GW-001

GW REMEDIATION & MONITORING ANNUAL REPORT

2017

April 9, 2018

John E. Kieling, Bureau Chief New Mexico Environmental Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg. 1 Santa Fe, NM 87505

Carl Chavez
New Mexico Energy, Minerals & Natural Resources Dept.
Oil Conservation Division
1220 South St. Francis Drive.
Santa Fe, NM 87505

Certified Mail Return Receipt # 7004 1350 0003 7983 3371 (delivery to NMED) Certified Mail Return Receipt # 7004 1350 0003 7983 3388 (delivery to OCD)

RE: 2017 Groundwater Remediation and Monitoring Annual Report

Western Refining Southwest, Inc. – Bloomfield Terminal

EPA ID # NMD089416416

OCD Discharge Permit: GW – 001

Dear John E. Kieling and Mr. Chavez,

Western Refining Southwest Inc. – Bloomfield Terminal submits the above referenced Annual Report pursuant to Section IV.A.2 of the July 2007 HWB Order, and in compliance with the facility's 2010 and 2017 OCD Discharge Permits. This report summarizes the groundwater monitoring, remediation, and inspection activities conducted at the Bloomfield Terminal in 2017.

If you have any questions or would like to discuss any aspect of this report, please contact me at 915-534-1483.

Sincerely,

WESTERN REFINING SOUTHWEST, INC.

By: ALLEN S. HAINS

Manager – Refinery Remediation

Cc: B. Powell, NMOCD – Certified Mail Return Receipt # 7004 1350 0003 7983 3395 K. Robinson, Western Refining – Bloomfield

2017 Groundwater Remediation and Monitoring Annual Report

January – December 2017

Bloomfield Terminal
Western Refining Southwest, Inc.
#50 Rd 4990
Bloomfield, New Mexico 87413

Submitted: April 2018

Prepared for
New Mexico Oil Conservation Division and
New Mexico Environment Department – Hazardous Waste Bureau

Table of Contents

		S	
EXECU	JTIVE SUI	MMARY	iii
SECTION	ON 1.0		1
INTRO	DUCTION		1
1.		ocation and Description	
1.		of Facility Modifications and Improvements	
	1.2.1	Previous Owner's Activities	2
	1.2.2	Bloomfield Refining Activities	2
SECTION			
		IVITIES	
2.		dwater and Surface Water Monitoring Activities	
۷.	2.1.1	Fluid Measurements	9
	2.1.2	Groundwater Field Parameters	
	2.1.3	Terminal Complex Sampling	
	2.1.4	North Boundary Barrier Sampling	
	2.1.5	San Juan River Bluff Sampling	
	2.1.6	San Juan River Terrace Sampling	
	2.1.7	Outfall and Seep Inspections	14
2.		Fluids Recovery Systems	
	2.2.1	Groundwater Recovery System	
	2.2.2	North Boundary Barrier Wall Collection System	
	2.2.3	Hammond Ditch Recovery System	15
	2.2.4	River Terrace Remediation System	15
	2.2.5	East Outfall Recovery System	
2.		Disposal	
		MARY	
3.		dwater and Surface Water Monitoring	
٠.	3.1.1	Fluid Level Measurements	17
	3.1.2	Groundwater Field Measurements	
	3.1.3	Terminal Complex Sampling	
	3.1.4	North Boundary Barrier Sampling	
	3.1.5	San Juan River Bluff Sampling	
	3.1.6	San Juan River Terrace Sampling	
	3.1.7	Outfall and Seep Inspections	
3.	2 Separa	ate-Phase Hydrocarbons	
3.		Fluids Recovery Systems	
	3.3.1	Groundwater Recovery System	
	3.3.2	North Boundary Barrier Wall Collection System	
	3.3.3	Hammond Ditch Recovery System	27
	3.3.4	East Outfall Recovery System	
3.	4 Waste	Disposal	
SECTION	ON 4.0		28
4.		dwater Monitoring	
4.		and Seep Inspections	
4.			
	3 Total F	Fluids Recovery Systems	29

List of Tables

Table 1	Fluid Level Measurements Summary
Table 2	Groundwater Field Parameter Summary
Table 3	Terminal Wells Analytical Summary
Table 4	Cross-Gradient Wells Analytical Summary
Table 5	Downgradient Wells Analytical Summary
Table 6	RCRA Wells Analytical Summary
Table 7	Collection and Observation Wells Analytical Summary
Table 8	Outfalls Analytical Summary
Table 9	Seeps Analytical Summary
Table 10	San Juan River Analytical Summary
Table 11	Wastewater Volumes

List of Figures

Figure 1	Site Location Map
Figure 2	Well Location Map
Figure 3	San Juan River Area Location Map
Figure 4	Groundwater Elevation and Flow Direction - April 2017
Figure 5	Groundwater Elevation and Flow Direction – August 2017
Figure 6	Product Thickness Map – April 2017
Figure 7	Product Thickness Map – August 2017
Figure 8	BTEX and MTBE Concentration Map – April 2017
Figure 9	BTEX and MTBE Concentration Map – August 2017
Figure 10	Chloride, Sulfate, Nitrate, & TDS Concentration Map April 2017
Figure 11	Naphthalene, Chloride, Sulfate, Nitrate, & TDS Concentration Map August 2017
Figure 12	Wells Sampled April 2017
Figure 13	Wells Sampled August 2017

List of Appendices

Appendix A	Field Sampling and Calibration Procedures
Appendix B	Analytical Reports and QA/QC Review/Validation
Appendix C	Waste Disposal Summary

List of Acronyms

```
benzene, toluene, ethylbenzene, and xylene (BTEX)
below grade level (bgl)
diesel range organics (DRO)
dissolved oxygen (D.O.)
Environmental Protection Agency (EPA)
feet (ft)
gallons per minute (gpm)
gasoline range organics (GRO)
New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB)
New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division
(EMNRD-OCD)
investigation derived waste (IDW)
liters (L)
maximum contaminant level (MCL)
methyl tert-butyl ether (MTBE)
micrograms per liter (ug/L)
micro Siemens per centimeter (uS/cm)
milligrams per liter (mg/L)
millivolts (mV)
monitoring well (MW)
New Mexico Administrative Code (NMAC)
Oxidation reduction potential (ORP)
parts per million (ppm)
photoionization detector (PID)
polyvinyl chloride (PVC)
pounds per square inch (psi)
Resource Conservation and Recovery Act (RCRA)
Semi-volatile organic compounds (SVOCs)
separate phase hydrocarbon (SPH)
Standard cubic feet per minute (scfm)
Temporary piezometer (TP)
top of casing (TOC)
total dissolved solids (TDS)
```

total petroleum hydrocarbon (TPH)
toxicity characteristic leaching procedure (TCLP)
volatile organic compounds (VOC)
Wastewater Treatment System (WWTS)
Water Quality Control Commission (WQCC)

EXECUTIVE SUMMARY

This Annual Report includes a summary of activities conducted at the Bloomfield Terminal in 2017 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order (NMED, 2007) issued by the New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB), and Section 2.F. of Discharge Permit GW-001 (NMOCD, 2017) issued by the New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (EMNRD-OCD). This report includes a summary of sampling activities, total fluids recovery, and remediation monitoring activities conducted in 2017.

Groundwater Measurements

Depth-to-groundwater and depth-to-product measurements were taken from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2017 and August 2017, respectively. The field measurements were taken a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. Groundwater elevation contours show that groundwater generally flows in a northwest direction, with groundwater under the former process areas flowing towards the north boundary barrier wall and Hammond Ditch collection system.

Groundwater and Surface Water Monitoring

Groundwater and surface water monitoring activities conducted in 2017 included the collection of groundwater samples and field data from the following four areas of the facility.

- Terminal Complex includes Terminal, Cross-Gradient, Downgradient, and RCRA Wells
- North Boundary Barrier includes observation and collection wells
- San Juan River Bluff includes Outfall and Seep locations
- San Juan River Terrace includes San Juan River samples

Sampling associated with the Bioventing System located at the River Terrace is summarized in the *River Terrace Voluntary Corrective Measures Bioventing System Annual Report*, which is submitted in March of each year. Groundwater and surface water monitoring activities conducted in April and August 2017 follow the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014 and Discharge Permit GW-001.

Groundwater concentrations above respective screening levels are primarily localized near the former refinery process units and tank farm. The north boundary barrier wall and active groundwater recovery systems within the facility provide hydraulic capture of the impacted groundwater, and thus eliminate the concern of impacts to the San Juan River.

Outfall and Seep Inspections

Bi-monthly visual inspections of Seeps 1, 2, 3, and 5 and along the San Juan River Bluff, which includes the East Fork area, were conducted in 2017. Visual inspection results and samples collected along the San Juan River as part of the groundwater monitoring program for the Bloomfield Terminal indicate that there has been no impact to the San Juan River.

Total Fluids Recovery Systems

The Bloomfield Terminal operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the Terminal Complex;
- North Boundary Barrier Collection System;
- · Hammond Ditch Recovery System;
- River Terrace Remediation system; and
- East Outfall Recovery System.

All fluids recovered from these systems, with the exception of the River Terrace Remediation System, are pumped to the on-site Waste Water Treatment Plant for treatment prior to disposal through the on-site injection well or evaporation ponds. Groundwater recovered at the River Terrace Remediation System is treated through two granular activated carbon units and discharged to the raw water ponds. In 2015, Western began the permitting process to install a new injection well, which was permitted on July 26, 2016.

SECTION 1.0 INTRODUCTION

1.1 Site Location and Description

Owner: San Juan Refining Company, a New Mexico Corporation

1250 Washington Street Tempe, Arizona 85281

Operator: Western Refining Southwest, Inc.

(Formerly Giant Industries Arizona, Inc.), an Arizona Corporation

1250 Washington Street Tempe, Arizona 85281

Facility: Bloomfield Terminal (physical address)

50 Road 4990

Bloomfield, New Mexico 87413

Western Refining Southwest, Inc. (postal address)

P.O. Box 159

Bloomfield, New Mexico 87413

US EPA ID: NMD089416416

SIC Code: 5171

The former Bloomfield Refinery facility is currently owned by San Juan Refining Company, a New Mexico corporation, and operated by Western Refining Southwest, Inc. formerly known as Giant Industries Arizona, Inc., an Arizona corporation. The facility had an approximate refining capacity of 18,000 barrels per day. Various process units operated at the facility, which included crude distillation, reforming, fluidized catalytic cracking, sulfur recovery, merox treater, catalytic polymerization, and diesel hydrotreating. Products produced at the refinery included gasoline, diesel fuels, jet fuels, kerosene, propane, butane, naphtha, residual fuel, fuel oils, and LPG.

The Bloomfield Terminal is located on approximately 263 acres south of Bloomfield, New Mexico in San Juan County (Figure 1). The Bloomfield complex is bisected by County Road 4990 (Sullivan Road), which runs east-west. The terminal offices, former process units, tank farm, wastewater treatment system (WWTS), raw water ponds, and fire training area are located north of the county road. On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Facility. The crude oil unloading areas, product loading racks, former LPG storage tanks, maintenance buildings/90-day storage area, pipeline offices, transportation truck shop, and Class I injection well are located south of the country road (Figure 2).

The Bloomfield facility is located on a bluff 120 feet above the south side of the San Juan River. The top of the bluff is relatively flat and is at an elevation of 5,540 feet above sea level. Based on the available site-specific and regional subsurface information, the site is underlain by the Quaternary Jackson Lake terrace deposits, which unconformably overlie the tertiary Nacimiento Formation. The Jackson Lake deposits consist of fine grained sand, silt, and clay that grades to course sand, gravel and cobble size material closer to the contact with the Nacimiento Formation. The Jackson Lake Formation is over 40 feet thick near the southeast portion of the site and generally thins to the northwest toward the San Juan River. The Nacimiento Formation is primarily composed of fine grained materials (e.g., carbonaceous mudstone/claystone with interbedded sandstones) with a reported local thickness of approximately 570 feet (Groundwater Technology, 1994).

1.2 History of Facility Modifications and Improvements

1.2.1 Previous Owner's Activities

Local entrepreneur, Kimball Campbell, constructed the crude topping unit that eventually became the Bloomfield Refinery facility in the late 1950s. O.L. Garretson bought the facility in the early 1960s, renamed it Plateau, Inc. and sold it in 1964 to Suburban Propane of New Jersey.

Operationally, the facility had steadily evolved through a series of improvements, modifications and expansions. Suburban upgraded the facility in 1966, increasing the Crude Unit throughput to 4,100 barrels per calendar day (bpcd) and adding 1,850 bpcd Reformer and Naphtha Hydrotreater. In 1975, the Crude Unit was expanded to 8,400 bpcd.

In 1979, the Crude Unit was expanded again to 16,800 bpcd (later demonstrated to have a hydraulic capacity in excess of 18,000 bpcd). A Fluidized Catalytic Cracker (FCC) with a nominal capacity of 6,000 bpcd, an Unsaturated Gas Plant and a Treater Unit were also added at that time. The capacity of the Reformer / Hydrotreater was increased to 2,250 bpcd. The FCC was upgraded in 1982 to conform to State and Federal air quality standards.

1.2.2 Bloomfield Refining Activities

Bloomfield Refining Company (BRC) acquired the facility from Suburban Propane (Plateau) on October 31, 1984. The current owner of the facility is San Juan Refining Company. Western Refining Southwest, Inc. is the facility operator.

Over the years, there have been many improvements made to facility operations and equipment. These improvements are summarized below.

<u>1986</u>

Relocated the spent caustic tank onto a concrete pad with retaining walls.

1987

- Upgraded the Reformer and increased its capacity to 3,600 barrels per day (bpd).
 Modified the Laboratory and Treater Unit and increased tank storage capacity.
- Cleaned up the North and South bone yards.
- Decommissioned and dismantled old Tanks 6 and 7.
- Relocated the API recovered oil Tank 8 and Tank 9 to concrete pads with concrete retaining walls.
- Established a systematic inspection, maintenance, and repair program for tanks.

<u>1988</u>

- Added a 2,000 bpd Catalytic Polymerization Unit. Removed the facility's two underground storage tanks and replaced them with aboveground storage tanks.
- Completed installation of a Cathodic Protection System for the Tank Farm and underground piping.
- Rebuilt the process area sewer system and added curbed, concrete paving to the unpaved process areas.

1989

- Increased Reformer throughput to 4,000 bpd.
- Activated the groundwater hydrocarbon recovery system.
- Constructed the first double-lined Evaporation Pond as part of Refinery's Discharge Plan improvements.

1990

- Constructed the second double-lined Evaporation Pond as part of the Refinery's Discharge Plan improvements.
- Constructed a drum storage shed and converted to bulk chemical usage, where possible, in order to minimize the use of drummed chemicals.

1991

- Revamped the burner fuel sales rack with concrete paving and curbing.
- Submitted the permit application for a Class 1 Disposal Well.
- Upgraded the groundwater hydrocarbon recovery system.

<u>1992</u>

Submitted an air quality permit application. The application included a proposal to install
a Diesel Hydrodesulphurization (HDS) Unit and a Sulfur Recovery Unit (SRU) in order to
comply with new EPA low-sulfur diesel regulations and decrease air emissions.

1993

 Began a program under a Consent Agreement with the United Stated Environment Protection Agency (USEPA) to conduct Interim Measures (IM), a RCRA Facility Investigation (RFI) and a Corrective Measures Study (CMS) addressing groundwater contamination.

- Replaced portions of the underground cooling water piping.
- Added concrete paving around the API Separator.
- Installed the HDS Unit and SRU.

1994

- Completed installation of the Class 1 Injection Well.
- Retrofitted the Aeration Lagoons with two additional liners.
- Installed a floating cover for the API Separator.
- Closed the clay-lined evaporation ponds and spray evaporation area.

1995

- Improved the diking south of the Refinery to further reduce storm water runoff.
- Began implementation of additional corrective measures for groundwater cleanup as determined from the CMS.

1998

 Converted the former evaporation ponds on the east side of the Refinery to raw water storage ponds.

1999

Installed sheet pilings and a bentonite slurry wall adjacent to the San Juan River, North
of the process units, in order to intercept a small hydrocarbon seep that had been
detected in the area.

2001

 Initiated a program to inoculate the Aeration Lagoons with sludge-consuming microorganisms.

2002

 A concrete liner was installed on the Hammond Ditch. At that time, Giant constructed the Hammond Ditch French Drain Recovery System to address contamination under the ditch.

2003

Several monitoring wells were converted into recovery wells to further enhance the
continuing ground water remediation efforts. MW-45, MW-46 & MW-47 were installed to
facilitate sample collection. East Outfall #1 Recovery System was set up to return
impacted water back to the refinery.

2004

 Monitoring well MW-48, MW-49 and eight temporary piezometers were installed as part of Voluntary River Terrace Investigation activities.

- Several temporary piezometers were drilled on the north side of Hammond Ditch to chart
 the surface elevation of the Nacimiento Formation. Design of a slurry wall to be
 constructed on the north side of Hammond Ditch was completed.
- Lined containments were constructed in the draws north of Hammond Ditch in order to collect potentially contaminated groundwater which discharged to the land surface.
- Sewer lines were replaced in the Treater and FCC.

2005

- The North Boundary Barrier Wall installation was completed March 2005. Fourteen observation wells were installed on the north side of the slurry wall and fifteen collection wells were installed on the south side of the slurry wall in April 2005.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.
- In April, five more temporary piezometers were installed at the River Terrace. In August, Dewatering Wells (DW-1 and DW-2) and thirteen bioventing wells were drilled and construction of the River Terrace Bioventing Project was initiated.

<u>2006</u>

- The River Terrace Bioventing System was put on-line in January 2006. Monitoring data from that project is submitted in a separate report to the regulatory agencies.
- During the week of February 13, 2006 seven sump wells were installed along the bluff north of the barrier wall. These wells were drilled in accordance with the North Barrier Wall Work Plan which was submitted to OCD February 7, 2006.
- Fluids extraction from the observation and collection wells, the north draws, and the sump wells continued throughout 2006.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall were upgraded periodically.

2007

- On May 31, 2007, Giant Industries, Inc. became a wholly-owned subsidiary of Western Refining, Inc. of El Paso, Texas.
- Construction of the Ammonia Refrigeration Unit (ARU) was completed and the system put on line by March 2007. This unit is used to recover propane from hydrogen streams.
- Construction of the Benzene Stripper was completed and the system put in service by October 2007. This unit is used to strip benzene from process waste water.
- Discharge piping was installed at RW #1 to increase the recovery capacity of the well.
- As a matter of preventive maintenance, the lined containments in the draws north of the slurry wall (Seeps 1-9) were upgraded periodically.

2008

• The Facility-Wide Groundwater Monitoring Plan (Revised May 2008) was approved and implemented in the latter half of 2008.

- In September, Group No. 2 RCRA Site Investigation activities commenced. Areas included in Group No. 2 are SWMU 2, SWMU 8, SWMU 9, SWMU 11, and SWMU 18.
- As part of the Closure Plan North and South Aeration Lagoons the ponds were drained, cleaned out, inspected, repaired, and put back in service. This process started in October 2008 and was completed in February 2009.

2009

- In March, monitoring wells were installed around the Aeration Lagoons to satisfy Group No. 1 RCRA site investigation requirements. Group No. 3 Site Investigation activities began in April. This group includes SWMU 4, SWMU 5, AOC 22, AOC 23, AOC 24, AOC 25, and AOC 26.
- On November 23, 2009, Western Refining indefinitely suspended refining operations at the Bloomfield Refinery. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Guidelines from the Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008) will continue to be followed.

2010

- In January 2010, due to analytical results indicating high benzene levels, piping was installed to permanently route discharge water from Tank 33 to the API Separator.
- Guidelines from the Facility-Wide Groundwater Monitoring Plan December 2007(Revised May 2008) were followed through the first six months of 2010.
- In August, Group No. 4 and Group No. 5 investigation field activities were conducted which included the installation of three monitoring wells.
- After receipt of the New Mexico Environmental Department (NMED) letter Approval with Direction Facility-Wide Groundwater Monitoring dated July 26, 2010, Western personnel followed guidelines from the Facility-Wide Groundwater Monitoring Plan (FWGMP) dated June 2010.

<u>2011</u>

In August 2012, Group No. 6 RCRA Investigation activities were conducted, which
involved soil sampling within each of the Seep Areas located along the northwest portion
of the facility.

2012

- In January 2012 the group 8 RCRA Investigation activities commenced, which involved soil sampling within SMWU No. 3 – Underground Piping Currently in Use, and SWMU No. 6 – Abandoned Underground Piping.
- On October 12, 2012, NMED Hazardous Waste Bureau approved a Work Plan submitted by Western dated October 9, 2012 authorizing Western to optimize the remediation efforts at the River Terrace area. Optimization activities conducted in 2012 included the removal of approximately 250 cubic yards of impacted clay-type soil from the river terrace area, and conversion of a portion of the biovent system to an air

- sparging system in efforts to target the most impacted groundwater area located within the southwest corner of the River Terrace Area.
- In the third quarter 2012, Western commenced work that involves enhancement of the total fluids recovery system. This work involves transitioning five monitoring wells (MW-20, MW-55, MW-56, MW-57, and MW-58) and one recovery well (RW-3) to operational total fluids recovery wells. RW-3 was returned to operation by the fourth quarter 2012. Operation of the monitoring wells located near the aeration lagoons is expected to begin in April 2013.

<u>2013</u>

- In the first quarter 2013, Western completed work that involves enhancement of the total fluids recovery system. This work involved transitioning five monitoring wells to active total fluids recovery wells (MW-20, MW-55, MW-56, MW-57, and MW-58). Operation of the monitoring wells located near the aeration lagoons has commenced.
- In June 2013, Western removed two former diesel dispenser pumps, storage tank, associated piping, former fueling pad and approximately 500 cubic yards of soil. Soil samples confirmed all the impacted soil was removed from the immediate vicinity of the former diesel fueling pumps.
- In 2013 Western replaced Tank 37, Tank 38 and Tank 34 with new equivalent tanks.
 Tank 37 and Tank 34 containments were also lined.
- Well MW-70 was developed on May 22, 2013 and baseline samples were collected on June 13, 2013.

2014

- In 2014 Western Refining preformed an environmental site investigation for the SWMUs designated as Group 9 and SWMU No. 27 Wastewater Collection System. Group 9 includes SWMU No. 12 (API Separator), SWMU No. 13 (Process Area) and SWMU No. 14 (Tanks 3, 4, and 5)
- In August 2014, NMED was notified of a significant rain event that resulted in severe flash flooding in the Bloomfield, New Mexico area. The storm caused the Hammond ditch to reverse flow directions, resulting in the entire roadway along the north boundary barrier to fill with water. The significant run-off along the river bluff resulted in Seep 4, Seep 6, Seep 7, Seep 8 and Seep 9 to permanently erode away due to the heavy surface run-off. Prior to the flooding event, these locations were no longer actively collecting seep water due to the existence of the north boundary barrier, and had previously been investigated as part of the 2007 Consent Order. Therefore as of August 2014, the only existing catchment locations are Seep 1, Seep 2, Seep 3, and Seep 5.

2015

• In 2015 routine groundwater and surface water sampling was conducted per the approved Facility-Wide Groundwater Monitoring Plans.

2016

Routine groundwater and surface waste sampling was conducted in 2016.

2017

The terminal operated as usual in 2017 without any deviations from normal operations.

- There were no reportable leaks, spills, or releases in 2017. There was no indication of expanding groundwater contamination and routine corrective action was implemented to address the known plume.
- Fluids were observed in the leachate collection system in the North and South Evaporation ponds, as was also previously observed in prior years since the ponds were constructed. A summary of the fluids was previously provided in correspondence to the OCD dated June 23, 2017.
- Information on the volume of water placed in the evaporation ponds and ultimately disposed in the injection well is provided in the Annual Report for the injection well. The new injection well was put into service in 2017, the details of which are provided in the Annual Report for the injection well.
- Routine groundwater and surface water sampling was conducted in 2017.
- Discharge Permit GW-001 was renewed on June 8, 2017.

SECTION 2.0 SCOPE OF ACTIVITIES

This Annual Report includes a summary of activities conducted at the Bloomfield facility in 2017 pursuant to the reporting requirements outlined in Section IV.A.2. of the July 2007 Consent Order issued by the NMED-HWB, and Section 2.F. of Discharge Permit GW-001 issued to the Bloomfield Terminal by the EMNDR-OCD. This report includes a summary of sampling activities, total fluids recovery, and remediation monitoring activities conducted in 2017.

2.1 Groundwater and Surface Water Monitoring Activities

Groundwater and surface water monitoring activities conducted in 2017 include the collection of groundwater and surface water samples and field data from the following four areas of the facility:

- Terminal Complex;
- North Boundary Barrier;
- San Juan River Bluff; and
- San Juan River Terrace

Monitoring activities conducted in April and August 2017 followed the guidelines outlined in the approved Facility-Wide Groundwater Monitoring Plan dated June 2014. Any activities conducted contrary to the approved Monitoring Plan are noted in this report.

General groundwater sampling procedures followed during each sampling event are included in Appendix A. Detailed information regarding groundwater and surface water analyses conducted in 2017 is included in Section 3.1.

2.1.1 Fluid Measurements

Depth-to-groundwater and depth-to-product measurements were collected from the facility monitoring wells, recovery wells, observation wells, and collection wells prior to the collection of groundwater samples during the Semi-Annual and Annual Sampling Events conducted in April 2017 and August 2017, respectively. All fluid level measurements were collected using a Geotech Interface Probe that measures to an accuracy of 0.01 feet. The field measurements were collected a minimum of 48 hours after the recovery well pumps were turned off to allow the groundwater elevation to stabilize. A summary of the fluid measurements collected is provided in Section 3.1.1.

2.1.2 Groundwater Field Parameters

Prior to collecting groundwater samples, each well was purged a minimum of three well volumes. Groundwater field parameters (temperature, pH, and conductivity) were collected every two gallons or after purging one well volume, whichever was less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. A summary of the field

measurements collected and procedures followed is provided in Section 3.1.2 and Appendix A, respectively. In addition, field parameters were collected at the outfalls and seeps when sufficient water was present.

2.1.3 Terminal Complex Sampling

Groundwater samples were collected from specified wells located within the Terminal Complex during the Semi-Annual Sampling Event and Annual Sampling Event conducted in April 2017 and August 20176, respectively, with the exception of wells that contained evidence of SPH, wells that were dry, or wells that did not contain enough water to collect a sample. Figure 12 and Figure 13 show the location of the wells sampled during each sampling event. A summary of the analytical results is provided in Section 3.1.3. Due to the omission of TPH analyses in April 2017, additional samples were collected in May 2017 at monitoring wells MW-13 and MW-35.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 2017, although samples were not required at MW-8, MW-30 and MW-52:

- RCRA Investigation Wells: MW-52;
- Terminal Wells: MW-30, MW-8;
- Cross-Gradient Wells: MW-1, MW-13, MW-33; and
- Downgradient Wells: MW-12, MW-35, MW-37, and MW-38.

Groundwater samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- Volatile organic compounds (VOCs) benzene, toluene, ethylbenzene, and xylenes (BTEX), and methyl tert-butyl ether (MTBE) by EPA Method 8260B; and
- Total petroleum hydrocarbons (TPH) Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Motor Oil Range Organics (MRO) by EPA Modified Method 8015B (MW-30 and MW-52 were not analyzed for TPH).

Groundwater samples were not collected from MW-20 due to the presence of SPH during purging. In addition, groundwater samples were not collected from MW-6 due to insufficient groundwater for sample collection.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2017:

- Terminal: MW-29, MW-31, and MW-44;
- Cross-Gradient Wells: MW-1, MW-13, MW-27, MW-32, and MW-33;
- Downgradient Wells: MW-11, MW-12, MW-34, MW-35, MW-37, and MW-38; and

RCRA Investigation Wells: MW-51, MW-52, MW-53, MW-59, MW-60, MW-62, MW-63, MW-64, MW-65, MW-67, MW-68, and MW-70.

Groundwater samples were not collected from RW-1, MW-4, RW-9, RW-15, RW-18, MW-20, MW-21, RW-22, RW-23, MW-26, RW-28, MW-30, MW-40, RW-42, RW-43, MW-54, MW-55, MW-56, MW-57, MW-58, MW-61, and MW-66 due to the evidence of SPH. In addition, groundwater samples were not collected from MW-3, MW-5, MW-6, and MW-69 due to insufficient groundwater for sample collection.

Groundwater samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

2.1.4 North Boundary Barrier Sampling

Groundwater samples were collected from observation wells and specified collection wells in April 2017 and August 2017, with the exception of wells that contained evidence of SPH, wells that were dry, or wells that did not contain enough water to collect a sample. Figure 12 and Figure 13 shows the location of the North Boundary Barrier wells that were sampled in April 2017 and August 2017, respectively. A summary of the groundwater results is provided in Section 3.1.4.

Semi-Annual Sampling Event

Groundwater samples were collected from the following wells during the Semi-Annual Sampling Event conducted in April 7:

- Collection Wells: CW 0+60 and CW 25+95; and
- Observation Wells: OW 1+50, OW 3+85, OW 5+50, OW 8+10, OW 11+15, OW 16+60, OW 19+50, OW 22+00, OW 23+10, OW 23+90, and OW 25+70.

Groundwater samples were not collected from OW 6+70 and OW 14+10 due to insufficient groundwater for sample collection.

Groundwater samples collected in April 2017 were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs-BTEX and MTBE only by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;

- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

Annual Sampling Event

Groundwater samples were collected from the following wells during the Annual Sampling Event conducted in August 2017:

- Collection Wells: CW 0+60 and CW 25+95; and
- Observation Wells: OW 8+10, OW 22+00, and OW 25+70.

Groundwater samples were not collected from OW 0+60, OW 1+50, OW 5+50, OW 6+70, OW 14+10, OW 19+50, and OW 23+90 due to insufficient groundwater for sample collection. Groundwater samples were not collected from OW 3+85, OW 11+15, OW 16+60, and OW 23+10 due to evidence of SPH.

Groundwater samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-GRO by EPA Modified Method 8015B;
- TPH-DRO by EPA Modified Method 8015B; and
- TPH-MRO by EPA Method 8015B.

2.1.5 San Juan River Bluff Sampling

San Juan River Bluff sampling includes the collection of surface water samples at the outfall locations along the eastern portion of the facility, and at the seeps located along the western portion of the facility. Figure 3 shows the outfall and seep locations. A summary of the surface water analytical results is provided in Section 3.1.5.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2017:

- Outfalls: East Outfall #2 and East Outfall #3; and
- Seeps: Seep 1.

Surface water samples were not collected from Seep 2, Seep 3 and Seep 5 due to the absence of an active discharge at each location.

Surface water samples collected in April 2017 were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470 (Outfall locations only);
- Dissolved Metals by EPA Method 6010B/7470 (Outfall locations only);

- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2017:

- Outfalls: East Outfall 2 and East Outfall 3; and
- Seeps: No seep samples.

Surface water samples were not collected from any of the remaining seeps (i.e., Seep 1, Seep 2, Seep, 3, and Seep 5) due to the absence of an active discharge at each location.

Surface water samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- Total RCRA 8 Metals by EPA Method 6010B/7470 (Outfall locations only);
- Dissolved Metals by EPA Method 6010B/7470 (Outfall locations only);
- Alkalinity by EPA Method 310.1;
- Anions by EPA Method 300.0; and
- Carbon Dioxide by EPA Method 310.1.

2.1.6 San Juan River Terrace Sampling

San Juan River Terrace sampling includes the collection of surface water samples at four locations along the San Juan River and the collection of groundwater samples at the San Juan River Terrace. A summary of activities conducted and groundwater samples collected that are associated with the bioventing system located at the San Juan River Terrace are included in the previously submitted *River Terrace Voluntary Corrective Measures Bioventing System Report* dated March 2017. Therefore sampling activities associated with the Bioventing System are not included in this report.

Figure 3 shows the approximate surface water sample locations along the San Juan River. A summary of the surface water analytical results is provided in Section 3.1.6.

Semi-Annual Sampling Event

Surface water samples were collected from the following locations during the Semi-Annual Sampling Event conducted in April 2017:

San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Semi-Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1; and
- Anions by EPA Method 300.0.

Additional samples were collected along the San Juan samples in May 2017 for the following analyses:

- Carbon dioxide:
- Specific conductance; and
- Total dissolved solids.

Annual Sampling Event

Surface water samples were collected from the following locations during the Annual Sampling Event conducted in August 2017:

• San Juan River: Upstream, North of MW-46, North of MW-45, and Downstream.

Surface water samples collected during the Annual Sampling Event were submitted to Hall Environmental Analytical Laboratory and analyzed for the following:

- VOCs BTEX and MTBE by EPA Method 8260B;
- TPH-DRO by EPA Method 8015B;
- TPH-GRO by EPA Method 8015B;
- TPH-MRO by EPA Method 8015B;
- Total RCRA 8 Metals by EPA Method 6010B/7470;
- Dissolved Metals by EPA Method 6010B/7470;
- Alkalinity by EPA Method 310.1; and
- Anions by EPA Method 300.0.

2.1.7 Outfall and Seep Inspections

Bi-monthly visual inspections of Seep 1, Seep 2, Seep 3, and Seep 5 along the San Juan River Bluff, which includes the East Fork area, were conducted in 2017. Figure 3 shows the location of the outfalls and seeps. A summary of the inspections performed is provided in Section 3.1.7.

2.2 Total Fluids Recovery Systems

2.2.1 Groundwater Recovery System

The Bloomfield Facility operates a total fluids pumping system used to recover SPH and hydrocarbon impacted groundwater for treatment and disposal. This is accomplished by actively pumping wells within the groundwater impacted area. Recovered fluids are pumped to the on-site API separator for product recovery. The remaining recovered fluid is pumped

through the WWTS prior to disposal. The groundwater recovery system was operational throughout 2017. The wells that operated as active recovery wells in 2017 are RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, MW-20, RW-22, RW-23, RW-28, RW-42, RW-43, MW-55, MW-56, MW-57, and MW-58. Figure 2 shows the location of the recovery wells within the Facility. An operational summary of the groundwater recovery system is included in Section 3.3.1.

2.2.2 North Boundary Barrier Wall Collection System

The North Boundary Barrier Wall, which was installed by April 2005, consists of a 2,700 foot long bentonite slurry wall that extends two to five feet into the Nacimiento Formation. The primary purpose of the wall is to prevent the migration of hydrocarbon-impacted groundwater towards the San Juan River. The collection system consists of 15 collection wells positioned along the facility-side of the barrier wall. For every collection well there was installed an observation well along the river-side of the barrier wall. Bloomfield Terminal personnel continued to monitor fluid levels on both sides of the barrier wall in 2017 by collecting depth-towater and depth-to-product measurements. Figure 2 shows the location of the collection wells and observation wells along the North Boundary Barrier Wall. A summary of the data collected along the North Boundary Barrier Wall is provided in Section 3.3.2.

2.2.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System consists of recovery Tank 37, located along the western portion of the facility, and a French Drain system that was constructed below the concrete-lined Hammond ditch. Tank 37 collects groundwater from two 8-inch influent lines connected to the perforated sub-drain (the French Drain) beneath the Hammond Irrigation Canal. Tank 37 is equipped with a liquid level float control system and dedicated flow meter. Recovered water from Tank 37 is automatically pumped through a flow meter to the API Separator. The location of Tank 37 is shown on Figure 3.

The Hammond Ditch Recovery System serves as a hydraulic relief mechanism for groundwater that mounds along the Facility-side of the north barrier wall. Figure 3 shows the location of Tank 37. A summary of operational data for the Hammond Ditch Recovery System is included in Section 3.3.3.

2.2.4 River Terrace Remediation System

The River Terrace Bioventing System commenced operation in January 2006. A summary of activities associated with the River Terrace Bioventing System are submitted separately to the agencies in March of each year.

2.2.5 East Outfall Recovery System

Outfall 1 is equipped with a holding tank and automatic pumping system. Water from Outfall 1 discharges into Tank 38 directly and then is pumped to the on-site WWTS prior to disposal. Figure 3 shows the location of Tank 38.

The flow rate of recovered water entering Tank 38 is dependent upon the operation of the Hammond Ditch, which is located just south of Tank 38. A summary of the operational data of the East Outfall Recovery System for 2017 is included in Section 3.3.4.

2.3 Waste Disposal

Western Refining indefinitely suspended refining operations at the Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through the on-site Class I injection well or evaporation ponds.

Significantly less waste is routinely generated since the suspension of refining operations in November 2009. The on-site landfill is no longer operational, and therefore all operational waste generated is properly characterized and disposed of off-site. Additional information regarding waste disposal activities is provided in Section 3.5.

SECTION 3.0 RESULTS SUMMARY

The following is a summary of the data collected, visual inspections conducted, and analytical results received during monitoring and testing performed in 2017. Figure 8 and Figure 9 provide a summary of the BTEX concentrations detected during the April 2017 and August 2017 sampling events, respectively. Figure 10 shows the results for chloride, sulfate, nitrate, and total dissolved solids (TDS) for April 2017. Figure 11 show the analytical results for naphthalene, chloride, sulfate, nitrate, and TDS for August 2017.

3.1 Groundwater and Surface Water Monitoring

A summary of the groundwater and surface water analytical results for samples collected over the past few years are included in Table 3 through Table 10. Screening levels used to evaluate the groundwater condition at the Bloomfield facility are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Sample results included in the analytical summary tables that exceed the respective regulatory screening levels are highlighted in yellow, while all detected results are bolded. A copy of the respective analytical reports is included in Appendix B. The analytical reports contain the respective quality assurance/quality control data reviews and validation.

3.1.1 Fluid Level Measurements

Depth-to-groundwater and depth-to-product measurements were collected at all facility monitoring wells, recovery wells, observation wells, and collection wells in April and August 2017. Additional fluid measurements were collected at the sump wells periodically throughout the year to monitor fluid levels along the north side of the facility. The fluid pumping wells were turned off and the groundwater was allowed to stabilize for a minimum of 48-hours prior to the collection of fluid levels within the Terminal Complex during both the April and August sampling events. Figure 2 shows the location of the wells within the facility.

Using the fluid level measurements collected in April and August 2017, groundwater potentiometric surface elevations were calculated. The groundwater elevation data was used to develop groundwater potentiometric surface maps, which show the general direction of groundwater flow within the facility. Table 1 provides a summary of the fluid level measurements collected in 2017. Figure 4 and Figure 5 represent the groundwater contours developed from data collected in April 2017 and August 2017, respectively. The groundwater potentiometric surface contours show that groundwater generally flows in a northwest direction. A discussion of the SPH data collected is provided in Section 3.2 of this report.

3.1.2 Groundwater Field Measurements

Prior to collecting groundwater samples, each well was purged of a minimum of three well volumes using a disposable bailer. Groundwater field parameters (temperature, pH, conductivity, dissolved oxygen (DO), oxidation-reduction potential (ORP), and total dissolved solids (TDS)) were collected every two gallons or after purging one well volume, whichever was

less. The total volume purged at each well was determined once the pH, temperature, and conductivity field parameters stabilized to within 10 percent for three measurements. The field parameters were collected using a YSI Professional Plus instrument. Field equipment calibration procedures performed prior to each sampling event are summarized in Appendix A. Table 2 provides a summary of the groundwater field parameters collected during the April 2017 and August 2017 sampling events. Field parameters were also collected from water samples collected at the East Outfalls, Seeps, and the San Juan River locations.

3.1.3 Terminal Complex Sampling

Terminal Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at MW-31. The detected concentration was 230 ug/l.
- 1-Methylnaphthalene was detected above the respective screening level of 11.0 ug/l at MW-31 with an estimated concentration of 19 ug/l.
- Benzene was detected above the respective screening level of 5 ug/l at MW-30 and MW31. The detected concentrations above the screening level ranged between 320 ug/l and 2,900 ug/l, with the highest concentration detected at MW-30 in April 2017.
- Ethylbenzene was detected above the respective screening level of 700 ug/l at MW-30. The concentration detected above the screening level was 5,700 ug/l.
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-31.
 The concentration detected in August 2017 at MW-31 was 50 ug/l.
- Toluene was detected above the respective screening level of 750 ug/l at MW-30 at a concentration of 1,000 ug/l in August 2017.
- Xylenes were detected above the respective screening level of 620 ug/l at MW-30 at a concentration of 17,000 ug/l in April 2017.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Sulfate was detected above the screening level of 600 mg/l at MW-8 in April 2017 and MW-44 in August 2017 with detected concentrations of 990 mg/l and 3,000 mg/l and, respectively.
- Nitrate was reported at a concentration of 13 mg/l, which exceeds the screening level of 10 mg/l. This occurred in the sample collected at MW-8 in April 2017.

Total metals were detected at concentrations above their respective screening levels in samples collected in 2017 as described below:

- Arsenic was detected above the screening level of 0.01 mg/l in samples collected from two wells. The reported concentrations above the screening levels at MW-31 and MW-44 were 0.015J mg/l and 0.026 mg/l, respectively.
- Total chromium was detected above the screening level of 0.05 mg/l in the water sample collected at MW-8 at a concentration of 0.46 mg/l in April 2017.

 Total selenium was reported above the screening level of 0.05 mg/l in one groundwater sample collected at MW-8 at a concentration of 0.084 mg/l in April 2017.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Iron was detected above the respective screening level of 1.0 mg/l at MW-8. The
 detected concentration was 2.5 mg/l in April 2017.
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-8, MW-29, MW-31, and MW-44. The detected concentrations above the screening levels ranged between 0.42 mg/l and 2.7 mg/l, with the highest concentration (2.7 mg/l) detected at MW-8 in April 2017 and MW-29 in August 2017.

Total petroleum hydrocarbons were detected above the laboratory detection limits in the GRO and DRO analyses. The detected concentrations were below the screening levels with the exception as described below.

 DRO was detected above the screening level of 0.0398 mg/l for unknown oil at a concentration of 0.71 mg/l in a sample collected at MW-31 in August 2017.

A summary of the analytical results for samples collected at the Terminal Complex Wells is provided in Table 3.

Cross-Gradient Wells

Volatile organic compounds were not detected above the laboratory detection limits in samples collected in 2017.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-27 and MW-32 at concentrations of 440 mg/l and 630 mg/l, respectively, in August 2017.
- Nitrite and nitrate were reported as a combined concentration in the one sample where
 the applicable screening level for nitrite(1.0 mg/l), was exceeded. This occurred in the
 sample collected at MW-13 with a reported combined concentration of 2.7 mg/l. Nitrate
 was exceeded in one sample collect at MW-32 in August 2017 with a reported
 concentration of 47 mg/l vs. the screening level of 10 mg/l.
- Sulfate was detected above the respective screening level of 600 mg/l at MW-13, MW-27, and MW-32. The detected concentrations ranged between 860 mg/l and 2800 mg/l, with the highest concentration detected at MW-27 in August 2017.

There were no total metals constituents detected above their respective screening levels in samples collected in 2017. Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/l in three groundwater samples collected in August 2017 at MW-13, MW-27, and MW-32. The concentrations ranged from 0.012J mg/l to 0.023 mg/l.
- Iron was detected above the screening level of 1.0 mg/l in one groundwater sample collected in August 2017 at MW-27 at a concentration of 1.3 mg/l.

 Manganese was detected above the respective screening level of 0.2 mg/l at MW-13 and MW-27. The detected concentrations were 1.3 mg/l and 2.1 mg/l, respectively.

Total petroleum hydrocarbons were detected in one sample collected at MW-27 for the DRO fraction at a concentration of 3.2 mg/l vs. the screening level of 0.0398 mg/l.

A summary of the analytical results for samples collected at the Cross-Gradient Wells is provided in Table 4.

Downgradient Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the screening level of 15 ug/l at MW-11 at a concentration of 97 ug/l;
- 1-Methylnaphthalene was detected above the respective screening level of 11 ug/l at MW-11 with a concentration of 15 ug/l in August 20176;
- Benzene was detected in samples collected at MW-11 at 29 ug/l, which exceeds the screening level of 5 ug/l; and
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-11.
 The detected concentration was 80 ug/l.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017 with the exception of sulfate that was detected at 720 mg/l vs. the screening level of 600 mg/l. This occurred in the sample collected at MW-37 in August 2017.

Total metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exception:

 Arsenic was detected above the screening level of 0.01 mg/l at MW-11, MW-34 and MW-35 with concentrations ranging from 0.026 mg/l to 0.076 mg/l, with the highest concentration detected at MW-35 in August 2017.

Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/l at MW-11 and MW-35 at concentrations of 0.017J mg/l and 0.036 mg/l, respectively, in August 2017;
- Iron was detected above the respective screening level of 1.0 mg/l at MW-11, MW-34, and MW-35. The detected concentrations above the screening level ranged from 1.7 mg/l to 4.2 mg/l; and
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-11, MW-34, MW-35, MW-37, and MW-38. The detected concentrations above the screening level ranged between 0.89 mg/l and 3.7 mg/l, with the highest concentration detected at MW-34 in August 2017.

Total petroleum hydrocarbons were detected in the GRO and DRO fractions. The detected GRO concentrations ranged from 0.047J mg/l to 1.1 mg/l with the highest concentration at MW-34. The DRO fraction was detected at concentrations above the screening level of 0.0398 mg/l

ranging from 0.44 mg/l to 1.4 mg/l with the highest concentration detected at MW-11 in the sample collected in August 2017.

A summary of the analytical results for samples collected at the Downgradient Wells is provided in Table 5.

RCRA Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- 1,2,4-Trimethylbenzene was detected above the respective screening level of 15 ug/l at MW-65 with a concentration of 520 ug/l in August 2017;
- 1,2-Dichloroethane was detected above the respective screening level of 5 ug/l at MW-59 and MW-65. The detected concentrations were 38 ug/l and 150 ug/l, respectively;
- 1-Methylnaphthalene was detected above the screening level of 11 ug/l at MW-65 with a
 concentration of 150 ug/l. 1-Methylnaphthalene was also detected above the screening
 level in the semi-volatile analysis of the sample collected at MW-65, but at a lower
 concentration of 100 ug/l;
- Benzene was detected above the respective screening level of 5 ug/l at MW-59 and MW-65. The detected concentrations were 24 ug/l and 5,800 ug/l, respectively;
- Ethylbenzene was detected above the respective screening level of 700 ug/l at MW-65, with a concentration detected of 1,700 ug/l in August 2017;
- MTBE was detected above the respective screening level of 143 ug/l at MW-59 and MW-65. The detected concentrations above the screening level were the same at both wells, at a concentration of 1,900 ug/l; and
- Naphthalene was detected above the respective screening level of 1.65 ug/l at MW-65 with an estimated concentration of 27 ug/l.

General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Chloride was detected above the respective screening level of 250 mg/l at MW-52, MW-53, MW-64, and MW-70. The detected concentrations above the screening level ranged between 330 mg/l and 1,000 mg/l. The highest concentration was detected at MW-53;
- Nitrate was detected above the respective screening level of 10 mg/l at MW-52, MW-53, MW-60, MW-63, MW-64, and MW-67, with concentrations ranging from 12 mg/l to 55 mg/l. The highest concentration was detected at MW-64; and
- Sulfate was detected above the respective screening level of 600 mg/l at MW-52, MW-53, MW-60, MW-62, MW-63, MW-64, MW-65, and MW-70. The detected concentrations ranged between 1,100 mg/l and 3,700 mg/l, with the highest concentration detected at MW-62.

None of the total metals analyses indicated concentrations of constituents detected above their respective screening levels in samples collected in 2017. Dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Arsenic was detected above the screening level of 0.01 mg/l in groundwater samples collected at MW-51, MW-53, MW-59, MW-60, MW-62, MW-63, MW-64, MW-65, MW-67, and MW-70 at concentrations ranging from 0.015J mg/l to 0.054 mg/l. The highest concentration was reported for the groundwater sample collected at MW-60 in August 2017;
- Iron was detected above the respective screening level of 1.0 mg/l at MW-59, MW-65, and MW-70. The detected concentrations above screening levels ranged between 6.9 mg/l and 25 mg/l with the highest concentration at MW-70; and
- Manganese was detected above the respective screening level of 0.2 mg/l at MW-51, MW-52, MW-53, MW-59, MW-62, MW-63, MW-65, and MW-70. The detected concentrations ranged between 0.5 mg/l and 3.2 mg/l, with the highest concentration detected at MW-65.

Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO and DRO fractions. The DRO concentrations exceeded the screening level of 0.0398 mg/l in groundwater samples collected at MW-59 and MW-65 with concentrations of 0.75 mg/l and 4.4 mg/l, respectively.

A summary of the analytical results for samples collected at the RCRA Wells is provided in Table 6.

3.1.4 North Boundary Barrier Sampling

Collection Wells

No volatile organic compounds were detected above their respective screening levels in samples collected in 2017. Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO and DRO fractions. Two DRO concentrations exceed the screening level of 0.0398 mg/l and were reported at 1.4 mg/l and 1.2 mg/l in samples collected at CW 0+60 in April and August 2017, respectively.

A summary of the analytical results for samples collected at the collection Wells in 2017 is provided in Table 7.

Observation Wells

Volatile organic compounds detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exceptions:

- Benzene was detected above the screening level of 0.005 mg/l at OW 11+15. The detected concentration in April 2017 was 4.4 mg/l; and
- MTBE was detected above the respective screening level of 0.143 mg/l at OW 11+15 and OW 16+60. The concentrations ranged from 0.32 mg/l (April 2017 at OW 11+15) to 0.39 mg/l (April 2017 OW 16+60).

Total petroleum hydrocarbons were detected above the laboratory detection limit in the GRO, DRO, and MRO fractions. The DRO concentrations exceeded the screening level of 0.0398 mg/l and ranged from 0.22 mg/l to 370 mg/l. The DRO concentrations exceeded the screening levels in groundwater samples collected at OW 0+60, OW 1+50, OW 3+85, OW 5+50, OW 8+10, OW 11+15, OW 16+60, OW 19+50, OW 22+00, OW 23+10, and OW 23+90, with the

highest reported concentration at OW 5+50. The MRO concentrations exceeded the screening level in samples collected at OW 3+85 and OW 5+50 at concentrations of 7.2 mg/l and 70 mg/l, respectively.

A summary of the analytical results for samples collected at the observation wells in 2017 is provided in Table 7.

3.1.5 San Juan River Bluff Sampling

Outfalls

Samples were collected from East Outfall #2 and East Outfall #3 in April and August 2017. A summary of the analytical results for samples collected at East Outfall #2 and East Outfall #3 in 2017 is provided in Table 8.

Volatile organic compounds were not detected in samples collected in 2017. General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017 with the exception of nitrite. It is noted that nitrite and nitrate were reported as a combined analyses to avoid potential holding time concerns. Nitrate + Nitrite was reported at concentrations of 1.4 mg/l and 1.6 mg/l at East Outfall #2 in April and August 2017, respectively, while it was reported at 2.4 mg/l in the sample collected in April 2017 at East Outfall #3.

For the total metals analyses, only arsenic was detected at a concentration above the screening level of 0.01 mg/l. This occurred in the April 2017 sample collected at East Outfall #2 with a concentration of 0.02 mg/l. All dissolved metals constituents detected above the laboratory detection limit were below their respective screening levels in samples collected in April and August 2017.

Seeps

Samples were only collected from Seep 1 in April 2017, as the seep locations were otherwise dry in April and August 2017.

Volatile organic compounds detected above laboratory detection limit were below their respective screening levels in samples collected for 2017. General chemistry parameters detected above the laboratory detection limit were below their respective screening levels in samples collected in 2017, with the following exception:

 Sulfate was detected above the respective screening level of 600 mg/l at Seep 1 in April 2017 at concentrations of 1,100 mg/l.

A summary of the analytical results for samples collected at the Seeps in 2017 is provided in Table 9.

3.1.6 San Juan River Terrace Sampling

Sample locations related to the bioventing system are discussed in a separate report, and therefore are not included in this submittal. However, surface water samples were collected at four locations along the San Juan River in 2017. Samples were collected in April 2017 and

August 2017 upstream of the Terminal, north of MW-46, north of MW-45, and downstream of the Terminal. A summary of the analytical results for samples is provided in Table 10.

Volatile organic compounds were not detected above laboratory detection limits in any of the samples for 2017. Similarly, Total Petroleum Hydrocarbons were not detected above laboratory detection limits in surface water samples collected for 2017. General chemistry parameters detected above the laboratory detection limits were below their respective screening levels in samples collected in 2017.

Total and dissolved metal constituents detected above the laboratory detection limits were below their respective screening levels in samples collected in 2017. Figure 3 shows the location of the San Juan River samples in relation to the Bloomfield Terminal.

3.1.7 Outfall and Seep Inspections

Bi-monthly visual inspections of Seep 1, Seep 2, Seep 3, and Seep 5 and along the San Juan River Bluff, including the East Fork area, were conducted in 2017. Inspections of the draws north of the barrier wall and analysis of samples of water collected in the seeps indicate that the barrier wall is preventing migration of contaminated groundwater toward the San Juan River.

Visual inspection of the East Fork area indicates that the flow rate at this seep location has decreased to less than 1 gallon/minute. The flow rate at this location does not appear to be impacted by the operation of the Hammond Ditch. Figure 3 shows the location of the outfalls and seeps in relation to the Bloomfield Terminal.

3.2 Separate-Phase Hydrocarbons

Field measurements collected in April and August 2017 were also used to determine product thickness in areas where SPH was detected. In April 2017, SPH was identified in 12 wells. The product thickness detected ranged between 0.01 feet and 1.11 feet, with the most product detected at recovery well RW-28. In August 2017, SPH was identified in 12 wells. The product thickness ranged between 0.01 feet and 0.7 feet, with the most product detected at recovery well RW-28. Figure 6 and Figure 7 show a summary of the product thickness detected in April 2017 and August 2017, respectively.

Product had been detected in the groundwater prior to suspension of refining operations in November 2009. Review of the past 10 years of data collected shows SPH to be present in four general areas of the facility; the Terminals Area, the Tank Farm Area, the former Refinery Process Area, and the North Boundary Barrier Area. The following is a brief summary of the SPH trends observed as reported each year. A review of the historic SPH measurements collected are included in the Facility-Wide Groundwater Monitoring Plan dated December 2007 and in subsequent Annual Groundwater Remediation & Monitoring Reports submitted in April of each year.

Terminals Area

The area historically referred to as the "Terminals Area" is located south of County Road 4990. Primary operations in this area include product loading and unloading, crude unloading, and

product storage. At the Terminal Area, SPH has been localized to two wells (MW-61 and MW-66). These wells were installed in 2009 as part of the on-going RCRA investigation activities. Over the past four and a half years, SPH has been detected at MW-61, which is located just east of the Terminal office building. In the most recent measurement in August 2017, 0.21 feet of SPH was observed in MW-61. The SPH thickness at MW-61 has fluctuated between 0.21 feet and 0.98 feet. At MW-66, located west of Tank 45, the amount of SPH has fluctuated between 0.0 feet and 0.32 feet, with 0.01 feet measured most recently in August 2017.

Tank Farm Area

The Tank Farm Area is located in the eastern portion of the facility, north of County Road 4990. This area is equipped with four total fluids recovery wells located along the center dike area (RW-14, RW-15, RW-16, and RW-17). Recovery wells RW-14 and RW-16 are equipped with electrical submersible pumps, while RW-15 and RW-17 are equipped with dedicated pneumatic pumps that operate on a timer. All fluids pumped from these wells are routed to the on-site WWTP for product recovery and treatment.

Former Refinery Process Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater that exists at the Bloomfield facility. Several monitoring wells located within the vicinity of the former refinery process area have shown detectable amounts of SPH prior to the suspension of refinery operations in November 2009. Total fluids recovery wells, as well as the French drain fluids collection system located below the Hammond Ditch in this area, provide hydraulic relief and enhance product recovery efforts.

Two wells within the warehouse area have shown detectable SPH. Monitoring well MW-54, which was installed in 2008, has shown decreasing levels of SPH since 2010. In August 2016, MW-54 contained only approximately 0.01 feet of SPH and no SPH was measured during either the April or August gauging events in 2017. Recovery well RW-1 is an active total fluids recovery well. This well operates at a constant flowrate of approximately 2 gpm. The amount of SPH at RW-1 has fluctuated since 2008, with no SPH measured during 2017.

Two active recovery wells (RW-2 and RW-3) are located along the southern property boundary and are equipped with dedicated pneumatic total fluids pumps. In 2017, RW-2 did not contain any measurable SPH. RW-3 has shown traces of SPH prior to returning to operation in 2012, with SPH detected at 0.05 feet or less. No measurable SPH was detected in RW-3 in 2017.

Monitoring well MW-41, located adjacent to the former crude process unit, has shown fluctuating levels of SPH over the years. The range of SPH detected has been between 0.0 feet and 1.18 feet since 2007. As of August 2017, 0.11 feet of SPH was measured in MW-41.

The SPH level at RW-42, an active recovery well located upstream of MW-41, has also fluctuated over time. The amount of SPH has ranged between 0.00 feet and 0.90 feet since 2007. In August 2017, there was no SPH detected at RW-42.

In the area near the WWTP and north of the former process units there are several wells in which SPH has been detected over the years. It is expected to see SPH levels fluctuate in this area due to the numerous active recovery wells, as well as, the existence of the north boundary barrier providing hydraulic control for all groundwater beneath the former process areas. To further enhance the product recovery efforts in this area, work has been done to equip five existing monitoring wells with dedicated pneumatic pumps for total fluids recovery. Monitoring wells MW-55, MW-56, MW-57, MW-58, and MW-20 have been converted to recovery wells. These wells are located in the area where SPH is currently most prevalent. The wells have been operational as of 2013 and continued to operate through 2017.

North Boundary Barrier Area

In 2005, a 2,700-foot long bentonite slurry wall was installed along the western and northern boundary of the former process area. This north boundary barrier provides hydraulic control for product and groundwater within the Bloomfield facility. Monitoring wells and observation wells located along the river-side of the slurry wall have shown intermittent detections of SPH. The greatest of which was 0.08 feet in April 2014 in MW-46; however, no SPH has been detected in excess of 0.01 feet since that time. The amount of groundwater detected in these wells is significantly less than the wells located on the facility-side of the wall, giving proof that the hydraulic barrier is effective. The intermittent detections of SPH are believed to be the residual effect of SPH in the area that existed prior to installation of the slurry wall.

3.3 Total Fluids Recovery Systems

3.3.1 Groundwater Recovery System

In 2017, 18 wells operated as total fluids recovery wells. The wells used for total fluids recovery were RW-1, RW-2, RW-3, RW-9, RW-14, RW-15, RW-16, RW-17, RW-19, MW-20, RW-22, RW-23, RW-28, RW-42, MW-55, MW-56, MW-57, and MW-58. In the past, Western estimated the total gallons pumped (SPH and groundwater) from the recovery wells on an annual basis. The recovery wells are not equipped with individual flow meters. Most wells are equipped with pneumatic pumps that run on a timer system. Based on the timer setting and field verified flow rates, the total gallons pumped per well over time was calculated. The wells are routinely checked to make sure they are in service and to make any repairs, as necessary, to return wells to service. Because it is not possible to know with certainty how long an individual pump may have been out of service between inspections, Western has not attempted to estimate the annual recovery volumes for the wells.

3.3.2 North Boundary Barrier Wall Collection System

Depth-to-groundwater measurements collected in April 2017 and August 2017 indicate that the barrier wall continues to provide a hydraulic barrier for groundwater below the facility. Based on the data collected in 2017, three of the fourteen observation wells contain little to no fluid (i.e., measuring less than 0.5 ft of fluid in the well at any one time). Of the 13 well pairs (i.e., observation and collection wells on opposite sides of the slurry wall) where water is present in the observation wells, the average difference in water level elevations across the slurry wall is

3.47 feet. This difference in water level elevations immediately across the slurry wall is further evidence of its continued effectiveness.

Table 1 provides a summary of the fluids level measurements collected from the wells along the north boundary barrier wall.

3.3.3 Hammond Ditch Recovery System

The Hammond Ditch Recovery System serves as a hydraulic relief system for groundwater accumulating within the western portion of the Terminal on the up-gradient side of the slurry wall. All water recovered through the Hammond Ditch French drain west of the pipeline easement discharges to Tank 37, which is then transferred to the API separator for product recovery. The location of Tank 37 is shown on Figures 2 and 3. Terminal Operators inspect the operation of recovery system and Tank 37 daily and record the amount of water recovered in the tank using a flow meter located on the discharge end of the Tank 37 transfer pump. In 2017, the total volume of fluids recovered at Tank 37 was approximately 1,114,260 gallons.

3.3.4 East Outfall Recovery System

Water recovered through the Hammond Ditch French drain east of the pipeline easement discharges through three outfalls (i.e., Outfall 1, Outfall 2 and Outfall 3). Total fluids from Outfall 1 is recovered via Tank 38 and transferred to the WWTS for treatment prior to disposal through the on-site injection well. Figures 2 and 3 show the location of Tank 38.

Tank 38 piping is equipped with a flow meter to measure the total gallons transferred to the WWTP. In 2017, the total fluid volume recovered at Tank 38 was approximately 7,674,996 gallons.

3.4 Waste Disposal

Western Refining indefinitely suspended refining operations at the Bloomfield Facility on November 23, 2009. The crude unloading and product loading racks, storage tanks and other supporting equipment remain in operation. Recovered water from on-site remediation activities and facility operations is treated through the on-site WWTS. Treated water is then disposed of through an on-site Class I non-hazardous injection well and/or two on-site evaporations ponds. The monthly and annual cumulative volumes of water discharged to the evaporation ponds are summarized in Table 11.

Significantly less waste is routinely generated since the suspension of refining operations in November 2009. The on-site landfill is no longer operational, and therefore all operational waste generated is properly characterized and disposed of off-site. A summary of such wastes for 2017 is provided in Appendix C.

SECTION 4.0 CONCLUSIONS

The following is a summary of conclusions based on monitoring and inspection data collected in 2017.

4.1 Groundwater Monitoring

Western has in-place a Facility-Wide Groundwater Monitoring Program that is updated annually as required under the 2007 Consent Order issued by NMED-HWB. Updates to this program include incorporation of additional wells installed as part of on-going completed RCRA Investigation activities. Such updates are proposed for agency approval in June of each year. Screening levels used to evaluate the groundwater condition at the Bloomfield Terminal are reflective of the same conservative screening levels currently used for evaluation of on-going RCRA Investigation activities. Tables 3 through 10 include the applicable screening level for each respective analyte. Sample results included in the analytical summary tables that exceed the respective screening levels are highlighted in yellow and all detected results are bolded. Figure 8 and Figure 9 shows a summary of the BTEX and MTBE concentrations detected site-wide during the April 2017 and August 2017 sampling events, respectively. Figure 10 shows the results for chloride, sulfate, nitrate, and total dissolved solids (TDS) for April 2017. Figure 11 show the analytical results for naphthalene, chloride, sulfate, nitrate, and TDS for August 2017.

Depth-to-groundwater and depth-to-product measurements were collected at all facility monitoring wells, recovery wells, observation wells, collection wells and sump wells in 2017. Groundwater elevation contours show that groundwater flows in the general northwest direction, with the groundwater under the process areas flowing towards the north boundary barrier wall and Hammond Ditch Collection System.

Groundwater Quality

Based on the analytical results for groundwater monitoring collected in 2017, the following constituents were detected at concentrations in groundwater above their respective most conservative screening levels.

Organic Compounds; 1,2,4-Trimethylbenzene, 1,2-Dichloroethane, 1-Methylnaphthalene, Naphthalene, Benzene, Ethylbenzene, MTBE, Toluene, Xylenes, DRO, and MRO

General Chemistry; Chloride, Sulfate, and Nitrate

Dissolved Metals; Arsenic, Iron, and Manganese

Total Metals; Arsenic, Chromium, and Selenium

An investigation of naturally occurring (i.e., background) concentrations of constituents in groundwater was initiated in January 2012, with the last submission to NMED in January 2015. As of March 2018, NMED has not yet responded to the January 2015 *Investigation Report*

Background Concentrations, thus background concentrations are not yet available for comparison to detected results.

4.2 Outfall and Seep Inspections

Bi-monthly visual inspections of the seeps and along the San Juan River Bluff, which includes the East Fork Area, were conducted in 2017. No visual sheens or odors were identified during the inspections. Fluid in the Seeps is most often prevalent during the spring, corresponding with the times of higher precipitation. In 2017, only Seep 1 had sufficient discharge for sample collection in April and none of the seeps had sufficient discharge to allow for sample collection in August.

4.3 Total Fluids Recovery Systems

The Bloomfield Terminal operates and monitors several fluid recovery systems within the facility, which include:

- Groundwater Recovery System using recovery wells within the Terminal Complex;
- North Boundary Barrier Collection System;
- · Hammond Ditch Recovery System;
- River Terrace Remediation system; and
- East Outfall Recovery System.

All fluids recovered from these systems, with the exception of the effluent from the River Terrace Remediation System, are pumped to the on-site WWTS for treatment prior to disposal through the on-site injection well or evaporation ponds. Water from the River Terrace is treated separately and is re-used as plant water for facility operations.

SECTION 5.0 REFERENCES

- Groundwater Technology, Inc., 1994, RCRA Facility Investigation/Corrective Measures Study Report Bloomfield Refining Company #50 County Road 4990 Bloomfield, New Mexico.
- NMED, 2007, State of New Mexico Environment Department v. San Juan Refining Company and Giant Industries, Inc.; Order July 27, 2007.
- NMOCD, 2017, New Mexico Oil Conservation Division, Discharge Permit Renewal (GW-001) Bloomfield Refinery, June 8, 2017.

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5519.21	21.41	NPP	17.35	5501.86	NPP
	04/18/17	5519.21	21.56	NPP	17.62	5501.59	NPP
	08/15/16	5519.21	21.56	NPP	16.83	5502.38	NPP
	04/15/16	5519.21	21.56	NPP	17.23	5501.98	NPP
MW-01	08/18/15	5519.21	21.56	NPP	16.95	5502.26	NPP
10100-01	04/20/15	5519.21	21.56	NPP	16.95	5502.26	NPP
	08/18/14	5519.21	21.56	NPP	17.14	5502.07	NPP
	04/02/14	5519.21	21.56	NPP	17.60	5501.61	NPP
	08/05/13	5519.21	21.56	NPP	17.18	5502.03	NPP
	04/08/13	5519.21	21.56	NPP	17.51	5501.70	NPP
	08/22/17	5539.27	36.46	NPP	36.46	5502.81	NPP
	04/18/17	5539.27	36.75	NPP	NWP	NWP	NPP
	08/15/16	5539.27	36.75	NPP	36.29	5502.98	NPP
	04/15/16	5539.27	36.75	NPP	36.33	5502.94	NPP
MW-03	08/18/15	5539.27	36.75	NPP	36.13	5503.14	NPP
10100 00	04/27/15	5539.27	36.75	NPP	36.25	5503.02	NPP
	08/18/14	5539.27	36.75	NPP	36.49	5502.78	NPP
	04/02/14	5539.27	36.75	NPP	NWP	NWP	NPP
	08/05/13	5539.27	36.75	NPP	NWP	NWP	NPP
	04/08/13	5539.27	36.75	NPP	NWP	NWP	NPP
	08/22/17	5527.78	29.82	NPP	27.10	5500.68	NPP
	04/17/17	5527.78	30.48	NPP	27.85	5499.93	NPP
	08/15/16	5527.78	30.48	NPP	27.21	5500.57	NPP
	04/15/16	5527.78	30.48	NPP	27.10	5500.68	NPP
MW-04	08/25/15	5527.78	30.48	NPP	27.94	5499.84	NPP
	04/27/15	5527.78	30.48	NPP	27.12	5500.66	NPP
	08/18/14	5527.78	30.48	NPP	27.47	5500.31	NPP
	04/02/14	5527.78	30.48	NPP	27.45	5500.33	NPP
	08/05/13	5527.78	30.48	NPP	27.45	5500.33	NPP
	04/08/13	5527.78	30.48	NPP	27.41	5500.37	NPP
	08/22/17	5548.56	37.20	NPP	NWP	NWP	NPP
	04/18/17	5548.56	37.20	NPP	NWP	NWP	NPP
	08/16/16	5548.56	37.20	NPP	NWP	NWP	NPP
	04/18/16	5548.56	37.20	NPP	NWP	NWP	NPP
MW-05	08/13/15	5548.56	37.20	NPP	NWP	NWP	NPP
14144 00	04/27/15	5548.56	37.20	NPP	NWP	NWP	NPP
	08/18/14	5548.56	37.20	NPP	NWP	NWP	NPP
	04/02/14	5548.56	37.20	NPP	NWP	NWP	NPP
	08/05/13	5548.56	37.20	NPP	NWP	NWP	NPP
	04/08/13	5548.56	37.20	NPP	NWP	NWP	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5554.61	48.00	NPP	NWP	NWP	NPP
	04/18/17	5554.61	48.00	NPP	NWP	NWP	NPP
	08/16/16	5554.61	48.00	NPP	NWP	NWP	NPP
	04/18/16	5554.61	48.00	NPP	NWP	NWP	NPP
MW-06	08/13/15	5554.61	48.00	NPP	NWP	NWP	NPP
10100-00	04/27/15	5554.61	48.00	NPP	NWP	NWP	NPP
	08/18/14	5554.61	48.00	NPP	NWP	NWP	NPP
	04/02/14	5554.61	48.00	NPP	NWP	NWP	NPP
	08/05/13	5554.61	48.00	NPP	NWP	NWP	NPP
	04/08/13	5554.61	48.00	NPP	NWP	NWP	NPP
	08/22/17	5527.66	62.05	NPP	27.62	5500.04	NPP
	04/17/17	5527.66	62.61	NPP	27.28	5500.38	NPP
	08/15/16	5527.66	62.61	NPP	27.74	5499.92	NPP
	04/15/16	5527.66	62.61	NPP	27.31	5500.35	NPP
MW-07	08/13/15	5527.66	62.61	NPP	27.75	5499.91	NPP
10100-07	04/27/15	5527.66	62.61	NPP	27.43	5500.23	NPP
	08/18/14	5527.66	62.61	NPP	28.03	5499.63	NPP
	04/02/14	5527.66	62.61	NPP	27.58	5500.08	NPP
	08/05/13	5527.66	62.61	NPP	27.88	5499.78	NPP
	04/08/13	5527.66	62.61	NPP	27.45	5500.21	NPP
	08/22/17	5534.58	34.75	NPP	31.92	5502.66	NPP
	04/18/17	5534.58	35.93	NPP	31.92	5502.66	NPP
	08/16/16	5534.58	35.93	NPP	34.75	5499.83	NPP
	04/15/16	5534.58	35.93	NPP	31.62	5502.96	NPP
MW-08	08/13/15	5534.58	35.93	NPP	31.42	5503.16	NPP
10100-00	04/27/15	5534.58	35.93	NPP	31.54	5503.04	NPP
	08/18/14	5534.58	35.93	NPP	31.73	5502.85	NPP
	04/02/14	5534.58	35.93	NPP	32.11	5502.47	NPP
	08/05/13	5534.58	35.93	NPP	31.90	5502.68	NPP
	04/08/13	5534.58	35.93	NPP	31.82	5502.76	NPP
	08/23/17	5510.31	22.32	NPP	12.11	5498.20	NPP
	04/18/17	5510.31	22.94	NPP	11.49	5498.82	NPP
	08/16/16	5510.31	22.94	NPP	11.11	5499.20	NPP
	04/18/16	5510.31	22.94	NPP	11.89	5498.42	NPP
MW-11	08/19/15	5510.31	22.94	NPP	11.25	5499.06	NPP
IVIVV-11	04/20/15	5510.31	22.94	NPP	11.30	5499.01	NPP
	08/18/14	5510.31	22.94	NPP	10.95	5499.36	NPP
	04/02/14	5510.31	22.94	NPP	11.85	5498.46	NPP
	08/05/13	5510.31	22.94	NPP	11.82	5498.49	NPP
	04/08/13	5510.31	22.94	NPP	11.91	5498.40	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/25/17	5501.61	13.36	NPP	10.29	5491.32	NPP
	04/18/17	5501.61	14.98	NPP	10.04	5491.57	NPP
	08/16/16	5501.61	14.98	NPP	9.49	5492.12	NPP
	04/18/16	5501.61	14.98	NPP	10.02	5500.29	NPP
MW-12	08/19/15	5501.61	14.98	NPP	8.52	5501.79	NPP
10100-12	04/20/15	5501.61	14.98	NPP	8.55	5501.76	NPP
	08/18/14	5501.61	14.98	NPP	8.42	5501.89	NPP
	04/02/14	5501.61	14.98	NPP	10.20	5500.11	NPP
	08/05/13	5501.61	14.98	NPP	10.70	5499.61	NPP
	04/08/13	5501.61	14.98	NPP	10.58	5499.73	NPP
	08/23/17	5542.04	52.85	NPP	40.65	5501.39	NPP
	04/18/17	5542.04	52.89	NPP	40.59	5501.45	NPP
	08/16/16	5542.04	52.89	NPP	40.67	5501.37	NPP
	04/18/16	5542.04	52.89	NPP	40.51	5501.53	NPP
MW-13	08/18/15	5542.04	52.89	NPP	40.53	5501.51	NPP
10100-13	04/20/15	5542.04	52.89	NPP	40.68	5501.36	NPP
	08/18/14	5542.04	52.89	NPP	40.94	5501.10	NPP
	04/02/14	5542.04	52.89	NPP	40.90	5501.14	NPP
	08/05/13	5542.04	52.89	NPP	40.85	5501.19	NPP
	04/08/13	5542.04	52.89	NPP	40.80	5501.24	NPP
	08/22/17	5519.90	27.13	20.65	20.94	5499.19	0.29
	04/17/17	5519.90	27.13	20.6	20.87	5499.25	0.27
	08/16/16	5519.9	27.13	20.6	20.64	5499.29	0.04
	04/15/16	5519.9	27.13	20.6	21.20	5499.18	0.60
MW-20	08/13/15	5519.9	27.13	20.6	20.65	5499.29	0.05
10100-20	04/27/15	5519.9	27.13	NPP	20.73	5499.17	NPP
	08/18/14	5519.9	27.13	20.9	21.30	5498.92	0.40
	04/02/14	5519.9	27.13	20.77	21.80	5498.92	1.03
	08/05/13	5519.9	27.13	20.69	21.41	5499.07	0.72
	04/08/13	5519.9	27.13	20.81	21.65	5498.92	0.84
	08/22/17	5521.99	30.44	NPP	21.60	5500.39	NPP
	04/18/17	5521.99	30.38	NPP	21.58	5500.41	NPP
	08/15/16	5521.99	30.38	NPP	21.21	5500.78	NPP
	04/15/16	5521.99	30.38	NPP	21.68	5500.31	NPP
MW-21	08/13/15	5521.99	30.38	21.32	21.33	5500.67	0.01
10100 21	04/27/15	5521.99	30.38	NPP	21.54	5500.45	NPP
	08/18/14	5521.99	30.38	NPP	21.64	5500.35	NPP
	04/02/14	5521.99	30.38	NPP	22.00	5499.99	NPP
	08/05/13	5521.99	30.38	21.83	21.86	5500.15	0.03
	04/08/13	5521.99	30.38	21.82	21.87	5500.16	0.05

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/23/17	5533.99	41.20	NPP	32.90	5501.09	NPP
	04/18/17	5533.99	41.20	NPP	32.84	5501.15	NPP
	08/16/16	5533.99	41.20	NPP	30.01	5503.98	NPP
	04/18/16	5533.99	41.20	NPP	32.86	5501.13	NPP
MW-25	08/13/15	5533.99	41.20	NPP	32.82	5501.17	NPP
10100-25	04/27/15	5533.99	41.20	NPP	33.95	5500.04	NPP
	08/18/14	5533.99	41.20	NPP	33.25	5500.74	NPP
	04/02/14	5533.99	41.20	NPP	33.24	5500.75	NPP
	08/05/13	5533.99	41.20	33.18	33.20	5500.81	0.02
	04/08/13	5533.99	41.20	33.14	33.15	5500.85	0.01
	08/23/17	5517.88	25.11	17.6	17.67	5500.27	0.07
	04/18/17	5517.88	25.11	17.45	17.50	5500.42	0.05
	08/16/16	5517.88	25.11	17.55	17.65	5500.31	0.10
	04/18/16	5517.88	25.11	17.51	17.65	5500.34	0.14
MW-26	08/13/15	5517.88	25.11	17.31	17.55	5500.52	0.24
10100-20	04/20/15	5517.88	25.11	17.48	17.72	5500.35	0.24
	08/18/14	5517.88	25.11	17.7	17.95	5500.13	0.25
	04/02/14	5517.88	25.11	17.78	17.82	5500.09	0.04
	08/05/13	5517.88	25.11	17.73	18.01	5500.09	0.28
	04/08/13	5517.88	25.11	17.72	17.83	5500.14	0.11
	08/23/17	5518.67	24.21	NPP	19.73	5498.94	NPP
	04/18/17	5518.67	24.42	NPP	18.87	5499.80	NPP
	08/16/16	5518.67	24.42	NPP	19.10	5499.57	NPP
	04/18/16	5518.67	24.42	NPP	18.91	5499.76	NPP
MW-27	08/18/15	5518.67	24.42	NPP	18.62	5500.05	NPP
10100-21	04/20/15	5518.67	24.42	NPP	18.86	5499.81	NPP
	08/18/14	5518.67	24.42	NPP	22.38	5496.29	NPP
	04/02/14	5518.67	24.42	NPP	21.65	5497.02	NPP
	08/05/13	5518.67	24.42	NPP	22.43	5496.24	NPP
	04/08/13	5518.67	24.42	NPP	21.56	5497.11	NPP
	08/22/17	5524.97	28.69	NPP	23.11	5501.86	NPP
	04/18/17	5524.97	28.62	NPP	23.23	5501.74	NPP
	08/15/16	5524.97	28.62	NPP	22.68	5502.29	NPP
	04/15/16	5524.97	28.62	NPP	23.04	5501.93	NPP
MW-29	08/24/15	5524.97	28.62	NPP	22.70	5502.27	NPP
1V1VV-23	04/27/15	5524.97	28.62	NPP	22.83	5502.14	NPP
	08/18/14	5524.97	28.62	NPP	23.00	5501.97	NPP
	04/02/14	5524.97	28.62	NPP	23.42	5501.55	NPP
	08/05/13	5524.97	28.62	NPP	23.13	5501.84	NPP
	04/08/13	5524.97	28.62	NPP	23.25	5501.72	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5536.83	40.12	NPP	33.99	5502.84	NPP
	04/18/17	5536.83	40.13	NPP	34.07	5502.76	NPP
	08/15/16	5536.83	40.13	NPP	33.84	5502.99	NPP
	04/15/16	5536.83	40.13	NPP	33.92	5502.91	NPP
MW-30	08/24/15	5536.83	40.13	NPP	33.69	5503.14	NPP
10100-30	04/20/15	5536.83	40.13	NPP	33.82	5503.01	NPP
	08/18/14	5536.83	40.13	NPP	34.09	5502.74	NPP
	04/02/14	5536.83	40.13	34.39	34.40	5502.44	0.01
	08/05/13	5536.83	40.13	NPP	34.21	5502.62	NPP
	04/08/13	5536.83	40.13	NPP	34.16	5502.67	NPP
	08/22/17	5536.24	39.16	NPP	34.20	5502.04	NPP
	04/18/17	5536.24	39.16	NPP	34.16	5502.08	NPP
	08/16/16	5536.24	39.16	NPP	34.30	5501.94	NPP
	04/18/16	5536.24	39.16	NPP	34.13	5502.11	NPP
NAVA 04	08/24/15	5536.24	39.16	NPP	34.15	5502.09	NPP
MW-31	04/27/15	5536.24	39.16	NPP	34.34	5501.90	NPP
	08/18/14	5536.24	39.16	NPP	34.55	5501.69	NPP
	04/02/14	5536.24	39.16	NPP	34.55	5502.28	NPP
	08/05/13	5536.24	39.16	NPP	34.49	5501.75	NPP
	04/08/13	5536.24	39.16	NPP	34.37	5501.87	NPP
	08/23/17	5525.64	27.54	NPP	25.30	5500.34	NPP
	04/18/17	5525.64	27.51	NPP	25.31	5500.33	NPP
	08/16/16	5525.64	27.51	NPP	25.37	5500.27	NPP
	04/18/16	5525.64	27.51	NPP	25.25	5500.39	NPP
MM/ 00	08/08/15	5525.64	27.51	NPP	25.18	5500.46	NPP
MW-32	04/20/15	5525.64	27.51	NPP	25.30	5500.34	NPP
	08/18/14	5525.64	27.51	NPP	25.52	5500.12	NPP
	04/02/14	5525.64	27.51	NPP	25.55	5500.09	NPP
	08/05/13	5525.64	27.51	NPP	25.47	5500.17	NPP
	04/08/13	5525.64	27.51	NPP	25.45	5500.19	NPP
	08/23/17	5521.79	25.50	NPP	22.56	5499.23	NPP
	04/18/17	5521.79	25.51	NPP	22.50	5499.29	NPP
	08/16/16	5521.79	25.51	NPP	22.78	5499.01	NPP
	04/18/16	5521.79	25.51	NPP	22.54	5499.25	NPP
MW-33	08/18/15	5521.79	25.51	NPP	22.39	5499.40	NPP
10100-00	04/20/15	5521.79	25.51	NPP	22.35	5499.44	NPP
	08/18/14	5521.79	25.51	NPP	23.26	5498.53	NPP
	04/02/14	5521.79	25.51	NPP	23.45	5498.34	NPP
	08/05/13	5521.79	25.51	NPP	23.86	5497.93	NPP
	04/08/13	5521.79	25.51	NPP	23.56	5498.23	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/23/17	5511.63	20.97	NPP	14.55	5497.08	NPP
	04/18/17	5511.63	20.96	NPP	14.55	5497.08	NPP
	08/16/16	5511.63	20.96	NPP	14.05	5497.58	NPP
	04/18/16	5511.63	20.96	NPP	14.57	5497.06	NPP
MW-34	08/19/15	5511.63	20.96	NPP	13.90	5497.73	NPP
10100-34	04/20/15	5511.63	20.96	NPP	13.83	5497.80	NPP
	08/18/14	5511.63	20.96	NPP	14.01	5497.62	NPP
	04/02/14	5511.63	20.96	NPP	14.77	5496.86	NPP
	08/05/13	5511.63	20.96	NPP	14.63	5497.00	NPP
	04/08/13	5511.63	20.96	NPP	14.70	5496.93	NPP
	08/23/17	5518.95	25.62	NPP	22.32	5496.63	NPP
	04/18/17	5518.95	26.45	NPP	22.45	5496.50	NPP
	08/16/16	5518.95	26.45	NPP	22.04	5496.91	NPP
	04/18/16	5518.95	26.45	NPP	22.44	5496.51	NPP
NAVA 05	08/19/15	5518.95	26.45	NPP	21.83	5497.12	NPP
MW-35	04/20/15	5518.95	26.45	NPP	22.85	5496.10	NPP
	08/18/14	5518.95	26.45	NPP	22.34	5496.61	NPP
	04/02/14	5518.95	26.45	NPP	22.69	5496.26	NPP
	08/05/13	5518.95	26.45	NPP	22.54	5496.41	NPP
	04/08/13	5518.95	26.45	NPP	22.57	5496.38	NPP
	08/23/17	5516.95	23.06	NPP	20.77	5496.18	NPP
	04/18/17	5516.95	23.26	NPP	20.86	5496.09	NPP
	08/16/16	5516.95	23.26	NPP	20.18	5496.77	NPP
	04/18/16	5516.95	23.26	NPP	20.95	5496.00	NPP
NAVA 20	08/13/15	5516.95	23.26	NPP	20.16	5496.79	NPP
MW-36	04/27/15	5516.95	23.26	NPP	19.87	5497.08	NPP
	08/18/14	5516.95	23.26	NPP	19.64	5497.31	NPP
	04/02/14	5516.95	23.26	NPP	21.12	5495.83	NPP
	08/05/13	5516.95	23.26	NPP	20.98	5495.97	NPP
	04/08/13	5516.95	23.26	NPP	21.10	5495.85	NPP
	08/23/17	5519.62	27.35	NPP	23.44	5496.18	NPP
	04/18/17	5519.62	27.58	NPP	23.60	5496.02	NPP
	08/16/16	5519.62	27.58	NPP	23.21	5496.41	NPP
	04/18/16	5519.62	27.58	NPP	23.66	5495.96	NPP
MW-37	08/19/15	5519.62	27.58	NPP	23.06	5496.56	NPP
10100 07	04/20/15	5519.62	27.58	NPP	23.13	5496.49	NPP
	08/18/14	5519.62	27.58	NPP	22.98	5496.64	NPP
	04/02/14	5519.62	27.58	NPP	23.72	5495.90	NPP
	08/05/13	5519.62	27.58	NPP	23.69	5495.93	NPP
	04/08/13	5519.62	27.58	NPP	23.72	5495.90	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5519.19	26.82	NPP	23.57	5495.62	NPP
	04/18/17	5519.19	26.82	NPP	23.59	5495.60	NPP
	08/16/16	5519.19	26.82	NPP	23.13	5496.06	NPP
	04/18/16	5519.19	26.82	NPP	23.64	5495.55	NPP
NAVA 20	08/19/15	5519.19	26.82	NPP	23.19	5496.00	NPP
MW-38	04/20/15	5519.19	26.82	NPP	23.08	5496.11	NPP
	08/18/14	5519.19	26.82	NPP	22.45	5496.74	NPP
	04/02/14	5519.19	26.82	NPP	23.83	5495.36	NPP
	08/05/13	5519.19	26.82	NPP	23.91	5495.28	NPP
	04/08/13	5519.19	26.82	NPP	23.87	5495.32	NPP
	08/22/17	5520.83	38.31	NPP	25.73	5495.10	NPP
	04/17/17	5520.83	38.34	NPP	25.53	5495.30	NPP
	08/16/16	5520.83	38.34	NPP	25.80	5495.03	NPP
	04/15/16	5520.83	38.34	NPP	25.60	5495.23	NPP
MW-39	08/13/15	5520.83	38.34	NPP	25.78	5495.05	NPP
10100-09	04/27/15	5520.83	38.34	NPP	25.75	5495.08	NPP
	08/18/14	5520.83	38.34	NPP	25.94	5494.89	NPP
	04/02/14	5520.83	38.34	NPP	25.70	5495.13	NPP
	08/05/13	5520.83	38.34	NPP	25.95	5494.88	NPP
	04/08/13	5520.83	38.34	NPP	25.70	5495.13	NPP
	08/22/17	5527.31	30.07	NPP	27.94	5499.37	NPP
	04/17/17	5527.31	30.07	NPP	27.86	5499.45	NPP
	08/16/16	5527.31	30.07	NPP	28.14	5499.17	NPP
	04/15/16	5527.31	30.07	NPP	28.25	5499.06	NPP
MW-40	08/13/15	5527.31	30.07	28.08	28.09	5499.23	0.01
10100 40	04/27/15	5527.31	30.07	NPP	28.08	5499.23	NPP
	08/18/14	5527.31	30.07	28.59	28.65	5498.71	0.06
	04/02/14	5527.31	30.07	28.55	29.10	5498.65	0.55
	08/05/13	5527.31	30.07	28.42	28.81	5498.81	0.39
	04/08/13	5527.31	30.07	28.48	28.77	5498.77	0.29
	08/22/17	5526.41	31.62	26.38	26.49	5500.01	0.11
	04/17/17	5526.41	31.62	NPP	26.21	5500.20	NPP
	08/16/16	5526.41	31.62	NPP	28.14	5498.27	NPP
	04/15/16	5526.41	31.62	26.55	26.66	5499.84	0.11
MW-41	08/13/15	5526.41	31.62	26.43	26.67	5499.93	0.24
14144	04/27/15	5526.41	31.62	26.59	26.80	5499.78	0.21
	08/18/14	5526.41	31.62	26.96	27.70	5499.30	0.74
	04/02/14	5526.41	31.62	26.96	27.99	5499.24	1.03
	08/05/13	5526.41	31.62	26.83	27.75	5499.40	0.92
	04/08/13	5526.41	31.62	26.85	27.78	5499.37	0.93

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5535.44	50.91	NPP	34.18	5501.26	NPP
	04/18/17	5535.44	50.91	NPP	34.05	5501.39	NPP
	08/16/16	5535.44	50.91	NPP	34.32	5501.12	NPP
	04/15/16	5535.44	50.91	NPP	33.98	5501.46	NPP
MW-44	08/24/15	5535.44	50.91	NPP	34.30	5501.14	NPP
10100-4-4	04/27/15	5535.44	50.91	NPP	34.98	5500.46	NPP
	08/18/14	5535.44	50.91	NPP	34.57	5500.87	NPP
	04/02/14	5535.44	50.91	NPP	34.30	5501.14	NPP
	08/05/13	5535.44	50.91	NPP	34.46	5500.98	NPP
	04/08/13	5535.44	50.91	NPP	34.04	5501.40	NPP
	08/22/17	5506.36	16.74	NPP	11.83	5494.53	NPP
	04/17/17	5506.36	16.92	NPP	11.81	5494.55	NPP
	08/16/16	5506.36	16.92	NPP	11.78	5494.58	NPP
	04/15/16	5506.36	16.92	NPP	11.88	5494.48	NPP
MW-45	08/13/15	5506.36	16.92	NPP	11.85	5494.51	NPP
10100-45	04/27/15	5506.36	16.92	NPP	11.95	5494.41	NPP
	08/18/14	5506.36	16.92	NPP	11.85	5494.51	NPP
	04/02/14	5506.36	16.92	12.07	12.15	5494.27	0.08
	08/05/13	5506.36	16.92	11.88	11.89	5494.48	0.01
	04/08/13	5506.36	16.92	11.98	12.05	5494.37	0.07
	08/24/17	5504.65	10.09	NPP	10.08	5494.57	NPP
	04/17/17	5504.65	10.39	NPP	NWP	NWP	NPP
	08/15/16	5504.65	10.39	NPP	NWP	NWP	NPP
	04/15/16	5504.65	10.39	NPP	10.03	5494.62	NPP
NAVA 40	08/13/15	5504.65	10.39	NPP	9.94	5494.71	NPP
MW-46	04/27/15	5504.65	10.39	NPP	9.94	5494.71	NPP
	08/18/14	5504.65	10.39	NPP	NWP	NWP	NPP
	04/02/14	5504.65	10.39	NPP	NWP	NWP	NPP
	08/05/13	5504.65	10.39	NPP	NWP	NWP	NPP
	04/08/13	5504.65	10.39	NPP	NWP	NWP	NPP
	08/23/17	5506.77	14.11	NPP	12.96	5493.81	NPP
	04/17/17	5506.77	14.28	NPP	12.60	5494.17	NPP
	08/15/16	5506.77	14.28	NPP	12.14	5494.63	NPP
	04/15/16	5506.77	14.28	NPP	12.55	5494.22	NPP
N 41 A 7	08/13/15	5506.77	14.28	NPP	11.82	5494.95	NPP
MW-47	04/21/15	5506.77	14.28	NPP	12.23	5494.54	NPP
	08/18/14	5506.77	14.28	NPP	13.30	5493.47	NPP
	04/02/14	5506.77	14.28	NPP	13.80	5492.97	NPP
	08/05/13	5506.77	14.28	NPP	12.97	5493.80	NPP
	04/08/13	5506.77	14.28	NPP	12.84	5493.93	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5518.79	22.07	NPP	17.04	5501.75	NPP
	04/18/17	5518.79	20.00	NPP	17.42	5501.37	NPP
	08/15/16	5518.79	20.00	NPP	16.50	5502.29	NPP
	04/15/16	5518.79	20.00	NPP	16.87	5501.92	NPP
	08/13/15	5518.79	20.00	NPP	16.62	5502.17	NPP
NAVA 50	04/27/15	5518.79	20.00	NPP	16.67	5502.12	NPP
MW-50	08/18/14	5518.79	20.00	NPP	16.78	5502.01	NPP
	04/02/14	5518.79	20.00	NPP	17.28	5501.51	NPP
	08/05/13	5518.79	20.00	NPP	16.76	5502.03	NPP
	04/08/13	5518.79	20.00	NPP	17.21	5501.58	NPP
	08/06/12	5518.79	20.00	NPP	16.88	5501.91	NPP
	04/02/12	5518.79	20.00	NPP	17.22	5501.57	NPP
	08/22/17	5515.58	22.11	NPP	14.01	5501.57	NPP
	04/18/17	5515.58	20.00	NPP	14.93	5500.65	NPP
	08/15/16	5515.58	20.00	NPP	14.18	5501.40	NPP
	04/15/16	5515.58	20.00	NPP	14.79	5500.79	NPP
B 40 A 7 E 4	08/13/15	5515.58	20.00	NPP	14.37	5501.21	NPP
MW-51	04/27/15	5515.58	20.00	NPP	14.52	5501.06	NPP
	08/18/14	5515.58	20.00	NPP	14.48	5501.10	NPP
	04/02/14	5515.58	20.00	NPP	14.98	5500.60	NPP
	08/05/13	5515.58	20.00	NPP	14.54	5501.04	NPP
	04/08/13	5515.58	20.00	NPP	14.95	5500.63	NPP
	08/22/17	5538.63	41.68	NPP	36.45	5502.18	NPP
	04/18/17	5538.63	41.00	NPP	36.49	5502.14	NPP
	08/16/16	5538.63	41.00	NPP	36.17	5502.46	NPP
	04/15/16	5538.63	41.00	NPP	36.19	5502.44	NPP
1414/50	08/13/15	5538.63	41.00	NPP	36.00	5502.63	NPP
MW-52	04/20/15	5538.63	41.00	NPP	36.05	5502.58	NPP
	08/18/14	5538.63	41.00	NPP	36.31	5502.32	NPP
	04/02/14	5538.63	41.00	NPP	36.69	5501.94	NPP
	08/05/13	5538.63	41.00	NPP	36.47	5502.16	NPP
	04/08/13	5538.63	41.00	NPP	36.41	5502.22	NPP
	08/22/17	5541.32	43.50	NPP	39.03	5502.29	NPP
	04/18/17	5541.32	41.50	NPP	38.99	5502.33	NPP
	08/16/16	5541.32	41.50	NPP	38.90	5502.42	NPP
	04/15/16	5541.32	41.50	NPP	38.85	5502.47	NPP
NAVA / 50	08/13/15	5541.32	41.50	NPP	38.68	5502.64	NPP
MW-53	04/27/15	5541.32	41.50	NPP	38.80	5502.52	NPP
	08/18/14	5541.32	41.50	NPP	39.05	5502.27	NPP
	04/02/14	5541.32	41.50	NPP	39.32	5502.00	NPP
	08/05/13	5541.32	41.50	NPP	39.16	5502.16	NPP
	04/08/13	5541.32	41.50	NPP	39.04	5502.28	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5530.08	41.20	NPP	31.98	5498.10	NPP
	04/17/17	5530.08	38.00	NPP	31.73	5498.35	NPP
	08/16/16	5530.08	38.00	31.87	31.88	5498.21	0.01
	04/15/16	5530.08	38.00	32.46	32.52	5497.61	0.06
MW-54	08/13/15	5530.08	38.00	32.4	32.45	5497.67	0.05
10100-04	04/27/15	5530.08	38.00	32.02	32.05	5498.05	0.03
	08/18/14	5530.08	38.00	32.38	32.52	5497.67	0.14
	04/02/14	5530.08	38.00	32.75	32.95	5497.29	0.20
	08/05/13	5530.08	38.00	32.45	32.64	5497.59	0.19
	04/08/13	5530.08	38.00	32.71	32.93	5497.33	0.22
	08/22/17	5519.84	24.18	NPP	21.61	5498.23	NPP
	04/17/17	5519.84	27.25	NPP	21.63	5498.21	NPP
	08/15/16	5519.84	27.25	NPP	21.74	5498.10	NPP
	04/15/16	5519.84	27.25	NPP	21.71	5498.13	NPP
MW-55	08/13/15	5519.84	27.25	22.08	22.09	5497.76	0.01
10100 33	04/27/15	5519.84	27.25	21.85	21.88	5497.98	0.03
	08/18/14	5519.84	27.25	21.84	21.86	5498.00	0.02
	04/02/14	5519.84	27.25	21.95	22.01	5497.88	0.06
	08/05/13	5519.84	27.25	21.74	22.58	5497.93	0.84
	04/08/13	5519.84	27.25	21.05	21.95	5498.61	0.90
	08/22/17	5519.31	23.75	NPP	18.05	5501.26	NPP
	04/17/17	5519.31	23.75	NPP	17.88	5501.43	NPP
	08/15/16	5519.31	23.75	NPP	17.85	5501.46	NPP
	04/15/16	5519.31	23.75	NPP	18.03	5501.28	NPP
MW-56	08/13/15	5519.31	23.75	17.86	17.87	5501.45	0.01
11111 00	04/27/15	5519.31	23.75	18.04	18.05	5501.27	0.01
	08/18/14	5519.31	23.75	18.10	18.25	5501.18	0.15
	04/02/14	5519.31	23.75	18.26	19.10	5500.88	0.84
	08/05/13	5519.31	23.75	18.11	18.87	5501.05	0.76
	04/08/13	5519.31	23.75	18.25	19.33	5500.84	1.08
	08/22/17	5521.17	24.25	19.43	19.44	5501.74	0.01
	04/17/17	5521.17	24.25	NPP	19.37	5501.80	NPP
	08/15/16	5521.17	24.25	NPP	19.29	5501.88	NPP
	04/15/16	5521.17	24.25	NPP	19.46	5501.71	NPP
MW-57	08/13/15	5521.17	24.25	19.42	19.43	5501.75	0.01
	04/27/15	5521.17	24.25	19.42	19.43	5501.75	0.01
	08/18/14	5521.17	24.25	19.60	19.75	5501.54	0.15
	04/02/14	5521.17	24.25	19.78	20.36	5501.27	0.58
	08/05/13	5521.17	24.25	19.60	20.30	5501.43	0.70
	04/08/13	5521.17	24.25	19.66	20.35	5501.37	0.69

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5520.29	27.00	20.83	20.84	5499.46	0.01
	04/17/17	5520.29	27.00	NPP	20.78	5499.51	NPP
	08/15/16	5520.29	27.00	20.9	20.93	5499.38	0.03
	04/15/16	5520.29	27.00	20.9	21.06	5499.36	0.16
MW-58	08/13/15	5520.29	27.00	20.8	20.83	5499.48	0.03
10100-30	04/27/15	5520.29	27.00	20.97	21.75	5499.16	0.78
	08/18/14	5520.29	27.00	21.08	21.87	5499.05	0.79
	04/02/14	5520.29	27.00	21.25	22.90	5498.71	1.65
	08/05/13	5520.29	27.00	21.10	22.17	5498.98	1.07
	04/08/13	5520.29	27.00	21.25	22.35	5498.82	1.10
	08/22/17	5545.20	46.85	NPP	43.43	5501.77	NPP
	04/18/17	5545.20	44.25	NPP	43.37	5501.83	NPP
	08/16/16	5545.20	44.25	NPP	43.52	5501.68	NPP
	04/18/16	5545.20	44.25	NPP	43.36	5501.84	NPP
MW-59	08/13/15	5545.20	44.25	NPP	43.42	5501.78	NPP
10100-33	04/27/15	5545.20	44.25	NPP	43.55	5501.65	NPP
	08/18/14	5545.20	44.25	NPP	43.75	5501.45	NPP
	04/02/14	5545.20	44.25	NPP	43.73	5501.47	NPP
	08/05/13	5545.20	44.25	NPP	43.67	5501.53	NPP
	04/08/13	5545.20	44.25	NPP	43.56	5501.64	NPP
	08/22/17	5543.71	43.36	NPP	42.65	5501.06	NPP
	04/18/17	5543.71	43.33	NPP	42.58	5501.13	NPP
	08/16/16	5543.71	43.33	NPP	42.72	5500.99	NPP
	04/18/16	5543.71	43.33	NPP	42.55	5501.16	NPP
MW-60	08/13/15	5543.71	43.33	NPP	42.62	5501.09	NPP
10100-00	04/27/15	5543.71	43.33	NPP	42.76	5500.95	NPP
	08/18/14	5543.71	43.33	NPP	43.15	5500.56	NPP
	04/02/14	5543.71	43.33	NPP	43.20	5500.51	NPP
	08/05/13	5543.71	43.33	NPP	42.90	5500.81	NPP
	04/08/13	5543.71	43.33	NPP	42.85	5500.86	NPP
	08/22/17	5539.41	40.45	36.60	36.81	5502.77	0.21
	04/18/17	5539.41	40.25	36.59	36.80	5502.78	0.21
	08/16/16	5539.41	40.25	36.60	36.93	5502.74	0.33
	04/18/16	5539.41	40.25	36.60	36.86	5502.76	0.26
MW-61	08/13/15	5539.41	40.25	36.38	36.70	5502.97	0.32
	04/27/15	5539.41	40.25	36.60	36.96	5502.74	0.36
	08/18/14	5539.41	40.25	36.80	37.40	5502.49	0.60
	04/02/14	5539.41	40.25	36.88	37.86	5502.33	0.98
	08/05/13	5539.41	40.25	36.80	37.70	5502.43	0.90
	04/08/13	5539.41	40.25	36.71	37.40	5502.56	0.69

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5561.32	61.25	NPP	56.71	5504.61	NPP
	04/18/17	5561.32	58.25	NPP	56.53	5504.79	NPP
	08/16/16	5561.32	58.25	NPP	56.51	5504.81	NPP
	04/18/16	5561.32	58.25	NPP	56.57	5504.75	NPP
MW-62	08/13/15	5561.32	58.25	NPP	56.59	5504.73	NPP
10100-02	04/27/15	5561.32	58.25	NPP	56.33	5504.99	NPP
	08/18/14	5561.32	58.25	NPP	56.28	5505.04	NPP
	04/02/14	5561.32	58.25	NPP	56.05	5505.27	NPP
	08/05/13	5561.32	58.25	NPP	56.36	5504.96	NPP
	04/08/13	5561.32	58.25	NPP	55.93	5505.39	NPP
	08/22/17	5547.26	47.81	NPP	44.92	5502.34	NPP
	04/18/17	5547.26	46.00	NPP	44.87	5502.39	NPP
	08/16/16	5547.26	46.00	NPP	40.01	5507.25	NPP
	04/18/16	5547.26	46.00	NPP	44.87	5502.39	NPP
MW-63	08/13/15	5547.26	46.00	NPP	44.84	5502.42	NPP
10100-03	04/27/15	5547.26	46.00	NPP	45.03	5502.23	NPP
	08/18/14	5547.26	46.00	NPP	45.23	5502.03	NPP
	04/02/14	5547.26	46.00	NPP	45.27	5501.99	NPP
	08/05/13	5547.26	46.00	NPP	45.20	5502.06	NPP
	04/08/13	5547.26	46.00	NPP	45.09	5502.17	NPP
	08/22/17	5547.26	52.32	NPP	50.19	5497.07	NPP
	04/18/17	5547.26	52.25	NPP	44.87	5502.39	NPP
	08/16/16	5552.29	52.25	NPP	50.26	5502.03	NPP
	04/18/16	5552.29	52.25	NPP	50.11	5502.18	NPP
MW-64	08/13/15	5552.29	52.25	NPP	50.17	5502.12	NPP
10100-04	04/27/15	5552.29	52.25	NPP	50.27	5502.02	NPP
	08/18/14	5552.29	52.25	NPP	50.46	5501.83	NPP
	04/02/14	5552.29	52.25	NPP	50.45	5501.84	NPP
	08/05/13	5552.29	52.25	NPP	50.37	5501.92	NPP
	04/08/13	5552.29	52.25	NPP	50.32	5501.97	NPP
	08/22/17	5539.62	44.22	NPP	37.03	5502.59	NPP
	04/18/17	5539.62	44.25	NPP	36.98	5502.64	NPP
	08/16/16	5539.62	44.25	NPP	36.93	5502.69	NPP
	04/18/16	5539.62	44.25	NPP	36.94	5502.68	NPP
MW-65	08/13/15	5539.62	44.25	NPP	36.70	5502.92	NPP
10100 00	04/27/15	5539.62	44.25	NPP	37.50	5502.12	NPP
	08/18/14	5539.62	44.25	NPP	37.15	5502.47	NPP
	04/02/14	5539.62	44.25	NPP	37.38	5502.24	NPP
	08/05/13	5539.62	44.25	NPP	37.24	5502.38	NPP
	04/08/13	5539.62	44.25	NPP	37.13	5502.49	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5544.62	45.49	41.81	41.82	5502.81	0.01
	04/18/17	5544.62	43.25	NPP	41.77	5502.85	NPP
	08/16/16	5544.62	43.25	41.82	41.83	5502.80	0.01
	04/18/16	5544.62	43.25	NPP	41.75	5502.87	NPP
MM 00	08/13/15	5544.62	43.25	41.57	41.58	5503.05	0.01
MW-66	04/27/15	5544.62	43.25	NPP	41.81	5502.81	NPP
	08/18/14	5544.62	43.25	42.01	42.13	5502.59	0.12
	04/02/14	5544.62	43.25	42.13	42.45	5502.43	0.32
	08/05/13	5544.62	43.25	42.01	42.28	5502.56	0.27
	04/08/13	5544.62	43.25	42.04	42.20	5502.55	0.16
	08/22/17	5523.31	26.18	NPP	21.37	5501.94	NPP
	04/18/17	5523.31	25.14	NPP	21.53	5501.78	NPP
	08/16/16	5523.31	25.14	NPP	20.94	5502.37	NPP
	04/15/16	5523.31	25.14	NPP	21.25	5502.06	NPP
NAVA / C7	08/13/15	5523.31	25.14	NPP	21.02	5502.29	NPP
MW-67	04/27/15	5523.31	25.14	NPP	21.10	5502.21	NPP
	08/18/14	5523.31	25.14	NPP	21.42	5501.89	NPP
	04/02/14	5523.31	25.14	NPP	21.54	5501.77	NPP
	08/05/13	5523.31	25.14	NPP	21.24	5502.07	NPP
	04/08/13	5523.31	25.14	NPP	21.47	5501.84	NPP
	08/22/17	5517.37	21.10	NPP	16.72	5500.65	NPP
	04/18/17	5517.37	20.58	NPP	16.91	5500.46	NPP
	08/15/16	5517.37	20.58	NPP	16.20	5501.17	NPP
	04/15/16	5517.37	20.58	NPP	16.66	5500.71	NPP
MW-68	08/13/15	5517.37	20.58	NPP	16.23	5501.14	NPP
10100-00	04/27/15	5517.37	20.58	NPP	16.40	5500.97	NPP
	08/18/14	5517.37	20.58	NPP	16.50	5500.87	NPP
	04/02/14	5517.37	20.58	NPP	16.94	5500.43	NPP
	08/05/13	5517.37	20.58	NPP	16.57	5500.80	NPP
	04/08/13	5517.37	20.58	NPP	16.84	5500.53	NPP
	08/22/17	5508.51	NM	NM	NM	NM	NM
	04/17/17	5508.51	12.08	NPP	11.90	5496.61	NPP
	08/15/16	5508.51	12.08	NPP	11.89	5496.62	NPP
	04/15/16	5508.51	12.08	NPP	11.89	5496.62	NPP
MW-69	08/13/15	5508.51	12.08	NPP	NWP	NWP	NPP
10100 00	04/27/15	5508.51	12.08	NPP	11.81	5496.70	NPP
	08/18/14	5508.51	12.08	NPP	11.96	5496.55	NPP
	04/02/14	5508.51	12.08	NPP	11.96	5496.55	NPP
	08/05/13	5508.51	12.08	NPP	11.90	5496.61	NPP
	04/08/13	5508.51	12.08	NPP	11.91	5496.60	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5527.96	28.89	NPP	25.83	5502.13	NPP
	04/18/17	5527.96	26.25	NPP	25.99	5501.97	NPP
	08/15/16	5508.51	26.25	NPP	25.43	5483.08	NPP
	04/15/16	5508.51	26.25	NPP	25.63	5482.88	NPP
MW-70	08/13/15	5527.96	26.25	NPP	25.29	5502.67	NPP
	04/27/15	5527.96	26.25	NPP	25.46	5502.50	NPP
	08/18/14	5527.96	26.25	NPP	25.56	5502.40	NPP
	04/02/14	5527.96	26.25	NPP	26.05	5501.91	NPP
	08/05/13	5527.96	26.25	NPP	25.85	5502.11	NPP
	08/22/17	5529.08	37.96	NPP	29.85	5499.23	NPP
	04/17/17	5529.08	38.95	NPP	29.91	5499.17	NPP
MW-71	08/16/16	5529.08	38.95	30.14	30.26	5498.92	0.12
10100-71	04/15/16	5529.08	38.95	30.12	30.16	5498.95	0.04
	08/13/15	5529.08	38.95	30.05	30.15	5499.01	0.10
	04/28/15	5529.08	38.95	30.22	30.35	5498.83	0.13
	08/22/17	5528.54	34.91	28.33	28.37	5500.20	0.04
	04/17/17	5528.54	34.94	28.30	28.48	5500.20	0.18
MW-72	08/16/16	5528.54	34.94	28.51	28.90	5499.95	0.39
1V1 V V - 1 Z	04/15/16	5528.54	34.94	NPP	28.93	5499.61	NPP
	08/13/15	5528.54	34.94	NPP	28.66	5499.88	NPP
	04/28/15	5528.54	34.94	NPP	28.66	5499.88	NPP
	08/22/17	5528.92	36.76	NPP	29.39	5499.53	NPP
	04/17/17	5528.92	36.66	NPP	29.33	5499.59	NPP
MW-73	08/16/16	5528.92	36.66	NPP	29.71	5499.21	NPP
10100-73	04/15/16	5528.92	36.66	NPP	29.58	5499.34	NPP
	08/13/15	5528.92	36.66	NPP	29.61	5499.31	NPP
	04/28/15	5528.92	36.66	NPP	29.80	5499.12	NPP
	08/22/17	5528.92	33.91	NPP	28.75	5500.17	NPP
	04/17/17	5528.92	33.91	NPP	28.63	5500.29	NPP
MW-74	08/16/16	5528.92	33.91	NPP	28.95	5499.97	NPP
10100-74	04/15/16	5528.92	33.91	NPP	28.87	5500.05	NPP
	08/13/15	5528.92	33.91	NPP	28.79	5500.13	NPP
	04/28/15	5528.55	33.91	29.00	29.04	5499.54	0.04
	08/23/17	5528.76	32.25	NPP	28.21	5500.55	NPP
	04/17/17	5528.76	32.25	NPP	28.13	5500.63	NPP
MW-75	08/15/16	5528.76	32.25	NPP	28.37	5500.39	NPP
C Y-VVIVI	04/15/16	5528.76	32.25	NPP	28.35	5500.41	NPP
	08/13/15	5528.76	32.25	28.15	28.16	5500.61	0.01
	04/28/15	5528.76	32.25	28.40	28.41	5500.36	0.01

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5528.61	34.09	NPP	28.70	5499.91	NPP
	04/17/17	5528.61	34.16	NPP	28.54	5500.07	NPP
MW-76	08/15/16	5528.61	34.16	NPP	28.79	5499.82	NPP
10100-70	04/15/16	5528.61	34.16	NPP	28.84	5499.77	NPP
	08/13/15	5528.61	34.16	NPP	28.48	5500.13	NPP
	04/28/15	5528.61	34.16	NPP	28.97	5499.64	NPP
	08/23/17	5527.59	34.30	28.63	29.22	5498.84	0.59
	04/17/17	5527.59	34.30	28.54	29.12	5498.93	0.58
MW-77	08/15/16	5527.59	34.30	28.80	29.44	5498.66	0.64
10100-77	04/15/16	5527.59	34.30	29.05	29.56	5498.44	0.51
	08/13/15	5527.59	34.30	28.93	29.50	5498.55	0.57
	04/28/15	5527.59	34.30	28.86	29.44	5498.61	0.58
	08/23/17	5510.77	22.73	NPP	11.34	5499.43	NPP
	04/18/17	5510.77	22.73	NPP	10.53	5500.24	NPP
	08/16/16	5510.77	22.73	NPP	10.40	5500.37	NPP
	04/18/16	5510.77	22.73	NPP	11.55	5499.22	NPP
P-03	08/13/15	5510.77	22.73	NPP	10.71	5500.06	NPP
F-03	04/27/15	5510.77	22.73	NPP	11.09	5499.68	NPP
	08/18/14	5510.77	22.73	NPP	10.27	5500.50	NPP
	04/02/14	5510.77	22.73	NPP	11.27	5499.50	NPP
	08/05/13	5510.77	22.73	NPP	11.04	5499.73	NPP
	04/08/13	5510.77	22.73	NPP	11.62	5499.15	NPP
	08/13/15	5517.8	79.00	NPP	77.43	5440.37	NPP
	04/27/15	5517.8	79.00	NPP	77.30	5440.50	NPP
	08/18/14	5517.8	79.00	NPP	77.37	5440.43	NPP
BCK-1	08/05/13	5517.8	79.00	NPP	77.28	5440.52	NPP
	04/08/13	5517.8	79.00	NPP	77.15	5440.65	NPP
	08/06/12	5517.8	79.00	NPP	77.12	5440.68	NPP
	04/02/12	5517.8	79.00	NPP	77.07	5440.73	NPP
	08/13/15	5620.14	46.97	NPP	26.10	5594.04	NPP
	04/27/15	5620.14	46.97	NPP	25.57	5594.57	NPP
	08/18/14	5620.14	46.97	NPP	28.10	5592.04	NPP
BCK-2	08/05/13	5620.14	46.97	NPP	26.52	5593.62	NPP
	04/08/13	5620.14	46.97	NPP	25.58	5594.56	NPP
	08/06/12	5620.14	46.97	NPP	27.17	5592.97	NPP
	04/02/12	5620.14	46.97	NPP	25.81	5594.33	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5529.34	40.80	NPP	30.84	5498.50	NPP
	04/17/17	5529.34	40.80	NPP	30.52	5498.82	NPP
	08/16/16	5529.34	40.80	30.6	30.71	5498.72	0.11
	04/15/16	5529.34	40.80	NPP	31.31	5498.03	NPP
RW-01	08/13/15	5529.34	40.80	30.77	30.78	5498.57	0.01
KVV-U1	04/27/15	5529.34	40.80	NPP	30.83	5498.51	NPP
	08/18/14	5529.34	40.80	NPP	31.15	5498.19	NPP
	04/02/14	5529.34	40.80	NPP	31.62	5497.72	NPP
	08/05/13	5529.34	40.80	31.29	31.30	5498.05	0.01
	04/08/13	5529.34	40.80	NPP	31.57	5497.77	NPP
	08/22/17	5526.94	35.86	NPP	26.35	5500.59	NPP
	04/17/17	5526.94	35.86	NPP	26.08	5500.86	NPP
	08/15/16	5526.94	35.86	NPP	26.43	5500.51	NPP
	04/15/16	5526.94	35.86	NPP	26.35	5500.59	NPP
DW 00	08/13/15	5526.94	35.86	NPP	26.26	5500.68	NPP
RW-02	04/27/15	5526.94	35.86	NPP	26.37	5500.57	NPP
	08/18/14	5526.94	35.86	26.69	26.79	5500.23	0.10
	04/02/14	5526.94	35.86	NPP	26.67	5500.27	NPP
	08/05/13	5526.94	35.86	NPP	26.70	5500.24	NPP
	04/08/13	5526.94	35.86	NPP	26.65	5500.29	NPP
	08/22/17	5520.35	34.57	NM	NM	NM	NM
	04/17/17	5520.35	34.57	NPP	21.33	5499.02	NPP
	08/16/16	5520.35	34.57	NPP	21.34	5499.01	NPP
	04/15/16	5520.35	34.57	NPP	22.25	5498.10	NPP
DW 00	08/13/15	5520.35	34.57	NPP	22.02	5498.33	NPP
RW-03	04/27/15	5520.35	34.57	NPP	21.59	5498.76	NPP
	08/18/14	5520.35	34.57	NPP	21.53	5498.82	NPP
	04/02/14	5520.35	34.57	NPP	22.42	5497.93	NPP
	08/05/13	5520.35	34.57	NPP	22.10	5498.25	NPP
	04/08/13	5520.35	34.57	NPP	22.57	5497.78	NPP
	08/22/17	5523.21	34.04	24.55	24.58	5498.65	0.03
	04/17/17	5523.21	34.04	24.55	24.56	5498.66	0.01
	08/16/16	5523.21	34.04	24.64	24.67	5498.56	NPP
	04/15/16	5523.21	34.04	24.64	24.67	5498.56	0.03
DW 00	08/13/15	5523.21	34.04	24.64	24.70	5498.56	0.06
RW-09	04/27/15	5523.21	34.04	24.77	24.87	5498.42	0.10
	08/18/14	5523.21	34.04	24.75	25.09	5498.39	0.34
	04/02/14	5523.21	34.04	NPP	24.89	5498.32	NPP
	08/05/13	5523.21	34.04	24.61	24.95	5498.53	0.34
	04/08/13	5523.21	34.04	24.78	25.10	5498.37	0.32

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5537.5	41.94	NPP	35.07	5502.43	NPP
	04/17/17	5537.5	41.94	35.13	35.59	5502.28	0.46
	08/15/16	5537.5	41.94	34.79	34.83	5502.70	0.04
	04/15/16	5537.5	41.94	34.79	36.09	5502.45	1.30
RW-14	08/13/15	5537.5	41.94	NPP	34.92	5502.58	NPP
KVV-14	04/27/15	5537.5	41.94	NPP	34.95	5502.55	NPP
	08/18/14	5537.5	41.94	35.94	36.05	5501.54	0.11
	04/02/14	5537.5	41.94	35.49	35.50	5502.01	0.01
	08/05/13	5537.5	41.94	NPP	35.29	5502.21	NPP
	04/08/13	5537.5	41.94	NPP	35.30	5502.20	NPP
	08/22/17	5536.83	43.43	NPP	34.85	5501.98	NPP
	04/18/17	5536.83	43.43	NPP	34.90	5501.93	NPP
	08/15/16	5536.83	43.43	NPP	34.68	5502.15	NPP
	04/15/16	5536.83	43.43	NPP	34.89	5501.75	NPP
DW 45	08/13/15	5536.83	43.43	NPP	34.46	5501.71	NPP
RW-15	04/27/15	5536.83	43.43	NPP	34.75	5501.86	NPP
	08/18/14	5536.83	43.43	NPP	35.95	5500.22	NPP
	04/02/14	5536.83	43.43	NPP	35.31	5501.52	NPP
	08/05/13	5536.83	43.43	NPP	35.12	5501.71	NPP
	04/08/13	5536.83	43.43	NPP	35.11	5501.72	NPP
	08/22/17	5535.45	41.48	NPP	33.94	5501.51	NPP
	04/18/17	5535.45	41.48	NPP	33.90	5501.55	NPP
	08/15/16	5535.45	41.48	NPP	33.85	5501.60	NPP
	04/15/16	5535.45	41.48	33.87	33.90	5501.57	0.03
RW-16	08/13/15	5535.45	41.48	33.30	35.50	5501.71	2.20
KVV-10	04/27/15	5535.45	41.48	33.83	34.15	5501.56	0.32
	08/18/14	5535.45	41.48	34.21	34.49	5501.18	0.28
	04/02/14	5535.45	41.48	34.31	34.89	5501.02	0.58
	08/05/13	5535.45	41.48	34.30	34.62	5501.09	0.32
	04/08/13	5535.45	41.48	34.10	34.20	5501.33	0.10
	08/22/17	5533.84	41.89	NPP	32.85	5500.99	NPP
	04/18/17	5533.84	41.89	NPP	32.76	5501.08	NPP
	08/15/16	5533.84	41.89	NPP	32.94	5500.90	NPP
	04/15/16	5533.84	41.89	NPP	32.89	5500.95	NPP
RW-17	08/13/15	5533.84	41.89	32.67	32.68	5501.17	0.01
1744-11	04/27/15	5533.84	41.89	33.04	33.08	5500.79	0.04
	08/18/14	5533.84	41.89	NPP	33.27	5500.57	NPP
	04/02/14	5533.84	41.89	NPP	33.39	5500.45	NPP
	08/05/13	5533.84	41.89	NPP	33.32	5500.52	NPP
	04/08/13	5533.84	41.89	NPP	33.18	5500.66	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/23/17	5529.38	37.58	NPP	29.76	5499.62	NPP
	04/17/17	5529.38	37.58	NPP	29.71	5499.67	NPP
	08/16/16	5529.38	37.58	NPP	32.92	5496.46	NPP
	04/15/16	5529.38	37.58	NPP	29.84	5499.54	NPP
RW-18	08/13/15	5529.38	37.58	NPP	29.88	5499.50	NPP
KVV-10	04/27/15	5529.38	37.58	NPP	30.02	5499.36	NPP
	08/18/14	5529.38	37.58	30.32	32.02	5498.72	1.70
	04/02/14	5529.38	37.58	NPP	30.47	5498.91	NPP
	08/05/13	5529.38	37.58	NPP	31.64	5497.74	NPP
	04/08/13	5529.38	37.58	NPP	30.18	5499.20	NPP
	08/23/17	5530.51	36.64	NPP	29.86	5500.65	NPP
	04/17/17	5530.51	36.64	29.70	30.65	5500.62	0.95
	08/15/16	5530.51	36.64	NPP	31.16	5499.35	NPP
	04/15/16	5530.51	36.64	NPP	30.04	5500.47	NPP
RW-19	08/13/15	5530.51	36.64	NPP	29.96	5500.55	NPP
KVV-19	04/27/15	5530.51	36.64	NPP	30.15	5500.36	NPP
	08/18/14	5530.51	36.64	30.3	30.75	5500.12	0.45
	04/02/14	5530.51	36.64	30.5	30.85	5499.94	0.35
	08/05/13	5530.51	36.64	NPP	30.50	5500.01	NPP
	04/08/13	5530.51	36.64	NPP	30.40	5500.11	NPP
	08/22/17	5524.44	35.60	NPP	25.36	5499.08	NPP
	04/17/17	5524.44	35.60	25.37	25.39	5499.07	0.02
	08/16/16	5524.44	35.60	25.51	25.74	5498.88	0.23
	04/15/16	5524.44	35.60	25.5	25.73	5498.89	0.23
RW-22	08/13/15	5524.44	35.60	25.5	25.55	5498.93	0.05
KVV-22	04/27/15	5524.44	35.60	25.7	25.80	5498.72	0.10
	08/18/14	5524.44	35.60	25.73	26.17	5498.62	0.44
	04/02/14	5524.44	35.60	25.87	26.07	5498.53	0.20
	08/05/13	5524.44	35.60	NPP	25.62	5498.82	NPP
	04/08/13	5524.44	35.60	NPP	25.80	5498.64	NPP
	08/22/17	5521.38	35.53	NPP	23.09	5498.29	NPP
	04/17/17	5521.38	35.53	23.06	23.15	5498.30	0.09
	08/16/16	5521.38	35.53	22.81	22.93	5498.55	0.12
	04/15/16	5521.38	35.53	23.13	23.39	5498.20	0.26
DW 00	08/13/15	5521.38	35.53	23.8	23.82	5497.58	0.02
RW-23	04/27/15	5521.38	35.53	NPP	23.70	5497.68	NPP
	08/18/14	5521.38	35.53	23.05	23.08	5498.32	0.03
	04/02/14	5521.38	35.53	NPP	23.26	5498.12	NPP
	08/05/13	5521.38	35.53	NPP	23.15	5498.23	NPP
	04/08/13	5521.38	35.53	NPP	23.30	5498.08	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/22/17	5527.93	36.99	29.09	29.79	5498.70	0.70
	04/18/17	5527.93	36.99	28.96	30.07	5498.75	1.11
	08/16/16	5527.93	36.99	29.1	29.36	5498.78	0.26
	04/15/16	5527.93	36.99	29.05	29.06	5498.88	0.01
D) 4/ 00	08/13/15	5527.93	36.99	26.92	26.93	5501.01	0.01
RW-28	04/27/15	5527.93	36.99	29.18	29.76	5498.63	0.58
	08/18/14	5527.93	36.99	29.56	30.02	5498.28	0.46
	04/02/14	5527.93	36.99	29.55	30.45	5498.20	0.90
	08/05/13	5527.93	36.99	29.28	30.40	5498.43	1.12
	04/08/13	5527.93	36.99	29.35	30.50	5498.35	1.15
	08/23/17	5527.48	31.95	NPP	27.00	5500.48	NPP
	04/17/17	5527.48	32.02	NPP	26.96	5500.52	NPP
	08/15/16	5527.48	32.02	NPP	27.10	5500.38	NPP
	04/15/16	5527.48	32.02	NPP	27.03	5500.45	NPP
	08/13/15	5527.48	32.02	26.92	26.93	5500.56	0.01
RW-42	04/27/15	5527.48	32.02	27.15	27.18	5500.32	0.03
	08/18/14	5527.48	32.02	27.36	27.70	5500.05	0.34
	04/02/14	5527.48	32.02	27.59	28.00	5499.81	0.41
	08/05/13	5527.48	32.02	27.40	27.55	5500.05	0.15
	04/08/13	5527.48	32.02	27.37	27.79	5500.03	0.42
	08/22/17	5520.02	24.20	NPP	20.40	5499.62	NPP
	04/17/17	5520.02	24.03	NPP	20.45	5499.57	NPP
	08/15/16	5520.02	24.03	NPP	20.44	5499.58	NPP
	04/15/16	5520.02	24.03	NPP	20.51	5499.51	NPP
	08/13/15	5520.02	24.03	20.3	20.33	5499.71	0.03
RW-43	04/27/15	5520.02	24.03	20.53	20.75	5499.45	0.22
	08/18/14	5520.02	24.03	21.8	22.00	5498.18	0.20
	04/02/14	5520.02	24.03	21.76	22.25	5498.16	0.49
	08/05/13	5520.02	24.03	21.75	21.91	5498.24	0.16
	04/08/13	5520.02	24.03	21.87	22.03	5498.12	0.16
	08/23/17	5506.62	12.03	NPP	11.91	5494.71	NPP
	04/18/17	5506.62	12.26	NPP	11.66	5494.96	NPP
	08/16/16	5506.62	12.26	NPP	11.14	5495.48	NPP
	04/15/16	5506.62	12.26	NPP	11.78	5494.84	NPP
OW 0+60	08/13/15	5506.62	12.26	NPP	10.77	5495.85	NPP
O V V U T O U	04/21/15	5506.62	12.26	NPP	11.24	5495.38	NPP
	08/18/14	5506.62	12.26	NPP	11.01	5495.61	NPP
	04/02/14	5506.62	12.26	NPP	11.91	5494.71	NPP
	08/05/13	5506.62	12.26	NPP	11.85	5494.77	NPP
	04/08/13	5506.62	12.26	NPP	12.07	5494.55	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/23/17	5508.03	14.37	NPP	14.05	5493.98	NPP
	04/18/17	5508.03	14.36	NPP	13.74	5494.29	NPP
	08/16/16	5508.03	14.36	NPP	13.06	5494.97	NPP
	04/15/16	5508.03	14.36	NPP	13.72	5494.31	NPP
OW 1+50	08/13/15	5508.03	14.36	NPP	12.62	5495.41	NPP
OW 1+30	04/21/15	5508.03	14.36	NPP	13.24	5494.79	NPP
	08/18/14	5508.03	14.36	NPP	13.17	5494.86	NPP
	04/02/14	5508.03	14.36	NPP	13.98	5494.05	NPP
	08/05/13	5508.03	14.36	14.02	14.03	5494.01	0.01
	04/08/13	5508.03	14.36	NPP	14.05	5493.98	NPP
	08/23/17	5507.31	15.08	NPP	13.56	5493.75	NPP
	04/17/17	5507.31	15.06	NPP	13.14	5494.17	NPP
	08/15/16	5507.31	15.06	NPP	12.83	5494.48	NPP
	04/15/16	5507.31	15.06	NPP	13.15	5494.16	NPP
0144.0 - 0.5	08/13/15	5507.31	15.06	NPP	12.31	5495.00	NPP
OW 3+85	04/21/15	5507.31	15.06	NPP	12.80	5494.51	NPP
	08/18/14	5507.31	15.06	NPP	12.95	5494.36	NPP
	04/02/14	5507.31	15.06	NPP	13.49	5493.82	NPP
	08/05/13	5507.31	15.06	13.56	13.57	5493.75	0.01
	04/08/13	5507.31	15.06	NPP	13.40	5493.91	NPP
	08/23/17	5507.59	13.77	NPP	13.41	5494.18	NPP
	04/17/17	5507.59	13.67	NPP	13.42	5494.17	NPP
	08/15/16	5507.59	13.67	NPP	13.29	5494.30	NPP
	04/15/16	5507.59	13.67	NPP	13.43	5494.16	NPP
0144 = =0	08/13/15	5507.59	13.67	NPP	13.32	5494.27	NPP
OW 5+50	04/21/15	5507.59	13.67	NPP	13.28	5494.31	NPP
	08/18/14	5507.59	13.67	NPP	13.50	5494.09	NPP
	04/02/14	5507.59	13.67	NPP	13.64	5493.95	NPP
	08/05/13	5507.59	13.67	NPP	13.51	5494.08	NPP
	04/08/13	5507.59	13.67	NPP	13.67	5493.92	NPP
	08/24/17	5504.78	16.48	NPP	NWP	NWP	NPP
	04/17/17	5504.78	14.67	NPP	NWP	NWP	NPP
	08/15/16	5504.78	14.67	NPP	NWP	NWP	NPP
	04/15/16	5504.78	14.67	NPP	NWP	NWP	NPP
.	08/13/15	5504.78	14.67	NPP	NWP	NWP	NPP
OW 6+70	04/21/15	5504.78	14.67	NPP	NWP	NWP	NPP
	08/18/14	5504.78	14.67	NPP	NWP	NWP	NPP
	04/02/14	5504.78	14.67	NPP	NWP	NWP	NPP
	08/05/13	5504.78	14.67	NPP	NWP	NWP	NPP
	04/08/13	5504.78	14.67	NPP	NWP	NWP	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5506.53	16.01	NPP	15.25	5491.28	NPP
	04/17/17	5506.53	15.99	NPP	13.99	5492.54	NPP
	08/15/16	5504.78	15.99	NPP	14.69	5490.09	NPP
	04/15/16	5504.78	15.99	NPP	NWP	NWP	NPP
0)4/ 0 - 40	08/13/15	5506.53	15.99	NPP	NWP	NWP	NPP
OW 8+10	04/21/15	5506.53	15.99	NPP	NWP	NWP	NPP
	08/18/14	5506.53	15.99	NPP	NWP	NWP	NPP
	04/02/14	5506.53	15.99	NPP	NWP	NWP	NPP
	08/05/13	5506.53	15.99	NPP	NWP	NWP	NPP
	04/08/13	5506.53	15.99	NPP	NWP	NWP	NPP
	06/24/17	5506.70	16.59	NPP	12.53	5494.17	NPP
	04/17/17	5506.70	16.59	NPP	12.56	5494.14	NPP
	08/15/16	5506.70	16.59	NPP	12.53	5494.17	NPP
	04/15/16	5506.70	16.59	NPP	12.65	5494.05	NPP
0\\\ 44.45	08/13/15	5506.70	16.59	NPP	12.47	5494.23	NPP
OW 11+15	04/21/15	5506.70	16.59	NPP	12.59	5494.11	NPP
	08/18/14	5506.70	16.59	NPP	12.55	5494.15	NPP
	04/02/14	5506.70	16.59	12.74	12.75	5493.96	0.01
	08/05/13	5506.70	16.59	12.56	12.57	5494.14	0.01
	04/08/13	5506.70	16.59	12.71	12.72	5493.99	0.01
	08/24/17	5508.14	12.96	NPP	NWP	NWP	NPP
	04/17/17	5508.14	12.96	NPP	NWP	NWP	NPP
	08/15/16	5508.14	12.96	NPP	NWP	NWP	NPP
	04/15/16	5508.14	12.96	NPP	NWP	NWP	NPP
0\\\ 44.40	08/13/15	5508.14	12.96	NPP	NWP	NWP	NPP
OW 14+10	04/21/15	5508.14	12.96	NPP	NWP	NWP	NPP
	08/18/14	5508.14	12.96	NPP	NWP	NWP	NPP
	04/02/14	5508.14	12.96	NPP	NWP	NWP	NPP
	08/05/13	5508.14	12.96	NPP	NWP	NWP	NPP
	04/08/13	5508.14	12.96	NPP	NWP	NWP	NPP
	08/24/17	5508.43	15.25	NPP	13.05	5495.38	NPP
	04/17/17	5508.43	15.21	NPP	12.73	5495.70	NPP
	08/15/16	5508.43	15.21	NPP	13.04	5495.39	NPP
	04/15/16	5508.43	15.21	NPP	13.06	5495.37	NPP
OW 16+60	08/13/15	5508.43	15.21	NPP	12.78	5495.65	NPP
OW 10+00	04/21/15	5508.43	15.21	NPP	12.78	5495.65	NPP
	08/18/14	5508.43	15.21	NPP	13.25	5495.18	NPP
	04/02/14	5508.43	15.21	NPP	13.10	5495.33	NPP
	08/05/13	5508.43	15.21	NPP	13.95	5494.48	NPP
	04/08/13	5508.43	15.21	NPP	13.16	5495.27	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5508.03	13.00	NPP	12.88	5495.15	NPP
	04/17/17	5508.03	13.00	NPP	11.85	5496.18	NPP
	08/15/16	5508.03	13.00	NPP	12.95	5495.08	NPP
	04/15/16	5508.03	13.00	NPP	12.69	5495.34	NPP
OW 19+50	08/13/15	5508.03	13.00	NPP	NWP	NWP	NPP
OW 19+30	04/21/15	5508.03	13.00	NPP	12.92	5495.11	NPP
	08/18/14	5508.03	13.00	NPP	NWP	NWP	NPP
	04/02/14	5508.03	13.00	NPP	NWP	NWP	NPP
	08/05/13	5508.03	13.00	NPP	NWP	NWP	NPP
	04/08/13	5508.03	13.00	NPP	NWP	NWP	NPP
	08/24/17	5506.91	14.15	NPP	12.91	5495.03	NPP
	04/17/17	5506.91	14.16	NPP	10.59	5496.03	NPP
	08/15/16	5506.91	14.16	NPP	10.88	5496.03	NPP
	04/15/16	5506.91	14.16	NPP	12.05	5494.86	NPP
OW 22+00	08/13/15	5506.91	14.16	NPP	10.80	5496.11	NPP
OW 22+00	04/21/15	5506.91	14.16	NPP	11.37	5495.54	NPP
	08/18/14	5506.91	14.16	NPP	12.74	5494.17	NPP
	04/02/14	5506.91	14.16	NPP	11.73	5495.18	NPP
	08/05/13	5506.91	14.16	NPP	13.04	5493.87	NPP
	04/08/13	5506.91	14.16	NPP	12.17	5494.74	NPP
	08/24/17	5514.12	18.34	NPP	16.65	5497.47	NPP
	04/17/17	5514.12	18.34	NPP	16.46	5497.66	NPP
	08/15/16	5514.12	18.34	NPP	16.37	5497.75	NPP
	04/15/16	5514.12	18.34	NPP	16.48	5497.64	NPP
OW 23+10	08/13/15	5514.12	18.34	NPP	16.46	5497.66	NPP
OW 25+10	04/21/15	5514.12	18.34	NPP	16.40	5497.72	NPP
	08/18/14	5514.12	18.34	NPP	16.50	5497.62	NPP
	04/02/14	5514.12	18.34	NPP	16.42	5497.70	NPP
	08/05/13	5514.12	18.34	NPP	16.46	5497.66	NPP
	04/08/13	5514.12	18.34	NPP	16.38	5490.53	NPP
	08/24/17	5515.18	18.01	NPP	17.47	5497.71	NPP
	04/17/17	5515.18	18.01	NPP	17.37	5497.81	NPP
	08/15/16	5515.18	18.01	NPP	17.25	5497.93	NPP
	04/15/16	5515.18	18.01	NPP	17.34	5497.84	NPP
OW 33 100	08/13/15	5515.18	18.01	NPP	17.30	5497.88	NPP
OW 23+90	04/21/15	5515.18	18.01	NPP	17.28	5497.90	NPP
	08/18/14	5515.18	18.01	NPP	17.33	5497.85	NPP
	04/02/14	5515.18	18.01	NPP	17.26	5497.92	NPP
	08/05/13	5515.18	18.01	NPP	17.29	5497.89	NPP
	04/08/13	5515.18	18.01	NPP	17.22	5497.96	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5509.00	14.00	NPP	11.17	5497.83	NPP
	04/17/17	5509.00	13.98	NPP	10.97	5498.03	NPP
	08/15/16	5509.00	13.98	NPP	10.90	5498.10	NPP
	04/15/16	5509.00	13.98	NPP	10.97	5498.03	NPP
OW 25+70	08/13/15	5509.00	13.98	NPP	10.97	5498.03	NPP
OW 25+70	04/21/15	5509.00	13.98	NPP	10.92	5498.08	NPP
	08/18/14	5509.00	13.98	NPP	10.96	5498.04	NPP
	04/02/14	5509.00	13.98	NPP	10.95	5498.05	NPP
	08/05/13	5509.00	13.98	NPP	10.93	5498.07	NPP
	04/08/13	5509.00	13.98	NPP	10.86	5498.14	NPP
	08/22/17	5506.68	14.09	NPP	8.49	5498.19	NPP
	04/18/17	5506.68	14.09	NPP	8.00	5498.68	NPP
	08/16/16	5506.68	14.09	NPP	7.99	5498.69	NPP
	04/15/16	5506.68	14.09	NPP	8.88	5497.80	NPP
CW 0+60	08/13/15	5506.68	14.09	NPP	8.23	5498.45	NPP
CVV 0+60	04/21/15	5506.68	14.09	NPP	8.24	5498.44	NPP
	08/18/14	5506.68	14.09	NPP	8.19	5498.49	NPP
	04/02/14	5506.68	14.09	NPP	9.01	5497.67	NPP
	08/05/13	5506.68	14.09	NPP	8.53	5498.15	NPP
	04/08/13	5506.68	14.09	NPP	9.12	5497.56	NPP
	08/23/17	5505.13	13.38	NPP	6.80	5498.33	NPP
	04/18/17	5505.13	13.74	NPP	6.51	5498.62	NPP
	08/16/16	5505.13	13.74	NPP	6.59	5498.54	NPP
	04/15/16	5505.13	13.74	NPP	7.22	5497.91	NPP
C) A . F O	08/13/15	5505.13	13.74	NPP	6.84	5498.29	NPP
CW 1+50	04/21/15	5505.13	13.74	NPP	6.77	5498.36	NPP
	08/18/14	5505.13	13.74	NPP	6.92	5498.21	NPP
	04/02/14	5505.13	13.74	NPP	7.47	5497.66	NPP
	08/05/13	5505.13	13.74	NPP	7.13	5498.00	NPP
	04/08/13	5505.13	13.74	NPP	7.49	5497.64	NPP
	08/23/17	5503.87	13.11	NPP	5.60	5498.27	NPP
	04/17/17	5503.87	13.11	NPP	5.48	5498.39	NPP
	08/15/16	5503.87	13.11	NPP	5.52	5498.35	NPP
	04/15/16	5503.87	13.11	NPP	5.91	5497.96	NPP
CWA	08/13/15	5503.87	13.11	NPP	5.70	5498.17	NPP
CW 3+85	04/21/15	5503.87	13.11	NPP	5.60	5498.27	NPP
	08/18/14	5503.87	13.11	NPP	5.85	5498.02	NPP
	04/02/14	5503.87	13.11	NPP	6.14	5497.73	NPP
	08/05/13	5503.87	13.11	NPP	5.98	5497.89	NPP
	04/08/13	5503.87	13.11	NPP	6.17	5497.70	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/23/17	5503.76	12.27	NPP	6.45	5497.31	NPP
	04/17/17	5503.76	12.27	NPP	6.36	5497.40	NPP
	08/15/16	5503.76	12.27	NPP	6.30	5497.46	NPP
	04/15/16	5503.76	12.27	NPP	6.39	5497.37	NPP
CW 5+50	08/13/15	5503.76	12.27	NPP	6.38	5497.38	NPP
CW 5+30	04/21/15	5503.76	12.27	NPP	6.35	5497.41	NPP
	08/18/14	5503.76	12.27	NPP	6.58	5497.18	NPP
	04/02/14	5503.76	12.27	NPP	6.63	5497.13	NPP
	08/05/13	5503.76	12.27	NPP	6.50	5497.26	NPP
	04/08/13	5503.76	12.27	NPP	6.63	5497.13	NPP
	08/24/17	5503.84	11.5	NPP	6.94	5496.90	NPP
	04/17/17	5503.84	11.45	NPP	6.61	5497.23	NPP
	08/15/16	5503.84	11.45	NPP	6.54	5497.30	NPP
	04/15/16	5503.84	11.45	NPP	6.61	5497.23	NPP
CM C . 70	08/13/15	5503.84	11.45	NPP	6.38	5497.46	NPP
CW 6+70	04/21/15	5503.84	11.45	NPP	6.63	5497.21	NPP
	08/18/14	5503.84	11.45	NPP	6.70	5497.14	NPP
	04/02/14	5503.84	11.45	NPP	6.96	5496.88	NPP
	08/05/13	5503.84	11.45	NPP	6.87	5496.97	NPP
	04/08/13	5503.84	11.45	NPP	6.93	5496.83	NPP
	08/24/17	5504.02	11.35	NPP	7.69	5496.33	NPP
	04/17/17	5504.02	11.63	NPP	7.45	5496.57	NPP
	08/15/16	5504.02	11.63	NPP	7.35	5496.67	NPP
	04/15/16	5504.02	11.63	NPP	7.56	5496.46	NPP
014/0.40	08/13/15	5504.02	11.63	NPP	7.48	5496.54	NPP
CW 8+10	04/21/15	5504.02	11.63	NPP	7.43	5496.59	NPP
	08/18/14	5504.02	11.63	NPP	7.43	5496.59	NPP
	04/02/14	5504.02	11.63	NPP	7.80	5496.22	NPP
	08/05/13	5504.02	11.63	NPP	7.60	5496.42	NPP
	04/08/13	5504.02	11.63	NPP	7.80	5496.22	NPP
	08/24/17	5503.80	12.60	NPP	7.92	5495.88	NPP
	04/17/17	5503.80	12.60	NPP	7.67	5496.13	NPP
	08/15/16	5503.80	12.60	NPP	7.51	5496.29	NPP
	04/15/16	5503.80	12.60	NPP	7.70	5496.10	NPP
O.W. 5 . 1 =	08/13/15	5503.80	12.60	NPP	7.65	5496.15	NPP
CW 8+45	04/21/15	5503.80	12.60	NPP	7.68	5496.12	NPP
	08/18/14	5503.80	12.60	NPP	7.58	5496.22	NPP
	04/02/14	5503.80	12.60	NPP	7.94	5495.86	NPP
	08/05/13	5503.80	12.60	NPP	7.74	5496.06	NPP
	04/08/13	5503.80	12.60	NPP	7.91	5495.89	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5503.95	12.40	5.91	6.13	5498.00	0.22
	04/17/17	5503.95	12.27	5.81	6.23	5498.06	0.42
	08/15/16	5503.95	12.27	NPP	5.99	5497.96	NPP
	04/15/16	5503.95	12.27	5.91	6.36	5497.95	0.45
CW 11+15	08/13/15	5503.95	12.27	5.87	6.85	5497.88	0.98
CW 11+15	04/21/15	5503.95	12.27	5.97	7.05	5497.76	1.08
	08/18/14	5503.95	12.27	5.99	7.93	5497.57	1.94
	04/02/14	5503.95	12.27	6.00	7.95	5497.56	1.95
	08/05/13	5503.95	12.27	NPP	6.31	5497.64	NPP
	04/08/13	5503.95	12.27	NPP	6.22	5497.73	NPP
	08/24/17	5504.39	13.05	NPP	6.50	5497.89	NPP
	04/17/17	5504.39	13.05	NPP	6.39	5498.00	NPP
	08/15/16	5504.39	13.05	NPP	6.29	5498.10	NPP
	04/15/16	5504.39	13.05	NPP	6.25	5498.14	NPP
CW 14+10	08/13/15	5504.39	13.05	NPP	6.44	5497.95	NPP
CVV 14+10	04/21/15	5504.39	13.05	NPP	6.38	5498.01	NPP
	08/18/14	5504.39	13.05	NPP	6.25	5498.14	NPP
	04/02/14	5504.39	13.05	NPP	6.45	5497.94	NPP
	08/05/13	5504.39	13.05	NPP	6.24	5498.15	NPP
	04/08/13	5504.39	13.05	NPP	6.47	5497.92	NPP
	05/24/17	5504.32	12.86	NPP	6.24	5498.08	NPP
	04/17/17	5504.32	12.86	NPP	6.20	5498.12	NPP
	08/15/16	5504.32	12.86	NPP	6.09	5498.23	NPP
	04/15/16	5504.32	12.86	NPP	6.20	5498.12	NPP
CW 16+60	08/13/15	5504.32	12.86	NPP	6.23	5498.09	NPP
CW 10+00	04/21/15	5504.32	12.86	NPP	6.18	5498.14	NPP
	08/18/14	5504.32	12.86	NPP	6.11	5498.21	NPP
	04/02/14	5504.32	12.86	NPP	6.29	5498.03	NPP
	08/05/13	5504.32	12.86	NPP	5.98	5498.34	NPP
	04/08/13	5504.32	12.86	NPP	6.34	5497.98	NPP
	08/24/17	5504.52	9.99	NPP	6.25	5498.27	NPP
	04/17/17	5504.52	9.99	NPP	6.18	5498.34	NPP
	08/15/16	5504.52	9.99	NPP	6.18	5498.34	NPP
	04/15/16	5504.52	9.99	NPP	6.16	5498.36	NPP
CW 10.50	08/13/15	5504.52	9.99	NPP	6.23	5498.29	NPP
CW 19+50	04/21/15	5504.52	9.99	NPP	6.24	5498.28	NPP
	08/18/14	5504.52	9.99	NPP	6.21	5498.31	NPP
	04/02/14	5504.52	9.99	NPP	6.36	5498.16	NPP
	08/05/13	5504.52	9.99	NPP	6.20	5498.32	NPP
	04/08/13	5504.52	9.99	NPP	6.39	5498.13	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)	
	08/24/17	5508.04	12.34	NPP	8.81	5499.23	NPP	
	04/17/17	5508.04	12.34	NPP	8.71	5499.33	NPP	
	08/15/16	5508.04	12.34	NPP	8.57	5499.47	NPP	
	04/15/16	5508.04	12.34	NPP	8.73	5499.31	NPP	
CW 22+00	08/13/15	5508.04	12.34	NPP	8.56	5499.48	NPP	
	04/21/15	5508.04	12.34	NPP	8.69	5499.35	NPP	
	08/18/14	5508.04	12.34	NPP	8.73	5499.31	NPP	
	04/02/14	5508.04	12.34	NPP	9.01	5499.03	NPP	
	08/05/13	5508.04	12.34	NPP	8.84	5499.20	NPP	
	04/08/13	5508.04	12.34	NPP	8.93	5499.11	NPP	
	08/24/17	5510.04	14.65	NPP	7.77	5502.27	NPP	
	04/17/17	5510.04	14.65	NPP	10.32	5499.72	NPP	
	08/15/16	5508.04	14.65	NPP	10.14	5497.90	NPP	
	04/15/16	5508.04	14.65	NPP	10.31	5497.73	NPP	
	08/13/15	5510.04	14.65	NPP	10.10	5499.94	NPP	
CW 23+10	04/21/15	5510.04	14.65	NPP	10.28	5499.76	NPP	
	08/18/14	5510.04	14.65	NPP	10.32	5499.72	NPP	
	04/02/14	5510.04	14.65	NPP	10.63	5499.41	NPP	
	08/05/13	5510.04	14.65	NPP	10.45	5499.59	NPP	
	04/08/13	5510.04	14.65	NPP	10.54	5499.50	NPP	
	08/24/17	5507.32	11.72	NPP	8.10	5499.22	NPP	
	04/17/17	5507.32	11.72	NPP	7.77	5499.55	NPP	
	08/15/16	5507.32	11.72	NPP	7.61	5499.71	NPP	
	04/15/16	5507.32	11.72	NPP	7.82	5499.50	NPP	
014/00 00	08/13/15	5507.32	11.72	NPP	7.54	5499.78	NPP	
CW 23+90	04/21/15	5507.32	11.72	NPP	7.74	5499.58	NPP	
	08/18/14	5507.32	11.72	NPP	7.75	5499.57	NPP	
	04/02/14	5507.32	11.72	NPP	8.05	5499.27	NPP	
	08/05/13	5507.32	11.72	NPP	7.88	5499.44	NPP	
	04/08/13	5507.32	11.72	NPP	7.99	5499.33	NPP	
	08/24/17	5505.90	12.25	NPP	7.25	5498.65	NPP	
	04/17/17	5505.90	12.25	NPP	7.21	5498.69	NPP	
	08/15/16	5505.90	12.25	NPP	7.15	5498.75	NPP	
	04/15/16	5505.90	12.25	NPP	8.10	5497.80	NPP	
CW 05 : 05	08/13/15	5505.90	12.25		Active Recovery Well			
CW 25+95	04/21/15	5505.90	12.25		Active Recovery Well			
	08/18/14	5505.90	12.25		Active Reco	overy Well		
	04/02/14	5505.90	12.25		Active Reco	overy Well		
	08/05/13	5505.90	12.25		Active Reco	overy Well		
	04/08/13	5505.90	12.25		Active Reco	overy Well		

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5508.27	53.08	NPP	52.58	5455.69	NPP
	04/17/17	5508.27	53.08	NPP	52.58	5455.69	NPP
	08/15/16	5508.27	53.08	NPP	52.61	5455.66	NPP
	04/15/16	5508.27	53.08	NPP	52.58	5455.69	NPP
	08/12/15	5508.27	53.08	NPP	52.62	5455.65	NPP
*SW1-0206	05/19/15	5508.27	53.08	NPP	52.63	5455.64	NPP
3 VV 1-0200	04/27/15	5508.27	53.08	NPP	52.61	5455.66	NPP
	03/05/15	5508.27	53.08	NPP	52.61	5455.66	NPP
	12/11/14	5508.27	53.08	NPP	52.65	5455.62	NPP
	07/29/14	5508.27	53.08	NPP	52.63	5455.64	NPP
	08/05/13	5508.27	53.08	NPP	52.58	5455.69	NPP
	04/24/13	5508.27	53.08	NPP	52.58	5455.69	NPP
	08/24/17	5508.27	27.69	NPP	24.80	5483.47	NPP
	04/17/17	5508.27	27.69	NPP	24.90	5483.37	NPP
	08/15/16	5508.27	27.69	NPP	25.43	5482.84	NPP
	04/15/16	5508.27	27.69	NPP	25.38	5482.89	NPP
	08/12/15	5507.75	27.69	NPP	25.80	5481.95	NPP
*SW2-0206	05/19/15	5507.75	27.69	NPP	25.74	5482.01	NPP
	04/27/15	5507.75	27.69	NPP	25.69	5482.06	NPP
	03/05/15	5507.75	27.69	NPP	25.48	5482.27	NPP
	12/11/14	5507.75	27.69	NPP	25.41	5482.34	NPP
	07/29/14	5507.75	27.69	NPP	25.89	5481.86	NPP
	08/05/13	5507.75	27.69	NPP	25.62	5482.13	NPP
	04/24/13	5507.75	27.69	NPP	25.27	5482.48	NPP
	08/24/17	5505.29	52.56	NPP	26.42	5478.87	NPP
	04/17/17	5505.29	52.56	NPP	26.55	5478.74	NPP
	08/15/16	5505.29	52.56	NPP	26.36	5478.93	NPP
	04/15/16	5505.29	52.56	NPP	26.56	5478.73	NPP
	08/12/15	5505.29	52.56	NPP	26.53	5478.76	NPP
*SW3-0206	05/19/15	5505.29	52.56	NPP	26.62	5478.67	NPP
3110 0200	04/27/15	5505.29	52.56	NPP	26.64	5478.65	NPP
	03/05/15	5505.29	52.56	NPP	26.53	5478.76	NPP
	12/11/14	5505.29	52.56	NPP	26.10	5479.19	NPP
	07/29/14	5505.29	52.56	NPP	26.82	5478.47	NPP
	08/05/13	5505.29	52.56	NPP	26.69	5478.60	NPP
	04/24/13	5505.29	52.56	NPP	26.70	5478.59	NPP

TABLE 1
Fluid Level Measurements Summary
2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5504.45	42.34	NPP	33.09	5471.36	NPP
	04/17/17	5504.45	42.34	NPP	32.72	5471.73	NPP
	08/15/16	5504.45	42.34	NPP	33.08	5471.37	NPP
	04/15/16	5504.45	42.34	NPP	32.71	5471.74	NPP
	08/12/15	5504.45	42.34	NPP	33.08	5471.37	NPP
*0\\\\\	05/19/15	5504.45	42.34	NPP	32.81	5471.64	NPP
3774-0200	04/27/15	5504.45	42.34	NPP	32.78	5471.67	NPP
	03/05/15	5504.45	42.34	NPP	32.75	5471.70	NPP
	12/11/14	5504.45	42.34	NPP	32.98	5471.47	NPP
	07/29/14	5504.45	42.34	NPP	33.05	5471.40	NPP
	08/05/13	5504.45	42.34	NPP	33.01	5471.44	NPP
	04/24/13	5504.45	42.34	NPP	32.60	5471.85	NPP
	08/24/17	5514.34	52.24	NPP	34.04	5480.30	NPP
	04/17/17	5514.34	52.24	NPP	33.29	5481.05	NPP
	08/15/16	5514.34	52.24	NPP	34.03	5480.31	NPP
	04/15/16	5514.34	52.24	NPP	33.93	5480.41	NPP
	08/12/15	5514.34	52.24	NPP	34.20	5480.14	NPP
*SW5-0206	05/19/15	5514.34	52.24	NPP	33.82	5480.52	NPP
3773-0200	04/27/15	5514.34	52.24	NPP	33.73	5480.61	NPP
	03/05/15	5514.34	52.24	NPP	33.78	5480.56	NPP
	12/11/14	5514.34	52.24	NPP	33.75	5480.59	NPP
	07/29/14	5514.34	52.24	NPP	33.75	5480.59	NPP
	08/05/13	5514.34	52.24	NPP	34.93	5479.41	NPP
	04/24/13	5514.34	52.24	NPP	34.27	5480.07	NPP
	08/24/17	5519.72	47.43	NPP	40.92	5478.80	NPP
	04/17/17	5519.72	47.41	NPP	39.06	5480.66	NPP
	08/15/16	5519.72	47.41	NPP	NWP	NWP	NPP
	04/15/16	5519.72	47.41	NPP	39.40	5480.32	NPP
	08/12/15	5519.72	47.41	NPP	41.65	5478.07	NPP
*0\4\0	05/19/15	5519.72	47.41	NPP	40.88	5478.84	NPP
*SW6-0206	04/27/15	5519.72	47.41	NPP	40.74	5478.98	NPP
	03/05/15	5519.72	47.41	NPP	40.23	5479.49	NPP
	12/11/14	5519.72	47.41	NPP	40.96	5478.76	NPP
	07/29/14	5519.72	47.41	NPP	41.55	5478.17	NPP
	08/05/13	5519.72	47.41	NPP	42.00	5477.72	NPP
	04/24/13	5519.72	47.41	NPP	40.91	5478.81	NPP

TABLE 1 Fluid Level Measurements Summary 2017 Groundwater Remediation Monitoring Annual Report

Well ID	Date	Measuring Point Elevation (ft amsl)	Total Well Depth (ft below TOC)	Depth To Product (ft below TOC)	Depth To Water (ft below TOC)	Corrected Groundwater Elevation (ft amsl)	SPH Thickness (ft)
	08/24/17	5517.63	32.00	NPP	20.71	5496.92	NPP
	04/17/17	5517.63	32.95	NPP	20.83	5496.80	NPP
	08/15/16	5517.63	32.95	NPP	20.76	5496.87	NPP
	04/15/16	5517.63	32.95	NPP	20.48	5497.15	NPP
	08/12/15	5517.63	32.95	NPP	20.84	5496.79	NPP
	05/19/15	5517.63	32.95	NPP	20.67	5496.96	NPP
*SW7-0206	04/27/15	5517.63	32.95	NPP	20.73	5496.90	NPP
	03/05/15	5517.63	32.95	NPP	20.39	5497.24	NPP
	12/11/14	5517.63	32.95	NPP	20.00	5497.63	NPP
	07/29/14	5517.63	32.95	NPP	20.82	5496.81	NPP
	04/02/14	5517.63	32.95	NPP	20.15	5497.48	NPP
	08/05/13	5517.63	32.95	NPP	20.80	5496.83	NPP
	04/24/13	5517.63	32.95	NPP	20.67	5496.96	NPP

Notes:

*SW = Wells sampled during significant rain events only

ft = feet

amsl = above mean seal level
NPP = No Product Present
NWP = No Water Present

SPH = Separate Phase Hydrocarbon

NM = Not Measured

TABLE 2 Groundwater field Parameter Summary 2017 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
Cross-Gradient \	Wells	•					
	08/25/17	765	496	2.08	126.1	7.35	64.57
	04/20/17	827	538	3.01	233.4	7.99	57.65
	08/19/16	685	444	3.81	57.4	8.09	62.83
	04/21/16	863	561	3.57	32.3	8.41	56.24
MW-1	08/18/15	852	555	2.10	47.4	7.74	63.74
10100-1	04/20/15	992	646	4.80	86.9	7.62	55.40
	08/20/14	800	520	3.35	-2.2	7.11	63.38
	04/12/14	843	546	3.37	95.1	7.02	54.14
	08/13/13	717	466	4.13	61.6	7.42	61.58
	04/24/13	725	470	3.02	153.4	7.12	53.00
	08/25/17	3528	2294	1.81	114.7	7.10	62.03
	04/20/17	3561	2314	1.86	195.6	7.45	63.41
	08/19/16	3560	2314	2.30	84.7	7.84	62.51
	04/21/16	3698	2404	1.66	0.0	7.46	63.61
MW-13	08/18/15	3986	2591	1.99	28.8	7.28	65.12
10100-13	04/20/15	4588	2981	3.17	80.6	7.19	61.70
	08/20/14	4004	2602	3.43	54.6	6.90	64.28
	04/12/14	3932	2557	2.43	103.8	6.91	60.86
	08/13/13	3621	2353	2.52	98.7	7.03	63.08
	04/24/13	3340	2170	4.27	99.0	7.10	60.00
	08/28/17	ns	ns	ns	ns	ns	ns
	04/20/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/21/16	ns	ns	ns	ns	ns	ns
MW-26	08/18/15	ns	ns	ns	ns	ns	ns
10100-20	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/13/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	5587	3633	1.28	-49.2	7.05	63.10
	04/21/16	ns	ns	ns	ns	ns	ns
	08/19/16	5598	3640	2.30	-122.5	7.79	60.80
	04/21/16	ns	ns	ns	ns	ns	ns
MW-27	08/18/15	ns	ns	ns	ns	ns	ns
1VIVV- ∠ 1	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/14	6950	4518	3.55	21.8	6.71	61.94
	04/12/14	ns	ns	ns	ns	ns	ns
	08/13/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns

TABLE 2
Groundwater field Parameter Summary
2017 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/28/17	4694	3055	7.20	144.6	7.44	64.10
	04/21/16	ns	ns	ns	ns	ns	ns
	08/19/16	5094	3309	6.86	77.7	8.32	58.73
	04/21/16	ns	ns	ns	ns	ns	ns
MW-32	08/18/15	5171	3363	8.00	41.5	7.71	60.50
10100-32	04/20/15	ns	ns	ns	ns	ns	ns
	08/20/14	5047	3280	10.08	50.9	7.32	60.20
	04/12/14	ns	ns	ns	ns	ns	ns
	08/13/13	4833	3142	8.73	87.2	7.55	58.88
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	4947	3211	4.20	146.4	7.24	65.10
	04/20/17	5288	3439	5.64	180.0	7.91	60.19
	08/19/16	5280	3429	6.11	70.1	8.49	60.62
	04/22/16	ns	ns	ns	ns	ns	ns
MW-33	08/18/15	5594	3633	4.84	42.7	7.45	62.96
10100-33	04/20/15	6078	3950	7.37	76.4	7.76	60.08
	08/20/14	5097	3313	8.81	48.8	7.38	62.42
	04/12/14	5040	3276	10.24	88.2	7.69	59.36
	08/13/13	5621	3655	5.39	90.1	7.13	60.56
	04/24/13	4990	3240	34.33	32.6	7.75	58.00
Downgradient W	ells						
	08/29/17	2847	1850	1.48	-74.17	6.74	65.03
	04/20/16	ns	ns	ns	ns	ns	ns
	08/18/16	2203	1432	1.77	-61.3	7.66	64.99
	04/22/16	ns	ns	ns	ns	ns	ns
MW-11	08/19/15	2221	1443	2.28	-99.3	7.06	62.84
10100-11	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/14	2098	1365	3.79	-120.7	6.63	66.14
	04/12/14	ns	ns	ns	ns	ns	ns
	08/12/13	2558	1664	9.08	-82.4	6.84	64.70
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	405	2639	3.48	124.9	7.28	69.30
	04/20/17	633	411	4.26	151.3	7.99	53.78
	08/18/16	402	261	2.55	42.2	9.49	65.93
	04/22/16	653	425	5.62	49.5	8.33	55.28
MW-12	08/19/15	763	496	3.25	32.7	7.65	65.72
IVIVV IZ	04/20/15	691	449	6.54	84.8	7.67	51.74
	08/21/14	572	371	2.73	-30.2	7.15	68.18
	04/12/14	826	540	6.83	44.3	7.76	51.44
	08/12/13	569	370	4.98	24.7	7.45	63.68
	04/24/13	1089	710	43.92	172.4	7.47	49.00

TABLE 2 Groundwater field Parameter Summary 2017 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/29/17	2853	1854	1.81	-84.3	7.03	63.13
	04/20/16	ns	ns	ns	ns	ns	ns
	08/18/16	2789	1814	2.05	-77.5	7.88	60.58
	04/22/16	ns	ns	ns	ns	ns	ns
NAVA (0.4	08/19/15	2289	1489	1.54	-110.8	7.26	60.80
MW-34	04/20/15	ns	ns	ns	ns	ns	ns
	08/21/14	1574	1023	2.40	-97.4	6.95	61.88
	04/12/14	ns	ns	ns	ns	ns	ns
	08/12/13	2270	1476	1.94	-89.3	7.03	62.12
	04/24/13	ns	ns	ns	ns	ns	ns
	08/29/17	2480	1610	1.55	-91.3	7.10	62.13
	04/20/17	2059	1337	1.97	-16.5	7.64	59.99
	08/18/16	2331	1515	1.97	-86.7	8.01	59.90
	04/22/16	2001	1300	1.69	-106.9	7.64	59.60
	08/19/15	2116	1374	1.30	-103.4	7.28	60.32
MW-35	04/20/15	2054	1335	2.41	-70.2	7.37	58.40
	08/21/14	2140	1391	4.82	-106.3	7.05	61.16
	04/12/14	2157	1404	2.33	-73.7	6.97	58.16
	08/12/13	1955	1270	2.82	-92.4	7.03	61.22
	04/24/13	2193	1430	35.10	-43.0	6.98	57.00
	08/29/17	2855	1859	2.40	-106.7	7.36	63.25
	04/20/17	2296	1490	3.42	8.1	7.64	58.91
	08/18/16	2518	1635	3.31	-67.1	8.12	59.90
	04/22/16	ns	ns	ns	ns	ns	ns
1000	08/19/15	2417	1571	3.62	-118.1	7.61	60.50
MW-37	04/20/15	2730	1772	2.98	22.1	7.58	60.20
	08/21/14	2248	1460	4.60	-105.6	7.43	60.80
	04/12/14	2476	1608	3.83	-61.8	7.30	59.00
	08/12/13	2596	1686	5.09	-116.5	7.50	60.56
	04/24/13	1628	1060	35.95	-46.7	7.49	57.00
	08/29/17	1610	1047	2.00	-95.0	7.18	64.80
	04/20/17	1560	1014	2.37	34.9	8.06	59.48
	08/18/16	1085	705	3.11	-46.5	8.42	60.26
	04/22/16	ns	ns	ns	ns	ns	ns
NAVA / 00	08/19/15	1171	761	2.01	-124.7	7.55	59.00
MW-38	04/20/15	1395	906	3.13	10.1	7.76	59.48
	08/21/14	1237	804	2.97	-112.6	7.47	60.32
	04/12/14	1537	999	3.73	-100.9	7.29	58.58
	08/12/13	1332	865	4.61	-122.2	7.24	61.28
	04/24/13	1656	1070	34.56	-48.0	7.28	56.00

TABLE 2 Groundwater field Parameter Summary 2017 Groundwater Remediation Monitoring Annual Report

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
North Boundary B	arrier Wells						
	08/28/17	886	576	1.46	-66.17	6.83	67.03
	04/27/17	911	593	3.47	-56.2	6.99	53.92
	08/17/16	878	570	2.84	47.78	6.91	70.55
	04/19/16	571	371	1.84	-63.41	7.17	54.99
CW 0+60	08/25/15	914	592	1.34	-94.9	7.04	68.54
CVV 0+00	04/20/15	733	477	2.83	-80.2	7.54	58.58
	08/27/14	750	488	2.41	-121.1	6.70	69.44
	04/12/14	926	0.6023	6.30	-63.1	6.74	53.54
	8/7/2013	823	535	2.12	-73.6	6.88	66.62
	04/24/13	1098	70	60.05	17.8	6.82	50.00
	08/28/17	1989	1294	0.80	-254.4	7.20	69.60
	04/28/17	1759	1125	4.08	-211.4	7.43	53.95
	08/17/16	1511	982	1.35	44.3	7.25	68.40
CW 25+95	04/21/16	1721	1177	0.68	-222.0	7.87	62.24
CVV 25+95	08/26/15	np	np	np	np	np	np
	04/20/15	1547	1008	1.95	-193.1	7.54	59.30
	04/12/14	1920	1.2480	13.42	-70.4	7.46	57.20
	04/24/13	1246	810	42.38	-118.2	7.44	53.00
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	np	np	np	np	np	np
	08/17/16	1208	785	1.15	22.9	7.55	70.00
	04/19/16	ns	ns	ns	ns	ns	ns
OW 0+60	08/25/15	1014	659	1.03	-135.1	6.96	68.78
01100	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	1056	687	2.00	-58.4	6.59	69.14
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	np	np	np	np	np	np
	08/17/16	1225	797	1.70	-96.7	7.40	70.41
	04/19/16	758	493	1.65	-87.9	6.63	57.11
OW 1+50	08/25/15	ns	ns	ns	ns	ns	ns
	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	2355	1532	1.10	-18.7	7.41	13.05
	08/17/16	2776	1804	1.33	-215.3	7.09	67.70
	04/19/16	2471	1606	1.84	-74.55	6.92	55.67
OW 3+85	08/25/15	2522	1638	0.86	-263.9	7.15	67.16
OW 3+65	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	3030	1967	4.18	-143.6	6.93	54.74
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	3021	1960	64.23	-112.5	7.15	52.00
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	np	np	np	np	np	np
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
014.5.50	08/25/15	ns	ns	ns	ns	ns	ns
OW 5+50	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	ns	ns	ns	ns	ns	ns
014/0.70	04/17/17	ns	ns	ns	ns	ns	ns
OW 6+70	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/28/17	3663	2381	1.99	129.0	6.89	68.03
014.0.40	04/27/17	4183	2719	3.16	137.0	7.83	55.94
OW 8+10	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	2399	1558	2.78	67.6	7.56	55.99
	08/17/16	2171	1414	0.78	152.9	6.65	68.23
	04/19/16	1284	834	3.49	52.2	7.68	57.66
011111111111111111111111111111111111111	08/25/15	2452	1593	0.86	-208.4	6.98	66.38
OW 11+15	04/20/15	2672	1738	1.34	-99.6	7.16	58.52
	08/27/14	2157	1402	1.73	-80.8	6.60	66.08
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/28/17	ns	ns	ns	ns	ns	ns
	04/17/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
OW 14+10	08/25/15	ns	ns	ns	ns	ns	ns
OW 14+10	04/20/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	3481	2262	3.01	-26.6	7.32	57.43
	08/17/16	3749	2438	1.43	-249.4	7.77	69.32
	04/19/16	2973	2334	2.80	-116.2	7.52	59.62
OW 16+60	08/25/15	3936	2557	0.77	-219.3	7.16	68.84
OVV 10+60	04/20/15	4057	2635	1.65	-211.1	7.24	60.98
	08/27/14	3239	2106	1.55	-172.9	6.83	68.72
	04/12/14	1529	0.9945	4.24	-149.9	6.96	59.42
	8/7/2013	2497	1623	1.07	-74.8	6.91	67.04
	04/24/13	2770	1800	48.22	-13.1	7.01	56.00
	08/28/17	ns	ns	ns	ns	ns	ns
	04/27/17	np	np	np	np	np	np
	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
OW 19+50	08/25/15	ns	ns	ns	ns	ns	ns
	08/27/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/28/17	2840	1846	3.21	179.6	7.08	70.00
	04/28/17	3264	1875	7.90	123.8	6.28	54.37
	08/17/16	1913	1242	6.99	185.7	7.40	72.55
	04/19/16	2205	1434	6.71	15.0	8.01	57.38
OW 22+00	08/25/15	3048	1983	3.28	18.1	7.41	67.88
OW 22+00	04/20/15	3102	2017	4.57	24.8	7.56	57.62
	08/27/14	3213	2089	3.42	3.0	6.87	67.28
	04/12/14	2444	1.5882	10.62	21.9	7.27	54.32
	08/27/14	3213	2089	3.42	3.0	6.87	67.28
	04/24/13	3056	1990	57.44	115.6	7.19	51.00

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/28/17	ns	ns	ns	ns	ns	ns
	04/28/17	1860	1200	7.34	70.7	7.18	56.04
OW 23+10	08/17/16	1589	1036	1.89	-61.8	8.28	70.16
	04/19/16	ns	ns	ns	ns	ns	ns
	08/25/15	1676	1090	1.57	-83.5	7.36	68.78
OVV 23+10	04/20/15	1985	1289	2.22	-102.5	7.50	58.76
	08/27/14	1681	1092	2.20	-125.4	7.05	67.82
	04/12/14	1517	0.9858	8.70	-39.4	7.36	57.92
	8/7/2013	2442	1588	5.11	43.3	7.08	65.42
	04/24/13	1498	1	46.47	83.8	7.11	55.00
	08/28/17	ns	ns	ns	ns	ns	ns
	04/28/17	np	np	np	np	np	np
	08/17/16	ns	ns	ns	ns	ns	ns
	04/19/16	ns	ns	ns	ns	ns	ns
OW 23+90	08/25/15	1396	908	3.50	-10.3	7.53	67.34
OW 23+90	04/20/15	1263	821	6.56	-1.9	7.74	59.36
	08/27/14	1522	990	2.53	-40.7	7.26	66.38
	04/12/14	1269	0.8255	13.05	22.3	7.58	59.18
	8/7/2013	1036	674	5.11	4.3	7.50	66.20
	04/24/13	1047	1	40.99	147.3	7.39	55.00
	08/28/17	2205	1432	1.76	-45.0	7.19	71.07
	04/28/17	2318	1340	6.99	-20.4	7.18	55.32
	08/17/16	1431	930	1.72	-73.8	8.08	69.59
	04/21/16	1947	1265	2.22	-72.8	8.24	57.56
014/05.70	08/25/15	1600	1040	1.62	-113.4	7.33	69.32
OW 25+70	04/20/15	1529	995	2.08	-110.0	7.32	56.96
	08/27/14	1531	997	2.21	-114.7	7.22	69.08
	04/12/14	1748	1137	6.29	-87.5	7.35	55.70
	8/7/2013	1309	852	2.44	-92.1	7.41	68.66
	04/24/13	1335	870	42.40	16.5	7.33	53.00
Refinery Wells							
-	08/24/17	ns	ns	ns	ns	ns	ns
MW-4	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	2438	1.556	5.15	-104.6	6.91	63.84
	08/24/15	2706	1759	2.23	-110.7	7.05	63.56
	08/25/14	3133	2037	2.53	-131.2	7.07	65.06
	04/12/14	ns	ns	ns	ns	ns	ns
	8/7/2013	1309	852	2.44	-92.1	7.41	68.66
	04/24/13	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	2514	1.633	4.14	43.2	7.68	57.78
	08/22/16	2149	1.398	2.72	107.2	8.04	59.41
	04/20/16	ns	ns	ns	ns	ns	ns
MW-8	08/18/15	ns	ns	ns	ns	ns	ns
10100	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	2505	1.6272	4.89	205.9	4.73	59.06
	8/8/2013	2067	1346	3.33	94.9	5.91	58.58
	04/24/13	2292	1	34.64	387.3	3.74	56.00
	08/24/17	ns	ns	ns	ns	ns	ns
MW-20	04/21/17	ns	ns	ns	ns	ns	ns
10100-20	08/17/16	ns	ns	ns	ns	ns	ns
	04/15/16	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	4165	2.704	1.83	52.8	7.32	61.16
	04/20/16	ns	ns	ns	ns	ns	ns
MW-21	08/24/15	ns	ns	ns	ns	ns	ns
IVIVV-Z I	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	2305	1638	1.80	71.6	7.09	63.95
	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	1021	663	4.63	56.0	7.52	68.73
	04/20/16	ns	ns	ns	ns	ns	ns
MW-29	08/24/15	961	624	1.81	-16.0	7.49	61.70
10100-29	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	1162	754	2.44	-48.3	7.10	63.32
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	1396	906	1.74	60.0	7.08	61.52
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	3338	2168	5.17	-61.4	7.28	53.78
	08/23/16	2757	1784	4.05	-247.5	7.08	62.52
	04/21/16	3582	2329	2.19	-260.5	7.75	64.46
M/M/ 20	08/24/15	3009	1957	1.79	-236.3	7.19	62.18
MW-30	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	3218	2093	3.01	-211.8	6.82	64.46
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	2666	1733	1.54	-93.3	6.96	61.94
	04/24/13	2178	1	27.80	-34.5	7.00	61.00

MW-40 04/21/17 ns ns ns ns ns ns ns n	Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
MW-31 MW-31 MW-31 MW-31 MW-32016 MS		08/25/17	2647	1722	1.49	-63.1	7.25	62.60
MW-31 MW-32 MW-32 MW-33 MW-34 MW-34 MW-35 MW-36 MW-36 MW-37 MW-37 MW-38 MW		04/21/17	ns	ns	ns	ns	ns	ns
MW-31 08/24/15 ns ns ns ns ns ns ns n		08/22/16	3048	1983	2.11	7.8	8.10	63.37
MW-40 04/20/15		04/20/16	ns	ns	ns	ns	ns	ns
04/20/15 ns ns ns ns ns ns ns n	NAVA 21	08/24/15	ns	ns	ns	ns	ns	ns
04/12/14 ns ns ns ns ns ns ns n	10100-31	04/20/15	ns	ns	ns	ns	ns	ns
MW-40		08/25/14	2996	1948	2.97	-159.1	6.94	63.80
MW-40 MW-40		04/12/14	ns	ns	ns	ns	ns	ns
MW-40 08/24/17 ns ns ns ns ns ns ns n		8/8/2013	1776	1155		-120.7		63.92
MW-40 MW-44 MW		04/24/13	ns	ns	ns	ns	ns	ns
MW-40 MW-44 MW		08/24/17	ns	ns	ns	ns	ns	ns
MW-40 MW-40 04/20/16			ns	ns		ns	ns	ns
MW-40 04/20/16 ns ns ns ns ns ns ns n		08/17/16	ns	ns	ns	ns	ns	ns
MW-40 08/24/15 ns ns ns ns ns ns ns n		04/20/16	ns	ns		ns	ns	ns
MW-44 O4/20/15 ns	NAVA 40		ns	ns	ns	ns	ns	ns
NW-44	MVV-40	04/20/15	ns	ns	ns	ns	ns	ns
MW-44 04/12/14								ns
8/8/2013 ns <			ns	ns	ns	ns	ns	ns
MW-44 04/24/13								ns
MW-44 08/24/17								ns
MW-44 MW								63.53
MW-44 08/23/16								ns
MW-44 04/20/16								61.32
MW-44 08/24/15 5750 3740 1.93 -97.8 7.26 61. 04/20/15 ns ns ns ns ns ns ns n			ns	ns	ns			ns
NW - 44								61.28
RW-1 08/25/14 5662 3679 3.09 54.1 6.86 61.04/12/14 ns ns ns ns ns ns ns n	MW-44							ns
RW-1 04/12/14 ns ns ns ns ns ns ns n								61.16
8/8/2013 5484 3564 3.60 -4.3 7.07 60.0 04/24/13 ns								ns
RW-1 O4/24/13 ns ns ns ns ns ns ns n								60.98
RW-1 08/24/17 ns ns ns ns ns ns ns n								ns
RW-1 O4/21/17 ns ns ns ns ns ns ns n								ns
RW-1								ns
RW-1 04/20/16 ns ns ns ns ns ns ns n								ns
RW-1 08/24/15 ns ns ns ns ns ns ns n								ns
04/20/15 ns								ns
08/25/14 ns ns ns ns ns 04/12/14 ns ns ns ns ns	RW-1							ns
04/12/14 ns ns ns ns ns ns								ns
								ns
0/0/2010 110 110 110 110 110 110								ns
2.15.11.2								ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
RW-9	08/24/15	ns	ns	ns	ns	ns	ns
1000	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	2472	1.601	6.48	-123.8	7.67	61.15
	04/20/16	ns	ns	ns	ns	ns	ns
RW-15	08/24/15	ns	ns	ns	ns	ns	ns
1744-13	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	3458	2249	3.65	-111.1	6.84	61.94
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	2213	1439	1.33	-115.1	6.94	62.24
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/23/16	3666	2.383	0.66	4.6	7.49	63.02
	04/20/16	ns	ns	ns	ns	ns	ns
RW-18	08/24/15	ns	ns	ns	ns	ns	ns
1444-10	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns
RW-23	08/24/15	ns	ns	ns	ns	ns	ns
1111-23	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	8/8/2013	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
RW-28	04/21/17	ns	ns	ns	ns	ns	ns
1744-70	08/17/16	ns	ns	ns	ns	ns	ns
	04/20/16	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/24/16	2325	1.511	5.07	-228.7	7.60	64.02
	04/20/16	ns	ns	ns	ns	ns	ns
RW-42	08/24/15	ns	ns	ns	ns	ns	ns
1777-42	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/08/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/24/16	2904	1888	2.10	-151.1	9.50	67.91
	04/20/16	ns	ns	ns	ns	ns	ns
RW-43	08/24/15	ns	ns	ns	ns	ns	ns
100-43	04/20/15	ns	ns	ns	ns	ns	ns
	08/25/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/08/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
San Juan River Bl	uff						
	08/30/17	1111	722	6.76	180.0	7.41	70.00
	04/21/17	785	507	6.66	180.7	7.77	58.64
	08/17/16	ns	ns	ns	ns	ns	ns
	05/18/16	306	1989	6.78	94.9	6.25	55.22
	04/22/16	ns	ns	ns	ns	ns	ns
Outfall No. 2	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	1064	693	9.80	4.4	7.98	51.80
	08/26/14	463	301	6.52	28.1	7.20	61.52
	04/12/14	742	481	7.53	88.6	7.36	48.92
	08/06/13	782	507	6.48	57.1	7.51	63.68
	04/24/13	520	340	31.59	151.4	7.38	49.00
	08/30/17	467	284	5.94	170.7	7.17	61.90
	04/21/17	820	533	5.77	144.7	7.90	56.30
	08/19/16	297	193	9.33	38.0	8.79	61.16
**Outfall No. 3	05/18/16	306	1989	8.67	96.4	6.84	51.98
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	307	199	7.84	23.7	7.87	60.02
	04/21/15	422	275	10.48	59.2	7.95	53.66
	08/26/14	307	200	10.63	55.3	7.84	56.72
	04/12/14	933	607	8.49	76.9	7.42	52.58
	08/06/13	354	230	7.55	87.0	7.53	60.98
	04/24/13	622	400	28.88	120.5	7.27	53.00

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/30/17	ns	ns	ns	ns	ns	ns
	04/21/17	3245	2106	5.43	238.1	7.63	57.20
	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
**Seep 1	08/26/15	ns	ns	ns	ns	ns	ns
Seep 1	04/21/15	5072	3296	4.99	49.7	6.54	53.60
	08/26/14	3939	2559	5.62	51.4	7.40	61.04
	04/12/14	3507	2279	6.01	49.3	7.56	49.88
	08/06/13	2472	1606	132.62	48.5	7.72	67.04
	04/24/13	3982	2590	90.94	228.5	7.36	46.00
	08/30/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
**Seep 2	04/21/15	ns	ns	ns	ns	ns	ns
Seep 2	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
	04/21/17	ns	ns	ns	ns	ns	ns
	08/19/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
**Seep 3	08/26/15	ns	ns	ns	ns	ns	ns
Seep 3	04/21/15	ns	ns	ns	ns	ns	ns
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	4506	2930	99.98	217.0	7.76	44.00
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
**Seep 4	08/26/14	ns	ns	ns	ns	ns	ns
000p +	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**Seep 5	04/21/17	ns	ns	ns	ns	ns	ns
	08/19/16	ns	ns	ns	ns	ns	ns

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/19/16			Seep no longer exists	5		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
*****	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 6	04/12/14	8810	5727	13.46	105.2	7.24	44.84
	08/06/13	28663	18631	90.40	153.6	6.68	66.26
	04/24/13	9510	6180	129.16	219.0	7.07	42.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	7291	6851	12.60	121.6	7.61	48.02
	08/19/16			Seep no longer exists			
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
**0 7	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 7	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exists	3		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
***	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 8	04/12/14	ns	ns	ns	ns	ns	ns
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	ns	ns	ns	ns	ns	ns
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	ns	ns	ns	ns	ns	ns
	08/19/16			Seep no longer exists	 S		
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/21/15	ns	ns	ns	ns	ns	ns
*****	08/26/14	ns	ns	ns	ns	ns	ns
**Seep 9	04/12/14	5271	3.4255	12.90	43.9	7.73	43.10
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	5644	3670	136.90	214.3	7.35	35.00
	08/07/12	ns	ns	ns	ns	ns	ns
	03/18/12	3004	2841	7.62	139.4	7.64	47.48

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/30/17	192	125	12.16	170.0	8.26	66.10
**Upstream	04/21/17	382	248	9.21	182.9	8.69	55.22
	08/19/16	290	189	8.90	22.6	8.94	64.04
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	169	110	9.28	23.6	7.98	57.74
	04/22/15	540	351	13.08	34.2	8.16	58.64
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	357	0.2318	12.74	45.3	8.14	45.38
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	370	240	21.89	168.2	8.20	49.00
	08/30/17	325	211	6.31	173.6	8.13	69.10
	04/21/17	437	284	8.34	263.4	8.85	61.52
	08/19/16	290	189	8.76	20.5	8.90	63.86
	04/22/16	ns	ns	ns	ns	ns	ns
***	08/26/15	315	205	9.81	14.7	8.13	57.20
**Downstream	04/22/15	536	348	12.39	35.7	8.16	59.72
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	429	0.2791	16.35	82.1	7.67	45.14
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	419	270	20.80	193.9	8.20	51.00
	08/30/17	335	218	7.86	182.7	8.27	72.70
	04/21/17	314	204	7.77	230.9	8.49	59.72
	08/19/16	293	191	9.40	37.8	9.67	60.08
	04/22/16	ns	ns	ns	ns	ns	ns
** \ \ a = 4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	08/26/15	ns	ns	ns	ns	ns	ns
**North of MW-45	04/22/15	498	324	12.93	33.4	8.03	60.08
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	411	0.2671	13.48	83.8	8.05	45.14
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	360	230	20.40	214.3	8.39	50.00
	08/30/17	330	215	7.74	191.7	8.20	69.10
	04/21/17	490	319	8.74	269.6	8.66	60.62
**North of MW-46	08/19/16	296	192	8.75	45.1	9.02	60.98
	04/22/16	ns	ns	ns	ns	ns	ns
	08/26/15	ns	ns	ns	ns	ns	ns
	04/22/15	500	325	13.71	20.3	8.24	60.26
	08/26/14	ns	ns	ns	ns	ns	ns
	04/12/14	405	0.2633	12.30	90.4	8.12	44.96
	08/06/13	ns	ns	ns	ns	ns	ns
	04/24/13	368	240	20.90	213.5	8.40	51.00

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
Background Well	s	•					•
-	08/30/17	ns	ns	ns	ns	ns	ns
**MW-3	04/18/17	ns	ns	ns	ns	ns	ns
10100-3	08/17/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**MW-5	04/18/17	ns	ns	ns	ns	ns	ns
10100-5	08/17/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
	08/30/17	ns	ns	ns	ns	ns	ns
**MW-6	04/18/17	ns	ns	ns	ns	ns	ns
10100-0	08/17/16	ns	ns	ns	ns	ns	ns
	04/22/16	ns	ns	ns	ns	ns	ns
RCRA Investigati							
	08/23/17	ns	ns	ns	ns	ns	ns
	08/23/16	590	0.383	4.99	-123.3	8.38	61.06
	08/17/15	ns	ns	ns	ns	ns	ns
MW-50	08/19/14	ns	ns	ns	ns	ns	ns
11111 00	08/14/13	544	353	1.73	55.0	7.44	60.98
	08/15/12	558	348	10.37	148.4	7.21	62.20
	08/22/11	650	453	6.12	183.0	6.70	59.50
	08/13/10	612	425	0.66	248.0	7.12	61.40
	08/23/17	729	429	4.09	172.0	7.32	62.90
	08/23/16	1180	732	5.92	-38.6	7.67	62.12
	08/17/15	723	470	2.55	70.2	7.31	58.76
MW-51	08/19/14	779	507	3.06	25.6	7.07	62.18
	08/14/13	441	287	2.17	69.0	7.35	61.34
	08/15/12	557	362	2.58	116.8	7.57	62.90
	08/22/11	509	351	4.80	181.0	6.90	61.10
	08/13/10	664	459	0.52	273.0	7.12	63.10
	08/24/17	4891	3180	2.10	180.0	6.88	62.00
	04/21/17	4912	3193	3.87	120.6	7.30	58.60
	08/22/16	5336	3469.000	2.81	109.6	7.63	60.04
1414.50	08/17/15	4172	2713	1.92	62.7	7.02	59.24
MW-52	08/19/14	4849	3153	3.37	64.2	6.49	60.50
	08/14/13	4471	2908	2.69	5.2	6.78	59.30
	08/15/12	3518	2286	2.60	4.7	6.61	64.70
	08/22/11	4139	3255	3.12	201.0	6.90	60.70
	08/13/10	3602	2801	0.63	291.0	7.07	62.20
	08/23/17	5204	3395	1.43	189.4	7.28	60.40
	08/24/16	4393	2868	4.99	27.5	7.40	59.49
	08/17/15	5470	3556	2.31	96.0	7.14	59.78
MW-53	08/19/14	5333	3467	3.23	59.7	6.58	60.50
	08/14/13	4603	2990	3.05	48.3	7.15	59.72
	08/15/12	5477	3562	3.55	38.0	7.27	61.90
	08/22/11	4574	3658	3.63	215.0	6.90	59.60

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (°F)
	08/13/10	4288	3394	0.59	242.0	7.14	61.60
MW-54	08/24/17	ns	ns	ns	ns	ns	ns
10100-54	08/17/16	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
MW-55	08/19/14	ns	ns	ns	ns	ns	ns
10100-55	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	3001	2284	1.72	198.0	7.00	60.60
	08/13/10	3160	2440	1.28	277.0	6.85	61.10
	08/24/17	ns	ns	ns	ns	ns	ns
	08/23/16	3032	1972	1.47	68.4	7.36	68.40
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-56	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	08/24/16	3066	1994	2.99	-149.0	7.42	65.61
	08/17/15	ns	ns	ns	ns	ns	ns
	08/19/14	ns	ns	ns	ns	ns	ns
MW-57	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
	08/24/17	ns	ns	ns	ns	ns	ns
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
MW-58	08/19/14	ns	ns	ns	ns	ns	ns
10100 00	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/22/11	ns	ns	ns	ns	ns	ns
	08/13/10	2562	1928	1.68	279.0	6.95	65.30
	08/22/17	2649	1720	1.32	-74.5	6.99	63.50
	08/22/16	3241	2106	2.34	70.3	7.83	62.15
	08/17/15	3381	220	1.30	-112.3	7.16	62.48
MW-59	08/19/14	3488	2266	2.75	-121.2	6.90	62.90
14144 00	08/14/13	2876	1869	1.79	-91.1	7.09	63.95
	08/15/12	2867	1863	1.60	-85.9	7.10	63.10
	08/25/11	2423	1812	2.12	221.0	6.80	62.00
	08/13/10	2067	1523	0.61	287.0	6.90	62.40

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature
	08/22/17	4074	2653	3.41	169.5	7.15	64.50
	08/17/16	ns	ns	ns	ns	ns	ns
	08/17/15	ns	ns	ns	ns	ns	ns
MANA GO	08/19/14	ns	ns	ns	ns	ns	ns
MW-60	08/14/13	ns	ns	ns	ns	ns	ns
	08/15/12	ns	ns	ns	ns	ns	ns
	08/25/11	3551	2743	1.78	200.0	7.00	62.60
	08/13/10	2567	1939	0.68	284.0	6.88	61.50
MM 61	08/24/17	ns	ns	ns	ns	ns	ns
MW-61	08/17/16	ns	ns	ns	ns	ns	ns
	08/23/17	7036	4569	2.06	50.8	7.00	62.90
	08/22/16	7905	5139	2.18	120.3	8.00	62.06
	08/17/15	7273	473	2.03	48.1	7.05	61.46
NAVA / CO	08/19/14	7172	4663	6.36	44.5	6.87	63.02
MW-62	08/14/13	7051	4583	4.54	38.3	7.07	61.76
	08/15/12	7450	4843	4.75	125.4	6.95	61.40
	08/23/11	6247	5203	50' cord -didn't reach	189.0	7.00	60.50
	08/13/10	6458	5330	50' cord -didn't reach	297.0	6.93	62.40
	08/22/17	3530	2310	1.20	112.1	25.88	65.60
	08/17/15	4931	320	0.80	57.8	6.84	64.64
	08/19/14	5282	3432	3.24	30.5	6.60	66.92
MW-63	08/14/13	5899	3835	1.39	62.1	6.83	65.39
	08/15/12	5374	3479	1.47	137.6	6.91	65.40
	08/24/11	3416	2651	1.71	238.0	6.60	63.90
	08/13/10	4764	3809	0.44	222.0	7.06	68.30
	08/22/17	3946	3866	5.29	154.6	6.95	65.77
	08/22/16	6658	4329	6.29	131.2	7.83	62.11
	08/17/15	6310	410	6.16	68.3	7.04	63.38
B 40 4 / C 4	08/19/14	6249	4060	9.15	67.1	6.94	64.52
MW-64	08/14/13	6049	3933	6.49	60.9	7.03	64.28
	08/15/12	6501	4186	4.90	121.2	7.12	65.40
	08/24/11	4989	4026	4.22	235.0	6.70	61.50
	08/13/10	5302	4279	4.59	251.0	7.06	65.50
	08/22/17	4861	3172	1.06	-64.9	7.05	65.90
	08/22/16	5228	3398	1.83	-21.8	7.75	63.32
	08/17/15	4861	316	1.83	-182.3	7.10	63.38
	08/19/14	4299	2795	3.57	-114.7	6.89	64.16
MW-65	08/14/13	4707	3059	1.80	-97.6	7.04	64.10
	08/15/12	5341	3458	1.09	-93.5	7.09	63.90
	08/22/11	2866	2189	0.55	169.0	7.10	63.00
	08/13/10	2787	2103	0.41	245.0	7.10	65.80

Location ID	Date	Electrical Conductivity (uS/cm)	Total Disolved Solids (mg/l)	Dissolved Oxygen (mg/l)	Oxidation Reduction Potential (mV)	рН	Temperature (° F)
MW-66	08/24/17	ns	ns	ns	ns	ns	ns
10100-00	08/17/16	ns	ns	ns	ns	ns	ns
	08/23/17	1359	1040	1.60	143.8	7.17	63.13
	08/24/16	1078	714	5.87	5.4	7.52	59.79
	08/17/15	1320	860	2.71	73.0	7.24	59.48
MW-67	08/19/14	1008	654	3.00	70.4	6.87	60.14
	08/14/13	876	570	2.39	59.7	7.12	59.60
	08/15/12	1309	849	2.48	221.9	6.96	59.70
	08/22/11	1017	712	1.17	170.0	7.00	58.70
	08/23/17	1190	762	2.10	174.9	7.06	52.67
	08/24/16	1210	785	5.45	29.0	7.71	62.18
	08/17/15	1257	819	2.36	69.8	7.30	62.42
MW-68	08/19/14	1135	737	3.56	52.4	6.97	63.32
	08/14/13	1053	685	3.31	84.5	7.19	61.04
	08/15/12	1114	724	7.85	197.6	6.82	61.20
	08/22/11	1150	809	0.91	218.0	7.00	60.90
MW-69	08/24/17	ns	ns	ns	ns	ns	ns
10100-09	08/17/16	ns	ns	ns	ns	ns	ns
	08/23/17	5387	3516	1.88	-69.6	6.79	62.60
MW-70	08/17/16	ns	ns	ns	ns	ns	ns
IVIVV-7U	08/17/15	6258	407	3.21	-49.5	6.89	60.68
	08/19/14	6088	3956	6.13	-65.3	6.81	63.44

Notes:

ns = no sample

np = no purge parameters, low water volume

^{* =} Field result was confirmed with field notes.

^{** =} Discrete sample reading

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening		**D	W-1		MV	N A		1 ₈₄	W-8	**D	W-9		RW	1 1 5		**D\	V-18
	Levels	Source	Aug-17	Aug-16	Aug-17	Aug-16	V-4 Aug-15	Aug-14	Apr-17	Aug-13	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16
Volatile Organic Compounds (u			Aug-17	Aug-10	Aug-17	Aug-16	Aug-15	Aug-14	Api-17	Aug-13	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16
1,1,1,2-Tetrachloroethane	5.74	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,1,1-Trichloroethane	60	(3)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,1,2,2-Tetrachloroethane	10	(3)				< 2.0	< 2.0	< 20		< 2.0				< 200	< 40	< 100		
1,1,2-Trichloroethane	5	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,1-Dichloroethane	25	(3)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,1-Dichloroethene	5	(3)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,1-Dichloropropene	-	(3)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,2,3-Trichlorobenzene	-					< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
1,2,3-Trichloropropane	0.01	(4)				< 2.0	< 2.0	< 20		< 2.0				< 200	< 40	< 100		
1,2,4-Trichlorobenzene	70	(2)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
1,2,4-Trimethylbenzene	15	(1)				1.7	4.1	< 10		8.0				2100	650	2500		
1,2-Dibromo-3-chloropropane	0.2	(2)				< 2.0	< 2.0	< 20		< 2.0				< 200	< 40	< 100		
1,2-Dibromoethane (EDB)	0.05	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,2-Dichlorobenzene	600	(2)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
1,2-Dichloroethane (EDC)	5	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,2-Dichloropropane	5	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,3,5-Trimethylbenzene	12	(1)				< 1.0	< 1.0	< 10		2.0				200	92	490		
1,3-Dichlorobenzene	-	(1)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
1,3-Dichloropropane	370	(1)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
1,4-Dichlorobenzene	75	(2)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
1-Methylnaphthalene	11	(5)				22	21	< 40		< 4.0				< 400	< 80	< 200		
2,2-Dichloropropane	-	(5)				< 2.0	< 2.0	< 20		< 2.0				< 20	< 40	< 100		
2-Butanone	5560	(4)				< 10	< 10	< 100		< 10				< 100	< 200	< 500		
2-Chlorotoluene	240	(1)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
2-Hexanone	-					< 10	< 10	< 100		< 10				< 100	< 200	< 500		
2-Methylnaphthalene	36	(1)				35	37	< 40		< 4.0				< 400	95	210		
4-Chlorotoluene	250	(1)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
4-Isopropyltoluene	-					< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
4-Methyl-2-pentanone	-					< 10	< 10	< 100		< 10				< 100	< 200	< 500		
Acetone	14100	(4)				< 10	< 10	< 100		< 10				< 100	< 200	< 500		
Benzene	5	(2)				37	210	27	< 1.0	< 1.0				1800	1200	2100		
Bromobenzene	62	(1)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
Bromodichloromethane	1.34	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Bromoform	33	(5)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
Bromomethane	7.54	(4)				< 3.0	< 3.0	< 30		< 3.0				< 30	< 60	< 150		
Carbon disulfide	810	(4)				< 10	< 10	< 100		< 10				< 100	< 200	< 500		
Carbon Tetrachloride	5	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Chlorobenzene	100	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Chloroethane	20900	(4)				< 2.0	< 2.0	< 20		< 2.0				< 20	< 40	< 100		
Chloroform	100	(3)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Chloromethane	20.3	(4)				< 3.0	< 3.0	< 30		< 3.0				< 30	< 60	< 150		
cis-1,2-DCE	70	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
cis-1,3-Dichloropropene	4.7	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Dibromochloromethane	1.68	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Dibromomethane	8.3	(1)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Dichlorodifluoromethane	197	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Ethylbenzene	700	(2)				7	17	< 10	< 1.0	1.2				2400	610	3400		

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Cauaa!					_			1									
	Screening	Source	**R			MV			¹ M			W-9	-		<i>I</i> -15			W-18
·	Levels		Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Apr-17	Aug-13	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16
Hexachlorobutadiene	1.39	(4)				< 1.0	< 1.0	< 10		< 1.0				< 100	< 20	< 50		
Isopropylbenzene	447	(4)				40	49	25		< 1.0				100	23	93		
Methyl tert-butyl ether (MTBE)	143	(4)				< 1.0	< 1.0	< 10	< 1.0	< 1.0				< 10	110	150		
Methylene Chloride	5	(2)				< 3.0	< 3.0	< 30		< 3.0				< 30	< 60	< 150		
Naphthalene	1.65	(4)				71	78	55		< 2.0				500	170	640		
n-Butylbenzene	-					< 3.0	< 3.0	< 30		< 3.0				< 300	< 60	< 150		
n-Propylbenzene	-					33	39	25		1.2				350	59	320		
sec-Butylbenzene	-					5.7	7.7	< 10		< 1.0				< 100	< 20	< 50		
Styrene	100	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
tert-Butylbenzene	-					1.2	1.2	< 10		< 1.0				< 100	< 20	< 50		
Tetrachloroethene (PCE)	5	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Toluene	750	(3)				< 1.0	< 1.0	< 10	< 1.0	< 1.0				18	740	< 50		
trans-1,2-DCE	100	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
trans-1,3-Dichloropropene	4.71	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Trichloroethene (TCE)	5	(2)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Trichlorofluoromethane	1136	(4)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Vinyl chloride	1	(3)				< 1.0	< 1.0	< 10		< 1.0				< 10	< 20	< 50		
Xylenes, Total	620	(3)				11	11	< 15	< 1.5	3.6				1300	1000	6600		
Semi Volatile Organic Compou	nds (ug/l):																	
1,2,4-Trichlorobenzene	70	(2)																
1,2-Dichlorobenzene	600	(2)																
1,3-Dichlorobenzene	-																	
1,4-Dichlorobenzene	75	(2)																
1-Methylnaphthalene	11	(5)																
2,4,5-Trichlorophenol	1170	(4)																
2,4,6-Trichlorophenol	11.9	(4)																
2,4-Dichlorophenol	45.3	(4)																
2,4-Dimethylphenol	354	(4)																
2,4-Dinitrophenol	38.7	(4)																
2,4-Dinitrotoluene	2.37	(4)																
2,6-Dinitrotoluene	0.485	(4)																
2-Chloronaphthalene	733	(4)																
2-Chlorophenol	91	(4)																
2-Methylnaphthalene	36	(1)																
2-Methylphenol	930	(1)																
2-Nitroaniline	190	(1)																
2-Nitrophenol	-	(1)																
3,3´-Dichlorobenzidine	1.25	(4)																
3+4-Methylphenol	930	(1)																
3-Nitroaniline	-	(1)																
4,6-Dinitro-2-methylphenol	1.52	(4)																
4-Bromophenyl phenyl ether	-	(+)																
	-																	
4-Chloro-3-methylphenol		(F)																
4-Chloroaniline	3.7	(5)																
4-Chlorophenyl phenyl ether	-	(5)																
4-Nitroaniline	38	(5)																
4-Nitrophenol	-	(4)																
Acenaphthene	535	(4)																
Acenaphthylene	-																	

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Corocuin		.,=						1									
	Screening	Source		W-1		MV				W-8		W-9			-15			N-18
	Levels		Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Apr-17	Aug-13	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16
Aniline	130	(5)																
Anthracene	1720	(4)																
Azobenzene	1.2	(5)																
Benzo(a)anthracene	0.12	(4)																
Benzo(a)pyrene	0.2	(2)																
Benzo(b)fluoranthene	0.343	(4)																
Benzo(g,h,i)perylene	-																	
Benzo(k)fluoranthene	3.43	(4)																
Benzoic acid	75000	(1)																
Benzyl alcohol	2000	(1)																
Bis(2-chloroethoxy)methane	59	(1)																
Bis(2-chloroethyl)ether	0.137	(4)																
Bis(2-chloroisopropyl)ether	9.81	(4)																
Bis(2-ethylhexyl)phthalate	6	(2)																
Butyl benzyl phthalate	160	(5)																
Carbazole	-																	
Chrysene	34.3	(4)																
Dibenz(a,h)anthracene	0.0343	(4)																
Dibenzofuran	-	, ,																
Diethyl phthalate	14800	(4)																
Dimethyl phthalate	-																	
Di-n-butyl phthalate	885	(4)																
Di-n-octyl phthalate	-	(- /																
Fluoranthene	802	(4)																
Fluorene	288	(4)																
Hexachlorobenzene	0.0976	(4)																
Hexachlorobutadiene	1.387	(4)																
Hexachlorocyclopentadiene	50	(4)																
Hexachloroethane	3.28	(4)																
Indeno(1,2,3-cd)pyrene	0.343	(4)																
Isophorone	781	(4)																
Naphthalene	1.65	(4)																
Nitrobenzene	1.4	(4)																
N-Nitrosodimethylamine	0.0017	(4)																
N-Nitrosodi-n-propylamine	0.0017																	
		(5)																
N-Nitrosodiphenylamine	0.0049 170	(4)																
Pentachlorophenol		(4)																
Phenanthrene	1 5760	(4)																
Phenol	5760	(4)																
Pyrene	117	(4)																
Pyridine Pyridine	20	(1)																
General Chemistry (mg/l):	4.0	(2)				.0.50	0.00	40.50	0.67	0.67				10.50	.0.50	.0.50		
Fluoride	1.6	(3)				< 0.50	0.29	< 0.50	0.67	0.67				< 0.50	< 0.50	< 0.50		
Chloride	250	(3)				270	250	220	120	120				330	480	410		
Nitrite	1	(2)				< 0.50	< 0.10	< 0.50	0.88	0.88				< 0.50	< 0.50	< 0.50		
Bromide	-	(6)				4.6	< 0.10	3.4	0.86	0.86				8.5	6.3	6.1		
Nitrate	10	(3)				< 0.50	0.74	< 0.50	13	13				< 0.50	< 0.50	< 0.50		
Phosphorus	-	453				< 2.5	< 0.50	< 2.5	< 2.5	< 2.5				< 2.5	< 2.5	< 2.5		
Sulfate	600	(3)				< 2.5	1	6.8	990	990				19	< 2.5	2.8		
Carbon Dioxide (CO ₂₎	-					1200	1100	1200	61	61				1200	1200	1100		
Alkalinity (CaCO ₃)	-					1176	1148	1400	31	31				1248	1221	1200		
Bicarbonate (CaCO ₃)	-					1176	1148	1400	31	31				1248	1221	1200		
(2						•			· ·		l						l .	

TABLE 3 Terminal Wells Analytical Summary 2017 Groundwater Remediation Monitoring Annual Report

	Caraanin -		,						1								47-1	
	Screening Levels	Source	**R'		A 4=	MV		A 4:		W-8		W-9	A 4=		-15	A 4.		W-18
	Leveis		Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Apr-17	Aug-13	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16
Total Metals (mg/l):		(5)																
Arsenic	0.01	(2)				< 0.020	< 0.020	< 0.020	< 0.020	< 0.020				< 0.020	< 0.020	< 0.020		
Barium	2.0	(2)				2.5	2	2.6	0.021	0.021				1.4	1.5	1.6		
Cadmium	0.005	(2)				< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020				< 0.0020	< 0.0020	< 0.0020		
Chromium	0.05	(3)				0.071	< 0.0060	0.024	0.46	0.46				< 0.0060	< 0.0060	< 0.0060		
Lead	0.015	(2)				0.012	0.005	0.010	< 0.0010	< 0.0010				0.0085	< 0.0050	< 0.0050		
Selenium	0.05	(3)				< 0.050	< 0.050	< 0.050	0.084	0.084				< 0.050	< 0.050	< 0.050		
Silver	0.05	(3)				< 0.0050	< 0.0050	< 0.0050	< 0.025	< 0.025				< 0.0050	< 0.0050	< 0.0050		
Mercury	0.002	(3)				< 0.00020	< 0.00020	< 0.00020	0.0012	0.0012				< 0.00020	< 0.00020	< 0.00020		
Dissolved Metals (mg/l):																		
Arsenic	0.01	(2)				< 0.020	< 0.020	< 0.010	< 0.0050	< 0.0050				< 0.020	< 0.020	< 0.010		
Barium	1.0	(3)				2.3	2.3	2.1	0.012	0.012				1.2	1.6	1.4		
Cadmium	0.005	(2)				< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020				< 0.0020	< 0.0020	< 0.0020		
Calcium	-					170	170	150	140	140				150	170	150		
Chromium	0.05	(3)				0.011	< 0.0060	< 0.0060	0.019	0.019				< 0.0060	< 0.0060	< 0.0060		
Copper	1	(3)				0.16	< 0.0060	0.023	0.0076	0.0076				0.0098	< 0.0060	< 0.010		
Iron	1	(3)				43	6.2	12	2.5	2.5				12	48	6.8		
Lead	0.015	(2)				0.014	0.0065	0.0011	< 0.0010	< 0.0010				0.0077	< 0.0050	< 0.0010		
Magnesium	-					61	66	62	31	31				45	49	47		
Manganese	0.2	(3)				8.6	3.5	2.5	2.7	2.7				3.1	3	3.6		
Potassium	-					4.7	4.3	6.1	3.1	3.1				3.7	3.7	3.5		
Selenium	0.05	(3)				< 0.050	< 0.050	0.012	0.04	0.04				< 0.050	< 0.050	0.020		
Silver	0.05	(3)				< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050				< 0.0050	< 0.0050	< 0.0050		
Sodium	-					380	360	470	250	250				560	560	560		
Uranium	0.03	(3)				< 0.10	< 0.10	< 0.0010	0.001	0.001				< 0.10	< 0.10	< 0.0010		
Zinc	10	(3)				0.033	0.024	0.011	0.076	0.076				1.3	0.15	0.013		
Total Petroleum Hydrocarbons	(mg/l):																	
Diesel Range Organics	0.0398	(6)				1.3	2.1	0.84	<0.20	<0.20				100	20	4.7		
Gasoline Range Organics	-	-				6.1	14	5.4	0.083	0.083				29	16	39		
Motor Oil Range Organics	0.0398	(6)				< 2.5	< 2.5	< 2.5	<2.5	<2.5				44	12	< 2.5		

Notes:

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
 - = No screening level available
 - = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - --- = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
 - = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
 - = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	0	**M\	W-20	**M\	N-21	**R\	N-23	**RW-28		MW	/-29					MW	/-30			
	Levels	Source	Aug-17	Aug-16	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compounds (up	n/l)		riag ir	7 rug 10	7 tag 17	riag 10	7 tag 17	7 rug 10	7 tag 10	riag ir	7 tug 10	7 tag 10	7 tug 14	riag ir	7,01.17	7 tag 10	710	rug 10	710110	7tug 14	7101 14
1,1,1,2-Tetrachloroethane	5.74	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,1,1-Trichloroethane	60	(3)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,1,2,2-Tetrachloroethane	10	(3)								< 2.0	< 2.0	< 2.0	< 2.0			< 200		< 200		< 200	
1,1,2-Trichloroethane	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,1-Dichloroethane	25	(3)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,1-Dichloroethene	5	(3)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,1-Dichloropropene	-	(0)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,2,3-Trichlorobenzene	-									< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,2,3-Trichloropropane	0.01	(4)								< 2.0	< 2.0	< 2.0	< 2.0			< 200		< 200		< 200	
1,2,4-Trichlorobenzene	70	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,2,4-Trimethylbenzene	15	(1)								< 1.0	< 1.0	< 1.0	< 1.0			4200		3000		3400	
1,2-Dibromo-3-chloropropane	0.2	(2)								< 2.0	< 2.0	< 2.0	< 2.0			< 200		< 200		< 200	
1,2-Dibromoethane (EDB)	0.05	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,2-Dichlorobenzene	600	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1.2-Dichloroethane (EDC)	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,2-Dichloropropane	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,3,5-Trimethylbenzene	12	(1)								< 1.0	< 1.0	< 1.0	< 1.0			860		740		840	
1,3-Dichlorobenzene		(1)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,3-Dichloropropane	370	(1)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1,4-Dichlorobenzene	75	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
1-Methylnaphthalene	11	(5)								< 4.0	< 4.0	< 4.0	< 4.0			< 400		< 400		< 400	
2,2-Dichloropropane	-	(3)								< 2.0	< 2.0	< 2.0	< 2.0			< 200		< 200		< 200	
2-Butanone	5560	(4)								< 10	< 10	< 10	< 10			< 1000		< 1000		< 1000	
2-Chlorotoluene	240	(1)								< 1.0	< 1.0	< 1.0	< 1.0			< 1000		< 1000		< 1000	
2-Hexanone		(1)								< 1.0	< 1.0	< 1.0	< 1.0					< 1000		< 1000	
	-	(1)								< 4.0	< 4.0	< 4.0	< 4.0			< 1000 < 400		< 400		< 400	
2-Methylnaphthalene 4-Chlorotoluene	36 250									< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
		(1)								< 1.0	< 1.0		< 1.0			< 100		< 100		< 100	
4-Isopropyltoluene	-											< 1.0									
4-Methyl-2-pentanone	- 14400	(4)								< 10	< 10	< 10	< 10			< 1000		< 1000		< 1000	
Acetone	14100	(4)								2.2 J	< 10	< 10	< 10		2000	< 1000	2000	< 1000		< 1000	
Benzene	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0		2900	2700	3000	4200		4600	
Bromobenzene	62	(1)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Bromodichloromethane	1.34	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Bromoform	33	(5)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Bromomethane	7.54	(4)								< 3.0	< 3.0	< 3.0	< 3.0			< 300		< 300		< 300	
Carbon disulfide	810	(4)								< 10	< 10	< 10	< 10			< 1000		< 1000		< 1000	
Carbon Tetrachloride	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Chlorobenzene	100	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Chloroethane	20900	(4)								< 2.0	< 2.0	< 2.0	< 2.0			< 200		< 200		< 200	
Chloroform	100	(3)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Chloromethane	20.3	(4)								< 3.0	< 3.0	< 3.0	< 3.0			< 300		< 300		< 300	
cis-1,2-DCE	70	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
cis-1,3-Dichloropropene	4.7	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Dibromochloromethane	1.68	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Dibromomethane	8.3	(1)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Dichlorodifluoromethane	197	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Ethylbenzene	700	(2)								< 1.0	< 1.0	< 1.0	< 1.0		5700	4400	4700	4000		3900	

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

1																					$\overline{}$
	Screening	Source		W-20	**M\			V-23	**RW-28		MW							V-30			
•	Levels		Aug-17	Aug-16	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Hexachlorobutadiene	1.39	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Isopropylbenzene	447	(4)								< 1.0	< 1.0	< 1.0	< 1.0			190		110		150	
Methyl tert-butyl ether (MTBE)	143	(4)								0.56 J	< 1.0	< 1.0	< 1.0		< 100	< 100	< 100	< 100		< 100	
Methylene Chloride	5	(2)								< 3.0	< 3.0	< 3.0	< 3.0			< 300		< 300		< 300	
Naphthalene	1.65	(4)								< 2.0	< 2.0	< 2.0	< 2.0			700		600		860	
n-Butylbenzene	-									< 3.0	< 3.0	< 3.0	< 3.0			< 300		< 300		< 300	
n-Propylbenzene	-									< 1.0	< 1.0	< 1.0	< 1.0			710		470		610	
sec-Butylbenzene	-									< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Styrene	100	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
tert-Butylbenzene	-	(=)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Tetrachloroethene (PCE)	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Toluene	750	(3)								< 1.0	< 1.0	< 1.0	< 1.0		1000	1800	1300	13000		2200	
trans-1,2-DCE	100	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
trans-1,3-Dichloropropene	4.71	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Trichloroethene (TCE)	5	(2)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Trichlorofluoromethane	1136	(4)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Vinyl chloride	1	(3)								< 1.0	< 1.0	< 1.0	< 1.0			< 100		< 100		< 100	
Xylenes, Total	620	(3)								< 1.5	< 1.5	< 1.5	< 1.5		17000	14000	13000	16000		14000	
Semi Volatile Organic Compoun	<u> </u>	(0)																			
1,2,4-Trichlorobenzene	70	(2)																			
1,2-Dichlorobenzene	600	(2)																			
1,3-Dichlorobenzene	-	(=)																			
1,4-Dichlorobenzene	75	(2)																			
1-Methylnaphthalene	11	(5)																			
2,4,5-Trichlorophenol	1170	(4)																			
2,4,6-Trichlorophenol	11.9	(4)																			
2,4-Dichlorophenol	45.3	(4)																			
2,4-Dimethylphenol	354	(4)																			
2,4-Dinitrophenol	38.7	(4)																			
2,4-Dinitrotoluene	2.37	(4)																			
2,6-Dinitrotoluene	0.485	(4)																			
2-Chloronaphthalene	733	(4)																			
2-Chlorophenol	91	(4)																			
2-Methylnaphthalene	36	(1)																			
2-Methylphenol	930	(1)																			
2-Nitroaniline	190	(1)																			
2-Nitrophenol	-	(4)																			
3,3´-Dichlorobenzidine	1.25	(4)																			
3+4-Methylphenol	930	(1)																			
3-Nitroaniline	- 4.50	(4)																			
4,6-Dinitro-2-methylphenol	1.52	(4)																			
4-Bromophenyl phenyl ether	-																				
4-Chloro-3-methylphenol	-	(=)																			
4-Chloroaniline	3.7	(5)																			
4-Chlorophenyl phenyl ether	-	(5)																			
4-Nitroaniline	38	(5)																			
4-Nitrophenol	-	7.55																			
Acenaphthene	535	(4)																			
Acenaphthylene	-																				

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

_	Screening	Ca	**M\	W-20	**MV	N-21	**RV	N-23	**RW-28		MW	/-29					MV	/-30			
	Levels	Source	Aug-17	Aug-16	Aug-17	Aug-16	Aug-17		Aug-15	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Aniline	130	(5)																			
Anthracene	1720	(4)																			
Azobenzene	1.2	(5)																			
Benzo(a)anthracene	0.12	(4)																			
Benzo(a)pyrene	0.2	(2)																			
Benzo(b)fluoranthene	0.343	(4)																			
Benzo(g,h,i)perylene	-	(7)																			
Benzo(k)fluoranthene	3.43	(4)																			
Benzoic acid	75000	(1)																			
Benzyl alcohol	2000	(1)																			
Bis(2-chloroethoxy)methane	59	(1)																			
Bis(2-chloroethyl)ether	0.137	(4)																			
Bis(2-chloroisopropyl)ether	9.81	(4)																			
Bis(2-ethylhexyl)phthalate	6	(2)																			
Butyl benzyl phthalate	160	(5)																			
Carbazole	-	(4)																			
Chrysene	34.3	(4)																			
	0.0343	(4)																			
Dibenzofuran	-	(1)																			
Diethyl phthalate	14800	(4)																			
Dimethyl phthalate	-																				
Di-n-butyl phthalate	885	(4)																			
Di-n-octyl phthalate	-																				
Fluoranthene	802	(4)																			
Fluorene	288	(4)																			
Hexachlorobenzene	0.0976	(4)																			
Hexachlorobutadiene	1.387	(4)																			
Hexachlorocyclopentadiene	50	(4)																			
Hexachloroethane	3.28	(4)																			
Indeno(1,2,3-cd)pyrene	0.343	(4)																			
Isophorone	781	(4)																			
Naphthalene	1.65	(4)																			
Nitrobenzene	1.4	(4)																			
N-Nitrosodimethylamine	0.0017	(4)																			
N-Nitrosodi-n-propylamine	0.11	(5)																			
	0.0049	(4)																			
Pentachlorophenol	170	(4)																			
Phenanthrene	1	(4)																			
Phenol	5760	(4)																			
Pyrene	117	(4)																			
Pyridine	20	(1)																			
General Chemistry (mg/l):		\.'/																			
Fluoride	1.6	(3)								0.22	0.32	0.26	0.27			< 0.50		< 0.10		< 0.50	
Chloride	250	(3)								110	45	33	48			230		230		270	
Nitrite	1	(2)								< 0.10	< 0.10	< 0.10	0.34			< 0.50		< 2.0		< 0.50	
Bromide	-	(/								0.98	0.38	0.34	< 0.10			3.8		< 0.10		4.7	
Nitrate	10	(3)								5.0	1.2	0.5	0.48			< 0.50		1		< 0.50	
Phosphorus	-	(0)								< 0.50	< 0.50	< 0.50	< 0.50			< 2.5		< 0.50		< 2.5	
Sulfate	600	(3)								350	180	160	210			69		36		47	
Carbon Dioxide (CO ₂₎		(3)																			
	-									300	260	230	260			1300		1400		1200	
Alkalinity (CaCO ₃)	-									318.6	284.2	250.8	280			1403		1493		1300	
Bicarbonate (CaCO ₃)	_									318.6	284.2	250.8	280			1403		1493		1300	

TABLE 3 Terminal Wells Analytical Summary 2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source	**M\	W-20	**M\	W-21	**R\	N-23	**RW-28		MW	V-29					MV	V-30			
	Levels	Source	Aug-17	Aug-16	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Total Metals (mg/l):			Ĭ						Ĭ	Ĭ				J	<u> </u>	J		Ü		<u> </u>	
Arsenic	0.01	(2)								< 0.050	< 0.020	< 0.020	< 0.020			< 0.020		< 0.020		< 0.020	
Barium	2.0	(2)								0.049	0.24	0.041	0.026			0.74		1.1		0.66	
Cadmium	0.005	(2)								< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)								< 0.0060	0.0088	< 0.0060	< 0.0060			0.01		< 0.0060		< 0.0060	
Lead	0.015	(2)								< 0.0050	< 0.0050	< 0.0050	< 0.0050			0.019		< 0.0050		< 0.0050	
Selenium	0.05	(3)								< 0.050	< 0.050	< 0.050	< 0.050			< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)								< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050		< 0.0050		< 0.0050	
Mercury	0.002	(3)								< 0.00020	< 0.00020	< 0.00020	< 0.00020			< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):																					
Arsenic	0.01	(2)								< 0.020	< 0.020	< 0.020	0.0013			< 0.020		< 0.020		< 0.010	
Barium	1.0	(3)								0.03	0.023	< 0.020	0.021			0.56		1		0.44	
Cadmium	0.005	(2)								< 0.0020	< 0.0020	< 0.0020	< 0.0020			< 0.0020		< 0.0020		< 0.0020	
Calcium	-									130	83	74	83			150		160		200	
Chromium	0.05	(3)								< 0.0060	< 0.0060	< 0.0060	< 0.0060			< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)								< 0.0060	< 0.0060	< 0.0060	0.0022			< 0.0060		< 0.0060		< 0.010	
Iron	1	(3)								< 0.020	0.12	< 0.020	< 0.020			7.4		1.5		0.35	
Lead	0.015	(2)								< 0.0050	< 0.0050	< 0.0050	< 0.0010			0.0066		0.0074		< 0.010	
Magnesium	-									28	18	17	19			36		52		41	
Manganese	0.2	(3)								2.7	1.4	1.3	1.7			1.2		2.9		1.1	
Potassium	-									2.6	2.1	2.2	2.2			3.3		3.5		3.2	
Selenium	0.05	(3)								< 0.050	< 0.050	< 0.050	0.0025			< 0.050		< 0.050		0.014	
Silver	0.05	(3)								< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050		< 0.0050		< 0.0050	
Sodium	-									180	120	99	130			590		560		610	
Uranium	0.03	(3)								< 0.10	< 0.10	< 0.10	0.0034			< 0.10		< 0.10		< 0.010	
Zinc	10	(3)								0.035	< 0.020	0.022	< 0.010			0.031		0.034		< 0.010	
Total Petroleum Hydrocarbons	(mg/l):																				
Diesel Range Organics	0.0398	(6)								< 0.20	0.28	< 0.20	< 0.20			71		7.7		9.4	
Gasoline Range Organics	-	-								< 0.050	< 0.050	< 0.050	< 0.050			100		120		73	
Motor Oil Range Organics	0.0398	(6)								< 2.5	< 2.5	< 2.5	< 2.5			< 25		< 2.5		< 2.5	

Notes:

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
 - = No screening level available
 - * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
 - = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
 - = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening			MW	1.24			BANA	<i>I</i> -40		DW	<i>I</i> -42		DV	V-43			MW		
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17		Aug-17	Aug-16	4-4-3 Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
Volatile Organic Compounds (u			Aug-17	Aug-10	Aug-15	Aug-14	Aug-17	Aug-10	Aug-15	Aug-14	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
1,1,1,2-Tetrachloroethane	5.74	(4)	< 10	< 10	< 20	< 50		< 50		l		< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,1,1-Trichloroethane	60	(3)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,1,2,2-Tetrachloroethane	10	(3)	< 20	< 20	< 40	< 100		< 100				< 20		< 100			< 2.0	< 2.0	< 4.0	< 2.0
1,1,2-Trichloroethane	5	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,1-Dichloroethane	25	(3)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1.1-Dichloroethane	5	(3)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,1-Dichloropropene	-	(3)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,2,3-Trichlorobenzene	-		< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,2,3-Trichloropropane	0.01	(4)	< 20	< 20	< 40	< 100		< 100				< 20		< 100			< 2.0	< 2.0	< 4.0	< 2.0
1,2,4-Trichlorobenzene	70	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,2,4-Trimethylbenzene	15	(1)	230	600	1700	1200		< 50				120		770			< 1.0	1.1	< 2.0	< 1.0
1,2-Dibromo-3-chloropropane	0.2	(2)	< 20	< 20	< 40	< 100		< 100				< 20		< 100			< 2.0	< 2.0	< 4.0	< 2.0
1,2-Dibromoethane (EDB)	0.2	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1.2-Dichlorobenzene	600	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,2-Dichloroethane (EDC)	5	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,2-Dichloropropane	5	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,3,5-Trimethylbenzene	12	(1)	1.4J	< 10	82	100		< 50				13		180			< 1.0	< 1.0	< 2.0	< 1.0
1,3-Dichlorobenzene	-	(1)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,3-Dichloropropane	370	(1)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1,4-Dichlorobenzene	75	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
1-Methylnaphthalene	11	(5)	19J	41	< 80	< 200		< 200				160		< 200			< 1.0	< 4.0	< 8.0	< 4.0
2,2-Dichloropropane		(3)	< 20	< 20	< 40	< 100		< 100				< 20		< 100			< 1.0	< 2.0	< 4.0	< 2.0
2-Butanone	5560	(4)	< 100	< 100	< 200	< 500		< 500				< 100		< 500			< 1.0	< 10	< 20	< 10
2-Chlorotoluene	240	(1)	< 100	< 100	< 20	< 50		< 50				< 100		< 50			< 10	< 1.0	< 2.0	< 1.0
2-Hexanone	-	(1)	< 100	< 100	< 200	< 500		< 500				< 100		< 500			< 1.0	< 1.0	< 20	< 1.0
2-Methylnaphthalene	36	(1)	12	< 40	96	< 200		< 200				220		< 200			< 1.0	< 4.0	< 8.0	< 4.0
4-Chlorotoluene	250	(1)	12J	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
4-Isopropyltoluene	-	(1)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
4-Methyl-2-pentanone			< 100	< 100	< 200	< 500		< 500				< 100		< 500			< 3.0	< 10	< 20	< 1.0
Acetone	14100	(4)	< 100	< 100	< 200	< 500		< 500				< 100		< 500			< 10	< 10	< 20	< 10
Benzene	5	(2)	320	270	3900	1600		< 50				6300		2600			< 1.0	< 1.0	< 2.0	< 1.0
Bromobenzene	62	(1)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Bromodichloromethane	1.34	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 2.0	< 1.0	< 2.0	< 1.0
Bromoform	33	(5)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Bromomethane	7.54	(4)	< 30	< 30	< 60	< 150		< 150				< 30		< 150			< 3.0	< 3.0	< 6.0	< 3.0
Carbon disulfide	810	(4)	< 100	< 100	< 200	< 500		< 500				< 100		< 500			< 1.0	< 10	< 20	< 10
Carbon Tetrachloride	5	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Chlorobenzene	100	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Chloroethane	20900	(4)	< 20	< 20	< 40	< 100		< 100				< 20		< 100			< 1.0	< 2.0	< 4.0	< 2.0
Chloroform	100	(3)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Chloromethane	20.3	(4)	< 30	< 30	< 60	< 150		< 150				< 30		< 150			< 1.0	< 3.0	< 6.0	< 3.0
cis-1,2-DCE	70	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
cis-1,3-Dichloropropene	4.7	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Dibromochloromethane	1.68	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Dibromomethane	8.3	(1)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 3.0	< 1.0	< 2.0	< 1.0
Dichlorodifluoromethane	197	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 3.0	< 1.0	< 2.0	< 1.0
Ethylbenzene	700	(2)	170	240	1600	770		< 50				160		320			< 1.0	< 1.0	< 2.0	< 1.0
2		(-)																		

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

			1																	
•	Screening	Source		MW					/-40			V-42			-43				<i>I</i> -44	
	Levels		Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
Hexachlorobutadiene	1.39	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 2.0	< 1.0	< 2.0	< 1.0
Isopropylbenzene	447	(4)	27	37	100	73		55				65		89			< 1.0	< 1.0	< 2.0	< 1.0
Methyl tert-butyl ether (MTBE)	143	(4)	< 10	< 10	< 20	< 50		< 50				14		670			0.98J	< 1.0	< 2.0	1.0
Methylene Chloride	5	(2)	< 30	< 30	< 60	< 150		< 150				< 30		< 150			< 1.0	< 3.0	< 6.0	< 3.0
Naphthalene	1.65	(4)	50	74	210	180		110				300		370			< 1.0	< 2.0	< 4.0	< 2.0
n-Butylbenzene	-		4.2J	< 30	< 60	< 150		< 150				< 30		< 150			< 1.0	< 3.0	< 6.0	< 3.0
n-Propylbenzene	-		68	130	290	220		63				110		84			< 1.0	< 1.0	< 2.0	< 1.0
sec-Butylbenzene	-		11	24	42	< 50		< 50				17		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Styrene	100	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
tert-Butylbenzene	-		< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Tetrachloroethene (PCE)	5	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 4.0	< 1.0	< 2.0	< 1.0
Toluene	750	(3)	51	< 10	3500	130		< 50				< 10		51			< 2.0	< 1.0	< 2.0	< 1.0
trans-1,2-DCE	100	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 10	< 1.0	< 2.0	< 1.0
trans-1,3-Dichloropropene	4.71	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Trichloroethene (TCE)	5	(2)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 10	< 1.0	< 2.0	< 1.0
Trichlorofluoromethane	1136	(4)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 4.0	< 1.0	< 2.0	< 1.0
Vinyl chloride	1	(3)	< 10	< 10	< 20	< 50		< 50				< 10		< 50			< 1.0	< 1.0	< 2.0	< 1.0
Xylenes, Total	620	(3)	110	73	3800	1400		< 75				41		1100			< 1.5	< 1.5	< 3.0	< 1.5
Semi Volatile Organic Compour		(0)						1.0									,	11.0	, 0.0	
1,2,4-Trichlorobenzene	70	(2)																		
1,2-Dichlorobenzene	600	(2)																		
1,3-Dichlorobenzene	-	(=)																		
1,4-Dichlorobenzene	75	(2)																		
1-Methylnaphthalene	11	(5)																		
2,4,5-Trichlorophenol	1170	(4)																		
2,4,6-Trichlorophenol	11.9	(4)																		
2,4-Dichlorophenol	45.3	(4)																		
2,4-Dimethylphenol	354	(4)																		
2,4-Dinitrophenol	38.7	(4)																		
2,4-Dinitrotoluene	2.37																			
2,4-Dinitrotoluene	0.485	(4)																		
		(4)																		
2-Chloronaphthalene	733	(4)																		
2-Chlorophenol	91	(4)																		
2-Methylnaphthalene	36	(1)																		
2-Methylphenol	930	(1)																		
2-Nitroaniline	190	(1)																		
2-Nitrophenol	-	(4)																		
3,3'-Dichlorobenzidine	1.25	(4)																		
3+4-Methylphenol	930	(1)																		
3-Nitroaniline	-	(1)																		
4,6-Dinitro-2-methylphenol	1.52	(4)																		
4-Bromophenyl phenyl ether	-																			
4-Chloro-3-methylphenol	-																			
4-Chloroaniline	3.7	(5)																		
4-Chlorophenyl phenyl ether	-																			
4-Nitroaniline	38	(5)																		
4-Nitrophenol	-																			
Acenaphthene	535	(4)																		
Acenaphthylene	-																			

TABLE 3
Terminal Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening			MV	<i>I</i> _21			MAN	<i>I</i> -40		DΜ	V-42		DW	V-43			MW	V-44	
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
Aniline		(5)					Aug-17						Aug-17					Aug-10		
Anthracene	1720	(4)																		
Azobenzene		(5)																		
Benzo(a)anthracene		(4)																		
Benzo(a)pyrene		(2)																		
Benzo(b)fluoranthene		(4)																		
Benzo(g,h,i)perylene	-																			
Benzo(k)fluoranthene		(4)																		
Benzoic acid		(1)																		
Benzyl alcohol		(1)																		
Bis(2-chloroethoxy)methane	59	(1)																		
Bis(2-chloroethyl)ether	0.137	(4)																		
Bis(2-chloroisopropyl)ether	9.81	(4)																		
Bis(2-ethylhexyl)phthalate	6	(2)																		
Butyl benzyl phthalate	160	(5)																		
Carbazole																				
Chrysene		(4)																		
Dibenz(a,h)anthracene		(4)																		
Dibenzofuran	-	(. /																		
Diethyl phthalate		(4)																		
Dimethyl phthalate		(4)																		
		(4)																		
Di-n-butyl phthalate		(4)																		
Di-n-octyl phthalate	-	(4)																		
Fluoranthene		(4)																		
Fluorene	288	(4)																		
Hexachlorobenzene		(4)																		
Hexachlorobutadiene	1.387	(4)																		
Hexachlorocyclopentadiene	50	(4)																		
Hexachloroethane	3.28	(4)																		
Indeno(1,2,3-cd)pyrene	0.343	(4)																		
Isophorone	781	(4)																		
Naphthalene	1.65	(4)																		
Nitrobenzene	1.4	(4)																		
N-Nitrosodimethylamine	0.0017	(4)																		
N-Nitrosodi-n-propylamine		(5)																		
N-Nitrosodiphenylamine		(4)																		
Pentachlorophenol	170	(4)																		
Phenanthrene		(4)																		
Phenol		(4)																		
Pyrene		(' /																		
		(4)																		
Pyridine Pyridine	20	(1)																		
General Chemistry (mg/l):	4.0	(0)	.040	.0.40	. 0.40	0.44		. 0.50				0.00		.0.50			.040	0.0	.0.40	0.00
Fluoride		(3)	< 0.10	< 0.10	< 0.10	0.14		< 0.50				0.62		< 0.50			< 0.10	0.6	< 0.10	0.26
Chloride		(3)	170	220	200	300		290				260		390			46	56	55	48
Nitrite		(2)	< 1.0	< 1.0	< 0.10	< 0.10		< 0.50				< 0.50		< 0.50			< 1.0	< 0.10	< 0.10	< 0.10
Bromide		4	1.7	< 0.10	< 0.10	5.5		5				4.6		3.9			0.14	0.18	0.47	0.20
Nitrate		(3)	< 1.0	< 1.0	0.63	< 2.0		< 0.50				< 0.50		< 0.50			< 1.0	< 0.10	0.13	< 0.10
Phosphorus			< 0.50	< 0.50	< 0.50	< 0.50		< 2.5				3.4		3.1			< 10	< 10	< 10	< 10
Sulfate	600	(3)	78	160	17	5.4		< 2.5				< 2.5		6.9			3000	3000	3000	3200
Carbon Dioxide (CO ₂₎	-		1100	1000	1100	1100		1200				1100		1100			350	360	340	330
Alkalinity (CaCO ₃)	-		1164	1115	1264	1200		1190				1130		1165			371.8	376.3	377.6	360
Bicarbonate (CaCO ₃)																				
Bicaiboliate (CaCO ₃)	-		1164	1115	1264	1200		1190				1130		1165			371.8	376.3	377.6	360

TABLE 3 Terminal Wells Analytical Summary 2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source		MW	<i>l</i> -31			MW	-40		RW	I-42		RW	-43			MW	V-44	
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
Total Metals (mg/l):			Ť								, and the second									
Arsenic	0.01	(2)	0.015J	< 0.020	< 0.020	< 0.020		< 0.020				0.094		< 0.020			0.026	< 0.020	< 0.020	< 0.020
Barium	2.0	(2)	0.37	0.7	1.4	0.69		2.3				13		13			0.066	0.17	0.19	0.012
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020				< 0.0020		< 0.0020			< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060		0.018				0.16		0.37			0.0062	0.026	0.029	< 0.0060
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.0098				0.092		0.055			< 0.0050	< 0.0050	0.0053	< 0.0050
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050				< 0.050		< 0.050			< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050		0.014				< 0.0050		< 0.0050			< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020				< 0.00020		< 0.00020			< 0.00020	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/l):																				
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.010		< 0.020				< 0.020		< 0.020			0.034	< 0.020	< 0.020	< 0.0010
Barium	1.0	(3)	0.76	0.58	1.4	0.59		1.8				6.4		1.1			0.011J	0.02	< 0.020	0.0094
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020				< 0.0020		< 0.0020			< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-		100	110	110	98		97				120		180			480	480	470	460
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060				0.014		0.27			< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.010		< 0.0060				< 0.0060		0.017			< 0.0060	< 0.0060	< 0.0060	< 0.020
Iron	1	(3)	0.14	1.2	0.26	0.079		4.9				69		27			0.032	2.9	0.036	< 0.020
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.010		< 0.0050				0.036		0.015			< 0.0050	< 0.0050	< 0.0050	< 0.0010
Magnesium	-		32	38	45	36		44				74		63			58	59	59	65
Manganese	0.2	(3)	0.42	0.4	1.1	0.47		2.3				4		6.5			0.79	1.2	0.99	0.47
Potassium	-		3.7	4.1	4.4	3.3		3.5				5.4		14			7.1	7.9	7.9	7.3
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	0.014		< 0.050				< 0.050		< 0.050			< 0.050	< 0.050	< 0.050	0.0012
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050				< 0.0050		< 0.0050			< 0.0050	< 0.0050	< 0.0050	< 0.0050
Sodium	-		480	540	500	550		440				400		440			910	990	960	900
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	< 0.0010		< 0.10				< 0.10		< 0.10			< 0.10	< 0.10	< 0.10	0.0013
Zinc	10	(3)	0.01J	< 0.020	0.031	< 0.010		0.031				0.17		3			0.032	0.056	< 0.020	< 0.010
Total Petroleum Hydrocarbons	(mg/l):																			
Diesel Range Organics	0.0398	(6)	0.71	1.1	4.2	4.0		110				85		1200			< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	-	-	3.1	3.5	45	15		4.9				24		27			< 0.050	0.057	< 0.050	< 0.050
Motor Oil Range Organics	0.0398	(6)	< 2.5	< 2.5	< 2.5	< 2.5		< 25				< 25		< 250			< 2.5	< 2.5	< 2.5	< 2.5

Notes:

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
 - = No screening level available
 - * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
 - = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
 - ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 4
Cross-Gradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening					MW	<i>I</i> -1							MV	<i>I</i> -13				**MW-26
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17
Volatile Organic Compounds (u	a/L)				5 -					'	- 3								
1,1,1,2-Tetrachloroethane	 	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1,1-Trichloroethane		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1,2,2-Tetrachloroethane		(3)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
1,1,2-Trichloroethane		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1-Dichloroethane		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1-Dichloroethene		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,1-Dichloropropene	-		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2,3-Trichlorobenzene			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2,3-Trichloropropane		(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
1,2,4-Trichlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2,4-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dibromo-3-chloropropane		(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
1,2-Dibromoethane (EDB)		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dichlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dichloroethane (EDC)		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,2-Dichloropropane		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,3,5-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1.3-Dichlorobenzene		(-)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,3-Dichloropropane		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1,4-Dichlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
1-Methylnaphthalene		(5)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		
2,2-Dichloropropane		(0)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
2-Butanone		(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
2-Chlorotoluene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
2-Hexanone			< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
2-Methylnaphthalene		(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		
4-Chlorotoluene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
4-Isopropyltoluene		(-)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
4-Methyl-2-pentanone			< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
Acetone		(4)	2.2 J		< 10		< 10		< 10		3.2 J		< 10		< 10		< 10		
Benzene		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	
Bromobenzene		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Bromodichloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Bromoform		(5)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Bromomethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
Carbon disulfide		(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10		
Carbon Tetrachloride		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Chlorobenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Chloroethane		(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
Chloroform		(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Chloromethane		(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
cis-1,2-DCE		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
cis-1,3-Dichloropropene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Dibromochloromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Dibromomethane		(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Dichlorodifluoromethane		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Ethylbenzene		(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	
Hexachlorobutadiene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Isopropylbenzene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		

TABLE 4
Cross-Gradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening					MW	<i>I</i> -1							MV	V-13				**MW-26
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17
Methyl tert-butyl ether (MTBE)		(4)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	0.51 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Methylene Chloride		(2)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
Naphthalene		(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		
n-Butylbenzene		(+)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		
n-Propylbenzene			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
sec-Butylbenzene			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Styrene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
tert-Butylbenzene		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Tetrachloroethene (PCE)		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Toluene		(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	
trans-1,2-DCE		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
trans-1,3-Dichloropropene		(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Trichloroethene (TCE)		(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
Trichlorofluoromethane			< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		
		(4)											< 1.0				< 1.0		
Vinyl chloride Xylenes, Total		(3)	< 1.0 < 1.5		< 1.0		< 1.0		< 1.0		< 1.0				< 1.0				
•		(3)	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	
Semi Volatile Organic Compour		(2)				I	I	I	I						I		I		
1,2,4-Trichlorobenzene		(2)																	
1,2-Dichlorobenzene		(2)																	
1,3-Dichlorobenzene		(0)																	
1,4-Dichlorobenzene	-	(2)																	
1-Methylnaphthalene		(5)																	
2,4,5-Trichlorophenol		(4)																	
2,4,6-Trichlorophenol		(4)																	
2,4-Dichlorophenol		(4)																	
2,4-Dimethylphenol		(4)																	
2,4-Dinitrophenol		(4)																	
2,4-Dinitrotoluene		(4)																	
2,6-Dinitrotoluene	-	(4)																	
2-Chloronaphthalene		(4)																	
2-Chlorophenol		(4)																	
2-Methylnaphthalene		(1)																	
2-Methylphenol		(1)																	
2-Nitroaniline		(1)																	
2-Nitrophenol																			
3,3´-Dichlorobenzidine		(4)																	
3+4-Methylphenol		(1)																	
3-Nitroaniline																			
4,6-Dinitro-2-methylphenol		(4)																	
4-Bromophenyl phenyl ether																			
4-Chloro-3-methylphenol																			
4-Chloroaniline		(5)																	
4-Chlorophenyl phenyl ether																			
4-Nitroaniline		(5)																	
4-Nitrophenol																			
Acenaphthene	535	(4)																	
Acenaphthylene	-																		
Aniline		(5)																	
Anthracene		(4)																	
Azobenzene		(5)																	

TABLE 4
Cross-Gradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening					MV	<i>V</i> -1							MV	V-13				**MW-26
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17
Benzo(a)anthracene	0.12	(4)	7.ug 17																
Benzo(a)pyrene		(2)																	
Benzo(b)fluoranthene		(4)																	
Benzo(g,h,i)perylene	-	(-)																	
Benzo(k)fluoranthene	3.43	(4)																	
Benzoic acid	75000	(1)																	
Benzyl alcohol	2000	(1)																	
Bis(2-chloroethoxy)methane	59	(1)																	
Bis(2-chloroethyl)ether	0.137	(4)																	
Bis(2-chloroisopropyl)ether	9.81	(4)																	
Bis(2-ethylhexyl)phthalate	6	(2)																	
Butyl benzyl phthalate	160	(5)																	
Carbazole	- 24.2	(4)																	
Chrysene		(4)																	
Dibenz(a,h)anthracene	0.0343	(4)																	
Dibenzofuran	-	(4)																	
Diethyl phthalate	14800	(4)																	
Dimethyl phthalate	-	(1)																	
Di-n-butyl phthalate	885	(4)																	
Di-n-octyl phthalate	-																		
Fluoranthene	802	(4)																	
Fluorene	288	(4)																	
Hexachlorobenzene	0.0976	(4)																	
Hexachlorobutadiene	1.387	(4)																	
Hexachlorocyclopentadiene	50	(4)																	
Hexachloroethane	3.28	(4)																	
Indeno(1,2,3-cd)pyrene		(4)																	
Isophorone	781	(4)																	
Naphthalene	1.65	(4)																	
Nitrobenzene	1.4	(4)																	
N-Nitrosodimethylamine	0.0017	(4)																	
N-Nitrosodi-n-propylamine	0.11	(5)																	
N-Nitrosodiphenylamine	0.0049	(4)																	
Pentachlorophenol		(4)																	
Phenanthrene		(4)																	
Phenol	5760	(4)																	
Pyrene		(4)																	
Pyridine		(1)																	
General Chemistry (mg/l):		/																	
Fluoride	1.6	(3)	0.32		0.45		0.51		0.49		< 0.10		< 0.10		< 0.10		< 0.10		
Chloride	250	(3)	15		11		11		14		240		230		170		160		
Nitrite	1	(2)	< 1.0		< 1.0		< 0.10		< 0.10		2.7		1.8		0.16		0.36		
Bromide	-	(-)	0.12		< 0.10		< 0.10		0.12		2.9		3		1.2		2.7		
Nitrate		(3)	0.78 J		< 1.0		0.54		0.43		2.7		1.8		0.25		2.9		
Phosphorus		(0)	< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		< 0.50		
Sulfate		(3)	110		84		110		110		860		850		1100		1200		
Carbon Dioxide (CO ₂)	-	(3)	280		240		230		270		950		950		890		880		
Alkalinity (CaCO ₃)			301.8		266.4		246.5		300		958.8		954.3		909.4		930		
Bicarbonate (CaCO ₃)	-		301.8		266.4		246.5		300		958.8		954.3		909.4		930		
Distribution (SdOO3)	_		301.0		200.4		270.0				330.0		334.3		303.4		330		

TABLE 4 Cross-Gradient Wells Analytical Summary 2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source				MW	<i>I</i> -1							MV	V-13				**MW-26
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17
Total Metals (mg/l):		<u>'</u>	Ŭ			<u>'</u>								•					Ŭ
Arsenic	0.01	(2)	< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		< 0.020		
Barium	2.0	(2)	0.061		0.28		0.031		0.072		0.025		0.052		0.022		0.023		
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		0.0027 J		0.059		< 0.0060		< 0.0060		
Lead	0.015	(2)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		
Mercury	0.002	(3)	0.000067 J		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		
Dissolved Metals (mg/l):																			
Arsenic	0.01	(2)	0.0096 J		< 0.020		< 0.020		0.0011		0.013 J		< 0.020		< 0.020		< 0.020		
Barium	1.0	(3)	0.036		0.022		0.031		0.027		0.024		0.022		0.023		0.022		
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		
Calcium	-		83		65		77		71		230		230		260		280		
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		
Iron	1	(3)	0.012 J		0.22		< 0.020		0.053		< 0.020		0.044		< 0.020		< 0.020		
Lead	0.015	(2)	< 0.0050		< 0.0050		< 0.0050		< 0.0010		< 0.0050		< 0.0050		< 0.0050		< 0.0010		
Magnesium	-		19		16		17		16		84		82		96		83		
Manganese	0.2	(3)	0.016		0.2		0.037		0.11		1.3		0.95		0.6		1.4		
Potassium	-		2.4		2.8		2.2		2.7		3.6		4		4.1		5.5		
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		0.0015		< 0.050		< 0.050		< 0.050		0.023		
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		
Sodium	-		73		81		68		81		530		540		570		600		
Uranium	0.03	(3)	< 0.10		< 0.10		< 0.10		0.0027		< 0.10		< 0.10		< 0.10		0.0081		
Zinc	10	(3)	0.031		0.024		0.027		< 0.010		0.017 J		< 0.020		0.027		< 0.010		
Total Petroleum Hydrocarbons (I																			
Diesel Range Organics	0.0398	(6)	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20		0.28		< 0.20		
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	<0.050		< 0.050		< 0.050		< 0.050		
Motor Oil Range Organics	0.0398	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	<2.5		< 2.5		< 2.5		< 2.5		

Notes:

- (1) EPA Regional Screening Levels (June 2017) Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil

TABLE 4
Cross-Gradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	T -		MW	I-27			MW	V-32					MV	N-33			
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compounds (u			7 tag 17	rag 10	7 rug 10	7 tug 14	7 tug 17	/ rug 10	Aug 10	7 tug 14	7 tug 17	/ γρι τ/	/ Aug 10	7,01.10	7 rug 10	710110	7tug 14	7 (P) 1 1
1,1,1,2-Tetrachloroethane		(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,1,1-Trichloroethane		(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,1,2,2-Tetrachloroethane		(3)	< 2.0	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0				< 2.0	
1,1,2-Trichloroethane		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,1-Dichloroethane		(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,1-Dichloroethene		(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,1-Dichloropropene		(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2,3-Trichlorobenzene			< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2,3-Trichloropropane		(4)	< 2.0	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0				< 2.0	
1,2,4-Trichlorobenzene		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2,4-Trimethylbenzene		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2-Dibromo-3-chloropropane		(2)	< 2.0	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0				< 2.0	
1,2-Dibromoethane (EDB)		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2-Dichlorobenzene		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2-Dichloroethane (EDC		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,2-Dichloropropane		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,3,5-Trimethylbenzene		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,3,5-1 innethylbenzene		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
·		(4)			< 2.0													
1,3-Dichloropropane		(1)	< 1.0	< 2.0		< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1,4-Dichlorobenzene		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
1-Methylnaphthalene		(5)	< 4.0	< 8.0	< 8.0	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0				< 4.0	
2,2-Dichloropropane		(4)	< 2.0	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0				< 2.0	
2-Butanone		(4)	< 10	< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10		< 10				< 10	
2-Chlorotoluene		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
2-Hexanone		(4)	< 10	< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10		< 10				< 10	
2-Methylnaphthalene		(1)	< 4.0	< 8.0	< 8.0	< 8.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0				< 4.0	
4-Chlorotoluene		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
4-Isopropyltoluene			< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
4-Methyl-2-pentanone			< 10	< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10		< 10				< 10	
Acetone		(4)	< 10	< 20	< 20	< 20	< 10	< 10	< 10	< 10	< 10		< 10				< 10	
Benzene		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0
Bromobenzene		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Bromodichloromethane		(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Bromoform		(5)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Bromomethane		(4)	< 3.0	< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0				< 3.0	
Carbon disulfide		(4)	< 10	< 20	< 20	< 20	< 10	< 10	< 10	< 1.0	< 10		< 10				< 10	
Carbon Tetrachloride		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 10	< 1.0		< 1.0				< 1.0	
Chlorobenzene		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Chloroethane		(4)	< 2.0	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0				< 2.0	
Chloroform		(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Chloromethane		(4)	< 3.0	< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0				< 3.0	
cis-1,2-DCE		(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
cis-1,3-Dichloropropene		(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Dibromochloromethane		(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Dibromomethane		(1)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 31.0	< 1.0		< 1.0				< 1.0	
Dichlorodifluoromethane	197	(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Ethylbenzene	700	(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0
Hexachlorobutadiene	1.39	(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Isopropylbenzene	447	(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	

TABLE 4
Cross-Gradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening			MW	I-27			MW	<i>I</i> -32					MV	V-33			
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Methyl tert-butyl ether (MTBE)	143	(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0
Methylene Chloride	5	(2)	< 3.0	< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0				< 3.0	
Naphthalene	1.65	(4)	< 2.0	< 4.0	< 4.0	< 4.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0				< 2.0	
n-Butylbenzene	-	(-/	< 3.0	< 6.0	< 6.0	< 6.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0				< 3.0	
n-Propylbenzene	-		< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
sec-Butylbenzene	-		< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Styrene	100	(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
tert-Butylbenzene	-	(=)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Tetrachloroethene (PCE)	5	(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Toluene	750	(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0		<1.0	< 1.0	<1.0
trans-1,2-DCE	100	(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
trans-1,3-Dichloropropene	4.71	(4)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Trichloroethene (TCE)	5	(2)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
Trichlorofluoromethane	1136		< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0				< 1.0	
		(4)																
Vinyl chloride	1	(3)	< 1.0	< 2.0	< 2.0	< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.5	< 1.0	4.5		4.5	< 1.0	4.5
Xylenes, Total	620	(3)	< 1.5	< 3.0	< 3.0	< 3.0	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<1.5		<1.5	< 1.5	<1.5
Semi Volatile Organic Compoun		(0)		I		I							I					
1,2,4-Trichlorobenzene	70	(2)																
1,2-Dichlorobenzene	600	(2)																
1,3-Dichlorobenzene	-																	
1,4-Dichlorobenzene	75	(2)																
1-Methylnaphthalene	11	(5)																
2,4,5-Trichlorophenol	1170	(4)																
2,4,6-Trichlorophenol	11.9	(4)																
2,4-Dichlorophenol	45.3	(4)																
2,4-Dimethylphenol	354	(4)																
2,4-Dinitrophenol	38.7	(4)																
2,4-Dinitrotoluene	2.37	(4)																
2,6-Dinitrotoluene	0.485	(4)																
2-Chloronaphthalene	733	(4)																
2-Chlorophenol	91	(4)																
2-Methylnaphthalene	36	(1)																
2-Methylphenol	930	(1)																
2-Nitroaniline	190	(1)																
2-Nitrophenol	-																	
3,3'-Dichlorobenzidine	1.25	(4)																
3+4-Methylphenol	930	(1)																
3-Nitroaniline	-	()																
4,6-Dinitro-2-methylphenol	1.52	(4)																
4-Bromophenyl phenyl ether	-	(7)																
4-Chloro-3-methylphenol	_																	
4-Chloroaniline	3.7	(5)																
4-Chlorophenyl phenyl ether	5.1	(3)	! !															
	20	(E)	 															
4-Nitroaniline	38	(5)	 															
4-Nitrophenol	-	(4)																
Acenaphthene	535	(4)																
Acenaphthylene	-	(5)																
Aniline	130	(5)																
Anthracene	1720	(4)																
Azobenzene	1.2	(5)																

TABLE 4
Cross-Gradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	Ι.		MV	V-27			MW	<i>I</i> -32					MV	V-33			
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Benzo(a)anthracene	0.12	(4)																
Benzo(a)pyrene	0.2	(2)																
Benzo(b)fluoranthene	0.343	(4)																
Benzo(g,h,i)perylene	-	(' /																
Benzo(k)fluoranthene	3.43	(4)																
Benzoic acid	75000	(1)																
Benzyl alcohol	2000	(1)																
Bis(2-chloroethoxy)methane	59	(1)																
Bis(2-chloroethyl)ether	0.137	(4)																
Bis(2-chloroisopropyl)ether	9.81	(4)																
Bis(2-ethylhexyl)phthalate	6	(2)																
Butyl benzyl phthalate	160	(5)																
Carbazole	-	(3)																
Chrysene	34.3	(4)																
Dibenz(a,h)anthracene	0.0343	(4)																
Dibenz(a,n)anthracene Dibenzofuran	0.0343	(4)																
		(4)																
Diethyl phthalate	14800	(4)																
Dimethyl phthalate	-	(4)																
Di-n-butyl phthalate	885	(4)																
Di-n-octyl phthalate	-	(4)																
Fluoranthene	802	(4)																
Fluorene	288	(4)																
Hexachlorobenzene	0.0976	(4)																
Hexachlorobutadiene	1.387	(4)																
Hexachlorocyclopentadiene	50	(4)																
Hexachloroethane	3.28	(4)																
Indeno(1,2,3-cd)pyrene	0.343	(4)																
Isophorone	781	(4)																
Naphthalene	1.65	(4)																
Nitrobenzene		(4)																
N-Nitrosodimethylamine	0.0017	(4)																
N-Nitrosodi-n-propylamine	0.11	(5)																
N-Nitrosodiphenylamine		(4)																
Pentachlorophenol		(4)																
Phenanthrene		(4)																
Phenol	5760	(4)																
Pyrene		(4)																
Pyridine	20	(1)																
General Chemistry (mg/l):																		
Fluoride		(3)	< 0.50	< 0.50	< 0.50	0.19	< 0.10	< 0.10	< 0.10	0.15	LW		0.51				0.10	
Chloride		(3)	440	360	450	690	630	630	530	650	LW		250				340	
Nitrite	1	(2)	< 0.50	< 1.0	< 0.50	< 2.0	< 2.0	40	< 2.0	<0.10	LW		40				< 0.10	
Bromide	-		4.7	3.2	4.4	6.2	5.8	4.4	4.5	4.9	LW		1.4				1.7	
Nitrate	10	(3)	< 0.50	< 1.0	< 0.50	< 0.10	47	40	55	39	LW		40				24	
Phosphorus	-		< 2.5	< 10	< 2.5	< 10	< 0.50	< 10	< 10	< 10	LW		< 10				< 10	
Sulfate	600	(3)	2800	2700	2200	3100	1600	1600	1400	1600	LW		2500				2100	
Carbon Dioxide (CO ₂)	-		380	400	490	230	170	170	180	170	LW		110				110	
Alkalinity (CaCO ₃)			395.6	408.9	527.8	220	188.4	186.9	201.7	190	LW		125.5				120	
Bicarbonate (CaCO ₃)	-		395.6	408.9	527.8	220	188.4	186.9	201.7	190	LW		125.5				120	

TABLE 4 Cross-Gradient Wells Analytical Summary 2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source		MW	I-27			MW	I-32					MV	V-33			
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Total Metals (mg/l):																•		•
Arsenic	0.01	(2)	< 0.20	< 0.020	< 0.020	< 0.020	< 0.20	< 0.020	< 0.020	< 0.020	LW		< 0.020				< 0.020	
Barium	2.0	(2)	0.073	0.17	0.068	0.058	0.019	0.033	< 0.020	0.034	LW		0.021				0.016	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	LW		< 0.0020				< 0.0020	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	LW		< 0.0060				< 0.0060	
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	<0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	LW		< 0.0050				< 0.0050	
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	LW		0.063				< 0.050	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	LW		< 0.0050				< 0.0050	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	LW		< 0.00020				< 0.00020	
Dissolved Metals (mg/l):																		
Arsenic	0.01	(2)	0.023	< 0.020	< 0.020	0.016	0.012 J	< 0.020	< 0.020	< 0.020	LW		< 0.020				< 0.010	
Barium	1.0	(3)	0.034	0.044	0.054	0.053	0.018 J	< 0.020	< 0.020	0.017	LW		< 0.020				0.015	
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	LW		< 0.0020				< 0.0020	
Calcium	-		690	550	590	700	340	340	310	290	LW		480				370	
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	LW		< 0.0060				< 0.0060	
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	LW		< 0.0060				< 0.0060	
Iron	1	(3)	1.3	0.74	0.13	0.36	0.0052 J	< 0.020	< 0.020	< 0.020	LW		< 0.020				< 0.020	
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.0050	< 0.0050	< 0.0010	LW		< 0.0050				< 0.010	
Magnesium	-		99	92	93	110	48	50	45	44	LW		69				55	
Manganese	0.2	(3)	2.1	2.7	6	0.80	0.00085 J	< 0.0020	< 0.0020	< 0.0020	LW		< 0.0020				< 0.0020	
Potassium	-		4.0	5.3	5.8	3.3	3.6	4	3.9	5.9	LW		5.5				7.0	
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	0.054	< 0.050	< 0.050	< 0.050	0.057	LW		0.097				0.049	
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0039 J	< 0.0050	< 0.0050	< 0.0050	LW		< 0.0050				< 0.0050	
Sodium	-		800	720	730	910	800	810	750	800	LW		820				770	
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	<0.010	< 0.10	< 0.10	< 0.10	0.016	LW		< 0.10				0.012	
Zinc	10	(3)	0.014 J	< 0.020	< 0.020	< 0.010	0.025	< 0.020	0.023	< 0.010	LW		< 0.020				< 0.010	
Total Petroleum Hydrocarbons (r	<u> </u>																	
Diesel Range Organics	0.0398	(6)	3.2	2.2	3.9	0.34	< 0.20	< 0.20	0.28	< 0.20	< 0.20	< 0.20	< 0.20	<0.20		<0.20	< 0.20	<0.20
Gasoline Range Organics	-	-	< 0.050	0.2	0.25	< 0.050	< 0.050	< 0.050	0.19	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	0.0398	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5	< 2.5	< 2.5

Notes:

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil

(O) INIVILID (groundwater screening level for unknown on
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.
1	= 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source		MW	<i>'</i> -11					MW	<i>I</i> -12					MV	V-34	
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Aug-16	Aug-15	Aug-14
Volatile Organic Compounds (ug/L)			J		J	J	Ŭ			,	, ,				Ĭ			
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	60	(3)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0	< 2.0	< 2.0	< 10	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0
1,1,2-Trichloroethane	5	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	25	(3)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	5	(3)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	-		< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	-		< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	0.01	(4)	< 2.0	< 2.0	< 2.0	< 10	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0
1,2,4-Trichlorobenzene	70	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	15	(1)	97	120	390	230	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	51
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0	< 2.0	< 2.0	< 10	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0
1,2-Dibromoethane (EDB)	0.05	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	600	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane (EDC)	5	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	5	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	12	(1)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	-		< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	370	(1)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	75	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	11	(5)	15	17	16	< 20	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	< 4.0	< 4.0	< 4.0
2,2-Dichloropropane	-		< 2.0	< 2.0	< 2.0	< 10	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0
2-Butanone	5560	(4)	< 10	< 10	< 10	< 50	< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10
2-Chlorotoluene	240	(1)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	-		< 10	< 10	< 10	< 50	< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10
2-Methylnaphthalene	36	(1)	17	23	18	< 20	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	< 4.0	< 4.0	< 4.0
4-Chlorotoluene	250	(1)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
4-Isopropyltoluene	-		1.6	3.5	5	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	3.1
4-Methyl-2-pentanone	-		< 10	< 10	< 10	< 50	< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10
Acetone	14100	(4)	< 10	19	< 10	< 50	< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10
Benzene	5	(2)	29	9.9	14	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	62	(1)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	1.34	(4)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	33	(5)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	7.54	(4)	< 3.0	< 3.0	< 3.0	< 15	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0
Carbon disulfide	810	(4)	< 10	< 10	< 10	< 50	< 10		< 10		< 10		< 10		< 10	< 10	< 10	< 10
Carbon Tetrachloride	5	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	100	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	20900	(4)	< 2.0	< 2.0	< 2.0	< 10	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0
Chloroform	100	(3)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	20.3	(4)	< 3.0	< 3.0	< 3.0	< 15	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0
cis-1,2-DCE	70	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	4.7	(4)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	1.68	(4)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	8.3	(1)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	197	(4)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	700	(2)	0.5 J	< 1.0	1	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	1.39	(4)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene	447	(4)	58	59	62	48	< 1.0		< 1.0		< 1.0		< 1.0		3.8	2.6	4.6	13

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

		8,514			MW-12								MW-34					
Screening Levels		Source	A 4.7	MW		Aug 44	A 47	Anc 47	A			A = 0.4 F	Aug 44	A m c 4 4	A 47			Aug. 4.4
Mathed to at heat dath on (MTDE)		(4)	Aug-17 2.4	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17 0.48 J	Aug-16 < 1.0	Aug-15	Aug-14
Methyl tert-butyl ether (MTBE) Methylene Chloride	143 5	(4)	< 3.0	2.5 < 3.0	2 < 3.0	< 5.0 < 15	< 1.0 < 3.0	< 1.0	< 1.0 < 3.0	< 1.0	< 1.0 < 3.0	< 1.0	< 1.0 < 3.0	< 1.0	< 3.0	< 3.0	< 1.0 < 3.0	< 1.0 < 3.0
Naphthalene	1.65		< 3.0 80	70	71	59	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	4.2
n-Butylbenzene	-	(4)	1.9 J	< 3.0	< 3.0	< 15	< 3.0		< 3.0		< 3.0		< 3.0		0.24 J	< 3.0	< 3.0	< 3.0
·			63		54	62	< 1.0				< 1.0		< 1.0		2.4	1.5	2.8	
n-Propylbenzene sec-Butylbenzene	-		7.8	64 12	12	12	< 1.0		< 1.0 < 1.0		< 1.0		< 1.0		1.9	2.6	4.5	<10 6.7
Styrene	100	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
tert-Butylbenzene	-	(2)	1.9	2.4	2.5	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		1.6	1.7	1.7	2.5
Tetrachloroethene (PCE)	5	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Toluene	750		< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	100	(3)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0 	< 1.0	< 1.0	< 1.0	< 1.U	< 1.0	< 1.0 	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	4.71	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (TCE)	5	(2)	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane	1136		< 1.0	< 1.0	< 1.0	< 5.0	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride		(4)	< 1.0	< 1.0		< 5.0	< 1.0				< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	
Xylenes, Total	620	(3)	< 1.0	< 1.0	< 1.0 < 1.5	< 7.5	< 1.0	<1.5	< 1.0 < 1.5	<1.5	< 1.0	<1.5	< 1.0	<1.5	< 1.0	< 1.0	< 1.0	< 1.0 < 1.5
Semi Volatile Organic Compounds (u		(3)	< 1.5	< 1.5	< 1.5	< 7.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	< 1.5	< 1.5	< 1.5
1,2,4-Trichlorobenzene	(2)		< 10		< 10		ı	< 10		l		< 10						
1,2-Dichlorobenzene	70 600	(2)		< 10		< 10			< 10				< 10					
1,3-Dichlorobenzene	000	(2)		< 10		< 10			< 10				< 10					
1,4-Dichlorobenzene	75	(2)		< 10		< 10			< 10				< 10					
1-Methylnaphthalene	11	(5)		25		16			< 10				< 10					
2,4,5-Trichlorophenol	1170	(4)		< 10		< 10			< 10				< 10					
2,4,6-Trichlorophenol	11.9	(4)		< 10		< 10			< 10				< 10					
2,4-Dichlorophenol	45.3	(4)		< 20		< 20			< 20				< 20					
2,4-Dimethylphenol	354	(4)		< 10		< 10			< 10				< 10					
2,4-Dinietryphenol	38.7	(4)		< 20		< 20			< 20				< 20					
2,4-Dinitrophenol	2.37	(4)		< 10		< 10			< 10				< 10					
2,6-Dinitrotoluene	0.485	(4)		< 10		< 10			< 10				< 10					
2-Chloronaphthalene	733	(4)		< 10		< 10			< 10				< 10					
2-Chlorophenol	91	(4)		< 10		< 10			< 10				< 10					
2-Methylnaphthalene	36	(1)		11		< 10			< 10				< 10					
2-Methylphenol	930	(1)		< 10		< 20			< 10				< 20					
2-Nitroaniline	190	(1)		< 10		< 10			< 10				< 10					
2-Nitrophenol	-	(1)		< 10		< 10			< 10				< 10					
3,3´-Dichlorobenzidine	1.25	(4)		< 10		< 10			< 10				< 10					
3+4-Methylphenol	930	(1)		17		< 10			< 10				< 10					
3-Nitroaniline	-	(1)		< 10		< 10			< 10				< 10					
4,6-Dinitro-2-methylphenol	1.52	(4)		< 20		< 20			< 20				< 20					
4-Bromophenyl phenyl ether	-	(1)		< 10		< 10			< 10				< 10					
4-Chloro-3-methylphenol	-			< 10		< 10			< 10				< 10					
4-Chloroaniline	3.7	(5)		< 10		< 10			< 10				< 10					
4-Chlorophenyl phenyl ether	-	(3)		< 10		< 10			< 10				< 10					
4-Nitroaniline	38	(5)		< 10		< 10			< 10				< 10					
4-Nitrophenol	-	(5)		< 10		< 10			< 10				< 10					
Acenaphthene	535	(4)		< 10		< 10			< 10				< 10					
Acenaphthylene	-	(' '		< 10		< 10			< 10				< 10					
Aniline	130	(5)		< 10		< 10			< 10				< 10					
Anthracene	1720	(4)		< 10		< 10			< 10				< 10					
Anunacene	1120	(+)		\ 10		\ 10			\ 10				_ \ 10	_ 				

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening			MW							V-12					MV	V-34	
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Aug-16	Aug-15	Aug-14
Azobenzene	1.2	(5)	Aug-17	< 10		< 10	Aug-17		< 10		Aug-15		< 10		Aug-17			Aug-14
Benzo(a)anthracene	0.12	(4)		< 10		< 10			< 10				< 10					
Benzo(a)pyrene	0.12	(2)		< 10		< 10			< 10				< 10					
Benzo(b)fluoranthene	0.343	(4)		< 10		< 10			< 10				< 10					
Benzo(g,h,i)perylene	0.545	(4)		< 10		< 10			< 10				< 10					
Benzo(k)fluoranthene	3.43	(4)		< 10		< 10			< 10				< 10					
Benzoic acid	75000	(1)		< 20		< 20			< 20				< 20					
Benzyl alcohol	2000	(1)		< 10		< 10			< 10				< 10					
Bis(2-chloroethoxy)methane	59	(1)		< 10		< 10			< 10				< 10					
Bis(2-chloroethyl)ether	0.137	(4)		< 10		< 10			< 10				< 10					
Bis(2-chloroisopropyl)ether	9.81	(4)		< 10		< 10			< 10				< 10					
Bis(2-ethylhexyl)phthalate	6	(2)		< 10		< 10			< 10				< 10					
Butyl benzyl phthalate	160	(5)		< 10		< 10			< 10				< 10					
Carbazole	-	(0)		< 10		< 10			< 10				< 10					
Chrysene	34.3	(4)		< 10		< 10			< 10				< 10					
Dibenz(a,h)anthracene	0.0343	(4)		< 10		< 10			< 10				< 10					
Dibenzofuran	-	(7)		< 10		< 10			< 10				< 10					
Diethyl phthalate	14800	(4)		< 10		< 10			< 10				< 10					
Dimethyl phthalate	-	(1)		< 10		< 10			< 10				< 10					
Di-n-butyl phthalate	885	(4)		< 10		< 10			< 10				< 10					
Di-n-octyl phthalate	-	(4)		< 10		< 10			< 10				< 10					
Fluoranthene	802	(4)		< 10		< 10			< 10				< 10					
Fluorene	288	(4)		< 10		< 10			< 10				< 10					
Hexachlorobenzene	0.0976	(4)		< 10		< 10			< 10				< 10					
Hexachlorobutadiene	1.387	(4)		< 10		< 10			< 10				< 10					
Hexachlorocyclopentadiene	50	(4)		< 10		< 10			< 10				< 10					
Hexachloroethane	3.28	(4)		< 10		< 10			< 10				< 10					
Indeno(1,2,3-cd)pyrene	0.343	(4)		< 10		< 10			< 10				< 10					
Isophorone	781	(4)		< 10		< 10			< 10				< 10					
Naphthalene	1.65	(4)		43		23			< 10				< 10					
Nitrobenzene	1.4	(4)		< 10		< 10			< 10				< 10					
N-Nitrosodimethylamine	0.0017	(4)		< 10		< 10			< 10				< 10					
N-Nitrosodi-n-propylamine	0.11	(5)		< 10		< 10			< 10				< 10					
N-Nitrosodiphenylamine	0.0049	(4)		< 10		< 10			< 10				< 10					
Pentachlorophenol	170	(4)		< 20		< 20			< 20				< 20					
Phenanthrene	1	(4)		< 10		< 10			< 10				< 10					
Phenol	5760	(4)		< 10		< 10			< 10				< 10					
Pyrene	117	(4)		< 10		< 10			< 10				< 10					
Pyridine	20	(1)		< 10		< 10			< 10				< 10					
General Chemistry (mg/l):																		
Fluoride	1.6	(3)	0.37 J	0.41	0.35	0.62	0.33		0.45		0.63		0.63		0.54	0.38	0.56	0.70
Chloride	250	(3)	210	120	78	96	3.4		4.7		4		4.0		240	260	190	180
Nitrite	1	(2)	< 0.50	< 1.0	< 0.10	< 0.50	< 0.10		< 1.0		< 0.10		< 0.10		< 0.50	< 1.0	< 0.10	< 0.50
Bromide	-		3.2	0.92	0.15	1.4	0.041 J		< 0.10		< 0.10		< 0.10		3.5	2.2	0.7	2.3
Nitrate	10	(3)	< 0.50	< 1.0	0.15	< 0.50	0.030 J		< 1.0		0.11		< 0.10		< 0.50	< 1.0	0.27	< 0.50
Phosphorus	-		< 2.5	2.8	< 0.50	< 2.5	< 0.50		< 0.50		< 0.50		< 0.50		< 2.5	< 2.5	< 0.50	< 2.5
Sulfate	600	(3)	1.3 J	7.6	5.7	6.3	44		48		79		120		3.6	340	23	14
Carbon Dioxide (CO ₂)	-	ì	1100	1000	1000	1100	140		130		130		130		1000	930	820	870
Alkalinity (CaCO ₃)	-		1140	1082	1038	1000	155.6		149		148.4		140		1088	979	876	900
2 7 7																		
Bicarbonate (CaCO ₃)	-		1140	1082	1038	1000	155.6		149		148.4		140		1088	979	876	900

	Screening	Source		MW	<i>l</i> -11					MV	V-12					MW	/-34	
	Levels	Source	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Aug-16	Aug-15	Aug-14
Total Metals (mg/l):								•			j							
Arsenic	0.01	(2)	0.026	0.047	0.035	< 0.020	< 0.020		< 0.020		< 0.020		< 0.020		0.032	< 0.020	< 0.020	< 0.020
Barium	2.0	(2)	0.75	0.96	0.92	0.74	0.043		0.36		0.13		0.19		0.93	0.56	0.78	0.39
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.015		0.058		0.34		0.82		< 0.0060	< 0.0060	< 0.0060	< 0.0060
Lead	0.015	(2)	< 0.0050	0.028	0.0075	0.019	< 0.0050		0.019		0.0064		0.0096		< 0.0050	< 0.0050	< 0.0050	0.0076
Selenium	0.05	(3)	< 0.0050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050		< 0.050		< 0.0050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/l):																		
Arsenic	0.01	(2)	0.017 J	0.033	< 0.020	< 0.0050	< 0.020		< 0.020		< 0.020		0.0012		< 0.020	< 0.020	< 0.020	< 0.010
Barium	1.0	(3)	0.7	0.86	0.85	0.64	0.044		0.27		0.047		0.062		0.91	0.4	0.73	0.5
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-		130	87	96	73	46		58		48		66		120	150	93	110
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		0.089		< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060	0.015	< 0.0060	< 0.0060	< 0.0060		0.023		< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)	4.2	18	9.6	8	< 0.020		9.2		< 0.020		0.046		3.2	4.5	2.8	1.5
Lead	0.015	(2)	< 0.0050	0.027	0.006	0.0019	< 0.0050		0.032		< 0.0050		< 0.0010		< 0.0050	< 0.0050	0.005	< 0.0010
Magnesium	-		27	21	22	17	6.9		11		6.9		9.3		20	30	16	21
Manganese	0.2	(3)	2.1	1.8	1.5	1.2	0.0066		2.1		0.03		0.25		3.7	3.6	3.2	2.9
Potassium	-		1.7	2.8	1.5	2.4	0.58 J		1.6		< 1.0		1.1		1.1	2.1	1.3	2.8
Selenium	0.05	(3)	0.043 J	< 0.050	< 0.050	0.0090	< 0.050		< 0.050		< 0.050		< 0.0010		< 0.050	< 0.050	< 0.050	< 0.010
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050
Sodium	-		440	410	390	380	30		32		31		40		440	490	380	420
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	< 0.0010	< 0.10		< 0.10		< 0.10		< 0.0010		< 0.10	< 0.10	< 0.10	< 0.0010
Zinc	10	(3)	0.093	0.063	< 0.020	< 0.010	0.047		0.1		< 0.020		< 0.010		0.041	< 0.020	< 0.020	< 0.010
Total Petroleum Hydrocarbons (mg/):																	
Diesel Range Organics	0.0398	(6)	1.4	1.8	1.5	1.6	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	1.1	0.89	0.56	2.2
Gasoline Range Organics	-	-	0.98	1.4	2.4	2.3	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	1.1	0.87	1.3	2.0
Motor Oil Range Organics	0.0398	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil

(O) INIVILID 9	Todilawater sereciling lever for antiflowir on
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.
1	= 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source				MW	<i>I</i> -35							MV	V-37			
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compounds (ug/L)							1.29				i i i g				1		1	L . F
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,1-Trichloroethane	60	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,1,2-Trichloroethane	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethane	25	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloroethene	5	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,1-Dichloropropene	-	(0)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichlorobenzene	-		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,3-Trichloropropane	0.01	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2,4-Trichlorobenzene	70	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2,4-Tricmoroberizerie	15	(1)	0.77 J		25		19		51		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
1,2-Dibromoethane (EDB)	0.2	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichlorobenzene	600	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,2-Dichloroethane (EDC)	5		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
		(2)																
1,2-Dichloropropane	5	(2)	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0 < 1.0	
1,3,5-Trimethylbenzene	12	(1)	< 1.0				< 1.0		< 1.0		< 1.0		< 1.0		< 1.0			
1,3-Dichlorobenzene	- 070	(4)			< 1.0				< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,3-Dichloropropane	370	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1,4-Dichlorobenzene	75	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
1-Methylnaphthalene	11	(5)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
2,2-Dichloropropane	-		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
2-Butanone	5560	(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
2-Chlorotoluene	240	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
2-Hexanone	-		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
2-Methylnaphthalene	36	(1)	< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0		< 4.0	
4-Chlorotoluene	250	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
4-Isopropyltoluene	-		< 1.0		1.1		1.1		2.3		< 1.0		< 1.0		< 1.0		< 1.0	
4-Methyl-2-pentanone	-		< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
Acetone	14100	(4)	< 10		< 10		< 10		< 10		1.0 J		< 10		< 10		< 10	
Benzene	5	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	62	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromodichloromethane	1.34	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromoform	33	(5)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Bromomethane	7.54	(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Carbon disulfide	810	(4)	< 10		< 10		< 10		< 10		< 10		< 10		< 10		< 10	
Carbon Tetrachloride	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chlorobenzene	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloroethane	20900	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
Chloroform	100	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Chloromethane	20.3	(4)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
cis-1,2-DCE	70	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
cis-1,3-Dichloropropene	4.7	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromochloromethane	1.68	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dibromomethane	8.3	(1)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Dichlorodifluoromethane	197	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Ethylbenzene	700	(2)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	1.39	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Isopropylbenzene	447	(4)	2.3		4.7		1.5		5.9		< 1.0		< 1.0		< 1.0		< 1.0	

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	0 !									-								
,	Screening	Source			A 40	MW									V-37			
	LCVCIS		Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Methyl tert-butyl ether (MTBE)	143	(4)	0.6 J	0.0012	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride	5	(2)	< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0	
Naphthalene	1.65	(4)	< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0		< 2.0	
n-Butylbenzene	-		0.15 J		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 3.0		< 1.0	
n-Propylbenzene	-		1.8		4.1		< 1.0		5.8		< 1.0		< 1.0		< 1.0		< 1.0	
sec-Butylbenzene	-	(0)	1.3		3.6		1.1		3.7		< 1.0		< 1.0		< 1.0		< 3.0	
Styrene	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
tert-Butylbenzene	-	(0)	1.4		1.9		< 1.0		2.2		0.14 J		< 1.0		< 1.0		< 1.0	
Tetrachloroethene (PCE)	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Toluene	750	(3)	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE	100	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
trans-1,3-Dichloropropene	4.71	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichloroethene (TCE)	5	(2)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Trichlorofluoromethane	1136	(4)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Vinyl chloride	1	(3)	< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0		< 1.0	
Xylenes, Total	620	(3)	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Semi Volatile Organic Compounds (u		(0)						I								1		
1,2,4-Trichlorobenzene	70	(2)																
1,2-Dichlorobenzene	600	(2)																
1,3-Dichlorobenzene	-	(0)																
1,4-Dichlorobenzene	75	(2)																
1-Methylnaphthalene	11	(5)																
2,4,5-Trichlorophenol	1170	(4)																
2,4,6-Trichlorophenol	11.9	(4)																
2,4-Dichlorophenol	45.3	(4)																
2,4-Dimethylphenol	354	(4)																
2,4-Dinitrophenol	38.7	(4)																
2,4-Dinitrotoluene	2.37	(4)																
2,6-Dinitrotoluene	0.485	(4)																
2-Chloronaphthalene	733	(4)																
2-Chlorophenol	91	(4)																
2-Methylnaphthalene	36	(1)																
2-Methylphenol	930	(1)																
2-Nitroaniline	190	(1)																
2-Nitrophenol	4.05	(4)																
3,3´-Dichlorobenzidine	1.25	(4)																
3+4-Methylphenol	930	(1)																
3-Nitroaniline	- 4.50	(4)																
4,6-Dinitro-2-methylphenol	1.52	(4)																
4-Bromophenyl phenyl ether	-																	
4-Chloro-3-methylphenol	- 2.7	(F)																
4-Chloroaniline	3.7	(5)																
4-Chlorophenyl phenyl ether	-	(5)																
4-Nitroaniline	38	(5)																
4-Nitrophenol	-	(4)																
Acenaphthene	535	(4)																
Acenaphthylene	-	(=)																
Aniline	130	(5)																
Anthracene	1720	(4)																

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

Azobenzene 1.2 Benzo(a)anthracene 0.12 Benzo(a)pyrene 0.2 Benzo(b)fluoranthene 0.343 Benzo(g,h,i)perylene - Benzo(k)fluoranthene 3.43 Benzoic acid 75000 Benzyl alcohol 2000	(5) (4) (2) (4) (4)	Aug-17 	Apr-17 	Aug-16 	Apr-16	/-35 Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	A = = 4.4
Azobenzene 1.2 Benzo(a)anthracene 0.12 Benzo(a)pyrene 0.2 Benzo(b)fluoranthene 0.343 Benzo(g,h,i)perylene - Benzo(k)fluoranthene 3.43 Benzoic acid 75000	(5) (4) (2) (4) (4)					·	Apr-15	Aug-14	AM-14	AHO-17	ADT-1/						
Benzo(a)anthracene 0.12 Benzo(a)pyrene 0.2 Benzo(b)fluoranthene 0.343 Benzo(g,h,i)perylene - Benzo(k)fluoranthene 3.43 Benzoic acid 75000	(4) (2) (4) (4)							_	•	Ť		_	•			_	Apr-14
Benzo(a)pyrene 0.2 Benzo(b)fluoranthene 0.343 Benzo(g,h,i)perylene - Benzo(k)fluoranthene 3.43 Benzoic acid 75000	(2) (4) (4)																
Benzo(b)fluoranthene 0.343 Benzo(g,h,i)perylene Benzo(k)fluoranthene 3.43 Benzoic acid 75000	(4)																
Benzo(g,h,i)perylene - Benzo(k)fluoranthene 3.43 Benzoic acid 75000	(4)																
Benzo(k)fluoranthene 3.43 Benzoic acid 75000																	
Benzoic acid 75000																	
Renzyl alcohol 2000	(1)																
	(1)																
Bis(2-chloroethoxy)methane 59	(1)																
Bis(2-chloroethyl)ether 0.137	(4)																
Bis(2-chloroisopropyl)ether 9.81	(4)																
Bis(2-ethylhexyl)phthalate 6	(2)																
Butyl benzyl phthalate 160	(5)																
Carbazole -	(4)																
Chrysene 34.3	(4)																
Dibenz(a,h)anthracene 0.0343	(4)																
Dibenzofuran -	4.13																
Diethyl phthalate 14800	(4)																
Dimethyl phthalate -																	
Di-n-butyl phthalate 885	(4)																
Di-n-octyl phthalate -																	
Fluoranthene 802	(4)																
Fluorene 288	(4)																
Hexachlorobenzene 0.0976	(4)																
Hexachlorobutadiene 1.387	(4)																
Hexachlorocyclopentadiene 50	(4)																
Hexachloroethane 3.28	(4)																
Indeno(1,2,3-cd)pyrene 0.343	(4)																
Isophorone 781	(4)																
Naphthalene 1.65	(4)																
Nitrobenzene 1.4	(4)																
N-Nitrosodimethylamine 0.0017	(4)																
N-Nitrosodi-n-propylamine 0.11	(5)																
N-Nitrosodiphenylamine 0.0049	(4)																
Pentachlorophenol 170	(4)																
Phenanthrene 1	(4)																
Phenol 5760	(4)																
Pyrene 117	(4)																
Pyridine 20	(1)																
General Chemistry (mg/l):																	
Fluoride 1.6	(3)	0.46		0.47		0.55		0.76		0.45		0.6		0.59		0.74	
Chloride 250	(3)	220		240		180		130		150		220		220		190	
Nitrite 1	(2)	< 0.10		< 1.0		< 0.10		< 0.50		0.25 J		< 1.0		< 0.10		< 0.10	
Bromide -	4=1	0.71		2.2		0.74		1.7		2.5		2.9		1.2		2.7	
Nitrate 10	(3)	0.022 J		< 1.0		0.25		< 0.50		0.25 J		< 1.0		< 0.10		< 0.10	
Phosphorus -		< 0.50		< 0.50		< 0.50		< 2.5		< 2.5		< 0.50		< 0.50		< 0.50	
Sulfate 600	(3)	1.5		14		11		9.4		720		270		110		24	
Carbon Dioxide (CO ₂) -		830		850		790		900		450		690		770		810	
Alkalinity (CaCO ₃) -		905.4		905		845		950		503.5		766.7		855.5		890	
Bicarbonate (CaCO ₃) -		905.4		905		845		950		503.5		766.7		855.5		890	

	Screening	Source				MV	V-35							MV	V-37			
	Levels	Journe	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Total Metals (mg/l):																		
Arsenic	0.01	(2)	0.076		0.047		0.11		< 0.020		0.019 J		< 0.020		< 0.020		< 0.020	
Barium	2.0	(2)	0.92		1.3		1.6		0.75		0.49		0.27		0.42		0.31	
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	0.016		< 0.0060		< 0.0060		< 0.0060		0.022		< 0.0060		< 0.0060		< 0.0060	
Lead	0.015	(2)	0.005 J		0.0098		< 0.0050		0.0054		< 0.0050		0.0068		< 0.0050		< 0.0050	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Mercury	0.002	(3)	0.000044 J		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):																		
Arsenic	0.01	(2)	0.036		0.038		0.038		0.013		< 0.020		< 0.020		< 0.020		< 0.010	
Barium	1.0	(3)	0.57		0.82		1.6		0.67		0.11		0.22		0.4		0.20	
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-		120		120		110		83		110		86		92		44	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Iron	1	(3)	1.7		3.4		0.1		3.5		0.13		1.6		< 0.020		0.38	
Lead	0.015	(2)	< 0.0050		< 0.0050		< 0.0050		< 0.0010		< 0.0050		< 0.0050		< 0.0050		< 0.0010	
Magnesium	-		21		21		21		16		21		19		21		15	
Manganese	0.2	(3)	1.8		2.5		2.4		2.1		0.89		0.96		1		0.99	
Potassium	-		2.9		2.8		2.5		3.5		2.7		2.9		2.8		3.0	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		0.015		< 0.050		< 0.050		< 0.050		0.022	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Sodium	-		370		380		340		380		460		460		420		460	
Uranium	0.03	(3)	< 0.10		< 0.10		< 0.10		< 0.0010		< 0.10		< 0.10		< 0.10		0.0010	
Zinc	10	(3)	0.037		< 0.020		0.023		< 0.010		0.018 J		< 0.020		< 0.020		< 0.010	
Total Petroleum Hydrocarbons (mg/l																		
Diesel Range Organics	0.0398	(6)	0.5	0.44	0.62	0.55	0.38	0.55	1.5		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.45	0.55	< 0.20
Gasoline Range Organics	-	-	0.34	0.81	0.52	0.25	0.54	0.25	1.0		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	0.074	< 0.050
Motor Oil Range Organics	0.0398	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

Notes:

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

= Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil

(0) INIVIED G	Touridwater screening level for unknown on
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.
1	= 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	Source				MW-	38			
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
olatile Organic Compounds (ug/L)				•		•				
1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0		< 1.0		< 1.0		<1.0	
1,1,1-Trichloroethane	60	(3)	< 1.0		< 1.0		< 1.0		<1.0	
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0		< 2.0		< 2.0		<2.0	
1,1,2-Trichloroethane	5	(2)	< 1.0		< 1.0		< 1.0		<1.0	
1,1-Dichloroethane		(3)	< 1.0		< 1.0		< 1.0		<1.0	
1,1-Dichloroethene		(3)	< 1.0		< 1.0		< 1.0		<1.0	
1,1-Dichloropropene	-	(5)	< 1.0		< 1.0		< 1.0		<1.0	
1,2,3-Trichlorobenzene	-		< 1.0		< 1.0		< 1.0		<1.0	
1,2,3-Trichloropropane	0.01	(4)	< 2.0		< 2.0		< 2.0		<2.0	
1,2,4-Trichlorobenzene		(2)	< 1.0		< 1.0		< 1.0		<1.0	
1,2,4-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		<1.0	
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0		< 2.0		< 2.0		<2.0	
1,2-Dibromoethane (EDB)	0.05	(2)	< 1.0		< 1.0		< 1.0		<1.0	
1,2-Dishlorobenzene		(2)	< 1.0		< 1.0		< 1.0		<1.0	
1,2-Dichloroethane (EDC)		(2)	< 1.0		< 1.0		< 1.0		<1.0	
1,2-Dichloropropane		(2)	< 1.0		< 1.0		< 1.0		<1.0	
1,3,5-Trimethylbenzene		(1)	< 1.0		< 1.0		< 1.0		<1.0	
1,3-Dichlorobenzene	12	(1)	< 1.0		< 1.0		< 1.0		<1.0	
1,3-Dichloropropane	370	(1)	< 1.0		< 1.0		< 1.0		<1.0	
		(1)	< 1.0	_	< 1.0		< 1.0			
1,4-Dichlorobenzene		(2)							<1.0	
1-Methylnaphthalene	11	(5)	< 4.0		< 4.0		< 4.0		<4.0	
2,2-Dichloropropane	-	(4)	< 2.0		< 2.0		< 2.0		<2.0	
2-Butanone		(4)	< 10		< 10		< 10		<10	
2-Chlorotoluene		(1)	< 1.0		< 1.0		< 1.0		<1.0	
2-Hexanone	-	4.13	< 10		< 10		< 10		<10	
2-Methylnaphthalene	36	(1)	< 4.0		< 4.0		< 4.0		<4.0	
4-Chlorotoluene	250	(1)	< 1.0		< 1.0		< 1.0		<1.0	
4-Isopropyltoluene	-		< 1.0		< 1.0		< 1.0		<1.0	
4-Methyl-2-pentanone	-		< 10		< 10		< 10		<10	
Acetone	14100	(4)	2.6 J		< 10		< 10		<10	
Benzene	5	(2)	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Bromobenzene		(1)	< 1.0		< 1.0		< 1.0		<1.0	
Bromodichloromethane	1.34	(4)	< 1.0		< 1.0		< 1.0		<1.0	
Bromoform		(5)	< 1.0		< 1.0		< 1.0		<1.0	
Bromomethane	7.54	(4)	< 3.0		< 3.0		< 3.0		<3.0	
Carbon disulfide		(4)	< 10		< 10		< 10		<10	
Carbon Tetrachloride		(2)	< 1.0		< 1.0		< 1.0		<1.0	
Chlorobenzene	100	(2)	< 1.0		< 1.0		< 1.0		<1.0	
Chloroethane	20900	(4)	< 2.0		< 2.0		< 2.0		<2.0	
Chloroform	100	(3)	< 1.0		< 1.0		< 1.0		<1.0	
Chloromethane	20.3	(4)	< 3.0		< 3.0		< 3.0		<3.0	
cis-1,2-DCE		(2)	< 1.0		< 1.0		< 1.0		<1.0	
cis-1,3-Dichloropropene		(4)	< 1.0		< 1.0		< 1.0		<1.0	
Dibromochloromethane	1.68	(4)	< 1.0		< 1.0		< 1.0		<1.0	
Dibromomethane	8.3	(1)	< 1.0		< 1.0		< 1.0		<1.0	
Dichlorodifluoromethane	197	(4)	< 1.0		< 1.0		< 1.0		<1.0	
Ethylbenzene		(2)	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
Hexachlorobutadiene		(4)	< 1.0		< 1.0		< 1.0		<1.0	
Isopropylbenzene		(4)	< 1.0		< 1.0		< 1.0		<1.0	

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

Γ	Company								, umaan i	·
	Screening	Source				MW-				
	Levels	4.0	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Methyl tert-butyl ether (MTBE)	143	(4)	0.41 J	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methylene Chloride	5	(2)	< 3.0		< 3.0		< 3.0		<3.0	
Naphthalene	1.65	(4)	< 2.0		< 2.0		< 2.0		<2.0	
n-Butylbenzene	-		< 1.0		< 3.0		< 3.0		<1.0	
n-Propylbenzene	-		< 3.0		< 1.0		< 1.0		<1.0	
sec-Butylbenzene	-		< 1.0		< 1.0		< 1.0		<3.0	
Styrene	100	(2)	< 1.0		< 1.0		< 1.0		<1.0	
tert-Butylbenzene	-		0.48 J		< 1.0		< 1.0		<1.0	
Tetrachloroethene (PCE)	5	(2)	< 1.0		< 1.0		< 1.0		<1.0	
Toluene	750	(3)	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	<1.0
trans-1,2-DCE	100	(2)	< 1.0		< 1.0		< 1.0		<1.0	
trans-1,3-Dichloropropene	4.71	(4)	< 1.0		< 1.0		< 1.0		<1.0	
Trichloroethene (TCE)	5	(2)	< 1.0		< 1.0		< 1.0		<1.0	
Trichlorofluoromethane	1136	(4)	< 1.0		< 1.0		< 1.0		<1.0	
Vinyl chloride	1	(3)	< 1.0		< 1.0		< 1.0		<1.0	
Xylenes, Total	620	(3)	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	<1.5
Semi Volatile Organic Compounds ((ug/l):									
1,2,4-Trichlorobenzene	70	(2)			< 10				< 10	
1,2-Dichlorobenzene	600	(2)			< 10				< 10	
1,3-Dichlorobenzene	-				< 10				< 10	
1,4-Dichlorobenzene	75	(2)			< 10				< 10	
1-Methylnaphthalene	11	(5)			< 10				< 10	
2,4,5-Trichlorophenol	1170	(4)			< 10				< 10	
2,4,6-Trichlorophenol	11.9	(4)			< 10				< 10	
2,4-Dichlorophenol	45.3	(4)			< 20				< 20	
2,4-Dimethylphenol	354	(4)			< 10				< 10	
2,4-Dinitrophenol	38.7	(4)			< 20				< 20	
2,4-Dinitrotoluene	2.37	(4)			< 10				< 10	
2,6-Dinitrotoluene	0.485	(4)			< 10				< 10	
2-Chloronaphthalene	733	(4)			< 10				< 10	
2-Chlorophenol	91	(4)			< 10				< 10	
2-Methylnaphthalene	36	(1)			< 10				< 10	
2-Methylphenol	930	(1)			< 10				< 20	
2-Nitroaniline	190	(1)			< 10				< 10	
2-Nitrophenol	-				< 10				< 10	
3,3'-Dichlorobenzidine	1.25	(4)			< 10				< 10	
3+4-Methylphenol	930	(1)			< 10				< 10	
3-Nitroaniline	-				< 10				< 10	
4,6-Dinitro-2-methylphenol	1.52	(4)			< 20				< 20	
4-Bromophenyl phenyl ether	-				< 10				< 10	
4-Chloro-3-methylphenol	-				< 10				< 10	
4-Chloroaniline	3.7	(5)			< 10				< 10	
4-Chlorophenyl phenyl ether	-	(-)			< 10				< 10	
4-Nitroaniline	38	(5)			< 10				< 10	
4-Nitrophenol	-	(5)			< 10				< 10	
Acenaphthene	535	(4)			< 10				< 10	
Acenaphthylene	-	(' /			< 10				< 10	
Aniline	130	(5)			< 10				< 10	
Anthracene	1720	(4)			< 10				< 10	
7 11 11 11 11 11 11 11 11 11 11 11 11 11	20	\''/			- 10				, 10	

TABLE 5
Downgradient Wells Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

	Screening	0				MW-	38			
	Levels	Source	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Azobenzene	1.2	(5)			< 10				< 10	
Benzo(a)anthracene	0.12	(4)			< 10				< 10	
Benzo(a)pyrene	0.2	(2)			< 10				< 10	
Benzo(b)fluoranthene	0.343	(4)			< 10				< 10	
Benzo(g,h,i)perylene	-	(-)			< 10				< 10	
Benzo(k)fluoranthene	3.43	(4)			< 10				< 10	
Benzoic acid	75000	(1)			< 20				< 20	
Benzyl alcohol	2000	(1)			< 10				< 10	
Bis(2-chloroethoxy)methane	59	(1)			< 10				< 10	
Bis(2-chloroethyl)ether	0.137	(4)			< 10				< 10	
Bis(2-chloroisopropyl)ether	9.81	(4)			< 10				< 10	
Bis(2-ethylhexyl)phthalate	6				< 10				< 10	
	160	(2)								
Butyl benzyl phthalate		(5)			< 10				< 10	
Carbazole	- 04.0	(4)			< 10				< 10	
Chrysene	34.3	(4)			< 10				< 10	
Dibenz(a,h)anthracene	0.0343	(4)			< 10				< 10	
Dibenzofuran	-	(1)			< 10				< 10	
Diethyl phthalate	14800	(4)			< 10				< 10	
Dimethyl phthalate	-				< 10				< 10	
Di-n-butyl phthalate	885	(4)			< 10				< 10	
Di-n-octyl phthalate	-				< 10				< 10	
Fluoranthene	802	(4)			< 10				< 10	
Fluorene	288	(4)			< 10				< 10	
Hexachlorobenzene	0.0976	(4)			< 10				< 10	
Hexachlorobutadiene	1.387	(4)			< 10				< 10	
Hexachlorocyclopentadiene	50	(4)			< 10				< 10	
Hexachloroethane	3.28	(4)			< 10				< 10	
Indeno(1,2,3-cd)pyrene	0.343	(4)			< 10				< 10	
Isophorone	781	(4)			< 10				< 10	
Naphthalene	1.65	(4)			< 10				< 10	
Nitrobenzene	1.4	(4)			< 10				< 10	
N-Nitrosodimethylamine	0.0017	(4)			< 10				< 10	
N-Nitrosodi-n-propylamine	0.11	(5)			< 10				< 10	
N-Nitrosodiphenylamine	0.0049	(4)			< 10				< 10	
Pentachlorophenol	170	(4)			< 20				< 20	
Phenanthrene	1	(4)			< 10				< 10	
Phenol	5760	(4)			< 10				< 10	
Pyrene	117	(4)			< 10				< 10	
Pyridine	20	(1)			< 10				< 10	
General Chemistry (mg/l):	20	(1)			< 10				< 10	
Fluoride	1.6	(3)	0.53		0.64		0.84		0.96	
Chloride	250	(3)	100		75		30		62	
Nitrite	1	(2)	0.17 J		< 1.0		< 0.10		< 0.10	
Bromide	-	(4)	1.4		0.98		0.38		0.87	
Nitrate	10	(3)	0.17 J		< 1.0		< 0.10		< 0.10	
Phosphorus	-	(3)					< 0.10			
		(2)	< 2.5		< 0.50				< 0.50	
Sulfate	600	(3)	3.4		4.6		30		36	
Carbon Dioxide (CO ₂)	-		530		450		310		490	
Alkalinity (CaCO ₃)	-		587.7		497		345.6		520	
Bicarbonate (CaCO ₃)	-		587.7		497		345.6		520	

	Screening	Source				MW-	~ ~			
	Levels		Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Total Metals (mg/l):										
Arsenic	0.01	(2)	0.015 J		< 0.020		< 0.020		< 0.020	
Barium	2.0	(2)	0.69		0.6		0.16		0.28	
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Chromium	0.05	(3)	0.042		< 0.0060		< 0.0060		< 0.0060	
Lead	0.015	(2)	< 0.0050		0.0093		< 0.0050		0.0052	
Selenium	0.05	(3)	< 0.050		< 0.050		< 0.050		< 0.050	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Mercury	0.002	(3)	< 0.000039 J		< 0.00020		< 0.00020		< 0.00020	
Dissolved Metals (mg/l):										
Arsenic	0.01	(2)	< 0.020		< 0.020		< 0.020		< 0.0050	
Barium	1.0	(3)	0.43		0.55		0.16		0.18	
Cadmium	0.005	(2)	< 0.0020		< 0.0020		< 0.0020		< 0.0020	
Calcium	-		100		98		37		42	
Chromium	0.05	(3)	< 0.0060		< 0.0060		< 0.0060		< 0.0060	
Copper	1	(3)	< 0.0060		0.033		< 0.0060		< 0.0060	
Iron	1	(3)	0.16		13		0.032		0.89	
Lead	0.015	(2)	< 0.0050		0.014		< 0.0050		< 0.0010	
Magnesium	-		16		16		6		7.3	
Manganese	0.2	(3)	2.4		3		0.93		1.2	
Potassium	-		1.9		2.8		1.1		1.9	
Selenium	0.05	(3)	0.030 J		< 0.050		< 0.050		0.0072	
Silver	0.05	(3)	< 0.0050		< 0.0050		< 0.0050		< 0.0050	
Sodium	-		190		180		130		240	
Uranium	0.03	(3)	< 0.10		< 0.10		< 0.10		0.0017	
Zinc	10	(3)	0.034		0.053		0.022		< 0.010	
Total Petroleum Hydrocarbons (mg/	/I):	` `								
Diesel Range Organics	0.0398	(6)	< 0.20	<0.20	0.28	<0.20	< 0.20	<0.20	< 0.20	<0.20
Gasoline Range Organics	-	-	0.047 J	<0.050	< 0.050	<0.050	< 0.050	<0.050	< 0.050	<0.050
Motor Oil Range Organics	0.0398	(6)	< 2.5	<2.5	< 2.5	<2.5	< 2.5	<2.5	< 2.5	<2.5

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil

(0) NIVILD GIOC	indwater screening level for driknown on
-	= No screening level available
*	= Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
	= Analysis not required and/or well contains separate phase
	= Analytical result exceeds the respective screening level.
1	= 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

	Caraanina												1										4455					
	Screening Levels	Source	Aug 17		N-50 Aug-15	Aug 14	Aug 17		N-51	Aug-14	Aug 17	Apr 17	Aug-16		Aug 15	Aug 14	Aug 17	Aug-16	V-53	Aug 14		W-54 Aug-16	**M\		Aug 17		V-56 Aug-15	Aug 14
Volatile Organic Compounds		<u> </u>	Aug-17	Aug-10	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Api-17	Aug-10	Apr-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14
1,1,1,2-Tetrachloroethane	<u> </u>	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 2.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,1,1-Trichloroethane	60	(3)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,1,2,2-Tetrachloroethane	10	(3)		< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0		
1,1,2-Trichloroethane	5	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,1-Dichloroethane	25	(3)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,1-Dichloroethene	5	(3)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,1-Dichloropropene	-			< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,2,3-Trichlorobenzene	-			< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,2,3-Trichloropropane		(4)		< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0		
1,2,4-Trichlorobenzene	70	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,2,4-Trimethylbenzene	15	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						300		
1,2-Dibromo-3-chloropropane	0.2	(2)		< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0		
1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	0.05 600	(2)		< 1.0			< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0						< 1.0 < 1.0							
1,2-Dichloroethane (EDC)	5	(2)		< 1.0 < 1.0			< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,2-Dichloropropane	5	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,3,5-Trimethylbenzene	12	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						97		
1,3-Dichlorobenzene	-	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,3-Dichloropropane	370	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1,4-Dichlorobenzene	75	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
1-Methylnaphthalene	11	(5)		< 4.0			< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0						19		
2,2-Dichloropropane	-			< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0		
2-Butanone	5560	(4)		< 10			< 10	< 10	< 10	< 10	< 10		< 10		< 10	< 10	< 10	< 10	< 10	< 10						26		
2-Chlorotoluene	240	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
2-Hexanone	-			< 10			< 10	< 10	< 10	< 10	< 10		< 10		< 10	< 10	< 10	< 10	< 10	< 10						< 10		
2-Methylnaphthalene		(1)		< 4.0			< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0						26		
4-Chlorotoluene	250	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
4-Isopropyltoluene	-			< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						11		
4-Methyl-2-pentanone	14100	(4)		< 10 < 10			< 10 1.6 J	< 10 < 10	< 10 < 10	< 10 < 10	< 10 2.5J		< 10 < 10		< 10 < 10	< 10 < 10	< 10 3.2 J	< 10 < 10	< 10 < 10	< 10 < 10						< 10 150		
Acetone Benzene	5	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						180		
Bromobenzene	62	(1)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Bromodichloromethane	1.34	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Bromoform	33	(5)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Bromomethane	7.54	(4)		< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0		
Carbon disulfide	810	(4)		< 10			< 10	< 10	< 10	< 10	< 10		< 10		< 10	< 10	< 10	< 10	< 10	< 10						< 10		
Carbon Tetrachloride	5	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Chlorobenzene	100	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Chloroethane		(4)		< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0		
Chloroform	100	(3)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Chloromethane	20.3	(4)		< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0		
cis-1,2-DCE	70	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
cis-1,3-Dichloropropene Dibromochloromethane	4.7	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Dibromochioromethane	1.68 8.3	(4)		< 1.0 < 1.0			< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0						< 1.0 < 1.0							
Dichlorodifluoromethane	197	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Ethylbenzene	700	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						88		
Hexachlorobutadiene	1.39	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Isopropylbenzene		(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						13		
Methyl tert-butyl ether (MTBE)	143	(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	<1.0	< 1.0	<1.0	< 1.0	< 1.0	0.63 J	< 1.0	< 1.0	< 1.0						380		
Methylene Chloride		(2)		< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0		
Naphthalene		(4)		< 2.0			< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						52		
n-Butylbenzene	-			< 3.0			< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						10		
n-Propylbenzene	-			< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						19		
sec-Butylbenzene		(0)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						7.8		
Styrene	100	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
tert-Butylbenzene	-	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Tetrachloroethene (PCE)	5 750	(2)		< 1.0			< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Toluene trans-1,2-DCE		(3)		< 1.0			< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	<1.0	< 1.0 < 1.0	<1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0						1.4 < 1.0		
trans-1,3-Dichloropropene		(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Trichloroethene (TCE)	5	(2)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Trichlorofluoromethane		(4)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Vinyl chloride		(3)		< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0		
Xylenes, Total		(3)		< 1.5			< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	<1.5	< 1.5	<1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5	< 1.5						210		
7,5.0.00, 10101		(0)																										

	Caraanina	-1	1										1										1					
	Screening Levels	Source	A 47		V-50	A 44	A 47		V-51	A 4.4	A 47	A 47		I-52	A 45	A 4.4	A 47		/-53	A 4.4		W-54		N-55	A 47		N-56	A 44
Semi Volatile Organic Compo		1\.	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-1/	Apr-17	Aug-16	Apr-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-17	Aug-16	Aug-17	Aug-16	Aug-15	Aug-14
1,2,4-Trichlorobenzene	70	(2)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		T
1.2-Dichlorobenzene	600	(2)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
1,3-Dichlorobenzene	-	(2)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
1,4-Dichlorobenzene	75	(2)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
1-Methylnaphthalene	11	(5)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2,4,5-Trichlorophenol	1170	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2,4,6-Trichlorophenol	11.9	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2,4-Dichlorophenol	45.3	(4)		< 20				< 20		< 21			< 20			< 20			< 20	< 22						< 20		
2,4-Dimethylphenol	354	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2,4-Dinitrophenol	38.7	(4)		< 20				< 20		< 21			< 20			< 20			< 20	< 22						< 20		
2,4-Dinitrotoluene	2.37	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2,6-Dinitrotoluene	0.485	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2-Chloronaphthalene	733	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2-Chlorophenol	91	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2-Methylnaphthalene	36	(1)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2-Methylphenol	930	(1)		< 10				< 10		< 21			< 10			< 20			< 10	< 22						< 10		
2-Nitroaniline	190	(1)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
2-Nitrophenol	-			< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
3,3´-Dichlorobenzidine	1.25	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
3+4-Methylphenol	930	(1)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
3-Nitroaniline	-			< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
4,6-Dinitro-2-methylphenol	1.52	(4)		< 20				< 20		< 21			< 20			< 20			< 20	< 22						< 20		
4-Bromophenyl phenyl ether	-			< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
4-Chloro-3-methylphenol	-			< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
4-Chloroaniline	3.7	(5)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
4-Chlorophenyl phenyl ether	-	(5)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
4-Nitroaniline	38	(5)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
4-Nitrophenol	-	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Acenaphthylana	535	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Acenaphthylene Aniline	130	(5)		< 10 < 10				< 10 < 10		< 10 < 10			< 10 < 10			< 10 < 10			< 10 < 10	< 11 < 11						< 10 < 10		
Anthracene	1720	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Azobenzene	1.2	(5)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Benzo(a)anthracene	0.12	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Benzo(a)pyrene	0.2	(2)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Benzo(b)fluoranthene	0.343	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Benzo(g,h,i)perylene	-	(- /		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Benzo(k)fluoranthene	3.43	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Benzoic acid	75000	(1)		< 20				< 20		< 21			< 20			< 20			< 20	< 22						< 20		
Benzyl alcohol	2000	(1)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Bis(2-chloroethoxy)methane	59	(1)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Bis(2-chloroethyl)ether	0.137	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Bis(2-chloroisopropyl)ether	9.81	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Bis(2-ethylhexyl)phthalate	6	(2)		< 10				< 10		< 10			< 10			< 10			12	< 11						< 10		
Butyl benzyl phthalate	160	(5)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Carbazole	-			< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Chrysene	34.3	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Dibenz(a,h)anthracene	0.0343	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Dibenzofuran	-	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Diethyl phthalate		(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Dimethyl phthalate	- 005	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Di-n-butyl phthalate		(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Di-n-octyl phthalate Fluoranthene	- 902	(4)		< 10 < 10				< 10		< 10			< 10			< 10			< 10	< 11 < 11						26 < 10		
Fluoranthene		(4)		< 10				< 10 < 10		< 10 < 10			< 10			< 10 < 10			< 10 < 10	< 11						< 10		
Hexachlorobenzene		(4)		< 10				< 10		< 10			< 10 < 10			< 10			< 10	< 11						< 10		
Hexachlorobutadiene				< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Hexachlorocyclopentadiene		(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Hexachloroethane		(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Indeno(1,2,3-cd)pyrene		(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Isophorone		(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
ізорпотопе	, , , ,	(+)		, 10				10	-	, 10			` 10			110		1	110		1	1			1	` 10		1

	Screening			MW	/-50			MV	<i>l</i> -51				1MV	V-52				MW	<i>I</i> -53		**M\	W-54	**MV	N-55		MV	N-56	
	Levels	Source	Aug-17			Aug-14	Aug-17	Aug-16		Aug-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Aug-14	Aug-17			Aug-14	Aug-17		· .		Aug-17		Aug-15	Aug-14
Naphthalene	1.65	(4)	Aug-17	< 10	Aug-13	Aug-14		< 10		< 10	Aug-17		< 10			< 10			< 10	< 11	Aug-17		Aug-17			16		
Nitrobenzene	1.03	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
																		-				-						_
N-Nitrosodimethylamine	0.0017	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11 < 11						< 10		
N-Nitrosodi-n-propylamine	0.11	(5)		< 10				< 10		< 10			< 10			< 10			< 10							< 10		_
N-Nitrosodiphenylamine	0.0049	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11		-				< 10		
Pentachlorophenol	170	(4)		< 20				< 20		< 21			< 20			< 20			< 20	< 22						< 20		
Phenanthrene	7	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Phenol	5760	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Pyrene	117	(4)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
Pyridine	20	(1)		< 10				< 10		< 10			< 10			< 10			< 10	< 11						< 10		
General Chemistry (mg/l):		(0)																										
Fluoride	1.6	(3)		0.23			0.37	0.5	0.52	0.54	0.83		< 0.50		0.44	0.49	< 0.10	< 0.10	< 0.10	0.11						< 0.50		
Chloride	250	(3)		4.5			11	11	8.3	15	750		640		560	820	1000	920	960	1000						370		
Nitrite	1	(2)		< 0.10			< 0.10	< 0.10	< 0.10	< 0.10	< 2.0		42		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 0.50		
Bromide	-	(5)		< 0.10			< 0.10	0.15	< 0.10	0.12	4.8		4.1		2.2	2.0	2.2	3	2.1	2.2						5		
Nitrate	10	(3)		0.23			0.44	1.7	0.34	1.4	40		42		19	18	12	12	9.3	6.8						< 0.50		
Phosphorus	-			< 0.50			< 0.50	< 0.50	< 0.50	< 0.50	< 10		< 10		< 10	< 0.50	< 0.50	< 0.50	< 10	< 0.50						< 2.5		
Sulfate	600	(3)		37			45	120	43	76	1200		1400		1100	1700	1100	980	1000	1300						7.9		
Carbon Dioxide (CO ₂₎	-			230			270	220	240	250	220		180		200	220	300	300	290	310						890		
Alkalinity (CaCO ₃)	-			255.9			287.7	243	264.9	270	203.2		175		207.5	170	331.1	329.8	318.5	330						952.6		
Bicarbonate (CaCO ₃)				255.9			287.7	243	264.9	270	203.2		175		207.5	170	331.1	329.8	318.5	330						952.6		
(0)	-			255.5			201.1	243	204.3	210	203.2		173		207.5	170	331.1	329.0	310.3	330						332.0		
Total Metals (mg/l):		(2)																										
Arsenic	0.01	(2)		< 0.020			< 0.050	< 0.020	< 0.020	< 0.020	< 0.050		< 0.020		< 0.020	< 0.020	< 0.050	< 0.020		< 0.020						< 0.020		
Barium	2.0	(2)		0.31			0.12	0.12	0.11	0.095	0.24		0.14		0.099	0.052	0.12	0.051	0.64	0.041						2.4		
Cadmium	0.005	(2)		< 0.0020			< 0.0020	< 0.0020		< 0.0020	< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020						< 0.0020		
Chromium	0.05	(3)		0.0092			< 0.0060	< 0.0060		< 0.0060	0.0056J		< 0.0060		< 0.0060	< 0.0060	0.0034 J			< 0.0060						< 0.0060		
Lead	0.015	(2)		0.0059			< 0.0050		< 0.0050	< 0.0050	< 0.0050		0.0059		< 0.0050	< 0.0050		< 0.0050		< 0.0050						< 0.0050		
Selenium	0.05	(3)		< 0.050			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		0.065		0.069	< 0.050	< 0.050		< 0.0050	< 0.050						< 0.050		
Silver	0.05	(3)		< 0.0050			< 0.0050		< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050	< 0.0050		< 0.0050		< 0.0050						< 0.0050		
Mercury	0.002	(3)		< 0.00020			< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020						< 0.00020)	
Dissolved Metals (mg/l):																												
Arsenic	0.01	(2)		< 0.020			0.015 J	< 0.020		< 0.020	<0.1		< 0.020		< 0.020	< 0.020	0.052	< 0.020		< 0.020						< 0.020		
Barium	1.0	(3)		0.077			0.11	0.063	0.05	0.056	0.015		0.021		< 0.020	< 0.020	0.013 J	< 0.020	0.026	< 0.020						2.1		
Cadmium	0.005	(2)		< 0.0020			< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020						< 0.0020		
Calcium	-			65			71	91	63	76	360		380		320	430	380	390	360	340						110		
Chromium	0.05	(3)		< 0.0060			< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060						< 0.0060		
Copper	1	(3)		< 0.0060			< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060						0.082		
Iron	1	(3)		0.2			0.037	0.15	0.041	< 0.020	0.0079J		3.9		2.2	4.1	0.0065 J	< 0.020	0.21	0.029						28		
Lead	0.015	(2)		< 0.0050			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050						< 0.0050		
Magnesium	-			14			14	18	13	15	90		100		77	110	54	56	54	59						50		
Manganese	0.2	(3)		1.6			2.4	0.95	0.77	1.2	2.2		5.7		3.9	8.8	0.57	0.61	0.41	0.10						2.8		
Potassium	-			1.9			1.7	1.8	1.7	1.9	4.8		5.6		4.7	5.6	4.6	5	5.3	5.1						4.4		
Selenium	0.05	(3)		< 0.050			< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		0.057		0.09	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050						< 0.050		
Silver	0.05	(3)		< 0.0050			< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050						< 0.0050		
Sodium	-	` ′		41			40	51	47	55	640		650		560	590	770	780	800	750						460		
Uranium	0.03	(3)		< 0.10			< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10						< 0.10		
Zinc	10	(3)		0.021			0.016 J	0.031	< 0.020	< 0.020	0.033		0.2		0.066	0.13	0.026	0.025	0.028	< 0.020						0.55		
Total Petroleum Hydrocarbons		*/																										
Diesel Range Organics	0.0398	(6)		< 0.20			< 0.20	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20		< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20						93		T
Gasoline Range Organics	-	-		< 0.050			< 0.050	< 0.20	< 0.20	< 0.050	< 0.050		< 0.20		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050						29		
0 0	0.0398	(6)		< 2.5			< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5						< 25		
word Oil Kange Organics	0.0390	(0)		< 2.5			< 2.5	< 2.5	< 2.5	< 2.0	< 2.0		< 2.0		< 2.5	< 2.5	< 2.0	< 2.5	< 2.0	< 2.3						< 20		

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
- Substitution of the state of the state
- = Analytical result exceeds the respective screening level.
- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.
 = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

	Screening			243	N 57			**1.5	W 50				N 50			*******			*****	W 64		2010	1.00			8414		
	Levels	Source	Aug-17	Aug-16	N-57	Aug-14	Aug-17		W-58 Aug-15	Aug-14	Aug-17		N-59	Aug-14	Aug-17	**MW-60	Λυα-15	Aug-14		W-61 Aug-15	Aug-17	MV Aug-16	Aug-15	Aug-14	Aug-17	MW Aug-16		Aug-14
Volatile Organic Compounds			Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-13	Aug-14	Aug-17	Aug-13	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
1,1,1,2-Tetrachloroethane	5.74	(4)		< 10	T	T		T			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	I I					< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1,1-Trichloroethane	60	(3)		< 10	T						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1.1.2.2-Tetrachloroethane	10	(3)		< 20							< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,1,2-Trichloroethane	5	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethane	25	(3)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloroethene	5	(3)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,1-Dichloropropene	-			< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichlorobenzene	-			< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,3-Trichloropropane	0.01	(4)		< 20							< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2,4-Trichlorobenzene	70	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2,4-Trimethylbenzene	15	(1)		37							0.35 J	< 1.0	< 1.0	< 1.0	0.24 J						< 1.0	< 1.0	< 1.0	< 1.0	0.13 J	< 1.0	< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	0.2	(2)		< 20							< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
1,2-Dibromoethane (EDB)	0.05	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichlorobenzene	600	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloroethane (EDC)	5	(2)		< 10							38	25	18	10	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,2-Dichloropropane	5	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3,5-Trimethylbenzene	12	(1)		16							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichlorobenzene	-			< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,3-Dichloropropane	370	(1)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1,4-Dichlorobenzene	75	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
1-Methylnaphthalene	11	(5)		100							< 4.0	< 4.0	< 4.0	< 4.0	0.51 J						< 4.0	< 4.0	< 4.0	< 4.0	0.35 J	< 4.0	< 4.0	< 4.0
2,2-Dichloropropane	-	(4)		< 20							< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
2-Butanone	5560	(4)		< 100							< 10	< 10	< 10	< 10	< 10						< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
2-Chlorotoluene	240	(1)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
2-Hexanone	-	(4)		< 100							< 10	< 10	< 10	< 10	< 10						< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
2-Methylnaphthalene	36	(1)		95							< 4.0	< 4.0	< 4.0	< 4.0	0.32 J						< 4.0	< 4.0	< 4.0	< 4.0	0.37 J	< 4.0	< 4.0	< 4.0
4-Chlorotoluene	250	(1)		< 10 < 10							< 1.0 0.84 J	< 1.0 1.5	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0						< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
4-Isopropyltoluene 4-Methyl-2-pentanone				< 100							< 10	< 10	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 10	< 1.0	< 1.0	< 1.0
Acetone	14100	(4)		< 100							4.9 J	< 10	< 10	< 10	< 10						< 10	< 10	< 10	< 10	2.7 J	< 10	< 10	< 10
Benzene	5	(2)		2900							24	7.7	7.3	13	0.30 J						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromobenzene	62	(1)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromodichloromethane	1.34	(4)		< 10	T						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromoform	33	(5)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Bromomethane	7.54	(4)		< 30							< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Carbon disulfide	810	(4)		< 100							< 10	< 10	< 10	< 10	< 10						< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Carbon Tetrachloride	5	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chlorobenzene	100	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloroethane	20900	(4)		< 20							< 2.0	< 2.0	< 2.0	< 2.0	< 2.0						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Chloroform	100	(3)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Chloromethane	20.3	(4)		< 30							< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
cis-1,2-DCE	70	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
cis-1,3-Dichloropropene	4.7	(4)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromochloromethane	1.68	(4)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dibromomethane	8.3	(1)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Dichlorodifluoromethane	197	(4)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	700	(2)		270							40	65	29	58	0.14 J						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Hexachlorobutadiene	1.39	(4)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Isopropylbenzene		(4)		40							8.4	12	5	7.8	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Methyl tert-butyl ether (MTBE)	143	(4)		33							1900	1200	1400	750	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	0.97 J	1.3	4	< 1.0
Methylene Chloride	5	(2)		< 30							< 3.0	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
Naphthalene n Butulbanzana	1.65	(4)		160							0.53 J	2.8	< 2.0	3.6	< 2.0						< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
n-Butylbenzene	-			< 30							2.3 J	< 3.0	< 3.0	< 3.0	< 3.0						< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0
n-Propylbenzene	-			53							7.8	12 5.4	4.4	7.3	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
sec-Butylbenzene Styrene	100	(2)		< 10 < 10							4.9	< 1.0	4.5 < 1.0	3.8 < 1.0	< 1.0						< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0
tert-Butylbenzene	100	(2)		< 10							< 1.0 0.56 J	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0						< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0
Tetrachloroethene (PCE)	5	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0
Toluene		(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,2-DCE		(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
trans-1,3-Dichloropropene	4.71	(4)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichloroethene (TCE)	5	(2)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Trichlorofluoromethane		(4)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vinyl chloride	1	(3)		< 10							< 1.0	< 1.0	< 1.0	< 1.0	< 1.0						< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Xylenes, Total	620	(3)		57							< 1.5	< 1.5		< 1.5	< 1.5						< 1.5	< 1.5		< 1.5	< 1.5	< 1.5	< 1.5	< 1.5
Ayieries, roldi	020	(3)		JI							\ 1.0	₹ 1.0	\ 1.0	1.0	\ 1.0						\ 1.0	\ 1.0	× 1.0	< 1.J	\ 1.0	\ 1.U	× 1.0	\ 1.0

	Screening						1	****			1					*******			1									
	Levels	Source	Aug-17	MW Aug-16		Aug-14	Aug-17	**M\ Aug-16		Aug-14	Aug-17		V-59 Aug-15	Aug-14	Aug-17	**MW-60	Aug-15	Aug-14		N-61 Aug-15	Aug-17	MW Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	V-63	Aug-14
Semi Volatile Organic Compo		·	Aug-17	Aug-10	Aug-15	Aug-14	Aug-17	Aug-10	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-10	Aug-15	Aug-14	Aug-17	Aug-15	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14
1,2,4-Trichlorobenzene	70	(2)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
1,2-Dichlorobenzene		(2)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
1,3-Dichlorobenzene	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
1,4-Dichlorobenzene	75	(2)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
1-Methylnaphthalene	11	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2,4,5-Trichlorophenol	1170	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2,4,6-Trichlorophenol		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2,4-Dichlorophenol		(4)		< 100							< 100	< 20		< 20	< 20						< 20	< 20		< 20	< 20	< 20		< 20
2,4-Dimethylphenol		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2,4-Dinitrophenol	38.7	(4)		< 100							< 100	< 20		< 20	< 20						< 20	< 20		< 20	< 20	< 20		< 20
2,4-Dinitrotoluene	2.37	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2,6-Dinitrotoluene	0.485	(4)		< 50 < 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10 < 10		< 10
2-Chloronaphthalene 2-Chlorophenol	733 91	(4)		< 50							< 50 < 50	< 10 < 10		< 10 < 10	< 10 < 10						< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10		< 10 < 10
2-Methylnaphthalene	36	(1)		< 50							< 50	< 10		< 20	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2-Methylphenol	930	(1)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 20	< 10	< 10		< 20
2-Nitroaniline	190	(1)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
2-Nitrophenol	-	(.,		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
3,3´-Dichlorobenzidine	1.25	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
3+4-Methylphenol	930	(1)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
3-Nitroaniline	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
4,6-Dinitro-2-methylphenol	1.52	(4)		< 100							< 100	< 20		< 20	< 20						< 20	< 20		< 20	< 20	< 20		< 20
4-Bromophenyl phenyl ether	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
4-Chloro-3-methylphenol	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
4-Chloroaniline	3.7	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
4-Chlorophenyl phenyl ether	-	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
4-Nitroaniline	38	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
4-Nitrophenol Acenaphthene	535	(4)		< 50 < 50							< 50 < 50	< 10 < 10		< 10 < 10	< 10 < 10						< 10 < 10	< 10 < 10		< 10 < 10	< 10 < 10	< 10 < 10		< 10 < 10
Acenaphthylene	-	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Aniline	130	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Anthracene	1720	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Azobenzene	1.2	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Benzo(a)anthracene	0.12	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Benzo(a)pyrene	0.2	(2)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Benzo(b)fluoranthene	0.343	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Benzo(g,h,i)perylene	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Benzo(k)fluoranthene		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Benzoic acid		(1)		< 100							36 J	< 20		< 20	10 J						11 J	< 20		< 20	18 J	< 20		< 20
Benzyl alcohol		(1)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Bis(2-chloroethoxy)methane	59	(1)		< 50 < 50							< 50 < 50	< 10 < 10		< 10	< 10 < 10						< 10 < 10	< 10		< 10 < 10	< 10 < 10	< 10 < 10		< 10 < 10
Bis(2-chloroethyl)ether Bis(2-chloroisopropyl)ether	0.137 9.81	(4)		< 50							< 50	< 10		< 10 < 10	< 10						< 10	< 10 < 10		< 10	< 10	< 10		< 10
Bis(2-ethylhexyl)phthalate	6	(2)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	4.9 J	< 10		< 10
Butyl benzyl phthalate	160	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Carbazole	-	(-)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Chrysene	34.3	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Dibenz(a,h)anthracene		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Dibenzofuran	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Diethyl phthalate	14800	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Dimethyl phthalate	-			< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Di-n-butyl phthalate		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Di-n-octyl phthalate	-	(4)		83							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Fluoranthene		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Fluorene		(4)		76							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Hexachlorobenzene Hexachlorobutadiene		(4)		< 50 < 50							< 50	< 10 < 10		< 10 < 10	< 10 < 10						< 10	< 10 < 10		< 10 < 10	< 10	< 10 < 10		< 10 < 10
Hexachlorocyclopentadiene		(4)		< 50							< 50 < 50	< 10		< 10	< 10						< 10 < 10	< 10		< 10	< 10 < 10	< 10		< 10
Hexachloroethane		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Indeno(1,2,3-cd)pyrene		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Indeno(1,2,3-cd)pyrene		(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
isopriorone	101	(+)		\ 00							\ 00	\ 10		\ 10	\ 10						\ 10	\ 10		\ 10	\ 10	_ \ 10		_ \ 10

	Screening			MW	1 57			**1.41	N-58			BALA	<i>l</i> -59			**MW-60			**M\	N 64		R#1A	<i>l</i> -62			F 81.1	V-63	
1	Levels	Source	A 47			A 44	A 47			A 4.4	A 47			A 44	A 47		A 45	A 4.4			A 47			A 44	A 47			
N. La		(4)	_	Aug-16		_	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16		Aug-14	Aug-17	Aug-16	Aug-15		Aug-17	Aug-15	Aug-17	Aug-16		Aug-14	Aug-17		Aug-15	Aug-14
Naphthalene	1.65	(4)		240							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Nitrobenzene	1.4	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
N-Nitrosodimethylamine	0.0017	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
N-Nitrosodi-n-propylamine	0.11	(5)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
N-Nitrosodiphenylamine	0.0049	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Pentachlorophenol	170	(4)		< 100							< 100	< 20		< 20	< 20						< 20	< 20		< 20	< 20	< 20		< 20
Phenanthrene	1	(4)		150							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Phenol	5760	(4)		< 50							< 50	< 10		14	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Pyrene	117	(4)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
Pyridine	20	(1)		< 50							< 50	< 10		< 10	< 10						< 10	< 10		< 10	< 10	< 10		< 10
General Chemistry (mg/l):																												
Fluoride	1.6	(3)		< 0.50							< 0.50	< 0.10	< 0.10	0.20	< 0.10						< 0.10	< 2.0	< 0.10	< 2.0	< 0.10	0.16	< 0.10	< 0.10
Chloride	250	(3)		340							200	190	240	210	190						13	14	14	14	110	100	270	390
Nitrite	1	(2)		< 0.50							< 0.50	< 0.10	< 0.10	< 0.10	< 0.10						0.016 J	< 1.0	< 0.10	< 0.10	0.13	< 0.10	< 0.10	< 0.10
Bromide	-			2.8							3.4	< 0.10	1.2	2.0	3.8						0.071 J	< 0.10	< 0.10	< 0.10	1.8	1.5	4	7.3
Nitrate	10	(3)		< 0.50							0.26 J	0.6	0.28	< 2.0	26						0.094 J	< 1.0	< 0.10	0.38	35	39	78	170
Phosphorus	-	(-/		3.1							< 2.5	< 0.50	< 0.50	< 0.50	< 0.50						< 10	< 10	< 10	< 10	< 0.50	< 0.50	< 10	< 10
Sulfate	600	(3)		< 2.5							170	200	780	830	1300						3700	4000	4000	4100	1300	1200	1700	2400
Carbon Dioxide (CO ₂₎	-	(0)		940							1000	1000	940	910	720						580	500	520	470	580	470	480	380
: =/																							_	-				
Alkalinity (CaCO ₃)	-			981.8							1105	1094	1035	950	786.2						626.3	550	573.9	500	597	500.7	522.5	400
Bicarbonate (CaCO ₃)	-			981.8							1105	1094	1035	950	786.2						626.3	550	573.9	500	597	500.7	522.5	400
Total Metals (mg/l):																									·			
Arsenic	0.01	(2)		< 0.020							< 0.050	< 0.020	0.022	< 0.020	< 0.050						< 0.050	< 0.020	< 0.020	< 0.020	< 0.050	< 0.020	< 0.020	< 0.020
Barium	2.0	(2)		2.1							0.11	0.17	0.21	0.26	0.033						0.033	0.33	< 0.020	< 0.020	0.019 J	0.28	< 0.020	0.093
Cadmium	0.005	(2)		< 0.0020							< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020						< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)		< 0.0060							< 0.0060	0.0062	< 0.0060	0.011	0.0031 J						< 0.0060	0.0071	< 0.0060	< 0.0060	< 0.0060	0.016	< 0.0060	< 0.0060
Lead	0.015	(2)		< 0.0050							< 0.0050			0.011	< 0.0050						< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050		< 0.0050
Selenium	0.05	(3)		< 0.050							< 0.050	< 0.050	< 0.050	< 0.050	< 0.050						< 0.050	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)		< 0.0050								< 0.0050			< 0.0050						< 0.0050		< 0.0050				< 0.0050	
Mercury	0.002	(3)		< 0.00020										< 0.00020													< 0.00020	
Dissolved Metals (mg/l):	0.002	(0)		10.00020							10.00020	1 0.00020	10.00020	10.00020							10.00020	10.00020	1 0.00020	10.00020	10.00020	10.00020	10.00020	10.00020
Arsenic	0.01	(2)		< 0.020							0.032	< 0.020	< 0.020	< 0.020	0.054						0.046	< 0.020	< 0.020	< 0.020	0.034	< 0.020	< 0.020	< 0.020
Barium	1.0	(3)		1,9							0.083	0.076	0.055	0.059	0.023						0.01 J	< 0.020		< 0.020	< 0.020	0.023	< 0.020	< 0.020
Cadmium	0.005	(2)		< 0.0020							< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020						< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020		< 0.0020
Calcium	-	(2)		120							160	200	250	260	230						450	450	470	440	310	320	470	560
Chromium	0.05	(3)		< 0.0060							< 0.0060		< 0.0060		< 0.0060						< 0.0060		< 0.0060	_	< 0.0060	< 0.0060	_	< 0.0060
	1			< 0.0060							< 0.0060		< 0.0060		0.0027 J						< 0.0060	< 0.0060		< 0.0060	< 0.0060	< 0.0060		< 0.0060
Copper	1	(3)		2,6							6.9	5.2	4.3	7.9	0.0027 J						0.0046 J	1.3	0.15	< 0.0000	< 0.0000	3.9	< 0.0000	0.022
Iron Lead	0.015	(3)		< 0.0050							< 0.0050		< 0.0050		< 0.0050						< 0.0050		< 0.0050	< 0.020	< 0.020	< 0.0050		< 0.0050
	0.013	(2)		44							49	56	69	69				-			38	38	38	39	110	99		
Magnesium	- 0.0	(2)													88												130	180
Manganese	0.2	(3)		3.3							1.8	1.9	1.9	3.0	0.0011 J						1.8	1.2	1.4	0.49	0.5	0.73	0.81	1.4
Potassium	- 0.05	(2)		4.1							2.8	3.7	3.6	3.4	4						9.1	10	9.5	9.7	3.7	4.1	4.6	5.7
Selenium	0.05	(3)		< 0.0050							< 0.050	< 0.050	< 0.050	< 0.050	< 0.050						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)		< 0.050							< 0.0050		< 0.0050	< 0.0050	< 0.0050						< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050		< 0.0050
Sodium	-	(0)		410							390	480	470	440	660						1400	1600	1500	1400	460	420	580	680
Uranium	0.03	(3)		< 0.10							< 0.10	< 0.10	< 0.10	< 0.10	< 0.10						< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Zinc	10	(3)		0.081							0.022	0.021	0.036	< 0.020	0.036						0.02	0.051	0.028	< 0.020	0.02	0.1	0.03	< 0.020
Total Petroleum Hydrocarbons		(0)																										2.25
Diesel Range Organics	0.0398	(6)		17							0.75	0.85	0.32	0.62	< 0.20						< 0.20	< 0.20	< 0.20	< 0.2	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	-	-		520							1.0	1.8	1.1	0.72	< 0.050						< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	0.0398	(6)		< 250							< 2.5	< 2.5	< 2.5	<2.5	< 2.5						< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil Substitute of the state of

- Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 Analysis not required and/or well contains separate phase
 Analytical result exceeds the respective screening level.

- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

 = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

		1																				. 70	
	Screening	Source			V-64			MW-65		**MW-66			-67				V-68		**MW-69		MW		
Volatile Organia Compounds	Levels		Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-17	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-17	Aug-16	Aug-15	Aug-14
Volatile Organic Compounds 1,1,1,2-Tetrachloroethane	5.74	(4)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1,1-Trichloroethane	60	(3)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	10	(3)	< 2.0	< 2.0	< 4.0	< 2.0	< 40	< 40	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
1,1,2-Trichloroethane	5	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1-Dichloroethane	25	(3)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1-Dichloroethene	5	(3)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,1-Dichloropropene 1,2,3-Trichlorobenzene	-		< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	< 1.0 < 1.0	< 20 < 20	< 20 < 20	< 20 < 20		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0							
1,2,3-Trichloropropane	0.01	(4)	< 2.0	< 2.0	< 4.0	< 2.0	< 40	< 40	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
1,2,4-Trichlorobenzene	70	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2,4-Trimethylbenzene	15	(1)	< 1.0	< 1.0	< 2.0	< 1.0	520	480	860		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2-Dibromo-3-chloropropane	0.2	(2)	< 2.0	< 2.0	< 4.0	< 2.0	< 40	< 40	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
1,2-Dibromoethane (EDB)	0.05	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,2-Dichlorobenzene 1,2-Dichloroethane (EDC)	600 5	(2)	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	< 1.0 < 1.0	< 20 150	< 20 88	< 20 200		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0							
1,2-Dichloropropane	5	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,3,5-Trimethylbenzene	12	(1)	< 1.0	< 1.0	< 2.0	< 1.0	3.8 J	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,3-Dichlorobenzene	-		< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,3-Dichloropropane	370	(1)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1,4-Dichlorobenzene	75	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
1-Methylnaphthalene	11	(5)	< 4.0	< 4.0	< 8.0	< 4.0	150	130	120		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0	< 4.0
2,2-Dichloropropane 2-Butanone	5560	(4)	< 2.0 < 10	< 2.0 < 10	< 4.0 < 20	< 2.0 < 10	< 40 < 200	< 40 < 200	< 40 < 200		< 2.0 < 10		< 2.0 < 10		< 2.0 < 10	< 2.0 < 10							
2-Chlorotoluene	240	(1)	< 1.0	< 1.0	< 2.0	< 1.0	< 200	< 20	< 200		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
2-Hexanone	-	(1)	< 10	< 10	< 20	< 10	< 200	< 200	< 200		< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10		< 10		< 10	< 10
2-Methylnaphthalene	36	(1)	< 4.0	< 4.0	< 8.0	< 4.0	6.8 J	< 80	< 80		< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0		< 4.0		< 4.0	< 4.0
4-Chlorotoluene	250	(1)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
4-Isopropyltoluene	-		< 1.0	< 1.0	< 2.0	< 1.0	11 J	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
4-Methyl-2-pentanone Acetone	14100	(4)	< 10 < 10	< 10 < 10	< 20 < 20	< 10 < 10	< 200 < 200	< 200 < 200	< 200 < 200		< 10 2.9 J	< 10 < 10	< 10 < 10	< 10 < 10	< 10 1.4 J	< 10 < 10	< 10 < 10	< 10 < 10		< 10 2.7 J		< 10 < 10	< 10 < 10
Benzene	5	(2)	< 1.0	< 1.0	< 2.0	< 1.0	5800	5700	7800		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromobenzene	62	(1)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromodichloromethane	1.34	(4)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromoform	33	(5)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Bromomethane	7.54	(4)	< 3.0	< 3.0	< 6.0	< 3.0	< 60	< 60	< 60		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
Carbon disulfide Carbon Tetrachloride	810 5	(4)	< 10 < 1.0	< 10 < 1.0	< 20 < 2.0	< 10 < 1.0	< 200 < 20	< 200 < 20	< 200 < 20		< 10 < 1.0		< 10 < 1.0		< 10 < 1.0	< 10 < 1.0							
Chlorobenzene	100	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Chloroethane	20900	(4)	< 2.0	< 2.0	< 4.0	< 2.0	< 40	< 40	< 40		< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
Chloroform	100	(3)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Chloromethane	20.3	(4)	< 3.0	< 3.0	< 6.0	< 3.0	< 60	< 60	< 60		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
cis-1,2-DCE	70	(2)	< 1.0	< 1.0 < 1.0	< 2.0 < 2.0	< 1.0 < 1.0	< 20 < 20	< 20 < 20	< 20 < 20		< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0		< 1.0		< 1.0	< 1.0 < 1.0
cis-1,3-Dichloropropene Dibromochloromethane	4.7 1.68	(4)	< 1.0 < 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	< 1.0
Dibromomethane	8.3	(1)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Dichlorodifluoromethane	197	(4)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Ethylbenzene	700	(2)	< 1.0	< 1.0	< 2.0	< 1.0	1700	1200	1900		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Hexachlorobutadiene	1.39	(4)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Isopropylbenzene Methyl tert-butyl ether (MTBE)	447 143	(4)	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	< 1.0 < 1.0	86 1900	72 490	1400		< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0		< 1.0 0.40 J		< 1.0 < 1.0	< 1.0 < 1.0
Methylene Chloride	5	(2)	< 3.0	< 3.0	< 6.0	< 3.0	< 60	< 60	< 60		< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
Naphthalene	1.65	(4)	< 2.0	< 2.0	< 4.0	< 2.0	27 J	46	210		< 3.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0		< 2.0		< 2.0	< 2.0
n-Butylbenzene	-		< 3.0	< 3.0	< 6.0	< 3.0	6.4 J	< 60	< 60		< 1.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0	< 3.0		< 3.0		< 3.0	< 3.0
n-Propylbenzene	-		< 1.0	< 1.0	< 2.0	< 1.0	270	220	250		< 2.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
sec-Butylbenzene	-	(0)	< 1.0	< 1.0	< 2.0	< 1.0	16 J	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Styrene tert-Butylbenzene	100	(2)	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	< 1.0 < 1.0	< 20 < 20	< 20 < 20	< 20 < 20		< 1.0 < 1.0		< 1.0 < 1.0		< 1.0 < 1.0	< 1.0 < 1.0							
Tetrachloroethene (PCE)	5	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Toluene	750	(3)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
trans-1,2-DCE	100	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
trans-1,3-Dichloropropene	4.71	(4)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Trichloroethene (TCE)	5	(2)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Trichlorofluoromethane	1136	(4)	< 1.0	< 1.0	< 2.0	< 1.0	< 20	< 20	< 20		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0
Vinyl chloride Xylenes, Total	620	(3)	< 1.0 < 1.5	< 1.0 < 1.5	< 2.0	< 1.0 < 1.5	< 20 79	< 20 65	< 20 150		< 1.0 < 1.5		< 1.0 < 1.5		< 1.0 < 1.5	< 1.0 < 1.5							
Ayleries, Total	020	(3)	< 1.5	< 1.5	< 3.0	C.1 >	19	00	100		C.1 >	₹ 1.5	< 1.5	< 1.5		C.1 >		C.1.3	< 1.5				

	Screening			843	V-64			MW-65		**MW-66		8414	V-67			B.E.V.	V-68		**MW-69		MW	V-70	
	Levels	Source	Aug-17			Aug-14	Aug-17	Aug-16	Aug-15	Aug-17	Aug-17		Aug-15	Aug-14	Aug-17		Aug-15	Aug-14	Aug-17	Aug-17		Aug-15	Aug-14
Semi Volatile Organic Compo		•	Aug-17	Aug-10	Aug-13	Aug-14	Aug-17	Aug-10	Aug-13	Aug-17	Aug-17	Aug-10	Aug-13	Aug-14	Aug-17	Aug-10	Aug-13	Aug-14	Aug-17	Aug-17	Aug-10	Aug-13	Aug-14
1,2,4-Trichlorobenzene	70	(2)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
1,2-Dichlorobenzene	600	(2)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
1,3-Dichlorobenzene	-	(=)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
1,4-Dichlorobenzene	75	(2)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
1-Methylnaphthalene	11	(5)	< 10	< 10		< 10	100	14				< 10		< 11		< 10		< 10		< 10			< 12
2,4,5-Trichlorophenol	1170	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
2,4,6-Trichlorophenol	11.9	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
2,4-Dichlorophenol	45.3	(4)	< 20	< 20		< 20	< 100	< 20				< 20		< 23		< 20		< 22		< 20			< 25
2,4-Dimethylphenol	354	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
2,4-Dinitrophenol	38.7	(4)	< 20	< 20		< 20	< 100	< 20				< 20		< 23		< 20		< 22		< 20			< 25
2,4-Dinitrotoluene	2.37	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
2,6-Dinitrotoluene	0.485	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
2-Chloronaphthalene	733	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
2-Chlorophenol	91	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
2-Methylnaphthalene	36	(1)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
2-Methylphenol	930	(1)	< 10	< 10		< 20	< 50	< 10				< 10		< 23		< 10		< 22		< 10			< 25
2-Nitroaniline	190	(1)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
2-Nitrophenol	-		< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
3,3´-Dichlorobenzidine	1.25	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
3+4-Methylphenol	930	(1)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
3-Nitroaniline	-		< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
4,6-Dinitro-2-methylphenol	1.52	(4)	< 20	< 20		< 20	< 100	< 20				< 20		< 23		< 20		< 22		< 20			< 25
4-Bromophenyl phenyl ether	-		< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
4-Chloro-3-methylphenol	-		< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 11		< 10			< 12
4-Chloroaniline	3.7	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
4-Chlorophenyl phenyl ether	-	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
4-Nitroaniline	38	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
4-Nitrophenol Acenaphthene	535	(4)	< 10	< 10 < 10		< 10 < 10	< 50	< 10 < 10				< 10 < 10		< 11 < 11		< 10 < 10		< 11 < 10		< 10 < 10			< 12 < 12
Acenaphthylene	555	(4)	< 10 < 10	< 10		< 10	< 50 < 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Acenaphinylene	130	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Anthracene	1720	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Azobenzene	1.2	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Benzo(a)anthracene	0.12	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Benzo(a)pyrene	0.2	(2)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Benzo(b)fluoranthene	0.343	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Benzo(g,h,i)perylene	-		< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Benzo(k)fluoranthene	3.43	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Benzoic acid	75000	(1)	8.3 J	< 20		< 20	92 J	< 20				< 20		< 23		< 20		< 20		6.7 J			< 25
Benzyl alcohol	2000	(1)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Bis(2-chloroethoxy)methane	59	(1)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Bis(2-chloroethyl)ether	0.137	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Bis(2-chloroisopropyl)ether	9.81	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Bis(2-ethylhexyl)phthalate	6	(2)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Butyl benzyl phthalate	160	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Carbazole	-		< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Chrysene	34.3	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Dibenz(a,h)anthracene	0.0343	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Dibenzofuran	-	1.00	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Diethyl phthalate		(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Dimethyl phthalate Di-n-butyl phthalate	- 005	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
, ,	885	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Di-n-octyl phthalate	- 902	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11 < 11		< 10		< 10		< 10			< 12
Fluoranthene Fluorene	802 288	(4)	< 10 < 10	< 10 < 10		< 10 < 10	< 50 < 50	< 10 < 10				< 10 < 10		< 11		< 10 < 10		< 10 < 10		< 10 < 10			< 12 < 12
Hexachlorobenzene	0.0976	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Hexachlorobutadiene	1.387	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Hexachlorocyclopentadiene	50	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Hexachloroethane	3.28	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Indeno(1,2,3-cd)pyrene	0.343	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Isophorone	781	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
isopriolone	, , , ,	(+)	_ \ 10	, 10	1	` 10	\ 00	\ 10		<u> </u>	1	. 10				, 10	1	, 10	<u> </u>	\ 10			_ \ 12

	0	1																				<i>V</i> -70	
	Screening	Source			V-64			MW-65		**MW-66			V-67				V-68		**MW-69				
	Levels	ļ	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-17	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-16	Aug-15	Aug-14	Aug-17	Aug-17	Aug-16	Aug-15	Aug-14
Naphthalene	1.65	(4)	< 10	< 10		< 10	19 J	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Nitrobenzene	1.4	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
N-Nitrosodimethylamine	0.0017	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
N-Nitrosodi-n-propylamine	0.11	(5)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
N-Nitrosodiphenylamine	0.0049	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Pentachlorophenol	170	(4)	< 20	< 20		< 20	< 100	< 20				< 20		< 23		< 20		< 22		< 20			< 25
Phenanthrene	1	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Phenol	5760	(4)	< 10	< 10		< 10	22 J	< 10				< 10		< 11		< 10		< 11		< 10			< 12
Pyrene	117	(4)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
Pyridine	20	(1)	< 10	< 10		< 10	< 50	< 10				< 10		< 11		< 10		< 10		< 10			< 12
General Chemistry (mg/l):																							
Fluoride	1.6	(3)	< 0.10	< 10	< 0.10	< 0.10	< 0.10	< 0.50	< 0.50		0.87	< 0.10	0.62	0.63	0.26	0.41	0.35	0.45		0.45 J		0.7	0.69
Chloride	250	(3)	790	860	940	1100	230	220	210		12	12	14	12	52	38	42	34		330		420	440
Nitrite	1	(2)	< 2.0	< 10	< 2.0	< 2.0	< 0.10	< 0.50	< 0.50		< 0.10	< 0.10	< 0.10	2.7	< 0.10	< 0.10	< 0.10	< 0.10		< 0.50		< 0.50	< 0.10
Bromide	-		3.5	5.1	3.4	2.6	0.99	4.2	4.5		0.15	0.16	0.13	0.11	0.22	0.21	0.23	0.23		1.7		2.4	0.99
Nitrate	10	(3)	55	58	40	36	0.035 J	< 0.50	< 0.50		13	9.9	13	2.7	7.6	5.6	7.6	8.6		< 0.50		< 0.50	< 0.10
Phosphorus	-		< 0.50	< 50	< 10	< 0.50	< 0.50	< 2.5	< 2.5		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		< 2.5		< 2.5	< 0.50
Sulfate	600	(3)	1500	1500	1500	1600	1400	1600	970		180	270	240	210	250	260	280	300		1900		2400	2500
Carbon Dioxide (CO ₂₎	-		260	260	260	270	1100	860	1300		320	290	310	380	220	210	180	200		830		780	730
Alkalinity (CaCO ₃)			276.3	279	287.7	290	1177	946	1335		345.5	314.7	342.5	410	236.7	236.3	200.2	220		804.5		809.4	780
* \ -/									_														
Bicarbonate (CaCO ₃)	-		276.3	279	287.7	290	1177	946	1335		345.5	314.7	342.5	410	236.7	236.3	200.2	220		804.5		809.4	780
Total Metals (mg/l):																							
Arsenic	0.01	(2)	<0.010	< 0.020	< 0.020	< 0.020	< 0.050	0.02	< 0.020		< 0.020	< 0.020	< 0.020	< 0.020	< 0.050	< 0.020	< 0.020	< 0.020		< 0.25		< 0.020	< 0.020
Barium	2.0	(2)	0.12	0.095	0.077	0.11	0.058	0.11	0.21		0.05	0.23	0.12	0.047	0.053	0.28	0.038	0.16		0.19		0.023	0.22
Cadmium	0.005	(2)	< 0.0020				< 0.0020				< 0.0020		< 0.0020		< 0.0020		< 0.0020			< 0.0020		< 0.0020	
Chromium	0.05	(3)	0.0050 J		< 0.0060	< 0.0060	< 0.0060	< 0.0060			< 0.0060	0.0089	< 0.0060		< 0.0060	0.012	< 0.0060			0.0086		< 0.0060	0.008
Lead	0.015	(2)	< 0.0050	0.0088	< 0.0050	< 0.0050	< 0.0050	< 0.0050			< 0.0050	0.005	< 0.0050	0.0058	< 0.0050	< 0.0050				< 0.0050		< 0.0050	< 0.0050
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050				< 0.0050				< 0.0050		< 0.0050		< 0.0050					< 0.0050		< 0.0050	
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020		< 0.00020		< 0.00020	< 0.00020
Dissolved Metals (mg/l):																							
Arsenic	0.01	(2)	0.048	< 0.020	< 0.020	< 0.020	0.049	< 0.020	< 0.020		0.022	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020		0.028		< 0.020	< 0.020
Barium	1.0	(3)	0.012 J	0.024	< 0.020	< 0.020	0.039	0.045	0.2		0.031	0.043	0.039	0.034	0.023	0.029	0.022	< 0.020		0.016 J		0.024	< 0.020
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020		< 0.0020		< 0.0020	< 0.0020
Calcium	-		480	500	530	470	350	370	270		130	140	150	130	100	90	93	90		620		640	600
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060	< 0.0060
Copper	1	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		0.0016 J	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060		< 0.0060		< 0.0060	< 0.0060
Iron	1	(3)	0.025	1.8	< 0.020	0.045	7.1	6.7	7		< 0.020	0.29	< 0.020	< 0.020	< 0.020	0.25	< 0.020	0.031		25		8.5	18
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	0.0055		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050	< 0.0050
Magnesium	-		73	78	72	69	120	110	97		27	28	31	25	25	21	24	24		130		180	170
Manganese	0.2	(3)	0.0011 J	0.037	< 0.0020	< 0.0020	3.2	2.7	1.8		0.14	0.4	0.38	0.088	0.0028	0.06	0.0045	0.059		2.3		4.3	3.0
Potassium	-		4.7	5.5	5.1	5.4	3.8	4.1	3.6		3.8	3.4	3	3.2	3.0	2.7	2.6	3		3.5		4.2	5.0
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050		< 0.0050		< 0.0050	< 0.0050
Sodium	-	<u> </u>	830	830	850	840	740	800	680		68	79	74	55	110	110	110	120		580		730	720
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		< 0.10		< 0.10	< 0.50
Zinc	10	(3)	0.028	0.038	< 0.020	< 0.020	0.12	< 0.020	0.022		0.023	< 0.020	0.025	< 0.020	0.026	< 0.020	0.027	< 0.020		0.024		0.028	< 0.020
Total Petroleum Hydrocarbons		(0)	5.520								J.320												
Diesel Range Organics	0.0398	(6)	< 0.20	< 0.20	< 0.20	< 0.20	4.4	4.8	7.7		< 0.20	0.64	0.21	0.64	< 0.20	< 0.20	< 0.20	< 0.20		< 0.20		< 0.20	< 0.20
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.10	< 0.050	23	20	19		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050		< 0.050		< 0.20	< 0.050
Motor Oil Range Organics	0.0398	(6)	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5		< 2.5	< 2.5	< 2.5	< 2.5	<2.5	< 2.5	< 2.5	< 2.5		< 2.5		< 2.5	< 2.5
Motor On Range Organics	0.0000	(0)	1 2.0	\ 2.0	\ 2.0	\ 2.0	1 \ 2.0	\ 2.0	\ 2.0		\ 2.0	\ 2.0	\ 2.0	\ Z.U	\Z.U	\ 2.0	\ 2.0	\ 2.0		` 2.0		\ 2.0	_ \ 2.0

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL

 (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less

 (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)

 (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds

- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
 (6) NMED groundwater screening level for unknown oil

 No screening level available
 Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 --- Analysis not required and/or well contains separate phase
 Analytical result exceeds the respective screening level.

- = 6/27/13 modification on FWGWM Plan to remove MW-8 and replace with MW-52.

 ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

Table 7
Collection and Observation Wells Analytical Summary
2017 Groundwater Remediation and Monitoring Annual Report

						CW	0+60			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compound	ls (mg/l)									
Benzene	0.005	(2)	< 1.0	< 0.001	<0.001	0.0025	0.0012	0.0016	0.002	0.0056
Toluene	0.750	(3)	< 1.0	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)	0.0035	0.0031	0.0018	0.0023	< 0.001	0.0017	0.0018	<0.001
Xylene	0.620	(3)	< 1.5	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015
MTBE	0.143	(4)	< 1.0	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	0.0398	(6)	1.2	1.4	0.83	0.73	1.7	1.4	0.74	1.7
Gasoline Range Organics	-	-	3.2				0.51	2.7	2.9	
Motor Oil Range Organics	0.0398	(6)	< 2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5

			CW 2	25+95			
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
< 0.001	< 0.001	0.0071	0.0039	0.110	0.210	0.33	0.280
< 0.001	< 0.001	<0.005	<0.001	< 0.005	< 0.050	<0.050	<0.010
< 0.001	< 0.001	<0.005	<0.001	< 0.005	< 0.050	<0.050	<0.010
< 0.0015	< 0.0015	<0.0075	<0.0015	< 0.0075	< 0.075	<0.075	<0.0015
< 0.001	< 0.001	< 0.005	<0.001	< 0.005	<0.050	<0.050	<0.010
< 0.20	<0.20	<0.20	<0.20	1.3	<0.20	0.24	<0.20
0.18				1.7	0.88	0.80	
< 2.5	<2.5	< 2.5	< 2.5	3.1	< 2.5	< 2.5	< 2.5

						OW	0+60			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compound	ls (mg/l)									
Benzene	0.005	(2)		0.00007J	< 0.001		< 0.001	<0.001	<0.001	
Toluene	0.750	(3)		0.00043J	< 0.001		< 0.001	< 0.001	< 0.001	
Ethylbenzene	0.700	(2)		0.00058J	< 0.001		< 0.001	< 0.001	< 0.001	
Xylene	0.620	(3)		0.0025	< 0.0015		< 0.0015	<0.0015	<0.0015	
MTBE	0.143	(4)		< 0.001	< 0.001		< 0.001	< 0.001	< 0.001	
Total Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	0.0398	(6)		13	1.3		1.7	3.2	1.5	
Gasoline Range Organics	-	-		2.1	0.7		0.38	0.3	0.23	
Motor Oil Range Organics	0.0398	(6)		< 5	< 2.5		< 2.5	< 2.5	< 2.5	

	OW 14+10											
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14					

						OW	1+50			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compound	ls (mg/l)									
Benzene	0.005	(2)		< 0.001	< 0.001	<0.005				
Toluene	0.750	(3)		< 0.001	< 0.001	<0.005				
Ethylbenzene	0.700	(2)		< 0.001	< 0.001	<0.005				
Xylene	0.620	(3)		0.0025	< 0.0015	<0.0075				
MTBE	0.143	(4)		< 0.001	< 0.001	<0.005				
Total Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	0.0398	(6)		13	4.2	2.5				
Gasoline Range Organics	-	-		2.1	2.9	3.2				
Motor Oil Range Organics	0.0398	(6)		< 5	< 2.5	<2.5				

	OW 16+60											
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14					
	0.000084J	<0.010	<0.010	< 0.001	< 0.00 5	<0.00 5	<0.002					
	< 0.001	<0.010	<0.010	< 0.001	<0.010	< 0.00 5	<0.002					
	0.0011	<0.010	<0.010	0.0017	<0.010	0.0056	0.082					
	0.00048J	<0.0 15	<0.0 15	< 0.0015	<0.0 15	< 0.0 75	<0.003					
	0.39	0.41	0.28	0.41	0.460	0.73	0.660					
	86	3.8	28.0	5.0	12	35	40					
	1.5	1.5	1.8	1.00	1.8	2.7	2.9					
	<5	<2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5					

Table 7
Collection and Observation Wells Analytical Summary
2017 Groundwater Remediation and Monitoring Annual Report

				OW 3+85								
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14		
Volatile Organic Compound	ls (mg/l)											
Benzene	0.005	(2)		< 0.001	<0.010	<0.010	< 0.001			<0.010		
Toluene	0.750	(3)		< 0.001	<0.010	<0.010	< 0.001			<0.010		
Ethylbenzene	0.700	(2)		0.00067J	0.011	0.011	< 0.001			0.025		
Xylene	0.620	(3)		< 0.0015	<0.0015	<0.0015	< 0.015			<0.0015		
MTBE	0.143	(4)		< 0.001	<0.010	<0.010	< 0.001			<0.010		
Total Petroleum Hydrocarb	ons (mg	/I):										
Diesel Range Organics	0.0398	(6)		75	9	56	12.0			110		
Gasoline Range Organics	-	-		4.2	3.1	14	4.7			5.0		
Motor Oil Range Organics	0.0398	(6)		7.2	<2.5	<25	< 2.5			<25		

	OW 19+50												
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14						
	< 0.001												
	< 0.001												
	< 0.001												
	< 0.0015												
	0.0025												
	7.9												
	< 0.050												
	<5												

				OW 5+50								
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14		
Volatile Organic Compound	ls (mg/l)											
Benzene	0.005	(2)		< 0.001								
Toluene	0.750	(3)		< 0.001								
Ethylbenzene	0.700	(2)		< 0.001								
Xylene	0.620	(3)		< 0.0015								
MTBE	0.143	(4)		0.00039J								
Total Petroleum Hydrocarb	ons (mg	/I):										
Diesel Range Organics	0.0398	(6)		370								
Gasoline Range Organics	-	-		0.12								
Motor Oil Range Organics	0.0398	(6)		70								

	OW 22+00												
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14						
< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
< 0.0015	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015						
0.0057	0.00029J	< 0.001	0.018	< 0.001	<0.001	0.0017	<0.001						
< 0.20	3.1	< 0.20	< 0.20	< 0.20	0.24	< 0.20	< 0.20						
<0.05	< 0.050	<0.05	< 0.05	< 0.05	< 0.050	< 0.050	< 0.050						
<2.5	<5	<2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5						

						OW	6+70			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compound	ls (mg/l)									
Benzene	0.005	(2)								
Toluene	0.750	(3)								
Ethylbenzene	0.700	(2)								
Xylene	0.620	(3)								
MTBE	0.143	(4)								
Total Petroleum Hydrocarbo	ons (mg	/I):								
Diesel Range Organics	0.0398	(6)								
Gasoline Range Organics	-	-								
Motor Oil Range Organics	0.0398	(6)								

			OW 2	23+10			
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
	-						
	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001
	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015
	0.0014	< 0.001	0.012	< 0.001	<0.001	<0.001	<0.001
	1.8	0.27	< 0.20	0.52	< 0.20	2.1	1
	0.084	<0.05	< 0.05	< 0.05	< 0.050	< 0.050	< 0.050
	<5	<2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5

Table 7

Collection and Observation Wells Analytical Summary 2017 Groundwater Remediation and Monitoring Annual Report

						OW	8+10			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compound	ds (mg/l)									
Benzene	0.005	(2)	< 0.001	< 0.001	< 0.001					
Toluene	0.750	(3)	< 0.001	< 0.001	< 0.001					
Ethylbenzene	0.700	(2)	< 0.001	< 0.001	< 0.001					
Xylene	0.620	(3)	< 0.0015	< 0.0015	< 0.0015					
MTBE	0.143	(4)	0.0012	0.0018	0.0047					
Total Petroleum Hydrocarb	ons (mg	/I):								
Diesel Range Organics	0.0398	(6)	0.22	5.7	< 0.20					
Gasoline Range Organics	-	-	<0.05	<0.05	<0.05					
Motor Oil Range Organics	0.0398	(6)	<5	<5	<2.5					

	OW 23+90												
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14						
	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
	< 0.0015	< 0.0015	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015						
	0.0004J	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001						
	1.4	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20						
	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<0.050						
	<5	<2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5						

						OW 1	11+15			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compound	ls (mg/l)									
Benzene	0.005	(2)		4.4	3.9	3.8	2.5	1.7	0.84	
Toluene	0.750	(3)		0.0014J	< 0.020	< 0.020	< 0.020	< 0.050	< 0.010	
Ethylbenzene	0.700	(2)		0.0096J	< 0.020	< 0.020	< 0.020	< 0.050	< 0.010	
Xylene	0.620	(3)		< 0.030	< 0.030	< 0.030	< 0.030	< 0.075	< 0.015	
MTBE	0.143	(4)		0.32	0.31	0.22	0.48	0.64	0.87	
Total Petroleum Hydrocarbo	ons (mg	/I):								
Diesel Range Organics	0.0398	(6)		120	540	110	54	94	34	
Gasoline Range Organics	-	-		13	12	14	4.5	0.3	3.7	
Motor Oil Range Organics	0.0398	(6)		<50	<25	<25	< 25	< 25	< 2.5	

OW 25+70										
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14			
< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001			
< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001			
< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001			
< 0.0015	< 0.0015	0.0026	< 0.0015	< 0.0015	<0.0015	<0.0015	<0.0015			
0.0014	0.0027	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001			
< 0.20	< 1.0	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20			
0.091	0.10	0.078	0.13	< 0.05	0.12	0.14	0.2			
< 2.5	<5	<2.5	<2.5	< 2.5	< 2.5	< 2.5	< 2.5			

- (1) EPA Regional Screening Levels (June 2017) Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
- = No screening level available
 - = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- --- = Analysis not required and/or well contains separate phase
- = Analytical result exceeds the respective screening level.
 - = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 8
Outfalls Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

					Е	ast Outfall #	‡2						East O	utfall #3			
			Aug-17	Apr-17	May-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	May-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compo	ounds (นอ	J/L)															
Benzene	0.005	(2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	0.75	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.7	(2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	0.62	(3)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	< 0.002	<0.0015
MTBE	0.143	(4)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
General Chemistry (mg/	/I):																
Fluoride	1.6	(3)	0.42	0.46	0.18	0.17	0.52	0.50	0.56	0.18	0.23	0.19	0.18	0.18	0.22	0.19	0.39
Chloride	250	(3)	9.5	8.4	3.4	2.7	8.6	9.2	7.6	4.1	18	3.4	3.8	3.6	4.4	3.3	13
Nitrite	1	(2)	1.6	1.4	< 0.10	< 0.10	0.13	< 0.10	< 0.10	0.59 J	2.4	< 1.0	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Bromide	-	-	0.13	< 0.10	< 0.10	< 0.10	< 0.10	0.11	0.10	0.036 J	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	<0.10	0.11
Nitrate	10	(3)	1.6	1.4	0.17	0.54	0.71	0.37	3.7	0.59 J	2.4	< 1.0	0.22	0.47	0.21	0.12	3.3
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(3)	190	89	45	42	88	98	77	51	120	48	44	47	54	43	120
Carbon Dioxide (CO ₂)	-	-	310	320	90	78	-	320	320	110	240	84	87	85	-	86	330
Alkalinity (CaCO ₃)	-	_	343.7	343.1	97.96	85.24	344.8	350	340	126.5	253.5	94	95.28	95.16	111	95	350
Bicarbonate (CaCO ₃)		_	343.7	343.1	97.96	85.24	344.8	350	340	126.5	253.5	94	95.28	95.16	111	95	350
Total Metals (mg/l):	-	-	343.7	343.1	37.30	03.24	344.0	330	340	120.5	233.3	34	93.20	93.10	1111	33	330
Arsenic	0.01	(2)	0.02	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Barium	2.0	(2)	0.02	0.066	0.020	0.063	0.020	0.19	0.080	0.076	0.08	0.072	0.074	0.065	0.063	0.073	0.06
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.05	(3)	0.021	< 0.0060	< 0.0060	< 0.0060	< 0.0060	0.0072	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Lead	0.015	(2)	< 0.0050	< 0.0050	0.0057	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/l)		(0)	0.000	0.000	0.0040	0.004	0.000	0.000	0.000	0.000	0.000	0.000	0.0040	0.004	0.000	0.000	0.000
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.0010	0.001	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	0.001	< 0.020	< 0.020	< 0.020
Barium	1.0	(3)	0.095	0.066	0.068	0.06	0.089	0.089	0.079	0.067	0.08	0.069	0.072	0.062	0.062	0.071	0.060
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-		120	98	37	30	100	100	94	45	92	34	35	33	41	35	110
Chromium	0.05	(3)	< 0.0050	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1	(3)	< 0.050	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1	(3)	0.023	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	0.0066 J	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Lead	0.015	(2)	< 0.00020	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0050	< 0.0050
Magnesium	-		26	21	6.2	5.2	21	22	20	8.2	16	6	5.8	5.9	7.1	6.1	21
Manganese	0.2	(3)	0.076	0.0054	0.009	0.0021	0.011	< 0.0020	0.0053	0.0031	< 0.0020	0.0032	0.0028	0.0031	< 0.0020	< 0.0020	< 0.0020
Potassium	-		2.1	1.6	1.6	1.7	1.4	1.7	1.3	1.8	2.1	1.9	1.6	1.8	1.9	1.9	1.9
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.050	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Sodium	-		67	58	16	14	57	60	54	22	53	18	17	17	22	17	68
Uranium	0.03	(3)	< 0.0050	< 0.10	0.0008	< 0.00050	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.0008	0.0007	< 0.10	< 0.10	< 0.10
Zinc	10	(3)	0.030	< 0.020	0.02	0.019	< 0.020	< 0.020	< 0.020	0.031	< 0.020	0.025	< 0.010	0.018	< 0.020	< 0.020	0.034

- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
 - = No screening level available or result available
 - = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - = Analytical result exceeds the respective screening level.
- ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 9
Seeps Analytical Summary - 2017 Groundwater Remediation and Monitoring Annual Report

							•	•		
						See	p #1			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compounds (n	ng/l):									
Benzene	0.005	(2)		<0.001		<0.001		<0.001	<0.001	<0.001
Toluene	0.750	(3)		<0.001		<0.001		<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)		<0.001		<0.001		<0.001	<0.001	<0.001
Xylene	0.620	(3)		<0.0015		<0.0015		<0.0015	<0.002	<0.0015
MTBE	0.143	(4)		0.043		0.041		0.013	<0.001	0.066
General Chemistry (mg/l):										
Fluoride	1.6	(3)		<0.5		0.35		<1.0	0.23	0.30
Chloride	250	(3)		210		200		170	230	150
Nitrite	1.0	(2)		<1.0		<1.0		<1.0	< 0.10	< 0.10
Bromide	-	-		3.2		2.6		3.3	2.7	1.9
Nitrate	10	(3)		<1.0		<1.0		<1.0	< 0.10	< 0.1
Phosphorus	-	-		< 2.5		< 2.5		<5.0	< 10	< 0.50
Sulfate	600	(3)		1100		1300		1200	1600	1200
Carbon Dioxide (CO ₂)	-	-		470		450		390	350	390
Alkalinity (CaCO ₃)	-	-		507.1		479.6		433.1	380	430
Bicarbonate (CaCO ₃)	-	-		507.1		479.6		433.1	380	430

	Seep #2												
Aug-17	Apr-17	Aug-16	Aug-15	Aug-14									

	Seep #3											
Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14					
			<0.001									
			<0.001									
			<0.001									
			<0.0015									
			<0.001									
	-											
			0.22									
			260									
			<1.0									
			3.2									
			<1.0									
			<5									
			2500									
			330									
			365.4									
			365.4									

							p #6			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
Volatile Organic Compounds (n	ng/l):									
Benzene	0.005	(2)								<0.001
Toluene	0.750	(3)								<0.001
Ethylbenzene	0.700	(2)								<0.001
Xylene	0.620	(3)								<0.0015
MTBE	0.143	(4)								0.0058
General Chemistry (mg/l):										
Fluoride	1.6	(3)								< 0.10
Chloride	250	(3)								1600
Nitrite	1.0	(2)								< 2.0
Bromide	-	-								< 2.0
Nitrate	10	(3)								< 0.10
Phosphorus	-	-								< 0.50
Sulfate	600	(3)								1500
Carbon Dioxide (CO ₂)	-	-								390
Alkalinity (CaCO ₃)	-	-								420
Bicarbonate (CaCO ₃)	-	-								420

Seep #9											
Aug-17	Apr-17	Apr-16	Apr-15	Apr-14							
				<0.001							
				<0.001							
				<0.001							
				<0.0015							
				0.024							
				0.50							
				550							
				< 2.0							
				2.0							
				< 0.10							
				< 10							
				2000							
				290							
				320							
				320							

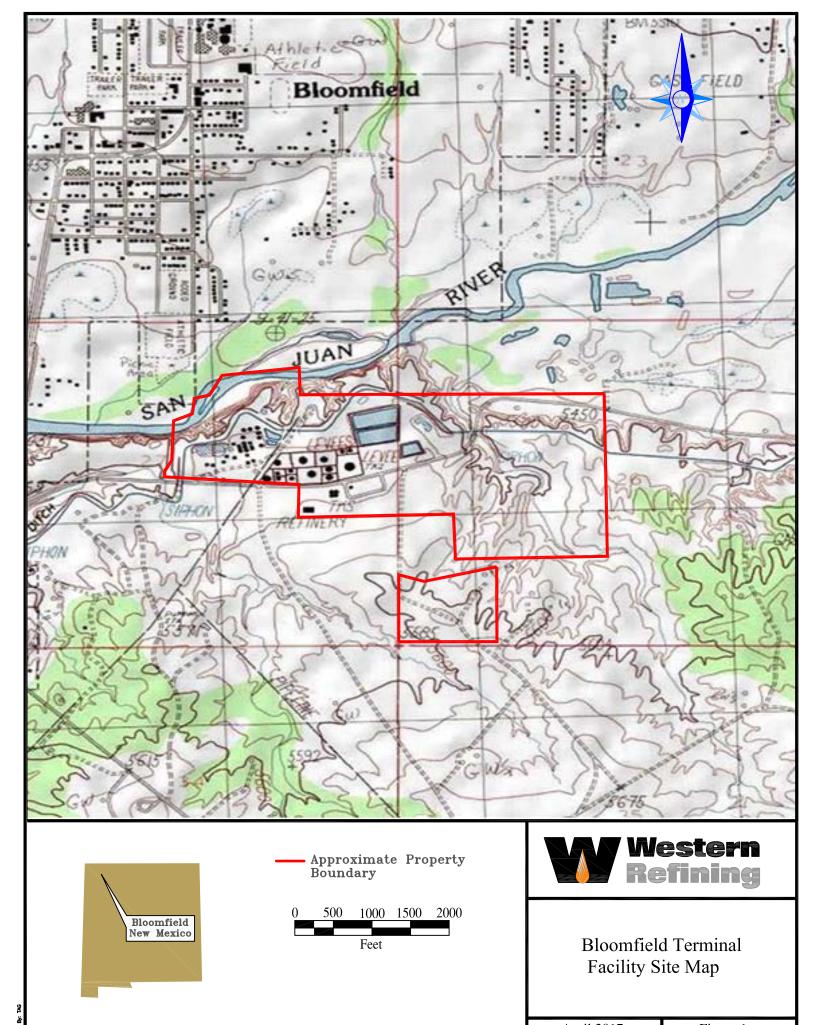
- (1) EPA Regional Screening Levels (June 2017) Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
 - = No screening level available
 - = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
- --- = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
 - = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

TABLE 10
San Juan River Terrace: San Juan River Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

						North o	f MW-46							North o	f MW-45			
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
			/tug ii	7.10	, ag .c	7400	, lug io	740. 10	, iag	740	/ug ::	, , (p. 11	, mag .c	740. 10	, ag io	745. 10	, .u.g	, ф
Benzene	0.005	(2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	0.750	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylenes	0.620	(3)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.0015
MTBE	0.143	(4)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarbor		(-/	.0.00		101001			101001	101001		101001	10.00	101001					
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.02
Gasoline Range Organics	-	-	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	-	-	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
General Chemistry (mg/l):																-		
Fluoride	1.6	(3)	0.13	0.19	0.15	0.19	0.17	0.21	0.18	0.20	0.12	0.17	0.15	0.2	0.17	0.2	0.18	0.20
Chloride	250	(3)	2.9	4.4	2.7	3.5	2.9	3.8	3.2	3.8	2.8	3.5	2.7	3.3	2.9	3.8	3.2	3.8
Nitrite	1.0	(2)	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10
Bromide	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nitrate	10	(3)	0.074 J	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(3)	45	120	49	80	53	93	58	87	45	71	48	78	52	92	59	92
Carbon Dioxide (CO ₂)	-	-	75	72	77	86				89	75	71	76	86				89
Alkalinity (CaCO ₃)		-	84.92	103.6	85	95	92	99.6	95	100	84.16	91.12	84.8	95.44	91	99.68	95	100
Total Dissolved Solids	1000		182	172	170	245	202		260	262	176	166		246	200	267	345	
Electric Conductivity	1000	(3)	280	260	280	380	310	263 405	330	390	280	260	180 280	380	300	411	340	259 380
	-		200	200	200	300	310	405	330	390	200	200	200	300	300	411	340	300
Total Metals (mg/l): Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020	< 0.020
Barium	2.0	(2)	0.020	0.082	0.11	0.020	0.020	0.020	0.020	0.020	0.020	0.020	0.14	0.020	0.020	0.020	0.020	0.020
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Chromium	0.005	(3)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	0.0060	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Lead	0.03	(2)	< 0.0050	< 0.0050	0.0058	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Selenium	0.013	(3)	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050
Mercury	0.002	(3)	< 0.00020	< 0.0000	< 0.00020	< 0.00020	< 0.0000		< 0.00020	< 0.00020	< 0.00020		-	< 0.00020	< 0.00020		< 0.00000	0.022
Dissolved Metals (mg/l):	0.002	(0)	₹ 0.00020	V 0.00020	₹ 0.00020	V 0.00020	₹ 0.00020	₹ 0.00020	₹ 0.00020	V 0.00020	V 0.00020	V 0.00020	₹ 0.00020	V 0.00020	V 0.00020	₹ 0.00020	₹ 0.00020	0.022
Arsenic	0.01	(2)	< 0.020	< 0.020	< 0.020	< 0.0010	< 0.0010	< 0.020	0.0011	< 0.020	< 0.020	< 0.020	< 0.020	< 0.0010	< 0.0010	< 0.020	< 0.0010	< 0.020
Barium	1.0	(3)	0.071	0.067	0.086	0.074	0.074	0.062	0.078	0.071	0.069	0.07	0.082	0.073	0.072	0.056	0.076	0.071
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020
Calcium	-	(-/	33	48	34	40	36	44	37	41	32	36	34	39	35	44	37	42
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Copper	1.0	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060
Iron	1.0	(3)	0.014 J	< 0.020	0.36	0.022	0.085	0.028	0.35	0.030	0.011 J	0.07	0.32	< 0.020	0.028	< 0.020	0.27	0.033
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.00050		< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0010	< 0.0050
Magnesium	-	(-/	5.8	7.1	5.5	6.1	5.6	6.7	6.1	6.8	5.7	6.4	5.6	6.1	5.5	6.8	6.0	6.9
Manganese	0.2	(3)	0.0091	0.098	0.032	0.010	0.009	0.011	0.020	0.015	0.008	0.019	0.033	0.011	0.0037	0.01	0.014	0.022
Potassium	-	(-)	1.9	2	2.2	1.9	2	2.2	2.0	1.9	1.8	2	2.3	1.8	2	2.2	2.0	2.0
Selenium	0.05	(3)	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.0010	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.0010	< 0.050
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0010	< 0.0050	< 0.0010	< 0.0050			< 0.0050	< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.0050
Sodium	-	(0)	16	34	19	27	18	33	21	31	16	25	20	27	18	34	21	32
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	0.00078	0.00067	< 0.10	< 0.0010	< 0.10	< 0.10	< 0.10	< 0.10	0.00076	0.00066	< 0.10	< 0.0010	< 0.10
Zinc	10	(3)	0.031	0.02	< 0.020	0.024	0.028	0.023	< 0.0010	< 0.020	0.031	< 0.020	< 0.020	0.014	0.018	0.05	< 0.010	< 0.020
Zillo	.0	(0)	5.501	U.U.	1 0.020	0.02-7	0.020	0.020	1 0.010	1 0.020	0.001	10.020	1 0.020	0.017	0.010	0.00	3 0.010	30.020

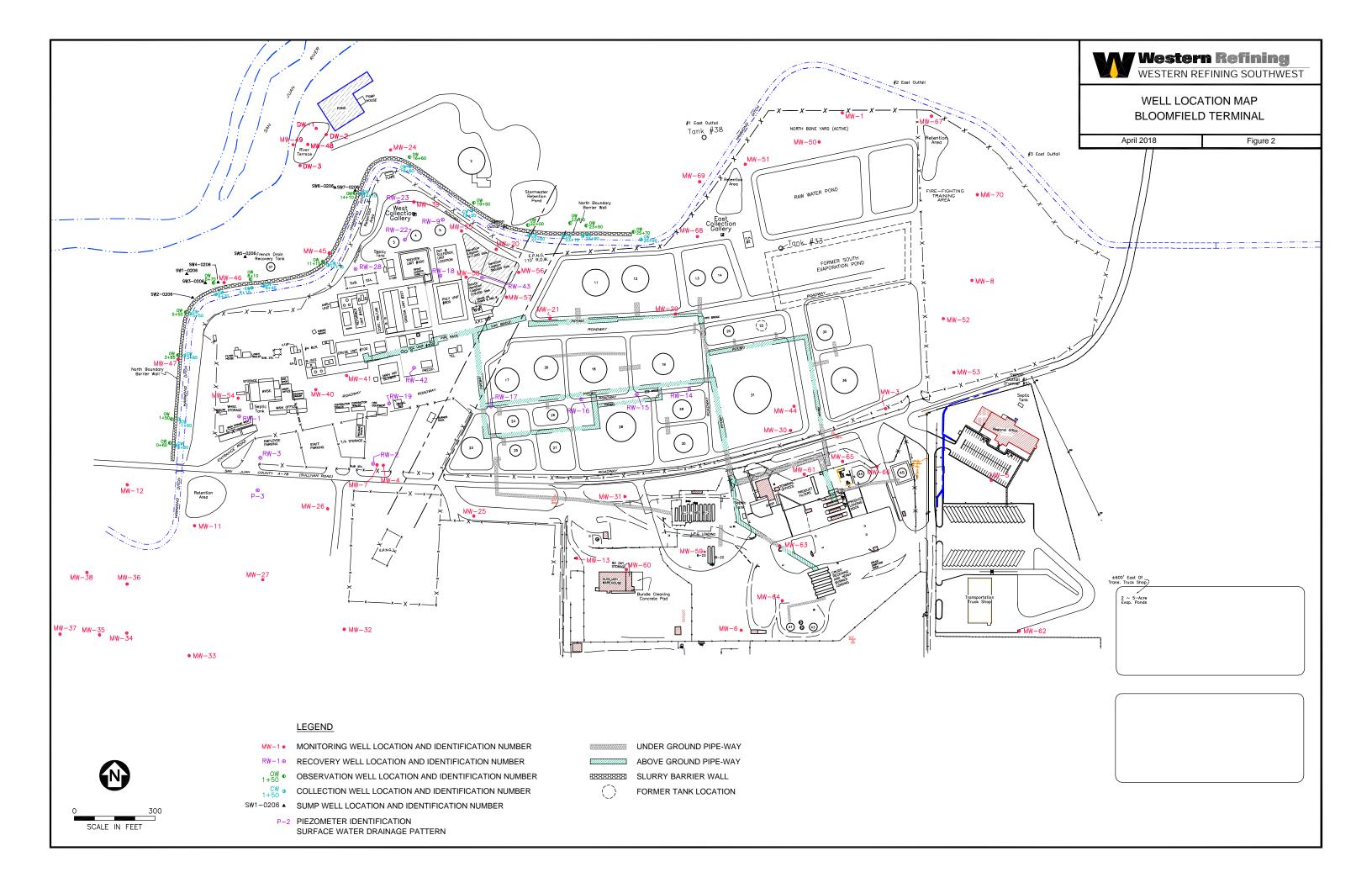
- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
- = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
- ** = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

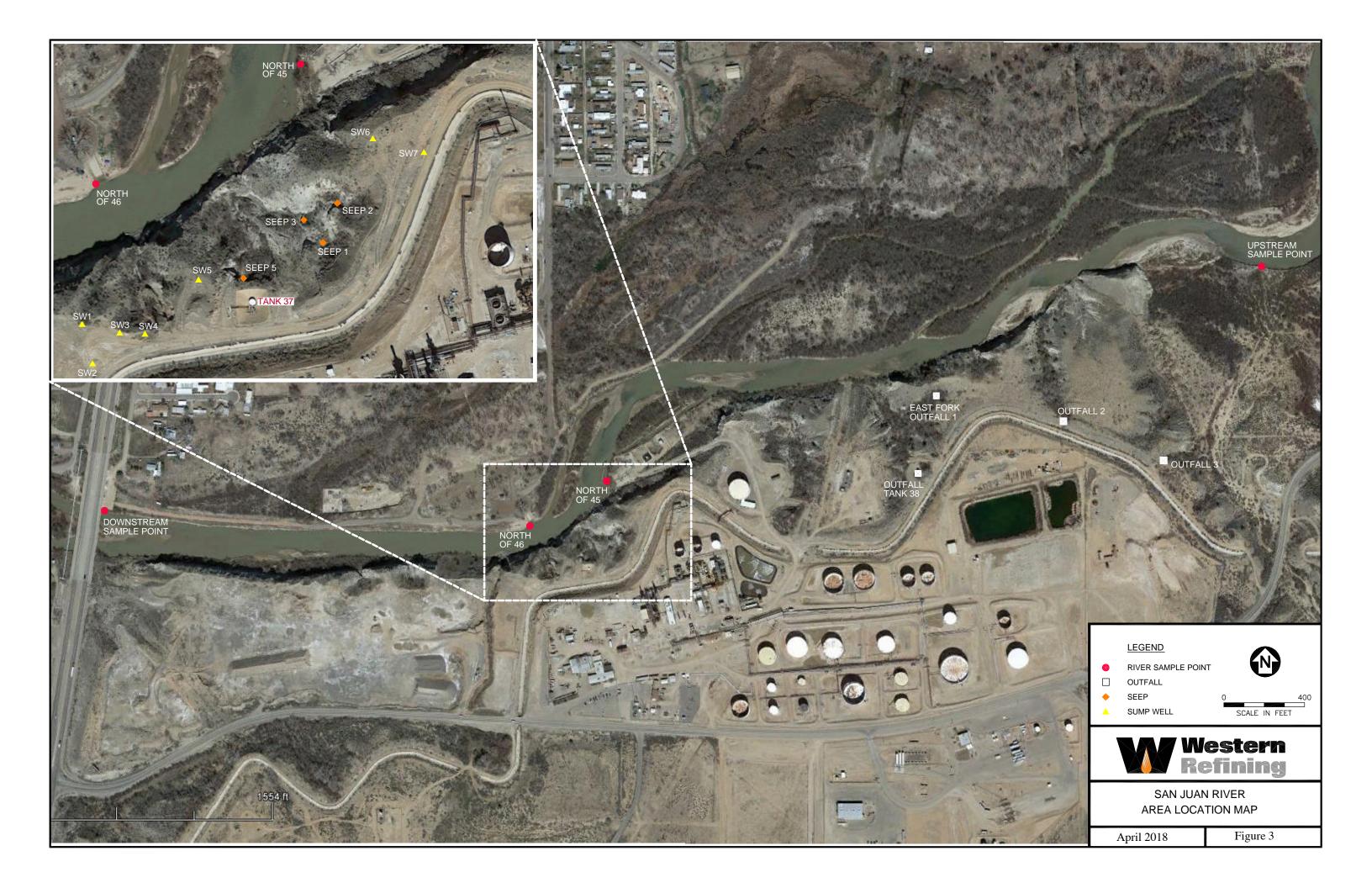
TABLE 10
San Juan River Terrace: San Juan River Analytical Summary
2017 Groundwater Remediation Monitoring Annual Report

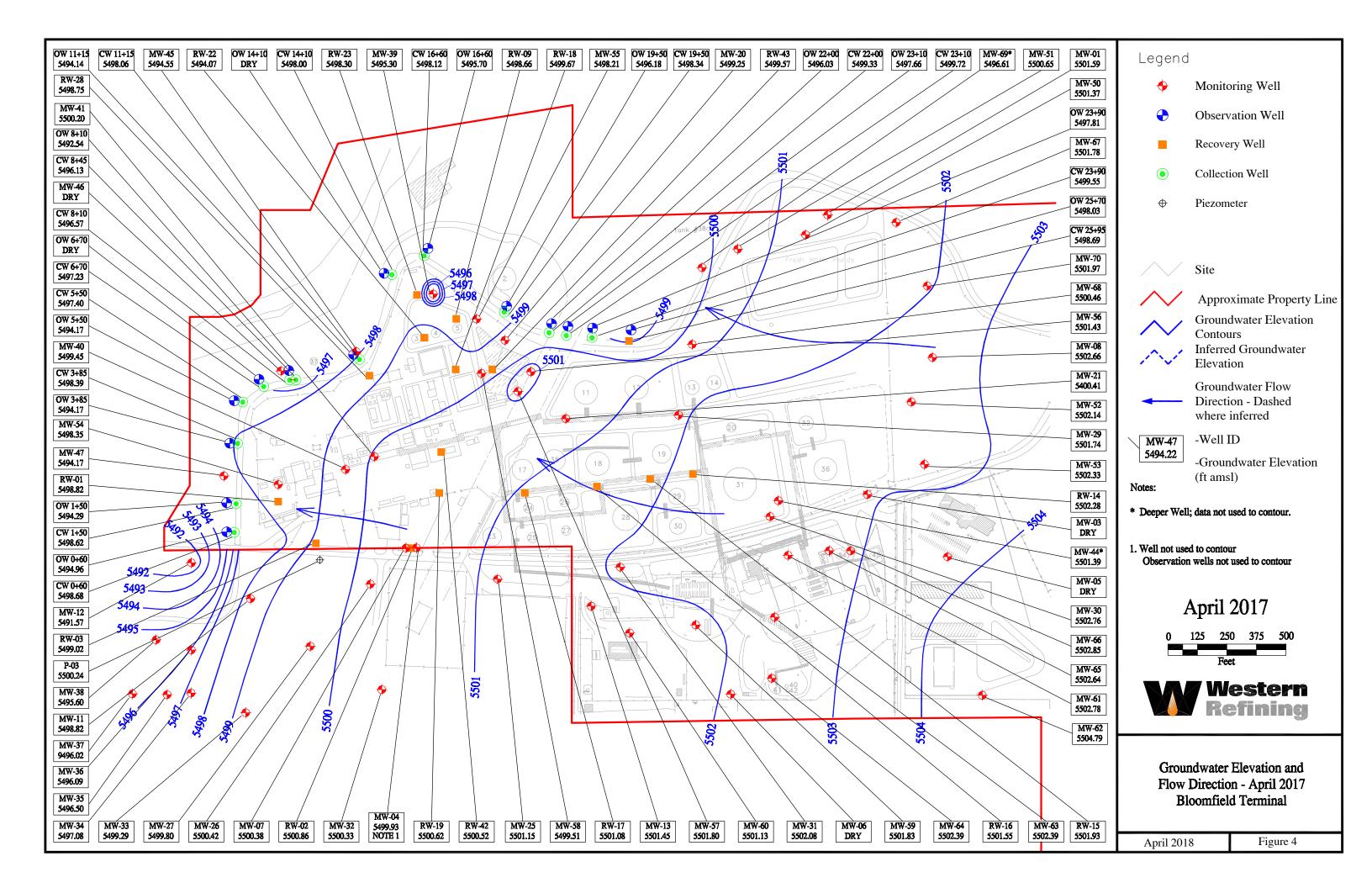

				Upstream							Downstream							
			Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14	Aug-17	Apr-17	Aug-16	Apr-16	Aug-15	Apr-15	Aug-14	Apr-14
			Aug-17	Api-17	Aug-10	Ap1-10	Aug-13	Apr-13	Aug-14		Aug-17	_ Αρι-ιτ	Aug-10	Api-10	Aug-10		Aug-14	_ Api-14
Benzene	0.005	(2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Toluene	0.750	(3)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Ethylbenzene	0.700	(2)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Xylenes	0.620	(3)	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.002	<0.0015
MTBE	0.143	(4)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
Total Petroleum Hydrocarbon		(. /	10.001	10.001	40.001	40.001	40.001	10.001	10.001	10.001	10.001	10.001	10.001	10.001	40.001	10.001	10.001	10.001
Diesel Range Organics	-	-	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Gasoline Range Organics	-	-	< 2.5	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Motor Oil Range Organics	-	-	< 0.050	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5	< 2.5
General Chemistry (mg/l):				. = . 5		. =	. =											
Fluoride	1.6	(3)	0.13	0.17	0.16	0.2	0.17	0.21	0.18	0.20	0.12	0.17	0.16	0.19	0.17	0.21	0.18	0.20
Chloride	250	(3)	3.4	3.5	2.7	3.3	3	4.3	3.3	3.9	2.8	3.7	2.7	3.4	3	3.9	3.3	4.2
Nitrite	1.0	(2)	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10	< 0.10	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10
Bromide	-	-	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nitrate	10	(3)	0.18	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	0.12	0.082 J	< 1.0	< 1.0	< 1.0	< 0.10	< 0.10	< 1.0	< 0.10
Phosphorus	-	-	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Sulfate	600	(3)	46	73	49	75	54	110	66	96	45	80	49	84	54	100	60	91
Carbon Dioxide (CO ₂)	-	-	77	71	77	86				89	75	72	77	87				91
Alkalinity (CaCO ₃)			85.68	91.24	86	95	91.56	99.56	96	99	84.52	93	86	97	92.12	102.6	96	100
	4000	- (0)												_				
Total Dissolved Solids	1000	(3)	181	167	178	240	204	232	225	269	186	172	184	254	196	279	220	272
Electric Conductivity	-	-	280	250	290	380	300	357	350	400	280	260	290	400	300	429	340	400
Total Metals (mg/l):	0.04	(0)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.00	0.000	0.000	0.000
Arsenic Barium	2.0	(2)	< 0.020 0.099	< 0.020 0.079	< 0.020 0.11	< 0.020	< 0.020 0.16	< 0.020 0.061	< 0.020 0.18	< 0.020 0.086	< 0.020 0.091	< 0.020 0.078	< 0.020 0.12	< 0.020 0.082	< 0.02 0.130	< 0.020 0.058	< 0.020 0.17	< 0.020
Cadmium	0.005	(2)				0.08						< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020	< 0.0020	0.089
		(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020 < 0.0060	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020		< 0.0020
Chromium	0.05	(3)	< 0.0060	< 0.0060 < 0.0050	< 0.0060	< 0.0060	< 0.0060	< 0.0060 < 0.0050	0.0074	< 0.0060 < 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	0.006 < 0.0050	< 0.0060 < 0.0050
Lead	0.015	(2)	< 0.0050 < 0.050	< 0.0050	< 0.0050 < 0.050	< 0.0050 < 0.050	< 0.0050 < 0.050	< 0.0050	< 0.0050 < 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	< 0.0050	
Selenium Silver	0.05	(3)									< 0.050	< 0.050	< 0.0050	< 0.0050	< 0.050	< 0.050	< 0.050	< 0.050 < 0.0050
Mercury	0.05 0.002	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050								
	0.002	(3)	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.00020	< 0.0002	< 0.00020	< 0.00020	< 0.00020
Dissolved Metals (mg/l):	0.01	(2)	< 0.020	< 0.020	z 0 020	z 0 0010	0.001	< 0.020	0.0011	z 0 020	< 0.020	< 0.020	< 0.020	z 0 0010	< 0.001	< 0.020	0.0010	z 0 020
Arsenic Barium	1.0	(2)	< 0.020 0.072	< 0.020 0.07	< 0.020 0.084	< 0.0010 0.072	0.001 0.077	< 0.020 0.056	0.0011 0.079	< 0.020 0.072	0.020	0.020	0.020	< 0.0010 0.072	0.077	0.020 0.055	0.0010 0.081	< 0.020 0.071
Cadmium	0.005	(2)	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.0020	< 0.002	< 0.0020	< 0.0020	< 0.0020
Calcium	-	(2)	33	37	34	39	33	< 0.0020 45	39	41	33	40	34	41	34	47	38	45
Chromium	0.05	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060	< 0.0060	< 0.0060
Copper	1.0	(3)	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.0060	< 0.006	< 0.0060	< 0.0060	< 0.0060
Iron	1.0	(3)	0.015 J	< 0.0000	0.29	< 0.020	0.062	< 0.0000	0.34	0.024	0.010 J	< 0.0000	0.31	0.031	0.086	< 0.0000	0.44	0.003
Lead	0.015	(2)	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.00050	< 0.0050	< 0.0010	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.00050	< 0.0005	< 0.020	< 0.0010	< 0.0050
Magnesium	-	(2)	5.9	6.4	5.5	5.9	5.4	7.1	6.3	7.1	5.8	6.5	5.5	6.2	5.4	7.2	6.0	7.1
Manganese	0.2	(3)	0.0095	0.021	0.03	0.012	0.01	0.034	0.028	0.028	0.012	0.029	0.032	0.029	0.011	0.062	0.022	0.060
Potassium	-	(3)	1.9	1.9	2.1	1.7	1.9	2.1	2.0	2.0	1.8	1.9	2.3	1.9	1.9	2.1	2.0	1.9
Selenium		(2)	< 0.050		< 0.050	< 0.0010	< 0.0010	< 0.050	< 0.0010	< 0.050	< 0.050	< 0.050	< 0.050	< 0.0010	< 0.001	< 0.050	< 0.0010	< 0.050
	0.05	(3)		< 0.050														·
Silver	0.05	(3)	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.005	< 0.0050	< 0.0050	< 0.0050
Sodium	- 0.02	(2)	17	26	19	26	19	39	22	36	16	27	19	29	18	37	21 - 0.0010	34
Uranium	0.03	(3)	< 0.10	< 0.10	< 0.10	0.00076	0.00062	< 0.10	< 0.0010	< 0.10	< 0.10	< 0.10	< 0.10	0.00084	0.0006	< 0.10	< 0.0010	< 0.10
Zinc	10	(3)	0.033	< 0.020	0.024	0.016	0.021	< 0.020	< 0.010	0.023	0.033	< 0.020	< 0.020	0.013	0.03	< 0.020	< 0.010	0.021

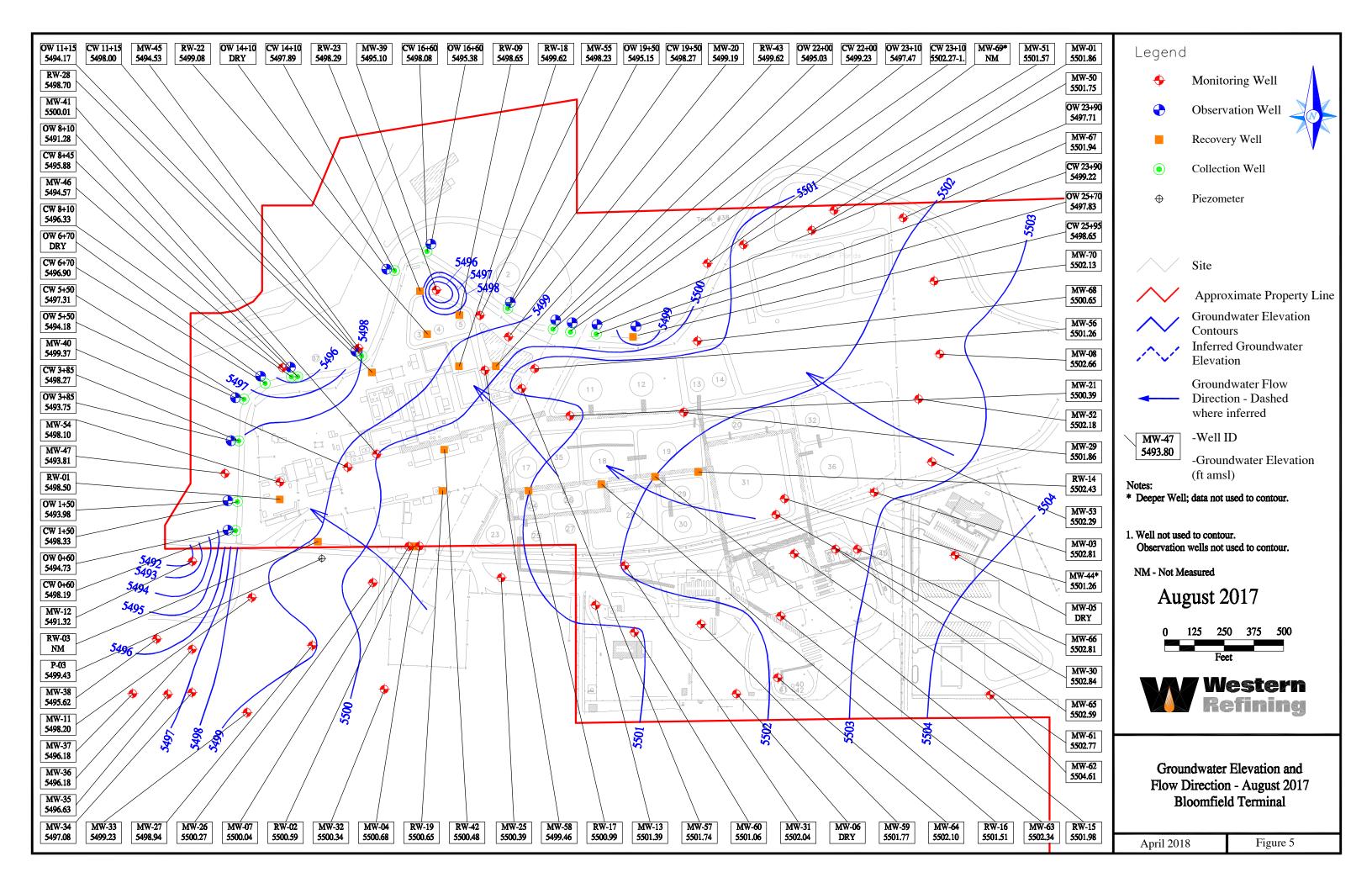
- (1) EPA Regional Screening Levels (June 2017) -Tap Water
- (2) EPA Regional Screening Levels (June 2017) MCL
- (3) NMED WQCC standards Title 20 Chapter 6, Part 2, 20.6.2.3101 Standards for Ground Water of 10,000 mg/l TDS Concentration or less
- (4) NMED Tap Water Screening Level Risk Assessment Guidance for Site Investigations and Remediation (March 2017)
- (5) EPA Screening Level Tap Water x 10 for carcinogenic compounds
- (6) NMED groundwater screening level for unknown oil
- = No screening level available
- * = Laboratory analyzed for combined Nitrate (As N) + Nitrite (As N) to meet hold time
 - --- = Analysis not required and/or well contains separate phase
 - = Analytical result exceeds the respective screening level.
 - = Columns hidden when there are 4 or more consecutive years recorded that analysis was not required and/or the well contained separate phase

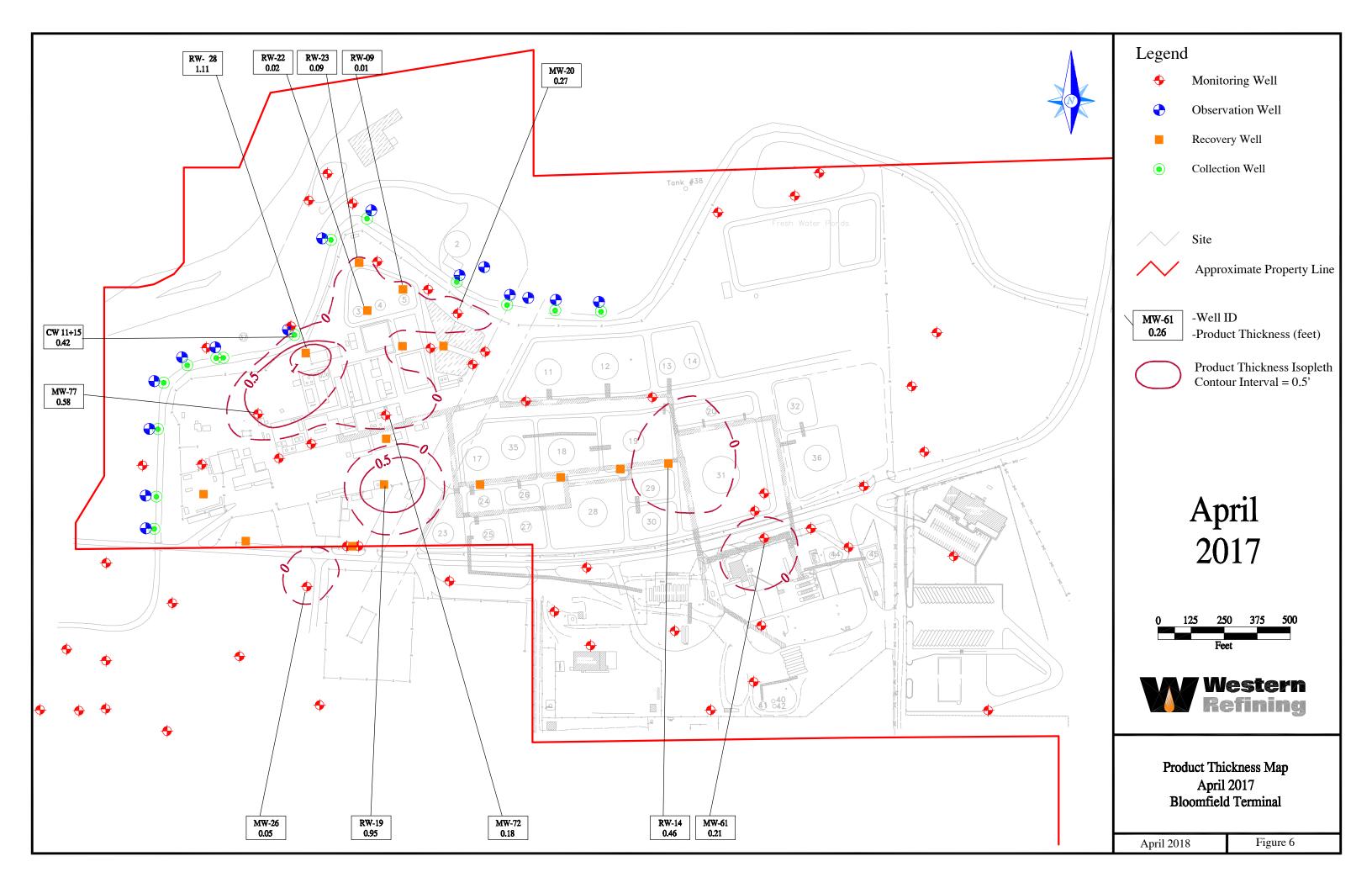
Table 11
Wastewater Volumes
2017 Groundwater Remediation Monitoring Annual Report

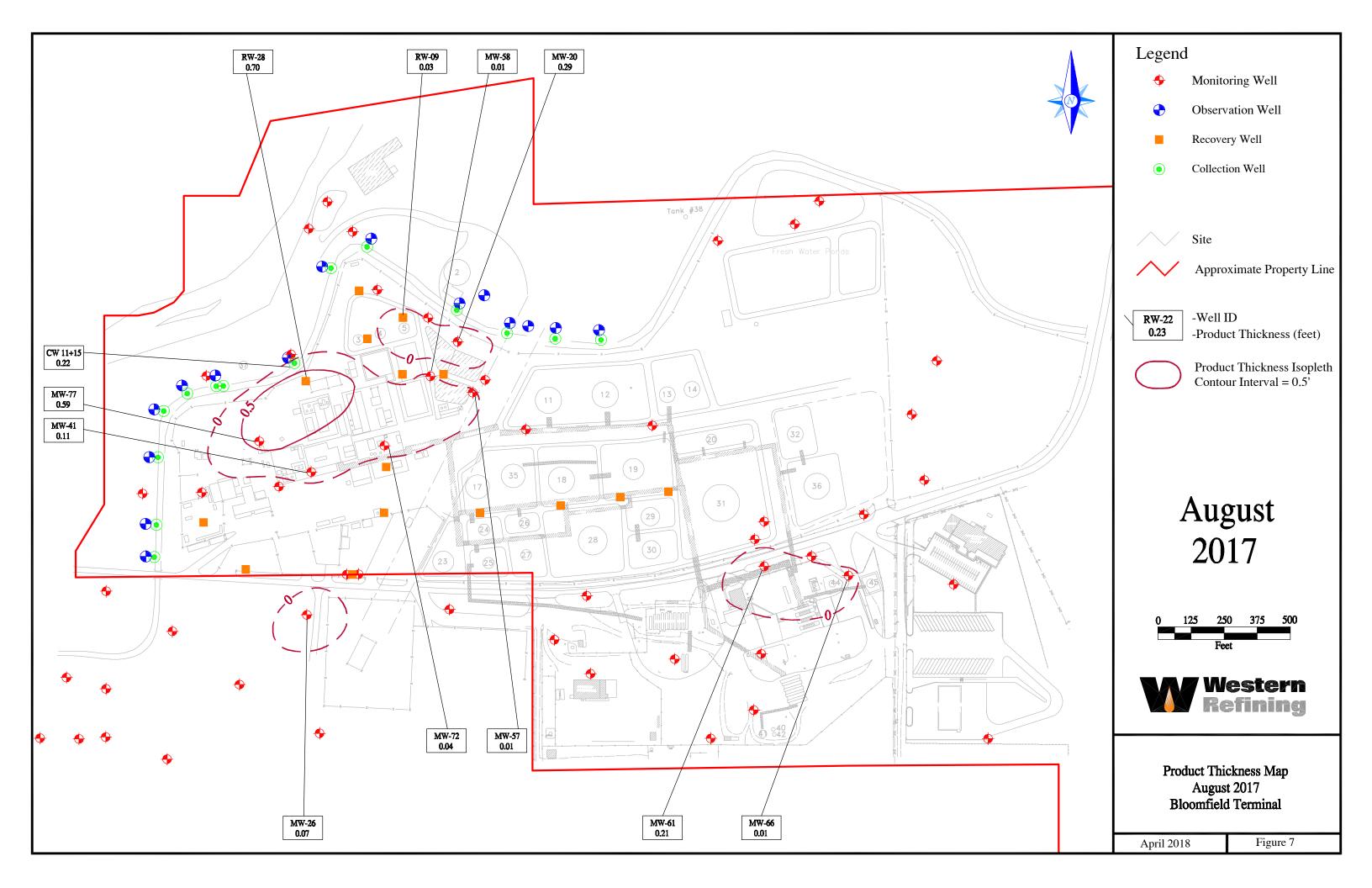

				Discharge to
2017	API Monthly	API Monthly	Injection well	Evaporation
2017	Total Gallons	Total BBIs	Total BBLs	Ponds Total
				BBLs
January	2,335,000	55,595	0	55,595
February	1,001,000	23,833	0	23,833
March	989,000	23,548	3,691	19,857
April	958,000	22,810	1,819	20,991
May	889,000	21,167	449	20,718
June	926,000	22,048	18,680	3,368
July	989,000	23,548	18,189	5,359
August	1,195,000	28,452	10,093	18,359
September	836,000	19,905	6,154	13,751
October	875,000	20,833	7,755	13,078
November	894,000	21,286	6,156	15,130
December	961,000	22,881	2,041	20,840

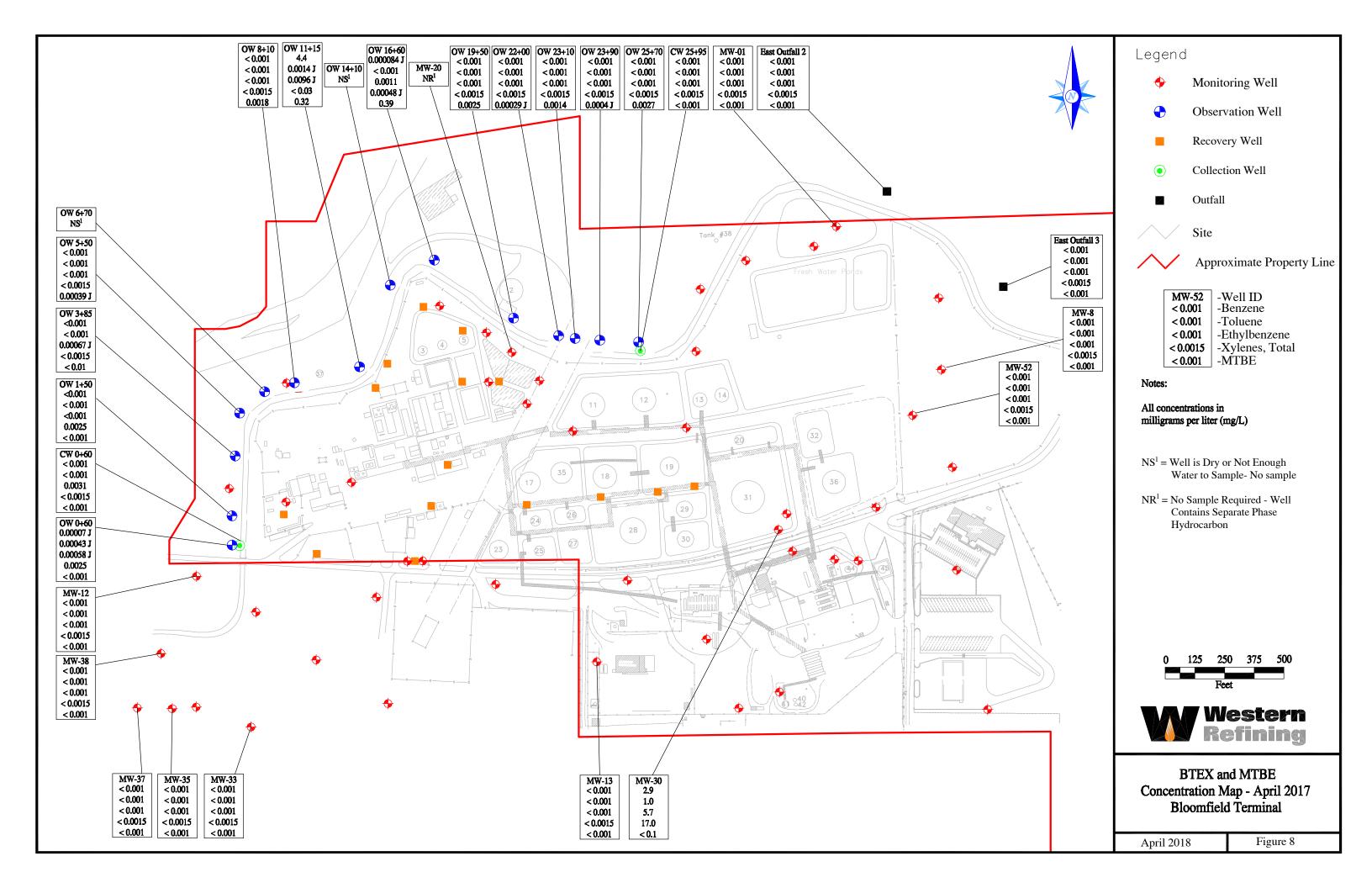

BBLs - barrels 230,878

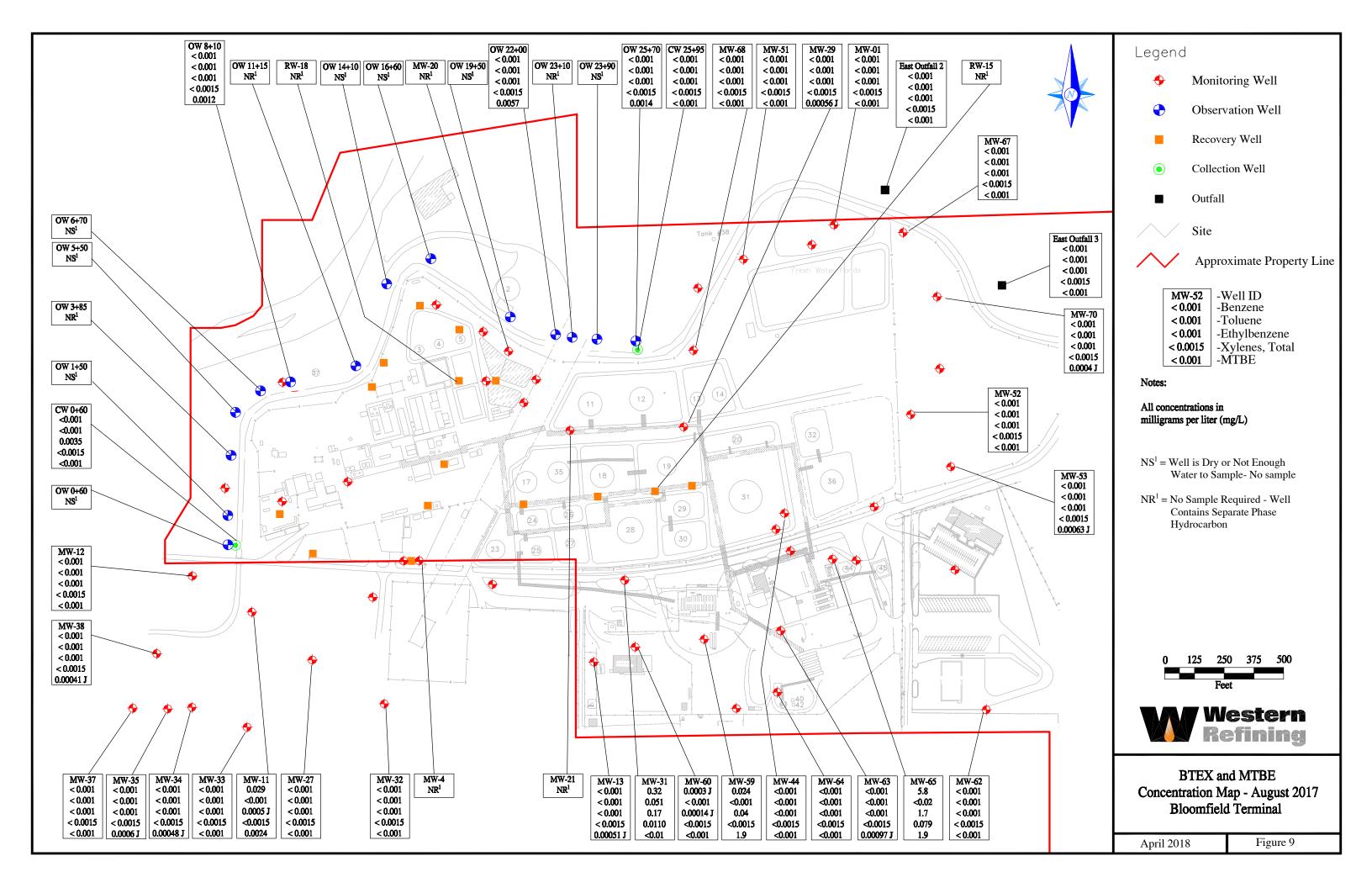


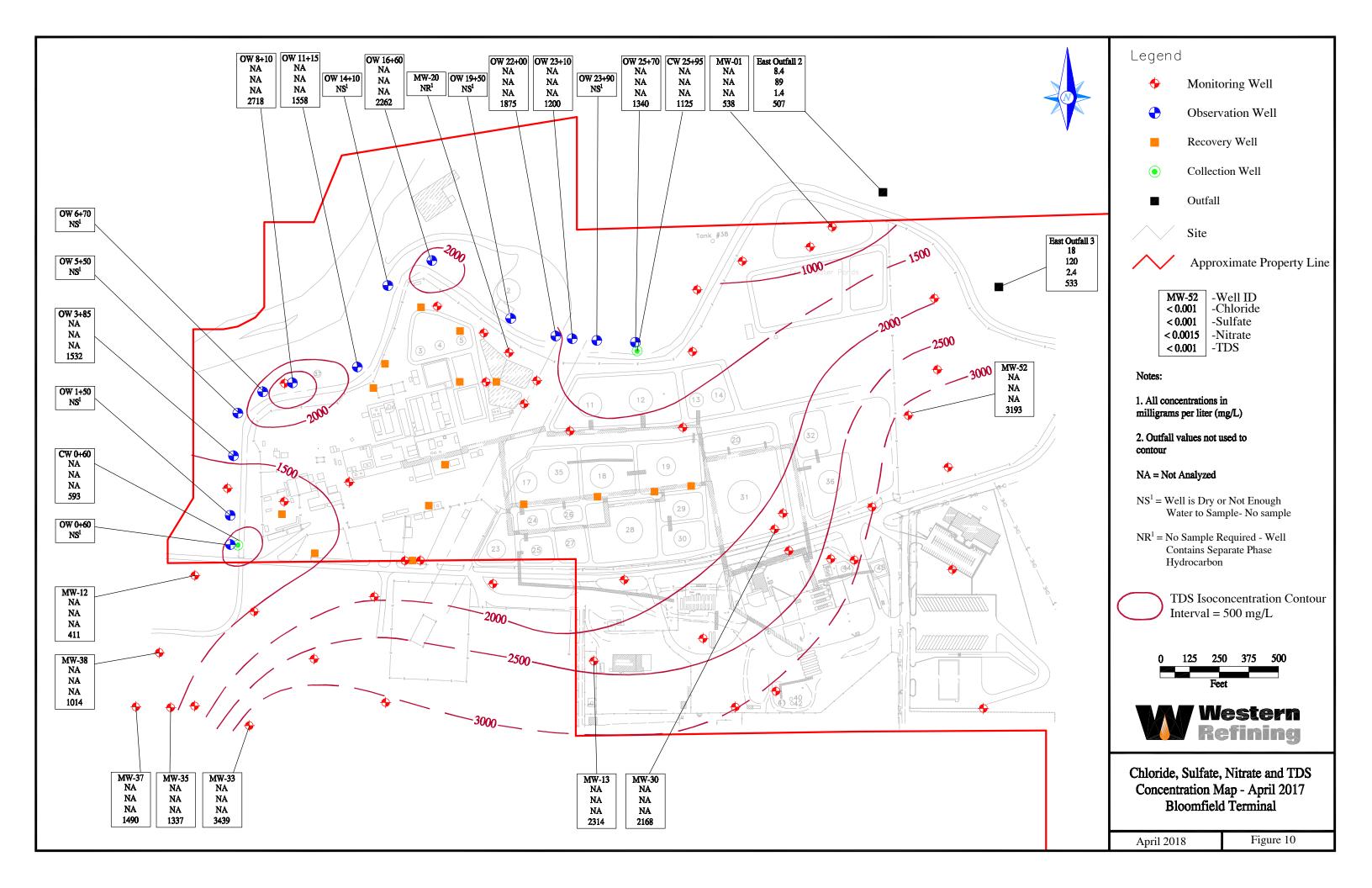

April 2017

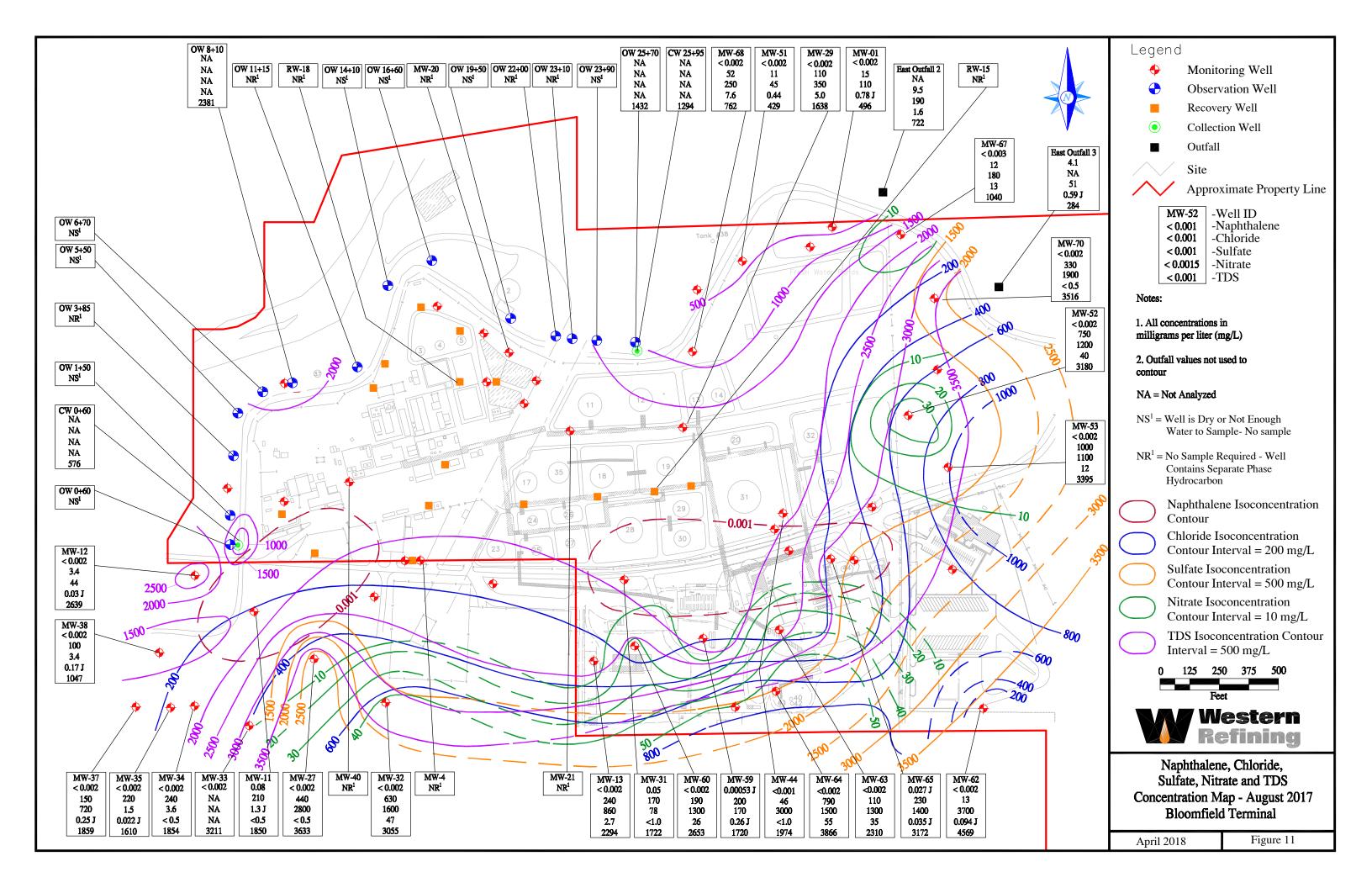

Figure 1

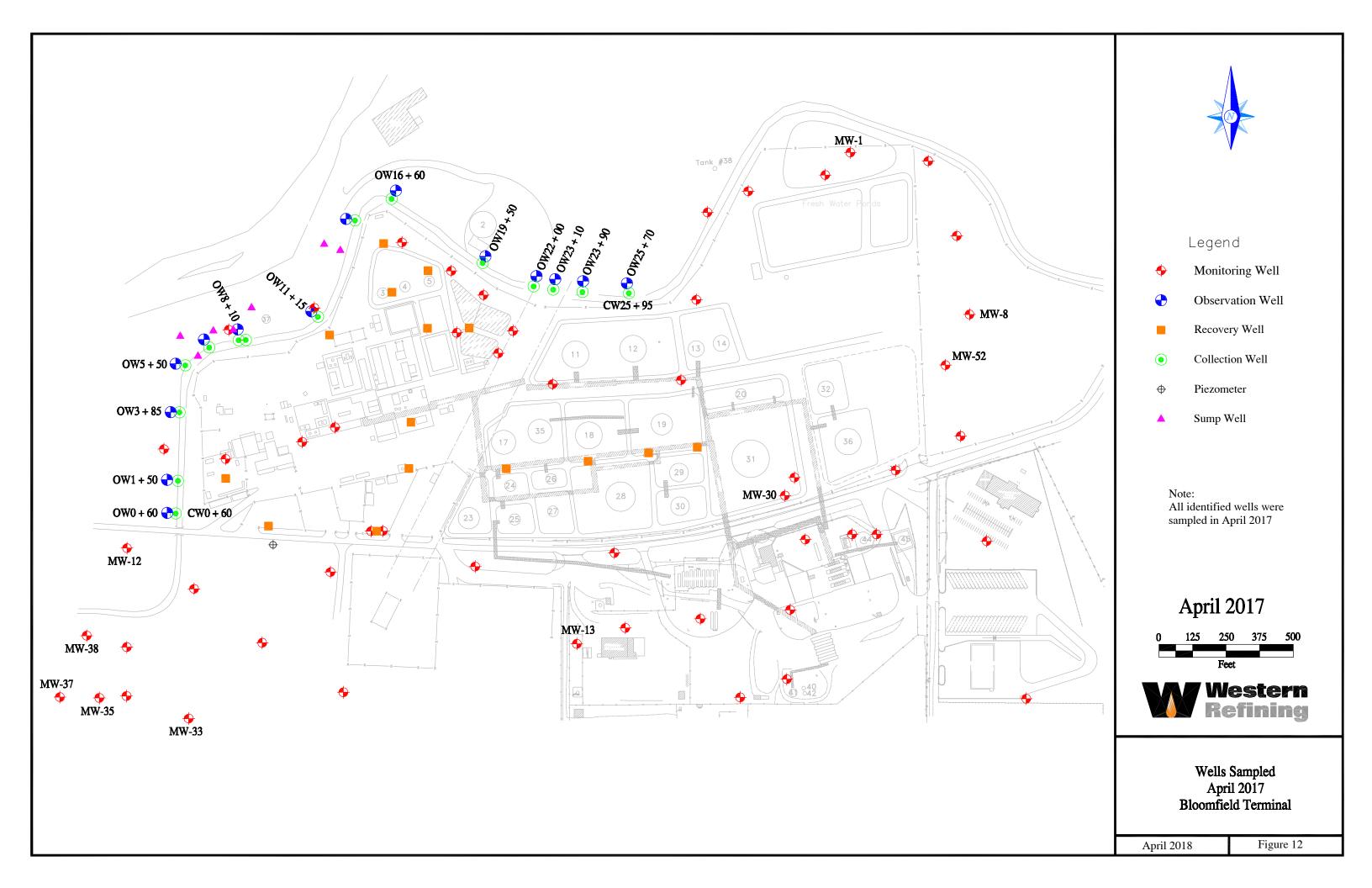


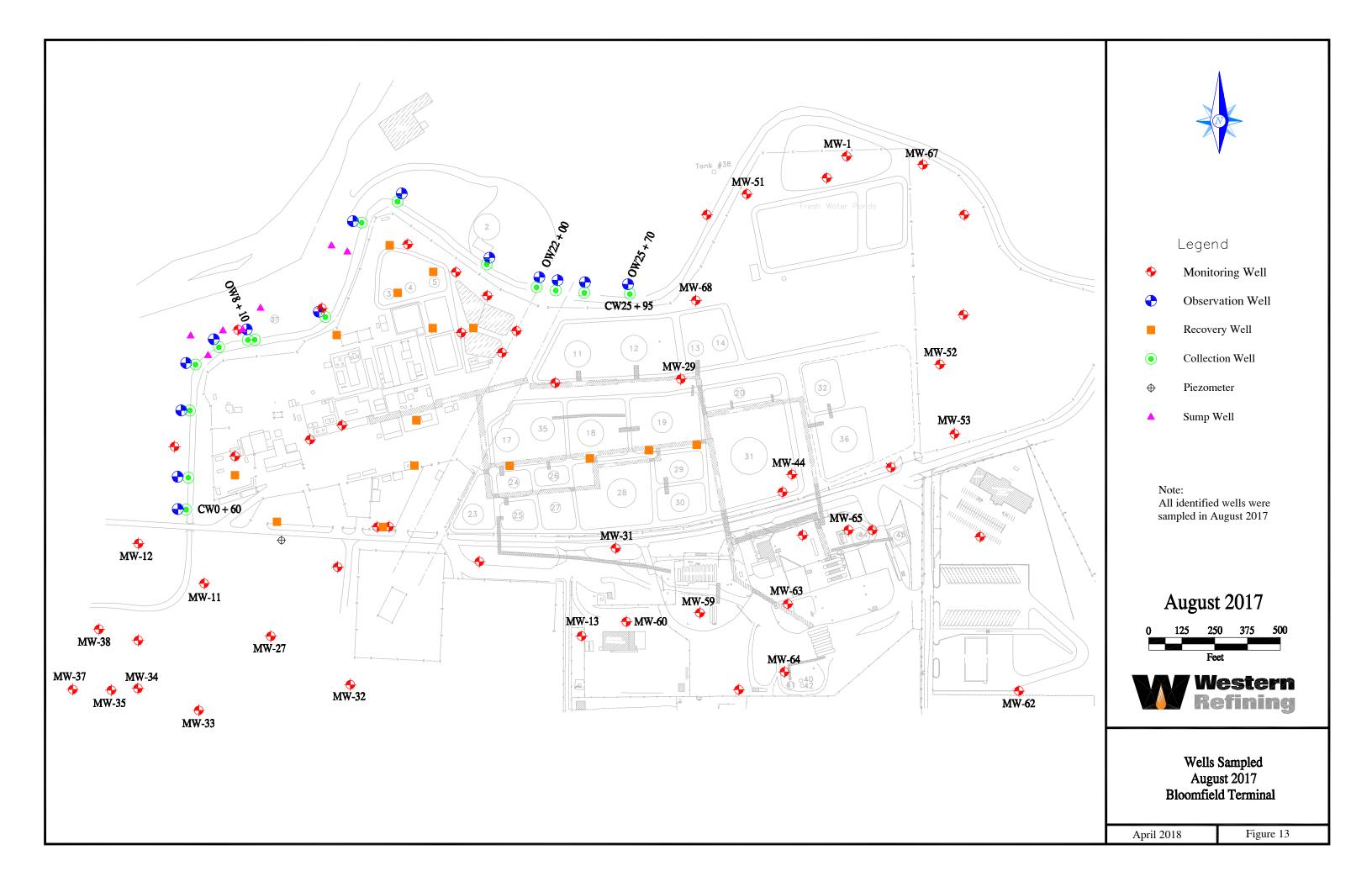












Appendix A

Field Methods

Appendix A

Groundwater Elevation

All facility monitoring wells, recovery wells, observation and collection wells were measured for groundwater elevation in April and August. Terminal personnel followed the guidelines of the *Facility-Wide Groundwater Monitoring Plan June 2014* to collect groundwater levels and SPH thickness measurements.

All water/product levels are determined to an accuracy of 0.01 foot using a Geotech Interface Meter. The technician records separate phase hydrocarbon, depth to water, and total well depth using this probe.

Water Quality/Groundwater Sampling

An YSI ProComm II is used to determine dissolved Oxygen (DO), electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH, and temperature are monitored during purging.

Well Purging Technique

After determining water levels initial well volumes are calculated. Total purge volume is determined by monitoring electrical conductance, pH, temperature, after every two gallons or each well volume, whichever is less, has been purged from the well. The wells were considered satisfactorily purged when the field parameter values did not vary by more than 10 percent for at least three measurements.

Well volumes are determined using the following equation:

Well Depth – Casing Height – Depth to Liquid X Conversion Factor X Three.

The conversion factor is determined by the diameter of the well casing

The conversion t	actor is determined by	\prime the diameter of the w	ell casing.
Casina	0	Castan	

Casing	Conversion Factor
6"	1.50 gal/ft
5"	1.02 gal/ft
4"	0.74 gal/ft
3"	0.367 gal/ft
2"	0.163 gal/ft

Disposable bailers are used for purging and sampling. Each bailer holds one liter of liquid. Three well volumes can be calculated by counting the number of times a well is bailed.

Well Sampling and Sample Handling Procedure

Equipment and supplies needed for collecting representative groundwater samples include:

- Interface Meter
- YSI ProComm II

- Distilled Water
- Disposable Latex Gloves
- Disposable Bailers
- String/Twine
- Cooler with Ice
- Bottle kits with Preservatives (provided by the contract laboratory)
- Disposable 0.45 micron Field Filters and Syringes
- Glass Jar (usually 4 oz.)
- Sharpie Permanent Marker
- Field Paperwork/Logsheet
- Two 5-gallon buckets
- Trash container (plastic garbage bag)
- Ziploc Bags
- Paper towels

After sufficient purging, samples are collected with the bailer and poured into the appropriate sample containers. Two people are usually utilized for sampling. Sampling takes place over a bucket to insure that spills are contained

For dissolved metals, sample water is poured into a jar and then extracted with a syringe. The syringe is then used to push water through a field filter into the proper sample bottle to collect the dissolved metals sample. Volatile organic analysis samples are collected as to allow no head space in the container.

Samples are labeled immediately with location, date, time, analysis, preservative, and sampler. Then they are put in a Ziploc bag and placed in a cooler holding sufficient ice to keep them cool. The field logsheet is reviewed to verify all entries.

Purge and Decontamination Water Disposal

YSI ProComm II and the interface probe are rinsed with distilled water after every well. The rinse procedure takes place over a bucket to insure that spills are contained.

All rinse and purge water is contained and then disposed of through the terminal wastewater system.

Any glassware used is washed with Alconox and water and rinsed with distilled water. Wastewater runs through the terminal wastewater system.

Instrument Calibration

The YSI ProComm II is use to measure Dissolved Oxygen (DO), electrical conductance, oxidation-reduction potential (ORP), Total Dissolved Solids (TDS), pH and is calibrated before each sampling event per the manufacture instruction manual.

Remediation System Measurement

Recovery well flows are measured using a 1000 ml graduated cylinder. The sample port on the discharge line of the pump is opened and effluent flows into the graduated cylinder. During a pump cycle, a measurement is taken over time and then calculated to a gallon per day rate.

Recovery rates at Tk #37 (Hammond Ditch French Drain) and Tk #38 (#1 East Outfall) are determined through flow meters installed in those systems. Refinery personnel record the rates periodically.

Appendix B

1.0 DATA VALIDATION INTRODUCTION

This summary presents data verification results for groundwater and surface water sampling activities conducted in 2017 at the Bloomfield Terminal pursuant to Section IV.A.2. of the July 2007 Consent Order (NMED, 2007) issued by the New Mexico Environment Department Hazardous Waste Bureau (NMED-HWB), and Section 2.F of Discharge Permit GW-001 (NMOCD, 2017) issued by the New Mexico Energy, Mineral, and Natural Resources Department Oil Conservation Division (EMNRD-OCD). The data review was performed in accordance with the procedures specified in the Order issued by NMED (NMED, 2007), USEPA Functional Guidelines for Organic and Inorganic Data Review, and quality assurance and control parameters set by the project laboratory Hall Environmental Analysis Laboratory, Inc. The samples evaluated include groundwater samples collected from monitoring wells installed at the Refinery Complex and North Boundary Barrier, a groundwater seep sample collected at the San Juan River bluff, and surface water samples collected from the San Juan River.

A total of 56 groundwater samples, one groundwater seep sample, four groundwater "outfall" samples, and 12 surface water samples (excluding QA samples) were collected in annual and semiannual monitoring events between April 20, 2017 and August 30, 2017. Groundwater samples, groundwater seep samples, outfall samples, and surface water samples were submitted to Hall Environmental Analysis Laboratory for the following parameters:

- volatile organic compounds (VOCs) by USEPA Method 8260B;
- semi-volatile organic compounds (SVOCs) by USEPA Method 8270C
- Gasoline, diesel, and motor oil range organics by SW-846 Method 8015B;
- Total metals (arsenic, barium, cadmium, chromium, lead, selenium, and silver) and dissolved metals (arsenic, barium, cadmium, chromium, copper, iron, lead, magnesium, manganese, potassium, selenium, silver, sodium, uranium, and zinc) by SW846 Method 6010B/E200.7; and
- Mercury by EPA Method 7470.

Groundwater and surface water samples were also analyzed for general water quality parameters including, fluoride, chloride, nitrate, nitrite, bromide, phosphorous, sulfate, total carbon dioxide, total alkalinity, bicarbonate, total dissolved solids, and specific conductance.

Additionally, 23 quality assurance samples consisting of trip blanks, field blanks, equipment rinsate blanks, and field duplicates were collected and analyzed as part of the investigation

activities. Table A-1 presents a summary of the field sample identifications, sample identifications, and sample collection dates.	laboratory

2.0 QUALITY CONTROL PARAMETERS REVIEWED

Sample results were subject to a Level II data review that includes an evaluation of the following quality control (QC) parameters:

- Chain-of-Custody;
- Sample Preservation and Temperature Upon Laboratory Receipt
- Holding Times;
- Blank Contamination (method blanks, trip blanks, field blanks, and equipment rinsate blanks):
- Surrogate Recovery (for organic parameters);
- Laboratory Control Sample (LCS) Recovery and Relative Percent Difference (RPD);
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recovery and RPD;
- Duplicates (field duplicate, laboratory duplicate); and
- Other Applicable QC Parameters.

The data qualifiers used to qualify the analytical results associated with QC parameters outside of the established data quality objectives are defined below:

- J+ The analyte was positively identified; however, the result should be considered an estimated value with a potential high bias.
- J- The analyte was positively identified; however, the result should be considered an estimated value with a potential low bias.
- UJ The reporting limit for a constituent that was not detected is considered an estimated value.
- R Quality control indicates that the data is not usable.

Results qualified as "J+", "J-", or "UJ" are of acceptable data quality and may be used quantitatively to fulfill the objectives of the analytical program, per EPA guidelines.

Results for the performance monitoring events that required qualification based on the data verification are summarized in Table A-2.

2.1 CHAIN-OF-CUSTODY

The chain-of-custody documentation associated with project samples was found to be complete. Chain-of-custodies included sample identifications, date and time of collection, requested parameters, and relinquished/received signatures.

2.2 SAMPLE PRESERVATION AND TEMPERATURE UPON LABORATORY RECEIPT

Samples collected were received preserved and intact by Hall Environmental Laboratories, Inc. Samples were received by the laboratory at a temperature of 6.0 degrees Celsius or lower. Data qualification on lower temperature samples was not required.

2.3 HOLDING TIMES

All samples were extracted and analyzed within method-specified holding time limits with the exception of total carbon dioxide and phosphorus, both general water quality parameters. The recommended holding time for total carbon dioxide analysis is "immediate". Unless the sample is analyzed in the field it is flagged by the laboratory. The holding time for phosphorus is 48 hours. Since analyses were conducted in a reasonable time period after collection of samples and samples were properly preserved, the data was accepted but was flagged as estimated with a potential low bias. Data qualification for exceeding holding times is shown on Table A-2.

2.4 BLANK CONTAMINATION

2.4.1 Method Blank

Method blanks were analyzed at the appropriate frequency. Target compounds were not detected in the method blanks above target screening levels.

2.4.2 Trip Blank

Trip blanks were analyzed at the appropriate frequency as specified in the Order and Permit. Target compounds were not detected in the trip blanks with the exception of acetone at very low concentrations (e.g., 1.3J ug/l vs a screening level of 14,100 ug/l).

2.4.3 Field Blanks/Equipment Rinsate Blank

Field and equipment rinsate blanks were collected as specified in the Order and Permit.

2.4.4 Common Laboratory Contaminants

Per USEPA guidelines, common laboratory contaminants for VOC analysis are acetone, 2-butanone (MEK), cyclohexane, chloromethane, and methylene chloride. Data qualification was not required since COCs were not detected in the method blanks.

2.4.5 Methanol Blanks

Methanol Blanks are not applicable and were not analyzed.

2.5 SURROGATE RECOVERY

Surrogate recoveries for the organic and inorganic analyses were performed at the required frequency and were within laboratory acceptance limits, with the following exception:

Lab Report 1705004

- Surrogate recovery for bromofluorobenzene (BFB) was above the upper acceptance limit for field samples OW-6+60, OW 1+50, OW 3+85, and OW 16+60 in Laboratory Batch ID G42469. The associated detected field sample results for gasoline range organics (GRO) are qualified J+ due to a potential high bias.
- Surrogate recovery for Di-n-ocytyl phthalate (DNOP) was below the lower acceptance limit for field sample OW 5+50 in Laboratory Batch ID 31500. The associated detected field sample results for motor oil range organics (MRO) and diesel range organics (DRO) are qualified J- due to a potential low bias.

Lab Report 1705005

 Surrogate recovery Toleuene-d8 (VOC surrogate) was above the upper acceptance limit for field sample CW-0+60. The other three VOC surrogates were within limits and the associated VOC results are not qualified.

Lab Report 1708G56

 Surrogate recovery for bromofluorobenzene (BFB) was above the upper acceptance limit for field samples MW-34 and MW-11 in Laboratory Batch ID R45345. The associated detected field sample results for gasoline range organics (GRO) are qualified J+ due to a potential high bias.

Lab Report 1708F89

 Surrogate recovery for bromofluorobenzene (BFB) was above the upper acceptance limit for field samples CW 0+60 in Laboratory Batch ID W45279. The associated detected field sample results for gasoline range organics (GRO) are qualified J+ due to a potential high bias.

Lab Report 1708D82

 Surrogate recovery Nitrobenzene-d5 (SVOC surrogate) was below the lower acceptance limit for field sample MW-64. The other four SVOC surrogates were within limits and the associated VOC results are not qualified.

Data qualification for surrogate recovery is shown on Table A-2.

2.6 LCS RECOVERY AND RELATIVE PERCENT DIFFERENCE

LCS/LCS duplicates were performed at the required frequency and were evaluated based on the following criteria:

- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate, but the analyte was not detected in the associated batch, then data qualification was not required.
- If the analyte recovery was above acceptance limits for the LCS or LCS duplicate and the analyte was detected in the associated batch, then the analyte results were qualified "J+" to account for a potential high bias.
- If the analyte recovery was below acceptance limits for LCS or LCS duplicate then the analyte results in the associated analytical batch were qualified ("UJ" for non-detects and "J-" for detected results) to account for a potential low bias.

LCS/LCSD percent recoveries and relative percent differences (RPDs) were within acceptance limits and no qualification was required.

2.7 MS/MSD RECOVERY AND RELATIVE PERCENT DIFFERENCE

MS/MSD samples were performed at the required frequency and were evaluated by the following criteria:

- If the MS or MSD recovery for an analyte was above acceptance limits but the analyte was not detected in the associated analytical batch, then data qualification was not required.
- If the MS or MSD recovery for an analyte was above acceptance limits and the analyte was detected in the associated analytical batch, then analyte results were qualified "J+" to account for a potential high bias.
- Low MS/MSD recoveries for inorganic parameters result in sample qualification of the associated analytical batch with a "J-".
- Results were not qualified based on non-project specific MS/MSD (i.e., batch QC) recoveries.

Some lab reports do not report MS/MSD results if none of the samples included under that report were used for the MS/MSD; however, in many instances the sample used for the MS/MSD was a sample of similar matrix materials submitted by Western in a different data set and its MS/MSD results were included in other lab reports, which are included in this data validation review. MS/MSD percent recoveries and RPDs were within acceptance limits and no qualification was required with one exception for silver.

For lab report 1708F15, the MS and MSD recoveries for silver were below the acceptable range; however, the LCS recovery was within range and demonstrates the analyses can produce usable results. The associated results are qualified in Table A-2.

2.8 DUPLICATES

2.8.1 Field Duplicates

Field duplicates were collected at a rate as stated in the Order and Permit. The RPDs between the field duplicate and its associated sample were calculated and are presented in Table A-3. The field duplicates were evaluated by the following criteria:

- If an analyte was detected at a concentration greater than five times the method reporting limit, the RPD should be less than 25 percent for ground water samples.
- If an analyte was detected at a concentration that is less than five times the method reporting limit, then the difference between the sample and the field duplicate should not exceed the method reporting limit.
- Duplicate RPDs are calculated by dividing the difference of the concentrations by the average of the concentrations.

Field duplicate RPDs were within acceptance limits except for the following:

- Total recoverable barium at concentrations of 0.49 mg/l vs 0.63 mg/l in the duplicate sample; and
- dissolved iron at concentrations of 0.13 mg/l vs. 0.029 mg/l in the duplicate sample.

Both of these occurrences were in sample MW-37 (8/30/2017). The barium RPD was 25% and thus the associated results are not qualified. The RPD for dissolved iron was 127%; however, the result for the duplicate at 0.029 mg/l was only slightly above the reporting limit of 0.02 mg/l.

3.0 COMPLETENESS SUMMARY

The following equation was used to calculate the technical completeness:

% Technical Completeness =
$$\left(\frac{Number\ of\ usable\ results}{Number\ of\ reported\ results}\right) x 100$$

The technical completeness attained for Annual and Semiannual monitoring activities conducted in 2017 was 100 percent. The completeness results are provided in Table A-4. The analytical results for the required analytes per the Order and Permit were considered usable for the intended purposes and the project DQOs have been met.

Table A-1
Sample Identification - 2017 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

Project Name	Sample ID	Lab ID	Date Collected	Sample Type
Cross-Gradient Wells 4-20-17	MW-13	1704A25-001	4/20/2017	GW
Cross-Gradient Wells 4-20-17	MW-13-DUP	1704A25-002	4/20/2017	FD
Cross-Gradient Wells 4-20-17	MW-33	1704A30-001	4/20/2017	GW
Cross-Gradient Wells 4-20-17	MW-1	1704A31-001	4/20/2017	GW
Downgradient Wells 4-20-17	MW-35	1704A22-001	4/20/2017	GW
Downgradient Wells 4-20-17	MW-35-DUP	1704A22-002	4/20/2017	FD
Downgradient Wells 4-20-17	MW-37	1704A27-001	4/20/2017	GW
Downgradient Wells 4-20-17	MW-38	1704A28-001	4/20/2017	GW
Downgradient Wells 4-20-17	MW-12	1704A29-001	4/20/2017	GW
Refinery Wells 4-21-17	MW-8	1704A23-001	4/21/2017	GW
San Juan River Bluff Seeps 4 21 2017	Seep-1	1704A36-001	4/21/2017	SW
San Juan River Bluff 4 21 2017	Outfall #3	1704A33-001	4/21/2017	SW
San Juan River Bluff 4 21 2017	Outfall #2	1704A34-001	4/21/2017	SW
San Juan River 4 21 2017	North of 46	1704A39-001	4/21/2017	SW
San Juan River 4 21 2017	North of 45	1704A40-001	4/21/2017	SW
San Juan River 4 21 2017	Downstream	1704A41-001	4/21/2017	SW
San Juan River 4 21 2017	Upstream	1704A42-001	4/21/2017	SW
Refinery Wells 4 21 17	MW-30	1704A24-001	4/21/2017	GW
Refinery Wells 4 21 17	MW-30-DUP	1704A24-002	4/21/2017	FD
Refinery Wells 4 21 17	MW-52	1704A26-001	4/21/2017	GW
North Boundry Barrier 4/27-28/2017	OW 0+60	1705004-001	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 1+50	1705004-002	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 3+85	1705004-003	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 5+50	1705004-004	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 8+10	1705004-005	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 11+15	1705004-006	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 16+60	1705004-007	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 19+50	1705004-008	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 22+00	1705004-009	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	Trip Blank	1705004-010	4/27/2017	TB
North Boundry Barrier 4/27-28/2017	OW 23+90	1705004-011	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 23+10	1705004-012	4/27/2017	GW
North Boundry Barrier 4/27-28/2017	OW 25+70	1705004-013	4/27/2017	GW
Collection Wells 4/27-28/2017	CW-25+95	1705005-001	4/28/2017	GW
Collection Wells 4/27-28/2017	CW-0+60	1705005-002	4/27/2017	GW
Collection Wells 4/27-28/2017	CW-0+60-DUP	1705005-003	4/27/2017	FD
Collection Wells 4/27-28/2017	Field Blank #2	1705005-004	4/27/2017	FB
Collection Wells 4/27-28/2017	Field Blank #3	1705005-005	4/28/2017	FB
Collection Wells 4/27-28/2017	Trip Blank	1705005-006	4/27/2017	TB
Cross Gradient 5 17 2017	MW-13	1705959-001	5/17/2017	GW
Cross Gradient 5 17 2017	MW-13 Dup	1705959-002	5/17/2017	FD
Down Gradient 5 17 2017	MW-35	1705958-001	5/17/2017	GW
San Juan River 5 17 2017	Downstream	1705957-001	5/17/2017	SW
San Juan River 5 17 2017	Upstream	1705957-002	5/17/2017	SW
San Juan River 5 17 2017	North of 45	1705957-003	5/17/2017	SW
San Juan River 5 17 2017	North of 46	1705957-004	5/17/2017	SW
RCRA Wells Date 8/22-23/2017	MW-63	1708d82-001	8/22/2017	GW
RCRA Wells Date 8/22-23/2017	TRIP BLANK	1708d82-002	8/22/2017	ТВ
RCRA Wells Date 8/22-23/2017	MW-64	1708d82-003	8/22/2017	GW
RCRA Wells Date 8/22-23/2017	MW-59	1708d82-004	8/22/2017	GW

Table A-1
Sample Identification - 2017 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

Project Name	Sample ID	Lab ID	Date Collected	Sample Type
RCRA Wells Date 8/22-23/2017	MW-65	1708d82-005	8/22/2017	GW
RCRA Wells Date 8/22-23/2017	MW-60	1708D82-006	8/23/2017	GW
RCRA Wells Date 8/22-23/2017	MW-62	1708D82-007	8/23/2017	GW
RCRA Wells Date 8/22-23/2017	MW-53	1708D82-008	8/23/2017	GW
RCRA Wells Date 8/22-23/2017	TRIP BLANK	1708D82-009	8/23/2017	TB
RCRA Wells Date 8/22-23/2017	MW-67	1708D82-010	8/23/2017	GW
RCRA Wells 8/23/17	MW-51	1708E75-001	8/23/2017	GW
RCRA Wells 8/23/17	MW-51 Duplicate	1708E75-002	8/23/2017	FD
RCRA Wells 8/23/17	MW-68	1708E75-003	8/23/2017	GW
RCRA Wells 8/23/17	FB082317	1708E75-004	8/23/2017	FB
RCRA Wells 8/23/17	MW-70	1708E75-005	8/23/2017	GW
Refinery Wells 8/24/17	MW-52	1708E70-001	8/24/2017	GW
Refinery Wells 8/24/17	MW-29	1708E70-002	8/24/2017	GW
Cross Gradient Wells 8 25 17	MW-13	1708F21-001	8/25/2017	GW
Cross Gradient Wells 8 25 17	Trip Blank	1708F21-002	8/25/2017	TB
Cross Gradient Wells 8 25 17	MW-1	1708F21-003	8/25/2017	GW
Cross Gradient Wells 8 25 17	FB082517	1708F21-004	8/25/2017	FB
Refinery Wells 08 25 17	MW-44	1708F15-001	8/25/2017	GW
Refinery Wells 08 25 17	MW-31	1708F15-002	8/25/2017	GW
Refinery Wells 08 25 17	EB082517	1708F15-003	8/25/2017	EB
Collection Wells Date 8 28 17	CW 0+60	1708F89-001	8/28/2017	GW
Collection Wells Date 8 28 17	OW 25+70	1708F89-002	8/28/2017	GW
Collection Wells Date 8 28 17	CW 25+95	1708f89-003	8/28/2017	GW
Collection Wells Date 8 28 17	CW 25+95	1708F89-004	8/28/2017	GW
Collection Wells Date 8 28 17	CW 25+95 DUPLICATE	1708F89-005	8/28/2017	FD
Collection Wells Date 8 28 17	FB082817	1708F89-006	8/28/2017	FB
Collection Wells Date 8 28 17	TRIP BLANK	1708F89-007	8/28/2017	TB
Down Gradient Wells 8-29-17	MW-12	1708G56-001	8/29/2017	GW
Down Gradient Wells 8-29-17	MW-35	1708g56-002	8/29/2017	GW
Down Gradient Wells 8-29-17	MW-34	1708G56-003	8/29/2017	GW
Down Gradient Wells 8-29-17	MW-11	1708G56-004	8/29/2017	GW
Cross Gradient Wells 8-29-17	MW-33	1708G51-001	8/29/2017	GW
Cross Gradient Wells 8-29-17	MW-27	1708G51-002	8/29/2017	GW
Cross Gradient Wells 8-29-17	MW-32	1708G51-003	8/29/2017	GW
Down Gradient Wells 8-30-17	MW-37	1708H75-001	8/30/2017	GW
Down Gradient Wells 8-30-17	MW-37 Duplicate	1708H75-002	8/30/2017	FD
Down Gradient Wells 8-30-17	MW-38	1708H75-003	8/30/2017	GW
Down Gradient Wells 8-30-17	FB083017	1708H75-004	8/30/2017	FB
San Juan River 8-30-17	Upstream	1709038-001	8/30/2017	SW
San Juan River 8-30-17	North of 45	1709038-002	8/30/2017	SW
San Juan River 8-30-17	North of 46	1709038-003	8/30/2017	SW
San Juan River 8-30-17	Downsteam	1709038-004	8/30/2017	SW
San Juan River Bluff 8-30-17	Outfall #2	1709013-001	8/30/2017	SW
San Juan River Bluff 8-30-17	Outfall #3	1709013-002	8/30/2017	SW
San Juan River Bluff 8-30-17	Trip Blank	1709013-003	8/30/2017	TB

Notes:

GW = Groundwater TB = Trip Blank
FD = Field duplicate 3 = Equipment Blank
SW = Surface Water FB = Field Blank

Table A-2 Qualified Data - 2017 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
Seep-1	4/21/2017	Total Carbon Dioxide	470	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Seep-1	4/21/2017	Phosphorus	<2.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Outfall #2	4/21/2017	Total Carbon Dioxide	320	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Outfall #2	4/21/2017	Phosphorus	<0.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Outfall #3	4/21/2017	Total Carbon Dioxide	240	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Outfall #3	4/21/2017	Phosphorus	<0.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Downstream	4/21/2017	Phosphorus	<0.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
North of 45	4/21/2017	Phosphorus	<0.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
North of 46	4/21/2017	Phosphorus	<0.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Upstream	4/21/2017	Phosphorus	<0.5	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Downstream	5/17/2017	Total Carbon Dioxide	72	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 45	5/17/2017	Total Carbon Dioxide	71	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 46	5/17/2017	Total Carbon Dioxide	72	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Upstream	5/17/2017	Total Carbon Dioxide	71	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Outfall #2	8/30/2017	Total Carbon Dioxide	310	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Outfall #2	8/30/2017	Phosphorus	<0.25	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Outfall #3	8/30/2017	Total Carbon Dioxide	110	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Outfall #3	8/30/2017	Phosphorus	<0.25	mg/L	SW	UJ	Qualified low bias - analysis outside holding time.
Upstream	8/30/2017	Total Carbon Dioxide	77	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 45	8/30/2017	Total Carbon Dioxide	75	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
North of 46	8/30/2017	Total Carbon Dioxide	75	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
Downstream	8/30/2017	Total Carbon Dioxide	75	mg CO2/L	SW	J-	Qualified low bias - analysis outside holding time.
MW-37	8/30/2017	Total Carbon Dioxide	450	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-37	8/30/2017	Phosphorus	<1.2	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-37	8/30/2017	Fluoride	0.45	mg/L	GW	J+	Qualified high bias - high recovery on LCS.
MW-38	8/30/2017	Total Carbon Dioxide	530	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-38	8/30/2017	Phosphorus	<1.2	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-38	8/30/2017	Fluoride	0.53	mg/L	GW	J+	Qualified high bias - high recovery on LCS.

Table A-2 Qualified Data - 2017 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
MW-27	8/29/2017	Total Carbon Dioxide	380	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-32	8/29/2017	Total Carbon Dioxide	170	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-12	8/29/2017	Total Carbon Dioxide	140	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-35	8/29/2017	Total Carbon Dioxide	830	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-34	8/29/2017	Total Carbon Dioxide	1000	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-11	8/29/2017	Total Carbon Dioxide	1100	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-44	8/25/2017	Total Carbon Dioxide	350	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-44	8/25/2017	Phosphorus	<5.0	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-44	8/25/2017	Silver	<0.00077	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-44	8/25/2017	Total Carbon Dioxide	1100	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-44	8/25/2017	Phosphorus	<0.25	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-44	8/25/2017	Silver	<0.00077	mg/L	GW	UJ	Qualified low bias - analysis outside holding time.
MW-13	8/25/2017	Total Carbon Dioxide	950	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-1	8/25/2017	Total Carbon Dioxide	280	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-52	8/24/2017	Total Carbon Dioxide	220	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-29	8/24/2017	Total Carbon Dioxide	300	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-51	8/23/2017	Total Carbon Dioxide	270	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-68	8/23/2017	Total Carbon Dioxide	220	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-70	8/23/2017	Total Carbon Dioxide	830	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-63	8/22/2017	Total Carbon Dioxide	580	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-64	8/22/2017	Total Carbon Dioxide	260	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-59	8/22/2017	Total Carbon Dioxide	1000	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-65	8/22/2017	Total Carbon Dioxide	1100	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-60	8/23/2017	Total Carbon Dioxide	720	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-62	8/23/2017	Total Carbon Dioxide	580	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-53	8/23/2017	Total Carbon Dioxide	300	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
MW-67	8/23/2017	Total Carbon Dioxide	320	mg CO2/L	GW	J-	Qualified low bias - analysis outside holding time.
OW-6+60	4/27/2017	gasoline range organics	0.44	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.

Table A-2 Qualified Data - 2017 Annual Monitoring Report Western Refining Southwest, Inc. - Bloomfield Terminal

Sample ID	Date Collected	Analyte	Result	Units	Matrix	Qualifier	Comments
OW 1+50	4/27/2017	gasoline range organics	2.1	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
OW 3+85	4/27/2017	gasoline range organics	4.2	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
OW 16+60	4/27/2017	gasoline range organics	1.5	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
OW 5+50	4/27/2017	motor oil range organics	70	mg/L	GW	J-	Qualified low bias - low recovery in surrogate.
OW 5+50	4/27/2017	diesel range organics	370	mg/L	GW	J-	Qualified low bias - low recovery in surrogate.
MW-34	8/29/2017	gasoline range organics	1.1	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
MW-11	8/29/2017	gasoline range organics	0.98	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.
CW 0+60	8/28/2017	gasoline range organics	3.2	mg/L	GW	J+	Qualified high bias - high recovery in surrogate.

Notes:

J- = Low bias UJ - analyte was not detected, but results may be biased low

J+ = High bias

LCS - laboratory control sample

_	MW-13	MW-13 Dup	RPD
Parameter	4/20/2017	4/20/2017	
	Sample Result	Field Duplicate	(%)
Volatile Organic Compounds (ug/L)	1		1 110
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane 1.1-Dichloroethene			NC NC
,			NC NC
1,1-Dichloropropene 1,2,3-Trichlorobenzene			NC NC
1,2,3-Trichloropropane			NC NC
1,2,4-Trichlorobenzene			NC NC
1,2,4-Trimethylbenzene			NC NC
1,2-Dibromo-3-chloropropane			NC NC
1,2-Dibromoethane (EDB)			NC NC
1,2-Distribution (LDB)			NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC NC
1,3,5-Trimethylbenzene			NC
1,3-Dichlorobenzene			NC NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC
2-Hexanone			NC
2-Methylnaphthalene			NC
4-Chlorotoluene			NC
4-Isopropyltoluene			NC
4-Methyl-2-pentanone			NC
Acetone			NC
Benzene	< 1.0	< 1.0	NC
Bromobenzene			NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane			NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene			NC
Isopropylbenzene			NC
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
sec-Butylbenzene			NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC

	MW-13 MW-13 Dup		RPD	
Parameter	4/20/2017	4/20/2017		
	Sample Result	Field Duplicate	(%)	
Toluene	< 1.0	< 1.0	NC	
trans-1,2-DCE			NC	
trans-1,3-Dichloropropene			NC	
Trichloroethene (TCE)			NC	
Trichlorofluoromethane			NC	
Vinyl chloride			NC	
Xylenes, Total	< 1.5	< 1.5	NC	
General Chemistry (mg/l):	1.10			
Fluoride			NC	
Chloride			NC	
Nitrite			NC	
Bromide			NC	
Nitrate			NC	
Phosphorus			NC	
Sulfate			NC	
Carbon Dioxide (CO ₂)				
			NC	
Alkalinity (CaCO ₃)			NC	
Bicarbonate (CaCO ₃)			NC	
Total Metals (mg/l):			•	
Arsenic			NC	
Barium			NC	
Cadmium			NC	
Chromium			NC	
Lead			NC	
Selenium			NC	
Silver			NC	
Mercury			NC	
Dissolved Metals (mg/l):			1	
Arsenic			NC	
Barium			NC	
Cadmium			NC	
Calcium			NC	
Chromium			NC	
Copper			NC NC	
Iron			NC NC	
Lead			NC NC	
Magnesium			NC NC	
<u> </u>				
Manganese			NC NC	
Potassium			NC NC	
Selenium			NC NC	
Silver			NC NC	
Sodium			NC	
Uranium			NC	
Zinc			NC	
Total Petroleum Hydrocarbons (mg/l				
Diesel Range Organics			NC	
Gasoline Range Organics			NC	
Motor Oil Range Organics			NC	

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

--- = not analyzed

_	MW-35	MW-35 Dup	
Parameter	4/20/2017	4/20/2017	RPD %
	Sample Result	Field Duplicate	
olatile Organic Compounds (ug/L)			
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane			NC
1,1-Dichloroethene			NC
1,1-Dichloropropene			NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC
1,2,4-Trichlorobenzene			NC
1,2,4-Trimethylbenzene			NC
1,2-Dibromo-3-chloropropane			NC
1,2-Dibromoethane (EDB)			NC
1,2-Dichlorobenzene			NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC
1,3,5-Trimethylbenzene			NC
1,3-Dichlorobenzene			NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC
2-Hexanone			NC
2-Methylnaphthalene			NC
4-Chlorotoluene			NC
4-Isopropyltoluene			NC
4-Methyl-2-pentanone			NC
Acetone			NC
Benzene	< 1.0	< 1.0	NC
Bromobenzene			NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane			NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene			NC
Isopropylbenzene			NC
Methyl tert-butyl ether (MTBE)	0.0012	< 1.0	NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
sec-Butylbenzene			NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC

	MW-35	MW-35 Dup	
Parameter	4/20/2017	4/20/2017	RPD %
	Sample Result	Field Duplicate	
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE			NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC
Xylenes, Total	<1.5	< 1.5	NC
General Chemistry (mg/l):	11.0	V 1.0	110
Fluoride			NC
Chloride			NC
Nitrite			NC
Bromide			NC
Nitrate			NC
			NC NC
Phosphorus			NC NC
Sulfate (00)			
Carbon Dioxide (CO ₂)			NC
Alkalinity (CaCO ₃)			NC
Bicarbonate (CaCO ₃)			NC
Total Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Chromium			NC
Lead			NC
Selenium			NC
Silver			NC
Mercury			NC
Dissolved Metals (mg/l):			110
Arsenic			NC
Barium			NC
Cadmium			NC
Calcium			NC
Chromium			NC NC
			NC NC
Copper			
Iron			NC
Lead			NC
Magnesium			NC
Manganese			NC
Potassium			NC
Selenium			NC
Silver			NC
Sodium			NC
Uranium			NC
Zinc			NC
Total Petroleum Hydrocarbons (mg/l):		
Diesel Range Organics			NC
Gasoline Range Organics			NC
Motor Oil Range Organics			NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

--- = not analyzed

	MW-30	MW-30 DUP	
Parameter	4/21/2017	4/21/2017	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)		•	I
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane			NC
1,1-Dichloroethene			NC
1,1-Dichloropropene			NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC NC
1,2,4-Trichlorobenzene			NC
1,2,4-Trimethylbenzene			NC NC
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)			NC NC
1,2-Dischlorobenzene			NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC
1,3,5-Trimethylbenzene			NC
1,3-Dichlorobenzene			NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC
2-Hexanone			NC
2-Methylnaphthalene			NC
4-Chlorotoluene			NC
4-Isopropyltoluene			NC NC
4-Methyl-2-pentanone Acetone			NC NC
Benzene	2900	2900	0.0
Bromobenzene	2500	2900	NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane	 F700		NC 4.0
Ethylbenzene Hexachlorobutadiene	5700	5600	1.8 NC
Isopropylbenzene			NC NC
Methyl tert-butyl ether (MTBE)	 < 100	<100	NC NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
sec-Butylbenzene			NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC

	MW-30	MW-30 DUP	
Parameter	4/21/2017	4/21/2017	RPD %
F	Sample Result	Field Duplicate	
Toluene	1000	1100	9.5
trans-1,2-DCE			NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC
Xylenes, Total	17000	16000	6.1
General Chemistry (mg/l):			
Fluoride			NC
Chloride			NC
Nitrite			NC
Bromide			NC
Nitrate			NC
Phosphorus			NC
Sulfate			NC
Carbon Dioxide (CO ₂)			NC
Alkalinity (CaCO ₃)			NC
Bicarbonate (CaCO ₃)			
			NC
Total Metals (mg/l):			NO
Arsenic			NC NC
Barium			NC NC
Cadmium			NC
Chromium			NC
Lead			NC NC
Selenium			NC
Silver			NC NC
Mercury			NC
Dissolved Metals (mg/l):			NC
Arsenic			NC NC
Barium			NC NC
Cadmium			
Calcium			NC NC
Chromium			NC NC
Copper			
Iron			NC NC
Lead			NC NC
Magnesium			NC NC
Manganese			NC NC
Potassium			NC NC
Selenium			NC NC
Silver Sodium			NC NC
Uranium			NC NC
Zinc			NC
Total Petroleum Hydrocarbons (mg/ Diesel Range Organics	,		NO
			NC
Gasoline Range Organics Motor Oil Range Organics			NC NC
wiotor Oir Karige Organics			INC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter mg/L = milligrams per liter

-- = not analyzed

L	CW 0+60	CW 0+60 DUP	
Parameter	4/27/2017	4/27/2017	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			•
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane			NC
1,1-Dichloroethene			NC NC
1,1-Dichloropropene			NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC
1,2,4-Trichlorobenzene			NC NC
1,2,4-Trimethylbenzene			NC NC
1,2-Dibromo-3-chloropropane			
1,2-Dibromoethane (EDB)			NC NC
1,2-Dichlorobenzene			NC
1,2-Dichloroethane (EDC)			NC NC
1,2-Dichloropropane			
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene			NC NC
1,3-Dichloropenzene			NC NC
1,4-Dichlorobenzene			NC NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2,2-Dictilotoproparie 2-Butanone			NC NC
2-Chlorotoluene			NC NC
2-Hexanone			NC NC
2-Methylnaphthalene			NC NC
4-Chlorotoluene			NC
4-Isopropyltoluene			NC
4-Methyl-2-pentanone			NC
Acetone			NC
Benzene	< 0.001	0.0011	NC
Bromobenzene			NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane			NC
Ethylbenzene	0.0031	0.0031	0.0
Hexachlorobutadiene			NC
Isopropylbenzene			NC
Methyl tert-butyl ether (MTBE)	< 0.001	<0.001	NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
sec-Butylbenzene			NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC

	CW 0+60	CW 0+60 DUP	
Parameter	4/27/2017	4/27/2017	RPD %
	Sample Result	Field Duplicate	
Toluene	< 0.001	<0.001	NC
trans-1,2-DCE			NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC
Xylenes, Total	< 0.0015	<0.0015	NC
General Chemistry (mg/l):			4
Fluoride			NC
Chloride			NC
Nitrite			NC
Bromide			NC
Nitrate			NC
Phosphorus			NC
Sulfate			NC
Carbon Dioxide (CO ₂)			NC
			+
Alkalinity (CaCO ₃)		===	NC
Bicarbonate (CaCO ₃)			NC
Total Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Chromium			NC
Lead			NC
Selenium			NC
Silver			NC
Mercury			NC
Dissolved Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Calcium			NC
Chromium			NC
Copper			NC
Iron			NC
Lead			NC
Magnesium			NC
Manganese			NC
Potassium			NC
Selenium			NC
Silver			NC
Sodium			NC
Uranium			NC
Zinc			NC
Total Petroleum Hydrocarbons (mg/l):		•
Diesel Range Organics	1.4	1.5	6.9
Gasoline Range Organics			NC
Motor Oil Range Organics	<2.5	<2.5	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

--- = not analyzed

	MW-13	MW-13 DUP	
Parameter	5/17/2017	5/17/2017	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)			1
1,1,1,2-Tetrachloroethane			NC
1,1,1-Trichloroethane			NC
1,1,2,2-Tetrachloroethane			NC
1,1,2-Trichloroethane			NC
1,1-Dichloroethane 1,1-Dichloroethene			NC NC
1,1-Dichloropropene			NC NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC
1,2,4-Trichlorobenzene			NC
1,2,4-Trimethylbenzene			NC
1,2-Dibromo-3-chloropropane			NC
1,2-Dibromoethane (EDB)			NC
1,2-Dichlorobenzene			NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC
1,3,5-Trimethylbenzene			NC
1,3-Dichlorobenzene			NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC
2-Hexanone			NC
2-Methylnaphthalene			NC
4-Chlorotoluene			NC
4-Isopropyltoluene			NC
4-Methyl-2-pentanone			NC
Acetone			NC
Benzene			NC
Bromobenzene			NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide Carbon Tetrachloride			NC
Carbon Tetrachionde			NC NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane			NC
Ethylbenzene			NC
Hexachlorobutadiene			NC
Isopropylbenzene			NC
Methyl tert-butyl ether (MTBE)			NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
sec-Butylbenzene			NC
Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC

	MW-13	MW-13 DUP	
Parameter	5/17/2017	5/17/2017	RPD %
	Sample Result	Field Duplicate	
Toluene			NC
trans-1,2-DCE			NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC
Xylenes, Total			NC
General Chemistry (mg/l):			
Fluoride			NC
Chloride			NC
Nitrite			NC
Bromide			NC
Nitrate			NC
Phosphorus			NC
Sulfate			NC
Carbon Dioxide (CO ₂)			NC
Alkalinity (CaCO ₃)			NC
Bicarbonate (CaCO ₃)			NC
Total Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Chromium			NC
Lead			NC
Selenium			NC
Silver			NC
Mercury			NC
Dissolved Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Calcium			NC
Chromium			NC
Copper			NC
Iron			NC
Lead			NC
Magnesium			NC
Manganese			NC
Potassium			NC
Selenium			NC
Silver			NC
Sodium			NC
Uranium			NC
Zinc			NC
Total Petroleum Hydrocarbons (mg	ı/l):		
Diesel Range Organics	<0.2	<0.2	NC
Gasoline Range Organics	<0.05	<0.05	NC
Motor Oil Range Organics	<2.5	<2.5	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

--- = not analyzed

	MW-51	MW-51 Duplicate	
Parameter	8/23/2017	8/23/2017	RPD %
	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/L)	4.0	1	l No
1,1,1,2-Tetrachloroethane	< 1.0	< 1.0	NC
1,1,1-Trichloroethane	< 1.0	< 1.0	NC NC
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	< 2.0	< 2.0	NC NC
1,1-Dichloroethane	< 1.0 < 1.0	< 1.0 < 1.0	NC
1,1-Dichloroethene	< 1.0	< 1.0	NC
1,1-Dichloropropene	< 1.0	< 1.0	NC
1,2,3-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,3-Trichloropropane	< 2.0	< 2.0	NC
1,2,4-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,4-Trimethylbenzene	< 1.0	< 1.0	NC
1,2-Dibromo-3-chloropropane	< 2.0	< 2.0	NC
1,2-Dibromoethane (EDB)	< 1.0	< 1.0	NC
1,2-Dichlorobenzene	< 1.0	< 1.0	NC
1,2-Dichloroethane (EDC)	< 1.0	< 1.0	NC
1,2-Dichloropropane	< 1.0	< 1.0	NC
1,3,5-Trimethylbenzene	< 1.0	< 1.0	NC
1,3-Dichlorobenzene	< 1.0	< 1.0	NC
1,3-Dichloropropane	< 1.0	< 1.0	NC
1,4-Dichlorobenzene	< 1.0	< 1.0	NC
1-Methylnaphthalene	< 4.0	< 4.0	NC
2,2-Dichloropropane	< 2.0	< 2.0	NC
2-Butanone	< 10	< 10	NC
2-Chlorotoluene	< 1.0	< 1.0	NC
2-Hexanone	< 10	< 10	NC
2-Methylnaphthalene	< 4.0	< 4.0	NC
4-Chlorotoluene	< 1.0	< 1.0	NC
4-Isopropyltoluene	< 1.0	< 1.0	NC
4-Methyl-2-pentanone	< 10	< 10	NC
Acetone	1.6 J	< 10	NC
Benzene	< 1.0	< 1.0	NC
Bromobenzene	< 1.0	< 1.0	NC NC
Bromodichloromethane Bromoform	< 1.0 < 1.0	< 1.0	NC NC
Bromomethane		< 1.0	NC NC
Carbon disulfide	< 3.0 < 10	< 3.0 < 10	NC NC
Carbon distille	< 1.0	< 1.0	NC NC
Chlorobenzene	< 1.0	< 1.0	NC
Chloroethane	< 2.0	< 2.0	NC
Chloroform	< 1.0	< 1.0	NC
Chloromethane	< 3.0	< 3.0	NC
cis-1,2-DCE	< 1.0	< 1.0	NC
cis-1,3-Dichloropropene	< 1.0	< 1.0	NC
Dibromochloromethane	< 1.0	< 1.0	NC
Dibromomethane	< 1.0	< 1.0	NC
Dichlorodifluoromethane	< 1.0	< 1.0	NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene	< 1.0	< 1.0	NC
Isopropylbenzene	< 1.0	< 1.0	NC
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	NC
Methylene Chloride	< 3.0	< 3.0	NC
Naphthalene	< 2.0	< 3.0	NC
n-Butylbenzene	< 3.0	< 1.0	NC
n-Propylbenzene	< 1.0	< 2.0	NC
sec-Butylbenzene	< 1.0	< 1.0	NC
Styrene	< 1.0	< 1.0	NC
tert-Butylbenzene	< 1.0	< 1.0	NC
Tetrachloroethene (PCE)	< 1.0	< 1.0	NC

Table A-3
Field Duplicate Summary - 2017 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	MW-51	MW-51 Duplicate	
Parameter	8/23/2017	8/23/2017	RPD %
	Sample Result	Field Duplicate	
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE	< 1.0	< 1.0	NC
trans-1,3-Dichloropropene	< 1.0	< 1.0	NC
Trichloroethene (TCE)	< 1.0	< 1.0	NC
Trichlorofluoromethane	< 1.0	< 1.0	NC
Vinyl chloride	< 1.0	< 1.0	NC
Xylenes, Total	< 1.5	< 1.5	NC
General Chemistry (mg/l):			
Fluoride	0.37	0.36	2.7
Chloride	11.00	10.00	9.5
Nitrite	< 0.10	< 0.10	NC
Bromide	< 0.10	< 0.10	NC
Nitrate	0.44	0.39	12.0
Phosphorus	< 0.50	<0.50	NC
Sulfate	45.00	39.00	14.3
Carbon Dioxide (CO ₂)	270.00	270.00	0.0
Alkalinity (CaCO ₃)	287.7	287.8	0.0
Bicarbonate (CaCO ₃)	287.7	287.8	
, ,	281.1	287.8	0.0
Total Metals (mg/l):	. 0.050	. 0.050	l NO
Arsenic	< 0.050	< 0.050	NC 0.0
Barium	0.12	0.12	0.0
Cadmium	< 0.0020	< 0.0020	NC
Chromium	< 0.0060	< 0.0060	NC
Lead	< 0.0050	< 0.0050	NC
Selenium	< 0.050	< 0.050	NC
Silver	< 0.0050	< 0.0050	NC
Mercury	< 0.00020	< 0.00020	NC
Dissolved Metals (mg/l):	0.045 1	1 .0.000	I NO
Arsenic	0.015 J	< 0.020	NC
Barium	0.11	0.11	0.0
Cadmium	< 0.0020	< 0.0020	NC
Calcium	71	69	2.9
Chromium	< 0.0060	< 0.0060	NC NC
Copper	< 0.0060	< 0.0060	NC
Iron	0.037	0.033	11.4
Lead	< 0.0050	< 0.0050	NC
Magnesium	14	14	0.0
Manganese	2.4	2.5	4.1
Potassium	1.7	1.7	0.0
Selenium	< 0.050	< 0.050	NC
Silver	< 0.0050	< 0.0050	NC 0.0
Sodium	40	40	0.0
Uranium	< 0.10	<0.01	NC
Zinc	0.016 J	0.024	NC
Total Petroleum Hydrocarbons (mg/l			
Diesel Range Organics	<0.2	<0.2	NC
Gasoline Range Organics	<0.05	<0.05	NC
Motor Oil Range Organics	<2.5	<2.5	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

--- = not analyzed

	OW SELSE	OW SELCE DUDI ICATE	
Parameter	CW 25+95 8/28/2017	CW 25+95 DUPLICATE 8/28/2017	RPD %
Parameter			RPD %
Valatila Organia Campaunda (ugl	Sample Result	Field Duplicate	
Volatile Organic Compounds (ug/ 1,1,1,2-Tetrachloroethane		1	NO.
1,1,1-Trichloroethane			NC
			NC
1,1,2,2-Tetrachloroethane			NC
· · ·			NC
1,1-Dichloroethane			NC
1,1-Dichloroethene			NC
1,1-Dichloropropene			NC
1,2,3-Trichlorobenzene			NC
1,2,3-Trichloropropane			NC
1,2,4-Trichlorobenzene			NC
1,2,4-Trimethylbenzene			NC
1,2-Dibromo-3-chloropropane			NC
1,2-Dibromoethane (EDB)			NC
1,2-Dichlorobenzene			NC
1,2-Dichloroethane (EDC)			NC
1,2-Dichloropropane			NC
1,3,5-Trimethylbenzene			NC
1,3-Dichlorobenzene			NC
1,3-Dichloropropane			NC
1,4-Dichlorobenzene			NC
1-Methylnaphthalene			NC
2,2-Dichloropropane			NC
2-Butanone			NC
2-Chlorotoluene			NC
2-Hexanone			NC
2-Methylnaphthalene			NC
4-Chlorotoluene			NC
4-Isopropyltoluene			NC
4-Methyl-2-pentanone			NC
Acetone			NC
Benzene	< 1.0	< 1.0	NC
Bromobenzene			NC
Bromodichloromethane			NC
Bromoform			NC
Bromomethane			NC
Carbon disulfide			NC
Carbon Tetrachloride			NC
Chlorobenzene			NC
Chloroethane			NC
Chloroform			NC
Chloromethane			NC
cis-1,2-DCE			NC
cis-1,3-Dichloropropene			NC
Dibromochloromethane			NC
Dibromomethane			NC
Dichlorodifluoromethane			NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene			NC
Isopropylbenzene			NC
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	NC
Methylene Chloride			NC
Naphthalene			NC
n-Butylbenzene			NC
n-Propylbenzene			NC
sec-Butylbenzene			NC NC
Sec-Butylberizerie Styrene			NC
tert-Butylbenzene			NC
Tetrachloroethene (PCE)			NC NC
retractionoetherie (FCE)			INC

	CW 25+95	CW 25+95 DUPLICATE	
Parameter	8/28/2017	8/28/2017	RPD %
	Sample Result	Field Duplicate	+ /
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE			NC
trans-1,3-Dichloropropene			NC
Trichloroethene (TCE)			NC
Trichlorofluoromethane			NC
Vinyl chloride			NC
Xylenes, Total	< 1.5	< 1.5	NC
General Chemistry (mg/l):	11.0	1	
Fluoride			NC
Chloride			NC
Nitrite			NC
Bromide			NC
Nitrate			NC
Phosphorus			NC
Sulfate			NC
Carbon Dioxide (CO ₂)			NC
` -/			
Alkalinity (CaCO ₃)			NC
Bicarbonate (CaCO ₃)			NC
Total Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Chromium			NC
Lead			NC
Selenium			NC
Silver			NC
Mercury			NC
Dissolved Metals (mg/l):			
Arsenic			NC
Barium			NC
Cadmium			NC
Calcium			NC
Chromium			NC
Copper			NC
Iron			NC
Lead			NC
Magnesium			NC
Manganese			NC
Potassium			NC
Selenium			NC
Silver			NC
Sodium			NC
Uranium			NC
Zinc			NC
Total Petroleum Hydrocarbons (mg/	l):		
Diesel Range Organics	<0.2	<0.2	NC
Gasoline Range Organics	0.18	0.23	24.4
Motor Oil Range Organics	<2.5	<2.5	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

 ${\sf NC}$ = ${\sf Not}$ calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

-- = not analyzed

	MW-37	MW-37 DUPLICATE	
Parameter	8/30/2017	8/30/2017	RPD %
Volatile Organic Compounds (ug/L)	Sample Result	Field Duplicate	
1,1,1,2-Tetrachloroethane	< 1.0	< 1.0	NC
1,1,1-Trichloroethane	< 1.0	< 1.0	NC
1,1,2,2-Tetrachloroethane	< 2.0	< 2.0	NC
1,1,2-Trichloroethane	< 1.0	< 1.0	NC
1,1-Dichloroethane	< 1.0	< 1.0	NC
1,1-Dichloroethene	< 1.0	< 1.0	NC
1,1-Dichloropropene	< 1.0	< 1.0	NC
1,2,3-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,3-Trichloropropane	< 2.0	< 2.0	NC
1,2,4-Trichlorobenzene	< 1.0	< 1.0	NC
1,2,4-Trimethylbenzene	< 1.0	< 1.0	NC
1,2-Dibromo-3-chloropropane	< 2.0	< 2.0	NC
1,2-Dibromoethane (EDB)	< 1.0	< 1.0	NC
1,2-Dichlorobenzene	< 1.0	< 1.0	NC
1,2-Dichloroethane (EDC)	< 1.0	< 1.0	NC
1,2-Dichloropropane	< 1.0	< 1.0	NC
1,3,5-Trimethylbenzene	< 1.0	< 1.0	NC
1,3-Dichlorobenzene	< 1.0	< 1.0	NC
1,3-Dichloropropane	< 1.0	< 1.0	NC
1,4-Dichlorobenzene	< 1.0	< 1.0	NC
1-Methylnaphthalene	< 4.0	< 4.0	NC
2,2-Dichloropropane	< 2.0 < 10	< 2.0	NC NC
2-Butanone 2-Chlorotoluene	< 1.0	< 10 < 1.0	NC NC
2-Chlorotoldene 2-Hexanone	< 1.0	< 1.0	NC NC
2-Methylnaphthalene	< 4.0	< 4.0	NC
4-Chlorotoluene	< 1.0	< 1.0	NC
4-Isopropyltoluene	< 1.0	< 1.0	NC
4-Methyl-2-pentanone	< 10	< 10	NC
Acetone	1.0 J	< 10	NC
Benzene	< 1.0	< 1.0	NC
Bromobenzene	< 1.0	< 1.0	NC
Bromodichloromethane	< 1.0	< 1.0	NC
Bromoform	< 1.0	< 1.0	NC
Bromomethane	< 3.0	< 3.0	NC
Carbon disulfide	< 10	< 10	NC
Carbon Tetrachloride	< 1.0	< 1.0	NC
Chlorobenzene	< 1.0	< 1.0	NC
Chloroethane	< 2.0	< 2.0	NC
Chloroform	< 1.0	< 1.0	NC
Chloromethane	< 3.0	< 3.0	NC
cis-1,2-DCE	< 1.0	< 1.0	NC
cis-1,3-Dichloropropene	< 1.0	< 1.0	NC
Dibromochloromethane	< 1.0	< 1.0	NC NC
Dibromomethane Dichlorodifluoromethane	< 1.0 < 1.0	< 1.0 < 1.0	NC NC
Ethylbenzene	< 1.0	< 1.0	NC
Hexachlorobutadiene	< 1.0	< 1.0	NC
Isopropylbenzene	< 1.0	< 1.0	NC
Methyl tert-butyl ether (MTBE)	< 1.0	< 1.0	NC
Methylene Chloride	< 3.0	< 3.0	NC
Naphthalene	< 2.0	< 3.0	NC
n-Butylbenzene	< 3.0	< 1.0	NC
n-Propylbenzene	< 1.0	< 2.0	NC
sec-Butylbenzene	< 1.0	< 1.0	NC
Styrene	< 1.0	< 1.0	NC
tert-Butylbenzene	0.14 J	< 1.0	NC
Tetrachloroethene (PCE)	< 1.0	< 1.0	NC

Table A-3
Field Duplicate Summary - 2017 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	MW-37	MW-37 DUPLICATE	
Parameter	8/30/2017	8/30/2017	RPD %
	Sample Result	Field Duplicate	
Toluene	< 1.0	< 1.0	NC
trans-1,2-DCE	< 1.0	< 1.0	NC
trans-1,3-Dichloropropene	< 1.0	< 1.0	NC
Trichloroethene (TCE)	< 1.0	< 1.0	NC
Trichlorofluoromethane	< 1.0	< 1.0	NC
Vinyl chloride	< 1.0	< 1.0	NC
Xylenes, Total	< 1.5	< 1.5	NC
General Chemistry (mg/l):	•		
Fluoride	0.45	0.45	0.0
Chloride	150	140	6.9
Nitrite	0.25 J	<1.0	NC
Bromide	2.5	2.5	0.0
Nitrate	0.25 J	<1.0	NC
Phosphorus	< 2.5	<2.5	NC
Sulfate	720	680	5.7
Carbon Dioxide (CO ₂)	450	450	0.0
Alkalinity (CaCO ₃)	503.5	509.2	1.1
Bicarbonate (CaCO ₃)	503.5	509.2	1.1
Total Metals (mg/l):	300.0	303.2	1.1
Arsenic	0.019 J	0.03	NC
Barium	0.49	0.63	25.0
Cadmium	< 0.0020	< 0.0020	NC
Chromium	0.022	0.028	24.0
Lead	< 0.0050	< 0.0050	NC
Selenium	< 0.050	< 0.050	NC
Silver	< 0.0050	< 0.0050	NC
Mercury	< 0.00020	< 0.00020	NC
Dissolved Metals (mg/l):	1 0.00020	10.00020	
Arsenic	< 0.020	< 0.020	NC
Barium	0.11	0.11	0.0
Cadmium	< 0.0020	< 0.0020	NC
Calcium	110	110	0.0
Chromium	< 0.0060	< 0.0060	NC
Copper	< 0.0060	< 0.0060	NC
Iron	0.13	0.029	127.0
Lead	< 0.0050	< 0.0050	NC
Magnesium	21	22	4.7
Manganese	0.89	0.99	10.6
Potassium	2.7	2.7	0.0
Selenium	< 0.050	< 0.050	NC
Silver	< 0.0050	< 0.0050	NC
Sodium	460	460	0.0
Uranium	< 0.10	< 0.10	NC
Zinc	0.018 J	0.039	NC
Total Petroleum Hydrocarbons (mg/			
Diesel Range Organics	< 0.20	< 0.20	NC
Gasoline Range Organics	< 0.050	< 0.050	NC
Motor Oil Range Organics	< 2.5	< 2.5	NC

Notes:

RPD = Relative percent difference; [(difference)/(average)]* 100

NC = Not calculated; RPD values were not calculated for non-detects or J-flagged data

ug/L = micrograms per liter

mg/L = milligrams per liter

--- = not analyzed

Table A-4
Technical Completeness Summary - 2017 Annual Monitoring Report
Western Refining Southwest, Inc. - Bloomfield Terminal

	Parameter	Total Number of Results	Number of Usable Results	Percent Technical Compliance	
TPH (mg/L):	Diesel Range Organics (DRO)	57	57	100	
	Motor Oil Range Organics (MRO)	57	57	100	
	Gasoline Range Organics (GRO)	57	57	100	
VOCs (mg/L):	All VOC Analytes	30	30	100	
VOCs (mg/L):	BTEX & MTBE only	38	38	100	
SVOCs (mg/L):	All SVOC Analytes	7	7	100	
Total Recoverable	Arsenic	32	32	100	
Metals (mg/L):	Barium	32	32	100	
	Cadmium	32	32	100	
	Chromium	32	32	100	
	Lead	32	32	100	
	Selenium	32	32	100	
	Silver	32	32	100	
Dissolved Metals (mg/L):	Arsenic	32	32	100	
	Barium	32	32	100	
	Cadmium	32	32	100	
	Calcium	32	32	100	
	Chromium	32	32	100	
	Copper	32	32	100	
	Iron	32	32	100	
	Lead	32	32	100	
	Magnesium	32	32	100	
	Manganese	32	32	100	
	Mercury	32	32	100	
	Potassium	32	32	100	
	Selenium	32	32	100	
	Silver	32	32	100	
	Sodium	32	32	100	
	Uranium	32	32	100	
	Zinc	32	32	100	
Other Parameters:	Bicarbonate (As CaCO3)	33	33	100	
	Bromide	33	33	100	
	Carbonate (As CaCO3)	33	33	100	
	Chloride	33	33	100	
	Fluoride	33	33	100	
	Nitrogen, Nitrate (As N)	33	33	100	
	Nitrogen, Nitrite (As N)	33	33	100	
	Phosphorus, Orthophosphate (As P)	33	33	100	
	Specific Conductance	33	33	100	
	Sulfate	33	33	100	
	Total Alkalinity (as CaCO3)	33	33	100	
	Total Carbon Dioxide	33	33	100	
	Total Dissolved Solids	33	33	100	

Notes:

Number of samples used in completeness calculations includes field duplicates, equipment rinsate, and field blanks. Percent Technial Compliance = (Number of usable results / Number of reported results) * 100

Appendix C

Bloomfield Product Terminal

I. Hazardous Waste												
			Containers									
Pick-up Date	Manifest #	Description	No.	Туре	_	Destination	Treatment	Cert. of Disposal/ Consumption				
1/20/2017	009450523 FLE	NA3077 Hazardous Waste, Solid, N.O.S. (Benzene) 9 PG III	11	DM	0070 D	21st Centruy Envirn. Mgmt. of Nevada, LLC 2095 Newlands Dr. E Fernley, NV 89468	H141	Х				
		UN3506 Waste Mercury Contained in Manufactured Articles 8 (6.1) RQ(D009)	1	DF	30 G		H141					
5/30/2017	010400663 FLE	UN066. Waste Flammable Liquids, N.O.S. (Benzene) 3 PG111 RQ(D018)	6	DM	4900 P	Clean harbors Aragomite, LLC 11600 N Aptus Road Aragomite, UT 84029	H040					

P = Pounds

CY = Cubic Yard Box

DF = Plastic drum

CF = Fiber board yard box

DM = Drum G = Gallons