2017 ANNUAL GROUNDWATER REPORT

Johnston Fed #6A NMOCD Case#: 3RP-202-0 Meter Code: 89232 T31N, R9W, Sec35, Unit F

SITE DETAILS

Site Location:Latitude: 36.856422 N, Longitude: -107.753819 WLand Type:FederalOperator:Hilcorp Energy

SITE BACKGROUND

Environmental Remediation activities at the Johnston Fed #6A (Site) are being managed pursuant to the procedures set forth in the document entitled, "Remediation Plan for Groundwater Encountered during Pit Closure Activities" (Remediation Plan, El Paso Natural Gas Company / El Paso Field Services Company, 1995). This Remediation Plan was conditionally approved by the New Mexico Oil Conservation Division (NMOCD) in correspondence dated November 30, 1995; and the NMOCD approval conditions were adopted into El Paso CGP Company (EPCGP's) program methods. Currently, the Site is operated by Hilcorp Energy and is active.

The Site is located on Federal land. An initial site assessment was completed in August 1994, and an excavation of 80 cubic yards (cy), to a depth of approximately 12 feet below ground surface (bgs), was completed in September 1994. Various site investigations have occurred since 1994. Monitoring wells were installed in 1994 (MW-1 through MW-4), 1997 (temporary monitoring wells PZ-01 through PZ-07), 2000 (MW-5), 2006 (MW-6), and 2015 (MW-7 though MW-9). Free product recovery has been periodically conducted since 1997. Mobile dual-phase extraction (MDPE) events to enhance free product recovery were initiated in 2016. Free product was observed and recovered in MW-1 in June 2017. Currently, groundwater sampling is conducted on a semi-annual basis.

GROUNDWATER SAMPLING ACTIVITIES

Pursuant to the Remediation Plan, Stantec provided field work notifications via email to the NMOCD on May 30, 2017 and November 6, 2017, prior to initiating groundwater sampling activities at the Site. Copies of the 2017 NMOCD notifications are provided in Appendix A. On June 9 and November 12, 2017, water levels were gauged at MW-1 through MW-9. Groundwater samples were collected from selected monitoring wells using HydraSleeveTM (HydraSleeve) no-purge groundwater sampling devices. The HydraSleeves were set during the previous sampling event approximately 0.5 foot above termination depth of the monitoring wells using a suspension tether and stainless steel weights to collect a sample from the screened interval.

Groundwater samples were placed into laboratory-supplied sample containers, packed on ice, and shipped under standard chain-of-custody protocols to TestAmerica Laboratories, Inc. in Pensacola, Florida where they were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). As requested by the NMOCD on November 13, 2018, BTEX constituents were analyzed using United States Environmental Protection Agency (EPA) Method 8260 during the November sampling event. The unused sample water is

2017 ANNUAL GROUNDWATER REPORT

Johnston Fed #6A NMOCD Case#: 3RP-202-0 Meter Code: 89232 T31N, R9W, Sec35, Unit F

combined in a waste container and taken to Basin Disposal, Inc. (Basin) for disposal. Waste disposal documentation is included as Appendix B.

FREE PRODUCT RECOVERY

Approximately 10 milliliters of free product was manually recovered from MW-1 during the spring semi-annual groundwater monitoring event in June 2017. The recovered product was disposed at Basin disposal with excess wastewater generated during groundwater sampling activities.

Mobile dual phase extraction (MDPE) events were completed on July 15, 16, and 17, 2017, and September 23, 24, and 25, 2017, by AcuVac Remediation, LLC, of Houston, Texas (AcuVac). The planned MDPE activities were presented in a work plan dated June 29, 2018, and subsequently approved by the NMOCD. The NMOCD was notified of the start of the July MDPE activities on July 8, 2018. NMOCD was notified of the start of the September 2017 MDPE activities on September 15, 2018. The purpose of the MDPE events was to enhance free product recovery from monitoring well MW-1.

MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to enhance the removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, inducing a hydraulic gradient toward the extraction well, and creating groundwater depression to expose the hydrocarbon smear zone to SVE. Recovered liquids were transferred to a portable storage tank for off-site disposal. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE), resulting in little to no emissions. Power generated by the ICE is used to create the induced vacuum for SVE.

A total of six events, cumulatively totaling 52.25 hours of MDPE operation, were completed using MW-1 as an extraction well. Based on field data collected by AcuVac, approximately 66.75 gallons of hydrocarbons were recovered from MW-1. AcuVac's reports summarizing the MDPE events at the Site are presented as Appendix C. Recovered fluids from the MDPE event where transported to Basin for disposal. Waste disposal documentation is included as Appendix B.

SUMMARY TABLES

Historic groundwater analytical results and well gauging data are summarized in Tables 1 and 2, respectively. When free product was present, static water level elevations were corrected for measurable thicknesses of free product (specific gravity of 0.75).

SITE MAPS

Groundwater analytical maps (Figures 1 and 3) and groundwater elevation contour maps (Figures 2 and 4) summarize results of the 2017 groundwater sampling and gauging events.

2017 ANNUAL GROUNDWATER REPORT

Johnston Fed #6A NMOCD Case#: 3RP-202-0 Meter Code: 89232 T31N, R9W, Sec35, Unit F

ANALYTICAL LAB REPORTS

The groundwater analytical lab report is included as Appendix D.

GROUNDWATER RESULTS

- The groundwater flow direction at the Site is generally to the north-northeast (see Figures 2 and 4).
- Free product was observed in MW-1 in June 2017; therefore, a groundwater sample was not collected from MW-1 during this event.
- Monitoring wells MW-2, MW-4, and MW-6 were not selected to be sampled in June 2017.
- The groundwater sample collected from MW-1 in November 2017 exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard (10 micrograms per liter [µg/L]) for benzene in groundwater. Concentrations of benzene were not detected in the remaining Site monitoring wells sampled in 2017.
- The groundwater sample collected from MW-1 in November 2017 exceeded the NMWQCC standard $(750 \,\mu g/L)$ for toluene in groundwater. Concentrations of toluene were not detected in the remaining Site monitoring wells sampled in 2017.
- Concentrations of ethylbenzene were either below the NMWQCC standard $(750 \ \mu g/L)$ or not detected in the Site monitoring wells sampled in 2017.
- The groundwater sample collected from MW-1 in November 2017 exceeded the NMWQCC standard ($620 \mu g/L$) for total xylenes in groundwater. Concentrations of total xylenes were either below the NMWQCC standard ($620 \mu g/L$) or not detected in the remaining Site monitoring wells sampled in 2017.

PLANNED FUTURE ACTIVITIES

Groundwater monitoring events will be conducted on a semi-annual basis. Groundwater samples will be collected from monitoring wells not containing free product and analyzed for BTEX constituents using EPA Method 8260. No additional activities are planned for 2018 at this time. The activities completed in 2018 and their results will be summarized in the 2018 Annual Report, completed for submittal in early 2019.

P:\Word Processing\KINDER MORGAN\EL PASO - NM\JOHNSTON FED #6A\2017 ANNUAL REPORT (JOHNSTON FED #6A)\2018-03_Rpt_Johnston Fed #6_2017 Annual Report _Final.doc

TABLES

TABLE 1 – GROUNDWATER ANALYTICAL RESULTSTABLE 2 – GROUNDWATER ELEVATION RESULTS

		Johr	ston Fed #6	6A	
Location	Date	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)
NMWQC	C Standards:	10	750	750	620
MW-1	08/10/95	605	1380	74.6	718
MW-1	12/13/95	1330	1610	235	1540
MW-1	04/11/96	775	1070	124	810
MW-1	07/23/96	676	1980	233	2090
MW-1	10/14/96	1790	8350	580	6200
MW-1	01/22/97	6420	19800	934	10700
MW-1	04/11/97	7310	23500	1010	10800
MW-1	02/07/11	611	8260	1260	11600
MW-1	02/21/12	577	5510	916	5420
MW-1	06/09/13	510	17000	1400	15000
MW-1	11/12/17	27	2800	560	3900
MW-2	12/13/95	15.1	50.8	<2.5	53.8
MW-2	04/11/96	<1	<1	<1	3.13
MW-2	07/23/96	<1	1.15	<1	4.06
MW-2	10/14/96	<1	1.04	<1	4.85
MW-2	01/22/97	<1	<1	<1	<3
MW-2	04/11/97	<1	<1	<1	<3
MW-2	10/09/00	<0.5	<0.5	<0.5	<0.5
MW-2	06/18/01	<0.5	<0.5	<0.5	<0.5
MW-2	06/03/02	<0.5	<0.5	<0.5	<1
MW-2	06/09/13	<0.14	<0.30	<0.20	<0.23
MW-2	09/09/13	<0.14	<0.30	<0.20	<0.23
MW-2	12/12/13	<0.20	<0.38	<0.20	<0.65
MW-2	04/02/14	<0.20	<0.38	<0.20	<0.65
MW-2	10/23/14	<0.38	<0.70	<0.50	<1.6
MW-2	05/30/15	<1.0	<5.0	<1.0	<5.0
MW-2	11/19/15	<1.0	<1.0	<1.0	<3.0
MW-2	11/12/17	<1.0	<1.0	<1.0	<10

		Johr	nston Fed #6	A	
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-3	12/13/95	488	1020	104	1120
MW-3	04/11/96	772	231	113	379
MW-3	07/25/96	687	112	115	209
MW-3	10/14/96	900	240	140	340
MW-3	01/22/97	907	234	215	340
MW-3	04/11/97	944	209	223	322
MW-3	06/18/01	510	23	160	98
MW-3	06/03/02	380	<5	110	29
MW-3	03/05/09	1.2	17.9	9.4	59
MW-3	02/17/10	3.2	4.5	3.4	25.9
MW-3	02/07/11	8.6	1.3	6	13.1
MW-3	02/21/12	4.7	7.6	23.1	19.1
MW-3	06/09/13	<0.14	0.71 J	49	12
MW-3	09/09/13	0.78 J	0.48 J	30	2.2 J
MW-3	12/12/13	<0.20	51	23	5.4
MW-3	04/02/14	3.5	57	19	8.7
MW-3	10/23/14	<0.38	<0.70	6.2	<1.6
MW-3	05/30/15	<1.0	<5.0	4.6	17
MW-3	11/19/15	<1.0	2.5	2.1	<3.0
MW-3	04/16/16	<1.0	52	1.9	<5.0
MW-3	10/13/16	<1.0	61	1.9	<5.0
MW-3	06/09/17	<1.0	<5.0	1.6	25
MW-3	11/12/17	<1.0	<1.0	<1.0	<10

		Johr	nston Fed #6	A	
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-4	12/13/95	545	121	114	177
MW-4	04/11/96	591	160	133	193
MW-4	07/25/96	793	96.4	172	174
MW-4	10/14/96	800	100	130	235
MW-4	01/22/97	899	26.7	157	186
MW-4	04/11/97	703	20.1	149	138
MW-4	10/09/00	81	36	45	20
MW-4	06/18/01	490	70	91	96
MW-4	06/03/02	16	<5	17	2.2
MW-4	06/18/03	<1	<1	1.7	<3
MW-4	06/22/04	0.56 J	1.1	2.8	<1
MW-4	03/23/05	<1	<1	<1	0.99
MW-4	03/27/06	0.39 J	<1	<1	0.83 J
MW-4	03/28/07	0.39 J	0.6 J	<1	1.7 J
MW-4	03/10/08	0.25 J	<1	<1	<2
MW-4	06/09/13	<0.14	<0.30	<0.20	<0.23
MW-4	09/09/13	<0.14	<0.30	<0.20	<0.23
MW-4	12/12/13	<0.20	0.51 J	<0.20	<0.65
MW-4	04/02/14	<0.20	1.2 J	<0.20	<0.65
MW-4	10/23/14	<0.38	<0.70	<0.50	<1.6
MW-4	05/30/15	<1.0	<5.0	<1.0	<5.0
MW-4	11/19/15	<1.0	<1.0	<1.0	<3.0
MW-4	11/12/17	<1.0	<1.0	<1.0	<10

		Johr	nston Fed #	6A	
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-5	08/30/00	130	180	56	650
MW-5	06/18/01	170	300	68	630
MW-5	06/04/02	43	87	31	360
MW-5	03/05/09	1.9	9.8	44	120
MW-5	02/17/10	1.7	2.6	2.7	19.2
MW-5	02/07/11	11.9	920	177	1870
MW-5	02/21/12	2.7	1.7	5.2	85.5
MW-5	06/09/13	<0.14	<0.30	0.31 J	0.79 J
MW-5	09/09/13	<0.14	<0.30	<0.20	<0.23
MW-5	12/12/13	<0.20	<0.38	<0.20	<0.65
MW-5	04/02/14	<0.20	<0.38	<0.20	<0.65
MW-5	10/23/14	<0.38	0.96 J	<0.50	1.9 J
MW-5	05/30/15	<1.0	<5.0	<1.0	2.1 J
MW-5	11/19/15	<1.0	<1.0	<1.0	<3.0
MW-5	04/16/16	<1.0	<5.0	<1.0	<5.0
MW-5	10/13/16	<1.0	<5.0	<1.0	<5.0
MW-5	06/09/17	<1.0	<5.0	<1.0	<5.0
MW-5	11/12/17	<1.0	<1.0	<1.0	<10
MW-6	03/28/07	<1	<1	<1	<2
MW-6	03/10/08	9.4	<1	0.5 J	139
MW-6	03/05/09	<1	<1	<1	<2
MW-6	02/07/11	<1	<1	<1	<2
MW-6	02/21/12	<1	<1	<1	<2
MW-6	06/09/13	<0.14	<0.30	<0.20	<0.23
MW-6	09/09/13	<0.14	<0.30	<0.20	<0.23
MW-6	12/12/13	<0.20	<0.38	<0.20	<0.65
MW-6	10/23/14	<0.38	<0.70	<0.50	<1.6
MW-6	04/02/14	<0.20	<0.38	<0.20	<0.65
MW-6	05/30/15	<1.0	<5.0	<1.0	<5.0
MW-6	11/19/15	<1.0	<1.0	<1.0	<3.0
MW-6	11/12/17	<1.0	<1.0	<1.0	<10
MW-7	11/19/15	<1.0	<1.0	<1.0	<3.0
MW-7	04/16/16	<1.0	<5.0	<1.0	<5.0
MW-7	10/13/16	<1.0	<5.0	<1.0	<5.0
MW-7	06/09/17	<1.0	<5.0	<1.0	<5.0
MW-7	11/12/17	<1.0	<1.0	<1.0	<10

	Johnston Fed #6A								
		Benzene	Toluene	Ethylbenzene	Total Xylenes				
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)				
NMWQC	C Standards:	10	750	750	620				
MW-8	11/19/15	<1.0	<1.0	<1.0	<3.0				
MW-8	04/16/16	<1.0	<5.0	<1.0	<5.0				
MW-8	10/13/16	<1.0	<5.0	<1.0	<5.0				
MW-8	06/09/17	<1.0	<5.0	<1.0	<5.0				
MW-8	11/12/17	<1.0	<1.0	<1.0	<10				
MW-9	11/19/15	<1.0	<1.0	<1.0	<3.0				
MW-9	04/16/16	<1.0	<5.0	<1.0	<5.0				
MW-9	10/13/16	<1.0	<5.0	<1.0	<5.0				
MW-9	06/09/17	<1.0	<5.0	<1.0	<5.0				
MW-9	11/12/17	<1.0	<1.0	<1.0	<10				

Notes:

The groundwater monitoring dates for each monitoring well where no groundwater samples were collected and analyzed have been omitted.

"µg/L" = micrograms per liter

Results highlighted yellow exceed their respective New Mexico Water Quality Control Commission (NMWQCC) standards.

"J" = Result is less than the reporting limit but greater than or equal to the method detection limit and the result in an approximate value.

"<" = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).

			Johnste	on Fed #6A		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	ТОС	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-1	08/10/95	6001.88	37.24	NR		5964.64
MW-1	12/13/95	6001.88	37.35	NR		5964.53
MW-1	04/11/96	6001.88	37.48	NR		5964.40
MW-1	07/23/96	6001.88	37.55	NR		5964.33
MW-1	10/14/96	6001.88	37.22	37.07	0.15	5964.78
MW-1	01/22/97	6001.88	38.26	37.43	0.83	5964.25
MW-1	04/11/97	6001.88	38.31	37.20	1.11	5964.41
MW-1	06/18/01	6001.88	38.21	37.34	0.87	5964.33
MW-1	09/04/01	6001.88	38.27	37.54	0.73	5964.16
MW-1	03/04/02	6001.88	38.35	37.74	0.61	5963.99
MW-1	06/04/02	6001.88	38.14	37.81	0.33	5963.99
MW-1	09/10/02	6001.88	38.24	38.00	0.23	5963.83
MW-1	12/12/02	6001.88	38.11	38.01	0.10	5963.85
MW-1	03/14/03	6001.88	38.08	37.95	0.13	5963.90
MW-1	06/18/03	6001.88	38.47	37.88	0.59	5963.86
MW-1	09/16/03	6001.88	38.25	38.17	0.08	5963.69
MW-1	12/17/03	6001.88	38.23	38.13	0.10	5963.73
MW-1	03/16/04	6001.88	38.57	37.90	0.67	5963.82
MW-1	06/22/04	6001.88	38.65	37.90	0.75	5963.80
MW-1	09/22/04	6001.88	38.60	38.21	0.39	5963.58
MW-1	12/21/04	6001.88	38.38	38.20	0.18	5963.64
MW-1	03/23/05	6001.88	38.50	37.95	0.55	5963.80
MW-1	06/17/05	6001.88	38.62	38.13	0.49	5963.63
MW-1	09/20/05	6001.88	38.83	38.40	0.43	5963.38
MW-1	12/14/05	6001.88	38.72	38.31	0.41	5963.47
MW-1	03/25/06	6001.88	38.66	38.15	0.51	5963.61
MW-1	03/27/06	6001.88	38.62	38.05	0.57	5963.69
MW-1	06/06/06	6001.88	38.84	38.29	0.55	5963.46
MW-1	09/25/06	6001.88	39.01	38.51	0.50	5963.25
MW-1	12/07/06	6001.88	38.33	ND		5963.55
MW-1	03/28/07	6001.88	38.09	38.02	0.07	5963.85
MW-1	06/18/07	6001.88	38.86	38.09	0.77	5963.60
MW-1	09/17/07	6001.88	39.32	38.40	0.92	5963.25
MW-1	12/17/07	6001.88	39.13	38.42	0.71	5963.29
MW-1	03/10/08	6001.88	38.24	37.90	0.34	5963.90
MW-1	06/17/08	6001.88	37.71	37.38	0.33	5964.42
MW-1	09/10/08	6001.88	37.72	37.41	0.31	5964.40
MW-1	12/02/08	6001.88	37.89	37.51	0.38	5964.28
MW-1	03/05/09	6001.88	37.63	37.20	0.43	5964.58
MW-1	06/02/09	6001.88	37.83	37.49	0.34	5964.31
MW-1	08/28/09	6001.88	37.99	37.65	0.34	5964.15

	Johnston Fed #6A								
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-1	11/04/09	6001.88	37.77	ND		5964.11			
MW-1	02/17/10	6001.88	38.11	37.60	0.51	5964.16			
MW-1	05/24/10	6001.88	38.27	37.81	0.46	5963.96			
MW-1	09/24/10	6001.88	38.46	38.05	0.41	5963.73			
MW-1	11/02/10	6001.88	38.55	38.16	0.39	5963.63			
MW-1	02/07/11	6001.88	38.37	37.93	0.44	5963.84			
MW-1	05/02/11	6001.88	38.57	ND		5963.31			
MW-1	09/23/11	6001.88	38.75	38.32	0.43	5963.46			
MW-1	11/01/11	6001.88	38.80	ND		5963.08			
MW-1	02/21/12	6001.88	38.65	38.21	0.44	5963.56			
MW-1	05/14/12	6001.88	38.84	38.36	0.48	5963.40			
MW-1	06/09/13	6001.88	39.22	38.41	0.81	5963.27			
MW-1	09/09/13	6001.88	39.21	38.60	0.61	5963.13			
MW-1	12/12/13	6001.88	39.01	38.65	0.36	5963.14			
MW-1	04/02/14	6001.88	38.94	38.61	0.33	5963.19			
MW-1	10/23/14	6001.88	39.03	38.82	0.21	5963.01			
MW-1	05/30/15	6001.88	39.04	38.86	0.18	5962.98			
MW-1	11/19/15	6001.88	38.70	38.58	0.12	5963.27			
MW-1	04/16/16	6001.88	38.49	38.40	0.09	5963.46			
MW-1	10/13/16	6001.88	38.61	38.60	0.01	5963.28			
MW-1	06/09/17	6001.88	38.51	38.47	0.04	5963.40			
MW-1	11/12/17	6001.88	38.69	ND		5963.19			

			Johnste	on Fed #6A		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-2	12/13/95	6001.82	37.39	NR		5964.43
MW-2	04/11/96	6001.82	37.47	NR		5964.35
MW-2	07/23/96	6001.82	37.60	NR		5964.22
MW-2	10/14/96	6001.82	37.70	NR		5964.12
MW-2	01/22/97	6001.82	37.66	NR		5964.16
MW-2	04/11/97	6001.82	37.58	NR		5964.24
MW-2	10/09/00	6001.82	37.56	NR		5964.26
MW-2	06/18/01	6001.82	37.58	NR		5964.24
MW-2	09/04/01	6001.82	37.75	NR		5964.07
MW-2	06/03/02	6001.82	37.88	NR		5963.94
MW-2	09/10/02	6001.82	38.02	NR		5963.80
MW-2	12/12/02	6001.82	38.01	NR		5963.81
MW-2	03/14/03	6001.82	37.97	ND		5963.85
MW-2	06/18/03	6001.82	38.01	ND		5963.81
MW-2	09/16/03	6001.82	38.18	ND		5963.64
MW-2	12/17/03	6001.82	38.13	ND		5963.69
MW-2	03/16/04	6001.82	38.04	ND		5963.78
MW-2	06/22/04	6001.82	38.05	ND		5963.77
MW-2	09/22/04	6001.82	38.26	ND		5963.56
MW-2	12/21/04	6001.82	38.20	ND		5963.62
MW-2	03/23/05	6001.82	38.07	ND		5963.75
MW-2	06/17/05	6001.82	38.07	ND		5963.75
MW-2	09/20/05	6001.82	38.33	ND		5963.49
MW-2	12/14/05	6001.82	38.24	ND		5963.58
MW-2	03/27/06	6001.82	38.16	ND		5963.66
MW-2	06/06/06	6001.82	38.22	ND		5963.60
MW-2	09/25/06	6001.82	38.42	ND		5963.40
MW-2	12/07/06	6001.82	38.35	ND		5963.47
MW-2	03/28/07	6001.82	38.13	ND		5963.69
MW-2	06/18/07	6001.82	38.14	ND		5963.68
MW-2	09/17/07	6001.82	38.35	ND		5963.47
MW-2	12/17/07	6001.82	38.33	ND		5963.49
MW-2	03/10/08	6001.82	37.80	ND		5964.02
MW-2	06/17/08	6001.82	37.41	ND		5964.41
MW-2	09/10/08	6001.82	37.40	ND		5964.42
MW-2	12/02/08	6001.82	37.39	ND		5964.43
MW-2	03/05/09	6001.82	37.38	ND		5964.44
MW-2	06/02/09	6001.82	37.40	ND		5964.42
MW-2	08/28/09	6001.82	37.60	ND		5964.22
MW-2	11/04/09	6001.82	37.73	ND		5964.09
MW-2	02/17/10	6001.82	37.76	ND		5964.06

	Johnston Fed #6A								
	Depth to Depth to LNAPL GW Elevation								
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-2	05/24/10	6001.82	37.77	ND		5964.05			
MW-2	09/24/10	6001.82	37.97	ND		5963.85			
MW-2	11/02/10	6001.82	38.01	ND		5963.81			
MW-2	02/07/11	6001.82	38.05	ND		5963.77			
MW-2	05/02/11	6001.82	38.09	ND		5963.73			
MW-2	09/23/11	6001.82	38.25	38.23	0.02	5963.59			
MW-2	11/01/11	6001.82	38.26	ND		5963.56			
MW-2	02/21/12	6001.82	38.31	ND		5963.51			
MW-2	05/14/12	6001.82	38.36	ND		5963.46			
MW-2	06/09/13	6001.82	38.56	ND		5963.26			
MW-2	09/09/13	6001.82	38.68	ND		5963.14			
MW-2	12/12/13	6001.82	38.67	ND		5963.15			
MW-2	04/02/14	6001.82	38.63	ND		5963.19			
MW-2	10/23/14	6001.82	38.79	ND		5963.03			
MW-2	05/30/15	6001.82	38.82	ND		5963.00			
MW-2	11/19/15	6001.82	38.56	ND		5963.26			
MW-2	04/16/16	6001.82	38.39	ND		5963.43			
MW-2	10/13/16	6001.82	38.58	ND		5963.24			
MW-2	06/09/17	6001.82	38.44	ND		5963.38			
MW-2	11/12/17	6001.82	38.65	ND		5963.17			

Johnston Fed #6A Depth to LNAPL GW Elevation Depth to Location Date TOC Water (ft.) LNAPL (ft.) Thickness (ft.) (ft.) MW-3 12/13/95 6001.21 37.11 NR 5964.10 MW-3 04/11/96 6001.21 37.17 NR 5964.04 MW-3 07/25/96 6001.21 37.30 NR 5963.91 MW-3 10/14/96 6001.21 37.40 NR 5963.81 MW-3 37.35 NR 01/22/97 6001.21 5963.86 MW-3 37.29 NR 04/11/97 6001.21 5963.92 MW-3 NR 06/18/01 6001.21 37.26 5963.95 MW-3 09/04/01 6001.21 37.42 NR 5963.79 NR MW-3 06/03/02 6001.21 37.55 5963.66 MW-3 6001.21 NR 12/12/02 37.70 5963.51 MW-3 03/14/03 6001.21 ND 37.66 5963.55 MW-3 06/18/03 6001.21 37.87 37.63 0.24 5963.52 MW-3 09/16/03 6001.21 37.89 37.87 0.02 5963.34 MW-3 37.80 ND 12/17/03 6001.21 5963.41 MW-3 03/16/04 6001.21 37.85 37.72 0.13 5963.46 MW-3 06/22/04 6001.21 37.88 37.72 0.16 5963.45 MW-3 09/22/04 6001.21 38.07 37.96 0.11 5963.23 MW-3 12/21/04 6001.21 37.96 37.93 0.03 5963.28 MW-3 6001.21 0.08 03/23/05 37.88 37.80 5963.39 MW-3 06/17/05 6001.21 ND 37.92 5963.29 MW-3 09/20/05 6001.21 38.16 ND 5963.05 MW-3 12/14/05 6001.21 ND 38.09 5963.12 MW-3 6001.21 ND 03/25/06 38.09 5963.12 MW-3 03/27/06 6001.21 37.88 ND 5963.33 MW-3 37.98 ND 06/06/06 6001.21 5963.23 MW-3 ND 09/25/06 6001.21 38.16 5963.05 ND MW-3 12/07/06 6001.21 38.06 5963.15 MW-3 6001.21 37.87 ND 03/28/07 5963.34 MW-3 06/18/07 6001.21 37.86 ND 5963.35 MW-3 09/17/07 6001.21 38.10 ND 5963.11 MW-3 12/17/07 6001.21 38.09 ND 5963.12 MW-3 03/10/08 6001.21 37.80 ND 5963.41 MW-3 06/17/08 6001.21 37.10 ND 5964.11 MW-3 09/10/08 37.13 ND 6001.21 5964.08 MW-3 12/02/08 6001.21 37.14 ND 5964.07 MW-3 03/05/09 6001.21 37.14 ND 5964.07 MW-3 06/02/09 6001.21 37.12 ND 5964.09 MW-3 08/28/09 6001.21 37.40 ND 5963.81 MW-3 11/04/09 6001.21 37.52 ND 5963.69 MW-3 02/17/10 6001.21 37.53 ND 5963.68

ND

5963.68

37.53

MW-3

05/24/10

6001.21

	Johnston Fed #6A								
	Depth to Depth to LNAPL GW Elevatio								
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-3	09/24/10	6001.21	37.72	ND		5963.49			
MW-3	11/02/10	6001.21	37.79	ND		5963.42			
MW-3	02/07/11	6001.21	37.83	ND		5963.38			
MW-3	05/02/11	6001.21	38.86	ND		5962.35			
MW-3	09/23/11	6001.21	38.02	ND		5963.19			
MW-3	11/01/11	6001.21	38.06	ND		5963.15			
MW-3	02/21/12	6001.21	38.11	ND		5963.10			
MW-3	05/14/12	6001.21	38.15	ND		5963.06			
MW-3	06/09/13	6001.21	38.32	ND		5962.89			
MW-3	09/09/13	6001.21	38.48	ND		5962.73			
MW-3	12/12/13	6001.21	38.45	ND		5962.76			
MW-3	04/02/14	6001.21	38.42	ND		5962.79			
MW-3	10/23/14	6001.21	38.57	ND		5962.64			
MW-3	05/30/15	6001.21	38.60	ND		5962.61			
MW-3	11/19/15	6001.21	38.31	ND		5962.90			
MW-3	04/16/16	6001.21	38.15	ND		5963.06			
MW-3	10/13/16	6001.21	38.36	ND		5962.85			
MW-3	06/09/17	6001.21	38.23	ND		5962.98			
MW-3	11/12/17	6001.21	38.44	ND		5962.77			

			Johnste	on Fed #6A		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	ТОС	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-4	12/13/95	6001.26	37.34	NR		5963.92
MW-4	04/11/96	6001.26	37.42	NR		5963.84
MW-4	07/25/96	6001.26	37.54	NR		5963.72
MW-4	10/14/96	6001.26	37.64	NR		5963.62
MW-4	01/22/97	6001.26	37.60	NR		5963.66
MW-4	04/11/97	6001.26	37.47	NR		5963.79
MW-4	10/09/00	6001.26	37.56	NR		5963.70
MW-4	06/18/01	6001.26	37.53	NR		5963.73
MW-4	09/04/01	6001.26	37.66	NR		5963.60
MW-4	06/03/02	6001.26	37.80	NR		5963.46
MW-4	09/10/02	6001.26	37.95	NR		5963.32
MW-4	12/12/02	6001.26	38.95	NR		5962.31
MW-4	03/14/03	6001.26	37.91	ND		5963.36
MW-4	06/18/03	6001.26	37.95	ND		5963.31
MW-4	09/16/03	6001.26	38.17	ND		5963.09
MW-4	12/17/03	6001.26	38.06	ND		5963.20
MW-4	03/16/04	6001.26	38.00	ND		5963.26
MW-4	06/22/04	6001.26	38.04	ND		5963.22
MW-4	09/22/04	6001.26	38.27	ND		5962.99
MW-4	12/21/04	6001.26	38.23	ND		5963.03
MW-4	03/23/05	6001.26	38.11	ND		5963.15
MW-4	06/17/05	6001.26	38.08	ND		5963.18
MW-4	09/20/05	6001.26	38.35	ND		5962.91
MW-4	12/14/05	6001.26	38.24	ND		5963.02
MW-4	03/27/06	6001.26	38.16	ND		5963.10
MW-4	06/06/06	6001.26	38.24	ND		5963.02
MW-4	09/25/06	6001.26	38.45	ND		5962.81
MW-4	12/07/06	6001.26	38.34	ND		5962.92
MW-4	03/28/07	6001.26	38.16	ND		5963.10
MW-4	06/18/07	6001.26	38.14	ND		5963.12
MW-4	09/17/07	6001.26	38.37	ND		5962.89
MW-4	12/17/07	6001.26	38.36	ND		5962.90
MW-4	03/10/08	6001.26	38.05	ND		5963.21
MW-4	06/17/08	6001.26	37.35	ND		5963.91
MW-4	09/10/08	6001.26	37.43	ND		5963.83
MW-4	12/02/08	6001.26	37.40	ND		5963.86
MW-4	03/05/09	6001.26	37.40	ND		5963.86
MW-4	06/02/09	6001.26	37.43	ND		5963.83
MW-4	08/28/09	6001.26	37.64	ND		5963.62
MW-4	11/04/09	6001.26	37.76	ND		5963.50
MW-4	02/17/10	6001.26	37.80	ND		5963.46

	Johnston Fed #6A								
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-4	05/24/10	6001.26	37.80	ND		5963.46			
MW-4	09/24/10	6001.26	38.03	ND		5963.23			
MW-4	11/02/10	6001.26	38.05	ND		5963.21			
MW-4	02/07/11	6001.26	38.08	ND		5963.18			
MW-4	05/02/11	6001.26	38.15	ND		5963.11			
MW-4	09/23/11	6001.26	38.30	ND		5962.96			
MW-4	11/01/11	6001.26	38.32	ND		5962.94			
MW-4	02/21/12	6001.26	38.37	ND		5962.89			
MW-4	05/14/12	6001.26	38.40	ND		5962.86			
MW-4	06/09/13	6001.26	38.62	ND		5962.64			
MW-4	09/09/13	6001.26	38.79	ND		5962.47			
MW-4	12/12/13	6001.26	38.77	ND		5962.49			
MW-4	04/02/14	6001.26	38.74	ND		5962.52			
MW-4	10/23/14	6001.26	38.94	ND		5962.32			
MW-4	05/30/15	6001.26	38.61	ND		5962.65			
MW-4	11/19/15	6001.26	38.62	ND		5962.64			
MW-4	04/16/16	6001.26	38.46	ND		5962.80			
MW-4	10/13/16	6001.26	38.67	ND		5962.59			
MW-4	06/09/17	6001.26	38.52	ND		5962.74			
MW-4	11/12/17	6001.26	38.75	ND		5962.51			

	Johnston Fed #6A					
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-5	08/30/00	6001.96	38.11	NR		5963.85
MW-5	06/18/01	6001.96	38.13	NR		5963.83
MW-5	09/04/01	6001.96	38.33	NR		5963.63
MW-5	06/04/02	6001.96	38.51	NR		5963.45
MW-5	09/10/02	6001.96	39.13	NR		5962.84
MW-5	12/12/02	6001.96	38.83	NR		5963.13
MW-5	03/14/03	6001.96	38.70	ND		5963.26
MW-5	06/18/03	6001.96	38.85	ND		5963.11
MW-5	09/16/03	6001.96	38.88	ND		5963.08
MW-5	12/17/03	6001.96	38.75	ND		5963.21
MW-5	03/16/04	6001.96	38.72	ND		5963.24
MW-5	06/22/04	6001.96	38.74	ND		5963.22
MW-5	09/22/04	6001.96	38.74	ND		5963.22
MW-5	12/21/04	6001.96	38.93	ND		5963.03
MW-5	03/23/05	6001.96	38.72	ND		5963.24
MW-5	06/17/05	6001.96	38.72	ND		5963.24
MW-5	09/20/05	6001.96	39.06	ND		5962.90
MW-5	12/14/05	6001.96	38.94	ND		5963.02
MW-5	03/27/06	6001.96	38.86	ND		5963.10
MW-5	06/06/06	6001.96	38.97	ND		5962.99
MW-5	09/25/06	6001.96	37.20	ND		5964.76
MW-5	12/07/06	6001.96	39.07	ND		5962.89
MW-5	03/28/07	6001.96	38.83	ND		5963.13
MW-5	06/18/07	6001.96	38.84	ND		5963.12
MW-5	09/17/07	6001.96	39.09	ND		5962.87
MW-5	12/17/07	6001.96	39.04	ND		5962.92
MW-5	03/10/08	6001.96	38.48	ND		5963.48
MW-5	06/17/08	6001.96	37.83	ND		5964.13
MW-5	09/10/08	6001.96	37.91	ND		5964.05
MW-5	12/02/08	6001.96	37.95	ND		5964.01
MW-5	03/05/09	6001.96	37.93	ND		5964.03
MW-5	06/02/09	6001.96	37.95	ND		5964.01
MW-5	08/28/09	6001.96	38.19	ND		5963.77
MW-5	11/04/09	6001.96	38.32	ND		5963.64
MW-5	02/17/10	6001.96	38.38	ND		5963.58
MW-5	05/24/10	6001.96	38.35	ND		5963.61
MW-5	09/24/10	6001.96	38.61	ND		5963.35
MW-5	11/02/10	6001.96	38.66	ND		5963.30
MW-5	02/07/11	6001.96	38.74	ND		5963.22
MW-5	05/02/11	6001.96	38.81	ND		5963.15
MW-5	09/23/11	6001.96	38.99	ND		5962.97

	Johnston Fed #6A					
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-5	11/01/11	6001.96	39.09	ND		5962.87
MW-5	02/21/12	6001.96	39.09	ND		5962.87
MW-5	05/14/12	6001.96	39.16	ND		5962.80
MW-5	06/09/13	6001.96	39.38	ND		5962.58
MW-5	09/09/13	6001.96	39.56	ND		5962.40
MW-5	12/12/13	6001.96	39.55	ND		5962.41
MW-5	04/02/14	6001.96	39.52	ND		5962.44
MW-5	10/23/14	6001.96	39.71	ND		5962.25
MW-5	05/30/15	6001.96	39.73	ND		5962.23
MW-5	11/19/15	6001.96	39.33	ND		5962.63
MW-5	04/16/16	6001.96	39.19	ND		5962.77
MW-5	10/13/16	6001.96	39.34	ND		5962.62
MW-5	06/09/17	6001.96	39.27	ND		5962.69
MW-5	11/12/17	6001.96	39.52	ND		5962.44

Johnston Fed #6A GW Elevation LNAPL Depth to Depth to Location Date TOC Water (ft.) LNAPL (ft.) Thickness (ft.) (ft.) **MW-6** 12/07/06 6001.33 39.62 ND 5961.71 MW-6 03/28/07 6001.33 39.43 ND 5961.90 MW-6 06/18/07 6001.33 39.43 ND 5961.90 MW-6 09/17/07 6001.33 39.43 ND 5961.90 ND **MW-6** 12/17/07 6001.33 38.65 5962.68 MW-6 03/10/08 6001.33 39.21 ND 5962.12 ND MW-6 03/05/09 6001.33 37.61 5963.72 MW-6 06/02/09 6001.33 ND 37.46 5963.87 MW-6 08/28/09 6001.33 ND 37.89 5963.44 MW-6 11/04/09 6001.33 38.03 ND 5963.30 MW-6 05/24/10 ND 6001.33 38.07 5963.26 MW-6 09/24/10 6001.33 38.30 ND 5963.03 MW-6 11/02/10 6001.33 38.36 ND 5962.97 MW-6 ND 02/07/11 6001.33 38.39 5962.94 MW-6 ND 05/02/11 6001.33 36.42 5964.91 MW-6 09/23/11 6001.33 38.65 ND 5962.68 MW-6 11/01/11 6001.33 38.70 ND 5962.63 MW-6 02/21/12 6001.33 38.75 ND 5962.58 MW-6 ND 05/14/12 6001.33 38.79 5962.54 MW-6 ND 06/09/13 6001.33 39.08 5962.25 MW-6 09/09/13 ND 6001.33 39.28 5962.05 MW-6 6001.33 12/12/13 39.26 ND 5962.07 MW-6 ND 10/23/14 6001.33 39.43 5961.90 MW-6 04/02/14 6001.33 39.24 ND 5962.09 MW-6 ND 05/30/15 6001.33 39.45 5961.88 MW-6 11/19/15 6001.33 39.02 ND 5962.31 MW-6 04/16/16 6001.33 38.92 ND 5962.41 MW-6 6001.33 ND 10/13/16 39.00 5962.33 MW-6 06/09/17 6001.33 39.16 ND 5962.17 MW-6 11/12/17 6001.33 39.23 ND 5962.10

Johnston Fed #6A						
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	тос	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-7	11/19/15	6001.26	37.80	ND		5963.46
MW-7	04/16/16	6001.26	37.63	ND		5963.63
MW-7	10/13/16	6001.26	37.83	ND		5963.43
MW-7	06/09/17	6001.26	37.69	ND		5963.57
MW-7	11/12/17	6001.26	37.90	ND		5963.36
MW-8	11/19/15	6001.06	37.71	ND		5963.35
MW-8	04/16/16	6001.06	37.55	ND		5963.51
MW-8	10/13/16	6001.06	37.81	ND		5963.25
MW-8	06/09/17	6001.06	37.63	ND		5963.43
MW-8	11/12/17	6001.06	37.89	ND		5963.17
MW-9	11/19/15	6001.39	38.35	ND		5963.04
MW-9	04/16/16	6001.39	38.20	ND		5963.19
MW-9	10/13/16	6001.39	39.35	ND		5962.04
MW-9	06/09/17	6001.39	40.35	ND		5961.04
MW-9	11/12/17	6001.39	41.35	ND		5960.04

Notes:

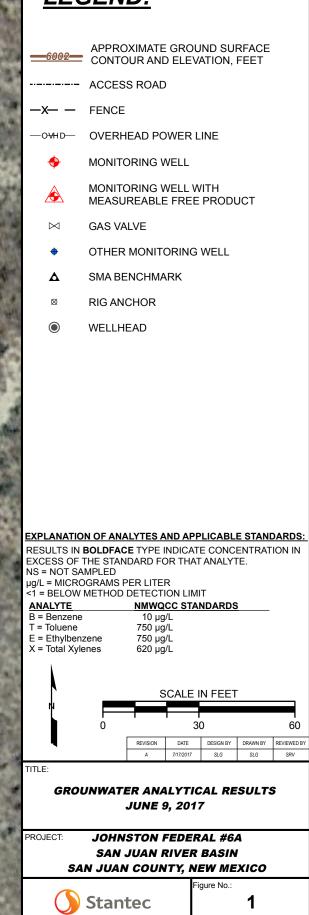
"ft" = feet

"TOC" = Top of casing

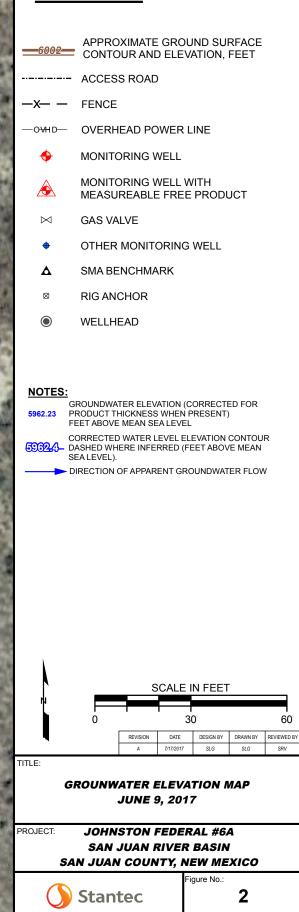
"LNAPL" - Light non-aqueous phase liquid

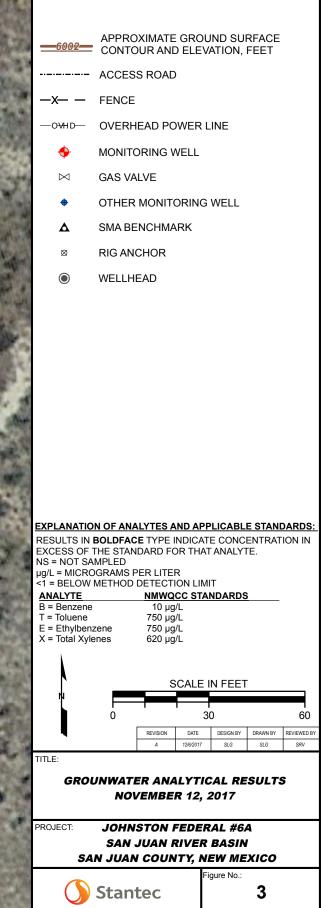
"ND" = LNAPL not detected

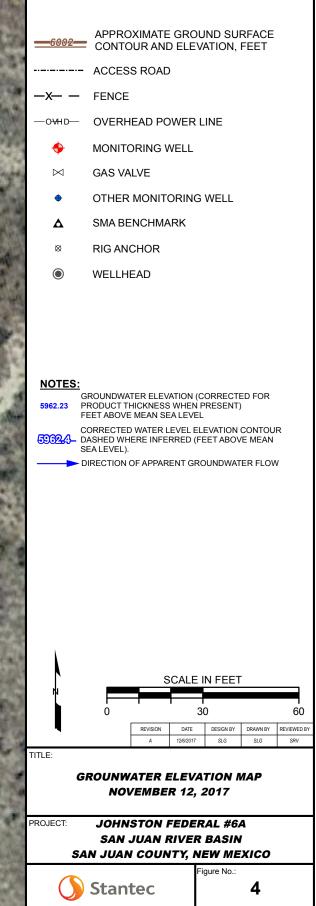
"NR" = LNAPL not recorded

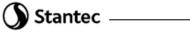

FIGURES

- FIGURE 1: JUNE 7, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 2: JUNE 7, 2017 GROUNDWATER ELEVATION MAP
- FIGURE 3: NOVEMBER 14, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 4: NOVEMBER 14, 2017 GROUNDWATER ELEVATION MAP









APPENDICES

- APPENDIX A NMOCD NOTIFICATIONS OF SITE ACTIVITIES
- APPENDIX B WASTE DISPOSAL DOCUMENTATION
- APPENDIX C MOBILE DUAL PHASE EXTRACTION REPORT
- APPENDIX D JUNE 9, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT NOVEMBER 12, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT

APPENDIX A

From:	Varsa, Steve
To:	Randolph.Bayliss@state.nm.us
Cc:	brandon.powell@state.nm.us; Wiley, Joe
Subject:	El Paso CGP Company - Notice of upcoming groundwater sampling activities
Date:	Tuesday, May 30, 2017 3:05:18 PM

Hi Randy –

This correspondence is to provide notice to the NMOCD of upcoming semi-annual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #
Canada Mesa #2	3RP-155-0
Fields A#7A	3RP-170-0
Fogelson 4-1	3RP-068-0
Gallegos Canyon Unit #124E	3RP-407-0
GCU Com A #142E	3RP-179-0
Hammond #41A	3RP-186-0
James F. Bell #1E	3RP-196-0
Johnston Fed #4	3RP-201-0
Johnston Fed #6A	3RP-202-0
K27 LDO72	3RP-204-0
Knight #1	3RP-207-0
Lateral L 40 Line Drip	3RP-212-0
Lat O-21 Line Drip	3RP-213-0
Lindrith B #24	3RP-214-0
Miles Fed #1A	3RP-223-0
Sandoval GC A #1A	3RP-235-0
Standard Oil Com #1	3RP-238-0
State Gas Com N #1	3RP-239-0

Groundwater sampling and monitoring is planned to be conducted the week of June 5, 2017.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From:	Varsa, Steve
To:	Bayliss, Randolph, EMNRD
Cc:	Griswold, Jim, EMNRD; Perrin, Charlie, EMNRD; Powell, Brandon, EMNRD; Smith, Cory, EMNRD; Fields, Vanessa,
	EMNRD; Wiley, Joe
Subject:	RE: MPDE Work Plan Approvals
Date:	Saturday, July 08, 2017 4:55:00 PM

Hi Randy –

Pursuant to the conditions in the above-referenced July 5, 2017, approval letter, the following is the schedule for the MDPE activities:

James F. Bell #1E – start late the afternoon of Tuesday, July 11, and will go through Friday, July 14. Johnston Federal #4 and Johnston Federal #6A – both sites beginning on Saturday, July 15, and go through Tuesday, July 18. No work planned for Wednesday, July 19 (rest day). GCU #124 – Thursday, July 20 through Sunday, July 23. Knight #1 – Monday and Tuesday, July 24 and 25. K27 LD072 – Wednesday, July 26. Miles Federal #1A – Thursday, July 27.

As noted in the work plan submittal, work at State Gas Com N#1 is still pending receipt of a State Water Easement. NMOCD will be notified once the State Gas Com pilot testing activities have been scheduled, or if there are changes to the schedule offered above. Do you anticipate any OCD staff will be on-site during one or more of these events?

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Bayliss, Randolph, EMNRD [mailto:Randolph.Bayliss@state.nm.us] **Sent:** Wednesday, July 05, 2017 9:08 AM

To: Wiley, Joe <Joe_Wiley@kindermorgan.com>; Varsa, Steve <steve.varsa@stantec.com>
 Cc: Griswold, Jim, EMNRD <Jim.Griswold@state.nm.us>; Perrin, Charlie, EMNRD
 <charlie.perrin@state.nm.us>; Powell, Brandon, EMNRD <Brandon.Powell@state.nm.us>; Smith,
 Cory, EMNRD <Cory.Smith@state.nm.us>; Fields, Vanessa, EMNRD <Vanessa.Fields@state.nm.us>;

Subject: MPDE Work Plan Approvals

Good morning Joe, Steve, others.

Thank you for your proposed MPDE efforts.

Cheers

Randowfoufiss

Randolph Bayliss, P.E. Hydrologist, Districts III and IV NMOCD Environmental Bureau 1220 S St Francis St, Santa Fe, NM 87505 505-476-3084, Cell 575-840-5961

From:	Varsa, Steve
То:	Bayliss, Randolph, EMNRD
Cc:	Fields, Vanessa, EMNRD; Smith, Cory, EMNRD; Wiley, Joe
Bcc:	Varsa, Steve
Subject:	FW: 3RP-202-0 Johnston Federal #6A - LNAPL Recovery Work Plan
Date:	Friday, September 15, 2017 7:51:00 PM
Attachments:	2017-06 Ltr Bayliss-2017 MDPE Work Plan (JFed 6A).pdf

Hi Randy –

Stantec, on behalf of El Paso CGP Company, LLC, is providing notice of plans to completed additional light non-aqueous phase liquid (LNAPL) recovery activities at the above-referenced site. Three, 10-hour LNAPL recovery events will be completed from Saturday, September 23 through Monday, September 25, 2017. With the exception of the event duration, and collection of just one Summa sample on September 25, 2017, the methods and procedures to be utilized are anticipated to be the same as outlined in the attached work plan. The results of the LNAPL recovery activities will be included in the 2017 annual report for the Site.

Please feel free to contact Joe Wiley or me if you have any questions.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 <u>steve.varsa@stantec.com</u>

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Varsa, Steve

Sent: Thursday, June 29, 2017 3:35 PM
To: 'Randolph.Bayliss@state.nm.us' <Randolph.Bayliss@state.nm.us>
Cc: 'Wiley, Joe' <Joe_Wiley@kindermorgan.com>
Subject: FW: 3RP-202-0 Johnston Federal #6A - LNAPL Recovery Work Plan

Hi Randy – Please find attached the above-referenced work plan for your review. The work is scheduled to begin the week of July 10, 2017. Please contact Joe Wiley or me if you have any questions.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From:	Varsa, Steve
To:	Bayliss, Randolph, EMNRD
Cc:	Smith, Cory, EMNRD; Fields, Vanessa, EMNRD; Wiley, Joe
Subject:	El Paso CGP Company - Notice of upcoming groundwater sampling activities
Date:	Monday, November 06, 2017 11:41:36 AM

Hi Randy -

This correspondence is to provide notice to the NMOCD of upcoming semiannual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #
Canada Mesa #2	3RP-155-0
Fields A#7A	3RP-170-0
Fogelson 4-1	3RP-068-0
Gallegos Canyon Unit #124E	3RP-407-0
GCU Com A #142E	3RP-179-0
James F. Bell #1E	3RP-196-0
Johnston Fed #4	3RP-201-0
Johnston Fed #6A	3RP-202-0
K27 LDO72	3RP-204-0
Knight #1	3RP-207-0
Lateral L 40 Line Drip	3RP-212-0
Lat O-21 Line Drip	3RP-213-0
Miles Fed #1A	3RP-223-0
Sandoval GC A #1A	3RP-235-0
Standard Oil Com #1	3RP-238-0
State Gas Com N #1	3RP-239-0

Groundwater sampling and monitoring is planned to be conducted November 10-14, 2017.

Please contact Joe Wiley, remediation manager with El Paso CGP Company, at (713) 420-3475, or me, if you have any questions.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 <u>steve.varsa@stantec.com</u>

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

APPENDIX B

BAS DATE GENERATO HAULING C ORDERED WASTE DES STATE:	0. 540 B <u>Y: 505</u> SCRIPTION:	AL/11/17 Paso CGP	T	ld, NM 87413 34-3013	Oil Fie INVC DEL. BILL DRIV COD	D PERMIT: NM Id Waste Docum DICE: TKT#. TO: YER: (Print Full ES: ing/Completi	Name)	138 CGP Reserve P	
NO.	TRUCK	LOCATION		VOLUME	COST	H2S	COST	TOTAL	TIME
1		Fogel507 4-1,1	Gallegos CO 124E	BI					
2		600 Com A 142	E Johnson Fed 4						
3		Johnston Late	a12-40 ato-21 line						
4		Sandoval GC &	oil com 1						
5									
generator an	ly 1988 regul	eby certify that according to the latory determination that the above		RCRA Exempt	ry Act (RCR	A) and the U			

	x: E1Pe D. Sici Y: Jos		eld, NM 87413 334-3013	NMOC Oil Fiel INVO DEL. BILL DRIV CODI	TKT <u>#.</u> TO: <u></u> ER: <u></u> (Print Full ES: ing/Completi	-001-0005 nent, Form C Puso Name)	Reserve P	
NO.	TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	54	Johnson fed bA	12	.75			9.00	
2						*	17 JUL 17	7103pm
3								
4								
5		New Midrono						
I, generator an Agency's Jul	d hauler her y 1988 regu	eby certify that according to the Resource Conserva- latory determination that the above described waste	IS RURA Exemp	ery Act (RCI ot Oil field w	RA) and the	ve or auth US Enviro	orized agent for nmental Protec	the above tion

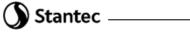
Approved

."

ATTENDANT SIGNATURE

san juan reproduction 168-6

BAS DATE GENERATO HAULING O ORDERED WASTE DE STATE:	со. <u>S</u> . с. в <u>Y:</u> Т.	AL QQ (Q-1) 50 CHESO CHESO Seph Wiley Exempt Oilfield Waste	Mental Health and Safety 0 Montana, Bloomfield, NM 5-632-8936 or 505-334-30 PEN 24 Hours per Day PEN 24 Hours per Day TREATMENT/D	4 87413 113 duced Wate	Oil Fiel INVO DEL. BILL DRIV CODI	TKT#. TO: ER: (PhintFull ES: ng/Completi	nent, Form C	CO ☐Reserve P	
NO.	TRUCK	LOCATION(S)		OLUME	COST	H2S	COST	TOTAL	TIME
17	ç	Johnson Fed	6A	5	20		-1,	250 175EP26	9:02A)
3									
4				/					
5				/					
I, generator a Agency's Ju	nd hauler here uly 1988 regula	Church The And The Reso above determination that the above de	burce Conservation a escribed waste is RC	nd Recover RA Exempt	y Act (RCR	A) and the U		rized agent for mental Protecti	


Approved

Denied

ATTENDANT SIGNATURE san juan reproduction 168-6

). S 14: Jo	AL 11.12.17 Paso tantec c w; ley Exempt Oilfield Waste		eld, NM 87413 334-3013	DEL. DEL. BILL DRIV COD ter	TKT <u>#.</u> TO: <u>Star</u> 'ER: <u>Cov</u> 'Print Full ES: ing/Completi	nent, Form C	PI C T	
NO.	TRUCK	LOCATION		VOLUME	COST	H2S	COST	TOTAL	TIME
1		Fogelson 4.	(1	704			776015	The second
2		State Gas Con, K Lat 2-40, Std On	1 Com						E. 466 91 131
3	K.	Sandoual, GEUI24E J-Fed 6	, J-Fed 4			÷			
4									
5 A	-92	Λ							
I, generator and Agency's July	hauler here 1988 regula	eby certify that according to the atory determination that the abo	Resource Conservati	on and Recove RCRA Exempt	rv Act (RCR	A) and the U	e or authoi S Environi	rized agent for mental Protect	the above ion
Approve	ed	Denied A ⁻	TTENDANT SIGNATU	JRE		-	-6	Ð	S.
								san juan re	production 168-6

APPENDIX C

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

August 15, 2017

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11153 Aurora Avenue Des Moines, IA 50322

Dear Stephen:

Re: Johnston Federal No. 6A, San Juan County, NM (Event #2)

At your request, AcuVac Remediation, LLC (AcuVac) performed three Mobile Dual Phase Extraction (MDPE) events on well MW-1; 6.0 hour Event #2A on July 15, 2017, 12.0 hour Event #2B on July 16, 2017, and 10.25 hour Event #2C on July 17, 2017, at the above referenced site (Site). Following is the Report and a copy of the Operating Data collected during Event #2. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE events was to enhance recovery of Phase Separated Hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical release of natural gas condensate.

OBJECTIVES

The objectives of the MDPE events were to:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the vapor phase and liquid LNAPL specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event periods.
- Select and monitor the groundwater depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. No third party equipment was utilized. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower used as a vacuum pump and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during Event #2, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac							
Measurement Equipment	Data Element						
Extraction Well Induced Vacuum and Flow							
Dwyer Magnehelic Gauges	Extraction Well Vacuum						
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow						
Observation Wells							
Dwyer Digital Manometer	Vacuum / Pressure Influence						
Extraction Well Vapor Monitoring							
V-1 vacuum box	Extraction Well Non-Diluted Vapor Sample Collection						
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration						
QRae Mini II O ₂ Monitor	Extraction Well Vapor Oxygen Content						
LNAPL Thickness (if present)							
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater						
Liquid Recovery							
Totalizer Flow Meter	Liquid Flow and Total Volume						
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping						
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics						
Groundwater Depression / Upwelling							
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells						
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure						
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls						
Atmospheric Conditions							
Testo Model 511	Relative and Absolute Barometric Pressure						

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump was connected to the extraction well, and the vacuum created on the extraction well caused light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they were burned as part of the normal combustion process. Propane was used as auxiliary fuel to help power the engine if the well vapors did not provide the required energy.

The IC engine provided the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence for pilot tests and short term event remediation.

Emissions from the engine were passed through three catalytic converters to maximize destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio was adjusted to maintain efficient combustion. Because the engine is the power source for the equipment, the System stops when the engine stops. This prevents an uncontrolled release of hydrocarbons. Since the System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

Groundwater extraction was provided by an in-well Grundfos Redi-Flo 2 total fluids pump that discharged through a totalizer/flow meter. The discharge line from this meter was then connected to a stand-by tank. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to LNAPL measurements. Grab samples of recovered liquid were taken periodically in a graduated cylinder to determine the average percentage of LANPL being recovered.

The design of the AcuVac System enabled independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controlled the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improved the LNAPL recovery rates, and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #2

The Recovery Summary table below summarizes the groundwater and LNAPL recovery data for Event #2, and compares the results to the previous Event #1.

Recovery Summary								
	Event #2A	Event #2B	Event #2C	То	tal			
	MW-1	MW-1	MW-1	Event #2	Event #1			
Event Hours	6.0	12.0	10.25	28.25	7.0			
GW Recovery	65	191	80	336	168			
NAPL Recovery								
Liquid	0	0	0	0	0			
Vapor	9.5	21.6	11.2	42.3	4.4			
Total	9.5	21.6	11.2	42.3	4.4			
Gallons/Hour	1.6	1.8	1.1	1.5	0.6			

SUMMARY OF MDPE EVENT #2A- WELL MW-1

- The total event time was 6.0 hours. The Event was conducted on July 15, 2017. The data is compared to Event #1 conducted on November 29, 2016, which had total event time of 7.0 hours.
- The total liquid volume recovered was 65 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 9.5 gals, for a total liquid and vapor LNAPL recovery of 9.5 gals, or 1.6 gals per hour.

• The volume of liquid and vapor LNPAL recovered during Event #2A is compared with Event #1 in the table below.

LNAPL Recovery Well MW-1								
		Even	t #2A	Event #1				
		Amount	Percent	Amount	Percent			
Event Hours		6.0	-	7.0	-			
GW Recovery	gals	65	-	168	-			
NAPL Recovery								
Liquid	gals	0	0	0	0			
Vapor	gals	9.5	100.00	4.4	100.00			
Total	gals	9.5	100.00	4.4	100.00			
Gallons/Hour		1.6	-	0.6	-			

• Average HORIBA[®] analytical data from the influent vapor samples for Event #2A is compared with Event #1 in the table below:

Influent Vapor Data Well MW-1								
Data Elemer	nt	Event #2A	Event #1					
TPH- Maximum	ppmv	38,040	15,190					
TPH- Average	ppmv	31,603	12,570					
TPH- Minimum	ppmv	27,720	9,030					
TPH- Initial	ppmv	27,910	9,030					
TPH- Final	ppmv	27,720	13,790					
CO2	%	7.86	7.97					
со	%	0.44	0.02					
O ₂	%	8.7	10.7					
H ₂ S	ppm	67	11					

• The Event #2A extraction well induced vacuum and well vapor flow are compared with Event #1 in the table below.

Well Vacuum and Well Vapor Flow Well MW-1								
Data Element	Event #2A	Event #1						
Well Vacuum- Max	"H₂O	35.00	40.00					
Well Vacuum- Avg	"H₂O	31.67	31.33					
Well Vacuum- Min	"H ₂ O	20.00	20.00					
Well Vapor Flow- Max	scfm	23.62	26.40					
Well Vapor Flow- Avg	scfm	23.11	23.22					
Well Vapor Flow- Min	scfm	22.01	18.49					

- The groundwater pump inlet was set at 45.5 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #2A was 0.12 gpm, and the maximum groundwater pump rate was 0.42 gpm. The total liquid volume recovered was 65 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.0 ft below the hydro-equivalent static level.
- LNAPL with a measured thickness of 0.04 ft was recorded in well MW-1 prior to the start of Event #2A, and no measureable LNAPL was recorded at the conclusion of the Event #2A.

The total LNAPL removed, including liquid and vapor, during the 6.0 hour Event #2A, well MW-1 was 9.5 gals.

ADDITIONAL INFORMATION

- Well MW-1 produced a steady amount of liquid volume during the course of the Event #2A. However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 9.5 gals, was burned as IC engine fuel.
- The TPH vapor concentrations increased during Event #2A and then decreased at the end of the event. The initial TPH reading was 27,910 ppmv, the average reading was 31,603 ppmv, the maximum reading, 38,040 ppmv was at event hour 2.0, and the lowest reading, 27,720 ppmv, was recorded at event hour 6.0.
- At approximately 1600 hours, a Stop Work was issued due to inclement weather moving into the area.

SUMMARY OF MDPE EVENT #2B- WELL MW-1

- The total event time was 12.0 hours. The Event was conducted on July 16, 2017. The data is compared to Event #2A conducted on July 15, 2017, which had total event time of 6.0 hours.
- The total liquid volume recovered was 191 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 21.6 gals, for a total liquid and vapor LNAPL recovery of 21.60 gals, or 1.8 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #2B is compared with Event #2A in the table below.

LNAPL Recovery Well MW-1								
		Even	t #2B	Event #2A				
		Amount	Percent	Amount	Percent			
Event Hours		12.0	-	6.0	-			
GW Recovery	gals	191	-	65	-			
NAPL Recovery								
Liquid	gals	0	0	0	0			
Vapor	gals	21.6	100.00	9.5	100.00			
Total	gals	21.6	100.00	9.5	100.00			
Gallons/Hour		1.8	-	1.6	-			

 Average HORIBA[®] analytical data from the influent vapor samples for Event #2B is compared with Event #2A in the table below:

Influent Vapor Data Well MW-1								
Data Eleme	nt	Event #2B	Event #2A					
TPH- Maximum	ppmv	38,890	38,040					
TPH- Average	ppmv	33,057	31,603					
TPH- Minimum	ppmv	26,760	27,720					
TPH- Initial	ppmv	32,660	27,910					
TPH- Final	ppmv	26,760	27,720					
CO ₂	%	6.54	7.86					
со	%	0.31	0.44					
O ₂	%	8.7	8.7					
H₂S	ppm	18	67					

• The Event #2B extraction well induced vacuum and well vapor flow are compared with Event #2A in the table below.

Well Vacuum and Well Vapor Flow Well MW-1									
Data Element		Event #2B	Event #2A						
Well Vacuum- Max	"H ₂ O	40.00	35.00						
Well Vacuum- Avg	"H₂O	38.00	31.67						
Well Vacuum- Min	"H₂O	30.00	20.00						
Well Vapor Flow- Max	scfm	25.55	23.62						
Well Vapor Flow- Avg	scfm	25.19	23.11						
Well Vapor Flow- Min	scfm	23.39	22.01						

- The groundwater pump inlet was set at 45.5 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #2B was 0.23 gpm, and the maximum groundwater pump rate was 0.60 gpm. The total liquid volume recovered was 191 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.0 ft below the hydro-equivalent static level.
- No measurable LNAPL thickness was recorded in well MW-1 prior to the start of Event #2B, and no measurable LNAPL was recorded at the conclusion of the Event #2B.

The total LNAPL removed, including liquid and vapor, during the 12.0 hour Event #2B, Well MW-1, was 21.6 gals.

ADDITIONAL INFORMATION

- Well MW-1 produced a steady amount of liquid volume during the course of the Event #2B. However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 21.6 gals, was burned as IC engine fuel.

• The TPH vapor concentrations increased during Event #2B and then decreased at the end of the event. The initial TPH reading was 32,660 ppmv, the average reading was 33,057 ppmv, the maximum reading, 38,890 ppmv was at event hour 7.0, and the lowest reading, 26,760 ppmv, was recorded at event hour 11.0.

SUMMARY OF MDPE EVENT #2C- WELL MW-1

- The total event time was 10.25 hours. The Event was conducted on July 17, 2017. The data is compared to Event #2B conducted on July 16, 2017, which had total event time of 12.0 hours.
- The total liquid volume recovered was 80 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 11.2 gals, for a total liquid and vapor LNAPL recovery of 11.2 gals, or 1.1 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #2C is compared with Event #2A in the table below.

LNAPL Recovery Well MW-1									
		Even	t #2C	Event #2B					
		Amount	Percent	Amount	Percent				
Event Hours		12.0	-	10.25	-				
GW Recovery	gals	191	-	191	-				
NAPL Recovery	J I I I I I I I I I I I I I I I I I I I								
Liquid	gals	0	0	0	0				
Vapor	gals	11.2	100.00	21.6	100.00				
Total	gals	11.2	100.00	21.6	100.00				
Gallons/Hour		1.1	-	1.8	-				

• Average HORIBA[®] analytical data from the influent vapor samples for Event #2C is compared with Event #2B in the table below:

Influen	t Vapor D	Data Well MV	V-1
Data Elemer	nt	Event #2C	Event #2B
TPH- Maximum	ppmv	22,370	38,890
TPH- Average	ppmv	20,210	33,057
TPH- Minimum	ppmv	17,940	26,760
TPH- Initial	ppmv	17,940	32,660
TPH- Final	ppmv	22,370	26,760
CO2	%	4.86	6.54
со	%	0.07	0.31
O ₂	%	11.1	8.7
H ₂ S	ppm	0	18

• The Event #2C extraction well induced vacuum and well vapor flow are compared with Event #2B in the table below.

Well Vacuum and Well Vapor Flow Well MW-1 Data Element Event #2C Event #2B Well Vacuum- Max "H ₂ O 35.00 40.00 Well Vacuum- Avg "H ₂ O 35.00 38.00							
Data Element		Event #2C	Event #2B				
Well Vacuum- Max	"H₂O	35.00	40.00				
Well Vacuum- Avg	"H ₂ O	35.00	38.00				
Well Vacuum- Min	"H₂O	35.00	30.00				
Well Vapor Flow- Max	scfm	24.90	25.55				
Well Vapor Flow- Avg	scfm	24.90	25.19				
Well Vapor Flow- Min	scfm	24.90	23.39				

- The groundwater pump inlet was set at 45.5 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #2C was 0.14 gpm, and the maximum groundwater pump rate was 0.14 gpm. The total liquid volume recovered was 80 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.0 ft below the hydro-equivalent static level.
- No measurable LNAPL was recorded in well MW-1 prior to the start of Event #2C, and no measurable LNAPL was recorded at the conclusion of the Event #2C.

The total LNAPL removed, including liquid and vapor, during the 10.25 hour Event #2C, Well MW-1, was 11.2 gals.

ADDITIONAL INFORMATION

- Well MW-1 produced a steady amount of liquid volume during the course of the Event #2C. However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 11.2 gals, was burned as IC engine fuel.
- The TPH vapor concentrations were on an increasing trend during Event #2C, and then decreased at the end of the event. The initial TPH reading was 17,9400 ppmv, the average reading was 20,210 ppmv, the maximum reading, 22,370 ppmv was at event hour 10.25, and the lowest reading, 17,940 ppmv, was recorded at event hour 0.50.

The total LNAPL removed, including liquid and vapor, during the 28.25 hour Event #2, Well MW-1, was 42.2 gals.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x 1.58E⁻⁷ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data
- Photographs of the MDPE System, Well MW-1.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely, ACUVAC REMEDIATION, LLC

Adul

Paul D. Faucher Vice President, Operations

Summary Well Data Table #1

Event		2A	2B	2C
WELL NO.		MW-1	MW-1	MW-1
Total Event Hours		6.0	12.0	10.25
TD	ft BGS	47.0	47.0	47.0
Well Screen	ft BGS	32.0 – 47.0	32.0 - 47.0	32.0 - 47.0
Well Size	in	4.0	4.0	4.0
Well Data				
DTGW - Static - Start Event	ft BTOC	38.58	-	38.91
DTLNAPL - Static - Start Event	ft BTOC	38.54	-	-
LNAPL	ft BTOC	0.04	-	-
Hydro-Equivalent- Beginning	ft BTOC	38.55	-	38.91
DTGW - End Event	ft BTOC	-	47.15	38.61
DTLNAPL - End Event	ft BTOC	-	-	-
LNAPL	ft BTOC	-	-	-
Hydro-Equivalent- Ending	ft BTOC	-	47.15	38.61
Extraction Data				
Maximum Extraction Well Vacuum	"H ₂ O	35.00	40.00	35.00
Average Extraction Well Vacuum	"H₂O	31.67	38.00	35.00
Minimum Extraction Well Vacuum	"H₂O	20.00	30.00	35.00
Maximum Extraction Well Vapor Flow	scfm	23.62	25.55	24.90
Average Extraction Well Vapor Flow	scfm	23.11	25.19	24.90
Minimum Extraction Well Vapor Flow	scfm	22.01	23.39	24.90
Maximum GW / LNAPL Pump Rate	gpm	0.42	0.60	0.14
Average GW / LNAPL Pump Rate	gpm	0.12	0.23	0.14
Influent Data				
Maximum TPH	ppmv	38,040	38,890	22,370
Average TPH	ppmv	31,603	33,057	20,210
Minimum TPH	ppmv	27,720	26,760	17,940
Initial TPH	ppmv	27,910	32,660	17,940
Final TPH	ppmv	27,720	26,760	22,370
Average CO ₂	%	7.86	6.54	4.86
Average CO	%	0.44	0.31	0.07
Average O ₂	%	8.7	8.7	11.1
Average H ₂ S	ppm	67	18	0

Summary Recovery Data Table #2

	` -			
Event	-	2A	2B	2C
WELL NO.	-	MW-1	MW-1	MW-1
Recovery Data- Current Event			•	
Total Liquid Volume Recovered	gals	65	191	80
Total Liquid LNAPL Recovered	gals	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-
Total Vapor LNAPL Recovered	gals	9.5	21.6	11.2
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	9.5	21.6	11.2
Average LNAPL Recovery	gals/hr	1.6	1.8	1.1
Total LNAPL Recovered	lbs	66	151	78
Total Volume of Well Vapors	cu. ft	8,320	18,137	15,314
Recovery Data- Cumulative				
Total Liquid Volume Recovered	gals	233	424	504
Total Liquid LNAPL Recovered	gals	-	-	-
Total Vapor LNAPL Recovered	gals	13.9	35.5	46.6
Total Vapor and Liquid LNAPL Recovered	gals	13.9	38.5	46.6
Average LNAPL Recovery	gals/hr	1.1	1.4	1.3
Total LNAPL Recovered	lbs	97	248	326
Total Volume of Well Vapors	cu. ft	18,072	36,209	51,522

3

	Remediation OF	PERATING	DATA – EVEN	т# 2А	PAGE #	1	ACUVAC N	IDP SYSTEM
Loca	tion: Johnston Federal	#6A, San	Juan Count	y, NM	Pr	oject Manag	gers: Fauch	er / George
	An Inc. A	Date	7/15/17					
Wel	1# MW-1	Time	1000	1030	1100	1130	1200	1230
7	D 47.0 BG5	Hr Meter	1735,2	1735.7	1736.2	1736.7	1737,2	17 37,7
	Engine Speed	RPM	2000	2100	2100	2100	2100	2000
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	150	150	150	150	150	150
INE /	Alternator	Volts	13	13	13	/3	13	13
ENG	Intake Vacuum	"Hg	10	10	10	10	10	10
	Gas Flow Fuel/Propane	cfh	130	130	130	130	130	130
	Extraction Well Vac.	"H ₂ O	20	20	30	30	30	30
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	22.01	10.55	22.52	22.52	22.52	22.52
HUN	Influent Vapor Temp.	°F	70	70	70	70	70	70
VACI	Air Temp	°F	-	-	1	-	-	-
	Barometric Pressure	"Hg	-	-	-	-	agers: Fauche 1200 1737,2 2100 5-0 1737,2 1737,2 1737,2 1737,2 1737,2 1737,2 1700 130 2000 130 130 2001 130 300 20052 700 38,040 8.488 .711 9.9 100	1
F	ТРН	ppmv	-	-	27,910		38,040	-
VAPOR / INFLUENT	CO ₂	%	-	-	8.32	-	8.48	-
/ INF	со	%	-	-	.30	_	.71	_
POR	O ₂	%	-	-	10.2	~	9,9	-
A	H ₂ S	ppm)	-	38	-	1737.2 2100 50 150 130 130 130 130 130 130 22.52 700 38,040 8.48 .71 9.9 100 3.9,940 8.48 .71 9.9 100 3.9,940 8.48 .71 9.9 100 3.100	~
NOTES	See page 2 +	for notes						
NC				1011-				
NC				1045	~ U 11/2 -	24/10. 10	2/122 02	21122 2
NC	TOTALIZER			7438.84		2460, 13		
NC	Pump Rate	gals/min		2438.8 4 .37	.42	.16	۲۱.	.20
	Pump Rate Total Volume	gals		2438.84 .37 O	.42 21.29	.16 33.89	.17 78.83	.20 43.83
	Pump Rate Total Volume NAPL	gals % Vol	sheen	2438.8 4 .37	.42	.16 33.99 sheen	.17 78.83	.20
RECOVERY	Pump Rate Total Volume NAPL NAPL	gals % Vol Gals	sheen	2438.84 .37 O	.42 21.29	.16 33.89	.17 78.83	.20 43.83
	Pump Rate Total Volume NAPL	gals % Vol	shoon 	2438.84 .37 O	.42 21.29	.16 33.99 sheen	.17 78.83	.20 43.83

.04

OPERATING NOTES - EVENT # 24 PAGE # 2 ACUAC MDP SYSTE Location: Johnston Federal #6A, San Juan County, NM Project Managers: Faucher / Hendle 7/17/17 0730 Arrived at JF #4 site for tailgale safety meeting. 0900 Arrived at JF #6 A site. Post timed Ace Vac system new MW-1. Mobilized Acu Vac equipment. Gauged MWL ! DT NAPL = 38.54, DT 6 W = 38.58, NAPL thickness = 0.04. Positioned in-well Geo Tech pump 18" above bottom of we 1000 Event gstorted. Initial well vac 20" H20 with a set 1045 flow. How p storted, ran out of liquid in approx. 5 minutes. Geo Tech pump then begin automatic on loff when liquid we present in well. 1100 Increased well vac to 30" H20. Geo Tech pump then be a continuous low pump rate. It did not stop itself. Juitial vapor sample obtained. TPH vapor = 27,910 ppm This is much higher then hast event which was conducted in cold wenther conditions.	БТЕМ
0732 Arrived at JF#4 site for tailgale safety meeting. 0700 Arrived at JF#6A site. Positioned Ace Vac system near MW-1. Mobilized Ace Vac equipment. Gauged MW-1! DTNAPL=38.54, DT6W=38.58, NAPL thickness = 0.04. Positioned in-well GeoTech pump 18" above bottom of we 1000 Event storted. Initial well vac 20" H2O with a set 1045 flow. Gow Pump storted, ran out of liquid in approx. 5 minutes. GeoTech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O. GeoTech pump then began a continuous low pump rate. It did not stop itself. Initial vapor sample obtained, TMH vapor = 27,910 ppm	dley
0900 Arrived at JF#6A site. Pos. timed Acv Vac system new MW-1. Mobilized Acv Vac equipment. Gauged MW-1! DT NAPL = 38,54, DT 6W = 38,58, NAPL thickness = 0.04. Positioned in-well GeoTech pump 18" above bottom of we 1000 Event Started. Initial well vac 20" H2O with a set 1045 flow. 6W Runp started, ran out of liquid in approx. 5 minutes. GeoTech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O. GeoTech pump then be a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TRH vapor = 27,910 ppm	
0900 Arrived at JF#6A site. Pos. timed Acv Vac system new MW-1. Mobilized Acv Vac equipment. Gauged MW-1! DT NAPL = 38.54, DT 6W = 38.58, NAPL thickness = 0.04. Positioned in-well GeoTech pump 18" above bottom of we 1000 Event Started. Initial well vac 20" H2O with a set 1045 flow. 6W Runp started, ran out of liquid in approx. 5 minutes. GeoTech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O. GeoTech pump then be a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	
near MW-1. Mobilized Acu Vac equipment. Gauged MW-1! DT NAPL = 38.54, DT 6W = 38.58, NAPL thickness = 0.04. Positioned in-well GeoTech pump 18" above bottom of we 1000 Event started. Initial well vac 70" H20 with a set 1045 flow. HWW Pump started, ran out of liquid in approx. 5 minutes. GeoTech pump then began automatic on loff when liquid we present in well. 1100 Increased well vac to 30" H20, GeoTech pump then be a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27, 910 ppm	-
DT NAPL = 38.54, DT 6 W = 38.58, NAPL thickness = 0.04. Positioned in-well GeoTech pump 18" above bottom of we 1000 Event started. Initial well vac 20" H2O with a set 1045 flow. How Pump started, ran out of liquid in approx. 5 minutes. GeoTech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O, GeoTech pump then by a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	
Positioned in-well GeoTech pump 18" above bottom of we 1000 Event started. Initial well vac 20" H2O with a set 1045 flow." GW Pump storted, ran out of liquid in approx. 5 minutes. GeoTech pump then began automatic on loff when liquid we present in well. 1100 Increased well vac to 30" H2O, GeoTech pump then be a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	1
1000 Event started. Initial well vac 20" H2O with a sch 1045 flow." 6W Rump storted, ran out of liquid in approx. 5 minutes. 600 Tech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O, 600 Tech pump then by a continuous low pump rate. It did not stop itse H. Initial vapor sample obtained. TPH vapor = 27,910 ppm	ce 11.
1045 flow. 6W Pump storted, ran out of liquid in approx. 5 minutes. 600 Tech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O. 600 Tech pump then ky a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	
1045 flow. 6W Pump storted, ran out of liquid in approx. 5 minutes. 600 Tech pump then began automatic on loft when liquid we present in well. 1100 Increased well vac to 30" H2O. 600 Tech pump then ky a continuous low pump rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	stan
present in well. 1100 Increased well vac to 30" H2O, Geo Tech pump then key a continuous low promp rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	
1100 Increased well vac to 30" H2O, 600 Tech pump then ka, a continuous low pump rate. It did not stop itso /f. Initial vapor sample obtained. TPH vapor = 27,910 ppm	nas
a continuous low promp rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	
a continuous low promp rate. It did not stop itself. Initial vapor sample obtained. TPH vapor = 27,910 ppm	-
Initial vapor sample obtained. TPH vapor = 27,910 ppm	
Initial vapor sample obtained. TPH vapor = 27,910 ppm This is much higher than last event which was conducted	
This is much higher than last event which was conducted	m .
	d l
in cold menther conditions.	
1200 Well vapor sample obtained. JPH vapors 138,040. cot. Co2t. Has high at 100 ppm.	
CO2T. Has high at 100 ppm.	
1230 Total volume flow rate storted to slowed to approx. 0,15 gpm for remainder of event.	
0,15 gpm to' remainder of event,	

A	AcuVac Remediation OI	PERATING D	DATA – EVEN	τ# ⊋A	PAGE #	3	ACUVAC N	IDP SYSTEM
Loca	tion: Johnston Federa	#6A, San	Juan Count	y, NM	Pr	oject Manag	gers: Fauch	er / George
	h	Date	7/15/17					
Well	# Mw-1	Time	1300	1330	1400	1430	1500	1530
		Hr Meter	1738.2	1738.7	1739.2	1739,7	1740.2	1740.7
	Engine Speed	RPM	2000	1900	1900	2000	2000	2000
ENGINE / BLOWER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	160	150	150	150	160	160
INE /	Alternator	Volts	13	13	13	13	/3	13
ENG	Intake Vacuum	"Hg	10	10	10	10	10	10
	Gas Flow Fuel/Propane	cfh	130	130	130	130	130	130
	Extraction Well Vac.	"H ₂ O	35	35	35	35	35	35
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	23.62	23.62	23.62	23.62	23.62	23,62
NUM	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATM	Air Temp	°F	-	-	-	-	-	-
	Barometric Pressure	"Hg	-)	-	-	-	1
ЧT	ТРН	ppmv	-	-	32,740	-	_	1
TUE	CO ₂	%	-	1	7.42	~	-	-
/ INF	со	%	-	_	. 47	-	-	-
VAPOR / INFLUENT	O ₂	%		-	9.2	-	-	-
>	H ₂ S	ppm	-		59	-	-	-
NOTES	See page # Af 1300 in Well vapor somp	Sor nor creased le tule		rac te 400, TP	35 " H, C 4 J 32,7	0 . All el 040 . CO	se rema, + CO2 al	ned same. Iso Vi
	GW Pump tot lizer	ON/OFF-	2482.63	2488.81	2491.19	2494.90	2498.24	2502.22
	Pump Rate	gals/min	,08	.12	.11	.13	.05	-
	Total Volume	gals	49.97			59.40	63.38	64,92
VER	NAPL	% Vol	Sheen	sheen	Sheen	Sheen	Sheen	sheen
RECOVERY	NAPL	Gals	-	~	-	-	_	-
Ĕ	GW Depression	ft						
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

A	AcuVac Remediation OPERATING	DATA – EVEN	т# 24	PAGE #	4	ACUVAC M	DP SYSTEM
Loca	tion: Johnston Federal #6A, San	Juan County	/, NM	Pro	oject Manag	gers: Fauche	er / George
	Date	7/15/17					
Wel	# // w-/ Time	1600	1630	1700			
	Hr Meter	Remediation OPERATING DATA - EVENT # $2A$ PAGE # 4 ACUVAC MD Johnston Federal #6A, San Juan County, NM Project Managers: Faucher Mw-1 Time $7/.5/.7Mw-1$ Time $7/.5/.7Mw-1$ Time $7/.5/.7Mw-1$ Time $7/.5/.7Mw-1$ Time $7/.5/.7Mw-1$ Time $7/.5/.7Mw-1$ Time $7/.5/.71600$ 1630 $7000Hr Meter 7/.7/.21700$ 1630 $7000Hr Meter 7/.5/.71700$ 1630 70001000 Hr Meter $7/.5/.71300$ 1630 19001300 16300 19001300 1000 10001300 1000					
	Engine Speed RPM	2000					
VER	Oil Pressure psi	50					
BLOV	Water Temp °F	150					
ENGINE / BLOWER	Alternator Volts	13	(La				
ENGI	Intake Vacuum "Hg	10	2				
	Gas Flow Fuel/Propane cfh	130	555				
	Extraction Well Vac. "H ₂ O		H				
ATMOSPHERE VACUUM / AIR	Extraction Well Flow scfm	23.62	K				
	Influent Vapor Temp. °F		NOR				
ATMC	Air Temp ⁰F	-	3				
	Barometric Pressure "Hg	-	A				
F		27,720	T'				
VAPOR / INFLUENT		7.22	S				
/ INFI	CO %	,29					
POR	O ₂ %	5,4					
VA	H ₂ S ppm	72					
	At 1600 the event	was ca,	Iled due	to want	har. Acu	Vac sy	sten
	shut down & demobed	Cq . ipme.	nd tha	t neede	d pro.	tection for	ion the
	rain.						
NOTES				,			
.ON	Depited site at 16:3	s and -	fraveled	back ,	& Farm	ing tan.	
	·						
			· · ·				
-	TOTALIZER ON/OFF	2503.76					
	Pump Rate gals/min	-					
ž	Total Volume gals	64.52					
RECOVERY		-					
REC	NAPL Gals	-					
	GW Depression ft						
	Extraction Well DTNAPL	ND					
	Extraction Well DTGW	ND					

X	AcuVac Remediation o	PERATING [DATA – EVEN	т# 2,	PAGE #	¥ 1	ACUVAC	MDP SYSTEM
Loca	tion: Johnston Federa	al #6A, San	Juan County	y, NM	Pı	roject Mana	gers: Fauch	er / George
		Date	7/16/17					
Wel	1# <i>MW-</i>]	Time	0615	0645	0715	0745	0815	0845
		Hr Meter	1741.4	1742.0	142.5	1743.0	1743,5	1744.0
	Engine Speed	RPM	2000	2000	2000	2100	2/00	2100
WER	Oil Pressure	psi	50	50	50	50	50	50
BLOI	Water Temp	°F	145	145	150	150	150	150
ENGINE / BLOWER	Alternator	Volts	/3	13	13	13	13	13
ENG	Intake Vacuum	"Hg	10	10	10	10	10	10
	Gas Flow Fuel/Propane	cfh	120	120	130	130	120	120
	Extraction Well Vac.	"H ₂ O	30	30	30	35	35	35
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	23.39	23.39	23.39	24.91	24.91	24.51
HUN	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATMO	Air Temp	°F	-	-	_	-	-	_
	Barometric Pressure	"Hg	-	-	~	~	-	-
F	ТРН	ppm∨	-	-	32,660	_	-	_
VAPOR / INFLUENT	CO ₂	%	-	-	6,66	_	-	-
/ INF	со	%	-	-	.41	-	~	-
POR	O ₂	%	-	-	6.6	-	-	~
AN N	H ₂ S	ppm	-	-	33	~	-	~
NOTES	See page 2 t	for notes	5.					
	TOTALIZER		2503.76	2523.92	2537.19	2548.47	2558,17	2568.8
ERY	Pump Rate	gals/min	-	.44	.38	.32	.36 -	.26
RECOVERY	Total Volume	gals	4	20.12	-33.43	44.71	54.41	65.12
RE	NAPL	% Vol	-	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN
	NAPL	Gals	-	-	-	-	-	-
	Data Logger Head	ft	_	-	-	-	-	-
A	GW Depression	ft						
-	Extraction Well	DTNAPL	ND					
	Extraction Well	DTGW	(IN					

		OPERATING NOTES - EVENT # 2 PAGE # 2 ACUVAC MDP SYSTEM
Locatio	n: Johnsto	n Federal #6A, San Juan County, NM Project Managers: Faucher / George
Date:	7/16/17	Mw-1
	0600	Arrived at site. Started Acu Vac Unit. Mobilized equipment put away the day before due to wanther conditions.
	0615	Event storted. Vell Vac = 30" HsO. wonthe conditions save
	0715	Initial vapor sample obtained. TPH=32,660, co=.41, cos= 6.65 Ox = 6.6, HSS=33
	0745	Well Vac 1 to 35" Hoo. Recovery flow rate from well much higher then yesteday. 45 total gls @ 0745.
	0 845	Flow rate has slowed to .35 per gallin. However overall total Volume & rate much higher than yesterday.
NOTES		

2B PAGE # 3

Loca	ocation: Johnston Federal #6A, San Juan County, NM Project Managers: Faucher / Georg									
	Date	7/16/17								
Well	# MW-/ Time	0915	0945	1015	1045	1115	1145			
	Hr Meter	1744.5	1745.0	1745,5	1746.0	1746.5	1747.0			
	Engine Speed RPM	2000	2000	2000	2000	2000				
NER	Oil Pressure psi	50	50	50	50	50	50			
BLO	Water Temp °F	160	160	160	160	160	150			
ENGINE / BLOWER	Alternator Volts	13	13	13	13	13	13			
ENG	Intake Vacuum "Hg	10	10	10	10	10	10			
	Gas Flow Fuel/Propane cfh	100	100	100	90	90	90			
	Extraction Well Vac. "H ₂ O	35	40	40	40	40	40			
AIR	Extraction Well Flow scfm	24.91	25.55	25.55	25.55	25.55	25.55			
	Influent Vapor Temp. °F	70	70	70	70	70	70			
ATMOSPHERE VACUUM / AIR	Air Temp °F	-	-	-	_	-	-			
	Barometric Pressure "Hg	-	~	-	-	-	_			
Т	TPH ppmv	29,960	-	_	-	35,910	-			
LUEN	CO2 %	6.60	-	-	_	5,98				
	CO %	.34	-	1	-	,22	-			
VAPOR / INFLUENT	O ₂ %	7.3	-	-	-	8,2	-			
>	H ₂ S ppm	37	~	1	1	34	-			
	0915 Flow rate · Volume	slowed	to 8.8 5	15 = .30	pu go	Im. Inc	rased			
	well vac to max at 40 "Hoo. Vapor Samples abtained. TPH V.									
	0945 Flav 1 to 105'	5 4.35	-" H30.							
NOIES	1045 Generator stopped. Oil added. Restart generator at 11:20.									
2	1115 Vapor samples	obtained	d 1115.	TPH 13	5,910	H25 con	she 34			
	CO2 + CO4.									
	1145 After re-stri		mp, wate	r column	pumped	down .	185ls			
	from 11:20 ->									
	GW-Pump Totalizer ON/OFF	7576.76		1	2596.10	2596.10	2614.10			
	Pump Rate gals/min	.32		102	~	.60	.39			
.	Total Volume gals	73.0	82.49	51.69	92.34	92.34	110.34			
	NAPL % Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN			
	NAPL Gals	-	-	-	-	-	-			
	GW Depression ft	_	-	-	-	-	-			
	Extraction Well DTNAPL									
	Extraction Well DTGW									

A	AcuVac Remediation OI	PERATING [DATA – EVEN	т# 23	PAGE #	4	ACUVAC N	IDP SYSTEM	
Loca	tion: Johnston Federal	#6A, San	Juan Count	y, NM	Pr	oject Manag	gers: Fauch	er / George	
	,	Date	7/16/17						
Well	# MW-/	Time	1215	1245	1315	1345	1415	1445	
		Hr Meter	1747.5	1748,0	1748.5	1749.0	1749.5	1750.0	
	Engine Speed	RPM	2000	2000	2000	2000	2000	2000	
VER	Oil Pressure	psi	50	50	50	50	50	50	
ENGINE / BLOWER	Water Temp	°F	160	150	150	160	160	160	
NE /	Alternator	Volts	13	13	13	13	13	13	
ENG	Intake Vacuum	"Hg	10	10	10	10	10	10	
	Gas Flow Fuel/Propane	cfh	80	80	80	80	80	80	
	Extraction Well Vac.	"H ₂ O	40	40	40	40	40	40	
ERE AIR	Extraction Well Flow	scfm	25.55	25.55	25.55	25.55	25.55	25.55	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70	
ATMC	Air Temp	۴F	-	-	-	-	-	-	
	Barometric Pressure	"Hg	-	-	-	-	~	-	
E	ТРН	ppmv	-	-	38, 890	-	-	-	
VAPOR / INFLUENT	CO ₂	%	1	-	6.46	-	-	-	
/ INF	со	%	-	-	,59	-	-	-	
POR	O ₂	%	1	-	9.4	-	-	-	
٨	H ₂ S	ppm	/)	3.1	-	~	~	
	1215 Total volume flow rate evened out at i 25 gallas per minute.								
NOTES	1315 Vapor sample obtained. TPH 1, cor co2 1. HSV								
	GWPump Totalizer	•	7625.87	2632.43	2638,30	2645.60	2652.41	2659,2	
	Pump Rate	gals/min	.22	.20	.22	,25	.23	.21	
7	Total Volume	gals	122.11	128.67	134.54	141.24	148.73	155.50	
VER	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	
RECOVERY	NAPL	Gals	~	-	-	-	-	-	
-	GW Depression	ft	-	-	-	-	-	-	
	Extraction Well	DTNAPL							
	Extraction Well	DTGW							

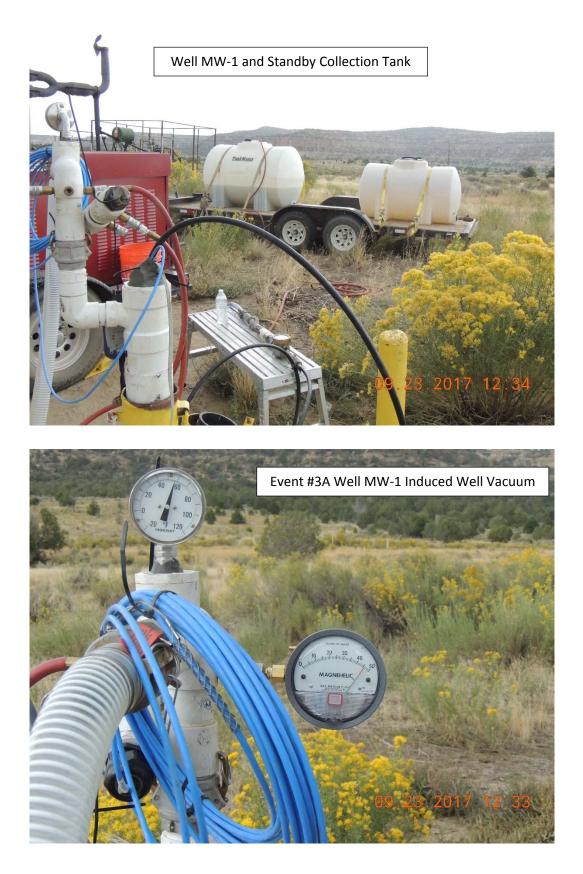
A	AcuVac Remediation OPE	RATING	DATA – EVEN	т# 2 В	PAGE #	5	ACUVAC M	IDP SYSTEM	
Location: Johnston Federal #6A, San Juan County, NM Project Managers: Faucher / George									
		Date	7/16/17	7/16/17	7/16/17	7/16/17	7/16/17	7/16/17	
Well	# MW-/	Time	1515	1545	1615	1645	1715	1745	
		Hr Meter	1750,5	1751.0	1751,5	1752,0	1752.5	1753.0	
	Engine Speed	RPM	2000	2000	2000	2000	2000	2000	
NER	Oil Pressure	psi	50	50	50	50	50	50	
BLOI	Water Temp	°F	160	160	160	160	150	150	
ENGINE / BLOWER	Alternator	Volts	13	13	13	13	13	13	
ENG	Intake Vacuum	"Hg	10	10	10	10	10	10	
	Gas Flow Fuel/Propane	cfh	80	80	80	80	80	80	
	Extraction Well Vac.	"H₂O	40	40	40	40	40	40	
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	25.55	25.55	25.55	25.55	25.55	2555	
/ WNI	Influent Vapor Temp.	°F	70	70	70	70	70	70	
ATMC	Air Temp	°F	_	-	-	-)	-	
	Barometric Pressure	"Hg	-	_	-	-	-	-	
F	ТРН	ppmv	34,160	_	-	-	26,760		
VAPOR / INFLUENT	CO ₂	%	6.22	-	_	-	7.30	-	
/ INFI	со	%	, 15	-	-	-	.13	-	
POR	O ₂	%	10.3	-	-	-	10,2)	
VA	H ₂ S	ppm	6	-		_	B	~	
	1515 Vapor Samples obtained. TPH= 34, 160 V H25 not present + has declined in event.								
NOTES	1545 Volume flow rate trending down during event.								
	1715 Vapor 5 constat	in the	o 6 ta.n rs range	ed. TPB for even	l = 34, , ,	160 V	TPH stay	red	
	TOTALIZER		2665,50	2671.64	2677,25	7682.34	2686.57	2691.05	
	Pump Rate	gals/min	.20	,19	,17	,14	.15	.12	
	Total Volume	gals	161.74	167.88	173.49	178.58	18281	187.29	
RECOVERY	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	
ECO	NAPL	Gals	_	_	-	-	-	7	
"	GW Depression	ft	-	-	-	-	-	4	
	Extraction Well	DTNAPL							
	Extraction Well	DTGW							

A	AcuVac Remediation Of	PERATING	DATA – EVEN	Т#	23	PAGE	# 6	ACUV	AC MDP SYSTEM
Loca	tion: Johnston Federal	#6A, San	Juan County	y, NM		F	Project M	anagers: Fa	ucher / George
Well	# <i>Mw-</i> /	Date Time Hr Meter	רו/וג/ר 18 15 1753.0						
	Engine Speed	RPM	2000						
VER	Oil Pressure	psi	50						
BLOV	Water Temp	°F	150						
ENGINE / BLOWER	Alternator	Volts	13						
ENG	Intake Vacuum	"Hg	10			8400 B4000			
	Gas Flow Fuel/Propane	cfh	80						
	Extraction Well Vac.	"H₂O	40						
AIR	Extraction Well Flow	scfm							
HISON / WI	Influent Vapor Temp.	°F	70						
ATMOSPHERE VACUUM / AIR	Air Temp	°F	-						
	Barometric Pressure	"Hg	-						
5	ТРН	ppmv	-						
LUEN	CO ₂	%	~						
/ INF	со	%	-						
VAPOR / INFLUENT	O ₂	%	-						
*	H ₂ S	ppm	1						
NOTES	1815 End	of en	art, 7	· / /	V01	ine =	/9/ 9	sa I lon S,	
	TOTALIZER		2694.75						
	Pump Rate	gals/min	. 20						
≻ [Total Volume	gals	.190.99						
RECOVERY	NAPL	% Vol							
RECC	NAPL	Gals							
_	GW Depression	ft	8,50						
	Extraction Well	DTNAPL	Trace						
	Extraction Well	DTGW	47.15						

2C PAGE #

Location: Johnston Federal #6A, San Juan County, NM Project Managers: Faucher / George								er / George
		Date	n/rilr					
Well	# MW-1	Time	0730	0800	0900	1000	1100	1200
		Hr Meter	1753.5	1754.0	1754.5	1755.5	1756.5	1757.5
	Engine Speed	RPM	1800	1800	1800	1300	1800	1800
NER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	150	150	150	150	150	150
ENGINE / BLOWER	Alternator	Volts	13	13	13	13	13	13
ENG	Intake Vacuum	"Hg	10	10	10	10	10	10
	Gas Flow Fuel/Propane	cfh	80	80	80	80	80	80
	Extraction Well Vac.	"H ₂ O	35	35	35	35	35	35
AIR	Extraction Well Flow	scfm	24.90	24.90	24.90	24.90	24.50	24.90
NUM /	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATMOSPHERE VACUUM / AIR	Air Temp	°F	-	_	-	-	-	-
	Barometric Pressure	"Hg	-	-	-	-	-	-
F	ТРН	ppmv		17,940	-	~ '	-	_
NEN.	CO ₂	%	-	4.86	-		-	-
VAPOR / INFLUENT	со	%	-	.07	-		-	-
OR /	O ₂	%	-	11.]	~	-	-	-
VAI	H ₂ S	ppm	-	Ð	-	-	-	_
NOTES								
	OW Pump Tohliza	ON/OEF	2694,75	2713,21		-	-	-
	Pump Rate	gals/min			-		-	-
≿	Total Volume	gals	_		-	-	-	
RECOVERY	NAPL	% Vol	-	SHOEN	SHOD	SHEEN	SHEEN	SHEEN
REC	NAPL	Gals	-	~	-	-	-	-
	GW Depression	ft						
	Extraction Well	DTNAPL	-					
	Extraction Well	DTGW	38,91					

ר PAGE # ℃


Location: Johnston Federal #6A, San Juan County, NM Project Managers: Faucher / G						gers: Faucher / George	
Wel	# Mw-1	Date Time Hr Meter	7/n/n 1300 1758.5	1400 1755.5	1500 1760.5	(600 1761.5	1745 1782.75
	Engine Speed	RPM	1800	1800	1800	1800	1800
VER	Oil Pressure	psi	50	50	50	50	50
BLOV	Water Temp	°F	160	160	160	160	160
ENGINE / BLOWER	Alternator	Volts	13	13	13	13	13
ENGI	Intake Vacuum	"Hg	10	10	10	10	10
	Gas Flow Fuel/Propane	cfh	80	80	80	80	80
	Extraction Well Vac.	"H ₂ O	35	35	35	35	35
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	24.90	24.90	24.90	24.90	24.90
/ WN	Influent Vapor Temp.	°F	70	70	70	70	70
ATMC	Air Temp	°F	(ſ	-	-	-
	Barometric Pressure	"Hg	1	-	-	-	-
F	ТРН	ppmv	-	1	20,320	-	22,370
-UEN	CO ₂	%	-	-	4.60		4.74
VAPOR / INFLUENT	со	%	1	-	.12	-	.16
POR	O ₂	%	1	~	12.8	-	13.0
VA	H ₂ S	ppm	-	-	0	-	0
NOTES							
	GW Pump	ON/OFF	-	1	1	~	2775,12
	Pump Rate	gals/min	-	-	-	~	.14
RY	Total Volume	gals	-	`	-	-	80.37
RECOVERY	NAPL	% Vol	-	_	-	_	SHEEN
REC	NAPL	Gals	~	~	-		-
	GW Depression	ft					
	Extraction Well	DTNAPL					-
	Extraction Well	DTGW					38/61

JOHNSTON FEDERAL #6A SAN JUAN COUNTY, NM

JOHNSTON FEDERAL #6A SAN JUAN COUNTY, NM

JOHNSTON FEDERAL #6A SAN JUAN COUNTY, NM

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

October 6, 2017

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11153 Aurora Avenue Des Moines, IA 50322

Dear Stephen:

Re: Johnston Federal No. 6A, San Juan County, NM (Event #3)

At your request, AcuVac Remediation, LLC (AcuVac) performed three Mobile Dual Phase Extraction (MDPE) events on well MW-1; 4.0 hour Event #3A on September 23, 2017, and 10.0 hour Event #3B on September 24, 2017 and 10.0 hour Event #3C on September 25, 2017, at the above referenced site (Site). Following is the Report and a copy of the Operating Data collected during Event #3. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE events was to enhance recovery of Phase Separated Hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical release of natural gas condensate.

OBJECTIVES

The objectives of the MDPE events were to:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the vapor phase and liquid LNAPL specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event periods.
- Select and monitor the groundwater depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. No third party equipment was utilized. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower used as a vacuum pump and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during Event #3, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac								
Measurement Equipment	Data Element							
Extraction Well Induced Vacuum and Flow								
Dwyer Magnehelic Gauges	Extraction Well Vacuum							
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow							
Observation Wells								
Dwyer Digital Manometer	Vacuum / Pressure Influence							
Extraction Well Vapor Monitoring								
V-1 vacuum box	Extraction Well Non-Diluted Vapor Sample Collection							
HORIBA [®] Analyzer	Extraction Well Vapor TPH Concentration							
QRae Mini II O ₂ Monitor	Extraction Well Vapor Oxygen Content							
LNAPL Thickness (if present)								
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater							
Liquid Recovery								
Totalizer Flow Meter	Liquid Flow and Total Volume							
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping							
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics							
Groundwater Depression / Upwelling								
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells							
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure							
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls							
Atmospheric Conditions								
Testo Model 511	Relative and Absolute Barometric Pressure							

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump was connected to the extraction well, and the vacuum created on the extraction well caused light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they were burned as part of the normal combustion process. Propane was used as auxiliary fuel to help power the engine if the well vapors did not provide the required energy.

The IC engine provided the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence for pilot tests and short term event remediation.

Emissions from the engine were passed through three catalytic converters to maximize destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio was adjusted to maintain efficient combustion. Because the engine is the power source for the equipment, the System stops when the engine stops. This prevents an uncontrolled release of hydrocarbons. Since the System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

Groundwater extraction was provided by an in-well Grundfos Redi-Flo 2 total fluids pump that discharged through a totalizer/flow meter. The discharge line from this meter was then connected to a stand-by tank. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to LNAPL measurements. Grab samples of recovered liquid were taken periodically in a graduated cylinder to determine the average percentage of LANPL being recovered.

The design of the AcuVac System enabled independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controlled the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improved the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #3

The Recovery Summary table below lists the groundwater and LNAPL recovery data for Event #3, and compares the results to the previous Event #2.

Recovery Summary								
	Event #3A	Event #3B	Event #3C	Total				
	MW-1	MW-1	MW-1	Event #3	Event #2			
Event Hours	4.0	10.0	10.0	24.0	28.25			
GW Recovery	103	259	228	590	336			
NAPL Recovery								
Liquid	0	0	0	0	0			
Vapor	3.4	8.2	8.6	20.2	42.3			
Total	3.4	8.2	8.6	20.2	42.3			
Gallons/Hour	0.8	0.8	0.9	0.8	1.5			

SUMMARY OF MDPE EVENT #3A- WELL MW-1

- The total event time was 4.0 hours. The Event was conducted on September 23, 2017. The data is compared to Event #2C conducted on July 17, 2017, which had total event time of 10.25 hours.
- The total liquid volume recovered was 103 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 3.4 gals, for a total liquid and vapor LNAPL recovery of 3.4 gals, or 0.8 gals per hour.

• The volume of liquid and vapor LNPAL recovered during Event #3A is compared with Event #2C in the table below.

LNAPL Recovery Well MW-1							
		Event #3A		Event #2C			
		Amount	Percent	Amount	Percent		
Event Hours		4.0	-	10.25	-		
GW Recovery	gals	103	-	80	-		
NAPL Recovery							
Liquid	gals	0	0	0	0		
Vapor	gals	3.4	100.00	11.2	100.00		
Total	gals	3.4	100.00	11.2	100.00		
Gallons/Hour		0.8	-	1.1	-		

• Average HORIBA[®] analytical data from the influent vapor samples for Event #3A is compared with Event #2C in the table below:

Influent Vapor Data Well MW-1							
Data Elemer	nt	Event #3A	Event #2C				
TPH- Maximum	ppmv	18,440	22,370				
TPH- Average	ppmv	15,580	20,210				
TPH- Minimum	ppmv	13,900	17,940				
TPH- Initial	ppmv	14,400	17,940				
TPH- Final	ppmv	13,900	22,370				
CO ₂	%	9.16	4.86				
со	%	0	0.07				
O ₂	%	7.3	11.1				
H ₂ S	ppm	22	0				

• The Event #3A extraction well induced vacuum and well vapor flow are compared with Event #2C in the table below.

Well Vacuum and Well Vapor Flow Well MW-1								
Data Element		Event #3A	Event #2C					
Well Vacuum- Max	"H ₂ O	45.00	35.00					
Well Vacuum- Avg	"H₂O	36.67	35.00					
Well Vacuum- Min	"H ₂ O	30.00	35.00					
Well Vapor Flow- Max	scfm	30.39	24.90					
Well Vapor Flow- Avg	scfm	24.92	24.90					
Well Vapor Flow- Min	scfm	18.02	24.90					

- The groundwater pump inlet was set at 45.5 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #3A was 0.40 gpm, and the maximum groundwater pump rate was 0.46 gpm. The total liquid volume recovered was 103 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.0 ft below the hydro-equivalent static level.
- No measured LNAPL was recorded in well MW-1 prior to the start of Event #3A, and no measureable LNAPL was recorded at the conclusion of the Event #3A.

The total LNAPL removed, including liquid and vapor, during the 4.0 hour Event #3A, well MW-1 was 3.4 gals.

ADDITIONAL INFORMATION

- Well MW-1 produced a steady amount of liquid volume during the course of the Event #3A. However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 3.4 gals, was burned as IC engine fuel.
- The TPH vapor concentrations increased during Event #3A and then decreased at the end of the event. The initial TPH reading was 14,400 ppmv, the average reading was 15,580 ppmv, the maximum reading, 18,440 ppmv, was at event hour 2.0, and the lowest reading, 13,900 ppmv, was recorded at event hour 4.0.
- At approximately 1100 hours, event hour 4.0, a Stop Work was issued due to inclement weather moving into the area.

SUMMARY OF MDPE EVENT #3B- WELL MW-1

- The total event time was 10.0 hours. The Event was conducted on September 24, 2017. The data is compared to Event #3A conducted on September 23, 2017, which had total event time of 4.0 hours.
- The total liquid volume recovered was 259 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 8.2 gals, for a total liquid and vapor LNAPL recovery of 8.2 gals, or 0.8 gals per hour.

• The volume of liquid and vapor LNAPL recovered during Event #B is compared with Event #3A in the table below.

LNAPL Recovery Well MW-1								
		Even	t #3B	Event #3A				
		Amount	Percent	Amount	Percent			
Event Hours		10.0	-	4.0	-			
GW Recovery	gals	259	-	103	-			
NAPL Recovery	IAPL Recovery							
Liquid	gals	0	0	0	0			
Vapor	gals	8.2	100.00	3.4	100.00			
Total	gals	8.2	100.00	3.4	100.00			
Gallons/Hour		0.8	-	0.8	-			

• Average HORIBA[®] analytical data from the influent vapor samples for Event #3B is compared with Event #3A in the table below:

Influent Vapor Data Well MW-1						
Data Elemer	nt	Event #3B	Event #3A			
TPH- Maximum	ppmv	13,870	18,440			
TPH- Average	ppmv	10,975	15,580			
TPH- Minimum	ppmv	6,720	13,900			
TPH- Initial	ppmv	6,720	14,400			
TPH- Final	ppmv	10,610	13,900			
CO ₂	%	6.18	9.16			
со	%	0	0			
O ₂	%	12.7	7.3			
H ₂ S	ppm	2	22			

• The Event #3B extraction well induced vacuum and well vapor flow are compared with Event #3A in the table below.

Well Vacuum and Well Vapor Flow Well MW-1						
Data Element Event #3B Event #3A						
Well Vacuum- Max	"H ₂ O	60.00	45.00			
Well Vacuum- Avg	"H₂O	51.20	36.67			
Well Vacuum- Min	"H₂O	30.00	30.00			
Well Vapor Flow- Max	scfm	41.09	30.39			
Well Vapor Flow- Avg	scfm	34.48	24.92			
Well Vapor Flow- Min	scfm	20.44	18.02			

- The groundwater pump inlet was set at 45.5 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #3B was 0.41 gpm, and the maximum groundwater pump rate was 0.77 gpm. The total liquid volume recovered was 259 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.0 ft below the hydro-equivalent static level.
- LNAPL with a measured thickness of 0.01 ft was recorded in well MW-1 prior to the start of Event #3B. LNAPL with a measured thickness of 0.03 ft was recorded at the conclusion of the Event #3B.

The total LNAPL removed, including liquid and vapor, during the 10.0 hour Event #3B, Well MW-1 was 8.2 gals.

ADDITIONAL INFORMATION

- Well MW-1 produced a steady amount of liquid volume during the course of the Event #3B. However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 8.2 gals, was burned as IC engine fuel.
- The TPH vapor concentrations increased during Event #3B and then decreased at the end of the event. The initial TPH reading was 6,720 ppmv, the average reading was 10,975 ppmv, the maximum reading, 13,870 ppmv, was at event hour 4.0, and the lowest reading, 6,720 ppmv, was recorded at event hour 0.5.

SUMMARY OF MDPE EVENT #3C- WELL MW-1

- The total event time was 10.0 hours. The event was conducted on September 25, 2017. The data is compared to Event #3B conducted on September 24, 2017, which had total event time of 10.0 hours.
- The total liquid volume recovered was 228 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 8.6 gals, for a total liquid and vapor LNAPL recovery of 8.6 gals, or 0.9 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #3C is compared with Event #3B in the table below.

LNAPL Recovery Well MW-1							
		Even	t #3C	Event #3B			
		Amount	Percent	Amount	Percent		
Event Hours		10.0	-	10.0	-		
GW Recovery	gals	228	-	259	-		
NAPL Recovery							
Liquid	gals	0	0	0	0		
Vapor	gals	8.6	100.00	8.2	100.00		
Total	gals	8.6	100.00	8.2	100.00		
Gallons/Hour		0.9	-	0.8	-		

• Average HORIBA[®] analytical data from the influent vapor samples for Event #3C is compared with Event #3B in the table below:

Influent Vapor Data Well MW-1					
Data Elemer	nt	Event #3C	Event #3B		
TPH- Maximum	ppmv	12,300	13,870		
TPH- Average	ppmv	9,662	10,975		
TPH- Minimum	ppmv	6,120	6,720		
TPH- Initial	ppmv	8,760	6,720		
TPH- Final	ppmv	11,710	10,610		
CO ₂	%	5.12	6.18		
со	%	0	0		
O ₂	%	15	12.7		
H₂S	ppm	0	2		

• The Event #3C extraction well induced vacuum and well vapor flow are compared with Event #3B in the table below.

Well Vacuum and Well Vapor Flow Well MW-1						
Data Element		Event #3C	Event #3B			
Well Vacuum- Max	"H ₂ O	64.00	60.00			
Well Vacuum- Avg	"H₂O	59.87	51.20			
Well Vacuum- Min	"H₂O	30.00	30.00			
Well Vapor Flow- Max	scfm	46.02	41.09			
Well Vapor Flow- Avg	scfm	41.07	34.48			
Well Vapor Flow- Min	scfm	21.66	20.44			

- The groundwater pump inlet was set at 45.5 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #3C was 0.37 gpm, and the maximum groundwater pump rate was 0.81 gpm. The total liquid volume recovered was 228 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.0 ft below the hydro-equivalent static level.
- LNAPL with a measured thickness of 0.01 ft was recorded in well MW-1 prior to the start of Event #3C. LNAPL with a measured thickness of 0.04 ft was recorded at the conclusion of the Event #3C.

The total LNAPL removed, including liquid and vapor, during the 10.0 hour Event #3C, Well MW-1 was 8.6 gals.

ADDITIONAL INFORMATION

• Well MW-1 produced a steady amount of liquid volume during the course of the Event #3C. However, no quantifiable liquid LNAPL was recovered from well MW-1.

- All LNAPL volume recovered, 8.6 gals, was burned as IC engine fuel.
- The TPH vapor concentrations were on an increasing trend during Event #3C and then decreased at the end of the event. The initial TPH reading was 6,120 ppmv, the average reading was 9,662 ppmv, the maximum reading, 12,300 ppmv, was at event hour 8.0, and the lowest reading, 6,120 ppmv was recorded at event hour 0.50.

The total LNAPL removed, including liquid and vapor, during the 24.0 hour Event #3, Well MW-1 was 20.2 gals.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂.

The formula used to calculate the emission rate is: $ER = HC (ppmv) \times MW (Hexane) \times Flow Rate (scfm) \times 1.58E^{-7} (min)(lb mole) = lbs/hr$ $(hr)(ppmv)(ft^3)$

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data
- Photographs of the MDPE System, Well MW-1.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely, ACUVAC REMEDIATION, LLC

Prindad

Paul D. Faucher Vice President, Operations

Summary Well Data Table #1

Event		3A	3B	3C
WELL NO.		MW-1	MW-1	MW-1
Total Event Hours		4.0	10.0	10.0
TD	ft BGS	47.0	47.0	47.0
Well Screen	ft BGS	32.0 – 47.0	32.0 – 47.0	32.0 - 47.0
Well Size	in	4.0	4.0	4.0
Well Data				
DTGW - Static - Start Event	ft BTOC	38.62	39.04	39.25
DTLNAPL - Static - Start Event	ft BTOC	-	39.03	39.24
LNAPL	ft BTOC	-	0.01	0.01
Hydro-Equivalent- Beginning	ft BTOC	38.62	39.03	39.24
DTGW - End Event	ft BTOC	-	47.48	47.49
DTLNAPL - End Event	ft BTOC	-	47.45	47.45
LNAPL	ft BTOC	-	0.03	0.04
Hydro-Equivalent- Ending	ft BTOC	-	47.46	47.46
Extraction Data				
Maximum Extraction Well Vacuum	"H ₂ O	45.00	60.00	64.00
Average Extraction Well Vacuum	"H ₂ O	36.67	51.20	59.87
Minimum Extraction Well Vacuum	"H ₂ O	30.00	30.00	30.00
Maximum Extraction Well Vapor Flow	"H ₂ O	30.39	41.09	46.02
Average Extraction Well Vapor Flow	scfm	24.92	34.48	41.07
Minimum Extraction Well Vapor Flow	scfm	18.02	20.44	21.66
Maximum GW / LNAPL Pump Rate	gpm	0.46	0.77	0.81
Average GW / LNAPL Pump Rate	gpm	0.40	0.41	0.37
Influent Data				
Maximum TPH	ppmv	18,440	13,870	12,300
Average TPH	ppmv	15,580	10,975	9,662
Minimum TPH	ppmv	13,900	6,720	6,120
Initial TPH	ppmv	14,400	6,720	8,720
Final TPH	ppmv	13,900	10,610	11,710
Average CO ₂	%	9.16	6.18	5.12
Average CO	%	0	0	0
Average O ₂	%	7.3	12.7	15.0
Average H₂S	ppm	22	2	0

Summary Recovery Data Table #2

Event	-	3A	3B	3C
WELL NO.		MW-1	MW-1	MW-1
Recovery Data- Current Event				
Total Liquid Volume Recovered	gals	103	259	228
Total Liquid LNAPL Recovered	gals	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-
Total Vapor LNAPL Recovered	gals	3.4	8.2	8.6
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	3.4	8.2	8.6
Average LNAPL Recovery	gals/hr	0.8	0.8	0.9
Total LNAPL Recovered	lbs	23	57	60
Total Volume of Well Vapors	cu. ft	5,981	20,688	24,642
Recovery Data- Cumulative				
Total Liquid Volume Recovered	gals	607	866	1,094
Total Liquid LNAPL Recovered	gals	-	-	-
Total Vapor LNAPL Recovered	gals	46.63	46.63	46.63
Total Vapor and Liquid LNAPL Recovered	gals	49.99	58.17	66.75
Average LNAPL Recovery	gals/hr	1.3	1.2	1.1
Total LNAPL Recovered	lbs	350	407	467
Total Volume of Well Vapors	cu. ft	57,503.	78,191	102,833

APPENDIX D

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-139101-1

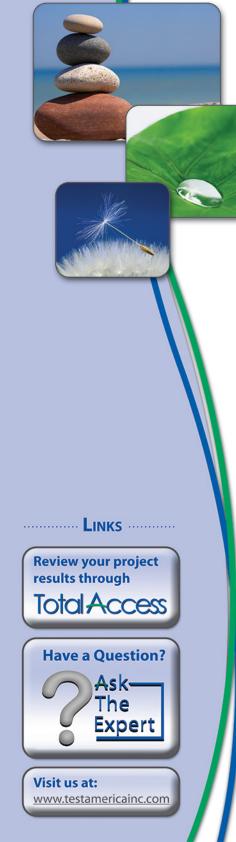
Client Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madanna Myers


Authorized for release by: 6/22/2017 12:11:36 PM Madonna Myers, Project Manager II (615)796-1870 madonna.myers@testamericainc.com

Designee for Carol Webb, Project Manager II (850)471-6250 carol.webb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	6
Client Sample Results	7
QC Association	13
QC Sample Results	14
Chronicle	15
Certification Summary	17
Method Summary	18
Chain of Custody	19
Receipt Checklists	20

Definitions/Glossary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

Glossarv

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	Α
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	ð
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	13
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-139101-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 6/10/2017 8:18 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.2° C.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A TestAmerica Job ID: 400-139101-1

5
8
9
13

Client Sample ID: MW-3					Lab Sample ID: 400-139101		
– Analyte	Result	Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Ethylbenzene	1.6		1.0	ug/L	1	8021B	Total/NA
Xylenes, Total	25		5.0	ug/L	1	8021B	Total/NA
Client Sample ID: MW-5					Lab	Sample ID:	400-139101-
No Detections.							
Client Sample ID: MW-7					Lab	Sample ID:	400-139101-
No Detections.							
Client Sample ID: MW-8					Lah	Samplo ID	: 400-139101-
No Detections.					Lab	Sample ID.	. 400-133101-
Client Sample ID: MW-9					Lab	Sample ID:	400-139101-
No Detections.							
Client Sample ID: TRIP BLANK					Lab	Sample ID:	: 400-139101-
No Detections.							
—							

Sample Summary

TestAmerica Job ID: 400-139101-1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

_ab Sample ID	Client Sample ID	Matrix	Collected	Received
100-139101-1	MW-3	Water	06/09/17 11:50	06/10/17 08:18
100-139101-2	MW-5	Water	06/09/17 11:20	06/10/17 08:18
400-139101-3	MW-7	Water	06/09/17 11:40	06/10/17 08:18
100-139101-4	MW-8	Water	06/09/17 11:30	06/10/17 08:18
400-139101-5 400-139101-6	MW-9 TRIP BLANK	Water Water	06/09/17 11:25 06/09/17 11:10	06/10/17 08:18 06/10/17 08:18

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A TestAmerica Job ID: 400-139101-1

Client Sample ID: MW-3					Lab Sample ID: 400-139101-1						
Date Collected: 06/09/17 11:50							Matrix	: Water			
Date Received: 06/10/17 08:18											
- Method: 8021B - Volatile Org	anic Compounds ((GC)									
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<1.0		1.0	ug/L			06/16/17 17:49	1			
Ethylbenzene	1.6		1.0	ug/L			06/16/17 17:49	1			
Toluene	<5.0		5.0	ug/L			06/16/17 17:49	1			
Xylenes, Total	25		5.0	ug/L			06/16/17 17:49	1			
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac			
a,a,a-Trifluorotoluene (pid)	101		78 - 124				06/16/17 17:49	1			

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A TestAmerica Job ID: 400-139101-1

Lab Sample ID: 400-139101-2 Matrix: Water

Date Collected: 06/09/17 11:20 Date Received: 06/10/17 08:18

Client Sample ID: MW-5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/16/17 19:34	1
Ethylbenzene	<1.0		1.0	ug/L			06/16/17 19:34	1
Toluene	<5.0		5.0	ug/L			06/16/17 19:34	1
Xylenes, Total	<5.0		5.0	ug/L			06/16/17 19:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	97		78 - 124		-		06/16/17 19:34	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

Client Sample ID: MW-7

TestAmerica Job ID: 400-139101-1

Lab Sample ID: 400-139101-3 Matrix: Water

Date Collected: 06/09/17 11:40 Date Received: 06/10/17 08:18								
_ Method: 8021B - Volatile Org	anic Compounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/16/17 20:09	1
Ethylbenzene	<1.0		1.0	ug/L			06/16/17 20:09	1
Toluene	<5.0		5.0	ug/L			06/16/17 20:09	1
Xylenes, Total	<5.0		5.0	ug/L			06/16/17 20:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	94		78 - 124				06/16/17 20:09	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

Client Sample ID: MW-8

Date Collected: 06/09/17 11:30

Date Received: 06/10/17 08:18

TestAmerica Job ID: 400-139101-1

Lab Sample ID: 400-139101-4 3 Matrix: Water 4

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			06/16/17 20:44	1
Ethylbenzene	<1.0	1.0	ug/L			06/16/17 20:44	1
Toluene	<5.0	5.0	ug/L			06/16/17 20:44	1
Xylenes, Total	<5.0	5.0	ug/L			06/16/17 20:44	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	95	78 - 124		_		06/16/17 20:44	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A TestAmerica Job ID: 400-139101-1

Lab Sample ID: 400-139101-5

Matrix: Water

Client Sample ID: MW-9

Date Collected: 06/09/17 11:25 Date Received: 06/10/17 08:18

Analyte	Result Qu	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			06/16/17 21:19	1
Ethylbenzene	<1.0	1.0	ug/L			06/16/17 21:19	1
Toluene	<5.0	5.0	ug/L			06/16/17 21:19	1
Xylenes, Total	<5.0	5.0	ug/L			06/16/17 21:19	1
Surrogate	%Recovery Qu	alifier Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	96	78 - 124		-		06/16/17 21:19	1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A TestAmerica Job ID: 400-139101-1

Lab Sample ID: 400-139101-6

Matrix: Water

Client Sample ID: TRIP BLANK

Date Collected: 06/09/17 11:10	
Date Received: 06/10/17 08:18	

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L		06/17/17 00:15	1
Ethylbenzene	<1.0	1.0	ug/L		06/17/17 00:15	1
Toluene	<5.0	5.0	ug/L		06/17/17 00:15	1
Xylenes, Total	<5.0	5.0	ug/L		06/17/17 00:15	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	99	78 - 124			06/17/17 00:15	1

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A TestAmerica Job ID: 400-139101-1

GC VOA

Analysis Batch: 357255

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
400-139101-1	MW-3	Total/NA	Water	8021B	
400-139101-2	MW-5	Total/NA	Water	8021B	
400-139101-3	MW-7	Total/NA	Water	8021B	
400-139101-4	MW-8	Total/NA	Water	8021B	
400-139101-5	MW-9	Total/NA	Water	8021B	
400-139101-6	TRIP BLANK	Total/NA	Water	8021B	
MB 400-357255/5	Method Blank	Total/NA	Water	8021B	
LCS 400-357255/1004	Lab Control Sample	Total/NA	Water	8021B	
400-139101-1 MS	MW-3	Total/NA	Water	8021B	
400-139101-1 MSD	MW-3	Total/NA	Water	8021B	

Method: 8021B - Volatile Organic Compounds (GC)

MB MB Result Qualifier

<1.0

<1.0

<5.0

<5.0

MB MB

%Recovery Qualifier

99

Client Sample ID: Method Blank

Analyzed

06/16/17 17:14

06/16/17 17:14

06/16/17 17:14

06/16/17 17:14

Analyzed

Prep Type: Total/NA

1 1 1 Dil Fac 9 06/16/17 17:14 1 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Dil Fac

1

Lab Sample ID: LCS 400-357255/1004 Matrix: Water Analysis Batch: 357255

Lab Sample ID: MB 400-357255/5

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surrogate

a,a,a-Trifluorotoluene (pid)

Analysis Batch: 357255

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	48.5		ug/L		97	85 - 115	 5
Ethylbenzene	50.0	50.5		ug/L		101	85 ₋ 115	
Toluene	50.0	50.1		ug/L		100	85 ₋ 115	2
Xylenes, Total	150	151		ug/L		101	85 - 115	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (pid)	98		78 - 124

Lab Sample ID: 400-139101-1 MS Matrix: Water

Analysis Batch: 357255

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	59.3		ug/L		119	44 _ 150	
Ethylbenzene	1.6		50.0	59.4		ug/L		116	70 - 142	
Toluene	<5.0		50.0	63.5		ug/L		127	69 - 136	
Xylenes, Total	25		150	203		ug/L		119	68 - 142	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
a,a,a-Trifluorotoluene (pid)	98		78 - 124

Lab Sample ID: 400-139101-1 MSD Matrix: Water Analysis Batch: 357255

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	59.9		ug/L		120	44 _ 150	1	16
Ethylbenzene	1.6		50.0	60.9		ug/L		119	70 - 142	2	16
Toluene	<5.0		50.0	64.0		ug/L		128	69 - 136	1	16
Xylenes, Total	25		150	206		ug/L		121	68 - 142	1	15
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
a,a,a-Trifluorotoluene (pid)	102		78 - 124								

TestAmerica Pensacola

1.0

5.0

5.0

Limits

78 - 124

Unit

ug/L

ug/L

ug/L

ug/L

D

Prepared

Prepared

Client Sample ID: MW-3 Prep Type: Total/NA

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

Instrument ID: CH_JOAN

Client Sample ID: MW-3

Lab Sample ID: 400-139101-1

Date Received:										
-										
	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	
Total/NA	Analysis Instrume	8021B ent ID: CH_JOAN		1	5 mL	5 mL	357255	06/16/17 17:49	CMW	TAL PEN
Client Sample		•						Lab Sample		
Date Collected:									N	Aatrix: Wate
Date Received:	06/10/17 08:1	8								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	357255	06/16/17 19:34	CMW	TAL PEN
	Instrume	ent ID: CH_JOAN								
Client Sample	e ID: MW-7							Lab Sample	e ID: 400	0-139101-
Date Collected:		0								Aatrix: Wate
Date Received:										
_					1	_	D . 4 1	- ·		
	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	
Total/NA	Analysis	8021B ent ID: CH_JOAN		1	5 mL	5 mL	357255	06/16/17 20:09	CMW	TAL PEN
		0						Lab Sample		
ate Collected:	06/09/17 11:3							Lab Sample		
Date Collected:	06/09/17 11:3			Dil	Initial	Final	Batch	Lab Sample		
Date Collected:	06/09/17 11:3 06/10/17 08:1	8	Run	Dil Factor	Initial Amount	Final Amount	Batch Number			
Date Collected: Date Received:	06/09/17 11:3 06/10/17 08:1 Batch	8 Batch	Run					Prepared	N	latrix: Wate
	06/09/17 11:3 06/10/17 08:1 Batch Type Analysis	8 Batch Method	Run	Factor	Amount	Amount	Number	Prepared or Analyzed	Analyst	latrix: Wate
Date Collected: Date Received: Prep Type Total/NA	06/09/17 11:3 06/10/17 08:1 Batch Type Analysis Instrume	Batch Method 8021B	Run	Factor	Amount	Amount	Number	Prepared or Analyzed 06/16/17 20:44	Analyst CMW	Atrix: Wate
Date Collected: Date Received: Prep Type Total/NA	06/09/17 11:3 06/10/17 08:1 Batch Type Analysis Instrume	8 Batch Method 8021B ent ID: CH_JOAN	Run	Factor	Amount	Amount	Number	Prepared or Analyzed	Analyst CMW e ID: 400	Matrix: Wate - Lab TAL PEN 0-139101-
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected:	06/09/17 11:3 06/10/17 08:1 Batch Type Analysis Instrume e ID: MW-9 06/09/17 11:2	8 Batch Method 8021B ent ID: CH_JOAN	Run	Factor	Amount	Amount	Number	Prepared or Analyzed 06/16/17 20:44	Analyst CMW e ID: 400	Lab TAL PEN 0-139101-
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected:	06/09/17 11:3 06/10/17 08:11 Batch Type Analysis Instrume 06/09/17 11:2 06/10/17 08:11	8 Batch Method 8021B ent ID: CH_JOAN	Run	Factor 1	Amount	Amount 5 mL	Number	Prepared or Analyzed 06/16/17 20:44	Analyst CMW e ID: 400	Lab TAL PEN 0-139101-
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected:	06/09/17 11:3 06/10/17 08:11 Batch Type Analysis Instrume e ID: MW-9 06/09/17 11:2 06/10/17 08:11 Batch	8 Batch Method 8021B ent ID: CH_JOAN 5 8	Run	Factor	Amount 5 mL	Amount	- Number 357255	Prepared or Analyzed 06/16/17 20:44	Analyst CMW e ID: 400	Lab TAL PEN
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received:	06/09/17 11:3 06/10/17 08:11 Batch Type Analysis Instrume 06/09/17 11:2 06/10/17 08:11	8 Batch Method 8021B ent ID: CH_JOAN 5 8 Batch		Factor 1	Amount 5 mL	Amount 5 mL	Batch	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared	Analyst CMW e ID: 400	Atrix: Wate Lab TAL PEN D-139101- Matrix: Wate
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Prep Type	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume e ID: MW-9 06/09/17 11:2 06/10/17 08:13 Batch Type Analysis	8 Batch Method 8021B ent ID: CH_JOAN 5 8 Batch Method		Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Batch Number	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared or Analyzed	Analyst CMW e ID: 400 M	Lab TAL PEN 0-139101- Matrix: Wate
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume 06/09/17 11:2 06/10/17 08:13 Batch Type Analysis Instrume	8 Batch Method 8021B ent ID: CH_JOAN 5 8 Batch Method 8021B ent ID: CH_JOAN		Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Batch Number	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared or Analyzed 06/16/17 21:19	Analyst CMW e ID: 400 N Analyst CMW	Lab TAL PEN 0-139101- Matrix: Wate
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Client Sample	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume e ID: MW-9 06/09/17 11:2 06/10/17 08:13 Batch Type Analysis Instrume e ID: TRIP E	8 Batch Method 8021B ent ID: CH_JOAN 5 8 Batch 8021B ent ID: CH_JOAN 8021B ent ID: CH_JOAN		Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Batch Number	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared or Analyzed	Analyst CMW e ID: 400 Analyst CMW e ID: 400	Lab TAL PEN 0-139101- Matrix: Wate
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected:	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume e ID: MW-9 06/09/17 11:2 06/10/17 08:13 Batch Type Analysis Instrume e ID: TRIP E 06/09/17 11:1	8 Batch Method 8021B ent ID: CH_JOAN 5 8 Batch Method 8021B ent ID: CH_JOAN 3LANK 0		Factor 1 Dil Factor	Amount 5 mL Initial Amount	Amount 5 mL Final Amount	Batch Number	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared or Analyzed 06/16/17 21:19	Analyst CMW e ID: 400 Analyst CMW e ID: 400	Atrix: Wate Lab TAL PEN D-139101- Matrix: Wate Lab TAL PEN
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected:	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume 06/09/17 11:2 06/10/17 08:13 Batch Type Analysis Instrume e ID: TRIP E 06/09/17 11:1 06/10/17 08:13	8 Batch Method 8021B ent ID: CH_JOAN 5 Batch Method 8021B ent ID: CH_JOAN 5 Batch Ba		Factor 1 Dil Factor 1	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL	Batch Number 357255	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared or Analyzed 06/16/17 21:19 Lab Sample	Analyst CMW e ID: 400 Analyst CMW e ID: 400	Lab TAL PEN 0-139101- Matrix: Wate
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Total/NA Client Sample Date Collected: Date Collected: Date Collected: Date Collected:	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume 06/09/17 11:2 06/10/17 08:11 Batch Type Analysis Instrume e ID: TRIP E 06/09/17 11:1 06/10/17 08:11	8 Batch Method 8021B ent ID: CH_JOAN 5 Batch Method 8021B ent ID: CH_JOAN 5 Batch Batch Batch 0 8 Batch Batch	Run	Factor 1 Dil Factor 1 Dil	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL Final	Batch Batch Batch	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared 06/16/17 21:19 Lab Sample Prepared	Analyst CMW P ID: 400 M Analyst CMW P ID: 400 M	Aatrix: Wate Lab TAL PEN D-139101- Matrix: Wate D-139101- Matrix: Wate
Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected: Date Received: Prep Type Total/NA Client Sample Date Collected:	06/09/17 11:3 06/10/17 08:13 Batch Type Analysis Instrume 06/09/17 11:2 06/10/17 08:13 Batch Type Analysis Instrume e ID: TRIP E 06/09/17 11:1 06/10/17 08:13	8 Batch Method 8021B ent ID: CH_JOAN 5 Batch Method 8021B ent ID: CH_JOAN 5 Batch Ba		Factor 1 Dil Factor 1	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL	Batch Number 357255	Prepared or Analyzed 06/16/17 20:44 Lab Sample Prepared or Analyzed 06/16/17 21:19 Lab Sample	Analyst CMW e ID: 400 Analyst CMW e ID: 400	Lab TAL PEN 0-139101- Matrix: Wate

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TestAmerica Job ID: 400-139101-1

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

TestAmerica Job ID: 400-139101-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-17
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-17
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-17
Illinois	NELAP	5	200041	10-09-17
owa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-17
Kentucky (UST)	State Program	4	53	06-30-17
Kentucky (WW)	State Program	4	98030	12-31-17
A-B	ISO/IEC 17025		L2471	02-22-20
ouisiana	NELAP	6	30976	06-30-18
ouisiana (DW)	NELAP	6	LA170005	12-31-17
<i>N</i> aryland	State Program	3	233	09-30-17
Massachusetts	State Program	1	M-FL094	06-30-17
Michigan	State Program	5	9912	06-30-17
lew Jersey	NELAP	2	FL006	06-30-17
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-17
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-17
Tennessee	State Program	4	TN02907	06-30-17
exas	NELAP	6	T104704286-16-10	09-30-17
JSDA	Federal		P330-16-00172	05-24-19
/irginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-17

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC -JohnstonFed #6A

Notherd Decontration	Pertural	I channé an	= 3
Method Description	Protocol	Laboratory	
Volatile Organic Compounds (GC)	SW846	TAL PEN	4

Protocol References:

Method 8021B

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Coung No(s): Coung No(s): Coc No: Page: Page: Page: 1 of 1 Job #: Preservation A - HCL B - NICH C - Zn Acetate D - Shipment: Free Trained Ionger that y Lab Date/Time: Date/Time:	Relinquished by: Date/Time: Company Received by:	Reinquished by: Reinquished by: Reinqu	Inquished by: Date: Time:		ested: I, II, III, IV, Other (specify) Special Instructions/QC Requires	Possible Hazard Identification Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Client Obsosal E Return To Client Obsosal E			BLANK Jun 1,2017 1110 -		mw-8 June 9,201 1130 G W NN 7	MW-7 June 1,007 1140 6 W N 2	MW-S June 9, 2017 1120 G W NN 2	MW-3 JUNE 7, 2011 1150 G W MN2	Preservation Code:	Fiel		MSD (179 ple (Y	vo#	303-291-2239(Tel) Purchase Order Requested	zip: 80202	TAT Req	Address: Due Date Requested: 1560 Broadway Suite 1800	ny: ec Consulting Services Inc	ah Gardner	S. Gurdwer of J. GUIVEN Webb, Carol M 400-139101 COC Camer	iin of Custody Record
	Date/Time:	Ime: /////		4		may be assessed if samples are n			2	2	2	2	2	2		Totz	al Numbe	and the second second		A ADDRESS OF STREET,	G - Amchior H - Ascorbic Acid	F - Ng	B-Na C-Zn	A - HCL	Requested		Carrier Tracking No(s):	

Client: Stantec Consulting Services Inc

Login Number: 139101 List Number: 1

Creator: Perez, Trina M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.2°C IR-2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Pensacola

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-145965-1 Client Project/Site: El Paso CGP Company - Johnson Fed 6A

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madanna Myers

Authorized for release by: 11/20/2017 12:07:46 PM Madonna Myers, Project Manager II (615)796-1870 madonna.myers@testamericainc.com

Designee for Carol Webb, Project Manager II (850)471-6250 carol.webb@testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at: www.testamericainc.com

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	
Client Sample Results	7
QC Association	17
QC Sample Results	18
Chronicle	20
Certification Summary	22
Method Summary	23
Chain of Custody	24
Receipt Checklists	25

Definitions/Glossary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

Glossary

Glossary		3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	5
CFL	Contains Free Liquid	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	0
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	8
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	9
LOQ	Limit of Quantitation (DoD/DOE)	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	11
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEO	Testicity Environment Operations (Director)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Job ID: 400-145965-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-145965-1

Comments

No additional comments.

Receipt

The samples were received on 11/14/2017 9:01 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.9° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Per client instructions, method 8260 was used in place of method 8021.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Detection Summary

TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-9

Lab Sample ID: 400-145965-10

5

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A
Client Sample ID: TRIP BLANK

Client Sample ID: TRIP BLANK	Lab Sample ID: 400-145965-1
No Detections.	
Client Sample ID: MW-3	Lab Sample ID: 400-145965-2
No Detections.	
Client Sample ID: MW-4	Lab Sample ID: 400-145965-3
No Detections.	
Client Sample ID: MW-2	Lab Sample ID: 400-145965-4
No Detections.	
Client Sample ID: MW-7	Lab Sample ID: 400-145965-5
No Detections.	
Client Sample ID: MW-8	Lab Sample ID: 400-145965-6
No Detections.	
Client Sample ID: MW-9	Lab Sample ID: 400-145965-7
No Detections.	
Client Sample ID: MW-5	Lab Sample ID: 400-145965-8
No Detections.	

Client Sample ID: MW-6

No Detections.

Client Sample ID: MW-1

Analyte	Result Qualifier	RL	Unit	Dil Fac	Method	Р гер Туре
Benzene	27	10	ug/L		8260C	Total/NA
Toluene	2800	10	ug/L	10	8260C	Total/NA
Ethylbenzene	560	10	ug/L	10	8260C	Total/NA
Xylenes, Total	3900	100	ug/L	10	8260C	Total/NA

TestAmerica Job ID: 400-145965-1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

Lab Sample ID	Client Sample ID	Matrix	Collected Received
400-145965-1	TRIP BLANK	Water	<u>11/12/17 10:10</u> <u>11/14/17 09:0</u>
400-145965-2	MW-3	Water	11/12/17 11:39 11/14/17 09:01
400-145965-3	MW-4	Water	11/12/17 11:36 11/14/17 09:01
400-145965-4	MW-2	Water	11/12/17 11:24 11/14/17 09:01
400-145965-5	MW-7	Water	11/12/17 11:17 11/14/17 09:01
400-145965-6	MW-8	Water	11/12/17 11:12 11/14/17 09:01
400-145965-7	MW-9	Water	11/12/17 11:04 11/14/17 09:01
400-145965-8	MW-5	Water	11/12/17 10:57 11/14/17 09:01
400-145965-9	MW-6	Water	11/12/17 10:50 11/14/17 09:01
400-145965-10	MW-1	Water	11/12/17 10:35 11/14/17 09:01

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

Client Sample ID: TRIP BLANK Date Collected: 11/12/17 10:10

				-
Date	Received:	11/14/17	09:01	
Date	oonected.	11/12/17	10.10	

Method: 8260C - Volatile	Organic Compo	unds by G	C/MS					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 14:57	1
Toluene	<1.0		1.0	ug/L			11/17/17 14:57	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 14:57	1
Xylenes, Total	<10		10	ug/L			11/17/17 14:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99		81 - 121				11/17/17 14:57	1
4-Bromofluorobenzene	89		78 - 118				11/17/17 14:57	1
Toluene-d8 (Surr)	101		80 - 120				11/17/17 14:57	1

Lab Sample ID: 400-145965-1

Matrix: Water

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-2

Matrix: Water

Client Sample ID: MW-3 Date Collected: 11/12/17 11:39

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 09:42	1
Toluene	<1.0		1.0	ug/L			11/17/17 09:42	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 09:42	1
Xylenes, Total	<10		10	ug/L			11/17/17 09:42	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98		81 - 121				11/17/17 09:42	1
4-Bromofluorobenzene	97		78 - 118				11/17/17 09:42	1
Toluene-d8 (Surr)	100		80 - 120				11/17/17 09:42	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-3

Matrix: Water

Client Sample ID: MW-4 Date Collected: 11/12/17 11:36

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 15:26	1
Toluene	<1.0		1.0	ug/L			11/17/17 15:26	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 15:26	1
Xylenes, Total	<10		10	ug/L			11/17/17 15:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99		81 - 121				11/17/17 15:26	1
4-Bromofluorobenzene	91		78_118				11/17/17 15:26	1
Toluene-d8 (Surr)	100		80 - 120				11/17/17 15:26	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-4

Client Sample ID: MW-2 Date Collected: 11/12/17 11:24

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 15:57	1
Toluene	<1.0		1.0	ug/L			11/17/17 15:57	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 15:57	1
Xylenes, Total	<10		10	ug/L			11/17/17 15:57	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	101		81 - 121				11/17/17 15:57	1
4-Bromofluorobenzene	84		78_118				11/17/17 15:57	1
Toluene-d8 (Surr)	109		80 - 120				11/17/17 15:57	1

TestAmerica Pensacola

5

6 7 8

Matrix: Water

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-5

Matrix: Water

Client Sample ID: MW-7 Date Collected: 11/12/17 11:17

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	· · · ·				_	_		
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 16:19	1
Toluene	<1.0		1.0	ug/L			11/17/17 16:19	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 16:19	1
Xylenes, Total	<10		10	ug/L			11/17/17 16:19	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98		81 - 121		-		11/17/17 16:19	1
4-Bromofluorobenzene	85		78_118				11/17/17 16:19	1
Toluene-d8 (Surr)	108		80 - 120				11/17/17 16:19	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Client Sample ID: MW-8 Date Collected: 11/12/17 11:12

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 16:41	1
Toluene	<1.0		1.0	ug/L			11/17/17 16:41	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 16:41	1
Xylenes, Total	<10		10	ug/L			11/17/17 16:41	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		81 - 121				11/17/17 16:41	1
4-Bromofluorobenzene	90		78 - 118				11/17/17 16:41	1
Toluene-d8 (Surr)	106		80 - 120				11/17/17 16:41	1

Lab Sample ID: 400-145965-6 Matrix: Water 5 6 7

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-7

Client Sample ID: MW-9 Date Collected: 11/12/17 11:04

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 17:03	1
Toluene	<1.0		1.0	ug/L			11/17/17 17:03	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 17:03	1
Xylenes, Total	<10		10	ug/L			11/17/17 17:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	100		81 - 121				11/17/17 17:03	1
4-Bromofluorobenzene	87		78 - 118				11/17/17 17:03	1
Toluene-d8 (Surr)	104		80 - 120				11/17/17 17:03	1

TestAmerica Pensacola

Matrix: Water

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Client Sample ID: MW-5 Date Collected: 11/12/17 10:57

Date Received: 11/14/17 09:01

Analyte	Organic Compo Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 17:25	1
Toluene	<1.0		1.0	ug/L			11/17/17 17:25	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 17:25	1
Xylenes, Total	<10		10	ug/L			11/17/17 17:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	99		81 - 121		-		11/17/17 17:25	1
4-Bromofluorobenzene	88		78 - 118				11/17/17 17:25	1
Toluene-d8 (Surr)	102		80 - 120				11/17/17 17:25	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Client Sample ID: MW-6 Date Collected: 11/12/17 10:50

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 17:47	1
Toluene	<1.0		1.0	ug/L			11/17/17 17:47	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 17:47	1
Xylenes, Total	<10		10	ug/L			11/17/17 17:47	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98		81 - 121		-		11/17/17 17:47	1
4-Bromofluorobenzene	91		78 - 118				11/17/17 17:47	1
Toluene-d8 (Surr)	100		80 - 120				11/17/17 17:47	1

Lab Sample ID: 400-145965-9 Matrix: Water

5

6 7 8

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

Lab Sample ID: 400-145965-10

Matrix: Water

Client Sample ID: MW-1 Date Collected: 11/12/17 10:35

Date Received: 11/14/17 09:01

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	27		10	ug/L			11/17/17 18:09	10
Toluene	2800		10	ug/L			11/17/17 18:09	10
Ethylbenzene	560		10	ug/L			11/17/17 18:09	10
Xylenes, Total	3900		100	ug/L			11/17/17 18:09	10
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	98		81 - 121				11/17/17 18:09	10
4-Bromofluorobenzene	91		78_118				11/17/17 18:09	10
Toluene-d8 (Surr)	108		80 - 120				11/17/17 18:09	10

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A TestAmerica Job ID: 400-145965-1

GC/MS VOA

Analysis Batch: 376306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-145965-1	TRIP BLANK	Total/NA	Water	8260C	
400-145965-2	MW-3	Total/NA	Water	8260C	
400-145965-3	MW-4	Total/NA	Water	8260C	
400-145965-4	MW-2	Total/NA	Water	8260C	
400-145965-5	MW-7	Total/NA	Water	8260C	
400-145965-6	MW-8	Total/NA	Water	8260C	
400-145965-7	MW-9	Total/NA	Water	8260C	
400-145965-8	MW-5	Total/NA	Water	8260C	
400-145965-9	MW-6	Total/NA	Water	8260C	
400-145965-10	MW-1	Total/NA	Water	8260C	
MB 400-376306/5	Method Blank	Total/NA	Water	8260C	
LCS 400-376306/3	Lab Control Sample	Total/NA	Water	8260C	
400-145965-2 MS	MW-3	Total/NA	Water	8260C	
400-145965-2 MSD	MW-3	Total/NA	Water	8260C	

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 400-376306/5 **Client Sample ID: Method Blank** Matrix: Water Prep Type: Total/NA Analysis Batch: 376306 MB MB Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac 1.0 ug/L Benzene <1.0 11/17/17 09:20 1 Toluene <1.0 1.0 ug/L 11/17/17 09:20 1 Ethylbenzene ug/L <1.0 1.0 11/17/17 09:20 1 Xylenes, Total <10 10 ug/L 11/17/17 09:20 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed Dibromofluoromethane 96 81 - 121 11/17/17 09:20 1 4-Bromofluorobenzene 88 78 - 118 11/17/17 09:20 1 80 - 120 Toluene-d8 (Surr) 105 11/17/17 09:20

Lab Sample ID: LCS 400-376306/3 Matrix: Water Analysis Batch: 376306

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	47.6		ug/L		95	70 - 130	
Toluene	50.0	50.0		ug/L		100	70 - 130	
Ethylbenzene	50.0	50.3		ug/L		101	70 - 130	
Xylenes, Total	100	98.6		ug/L		99	70 - 130	

	LCS L	CS	
Surrogate	%Recovery (Qualifier	Limits
Dibromofluoromethane	96		81 - 121
4-Bromofluorobenzene	84		78 - 118
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: 400-145965-2 MS **Matrix: Water** Analysis Batch: 376306

-	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	50.3		ug/L		101	56 - 142	
Toluene	<1.0		50.0	49.7		ug/L		99	65 - 130	
Ethylbenzene	<1.0		50.0	51.4		ug/L		102	58 ₋ 131	
Xylenes, Total	<10		100	101		ug/L		101	59 ₋ 130	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane			81 - 121
4-Bromofluorobenzene	87		78_118
Toluene-d8 (Surr)	96		80 - 120

Lab Sample ID: 400-145965-2 MSD **Matrix: Water** Analysis Batch: 376306

·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	47.4		ug/L		95	56 - 142	6	30
Toluene	<1.0		50.0	48.5		ug/L		97	65 - 130	2	30

Client Sample ID: Lab Control Sample Prep Type: Total/NA

1

Client Sample ID: MW-3 Prep Type: Total/NA

Client Sample ID: MW-3 Prep Type: Total/NA

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-14596 Matrix: Water	55-2 MSD							CI	ient Samp Prep Typ		
Analysis Batch: 376306											
-	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	<1.0		50.0	47.7		ug/L		94	58 - 131	7	30
Xylenes, Total	<10		100	95.6		ug/L		96	59 - 130	6	30
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
Dibromofluoromethane	100		81 - 121								
4-Bromofluorobenzene	88		78_118								
Toluene-d8 (Surr)	97		80 - 120								

Lab Chronicle

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

10

	-						La	b Sample II		
Date Collecte Date Receive									Ivia	trix: Wate
-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	<u>8260C</u>		1 1	5 mL	5 mL	376306	11/17/17 14:57	-	
	,	nt ID: CH_LARS								
Client Sam	ple ID: MV	/-3					La	b Sample II	D: 400-	145965
Date Collecte	d: 11/12/17 ′	11:39								trix: Wat
Date Receive										
	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	
Total/NA	Analysis Instrume	8260C nt ID: CH_LARS		1	5 mL	5 mL	376306	11/17/17 09:42	RS	TAL PEN
Client Sam		1 /						b Sample II	D. 400	115065
Date Collecte	•						La	o Sample II		trix: Wat
Date Receive	d: 11/14/17 (9:01								
_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376306	11/17/17 15:26	-	TAL PEN
	Instrume	nt ID: CH LARS								
	moutume									
- Client Sam							La	b Sample II	D: 400-	145965
Date Collecte	ple ID: MW d: 11/12/17 /						La	b Sample II		145965 trix: Wat
Date Collecte	ple ID: MW d: 11/12/17 / d: 11/14/17 (
Date Collecte Date Receive	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch			Dil	Initial	Final	Batch	Prepared	Ма	trix: Wat
Date Collecte Date Receive	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch Type	/-2 11:24 09:01 Batch Method	Run	Factor	Amount	Amount	Batch Number	Prepared or Analyzed	Ma Analyst	trix: Wat
Date Collecte Date Receive	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch <u>Type</u> Analysis	/-2 11:24 09:01 Batch Method 8260C	<u>Run</u>				Batch	Prepared	Ma Analyst	trix: Wat
Date Collecte Date Receive Prep Type	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch <u>Type</u> Analysis	/-2 11:24 09:01 Batch Method	<u>Run</u>	Factor	Amount	Amount	Batch Number	Prepared or Analyzed	Ma Analyst	trix: Wat
Date Collecte Date Receive Prep Type Total/NA Client Sam	ple ID: MW d: 11/12/17 d d: 11/14/17 d Batch Type Analysis Instrume	/-2 11:24 09:01 Batch Method 8260C nt ID: CH_LARS	Run	Factor	Amount	Amount	Batch Number 376306	Prepared or Analyzed	Ma Analyst RS D: 400-	Lab TAL PEN
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch Type Analysis Instrume ple ID: MW	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17	Run	Factor	Amount	Amount	Batch Number 376306	Prepared or Analyzed 11/17/17 15:57	Ma Analyst RS D: 400-	Lab TAL PEN
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch Type Analysis Instrume ple ID: MW	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17	Run	Factor	Amount	Amount	Batch Number 376306	Prepared or Analyzed 11/17/17 15:57	Ma Analyst RS D: 400-	Lab TAL PEN
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 11/12/17 d d: 11/14/17 d Batch Type Analysis Instrume ple ID: MW d: 11/12/17 d	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 19:01	Run	Factor 1	Amount 5 mL	Amount 5 mL	Batch Number 376306	Prepared or Analyzed 11/17/17 15:57 b Sample II	Ma Analyst RS D: 400-	Lab TAL PEN
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte Date Receive	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch Type Analysis Instrume ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 19:01 Batch		Factor 1 Dil	Amount 5 mL	Amount 5 mL Final	Batch Number 376306 La Batch	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared	Ma Analyst RS D: 400- Ma Analyst	trix: Wat Lab 145965 trix: Wat
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte Date Receive Prep Type	ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch Type Analysis Instrume ple ID: MW d: 11/12/17 / d: 11/14/17 (Batch Type Analysis	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 19:01 Batch Method		Factor 1 Dill Factor	Amount 5 mL	Amount 5 mL Final Amount	Batch Number 376306 La Batch Number	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared or Analyzed	Ma Analyst RS D: 400- Ma Analyst	trix: Wat
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte Date Receive Prep Type Total/NA	ple ID: MW d: 11/12/17 d d: 11/14/17 d Batch Type Analysis Instrume ple ID: MW d: 11/12/17 d d: 11/14/17 d Batch Type Analysis Instrume	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 11:17 19:01 Batch Method 8260C nt ID: CH_LARS		Factor 1 Dill Factor	Amount 5 mL	Amount 5 mL Final Amount	Batch Number 376306 La Batch Number 376306	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared or Analyzed	Ma Analyst RS D: 400- Ma Analyst RS	trix: Wat
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 11/12/17 (Batch Type Analysis Instrume ple ID: MW d: 11/12/17 (Batch Type Analysis Instrume ple ID: MW Analysis Instrume	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 11:17 11:17 19:01 Batch Method 8260C nt ID: CH_LARS /-8 11:12		Factor 1 Dill Factor	Amount 5 mL	Amount 5 mL Final Amount	Batch Number 376306 La Batch Number 376306	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared or Analyzed 11/17/17 16:19	Ma Analyst RS D: 400- Ma Analyst RS D: 400-	trix: Wat - Lab TAL PEN 145965 trix: Wat - Lab TAL PEN 145965
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte	ple ID: MW d: 11/12/17 d d: 11/14/17 0 Batch Type Analysis Instrume ple ID: MW d: 11/12/17 d Batch Type Analysis Instrume ple ID: MW d: 11/12/17 d d: 11/12/17 d	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 11:17 11:17 19:01 Batch Method 8260C nt ID: CH_LARS /-8 11:12 19:01		Factor 1 Dil Factor 1	Amount 5 mL	Amount 5 mL Final Amount 5 mL	Batch Number 376306 La Batch Number 376306 La	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared or Analyzed 11/17/17 16:19 b Sample II	Ma Analyst RS D: 400- Ma Analyst RS D: 400-	trix: Wat
Date Collecte Date Receive Prep Type Total/NA Client Sam Date Collecte Date Receive Total/NA Client Sam Date Collecte Date Collecte Date Collecte	ple ID: MW id: 11/12/17 / dit Batch Type Analysis Instrume ple ID: MW id: 11/12/17 / dit d: 11/12/17 / dit Match Type Analysis Instrume Ple ID: MW id: 11/14/17 (Dit Batch Type Analysis Instrume ple ID: MW id: 11/12/17 / dit bd: 11/12/17 / dit dit Analysis Instrume	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 11:17 11:17 19:01 Batch Method 8260C nt ID: CH_LARS /-8 11:12	Run	Factor 1 Dil Factor 1 Dil	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount	Batch Number 376306 La Batch Number 376306	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared or Analyzed 11/17/17 16:19 b Sample II b Sample II	Ma Analyst RS D: 400- Ma Analyst RS D: 400- Ma	trix: Wat
Total/NA Client Sam Date Collecte Date Receive Prep Type	ple ID: MW d: 11/12/17 d d: 11/14/17 0 Batch Type Analysis Instrume ple ID: MW d: 11/12/17 d Batch Type Analysis Instrume ple ID: MW d: 11/12/17 d d: 11/12/17 d	/-2 11:24 19:01 Batch Method 8260C nt ID: CH_LARS /-7 11:17 11:17 11:17 19:01 Batch Method 8260C nt ID: CH_LARS /-8 11:12 19:01 Batch Batch		Factor 1 Dil Factor 1	Amount 5 mL Initial Amount 5 mL	Amount 5 mL Final Amount 5 mL Final	Batch Number 376306 La Batch Number 376306 La Batch	Prepared or Analyzed 11/17/17 15:57 b Sample II Prepared or Analyzed 11/17/17 16:19 b Sample II	Ma Analyst RS D: 400- Ma Analyst RS D: 400-	trix: Wat - Lab TAL PEN 145965 trix: Wat - Lab TAL PEN 145965

Lab Chronicle

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

Client Sample ID: MW-9

Lab Sample ID: 400-145965-7

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376306	11/17/17 17:03	RS	TAL PEN
	Instrumer	t ID: CH_LARS								
lient Sam	ole ID: MW	-5					La	b Sample II	D: 400-	145965
ate Collecte ate Received	d: 11/12/17 1	0:57								trix: Wat
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376306	11/17/17 17:25	RS	TAL PEN
	Instrumer	nt ID: CH_LARS								
Client Samp Date Collecter Date Received	d: 11/12/17 1	0:50					La	b Sample II		145965 trix: Wate
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Prep Type		8260C	_	1	5 mL	5 mL	376306	11/17/17 17:47	RS	TAL PEN
Prep Type Total/NA	Analysis	82000								

Date Received: 11/14/17 09:01

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260C	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376306	Prepared or Analyzed	Analyst	Lab TAL PEN
	-)	t ID: CH_LARS				0 1112	010000			

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Johnson Fed 6A

TestAmerica Job ID: 400-145965-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Ithority	Program	EPA Region	Identification Number	Expiration Date
abama	State Program	4	40150	06-30-18
izona	State Program	9	AZ0710	01-11-18
ansas DEQ	State Program	6	88-0689	09-01-18
lifornia	ELAP	9	2510	03-31-18
rida	NELAP	4	E81010	06-30-18
rgia	State Program	4	N/A	06-30-18
is	NELAP	5	200041	10-09-18
1	State Program	7	367	08-01-18
sas	NELAP	7	E-10253	12-31-17
tucky (UST)	State Program	4	53	06-30-18
tucky (WW)	State Program	4	98030	12-31-17
В	ISO/IEC 17025		L2471	02-22-20
siana	NELAP	6	30976	06-30-18
siana (DW)	NELAP	6	LA170005	12-31-17
and	State Program	3	233	09-30-18
achusetts	State Program	1	M-FL094	06-30-18
gan	State Program	5	9912	06-30-18
Jersey	NELAP	2	FL006	06-30-18
n Carolina (WW/SW)	State Program	4	314	12-31-17
homa	State Program	6	9810	08-31-18
sylvania	NELAP	3	68-00467	01-31-18
le Island	State Program	1	LAO00307	12-30-17
h Carolina	State Program	4	96026	06-30-18
essee	State Program	4	TN02907	06-30-18
S	NELAP	6	T104704286-17-12	09-30-18
A	Federal		P330-16-00172	05-24-19
nia	NELAP	3	460166	06-14-18
nington	State Program	10	C915	05-15-18
Virginia DEP	State Program	3	136	06-30-18

Method Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company - Johnson Fed 6A

5	
8	
9	
12	
13	

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

TestAmerica Pensacola	(-				TectA	TestAmerica
2020 Michemore Drive Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671	5	Chain o	r cust	in of Custody Record	ord			THE LEADER IN EN	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler	Babeck	2x	Lab PM: Webb, Carol M	Irol M 00-145965 COC	COC Carrier Tracking No(s)	ing No(s):	COC No: 400-69060-27994.1	4.1
Client Contact: Ms. Sarah Gardner	Phone:			E-Mail: carol.web	E-Mail: carol.webb@testamericainc.com	Ę		Page: Page 1 of 1	
Company: Stantec Consulting Services Inc					A	Analysis Requested		Job #: 20372	10281
Address: 1560 Broadway Suite 1800	Due Date Requested:	#						Cod	es:
City: Denver	TAT Requested (days):	days): 54d						A - HUL B - NaOH C - Zh Acetate	M - Hexane N - None O - AsNaO2
State, Zp: CO, 80202	1	5							P - Na204S Q - Na2SO3 B Morecord
Phone: 303-291-2239(Tel)	Purchase Order Requested	Requested							R - NazS203 S - H2SO4 T - TSP Dodecahydrate
Email: sarah.gardner@mwhglobal.com		L1-11-50-1	10-975-61-61-						U - Acetone V - MCAA
Project Name: Johnston Fed #6A Nov 2017	Project #: 40005479		Johns han Fed #6A	red #6A					W - pH 4-5 Z - other (specify)
Site:	SSOW#:				051			Other:	
		Sample	Sample Type (C=comp,	Matrix (wwwater, Beneolid, Owwate/oll,	218 - BTEX 8				
Sample Identification	Sample Date	Time	G=grab)	BT=Tissue, Ar-Air)	08			Special In	Special Instructions/Note:
Trir Beat	11/12/11	010	١	1	2			Per NR	RE
MW-3		1139	6	M	2				
H-MW		1136			2				
MW-2		1124			2				
L-MW		1117			2				
S-MW		2111			2				
b-MW		4011			2				
S-MW		1057			.2				
MU-6		1050			2				
MW -1	+	1035	-(1	2				
Bossibla Harand Idantification					Samula Dienneal (fan multer sfenened	If camples are refer	ad loncer then	(month)
ant			Radiological		Return To Client	Return To Client Assistance By Leb Archive For Mont	y Lab	Archive For	Months
, III, IV, Other (specify)					Special Instructions/QC Requirements:				
Empty Kit Relinquished by:		Date:			Time:	Meth	Method of Shipment:		0
Relinquished by Relinquished by Relinquished by	DeterTime: V(3(1) DeterTime:		100	Company Sheanter Company	Received by: Received by:		Dete/Time:	7 090	Company AL
Reinquished by	Date/Time:			Company	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature	Cooler Temperature(s) "C and Other Remarks:	1.9°C =	2128	
									Ver: 08/04/2016

Login Number: 145965 List Number: 1 Creator: Perez, Trina M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.9°C IR-8
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Pensacola