2017 ANNUAL GROUNDWATER REPORT

Gallegos Canyon Unit #124E NMOCD Case#: 3RP-407-0 Meter Code: 95608 T28N, R12W, Sec 35, Unit N

SITE DETAILS

Site Location: Latitude: 36.614105 N, Longitude: -108.083662 W

Land Type: Navajo

Operator: BP America Production Company

SITE BACKGROUND

Environmental Remediation activities at the Gallegos Canyon Unit #124E (Site) are managed pursuant to the procedures set forth in the document entitled, "Remediation Plan for Groundwater Encountered during Pit Closure Activities" (Remediation Plan, El Paso Natural Gas Company / El Paso Field Services Company, 1995). This Remediation Plan was conditionally approved by the New Mexico Oil Conservation Division (OCD) in correspondence dated November 30, 1995; and the NMOCD approval conditions were adopted into El Paso CGP Company (EPCGP's) program methods. Currently, the Site is operated by BP America Production Company and is active.

The Site is located on Navajo Agricultural Products Industry land. An initial site assessment was completed in January 1995, and an excavation to approximately 12 feet below ground surface (bgs) was completed in October 1995, removing approximately 196 cubic yards (cy) of soil. Various site investigations have occurred since 1995. Monitoring wells were installed in 1995 (MW-1) and 2013 (MW-2 through MW-7). Monitoring well MW-2 was plugged and abandoned on January 19, 2014. Currently, groundwater sampling is conducted on a semi-annual basis. In 2017, free product was observed in monitoring well MW-1 and approximately 0.20 milliliters was removed by hand-bailing.

GROUNDWATER SAMPLING ACTIVITIES

Pursuant to the Remediation Plan, Stantec provided field work notifications via email to the NMOCD on May 30, 2017 and November 6, 2017, prior to initiating groundwater sampling activities at the Site. Copies of the 2017 NMOCD notifications are provided in Appendix A. On June 10 and November 11, 2017, water levels were gauged at MW-1, MW-3, MW-4, MW-5, MW-6, and MW-7. Groundwater samples were collected from MW-3, MW-4, MW-5, MW-6, and MW-7 using HydraSleeveTM (HydraSleeve) no-purge groundwater sampling devices. The HydraSleeves were set during the previous sampling event approximately 0.5 foot above termination depth of the monitoring wells using a suspension tether and stainless steel weights to collect a sample from the screened interval.

Groundwater samples were placed into laboratory-supplied sample containers, packed on ice, and shipped under standard chain-of-custody protocols to TestAmerica Laboratories, Inc. in Pensacola, Florida where they were analyzed for benzene, toluene, ethylbenzene, and total xylenes (BTEX). As requested by the OCD on November 13, 2018, BTEX constituents were analyzed using United States Environmental Protection Agency (EPA) Method 8260 during the November sampling event. The unused sample water is

2017 ANNUAL GROUNDWATER REPORT

Gallegos Canyon Unit #124E NMOCD Case#: 3RP-407-0 Meter Code: 95608 T28N, R12W, Sec 35, Unit N

combined in a waste container and taken to Basin Disposal, Inc. for disposal. Waste disposal documentation was included as Appendix B.

FREE PRODUCT RECOVERY

Free product was observed in monitoring well MW-1 during both semi-annual sampling events. In June 2017, 0.10 feet of product was observed and 20 milliliters (mL) were recovered by hand-bailing. In November 2017, 0.01 feet of product was observed and a trace amount was recovered by hand-bailing. The recovered free product was disposed of with wastewater generated during monitoring well sampling activities.

Mobile dual phase extraction (MDPE) events were completed on July 20 through 23, September 21 through 22, and September 26 through 27, 2017, by AcuVac Remediation, LLC, of Houston, Texas (AcuVac). The purpose of the MDPE events was to evaluate more aggressive free product recovery methods from monitoring well MW-1. MDPE is a process combining soil vapor extraction (SVE) with groundwater depression to enhance the removal of liquid and vapor phase hydrocarbons. A submersible pump is used to simultaneously remove dissolved-phase contaminated groundwater, inducing a hydraulic gradient toward the extraction well, and creating groundwater depression to expose the hydrocarbon smear zone to SVE. Recovered liquids were transferred to a portable storage tank for off-site disposal. Recovered vapors were used as fuel and burned in the MDPE internal combustion engine (ICE), resulting in little to no emissions. Power generated by the ICE is used to create the induced vacuum for SVE.

Three MDPE events were completed, one 72-hour event and two 24-hour events using MW-1 as an extraction well. Based on field data collected by AcuVac, approximately 10.4 gallons of hydrocarbons were recovered from MW-1 during event #1, approximately 1.7 gallons of hydrocarbons were recovered during event #2A, and approximately 1.9 gallons of hydrocarbons were recovered during event #2B. AcuVac's report summarizing the MDPE events at the Site is presented as Appendix C. Recovered fluids from the MDPE event where transported to Basin for disposal. Waste disposal documentation is included as Appendix B.

SUMMARY TABLES

Historic analytical and water level data are summarized in Table 1 and Table 2, respectively. When free product was present, static water level elevations were corrected for measurable thicknesses of free product (specific gravity of 0.75).

SITE MAPS

Groundwater analytical maps (Figures 1 and 3) and groundwater elevation contour maps (Figures 2 and 4) summarize results of the 2017 groundwater sampling and gauging events.

2017 ANNUAL GROUNDWATER REPORT

Gallegos Canyon Unit #124E NMOCD Case#: 3RP-407-0 Meter Code: 95608 T28N, R12W, Sec 35, Unit N

ANALYTICAL LAB REPORTS

The groundwater analytical lab reports are included as Appendix D.

GROUNDWATER RESULTS

- The groundwater elevations indicate the flow direction at the Site was to the north in June and to the west-southwest in November (see Figures 2 and 4).
- Free product was observed in MW-1 in 2017 sampling events. No samples were collected from MW-1 in 2017.
- Concentrations of benzene were either below the New Mexico Water Quality Control Commission (NMWQCC) standard (10 micrograms per liter [μg/L]) or not detected in any of the Site monitoring wells sampled in 2017.
- Concentrations of toluene were not detected in any of the Site monitoring wells sampled in 2017.
- Concentrations of ethylbenzene were either below the NMWQCC standard (750 µg/L) or not detected in any of the Site monitoring wells sampled in 2017.
- Concentrations of total xylenes were not detected in any of the Site monitoring wells sampled in 2017.

PLANNED FUTURE ACTIVITIES

Groundwater monitoring events will continue to be conducted on a semi-annual basis. Groundwater samples will be collected from monitoring wells not containing free product and analyzed for BTEX constituents using EPA Method 8260. No additional activities are planned for 2018 at this time.

The activities completed in 2018 and their results will be summarized in the 2018 Annual Report, completed for submittal in early 2019.

P:\Word Processing\KINDER MORGAN\EL PASO - NM\GALLEGOS CANYON UNIT #124E\2017 ANNUAL REPORT (GALLEGOS CANYON UNIT #124E)\2018-03_Rpt_GCU #124_2017 Annual Report_Final.doc

TABLES

TABLE 1 – GROUNDWATER ANALYTICAL RESULTS

TABLE 2 – GROUNDWATER ELEVATION RESULTS

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

	(Gallegos C	anyon Uni	it #124E	
		Benzene	Toluene	Ethylbenzene	Total Xylenes
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)
NMWQC	C Standards:	10	750	750	620
MW-1	06/25/98	340	271	111	510
MW-1	09/14/98	410	251	68.3	220
MW-1	12/15/98	710	1300	160	940
MW-1	03/16/99	2960	5130	367	2890
MW-1	04/19/05	38.8	<1	142	1160
MW-1	07/20/05	125	11.4	371	2640
MW-1	10/20/05	86.8	11.3	125	864
MW-1	01/19/06	77.9	12	101	656
MW-1	04/24/06	45.1	3.5 J	56.1	377
MW-1	07/31/06	60.8	1.5 J	79.3	524
MW-1	10/24/06	21.1	<1	56.6	349
MW-1	01/19/07	22.4	<1	60	367
MW-1	04/24/07	30.3	<1	60.6	407
MW-1	07/31/07	35.3	<2	68.4	416
MW-1	10/25/07	9	<1	33.2	173
MW-1	01/28/08	6	<2	41.6	210
MW-1	04/23/08	14.1	0.59 J	50.1	360
MW-1	07/23/08	72.7	6.7	65.8	210
MW-1	10/08/08	194	<50	43.6 J	328
MW-1	01/07/09	281	6 J	110	653
MW-1	08/25/09	57.9	8.8 J	58.4	298
MW-1	02/15/10	98.3	4.1	80.6	385
MW-1	09/27/10	159	<2	56.4	348
MW-1	02/01/11	109	0.28 J	54.1	436
MW-1	09/23/11	288	<1	116	1020
MW-1	02/22/12	255	<5	145	853
MW-1	06/04/13	33	<0.60	11	0.86
MW-1	09/11/13	25	< 0.30	9.8	8.9
MW-1	12/15/13	87	<0.30	50	100
MW-1	04/05/14	31	6.2	23	15
MW-2	12/15/13	<0.14	< 0.30	<0.20	<0.23
MW-2	04/05/14	<0.20	<0.38	<0.20	<0.65
MW-2	10/25/14	<0.38	<0.70	<0.50	<1.6
MW-2	Well abando	ned 1/19/2014	4		

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

	Gallegos Canyon Unit #124E								
		Benzene	Toluene	Ethylbenzene	Total Xylenes				
Location	Date	(µg/L)	(µg/L)	(µg/L)	(µg/L)				
NMWQC	C Standards:	10	750	750	620				
MW-3	12/15/13	4.1	< 0.30	7.4	27				
MW-3	04/05/14	<0.20	<0.38	<0.20	< 0.65				
MW-3	10/25/14	<0.38	<0.70	< 0.50	<1.6				
MW-3	05/31/15	<1.0	<5.0	<1.0	<5.0				
MW-3	11/22/15	<1.0	<1.0	<1.0	<3.0				
MW-3	04/18/16	<1.0	<5.0	<1.0	<5.0				
MW-3	10/14/16	<1.0	<5.0	<1.0	<5.0				
MW-3	06/10/17	<1.0	<5.0	<1.0	<5.0				
MW-3	11/11/17	<1.0	<1.0	<1.0	<10				
MW-4	12/15/13	<0.14	<0.30	0.28 J	1.4 J				
MW-4	04/05/14	<0.20	<0.38	<0.20	<0.65				
MW-4	10/25/14	<0.38	<0.70	<0.50	<1.6				
MW-4	05/31/15	<1.0	<5.0	<1.0	<5.0				
MW-4	11/22/15	<1.0	<1.0	<1.0	<3.0				
MW-4	04/18/16	<1.0	<5.0	<1.0	<5.0				
MW-4	10/14/16	<1.0	<5.0	<1.0	<5.0				
MW-4	06/10/17	<1.0	<5.0	<1.0	<5.0				
MW-4	11/11/17	<1.0	<1.0	4	<10				
MW-5	12/15/13	9.3	<0.30	53	32				
MW-5	04/05/14	11	5.8	13	<0.65				
MW-5	10/25/14	5.9	<0.70	5.2	<1.6				
MW-5	05/31/15	0.65 J	<5.0	<1.0	<5.0				
MW-5	11/22/15	1.6	<1.0	2.7	<3.0				
MW-5	04/18/16	<1.0	<5.0	<1.0	<5.0				
MW-5	10/14/16	<1.0	<5.0	3.6	<5.0				
MW-5	06/10/17	1	<5.0	6.5	<5.0				
MW-5	11/11/17	2.1	<1.0	14	<10				
MW-6	12/15/13	<0.14	< 0.30	<0.20	2.0 J				
MW-6	04/05/14	<0.20	<0.38	<0.20	<0.65				
MW-6	10/25/14	<0.38	<0.70	<0.50	<1.6				
MW-6	05/31/15	<1.0	<5.0	<1.0	<5.0				
MW-6	11/22/15	<1.0	<1.0	<1.0	<3.0				
MW-6	04/18/16	<1.0	<5.0	<1.0	<5.0				
MW-6	10/14/16	<1.0	<5.0	<1.0	<5.0				
MW-6	06/10/17	<1.0	<5.0	<1.0	<5.0				
MW-6	11/11/17	<1.0	<1.0	<1.0	<10				

TABLE 1 - GROUNDWATER ANALYTICAL RESULTS

	Gallegos Canyon Unit #124E									
Location	Date	Benzene (µg/L)	Toluene	Ethylbenzene	Total Xylenes					
	C Standards:	<u>(μ</u> 9/ L) 10	(μg/L) 750	(μ g/L) 750	(μg/L) 620					
MW-7	12/15/13	<0.14	<0.30	<0.20	<0.23					
MW-7	04/05/14	<0.20	<0.38	<0.20	<0.65					
MW-7	10/25/14	<0.38	<0.70	<0.50	<1.6					
MW-7	05/31/15	<1.0	<5.0	<1.0	<5.0					
MW-7	11/22/15	<1.0	<1.0	<1.0	<3.0					
MW-7	11/11/17	<1.0	<1.0	<1.0	<10					

Notes:

The groundwater monitoring dates for each monitoring well where no groundwater samples were collected and analyzed have been omitted.

μg/L = micrograms per liter

Results highlighted yellow exceed their respective New Mexico Water Quality Control Commission (NMWQCC) standards.

- "J" = Result is less than the reporting limit but greater than or equal to the method detection limit and the result in an approximate value.
- "<" = analyte was not detected at the indicated reporting limit (some historic data were reported at the detection limit).

TABLE 2 - GROUNDWATER ELEVATION RESULTS

	Gallegos Canyon Unit #124E								
					LNAPL	GW			
			Depth to	Depth to	Thickness	Elevation			
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	(ft.)	(ft.)			
MW-1	06/25/98	5949.45	27.21	NR		5922.24			
MW-1	09/14/98	5949.45	27.50	NR		5921.95			
MW-1	12/15/98	5949.45	28.16	27.61	0.55	5921.70			
MW-1	03/16/99	5949.45	29.02	27.60	1.42	5921.50			
MW-1	10/05/00	5949.45	29.46	29.04	0.42	5920.31			
MW-1	11/15/00	5949.45	28.93	28.93		5920.52			
MW-1	12/20/00	5949.45	28.98	NR		5920.47			
MW-1	01/09/01	5949.45	29.21	29.18	0.03	5920.26			
MW-1	01/15/01	5949.45	29.07	29.04	0.03	5920.40			
MW-1	01/22/01	5949.45	28.99	NR		5920.46			
MW-1	01/30/01	5949.45	29.09	NR		5920.36			
MW-1	03/12/01	5949.45	29.26	NR		5920.19			
MW-1	06/05/01	5949.45	29.32	29.28	0.04	5920.16			
MW-1	07/13/01	5949.45	29.65	NR		5919.80			
MW-1	08/02/01	5949.45	29.53	NR		5919.92			
MW-1	08/31/01	5949.45	29.27	NR		5920.18			
MW-1	09/21/01	5949.45	29.33	NR		5920.12			
MW-1	10/02/01	5949.45	28.98	NR		5920.47			
MW-1	01/02/02	5949.45	28.96	28.85	0.11	5920.57			
MW-1	01/07/02	5949.45	28.99	28.94	0.05	5920.50			
MW-1	01/23/02	5949.45	29.35	26.35	3.00	5922.35			
MW-1	01/30/02	5949.45	29.24	29.22	0.02	5920.23			
MW-1	02/07/02	5949.45	29.70	29.66	0.04	5919.78			
MW-1	02/14/02	5949.45	29.29	29.28	0.01	5920.17			
MW-1	02/20/02	5949.45	29.76	29.75	0.01	5919.70			
MW-1	03/04/02	5949.45	29.30	NR		5920.15			
MW-1	03/11/02	5949.45	29.17	NR		5920.28			
MW-1	03/21/02	5949.45	29.47	NR		5919.98			
MW-1	03/28/02	5949.45	29.33	NR		5920.12			
MW-1	04/03/02	5949.45	29.33	NR		5920.12			
MW-1	04/12/02	5949.45	29.70	NR		5919.75			
MW-1	04/18/02	5949.45	29.31	NR		5920.14			
MW-1	04/25/02	5949.45	30.11	NR		5919.34			
MW-1	05/03/02	5949.45	30.18	NR		5919.27			
MW-1	05/10/02	5949.45	30.25	NR		5919.20			
MW-1	05/17/02	5949.45	29.57	NR		5919.88			
MW-1	05/24/02	5949.45	29.70	NR		5919.75			
MW-1	05/31/02	5949.45	29.54	NR		5919.91			
MW-1	06/07/02	5949.45	29.42	NR		5920.03			
MW-1	06/12/02	5949.45	29.21	NR		5920.24			

TABLE 2 - GROUNDWATER ELEVATION RESULTS

	Gallegos Canyon Unit #124E							
					LNAPL	GW		
			Depth to	Depth to	Thickness	Elevation		
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	(ft.)	(ft.)		
MW-1	06/21/02	5949.45	30.12	NR		5919.33		
MW-1	06/27/02	5949.45	30.18	NR		5919.27		
MW-1	07/02/02	5949.45	29.99	29.98	0.01	5919.47		
MW-1	07/11/02	5949.45	30.06	NR		5919.39		
MW-1	07/15/02	5949.45	29.63	NR		5919.82		
MW-1	10/16/02	5949.45	29.65	29.24	0.41	5920.11		
MW-1	01/15/03	5949.45	28.63	ND		5920.82		
MW-1	05/05/03	5949.45	27.72	27.69	0.03	5921.75		
MW-1	07/18/03	5949.45	27.08	27.06	0.02	5922.39		
MW-1	01/29/04	5949.45	25.40	ND		5924.05		
MW-1	04/15/04	5949.45	24.98	ND		5924.47		
MW-1	07/26/04	5949.45	24.50	ND		5924.95		
MW-1	10/15/04	5949.45	24.98	ND		5924.47		
MW-1	01/17/05	5949.45	25.49	ND		5923.96		
MW-1	04/19/05	5949.45	25.45	ND		5924.00		
MW-1	07/20/05	5949.45	24.73	ND		5924.72		
MW-1	10/20/05	5949.45	24.85	ND		5924.60		
MW-1	01/19/06	5949.45	24.53	ND		5924.92		
MW-1	04/24/06	5949.45	24.25	ND		5925.20		
MW-1	07/31/06	5949.45	25.68	ND		5923.77		
MW-1	10/24/06	5949.45	24.94	ND		5924.51		
MW-1	01/19/07	5949.45	26.33	ND		5923.12		
MW-1	04/24/07	5949.45	25.97	ND		5923.48		
MW-1	07/31/07	5949.45	26.26	ND		5923.19		
MW-1	10/25/07	5949.45	26.44	ND		5923.01		
MW-1	01/28/08	5949.45	26.67	ND		5922.78		
MW-1	04/23/08	5949.45	26.67	ND		5922.78		
MW-1	07/23/08	5949.45	23.49	ND		5925.96		
MW-1	10/08/08	5949.45	22.30	ND		5927.15		
MW-1	01/07/09	5949.45	23.74	ND		5925.71		
MW-1	08/25/09	5949.45	26.65	ND		5922.80		
MW-1	11/03/09	5949.45	25.62	ND		5923.83		
MW-1	02/15/10	5949.45	25.93	ND		5923.52		
MW-1	05/24/10	5949.45	19.47	ND		5929.98		
MW-1	09/27/10	5949.45	19.78	ND		5929.67		
MW-1	11/01/10	5949.45	19.82	ND		5929.63		
MW-1	02/01/11	5949.45	21.70	ND		5927.75		
MW-1	05/02/11	5949.45	23.32	ND		5926.13		
MW-1	09/23/11	5949.45	24.71	ND		5924.74		
MW-1	02/22/12	5949.45	23.51	ND		5925.94		

TABLE 2 - GROUNDWATER ELEVATION RESULTS

	Gallegos Canyon Unit #124E									
	LNAPL G									
			Depth to	Depth to	Thickness	Elevation				
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	(ft.)	(ft.)				
MW-1	05/07/12	5949.45	24.20	ND		5925.25				
MW-1	06/04/13	5949.45	25.87	ND		5923.58				
MW-1	09/11/13	5949.45	25.74	ND		5923.71				
MW-1	12/15/13	5949.45	25.67	ND		5923.78				
MW-1	04/05/14	5949.45	26.27	ND		5923.18				
MW-1	10/25/14	5949.45	27.07	27.06	0.01	5922.39				
MW-1	05/31/15	5946.73	24.70	24.70	0.00	5922.03				
MW-1	11/22/15	5946.73	24.33	24.33	0.00	5922.40				
MW-1	04/18/16	5946.73	24.99	24.92	0.07	5921.79				
MW-1	10/14/16	5946.73	25.21	25.06	0.15	5921.63				
MW-1	06/10/17	5946.73	25.50	25.40	0.10	5921.31				
MW-1	11/11/17	5946.73	25.57	25.56	0.01	5921.17				

TABLE 2 - GROUNDWATER ELEVATION RESULTS

		Galle	gos Canyo	n Unit #124I	E	
					LNAPL	GW
			Depth to	Depth to	Thickness	Elevation
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	(ft.)	(ft.)
MW-2	12/15/13	5950.12	26.46	ND		5923.66
MW-2	04/05/14	5950.12	27.05	ND		5923.07
MW-2	10/25/14	5950.12	27.84	ND		5922.28
MW-2	Well aban	doned 1/1	9/2014			
MW-3	12/15/13	5949.84	26.02	ND		5923.82
MW-3	04/05/14	5949.84	26.59	ND		5923.25
MW-3	10/25/14	5949.84	27.37	ND		5922.47
MW-3	05/31/15	5946.94	24.82	ND		5922.12
MW-3	11/22/15	5946.94	24.50	ND		5922.44
MW-3	04/18/16	5946.94	25.12	ND		5921.82
MW-3	10/14/16	5946.94	25.36	ND		5921.58
MW-3	06/10/17	5946.94	25.61	ND		5921.33
MW-3	11/11/17	5946.94	25.72	ND		5921.22
MW-4	12/15/13	5949.57	25.62	ND		5923.95
MW-4	04/05/14	5949.57	26.22	ND		5923.35
MW-4	10/25/14	5949.57	26.98	ND		5922.59
MW-4	05/31/15	5946.67	24.52	ND		5922.15
MW-4	11/22/15	5946.67	24.16	ND		5922.51
MW-4	04/18/16	5946.67	24.80	ND		5921.87
MW-4	10/14/16	5946.67	24.99	ND		5921.68
MW-4	06/10/17	5946.67	25.28	ND		5921.39
MW-4	11/11/17	5946.67	25.37	ND		5921.30
MW-5	12/15/13	5948.92	25.17	ND		5923.75
MW-5	04/05/14	5948.92	25.85	ND		5923.07
MW-5	10/25/14	5948.92	26.60	ND		5922.32
MW-5	05/31/15	5946.07	24.17	ND		5921.90
MW-5	11/22/15	5946.07	23.83	ND		5922.24
MW-5	04/18/16	5946.07	24.42	ND		5921.65
MW-5	10/14/16	5946.07	24.64	ND		5921.43
MW-5	06/10/17	5946.07	24.93	ND		5921.14
MW-5	11/11/17	5946.07	24.98	ND		5921.09

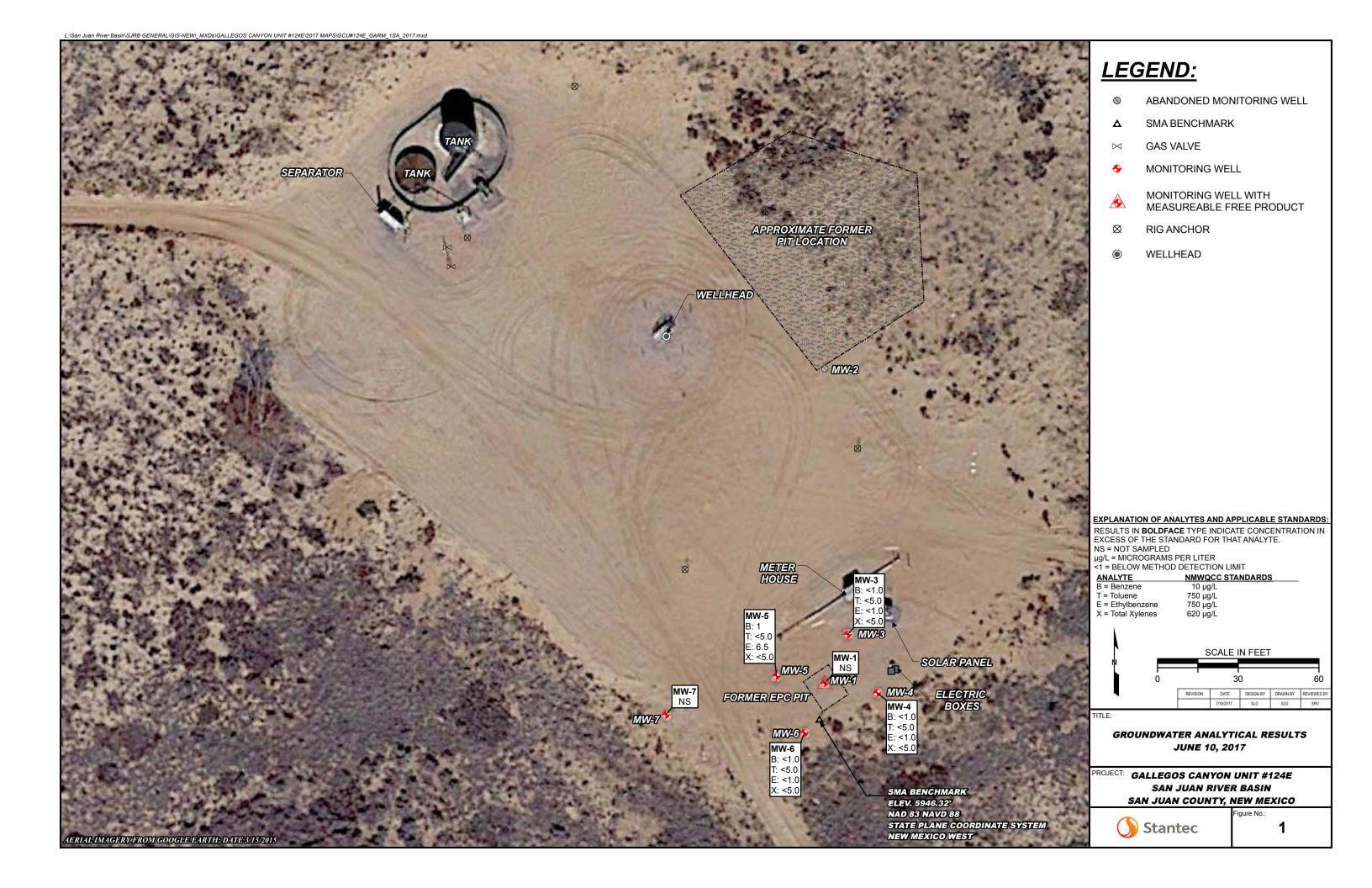
TABLE 2 - GROUNDWATER ELEVATION RESULTS

	Gallegos Canyon Unit #124E								
					LNAPL	GW			
			Depth to	Depth to	Thickness	Elevation			
Location	Date	TOC	Water (ft.)	LNAPL (ft.)	(ft.)	(ft.)			
MW-6	12/15/13	5949.34	25.48	ND		5923.86			
MW-6	04/05/14	5949.34	26.16	ND		5923.18			
MW-6	10/25/14	5949.34	26.90	ND		5922.44			
MW-6	05/31/15	5946.39	24.44	ND		5921.95			
MW-6	11/22/15	5946.39	24.13	ND		5922.26			
MW-6	04/18/16	5946.39	24.66	ND		5921.73			
MW-6	10/14/16	5946.39	24.89	ND		5921.50			
MW-6	06/10/17	5946.39	24.19	ND		5922.20			
MW-6	11/11/17	5946.39	25.29	ND		5921.10			
MW-7	12/15/13	5948.68	25.34	ND		5923.34			
MW-7	04/05/14	5948.68	26.13	ND		5922.55			
MW-7	10/25/14	5948.68	26.89	ND		5921.79			
MW-7	05/31/15	5945.92	24.41	ND		5921.51			
MW-7	11/22/15	5945.92	23.97	ND		5921.95			
MW-7	04/18/16	5945.92	24.52	ND		5921.40			
MW-7	10/14/16	5945.92	25.29	ND		5920.63			
MW-7	06/10/17	5945.92	24.04	ND		5921.88			
MW-7	11/11/17	5945.92	29.13	ND		5916.79			

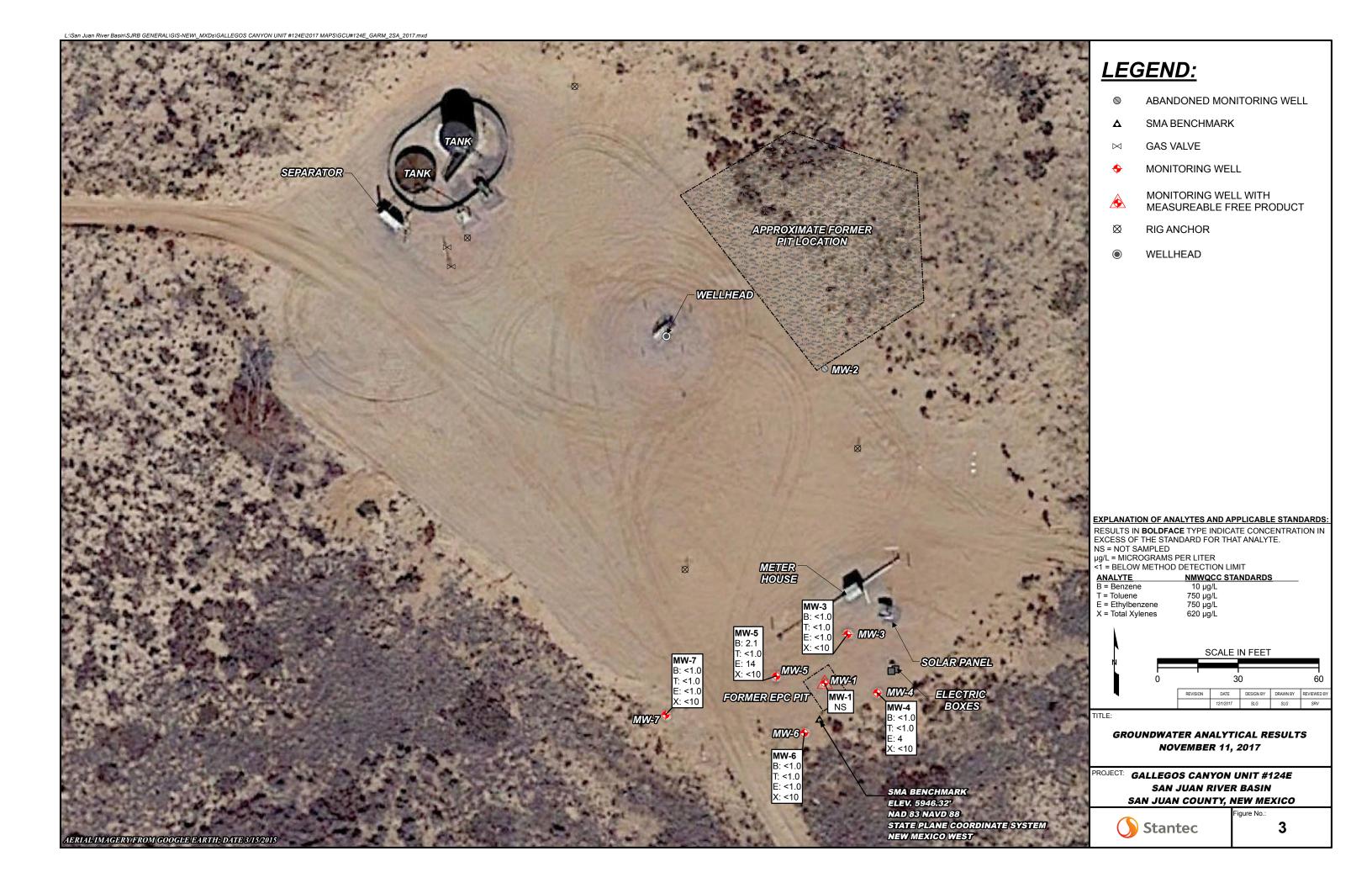
Notes:

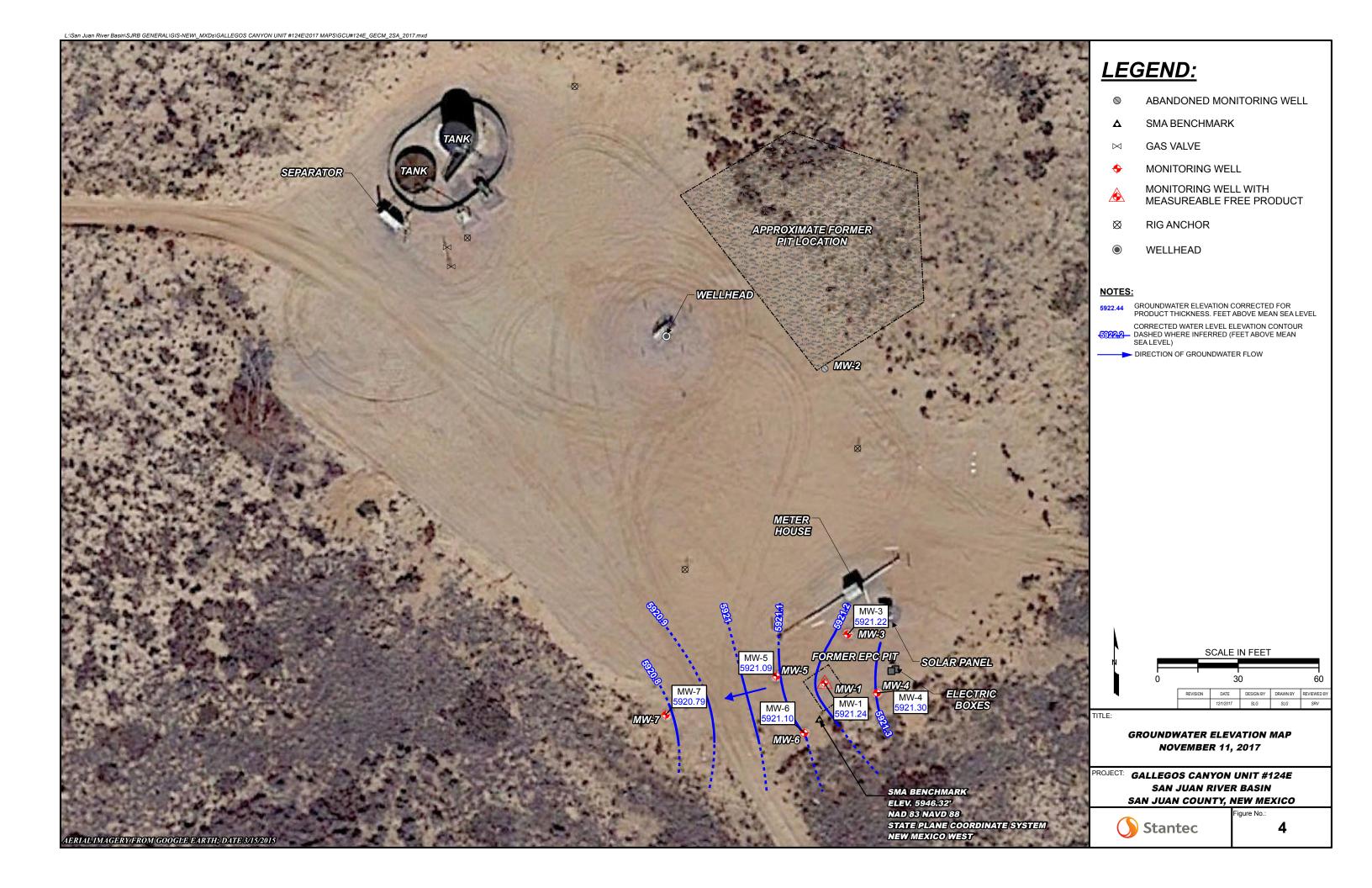
[&]quot;ft" = feet

[&]quot;TOC" = Top of casing

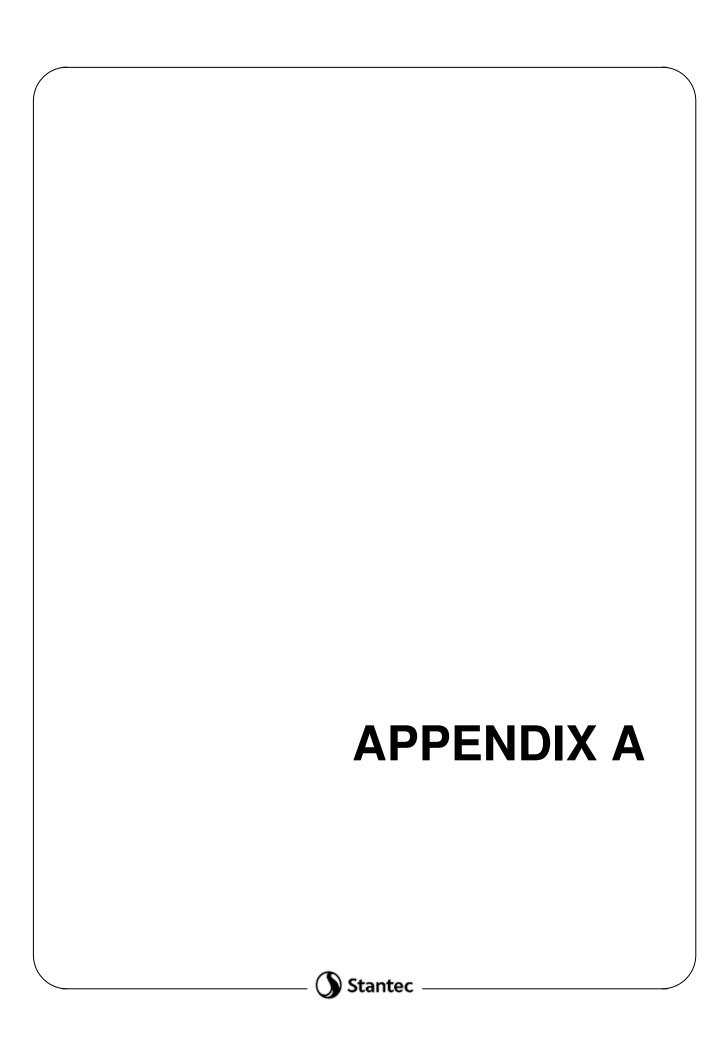

[&]quot;LNAPL" = Light non-aqueous phase liquid

[&]quot;ND" = LNAPL not detected


[&]quot;NR" = LNAPL not recorded


FIGURES

- FIGURE 1: JUNE 10, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 2: JUNE 10, 2017 GROUNDWATER ELEVATION MAP
- FIGURE 3: NOVEMBER 11, 2017 GROUNDWATER ANALYTICAL RESULTS MAP
- FIGURE 4: NOVEMBER 11, 2017 GROUNDWATER ELEVATION MAP



APPENDICES

APPENDIX A -	 NOTIFICATION 	JS OF SITE	ACTIVITIES

- APPENDIX B WASTE DISPOSAL DOCUMENTATION
- APPENDIX C MOBILE DUAL PHASE EXTRACTION REPORTS
- APPENDIX D JUNE 10, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT NOVEMBER 11, 2017 GROUNDWATER SAMPLING ANALYTICAL REPORT

From: <u>Varsa, Steve</u>

To: Randolph.Bayliss@state.nm.us

Cc: <u>brandon.powell@state.nm.us</u>; <u>Wiley, Joe</u>

Subject: El Paso CGP Company - Notice of upcoming groundwater sampling activities

Date: Tuesday, May 30, 2017 3:05:18 PM

Hi Randy –

This correspondence is to provide notice to the NMOCD of upcoming semi-annual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #
Canada Mesa #2	3RP-155-0
Fields A#7A	3RP-170-0
Fogelson 4-1	3RP-068-0
Gallegos Canyon Unit #124E	3RP-407-0
GCU Com A #142E	3RP-179-0
Hammond #41A	3RP-186-0
James F. Bell #1E	3RP-196-0
Johnston Fed #4	3RP-201-0
Johnston Fed #6A	3RP-202-0
K27 LDO72	3RP-204-0
Knight #1	3RP-207-0
Lateral L 40 Line Drip	3RP-212-0
Lat O-21 Line Drip	3RP-213-0
Lindrith B #24	3RP-214-0
Miles Fed #1A	3RP-223-0
Sandoval GC A #1A	3RP-235-0
Standard Oil Com #1	3RP-238-0
State Gas Com N #1	3RP-239-0

Groundwater sampling and monitoring is planned to be conducted the week of June 5, 2017.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: <u>Varsa, Steve</u>

To: Bayliss, Randolph, EMNRD

Cc: Griswold, Jim, EMNRD; Perrin, Charlie, EMNRD; Powell, Brandon, EMNRD; Smith, Cory, EMNRD; Fields, Vanessa,

EMNRD; Wiley, Joe

Subject: RE: MPDE Work Plan Approvals

Date: Saturday, July 08, 2017 4:55:00 PM

Hi Randy –

Pursuant to the conditions in the above-referenced July 5, 2017, approval letter, the following is the schedule for the MDPF activities:

James F. Bell #1E – start late the afternoon of Tuesday, July 11, and will go through Friday, July 14. Johnston Federal #4 and Johnston Federal #6A – both sites beginning on Saturday, July 15, and go through Tuesday, July 18.

No work planned for Wednesday, July 19 (rest day).

GCU #124 - Thursday, July 20 through Sunday, July 23.

Knight #1 – Monday and Tuesday, July 24 and 25.

K27 LD072 – Wednesday, July 26.

Miles Federal #1A – Thursday, July 27.

As noted in the work plan submittal, work at State Gas Com N#1 is still pending receipt of a State Water Easement. NMOCD will be notified once the State Gas Com pilot testing activities have been scheduled, or if there are changes to the schedule offered above. Do you anticipate any OCD staff will be on-site during one or more of these events?

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523

Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Bayliss, Randolph, EMNRD [mailto:Randolph.Bayliss@state.nm.us]

Sent: Wednesday, July 05, 2017 9:08 AM

To: Wiley, Joe <Joe_Wiley@kindermorgan.com>; Varsa, Steve <steve.varsa@stantec.com>

Cc: Griswold, Jim, EMNRD < Jim.Griswold@state.nm.us>; Perrin, Charlie, EMNRD

<charlie.perrin@state.nm.us>; Powell, Brandon, EMNRD <Brandon.Powell@state.nm.us>; Smith,
Cory, EMNRD <Cory.Smith@state.nm.us>; Fields, Vanessa, EMNRD <Vanessa.Fields@state.nm.us>

Subject: MPDE Work Plan Approvals

Good morning Joe, Steve, others.

Thank you for your proposed MPDE efforts.

Cheers

Randolph Bayliss, P.E.

Hydrologist, Districts III and IV NMOCD Environmental Bureau 1220 S St Francis St, Santa Fe, NM 87505 505-476-3084, Cell 575-840-5961

From: Varsa, Steve

To: Bayliss, Randolph, EMNRD

Cc: Fields, Vanessa, EMNRD; Smith, Cory, EMNRD; NNEPAUIC@frontiernet.net; Wiley, Joe

Subject: FW: 3RP-407-0 Gallegos Canyon Unit #124E - LNAPL Recovery Work Plan

Date: Friday, September 15, 2017 7:44:00 PM

Attachments: 2017-06 Ltr Bayliss-2017 LNAPL Work Plan (GCU124E).pdf

Hi Randy –

Stantec, on behalf of El Paso CGP Company, LLC, is providing notice of plans to completed additional light non-aqueous phase liquid (LNAPL) recovery activities at the above-referenced site. Two separate LNAPL recovery events, each 24-hours in length, will be completed. The first will begin on Thursday morning and run through Friday morning, September 21 and 22, 2017. The second will begin on Tuesday morning and run through Wednesday morning, September 26 and 27, 2017. With the exception of the event duration, and collection of just one Summa sample on September 22, 2017, the methods and procedures to be utilized are anticipated to be the same for both events, as outlined in the attached work plan. The results of the LNAPL recovery activities will be included in the 2017 annual report for the Site.

Please feel free to contact Joe Wiley or me if you have any questions.

Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523

Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: Varsa, Steve

Sent: Wednesday, June 28, 2017 5:44 PM

To: 'Randolph.Bayliss@state.nm.us' < Randolph.Bayliss@state.nm.us >

Cc: 'Wiley, Joe' < Joe_Wiley@kindermorgan.com>

Subject: 3RP-179-0 Gallegos Canyon Unit #124 - LNAPL Recovery Work Plan

Hi Randy – Please find attached the above-referenced work plan for your review. The work is scheduled to begin the week of July 10, 2017. Please contact Joe Wiley or me if you have any questions.

Thank you,

Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020

Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

The content of this email is the confidential property of Stantec and should not be copied, modified, retransmitted, or used for any purpose except with Stantec's written authorization. If you are not the intended recipient, please delete all copies and notify us immediately.

From: <u>Varsa, Steve</u>

To: <u>Bayliss, Randolph, EMNRD</u>

Cc: Smith, Cory, EMNRD; Fields, Vanessa, EMNRD; Wiley, Joe

Subject: El Paso CGP Company - Notice of upcoming groundwater sampling activities

Date: Monday, November 06, 2017 11:41:36 AM

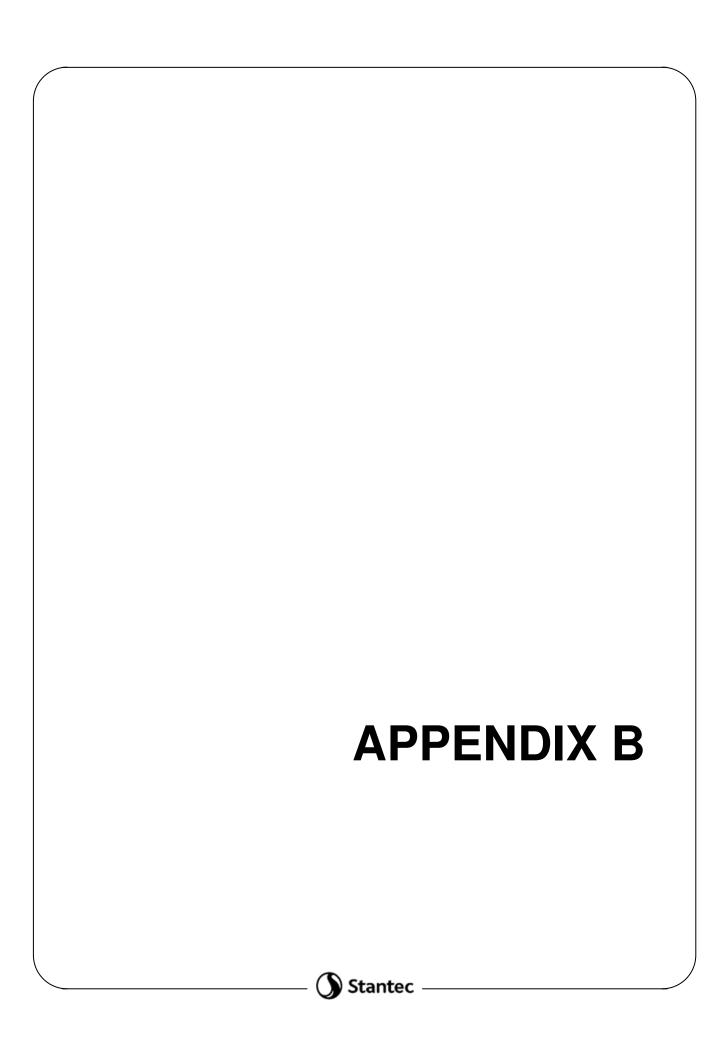
Hi Randy -

This correspondence is to provide notice to the NMOCD of upcoming semiannual groundwater sampling and monitoring activities at the following project sites:

Site Name	NMOCD Case #
Canada Mesa #2	3RP-155-0
Fields A#7A	3RP-170-0
Fogelson 4-1	3RP-068-0
Gallegos Canyon Unit #124E	3RP-407-0
GCU Com A #142E	3RP-179-0
James F. Bell #1E	3RP-196-0
Johnston Fed #4	3RP-201-0
Johnston Fed #6A	3RP-202-0
K27 LDO72	3RP-204-0
Knight #1	3RP-207-0
Lateral L 40 Line Drip	3RP-212-0
Lat O-21 Line Drip	3RP-213-0
Miles Fed #1A	3RP-223-0
Sandoval GC A #1A	3RP-235-0
Standard Oil Com #1	3RP-238-0
State Gas Com N #1	3RP-239-0

Groundwater sampling and monitoring is planned to be conducted November 10-14, 2017.

Please contact Joe Wiley, remediation manager with El Paso CGP Company, at (713) 420-3475, or me, if you have any questions.


Thank you, Steve

Stephen Varsa, P.G.

Supervising Hydrogeologist MWH, now part of Stantec 11153 Aurora Avenue Des Moines, Iowa 50322 Direct: (515) 251-1020 Cell: (515) 710-7523

Cell: (515) 710-7523 Office: (515) 253-0830 steve.varsa@stantec.com

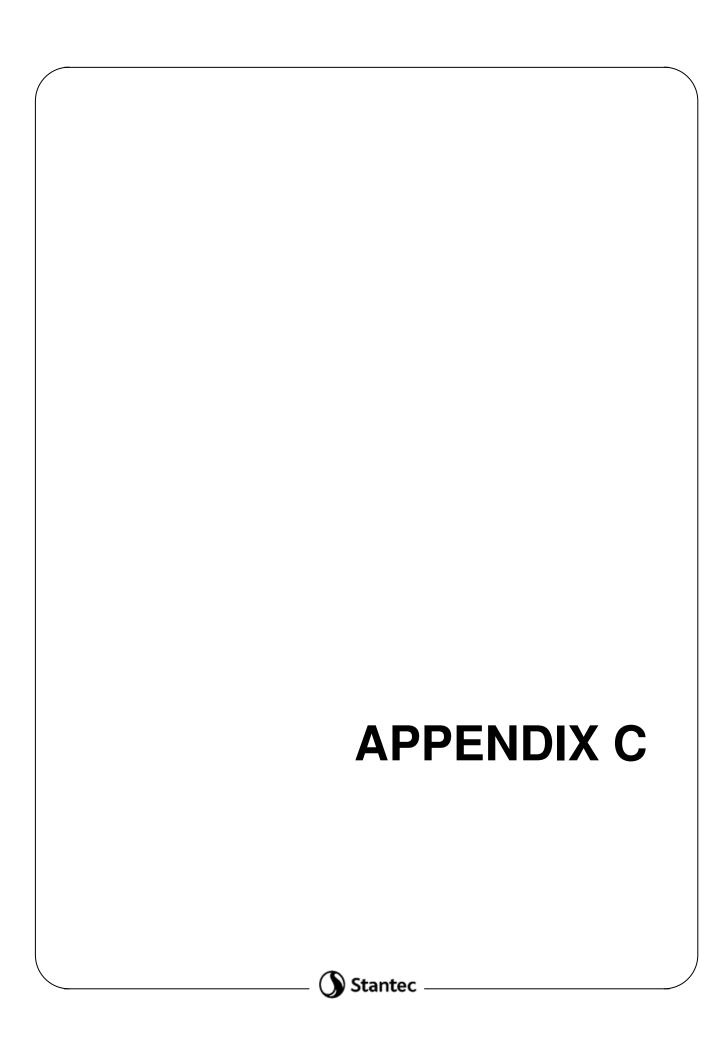
BAS DIS DATE GENERATO HAULING O	POS DR: Floor	A6/11/17 OPEN Paso CGP n. Star 5+an+ec	ntal Health and Si Iontana, Bloomfie I32-8936 or 505-3	eld, NM 87413 334–3013	Oil Fie INVO	CD PERMIT: NM Id Waste Docum DICE: TKT#. TO:	nent, Form C	138	
WASTE DE	SCRIPTION:	Exempt Oilfield Waste	1	Produced Water	er Drill	ing/Completi	on Fluids	Reserve Pi	t
STATE:	□NM □	CO 🗆 AZ 🗆 UT	TREATMEN	IT/DISPOSAL N	METHODS:		TION MIN	JECTION TREA	ATING PLANT
NO.	TRUCK	LOCATION(S)		VOLUME	COST	H2S	COST	TOTAL	TIME
1		Foge 1501 4-1, Gal	legos 20124E	1881					
2		GCU COMA 142 E 3	fed 4						
3		Johnston Laterall Late	-40 5-21 line						
4		Sondoval GC Stan	com 1						
5									
generator ar	ly 1988 regul	eby certify that according to the Resource atory determination that the above desc		RCRA Exempt		(A) and the U		rized agent for t mental Protection	

BAS DIS	POS	AL 7-22-1	200 Montana, Bloomfir 505-632-8936 or 505-0 OPEN 24 Hours per Da	334-3013	INVO	Waste Docum			
SENERATO	DR: E	Paso		The same	BILL '	то: <u><i>ЕПр</i></u>	250		
HAULING (0. 5/1	'ia			DRIV	ER: (Print Full	Name)	1	
RDERED	BY: 12	seph Wika	2Y		CODI				
ASTE DE	SCRIPTION:	Exempt Oilfield Wast		Produced Water		ing/Completi		Reserve F	
TATE:	NM 🗆	CO AZ DUT	TREATME	NT/DISPOSAL N	METHODS:				
NO.	TRUCK	LOCAT	ION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	54	Gallegos Co	anyon unit	55	759			41.25	
2		1,73			,		111	JUL 22	FIZER
3									
4									
5							Ma		
	Din	1 Sola				representit	ive or autho	orized agent fo	or the abov
nerator a	nd hauler her	eby certify that according to atory determination that the	the Resource Conserva above described waste	tion and Recove is RCRA Exemp	ry Act (RCI t Oil field w	RA) and the astes.	US Enviror	nmental Prote	ction
	-			A	1	11			

BAS DIS DATE	SING		vironmental Health and S 200 Montana, Bloomfie 505-632-8936 or 505-3 OPEN 24 Hours per Da	ald, NM 87413 334-3013	NMOC Oil Fiel INVO	D PERMIT: NI d Waste Docu IICE: TKT#.	M -001-0005	:138	
GENERATO	DR:	El Pase	Total Sala		BILL	то:		El Pase	
HAULING C	0.	Sira	Tarin in		DRIV	ER: (Print Full	-	Janu	
ORDERED	B <u>Y:</u>	JOSEPH	Wikey		CODI	(Print Full	Name)		
WASTE DE	SCRIPTION:	Exempt Oilfield Waste	6	Produced Wat	er Drilli	ing/Complet	ion Fluids	Reserve Pi	t
STATE:	□NM □	CO AZ DUT	TREATMEN	IT/DISPOSAL N	METHODS:	EVAPORA	ATION MIN	JECTION TREA	TING PLANT
NO.	TRUCK	LOCATION(S	6)	VOLUME	COST	H2S	COST	TOTAL	TIME
1	54	Crolleges Canyon	Unit PUE	155	.75			41.25	
2									
3							'17	JUL 23 8	147am
4									
5									
I,generator an Agency's Jul	y 1988 regula	eby certify that according to the Ratory determination that the above	esource Conservations described waste is ENDANT SIGNATU	RCRA Exempl	v Act (RCR	A) and the	ve or autho US Environ	orized agent for to imental Protection	he above on

BASINDISPO DATE GENERATOR: HAULING CO. ORDERED BY: WASTE DESCRI	El Jo:	AL 7-21- Paso 6 ft	200 Montana, Bloomfie 505-632-8936 or 505-3 OPEN 24 Hours per Da	old, NM 87413 334-3013	Oil Fiel INVO DEL. BILL DRIV CODI	TKT#. TO:	Pas Name)	Reserve P	Pit
STATE:	MM 🔲	CO 🗆 AZ 🗆 UT	TREATMEN	T/DISPOSAL N	METHODS:		TION MINJ	ECTION TRE	ATING PLANT
NO.	RUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
156	/	Callegos Co	inyen + 124	E55	75		14	1/25	1=34aH
3									
4					9				
5									
I,generator and hau Agency's July 198	ıler here 8 regula	by certify that according to the fitory determination that the abov	Resource Conservati re described waste is FENDANT SIGNATU	RCRA Exemp	y Act (RCF	A) and the L	e or author JS Environr	yi	the above

BASIN DISPOSAL DATE			200 Montana, Bloomfe 505-632-8936 or 505-3 OPEN 24 Hours per Da	eld, NM 87413 334-3013	NO. NMOCD PERMIT: NM -001-0005 Oil Field Waste Document, Form C138 INVOICE: DEL. TKT#.						
GENERAT	OR:	El Pusc			BILL	то:	11	00			
HAULING	00.	Skira			DRIV	ER:	Sucre				
ORDERED	BY:				COD	(Print Full	Name)	45451			
WASTE DE	ESCRIPTION:	⊠Exempt Oilfield Waste	-E	Produced Wat	er Drill	ing/Complet	ion Fluids	Reserve P	it		
STATE:	□NM □	CO 🗆 AZ 🗆 UT	TREATMEN	IT/DISPOSAL N	METHODS:	EVAPORA	ATION MI	NJECTION TRE	ATING PLANT		
NO.	TRUCK	LOCATION	5)	VOLUME	COST	H2S	COST	TOTAL	TIME		
1	54	Coulleges la	To Pul	911	- 7			18			
2							.9	17JUL23	1.0-25an		
3											
4							1				
5	1										
I,generator ar Agency's Ju	iy 1988 regula	by certify that according to the Ratory determination that the above	esource Conservations described waste is	RCRA Exempt	y Act (RCR Oil field wa	A) and the I	JS Enviror	prized agent for nmental Protecti	the above		


BASINDISPOSA DATE GENERATOR: HAULING CO. ORDERED BY: WASTE DESCRIPTION:	505-632-8936 OPEN 24 HOUR	Bloomfield, NM 87413 or 505-334-3013	DEL. THE BILL TO DRIVER	Vaste Documents: CT# D: CR: (Print Follows)	0-50	Reserve F	Pit
STATE: NM CC	D AZ DUT TREA	ATMENT/DISPOSAL I	METHODS: D	EVAPOR	ATION MIN	JECTION TRI	EATING PLAN
NO. TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1 06	Ballegos Cenyonani	124834	204		, prod	1650 75EP22	10:54am
-							
3							
4							
5							
generator and hauler hereby Agency's July 1988 regulato	certify that according to the Resource Conry determination that the above described v	vaste is RCRA Exemp	ry Act (RCRA)	and the		prized agent for imental Protect	

1582J

	30 Years of Environmental Health and	d Safety Excellence	NO.	695	702		
BASIN	200 Montana, Bloor	mfield, NM 87413		D PERMIT: NN d Waste Docu	and the same of th	138	
DISPOSA	505-632-8936 or 50 OPEN 24 Hours per		INVO	ICE:			
DATE	5-2)-()	Day	DEL.	TKT#.			
GENERATOR:	reso		BILL	то:	Has	O .	
HAULING CO.	~~ ·		DRIV		7		
ORDERED BY: Jule	ah lalilera		COD	(Print Full	Name)		
WASTE DESCRIPTION:	⊠Exempt Oilfield Waste	Produced Wat	er Drill	ing/Complet	tion Fluids	Reserve P	it
STATE: NM 🗆	CO AZ DUT TREATM	ENT/DISPOSAL N	METHODS:	EVAPOR.	ATION MIN.	JECTION TRE	ATING PLANT
NO. TRUCK	LOCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME
1 79	Gallega Convention Lie	MEZY	204			680	7=27AM
279	GANGER CANULANT	1745	20		7	JS\$27	
3 /							
4							
5							
1,02	agreen Jain					rized agent for	
	by certify that according to the Resource Conserv tory determination that the above described waste				US Environi	nental Protecti	on
			11	/	1		
Approved	Denied ATTENDANT SIGNA	TURE					

san juan reproduction 168-6

BASIN 200 Montana, Bloomfield, NM 87413 505-632-8936 or 505-334-3013 OPEN 24 Hours per Day GENERATOR: FIPaso						NO. 699930 NMOCD PERMIT: NM -001-0005 Oil Field Waste Document, Form C138 INVOICE: DEL. TKT#. BILL TO: Stante C					
HAULING CO	-	tantec			DRIV	ER: ON	Name)	Pieri	ng		
ORDERED B	Y: 30	e Wiley			COD	ES:	ivaille)				
WASTE DES	CRIPTION:	Exempt Oilfield	Waste	Produced Wat	er Drill	ing/Completi	on Fluids	Reserve F	Pit		
STATE:	NM 🗌	CO 🗆 AZ 🗀 UT	TREATMEN	NT/DISPOSAL I	METHODS:	EVAPORA	TION MIN	JECTION XTRE	EATING PLANT		
NO.	TRUCK	L	OCATION(S)	VOLUME	COST	H2S	COST	TOTAL	TIME		
1		togelson	4.1	1	704		'ighteas] St.,	7N6092	i diam		
2		Lat 2-40.	on, Knight, IF Bell It Oil Com						3-27-11		
3	N.	Sandoval, Go J-Fed 6	CUIZYE, I-Fed 4			*					
4											
5	47	0									
I, representitive or authorized agent for the above generator and hauler hereby certify that according to the Resource Conservation and Recovery Act (RCRA) and the US Environmental Protection Agency's July 1988 regulatory determination that the above described waste is RCRA Exempt Oil field wastes.											
Approve	ed	Denied	ATTENDANT SIGNATU	JRE		_			5		
								san juan rep	production 168-6		

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

August 15, 2017

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11153 Aurora Avenue Des Moines, IA 50322

Dear Stephen:

Re: Gallegos Canyon Unit #124E, San Juan County, NM (Event #1)

At your request, AcuVac Remediation, LLC (AcuVac) performed one 72.0-hour Mobile Dual Phase Extraction (MDPE) Event #1 on well MW-1 at the above referenced site (Site) on July 20 through 23, 2017. The following is the Report and a copy of the Operating Data collected during Event #1. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE event was to enhance recovery of Phase Separated Hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical release of natural gas condensate.

OBJECTIVES

The objectives of the MDPE events were to:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the vapor phase and liquid LNAPL specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event periods.
- Select and monitor the groundwater depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. No third party equipment was utilized. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower used as a vacuum pump and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during Event #1, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac								
Measurement Equipment	Data Element							
Extraction Well Induced Vacuum and Flow								
Dwyer Magnehelic Gauges	Extraction Well Vacuum							
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow							
Observation Wells								
Dwyer Digital Manometer	Vacuum / Pressure Influence							
Extraction Well Vapor Monitoring								
V-1 vacuum box	Extraction Well Non-Diluted Vapor Sample Collection							
HORIBA® Analyzer	Extraction Well Vapor TPH Concentration							
QRae Mini II O₂ Monitor	Extraction Well Vapor Oxygen Content							
LNAPL Thickness (if present)								
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater							
Liquid Recovery								
Totalizer Flow Meter	Liquid Flow and Total Volume							
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping							
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics							
Groundwater Depression / Upwelling								
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells							
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure							
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls							
Atmospheric Conditions								
Testo Model 511	Relative and Absolute Barometric Pressure							

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump was connected to the extraction well, and the vacuum created on the extraction well caused light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they were burned as part of the normal combustion process. Propane was used as auxiliary fuel to help power the engine if the well vapors did not provide the required energy.

The IC engine provided the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence for pilot tests and short term event remediation.

Emissions from the engine were passed through three catalytic converters to maximize destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio was adjusted to maintain efficient combustion. Because the engine is the power source for the equipment, the System stops when the engine stops. This prevents an uncontrolled release of hydrocarbons. Since the System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

Groundwater extraction was provided by an in-well Grundfos Redi-Flo 2 total fluids pump that discharged through a totalizer/flow meter. The discharge line from this meter was then connected to a stand-by tank. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to LNAPL measurements. Grab samples of recovered liquid were taken periodically in a graduated cylinder to determine the average percentage of LNAPL being recovered.

The design of the AcuVac System enabled independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controlled the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improved the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #1

The Recovery Summary table below lists the groundwater and LNAPL recovery data for Event #1.

Recovery Summary					
	Event #1				
	MW-1				
Event Hours	72.0				
GW Recovery	3,302				
NAPL Recovery					
Liquid	0				
Vapor	10.4				
Total	10.4				
Gallons/Hour	0.14				

SUMMARY OF MDPE EVENT #1- WELL MW-1

- The total event time was 72.0 hours. The Event was conducted on July 20 through 23, 2017.
 This was the first event completed from well MW-1, and therefore, there was no comparative data from this well.
- The total liquid volume recovered was 3,302 gallons (gals) with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] data, total vapor LNAPL burned as IC engine fuel was 10.4 gals, for a total liquid and vapor LNAPL recovery of 10.4 gals, or 0.14 gals per hour.

 Average HORIBA[®] analytical data from the influent vapor samples for Event #1 is outlined in the table below:

Influent Vapor Data Well MW-1							
Data Element		Event #1					
TPH- Maximum	ppmv	7,250					
TPH- Average	ppmv	3,194					
TPH- Minimum	ppmv	1,054					
TPH- Initial	ppmv	7,250					
TPH- Ending	ppmv	1,192					
CO ₂	%	2.12					
СО	%	0					
O ₂	%	18.1					
H₂S	ppm	0					

• The Event #1 extraction well induced vacuum and well vapor flow are shown in the table below.

Well Vacuum and Well Vapor Flow Well MW-1						
Data Element	Data Element					
Well Vacuum- Maximum	"H₂O	40.00				
Well Vacuum- Average	"H₂O	40.00				
Well Vacuum- Minimum	"H₂O	40.00				
Well Vapor Flow- Maximum	scfm	20.93				
Well Vapor Flow- Average	scfm	20.93				
Well Vapor Flow- Minimum	scfm	20.93				

- The groundwater pump inlet was set at 32.0 ft BTOC in well MW-1. The average groundwater pump rate during the course of Event #1 was 0.82 gpm, and the maximum groundwater pump rate was 1.38 gpm.
- The average groundwater depression, based on the positioning of the groundwater pump in well MW-1, was 6.46 ft below the hydro-equivalent static level.
- LNAPL with a measured thickness of 0.07 ft was recorded in well MW-1 prior to the start of Event #1, and no measureable LNAPL was recorded at the conclusion of the Event #1.

The total LNAPL removed, including liquid and vapor, during the 72.0 hour Event #1, Well MW-1, was 10.4 gals.

ADDITIONAL INFORMATION

• The TPH vapor concentrations were on a steadily decreasing trend during the course of Event #1. The initial reading was 7,250 ppmv, the average was 3,194 ppmv, and the final reading was 1,192 ppmv.

- The average TPH concentration during the first 24 hour period was 4,708 ppmv. The average TPH concentration during the second 24 hour period was 2,532 ppmv. The average TPH concentration during the third 24 hour period was 1,808 ppmv.
- The maximum TPH concentration reading of 7,250 ppmv occurred at event hour 1.0 after the start of Event #1. The minimum TPH vapor concentrations reading was recorded at event hour 35.0 after the start of Event #1.
- Well MW-1 produced a steady amount of liquid volume during the course of Event #1.
 However, no quantifiable liquid LNAPL was recovered from well MW-1.
- All LNAPL volume recovered, 10.4 gals, was burned as IC engine fuel.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂.

The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x $1.58E^{-7}$ (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data
- Photographs of the MDPE System, Well MW-1.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

Paul D. Faucher

Vice President, Operations

Summary Well Data Table #1

Event		1
WELL NO.		MW-1
Total Event Hours		72.0
TD	ft BGS	34.0
Well Screen	ft BGS	24.0 – 34.0
Well Size	in	2.0
Well Data		
DTGW - Static - Start Event	ft BTOC	25.59
DTLNAPL - Static - Start Event	ft BTOC	25.52
LNAPL	ft BTOC	0.07
Hydro-Equivalent- Beginning	ft BTOC	25.54
DTGW - End Event	ft BTOC	30.40
DTLNAPL - End Event	ft BTOC	-
LNAPL	ft BTOC	-
Hydro-Equivalent- Ending	ft BTOC	30.40
Extraction Data		
Maximum Extraction Well Vacuum	"H ₂ O	40.00
Average Extraction Well Vacuum	"H ₂ O	40.00
Minimum Extraction Well Vacuum	"H ₂ O	40.00
Maximum Extraction Well Vapor Flow	scfm	20.93
Average Extraction Well Vapor Flow	scfm	20.93
Minimum Extraction Well Vapor Flow	scfm	20.93
Average GW / LNAPL Pump Rate	gpm	0.82
Maximum GW / LNAPL Pump Rate	gpm	1.38
Influent Data		
Maximum TPH	ppmv	7,250
Average TPH	ppmv	3,194
Maximum TPH	ppmv	1,054
Initial TPH	ppmv	7,520
Final TPH	ppmv	1,192
Average CO ₂	%	2.12
Average CO	%	0
Average O ₂	%	18.1
Average H₂S	ppm	0

Summary Recovery Data Table #2

Event		1
WELL NO.		MW-1
Recovery Data- Current Event		
Total Liquid Volume Recovered	gals	3,302
Total Liquid LNAPL Recovered	gals	-
Total Liquid LNAPL Recovered / Total Liquid	%	-
Total Liquid LNAPL Recovered / Total LNAPL	%	-
Total Vapor LNAPL Recovered	gals	10.4
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00
Total Vapor and Liquid LNAPL Recovered	gals	10.4
Average LNAPL Recovery	gals/hr	0.14
Total LNAPL Recovered	lbs	73
Total Volume of Well Vapors	cu. ft	90,418
Recovery Data- Cumulative		
Total Liquid Volume Recovered	gals	3,032
Total Liquid LNAPL Recovered	gals	-
Total Vapor LNAPL Recovered	gals	10.4
Total Vapor and Liquid LNAPL Recovered	gals	10.4
Average LNAPL Recovery	gals/hr	0.14
Total LNAPL Recovered	lbs	73
Total Volume of Well Vapors	cu. ft	90,418

Loos	tion: GCII Son luca (County AIRA		Design	Managara	auahan / O		In / PA	
Loca	ation: GCU, San Juan (Date	1 1	Project	Managers: F	-aucher / Ge	eorge /Hend	ley / Morris	
Wel	1#		7/20/17			0.3	8-1	C-2	
AACI	mw-1	Time	0700	0730	0800	0830	0900	0930	
	Is a s	Hr Meter	7952.5	7953:0	7953.5	7954.0	7954.5	7555.0	
œ	Engine Speed	RPM	1800	1800	1800	1800	1800	1800	
ENGINE / BLOWER	Oil Pressure	psi	50	50	50	50	50	30	
/BL	Water Temp	°F	130	130	130	130	130	/30	
GINE	Alternator	Volts	14	14	14	14	14	14	
Ë	Intake Vacuum	"Hg	12	12	12	12	12	12	
	Gas Flow Fuel/Propane	cfh	125	130	130	130	125	125	
	Extraction Well Vac.	"H₂O	40	40	40	40	40	40	
HERE	Extraction Well Flow	scfm	20.93	20.93	20.93	20.93	-20.53	20.93	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70	
ATM	Air Temp	°F	_	_	_	-	_	_	
	Barometric Pressure	"Hg	_	-	-	_	-	-	
VAPOR / INFLUENT	ТРН	ppmv	7250	_	6760	_	6490	_	
	CO ₂	%	9.26	-	7.12	-	5.78	-	
	со	%	0	_	0	_	0	_	
POR	O ₂	%	9,0	_	9.2	-	12.0	-	
>	H ₂ S	ppm	0	-	0	-	0		
	TPH VAPOR CONCENTRATIONS ON A DECREASING TREAT. COL ON A DECREASING								
	TREND REDUGING NEED FOR PROPANE. WELL VAC AND WYF STEADY AT								
"	· ·								
NOTES		GW PUMP PLATE IS BEING ADJUSTED TO MAINTAIN A CONSTANT GW DOTRESSOON							
z	IN THE S.O AT PANGE. THE DATA LOGGER IS POSITIONED 1.0 AT ABOVE								
	THE GW PUMP TILET.								
	TOTALIZER		2775.12	281646	2855.61	2886.84	2921.45	2846.42	
<u>k</u>	Pump Rate	gals/min	1.38.	1.31	1.04_1	1.15	.83	1.05.	
RECOVERY	Total Volume	gals	_	41.34	80.49	111.72	146.33	171.30	
¥ [NAPL	% Vol		SHEED	SHEEN	SHOW	SHEEN	SHEEN	
	NAPL	Gals	-	_	-	_	-	-	
	Data Logger Head (0.09 ft	2.15	,45	.56	.24	-:03	.93	
M EM	GW Depression	ft	-3.94	- 5.60	-5.53	5.85	6.12	5.16	
ŭ	Extraction Well	DTNAPL	25.52						
- 1	Extraction Well	DTGW	25.59						

WHPL,07

AcuVac Remediation

	OPERATII	NG NOTES - EVENT #	/ PAGE#	2	ACUVAC MDP SYSTEM
n: GCU, Sa	n Juan County,	NM	Project Manager	s: Faucher / 0	George / Hendley / Morris
7/18/17	0900 Hors	MOBILETED TO	GCU #124E	Blom THE	FORMSTON FEBRUAR
		#4 # #6A SITE	S. Performe	on sine As	JESEMENT ROLDING
		TO PLACEMENT	OF AQUIAC STS	TEM, LIGI	UID COLLECTION TANK
		AND PROPAME	TANK. CAUG	ED ALL W	EUS. POSITIONED
		THE REDI-FLO	2 IN-WELL P	COMP AT A	PPZOX IMATELY
		2.0 AT ABOVE	WEU BOTTON	1 or 32.0	F 370C.
		PLACED A is	DATA LOGGER	A WEU	mw-3 As
		APPROXIMAN	4 1.0 B ABO	VE BOTTOM	•
7/18/17	1000 HRS	DEPARTED S	元		
7/19/17	1245 HRS	RETURNED TO	SITE TO PLATE	E PROPAR	DE TANK. POS MONDO
		TANK APPROX	IMATELY 25 FT	From TI	HE ACUVAC SYSTEM.
		CONNECTED	THE GAS LINE,	, CHECKED	FOR LEAKS. ALL
		LEAKS RES	GLUED. DEPA	व्यक्त डाम्स	
7/20/17	0630 HZS	ARRIVED ON-	SITE. MOBILLE	ED REMAI	INSNG AQUYAC
		EQUIPMENT.	CONNECTED YA	C HOSE FO	ACOVAE SYSTEM.
		CONNECTED L	10010 DISCHARU	GE LINE TO	O TOTALIZER FLOW
		METER AND	THEN TO STA	NO BY COLL	ECTION TANK.
		אל כבובהמדצ	tha logger L	of www	Fu mω-3.
1/20/2	05.40			m 4-3 4 4	100000 17 74-
7120111	0)00				
				IN THE	WELL MATONS AIR
		COW HAD CE	12 IS PIGH.		
	0715	INITIAL WE	EU VAPOR SAM	NPLE TAK	EN. TPH CONGENMATINE
		RANGE.			
	7/18/17	n: GCU, San Juan County, 7/18/17 0900 Has 7/19/17 1245 HRS	The Real Department of the Reserve of the Real Proximate of the Real Could and C	The GCU, San Juan County, NM Project Manager 7/18/17 09 whis Mobileted to GCU #1246 BY & #1/A SITES. PERFORME TO PLACEMENT OF AWVE STS AND PROPARE TANK. (2AUG THE REDI-FOOT IN-WELL A Z.O AT ABOVE WELL BOTTOM PLACED A DATA LOGGER APPROXIMATELY 1.0 A ABO 7/18/17 1000 HRS DEPARTED SITE TANK APPROXIMATELY 25 AT CONNECTED THE GAS LINE. LEAKS RESOLVED. DEPAR 7/120/17 0630 HRS APPROXIMATELY 25 AT CONNECTED LY OUID DISCHARM METER AND THEN TO STATE STATED DATA LOGGER LY Y/20/17 0760 EVENT STATED. Immediately THE TRY CONCENTRATIONS LOW AND COL IS HIGH. 07/15 THE TRY CONCENTRATIONS LOW AND COL IS HIGH.	Project Managers: Faucher 19 7/18/17 09 Co Has MOBILLED TO GCU #124E From THE #4 & #1 A SITES. PORFORMED SITE AS TO PLACEMENT OF ACUVA SYSTEM, LIGHT AND PROPARE TANK. (TAUGED ALL W THE REDI-POST IN-WELL PUMP AF AN 2.0 AFT ABOVE WELL BOTTOM ON \$2.0. PLACED A DATA LOGGER TH WELL All PROXIMATELY 1.0 A ABOVE BOTTOM THIS /17 1245 HRS RETURNED SITE 7/19/17 1245 HRS RETURNED TO SITE TO PLYTICE PROPAL TANK APPROXIMATELY 25 AF TO THE CANADA SITE CONNECTED THE CAS LINE, CHECKED LEAKS RESOLVED. DEPARTED SITE 7/20/11 0630 HAS ARRIVED ON SITE. MOBILLED RETURNED THE TEND THEN TO STANDBY COLL STATUD DATA LOGGER LOGGED WAS THE TOP CONCERNITIONS IN THE LOW AND COL IS HIGH. OTIS INTAK WELL VAPOR SAMPLE TAKE EN THE 7000 PMN PANKE AND CO.

			DATA – EVEN		A 0000000000000000000000000000000000			MDP SYSTEM	
Locat	ion: GCU, San Juan C			Project	Managers: F	aucher / Ge	orge /Hend	ley / Morris	
\A/~ II	ш	Date	7/20/17						
Well	# mw-1	Time	1000	1100	1200	1300	1400	1500	
		Hr Meter	79540	7957.0	7958.0	7955.0	7960.0	7861.0	
~	Engine Speed	RPM	1800	1800	1800	1800	1800	1800	
) WE	Oil Pressure	psi	50	50	50	50	50	50	
/BLC	Water Temp	°F	160	160	160	160	160	160	
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14	
Ë	Intake Vacuum	"Hg	12	12	12	12	12	12	
	Gas Flow Fuel/Propane	cfh	125	125	125	125	125	125	
	Extraction Well Vac.	"H₂O	40	40	40	40	40	40	
AR AR	Extraction Well Flow	scfm	20.93	20.93	20.93	20.97	20.93	20.93	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	.70	
VAC	Air Temp	°F	_	-	-	-	_	-	
	Barometric Pressure	"Hg	-	-	-	-	-	-	
=	TPH	ppmv	6370	5590	5190	4990	4770	4550	
Ē	CO ₂	%	4.68	3.58	3.36	3.02	2.82	2.68	
VAPOR / INFLUENT	СО	%	O	0	0	0	0	0	
POR	O ₂	%	13.9	14.7	15.6	16.6	16.4	16.7	
>	H ₂ S	ppm	0	0	0	0	0	0	
	WELL VAC AND WYF STEADY DUTING PETIOD AT 40"H20 AND 20.93 SCFM,								
	RESPECTIVELY.	37.00			200 At 1991				
S	Or ON A STEADILY			100					
ш	TREND.								
_									
	TOTALIZER		1578.03	3040.28	3096.32	3146.92	3198.60	3252.25	
	Pump Rate	gals/min	1.04	.93	.84	. 86	.89	.84	
RECOVERY	Total Volume	gals	202.91	265.16	321.20	371.80	423,48	477.13	
Z	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEN	
	NAPL	Gals		_			-	~	
	Data Logger Head 🕻 🚜	9 ft	.09	.68	.79	.57	.86	.34	
	GW Depression	ft	-4.0	- 5,41	-5.3	5,52	5.23	5.75	
	Extraction Well	DTNAPL							
	Extraction Well	DTGW							

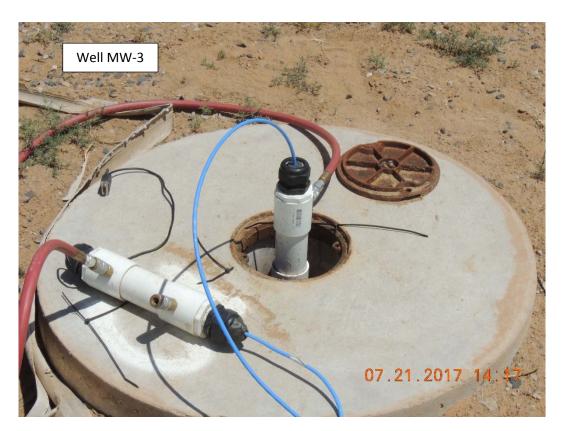
	tion: GCU, San Juan Co			FIUJECT	Managers: F	auchiel / Ge	orge /rieriui	ey / worris	
Wel		Date	7/20/17						
	I# mw-1	Time	1600	.1700	1900	2000	2200	2400	
		Hr Meter	7962.0	75630	7964.0	7966.0	7868.0	7570.0	
	Engine Speed	RPM	1800	1300	1800	1800	1800	1800	
WER	Oil Pressure	psi	50	50	50	50	50	50	
BLOV	Water Temp	°F	160	160	160	150	150	140	
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14	
ENGI	Intake Vacuum	"Hg	12	18	18	18	18	18	
	Gas Flow Fuel/Propane	cfh	125	145	145	130	135	/35	
	Extraction Well Vac.	"H ₂ O	40	40	40	40	40	40	
ERE	Extraction Well Flow	scfm	20.93	20.93	20.93	20.93	20.93	20.9	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70	
VACU	Air Temp	°F	_	-	-	-	-	-	
	Barometric Pressure	"Hg	_	-	-	-	-	-	
VAPOR / INFLUENT	TPH	ppmv	4530	4320	4100	4/20	3400	3220	
	CO ₂	%	2.64	2.46	2.16	2.34	2.26	1.72	
	со	%	0	0	0	D	0	0	
POR	O ₂	%	17.4	17.5	17.5	17.7	18,7	17.8	
>	H ₂ S	ppm	0	0	0	D	0	0	
	AJ OSOO INCREASED PRAPANE FLOW TO COMPENSATE FOR DECREASING THE								
	CONCENTRATIONS.								
_ω	PROVIDED BY WEL								
NOTES									
-									
	TOTALIZER		3302.78	3353.79	3390,16	3480.89	3574.04	3664.	
ERY	Pump Rate	gals/min	.85	.61	.76	.78	.75	.74	
RECOVERY	Total Volume	gals	527.67	578.67		705.77		888.9	
2	NAPL	% Vol	SHEN	SHEEN	SHEEN	SHEEN	SHEEN	SHEEP	
	NAPL	Gals		-	-		-		
		.09 ft	.65	.73	. 87	0.92	1.16	0.87	
EN EN	GW Depression	ft	5,44	5.36	5,22	5,17	4.93	5,22	
	Extraction Well	DTNAPL							

A	AcuVac Remediation OF	PERATING D	OATA – EVEN	NT#/	PAGE #	¥5	ACUVAC N	IDP SYSTEM
Loca	tion: GCU, San Juan C	ounty, NM		Project	Managers: F	aucher / Ge	orge /Hend	ey / Morris
		Date	7/21/17					
Well	1# mw-1	Time	0200	0400	0600	0900	1000	1200
	7	Hr Meter	7972.0	7974.0	7576,0	7578.0	7980.0	7982.0
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	140	140	135	135	140	140
	Alternator	Volts	14	14	14	14	.14	14
	Intake Vacuum	"Hg	18	18	18	/8	18	18
	Gas Flow Fuel/Propane	cfh	130	130	130	130	130	150
	Extraction Well Vac.	"H₂O	40	40	40	40	40	40
ERE	Extraction Well Flow	scfm	20.93	20.93	20.93	20.93	20.93	20.93
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70
ATMO	Air Temp	°F	_	_	-	-	_	-
	Barometric Pressure	"Hg	,	_	_	-	_	-
П	TPH	ppmv	3260	2810	30 20	2910	3030	3160
VAPOR / INFLUENT	CO ₂	%	1. 80	1.98	1.06	1.34	1.34	1.42
/ INF	со	%	0	.01	0	0	0	0
POR	O ₂	%	18.1	20.0	18.2	18.9	19.2	19.6
>	H ₂ S	ppm	0	0	0	0	0	0
	WELL VAC AND	WELL VA	HOR FLOW	STEADY	During	PERION		
	TPH VAPOR CONCENTRATIONS ON A MOSTLY DECREASING TREND DURING PERIOD.							
NOTES	LIGUID RECOVERY PRESENT.	STEADY	D VZING	POROS.	NO MEA	SSRABLE	LIQUID	en Alc
	7	ē	3752.90	3836,50	3922.11	4002.04	4082.29	4176.38
₹.	Pump Rate	gals/min	.70	, אור,	.67	.67	.78	.93
RECOVERY	Total Volume	gals	977.78	1061.38	1146.99	1226.92		
REC	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN	SHOEP	SHEEN
	NAPL	Gals	_		_	-	_	-
	Data Logger Head	ft	0.83	0.79	0,46	1.18	144	.74
EW	GW Depression	ft	5.26	5,30	5,66	4.91	4.65	5.35
<u> </u>	Extraction Well	DTNAPL	40-44-					
	Extraction Well	DTGW						

			DATA – EVEN		PAGE :			MDP SYSTEM	
Locati	on: GCU, San Juan C	ounty, NM	Т , ,	Project	Managers: F	aucher / Ge	orge /Hend	ley / Morris	
		Date	7/21/17						
Well	# mw-1	Time	1400	1600	1300	2000	2200	2400	
		Hr Meter	7984.0	79860	7988.0	7990.0	7952.0	7994.0	
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800	
WER	Oil Pressure	psi	50	50	50	50	50	50	
BLO	Water Temp	°F	160	140	140	140	140	140	
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14	
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18	
	Gas Flow Fuel/Propane	cfh	170	170	170	170	170	170	
	Extraction Well Vac.	"H ₂ O	40	40	40	40	40	40	
AIR	Extraction Well Flow	scfm	20.93	20.93	20.93	20.93	20,93	20.93	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70	
VACI	Air Temp	°F	-	_	_	_	_	-	
	Barometric Pressure	"Hg	-	-	-	-	-	-	
5	TPH	ppmv	3090	2770	2670	1958	2240	2070	
E CE	CO ₂	%	1.42	1.16	1.23	1.60	1,33	1.34	
/ INF	СО	%	0	0	0	0	0	0	
VAPOR / INFLUENT	O ₂	%	18.1	19.9	19.6	19.8	19.5	19.6	
>	H ₂ S	ppm	Ò	0	0	0	0	0	
	AT APPROX 1530 HRS LIQUID ENAPL WAS VISIBLE IN THE SIGHT GLASS IN THE								
	LIQUID DISCOHARG	E LINE,	THE A	MOUNT W.	AS NOT SUI	FICENT	TO MEAS	VIE.	
<u>s</u>									
NOTES	At 1800 stopped pump + vac + unit for scheduled maintanence. Re-Studd								
-	nt 1820.	1 1.10	/	/ . /			1. /	7.	
F	At 2200 Liguid TPH continue				Sight	gluss in	dischar	ge line,	
_	TOTALIZER		4288.18	4351.95	4423.08	4528.48	4623,30	4713.30	
	Pump Rate	gals/min	.53	.59	.88	.79	.75	,75	
<u> </u>	Total Volume	gals	1513.06			1753.36	1848.18	1938,20	
REC	NAPL	% Vol	SHEEN	SHEEN	SHEEN	SHEEN		SHEEN	
1	NAPL	Gals	-	-	-		_	-	
	Data Logger Head	6.09 ft	.31	.31	,3/	,35	.37	,39	
<u> </u>	GW Depression	ft	5.78	5.78	5.78	5.74	5.72	5,70	
M E	Extraction Well	DTNAPL			The second secon				
	Extraction Well	DTGW							

Location: GCU, San Juan County, NM Project Managers: Faucher / George /Hendley / Morris								
		Date	7/22/17					
Well	# mw-1	Time	0200	0400	0600	0800	1000	1200
		Hr Meter	7996.0	7998.0	8000.0	8002.0	8004.0	8006.0
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
VER	Oil Pressure	psi	50	50	50	50	50	50
BLO\	Water Temp	°F	140	140	140	140	140	140
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane	cfh	170	170	170	170	190	190
1.99	Extraction Well Vac.	"H₂O	40	40	40	40	40	40
ERE	Extraction Well Flow	scfm	20.93	20.93	20.93	20.93	2093	2093
SPH JUM /	Influent Vapor Temp.	°F	70	70	70	70	70	76
ATMOSPHERE VACUUM / AIR	Air Temp	°F	_	_	_	_	-	-
	Barometric Pressure	"Hg	_	~	_		-	-
Т	TPH	ppmv	2270	7750	1970	1926	1054	1346
LUEN	CO ₂	%	1.44	1.08	1.32	.90	1.18	.98
/ INF	со	%	0	0	0	0	0	0
VAPOR / INFLUENT	O ₂	%	19.6	19.3	19,5	19.7	19.9	20.1
۸ ۸	H ₂ S	ppm	O	0	0	0	0	0
	0200 More lige	id NAF	C seen i	n 5.34+	glass in	discha	ge line.	
S								
NOTE		NAME OF TAXABLE PARTY.						
2								
				()		43 13 141	on an	
	P	ON/OFF		4890.16	4975,56	5061.66	5/41.10	5233.69
ERY	Pump Rate	gals/min	.73	.71	.72	.66	.77	.64
RECOVERY	Total Volume	gals	2027.93		2200.44	2286.54	2365.98	2458.57
2	NAPL	% Vol	SHFEN	SHEEN	SHEEN	SHEEN	SHEEN	SHED
	NAPL	Gals	-	-	_		-	_
	Data Logger Head	ft	.33	,79	.33	.32	.34	.36
EW	GW Depression	ft	5.76	5.30	5,76	5.77	5.75	5.73
-	Extraction Well	DTNAPL						**
	Extraction Well	DTGW						

A	AcuVac Remediation Of	PERATING [DATA – EVEN	NT# /	PAGE #	¥ 8	ACUVAC N	IDP SYSTEM	
Loca	tion: GCU, San Juan C	ounty, NM		Project	Managers: F	aucher / Ge	orge /Hendl	ey / Morris	
		Date	7/22/17						
Well	# mw-)	Time	1400	1600	1800	2000	2200	2400	
	///w)	Hr Meter	වීතාරි. ට	8010.0	80120	8014.0	8016.0	8018.0	
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800	
VER	Oil Pressure	psi	50	50	50	50	50	50	
ENGINE / BLOWER	Water Temp	°F	160	160	160	140	140	140	
NE / I	Alternator	Volts	14	14	14	14	14	14	
ENGI	Intake Vacuum	"Hg	18	18	13	18	18	18	
	Gas Flow Fuel/Propane	cfh	190	190	190	190	190	190	
	Extraction Well Vac.	"H₂O	40	40	40	40	40	40	
ERE	Extraction Well Flow	scfm	20.93	20.93	20.93	20,93	20,93	20,93	
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	70	70	70	70	70	70	
ATMC	Air Temp	°F	-	-	_	_	-	_	
	Barometric Pressure	"Hg	-	-	-	_	-	-	
5	TPH	ppmv	1728	1844	1798	1658	1640	1588	
VAPOR / INFLUENT	CO ₂	%	.70	,62	.90	1.04	1.04	. 88	
/ INF	СО	%	0	0	0	0	0	0	
POR	O ₂	%	20.2	20.2	20.2	19.6	19.8	19.7	
>	H ₂ S	ppm	0	0	0	0	0	0	
NOTES	2400 TPH continues to have downward trad								
	TOTALIZER	GAL	5310.18	5396.29	5473.04	5577,21		5769.82	
ERY	Pump Rate	gals/min	.72	.64	.87	.82	.79	.76	
RECOVERY	Total Volume	gals	2535.06	2621.17	2697.92	2802.99		2994,70	
8	NAPL	% Vol	SHEED	SHEEN	5 HEEN	SHEEN	SHEEN	SHEEN	
	NAPL	Gals		-	7./	-	_		
	Data Logger Head	109 ft	.34	.34	,34	.33	.33	-, 33	
EW	GW Depression	ft	5.75	5,75	5,75	5.76	5.76	5.76	
-	Extraction Well	DTNAPL							
	Extraction Well	DTGW							


A	AcuVac Remediation OF	PERATING D	OATA – EVEN	т# /	PAGE #	9	ACUVAC	MDP SYSTEM
Loca	tion: GCU, San Juan C	ounty, NM		Project I	Managers: F	aucher / Ge	eorge /Hend	ley / Morris
		Date	7/23/17					
Well	# MW-1	Time	0200	0400	6700			
		Hr Meter	8020.0	8022.0	8025,0			
	Engine Speed	RPM	1800	1800	1800			
WER	Oil Pressure	psi	50	50	50			
ENGINE / BLOWER	Water Temp	°F	140	140	140			
NE /	Alternator	Volts	14	14	14			
ENGI	Intake Vacuum	"Hg	18	18	18			
	Gas Flow Fuel/Propane	cfh	190	190	190			
	Extraction Well Vac.	"H₂O	40	40	40			
ERE	Extraction Well Flow	scfm	20,93	20,93	20,93			
SPH UM /	Influent Vapor Temp.	°F	70	70	70			
ATMOSPHERE VACUUM / AIR	Air Temp	°F		_	-			
~ /	Barometric Pressure	"Hg	_	_	-			
L	TPH	ppmv	1314	1420	1192			
VAPOR / INFLUENT	CO ₂	%	.76	1.04	-			
INFL	СО	%	0	6	0			
POR	O ₂	%	20.0	19.8	19.7			
V	H ₂ S	ppm	0	0	0			
NOTES								
	GW Pump	ON/OFF		5951.70	6076,91			
ERY	Pump Rate	gals/min	.75	,69	-			
RECOVERY	Total Volume	gals	3085.88	317658				
RE	NAPL	% Vol	SHOW	SHEEN	SHEEN			
	NAPL	Gals	_	-	-			
	Data Logger Head	ft	.33	.34	, 34			
EW	GW Depression	ft	5.76	5,75	5,75			
ш	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

AcuVac Remediation, LLC

1656-H Townhurst, Houston, Texas 77043 713.468.6688 • www.acuvac.com

September 30, 2017

Mr. Stephen Varsa Supervising Hydrogeologist Stantec Consulting Services, Inc. 11153 Aurora Avenue Des Moines, IA 50322

Dear Stephen:

Re: Gallegos Canyon Unit #124E, San Juan County, NM (Event #2)

At your request, AcuVac Remediation, LLC (AcuVac) performed two 24.0-hour Mobile Dual Phase Extraction (MDPE) events; Event #2A on well MW-1 on September 21 and 22, and Event #2B on well MW-1 on September 26 and 27, at the above referenced site (Site). Following is the Report and a copy of the Operating Data collected during Event #2. Additionally, the attached Table #1 contains the Summary Well Data, and Table #2 contains the Summary Recovery Data.

The purpose of the MDPE events was to enhance recovery of Phase Separated Hydrocarbons (PSH) present at the Site through the removal of petroleum hydrocarbons in both liquid and vapor phases. PSH is referred to as petroleum hydrocarbons and Light Non-Aqueous Phase Liquids (LNAPL). The source of the PSH is a historical release of natural gas condensate.

OBJECTIVES

The objectives of the MDPE events were to:

- Maximize liquid and vapor phase petroleum hydrocarbon removal from groundwater and soils in the subsurface formations within the influence of the extraction well.
- Expose the capillary fringe area and below to the extraction well induced vacuums.
- Increase the vapor phase and liquid LNAPL specific yields with high induced vacuums.
- Create an induced hydraulic gradient to gain hydraulic control of the area surrounding the extraction well during the event periods.
- Select and monitor the groundwater depression and pump rates to accomplish the above objectives.

METHODS AND EQUIPMENT

AcuVac owns and maintains an inventory of equipment to perform MDPE events. No third party equipment was utilized. The events at the Site were conducted using the AcuVac I-6 System (System) with a Roots RAI-33 blower used as a vacuum pump and a Roots RAI-22 positive displacement blower. The following table lists equipment and instrumentation employed during Event #2, and the data element captured by each.

Equipment and Instrumentation Employed by AcuVac						
Measurement Equipment	Data Element					
Extraction Well Induced Vacuum and Flow						
Dwyer Magnehelic Gauges	Extraction Well Vacuum					
Dwyer Averaging Pitot Tubes / Magnehelic Gauges	Extractions Well Vapor Flow					
Observation Wells						
Dwyer Digital Manometer	Vacuum / Pressure Influence					
Extraction Well Vapor Monitoring						
V-1 vacuum box	Extraction Well Non-Diluted Vapor Sample Collection					
HORIBA® Analyzer	Extraction Well Vapor TPH Concentration					
QRae Mini II O ₂ Monitor	Extraction Well Vapor Oxygen Content					
LNAPL Thickness (if present)						
Solinst Interface Probes Model 122	Depth to LNAPL and Depth to Groundwater					
Liquid Recovery						
Totalizer Flow Meter	Liquid Flow and Total Volume					
Grundfos Red-Flo 2 Total Fluids Pump	In-Well Pumping					
Grundfos Variable Frequency Drive	Pump Speed and Other Diagnostics					
Groundwater Depression / Upwelling						
In-Situ Level Troll 700 Data Logger	Liquid Column in Extraction and Observation Wells					
In-Situ Vented Cable with Chamber	Equalize Well Vacuum/Pressure					
In-Situ Rugged Reader Data Logger Interface	Capture Readings from Data Logger Trolls					
Atmospheric Conditions						
Testo Model 511	Relative and Absolute Barometric Pressure					

The vacuum extraction portion of the System consists of a vacuum pump driven by an internal combustion engine (IC engine). The vacuum pump was connected to the extraction well, and the vacuum created on the extraction well caused light hydrocarbons in the soil and on the groundwater to volatilize and flow through a moisture knockout tank to the vacuum pump and the IC engine where they were burned as part of the normal combustion process. Propane was used as auxiliary fuel to help power the engine if the well vapors did not provide the required energy.

The IC engine provided the power necessary to achieve and maintain high induced vacuums and/or high well vapor flows required to maximize the vacuum radius of influence for pilot tests and short term event remediation.

Emissions from the engine were passed through three catalytic converters to maximize destruction of removed hydrocarbon vapors. The engine's fuel-to-air ratio was adjusted to maintain efficient combustion. Because the engine is the power source for the equipment, the System stops when the engine stops. This prevents an uncontrolled release of hydrocarbons. Since the System is held entirely under vacuum, any leaks in the seals or connections are leaked into the System and not emitted into the atmosphere. The engine is automatically shut down by vacuum loss, low oil pressure, over speed, or overheating.

Groundwater extraction was provided by an in-well Grundfos Redi-Flo 2 total fluids pump that discharged through a totalizer/flow meter. The discharge line from this meter was then connected to a stand-by tank. The electrical power for the groundwater pump was supplied from a 120v Honda generator. The groundwater flow rate was adjusted to maintain a target level. An interface meter was used to collect depth to groundwater and depth to

LNAPL measurements. Grab samples of recovered liquid were taken periodically in a graduated cylinder to determine the average percentage of LANPL being recovered.

The design of the AcuVac System enabled independent control of both the induced well vacuum and the groundwater pumping functions such that the AcuVac team controlled the induced hydraulic gradient to increase exposure of the formation to soil vapor extraction (SVE). The ability to separate the vapor and liquid flows within the extraction well improved the LNAPL recovery rates and enabled the AcuVac team to record data specific to each media.

RECOVERY SUMMARY FOR MDPE EVENT #2

The Recovery Summary table below lists the groundwater and LNAPL recovery data for Event #2, and compares the results with the previous Event #1.

Recovery Summary							
	Event #2A	Event #2B	Total				
	MW-1	MW-1	Event #2	Event #1			
Event Hours	24.0	24.0	48.0	72.0			
GW Recovery	1,160	1,597	2,757	3,302			
NAPL Recovery							
Liquid	0	0	0	0			
Vapor	1.7	1.9	3.6	10.4			
Total	1.7	1.9	3.6	10.4			
Gallons/Hour	0.07	0.08	0.07	0.14			

SUMMARY OF MDPE EVENT #2A- WELL MW-1

- Event #2A was conducted on September 21 and 22, 2017. The total time for Event #2A was 24.0 hours.
 The data is compared to Event #1 conducted on July 20 through 23, 2017 which had total event time of 72.0 hours.
- The total liquid volume recovered was 1,160 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] analytical data, the total vapor LNAPL burned as IC engine fuel was 1.7 gals for a total liquid and vapor LNAPL recovery of 1.7 gals or 0.07 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #2A is compared with Event #1 in the table below.

LNAPL Recovery Well MW-1							
		Even	t #2A	Eve	nt #1		
		Amount	Percent	Amount	Percent		
Event Hours		24.0	-	72	-		
GW Recovery	gals	1,160	-	3,302	-		
NAPL Recovery							
Liquid	gals	0	0	0	0		
Vapor	gals	1.7	100.00	10.4	100.00		
Total	gals	1.7	100.00	10.4	100.00		
Gallons/Hour		0.07		0.14	·		

 Average HORIBA[®] analytical data from the influent vapor samples for Event #2A is compared with Event #1 in the table below:

Influent Vapor Data Well MW-1						
Data Elemei	nt	Event #2A	Event #1			
TPH- Maximum	ppmv	2,110	7,250			
TPH- Average	ppmv	1,636	3,194			
TPH- Minimum	ppmv	1,228	1,054			
TPH- Initial	ppmv	1,854	7,250			
TPH- Final	ppmv	1,316	1,192			
CO ₂	%	2.08	2.12			
со	%	0	0			
O ₂	%	18.1	18.1			
H₂S	ppm	0	0			

• The Event #2A extraction well induced vacuum and well vapor flow are compared with Event #1 in the table below.

Well Vacuum and Well Vapor Flow Well MW-1							
Data Element	Event #2A	Event #1					
Well Vacuum- Max	"H₂O	45.00	40.00				
Well Vacuum- Avg	"H₂O	45.00	40.00				
Well Vacuum- Min	"H₂O	45.00	40.00				
Well Vapor Flow- Max	scfm	20.74	20.93				
Well Vapor Flow- Avg	scfm	20.42	20.93				
Well Vapor Flow- Min	scfm	19.91	20.93				

- The groundwater pump inlet was set at 32.0 ft below top of casing (BTOC) in well MW-1. The average groundwater pump rate during the course of Event #2A was 0.86 gpm, and the maximum groundwater pump rate was 1.59 gpm. The total liquid volume recovered was 1,160 gals.
- LNAPL with a measured thickness of 0.04 ft was recorded in well MW-1 prior to the start of Event #2A, and no measureable LNAPL was recorded at the conclusion of the Event #2A.

The total LNAPL removed, including liquid and vapor, during the 24.0 hour Event #2A, well MW-1 was 1.7 gals.

ADDITIONAL INFORMATION

- No measurable liquid LNAPL was visible in the sight glass during the course of the event. The collection tank was observed at the conclusion of the event, and no measurable liquid LNAPL was present.
- All LNAPL recovery was the result of the TPH in the recovered well vapors burned as engine fuel.
- The TPH concentrations were on a mostly decreasing trend during Event #2A.
- The maximum TPH concentration reading of 2,110 ppmv occurred at event hour 5.0. The minimum TPH concentration reading of 1,228 ppmv occurred at event hour 19.0.

SUMMARY OF MDPE EVENT #2B- WELL MW-1

- The total time for Event #2B was 24.0 hours. Event #2B was conducted on September 26 and 27, 2017.
 The data is compared to Event #2A conducted on September 21 and 22, 2017 which had total event time of 24.0 hours.
- The total liquid volume recovered was 1,597 gals with no measureable liquid LNAPL recovered.
- Based on the HORIBA[®] analytical data, total vapor LNAPL burned as IC engine fuel was 1.9 gals, for a total liquid and vapor LNAPL recovery of 1.9 gals, or 0.08 gals per hour.
- The volume of liquid and vapor LNPAL recovered during Event #2B is compared with Event #2A in the table below.

LNAPL Recovery Well MW-1							
		Even	t #2B	Event #2A			
		Amount	Percent	Amount	Percent		
Event Hours		24.0	=	24.0	Ī		
GW Recovery	gals	1,597	=	1,160	Ī		
NAPL Recovery							
Liquid	gals	0	0	0	0		
Vapor	gals	1.9	100.00	1.7	100.00		
Total	gals	1.9	100.00	1.7	100.00		
Gallons/Hour		0.08		0.07			

• Average HORIBA® analytical data from the influent vapor samples for Event #2B is compared with Event #2A in the table below:

Influent Vapor Data Well MW-1						
Data Element		Event #2B	Event #2A			
TPH- Maximum	ppmv	2,470	2,110			
TPH- Average	ppmv	1,183	1,636			
TPH- Minimum	ppmv	564	1,228			
TPH- Initial	ppmv	2,470	1,854			
TPH- Final	ppmv	770	1,316			
CO ₂	%	0.92	2.08			
со	%	0	0			
O ₂	%	18.8	18.1			
H₂S	ppm	0	0			

• The Event #2B extraction well induced vacuum and well vapor flow are compared with Event #2A in the table below.

Well Vacuum and Well Vapor Flow Well MW-1							
		Event #2B	Event #2A				
Data Element		09/2017	09/2017				
Well Vacuum- Max	"H ₂ O	90.00	45.00				
Well Vacuum- Avg	"H ₂ O	73.56	45.00				
Well Vacuum- Min	"H ₂ O	34.00	45.00				
Well Vapor Flow- Max	scfm	35.32	20.74				
Well Vapor Flow- Avg	scfm	30.53	20.42				
Well Vapor Flow- Min	scfm	22.13	19.91				

- The groundwater pump inlet was set at 32.0 ft BTOC. The average groundwater pump rate during the course of Event #2B was 1.06 gpm, and the maximum groundwater pump rate was 1.21 gpm. The total liquid volume recovered was 1,597 gals.
- LNAPL with a measured thickness of 0.04 ft was recorded in well MW-1 prior to the start of Event #2B, and no measureable LNAPL was recorded at the conclusion of the Event #2B.

The total LNAPL removed, including liquid and vapor, during the 24.0 hour Event #2B, well MW-1 was 1.9 gals.

ADDITIONAL INFORMATION

- No measurable liquid LNAPL was recovered. The quantifiable LNAPL recovery was the result of the TPH in recovered well vapors being burned as engine fuel.
- The TPH concentrations were on a mostly decreasing trend during Event #2B.
- The maximum TPH concentration reading of 2,470 ppmv occurred at event hour 1.0. The minimum TPH concentration reading of 564 ppmv occurred at event hour 21.0.

METHOD OF CALIBRATION AND CALCULATIONS

The HORIBA® Analytical instrument is calibrated with Hexane, CO and CO₂. The formula used to calculate the emission rate is:

ER = HC (ppmv) x MW (Hexane) x Flow Rate (scfm) x
$$1.58E^{-7}$$
 (min)(lb mole) = lbs/hr (hr)(ppmv)(ft³)

INFORMATION INCLUDED WITH REPORT

- Table #1 Summary Well Data
- Table #2 Summary Recovery Data
- Recorded Data
- Photographs of the MDPE System and extraction wells MW-1.

After you have reviewed the report and if you have any questions, please contact me. We appreciate you selecting AcuVac to provide this service.

Sincerely,

ACUVAC REMEDIATION, LLC

Paul D. Faucher

Vice President, Operations

Summary Well Data Table #1

Event		2A	2B
WELL NO.		MW-1	MW-1
Total Event Hours		24.0	24.0
Total Depth	ft BGS	34.0	34.0
Well Screen	ft BGS	24.0 – 34.0	24.0 – 34.0
Well Size	in	2.0	2.0
Well Data	·		
DTGW - Static - Start Event	ft BTOC	25.42	25.49
DTLNAPL - Static - Start Event	ft BTOC	25.38	25.45
LNAPL	ft BTOC	0.04	0.04
Hydro-Equivalent- Beginning	ft BTOC	25.39	25.46
DTGW - End Event	ft BTOC	30.00	34.35
DTLNAPL - End Event	ft BTOC	-	-
LNAPL	ft BTOC	=	-
Hydro-Equivalent- Ending	ft BTOC	30.00	34.35
Extraction Data			
Maximum Extraction Well Vacuum	"H ₂ O	45.00	90.00
Average Extraction Well Vacuum	"H ₂ O	45.00	73.56
Minimum Extraction Well Vacuum	"H ₂ O	45.00	34.00
Maximum Extraction Well Vapor Flow	scfm	20.74	35.42
Average Extraction Well Vapor Flow	scfm	20.42	30.53
Minimum Extraction Well Vapor Flow	scfm	19.91	22.13
Maximum GW / LNAPL Pump Rate	gpm	1.59	1.21
Average GW / LNAPL Pump Rate	gpm	0.86	1.06
Influent Data			
Maximum TPH	ppmv	2,110	2,470
Average TPH	ppmv	1,636	1,183
Minimum TPH	ppmv	1,228	564
Initial TPH	ppmv	1,854	2,470
Final TPH	ppmv	1,316	770
Average CO ₂	%	2.08	0.92
Average CO	%	0	0
Average O ₂	%	18.1	18.8
Average H ₂ S	ppm	0	0

Summary Recovery Data Table #2

Event		2A	2B
WELL NO.		MW-1	MW-1
Recovery Data- Current Event			
Total Liquid Volume Recovered	gals	1,160	1,597
Total Liquid LNAPL Recovered	gals	0	0
Total Liquid LNAPL Recovered / Total Liquid	%	0	0
Total Liquid LNAPL Recovered / Total LNAPL	%	0	0
Total Vapor LNAPL Recovered	gals	1.7	1.9
Total Vapor LNAPL Recovered / Total LNAPL	%	100.00	100.00
Total Vapor and Liquid LNAPL Recovered	gals	1.7	1.9
Average LNAPL Recovery	gals/hr	0.07	0.08
Total LNAPL Recovered	lbs	12	13
Total Volume of Well Vapors	cu. ft	29,405	43,963
Recovery Data- Cumulative			
Total Liquid Volume Recovered	gals	4,462	6,059
Total Liquid LNAPL Recovered	gals	0	0
Total Vapor LNAPL Recovered	gals	12.1	14.0
Total Vapor and Liquid LNAPL Recovered	gals	12.1	14.0
Average LNAPL Recovery	gals/hr	0.13	0.12
Total LNAPL Recovered	lbs	85	98
Total Volume of Well Vapors	cu. ft	119,822	163,786

4	AcuVac Remediation OI	PERATING D	DATA – EVEN	T# 7A	PAGE #	# 1	ACUVAC N	MDP SYSTEM
Locat	ion: GCU, San Juan C	ounty, NM		Project	Managers: F	aucher / Ge	orge /Hend	ley / Morris
		Date	9/21/17					
Well	# mw-1	Time	0700	0730	0800	930	0900	0930
	.,,,,	Hr Meter	8069.5	8070.0	8070.5	807/.0	8071.5	8072.0
	Engine Speed	RPM	1500	1900	1900	1900	1900	1900
WER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	130	130	130	130	130	130
INE /	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	14	14	18	18	18	18
	Gas Flow Fuel/Propane	cfh	160	160	150	150	150	150
	Extraction Well Vac.	"H₂O	45	45	45	45	45	45
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	19.91	19.91	19.91	19.91	19.91	19.91.
MUM	Influent Vapor Temp.	°F	60	60	60	60	60	60
VAC	Air Temp	°F	54	56	58	59	61	63
	Barometric Pressure	"Hg	29.90	29.90	29.90	29.90	27.90	29.90
⊨	TPH	ppmv	_	_	1854	_	_	-
l GEN	CO ₂	%	_	-	6.98	-		-
VAPOR / INFLUENT	СО	%	_	-	0	-	-	-
Por	O ₂	%	_	-	9.9	^	-	-
>	H ₂ S	ppm	-	-	0	-	-	-
ES	O700 EVENT STARMED. INITIAL WELL VAC SET AT 45"HID RESULTING IN A WIF OF 19.91 SCAM. AT OBOO WELL VAPOR SAMPLE OBTAINED. THAT VAPOR CONCENTRATIONS HIGHER THAN FINAR READING FOR EV #1 1859 PAMV V 1192 PAMV. GW RECOVERY RATES CONSISTENT WITH THE START OF EV #1.							
	GW Pump	ON/OFF	4553.20	4553.20	4552.25	4627.64	4653.72	4685.57
FRY	Pump Rate	gals/min	-	1.30	1.18	. 87	1.06	1.59
RECOVERY	Total Volume	gals	-	-	39.05	74.44	100.52	132.37
_ F	NAPL	% Vol	_	-	-	-	-	-
\perp	NAPL	Gals	-	-			_	
	Data Logger Head	ft	-	7.40	.27	.27	.26	.26
<u> </u>	GW Depression	ft		<u> </u>	-7.0	-7.0	-7.0	-7.0
	Extraction Well	DTNAPL	25.38					
	Extraction Well	DTGW	25.42					

		OPERATING I	NOTES - EVENT # ? A	PAGE # 2	ACUVAC MDP SYSTEM
ocation:	GCU, San	Juan County, NM	Proje	ct Managers: Fau	ucher / George / Hendley / Morris
	9/20/17	1600 Has	MOBILIZED AW	VAC SYSTEM	TOSITE POSITIONED
			THE ACUVAC SYST	EM NEAR WY	EU MW-1. DETAGLED
			UNIT FROM TRU	ICK. LAID OU	T THE PROPANE HOSES
			TO MAKE SUIZE	STANOBY PI	ROPANE TANK CONNECTION
-		<u> </u>	COULD BE MADE	Ξ.	
			SECURZO UNIT	DEPARTED !	SITE,
9	lulin	0620 Has.	AMUNED ON SIZ	E HEW TAN	LGATE SAFETT MEETING.
					Dr 25.38, DTGW 25.42,
					25-WELL PUMP 1.5 FT
			ABOVE WELL B	OTTOM. CONT	NECORED PUMP TO FLOW
			METER AND TI	HEN STANOB	Y COLLECTION TANK.
			CONNECTED P.	ROPANE HOSE	S FROM ACUVAC UNIT
NOTES			TO STANDBY TA	uk. CHOCKED	FOR LEAGLE ALLOK.
2			CONNECTED V	ACUUM HOSE FE	com ACOVAC UNIT TO WELL
	1 11 2		MANIFOLD.		
			PSFORMED	AU SAFAY	CHECKS - ALL OK.
		6700	EVENT STATE	ered.	
	1752 I.				
	<u> </u>	79			
				10 201 10 2000	
			0.00		
				1/ 0.35 20	

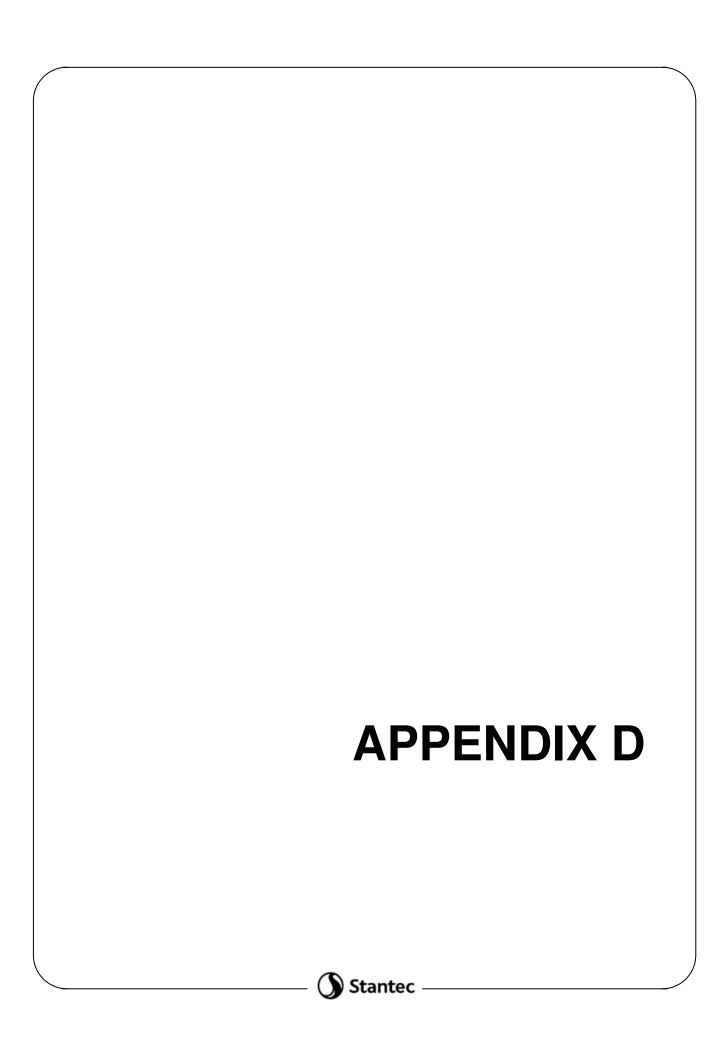
A	AcuVac Remediation OF	PERATING I	DATA – EVEN	NT # 2.A	PAGE	# 3	ACUVAC I	MDP SYSTEM
Loca	tion: GCU, San Juan C	ounty, NM		Project l	Managers: F	aucher / Ge	orge /Hend	ley / Morris
		Date	9/21/17					
Well	# mw-1	Time	1000	1200	1400	1600	1800	2000
	77700	Hr Meter	2072.5	8074.5	8076,5	8078.5	3080.5	8082.5
	Engine Speed	RPM	1900	1900	1900	1900	1900	1900
WER	Oil Pressure	psi	50	50	50	50	36	50
BLO	Water Temp	°F	130	140	140	150	150	150
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	18	18	13 .	18	18	18
	Gas Flow Fuel/Propane	cfh	150	150	150	156	150	115
	Extraction Well Vac.	"H₂O	45	45	45	45	45	45
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	15.91	20.74	20.74	20.74	20.74	20.74
NOU/	Influent Vapor Temp.	°F	60	60	60	60	60	60
ATMC	Air Temp	°F	72	77	84	84	82	80
	Barometric Pressure	"Hg	29.80	29.80	29.80	29.80	29.80	29,74
<u> </u>	TPH	ppmv	2110	2040	1934	1984	1730	1574
LUEN	CO ₂	%	3.12	1.64	1.96	1.74	1.46	1,74
VAPOR / INFLUENT	СО	%	0	0	0	0	0	0
POR	O ₂	%	13.4	17.7	19.2	19.3	.19.1	19.6
>	H ₂ S	ppm	0	0	0	O	O	0
NOTES	TPH trending & from 2000 -> 1000. (SUI RECOVERY MOSTEY STEADY DUTING PERSON. NO MEASURABLE NAPL VISIBLE EN SIGHT GLASS. WELL VAC STEADY AS 45"HEO DUZING PERSON. WVF 1 TO 20, 7459FM AT 1200 HZS.							
	TOTALIZER	GAL	4733.27	4808.54	4910.50	5013.41	5113.75	5211.12
ER	Pump Rate	gals/min	.63	.85	.86	.84	.81	.80
RECOVERY	Total Volume	gals	180,07	755.34	357.30	460.21	560.55	657,92
2	NAPL	% Vol	-	_	-	_	_ `	-
	NAPL	Gals	_		-	_	-	-
	Data Logger Head	ft	,27	.27	.26	.26	.27	, 27
E	GW Depression	ft	-20	~7.0	-70	-7.0	-7.0	-7.0
_	Extraction Well	DTNAPL						
	Extraction Well	DTGW						

A	AcuVac Remediation OF	PERATING D	OATA – EVEN	т# Z 🔑	PAGE #	:4	ACUVAC N	IDP SYSTEM
Location: GCU, San Juan County, NM Project Managers: Faucher / George /Hendley / Morris								
		Date	9/21/17	9/21/17	9/22/17			
Well	# mw-1	Time	2200	7400	0200	0400	0600	0700
Hr Meter		8084:5	8086.5	8088.5	8090.5	8092.5	8093.5	
	Engine Speed	RPM	1900	1900	1900	1900	1900	1900
NER	Oil Pressure	psi	50	50	50	50	50	50
ENGINE / BLOWER	Water Temp	°F	130	130	130	130	130	130
NE /	Alternator	Volts	14	14	14	14	14	14
ENGI	Intake Vacuum	"Hg	18	18	18	18	18	18
	Gas Flow Fuel/Propane	cfh	115	115	115	115	115	115
	Extraction Well Vac.	"H₂O	45	45	45	45	45	45
AIR	Extraction Well Flow	scfm	20.74	20.74	20.74	20.74	20.74	20.74
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	60	60	60	60	60	60
ATM	Air Temp	°F	70	62	59	58	60	60
	Barometric Pressure	"Hg	29.70	29,70	29.70	29.70	29.70	29.20
5	ТРН	ppmv	1258	1476	1228	1272	1492	1316
VAPOR / INFLUENT	CO ₂	%	1.46	1,34	1.60	1.16	1,42	1.36
NI	СО	%	0	0	0	0	6	0
POR	O ₂	%	19.6	19.6	19,2	19.5	19,6	19.5
>	H ₂ S	ppm	0	0	0	0	0	0
	WEU VAC AND WUF STOADY DURING PERIOD AT 45 "HOO AND ZO. 74 SGAM							
	RESPECTIVELY.							
s l	THE CONGENTRATIONS IN THE WELL VAPORS RECOIDED IN A NAPROW RANGE,							
NOTES	BUT DID NOT DECREASE.							
_	GW RECOUSIN MOSTLY STEADY DURING THE PERLOD. NO MEASURABLE NAPL							
	PILESENT IN GW ALTHOUGH THERE WAS A SLIGHT SHEEN ON LIQUID IN							
	THE COLLECTION ?	ANK. C						
	TOTALIZER	GAL			5490.27		5668.14	5714.33
ERY	Pump Rate	gals/min	.78	.75		.64	.94	-
RECOVERY	Total Volume	gals	753,78	846,92	937.07	1027.97	1104.94	1161.19
2	NAPL	% Vol	_	_	-	_	_	_
	NAPL	Gals	_			_		
-	Data Logger Head	ft	,27	,27	,27	,27	,27	. 27
M E	GW Depression	ft	-7,0	-7.0	-7.0	-7,0	-7.0	-7.0
-	Extraction Well	DTNAPL						7
	Extraction Well	DTGW						30.00

A	AcuVac Remediation O	PERATING D	DATA – EVEN	IT# 2B	PAGE #	ŧ /	ACUVAC N	IDP SYSTEM		
Location: GCU, San Juan County, NM Project Managers: Faucher / George /Hendley / Morris										
		Date	9/26/17							
Well	# Mw-1	Time	0630	0700	0730	0800	0830	0900		
	7,,,,,	Hr Meter	8118.5	8119.0	8119.5	81200	8120,5	8121.0		
	Engine Speed	RPM	1900	1900	1900	1900	1900	1900		
WER	Oil Pressure	psi	50	50	50	50	50	50		
ENGINE / BLOWER	Water Temp	°F	120	120	120	120	120	120		
INE /	Alternator	Volts	14	14	14	14	14	14		
ENG	Intake Vacuum	"Hg	18	18	18	18	18	18		
	Gas Flow Fuel/Propane	cfh	140	140	140	120	120	120		
	Extraction Well Vac.	"H₂O	34	34	54	54	54	54		
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	22.13	22.13	22.21	22.21	22.21	22.21		
SPH JUM /	Influent Vapor Temp.	°F	60	60	60	60	60	60		
VACL	Air Temp	°F	34	3.5	36	37	41	46		
	Barometric Pressure	"Hg	30,00	30.00	30.00	30.00	30.00	30.00		
F	TPH	ppmv	1	_	2470	_	_	-		
VAPOR / INFLUENT	CO ₂	%	1	6	1.88	_	_	-		
/ INF	со	%		-	0	-	-	-		
POR	O ₂	%	_	-	18.3	-	-	-		
×	H ₂ S	ppm	-	-	o	-	-	-		
NOTES	MUBILIZED ACUVAC SYSTEM TO SITE AS 1800 HTS ON 9/25/17. ARRIVED ON SITE AS OGIO HIZS ON 9/26/17 PERFORMED ALL SAFETT CHECKS EVENT STATUTED AT 0630 HTM. INTALWELL VAC 30"HZO, WYF 17. 88SCFM. AT 0730 WELL VAC 1 54"HZO, WYF 19.74SCF TPH CONCENTRATIONS IN EUITAL WELL VAPOR SAMPLE HIGHER THAN MAK TPH									
	SAMPLE FOR EV # ZA. GW PUMPING STASETED AT 0645HRS. AT APPROX 0300 HAS									
	A SIMEN APPEA PRESENT	A STATEM APPEARED IN THE SITE GLASS BUT NO MEASURABLE NATIONAL WAS								
	GW Pump 0645	ON/OFF	5714.35	5232	5762	5796	5829	5858		
ERY	Pump Rate	gals/min	.77	.83	1.13	1.10	.97	1.07		
RECOVERY	Total Volume	gals	-	23	48	82	115	144		
a l	NAPL	% Vol	-	-	-	-	_	-		
	NAPL	Gals	_	-	-			-		
	Data Logger Head	ft	5.71	.30	1.28	.92	.32	, 30		
<u> </u>	GW Depression	ft		-7.0	-7.0	-7.0	-7.0	-7.0		
-	Extraction Well	DTNAPL	25.45							
	Extraction Well	DTGW	25.49							

A	AcuVac Remediation OF	PERATING [OATA – EVEN	IT# 2B	PAGE #	r.	ACUVAC N	IDP SYSTEM	
Loca	Location: GCU, San Juan County, NM Project Managers: Faucher / George /Hendley / Morris								
		Date	9/26/17						
Well	1# mω-1	Time	0930	1130	1330	1530	1730	1930	
		Hr Meter	8121.5	8/23.5	8125.5	8/27.5	8/29.5	8131.5	
	Engine Speed	RPM	1500	1900	1800	1800	1300	1800	
WER	Oil Pressure	psi	50	50	50	56	50	50	
ENGINE / BLOWER	Water Temp	°F	130	130	140	140	140	130	
INE /	Alternator	Volts	14	14	14	14	14	14	
ENG	Intake Vacuum	"Hg	16	16	16	16	16	12	
	Gas Flow Fuel/Propane	cfh	125	125	120	120	170	120	
	Extraction Well Vac.	"H₂O	70	80	30	90	90	90	
ATMOSPHERE VACUUM / AIR	Extraction Well Flow	scfm	27.74	34.98	34.98	35.42	35.42	35.42	
SPH UM /	Influent Vapor Temp.	°F	60	60	60	60	60	60	
ATMC	Air Temp	°F	55	64	70	73	72	61	
,	Barometric Pressure	"Hg	30,00	30.00	29.90	29.80	29,30	29.87	
-	TPH	ppmv	1848	1564	1314	1404	1260	920	
VAPOR / INFLUENT	CO ₂	%	1.34	1.14	. 86	.84	.82	,66	
/ INF	со	%	0	0	0	0	0	0	
POR	O ₂	%	18,2	18.4	18.6	18.7	19.1	19,1	
× ×	H ₂ S	ppm	0	0	0	0	0	0	
	AT 1130 this WELL VAC 1 TO 30" H20, WVI=1 34.88 SCFM. THE VAPORS & TO								
	1564 PPMV. AT 1530 HZS WELL VAC 1 FO" HZO, WYF 1 35.425cm. TPH								
,	VAPORS 1 TO 1406 PPMV. GOW PUMP PARE AND GOW DEPRESSION MOSTLY								
NOTES	STEADY DURING PERIOD. THE VAPORS ON A MOSTEY DECIREASING TRANS								
2	DURING THE PORION AS THE WELL VAC WAS INCREASED.								
	GW Pump	ON/OFF	5890	6023	6161	6304	6449	6591	
ERY	Pump Rate	gals/min	1.11	1.15	619	1.21	1,18	1,14	
RECOVERY	Total Volume	gals	176	309	447	.590	735	877	
Z	NAPL	% Vol	-		-		-	7	
	NAPL	Gals	-	-	-	-	-	-	
	Data Logger Head	ft	.31	1.43	.34	.36	.35	. 37	
E.	GW Depression	ft	-7.0	-7.0	-7.0	- 7.0	-7.0	-7,0	
_	Extraction Well	DTNAPL							
	Extraction Well	DTGW			1-1-1				


A	AcuVac Remediation OF	PERATING I	DATA – EVEN	т# 2В	PAGE #	3	ACUVAC N	NDP SYSTEM
Location: GCU, San Juan County, NM Project Managers: Faucher / George /Hendley / Morris								
Date 9/26/17 9/27/17								
Well	1# mw-1	Time	2130	2330	0130	0330	0530	0630
		Hr Meter	8133.5	8/35.5	8137.5	8/38-5	8141.5	8143.5
	Engine Speed	RPM	1800	1800	1800	1800	1800	1800
WER	Oil Pressure	psi	50	50	50	50	50	50
BLO	Water Temp	°F	130	130	130	130	130	130
ENGINE / BLOWER	Alternator	Volts	14	14	14	14	14	14
ENG	Intake Vacuum	"Hg	12	12	12	12	/2	12
	Gas Flow Fuel/Propane	cfh	120	120	120	120	120	120
	Extraction Well Vac.	"H₂O	90	90	90	90	90	90
ERE	Extraction Well Flow	scfm	35.42	35.42	35.42	35.42	35,42	35.42
ATMOSPHERE VACUUM / AIR	Influent Vapor Temp.	°F	60	60	60	60	60	66
ATMO	Air Temp	°F	58	53	50	5048	48	48
	Barometric Pressure	"Hg	29,93	29.90	29.92	29.90	29.90	29.90
_	TPH	ppmv	816	682	578	564	770	_
VAPOR / INFLUENT	CO ₂	%	,80	.78	.68	174	,54	_
/ INF	со	%	0	0	0	0	0	_
POR	O ₂	%	19.0	19.1	19.2	19.2	19.1	_
Α>	H ₂ S	ppm	0	0	0	0	0	_
NOTES	WELL VAC AND WVF STEADY DUILING PERIOD. THE VAPORS ON A MOSTIX DECREASING TREND DURING THE PERIOD. GW PUMP RATE MOSTIX STEADY DURING PERIOD. TOTAL HOUR VOLUME RECOVERED 1,597 GALS WITH NO MEASURABLE NAPL PRESENT IN THE COLLECTION TANK AT THE END OF THE EVENT. AT 06.30 EVENT CONCLUDED.							
	GW Pump	ON/OFF	6728	6867	7005	7/32	7267	7311
FRY	Pump Rate	gals/min	1.16	1.15	1.07	1,13	.07	-
RECOVERY	Total Volume	gals	1014	1153	1291	1419	1554	1597
8	NAPL	% Vol	-	-	-	_	_	-
	NAPL	Gals	-	-	-	-	_	
	Data Logger Head	ft	, 30	,37	,37	.38	.31	-
M E	GW Depression	ft	-7.0	-7.0	-7.0	-7.6	-7.0	
_	Extraction Well	DTNAPL						
	Extraction Well	DTGW						30,00


GALLEGOS CANYON UNIT #124E SAN JUAN COUNTY, NM

GALLEGOS CANYON UNIT #124E SAN JUAN COUNTY, NM

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-139222-1

Client Project/Site: ElPaso CGP Company, LLC - GCU #124E

For:

Stantec Consulting Services Inc 1560 Broadway Suite 1800 Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madonna Myers

Authorized for release by: 6/22/2017 10:30:26 AM Madonna Myers, Project Manager II (615)796-1870 madonna.myers@testamericainc.com

Designee for

Carol Webb, Project Manager II (850)471-6250

carol.webb@testamericainc.com

····· Links ·····

Review your project results through

Total Access

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	6
Client Sample Results	7
QC Association	12
QC Sample Results	13
Chronicle	14
Certification Summary	15
Method Summary	16
Chain of Custody	17
Receint Checklists	18

4

8

9

11

12

Definitions/Glossary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 400-139222-1

Glossary

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
п	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)

TestAmerica Pensacola

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Job ID: 400-139222-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-139222-1

Comments

No additional comments.

Receipt

The samples were received on 6/13/2017 8:53 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.3° C.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

, -

3

A

_

6

9

1 0

1 1

12

13

Detection Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - GCU #124E TestAmerica Job ID: 400-139222-1

Client Sample ID: MW-3 Lab Sample ID: 400-139222-1

No Detections.

Client Sample ID: MW-4 Lab Sample ID: 400-139222-2

No Detections.

Client Sample ID: MW-5 Lab Sample ID: 400-139222-3

Analyte	Result Qualifier	RL	Unit	Dil Fac	D Method	Prep Type
Benzene	1.0	1.0	ug/L		8021B	Total/NA
Ethylbenzene	6.5	1.0	ug/L	1	8021B	Total/NA

Client Sample ID: MW-6 Lab Sample ID: 400-139222-4

No Detections.

Client Sample ID: TRIP BLANK

Lab Sample ID: 400-139222-5

No Detections.

This Detection Summary does not include radiochemical test results.

3

4

ວ

7

8

4.6

11

46

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: ElPaso CGP Company, LLC - GCU #124E TestAmerica Job ID: 400-139222-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-139222-1	MW-3	Water	06/10/17 10:00	06/13/17 08:53
400-139222-2	MW-4	Water	06/10/17 09:40	06/13/17 08:53
400-139222-3	MW-5	Water	06/10/17 09:50	06/13/17 08:53
400-139222-4	MW-6	Water	06/10/17 09:35	06/13/17 08:53
400-139222-5	TRIP BLANK	Water	06/10/17 09:30	06/13/17 08:53

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Lab Sample ID: 400-139222-1

Matrix: Water

Date Collected: 06/10/17 10:00 Date Received: 06/13/17 08:53

Client Sample ID: MW-3

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/17/17 03:46	1
Ethylbenzene	<1.0		1.0	ug/L			06/17/17 03:46	1
Toluene	<5.0		5.0	ug/L			06/17/17 03:46	1
Xylenes, Total	<5.0		5.0	ug/L			06/17/17 03:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	97		78 - 124		-		06/17/17 03:46	1

7

0

11

13

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Lab Sample ID: 400-139222-2

Matrix: Water

Date Collected: 06/10/17 09:40 Date Received: 06/13/17 08:53

Client Sample ID: MW-4

Method: 8021B - Volatile Org	anic Compounds (GC)						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			06/17/17 04:21	1
Ethylbenzene	<1.0	1.0	ug/L			06/17/17 04:21	1
Toluene	<5.0	5.0	ug/L			06/17/17 04:21	1
Xylenes, Total	<5.0	5.0	ug/L			06/17/17 04:21	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
a,a,a-Trifluorotoluene (pid)	94	78 - 124		-		06/17/17 04:21	1

Client: Stantec Consulting Services Inc

Client Sample ID: MW-5

Date Collected: 06/10/17 09:50

Date Received: 06/13/17 08:53

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Lab Sample ID: 400-139222-3

Matrix: Water

Method: 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte RL Unit D Prepared Analyzed 1.0 ug/L 06/17/17 04:56 Benzene 1.0 1.0 ug/L 06/17/17 04:56 Ethylbenzene 6.5 Toluene <5.0 5.0 ug/L 06/17/17 04:56 Xylenes, Total <5.0 5.0 ug/L 06/17/17 04:56 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 78 - 124 06/17/17 04:56 a,a,a-Trifluorotoluene (pid) 100

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Lab Sample ID: 400-139222-4

Matrix: Water

Date Collected: 06/10/17 09:35 Date Received: 06/13/17 08:53

Client Sample ID: MW-6

Method: 8021B - Volatile Org Analyte	Result Qu	•	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			06/17/17 07:16	1
Ethylbenzene	<1.0		1.0	ug/L			06/17/17 07:16	1
Toluene	<5.0		5.0	ug/L			06/17/17 07:16	1
Xylenes, Total	<5.0		5.0	ug/L			06/17/17 07:16	1
Surrogate	%Recovery Qu	ualifier L	imits			Prepared	Analyzed	Dil Fac
a.a.a-Trifluorotoluene (pid)	98		8 - 124		-		06/17/17 07:16	

2

7

8

9

10

Client: Stantec Consulting Services Inc

Client Sample ID: TRIP BLANK

Date Collected: 06/10/17 09:30

Date Received: 06/13/17 08:53

a,a,a-Trifluorotoluene (pid)

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Lab Sample ID: 400-139222-5

Matrix: Water

06/17/17 01:26

Method: 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte Result Qualifier RLUnit D Prepared Analyzed Benzene <1.0 1.0 ug/L 06/17/17 01:26 Ethylbenzene <1.0 1.0 ug/L 06/17/17 01:26 Toluene <5.0 5.0 ug/L 06/17/17 01:26 ug/L Xylenes, Total <5.0 5.0 06/17/17 01:26 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 78 - 124

QC Association Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

GC VOA

Analysis Batch: 357255

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-139222-1	MW-3	Total/NA	Water	8021B	_
400-139222-2	MW-4	Total/NA	Water	8021B	
400-139222-3	MW-5	Total/NA	Water	8021B	
400-139222-4	MW-6	Total/NA	Water	8021B	
400-139222-5	TRIP BLANK	Total/NA	Water	8021B	
MB 400-357255/5	Method Blank	Total/NA	Water	8021B	
LCS 400-357255/1004	Lab Control Sample	Total/NA	Water	8021B	
400-139101-A-1 MS	Matrix Spike	Total/NA	Water	8021B	
400-139101-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	8021B	

4

4

5

6

8

9

4 4

12

13

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 400-357255/5

Matrix: Water

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Analysis Batch: 357255

Client Sample ID: Method Blank Prep Type: Total/NA

мв мв Result Qualifier RL Dil Fac Unit D Prepared Analyzed <1.0 1.0 ug/L 06/16/17 17:14 <1.0 1.0 ug/L 06/16/17 17:14 <5.0 5.0 ug/L 06/16/17 17:14 06/16/17 17:14 <5.0 5.0 ug/L

MB MB Surrogate Qualifier Limits %Recovery Prepared Analyzed Dil Fac 78 - 124 a,a,a-Trifluorotoluene (pid) 99 06/16/17 17:14

Lab Sample ID: LCS 400-357255/1004

Matrix: Water

Analysis Batch: 357255

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

LCS LCS %Rec. Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 50.0 48.5 ug/L 97 85 - 115 50.0 Ethylbenzene 50.5 ug/L 101 85 - 115 Toluene 50.0 50.1 ug/L 100 85 - 115 85 - 115 150 151 101 Xylenes, Total ug/L

LCS LCS %Recovery Qualifier Limits Surrogate a,a,a-Trifluorotoluene (pid) 98 78 - 124

Lab Sample ID: 400-139101-A-1 MS

Matrix: Water

Analysis Batch: 357255

Client Sample ID: Matrix Spike Prep Type: Total/NA

Sample	Sample	Spike	MS	MS				%Rec.	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
<1.0		50.0	59.3		ug/L		119	44 - 150	
1.6		50.0	59.4		ug/L		116	70 - 142	
<5.0		50.0	63.5		ug/L		127	69 - 136	
25		150	203		ug/L		119	68 - 142	
	Result <1.0 1.6 <5.0	1.6 <5.0	Result Qualifier Added	Result Qualifier Added Result <1.0	Result Qualifier Added Result Qualifier <1.0	Result Qualifier Added Result Qualifier Unit <1.0	Result Qualifier Added Result Qualifier Unit D <1.0	Result Qualifier Added Result Qualifier Unit D %Rec <1.0	Result Qualifier Added Result Qualifier Unit D %Rec Limits <1.0

MS MS Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 98 78 - 124

Lab Sample ID: 400-139101-A-1 MSD

Matrix: Water

Analysis Batch: 357255

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<1.0		50.0	59.9		ug/L	_	120	44 - 150	1	16	
Ethylbenzene	1.6		50.0	60.9		ug/L		119	70 - 142	2	16	
Toluene	<5.0		50.0	64.0		ug/L		128	69 - 136	1	16	
Xylenes, Total	25		150	206		ug/L		121	68 - 142	1	15	

MSD MSD Surrogate %Recovery Qualifier Limits a,a,a-Trifluorotoluene (pid) 102 78 - 124

TestAmerica Pensacola

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

Lab Sample ID: 400-139222-1

Matrix: Water

Matrix: Water

Matrix: Water

Date Collected: 06/10/17 10:00 Date Received: 06/13/17 08:53

Client Sample ID: MW-3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	357255	06/17/17 03:46	CMW	TAL PEN
	Inotrumo	of ID: CH IOAN								

Client Sample ID: MW-4 Lab Sample ID: 400-139222-2

Date Collected: 06/10/17 09:40 Matrix: Water

Date Received: 06/13/17 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	357255	06/17/17 04:21	CMW	TAL PEN
	Instrume	nt ID: CH JOAN								

Client Sample ID: MW-5 Lab Sample ID: 400-139222-3

Date Collected: 06/10/17 09:50 Matrix: Water

Date Received: 06/13/17 08:53

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type Total/NA	Type Analysis	Method 8021B	Run	Factor 1	Amount 5 mL	Amount 5 mL	Number 357255	or Analyzed 06/17/17 04:56	Analyst CMW	_ Lab TAL PEN
	Instrume	ent ID: CH JOAN								

Client Sample ID: MW-6 Lab Sample ID: 400-139222-4

Date Collected: 06/10/17 09:35

Date Received: 06/13/17 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	357255	06/17/17 07:16	CMW	TAL PEN
	Instrume	nt ID: CH_JOAN								

Client Sample ID: TRIP BLANK

Lab Sample ID: 400-139222-5

Date Collected: 06/10/17 09:30

Date Received: 06/13/17 08:53

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8021B		1	5 mL	5 mL	357255	06/17/17 01:26	CMW	TAL PEN
	Instrume	nt ID: CH JOAN								

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-17
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-17
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-17
Illinois	NELAP	5	200041	10-09-17
lowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	10-31-17
Kentucky (UST)	State Program	4	53	06-30-17
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-17
Massachusetts	State Program	1	M-FL094	06-30-17
Michigan	State Program	5	9912	06-30-17
New Jersey	NELAP	2	FL006	06-30-17
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-17
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-17
Tennessee	State Program	4	TN02907	06-30-17
Texas	NELAP	6	T104704286-16-10	09-30-17
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-17

-

4

5

_

9

10

12

13

Method Summary

Client: Stantec Consulting Services Inc

Project/Site: ElPaso CGP Company, LLC - GCU #124E

TestAmerica Job ID: 400-139222-1

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

6

3

4

5

6

0

9

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING **FestAmerica**

Chain of Custody Record

Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671

TestAmerica Pensacola

3355 McLemore Drive

2 3 4 5 N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2S2O3
S - H2SO4
T - TSP Dodecahydrate Special Instructions/Note: U - Acetone V - MCAA W - pH 4-5 Z - other (specify) M - Hexane Company Company Months Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Monti COC No: 400-65858-26933.1 reservation Codes A - HCL
B - NaOH
C - Zn Acetate
D - Nitric Acid
E - NahSO4
F - MoH
G - Amchlor
H - Ascorbic Acid Page: Page 1 of 1 Job #: I - Ice J - DI Water K - EDTA L - EDA Sate/Time: 6-13-170 085 Archive For Total Number of confainers Date/Time: Date/Time: Method of Shipment: Analysis Requested we(s) °C and Other Remarks: 400-139222 COC Special Instructions/QC Requirements: E-Mail: carol.webb@testamericainc.com 13 Cooley Temper Received by: N S NN N N 8021B - BTEX 8021 Lab PM: Webb, Carol M 2 Time: efform MS/MSD (Yes or No) Company Strunte C Company Field Fiftered Sample (Yes or No) (W=water, S=solid, O=waste/oil, Matrix Preservation Code: Company 3 3 Kadiological (C=comp, G=grab) Sample Type Sampler. S. Gardherd J. Garvey b 0 9 800 200 3940 3 000 Po#.
Purchase Order Requested
WO#: 353 291 27391 Sample Time Standard 10 1/2 (2017) Date/Time: Juknown AT Requested (days) Due Date Requested: L102/01/9 Sample Date 102019 Ti02 (0) 1 T105/01/0 102 01 J Project #: 40005479 SSOW#: Date/Time: Poison B Skin Irritant eliverable Requested: I, II, III, IV, Other (specify) Custody Seal No.: Flammable Possible Hazard Identification sarah.gardner@mwhglobal.com Stantec Consulting Services Inc Gallegos Canyon Unit #124E L'RIP RIANT Empty Kit Relinquished by: 560 Broadway Suite 1800 Custody Seals Intact: △ Yes △ No Client Information Sample Identification CAUTIONE Non-Hazard Ms. Sarah Gardner 303-291-2239(Tel) nquished by: P-Jmm elinquished by: mw-s nduished by: mw-3 mw-b State, Zip: CO, 80202 Denver

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc Job Number: 400-139222-1

Login Number: 139222 List Source: TestAmerica Pensacola

List Number: 1

Creator: Franklin, Justin H

Creator. Franklin, Justin H		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.3°C IR-2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

၁ —

7

10

12

13

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Pensacola 3355 McLemore Drive Pensacola, FL 32514 Tel: (850)474-1001

TestAmerica Job ID: 400-145978-1

Client Project/Site: El Paso CGP Company-GC Unit 124E

For:

Stantec Consulting Services Inc 1560 Broadway **Suite 1800** Denver, Colorado 80202

Attn: Ms. Sarah Gardner

Madonna Myeis

Authorized for release by: 11/20/2017 12:18:27 PM Madonna Myers, Project Manager II (615)796-1870

madonna.myers@testamericainc.com

Designee for

Carol Webb, Project Manager II (850)471-6250

carol.webb@testamericainc.com

·····LINKS ······

Review your project results through **Total Access**

Have a Question?

Visit us at: www.testamericainc.com

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Definitions	3
Case Narrative	4
Detection Summary	5
Sample Summary	6
Client Sample Results	
QC Association	13
QC Sample Results	14
Chronicle	16
Certification Summary	18
Method Summary	19
Chain of Custody	20
Receipt Checklists	21

4

5

7

9

10

12

13

Definitions/Glossary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

Toxicity Equivalent Factor (Dioxin)
Toxicity Equivalent Quotient (Dioxin)

TestAmerica Job ID: 400-145978-1

Glossary

TEF

TEQ

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

3

4

5

7

q

10

15

13

Case Narrative

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Job ID: 400-145978-1

Laboratory: TestAmerica Pensacola

Narrative

Job Narrative 400-145978-1

Comments

No additional comments.

Receipt

The samples were received on 11/14/2017 9:01 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 0.0° C.

Receipt Exceptions

The following sample was submitted for analysis; however, it was not listed on the Chain-of-Custody (COC): MW-3 (400-145978-6)

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed. Per client instructions, method 8260 was used in place of method 8021.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

3

4

^

0

0

9

IU

12

13

Detection Summary

Client: Stantec Consulting Services Inc

Client Sample ID: TRIP BLANK

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Lab Sample ID: 400-145978-1

No Detections.

Client Sample ID: MW-7

Lab Sample ID: 400-145978-2 No Detections.

Client Sample ID: MW-4 Lab Sample ID: 400-145978-3

Analyte Result Qualifier RL Unit Dil Fac D Method **Prep Type** Ethylbenzene 4.0 1.0 ug/L 8260C Total/NA

Client Sample ID: MW-5 Lab Sample ID: 400-145978-4

Analyte Result Qualifier RL Unit Dil Fac D Method **Prep Type** Benzene 1.0 8260C Total/NA 2.1 ug/L Ethylbenzene 14 1.0 ug/L 1 8260C Total/NA

Lab Sample ID: 400-145978-5 Client Sample ID: MW-6

No Detections.

Client Sample ID: MW-3 Lab Sample ID: 400-145978-6

No Detections.

This Detection Summary does not include radiochemical test results.

Sample Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
400-145978-1	TRIP BLANK	Water	11/11/17 15:40	11/14/17 09:01
400-145978-2	MW-7	Water	11/11/17 16:24	11/14/17 09:01
400-145978-3	MW-4	Water	11/11/17 16:05	11/14/17 09:01
400-145978-4	MW-5	Water	11/11/17 16:18	11/14/17 09:01
400-145978-5	MW-6	Water	11/11/17 16:11	11/14/17 09:01
400-145978-6	MW-3	Water	11/11/17 15:58	11/14/17 09:01

2

6

R

9

10

12

13

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Client Sample ID: TRIP BLANK

Lab Sample ID: 400-145978-1 Date Collected: 11/11/17 15:40 **Matrix: Water**

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	Organic Compounds by G	C/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			11/17/17 21:34	1
Toluene	<1.0	1.0	ug/L			11/17/17 21:34	1
Ethylbenzene	<1.0	1.0	ug/L			11/17/17 21:34	1
Xylenes, Total	<10	10	ug/L			11/17/17 21:34	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108	81 - 121				11/17/17 21:34	1
4-Bromofluorobenzene	95	78 - 118				11/17/17 21:34	1
Toluene-d8 (Surr)	92	80 - 120				11/17/17 21:34	1

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Lab Sample ID: 400-145978-2 **Client Sample ID: MW-7**

Date Collected: 11/11/17 16:24 **Matrix: Water**

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	Organic Compou	nds by G	C/MS					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/18/17 00:00	1
Toluene	<1.0		1.0	ug/L			11/18/17 00:00	1
Ethylbenzene	<1.0		1.0	ug/L			11/18/17 00:00	1
Xylenes, Total	<10		10	ug/L			11/18/17 00:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	108		81 - 121		•		11/18/17 00:00	1
4-Bromofluorobenzene	95		78 - 118				11/18/17 00:00	1
Toluene-d8 (Surr)	91		80 - 120				11/18/17 00:00	1

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Client Sample ID: MW-4 Lab Sample ID: 400-145978-3

Date Collected: 11/11/17 16:05 Matrix: Water

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	Organic Compou	ınds by G	C/MS					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/18/17 00:29	1
Toluene	<1.0		1.0	ug/L			11/18/17 00:29	1
Ethylbenzene	4.0		1.0	ug/L			11/18/17 00:29	1
Xylenes, Total	<10		10	ug/L			11/18/17 00:29	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	106		81 - 121				11/18/17 00:29	1
4-Bromofluorobenzene	93		78 - 118				11/18/17 00:29	1
Toluene-d8 (Surr)	91		80 - 120				11/18/17 00:29	1

3

4

6

_

0

10

11

13

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Lab Sample ID: 400-145978-4

Matrix: Water

Date Collected: 11/11/17 16:18 Date Received: 11/14/17 09:01

Client Sample ID: MW-5

Method: 8260C - Volatile	Organic Compounds by C	GC/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.1	1.0	ug/L			11/18/17 00:58	1
Toluene	<1.0	1.0	ug/L			11/18/17 00:58	1
Ethylbenzene	14	1.0	ug/L			11/18/17 00:58	1
Xylenes, Total	<10	10	ug/L			11/18/17 00:58	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	107	81 - 121				11/18/17 00:58	1
4-Bromofluorobenzene	98	78 - 118				11/18/17 00:58	1
Toluene-d8 (Surr)	89	80 - 120				11/18/17 00:58	1

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Client Sample ID: MW-6 Lab Sample ID: 400-145978-5

Date Collected: 11/11/17 16:11 Matrix: Water

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	Organic Compou	nds by G	C/MS					
Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/18/17 01:28	1
Toluene	<1.0		1.0	ug/L			11/18/17 01:28	1
Ethylbenzene	<1.0		1.0	ug/L			11/18/17 01:28	1
Xylenes, Total	<10		10	ug/L			11/18/17 01:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	107		81 - 121		•		11/18/17 01:28	1
4-Bromofluorobenzene	92		78 - 118				11/18/17 01:28	1
Toluene-d8 (Surr)	91		80 - 120				11/18/17 01:28	1

3

5

7

8

9

10

12

13

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Client Sample ID: MW-3 Lab Sample ID: 400-145978-6

Date Collected: 11/11/17 15:58 **Matrix: Water**

Date Received: 11/14/17 09:01

Method: 8260C - Volatile	Organic Compounds by G	C/MS					
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0	1.0	ug/L			11/18/17 01:57	1
Toluene	<1.0	1.0	ug/L			11/18/17 01:57	1
Ethylbenzene	<1.0	1.0	ug/L			11/18/17 01:57	1
Xylenes, Total	<10	10	ug/L			11/18/17 01:57	1
Surrogate	%Recovery Qualifier	Limits			Prepared	Analyzed	Dil Fac
Dibromofluoromethane	105	81 - 121				11/18/17 01:57	1
4-Bromofluorobenzene	92	78 - 118				11/18/17 01:57	1
Toluene-d8 (Surr)	93	80 - 120				11/18/17 01:57	1

QC Association Summary

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

GC/MS VOA

Analysis Batch: 376424

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
400-145978-1	TRIP BLANK	Total/NA	Water	8260C	
400-145978-2	MW-7	Total/NA	Water	8260C	
400-145978-3	MW-4	Total/NA	Water	8260C	
400-145978-4	MW-5	Total/NA	Water	8260C	
400-145978-5	MW-6	Total/NA	Water	8260C	
400-145978-6	MW-3	Total/NA	Water	8260C	
MB 400-376424/4	Method Blank	Total/NA	Water	8260C	
LCS 400-376424/1002	Lab Control Sample	Total/NA	Water	8260C	
400-145959-A-2 MS	Matrix Spike	Total/NA	Water	8260C	
400-145959-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8260C	

Client: Stantec Consulting Services Inc

Lab Sample ID: MB 400-376424/4

Project/Site: El Paso CGP Company-GC Unit 124E

Method: 8260C - Volatile Organic Compounds by GC/MS

Client Sample ID: Method Blank

Prep Type: Total/NA

Matrix: Water Analysis Batch: 376424

	MB I	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<1.0		1.0	ug/L			11/17/17 18:39	1
Toluene	<1.0		1.0	ug/L			11/17/17 18:39	1
Ethylbenzene	<1.0		1.0	ug/L			11/17/17 18:39	1
Xylenes, Total	<10		10	ug/L			11/17/17 18:39	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Dibromofluoromethane 81 - 121 11/17/17 18:39 109 4-Bromofluorobenzene 96 78 - 118 11/17/17 18:39 80 - 120 Toluene-d8 (Surr) 90 11/17/17 18:39

Lab Sample ID: LCS 400-376424/1002 **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total/NA**

Analysis Batch: 376424

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	54.4		ug/L		109	70 - 130	 -
Toluene	50.0	51.5		ug/L		103	70 - 130	
Ethylbenzene	50.0	52.6		ug/L		105	70 - 130	
Xylenes, Total	100	104		ug/L		104	70 - 130	

LCS LCS %Recovery Qualifier Limits Surrogate Dibromofluoromethane 101 81 - 121 4-Bromofluorobenzene 91 78 - 118 Toluene-d8 (Surr) 93 80 - 120

Lab Sample ID: 400-145959-A-2 MS **Client Sample ID: Matrix Spike Matrix: Water Prep Type: Total/NA**

Analysis Batch: 376424

	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<1.0		50.0	51.8		ug/L		104	56 - 142	
Toluene	<1.0		50.0	46.8		ug/L		94	65 - 130	
Ethylbenzene	<1.0		50.0	46.8		ug/L		94	58 - 131	
Xylenes, Total	<10		100	94.1		ug/L		94	59 - 130	

	MS MS	
Surrogate	%Recovery Qual	lifier Limits
Dibromofluoromethane	100	81 - 121
4-Bromofluorobenzene	95	78 - 118
Toluene-d8 (Surr)	94	80 - 120

Lab Sample ID: 400-145959-A-2 MSD

Matrix: Water

Analysis Batch: 376424

Allalysis Datoll. 010424											
	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<1.0		50.0	53.0		ug/L		106	56 - 142	2	30
Toluene	<1.0		50.0	49.1		ug/L		98	65 - 130	5	30

TestAmerica Pensacola

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Page 14 of 21

11/20/2017

QC Sample Results

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: 400-145959-A-2 MSD

Matrix: Water

Analysis Batch: 376424

Client Sample ID: Matrix Spike Duplic	ate
Prep Type: Total/	NA

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Ethylbenzene	<1.0		50.0	49.8		ug/L		100	58 - 131	6	30
Xylenes, Total	<10		100	98.9		ug/L		99	59 - 130	5	30

	MSD N	ISD	
Surrogate	%Recovery C	Qualifier	Limits
Dibromofluoromethane	99		81 - 121
4-Bromofluorobenzene	96		78 - 118
Toluene-d8 (Surr)	92		80 - 120

10

Project/Site: El Paso CGP Company-GC Unit 124E

Client Sample ID: TRIP BLANK

Lab Sample ID: 400-145978-1

Date Collected: 11/11/17 15:40 Matrix: Water Date Received: 11/14/17 09:01

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260C		1	5 mL	5 mL	376424	11/17/17 21:34	CAR	TAL PEN
	Instrument	ID: Einstein								

Client Sample ID: MW-7

Date Collected: 11/11/17 16:24

Lab Sample ID: 400-145978-2

Matrix: Water

Date Collected: 11/11/17 16:24 Date Received: 11/14/17 09:01

Batch Batch Dil Initial Final Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor Amount** Amount Number Analyst Lab Total/NA 8260C 376424 11/18/17 00:00 CAR TAL PEN Analysis 5 mL 5 mL Instrument ID: Einstein

Client Sample ID: MW-4

Date Collected: 11/11/17 16:05

Lab Sample ID: 400-145978-3

Matrix: Water

Date Received: 11/14/17 09:01

Dil Batch Initial Final **Batch Batch** Prepared Method Number **Prep Type** Type Run Factor Amount Amount or Analyzed Analyst Lab Total/NA 8260C 376424 11/18/17 00:29 CAR TAL PEN Analysis 5 ml 5 ml Instrument ID: Einstein

Client Sample ID: MW-5

Date Collected: 11/11/17 16:18

Lab Sample ID: 400-145978-4

Matrix: Water

Date Collected: 11/11/17 16:18 Date Received: 11/14/17 09:01

Dil Initial Batch **Batch Final Batch** Prepared Type Method Amount Number **Prep Type** Run Factor **Amount** or Analyzed Analyst I ab 8260C 376424 Total/NA Analysis 5 mL 5 mL 11/18/17 00:58 CAR TAL PEN Instrument ID: Einstein

Client Sample ID: MW-6 Lab Sample ID: 400-145978-5

Date Collected: 11/11/17 16:11 Date Received: 11/14/17 09:01

Batch Batch Dil Initial Final Batch **Prepared** Method Amount Factor Number or Analyzed Prep Type Type Run Amount Analyst Lab 376424 CAR TAL PEN Total/NA Analysis 8260C 5 mL 5 mL 11/18/17 01:28 Instrument ID: Einstein

Client Sample ID: MW-3 Lab Sample ID: 400-145978-6

Date Collected: 11/11/17 15:58 Date Received: 11/14/17 09:01

Dil Batch Batch Initial Final Batch Prepared Method Number or Analyzed **Prep Type** Type Run **Factor** Amount Amount Analyst Lab Total/NA Analysis 8260C 376424 11/18/17 01:57 CAR TAL PEN 5 mL 5 mL Instrument ID: Einstein

TestAmerica Pensacola

Matrix: Water

Matrix: Water

Lab Chronicle

Client: Stantec Consulting Services Inc Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

Accreditation/Certification Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Laboratory: TestAmerica Pensacola

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

 Authority	Program	EPA Region	Identification Number	Expiration Date
Alabama	State Program	4	40150	06-30-18
Arizona	State Program	9	AZ0710	01-11-18
Arkansas DEQ	State Program	6	88-0689	09-01-18
California	ELAP	9	2510	03-31-18
Florida	NELAP	4	E81010	06-30-18
Georgia	State Program	4	N/A	06-30-18
Illinois	NELAP	5	200041	10-09-18
Iowa	State Program	7	367	08-01-18
Kansas	NELAP	7	E-10253	12-31-17
Kentucky (UST)	State Program	4	53	06-30-18
Kentucky (WW)	State Program	4	98030	12-31-17
L-A-B	ISO/IEC 17025		L2471	02-22-20
Louisiana	NELAP	6	30976	06-30-18
Louisiana (DW)	NELAP	6	LA170005	12-31-17
Maryland	State Program	3	233	09-30-18
Massachusetts	State Program	1	M-FL094	06-30-18
Michigan	State Program	5	9912	06-30-18
New Jersey	NELAP	2	FL006	06-30-18
North Carolina (WW/SW)	State Program	4	314	12-31-17
Oklahoma	State Program	6	9810	08-31-18
Pennsylvania	NELAP	3	68-00467	01-31-18
Rhode Island	State Program	1	LAO00307	12-30-17
South Carolina	State Program	4	96026	06-30-18
Tennessee	State Program	4	TN02907	06-30-18
Texas	NELAP	6	T104704286-17-12	09-30-18
USDA	Federal		P330-16-00172	05-24-19
Virginia	NELAP	3	460166	06-14-18
Washington	State Program	10	C915	05-15-18
West Virginia DEP	State Program	3	136	06-30-18

4

5

8

3

11

12

13

Method Summary

Client: Stantec Consulting Services Inc

Project/Site: El Paso CGP Company-GC Unit 124E

TestAmerica Job ID: 400-145978-1

Method	Method Description	Protocol	Laboratory
8260C	Volatile Organic Compounds by GC/MS	SW846	TAL PEN

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL PEN = TestAmerica Pensacola, 3355 McLemore Drive, Pensacola, FL 32514, TEL (850)474-1001

2

E

6

8

4.0

11

13

TestAmerica Pensacola

3355 McLemore Drive		Chain	f Cliet	in of Custody Becord			<u>~</u>	PSTA コ	estAmerica
Pensacola, FL 32514 Phone (850) 474-1001 Fax (850) 478-2671)			600			THE	LEADER IN ENVIRC	THE LEADER IN ENVIRONMENTAL TESTING
Client Information	Sampler.	Boback	_	Lab PM: Webb, Carol M	rol M 00-145978 COC	Carrier Tracking No(s)		COC No: 400-69056-27990.1	
Client Contact: Ms. Sarah Gardner	Phone:			E-Mail: carol.webl	1 70	Γ	Page	Page: Page 1 of 1	
Company: Stantec Consulting Services Inc				-	Analysis F	Analysis Requested	# qor	Job# 20372028	182
Address: 1560 Broadway Suite 1800	Due Date Requested:	15		66			Pres	1 2	
City. Denver State, Zp: CO, 80202	TAT Requested (days):	18): Stel						B - NaOH N - C - Zn Acetate O - D - Nitric Acid P - E - NaHSO4 Q -	M. Texange O - Asnao2 P - Na204S Q - Na2SO3
39(Tel)	PO#: Purchase Order Requested	Requested			200		7-9 1		Na2S2O3 H2SO4 TSP Dodecahvdrate
nglobal.com	WEART V- ERS-STN-OS-	17-17-1	-975-LI-LI-	75			J-lo		Acetone
ov 2017	Project #: 40005479	Gaileges Canyon Unit #1246	en yen Unit	34214			L	K-EDTA W	W - pH 4-5 Z - other (specify)
Site:	SSOW#:				1021		Other:	Ľ.	
		Sample		Matrix (w=water, S=solid, O=waste/oll,	SIB - BLEX 8				
Sample Identification	Sample Date	Time	G=grab)	BT=Tleaue, A=Air)	08			Special Instructions/Note:	ictions/Note:
Trip Blown	11/11/17	1540	1	1	2		1	PET ARF	
Mi-7	F1/11/11	1624	6	>	7				
47nW		1605			2				
AV-5		8191			7				
MW-6	-1	1611	_	1	2				
				1					
Possible Hazard Identification					Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)	be assessed If sa	mples are retained in	onger than 1 mc	onth)
V, Other (specify)	ISON B CHRIDOWN		Radiological		Special Instructions/QC Requirements	wisposal by Lab	Archive For		Months
Empty Kit Relinquished by:		Date:		Time:	16:	Method of Shipment	Shipment:		
Relinguished by:	Date/Time:		000	Company			DeterTime 14/	1060 0	Company of The
	Date/Time:			Company	Received by:		Date/Time: /		Company
Relinquished by:	Date/Time:			Company	Received by:		Date/Time:		Company
Custody Seals Intact: Custody Seal No.:					Cooler Temperature(s) C and Other Remarks:	ther Remarks:	1.0°C 7	41	
	STATE OF THE PERSON NAMED IN COLUMN 2 IN C		The residence of the latest designation of t			-			Jer. 08/04/2016

Login Sample Receipt Checklist

Client: Stantec Consulting Services Inc Job Number: 400-145978-1

Login Number: 145978 List Source: TestAmerica Pensacola

List Number: 1

Creator: Perez, Trina M

Creator. Perez, Trilla W		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.0°C IR-7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	Refer to Job Narrative for details.
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

4

8

10

19

13