			
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES					Analys	t: NSB		
Benzene	9.8	1.0	µg/L	1	5/2/2016 8:49:28 PM	A33934		
Toluene	ND	1.0	µg/L	1	5/2/2016 8:49:28 PM	A33934		
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 8:49:28 PM	A33934		
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 8:49:28 PM	A33934		
Surr: 4-Bromofluorobenzene	112	87.9-146	%Rec	1	5/2/2016 8:49:28 PM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associa

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix S
- Analyte detected in the associated Method Blank В
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 8 of 16 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-83							
Project: Largo CS			Collection	Date: 4/2	9/2016 9:55:00 AM			
Lab ID: 1605011-009	Matrix:	AQUEOUS	Received	Date: 4/3	0/2016 8:03:00 AM			
Analyses	Result	PQL Qua	d Units	DF	Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES					Analys	t: NSB		
Benzene	ND	1.0	µg/L	1	5/2/2016 9:14:02 PM	A33934		
Toluene	ND	1.0	µg/L	1	5/2/2016 9:14:02 PM	A33934		
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 9:14:02 PM	A33934		
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 9:14:02 PM	A33934		
Surr: 4-Bromofluorobenzene	106	87.9-146	%Rec	1	5/2/2016 9:14:02 PM	A33934		

Refer to the QC	Summary	report and	sample lo	ogin checklis	st for flagged	QC data and	preservation	inform

Qualifiers: *	Value exceeds Maximum Contaminant Level.	
---------------	--	--

- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 9 of 16 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-76						
Project: Largo CS			Collection	Date: 4/2	9/2016 10:40:00 AM		
Lab ID: 1605011-010	Matrix:	AQUEOUS	Received	Date: 4/3	0/2016 8:03:00 AM		
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch	
EPA METHOD 8021B: VOLATILES					Analys	t: NSB	
Benzene	ND	1.0	µg/L	1	5/2/2016 9:38:32 PM	A33934	
Toluene	ND	1.0	µg/L	1	5/2/2016 9:38:32 PM	A33934	
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 9:38:32 PM	A33934	
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 9:38:32 PM	A33934	
Surr: 4-Bromofluorobenzene	110	87.9-146	%Rec	1	5/2/2016 9:38:32 PM	A33934	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 10 of 16 J
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Elly II Unincintal Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-77						
Project: Largo CS			Collection	Date: 4/29/2016 11:25:00 AM			
Lab ID: 1605011-011	Matrix:	AQUEOUS	Received	Date: 4/30/2016 8:03:00 AM			
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES				Analyst:	NSB		
Benzene	ND	1.0	µg/L	1 5/2/2016 10:02:54 PM	A33934		
Toluene	ND	1.0	µg/L	1 5/2/2016 10:02:54 PM	A33934		
Ethylbenzene	ND	1.0	µg/L	1 5/2/2016 10:02:54 PM	A33934		
Xylenes, Total	ND	2.0	µg/L	1 5/2/2016 10:02:54 PM	A33934		
Surr: 4-Bromofluorobenzene	111	87.9-146	%Rec	1 5/2/2016 10:02:54 PM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded

- ND Not Detected at the Reporting Limit
- RPD outside accepted recovery limits R
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 11 of 16 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-34							
Project: Largo CS			Collection	Date: 4/2	29/2016 12:25:00 PM			
Lab ID: 1605011-012	Matrix:	AQUEOUS	Received	Date: 4/3	80/2016 8:03:00 AM			
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch		
EPA METHOD 8021B: VOLATILES					Analyst	: NSB		
Benzene	ND	1.0	µg/L	1	5/2/2016 10:27:25 PM	A33934		
Toluene	ND	1.0	µg/L	1	5/2/2016 10:27:25 PM	A33934		
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 10:27:25 PM	A33934		
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 10:27:25 PM	A33934		
Surr: 4-Bromofluorobenzene	107	87.9-146	%Rec	1	5/2/2016 10:27:25 PM	A33934		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 12 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.
--

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	NT: Apex Titan, Inc. Client Sample ID: MW-38								
Project: Largo CS			Collection	Date: 4/2	9/2016 1:00:00 PM				
Lab ID: 1605011-013	Matrix:	AQUEOUS	Received	Date: 4/3	0/2016 8:03:00 AM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	Batch			
EPA METHOD 8021B: VOLATILES					Analyst	NSB			
Benzene	ND	1.0	µg/L	1	5/2/2016 10:51:53 PM	A33934			
Toluene	ND	1.0	µg/L	1	5/2/2016 10:51:53 PM	A33934			
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 10:51:53 PM	A33934			
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 10:51:53 PM	A33934			
Surr: 4-Bromofluorobenzene	103	87.9-146	%Rec	1	5/2/2016 10:51:53 PM	A33934			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Refer to the QC Summary report and sample fogin enceknist for hugged QC data and preservation in

Qualifiers: *	Value exceeds Maximum Contaminant Level.
---------------	--

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 13 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.		(Client Samp	ole ID: MW-75	
Project: Largo CS			Collection	Date: 4/29/2016 1:20:00 PM	
Lab ID: 1605011-014	Matrix:	AQUEOUS	Received	Date: 4/30/2016 8:03:00 AM	
Analyses	Result	PQL Qual	Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES				Analyst:	NSB
Benzene	ND	1.0	µg/L	1 5/2/2016 11:16:31 PM	A33934
Toluene	ND	1.0	µg/L	1 5/2/2016 11:16:31 PM	A33934
Ethylbenzene	ND	1.0	µg/L	1 5/2/2016 11:16:31 PM	A33934
Xylenes, Total	ND	2.0	µg/L	1 5/2/2016 11:16:31 PM	A33934
Surr: 4-Bromofluorobenzene	105	87.9-146	%Rec	1 5/2/2016 11:16:31 PM	A33934

Kelei to the	QC Summar	y report and	i sample login	CHECKHST IOI	naggeu QC	uata and preser	valion mio

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit
	R	RPD outside accepted recovery limits
	S	% Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 14 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.
--

Date Reported: 5/4/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-32									
Project: Largo CS			Collection	Date: 4/2	29/2016 2:00:00 PM					
Lab ID: 1605011-015	Matrix:	AQUEOUS	Received	Date: 4/3	80/2016 8:03:00 AM					
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed	Batch				
EPA METHOD 8021B: VOLATILES					Analyst	NSB				
Benzene	ND	1.0	µg/L	1	5/2/2016 11:41:09 PM	A33934				
Toluene	ND	1.0	μg/L	1	5/2/2016 11:41:09 PM	A33934				
Ethylbenzene	ND	1.0	µg/L	1	5/2/2016 11:41:09 PM	A33934				
Xylenes, Total	ND	2.0	µg/L	1	5/2/2016 11:41:09 PM	A33934				
Surr: 4-Bromofluorobenzene	106	87.9-146	%Rec	1	5/2/2016 11:41:09 PM	A33934				

- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limit. Page 15 of 16
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc

WO#: **1605011** *04-May-16*

Client: Project:	Apex Ti	tan, Inc. S									
110jeet.	Largo C	5									
Sample ID 5MI	L RB	SampT	ype: M	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: PB	w	Batch	n ID: A3	3934	F	RunNo: 3	3934				
Prep Date:		Analysis D	ate: 5/	2/2016	5	SeqNo: 1	045478	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromofluo	robenzene	22		20.00		109	87.9	146			
Sample ID 100	NG BTEX LC	S SampT	ype: LC	s	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: LCS	SW	Batch	n ID: A3	3934	F	RunNo: 3	3934				
Prep Date:		Analysis D	ate: 5/	2/2016	S	SeqNo: 1	045479	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		19	1.0	20.00	0	94.3	80	120			
Toluene		20	1.0	20.00	0	98.8	80	120			
Ethylbenzene		20	1.0	20.00	0	99.2	80	120			
Xylenes, Total		60	2.0	60.00	0	101	80	120			
Surr: 4-Bromofluo	robenzene	24		20.00		119	87.9	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 16 of 16

HALL
ENVIRONMENTAL
ANALYSIS
LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	ient Name: APEX AZTEC Work Order Number: 1605011			RcptNo: 1	
Received by/date:	erilso/16				
Logged By: Lindsay Mangin	4/30/2016 8:03:00 AM		Author		
Completed By: Lindsay Mangin	5/2/2016 9:57:3d AM		Author		
Reviewed By:	malazi	0	0.0.00		
Chain of Custody	0000000	<i>y</i>			
1 Custody seals intact on sample hottles?)	Vec 🗆	No 🗌	Not Present	
2. Is Chain of Custody complete?		Yes V	No 🗌	Not Present	
3 How was the sample delivered?		Courier		Hot I I Goont La	
		ovener			
Log In					
Was an attempt made to cool the samples	?	Yes 🔽	No 🗌	NA 🗌	
-					
 were all samples received at a temperature 	e of >0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test	s)?	Yes 🔽	No 🗌		
8. Are samples (except VOA and ONG) prope	rly preserved?	Yes 🔽	No 🗌		
9. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
10. VOA vials have zero headspace?		Yes 🔽	No 🗌	No VOA Vials	
11. Were any sample containers received brok	en?	Yes	No 🗹		
				# of preserved bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🖌	No 🗌	for pH: (<2 or >12 ur	less noted)
3. Are matrices correctly identified on Chain o	f Custody?	Yes 🗸	No 🗌	Adjusted?	icas noteu)
4. Is it clear what analyses were requested?		Yes 🗹	No 🗌		
5. Were all holding times able to be met?		Yes 🗹	No 🗆	Checked by:	
(if no, notify customer for authorization.)					
pecial Handling (if applicable)					
Was client notified of all discrepancies with	this order?	Yes	No 🗌	NA 🗹	
Person Notified:	Date				
By Whom:	Via:	eMail 🗌	Phone 🗌 Fax	In Person	
Regarding:					

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 03, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1604C49

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 12 sample(s) on 4/28/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order: 1604C49

Date Reported: 5/3/2016

	-		÷ .					
CLIENT: Project:	Apex Titan, Inc. Largo CS				Lab O	rder:	1604C49	
Lab ID:	1604C49-001			Collection 1	Date: 4/2	6/2016 11:2	0:00 AM	
Client Sample ID:	MW-89			Ma	atrix: AQ	UEOUS		
Analyses		Result	PQL (Qual Units	DF	Date Analy	zed Ba	tch ID
EPA METHOD 80	21B: VOLATILES						Analyst:	NSB
Benzene		ND	1.0	µg/L	1	4/29/2016 12	2:44:14 PM	B33897
Toluene		ND	1.0	µg/L	1	4/29/2016 12	2:44:14 PM	B33897
Ethylbenzene		ND	1.0	µg/L	1	4/29/2016 12	2:44:14 PM	B33897
Xylenes, Total		ND	2.0	µg/L	1	4/29/2016 12	2:44:14 PM	B33897
Surr: 4-Bromoflu	uorobenzene	114	87.9-146	%Rec	1	4/29/2016 12	2:44:14 PM	B33897
Lab ID:	1604C49-002			Collection]	Date: 4/2	6/2016 12:1	5:00 PM	
Client Sample ID:	MW-90	Matrix: AQUEOUS						
Analyses		Result	PQL (Qual Units	DF	Date Analy	zed Ba	tch ID
EPA METHOD 80	21B: VOLATILES						Analyst:	NSB
Benzene		ND	1.0	µg/L	1	4/29/2016 1:	57:46 PM	B33897
Toluene		ND	1.0	µg/L	1	4/29/2016 1:	57:46 PM	B33897
Ethylbenzene		ND	1.0	μg/L	1	4/29/2016 1:	57:46 PM	B33897
Xylenes, Total		ND	2.0	µg/L	1	4/29/2016 1:	57:46 PM	B33897
Surr: 4-Bromoflu	uorobenzene	114	87.9-146	%Rec	1	4/29/2016 1:	57:46 PM	B33897
Lab ID:	1604C49-003			Collection 1	Date: 4/2	6/2016 12:5	5:00 PM	
Client Sample ID:	MW-88	Matrix: AQUEOUS						
Analyses		Result	PQL (Qual Units	DF	Date Analy	zed Ba	tch ID
EPA METHOD 80	A METHOD 8021B: VOLATILES				Analyst:	NSB		
Benzene		ND	1.0	ua/L	1	4/29/2016 2:	22:19 PM	B33897
Toluene		ND	1.0	μg/L	1	4/29/2016 2:	22:19 PM	B33897
Ethylbenzene		ND	1.0	μg/L	1	4/29/2016 2:	22:19 PM	B33897
Xylenes, Total		ND	2.0	μg/L	1	4/29/2016 2:	22:19 PM	B33897
Surr: 4-Bromoflu	uorobenzene	116	87.9-146	%Rec	1	4/29/2016 2:	22:19 PM	B33897

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit R
- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Value above quantitation range Е
- J Analyte detected below quantitation limits Page 1 of 5
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W
Analytical Report

Lab Order: 1604C49

Date Reported: 5/3/2016

	Ţ						
CLIENT: A Project: I	Apex Titan, Inc. Largo CS				Lab Order	: 1604C	49
Lab ID:	1604C49-004			Collection	Date: 4/26/20	16 1:45:00 PM	[
Client Sample ID:	MW-8			Μ	latrix: AQUEC	DUS	
Analyses		Result	PQL (Qual Units	DF Date	e Analyzed	Batch ID
EPA METHOD 802	21B: VOLATILES					Anal	yst: NSB
Benzene		ND	1.0	µg/L	1 4/29)/2016 2:46:56 P	M B33897
Toluene		ND	1.0	μg/L	1 4/29	9/2016 2:46:56 P	M B33897
Ethylbenzene		ND	1.0	μg/L	1 4/29	9/2016 2:46:56 P	M B33897
Xylenes, Total		ND	2.0	μg/L	1 4/29	9/2016 2:46:56 P	M B33897
Surr: 4-Bromoflu	orobenzene	114	87.9-146	%Rec	1 4/29	9/2016 2:46:56 P	M B33897
Lab ID:	1604C49-005			Collection	Date: 4/27/20	16 9:30:00 AN	1
Client Sample ID:	MW-14			Μ	latrix: AQUEC	DUS	
Analyses		Result	PQL (Qual Units	DF Date	e Analyzed	Batch ID
EPA METHOD 802	21B: VOLATILES					Anal	yst: NSB
Benzene		ND	1.0	µg/L	1 4/29	9/2016 3:11:38 F	M B33897
Toluene		ND	1.0	μg/L	1 4/29	9/2016 3:11:38 F	M B33897
Ethylbenzene		ND	1.0	μg/L	1 4/29	9/2016 3:11:38 P	M B33897
Xylenes, Total		ND	2.0	μg/L	1 4/29	9/2016 3:11:38 P	M B33897
Surr: 4-Bromoflu	orobenzene	108	87.9-146	%Rec	1 4/29	9/2016 3:11:38 F	M B33897
Lab ID:	1604C49-006			Collection	Date: 4/27/20	16 10:10:00 A	М
Client Sample ID:	MW-15			Μ	latrix: AQUEC	DUS	
Analyses		Result	PQL (Qual Units	DF Date	e Analyzed	Batch ID
EPA METHOD 802	21B: VOLATILES					Anal	yst: NSB
Benzene		ND	1.0	ua/L	1 4/29	9/2016 3:36:21 F	M B33897
Toluene		ND	1.0	µg/L	1 4/29	9/2016 3:36:21 F	M B33897
Ethylbenzene		ND	1.0	µg/L	1 4/29	9/2016 3:36:21 F	M B33897
Xylenes, Total		ND	2.0	µg/L	1 4/29	9/2016 3:36:21 F	M B33897
Surr: 4-Bromoflu	orobenzene	113	87.9-146	%Rec	1 4/29	9/2016 3:36:21 P	M B33897

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit R
- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Value above quantitation range Е
- J Analyte detected below quantitation limits Page 2 of 5
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

Analytical Report

Lab Order: 1604C49

Date Reported: 5/3/2016

	ţ.		•			1	
CLIENT: A	Apex Titan, Inc. Largo CS				Lab Orde	er: 1604C	49
Lab ID:	1604C49-007			Collection I	Date: 4/27/2	016 10:50:00 A	М
Client Sample ID:	MW-3R			Ma	trix: AQUE	EOUS	
Analyses		Result	PQL Q	ual Units	DF Da	te Analyzed	Batch ID
EPA METHOD 80	21B: VOLATILES					Ana	lyst: NSB
Benzene		ND	1.0	µg/L	1 4/2	29/2016 4:01:04 F	PM B33897
Toluene		ND	1.0	µg/L	1 4/2	29/2016 4:01:04 F	PM B33897
Ethylbenzene		ND	1.0	µg/L	1 4/2	29/2016 4:01:04 F	PM B33897
Xylenes, Total		ND	2.0	µg/L	1 4/2	29/2016 4:01:04 F	PM B33897
Surr: 4-Bromoflu	uorobenzene	108	87.9-146	%Rec	1 4/2	29/2016 4:01:04 F	PM B33897
Lab ID:	1604C49-008			Collection I	Date: 4/27/2	016 11:30:00 A	М
Client Sample ID:	MW-7			Ma	trix: AQUE	EOUS	
Analyses		Result	PQL Q	ual Units	DF Da	te Analyzed	Batch ID
EPA METHOD 80	21B: VOLATILES					Ana	lyst: NSB
Benzene		7.0	1.0	µg/L	1 4/2	29/2016 4:25:43 F	PM B33897
Toluene		ND	1.0	µg/L	1 4/2	29/2016 4:25:43 F	PM B33897
Ethylbenzene		ND	1.0	µg/L	1 4/2	29/2016 4:25:43 F	PM B33897
Xylenes, Total		ND	2.0	µg/L	1 4/2	29/2016 4:25:43 F	PM B33897
Surr: 4-Bromoflu	uorobenzene	109	87.9-146	%Rec	1 4/2	29/2016 4:25:43 F	PM B33897
Lab ID:	1604C49-009			Collection I	Date: 4/27/2	016 12:25:00 P	М
Client Sample ID:	MW-16			Ma	trix: AQUE	EOUS	
Analyses		Result	PQL Q	ual Units	DF Da	te Analyzed	Batch ID
EPA METHOD 80	21B: VOLATILES					Ana	lyst: NSB
Benzene		6.5	1.0	µg/L	1 4/2	29/2016 4:50:18 F	PM B33897
Toluene		ND	1.0	μg/L	1 4/2	29/2016 4:50:18 F	PM B33897
Ethylbenzene		1.1	1.0	µg/L	1 4/2	29/2016 4:50:18 F	PM B33897
Xylenes, Total		ND	2.0	µg/L	1 4/2	29/2016 4:50:18 F	PM B33897
Surr: 4-Bromoflu	uorobenzene	110	87.9-146	%Rec	1 4/2	29/2016 4:50:18 F	PM B33897

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit R
- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Value above quantitation range Е
- J Analyte detected below quantitation limits Page 3 of 5
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical Report

Lab Order: 1604C49

Date Reported: 5/3/2016

	-					-		
CLIENT: A Project: 1	Apex Titan, Inc. Largo CS				Lab O	order: 160	4C49	
Lab ID:	1604C49-010			Collection 1	Date: 4/2	7/2016 1:10:00	PM	
Client Sample ID:	MW-13			Ma	atrix: AQ	QUEOUS		
Analyses		Result	PQL Q	Qual Units	DF	Date Analyzed	B	atch ID
EPA METHOD 802	21B: VOLATILES					A	nalyst	: NSB
Benzene		ND	1.0	µg/L	1	4/29/2016 8:55:0	9 PM	B33897
Toluene		ND	1.0	µg/L	1	4/29/2016 8:55:0	9 PM	B33897
Ethylbenzene		ND	1.0	µg/L	1	4/29/2016 8:55:0	9 PM	B33897
Xylenes, Total		ND	2.0	µg/L	1	4/29/2016 8:55:0	9 PM	B33897
Surr: 4-Bromoflu	uorobenzene	108	87.9-146	%Rec	1	4/29/2016 8:55:0	9 PM	B33897
Lab ID:	1604C49-011			Collection 1	Date: 4/2	7/2016 1:40:00	PM	
Client Sample ID:	MW-6			Ma	atrix: AQ	UEOUS		
Analyses		Result	PQL Q	ual Units	DF	Date Analyzed	B	atch ID
EPA METHOD 802	21B: VOLATILES					A	nalyst	: NSB
Benzene		ND	1.0	µg/L	1	4/29/2016 9:19:4	1 PM	B33897
Toluene		ND	1.0	µg/L	1	4/29/2016 9:19:4	1 PM	B33897
Ethylbenzene		ND	1.0	µg/L	1	4/29/2016 9:19:4	1 PM	B33897
Xylenes, Total		ND	2.0	µg/L	1	4/29/2016 9:19:4	1 PM	B33897
Surr: 4-Bromoflu	uorobenzene	113	87.9-146	%Rec	1	4/29/2016 9:19:4	1 PM	B33897
Lab ID:	1604C49-012			Collection 1	Date: 4/2	7/2016 2:10:00	PM	
Client Sample ID:	MW-9			Ma	atrix: AQ	UEOUS		
Analyses		Result	PQL Q	ual Units	DF	Date Analyzed	B	atch ID
EPA METHOD 802	21B: VOLATILES					A	nalyst	: NSB
Benzene		ND	1.0	µg/L	1	4/29/2016 9:44:1	1 PM	B33897
Toluene		ND	1.0	μg/L	1	4/29/2016 9:44:1	1 PM	B33897
Ethylbenzene		ND	1.0	μg/L	1	4/29/2016 9:44:1	1 PM	B33897
Xylenes, Total		ND	2.0	µg/L	1	4/29/2016 9:44:1	1 PM	B33897
Surr: 4-Bromoflu	uorobenzene	109	87.9-146	%Rec	1	4/29/2016 9:44:1	1 PM	B33897

Hall Environmental Analysis Laboratory, Inc.

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit R
- RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- Analyte detected in the associated Method Blank В
- Value above quantitation range Е
- J Analyte detected below quantitation limits Page 4 of 5
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- Sample container temperature is out of limit as specified W

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc	•

WO#: 1604C49 03-May-16

Client:	Apex Tita	an, Inc.									
Project:	Largo CS	5									
Sample ID 5N	ML RB	SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: PE	BW	Batch	n ID: B3	3897	F	RunNo: 3	3897				
Prep Date:		Analysis D	Date: 4/	29/2016	5	SeqNo: 1	044032	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
Toluene		ND	1.0								
Ethylbenzene		ND	1.0								
Xylenes, Total		ND	2.0								
Surr: 4-Bromoflu	Jorobenzene	22		20.00		108	87.9	146			
Sample ID 10	ONG BTEX LCS	SampT	ype: LC	S	TestCode: EPA Method 8021B: Volatiles						
Client ID: LC	csw	Batch	n ID: B3	3897	F	RunNo: 3	3897				
Prep Date:		Analysis D	Date: 4/	29/2016	5	SeqNo: 1	044033	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		19	1.0	20.00	0	94.7	80	120			
Toluene		20	1.0	20.00	0	101	80	120			
Ethylbenzene		20	1.0	20.00	0	102	80	120			
Xylenes, Total		62	2.0	60.00	0	103	80	120			
Surr: 4-Bromoflu	uorobenzene	25		20.00		123	87.9	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 5 of 5

HALL ENVIRONMENTAL ANALYSIS LABORATORY

Hall Environmental Analysis Laboratory 4901 Hawkins NF. Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: APEX AZTEC	Work Order Number	: 1604	C49		-	RcptNo: 1
Received by/date:	04/28/16					
Logged By: Lindsay Mangin	4/28/2016 7:00:00 AM			Frinky	Hof	0
Completed By: Lindsay Mangin	4/28/2016 1:36:45 PM			Annaly	Hope)
Reviewed By:	04/08/16			$V \circ$	V	
Chain of Custody	01/20/10					
1. Custody seals intact on sample bottles	?	Yes	0	No	[_])	Not Present 🛃
2. Is Chain of Custody complete?		Yes		No		Not Present
3. How was the sample delivered?		<u>Cou</u>	rier			
<u>Log In</u>						
4. Was an attempt made to cool the same	oles?	Yes		No	i.]]	NA []
5. Were all samples received at a temperative	ature of >0° C to 6.0°C	Yes		No	[]	NA []]
6. Sample(s) in proper container(s)?		Yes		No	[.]	
7. Sufficient sample volume for indicated t	est(s)?	Yes		No	[.]	
8. Are samples (except VOA and ONG) pr	operly preserved?	Yes		No	[]	
9. Was preservative added to bottles?		Yes		No		NA []]
10.VOA vials have zero headspace?		Yes		No	í]	No VOA Vials
11. Were any sample containers received b	proken?	Yes		No		
						# of preserved bottles checked
12.Does paperwork match bottle labels?	Λ	Yes		No	[_]	for pH: (<2 or >12 unloss noted)
13. Are matrices correctly identified on Chai	in of Custody?	Yes		No	[]	Adjusted?
14, Is it clear what analyses were requested	1?	Yes		No	[]]]	
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No	[_]	Checked by:
Special Handling (if applicable)						
16. Was client notified of all discrepancies v	vith this order?	Yes		No	[]	
Person Notified	Date:					1474 (175-)
By Whom:	Uate.	∏ eMa	il (Phone [1]	Fax	
Regarding:			ii i.			
Client Instructions:						And Appendix of a construction of the second s
17. Additional remarks:						
18. <u>Cooler Information</u>						
Cooler No Temp °C Condition	Seal Intact Seal No S	Seal Da	te	Signed B	y]	
1 1.8 Good	Yes					

(Albel Market Albel Market Albe	Date: I Time: A Keceived by://Signature) I Judite: / I Time: / // // ///	Terms. of coolers when received (C°; \	REQUESTED	COA Mentel Aux N.M. All 14 Date: 255 m Blass All 14 Date: 255 m Blass All 14 Date:	ss: Albiquer (tiony: Hall Enu tr: Andy Free :: :: :: :: :: :: :: :: ::	M.M. Address Address Address Address Phone
	International (Altexia 0700)		0700 Time:	Call/25/16 Date:	Received by: (Signature)	Date: Time:
Date: Time: Received by: (Signature) Date: Lime:	Date: Time: Received by: (Signature) Date: Time:		Time:	Date:	Received by: (Signature)	Date: Time:
Date: Time: Received Wr. (Signature) Date: Time:	Date: Time: Creceived by: (Signature) Date: Time:					-
			Time:	Date:	Received Wr: (Signature)	Date: Time: V
		1 The HOLV	151	A Trivit	TUNES IN COL	21.01 -100
Date: Time: Received by:/(Signature) (Date: Time: Dill 10 HPLX	1211 The HOLEN	1 2 1	1540 NOTES:	Uate:	Received by: (Signature)	Date: Time:
Date: Time: Preceived by (Signature) Date: Time: NOTES: 457/16 15: 10 ALL 1 (CUL 437/114 1540 Date: Time: Received by (Signature) 21 Peck Brill 7 APeck	Varie Time: Preceived by: (Signature) Date: Time: NOTES: Varie 15:10 Allert 1/Cale 4/27/14 1540 B:1/ 7 ADLV	A Distance of the second se			h 🗆 100% Rush	5% Rush 🛛 50% Rus
Imal 25% Rush 55% Rush 100% Rush Date: Time: Fleqcelved by: (Signature) Date:: Time: NOTES: Date: Time: Fleqcelved by: (Signature) Date:: Time: Bate:: Time: Date: Time: Fleqcelved by: (Signature) Date:: Time: Bate:: Time:	mai 25% Rush 25% Rush 20% Rush	-010			2	SI-MU
Imail 125% Rush 100% Rush 100% Rush) Date: Time: B6ceived by: (Signature)) Date: Time: B7/1	mai 25% Rush 26% Rush 20% Rush	VIV-			~	51-1-1M
multiplication multiplicatio	mulling mulling 3 1 -010 rmai< 25% Rush 50% Rush 100% Rush 3 -010 in Date: Time: Beceived by (Signature) Date: Time: NOTES: in V27/6 15::-LO Mulling 100% Rush Date: ADAL	Kan-			M	mulb
multiple multiple CULA mail 25% Rush 100% Rush 100% Rush in Date: Time: P80 ceived by: (Signature) in Date: Time: Date:	multic S CUT multic multic S -CUT multic multic S -CUT multic B600% Rush 3 -CUT mail 25% Rush 100% Rush -CUT mail 15% Rush 100% Rush -CUT	200				LIW I
multic 3 004 multic 3 -004 multic -006 -006 multic -006 -010 multic -006 -010 multic -010 -010	multe 3 -004 multe 3 -010 multe 3 -010 mail 25% Rush 100% Rush 010 mail 125% Rush 100% Rush 010 mail 125% Rush 100% Rush 010 mail 15% Rush 100% Rush 010	-00%			~	5-25
mw7 3 -008 mw16 3 -009 mw13 3 -009 mw13 3 -009 mw13 3 -010 mmail 25% Rush 100% Rush -010 mail 25% Rush 100% Rush 0046 mail 125% Rush 100% Rush 010 mail 100% Rush 010 Rush 010 mail 100% Rush 100% Rush 010 100 mail 100% Rush 100% Rush 100% Rush 010 mail 100% Rush 100% Rush 100% Rush 100% mail 100% Rush 100% Rush 100% Rush 100% Rush 100% Rush 100% Rush 10	mw-7 3 -008 mw-16 3 -009 mw-15 3 -010 mw-13 3 -010 mw-13 3 Date: Time: Bigginture) Date: Time: Bigginture) mw-13 0 Date: Time: Mub 1 Cut Mub 1 Cut Mub 1 Cut Mub 1 Mub 1	±00-			M	nwi3h
mw·3/ 3 007 mw·7 3 -008 mw·7 3 -008 mu-16 3 -009 mu-13 3 -009 mu-13 3 -009 mu-13 -006 -009 mu-13 3 -010 mu-13 -006 -010 mu-13 -006 -010 mu-13 -006 -010 mu-13 -010 -010 main -0206 -010 main -010 -010	mwi3f 3 -007 mwi3f 3 -008 mwi1e 3 -008 mwi1e 3 -009 mwi1e 3 -009 mwi1e 3 -010 mwi1e 5 -010 mwi1e 100% Rush -010 mill 25% Rush 100% Rush 1 Date: Time: Beceived by: (Siggature) Date: Time: 1 Date: Time: 1 Date: Time:	707			M	SI-MW
mw·IS 3 900 mw·IS 3 100 mu·IS 100% Rush 100% Rush 125% Rush 150% Rush 100% Rush 125% Rush 100% Rush 100% Rush 100 100% Rush 100% Rush	mw·IS 3 900 mw·IS 3 100 mu·IS 3 100	-002			m	hi mu
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-004			7	8-MW
mw·ł mw·ł mw·ł mw·ł mw·ł mw·ł 3 mw·ł mw·ł 3 mw·ł 004 mw·ł 3 mw·ł 005 mw·ł 3 005 005 mw·ł 3 006 005 mw·ł 3 006 005 mw·ł 3 006 006 mw·ł 1.006 8ush 1.006 mu·ł 1.006 8ush 006 mu·ł 1.006 8ush 006 mu·ł 1.006 8ush 006 mu·ł 1.006 8ush 0010 mu·ł 1.006 8ush 0010 mu·ł 1.006 8ush 006 mu·ł 1.006 8ush 0010 mu·ł 1.006 8ush 0010 mu·ł 1.006 8ush 0010	mw·8 -004 mw·14 3 mw·15 3 mw·16 3 mw·16 3 mw·16 3 mw·18 3 mw·18 3 mw·18 3 mw·13 3 mw·18 3 100% Aush 100% Aush 100% Aush 100% Aush	3				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	mw-8 3 9 mw-14 3 -004 mw-15 3 -005 mw-15 3 -005 mw-15 3 -005 mw-15 3 -005 mw-16 3 -006 mw-18 3 -006 mw-13 1006 -006 mw-13 -006 -010 mai<128 -006 -010 mai<128 -006 -010 mai<128 -006 -010	200-			M	mw-88
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	200-			m	mw.90
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	100-101011			M	68-~w
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Lab Sample ID (Lab Use Only)	1111	b/0 99 01 01 02 02 02 02 0 0/0	Pee(s) Start Depth End Depth Depth Depth	Identifying Marks of Sam
PD B Identifying Marks of Sample(s) Identifying Marks of Sample(s) Identifying Warks	0 1 Dentifying Marks of Sample(s) 1 Lab Sample (D (Lab Use Only)) 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		37.6			120 05
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1 1	ype of Containers	North	me
Project Name Project Name Norspee of Containers Norspee of Containers \overrightarrow{B} \overrightarrow{B} \overrightarrow{B} \overrightarrow{E} E	Project Name Non-po of Containers Non-po of Containers $\square \square $			1 des	a a	
Project Name Project Name Project Name Nonzpe of Containers $\frac{1}{10}$ Identifying Narks of Sample(s)	Project Name Project Name Nonzola of Containers $\frac{10}{10}$ $\frac{1}{6}$ $\frac{10}{10}$ $\frac{1}{10}$		25	1/11	s Signature	Sampler
Samplere Signature Project Signature Project Name NonType of Containeres NonType of Containeres <u> m </u>	Sample's Signature Project Signature Project Signature Project Name Nonzero 100		e.)#:	mar > PO/SC
Journel 2 PO/SO #: Randier's Signatue Sampler's Signatue Randier's Signatue Monpee of Containers Project Name Monpee of Containers Project N	Summer S POISO #: Render 6 signature Sampler 6 signature Render 6 signature Non-Type of Containers Project Name Sample (s) Project Name S Project Name<	Page 1 of 3				Phone
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1 2 3 4 5		wer.	I: Hady Frees	Contac
Contact: Mone: Prome: Prom: Prom: Prom: <th>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</th> <td>when received (C*): 1, 2</td> <td></td> <td></td> <td>9</td> <td>N. P.</td>	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	when received (C*): 1, 2			9	N. P.
Face Main Torration Main Main Main Main Main Main Main Surviva<5 Surviva<5 Poison Poison Page 0 0 2 Surviva<5 Poison Poison Poison Page 0 0 3 4 Proper Poison Poison Poison Poison 2	F.c. M.M. Contact: M.M. Minimation of Contact: $\sum_{u=1}^{n}$ Phone: Phone: Phone: Phone: $\sum_{n=1}^{n}$ Phone: Phone: Phon	Temp. of coclers		gue N.M.	ss: Albuquer ,	Addres
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		REQUESTED	con mentel	itory: Hall Envi	Labora
Let Main Recuested Recuested Address: Aldress: Albuquer que Man Summer S Aldress: Albuquer que Man Summer S Albuquer que Man Summer S Prone: Prone: Prone: </th <th>Free Alt Contact: Mail Mail</th> <td>/ / / / / / / / / / / nue nate:</td> <td></td> <td></td> <td></td> <td></td>	Free Alt Contact: Mail	/ / / / / / / / / / / nue nate:				

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

ļ

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

October 21, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1610739

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 14 sample(s) on 10/15/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-90								
Project: Largo CS		Collection Date: 10/13/2016 11:00:00 AM							
Lab ID: 1610739-001	Matrix: A	AQUEOUS	Received I	Date: 10/15/2	2016 1:15:00 PM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed				
EPA METHOD 8260: VOLATILES SH	IORT LIST				Analyst: AG				
Benzene	ND	1.0	µg/L	1	10/18/2016 7:54:13 PM				
Toluene	ND	1.0	µg/L	1	10/18/2016 7:54:13 PM				
Ethylbenzene	ND	1.0	µg/L	1	10/18/2016 7:54:13 PM				
Xylenes, Total	ND	1.5	µg/L	1	10/18/2016 7:54:13 PM				
Surr: 1,2-Dichloroethane-d4	88.8	70-130	%Rec	1	10/18/2016 7:54:13 PM				
Surr: 4-Bromofluorobenzene	97.2	70-130	%Rec	1	10/18/2016 7:54:13 PM				
Surr: Dibromofluoromethane	94.5	70-130	%Rec	1	10/18/2016 7:54:13 PM				
Surr: Toluene-d8	100	70-130	%Rec	1	10/18/2016 7:54:13 PM				

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-89						
Project: Largo CS		Collection Date: 10/13/2016 12:00:00 PM						
Lab ID: 1610739-002	Matrix:	AQUEOUS	Received I	Date: 10/15/2	2016 1:15:00 PM			
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed			
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG			
Benzene	ND	1.0	µg/L	1	10/18/2016 9:20:23 PM			
Toluene	ND	1.0	µg/L	1	10/18/2016 9:20:23 PM			
Ethylbenzene	ND	1.0	µg/L	1	10/18/2016 9:20:23 PM			
Xylenes, Total	ND	1.5	µg/L	1	10/18/2016 9:20:23 PM			
Surr: 1,2-Dichloroethane-d4	94.9	70-130	%Rec	1	10/18/2016 9:20:23 PM			
Surr: 4-Bromofluorobenzene	117	70-130	%Rec	1	10/18/2016 9:20:23 PM			
Surr: Dibromofluoromethane	93.0	70-130	%Rec	1	10/18/2016 9:20:23 PM			
Surr: Toluene-d8	102	70-130	%Rec	1	10/18/2016 9:20:23 PM			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-88							
Project: Largo CS		Collection Date: 10/13/2016 12:45:00 PM							
Lab ID: 1610739-003	Matrix: A	AQUEOUS	Received I	Date: 10/15/2	2016 1:15:00 PM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed				
EPA METHOD 8260: VOLATILES SHO	ORT LIST				Analyst: AG				
Benzene	ND	1.0	µg/L	1	10/18/2016 9:49:01 PM				
Toluene	ND	1.0	µg/L	1	10/18/2016 9:49:01 PM				
Ethylbenzene	ND	1.0	µg/L	1	10/18/2016 9:49:01 PM				
Xylenes, Total	ND	1.5	µg/L	1	10/18/2016 9:49:01 PM				
Surr: 1,2-Dichloroethane-d4	92.4	70-130	%Rec	1	10/18/2016 9:49:01 PM				
Surr: 4-Bromofluorobenzene	107	70-130	%Rec	1	10/18/2016 9:49:01 PM				
Surr: Dibromofluoromethane	94.6	70-130	%Rec	1	10/18/2016 9:49:01 PM				
Surr: Toluene-d8	104	70-130	%Rec	1	10/18/2016 9:49:01 PM				

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-14 Collection Date: 10/13/2016 1:30:00 PM					
Project: Largo CS							
Lab ID: 1610739-004	Matrix:	AQUEOUS	Received I	Date: 10/15/2	2016 1:15:00 PM		
Analyses	Result	PQL Qual	Units	DF	Date Analyzed		
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG		
Benzene	ND	1.0	µg/L	1	10/18/2016 10:17:43 PM		
Toluene	ND	1.0	µg/L	1	10/18/2016 10:17:43 PM		
Ethylbenzene	ND	1.0	µg/L	1	10/18/2016 10:17:43 PM		
Xylenes, Total	ND	1.5	µg/L	1	10/18/2016 10:17:43 PM		
Surr: 1,2-Dichloroethane-d4	93.8	70-130	%Rec	1	10/18/2016 10:17:43 PM		
Surr: 4-Bromofluorobenzene	97.9	70-130	%Rec	1	10/18/2016 10:17:43 PM		
Surr: Dibromofluoromethane	93.2	70-130	%Rec	1	10/18/2016 10:17:43 PM		
Surr: Toluene-d8	99.8	70-130	%Rec	1	10/18/2016 10:17:43 PM		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.Project: Largo CSLab ID: 1610739-005	Client Sample ID: MW-15 Collection Date: 10/13/2016 2:25:00 PM Matrix: AQUEOUS Received Date: 10/15/2016 1:15:00 PM					
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed	
EPA METHOD 8260: VOLATILES SHORT LIST Analyst: AG						
Benzene	28	1.0	µg/L	1	10/18/2016 10:46:40 PM	
Toluene	ND	1.0	µg/L	1	10/18/2016 10:46:40 PM	
Ethylbenzene	ND	1.0	µg/L	1	10/18/2016 10:46:40 PM	
Xylenes, Total	ND	1.5	µg/L	1	10/18/2016 10:46:40 PM	
Surr: 1,2-Dichloroethane-d4	97.2	70-130	%Rec	1	10/18/2016 10:46:40 PM	
Surr: 4-Bromofluorobenzene	142	70-130 S	%Rec	1	10/18/2016 10:46:40 PM	
Surr: Dibromofluoromethane	93.7	70-130	%Rec	1	10/18/2016 10:46:40 PM	
Surr: Toluene-d8	106	70-130	%Rec	1	10/18/2016 10:46:40 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT:Apex Titan, Inc.Project:Largo CSLab ID:1610739-006	Client Sample ID: MW-8 Collection Date: 10/13/2016 3:20:00 PM Matrix: AQUEOUS Received Date: 10/15/2016 1:15:00 PM					
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	
EPA METHOD 8260: VOLATILES SHORT LIST Analyst: AG						
Benzene	ND	1.0	µg/L	1	10/18/2016 11:15:19 PM	
Toluene	ND	1.0	µg/L	1	10/18/2016 11:15:19 PM	
Ethylbenzene	ND	1.0	µg/L	1	10/18/2016 11:15:19 PM	
Xylenes, Total	ND	1.5	µg/L	1	10/18/2016 11:15:19 PM	
Surr: 1,2-Dichloroethane-d4	94.5	70-130	%Rec	1	10/18/2016 11:15:19 PM	
Surr: 4-Bromofluorobenzene	104	70-130	%Rec	1	10/18/2016 11:15:19 PM	
Surr: Dibromofluoromethane	98.3	70-130	%Rec	1	10/18/2016 11:15:19 PM	
Surr: Toluene-d8	103	70-130	%Rec	1	10/18/2016 11:15:19 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-50 Collection Date: 10/14/2016 9:45:00 AM					
Project: Largo CS							
Lab ID: 1610739-007	Matrix:	AQUEOUS	Received I	Date: 10/15/2	2016 1:15:00 PM		
Analyses	Result	PQL Qual	Units	DF	Date Analyzed		
EPA METHOD 8260: VOLATILES SHORT LIST AG							
Benzene	ND	1.0	µg/L	1	10/19/2016 1:39:10 AM		
Toluene	ND	1.0	µg/L	1	10/19/2016 1:39:10 AM		
Ethylbenzene	ND	1.0	µg/L	1	10/19/2016 1:39:10 AM		
Xylenes, Total	ND	1.5	µg/L	1	10/19/2016 1:39:10 AM		
Surr: 1,2-Dichloroethane-d4	97.8	70-130	%Rec	1	10/19/2016 1:39:10 AM		
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	10/19/2016 1:39:10 AM		
Surr: Dibromofluoromethane	94.0	70-130	%Rec	1	10/19/2016 1:39:10 AM		
Surr: Toluene-d8	98.8	70-130	%Rec	1	10/19/2016 1:39:10 AM		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016
Client Sample ID: MW-40R

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-40R Collection Date: 10/14/2016 10:35:00 AM					
Project: Largo CS							
Lab ID: 1610739-008	Matrix:	Matrix: AQUEOUS Received Da			2016 1:15:00 PM		
Analyses	Result	PQL Qual	Units	DF	Date Analyzed		
EPA METHOD 8260: VOLATILES S	EPA METHOD 8260: VOLATILES SHORT LIST Analyst: AG						
Benzene	ND	1.0	µg/L	1	10/19/2016 2:08:03 AM		
Toluene	ND	1.0	µg/L	1	10/19/2016 2:08:03 AM		
Ethylbenzene	ND	1.0	µg/L	1	10/19/2016 2:08:03 AM		
Xylenes, Total	ND	1.5	µg/L	1	10/19/2016 2:08:03 AM		
Surr: 1,2-Dichloroethane-d4	96.6	70-130	%Rec	1	10/19/2016 2:08:03 AM		
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	10/19/2016 2:08:03 AM		
Surr: Dibromofluoromethane	96.5	70-130	%Rec	1	10/19/2016 2:08:03 AM		
Surr: Toluene-d8	104	70-130	%Rec	1	10/19/2016 2:08:03 AM		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-9 Collection Date: 10/14/2016 11:20:00 AM					
Project: Largo CS							
Lab ID: 1610739-009	Matrix:	AQUEOUS	Received I	Date: 10/15/2	2016 1:15:00 PM		
Analyses	Result	PQL Qual	Units	DF	Date Analyzed		
EPA METHOD 8260: VOLATILES SHORT LIST AG							
Benzene	ND	1.0	µg/L	1	10/19/2016 2:36:51 AM		
Toluene	ND	1.0	µg/L	1	10/19/2016 2:36:51 AM		
Ethylbenzene	ND	1.0	µg/L	1	10/19/2016 2:36:51 AM		
Xylenes, Total	ND	1.5	µg/L	1	10/19/2016 2:36:51 AM		
Surr: 1,2-Dichloroethane-d4	95.4	70-130	%Rec	1	10/19/2016 2:36:51 AM		
Surr: 4-Bromofluorobenzene	95.7	70-130	%Rec	1	10/19/2016 2:36:51 AM		
Surr: Dibromofluoromethane	101	70-130	%Rec	1	10/19/2016 2:36:51 AM		
Surr: Toluene-d8	102	70-130	%Rec	1	10/19/2016 2:36:51 AM		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

Client Sample ID: MW-3R						
Collection Date: 10/14/2016 12:05:00 PM						
Matrix: AQUEOUS Received Date: 10/15/2016 1			016 1:15:00 PM			
Result	PQL Qual	Units	DF	Date Analyzed		
T LIST				Analyst: AG		
2.8	1.0	µg/L	1	10/19/2016 3:05:41 AM		
ND	1.0	µg/L	1	10/19/2016 3:05:41 AM		
ND	1.0	µg/L	1	10/19/2016 3:05:41 AM		
ND	1.5	µg/L	1	10/19/2016 3:05:41 AM		
98.2	70-130	%Rec	1	10/19/2016 3:05:41 AM		
568	70-130 S	%Rec	1	10/19/2016 3:05:41 AM		
97.4	70-130	%Rec	1	10/19/2016 3:05:41 AM		
103	70-130	%Rec	1	10/19/2016 3:05:41 AM		
	Matrix: Result T LIST 2.8 ND ND 98.2 568 97.4 103	Matrix: AQUEOUS Result PQL Qual T LIST 2.8 1.0 ND 1.0 ND 1.0 ND 1.5 98.2 70-130 568 70-130 97.4 70-130 103 70-130	Client Samp Collection Matrix: AQUEOUS Received Result PQL Qual Units T LIST 2.8 1.0 µg/L ND 1.0 µg/L ND 1.0 µg/L ND 1.5 µg/L 98.2 70-130 %Rec 568 70-130 %Rec 97.4 70-130 %Rec 103 70-130 %Rec	Client Sample ID: MW-3H Collection Date: 10/14/2 Matrix: AQUEOUS Received Date: 10/15/2 Result PQL Qual Units DF T LIST 2.8 1.0 µg/L 1 ND 1.0 µg/L 1 ND 1.0 µg/L 1 ND 1.5 µg/L 1 98.2 70-130 %Rec 1 97.4 70-130 %Rec 1 103 70-130 %Rec 1		

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 10 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-13						
Project: Largo CS		Collection Date: 10/14/2016 12:50:00 PM						
Lab ID: 1610739-011	Matrix: AQUEOUS Received Date: 10/15/2016 1:15:00 PM			2016 1:15:00 PM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed			
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG			
Benzene	ND	1.0	µg/L	1	10/19/2016 3:34:22 AM			
Toluene	ND	1.0	µg/L	1	10/19/2016 3:34:22 AM			
Ethylbenzene	ND	1.0	µg/L	1	10/19/2016 3:34:22 AM			
Xylenes, Total	ND	1.5	µg/L	1	10/19/2016 3:34:22 AM			
Surr: 1,2-Dichloroethane-d4	89.5	70-130	%Rec	1	10/19/2016 3:34:22 AM			
Surr: 4-Bromofluorobenzene	103	70-130	%Rec	1	10/19/2016 3:34:22 AM			
Surr: Dibromofluoromethane	94.1	70-130	%Rec	1	10/19/2016 3:34:22 AM			
Surr: Toluene-d8	105	70-130	%Rec	1	10/19/2016 3:34:22 AM			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 11 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT:Apex Titan, Inc.Project:Largo CSLab ID:1610739-012	Client Sample ID: MW-6 Collection Date: 10/14/2016 1:35:00 PM Matrix: AQUEOUS Received Date: 10/15/2016 1:15:00 PM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES S	HORT LIST				Analyst: AG
Benzene	ND	1.0	µg/L	1	10/19/2016 4:03:00 AM
Toluene	ND	1.0	µg/L	1	10/19/2016 4:03:00 AM
Ethylbenzene	ND	1.0	µg/L	1	10/19/2016 4:03:00 AM
Xylenes, Total	ND	1.5	µg/L	1	10/19/2016 4:03:00 AM
Surr: 1,2-Dichloroethane-d4	95.0	70-130	%Rec	1	10/19/2016 4:03:00 AM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	10/19/2016 4:03:00 AM
Surr: Dibromofluoromethane	95.7	70-130	%Rec	1	10/19/2016 4:03:00 AM
Surr: Toluene-d8	104	70-130	%Rec	1	10/19/2016 4:03:00 AM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 12 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-16 Collection Date: 10/14/2016 2:15:00 PM						
Project: Largo CS								
Lab ID: 1610739-013	Matrix: A	AQUEOUS	Received I	ate: 10/15/2	2016 1:15:00 PM			
Analyses	Result	PQL Qual	Units	DF	Date Analyzed			
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst: AG			
Benzene	ND	1.0	µg/L	1	10/19/2016 4:31:44 AM			
Toluene	ND	1.0	µg/L	1	10/19/2016 4:31:44 AM			
Ethylbenzene	ND	1.0	µg/L	1	10/19/2016 4:31:44 AM			
Xylenes, Total	ND	1.5	µg/L	1	10/19/2016 4:31:44 AM			
Surr: 1,2-Dichloroethane-d4	92.7	70-130	%Rec	1	10/19/2016 4:31:44 AM			
Surr: 4-Bromofluorobenzene	100	70-130	%Rec	1	10/19/2016 4:31:44 AM			
Surr: Dibromofluoromethane	96.4	70-130	%Rec	1	10/19/2016 4:31:44 AM			
Surr: Toluene-d8	103	70-130	%Rec	1	10/19/2016 4:31:44 AM			

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 13 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 10/21/2016

CLIENT:Apex Titan, Inc.Project:Largo CSLab ID:1610739-014	Client Sample ID: MW-7 Collection Date: 10/14/2016 3:00:00 PM Matrix: AQUEOUS Received Date: 10/15/2016 1:15:00 PM				
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8260: VOLATILES SH	ORT LIST				Analyst: AG
Benzene	500	10	µg/L	10	10/19/2016 12:37:11 PM
Toluene	ND	1.0	µg/L	1	10/19/2016 5:00:33 AM
Ethylbenzene	6.7	1.0	µg/L	1	10/19/2016 5:00:33 AM
Xylenes, Total	2.3	1.5	µg/L	1	10/19/2016 5:00:33 AM
Surr: 1,2-Dichloroethane-d4	89.5	70-130	%Rec	1	10/19/2016 5:00:33 AM
Surr: 4-Bromofluorobenzene	121	70-130	%Rec	1	10/19/2016 5:00:33 AM
Surr: Dibromofluoromethane	86.0	70-130	%Rec	1	10/19/2016 5:00:33 AM
Surr: Toluene-d8	101	70-130	%Rec	1	10/19/2016 5:00:33 AM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 14 of 16
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc

Client: Apex 7	Titan, Inc.									
Project: Largo	CS									
Sample ID 100ng lcs2	Samp	Гуре: L(cs	Tes	stCode: E	PA Method	8260: Volatil	es Short L	_ist	
Client ID: LCSW	Batc	h ID: S 3	38037	I	RunNo: 3	8037				
Prep Date:	Analysis [Date: 1	0/18/2016	:	SeqNo: 1	185960	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	99.2	70	130			
Toluene	20	1.0	20.00	0	102	70	130			
Surr: 1,2-Dichloroethane-d4	9.8		10.00		97.5	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		100	70	130			
Surr: Dibromofluoromethane	9.8		10.00		97.7	70	130			
Surr: Toluene-d8	11		10.00		106	70	130			
Sample ID rb	Samp	SampType: MBLK TestCode: EPA Method 8260: Volatiles Short List								
Client ID: PBW	Batc	Batch ID: \$38037 RunNo: 38037								
Prep Date:	Analysis [Date: 1	0/18/2016	:	SeqNo: 1	185969	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.7	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	11		10.00		106	70	130			
Surr: Toluene-d8	10		10.00		101	70	130			
Sample ID 100ng lcs	Samp	Гуре: L(cs	Tes	stCode: E	PA Method	8260: Volatil	es Short L	_ist	
Client ID: LCSW	Batc	h ID: L3	8060	I	RunNo: 3	8060				
Prep Date:	Analysis [Date: 1	0/19/2016	:	SeqNo: 1	187674	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	21	1.0	20.00	0	104	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		100	70	130			
Surr: 4-Bromofluorobenzene	9.9		10.00		98.8	70	130			
Surr: Dibromofluoromethane	10		10.00		100	70	130			
Surr: Toluene-d8	10		10.00		105	70	130			
Sample ID rb	Samp	Гуре: М	BLK	Tes	stCode: E	PA Method	8260: Volatil	es Short L	ist	
Client ID: PBW	Batc	h ID: L3	8060	I	RunNo: 3	8060				
Prep Date:	Analysis [Date: 1	0/19/2016	:	SeqNo: 1	187675	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Surr: 1,2-Dichloroethane-d4	9.7		10.00		97.2	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		104	70	130			

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank

E Value above quantitation range

- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 15 of 16

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc	

WO#: 1610739 21-Oct-16

Client:	Apex Titan, Inc.
Project:	Largo CS
Sample ID rb	SampType: MBLK TestCode: EPA Method 8260: Volatiles Short List
Client ID: PBW	Batch ID: L38060 RunNo: 38060
Prep Date:	Analysis Date: 10/19/2016 SeqNo: 1187675 Units: µg/L
Analyte	Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual
Surr: Dibromofluorome	thane 10 10.00 100 70 130
Surr: Toluene-d8	10 10.00 104 70 130

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 16 of 16

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental Albi TEL: 505-345-3975 Website: www.ha	Analys 4901 uquerqi FAX: 5 illenviro	is Laboratory Hawkins NI ie, NM 8710 505-345-410 onmental.com	Sam	ple Log-In Check List
Client Name: APEX AZTEC	Work Order Number:	1610	739		RcptNo: 1
Received by/date:	10/15/16		. ,		
Logged By: Lindsay Mangin	10/15/2016 1:15:00 PM	1	C	-finahaj Alapago	
Completed By: Lindsay Mangin	10/15/2016 2:20:08 PM	1	(-timebuj Hlopigo	
Reviewed By: Cio/17/16			V	, .	
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes		No 🗌	Not Present 🛃
2. Is Chain of Custody complete?		Yes		No 🗌	Not Present
3. How was the sample delivered?		<u>Cour</u>	ier		
Log In					
4. Was an attempt made to cool the sample	es?	Yes		No 🗌	
5. Were all samples received at a temperat	ure of >0° C to 6.0°C	Yes		No 🗌	
6. Sample(s) in proper container(s)?		Yes		No 🗌	
7. Sufficient sample volume for indicated te	st(s)?	Yes		No 🗌	
8. Are samples (except VOA and ONG) pro	perly preserved?	Yes		No 🗌	
9. Was preservative added to bottles?		Yes		No 🛃	NA 🗌
10.VOA vials have zero headspace?		Yes		No 🗌	No VOA Vials 🗌
11. Were any sample containers received br	oken?	Yes		No 🛃	
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes		No 🗆	# of preserved bottles checked for pH: (<2 or >12 unless noted
13. Are matrices correctly identified on Chain	of Custody?	Yes		No 🗌	Adjusted?
14. Is it clear what analyses were requested?	•	Yes		No 🗌	
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No 🗌	Checked by:

Special Handling (if applicable)

Person I	Notified:			Date:	[
By Who	n:			Via:	eMail	🗌 Phone 🔲 Fax	In Person
Regardi	ıg:						
Client In	structions:						
delitional rea	harks:						
uullional ren							
ooler Inforr	nation						
ooler Inforn Cooler No	<u>nation</u> │ Temp ºC	Condition	Seal Intact	Seal No	Seal Date	Signed By	

CHAIN OF CUSTODY RECORD	Lab use only		Temp. of coolers	when received (C*):		Page 1 of 2				Lab Sample ID (Lab Use Only)	100-13201-001	-00-		-007	-98-	900-	-00+	-003	-003-	-010-			the the the	Corporate rail		0 - OI
	ANALYSIS /	REQUESTED /				*	22	A 100		0/4	×							-		Ž		Notes: Notes:		Time:	Time:	Charcoal tube SL - sludge - Plastic or other
			RINM				640112154	J	No/Type of Containers	Depth Mop											ls.	signature) Date 1 DDL _ [0]H]	Signature)	Signature) Date:	Signature) Date:	Liquid A - Air Bag C - 0 ml - Glass wide mouth P/O
		Laboratory: Ha	Address: A		Contact:	Phone:	PO/SO #: 725	Sampler's Signature	50 CS) Marks of Sample(s) たまた	06-WV	2W-89	1W-88	121-WM	1W-15	1W-8	W-50	MW- YOIZ	MW-9	MW-38	□ 50% Rush □ 100% Rt	Time: Received by: (5	Time: Received by: (Time: Received by (S	Time: Received by: (S	S - Soil SD - Solid L - er / Or Glass 1 Liter 250
				Aztecnum			K Summers	echilly.	Project Name	Te C G Identifying	2 2	00	2	30	25 R	20	HS M	5	Q	5	🖞 Normal 🛛 25% Rush		Aure) Date: Date: 10/14/11.	ature) Date:	ature) Date:	Listewater W - Water ml vial A/G - Ambe
			APEX	Office Location			Project Manager	Sampler's Name	Proj. No. 725-6401/2154	Matrix Date Tim	W PURSING NO	1 1		<u>×</u>	2 h	↓ 5,1	1014/16 0dr	1 103	112	イ イ 1.20	Turn around time	Betingkithed by (Signa	Reinnguished by (Signa	Relinquished by (Signa	Relinquished by (Signe	Matrix WW - Wa Container VOA - 40

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

CHAIN OF CUSTODY RECORD	Lab use only		Temp. of coolers	when received (C'):	1 2 3 4 5	Page 2 of 2					Lab Sample ID (Lab Use Only)	110-152-011	-210-	210-	- 014)							BILL the Arex	Corporaterat		O - Oi
	ANALYSIS	REQUESTED / /				7		ETE,	28]a DyO	×			~	×	8					HU TAU NOTES:		te: Time:	tte: Time:	C - Charcoal tube SL - sludge P/O - Plastic or other
		Hall	APEINM	1	ArFreeman		725 OYON ZAY	ture V	No/Type of Containers		Start Depti End VOA VOA AVG AVG 250 m Class	M			\r/\	Ŵ				/	100% Rush	ed by: (Signature) Da	ed by: (Signature)	ed by: (Signature)	ed by:/(Signature) Da	id L - Liquid A - Air Bag (250 ml - Glass wide mouth
		Laboratory:	Address:	hee MIN	Contact:	Phone:	M/M.M.SO PO/SO #:	Sampler's Signa	Name	Largocs	Identifying Marks of Sample(s)	MW-13	MW-C	MW-16	Mw-7-		_/	XXXX)		🖸 25% Rush 🛛 50% Rush 🛛		Date: Time: Receive	Date Time: Receiv	Date: Time: Receiv	W - Water S - Soil SD - Soil A/G - Amber / Or Glass 1 Liter
			APEX	Office Location (P.2)			Project Manager K.Su∉	Sampler's Name Raine Duechille	Proj. No. Project	7 23 01 01 10 1 0 1 0	Matrix Date Time 0	W 10/14/16 1250	1 1335	אווצ	1500	and the second					 Turn around time	Belingersted by (Signature)	Relinquished by (Signature)	Relinquished by (Signature)	Relinquished by (Signature)	Matrix WW - Wastewater Container VOA - 40 mi vial

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

October 25, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1610A94

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 13 sample(s) on 10/21/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT: Apex Titan, Inc. Project: Largo CS	Client Sample ID: MW-51 Collection Date: 10/19/2016 10:50:00 AM									
Lab ID: 1610A94-001	Matrix:	AQUEOUS	Received I	Date: 10/21/2	2016 8:15:00 AM					
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed					
EPA METHOD 8021B: VOLATILES					Analyst: NSB					
Benzene	4.9	1.0	µg/L	1	10/24/2016 11:38:57 AM					
Toluene	ND	1.0	µg/L	1	10/24/2016 11:38:57 AM					
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 11:38:57 AM					
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 11:38:57 AM					
Surr: 4-Bromofluorobenzene	106	87.9-146	%Rec	1	10/24/2016 11:38:57 AM					

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-41									
Project: Largo CS	Date: 10/19/	2016 11:25:00 AM								
Lab ID: 1610A94-002	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM					
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed					
EPA METHOD 8021B: VOLATILES					Analyst: NSB					
Benzene	ND	1.0	µg/L	1	10/24/2016 12:03:15 PM					
Toluene	ND	1.0	µg/L	1	10/24/2016 12:03:15 PM					
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 12:03:15 PM					
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 12:03:15 PM					
Surr: 4-Bromofluorobenzene	103	87.9-146	%Rec	1	10/24/2016 12:03:15 PM					

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits $P_{age} 2 \text{ of } 14$
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc. Project: Largo CS	Client Sample ID: MW-32 Collection Date: 10/19/2016 12:00:00 PM									
Lab ID: 1610A94-003	Matrix: AQUEOUS Received Date: 10/21/2016 8:15:00 AM									
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed					
EPA METHOD 8021B: VOLATILES					Analyst: NSB					
Benzene	ND	1.0	µg/L	1	10/24/2016 12:27:43 PM					
Toluene	ND	1.0	µg/L	1	10/24/2016 12:27:43 PM					
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 12:27:43 PM					
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 12:27:43 PM					
Surr: 4-Bromofluorobenzene	102	87.9-146	%Rec	1	10/24/2016 12:27:43 PM					

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-34				
Project: Largo CS			Collection I	Date: 10/19/	2016 12:40:00 PM
Lab ID: 1610A94-004	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 12:51:57 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 12:51:57 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 12:51:57 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 12:51:57 PM
Surr: 4-Bromofluorobenzene	109	87.9-146	%Rec	1	10/24/2016 12:51:57 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 4 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.			Client Sample	e ID: MW-3	8
Project: Largo CS	Collection Date: 10/19/2016 1:20:00 PM				
Lab ID: 1610A94-005	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 1:16:11 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 1:16:11 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 1:16:11 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 1:16:11 PM
Surr: 4-Bromofluorobenzene	109	87.9-146	%Rec	1	10/24/2016 1:16:11 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 5 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.		(Client Sample	e ID: MW-8	3
Project: Largo CS	Collection Date: 10/19/2016 2:00:00 PM				
Lab ID: 1610A94-006	Matrix:	AQUEOUS	Received I	Date: 10/21/2	2016 8:15:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 1:40:26 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 1:40:26 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 1:40:26 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 1:40:26 PM
Surr: 4-Bromofluorobenzene	98.8	87.9-146	%Rec	1	10/24/2016 1:40:26 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 6 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.		Client Sample ID: MW-75				
Lab ID: 1610A94-007	Matrix:	AQUEOUS	Received I	Date: 10/19/	2016 8:15:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	1.0	µg/L	1	10/24/2016 2:04:40 PM	
Toluene	ND	1.0	µg/L	1	10/24/2016 2:04:40 PM	
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 2:04:40 PM	
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 2:04:40 PM	
Surr: 4-Bromofluorobenzene	101	87.9-146	%Rec	1	10/24/2016 2:04:40 PM	

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.			Client Sample	e ID: MW-7	6
Project: Largo CS	Collection Date: 10/20/2016 10:20:00 AM				
Lab ID: 1610A94-008	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 4:54:22 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 4:54:22 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 4:54:22 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 4:54:22 PM
Surr: 4-Bromofluorobenzene	109	87.9-146	%Rec	1	10/24/2016 4:54:22 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank	
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 8 of 14	
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified	
CLIENT: Apex Titan, Inc.			Client Sample	e ID: MW-7	7
-----------------------------	---------	----------	---------------	-------------------	-----------------------
Project: Largo CS			Collection I	Date: 10/20/	2016 11:10:00 AM
Lab ID: 1610A94-009	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM
Analyses	Result	PQL Qua	l Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 5:18:36 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 5:18:36 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 5:18:36 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 5:18:36 PM
Surr: 4-Bromofluorobenzene	107	87.9-146	%Rec	1	10/24/2016 5:18:36 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 9 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.			Client Sample	e ID: MW-7	'9
Project: Largo CS			Collection I	Date: 10/20/	2016 11:50:00 AM
Lab ID: 1610A94-010	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 5:42:49 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 5:42:49 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 5:42:49 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 5:42:49 PM
Surr: 4-Bromofluorobenzene	99.1	87.9-146	%Rec	1	10/24/2016 5:42:49 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 10 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc. Project: Largo CS			Client Sample Collection I	e ID: MW-8 Date: 10/20/	0 2016 12:30:00 PM
Lab ID: 1610A94-011	Matrix:	AQUEOUS	Received I	Date: 10/21/	2016 8:15:00 AM
Analyses	Result	PQL Qua	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/24/2016 6:07:06 PM
Toluene	ND	1.0	µg/L	1	10/24/2016 6:07:06 PM
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 6:07:06 PM
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 6:07:06 PM
Surr: 4-Bromofluorobenzene	95.9	87.9-146	%Rec	1	10/24/2016 6:07:06 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit Page 11 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc.			C	lient Samp	e ID: MW-54	4
Project: Largo CS				Collection 3	Date: 10/20/2	2016 1:20:00 PM
Lab ID: 1610A94-012	Matrix:	AQUEOUS		Received	Date: 10/21/2	2016 8:15:00 AM
Analyses	Result	PQL ()ual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	2.0	D	µg/L	2	10/24/2016 6:31:20 PM
Toluene	ND	2.0	D	µg/L	2	10/24/2016 6:31:20 PM
Ethylbenzene	ND	2.0	D	µg/L	2	10/24/2016 6:31:20 PM
Xylenes, Total	ND	4.0	D	µg/L	2	10/24/2016 6:31:20 PM
Surr: 4-Bromofluorobenzene	104	87.9-146	D	%Rec	2	10/24/2016 6:31:20 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit P_{age} 12 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc. Project: Largo CS	Client Sample ID: MW-49 Collection Date: 10/20/2016 2:00:00 PM						
Lab ID: 1610A94-013	Matrix:	AQUEOUS	Received D	Date: 10/21/	2016 8:15:00 AM		
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed		
EPA METHOD 8021B: VOLATILES					Analyst: NSB		
Benzene	ND	1.0	µg/L	1	10/24/2016 6:55:30 PM		
Toluene	ND	1.0	µg/L	1	10/24/2016 6:55:30 PM		
Ethylbenzene	ND	1.0	µg/L	1	10/24/2016 6:55:30 PM		
Xylenes, Total	ND	2.0	µg/L	1	10/24/2016 6:55:30 PM		
Surr: 4-Bromofluorobenzene	97.9	87.9-146	%Rec	1	10/24/2016 6:55:30 PM		

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 13 of 14
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT	
Hall Environmental Analysis Laboratory, Inc.	

WO#: 1610A94

25-Oct-16

Client: Apex Titan, Inc. **Project:** Largo CS

Sample ID 5ML RB	SampT	ype: ME	BLK	Test	Code: El	PA Method	8021B: Volat	iles		
Client ID: PBW	Batch	n ID: B3	8157	R	unNo: 3	8157				
Prep Date:	Analysis D	ate: 10)/24/2016	S	eqNo: 1	191208	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	2.0								
Surr: 4-Bromofluorobenzene	22		20.00		112	87.9	146			
Sample ID 100NG BTEX LCSB SampType: LCS TestCode: EPA Method 8021B: Volatiles										
Sample ID 100NG BTE	X LCSB SampT	ype: LC	S	Test	Code: El	PA Method	8021B: Volat	iles		
Client ID: LCSW	X LCSB SampT Batch	ype: LC 1D: B3	:S 8157	Test R	Code: El unNo: 3	PA Method 8157	8021B: Volat	iles		
Client ID: LCSW Prep Date:	X LCSB SampT Batch Analysis D	ype: LC 1D: B3 ate: 10	:S 8157 0/24/2016	Tesi R S	Code: El unNo: 3 eqNo: 1	PA Method 8157 191209	8021B: Volat Units: µg/L	iles		
Client ID: LCSW Prep Date: Analyte	X LCSB SampT Batch Analysis D Result	ype: LC 1D: B3 ate: 10 PQL	:S 8157 0/24/2016 SPK value	Tesi R S SPK Ref Val	Code: EF unNo: 36 eqNo: 1 ⁻ %REC	PA Method 8157 191209 LowLimit	8021Β: Volat Units: μg/L HighLimit	iles %RPD	RPDLimit	Qual
Sample ID 100NG BTE Client ID: LCSW Prep Date: Analyte Benzene	X LCSB SampT Batch Analysis D Result 18	ype: LC n ID: B3 nate: 10 PQL 1.0	S 8157 0/24/2016 SPK value 20.00	Test R SPK Ref Val 0	Code: Ef unNo: 3 eqNo: 1 %REC 88.0	PA Method 8157 191209 LowLimit 80	8021B: Volat Units: µg/L HighLimit 120	iles %RPD	RPDLimit	Qual
Sample ID 100NG BTE Client ID: LCSW Prep Date: Analyte Benzene Toluene	X LCSB SampT Batch Analysis D Result 18 18	ype: LC n ID: B3 pate: 1(<u>PQL</u> 1.0 1.0	S 8157 0/24/2016 SPK value 20.00 20.00	Test R SPK Ref Val 0 0	Code: Ef JunNo: 3 JeqNo: 1 %REC 88.0 88.3	PA Method 8157 191209 LowLimit 80 80	8021B: Volat Units: µg/L HighLimit 120 120	iles %RPD	RPDLimit	Qual
Sample ID 100NG BTE Client ID: LCSW Prep Date: Analyte Benzene Toluene Ethylbenzene	X LCSB SampT Batch Analysis D Result 18 18 18 17	ype: LC n ID: B3 pate: 10 PQL 1.0 1.0 1.0	S 8157 0/24/2016 SPK value 20.00 20.00 20.00	Test R SPK Ref Val 0 0 0 0	Code: Ef JunNo: 3 JeqNo: 1 <u>%REC</u> 88.0 88.3 85.5	PA Method 8157 191209 LowLimit 80 80 80	8021B: Volat Units: µg/L HighLimit 120 120 120	iles %RPD	RPDLimit	Qual
Sample ID 100NG BTE Client ID: LCSW Prep Date: Analyte Benzene Toluene Ethylbenzene Xylenes, Total	X LCSB SampT Batch Analysis D Result 18 18 17 55	ype: LC n ID: B3 pate: 10 PQL 1.0 1.0 1.0 2.0	S 8157 0/24/2016 SPK value 20.00 20.00 20.00 60.00	Test R SPK Ref Val 0 0 0 0 0	Code: Ef unNo: 3 eqNo: 1 %REC 88.0 88.3 85.5 91.6	PA Method 8157 191209 LowLimit 80 80 80 80 80	8021B: Volat Units: µg/L HighLimit 120 120 120 120	iles %RPD	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

- Holding times for preparation or analysis exceeded Η
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 14 of 14

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmental A Albuc TEL: 505-345-3975 I Website: www.hali	Inalysi 4901 querqu FAX: 5 lenviro	s Laborau Hawkins e, NM 87 05-345-4 nmental.c	NE 109 Sam 107 com	Sample Log-In Check List				
Client Name: APEX AZTEC	Work Order Number:	1610/	\94		RcptNo:	1			
Received by/date:	10/21/16	· ·							
Logged By: Lindsay Mangin	10/21/2016 8:15:00 AM			Junihy Hologo					
Completed By: Lindsay Mangin	10/21/2016 1:48:25 PM			Juneby Alexage					
Reviewed By: $f \subset lo / 21/le$									
Chain of Custody									
1. Custody seals intact on sample bottles?		Yes	[]	No	Not Present 🖌				
2. Is Chain of Custody complete?		Yes		No	Not Present				
3. How was the sample delivered?		<u>Cour</u>	ier						
Loa In									
4. Was an attempt made to cool the samples?	?	Yes		No 🛄	NA []				
5. Were all samples received at a temperature	e of >0° C to 6.0°C	Yes		No	NA []]				
6. Sample(s) in proper container(s)?		Yes		No 🗔					
7. Sufficient sample volume for indicated test(s)?	Yes		No					
8. Are samples (except VOA and ONG) prope	rly preserved?	Yes		No 🗔					
9. Was preservative added to bottles?		Yes		No 🗹	na [_]				
10.VOA vials have zero headspace?		Yes		No []	No VOA Vials				
11. Were any sample containers received brok	en?	Yes	[`]	No 🗹	# of preserved	· · · · · · · · · · · · · · · · · · ·			
12.Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes		No 🗔	bottles checked for pH: (<2 c	or >12 unless noted)			
13 Are matrices correctly identified on Chain of	f Custody?	Yes		No 🗌	Adjusted?				
14. Is it clear what analyses were requested?		Yes		No 🛄					
15.Were all holding times able to be met? (If no, notify customer for authorization.)		Yes		No	Checked by:	· · · · · · · · · · · · · · · · · · ·			

Special Handling (if applicable)

as client notified of all discrepancie	es with this order?	Yes []]	No	NA 🔽
Person Notified:	Date		an a	
By Whom:	Via:	eMail	Phone 🚺 Fax 📋	In Person
Regarding:				
Client Instructions:				

.

17. Additional remarks:

18. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.1	Good	Yes			

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: <u>www.hallenvironmental.com</u>

November 11, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1611451

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 1 sample(s) on 11/9/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT: Apex Titan, Inc.			Client Samp	le ID: MW 37	
Project: Largo CS			Collection 2	Date: 11/8/2016 1:30:00 PM	
Lab ID: 1611451-001	Matrix:	AQUEOUS	Received	Date: 11/9/2016 8:00:00 AM	
Analyses	Result	PQL Qua	l Units	DF Date Analyzed	Batch
EPA METHOD 8021B: VOLATILES				Analys	t: NSB
Benzene	590	10	µg/L	10 11/10/2016 10:23:06 P	M B38599
Toluene	ND	10	µg/L	10 11/10/2016 10:23:06 P	M B38599
Ethylbenzene	340	10	µg/L	10 11/10/2016 10:23:06 P	M B38599
Xylenes, Total	1600	20	µg/L	10 11/10/2016 10:23:06 P	M B38599
Surr: 4-Bromofluorobenzene	139	87.9-146	%Rec	10 11/10/2016 10:23:06 P	M B38599

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit

- R RPD outside accepted recovery limits
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- Analyte detected below quantitation limits Page 1 of 2 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT
Hall Environmental Analysis Laboratory, Inc

WO#: 1611451 11-Nov-16

Client:	Apex Tit	an, Inc.									
Project:	Largo CS	5									
Sample ID RB		SampT	ype: ME	BLK	Tes	tCode: E	PA Method	8021B: Volat	iles		
Client ID: PB	w	Batch	n ID: B3	8599	F	RunNo: 3	8599				
Prep Date:		Analysis D	ate: 1	1/10/2016	5	SeqNo: 1	206214	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	1.0								
ſoluene		ND	1.0								
Ethylbenzene		ND	1.0								
Kylenes, Total		ND	2.0								
Surr: 4-Bromofluo	robenzene	20		20.00		101	87.9	146			
Sample ID 100	NG BTEX LCS	SampT	SampType: LCS TestCode: EPA Method 8021B: Volatiles								
Client ID: LCS	SW	Batch	n ID: B3	8599	F	RunNo: 3	8599				
Prep Date:		Analysis D	ate: 1	1/10/2016	S	SeqNo: 1	206219	Units: µg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		20	1.0	20.00	0	97.5	80	120			
Toluene		19	1.0	20.00	0	96.8	80	120			
Ethylbenzene		18	1.0	20.00	0	87.7	80	120			
≺ylenes, Total		53	2.0	60.00	0	88.1	80	120			
Surr: 4-Bromofluo	robenzene	20		20.00		97.6	87.9	146			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 2 of 2

HALL ENVIRONMENTAL ANALYSIS LABORATORY	Hall Environmenta Ali TEL: 505-345-397 Website: www.h	ll Analysis Labora 4901 Hawkins buquerque, NM 87 5 FAX: 505-345-4 pallenvironmental.	tory NE 109 Samj 107 com	ole Log-In Check List
Client Name: APEX AZTEC	Work Order Numbe	r: 1611451		RcptNo: 1
Received by/date:	09 16	 		
Logged By: Michelle Garcia	11/9/2016 8:00:00 AM	A	Mirell Con	un
Completed By: Michelle Garcia	11/9/2016 9:27:05 AM	Λ	Minule Gan	ue)
Reviewed By: <u>TO</u>	110916			
Chain of Custody	1 0			
1. Custody seals intact on sample both	lles?	Yes 🗌	No 🗌	Not Present 🗹
2. Is Chain of Custody complete?		Yes 🔽	No 🗌	Not Present
3. How was the sample delivered?		Courier		
<u>Log In</u>				
4. Was an attempt made to cool the s	amples?	Yes 🗹	No 🗌	
5. Were all samples received at a tem	perature of >0° C to 6.0°C	Yes 🔽	No 🗌	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌	
7. Sufficient sample volume for indicat	ted test(s)?	Yes 🗹	No 🗀	
8. Are samples (except VOA and ONG	3) properly preserved?	Yes 🗹	No 🗌	
9. Was preservative added to bottles?		Yes 🗌	No 🗹	
10. VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials-
11. Were any sample containers receiv	ved broken?	Yes 🗖	No 🗹	#.of.preserved
12. Does paperwork match bottle labels (Note discrepancies on chain of cus	s? stody)	Yes 🗸	No 🗌	bottles checked for pH: (<2 or >12 unless noted)
13. Are matrices correctly identified on	Chain of Custody?	Yes 🔽	No 🗌	Adjusted?
14. Is it clear what analyses were reque	ested?	Yes 🗹	No 🗌	
15. Were all holding times able to be m (If no, notify customer for authorizat	et? tion.)	Yes 🗹	No 🗌	Checked by:
Special Handling (if applicable) sies with this order?	Yes	No	NA 🗹
Person Notified:	Date	j Maji 🗖	Phone 🗔 Fey	In Person
Repardino:	via.			
Client Instructions:		an ann an Anna an Anna Anna Anna Anna A		
17. Additional remarks:			. .	
18. <u>Cooler Information</u> Cooler No Temp ^o C Condi 1 1.6 Good	tion Seal Intact Seal No Yes	Seal Date	Signed By	<u> </u>

Page 1 of 1

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 21, 2016

Kyle Summers Apex Titan, Inc. 606 S. Rio Grande Unit A Aztec, NM 87410 TEL: (214) 350-5469 FAX (214) 350-2914

RE: Largo CS

OrderNo.: 1610921

Dear Kyle Summers:

Hall Environmental Analysis Laboratory received 7 sample(s) on 10/19/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to <u>www.hallenvironmental.com</u> or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

CLIENT: Apex Titan, Inc.			С	lient Samp	le ID: MW-55	5
Project: Largo CS				Collection	Date: 10/17/2	016 11:00:00 AM
Lab ID: 1610921-001	Matrix:	AQUEOUS		Received	Date: 10/19/2	016 8:00:00 AM
Analyses	Result	PQL Q)ual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES						Analyst: NSB
Benzene	ND	2.0	D	µg/L	2	10/20/2016 1:09:55 PM
Toluene	ND	2.0	D	µg/L	2	10/20/2016 1:09:55 PM
Ethylbenzene	ND	2.0	D	µg/L	2	10/20/2016 1:09:55 PM
Xylenes, Total	ND	4.0	D	µg/L	2	10/20/2016 1:09:55 PM
Surr: 4-Bromofluorobenzene	99.1	87.9-146	D	%Rec	2	10/20/2016 1:09:55 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

10/20/2016 1:34:13 PM

Analyses	Res	ult	PQL Qual	Units	DF	Date Analyzed
Lab ID: 1610921-	002 Ma	atrix:	AQUEOUS	Received Date:	10/19/2	2016 8:00:00 AM
Project: Largo CS				Collection Date:	10/17/2	2016 11:35:00 AM
CLIENT: Apex Tita	n, Inc.		C	lient Sample ID:	MW-4	8

1.0

1.0

1.0

2.0

87.9-146

µg/L

µg/L

µg/L

µg/L

%Rec

1

1

1

1

1

26

ND

17

26

111

Hall Environmental Analysis Laboratory, Inc.

Benzene Toluene

Ethylbenzene

Xylenes, Total

Surr: 4-Bromofluorobenzene

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 2 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc. Project: Largo CS	Client Sample ID: MW-53 Collection Date: 10/17/2016 12:20:00 PM					
Lab ID: 1610921-003	Matrix:	AQUEOUS	Received I	Date: 10/19/	2016 8:00:00 AM	
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	1.0	µg/L	1	10/20/2016 1:58:34 PM	
Toluene	ND	1.0	µg/L	1	10/20/2016 1:58:34 PM	
Ethylbenzene	ND	1.0	µg/L	1	10/20/2016 1:58:34 PM	
Xylenes, Total	ND	2.0	µg/L	1	10/20/2016 1:58:34 PM	
Surr: 4-Bromofluorobenzene	99.9	87.9-146	%Rec	1	10/20/2016 1:58:34 PM	

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	E	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 3 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

CLIENT: Apex Titan, Inc. Project: Largo CS			Client Sample Collection D	e ID: MW-3 Date: 10/17/	9 2016 1:05:00 PM
Lab ID: 1610921-004	Matrix:	AQUEOUS	Received E	Date: 10/19/	2016 8:00:00 AM
Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	4.1	1.0	µg/L	1	10/20/2016 2:22:58 PM
Toluene	ND	1.0	µg/L	1	10/20/2016 2:22:58 PM
Ethylbenzene	ND	1.0	µg/L	1	10/20/2016 2:22:58 PM
Xylenes, Total	ND	2.0	µg/L	1	10/20/2016 2:22:58 PM
Surr: 4-Bromofluorobenzene	105	87.9-146	%Rec	1	10/20/2016 2:22:58 PM

Hall Environmental Analysis Laboratory, Inc.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits $P_{age} 4 \text{ of } 8$
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

Analytical Report Lab Order 1610921

Date Reported: 10/21/2016

CLIENT: Apex Titan, Inc.	Client Sample ID: MW-52					
Project: Largo CS			Collection I	Date: 10/17/2	2016 1:40:00 PM	
Lab ID: 1610921-005	Matrix:	AQUEOUS	Received I	Date: 10/19/2	2016 8:00:00 AM	
Analyses	Result	PQL Qual	Units	DF	Date Analyzed	
EPA METHOD 8021B: VOLATILES					Analyst: NSB	
Benzene	ND	1.0	µg/L	1	10/20/2016 2:47:13 PM	
Toluene	ND	1.0	µg/L	1	10/20/2016 2:47:13 PM	
Ethylbenzene	ND	1.0	µg/L	1	10/20/2016 2:47:13 PM	
Xylenes, Total	ND	2.0	µg/L	1	10/20/2016 2:47:13 PM	
Surr: 4-Bromofluorobenzene	99.1	87.9-146	%Rec	1	10/20/2016 2:47:13 PM	

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Bla	ank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 5 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	uge 5 01 0
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit a	s specified

CLIENT: Apex Titan, Inc.

Client Sample ID: MW-43 Collection Date: 10/17/2016 2:20:00 PM

Project: Largo CS			Collection	Date: 10/17/2	016 2:20:00 PM
Lab ID: 1610921-006	Matrix:	AQUEOUS	Received	Date: 10/19/2	016 8:00:00 AM
Analyses	Result	PQL Qual	Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/20/2016 3:11:26 PM
Toluene	ND	1.0	µg/L	1	10/20/2016 3:11:26 PM
Ethylbenzene	ND	1.0	µg/L	1	10/20/2016 3:11:26 PM
Xylenes, Total	ND	2.0	µg/L	1	10/20/2016 3:11:26 PM
Surr: 4-Bromofluorobenzene	99.6	87.9-146	%Rec	1	10/20/2016 3:11:26 PM

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B	Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits	Page 6 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range	I age 0 01 0
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit	
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit	as specified

10/20/2016 3:35:48 PM

10/20/2016 3:35:48 PM

10/20/2016 3:35:48 PM

CLIENT: Apex Titan, Inc.			Client Samp	e ID: MW-3	6
Project: Largo CS			Collection 2	Date: 10/17/	2016 3:05:00 PM
Lab ID: 1610921-007	Matrix: A	AQUEOUS	Received	Date: 10/19/	2016 8:00:00 AM
Analyses	Result	PQL Qua	d Units	DF	Date Analyzed
EPA METHOD 8021B: VOLATILES					Analyst: NSB
Benzene	ND	1.0	µg/L	1	10/20/2016 3:35:48 PM
Toluene	ND	1.0	µg/L	1	10/20/2016 3:35:48 PM

ND

ND

100

1.0

2.0

87.9-146

µg/L

µg/L

µg/L

%Rec

1

1

1

Hall Environmental Analysis Laboratory, Inc.

Ethylbenzene

Xylenes, Total

Surr: 4-Bromofluorobenzene

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method Blank
	D	Sample Diluted Due to Matrix	Е	Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 7 of 8
	ND	Not Detected at the Reporting Limit	Р	Sample pH Not In Range
	R	RPD outside accepted recovery limits	RL	Reporting Detection Limit
	S	% Recovery outside of range due to dilution or matrix	W	Sample container temperature is out of limit as specified

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.												
Client: Project:	Apex Tita Largo CS	an, Inc.										
Sample ID 5ML R	B	Samp	Туре: М І	BLK	Tes							
Client ID: PBW		Bato	h ID: B 3	38106	F							
Prep Date:		Analysis I	Date: 1	0/20/2016	5	SeqNo: 1	188865	Units: µg/L				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Benzene		ND	1.0									
Toluene		ND	1.0									
Ethylbenzene		ND	1.0									
Xylenes, Total		ND	2.0									
Surr: 4-Bromofluorob	enzene	21		20.00		106	87.9	146				

Sample ID 100NG BTEX LCS	SampTy	rpe: LC	S	TestCode: EPA Method 8021B: Volatiles									
Client ID: LCSW	Batch	ID: B3	8106	R	anNo: 3	8106							
Prep Date:	Analysis Da	ate: 10	0/20/2016	S	SeqNo: 1	188866	Units: µg/L						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual			
Benzene	18	1.0	20.00	0	91.3	80	120						
Toluene	19	1.0	20.00	0	92.8	80	120						
Ethylbenzene	18	1.0	20.00	0	92.2	80	120						
Xylenes, Total	60	2.0	60.00	0	100	80	120						
Surr: 4-Bromofluorobenzene	20		20.00		102	87.9	146						

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded Н
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 8 of 8

1610921

MALL ENVIRONMENTAL ANALYSIS LABORATORY	Albuq TEL: 505-345-3975 F Website: www.hall	4901 Hawk querque, NM FAX: 505-345 lenvironment	ins NE 87109 Sar 5-4107 al.com	nple Log-In C	heck List
Client Name: APEX AZTEC We	ork Order Number:	1610921		RcptNo:	1
Received by/date: LC 10	19/16				
Logged By: Michelle Garcia 10/19	9/2016 8:00:00 AM		Mirue (pruie	
Completed By: Michelle Garcia 10/19	9/2016 9:43:52 AM		minus (pruis	
Reviewed By: TC 10/19/16					
Chain of Custody					
1. Custody seals intact on sample bottles?		Yes 🗌	No 🗌	Not Present 🗹	
2. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
3. How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>					
4. Was an attempt made to cool the samples?		Yes 🗹	No 🗌	NA 🗌	
5. Were all samples received at a temperature of >	0° C to 6.0°C	Yes 🔽	No 🗌	NA 🗍	
6. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
7. Sufficient sample volume for indicated test(s)?		Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly pre	served?	Yes 🗹	No 🗌		
9. Was preservative added to bottles?		Yes 🗋	No 🔽	NA 🗌	
10. VOA vials have zero headspace?		Yes 🗹	No 🗌	No VOA Vials 🖌	- ny 10/19/16
11, Were any sample containers received broken?		Yes	No 🔽	# of preserved	
		— 3		bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)		Yes 🗹	NO 🖵	югрн. (<2	or >12 unless noted)
13. Are matrices correctly identified on Chain of Custo	ody?	Yes 🗹	No 🗆	Adjusted?	· · · · · · · · · · · · · · · · · · ·
14. Is it clear what analyses were requested?		Yes 🗹	No 🗌		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No	Checked by:	
Special Handling (if applicable)					
16. Was client notified of all discrepancies with this or	der?	Yes	No 🗆	NA 🗹	
Person Notified:	Date				
By Whom:	Via:	eMail] Phone 📃 Fa	x 🗌 In Person	
Regarding:					
Client Instructions:					
17. Additional remarks:					
18. <u>Cooler Information</u>			l a: -	I	
Cooler No Temp *C Condition Seal In 1 1.6 Good Yes	act Seal No S	seal Date	Signed By		· · · · · · · · · · · · · · · · · · ·

CHAIN OF CUSTODY RECORD	Lab use only Due Date:	Temp. of coolers	7 2.6-66-10-1.6	Page I of I				Lab Sample ID (Lab Use Only)	100-100191		- 003	-004	- Co3	- 00l	L00 -					Apry WPP, Rate			-OI
	ANALYSIS REQUESTED			16	25											 2/4	93		Ime: NOTES:	Time: 13,11 /	Time:	Time:	narcoal tube SL - sludge O - Plastic or other
	Hall Enu.	ABD N.M	A. FILLMEN			ture ture	No/Type of Containers	Prant Start Depth Depth AOV AOV AOV AOV AOV AOV AOV AOV AOV AOV	~	~	~	~	~	<u></u>	3			100% Rush	ed by (Signature) Date:	ed by: (Signature) Date: https://www.com/signature	ed by (Signature) Date:	ed by: (Signature) Date:	id L - Liquid A - Air Bag C - Cr 250 ml - Glass wide mouth P/O -
	Laboratory:	Address:	Contact:	Phone:		Sampler's Signa	ect Name	G Identitying Marks of Sample(s)	mk-55	mw-48	m~-53	mu -39	CS. MW	mw-43	mw.36			25% Rush 50% Rush	Date: Time: Receive	Date: Time: Received	Date: Time: Receive	Date: Time: Receive	W - Water S - Soil SD - Soli A/G - Amber / Or Glass 1 Liter
		APEX			Project Manager K. Su	Sampler's Name	Proj. No. Proje	Matrix Date Time O	w 1/1/10 11:00	1 1/2/14 11:35	OFE	12:05	13:40	0041	1/1/1/10/1/2012			Turn around time 🗴 Normal	Relinquished by/Signature)	Relinquished by (Signature)	Relinquished by (Signature)	Relinquished by (Signature)	Matrix WW - Wastewater Container VOA - 40 ml vial

Apex TITAN, Inc. • 606 S. Rio Grande, Suite A, Downstairs • Aztec, New Mexico 87410 • Office: 505-334-5200 • Fax: 505-334-5204