GW - 001

GW REMEDIATION & MONITORING ANNUAL REPORT (1 of 4)

2016

2016 Groundwater Remediation and Monitoring Annual Report

January – December 2016

Bloomfield Terminal
Western Refining Southwest, Inc.
#50 Rd 4990
Bloomfield, New Mexico 87413

Submitted: April 2017

Prepared for
New Mexico Oil Conservation Division and
New Mexico Environment Department – Hazardous Waste Bureau

Table of Contents

LIST OF ACRONYMSv						
EXE	CUTIN	/E SUN	1MARY	vii		
SEC	TION	1.0 IN	TRODUCTION	1		
	1.1 Site Location and Description					
	1.2	History	of Facility Modifications and Improvements	2		
		1.2.1	Previous Owner's Activities	2		
		1.2.2	Bloomfield Refining Activities	2		
SEC	TION	2.0 SC	OPE OF ACTIVITIES	9		
	2.1	Ground	water and Surface Water Monitoring Activities	9		
		2.1.1	Fluid Measurements	9		
		2.1.2	Groundwater Field Parameters	9		
		2.1.3	Former Refinery Complex Sampling	.10		
		2.1.4	North Boundary Barrier Sampling	.11		
		2.1.5	San Juan River Bluff Sampling	.12		
		2.1.6	San Juan River Terrace Sampling	.13		
		2.1.7	Outfall and Seep Inspections	.14		
	2.2	Total Fl	uids Recovery Systems	.14		
		2.2.1	Groundwater Recovery System	.14		
		2.2.2	North Boundary Barrier Wall Collection System	.15		
		2.2.3	Hammond Ditch Recovery System	.15		
		2.2.4	River Terrace Remediation System	.15		
		2.2.5	East Outfall Recovery System	.15		
	2.3	Below-0	Grade Testing and Tank Inspections	.16		
	2.4	Waste I	Disposal	.16		
SEC	TION	3.0 RE	SULTS SUMMARY	.17		
	3.1	Ground	water and Surface Water Monitoring	. 17		
		3.1.1	Fluid Level Measurements	.17		
		3.1.2	Groundwater Field Measurements	.17		
		3.1.3	Former Refinery Complex Sampling	.18		
		3.1.4	North Boundary Barrier Sampling	.24		
		3.1.6	San Juan River Terrace Sampling	.25		
		3.1.7	Outfall and Seep Inspections	.25		
	3.2	Separa	te-Phase Hydrocarbons	.26		

	3.3	.3 Total Fluids Recovery Systems		
		3.3.1	Groundwater Recovery System	28
		3.3.2	North Boundary Barrier Wall Collection System	28
		3.3.3	Hammond Ditch Recovery System	28
		3.3.4	East Outfall Recovery System	28
	3.4	3.4 Below-Grade Testing and Inspections		29
	3.5	Waste	e Disposal	29
SECTION 4.0 CONCLUSIONS3				
	4.1	Groundwater Monitoring		
	4.2	2 Outfall and Seep Inspections		
	4.3	Total F	Fluids Recovery Systems	31
	4.4	Below	-Grade Testing and Tank Inspections	31
SEC	CTION	5.0 R	EFERENCES	32

List of Tables

Table 1	Fluid Level Measurements Summary
Table 2	Groundwater Field Parameter Summary
Table 3	Refinery Wells Analytical Summary
Table 4	Cross-Gradient Wells Analytical Summary
Table 5	Downgradient Wells Analytical Summary
Table 6	RCRA Wells Analytical Summary
Table 7	Collection and Observation Wells Analytical Summary
Table 8	Outfalls Analytical Summary
Table 9	Seeps Analytical Summary
Table 10	San Juan River Analytical Summary

List of Figures

Figure 1	Facility Site Map
Figure 2	Well Location Map
Figure 3	San Juan River Area Location Map
Figure 4	Groundwater Elevation and Flow Direction - April 2016
Figure 5	Groundwater Elevation and Flow Direction – August 2016
Figure 6	Product Thickness Map – April 2016
Figure 7	Product Thickness Map – August 2016
Figure 8	BTEX and MTBE Concentration Map – April 2016
Figure 9	BTEX and MTBE Concentration Map – August 2016
Figure 10	Wells Sampled April 2016
Figure 11	Wells Sampled August 2016

List of Appendices

Appendix A	Field Sampling and Calibration Procedures
Appendix B	Analytical Reports
Appendix C	Below-Grade Testing and Tank Inspections
Appendix D	Waste Disposal Summary

LIST OF ACRONYMS

```
benzene, toluene, ethylbenzene, and xylene (BTEX)
below grade level (bgl)
diesel range organics (DRO)
dissolved oxygen (D.O.)
Environmental Protection Agency (EPA)
feet (ft)
gallons per minute (gpm)
gasoline range organics (GRO)
New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB)
New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division
(EMNRD-OCD)
investigation derived waste (IDW)
liters (L)
maximum contaminant level (MCL)
methyl tert-butyl ether (MTBE)
micrograms per liter (ug/L)
micro Siemens per centimeter (uS/cm)
milligrams per liter (mg/L)
millivolts (mV)
monitoring well (MW)
New Mexico Administrative Code (NMAC)
Oxidation reduction potential (ORP)
parts per million (ppm)
photoionization detector (PID)
polyvinyl chloride (PVC)
pounds per square inch (psi)
Resource Conservation and Recovery Act (RCRA)
Semi-volatile organic compounds (SVOCs)
separate phase hydrocarbon (SPH)
Standard cubic feet per minute (scfm)
Temporary piezometer (TP)
top of casing (TOC)
total petroleum hydrocarbon (TPH)
```

toxicity characteristic leaching procedure (TCLP) volatile organic compounds (VOC) Wastewater Treatment System (WWTS) Water Quality Control Commission (WQCC)

EXECUTIVE SUMMARY

This Annual Report includes a summary of activities conducted at the Bloomfield Terminal ("Facility") in 2016 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order (NMED, 2007) issued by the New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB), and Section 22 of Discharge Permit GW-001 (NMOCD, 2010) issued by the New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (EMNRD-OCD). This report includes a summary of sampling activities, total fluids recovery, below-grade testing, and remediation monitoring activities conducted in 2016.

Groundwater Measurements

Depth-to-groundwater and depth-to-product measurements were collected from the Facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2016 and August 2016, respectively. The field measurements were collected a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. Groundwater elevation contours show that groundwater generally flows in the northwest direction, with groundwater under the former process areas flowing towards the north boundary barrier wall and Hammond Ditch collection system.

Groundwater and Surface Water Monitoring

Groundwater and surface water monitoring activities conducted in 2016 included the collection of groundwater samples and field data from the following four areas of facility.

- Former Refinery Complex includes Refinery, Cross-Gradient, Downgradient, and RCRA Wells
- North Boundary Barrier includes observation and collection wells
- San Juan River Bluff includes Outfall and Seep locations
- San Juan River Terrace includes San Juan River samples

Sampling associated with the Bioventing System located at the River Terrace is summarized in the *River Terrace Voluntary Corrective Measures Bioventing System Annual Report*, which is submitted in March of each year. Groundwater and surface water monitoring activities conducted in April and August 2016 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014.

Groundwater concentrations above respective screening levels are primarily localized near the former refinery process units and tank farm. The north boundary barrier wall and active groundwater recovery systems within the facility provide hydraulic capture of the impacted groundwater, and thus eliminate the concern of impacts to the San Juan River.

Outfall and Seep Inspections

Bi-monthly visual inspections of Seep 1, Seep 2, Seep 3, and Seep 5 along the San Juan River Bluff were conducted in 2016. Visual inspection results and samples collected along the San Juan River as part of the groundwater monitoring program for the Bloomfield Terminal indicate that there has been no impact to the San Juan River.

Total Fluids Recovery Systems

The Bloomfield Terminal operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the former Refinery Complex;
- North Boundary Barrier Collection System;
- Hammond Ditch Recovery System;
- River Terrace Remediation system; and
- East Outfall Recovery System.

All fluids recovered from these systems, are pumped to the on-site Waste Water Treatment Plant for treatment prior to disposal through the on-site injection well. In 2015, Western began the permitting process to install a new injection well, which was installed in late 2016.

Below-Grade Testing and Tank Inspections

In compliance with the Facility's Discharge Permit dated July 2010, sumps were inspected to determine their integrity for service. All sumps tested in 2016 passed inspection and were returned to normal service following completion of testing activities. In addition, petroleum storage tanks continue to be inspected at a frequency that is in compliance with API 650 and 653 guidelines.

SECTION 1.0 INTRODUCTION

1.1 Site Location and Description

Owner: San Juan Refining Company, a New Mexico Corporation

1250 Washington Street Tempe, Arizona 85281

Operator: Western Refining Southwest, Inc.

(Formerly Giant Industries Arizona, Inc.), an Arizona Corporation

1250 Washington Street Tempe, Arizona 85281

Facility: Bloomfield Terminal (physical address)

50 Road 4990

Bloomfield, New Mexico 87413

Western Refining Southwest, Inc. (postal address)

P.O. Box 159

Bloomfield, New Mexico 87413

US EPA ID: NMD089416416

SIC Code: 5171

The former Bloomfield Refinery facility is currently owned by San Juan Refining Company, a New Mexico corporation, and operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc., an Arizona corporation. The facility had an approximate refining capacity of 18,000 barrels per day. Various process units operated at the facility, which included crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydrotreating. Products produced at the refinery included gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and LPG.

The Bloomfield Facility is located on approximately 263 acres south of Bloomfield, New Mexico in San Juan County (Figure 1). The Bloomfield complex is bisected by County Road 4990 (Sullivan Road), which runs east-west. The terminal offices, former process units, tank farm, wastewater treatment system (WWTS), raw water ponds, and fire training area are located north of the county road. The crude oil unloading areas, product loading racks, former LPG storage tanks, maintenance buildings/90-day storage area, pipeline offices, transportation truck shop, and Class I injection well (recently plugged and abandoned) are located south of the country road (Figure 2). On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Facility.

The Bloomfield facility is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt, and clay that grades to course sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

1.2 History of Facility Modifications and Improvements

1.2.1 Previous Owner's Activities

Local entrepreneur, Kimball Campbell, constructed the crude topping unit that eventually became the Bloomfield Refinery facility in the late 1950s. O.L. Garretson bought the facility in the early 1960s, renamed it Plateau, Inc. and sold it in 1964 to Suburban Propane of New Jersey.

Operationally, the facility had steadily evolved through a series of improvements, modifications and expansions. Suburban upgraded the facility in 1966, increasing the Crude Unit throughput to 4,100 barrels per calendar day (bpcd) and adding 1,850 bpcd Reformer and Naphtha Hydrotreater. In 1975, the Crude Unit was expanded to 8,400 bpcd.

In 1979, the Crude Unit was expanded again to 16,800 bpcd (later demonstrated to have a hydraulic capacity in excess of 18,000 bpcd). A Fluidized Catalytic Cracker (FCC) with a nominal capacity of 6,000 bpcd, an Unsaturated Gas Plant and a Treater Unit were also added at that time. The capacity of the Reformer / Hydrotreater was increased to 2,250 bpcd. The FCC was upgraded in 1982 to conform to State and Federal air quality standards.

1.2.2 Bloomfield Refining Activities

Bloomfield Refining Company (BRC) acquired the facility from Suburban Propane (Plateau) on October 31, 1984. The current owner of the facility is San Juan Refining Company. Western Refining Southwest, Inc. is the facility operator.

Over the years, there have been many improvements made to facility operations and equipment. These improvements are summarized below.

1986

Relocated the spent caustic tank onto a concrete pad with retaining walls.

1987

- Upgraded the Reformer and increased its capacity to 3,600 barrels per day (bpd).
 Modified the Laboratory and Treater Unit and increased tank storage capacity.
- Cleaned up the North and South bone yards.
- Decommissioned and dismantled old Tanks 6 and 7.
- Relocated the API recovered oil Tank 8 and Tank 9 to concrete pads with concrete retaining walls.
- Established a systematic inspection, maintenance, and repair program for tanks.

<u>1988</u>

- Added a 2,000 bpd Catalytic Polymerization Unit. Removed the facility's two underground storage tanks and replaced them with aboveground storage tanks.
- Completed installation of a Cathodic Protection System for the Tank Farm and underground piping.
- Rebuilt the process area sewer system and added curbed, concrete paving to the unpaved process areas.

1989

- Increased Reformer throughput to 4,000 bpd.
- Activated the groundwater hydrocarbon recovery system.
- Constructed the first double-lined Evaporation Pond as part of Refinery's Discharge Plan improvements.

1990

- Constructed the second double-lined Evaporation Pond as part of the Refinery's Discharge Plan improvements.
- Constructed a drum storage shed and converted to bulk chemical usage, where possible, in order to minimize the use of drummed chemicals.

1991

- Revamped the burner fuel sales rack with concrete paving and curbing.
- Submitted the permit application for a Class 1 Disposal Well.
- Upgraded the groundwater hydrocarbon recovery system.

<u>1992</u>

Submitted an air quality permit application. The application included a proposal to install
a Diesel Hydrodesulphurization (HDS) Unit and a Sulfur Recovery Unit (SRU) in order to
comply with new EPA low-sulfur diesel regulations and decrease air emissions.

1993

 Began a program under a Consent Agreement with the United Stated Environment Protection Agency (USEPA) to conduct Interim Measures (IM), a RCRA Facility Investigation (RFI) and a Corrective Measures Study (CMS) addressing groundwater contamination.

- Replaced portions of the underground cooling water piping.
- Added concrete paving around the API Separator.
- Installed the HDS Unit and SRU.

<u> 1994</u>

- Completed installation of the Class 1 Injection Well.
- Retrofitted the Aeration Lagoons with two additional liners.
- Installed a floating cover for the API Separator.
- Closed the clay-lined evaporation ponds and spray evaporation area.

1995

- Improved the diking south of the Refinery to further reduce storm water runoff.
- Began implementation of additional corrective measures for groundwater cleanup as determined from the CMS.

<u>1998</u>

 Converted the former evaporation ponds on the east side of the Refinery to raw water storage ponds.

1999

Installed sheet pilings and a bentonite slurry wall adjacent to the San Juan River, North
of the process units, in order to intercept a small hydrocarbon seep that had been
detected in the area.

2001

 Initiated a program to inoculate the Aeration Lagoons with sludge-consuming microorganisms.

2002

 A concrete liner was installed on the Hammond Ditch. At that time, Giant constructed the Hammond Ditch French Drain Recovery System to address contamination under the ditch.

2003

Several monitoring wells were converted into recovery wells to further enhance the
continuing ground water remediation efforts. MW-45, MW-46 & MW-47 were installed to
facilitate sample collection. East Outfall #1 Recovery System was set up to return
impacted water back to the refinery.

2004

 Monitoring well MW-48, MW-49 and eight temporary piezometers were installed as part of Voluntary River Terrace Investigation activities.

- Several temporary piezometers were drilled on the north side of Hammond Ditch to chart
 the surface elevation of the Nacimiento Formation. Design of a slurry wall to be
 constructed on the north side of Hammond Ditch was completed.
- Lined containments were constructed in the draws north of Hammond Ditch in order to collect potentially contaminated groundwater which discharged to the land surface.
- Sewer lines were replaced in the Treater and FCC.

2005

- The North Boundary Barrier Wall installation was completed March 2005. Fourteen
 observation wells were installed on the north side of the slurry wall and fifteen collection
 wells were installed on the south side of the slurry wall in April 2005.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.
- In April, five more temporary piezometers were installed at the River Terrace. In August, Dewatering Wells (DW-1 and DW-2) and thirteen bioventing wells were drilled and construction of the River Terrace Bioventing Project was initiated.

<u>2006</u>

- The River Terrace Bioventing System was put on-line in January 2006. Monitoring data from that project is submitted in a separate report to the regulatory agencies.
- During the week of February 13, 2006 seven sump wells were installed along the bluff north of the barrier wall. These wells were drilled in accordance with the North Barrier Wall Work Plan which was submitted to OCD February 7, 2006.
- Fluids extraction from the observation and collection wells, the north draws, and the sump wells continued throughout 2006.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.

2007

- On May 31, 2007, Giant Industries, Inc. became a wholly-owned subsidiary of Western Refining, Inc. of El Paso, Texas.
- Construction of the Ammonia Refrigeration Unit (ARU) was completed and the system put on line by March 2007. This unit is used to recover propane from hydrogen streams.
- Construction of the Benzene Stripper was completed and the system put in service by October 2007. This unit is used to strip benzene from process waste water.
- Discharge piping was installed at RW #1 to increase the recovery capacity of the well.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall (Seeps 1-9) were upgraded periodically.

2008

• The Facility-Wide Groundwater Monitoring Plan (Revised May 2008) was approved and implemented in the latter half of 2008.

- In September, Group No. 2 RCRA Site Investigation activities commenced. Areas included in Group No. 2 are SWMU 2, SWMU 8, SWMU 9, SWMU 11, and SWMU 18.
- As part of the Closure Plan North and South Aeration Lagoons the ponds were drained, cleaned out, inspected, repaired, and put back in service. This process started in October 2008 and was completed in February 2009.

2009

- In March, monitoring wells were installed around the Aeration Lagoons to satisfy Group No. 1 RCRA site investigation requirements. Group No. 3 Site Investigation activities began in April. This group includes SWMU 4, SWMU 5, AOC 22, AOC 23, AOC 24, AOC 25, and AOC 26.
- On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Refinery. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Guidelines from the Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008) will continue to be followed.

2010

- In January 2010, due to analytical results indicating high benzene levels, piping was installed to permanently route discharge water from Tank 33 to the API Separator.
- Guidelines from the Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008) were followed through the first six months of 2010.
- In August, Group No. 4 and Group No. 5 investigation field activities were conducted which included the installation of three monitoring wells.
- After receipt of the New Mexico Environmental Department (NMED) letter Approval with Direction Facility-Wide Groundwater Monitoring dated July 26, 2010, Western personnel followed guidelines from the Facility-Wide Groundwater Monitoring Plan (FWGMP) dated June 2010.

2011

In August 2012, Group No. 6 RCRA Investigation activities were conducted, which
involved soil sampling within each of the Seep Areas located along the northwest portion
of the facility.

2012

- In January 2012 the group 8 RCRA Investigation activities commenced, which involved soil sampling within SMWU No. 3 – Underground Piping Currently in Use, and SWMU No. 6 – Abandoned Underground Piping.
- On October 12, 2012, NMED Hazardous Waste Bureau approved a Work Plan submitted by Western dated October 9, 2012 authorizing Western to optimize the remediation efforts at the River Terrace area. Optimization activities conducted in 2012 included the removal of approximately 250 cubic yards of impacted clay-type soil from the river terrace area, and conversion of a portion of the biovent system to an air sparging system in efforts to target the most impacted groundwater area located within the southwest corner of the River Terrace Area.

In the third quarter 2012, Western commenced work that involves enhancement of the total fluids recovery system. This work involves transitioning five monitoring wells (MW-20, MW-55, MW-56, MW-57, and MW-58) and one recovery well (RW-3) to operational total fluids recovery wells. RW-3 was returned to operation by the fourth quarter 2012. Operation of the monitoring wells located near the aeration lagoons is expected to begin in April 2013.

<u>2013</u>

- In the first quarter 2013, Western completed work that involves enhancement of the total fluids recovery system. This work involved transitioning five monitoring wells to active total fluids recovery wells (MW-20, MW-55, MW-56, MW-57, and MW-58). Operation of the monitoring wells located near the aeration lagoons has commenced.
- In June 2013, Western removed two former diesel dispenser pumps, storage tank, associated piping, former fueling pad and approximately 500 cubic yards of soil. Soil samples confirmed all the impacted soil was removed from the immediate vicinity of the former diesel fueling pumps.
- In 2013 Western replaced Tank 37, Tank 38 and Tank 34 with new equivalent tanks.
 Tank 37 and Tank 34 containments were also lined.
- Well MW-70 was developed on May 22, 2013 and baseline samples were collected on June 13, 2013.

2014

- In 2014 Western Refining preformed an environmental site investigation for the SWMUs designated as Group 9 and SWMU No. 27 Wastewater Collection System. Group 9 includes SWMU No. 12 (API Separator), SWMU No. 13 (Process Area) and SWMU No. 14 (Tanks 3, 4, and 5).
- In August 2014, NMED was notified of a significant rain event that resulted in severe flash flooding in the Bloomfield, New Mexico area. The storm caused the Hammond ditch to reverse flow directions, resulting in the entire roadway along the north boundary barrier to fill with water. The significant run-off along the river bluff resulted in Seep 4, Seep 6, Seep 7, Seep 8 and Seep 9 to permanently erode away due to the heavy surface run-off. Prior to the flooding event, these locations were no longer actively collecting seep water due to the existence of the north boundary barrier, and had previously been investigated as part of the 2007 Consent Order. Therefore as of August 2014, the only existing catchment locations are Seep 1, Seep 2, Seep 3, and Seep 5.

<u>2015</u>

- In 2015 routine groundwater and surface water sampling was conducted per the approved Facility-Wide Groundwater Monitoring Plans.
- The Class 1 injection well WDW #1 was plugged and abandoned following NMOCD's approval in September 2015.

2016

- Routine groundwater and surface waste sampling was conducted in 2016. Drilling of a new Class 1 disposal well (WDW #2) commenced and continued through 2016. The well is scheduled to be completed and operational in 2017.
- Drilling of the new Class 1 wastewater disposal well (WDW #2) continued through 2016. The well is scheduled to be completed in 1st half of 2017.

SECTION 2.0 SCOPE OF ACTIVITIES

This Annual Report includes a summary of activities conducted at the Bloomfield facility in 2016 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order issued by the NMED-HWB, and Section 22 of Discharge Permit GW-001 issued to the Bloomfield Refinery by the EMNDR-OCD. This report includes a summary of sampling activities, total fluids recovery, below-grade testing, and remediation monitoring activities conducted in 2016.

2.1 Groundwater and Surface Water Monitoring Activities

Groundwater and surface water monitoring activities conducted in 2016 include the collection of groundwater and surface water samples and field data from the following four areas of the facility:

- Refinery Complex;
- North Boundary Barrier;
- San Juan River Bluff; and
- San Juan River Terrace

Monitoring activities conducted in April and August 2016 followed the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014. Any activities conducted contrary to the approved Monitoring Plan are noted in this report.

General groundwater sampling procedures followed during each sampling event are included in Appendix A. Detailed information regarding groundwater and surface water analyses conducted in 2016 is included in Section 3.1.

2.1.1 Fluid Measurements

Depth-to-groundwater and depth-to-product measurements were collected from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2016 and August 2016, respectively. All fluid level measurements were collected using a Geotech Interface Probe that measures to an accuracy of 0.01 feet. The field measurements were collected a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. A summary of the fluid measurements collected is provided in Section 3.1.1.

2.1.2 Groundwater Field Parameters

Prior to collecting groundwater samples, each well was purged a minimum of three well volumes. Groundwater field parameters (temperature, pH, and conductivity) were collected

every two gallons or after purging one well volume, whichever was less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. A summary of the field measurements collected and procedures followed is provided in Section 3.1.2 and Appendix A, respectively.

In addition, field parameters were collected at the outfalls and seeps when sufficient water was present.

2.1.3 Former Refinery Complex Sampling

Groundwater samples were collected from specified wells located within the Former Refinery Complex during the Semi-Annual Sampling Event and Annual Sampling Event conducted in April 2016 and August 2016, respectively, with the exception of wells that contained SPH, wells that were dry, or wells that did not contains enough water to collect a sample. Figure 10 and Figure 11 show the location of the wells sampled during each sampling event. A summary of the analytical results is provided in Section 3.1.3.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2016:

- RCRA Investigation Wells: MW-52;
- Refinery Wells: MW-30;
- Cross-Gradient Wells: MW-1, MW-13, MW-33; and
- Downgradient Wells: MW-12, MW-35, MW-37, MW-38.

Groundwater samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- Volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tert-butyl ether (MTBE) by EPA Method 8260B; and
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Motor Oil Range Organics (MRO) by EPA Modified Method 8015B (MW-1, MW-12, MW-33, MW-35, MW-37, and MW-38 only)

Groundwater samples were not collected from MW-20 due to the presence of SPH during purging. In addition, groundwater samples were not collected from MW-6 due to insufficient groundwater for sample collection.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2016:

- Refinery Wells: MW-4, MW-8, RW-15, RW-18, MW-21, RW-42, RW-43, MW-29, MW-30, MW-31, MW-40, MW-44, and MW-52;
- Cross-Gradient Wells: MW-1, MW-13, MW-27, MW-32, and MW-33;
- Downgradient Wells: MW-11, MW-12, MW-34, MW-35, MW-37, and MW-38; and
- RCRA Investigation Wells: MW-50, MW-51, MW-52, MW-53, MW-56, MW-57, MW-59, MW-62, MW-63, MW-64, MW-65, MW-67, and MW-68.

Groundwater samples were not collected from RW-1, RW-9, MW-20, RW-22, RW-23, MW-26, RW-28, MW-54, MW-58, MW-61, and MW-66 due to the presence of SPH. SPH was detected in MW-58 and MW-61 during bailing of the well and not during water level measurement collection. In addition, groundwater samples were not collected from MW-55, MW-60, MW-69, and MW-70 due to insufficient groundwater for sample collection.

Groundwater samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470:
- Total Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

2.1.4 North Boundary Barrier Sampling

Groundwater samples were collected from observation wells and specified collection wells in April 2016 and August 2016, with the exception of wells that contained SPH, wells that were dry, or wells that did not contain enough water to collect a sample. Figure 10 and Figure 11 shows the location of the North Boundary Barrier wells that were sampled in April 2016 and August 2016, respectively. A summary of the groundwater results is provided in Section 3.1.4.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2016:

- Collection Wells: CW 0+60, and CW 25+95
- Observation Wells: OW 1+50, OW 3+85, OW 11+15, OW 16+60, OW 22+00, OW 23+10, OW 23+90, and OW 25+70

Groundwater samples were not collected from OW 5+50, OW 6+70, OW 8+10, OW 14+10, and OW 19+50 due to insufficient groundwater for sample collection.

Groundwater samples collected in April 2016 were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs-BTEX and MTBE only by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2016:

- Collection Wells: CW 0+60, and CW 25+95
- Observation Wells: OW 0+60, OW 1+50, OW 3+85, OW 8+10, OW 11+15, OW 16+60, OW 22+00, OW 23+10, OW 23+90, and OW 25+70

Groundwater samples were not collected from OW 5+50, OW 6+70, OW 14+10, and OW 19+50 due to insufficient groundwater for sample collection.

Groundwater samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

2.1.5 San Juan River Bluff Sampling

San Juan River Bluff sampling includes the collection of surface water samples at the outfall locations along the eastern portion of the facility, and at the seeps located along the western portion of the facility. Figure 3 shows the outfall and seep locations. A summary of the surface water analytical results is provided in Section 3.1.5.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2016:

- Outfalls: East Outfall #2 and East Outfall #3; and
- Seeps: Seep 1 and Seep 3.

Surface water samples were not collected from Seep 2 and Seep 5 due to the absence of an active discharge at each location.

Surface water samples collected in April 2016 were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470 (Outfall locations only);

- Dissolved Metals by EPA Method 6010B/7470 (Outfall locations only);
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2016:

Outfalls: East Outfall 3; andSeeps: No seep samples.

Surface water samples were not collected from any of the seeps (i.e., Seep 1, Seep 2, Seep, 3, and Seep 5) due to the absence of an active discharge at each location. East Outfall 2 was also dry during the annual sampling event.

Surface water samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470 (Outfall locations only);
- Dissolved Metals by EPA Method 6010B/7470 (Outfall locations only);
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

2.1.6 San Juan River Terrace Sampling

San Juan River Terrace sampling includes the collection of surface water samples at four locations along the San Juan River and the collection of groundwater samples at the San Juan River Terrace. A summary of activities conducted and groundwater samples collected that are associated with the bioventing system located at the San Juan River Terrace are included in the previously submitted *River Terrace Voluntary Corrective Measures Bioventing System Report* dated March 2016. Therefore sampling activities associated with the Bioventing System are not included in this report.

Figure 3 shows the approximate surface water sample locations along the San Juan River. A summary of the surface water analytical results is provided in Section 3.1.6.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2016:

• San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1; and
- Anions by EPA Method 300.0.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2016:

San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1; and
- Anions by EPA Method 300.0.

2.1.7 Outfall and Seep Inspections

Bi-monthly visual inspections of Seeps 1, Seep 2, Seep 3, and Seep 5 along the San Juan River Bluff were conducted in 2016. Figure 3 shows the location of the outfalls and seeps. A summary of the inspections performed is provided in Section 3.1.7.

2.2 Total Fluids Recovery Systems

2.2.1 Groundwater Recovery System

The Bloomfield Facility operates a total fluids pumping system used to bring SPH and hydrocarbon impacted groundwater to the surface for treatment and disposal. This is accomplished by actively pumping wells within the groundwater impacted area. Recovered fluids are pumped to the on-site API separator for product recovery. The remaining recovered fluid is pumped through the WWTS prior to disposal. The groundwater recovery system was operational throughout 2016. The wells that operated as active recovery wells in 2016 are RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, MW-20, RW-22, RW-23, RW-28, RW-

42, and RW-43, and MW-55, MW-56, MW-57, and MW-58. Figure 2 shows the location of the recovery wells within the Bloomfield Facility. An operational summary of the groundwater recovery system is included in Section 3.3.1.

2.2.2 North Boundary Barrier Wall Collection System

The North Boundary Barrier Wall, which was installed by April 2005, consists of a 2,700 foot long bentonite slurry wall that extends two to five feet into the Nacimiento Formation. The primary purpose of the wall is to prevent the migration of hydrocarbon-impacted groundwater towards the San Juan River. The collection system consists of 15 collection wells positioned along the facility-side of the barrier wall. For every collection well there was installed an observation well along the river-side of the barrier wall. Bloomfield Terminal personnel continued to monitor fluid levels on both sides of the barrier wall in 2016 by collecting depth-towater and depth-to-product measurements. Figure 2 shows the location of the collection wells and observation wells along the North Boundary Barrier Wall. A summary of the data collected along the North Boundary Barrier Wall is provided in Section 3.3.2.

2.2.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System consists of recovery Tank 37, located along the western portion of the facility, and a French Drain system that was constructed below the concrete-lined Hammond ditch. Tank 37 collects groundwater from two 8-inch influent lines connected to the perforated sub-drain (the French Drain) beneath the Hammond Irrigation Canal. Tank 37 is equipped with a liquid level float control system and dedicated flow meter. Recovered water from Tank 37 is automatically pumped through a flow meter to the API Separator. The location of Tank 37 is shown on Figure 3.

The Hammond Ditch Recovery System serves as a hydraulic relief mechanism for groundwater that mounds along the Facility-side of the north barrier wall. Figure 3 shows the location of Tank 37. A summary of operational data for the Hammond Ditch Recovery System is included in Section 3.3.3.

2.2.4 River Terrace Remediation System

The River Terrace Bioventing System commenced operation in January 2006. A summary of activities associated with the River Terrace Bioventing System are submitted separately to the agency in March of each year.

2.2.5 East Outfall Recovery System

Outfall 1 is equipped with a holding tank and automatic pumping system. Water from Outfall 1 discharges into Tank 38 directly and then is pumped to the on-site WWTS prior to disposal. Figure 3 shows the location of Tank 38.

The flow rate of recovered water entering Tank 38 is dependent upon the operation the Hammond Ditch, which is located just south of Tank 38. A summary of the operational data of the East Outfall Recovery System for 2016 is included in Section 3.3.4.

2.3 Below-Grade Testing and Tank Inspections

Pursuant to conditions of approval stated in Discharge Permit GW-001 (regulated by the EMNRD-OCD), below-grade sumps were tested and no leaks were detected. The sumps were returned to service. Tank inspections are completed in accordance with API 650 and 653 guidelines.

2.4 Waste Disposal

Western Refining indefinitely suspended refining operations at the Bloomfield Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through the on-site Class I injection well. While a new injection well was being installed in 2016, the treated water was hauled off-site for disposal in a commercial disposal well.

Significantly less waste is routinely generated since the suspension of refining operations in November 2009. The on-site landfill is no longer operational, and therefore all operational waste generated is properly characterized and disposed of off-site. Additional information regarding waste disposal activities is provided in Section 3.5.

SECTION 3.0 RESULTS SUMMARY

The following is a summary of the data collected, visual inspections conducted, and analytical results received during monitoring and testing performed in 2016. Figure 8 and Figure 9 provide a summary of the BTEX concentrations detected during the April 2016 and August 2016 sampling events, respectively.

3.1 Groundwater and Surface Water Monitoring

A summary of the groundwater and surface water analytical results for samples collected over the past few years are included in Table 3 through Table 10. Screening levels used to evaluate the groundwater condition at the Bloomfield facility are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Sample results included in the analytical summary tables that exceed the respective regulatory screening levels are highlighted in yellow, while all detected results are bolded. A copy of the respective analytical reports and Laboratory Quality Assurance Plan is included in Appendix B. A copy of the Laboratory Quality Assurance Plan is on-file at the Bloomfield Facility HSE department and available upon request.

3.1.1 Fluid Level Measurements

Depth-to-groundwater and depth-to-product measurements were collected at all refinery monitoring wells, recovery wells, observation wells, and collection wells included in the approved 2014 Monitoring Plan in April and August 2016. Additional fluid measurements were collected at the sump wells periodically throughout the year to monitor fluid levels along the north side of the facility. The fluid pumping wells were turned off and the groundwater was allowed to stabilize for a minimum of 48-hours prior to the collection of fluid levels within the former Refinery Complex during both the April and August sampling events. Figure 2 shows the location of the wells within the facility.

Using the fluid level measurements collected in April and August 2016, groundwater potentiometric surface elevations were calculated. The groundwater elevation data was used to developed groundwater potentiometric surface maps which show the general direction of groundwater flow within the former Refinery Complex area. Table 1 provides a summary of the fluid level measurements collected in 2016. Figure 4 and Figure 5 represent the groundwater contours developed from data collected in April 2016 and August 2016, respectively. The groundwater potentiometric surface contours show that groundwater generally flows in a northwest direction. A discussion of the SPH data collected is provided in Section 3.2 of this report.

3.1.2 Groundwater Field Measurements

Prior to collecting groundwater samples, each well was purged of a minimum of three well volumes using a disposable bailer. Groundwater field parameters (temperature, pH,

conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and total dissolved solids (TDS) were collected every two gallons or after purging one well volume, whichever was less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. The field parameters were collected using a YSI Professional Plus instrument. Field equipment calibration procedures performed prior to each sampling event are summarized in Appendix A. Table 2 provides a summary of the groundwater field parameters collected during the April 2016 and August 2016 sampling events. Field parameters were also collected from water samples collected at the East Outfalls, Seeps, and the San Juan River locations.

3.1.3 Former Refinery Complex Sampling

Refinery Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at RW-15, RW-18, MW-21, MW-30, MW-31, RW-42, and RW-43. The detected concentrations above the screening level ranged from 16 to 4,200 ug/l. The highest concentration was detected at MW-30 in August 2016.
- 1,3,5-Trimethylbenzene was detected above the respective screening level of 12 ug/l at RW-15, MW-30, RW-42, and RW-43. The detected concentrations ranged between 13 ug/l and 860 with highest concentration detected at MW-30 in August 2016.
- 1-Methylnaphthalene was detected above the respective screening level of 2.3 ug/l at MW-4, MW-31, and RW-42 with a concentrations detected above the screening levels ranging from 22 ug/l to 160 ug/l. The highest concentration was detected at RW-42 in August 2016.
- 2-Methylnaphthalene was detected above the screening level of 15 ug/l in samples collected in August 2016 at RW-42, at a concentration of 220 ug/l.
- Benzene was detected above the respective screening level of 5 ug/l at MW-4, RW-15, RW-18, MW-21, MW-30, MW-31, RW-42, and RW-43. The detected concentrations above the screening level ranged between 20 ug/l and 6,300 ug/l, with the highest concentration detected at RW-42 in August 2016.
- Ethylbenzene was detected above the respective screening level of 700 ug/l at RW-15 and MW-30. The concentrations detected above the screening level ranged between 2,400 ug/l and 4,700 ug/l, with the highest concentration detected at MW-30 in April 2016.
- Methyl tert-butyl ether (MTBE) was detected above the screening level of 143 ug/l with concentrations ranging from 670 ug/l to 1,900 ug/l. The wells with concentrations above the screening level were RW-18 and RW-43 with the highest concentration detected at RW-18.
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-4, RW-15, MW-21, MW-30, MW-31, MW-40, RW-42, and RW-43. The detected concentrations ranged between 71 ug/l and 700 ug/l, with the highest concentration detected at MW-30 in August 2016.

- Toluene was detected above the respective screening level of 750 ug/l at MW-30 at a concentration of 1,800 ug/l in August 2016.
- Xylenes were detected above the respective screening level of 620 ug/l at RW-15, MW-30, and RW-43. The detected concentrations ranged between 1,100 ug/l and 14,000 ug/l, with the highest concentration detected at MW-30 in August 2016.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-4, RW-15, RW-18, MW-21, MW-40, RW-42, RW-43 and MW-52 at concentrations ranging from 270 mg/l to 640 mg/l. The highest concentration was detected at MW-52 in August 2016.
- Sulfate was detected above the respective screening level of 600 mg/l at MW-8, MW-44 and MW-52. Detected concentrations ranged between 7000 mg/l and 3,000 mg/l, with the highest concentration detected at MW-44 in August 2016.
- Nitrite + Nitrate was reported at concentrations above the screening levels of 1 mg/l for nitrite and 10 mg/l for nitrate. The reported concentration above screening levels are 13 mg/l and 42 mg/l at MW-8 and MW-52, respectively, with both detected in samples collected in August 2016.

Total metals were detected at concentrations above their respective screening levels in samples collected in 2016 as described below:

- Arsenic was detected above the screening level of 0.01 mg/l in samples collected from two wells. The reported concentrations above the screening levels at MW-8 and RW-42 were 0.02 mg/l and 0.094 mg/l, respectively.
- Total barium was detected above the screening level of 2.0 mg/l in samples collected at MW-4, RW-18, MW-40, RW-42, and RW-43. The concentrations reported above the screening level ranged from 2.3 mg/l to 13 mg/l, with the highest concentration reported at both RW-42 and RW-43.
- Total chromium was detected above the screening level of 0.05 mg/l in water samples collected at MW-4, MW-8, RW-42, and RW-43. The concentrations reported above the screening level ranged from 0.071 mg/l to 2.0 mg/l, with the highest concentration reported at MW-8.
- Total lead was reported above the screening level of 0.015 mg/l in groundwater samples collected at MW-30, RW-42, and RW-43. The concentrations reported above the screening level ranged from 0.019 mg/l to 0.092 mg/l, with the highest reported at RW-42
- Total selenium was reported above the screening level of 0.05 mg/l in one groundwater sample collected at MW-52 at a concentration of 0.065 mg/l.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions

 Barium was detected above the respective screening level of 1.0 mg/l at MW-4, RW-15, RW-18, MW-40, RW-42 and RW-42. The detected concentrations above screening levels ranged from 1.1 to 6.4 mg/l with the highest concentration detected at RW-42 in August 2016.

- Chromium was detected above the screening level of 0.05 mg/l in one sample collected at RW-43 at a concentration of 0.27 mg/l.
- Iron was detected above the respective screening level of 1.0 mg/l at MW-4, MW-8, RW-15, RW-18, MW-30, MW-31, MW-40, RW-42, RW-43, MW-44, and MW-52. The detected concentrations above the screening level ranged from 1.2 to 69 mg/l with the highest concentration detected at RW-4215 in August 2016.
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-4, MW-8, RW-15, RW-18, MW-21, MW-29, MW-30, MW-31, MW-40, RW-42, RW-43, MW-44, and MW-52. The detected concentrations above the screening levels ranged between 0.4 mg/l and 8.6 mg/l, with the highest concentration detected at MW-4 in August 2016.
- Selenium was detected above the screening level of 0.05 mg/l in one sample collected at MW-52 with a concentration of 0.057 mg/l.

Total petroleum hydrocarbons were detected above the laboratory detection limits in all three fractions (GRO, DRO, and MRO). The detected GRO concentrations ranged between 0.057 mg/l and 100 mg/l. The detected concentrations of DRO ranged from 0.28 mg/l to 1,200 mg/l. The MRO fraction was detected in a single sample at RW-15 at a concentration of 44 mg/l.

A summary of the analytical results for samples collected at the former Refinery Complex Wells is provided in Table 3.

Cross-Gradient Wells

Volatile organic compounds were not detected above the laboratory detection limits in samples collected in 2016.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-27 and MW-32. The detected concentrations ranged between 360 mg/l and 630 mg/l, with the highest concentration detected at MW-32 in August 2016.
- Nitrite and Nitrate were reported as a combined concentration in the two samples where
 the applicable screening levels (nitrite = 1.0 mg/l and nitrate = 10.0 mg/l) were potentially
 exceeded. The reported concentration at MW-32 was 40 mg/l and the reported
 concentration at MW-33 was also 40 mg/l, with both samples collected in August 2016.
- Sulfate was detected above the respective screening level of 600 mg/l at MW-13, MW-27, MW-32, and MW-33. The detected concentrations ranged between 850 mg/l and 27200 mg/l, with the highest concentration detected at MW-27 in August 2016.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016 with the single exception of chromium, which was detected at 0.059 mg/l, barely above the screening level of 0.05 mg/l.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

 Manganese was detected above the respective screening level of 0.2 mg/l at MW-13 and MW-27. The detected concentrations were 0.95 mg/l and 2.7 mg/l, respectively. Selenium was detected above the screening level of 0.05 mg/l in the groundwater sample collected at 0.097 mg/l.

Total petroleum hydrocarbons were detected in one samples collected at MW-27 for the GRO and DRO fractions. The GRO concentration was 0.2 mg/l and the DRO concentration was 2.2 mg/l.

A summary of the analytical results for samples collected at the Cross-Gradient Wells is provided in Table 4.

Downgradient Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at MW-11 and MW-35. The detected concentrations above the screening level were 120 ug/l and 25 ug/l with the highest concentration detected at MW-11.
- 1-Methylnaphthalene was detected above the respective screening level of 2.3 ug/l at MW-11 with a concentration of 17 ug/l in August 2016. Under the semi-volatile analyses, 1-methylnaphthalene was reported at 25 ug/l
- Benzene was detected in samples collected at MW-11 at 9.9 ug/l, only slightly above the screening level of 5 ug/l.
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-11. The detected concentration was 70 ug/l.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016 with the exception of chloride that was detected at 260 mg/l vs. the screening level of 250 mg/l. This occurred in the sample collected at MW-34 in August 2016.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Arsenic was detected above the screening level of 0.015 mg/l at MW-11 and MW-35 at concentrations of 0.047 mg/L and 0.047 mg/l, respectively, in August 2016.
- Chromium was detected above the screening level of 0.05 mg/l at MW-12 at a concentration of 0.058 mg/l in August 2016.
- Lead was detected above the screening level of 0.015 mg/l in groundwater samples collected at MW-11 and MW-12 at concentrations of 0.028 mg/l and 0.019 mg/l, respectively, in August 2016.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Chromium was detected above the screening level of 0.05 mg/l at MW-12 at a concentration of 0.089 mg/l in August 2016;
- Iron was detected above the respective screening level of 1.0 mg/l at MW-11, MW-12, MW-34, and MW-35. The detected concentrations above the screening level ranged from 3.4 mg/l to 18 mg/l, with the highest concentration detected at MW-11; and

 Manganese was detected above the respective screening level of 0.2 mg/l at MW-11, MW-12, MW-34, MW-35, MW-37, and MW-38. The detected concentrations above the screening level ranged between 0.96 mg/l and 3.6 mg/l, with the highest concentration detected at MW-34 in August 2016.

Total petroleum hydrocarbons were detected in the GRO and DRO fractions. GRO ranged from 0.52 mg/l to 1.4 mg/l with the highest concentration at MW-11. The DRO fraction was detected at concentrations ranging from 0.28 mg/l to 1.8 mg/l with the highest concentration detected at MW-11 in the sample collected in August 2016.

A summary of the analytical results for samples collected at the Downgradient Wells is provided in Table 5.

RCRA Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at MW-56, MW-57, and MW-65, with concentrations above the screening level ranging between 37 ug/l and 480 ug/l in August 2016. The highest concentration occurred at MW-65.
- 1,2-Dichloroethane was detected above the respective screening level of 5 ug/l at MW-59 and MW-65. The detected concentrations were 25 ug/l and 88 ug/l, respectively.
- 1,3,5-Trimethylbenzene was detected above the screening level of 12 ug/l at MW-56 and MW-57. The detected concentrations were 97 ug/l and 16 ug/l, respectively.
- 1-Methylnaphthalene was detected above the respective screening level of 2.3 ug/l at MW-56, MW-57, and MW-65, with concentrations above the screening level ranging between 19 ug/l and 130 ug/l. The highest concentration was detected at MW-65 in August 2016. 1-Methylnaphthalene was also detected above the screening level in the semi-volatile analysis of the sample collected at MW-65, but at a lower concentration of 14 ug/l.
- Benzene was detected above the respective screening level of 5 ug/l at MW-56, MW-57, MW-59, and MW-65. The detected concentrations ranged from 7.7 ug/l to 5,700 ug/l, respectively. The highest concentration was detected at MW-65 in August 2016;
- Ethylbenzene was detected above the respective screening level of 700 ug/l at MW-65, with a concentration detected of 1,200 ug/l in August 2016;
- MTBE was detected above the respective screening level of 143 ug/l at MW-56, MW-59, and MW-65. The detected concentrations above the screening level ranged from 380 ug/l to 1,200 ug/l. The highest concentration was detected at MW-65.
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-56, MW-57, MW-59, and MW-65. The concentrations reported above the screening level ranged from 2.8 ug/l to 160 ug/l. The highest concentration was reported at MW-57 in August 2016. Naphthalene was also detected in the semi-volatile analyses at concentrations above the screening level in samples collected at MW-56 and MW-57. The concentration reported at MW-56 was less than that reported under the volatile analysis; however, the concentration (240 ug/l) reported for the sample collected at MW-

57 was actually higher than any other sample analyzed for naphthalene by either method.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-52, MW-53, MW-56, MW-57, and MW-64. The detected concentrations above the screening level ranged between 340 mg/l and 960 mg/l. The highest concentration was detected at MW-53.
- Nitrate was detected above the respective screening level of 10 mg/l at MW-63 and MW-64, with concentrations of 39 mg/l and 58 mg/l, respectively. The highest concentration was detected at MW-64.
- Sulfate was detected above the respective screening level of 600 mg/l at MW-52, MW-53, MW-62, MW-63, MW-64, and MW-65. The detected concentrations ranged between 1,000 mg/l and 4,000 mg/l, with the highest concentration detected at MW-62.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/l at MW-65 with a concentration of 0.02 mg/l.
- Barium was detected above the screening level of 1.0 mg/l in groundwater samples collected at MW-56 and MW-57 at concentrations of 2.4 mg/l and 2.1, mg/l, respectively.
- Selenium was detected above the screening level of 0.05 mg/l at MW-52 with a concentration of 0.065 mg/l.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Barium was detected above the screening level of 1.0 mg/l in groundwater samples collected at MW-56 and MW-57 at concentrations of 2.4 mg/l and 2.1, mg/l, respectively.
- Iron was detected above the respective screening level of 1.0 mg/l at MW-52, MW-56, MW-57, MW-59, MW-62, MW-63, MW-64, and MW-65. The detected concentrations above screening levels ranged between 1.3 mg/l and 28 mg/l with the highest concentration at MW-56.
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-50, MW-51, MW-52, MW-53, MW-56, MW-57, MW-59, MW-62, MW-63, MW-65, and MW-67. The detected concentrations ranged between 0.4 mg/l and 5.7 mg/l, with the highest concentration detected at MW-52; and
- Selenium was detected at MW-52 with a concentration of 0.057 mg/l, which exceeds the screening level of 0.05 mg/l.

Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO and DRO fractions. The GRO concentrations ranged between 1.8 mg/l and 520 mg/l. The DRO concentrations ranged between 0.64 mg/l and 93 mg/l.

A summary of the analytical results for samples collected at the RCRA Wells is provided in Table 6.

3.1.4 North Boundary Barrier Sampling

Collection Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

 Benzene was detected above the screening level of 0.005 mg/l at CW 25+95 at a concentration of 0.0071 mg/l.

Total petroleum hydrocarbons were detected above the laboratory detection limit in the DRO fraction. The DRO concentrations ranged from 0.73 mg/l to 0.83 mg/l in samples collected at CW 0+60 in April and August 2016, respectively.

A summary of the analytical results for samples collected at the collection Wells in 2016 is provided in Table 7.

Observation Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exceptions:

- Benzene was detected above the screening level of 0.005 mg/l at OW 11+15. The
 detected concentrations in April 2016 and August 2016 were 3.8 mg/l and 3.9 mg/l,
 respectively; and
- MTBE was detected above the respective screening level of 0.143 mg/l at OW 11+15 and OW 16+60. The concentrations ranged from 0.22 mg/l (April 2016 at OW 11+15) to 2.8 mg/l (April 2016 OW 16+60).

Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO and in DRO fractions. The GRO concentrations ranged from 0.078 mg/l to 14 mg/l, while DRO concentrations ranged from 0.27 mg/l to 540 mg/l.

A summary of the analytical results for samples collected at the observation wells in 2016 is provided in Table 7.

3.1.5 San Juan River Bluff Sampling

Outfalls

Samples were collected from East Outfall #3 in May and August 2016. Samples were collected at East Outfall #2 in May 2016. Samples were not collected at East Outfall #2 in August 2016 due to lack of water. A summary of the analytical results for samples collected at East Outfall #2 and East Outfall #3 in 2016 is provided in Table 8.

Volatile organic compounds were not detected in samples collected in 2016. General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016. Total and dissolved metals constituents detected above the laboratory detection limit were all below their respective screening levels in samples collected in May and August 2016.

<u>Seeps</u>

Samples were only collected from Seeps 1 and 3 in April 2016, as the seep locations were dry in August 2016. The remaining seeps were not sampled due to lack of water for sample collection.

Volatile organic compounds detected above laboratory detection limit were below their respective screening levels in samples collected for 2016.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2016, with the following exception:

- Chloride was detected above the screening level of 250 mg/l in the water sample collected at Seep 3 at a concentration of 260 mg/l.
- Sulfate was detected above the respective screening level of 600 mg/l at Seeps 1 and 3 in April 2016 at concentrations of 1,300 mg/l and 2,500 mg/l, respectively.

A summary of the analytical results for samples collected at the Seeps in 2016 is provided in Table 9.

3.1.6 San Juan River Terrace Sampling

Sample locations related to the bioventing system are discussed in a separate report, and therefore are not included in this submittal. However, surface water samples were collected at four locations along the San Juan River in 2016. Samples were collected in April 2016 and August 2016 upstream of the Bloomfield Facility, north of MW-46, north of MW-45, and downstream of the Facility.

A summary of the analytical results for samples collected at North of MW-46, North of MW-45, Upstream, and downstream in 2014 is provided in Table 10.

Volatile organic compounds were not detected above laboratory detection limits in any of the samples for 2016. Similarly, Total Petroleum Hydrocarbons were not detected above laboratory detection limits in surface water samples collected for 2016. General chemistry parameters detected above the laboratory detection limits were below their respective screening levels in samples collected in 2016.

Total and dissolved metal constituents detected above the laboratory detection limits were below their respective screening levels in samples collected in 2016. Figure 3 shows the location of the San Juan River samples in relation to the Facility.

3.1.7 Outfall and Seep Inspections

Bi-monthly visual inspections of Seeps 1, Seep 2, Seep 3, and Seep 5 along the San Juan River Bluff were conducted in 2016. Inspections of the draws north of the barrier wall and analysis of samples of water collected in the seeps indicate that the barrier wall is preventing migration of contaminated groundwater toward the San Juan River.

Visual inspection of the East Fork area indicates that the flow rate at this seep location has decreased to less than 1 gallon/minute. The flow rate at this location does not appear to be

impacted by the operation of the Hammond Ditch. Figure 3 shows the location of the outfalls and seeps in relation to the Bloomfield Facility.

3.2 Separate-Phase Hydrocarbons

Field measurements collected in April and August 2016 were also used to determine product thickness in areas where SPH was detected. In April 2016, SPH was identified in 13 wells. The product thickness detected ranged between 0.01 feet and 1.30 feet, with the most product detected at recovery well RW-14. In August 2016, SPH was identified in 8 wells. The product thickness ranged between 0.01 feet and 0.26 feet, with the most product detected at recovery well RW-28. Figure 6 and Figure 7 show a summary of the product thickness detected in April 2016 and August 2016, respectively.

Product had been detected in the groundwater prior to suspension of refining operations in November 2009. Review of the past nine years of data collected shows SPH to be present in four general areas of the facility; the Terminals Area, the Tank Farm Area, the former Refinery Process Area, and the North Boundary Barrier Area. The following is a brief summary of the SPH trends observed as reported each year. A review of the historic SPH measurements collected are included in the Facility-Wide Groundwater Monitoring Plan dated December 2007 and in subsequent Annual Groundwater Remediation & Monitoring Reports submitted in April of each year.

Terminals Area

The Terminals area is located south of County Road 4990. Primary operations in this area include product loading and unloading, crude unloading, and product storage. At the Terminal Area, SPH has been localized to two wells (MW-61 and MW-66). These wells were installed in 2009 as part of the on-going RCRA investigation activities. Over the past four and a half years, SPH has been detected at MW-61, which is located just east of the Terminal office building. In the most recent measurement in August 2016, no SPH was observed in MW-61. The SPH thickness at MW-61 has fluctuated between 0.0 feet and 0.98 feet. At MW-66, located west of Tank 45, the amount of SPH has fluctuated between 0.0 feet and 0.32 feet.

Tank Farm Area

The Tank Farm Area is located in the eastern portion of the facility, north of County Road 4990. This area is equipped with four total fluids recovery wells located along the center dike area (RW-14, RW-15, RW-16, and RW-17). Recovery wells RW-14 and RW-16 are equipped with electrical submersible pumps, while RW-15 and RW-17 are equipped with dedicated pneumatic pumps that operate on a timer. All fluids pumped from these wells are routed to the on-site WWTP for product recovery and treatment.

Former Refinery Process Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater that exists at the Bloomfield facility. Several monitoring wells located

within the vicinity of the former refinery process area have shown detectable amounts of SPH prior to the suspension of refinery operations in November 2009. Total fluids recovery wells, as well as the French drain fluids collection system located below the Hammond Ditch in this area, provide hydraulic relief and enhance product recovery efforts.

Two wells within the warehouse area have shown detectable SPH. Monitoring well MW-54, which was installed in 2008, has shown decreasing levels of SPH since 2010. In August 2016, MW-54 contained only approximately 0.01 feet of SPH. Recovery well RW-1 is an active total fluids recovery well. This well operates at a constant flowrate of approximately 2 gpm. The amount of SPH at RW-1 has fluctuated since 2008.

Two active recovery wells (RW-2 and RW-3) are located along the southern property boundary and are equipped with dedicated pneumatic total fluids pumps. In August 2016, RW-2 did not contain any measurable SPH. RW-3 has shown traces of SPH prior to returning to operation in 2012, with SPH detected at 0.05 feet or less. No measureable SPH was detected in RW-3 in 2016.

Monitoring well MW-41, located adjacent to the former crude process unit, has shown fluctuating levels of SPH over the years. The range of SPH detected has been between 0.0 feet and 1.18 feet since 2007. As of August 2016, MW-41 no longer contained SPH.

The SPH level at RW-42, an active recovery well located upstream of MW-41, has also fluctuated over time. The amount of SPH has ranged between 0.00 feet and 0.90 feet since 2007. In August 2016, there was no SPH detected at MW-41.

In the area near the WWTP and north of the former process units there are several wells in which SPH has been detected over the years. It is expected to see SPH levels fluctuate in this area due the numerous active fluids pumping wells, as well as, the existence of the north boundary barrier providing hydraulic control for all groundwater beneath the former process areas. To further enhance the product recovery efforts in this area, work has been done to equip five existing monitoring wells with dedicated pneumatic pumps for total fluids recovery. Monitoring wells MW-55, MW-56, MW-57, MW-58, and MW-20 have been converted to recovery wells. These wells are located in the area where SPH is currently most prevalent. The wells have been operational as active recovery wells since 2013 and continued to operate well through 2016.

North Boundary Barrier Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater within the Bloomfield facility. Monitoring wells and observation wells located along the river-side of the slurry wall have shown intermittent detections of SPH. The amount of groundwater detected in these wells is significantly less than the wells located on the facility-side of the wall, giving proof that the hydraulic barrier is effective. The intermittent detections of SPH are believed to be the residual effect of SPH in the area that existed prior to

installation of the slurry wall. Absorbent socks are placed in observation and monitoring wells located along the river-side of the slurry wall to remove the residual SPH in the area.

3.3 Total Fluids Recovery Systems

3.3.1 Groundwater Recovery System

In 2016, 18 wells operated as total fluids recovery wells. The wells used for total fluids recovery were RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, RW-19, MW-20, RW-22, RW-23, RW-28, RW-42, MW-55, MW-56, MW-57 and MW-58. In the past, Western estimated the total gallons pumped (SPH and groundwater) from the recover wells on an annual basis. The recovery wells are not equipped with individual flow meters. Most wells are equipped with pneumatic pumps that run on a timer system. The wells are routinely checked to make sure they are in service and to make any repairs, as necessary, to return wells to service. Western has not attempted to estimate the annual recovery volumes for the wells due to the pumping variables.

3.3.2 North Boundary Barrier Wall Collection System

Depth-to-groundwater measurements collected in April 2016 and August 2016 indicate that the barrier wall continues to provide a hydraulic barrier for groundwater below the facility. Based on the data collected in 2016, five of the fourteen observation wells contain little to no fluid (i.e., measuring less than 0.5 ft of fluid in the well at any one time).

Table 1 provides a summary of the fluids level measurements collected from the wells along the north boundary barrier wall.

3.3.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System serves as a hydraulic relief system for groundwater accumulating within the western portion of the Facility. All water recovered through the Hammond Ditch French drain west of the pipeline easement discharges to Tank 37, which is then transferred to the API separator for product recovery. The location of Tank 37 is shown on Figure 3. Facility Operators inspect the operation of recovery system and Tank 37 daily and record the amount of water recovered in the tank using a flow meter located on the discharge end of the Tank 37 transfer pump. In 2016, the total volume of fluids recovered at Tank 37 was approximately 2,247,126 gallons.

3.3.4 East Outfall Recovery System

Water recovered through the Hammond Ditch French drain east of the pipeline easement discharges through three outfalls (i.e., Outfall 1, Outfall 2 and Outfall 3). Total fluids from Outfall 1 is recovered via Tank 38 and transferred to the WWTS for treatment prior to disposal through the on-site injection well. Figure 3 shows the location of Tank 38.

Tank 38 piping is equipped with a flow meter to measure the total gallons transferred to the WWTP. In 2016, the total fluid volume recovered at Tank 38 was approximately 10,102,466 gallons.

3.4 Below-Grade Testing and Inspections

Pursuant to conditions of approval stated in Discharge Permit GW-001 (regulated by the Oil Conservation Division), Bloomfield Terminal personnel conducted annual below-grade sump testing. In 2016 all sumps that are in service within the facility were cleaned out with a vacuum truck, visually inspected, and hydrostatically tested, for a minimum of 60 minutes if required to insure integrity. All sumps tested in 2016 passed and were returned to normal service. The sump inspection and repair schedule is included in Appendix C.

As part of the Refinery operational suspension, fourteen of the sewer boxes have been removed from service and 4 remain in service.

3.5 Waste Disposal

Western Refining indefinitely suspended refining operations at the Bloomfield Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through an on-site Class I non-hazardous injection well. Due to mechanical issues, the Class I injection well was shut down on September 22, 2015 and was plugged and abandoned in October 2015. The drilling of a new replacement well began in 2016 but the new well will not be fully operational until 2017. During the interim period, as necessary, wastewater that has been processed through the WWTS is being transported for off-site disposal at a permitted commercial Class I non-hazardous injection well.

Significantly less waste is routinely generated since the suspension of refining operations in November 2009. The on-site landfill is no longer operational, and therefore all operational waste generated is properly characterized and disposed of off-site. A summary of the 2016 wastes is provided in Appendix D.

SECTION 4.0 CONCLUSIONS

The following is a summary of conclusions based on monitoring and inspection data collected in 2016.

4.1 Groundwater Monitoring

Western has in-place a Facility-Wide Groundwater Monitoring Program that is up-dated annually as required under the 2007 Consent Order issued by NMED-HWB. Up-dates to this program include incorporation of additional wells installed as part of on-going completed RCRA Investigation activities. Such up-dates are proposed for agency approval in June of each year. Screening levels used to evaluate the groundwater condition at the Bloomfield Terminal are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Tables 3 through 10 include the most conservative screening level for each respective analyte. Sample results included in the analytical summary tables that exceed the respective sample results are highlighted in yellow and all detected results are bolded. Figure 8 and Figure 9 shows a summary of the BTEX and MTBE concentrations detected site-wide during the April 2016 and August 2016 sampling events, respectively.

Depth-to-groundwater and depth-to-product measurements were collected at all Facility monitoring wells, recovery wells, observation wells, collection wells and sump wells in 2016. Groundwater elevation contours show that groundwater flows in the general northwest direction, with the groundwater under the process areas flowing towards the north boundary barrier wall and Hammond Ditch Collection System.

Groundwater Quality

Based on the analytical results for groundwater monitoring collected in 2016, the following constituents were detected at concentrations in groundwater above their respective most conservative screening levels.

Organic Compounds:	General Chemistry:	Dissolved Metals:
1,2,4-Trimethylbenzene	Chloride	Barium
1,2-Dichloroethane	Sulfate	Chromium
1,3,5-trimethylbenzene 1-Methylnaphthalene	Nitrate	Iron
2-Methylnaphthalene		Manganese
Naphthalene		Selenium
Benzene	Total Metals:	
Ethylbenzene	Arsenic	
MTBE	Barium	
Toluene	Chromium	
Xylenes	Lead	
	Selenium	

Naturally occurring background concentrations in groundwater are currently being evaluated through the Background Investigation activities conducted as part of the July 2007 Consent Order issued by NMED-HWB.

4.2 Outfall and Seep Inspections

Bi-monthly visual inspections of Seep 1, Seep 2, Seep 3, and Seep 5 and along the San Juan River Bluff were conducted in 2016. No visual sheens or odors were identified during the inspections. Fluid in the Seeps is most often prevalent during the spring, corresponding with the times of higher precipitation. In 2016, only Seeps 1 and 3 had sufficient discharge for sample collection in April and none of the seeps had sufficient discharge to allow for sample collection in August.

4.3 Total Fluids Recovery Systems

The Bloomfield Facility operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the former Refinery Complex;
- North Boundary Barrier Collection System;
- Hammond Ditch Recovery System;
- River Terrace Remediation system; and
- East Outfall Recovery System.

All fluids recovered from these systems, with the exception of the effluent from the River Terrace Remediation System, are pumped to the on-site WWTS for treatment prior to disposal through the on-site injection well or by on-site evaporation. Water from the River Terrace is treated separately and is re-used as plant water for facility operations.

For wells located along the river-side of the slurry wall in areas in which groundwater is limited and therefore not suited for pumping, absorbent socks are placed in each individual well where SPH is detected for product recovery. The socks are replaced periodically.

4.4 Below-Grade Testing and Tank Inspections

Sumps were inspected to determine their integrity for service. All sumps tested in 2016 passed inspections and were returned to normal service following completion of testing activities. In addition, petroleum storage tanks continue to be inspected at a frequency that is in compliance with API 650 and 653 guidelines.

SECTION 5.0 REFERENCES

- Groundwater Technology, Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico.
- NMED, 2007, State of New Mexico Environment Department v. San Juan Refining Company and Giant Industries, Inc.; Order July 27, 2007.
- NMOCD, 2010, New Mexico Oil Conservation Division, Discharge Permit Renewal (GW-001) Bloomfield Refinery, July 7, 2010.

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5519.21	21.56	NPP	16.83	5502.38	NPP
	04/15/16	5519.21	21.56	NPP	17.23	5501.98	NPP
	08/18/15	5519.21	21.56	NPP	16.95	5502.26	NPP
	04/20/15	5519.21	21.56	NPP	16.95	5502.26	NPP
N N N / O 4	08/18/14	5519.21	21.56	NPP	17.14	5502.07	NPP
MW-01	04/02/14	5519.21	21.56	NPP	17.60	5501.61	NPP
	08/05/13	5519.21	21.56	NPP	17.18	5502.03	NPP
	04/08/13	5519.21	21.56	NPP	17.51	5501.70	NPP
	08/06/12	5519.21	21.56	NPP	17.11	5502.10	NPP
	04/02/12	5519.21	21.56	NPP	17.56	5501.65	NPP
	08/15/16	5539.27	36.75	NPP	36.29	5502.98	NPP
	04/15/16	5539.27	36.75	NPP	36.33	5502.94	NPP
	08/18/15	5539.27	36.75	NPP	36.13	5503.14	NPP
	04/27/15	5539.27	36.75	NPP	36.25	5503.02	NPP
	08/18/14	5539.27	36.75	NPP	36.49	5503.02	NPP NPP
MW-03	04/02/14	5539.27		NPP	36.49 NWP	5502.78 NWP	NPP NPP
	08/05/13	5539.27	36.75 36.75	NPP	NWP	NWP	NPP NPP
	04/08/13	5539.27	36.75	NPP	NWP	NWP	NPP
	08/06/12	5539.27	36.75	NPP	36.42	5502.85	NPP
	04/02/12	5539.27	36.75	NPP	NWP	NWP	NPP
	08/15/16	5527.78	30.48	NPP	27.21	5500.57	NPP
	04/15/16	5527.78	30.48	NPP	27.10	5500.68	NPP
	08/25/15	5527.78	30.48	NPP	27.94	5499.84	NPP
	04/27/15		30.48	NPP			NPP
		5527.78			27.12	5500.66	
MW-04	08/18/14	5527.78	30.48	NPP	27.47	5500.31	NPP
	04/02/14	5527.78	30.48	NPP	27.45	5500.33	NPP
	08/05/13	5527.78	30.48	NPP	27.45	5500.33	NPP
	04/08/13	5527.78	30.48	NPP	27.41	5500.37	NPP
	08/06/12 04/02/12	5527.78	30.48 30.48	NPP NPP	27.40 27.43	5500.38	NPP NPP
	+	5527.78				5500.35	
	08/16/16	5548.56	37.20	NPP	NWP	NWP	NPP
	04/18/16	5548.56	37.20	NPP	NWP	NWP	NPP
	08/13/15	5548.56	37.20	NPP	NWP	NWP	NPP
	04/27/15	5548.56	37.20	NPP	NWP	NWP	NPP
MW-05	08/18/14	5548.56	37.20	NPP	NWP	NWP	NPP
	04/02/14	5548.56	37.20	NPP	NWP	NWP	NPP
	08/05/13	5548.56	37.20	NPP	NWP	NWP	NPP
	04/08/13	5548.56	37.20	NPP	NWP	NWP	NPP
	08/06/12	5548.56	37.20	NPP	NWP	NWP	NPP
	04/02/12	5548.56	37.20	NPP	NWP	NWP	NPP
	08/16/16	5554.61	48.00	NPP	NWP	NWP	NPP
	04/18/16	5554.61	48.00	NPP	NWP	NWP	NPP
	08/13/15	5554.61	48.00	NPP	NWP	NWP	NPP
	04/27/15	5554.61	48.00	NPP	NWP	NWP	NPP
	08/18/14	5554.61	48.00	NPP	NWP	NWP	NPP
MW-06	04/02/14	5554.61	48.00	NPP	NWP	NWP	NPP
	08/05/13	5554.61	48.00	NPP	NWP	NWP	NPP
	04/08/13	5554.61	48.00	NPP	NWP	NWP	NPP
	08/06/12	5554.61	48.00	NPP	NWP	NWP	NPP
	04/02/12	5554.61	48.00	NPP	NWP	NWP	NPP
	08/17/11	5554.61	48.00	NPP	NWP	NWP	NPP
	04/11/11	5554.61	48.00	NPP	NWP	NWP	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5527.66	62.04	NPP	27.74	5499.92	NPP
	04/15/16	5527.66	62.04	NPP	27.31	5500.35	NPP
	08/13/15	5527.66	62.61	NPP	27.75	5499.91	NPP
	04/27/15	5527.66	62.61	NPP	27.43	5500.23	NPP
MW-07	08/18/14	5527.66	62.61	NPP	28.03	5499.63	NPP
10100-07	04/02/14	5527.66	62.61	NPP	27.58	5500.08	NPP
	08/05/13	5527.66	62.61	NPP	27.88	5499.78	NPP
	04/08/13	5527.66	62.61	NPP	27.45	5500.21	NPP
	08/06/12	5527.66	62.61	NPP	27.87	5499.79	NPP
	04/02/12	5527.66	62.61	NPP	27.40	5500.26	NPP
	08/16/16	5534.58	35.93	NPP	31.59	5502.99	NPP
	04/15/16	5534.58	35.93	NPP	31.62	5502.96	NPP
	08/13/15	5534.58	35.93	NPP	31.42	5503.16	NPP
	04/27/15	5534.58	35.93	NPP	31.54	5503.04	NPP
MW-08	08/18/14	5534.58	35.93	NPP	31.73	5502.85	NPP
10100-08	04/02/14	5534.58	35.93	NPP	32.11	5502.47	NPP
	08/05/13	5534.58	35.93	NPP	31.90	5502.68	NPP
	04/08/13	5534.58	35.93	NPP	31.82	5502.76	NPP
	08/06/12	5534.58	35.93	NPP	31.70	5502.88	NPP
	04/02/12	5534.58	35.93	NPP	31.94	5502.64	NPP
	08/16/16	5510.31	22.94	NPP	11.11	5499.20	NPP
	04/18/16	5510.31	22.94	NPP	11.89	5498.42	NPP
	08/19/15	5510.31	22.94	NPP	11.25	5499.06	NPP
	04/20/15	5510.31	22.94	NPP	11.30	5499.01	NPP
	08/18/14	5510.31	22.94	NPP	10.95	5499.36	NPP
MW-11	04/02/14	5510.31	22.94	NPP	11.85	5498.46	NPP
	08/05/13	5510.31	22.94	NPP	11.82	5498.49	NPP
	04/08/13	5510.31	22.94	NPP	11.91	5498.40	NPP
	08/06/12	5510.31	22.94	NPP	11.72	5498.59	NPP
	04/02/12	5510.31	22.94	NPP	11.90	5498.41	NPP
	08/16/16	5501.61	14.98	NPP	9.49	5492.12	NPP
	04/18/16	5501.61	14.98	NPP	10.02	5491.59	NPP
	08/19/15	5501.61	14.98	NPP	8.52	5493.09	NPP
	04/20/15	5501.61	14.98	NPP	8.55	5493.06	NPP
NAV 40	08/18/14	5501.61	14.98	NPP	8.42	5493.19	NPP
MW-12	04/02/14	5501.61	14.98	NPP	10.20	5491.41	NPP
	08/05/13	5501.61	14.98	NPP	10.70	5490.91	NPP
	04/08/13	5501.61	14.98	NPP	10.58	5491.03	NPP
	08/06/12	5501.61	14.98	NPP	10.53	5491.08	NPP
	04/02/12	5501.61	14.98	NPP	10.54	5491.07	NPP
	08/16/16	5542.04	52.89	NPP	40.67	5501.37	NPP
	04/18/16	5542.04	52.89	NPP	40.51	5501.53	NPP
	08/18/15	5542.04	52.89	NPP	40.53	5501.51	NPP
	04/20/15	5542.04	52.89	NPP	40.68	5501.36	NPP
NASA 40	08/18/14	5542.04	52.89	NPP	40.94	5501.10	NPP
MW-13	04/02/14	5542.04	52.89	NPP	40.90	5501.14	NPP
	08/05/13	5542.04	52.89	NPP	40.85	5501.19	NPP
	04/08/13	5542.04	52.89	NPP	40.80	5501.24	NPP
	08/06/12	5542.04	52.89	NPP	40.77	5501.27	NPP
	04/02/12	5542.04	52.89	NPP	40.72	5501.32	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/16/16	5519.9	27.13	20.60	20.64	5499.29	0.04
	04/15/16	5519.9	27.13	20.60	21.20	5499.18	0.60
	08/13/15	5519.9	27.13	20.60	20.65	5499.29	0.05
	04/27/15	5519.9	27.13	NPP	20.73	5499.17	NPP
MW-20	08/18/14	5519.9	27.13	20.9	21.30	5498.92	0.40
10100-20	04/02/14	5519.9	27.13	20.77	21.80	5498.92	1.03
	08/05/13	5519.9	27.13	20.69	21.41	5499.07	0.72
	04/08/13	5519.9	27.13	20.81	21.65	5498.92	0.84
	08/06/12	5519.9	27.13	20.66	21.60	5499.05	0.94
	04/02/12	5519.9	27.13	20.72	21.67	5498.99	0.95
	08/15/16	5521.99	30.38	NPP	21.21	5500.78	NPP
	04/15/16	5521.99	30.38	NPP	21.68	5500.31	NPP
	08/13/15	5521.99	30.38	21.32	21.33	5500.67	0.01
	04/27/15	5521.99	30.38	NPP	21.54	5500.45	NPP
MW-21	08/18/14	5521.99	30.38	NPP	21.64	5500.35	NPP
IVIVV-Z I	04/02/14	5521.99	30.38	NPP	22.00	5499.99	NPP
	08/05/13	5521.99	30.38	21.83	21.86	5500.15	0.03
	04/08/13	5521.99	30.38	21.82	21.87	5500.16	0.05
	08/06/12	5521.99	30.38	21.75	21.80	5500.23	0.05
	04/02/12	5521.99	30.38	21.96	21.98	5500.03	0.02
	08/16/16	5533.99	41.20	NPP	30.01	5503.98	NPP
	04/18/16	5533.99	41.20	NPP	32.86	5501.13	NPP
	08/13/15	5533.99	41.20	NPP	32.82	5501.17	NPP
	04/27/15	5533.99	41.20	NPP	33.95	5500.04	NPP
MW-25	08/18/14	5533.99	41.20	NPP	33.25	5500.74	NPP
10100-23	04/02/14	5533.99	41.20	NPP	33.24	5500.75	NPP
	08/05/13	5533.99	41.20	33.18	33.20	5500.81	0.02
	04/08/13	5533.99	41.20	33.14	33.15	5500.85	0.01
	08/06/12	5533.99	41.20	33.12	33.15	5500.86	0.03
	04/02/12	5533.99	41.20	33.11	33.12	5500.88	0.01
	08/16/16	5517.88	25.11	17.55	17.65	5500.31	0.10
	04/18/16	5517.88	25.11	17.51	17.65	5500.34	0.14
	08/13/15	5517.88	25.11	17.31	17.55	5500.52	0.24
	04/20/15	5517.88	25.11	17.48	17.72	5500.35	0.24
MW-26	08/18/14	5517.88	25.11	17.7	17.95	5500.13	0.25
10100 20	04/02/14	5517.88	25.11	17.78	17.82	5500.09	0.04
	08/05/13	5517.88	25.11	17.73	18.01	5500.09	0.28
	04/08/13	5517.88	25.11	17.72	17.83	5500.14	0.11
	08/06/12	5517.88	25.11	NPP	17.71	5500.17	NPP
	04/02/12	5517.88	25.11	NPP	17.68	5500.20	NPP
	08/16/16	5518.67	24.42	NPP	19.10	5499.57	NPP
	04/18/16	5518.67	24.42	NPP	18.91	5499.76	NPP
	08/18/15	5518.67	24.42	NPP	18.62	5500.05	NPP
	04/20/15	5518.67	24.42	NPP	18.86	5499.81	NPP
MW-27	08/18/14	5518.67	24.42	NPP	22.38	5496.29	NPP
21	04/02/14	5518.67	24.42	NPP	21.65	5497.02	NPP
	08/05/13	5518.67	24.42	NPP	22.43	5496.24	NPP
	04/08/13	5518.67	24.42	NPP	21.56	5497.11	NPP
	08/06/12	5518.67	24.42	NPP	20.89	5497.78	NPP
	04/02/12	5518.67	24.42	NPP	19.61	5499.06	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5524.97	28.62	NPP	22.68	5502.29	NPP
	04/15/16	5524.97	28.62	NPP	23.04	5501.93	NPP
	08/24/15	5524.97	28.62	NPP	22.70	5502.27	NPP
	04/27/15	5524.97	28.62	NPP	22.83	5502.14	NPP
MW-29	08/18/14	5524.97	28.62	NPP	23.00	5501.97	NPP
WW-29	04/02/14	5524.97	28.62	NPP	23.42	5501.55	NPP
	08/05/13	5524.97	28.62	NPP	23.13	5501.84	NPP
	04/08/13	5524.97	28.62	NPP	23.25	5501.72	NPP
	08/06/12	5524.97	28.62	NPP	23.06	5501.91	NPP
	04/02/12	5524.97	28.62	NPP	23.34	5501.63	NPP
	08/15/16	5536.83	40.13	NPP	33.84	5502.99	NPP
	04/15/16	5536.83	40.13	NPP	33.92	5502.91	NPP
	08/24/15	5536.83	40.13	NPP	33.69	5503.14	NPP
	04/20/15	5536.83	40.13	NPP	33.82	5503.01	NPP
	08/18/14	5536.83	40.13	NPP	34.09	5502.74	NPP
MW-30	04/02/14	5536.83	40.13	34.39	34.40	5502.44	0.01
	08/05/13	5536.83	40.13	NPP	34.21	5502.62	NPP
	04/08/13	5536.83	40.13	NPP	34.16	5502.67	NPP
	08/06/12	5536.83	40.13	NPP	34.02	5502.81	NPP
	04/02/12	5536.83	40.13	NPP	34.22	5502.61	NPP
	08/16/16	5536.24	39.16	NPP	34.30	5501.94	NPP
	04/18/16	5536.24	39.16	NPP	34.13	5502.11	NPP
	08/24/15	5536.24	39.16	NPP	34.15	5502.09	NPP
	04/27/15	5536.24	39.16	NPP	34.34	5501.90	NPP
	08/18/14	5536.24	39.16	NPP	34.55	5501.69	NPP
MW-31	04/02/14	5536.24	39.16	NPP	34.55	5501.69	NPP
	08/05/13		39.16	NPP	34.55		NPP NPP
		5536.24				5501.75	
	04/08/13 08/06/12	5536.24 5536.24	39.16 39.16	NPP NPP	34.37 34.40	5501.87 5501.84	NPP NPP
	04/02/12	5536.24	39.16	NPP	34.35	5501.89	NPP
	08/16/16	5525.64	27.51	NPP	25.37	5500.27	NPP
	04/18/16	5525.64	27.51	NPP	25.25	5500.39	NPP
	08/08/15	5525.64	27.51	NPP	25.18	5500.46	NPP
	04/20/15	5525.64	27.51	NPP	25.30	5500.34	NPP
	08/18/14	5525.64	27.51	NPP	25.52	5500.12	NPP
	04/02/14	5525.64	27.51	NPP	25.55	5500.09	NPP
MW-32	08/05/13	5525.64	27.51	NPP	25.47	5500.17	NPP
	04/08/13	5525.64	27.51	NPP	25.45	5500.17	NPP
	08/06/12	5525.64	27.51	NPP	25.42	5500.19	NPP
	04/02/12	5525.64	27.51	NPP	25.38	5500.26	NPP
	08/16/16	5521.79	25.51	NPP	22.78	5499.01	NPP
	04/18/16	5521.79	25.51	NPP	22.54	5499.25	NPP
	08/18/15	5521.79	25.51	NPP	22.39	5499.40	NPP
	04/20/15	5521.79	25.51	NPP	22.35	5499.44	NPP
	08/18/14	5521.79	25.51	NPP	23.26	5498.53	NPP
MW-33	04/02/14	5521.79	25.51	NPP	23.45	5498.34	NPP
	08/05/13	5521.79	25.51	NPP	23.86	5497.93	NPP
	04/08/13	5521.79	25.51	NPP	23.56	5497.93	NPP
	08/06/12	5521.79	25.51	NPP	23.36	5498.23	NPP NPP
	04/02/12	5521.79	25.51	NPP	22.73	5499.06	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/16/16	5511.63	20.96	NPP	14.05	5497.58	NPP
	04/18/16	5511.63	20.96	NPP	14.57	5497.06	NPP
	08/19/15	5511.63	20.96	NPP	13.90	5497.73	NPP
	04/20/15	5511.63	20.96	NPP	13.83	5497.80	NPP
MW-34	08/18/14	5511.63	20.96	NPP	14.01	5497.62	NPP
10100-04	04/02/14	5511.63	20.96	NPP	14.77	5496.86	NPP
	08/05/13	5511.63	20.96	NPP	14.63	5497.00	NPP
	04/08/13	5511.63	20.96	NPP	14.70	5496.93	NPP
	08/06/12	5511.63	20.96	NPP	14.33	5497.30	NPP
	04/02/12	5511.63	20.96	NPP	14.37	5497.26	NPP
	08/16/16	5518.95	26.45	NPP	22.04	5496.91	NPP
	04/18/16	5518.95	26.45	NPP	22.44	5496.51	NPP
	08/19/15	5518.95	26.45	NPP	21.83	5497.12	NPP
	04/20/15	5518.95	26.45	NPP	22.85	5496.10	NPP
MM 25	08/18/14	5518.95	26.45	NPP	22.34	5496.61	NPP
MW-35	04/02/14	5518.95	26.45	NPP	22.69	5496.26	NPP
	08/05/13	5518.95	26.45	NPP	22.54	5496.41	NPP
	04/08/13	5518.95	26.45	NPP	22.57	5496.38	NPP
	08/06/12	5518.95	26.45	NPP	22.29	5496.66	NPP
	04/02/12	5518.95	26.45	NPP	22.30	5496.65	NPP
	08/16/16	5516.95	23.26	NPP	20.18	5496.77	NPP
	04/18/16	5516.95	23.26	NPP	20.95	5496.00	NPP
	08/13/15	5516.95	23.26	NPP	20.16	5496.79	NPP
	04/27/15	5516.95	23.26	NPP	19.87	5497.08	NPP
NAV 00	08/18/14	5516.95	23.26	NPP	19.64	5497.31	NPP
MW-36	04/02/14	5516.95	23.26	NPP	21.12	5495.83	NPP
	08/05/13	5516.95	23.26	NPP	20.98	5495.97	NPP
	04/08/13	5516.95	23.26	NPP	21.10	5495.85	NPP
	08/06/12	5516.95	23.26	NPP	20.82	5496.13	NPP
	04/02/12	5516.95	23.26	NPP	21.02	5495.93	NPP
	08/16/16	5519.62	27.58	NPP	23.21	5496.41	NPP
	04/18/16	5519.62	27.58	NPP	23.66	5495.96	NPP
	08/19/15	5519.62	27.58	NPP	23.06	5496.56	NPP
	04/20/15	5519.62	27.58	NPP	23.13	5496.49	NPP
MW-37	08/18/14	5519.62	27.58	NPP	22.98	5496.64	NPP
10100-31	04/02/14	5519.62	27.58	NPP	23.72	5495.90	NPP
	08/05/13	5519.62	27.58	NPP	23.69	5495.93	NPP
	04/08/13	5519.62	27.58	NPP	23.72	5495.90	NPP
	08/06/12	5519.62	27.58	NPP	23.51	5496.11	NPP
	04/02/12	5519.62	27.58	NPP	23.58	5496.04	NPP
	08/16/16	5519.19	26.82	NPP	23.13	5496.06	NPP
	04/18/16	5519.19	26.82	NPP	23.64	5495.55	NPP
	08/19/15	5519.19	26.82	NPP	23.19	5496.00	NPP
	04/20/15	5519.19	26.82	NPP	23.08	5496.11	NPP
MW-38	08/18/14	5519.19	26.82	NPP	22.45	5496.74	NPP
14144-00	04/02/14	5519.19	26.82	NPP	23.83	5495.36	NPP
	08/05/13	5519.19	26.82	NPP	23.91	5495.28	NPP
	04/08/13	5519.19	26.82	NPP	23.87	5495.32	NPP
	08/06/12	5519.19	26.82	NPP	23.78	5495.41	NPP
	04/02/12	5519.19	26.82	NPP	23.80	5495.39	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/16/16	5520.83	38.34	NPP	25.80	5495.03	NPP
	04/15/16	5520.83	38.34	NPP	25.60	5495.23	NPP
	08/13/15	5520.83	38.34	NPP	25.78	5495.05	NPP
	04/27/15	5520.83	38.34	NPP	25.75	5495.08	NPP
NAVA (00	08/18/14	5520.83	38.34	NPP	25.94	5494.89	NPP
MW-39	04/02/14	5520.83	38.34	NPP	25.70	5495.13	NPP
	08/05/13	5520.83	38.34	NPP	25.95	5494.88	NPP
	04/08/13	5520.83	38.34	NPP	25.70	5495.13	NPP
	08/06/12	5520.83	38.34	NPP	26.05	5494.78	NPP
	04/02/12	5520.83	38.34	NPP	25.76	5495.07	NPP
	08/16/16	5527.31	30.07	NPP	28.14	5499.17	NPP
	04/15/16	5527.31	30.07	NPP	28.25	5499.06	NPP
	08/13/15	5527.31	30.07	28.08	28.09	5499.23	0.01
	04/27/15	5527.31	30.07	NPP	28.08	5499.23	NPP
	08/18/14	5527.31	30.07	28.59	28.65	5498.71	0.06
MW-40	04/02/14	5527.31	30.07	28.55	29.10	5498.65	0.55
	08/05/13	5527.31	30.07	28.42	28.81	5498.81	0.39
	04/08/13	5527.31	30.07	28.48	28.77	5498.77	0.29
	08/06/12	5527.31	30.07	28.44	28.72	5498.81	0.29
	04/02/12	5527.31	30.07	NPP	28.57	5498.74	NPP
	08/16/16	5526.41	31.62	NPP	26.50	5499.91	NPP
	04/15/16	5526.41	31.62	26.55	26.66	5499.84	0.11
	08/13/15	5526.41	31.62	26.43	26.67	5499.93	0.24
	04/27/15	5526.41	31.62	26.59	26.80	5499.78	0.21
	08/18/14	5526.41	31.62	26.96	27.70	5499.30	0.74
MW-41	04/02/14	5526.41	31.62	26.96	27.99	5499.24	1.03
	08/05/13	5526.41	31.62	26.83	27.75	5499.40	0.92
	04/08/13	5526.41	31.62	26.85	27.78	5499.40	0.92
	08/06/13	5526.41	31.62	26.86	27.76	5499.33	1.08
	04/02/12	5526.41	31.62	26.89	28.07	5499.28	1.18
	08/16/16	5535.44	50.91	NPP	34.32	5501.12	NPP
	04/15/16	5535.44	50.91	NPP	33.98	5501.46	NPP
	08/24/15	5535.44	50.91	NPP	34.30	5501.14	NPP
	04/27/15	5535.44	50.91	NPP	34.98	5500.46	NPP
	08/18/14	5535.44	50.91	NPP	34.57	5500.40	NPP
MW-44	04/02/14	5535.44	50.91	NPP	34.30	5501.14	NPP
	08/05/13	5535.44	50.91	NPP	34.46	5500.98	NPP
	04/08/13	5535.44	50.91	NPP	34.40	5501.40	NPP
	08/06/13	5535.44	50.91	NPP	34.42	5501.40	NPP
	04/02/12	5535.44	50.91	NPP	33.93	5501.51	NPP
	08/16/16	5506.36	16.92	NPP	11.78	5494.58	NPP
	04/15/16	5506.36	16.92	NPP	11.88	5494.48	NPP
	08/13/15	5506.36	16.92	NPP	11.85	5494.51	NPP
	04/27/15	5506.36	16.92	NPP	11.95	5494.41	NPP
	08/18/14	5506.36	16.92	NPP	11.85	5494.51	NPP
MW-45	04/02/14	5506.36	16.92	12.07	12.15	5494.27	0.08
	08/05/13	5506.36	16.92	11.88	11.89	5494.48	0.00
	04/08/13	5506.36	16.92	11.98	12.05	5494.46	0.01
	08/06/13	5506.36	16.92	11.96	12.05	5494.36	0.07
	04/02/12	5506.36	16.92	11.95	12.10	5494.38	0.13

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5504.65	10.39	NPP	NWP	NWP	NPP
	04/15/16	5504.65	10.39	NPP	10.03	5494.62	NPP
	08/13/15	5504.65	10.39	NPP	9.94	5494.71	NPP
	04/27/15	5504.65	10.39	NPP	9.94	5494.71	NPP
MW-46	08/18/14	5504.65	10.39	NPP	NWP	NWP	NPP
10100-40	04/02/14	5504.65	10.39	NPP	NWP	NWP	NPP
	08/05/13	5504.65	10.39	NPP	NWP	NWP	NPP
	04/08/13	5504.65	10.39	NPP	NWP	NWP	NPP
	08/06/12	5504.65	10.39	NPP	NWP	NWP	NPP
	04/02/12	5504.65	10.39	NPP	NWP	NWP	NPP
	08/15/16	5506.77	14.28	NPP	12.14	5494.63	NPP
	04/15/16	5506.77	14.28	NPP	12.55	5494.22	NPP
	08/13/15	5506.77	14.28	NPP	11.82	5494.95	NPP
	04/21/15	5506.77	14.28	NPP	12.23	5494.54	NPP
NAVA / 47	08/18/14	5506.77	14.28	NPP	13.30	5493.47	NPP
MW-47	04/02/14	5506.77	14.28	NPP	13.80	5492.97	NPP
	08/05/13	5506.77	14.28	NPP	12.97	5493.80	NPP
	04/08/13	5506.77	14.28	NPP	12.84	5493.93	NPP
	08/06/12	5506.77	14.28	13.22	13.27	5493.54	0.05
	04/02/12	5506.77	14.28	12.85	13.17	5493.86	0.32
	08/15/16	5518.79	20.00	NPP	16.50	5502.29	NPP
	04/15/16	5518.79	20.00	NPP	16.87	5501.92	NPP
	08/13/15	5518.79	20.00	NPP	16.62	5502.17	NPP
	04/27/15	5518.79	20.00	NPP	16.67	5502.12	NPP
	08/18/14	5518.79	20.00	NPP	16.78	5502.01	NPP
MW-50	04/02/14	5518.79	20.00	NPP	17.28	5501.51	NPP
	08/05/13	5518.79	20.00	NPP	16.76	5502.03	NPP
	04/08/13	5518.79	20.00	NPP	17.21	5501.58	NPP
	08/06/12	5518.79	20.00	NPP	16.88	5501.91	NPP
	04/02/12	5518.79	20.00	NPP	17.22	5501.57	NPP
	08/15/16	5515.58	20.00	NPP	14.18	5501.40	NPP
	04/15/16	5515.58	20.00	NPP	14.79	5500.79	NPP
	08/13/15	5515.58	20.00	NPP	14.37	5501.21	NPP
	04/27/15	5515.58	20.00	NPP	14.52	5501.06	NPP
NAV 54	08/18/14	5515.58	20.00	NPP	14.48	5501.10	NPP
MW-51	04/02/14	5515.58	20.00	NPP	14.98	5500.60	NPP
	08/05/13	5515.58	20.00	NPP	14.54	5501.04	NPP
	04/08/13	5515.58	20.00	NPP	14.95	5500.63	NPP
	08/06/12	5515.58	20.00	NPP	14.65	5500.93	NPP
	04/02/12	5515.58	20.00	NPP	15.00	5500.58	NPP
	08/16/16	5538.63	41.00	NPP	36.17	5502.46	NPP
	04/15/16	5538.63	41.00	NPP	36.19	5502.44	NPP
	08/13/15	5538.63	41.00	NPP	36.00	5502.63	NPP
	04/20/15	5538.63	41.00	NPP	36.05	5502.58	NPP
N 4) 4 / 50	08/18/14	5538.63	41.00	NPP	36.31	5502.32	NPP
MW-52	04/02/14	5538.63	41.00	NPP	36.69	5501.94	NPP
	08/05/13	5538.63	41.00	NPP	36.47	5502.16	NPP
	04/08/13	5538.63	41.00	NPP	36.41	5502.22	NPP
	08/06/12	5538.63	41.00	NPP	36.28	5502.35	NPP
	04/02/12	5538.63	41.00	NPP	36.50	5502.13	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/16/16	5541.32	41.50	NPP	38.90	5502.42	NPP
	04/15/16	5541.32	41.50	NPP	38.85	5502.47	NPP
	08/13/15	5541.32	41.50	NPP	38.68	5502.64	NPP
	04/27/15	5541.32	41.50	NPP	38.80	5502.52	NPP
MW-53	08/18/14	5541.32	41.50	NPP	39.05	5502.27	NPP
10100-00	04/02/14	5541.32	41.50	NPP	39.32	5502.00	NPP
	08/05/13	5541.32	41.50	NPP	39.16	5502.16	NPP
	04/08/13	5541.32	41.50	NPP	39.04	5502.28	NPP
	08/06/12	5541.32	41.50	NPP	38.93	5502.39	NPP
	04/02/12	5541.32	41.50	NPP	39.10	5502.22	NPP
	08/16/16	5530.08	38.00	31.87	31.88	5498.21	0.01
	04/15/16	5530.08	38.00	32.46	32.52	5497.61	0.06
	08/13/15	5530.08	38.00	32.40	32.45	5497.67	0.05
	04/27/15	5530.08	38.00	32.02	32.05	5498.05	0.03
MW-54	08/18/14	5530.08	38.00	32.38	32.52	5497.67	0.14
10100-34	04/02/14	5530.08	38.00	32.75	32.95	5497.29	0.20
	08/05/13	5530.08	38.00	32.45	32.64	5497.59	0.19
	04/08/13	5530.08	38.00	32.71	32.93	5497.33	0.22
	08/06/12	5530.08	38.00	32.40	32.61	5497.64	0.21
	04/02/12	5530.08	38.00	32.75	33.09	5497.26	0.34
	08/15/16	5519.84	27.25	NPP	21.74	5498.10	NPP
	04/15/16	5519.84	27.25	NPP	21.71	5498.13	NPP
	08/13/15	5519.84	27.25	22.08	22.09	5497.76	0.01
	04/27/15	5519.84	27.25	21.85	21.88	5497.98	0.03
	08/18/14	5519.84	27.25	21.84	21.86	5498.00	0.02
MW-55	04/02/14	5519.84	27.25	21.95	22.01	5497.88	0.06
	08/05/13	5519.84	27.25	21.74	22.58	5497.93	0.84
	04/08/13	5519.84	27.25	21.05	21.95	5498.61	0.90
	08/06/12	5519.84	27.25	21.81	22.53	5497.89	0.72
	04/02/12	5519.84	27.25	NPP	22.07	5497.77	NPP
	08/15/16	5519.31	23.75	NPP	17.85	5501.46	NPP
	04/15/16	5519.31	23.75	NPP	18.03	5501.28	NPP
	08/13/15	5519.31	23.75	17.86	17.87	5501.45	0.01
	04/27/15	5519.31	23.75	18.04	18.05	5501.27	0.01
NAVA / 50	08/18/14	5519.31	23.75	18.10	18.25	5501.18	0.15
MW-56	04/02/14	5519.31	23.75	18.26	19.10	5500.88	0.84
	08/05/13	5519.31	23.75	18.11	18.87	5501.05	0.76
	04/08/13	5519.31	23.75	18.25	19.33	5500.84	1.08
	08/06/12	5519.31	23.75	19.76	20.69	5499.36	0.93
	04/02/12	5519.31	23.75	19.86	21.00	5499.22	1.14
	08/15/16	5521.17	24.25	NPP	19.29	5501.88	NPP
	04/15/16	5521.17	24.25	NPP	19.46	5501.71	NPP
	08/13/15	5521.17	24.25	19.42	19.43	5501.75	0.01
	04/27/15	5521.17	24.25	19.42	19.43	5501.75	0.01
N 4\A / F 7	08/18/14	5521.17	24.25	19.60	19.75	5501.54	0.15
MW-57	04/02/14	5521.17	24.25	19.78	20.36	5501.27	0.58
	08/05/13	5521.17	24.25	19.60	20.30	5501.43	0.70
	04/08/13	5521.17	24.25	19.66	20.35	5501.37	0.69
	08/06/12	5521.17	24.25	21.44	22.37	5499.54	0.93
	04/02/12	5521.17	24.25	21.50	22.79	5499.41	1.29

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5520.29	27.00	NPP	20.93	5499.36	NPP
	04/15/16	5520.29	27.00	20.9	21.06	5499.36	0.16
	08/13/15	5520.29	27.00	20.8	20.83	5499.48	0.03
	04/27/15	5520.29	27.00	20.97	21.75	5499.16	0.78
MW-58	08/18/14	5520.29	27.00	21.08	21.87	5499.05	0.79
10100-30	04/02/14	5520.29	27.00	21.25	22.90	5498.71	1.65
	08/05/13	5520.29	27.00	21.10	22.17	5498.98	1.07
	04/08/13	5520.29	27.00	21.25	22.35	5498.82	1.10
	08/06/12	5520.29	27.00	20.98	22.05	5499.10	1.07
	04/02/12	5520.29	27.00	20.98	22.13	5499.08	1.15
	08/16/16	5545.20	44.25	NPP	43.52	5501.68	NPP
	04/18/16	5545.20	44.25	NPP	43.36	5501.84	NPP
	08/13/15	5545.20	44.25	NPP	43.42	5501.78	NPP
	04/27/15	5545.20	44.25	NPP	43.55	5501.65	NPP
MW-59	08/18/14	5545.20	44.25	NPP	43.75	5501.45	NPP
10100-39	04/02/14	5545.20	44.25	NPP	43.73	5501.47	NPP
	08/05/13	5545.20	44.25	NPP	43.67	5501.53	NPP
	04/08/13	5545.20	44.25	NPP	43.56	5501.64	NPP
	08/06/12	5545.20	44.25	NPP	43.57	5501.63	NPP
	04/02/12	5545.20	44.25	NPP	43.54	5501.66	NPP
	08/16/16	5543.71	43.33	NPP	42.72	5500.99	NPP
	04/18/16	5543.71	43.33	NPP	42.55	5501.16	NPP
	08/13/15	5543.71	43.33	NPP	42.62	5501.09	NPP
	04/27/15	5543.71	43.33	NPP	42.76	5500.95	NPP
NAVA / CO	08/18/14	5543.71	43.33	NPP	43.15	5500.56	NPP
MW-60	04/02/14	5543.71	43.33	NPP	43.20	5500.51	NPP
	08/05/13	5543.71	43.33	NPP	42.90	5500.81	NPP
	04/08/13	5543.71	43.33	NPP	42.85	5500.86	NPP
	08/06/12	5543.71	43.33	NPP	42.84	5500.87	NPP
	04/02/12	5543.71	43.33	NPP	42.79	5500.92	NPP
	08/16/16	5539.41	40.00	36.6	36.93	5502.74	NPP
	04/18/16	5539.41	40.00	36.6	36.86	5502.76	0.26
	08/13/15	5539.41	40.00	36.38	36.70	5502.97	0.32
	04/27/15	5539.41	40.00	36.60	36.96	5502.74	0.36
MW-61	08/18/14	5539.41	40.00	36.80	37.40	5502.49	0.60
I O-VVIVI	04/02/14	5539.41	40.00	36.88	37.86	5502.33	0.98
	08/05/13	5539.41	40.00	36.80	37.70	5502.43	0.90
	04/08/13	5539.41	40.00	36.71	37.40	5502.56	0.69
	08/06/12	5539.41	40.00	36.67	37.25	5502.62	0.58
	04/02/12	5539.41	40.00	36.72	37.48	5502.54	0.76
	08/16/16	5561.32	58.25	NPP	56.51	5504.81	NPP
	04/18/16	5561.32	58.25	NPP	56.57	5504.75	NPP
	08/13/15	5561.32	58.25	NPP	56.59	5504.73	NPP
	04/27/15	5561.32	58.25	NPP	56.33	5504.99	NPP
MW-62	08/18/14	5561.32	58.25	NPP	56.28	5505.04	NPP
IVIVV-6∠	04/02/14	5561.32	58.25	NPP	56.05	5505.27	NPP
	08/05/13	5561.32	58.25	NPP	56.36	5504.96	NPP
	04/08/13	5561.32	58.25	NPP	55.93	5505.39	NPP
	08/06/12	5561.32	58.25	NPP	56.45	5504.87	NPP
	04/02/12	5561.32	58.25	NPP	55.85	5505.47	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/16/16	5547.26	46.00	NPP	40.01	5507.25	NPP
	04/18/16	5547.26	46.00	NPP	44.87	5502.39	NPP
	08/13/15	5547.26	46.00	NPP	44.84	5502.42	NPP
	04/27/15	5547.26	46.00	NPP	45.03	5502.23	NPP
MW-63	08/18/14	5547.26	46.00	NPP	45.23	5502.03	NPP
10100-03	04/02/14	5547.26	46.00	NPP	45.27	5501.99	NPP
	08/05/13	5547.26	46.00	NPP	45.20	5502.06	NPP
	04/08/13	5547.26	46.00	NPP	45.09	5502.17	NPP
	08/06/12	5547.26	46.00	NPP	45.07	5502.19	NPP
	04/02/12	5547.26	46.00	NPP	45.07	5502.19	NPP
	08/16/16	5552.29	52.25	NPP	50.26	5502.03	NPP
	04/18/16	5552.29	52.25	NPP	50.11	5502.18	NPP
	08/13/15	5552.29	52.25	NPP	50.17	5502.12	NPP
	04/27/15	5552.29	52.25	NPP	50.27	5502.02	NPP
	08/18/14	5552.29	52.25	NPP	50.46	5501.83	NPP
MW-64	04/02/14	5552.29	52.25	NPP	50.45	5501.84	NPP
	08/05/13	5552.29	52.25	NPP	50.37	5501.92	NPP
	04/08/13	5552.29	52.25	NPP	50.32	5501.97	NPP
	08/06/13	5552.29	52.25	NPP	50.32	5502.00	NPP
	04/02/12	5552.29	52.25	NPP	50.29	5502.00	NPP
	08/16/16	5539.62	44.25	NPP	36.93	5502.69	NPP
	04/18/16	5539.62	44.25	NPP	36.94	5502.68	NPP
	08/13/15	5539.62	44.25	NPP	36.70	5502.92	NPP
	04/27/15	5539.62	44.25	NPP	37.50	5502.12	NPP
	08/18/14	5539.62	44.25	NPP	37.15	5502.47	NPP
MW-65	04/02/14	5539.62	44.25	NPP	37.38	5502.24	NPP
	08/05/13	5539.62	44.25	NPP	37.24	5502.38	NPP
	04/08/13	5539.62	44.25	NPP	37.13	5502.49	NPP
	08/06/12	5539.62	44.25	NPP	37.04	5502.58	NPP
	04/02/12	5539.62	44.25	NPP	37.19	5502.43	NPP
	08/16/16	5544.62	43.25	41.82	41.83	5502.80	0.01
	04/18/16	5544.62	43.25	NPP	41.75	5502.87	NPP
	08/13/15	5544.62	43.25	41.57	41.58	5503.05	0.01
	04/27/15	5544.62	43.25	NPP	41.81	5502.81	NPP
	08/18/14	5544.62	43.25	42.01	42.13	5502.59	0.12
MW-66	04/02/14	5544.62	43.25	42.13	42.15	5502.59	0.12
	08/05/13		43.25	42.13	42.45		0.32
	04/08/13	5544.62	43.25			5502.56	
	08/06/12	5544.62 5544.62	43.25	42.04 41.95	42.20 42.13	5502.55 5502.63	0.16 0.18
	04/02/12	5544.62	43.25	42.03	42.13	5502.56	0.16
	08/16/16	5523.31	25.14	NPP	20.94	5502.37	NPP
	04/15/16	5523.31	25.14	NPP	21.25	5502.06	NPP
	08/13/15	5523.31	25.14	NPP	21.23	5502.00	NPP
	04/27/15	5523.31	25.14	NPP	21.10	5502.21	NPP
	08/18/14	5523.31	25.14	NPP	21.42	5502.21	NPP
MW-67							
	04/02/14	5523.31	25.14	NPP	21.54	5501.77	NPP
	08/05/13	5523.31	25.14	NPP	21.24	5502.07	NPP
	04/08/13	5523.31	25.14	NPP	21.47	5501.84	NPP
	08/06/12 04/02/12	5523.31 5523.31	25.14 25.14	NPP NPP	20.93 21.53	5502.38 5501.78	NPP NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5517.37	20.58	NPP	16.20	5501.17	NPP
	04/15/16	5517.37	20.58	NPP	16.66	5500.71	NPP
	08/13/15	5517.37	20.58	NPP	16.23	5501.14	NPP
	04/27/15	5517.37	20.58	NPP	16.40	5500.97	NPP
MANA/ GO	08/18/14	5517.37	20.58	NPP	16.50	5500.87	NPP
MW-68	04/02/14	5517.37	20.58	NPP	16.94	5500.43	NPP
	08/05/13	5517.37	20.58	NPP	16.57	5500.80	NPP
	04/08/13	5517.37	20.58	NPP	16.84	5500.53	NPP
	08/06/12	5517.37	20.58	NPP	16.63	5500.74	NPP
	04/02/12	5517.37	20.58	NPP	16.40	5500.97	NPP
	08/15/16	5508.51	12.08	NPP	11.89	5496.62	NPP
	04/15/16	5508.51	12.08	NPP	11.89	5496.62	NPP
	08/13/15	5508.51	12.08	NPP	NWP	NWP	NPP
	04/27/15	5508.51	12.08	NPP	11.81	5496.70	NPP
NAVA / CO	08/18/14	5508.51	12.08	NPP	11.96	5496.55	NPP
MW-69	04/02/14	5508.51	12.08	NPP	11.96	5496.55	NPP
	08/05/13	5508.51	12.08	NPP	11.90	5496.61	NPP
	04/08/13	5508.51	12.08	NPP	11.91	5496.60	NPP
	08/06/12	5508.51	12.08	NPP	11.93	5496.58	NPP
	04/02/12	5508.51	12.08	NPP	11.92	5496.59	NPP
	08/15/16	5527.96	26.25	NPP	25.43	5502.53	NPP
	04/15/16	5527.96	26.25	NPP	25.63	5502.33	NPP
	08/13/15	5527.96	26.25	NPP	25.29	5502.67	NPP
MW-70	04/27/15	5527.96	26.25	NPP	25.46	5502.50	NPP
	08/18/14	5527.96	26.25	NPP	25.56	5502.40	NPP
	04/02/14	5527.96	26.25	NPP	26.05	5501.91	NPP
	08/05/13	5527.96	26.25	NPP	25.85	5502.11	NPP
	08/16/16	5510.77	22.73	NPP	10.40	5500.37	NPP
	04/18/16	5510.77	22.73	NPP	11.55	5499.22	NPP
	08/13/15	5510.77	22.73	NPP	10.71	5500.06	NPP
	04/27/15	5510.77	22.73	NPP	11.09	5499.68	NPP
D 00	08/18/14	5510.77	22.73	NPP	10.27	5500.50	NPP
P-03	04/02/14	5510.77	22.73	NPP	11.27	5499.50	NPP
	08/05/13	5510.77	22.73	NPP	11.04	5499.73	NPP
	04/08/13	5510.77	22.73	NPP	11.62	5499.15	NPP
	08/06/12	5510.77	22.73	NPP	10.91	5499.86	NPP
	04/02/12	5510.77	22.73	NPP	11.80	5498.97	NPP
	08/16/16	5529.34	40.80	30.6	30.71	5498.72	0.11
	04/15/16	5529.34	40.80	NPP	31.31	5498.03	NPP
	08/13/15	5529.34	40.80	30.77	30.78	5498.57	0.01
	04/27/15	5529.34	40.80	NPP	30.83	5498.51	NPP
RW-01	08/18/14	5529.34	40.80	NPP	31.15	5498.19	NPP
Γ. V V −U I	04/02/14	5529.34	40.80	NPP	31.62	5497.72	NPP
	08/05/13	5529.34	40.80	31.29	31.30	5498.05	0.01
	04/08/13	5529.34	40.80	NPP	31.57	5497.77	NPP
	08/06/12	5529.34	40.80	NPP	31.24	5498.10	NPP
	04/02/12	5529.34	40.80	31.64	31.65	5497.70	0.01

	Date	Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5526.94	35.86	NPP	26.43	5500.51	NPP
	04/15/16	5526.94	35.86	NPP	26.35	5500.59	NPP
	08/13/15	5526.94	35.86	NPP	26.26	5500.68	NPP
	04/27/15	5526.94	35.86	NPP	26.37	5500.57	NPP
RW-02	08/18/14	5526.94	35.86	26.69	26.79	5500.23	0.10
02	04/02/14	5526.94	35.86	NPP	26.67	5500.27	NPP
	08/05/13	5526.94	35.86	NPP	26.70	5500.24	NPP
	04/08/13	5526.94	35.86	NPP	26.65	5500.29	NPP
	08/06/12	5526.94	35.86	NPP	26.65	5500.29	NPP
	04/02/12	5526.94	35.86	NPP	26.70	5500.24	NPP
	08/16/16	5520.35	34.57	NPP	21.34	5499.01	NPP
	04/15/16	5520.35	34.57	NPP	22.25	5498.10	NPP
	08/13/15	5520.35	34.57	NPP	22.02	5498.33	NPP
	04/27/15	5520.35	34.57	NPP	21.59	5498.76	NPP
RW-03	08/18/14	5520.35	34.57	NPP	21.53	5498.82	NPP
00	04/02/14	5520.35	34.57	NPP	22.42	5497.93	NPP
	08/05/13	5520.35	34.57	NPP	22.10	5498.25	NPP
	04/08/13	5520.35	34.57	NPP	22.57	5497.78	NPP
	08/06/12	5520.35	34.57		Maintenance Be	ing Conducted	
	04/02/12	5520.35	34.57	22.60	22.65	5497.74	0.05
	08/16/16	5523.21	34.04	24.64	24.67	5498.56	NPP
	04/15/16	5523.21	34.04	24.64	24.67	5498.56	0.03
	08/13/15	5523.21	34.04	24.64	24.70	5498.56	0.06
	04/27/15	5523.21	34.04	24.77	24.87	5498.42	0.10
RW-09	08/18/14	5523.21	34.04	24.75	25.09	5498.39	0.34
00	04/02/14	5523.21	34.04	NPP	24.89	5498.32	NPP
	08/05/13	5523.21	34.04	24.61	24.95	5498.53	0.34
	04/08/13	5523.21	34.04	24.78	25.10	5498.37	0.32
	08/06/12	5523.21	34.04	NPP	25.05	5498.16	NPP
	04/02/12	5523.21	34.04	NPP	25.10	5498.11	NPP
	08/15/16	5537.5	41.94	34.79	34.83	5502.70	NPP
	04/15/16	5537.5	41.94	34.79	36.09	5502.45	1.30
	08/13/15	5537.5	41.94	NPP	34.92	5502.58	NPP
	04/27/15	5537.5	41.94	NPP	34.95	5502.55	NPP
RW-14	08/18/14	5537.5	41.94	35.94	36.05	5501.54	0.11
	04/02/14	5537.5	41.94	35.49	35.50	5502.01	0.01
	08/05/13	5537.5	41.94	NPP	35.29	5502.21	NPP
	04/08/13	5537.5	41.94	NPP	35.30	5502.20	NPP
	08/06/12	5537.5	41.94	35.13	35.18	5502.36	0.05
	04/02/12	5537.5	41.94	35.28	36.12	5502.05	0.84
	08/15/16	5536.83	43.43	NPP	34.68	5502.15	NPP
	04/15/16	5536.83	43.43	NPP	34.89	5501.94	NPP
	08/13/15	5536.83	43.43	NPP	34.46	5502.37	NPP
	04/27/15	5536.83	43.43	NPP	34.75	5502.08	NPP
RW-15	08/18/14	5536.83	43.43	NPP	35.95	5500.88	NPP
	04/02/14	5536.83	43.43	NPP	35.31	5501.52	NPP
	08/05/13	5536.83	43.43	NPP	35.12	5501.71	NPP
	04/08/13	5536.83	43.43	NPP	35.11	5501.72	NPP
	08/06/12 04/02/12	5536.83 5536.83	43.43 43.43	NPP NPP	34.98 35.17	5501.85 5501.66	NPP NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5535.45	41.48	NPP	33.85	5501.60	NPP
	04/15/16	5535.45	41.48	33.87	33.90	5501.57	0.03
	08/13/15	5535.45	41.48	33.30	35.50	5501.71	2.20
	04/27/15	5535.45	41.48	33.83	34.15	5501.56	0.32
D) \(\lambda \) \(\lambda \)	08/18/14	5535.45	41.48	34.21	34.49	5501.18	0.28
RW-16	04/02/14	5535.45	41.48	34.31	34.89	5501.02	0.58
	08/05/13	5535.45	41.48	34.30	34.62	5501.09	0.32
	04/08/13	5535.45	41.48	34.10	34.20	5501.33	0.10
	08/06/12	5535.45	41.48	34.02	34.18	5501.40	0.16
	04/02/12	5535.45	41.48	NPP	34.18	5501.27	NPP
	08/15/16	5533.84	41.89	NPP	32.94	5500.90	NPP
	04/15/16	5533.84	41.89	NPP	32.89	5500.95	NPP
	08/13/15	5533.84	41.89	32.67	32.68	5501.17	0.01
	04/27/15	5533.84	41.89	33.04	33.08	5500.79	0.04
RW-17	08/18/14	5533.84	41.89	NPP	33.27	5500.57	NPP
KVV-17	04/02/14	5533.84	41.89	NPP	33.39	5500.45	NPP
	08/05/13	5533.84	41.89	NPP	33.32	5500.52	NPP
	04/08/13	5533.84	41.89	NPP	33.18	5500.66	NPP
	08/06/12	5533.84	41.89	NPP	33.20	5500.64	NPP
	04/02/12	5533.84	41.89	NPP	33.25	5500.59	NPP
	08/16/16	5529.38	37.58	NPP	32.92	5496.46	NPP
	04/15/16	5529.38	37.58	NPP	29.84	5499.54	NPP
	08/13/15	5529.38	37.58	NPP	29.88	5499.50	NPP
	04/27/15	5529.38	37.58	NPP	30.02	5499.36	NPP
DW 40	08/18/14	5529.38	37.58	30.32	32.02	5498.72	1.70
RW-18	04/02/14	5529.38	37.58	NPP	30.47	5498.91	NPP
	08/05/13	5529.38	37.58	NPP	31.64	5497.74	NPP
	04/08/13	5529.38	37.58	NPP	30.18	5499.20	NPP
	08/06/12	5529.38	37.58	NPP	30.69	5498.69	NPP
	04/02/12	5529.38	37.58	NPP	28.05	5501.33	NPP
	08/15/16	5530.51	36.64	NPP	31.16	5499.35	NPP
	04/15/16	5530.51	36.64	NPP	30.04	5500.47	NPP
	08/13/15	5530.51	36.64	NPP	29.96	5500.55	NPP
	04/27/15	5530.51	36.64	NPP	30.15	5500.36	NPP
RW-19	08/18/14	5530.51	36.64	30.3	30.75	5500.12	0.45
MVV-19	04/02/14	5530.51	36.64	30.5	30.85	5499.94	0.35
	08/05/13	5530.51	36.64	NPP	30.50	5500.01	NPP
	04/08/13	5530.51	36.64	NPP	30.40	5500.11	NPP
	08/06/12	5530.51	36.64	NPP	30.40	5500.11	NPP
	04/02/12	5530.51	36.64	NPP	30.45	5500.06	NPP
	08/16/16	5524.44	35.60	25.51	25.74	5498.88	0.23
	04/15/16	5524.44	35.60	25.5	25.73	5498.89	0.23
	08/13/15	5524.44	35.60	25.5	25.55	5498.93	0.05
	04/27/15	5524.44	35.60	25.7	25.80	5498.72	0.10
RW-22	08/18/14	5524.44	35.60	25.73	26.17	5498.62	0.44
NVV-22	04/02/14	5524.44	35.60	25.87	26.07	5498.53	0.20
	08/05/13	5524.44	35.60	NPP	25.62	5498.82	NPP
	04/08/13	5524.44	35.60	NPP	25.80	5498.64	NPP
	08/06/12	5524.44	35.60	NPP	26.03	5498.41	NPP
	04/02/12	5524.44	35.60	NPP	26.03	5498.41	NPP

		Measuring	Total Well	Depth To	Depth To	Corrected	SPH
Well ID	Date	Point		Product		Groundwater	_
weilib	Date	Elevation	Depth		Water	Elevation	Thickness
		(ft amsl)	(ft below TOC)	(ft below TOC)	(ft below TOC)	(ft amsl)	(ft)
	08/16/16	5521.38	35.53	22.81	22.93	5498.55	0.12
	04/15/16	5521.38	35.53	23.13	23.39	5498.20	0.26
	08/13/15	5521.38	35.53	23.80	23.82	5497.58	0.02
	04/27/15	5521.38	35.53	NPP	23.70	5497.68	NPP
RW-23	08/18/14	5521.38	35.53	23.05	23.08	5498.32	0.03
KVV-23	04/02/14	5521.38	35.53	NPP	23.26	5498.12	NPP
	08/05/13	5521.38	35.53	NPP	23.15	5498.23	NPP
	04/08/13	5521.38	35.53	NPP	23.30	5498.08	NPP
	08/06/12	5521.38	35.53	23.17	23.20	5498.20	0.03
	04/02/12	5521.38	35.53	NPP	23.43	5497.95	NPP
	08/16/16	5527.93	36.99	29.10	29.36	5498.78	0.26
	04/15/16	5527.93	36.99	29.05	29.06	5498.88	0.01
	08/13/15	5527.93	36.99	26.92	26.93	5501.01	0.01
	04/27/15	5527.93	36.99	29.18	29.76	5498.63	0.58
5 111 66	08/18/14	5527.93	36.99	29.56	30.02	5498.28	0.46
RW-28	04/02/14	5527.93	36.99	29.55	30.45	5498.20	0.90
	08/05/13	5527.93	36.99	29.28	30.40	5498.43	1.12
	04/08/13	5527.93	36.99	29.35	30.50	5498.35	1.15
	08/06/12	5527.93	36.99	29.64	30.62	5498.09	0.98
	04/02/12	5527.93	36.99	29.74	29.87	5498.16	0.13
	08/15/16	5527.48	32.02	NPP	27.10	5500.38	NPP
	04/15/16	5527.48	32.02	NPP	27.03	5500.45	NPP
	08/13/15	5527.48	32.02	26.92	26.93	5500.56	0.01
	04/27/15	5527.48	32.02	27.15	27.18	5500.32	0.03
	08/18/14	5527.48	32.02	27.36	27.70	5500.05	0.34
RW-42	04/02/14	5527.48	32.02	27.59		5499.81	0.34
	08/05/13	5527.48	32.02	27.40	28.00 27.55	5500.05	0.41
	04/08/13	5527.48	32.02	27.37	27.79	5500.03	0.13
	08/06/13	5527.48	32.02	27.77	27.79	5499.67	0.42
	04/02/12	5527.48	32.02	27.35	28.20	5499.96	0.85
	08/15/16	5520.02	24.03	NPP	20.44	5499.58	NPP
	04/15/16	5520.02	24.03	NPP	20.51	5499.51	NPP
	08/13/15	5520.02	24.03	20.3	20.33	5499.71	0.03
	04/27/15	5520.02	24.03	20.53	20.75	5499.45	0.22
	08/18/14	5520.02	24.03	21.8	22.00	5498.18	0.20
RW-43	04/02/14	5520.02	24.03	21.76	22.25	5498.16	0.49
	08/05/13	5520.02	24.03	21.75	21.91	5498.24	0.16
	04/08/13	5520.02	24.03	21.87	22.03	5498.12	0.16
	08/06/12	5520.02	24.03	21.72	22.02	5498.24	0.30
	04/02/12	5520.02	24.03	21.00	21.87	5498.85	0.87
	08/16/16	5506.62	12.26	NPP	11.14	5495.48	NPP
	04/15/16	5506.62	12.26	NPP	11.78	5494.84	NPP
	08/13/15	5506.62	12.26	NPP	10.77	5495.85	NPP
	04/21/15	5506.62	12.26	NPP	11.24	5495.38	NPP
OW 0+60	08/18/14	5506.62	12.26	NPP	11.01	5495.61	NPP
OVV U+0U	04/02/14	5506.62	12.26	NPP	11.91	5494.71	NPP
	08/05/13	5506.62	12.26	NPP	11.85	5494.77	NPP
	04/08/13	5506.62	12.26	NPP	12.07	5494.55	NPP
	08/06/12	5506.62	12.26	NPP	12.00	5494.62	NPP
	04/02/12	5506.62	12.26	NPP	NWP	NWP	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/16/16	5508.03	14.36	NPP	13.06	5494.97	NPP
	04/15/16	5508.03	14.36	NPP	13.72	5494.31	NPP
	08/13/15	5508.03	14.36	NPP	12.62	5495.41	NPP
	04/21/15	5508.03	14.36	NPP	13.24	5494.79	NPP
OW 1+50	08/18/14	5508.03	14.36	NPP	13.17	5494.86	NPP
OW 1+50	04/02/14	5508.03	14.36	NPP	13.98	5494.05	NPP
	08/05/13	5508.03	14.36	14.02	14.03	5494.01	0.01
	04/08/13	5508.03	14.36	NPP	14.05	5493.98	NPP
	08/06/12	5508.03	14.36	14.16	14.36	5493.83	0.20
	04/02/12	5508.03	14.36	14.14	14.36	5493.85	0.22
	08/15/16	5507.31	15.06	NPP	12.83	5494.48	NPP
	04/15/16	5507.31	15.06	NPP	13.15	5494.16	NPP
	08/13/15	5507.31	15.06	NPP	12.31	5495.00	NPP
	04/21/15	5507.31	15.06	NPP	12.80	5494.51	NPP
0144.0.05	08/18/14	5507.31	15.06	NPP	12.95	5494.36	NPP
OW 3+85	04/02/14	5507.31	15.06	NPP	13.49	5493.82	NPP
	08/05/13	5507.31	15.06	13.56	13.57	5493.75	0.01
	04/08/13	5507.31	15.06	NPP	13.40	5493.91	NPP
	08/06/12	5507.31	15.06	13.84	13.85	5493.47	0.01
	04/02/12	5507.31	15.06	NPP	NWP	NWP	NPP
	08/15/16	5507.59	13.67	NPP	13.29	5494.30	NPP
	04/15/16	5507.59	13.67	NPP	13.43	5494.16	NPP
	08/13/15	5507.59	13.67	NPP	13.32	5494.27	NPP
	04/21/15	5507.59	13.67	NPP	13.28	5494.31	NPP
	08/18/14	5507.59	13.67	NPP	13.50	5494.09	NPP
OW 5+50	04/02/14	5507.59	13.67	NPP	13.64	5493.95	NPP
	08/05/13 04/08/13	5507.59	13.67	NPP NPP	13.51	5494.08	NPP NPP
	08/06/12	5507.59 5507.59	13.67 13.67	NPP	13.67 13.64	5493.92 5493.95	NPP NPP
	04/02/12	5507.59	13.67	NPP	13.66	5493.93	NPP
	08/15/16	5504.78	14.67	NPP	NWP	NWP	NPP
	04/15/16	5504.78	14.67	NPP	NWP	NWP	NPP
	08/13/15	5504.78	14.67	NPP	NWP	NWP	NPP
	04/21/15	5504.78	14.67	NPP	NWP	NWP	NPP
	08/18/14	5504.78	14.67	NPP	NWP	NWP	NPP
OW 6+70	04/02/14	5504.78	14.67	NPP	NWP	NWP	NPP
	08/05/13	5504.78	14.67	NPP	NWP	NWP	NPP
	04/08/13	5504.78	14.67	NPP	NWP	NWP	NPP
	08/06/13	5504.78	14.67	NPP	NWP	NWP	NPP
	04/02/12	5504.78	14.67	NPP	NWP	NWP	NPP
	08/15/16	5504.78	15.99	NPP	14.69	5490.09	NPP
	04/15/16	5504.78	15.99	NPP	NWP	NWP	NPP
	08/13/15	5506.53	15.99	NPP	NWP	NWP	NPP
	04/21/15	5506.53	15.99	NPP	NWP	NWP	NPP
	08/18/14	5506.53	15.99	NPP	NWP	NWP	NPP
OW 8+10	04/02/14	5506.53	15.99	NPP	NWP	NWP	NPP
	08/05/13	5506.53	15.99	NPP	NWP	NWP	
				NPP	NWP	NWP	NPP NPP
	04/08/13 08/06/12	5506.53 5506.53	15.99 15.99	NPP	NWP	NWP	NPP NPP
	04/02/12	5506.53	15.99	NPP	NWP	NWP	NPP

Well ID	Date	Measuring Point Elevation	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation	SPH Thickness (ft)
	08/15/16	(ft amsl)	16.50	NPP	10.52	(ft amsl)	NPP
		5506.70	16.59		12.53	5494.17	
	04/15/16	5506.70	16.59	NPP	12.65	5494.05	NPP
	08/13/15	5506.70	16.59	NPP	12.47	5494.23	NPP
	04/21/15	5506.70	16.59	NPP	12.59	5494.11	NPP
OW 11+15	08/18/14	5506.70	16.59	NPP	12.55	5494.15	NPP
	04/02/14	5506.70	16.59	12.74	12.75	5493.96	0.01
	08/05/13	5506.70	16.59	12.56	12.57	5494.14	0.01
	04/08/13	5506.70	16.59	12.71	12.72	5493.99	0.01
	08/06/12	5506.70	16.59	12.66	12.67	5494.04	0.01
	04/02/12	5506.70	16.59	12.70	12.71	5494.00	0.01
	08/15/16	5508.14	12.96	NPP	NWP	NWP	NPP
	04/15/16	5508.14	12.96	NPP	NWP	NWP	NPP
	08/13/15	5508.14	12.96	NPP	NWP	NWP	NPP
	04/21/15	5508.14	12.96	NPP	NWP	NWP	NPP
OW 14+10	08/18/14	5508.14	12.96	NPP	NWP	NWP	NPP
000 14.10	04/02/14	5508.14	12.96	NPP	NWP	NWP	NPP
	08/05/13	5508.14	12.96	NPP	NWP	NWP	NPP
	04/08/13	5508.14	12.96	NPP	NWP	NWP	NPP
	08/06/12	5508.14	12.96	NPP	NWP	NWP	NPP
	04/02/12	5508.14	12.96	NPP	NWP	NWP	NPP
	08/15/16	5508.43	15.21	NPP	13.04	5495.39	NPP
	04/15/16	5508.43	15.21	NPP	13.06	5495.37	NPP
	08/13/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	04/21/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	08/18/14	5508.43	15.21	NPP	13.25	5495.18	NPP
OW 16+60	04/02/14	5508.43	15.21	NPP	13.10	5495.33	NPP
	08/05/13	5508.43	15.21	NPP	13.95	5494.48	NPP
	04/08/13	5508.43	15.21	NPP	13.16	5495.27	NPP
	08/06/12	5508.43	15.21	NPP	13.12	5495.31	NPP
	04/02/12	5508.43	15.21	NPP	12.99	5495.44	NPP
	08/15/16	5508.03	13.00	NPP	12.95	5495.08	NPP
	04/15/16	5508.03	13.00	NPP	12.69	5495.34	NPP
	08/13/15	5508.03	13.00	NPP	NWP	NWP	NPP
	04/21/15	5508.03	13.00	NPP	12.92	5495.11	NPP
OW 19+50	08/18/14	5508.03	13.00	NPP	NWP	NWP	NPP
	04/02/14	5508.03	13.00	NPP	NWP	NWP	NPP
	08/05/13	5508.03	13.00	NPP	NWP	NWP	NPP
	04/08/13	5508.03	13.00	NPP	NWP	NWP	NPP
	08/06/12	5508.03	13.00	NPP	NWP	NWP	NPP
	04/02/12	5508.03	13.00	NPP	NWP	NWP	NPP
	08/15/16	5506.91	14.16	NPP	10.88	5496.03	NPP
	04/15/16	5506.91	14.16	NPP	12.05	5494.86	NPP
	08/13/15	5506.91	14.16	NPP	10.80	5496.11	NPP
	04/21/15	5506.91	14.16	NPP	11.37	5495.54	NPP
OW 22+00	08/18/14	5506.91	14.16	NPP	12.74	5494.17	NPP
	04/02/14	5506.91	14.16	NPP	11.73	5495.18	NPP
	08/05/13	5506.91	14.16	NPP	13.04	5493.87	NPP
	04/08/13	5506.91	14.16	NPP	12.17	5494.74	NPP
	08/06/12	5506.91	14.16	NPP	13.41	5493.50	NPP
	04/02/12	5506.91	14.16	NPP	12.26	5494.65	NPP

Well ID	Date	Measuring Point Elevation	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation	SPH Thickness (ft)
		(ft amsl)	(It below TOC)	(It below TOC)	(It below TOC)	(ft amsl)	(11)
	08/15/16	5514.12	18.34	NPP	16.37	5497.75	NPP
	04/15/16	5514.12	18.34	NPP	16.48	5497.64	NPP
	08/13/15	5514.12	18.34	NPP	16.46	5497.66	NPP
	04/21/15	5514.12	18.34	NPP	16.40	5497.72	NPP
OW 23+10	08/18/14	5514.12	18.34	NPP	16.50	5497.62	NPP
011 20:10	04/02/14	5514.12	18.34	NPP	16.42	5497.70	NPP
	08/05/13	5514.12	18.34	NPP	16.46	5497.66	NPP
	04/08/13	5514.12	18.34	NPP	16.38	5497.74	NPP
	08/06/12	5514.12	18.34	NPP	16.58	5497.54	NPP
	04/02/12	5514.12	18.34	NPP	16.43	5497.69	NPP
	08/15/16	5515.18	18.01	NPP	17.25	5497.93	NPP
	04/15/16	5515.18	18.01	NPP	17.34	5497.84	NPP
	08/13/15	5515.18	18.01	NPP	17.30	5497.88	NPP
	04/21/15	5515.18	18.01	NPP	17.28	5497.90	NPP
OW 23+90	08/18/14	5515.18	18.01	NPP	17.33	5497.85	NPP
OW 23+90	04/02/14	5515.18	18.01	NPP	17.26	5497.92	NPP
	08/05/13	5515.18	18.01	NPP	17.29	5497.89	NPP
	04/08/13	5515.18	18.01	NPP	17.22	5497.96	NPP
	08/06/12	5515.18	18.01	NPP	17.41	5497.77	NPP
	04/02/12	5515.18	18.01	NPP	17.23	5497.95	NPP
	08/15/16	5509.00	13.98	NPP	10.90	5498.10	NPP
	04/15/16	5509.00	13.98	NPP	10.97	5498.03	NPP
	08/13/15	5509.00	13.98	NPP	10.97	5498.03	NPP
	04/21/15	5509.00	13.98	NPP	10.92	5498.08	NPP
OW 25+70	08/18/14	5509.00	13.98	NPP	10.96	5498.04	NPP
OW 25+10	04/02/14	5509.00	13.98	NPP	10.95	5498.05	NPP
	08/05/13	5509.00	13.98	NPP	10.93	5498.07	NPP
	04/08/13	5509.00	13.98	NPP	10.86	5498.14	NPP
	08/06/12	5509.00	13.98	NPP	11.03	5497.97	NPP
	04/02/12	5509.00	13.98	NPP	10.93	5498.07	NPP
	08/16/16	5506.68	14.09	NPP	7.99	5498.69	NPP
	04/15/16	5506.68	14.09	NPP	8.88	5497.80	NPP
	08/13/15	5506.68	14.09	NPP	8.23	5498.45	NPP
	04/21/15	5506.68	14.09	NPP	8.24	5498.44	NPP
CW 0+60	08/18/14	5506.68	14.09	NPP	8.19	5498.49	NPP
OW 0.00	04/02/14	5506.68	14.09	NPP	9.01	5497.67	NPP
	08/05/13	5506.68	14.09	NPP	8.53	5498.15	NPP
	04/08/13	5506.68	14.09	NPP	9.12	5497.56	NPP
	08/22/12	5506.68	14.09	NPP	8.57	5498.11	NPP
	04/02/12	5506.68	14.09	NPP	9.27	5497.41	NPP
	08/16/16	5505.13	13.74	NPP	6.59	5498.54	NPP
	04/15/16	5505.13	13.74	NPP	7.22	5497.91	NPP
	08/13/15	5505.13	13.74	NPP	6.84	5498.29	NPP
	04/21/15	5505.13	13.74	NPP	6.77	5498.36	NPP
CW 1+50	08/18/14	5505.13	13.74	NPP	6.92	5498.21	NPP
OVV 1730	04/02/14	5505.13	13.74	NPP	7.47	5497.66	NPP
	08/05/13	5505.13	13.74	NPP	7.13	5498.00	NPP
	04/08/13	5505.13	13.74	NPP	7.49	5497.64	NPP
	08/22/12	5505.13	13.74	NPP	6.88	5498.25	NPP
	04/02/12	5505.13	13.74	NPP	7.58	5497.55	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5503.87	13.11	NPP	5.52	5498.35	NPP
	04/15/16	5503.87	13.11	NPP	5.91	5497.96	NPP
	08/13/15	5503.87	13.11	NPP	5.70	5498.17	NPP
	04/21/15	5503.87	13.11	NPP	5.60	5498.27	NPP
CW 3+85	08/18/14	5503.87	13.11	NPP	5.85	5498.02	NPP
CVV 3+03	04/02/14	5503.87	13.11	NPP	6.14	5497.73	NPP
	08/05/13	5503.87	13.11	NPP	5.98	5497.89	NPP
	04/08/13	5503.87	13.11	NPP	6.17	5497.70	NPP
	08/22/12	5503.87	13.11	NPP	5.75	5498.12	NPP
	04/02/12	5503.87	13.11	NPP	6.21	5497.66	NPP
	08/15/16	5503.76	12.27	NPP	6.30	5497.46	NPP
	04/15/16	5503.76	12.27	NPP	6.39	5497.37	NPP
	08/13/15	5503.76	12.27	NPP	6.38	5497.38	NPP
	04/21/15	5503.76	12.27	NPP	6.35	5497.41	NPP
014/ 5 - 50	08/18/14	5503.76	12.27	NPP	6.58	5497.18	NPP
CW 5+50	04/02/14	5503.76	12.27	NPP	6.63	5497.13	NPP
	08/05/13	5503.76	12.27	NPP	6.50	5497.26	NPP
	04/08/13	5503.76	12.27	NPP	6.63	5497.13	NPP
	08/22/12	5503.76	12.27	NPP	6.47	5497.29	NPP
	04/02/12	5503.76	12.27	NPP	6.67	5497.09	NPP
	08/15/16	5503.84	11.45	NPP	6.54	5497.30	NPP
	04/15/16	5503.84	11.45	NPP	6.61	5497.23	NPP
	08/13/15	5503.84	11.45	NPP	6.38	5497.46	NPP
	04/21/15	5503.84	11.45	NPP	6.63	5497.21	NPP
				NPP			NPP
CW 6+70	08/18/14	5503.84	11.45		6.70	5497.14	
	04/02/14	5503.84	11.45	NPP	6.96	5496.88	NPP
	08/05/13	5503.84	11.45	NPP	6.87	5496.97	NPP
	04/08/13	5503.84	11.45	NPP	6.93	5496.83	NPP NPP
	08/22/12 04/02/12	5503.84 5503.84	11.45 11.45	NPP NPP	6.85 6.96	5496.99 5496.88	NPP
	08/15/16	5503.64	11.45	NPP	7.35	5496.67	NPP
	04/15/16	5504.02	11.63	NPP	7.56	5496.46	NPP
	08/13/15	5504.02	11.63	NPP	7.48	5496.54	NPP
	04/21/15	5504.02	11.63	NPP	7.43	5496.59	NPP
	08/18/14	5504.02	11.63	NPP	7.43	5496.59	NPP
CW 8+10	04/02/14	5504.02	11.63	NPP	7.43	5496.22	NPP
	08/05/13		11.63		7.60	5496.42	NPP
		5504.02		NPP	-		
	04/08/13 08/22/12	5504.02 5504.02	11.63	NPP NPP	7.80 7.68	5496.22 5496.34	NPP NPP
	04/02/12	5504.02	11.63 11.63	NPP	7.83	5496.19	NPP
	08/15/16	5503.80	12.60	NPP	7.63	5496.19	NPP
	04/15/16	5503.80	12.60	NPP	7.51	5496.29	NPP
	08/13/15						
		5503.80	12.60	NPP	7.65	5496.15	NPP
	04/21/15	5503.80	12.60	NPP	7.68	5496.12	NPP
CW 8+45	08/18/14	5503.80	12.60	NPP	7.58	5496.22	NPP
	04/02/14	5503.80	12.60	NPP	7.94	5495.86	NPP
	08/05/13	5503.80	12.60	NPP	7.74	5496.06	NPP
	04/08/13	5503.80	12.60	NPP	7.91	5495.89	NPP
	08/22/12	5503.80	12.60	NPP	7.76	5496.04	NPP
	04/02/12	5503.80	12.60	NPP	7.90	5495.90	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5503.95	12.27	NPP	5.99	5497.96	NPP
	04/15/16	5503.95	12.27	5.91	6.36	5497.95	0.45
	08/13/15	5503.95	12.27	5.87	6.85	5497.88	0.98
	04/21/15	5503.95	12.27	5.97	7.05	5497.76	1.08
CW 11+15	08/18/14	5503.95	12.27	5.99	7.93	5497.57	1.94
	04/02/14	5503.95	12.27	6.00	7.95	5497.56	1.95
	08/05/13	5503.95	12.27	NPP	6.31	5497.64	NPP
	04/08/13	5503.95	12.27	NPP	6.22	5497.73	NPP
	08/22/12	5503.95	12.27	NPP	6.30	5497.65	NPP
	04/02/12	5503.95	12.27	NPP	6.24	5497.71	NPP
	08/15/16	5504.39	13.05	NPP	6.29	5498.10	NPP
	04/15/16	5504.39	13.05	NPP	6.25	5498.14	NPP
	08/13/15	5504.39	13.05	NPP	6.44	5497.95	NPP
	04/21/15	5504.39	13.05	NPP	6.38	5498.01	NPP
CW 14+10	08/18/14	5504.39	13.05	NPP	6.25	5498.14	NPP
	04/02/14	5504.39	13.05	NPP	6.45	5497.94	NPP
	08/05/13	5504.39	13.05	NPP	6.24	5498.15	NPP
	04/08/13	5504.39	13.05	NPP	6.47	5497.92	NPP
	08/22/12	5504.39	13.05	NPP	6.30	5498.09	NPP
	04/02/12	5504.39	13.05	NPP	6.57	5497.82	NPP
	08/15/16	5504.32	12.86	NPP	6.09	5498.23	NPP
	04/15/16	5504.32	12.86	NPP	6.20	5498.12	NPP
	08/13/15	5504.32	12.86	NPP	6.23	5498.09	NPP
	04/21/15	5504.32	12.86	NPP	6.18	5498.14	NPP
CW 16+60	08/18/14	5504.32	12.86	NPP	6.11	5498.21	NPP
OVV 10.00	04/02/14	5504.32	12.86	NPP	6.29	5498.03	NPP
	08/05/13	5504.32	12.86	NPP	5.98	5498.34	NPP
	04/08/13	5504.32	12.86	NPP	6.34	5497.98	NPP
	08/22/12	5504.32	12.86	NPP	6.18	5498.14	NPP
	04/02/12	5504.32	12.86	NPP	6.43	5497.89	NPP
	08/15/16	5504.52	9.99	NPP	6.18	5498.34	NPP
	04/15/16	5504.52	9.99	NPP	6.16	5498.36	NPP
	08/13/15	5504.52	9.99	NPP	6.23	5498.29	NPP
	04/21/15	5504.52	9.99	NPP	6.24	5498.28	NPP
014/40.50	08/18/14	5504.52	9.99	NPP	6.21	5498.31	NPP
CW 19+50	04/02/14	5504.52	9.99	NPP	6.36	5498.16	NPP
	08/05/13	5504.52	9.99	NPP	6.20	5498.32	NPP
	04/08/13	5504.52	9.99	NPP	6.39	5498.13	NPP
	08/22/12	5504.52	9.99	NPP	6.12	5498.40	NPP
	04/02/12	5504.52	9.99	NPP	6.50	5498.02	NPP
	08/15/16	5508.04	12.34	NPP	8.57	5499.47	NPP
	04/15/16	5508.04	12.34	NPP	8.73	5499.31	NPP
	08/13/15	5508.04	12.34	NPP	8.56	5499.48	NPP
	04/21/15	5508.04	12.34	NPP	8.69	5499.35	NPP
0144 00 : 00	08/18/14	5508.04	12.34	NPP	8.73	5499.31	NPP
CW 22+00	04/02/14	5508.04	12.34	NPP	9.01	5499.03	NPP
	08/05/13	5508.04	12.34	NPP	8.84	5499.20	NPP
	04/08/13	5508.04	12.34	NPP	8.93	5499.11	NPP
	08/22/12	5508.04	12.34	NPP	8.89	5499.15	NPP
	04/02/12	5508.04	12.34	NPP	8.98	5499.06	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)		
	08/15/16	5510.04	14.65	NPP	10.14	5499.90	NPP		
	04/15/16	5510.04	14.65	NPP	10.31	5499.73	NPP		
	08/13/15	5510.04	14.65	NPP	10.10	5499.94	NPP		
	04/21/15	5510.04	14.65	NPP	10.28	5499.76	NPP		
CW 23+10	08/18/14	5510.04	14.65	NPP	10.32	5499.72	NPP		
CW 23+10	04/02/14	5510.04	14.65	NPP	10.63	5499.41	NPP		
	08/05/13	5510.04	14.65	NPP	10.45	5499.59	NPP		
	04/08/13	5510.04	14.65	NPP	10.54	5499.50	NPP		
	08/22/12	5510.04	14.65	NPP	10.52	5499.52	NPP		
	04/02/12	5510.04	14.65	NPP	10.62	5499.42	NPP		
	08/15/16	5507.32	11.72	NPP	7.61	5499.71	NPP		
	04/15/16	5507.32	11.72	NPP	7.82	5499.50	NPP		
	08/13/15	5507.32	11.72	NPP	7.54	5499.78	NPP		
	04/21/15	5507.32	11.72	NPP	7.74	5499.58	NPP		
CW 23+90	08/18/14	5507.32	11.72	NPP	7.75	5499.57	NPP		
CW 23+90	04/02/14	5507.32	11.72	NPP	8.05	5499.27	NPP		
	08/05/13	5507.32	11.72	NPP	7.88	5499.44	NPP		
	04/08/13	5507.32	11.72	NPP	7.99	5499.33	NPP		
	08/22/12	5507.32	11.72	NPP	7.93	5499.39	NPP		
	04/02/12	5507.32	11.72	NPP	8.05	5499.27	NPP		
	08/15/16	5505.90	12.25	NPP	7.15	5498.75	NPP		
	04/15/16	5505.90	12.25	NPP	8.10	5497.80	NPP		
	08/13/15	5505.90	12.25		Active Reco	overy Well			
	04/21/15	5505.90	12.25	Active Recovery Well					
	08/18/14	5505.90	12.25	Active Recovery Well					
CW 25+95	04/02/14	5505.90	12.25	Active Recovery Well					
	08/05/13	5505.90	12.25		Active Reco	•			
	04/08/13	5505.90	12.25		Active Reco				
	08/22/12	5505.90	12.25		Active Reco	<u> </u>			
	04/02/12	5505.90	12.25	Active Recovery Well					
	00/45/40	5500.07	50.00	NDD	50.04	5455.00	NDD		
	08/15/16	5508.27	53.08	NPP	52.61	5455.66	NPP		
	04/15/16	5508.27	53.08	NPP	52.58	5455.69	NPP		
	08/12/15	5508.27	53.08	NPP	52.62	5455.65	NPP		
	05/19/15	5508.27	53.08	NPP	52.63	5455.64	NPP		
	04/27/15	5508.27	53.08	NPP	52.61	5455.66	NPP		
*SW1-0206	03/05/15 12/11/14	5508.27 5508.27	53.08 53.08	NPP NPP	52.61 52.65	5455.66 5455.62	NPP NPP		
	07/29/14	5508.27	53.08	NPP	52.63	5455.64	NPP		
	08/05/13	5508.27	53.08	NPP	52.58	5455.69	NPP		
	04/24/13	5508.27	53.08	NPP	52.58	5455.69	NPP		
	08/06/12	5508.27	53.08	NPP	52.59	5455.68	NPP		
	06/21/12	5508.27	53.08	NPP	52.59	5455.68	NPP		
	08/15/16	5508.27	27.69	NPP	25.43	5482.84	NPP		
	04/15/16	5508.27	27.69	NPP	25.38	5482.89	NPP		
	08/12/15	5507.75	27.69	NPP	25.80	5481.95	NPP		
	05/12/15	5507.75	27.69	NPP	25.74	5482.01	NPP		
	04/27/15	5507.75	27.69	NPP	25.74	5482.06	NPP		
*6///3 0300	00/05/45	5507.75	27.69	NPP	25.48	5482.27	NPP		
*SW2-0206	12/11/14	5507.75	27.69	NPP	25.41	5482.34	NPP		
	07/29/14	5507.75	27.69	NPP	25.89	5481.86	NPP		
	08/05/13	5507.75	27.69	NPP	25.62	5482.13	NPP		
	04/24/13	5507.75	27.69	NPP	25.27	5482.48	NPP		
	08/06/12	5507.75	27.69	NPP	25.50	5482.25	NPP		
	06/21/12	5507.75	27.69	NPP	25.56	5482.19	NPP		

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5505.29	52.56	NPP	26.36	5478.93	NPP
	04/15/16	5505.29	52.56	NPP	26.56	5478.73	NPP
	08/12/15	5505.29	52.56	NPP	26.53	5478.76	NPP
	05/19/15	5505.29	52.56	NPP	26.62	5478.67	NPP
	04/27/15	5505.29	52.56	NPP	26.64	5478.65	NPP
*SW3-	03/05/15	5505.29	52.56	NPP	26.53	5478.76	NPP
0206	12/11/14	5505.29	52.56	NPP	26.10	5479.19	NPP
	07/29/14	5505.29	52.56	NPP	26.82	5478.47	NPP
	08/05/13	5505.29	52.56	NPP	26.69	5478.60	NPP
	04/24/13	5505.29	52.56	NPP	26.70	5478.59	NPP
	08/06/12	5505.29	52.56	NPP	26.65	5478.64	NPP
	06/21/12	5505.29	52.56	NPP	26.80	5478.49	NPP
	08/15/16	5504.45	42.34	NPP	33.08	5471.37	NPP
	04/15/16	5504.45	42.34	NPP	32.71	5471.74	NPP
	08/12/15	5504.45	42.34	NPP	33.08	5471.37	NPP
	05/19/15	5504.45	42.34	NPP	32.81	5471.64	NPP
	04/27/15	5504.45	42.34	NPP	32.78	5471.67	NPP
*SW4-	03/05/15	5504.45	42.34	NPP	32.75	5471.70	NPP
0206	12/11/14	5504.45	42.34	NPP	32.98	5471.47	NPP
	07/29/14	5504.45	42.34	NPP	33.05	5471.40	NPP
	08/05/13	5504.45	42.34	NPP	33.01	5471.44	NPP
	04/24/13	5504.45	42.34	NPP	32.60	5471.85	NPP
	08/06/12	5504.45	42.34	NPP	33.09	5471.36	NPP
	06/21/12	5504.45	42.34	NPP	32.85	5471.60	NPP
	08/15/16	5514.34	52.24	NPP	34.03	5480.31	NPP
	04/15/16	5514.34	52.24	NPP	33.93	5480.41	NPP
	08/12/15	5514.34	52.24	NPP	34.20	5480.14	NPP
	05/19/15	5514.34	52.24	NPP	33.82	5480.52	NPP
	04/27/15	5514.34	52.24	NPP	33.73	5480.61	NPP
*SW5-	03/05/15	5514.34	52.24	NPP	33.78	5480.56	NPP
0206	12/11/14	5514.34	52.24	NPP	33.75	5480.59	NPP
	07/29/14	5514.34	52.24	NPP	33.75	5480.59	NPP
	08/05/13	5514.34	52.24	NPP	34.93	5479.41	NPP
	04/24/13	5514.34	52.24	NPP	34.27	5480.07	NPP
	08/06/12	5514.34	52.24	NPP	35.08	5479.26	NPP
	06/21/12	5514.34	52.24	NPP	35.01	5479.33	NPP
	08/15/16	5519.72	47.41	NPP	NWP	NWP	NPP
	04/15/16	5519.72	47.41	NPP	39.40	5480.32	NPP
	08/12/15	5519.72	47.41	NPP	41.65	5478.07	NPP
	05/19/15	5519.72	47.41	NPP	40.88	5478.84	NPP
	04/27/15	5519.72	47.41	NPP	40.74	5478.98	NPP
*SW6-	03/05/15	5519.72	47.41	NPP	40.23	5479.49	NPP
0206	12/11/14	5519.72	47.41	NPP	40.96	5478.76	NPP
	07/29/14	5519.72	47.41	NPP	41.55	5478.17	NPP
	08/05/13	5519.72	47.41	NPP	42.00	5477.72	NPP
	04/24/13	5519.72	47.41	NPP	40.91	5478.81	NPP
	08/06/12	5519.72	47.41	NPP	42.37	5477.35	NPP
	06/00/12	5519.72	47.41	NPP	41.97	5477.75	NPP

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/15/16	5517.63	32.95	NPP	20.76	5496.87	NPP
	04/15/16	5517.63	32.95	NPP	20.48	5497.15	NPP
	08/12/15	5517.63	32.95	NPP	20.84	5496.79	NPP
	05/19/15	5517.63	32.95	NPP	20.67	5496.96	NPP
	04/27/15	5517.63	32.95	NPP	20.73	5496.90	NPP
*SW7-	03/05/15	5517.63	32.95	NPP	20.39	5497.24	NPP
0206	12/11/14	5517.63	32.95	NPP	20.00	5497.63	NPP
0200	07/29/14	5517.63	32.95	NPP	20.82	5496.81	NPP
	04/02/14	5517.63	32.95	NPP	20.15	5497.48	NPP
	08/05/13	5517.63	32.95	NPP	20.80	5496.83	NPP
	04/24/13	5517.63	32.95	NPP	20.67	5496.96	NPP
	08/06/12	5517.63	32.95	NPP	20.40	5497.23	NPP
	06/21/12	5517.63	32.95	NPP	20.32	5497.31	NPP

Notes

*SW Wells sampled during significant rain events only NPP = No Product Present NWP = No Water Present

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
Cross-Gradient V	Vells		Į.		'		
	08/19/16	685	443	3.81	57.4	8.09	62.83
	04/21/16	863	561	3.57	32.3	8.41	56.24
	08/18/15	852	555	2.10	47.4	7.74	63.74
	04/20/15	992	646	4.80	86.9	7.62	55.40
	08/20/14	800	520	3.35	-2.2	7.11	63.38
	04/12/14	843	546	3.37	95.1	7.02	54.14
MW-1	08/13/13	717	466	4.13	61.6	7.42	61.58
	04/24/13	725	470	3.02	153.4	7.12	53.00
	08/14/12	717	468	2.93	85.8	7.28	63.40
	04/04/12	687	590	2.47	46.1	7.32	54.05
	08/13/11	762	533	10.80	240.0	6.80	68.60
	04/23/11	766	541	4.08	241.0	6.77	52.20
	08/13/10	841	588	1.83	282.0	7.04	63.60
	08/19/16	3560	2314	2.30	84.7	7.84	62.51
	04/21/16	3698	2404	1.66	0.0	7.46	63.61
	08/18/15	3986	2591	1.99	28.8	7.28	65.12
	04/20/15	4588	2981	3.17	80.6	7.19	61.70
	08/20/14	4004	2602	3.43	54.6	6.90	64.28
	04/12/14	3932	2557	2.43	103.8	6.91	60.86
MW-13	08/13/13	3621	2353	2.52	98.7	7.03	63.08
	04/24/13	3340	2170	4.27	99.0	7.10	60.00
	08/14/12	4223	2745	2.27	82.7	7.19	65.10
	04/04/12	3491	2769	3.60	165.4	7.01	59.95
	08/13/11	3312	2590	1.87	252.0	6.80	61.90
	04/23/11	3958	3163	3.92	210.0	6.64	59.70
	08/13/10	3816	2977	1.13	255.0	6.97	62.90
	08/17/16	ns	ns	ns	ns	ns	ns
	04/21/16	ns	ns	ns	ns	ns	ns
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
MW-26	08/13/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	3071	1996	1.42	-81.0	7.00	65.70
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2751	2077	1.55	230.0	6.90	63.30
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2698	2046	1.32	300.0	6.83	64.40
	08/19/16	5598	3604	2.30	-122.5	7.79	60.80
	04/21/16	ns	ns	ns	ns	ns	ns
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns 4540	ns	ns	ns c 71	ns 61.04
	08/20/14	6950	4518	3.55	21.8	6.71	61.94
MW-27	04/12/14	ns	ns	ns	ns	ns	ns
IVIVV-Z/	08/13/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns 5087	ns 3306	ns 2.79	-23.8	ns 7.27	ns 64.50
	08/14/12						
	04/04/12	ns 2744	ns	ns	ns	ns	ns
	08/13/11 04/23/11	3741 ns	2908 ns	0.95	289.0 ns	6.90	60.80
			ne	ns		ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/16	5094	3309	6.86	77.7	8.32	58.73
	04/21/16	ns	ns	ns	ns	ns	ns
	08/18/15	5171	3363	8.00	41.5	7.71	60.50
	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/14	5047	3280	10.08	50.9	7.32	60.20
	04/12/14	ns	ns	ns	ns	ns	ns
MW-32	08/13/13	4833	3142	8.73	87.2	7.55	58.88
	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	5245	3426	7.13	138.2	7.65	63.60
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	4901	3930	5.42	189.0	7.10	59.20
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	51	4148	6.43	274.0	6.99	61.30
	08/19/16	5280	3429	6.11	70.1	8.49	60.62
	04/22/16	ns	ns	ns	ns	ns	ns
	08/18/15	5594	3633	4.84	42.7	7.45	62.96
	04/20/15	6078	3950	7.37	76.4	7.76	60.08
	08/20/14	5097	3313	8.81	48.8	7.38	62.42
	04/12/14	5040	3276	10.24	88.2	7.69	59.36
MW-33	08/13/13	5621	3655	5.39	90.1	7.13	60.56
	04/24/13	4990	3240	34.33	32.6	7.75	58.00
	08/14/12	5609	3647	5.87	152.0	7.73	64.00
	04/04/12	4615	3757	3.57	119.8	7.42	57.99
	08/13/11	4336	3468	0.78	244.0	7.00	60.80
	04/23/11	4017	3202	2.22	212.0	6.90	57.40
	08/13/10	3794	2973	4.37	292.0	7.01	60.90
Downgradient W							
	08/18/16	2203	1432	1.77	-61.3	7.66	64.99
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	2221	1443	2.28	-99.3	7.06	62.84
	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/14	2098	1365	3.79	-120.7	6.63	66.14
	04/12/14	ns	ns	ns	ns	ns	ns
MW-11	08/12/13	2558	1664	9.08	-82.4	6.84	64.70
	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	3135	2039	1.46	-93.2	6.99	66.10
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2645	1986	1.41	209.0	6.90	60.30
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2545	1906	1.98	254.0	7.03	66.40
	08/18/16	402	261	2.55	42.2	9.49	65.93
	04/22/16	653	425	5.62	49.5	8.33	55.28
	08/19/15	763	496	3.25	32.7	7.65	65.72
	04/20/15	691	449	6.54	84.8	7.67	51.74
	08/21/14	572	371	2.73	-30.2	7.15	68.18
B 40.4.4.0	04/12/14	826	540	6.83	44.3	7.76	51.44
MW-12	08/12/13	569	370	4.98	24.7	7.45	63.68
	04/24/13	1089	710	43.92	172.4	7.47	49.00
	08/14/12	515	344	4.43	86.3	7.49	64.40
	04/04/12	533	488	4.66	24.4	7.65	49.82
	08/13/11	520	356	0.48	209.0	7.00	62.20
	04/23/11	1476	1077	2.58	245.0	6.94	51.10
	08/13/10	563	390	0.63	286.0	7.03	64.30

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/18/16	2789	1814	2.05	-77.5	7.88	60.58
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	2289	1489	1.54	-110.8	7.26	60.80
	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/14	1574	1023	2.40	-97.4	6.95	61.88
	04/12/14	ns	ns	ns	ns	ns	ns
MW-34	08/12/13	2270	1476	1.94	-89.3	7.03	62.12
	04/24/13	ns	ns	ns	ns	ns	ns
	08/14/12	2574	1672	1.54	-90.2	7.13	66.50
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2073	1517	0.63	176.0	7.00	59.10
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	1772	1286	2.91	233.0	7.12	63.60
	08/18/16	2331	1515	1.97	-86.7	8.01	59.90
	04/22/16	2001	1300	1.69	-106.9	7.64	59.60
	08/19/15	2116	1374	1.30	-103.4	7.28	60.32
	04/20/15	2054	1335	2.41	-70.2	7.37	58.40
	08/21/14	2140	1391	4.82	-106.3	7.05	61.16
	04/12/14	2157	1404	2.33	-73.7	6.97	58.16
MW-35	08/12/13	1955	1270	2.82	-92.4	7.03	61.22
	04/24/13	2193	1430	35.10	-43.0	6.98	57.00
	08/14/12	2491	1591	2.08	-87.0	7.19	63.50
	04/04/12	1722	1427	1.80	-89.4	7.08	56.71
	08/13/11	1921	1396	1.09	154.0	7.10	60.40
	04/23/11	1787	1313	3.10	237.0	6.93	57.10
	08/13/10	1742	1268	1.35	246.0	7.05	62.30
	08/18/16	2518	1635	3.31	-67.1	8.12	59.90
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	2417	1571	3.62	-118.1	7.61	60.50
	04/20/15	2730	1772	2.98	22.1	7.58	60.20
	08/21/14	2248	1460	4.60	-105.6	7.43	60.80
	04/12/14	2476	1608	3.83	-61.8	7.30	59.00
MW-37	08/12/13	2596	1686	5.09	-116.5	7.50	60.56
	04/24/13	1628	1060	35.95	-46.7	7.49	57.00
	08/14/12	2703	1760	3.37	-50.2	7.61	63.10
	04/04/12	2043	1677	2.88	-70.5	7.49	57.47
	08/13/11	2405	1785	0.59	209.0	7.49	60.30
	04/23/11						
		2236	1668	2.37	234.0	7.08	58.30
	08/13/10	2276	1686	0.90	2/5.0	6.97	63.30
	08/18/16	1085	705	3.11	-46.5	8.42	60.26
	04/22/16	ns	ns	ns	ns	ns	ns
	08/19/15	1171	761	2.01	-124.7	7.55	59.00
	04/20/15	1395	906	3.13	10.1	7.76	59.48
	08/21/14	1237	804	2.97	-112.6	7.47	60.32
	04/12/14	1537	999	3.73	-100.9	7.29	58.58
MW-38	08/12/13	1332	865	4.61	-122.2	7.24	61.28
	04/24/13	1656	1070	34.56	-48.0	7.28	56.00
	08/14/12	1577	1025	2.77	14.3	7.34	63.70
	04/04/12	1332	1097	2.86	-83.8	7.29	57.20
	08/13/11	1335	954	0.56	223.0	7.00	59.90
	04/23/11	1447	1045	1.51	226.0	7.10	58.40
	08/13/10	1317	939	0.60	276.0	6.99	64.70

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
North Boundary E	Barrier Wells						
	08/17/16	878.25	570	2.84	47.78	6.91	70.55
	04/19/16	571	371	1.84	-63.41	7.17	54.99
	08/25/15	914	592	1.34	-94.9	7.04	68.54
	04/20/15	733	477	2.83	-80.2	7.54	58.58
	08/27/14	750	488	2.41	-121.1	6.70	69.44
	04/12/14	926	0.6023	6.30	-63.1	6.74	53.54
CW 0+60	8/7/2013	823	535	2.12	-73.6	6.88	66.62
CVV 0100	04/24/13	1098	70	60.05	17.8	6.82	50.00
	08/08/12	904	585	2.19	8.9	7.00	69.30
	04/03/12	852	771	1.75	-82.3	7.05	50.45
	08/15/11	1005	708	3.04	155.0	6.60	68.20
	04/13/11	1092	783	4.80	168.0	6.70	52.60
	08/07/10	1067	757	2.58	280.0	6.82	67.20
	04/07/10	1197	842	2.25	289.0	6.97	52.70
	08/17/16	1511	981	1.35	44.3	7.25	68.40
	04/21/16	1721	1177	0.68	-222.0	7.87	62.24
	08/26/15	np	np	np	np	np	np
	04/20/15	1547	1008	1.95	-193.1	7.54	59.30
	04/12/14	1920	1248	13.42	-70.4	7.46	57.20
CW 25+95	04/24/13	1246	810	42.38	-118.2	7.44	53.00
CW 25+95	08/08/12	1614	1053	0.92	-254.1	7.43	65.50
	04/03/12	1236	1074	1.34	-200.9	7.21	53.38
	08/15/11	1271	902	1.21	138.0	7.00	69.90
	04/13/11	1559	1127	2.58	63.0	7.06	60.00
	08/07/10	1343	960	1.09	141.0	6.96	66.50
	04/07/10	965	675	1.32	255.0	6.95	52.20
	08/17/16	1208	785	1.15	22.9	7.55	70.00
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1014	659	1.03	-135.1	6.96	68.78
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	1056	687	2.00	-58.4	6.59	69.14
	04/12/14	ns	ns	ns	ns	ns	ns
OW 0+60	8/7/2013	ns	ns	ns	ns	ns	ns
OVV U+0U	04/24/13	ns	ns	ns	ns	ns	ns
	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	1469	1056	2.06	77.0	6.75	67.20
	04/07/10	1573	1122	ns	ns	6.93	54.90
	08/17/16	1225	797	1.70	-96.7	7.40	70.41
	04/19/16	758	493	1.65	-87.9	6.63	57.11
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
OW 1+50	8/7/2013	ns	ns	ns	ns	ns	ns
OVV 1730	04/24/13	ns	ns	ns	ns	ns	ns
	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	ns	ns	ns	ns	ns	ns
	04/07/10	2720	2023	ns	ns	6.94	56.20

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/17/16	2776	1804	1.33	-215.3	7.09	67.70
	04/19/16	2471	1606	1.84	-74.55	6.92	55.67
	08/25/15	2522	1638	0.86	-263.9	7.15	67.16
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	3030	1967	4.18	-143.6	6.93	54.74
OW 3+85	8/7/2013	ns	ns	ns	ns	ns	ns
OW 3103	04/24/13	3021	1960	64.23	-112.5	7.15	52.00
	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	3224	2486	2.17	78.0	6.71	66.20
	04/07/10	3137	2371	ns	ns	6.94	54.70
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
OW 5+50	8/7/2013	ns	ns	ns	ns	ns	ns
OW 5150	04/24/13	ns	ns	ns	ns	ns	ns
	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	3577	2773	1.90	114.0	6.76	69.10
	04/07/10	ns	ns	ns	ns	ns	ns
**OW 6+70	08/17/16	ns	ns	ns	ns	ns	ns
**OW 8+10	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/16	2171	1414	0.78	152.9	6.65	68.23
	04/19/16	1284	834	3.49	52.2	7.68	57.66
	08/25/15	2452	1593	0.86	-208.4	6.98	66.38
	04/20/15	2672	1738	1.34	-99.6	7.16	58.52
	08/27/14	2157	1402	1.73	-80.8	6.60	66.08
	04/12/14	ns	ns	ns	ns	ns	ns
OW 11+15	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns 4057	ns	ns	ns	ns	ns
	08/15/11	1857	1346	2.32	202.0	6.80	66.70
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	ns	ns 4204	ns	ns	ns	ns
*******	04/07/10	1932	1394	ns	ns	6.94	55.80
**OW 14+10	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/16 04/19/16	3749 2973	2438 2334	1.43 2.80	-249.4 -116.2	7.77	69.32
						7.52	59.62
	08/25/15 04/20/15	3936 4057	2557	0.77	-219.3	7.16 7.24	68.84
		3239	2635 2106	1.65 1.55	-211.1 -172.9	6.83	60.98
	08/27/14 04/12/14	1529	995	4.24	-172.9	6.83	68.72 59.42
	8/7/2013	2497	1623	1.07	-74.8	6.91	67.04
OW 16+60	04/24/13	2770	1800	48.22	-13.1	7.01	56.00
	08/08/12	3345	2150	2.29	-146.6	7.01	67.70
	08/08/12	2389	1913	1.12	-65.9	7.16	59.18
		2389	2011	1.12	184.0	6.90	
				1.41	104.U	0.90	70.10
	08/15/11						50.20
	08/13/11	2567 2631	1943 1982	5.53 2.86	200.0	6.78 6.79	58.30 68.50

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/25/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
OW 19+50	04/24/13	ns	ns	ns	ns	ns	ns
	08/08/12	ns	ns	ns	ns	ns	ns
	04/03/12	ns	ns	ns	ns	ns	ns
	08/15/11	ns	ns	ns	ns	ns	ns
	04/13/11	ns	ns	ns	ns	ns	ns
	08/07/10	4496	3568	1.73	292.0	6.87	68.90
	04/07/10	4005	3129	ns	ns	6.92	54.70
	08/17/16	1913	1242	6.99	185.7	7.40	72.55
	04/19/16	2205	1434	6.71	15.0	8.01	57.38
	08/25/15	3048	1983	3.28	18.1	7.41	67.88
	04/20/15	3102	2017	4.57	24.8	7.56	57.62
	08/27/14	3213	2089	3.42	3.0	6.87	67.28
	04/12/14	2444	1588	10.62	21.9	7.27	54.32
OW 22+00	08/27/14	3213	2089	3.42	3.0	6.87	67.28
OVV 22+00	04/24/13	3056	1990	57.44	115.6	7.19	51.00
	08/08/12	4262	2769	2.77	-128.6	7.07	66.60
	04/03/12	3193	2770	3.22	74.1	6.97	53.42
	08/15/11	3739	2888	2.51	149.0	7.00	69.40
	04/13/11	3178	2468	2.81	250.0	6.90	54.30
	08/07/10	3804	2953	1.50	286.0	6.85	68.60
	04/07/10	3075	2326	ns	ns	6.84	52.40
	08/17/16	1589	1036	1.89	-61.8	8.28	70.16
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1676	1090	1.57	-83.5	7.36	68.78
	04/20/15	1985	1289	2.22	-102.5	7.50	58.76
	08/27/14	1681	1092	2.20	-125.4	7.05	67.82
	04/12/14	1517	986	8.70	-39.4	7.36	57.92
OW 23+10	8/7/2013	2442	1588	5.11	43.3	7.08	65.42
OW 23+10	04/24/13	1498	0.98	46.47	83.8	7.11	55.00
	08/08/12	1995	1296	3.52	-3.2	7.04	68.30
	04/03/12	1134	933	1.74	13.9	7.19	57.25
	08/15/11	1503	1072	1.32	128.0	7.00	69.10
	08/13/11	1304	939	1.89	192.0	6.98	57.60
	08/07/10	1379	982	1.06	272.0	6.90	69.50
	04/07/10	1505	1070	ns	ns	6.85	55.70
<u></u>	08/17/16	ns	ns	ns	ns	ns	ns
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1396	908	3.50	-10.3	7.53	67.34
	04/20/15	1263	821	6.56	-1.9	7.74	59.36
	08/27/14	1522	990	2.53	-40.7	7.26	66.38
	04/12/14	1269	826	13.05	22.3	7.58	59.18
OW 23+90	8/7/2013	1036	674	5.11	4.3	7.50	66.20
OVV 23780	04/24/13	1047	1	40.99	147.3	7.39	55.00
	08/08/12	1479	960	4.88	-26.9	7.39	67.50
	04/03/12	882	731	3.64	40.3	7.56	56.62
	08/15/11	1228	869	1.77	151.0	7.00	69.00
	08/13/11	1193	855	2.73	203.0	7.03	58.40
	08/07/10	1159	822	2.05	238.0	6.97	67.80
	04/07/10	1203	845	ns	ns	6.90	56.10

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/17/16	1431	930	1.72	-73.8	8.08	69.59
	04/21/16	1947	1265	2.22	-72.8	8.24	57.56
	08/25/15	1600	1040	1.62	-113.4	7.33	69.32
	04/20/15	1529	995	2.08	-110.0	7.32	56.96
	08/27/14	1531	997	2.21	-114.7	7.22	69.08
	04/12/14	1748	1138	6.29	-87.5	7.35	55.70
OW 25+70	8/7/2013	1309	852	2.44	-92.1	7.41	68.66
011 20 10	04/24/13	1335	1	42.40	16.5	7.33	53.00
	08/08/12	1349	875	2.16	-116.2	7.48	69.40
	04/03/12	1254	1086	1.03	-56.2	7.44	53.54
	08/15/11	781	544	1.10	171.0	7.00	69.30
	04/13/11	1160	830	1.54	190.0	7.00	56.05
	08/07/10	1199	850	0.97	273.0	6.94	70.40
D - 6: \W - 11 -	04/07/10	1100	773	ns	ns	6.90	51.80
Refinery Wells	00/00/40	2438	1556	5.15	-104.6	6.91	63.84
	08/23/16						
	08/24/15	2706 3133	1759 2037	2.23	-110.7 -131.2	7.05 7.07	63.56 65.06
	08/25/14 04/12/14						
	8/7/2013	ns 1309	ns 852	ns 2.44	-92.1	ns 7.41	ns 68.66
MW-4	04/24/13	ns	ns	ns	-92.1 ns	ns	ns
IVI V V -4	08/09/12	2615	1701	1.19	-83.6	6.86	68.30
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2297	1712	1.37	226.0	6.90	58.80
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2323	1725	1.49	266.0	6.94	64.70
	08/22/16	2149	1398	2.72	107.2	8.04	59.41
	04/20/16	ns	ns	ns	ns	ns	ns
	08/18/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	2505	1627	4.89	205.9	4.73	59.06
MW-8	8/8/2013	2067	1346	3.33	94.9	5.91	58.58
	04/24/13	2292	1	34.64	387.3	3.74	56.00
	08/09/12	3986	2591	2.85	476.8	3.14	60.10
	04/04/12	2782	2219	2.61	424.7	2.97	59.58
	08/13/11	2306	1722	1.37	226.0	6.90	58.80
	04/23/11	2951	2289	5.30	251.0	4.79	55.00
	08/13/10	2258	1712	2.14	276.0	6.60	58.90
**MW-20	08/17/16	ns	ns	ns	ns	ns	ns
	08/23/16	4165	2704	1.83	52.8	7.32	61.16
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
1.04.6	04/12/14	ns	ns	ns	ns	ns	ns
MW-21	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	ns	ns	ns	ns	ns	ns
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/23/16	1021	663	4.63	56.0	7.52	68.73
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	961	624	1.81	-16.0	7.49	61.70
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	1162	754	2.44	-48.3	7.10	63.32
	04/12/14	ns	ns	ns	ns	ns	ns
MW-29	8/8/2013	1396	906	1.74	60.0	7.08	61.52
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	1027	665	2.11	173.9	7.07	61.30
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	1116	797	2.35	226.0	7.00	60.10
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	1083	772	2.02	289.0	6.78	60.70
	08/23/16	2757	1784	4.05	-247.5	7.08	62.52
	04/21/16	3582	2329	2.19	-260.5	7.75	64.46
	08/24/15	3009	1957	1.79	-236.3	7.19	62.18
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	3218	2093	3.01	-211.8	6.82	64.46
	04/12/14	ns	ns	ns	ns	ns	ns
MW-30	8/8/2013	2666	1733	1.54	-93.3	6.96	61.94
	04/24/13	2178	1	27.80	-34.5	7.00	61.00
	08/09/12	2694	1751	1.92	-41.5	7.08	64.20
	04/04/12	3108	2395	2.06	-211.8	6.95	62.24
	08/13/11	2986	2293	1.08	151.0	6.90	62.20
	04/23/11	3119	2419	3.65	129.0	6.50	59.80
	08/13/10	3014	2309	1.24	206.0	6.82	62.50
	08/22/16	3048	1983	2.11	7.8	8.10	63.37
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	2996	1948	2.97	-159.1	6.94	63.80
	04/12/14	ns	ns	ns	ns	ns	ns
MW-31	8/8/2013	1776	1155	4.79	-120.7	7.15	63.92
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	3518	2288	2.25	33.5	7.19	66.60
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	3359	2598	1.26	184.0	7.00	62.40
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	3681	2857	0.40	211.0	6.96	63.80
	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
MW-40	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	2837	2129	1.51	167.0	7.10	66.50
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	2790	2106	1.00	281.0	7.00	68.80

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/23/16	3460	2253	5.87	-15.8	7.30	61.32
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	5750	3740	1.93	-97.8	7.26	61.28
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	5662	3679	3.09	54.1	6.86	61.16
	04/12/14	ns	ns	ns	ns	ns	ns
MW-44	8/8/2013	5484	3564	3.60	-4.3	7.07	60.98
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	5946	3865	5.19	29.3	7.26	64.20
	04/04/12	ns	ns	ns	ns	ns	ns
	08/13/11	4626	3682	2.15	231.0	7.00	60.50
	04/23/11	ns	ns	ns	ns	ns	ns
	08/13/10	5296	4306	2.57	320.0	6.78	60.60
**RW-1	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
RW-9	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	3760	2442	0.98	-144.6	7.00	62.80
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	2925	2234	1.37	241.0	6.91	62.00
	08/23/16	2472	1601	6.48	-123.8	7.67	61.15
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	3458	2249	3.65	-111.1	6.84	61.94
	04/12/14	ns	ns	ns	ns	ns	ns
RW-15	8/8/2013	2213	1439	1.33	-115.1	6.94	62.24
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	3489	2269	0.86	-146.2	7.06	64.20
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	3130	2410	4.12	243.0	6.80	60.90
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	3295	2540	0.60	278.0	7.05	61.90
	08/23/16	3666	2383	0.66	4.6	7.49	63.02
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
RW-18	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	5074	4098	3.40	229.0	6.80	63.80
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	5434	4451	2.28	132.0	6.94	65.80

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
RW-23	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/18/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	1911	1401	2.20	241.0	7.00	64.20
**RW-28	08/17/16	ns	ns	ns	ns	ns	ns
	08/24/16	2325	1511	5.07	-228.7	7.60	64.02
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
514.40	04/12/14	ns	ns	ns	ns	ns	ns
RW-42	08/08/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12	ns	ns	ns	ns	ns	ns
	08/08/11	ns	ns	ns	ns	ns	ns
	04/11/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/24/16	2904	1888	2.10	-151.1	9.50	67.91
	04/20/16	ns	ns	ns	ns	ns	ns
	08/24/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
RW-43	04/12/14	ns	ns	ns	ns	ns	ns
KVV-43	08/08/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/09/12	ns	ns	ns	ns	ns	ns
	04/04/12 08/08/11	ns	ns	ns	ns	ns	ns
	08/08/11	ns	ns ns	ns ne	ns	ns	ns
	08/13/10	ns 2647	1993	ns 130 *	ns 124.0	ns 6.75	70.00
San Juan River BI		2041	1990	130	124.0	0.73	70.00
Call Gaall River Di	08/17/16	ns	ns	ns	ns	ns	ns
	05/17/16	306	1989	6.78	94.9	6.25	55.22
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	1064	693	9.80	4.4	7.98	51.80
	08/26/14	463	301	6.52	28.1	7.20	61.52
	04/12/14	742	481	7.53	88.6	7.36	48.92
Outfall No. 2	08/06/13	782	507	6.48	57.1	7.51	63.68
	04/24/13	520	340	31.59	151.4	7.38	49.00
	08/07/12	324	211	4.42	159.9	7.49	69.90
	03/08/12	ns	ns	ns	ns	ns	ns
	08/11/11	299	204	ns	212.0	6.60	62.30
	04/12/11	826	588	ns	218.0	6.69	51.60

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/16	297	193	9.33	38.0	8.79	61.16
	05/18/16	306	1989	8.67	96.4	6.84	51.98
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	307	199	7.84	23.7	7.87	60.02
	04/21/15	422	275	10.48	59.2	7.95	53.66
	08/26/14	307	200	10.63	55.3	7.84	56.72
*********	04/12/14	933	607	8.49	76.9	7.42	52.58
**Outfall No. 3	08/06/13	354	230	7.55	87.0	7.53	60.98
	04/24/13	622	400	28.88	120.5	7.27	53.00
	08/07/12	295	191	6.35	176.5	7.95	64.20
	03/08/12	ns	ns	ns	ns	ns	ns
	08/11/11	301	206	ns	238.0	6.60	60.40
	04/12/11	466	325	ns	197.0	6.66	52.70
	08/13/10	317	219	ns	274.0	6.94	64.90
	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	5072	3296	4.99	49.7	6.54	53.60
	08/26/14	3939	2559	5.62	51.4	7.40	61.04
Seep 1	04/12/14	3507	2279	6.01	49.3	7.56	49.88
	08/06/13	2472	1606	132.62	48.5	7.72	67.04
	04/24/13	3982	2590	90.94	228.5	7.36	46.00
	08/07/12	4503	2925	5.62	164.0	8.03	76.90
	03/18/12	ns	ns	ns	ns	ns	ns
Seep 2	08/19/16	ns	ns	ns	ns	ns	ns
2007 2	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 3	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	4506	2930	99.98	217.0	7.76	44.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	3655	3215	7.95	127.0	7.89	52.38
	08/19/16			Seep no longer ex	rists		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
04	08/26/14	ns	ns	ns	ns	ns	ns
Seep 4	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
Seep 5	08/19/16	ns	ns	ns	ns	ns	ns
I -	08/19/16			Seep no longer ex			
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 6	04/12/14	8810	5727	13.46	105.2	7.24	44.84
	08/06/13	28663	18631	90.40	153.6	6.68	66.26
			6180	129.16	219.0	7.07	42.00
	()4/24/13	9510	י טומט י				
	04/24/13 08/07/12	9510 ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/16			Seep no longer exi	sts		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 7	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exi			-
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 8	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/19/16	110	110	Seep no longer exi		113	110
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
Seep 9	04/12/14	5271	3426	12.90	43.9	7.73	43.10
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	5644	3670	136.90	214.3	7.35	35.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	3004	2841	7.62	139.4	7.64	47.48
	08/19/16	290	189	8.90	22.6	8.94	64.04
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	169	110	9.28	23.6	7.98	57.74
	04/22/15	540	351	13.08	34.2	8.16	58.64
	08/26/14	ns	ns	ns	ns	ns	ns
**Upstream	04/12/14	357	232	12.74	45.3	8.14	45.38
	08/06/13	ns	ns	ns	ns	ns	13.38 ns
	04/24/13	370	240	21.89	168.2	8.20	49.00
	08/07/12	311	202	7.73	147.4	8.51	57.90
	03/10/12	236	218	10.50	65.4	8.27	49.28
	08/19/16	290	189	8.76	20.5	8.90	63.86
	04/22/16						
	08/26/15	ns 315	ns 205	ns 9.81	ns 14.7	ns 8.13	ns 57.20
	04/22/15	536	348	12.39	35.7	8.16	59.72
	08/26/14	ns	ns	ns	ns	ns	ns
**Downstream	04/12/14	429	279	16.35	82.1	7.67	45.14
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	419	270	20.80	193.9	8.20	51.00
	08/07/12	347	226	5.71	157.4	8.47	60.00
	03/11/12	323	273	10.12	61.2	8.41	55.40

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/16	293	191	9.40	37.8	9.67	60.08
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
ľ	04/22/15	498	324	12.93	33.4	8.03	60.08
***************************************	08/26/14	ns	ns	ns	ns	ns	ns
**North of MW-45	04/12/14	411	267	13.48	83.8	8.05	45.14
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	360	230	20.40	214.3	8.39	50.00
	08/07/12	313	203	8.17	154.8	8.42	59.10
	03/11/12	243	220	9.85	75.1	8.42	50.54
	08/19/16	296	192	8.75	45.1	9.02	60.98
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	500	325	13.71	20.3	8.24	60.26
	08/26/14	ns	ns	ns	ns	ns	ns
**North of MW-46	04/12/14	405	263	12.30	90.4	8.12	44.96
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	368	240	20.90	213.5	8.40	51.00
	08/07/12	324	211	8.02	156.5	8.31	60.10
	03/10/12	242	220	10.20	65.2	8.37	50.18
Background Wells		272	220	10.20	00.Z	0.07	30.10
MW-3	08/17/16	ns	ns	ns	ns	ns	ns
MW-5	08/17/16	ns	ns	ns	ns	ns	ns
MW-6	08/17/16	ns	ns	ns	ns	ns	ns
RCRA Investigation		113	113	113	113	113	113
North investigation	08/23/16	590	383	4.99	-123.3	8.38	61.06
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-50	08/14/13	544	353	1.73	55.0	7.44	60.98
10100-00	08/15/12	558	348	10.37	148.4	7.21	62.20
	08/22/11	650	453	6.12	183.0	6.70	59.50
	08/13/10	612	425	0.66	248.0	7.12	61.40
	08/23/16	1180	732	5.92	-38.6	7.67	62.12
	08/17/15	723	470	2.55	70.2	7.31	58.76
	08/19/14	779	507	3.06	25.6	7.07	62.18
MW-51	08/14/13	441	287	2.17	69.0	7.35	61.34
1V1VV = J 1	08/14/13	557	362	2.17	116.8	7.57	62.90
	08/22/11	509	351			6.90	
	08/22/11	664	459	4.80 0.52	181.0 273.0	7.12	61.10 63.10
	08/22/16	5336	3469	2.81	109.6	7.12	60.04
	08/22/16	4172	2713	1.92	62.7	7.03	59.24
ļ		4172	3153		64.2		
MW-52	08/19/14 08/14/13	4849	2908	3.37 2.69	5.2	6.49 6.78	60.50 59.30
IVIVV-5Z							64.70
ļ	08/15/12	3518	2286	2.60	4.7 201.0	6.61	
ļ	08/22/11	4139	3255	3.12		6.90	60.70
	08/13/10	3602	2801	0.63	291.0	7.07	62.20
	08/24/16	4393	2868	4.99	27.5	7.40	59.49
	08/17/15	5470	3556	2.31	96.0	7.14	59.78
NAVA 50	08/19/14	5333	3467	3.23	59.7	6.58	60.50
MW-53	08/14/13	4603	2990	3.05	48.3	7.15	59.72
ļ	08/15/12	5477	3562	3.55	38.0	7.27	61.90
ļ	08/22/11	4574	3658	3.63	215.0	6.90	59.60
	08/13/10	4288	3394	0.59	242.0	7.14	61.60
MW-54	08/17/16	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-55	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	3001	2284	1.72	198.0	7.00	60.60
	08/13/10	3160	2440	1.28	277.0	6.85	61.10
	08/23/16	3032	1972	1.47	68.4	7.36	68.40
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-56	08/14/13	ns	ns	ns	ns	ns	ns
11111 00	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/24/16	3066	1994	2.99	-149.0	7.42	65.61
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-57	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-58	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	2562	1928	1.68	279.0	6.95	65.30
	08/22/16	3241	2106	2.34	70.3	7.83	62.15
	08/17/15	3381	220	1.30	-112.3	7.16	62.48
	08/19/14	3488	2266	2.75	-121.2	6.90	62.90
MW-59	08/14/13	2876	1869	1.79	-91.1	7.09	63.95
	08/15/12	2867	1863	1.60	-85.9	7.10	63.10
	08/25/11	2423	1812	2.12	221.0	6.80	62.00
	08/13/10	2067	1523	0.61	287.0	6.90	62.40
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-60	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/25/11	3551	2743	1.78	200.0	7.00	62.60
	08/13/10	2567	1939	0.68	284.0	6.88	61.50
MW-61	08/17/16	ns	ns	ns	ns	ns	ns
	08/22/16	7905	5139	2.18	120.3	8.00	62.06
	08/17/15	7273	473	2.03	48.1	7.05	61.46
	08/19/14	7172	4663	6.36	44.5	6.87	63.02
MW-62	08/14/13	7051	4583	4.54	38.3	7.07	61.76
	08/15/12	7450	4843	4.75	125.4	6.95	61.40
	08/23/11	6247	5203	50' cord -didn't reach	189.0	7.00	60.50
	08/13/10	6458	5330	50' cord -didn't reach	297.0	6.93	62.40

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/22/16	3901	2537	2.27	122.3	7.98	64.49
	08/17/15	4931	320	0.80	57.8	6.84	64.64
	08/19/14	5282	3432	3.24	30.5	6.60	66.92
MW-63	08/14/13	5899	3835	1.39	62.1	6.83	65.39
	08/15/12	5374	3479	1.47	137.6	6.91	65.40
	08/24/11	3416	2651	1.71	238.0	6.60	63.90
	08/13/10	4764	3809	0.44	222.0	7.06	68.30
	08/22/16	6658	4329	6.29	131.2	7.83	62.11
	08/17/15	6310	410	6.16	68.3	7.04	63.38
	08/19/14	6249	4060	9.15	67.1	6.94	64.52
MW-64	08/14/13	6049	3933	6.49	60.9	7.03	64.28
	08/15/12	6501	4186	4.90	121.2	7.12	65.40
	08/24/11	4989	4026	4.22	235.0	6.70	61.50
	08/13/10	5302	4279	4.59	251.0	7.06	65.50
	08/22/16	5228	3398	1.83	-21.8	7.75	63.32
	08/17/15	4861	316	1.83	-182.3	7.10	63.38
	08/19/14	4299	2795	3.57	-114.7	6.89	64.16
MW-65	08/14/13	4707	3059	1.80	-97.6	7.04	64.10
	08/15/12	5341	3458	1.09	-93.5	7.09	63.90
	08/22/11	2866	2189	0.55	169.0	7.10	63.00
	08/13/10	2787	2103	0.41	245.0	7.05	65.80
MW-66	08/17/16	ns	ns	ns	ns	ns	ns
	08/24/16	1078	714	5.87	5.4	7.52	59.79
	08/17/15	1320	860	2.71	73.0	7.24	59.48
1414/07	08/19/14	1008	654	3.00	70.4	6.87	60.14
MW-67	08/14/13	876	570	2.39	59.7	7.12	59.60
	08/15/12	1309	849	2.48	221.9	6.96	59.70
	08/22/11	1017	712	1.17	170.0	7.00	58.70
	08/24/16	1210	785	5.45	29.0	7.71	62.18
	08/17/15	1257	819	2.36	69.8	7.30	62.42
NAVA (00	08/19/14	1135	737	3.56	52.4	6.97	63.32
MW-68	08/14/13	1053	685	3.31	84.5	7.19	61.04
	08/15/12	1114	724	7.85	197.6	6.82	61.20
	08/22/11	1150	809	0.91	218.0	7.00	60.90
MW-69	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
MW-70	08/17/15	6258	407	3.21	-49.5	6.89	60.68
	08/19/14	6088	3956	6.13	-65.3	6.81	63.44

Notes:

ns = no sample

np = not purged

* = Field result was confirmed with field notes.

^{** =} Discrete sample reading

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

		-							1												
		ŀ	**RW-1		MV					N-8		**RW-9			/-15		**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
		_	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-16	Aug-16	Aug-15
Volatile Organic Compounds (u		(4)		< 1.0		. 40							. 40	- 00			< 100		-5.0		
1,1,1,2-Tetrachloroethane					< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0			<5.0		
1,1,1-Trichloroethane				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,1,2,2-Tetrachloroethane		· · /		< 2.0	< 2.0	< 20	< 2.0	< 2.0			< 2.0		< 200	< 40	< 100	< 2.0	< 200		<10		
1,1,2-Trichloroethane		(2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,1-Dichloroethane		(3)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,1-Dichloroethene	5.00E+00	(3)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,1-Dichloropropene	-	-		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,2,3-Trichlorobenzene	-	-		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
1,2,3-Trichloropropane				< 2.0	< 2.0	< 20	< 2.0	< 2.0			< 2.0		< 200	< 40	< 100	< 2.0	< 200		<10		
1,2,4-Trichlorobenzene				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
1,2,4-Trimethylbenzene				1.7	4.1	< 10	10	1.0			8.0		2100	650	2500	14	120		16		
1,2-Dibromo-3-chloropropane	2.00E-01	(2)		< 2.0	< 2.0	< 20	< 2.0	< 2.0			< 2.0		< 200	< 40	< 100	< 2.0	< 200		<10		
1,2-Dibromoethane (EDB)				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,2-Dichlorobenzene	6.00E+02	(2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
1,2-Dichloroethane (EDC)	5.00E+00	(2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,2-Dichloropropane	5.00E+00	(2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,3,5-Trimethylbenzene	1.20E+01	(1)		< 1.0	< 1.0	< 10	2.3	< 1.0			2.0		200	92	490	1.0	< 100		<5.0		
1,3-Dichlorobenzene	-	-		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
1,3-Dichloropropane	7.30E+02	(1)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
1,4-Dichlorobenzene				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
1-Methylnaphthalene				22	21	< 40	17	< 4.0			< 4.0		< 400	< 80	< 200	< 4.0	< 400		<20.0		
2,2-Dichloropropane	-	-		< 2.0	< 2.0	< 20	< 2.0	< 2.0			< 2.0		< 20	< 40	< 100	< 2.0	< 200		<10		
	5.56E+03	(4)		< 10	< 10	< 100	< 10	< 10			< 10		< 100	< 200	< 500	< 10	< 1000		<50		
2-Chlorotoluene				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
2-Hexanone	-	-		< 10	< 10	< 100	< 10	< 10			< 10		< 100	< 200	< 500	< 10	< 1000		<50		
2-Methylnaphthalene	1.50F+02	(1)		35	37	< 40	29	< 4.0			< 4.0		< 400	95	210	< 4.0	< 400		<20.0		
4-Chlorotoluene				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
4-Isopropyltoluene	2.002.00	-		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
4-Methyl-2-pentanone				< 10	< 10	< 100	< 10	< 10			< 10		< 100	< 200	< 500	< 10	< 1000		<50		
	1.41E+04	(4)		< 10	< 10	< 100	< 10	< 10			< 10		< 100	< 200	< 500	< 10	< 1000		<50.0		
		(2)		37	210	27	120	< 1.0			< 1.0		1800	1200	2100	30	1400		20		
Bromobenzene		` /		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
Bromodichloromethane				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0 <15.0		
	8.50E+00			< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
Bromotorm				< 3.0	< 1.0	< 10	< 3.0	< 3.0			< 3.0		< 100	< 60	< 150	< 3.0	< 300		<5.0 <5.0		
		` /																			
Carbon disulfide				< 10	< 10	< 100	< 10	< 10			< 10		< 100	< 200	< 500	< 10	< 1000		<50		
Carbon Tetrachloride		(2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Chlorobenzene		` '		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Chloroethane		-		< 2.0	< 2.0	< 20	< 2.0	< 2.0			< 2.0		< 20	< 40	< 100	< 2.0	< 200		<10		
	1.00E+02			< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Chloromethane				< 3.0	< 3.0	< 30	< 3.0	< 3.0			< 3.0		< 30	< 60	< 150	< 3.0	< 300		<15		
cis-1,2-DCE	7.00E+01	(2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
cis-1,3-Dichloropropene	-	-		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Dibromochloromethane				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Dibromomethane		` /		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Dichlorodifluoromethane				< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Ethylbenzene	7.00E+02	(2)		7	17	< 10	18	<1.0			1.2		2400	610	3400	19	< 100		<5.0		

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

							1					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
	**RW-1			V-4			¹ MV			**RW-9			-15		**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-16	Aug-16	Aug-15
Hexachlorobutadiene 8.60E-01 (1)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
Isopropylbenzene 4.47E+02 (4)		40	49	25	27	< 1.0			< 1.0		100	23	93	< 1.0	< 100		6.8		
Methyl tert-butyl ether (MTBE) 1.43E+02 (4)		< 1.0	< 1.0	< 10	1.4	< 1.0			< 1.0		< 10	110	150	1.6	1900		16		
Methylene Chloride 5.00E+00 (2)		< 3.0	< 3.0	< 30	< 3.0	< 3.0			< 3.0		< 30	< 60	< 150	< 3.0	< 300		<15.0		
Naphthalene 1.65E+00 (4)		71	78	55	56	< 2.0			< 2.0		500	170	640	3.1	< 200		34		
n-Butylbenzene		< 3.0	< 3.0	< 30	< 3.0	< 3.0			< 3.0		< 300	< 60	< 150	< 3.0	< 300		<15		
n-Propylbenzene		33	39	25	22	<1.0			1.2		350	59	320	1.7	< 100		11		
sec-Butylbenzene		5.7	7.7	< 10	5.2	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
Styrene 1.00E+02 (2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
tert-Butylbenzene		1.2	1.2	< 10	1.2	< 1.0			< 1.0		< 100	< 20	< 50	< 1.0	< 100		<5.0		
Tetrachloroethene (PCE) 5.00E+00 (2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Toluene 7.50E+02 (3)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		18	740	< 50	1.5	< 100		<5.0		
trans-1,2-DCE 1.00E+02 (2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
trans-1,3-Dichloropropene 4.30E-01 (1)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		
Trichloroethene (TCE) 5.00E+00 (2)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		[
Trichlorofluoromethane 1.14E+03 (4)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		[
Vinyl chloride 1.00E+00 (3)		< 1.0	< 1.0	< 10	< 1.0	< 1.0			< 1.0		< 10	< 20	< 50	< 1.0	< 100		<5.0		1
Xylenes, Total 6.20E+02 (3)		11	11	< 15	5.6	<1.5			3.6		1300	1000	6600	8.3	240		<7.5		
Semi Volatile Organic Compounds (ug/l):																			
1,2,4-Trichlorobenzene 7.00E+01 (2)																			
1,2-Dichlorobenzene 6.00E+02 (2)																			
1,3-Dichlorobenzene																			
1,4-Dichlorobenzene 7.50E+01 (2)																			
1-Methylnaphthalene 2.30E+00 (1)																			
2,4,5-Trichlorophenol 1.17E+03 (4)																			
2,4,6-Trichlorophenol 1.19E+01 (4)																			
2,4-Dichlorophenol 4.53E+01 (4)																			
2,4-Dimethylphenol 3.54E+02 (4)																			
2,4-Dinitrophenol 3.88E+01 (4)																			
2,4-Dinitrotoluene 2.37E+00 (4)																			
2,6-Dinitrotoluene 3.70E+01 (1)																			
2-Chloronaphthalene 2.90E+03 (1)																			
2-Chlorophenol 9.10E+01 (4)																			
2-Methylnaphthalene 1.50E+02 (1)																			
2-Methylphenol 1.80E+03 (1)																			
2-Nitroaniline 1.10E+02 (1)																			
2-Nitrophenol																			
3,3'-Dichlorobenzidine 1.50E-01 (1)																			
3+4-Methylphenol 1.80E+02 (1)																			
3-Nitroaniline																			
4,6-Dinitro-2-methylphenol																			
4-Bromophenyl phenyl ether																			
4-Chloro-3-methylphenol																			
4-Chloroaniline 3.40E-01 (1)																			
													_	_	_				
4-Chlorophenyl phenyl ether 4-Nitroaniline 3.40E+00 (1)																			
														_	_				
1 Title opinion of																			
Acenaphthylene																			

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

					20.0	Ciounan	ater Kerneu	iution moi	iitoriiig Ai	iiiuui itepi									
	**RW-1		MV	V-4			1 MV	V-8		**RW-9		RV	V-15		**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-16	Aug-16	Aug-15
Aniline 1.20E+01 (1)																			
Anthracene 1.72E+03 (4)																			
Azobenzene 1.20E-01 (1)																			
Benzo(a)anthracene 3.43E-01 (4)																			
Benzo(a)pyrene 2.00E-01 (2)																			
Benzo(b)fluoranthene 3.43E-01 (4)																			
Benzo(g,h,i)perylene																			
Benzo(k)fluoranthene 3.43E+00 (4)																			
Benzoic acid 1.50E+05 (1)																			
Benzyl alcohol 1.80E+04 (1)																			
Bis(2-chloroethoxy)methane 1.10E+02 (1)																			
Bis(2-chloroethyl)ether 1.36E-01 (4)																			
Bis(2-chloroisopropyl)ether 9.76E+00 (4)																			
Bis(2-ethylhexyl)phthalate 6.00E+00 (2)																			
Butyl benzyl phthalate 3.50E+01 (1)																			
Carbazole																			
Chrysene 3.43E+01 (4)																			
Dibenz(a,h)anthracene 1.06E-01 (4)																			
Dibenzofuran																			
Diethyl phthalate 1.48E+04 (4)																			
Dimethyl phthalate																			
Di-n-butyl phthalate 8.85E+02 (4)																			
Di-n-octyl phthalate																			
Fluoranthene 8.02E+02 (4)																			
Fluorene 2.88E+02 (4)																			
Hexachlorobenzene 1.00E+00 (2)																			
Hexachlorobutadiene 8.60E-01 (1)																			
Hexachlorocyclopentadiene 5.00E+01 (2)																			
Hexachloroethane 6.80E+00 (4)																			
Indeno(1,2,3-cd)pyrene 2.90E-02 (1)																			
Isophorone 7.79E+02 (4)																			
Naphthalene 1.65E+00 (4)																			
Nitrobenzene 1.40E+00 (4)																			
N-Nitrosodimethylamine 4.90E-03 (4)																			
N-Nitrosodi-n-propylamine 9.60E-03 (1)																			
N-Nitrosodiphenylamine 1.21E+02 (4)																			
Pentachlorophenol 1.00E+00 (2)																			
Phenanthrene 1.70E+02 (4)																			
Phenol 5.00E+00 (3)																			
Pyrene 1.17E+02 (4)																			
Pyridine 3.70E+01 (1)																			
General Chemistry (mg/l):																			
Fluoride 1.6 (3)		< 0.50	0.29	< 0.50	< 0.50	0.61			0.67		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		<0.1		
Chloride 250 (3)		270	250	220	210	160			120		330	480	410	360	610		510		
Nitrite 1 (2)		< 0.50	< 0.10	< 0.50	< 0.50	13.0			0.88		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		<2.0		
Bromide		4.6	< 0.10	3.4	3.1	0.78			0.86		8.5	6.3	6.1	6.8	5.5		10		
Nitrate 10 (3)		< 0.50	0.74	< 0.50	< 0.50	13.0			13		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		0.93		
Phosphorus		< 2.5	< 0.50	< 2.5	< 2.5	<0.5			< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		<0.5		
Sulfate 600 (3)		< 2.5	1	6.8	4.0	700			990		19	< 2.5	2.8	< 2.5	140		94		
Carbon Dioxide (CO ₂₎		1200	1100	1200	1100	190			61		1200	1200	1100	1100	1000		1100		
Alkalinity (CaCO ₃)		1176	1148	1400	1200	198			31		1248	1221	1200	1200	1110		1186		
Bicarbonate (CaCO ₃)		1176	1148	1400	1200	198			31		1248	1221	1200	1200	1110		1186		
Dicarbonate (CaCO ₃)		11/6	1140	1400	1200	190			31		1240	1221	1200	1200	1110		1100		

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

			**RW-1		MV	V-4			¹ MV	V-8		**RW-9		RW	-15		**RW-18	**MW-20	**MW-21	**RW-23	**RW-28
			Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-16	Aug-16	Aug-15
Total Metals (mg/l):																					
Arsenic	0.01	(2)		< 0.020	< 0.020	< 0.020	< 0.020	0.02			< 0.020		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020		< 0.020		
Barium	2.0	(2)		2.5	2	2.6	2.3	0.063			0.021		1.4	1.5	1.6	0.98	4		0.3		
Cadmium	0.005	(2)		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		
Chromium	0.05	(3)		0.071	< 0.0060	0.024	0.034	2			0.46		< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.038		< 0.0060		
Lead	0.015	(2)		0.012	0.005	0.010	0.012	<0.005			< 0.0010		0.0085	< 0.0050	< 0.0050	< 0.0010	0.0072		< 0.0050		
Selenium	0.05	(2)		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050			0.084		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		
Silver	0.05	(3)		< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050			< 0.025		< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		
Mercury	0.002	(3)		< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.0029			0.0012		< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.00059		< 0.00020		
Dissolved Metals (mg/l):																					
Arsenic	0.1	(3)		< 0.020	< 0.020	< 0.010	0.015	< 0.020			< 0.0050		< 0.020	< 0.020	< 0.010	< 0.010	< 0.020		< 0.020		
Barium	1.0	(3)		2.3	2.3	2.1	2.1	<0.02			0.012		1.2	1.6	1.4	1.1	1.2		0.27		
Cadmium	0.01	(3)		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		
Calcium	-	-		170	170	150	150	180			140		150	170	150	140	100		230		
Chromium	0.05	(3)		0.011	< 0.0060	< 0.0060	< 0.0060	0.016			0.019		< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.014		< 0.0060		
Copper	1.0	(3)		0.16	< 0.0060	0.023	0.017	<0.006			0.0076		0.0098	< 0.0060	< 0.010	0.014	0.02		< 0.0060		
Iron	1.0	(3)		43	6.2	12	12	1.4			2.5		12	48	6.8	9.0	42.0		0.7		
Lead	0.05	(3)		0.014	0.0065	0.0011	0.001	<0.005			< 0.0010		0.0077	< 0.0050	< 0.0010	< 0.0010	< 0.005		< 0.0050		
Magnesium	-	-		61	66	62	67	30			31		45	49	47	43	75		54		
Manganese	0.2	(3)		8.6	3.5	2.5	2.8	0.54			2.7		3.1	3	3.6	1.5	0.79		2		
Potassium	-	-		4.7	4.3	6.1	6.9	2.9			3.1		3.7	3.7	3.5	4.6	4.7		4.8		
Selenium	0.05	(3)		< 0.050	< 0.050	0.012	0.014	< 0.050			0.04		< 0.050	< 0.050	0.020	0.026	< 0.050		<0.05		
Silver	0.05	(3)		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		
Sodium	-	-		380	360	470	370	290			250		560	560	560	530	700		600		
Uranium	0.03	(3)		< 0.10	< 0.10	< 0.0010	< 0.0010	< 0.10			0.001		< 0.10	< 0.10	< 0.0010	< 0.0010	< 0.1		< 0.1		
Zinc	10	(3)		0.033	0.024	0.011	< 0.010	<0.02			0.076		1.3	0.15	0.013	< 0.010	0.55		< 0.020		
Total Petroleum Hydrocarbons (mg/l):																				
Diesel Range Organics	-	-		1.3	2.1	0.84	3.3	<0.2			<0.20		100	20	4.7	3.5	19		2		
Gasoline Range Organics	-	-		6.1	14	5.4	7.0	<0.05			0.083		29	16	39	2.0	8.8		0.42		
Motor Oil Range Organics	-	-		< 2.5	< 2.5	< 2.5	< 2.5	<2.5			<2.5		44	12	< 2.5	< 2.5	< 2.5		< 2.5		

- < 2.5
 < 2.6
 < 2.5
 < 2.5

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

	L			V-29						/-30						V-31				V-40	
		Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
Volatile Organic Compounds (ug/L)	\perp																				
1,1,1,2-Tetrachloroethane 5.72E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,1,1-Trichloroethane 6.00E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,1,2,2-Tetrachloroethane 1.00E+01	(3)	< 2.0	< 2.0	< 2.0	< 2.0	< 200		< 200		< 200		< 200		< 20	< 40	< 100	< 100	< 100			
1,1,2-Trichloroethane 5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,1-Dichloroethane 2.50E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,1-Dichloroethene 5.00E+00	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,1-Dichloropropene -	-	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,2,3-Trichlorobenzene -	-	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,2,3-Trichloropropane 7.47E-03	(4)	< 2.0	< 2.0	< 2.0	< 2.0	< 200		< 200		< 200		< 200		< 20	< 40	< 100	< 100	< 100			
1,2,4-Trichlorobenzene 7.00E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,2,4-Trimethylbenzene 1.50E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	4200		3000		3400		3600		600	1700	1200	1500	< 50			
1,2-Dibromo-3-chloropropane 2.00E-01	(2)	< 2.0	< 2.0	< 2.0	< 2.0	< 200		< 200		< 200		< 200		< 20	< 40	< 100	< 100	< 100			
1,2-Dibromoethane (EDB) 5.00E-02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,2-Dichlorobenzene 6.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,2-Dichloroethane (EDC) 5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,2-Dichloropropane 5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,3,5-Trimethylbenzene 1.20E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	860		740		840		760		< 10	82	100	98	< 50			
1.3-Dichlorobenzene -	-	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,3-Dichloropropane 7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1,4-Dichlorobenzene 7.50E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
1-Methylnaphthalene 2.30E+00	(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 400		< 400		< 400		< 400		41	< 80	< 200	< 200	< 200			
2,2-Dichloropropane -	-	< 2.0	< 2.0	< 2.0	< 2.0	< 200		< 200		< 200		< 200		< 20	< 40	< 100	< 100	< 100			
2-Butanone 5.56E+03	(4)	< 10	< 10	< 10	< 10	< 1000		< 1000		< 1000		< 1000		< 100	< 200	< 500	< 500	< 500			
2-Chlorotoluene 7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
2-Hexanone -	`-'	< 10	< 10	< 10	< 10	< 1000		< 1000		< 1000		< 1000		< 100	< 200	< 500	< 500	< 500			
2-Methylnaphthalene 1.50E+02	(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 400		< 400		< 400		< 400		< 40	96	< 200	< 200	< 200			
4-Chlorotoluene 2.60E+03	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
4-Isopropyltoluene -	`-'	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
4-Methyl-2-pentanone -		< 10	< 10	< 10	< 10	< 1000		< 1000		< 1000		< 1000		< 100	< 200	< 500	< 500	< 500			
Acetone 1.41E+04	(4)	< 10	< 10	< 10	< 10	< 1000		< 1000		< 1000		< 1000		< 100	< 200	< 500	< 500	< 500			
Benzene 5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	2700	3000	4200		4600		4800	5700	270	3900	1600	2500	< 50			
Bromobenzene 2.00E+01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Bromodichloromethane 1.34E+00	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Bromoform 8.50E+00	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Bromomethane 7.54E+00	(1)	< 3.0	< 3.0	< 3.0	< 3.0	< 300		< 300		< 300		< 300		< 30	< 60	< 150	< 150	< 150			
Carbon disulfide 8.10E+02	(4)	< 10	< 10	< 10	< 10	< 1000		< 1000		< 1000		< 1000		< 100	< 200	< 500	< 500	< 500			
Carbon Tetrachloride 5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1000		< 1000		< 1000		< 1000		< 100	< 200	< 500	< 500	< 500			
Chlorobenzene 1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Chloroethane -	(2)	< 2.0	< 2.0	< 2.0	< 2.0	< 200		< 200		< 200		< 200		< 20	< 40	< 100	< 100	< 100			
Chloroform 1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
	(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 300		< 300		< 300		< 300		< 30	< 60	< 150	< 150	< 150			
	` '	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
cis-1,3-Dichloropropene -	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Dibromochloromethane 1.68E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50		_	
Dibromocnioromethane 1.68E+00 Dibromomethane 3.70E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100				< 10	< 20	< 50	< 50	< 50			
	(1)	< 1.0			< 1.0		_	< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Dichlorodifluoromethane 1.97E+02 Ethylbenzene 7.00E+02	(4)	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 100 4400	4700	< 100 4000		< 100 3900		< 100 3800	5400	< 10 240	1600	770	960	< 50 < 50			
Etnylbenzene 7.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	4400	4/00	4000		3900		3800	5400	240	1600	//0	960	< 50			

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

				V-29					MW							/-31				/-40	
		Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
Hexachlorobutadiene		< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Isopropylbenzene		< 1.0	< 1.0	< 1.0	< 1.0	190		110		150		140		37	100	73	82	55			
Methyl tert-butyl ether (MTBE)		< 1.0	< 1.0	< 1.0	< 1.0	< 100	< 100	< 100		< 100		< 100	< 100	< 10	< 20	< 50	< 50	< 50			
Methylene Chloride		< 3.0	< 3.0	< 3.0	< 3.0	< 300		< 300		< 300		< 300		< 30	< 60	< 150	< 150	< 150			
Naphthalene	1.65E+00 (4)	< 2.0	< 2.0	< 2.0	< 2.0	700		600		860		610		74	210	180	170	110			
n-Butylbenzene		< 3.0	< 3.0	< 3.0	< 3.0	< 300		< 300		< 300		< 300		< 30	< 60	< 150	< 150	< 150			
n-Propylbenzene		< 1.0	< 1.0	< 1.0	< 1.0	710		470		610		500		130	290	220	190	63			
sec-Butylbenzene		< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		24	42	< 50	< 50	< 50			
Styrene	1.00E+02 (2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
tert-Butylbenzene		< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Tetrachloroethene (PCE)	5.00E+00 (2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Toluene	7.50E+02 (3)	< 1.0	< 1.0	< 1.0	< 1.0	1800	1300	13000		2200		6300	3500	< 10	3500	130	210	< 50			
trans-1,2-DCE	1.00E+02 (2)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
trans-1,3-Dichloropropene	4.30E-01 (1)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Trichloroethene (TCE)		< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Trichlorofluoromethane		< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
Vinyl chloride	1.00E+00 (3)	< 1.0	< 1.0	< 1.0	< 1.0	< 100		< 100		< 100		< 100		< 10	< 20	< 50	< 50	< 50			
	6.20E+02 (3)	< 1.5	< 1.5	< 1.5	< 1.5	14000	13000	16000		14000		14000	18000	73	3800	1400	2800	< 75			
Semi Volatile Organic Compou	nds (ua/l):																				
1.2.4-Trichlorobenzene																					
1.2-Dichlorobenzene																					
1.3-Dichlorobenzene	- (-)																				
1,4-Dichlorobenzene	7.50E+01 (2)																				
1-Methylnaphthalene																					
2,4,5-Trichlorophenol																					
2,4,6-Trichlorophenol																					
2,4-Dichlorophenol																					
2,4-Dimethylphenol																					
2,4-Dinitrophenol																					
2,4-Dinitrotoluene																					
2.6-Dinitrotoluene																					
2-Chloronaphthalene																					
2-Chlorophenol																					
2-Methylnaphthalene																					
2-Methylphenol																					
2-Nitroaniline																					
2-Nitrophenol	1.102+02 (1)				_		_								_		_		_		_
2-Nitropnenoi 3.3'-Dichlorobenzidine	1.50E-01 (1)																				
3,3 -Dichloropenziaine 3+4-Methylphenol																					
3+4-Metnyipnenoi 3-Nitroaniline	1.80E+02 (1)				_																_
4,6-Dinitro-2-methylphenol																					
4-Bromophenyl phenyl ether																					
4-Chloro-3-methylphenol	0.405.04																				
4-Chloroaniline	3.40E-01 (1)																				
4-Chlorophenyl phenyl ether	0.405.00 (1)																				
4-Nitroaniline	3.40E+00 (1)																				
4-Nitrophenol																					
Acenaphthene	5.35E+02 (4)																				
Acenaphthylene																					

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

							iiuwatei K													
		MW							/-30					MV					/-40	
	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
Aniline 1.20E+01 (1)																				
Anthracene 1.72E+03 (4)																				
Azobenzene 1.20E-01 (1)																				
Benzo(a)anthracene 3.43E-01 (4)																				
Benzo(a)pyrene 2.00E-01 (2)																				
Benzo(b)fluoranthene 3.43E-01 (4)																				
Benzo(g,h,i)perylene																				
Benzo(k)fluoranthene 3.43E+00 (4)																				
Benzoic acid 1.50E+05 (1)																				
Benzyl alcohol 1.80E+04 (1)																				
Bis(2-chloroethoxy)methane 1.10E+02 (1)																				
Bis(2-chloroethyl)ether 1.36E-01 (4)																				
Bis(2-chloroisopropyl)ether 9.76E+00 (4)																				
Bis(2-ethylhexyl)phthalate 6.00E+00 (2)																				
Butyl benzyl phthalate 3.50E+01 (1)																				
Carbazole Chrysene 3.43E+01 (4)																				
Dibenz(a,h)anthracene 1.06E-01 (4) Dibenzofuran																				
Diethyl phthalate 1.48E+04 (4)																				
Directly phthalate 1.46E+04 (4)																				
Di-n-butyl phthalate 8.85E+02 (4)																				
Di-n-octyl phthalate																				
Fluoranthene 8.02E+02 (4)																				
Fluorene 2.88E+02 (4)																				
Hexachlorobenzene 1.00E+00 (2)																				
Hexachlorobutadiene 8.60E-01 (1)																				
Hexachlorocyclopentadiene 5.00E+01 (2)																				
Hexachloroethane 6.80E+00 (4)																				
Indeno(1,2,3-cd)pyrene 2.90E-02 (1)																				
Isophorone 7.79E+02 (4)																				
Naphthalene 1.65E+00 (4)																				
Nitrobenzene 1.40E+00 (4)																				
N-Nitrosodimethylamine 4.90E-03 (4)																				
N-Nitrosodi-n-propylamine 9.60E-03 (1)																				
N-Nitrosodiphenylamine 1.21E+02 (4)																				
Pentachlorophenol 1.00E+00 (2)																				
Phenanthrene 1.70E+02 (4)																				
Phenol 5.00E+00 (3)																				
Pyrene 1.17E+02 (4)																				
Pyridine 3.70E+01 (1)																				
General Chemistry (mg/l):																				
Fluoride 1.6 (3)	0.32	0.26	0.27	0.26	< 0.50		< 0.10		< 0.50		< 0.50		< 0.10	< 0.10	0.14	0.48	< 0.50			
Chloride 250 (3)	45	33	48	110	230		230		270		230		220	200	300	360	290			
Nitrite 1 (2)	< 0.10	< 0.10	0.34	< 0.10	< 0.50		< 2.0		< 0.50		< 0.50		< 1.0	< 0.10	< 0.10	< 0.10	< 0.50			
Bromide	0.38	0.34	< 0.10	0.64	3.8		< 0.10		4.7		3.9		< 0.10	< 0.10	5.5	0.22	5			
Nitrate 10 (3)	1.2	0.5	0.48	7.2	< 0.50		1		< 0.50		< 0.50		< 1.0	0.63	< 2.0	0.92	< 0.50			
Phosphorus	< 0.50	< 0.50	< 0.50	< 0.50	< 2.5		< 0.50		< 2.5		< 2.5		< 0.50	< 0.50	< 0.50	< 0.50	< 2.5			
Sulfate 600 (3)	180	160	210	290	69		36		47		24		160	17	5.4	4.6	< 2.5			
Carbon Dioxide (CO ₂₎	260	230	260	240	1300		1400		1200		1300		1000	1100	1100	1100	1200			
Alkalinity (CaCO ₃)	284.2	250.8	280	260	1403		1493		1300		1400		1115	1264	1200	1200	1190			
Bicarbonate (CaCO ₃)	284.2	250.8	280	260	1403		1493		1300		1400		1115	1264	1200	1200	1190			
2.00.00.00.00.03/	204.2	200.0	200	200	1700		1730		1000		1400		1110	1204	1200	1200	1130			

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

												•										
				MW	<i>I</i> -29					M۱	V-30					MV	/-31			MV	/-40	
1		- 1	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
Total Metals (mg/l):																						
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020			
Barium	2.0	(2)	0.24	0.041	0.026	0.14	0.74		1.1		0.66		0.73		0.7	1.4	0.69	0.90	2.3			
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			
Chromium	0.05	(3)	0.0088	< 0.0060	< 0.0060	< 0.0060	0.01		< 0.0060		< 0.0060		0.0081		< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.018			
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	0.0037	0.019		< 0.0050		< 0.0050		0.031		< 0.0050	< 0.0050	< 0.0050	0.0013	0.0098			
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050			
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		< 0.0050		< 0.025		< 0.0050	< 0.0050	< 0.0050	< 0.025	0.014			
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020			
Dissolved Metals (mg/l):																						
Arsenic	0.1	(3)	< 0.020	< 0.020	0.0013	< 0.0050	< 0.020		< 0.020		< 0.010		0.0067		< 0.020	< 0.020	< 0.010	< 0.010	< 0.020			
Barium	1.0	(3)	0.023	< 0.020	0.021	0.037	0.56		1		0.44		0.93		0.58	1.4	0.59	0.81	1.8			
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			
Calcium	-	-	83	74	83	130	150		160		200		140		110	110	98	100	97			
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060			
Copper	1.0	(3)	< 0.0060	< 0.0060	0.0022	< 0.0050	< 0.0060		< 0.0060		< 0.010		0.018		< 0.0060	< 0.0060	< 0.010	0.016	< 0.0060			
Iron	1.0	(3)	0.12	< 0.020	< 0.020	< 0.020	7.4		1.5		0.35		3.3		1.2	0.26	0.079	0.2	4.9			
Lead	0.05	(3)	< 0.0050	< 0.0050	< 0.0010	< 0.0010	0.0066		0.0074		< 0.010		< 0.0010		< 0.0050	< 0.0050	< 0.010	< 0.0010	< 0.0050			
Magnesium	-	-	18	17	19	30	36		52		41		42		38	45	36	42	44			
Manganese	0.2	(3)	1.4	1.3	1.7	2.3	1.2		2.9		1.1		2.2		0.4	1.1	0.47	0.56	2.3			
Potassium	-	-	2.1	2.2	2.2	3.5	3.3		3.5		3.2		3.8		4.1	4.4	3.3	4.3	3.5			
Selenium	0.05	(3)	< 0.050	< 0.050	0.0025	< 0.0050	< 0.050		< 0.050		0.014		0.016		< 0.050	< 0.050	0.014	0.024	< 0.050			
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050			
Sodium	-	-	120	99	130	130	590		560		610		560		540	500	550	560	440			
Uranium	0.03	(3)	< 0.10	< 0.10	0.0034	0.004	< 0.10		< 0.10		< 0.010		0.0021		< 0.10	< 0.10	< 0.0010	< 0.0010	< 0.10			
Zinc	10	(3)	< 0.020	0.022	< 0.010	< 0.010	0.031		0.034		< 0.010		< 0.010		< 0.020	0.031	< 0.010	< 0.010	0.031			
Total Petroleum Hydrocarbons (mg/l):																					
Diesel Range Organics	-	-	0.28	< 0.20	< 0.20	< 0.20	71		7.7		9.4		9.9		1.1	4.2	4.0	3.8	110			
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.050	100		120		73		83		3.5	45	15	20	4.9			
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 25		< 2.5		< 2.5		< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 25			

- | C2.5 |

- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

 = Columns hidden when there are 4 or more consecutive years recorded that Analysis was not required and/or the well contained separate phase

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

			RW-42			I-43				1-44				MW-			
			Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Aug-13
Volatile Organic Compounds (ug																	
1,1,1,2-Tetrachloroethane			< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	6.00E+01	(3)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	1.00E+01	(3)	< 20	< 100				< 2.0	< 4.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
	5.00E+00	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1-Dichloroethane		(3)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	5.00E+00	(3)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1-Dichloropropene		-	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2,3-Trichlorobenzene	-	-	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	7.47E-03	(4)	< 20	< 100				< 2.0	< 4.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
1,2,4-Trichlorobenzene		(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
		(1)	120	770				1.1	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	2.00E-01	(2)	< 20	< 100				< 2.0	< 4.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
	5.00E-02	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2-Dichlorobenzene		(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	5.00E+00	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2-Dichloropropane 5		(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	1.20E+01	(1)	13	180				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,3-Dichlorobenzene		-	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,3-Dichloropropane		(1)	< 10	< 50 < 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,4-Dichlorobenzene		(2)	< 10	< 200				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0 < 4.0	< 1.0
1-Methylnaphthalene 2 2,2-Dichloropropane	2.30E+00		160 < 20	< 100				< 4.0 < 2.0	< 8.0 < 4.0	< 4.0 < 2.0	< 4.0 < 2.0	< 4.0 < 2.0		< 4.0 < 2.0		< 4.0	< 4.0 < 2.0
2,2-Dichloroproparie		(4)	< 100	< 500				< 10	< 20	< 10	< 10	< 10		< 10		< 10	< 10
			< 100	< 500				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
2-Hexanone	7.30E+02	(1)	< 100	< 500				< 1.0	< 20	< 10	< 10	< 1.0		< 1.0		< 10	< 10
	1.50E+02	(1)	220	< 200				< 4.0	< 8.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0	< 4.0
	2.60E+03		< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
4-Isopropyltoluene	2.00E+03	(1)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
4-Methyl-2-pentanone	- :	-	< 100	< 500				< 10	< 20	< 10	< 10	< 10		< 10		< 10	< 10
	1.41E+04	(4)	< 100	< 500				< 10	< 20	< 10	< 10	< 10		< 10		< 10	< 10
Benzene 5		(2)	6300	2600				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0
	2.00E+01	(1)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromodichloromethane		(4)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromoform		(1)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromomethane		(4)	< 30	< 150				< 3.0	< 6.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
Carbon disulfide		(4)	< 100	< 500				< 10	< 20	< 10	< 10	< 10		< 10		< 10	< 10
	5.00E+00	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	1.00E+02	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Chloroethane	-	-	< 20	< 100				< 2.0	< 4.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
	1.00E+02	(3)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	2.03E+01	(4)	< 30	< 150				< 3.0	< 6.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
	7.00E+01	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
cis-1,3-Dichloropropene		-	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Dibromochloromethane 1	1.68E+00	(4)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
	3.70E+02	(1)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Dichlorodifluoromethane 1	1.97E+02	(4)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Ethylbenzene 7	7.00E+02	(2)	160	320				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

								il culution i									
			RW-42		RV	V-43			MV	1-44				MW	-52 ¹		
			Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Aug-13
Hexachlorobutadiene			< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Isopropylbenzene	4.47E+02	(4)	65	89				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Methyl tert-butyl ether (MTBE)			14	670				< 1.0	< 2.0	1.0	1.2	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0
Methylene Chloride	5.00E+00	(2)	< 30	< 150				< 3.0	< 6.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 2.0
Naphthalene	1.65E+00	(4)	300	370				< 2.0	< 4.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 3.0
n-Butylbenzene	-	-	< 30	< 150				< 3.0	< 6.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
n-Propylbenzene	-	-	110	84				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
sec-Butylbenzene		-	17	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Styrene	1.00E+02	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
tert-Butylbenzene	-	-	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Tetrachloroethene (PCE)	5.00E+00	(2)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Toluene	7.50E+02	(3)	< 10	51				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0
trans-1,2-DCE			< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
trans-1.3-Dichloropropene	4.30E-01	(1)	< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Trichloroethene (TCE)			< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Trichlorofluoromethane			< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Vinyl chloride			< 10	< 50				< 1.0	< 2.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Xylenes, Total			41	1100				< 1.5	< 3.0	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	< 1.5
Semi Volatile Organic Compou		(-)									1.0						
1,2,4-Trichlorobenzene		(2)										< 10				< 10	< 10
1,2-Dichlorobenzene												< 10				< 10	< 10
1.3-Dichlorobenzene	-	-										< 10				< 10	< 10
	7.50E+01	(2)										< 10				< 10	< 10
1-Methylnaphthalene	2.30E+00											< 10				< 10	< 10
2,4,5-Trichlorophenol	1.17E+03											< 10				< 10	< 10
2.4.6-Trichlorophenol	1.19E+01											< 10				< 10	< 10
2,4-Dichlorophenol												< 20				< 20	< 20
2,4-Dimethylphenol	3.54E+02											< 10				< 10	< 10
2,4-Dinitrophenol	3.88E+01											< 20				< 20	< 20
2,4-Dinitrotoluene												< 10				< 10	< 10
		(1)										< 10				< 10	< 10
2-Chloronaphthalene												< 10				< 10	< 10
2-Chlorophenol												< 10				< 10	< 10
2-Methylnaphthalene												< 10				< 10	< 10
2-Methylphenol	1.80E+03											< 10				< 20	< 10
2-Nitroaniline	1.10E+02											< 10				< 10	< 10
2-Nitrophenol	1.102+02	(1)										< 10				< 10	< 10
3,3'-Dichlorobenzidine	1.50E-01	(1)										< 10				< 10	< 10
3+4-Methylphenol												< 10				< 10	< 10
3+4-Metriyiprierioi 3-Nitroaniline	1.00E+02	(1)										< 10				< 10	< 10
4,6-Dinitro-2-methylphenol	- :	-								_		< 10		_		< 10	< 10
4,6-Dinitro-2-metnyipnenoi 4-Bromophenyl phenyl ether	- :	-										< 10				< 10	< 10
		-										< 10				< 10	< 10
4-Chloro-3-methylphenol	2.405.04	(4)										< 10				< 10	< 10
4-Chloroaniline	3.40E-01	(1)															
4-Chlorophenyl phenyl ether	0.405.00	- (4)										< 10				< 10	< 10
4-Nitroaniline	3.40E+00	(1)										< 10				< 10	< 10
4-Nitrophenol		- (4)										< 10				< 10	< 10
Acenaphthene	5.35E+02	(4)										< 10				< 10	< 10
Acenaphthylene	-	-										< 10				< 10	< 10

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

			RW-42		RV	V-43			MV	V-44				MW	-52 ¹		
			Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Aug-13
Aniline	1.20E+01	(1)										< 10				< 10	< 10
Anthracene		(4)										< 10				< 10	< 10
Azobenzene		(1)										< 10				< 10	< 10
Benzo(a)anthracene		(4)										< 10				< 10	< 10
Benzo(a)pyrene		(2)										< 10				< 10	< 10
Benzo(b)fluoranthene		(4)										< 10				< 10	< 10
Benzo(g,h,i)perylene	-	-										< 10				< 10	< 10
Benzo(k)fluoranthene	3.43E+00	(4)										< 10				< 10	< 10
	1.50E+05											< 20				< 20	< 40
Benzyl alcohol												< 10				< 10	< 10
Bis(2-chloroethoxy)methane												< 10				< 10	< 10
Bis(2-chloroethyl)ether		(4)										< 10				< 10	< 10
Bis(2-chloroisopropyl)ether												< 10				< 10	< 10
Bis(2-ethylhexyl)phthalate		(2)										< 10				< 10	< 10
Butyl benzyl phthalate												< 10				< 10	< 10
Carbazole		-										< 10				< 10	< 10
		(4)										< 10				< 10	< 10
Dibenz(a,h)anthracene		(4)										< 10				< 10	< 10
Dibenzofuran	-	-										< 10				< 10	< 10
Diethyl phthalate		(4)										< 10				< 10	< 10
Dimethyl phthalate	1.102.01	-										< 10				< 10	< 10
Di-n-butyl phthalate	8 85E±02	(4)										< 10				< 10	< 10
Di-n-octyl phthalate	0.002.02	-										< 10				< 10	< 10
	8.02E+02	(4)										< 10				< 10	< 10
	2.88E+02											< 10				< 10	< 10
Hexachlorobenzene		(2)										< 10				< 10	< 10
Hexachlorobutadiene		(1)										< 10				< 10	< 10
Hexachlorocyclopentadiene												< 10				< 10	< 10
Hexachloroethane		(4)										< 10				< 10	< 10
Indeno(1,2,3-cd)pyrene		(1)										< 10				< 10	< 10
	7.79E+02											< 10				< 10	< 10
	1.65E+00											< 10				< 10	< 10
Nitrobenzene		(4)										< 10				< 10	< 10
N-Nitrosodimethylamine												< 10				< 10	< 10
N-Nitrosodi-n-propylamine		(1)										< 10				< 10	< 10
N-Nitrosodiphenylamine												< 10				< 10	< 10
Pentachlorophenol												< 20				< 20	< 20
Phenanthrene		(4)										< 10				< 10	< 10
Phenol		(3)										< 10				< 10	< 10
	1.17E+02											< 10				< 10	< 10
	3.70E+01											< 10				< 10	< 10
General Chemistry (mg/l):	3.70E+01	(1)										<u> </u>				<u> </u>	_ \ 10
Fluoride	1.6	(2)	0.62	< 0.50				0.6	< 0.10	0.26	0.35	< 0.50	1	0.44		0.49	0.43
Chloride		(3) (3)	260	390				56	< 0.10 55	48	59	640		560		820	670
Nitrite		(3) (2)	< 0.50	< 0.50				< 0.10	< 0.10	< 0.10	< 0.10	42		< 2.0		< 2.0	< 2.0
		(2)	4.6	3.9				0.10	0.47	0.20	0.10	4.1		2.2		2.0	1.8
Bromide				< 0.50							_			19		18	
Nitrate		(3)	< 0.50	< 0.50 3.1				< 0.10	0.13	< 0.10	0.23 < 10	42 < 10		19 < 10		< 0.50	< 10
Phosphorus		- (2)	3.4					< 10	< 10								
Sulfate		(3)	< 2.5	6.9				3000	3000	3200	2800	1400		1100		1700	1200
Carbon Dioxide (CO ₂₎		-	1100	1100				360	340	330	350	180		200		220	190
Alkalinity (CaCO ₃)	-	-	1130	1165				376.3	377.6	360	380	175		207.5		170	200
Bicarbonate (CaCO ₃)	-	-	1130	1165				376.3	377.6	360	380	175		207.5		170	200

TABLE 3
Refinery Wells Analytical Summary
2016 Groundwater Remediation Monitoring Annual Report

			RW-42		DIA	<i>I</i> -43			MV					MW-	ro 1		
			Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Aug-13
Total Metals (mg/l):			Aug-10	Aug-10	Aug-10	Aug-14	Aug-10	Aug-10	Aug-10	Aug-14	Aug-10	Aug-10	Αρι-10	Aug-10	Арі-13	Aug-14	Aug-10
Arsenic	0.01	(2)	0.094	< 0.020				< 0.020	< 0.020	< 0.020	< 0.020	< 0.020		< 0.020		< 0.020	< 0.10
Barium	2.0	(2)	13	13				0.17	0.19	0.012	0.32	0.14		0.099		0.052	0.27
Cadmium	0.005	(2)	< 0.0020	< 0.0020				< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020	< 0.0020
Chromium	0.05	(3)	0.16	0.37				0.026	0.029	< 0.0060	0.046	< 0.0060		< 0.0060		< 0.0060	< 0.0060
Lead	0.015	(2)	0.092	0.055				< 0.0050	0.0053	< 0.0050	0.023	0.0059		< 0.0050		< 0.0050	< 0.025
Selenium	0.05	(2)	< 0.050	< 0.050				< 0.050	< 0.050	< 0.050	< 0.050	0.065		0.069		< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050				< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		< 0.0050	< 0.025
Mercury	0.002	(3)	< 0.00020	< 0.00020				< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020	< 0.00020
Dissolved Metals (mg/l):																	
Arsenic	0.1	(3)	< 0.020	< 0.020				< 0.020	< 0.020	< 0.0010	< 0.020	< 0.020		< 0.020		< 0.020	0.0052
Barium	1.0	(3)	6.4	1.1				0.02	< 0.020	0.0094	0.014	0.021		< 0.020		< 0.020	0.018
Cadmium	0.01	(3)	< 0.0020	< 0.0020				< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020	< 0.0020
Calcium	-	-	120	180				480	470	460	470	380		320		430	300
Chromium	0.05	(3)	0.014	0.27				< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060	< 0.0060
Copper	1.0	(3)	< 0.0060	0.017				< 0.0060	< 0.0060	< 0.020	0.034	< 0.0060		< 0.0060		< 0.0060	0.017
Iron	1.0	(3)	69	27				2.9	0.036	< 0.020	0.37	3.9		2.2		4.1	0.39
Lead	0.05	(3)	0.036	0.015				< 0.0050	< 0.0050	< 0.0010	< 0.0010	< 0.0050		< 0.0050		< 0.0050	< 0.0010
Magnesium	-	-	74	63				59	59	65	56	100		77		110	76
Manganese	0.2	(3)	4	6.5				1.2	0.99	0.47	0.82	5.7		3.9		8.8	2.3
Potassium	-	-	5.4	14				7.9	7.9	7.3	8.6	5.6		4.7		5.6	5.7
Selenium	0.05	(3)	< 0.050	< 0.050				< 0.050	< 0.050	0.0012	< 0.020	0.057		0.09		< 0.050	0.052
Silver	0.05	(3)	< 0.0050	< 0.0050				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050	< 0.025
Sodium	-	-	400	440				990	960	900	910	650		560		590	590
Uranium	0.03	(3)	< 0.10	< 0.10				< 0.10	< 0.10	0.0013	0.0019	< 0.10		< 0.10		< 0.10	0.0099
Zinc	10	(3)	0.17	3				0.056	< 0.020	< 0.010	< 0.010	0.2		0.066		0.13	0.014
Total Petroleum Hydrocarbons	(mg/l):																
Diesel Range Organics	-	-	85	1200				< 0.20	< 0.20	< 0.20	0.26	< 0.20		< 0.20		< 0.20	< 0.20
Gasoline Range Organics	-	-	24	27				0.057	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050	< 0.050
Motor Oil Range Organics	-	-	< 25	< 250				< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5		< 2.5	< 2.5

- Notes:

 (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels. Tap Water
 (2) EPA Regional Screening Levels (April 2009) MCL
 (3) NMED WCCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
 (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 = No screening level available
 = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 = Analyte inadvertently not included in sample analysis.
 = Analysis in = Analytical result exceeds the respective screening level.
 = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

 - = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

 = Columns hidden when there are 4 or more consecutive years recorded that Analysis was not required and/or the well contained separate phase

TABLE 4
Cross-Gradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					2	016 Grou	nawateri	Remediat	ion and N	ionitoring	Annuai	Report							
						M\									V-13				**MW-26
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16
Volatile Organic Compounds (up																			
1,1,1,2-Tetrachloroethane			< 1.0	_	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1,1-Trichloroethane		(3)	< 1.0		< 1.0		< 1.0 < 2.0		< 1.0		< 1.0		< 1.0 < 2.0		< 1.0		< 1.0		
1,1,2,2-Tetrachloroethane		(3)	< 2.0 < 1.0		< 2.0 < 1.0		< 1.0		< 2.0 < 1.0		< 2.0 < 1.0		< 1.0		< 2.0 < 1.0		< 2.0 < 1.0		
1,1,2-Trichloroethane		(2)																	
1,1-Dichloroethane		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1-Dichloroethene 1,1-Dichloropropene	5.00E+00	(3)	< 1.0		< 1.0 < 1.0		< 1.0		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0		< 1.0 < 1.0		
1,2,3-Trichlorobenzene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2,4-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dibromo-3-chloropropane		(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dichlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dichloroethane (EDC)		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dichloropropane		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,3,5-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,3-Dichlorobenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,3-Dichloropropane	7.30F+02	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
	2.30E+00	(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		
2,2-Dichloropropane		(1)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
	5.56E+03	(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
2-Chlorotoluene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
2-Hexanone	7.002.02	1.7	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
2-Methylnaphthalene	1.50E+02	(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		
4-Chlorotoluene	2.60E+03	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
4-Isopropyltoluene	2.002.00	(.,	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
4-Methyl-2-pentanone		-	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
		(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	
Bromobenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Bromodichloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
	8.50E+00	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Bromomethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
Carbon disulfide		(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
	5.00E+00	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Chlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Chloroethane	1.002102	(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
Chloroform	1.005±02	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Chloromethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
cis-1,2-DCE		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
cis-1,3-Dichloropropene	7.00L101	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Dibromochloromethane	1.68E+00	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Dibromomethane		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Dichlorodifluoromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Ethylbenzene		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	
Hexachlorobutadiene		(1)	< 1.0	× 1.0	< 1.0	V 1.0	< 1.0	1.0	< 1.0	~ 1.0	< 1.0	V 1.0	< 1.0	V 1.0	< 1.0	V1.0	< 1.0	11.0	
Isopropylbenzene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
	1.43E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	
Methylene Chloride		(2)	< 3.0		< 3.0		< 3.0	V 1.0	< 3.0		< 3.0	× 1.0	< 3.0		< 3.0		< 3.0	×1.0	
Naphthalene		(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
n-Butylbenzene	1.032100	-	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
n-Propylbenzene		-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
sec-Butylbenzene		-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Styrene	1.00E+02	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		—
tert-Butylbenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
	5.00E+00	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
	7.50E+02	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	
	1.00E+02	(2)	< 1.0		< 1.0		< 1.0	V 1.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	~1.0	
trans-1,3-Dichloropropene	4.30E-01	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
	5.00E+00	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Vinyl chloride Xylenes, Total		(3)	< 1.0	< 1.5	< 1.0	< 1.5	< 1.0	< 1.5	< 1.0	< 2.0	< 1.0	< 1.5	< 1.0	< 1.5	< 1.0	<1.5	< 1.0	<2.0	
Ayienes, Total	0.20E+02	(3)	< 1.5	S 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 2.U	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<2.U	

TABLE 4
Cross-Gradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					20	016 Grou	ndwater F	Remediat	ion and N	lonitoring	g Annual	Report							
						M\	V-1							MV	V-13				**MW-26
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16
Semi Volatile Organic Compour																			
1,2,4-Trichlorobenzene		(2)																	
1,2-Dichlorobenzene	6.00E+02	(2)																	
1,3-Dichlorobenzene	-	-																	
1,4-Dichlorobenzene		(2)																	
1-Methylnaphthalene	2.30E+00	(1)																	
2,4,5-Trichlorophenol		(4)																	
2,4,6-Trichlorophenol	1.19E+01	(4)																	
2,4-Dichlorophenol		(4)																	
2,4-Dimethylphenol	3.54E+02	(4)																	
2,4-Dinitrophenol		(4)																	
2,4-Dinitrotoluene	2.37E+00	(4)																	
2,6-Dinitrotoluene	3.70E+01	(1)																	
2-Chloronaphthalene	2.90E+03	(1)																	
2-Chlorophenol	9.10E+01	(4)																	
2-Methylnaphthalene		(1)																	
2-Methylphenol		(1)																	
2-Nitroaniline		(1)																	
2-Nitrophenol	-	-																	
3,3'-Dichlorobenzidine	1.50E-01	(1)																	
3+4-Methylphenol		(1)																	
3-Nitroaniline	-	-																	
4,6-Dinitro-2-methylphenol		-																	
4-Bromophenyl phenyl ether		-																	
4-Chloro-3-methylphenol		-																	
4-Chloroaniline	3.40E-01	(1)																	
4-Chlorophenyl phenyl ether	J.40L-01	(1)																	
4-Chlorophenyl phenyl ether 4-Nitroaniline		(1)																	
4-Nitrophenol	3.40E+00	(1)																	
Acenaphthene	5.35E+02	(4)																	
	3.33E+02																_		
Acenaphthylene		-																	
	1.20E+01	(1)																	
Anthracene		(4)																	
Azobenzene		(1)																	
Benzo(a)anthracene		(4)																	
Benzo(a)pyrene		(2)																	
Benzo(b)fluoranthene	3.43E-01	(4)																	
Benzo(g,h,i)perylene	-	-																	
Benzo(k)fluoranthene		(4)																	
Benzoic acid		(1)																	
Benzyl alcohol		(1)																	
Bis(2-chloroethoxy)methane		(1)																	
Bis(2-chloroethyl)ether		(4)																	
Bis(2-chloroisopropyl)ether		(4)																	
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)																	
Butyl benzyl phthalate	3.50E+01	(1)																	
Carbazole	-	-																	
Chrysene	3.43E+01	(4)																	
Dibenz(a,h)anthracene		(4)																	
Dibenzofuran		-																	
Diethyl phthalate	1.48E+04	(4)																	
Dimethyl phthalate	-	-																	
Di-n-butyl phthalate	8.85E+02	(4)																	
Di-n-octyl phthalate	-	1.7																	
Fluoranthene	8 02F+02	(4)																	
	2.88E+02	(4)																	
Hexachlorobenzene		(2)																	
Hexachlorobutadiene		(1)																	
Hexachlorocyclopentadiene Hexachlorocyclopentadiene		(2)																	
Hexachloroethane		(4)																	
Indeno(1,2,3-cd)pyrene																			
		(1)																	
Isophorone	7.79E+02	(4)																	

TABLE 4
Cross-Gradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

						MV	N 1							MV	V-13				**MW-26
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16
Naphthalene	1.655±00	(4)	Aug-10	Api-10	Aug-10	Api-13	Aug-14			Api-13	Aug-10	Apr-10	Aug-13	Api-10	Aug-14	Api-14	Aug-10	Api-13	Aug-10
Nitrobenzene		(4)																	
N-Nitrosodimethylamine		(4)																	
N-Nitrosodi-n-propylamine		(1)																	
N-Nitrosodiphenylamine		(4)								-									
Pentachlorophenol		(2)																	
Phenanthrene		(4)																	
		(3)																	
	1.17E+02	(4)																	
	3.70E+01	(1)																	
General Chemistry (mg/l):		(-)																	
Fluoride	1.6	(3)	0.45		0.51		0.49		0.56		< 0.10		< 0.10		< 0.10		< 0.10		
Chloride	250	(3)	11		11		14		12		230		170		160		170		
Nitrite	1	(2)	< 1.0		< 0.10		< 0.10		< 0.10		1.8		0.16		0.36		0.36		
Bromide	-	-	< 0.10		< 0.10		0.12		< 0.10		3		1.2		2.7		1.8		
Nitrate	10	(3)	< 1.0		0.54		0.43		1.0		1.8		0.25		2.9		3.6		
Phosphorus	-	-	< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		
Sulfate	600	(3)	84		110		110		99		850		1100		1200		1200		
Carbon Dioxide (CO ₂)	-	-	240		230		270		240		950		890		880		870		
Alkalinity (CaCO ₃)	-	-	266.4		246.5		300		270		954.3		909.4		930		950		
Bicarbonate (CaCO ₃)	-	-	266.4		246.5		300		270		954.3		909.4		930		950		
Total Metals (mg/l):																			
Arsenic	0.01	(2)	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		
Barium	2	(2)	0.28		0.031		0.072		0.078		0.052		0.022		0.023		0.026		
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		0.059		< 0.0060		< 0.0060		0.026		
Lead	0.015	(2)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		
Selenium	0.05	(2)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		
Mercury	0.002	(3)	< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		
Dissolved Metals (mg/l):																			
Arsenic	0.1	(3)	< 0.020		< 0.020		0.0011		< 0.0010		< 0.020		< 0.020		< 0.020		0.0025		
Barium	1	(3)	0.022		0.031		0.027		0.024		0.022		0.023		0.022		0.024		
Cadmium	0.01	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		
Calcium	-	-	65		77		71		70		230		260		280		300		
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0050		< 0.0060		< 0.0060		< 0.0060		< 0.010		
Iron	1	(3)	0.22		< 0.020		0.053		< 0.020		0.044		< 0.020		< 0.020		< 0.020		
Lead	0.05	(3)	< 0.0050		< 0.0050		< 0.0010		< 0.0010		< 0.0050		< 0.0050		< 0.0010		< 0.0010		
Magnesium	-	-	16		17		16		16		82		96		83		94		
Manganese	0.2	(3)	0.2		0.037		0.11		0.074		0.95		0.6		1.4		1.1		
Potassium	-	-	2.8		2.2		2.7		2.1		4		4.1		5.5		4.1		
Selenium	0.05	(3)	< 0.050		< 0.050		0.0015		< 0.0010		< 0.050		< 0.050		0.023		0.01		
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		
Sodium	-	-	81		68		81		67		540		570		600		600		
Uranium	0.03	(3)	< 0.10		< 0.10		0.0027		0.0025		< 0.10		< 0.10		0.0081		0.0084		
Zinc	10	(3)	0.024		0.027		< 0.010		< 0.010		< 0.020		0.027		< 0.010		< 0.010		
Total Petroleum Hydrocarbons ((mg/l):																		
Diesel Range Organics	-	٠	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		0.28		< 0.20		< 0.20		
Gasoline Range Organics	-	-	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050		
Motor Oil Range Organics			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5		< 2.5		< 2.5		

| 4.2.5 | 4.2.

TABLE 4
Cross-Gradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					2016	Groundwa	ater Reme	ediation a	nd Monit	oring Anı	nual Repo	ort						
				MV	V-27			MV	V-32					MV	V-33			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-16	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compounds (u																		
1,1,1,2-Tetrachloroethane			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,1,1-Trichloroethane			< 2.0 < 4.0	< 2.0	< 2.0 < 4.0	< 1.0 < 2.0				< 1.0 < 2.0		< 1.0 < 2.0						
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane			< 4.0	< 4.0	< 4.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1.1-Dichloroethane			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,1-Dichloroethene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,1-Dichloropropene	-	-	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,2,3-Trichlorobenzene		-	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0				< 2.0		< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,2,4-Trimethylbenzene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane			< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0				< 2.0		< 2.0	
1,2-Dibromoethane (EDB)			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,2-Dichlorobenzene 1,2-Dichloroethane (EDC)			< 2.0 < 2.0	< 2.0	< 2.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0				< 1.0 < 1.0		< 1.0	
1,2-Dichloropropane			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,3,5-Trimethylbenzene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,3-Dichlorobenzene	-	1 -	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,3-Dichloropropane			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1,4-Dichlorobenzene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
1-Methylnaphthalene	2.30E+00	(1)	< 8.0	< 8.0	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0				< 4.0		< 4.0	
2,2-Dichloropropane	-	-	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0				< 2.0		< 2.0	
2-Butanone			< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10	< 10				< 10		< 10	
2-Chlorotoluene	7.30E+02	(1)	< 2.0 < 20	< 2.0 < 20	< 2.0	< 1.0 < 10				< 1.0 < 10		< 1.0 < 10						
2-Hexanone 2-Methylnaphthalene		(1)	< 8.0	< 8.0	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0				< 4.0		< 4.0	
4-Chlorotoluene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
4-Isopropyltoluene	-	- (.,	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
4-Methyl-2-pentanone	-	-	< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10	< 10				< 10		< 10	
Acetone	1.41E+04	(4)	< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10	< 10				< 10		< 10	
Benzene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0	< 1.0	<1.0
Bromobenzene	2.00E+01	(1)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Bromodichloromethane			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Bromoform			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Bromomethane			< 6.0 < 20	< 6.0 < 20	< 6.0 < 20	< 3.0 < 10	< 3.0	< 3.0	< 3.0 < 1.0	< 3.0 < 10	< 3.0				< 3.0		< 3.0 < 10	
Carbon disulfide Carbon Tetrachloride			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Chlorobenzene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Chloroethane	1.002102	(2)	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0				< 2.0		< 2.0	
Chloroform	1.00E+02	(3)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Chloromethane	2.03E+01	(4)	< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0				< 3.0		< 3.0	
cis-1,2-DCE	7.00E+01	(2)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
cis-1,3-Dichloropropene	-	-	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Dibromochloromethane	1.68E+00		< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Dibromomethane	3.70E+02		< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 31.0	< 1.0	< 1.0				< 1.0		< 1.0	
Dichlorodifluoromethane			< 2.0	< 2.0 < 2.0	< 2.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	<1.0		<1.0	< 1.0 < 1.0	<1.0	< 1.0	<1.0
Ethylbenzene Hexachlorobutadiene		(2)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0	< 1.0	<1.0
Isopropylbenzene			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Methyl tert-butyl ether (MTBE)			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0	< 1.0	<1.0
Methylene Chloride			< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0				< 3.0		< 3.0	
Naphthalene			< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0				< 2.0		< 2.0	
n-Butylbenzene	-	-	< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0				< 3.0		< 3.0	
n-Propylbenzene	-	-	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
sec-Butylbenzene		-	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Styrene	1.00E+02	(2)	< 2.0 < 2.0	< 2.0 < 2.0	< 2.0 < 2.0	< 1.0 < 1.0				< 1.0 < 1.0		< 1.0 < 1.0						
tert-Butylbenzene	5.00E+00	(2)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Tetrachloroethene (PCE) Toluene	7.50E+00		< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0	< 1.0	<1.0
trans-1,2-DCE	1.00E+02		< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
trans-1,3-Dichloropropene		(1)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Trichloroethene (TCE)		(2)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Trichlorofluoromethane	1.14E+03	(4)	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Vinyl chloride			< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0				< 1.0		< 1.0	
Xylenes, Total	6.20E+02	(3)	< 3.0	< 3.0	< 3.0	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5		<1.5	< 1.5	<1.5	< 1.5	<1.0

TABLE 4
Cross-Gradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					2016	rounawa	iter Keme	ediation a	nd Monit	oring Ani	nual Repo	orτ						
				MW				MW							<i>I</i> -33			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-16	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Semi Volatile Organic Compoun		(2)																
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene																		
1,3-Dichlorobenzene	0.000=+02	(2)																
1,4-Dichlorobenzene	7.50F+01	(2)																
1-Methylnaphthalene		(1)																
2,4,5-Trichlorophenol		(4)																
2,4,6-Trichlorophenol		(4)																
2,4-Dichlorophenol	4.53E+01	(4)																
2,4-Dimethylphenol																		
2,4-Dinitrophenol		(4)																
2,4-Dinitrotoluene		(4)																
2,6-Dinitrotoluene		(1)																
2-Chloronaphthalene 2-Chlorophenol		(1)																
2-Methylnaphthalene		(1)																
2-Methylphenol																		
2-Nitroaniline																		
2-Nitrophenol	-	-																
3,3'-Dichlorobenzidine		(1)																
3+4-Methylphenol	1.80E+02	(1)																
3-Nitroaniline	-	-																
4,6-Dinitro-2-methylphenol	-	-																
4-Bromophenyl phenyl ether	-	-																
4-Chloro-3-methylphenol 4-Chloroaniline	3.40E-01	(1)																
4-Chlorophenyl phenyl ether	3.40E-01	(1)																
4-Nitroaniline	3.40E+00	(1)																
4-Nitrophenol	-	- 1																
Acenaphthene	5.35E+02	(4)																
Acenaphthylene	-	-																
Aniline		(1)																
Anthracene		(4)																
Azobenzene		(1)																
Benzo(a)anthracene Benzo(a)pyrene		(4)																
Benzo(b)fluoranthene		(4)																
Benzo(g,h,i)perylene	-	- 1																
Benzo(k)fluoranthene	3.43E+00	(4)																
Benzoic acid		(1)																
Benzyl alcohol		(1)																
Bis(2-chloroethoxy)methane		(1)																
Bis(2-chloroethyl)ether		(4)																
Bis(2-chloroisopropyl)ether		(4)																
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate	3.50E+01	(2)																
Butyi benzyi pritnalate Carbazole	J.3UE+U1	(1)																
Chrysene	3.43E+01	(4)																
Dibenz(a,h)anthracene		(4)																
Dibenzofuran	-	-																
Diethyl phthalate	1.48E+04	(4)																
Dimethyl phthalate	-	-																
Di-n-butyl phthalate	8.85E+02	(4)																
Di-n-octyl phthalate	9.005.00	- (4)																
Fluoranthene	2.88E+02	(4)																
Hexachlorobenzene		(2)																
Hexachlorobutadiene		(1)																
Hexachlorocyclopentadiene		(2)																
Hexachloroethane		(4)																
Indeno(1,2,3-cd)pyrene		(1)																
Isophorone	7.79E+02	(4)																

TABLE 4
Cross-Gradient Wells Analytical Summary
oundwater Remediation and Monitoring Annual Report

					2016	Froundwa	ater Reme	diation a	ind Monit	oring Ani	nual Repo	ort						
				MV	V-27			MV	V-32					MV	<i>I</i> -33			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-16	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Naphthalene		(4)																
Nitrobenzene	1.40E+00	(4)																
N-Nitrosodimethylamine		(4)																
N-Nitrosodi-n-propylamine	9.60E-03	(1)																
N-Nitrosodiphenylamine	1.21E+02	(4)																
Pentachlorophenol	1.00E+00	(2)																
Phenanthrene	1.70E+02	(4)																
Phenol	5.00E+00	(3)																
Pyrene	1.17E+02	(4)																
Pyridine	3.70E+01	(1)																
General Chemistry (mg/l):																		
Fluoride	1.6	(3)	< 0.50	< 0.50	0.19	0.16	< 0.10	< 0.10	0.15	0.16	0.51				0.10		< 0.10	-
Chloride	250	(3)	360	450	690	590	630	530	650	600	250				340		470	
Nitrite	1	(2)	< 1.0	< 0.50	< 2.0	< 2.0	40	< 2.0	<0.10	< 2.0	40				< 0.10		< 2.0	
Bromide	-	-	3.2	4.4	6.2	5.6	4.4	4.5	4.9	4.5	1.4				1.7		2.2	
Nitrate	10	(3)	< 1.0	< 0.50	< 0.10	< 0.10	40	55	39	41	40				24		19	
Phosphorus	-	-	< 10	< 2.5	< 10	< 10	< 10	< 10	< 10	< 10	< 10				< 10		< 10	
Sulfate	600	(3)	2700	2200	3100	3200	1600	1400	1600	1400	2500				2100		2200	
Carbon Dioxide (CO ₂)	-	-	400	490	230	190	170	180	170	170	110				110		120	
Alkalinity (CaCO ₃)	-	-	408.9	527.8	220	200	186.9	201.7	190	190	125.5				120		130	
Bicarbonate (CaCO ₃)	-	-	408.9	527.8	220	200	186.9	201.7	190	190	125.5				120		130	
Total Metals (mg/l):		_																
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020				< 0.020		< 0.020	
Barium	2	(2)	0.17	0.068	0.058	0.072	0.033	< 0.020	0.034	0.023	0.021				0.016		0.023	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020				< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060				< 0.0060		< 0.0060	
Lead	0.015	(2)	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050				< 0.0050		< 0.0050	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.063				< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050				< 0.0050		< 0.0050	
Mercury	0.002	(3)	< 0.00020	< 0.00020				< 0.00020			< 0.00020				< 0.00020		< 0.00020	
Dissolved Metals (mg/l):		(-)																
Arsenic	0.1	(3)	< 0.020	< 0.020	0.016	0.0038	< 0.020	< 0.020	< 0.020	0.0039	< 0.020				< 0.010		0.0026	
Barium	1	(3)	0.044	0.054	0.053	0.057	< 0.020	< 0.020	0.017	0.02	< 0.020				0.015		0.019	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020				< 0.0020		< 0.0020	
Calcium	5.01	(3)	550	590	700	820	340	310	290	310	480				370		400	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060				< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0000	< 0.0060	< 0.0060	< 0.0060	< 0.0000	< 0.0060				< 0.0060		< 0.000	
Iron	1	(3)	0.74	0.13	0.36	0.19	< 0.0000	< 0.000	< 0.0000	< 0.010	< 0.0000				< 0.0000		< 0.020	
Lead	0.05	(3)	< 0.0050	< 0.0050	< 0.010	< 0.0010	< 0.0050	< 0.0050	< 0.0010	< 0.0010	< 0.0050				< 0.020		< 0.020	
Magnesium	0.00	- (3)	92	93	110	110	50	45	44	45	69				55		58	
Manganese	0.2	(3)	2.7	6	0.80	1.3	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020				< 0.0020		< 0.0020	
Potassium	0.2	(3)	5.3	5.8	3.3	0.015	4	3.9	5.9	3.6	5.5				7.0		5.2	
Selenium	0.05	(3)	< 0.050	< 0.050	0.054	1.2	< 0.050	< 0.050	0.057	0.028	0.097				0.049		0.05	
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.0050	< 0.0050	< 0.050	< 0.050	< 0.0050	< 0.0050	< 0.0050				< 0.0050		< 0.0050	
Sodium	0.05	(3)	720	730	910	900	810	750	800	700	820				770		680	
Uranium	0.03	(3)	< 0.10	< 0.10	<0.010	0.0051	< 0.10	< 0.10	0.016	0.014	< 0.10				0.012		0.013	
Zinc	10		< 0.10	< 0.10	< 0.010	0.0051	< 0.10	0.023	< 0.016	< 0.014	< 0.10				< 0.012		< 0.013	
Total Petroleum Hydrocarbons		(3)	< 0.020	< 0.020	× 0.010	0.01	< 0.020	0.023	× 0.010	< 0.010	< 0.020				V 0.010		< 0.010	
Diesel Range Organics	(mg/r).		2.2	3.9	0.34	< 0.20	< 0.20	0.28	< 0.20	< 0.20	< 0.20	<0.20		<0.20	< 0.20	<0.20	< 0.20	
Gasoline Range Organics	-	-	0.2	0.25	< 0.050	< 0.20	< 0.20	0.28	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20	< 0.20	< 0.20	< 0.20	
	-	1																
Motor Oil Range Organics			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	

- Note:

 (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels. Tap W
 (2) EPA Regional Screening Levels (April 2009) MC
 (3) MAED WOCC standards Title 20 Chapter 6, Part 2, 2.0 £ 2.3 101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
 (4) NALED TAP Water Screening Levels NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 No screening level at No screening level NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 No screening level at No screening level NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 No screening level at Site of S

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

			2010	Groundwa	ater itemic	ediation ai	iu wonto	ring Aima	ai Report					
				MW	/-11					MW	<i>I</i> -12			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compounds (ug/L)														
1,1,1,2-Tetrachloroethane		(4)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0	< 2.0	< 10	< 10	< 2.0		< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	2.50E+01	(3)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	5.00E+00	(3)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-	-	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	-	-	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0	< 2.0	< 10	< 10	< 2.0		< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene	1.50E+01	(1)	120	390	230	270	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0	< 2.0	< 10	< 10	< 2.0		< 2.0		< 2.0		< 2.0	
1.2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene		(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC)		(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane		(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,3,5-Trimethylbenzene		(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene	-	-	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	7 30F+02	(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	7.50E+01	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene		(1)	17	16	< 20	< 20	< 4.0		< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	2.30L+00	-	< 2.0	< 2.0	< 10	< 10	< 2.0		< 2.0		< 2.0		< 2.0	
2-Butanone	E ECT : 02	(4)	< 10	< 10	< 50	< 50	< 10		< 10		< 10		< 10	
2-Butanone 2-Chlorotoluene		(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
2-Hexanone	7.50E+02	- (1)	< 1.0	< 1.0	< 50	< 50	< 10		< 1.0		< 1.0		< 10	
2-Methylnaphthalene		(1)	23	18	< 20	< 20	< 4.0		< 4.0		< 4.0		< 4.0	
2-Metriyinapritralene 4-Chlorotoluene		(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	2.00E+03	- (1)	3.5	5	< 5.0	5.1	< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropylioidene 4-Methyl-2-pentanone	-		< 10	< 10	< 5.0	< 50	< 1.0		< 1.0		< 1.0		< 1.0	
	1.41E+04	- (4)	19	< 10	< 50	< 50	< 10		< 10		< 10		< 10	
		(4)	9.9				< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	
	5.00E+00	(2)		14	< 5.0	< 5.0			< 1.0		< 1.0			< 1.0
Bromobenzene		(1)	< 1.0 < 1.0	< 1.0 < 1.0	< 5.0 < 5.0	< 5.0 < 5.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	
Bromodichloromethane		(4)												
Bromoform	8.50E+00	(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Bromomethane		(4)	< 3.0	< 3.0	< 15	< 15	< 3.0		< 3.0		< 3.0		< 3.0	
Carbon disulfide		(4)	< 10	< 10	< 50	< 50	< 10		< 10		< 10		< 10	
Carbon Tetrachloride		(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Chlorobenzene	1.00E+02	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Chloroethane	-	-	< 2.0	< 2.0	< 10	< 10	< 2.0		< 2.0		< 2.0		< 2.0	
Chloroform		(3)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Chloromethane		(4)	< 3.0	< 3.0	< 15	< 15	< 3.0		< 3.0		< 3.0		< 3.0	
cis-1,2-DCE	7.00E+01	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene	-	-	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Dibromochloromethane		(4)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Dibromomethane	3.70E+02	(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane		(4)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Ethylbenzene		(2)	< 1.0	1	< 5.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	8.60E-01	(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Isopropylbenzene	4.47E+02	(4)	59	62	48	70	< 1.0		< 1.0		< 1.0		< 1.0	

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

			2016	Groundwa	ater Kerne	diation a	ia wonito	ring Annu	ai Keport					
				MW	<i>I</i> -11					MW				
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	2.5	2	< 5.0	6.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride	5.00E+00	(2)	< 3.0	< 3.0	< 15	< 15	< 3.0		< 3.0		< 3.0		< 3.0	
Naphthalene	1.65E+00	(4)	70	71	59	76	< 2.0		< 2.0		< 2.0		< 2.0	
n-Butylbenzene	-	-	< 3.0	< 3.0	< 15	< 15	< 3.0		< 3.0		< 3.0		< 3.0	
n-Propylbenzene	-	-	64	54	62	68	< 1.0		< 1.0		< 1.0		< 1.0	
sec-Butylbenzene	-	-	12	12	12	12	< 1.0		< 1.0		< 1.0		< 1.0	
Styrene	1.00E+02	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
tert-Butylbenzene	-	-	2.4	2.5	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
	7.50E+02	(3)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	1.00E+02	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
trans-1,3-Dichloropropene		(1)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5.00E+00	(2)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane	1.14E+03	(4)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Vinyl chloride		(3)	< 1.0	< 1.0	< 5.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0	
Xylenes, Total	6.20E+02	(3)	< 1.5	< 1.5	< 7.5	< 7.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<2.0
Semi Volatile Organic Compounds ((ug/l):													
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
1,2-Dichlorobenzene	6.00E+02	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
1,3-Dichlorobenzene	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
1,4-Dichlorobenzene	7.50E+01	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
1-Methylnaphthalene	2.30E+00	(1)	25		16	21	< 10				< 10		< 10	
2,4,5-Trichlorophenol	1.17E+03	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
2,4,6-Trichlorophenol		(4)	< 10		< 10	< 10	< 10				< 10		< 10	
2,4-Dichlorophenol	4.53E+01	(4)	< 20		< 20	< 20	< 20				< 20		< 20	
2,4-Dimethylphenol		(4)	< 10		< 10	< 10	< 10				< 10		< 10	
2,4-Dinitrophenol		(4)	< 20		< 20	< 20	< 20				< 20		< 20	
2,4-Dinitrotoluene	2.37E+00	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
2,6-Dinitrotoluene	3.70E+01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
2-Chloronaphthalene	2.90E+03	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
2-Chlorophenol	9.10E+01	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
2-Methylnaphthalene	1.50E+02	(1)	11		< 10	14	< 10				< 10		< 10	
2-Methylphenol		(1)	< 10		< 20	< 10	< 10				< 20		< 10	
2-Nitroaniline	1.10E+02	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
2-Nitrophenol	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
3,3'-Dichlorobenzidine		(1)	< 10		< 10	< 10	< 10				< 10		< 10	
3+4-Methylphenol	1.80E+02	(1)	17		< 10	< 10	< 10				< 10		< 10	
3-Nitroaniline	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
4,6-Dinitro-2-methylphenol	-	-	< 20		< 20	< 20	< 20				< 20		< 20	
4-Bromophenyl phenyl ether	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
4-Chloro-3-methylphenol	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
4-Chloroaniline	3.40E-01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
4-Chlorophenyl phenyl ether	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
4-Nitroaniline	3.40E+00	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
4-Nitrophenol	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
Acenaphthene	5.35E+02	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Acenaphthylene	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
	1.20E+01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Anthracene	1.72E+03	(4)	< 10		< 10	< 10	< 10				< 10		< 10	

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				0.00		uiutioii ui		ring Annu	шторот					
				MW	-11					MW	<i>I-</i> 12			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Azobenzene	1.20E-01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Benzo(a)anthracene	3.43E-01	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Benzo(a)pyrene	2.00E-01	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
Benzo(b)fluoranthene	3.43E-01	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Benzo(g,h,i)perylene	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
Benzo(k)fluoranthene	3.43E+00	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Benzoic acid	1.50E+05	(1)	< 20		< 20	62	< 20				< 20		< 40	
Benzyl alcohol	1.80E+04	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Bis(2-chloroethoxy)methane	1.10E+02	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Bis(2-chloroethyl)ether	1.36E-01	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Bis(2-chloroisopropyl)ether	9.76E+00	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Bis(2-ethylhexyl)phthalate	6.00E+00	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
Butyl benzyl phthalate	3.50E+01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Carbazole	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
Chrysene	3.43E+01	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Dibenz(a,h)anthracene	1.06E-01	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Dibenzofuran	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
Diethyl phthalate	1.48E+04	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Dimethyl phthalate	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
Di-n-butyl phthalate	8.85E+02	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Di-n-octyl phthalate	-	-	< 10		< 10	< 10	< 10				< 10		< 10	
Fluoranthene		(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Fluorene	2.88E+02	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Hexachlorobenzene	1.00E+00	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
Hexachlorobutadiene	8.60E-01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Hexachlorocyclopentadiene	5.00E+01	(2)	< 10		< 10	< 10	< 10				< 10		< 10	
Hexachloroethane	6.80E+00	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
Isophorone		(4)	< 10		< 10	< 10	< 10				< 10		< 10	
		(4)	43		23	54	< 10				< 10		< 10	
Nitrobenzene	1.40E+00	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
N-Nitrosodimethylamine	4.90E-03	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
N-Nitrosodi-n-propylamine	9.60E-03	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
	1.21E+02	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
Pentachlorophenol	1.00E+00	(2)	< 20		< 20	< 20	< 20				< 20		< 20	
	1.70E+02	(4)	< 10		< 10	< 10	< 10				< 10		< 10	
	5.00E+00	(3)	< 10		< 10	< 10	< 10				< 10		< 10	
	1.17E+02	(5)	< 10		< 10	< 10	< 10				< 10		< 10	
	3.70E+01	(1)	< 10		< 10	< 10	< 10				< 10		< 10	
General Chemistry (mg/l):	4.0	(0)	0.44	0.05	0.00	0.04	0.45		0.00		0.00		0.55	
Fluoride	1.6	(3)	0.41	0.35	0.62	0.84	0.45		0.63		0.63		0.55	
Chloride	250	(3)	120	78	96	300	4.7		4		4.0		4.0	
Nitrite	1.0	(2)	< 1.0 0.92	< 0.10	< 0.50	< 0.50 3.9	< 1.0		< 0.10		< 0.10		< 0.10	
Bromide	-	- (2)		0.15	1.4		< 0.10		< 0.10		< 0.10		< 0.10	
Nitrate	10	(3)	< 1.0	0.15	< 0.50	< 0.50	< 1.0		0.11		< 0.10		< 0.10	
Phosphorus	600	(3)	2.8	< 0.50	< 2.5	< 2.5	< 0.50 48		< 0.50		< 0.50		< 0.50	
Sulfate			7.6	5.7	6.3	4.6			79		120		67	
Carbon Dioxide (CO ₂)	-	-	1000	1000	1100	1100	130		130		130		200	
Alkalinity (CaCO ₃)	-	-	1082	1038	1000	1100	149		148.4		140		220	
Bicarbonate (CaCO ₃)	-	-	1082	1038	1000	1100	149		148.4		140		220	

TABLE 5 Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				Groundwa		alation a		7	atopo.t					
				MW						MV	<i>I</i> -12			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Total Metals (mg/l):														
Arsenic	0.01	(2)	0.047	0.035	< 0.020	< 0.020	< 0.020		< 0.020		< 0.020		< 0.020	
Barium	2	(2)	0.96	0.92	0.74	1.1	0.36		0.13		0.19		0.071	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.058		0.34		0.82		0.29	
Lead	0.015	(2)	0.028	0.0075	0.019	< 0.025	0.019		0.0064		0.0096		< 0.025	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		< 0.0050		< 0.025	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):														
Arsenic	0.1	(3)	0.033	< 0.020	< 0.0050	0.02	< 0.020		< 0.020		0.0012		< 0.0010	
Barium	1	(3)	0.86	0.85	0.64	1.1	0.27		0.047		0.062		0.043	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-	-	87	96	73	130	58		48		66		59	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.089		< 0.0060		< 0.0060		0.021	
Copper	1	(3)	0.015	< 0.0060	< 0.0060	< 0.020	0.023		< 0.0060		< 0.0060		< 0.020	
Iron	1	(3)	18	9.6	8	11	9.2		< 0.020		0.046		0.54	
Lead	0.05	(3)	0.027	0.006	0.0019	0.0042	0.032		< 0.0050		< 0.0010		0.0018	
Magnesium	-	-	21	22	17	28	11		6.9		9.3		9.6	
Manganese	0.2	(3)	1.8	1.5	1.2	2.3	2.1		0.03		0.25		0.039	
Potassium	-	-	2.8	1.5	2.4	2.4	1.6		< 1.0		1.1		< 1.0	
Selenium	0.05	(3)	< 0.050	< 0.050	0.0090	< 0.020	< 0.050		< 0.050		< 0.0010		< 0.020	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		< 0.0050		< 0.025	
Sodium	-	(3)	410 < 0.10	390 < 0.10	380	440	32		31		40		55	
Uranium					< 0.0010		< 0.10		< 0.10		< 0.0010			
Zinc	(3)	0.063	< 0.020	< 0.010	< 0.010	0.1		< 0.020		< 0.010		< 0.010		
Total Petroleum Hydrocarbons (mg/l):													
Diesel Range Organics	-	-	1.8	1.5	1.6	2.5	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20
Gasoline Range Organics	-	-	1.4	2.4	2.3	2.1	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- Notes:

 (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels Tap Water.

 (2) EPA Regional Screening Levels (April 2009) MCL

 (3) NMED

 (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 No screening level available

 Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

 Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time

 Analysis not required and/or well contains separate phase

 Analysis not required and/or well contains separate phase

 Analytical result exceeds the respective screening level.

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

			2016	Groundw	ater Reme	diation a	nd Monito	ring Annu	al Report					
				MW	<i>I</i> -34					MW	/-35			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compounds (ug/L)														
1,1,1,2-Tetrachloroethane		(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	2.50E+01	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	5.00E+00	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 1.0	< 1.0	51	< 1.0	25		19		51		3.0	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloropropane	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,3,5-Trimethylbenzene		(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichlorobenzene	-	-	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	7.30E+02	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene		(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	-	-	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0	
2-Butanone	5.56E±03	(4)	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10	
2-Chlorotoluene		(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
2-Hexanone	7.002 - 02	-	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10	
2-Methylnaphthalene	1.50E+02	(1)	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0		< 4.0	
4-Chlorotoluene		(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-	- (1)	< 1.0	< 1.0	3.1	< 1.0	1.1		1.1		2.3		< 1.0	
4-Methyl-2-pentanone		-	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10	
	1.41E+04	(4)	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10	
	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene		(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Bromodichloromethane	1.34E+00	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Bromoform	8.50E+00	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Bromomethane		(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0	
Carbon disulfide		(4)	< 10	< 10	< 10	< 10	< 10		< 10		< 10		< 10	
Carbon Tetrachloride		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Calbon retrachionde		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Chloroethane	1.00L+02	-	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0	
Chloroform		(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Chloromethane		(4)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0	
cis-1.2-DCE		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene Dibromochloromethane	1.695.00	- (4)	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0				< 1.0 < 1.0		< 1.0 < 1.0	
		(4)	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0		< 1.0		< 1.0 < 1.0		< 1.0 < 1.0	
Dibromomethane		(1)			< 1.0	< 1.0	< 1.0		< 1.0					
Dichlorodifluoromethane		(4)	< 1.0	< 1.0				< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	
Ethylbenzene		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	-	< 1.0	< 1.0	< 1.0	-	< 1.0	< 1.0
Hexachlorobutadiene		(1)	< 1.0	< 1.0	< 1.0	< 1.0 2.5			< 1.0		< 1.0		< 1.0	
Isopropylbenzene	4.47E+02	(4)	2.6	4.6	13	∠.5	4.7		1.5		5.9		2.2	

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				Or our id wit	ator rtorne	diation ai	TO INIOITIE	ring Aima	ui itopoit					
				MW	I-34					MW	-35			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Methyl tert-butyl ether (MTBE)		(4)	< 1.0	< 1.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2	1.4	1
Methylene Chloride		(2)	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0	
Naphthalene	1.65E+00	(4)	< 2.0	< 2.0	4.2	< 2.0	< 2.0		< 2.0		< 2.0		< 2.0	
n-Butylbenzene	-	-	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0		< 3.0	
n-Propylbenzene	-	-	1.5	2.8	<10	1.4	4.1		< 1.0		5.8		1.4	
sec-Butylbenzene	-	-	2.6	4.5	6.7	1.6	3.6		1.1		3.7		1.5	
	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
tert-Butylbenzene	-	-	1.7	1.7	2.5	2.0	1.9		< 1.0		2.2		2.4	
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Toluene	7.50E+02	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	1.00E+02	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
trans-1,3-Dichloropropene	4.30E-01	(1)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane	1.14E+03	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Vinyl chloride		(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0		< 1.0	
Xylenes, Total		(3)	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<2.0
Semi Volatile Organic Compounds														
1,2,4-Trichlorobenzene		(2)												
1,2-Dichlorobenzene	6.00E+02	(2)												
1,3-Dichlorobenzene	-	-												
1,4-Dichlorobenzene	7.50E+01	(2)												
1-Methylnaphthalene	2.30E+00	(1)												
2,4,5-Trichlorophenol		(4)												
2,4,6-Trichlorophenol	1.19E+01	(4)												
2,4-Dichlorophenol	4.53E+01	(4)												
2,4-Dimethylphenol		(4)												
2,4-Dinitrophenol	3.88E+01	(4)												
2,4-Dinitrotoluene	2.37E+00	(4)												
2,6-Dinitrotoluene	3.70E+01	(1)												
2-Chloronaphthalene		(1)												
2-Chlorophenol	9.10E+01	(4)												
2-Methylnaphthalene		(1)												
2-Methylphenol		(1)												
2-Nitroaniline	1.10E+02	(1)												
2-Nitrophenol	-	-												
3,3'-Dichlorobenzidine	1.50E-01	(1)												
3+4-Methylphenol	1.80E+02	(1)												
3-Nitroaniline	-	-												
4,6-Dinitro-2-methylphenol	-	-												
4-Bromophenyl phenyl ether	-	-												
4-Chloro-3-methylphenol	-	-												
4-Chloroaniline	3.40E-01	(1)												
4-Chlorophenyl phenyl ether		-												
4-Nitroaniline	3.40E+00	(1)												
4-Nitrophenol	-	-												
Acenaphthene	5.35E+02	(4)												
Acenaphthylene	-	-												
	1.20E+01	(1)												
Anthracene	1.72E+03	(4)												

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				Groundwa										
				MW							-35			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Azobenzene	1.20E-01	(1)												
Benzo(a)anthracene		(4)												
Benzo(a)pyrene	2.00E-01	(2)												
Benzo(b)fluoranthene	3.43E-01	(4)												
Benzo(g,h,i)perylene	-	-												
Benzo(k)fluoranthene	3.43E+00	(4)												
Benzoic acid		(1)												
Benzyl alcohol	1.80E+04	(1)												
Bis(2-chloroethoxy)methane	1.10E+02	(1)												
Bis(2-chloroethyl)ether	1.36E-01	(4)												
Bis(2-chloroisopropyl)ether		(4)												
Bis(2-ethylhexyl)phthalate		(2)												
Butyl benzyl phthalate	3.50E+01	(1)												
Carbazole	-	-												
	3.43E+01	(4)												
Dibenz(a,h)anthracene	1.06E-01	(4)												
Dibenzofuran		-												
Diethyl phthalate	1.48E+04	(4)												
Dimethyl phthalate	- 0.055.00	- (4)												
Di-n-butyl phthalate	8.85E+02	(4)												
Di-n-octyl phthalate	-	- (4)												
Fluoranthene		(4)												
Fluorene	2.88E+02	(4)												
Hexachlorobenzene	1.00E+00	(2)												
Hexachlorobutadiene	8.60E-01	(1)												
Hexachlorocyclopentadiene	5.00E+01	(2)												
Hexachloroethane	6.80E+00	(4)												
Indeno(1,2,3-cd)pyrene	2.90E-02	(1)												
Isophorone Naphthalene		(4)												
		(4)												
Nitrobenzene	1.40E+00	(4)												
N-Nitrosodimethylamine N-Nitrosodi-n-propylamine	4.90E-03 9.60E-03	(4)												
N-Nitrosodiphenylamine		(4)												
Pentachlorophenol Phenanthrene	1.00E+00	(2)												
	5.00E+00	(3)												
	1.17E+02	(5)												
	3.70E+01	(1)												
General Chemistry (mg/l):	5.70L+01	(1)												
Fluoride	1.6	(3)	0.38	0.56	0.70	1.1	0.47		0.55		0.76		1.1	
Chloride	250	(3)	260	190	180	230	240		180		130		260	
Nitrite	1.0	(2)	< 1.0	< 0.10	< 0.50	< 0.50	< 1.0		< 0.10		< 0.50		< 0.50	
Bromide	-	-	2.2	0.7	2.3	2.9	2.2		0.74		1.7		3.3	
Nitrate	10	(3)	< 1.0	0.27	< 0.50	< 0.50	< 1.0		0.25		< 0.50		< 0.50	
Phosphorus	-	-	< 2.5	< 0.50	< 2.5	< 2.5	< 0.50		< 0.50		< 2.5		< 2.5	
Sulfate	600	(3)	340	23	14	9.1	14		11		9.4		< 2.5	
Carbon Dioxide (CO ₂)	-	-	930	820	870	950	850		790		900		950	
Alkalinity (CaCO ₃)														
, , , , ,	-	-	979	876	900	1000	905		845		950		1000	
Bicarbonate (CaCO ₃)	-	-	979	876	900	1000	905		845		950		1000	

TABLE 5 Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				O. Ounawa	ator rtomo	alation a	ia wonito	ing Aima	ui itopoit					
				MW	-34					MV	<i>I</i> -35			
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Total Metals (mg/l):														
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	0.047		0.11		< 0.020		< 0.020	
Barium	2	(2)	0.56	0.78	0.39	0.79	1.3		1.6		0.75		1.1	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Lead	0.015	(2)	< 0.0050	< 0.0050	0.0076	< 0.025	0.0098		< 0.0050		0.0054		< 0.025	
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		< 0.0050		< 0.025	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):														
Arsenic	0.1	(3)	< 0.020	< 0.020	< 0.010	0.0049	0.038		0.038		0.013		0.0096	
Barium	1	(3)	0.4	0.73	0.5	0.81	0.82		1.6		0.67		0.93	
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-	-	150	93	110	130	120		110		83		140	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.020	< 0.0060		< 0.0060		< 0.0060		< 0.020	
Iron	1	(3)	4.5	2.8	1.5	3.2	3.4		0.1		3.5		4.4	
Lead	0.05	(3)	< 0.0050	0.005	< 0.0010	< 0.0010	< 0.0050		< 0.0050		< 0.0010		< 0.0010	
Magnesium	-	-	30	16	21	23	21		21		16		25	
Manganese	0.2	(3)	3.6	3.2	2.9	4.2	2.5		2.4		2.1		3.1	
Potassium	-	-	2.1	1.3	2.8	1.8	2.8		2.5		3.5		3.2	
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.010	< 0.020	< 0.050		< 0.050		0.015		< 0.020	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050		< 0.0050		< 0.0050		< 0.025	
Sodium					420	410	380		340		380		390	
Uranium	(3)	< 0.10	< 0.10	< 0.0010		< 0.10		< 0.10		< 0.0010				
Zinc	(3)	< 0.020	< 0.020	< 0.010	< 0.010	< 0.020		0.023		< 0.010		< 0.010		
Total Petroleum Hydrocarbons (mg/):													
Diesel Range Organics	-	-	0.89	0.56	2.2	1.8	0.62	0.55	0.38	0.55	1.5		2.4	
Gasoline Range Organics	-	-	0.87	1.3	2.0	1.1	0.52	0.25	0.54	0.25	1.0		0.85	
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5	

Notes:

(1) EPA - Regional Screening Levels (April 2009) - EPA Screening Levels. Tap Water
(2) EPA - Regional Screening Levels (April 2009) - MCL
(3) NMED
(4) NMED TAP Water Screening Levels - NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

- No screening level available
- Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analytical result exceeds the respective screening level.

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					2016	Groundwa	ater Reme	ediation ai	10 Monito	ring Anni	iai Keport							
						MW	1-37							MV	V-38			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compounds (ug/L)																		
1,1,1,2-Tetrachloroethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,1,1-Trichloroethane	6.00E+01	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,1,2,2-Tetrachloroethane	1.00E+01	(3)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		<2.0		< 2.0	
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,1-Dichloroethane	2.50E+01	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,1-Dichloroethene	5.00E+00	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,1-Dichloropropene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2,3-Trichlorobenzene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2,3-Trichloropropane	7.47E-03	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		<2.0		< 2.0	
1,2,4-Trichlorobenzene	7.00E+01	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2,4-Trimethylbenzene	1.50E+01	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2-Dibromo-3-chloropropane	2.00E-01	(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		<2.0		< 2.0	
1,2-Dibromoethane (EDB)	5.00E-02	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,2-Dichloropropane	5.00E+00	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,3-Dichlorobenzene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,3-Dichloropropane	7.30E+02	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1,4-Dichlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
1-Methylnaphthalene		(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		<4.0		< 4.0	
2,2-Dichloropropane		-	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		<2.0		< 2.0	
2-Butanone		(4)	< 10		< 10		< 10		< 10		< 10		< 10		<10		< 10	
2-Chlorotoluene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
2-Hexanone		-	< 10		< 10		< 10		< 10		< 10		< 10		<10		< 10	
2-Methylnaphthalene	1.50E+02	(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		<4.0		< 4.0	
4-Chlorotoluene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
4-Isopropyltoluene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
4-Methyl-2-pentanone	-	-	< 10		< 10		< 10		< 10		< 10		< 10		<10		< 10	
	1.41E+04	(4)	< 10		< 10		< 10		< 10		< 10		< 10		<10		< 10	
Benzene	5.00E+00	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<5.0
Bromobenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Bromodichloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Bromoform		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Bromomethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		<3.0		< 3.0	
Carbon disulfide		(4)	< 10		< 10		< 10		< 10		< 10		< 10		<10		< 10	
Carbon Tetrachloride		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Chlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Chloroethane		-	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		<2.0		< 2.0	
Chloroform		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Chloromethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		<3.0		< 3.0	
cis-1,2-DCE		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
cis-1,3-Dichloropropene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Dibromochloromethane	1.68F+00	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Dibromomethane		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Dichlorodifluoromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Ethylbenzene		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<5.0
Hexachlorobutadiene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Isopropylbenzene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
isopropyibelizelle	1.712.02	(-/	- 1.0		1 - 1.0		- 1.0		1.0		1 - 1.0		1.0		\ \1.U		- 1.0	

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

Methylene Chicres Soliton Age-16						2016	Groundw	ater Reme	diation ar	nd Monito	ring Annu	al Report							
Methylent-buyle performance Methylent-buyle							MW	I-37							MV	V-38			
Methylene Chindre 500f-00 20 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30 < 30				Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Naphthaten 158F-00 40 \$2.0	Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<5.0
## 1-8-Julyherszee .	Methylene Chloride	5.00E+00	(2)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		<3.0		< 3.0	
## Proprieture -	Naphthalene	1.65E+00	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		<2.0		< 2.0	
Septembergase	n-Butylbenzene	-	-	< 3.0		< 3.0		< 1.0		< 3.0		< 3.0		< 3.0		<1.0		< 3.0	
System 105-102 2 < 1,0	n-Propylbenzene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Tetrahphorehene (PCF) South of 10 Sout	sec-Butylbenzene	-	-	< 1.0		< 1.0		< 3.0		< 1.0		< 1.0		< 1.0		<3.0		< 1.0	
Tetrachtorocheme (PCE) 500E+00 (2) < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1	Styrene	1.00E+02	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Tetrachtorocheme (PCE) 500E+00 (2) < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1	tert-Butylbenzene	-	-	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Tolume 750Er0 30 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10			(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
trans-1,2-DCE 100E-02 (2) < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0 < 1,0				< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<5.0
Trichlorehmen (TCS) 500-90 20 <1,0				< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		<1.0		< 1.0	
Trichloroethere (TCE) 500E-00 (2) < <1,0				< 1.0		< 1.0		< 1.0		< 1.0				< 1.0				< 1.0	
Trichloroflucomethane 1.14E-03 4																			
Virging Total College Colleg																			
Xyleng Cappenge																			
Semi Volatile Organic Compounds (upt):																			
1.24-Trichtoroberzene			(0)	11.0	1.0	1.0	- 1.0	- 1.0	1.0	- 1.0	11.0	11.0	1.0	. 1.0	-1.0	11.0	11.0	11.0	-10
1.2-Dichlorobenzene 6.00E-02 (2)			(2)								I	< 10	I			< 10		< 10	
1.3-Dichlorobenzene 7.50E-101 (2)																			
1.4-Dichlorobenzene 7.50E-01 (2)																			
1-Methylaphthalene 2,080=00 (1)	,-																		
2.4.5-Tichlorophenol 1.17E+03 (4)																	_		
2.4.6-Trichorophenol 1.19E-01 (4)					_														
2.4-Directophenol 4.58±01 (4)																			
2.4-Dinitrophenol 3.54E+02 (4)																	_		
2.4-Dinitrophenol 3.88E+01 (4)																			
2.4-Dinitrotoluene 2.37E+00 (4)																			
2.Chloropathialene 2.90E+03 (1)																	_		
2-Chlorophablatene 2-90E+03 (1)					_														
2-Chlorophenol 9.10E+01 (4)																			
2-Methylphenol 1.80E+02 (1)																	_		
2-Methylphenol 1.80E+03 (1)					_	_													
2-Nitrophenol 1.10E+02 (1)																			
					_												_		
3.3"-Dichlorobenzidine 1.50E-01 (1)		1.10E+02																	
3+4-Methylphenol 1.80E+02 (1)		-															_		
3-Nitroaniline - - - - - - - - -																			
4.6-Dinitro-2-methylphenol			(1)																
4-Bromophenyl phenyl ether 4-Chloro3-methylphenol 5-5-5-0-1		-	-																
4-Chloro-3-methylphenol - <td>4,6-Dinitro-2-methylphenol</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 20</td> <td></td> <td></td> <td></td> <td>< 20</td> <td></td> <td>< 20</td> <td></td>	4,6-Dinitro-2-methylphenol	-	-									< 20				< 20		< 20	
4-Chlorophenyl phenyl ether		-	-																
4-Chlorophenyl ether	4-Chloro-3-methylphenol	-	-									< 10				< 10		< 10	
A-Nitroaniline 3.40E+00 (1)	4-Chloroaniline	3.40E-01	(1)									< 10				< 10		< 10	
4-Nitrophenol	4-Chlorophenyl phenyl ether	-	-									< 10				< 10		< 10	
Acenaphthene 5.35E+02 (4)	4-Nitroaniline	3.40E+00	(1)									< 10				< 10		< 10	
Acenaphthene 5.35E+02 (4)	4-Nitrophenol	-	-									< 10				< 10		< 10	
Acenaphthylene		5.35E+02	(4)									< 10				< 10			
Aniline 1.20E+01 (1) <10 <10 <10 <10 <10																			
																	_		
MINIBACENE 1,725 TO 3 141 1 1 1 1 1 1 1 S TO 1 1 S TO 1 1 S TO 1 1 S TO 1			(4)									< 10				< 10		< 10	

TABLE 5
Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					2016	Groundwa	ater Reme	ediation ar	nd Monito	ring Annu	al Report							
						MW	1-37							MW	V-38			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Azobenzene	1.20E-01	(1)									< 10				< 10		< 10	
Benzo(a)anthracene	3.43E-01	(4)									< 10				< 10		< 10	
Benzo(a)pyrene	2.00E-01	(2)									< 10				< 10		< 10	
Benzo(b)fluoranthene	3.43E-01	(4)									< 10				< 10		< 10	
Benzo(g,h,i)perylene	-	-									< 10				< 10		< 10	
Benzo(k)fluoranthene		(4)									< 10				< 10		< 10	
Benzoic acid		(1)									< 20				< 20		< 40	
Benzyl alcohol		(1)									< 10				< 10		< 10	
Bis(2-chloroethoxy)methane		(1)									< 10				< 10		< 10	
		(4)									< 10				< 10		< 10	
Bis(2-chloroisopropyl)ether		(4)									< 10				< 10		< 10	
Bis(2-ethylhexyl)phthalate		(2)									< 10				< 10		< 10	
Butyl benzyl phthalate	3.50E+01	(1)									< 10				< 10		< 10	
Carbazole	-	-									< 10				< 10		< 10	
Chrysene		(4)									< 10				< 10		< 10	
Dibenz(a,h)anthracene	1.06E-01	(4)									< 10				< 10		< 10	
Dibenzofuran		- (4)									< 10				< 10		< 10	
	1.48E+04	(4)									< 10				< 10		< 10	
Dimethyl phthalate	-	- (4)									< 10				< 10		< 10	
Di-n-butyl phthalate	8.85E+02	(4)									< 10				< 10		< 10	
Di-n-octyl phthalate	- 0.005.00	- (4)									< 10				< 10		< 10	
Fluoranthene		(4)									< 10				< 10		< 10	
		(4)									< 10				< 10		< 10	
Hexachlorobenzene Hexachlorobutadiene		(2)									< 10 < 10				< 10 < 10		< 10 < 10	
		(1)									< 10				< 10		< 10	
Hexachloroethane		(4)									< 10				< 10		< 10	
Indeno(1,2,3-cd)pyrene		(1)									< 10				< 10		< 10	
Isophorone		(4)									< 10				< 10		< 10	
Naphthalene		(4)									< 10				< 10		< 10	
		(4)									< 10				< 10		< 10	
N-Nitrosodimethylamine		(4)									< 10				< 10		< 10	
N-Nitrosodi-n-propylamine		(1)									< 10				< 10		< 10	
N-Nitrosodiphenylamine		(4)									< 10				< 10		< 10	
		(2)									< 20				< 20		< 20	
Phenanthrene		(4)									< 10				< 10		< 10	
		(3)									< 10				< 10		< 10	
		(5)									< 10				< 10		< 10	
		(1)									< 10				< 10		< 10	
General Chemistry (mg/l):																		
Fluoride	1.6	(3)	0.6		0.59		0.74		0.67		0.64		0.84		0.96		0.72	
Chloride		(3)	220		220		190		260		75		30		62		160	
Nitrite	1.0	(2)	< 1.0		< 0.10		< 0.10		< 0.10		< 1.0		< 0.10		< 0.10		< 0.10	
Bromide	-	-	2.9		1.2		2.7		3		0.98		0.38		0.87		2	
Nitrate	10	(3)	< 1.0		< 0.10		< 0.10		0.44		< 1.0		< 0.10		< 0.10		< 0.10	
Phosphorus	-	-	< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50	
Sulfate	600	(3)	270		110		24		180		4.6		30		36		36	
Carbon Dioxide (CO ₂)	-	-	690		770		810		790		450		310		490		620	
Alkalinity (CaCO ₃)	- 1	-	766.7		855.5		890		870		497		345.6		520		680	
Bicarbonate (CaCO ₃)			766.7		855.5		890		870		497		345.6		520		680	
Dicarbonate (CaCO ₃)			100.1		000.0		030		0/0		431		345.0		520		000	

TABLE 5 Downgradient Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

					2016	Groundw	ater Reme	diation a	na Wonitoi	ning Annu	iai Keport							
						MW	I-37							MV	V-38			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Total Metals (mg/l):																		
Arsenic	0.01	(2)	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020	
Barium	2	(2)	0.27		0.42		0.31		0.71		0.6		0.16		0.28		0.37	
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		0.026		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Lead	0.015	(2)	0.0068		< 0.0050		< 0.0050		< 0.025		0.0093		< 0.0050		0.0052		< 0.025	
Selenium	0.05	(2)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.025		< 0.0050		< 0.0050		< 0.0050		< 0.025	
Mercury	0.002	(3)	< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):																		
Arsenic	0.1	(3)	< 0.020		< 0.020		< 0.010		0.0056		< 0.020		< 0.020		< 0.0050		0.004	
Barium	1	(3)	0.22		0.4		0.20		0.35		0.55		0.16		0.18		0.28	
Cadmium	0.01	(3)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-	-	86		92		44		120		98		37		42		120	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.020		0.033		< 0.0060		< 0.0060		< 0.010	
Iron	1	(3)	1.6		< 0.020		0.38		< 0.0010		13		0.032		0.89		3.1	
Lead	0.05	(3)	< 0.0050		< 0.0050		< 0.0010		3.0		0.014		< 0.0050		< 0.0010		< 0.0010	
Magnesium	-	-	19		21		15		21		16		6		7.3		18	
Manganese	0.2	(3)	0.96		1		0.99		1.2		3		0.93		1.2		2.5	
Potassium	-	-	2.9		2.8		3.0		3.7		2.8		1.1		1.9		3.1	
Selenium	0.05	(3)	< 0.050		< 0.050		0.022		< 0.020		< 0.050		< 0.050		0.0072		< 0.010	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.025		< 0.0050		< 0.0050		< 0.0050		< 0.025	
Sodium	-	-	460		420		460		440		180		130		240		240	
Uranium	0.03	(3)	< 0.10		< 0.10		0.0010				< 0.10		< 0.10		0.0017			
Zinc	10	(3)	< 0.020		< 0.020		< 0.010		< 0.010		0.053		0.022		< 0.010		< 0.010	
Total Petroleum Hydrocarbons (mg/	I):																	
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	0.45	0.55	< 0.20	< 0.20	< 0.2	0.28	<0.20	< 0.20	<0.20	< 0.20	<0.20	0.53	0.56
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.050	0.074	< 0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050	0.12	0.11
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5	< 2.5	<2.5	< 2.5	<2.5	< 2.5	<2.5	< 2.5	< 2.5

- Notes:

 (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels. Tap Water
 (2) EPA Regional Screening Levels (April 2009) MCL
 (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
 (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 No screening level available
 Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 Analysis not required and/or well contains separate phase
 Analysis not required and/or well contains separate phase
 Analytical result exceeds the respective screening level.

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

					V-50				V-51			MW					V-53		**MW-54				MW-56		
Volatile Organic Compounds	(11m/l)		Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-12
1,1,1,2-Tetrachloroethane		(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,1,1-Trichloroethane		(3)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,1,2,2-Tetrachloroethane		(3)	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0				
1,1,2-Trichloroethane	5.00E+00	(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,1-Dichloroethane	2.50E+01	(3)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,1-Dichloroethene	5.00E+00	(3)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,1-Dichloropropene	-	-	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,2,3-Trichlorobenzene			< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,2,3-Trichloropropane		(4)	< 2.0 < 1.0			< 2.0	< 2.0 < 1.0	< 2.0	< 2.0 < 1.0	< 2.0	< 2.0	< 2.0 < 1.0	< 2.0	< 2.0	< 2.0	< 2.0 < 1.0	< 2.0	< 2.0			< 2.0				
1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene		(2)	< 1.0			< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0			< 1.0 300				
1,2-Dibromo-3-chloropropane		(2)	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0				
1,2-Dibromoethane (EDB)		(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,2-Dichlorobenzene	6.00E+02	(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,2-Dichloroethane (EDC)	5.00E+00	(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,2-Dichloropropane		(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,3,5-Trimethylbenzene	1.20E+01	(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			97				
1,3-Dichlorobenzene	7.005.00	- (4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
1,3-Dichloropropane 1.4-Dichlorobenzene		(1)	< 1.0 < 1.0			< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0			< 1.0 < 1.0				
1-Methylnaphthalene		(1)	< 4.0			< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			19				
2,2-Dichloropropane		127	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0				
2-Butanone	5.56E+03	(4)	< 10			< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			26				
2-Chlorotoluene	7.30E+02	(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
2-Hexanone	-	-	< 10			< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10				
2-Methylnaphthalene		(1)	< 4.0			< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			26				
4-Chlorotoluene	2.60E+03	(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
4-Isopropyltoluene 4-Methyl-2-pentanone	-	-	< 1.0 < 10			< 1.0 < 10	< 1.0 < 10	< 1.0 < 10	< 1.0 < 10	< 1.0	< 1.0 < 10	< 1.0 < 10	< 1.0	< 1.0 < 10	< 1.0 < 10	< 1.0	< 1.0 < 10	< 1.0 < 10			11 < 10				
4-wetriyi-z-pentarione Acetone	1.41E+04	(4)	< 10			< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			150				
	5.00E+00	(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			180				
Bromobenzene		(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Bromodichloromethane	1.34E+00	(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Bromoform		(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Bromomethane		(4)	< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			< 3.0				
Carbon disulfide Carbon Tetrachloride		(4)	< 10 < 1.0			< 10 < 1.0	< 10	< 10 < 1.0	< 10 < 1.0	< 10	< 10 < 1.0	< 10 < 1.0	< 10	< 10	< 10 < 1.0	< 10	< 10	< 10			< 10 < 1.0				
Carbon Tetrachioride Chlorobenzene		(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Chloroethane	1.00L102	(2)	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0				
Chloroform	1.00E+02	(3)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Chloromethane		(4)	< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			< 3.0				
cis-1,2-DCE	7.00E+01	(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
cis-1,3-Dichloropropene	-	Ŀ	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Dibromochloromethane		(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Dibromomethane Dichlorodifluoromethane		(1)	< 1.0			< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0			< 1.0 < 1.0				
Dichlorodifluoromethane Ethylbenzene		(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0 88				
Hexachlorobutadiene		(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Isopropylbenzene		(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			13				
Methyl tert-butyl ether (MTBE)	1.43E+02	(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			380				
Methylene Chloride		(2)	< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 2.0	< 3.0	< 3.0	< 3.0	< 3.0			< 3.0				
Naphthalene	1.65E+00	(4)	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 3.0	< 2.0	< 2.0	< 2.0	< 2.0			52				
n-Butylbenzene	-	-	< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			10				
n-Propylbenzene	-	-	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			19				
sec-Butylbenzene Styrene	1.00E+02	- 1	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			7.8				
tert-Butylbenzene	1.00=+02	(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Tetrachloroethene (PCE)	5.00E+00	(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Toluene		(3)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			1.4				
trans-1,2-DCE		(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
trans-1,3-Dichloropropene		(1)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Trichloroethene (TCE)		(2)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Trichlorofluoromethane		(4)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				
Vinyl chloride	1.00E+00	(3)	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0				

TABLE 6
RCRA Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				MW					/-51			MW-				MV			**MW-54	**MW-55			MW-56		
				Aug-15	Aug-14	Aug-13	Aug-16				Aug-16		Aug-14		Aug-16	Aug-15			Aug-16	Aug-16	Aug-16	Aug-15		Aug-13	Aug-12
Xylenes, Total) <	1.5			< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5			210				
Semi Volatile Organic Compe 1,2,4-Trichlorobenzene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10		_		
1,2-Dichlorobenzene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
1,3-Dichlorobenzene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
1,4-Dichlorobenzene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
1-Methylnaphthalene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2,4,5-Trichlorophenol			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2,4,6-Trichlorophenol	1.19E+01 (4) <	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2,4-Dichlorophenol	4.53E+01 (4) <	20			< 20	< 20		< 21	< 20	< 20		< 20	< 20	< 20		< 22	< 20			< 20				
2,4-Dimethylphenol			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2,4-Dinitrophenol			20			< 20	< 20		< 21	< 20	< 20		< 20	< 20	< 20		< 22	< 20			< 20				
2,4-Dinitrotoluene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2,6-Dinitrotoluene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2-Chloronaphthalene 2-Chlorophenol			10			< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 11	< 10 < 10			< 10 < 10				
2-Methylnaphthalene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2-Methylphenol			10			< 10	< 10		< 21	< 10	< 10		< 20	< 10	< 10		< 22	< 10			< 10				
2-Nitroaniline			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
2-Nitrophenol			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
3,3'-Dichlorobenzidine	1.50E-01 (1) <	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
3+4-Methylphenol			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
3-Nitroaniline			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
4,6-Dinitro-2-methylphenol			20			< 20	< 20		< 21	< 20	< 20		< 20	< 20	< 20		< 22	< 20			< 20				
4-Bromophenyl phenyl ether			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
4-Chloro-3-methylphenol			10			< 10 < 10	< 10		< 10 < 10	< 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 11	< 10 < 10			< 10 < 10				
4-Chlorophenyl phenyl ether	3.40E-01 (1		10			< 10	< 10 < 10		< 10	< 10 < 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
4-Nitroaniline	3.40E+00 (1		10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
4-Nitrophenol			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Acenaphthene	5.35E+02 (4) <	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Acenaphthylene		<	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
	1.20E+01 (1		10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Anthracene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Azobenzene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Benzo(a)anthracene			10			< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 11	< 10 < 10			< 10 < 10				
Benzo(a)pyrene Benzo(b)fluoranthene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Benzo(g,h,i)perylene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Benzo(k)fluoranthene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Benzoic acid			20			< 40	< 20		< 21	< 40	< 20		< 20	< 40	< 20		< 22	< 40			< 20				
Benzyl alcohol) <	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Bis(2-chloroethoxy)methane			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Bis(2-chloroethyl)ether			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Bis(2-chloroisopropyl)ether			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Bis(2-ethylhexyl)phthalate Butyl benzyl phthalate			10			< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	12 < 10		< 10 < 10	< 10 < 10	12 < 10		< 11	< 10 < 10			< 10 < 10				
Carbazole			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
	3.43E+01 (4		10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Dibenz(a,h)anthracene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Dibenzofuran	- (4		10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Diethyl phthalate	1.48E+04 (4		10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Dimethyl phthalate			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Di-n-butyl phthalate	8.85E+02 (4		10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Di-n-octyl phthalate			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			26				
Fluoranthene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
	2.88E+02 (4		10			< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 10 < 10	< 10	< 10 < 10		< 11	< 10 < 10			< 10 < 10				
Hexachlorobenzene Hexachlorobutadiene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Hexachlorocyclopentadiene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Hexachloroethane			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Indeno(1,2,3-cd)pyrene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Isophorone) <	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Naphthalene			10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			16				
Nitrobenzene	1.40E+00 (4) <	10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

		_																							
1					V-50				V-51			MW					V-53		**MW-54	**MW-55			MW-56		
			Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-12
N-Nitrosodimethylamine		(4)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
N-Nitrosodi-n-propylamine	9.60E-03	(1)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
N-Nitrosodiphenylamine	1.21E+02	(4)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Pentachlorophenol	1.00E+00	(2)	< 20			< 20	< 20		< 21	< 20	< 20		< 20	< 20	< 20		< 22	< 20			< 20				
Phenanthrene	1.70E+02	(4)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Phenol	5.00E+00	(3)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Pyrene	1.17E+02	(4)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
Pyridine	3.70E+01	(1)	< 10			< 10	< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 11	< 10			< 10				
General Chemistry (mg/l):																									
Fluoride	1.6	(3)	0.23			0.35	0.5	0.52	0.54	0.55	< 0.50	0.44	0.49	0.43	< 0.10	< 0.10	0.11	< 0.10			< 0.50				
Chloride	250	(3)	4.5			3.7	11	8.3	15	9.6	640	560	820	670	960	920	1000	620			370				
Nitrite	1	(2)	< 0.10			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 0.50				
Bromide	-	-	< 0.10			< 0.10	0.15	< 0.10	0.12	< 0.10	4.1	2.2	2.0	1.8	2.1	3	2.2	2.1			5				
Nitrate	10	(3)	0.23			0.16	1.7	0.34	1.4	0.82	42	19	18	20	9.3	12	6.8	14			< 0.50				
Phosphorus	-	-	< 0.50			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 10	< 10	< 0.50	< 10	< 10	< 0.50	< 0.50	< 10			< 2.5				
Sulfate	600	(3)	37			41	120	43	76	47	1400	1100	1700	1200	1000	980	1300	1200			7.9				
Carbon Dioxide (CO ₂₁	-	-	230			250	220	240	250	220	180	200	220	190	290	300	310	310			890				
Alkalinity (CaCO ₃)			255.9			280	243	264.9	270	250	174.8	207.5	170	200	318.5	329.8	330	350			952.6				
		-		_	_																		_		_
Bicarbonate (CaCO ₃)	-	Ŀ	255.9			280	243	264.9	270	250	174.8	207.5	170	200	318.5	329.8	330	350			952.6				
Total Metals (mg/l):																									
Arsenic	0.01	(2)	< 0.020			< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.10	< 0.020	< 0.020	< 0.020	< 0.020			< 0.020				
Barium	1	(3)	0.31			0.088	0.12	0.11	0.095	0.099	0.14	0.099	0.052	0.27	0.64	0.051	0.041	0.039			2.4				
Cadmium	0.005	(2)	< 0.0020			< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020				
Chromium	0.05	(3)	0.0092			< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.006	< 0.0060	< 0.0060	< 0.0060	0.012	< 0.0060	< 0.0060	< 0.0060			< 0.0060				
Lead	0.015	(2)	0.0059			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0059	< 0.0050	< 0.0050	< 0.025	0.01	< 0.0050	< 0.0050	< 0.0050			< 0.0050				
Selenium	0.05	(2)	< 0.050			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.065	0.069	< 0.050	< 0.050	< 0.0050	< 0.050	< 0.050	< 0.050			< 0.050				
Silver	0.05	(3)	< 0.0050			< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	< 0.0050	< 0.025	< 0.050	< 0.0050	< 0.0050	< 0.025			< 0.0050				
Mercury	0.002	(3)	< 0.00020			< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020			< 0.00020				
Dissolved Metals (mg/l):																									
Arsenic	0.1	(3)	< 0.020			0.0036	< 0.020	< 0.020	< 0.020	0.0032	< 0.020	< 0.020	< 0.020	0.0052	< 0.020	< 0.020	< 0.020	0.0042			< 0.020				
Barium	1	(3)	0.077			0.083	0.063	0.05	0.056	0.058	0.021	< 0.020	< 0.020	0.018	0.026	< 0.020	< 0.020	0.02			2.1				
Cadmium	0.01	(3)	< 0.0020			< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020				
Calcium	-	-	65			65	91	63	76	65	380	320	430	300	360	390	340	330			110				
Chromium	0.05	(3)	< 0.0060			< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060			< 0.0060				
Copper	1	(3)	< 0.0060			0.0013	< 0.0060	< 0.0060	< 0.0060	0.0015	< 0.0060	< 0.0060	< 0.0060	0.017	< 0.0060	< 0.0060	< 0.0060	0.022			0.082				
Iron	1	(3)	0.2			< 0.020	0.15	0.041	< 0.020	< 0.020	3.9	2.2	4.1	0.39	0.21	< 0.020	0.029	< 0.020			28				
Lead	0.05	(3)	< 0.0050			< 0.0010	< 0.0050	< 0.0050	< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.0050	< 0.0010			< 0.0050				
Magnesium	-	Ŀ	14			14	18	13	15	13	100	77	110	76	54	56	59	55			50				
Manganese	0.2	(3)	1.6			2.3	0.95	0.77	1.2	1.0	5.7	3.9	8.8	2.3	0.41	0.61	0.10	0.18			2.8				
Potassium	-	Ŀ	1.9			2.1	1.8	1.7	1.9	2.1	5.6	4.7	5.6	5.7	5.3	5	5.1	5.9			4.4				
Selenium	0.05	(3)	< 0.050			< 0.0010	< 0.050	< 0.050	< 0.050	< 0.0010	0.057	0.09	< 0.050	0.052	< 0.050	< 0.050	< 0.050	0.021			< 0.050				
Silver	0.05	(3)	< 0.0050			< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.025			< 0.0050				
Sodium	-	Ŀ	41			37	51	47	55	43	650	560	590	590	800	780	750	740			460				
Uranium	0.03	(3)	< 0.10			< 0.0010	< 0.10	< 0.10	< 0.10	0.0015	< 0.10	< 0.10	< 0.10	0.0099	< 0.10	< 0.10	< 0.10	0.018			< 0.10				
Zinc	10	(3)	0.021			< 0.010	0.031	< 0.020	< 0.020	0.011	0.2	0.066	0.13	0.014	0.028	0.025	< 0.020	< 0.010			0.55				
Total Petroleum Hydrocarbon	ns (mg/l):																								
Diesel Range Organics	-	-	< 0.20			< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			93				
Gasoline Range Organics	-	-	< 0.050			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050			29				
Motor Oil Range Organics	-	-	< 2.5			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5			< 25				

| Notes: | C2.5 | C2.5

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

Section Company Comp			_																							
Teach Company Reg 10 10 10 10 10 10 10 1			H																							
1.1. Friedmentente 17 cm 1	V-1-4" - 0 0 1-	(II)	_	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-15	Aug-15	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
### Company Notes			(4)	< 10		_			< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	-10	-10	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
11,12/Finetentement 104.01 10 20 20 20 20 20 20			(4)																							
11.7-Indiversalms 500.000 2 40			(3)																							
11.Debitombass 267-07 0 40			(2)																							
1.1-Debetoephere SOCK-00 [0]			(3)																							
1.12-Discharge proper 10 10 10 10 10 10 10 1			(3)																							
123-Trichropheme 775-01 610 71		-	-	< 10																						
1.2 Interference 1.2	1,2,3-Trichlorobenzene	-	-	< 10					< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
1.24 Tempthesame 1.55 10 37	1,2,3-Trichloropropane	7.47E-03	(4)	< 20					< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0	< 4.0	< 2.0	< 2.0
2.20 2.20			(2)	< 10																						
1,2 Discretioneshame 1005 20 20 410			(1)																							
12-Delichorebase Meteors			(2)																							
1,201-brookbase 1,201-broo			(2)																							
1.2-Dekropogous 505-00 20			(2)		_																					
1.5Priemetyphenome 26-01 10			(2)																							
1.3-Dickinsonemen Part			(2)																							
1.3-Dehteropropane 7.05-02 (1) < 10		1.202+01	(1)			_																				
14-Decknotement 7,560-01 0 0 0 0 0 0 0 0 0		7 30F+02	(1)																							
Halfstynaphatherine 236-100 10 100			(2)																							
2-Dichetorprogramme 20 0			(1)	100							< 4.0	5.7			< 4.0	< 4.0		< 4.0			< 4.0		< 4.0			
2-bitatione 5.66-13 (4) (10)		-	-	< 20					< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 4.0	< 2.0	
2-Hebranome -		5.56E+03	(4)						< 10		< 10	< 10			< 10		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 20		
## Additional part of the Part	2-Chlorotoluene	7.30E+02	(1)	< 10					< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
## 4-Chicrotolume 2.06F-03 (1		-	-	< 100																< 10						< 10
### ### ### ### ### ### ### ### ### ##			(1)	95					< 4.0										< 4.0	< 4.0			< 4.0			
### Alterly Aperlanone		2.60E+03	(1)																							
Aceton 141E-04 40 40 500		-	-																							
Benzame 5.06Fe0			•																							
Bromothermentern 200E-01 11			(4)																							
Bromomeltane 1,346-700 [4] < 10			(2)																							
Bromoform 8,06+00			(4)																							
Bromomethane 7.54E-00 44 43 0			(1)																							
Carbon Tetrachioride 5,000-100 22 4:10			(4)																				< 3.0			
Chlorotherm 1006-02 (2) < <10	Carbon disulfide	8.10E+02	(4)	< 100					< 10	< 10	< 10	< 10			< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 20	< 10	< 10
Chlorothem Color	Carbon Tetrachloride	5.00E+00	(2)	< 10					< 1.0	< 1.0		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0
Chloroform 1006-102 33 <10	Chlorobenzene	1.00E+02	(2)	< 10					< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	< 1.0	< 1.0
Chloromethane 203E-01 4 530		-	-																							
Color Colo	Chloroform		(3)						< 1.0																	
Gis-1-Dichipropriopenee			(4)																							
Debromechane 1,865-10 14 410 410 410 410		7.00E+01	(2)																							
Distribution 3.764-702 10 < 10		4.005.55	- (4)																							
Delinocidihorodinatemen 1976-102 43 410			(4)																							
Ethyberzene 7.05-402 2 270			(4)					_																		
Heave-Incorputatione 8,06-01 1] < 10			(2)																							
Sopropherame 4.7F+122 44 40			(1)																							
Methylerbulyle bright (MTBL) 438-02 43 3 3			(4)																							
Methylene Chloride 500E+00 (2) 430	Methyl tert-butyl ether (MTBE)		(4)	33					1200	1400					< 1.0	< 1.0	< 1.0			4			< 1.0			< 1.0
n-Buly/benzene	Methylene Chloride	5.00E+00	(2)	< 30					< 3.0	< 3.0	< 3.0	< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 6.0	< 3.0	< 3.0
n-Propybenzene		1.65E+00	(4)																							
See-Buylpenzame -		-	-																							
Styrene 100E-102 22 *10		-	-																							
tet-Bultyhen/zene - - < 10		-	-				_																			
Tetrachrorethme (PCE) 5.00E+00 (2) < < 10		1.00E+02	(2)																							
Tolume 7.505-402 (3) < 10			- (0)			_																				
trans-1,2-DCE 1,00E+02 2 < 10			(2)																							
trans-13-Dichloropropose 4.306-01 [1] <10			(2)																							
Trichloroethene (TCE) 5.00E+00 Z			(1)																							
Trichlorofluoromethane 1.14E+03			(2)																							
Vinyl chloride 1.00E+00 3 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <			(4)																							
			(3)							< 1.0						_										

TABLE 6
RCRA Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

				V-57		**MW-58			V-59			**MW-61			V-62			MW					MW-64	
		Aug-16		Aug-14	Aug-13	Aug-16	Aug-16		Aug-14		Aug-15	Aug-15	Aug-16				Aug-16	Aug-15		Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
Xylenes, Total Semi Volatile Organic Compe		57					< 1.5	< 1.5	< 1.5	< 1.5			< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 3.0	< 1.5	< 1.5
		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
1,2,4-Trichlorobenzene 1,2-Dichlorobenzene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
1,3-Dichlorobenzene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
1,4-Dichlorobenzene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
1,4-Dichlorobenzene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2,4,5-Trichlorophenol		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2,4,6-Trichlorophenol		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2,4-Dichlorophenol		< 100					< 20		< 20	< 20			< 20		< 20	< 20	< 20		< 20	< 20	< 20		< 20	< 20
2,4-Dimethylphenol		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2,4-Dinitrophenol		< 100					< 20		< 20	< 20			< 20		< 20	< 20	< 20		< 20	< 20	< 20		< 20	< 20
2.4-Dinitrotoluene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2,6-Dinitrotoluene	3.70E+01 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2-Chloronaphthalene	2.90E+03 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2-Chlorophenol	9.10E+01 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2-Methylnaphthalene	1.50E+02 (1)	< 50					< 10		< 20	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2-Methylphenol		< 50					< 10		< 10	< 10			< 10		< 20	< 10	< 10		< 20	< 10	< 10		< 20	< 10
2-Nitroaniline	1.10E+02 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
2-Nitrophenol		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
3,3'-Dichlorobenzidine		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
3+4-Methylphenol	1.80E+02 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
3-Nitroaniline		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
4,6-Dinitro-2-methylphenol		< 100					< 20		< 20	< 20			< 20		< 20	< 20	< 20		< 20	< 20	< 20		< 20	< 20
4-Bromophenyl phenyl ether		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
4-Chloro-3-methylphenol		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10 < 10		< 10 < 10	< 10
4-Chloroaniline 4-Chlorophenyl phenyl ether	3.40E-01 (1)	< 50 < 50					< 10 < 10		< 10	< 10 < 10			< 10		< 10	< 10	< 10 < 10		< 10 < 10	< 10	< 10		< 10	< 10
4-Chlorophenyl phenyl ether 4-Nitroaniline	3 40E±00 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
4-Nitrophenol	3.40E 100 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Acenaphthene	5.35E+02 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Acenaphthylene	J.JJE 102 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
	1.20E+01 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Anthracene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Azobenzene	1.20E-01 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Benzo(a)anthracene	3.43E-01 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Benzo(a)pyrene	2.00E-01 (2)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Benzo(b)fluoranthene	3.43E-01 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Benzo(g,h,i)perylene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Benzo(k)fluoranthene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Benzoic acid		< 100					< 20		< 20	< 40			< 20		< 20	< 40	< 20		< 20	< 40	< 20		< 20	< 40
Benzyl alcohol		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Bis(2-chloroethoxy)methane		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Bis(2-chloroethyl)ether		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Bis(2-chloroisopropyl)ether		< 50					< 10		< 10	< 10 < 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10 < 10		< 10	< 10
Bis(2-ethylhexyl)phthalate		< 50 < 50					< 10 < 10		< 10	< 10			< 10		< 10 < 10	< 10	< 10 < 10		< 10	< 10	< 10		< 10 < 10	< 10
Butyl benzyl phthalate	3.00E+U1 (1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10 < 10	< 10	< 10		< 10	< 10
Carbazole	3.43E+01 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Chrysene Dibenz(a.h)anthracene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Diberiz(a,ri)antiriacerie Dibenzofuran	1.002-01 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Diethyl phthalate	1.48E+04 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Dimethyl phthalate		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Di-n-butyl phthalate	8.85E+02 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Di-n-octyl phthalate		83					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Fluoranthene	8.02E+02 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
	2.88E+02 (4)	76					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Hexachlorobenzene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Hexachlorobutadiene	8.60E-01 (1)	< 50	-				< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Hexachlorocyclopentadiene	5.00E+01 (2)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Hexachloroethane		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Indeno(1,2,3-cd)pyrene		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Isophorone		< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Naphthalene		240					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Nitrobenzene	1.40E+00 (4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

		_																							
					V-57		**MW-58			V-59		**MW-60	**MW-61			V-62				/-63				MW-64	
		_	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-15	Aug-15	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13
N-Nitrosodimethylamine		(4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
		(1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
N-Nitrosodiphenylamine		(4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Pentachlorophenol		(2)	< 100					< 20		< 20	< 20			< 20		< 20	< 20	< 20		< 20	< 20	< 20		< 20	< 20
Phenanthrene		(4)	150					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Phenol	5.00E+00	(3)	< 50					< 10		14	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Pyrene	1.17E+02	(4)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
Pyridine	3.70E+01	(1)	< 50					< 10		< 10	< 10			< 10		< 10	< 10	< 10		< 10	< 10	< 10		< 10	< 10
General Chemistry (mg/l):																									
Fluoride	1.6	(3)	< 0.50					< 0.10	< 0.10	0.20	< 0.50			< 2.0	< 0.10	< 2.0	< 0.10	0.16	< 0.10	< 0.10	0.14	< 10	< 0.10	< 0.10	0.35
Chloride	250	(3)	340					190	240	210	180			14	14	14	14	100	270	390	370	860	940	1100	920
Nitrite	1	(2)	< 0.50					< 0.10	< 0.10	< 0.10	< 0.50			< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 2.0	< 10	< 2.0	< 2.0	< 2.0
Bromide	-	-	2.8					< 0.10	1.2	2.0	2.7			< 0.10	< 0.10	< 0.10	< 0.10	1.5	4	7.3	6.6	5.1	3.4	2.6	2.4
Nitrate	10	(3)	< 0.50					0.6	0.28	< 2.0	< 0.50			< 1.0	< 0.10	0.38	< 0.10	39	78	170	150	58	40	36	32
Phosphorus	-	-	3.1					< 0.50	< 0.50	< 0.50	< 2.5			< 10	< 10	< 10	< 10	< 0.50	< 10	< 10	< 10	< 50	< 10	< 0.50	< 10
Sulfate	600	(3)	< 2.5					200	780	830	510			4000	4000	4100	3600	1200	1700	2400	2100	1500	1500	1600	1400
Carbon Dioxide (CO ₂₎	-	-	940					1000	940	910	920			500	520	470	580	470	480	380	420	260	260	270	280
Alkalinity (CaCO ₃)	-	-	981.8					1094	1035	950	970			550	573.9	500	620	500.7	522.5	400	430	279	287.7	290	290
Bicarbonate (CaCO ₃)			981.8					1094	1035	950	970			550	573.9	500	620	500.7	522.5	400	430	279	287.7	290	290
Total Metals (mg/l):		1	301.0					1034	1033	330	310			330	313.3	300	020	300.7	322.3	400	430	210	207.7	230	230
Arsenic	0.01	I/2)	< 0.020					< 0.020	0.022	< 0.020	< 0.020			< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Barium	1	(2)	2.1					0.17	0.022	0.26	0.10			0.33	< 0.020	< 0.020	0.020	0.020	< 0.020	0.093	0.020	0.095	0.077	0.11	0.020
Cadmium	0.005	(3)	< 0.0020					< 0.0020	< 0.0020	< 0.0020				< 0.0020		< 0.020	< 0.0020	< 0.0020	< 0.020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.005	(2)	< 0.0020					0.0062	< 0.0020	0.0020	< 0.0020			0.0071	< 0.0020		0.0020	0.016	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	0.0063
Lead	0.05	(3)	< 0.0050					< 0.0050	< 0.0050	0.011	0.0052			< 0.0071			0.015	< 0.0050	< 0.0050	< 0.0050		0.0088	< 0.0050		< 0.0050
Selenium	0.015	(2)	< 0.0050					< 0.0050	< 0.0050	< 0.050	< 0.052			< 0.0050	< 0.0050	< 0.0050	< 0.0057	< 0.0050	< 0.0050	< 0.050	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.050
Silver	0.05	(2)	< 0.0050					< 0.0050	< 0.0050	< 0.0050				< 0.0050			< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.0000						< 0.0030						0 < 0.0000				< 0.0000				< 0.0000		
Dissolved Metals (mg/l):	0.002	1(3)	< 0.00020					0.00020	i < 0.00020	\ 0.0002C	J \ 0.00020			V 0.00021	U \ 0.0002t	J 0.00020	i < 0.00020	V 0.00020	\ 0.00020	< 0.0002t	i < 0.00020	< 0.00020	\ 0.00020	\ 0.0002t	V 0.0002
Arsenic	0.1	(2)	< 0.020					< 0.020	< 0.020	< 0.020	0.017			< 0.020	< 0.020	< 0.020	< 0.010	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.0045
Barium	1	(3)	1.9					0.020	0.055	0.059	0.017			< 0.020	< 0.020	< 0.020	0.013	0.023	< 0.020	< 0.020	0.015	0.024	< 0.020	< 0.020	0.0045
Cadmium	0.01	(3)	< 0.0020					< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.020		< 0.020	< 0.0020	< 0.0020	< 0.020	< 0.020		< 0.0024	< 0.020	< 0.020	< 0.0020
Cadmium	0.01	(3)	120					200	250	260	210			450	470	440	440	320	470	560	550	500	530	470	490
Chromium	0.05	(2)	< 0.0060					< 0.0060	< 0.0060	< 0.0060	< 0.0060			< 0.0060	0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060					< 0.0060	< 0.0060	< 0.0060				< 0.0060		< 0.0060	< 0.0000	< 0.0060	< 0.0060	< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0000
lron	1	(3)	2.6					5.2	4.3	7.9	7.3			1.3	0.15	< 0.000	0.026	3.9	< 0.0000	0.022	< 0.020	1.8	< 0.000	0.045	0.038
Lead	0.05	(3)	< 0.0050					< 0.0050	< 0.0050	< 0.0050	< 0.0010			< 0.0050		< 0.0050	< 0.0010	< 0.0050	< 0.020	< 0.0050	< 0.020	< 0.0050	< 0.0050	< 0.0050	< 0.0010
Lead Magnesium	0.05	(3)	44					56	69	69	56			38	38	39	38	99	130	180	180	78	72	69	69
Magnesium	0.2	(3)	3.3					1.9	1.9	3.0	3.2			1.2	1.4	0.49	1.7	0.73	0.81	1.4	1.5	0.037	< 0.0020	< 0.0020	< 0.0020
Manganese Potassium	0.2	(3)	4.1					3.7	3.6	3.4	3.2			1.2	9.5	9.7	9.1	4.1	4.6	5.7	4.9	5.5	5.1	5.4	4.5
Selenium	0.05	(2)	< 0.0050					< 0.050	< 0.050	< 0.050	0.011			< 0.050	< 0.050	< 0.050	< 0.010	< 0.050	< 0.050	< 0.050	0.057	< 0.050	< 0.050	< 0.050	0.029
Selenium	0.05	(3)	< 0.0050					< 0.050	< 0.050	< 0.050				< 0.050	< 0.050	< 0.050	< 0.0050	< 0.050	< 0.0050	< 0.050	< 0.0050	< 0.050	< 0.050	< 0.050	< 0.029
Sodium	0.05	(3)	410					480	470	440	380			1600	1500	1400	1400	420	580	680	650	830	850	840	790
Uranium	0.03	(2)	< 0.10		_			< 0.10	< 0.10	< 0.10	0.0036		_	< 0.10	< 0.10	< 0.10	0.008	< 0.10	< 0.10	< 0.10	0.055	< 0.10	< 0.10	< 0.10	0.017
		(3)																							
Zinc	10	1(3)	0.081					0.021	0.036	< 0.020	0.037			0.051	0.028	< 0.020	< 0.010	0.1	0.03	< 0.020	< 0.010	0.038	< 0.020	< 0.020	< 0.010
Total Petroleum Hydrocarbon	ns (mg/l):		47					0.05	0.00	0.00	0.00			. 0.00	. 0.00		. 0.00	. 0.00	. 0.00	. 0.00	0.74	. 0.00	. 0.00	. 0.00	.0.00
Diesel Range Organics	-	-	17					0.85	0.32	0.62	0.68			< 0.20	< 0.20	< 0.2	< 0.20	< 0.20	< 0.20	< 0.20	0.71	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	-	-	520					1.8	1.1	0.72	0.96			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.10	< 0.050	< 0.050
Motor Oil Range Organics	-	-	< 250					< 2.5	< 2.5	<2.5	< 2.5			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

Notes:

(1) EPA - Regional Screening Levels (April 2009) - EPA Screening Levels. Tap Water

(2) EPA - Regional Screening Levels (April 2009) - EPA Screening Levels. Tap Water

(3) EPA - Regional Screening Levels (April 2009) - EPA Screening Levels. Tap Water

(3) MNED WOCC standards - Title 20 Chapter 6, Part 2. - 206 2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

(4) MNED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Screening Levels - MM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Careful Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

| NAMED TAP Water Careful Assessment Guidance for Site Investigation and

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

				1414	V-65		**MW-66		MW	1 67			8414	V-68		**MW-69		MW	/ ₋ 70	
		Aug-12	Aug-16		Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13
Volatile Organic Compounds	(ug/L)			1129 15		1129 14			1123 15		1129 14	1129 11	1129 14	1129 11	1129 14		1129 12	1129 14		1129 10
1,1,1,2-Tetrachloroethane	5.72E+00 (4	4) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,1,1-Trichloroethane	6.00E+01 (3		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,1,2,2-Tetrachloroethane	1.00E+01 (3	3) < 2.0	< 40	< 40	< 20	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	<2.0
1,1,2-Trichloroethane	5.00E+00 (2	2) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,1-Dichloroethane	2.50E+01 (3	3) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,1-Dichloroethene	5.00E+00 (3	3) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,1-Dichloropropene		- < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2,3-Trichlorobenzene		< 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2,3-Trichloropropane	7.47E-03 (4		< 40	< 40	< 20	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	<2.0
1,2,4-Trichlorobenzene	7.00E+01 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2,4-Trimethylbenzene	1.50E+01 (1		480	860	1400	1800		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2-Dibromo-3-chloropropane			< 40	< 40	< 20	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	<2.0
1,2-Dibromoethane (EDB)	5.00E-02 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2-Dichlorobenzene	6.00E+02 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2-Dichloroethane (EDC)	5.00E+00 (2		88	200	140	160		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,2-Dichloropropane		2) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,3,5-Trimethylbenzene	1.20E+01 (1		< 20	< 20	17	36		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,3-Dichlorobenzene		< 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,3-Dichloropropane	7.30E+02 (1) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1,4-Dichlorobenzene	7.50E+01 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
1-Methylnaphthalene	2.30E+00 (1) < 4.0	130	120	110	120		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			< 4.0	< 4.0	<4.0
2,2-Dichloropropane		< 2.0	< 40	< 40	< 20	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	<2.0
2-Butanone			< 200	< 200	< 100	< 200		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10	< 10	<10
2-Chlorotoluene	7.30E+02 (1		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
2-Hexanone		- < 10	< 200	< 200	< 100	< 200		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10	< 10	<10
2-Methylnaphthalene	1.50E+02 (1		< 80	< 80	50	190		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0			< 4.0	< 4.0	<4.0
4-Chlorotoluene	2.60E+03 (1		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
4-Isopropyltoluene		- < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
4-Methyl-2-pentanone		- < 10	< 200	< 200	< 100	< 200		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10	< 10	<10
Acetone	1.41E+04 (4		< 200	< 200	< 100	< 200		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10	< 10	<10
Benzene	5.00E+00 (2		5700	7800	5100	6800		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Bromobenzene			< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Bromodichloromethane			< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Bromoform	8.50E+00 (1	1) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Bromomethane		-7	< 60	< 60	< 30	< 60		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			< 3.0	< 3.0	<3.0
Carbon disulfide			< 200	< 200	< 100	< 200		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10			< 10	< 10	<10
Carbon Tetrachloride			< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Chlorobenzene	1.00E+02 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Chloroethane		- < 2.0	< 40	< 40	< 20	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	<2.0
Chloroform	1.00E+02 (3		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Chloromethane	2.03E+01 (4		< 60	< 60	< 30	< 60		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0			< 3.0	< 3.0	<3.0
cis-1,2-DCE	7.00E+01 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
cis-1,3-Dichloropropene		< 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Dibromochloromethane	1.68E+00 (4		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Dibromomethane			< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Dichlorodifluoromethane			< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Ethylbenzene			1200	1900	1400	1700		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Hexachlorobutadiene			< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Isopropylbenzene			72	88	84	75		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Methyl tert-butyl ether (MTBE)	1.43E+02 (4		490	1400	480	950		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 3.0	< 1.0			< 1.0 < 3.0	< 1.0	<1.0
Methylene Chloride			< 60	< 60	< 30	< 60		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0				< 3.0	<3.0
Naphthalene n Butulhanzana	1.65E+00 (4	4) < 2.0 - < 1.0	46 < 60	210 < 60	240 < 30	430 < 60		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0			< 2.0	< 2.0	<2.0
n-Butylbenzene		< 1.0 < 2.0																		<3.0
n-Propylbenzene			220	250	190	200		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
sec-Butylbenzene	4.005.05	< 1.0	< 20	< 20	12	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Styrene	1.00E+02 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
tert-Butylbenzene	F 00F 00	< 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Tetrachloroethene (PCE)	5.00E+00 (2		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Toluene	7.50E+02 (3		< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
trans-1,2-DCE	1.00E+02 (2	2) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
trans-1,3-Dichloropropene	4.30E-01 (1) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Trichloroethene (TCE)	5.00E+00 (2	2) < 1.0	< 20	< 20	< 10 < 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	<1.0
Trichlorofluoromethane		-/-	< 20	< 20		< 20			< 1.0	< 1.0	< 1.0			< 1.0				< 1.0	< 1.0	<1.0
Vinyl chloride	1.00E+00 (3	3) < 1.0	< 20	< 20	< 10	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		I	< 1.0	< 1.0	<1.0

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

				MW	I GE		**MW-66		MW	1.67			MV	V-68		**MW-69		MV	V-70	
	r	Aug-12	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13
Xylenes, Total 6.20E-	+02 (3)	< 1.5	65	150	280	330		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5			< 1.5	< 1.5	<1.5
Semi Volatile Organic Compounds ((ug/l):																			
1,2,4-Trichlorobenzene 7.00E-	+01 (2)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
1,2-Dichlorobenzene 6.00E-	+02 (2)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
1,3-Dichlorobenzene -	-	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
1,4-Dichlorobenzene 7.50E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
1-Methylnaphthalene 2.30E		< 10	14		150	80		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
2,4,5-Trichlorophenol 1.17E-		< 10	< 10		< 10	< 10 < 10		< 10 < 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
2,4,6-Trichlorophenol 1.19E- 2,4-Dichlorophenol 4.53E-		< 10	< 10 < 20		< 10 < 20	< 10		< 10		< 11	< 10	< 10 < 20		< 11	< 10				< 12 < 25	<10 <20
2,4-Dichlorophenol 4.53E		< 10	< 10		210	18		< 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
2,4-Dinitrophenol 3.88E		< 20	< 20		< 20	< 20		< 20		< 23	< 20	< 20		< 22	< 20				< 25	<20
2,4-Dinitrotoluene 2.37E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
2,6-Dinitrotoluene 3.70E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
2-Chloronaphthalene 2.90E-	+03 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
2-Chlorophenol 9.10E-	+01 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
2-Methylnaphthalene 1.50E		< 10	< 10		150	130		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
2-Methylphenol 1.80E		< 10	< 10		< 20	< 10		< 10		< 23	< 10	< 10		< 22	< 10				< 25	<10
2-Nitroaniline 1.10E	+02 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
2-Nitrophenol -	- 01 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
3,3'-Dichlorobenzidine 1.50E 3+4-Methylphenol 1.80E		< 10 < 10	< 10		< 10 14	< 10		< 10 < 10		< 11	< 10	< 10 < 10		< 10 < 11	< 10 < 10				< 12	<10 <10
3-Nitroaniline -	702 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
4,6-Dinitro-2-methylphenol -		< 20	< 20		< 20	< 20		< 20		< 23	< 20	< 20		< 22	< 20				< 25	<20
4-Bromophenyl phenyl ether -	-	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
4-Chloro-3-methylphenol -	-	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
4-Chloroaniline 3.40E	-01 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
4-Chlorophenyl phenyl ether -	-	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
4-Nitroaniline 3.40E	+00 (1)	< 20	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
4-Nitrophenol -	-	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
Acenaphthene 5.35E	+02 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Acenaphthylene -		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Aniline 1.20E Anthracene 1.72E		< 10	< 10		< 10 < 10	< 10 < 10		< 10 < 10		< 11	< 10 < 10	< 10 < 10		< 10 < 10	< 10				< 12 < 12	<10 <10
Azobenzene 1.20E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Benzo(a)anthracene 3.43E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Benzo(a)pyrene 2.00E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Benzo(b)fluoranthene 3.43E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Benzo(g,h,i)perylene -	-	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Benzo(k)fluoranthene 3.43E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Benzoic acid 1.50E		< 20	< 20		< 20	110		< 20		< 23	< 40	< 20		< 20	< 40				< 25	<20
Benzyl alcohol 1.80E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Bis(2-chloroethoxy)methane 1.10E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10 < 10				< 12	<10
Bis(2-chloroethyl)ether 1.36E		< 10 < 10	< 10 < 10		< 10 < 10	< 10		< 10 < 10		< 11 < 11	< 10	< 10 < 10		< 10 < 10	< 10				< 12 < 12	<10 <10
Bis(2-chloroisopropyl)ether 9.76E- Bis(2-ethylhexyl)phthalate 6.00E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
	+00 (2)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Carbazole -	- (-/	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Chrysene 3.43E-	+01 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Dibenz(a,h)anthracene 1.06E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Dibenzofuran -		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
	+04 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Dimethyl phthalate -		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
	+02 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Di-n-octyl phthalate -	- 00 (()	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Fluoranthene 8.02E-		< 10 < 10	< 10 < 10		< 10 < 10	< 10		< 10 < 10		< 11	< 10	< 10 < 10		< 10 < 10	< 10 < 10				< 12 < 12	<10 <10
Hexachlorobenzene 1.00E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Hexachlorobutadiene 8.60E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Hexachlorocyclopentadiene 5.00E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Hexachloroethane 6.80E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Indeno(1,2,3-cd)pyrene 2.90E		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Isophorone 7.79E-		< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Naphthalene 1.65E		< 10	< 10		430	310		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Nitrobenzene 1.40E-	+00 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10

TABLE 6 RCRA Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

		_																			
		Щ				/-65		**MW-66			V-67				/-68		**MW-69			/-70	
		_	Aug-12	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Aug-16	Aug-15	Aug-14	Aug-13
	4.90E-03 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
	9.60E-03 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
N-Nitrosodiphenylamine	1.21E+02 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Pentachlorophenol	1.00E+00 (2)	< 20	< 20		< 20	< 20		< 20		< 23	< 20	< 20		< 22	< 20				< 25	<20
Phenanthrene	1.70E+02 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Phenol	5.00E+00 (3)	< 10	< 10		< 10	39		< 10		< 11	< 10	< 10		< 11	< 10				< 12	<10
Pyrene	1.17E+02 (4)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
Pyridine	3.70E+01 (1)	< 10	< 10		< 10	< 10		< 10		< 11	< 10	< 10		< 10	< 10				< 12	<10
General Chemistry (mg/l):		7																			
Fluoride	1.6 (3)	< 0.50	< 0.50	< 0.50	< 0.10	< 0.50		< 0.10	0.62	0.63	0.92	0.41	0.35	0.45	0.47			0.7	0.69	0.91
Chloride		3)	940	220	210	290	180		12	14	12	15	38	42	34	43			420	440	360
Nitrite		2)	*43	< 0.50	< 0.50	< 0.10	< 0.50		< 0.10	< 0.10	2.7	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10			< 0.50	< 0.10	<1.0
Bromide	- \	-1	5.7	4.2	4.5	0.69	3.6		0.16	0.13	0.11	0.11	0.21	0.23	0.23	0.25			2.4	0.99	
Nitrate	10 (3)	*43	< 0.50	< 0.50	1.2	< 0.50		9.9	13	2.7	3.7	5.6	7.6	8.6	8.2			< 0.50	< 0.10	<1.0
Phosphorus	.5	-/	< 2.5	< 2.5	< 2.5	< 0.50	< 2.5		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50			< 2.5	< 0.50	~1.0
Sulfate	600 (3)	1600	1600	970	530	1500		270	240	210	140	260	280	300	250			2400	2500	
Carbon Dioxide (CO ₂₁	000	3/	300	860	1300	1400	1200		290	310	380	340	210	180	200	190			780	730	
/	-																				_
Alkalinity (CaCO ₃)	-	-	300	946	1335	1500	1300		314.7	342.5	410	370	236.3	200.2	220	210			809.4	780	850
Bicarbonate (CaCO ₃)	-	-	300	946	1335	1500	1300		314.7	342.5	410	370	236.3	200.2	220	210			809.4	780	850
Total Metals (mg/l):																					
Arsenic	0.01	2)	< 0.020	0.02	< 0.020	< 0.020	< 0.020		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020			< 0.020	< 0.020	0.0098
Barium		3)	0.056	0.11	0.21	0.17	0.07		0.23	0.12	0.047	0.049	0.28	0.038	0.16	0.039			0.023	0.22	0.17
Cadmium		2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020	< 0.0020	<0.0020
Chromium			< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		0.0089	< 0.0060	< 0.0060	< 0.0060	0.012	< 0.0060	< 0.0060	< 0.0060			< 0.0060	0.008	<0.0060
Lead		2)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0064		0.005	< 0.0050	0.0058	< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050	< 0.0050	0.0073
Selenium		2)	<0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050			< 0.050	< 0.050	0.011
Silver		3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025			< 0.0050	< 0.0050	0.028
Mercury			<0.00020	< 0.00020		< 0.00020					< 0.00020			< 0.00020						< 0.00020	
Dissolved Metals (mg/l):	0.002 10	7	-0.000E0	· 0.00020	- 0.000E0	- 0.000E0	- 0.000E0		· 0.00020	- 0.000E0	1 0.00020	1 - 0.00020	· 0.00020	1 · 0.00020	- 0.000E0	- 0.000E			- 0.000L0	· 0.00020	-0.000E
Arsenic	0.1	3)	0.0029	< 0.020	< 0.020	< 0.020	0.023		< 0.020	< 0.020	< 0.020	< 0.0010	< 0.020	< 0.020	< 0.020	< 0.0010			< 0.020	< 0.020	
Barium		3)	0.0023	0.045	0.020	0.17	0.023		0.043	0.039	0.034	0.035	0.029	0.022	< 0.020	0.019			0.024	< 0.020	
Cadmium		3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020	< 0.0020	
Calcium	0.01	3)	490	370	270	250	350		140	150	130	120	90	93	90	90			640	600	
Chromium	0.05	3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060			< 0.0060	< 0.0060	
Copper			< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.000		< 0.0060	< 0.0060	< 0.0060	0.0029	< 0.0060	< 0.0060	< 0.0060	0.004			< 0.0060	< 0.0060	0.0170
Copper		3)	0.029	6.7	7	3.4	8.9		0.29	< 0.0060	< 0.0060	< 0.0029	0.0060	< 0.0060	0.0000	< 0.004			8.5	18	31.0
Iron Lead																					31.0
	0.05 (3)	<0.0010	< 0.0050	0.0055	< 0.0050	< 0.0010 99		< 0.0050	< 0.0050	< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.0050	< 0.0010			< 0.0050	< 0.0050	_
Magnesium		-	75	110	97	73			28	31	25	23	21	24	24	22			180	170	4.000
Manganese	0.2	3)	< 0.0020	2.7	1.8	2.7	3.7		0.4	0.38	0.088	0.068	0.06	0.0045	0.059	0.045			4.3	3.0	4.900
Potassium			4.9	4.1	3.6	4.3	3.8		3.4	3	3.2	3.4	2.7	2.6	3	3.5			4.2	5.0	4.7
Selenium		3)	< 0.050	< 0.050	< 0.050	< 0.050	0.021		< 0.050	< 0.050	< 0.050	0.0037	< 0.050	< 0.050	< 0.050	0.0038			< 0.050	< 0.050	
Silver	0.05 (3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.025			< 0.0050	< 0.0050	
Sodium			890	800	680	650	700		79	74	55	67	110	110	120	110			730	720	720
Uranium		(3)	0.016	< 0.10	< 0.10	< 0.10	0.0073		< 0.10	< 0.10	< 0.10	0.0064	< 0.10	< 0.10	< 0.10	0.0057			< 0.10	< 0.50	0.0070
Zinc		(3)	0.096	< 0.020	0.022	< 0.020	< 0.010		< 0.020	0.025	< 0.020	< 0.010	< 0.020	0.027	< 0.020	< 0.010			0.028	< 0.020	
Total Petroleum Hydrocarbon	s (mg/l):	4																			
Diesel Range Organics	-	-	<0.20	4.8	7.7	7.4	5.2		0.64	0.21	0.64	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			< 0.20	< 0.20	<1.0
Gasoline Range Organics	-	-	<0.05	20	19	21	26		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050			< 0.050	< 0.050	<0.050
Motor Oil Range Organics	-	-	<2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5			< 2.5	< 2.5	<5.0

| C2.5 |

Table 7
Collection and Observation Wells Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

						CW	0+60			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
olatile Organic Compound	is (mg/l)									
Benzene	0.005	(2)	<0.001	0.0025	0.0012	0.0016	0.002	0.0056	0.071	0.014
Toluene	0.750	(3)	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.010
Ethylbenzene	0.700	(2)	0.0018	0.0023	< 0.001	0.0017	0.0018	<0.001	0.0029	<0.010
Xylene	0.620	(3)	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.020
MTBE	0.143	(4)	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.010
otal Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	-	-	0.83	0.73	1.7	1.4	0.74	1.7	1.3	1.7
Gasoline Range Organics	-	-			0.51	2.7	2.9			
						CW 2	25+95			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
olatile Organic Compound	is (mg/l)									
Benzene	0.005	(2)	0.0071	0.0039	0.110	0.210	0.33	0.280	0.210	0.81
Toluene	0.750	(3)	<0.005	<0.001	< 0.005	<0.050	<0.050	<0.010	<0.010	<0.010
Ethylbenzene	0.700	(2)	<0.005	<0.001	< 0.005	<0.050	<0.050	<0.010	<0.010	0.045
Xylene	0.620	(3)	<0.0075	<0.0015	< 0.0075	<0.075	<0.075	<0.0015	<0.010	<0.010
MTBE	0.143	(4)	< 0.005	<0.001	< 0.005	<0.050	<0.050	<0.010	<0.020	<0.020
otal Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	·	-	<0.20	<0.20	1.3	<0.20	0.24	<0.20	<0.20	0.23
Gasoline Range Organics	-	-			1.7	0.88	0.80			
						ow	0+60			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
olatile Organic Compound	is (mg/l)	1								
Benzene	0.005	(2)	< 0.001		< 0.001	<0.001	<0.001			
Toluene	0.750	(3)	< 0.001		< 0.001	< 0.001	< 0.001			
Ethylbenzene	0.700	(2)	< 0.001		< 0.001	< 0.001	< 0.001			
Xylene	0.620	(3)	< 0.0015		< 0.0015	<0.0015	<0.0015			
MTBE	0.143	(4)	< 0.001		< 0.001	< 0.001	< 0.001			
otal Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	·	-	1.3		1.7	3.2	1.5			
Gasoline Range Organics	-	-	0.7		0.38	0.3	0.23			
						OW	1+50			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
olatile Organic Compound	is (mg/l)	1								
Benzene	0.005	(2)	< 0.001	<0.005						
Toluene	0.750	(3)	< 0.001	<0.005						
Ethylbenzene	0.700	(2)	< 0.001	<0.005						
Xylene	0.620	(3)	< 0.0015	<0.0075						
MTBE	0.143	(4)	< 0.001	<0.005						
	/	/N·								
otal Petroleum Hydrocarb	ons (mg									
	ons (mg	-	4.2	2.5						

			OW 1	11+15			
Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
3.9	3.8	2.5	1.7	0.84			
< 0.020	< 0.020	< 0.020	< 0.050	< 0.010			
< 0.020	< 0.020	< 0.020	< 0.050	< 0.010			
< 0.030	< 0.030	< 0.030	< 0.075	< 0.015			
0.31	0.22	0.48	0.64	0.87			
540	110	54	94	34			
12	14	4.5	0.3	3.7			
			OW 1	14+10			
Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
				6+60			
Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
<0.010	<0.010	< 0.001	<0.00 5	<0.00 5	<0.002	<0.010	<0.01
<0.010	<0.010	< 0.001	<0.010	<0.00 5	<0.002	<0.010	<0.01
<0.010	<0.010	0.0017	<0.010	0.0056	0.082	0.011	0.014
<0.0015	<0.0015	< 0.0015	<0.0015	<0.0075	<0.003	<0.02	<0.02
0.41	2.80	0.41	0.460	0.73	0.660	0.70	0.81
3.8	28.0	5.0	12	35	40	7.5	3.5
1.5	1.8	1.00	1.8	2.7	2.9	1.8	2.2
			OW 1				
Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13

Table 7 Collection and Observation Wells Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

						OW	3+85							OW 1	22+00			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compound	de (ma/l	١	Aug-16	Api-16	Aug-15	Api-15	Aug-14	Ap1-14	Aug-13	Api-13	Aug-16	Api-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Api-13
Benzene		(2)	<0.010	<0.010	< 0.001			<0.010		<0.010	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	0.750	(3)	<0.010	<0.010	< 0.001			<0.010		<0.010	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)	0.011	0.011	< 0.001			0.025		0.039	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.620	(3)	<0.0015	<0.0015	< 0.001			<0.0015		<0.020	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.001	<0.001	<0.001	<0.001
MTBE	0.143	(4)	<0.010	<0.010	< 0.001			<0.010		<0.010	< 0.001	0.018	< 0.0013	<0.0013	0.0017	<0.0013	0.002	0.023
Total Petroleum Hydrocarb			10.010	~0.010	- 0.001			-0.010		40.010	4 0.001	0.010	4 0.00 I	-0.001	0.0017	40.001	0.02	0.023
Diesel Range Organics	-	-	9	56	12.0			110		43	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20	0.60	< 0.20
Gasoline Range Organics	-	-	3.1	14	4.7			5.0		7.7	<0.05	< 0.05	< 0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
						ow	5+50							OW 2	23+10			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compound	ds (mg/l)																
Benzene	0.005	(2)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	0.750	(3)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.620	(3)									< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.002
MTBE	0.143	(4)									< 0.001	0.012	< 0.001	<0.001	<0.001	<0.001	0.001	<0.001
Total Petroleum Hydrocarb	ons (mg	j/l):																
Diesel Range Organics	-										0.27	< 0.20	0.52	< 0.20	2.1	1	1.2	< 0.20
Gasoline Range Organics		-									0.17	0.13	< 0.05	<0.050	0.16	0.15	0.28	0.19
						OW	6+70							OW 2	23+90			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compound	ds (mg/l)																
Benzene	0.005	(2)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	0.0012
Toluene	0.750	(3)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.620	(3)									< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.002
MTBE	0.143	(4)									< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarb	ons (mg	ı/l):																
Diesel Range Organics	-	-									< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.32	0.71
Gasoline Range Organics	-										< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	0.091	<0.05
							8+10								5+70			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compound						1												
Benzene	0.005	(2)	< 0.001								< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	0.750	(3)	< 0.001								< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)	< 0.001								< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.620	(3)	< 0.0015								0.0026	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.002
MTBE	0.143	(4)	0.0047								< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarb	ons (mg	I/I):	.0.00								. 0.00	. 0.00	. 0.00	. 0.00	. 0.00	. 0.00	-0.00	.0.0
Diesel Range Organics	-	-	< 0.20								< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	<0.20	<0.2
Gasoline Range Organics	-	-	< 0.05								0.078	0.13	< 0.05	0.12	0.14	0.2	0.083	0.11

- Notes:

 (1) EPA Regional Screening Levels (April 2009) EPA Screening Levels. Tap Water
 (2) EPA Regional Screening Levels (April 2009) MCL
 (3) NMED WCCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
 (4) NMED TAP Water Screening Levels NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 Appendix A

 = No screening level available
 = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 = Analyte inadvertently not included in sample analysis.
 = Analysis not required, well contains separate phase, or not sufficient volume for sample collection
 = Analytical result exceeds the respective screening level.

TABLE 8
Outfalls Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

												ionitoring										
							East O											utfall #3				
Volatile Organic Compo	oundo (u	w/I \	16-Aug	May-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-12	Apr-12	Aug-16	May-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-12	Apr-12
Benzene	0.005			<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
		(2)		<0.001	<0.001	<0.001	<0.001	<0.001		<0.001		<0.001		<0.001		<0.001	<0.001				<0.001	
Toluene Ethylbenzene	0.75	(2)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001 <0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.62	(3)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
MTBE	0.02	(5)		<0.0013	<0.0013	<0.0013	<0.002	<0.0013	<0.002	<0.002	<0.002	<0.002	<0.0013	<0.0013	<0.0013	<0.0013	<0.002	<0.0013	<0.002	<0.002	<0.002	<0.002
General Chemistry (mg		(3)		<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<u> </u>	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Fluoride	1.6	(3)		0.18	0.17	0.52	0.50	0.56	0.57	0.51	0.22	0.55	0.19	0.18	0.18	0.22	0.19	0.39	<0.50	0.39	0.2	0.41
Chloride	250	(3)		3.4	2.7	8.6	9.2	7.6	15	8.1	2.5	8.7	3.4	3.8	3.6	4.4	3.3	13	4.0	12	2.8	16.0
Nitrite	1	(2)		< 0.10	< 0.10	0.13	< 0.10	< 0.10	2.5	< 0.10*	< 0.10	<0.1	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	24.0	1.6*	< 0.1	<0.1
Bromide	-	-		< 0.10	< 0.10	< 0.10	0.11	0.10	< 0.10	< 0.10	< 0.10	<0.1	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	0.11	<0.50	<0.10	< 0.1	0.14
Nitrate	10	(3)		0.17	0.54	0.71	0.37	3.7	2.5	< 0.10*	< 0.10	0.54	< 1.0	0.22	0.47	0.21	0.12	3.3	24.0	1.6*	0.13	2.8
Phosphorus	-	-		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	< 0.5	< 0.5	<0.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	<0.50	< 0.5	<0.5
Sulfate	600	(3)		45	42	88	98	77	77	74	46	71	48	44	47	54	43	120	56.0	93	46	120
Carbon Dioxide (CO ₂)	-	-		90	78		320	320	310	320	91	330	84	87	85		86	330	110.0	290	80	310
Alkalinity (CaCO ₃)	-	-		97.96	85.24	344.8	350	340	330	340	100	360	94	95.28	95.16	111	95	350	120	300	89	340
Bicarbonate (CaCO ₃)	-	-		97.96	85.24	344.8	350	340	330	340	100	360	94	95.28	95.16	111	95	350	120	300	89	340
Total Metals (mg/l):																						
Arsenic	0.01	(2)		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	<0.02	<0.02	<0.02	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	<0.020	<0.02	<0.02
Barium	1	(3)		0.09	0.063	0.087	0.19	0.080	0.084	0.16	0.05	0.15	0.072	0.074	0.065	0.063	0.073	0.06	0.068	0.064	0.062	0.057
Cadmium	0.005	(2)		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.002	<0.002	<0.002	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	<0.002
Chromium	0.05	(3)		< 0.0060	< 0.0060	< 0.0060	0.0072	< 0.0060	<0.0060	<0.006	<0.006	0.0061	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	<0.0060	<0.0060	<0.006
Lead	0.015	(2)		0.0057	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.005	<0.005	0.0056	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.005
Selenium	0.05	(2)		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.05	<0.05	<0.05	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050	<0.050	<0.050	<0.05
Silver	0.05	(3)		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.005	<0.005	<0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0050	<0.0050	<0.005
Mercury	0.002	(3)		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	<0.00020	<0.0002	<0.0002	<0.0002	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	<0.00020	<0.00020	<0.00020	<0.0002
Dissolved Metals (mg/l)):		-																			
Arsenic	0.1	(3)		< 0.0010	0.001	< 0.020	< 0.020	< 0.020	<0.020	0.0014	<0.001	<0.001	< 0.020	< 0.0010	0.001	< 0.020	< 0.020	< 0.020	<0.020	<0.0010	<0.0010	<0.0010
Barium	1	(3)		0.068	0.06	0.089	0.089	0.079	0.081	0.11	0.047	0.100	0.069	0.072	0.062	0.062	0.071	0.060	0.063	0.060	0.053	0.060
Cadmium	0.01	(3)		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.002	<0.002	<0.002	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.0020	<0.0020	<0.002
Calcium	-	-		37	30	100	100	94	87	92	34	84	34	35	33	41	35	110	39	86	32	90
Chromium	0.05	(3)		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	<0.006	<0.006	<0.006	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	<0.0060	<0.0060	<0.006
Copper	1	(3)		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	<0.006	<0.006	<0.006	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	<0.0060	<0.0060	<0.006
Iron	1	(3)		< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	0.076	0.082	0.17	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.020	<0.020	<0.020	<0.02
Lead	0.05	(3)		< 0.00050	< 0.00050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.001	<0.005	<0.001	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.0010	<0.0050	<0.001
Magnesium	-	-		6.2	5.2	21	22	20	20	19	6.1	18	6	5.8	5.9	7.1	6.1	21	7.1	17	5.7	18
Manganese	0.2	(3)		0.009	0.0021	0.011	< 0.0020	0.0053	0.010	0.072	0.029	0.045	0.0032	0.0028	0.0031	< 0.0020	< 0.0020	< 0.0020	<0.0020	<0.010	<0.010	<0.002
Potassium	-	-		1.6	1.7	1.4	1.7	1.3	1.8	2.0	1.2	1.6	1.9	1.6	1.8	1.9	1.9	1.9	1.6	2.2	1.5	1.6
Selenium	0.05	(3)		< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050	<0.050	0.0016	< 0.001	0.0013	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050	<0.050	0.0028	<0.0010	0.0035
Silver	0.05	(3)		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.005	<0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	<0.010	<0.010	<0.005
Sodium	-	-		16	14	57	60	54	59	55	16	66	18	17	17	22	17	68	21	60	15.0	64
Uranium	0.03	(3)		0.0008	< 0.00050	< 0.10	< 0.10	< 0.10	<0.10		< 0.001	0.0045	< 0.10	0.0008	0.0007	< 0.10	< 0.10	< 0.10	<0.10	0.0034	<0.0010	0.0046
Zinc	10	(3)		0.02	0.019	< 0.020	< 0.020	< 0.020	<0.020	<0.01	0.012	0.13	0.025	< 0.010	0.018	< 0.020	< 0.020	0.034	<0.020	<0.010	0.024	0.02

Notes:

(1) E/A - Regional Screening Levels (April 2009) - EPA Screening Levels Tap Water.
(2) E/BA - Regional Screening Levels (April 2009) - MCL
(3) NMED WGC standards - Title 20 Chapter 6, Part 2, - 20.6 2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
(4) NMED TAP Water Screening Levels - NM Risk Assessment Guidance for Site Investigation and Remediation, December 2014 - Appendix A

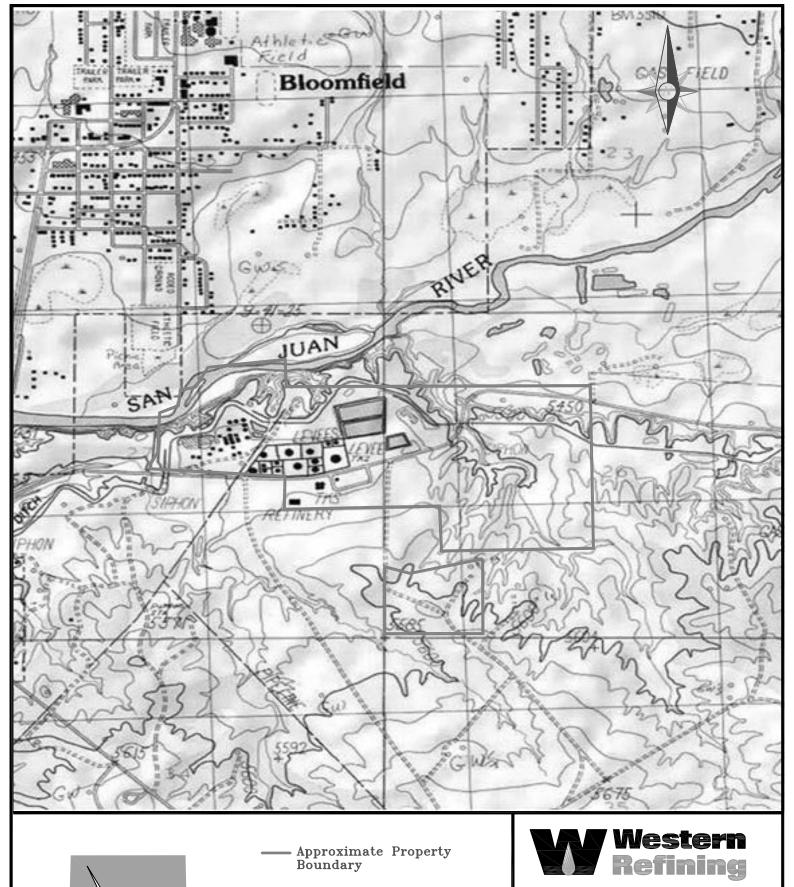
- No screening level available
- Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- Lahoratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase
- Analysis not required and/or well contains separate phase

TABLE 9 Soons Analytical Summary 2016 Group distion and Monitoring Annual Poport

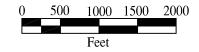
	Seeps Analytical Summary - 2016 Groundwater Remediation and M												ia Monito	oring Ani	nuai Kepo	orτ						
						See	p #1					Seep	#2					Seep	#3			
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Aug-15	Aug-14	Aug-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13
Volatile Organic Compounds (r	ng/l):																					
Benzene	0.005	(2)		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001				<0.001		<0.001					<0.001	<0.001
Toluene	0.750	(3)		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001				<0.001		<0.001					<0.001	<0.001
Ethylbenzene	0.700	(2)		<0.001		<0.001	<0.001	<0.001	<0.001	<0.001				<0.001		<0.001					<0.001	<0.001
Xylene	0.620	(3)		<0.0015		<0.0015	<0.002	<0.0015	<0.002	<0.002				<0.002		<0.0015					<0.002	<0.002
MTBE	0.125	(4)		0.041		0.013	<0.001	0.066	<0.001	0.047				<0.001		<0.001					<0.001	0.0017
General Chemistry (mg/l):																						
Fluoride	1.6	(3)		0.35		<1.0	0.23	0.30	<1.0	< 0.50				0.57		0.22					<0.50	< 0.50
Chloride	250	(3)		200		170	230	150	190	220				15		260					4.0	220
Nitrite	1.0	(2)		<1.0		<1.0	< 0.10	< 0.10	<1.0	< 0.50				2.5*		<1.0					24*	< 0.50
Bromide	-	-		2.6		3.3	2.7	1.9	2.3	2.1				<0.10		3.2					<0.50	2.2
Nitrate	10	(3)		<1.0		<1.0	< 0.10	< 0.1	<1.0	< 0.50				2.5*		<1.0					24*	< 0.50
Phosphorus	-	-		< 2.5		<5.0	< 10	< 0.50	<5.0	< 2.5				<0.50		<5					<2.5	< 10
Sulfate	600	(3)		1300		1200	1600	1200	1200	1700				77		2500					56	2000
Carbon Dioxide (CO ₂)	-	-		450		390	350	390	250	430				310		330					110	320
Alkalinity (CaCO ₃)	-	-		479.6		433.1	380	430	280	470				330		365.4					120	360
Bicarbonate (CaCO ₃)	-	-		479.6		433.1	380	430	280	470				330		365.4					120	360

						See						See		
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Apr-16	Apr-15	Apr-14	Apr-13
Volatile Organic Compounds (n	ng/l):													
Benzene	0.005	(2)						<0.001	<0.001	<0.001			<0.001	<0.001
Toluene	0.750	(3)						<0.001	<0.001	<0.001			<0.001	<0.001
Ethylbenzene	0.700	(2)						<0.001	<0.001	<0.001			<0.001	<0.001
Xylene	0.620	(3)						<0.0015	<0.002	<0.002			<0.0015	<0.002
MTBE	0.125	(4)						0.0058	<0.001	0.0019			0.024	0.07
General Chemistry (mg/l):														
Fluoride	1.6	(3)						< 0.10	<1.0	< 0.50			0.50	< 0.50
Chloride	250	(3)						1600	8700	2500			550	600
Nitrite	1.0	(2)						< 2.0	<10	< 0.50			< 2.0	< 0.50
Bromide	-	-						< 2.0	5.6	1.8			2.0	2.0
Nitrate	10	(3)						< 0.10	<1.0	< 0.50			< 0.10	< 0.50
Phosphorus	-	-						< 0.50	<5.0	< 2.5			< 10	< 2.5
Sulfate	600	(3)						1500	2800	1600			2000	2000
Carbon Dioxide (CO ₂)	-	-						390	150	300			290	340
Alkalinity (CaCO ₃)	-	-						420	160	330			320	360
Bicarbonate (CaCO ₃)	-	-						420	160	330			320	360

TABLE 10
San Juan River Terrace: San Juan River Analytical Summary 2016 Groundwater Remediation and Monitoring Annual Report

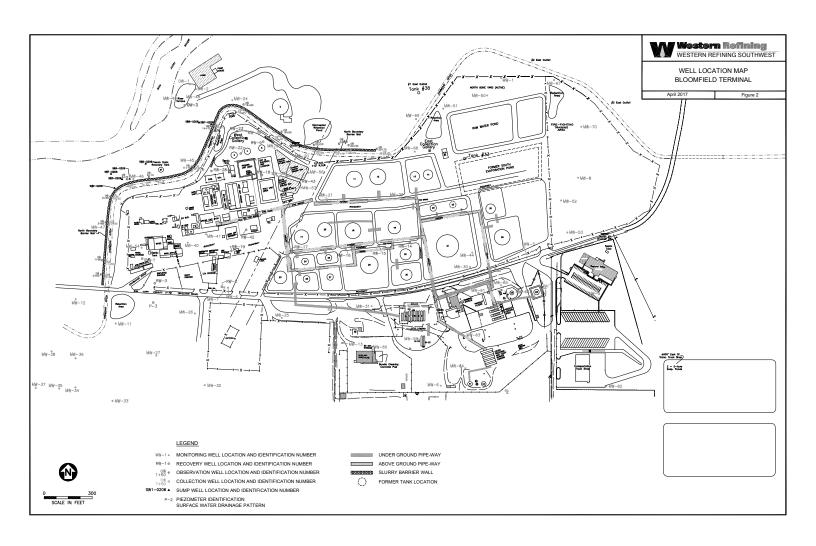

Volatile Organic Compounds (Benzane Toluene Ethylbenzane Xylene Xylene Tolies MTBE Tolies MTBE Total Petroleum Hydrocarbons Diesel Range Organics Gasoline Range Organics Gasoline Range Organics Motor Oil Range Organics Seneral Chemistry (mg/l): Seneral Chemistry (mg/l): Bromide Chioride Nitrate Prosphorus Suffate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity (CaCO ₃)	0.005 0.750 0.700 0.620 0.012	(2) (3) (2) (3) (4) 	<pre></pre>	Apr-16 < 1.0 < 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.19 3.5 < 0.10 < 0.10	 Aug-15 <0.001 <0.001 <0.0015 <0.001 <0.001	<pre><pre><0.001 <0.001 <0.001 <0.0015 <0.001 <0.001 <0.0015 <0.001 <0.20 <0.050 <2.5 </pre></pre>	Aug-14 <0.001 <0.001 <0.002 <0.002 <0.001 <0.20 <0.20 <2.5	Apr-14 <0.001 <0.001 <0.0015 <0.001 <0.001 <0.20 <0.050 <2.5	Aug-13 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.004 <0.004 <0.20 <0.10 <2.5	Apr-13 <0.001 <0.001 <0.002 <0.001 <0.20 <0.20 <0.05 <2.5	< 1.0 < 1.0 < 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050	<pre>Apr-16 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.5 < 1.0 < 1.0 < 1.5</pre>	 <0.001 <0.001 <0.001 <0.0015 <0.001 <0.001 <0.001 <0.001 	<pre>Apr-15 <0.001 <0.001 <0.001 <0.0015 <0.001 <0.0015 <0.001</pre>	<pre>< 0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001</pre>	<pre></pre>	Aug-13<0.002<0.002<0.002<0.002<0.004<0.20<0.10	<pre>< 0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001</pre>
Benzene Toluene Ethylbenzene Xylene Xylene Toluene MTBE Total Petroleum Hydrocarbons Diesel Range Organics Gasoline Range Organics Motor Oil Range Organics Seneral Chemistry (mg/l): Whittle Chloride Chloride Nitrate Phosphorus Suffate Carbon Dioxide (CO ₂) Alkalinity (GaCO ₃) Total Dissolved Solids Electric Conductivity	0.005 0.750 0.700 0.620 0.012 (mg/l): - - 1.6 250 1.0 - 600	(3) (2) (3) (4) 	< 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.19 3.5 < 1.0	<0.001 <0.001 <0.0015 <0.001 <0.0001 <0.20 <0.050 <2.5	<0.001 <0.001 <0.0015 <0.001 <0.20 <0.050 <2.5	<0.001 <0.001 <0.002 <0.001 <0.20 < 0.20 < 0.50 < 2.5	<0.001 <0.001 <0.0015 <0.001 < 0.20 < 0.050	<0.002 <0.002 <0.002 <0.004 <0.20 <0.10	<0.001 <0.001 <0.002 <0.001 < 0.20 < 0.05	< 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050	< 1.0 < 1.0 < 1.5 < 1.0	<0.001 <0.001 <0.0015 <0.001	<0.001 <0.001 <0.0015 <0.001	<0.001 <0.001 <0.002 <0.001 < 0.20	<0.001 <0.001 <0.0015 <0.001	<0.002 <0.002 <0.002 <0.004 < 0.20	<0.001 <0.001 <0.002 <0.001 <0.2
Toluene Ethylbenzene Xylene Xylene MTBE Total Petroleum Hydrocarbors Diesel Range Organics Gasoline Range Organics Gasoline Range Organics Ganeral Chemistry (mg/l): General Chemistry (mg/l): General Chemistry (mg/l): General Chemistry Fluoride Nitrite Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	0.750 0.700 0.620 0.012 - - - 1.6 250 1.0 - 600	(3) (2) (3) (4) 	< 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.19 3.5 < 1.0	<0.001 <0.001 <0.0015 <0.001 <0.0001 <0.20 <0.050 <2.5	<0.001 <0.001 <0.0015 <0.001 <0.20 <0.050 <2.5	<0.001 <0.001 <0.002 <0.001 <0.20 < 0.20 < 0.50 < 2.5	<0.001 <0.001 <0.0015 <0.001 < 0.20 < 0.050	<0.002 <0.002 <0.002 <0.004 <0.20 <0.10	<0.001 <0.001 <0.002 <0.001 < 0.20 < 0.05	< 1.0 < 1.0 < 1.5 < 1.0 < 0.20 < 0.050	< 1.0 < 1.0 < 1.5 < 1.0	<0.001 <0.001 <0.0015 <0.001	<0.001 <0.001 <0.0015 <0.001	<0.001 <0.001 <0.002 <0.001 < 0.20	<0.001 <0.001 <0.0015 <0.001	<0.002 <0.002 <0.002 <0.004 < 0.20	<0.001 <0.001 <0.002 <0.001 <0.2
Ethylbenzene Xylene Xylene Total Petroleum Hydrocarbons Diesel Range Organics Gasoline Range Organics Gasoline Range Organics Motor Oil Range Organics General Chemistry (mg/l): Hittle Horosphorus Sufface Carbon Dioxides (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	0.700 0.620 0.012 (mg/l): - 1.6 250 1.0 - 600	(2) (3) (4) 	< 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 1.0 < 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.19 3.5 < 1.0	<0.001 <0.0015 <0.001 <0.001 <0.050 <0.050 <2.5 0.17	<0.001 <0.0015 <0.001 <0.20 <0.050 <2.5	<0.001 <0.002 <0.001 < 0.20 < 0.050 < 2.5	<0.001 <0.0015 <0.001 < 0.20 < 0.050	<0.002 <0.002 <0.004 <0.20 <0.10	<0.001 <0.002 <0.001 < 0.20 < 0.05	< 1.0 < 1.5 < 1.0 < 0.20 < 0.050	< 1.0 < 1.5 < 1.0	<0.001 <0.0015 <0.001 < 0.20	<0.001 <0.0015 <0.001 < 0.20	<0.001 <0.002 <0.001 < 0.20	<0.001 <0.0015 <0.001 < 0.02	<0.002 <0.002 <0.004 < 0.20	<0.001 <0.002 <0.001
Xylene MTBE Fotal Petroleum Hydrocarbons Diesel Range Organics Gasoline Range Organics Seneral Chemistry (mg/l): Seneral Chemistry (mg/l): Fluoride Chloride Nitrite Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	0.620 0.012 (mg/l): - - 1.6 250 1.0 - 10 -	(3) (4) - - - (3) (3) (2) - (3)	< 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 1.5 < 1.0 < 0.20 < 0.050 < 2.5 0.19 3.5 < 1.0	<0.0015 <0.001 <0.001 <0.20 <0.050 <2.5 0.17 2.9	<0.0015 <0.001 < 0.20 < 0.050 < 2.5	<0.002 <0.001 < 0.20 < 0.050 < 2.5	<0.0015 <0.001 < 0.20 < 0.050	<0.002 <0.004 < 0.20 <0.10	<0.002 <0.001 < 0.20 < 0.05	< 1.5 < 1.0 < 0.20 < 0.050	< 1.5 < 1.0	<0.0015 <0.001 < 0.20	<0.0015 <0.001 < 0.20	<0.002 <0.001 < 0.20	<0.0015 <0.001 < 0.02	<0.002 <0.004 < 0.20	<0.002 <0.001
Intellection of the control of the c	0.012 (mg/l): - - 1.6 250 1.0 - 10 -	(3) (3) (3) (2) -	< 0.20 < 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 1.0 < 0.20 < 0.050 < 2.5 0.19 3.5 < 1.0	<0.001 < 0.20 < 0.050 < 2.5 0.17 2.9	<0.001 < 0.20 < 0.050 < 2.5	<0.001 < 0.20 < 0.050 < 2.5	<0.001 < 0.20 < 0.050	<0.004 < 0.20 <0.10	< 0.20 < 0.05	< 0.20 < 0.050	< 0.20	< 0.20	< 0.20	< 0.001	<0.001	< 0.004	<0.001
Fotal Petroleum Hydrocarbons Diesel Range Organics Gasoline Range Organics Gasoline Range Organics General Chemistry (mg/l): Fluoride Chloride Nitrite Bromide Nitrate Phosphorus Garbonic Garbo	1.6 250 1.0 - 10 -	(3) (3) (2) - (3) -	< 0.20 < 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 0.20 < 0.050 < 2.5 0.19 3.5 < 1.0	< 0.20 < 0.050 < 2.5 0.17 2.9	< 0.20 < 0.050 < 2.5	< 0.20 < 0.050 < 2.5	< 0.20 < 0.050	< 0.20 <0.10	< 0.20 < 0.05	< 0.20 < 0.050	< 0.20	< 0.20	< 0.20	< 0.20	< 0.02	< 0.20	<0.2
Diesel Range Organics Gasoline Range Organics Motor Oil Range Organics Seneral Chemistry (mg/l): Flooride Chloride Nitrate Prosphorus Suffate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	1.6 250 1.0 - 10 -	(3) (3) (2) - (3)	< 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 0.050 < 2.5 0.19 3.5 < 1.0	< 0.050 < 2.5 0.17 2.9	< 0.050 < 2.5	< 0.050 < 2.5	< 0.050	<0.10	< 0.05	< 0.050							
Gasoline Range Organics Motor Oil Range Organics General Chemistry (mg/l): Flooride Chloride Nitrite Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	1.6 250 1.0 - 10 - 600	(3) (3) (2) - (3)	< 0.050 < 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 0.050 < 2.5 0.19 3.5 < 1.0	< 0.050 < 2.5 0.17 2.9	< 0.050 < 2.5	< 0.050 < 2.5	< 0.050	<0.10	< 0.05	< 0.050							
Motor Oil Range Organics Seneral Chemistry (mg/l): Fluoride Chloride Nitrite Bromide Nitrate Phosphorus. Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	1.6 250 1.0 - 10 - 600	(3) (3) (2) - (3)	< 2.5 0.15 2.7 < 1.0 < 0.10 < 1.0	< 2.5 0.19 3.5 < 1.0	< 2.5 0.17 2.9	< 2.5	< 2.5					< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.10	< 0.05
General Chemistry (mg/l): Fluoride Chloride Nitrite Bromide Nitritate Phosphorus Phosphorus Garbon Dioxide (CO ₂) Aikalinity (CaCO ₂) Total Dissolved Solids Electric Conductivity	1.6 250 1.0 - 10 - 600	(3) (3) (2) - (3)	0.15 2.7 < 1.0 < 0.10 < 1.0	0.19 3.5 < 1.0	0.17 2.9	0.21		< 2.5	< 2.5	< 2.5								
Fluoride Chloride Chloride Nitrite Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	250 1.0 - 10 - 600	(3) (2) - (3)	2.7 < 1.0 < 0.10 < 1.0	3.5 < 1.0	2.9		0.18				< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5
Chloride Nitrite Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	250 1.0 - 10 - 600	(3) (2) - (3)	2.7 < 1.0 < 0.10 < 1.0	3.5 < 1.0	2.9		0.18											
Nitrite Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	1.0	(2)	< 1.0 < 0.10 < 1.0	< 1.0		3.8		0.20	<0.50	0.17	0.15	0.2	0.17	0.2	0.18	0.20	< 0.50	0.17
Bromide Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	10 - 600 -	(3)	< 0.10 < 1.0		< 0.10		3.2	3.8	3.4	4.3	2.7	3.3	2.9	3.8	3.2	3.8	3.2	3.7
Nitrate Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	10 - 600 -	(3)	< 1.0	< 0.10	~ 0.10	< 0.10	< 1.0	< 0.10	<0.50	< 0.10	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	< 0.50	< 1.0*
Phosphorus Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	600	-			< 0.10	< 0.10	< 0.10	< 0.10	<0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.50	< 0.10
Sulfate Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	600			< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	<0.50	< 0.10	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	< 0.50	< 1.0*
Carbon Dioxide (CO ₂) Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity	-	(3)	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	< 0.50
Alkalinity (CaCO ₃) Total Dissolved Solids Electric Conductivity			49	80	53	93	58	87	69	73	48	78	52	92	59	92	69	71
Total Dissolved Solids Electric Conductivity		-	77	86				89		83	76	86				89		83
Total Dissolved Solids Electric Conductivity		-	85	95	92	99.6	95	100	96	93	84.8	95.44	91	99.68	95	100	96	93
Electric Conductivity	1000	(3)	170	245	202	263	260	262	390	235	180	246	200	267	345	259	440	233
	-	(0)	280	380	310	405	330	390	350	350	280	380	300	411	340	380	350	350
otal Metals (mg/l):			200	- 000	0.10	400		000		- 000	200	000	000	411	0-10	000	000	
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.10	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.10	< 0.020
Barium	1.0	(3)	0.11	0.078	0.17	0.057	0.17	0.090	2.0	0.084	0.14	0.08	0.15	0.06	0.18	0.086	2.2	0.081
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.010	< 0.002
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0060	< 0.0060	0.26	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.28	< 0.006
Lead	0.015	(2)	0.0058	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.059	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.050	< 0.005
Selenium	0.05	(2)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.25	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.25	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.005
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.00031	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	0.022	0.0003	< 0.0002
Dissolved Metals (mg/l):		(-)																
Arsenic	0.1	(3)	< 0.020	< 0.0010	< 0.0010	< 0.020	0.0011	< 0.020	<0.020	<0.0010	< 0.020	< 0.0010	< 0.0010	< 0.020	< 0.0010	< 0.020	<0.020	< 0.001
Barium	1	(3)	0.086	0.074	0.074	0.062	0.078	0.071	0.13	0.073	0.082	0.073	0.072	0.056	0.076	0.071	0.13	0.073
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.002
Calcium	-	-	34	40	36	44	37	41	35	38	34	39	35	44	37	42	34	38
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006
Copper	1.0	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006
Iron	1.0	(3)	0.36	0.022	0.085	0.028	0.35	0.030	11	< 0.020	0.32	< 0.020	0.028	< 0.020	0.27	0.033	9.7	< 0.02
Lead	0.05	(3)	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0010	< 0.0050	<0.0050	< 0.0010	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.001
Magnesium	-	-	5.5	6.1	5.6	6.7	6.1	6.8	5.2	6.4	5,6	6.1	5.5	6.8	6.0	6.9	5.1	6.3
Manganese	0.2	(3)	0.032	0.010	0.009	0.011	0.020	0.015	0.096	0.027	0.033	0.011	0.0037	0.01	0.014	0.022	0.06	0.023
Potassium	-	-	2.2	1.9	2	2.2	2.0	1.9	3.2	2.0	2.3	1.8	2	2.2	2.0	2.0	3.4	2.0
Selenium	0.05	(3)	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.0010	< 0.050	<0.050	< 0.0010	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.0010	< 0.050	<0.050	< 0.001
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.005	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.005
Sodium	-	-	19	27	18	33	21	31	35	26	20	27	18	34	21	32	39	26
Uranium	0.03	(3)	< 0.10	0.00078	0.00067	< 0.10	< 0.0010	< 0.10	<0.10	< 0.0010	< 0.10	0.00076	0.00066	< 0.10	< 0.0010	< 0.10	<0.10	< 0.001
	10.0	(3)	< 0.020	0.00076	0.028	0.023	< 0.0010	< 0.020	<0.020	0.26	< 0.020	0.014	0.018	0.05	< 0.0010	< 0.020	<0.020	0.48

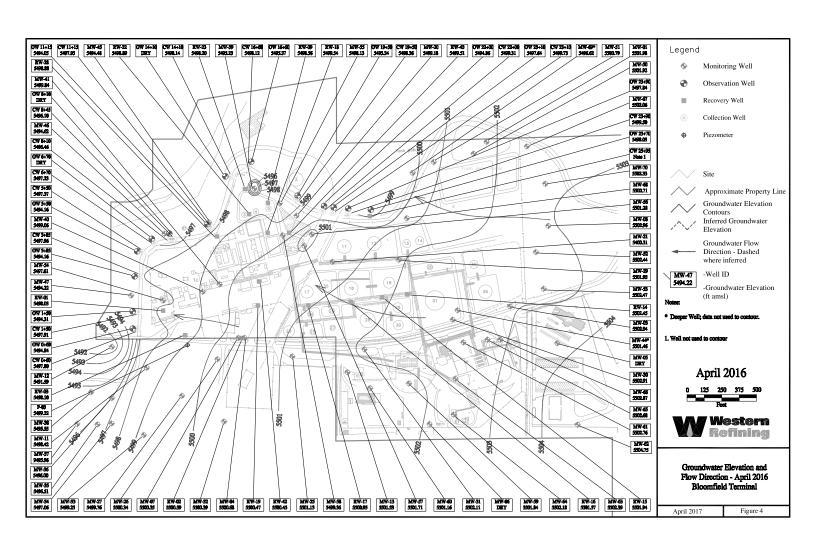
| 0.028 | 0.023 | < 0.010 | < 0.020 | < 0.020 | U.ZD | > 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 |

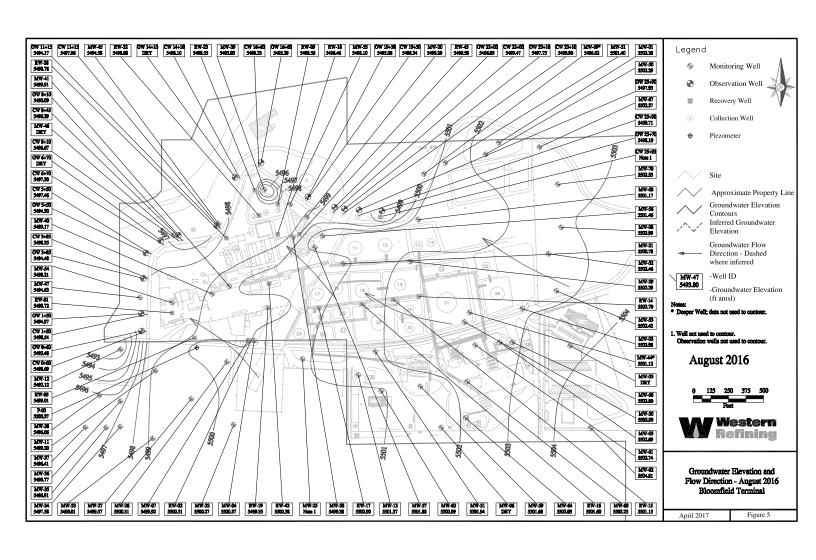

TABLE 10
San Juan River Terrace: San Juan River Analytical Summary
2016 Groundwater Remediation and Monitoring Annual Report

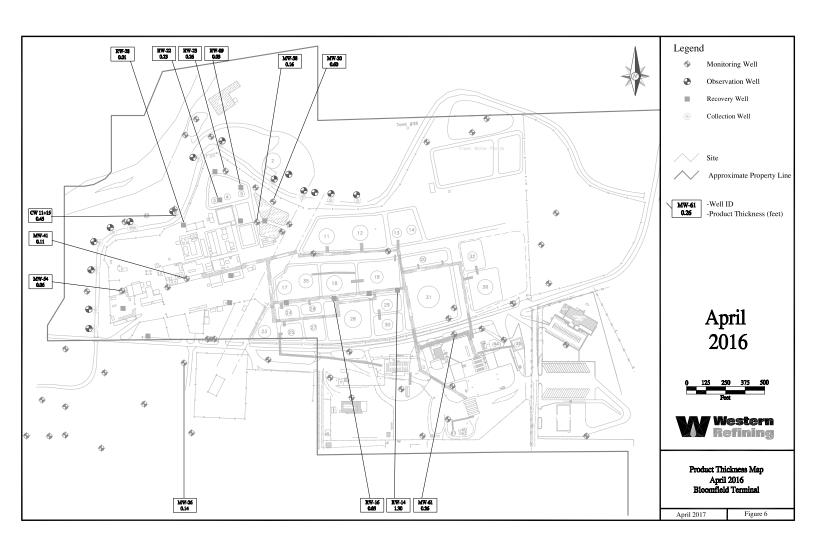
						Upstre	am								Down	stream				
			Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-13	Apr-13	Aug-12	Apr-12
Volatile Organic Compounds	(mg/l)																			
Benzene	0.005	(2)	< 1.0	<0.001	< 0.001	<0.001	<0.001	<0.001	<0.002	<0.001	< 1.0	< 1.0	<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	< 0.001	< 0.00
Toluene	0.750	(3)	< 1.0	<0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.002	< 0.001	< 1.0	< 1.0	<0.001	<0.001	<0.001	<0.001	< 0.002	<0.001	< 0.001	< 0.00
Ethylbenzene	0.700	(2)	< 1.0	<0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.002	< 0.001	< 1.0	< 1.0	<0.001	<0.001	<0.001	<0.001	< 0.002	<0.001	< 0.001	< 0.00
Xylene	0.620	(3)	< 1.5	< 0.0015	< 0.0015	<0.0015	<0.002	<0.0015	< 0.002	<0.002	< 1.5	< 1.5	<0.0015	<0.0015	<0.002	<0.0015	<0.002	<0.002	<0.002	< 0.00
MTBE	0.012	(4)	< 1.0	<0.001	< 0.001	< 0.001	<0.001	<0.001	< 0.004	<0.001	< 1.0	< 1.0	<0.001	<0.001	<0.001	<0.001	< 0.004	<0.001	<0.001	< 0.00
otal Petroleum Hydrocarbon:	s (mg/l):																			
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.2
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.10	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.10	< 0.050	< 0.050	< 0.0
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.
eneral Chemistry (mg/l):																				
Fluoride	1.6	(3)	0.16	0.2	0.17	0.21	0.18	0.20	<0.50	0.18	0.16	0.19	0.17	0.21	0.18	0.20	<0.50	0.18	0.16	0.1
Chloride	250	(3)	2.7	3.3	3	4.3	3.3	3.9	3.6	4.0	2.7	3.4	3	3.9	3.3	4.2	3.5	4.2	2.6	3.2
Nitrite	1.0	(2)	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	< 0.50	< 0.10	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	<0.50	< 0.10	< 0.10	*< 0.
Bromide		-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.50	< 0.10	< 0.10	< 0.
Nitrate	10	(3)	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	0.12	< 0.50	< 0.10	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	<0.50	< 0.10	< 0.10	*< 0.
Phosphorus		-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5	< 0.50	< 0.50	< 0.
Sulfate	600	(3)	49	75	54	110	66	96	79	86	49	84	54	100	60	91	74	98	51	90
Carbon Dioxide (CO ₂)	-	-	77	86				89		86	77	87				91		89	74	83
Alkalinity (CaCO ₂)	-	-	86	95	91.56	99.56	96	99	97	96	86	97	92.12	102.6	96	100	97	99	83	92
Total Dissolved Solids	1000	(3)	178	240	204	232	225	269	450	256	184	254	196	279	220	272	480	273	201	232
Electric Conductivity	-	-	290	380	300	357	350	400	370	390	290	400	300	429	340	400	360	410	300	390
Total Metals (mg/l):		-	230	300	300	337	330	400	370	330	230	400	300	423	340	400	300	410	300	330
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	<0.10	< 0.020	< 0.020	< 0.020	< 0.02	< 0.020	< 0.020	< 0.020	<0.10	< 0.020	<0.020	< 0.0
Barium	1.0	(3)	0.11	0.08	0.16	0.061	0.18	0.086	2.5	0.082	0.12	0.082	0.130	0.058	0.17	0.089	2.2	0.084	0.020	0.06
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.010	< 0.002	< 0.0020	< 0.0020	< 0.002	< 0.0020	< 0.0020	< 0.0020	<0.010	< 0.0020	<0.002	< 0.0
Chromium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.0074	< 0.0020	0.32	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020	0.006	< 0.0020	0.29	< 0.0020	<0.002	< 0.0
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.075	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	< 0.0050	< 0.0050	0.078	< 0.0050	<0.005	< 0.0
Selenium	0.015	(2)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.25	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.25	< 0.050	<0.005	< 0.0
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<0.025	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	< 0.0050	< 0.0050	<0.025	< 0.0050	<0.005	< 0.0
Mercury	0.002	(3)	< 0.0000	< 0.00020	< 0.00020	< 0.0000	< 0.00020	< 0.00020	0.00038	< 0.00020	< 0.00020	< 0.0000	< 0.0002	< 0.00020	< 0.0000	< 0.0000	0.00034	< 0.0000	<0.0002	< 0.00
Dissolved Metals (mg/l):	0.002	(5)	< 0.00020	~ 0.00020	< 0.00020	~ 0.00020	~ 0.00020	~ 0.00020	0.00030	~ 0.00020	V 0.00020	~ 0.00020	~ 0.000Z	~ 0.00020	~ 0.00020	~ 0.00020	0.00034	~ 0.00020	~0.000Z	₹ 0.00
Arsenic	0.1	(3)	< 0.020	< 0.0010	0.001	< 0.020	0.0011	< 0.020	<0.020	< 0.0010	< 0.020	< 0.0010	< 0.001	< 0.020	0.0010	< 0.020	<0.020	< 0.0010	<0.001	< 0.0
Barium	1	(3)	0.084	0.072	0.077	0.056	0.079	0.072	0.11	0.074	0.085	0.072	0.077	0.055	0.081	0.071	0.21	0.073	0.049	0.05
Cadmium	0.01	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	<0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020	< 0.0020	< 0.0020	<0.0020	< 0.0020	<0.002	< 0.05
Calcium	-	(3)	34	39	33	45	39	41	33	37	34	41	34	47	38	45	41	45	32	41
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	<0.006	< 0.0
Copper	1.0	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	<0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060	< 0.0060	< 0.0060	0.0085	< 0.0060	<0.006	< 0.0
Copper	1.0	(3)	0.29	< 0.0000	0.062	< 0.0000	0.34	0.004	8.0	< 0.0000	0.31	0.0000	0.086	< 0.0000	0.44	0.000	40	< 0.0000	<0.006	< 0.0
Lead	0.05	(3)	< 0.0050	< 0.020	< 0.0050	< 0.020	< 0.0010	< 0.0050	<0.0050	< 0.020	< 0.0050	< 0.00050	< 0.0005	< 0.020	< 0.0010	< 0.0050	<0.0050	< 0.020	<0.02	< 0.0
Magnesium	-	(3)	5.5	5.9	5.4	7.1	6.3	7.1	4.8	6.5	5.5	6.2	5.4	7.2	6.0	7.1	5.9	6.9	5.2	6
Manganese	0.2	(3)	0.03	0.012	0.01	0.034	0.028	0.028	0.073	0.033	0.032	0.029	0.011	0.062	0.022	0.060	0.27	0.084	0.016	0.10
Potassium	- 0.2	(3)	2.1	1.7	1.9	2.1	2.0	2.0	3.1	2.2	2.3	1.9	1.9	2.1	2.0	1.9	3.6	2.1	1.6	0.10
	0.05	(3)	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.0010	< 0.050	<0.050	< 0.0010	< 0.050	< 0.0010	< 0.001	< 0.050	< 0.0010	< 0.050	< 0.050	< 0.0010	<0.001	< 0.0
Selenium								< 0.050												
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	<0.0050	< 0.0
Sodium	- 0.00	- (2)	19	26	19	39	22	36	41	29	19	29	18	37	21	34	38	31	18	30
Uranium	0.03	(3)	< 0.10	0.00076	0.00062	< 0.10	< 0.0010	< 0.10	<0.10	< 0.0010	< 0.10	0.00084	0.0006	< 0.10	< 0.0010	< 0.10	<0.10	< 0.0010	<0.001	< 0.00
		(3)	0.024	0.016	0.021	< 0.020	< 0.010	0.023	< 0.020	< 0.010	< 0.020	0.013		< 0.020	< 0.010	0.021	0.037	< 0.010	0.03	

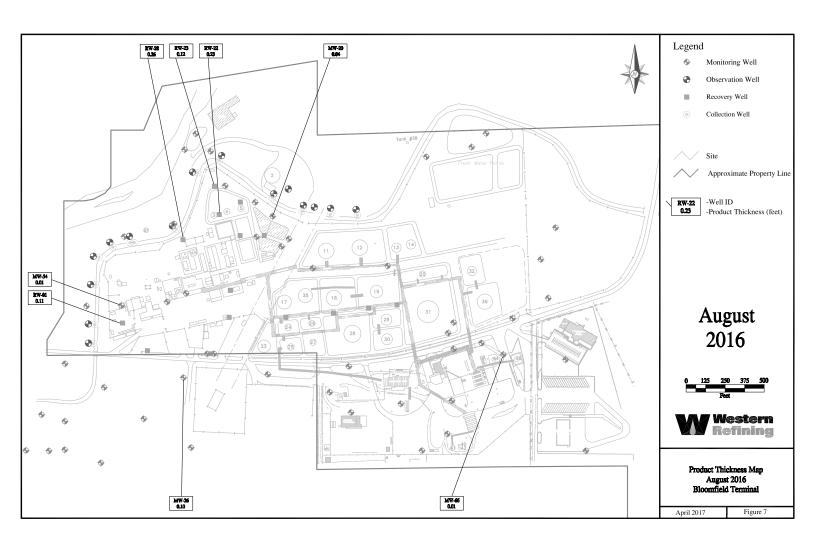
| 0.021 | < 0.020 | < 0.010 | 0.023 | < 0.010 | 0.023 | < 0.010 | 0.023 | < 0.020 | < 0.010 | 0.023 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.020 | < 0.

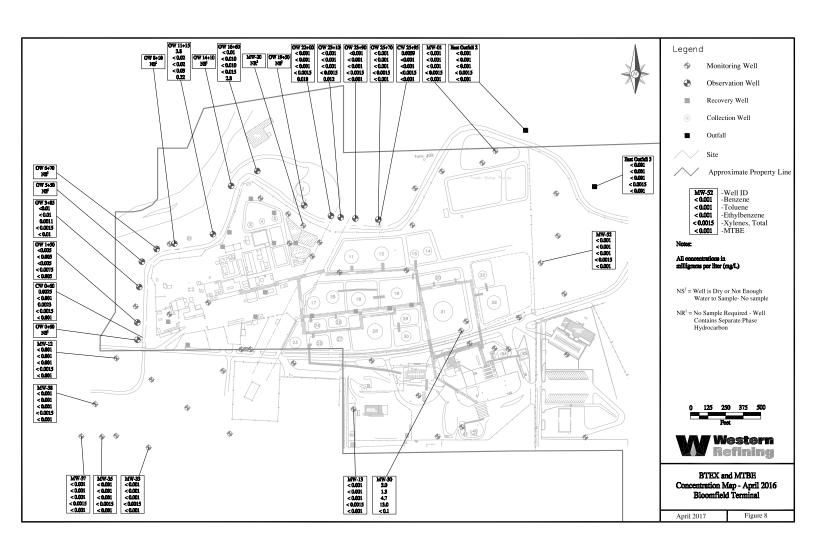


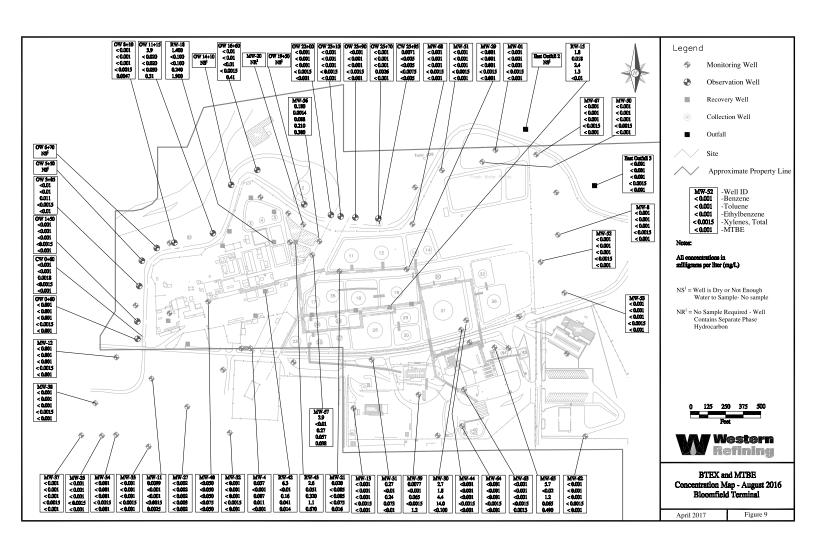

Bloomfield Terminal Facility Site Map


April 2017

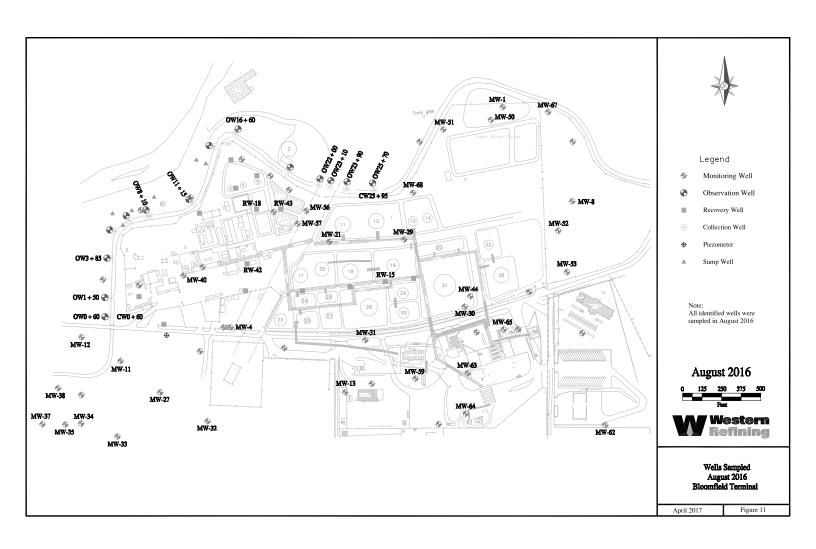

Figure 1











Appendix A

Field Methods

Appendix A

Groundwater Elevation

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in April and August. Terminal personnel followed the guidelines of the *Facility-Wide Groundwater Monitoring Plan June 2014* to collect groundwater levels and SPH thickness measurements.

All water/product levels are determined to an accuracy of 0.01 foot using a Geotech Interface Meter. The technician records separate phase hydrocarbon, depth to water, and total well depth using this probe.

Water Quality/Groundwater Sampling

An YSI ProComm II is used to determine dissolved Oxygen (DO), electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH, and temperature are monitored during purging.

Well Puraina Technique

After determining water levels initial well volumes are calculated. Total purge volume is determined by monitoring electrical conductance, pH, temperature, after every two gallons or each well volume, whichever is less, has been purged from the well. The wells were considered satisfactorily purged when the field parameter values did not vary by more than 10 percent for at least three measurements.

Well volumes are determined using the following equation:

Well Depth – Casing Height – Depth to Liquid X Conversion Factor X Three. The conversion factor is determined by the diameter of the well casing.

Casing	<u>Conversion Factor</u>
6"	1.50 gal/ft
5"	1.02 gal/ft
4"	0.74 gal/ft
3"	0.367 gal/ft
2"	0.163 gal/ft

Disposable bailers are used for purging and sampling. Each bailer holds one liter of liquid. Three well volumes can be calculated by counting the number of times a well is bailed.

Well Sampling and Sample Handling Procedure

Equipment and supplies needed for collecting representative groundwater samples include:

- Interface Meter
- YSI ProComm II.

- Distilled Water
- Disposable Latex Gloves
- Disposable Bailers
- String/Twine
- Cooler with Ice
- Bottle kits with Preservatives (provided by the contract laboratory)
- Disposable 0.45 micron Field Filters and Syringes
- Glass Jar (usually 4 oz.)
- Sharpie Permanent Marker
- Field Paperwork/Logsheet
- Two 5-gallon buckets
- Trash container (plastic garbage bag)
- Ziploc Bags
- Paper towels

After sufficient purging, samples are collected with the bailer and poured into the appropriate sample containers. Two people are usually utilized for sampling. Sampling takes place over a bucket to insure that spills are contained

For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to push water through a field filter into the proper sample bottle to collect the dissolved metals sample. Volatile organic analysis samples are collected as to allow no head space in the container.

Samples are labeled immediately with location, date, time, analysis, preservative, and sampler. Then they are put in a Ziploc bag and placed in a cooler holding sufficient ice to keep them cool. The field logsheet is reviewed to verify all entries.

Purge and Decontamination Water Disposal

YSI ProComm II and the interface probe are rinsed with distilled water after every well. The rinse procedure takes place over a bucket to insure that spills are contained.

All rinse and purge water is contained and then disposed of through the terminal wastewater system.

Any glassware used is washed with Alconox and water and rinsed with distilled water. Wastewater runs through the terminal wastewater system.

Instrument Calibration

The YSI ProComm II is use to measure Dissolved Oxygen (DO), electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH and is calibrated before each sampling event per the manufacture instruction manual.

Remediation System Measurement
Recovery rates at Tank 37 (Hammond Ditch French Drain) and Tank 38 (#1 East Outfall) are determined through flow meters installed in those systems. Refinery personnel record the rates periodically.

Appendix B

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109
TEL: 505-345-3975 FAX: 505-345-4107
Website: www.hallenvironmental.com

May 02, 2016

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413

TEL: (505) 632-4135 FAX (505) 632-3911

RE: Bloomfield Terminal OrderNo.: 1604849

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 2 sample(s) on 4/20/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1604849**

Date Reported: 5/2/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: MW-26

 Project:
 Bloomfield Terminal
 Collection Date: 4/19/2016 9:20:00 AM

 Lab ID:
 1604849-001
 Matrix: PRODUCT
 Received Date: 4/20/2016 7:30:00 AM

Analyses	Result	PQL Q	ual Units	DF	Date Analyzed
DRO BY 8015D					Analyst: KJH
Diesel Range Organics (DRO)	110	1.9	wt%	20	4/27/2016 11:41:40 AM
Motor Oil Range Organics (MRO)	ND	9.5	wt%	20	4/27/2016 11:41:40 AM
Surr: DNOP	0	72.8-129	S %Rec	20	4/27/2016 11:41:40 AM
GRO BY 8015D					Analyst: NSB
Gasoline Range Organics (GRO)	ND	2.5	wt%	1	4/22/2016 2:33:12 PM
Surr: BFB	107	80-120	%Rec	1	4/22/2016 2:33:12 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Analytical ReportLab Order **1604849**

Date Reported: 5/2/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: RW-14

 Project:
 Bloomfield Terminal
 Collection Date: 4/18/2016 2:00:00 PM

 Lab ID:
 1604849-002
 Matrix: PRODUCT
 Received Date: 4/20/2016 7:30:00 AM

Analyses	Result	PQL (Qual	Units	DF	Date Analyzed
DRO BY 8015D						Analyst: KJH
Diesel Range Organics (DRO)	31	1.9		wt%	20	4/27/2016 12:03:20 PM
Motor Oil Range Organics (MRO)	ND	9.7		wt%	20	4/27/2016 12:03:20 PM
Surr: DNOP	0	72.8-129	S	%Rec	20	4/27/2016 12:03:20 PM
GRO BY 8015D						Analyst: NSB
Gasoline Range Organics (GRO)	43.7	2.50		wt%	1	4/25/2016 3:50:25 PM
Surr: BFB	132	80-120	S	%Rec	1	4/25/2016 3:50:25 PM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 2 of 5
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1604849**

02-May-16

Client: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Sample ID LCS-24993 SampType: LCS TestCode: DRO by 8015D Client ID: LCSW Batch ID: 24993 RunNo: 33821 Prep Date: 4/26/2016 Analysis Date: 4/27/2016 SeqNo: 1041851 Units: wt% Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.48 0.10 0.5000 n 95.6 70.8 122 Surr: DNOP 67.3 S 0.034 0.05000 72.8 129

Sample ID LCSD-24993 SampType: LCSD TestCode: DRO by 8015D Client ID: LCSS02 Batch ID: 24993 RunNo: 33821 Prep Date: 4/26/2016 Analysis Date: 4/27/2016 SeqNo: 1041852 Units: wt% LowLimit Analyte Result **PQL** SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 0.50 0.10 0.5000 99.7 70.8 122 4.18 20 Surr: DNOP 0.036 0.05000 72.0 0 S 72.8 129 0

Sample ID MB-24993 SampType: MBLK TestCode: DRO by 8015D Client ID: PBW Batch ID: 24993 RunNo: 33821 Prep Date: 4/26/2016 Analysis Date: 4/27/2016 SeqNo: 1041853 Units: wt% SPK value SPK Ref Val %RPD Result %REC LowLimit HighLimit **RPDLimit** Analyte **PQL** Qual Diesel Range Organics (DRO) ND 0.10 Motor Oil Range Organics (MRO) ND 0.50 Surr: DNOP 0.1000 0.076 75.6 72.8 129

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 3 of 5

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1604849**

02-May-16

Client: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Sample ID MB-24933 SampType: MBLK TestCode: GRO by 8015D Client ID: **PBW** Batch ID: 24933 RunNo: 33721 Prep Date: 4/21/2016 Analysis Date: 4/22/2016 SeqNo: 1038994 Units: wt% Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 2.5 Surr: BFB 950 1000 95.3 120 Sample ID LCS-24933 SampType: LCS TestCode: GRO by 8015D Client ID: LCSW Batch ID: 24933 RunNo: 33721 Prep Date: 4/21/2016 Analysis Date: 4/22/2016 SeqNo: 1038995 Units: wt% Analyte Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) 2.5 25.00 95.5 69.3 137 1100 Surr: BFB 1000 105 80 120 Sample ID LCSD-24933 SampType: LCSD TestCode: GRO by 8015D Client ID: LCSS02 Batch ID: 24933 RunNo: 33721 Prep Date: 4/21/2016 Analysis Date: 4/22/2016 SeqNo: 1038996 Units: wt% SPK Ref Val **RPDLimit** SPK value %RPD Analyte Result PQL %REC LowLimit HighLimit Qual Gasoline Range Organics (GRO) 23 2.5 25.00 92.3 69.3 137 3.41 20 Surr: BFB 1000 102 80 0 0 1000 120 Sample ID MB-24965 SampType: MBLK TestCode: GRO by 8015D Client ID: **PBW** Batch ID: 24965 RunNo: 33757 Prep Date: 4/23/2016 Analysis Date: 4/25/2016 SeqNo: 1039891 Units: wt% Result **PQL** SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Gasoline Range Organics (GRO) ND 2.5 Surr: BFB 950 1000 94.8 80 120 Sample ID LCS-24965 SampType: LCS TestCode: GRO by 8015D Client ID: **LCSW** Batch ID: 24965 RunNo: 33757 Prep Date: 4/23/2016 Analysis Date: 4/25/2016 SeqNo: 1039895 Units: wt% SPK value SPK Ref Val %REC %RPD Analyte Result **PQL** LowLimit HighLimit **RPDLimit** Qual Gasoline Range Organics (GRO) 24 25 0 69.3 25.00 95.2 137 Surr: BFB 1100 1000 106 80 120 Sample ID LCSD-24965 SampType: LCSD TestCode: GRO by 8015D Client ID: LCSS02 Batch ID: 24965 RunNo: 33757 Prep Date: 4/23/2016 Analysis Date: 4/25/2016 SeqNo: 1039899 Units: wt% SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Analyte Result LowLimit Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 4 of 5

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 10

1604849 02-May-16

Client: Western Refining Southwest, Inc.

Project: Bloomfield Terminal

Sample ID LCSD-24965 SampType: LCSD TestCode: GRO by 8015D

Client ID: LCSS02 Batch ID: 24965 RunNo: 33757

Prep Date: 4/23/2016 Analysis Date: 4/25/2016 SeqNo: 1039899 Units: wt%

	-									
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	24	2.5	25.00	0	95.5	69.3	137	0.336	20	
Surr: BFB	1000		1000		104	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 5 of 5

Hall Environmental Analysis Laboratory
4901 Hawkins NE
Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

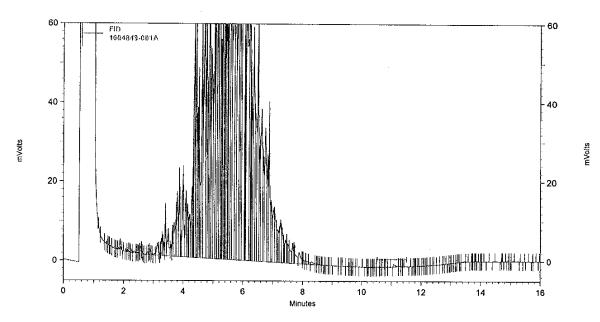
Client Name: Western Refining Southw Work Order Number: 1604849 RcptNo: 1 04/2016 Received by/date: Logged By: Anne Thorne anne Sham 4/20/2016 7:30:00 AM Completed By: Anne Thorne 4/20/2016 Reviewed By: 01/20/10 Chain of Custody 1. Custody seals intact on sample bottles? Yes 🗌 No 🗌 Not Present 2. Is Chain of Custody complete? Yes 🗸 No 🗌 Not Present 3. How was the sample delivered? <u>Courier</u> Log In 4. Was an attempt made to cool the samples? No 🗌 NA 🗆 Were all samples received at a temperature of >0° C to 6.0°C No 🗌 Yes 🗸 NA 🗆 6. Sample(s) in proper container(s)? Yes 🗸 No 🗌 7. Sufficient sample volume for indicated test(s)? 8. Are samples (except VOA and ONG) properly preserved? 9. Was preservative added to bottles? Yes No 🗸 NA 🗌 10.VOA vials have zero headspace? No VOA Vials No 🗹 11. Were any sample containers received broken? Yes No 🔽 # of preserved bottles checked 12. Does paperwork match bottle labels? Yes 🗸 No 🗌 for pH: (Note discrepancies on chain of custody) (<2 or >12 unless noted) 13. Are matrices correctly identified on Chain of Custody? Adjusted? No 14. Is it clear what analyses were requested? Yes 🔽 No 🗌 15. Were all holding times able to be met? Checked by: Yes 🗸 No 🗌 (If no, notify customer for authorization.) Special Handling (if applicable) 16. Was client notified of all discrepancies with this order? Yes 🗸 No 🗌 NA 🗆 Person Notified: KELLY ROBINSON Date 4/20/2016 By Whom: Anne Thorne Via: ✓ eMail Phone Fax In Person Regarding: PROJECT NAME Client Instructions: BLOOMFIELD TERMINAL 17. Additional remarks: 18. Cooler Information Cooler No | Temp °C | Condition | Seal Intact | Seal No | Seal Date Signed By 1.4 Good Yes

Chain-of-Custody Record	Turn-Around Time:	
Client: Western Refinition	Standard 🗆 Rush	HALL ENVIRONMENTAL
	Project Name: 47 04/20/16	ANALTSIS LABORATORY
Mailing Address: 50 CR 4990	Ricarle L. Town	Ö
Bloom field, NM	<u>s</u>	- Albuqu -
Phone #: 505-632-4135	PO# 176315521	lel. 505-345-3975 Fax 505-345-4107
email or Fax#:		(6
DA/QC Package:		(SI) / WEC
uo	Sampler: M. Lulokar	ояа () () () () ()
□ NELAP □ Other □ Other	. □ No	1.81 1.80 1.40 08.1.50 (A)
	Sample Temperature 4/4-41-1.4	V.N.V. (c)
Date Time Matrix Sample Request ID	Container Preservative HEAL No. Type and # Type	TEX + MT TEX + MT PH 8015B PH (Metho DB (Metho
14-16 6920 May war MW-26		五 五 五 1 1 1 1 1 2 8 2 8 2 8
1876 HOU AS RW-14	(Bed)	× × ×
ite: Time: Relinquished by:	į	
12	Wholk your	Remarks:
19/10 1849 Charter Lower	Received by: Out Date 'Time Out Date 'Time	
If necessary, samples submitted to Hall Environmental may be subcontained to Hall Environmental may be subcontained.	contracted to other accredited laboratories. This serves as notice of this pos	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical renort

Instrument: Dante (Offline)

Vial #: 21

User: System


Sample ID: 1604849-001A

Data Description: PRODUCT X20 HCR

Method: H:\EZsemi\8015dro\Data 2015\Dante\Method\032816.met

File: H:\EZsemi\8015dro\Data 2015\Dante\Data\042716\1604849-001A 04-27-16 11-36-13 AM.dat

Aquired: 4/27/2016 11:41:40 AM

7		esi	. 1	1 -
-	 ×		ш	TC

Name	Retention Time	Area	ug/ml
DNOP	11.083	3374	0.775
DRO		8028836	579.961
MRO N		2929	0.000

Analyst

Reviewed By

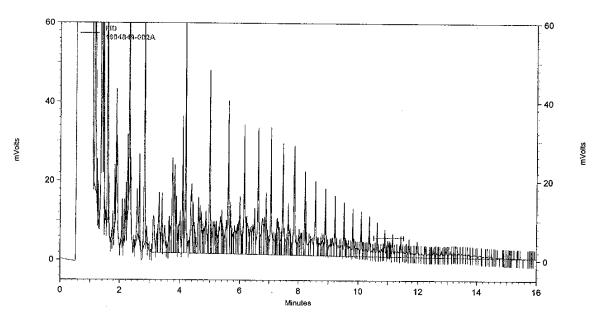
379.961 >

DNOP not recovered due to dilution

RW-14

Instrument: Dante (Offline)

Vial #: 22


User: System

Sample ID: 1604849-002A

Data Description: PRODUCT X20 HCR

Method: H:\EZsemi\8015dro\Data 2015\Dante\Method\032816.met File: H:\EZsemi\8015dro\Data 2015\Dante\Data\042716\1604849-002A 04-27-16 11-59-57 AM.dat

Aquired: 4/27/2016 12:03:20 PM

Rac	rulta

Name	Retention Time	Area	ug/ml
DNOP	11.024	8187	1,126
DRO		2131445	157,729
MRO	110	239483	22.378

Reviewed By

DNOP not recovered due to dilution

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 02, 2016

Kelly Robinson Western Refining Southwest, Inc. #50 CR 4990 Bloomfield, NM 87413 TEL: FAX

RE: North Boundry Barrier OrderNo.: 1604889

Dear Kelly Robinson:

Hall Environmental Analysis Laboratory received 8 sample(s) on 4/20/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Analytical ReportLab Order **1604889**

Date Reported: 5/2/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Inc.

Client Sample ID: CW- 0+60

Project:North Boundry BarrierCollection Date: 4/19/2016 11:00:00 AMLab ID:1604889-001Matrix: AQUEOUSReceived Date: 4/20/2016 7:30:00 AM

Analyses	Result	PQL Qu	al Units	DF	Date Analyzed
EPA METHOD 8015D: DIESEL RAN	GE				Analyst: KJH
Diesel Range Organics (DRO)	0.73	0.20	mg/L	1	4/25/2016 12:39:27 PM
Motor Oil Range Organics (MRO)	ND	2.5	mg/L	1	4/25/2016 12:39:27 PM
Surr: DNOP	88.8	63.2-161	%Rec	1	4/25/2016 12:39:27 PM
EPA METHOD 8260: VOLATILES SH	HORT LIST				Analyst: AG
Benzene	2.5	1.0	μg/L	1	4/26/2016 4:05:43 AM
Toluene	ND	1.0	μg/L	1	4/26/2016 4:05:43 AM
Ethylbenzene	2.3	1.0	μg/L	1	4/26/2016 4:05:43 AM
Methyl tert-butyl ether (MTBE)	ND	1.0	μg/L	1	4/26/2016 4:05:43 AM
Xylenes, Total	ND	1.5	μg/L	1	4/26/2016 4:05:43 AM
Surr: 1,2-Dichloroethane-d4	101	70-130	%Rec	1	4/26/2016 4:05:43 AM
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	4/26/2016 4:05:43 AM
Surr: Dibromofluoromethane	95.4	70-130	%Rec	1	4/26/2016 4:05:43 AM
Surr: Toluene-d8	97.9	70-130	%Rec	1	4/26/2016 4:05:43 AM

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 1 of 12
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified