Knight #1 NMOCD Case #: 3RP-207-0 Meter Code: 72556 T30N, R13W, Sec5, Unit A

SITE DETAILS

Site Location: Latitude: 36.846870 N, Longitude: -108.222305 W

Land Type: Fee

Former Operator: Fuller Production (Well P&A'd)

SITE BACKGROUND

Environmental Remediation activities at the Knight #1 (Site) are being managed pursuant to the procedures set forth in the document entitled, "Remediation Plan for Groundwater Encountered during Pit Closure Activities" (Remediation Plan, El Paso Natural Gas Company / El Paso Field Services Company, 1995). This Remediation Plan was conditionally approved by the New Mexico Oil Conservation Division (NMOCD) in correspondence dated November 30, 1995; and the NMOCD approval conditions were adopted into El Paso CGP Company, LLC's (EPCGP's) program methods. Formerly, the Site was operated by Fuller Production, Inc. and is no longer active. The wellhead was plugged and abandoned in August 2006.

The Site is located on Private/Fee land. An initial site assessment was completed in January 1995, and an excavation of 60 cubic yards (cy), to a depth of approximately 12 feet below ground surface (bgs), was completed in January 1995. An ORC nutrient injection was completed in November 1996. Various site investigations have occurred since 1995. Monitoring wells were installed in 1995 (MW-1 through MW-4), 2000 (MW-5), and 2015 (MW-6 through MW-13). A soil assessment was completed in 2016 (GP-1 through GP-24). Free product recovery has been periodically observed and recovered at the Site. In 2017, free product was observed in monitoring wells MW-4, MW-11, MW-12, and MW-13. Currently, groundwater sampling is conducted on a semi-annual basis.

GROUNDWATER SAMPLING ACTIVITIES

Pursuant to the Remediation Plan, Stantec provided field work notifications via email to the NMOCD on May 30, 2017, and November 6, 2017, prior to initiating groundwater sampling activities at the Site. Copies of the 2017 NMOCD notifications are provided in Appendix A. Groundwater monitoring and sampling was completed on June 6 and November 10, 2017. During each sampling event, water levels were gauged from monitoring wells MW-1 through MW-13. Monitoring wells MW-1, MW-2, MW-4, MW-7, MW-8 and MW-11 were sampled in 2017 to evaluate concentration trends at these locations. Monitoring wells MW-3, MW-5, MW-6, MW-9, MW-10, MW-12, and MW-13 were not sampled in 2017.

Groundwater samples were collected from selected monitoring wells using HydraSleeveTM (HydraSleeve) no-purge groundwater sampling devices. A groundwater sample was not collected from monitoring well MW-4 on June 6, 2017 due to the presence of free product. The HydraSleeves were set during the previous sampling event. HydraSleeves were suspended approximately 0.5 foot above termination depth of the

Knight #1 NMOCD Case #: 3RP-207-0 Meter Code: 72556 T30N, R13W, Sec5, Unit A

monitoring wells using a suspension tether and stainless steel weights to collect a sample from the screened interval.

Groundwater samples were placed into laboratory-supplied sample containers, packed on ice, and shipped under standard chain-of-custody protocols to TestAmerica-Pensacola where they were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). As requested by the NMOCD on November 13, 2017, BTEX constituents were analyzed using United States Environmental Protection Agency (EPA) Method 8260 during the November sampling event. The unused sample water was combined in a waste container and taken to Basin Disposal, Inc. for disposal. Waste disposal documentation is included as Appendix B.

FREE PROCUCT RECOVERY

Mobile dual phase extraction (MDPE) events were completed on July 24 and 25, 2017, by AcuVac Remediation, LLC, of Houston, Texas (AcuVac). The planned MDPE activities were presented in a work plan dated June 29, 2017, and subsequently approved by the NMOCD. The NMOCD was notified of the start of the July MDPE activities on July 8, 2017. The purpose of the MDPE events was to evaluate more aggressive free product recovery methods from monitoring wells MW-4, MW-11, and MW-12.

MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to enhance the removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, inducing a hydraulic gradient toward the extraction well, and creating groundwater depression to expose the hydrocarbon smear zone to SVE. Recovered liquids were transferred to a portable storage tank for off-site disposal. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE), resulting in little to no emissions. Power generated by the ICE is used to create the induced vacuum for SVE.

Four MDPE events were completed, one 10-hour event and one 9.5-hour event using MW-4 as an extraction well, one 10-hour event using MW-12 as an extraction well, and one 8-hour event using MW-11 as an extraction well. Based on field data collected by AcuVac, approximately 1.8 gallons of hydrocarbons were recovered from MW-4, approximately 5.0 gallons of hydrocarbons were recovered from MW-12, and approximately 1.2 gallons of hydrocarbons were recovered from MW-11. AcuVac's report summarizing the MDPE events at the Site is presented as Appendix C. Recovered fluids from the MDPE event where transported to Basin for disposal. Waste disposal documentation is included as Appendix B.

SUMMARY TABLES

Historic groundwater analytical results and well gauging data are summarized in Tables 1 and 2, respectively. When free product was present, static water level elevations were corrected for measurable thicknesses of free product (specific gravity of 0.75).

Knight #1 NMOCD Case #: 3RP-207-0 Meter Code: 72556 T30N, R13W, Sec5, Unit A

SITE MAPS

Groundwater analytical maps (Figures 1 and 3) and groundwater elevation contour maps (Figures 2 and 4) summarize results of the 2017 groundwater sampling and gauging events.

ANALYTICAL LAB REPORTS

The groundwater analytical lab reports are included as Appendix D.

GROUNDWATER RESULTS

- The groundwater flow direction at the Site is generally to the south south-west (see Figures 2 and 4).
- Free product was observed in MW-4, MW-11, and MW-12 at the time of the June 2017 sampling event. No sample was collected from MW-4, MW-11, and MW-12 on June 6, 2017.
- Groundwater samples collected in 2017 from MW-1, MW-4, and MW-7 exceeded the New Mexico Water Quality Control Commission (NMWQCC) standard (10 μg/L) for benzene in groundwater. Monitoring wells MW-2, MW-8, and MW-11 were either below the standard or not detected.
- Concentrations of toluene were either below the NMWQCC standard (750 µg/L) or not detected in all of the Site monitoring wells sampled in 2017.
- Concentrations of ethylbenzene were either below the NMWQCC standard (750 µg/L) or not detected in all of the Site monitoring wells sampled in 2017.
- A groundwater sample collected in November 2017 from MW-4 exceeded the NMWQCC standard (620 μg/L) for total xylenes in groundwater. Total xylene concentrations were either below the standard or not detected in all other Site monitoring wells sampled in 2017.

PLANNED FUTURE ACTIVITIES

Groundwater monitoring events will continue to be conducted on a semi-annual basis. Groundwater samples will be collected from monitoring wells not containing free product and analyzed for BTEX constituents using EPA Method 8260.

Air sparge/soil vapor extraction feasibility testing is planned for 2018 in support of a site-wide plan to remediate the site. A work plan for these activities will be submitted under separate cover for NMOCD approval.

Knight #1 NMOCD Case #: 3RP-207-0 Meter Code: 72556 T30N, R13W, Sec5, Unit A

The activities completed in 2018 and their results will be summarized in the 2018 Annual Report, completed for submittal in early 2019.

TABLES

TABLE 1 – GROUNDWATER ANALYTICAL RESULTS

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

		K	night #1		
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
	C Standards:	10	750	750	620
MW-1	10/16/95	5080	1180	1050	9970
MW-1	12/12/95	4330	679	1010	8560
MW-1	04/09/96	5490	208	1100	7370
MW-1	07/17/96	6450	279	990	9060
MW-1	10/15/96	9870	840	1120	10900
MW-1	01/13/97	7760	332	914	10900
MW-1	04/22/97	2700	<1	492	6690
MW-1	07/14/97	3900	36.7	530	6700
MW-1	10/22/97	4270	48.7	728	8580
MW-1	01/09/98	4750	24.2	819	9480
MW-1	04/24/98	5610	44.7	898	9530
MW-1	04/16/99	7340	42.8	853	10600
MW-1	04/19/00	9400	510	4300	66000
MW-1	09/19/05	4430	23.7	487	7370
MW-1	03/27/06	4410	26.6 J	337	7860
MW-1	09/26/06	5880	36.5	633	11000
MW-1	03/28/07	3740	<50	441	9210
MW-1	09/17/07	4640	93.3	444	8180
MW-1	09/09/08	3230	<50	324	6780
MW-1	08/27/09	2790	8.3 J	1190	12500
MW-1	09/29/10	2910	<50	1600	15000
MW-1	09/30/11	1590	5 J	1120	10600
MW-1	06/07/13	830	<60	1100	14000
MW-1	09/13/13	810	<60	960	3100
MW-1	12/13/13	600	25 J	730	2200
MW-1	04/03/14	330	28	<0.20	1400
MW-1	10/21/14	380	<7.0	<5.0	3000
MW-1	05/27/15	110	<100	1300	11000
MW-1	11/17/15	220	6.9	770	710
MW-1	04/15/16	110	<25	910	1000
MW-1	10/11/16	110	<25	460	100
MW-1	06/06/17	120	<25	350	36
MW-1	11/10/17	89	2.3	74	200

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

		K	night #1		
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location Date		(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-2	12/12/95	175	<12.5	74.3	671
MW-2	04/09/96	39.2	<1	13.4	77.9
MW-2	07/17/96	9.55	<1	2.39	3.65
MW-2	10/15/96	49.7	<1	<1	38.4
MW-2	01/13/97	20.3	<1	<1	37.3
MW-2	04/22/97	19.4	<1	<1	29.8
MW-2	10/22/97	155	<1	12.6	204
MW-2	01/09/98	58	<1	3.85	207
MW-2	04/24/98	19.4	<1	<1	40.7
MW-2	02/09/99	19	<1	<1	48
MW-2	04/16/99	16.7	<1	<1	41
MW-2	04/19/00	23	0.5	<0.5	26
MW-2	09/11/01	110	<0.5	17	200
MW-2	09/04/02	269	7.4	48.9	482.4
MW-2	09/17/03	177	<1	41	343
MW-2	09/15/04	291	<0.5	48.9	431
MW-2	09/19/05	126	<1	9.5	231
MW-2	09/26/06	95.8	<1	5.5	189
MW-2	09/17/07	317	<1	12.5	354
MW-2	09/09/08	34.3	<1	1.1	71.9
MW-2	08/27/09	26.6	1.3	1.6	9
MW-2	09/29/10	100	<2	J1.5	34.8
MW-2	09/30/11	26.6	<1	1	9.5
MW-2	06/07/13	200	< 0.30	4.4	21
MW-2	09/13/13	120	< 0.30	17	150
MW-2	12/13/13	27	3	5.5	74
MW-2	04/03/14	120	3.2 J	12	190
MW-2	10/21/14	0.64 J	<0.70	<0.50	<1.6
MW-2	05/27/15	190	2.5 J	18	59
MW-2	11/17/15	34	<1.0	<1.0	<3.0
MW-2	04/15/16	7.8	<5.0	<1.0	<5.0
MW-2	10/11/16	2	<5.0	<1.0	<5.0
MW-2	06/06/17	1.0	<5.0	<1.0	<5.0
MW-2	11/10/17	<1.0	<1.0	<1.0	<10

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

		K	night #1		
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-3	12/12/95	979	<125	398	2540
MW-3	04/09/96	328	<1	132	369
MW-3	07/17/96	299	<1	76.7	251
MW-3	01/13/97	395	<1	126	955
MW-3	07/14/97	499	<1	104	583
MW-3	10/22/97	817	7.22	141	869
MW-3	01/09/98	702	<1	185	1080
MW-3	04/24/98	377	11.8	126	525
MW-3	04/16/99	191	4.11	18.1	169
MW-3	04/19/00	40	0.6	1.1	28
MW-3	09/19/05	73.8	<1	5.2	158
MW-3	09/26/06	3370	25	498	3960
MW-3	09/17/07	288	<1	65.4	599
MW-3	09/09/08	805	3.3	160	1630
MW-3	08/27/09	2490	<25	842	6560
MW-3	09/29/10	2710	<50	1390	10600
MW-3	09/30/11	1410	5.8 J	1280	12600
MW-3	06/07/13	760	< 0.30	1700	19000
MW-3	09/13/13	770	<0.30	1400	11000
MW-3	12/13/13	610	<38	960	9200
MW-3	04/03/14	670	<19	890	10000
MW-3	10/21/14	250	<35	990	10000
MW-3	05/27/15	52	<100	1400	4700
MW-3	11/17/15	44	5.2	1400	1100

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

		K	night #1		
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQCC Standards:		10	750	750	620
MW-4	12/12/95	90.1	<12.5	16.8	144
MW-4	04/09/96	63.1	<1	<1	42.5
MW-4	07/17/96	35	<1	<1	17.8
MW-4	10/15/96	53.5	<1	<1	28.4
MW-4	01/13/97	56.2	<1	<1	48.4
MW-4	04/22/97	32.8	<1	<1	15.2
MW-4	07/14/97	10.4	<1	<1	5.79
MW-4	10/22/97	215	<1	5.5	184
MW-4	01/09/98	114	<1	2.66	85.7
MW-4	04/24/98	55.4	<1	<1	19.3
MW-4	04/16/99	129	<1	2.03	87.3
MW-4	04/19/00	110	6.5	17	140
MW-4	09/11/01	140	<0.5	9.6	110
MW-4	09/04/02	261	3.1	20.1	246.5
MW-4	09/17/03	192	<1	26.3	194
MW-4	09/15/04	182	<0.5	9.8	161
MW-4	09/19/05	199	<1	53.8	416
MW-4	09/26/06	180	12.5	55.9	417
MW-4	09/17/07	272	4.7	21.3	236
MW-4	09/09/08	265	0.94 J	26.5	274
MW-4	09/23/09	2110	12.6 J	676	6440
MW-4	09/29/10	1400	<50	1020	6410
MW-4	09/30/11	534	<10	1800	9510
MW-4	06/07/13	2700	< 0.30	900	12000
MW-4	04/15/16	15	<5.0	8.7	510
MW-4	11/10/17	64	<10	130	900
MW-5	11/15/00	<0.5	<0.5	<0.5	<0.5
MW-5	09/11/01	<0.5	<0.5	<0.5	0.6
MW-5	09/04/02	<0.5	0.3	0.9	1.4
MW-5	09/29/10	34.1	<2	<2	2.7 J
MW-5	09/30/11	<1	<1	<1	1.2 J
MW-5	06/07/13	<0.14	<0.30	<0.20	<0.23
MW-5	09/13/13	<0.14	<0.30	<0.20	<0.23
MW-5	12/13/13	<0.20	<0.38	<0.20	0.68 J
MW-5	04/03/14	<0.20	<0.38	<0.20	< 0.65
MW-5	10/21/14	<0.38	<0.70	<0.50	<1.6
MW-5	05/27/15	<1.0	<5.0	<1.0	<5.0
MW-5	11/17/15	<1.0	<1.0	<1.0	<3.0

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

		K	night #1		
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-6	11/17/15	<1.0	<1.0	<1.0	<3.0
MW-7	11/17/15	18	<1.0	38	100
MW-7	04/15/16	7.8	<10	4.3	48
MW-7	10/11/16	81	<10	320	1700
MW-7	06/06/17	20	<5.0	33	390
MW-7	11/10/17	8.3	<1.0	2.5	170
MW-8	11/17/15	<1.0	<1.0	<1.0	<3.0
MW-8	04/15/16	<1.0	<5.0	<1.0	<5.0
MW-8	10/11/16	<1.0	<5.0	<1.0	<5.0
MW-8	06/06/17	<1.0	<5.0	<1.0	<5.0
MW-8	11/10/17	<1.0	<1.0	<1.0	<10
MW-9	11/17/15	1.1	<1.0	<1.0	<3.0
MW-10	11/17/15	<1.0	<1.0	<1.0	<3.0
MW-11	11/17/15	2000	3.7	800	1600
MW-11	04/15/16	410	<50	32	54
MW-11	10/11/16	1100	<100	280	2000
MW-11	11/10/17	3.3	<1.0	2.7	25
MW-12	11/17/15	19	<1.0	12	90
MW-13	11/17/15	<1.0	<1.0	<1.0	<3.0

Notes:

The groundwater monitoring dates for each monitoring well where no groundwater samples were collected and analyzed have been omitted.

Results highlighted yellow exceed their respective New Mexico Water Quality Control Commission (NMWQCC) standards.

[&]quot;µg/L" = micrograms per liter

[&]quot;J" = Result is less than the reporting limit but greater than or equal to the method detection limit and the result in an approximate value.

[&]quot;<" = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).

			Kni	ght #1		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-1	10/16/95	5512.35	26.03	NR		5486.32
MW-1	12/12/95	5512.35	25.91	NR		5486.44
MW-1	04/09/96	5512.35	26.71	26.34	0.37	5485.92
MW-1	07/17/96	5512.35	25.39	25.35	0.04	5486.99
MW-1	10/15/96	5512.35	27.35	26.60	0.75	5485.56
MW-1	01/13/97	5512.35	26.53	NR		5485.82
MW-1	04/22/97	5512.35	26.23	NR		5486.12
MW-1	07/14/97	5512.35	25.25	NR		5487.10
MW-1	10/22/97	5512.35	26.22	NR		5486.13
MW-1	01/09/98	5512.35	25.82	NR		5486.53
MW-1	04/24/98	5512.35	26.01	25.87	0.14	5486.44
MW-1	04/16/99	5512.35	26.52	26.40	0.12	5485.92
MW-1	04/19/00	5512.35	27.14	27.07	0.07	5485.26
MW-1	09/05/01	5512.35	28.32	27.93	0.39	5484.32
MW-1	09/11/01	5512.35	28.10	28.05	0.05	5484.29
MW-1	09/04/02	5512.35	28.39	28.31	0.08	5484.02
MW-1	12/10/02	5512.35	28.47	28.31	0.16	5484.00
MW-1	03/20/03	5512.35	28.14	28.05	0.09	5484.28
MW-1	06/19/03	5512.35	28.02	28.00	0.02	5484.34
MW-1	09/17/03	5512.35	28.97	28.95	0.02	5483.39
MW-1	12/09/03	5512.35	28.32	28.30	0.02	5484.04
MW-1	03/15/04	5512.35	27.99	27.89	0.10	5484.43
MW-1	09/15/04	5512.35	28.78	28.77	0.01	5483.58
MW-1	03/16/05	5512.35	28.12	ND		5484.68
MW-1	09/19/05	5512.35	27.47	ND		5484.88
MW-1	03/27/06	5512.35	26.49	ND		5485.86
MW-1	09/26/06	5512.35	25.91	ND		5486.44
MW-1	03/28/07	5512.35	25.87	ND		5486.48
MW-1	09/17/07	5512.35	26.94	ND		5485.41
MW-1	03/04/08	5512.35	25.70	ND		5486.65
MW-1	09/09/08	5512.35	26.68	ND		5485.67
MW-1	03/02/09	5512.35	24.71	ND		5487.64
MW-1	08/27/09	5512.35	24.30	ND		5488.05
MW-1	02/11/10	5512.35	24.83	ND		5487.52
MW-1	05/21/10	5512.35	23.54	ND		5488.81
MW-1	09/29/10	5512.35	24.33	ND		5488.02
MW-1	11/02/10	5512.35	22.31	ND		5490.04
MW-1	02/02/11	5512.35	23.62	ND		5488.73
MW-1	05/04/11	5512.35	22.50	ND		5489.85
MW-1	09/30/11	5512.35	22.26	ND		5490.09
MW-1	11/11/11	5512.35	22.87	ND		5489.48

	Knight #1								
Depth to Depth to LNAPL GW Elevation									
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-1	02/16/12	5512.35	24.01	ND		5488.34			
MW-1	05/08/12	5512.35	22.01	ND		5490.34			
MW-1	06/07/13	5512.35	21.73	ND		5490.62			
MW-1	09/13/13	5512.35	26.75	ND		5485.60			
MW-1	12/13/13	5512.35	26.45	ND		5485.90			
MW-1	04/03/14	5512.35	25.71	ND		5486.64			
MW-1	10/21/14	5512.35	25.88	ND		5486.47			
MW-1	05/27/15	5512.35	19.29	ND		5493.06			
MW-1	11/17/15	5512.35	22.76	ND		5489.59			
MW-1	04/15/16	5512.35	23.54	ND		5488.81			
MW-1	10/11/16	5512.35	21.69	ND		5490.66			
MW-1	06/06/17	5512.35	22.72	ND		5489.63			
MW-1	11/10/17	5512.35	23.96	ND		5488.39			

			Kni	ght #1		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-2	12/12/95	5511.65	25.37	NR		5486.28
MW-2	04/09/96	5511.65	25.58	NR		5486.07
MW-2	07/17/96	5511.65	25.09	NR		5486.56
MW-2	10/15/96	5511.65	26.36	NR		5485.29
MW-2	01/13/97	5511.65	26.05	NR		5485.60
MW-2	04/22/97	5511.65	25.82	NR		5485.83
MW-2	10/22/97	5511.65	25.86	NR		5485.79
MW-2	01/09/98	5511.65	25.50	NR		5486.15
MW-2	04/24/98	5511.65	25.60	NR		5486.05
MW-2	02/09/99	5511.65	26.05	NR		5485.60
MW-2	04/16/99	5511.65	26.16	NR		5485.49
MW-2	04/19/00	5511.65	25.92	NR		5485.73
MW-2	09/11/01	5511.65	27.60	NR		5484.05
MW-2	09/04/02	5511.65	27.88	NR		5483.77
MW-2	12/10/02	5511.65	27.90	NR		5483.75
MW-2	06/19/03	5511.65	27.46	ND		5484.19
MW-2	09/17/03	5511.65	28.42	ND		5483.23
MW-2	12/09/03	5511.65	27.87	ND		5483.78
MW-2	03/15/04	5511.65	27.55	ND		5484.10
MW-2	09/15/04	5511.65	28.25	ND		5483.40
MW-2	03/16/05	5511.65	27.30	ND		5484.35
MW-2	09/19/05	5511.65	26.80	ND		5484.85
MW-2	03/27/06	5511.65	26.18	ND		5485.47
MW-2	09/26/06	5511.65	25.66	ND		5485.99
MW-2	03/28/07	5511.65	25.58	ND		5486.07
MW-2	09/17/07	5511.65	26.63	ND		5485.02
MW-2	03/04/08	5511.65	25.47	ND		5486.18
MW-2	09/09/08	5511.65	26.30	ND		5485.35
MW-2	03/02/09	5511.65	24.46	ND		5487.19
MW-2	08/27/09	5511.65	24.00	ND		5487.65
MW-2	02/11/10	5511.65	24.45	ND		5487.20
MW-2	05/21/10	5511.65	23.21	ND		5488.44
MW-2	09/29/10	5511.65	23.00	ND		5488.65
MW-2	11/02/10	5511.65	22.03	ND		5489.62
MW-2	02/02/11	5511.65	23.41	ND		5488.24
MW-2	05/04/11	5511.65	22.67	ND		5488.98
MW-2	09/30/11	5511.65	21.75	ND		5489.90
MW-2	11/11/11	5511.65	22.59	ND		5489.06
MW-2	02/16/12	5511.65	23.72	ND		5487.93
MW-2	05/08/12	5511.65	21.99	ND		5489.66
MW-2	06/07/13	5511.65	22.88	ND		5488.77

	Knight #1								
			Depth to	Depth to	LNAPL	GW Elevation			
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-2	09/13/13	5511.65	26.49	ND		5485.16			
MW-2	12/13/13	5511.65	26.18	ND		5485.47			
MW-2	04/03/14	5511.65	25.43	ND		5486.22			
MW-2	10/21/14	5511.65	25.62	ND		5486.03			
MW-2	05/27/15	5511.65	20.41	ND		5491.24			
MW-2	11/17/15	5511.65	22.57	ND		5489.08			
MW-2	04/15/16	5511.65	23.23	ND		5488.42			
MW-2	10/11/16	5511.65	21.33	ND		5490.32			
MW-2	06/06/17	5511.65	22.39	ND		5489.26			
MW-2	11/10/17	5511.65	23.60	ND		5488.05			

			Kni	ght #1		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-3	12/12/95	5512.19	25.67	NR		5486.52
MW-3	04/09/96	5512.19	25.78	NR		5486.41
MW-3	07/17/96	5512.19	25.15	NR		5487.04
MW-3	01/13/97	5512.19	26.41	26.25	0.16	5485.90
MW-3	07/14/97	5512.19	25.21	NR		5486.98
MW-3	10/22/97	5512.19	26.01	NR		5486.18
MW-3	01/09/98	5512.19	25.69	NR		5486.50
MW-3	04/24/98	5512.19	25.76	NR		5486.43
MW-3	04/16/99	5512.19	26.30	NR		5485.89
MW-3	04/19/00	5512.19	26.75	NR		5485.44
MW-3	09/05/01	5512.19	27.91	27.84	0.07	5484.33
MW-3	09/11/01	5512.19	27.91	27.89	0.02	5484.29
MW-3	09/04/02	5512.19	28.17	28.16	0.01	5484.03
MW-3	12/10/02	5512.19	28.20	28.17	0.03	5484.01
MW-3	06/19/03	5512.19	27.81	ND		5484.38
MW-3	09/17/03	5512.19	28.79	28.76	0.03	5483.42
MW-3	12/09/03	5512.19	28.11	ND		5484.08
MW-3	03/15/04	5512.19	27.78	ND		5484.41
MW-3	09/15/04	5512.19	28.60	ND		5483.59
MW-3	03/16/05	5512.19	27.48	ND		5484.71
MW-3	09/19/05	5512.19	27.16	ND		5485.03
MW-3	03/27/06	5512.19	26.34	ND		5485.85
MW-3	09/26/06	5512.19	25.83	ND		5486.36
MW-3	03/28/07	5512.19	25.71	ND		5486.48
MW-3	09/17/07	5512.19	26.85	ND		5485.34
MW-3	03/04/08	5512.19	25.55	ND		5486.64
MW-3	09/09/08	5512.19	25.62	ND		5486.57
MW-3	03/02/09	5512.19	24.55	ND		5487.64
MW-3	08/27/09	5512.19	24.13	ND		5488.06
MW-3	02/11/10	5512.19	24.67	ND		5487.52
MW-3	05/21/10	5512.19	23.40	ND		5488.79
MW-3	09/29/10	5512.19	23.42	ND		5488.77
MW-3	11/02/10	5512.19	22.20	ND		5489.99
MW-3	02/02/11	5512.19	23.44	ND		5488.75
MW-3	05/04/11	5512.19	22.37	ND		5489.82
MW-3	09/30/11	5512.19	21.94	ND		5490.25
MW-3	11/11/11	5512.19	22.75	ND		5489.44
MW-3	02/16/12	5512.19	23.85	ND		5488.34
MW-3	05/08/12	5512.19	21.90	ND		5490.29
MW-3	06/07/13	5512.19	21.61	ND		5490.58
MW-3	09/13/13	5512.19	26.71	ND		5485.48

	Knight #1								
	Depth to Depth to LNAPL GW Elevation								
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-3	12/13/13	5512.19	26.31	ND		5485.88			
MW-3	04/03/14	5512.19	25.55	ND		5486.64			
MW-3	10/21/14	5512.19	25.73	ND		5486.46			
MW-3	05/27/15	5512.19	19.02	ND		5493.17			
MW-3	11/17/15	5512.19	22.61	ND		5489.58			
MW-3	04/15/16	5512.19	23.37	ND		5488.82			
MW-3	10/11/16	5512.19	21.54	ND		5490.65			
MW-3	06/06/17	5512.19	22.56	ND		5489.63			
MW-3	11/10/17	5512.19	23.79	ND		5488.40			

			Kni	ght #1		
			Depth to	Depth to	LNAPL	GW Elevation
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)
MW-4	12/12/95	5512.86	26.27	NR		5486.59
MW-4	04/09/96	5512.86	26.40	NR		5486.46
MW-4	07/17/96	5512.86	25.77	NR		5487.09
MW-4	10/15/96	5512.86	27.26	NR		5485.60
MW-4	01/13/97	5512.86	26.96	NR		5485.90
MW-4	04/22/97	5512.86	26.69	NR		5486.17
MW-4	07/14/97	5512.86	25.78	NR		5487.08
MW-4	10/22/97	5512.86	26.72	NR		5486.14
MW-4	01/09/98	5512.86	26.34	NR		5486.52
MW-4	04/24/98	5512.86	26.44	NR		5486.42
MW-4	04/16/99	5512.86	26.97	NR		5485.89
MW-4	04/19/00	5512.86	26.09	NR		5486.77
MW-4	09/11/01	5512.86	28.48	NR		5484.38
MW-4	09/04/02	5512.86	28.76	NR		5484.10
MW-4	12/10/02	5512.86	28.80	NR		5484.06
MW-4	06/19/03	5512.86	28.43	ND		5484.43
MW-4	09/17/03	5512.86	29.36	ND		5483.50
MW-4	12/09/03	5512.86	28.73	ND		5484.13
MW-4	03/15/04	5512.86	28.42	ND		5484.44
MW-4	09/15/04	5512.86	29.20	ND		5483.66
MW-4	03/16/05	5512.86	28.12	ND		5484.74
MW-4	09/19/05	5512.86	27.74	ND		5485.12
MW-4	03/27/06	5512.86	26.87	ND		5485.99
MW-4	09/26/06	5512.86	26.45	ND		5486.41
MW-4	03/28/07	5512.86	26.34	ND		5486.52
MW-4	09/17/07	5512.86	27.44	ND		5485.42
MW-4	03/04/08	5512.86	26.23	ND		5486.63
MW-4	09/09/08	5512.86	26.15	ND		5486.71
MW-4	03/02/09	5512.86	25.19	ND		5487.67
MW-4	08/27/09	5512.86	27.10	24.13	2.97	5487.99
MW-4	09/23/09	5512.86	26.15	25.35	0.80	5487.31
MW-4	10/19/09	5512.86	25.70	25.15	0.55	5487.57
MW-4	11/05/09	5512.86	25.95	25.69	0.26	5487.10
MW-4	12/21/09	5512.86	26.05	25.85	0.20	5486.96
MW-4	02/11/10	5512.86	25.40	25.28	0.12	5487.55
MW-4	05/21/10	5512.86	24.05	24.03	0.02	5488.82
MW-4	09/29/10	5512.86	25.05	23.35	1.70	5489.08
MW-4	11/02/10	5512.86	23.38	22.74	0.64	5489.96
MW-4	02/02/11	5512.86	24.37	24.18	0.19	5488.63
MW-4	05/04/11	5512.86	22.13	ND		5490.73
MW-4	09/30/11	5512.86	24.52	21.85	2.67	5490.34

Knight #1										
LocationDateDepth toDepth toLNAPLGW ElevationLocationDateTOCWater (ft.)LNAPL (ft.)Thickness (ft.)(ft.)										
MW-4	11/11/11	5512.86	23.74	23.40	0.34	5489.37				
MW-4	02/16/12	5512.86	24.68	ND		5488.18				
MW-4	05/08/12	5512.86	22.46	22.44	0.02	5490.41				
MW-4	06/07/13	5512.86	24.76	23.75	1.01	5488.86				
MW-4	09/13/13	5512.86	28.84	27.07	1.77	5485.35				
MW-4	12/13/13	5512.86	27.30	26.78	0.52	5485.95				
MW-4	04/03/14	5512.86	26.43	26.07	0.36	5486.70				
MW-4	10/21/14	5512.86	27.02	26.14	0.88	5486.50				
MW-4	05/27/15	5512.86	20.58	20.58		5492.28				
MW-4	11/17/15	5512.86	23.64	23.07	0.57	5489.65				
MW-4	04/15/16	5512.86	23.96	ND		5488.90				
MW-4	10/11/16	5512.86	22.55	21.93	0.62	5490.77				
MW-4	06/06/17	5512.86	23.74	23.02	0.72	5489.66				
MW-4	11/10/17	5512.86	24.41	ND		5488.45				

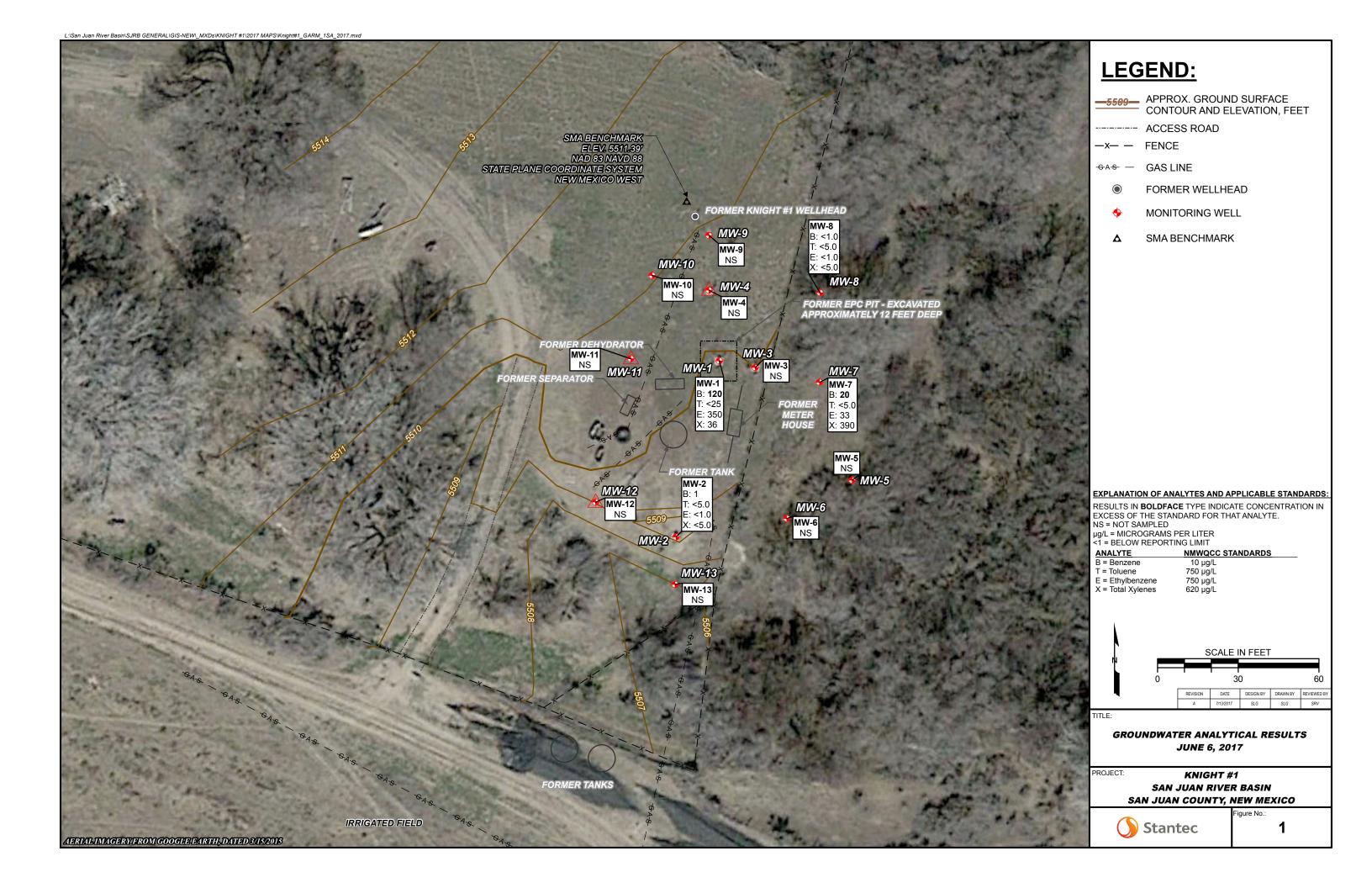
Knight #1								
			Depth to	Depth to	LNAPL	GW Elevation		
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)		
MW-5	11/15/00	5510.04	25.62	NR		5484.42		
MW-5	09/11/01	5510.04	25.94	NR		5484.10		
MW-5	09/04/02	5510.04	26.21	NR		5483.83		
MW-5	12/10/02	5510.04	26.11	NR		5483.93		
MW-5	06/19/03	5510.04	25.80	ND		5484.24		
MW-5	09/17/03	5510.04	26.67	ND		5483.37		
MW-5	12/09/03	5510.04	25.88	ND		5484.16		
MW-5	03/15/04	5510.04	25.52	ND		5484.52		
MW-5	09/15/04	5510.04	26.60	ND		5483.44		
MW-5	03/16/05	5510.04	25.21	ND		5484.83		
MW-5	09/19/05	5510.04	25.20	ND		5484.84		
MW-5	03/28/07	5510.04	23.54	ND		5486.50		
MW-5	09/17/07	5510.04	24.87	ND		5485.17		
MW-5	03/04/08	5510.04	23.28	ND		5486.76		
MW-5	09/09/08	5510.04	23.69	ND		5486.35		
MW-5	03/02/09	5510.04	22.52	ND		5487.52		
MW-5	08/27/09	5510.04	22.51	ND		5487.53		
MW-5	02/11/10	5510.04	22.74	ND		5487.30		
MW-5	05/21/10	5510.04	21.43	ND		5488.61		
MW-5	09/29/10	5510.04	21.33	ND		5488.71		
MW-5	11/02/10	5510.04	20.48	ND		5489.56		
MW-5	02/02/11	5510.04	20.52	ND		5489.52		
MW-5	05/04/11	5510.04	20.66	ND		5489.38		
MW-5	09/30/11	5510.04	20.24	ND		5489.80		
MW-5	11/11/11	5510.04	21.89	ND		5488.15		
MW-5	02/16/12	5510.04	21.85	ND		5488.19		
MW-5	05/08/12	5510.04	19.79	ND		5490.25		
MW-5	06/07/13	5510.04	20.70	ND		5489.34		
MW-5	09/13/13	5510.04	24.68	ND		5485.36		
MW-5	12/13/13	5510.04	24.13	ND		5485.91		
MW-5	04/03/14	5510.04	23.42	ND		5486.62		
MW-5	10/21/14	5510.04	23.72	ND		5486.32		
MW-5	05/27/15	5510.04	17.17	ND		5492.87		
MW-5	11/17/15	5510.04	20.74	ND		5489.30		
MW-5	04/15/16	5510.04	21.35	ND		5488.69		
MW-5	10/11/16	5510.04	19.74	ND		5490.30		
MW-5	06/06/17	5510.04	20.63	ND		5489.41		
MW-5	11/10/17	5510.04	21.66	ND		5488.38		

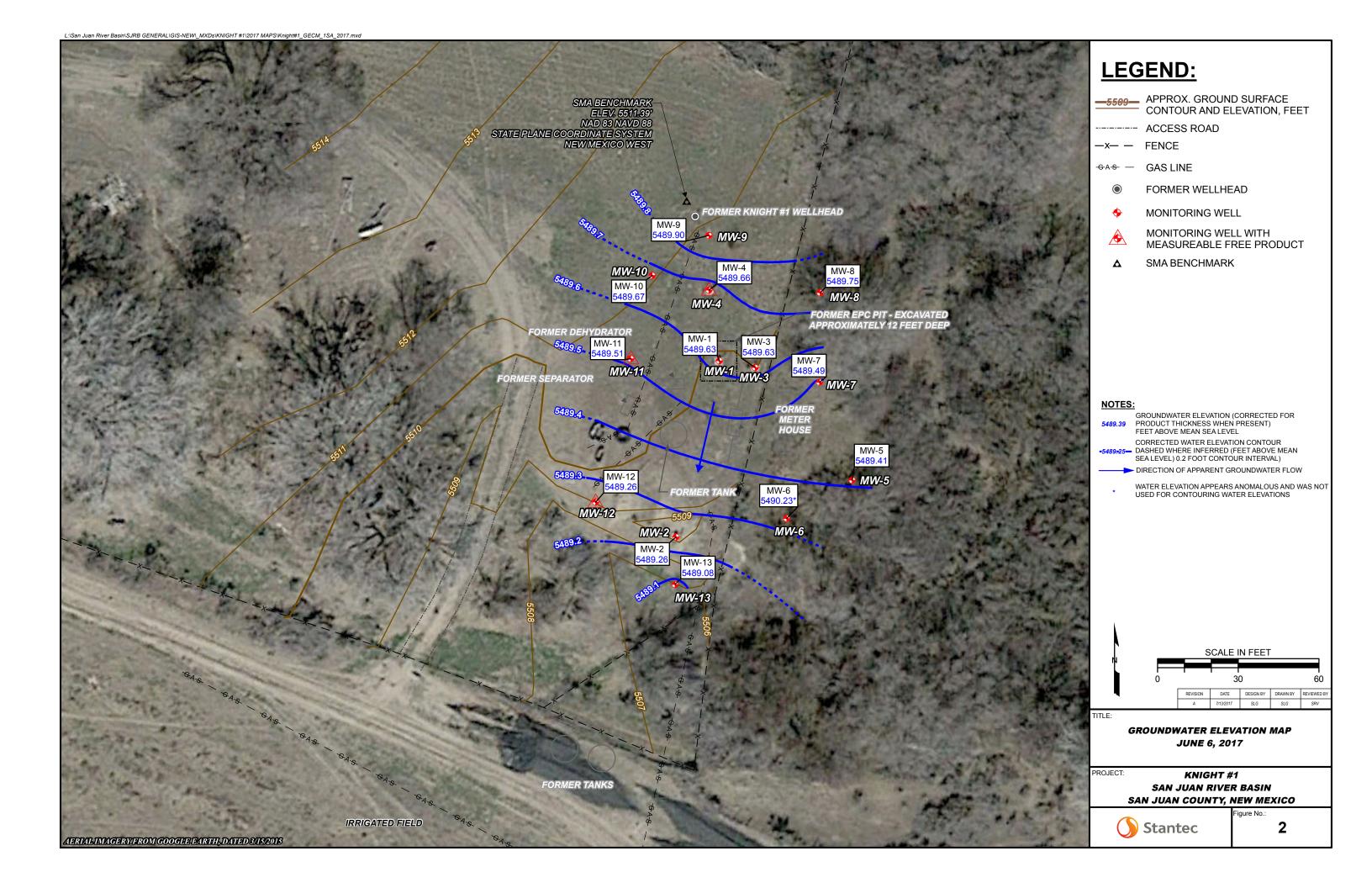
	Knight #1									
			Depth to	Depth to	LNAPL	GW Elevation				
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)				
MW-6	11/17/15	5510.36	21.31	ND		5489.05				
MW-6	04/15/16	5510.36	21.90	ND		5488.46				
MW-6	10/11/16	5510.36	20.22	ND		5490.14				
MW-6	06/06/17	5510.36	20.13	ND		5490.23				
MW-6	11/10/17	5510.36	22.20	ND		5488.16				
MW-7	11/17/15	5511.16	21.77	ND		5489.39				
MW-7	04/15/16	5511.16	22.43	ND		5488.73				
MW-7	10/11/16	5511.16	20.68	ND		5490.48				
MW-7	06/06/17	5511.16	21.67	ND		5489.49				
MW-7	11/10/17	5511.16	22.77	ND		5488.39				
MW-8	11/17/15	5511.95	22.21	ND		5489.74				
MW-8	04/15/16	5511.95	22.94	ND		5489.01				
MW-8	10/11/16	5511.95	21.25	ND		5490.70				
MW-8	06/06/17	5511.95	22.20	ND		5489.75				
MW-8	11/10/17	5511.95	23.25	ND		5488.70				
MW-9	11/17/15	5513.44	23.49	ND		5489.95				
MW-9	04/15/16	5513.44	24.29	ND		5489.15				
MW-9	10/11/16	5513.44	22.48	ND		5490.96				
MW-9	06/06/17	5513.44	23.54	ND		5489.90				
MW-9	11/10/17	5513.44	24.68	ND		5488.76				
						0.000				
MW-10	11/17/15	5513.72	24.06	ND		5489.66				
MW-10	04/15/16	5513.72	24.84	ND		5488.88				
MW-10	10/11/16	5513.72	22.87	ND		5490.85				
MW-10	06/06/17	5513.72	24.05	ND		5489.67				
MW-10	11/10/17	5513.72	25.32	ND		5488.40				
MW-11	11/17/15	5513.41	23.91	ND		5489.50				
MW-11	04/15/16	5513.41	24.73	ND		5488.68				
MW-11	10/11/16	5513.41	22.66	ND		5490.75				
MW-11	06/06/17	5513.41	23.99	23.87	0.12	5489.51				
MW-11	11/10/17	5513.41	25.19	ND		5488.22				
MW-12	11/17/15	5511.47	22.40	ND		5489.07				
MW-12	04/15/16	5511.47	23.05	ND		5488.42				
MW-12	10/11/16	5511.47	21.13	ND		5490.34				
MW-12	06/06/17	5511.47	22.22	22.21	0.01	5489.26				
MW-12	11/10/17	5511.47	23.47	ND	3.01	5488.00				

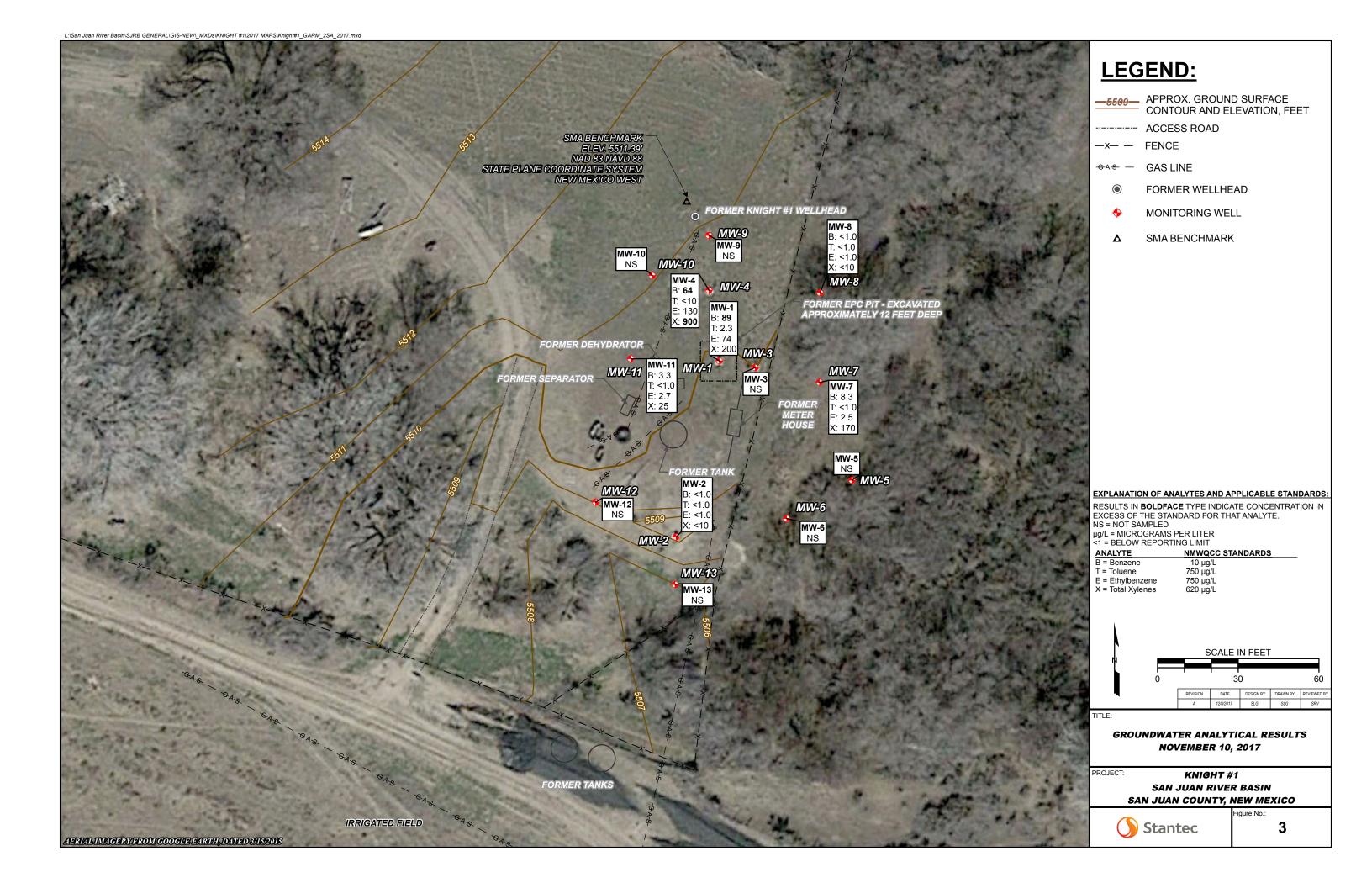
	Knight #1								
	Depth to Depth to LNAPL GW Elevation								
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	Thickness (ft.)	(ft.)			
MW-13	11/17/15	5509.07	20.26	ND		5488.81			
MW-13	04/15/16	5509.07	20.83	ND		5488.24			
MW-13	10/11/16	5509.07	19.01	ND		5490.06			
MW-13	06/06/17	5509.07	19.99	19.99	trace	5489.08			
MW-13	11/10/17	5509.07	21.17	ND		5487.90			

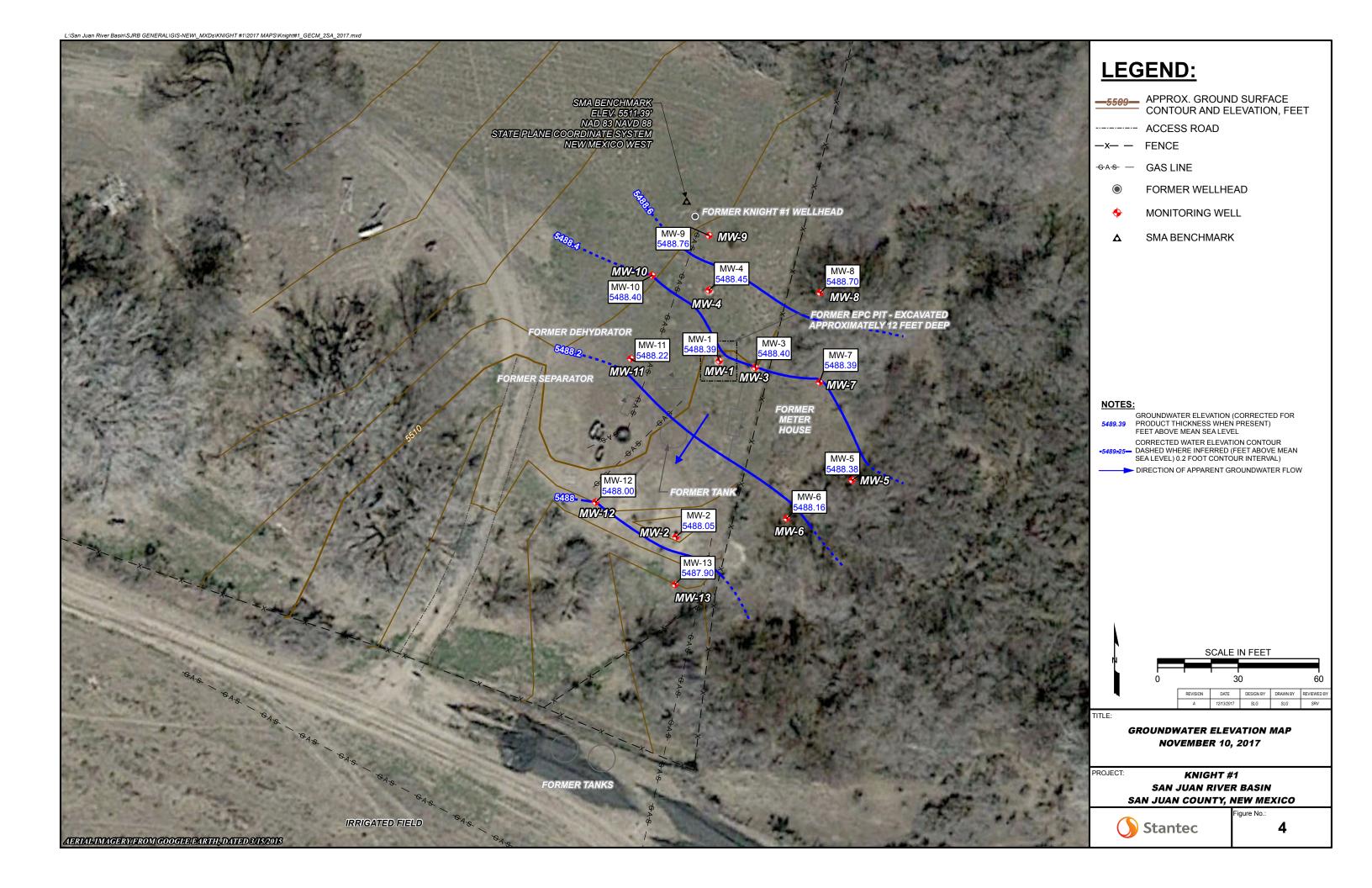
Notes:

[&]quot;ft" = feet

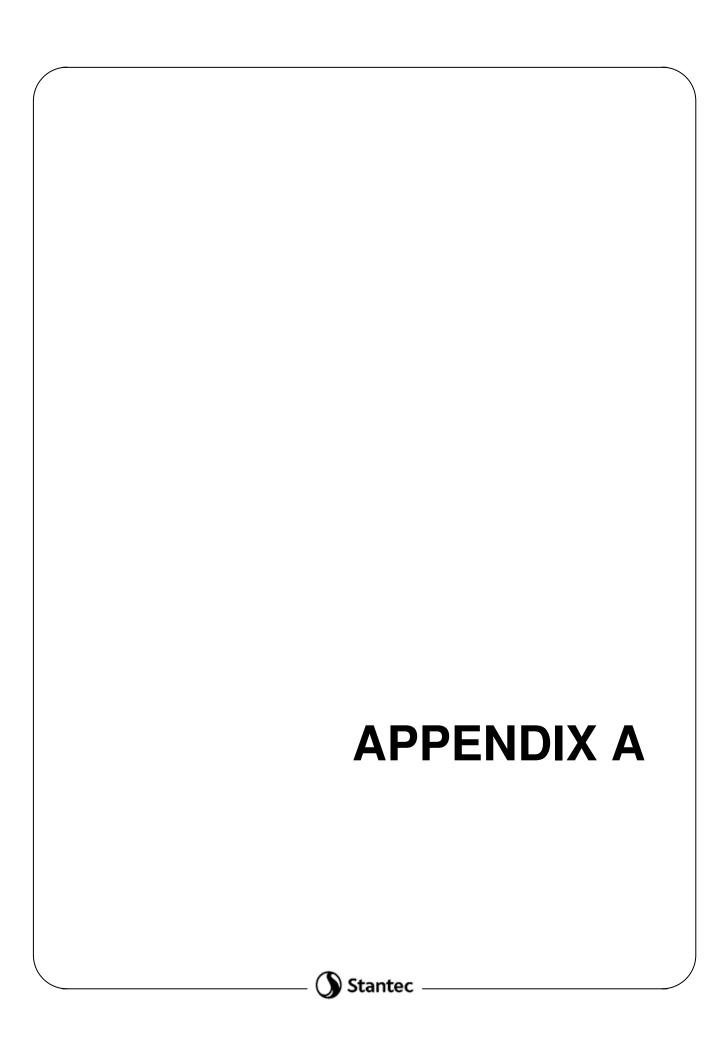

[&]quot;TOC" = Top of casing


[&]quot;LNAPL" = Light non-aqueous phase liquid
"ND" = LNAPL not detected


[&]quot;NR" = LNAPL not recorded


FIGURES

- FIGURE 1: JUNE 6, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 2: JUNE 6, 2017 GROUNDWATER ELEVATION MAP
- FIGURE 3: NOVEMBER 10, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 4: NOVEMBER 10, 2017 GROUNDWATER ELEVATION MAP



APPENDICES

- APPENDIX B WASTE DISPOSAL DOCUMENTATION
- APPENDIX C MOBILE DUAL PHASE EXTRACTION REPORT
- APPENDIX D JUNE 6, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT NOVEMBER 10, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT

From: <u>Varsa, Steve</u>

To: Randolph.Bayliss@state.nm.us

Cc: <u>brandon.powell@state.nm.us</u>; <u>Wiley, Joe</u>

Subject: El Paso CGP Company - Notice of upcoming groundwater sampling activities

Date: Tuesday, May 30, 2017 3:05:18 PM

Hi Randy –

This correspondence is to provide notice to the NMOCD of upcoming semi-annual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #		
Canada Mesa #2	3RP-155-0		
Fields A#7A	3RP-170-0		
Fogelson 4-1	3RP-068-0		
Gallegos Canyon Unit #124E	3RP-407-0		
GCU Com A #142E	3RP-179-0		
Hammond #41A	3RP-186-0		
James F. Bell #1E	3RP-196-0		
Johnston Fed #4	3RP-201-0		
Johnston Fed #6A	3RP-202-0		
K27 LDO72	3RP-204-0		
Knight #1	3RP-207-0		
Lateral L 40 Line Drip	3RP-212-0		
Lat O-21 Line Drip	3RP-213-0		
Lindrith B #24	3RP-214-0		
Miles Fed #1A	3RP-223-0		
Sandoval GC A #1A	3RP-235-0		
Standard Oil Com #1	3RP-238-0		
State Gas Com N #1	3RP-239-0		

Groundwater sampling and monitoring is planned to be conducted the week of June 5, 2017.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: <u>Varsa, Steve</u>

To: Bayliss, Randolph, EMNRD

Cc: Griswold, Jim, EMNRD; Perrin, Charlie, EMNRD; Powell, Brandon, EMNRD; Smith, Cory, EMNRD; Fields, Vanessa,

EMNRD; Wiley, Joe

Subject: RE: MPDE Work Plan Approvals

Date: Saturday, July 08, 2017 4:55:00 PM

Hi Randy –

Pursuant to the conditions in the above-referenced July 5, 2017, approval letter, the following is the schedule for the MDPF activities:

James F. Bell #1E – start late the afternoon of Tuesday, July 11, and will go through Friday, July 14. Johnston Federal #4 and Johnston Federal #6A – both sites beginning on Saturday, July 15, and go through Tuesday, July 18.

No work planned for Wednesday, July 19 (rest day).

GCU #124 - Thursday, July 20 through Sunday, July 23.

Knight #1 – Monday and Tuesday, July 24 and 25.

K27 LD072 – Wednesday, July 26.

Miles Federal #1A – Thursday, July 27.

As noted in the work plan submittal, work at State Gas Com N#1 is still pending receipt of a State Water Easement. NMOCD will be notified once the State Gas Com pilot testing activities have been scheduled, or if there are changes to the schedule offered above. Do you anticipate any OCD staff will be on-site during one or more of these events?

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523

Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Bayliss, Randolph, EMNRD [mailto:Randolph.Bayliss@state.nm.us]

Sent: Wednesday, July 05, 2017 9:08 AM

To: Wiley, Joe <Joe_Wiley@kindermorgan.com>; Varsa, Steve <steve.varsa@stantec.com>

Cc: Griswold, Jim, EMNRD < Jim.Griswold@state.nm.us>; Perrin, Charlie, EMNRD

<charlie.perrin@state.nm.us>; Powell, Brandon, EMNRD <Brandon.Powell@state.nm.us>; Smith,
Cory, EMNRD <Cory.Smith@state.nm.us>; Fields, Vanessa, EMNRD <Vanessa.Fields@state.nm.us>

Subject: MPDE Work Plan Approvals

Good morning Joe, Steve, others.

Thank you for your proposed MPDE efforts.

Cheers

Randolph Bayliss, P.E.

Hydrologist, Districts III and IV NMOCD Environmental Bureau 1220 S St Francis St, Santa Fe, NM 87505 505-476-3084, Cell 575-840-5961

From: <u>Varsa, Steve</u>

To: <u>Bayliss, Randolph, EMNRD</u>

Cc: Smith, Cory, EMNRD; Fields, Vanessa, EMNRD; Wiley, Joe

Subject: El Paso CGP Company - Notice of upcoming groundwater sampling activities

Date: Monday, November 06, 2017 11:41:36 AM

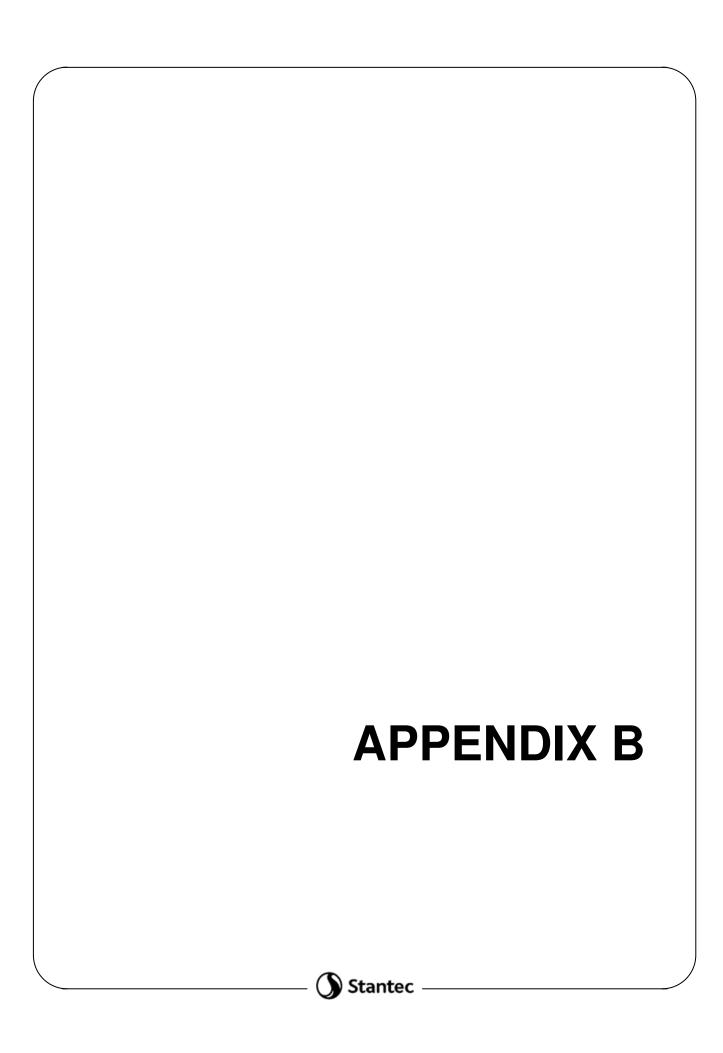
Hi Randy -

This correspondence is to provide notice to the NMOCD of upcoming semiannual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #
Canada Mesa #2	3RP-155-0
Fields A#7A	3RP-170-0
Fogelson 4-1	3RP-068-0
Gallegos Canyon Unit #124E	3RP-407-0
GCU Com A #142E	3RP-179-0
James F. Bell #1E	3RP-196-0
Johnston Fed #4	3RP-201-0
Johnston Fed #6A	3RP-202-0
K27 LDO72	3RP-204-0
Knight #1	3RP-207-0
Lateral L 40 Line Drip	3RP-212-0
Lat O-21 Line Drip	3RP-213-0
Miles Fed #1A	3RP-223-0
Sandoval GC A #1A	3RP-235-0
Standard Oil Com #1	3RP-238-0
State Gas Com N #1	3RP-239-0

Groundwater sampling and monitoring is planned to be conducted November 10-14, 2017.

Please contact Joe Wiley, remediation manager with El Paso CGP Company, at (713) 420-3475, or me, if you have any questions.

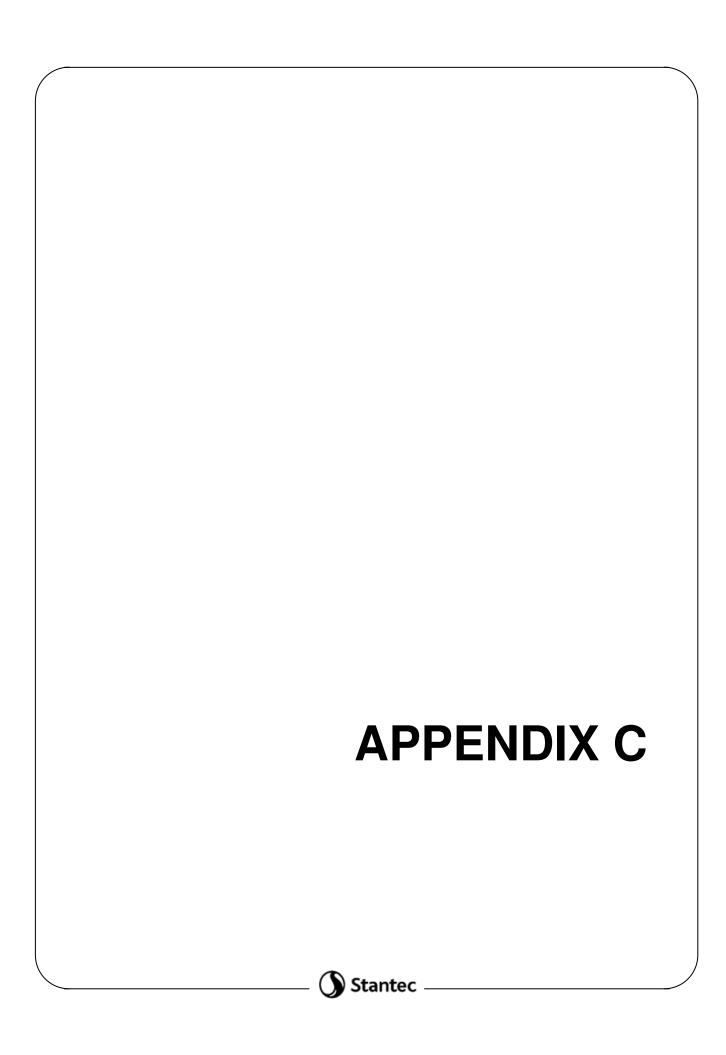

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523

Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

BASING DISPOSE DATE GENERATOR: HAULING CO. ORDERED BY:	PASO SEPL Wiley	old, NM 87413 834-3013 ay	Oil Fie INVC	D PERMIT: NM Id Waste DocumulCE: TKT#. TO: ER: (Print Full I	Name)	ardner	
		Produced Wat		ing/Completion		Reserve F	
NO. TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1 /	SING GUS CONNE	1	756		7.0	7 5 d	र्वगं अस्त
3	Miles Fed IA Fields APDA						
4	Handath Be 24						
5	KN91+ 11						
generator and hauler he	reby certify that according to the Resource Conservational state of the Resource Conservation state of the Resour	RCRA Exempl	y Act (RCR	A) and the U		rized agent for mental Protect	


san juan reproduction 168-6

	RIPTION:	AL 2/4- E/Ras u Exempt Oilfield Waste	vironmental Health and S 200 Montana, Bloomfi 505-632-8936 or 505- OPEN,24 Hours per D	eld, NM 87413 334-3013	Oil Fie INVO	TKT#. TO:	M -001-0005 ment, Form (C138	Pit
		CO AZ UT		NT/DISPOSAL N	METHODS:	EVAPORA	ATION MIN	JECTION TRE	ATING PLANT
NO.	TRUCK	LOCATION(S	5)	VOLUME	COST	H2S	COST	TOTAL	TIME
16		Krisht	#/	XI	75			1800	
2		7					71	7 JUL 24	L=20pm
3									
4									
5	,								
generator and had Agency's July 19	auler here 988 regula	eby certify that according to the Ratory determination that the above	Resource Conservati e described waste is	RCRA Exempt	V Act (PCP	A) and the II	e or author	rized agent for to mental Protection	he above

BAS DISF DATE	POS	AL 3-17	vironmental Health and Sa 200 Montana, Bloomfiel 505-632-8936 or 505-33 OPEN 24 Hours per Da	ld, NM 87413 34-3013	Oil Fiel INVO	D PERMIT: NM d Waste DocumICE: TKT#.	1-001-0005 nent, Form C	138	
GENERATO	01 1	and citago				111	30	-	
HAULING CO	/ /	a Diltield	1		DRIV	(Print Full	Name)		
ORDERED E		- CANN			CODI				
WASTE DES	SCRIPTION:	Exempt Oilfield Waste		Produced Wat	er Drilli	ng/Completi	on Fluids	Reserve	Pit
STATE:		CO AZ DUT	TREATMEN	T/DISPOSAL N	METHODS:		TION MIN.	JECTION TF	REATING PLANT
NO.	TRUCK	LOCATION	5)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	6	Knight #1		12/	.75		'11	小母岛	3:38pm
2		7							
3									
4									
5									
generator an Agency's Jul	y 1988 regul	eby certify that according to the Fatory determination that the abov	Resource Conservation ve described waste is TENDANT SIGNATU	RCRA Exemp	ry Act (RCR	A) and the L	e or author	rized agent formental Protect	or the above

BAS	POS	AL -26.17	vironmental Health and S 200 Montana, Bloomfie 505-632-8936 or 505-3 OPEN 24 Hours per Da	eld, NM 87413 334-3013	NMOO Oil Fie INVO	691 de Dermit: Nid Waste Docu DICE:	M -001-0005	138	
GENERATO HAULING C	the state of	12/150		-		TO: /-/	50	00	
ORDERED	-	21		/	. DRIV	(Print Full	Name)		
	1 60	Exempt Oilfield Waste			COD				
STATE:	/	CO AZ DUT		Produced Wat		ing/Complet		Reserve P	
NO.	TRUCK							JECTION TRE	
NO.	INUCK	LOCATION(S	5)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	6	KNight +1		20	750		74-7	11/500	ERB'ZAM
2								42.00	
3									
4									
5									
· MI	587			t week all					
generator and Agency's July	y 1000 regule	by certify that according to the Relatory determination that the above	esource Conservation described waste is ENDANT SIGNATU	RCRA Exempt	V Act (DCD	Aland thal	e or author JS Environr	ized agent for t mental Protection	he above on
				1	1		HISTORY.	san juan repr	roduction 168-6

BAS DISF DATE GENERATOR		AL 11.12 Paso	200 Montana, Bloomfi 505-632-8936 or 505- OPEN 24 Hours per D	eld, NM 87413 334-3013	NMOC Oil Fie INVC	DE PERMIT: NM Id Waste Docur DICE: TKT#.	I-001-0005 nent, Form C		
HAULING CO	-	tantec			DRIV	ER: O	Name)	Pieri	ng
ORDERED B	Y: 30	e Wiley			COD	ES:	ivaille)		
WASTE DES	CRIPTION:	Exempt Oilfield	Waste	Produced Wat	er Drill	ing/Completi	on Fluids	Reserve F	Pit
STATE:	NM 🗌	CO 🗆 AZ 🗆 UT	TREATMEN	NT/DISPOSAL I	METHODS:	EVAPORA	TION MIN	JECTION XTRE	EATING PLANT
NO.	TRUCK	L	OCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1		togelson	4.1		704		'ighteas] St.,	7N6092	i diam
2		Lat 2-40.	on, Knight, IF Bell It Oil Com						3-27-11
3	N.	Sandoval, Go J-Fed 6	CUIZYE, I-Fed 4			*			
4									
5	47	0							
I,generator and Agency's July	hauler here	eby certify that accordatory determination th	ling to the Resource Conservati at the above described waste is	ion and Recover s RCRA Exempt	v Act (RCR	A) and the U	e or author S Environ	rized agent for mental Protecti	the above ion
Approve	ed	Denied	ATTENDANT SIGNATU	JRE		_			5
								san juan rep	production 168-6

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

August 15, 2017

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11153 Aurora Avenue Des Moines, IA 50322

Dear Stephen:

Re: Knight #1, San Juan County, NM (Event #1)

At your request, AcuVac Remediation, LLC (AcuVac) performed four Mobile Dual Phase Extraction (MDPE) events as follows; 1) 10.0 hour Event #1A, well MW-4, 2) 10.0 hour Event #1B, well MW-12, on July 24, 2017, 3) 9.5 hour Event #1C, well MW-4, and 4) 8.0 Event #1D well MW-11, on July 25, 2017, at the above referenced site (Site). Following is the Report and a copy of the Operating Data collected during Event #1. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE events was to enhance recovery of Phase Separated Hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical release of natural gas condensate.

OBJECTIVES

The objectives of the MDPE events were to:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the vapor phase and liquid LNAPL specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event periods.
- Select and monitor the groundwater depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. No third party equipment was utilized. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower used as a vacuum pump and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during Event #1, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac					
Measurement Equipment	Data Element				
Extraction Well Induced Vacuum and Flow					
Dwyer Magnehelic Gauges	Extraction Well Vacuum				
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow				
Observation Wells					
Dwyer Digital Manometer	Vacuum / Pressure Influence				
Extraction Well Vapor Monitoring					
V-1 vacuum box	Extraction Well Non-Diluted Vapor Sample Collection				
HORIBA® Analyzer	Extraction Well Vapor TPH Concentration				
QRae Mini II O₂ Monitor	Extraction Well Vapor Oxygen Content				
LNAPL Thickness (if present)					
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater				
Liquid Recovery					
Totalizer Flow Meter	Liquid Flow and Total Volume				
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping				
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics				
Groundwater Depression / Upwelling					
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells				
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure				
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls				
Atmospheric Conditions					
Testo Model 511	Relative and Absolute Barometric Pressure				

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump was connected to the extraction well, and the vacuum created on the extraction well caused light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they were burned as part of the normal combustion process. Propane was used as auxiliary fuel to help power the engine if the well vapors did not provide the required energy.

The IC engine provided the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence for pilot tests and short term event remediation.

Emissions from the engine were passed through three catalytic converters to maximize destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio was adjusted to maintain efficient combustion. Because the engine is the power source for the equipment, the System stops when the engine stops. This prevents an uncontrolled release of hydrocarbons. Since the System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

Groundwater extraction was provided by an in-well Grundfos Redi-Flo 2 total fluids pump that discharged through a totalizer/flow meter. The discharge line from this meter was then connected to a stand-by tank. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to LNAPL measurements. Grab samples of recovered liquid were taken periodically in a graduated cylinder to determine the average percentage of LANPL being recovered.

The design of the AcuVac System enabled independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controlled the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improved the LNAPL recovery rates, and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #1

The Recovery Summary table below lists the groundwater and LNAPL recovery data for Event #1

Recovery Summary							
	Event #1A	Event #1B	Event #1C	Event #1D	Total		
	MW-4	MW-12	MW-4	MW-11	Event #1		
Event Hours	10.0	10.0	9.5	8.0	37.5		
GW Recovery	1,193	1,193	843	72	3,301		
NAPL Recovery							
Liquid	0	0	0	0	0		
Vapor	1.2	5.0	0.6	1.2	8.0		
Total	1.2	5.0	0.6	1.2	8.0		
Gallons/Hour	0.12	0.5	0.07	0.15	0.21		

SUMMARY OF MDPE EVENT #1A- WELL MW-4

- The total event time was 10.0 hours. The Event was conducted on July 24, 2017. This was
 the first event completed from well MW-4, and therefore, there was no comparative data from
 this well.
- The total liquid volume recovered was 1,193 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 1.2 gals, for a total liquid and vapor LNAPL recovery of 1.2 gals, or 0.12 gals per hour.

• Average HORIBA® analytical data from the influent vapor samples for Event #1A are listed in the table below:

Data Elemen	it	Event #1A
TPH- Maximum	ppmv	16,990
TPH- Average	ppmv	11,110
TPH- Minimum	ppmv	7,810
TPH- Initial	ppmv	16,990
TPH- Final	ppmv	7,810
CO ₂	%	3.61
со	%	0.03
O ₂	%	14.8
H ₂ S	ppm	4

• The Event #1A extraction well induced vacuum and well vapor flow are listed in the table below.

Well Vacuum and Well Vapor Flow Well MW-4					
Data Element	Event #1A				
Well Vacuum- Max	"H ₂ O	35.00			
Well Vacuum- Avg	"H ₂ O	35.00			
Well Vacuum- Min	"H ₂ O	35.00			
Well Vapor Flow- Max	scfm	5.06			
Well Vapor Flow- Avg	scfm	5.06			
Well Vapor Flow- Min	scfm	5.06			

- The groundwater pump inlet was set at 35.5 ft BTOC in well MW-4. The average groundwater pump rate during the course of Event #1A was 1.99 gpm, and the maximum groundwater pump rate was 2.83 gpm. The total liquid volume recovered was 1,193 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-4, was 2.2 ft below the hydro-equivalent static level.
- LNAPL with a measured thickness of 0.48 ft was recorded in well MW-4 prior to the start of Event #1A, and no measureable LNAPL was recorded at the conclusion of the Event #1A.

The total LNAPL removed, including liquid and vapor, during the 10.0 hour Event #1A, well MW-4 was 1.2 gals.

ADDITIONAL INFORMATION

- Well MW-4 produced a steady amount of liquid volume during the course of the Event #1A. However, no quantifiable liquid LNAPL was recovered from well MW-4.
- All LNAPL volume recovered, 1.2 gals, was burned as IC engine fuel.

• The TPH vapor concentrations were on a mostly decreasing trend during Event #1A. The initial, and maximum TPH reading was 16,990 ppmv, the average reading was 11,110 ppmv, and the lowest, and final, reading, 7,810 ppmv, was recorded at event hour 9.5.

SUMMARY OF MDPE EVENT #1B- WELL MW-12

- The total event time was 10.0 hours. The Event was conducted on July 24, 2017. This was
 the first event completed from well MW-12, and therefore, there was no comparative data
 from this well.
- The total liquid volume recovered was 1,193 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA® data, total vapor LNAPL burned as IC engine fuel was 5.0 gals, for a total liquid and vapor LNAPL recovery of 5.0 gals, or 0.5 gals per hour.
- Average HORIBA® analytical data from the influent vapor samples for Event #1B is listed in the table below:

Data Elemen	t	Event #1B
TPH- Maximum	ppmv	41,150
TPH- Average	ppmv	37,605
TPH- Minimum	ppmv	32,950
TPH- Initial	ppmv	38,560
TPH- Final	ppmv	32,950
CO ₂	%	7.73
со	%	0.70
O ₂	%	9.3
H₂S	ppm	6

 The Event #1B extraction well induced vacuum and well vapor flow are listed in the table below.

Data Element		Event #1B
Well Vacuum- Max	"H₂O	10.00
Well Vacuum- Avg	"H₂O	10.00
Well Vacuum- Min	"H₂O	10.00
Well Vapor Flow- Max	scfm	6.15
Well Vapor Flow- Avg	scfm	6.15
Well Vapor Flow- Min	scfm	6.15

- The groundwater pump inlet was set at 28.5 ft BTOC in well MW-12. The average groundwater pump rate during the course of Event #1B was 2.09 gpm, and the maximum groundwater pump rate was 2.70 gpm. The groundwater pump in well MW-12 was started at event hour 0.5. The total liquid volume recovered was 1,193 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-12, was 5.45 ft below the hydro-equivalent static level.

• LNAPL with a measured thickness of 0.01 ft was recorded in well MW-12 prior to the start of Event #1B, and no measureable LNAPL was recorded at the conclusion of the Event #1B.

The total LNAPL removed, including liquid and vapor, during the 10.0 hour Event #1B, Well MW-12, was 5.0 gals.

ADDITIONAL INFORMATION

- Well MW-12 produced a steady amount of liquid volume during the course of the Event #1B. However, no quantifiable liquid LNAPL was recovered from well MW-12.
- All LNAPL volume recovered, 5.0 gals, was burned as IC engine fuel.
- The TPH vapor concentrations increased during Event #1B and then decreased at the end of the event. The initial TPH reading was 38,560 ppmv, the average reading was 37,605 ppmv, the maximum reading, 41,150 ppmv was at event hour 6.5, and the lowest reading, 32,950 ppmv, was recorded at event hour 9.5.

SUMMARY OF MDPE EVENT #1C- WELL MW-4

- The total event time was 9.5 hours. The Event was conducted on July 25, 2017. The data is compared with Event #1A conducted on July 24, 2017, which had total event time of 9.5 hours.
- The total liquid volume recovered was 843 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA® data, total vapor LNAPL burned as IC engine fuel was 0.6 gals, for a total liquid and vapor LNAPL recovery of 0.6 gals, or 0.07 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #1C is compared with Event #1A in the table below.

LNAPL Recovery Well MW-4						
		Even	t #1C	Event #1A		
		Amount	Percent	Amount	Percent	
Event Hours		9.5	=	10.0	-	
GW Recovery	gals	843	-	1,193	-	
NAPL Recovery						
Liquid	gals	0	0	0	0	
Vapor	gals	0.6	100.00	1.2	100.00	
Total	gals	0.6	100.00	1.2	100.00	
Gallons/Hour		0.07	-	0.12	-	

• Average HORIBA® analytical data from the influent vapor samples for Event #1C is compared with Event #1A in the table below:

Influent Vapor Data Well MW-4						
Data Elemer	nt	Event #1C	Event #1A			
TPH- Maximum	ppmv	5,890	16,990			
TPH- Average	ppmv	5,390	11,110			
TPH- Minimum	ppmv	5,020	7,810			
TPH- Initial	ppmv	5,550	16,990			
TPH- Final	ppmv	5,020	7,810			
CO ₂	%	3.28	3.61			
СО	%	0	0.03			
O ₂	%	14.2	14.8			
H ₂ S	ppm	3	4			

• The Event #1C extraction well induced vacuum and well vapor flow are compared with Event #1A in the table below.

Well Vacuum and Well Vapor Flow Well MW-4							
Data Element		Event #1C	Event #1A				
Well Vacuum- Max	"H₂O	45.00	35.00				
Well Vacuum- Avg	"H ₂ O	45.00	35.00				
Well Vacuum- Min	"H ₂ O	45.00	35.00				
Well Vapor Flow- Max	scfm	5.81	5.06				
Well Vapor Flow- Avg	scfm	5.81	5.06				
Well Vapor Flow- Min	scfm	5.81	5.06				

- The groundwater pump inlet was set at 35.5 ft BTOC in well MW-4. The average groundwater pump rate during the course of Event #1C was 1.56 gpm, and the maximum groundwater pump rate was 2.83 gpm. The total liquid volume recovered was 843 gals.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-4, was 2.2 ft below the hydro-equivalent static level.
- No measurable LNAPL was recorded in well MW-4 prior to the start of Event #1C, and no measurable LNAPL was recorded at the conclusion of the Event #1C.

The total LNAPL removed, including liquid and vapor, during the 9.5 hour Event #1C, Well MW-4, was 0.6 gals.

ADDITIONAL INFORMATION

- Well MW-4 produced a steady amount of liquid volume during the course of the Event #1C. However, no quantifiable liquid LNAPL was recovered from well MW-4.
- All LNAPL volume recovered, 0.6 gals, was burned as IC engine fuel.

• The TPH vapor concentrations were on a mostly decreasing trend during Event #1C. The initial TPH reading was 5,550 ppmv, the average reading was 5,390 ppmv, the maximum reading, 5,890 ppmv was at event hour 2.0, and the lowest reading, 5,020 ppmv, was recorded at event hour 8.5.

SUMMARY OF MDPE EVENT #1D- WELL MW-11

- The total event time was 8.0 hours. The Event was conducted on July 25, 2017. This was the
 first event completed from well MW-11, and therefore, there was no comparative data from
 this well.
- The total liquid volume recovered was 72 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA® data, total vapor LNAPL burned as IC engine fuel was 1.2 gals, for a total liquid and vapor LNAPL recovery of 1.2 gals, or 0.15 gals per hour.
- Average HORIBA® analytical data from the influent vapor samples for Event #1D is listed in the table below:

Data Elemen	nt	Event #1D
TPH- Maximum	ppmv	4,100
TPH- Average	ppmv	3,883
TPH- Minimum	ppmv	3,680
TPH- Initial	ppmv	3,870
TPH- Final	ppmv	3,680
CO ₂	%	6.51
СО	%	0
O ₂	%	12.2
H ₂ S	ppm	6

 The Event #1D extraction well induced vacuum and well vapor flow are listed in the table below.

Data Element		Event #1D
Well Vacuum- Max	"H ₂ O	80.00
Well Vacuum- Avg	"H ₂ O	69.62
Well Vacuum- Min	"H ₂ O	35.00
Well Vapor Flow- Max	scfm	19.43
Well Vapor Flow- Avg	scfm	17.87
Well Vapor Flow- Min	scfm	12.66

• The groundwater pump inlet was initially set at 22.5 ft BTOC in well MW-11. At event hour 1.5, the groundwater pump was repositioned to approximately 29.0 ft BTOC. The average groundwater pump rate during the course of Event #1D was 0.16 gpm, and the maximum groundwater pump rate was 0.30 gpm. The total liquid volume recovered was 72 gals.

- The average groundwater depression, based on the positioning of the groundwater pump in well MW-11, was 5.5 ft below the hydro-equivalent static level.
- No measurable LNAPL was recorded in well MW-11 prior to the start of Event #1D, and no measurable LNAPL was recorded at the conclusion of the Event #1D.

The total LNAPL removed, including liquid and vapor, during the 8.0 hour Event #1D, Well MW-11, was 1.2 gals.

ADDITIONAL INFORMATION

- Well MW-11 produced a steady amount of liquid volume during the course of the Event #1D. However, no quantifiable liquid LNAPL was recovered from well MW-11.
- All LNAPL volume recovered, 1.2 gals, was burned as IC engine fuel.
- The TPH vapor concentrations increased during Event #1D and then decreased at the end of the event. The initial TPH reading was 3,870 ppmv, the average reading was 3,883 ppmv, the maximum reading, 4,100 ppmv was at event hour 4.0, and the lowest reading, 3,680 ppmv, was recorded at event hour 7.5.
- At event hour 8.0, a Stop Work Order was issued due to inclement weather moving into the area. Event #1D, well MW-11, was concluded first and demobilized due to the low liquid recovery from this well.

The total LNAPL removed, including liquid and vapor, during the 37.50 hour Event #1, wells MW-4, MW-11 and MW-12 was 8.0 gals.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data
- Photographs of the MDPE System.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

Paul D. Faucher

Vice President, Operations

Summary Well Data Table #1

Event		1A	1B	1C	1D
WELL NO.		MW-4	MW-12	MW-4	MW-11
Total Event Hours		10.0	10.0	9.5	8.0
TD	ft BGS	34.0	40.0	34.0	40.0
Well Screen	ft BGS	19.0 – 34.0	15.0 – 40.0	19.0 – 34.0	15.0 – 40.0
Well Size	in	4.0	2.0	4.0	2.0
Well Data					
DTGW - Static - Start Event	ft BTOC	24.78	23.31	24.37	-
DTLNAPL - Static - Start Event	ft BTOC	24.30	23.30	-	-
LNAPL	ft BTOC	0.48	0.01	-	-
Hydro-Equivalent- Beginning	ft BTOC	24.42	23.30	24.37	-
DTGW - End Event	ft BTOC	24.71	23.51	-	25.06
DTLNAPL - End Event	ft BTOC	=	-	-	-
LNAPL	ft BTOC	-	-	-	-
Hydro-Equivalent- Ending	ft BTOC	23.71	23.51	-	25.06
Extraction Data					
Maximum Extraction Well Vacuum	"H₂O	35.00	10.00	45.00	80.00
Average Extraction Well Vacuum	"H₂O	35.00	10.00	45.00	69.62
Minimum Extraction Well Vacuum	"H₂O	35.00	10.00	45.00	35.00
Maximum Extraction Well Vapor Flow	scfm	5.06	6.15	5.81	19.43
Average Extraction Well Vapor Flow	scfm	5.06	6.15	5.81	17.87
Minimum Extraction Well Vapor Flow	scfm	5.06	6.15	5.81	12.66
Maximum GW / LNAPL Pump Rate	gpm	2.83	2.70	2.83	0.30
Average GW / LNAPL Pump Rate	gpm	1.99	2.09	1.56	0.16
Influent Data					
Maximum TPH	ppmv	16,990	41,150	5,890	4,100
Average TPH	ppmv	11,110	37,605	5,390	3,883
Minimum TPH	ppmv	7,810	32,950	5,020	3,680
Initial TPH	ppmv	16,990	38,560	5,550	3,870
Final TPH	ppmv	7,810	32,950	5,020	3,680
Average CO ₂	%	3.61	7.73	3.28	6.51
Average CO	%	0.03	0.70	0	0
Average O ₂	%	14.8	9.3	14.2	12.2
Average H ₂ S	ppm	4	6	3	0

Summary Recovery Data Table #2

Event		1A	1B	1C	1D
WELL NO.		MW-4	MW-12	MW-4	MW-11
Recovery Data- Current Event					
Total Liquid Volume Recovered	gals	1,193	1,193	843	72
Total Liquid LNAPL Recovered	gals	-	-	-	-
Total Liquid LNAPL Recovered / Total Liquid	%	-	-	-	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-	-	-	-
Total Vapor LNAPL Recovered	gals	1.2	5.0	0.6	1.2
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	1.2	5.0	0.6	1.2
Average LNAPL Recovery	gals/hr	0.12	0.50	0.07	0.15
Total LNAPL Recovered	lbs	9	35	5	8
Total Volume of Well Vapors	cu. ft	3,036	3,690	3,312	8,578
Recovery Data- Cumulative					
Total Liquid Volume Recovered	gals	1,193	1,193	2,036	72
Total Liquid LNAPL Recovered	gals	-	-	-	-
Total Vapor LNAPL Recovered	gals	1.2	5.0	1.8	1.2
Total Vapor and Liquid LNAPL Recovered	gals	1.2	5.0	1.8	1.2
Average LNAPL Recovery	gals/hr	0.12	0.50	0.10	0.15
Total LNAPL Recovered	lbs	9	35	13	8
Total Volume of Well Vapors	cu. ft	3,036	3,690	6,348	8,578

A	AcuVac Remediation O	PERATING	DATA – EVEI	NT# /A	PAGE	# (ACUVAC I	MDP SYSTEM
Loca	tion: Knight, San Juan	County, N	IM	Project	Managers:	Faucher / G	eorge /Hend	lley / Morris
		Date						
Wel		Time	0830	0900	0930	1000	1030	1100
	MW-4	Hr Meter	8025.5	8026,0	8026,5	8027.0	8027.5	8028.0
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	130	140	140	140	140	140
NE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	12	13	18	18	18	18
	Gas Flow Fuel/Propane	cfh	130	120	110	110	110	110
	Extraction Well Vac.	"H₂O	10	_	35	35	35	35
IERE / AIR	Extraction Well Flow	scfm	.4	~	6	6	6	6
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATM	Air Temp	°F	75.2	77.8	79.2	80.4	81.9	84.8
	Barometric Pressure	"Hg	30,01	30,01	30,01	30,01	30,01	30.00
F	TPH	ppmv	-	16,990	_	12,090	-	12,590
ILUE!	CO ₂	%	_	3.40	`	3.18	-	3.86
VAPOR / INFLUENT	со	%	_	-11	_	.04	_	.05
APOF	O ₂	%	_	15.8	-	15.7		15.2
>	H ₂ S	ppm	_	0	~		-	0
19	AT APPROX 0845HI	rs Gw	PUMPING	5742720	IMM E.	DIANE DR	AWDOWN	W 745
	3 FT RANGE. A.	0535	POMPING	STOPPED	TO FIX	LEAK I	VAC HOSE	5.
S	Pumping RESUM							
NOTES	325 PT Broc. D.	ASTA LOGO	GEN STAS	TC READI	NG 4,22	Fr. MES	UMED VAC	wm
	AND PUMPING	TRIA V	APOR CON	CERTIANO	A D ZES	1000 Ha	S AND C	CWS 15 now 1
*	W/ FAST READIN	G AT 11	100 +425.					
	GW Pump	ON/OFF	6677.92	6134.42	110.50	6-1-1	124451	1414 15
≿	Pump Rate	gals/min	1.08	1.54	2.65	2.83	6344.95	2.50
RECOVERY	Total Volume	gals	1100	56.50	102.65	182.24	267.03	336.23
REC	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHOW	SHEEN	SHEEN
	NAPL	Gals	-	-	-	-	_	_
	Data Logger Head /O.	04 ft	7,08	6.93	9,44	4.69	4.33	.74
EW	GW Depression	ft	-2.86	-3.11	6	-5.35	- 5.71	-3.48
Ē	Extraction Well	DTNAPL	24.30					
	Extraction Well	DTGW	2478					

CNAPL .48

OPERATING NOTES - EVENT # /A PAGE # Z ACUVAC MDP SYSTEM

Location:	Knight, San Juan County, N	NOTES - EVENT # / PAGE # Z ACUVAC MDP SYSTEM NM Project Managers: Faucher / George / Hendley / Morris
	7/24/17 0630 Has	ARRIND ON SINE, PARKED AQUAR VEHICLES WEAR
		ROAD ON SITE. HELD TAILGATE SAFETT MEETING
_		DISCUSSED POSITIONING OF AQUAC SYSTEMS, POSITION
		AWVAC SYSTEMS A CLOSE TO WEUS AS POSSIBLE
		WHILE REMAINING OUTSIDE FENCE LINE.
		GANGED ALL WELLS. POSMONED IN-WELL PUMP
		IN WELL MW-4 APPROXIMATELY 1.5 FT ABOVE
		WELL BOTTOM.
		SIERMA ARRIVED AT APPROXIMATELY 0645 WITH 3
		100 FS LEWGTHS OF CORROGATED 4"PLASTIC HOSE.
		ONLY ZOOFT OF HOSE WAS TREQUITED. SIERTA CHAMPEN
		4"MALE CAM LOCK FITTINGS ON EACH END AND
		USBO A 4" COUPLER IN THE MIDDLE.
NOTES	0730Hns	ENENT STARTED INTTAL WELL VAC 10" HZO W/A
_		WHE OF 30,77 SCFM. WVF SEEMED HIGH. CHECKED
		HOSE, COUPLING WAS LOAKING AM. SOALED COUPLING
		WITH ACOVAC SEALANT. RESTATION WELL VAC.
		WELLVAC SPIKED TO 150" HZO AND COLLAPSED THE
		HOSE, SECTION OF HOSE REPLACED WITH REMAINING
		100FT SECTION.
	0836	EVENT STATUTED. VAC SET AT 35"HZO / 5.06 SCFM.
	09.00	RESTARTED WELL VAC. DISCONTLED OTHER LEAKS AT
_		CLAMPS. MGHTENES CLAMPS.
	0930	ATTEMPTED TO INCIDENCE WELL VAC. HIGH WELL
		VAC COMPACTED THE HOSE.
		REDUCED WELL VAC TO 35"H20/5.06 SCFM

	Remediation OI	PERATING I	DATA – EVEN	NT# / H	PAGE #	# ->	ACUVAC N	IDP SYSTEM
Loca	tion: Knight, San Juan	County, N	М	Project	Managers: F	aucher / Ge	eorge /Hend	ley / Morris
		Date	7/24/17					
Wel	1# MW-4	Time	1130	1200	12300	1300	1330	1400
	7.700	Hr Meter	8028,5	8029.0	8029.5	8030,0	8030.5	8031.0
	Engine Speed	RPM	1300	1800	1800	1800	1800	1300
WER	Oil Pressure	psi	50	50	56	50	50	50
BLO	Water Temp	°F	150	150	150	150	150	150
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane	cfh	110	110	160	110	110	110
	Extraction Well Vac.	"H₂O	32	35	35	35	35	35
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	5.06	5,06	5.05	5.06	5.06	5.06
NOW /	Influent Vapor Temp.	°F	70	70	70	70	70	70
VACL	Air Temp	°F	86.2	88.7	89.2	.89.5	89.8	90.1
	Barometric Pressure	"Hg	29.99	29.98	29.97	29,96	29.95	29.95
=	TPH	ppmv	_	16,260	_	11,750	-	10,170
LUE	CO ₂	%	_	3.58	-	4.10	-	3.86
VAPOR / INFLUENT	со	%	-	.01	~	.01	-	.01
POR	O ₂	%	_	14.7	_	13.9	_	15.8
>	H ₂ S	ppm	-	0	-	5,1	-	3.7
	AT 1215 HAS CH	WGED L	OUID CO	uzenow.	TANKS O		SHUT OF	A ANZ
	APPROX 15 MAN							
,	WELL VAC AND		SADY DUR	ING PER	on As 35	"HZO AND	0 5.06 50	Fm.
NOTES	TPH VAPOR CONC							
Z	LIQUID RECOVERY							
		1 1						
	GW Pump	ON/OFF	6489.06	6572.09	6638.99	6671.17	6743.62	6799.03
	Pump Rate	gals/min	1.38	1.11	.54	1.21	.92	1.06
RECOVER	Total Volume	gals	411.14	494.17	561.07	593.25	665.70	821.11
¥	NAPL	% Vol	SHEEN	SHEEN	SHOEN	SHEEN	SHOEN	SHEEN
_	NAPL	Gals	_	_	_	-	_	_
	Data Logger Head 4	, 22 ft	.54	.81	5.85	3.33	3.90	4,12
	GW Depression	ft	-3.68	-3.41	1.63	39	32	-:10
' [Extraction Well	DTNAPL						
	Extraction Well	DTGW						

A	AcuVac Remediation OF	PERATING I	DATA – EVEN	IT#/β	PAGE	# Y	ACUVAC N	IDP SYSTEM		
Locat	tion: Knight, San Juan	County, N	М	Project	Managers: F	aucher / Ge	eorge /Hend	ey / Morris		
		Date	7/24/17							
Well	# Mw-4	Time	1430	1500	1530	1600	1630	1700		
	7776 3 9	Hr Meter	8031.5	8032.0	80325	8033. U	8033.5	8034.0		
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800		
WER	Oil Pressure	psi	50	50	50	56	50	50		
ENGINE / BLOWER	Water Temp	°F	160	160	160	160	160	160		
INE /	Alternator	Volts	14	14	14	14	14	14		
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18		
	Gas Flow Fuel/Propane	cfh	110	110	110	110	110	110		
	Extraction Well Vac.	"H₂O	35	35	35	35	35	35		
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	5,06	5.06	5.06	5.06	5,06	5.06		
NUM/	Influent Vapor Temp.	°F	70	70	70	70	70	76		
VACL	Air Temp	°F	90.4	90.8	941	90.7	89.1	88.7		
	Barometric Pressure	"Hg	2995	29.95	29.95	29.95	29.95	29.95		
F	TPH	ppmv	_	10,100	_	9970	_	9370		
VAPOR / INFLUENT	CO ₂	%	-	3.48	-	3.56	-	3.94		
NE/	СО	%	•	.01	-	0	_	0		
PoR	O ₂	%	-	15.3	_	13.5	-	13.7		
>	H ₂ S	ppm	`	3.8	-	6.2	-	4.9		
	WELL VAC AND	WVF STO	2401 DUT	UNG PET	210D. AT 3	5"HO AN	D 5.06 SQF	ัพ.		
	TPH VAPOR CONCE					30000 30000				
S	AFTER 1500 HZS									
NOTES										
_										
- 1	GW Pump	ON/OFF	686263	6892.62	6960.72	7029.64	7069.28	7123.75		
ER	Pump Rate	gals/min	,50	1.14	.57	.33	.45	.45		
RECOVERY	Total Volume	gals	784.71	814.10	887.80	951.72	991.36	1045.83		
₩	NAPL	% Vol	SHEED	SHEEN	SHEEN	SHEEM	SHEEN	SHOEN		
\dashv	NAPL	Gals			-		_			
- 1	Data Logger Head 4, 2	Z ft	3.65	7,33	3.40	7.78		1.18		
M E	GW Depression	ft	57	3.11	82	-1.44	-3.77	-3.04		
-	Extraction Well	DTNAPL						TRACE		
	Extraction Well	DTGW						24.71		

Locat			DATA – EVEN		Managara, Carra	nor / Goorge ///-	ndlov / Marris
LUCA	tion: Knight, San Juan	Date	1 1	rioject	Managers: Faucl	iei / George /Hei	iuley / WOTTS
Well	#/	Time	7/24/17	1800	1830		
	# mw-4	Hr Meter	9034.5		8035.5		
	Engine Speed	RPM	1800	1800	1800		
띪	Oil Pressure	psi	50	50	50		
NON	Water Temp	°F	150	150	150		
ENGINE / BLOWER	Alternator	Volts	14	14	14		
NGIN	Intake Vacuum	"Hg	18	18	18		
	Gas Flow Fuel/Propane	cfh	110	110	110		
	Extraction Well Vac.	"H₂O	35	35	22		
띪兴	Extraction Well Flow	scfm	5.06	5,06	5.06		
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70		
ACUL	Air Temp	°F	882	87.5	86.7		
₹ >	Barometric Pressure	"Hg	25.95	29.55	29.95		
_	TPH		UKIS	7810	21.73		
EN	CO ₂	ppmv	_	3.14	_		
Į Į	CO	%	_		_		
VAPOR / INFLUENT		%	_	14.3	-		
Α̈́	O ₂	%	_	3.6	-		
	H ₂ S	ppm				20 1	
	1830 HRS EVEN! A TRACE OF LWAY	T CONCL	neo. Pu	mp nemo	WED From w		L GAK180.
NOTES	F 1191001 CANI	C WPS 4	<i>JE1</i> (4)	420 571	e were,		
Ž					A COMPANION OF THE PARTY OF THE		
	TOTALIZER	GALS	7177885	7235.59	7270.44		
<u>₩</u>	Pump Rate	gals/min	.48	,29	_		
RECOVERY	Total Volume	gals	1099.93	1157.67	119252		
₩	NAPL	% Vol	SHEEN	SHEEN	SHEW		
	NAPL	Gals	-	1	-		
	Data Logger Head 4.2	. 7 ft	. 85	. 24	_		
A	GW Depression	ft	- 3.77	-3.58	-		
	Extraction Well	DTNAPL			TRAUS		
- 1	Extraction Well	DTGW			24.71		

CNAPL &

A	AcuVac Remediation OP	ERATING [DATA – EVEN	т# <i> </i> В	PAGE #	# (ACUVAC N	IDP SYSTEM
Loca	tion: Knight, San Juan	County, N	М	Project	Managers: F	aucher / Ge	eorge /Hend	ley / Morris
		Date	7/24/17					
Well	# MW-12	Time	0830	0900	0930	1000	1030	1100
V	45.00 FT BTOC	Hr Meter	1862.5	1763.0	1763.5	1764.0	1764.5	1865.0
	Engine Speed	RPM	1300	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	140	150	160	160	160	160
INE /	Alternator	Volts	13	13	13	13	13	13
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane	cfh	0	0	0	0	0	0
	Extraction Well Vac.	"H₂O	10	10	10	10	10	.10
ERE AIR	Extraction Well Flow	scfm	7	7	7	6.15	6.15	6.15
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70
VACI	Air Temp	°F	75.2	77.8	79.2	80, 4	81.9	84.8
4	Barometric Pressure	"Hg	30,01	30.01	3001	30.01	30.01	30,00
E	TPH	ppmv	_	38,560	-	37,640	_	37.040
VAPOR / INFLUENT	CO ₂	%	-	6.92	-	7.64	-	7.52
NI /	со	%	-	.74	-	.92	-	,82
POR	O ₂	%	,	9, 8	-	10.2	_	10.0
>	H ₂ S	ppm	-	0	-	D	-	0
NOTES	WELL VAC LOW AT 10" HZD MOST LIKELY DUE TO LONG VAC HOSE. WELL VAPOR FLOW LOW AS WELL. WELL VAC AND FLOW CONSISTENT DUTING PERSOD. TRH VAPOR CONCENTRATIONS MUSTLY STEADY DUTING PERSOD ALTHONG, HOW A SLIGHTLY DECREASING TREND. AT 1045 HZS RELOCATED THE FW-WELL PUMP TO APPROXIMATELY 28,5 FT BTOC. NEW STATIC DATA LOGGER. READING 2.33 FT.						σD. NC, HON U-WEU	
	GW Pump	ON/OFF	317668	3176.68	3245.78	331805	3386.82	3437.73
ER	Pump Rate	gals/min	_	2.30	2.41	2.29	1.70	7.70
RECOVERY	Total Volume	gals	-	<u> </u>	69.10	141,37	210,14	261.05
#	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHOEN	SHEEN	SHEEN
-	NAPL	Gals			-	-	_	-
	Data Logger Head 15.3	25 ft	-	17.46	16.11	16.07	16.05	1.95
M.	GW Depression	ft		+2.21	+.86	.82	.80	38
"	Extraction Well	DTNAPL	23.30					
	Extraction Well	DTGW	23.31					

		F/6.								
Location: Knight, San Juan County, NM Project Managers: Faucher / George /Hendley / Morris										
		Date	7/24/17							
Well	# MW-12	Time	1130	1700	1230	1300	13/30	1400		
	<u> </u>	Hr Meter	1765.5	1766.0	1766,5	1767.0	1768.5	1768.0		
~	Engine Speed	RPM	1800	1800	1800	1800	1800	1800		
ENGINE / BLOWER	Oil Pressure	psi	50	50	50	50	50	50		
/ BLC	Water Temp	°F	160	160	160	160	160	160		
SINE	Alternator	Volts	13	13	13	13	/3	13		
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18		
	Gas Flow Fuel/Propane	cfh	0	0	0	0	٥	0		
	Extraction Well Vac.	"H₂O	10	10	10	10	10	10		
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	6.15	6.15	6.15	6.15	6.15	6.15		
NOU	Influent Vapor Temp.	°F	70	70	70	70	70	70		
VACL	Air Temp	°F	86. 2	88.7	89.2	89,5	89.8	90.1		
	Barometric Pressure	"Hg	29.99	29.98	29.56	29.95	.29.95	29.95		
»« —	TPH	ppmv	_	38,640	-	40,200	-	41,150		
UEN	CO ₂	%	-	6.70	_	8.20	-	8.74		
VAPOR / INFLUENT	СО	%	_	.48	~	.96	_	"88		
Por	O ₂	%	_	4.3	-	8, 8	-	83		
[≶]	H ₂ S	ppm		D	-	4.5	-	6.3		
NOTES	AT 1215 HZS CH FOR APPROX 15 M TPH VATORS ON A, CHU RECOVERY M	NAUTE N INCRE	S EASING TO	ZEND DU	RING PE		UMP SHU	T 087		
	GW Pump	OWOFF	3=0=	7/ 021	2/2/2/	201818	7776 21	705. 41		
,	Pump Rate	ON/OFF	3518,59	3609.21	3676.21	3719.19	3779.26	3831.54		
RECOVERY	Total Volume	gals/min	392.11	1.12	1,72		. 87	,92		
ECC	NAPL	gals		432.53	48853 SHEEN	542.51	602.58	654.86		
-	NAPL	% Vol	SHEEN	SHOEN	Smeen	SHEEN	SHEEN	SHEEN		
		Gals	1 - 11				201	2.93		
ŀ	GW Depression	33 ft	1.74	1,73	7.68	2.93	2.95			
<u> </u>	GVV Depression	ft	59	- 0.6	7, 33	+.60	+.62	+.60		
ш I	Extraction Well	DTNAPL								

X	AcuVac Remediation OP	ERATING I	DATA – EVEN	IT#(B	PAGE #	#3	ACUVAC I	MDP SYSTEM
Loca	tion: Knight, San Juan	County, N	, ,	Project	Managers: F	aucher / Ge	eorge /Hend	ley / Morris
		Date	7/24/17					
Well	1# MW-12	Time	1430	1500	1530	1600	1630	1700
		Hr Meter	1768,5	1769.0	1769.5	1770.0	1770.5	1771.0
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	160	160	160	160	160	160
INE /	Alternator	Volts	13	13	13	,3	13	13
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane	cfh	0	0	0	0	0	0
	Extraction Well Vac.	"H₂O	10	10	10	10	10	10
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	6.15	6.15	6.15	6.15	6.15	6.15
SPH JUM /	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATMC	Air Temp	°F	90.4	90,8	91.1	90.7	89. /	88.7
	Barometric Pressure	"Hg	29.95	29.95	29.95	29.95	29.95	29.95
_	TPH	ppmv	-	35,590	_	35,640	-	38,640
LUEN	CO ₂	%	-	8,14	_	8,38	7	6.70
/ INF	со	%	_	.51	-	.62	_	.48
VAPOR / INFLUENT	O ₂	%	-	5.9	-	10.3	_	9-3
× ×	H ₂ S	ppm	-	7,2	-	5.5	-	5.8
	AT 1500 HZS TPH	CONCEN	TRATIONS	1 70 3	5580 AND	138.640	A5 1700 1	
	GW RECOVERY SE				× 100			
,	GW RECONSIN MO.							
NOTES								
z								
	GW Pump	ON/OFF	3886,97	400876	4088,76	4060.93	4130.77	4192.23
<u>₩</u>	Pump Rate	gals/min	1.03	1.00	.87	1.16	1.02	.99
RECOVERY	Total Volume	gals	710.29	772.08	832.08	884.25	954.09	1015.55
Ŗ.	NAPL	% Vol	SHOON	SHOEN	SHEEN	SHOEN	SHOW	SHOW
	NAPL	Gals	_	-	_	-	-	-
	Data Logger Head 2.	33 ft	4.30	4.35	4.28	4.29	4.18	4.14
EW	GW Depression	ft	+ 697	+202	+1.48	+1.96	+1.85	+1.81
ш [Extraction Well	DTNAPL						
	Extraction Well	DTGW		1100-252-2				

Loca	tion: Knight, San Juan	County, N	М	Project	Managers: F	aucher / G	eorge /Hen	dley / Morris		
		Date	7/24/17							
Well	# mw-12	Time	1730	1300	1830					
	7	Hr Meter	1771.5	1772.0	1772.5					
	Engine Speed	RPM	1800	1300	1800					
WER	Oil Pressure	psi	50	50	50					
BLO	Water Temp	°F	150	150	150					
ENGINE / BLOWER	Alternator	Volts	13	13	13			10-2-201		
ENG	Intake Vacuum	"Hg	18	18	18					
	Gas Flow Fuel/Propane	cfh	0	0	0					
	Extraction Well Vac.	"H ₂ O	10	10	10					
ERE/	Extraction Well Flow	scfm	6,15	6.15	6.15					
SPH	Influent Vapor Temp.	°F	76	70	70					
ATMOSPHERE VACUUM / AIR	Air Temp	°F	88.2	87.5	86.7					
	Barometric Pressure	"Hg	29.95	29.55	29.95					
5	TPH	ppmv	_	32,550	_					
LUE	CO ₂	%	1	8.32	-					
VAPOR / INFLUENT	со	%	•	.49	_					
POR	O ₂	%	_	10.6	-					
>	H ₂ S	ppm	_	6.3	-					
	THE CONCENTRATIONS CONTINUE ON DECIREASING TREND.									
	AT 1830 EVENT CONCLIDED - NO LNAPL PRESENT IN WELL									
ES	DEMOBILIZED WELL MW-12 AND MOVED PUMP AND DATA LOGGER TO MW-11									
NOTE										
-				211						
				T						
	GW Pump	ON/OFF	4251.88	4314.92	4369.39		-			
ÆRY	Pump Rate	gals/min	1.05	. 51	-		1			
RECOVERY	Total Volume	gals	1075.20	1138.24	1192.71					
~	NAPL	% Vol	SHEEN		SHEEN					
	NAPL	Gals	-	-	_					
	Data Logger Head	2.33 ft	5,32	5.12	-					
EW	GW Depression	ft	+2.99	2.19	_					
	Extraction Well	DTNAPL	- 11 31		-					
	Extraction Well	DTGW			23.57					

WAPL \$

-	Remediation OF	PERATING I	DATA – EVEN	NT# /C	PAGE	# (ACUVAC	MDP SYSTEM
Locat	tion: Knight, San Juan	County, N	M	Project	Managers:	Faucher / G	eorge /Hend	ley / Morris
		Date	7/25/17					
Well	# MW-Y	Time	0730	0300	0830	0900	0930	1000
		Hr Meter	8035.5	8036.d	8036.5	80320	8037.5	8038.0
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	130	140	140	140	150	150
NE SINE	Alternator	Volts	14	14	14	14	14	14
EN	Intake Vacuum	"Hg	18	18	13	18	18	18
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125
	Extraction Well Vac.	"H₂O	45	45	45	45	45	45
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	5.81	5.81	5.81	5.81	5.81	5.81
NUM	Influent Vapor Temp.	°F	70	70	70	70	70	70
VAC	Air Temp	°F	68	69	70	71	73	75
-	Barometric Pressure	"Hg	30,10	30.10	30,10	30.10	30,10	30.10
Ļ.	TPH	ppmv	1	5550	-	-	-	5890
VAPOR / INFLUENT	CO ₂	%	4	3.06	_	_	_	3.06
N	СО	%	-	0	_	_		0
POA	O ₂	%	5	14.3		-		14.4
>	H ₂ S	ppm	-	2.5	-	-	-	3.2
NOTES	ARGUNETO ON SITE MEETING, POSITIO LIA. 0730 HOUSE SW PUMP STARTED LIA AT 0800 HOUS V. RANGE. ON A DEC.	NENT SM SHORGEN APON SM	MP 1.5 F RITED. W AFRICE OF	TANNED.	WELL BOTH 45"HZO VACUUM. I TPH CONTE	W/A WYF PUMP RASS	SISTENT W OF 5.81 SCF ECONSISTE	S/EVENT Em. UT WERM
	TOTALIZER	GAL	7270.44	7317.71	7374.58	7412.38	7445.76	7530.53
	Pump Rate	gals/min	1.58	1.90	1.26	1.11	2.93	.79
RECOVERY	Total Volume	gals	_	47.27	104,14	141.54	175,32	260.09
Z	NAPL	% Vol	_	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN
	NAPL	Gals	_	-	-	-	-	
	Data Logger Head /.	30 ft	_	-	1.32	_	-	×
A L	GW Depression	ft	-	-	.02	_	_	_
	Extraction Well	DTNAPL	-					
	Extraction Well	DTGW	2437					

A	AcuVac Remediation O	PERATING I	DATA – EVEN	IT# 1 C	PAGE:	# Z	ACUVAC I	MDP SYSTEM
Loca	tion: Knight, San Juan	County, N	М	Project	Managers: I	Faucher / Ge	eorge /Hend	ley / Morris
		Date	7/25/17					
Well	# MW-4	Time	1030	1/00	1130	1200	1230	1300
		Hr Meter	2038.5	8039.0	8039.5	8040.0	8040.5	8041.0
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	150	150	150	150	150	150
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125
	Extraction Well Vac.	"H₂O	45	45	45	45	45	45
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	5.81	5.81	5.81	5.81	5.81	5.81
MUL	Influent Vapor Temp.	°F	70	70	70	70	70	76
VACI	Air Temp	°F	77	81	84	85	86	88
	Barometric Pressure	"Hg	30.10	30.09	30.08	30.07	30.06	30.05
5	TPH	ppmv		_	-	5410	-	-
VAPOR / INFLUENT	CO ₂	%	-	_	-	3.42	-	-
NI	СО	%	_	_	_	0	-	-
Por	O ₂	%		-	_	13.6	-	-
>	H ₂ S	ppm	_	_	-	2.8	_	_
NOTES	WELL VAL AND WY						siV	
	TOTALIBOR	GAL	7554.29	7607.64	7633.27	7683.60	7737.79	7794.34
ERY	Pump Rate	gals/min	1.78	.85	.68	2.81	1.89	7.50
RECOVERY	Total Volume	gals	283,85	337.20	362.83	383.16	467,35	523,90
ž	NAPL	% Vol	SHOEN	SHEEN	SHEEN	SHEW	SHEN	SHUSH
	NAPL	Gals		_	-			_
-	Data Logger Head	1,30 ft	-	2.19	1.87	1.52	1.94	1,70
<u>.</u>	GW Depression	ft	-	+.89	+.57	+,72	+.64	4.40
	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

ATMOSPHERE ENGINE / BLOWER &	# MW-Y Engine Speed Oil Pressure Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac. Extraction Well Flow	Date Time Hr Meter RPM psi °F Volts "Hg cfh	7/25/17 1330 8041.5 1800 50 150 14	1400 8042.0 1800 50 150	1930 8042.5 1800 50	1580 8043.0 1800 50	1536 8043.5 1800	1600 8044.0 1800 50
ENGINE / BLOWER	Engine Speed Oil Pressure Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac.	Hr Meter RPM psi °F Volts "Hg cfh	1330 8041.5 1800 50 150 14	8042.0 1800 50 150	8042.5 1800 50 150	8043.0 1800 50	8043.5 1800 50	8044.0 1800 50
	Engine Speed Oil Pressure Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac.	RPM psi °F Volts "Hg cfh	1800 50 150 14 18	1800 50 150	1800 50 150	1800	1800	1800
	Oil Pressure Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac.	psi °F Volts "Hg cfh	50 150 14 18	50	50 150	50	50	50
	Water Temp Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac.	°F Volts "Hg cfh	150 14 18	150	150			
	Alternator Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac.	Volts "Hg	19			150		
	Intake Vacuum Gas Flow Fuel/Propane Extraction Well Vac.	"Hg	18	14	5:		150	150
	Gas Flow Fuel/Propane Extraction Well Vac.	cfh			14	14	14	14
IERE / AIR	Extraction Well Vac.			18	18	18	18	18
ERE / AIR		"H ₂ O	125	125	125	125	125	125
AR AR	Extraction Well Flow	1120	45	45	45	45	45	45
		scfm	5.81	5,31	5.81	5,81	5.81	5.81
NUM	Influent Vapor Temp.	°F	70	70	70	70	70	70
VACL	Air Temp	°F	Clover	88	86.	85	: 34	83
`	Barometric Pressure	"Hg	30.04	30.02	30.00	25.58	28.87	29.96
_	TPH	ppmv	_	5080	_	<u> </u>	-	5020
VAPOR / INFLUENT	CO ₂	%	-	3.64	-	_	-	3.20
Ĭ.	СО	%	_	0	-	-	_	0
Por	O ₂	%	-	14.5	-	-	-	14.3
>	H ₂ S	ppm	-	3, 1	-	-	-	2.8
NOTES	WELL VAC AND W TPH CONCENTRA						5.81 SCFM, 1	ZESRECTIVE
	TOTALIZER	GAL	7839.41	7877.64	7956.03	7990,32	8039.18	8087.87
RECOVERY	Pump Rate	gals/min	1.21	2.61	1.14	1.63	1.46	1,0
0	Total Volume	gals	568.97	607,20	685.59	7.19,88	768.74	812.43
-	NAPL	% Vol	SHOON	SHEEN	SHEEN	SHEEN	SHEEN	SHEW
_	NAPL	Gals					-	-
-		1.30 ft	4.79	1.58	1.98	1.36	1.50	-
╗	GW Depression	ft	+.49	+.28	+.68	+.06	+,20	_
	Extraction Well	DTNAPL						

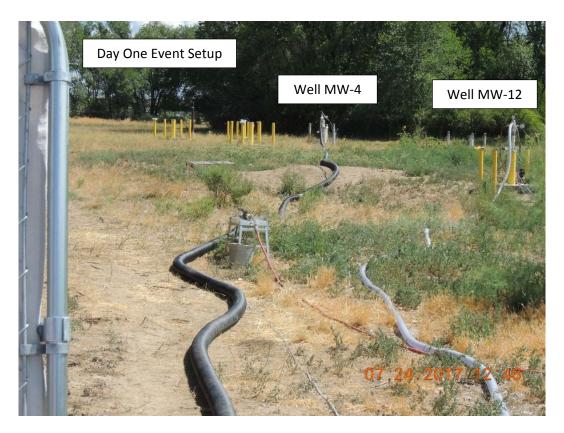
A	AcuVac Remediation OPER	ATING I	DATA – EVEN	T# / C	PAGE #	¥ 4	ACUVAC M	IDP SYSTEM		
Loca	tion: Knight, San Juan Co	unty, N	М	Project	Managers: F	aucher / Ge	eorge /Hendl	ey / Morris		
			7/25h							
Well	#	Time	1615							
	" Mw-4	Ir Meter	8044.5							
	Engine Speed	RPM	1800							
WER	Oil Pressure	psi	50							
ENGINE / BLOWER	Water Temp	°F	150							
	Alternator	Volts	14							
ENG	Intake Vacuum	"Hg	18							
	Gas Flow Fuel/Propane	cfh	125							
	Extraction Well Vac.	"H₂O	45	-						
ERE	Extraction Well Flow	scfm	5.81	- *						
SPH JUM /	Influent Vapor Temp.	°F	76							
ATMOSPHERE VACUUM / AIR	Air Temp	°F	82							
~ ~	Barometric Pressure	"Hg	29.95							
-	TPH	ppmv	_							
-UEN	CO ₂	%	_							
INI /	со	%	_							
VAPOR / INFLUENT	O ₂	%	_							
××	H ₂ S	ppm	-							
	AT APPROXIMATELY 15 30 HOS THE DECISION WAS MADE FOR SIGNATO REMONS									
	THE 1,000 GAL AND HAVE IT PREADY FOR THE K-27 SITE ON 7/26/17. AT 1615 HRS									
so.	THE REMAINING TANKS WERE TOPPED OFF AND EVENT WAS CONCLUDED.									
NOTES	DEMOBILIZED THE ACUVAC SYSTEM AND EQUIPMENT, DEPARTED SITE,									
z										
	TOTALIZER	GAL	8117.97							
ERY	Pump Rate	gals/min	-							
RECOVERY	Total Volume	gals	842.53							
8	NAPL	% Vol	SHEEN							
	NAPL	Gals	-							
	Data Logger Head	ft	_							
EW	GW Depression	ft	_							
-	Extraction Well	TNAPL								
	Extraction Well	DTGW								

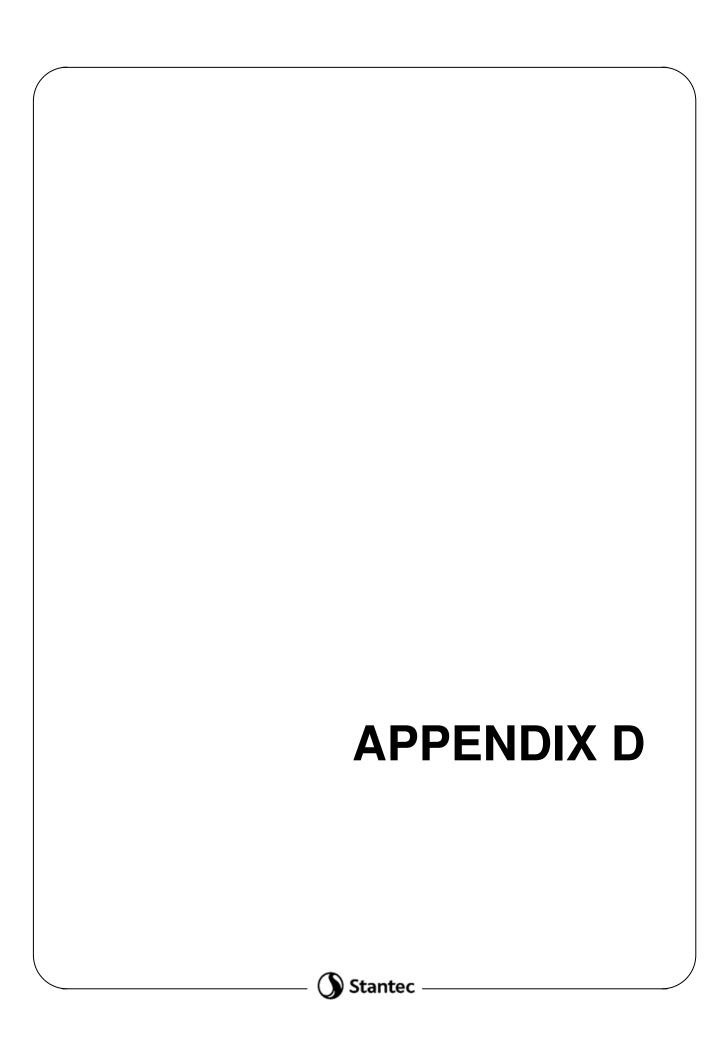
A	AcuVac Remediation C	PERATING	DATA – EVEI	NT# / D	PAGE	# /	ACUVAC I	MDP SYSTEM			
Loca	tion: Knight, San Juar	n County, N	IM	Project	Managers: I	Faucher / G	eorge /Hend	ley / Morris			
		Date	7/25								
Well	1# mω-11	Time	0300	0830	0900	0930	1000	1030			
	γπω π	Hr Meter	1772.5	1773.0	1773.5	1774.0	1774.5	1775.0			
WER	Engine Speed	RPM	1800	1800	1 800	1800	1800	1800			
	Oil Pressure	psi	50	50	60	50	50	50			
ENGINE / BLOWER	Water Temp	°F	130	140	140	140	150	156			
INE /	Alternator	Volts	13	13	13	13	/3	13			
ENG	Intake Vacuum	"Hg	+2	12	12	12	12	12			
	Gas Flow Fuel/Propane	cfh	100	100	100	30	80	80			
	Extraction Well Vac.	"H ₂ O	35	35	35	80	80	80			
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	12.66	12.66	12.66	19.43	19.43	19.43			
JOM /	Influent Vapor Temp.	°F	70	70	70	70	70	70			
ATMC	Air Temp	°F	69	70	71	73	75	77			
	Barometric Pressure	"Hg	30.10	30.10	30.10	30.10	30,10	30.10			
⊢	TPH	ppmv	_	_	-	_	3870	_			
VAPOR / INFLUENT	CO ₂	%	_	-	-	-	7,50	_			
IN /	СО	%	_	_	-		.01	_			
Por	O ₂	%	_	_	-	_	10.4				
>	H ₂ S	ppm	_	-	-	-	0	-			
	EVENT STARTED AT OBOSHOS. POSITIONED IN WELL PUMP APPROXIMATELY 22.5 FT										
	Broc. CONSISTENT WITH EVONT =/B PORFORMED ON WELL MW-Z. COULD NOT										
ا ر	MAINTAIN CONSTANT LIQUID FLOW. PLEPOSITACNED THE PUMP 1.5 FT LOWER AT										
NOTES	0830 AND ANOTHER 3-0 FF AT 0900 AND ANOTHER Z.O FF AT 0920 HRS. ADJUSTED										
² [PUMP PLATE DOWN AND INCREASED WELL VAC IN OPENER TO MAINTAIN A CONSTANT										
	LIQUID ROW.										
	TOTALIZER	GALS	4369.39	4372.62	4378.47	438634	4392.57	4401.43			
ER	Pump Rate	gals/min	,11	.20	26	.21	. 30	.26			
RECOVERY	Total Volume	gals	_	3,23	9.08	1,6.95	23,18	32.04			
22	NAPL	% Vol		SHEEN	SHOEN	SHEW	SHOEN	SHEEN			
	NAPL	Gals	_	_		_	_	-			
	Data Logger Head	6.95 ft	_	_	-	-	-	-			
A F	GW Depression	ft	-	_	-	-	-	-			
-	Extraction Well	DTNAPL	24.45								
	Extraction Well	DTGW	24.46								

CNAPL .01

	Remediation OF	ERATING D	DATA – EVEN	T# / D	PAGE :	# 4	ACUVAC I	MDP SYSTEM			
Locat	tion: Knight, San Juan	County, N	/ /	Project	Managers: I	aucher / Ge	eorge /Hend	ley / Morris			
		Date	7/25/17		-						
Well	# MW-11	Time	1100	1130	1200	1230	1300	1330			
_		Hr Meter	1775.5	1776.0	17765	1777.0	1777.5	1778.0			
	Engine Speed	RPM	1800	1800	1900	1800	1800	1800			
ENGINE / BLOWER	Oil Pressure	psi	50	50	50	50	50	56			
BLC	Water Temp	°F	150	150	156	150	150	150			
INE	Alternator	Volts	13	13	13	13	13	13			
ENG	Intake Vacuum	"Hg	12	12	12	12	12	12			
	Gas Flow Fuel/Propane	cfh	80	80	80	80	80	80			
	Extraction Well Vac.	"H₂O	86	80	86	80	80	80			
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	19.43	19.43	19.43	19.43	19.43	19.43			
NOW /	Influent Vapor Temp.	°F	70	70	70	70	70	70			
VACL	Air Temp	°F	81	84	85	86	88	89			
`	Barometric Pressure	"Hg	30.09	30.08	30.07	30.06	30.05	30,04			
5	TPH	ppmv	1	_	4100	-	-	-			
LUE	CO ₂	%	_	-	6.56	-	-	-			
VAPOR / INFLUENT	СО	%	_	_	0	-	-	-			
Por	O ₂	%	_	-	13.0	-	-	-			
\$	H ₂ S	ppm	-	_	0	~	80 80 19,43 70 88 30,05 	-			
	AT 1100 HRS LIQUID RECHARGE RATE DECREASED TO THE EXTEST THAT A STEADY										
	PLOW RATE COULD NOT BEI MAINTAINED. THE GW PUMP WAS THEN CYCLED ONLOTE										
ွ	EVERY 30 MINUTED, WHEN CYCLES ON THE PUMP RAN AT A LOW RATE FOR APPROX										
NOTES	10-15 MINUTES.										
_											
	Management of the second										
	TOTALIZER	GALS	4409.23	4413.72	4420.71	4427.53	4432.09	4437.63			
<u> </u>	Pump Rate	gals/min	.07	.12	.12.	.07	.09	.06			
RECOVERY	Total Volume	gals	39.84	44.33	51.32	58,54	GZ. 70	68.24			
¥	NAPL	% Vol	SHEEN	SHEED	SHEEN	SHEEN	SHEEN	SHEEN			
$ \bot $	NAPL	Gals	-	-		_	_	_			
	Data Logger Head	ft	-	-	-	-	-	-			
<u>.</u>	GW Depression	ft	-	_	-	_	_	U			
"	Extraction Well	DTNAPL					174AT AS THAT AS THEN CYCLE TRATE FOR 19432.09 .09 C2.70 SHEEN -				
	Extraction Well	DTGW			- 1 1 1 2						

A	AcuVac Remediation OF	PERATING D	OATA – EVENT	# 10	PAGE :	3	ACUVAC N	IDP SYSTEM
Locat	tion: Knight, San Juan	County, N	М	Project	Managers: I	aucher / Ge	eorge /Hendl	ey / Morris
Well	# mw-11	Date Time Hr Meter	7/25/17					
	Engine Speed	RPM	1800					
VER	Oil Pressure	psi	50	Desirence and				
ENGINE / BLOWER	Water Temp	°F	150					
NE / I	Alternator	Volts	/3					
ENGI	Intake Vacuum	"Hg	12					
	Gas Flow Fuel/Propane	cfh	80					
	Extraction Well Vac.	"H₂O	80			10 11		
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	19.43					
SPH JUM /	Influent Vapor Temp.	°F	70					
VACL	Air Temp	°F	88					
	Barometric Pressure	"Hg	30.02					
E	TPH	ppmv	3680					
VAPOR / INFLUENT	CO ₂	%	5.46					
NI /	со	%	0					
POR	O ₂	%	13.3					
>	H₂S	ppm	0					
NOTES	H2S ppm O AT 1330 THREATENING WATTHER WAS MOVING NEAR THE SITE FROM THE SOUTH AND THE WEST, THE WEATHER WAS WATCHED AND AT KNOW HIS THE MUTURE DECISION WAS MADE TO STOP WORK ON MW-11 DUE TO LOW LIQUID RECONSIVE AND TO GIVE ACUVE SUFFICIENT TIME TO DEMOBE BOTH MW-11 AND IF NECESSARY MW-4.							
	TOTALLER	GALS	4441.28					
ĒŘ	Pump Rate	gals/min						
RECOVERY	Total Volume	gals	71.89					
2	NAPL	% Vol	SHEEN					
	NAPL	Gals	-					
	Data Logger Head	ft	_					
EW	GW Depression	ft	_		20 10 20			
	Extraction Well	DTNAPL	-					
	Extraction Well	DTGW	25.06					


CNAPL &



KNIGHT #1 SAN JUAN COUNTY, NM

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-139058-1

Client Project/Site: ElPaso CGP Company, LLC - Knight #1

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madonna Myeis

Authorized for release by: 6/22/2017 11:58:22 AM Madonna Myers, Project Manager II (615)796-1870 madonna.myers@testamericainc.com

Designee for

Carol Webb, Project Manager II (850)471-6250

carol.webb@testamericainc.com

.....LINKS

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	6
Client Sample Results	7
QC Association	12
QC Sample Results	13
Chronicle	15
Certification Summary	16
Method Summary	17
Chain of Custody	18
Receint Checklists	19

4

R

9

11

12

Definitions/Glossary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - Knight #1

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 400-139058-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Pensacola

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Job ID: 400-139058-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-139058-1

Comments

No additional comments.

Receipt

The samples were received on 6/9/2017 11:11 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 2.7° C and 3.1° C.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

6

U

0

9

4.0

1 1

14

16

Detection Summary

Client: Stantec Consulting Services Inc

Client Sample ID: MW-1

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Lab Sample ID: 400-139058-1

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	120	5.0	ug/L		8021B	Total/NA
Ethylbenzene	350	5.0	ug/L	5	8021B	Total/NA
Xylenes, Total	36	25	ug/L	5	8021B	Total/NA

Client Sample ID: MW-2 Lab Sample ID: 400-139058-2

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	1.0	1.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-7 Lab Sample ID: 400-139058-3

Analyte	Result Qualifier	RL	Unit	Dil Fac D	Method	Prep Type
Benzene	20	1.0	ug/L		8021B	Total/NA
Ethylbenzene	33	1.0	ug/L	1	8021B	Total/NA
Xylenes, Total	390	5.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-8 Lab Sample ID: 400-139058-4

No Detections.

Client Sample ID: TRIP PLANK Lab Sample ID: 400-139058-5

No Detections.

This Detection Summary does not include radiochemical test results.

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - Knight #1 TestAmerica Job ID: 400-139058-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-139058-1	MW-1	Water	06/06/17 16:30	06/09/17 11:11
400-139058-2	MW-2	Water	06/06/17 18:10	06/09/17 11:11
400-139058-3	MW-7	Water	06/06/17 16:20	06/09/17 11:11
400-139058-4	MW-8	Water	06/06/17 18:00	06/09/17 11:11
400-139058-5	TRIP PLANK	Water	06/06/17 17:50	06/09/17 11:11

7

10

11

13

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Lab Sample ID: 400-139058-1

Matrix: Water

Date Collected: 06/06/17 16:30 Date Received: 06/09/17 11:11

Client Sample ID: MW-1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	120		5.0	ug/L			06/13/17 14:45	5
Ethylbenzene	350		5.0	ug/L			06/13/17 14:45	5
Toluene	<25		25	ug/L			06/13/17 14:45	5
Xylenes, Total	36		25	ug/L			06/13/17 14:45	5
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	80		78 - 124		-		06/13/17 14:45	- 5

7

10

11

13

Client: Stantec Consulting Services Inc

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Lab Sample ID: 400-139058-2

Matrix: Water

Date Collected: 06/06/17 18:10 Date Received: 06/09/17 11:11

Client Sample ID: MW-2

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	1.0		1.0	ug/L			06/14/17 04:40	1
Ethylbenzene	<1.0		1.0	ug/L			06/14/17 04:40	1
Toluene	<5.0		5.0	ug/L			06/14/17 04:40	1
Xylenes, Total	<5.0		5.0	ug/L			06/14/17 04:40	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	93		78 - 124		-		06/14/17 04:40	1

6

0

40

11

13

Client: Stantec Consulting Services Inc

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Lab Sample ID: 400-139058-3

Matrix: Water

Date Collected: 06/06/17 16:20 Date Received: 06/09/17 11:11

Client Sample ID: MW-7

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	20		1.0	ug/L			06/14/17 14:50	1
Ethylbenzene	33		1.0	ug/L			06/14/17 14:50	1
Toluene	<5.0		5.0	ug/L			06/14/17 14:50	1
Xylenes, Total	390		5.0	ug/L			06/14/17 14:50	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)			78 - 124		-		06/14/17 14:50	1

6

__

Ö

40

11

13

Client: Stantec Consulting Services Inc

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Client Sample ID: MW-8

Lab Sample ID: 400-139058-4

Date Collected: 06/06/17 18:00 Matrix: Water
Date Received: 06/09/17 11:11

Analyte	Result Qu	ualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/14/17 03:36	1
Ethylbenzene	<1.0		1.0	ug/L			06/14/17 03:36	1
Toluene	<5.0		5.0	ug/L			06/14/17 03:36	1
Xylenes, Total	<5.0		5.0	ug/L			06/14/17 03:36	1
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	97	78 - 12	4		-		06/14/17 03:36	1

6

8

10

11

13

Client: Stantec Consulting Services Inc

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Client Sample ID: TRIP PLANK

Date Collected: 06/06/17 17:50 Date Received: 06/09/17 11:11 Lab Sample ID: 400-139058-5

Matrix: Water

Method: 8021B - Volatile Org	janic Compounds (G0	C)						
Analyte	Result Qu	ualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/14/17 02:33	1
Ethylbenzene	<1.0		1.0	ug/L			06/14/17 02:33	1
Toluene	<5.0		5.0	ug/L			06/14/17 02:33	1
Xylenes, Total	<5.0		5.0	ug/L			06/14/17 02:33	1
Surrogate	%Recovery Q	ualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	98		78 - 124		-		06/14/17 02:33	1

6

Ō

46

4 4

12

QC Association Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

GC VOA

Analysis Batch: 356745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-139058-1	MW-1	Total/NA	Water	8021B	
400-139058-2	MW-2	Total/NA	Water	8021B	
400-139058-4	MW-8	Total/NA	Water	8021B	
400-139058-5	TRIP PLANK	Total/NA	Water	8021B	
MB 400-356745/2	Method Blank	Total/NA	Water	8021B	
LCS 400-356745/1001	Lab Control Sample	Total/NA	Water	8021B	
400-139054-A-3 MS	Matrix Spike	Total/NA	Water	8021B	
400-139054-A-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

Analysis Batch: 356920

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-139058-3	MW-7	Total/NA	Water	8021B	
MB 400-356920/2	Method Blank	Total/NA	Water	8021B	
LCS 400-356920/1001	Lab Control Sample	Total/NA	Water	8021B	
400-139062-B-5 MS	Matrix Spike	Total/NA	Water	8021B	
400-139062-B-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

3

5

8

9

10

11

TestAmerica Job ID: 400-139058-1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - Knight #1

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 400-356745/2

Matrix: Water

Analysis Batch: 356745

Client Sample ID: Method Blank

Prep Type: Total/NA

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/13/17 12:39	1
Ethylbenzene	<1.0		1.0	ug/L			06/13/17 12:39	1
Toluene	<5.0		5.0	ug/L			06/13/17 12:39	1
Xylenes, Total	<5.0		5.0	ug/L			06/13/17 12:39	1

MB MB

Surrogate Qualifier Limits %Recovery Prepared Analyzed 78 - 124 a,a,a-Trifluorotoluene (pid) 100 06/13/17 12:39

Lab Sample ID: LCS 400-356745/1001 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 356745

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	46.8		ug/L		94	85 - 115	
Ethylbenzene	50.0	47.9		ug/L		96	85 - 115	
Toluene	50.0	46.1		ug/L		92	85 - 115	
Xylenes, Total	150	141		ug/L		94	85 - 115	

LCS LCS

Limits %Recovery Qualifier Surrogate a,a,a-Trifluorotoluene (pid) 100 78 - 124

Lab Sample ID: 400-139054-A-3 MS

Matrix: Water

Analysis Batch: 356745

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Benzene <1.0 50.0 47.3 95 44 - 150 ug/L 70 - 142 Ethylbenzene <1.0 50.0 47.6 ug/L 95 Toluene <5.0 50.0 46.6 ug/L 93 69 - 136 ug/L <5.0 150 143 68 - 142 Xylenes, Total

MS MS

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 97 78 - 124

Lab Sample ID: 400-139054-A-3 MSD

Matrix: Water

Analysis Batch: 356745

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

7, 6.16 6661.16	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<1.0		50.0	48.3		ug/L		97	44 - 150	2	16	
Ethylbenzene	<1.0		50.0	48.5		ug/L		97	70 - 142	2	16	
Toluene	<5.0		50.0	46.7		ug/L		93	69 - 136	0	16	
Xylenes, Total	<5.0		150	147		ug/L		98	68 - 142	3	15	
										3		

MSD MSD

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 96 78 - 124

TestAmerica Pensacola

Page 13 of 19

6/22/2017

Dil Fac

TestAmerica Job ID: 400-139058-1

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - Knight #1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Water

Analysis Batch: 356920

Lab Sample ID: MB 400-356920/2

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RL Dil Fac Analyte Unit D Prepared Analyzed 1.0 Benzene <1.0 ug/L 06/14/17 10:25 06/14/17 10:25 Ethylbenzene <1.0 1.0 ug/L 06/14/17 10:25 Toluene <5.0 5.0 ug/L Xylenes, Total 5.0 ug/L 06/14/17 10:25 <5.0

MB MB Surrogate Qualifier Limits Dil Fac %Recovery Prepared Analyzed 78 - 124 a,a,a-Trifluorotoluene (pid) 107 06/14/17 10:25

Lab Sample ID: LCS 400-356920/1001

Matrix: Water

Analysis Batch: 356920

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

		Spike	LCS	LCS				%Rec.	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Benzene	50.0	55.6		ug/L		111	85 - 115	
	Ethylbenzene	50.0	55.2		ug/L		110	85 - 115	
	Toluene	50.0	54.2		ug/L		108	85 - 115	
	Xylenes, Total	150	166		ug/L		111	85 - 115	
н									

LCS LCS %Recovery Qualifier Limits Surrogate a,a,a-Trifluorotoluene (pid) 108 78 - 124

Lab Sample ID: 400-139062-B-5 MS

Matrix: Water

Analysis Batch: 356920

Client Sample ID: Matrix Spike Prep Type: Total/NA

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier A	dded	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	12		50.0	71.2		ug/L		118	44 - 150	
Ethylbenzene	<1.0		50.0	61.5		ug/L		123	70 - 142	
Toluene	<5.0		50.0	60.1		ug/L		118	69 _ 136	
Xylenes, Total	<5.0		150	189		ug/L		124	68 - 142	
	MS	MS								

Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 106 78 - 124

Lab Sample ID: 400-139062-B-5 MSD

Matrix: Water

Analysis Batch: 356920

Client Sample ID	: Matrix Spike Duplicate
	Prep Type: Total/NA

Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
12		50.0	71.2		ug/L		118	44 - 150	0	16
<1.0		50.0	62.0		ug/L		124	70 - 142	1	16
<5.0		50.0	60.6		ug/L		119	69 - 136	1	16
<5.0		150	191		ug/L		124	68 - 142	1	15
	Result 12 <1.0 <5.0	<1.0 <5.0	Result Qualifier Added 12 50.0 <1.0	Result Qualifier Added Result 12 50.0 71.2 <1.0	Result Qualifier Added Result Qualifier 12 50.0 71.2 <1.0	Result Qualifier Added Result Qualifier Unit 12 50.0 71.2 ug/L <1.0	Result Qualifier Added Result Qualifier Unit D 12 50.0 71.2 ug/L <1.0	Result Qualifier Added Result Qualifier Unit D %Rec 12 50.0 71.2 ug/L 118 <1.0	Result Qualifier Added Result Qualifier Unit D %Rec Limits 12 50.0 71.2 ug/L 118 44 - 150 <1.0	Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD 12 50.0 71.2 ug/L 118 44 - 150 0 <1.0

MSD MSD Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 106 78 - 124

TestAmerica Pensacola

Page 14 of 19

Lab Sample ID: 400-139058-1

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - Knight #1

Client Sample ID: MW-1

Date Collected: 06/06/17 16:30

Matrix: Water

Date Received: 06/09/17 11:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		5	5 mL	5 mL	356745	06/13/17 14:45	MKA	TAL PEN
	Instrumen	t ID: CH CAROL								

Client Sample ID: MW-2 Lab Sample ID: 400-139058-2

Date Collected: 06/06/17 18:10

Matrix: Water

Date Received: 06/09/17 11:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356745	06/14/17 04:40	MKA	TAL PEN
	Instrumer	nt ID: CH_CAROL								

Client Sample ID: MW-7 Lab Sample ID: 400-139058-3

Date Collected: 06/06/17 16:20

Matrix: Water

Matrix: Water

Date Received: 06/09/17 11:11

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Number or Analyzed Туре Run Factor Amount Analyst 356920 CMW Total/NA 8021B 06/14/17 14:50 TAL PEN Analysis 5 mL 5 mL Instrument ID: CH_PAULA

Client Sample ID: MW-8 Lab Sample ID: 400-139058-4

Date Collected: 06/06/17 18:00

Date Received: 06/09/17 11:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356745	06/14/17 03:36	MKA	TAL PEN
	Instrume	nt ID: CH_CAROL								

Lab Sample ID: 400-139058-5 **Client Sample ID: TRIP PLANK**

Date Collected: 06/06/17 17:50

Matrix: Water

Date Received: 06/09/17 11:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	356745	06/14/17 02:33	MKA	TAL PEN
	Instrume	nt ID: CH_CAROL								

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-17
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-17
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-17
Illinois	NELAP	5	200041	10-09-17
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-17
Kentucky (UST)	State Program	4	53	06-30-17
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-17
Massachusetts	State Program	1	M-FL094	06-30-17
Michigan	State Program	5	9912	06-30-17
New Jersey	NELAP	2	FL006	06-30-17
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-17
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-17
Tennessee	State Program	4	TN02907	06-30-17
Texas	NELAP	6	T104704286-16-10	09-30-17
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-17

3

4

5

7

10

11

12

13

Method Summary

Client: Stantec Consulting Services Inc

Project/Site: EIPaso CGP Company, LLC - Knight #1

TestAmerica Job ID: 400-139058-1

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

-

5

7

8

4 4

12

13

TestAmerica

Chain of Custody Record

Phone (850) 474-1001 Fax (850) 478-2671

Pensacola, FL 32514

3355 McLemore Drive

TestAmerica Pensacola

1 2 3 4 5 6 N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S203
S - H2SO4
T - TSP Dodecahydrate
U - Acetone
V - MCAA
W - pH 4-5
Z - other (specify) Special Instructions/Note: 2 Company Company Company Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monti 400-65865-26940.1 Preservation Codes A - HCL
B - NaOH
C - Zn Acetate
C - Nitric Acid
E - NahSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid (1) Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA Other: Total Number of containers 18 Date/Time: Method of Shipment: 400-139058 COC Analysis Requested C and Other Remarks: Special Instructions/QC Requirements: Lab PM: Webb, Carol M E-Mail: carol.webb@testamericainc.com 13 Received by: Received by: 2 2 4 8021B - BTEX 8021 Field Fiftered Sample (Yes or No) Stante Sompany Preservation Code: Matrix 3 3 3 Company 3 3 S. Gardner & J. Garvey Type (C=comp, G=grab) Sample Radiological 5 9 9 9 Physics 291 2239 845 Purchase Order Requested Strudend Sample 1620 1800 1750 1810 6/6/2017 11630 Time Date: Unknown FAT Requested (days): Due Date Requested: 6 8 2017 Date/Time: C 6 2017 6/6/2017 6/6/2017 Sample Date 1/05/01/01 Project #: 40005479 SSOW#: Date/Time: Poison B Skin Irritant Defiverable Requested: I, II, III, IV, Other (specify) Custody Seal No. Flammable Possible Hazard Identification Minduished by: sarah.gardner@mwhglobal.com Company: Stantec Consulting Services Inc TRIP BLANK Empty Kit Relinquished by 1560 Broadway Suite 1800 Custody Seals Intact:

Δ Yes Δ No Client Information Sample Identification Lnight # mw-2 Ms. Sarah Gardner mm-8 303-291-2239(Tel) MW-7 Won-Hazard mWelinquished by: inquished by: State, Zip: CO, 80202 Project Name: Knight #1 Denver

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc Job Number: 400-139058-1

Login Number: 139058 List Source: TestAmerica Pensacola

List Number: 1

Creator: Johnson, Jeremy N

Creator: Johnson, Jeremy N		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.1°C 2.7 IR2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

2

А

5

6

8

10

12

13

2

3

5

7

8

11

13

1.

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-145959-1

Client Project/Site: El Paso CGP Company - Knight 1

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madonna Myeis

Authorized for release by: 11/20/2017 12:01:33 PM Madonna Myers, Project Manager II (615)796-1870 madonna.myers@testamericainc.com

Designee for

Carol Webb, Project Manager II (850)471-6250

carol.webb@testamericainc.com

..... Links

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents	
Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	
Sample Summary	6
Client Sample Results	7
QC Association	14
QC Sample Results	15
Chronicle	18
Certification Summary	20
Method Summary	21
Chain of Custody	22
Receipt Checklists	23

Definitions/Glossary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company - Knight 1

TestAmerica Job ID: 400-145959-1

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

 $\overline{\mathsf{X}}$ Surrogate is outside control limits

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

PQL Practical Quantitation Limit

QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin) **TEQ**

Case Narrative

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1 TestAmerica Job ID: 400-145959-1

Job ID: 400-145959-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-145959-1

Comments

No additional comments.

Receipt

The samples were received on 11/14/2017 9:01 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.0° C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Per client instructions, method 8260 was used in place of method 8021.

GC/MS VOA

Method(s) 8260C: Surrogate recovery for the following sample was outside control limits: MW-11 (400-145959-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

5

6

7

8

9

. .

12

13

RL

1.0

1.0

1.0

10

RL

10

10

100

RL

1.0

1.0

10

Result Qualifier

Result Qualifier

Result Qualifier

64

130

900

8.3

2.5

170

89

2.3

74

200

Unit

ug/L

ug/L

ug/L

ug/L

Unit

ug/L

ug/L

ug/L

Unit

ug/L

ug/L

ug/L

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

Client Sample ID: MW-1

Client Sample ID: MW-2

Client Sample ID: MW-4

Client Sample ID: MW-7

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

No Detections.

Analyte

Benzene

Analyte

Benzene

Ethylbenzene

Xylenes, Total

Ethylbenzene

Xylenes, Total

TestAmerica Job ID: 400-145959-1

Lab Sample ID: 400-145959-1

Lab Sample ID: 400-145959-2

Lab Sample ID: 400-145959-3

Lab Sample ID: 400-145959-4

Lab Sample ID: 400-145959-5

Lab Sample ID: 400-145959-6

Lab Sample ID: 400-145959-7

Method

8260C

8260C

8260C

8260C

Method

8260C

8260C

8260C

Method

8260C

8260C 8260C

Dil Fac D

1

1

Dil Fac D

10

10

10

Dil Fac D

1

1

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA Total/NA

Total/NA

No	Detections.

Client Sample ID: MW-8

Analyte Result Qualifier RL Unit Dil Fac D Method Prep Type Total/NA Benzene 3.3 1.0 ug/L 8260C Ethylbenzene 2.7 ug/L 8260C Total/NA 1.0 1 8260C Total/NA Xylenes, Total 25 10 ug/L 1

Client Sample ID: TRIP BLANK

No Detections.

This Detection Summary does not include radiochemical test results.

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

TestAmerica Job ID: 400-145959-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-145959-1	MW-1	Water	11/10/17 14:18	11/14/17 09:01
400-145959-2	MW-2	Water	11/10/17 14:12	11/14/17 09:01
400-145959-3	MW-4	Water	11/10/17 14:40	11/14/17 09:01
400-145959-4	MW-7	Water	11/10/17 13:49	11/14/17 09:01
400-145959-5	MW-8	Water	11/10/17 13:44	11/14/17 09:01
400-145959-6	MW-11	Water	11/10/17 14:00	11/14/17 09:01
400-145959-7	TRIP BLANK	Water	11/10/17 13:30	11/14/17 09:01

2

4

6

8

9

10

1 1

13

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

TestAmerica Job ID: 400-145959-1

Lab Sample ID: 400-145959-1 **Client Sample ID: MW-1** Date Collected: 11/10/17 14:18

Matrix: Water

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	Organic Compounds by C	SC/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	89	1.0	ug/L			11/17/17 19:19	1
Toluene	2.3	1.0	ug/L			11/17/17 19:19	1
Ethylbenzene	74	1.0	ug/L			11/17/17 19:19	1
Xylenes, Total	200	10	ug/L			11/17/17 19:19	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108	81 - 121				11/17/17 19:19	1
4-Bromofluorobenzene	86	78 - 118				11/17/17 19:19	1
Toluene-d8 (Surr)	110	80 - 120				11/17/17 19:19	1

Client: Stantec Consulting Services Inc

Client Sample ID: MW-2

Date Collected: 11/10/17 14:12

Date Received: 11/14/17 09:01

Project/Site: El Paso CGP Company - Knight 1

TestAmerica Job ID: 400-145959-1

Lab Sample ID: 400-145959-2

Matrix: Water

Method: 8260C - Volatile Organic Compounds by GC/MS Analyte Result Qualifier RL Unit D Prepared Dil Fac **Analyzed** Benzene <1.0 1.0 ug/L 11/17/17 19:08 Toluene <1.0 1.0 ug/L 11/17/17 19:08 ug/L Ethylbenzene <1.0 1.0 11/17/17 19:08 10 Xylenes, Total <10 ug/L 11/17/17 19:08 Surrogate %Recovery Qualifier Prepared Limits Analyzed Dil Fac Dibromofluoromethane 108 81 - 121 11/17/17 19:08 4-Bromofluorobenzene 93 78 - 118 11/17/17 19:08 Toluene-d8 (Surr) 93 80 - 120 11/17/17 19:08

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

Lab Sample ID: 400-145959-3

TestAmerica Job ID: 400-145959-1

Matrix: Water

Date Collected: 11/10/17 14:40 Date Received: 11/14/17 09:01

Client Sample ID: MW-4

Method: 8260C - Volatile	Organic Compounds by	GC/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	64	10	ug/L			11/18/17 03:24	10
Toluene	<10	10	ug/L			11/18/17 03:24	10
Ethylbenzene	130	10	ug/L			11/18/17 03:24	10
Xylenes, Total	900	100	ug/L			11/18/17 03:24	10
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104	81 - 121				11/18/17 03:24	10
4-Bromofluorobenzene	96	78 - 118				11/18/17 03:24	10
Toluene-d8 (Surr)	93	80 - 120				11/18/17 03:24	10

Page 9 of 23

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company - Knight 1

Lab Sample ID: 400-145959-4

TestAmerica Job ID: 400-145959-1

Matrix: Water

Date Collected: 11/10/17 13:49 Date Received: 11/14/17 09:01

Client Sample ID: MW-7

Method: 8260C - Volatile	Organic Compounds	s by GC/MS					
Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	8.3	1.0	ug/L			11/17/17 22:03	1
Toluene	<1.0	1.0	ug/L			11/17/17 22:03	1
Ethylbenzene	2.5	1.0	ug/L			11/17/17 22:03	1
Xylenes, Total	170	10	ug/L			11/17/17 22:03	1
Surrogate	%Recovery Qua	alifier Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	104	81 - 121		•		11/17/17 22:03	1
4-Bromofluorobenzene	106	78 - 118				11/17/17 22:03	1
Toluene-d8 (Surr)	91	80 - 120				11/17/17 22:03	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

Client Sample ID: MW-8

TestAmerica Job ID: 400-145959-1

Lab Sample ID: 400-145959-5

Matrix: Water

Date Collected: 11/10/17 13:44 Date Received: 11/14/17 09:01

Method: 8260C - Volatile (Organic Compounds	by GC/MS					
Analyte	Result Quali	ifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			11/17/17 22:32	1
Toluene	<1.0	1.0	ug/L			11/17/17 22:32	1
Ethylbenzene	<1.0	1.0	ug/L			11/17/17 22:32	1
Xylenes, Total	<10	10	ug/L			11/17/17 22:32	1
Surrogate	%Recovery Qual	lifier Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108	81 - 121				11/17/17 22:32	1
4-Bromofluorobenzene	93	78 - 118				11/17/17 22:32	1
Toluene-d8 (Surr)	90	80 - 120				11/17/17 22:32	1
Xylenes, Total Surrogate Dibromofluoromethane 4-Bromofluorobenzene	**Recovery Quality 108 93 93 93 93 94 95 95 95 95 95 95 95	10 lifier Limits 81 - 121 78 - 118			Prepared	11/17/17 22:32 Analyzed 11/17/17 22:32 11/17/17 22:32	Dil

Client: Stantec Consulting Services Inc

Client Sample ID: MW-11

Analyte

Toluene

Benzene

Ethylbenzene

Project/Site: El Paso CGP Company - Knight 1

Lab Sample ID: 400-145959-6

TestAmerica Job ID: 400-145959-1

Matrix: Water

Date Collected: 11/10/17 14:00 Date Received: 11/14/17 09:01

Method: 8260C - Volatile Organic Compounds by GC/MS

Result Qualifier

3.3

<1.0

2.7

D	Prepared	Analyzed	Dil Fac
		11/17/17 23:02	1
		11/17/17 23:02	1

11/17/17 23:02

Xylenes, Total	25		10	ug/L		11/17/17 23:02	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Dibromofluoromethane	102		81 - 121			11/17/17 23:02	1
4-Bromofluorobenzene	121	X	78 - 118			11/17/17 23:02	1
Toluene-d8 (Surr)	93		80 - 120			11/17/17 23:02	1

RL

1.0

1.0

1.0

Unit

ug/L

ug/L

ug/L

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

Lab Sample ID: 400-145959-7

TestAmerica Job ID: 400-145959-1

Matrix: Water

Client Sample ID: TRIP BLANK Date Collected: 11/10/17 13:30

Date Received: 11/14/17 09:01

Organic Compou	ınds by G	C/MS					
Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
<1.0		1.0	ug/L			11/17/17 21:05	1
<1.0		1.0	ug/L			11/17/17 21:05	1
<1.0		1.0	ug/L			11/17/17 21:05	1
<10		10	ug/L			11/17/17 21:05	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
109		81 - 121				11/17/17 21:05	1
93		78 - 118				11/17/17 21:05	1
92		80 - 120				11/17/17 21:05	1
	Result	Result Qualifier	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Result Qualifier RL Unit <1.0	Result Qualifier RL Unit D <1.0	Result Qualifier RL Unit D Prepared <1.0	Result Qualifier RL Unit D Prepared Analyzed <1.0

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1 TestAmerica Job ID: 400-145959-1

GC/MS VOA

Analysis Batch: 376306

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-145959-1	MW-1	Total/NA	Water	8260C	
MB 400-376306/5	Method Blank	Total/NA	Water	8260C	
LCS 400-376306/3	Lab Control Sample	Total/NA	Water	8260C	
400-145965-A-2 MS	Matrix Spike	Total/NA	Water	8260C	
400-145965-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

Analysis Batch: 376424

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-145959-2	MW-2	Total/NA	Water	8260C	
400-145959-3	MW-4	Total/NA	Water	8260C	
400-145959-4	MW-7	Total/NA	Water	8260C	
400-145959-5	MW-8	Total/NA	Water	8260C	
400-145959-6	MW-11	Total/NA	Water	8260C	
400-145959-7	TRIP BLANK	Total/NA	Water	8260C	
MB 400-376424/4	Method Blank	Total/NA	Water	8260C	
LCS 400-376424/1002	Lab Control Sample	Total/NA	Water	8260C	
400-145959-2 MS	MW-2	Total/NA	Water	8260C	
400-145959-2 MSD	MW-2	Total/NA	Water	8260C	

A

6

8

9

10

12

13

4 /

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company - Knight 1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 400-376306/5

Matrix: Water

Analysis Batch: 376306

Client Sample ID: Method Blank

Prep Type: Total/NA

	MR MR						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			11/17/17 09:20	1
Toluene	<1.0	1.0	ug/L			11/17/17 09:20	1
Ethylbenzene	<1.0	1.0	ug/L			11/17/17 09:20	1
Xylenes, Total	<10	10	ug/L			11/17/17 09:20	1

MB MB Surrogate Qualifier Limits %Recovery Prepared Analyzed Dil Fac Dibromofluoromethane 81 - 121 11/17/17 09:20 96 4-Bromofluorobenzene 88 78 - 118 11/17/17 09:20 Toluene-d8 (Surr) 105 80 - 120 11/17/17 09:20

Lab Sample ID: LCS 400-376306/3

Matrix: Water

Analysis Batch: 376306

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Added Result Qualifier Analyte Unit D %Rec Limits 50.0 Benzene 47.6 ug/L 95 70 - 130 Toluene 50.0 50.0 ug/L 100 70 - 130 50.0 50.3 101 Ethylbenzene ug/L 70 - 130 Xylenes, Total 100 98.6 ug/L 99 70 - 130

LCS LCS %Recovery Qualifier Limits Surrogate Dibromofluoromethane 96 81 - 121 4-Bromofluorobenzene 84 78 - 118 Toluene-d8 (Surr) 96 80 - 120

Lab Sample ID: 400-145965-A-2 MS

Matrix: Water

Analysis Batch: 376306

Client Sample ID: Matrix Spike Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Sample Sample Spike MS MS %Rec. Result Qualifier Added Result Qualifier Limits **Analyte** Unit D %Rec Benzene <1.0 50.0 50.3 ug/L 101 56 - 142 Toluene <1.0 50.0 49.7 99 ug/L 65 - 130Ethylbenzene <1.0 50.0 51.4 ug/L 102 58 - 131 Xylenes, Total <10 100 101 ug/L 101 59 - 130

MS MS Surrogate Qualifier Limits %Recovery Dibromofluoromethane 101 81 - 121 4-Bromofluorobenzene 87 78 - 118 Toluene-d8 (Surr) 96 80 - 120

Lab Sample ID: 400-145965-A-2 MSD

Matrix: Water

Analysis Batch: 376306

Analysis Batom or occo												
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<1.0		50.0	47.4		ug/L		95	56 - 142	6	30	
Toluene	<1.0		50.0	48.5		ua/L		97	65 - 130	2	30	

TestAmerica Pensacola

Prep Type: Total/NA

Page 15 of 23

11/20/2017

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-145965-A-2 MSD

Matrix: Water

Analysis Batch: 376306

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

MSD MSD **RPD** Sample Sample Spike %Rec. Result Qualifier Added Result Qualifier Limits RPD Analyte Unit %Rec Limit Ethylbenzene <1.0 50.0 47.7 ug/L 94 58 - 131 30 Xylenes, Total <10 100 95.6 ug/L 96 59 - 130 6 30

MSD MSD Surrogate %Recovery Qualifier Limits 81 - 121 Dibromofluoromethane 100 4-Bromofluorobenzene 88 78 - 118 Toluene-d8 (Surr) 97 80 - 120

Lab Sample ID: MB 400-376424/4

Matrix: Water

Analysis Batch: 376424

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene 1.0 ug/L 11/17/17 18:39 <1.0 Toluene 1.0 ug/L 11/17/17 18:39 <1.0 ug/L Ethylbenzene <1.0 1.0 11/17/17 18:39 Xylenes, Total <10 10 ug/L 11/17/17 18:39

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane 109 81 - 121 11/17/17 18:39 4-Bromofluorobenzene 96 78 - 118 11/17/17 18:39 90 80 - 120 Toluene-d8 (Surr) 11/17/17 18:39

Lab Sample ID: LCS 400-376424/1002

Matrix: Water

Analysis Batch: 376424

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	54.4		ug/L		109	70 - 130	· ——
Toluene	50.0	51.5		ug/L		103	70 - 130	
Ethylbenzene	50.0	52.6		ug/L		105	70 - 130	
Xylenes, Total	100	104		ug/L		104	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	101		81 - 121
4-Bromofluorobenzene	91		78 - 118
Toluene-d8 (Surr)	93		80 - 120

Lab Sample ID: 400-145959-2 MS

Matrix: Water

Analysis Batch: 376424

Analysis Batom 610424	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<1.0		50.0	51.8		ug/L		104	56 - 142
Toluene	<1.0		50.0	46.8		ug/L		94	65 - 130
Ethylbenzene	<1.0		50.0	46.8		ug/L		94	58 - 131
Xylenes, Total	<10		100	94.1		ug/L		94	59 - 130

TestAmerica Pensacola

Client Sample ID: MW-2

Prep Type: Total/NA

Page 16 of 23

11/20/2017

QC Sample Results

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1 TestAmerica Job ID: 400-145959-1

2

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-145959-2 MS

Matrix: Water

Analysis Batch: 376424

Client Sample ID: MW-2 Prep Type: Total/NA

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Dibromofluoromethane	100		81 - 121
4-Bromofluorobenzene	95		78 - 118
Toluene-d8 (Surr)	94		80 - 120

Lab Sample ID: 400-145959-2 MSD

Matrix: Water

Analysis Batch: 376424

Client Sample ID: MW-2 Prep Type: Total/NA

randigoto Datom Croizi	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	53.0	-	ug/L		106	56 - 142	2	30
Toluene	<1.0		50.0	49.1		ug/L		98	65 - 130	5	30
Ethylbenzene	<1.0		50.0	49.8		ug/L		100	58 - 131	6	30
Xylenes, Total	<10		100	98.9		ug/L		99	59 - 130	5	30

	MSD MSD	
Surrogate	%Recovery Qualifier	Limits
Dibromofluoromethane	99	81 - 121
4-Bromofluorobenzene	96	78 ₋ 118
Toluene-d8 (Surr)	92	80 - 120

a

10

11

14

13

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company - Knight 1

Client Sample ID: MW-1 Lab Sample ID: 400-145959-1

Date Collected: 11/10/17 14:18 Matrix: Water

Date Received: 11/14/17 09:01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376306	11/17/17 19:19	RS	TAL PEN
	Instrument	ID: CH LARS								

Client Sample ID: MW-2 Lab Sample ID: 400-145959-2 **Matrix: Water**

Date Collected: 11/10/17 14:12

Date Received: 11/14/17 09:01

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260C	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376424	Prepared or Analyzed 11/17/17 19:08	Analyst CAR	Lab TAL PEN
	Instrument	ID: Einstein								

Client Sample ID: MW-4 Lab Sample ID: 400-145959-3 **Matrix: Water**

Date Collected: 11/10/17 14:40

Date Received: 11/14/17 09:01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		10	5 mL	5 mL	376424	11/18/17 03:24	CAR	TAL PEN
	Instrumen	t ID: Einstein								

Lab Sample ID: 400-145959-4 Client Sample ID: MW-7

Date Collected: 11/10/17 13:49

Date Received: 11/14/17 09:01

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260C	Run	Dil Factor	Initial Amount 5 mL	Final Amount 5 mL	Batch Number 376424	Prepared or Analyzed 11/17/17 22:03	Analyst CAR	Lab TAL PEN
	Instrument	ID: Einstein								

Lab Sample ID: 400-145959-5 **Client Sample ID: MW-8**

Date Collected: 11/10/17 13:44

Date Received: 11/14/17 09:01

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376424	11/17/17 22:32	CAR	TAL PEN
	Instrumen	t ID: Einstein								

Lab Sample ID: 400-145959-6 Client Sample ID: MW-11 **Matrix: Water**

Date Collected: 11/10/17 14:00

Date Received: 11/14/17 09:01	
_	

Pr	ер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
	tal/NA	Analysis	8260C ID: Einstein		1	5 mL	5 mL	376424	11/17/17 23:02	CAR	TAL PEN

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Stantec Consulting Services Inc

Client Sample ID: TRIP BLANK

Project/Site: El Paso CGP Company - Knight 1

TestAmerica Job ID: 400-145959-1

Lab Sample ID: 400-145959-7

Date Collected: 11/10/17 13:30 Matrix: Water

Date Received: 11/14/17 09:01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C			5 mL	5 mL	376424	11/17/17 21:05	CAR	TAL PEN
	Instrument	ID: Einstein								

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

5

6

0

4.0

11

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company - Knight 1

TestAmerica Job ID: 400-145959-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	12-31-17
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

3

6

8

11

14

Method Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company - Knight 1 TestAmerica Job ID: 400-145959-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

2

3

4

5

6

8

11

16

N - None
O - Ashaoz
P - Na204S
Q - Na2803
R - Na28233
S - H2804
U - Acetone
U - Acetone
W - PH 4-5
Z - other (specify) Ver: 08/04/2016 Special Instructions/Note: 20373028 Months Sompany M - Hexane Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Month
Special Instructions/QC Requirements: 400-69062-27996.1 reservation Codes: Res ARF G - Amchlor H - Ascorbic Acid 060 A - HCL B - NaOH C - Zn Acetate D - Nitric Acid E - NaHSO4 F - MeOH Page: Page 1 of 1 I - Ice J - DI Water K - EDTA L - EDA DeterTime: Sate/Time: Method of Shipment: ナン Carrier Tracking No(s) 00-145959 COC Coder Temperature(s) *C and Other Remarks: **Analysis Requested** Lab PM: Webb, Carol M E-Mail: carol.webb@testamericainc.com received by ceived by: Received by: (6 0 8021B - BTEX 8021 4 d Q K 4 V E E Company Matrix
(W-water,
8-solid,
O-wasteloll,
BT-Tiscue, A-Ar.) Company Company 10-54 (5-570-05-17-546-11)
Project # (2015-17-546-11)
40005479
SSOW#: Sample Type (C=comp, G=grab) Radiological Phone: 1353 3 E 0441 1344 1400 1330 Purchase Order Requested Sample 1418 1349 412 Date: Unknown (days): 10 day Due Date Requested: Sampler: SMS Sample Date 1/10/17 L1/01/11 LION 1/10/1/W T/10/11 Date/Time: Date/Time: 1110 Poison B Skin Irritant Deliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Phone (850) 474-1001 Fax (850) 478-2671 Non-Hazard Flammable Possible Hazard Identification sarah.gardner@mwhglobal.com Company: Stantec Consulting Services Inc Empty Kit Relinquished by: 1560 Broadway Suite 1800 Trio Blank Custody Seals Intact: Sample Identification Client Information Project Name: Knight #1 Nov 2017 RW-8 Client Contact: Ms. Sarah Gardner L-MM M. I 303-291-2239(Tel) 1 - 3W MW telinquished by rquished by: M inquished by State, Zip: CO, 80202 City: Denver

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

Chain of Custody Record

TestAmerica Pensacola

Pensacola, FL 32514 3355 McLemore Drive

Client: Stantec Consulting Services Inc

Job Number: 400-145959-1

Login Number: 145959 List Source: TestAmerica Pensacola

List Number: 1

Creator: Johnson, Jeremy N

Creator. Johnson, Jeremy N				
Question	Answer	Comment		
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A			
The cooler's custody seal, if present, is intact.	True			
Sample custody seals, if present, are intact.	N/A			
The cooler or samples do not appear to have been compromised or tampered with.	True			
Samples were received on ice.	True			
Cooler Temperature is acceptable.	True			
Cooler Temperature is recorded.	True	0.0°C IR7		
COC is present.	True			
COC is filled out in ink and legible.	True			
COC is filled out with all pertinent information.	True			
Is the Field Sampler's name present on COC?	True			
There are no discrepancies between the containers received and the COC.	True			
Samples are received within Holding Time (excluding tests with immediate HTs)	True			
Sample containers have legible labels.	True			
Containers are not broken or leaking.	True			
Sample collection date/times are provided.	True			
Appropriate sample containers are used.	True			
Sample bottles are completely filled.	True			
Sample Preservation Verified.	True			
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True			
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True			
Multiphasic samples are not present.	True			
Samples do not require splitting or compositing.	True			
Residual Chlorine Checked.	N/A			