Johnston Fed #4 NMOCD Case #: 3RP-201-0 Meter Code: 70194 T31N, R09W, Sec 27, Unit H

SITE DETAILS

Site Location:Latitude: 36.862800 N, Longitude: -107.771983 WLand Type:Private/FeeOperator:Hilcorp Energy

SITE BACKGROUND

Environmental Remediation activities at the Johnston Fed #4 (Site) are managed pursuant to the procedures set forth in the document entitled, "Remediation Plan for Groundwater Encountered during Pit Closure Activities" (Remediation Plan, El Paso Natural Gas Company / El Paso Field Services Company, 1995). This Remediation Plan was conditionally approved by the New Mexico Oil Conservation Division (NMOCD) in correspondence dated November 30, 1995; and the NMOCD approval conditions were adopted into El Paso CGP Company (EPCGP's) program methods. Currently, the Site is operated by Hilcorp Energy and is active.

The Site is located on Private/Fee land. An initial site assessment was completed in August 1994, and an excavation of 60 cubic yards (cy) to a depth of approximately 12 feet below ground surface (bgs) was completed in September 1994. Various site investigations have occurred since 1994. Monitoring wells were installed in 1995 (MW-1, MW-2, MW-3), 2006 (MW-4, TMW-5), 2013 (MW-6 through MW-12), and 2014 (MW-13 through MW-20). Temporary monitoring well TMW-5 was plugged and abandoned in 2014. Free product has been observed at the site and is periodically recovered. Mobile dual-phase extraction (MDPE) events to enhance free product recovery were initiated in 2016. In 2017, measureable free product was observed in MW-1, MW-3, MW-8, and MW-11. Currently, groundwater sampling is conducted from selected monitoring wells on a semi-annual basis.

GROUNDWATER SAMPLING ACTIVITIES

Pursuant to the Remediation Plan, Stantec provided field work notifications via email to the NMOCD on May 30, 2017 and November 6, 2017, prior to initiating groundwater sampling activities at the Site. Copies of the 2017 NMOCD notifications are provided in Appendix A. Groundwater monitoring and sampling was completed on June 9 and November 12, 2017. Water levels were gauged at wells MW-1 through MW-4 and MW-6 through MW-20. Monitoring wells MW-1, MW-3, MW-6 through MW-9, MW-11, MW-13, MW-15, MW-16, and MW-18 through MW-20 were selected to be sampled in 2017. Groundwater samples were not collected from MW-1, MW-3, MW-8, and MW-11 in 2017 due to the presence of free product. Groundwater samples were collected from selected monitoring wells using HydraSleeve[™] (HydraSleeve) no-purge groundwater sampling devices. The HydraSleeves were set during the previous sampling event approximately 0.5 foot above termination depth of the monitoring wells using a suspension tether and stainless steel weights to collect a sample from the screened interval.

Johnston Fed #4 NMOCD Case #: 3RP-201-0 Meter Code: 70194 T31N, R09W, Sec 27, Unit H

Groundwater samples were placed into laboratory-supplied sample containers, packed on ice, and shipped under standard chain-of-custody protocols to TestAmerica-Pensacola where they were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). As requested by the OCD on November 13, 2018, BTEX constituents were analyzed using United States Environmental Protection Agency (EPA) Method 8260 during the November sampling event. The unused sample water is combined in a waste container and taken to Basin Disposal, Inc. for disposal. Waste disposal documentation is included as Appendix B.

FREE PRODUCT RECOVERY

Free product was manually recovered from MW-1, MW-3, MW-8, and MW-11 in 2017. Approximately 5 milliliters (mL) of free product were manually recovered from MW-1, approximately 5 mL of free product were recovered from MW-3, a trace amount of free product was recovered from MW-8 and approximately 4 gallons of free product were recovered from MW-11 in 2017. Recovered free product was disposed of with excess wastewater generated during groundwater sampling activities.

MDPE events were completed on July 15 through July 18, 2017, by AcuVac Remediation, LLC, of Houston, Texas (AcuVac). The planned MDPE activities were presented in a work plan dated June 29, 2017, and subsequently approved by the NMOCD. The NMOCD was notified of the start of MDPE activities on July 8, 2017. The purpose of the MDPE events was to enhance free product recovery from monitoring wells MW-1, MW-3, MW-8, and MW-11.

MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to enhance the removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, inducing a hydraulic gradient toward the extraction well, and creating groundwater depression to expose the hydrocarbon smear zone to SVE. Recovered liquids were transferred to a portable storage tank for off-site disposal. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE), resulting in little to no emissions. Power generated by the ICE is used to create the induced vacuum for SVE.

The following MDPE events occurred in 2017:

- One 6-hour event was completed using MW-1 as an extraction well; approximately 15.6 gallons of hydrocarbons were recovered.
- One 6-hour event was completed using MW-3 as an extraction well; approximately 7.1 gallons of hydrocarbons were recovered.
- One 8-hour event was completed using MW-11 as an extraction well; approximately 25.2 gallons of hydrocarbons were recovered.
- Two 12-hour events were completed using MW-8 as an extraction well; approximately 90.9 gallons of hydrocarbons were recovered.

Johnston Fed #4 NMOCD Case #: 3RP-201-0 Meter Code: 70194 T31N, R09W, Sec 27, Unit H

AcuVac's report summarizing the MDPE events at the Site is presented as Appendix C. Recovered fluids from the MDPE event where transported to Basin Disposal Inc. for disposal. Waste disposal documentation is included as Appendix B.

SUMMARY TABLES

Historic groundwater analytical results and well gauging data are summarized in Tables 1 and 2, respectively. When free product was present, static water level elevations were corrected for measurable thicknesses of free product (specific gravity of 0.75).

SITE MAPS

Groundwater analytical maps (Figures 1 and 3) and groundwater elevation contour maps (Figures 2 and 4) summarize results of the 2017 groundwater sampling and gauging events.

ANALYTICAL LAB REPORTS

The groundwater analytical lab reports are included as Appendix D.

GROUNDWATER RESULTS

- The groundwater flow direction at the Site is generally to the east-northeast (see Figures 2 and 4). The elevations at MW-12 remained anomalous, consistent with past results.
- Free product was observed in MW-1, MW-3, MW-8, and MW-11 in 2017. No samples were collected from these monitoring wells.
- One or more groundwater samples collected in 2017 from MW-6, MW-9, MW-15, MW-16, MW-19, and MW-20 exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard (10 micrograms per liter [µg/L]) for benzene in groundwater. Groundwater samples from the remaining monitoring wells sampled in 2017 were either below the NMWQCC standard for benzene or not detected.
- Concentrations of toluene were either below the NMWQCC standard $(750 \ \mu g/L)$ or not detected in the Site monitoring wells sampled in 2017.
- Concentrations of ethylbenzene were either below the NMWQCC standard $(750 \ \mu g/L)$ or not detected in the Site monitoring wells sampled in 2017.
- Concentrations of total xylenes were either below the NMWQCC standard $(620 \ \mu g/L)$ or not detected in the Site monitoring wells sampled in 2017.

Johnston Fed #4 NMOCD Case #: 3RP-201-0 Meter Code: 70194 T31N, R09W, Sec 27, Unit H

PLANNED FUTURE ACTIVITIES

Groundwater monitoring events will be conducted on a semi-annual basis, utilizing a selection of site monitoring wells which provides an adequate representation of site conditions. Groundwater samples will be collected from monitoring wells not containing free product and analyzed for BTEX constituents using EPA Method 8260.

Air sparge/soil vapor extraction feasibility testing is planned for 2018 in support of a sitewide plan to remediate the site. A work plan for these activities will be submitted under separate cover for NMOCD approval.

The activities completed in 2018 and their results will be summarized in the 2018 Annual Report, completed for submittal in early 2019.

P:\Word Processing\KINDER MORGAN\EL PASO - NM\JOHNSTON FED #4\2017 ANNUAL REPORT (JOHNSTON FED #4)\2018-03_Rpt_Johnston Fed#4 2017 Annual Report_Final.doc

TABLES

TABLE 1 – GROUNDWATER ANALYTICAL RESULTSTABLE 2 – GROUNDWATER ELEVATION RESULTS

	Johnston Fed #4									
Location	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)					
NMWQCC	Standards:	10	750	750	620					
MW-1	08/08/95	590	2040	137	1764					
MW-1	01/04/96	7380	20900	1480	14600					
MW-1	12/17/96	762	1930	107	1270					
MW-1	03/06/97	483	1110	66.1	678					
MW-1	06/09/09	1630	3000	268	3880					
MW-1	06/07/10	1630	3130	213	3840					
MW-1	05/10/11	1000	1710	206	2400					
MW-1	05/14/12	1200	2170	152	2580					
MW-1	06/09/13	3900	14000	610	10000					
MW-1	05/29/15	1600	4000	220	2400					
MW-2	01/04/96	1104	5107	479	4640					
MW-2	12/17/96	5900	8970	197	4670					
MW-2	03/06/97	4500	6480	236	4920					
MW-2	06/22/01	2800	180	41	140					
MW-2	06/03/02	370	11	24	18					
MW-2	06/18/03	186	<5	34.9	16.8					
MW-2	06/22/04	88.9	24	32.9	15.2					
MW-2	06/23/05	283	9.4	27.7	64.5					
MW-2	06/07/06	92.1	18.4	4.4	5.9					
MW-2	06/19/07	83	<1	7.3	7.2					
MW-2	06/17/08	201	4.2	16.6	17.9					
MW-2	06/09/09	18.5	0.82 J	2.8	6.9					
MW-2	06/07/10	5.6	0.99 J	<2	<6					
MW-2	05/10/11	5.3	1.2	0.046 J	J2.3					
MW-2	05/14/12	7.2	1.4	0.56 J	2.7 J					
MW-2	06/09/13	1.8	<0.30	<0.20	<0.23					
MW-2	09/09/13	1.7	<0.30	<0.20	<0.23					
MW-2	12/12/13	1.5 J	<0.38	<0.20	0.80 J					
MW-2	04/02/14	540	36	230	1500					
MW-2	10/23/14	0.74 J	<0.70	<0.50	<1.6					
MW-2	05/29/15	0.63 J	<5.0	<1.0	2.6 J					
MW-2	11/23/15	<1.0	<1.0	<1.0	<3.0					

Johnston Fed #4								
Location	Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)			
NMWQCC	Standards:	10	750	750	620			
MW-3	03/19/96	3660	5410	436	3730			
MW-3	12/17/96	3910	8210	530	5020			
MW-3	03/06/97	6670	12700	759	7020			
MW-3	06/09/09	6100	8700	627	6630			
MW-3	06/07/10	7440	10800	578	7170			
MW-3	05/10/11	4180	4990	421	3780			
MW-3	05/14/12	8100	15800	1040	11100			
MW-3	06/09/13	5100	12000	870	11000			
MW-4	06/19/07	<1	<1	<1	<2			
MW-4	06/17/08	<1	<1	<1	<2			
MW-4	06/09/09	<1	0.47 J	<1	0.77 J			
MW-4	06/07/10	<2	<2	<2	<6			
MW-4	05/10/11	<1	<1	<1	<3			
MW-4	05/14/12	0.41 J	0.36 J	0.33 J	<1			
MW-4	06/09/13	<0.14	<0.30	<0.20	<0.23			
MW-4	09/09/13	<0.14	<0.30	<0.20	<0.23			
MW-4	12/12/13	<0.20	<0.38	<0.20	<0.65			
MW-4	04/02/14	<0.20	<0.38	<0.20	<0.65			
MW-4	10/23/14	<0.38	<0.70	<0.50	<1.6			
MW-4	05/29/15	<1.0	1.3 J	<1.0	<5.0			
MW-4	11/23/15	<1.0	<1.0	<1.0	<3.0			
TMW-5	06/19/07	2730	7.6	680	1160			
TMW-5	06/17/08	3190	217	651	1220			
TMW-5	06/09/09	1540	285	568	784			
TMW-5	06/07/10	1970	207	591	746			
TMW-5	05/10/11	3730	124	459	221			
TMW-5	05/14/12	6180	52.6	614	243			
TMW-5	06/09/13	6400	210	400	180			
TMW-5	09/09/13	5600	26	470	100			
TMW-5	12/12/13	3900	29 J	400	120			
TMW-5	04/02/14	4900	770	510	630			
TMW-5		W	ell abandone	ed 8/11/2014				

	Johnston Fed #4									
		Benzene	Toluene	Ethylbenzene	Total Xylenes					
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)					
NMWQCC	Standards:	10	750	750	620					
MW-6	10/23/14	230	3.3	420	120					
MW-6	05/29/15	130	4.8 J	210	86					
MW-6	11/23/15	330	21	260	84					
MW-6	04/16/16	49	52	140	40					
MW-6	10/12/16	77	25	17	<5.0					
MW-6	06/09/17	36	<5.0	<1.0	15					
MW-6	11/12/17	66	20	9.5	83					
MW-7	12/12/13	120	110	49 J	490					
MW-7	04/02/14	3.5	3.6	4	<0.65					
MW-7	10/23/14	4.6	<0.70	2.8	<1.6					
MW-7	05/29/15	<1.0	<5.0	<1.0	<5.0					
MW-7	11/23/15	<1.0	<1.0	<1.0	<3.0					
MW-7	04/16/16	<1.0	<5.0	<1.0	<5.0					
MW-7	10/12/16	<1.0	<5.0	<1.0	<5.0					
MW-7	06/09/17	<1.0	<5.0	<1.0	<5.0					
MW-7	11/12/17	<1.0	<1.0	<1.0	<10					
MW-9	12/12/13	180	310	46	430					
MW-9	04/02/14	230	27	140	810					
MW-9	10/23/14	10	1.6	9.4	2.9 J					
MW-9	05/29/15	15	8.4 J	6	21					
MW-9	11/23/15	9	2.8	<1.0	<3.0					
MW-9	04/16/16	29	24	4.3	8.3					
MW-9	10/12/16	1	8.7	<1.0	<5.0					
MW-9	06/09/17	29	11	<1.0	5.4					
MW-9	11/12/17	130	42	2.1	10					
MW-10	12/12/13	1200	3500	300	3200					
MW-10	04/02/14	4.3	7	<0.20	13					
MW-10	10/23/14	93	1.3	87	50					
MW-10	05/29/15	130	8.5	31	13					
MW-10	11/23/15	120	20	8.8	11					
MW-12	12/12/13	<0.14	<0.30	<0.20	0.39 J					
MW-12	04/02/14	<0.20	0.54 J	<0.20	<0.65					
MW-12	10/23/14	0.71 J	<0.70	0.59 J	<1.6					
MW-12	05/29/15	<1.0	<5.0	<1.0	<5.0					
MW-12	11/23/15	<1.0	<1.0	<1.0	<3.0					

	Johnston Fed #4									
		Benzene	Toluene	Ethylbenzene	Total Xylenes					
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)					
NMWQCC	Standards:	10	750	750	620					
MW-13	10/23/14	710	2	7.8	21					
MW-13	05/29/15	6.1	<5.0	0.81 J	2.4 J					
MW-13	11/23/15	3.7	<1.0	<1.0	<3.0					
MW-13	04/16/16	1.6	<5.0	<1.0	<5.0					
MW-13	10/12/16	1.8	<5.0	<1.0	<5.0					
MW-13	06/09/17	3.4	<5.0	<1.0	<5.0					
MW-13	11/12/17	<1.0	<1.0	<1.0	<10					
MW-14	10/23/14	<0.38	<0.70	<0.50	<1.6					
MW-14	05/29/15	<1.0	<5.0	<1.0	<5.0					
MW-14	11/23/15	<1.0	<1.0	<1.0	<3.0					
MW-15	10/23/14	61	1	18	120					
MW-15	05/29/15	3200	1500	410	1700					
MW-15	11/23/15	180	19	19	24					
MW-15	04/16/16	5.8	9.5	<1.0	8.5					
MW-15	10/12/16	8.3	7.6	<1.0	6.2					
MW-15	06/09/17	19	<5.0	3	15					
MW-15	11/12/17	1100	180	71	290					
MW-16	10/23/14	0.93 J	<0.70	<0.50	3.4 J					
MW-16	05/29/15	54	15	22	24					
MW-16	11/23/15	4.2	1.1	2.3	<3.0					
MW-16	04/16/16	590	120	140	430					
MW-16	10/12/16	<1.0	<5.0	<1.0	<5.0					
MW-16	06/09/17	<1.0	<5.0	<1.0	<5.0					
MW-16	11/12/17	29	2.3	2.8	14					
MW-17	10/23/14	3	<0.70	1.5	4.6 J					
MW-17	05/29/15	6.7	0.98 J	3.4	16					
MW-17	11/23/15	14	<1.0	5.9	12					
MW-17	04/16/16	NS	NS	NS	NS					
MW-18	10/23/14	6.5	3.2	<0.50	11					
MW-18	05/29/15	12	7.2	2.8	16					
MW-18	11/23/15	18	10	3.6	24					
MW-18	04/16/16	2.4	<5.0	1.1	7.5					
MW-18	10/12/16	1.4	<5.0	<1.0	<5.0					
MW-18	06/09/17	8.7	<5.0	3.5	24					
MW-18	11/12/17	<1.0	<1.0	<1.0	<10					

	Johnston Fed #4									
		Benzene	Toluene	Ethylbenzene	Total Xylenes					
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)					
NMWQCC	Standards:	10	750	750	620					
MW-19	10/23/14	22	6	1.7	20					
MW-19	05/29/15	3.7	<5.0	1.3	2.6 J					
MW-19	11/23/15	67	18	15	40					
MW-19	04/16/16	<1.0	<5.0	<1.0	<5.0					
MW-19	10/12/16	<1.0	<5.0	<1.0	<5.0					
MW-19	06/09/17	64	31	7.3	55					
MW-19	11/12/17	68	20	8.5	62					
MW-20	10/23/14	28	2.7	2.6	42					
MW-20	05/29/15	28	3.7 J	10	6.3					
MW-20	11/23/15	6.9	<1.0	12	<3.0					
MW-20	04/16/16	<1.0	<5.0	<1.0	<5.0					
MW-20	10/12/16	NS	NS	NS	NS					
MW-20	06/09/17	42	11	1.1	37					
MW-20	1/12/17	58	25	1.3	17					

Notes:

The groundwater monitoring dates for each monitoring well where no groundwater samples were collected and analyzed have been omitted.

"µg/L" = micrograms per liter

Results highlighted yellow exceed their respective New Mexico Water Quality Control Commission (NMWQCC) standards.

"J" = Result is less than the reporting limit but greater than or equal to the method detection limit and the result in an approximate value.

"<" = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).

Johnston Fed #4									
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-1	08/08/95	6073.45	50.08	NR		6023.37			
MW-1	01/04/96	6073.45	50.23	NR		6023.22			
MW-1	12/17/96	6073.45	50.50	49.94	0.56	6023.37			
MW-1	03/06/97	6073.45	50.38	49.99	0.39	6023.36			
MW-1	06/22/01	6073.45	49.96	49.82	0.14	6023.59			
MW-1	09/04/01	6073.45	50.05	49.94	0.11	6023.48			
MW-1	03/04/02	6073.45	50.40	50.23	0.17	6023.18			
MW-1	06/03/02	6073.45	50.50	50.31	0.19	6023.09			
MW-1	09/10/02	6073.45	50.70	50.51	0.19	6022.89			
MW-1	12/12/02	6073.45	50.83	50.60	0.23	6022.79			
MW-1	03/14/03	6073.45	50.90	50.73	0.17	6022.68			
MW-1	06/18/03	6073.45	51.28	50.74	0.54	6022.57			
MW-1	09/16/03	6073.45	51.70	50.78	0.92	6022.44			
MW-1	12/17/03	6073.45	51.15	50.92	0.23	6022.47			
MW-1	03/16/04	6073.45	51.14	50.98	0.16	6022.43			
MW-1	06/22/04	6073.45	51.15	51.02	0.13	6022.40			
MW-1	09/22/04	6073.45	51.18	51.06	0.12	6022.36			
MW-1	12/21/04	6073.45	51.15	51.08	0.07	6022.35			
MW-1	03/23/05	6073.45	51.13	ND		6022.32			
MW-1	06/23/05	6073.45	51.09	ND		6022.36			
MW-1	09/20/05	6073.45	51.12	ND		6022.33			
MW-1	12/14/05	6073.45	51.02	ND		6022.43			
MW-1	12/15/05	6073.45	51.02	ND		6022.43			
MW-1	03/27/06	6073.45	51.86	ND		6021.59			
MW-1	06/07/06	6073.45	50.92	ND		6022.53			
MW-1	09/25/06	6073.45	51.09	ND		6022.36			
MW-1	12/07/06	6073.45	51.06	ND		6022.39			
MW-1	03/28/07	6073.45	50.85	ND		6022.60			
MW-1	06/18/07	6073.45	50.90	ND		6022.55			
MW-1	09/17/07	6073.45	51.04	ND		6022.41			
MW-1	12/17/07	6073.45	51.05	ND		6022.40			
MW-1	03/10/08	6073.45	50.93	ND		6022.52			
MW-1	06/17/08	6073.45	50.14	ND		6023.31			
MW-1	09/10/08	6073.45	49.81	ND		6023.64			
MW-1	12/02/08	6073.45	49.66	ND		6023.79			
MW-1	03/03/09	6073.45	49.60	ND		6023.85			
MW-1	06/09/09	6073.45	49.61	ND		6023.84			
MW-1	08/28/09	6073.45	49.71	ND		6023.74			
MW-1	11/04/09	6073.45	49.83	ND		6023.62			
MW-1	02/11/10	6073.45	49.93	ND		6023.52			
MW-1	06/07/10	6073.45	50.12	ND		6023.33			

Johnston Fed #4									
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-1	09/24/10	6073.45	50.33	ND		6023.12			
MW-1	11/02/10	6073.45	50.40	ND		6023.05			
MW-1	02/07/11	6073.45	50.53	ND		6022.92			
MW-1	05/10/11	6073.45	50.69	ND		6022.76			
MW-1	09/23/11	6073.45	50.93	ND		6022.52			
MW-1	11/01/11	6073.45	50.99	ND		6022.46			
MW-1	02/21/12	6073.45	51.15	ND		6022.30			
MW-1	05/14/12	6073.45	51.24	ND		6022.21			
MW-1	06/09/13	6073.45	51.68	51.61	0.07	6021.82			
MW-1	09/09/13	6073.45	51.84	51.78	0.06	6021.65			
MW-1	12/12/13	6073.45	51.85	51.80	0.05	6021.64			
MW-1	04/02/14	6073.45	51.81	ND		6021.64			
MW-1	10/23/14	6073.45	52.04	51.95	TRACE	6021.48			
MW-1	05/29/15	6073.45	52.02	ND		6021.43			
MW-1	11/23/15	6073.45	51.76	51.76	TRACE	6021.69			
MW-1	04/16/16	6073.45	51.68	51.61	0.07	6021.82			
MW-1	10/12/16	6073.45	51.73	51.71	0.02	6021.73			
MW-1	06/09/17	6073.45	51.78	51.76	0.02	6021.68			
MW-1	11/12/17	6073.45	51.86	51.85	0.01	6021.60			

Johnston Fed #4 Depth to LNAPL **GW** Elevation Depth to Location Date TOC Water (ft.) LNAPL (ft.) Thickness (ft.) (ft.) MW-2 01/04/96 6072.14 48.71 NR 6023.43 MW-2 12/17/96 6072.14 48.84 NR 6023.30 MW-2 03/06/97 6072.14 48.94 NR 6023.20 MW-2 06/22/01 6072.14 48.62 NR 6023.52 NR **MW-2** 09/04/01 6072.14 48.78 6023.36 MW-2 NR 06/03/02 6072.14 49.15 6022.99 MW-2 NR 09/10/02 6072.14 49.27 6022.87 MW-2 12/12/02 6072.14 49.42 NR 6022.72 MW-2 06/18/03 6072.14 49.62 ND 6022.52 MW-2 ND 09/16/03 6072.14 49.76 6022.38 MW-2 ND 12/17/03 6072.14 49.72 6022.42 MW-2 03/16/04 6072.14 49.78 ND 6022.36 MW-2 06/22/04 6072.14 49.82 ND 6022.32 MW-2 49.84 ND 09/22/04 6072.14 6022.30 MW-2 12/21/04 6072.14 ND 49.86 6022.28 MW-2 03/23/05 6072.14 49.89 ND 6022.25 MW-2 06/23/05 6072.14 49.87 ND 6022.27 MW-2 09/20/05 6072.14 49.89 ND 6022.25 MW-2 ND 12/14/05 6072.14 49.75 6022.39 MW-2 ND 03/27/06 6072.14 49.62 6022.52 MW-2 06/07/06 ND 6072.14 49.67 6022.47 MW-2 09/25/06 ND 6072.14 49.85 6022.29 MW-2 49.82 ND 12/07/06 6072.14 6022.32 MW-2 49.63 03/28/07 6072.14 ND 6022.51 6072.14 MW-2 49.67 ND 06/19/07 6022.47 MW-2 ND 09/17/07 6072.14 49.82 6022.32 ND MW-2 12/17/07 6072.14 49.82 6022.32 MW-2 6072.14 ND 03/10/08 49.92 6022.22 MW-2 06/17/08 6072.14 48.93 ND 6023.21 09/10/08 6072.14 MW-2 48.60 ND 6023.54 MW-2 12/02/08 6072.14 48.43 ND 6023.71 MW-2 03/03/09 6072.14 48.37 ND 6023.77 MW-2 6072.14 48.38 ND 06/04/09 6023.76 MW-2 6072.14 48.43 ND 06/09/09 6023.71 MW-2 48.50 ND 08/28/09 6072.14 6023.64 MW-2 11/04/09 6072.14 48.62 ND 6023.52 MW-2 02/11/10 6072.14 48.72 ND 6023.42 MW-2 06/07/10 6072.14 48.98 ND 6023.16 6072.14 MW-2 09/24/10 49.11 ND 6023.03

MW-2

MW-2

11/02/10

02/07/11

6072.14

6072.14

49.17

49.33

ND

ND

6022.97

6022.81

Johnston Fed #4									
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	ТОС	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-2	05/10/11	6072.14	49.45	ND		6022.69			
MW-2	09/23/11	6072.14	49.72	ND		6022.42			
MW-2	11/01/11	6072.14	49.77	ND		6022.37			
MW-2	02/21/12	6072.14	49.91	ND		6022.23			
MW-2	05/14/12	6072.14	50.00	ND		6022.14			
MW-2	06/09/13	6072.14	50.38	ND		6021.76			
MW-2	09/09/13	6072.14	50.56	ND		6021.58			
MW-2	12/12/13	6072.14	50.56	ND		6021.58			
MW-2	04/02/14	6072.14	50.59	ND		6021.55			
MW-2	10/23/14	6072.14	50.73	ND		6021.41			
MW-2	05/29/15	6072.14	50.80	ND		6021.34			
MW-2	11/23/15	6072.14	50.54	ND		6021.60			
MW-2	04/16/16	6072.14	50.39	ND		6021.75			
MW-2	10/12/16	6072.14	50.47	ND		6021.67			
MW-2	06/09/17	6072.14	50.52	ND		6021.62			
MW-2	11/12/17	6072.14	50.65	ND		6021.49			

Johnston Fed #4 LNAPL **GW** Elevation Depth to Depth to Location Date TOC Water (ft.) LNAPL (ft.) Thickness (ft.) (ft.) MW-3 03/19/96 6073.11 49.81 NR 6023.30 MW-3 12/17/96 6073.11 49.84 NR 6023.27 MW-3 03/06/97 6073.11 49.87 49.83 0.04 6023.27 MW-3 06/22/01 6073.11 49.66 49.58 0.08 6023.51 **MW-3** 09/04/01 6073.11 49.76 49.70 0.06 6023.39 MW-3 03/04/02 6073.11 50.35 49.91 0.44 6023.09 MW-3 06/03/02 6073.11 50.62 49.96 0.66 6022.98 MW-3 09/10/02 6073.11 50.79 50.12 6022.82 0.67 MW-3 12/12/02 50.25 0.70 6073.11 50.95 6022.68 MW-3 03/14/03 6073.11 51.03 50.34 0.69 6022.60 MW-3 06/18/03 6073.11 51.16 50.45 0.71 6022.48 MW-3 09/16/03 6073.11 51.30 50.59 0.71 6022.34 MW-3 12/17/03 6073.11 51.08 50.60 0.48 6022.39 MW-3 03/16/04 6073.11 51.10 50.68 0.42 6022.32 MW-3 51.22 06/22/04 6073.11 50.68 0.54 6022.29 MW-3 09/22/04 6073.11 51.30 50.69 0.61 6022.27 MW-3 12/21/04 6073.11 51.32 50.71 0.61 6022.25 MW-3 03/23/05 6073.11 51.85 50.76 1.09 6022.08 MW-3 06/23/05 6073.11 51.20 50.76 0.44 6022.24 MW-3 09/20/05 6073.11 51.43 ND 6021 68

						0021100
MW-3	12/14/05	6073.11	51.31	ND		6021.80
MW-3	12/15/05	6073.11	51.32	50.92	0.40	6022.09
MW-3	03/27/06	6073.11	50.92	50.58	0.34	6022.44
MW-3	06/07/06	6073.11	51.01	50.56	0.45	6022.44
MW-3	09/25/06	6073.11	51.27	50.80	0.47	6022.19
MW-3	12/07/06	6073.11	51.07	50.77	0.30	6022.26
MW-3	03/28/07	6073.11	50.99	50.66	0.33	6022.37
MW-3	06/18/07	6073.11	50.97	50.58	0.39	6022.43
MW-3	09/17/07	6073.11	51.15	50.78	0.37	6022.24
MW-3	12/17/07	6073.11	51.08	50.78	0.30	6022.25
MW-3	03/10/08	6073.11	50.90	50.75	0.15	6022.32
MW-3	06/17/08	6073.11	49.98	49.89	0.09	6023.20
MW-3	09/10/08	6073.11	49.77	ND		6023.34
MW-3	12/02/08	6073.11	49.58	ND		6023.53
MW-3	03/03/09	6073.11	49.55	ND		6023.56
MW-3	06/09/09	6073.11	49.39	ND		6023.72
MW-3	08/28/09	6073.11	49.65	ND		6023.46
MW-3	11/04/09	6073.11	49.63	ND		6023.48
MW-3	02/11/10	6073.11	49.83	ND		6023.28
MW-3	06/07/10	6073.11	49.90	49.70	0.20	6023.36
MW-3	09/24/10	6073.11	50.19	ND		6022.92

	Johnston Fed #4								
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-3	11/02/10	6073.11	50.26	ND		6022.85			
MW-3	02/07/11	6073.11	50.40	ND		6022.71			
MW-3	05/10/11	6073.11	50.46	ND		6022.65			
MW-3	09/23/11	6073.11	50.73	ND		6022.38			
MW-3	11/01/11	6073.11	50.82	ND		6022.29			
MW-3	02/21/12	6073.11	51.36	50.86	0.50	6022.12			
MW-3	05/14/12	6073.11	51.50	50.84	0.66	6022.10			
MW-3	06/09/13	6073.11	52.02	51.15	0.87	6021.74			
MW-3	09/09/13	6073.11	52.36	51.29	1.07	6021.55			
MW-3	12/12/13	6073.11	52.39	51.30	1.09	6021.54			
MW-3	04/02/14	6073.11	52.41	51.30	1.11	6021.53			
MW-3	10/23/14	6073.11	52.59	51.43	1.16	6021.39			
MW-3	05/29/15	6073.11	52.64	51.51	1.13	6021.32			
MW-3	11/23/15	6073.11	52.11	51.32	0.79	6021.59			
MW-3	04/16/16	6073.11	51.90	51.20	0.70	6021.73			
MW-3	10/12/16	6073.11	51.42	ND		6021.69			
MW-3	06/09/17	6073.11	51.52	51.50	0.02	6021.60			
MW-3	11/12/17	6073.11	51.55	51.54	0.01	6021.57			

Johnston Fed #4 LNAPL **GW** Elevation Depth to Depth to LNAPL (ft.) Location Date TOC Water (ft.) Thickness (ft.) (ft.) MW-4 12/07/06 6072.71 50.40 ND 6022.31 MW-4 03/28/07 6072.71 50.19 ND 6022.52 MW-4 06/19/07 6072.71 50.21 ND 6022.50 MW-4 09/17/07 6072.71 50.34 ND 6022.37 MW-4 12/17/07 6072.71 49.78 ND 6022.93 MW-4 ND 03/10/08 6072.71 50.30 6022.41 MW-4 06/17/08 6072.71 49.50 ND 6023.21 MW-4 09/10/08 6072.71 49.17 ND 6023.54 MW-4 6072.71 49.00 ND 12/02/08 6023.71 MW-4 ND 03/03/09 6072.71 48.93 6023.78 MW-4 ND 06/09/09 6072.71 48.94 6023.77 MW-4 08/28/09 6072.71 49.04 ND 6023.67 MW-4 11/04/09 6072.71 49.16 ND 6023.55 MW-4 ND 02/11/10 6072.71 49.26 6023.45 MW-4 6072.71 ND 06/07/10 49.45 6023.26 MW-4 09/24/10 6072.71 49.15 ND 6023.56 MW-4 11/02/10 6072.71 49.73 ND 6022.98 MW-4 02/07/11 6072.71 49.86 ND 6022.85 MW-4 ND 05/10/11 6072.71 49.98 6022.73 MW-4 ND 09/23/11 6072.71 50.09 6022.62 MW-4 ND 11/01/11 6072.71 50.31 6022.40 MW-4 ND 02/21/12 6072.71 50.46 6022.25 MW-4 ND 05/14/12 6072.71 50.55 6022.16 MW-4 06/09/13 6072.71 50.93 ND 6021.78 MW-4 ND 09/09/13 6072.71 51.11 6021.60 MW-4 12/12/13 6072.71 51.12 ND 6021.59 MW-4 04/02/14 6072.71 51.14 ND 6021.57 MW-4 ND 10/23/14 6072.71 51.26 6021.45 MW-4 05/29/15 6072.71 51.33 ND 6021.38 MW-4 11/23/15 6072.71 51.08 ND 6021.63 MW-4 04/16/16 6072.71 50.92 ND 6021.79 MW-4 10/12/16 6072.71 51.01 ND 6021.70 MW-4 51.07 ND 06/09/17 6072.71 6021.64 MW-4 ND 11/12/17 6072.71 51.17 6021.54

	-	-	Johns	ton Fed #4				
			Depth to	Depth to	LNAPL	GW Elevation		
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)		
TMW-5	12/07/06	6072.29	49.83	ND		6022.46		
TMW-5	03/28/07	6072.29	49.58	ND		6022.71		
TMW-5	06/19/07	6072.29	49.64	ND		6022.65		
TMW-5	09/17/07	6072.29	49.77	ND		6022.52		
TMW-5	12/17/07	6072.29	50.38	ND		6021.91		
TMW-5	03/10/08	6072.29	46.59	ND		6025.70		
TMW-5	06/17/08	6072.29	48.87	ND		6023.42		
TMW-5	09/10/08	6072.29	48.56	ND		6023.73		
TMW-5	12/02/08	6072.29	48.44	ND		6023.85		
TMW-5	03/03/09	6072.29	44.40	ND		6027.89		
TMW-5	06/09/09	6072.29	48.38	ND		6023.91		
TMW-5	08/28/09	6072.29	DRY	ND		0.00		
TMW-5	11/04/09	6072.29	48.58	ND		6023.71		
TMW-5	02/11/10	6072.29	48.67	ND		6023.62		
TMW-5	06/07/10	6072.29	48.81	ND		6023.48		
TMW-5	09/24/10	6072.29	49.04	ND		6023.25		
TMW-5	11/02/10	6072.29	49.12	ND		6023.17		
TMW-5	02/07/11	6072.29	49.30	ND		6022.99		
TMW-5	05/10/11	6072.29	49.41	ND		6022.88		
TMW-5	09/23/11	6072.29	49.70	ND		6022.59		
TMW-5	11/01/11	6072.29	49.71	ND		6022.58		
TMW-5	02/21/12	6072.29	49.87	ND		6022.42		
TMW-5	05/14/12	6072.29	49.96	ND		6022.33		
TMW-5	06/09/13	6072.29	50.31	ND		6021.98		
TMW-5	09/09/13	6072.29	50.48	ND		6021.81		
TMW-5	12/12/13	6072.29	50.53	ND		6021.76		
TMW-5	04/02/14	6072.29	50.54	ND		6021.75		
TMW-5			Wella	abandoned 8/1	1/2014			

Johnston Fed #4 LNAPL **GW** Elevation Depth to Depth to Thickness (ft.) Location Date TOC Water (ft.) LNAPL (ft.) (ft.) MW-6 12/12/13 6072.74 51.13 51.10 0.03 6021.63 MW-6 04/02/14 6072.74 51.15 51.12 0.03 6021.61 MW-6 10/23/14 6072.74 51.26 ND 6021.48 MW-6 05/29/15 6072.74 51.34 ND 6021.40 MW-6 11/23/15 6072.74 51.08 ND 6021.66 MW-6 ND 04/16/16 6072.74 50.89 6021.85 MW-6 ND 10/12/16 6072.74 51.02 6021.72 MW-6 06/09/17 6072.74 51.08 ND 6021.66 MW-6 11/12/17 6072.74 51.19 ND 6021.55 MW-7 12/12/13 6072.63 51.12 ND 6021.51 MW-7 04/02/14 6072.63 51.13 ND 6021.50 MW-7 10/23/14 6072.63 51.25 ND 6021.38 MW-7 ND 05/29/15 6072.63 51.33 6021.30 MW-7 51.06 ND 11/23/15 6072.63 6021.57 MW-7 04/16/16 6072.63 50.90 ND 6021.73 MW-7 10/12/16 6072.63 51.01 ND 6021.62 MW-7 06/09/17 6072.63 51.07 ND 6021.56 MW-7 11/12/17 ND 6072.63 51.18 6021.45 MW-8 51.94 12/12/13 6072.62 50.80 1.14 6021.54 **MW-8** 04/02/14 6072.62 51.93 50.81 1.12 6021.53 MW-8 50.93 1.19 10/23/14 6072.62 52.12 6021.39 **MW-8** 05/29/15 6072.62 52.18 51.00 1.18 6021.33 MW-8 11/23/15 50.83 0.80 6072.62 51.63 6021.59 MW-8 04/16/16 6072.62 51.44 50.68 0.76 6021.75 MW-8 10/12/16 6072.62 51.52 50.81 0.71 6021.63 **MW-8** 06/09/17 6072.62 51.11 51.01 0.10 6021.59 MW-8 11/12/17 6072.62 50.82 50.78 0.04 6021.83 **MW-9** 12/12/13 6073.63 51.85 ND 6021.78 **MW-9** 04/02/14 6073.63 51.87 ND 6021.76 **MW-9** 52.01 ND 10/23/14 6073.63 6021.62 MW-9 52.08 ND 05/29/15 6073.63 6021.55 MW-9 ND 11/23/15 6073.63 51.83 6021.80 MW-9 04/16/16 6073.63 51.66 ND 6021.97 51.77 MW-9 ND 10/12/16 6073.63 6021.86 MW-9 ND 06/09/17 6073.63 51.83 6021.80 **MW-9** 52.00 ND 11/12/17 6073.63 6021.63

Johnston Fed #4 LNAPL **GW** Elevation Depth to Depth to LNAPL (ft.) Location Date TOC Water (ft.) Thickness (ft.) (ft.) **MW-10** 12/12/13 6073.44 51.79 ND 6021.65 MW-10 04/02/14 6073.44 51.81 ND 6021.63 **MW-10** 10/23/14 6073.44 51.94 ND 6021.50 MW-10 05/29/15 6073.44 52.03 ND 6021.41 **MW-10** 11/23/15 6073.44 51.74 ND 6021.70 MW-10 ND 04/16/16 6073.44 51.60 6021.84 ND **MW-10** 10/12/16 6073.44 51.70 6021.74 MW-10 06/09/17 6073.44 51.75 ND 6021.69 **MW-10** 11/12/17 6073.44 51.86 ND 6021.58 MW-11 12/12/13 6073.38 52.43 51.60 0.83 6021.57 0.72 **MW-11** 04/02/14 6073.38 52.33 51.61 6021.59 MW-11 10/23/14 6073.38 52.59 51.73 0.86 6021.44 05/29/15 51.79 **MW-11** 6073.38 52.69 0.90 6021.37 MW-11 11/23/15 52.14 6073.38 51.61 0.53 6021.64 MW-11 04/16/16 6073.38 51.80 51.51 0.29 6021.80 MW-11 10/12/16 6073.38 51.80 51.68 0.12 6021.67 MW-11 06/09/17 6073.38 53.24 51.22 2.02 6021.66 MW-11 11/12/17 51.52 6073.38 51.54 0.02 6021.86 MW-12 48.13 ND 12/12/13 6073.30 6025.17 **MW-12** 04/02/14 6073.30 48.09 ND 6025.21 **MW-12** 10/23/14 ND 6073.30 48.31 6024.99 MW-12 05/29/15 6073.30 48.31 ND 6024.99 **MW-12** 11/23/15 ND 6073.30 48.11 6025.19 MW-12 04/16/16 6073.30 47.85 ND 6025.45 MW-12 10/12/16 6073.30 47.57 ND 6025.73 MW-12 6073.30 ND 06/09/17 47.54 6025.76 6073.30 **MW-12** 11/12/17 47.51 ND 6025.79 **MW-13** 10/23/14 6073.25 51.62 ND 6021.63 **MW-13** 05/29/15 6073.25 51.69 ND 6021.56 **MW-13** 51.42 ND 11/23/15 6073.25 6021.83 **MW-13** 51.29 ND 04/16/16 6073.25 6021.96 MW-13 10/12/16 6073.25 51.37 ND 6021.88 MW-13 06/09/17 6073.25 51.44 ND 6021.81 MW-13 ND 11/12/17 6073.25 51.54 6021.71

Johnston Fed #4 LNAPL **GW** Elevation Depth to Depth to LNAPL (ft.) Location Date TOC Water (ft.) Thickness (ft.) (ft.) **MW-14** 10/23/14 6073.14 51.53 ND 6021.61 MW-14 05/29/15 6073.14 51.60 ND 6021.54 MW-14 11/23/15 6073.14 51.33 ND 6021.81 MW-14 04/16/16 6073.14 51.19 ND 6021.95 **MW-14** 10/12/16 6073.14 51.30 ND 6021.84 MW-14 ND 06/09/17 6073.14 51.35 6021.79 MW-14 11/12/17 6073.14 51.46 ND 6021.68 **MW-15** 10/23/14 6072.47 ND 51.14 6021.33 ND MW-15 05/29/15 6072.47 51.19 6021.28 MW-15 ND 11/23/15 6072.47 50.93 6021.54 **MW-15** 04/16/16 6072.47 50.78 ND 6021.69 MW-15 10/12/16 6072.47 50.87 ND 6021.60 **MW-15** 06/09/17 6072.47 50.96 ND 6021.51 MW-15 11/12/17 ND 6072.47 51.06 6021.41 MW-16 10/23/14 6071.78 50.49 ND 6021.29 MW-16 05/29/15 6071.78 50.57 ND 6021.21 ND MW-16 11/23/15 6071.78 50.30 6021.48 MW-16 ND 04/16/16 6071.78 50.15 6021.63 **MW-16** 10/12/16 50.24 ND 6071.78 6021.54 MW-16 06/09/17 6071.78 50.32 ND 6021.46 MW-16 11/12/17 ND 6071.78 50.44 6021.34 ND **MW-17** 10/23/14 6071.79 50.51 6021.28 MW-17 05/29/15 6071.79 50.58 ND 6021.21 MW-17 11/23/15 6071.79 50.31 ND 6021.48 6071.79 MW-17 ND 04/16/16 50.16 6021.63 **MW-17** 10/12/16 6071.79 50.26 ND 6021.53 MW-17 06/09/17 6071.79 50.30 ND 6021.49 MW-17 11/12/17 6071.79 50.43 ND 6021.36 **MW-18** 6072.71 51.28 ND 10/23/14 6021.43 **MW-18** 51.37 ND 05/29/15 6072.71 6021.34 MW-18 11/23/15 6072.71 51.09 ND 6021.62 MW-18 04/16/16 6072.71 50.94 ND 6021.77 MW-18 51.03 ND 10/12/16 6072.71 6021.68 06/09/17 MW-18 51.10 ND 6072.71 6021.61 MW-18 11/12/17 51.20 ND 6072.71 6021.51

Johnston Fed #4									
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-19	10/23/14	6074.00	52.41	ND		6021.59			
MW-19	05/29/15	6074.00	52.48	ND		6021.52			
MW-19	11/23/15	6074.00	52.21	ND		6021.79			
MW-19	04/16/16	6074.00	52.17	ND		6021.83			
MW-19	10/12/16	6074.00	52.15	ND		6021.85			
MW-19	06/09/17	6074.00	52.22	ND		6021.78			
MW-19	11/12/17	6074.00	52.32	ND		6021.68			
MW-20	10/23/14	6072.77	51.33	ND		6021.44			
MW-20	05/29/15	6072.77	51.41	ND		6021.36			
MW-20	11/23/15	6072.77	51.14	ND		6021.63			
MW-20	04/16/16	6072.77	50.99	ND		6021.78			
MW-20	10/12/16	6072.77	51.09	ND		6021.68			
MW-20	06/09/17	6072.77	51.14	ND		6021.63			
MW-20	11/12/17	6072.77	51.24	ND		6021.53			

TABLE 2 - GROUNDWATER ELEVATION RESULTS

Notes:

"ft" = feet

"TOC" - Top of casing

"LNAPL" = light non-aqueous phase liquid

"ND" = LNAPL not detected

"NR" = LNAPL not recorded

FIGURES

- FIGURE 1: JUNE 9, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 2: JUNE 9, 2017 GROUNDWATER ELEVATION MAP
- FIGURE 3: NOVEMBER 12, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 4: NOVEMBER 12, 2017 GROUNDWATER ELEVATION MAP

RAWN BY REVIEWED

3

LEGEND: _____APPROX. GROUND SURFACE CONTOUR AND ELEVATION, FEET ACCESS ROAD GAS LINE 6-A-S — FENCE ABANDONED MONITORING WELL CONOCO PHILLIPS MONITORING WELL MONITORING WELL MONITORING WELL WITH MEASUREABLE FREE PRODUCT SMA BENCHMARK NOTES: GROUNDWATER ELEVATION CORRECTED FOR 6021.62 PRODUCT THICKNESS WHERE PRESENT (FEET ABOVE MEAN SEA LEVEL). CORRECTED WATER LEVEL ELEVATION CONTOUR DASHED WHERE INFERRED (FEET ABOVE MEAN SEA LEVEL, 0.1 FOOT CONTOUR INTERVAL) DIRECTION OF APPARENT GROUNDWATER FLOW GROUNDWATER ELEVATION APPEARS ANOMALOUS FOR MW-12 AND WAS NOT INCLUDED IN THE GROUNDWATER ELEVATION CONTOURS. SCALE IN FEET 30 REVISION DATE DESIGN BY DRAWN BY REVIEWED B A SLG SRV 1/17/2018 SLC GROUNDWATER ELEVATION MAP **NOVEMBER 12, 2017 JOHNSTON FED #4** SAN JUAN RIVER BASIN SAN JUAN COUNTY, NEW MEXICO igure No.: **Stantec** 4

APPENDICES

- APPENDIX A NOTIFICATION OF SITE ACTIVITIES
- APPENDIX B WASTE DISPOSAL DOCUMENTATION
- APPENDIX C MDPE REPORT
- APPENDIX D JUNE 9, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT NOVEMBER 12, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT

APPENDIX A

From:	Varsa, Steve
To:	Randolph.Bayliss@state.nm.us
Cc:	brandon.powell@state.nm.us; Wiley, Joe
Subject:	El Paso CGP Company - Notice of upcoming groundwater sampling activities
Date:	Tuesday, May 30, 2017 3:05:18 PM

Hi Randy –

This correspondence is to provide notice to the NMOCD of upcoming semi-annual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #			
Canada Mesa #2	3RP-155-0			
Fields A#7A	3RP-170-0			
Fogelson 4-1	3RP-068-0			
Gallegos Canyon Unit #124E	3RP-407-0			
GCU Com A #142E	3RP-179-0			
Hammond #41A	3RP-186-0			
James F. Bell #1E	3RP-196-0			
Johnston Fed #4	3RP-201-0			
Johnston Fed #6A	3RP-202-0			
K27 LDO72	3RP-204-0			
Knight #1	3RP-207-0			
Lateral L 40 Line Drip	3RP-212-0			
Lat O-21 Line Drip	3RP-213-0			
Lindrith B #24	3RP-214-0			
Miles Fed #1A	3RP-223-0			
Sandoval GC A #1A	3RP-235-0			
Standard Oil Com #1	3RP-238-0			
State Gas Com N #1	3RP-239-0			

Groundwater sampling and monitoring is planned to be conducted the week of June 5, 2017.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From:	Varsa, Steve
To:	Bayliss, Randolph, EMNRD
Cc:	Griswold, Jim, EMNRD; Perrin, Charlie, EMNRD; Powell, Brandon, EMNRD; Smith, Cory, EMNRD; Fields, Vanessa,
	EMNRD; Wiley, Joe
Subject:	RE: MPDE Work Plan Approvals
Date:	Saturday, July 08, 2017 4:55:00 PM

Hi Randy –

Pursuant to the conditions in the above-referenced July 5, 2017, approval letter, the following is the schedule for the MDPE activities:

James F. Bell #1E – start late the afternoon of Tuesday, July 11, and will go through Friday, July 14. Johnston Federal #4 and Johnston Federal #6A – both sites beginning on Saturday, July 15, and go through Tuesday, July 18. No work planned for Wednesday, July 19 (rest day). GCU #124 – Thursday, July 20 through Sunday, July 23. Knight #1 – Monday and Tuesday, July 24 and 25. K27 LD072 – Wednesday, July 26. Miles Federal #1A – Thursday, July 27.

As noted in the work plan submittal, work at State Gas Com N#1 is still pending receipt of a State Water Easement. NMOCD will be notified once the State Gas Com pilot testing activities have been scheduled, or if there are changes to the schedule offered above. Do you anticipate any OCD staff will be on-site during one or more of these events?

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Bayliss, Randolph, EMNRD [mailto:Randolph.Bayliss@state.nm.us] **Sent:** Wednesday, July 05, 2017 9:08 AM

To: Wiley, Joe <Joe_Wiley@kindermorgan.com>; Varsa, Steve <steve.varsa@stantec.com>
Cc: Griswold, Jim, EMNRD <Jim.Griswold@state.nm.us>; Perrin, Charlie, EMNRD
<charlie.perrin@state.nm.us>; Powell, Brandon, EMNRD <Brandon.Powell@state.nm.us>; Smith,
Cory, EMNRD <Cory.Smith@state.nm.us>; Fields, Vanessa, EMNRD <Vanessa.Fields@state.nm.us>;

Subject: MPDE Work Plan Approvals

Good morning Joe, Steve, others.

Thank you for your proposed MPDE efforts.

Cheers

Randowfoufiss

Randolph Bayliss, P.E. Hydrologist, Districts III and IV NMOCD Environmental Bureau 1220 S St Francis St, Santa Fe, NM 87505 505-476-3084, Cell 575-840-5961

From:	Varsa, Steve
To:	Bayliss, Randolph, EMNRD
Cc:	Smith, Cory, EMNRD; Fields, Vanessa, EMNRD; Wiley, Joe
Subject:	El Paso CGP Company - Notice of upcoming groundwater sampling activities
Date:	Monday, November 06, 2017 11:41:36 AM

Hi Randy -

This correspondence is to provide notice to the NMOCD of upcoming semiannual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #			
Canada Mesa #2	3RP-155-0			
Fields A#7A	3RP-170-0			
Fogelson 4-1	3RP-068-0			
Gallegos Canyon Unit #124E	3RP-407-0			
GCU Com A #142E	3RP-179-0			
James F. Bell #1E	3RP-196-0			
Johnston Fed #4	3RP-201-0			
Johnston Fed #6A	3RP-202-0			
K27 LDO72	3RP-204-0			
Knight #1	3RP-207-0			
Lateral L 40 Line Drip	3RP-212-0			
Lat O-21 Line Drip	3RP-213-0			
Miles Fed #1A	3RP-223-0			
Sandoval GC A #1A	3RP-235-0			
Standard Oil Com #1	3RP-238-0			
State Gas Com N #1	3RP-239-0			

Groundwater sampling and monitoring is planned to be conducted November 10-14, 2017.

Please contact Joe Wiley, remediation manager with El Paso CGP Company, at (713) 420-3475, or me, if you have any questions.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 <u>steve.varsa@stantec.com</u>

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

APPENDIX B

Solvers of Environmental Health and Safety Excellence BASIN Date Date Date HAULING CO. Date More Description: Description WASTE DESCRIPTION: Exempt Oilfield Waste					E 138 CCCP □Reserve P	it ATING PLANT			
NO.	TRUCK		S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1		Fogel507 4-1,1	Gallegos CO 124E	BI					
2		600 Com A 142	E Johnson Fed 4						
3		Johnston Late	a12-40 ato-21 line						
4		Sandoval GC &	oil com 1						5
5									
I, generator ar Agency's Jul	nd hauler hero ly 1988 regul	eby certify that according to the latory determination that the abov	Resource Conservation ve described waste is TENDANT SIGNATU	on and Recover RCRA Exempt	ry Act (RCR Oil field wa	representitiv (A) and the U astes.	e or autho S Environ	rized agent for mental Protecti san juan rep	the above on roduction 168-6
BAS DATE GENERATO HAULING O ORDERED WASTE DE STATE:		30 Years of Environmental Health and 200 Montana, Bloom 505-632-8936 or 50 OPEN 24 Hours per OPEN 24 Hours per Exempt Oilfield Waste CO □AZ □UT TREATM	Safety Excellence Infield, NM 87413 5-334-3013 Day Produced Wat	NO. NMOC Oil Fie INVC DEL. BILL DRIV COD ter Drill METHODS:	6905 D PERMIT: NM Id Waste Docum NCE: TKT#. TO: (Print Full ES: ing/Completi EVAPORA	35 -001-0005 hent, Form C	Reserve P	it ATING PLANT	
---	----------------------------------	--	---	--	---	---------------------------------	------------------	-------------------	
NO.	TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	- TIME	
1	54	John Sw Fed + 4	K	25			12 22		
2						*1	7 JUL 17	1:05.01	
3									
4									
5		Var Matano.							
I, generator an Agency's Jul	nd hauler here ly 1988 regula	by certify that according to the Resource Conservatory determination that the above described waste	ation and Recove is RCRA Exemp TURE	ry Act (RCF t Oil field wa	representitiv (A) and the U astes.	ve or autho JS Enviror	brized agent for	the above ion	

200

. "

san juan reproduction 168-6

: `								
BAS DISI	POS	30 Years of Environmental Health 200 Montana, Bl 505-632-8936 or OPEN 24 Hours	and Safety Excellence oomfield, NM 87413 r 505-334-3013 per Day	NO. NMO OII FI INVO DEL	690 CD PERMIT: N eld Waste Doc DICE:	489 M-001-0005 ument, Form	C138	
GENERATO	R:	El Paso CGP Company		BILL	TO:	7.1 Par	CGP	Cumper
HAULING C	0	Stenne OllGeld		DRI	/ER:	Juan		
ORDERED	B <u>Y:</u>	Joseph Wiley		COD	(Print Fu ES:	ll Name)		
WASTE DES	SCRIPTION:	Exempt Oilfield Waste	Produced Wat	er Drill	ing/Comple	tion Fluids	Reserve F	Pit
STATE:			MENT/DISPOSAL	METHODS:				EATING PLANT
NO.	TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	54	Johnson Fred A 4	21	, 75			15.25	
2						7.9	7 88 40 4	0.50
3							1.000 115 1	2330M
4								
5		Alle Mediana.						
and the second s		4						

I, ________ representitive or authorized agent for the above generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes.

Denied

ATTENDANT SIGNATURE

san juan reproduction 168-6

Stanley Grando

BAS DISF	POS	30 Years of Environmental Health and 3 200 Montana, Bloomfi 505-632-8936 or 505- OPEN 24 Hours per D	Safety Excellence eld, NM 87413 334-3013 lay	NO. NMOCI Oil Field INVOI DEL.	B 905 PERMIT: NI Waste Docu CE: TKT <u>#.</u>	20 M -001-0005 ment, Form C	138	
GENERATO	R:	El Paso		BILL T	·O:	51 Pas	<u>u</u>	
HAULING CO	D <u>.</u>	Stown Oil Gredd		DRIVE	R: (Print Full	Name)		
ORDERED E	<u>8Y:</u>	Joseph Willa		CODE	S:			
WASTE DES	SCRIPTION:	Exempt Oilfield Waste	Produced Wate	er Drillin	ng/Complet	ion Fluids	Reserve F	Pit
STATE:			NT/DISPOSAL N	IETHODS:	EVAPOR.	ation Minj		EATING PLAN
NO.	TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	54	Johnson Feel #4	14	.75			10.50	
2								
					1.1.1.1	7.9	7.AUL 17	7:31 AM
3						7.9	7.JUL 17	7:31 AM
3						7.	7.JUL 17	7:31 AM
3 4 5		Aure Madiano				73	7.JUL 17	7:31 AM

generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes.

Standay

Com

Approved

Denied

ATTENDANT SIGNATURE

san juan reproduction 168-

BAS DISF DATE GENERATOR		AL 21.17.17 Ell Paso	vironmental Health and Sa 200 Montana, Bloomfiel 505-632-8936 or 505-3 OPEN 24 Hours per Da	ifety Excellence d, NM 87413 34-3013 y	NO. NMOCE Oil Field INVOI DEL. ^T BILL T	B 905 PERMIT: NM Waste Docur CE: TKT#.	56 I-001-0005 nent, Form C	138 U	
HAULING CO).	Stema OIIC	reld		DRIVE	R: (Print Full	Name)		
ORDERED B	Y:	Joseph L	Jilen		CODE	S:			
WASTE DES	CRIPTION:	Exempt Oilfield Waste		Produced Wat	er Drillin	ng/Complet	ion Fluids	Reserve F	Pit
STATE:		CO AZ DUT	TREATMEN	T/DISPOSAL N	METHODS:	EVAPOR/			EATING PLANT
NO.	TRUCK	LOCATION	S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	44	Johnsa Pee	(1+4	614	0.25			10.50	
2									
3							A.	JUL 17	142464
4									
5		Mar ob lin	2						

representitive or authorized agent for the above

generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes.

Approved

ATTENDANT SIGNATURE

30 Years of En BASIN DISPOSAL DATE GENERATOR: HAULING CO. ORDERED BY: WASTE DESCRIPTION: Exempt Oilfield Waste STATE:	vironmental Health and Sa 200 Montana, Bloomfield 505-632-8936 or 505-33 OPEN 24 Hours per Day	fety Excellence d, NM 87413 34-3013 / Produced Wate	NO. NMOC Oil Fiel INVO DEL. BILL DRIV COD er Drill METHODS:	6906 D PERMIT: NM d Waste Docur ICE: TKT#. TO: ER: (Print Full ES: ing/Complet	1-001-0005 ment, Form C Mame)		t ATING PLANT
NO. TRUCK LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1 54 Johnson F	ed 4	A	0027	59		1650	
2			10			17.111 19	110-
3							11091
4							
5							

I, _______ representitive or authorized agent for the above generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes.

Approved

Denied

ATTENDANT SIGNATURE

BAS DIS DATE GENERATO HAULING O ORDERED WASTE DE	DR: BY: SCRIPTION:	30 Years of Environmental Health and 200 Montana, Bloon 505-632-8936 or 50 OPEN 24 Hours per OPEN 24 Hours per Exempt Oilfield Waste	d Safety Excellence Infield, NM 87413 5-334-3013 Day Day Produced Wat	NO. NMOC Oil Fiel INVO DEL. BILL DRIV CODI er Drilli	6906 D PERMIT: NM d Waste Docum ICE: TKT#. TO: ER: (Print Full ES: ing/Complet	Name)		Pit
NO				COST	H2S	COST	TOTAL	TIME
1	59	Johnson Fel 4	10	25	1120	74	Jul 18 1	045an
2								
3								
4								
5								
1	Aur	Medenn			representitiv	e or author	ized agent for	the above
generator a Agency's Ju	and hauler here uly 1988 regula oved	eby certify that according to the Resource Conservatory determination that the above described waste	ration and Recove e is RCRA Exemp TURE	ny Act (RCR t Oil field wa	A) and the lastes.		san juan re	production 168-6

BAS DISE DATE GENERATOF HAULING CC ORDERED B WASTE DES STATE:		AL 11.12.17 Paso tantec e wiley Exempt Oilfield Waste co [AZ]UT	Environmental Health and S 200 Montana, Bloomfi 505-632-8936 or 505- OPEN 24 Hours per D	Safety Excellence eld, NM 87413 334-3013 ay] Produced Wat NT/DISPOSAL I	NO. NMOC Oil Fie DEL. BILL DRIV COD ter DTII	6999 D PERMIT: NM Id Waste Docum DICE: TKT#. TO: State TR: Score (Print Full ES:	1-001-0005 Inent, Form C <u> ハイモ(</u> Name) on Fluids TION 図IN		Pit EATING PLANT
NO.	TRUCK	LOCATION	l(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1		Fogelson 4.	(1	704		*ap: Jeonacits:	776015	
2		State Gas Con, K Lat 2-40, Std Di	night, JF Bell I Com					403 Jan	12 446 VIIII
3	V.	Sandoual, GEUI24E J-Fed 6	, J-Fed 4						
4									
5 A	-12	Λ							
I, generator and Agency's July	hauler here 1988 regula	eby certify that according to the atory determination that the abo	Resource Conservati	on and Recove RCRA Exemp	ry Act (RCR t Oil field wa	representitive A) and the U stes.	e or authoi S Environi	rized agent for mental Protect	the above tion
Approve	ed	Denied A ⁻	TENDANT SIGNATU	JRE			É	Ê	25 Anna ann an Anna ann an Ann
								san juan re	production 168-6

APPENDIX C

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

August 18, 2017

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11153 Aurora Avenue Des Moines, IA 50322

Dear Steve:

Re: Johnston Federal No. 4, San Juan County, NM (Event #2)

At your request, AcuVac Remediation, LLC (AcuVac) performed five Mobile Dual Phase Extraction (MDPE) events as follows; 1) 8.0 hour Event #2A on well MW-11 on July 15, 2017, 2) 12.0 hour Event #2B on well MW-8 on July 16, 2017, 3) 6.0 hour Event #2C on well MW-1 on July 17, 2017, 4) 6.0 hour Event #2D on well MW-3 on July 17, 2017, and 5) 12.0 hour Event #2E on well MW-8 on July 17 and 18, 2017, at the above referenced site (Site). Following is the Report and a copy of the Operating Data collected during Event #2. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE events was to enhance recovery of Phase Separated Hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical release of natural gas condensate.

OBJECTIVES

The objectives of the MDPE events were to:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the vapor phase and liquid LNAPL specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event periods.
- Select and monitor the groundwater depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. No third party equipment was utilized. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower used as a vacuum pump and a Roots RAI-22 positive displacement blower. The table on the following page lists equipment and instrumentation employed during Event #2, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac							
Measurement Equipment	Data Element						
Extraction Well Induced Vacuum and Flow							
Dwyer Magnehelic Gauges	Extraction Well Vacuum						
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow						
Observation Wells							
Dwyer Digital Manometer	Vacuum / Pressure Influence						
Extraction Well Vapor Monitoring							
V-1 vacuum box	Extraction Well Non-Diluted Vapor Sample Collection						
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration						
QRae Mini II O ₂ Monitor	Extraction Well Vapor Oxygen Content						
LNAPL Thickness (if present)							
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater						
Liquid Recovery							
Totalizer Flow Meter	Liquid Flow and Total Volume						
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping						
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics						
Groundwater Depression / Upwelling							
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells						
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure						
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls						
Atmospheric Conditions							
Testo Model 511	Relative and Absolute Barometric Pressure						

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump was connected to the extraction well, and the vacuum created on the extraction well caused light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they were burned as part of the normal combustion process. Propane was used as auxiliary fuel to help power the engine if the well vapors did not provide the required energy.

The IC engine provided the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence for short term event remediation.

Emissions from the engine were passed through three catalytic converters to maximize destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio was adjusted to maintain efficient combustion. Because the engine is the power source for the equipment, the System stops when the engine stops. This prevents an uncontrolled release of hydrocarbons. Since the System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

Groundwater extraction was provided by an in-well Grundfos Redi-Flo 2 total fluids pump that discharged through a totalizer/flow meter. The discharge line from this meter was then connected to a stand-by collection tank. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to LNAPL measurements. Grab samples of recovered liquid were taken periodically in a graduated cylinder to determine the average percentage of LANPL being recovered.

The design of the AcuVac System enabled independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controlled the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improved the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #2

Recovery Summary									
	Event #2A	Event #2B	Event #2C	Event #2D	Event #2E	Total	Total		
	MW-11	MW-8	MW-1	MW-3	MW-8	Event #2	Event #1		
Event Hours	8.0	12.0	6.0	6.0	12.0	44.0	15.5		
GW Recovery	464	1,798	790	760	636	4,448	1,428		
LNAPL Recovery									
Liquid	9.3	0	0	0	0	9.3	2.1		
Vapor	15.9	46.5	15.6	7.1	44.4	129.5	19.9		
Total	25.2	46.5	15.6	7.1	44.4	138.8	22.0		
Gallons/Hour	3.15	3.88	2.60	1.18	3.70	3.15	1.42		

The Recovery Summary table below lists the groundwater and LNAPL recovery data for Event #2, and compares the results to the previous Event #1.

SUMMARY OF MDPE EVENT #2A- WELL MW-11

- The total event time was 8.0 hours. The Event was conducted on July 15, 2017. This was the first event completed from well MW-11, and therefore, there was no comparative data from this well.
- The total liquid volume recovered was 464 gals, of which 2.00% or 9.3 gals were liquid LNAPL.
- Based on the HORIBA[®] analytical data, total vapor LNAPL burned as IC engine fuel was 15.9 gals, for a total liquid and vapor LNAPL recovery of 25.2 gals, or 3.15 gals per hour.

• The HORIBA[®] analytical data from the influent vapor samples for Event #2A is presented in the table below.

Influent Vapor Data Well MW-11							
Data Element		Event #2A					
TPH- Maximum	ppmv	94,680					
TPH- Average	ppmv	93,005					
TPH- Minimum	ppmv	90,910					
TPH- Initial	ppmv	90,910					
TPH- Final	ppmv	92,080					
CO2- Average	%	2.88					
CO- Average	%	8.37					
O ₂ - Average	%	7.3					
H ₂ S- Average	ppm	0					

• The Event #2A extraction well induced vacuum and well vapor flow are presented in the table below.

Well Vacuum and Well Vapor Flow Well MW-11							
Data Element	Event #2A						
Well Vacuum- Maximum	"H₂O	10.00					
Well Vacuum- Average	"H₂O	10.00					
Well Vacuum- Minimum	"H₂O	10.00					
Well Vapor Flow- Maximum	scfm	12.23					
Well Vapor Flow- Average	scfm	9.87					
Well Vapor Flow- Minimum	scfm	8.74					

- The groundwater pump inlet was initially set at 67.0 ft BTOC, or 1.0 ft above the well bottom of well MW-11. The average groundwater pump rate was 0.88 gpm, and the maximum groundwater pump rate was 0.97 gpm.
- The average groundwater depression, based on the positioning of the groundwater pump, was 15.0 ft below the hydro-equivalent static level.
- A LNAPL thickness in well MW-11 of 1.84 ft was recorded prior to the start of Event #2A and an LNAPL thickness of 2.50 ft was recorded at the conclusion of the Event #2A.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #2A, Well MW-11, was 25.2 gals.

ADDITIONAL INFORMATION

- The lower percentage of the LNAPL volume, 9.3 gals or 36.90%, was recovered as liquid within hours after the start of Event #2A. The LNAPL was present in the well bore and most likely in the area immediately surrounding the well. No quantifiable liquid LNAPL was recovered after the first 60 minutes of Event #2A.
- A higher percentage of the LNAPL volume, 15.9 gals or 63.10%, was burned as IC engine fuel as a result of the TPH content in the influent vapors.

- The TPH concentration in the well vapors provided 100% of the IC engine fuel.
- The TPH vapor concentrations were mostly steady during Event #2A. The initial TPH reading, which was also the minimum reading, was 90,910 ppmv, the average reading was 93,005 ppmv, the maximum reading, 94,680 ppmv, was recorded at event hour 4.0.
- At approximately 1600 hours, a Stop Work was issued due to inclement weather moving into the area.

SUMMARY OF MDPE EVENT #2B- WELL MW-8

- The total event time was 12.0 hours. The Event was conducted on July 16, 2017. The data is compared to Event #1A conducted on November 30, 2016, which had total event time of 7.5 hours.
- The total liquid volume recovered was 1,798 gals, with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] analytical data, total vapor LNAPL burned as IC engine fuel was 46.5 gals, for a total liquid and vapor LNAPL recovery of 46.5 gals, or 3.88 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #2B is compared with Event #1A in the table below.

LNAPL Recovery Well MW-8								
		Even	Event #2B		t #1A			
		Amount	Percent	Amount	Percent			
Event Hours		12.0	-	7.50	-			
GW Recovery	gals	1,798	-	798	-			
Liquid	gals	0	-	2.1	13.75			
Vapor	gals	46.5	100.00	13.2	86.25			
Total	gals	46.5	100.00	15.3	100.00			
Gallons/Hour		3.88	-	2.04	-			

• The HORIBA[®] analytical data from the influent vapor samples for Event #2B is compared with Event #1A in the table below:

Influent Vapor Data Well MW-8						
Data Element		Event #2B	Event #1A			
TPH- Maximum	ppmv	79,970	35,760			
TPH- Average	ppmv	72,850	33,500			
TPH- Minimum	ppmv	65,150	29,160			
TPH- Initial	ppmv	65,150	29,160			
TPH- Final	ppmv	72,860	34,570			
CO ₂ - Average	%	3.67	4.70			
CO- Average	%	3.41	0.49			
O ₂ - Average	%	5.2	9.0			
H₂S- Average	ppm	0	1			

• The Event #2B extraction well induced vacuum and well vapor flow are compared with Event #1A in the table below.

Well Vacuum and Well Vapor Flow Well MW-8						
Data Element Event #2B Event #1						
Well Vacuum- Maximum	"H ₂ O	52.00	80.00			
Well Vacuum- Average	"H ₂ O	51.47	67.33			
Well Vacuum- Minimum	"H ₂ O	50.00	50.00			
Well Vapor Flow- Maximum	scfm	25.10	32.87			
Well Vapor Flow- A Average	scfm	24.62	24.25			
Well Vapor Flow- Minimum	scfm	20.92	13.44			

- The groundwater pump inlet was initially set at 63.0 ft BTOC, or 1.0 ft above the well bottom of well MW-8. The average groundwater pump rate was 2.41 gpm, and the maximum groundwater pump rate was 2.75 gpm.
- The average groundwater depression, based on the positioning of the groundwater pump, was 9.8 ft below the hydro-equivalent static level.
- A LNAPL thickness in well MW-8 of 1.60 ft was recorded prior to the start of Event #2B and no LNAPL thickness was recorded at the conclusion of the Event #2B.

The total LNAPL removed, including liquid and vapor, during the 12.0 hour Event #2B, Well MW-8, was 46.5 gals.

ADDITIONAL INFORMATION

- Well MW-8 produced a steady amount of liquid volume during the course of the Event #2B. However, no quantifiable liquid LNAPL was recovered from well MW-8.
- All LNAPL volume recovered, 46.5 gals, was burned as IC engine fuel.
- From event hour 3.0 and for the remainder of the event, the TPH concentration in the well vapors provided 100% of the IC engine fuel.
- The TPH vapor concentrations increased steadily during Event #2B until event hour 6.5 and then decreased for the remainder of the event. The initial TPH reading, which was also the minimum, was 65,150 ppmv, the average reading was 72,850 ppmv, the maximum reading, 79,970 ppmv, was recorded at event hour 5.5. The final reading was 72,860 ppmv.

SUMMARY OF MDPE EVENT #2C- WELL MW-1

- The total event time was 6.0 hours. The Event was conducted on July 17, 2017. This was the first event completed from well MW-1, and therefore there was no comparative data from this well.
- The total liquid volume recovered was 790 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] analytical data, total vapor LNAPL burned as IC engine fuel was 15.6 gals, for a total liquid and vapor LNAPL recovery of 15.6 gals, or 2.60 gals per hour.

• The HORIBA[®] analytical data from the influent vapor samples for Event #2C is presented in the table below:

Influent Vapor Data Well MW-1					
Data Element Event #					
TPH- Maximum	ppmv	72,190			
TPH- Average	ppmv	69,377			
TPH- Minimum	ppmv	64,960			
TPH- Initial	ppmv	72,190			
TPH- Final	ppmv	71,120			
CO2- Average	%	5.74			
CO- Average	%	2.70			
O ₂ - Average	%	3.0			
H ₂ S- Average	ppm	0			

• The Event #2C extraction well induced vacuum and well vapor flow are presented in the table below.

Well Vacuum and Well Vapor Flow Well MW-1					
Data Element Event #2C					
Well Vacuum- Maximum	"H ₂ O	56.00			
Well Vacuum- Average	"H₂O	54.80			
Well Vacuum- Minimum	"H ₂ O	54.00			
Well Vapor Flow- Maximum	scfm	20.77			
Well Vapor Flow- Average	17.36				
Well Vapor Flow- Minimum	scfm	15.09			

- The groundwater pump inlet was initially set at approximately 66.0 ft BTOC, or 1.0 ft above the well bottom. The average groundwater pump rate for Event #2C was 1.92 gpm, and the maximum groundwater pump rate was 3.23 gpm.
- The average groundwater depression, based on the positioning of the groundwater pump, was 8.0 ft below the hydro-equivalent static level.
- A LNAPL thickness of 0.02 ft in extraction well MW-1 was recorded prior to the start of Event #2C, and no LNAPL thickness was recorded in extraction well MW-1 at the conclusion of the Event #2C.

The total LNAPL removed, including liquid and vapor, during the 6.0 hour Event #2C, Well MW-1, was 15.6 gals.

ADDITIONAL INFORMATION

- Well MW-1 produced a steady amount of liquid volume during the course of the Event #2C. However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 15.6 gals, was burned as IC engine fuel.
- From event hour 1.5 and for the remainder of the event, the TPH concentration in the well vapors provided 100% of the IC engine fuel.

• The TPH vapor concentrations steadily decreased during Event #2C until event hour 3.0 and then increased at event hour 5.0. The initial TPH reading, which was also the maximum, was 72,190 ppmv, the average reading was 69,377 ppmv, the lowest reading, 64,960 ppmv, was at event hour 4.5. The final reading was 71,120 ppmv.

SUMMARY OF MDPE EVENT #2D- WELL MW-3

- The total event time was 6.0 hours. The Event was conducted on July 17, 2017. The data is compared to Event #1B conducted on December 1, 2016, which had total event time of 7.0 hours.
- The total liquid volume recovered was 760 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] analytical data, total vapor LNAPL burned as IC engine fuel was 7.1 gals, for a total liquid and vapor LNAPL recovery of 7.1 gals, or 1.18 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #2D is compared with Event #1B in the table below.

LNAPL Recovery Well MW-3							
		Even	t #2D	Event #1B			
		Amount	Percent	Amount	Percent		
Event Hours		6.0	-	7.0	-		
GW Recovery	gals	760 -		630	-		
Liquid	gals	0	0	0	0		
Vapor	gals	7.1	100.00	5.9	100.00		
Total	gals	7.1	100.00	5.9	100.00		
Gallons/Hour		1.18	-	0.84	-		

• The HORIBA[®] analytical data from the influent vapor samples for Event #2D is compared with Event #1B in the table below:

Influent Vapor Data Well MW-3						
Data Element		Event #2D	Event #1B			
TPH- Maximum	ppmv	41,520	27,210			
TPH- Average	ppmv	37,748	26,676			
TPH- Minimum	ppmv	28,630	25,650			
TPH- Initial	ppmv	28,630	27,140			
TPH- Final	ppmv	41,430	25,650			
CO ₂ - Average	%	6.06	6.86			
CO- Average	%	0.58	0.24			
O ₂ - Average	%	5.3	7.4			
H₂S- Average	ppm	0	0			

• The Event #2D extraction well induced vacuum and well vapor flow are compared with Event #1B in the table below.

Well Vacuum and Well Vapor Flow Well MW-3						
Data Element Event #2D Event #1B						
Well Vacuum- Maximum	"H ₂ O	40.00	80.00			
Well Vacuum- Average	"H ₂ O	40.00	70.67			
Well Vacuum- Minimum	"H ₂ O	40.00	60.00			
Well Vapor Flow- Maximum	scfm	14.41	19.25			
Well Vapor Flow- A Average	scfm	14.41	14.53			
Well Vapor Flow- Minimum	scfm	14.41	2.41			

- The groundwater pump inlet was set at approximately 56.0 ft BTOC or 1.0 ft above the well bottom. The average groundwater pump rate for Event #2D was 2.13 gpm, and the maximum groundwater pump rate was 3.56 gpm.
- The average groundwater depression, based on the positioning of the groundwater pump, was 8.0 ft below the hydro-equivalent static level.
- No measurable LNAPL thickness in extraction well MW-3 was recorded prior to the start of Event #2D, and no measurable LNAPL thickness was recorded in extraction well MW-3 at the conclusion of the Event #2D.

The total LNAPL removed, including liquid and vapor, during the 6.0 hour Event #2D, well MW-3, was 7.1 gals.

ADDITIONAL INFORMATION

- Well MW-3 produced a steady amount of liquid volume during the course of the Event #2D. However, no quantifiable liquid LNAPL was recovered from well MW-3.
- Although the TPH concentrations in the well vapors were higher than Event #1B, supplemental propane was required for the IC engine.
- The TPH vapor concentrations steadily increased during Event #2D. The initial TPH reading, which was also the minimum, was 28,630 ppmv, the average reading was 37,748 ppmv, the maximum reading, 41,520 ppmv, was at event hour 4.0. The final reading was 41,630 ppmv.

SUMMARY OF MDPE EVENT #2E- WELL MW-8

- The total event time was 12.0 hours. The Event was conducted on July 17 and 18, 2017. The data is compared to Event #2B conducted on July 15, 2017, which had total event time of 12.0 hours.
- The total liquid volume recovered was 636 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] analytical data, total vapor LNAPL burned as IC engine fuel was 44.4 gals, for a total liquid and vapor LNAPL recovery of 44.4 gals, or 3.70 gals per hour.

• The volume of liquid and vapor LNPAL recovered during Event #2E is compared with Event #2B in the table below.

LNAPL Recovery Well MW-8							
		Even	t #2E	Event #2B			
			Percent	Amount	Percent		
Event Hours		12.0	-	12.0	-		
GW Recovery	gals	636 -		1,798	-		
Liquid	gals	0	0	0	0		
Vapor	gals	44.4	100.00	46.5	100.00		
Total	gals	44.4	100.00	46.5	100.00		
Gallons/Hour		3.70	-	3.88	-		

• The HORIBA[®] analytical data from the influent vapor samples for Event #2E is compared with Event #2B in the table below:

Influent Vapor Data Well MW-8							
Data Element		Event #2E	Event #2B				
TPH- Maximum	ppmv	78,800	79,970				
TPH- Average	ppmv	72,343	72,850				
TPH- Minimum	ppmv	59,820	65,150				
TPH- Initial	ppmv	78,800	65,150				
TPH- Final	ppmv	59,820	72,860				
CO ₂ - Average	%	3.59	3.67				
CO- Average	%	3.53	3.41				
O ₂ - Average	%	5.8	5.2				
H₂S- Average	ppm	0	0				

• The Event #2E extraction well induced vacuum and well vapor flow are compared with Event #2B in the table below.

Well Vacuum and Well Vapor Flow Well MW-8						
Data Element	Event #2E	Event #2B				
Well Vacuum- Maximum	"H ₂ O	45.00	52.00			
Well Vacuum- Average	"H ₂ O	45.00	51.47			
Well Vacuum- Minimum	"H ₂ O	45.00	50.00			
Well Vapor Flow- Maximum	scfm	23.64	25.10			
Well Vapor Flow- A Average	scfm	23.64	24.62			
Well Vapor Flow- Minimum	scfm	23.64	20.92			

• The groundwater pump inlet was set at 52.5 ft BTOC of well MW-8. This position was based on results of Event #2B. This position placed the groundwater pump within 1.0 ft of the then hydro-equivalent. The average groundwater pump rate was 0.87 gpm, and the maximum groundwater pump rate was 1.44 gpm.

- The average groundwater depression, based on the positioning of the groundwater pump, was 2.70 ft below the hydro-equivalent static level.
- A LNAPL thickness in well MW-8 of 0.56 ft was recorded prior to the start of Event #2E, and a LNAPL thickness of 2.50 ft was recorded at the conclusion of the Event #2E.

The total LNAPL removed, including liquid and vapor, during the 12.0 hour Event #2E, Well MW-8, was 44.4 gals.

ADDITIONAL INFORMATION

- Well MW-8 produced a steady amount of liquid volume during the course of the Event #2E. However, no quantifiable liquid LNAPL was recovered from well MW-8.
- All LNAPL volume recovered, 44.4 gals, was burned as IC engine fuel.
- The TPH concentration in the well vapors provided 100% of the IC engine fuel.
- The TPH vapor concentrations were on a mostly decreasing trend during Event #2E. The initial TPH reading, which was also the maximum, was 78,800 ppmv, the average reading was 72,343 ppmv, the minimum reading, 59,820 ppmv, was at event hour 12.0.

The total LNAPL removed, including liquid and vapor, during the 44.0 hour Event #2, wells MW-1, MW-3, MW-8, and MW-11 was 138.8 gals.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA[®] Analytical instrument is calibrated with hexane, carbon monoxide and carbon dioxide. The formula used to calculate the emission rate is:

ER = TPH (ppmv) x MW (hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (<u>min)(lb mole</u>) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data
- Photographs of the MDPE System, well MW-3 and MW-8.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely, ACUVAC REMEDIATION, LLC

Prinday

Paul D. Faucher Vice President, Operations

Summary Well Data Table #1

Event		2A	2B	2C	2D	2E
WELL NO.		MW-11	MW-8	MW-1	MW-3	MW-8
Current Event Hours		8.0	12.0	6.0	6.0	12.0
Cumulative Event Hours		8.0	19.5	6.0	13.0	31.5
TD	ft BGS	65.0	67.0	57.0	57.0	67.0
Well Screen	ft BGS	35.0 - 65.0	35.0 - 65.0	41.8 – 57.0	41.8 – 57.0	35.0 - 65.0
Well Size	in	2.0	2.0	4.0	2.0	2.0
Well Data						
DTGW - Static - Start Event	ft BTOC	53.13	52.28	51.87	51.77	51.71
DTLNAPL - Static - Start Event	ft BTOC	51.29	50.68	51.85	-	51.15
LNAPL	ft BTOC	1.84	1.60	0.02	-	0.56
Hydro-Equivalent- Beginning	ft BTOC	51.77	51.10	51.86	51.77	51.30
DTGW - End Event	ft BTOC	53.95	51.65	52.06	51.84	53.13
DTLNAPL - End Event	ft BTOC	51.45	-	-	-	50.63
LNAPL	ft BTOC	2.50		-	-	2.50
Hydro-Equivalent- Ending	ft BTOC	52.10	51.65	52.06	51.84	51.28
Extraction Data						
Maximum Extraction Well Vacuum	"H ₂ O	10.00	52.00	56.00	40.00	45.00
Average Extraction Well Vacuum	"H₂O	10.00	51.47	54.80	40.00	45.00
Minimum Extraction Well Vacuum	"H₂O	10.00	50.00	54.00	40.00	45.00
Maximum Extraction Well Vapor Flow	scfm	12.23	25.10	20.77	14.41	23.64
Average Extraction Well Vapor Flow	scfm	9.87	24.62	17.36	14.41	23.64
Minimum Extraction Well Vapor Flow	scfm	8.74	20.42	15.09	14.41	23.64
Maximum GW / LNAPL Pump Rate	gpm	0.97	2.75	3.23	3.56	1.44
Average GW / LNAPL Pump Rate	gpm	0.88	2.41	1.92	2.13	0.87
Influent Data						
Maximum TPH	ppmv	94,680	79,970	72,190	41,520	78,800
Average TPH	ppmv	93,005	72,850	69,377	37,748	72,343
Minimum TPH	ppmv	90,910	65,150	64,960	28,630	59,820
Initial TPH	ppmv	90,910	65,150	72,190	28,630	78,800
Final TPH	ppmv	92,080	72,860	71,120	41,430	59,820
Average CO ₂	%	2.88	3.67	5.74	6.06	3.59
Average CO	%	8.37	3.41	2.70	0.58	3.53
Average O ₂	%	7.3	5.2	3.0	5.3	5.8
Average H ₂ S	ppm	0	0	0	0	0

Summary Recovery Data Table #2

Event		2A	2B	2C	2D	2E
WELL NO.		MW-11	MW-8	MW-1	MW-3	MW-8
Recovery Data- Current Event						
Total Liquid Volume Recovered	gals	464	1,798	790	760	636
Total Liquid LNAPL Recovered	gals	9.3	0	0	0	0
Total Liquid LNAPL Recovered / Total Liquid	%	2.00	0	0	0	0
Total Liquid LNAPL Recovered / Total LNAPL	%	36.90	0	0	0	0
Total Vapor LNAPL Recovered	gals	15.9	46.5	15.6	7.1	44.4
Total Vapor LNAPL Recovered / Total LNAPL	%	63.10	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	25.2	46.5	15.6	7.1	44.4
Average LNAPL Recovery	gals/hr	3.15	3.88	2.60	1.18	3.70
Total LNAPL Recovered	lbs	176	326	109	49	310
Total Volume of Well Vapors	cu. ft	4,738	17,726	6,250	5,188	17,021
Recovery Data- Cumulative						
Total Liquid Volume Recovered	gals	464	2,596	790	1,390	3,231
Total Liquid LNAPL Recovered	gals	9.3	2.1	0	0	2.1
Total Vapor LNAPL Recovered	gals	15.9	59.7	15.6	12.9	104.0
Total Vapor and Liquid LNAPL Recovered	gals	25.2	61.8	15.6	12.9	106.1
Average LNAPL Recovery	gals/hr	3.15	3.17	2.60	0.99	3.37
Total LNAPL Recovered	lbs	176	433	109	90	743
Total Volume of Well Vapors	cu. ft	4,738	28,639	6,250	11,290	45,660

X	AcuVac Remediation OPER	RATING	DATA – EVEN	IT # 2,A	PAGE	# /	ACUVAC I	MDP SYSTEM
Loca	ation: Johnston Federal #	4, San .	Juan County	y, NM	Pro	oject Manag	ers: Fauche	r / Hendley
		Date	Tlishin					
	MALINE	Time	0800	0830	0500	0930	1000	1030
		Hr Meter	7908.0	7908.5	7905.0	7909.5	7910.0	7910.5
	Engine Speed	RPM	1800	1800	1800	1800	1300	1800
NER	Oil Pressure	psi	50	50	50	50	50	50
BLOI	Water Temp	°F	130	130	130	130	130	130
INE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	16	16	16	16	16	16
	Gas Flow Fuel/Propane	cfh	0	0	0	0	0	0
	Extraction Well Vac.	"H₂O	10	10	10	10	10	10
ERE	Extraction Well Flow	scfm	8.74	8.74	8.74	8.74	8.74	8.74
HdSC	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATMC	Air Temp	°F	(-	-	~	-	Ŧ
	Barometric Pressure	"Hg	-	-	-	-	-	-
L	ТРН	ppmv	-	90,910	-	-	-	-
LUEN	CO ₂	%	-	2.52	-	-	-	-
/ INF	со	%	(5.52	-	-	-	~
POR	O ₂	%	-	7.8	-	-	-	-
AV A	H ₂ S	ppm	-	0	-	-	-	-
	SEE PAGE 2 FAZ	NORS	CONCER	NING EN	ENT STAZ	TUP.		
	WELL VAC AND WE	LLVA	POR FLOW	STEADY	DUZING P	BRIDD.		
(0	GROUMSWATCH PUMI	o RASE	5 . 97 61	Pm HELD	A CONST	ANT GR	UNDWAR	n
OTE	DERESSION of A	PPROX	IMATELY	15.0 FF	From TH	ESTATIC	LEVEL	
z								
	GW Pump	ON/OFF	ONTOFF	ON	ON	ON	ON	ON
		gals/min	, 78	.97	197	. 97	.9.7	. 57
>	Total Volume	gals	-	29	5,8	8.7	116	145
VER	NAPL	% Vol	-	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN
RECO	NAPL	Gals	-	-	-	-	t	-
-	GW Depression	ft	-15.0	-15.0	-15.0	-15.0	-15.0	-15.0
	Extraction Well D	TNAPL	51.29					
	Extraction Well	DTGW	53.13					

LNAPL 1.84

OPERATING NOTES - EVENT # ZA PAGE # Z ACUVAC MDP SYSTEM

ion: Johnston	Federal #4, San Juan County, NM	Project Managers: Faucher / Hendl
765117	0730 Hrs ARGUND ON SITE	HEW THIGHTE'SAFETY MEEDN
	SUZNEYED THE SIDE. DETER	ROMINED THE POSITION OF THE ACU
	SYSTEM AND THE STANDBACOL	BECTION TANK. POSITIONER THE
	AGUVAC SUSTEM CENTRAL TO	WEUS MW-1, MW-3, MW-8 AND
	MW-11.	
	CONTRÉGRED THE AGULACSYSTE	EM TO THE STANDBY PRUPANE TAN!
	POSITIONED THE REDI-FLOL	FU-WELL PUMP FULET AT APPR
	67 Broc. withat is APPRoxim	ATELY 1.0 IF ABOVE WELL BOTTOM
	CONNEGTED THE VACUM HOS	E TO THE WELL MANTFOLD AND TH
	AarVAC SYSTEM, CONNECTED	THE LIQUID DISCHARGE HOSE TO THE
	TOTALIZER FLOW METER AND	O THE STANDIST COLLECTION TANK.
	PERFORMED ALL SAFETS CI	HECKS - ALLOK.
0800	EVENT STARFED. INITIA	2 WELL VAC 10 "HLO RESUMNY
	IN A WVF OF B. 74 SGFM. A	LMOST IMMEDIATELY AFTOR
	STATTUP THE TPH CONCENT	CATTONS IN THE WELL VAPORS
	PROVIDED 100% OF THE ICE	ENGINE FOEL, IN-WELL PUMP
	STARTAD AS APPROX 0815	Hirs.
0900	FRITIAL WELL VAPOR SAMPI	LE OBTAINED. TPH CONCENTRATION.
	SO, 500 PPMV.	

X	AcuVac Remediation OPERATIN		– EVEľ	NT # Z A	PAGE	#3	ACUVAC N	IDP SYSTEM	
Loca	tion: Johnston Federal #4, Sa	an Juan (Count	y, NM	Pro	ject Manage	ers: Fauche	r / Hendley	
	Da	ate 7	115/1-	7					
	Tir	me 11	00	1130	1200	1230	1300	1330	
	$m\omega - 11$ Hr Me	ter 79	11:0	7811.5	7912.0	7912.5	7913.0	7513.5	
	Engine Speed R	PM / 9	306	1800	1800	1800	1800	1800	
NER	Oil Pressure	psi 5	6	50	50	50	50	50	
BLOI	Water Temp	°F /	40	140	140	140	140	140	
INE /	Alternator va	olts /	4	14	14	14	14	14	
ENG	Intake Vacuum "	Hg	16	16	16	16	16	16	
	Gas Flow Fuel/Propane	cfh	0	0	0	6	6	0	
	Extraction Well Vac. "H	20 /	0	10	10	10	10	10	
ERE	Extraction Well Flow sc	fm 8.	74	8.74	8.74	8.74	8.74	10.49	
ATMOSPHI VACUUM /	Influent Vapor Temp.	°F 7	0	70	70	70	70	70	
	Air Temp	°F	-	-	-	_	-	-	
	Barometric Pressure	Hg	-	-	-	-	-	-	
F	TPH ppr	mv -	_	-	54.680	~	-	_	
LUEN	CO ₂	% -	_	-	2.82	-	-	-	
/ INFI	со	% -	_	-	5.24	-	-	~	
POR	O ₂	%		-	7.4	-	-	-	
AN	H ₂ S pr	om	-	-	0	-	-	•	
	TPH VAPOR CONCENTRATIONS ON AN INCREASING TRENTO.								
	INIAA RECONDER REPORTED ACA SHODI NUE TO THE AMOUNT OF RIAMASS								
	LIVATE DE COVERS DE TUSED AST STEEN IJUE TO THE AMOUNT OF DIOMASS								
OTES	WILL REDEDOZNUMOD AT THE EXA OF THE EVENT RACED ALLA HIGHA								
Ň	TAISPERE OF THE CALLECTION THE END OF THE EVENT. ISTSED ON A VISUAL								
	INSTECTION OF THE COLLEGION THANK.								
	GW Pump ON/OF	F	~	62	on	ON	ON	ON	
	Pump Rate gals/m	in ,	97	.97	.97	,97	. 57	, 97	
	Total Volume ga	ls /	74	203	232	261	290	319	
VERY	NAPL % V	ol SHa	テン	SHEED	5 Hazz	SHEED	รมอธิบ	SHEEN	
ECO	NAPL Ga	Is		-	-	-	-	-	
R	GW Depression	ft - 15	10	-15:0	-15.0	-15.0	-16.0-	-15,0	
	Extraction Well DTNAF	PL							
	Extraction Well DTG	w							

A	AcuVac Remediation OPERA	TING E	DATA – EVEN	т# 2А	PAGE #	14	ACUVAC N	IDP SYSTEM	
Loca	tion: Johnston Federal #4,	San .	Juan County	/, NM	Pro	ject Manage	ers: Faucher	/ Hendley	
		Date	7/15						
		Time	1400	1430	1500	1530	1600		
	mw-11 Hr	Meter	7914.0	7914.5	7915.0	7915.5	7916.0		
	Engine Speed	RPM	1800	1800	1800	1800	1800		
VER	Oil Pressure	psi	50	50	50	50	50		
BLOV	Water Temp	°F	150	150	150	150	150		
NE /	Alternator	Volts	14	14	14	14	14		
ENGI	Intake Vacuum	"Hg	16	16	16	16	16		
	Gas Flow Fuel/Propane	cfh	0	6	0	0	U		
	Extraction Well Vac.	"H₂O	10	10	10	10	10		
ERE	Extraction Well Flow	scfm	10.49	12.23	12.23	1223	12.23		
/ WN	Influent Vapor Temp.	°F	70	76	70	76	70		
ATMO VACU	Air Temp	°F	-	~	-	-	-		
	Barometric Pressure	"Hg	ł	-	-	-	-		
F	ТРН	ppmv	1	94,350	-	~	52,080		
-UEN	CO ₂	%	-	2.70	-	-	3.05		
/ INFI	СО	%	J	6.73	-	-	7.59		
POR	O ₂	%	1	7.5	-	-	6.5		
VA	H ₂ S	ppm	-	0	-	-	0		
	TPH VADOR CONCENT	RATIO	WS MOG	-UN STEAU	DURING V	6 PEZIDA	<u> </u>		
	TTIO VATOR CONCENTIONS MOSTLY STEPPOV DUILING PECIOU								
				- Drongr					
DTES	Cultur CORD TANK H	NAM	INCO AT (CONCLUSIO	NOF EVI	ENT AND	ITWAS D	53RAV MAN	
Ň	THAT APPRAKIMATE	x 7	90 08 9	GALLONS	OFLIDE	in when	WERE RE	CONRED	
	AT 1/100 STRA ANDER OPACIED DIE TO PALLONS OF LIQUITS ANATC WERE RECORDED								
		1.001							
	GW Pump Or	V/OFF	ON	ON	GN	0~	OFF		
	Pump Rate ga	ls/min	.57	. 97	. 97	. 97	.97		
	Total Volume	gals	348	377	406	4.35	46.4		
VERY	NAPL	% Vol	SITE	SHEEN	SHEEN	SHEEN	SHEEN		
ECO	NAPL	Gals	-	-	-	-	_		
R	GW Depression	ft	-15.0	-15.0	-15.0	-15.0	-15.0		
	Extraction Well DT	NAPL					ND		
	Extraction Well	TGW					ND		

A	AcuVac Remediation OPERATING	DATA – EVEI	NT # 2 B	PAGE	#]	ACUVAC N	IDP SYSTEM		
Loca	tion: Johnston Federal #4, Sa	Juan Count	y, NM	Pro	ject Manage	ers: Faucher	/ Hendley		
	Dat	e 7/16/17							
	C Tim	e 0630	0700	0730	0800	0830	0900		
TD	65.0 Fr BGs Hr Mete	7916.5	7517.0	7517.5	7918.0	7918.5	7919.0		
	Engine Speed RP	1 1800	1900	1900	1900	1900	2000		
NER	Oil Pressure p	si 50	50	50	50	50	50		
BLOI	Water Temp	= 130	130	130	130	130	130		
INE /	Alternator Vol	s 14	14	14	14	14	14		
ENG	Intake Vacuum "H	18	18	18	18	18	18		
	Gas Flow Fuel/Propane cf	1 100	.60	50	50	50	40		
	Extraction Well Vac. "H ₂	50	50	50	50	50	52		
ERE	Extraction Well Flow scfr	20.92	22.59	23.43	24.27	25.10	25.10		
HdSC	Influent Vapor Temp.	70	70	70	70	70	70		
ATMO	Air Temp 。	-	-	-	-	-	-		
	Barometric Pressure "H	-	-	-	-	-	-		
Ļ	TPH ppm	/ -	65,150	-	67,580	-	69.630		
LUEN	CO ₂	-	3.50	-	3.92	-	2.84		
/ INF	CO %	-	2.25	-	2.62	-	3.78		
POR	O ₂ 9	-	8.0	-	4.2	~	3.5		
47	H ₂ S ppr	-	0	-	0	-	0		
	APRIVED ON SINEAT C	600 HRS. 1	MOBILIZE	DWELL	mw-8, i	DT.NAPL 5	0.68 FF		
	BTOL DIGW 52.28 FT BTOC, NABL THICKNESS 1.60 FT. POSITIONED AN-WELL								
s	PUMP INLET AT 63.0 FT BTOL OR Z.A FT AROWE WELL BOTTOM. THE GUL								
OTE	PUMP PARE OF 2, 1 GPM WAS NOT SUFFICIENT TO CREATE A GROWNDWATT DEPRESUAN								
z	AT OSOU HAS THE PUMP.	LATE 1 TO	286Pm.	THE G	ROUNDWA	ion Lensi	STAGETE		
	FO DECREASE, TPH VAPOR CANCENTRATTONS ON AN INGREASING TREMD								
	DURING THE PETLOD.								
	GW Pump ON/OFF	aulorf	ON	62	Oar	0~	S		
	Pump Rate gals/mir	1.80	250	2.75	2.75	2.75	2.75		
~	Total Volume gals	-	54.	128	212	295	378		
VER	NAPL % Vo	-	SHEED	SHEEN	SHEEN	SHEEN	SHEEN		
RECC	NAPL Gals	-	-	-	-	-	-		
-	GW Depression 14.21 DL f	-	~	•	-	-	-3.0		
	Extraction Well DTNAPL	50.68							
	Extraction Well DTGW	52.28							

LNAAL 1.60

A	AcuVac Remediation OPERATING	DATA – EVEN	NT # 2 B	PAGE	# <u>2</u>	ACUVAC I	NDP SYSTEM			
Loca	tion: Johnston Federal #4, Sar	Juan Count	y, NM	Pro	oject Manag	ers: Fauche	r / Hendley			
	Dat	= 7/16/17	C							
	Tim	0930	1000	1030	1100	1130	1200			
	Hr Mete	7919.5	7920.0	7920.5	7921.0	7921.5	7922.0			
	Engine Speed RPM	1 2000	2000	2000	2000	2000	2000			
NER	Oil Pressure ps	i 50	50	50	50	50	50			
BLOV	Water Temp 。	130	130	130	140	140	140			
NE /	Alternator Volt	s 14	14	14	14	14	14			
ENG	Intake Vacuum "H	18	18	18	18	18	18			
	Gas Flow Fuel/Propane cf		0	0	0	0	·0			
	Extraction Well Vac. "H ₂ C	52	57	52	_	52	52			
ERE AIR	Extraction Well Flow scfm	25,10	25.10	25.10		25.10	25.10			
/ WN	Influent Vapor Temp.	70	70	70	-	70	70			
ATMC	Air Temp or	-	-	-	-	-	-			
	Barometric Pressure "He	-	-	-	-	-	-			
F	TPH ppm ^v		74,130	_	-	-	79,870			
LUEN	CO2 %	-	3.76	-	-	-	3.84			
/ INFI	CO %	-	3.37	-	-	-	4.14			
POR	O ₂ %	-	4.3	-	_	-	5.5			
VA	H ₂ S ppm	-	0	-	-	-	0			
	AT 1100 His Reducion 77	to WELL	IAT End O	War TO F	Jun 2 Daw	ATTACINE	=14			
	DATA / NGLAN AFRAN REDUCED FOR 14.21 FOR SC F RELACANT									
	TO WELL PUMP TO 55.0	TEL JUEL PORT TO SS OF PTC DECISED WARMEN CONTROL								
OTES	OCCURRED AND DATA LO	GLAD RE	(IN IN SUNT	7.52 B	WEU	RECHAR	at DAT			
ž	IN EXCESS OF BIMP RATE	(15) TT+ A	10 La CAND	WARL	RECAINERS	VISIRLE	745			
	DUMP RATE WOAS REDUCE	711 7.5	-Pm.			, , , , , , , , , , , , , , , , , , ,	4.02			
						-				
	GW Pump ON/OFF	ON	ON	0~	ON	ON	ON			
	Pump Rate gals/min	2.75	2.75	2-75	2.75	2.50	2.50			
	Total Volume gals	461	544	627	710	793	868			
VERY	NAPL % Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN			
ECO	NAPL Gals	-	-	-			-			
ш.	GW Depression ft	- 5.0	-5.0	-5.0	-5.0	- 5-0	- 5.0			
	Extraction Well DTNAPL									
	Extraction Well DTGW									

A	AcuVac Remediation OP	PERATING D	DATA – EVEN	IT # 23	PAGE	¥ 3	ACUVAC N	IDP SYSTEM	
Loca	tion: Johnston Federa	al #4, San 、	Juan County	y, NM	Pro	ject Manage	ers: Faucher	/ Hendley	
		Date	7/16/17						
	Databa &	Time	1300	1330	1400	1430	1500	1550	
	11100 0	Hr Meter	7922.5	7923.0	7923.5	7924.0	7924.5	7925.0	
	Engine Speed	RPM	2000	2000	2000	2000	2.000	2000	
NER	Oil Pressure	psi	50	50	50	50	50	50	
BLOV	Water Temp	°F	140	140	140	140	140	140	
INE /	Alternator	Volts	14	14	14	14	14	.14	
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18	
	Gas Flow Fuel/Propane	cfh	0	6	0	0	0	0	
	Extraction Well Vac.	"H₂O	52	52	52	52	52	52	
ERE AIR	Extraction Well Flow	scfm	25,10	25,10	25.10	25.10	25.10	25,10	
HdS(Influent Vapor Temp.	°F	70	70	70	70	70	70	
ATMO	Air Temp	°F	1	_	-	-	-	-	
	Barometric Pressure	"Hg	-	-	-		-	-	
F	ТРН	ppmv	77,800	-	75.690	-	72,440	-	
-UEN	CO ₂	%	3.83	-	3.68	-	3.57	-	
/ INFI	со	%	3.86	-	3.34	-	4.02	-	
POR	O ₂	%	5.2	-	5.8	-	5.4	-	
VA	H ₂ S	maa	6	-	0	-	0	-	
	WIELA VAR & MIN	E STA	DURI Y	NG POZ	LAD (S	1 Pump	RATE ST	EADY	
	DUPANG 2 DZIOD TRU VAPOR CONCENTRATION (MICH & CODANY DUPANG								
	Dara an say and and and and and and and and								
DTES	(CI0140. 700 Me		see Ann	C DEM	1-2:000	2.20.0.			
Ň				28 - Milerari 2			30.8		
							<u></u>		
	GW Pump		e il	01	ail	aul	0.1	Cal	
	Pump Rate	cals/min	2.50	7,50	7.50	2 50	2.50	2.50	
	Total Volume	gais/min	1018	1093	11/9	1243	1318	1793	
ERY	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	
ECOV	NAPL	Gals	-	-	-	-	-	-	
R	GW Depression	ft	-5.0	-5.0	- 5.0	- 5.0	- 5.0	-5.0	
	Extraction Well	DTNAPL							
	Extraction Well	DTGW							

A	AcuVac Remediation OPE	RATING D	DATA – EVEN	IT# 2B	PAGE	# Y		IDP SYSTEM	
Loca	tion: Johnston Federal	#4, San J	Juan County	y, NM	Pro	ject Manage	ers: Faucher	/ Hendley	
		Date	7/16						
	10.1-0	Time	1600	1630	1700	1730	1800	1830	
	MW-0	Hr Meter	7925.5	7926.0	7926.5	7927.0	7927.5	7928.0	
	Engine Speed	RPM	2000	2000	2000	2000	2000	2000	
NER	Oil Pressure	psi	50	50	50	50	50	50	
BLO	Water Temp	°F	140	140	140	140	140	140	
INE /	Alternator	Volts	14	14	14	14	14	14	
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18	
	Gas Flow Fuel/Propane	cfh	0	0	Ø	- 0	0	٥	
	Extraction Well Vac.	"H₂O	52	OFF	OFF	OFF	OFF	OFF	
IERE / AIR	Extraction Well Flow	scfm	25,10	0775	off	OFF-	OFF	OFF	
HdSC	Influent Vapor Temp.	°F	70	70	70	70	70	70,	
ATMO	Air Temp	°F	-	-	-	-	_	(
	Barometric Pressure	"Hg	-	-	-	-	-	-	
L,	ТРН	ppmv	72,860	-	-	-	-	1	
LUEN	CO ₂	%	3.62	-	1	-	-	-	
/ INF	СО	%	3.32	-	-	-	-	-	
POR	O ₂	%	4. 8	-	^		-	-	
17	H ₂ S	ppm	0	-	-	-	-	-	
	AT 1630 H25 DIECO.	NTINUE	BTHEW	EU VAC	TH ORDOR	TO PUMI	DOWN TT-	to we as	
	AND VACATE ANY U	NAPL .	IN THE W	JELL. THE	ELIQUIC	LEVEZ U	AS DECT	LEASON	
	TO WITHIN I.O F	OF TH	EGW PUI	MP INLES	AF 1	815 Disa	ONTINUED	Crew	
OTE	PUMPING AS AND BOOGAL OF LIQUID STOTAGE REMAINED.								
z	NO MEASURARYE LIQUIDNARL MAS DERECTOR JA THE RETOVERED LIQUID								
	OR IN THEWELL AT THE END OF THE EVENT.								
	GW Pump	ON/OFF	6~	on	.ON	02	ON	oFF	
	Pump Rate	gals/min	2.5	2.0	2.0	D.5	2.0	1.0	
7	Total Volume	gals	1463	1543	1603	1663	1738	1798	
VER	NAPL	% Vol	SHEEN	SHEEN	SHOEN	SHEEN	SHEEN	SHEEN	
RECC	NAPL	Gals	-	-	-	-			
-	GW Depression	ft							
	Extraction Well	DTNAPL							
	Extraction Well	DTGW						51.6-5	

SHEEN

A	AcuVac Remediation OPERATING D)ATA – EVEN	т#2С	PAGE #	=		IDP SYSTEM			
Locat	tion: Johnston Federal #4, San J	luan County	/, NM	Pro	ject Manage	ers: Faucher	/ Hendley			
	Date	7/17/17								
	Time	0700	0730	0800	0830	0900	0930			
	Hr Meter	7828.5	7929.0	7929.5	7930.0	7930.5	7931.0			
	Engine Speed RPM	2000	1800	1800	1300	1900	1800			
NER	Oil Pressure psi	50	50	50	50	50	50			
BLO	Water Temp °F	130	130	130	140	140	140			
NE /	Alternator Volts	14	14	14	14	14	14			
ENG	Intake Vacuum "Hg	14	14	14	14	14	14			
	Gas Flow Fuel/Propane cfh	20	20	20	0	0	0			
	Extraction Well Vac. "H ₂ O	54	54	54	54	54	54			
ERE	Extraction Well Flow scfm	15:09	15.09	15.09	15.89	15.09	15.09			
HdSC	Influent Vapor Temp. °F	70	70	70	70	70	20			
ATMC	Air Temp °F	-	-	-	-	-	~			
	Barometric Pressure "Hg	-	-	-	-	-	-			
E	TPH ppmv	72,190	(69,990	-	68,650	Г			
LUEN	CO2 %	5.14	I	5.50	-	5.26	-			
/INF	CO %	3.26	1	2.78	-	2,36	-			
POR	O ₂ %	3.4	-	3.6	-	2.8	-			
×	H ₂ S ppm	0	-	0	-	0	-			
	SEE PAGE Z FOR NOTES	CONCERNIN	NG MOSI	LUZATION,	AND STAR	TUP PROG	FOURES.			
	INITIAL WELL VAPOR SAM	INITIAL WELL VAPOR SAMPLE HAD THAT CONCENTRATIONS OF 72.190 PIMV								
	TPH CONCENTIZATIONS ON	A SUGH	ny DECT	ZEASING	REND DI	IRING PO	RIOD			
OTES	GLAS PUMP PARE ENCREASED	TO DETEN	EMINE R	ATE REQU	IT COSTI	DECREASE	THE			
z	WATT LEVEL TO WELL MW-1 LIMITED AMINONT OF LAWIN STRATEE CONST AND									
	THE TOTAL VOLUME OF LIG	WID THAT (COND BE	RECOVERE	<i>b</i> .					
	GW Pump ON/OFF	ON/OFF	ON	on	on	ON	0~			
	TOTALIEER gals/min	990.26	1030.73	1073-16	1115,12	1179.52	1256.17			
、[Total Volume gals		40.47	82,90	124.96	189.26	265.91			
VER	NAPL % Vol	-	SHEEN	SHEEN	SITEEN	SHEEN	SHEEN			
ECO	NAPL Gals	-	-	-	-	-	-			
-	GW Depression 4,32 ft	-	-	-	-	-	-			
	Extraction Well DTNAPL	51.85								
	Extraction Well DTGW	51.87								

LNAPL .02

	OPERATIN	G NOTES - EVENT # 2C	PAGE # Z	ACUVAC MDP SYSTEM
Location	n: Johnston Federal #4, Sar	n Juan County, NM	Project	Managers: Faucher / Hendley
	7/17/17 0600 Hrs	ARRIVED ON SITE	GAUGED WELL	5 MW-1, MW-3, MW-8
		Aarp mw-11. Disc	USSED WORKPL	The FOR THE DAY WITH
-		TUSTEN GARVET. 1	T WAS DETERMI	NOD THAT EVENT #20
-		WOULD BE A GHR	EVENT ON WEU	- MW-1, EVENT #21
-		WOULD BEA GHR.	EVENT ON WELL.	MW-3 AND EVENT #25
-		WOULD BE A 12 HA	EVENT ON WELL	тw- <u>8</u> .
-				
		MOBILIZED THE	latac EQUIPMEN	TON WELL MW-1.
-		CONNECTED LIDURD,	DISCHARGE HOSE T	TOTALIZER FLOW
-		METER AND THEN T	O THE STANDBY (OLVECTION TANK
		CONNÉCRED WELL	VAC HOSE TO WI	ELL MANIFOLD AND THE
-		AQUAL SYSTEM: P	ERFARMED ALL S	AFETT CHECKS - ALL OK.
		POSITIONED In-	JEL PUMP 1.0 F	F ABOVE WELL BOTTOM
TES		OR 66.0 FT BTOC.		
N -	0700 HRS	EVENT STATTED.	INMAL WELL	AR SET AT SY" HLO
		RESULTING IN AW	VF OF 15.09 SCF	M. JN-WELL PUMP
		RATE SET AT1.85	GPM.	
-				
ŀ		THE YOUR IN	THE WELL STATT	ES TO UPWELL AS A
-		RESOLT OF THE I	NOUCED VACOUM.	THE PUMP PATE
	.1	WAS INCREASED	TO OFFSET THE	UPWELLING. THE
-		INCREASE IN P	IMP RATE APOENE	ED TO SLOW THE
-		OPWELLING		
-				
-				
-				
-				
F				

A	AcuVac Remediation OPERATING	DATA – EVEN	IT#ZC	PAGE #	13	ACUVAC M	DP SYSTEM
Loca	tion: Johnston Federal #4, San	Juan County	y, NM	Pro	ject Manage	ers: Faucher	/ Hendley
	Date						
	Time	1000	1100	1200	1300		
	Hr Meter	7931.5	75325	7933.5	7834.5		
	Engine Speed RPM	1800	1800	1800	1806		
NER	Oil Pressure psi	50	50	50	50		
BLOV	Water Temp °F	140	140	140	140		
INE /	Alternator Volts	14	14	14	14		
ENG	Intake Vacuum "Hg	14	14	14	14		
	Gas Flow Fuel/Propane cfh	0	6	6	б		
	Extraction Well Vac. "H ₂ O	56	56	52	56		
ERE	Extraction Well Flow scfm	20,77	20.77	20.77	20.17		
/ WN	Influent Vapor Temp. °F	20	70	70	70.		
ATMC	Air Temp °F	-	-	-	-		
	Barometric Pressure "Hg	-	-	-	-		
ы	TPH ppmv	69.350	64,960	71120	-		
LUEN	CO2 %	5.86	5.93	6.64	-		
/ INF	CO %	2.65	2.19	2.94	~		
POR	O ₂ %	3.0	2.2	2.9	-		
AN V	H ₂ S ppm	0	0	0	-		
	TPH VAPOR CONCENTRATIO	NS ON A	a overau	INCRE!	ASING TOR	5UN.	
	AT 1100 HAS GW PUMP RA	net to	2.77 GPM	1. THE	Gw Pump	PARE WO	HU WED
(0	to BE IN THE 3.50 T	4.00 GPM	n IN ORDO	EN TO DE	-WATER T	HE AREA	t
OTES	SURROWNOING MW-1.						*
z	WVF FLOW INCREASING	AT 1000 H	ties As G	in Deri	SSION In	uneased	
	AT 1100 His DECREASED	Gas Pum	PRATE	SLIGHTL	Y DUE TO	o. Liminel	
	LIQUID STORAGE AVAILA	34E - 300	GAL				
	GW Pump ON/OFF	GN	ON	ON	OFF		
	Pump Rate gals/min	1352.94	1545.39	1711.46	1779.96		
7	Total Volume gals	362.68	555.13	74.20	789.70		
VER	NAPL % Vol	SHEEN	SHEEN	SHEEN	SHEEN		
RECO	NAPL Gals	-	-	-	-		
-	GW Depression ft	-20	-3.0	-4.0	-4-0		
	Extraction Well DTNAPL				-		
	Extraction Well DTGW				5206		

A	AcuVac Remediation OPERATING	DATA – EVEI	NT # ZD	PAGE	#)	ACUVAC	MDP SYSTEM		
Loca	tion: Johnston Federal #4, San	Juan Count	y, NM	Pro	oject Manag	ers: Fauche	r / Hendley		
	Date	TINIT							
	Time	1300	1330	1400	1430	1500	1530		
	Hr Meter	7934.5	7935.0	7935.5	7836.0	7936.5	7937.0		
	Engine Speed RPM	1900	1900	1900	1900	1900	1900		
WER	Oil Pressure psi	50	50	50	50	50	50		
BLO	Water Temp °F	160	160	160	160	160	160		
INE /	Alternator Volts	14	14	14	14	14	14		
ENG	Intake Vacuum "Hg	14	14	14	14	14	14		
	Gas Flow Fuel/Propane cfh	110	110	110	110	110	110		
	Extraction Well Vac. "H ₂ O	40	40	40	40	40	40		
IERE AIR	Extraction Well Flow scfm	14.41	14.41	14.41	14.41	14.41	14.41		
ATMOSPH VACUUM /	Influent Vapor Temp. °F	70	70	70	70	70	70		
	Air Temp °F	_	-	-	-	_	-		
	Barometric Pressure "Hg	-	-	-	-	-	-		
L.	TPH ppmv	28,630	~	41,520	-	39,410	-		
LUE	CO2 %	4.88	-	6.62	-	6.46	-		
/ INF	CO %	.30	-	.70	-	,62	-		
APOR	O ₂ %	4.0	-	66	-	5.5	~		
*	H ₂ S ppm	0	-	0	-	0	-		
	AT 1300,125 RELOGATED VACUUM AND IN-WELL PUMP TO WELL MW-3 AND STATEDED								
	EVENT, INITTAL WELL VAPOR SAMANE VIELDED THE CONCENTRATIONS OF 22 630 APM								
s	TPH VAPORS INCREASED TO THE 40,000 PPMV RANGE AND REMAINED MOSTLY								
IOTE	STEADY FOR REMAINDOR O	F EVENT.	GW PU	MP RATE	IN TH	E 3.5GF	M ZANGE		
2	UNTIL 1400 Hits AND THEN DECREASED TO THE 2 GRAN DANKS EFFICIENT								
	LEWID WAS CLOUIS WIT	HNO M	EASJRAC	BLE FREE	NAPL VI.	SIBLE.			
	GW Pump ON/OFF	ON	an	ON	0~1	ON	ON		
	TottaLIZER gals/min	1779.96	1827.83	1930.69	2037.62	2117.14	2196.41:		
~	Total Volume gals	-	47.87	150.73	257.66	337.18	416.45		
VER	NAPL % Vol	-	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN		
REC	NAPL Gals	-	-	-	-	-	-		
	GW Depression ft	-3.0	- 30	-3.0	-3.0	- 3.0	-3.0		
	Extraction Well DTNAPL	-							
	Extraction Well DTGW	51.77							

CNAPL \$

Ø

AcuVac Remediation OPERATING DATA – EVENT # 2 D PAGE # 2 ACUVAC MDP SYSTEM									
Location: Johnston Federal #4, San Juan County, NM Project Managers: Faucher / Hendley								r / Hendley	
Date			7/17/17						
	M1.1- 3	Time	1600	1700	1800	1900			
	71100 5	Hr Meter	7937.5	7938.0	7538.5	7839.0			
ENGINE / BLOWER	Engine Speed	RPM	1900	1900	1900	1900			
	Oil Pressure	psi	50	50	50	50			
	Water Temp	°F	160	160	160	160			
	Alternator	Volts	14	14	14	14			
	Intake Vacuum	"Hg	14	14	14	14			
	Gas Flow Fuel/Propane	cfh	110	110	110	110			
	Extraction Well Vac.	"H₂O	40	40	40	40			
AIR	Extraction Well Flow	scfm	14.41	14.41	14.41	14.41			
	Influent Vapor Temp.	°F	70	70	70	70			
ATMC	Air Temp	°F	-		_	-			
	Barometric Pressure	"Ha	-		-	-			
F	ТРН	ppmv	-	41,430	-	-			
-UEN	CO ₂	%	_	(28	-	-			
POR / INFL	со	%	-	71		_			
	O ₂	%	-	52	-	-			
VA	H ₂ S	npm	-	0	-	-			
	LIFTI WAS ASM WETH 1/AP OF ELIDAL COERDY DIDING PORT								
	ERING THOUR REALING CLANDY LUND TOUDY TOUD,								
	THE SUPE CLARE								
DTES									
ž									
	GW Pump	ON/OFF	Oal	and	dal	and the			
ECOVERY	TOTALIZER	gals/min	2295.82	2377.62	2469.46	2540.45			
	Total Volume	gals	515.86	597.66	685.50	760.49			
	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN			
	NAPL	Gals	-	-	-	-			
<u>۳</u>	GW Depression	ft	-3.0	- 3.0	- 3.0	-3.0			
-	Extraction Well	DTNAPL				6			
	Extraction Well	DTGW				51.84			

AcuVac Remediation OPERATING DATA - EVENT # 26 PAGE # / ACUVAC MDP SYSTEM									
Location: Johnston Federal #4, San Juan County, NM Project Managers: Faucher / Hendle									
	Date	TITIT							
	Time	1900	1930	2000	2030	2100	2130		
	mw ⁻ o Hr Meter	7935.0	7539.5	7940.0	7940.5	7941.0	7941.5		
ENGINE / BLOWER	Engine Speed RPM	1800	1800	1800	1800	1800	1800		
	Oil Pressure psi	50	50	50	50	50	50		
	Water Temp °F	140	140	140	140	140	140		
	Alternator Volts	14	14	14	14	14	14		
	Intake Vacuum "Hg	10	10	10	10	10	10		
	Gas Flow Fuel/Propane cfh	0	0	0	0	0	0		
	Extraction Well Vac. "H ₂ O	45	45	45	45	45	45		
ERE	Extraction Well Flow scfm	23.64	23.64	23.64	23.64	23.64	23.64		
/ WNI	Influent Vapor Temp. °F	50	70	70	70	70	70		
ATMC	Air Temp °F	_	-	-		-	-		
	Barometric Pressure "Hg	1	2	-	4	L	L		
F	TPH ppmy	_	78,800	_	- 1	75000			
-UEN	CO ₂ %	~	3.64	_	-	3.38	-		
/ INFI	CO %	-	4.43	-	-	3.52	-		
POR	O ₂ %	_	5.9	-	-	4.8	_		
VA	H ₂ S ppm	~	0	_	-	-0	-		
	1980 Event stated								
	1930 Initial vara sample obtained. TPH 78. 800.								
	2100 Vacor sandles obtained. TPH CO COD ON US ranson had								
DTES	No Has Flow rate ate du at 1.0 Il se avant								
ž	, to the Stary of the gallan por millione,								
					17 - 26 - 27 - 2000 - 27 - 22 - 60				
	GW Pump. Totalizer ONIOFF	2540.45	2564 10	7600 42	2633 04	267.25	2703.70		
	Pump Rate cals/min	_	244	1.0	1.0	1.0	1.0		
ECOVERY	Total Volume gais	_	24	60	93	127	163		
	NAPL % Vol	SHOPN	SHEEN	SHORN	SHEEN	SHOTA	SHOOL		
	NAPL Gals	-	-	-	-	-	-		
~	GW Depression ft	-210	-200	-2.0	-7.0	-20	-2.0		
	Extraction Well DTNAPI		ae. C				0.0		
	Extraction Well DTGW								

AcuVac Remediation OPERATING DATA - EVENT # 25 PAGE # 2 ACUVAC MDP SYSTEM									
Location: Johnston Federal #4, San Juan County, NM Project Managers: Faucher / Hendle									
	Dat	e 7/17/17			7/18/17				
	Mus - 8 Tim	e 2200	2300	2400	0100	0200	0300		
	Hr Mete	r 7942.0	7983.0	7544.0	7945,0	7546.0	7547.0		
ENGINE / BLOWER	Engine Speed RPI	n 1900	1880	1800	1800	1900	1900		
	Oil Pressure p	si 50	50	50	50	50	50		
	Water Temp 。	F 140	140	140	140	140	140		
	Alternator Volt	s 14	14	14	14	14	14		
	Intake Vacuum "H	g 10	10	10	10	10	10		
	Gas Flow Fuel/Propane cf	h '0	0	0	0	0	0		
	Extraction Well Vac. "H ₂ (45	45	45	45	45	45		
SPHERE JUM / AIR	Extraction Well Flow scfr	1 23.64	23.64	23.64	23.64	-23.64	23.64		
	Influent Vapor Temp.	= 70	20	70	70	70	70		
VACI	Air Temp 💡	=	-	-	-	-	-		
	Barometric Pressure "H	-	2	-	-	-	-		
5	TPH ppm	v	63,230	-	66,940	_	65,550		
LUEN	CO2 %	~	3.75	-	3.78	-	3.60		
/ INF	CO %	-	2.63	-	2,70	_	2.65		
POR	O2 %	_	6.7	-	5.5	-	6.9		
A V	H ₂ S ppr	~	0		Ð	-	0		
	2300 Vapor samples obtained at 2300, 100, 300. TPH, CO2, Co, Ox constant. No HSS present.								
NOTES	0200 Flow rate started to decrease to ,75 gallas per minute.								
	GWPump Totalizer ON/OFF	2739.06	2806,29	2866.20	2918,60	29 63.88	3006,50		
	Pump Rate gals/min	1.0	1.2	1.0	1.0	.75	,75		
RECOVERY	Total Volume gals	199	266	326	378	423	466		
	NAPL % Vol	SHEEN	SHEEN	SHEEN	STHER	SHEEN	SHOON		
	NAPL Gals	~	-	-	-	-	-		
	GW Depression ft	-2.0	-2.0	-2.0	-2.0	2.0	-2.0		
	Extraction Well DTNAPL								
	Extraction Well DTGW								

A	AcuVac Remediation OF	PERATING I	DATA – EVEN	т#2€	PAGE	<i>#3</i>	ACUVAC	NDP SYSTEM
Loca	tion: Johnston Federa	al #4, San .	Juan County	, NM	Pro	ject Manage	ers: Fauche	r / Hendley
		Date	7/18/17					
		Time	0400	0500	0600	0700		
	mw o	Hr Meter	7548.0	7949.0	7950.0	1957.0		
	Engine Speed	RPM	1800	1800	1900	1800		
WER	Oil Pressure	psi	50	50	50	50		
BLO	Water Temp	°F	140	140	140	140		
INE /	Alternator	Volts	14	14	14	14		
ENG	Intake Vacuum	"Hg	10	10	10	10		
	Gas Flow Fuel/Propane	cfh	0	6	0	0		
	Extraction Well Vac.	"H₂O	45	45	45	45		
AIR	Extraction Well Flow	scfm	23.64	23.64	23.64	23.64		
	Influent Vapor Temp.	°F	70	70	70	70		
ACL	Air Temp	°F	-	-	-	-		
	Barometric Pressure	"Hg	-	-	-	-		
	TPH	ppmv	64.520	-	-	59.820		
	CO ₂	%	3.70	-	-	4.50		
	со	%	2.20	-	-	208		
5	O ₂	%	6.8	-	-	7.4		
	H ₂ S	ppm	0	-	-	0		
	meth WAT Awn	14(1/5=	CORDIV	Destanse	rate 22	Prop TD	4 VA202	Calles 5800
	+ SLIGHTEV AN PERCOD ALTHOU AT 0700 Hins E	50700 1661 20 17ENT 0	HRS. G MEASU BONCLUD	W PUMP 124365 (30.	NAPL WI	nostex s. As Recon	75427 UU 2920.	P2025
	TOTAL ZON	CARLS.	3005.02	3083.10	3137.90	31.76.65		
	Pump Rate	gals/min	1.44	.75	.65	-		
	Total Volume	gals	466	553	597	636		
	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN		
	NAPL	Gals	-	-	-	-		
	GW Depression	ft	-	-	-	-		
	Extraction Well	DTNAPL	-2.0	-2.0	-2.0	-2.0		
	Extraction Well	DTGW						

JOHNSTON FEDERAL #4 SAN JUAN COUNTY, NM

JOHNSTON FEDERAL #4 SAN JUAN COUNTY, NM

JOHNSTON FEDERAL #4 SAN JUAN COUNTY, NM

APPENDIX D

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-139103-1

Client Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Debia Aversw

Authorized for release by: 6/20/2017 5:06:06 PM Debra Vergin, Project Manager II (850)363-5129 debra.vergin@testamericainc.com

Designee for Carol Webb, Project Manager II (850)471-6250 carol.webb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	7
Client Sample Results	8
QC Association	18
QC Sample Results	19
Chronicle	21
Certification Summary	23
Method Summary	24
Chain of Custody	25
Receipt Checklists	26

Definitions/Glossary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

Glossarv

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Л
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	9
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Job ID: 400-139103-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-139103-1

Comments

No additional comments.

Receipt

The samples were received on 6/10/2017 8:18 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

RL

1.0

5.0

Unit

ug/L

ug/L

Result Qualifier

36

15

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

Lab Sample ID: 400-139103-1

Lab Sample ID: 400-139103-2

Prep Type

Total/NA

Total/NA

5

Lat	o S	ample ID:	400-139103-5	13
1	_	8021B	Total/NA	
Fac	D	Method	Prep Type	
Lab	o S	ample ID:	400-139103-4	
1		8021B	Total/NA	
1		8021B	Total/NA	
1		8021B	Total/NA	9

Lab Sample ID: 400-139103-3	3

Dil Fac D Method

1

1

8021B

8021B

Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	29		1.0	ug/L	1	8021B	Total/NA
Toluene	11		5.0	ug/L	1	8021B	Total/NA
Xylenes, Total	5.4		5.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-13

Client Sample ID: MW-6

Client Sample ID: MW-7

Client Sample ID: MW-9

Analyte

Benzene

Xylenes, Total

No Detections.

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Prep Type
Benzene	3.4	1.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-15

Analyte	Result Qualifie	er RL	Unit	Dil Fac	D Method	Prep Type
Benzene	19	1.0	ug/L	1		Total/NA
Ethylbenzene	3.0	1.0	ug/L	1	8021B	Total/NA
Xylenes, Total	15	5.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-16

No Detections.

Client Sample ID: MW-18

Analyte	Result	Qualifier	RL	Unit	Dil Fac	D Method	Ргер Туре
Benzene	8.7		1.0	ug/L	1	8021B	Total/NA
Ethylbenzene	3.5		1.0	ug/L	1	8021B	Total/NA
Xylenes, Total	24		5.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-19

Analyte	Result	Qualifier	RL	Unit	Dil Fac	D	Method	Prep Type
Benzene	64		1.0	ug/L	1	_	8021B	Total/NA
Ethylbenzene	7.3		1.0	ug/L	1		8021B	Total/NA
Toluene	31		5.0	ug/L	1		8021B	Total/NA
Xylenes, Total	55		5.0	ug/L	1		8021B	Total/NA

Client Sample ID: MW-20

Analyte	Result	Qualifier	RL	Unit	Dil Fac	D	Vethod	Prep Type
Benzene	42		1.0	ug/L	1	- 8	3021B	Total/NA
Ethylbenzene	1.1		1.0	ug/L	1	8	3021B	Total/NA
Toluene	11		5.0	ug/L	1	8	3021B	Total/NA

This Detection Summary does not include radiochemical test results.

TestAmerica Pensacola

Lab Sample ID: 400-139103-8

Lab Sample ID: 400-139103-9

Lab Sample ID: 400-139103-6

Lab Sample ID: 400-139103-7

Detection Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

1
5
8
9
13

Client Sample ID: MW-20 (Continued)					Lab Sample ID: 400-1391			
Analyte	Result	Qualifier	RL	Unit	Dil Fac	D	Method	Prep Type
Xylenes, Total	37		5.0	ug/L	1		8021B	Total/NA
Client Sample ID: TRIP B	LANK				Lab	Sa	ample ID: 4	400-139103-10

Client Sample ID: TRIP BLANK

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 400-139103-1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-139103-1	MW-6	Water	06/09/17 10:00	06/10/17 08:18
400-139103-2	MW-7	Water	06/09/17 08:50	06/10/17 08:18
400-139103-3	MW-9	Water	06/09/17 09:00	06/10/17 08:18
400-139103-4	MW-13	Water	06/09/17 09:10	06/10/17 08:18
400-139103-5	MW-15	Water	06/09/17 09:45	06/10/17 08:18
400-139103-6	MW-16	Water	06/09/17 08:40	06/10/17 08:18
400-139103-7	MW-18	Water	06/09/17 09:30	06/10/17 08:18
400-139103-8	MW-19	Water	06/09/17 08:30	06/10/17 08:18
400-139103-9	MW-20	Water	06/09/17 09:20	06/10/17 08:18
400-139103-10	TRIP BLANK	Water	06/09/17 08:00	06/10/17 08:18

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW-6	ent Sample ID: MW-6							9103-1
Date Collected: 06/09/17 10:00							Matrix	c: Water
Date Received: 06/10/17 08:18								
Method: 8021B - Volatile Orga	anic Compounds	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	36		1.0	ug/L			06/14/17 19:02	1
Ethylbenzene	<1.0		1.0	ug/L			06/14/17 19:02	1
Toluene	<5.0		5.0	ug/L			06/14/17 19:02	1
Xylenes, Total	15		5.0	ug/L			06/14/17 19:02	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	96		78 - 124		-		06/14/17 19:02	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW-	7			Lab Sam	ple ID: 400-13	9103-2		
Date Collected: 06/09/17 08	:50						Matrix	: Water
Date Received: 06/10/17 08:	:18							
_ Method: 8021B - Volatile C	Organic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/14/17 19:38	1
Benzene Ethylbenzene	<1.0		1.0 1.0	ug/L ug/L			06/14/17 19:38 06/14/17 19:38	1
Benzene Ethylbenzene Toluene	<1.0 <1.0 <5.0		1.0 1.0 5.0	ug/L ug/L ug/L			06/14/17 19:38 06/14/17 19:38 06/14/17 19:38	1 1 1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	98		78 - 124		06/14/17 19:38	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

a,a,a-Trifluorotoluene (pid)

TestAmerica Job ID: 400-139103-1

06/14/17 20:13

Client Sample ID: MW-	9			Lab Sam	ple ID: 400-13	9103-3	
Date Collected: 06/09/17 09	0:00			Matrix	x: Water		
Date Received: 06/10/17 08	:18						
Method: 8021B - Volatile	Organic Compounds (GC)						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	29	1.0	ug/L			06/14/17 20:13	1
Ethylbenzene	<1.0	1.0	ug/L			06/14/17 20:13	1
Toluene	11	5.0	ug/L			06/14/17 20:13	1
Xylenes, Total	5.4	5.0	ug/L			06/14/17 20:13	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac

78_124

94

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW	/-13					Lab Sam	ole ID: 400-13	9103-4
Date Collected: 06/09/17 0	te Collected: 06/09/17 09:10							c: Water
Date Received: 06/10/17 0	8:18							
_ Method: 8021B - Volatile	e Organic Compounds (G	GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	3.4		1.0	ug/L			06/14/17 20:49	1
Ethylbenzene	<1.0		1.0	ug/L			06/14/17 20:49	1
Toluene	<5.0		5.0	ug/L			06/14/17 20:49	1
Xylenes, Total	<5.0		5.0	ug/L			06/14/17 20:49	1
Surrogata	% Passyon (Qualifiar	Limito			Propored	Analyzad	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	94		78 - 124	 	06/14/17 20:49	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW-15			Lab Sample ID: 400-139103-					
Date Collected: 06/09/17 09:45							Matrix	c: Water
Date Received: 06/10/17 08:18								
_ Method: 8021B - Volatile Org	anic Compounds ((GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	19		1.0	ug/L			06/14/17 21:24	1
Ethylbenzene	3.0		1.0	ug/L			06/14/17 21:24	1
Toluene	<5.0		5.0	ug/L			06/14/17 21:24	1
Xylenes, Total	15		5.0	ug/L			06/14/17 21:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	90		78 - 124		-		06/14/17 21:24	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

				Lab Sam	ple ID: 400-13	9103-6
					Matrix	k: Water
nic Compounds (GC)						
Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0	1.0	ug/L			06/14/17 22:00	1
<1.0	1.0	ug/L			06/14/17 22:00	1
<5.0	5.0	ug/L			06/14/17 22:00	1
<5.0	5.0	ug/L			06/14/17 22:00	1
	nic Compounds (GC) Result Qualifier <1.0 <1.0 <5.0 <5.0	nic Compounds (GC) Result Qualifier RL <1.0 1.0 <1.0 1.0 <5.0 5.0 <5.0 5.0	nic Compounds (GC) Result Qualifier RL Unit <1.0 1.0 ug/L <1.0 5.0 ug/L <5.0 5.0 ug/L	Result Qualifier RL Unit D <1.0	Result Qualifier RL Unit D Prepared <1.0	Lab Sample ID: 400-13 Matrix nic Compounds (GC) Prepared Analyzed <1.0

Surrogate	%Recovery	Qualifier	Limits	P	Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	93		78 - 124			06/14/17 22:00	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW-18	ent Sample ID: MW-18							9103-7
Date Collected: 06/09/17 09:30							Matrix	k: Water
Date Received: 06/10/17 08:18								
Method: 8021B - Volatile Org	anic Compounds	(GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	8.7		1.0	ug/L			06/16/17 00:27	1
Ethylbenzene	3.5		1.0	ug/L			06/16/17 00:27	1
Toluene	<5.0		5.0	ug/L			06/16/17 00:27	1
Xylenes, Total	24		5.0	ug/L			06/16/17 00:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	103		78 - 124		-		06/16/17 00:27	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW-19						Lab Sam	ole ID: 400-13	9103-8	
Date Collected: 06/09/17 08:30 Matrix: V									
Date Received: 06/10/17 08:18									
Method: 8021B - Volatile Orga	nic Compounds	(GC)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	64		1.0	ug/L			06/16/17 02:14	1	
Ethylbenzene	7.3		1.0	ug/L			06/16/17 02:14	1	
Toluene	31		5.0	ug/L			06/16/17 02:14	1	
Xylenes, Total	55		5.0	ug/L			06/16/17 02:14	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
a,a,a-Trifluorotoluene (pid)	104		78 - 124		-		06/16/17 02:14	1	

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Client Sample ID: MW-20 Lab Sample ID: 400-139103									
Date Collected: 06/09/17 09:20							Matrix	c: Water	
Date Received: 06/10/17 08:18									
Method: 8021B - Volatile Org	anic Compounds (GC)							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	42		1.0	ug/L			06/16/17 02:49	1	
Ethylbenzene	1.1		1.0	ug/L			06/16/17 02:49	1	
Toluene	11		5.0	ug/L			06/16/17 02:49	1	
Xylenes, Total	37		5.0	ug/L			06/16/17 02:49	1	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
a,a,a-Trifluorotoluene (pid)	106		78 - 124		-		06/16/17 02:49	1	

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4 TestAmerica Job ID: 400-139103-1

Lab Sample ID: 400-139103-10

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 06/09/17 08:00 Date Received: 06/10/17 08:18

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/16/17 03:24	1
Ethylbenzene	<1.0		1.0	ug/L			06/16/17 03:24	1
Toluene	<5.0		5.0	ug/L			06/16/17 03:24	1
Xylenes, Total	<5.0		5.0	ug/L			06/16/17 03:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	98		78 - 124		-		06/16/17 03:24	1

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

GC VOA

Analysis Batch: 356860

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-139103-1	MW-6	Total/NA	Water	8021B	
400-139103-2	MW-7	Total/NA	Water	8021B	
400-139103-3	MW-9	Total/NA	Water	8021B	
400-139103-4	MW-13	Total/NA	Water	8021B	
400-139103-5	MW-15	Total/NA	Water	8021B	
400-139103-6	MW-16	Total/NA	Water	8021B	
MB 400-356860/34	Method Blank	Total/NA	Water	8021B	
LCS 400-356860/1033	Lab Control Sample	Total/NA	Water	8021B	
400-139057-A-1 MS	Matrix Spike	Total/NA	Water	8021B	
400-139057-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

Analysis Batch: 356986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-139103-7	MW-18	Total/NA	Water	8021B	
400-139103-8	MW-19	Total/NA	Water	8021B	
400-139103-9	MW-20	Total/NA	Water	8021B	
400-139103-10	TRIP BLANK	Total/NA	Water	8021B	
MB 400-356986/4	Method Blank	Total/NA	Water	8021B	
LCS 400-356986/1002	Lab Control Sample	Total/NA	Water	8021B	
400-139102-A-1 MS	Matrix Spike	Total/NA	Water	8021B	
400-139102-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

RL

1.0

1.0

5.0

5.0

Limits

78 - 124

Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Method: 8021B - Volatile Organic Compounds (GC)

MB MB Result Qualifier

<1.0

<1.0

<5.0

<5.0

94

%Recovery

MB MB

Qualifier

Client Sample ID: Method Blank

Analyzed

06/14/17 10:04

06/14/17 10:04

06/14/17 10:04

06/14/17 10:04

Analyzed

06/14/17 10:04

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Dil Fac 1 1 1 1 Dil Fac 9 1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Lab Sample ID: LCS 400-356860/1033 Matrix: Water Analysis Batch: 356860

Lab Sample ID: MB 400-356860/34

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surrogate

a,a,a-Trifluorotoluene (pid)

Analysis Batch: 356860

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	49.5		ug/L		99	85 - 115	
Ethylbenzene	50.0	50.6		ug/L		101	85 _ 115	
Toluene	50.0	50.7		ug/L		101	85 - 115	
Xylenes, Total	150	150		ug/L		100	85 ₋ 115	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (pid)	97		78 - 124

Lab Sample ID: 400-139057-A-1 MS Matrix: Water

Analysis Batch: 356860

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	49.5		ug/L		99	44 - 150	
Ethylbenzene	<1.0		50.0	51.6		ug/L		103	70 - 142	
Toluene	<5.0		50.0	50.9		ug/L		102	69 - 136	
Xylenes, Total	<5.0		150	154		ug/L		103	68 - 142	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (pid)	97		78 _ 124

Lab Sample ID: 400-139057-A-1 MSD Matrix: Water Analysis Batch: 356860

Analysis Batch. 000000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	48.7		ug/L		97	44 - 150	2	16
Ethylbenzene	<1.0		50.0	50.9		ug/L		102	70 - 142	1	16
Toluene	<5.0		50.0	50.8		ug/L		102	69 _ 136	0	16
Xylenes, Total	<5.0		150	153		ug/L		102	68 - 142	1	15
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
a,a,a-Trifluorotoluene (pid)	95		78 - 124								

TestAmerica Pensacola

6/20/2017

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 400-356986/4 Matrix: Water Analysis Batch: 356986										Client S	Sample ID: Metho Prep Type: 1	d Blank fotal/NA
Analysis Batch. 000000		мв	мв									
Analyte	Re	esult	Qualifier	RL		Unit		D	Р	repared	Analyzed	Dil Fac
Benzene		<1.0		1.0		ug/L					06/15/17 13:13	1
Ethylbenzene		<1.0		1.0		ug/L					06/15/17 13:13	1
Toluene		<5.0		5.0		ug/L					06/15/17 13:13	1
Xylenes, Total		<5.0		5.0		ug/L					06/15/17 13:13	1
		ΜВ	МВ									
Surrogate	%Reco	very	Qualifier	Limits					Ρ	repared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)		95		78 - 124				-			06/15/17 13:13	1
Lab Sample ID: LCS 400-356986/ Matrix: Water Analysis Batch: 356986	1002							CI	ient	Sample	Prep Type: 1	Sample fotal/NA
				Spike	LCS	LCS					%Rec.	
Analyte				Added	Result	Qualifier	Unit		D	%Rec	Limits	
Benzene				50.0	44.0		ug/L			88	85 - 115	
Ethylbenzene				50.0	45.1		ug/L			90	85 - 115	
Toluene				50.0	45.2		ug/L			90	85 - 115	
Xylenes, Total				150	135		ug/L			90	85 ₋ 115	
	LCS	LCS										
Surrogate	%Recovery	Qua	lifier	Limits								
a,a,a-Trifluorotoluene (pid)	101			78 - 124								
Lab Sample ID: 400-139102-A-1 M Matrix: Water Analysis Batch: 356986	NS									Client	Sample ID: Matr Prep Type: 1	ix Spike ^r otal/NA
	Sample	Sam	ple	Spike	MS	MS					%Rec.	
Analyte	Result	Qua	lifier	Added	Result	Qualifier	Unit		D	%Rec	Limits	

a,a,a-Trifluorotoluene (pid)	101	78 - 124	
Lab Sample ID: 400-139102-A	-1 MS		
Matrix: Water			
Analysis Batch: 356986			
	Sample Sample	Sniko	MS MS

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	54.7		ug/L		109	44 - 150	
Ethylbenzene	<1.0		50.0	56.2		ug/L		112	70 - 142	
Toluene	<5.0		50.0	55.5		ug/L		111	69 - 136	
Xylenes, Total	<5.0		150	169		ug/L		113	68 ₋ 142	
	MS	MS								

	1015	1115	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (pid)	97		78 - 124

Lab Sample ID: 400-139102-A-1 MSD Matrix: Water Analysis Batch: 356986

Analysis Daton. 000000											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	60.9		ug/L		122	44 - 150	11	16
Ethylbenzene	<1.0		50.0	61.9		ug/L		124	70 - 142	10	16
Toluene	<5.0		50.0	61.5		ug/L		123	69 _ 136	10	16
Xylenes, Total	<5.0		150	186		ug/L		124	68 - 142	9	15
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
a,a,a-Trifluorotoluene (pid)	103		78 - 124								

TestAmerica Pensacola

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Initial

Amount

5 mL

Initial

Amount

5 mL

Final

Amount

5 mL

Final

Amount

5 mL

Batch

Number

356860

Batch

Number

356860

Dil

1

Dil

1

Factor

Factor

Run

Run

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

Batch

Method

8021B

Batch

Method

8021B

Instrument ID: CH_JOAN

Instrument ID: CH_JOAN

Client Sample ID: MW-6

Date Collected: 06/09/17 10:00

Date Received: 06/10/17 08:18

Client Sample ID: MW-7

Date Collected: 06/09/17 08:50

Date Received: 06/10/17 08:18

Client Sample ID: MW-9

Date Collected: 06/09/17 09:00

Date Received: 06/10/17 08:18

Prep Type

Prep Type

Total/NA

Total/NA

Batch

Туре

Batch

Туре

Analysis

Analysis

Lab Sample ID: 400-139103-1

Analyst

Lab Sample ID: 400-139103-2

Analyst

Lab Sample ID: 400-139103-4

Lab Sample ID: 400-139103-5

GRK

GRK

Prepared

or Analyzed

06/14/17 19:02

Prepared

or Analyzed

06/14/17 19:38

Matrix: Water

TAL PEN

Matrix: Water

Lab

Lab	
TAL PEN	1
139103-3	

Lab Sample ID: 400-139103-3 Matrix: Water

Matrix: Water

Matrix: Water

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356860	06/14/17 20:13	GRK	TAL PEN
	Instrume	nt ID: CH_JOAN								

Client Sample ID: MW-13 Date Collected: 06/09/17 09:10

Date Received: 06/10/17 08:18

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	
i otal/NA	Analysis Instrument	BU21B ID: CH_JOAN		1	5 ML	5 mL	356860	06/14/17 20:49	GRK	TAL PEN

Client Sample ID: MW-15 Date Collected: 06/09/17 09:45 Date Received: 06/10/17 08:18

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Analvst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356860	06/14/17 21:24	GRK	TAL PEN
	Instrumen	t ID: CH_JOAN								

Client Samp	le ID: MW-1	6						Lab Sample	e ID: 40	0-139103-6
Date Collected	I: 06/09/17 08:4	0							Ν	Aatrix: Water
Date Received	: 06/10/17 08:1	8								
Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356860	06/14/17 22:00	GRK	TAL PEN
	Instrume	ent ID: CH_JOAN								

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

Client Sample ID: MW-18

Lab Sample ID: 400-139103-7

Date Collected:	06/09/17 09:3	0							Ν	latrix: Wate
Date Received:	06/10/17 08:1	8								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356986	06/16/17 00:27	GRK	TAL PEN
	Instrume	ent ID: CH_JOAN								
Client Sample	D: MW-19	9						Lab Sample	e ID: 400)-139103-
Date Collected:	06/09/17 08:3	0							Ν	latrix: Wate
Date Received: (06/10/17 08:1	8								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356986	06/16/17 02:14	GRK	TAL PEN
	Instrume	ent ID: CH_JOAN								
Client Sample	e ID: MW-20	D						Lab Sample	e ID: 400)-139103-9
Date Collected:	06/09/17 09:2	0							Ν	latrix: Wate
Date Received:	06/10/17 08:1	8								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356986	06/16/17 02:49	GRK	TAL PEN
	Instrume	ent ID: CH_JOAN								
Client Sample	D: TRIP E	BLANK						Lab Sample	ID: 400-	139103-1
Date Collected:	06/09/17 08:0	0							Ν	latrix: Wate
Date Received: (06/10/17 08:1	8								

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356986	06/16/17 03:24	GRK	TAL PEN
	Instrument	ID: CH_JOAN								

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

TestAmerica Job ID: 400-139103-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-17
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-17
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-17
Illinois	NELAP	5	200041	10-09-17
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-17
Kentucky (UST)	State Program	4	53	06-30-17
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-17
Massachusetts	State Program	1	M-FL094	06-30-17
Michigan	State Program	5	9912	06-30-17
New Jersey	NELAP	2	FL006	06-30-17
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-17
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-17
Tennessee	State Program	4	TN02907	06-30-17
Texas	NELAP	6	T104704286-16-10	09-30-17
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-17

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - JohnstonFed #4

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Client: Stantec Consulting Services Inc

Login Number: 139103 List Number: 1

Creator: Perez, Trina M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.2°C IR-2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Pensacola

14

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-145968-1 Client Project/Site: El Paso CGP Company - Johnston Fed 4

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madanna Myers

Authorized for release by: 11/20/2017 12:14:29 PM Madonna Myers, Project Manager II (615)796-1870 madonna.myers@testamericainc.com

Designee for Carol Webb, Project Manager II (850)471-6250 carol.webb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	7
Client Sample Results	8
QC Association	18
QC Sample Results	19
Chronicle	21
Certification Summary	23
Method Summary	24
Chain of Custody	25
Receipt Checklists	26

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

3

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
X	Surrogate is outside control limits

Glossary

x	Surrogate is outside control limits	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	12
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 400-145968-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-145968-1

Comments

No additional comments.

Receipt

The samples were received on 11/14/2017 9:01 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Per client instructions, method 8260 was used in place of method 8021.

GC/MS VOA

Method(s) 8260C: Surrogate recovery for the following sample was outside control limits: MW-19 (400-145968-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

Lab Sample ID: 400-145968-2

Lab Sample ID: 400-145968-3

Lab Sample ID: 400-145968-4

Lab Sample ID: 400-145968-5

Lab Sample ID: 400-145968-6

Lab Sample ID: 400-145968-7

5

Client Sample ID: MW-6				Lab Sample ID: 400-145968-1			
Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type	
Benzene	66	1.0	ug/L	1	8260C	Total/NA	
Toluene	20	1.0	ug/L	1	8260C	Total/NA	
Ethylbenzene	9.5	1.0	ug/L	1	8260C	Total/NA	
Xylenes, Total	83	10	ug/L	1	8260C	Total/NA	

Client Sample ID: MW-19

Analyte	Result C	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	68		1.0	ug/L	1	8260C	Total/NA
Toluene	20		1.0	ug/L	1	8260C	Total/NA
Ethylbenzene	8.5		1.0	ug/L	1	8260C	Total/NA
Xylenes, Total	62		10	ug/L	1	8260C	Total/NA

Client Sample ID: MW-9

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Benzene	130	1.0	ug/L	1	8260C	Total/NA
Toluene	42	1.0	ug/L	1	8260C	Total/NA
Ethylbenzene	2.1	1.0	ug/L	1	8260C	Total/NA
Xylenes, Total	10	10	ug/L	1	8260C	Total/NA

Client Sample ID: MW-20

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	58	1.0	ug/L	1 _	8260C	Total/NA
Toluene	25	1.0	ug/L	1	8260C	Total/NA
Ethylbenzene	1.3	1.0	ug/L	1	8260C	Total/NA
Xylenes, Total	17	10	ug/L	1	8260C	Total/NA

Client Sample ID: MW-13

No Detections.

Client Sample ID: MW-15

Analyte	Result Qualifier	RL	Unit	Dil Fac) Method	Prep Type
Benzene	1100	10	ug/L	10	8260C	Total/NA
Toluene	180	10	ug/L	10	8260C	Total/NA
Ethylbenzene	71	10	ug/L	10	8260C	Total/NA
Xylenes, Total	290	100	ug/L	10	8260C	Total/NA

Client Sample ID: MW-16

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	29	1.0	ug/L	1	8260C	Total/NA
Toluene	2.3	1.0	ug/L	1	8260C	Total/NA
Ethylbenzene	2.8	1.0	ug/L	1	8260C	Total/NA
Xylenes, Total	14	10	ug/L	1	8260C	Total/NA

This Detection Summary does not include radiochemical test results.
Detection Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

Lab Sample ID: 400-145968-8

Lab Sample ID: 400-145968-9

Lab Sample ID: 400-145968-10

Client Sample ID: MW-7

No Detections.

Client Sample ID: MW-18

No Detections.

Client Sample ID: TRIP BLANK

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Job ID: 400-145968-1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-145968-1	MW-6	Water	11/12/17 09:45	11/14/17 09:01
400-145968-2	MW-19	Water	11/12/17 09:38	11/14/17 09:01
400-145968-3	MW-9	Water	11/12/17 09:32	11/14/17 09:01
400-145968-4	MW-20	Water	11/12/17 09:26	11/14/17 09:01
400-145968-5	MW-13	Water	11/12/17 09:19	11/14/17 09:01
400-145968-6	MW-15	Water	11/12/17 09:13	11/14/17 09:01
400-145968-7	MW-16	Water	11/12/17 09:06	11/14/17 09:01
400-145968-8	MW-7	Water	11/12/17 08:58	11/14/17 09:01
400-145968-9	MW-18	Water	11/12/17 08:54	11/14/17 09:01
400-145968-10	TRIP BLANK	Water	11/12/17 08:50	11/14/17 09:01

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

105

112

106

TestAmerica Job ID: 400-145968-1

Lab Sample ID: 400-145968-1

11/17/17 14:07

11/17/17 14:07

11/17/17 14:07

Matrix: Water

Client Sample ID: MW-6 Date Collected: 11/12/17 09:45

Date Received: 11/14/17 09:01

Dibromofluoromethane

4-Bromofluorobenzene

Toluene-d8 (Surr)

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL Unit D Prepared Dil Fac Analyzed Benzene 66 1.0 ug/L 11/17/17 14:07 1 Toluene 20 1.0 ug/L 11/17/17 14:07 1 ug/L Ethylbenzene 9.5 1.0 11/17/17 14:07 1 10 **Xylenes**, Total 83 ug/L 11/17/17 14:07 1 Surrogate %Recovery Qualifier Prepared Dil Fac Limits Analyzed

81 - 121

78 - 118

80 - 120

5
7
8
9

1

1

1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Lab Sample ID: 400-145968-2

Matrix: Water

Client Sample ID: MW-19 Date Collected: 11/12/17 09:38 Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	68		1.0	ug/L			11/17/17 14:29	1
Toluene	20		1.0	ug/L			11/17/17 14:29	1
Ethylbenzene	8.5		1.0	ug/L			11/17/17 14:29	1
Xylenes, Total	62		10	ug/L			11/17/17 14:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		81 - 121				11/17/17 14:29	1
4-Bromofluorobenzene	122	X	78 - 118				11/17/17 14:29	1
Toluene-d8 (Surr)	104		80 - 120				11/17/17 14:29	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Lab Sample ID: 400-145968-3

11/17/17 14:51

Matrix: Water

Client Sample ID: MW-9 Date Collected: 11/12/17 09:32

Toluene-d8 (Surr)

Date Received: 11/14/17 09:01	
Method: 8260C - Volatile Organic Compounds by GC/MS	

105

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	130		1.0	ug/L			11/17/17 14:51	1
Toluene	42		1.0	ug/L			11/17/17 14:51	1
Ethylbenzene	2.1		1.0	ug/L			11/17/17 14:51	1
Xylenes, Total	10		10	ug/L			11/17/17 14:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		81 - 121				11/17/17 14:51	1
4-Bromofluorobenzene	116		78-118				11/17/17 14:51	1

80 - 120

1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Client Sample ID: MW-20 Date Collected: 11/12/17 09:26 Date Received: 11/14/17 09:01

Lab Sample ID: 400-145968-4 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	58		1.0	ug/L			11/17/17 15:13	1
Toluene	25		1.0	ug/L			11/17/17 15:13	1
Ethylbenzene	1.3		1.0	ug/L			11/17/17 15:13	1
Xylenes, Total	17		10	ug/L			11/17/17 15:13	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		81 - 121				11/17/17 15:13	1
4-Bromofluorobenzene	114		78 - 118				11/17/17 15:13	1
Toluene-d8 (Surr)	104		80 - 120				11/17/17 15:13	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Client Sample ID: MW-13 Date Collected: 11/12/17 09:19 Date Received: 11/14/17 09:01

Lab Sample ID: 400-145968-5 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 11:54	1
Toluene	<1.0		1.0	ug/L			11/17/17 11:54	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 11:54	1
Xylenes, Total	<10		10	ug/L			11/17/17 11:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	105		81 - 121				11/17/17 11:54	1
4-Bromofluorobenzene	116		78_118				11/17/17 11:54	1
Toluene-d8 (Surr)	107		80 - 120				11/17/17 11:54	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Client Sample ID: MW-15 Date Collected: 11/12/17 09:13 Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1100		10	ug/L			11/17/17 17:48	10
Toluene	180		10	ug/L			11/17/17 17:48	10
Ethylbenzene	71		10	ug/L			11/17/17 17:48	10
Xylenes, Total	290		100	ug/L			11/17/17 17:48	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	103		81 - 121				11/17/17 17:48	10
4-Bromofluorobenzene	110		78 - 118				11/17/17 17:48	10
Toluene-d8 (Surr)	105		80 - 120				11/17/17 17:48	10

Lab Sample ID: 400-145968-6 Matrix: Water 5 6 7 8

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Client Sample ID: MW-16 Date Collected: 11/12/17 09:06 Date Received: 11/14/17 09:01

Lab Sample ID: 400-145968-7 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	29		1.0	ug/L			11/17/17 15:35	1
Toluene	2.3		1.0	ug/L			11/17/17 15:35	1
Ethylbenzene	2.8		1.0	ug/L			11/17/17 15:35	1
Xylenes, Total	14		10	ug/L			11/17/17 15:35	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		81 - 121				11/17/17 15:35	1
4-Bromofluorobenzene	111		78 - 118				11/17/17 15:35	1
Toluene-d8 (Surr)	106		80 - 120				11/17/17 15:35	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Lab Sample ID: 400-145968-8

Matrix: Water

Client Sample ID: MW-7 Date Collected: 11/12/17 08:58

Date	Received:	11/14/17	09:01	

Method: 8260C - Volatile	Organic Compo	unds by G	C/MS					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 15:57	1
Toluene	<1.0		1.0	ug/L			11/17/17 15:57	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 15:57	1
Xylenes, Total	<10		10	ug/L			11/17/17 15:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		81 - 121				11/17/17 15:57	1
4-Bromofluorobenzene	112		78 - 118				11/17/17 15:57	1
Toluene-d8 (Surr)	104		80 - 120				11/17/17 15:57	1

TestAmerica Pensacola

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Lab Sample ID: 400-145968-9

Matrix: Water

Client Sample ID: MW-18 Date Collected: 11/12/17 08:54 Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 16:20	1
Toluene	<1.0		1.0	ug/L			11/17/17 16:20	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 16:20	1
Xylenes, Total	<10		10	ug/L			11/17/17 16:20	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104		81 - 121				11/17/17 16:20	1
4-Bromofluorobenzene	114		78 - 118				11/17/17 16:20	1
Toluene-d8 (Surr)	106		80 - 120				11/17/17 16:20	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

Client Sample ID: TRIP BLANK Date Collected: 11/12/17 08:50 Date Received: 11/14/17 09:01

Lab Sample ID: 400-145968-10 Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 13:23	1
Toluene	<1.0		1.0	ug/L			11/17/17 13:23	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 13:23	1
Xylenes, Total	<10		10	ug/L			11/17/17 13:23	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		81 - 121				11/17/17 13:23	1
4-Bromofluorobenzene	112		78_118				11/17/17 13:23	1
Toluene-d8 (Surr)	106		80 - 120				11/17/17 13:23	1

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4 TestAmerica Job ID: 400-145968-1

GC/MS VOA

Analysis Batch: 376328

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-145968-1	MW-6	Total/NA	Water	8260C	
400-145968-2	MW-19	Total/NA	Water	8260C	
400-145968-3	MW-9	Total/NA	Water	8260C	
400-145968-4	MW-20	Total/NA	Water	8260C	
400-145968-5	MW-13	Total/NA	Water	8260C	
400-145968-6	MW-15	Total/NA	Water	8260C	
400-145968-7	MW-16	Total/NA	Water	8260C	
400-145968-8	MW-7	Total/NA	Water	8260C	
400-145968-9	MW-18	Total/NA	Water	8260C	
400-145968-10	TRIP BLANK	Total/NA	Water	8260C	
MB 400-376328/4	Method Blank	Total/NA	Water	8260C	
LCS 400-376328/1002	Lab Control Sample	Total/NA	Water	8260C	
400-145968-5 MS	MW-13	Total/NA	Water	8260C	
400-145968-5 MSD	MW-13	Total/NA	Water	8260C	

Method: 8260C - Volatile Organic Compounds by GC/MS

104

Lab Sample ID: MB 400-376328/4 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 376328 MB MB Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 1.0 ug/L Benzene <1.0 11/17/17 11:32 1 Toluene <1.0 1.0 ug/L 11/17/17 11:32 1 Ethylbenzene ug/L <1.0 1.0 11/17/17 11:32 1 Xylenes, Total <10 10 ug/L 11/17/17 11:32 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Dibromofluoromethane 81 - 121 11/17/17 11:32 101 1 4-Bromofluorobenzene 114 78 - 118 11/17/17 11:32 1 80 - 120

Lab Sample ID: LCS 400-376328/1002 Matrix: Water Analysis Batch: 376328

Toluene-d8 (Surr)

	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	50.0	48.1		ug/L		96	70 - 130
Toluene	50.0	51.7		ug/L		103	70 - 130
Ethylbenzene	50.0	54.1		ug/L		108	70 - 130
Xylenes, Total	100	109		ug/L		109	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	105		81 - 121
4-Bromofluorobenzene	112		78 - 118
Toluene-d8 (Surr)	104		80 - 120

Lab Sample ID: 400-145968-5 MS **Matrix: Water** Analysis Batch: 376328

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	46.6		ug/L		92	56 - 142	
Toluene	<1.0		50.0	46.2		ug/L		92	65 - 130	
Ethylbenzene	<1.0		50.0	46.5		ug/L		93	58 - 131	
Xylenes, Total	<10		100	95.0		ug/L		95	59 - 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	104		81 - 121
4-Bromofluorobenzene	114		78 - 118
Toluene-d8 (Surr)	105		80 - 120

Lab Sample ID: 400-145968-5 MSD **Matrix: Water** Analysis Batch: 376328

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	45.5		ug/L		90	56 - 142	2	30
Toluene	<1.0		50.0	46.2		ug/L		92	65 - 130	0	30

Page 19 of 26

Client Sample ID: Lab Control Sample Prep Type: Total/NA

11/17/17 11:32

1

Client Sample ID: MW-13

Prep Type: Total/NA

Client Sample ID: MW-13 Prep Type: Total/NA

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-14596 Matrix: Water	8-5 MSD							Clie	ent Sampl Prep Ty	e ID: M be: Tot	W-13 al/NA
Analysis Batch: 376328											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	<1.0		50.0	48.6		ug/L		97	58 - 131	4	30
Xylenes, Total	<10		100	97.2		ug/L		97	59 - 130	2	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Dibromofluoromethane	103		81 - 121								
4-Bromofluorobenzene	117		78_118								
Toluene-d8 (Surr)	105		80 - 120								

Lab Chronicle

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

Instrument ID: Darwin

Date Collected		/-6					La	b Sample I	D: 400-	145968-
	I: 11/12/17 0	9:45							Ma	trix: Wate
Date Received	: 11/14/17 0	9:01								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analvzed	Analvst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376328	11/17/17 14:07	CAR	TAL PEN
_	Instrumer	nt ID: Darwin								
Client Samr	le ID: MW	/-19					la	h Sample II	D· 400-	145968-
Date Collecter	1. 11/12/17 0	9.38					E 0		В. 400 Ма	triv: Wate
Date Receiver	· 11/12/17 0	9.01							ina	un. wat
		0.01								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376328	11/17/17 14:29	CAR	TAL PEN
	Instrumer	nt ID: Darwin								
Client Sam	le ID: MW	/-9					La	b Sample I	D: 400-	145968-
Date Collected	I: 11/12/17 0	9:32							Ma	trix: Wate
Date Received	: 11/14/17 0	9:01								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Pren Tyne	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	∆nalvst	lah
	Analysis	- 8260C		1 40101	5 ml	5 ml	376328	11/17/17 14·51		
	Instrumer	nt ID: Darwin		·	0 mL	0 mL	010020		0, 11	
Client Samp	le ID: MW	-20					La	b Sample I	D: 400-	145968-
Date Collected	I: 11/12/17 0	9:26							Ma	trix: Wate
Date Collected	1: 11/12/17 0 : 11/14/17 0	9:26 9:01							Ma	trix: Wate
Date Collected Date Received	1: 11/12/17 0 : 11/14/17 0 Batch	9:26 9:01 Batch		Dil	Initial	Final	Batch	Prepared	Ma	trix: Wate
Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type	9:26 9:01 Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analvzed	Ma	trix: Wate
Date Collecter Date Received Prep Type Total/NA	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis	99:26 9:01 Batch <u>Method</u> 8260C	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376328	Prepared or Analyzed 11/17/17 15:13	Ma Analyst CAR	Lab
Date Collected Date Received Prep Type Total/NA	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer	9:26 9:01 Batch Method 8260C nt ID: Darwin	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376328	Prepared or Analyzed 11/17/17 15:13	Ma Analyst CAR	Lab TAL PEN
Date Collected Date Received Prep Type Total/NA Client Same	1: 11/12/17 0 1: 11/14/17 0 Batch Type Analysis Instrumer Die ID: MW	9:26 9:01 Batch Method 8260C nt ID: Darwin	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample II	Ma Analyst CAR D: 400	Lab TAL PEN
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer	9:26 9:01 Batch Method 8260C at ID: Darwin 7-13 99:19	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample I	Ma Analyst CAR D: 400-' Ma	Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0	9:26 9:01 Batch Method 8260C nt ID: Darwin 7-13 99:19 9:01	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample I	Ma Analyst CAR D: 400- Ma	Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch	9:26 9:01 Batch Method 8260C at ID: Darwin -13 9:19 9:01 Batch	Run	Dil Factor 1	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376328 La	Prepared or Analyzed 11/17/17 15:13 b Sample II	Ma Analyst CAR D: 400- Ma	Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type	9:26 9:01 Batch Method 8260C nt ID: Darwin 7-13 9:19 9:01 Batch Method	Run	Dil Factor 1 Dil Factor	Initial Amount 5 mL	Final Amount 5 mL Final Amount	Batch Number 376328 La Batch Number	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed	Ma Analyst CAR D: 400- Ma Analyst	Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis	9:26 9:01 Batch Method 8260C nt ID: Darwin 7-13 99:19 9:01 Batch Method 8260C	Run	Dil Factor 1 Dil Factor	Initial Amount 5 mL Initial Amount 5 ml	Final Amount 5 mL Final Amount 5 ml	Batch Number 376328 La Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54	Ma Analyst CAR D: 400- Ma Analyst CAR	Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer	9:26 9:01 Batch Method 8260C at ID: Darwin 7-13 9:19 9:01 Batch Method 8260C at ID: Darwin	Run	Dil Factor 1 Dil Factor 1	Initial Amount 5 mL Initial Amount 5 mL	Final Amount 5 mL Final Amount 5 mL	Batch Number 376328 La Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54	Ma Analyst CAR D: 400- Ma Analyst CAR	Lab TAL PEN 145968- trix: Wate Lab TAL PEN
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer	9:26 9:01 Batch Method 8260C at ID: Darwin 7-13 9:19 9:01 Batch Method 8260C at ID: Darwin	Run	Dil Factor 1 Dil Factor 1	Initial Amount 5 mL Initial Amount 5 mL	Final Amount 5 mL Final Amount 5 mL	Batch Number 376328 La Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54	Ma Analyst CAR D: 400- Ma Analyst CAR	Lab TAL PEN 145968- trix: Wate Lab TAL PEN
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW	9:26 9:01 Batch Method 8260C nt ID: Darwin 7-13 9:19 9:01 Batch Method 8260C nt ID: Darwin 7-15 9:12	Run	Dil Factor 1 Dil Factor 1	Initial Amount 5 mL Initial Amount 5 mL	Final 5 mL Final Amount 5 mL	Batch Number 376328 La Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54 b Sample II	Ma Analyst CAR D: 400- Ma Analyst CAR D: 400-	Lab TAL PEN 145968- trix: Wate Lab TAL PEN 145968-
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Prep Type Total/NA Client Samp Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/12/17 0 I: 11/12/17 0	9:26 9:01 Batch Method 8260C nt ID: Darwin -13 9:19 9:01 Batch Method 8260C nt ID: Darwin -15 9:01	Run	Dil Factor 1 Dil Factor 1	Initial Amount 5 mL Initial Amount 5 mL	Final Amount 5 mL Final Amount 5 mL	Batch Number 376328 La Batch Number 376328	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54 b Sample II	Ma Analyst CAR D: 400- Ma Analyst CAR D: 400- Ma	trix: Wate Lab TAL PEN 145968- trix: Wate Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Total/NA Client Samp Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/12/17 0 I: 11/12/17 0 I: 11/14/17 0	9:26 9:01 Batch Method 8260C nt ID: Darwin 7-13 9:19 9:01 Batch Method 8260C nt ID: Darwin 7-15 9:13 9:01 Batch Batch	Run	Dil Factor 1 Dil Factor 1	Initial Amount 5 mL Initial Amount 5 mL	Final 5 mL Final Amount 5 mL	Batch Number 376328 La Batch Number 376328 La	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54 b Sample II	Ma Analyst CAR D: 400- Ma Analyst CAR D: 400- Ma	Lab TAL PEN 145968- trix: Wate Lab TAL PEN 145968- trix: Wate
Date Collected Date Received Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/14/17 0 Batch Type Analysis Instrumer DIE ID: MW I: 11/12/17 0 I: 11/12/17 0 I: 11/12/17 0 I: 11/12/17 0	9:26 9:01 Batch Method 8260C nt ID: Darwin 7-13 9:19 9:01 Batch Method 8260C nt ID: Darwin 7-15 9:13 9:01 Batch Method	Run	Dil Factor 1 Dil Factor 1 Dil Factor	Initial Amount 5 mL Initial Amount 5 mL	Final Amount 5 mL Final Amount 5 mL	Batch Number 376328 La Batch Number 376328 La Batch	Prepared or Analyzed 11/17/17 15:13 b Sample II Prepared or Analyzed 11/17/17 11:54 b Sample II Prepared or Analyzed	Ma Analyst CAR D: 400- Ma Analyst CAR D: 400- Ma	trix: Wate Lab TAL PEN 145968- trix: Wate Lab 145968- trix: Wate

Lab Chronicle

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

Client Sample ID: MW-16

Lab Sample ID: 400-145968-7

10

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260C at ID: Darwin		1	5 mL	5 mL	376328	11/17/17 15:35	CAR	TAL PEN
Client Samp	ole ID: MW	-7					La	b Sample I	D: 400-	145968-6
Date Collecter Date Received	d: 11/12/17 0 d: 11/14/17 0	8:58 9:01							Ма	trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	8260C nt ID: Darwin		1	5 mL	5 mL	376328	11/17/17 15:57	CAR	TAL PEN
Client Samp Date Collected Date Received	Die ID: MW d: 11/12/17 0 d: 11/14/17 0	/-18 8:54 9:01					La	b Sample I	D: 400- Ma	145968-9 trix: Wate
	Potoh	Botoh		Dil	Initial	Final	Potob	Broporod		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C 1t ID: Darwin		1	5 mL	5 mL	376328	11/17/17 16:20	CAR	TAL PEN

Clie Date Date Received: 11/14/17 09:01

45968-10 Matrix: Water

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376328	11/17/17 13:23	CAR	TAL PEN
	Instrument	ID: Darwin								

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

TestAmerica Job ID: 400-145968-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	12-31-17
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnston Fed 4

	Method Description	Protocol	Laboratory	3
	Volatile Organic Compounds by GC/MS	SW846	TAL PEN	4
Ref 5 =	ferences: "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, Novemi	ber 1986 And Its Updat	es.	5

Protocol References:

Method 8260C

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TestAmerica Pensacola

12 13

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 232514	Ch	ain of	Cust	ody Reco	rd F				COLAN COLAN	Derica MMENTAL TESTING
Phone (850) 474-1001 Fax (850) 478-2671 Client Information	Sampler	Zelow	X	Lab PM: Webb, Can	ol M 00-14596	SB COC	Carrier Tracking No(s):	40C	C No: 0-69059-27993.1	
Client Contract: Ms. Sarah Gardner	Phone:			E-Mail: carol.webb	@testamericainc	com	1	Pag	e: ge 1 of	
Company: Stantec Consulting Services Inc				-		Analysis R	equested	877 7	\$371028	
Address: 1560 Broadway Suite 1800	Due Date Requested:							Pre	servation Codes:	
City: Denver State, Zp:	TAT Requested (days): 10 Day S	T							NaOH Zn Acetate	None AsNaO2 Na2O4S
CO, 80202 Phone: 303-291-2239(Tel)	PO #: Purchase Order Re	auested						ມ່ ແ <u>່</u> ອ່ ງ	MeOH R- Amchlor S-	Na2SO3 Na2S203 H2SO4 TCD Dodorbidate
Email: sarah.cardher@mwhglobal.com	U-CRG-STIN-	05-17-1	-57S-L	80				11-	DI Water V.	- Acetone - MCAA
Project Name: Johnston Fed #4 Nov 2017	Project #: 40005479	Norther	ion Red	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>				<u>ب</u> لا	EDA V	- pH 4-5 · other (specify)
Site:	:#MOSS				051			Oth	her:	
Sample Identification	Sample Date	ample ((Sample Type C=comp,	Matrix (www.uku, a-aculd, C-wastaciol, ST-Tasue, Ardy	80218 - 81208	_			Special Instru	uctions/Note:
2- NW	0 +1/2/11	245	6	7	2			(***	LT ARE	
61-MW	11/2/17 0	938	6	3	2					
MW-9	0 11/2/11	132	6	>	2					
ML-20	0 £1/2/N	926	0	3	2			<u> </u>		
MU-13	11/12/17 0	616	5	×	2					
SI-MW	0 F1/2/11	913	6	N	2					
91-MW	vijezin c	206	5	3	2					
L-MW	0 41/21/11	858	5	M	2					
WU-16	WILL'NT O	458	6	3	2					
(L1/21/11) 80 - 1-1-1-1	0 27-4	muca/	(11)							
Tripbleant	14/12/17 C	850	2	>	2					
Possible Hazard Identification			liological	5	ample Disposal	I (A fee may I	of assessed if samples	s are retained	longer than 1 m	onth) Months
Deliverable Requested: I, II, IV, Other (specify)				05	pecial Instruction	ns/QC Require	ments:		5	0.000
Empty Kit Relinquished by:	0	ate:		Tim			Method of Shipme	÷		
Relinquished by, Balacesk	Dete/Time: 11/13/17		100	Strantec	Received by		Detev	:eul		FCOLCX
Reinquished by:	Dete/Time: I			Company	Received by:		Deter	My y I	0901-	impany fu
Reinquished by:	Dete/Time:			Company	Received by:		Detey	/ :emi		company .
Custody Seals Intact: Custody Seal No.:					Cooler Temperat	ure(s) ^a C and Oth	er Remertus: 1, 90	C MC	8	
										Ver: 08/04/2016
					13 14	11 12	8 9 10	0 7	4 5 6	2

Login Number: 145968 List Number: 1 Creator: Perez, Trina M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.9°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Pensacola