1 of 2

NM2 - ___6___

PARTIAL CLOSURE REPORT

Nov. 2017

1

Richard Grubbs, P.E.

Waste and Water Advisor

2017 NOV 18 P11: 48

Chevron North America Exploration and Production Company Mid-Continent Business Unit 760 Horizon Drive Grand Junction, CO 81506 Tel 970-257-6021 rtgrubbs@chevron.com

November 17, 2017

Brad Jones, Environmental Engineer EMNRD Oil Conservation Division 1220 S. Saint Francis Drive Santa Fe, NM 87505

RE: Hallwood Evaporation Pond
Request to Transfer Ownership

Dear Mr. Jones.

Chevron U.S.A. Inc. (Chevron) pursuant to NMAC 19.15.36.12 E. as owner of the Centralized Surface Waste Management Facility known as the Hallwood Evaporation Pond Permit NM -2-006, is notifying the State today to request transfer of ownership for this asset to Enduring Resources, LLC (Enduring). Enduring has purchased Chevron holdings in the San Juan Basin including the lease associated with the Hallwood Evaporation Pond. Chevron acknowledges that the Hallwood Evaporation Pond was closed in 2008, but not all post closure care activities required by the Closure Plan issued by the State have been completed. Chevron's sale agreement with Enduring includes an environmental clause for such situations, contractually placing the remainder of the closure activities into Enduring's scope. Enduring currently has a NMSLO Statewide Surface Megabond in place and can obtain an individual bond for the facility to meet the State's bonding requirements to complete the remaining closure activities if required.

Attached please find the updated closure report completed by Envirotech documenting the past and current closure activities for the site. In previous correspondence, Chevron had sent Cory Smith, District 3 field representative and yourself a copy of the Closure Report as closure documentation of the work that had been completed in 2008. After review of the status of the Closure Plan, the closure work as documented in Envirotech Closure Report, and in a site visit, gaps in closure progress were identified. One of the initial tasks identified was that surface sampling required by the Closure Plan on the boundary of the pond location had not been completed. Prior to any further closure activities, Chevron agreed to complete the perimeter sampling to better delineate the surface. This work was completed and results are discussed in the updated closure report.

In previous correspondence, you had indicated that the State had a specific form for ownership transfer that you would send once you received official request. Chevron therefore respectfully requests the State to provide the proper paper work necessary to allow transfer ownership of the Hallwood Evaporation Pond permit and the remaining closure activities to Enduring Resources, LLC.

If you have any questions concerning this compliance response, please feel free to contact me at (970)-257-6021 or email me at rtgrubbs@chevron.com.

Regards,

Richard Grubbs, P.E.

Senior Process Engineer

Water and Waste Advisor

Chevron North America Exploration and Production Company (a Chevron U.S. A. Inc. division)

Attachments (1)

CC Cory Smith (NMOCD Aztec Office)

Travis Whitham (Enduring Resources, LLC, Landman)

November 8, 2017

Project No. 92270-1646

Mr. Richard Grubbs Chevron North America 760 Horizon Drive Grand Junction, Colorado 81506

Phone: (970) 257-6021 Cell: (913) 748-9815

RE:

EVAPORATION POND CLOSURE REPORT FOR THE HALLWOOD EVAPORATION POND LOCATED IN SECTION 25, TOWNSHIP 32N, RANGE 13W, SAN JUAN COUNTY, NEW MEXICO

Dear Mr. Grubbs,

Please find enclosed the Evaporation Pond Closure Report for the Hallwood Evaporation Pond. This report details the closure activities performed between May 6, 2008 and June 24, 2008. In addition, Envirotech performed an assessment of the current conditions of the pond to address items that were not documented during the original closure. The items that were addressed during the subsequent assessment are listed below:

Sampling from the following areas surrounding the pond

- Sump
- Northeast Treatment Area
- Southeast Treatment Area
- South Area
- North Treatment Area
- Northwest Treatment Area
- Background

We appreciate the opportunity to be of service. If you have any questions or need additional information, please contact our office at (505) 632-0615.

Sincerely,

ENVIROTECH, INC.

Greg Crabtree Principal Engineer

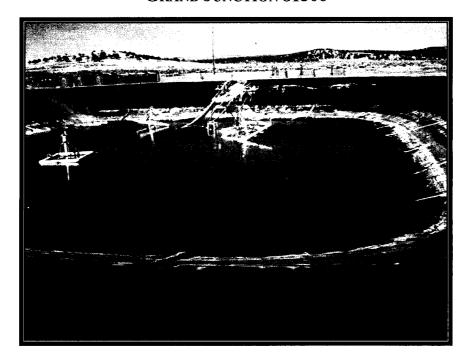
gcrabtree@envirotech-inc.com

Enclosure:

Evaporation Pond Closure Report

Cc:

Client File 92270


EVAPORATION POND CLOSURE REPORT

LOCATED AT:

HALLWOOD EVAPORATION POND NW ¼ SE ¼, SECTION 25, TOWNSHIP 32, RANGE 13W SAN JUAN COUNTY, NEW MEXICO PERMIT NO. NM-02-0006

For:

MR. RICHARD GRUBBS
CHEVRON NORTH AMERICA
760 HORIZON DRIVE
SUITE 401
GRAND JUNCTION 81506

PROJECT No. 92270-1646

NOVEMBER 2017

EVAPORATION POND CLOSURE REPORT HALLWOOD EVAPORATION POND SECTION 25, TOWNSHIP 32N, RANGE 13W SAN JUAN COUNTY, NEW MEXICO

TABLE OF CONTENTS

Introduction		1
Activities Per	formed	1
Summary and	Conclusions	5
Statement of l	Limitations	5
Figures:	Figure 1, Vicinity Map Figure 2, Site Map Figure 3, Additional Site Investigation Sample Map	
Tables:	Table 1, Pond Closure Analytical Results Table 2, Additional Site Investigation Analytical Results	
Appendices:	Appendix A, Analytical Results Norm Testing Analytical Results Pond Sludge Analytical Results Pond Water and Leak Detection Analytical Results Pond Closure Sample Analytical Results Additional Site Investigation Analytical Results Appendix B, Bills of Lading Envirotech Landfarm BOL's, Chloride and Paint Filter Testing Basin Disposal Appendix C, Special Waste Shipment Records Appendix D, Site Photography	

Introduction

Envirotech, Inc. of Farmington, New Mexico, was contracted by Chevron to perform evaporation pond closure activities at the Hallwood Evaporation Pond, located in Section 25, Township 32N, Range 13W, San Juan County, New Mexico; see *Figure 1, Vicinity Map.* Closure activities included sampling, analyses, removal and disposal of contaminated materials including blending sludge with a pugmill to reduce the liquid level for transport. Closure activities also included conducting a paint filter test prior to transport of contaminated material, site restoration, documentation, and reporting. These closure activities were performed from May 6, 2008 through June 24, 2008. In addition, a site investigation was completed on October 3, 2017 to investigate items that were not documented during the initial closure activities.

ACTIVITIES PERFORMED

Activities to close the Hallwood Evaporation Pond were conducted in accordance with the approved closure plan submitted by Envirotech on May 20, 2008. The closure plan was approved by the NMOCD on May 28, 2008.

In accordance with the approved closure plan the daily account of the onsite activities outline the onsite activities. All liquids, sludge, liner and piping were disposed of at approved surface waste management facilities.

May 6, 2008

Envirotech, Inc. arrived on site and performed a brief site assessment; see *Figure 2*, *Site Map*. Envirotech, Inc. collected two (2) liquid samples from the leak detection and from the evaporation pond. The samples were transported on ice under chain of custody to Envirotech's laboratory for Cations/Anions analyses using USEPA Method 600/4-79-020; See *Appendix A*, *Analytical Results*. Comparative analysis in the form of a rose plot was done to see if the water present in the leak detection was the same as the pond water.

May 7, 2008 – May 9, 2008

Starting on May 7, Envirotech utilized Rock Springs transport to haul liquids from the evaporation pond to Basin Disposal. Between these dates 1,170 bbls of water from the pond was delivered to the disposal facility; see Appendix B – Bills of Lading - Basin Disposal.

May 23, 2008

Envirotech, Inc. collected a sludge sample from the bottom of the evaporation pond. The sample was placed in a four (4) ounce glass jar, capped headspace free, and transported on ice under chain of custody to Envirotech's laboratory for pH analysis. The sample pH level was 10.4; see *Appendix A, Analytical Results – Pond Sludge*.

May 30, 2008

Envirotech, Inc. performed naturally occurring radioactive material (NORM) screening. Screening was conducted on PVC pipe, sand bags, angle iron, and rubber hosing. None of the screening results were above the allowable concentration of 0.08 mR/hr determined for this site; see *Appendix A, Analytical Results – Norm Testing*.

June 2, 2008

Envirotech, Inc. began cleanup activities, collected a soil sample from the bottom of the pond, and performed NORM screening. The soil sample was analyzed in the field for Total Petroleum Hydrocarbons (TPH) using USEPA Method 418.1 and for chlorides. The sample results were 268 ppm TPH and 91 ppm chlorides. Due to the sludge sample containing TPH the material could be accepted at Envirotech's Landfarm #2 as petroleum contaminated soil. NORM screening was conducted on a sludge stockpile located on site. The screening results were below the allowable concentration of 0.08 mR/hr determined for this site; see *Appendix A, Analytical Results – Pond Sludge*. Cleanup activities included the collection of contaminated material using hydro-excavation; see *Appendix D, Site Photography*. The sludge was then processed with the use of a pugmill to stabilize it for transport.

June 3, 2008

Envirotech, Inc. removed and transported approximately 56 cubic yards of contaminated soil and 110 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B, Bills of Lading – Envirotech BOL's*.

June 4, 2008

Envirotech, Inc. continued to collect the contaminated material using hydro-excavation. Envirotech, Inc. removed and transported approximately 90 cubic yards of contaminated soil and 355 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B, Bills of Lading – Envirotech BOL's*.

June 5, 2008

Envirotech, Inc. continued hydro-excavation activities. Envirotech, Inc. removed and transported approximately 126 cubic yards of contaminated soil and 500 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B, Bills of Lading – Envirotech BOL's*.

June 6, 2008

Envirotech, Inc. continued hydro-excavation activities. Envirotech, Inc. removed and transported approximately 68 cubic yards of contaminated soil and 400 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B*, *Bills of Lading – Envirotech BOL's*.

June 9, 2008

Envirotech, Inc. continued hydro-excavation activities. Envirotech, Inc. removed and transported approximately 140 cubic yards of contaminated soil and 630 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B*, *Bills of Lading – Envirotech BOL's*.

June 10, 2008

Envirotech, Inc. continued hydro-excavation activities. Envirotech, Inc. removed and transported 470 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B, Bills of Lading – Envirotech BOL's*. Additionally,

piping and rubber hoses were removed and transported to San Juan County Landfill for disposal; see *Appendix C*, *Special Waste Shipment Records*.

June 11, 2008

Envirotech, Inc. continued hydro-excavation activities. Envirotech, Inc. removed and transported approximately 26 cubic yards of contaminated soil and 215 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B, Bills of Lading – Envirotech BOL's*. Additionally, liner material was removed and transported to San Juan County Landfill for disposal; see *Appendix C, Special Waste Shipment Records*.

June 12, 2008

Envirotech, Inc. performed NORM screening on the pond liner and sandbags. The screening results were below allowable concentrations of 0.08 mR/hr, see *Appendix A*, *Analytical Results* – *Norm Testing*. Envirotech, Inc. removed and transported liner material to San Juan County Landfill for disposal; see *Appendix C*, *Special Waste Shipment Records*.

June 13, 2008

Envirotech, Inc. continued the removal of liner material. Liner material was removed and transported to San Juan County Landfill for disposal; see *Appendix C*, *Special Waste Shipment Records*.

June 16, 2008

Envirotech, Inc. collected five (5) soil samples from beneath the second liner. One (1) sample was collected from each quadrant in the evaporation pond and one (1) sample was collected from the site for background. The samples were collected into four (4) ounce glass jars, capped headspace free, and transported on ice under chain of custody to Envirotech's laboratory for analysis for benzene and BTEX using USEPA Method 8021, for volatile organic compounds (VOCs) using USEPA Method 8260, for TPH using USEPA Method 418.1, for total metals using USEPA Method 6010; for pH, total dissolved solids (TDS), nitrate nitrogen, cyanide, fluoride, chloride, and for sulfate using USEPA Method 600/4-79-020. The samples were also analyzed for phenols using USEPA Method 8270, for PCBs using USEPA Method 8082, for polycyclic aromatic hydrocarbons (PAHs) using USEPA Method 8310, for radium using USEPA Methods 903 and 904, and for uranium using USEPA Method 200.8. The samples were within or below regulatory limits for all constituents analyzed; see *Table 1: Summary of Closure Sample Analytical Results and Appendix A, Analytical Results*. None of the samples collected exceeded the limits specified in the NMOCD Guidelines for the Remediation of Leaks Spills and Releases.

June 17, 2008

Envirotech, Inc. performed NORM screening on the remaining pond liner material. The screening results were below allowable concentration of 0.12 mR/hr; see *Appendix A, Analytical Results*. Due to analyst interpretation of instrument readings, the allowable concentration determined for the site on this day varies slightly from the allowable concentration of 0.08 mR/hr determined on previous dates; however, the readings are all near background and are approximately half of the allowable concentration.

June 18, 2008

Envirotech, Inc. transported the remaining pond liner material to San Juan County Landfill; see *Appendix C, Special Waste Shipment Records*, and transported 170 barrels of sludge to Envirotech's NMOCD permitted remediation facility, Landfarm #2, near Hilltop, New Mexico; see *Appendix B, Bills of Lading*.

June 19, 2008

Envirotech, Inc. began restoration activities by backfilling the excavation with approximately 539 cubic yards of virgin fill material of which 236 cubic yards were transported from Envirotech's Landfarm; see *Appendix B*, *Bills of Lading*, and 283 cubic yards were transported from Envirotech's Equipment Yard. Backfilling and leveling activities continued through June 24, 2008.

October 3, 2017 (Additional Site Investigation)

On October 3, 2017 Envirotech conducted an additional site investigation based on the approved sampling plan submitted to the NMOCD. Cory Smith (NMOCD representative) was onsite to witness the sampling. Based on the approved plan, Envirotech took samples from the following locations:

- Sump Area
- Northeast Treatment Area
- Southeast Treatment Area
- North Treatment Area
- Northwest Treatment Area
- Background
- South Area A
- South Area B (location added at the request of Cory Smith)

.

Five-point composite samples were collected from 0-6" below ground surface in accordance with the approved sampling plan from all areas except the Sump Area sample. The Sample locations are shown on *Figure 3: Additional Site Investigation Sample Map*. The Sump Area Sample was collected from a North-South oriented trench that was dug using a backhoe to the depth of 10 feet. The intent of the trench was to attempt to identify if any of the piping from the former leak detection sump was left in place and to provide a closure sample for the leak detection sump.

Based on the analytical results it appears that the site wide concentrations of Chlorides exceed the background concentrations. Chloride concentrations range from 520 mg/kg in the Northwest Treatment Area to 1220 mg/kg in the South Area A. Also, there was a detection of TPH of 1120 mg/kg in the Southeast Treatment Area sample which was above the background concentration for this site; see Table 2: Additional Site Investigation Sample Results. No notable visual evidence of petroleum contamination was evident in the Southeast Treatment Area sample, so no additional delineation or soil remediation was completed at this time.

In addition to the supplemental closure samples Envirotech and Chevron has researched the lease agreement with the landowner for the Hallwood Pond. The lease agreement does not specify any specific requirements for the flow lines leading to and from the pond. Base on the NORM survey

results presented in Appendix A for piping that was disposed of previously, none of the piping had detections of NORM above background concentrations. Therefore, the piping left in-place is not considered to have any level of regulated NORM, consequently NMAC 19.15.35.10 requirements are not applicable. The flowlines were abandoned in-place following all other pertinent NMOCD and standard industry regulations applicable to flowline abandonment in-place.

SUMMARY AND CONCLUSIONS

Envirotech, Inc. conducted evaporation pond closure activities including removal of contaminated material, site restoration, confirmation sampling and analysis, documentation, and reporting. Approximately 506 cubic yards of contaminated soil and 2,850 barrels of sludge were transported to Envirotech's NMOCD permitted remediation facility, Landfarm #2, located near Hilltop New Mexico; see *Appendix B*, *Bills of Lading*. Approximately 110 cubic yards of PVC piping and liner material were transported to San Juan County Landfill; see *Appendix C*, *Special Waste Shipment Records*. Envirotech also completed additional site investigation activities to address items from the original closure plan that were not addressed. Based on the results from the additional investigation Envirotech recommends further investigation into the chloride levels across the site as well as delineation for the TPH detected in the Southeast Area sample. Upon determination of the site-specific closure standards for TPH and chlorides all necessary delineation and remediation activities will be performed under an approved remediation plan which will include re-seeding and post closure activities.

STATEMENT OF LIMITATIONS

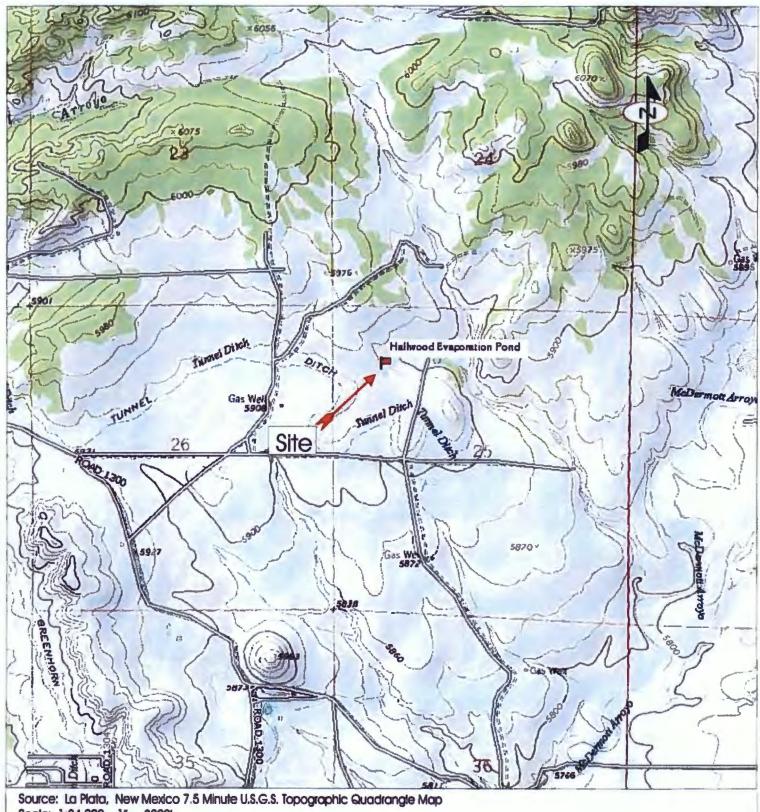
Envirotech, Inc. performed evaporation pond closure activities at the Hallwood Evaporation Pond located in Section 25, Township 32N, Range 13W, San Juan County, New Mexico. The work and services provided by Envirotech, Inc. were under the guidelines of the NMOCD. All observations and conclusions provided here are based on the information and current site conditions found during this investigation.

Due to the final report not being submitted at the time of service this report was revised in 2017 to close out the project. The original employees that completed the work are no longer employed with Envirotech. This report and the supplemental information has been verified by Envirotech's Management Team

We appreciate the opportunity to be of service. If you should have any questions or require additional information, please contact our office at (505) 632-0615.

Respectfully Submitted,

Envirotech, Inc.


Greg Crabtree, PE

Environmental Manager

gcrabtree@envirotech-inc.com

FIGURES

Figure 1, Vicinity Map Figure 2, Site Map Figure 3, Additional Site Investigation Sample Map

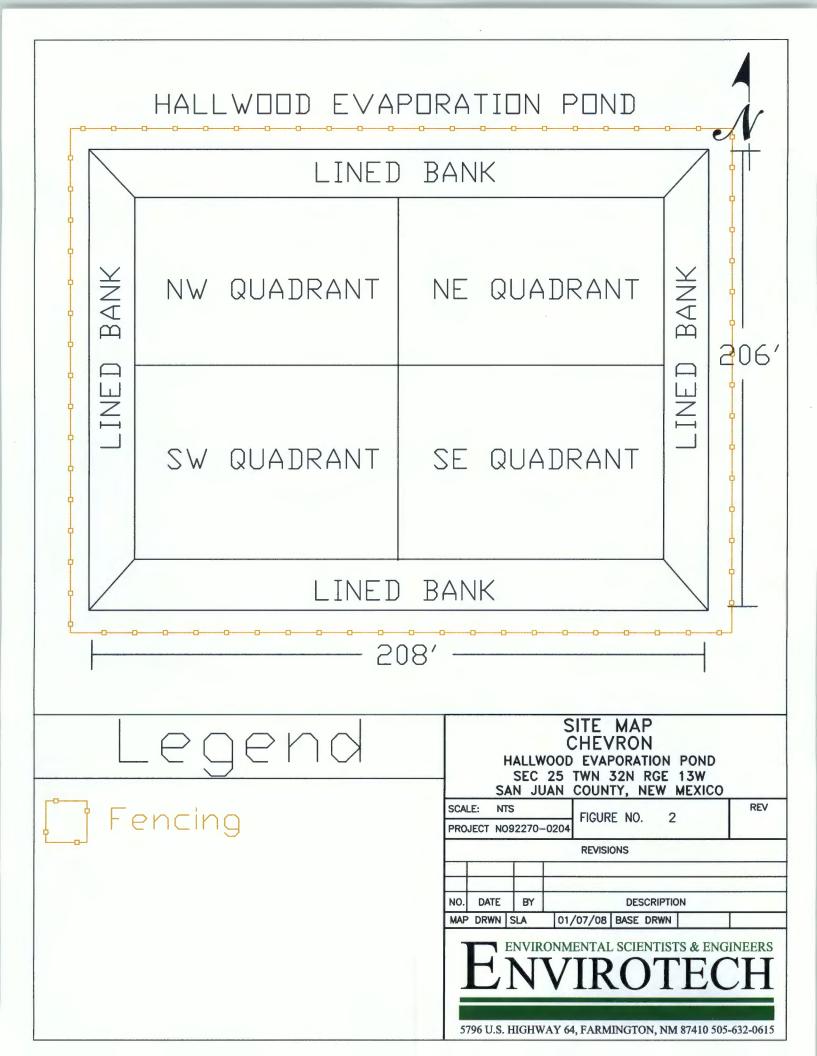
Scale: 1:24,000 1" = 2000"

Chevron Hallwood Evaporation Pond Section 25, Twp 32N, Rge 13W San Juan County, New mexico

PROJECT No 92270-0204 | Date Drawn: 10/01/08

ENVIROTECH INC.

ENVIRONMENTAL SCIENTISTS & ENGINEERS 5796 U.S. HIGHWAY 64 FARMINGTON, NEW MEXICO 87401


PHONE (505) 632-0615

Vicinity Map

Figure 1

DRAWN BY: Sherry Auckland

PROJECT MANAGER: Kyle P. Kerr

Chevron North America Hallwood Evaporation Pond Additional Site Investigation Sample Map SEC 25, TWP 32N RNG 13W San Juan County New Mexico Permit # NM02-0006

SCALE: NTS

PROJECT NO92270-1646

FIGURE NO.

REV

TABLE

Table 1, Pond Closure Analytical Results
Table 2, Additional Site Investigation Sample
Results

Table 1: Pond Closure Analytical Results

Analyte of Interest Total Petroleum Hw	NE	NW NW	SE	sw	Backgrou
	drocarbons (TPH) US			SW	Backgrou
Total Petroleum Hydrocarbons (TPH)	74.3	18.5	17.2	15.8	15.8
	ompounds (VOC) USI			I	-0.004
Benzene Toluene	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001
Ethylbenzene	<0.001	<0.001	<0.001	<0.001	<0.001
Xylene	<0.001	<0.001	<0.001	<0.001	<0.001
Naphthalene	<0.001	<0.001	<0.001	<0.001	<0.001
1-Methylnaphthalene	<0.001	<0.001	<0.001	<0.001	<0.001
2-Methylnaphthalene	<0.001	<0.001	<0.001	<0.001	<0.001
Carbon Tetrachloride	<0.001	<0.001	<0.001	<0.001	<0.001
1.2-dichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001
1,1-dichloroethylene (1,1-dichloroethene)	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2,2-tetrachloroethylene(tetrachloroethene)	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2-trichloroethylene (trichloroethene)	<0.001	<0.001	<0.001	<0.001	<0.001
methylene chloride	<0.001	<0.001	<0.001	<0.001	<0.001
chloroform	<0.001	<0.001	<0.001	<0.001	<0.001
1,1-dichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001
ethylene dibromide (1,2-dibromoethane)	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,1-trichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2-trichloroethane	<0.001	<0.001	<0.001	<0.001	<0.001
1,1,2,2-tetrachloroethane	<0.001	<0.001	<0.001	<0.001	<0.001
vinyl chloride	<0.001	<0.001	<0.001	<0.001	<0.001
Polynuclear Aromatic H	lydrocarbons (PAH) L	SEPA Method 82	70C (mg/kg)		
Acenaphthene	<0.25	<0.25	<0.25	<0.25	<0.25
Acenaphthylene	<0.25	<0.25	<0.25	<0.25	<0.25
Anthracene	<0.015	<0.015	<0.015	<0.015	<0.015
Benzo(a)anthracene	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(a)pyrene	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(b)fluoranthene	<0.010	<0.010	<0.010	<0.010	<0.010
benzo(ghi)perylene	<0.010	<0.010	<0.010	<0.010	<0.010
Benzo(k)fluoranthene	<0.010	<0.010	<0.010	<0.010	<0.010
Chrysene	<0.011	<0.011	<0.011	<0.011	<0.011
Dibenz(a,h)anthracene	<0.010	<0.010	<0.010	<0.010	<0.010
Fluoranthene	<0.020	<0.020	<0.020	<0.020	<0.020
Fluorene	<0.030	<0.030	<0.030	<0.030	<0.030
Indeno(1,2,3-c,d)pyrene	<0.10	<0.10	<0.10	<0.10	<0.10
Phenanthrene	<0.015	<0.015	<0.015	<0.015	<0.015
pyrene	<0.025	<0.025	<0.025	<0.025	<0.025
Phenols	<0.005	<0.005	<0.005	<0.005	<0.005
	phenyls (PCB's) USE				2.125
PCB 1016	<0.02	<0.02	<0.02	<0.02	<0.02
PCB 1221	<0.02	<0.02	<0.02	<0.02	<0.02
PCB 1232	<0.02	<0.02	<0.02	<0.02	<0.02
PCB 1242	<0.02	<0.02	<0.02	<0.02	<0.02
PCB 1248	<0.02	<0.02	<0.02	<0.02	
PCB 1254	<0.02				<0.02
		<0.02	<0.02	<0.02	<0.02
PCB 1260	<0.02	<0.02	<0.02 <0.02		
PCB 1260 Total N	Metals USEPA Method	<0.02 6010 (mg/kg)	<0.02	<0.02 <0.02	<0.02 <0.02
PCB 1260 Total M Arsenic	Metals USEPA Method 0.022	<0.02 6010 (mg/kg) 0.022	<0.02 0.026	<0.02 <0.02 <0.001	<0.02 <0.02 <0.001
PCB 1260 Total N Arsenic Barium	0.022 18.7	<0.02 6010 (mg/kg) 0.022 18.3	<0.02 0.026 21.6	<0.02 <0.02 <0.001 18.4	<0.02 <0.02 <0.001 17.4
PCB 1260 Total N Arsenic Barium Cadmium	Metals USEPA Method 0.022 18.7 0.007	<0.02 6010 (mg/kg) 0.022 18.3 0.023	<0.02 0.026 21.6 0.010	<0.02 <0.02 <0.001 18.4 0.008	<0.02 <0.02 <0.001 17.4 0.008
PCB 1260 Total N Arsenic Barium Cadmium Chromium	Metals USEPA Method 0.022 18.7 0.007 0.693	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785	<0.02 0.026 21.6 0.010 0.767	<0.02 <0.02 <0.001 18.4 0.008 0.728	<0.02 <0.02 <0.001 17.4 0.008 1.306
PCB 1260 Total N Arsenic Barium Cadmium Chromium Copper	0.022 18.7 0.007 0.693 0.201	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90	0.026 21.6 0.010 0.767 1.71	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68	<0.02 <0.02 <0.001 17.4 0.008 1.306 1.82
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron	0.022 18.7 0.007 0.693 0.201 33.8	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3	<0.02 0.026 21.6 0.010 0.767 1.71 32.9	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9	<0.02 <0.02 <0.001 17.4 0.008 1.306 1.82 19.4
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead	0.022 18.7 0.007 0.693 0.201 33.8 0.220	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226	<0.02 <0.02 <0.001 17.4 0.008 1.306 1.82 19.4 0.263
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823	<0.02 <0.02 <0.001 17.4 0.008 1.306 1.82 19.4 0.263 0.949
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471)	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001	<0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001	<0.02 <0.02 <0.001 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001	<0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Siiver Zinc Uranium (Method 6020)	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.786 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 1.13 0.906	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 1.05 0.852	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10
PCB 1260 Total M Arsenic Barium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020)	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913 therwise specified	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 1.13 0.906	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 1.05 0.852	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10
PCB 1260 Total M Arsenic Barium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General ChropH (pH units)	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 <0.001 1.23 0.913 therwise specified 8.84	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13 0.906	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 <0.001 1.05 0.852	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10 0.602
PCB 1260 Total M Arsenic Barium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General ChropH (pH units) Total disolved Solids	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913 therwise specified 8.84 710	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13 0.906) 8.37	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 <0.001 1.05 0.852	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10 0.602 7.88
PCB 1260 Total M Arsenic Barium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General ChropH (pH units) Total disolved Solids Nitrate	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08 950 1.70	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913 therwise specified 8.84 710 0.50	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13 0.906) 8.37 1060 2.20	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 <0.001 1.05 0.852 8.26 1130	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10 0.602 7.88 1310 3.50
PCB 1260 Total M Arsenic Barium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General Chromium (Method 501ds Nitrate Cyanide	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08 950 1.70 <0.1	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 <1.23 0.913 therwise specified 8.84 710 0.50 <0.01	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13 0.906) 8.37 1060 2.20 <0.1	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 <0.001 1.05 0.852 8.26 1130 1.30 <0.1	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10 0.602 7.88 1310 3.50 <0.1
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General Chro pH (pH units) Total disolved Solids Nitrate Cyanide Fluoride	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08 950 1.70 <0.1 5.70	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913 therwise specified 8.84 710 0.50 <0.1 4.22	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13 0.906) 8.37 1060 2.20 <0.1 3.78	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 1.05 0.852 8.26 1130 1.30 <0.1 5.60	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 1.10 0.602 7.88 1310 3.50 <0.1
PCB 1260 Total M Arsenic Barium Cadmium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General Chroph (pH units) Total disolved Solids Nitrate Cyanide Fluoride Chloride	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08 950 1.70 <0.1 5.70 65.0	<0.02 6010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913 therwise specified 8.84 710 0.50 <0.1 4.22 73.0	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 1.13 0.906) 8.37 1060 2.20 <0.1 3.78 82.0	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 1.05 0.852 8.26 1130 1.30 <0.1 5.60 73.0	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 1.10 0.602 7.88 1310 <0.1 15.0
PCB 1260 Total M Arsenic Barium Cadmium Chromium Chromium Copper Iron Lead Manganese Mercury (Method 7471) Selenium Silver Zinc Uranium (Method 6020) General Chromium PH (pH units) Total disolved Solids Nitrate Cyanide Fluoride Chloride Sulfate	0.022 18.7 0.007 0.693 0.201 33.8 0.220 0.889 0.001 0.022 <0.001 1.01 0.978 emistry (mg/L unless of 8.08 950 1.70 <0.1 5.70	<0.02 8010 (mg/kg) 0.022 18.3 0.023 0.785 1.90 30.3 0.225 0.863 <0.001 <0.001 1.23 0.913 8.84 710 0.50 <0.1 4.22 73.0 273	<0.02 0.026 21.6 0.010 0.767 1.71 32.9 0.224 1.010 <0.001 <0.001 <0.001 1.13 0.906) 8.37 1060 2.20 <0.1 3.78	<0.02 <0.02 <0.001 18.4 0.008 0.728 1.68 32.9 0.226 0.823 <0.001 <0.001 1.05 0.852 8.26 1130 1.30 <0.1 5.60 73.0	<0.02 <0.02 17.4 0.008 1.306 1.82 19.4 0.263 0.949 <0.001 <0.001 -0.001 -0.001 -0.001 3.50 -0.01 -0.01 -0.01 -0.01 -0.01 -0.001

Table 2: Additional Site Investigation Sample Results

Analytic of Interest	OL® duns	NE Composito	Southeast	South	South	Composito	Northwest	bandadag
Analyte of Interest	659	NE Composite	Composite	composite a	a ansodwoo	Composite	Composite	Dackground
	Total Pe	stroleum Hydrocari	tal Petroleum Hydrocarbons (TPH) USEPA Method 418.1 (mg/kg)	A Method 418.1 (n	ng/kg)			
Total Petroleum Hydrocarbons (TPH)	<40	<40	1120	4 0	×40	<40	<40	15.8
	Volatik	Organic Compou	olatile Organic Compounds (VOC) USEPA Method 8260 (mg/kg)	A Method 8260 (m	9/kg)			
Benzene	_ 0.1	-0.1 -	<0.1	<0.1	<0.1	-0.1 -	<0.1	<0.001
Toluene	<0.1	<0.1	<0.1	<0.1	- 0.1	<0.1	<0.1	<0.001
Ethylbenzene	<0.1	<0.1	<0.1	<0.1	- 0.1	-0.1	<0.1	<0.001
Xylene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.001
		Total Metals	Total Metals USEPA Method 6010 (mg/kg)	10 (mg/kg)				
Arsenic	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Barium	216	179	153	172	162	245	213	111
Cadmium	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chromium	16.3	16.3	17.4	16.1	23.0	21.9	23.4	<5.0
Copper	18.0	11.1	9.40	8.63	9.71	10.4	9.98	10.4
Iron	19400	13800	13200	12900	14800	15700	14700	11100
Lead	6.83	0.23	6.76	6.10	69:9	6.22	5:55	7.42
Manganese	340	298	334	360	968	426	366	299
Mercury (Method 7471)	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Selenium	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Silver	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Zinc	60.1	28.7	43.2	45.5	48.1	52.2	48.2	33.0
Uraniu	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0.602
		General Chemistry	General Chemistry (mg/kg unless otherwise specified)	erwise specified)				
Nitrate	8.71	82.2	59.3	85.7	84.0	42.7	37.80	4.62
Cyanide	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.25	<0.1
Fluoride	21.2	5.25	4.24	7.40	2.90	7.49	6.85	<2.5
Chloride	1010	1020	1060	1220	902	1190	520	<20.0
Sulfate	345	286	222	581	147	104	6.97	<20.0

Items hilighted are updated background samples taken 10/3/17

APPENDIX A

Norm Testing Analytical Results

ENVIROTECH INC.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheveron Mid-Continen	Project #: 92270 - 0204
Page No: of	Date: 30-MAY-08
LOCATION: NAME: LA PLATTA EVAPORATION	Pond
	TWP: 32 N RNG: 13 W PM: NM
COUNTY: SAN DURY	STATE: New Mexico
LATITUDE W 36° 57 389"	LONGITUDE: N (08° 09.274"

BACKROUND READING: - DY MR/HR ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): - DE MR/HR

TIME	SAMPLE I.D.	SAMPLE DESCRIPTION	CONCENTRATION
H'.00	00	Ia" PUL PIPE	.04 AR/42
14 62	002	12" PUL PIPE	. 94 mR/HR
1403	003	12" PUC PIPE	.04 mR/45
H 05	004	12" PUL PIPE	-04 MR/HZ
14 07	005	13" PUL PIPE	. DY MB/HR
14 09	006	12" PUC P.Pe	DY ARVYR
H 12	007	12" PUL PIPE	OY MR/HR
14 13	008	12' PUR PIPE	.04 R/HR
14 15	009	12 PUL PIPE	.04 B/HR
14 17	DID	12" PUC PIAE"	.DY MR/HR
14 19	011	12° evc pipe	.04 mR/HR
H 20	OLA	17 No Pipe	OY NHR
14 22	013	12" puc que	.04 mR/HR
14 24	014	12" pur pipe	.DY B/HR
14 26	215	12. Puc Pipe	104 aB/HR
14 29	016	12" puc ppe	.OY mey HR
	017	12" PVC PIPE	.04 m/HR
	018	IX" PUC PIPE	.04 R/HZ
14 34	014	12" pue Pipe	DY MR/HR
14 36	030	12° pvc 9.90	.04 mg/4K
14 38	1001	12' que pipe	DY MR/HR
14 40	037	12" Pur Pipe	CHY N/HR
14 43	023	12" PK Pipe	-OY MB/HR
H 43	034	12" puc pipe	JOY MR/HR
L	L		

John	~ U	И	Line	Loga
	Analyst S	ignatu	e \	1-1-2
Joshua	M	Kin	hnec	`

Printed Name

30-MAY-08 Date

6888 Instrument I.D.

ENVROTECH INC.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheveron MD Compress	Project #: <u>42276-0264</u>
Page No: 2 of 1	Date: 30-MAY-08
LOCATION: NAME:	
QUAD/UNIT: NW NE SEC: 25	TWP: 32 N RNG: 13W PM: NA
COUNTY: SAN DUAN	STATE: NEW MEXICO
LATITUDEW 36 57.389"	LONGITUDE N 108° 07.277"

BACKROUND READING: . DY MR/42 ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): . OS MR/4R

TIME	SAMPLE LD.	SAMPLE DESCRIPTION	CONCENTRATION
14 45	101	5" PUL PIPE	OY MR/HR
14 47	102	6" PVC P.Pe	OY MR/HR
1448	103	L" DIX P.De	. 04 R/HZ
14 50	104	5' PUC PIPE	04 mg/HR
1455	201	4" PUC PIPE	.04 mR/HR
1456	202	4" PUL PIPE	OU MRY HR
1458	A03	4" PIL PIDE	1.04 ~R/HZ
1500	204	4" PIK PIPE	, OH NO HR
1501	205	4" PUC PIPE	.04 R/HR
1565	301	1' PUC PIPE	04 m R/HR
1501	302	f ful pipe	104 mg/HZ
1508	303	I' PUR PIPE	.OU mR/HR
1510	304	I' PUL DIRE	OU MR/HR
1512	30.5	I' ALL PIPE	OH R/HR
1514	306	1" PUC PIPE	104 R/HZ
15/5	301	I' Puc pipe	.04 mR/HR
1516	30	I' PUC PIRE	DY MP/HR
1517	309	C PUR PIPE	-04 RP/ 4R
1514	310	r PUC Pipe	· 04 me/HZ
1520	311	t ouc pipe	- Dy m R/ 42
1522	312	I' fue PIPE	.04 R/HR
1523	3/3	i puc pipe	BY R/AL
			-04 mg/

Analyst Signature	30. May-08 Date
Joshun M Kirchie	6888
Printed Name	Instrument I.D.

Enviroteching.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheucoa Mid Continent Page No: 3 of 1	Project #: <u>92270 -0204</u> Date: <u>30 - may - 08</u>		
LOCATION: NAMELA PLATA FUA POLATRA	Pond Facility		
QUAD/UNITAW/SE SEC: 25	TWP: 32 N RNG: 13 W PM: AM		
COUNTY: SAA JUAN	STATE: NON MEXICO		
LATITUDE: W 36° 57.389	LONGITUDE: N LOB. 04279		

BACKROUND READING: QU MINE ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): 28 AR AR

TIME	SAMPLE LD.	SAMPLE DESCRIPTION	CONCENTRATION
1530	401	10750" puc Pipes Boundled	-034 mR/AR
1532	402	10 750" PUL PIPES BUNDICA	.04 mR/MR
1534	403	10 700 PUL PIPES BUNGED	104 mR/HR
1535	404	10 - 750' PUL PIPES Remilied	.04 mR/HR
1537	405	5 750" PUL PIPES LITH 90" AABE	.04 2/4R
1538	406	6750' PUC PLOS BUNDLED	. O1 -R/HR
1540-	501	Angle Form	
<u> </u>			
 			
	 		
	<u> </u>		

John	M	Khe	Loca	
At	nalyst Si	gnature		_
Josepus.	ΔlA	Kirch	n =.(

Printed Name

30-MAY-08

6888 Instrument I.D.

Envirotech inc.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheveren MID - CourineT	Project #: <u>92270 - 0204</u> Date: <u>30 - may - 08</u>
LOCATION: NAME: La Platra EVAPOTAL.	
	TWP: 32 RNG: 13W PM:NM STATE: NEW Mexico
	LONGITUDE: N 108" 09.279"

BACKROUND READING: 04 M NHR ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): 08 M NHR

TIME	SAMPLE LD.	SAMPLE DESCRIPTION	CONCENTRATION
Koo	701	SAND Beg	DY MR/HR
16:01	702	Sand Bag	OY MR/HR
11:02	703	Sand Bag	104 mR/HR
16:03	704	Sand Bag	OG of HR
16.04	705		O4 aR/HR
16.05	706	Sand Bag Sand Bag	OY ON HR
16:06	707	Send Bes	184 mg/HZ
16:67	708	Sand Bag	04 m/4R
16:08	709	Sand Ras	DOY MR/HR
6.01	710	Sand Kag	OY MNYR
16:10	711	Sand Bag	OY MR/HR
16:11	712	Sand Bag	. 64 mR/HR
16:12	713	Sand Bag	SH Van LO.
16:13	714	Sand Bag	634 mR/HR
16:14	715	Sand Bag	1.034 me/HR
16:15	716	Sand Bas	1.04 mR/HR
16:16	717	Sand Bag	1.04 mR/HR
16:17	718	Sand Bag	104 pR/HR
16:18	719	Sand Bag	OH MRITIK
16:19	-100D	Sand Bag	· OY mR/HR
	L		

Analyst Signature	30 - M4 4 - 01 Date
Joshua M Kirchner	8888
Printed Name	Instrument I.D.

ENVROTECH INC.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheven MJ Gariner	Project #: <u>92276 - 02</u> 04
Page No: 5 of 7	Date June - 08
LOCATION: NAME: LO PLOTIA EVAPOITIE	Pond Facility
QUAD/UNIT: NW/NE SEC: 25 COUNTY: SAN JUAN	STATE: New MEXICO
LATTITUDE: 36° 57. 389"	LONGITUDE: 4/ 108° 09. 279"

TIME	SAMPLE I.D.	SAMPLE DESCRIPTION	CONCENTRATION
10:00	501	Angle Inco	014 -8/48
(0:02		Angle Low	04 R/4R
10:63	503	Angk Join	.04 aR/HZ
10:04	504	Idle Pire	04-K/HZ
10:05	505	Angle Jain	.04 m R/HR
1007	506	Angle Tour	04_R/HZ
10:08	507	Angle Tora	04 mg/HR
10:09	508	Angle Tora	194 1/12
10:10	509	Angle Torr	BY AR/HR
	310	Angle Tour	04 _Q/HR
	511	Angle Solv	104 x/, 42
	512	Angle tow	-04 a 8/.HZ
10:16	513	Angle Join	.04 R/HR
10:17	514	AMIL SON	BY MK/HR
10:19	515	It' Souble made of Ion	104 a R/HR
10:76	516	TOIN ROOS	
ļ			
		<u> </u>	

Analyst Signature	Date
Printed Name	6888 Instrument I.D.

Enviroteching.

FIELD REPORT NORM TESTING VERIFICATION

Client: Charles Marcon Fine - Page No: 6 of 1	Project #: 92270 . 0204 Date: <u>2 - June - 0</u> %
OUADAINTE W INT. SEC. 25	Powe FACTI'I TWP:320 RNG:130 PM: NM
COUNTY: San War LATITUDE:W 36° 57.389°	LONGITUDE: N 108° 09. 279"

BACKROUND READING: 04 m 2/HR ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): BACKROUND):

TIME	SAMPLE LD.	SAMPLE DESCRIPTION	CONCENTRATION
10:25	601	4' Ruber hose	.04 2/4R
10:26	602	4" Ruber Hose	.04 me/H
10:27	403	4' Ruber hose	204 R /H
10:29	604	4 Ruber hoso	-94 AK/HK
10:30	605	4" Rober hase	94 mR/4K
10:32	606	4" Ruber hose	.09 m
(0:33		4' Rubec hose	.OH mR/HR
18:34	608	4" Rober hose	04 al /IR
10:35	609	4" Rutor hose	est ~2/40
10:36		4" Ruber hose	of all we
10:38	611	4" Ruber hose	. OH of RIHC
10:39	612	4" Ruby hose	OH OF THE
ID:40	613	4" Rober hose	OH me/HR
10:41	64	4' Rober habe	SH MR HR
10:42	615	4" Rube Loca	64 R/4R
10: 44	\$46	4" Report hose	ou my Ha
10: 45	617	.4" Ruber hose	. QU AR/HR
10.47	618	i" Ruber hose	.Q4 AR/4R
10:48	619	I' Ruse hose	OH AR/HR
10:50		i" hu hase	OH MR HR
10:51	621	I' kuba hoke	OH R/HR
10 : SZ	602	1" Ruber hase	. H mc/HR

Josh	Analyst Signature
	Analyst Signature
Joshua	10 Kirchner

Printed Name

2- June-08

Lags
Instrument I.D.

Enviroteching.

FIELD REPORT NORM TESTING VERIFICATION

Client: Chevron Mid-Con river Page No: 7 of 1	Project #: 92270-0204 Date: 2-1218-08
LOCATION: NAME: La Plate Evapo: arian P	
COUNTY: SAN JUAN	STATE: New Mexico
LATTTUDE: W 36 57.389"	LONGITUDE: 1/ 108 09.279

BACKROUND READING: 4 4 ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): BACKROUND):

TIME	SAMPLE LD.	SAMPLE DESCRIPTION	CONCENTRATION
11:00	623	.500" Ruber Hose	1-04 OR/HR
11:02	624	.500 Ruber Hose	.04 -R/HR
11:03	625	-500 Ruber Hose	-04 AR/HR
11:04	626	· 500' Ruba Hose	. D4 ~ R/AR
11:05	827	· soot Ruber Hose	.04 -R/HR
11:01	628	,500" Ruber Mose	.04 L/HR
71:08	629	,500 Ruber Hose	-04 -R/HR
h:10	630	, SOD" Juher Mose	-04 MR /4R
uin	631	.soo Ruben 2005e	DY R/HR
n:12	632	.500" Ruber Huse	pt R/4R
1:13	633	·SOO RAY HUSO	-04-R/HZ
11: 15	634	500" Rutser Hose	.04 mR/4R
	, , , , , , , , , , , , , , , , , , , ,		

Analyst Signature	2 June -08 Date
Printed Name	688 B Instrument I.D.

ENVIROTECHING.

	(C. 16.3. Projeta)			TESTING TICATION		
Clien	Client Cherens M.d. America Project #: 92070 - 0704					
Page	No: o	f_ <u>l</u>	Date: 2-chne	.08		
LOCAT	ION: NAME: LA	Plates Euspoission P	on FACILITY			
	_	VW/NE SEC: 25		, ,		
	-	n Juan	-			
	LATITUDE:]	W 36° 57.399°	LONGITUDE: N 108° 09	.279		
		O4=R/HC ALLOWABLE				
II.30	SAMPLE LD.	Sludge Stockpile	SCRIPTION	CONCENTRATION 94 mR/HR		
11.30	1000	Judge 3.00 pil	- /	· SYMINAK		

Analyst Signature	2-Ume-68 Date
Coshua M Kirchnen	6888
Printed Name	Instrument I.D.

ENVIROTECH INC.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheveron Mid Continent	Project #: <u>9227</u> 0 -
Page No: _ l _ of	Date: 12-June -2008
LOCATION: La Plana Produced a	
OUADUNITION SEC. 25	STATE: New Mexico
LATTTUDE 36° 57.399	LONGITUDE: 108 09.279

BACKROUND READING: DIAR ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): DR-2/HR

TIME	SAMPLE I.D.	SAMPLE DESCRIPTION	CONCENTRATION
930	721	Saud bag	.04 nR/ HR
932	722	26 Sond boy	OY MR/ AR
935	723	20 Sand bag	P4 nR/HR
936	724	20 Sand bas	· Ø 4 mR/ NR
938	135	20 Sand bog	04 mR/ HR
9 40	726	20 Sand bog	04 mR/AR
942	727	20 Sould has	104 mg/ HR
946	7 28	20 Sould bog	OH AR/AR
9 47	729	20 Sand bog	of 4 mR/HR
9 49	730	20 sand bag	1.0 4 mR/HR
157	731	20 Soud bog	DY MR/HR
L			
L			

Joshus	w	Mindre gnature	
Ana	alyst Sig	gnature	_
7	4.0	1)	
Vostrua.	M.	Kirchner	_
Dei	ntad Ma		_

12-June-2008

6888 Instrument I.D.

ENVIROTECH INC.

FIELD REPORT NORM TESTING VERIFICATION

Client: Chevern mid Continent Page No: 2 of 2	Project #: 92270-02
LOCATION: LA PLATIA PRODUCES WE	Date: 12-June -2008
OUAD/UNIT: NW / SE SEC: 25 COUNTY: San Jan LATITUDE: 36 51, 397	STATE: New Mexico LONGITUDE: 708 09-279

BACKROUND READING: 84 - 14 ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): 08 - 18 HR

TIME	SAMPLE I.D.	SAMPLE DESCRIPTION	CONCENTRATION
1000	901	Bisax Lines (well)	.84 ms/HR
05	902	Black line (wan)	04 NHR
10	903	Black Liner (wall	104 AR/HR
15	904	Black Lines (wall)	104 -R/HR
20	905	Black Lines (well)	104 2/ HR
25	906	BLACK Line- [wall)	.04 AR / HR
ንሪ	908	Black Liner (will)	184 R/HR
35	909	Black liner (wall)	.04 mR/HR
40	9/0	Black Linea [wall)	04 2/ HR
45	911	Black Linea (well)	.04 mR/HR
50	912	Black Line, (wall)	DY R/HR
53	93	Black Linea (wall)	124 mB/HR
1/00	વાપ	Black Liner (wall)	1.04 aR/HR
1105	915	Black Liner [wall)	1.04 m2/tir
1110	916	Black liner (wall)	104 mR/HR
1115	9 11	Floor BLACK Lines NE Floor	.04 nR/HR
1120	9/3	BLACK Liner SF SIGIR	04 R/HR
1125	9/1	BLACK Liner SW Floor	1.04 R/HR
1130	920	Black Liner NW Floor	104 R/HR
1/35	907	Black Liner (WALL)	.04_R/HR
	ļ		
L,			

Analyst Signature	12-June-2008 Date
closing M Kirchner	6888
Printed Name	Instrument I.D.

ENVIROTECH INC. PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

FIELD REPORT NORM TESTING VERIFICATION

Client: CHEVRON Page No: 1 of 2	Project #:
LOCATION: NAME: LA PLATA PONID	
QUAD/UNIT: SEC: 25	TWP: 32N RNG: 13 W PM: NPT
COUNTY: SANT MUN	STATE: NEW MEXICO
LATITUDE:	LONGITUDE:

BACKROUND READING: O. CL. CPF. ALLOWABLE CONCENTRATION (2 TIMES BACKROUND): O-12 COP

TIME	SAMPLE I.D.	SAMPLE DESCRIPTION	CONCENTRATION
1143		(1) BENEK PLANTE TOP CIMER	Outile that
	2	(1) Beach PLASTIC 20 LAYER CREEK	e cte cen
	3	(1) Casa Com the caree cause	Cost con
	4	(1) WHITE CHOIN 4th LANCE LIMBE.	MTO FO.0
	5	(2) BUNCK PURSTLE TOP CENER	o de om
	La.	(2) BEACK PLASTER SED LANCE COME	olde opm
	4	(2) GREEN FLOTH LIND WHEE LTHER	0.06 cm
	6	(2) WHITE COMEN UP INVER CITYER	0.00 cen
	q	(3) BOACK PURSTIC REP CINER	0.06 (77
	to	(3) BACK POSTIC 300 LAYER LIVER	0.06 (
	Υξ	(3) GEODY GIOLU Surd Parks Finas	0.0%
	12	(3) WHERE ECONA 4th LANGE LEGGE	O.O.to
	13	(4) BLACK PLACETE TOP LITTER	0,00
	121	(4) BLACK BLASTIC 320 LAYOR LINE	0.05
	15	(4) GREEN CLOTH ZAID LANGE LIVER	0.00
	îk	(4) CLOTH 4th LAYER LINER	0.00
	f a -	(5) BRALK PLASTIC BY LANGE	¢45
	134	(5) BELEK PERSETE AND ENTER CHARGE	0,00°
	19	(5) GREEK COOPE 240 ENTER LEROW	6.06
	70	151 MILLER CLEARLY WITH CAREN LESSEE	C,Ctr
	21	I'M BLACK PLASTIC FOR LAYER LINER	0.06
	22.	(6) BLACK PLANTER SED LATER LIMBL	0.00
	L3_	(ii) began Cioth Ind wher Live	0.00
	Z4i	til unwere comm at whee Level	0.07

Analyst Signature

Ole/17/08
Date

MICCLE HATMORTH

Printed Name

Instrument I.D.

FIELD REPORT NORM TESTING VERIFICATION

Client: Cheveory	Project #: 92240-0204
Page No: 2 of 2	Date: OU 1171.00
LOCATION: NAME: LA PLATA POLID	
QUAD/UNIT: SEC: 2.5	TWP: 32 H RNG: 18 W. PM: W.H
COUNTY: SAM JUMA	STATE: N. M.
LATITUDE:	LONGITUDE:

TIME	SAMPLE I,D,	SAMPLE DESCRIPTION	CONCENTRATION
	¥.5	(7) Beack Persone for Linear	Cick Car
	Lie	(7) BLACK PLASTED BED WIFE LINES	0.05
·	£*	(2) GREEK CLOTH LAND LANCE LITTER	O.000
	28	(4) WHETE CLOTH I'M CAYER CITIES	C*,C)@
	9	(8) BLACK PLASTER FOR LINGE	0.04
	30	(3) BUREL PLASTIC 300 LANCE LIEUER	0.04
	3.1	(8) GREEN CLOSED ZHED WATCH CELLER	0.04
1300	5%	18) WATTE COOTE 4th LANER LIBER	6.07
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
-			
		; 1	

Mical Howwood Analyst Signature	<u>OLe 17 08</u> Date
NICOLE HAYMOATH Printed Name	<u>6.571 - 525</u> Instrument I.D.

APPENDIX A

Pond Sludge Analytical Results

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client:

Chevron

Project #:

92270-0204

Sample No.:

Date Reported: • 6/2/2008

Sample ID:

Pond Sludge

Date Sampled:

6/2/2008

Sample Matrix:

Soil Cool Date Analyzed:

Analysis Needed:

6/2/2008 TPH-418.1

Preservative: Condition:

Cool and Intact

		Det.
[Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

268

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis

of Water and Waste, USEPA Storet No. 4551, 1978.

Comments:

La Plata Evaporation Pond Siudge after soil biending

Instrument calibrated to 200 ppm standard. Zeroed before each sample

James McDaniel

Printed

Kyle P Kerr

Printed

CONTINUOUS CALIBRATION EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Cal. Date:

Print Name

2-Jun-08

Parameter	Standard Concentration mg/L	Concentration Reading mg/L	•
TPH	100		
	200	185	
	500		
	1000		

The accepted percent relative deviation (%RSD) of the calibration factor is less than 20% over the working range.

	6/2/08
Analyst	Date
James McDaniel	
Print Name	6/2/08
Review	Date
Kyle P. Kerr	

ENVIROTECH INC.

THE STICKS FOR WHOME FOR A BEST BEST ON OTHER

CHLORIDE TESTING / PAINT FILTER TESTING

CUSTOMER	Chevre	TIME		Attach test strip
COSTOMEN	<u> </u>		1 5	ė
SITE	14 1/61	a EVALUET	attor 12	inch
DRIVER	NA			age 1 of the control
SAMPLE	Soil			, 10 (pdf)
CHLORIDE TEST	<u> 91 m</u>	g/Kg	• A	
ACCEPTED	YES $_N$	M NO	<u>NA</u>	in Total Control Contr
PAINT FILTER TE	ST Time started	Time	completed WA	en de la companya de
PASS	YES	NO		\
SAMPLER/ANALY	ST Tonns	Mr Darwoll		900

5796 U.S. Highway 64 • Farmington, NM 87401 • Tel 505 • 632 • 0615 • Fax 505 • 632 • 1865

ENVIROTECH LABS

pH analysis

Client:	Chevron	_	Project#:	92270-0204
Sample ID:	Pond Słudge		Date Reported:	05-27-08
Laboratory Number:	45606		Date Sampled:	05-23-08
Chain of Custody:	4462		Date Received:	05-23-08
Sample Matrix:	Sludge		Date Extracted:	05-23-08
Preservative:	Cool		Date Analyzed:	05-23-08
Condition:	Intact		•	

Analytical					
Parameter_	Result	Units			
nU	10.40	414			

Reference:

U.S.E.P.A., 800/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983.

Comments:

La Plata Pond.

Analyst Analyst

Menter malerater

4462

CHAIN OF CUSTODY RECORD

010/ 7 Sample Intact Sample Cool Hq ANALYSIS / PAHAMETERS X (r.814) H9T HA9 TCLP with H/P HCI Cation / Anion Received by: (Signature) Received by: (Signature) RCRA 8 Metals Received by: (Signature) VOC (Method 8260) BTEX (Method 8021) TPH (Method 8015) Sample No Volume Preservative of Matrix Containers (1974) Time **SIQ** 4 **Gshafes** Date LA PURTA POULD SLUDGE L. HAYWORTH 92230-020U 42100 Sampler Name: Lab No. Sample Sample POND SLUNG OFFER Date Refinquished by: (Signature) Client Phone No.: Sample No./ Identification Client Address:

ENVIROTECH INC.

5796 U.S. Highway 84 • Farmington, New Mexico 87401 • (505) 632-0615

san juan reproduction 578-129

APPENDIX A

Pond Closure Sample Analytical Results

0204
08
80
80
80
80

Parameter	Concentration (ug/Kg)	Det. Limlt (ug/Kg)	
	4.7	0.0	
Benzene	1.7	0.9	
Toluene	2.8	1.0	
Ethylbenzene	1.2	1.0	
p,m-Xylene	3.0	1.2	
o-Xylene	1.8	0.9	
Total RTFX	10.5		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter Percent Recovery	
	Fluorobenzene	98.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	98.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Moth Much

Client:	Chevron	Project #:	92270-0204
Sample ID:	NW	Date Reported:	06-25-08
Laboratory Number:	45922	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-23-08
Preservative:	Cool	Date Extracted:	06-19-08
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	1.6	0.9	
Toluene	3.4	1.0	
Ethylbenzene	1.8	1.0	
p,m-Xylene	4.5	1.2	
o-Xylene	2.4	0.9	
Total BTEX	13.7		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter Percent Recovery	
	Fluorobenzene	99.0 %
	1,4-difluorobenzene	99.0 %
	Bromochlorobenzene	99.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Christin mlaceler Review

Client:	Chevron		Project #:	92270-0204
Sample ID:	SE	-	Date Reported:	06-25-08
Laboratory Number:	45923		Date Sampled:	06-16-08
Chain of Custody:	4593		Date Received:	06-16-08
Sample Matrix:	Soil		Date Analyzed:	06-23-08
Preservative:	Cool		Date Extracted:	06-19-08
Condition:	Intact		Analysis Requested:	BTEX

	Concentration	Det. Limit	
Parameter	(ug/Kg)	(ug/Kg)	
Benzene	1.4	0.9	
Toluene	4.6	1.0	
Ethylbenzene	1.0	1.0	
p,m-Xylene	3.3	1.2	
o-Xylene	1.7	0.9	
Total BTEX	12.0		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	98.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	98.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Christin Mlacetine
Roylew

Client:	Chevron	Project #:	92270-0204
Sample ID:	SW -	Date Reported:	06-25-08
Laboratory Number:	45924	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-23-08
Preservative:	Cool	Date Extracted:	06-19-08
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Det. Limit (ug/Kg)	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter Percent Recovery	
	Fluorobenzene	96.0 %
	1,4-difluorobenzene	96.0 %
	Bromochlorobenzene	96.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Ahristin Malters
Review

Client:	Chevron	Project #:	92270-0204
Sample ID:	Background	Date Reported:	06-25-08
Laboratory Number:	4592 5	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-23-08
Preservative:	Cool	Date Extracted:	0 6 -19-08
Condition:	Intact	Analysis Requested:	BTEX

Parameter	Concentration (ug/Kg)	Limit (ug/Kg)	
	ALD.	••	
Benzene	ND	0.9	
Toluene	ND	1.0	
Ethylbenzene	ND	1.0	
p,m-Xylene	ND	1.2	
o-Xylene	ND	0.9	
Total BTEX	ND		

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	Fluorobenzene	98.0 %
	1,4-difluorobenzene	98.0 %
	Bromochlorobenzene	98.0 %

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-846, USEPA,

December 1996.

Method 8021B, Aromatic Volatile Organics, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

(hristin m Waelers

ENVIROTECH LABS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA METHOD 8021 AROMATIC VOLATILE ORGANICS

Client:	N/A	F	Project #:		N/A
Sample ID:	06-23-BT QA/QC		Date Reported:		06-25-08
Laboratory Number:	45921	- (Date Sampled:		N/A
Sample Matrix:	Soil		Date Received:		N/A
Preservative:	N/A	_	Date Analyzed:		06-23-08
Condition:	N/A	,	Analysis:		BTEX
Calibration and	I-Cal RF:	G-Cel RF:	,%Diff;	Blank/	Datect.
Detection Limits (ug/L)		Accept: Rang	ė 0 ≤ 15%	Conc	Flwii
Benzene	3.1460E+007	3.1523E+007	0.2%	ND	0.1
Toluene	2.4306E+007	2.4355E+007	0.2%	ND	0.1
Ethylbenzene	1.7412E+007	1.7447E+007	0.2%	ND	0.1
p,m-Xylene	3.9073E+007	3.9151E+007	0.2%	ND	0.1
o-Xylene	1.7085E+007	1.7120E+007	0.2%	ND .	0.1
Duplicate Conc. (ug/Kg) Benzene Toluene	Sample 1.7 2.8	Duplicate 1.5 2.7	11.8% 3.6%	0 - 30% 0 - 30%	0. 9 1.0
Ethylbenzene	1.2	1.1	8.3%	0 - 30%	1.0
p,m-Xylene	3.0	3.0	0.0%	0 - 30%	1.2
o-Xylene	1.8	1.7	5.6%	0 - 30%	0.9
Spike Conc. (ug(kg)	Sample	Amount Spiked	Spiked Sample	% Recovery	- Accept Range
Benzene	1.7	50.0	51.2	99.0%	39 - 150
Toluene	2.8	50.0	52.2	98.9%	46 - 148
Ethylbenzene	1.2	50.0	51.0	99.6%	32 - 160
•	3.0	100	93.0	90.3%	46 - 148
p,m-Xylene o-Xylene	1.8	50.0	51.7	99.8%	46 - 148

ND - Parameter not detected at the stated detection limit.

References:

Method 5030B, Purge-and-Trap, Test Methods for Evaluating Solid Waste, SW-848, USEPA,

December 1996.

Method 8021B, Aromatic and Halogenated Volatiles by Gas Chromatography Using Photoionization and/or Electrolytic Conductivity Detectors, SW-846, USEPA December 1998.

Comments:

QA/QC for Samples 45921 - 45925 and 45956 - 45960.

Analyst

Modum Wester

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client: Chevron Project #: 92270-0204 Sample ID: NE Date Reported: 06-24-08 Chain of Custody: 4593 Date Sampled: 06-16-08 **Laboratory Number:** 45921 **Date Received:** 06-16-08 Sample Matrix: Soil Date Analyzed: 06-19-08 Preservative: Cool Date Extracted: 06-17-08 Condition: Cool and Intact Analysis Requested: 8260 VOC

			Det.	Dilution
Parameter	Concentration	Units	Limit	Factor
Benzene	ND	(ug/Kg)	1.0	1
Toluene	ND	(ug/Kg) (ug/Kg)	1.0	i
Ethylbenzene	ND	(ug/Kg) (ug/Kg)	1.0	1
Xylenes, Total	ND	(ug/Kg)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/Kg)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/Kg) (ug/Kg)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/Kg)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/Kg)	1.0	1
Naphthalene	ND	(ug/Kg)	1.0	1
1-Methylnaphthalene	ND		2.0	1
2-Methylnaphthalene	ND	(ug/Kg) (ug/Kg)	2.0	1
Bromobenzene	ND	(ug/Kg) (ug/Kg)	2.0 1.0	1
Bromochioromethane	ND	(ug/Kg)	1.0	1
Bromodichloromethane	ND	(ug/Kg)	1.0	1
Bromoform	ND	(ug/Kg)	1.0	1
Bromomethane	ND	(ug/Kg)	1.0	1
Carbon Tetrachloride	ND	(ug/Kg)	1.0	1
Chlorobenzene	ND	(ug/Kg)	1.0	1
Chloroethane	ND	(ug/Kg)	2.0	1
Chloroform	ND	(ug/Kg)	1.0	1
Chloromethane	ND	(ug/Kg)	1.0	1
2-Chlorotoluene	ND	(ug/Kg)	1.0	1
4-Chlorotoluene	ND	(ug/Kg)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/Kg)	2.0	1
Dibromochloromethane	ND	(ug/Kg)	1.0	1
Dibromoethane	ND	(ug/Kg)	2.0	1
1,2-Dichlorobenzene	ND	(ug/Kg)	1.0	1
1,3-Dichlorobenzene	ND	(ug/Kg)	1.0	1
1,4-Dichlorobenzene	ND	(ug/Kg)	1.0	i
Dichlorodifluoromethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethene	ND ND	(ug/Kg)	1.0	
1,2-Dichloropropane	ND	(ug/Kg)	1.0	1
1,3-Dichforopropane	ND	(ug/Kg)	1.0	i
2,2-Dichloropropane	ND	(ug/Kg)	1.0	1
E-E-William objection	ND	(ugrily)	1.0	ı

EPA Method 8260B Volatile Organic Compounds by GC/MS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Client;

Chevron

Sample ID:

NE

Laboratory Number:

45921

page 2

	Concentration		Det.	Dilution
Parameter	_ (ug/Kg)	Units	Limit	Factor
1,1-Dichloropropene	ND	(ug/Kg)	1.0	1
Hexachlorobutadiene	ND	(u g/Kg)	1.0	1
Isopropyibenzene	ND	(ug/Kg)	1.0	1
4-Isopropyitoluene	ND	(ug/Kg)	1.0	1
Methylene Chloride	ND	(ug/Kg)	3.0	1
n-Butyfbenzene	ND	(ug/Kg)	1.0	1
n-Propylbenzene	ND	(ug/Kg)	1.0	1
sec-Butylbenzene	ND	(ug/Kg)	1.0	1
Styrene	ND	(ug/Kg)	1.0	1
tert-Butylbenzene	ND	(ug/Kg)	1.0	1
Tetrachloroethene (PCE)	ND	(ug/Kg)	1.0	1
1,1,1,2-Tetrachioroethane	ND	(ug/Kg)	1.0	1
1,1,2,2-Tetrachloroethane	ND	(ug/Kg)	1.0	1
trans-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
Trichioroethene (TCE)	ND	(ug/Kg)	1.0	1
Trichloroftuoromethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichiorobenzene	ND	(ug/Kg)	1.0	1
1,2,4-Trichlorobenzene	ND	(ug/Kg)	1.0	1
I,1,1-Trichloroethane	ND	(ug/Kg)	1.0	1
1,1,2-Trichloroethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichloropropane	ND	(ug/Kg)	2.0	1
Vinyl Chloride	ND	(ug/Kg)	2.0	1

Surrogates:			Rec. Limits	
Dibromofluoromethane	104	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	109	% Recovery	74.6-123	1
Toluene-d8	104	% Recovery	84.2-115	1
4-Bromofluorobenzene	105	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

La Plata Pond.

Analyst

Review Wester

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B Voiatile Organic Compounds by GC/MS

Client: Chevron Project #: 92270-0204 NW Sample ID: Date Reported: 06-24-08 Chain of Custody: 4593 Date Sampled: 06-16-08 Laboratory Number: 45922 Date Received: 06-16-08 06-19-08 Sample Matrix: Soil Date Analyzed: Preservative: Cool Date Extracted: 06-17-08 Condition: Cool and Intact Analysis Requested: 8260 VOC

			Det.	Dilution
Parameter	Concentration	Units	Limit	Factor
Benzene	ND	(ug/Kg)	1.0	1
Toluene	ND	(ug/Kg)	1.0	1
Ethylbenzene	ND	(ug/Kg)	1.0	1
Xylenes, Total	ND	(ug/Kg)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/Kg)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/Kg)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/Kg)	1.0	1
Naphthalene	ND	(ug/Kg)	1.0	1
1-Methylnaphthalene	ND '	(ug/Kg)	2.0	1
2-Methylnaphthalene	ND	(ug/Kg)	2.0	1
Bromobenzene	ND	(ug/Kg)	1.0	1
Bromochloromethane	ND	(ug/Kg)	1.0	1
Bromodichioromethane	ND	(ug/Kg)	1.0	1
Bromoform	ND	(ug/Kg)	1.0	1 .
Bromomethane	ND	(ug/Kg)	1.0	1
Carbon Tetrachloride	ND	(ug/Kg)	1.0	1
Chlorobenzene	ND	(ug/Kg)	1.0	1
Chloroethane	ND	(ug/Kg)	2.0	1
Chloroform	ND	(ug/Kg)	1.0	1
Chloromethane	ND	(ug/Kg)	1.0	1
2-Chlorotoluene	ND	(ug/Kg)	1.0	1
4-Chlorotoluene	ND	(ug/Kg)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
cls-1,3-Dichtoropropene	ND	(ug/Kg)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/Kg)	2.0	1
Dibromochioromethane	ND	(ug/Kg)	1.0	1
Dibromoethane	ND	(ug/Kg)	2.0	1
1,2-Dichiorobenzene	ND	(ug/Kg)	1.0	1
1,3-Dichiorobenzene	ND	(ug/Kg)	1.0	1
1,4-Dichlorobenzene	ND	(ug/Kg)	1.0	1
Dichlorodifluoromethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethene	ND	(ug/Kg)	1.0	1
1,2-Dichloropropane	ND	(ug/Kg)	1.0	1
1,3-Dichloropropane	ND	(ug/Kg)	1.0	1
2,2-Dichloropropane	ND	(ug/Kg)	1.0	1

EPA Method 8260B Volatile Organic Compounds by GC/MS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Client:

Chevron

Sample ID:

Laboratory Number:

NW

45922

page 2

	Concentration		Det.	Dilution
Parameter	_ (ug/Kg)	Units	Limit	Factor
1,1-Dichloropropene	ND	(ug/Kg)	1.0	1
Hexachlorobutadiene	ND	(ug/Kg)	1.0	1
Isopropylbenzene	ND	(ug/Kg)	1.0	1
4-Isopropyltoluene	ND	(ug/Kg)	1.0	1
Methylene Chloride	ND	(ug/Kg)	3.0	1
n-Butylbenzene	ND	(ug/Kg)	1.0	1
n-Propylbenzene	ND	(ug/Kg)	1.0	1
sec-Butylbenzene	ND	(ug/Kg)	1.0	1
Styrene	ND	(ug/Kg)	1.0	1
tert-Butylbenzene	ND	(ug/Kg)	1.0	. 1
Tetrachloroethene (PCE)	ND	(ug/Kg)	1.0	1
1,1,1,2-Tetrachioroethane	ND	(ug/Kg)	1.0	1
1,1,2,2-Tetrachioroethane	ND	(ug/Kg)	1.0	1
trans-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
Trichloroethene (TCE)	· ND	(ug/Kg)	1.0	1
Trichlorofluoromethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1;2,4-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,1,1-Trichioroethane	ND	(ug/Kg)	1.0	1
1,1,2-Trichloroethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichloropropane	ND	(ug/Kg)	2.0	1
Vinyl Chloride	ND	(ug/Kg)	2.0	1

Surrogates:			Rec. Limits	
Dibromofiuoromethane	104	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	109	% Recovery	74.6-123	1
Toluene-d8	104	% Recovery	84.2-115	1
4-Bromofluorobenzene	105	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

La Plata Pond.

Analyst

Review

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client: Project #: 92270-0204 Chevron Sample ID: SE Date Reported: 06-24-08 Chain of Custody: 4593 Date Sampled: 06-16-08 Laboratory Number: 45923 Date Received: 06-16-08 Sample Matrix: Soil Date Analyzed: 06-19-08 Preservative: Cool Date Extracted: 06-17-08 Condition: Cool and Intact 8260 VOC Analysis Requested:

			Det.	Dilution
Parameter	Concentration	Units	Limit	Factor
Benzene	ND	(ug/Kg)	1.0	1
Toluene	ND	(ug/Kg)	1.0	1
Ethylbenzene	ND	(ug/Kg)	1.0	1
Xylenes, Total	ND	(ug/Kg)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/Kg)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/Kg)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/Kg)	1.0	1
Naphthalene	ND	(ug/Kg)	1.0	1
1-Methylnaphthalene	ND	(ug/Kg)	2.0	1
2-Methylnaphthalene	ND	(ug/Kg)	2,0	1
Bromobenzene	ND	(ug/Kg)	1.0	1
Bromochloromethane	ND	(ug/Kg)	1.0	1
Bromodichloromethane	ND	(ug/Kg)	1.0	1
Bromoform	ND	(ug/Kg)	1.0	1
Bromomethane	ND	(ug/Kg)	1.0	1
Carbon Tetrachloride	ND	(ug/Kg)	1.0	1
Chlorobenzene	ND	(ug/Kg)	1.0	1
Chloroethane	ND	(ug/Kg)	2.0	1
Chloroform	ND	(ug/Kg)	1.0	1
Chloromethane	ND	(ug/Kg)	1.0	1
2-Chlorotoluene	ND	(ug/Kg)	1.0	1
4-Chlorotoluene	ND	(ug/Kg)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/Kg)	. 1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/Kg)	2.0	1
Dibromochloromethane	ND	(ug/Kg)	1.0	1
Dibromoethane	ND	(ug/Kg)	2.0	1
1,2-Dichlorobenzene	ND	(ug/Kg)	1.0	1
1,3-Dichlorobenzene	ND	(ug/Kg)	1.0	1
1,4-Dichlorobenzene	ND	(ug/Kg)	1.0	1
Dichlorodifluoromethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethene	ND	(ug/Kg)	1.0	1
1,2-Dichloropropane	ND	(ug/Kg)	1.0	1
1,3-Dichloropropane	ND	(ug/Kg)	1.0	1
2,2-Dichloropropane	ND	(ug/Kg)	1.0	1

EPA Method 8260B Volatile Organic Compounds by GC/MS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Client:

Chevron

Sample ID:

Laboratory Number:

SE

45923

page 2

	Concentration		Det.	Dilution
Parameter	_ (ug/Kg)	Units	Limit	Factor
1,1-Dichioropropene	NĎ	(ug/Kg)	1.0	1
Hexachlorobutadiene	ND	(ug/Kg)	1.0	1
Isopropylbenzene	ND	(ug/Kg)	1.0	1
4-Isopropyltoluene	ND	(ug/Kg)	1.0	1
Methylene Chloride	ND	(ug/Kg)	3.0	1
n-Butylbenzene	ND	(ug/Kg)	1.0	1
n-Propylbenzene	ND	(ug/Kg)	1.0	1
sec-Butylbenzene	ND	(ug/Kg)	1.0	1
Styrene	ND	(ug/Kg)	1.0	1
tert-Butylbenzene	ND	(ug/Kg)	1.0	1
Tetrachloroethene (PCE)	ND	(ug/Kg)	1.0	1
1,1,1,2-Tetrachioroethane	ND	(ug/Kg)	1.0	1
1,1,2,2-Tetrachioroethane	ND	(ug/Kg)	1.0	1
trans-1,2-Dichioroethene	ND	(ug/Kg)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
Trichloroethene (TCE)	ND	(ug/Kg)	1.0	1
Trichlorofluoromethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,2,4-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,1,1-Trichloroethane	ND	(ug/Kg)	1.0	1
I,1,2-Trichloroethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichloropropane	ND	(ug/Kg)	2.0	1
Vinyl Chloride	ND	(ug/Kg)	2.0	1

Surrogates:		Rec. Limits		
Dibromofluoromethane	104	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	109	% Recovery	74.6-123	1
Toluene-d8	104	% Recovery	84.2-115	1
4-Bromofluorobenzene	105	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

La Plata Pond.

Analyst

Review

PRACTICAL SOLUTIONS FOR A BEITER TOMORROW

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client: Chevron
Sample ID: SW
Chain of Custody: 4593
Laboratory Number: 45924
Sample Matrix: Soil
Preservative: Cool

Project #:
Date Reported:
Date Sampled:
Date Received:
Date Analyzed:
Date Extracted:

92270-0204 06-24-08 06-16-08 06-16-08 06-19-08 06-17-08

Condition:

Cool and Intact

Analysis Requested:

8260 VOC

	-		Det.	Dilution
Parameter	Concentration	Units	Limit	Factor
Веплене	ND	(ug/Kg)	1.0	1
Toluene	ND	(ug/Kg)	1.0	1
Ethylbenzene	ND	(ug/Kg)	1.0	1
Kylenes, Total	ND	(ug/Kg)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/Kg)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/Kg)	1.0	1
I,2-Dichloroethane (EDC)	ND	(ug/Kg)	1.0	1
,2-Dibromoethane (EDB)	ND	(ug/Kg)	1.0	1
łaphthalene	ND	(ug/Kg)	1.0	1
-Methylnaphthalene	ND	(ug/Kg)	2.0	1
-Methylnaphthalene	ND	(ug/Kg)	2.0	1
Bromobenzene	ND	(ug/Kg)	1.0	1
Bromochloromethane	ND	(ug/Kg)	1.0	1
Bromodichloromethane	ND	(ug/Kg)	1.0	1
Bromoform	ND	(ug/Kg)	1.0	1
Bromomethane	ND	(ug/Kg)	1.0	1
arbon Tetrachloride	ND	(ug/Kg)	1.0	1
hlorobenzene	ND	(ug/Kg)	1.0	1
chloroethane	ND	(ug/Kg)	2.0	1
chloroform	ND	(ug/Kg)	1.0	1
chloromethane	NO	(ug/Kg)	1.0	1
-Chlorotoluene	ND	(ug/Kg)	1.0	1
-Chlorotoluene	ND	(ug/Kg)	1.0	1
is-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
is-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
,2-Dibromo-3-chloropropane	ND	(ug/Kg)	2.0	1
Pibromochloromethane	ND	(ug/Kg)	1.0	1
Pibromoethane	ND	(ug/Kg)	2.0	1
,2-Dichlorobenzene	ND	(ug/Kg)	1.0	1
,3-Dichlorobenzene	ND	(ug/Kg)	1.0	1
,4-Dichlorobenzene	ND	(ug/Kg)	1.0	1
Pichiorodifluoromethane	ND	(ug/Kg)	1.0	1
,1-Dichloroethane	ND	(ug/Kg)	1.0	1
,1-Dichloroethene	ND	(ug/Kg)	1.0	1
,2-Dichloropropane	ND	(ug/Kg)	1.0	1
,3-Dichloropropane	ND	(ug/Kg)	1.0	1
,2-Dichtoropropane	ND	(ug/Kg)	1.0	1

EPA Method 8260B Volatile Organic Compounds by GC/MS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Client:

Chevron

Sample ID:

SW

Laboratory Number:

45924

page 2

	Concentration		Det.	Dilution
Parameter	- (ug/Kg)	Units	Limit	Factor
1,1-Dichloropropene	ND	(ug/Kg)	1.0	1
Hexachtorobutadiene	ND	(ug/Kg)	1.0	1
lsopropylbenzene	ND	(ug/Kg)	1.0	1
4-Isopropyttoluene	ND	(ug/Kg)	1.0	1
Methylene Chloride	ND	(ug/Kg)	3.0	1
n-Butylbenzene	ND	(ug/Kg)	1.0	1
n-Propylbenzene	ND	(ug/Kg)	1.0	1
sec-Butyibenzene	ND	(ug/Kg)	1.0	1
Styrene	ND	(ug/Kg)	1.0	1
tert-Butylbenzene	ND	(ug/Kg)	1.0	1
Tetrachloroethene (PCE)	ND	(ug/Kg)	1.0	1
1,1,1,2-Tetrachioroethane	ND	(ug/Kg)	1.0	1
1,1,2,2-Tetrachloroethane	ND	(ug/Kg)	1.0	1
trans-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
Trichloroethene (TCE)	ND	(ug/Kg)	1.0	1
Trichlorofluoromethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,2,4-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,1,1-Trichloroethane	. ND	(ug/Kg)	1.0	1
1,1,2-Trichloroethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichioropropane	ND	(ug/Kg)	2.0	1
Vinyl Chloride	ND	(ug/Kg)	2.0	1

Surrogates:			Rec. Limits	
Dibromofluoromethane	104	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	109	% Recovery	74.6-123	1
Toluene-d8	104	% Recovery	84.2-115	1
4-Bromofiuorobenzene	105	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit,

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

La Plata Pond.

Analyst

Mister of Warden

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B Volatile Organic Compounds by GC/MS

Client: Chevron Project #: 92270-0204 Sample ID: Background Date Reported: 06-24-08 Chain of Custody: 4593 Date Sampled: 06-16-08 Laboratory Number: 45925 Date Received: 06-16-08 Sample Matrix: Soil Date Analyzed: 06-19-08 Preservative: Cool Date Extracted: 06-17-08 Condition: Cool and Intact Analysis Requested: 8260 VOC

			Det.	Dilution
Parameter	Concentration	Units	Limit	Factor
Benzene	ND	(ug/Kg)	1.0	1
Toluene	ND	(ug/Kg)	1.0	i
Ethylbenzene	ND	(ug/Kg)	1.0	1
Xylenes, Total	ND	(ug/Kg)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/Kg)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/Kg)	1.0	1
f,3,5-Trimethylbenzene	ND	(ug/Kg)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/Kg)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/Kg)	1.0	1
Naphthalene	ND	(ug/Kg)	1.0	1
1-Methylnaphthalene	ND	(ug/Kg)	2.0	1
2-Methylnaphthalene	ND	(ug/Kg)	2.0	1
Bromobenzene	ND	(ug/Kg)	1.0	1
Bromochloromethane	ND	(ug/Kg)	1.0	1
Bromodichloromethane	ND	(ug/Kg)	1.0	1
Bromoform	ND	(ug/Kg)	1.0	1
Bromomethane	ND	(ug/Kg)	1.0	1
Carbon Tetrachloride	ND	(ug/Kg)	1.0	1
Chlorobenzene	ND	(ug/Kg)	1.0	1
Chloroethane	ND	(ย g /Kg)	2.0	1
Chloroform	ND	(ug/Kg)	1.0	1
Chloromethane	ND	(ug/Kg)	1.0	1
2-Chiorotoluene	ND	(ug/Kg)	1.0	1
4-Chlorotoluene	ND	(ug/Kg)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
cis-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/Kg)	2.0	1
Dibromochloromethane	ND	(ug/Kg)	1.0	1
Dibromoethane	ND	(ug/Kg)	2.0	1
1,2-Dichlorobenzene	ND	(ug/Kg)	1.0	1
1,3-Dichlorobenzene	ND	(u g/Kg)	1.0	1
1,4-Dichlorobenzene	ND	(u g/Kg)	1.0	1
Dichlorodifluoromethane	ND	(ug/Kg)	1.0	1
i,1-Dichloroethane	ND	(ug/Kg)	1.0	1
1,1-Dichloroethene	ND	(ug/Kg)	1.0	1
1,2-Dichloropropane	ND	(ug/Kg)	1.0	1
1,3-Dichloropropane	ND	(u g/K g)	1.0	1
2,2-Dichloropropane	ND	(ug/Kg)	1.0	1

EPA Method 8260B Voiatile Organic Compounds by GC/MS

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Client: Sample ID: Chevron

Background

Laboratory Number:

45925

page 2

	Concentration		Det.	Dilution
Parameter	_ (ug/Kg)	Units	Limit	Factor
1,1-Dichloropropene	ND	(ug/Kg)	1.0	1
Hexachiorobutadiene	ND	(ug/Kg)	1.0	1
Isopropylbenzene	ND	(ug/Kg)	1.0	1
4-lsopropyttoluene	ND	(ug/Kg)	1.0	1
Methylene Chloride	ND	(ug/Kg)	3.0	1
n-Butylbenzene	ND	(ug/Kg)	1.0	1
n-Propylbenzene	ND	(ug/Kg)	1.0	1
sec-Butylbenzene	ND	(ug/Kg)	1.0	1
Styrene	ND	(ug/Kg)	1.0	1
tert-Butyibenzene	ND	(ug/Kg)	1.0	1
Tetrachloroethene (PCE)	ND	(ug/Kg)	1.0	1
1,1,1,2-Tetrachloroethane	ND	(ug/Kg)	1.0	1
1,1,2,2-Tetrachloroethane	ND	(ug/Kg)	1.0	1
trans-1,2-Dichloroethene	ND	(ug/Kg)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/Kg)	1.0	1
Trichloroethene (TCE)	ND	(ug/Kg)	1.0	1
Trichlorofluoromethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,2,4-Trichlorobenzene	ND	(ug/Kg)	1.0	1
1,1,1-Trichloroethane	ND	(ug/Kg)	1.0	1
1,1,2-Trichloroethane	ND	(ug/Kg)	1.0	1
1,2,3-Trichloropropane	ND	(ug/Kg)	2.0	1
Vinyl Chloride	ND	(ug/Kg)	2.0	1
Surrogates;			Rec. Limits	

Surrogates;			Rec. Limits	
Dibromofiuoromethane	104	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	109	% Recovery	74.6-123	1
Toluene-d8	104	% Recovery	84.2-115	1
4-Bromofluorobenzene	105	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

La Plata Pond.

Analyst

Review Muaeters

QUALITY ASSURANCE / QUALITY CONTROL DOCUMENTATION

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B Volatile Organic Compounds by GC/MS Quality Assurance Report

Client:

QA/QC

Sample ID:

Laboratory Blank

Laboratory Number: Sample Matrix: 06-19 VOA

Preservative:

Water N/A

Condition:

N/A

Project #:

Date Reported:

Date Sampled:

Date Received:

Date Analyzed:

Analysis Requested:

N/A

06-24-08

N/A

N/A

06-19-08 8260 VOC

	Concentration		Det.	Dilution
Parameter	(ug/L)	Units	Limit	Factor
Benzene	ND	(u g/L)	1.0	1
Toluene	ND	(ug/L)	1.0	1
Ethylbenzene	ND	(ug/L)	1.0	1
Xylenes, Total	ND	(ug/L)	1.0	1
Methyl tert-butyl ether (MTBE)	ND	(ug/L)	1.0	1
1,2,4-Trimethylbenzene	ND	(ug/L)	1.0	1
1,3,5-Trimethylbenzene	ND	(ug/L)	1.0	1
1,2-Dichloroethane (EDC)	ND	(ug/L)	1.0	1
1,2-Dibromoethane (EDB)	ND	(ug/L)	1.0	1
Naphthalene	ND	(ug/L)	1.0	1
1-Methylnaphthalene	ND	(ug/L)	2.0	1 .
2-Methylnaphthalene	ND	(ug/L)	2.0	1
Bromobenzene	ND	(ug/L)	1.0	1
Bromochloromethane	ND	(ug/L)	1.0	1
Bromodichioromethane	ND	(ug/L)	1.0	1
Bromoform	ND	(ug/L)	1.0	1
Bromomethane	ND	(ug/L)	1.0	1
Carbon Tetrachloride	ND	(ug/L)	1.0	1
Chiorobenzene	ND	(ug/L)	1.0	1
Chloroethane	ND	(ug/L)	2.0	1
Chloroform	ND	(ug/L)	1.0	1
Chioromethane	ND	(ug/L)	1.0	1
2-Chiorotoluene	ND	(ug/L)	1.0	1
4-Chlorotoluene	NĐ	(ug/L)	1.0	1
cis-1,2-Dichloroethene	ND	(ug/L)	1.0	1
cls-1,3-Dichloropropene	ND	(ug/L)	1.0	1
1,2-Dibromo-3-chloropropane	ND	(ug/L)	2.0	1
Dibromochloromethane	ND	(ug/L)	1.0	1
Dibromoethane	ND	(ug/L)	2.0	1
1,2-Dichlorobenzene	ND	(ug/L)	1.0	1
1,3-Dichlorobenzene	ND	(ug/L.)	1.0	1
1,4-Dichlorobenzene	ND	(ug/L)	1.0	1
Dichlorodifluoromethane	ND	(ug/L)	1.0	1
1,1-Dichloroethane	. ND	(ug/L)	1.0	1
1,1-Dichloroethene	ND	(ug/L)	1.0	1
1,2-Dichloropropane	ND	(ug/L)	1.0	1
1,3-Dichloropropane	ND	(ug/L)	1.0	1
2,2-Dichloropropane	ND	(ug/L)	1.0	1

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B

Volatile Organic Compounds by GC/MS

Quality Assurance Report

Client:

QAVQC

Sample ID:

Laboratory Blank

page 2

Laboratory Number:

06-19 VOA

	Concentration		Det.	Dilution
Parameter	_ (ug/L)	Units	Limit	Factor
1,1-Dichloropropene	ND	(ug/L)	1.0	1
Hexachlorobutadiene	NID	(ug/L)	1.0	1
Isopropylbenzene	ND	(ug/L)	1.0	1
4-Isopropyltoluene	ND	(ug/L)	1.0	1
Methylene Chloride	ND	(ug/L)	1.0	1
n-Butylbenzene	ND	(ug/L)	1.0	1
n-Propylbenzene	ND	(ug/L)	1.0	1
sec-Butylbenzene	ND	(u g/L)	1.0	1
Styrene	ND	(ug/L)	1.0	1
tert-Butylbenzene	ND	(ug/L)	1.0	1
Tetrachloroethene (PCE)	ND	(ug/L)	1.0	1
1,1,1,2-Tetrachloroethane	ND	(ug/L)	1.0	1
1,1,2,2-Tetrachloroethane	ND	(ug/L)	1.0	1
trans-1,2-Dichloroethene	ND	(ug/L)	1.0	1
trans-1,3-Dichloropropene	ND	(ug/L)	1.0	1
Trichloroethene (TCE)	ND	(ug/L)	1.0	1
Trichlorofluoromethane	ND	(ug/L)	1.0	1
1,2,3-Trichlorobenzene	ND	(u g/L)	1.0	1
1,2,4-Trichlorobenzene	ND	(ug/L)	1.0	1
1,1,1-Trichioroethane	ND	(ug/L)	1.0	1
1,1,2-Trichloroethane	ND	(ug/L)	1.0	1
1,2,3-Trichloropropane	ND	(ug/L)	2.0	· 1
Vinyl Chloride	ND	(ug/L)	2.0	1

Surrogates:			Rec. Limits	
Dibromofluoromethane	91.1	% Recovery	78.6-115	1
1,2-Dichloroethane-d4	96.2	% Recovery	74.6-123	1
Toluene-d8	93.9	% Recovery	84.2-115	1
4-Bromofluorobenzene	96.2	% Recovery	78.6-115	1

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-848, USEPA, July 1992

Comments:

QA/QC for Samples 45921 - 45925.

Anahret

Mister of Wasters

PRACTICAL SOLUTIONS FOR A BETTER TOMOBROW

EPA Method 8260B Volatile Organic Compounds by GC/MS Daily Calibration Report

Client:

QA/QC

Sample ID:

Daily Calibration

Laboratory Number:

06-19 QA/QC

Sample Matrix: Preservative:

Water

Condition:

N/A N/A Project #:

Date Reported:

N/A 06-24-08

Date Commission

Date Sampled:

N/A

Date Received:

N/A

Date Analyzed: Analysis Requested: 06-19-08 8260 VOC

	Concentration			% Recovery	
Parameter	(ug/L)	Result	% Recovered	Limits	
Benzene	100	108	108	80 - 120	
Toluene	100	88.6	88.6	80 - 120	
Ethylbenzene	100	97.8	97.8	80 - 120	
Xylenes, Total	100	101	101	80 - 120	
Methyl tert-butyl ether (MTBE)	100	99.5	99.5	80 - 120	
1,2,4-Trimethylbenzene	100	83.6	83.6	80 - 1 2 0	
1,3,5-Trimethylbenzene	100	90.4	90.4	80 - 120	
1,2-Dichloroethane (EDC)	100	110	110	80 - 120	
1,2-Dibromoethane (EDB)	100	112	112	80 - 120	
Naphthalene	100	105	105	80 - 120	
1-Methylnaphthalene	100	88.2	88.2	80 - 120	
2-Methylnaphthalene	100	90.5	90.5	80 - 120	
Bromobenzene	100	93.9	93.9	80 - 120	
Bromochloromethane	100	120	120	80 - 120	
Bromodichioromethane	100	109	109	80 - 120	
Bromoform	100	118	118	80 - 120	
Bromomethane	100	94.6	94.6	80 - 120	
Carbon Tetrachloride	100	113	113	80 - 120	
Chlorobenzene	100	95.8	95.8	80 - 120	
Chloroethane	100	82.3	82.3	80 - 120	
Chloroform	100	104	104	80 - 120	
Chloromethane	100	96.2	96.2	80 - 120	
2-Chlorotoluene	100	87.7	87.7	80 - 120	
4-Chlorotoluene	100	104	104	80 - 120	
cis-1,2-Dichloroethene	100	101	101	80 - 120	
cls-1,3-Dichloropropene	100	109	109	80 - 120	
1,2-Dibromo-3-chloropropane	100	113	113	80 - 120	
Dibromochloromethane	100	113	113	80 - 120	
Dibromoethane	100	106	106	80 - 120	
1,2-Dichlorobenzene	100	88.1	88.1	80 - 120	
1,3-Dichlorobenzene	100	81.2	81.2	80 - 120	
1,4-Dichlorobenzene	100	88.3	88.3	80 - 120	
Dichlorodifluoromethane	100	99.1	99.1	80 - 120	
1,1-Dichloroethane	100	100	100	80 - 120	
1,1-Dichioroethene	100	93.4	93.4	80 - 120	
1,2-Dichloropropane	100	106	106	80 - 120	
1,3-Dichloropropane	100	115	115	80 - 120	
2,2-Dichloropropane	100	110	110	80 - 120	

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

EPA Method 8260B

Volatile Organic Compounds by GC/MS

Quality Assurance Report

Client:

QA/QC

Sample ID:

Daily Calibration

Laboratory Number:

06-19 QA/QC

page 2

	Concentration			% Recover
Parameter	_ (ug/L)	Result	% Recovered	
1,1-Dichloropropene	100	114	114	80 - 120
Hexachlorobutadiene	100	95.2	95.2	80 - 120
Isopropylbenzene	100	99.1	99.1	80 - 1 20
4-Isopropyltoluene	100	89.1	89.1	80 - 120
Methylene Chloride	100	105	105	80 - 120
n-Butyibenzene	100	82.9	82.9	80 - 120
n-Propylbenzene	100	92.6	92.6	80 - 120
sec-Butylbenzene	100	94.1	94.1	80 - 120
Styrene	100	88.9	88.9	80 - 120
tert-Butylbenzene	100	95.9	95.9	80 - 120
Tetrachloroethene (PCE)	100	106	106	80 - 120
1,1,1,2-Tetrachloroethane	100	112	112	80 - 120
1,1,2,2-Tetrachloroethane	100	104	104	80 - 120
trans-1,2-Dichloroethene	100	95.4	95.4	80 - 120
trans-1,3-Dichloropropene	100	111	111	80 - 120
Trichloroethene (TCE)	100	112	112	80 - 120
Trichlorofluoromethane	100	93.0	93.0	80 - 120
1,2,3-Trichlorobenzene	100	101	101	80 - 120
1,2,4-Trichlorobenzene	100	101	101	80 - 120
1,1,1-Trichloroethane	100	113	113	80 - 120
1,1,2-Trichioroethane	100	99.4	99.4	80 - 120
1,2,3-Trichloropropane	100	108	108	80 - 120
Vinyl Chioride	. 100	93.3	93.3	80 - 120

Surrogates:		Rec. Limits		
Dibromofluoromethane	114	% Recovery	78.6-115	
1,2-Dichloroethane-d4	118	% Recovery	74.6-123	
Toluene-d8	88.8	% Recovery	84.2-115	
4-Bromofluorobenzene	89.5	% Recovery	78.6-115	

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 45921 - 45925.

Analyst

Review

EPA Method 8260B Volatile Organic Compounds by GC/MS **Quality Assurance Report**

Client:

QA/QC

Sample ID:

Matrix Spikes

Laboratory Number:

06-19-VOA - 45921

Sample Matrix: Preservative:

Soil

Condition:

N/A N/A

Project #:

N/A

Date Reported:

06-24-08

Date Sampled: **Date Received:** N/A

N/A

Date Analyzed:

06-19-08

Analysis Requested:

8260 VOC

Spike		Jnits: ug/K	9		Recovery	Det.
Analyte	Sample	Added	Result	%Recovery	Limits	Limit
Benzene	ND	100.0	91.6	91.6%	85.3 - 120	1.0
Toluene	ND	100.0	97.0	97.0%	73 - 123	1.0
Chlorobenzene	ND	100.0	92.3	92.3%	84.7 - 119	1.0
1,1-Dichloroethene	ND	100.0	99.5	99.5%	83.4 - 122	1.0
Trichloroethene (TCE)	ND	100.0	98.5	98.5%	76.1 - 126	1.0

Spike Duplicate	Units: ug/Kg			Recovery	Det.	
Analyte	Sample	Added	Result	%Recovery	Limits	Limit
Benzene	ND	100.0	93.5	93.5%	85.3 - 120	1.0
Toluene	ND	100.0	98.5	99%	73 - 123	1.0
Chlorobenzene	ND	100.0	119	119%	84.7 - 119	1.0
1,1-Dichloroethene	ND	100.0	92.9	92.9%	83.4 - 122	1.0
Trichloroethene (TCE)	ND	100.0	91.5	92%	76.1 - 126	1.0

ND = Parameter not detected at the stated detection limit.

References:

Method 5030, Purge-and-Trap, Test Methods for Evaluating Solid Waste,

SW-846, USEPA, July 1992.

Method 8260, Volatile Organic Compounds by Gas Chromatography / Mass

Spectrometry, Test Methods for Evaluating Solid Waste, SW-846, USEPA, July 1992

Comments:

QA/QC for Samples 45921 - 45925.

Analyst

houts Review

Client;	Chevron _	Project #:	92270-0204
Sample ID:	NE	Date Reported:	06-27-08
Laboratory Number:	45921	Date Sampled:	05-16-08
Chain of Custody No:	4593	Date Received:	05-16-08
Sample Matrix:	Soil	Date Extracted:	05-19-08
Preservative:	Cool	Date Analyzed:	05-23-08
Condition:	Cool and Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

74.3

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

La Plata Pond.

Analyst

Mustre m Walter

Client:	Chevron	Project #:	92270-0204
Sample ID:	NW	Date Reported:	06-27-08
Laboratory Number:	45922	Date Sampled:	05-16-08
Chain of Custody No:	4593	Date Received:	05-16-08
Sample Matrix:	Soil	Date Extracted:	05-19-08
Preservative:	Cool	Date Analyzed:	05-23-08
Condition:	Cool and Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Llmit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

18.5

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

La Plata Pond.

Analyst

Mister melaeter

Client:	Chevron _	Project #:	92270-0204
Sample ID:	SE	Date Reported:	06-27-08
Laboratory Number:	45923	Date Sampled:	05-16 -08
Chain of Custody No:	4593	Date Received:	05-16-08
Sample Matrix:	Soil	Date Extracted:	05-19 -0 8
Preservative:	Cool	Date Analyzed:	05-23-08
Condition:	Cool and Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

17.2

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

La Plata Pond.

Analyst

Muster of Warters

Client:	Chevron	Project #:	92270-0204
Sample ID:	sw	Date Reported:	06-27-08
Laboratory Number:	45924	Date Sampled:	05-16-08
Chain of Custody No:	4593	Date Received:	05-16-08
Sample Matrix:	Soil	Date Extracted:	05-19-08
Preservative:	Cool	Date Analyzed:	05-23-08
Condition:	Cool and Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

15.8

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

La Plata Pond.

Analyst

(Mestern Walters

ENVIROTECH LABS

EPA METHOD 418.1 TOTAL PETROLEUM HYDROCARBONS

Client: Sample ID:	Guk Chevron - SW Background	Project #: Date Reported:	92270-0204 06-27-08
Laboratory Number:	45925	Date Sampled:	05-16-08
Chain of Custody No:	4593	Date Received:	05-16-08
Sample Matrix:	Soli	Date Extracted:	05-19-08
Preservative:	Cool	Date Analyzed:	05-23-08
Condition:	Cool and Intact	Analysis Needed:	TPH-418.1

		Det.
	Concentration	Limit
Parameter	(mg/kg)	(mg/kg)

Total Petroleum Hydrocarbons

15.8

5.0

ND = Parameter not detected at the stated detection limit.

References:

Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments:

La Plata Pond.

Analyst

(Review Muchen

* SAMPLE ID WAS not changes for final report See next page for justification on changing name bases on Sample #

ENVIROTECH LABS

Method 418.1 Analysis Log Total Petroleum Hydrocarbon

Date	6/23/08	Analyst	<u>us</u>

No.	Sample #	Sample Wt. (g)	Vol. Freon	Dilution	Abs. Read	PPM TPH
	45921	5.00	20,0 ml	1	.011	74.3
	45921 NP	5.00		, `	.017	81.1
	45921 SPK	5.00		/	,320	2160
	45922	5.00		/	.002	18.5
	45923	5,00		1	,0018	17.2
	45924	5,00		/	,0016	15.8
	45925	5.00		1	.0016	15.8
	45952	5.00		/	.0166	112
1	45953	5.00		1	.0128	865
`	45954	5100		,	.028	1.89
`	45955	5.00		1	.010	(1.5
	46007	5.00		1	.490	
	Black				5000	

Infrared Spectrophotometer Calibration

New Freon Redistilled Freon	- -	Distillation Date
Date Standards Prepared	3/08	
Standard Concentration mg/L	Absorbance	
100		
200		If C₁libration is C-Cal. Date of the
500		I-Cal that I-Cal Response Factor Refers To:
1000	_315_	I-CAL Date
I-CAL RF:	.	C-CAL RF:
RSD:%	<u> </u>	% Difference <u>%</u>
QA/QC Acceptance Criteria: I.	-Cal RSD +/- 20%	C-Cal Difference +/- 10%

EPA METHOD 418.1 TOTAL PETROLEUM HYROCARBONS QUALITY ASSURANCE REPORT

N/A Project #: Client: **QA/QC** 06-27-08 **QA/QC** Date Reported: Sample ID: 06-23-TPH.QA/QC 45921 Date Sampled: N/A Laboratory Number: Date Analyzed: 06-23-08 Sample Matrix: Freon-113 Date Extracted:

Preservative: N/A Date Extracted: 06-19-08
Condition: N/A Analysis Needed: TPH

Calibration I-Gal Date C-Cal Date I-Cal RF: C-Cal RF: % Difference Accept. Range 02-18-08 06-23-08 1,689 1,587 6.0% +/- 10%

Slank Conc. (mg/Kg) Concentration Detection Limit
TPH ND 5.0

Duplicate Conc. (mg/Kg)

Sample Duplicate % Difference Accept. Range

74.3

81.1

9.2%

+/- 30%

Spike Conc. (mg/Kg) Sample Spike Added Spike Result % Recovery Accept Range TPH 74.3 2,000 2,160 104% 80 - 120%

ND = Parameter not detected at the stated detection limit.

References: Method 418.1, Petroleum Hydrocarbons, Total Recoverable, Chemical Analysis of Water

and Waste, USEPA Storet No. 4551, 1978.

Comments: QA/QC for Samples 45921 - 45925, 45952 - 45955 and 46007.

Analyst Review Review

ENVIROTECH LABS

TRACE METAL ANALYSIS

Client:	Chevron	Project #:	92270-0204
Sample ID:	NE _	Date Reported:	06-30-08
Laboratory Number:	45921	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-20-08
Preservative:	Cool	Date Digested:	06-19-08
Condition:	Cool & Intact	Analysis Needed:	Total Metals

		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	0.022	0.001	
Barium	18.7	0.001	
Cadmium	0.007	0.001	
Chromlum	0,693	0.001	
Copper	0.201	0.001	
Iron	33.8	0.001	
Lead	0.220	0.001	
Manganese	0.889	0.001	
Mercury	0.001	0.001	
Selenium	0.022	0.001	
Silver	ND	0.001	
Zinc	1.01	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

La Piata Pond.

Analyst

Mustum Wasters
Review

ENVIROTECH LABS

TRACE METAL ANALYSIS

Client:	Chevron	Project #:	92270-0204
Sample ID:	NW _	Date Reported:	06-30-08
Laboratory Number:	45922	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-20-08
Preservative:	Cool	Date Digested:	06-19-08
Condition:	Cool & Intact	Analysis Needed:	Total Metals

		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	0.022	0.001	
Barium	18.3	0.001	
Cadmium	0.023	0.001	
Chromium	0.785	0.001	
Copper	1.90	0.001	
Iron	30.3	0.001	
Lead	0.225	0.001	
Manganese	0.863	0.001	
Mercury	ND	0.001	
Selenium	ND	0.001	
Sliver	ND	0.001	
Zinc	1.23	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Review

TRACE METAL ANALYSIS

		•	
Client:	Chevron	Project #:	92270-0204
Sample ID:	SE _	Date Reported:	06-30-08
Laboratory Number:	45923	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-20-08
Preservative:	Cool	Date Digested:	06-19-08
Condition:	Cool & Intact	Analysis Needed:	Total Metals

		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	0.026	0.001	
Barium	21.6	0.001	
Cadmium	0.010	0.001	
Chromium	0.767	0.001	
Copper	1.71	0.001	
Iron	32.9	0.001	
Lead	0.224	0.001	
Manganese	1.01	0.001	
Mercury	ND	0.001	
Selenium	ND	0.001	
Silver	ND	0.001	
Zinc	1.13	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Review Machen

ENVIROTECH LABS

TRACE METAL ANALYSIS

Client:	Chevron	Project #:	92270-0204
Sample ID:	SW _	Date Reported:	06-30-08
Laboratory Number:	45924	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soll	Date Analyzed:	06-20-08
Preservative:	Cool	Date Digested:	06-19-08
Condition:	Cool & Intact	Analysis Needed:	Total Metals

		Det.	
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	ND	0.001	
Barium	18.4	0.001	
Cadmium	800.0	0.001	
Chromium	0.728	0.001	
Copper	1.68	0.001	
iron	32.9	0.001	
Lead	0.226	0.001	
Manganese	0.823	0.001	
Mercury	ND	0.001	
Selenium	ND	0.001	
Silver	ND	0.001	
Zinc	1.05	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Solls.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Review (La) Cetters

ENVIROTECH LABS

TRACE METAL ANALYSIS

Client:	Chevron	Project #:	92270-0204
Sample ID:	Background _	Date Reported:	06-30-08
Laboratory Number:	45925	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Analyzed:	06-20-08
Preservative:	Cool	Date Digested:	06-19-08
Condition:	Cool & Intact	Analysis Needed:	Total Metals

	Det.		
	Concentration	Limit	
Parameter	(mg/Kg)	(mg/Kg)	
Arsenic	מא	0.001	
Barium	17.4	0.001	
Cadmium	0.008	0.001	
Chromium	1.306	0.001	
Copper	1.82	0.001	
Iron	19.3	0.001	
Lead	0.263	0.001	
Manganese	0.949	0.001	
Mercury	ND	0.001	
Selenium	ND	0.001	
Silver	ND	0.001	
Zinc	1.10	0.001	

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

La Plata Pond.

Analyst

Review

ENVIROTECH LABS

PRACTICAL SOLUTIONS FOR A BETTER TOMORHOW

TRACE METAL ANALYSIS Quality Control / Quality Assurance Report

Client:		QA/QC		Project #:			N/A
Sample ID:		06-20-TM	QA/QC	Date Repor	ted:		06-30-08
Laboratory Number:		45921	-	Date Samp	led:		N/A
Sample Matrix:		Soil		Date Recei	ved:		N/A
Analysis Requested:		Trace Me	tals	Date Analyz	zed:		06-20-08
Condition:		N/A		Date Digest	led:		06-19-08
Blank & Dupilcate Conc. (mg/Kg)	(nstrument Stank (mg/L	Method) Blank	- Detection Limit	Sample	Du pitcete :	DHf.	Acceptance Range
Conc_(mg/ng/	ND	ND	0.001	0.022	0.020	8.1%	0% - 30%
Barlum	ND	ND	0.001	18.7	17.9	4.4%	0% - 30%
Cadmium	ND	ND	0.001	0.007	0.006	6.2%	0% - 30%
Chromium	ND	ND	0.001	0.693	0.683	1.5%	0% - 30%
Copper	ND	ND	0.001	2.01	2.00	0.3%	0% - 30%
Iron	ND	ND	0.001	33.8	33.8	0.0%	0% - 30%
Lead	ND	ND	0.001	0.220	0.220	0.0%	0% - 30%
Manganese	ND	ND	0.001	0.889	0.890	0.1%	0% - 30%
Mercury	ND	ND	0.001	0.001	0.001	0.0%	0% - 30%
Selenium	ND	ND	0.001	0.022	0.021	1.4%	0% - 30%
Silver	ND	ND	0.001	ND	ND	0.0%	0% - 30%
Zinc	ND	ND	0.001	1.01	1.11	9.9%	0% - 30%
Solida	TOWN YAR	Spike	Sample	Spiked	Percent		Acceptance
Cone (mg/kg)	en statistical	Added		Sample	Recovery	des.	Range
Arsenic		0.250	0.022	0.285	105%		80% - 120%
Barium		0.500	18.7	19.5	101%		80% - 120%
Cadmium		0.250	0.007	0.258	100.5%		80% - 120%
Chromlum		0.500	0.693	1.20	101%		80% - 120%
Copper		0.500	2.007	2.61	104%		80% - 120%
Iron		0.500	33.8	35.2	103%		80% - 120%
Lead		0.100	0.220	0.361	113%		80% - 120%
Manganese		0.500	0.889	1.49	107%		80% - 120%
Mercury		0.100	0.001	0.105	104%		80% - 120%
Selenium		0.100	0.022	0.135	111%		80% - 120%
Silver		0.100	ND	0.096	96.0%		80% - 120%
Zinc		0.500	1.01	1.65	109%		80% - 120%

ND - Parameter not detected at the stated detection limit.

References:

Method 3050B, Acid Digestion of Sediments, Sludges and Soils.

SW-846, USEPA, December 1996.

Method 6010B, Analysis of Metals by Inductively Coupled Plasma Atomic Emmision

Spectorscopy, SW-846, USEPA, December 1996.

Comments:

QA/QC for Samples 45921-45925.

Analyst Analyst

Review Wasters

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Water Analysis

Client: Sample ID: Laboratory Number:

Sample Matrix:

Preservative:

Condition:

Chevron ΝE

45921 Soil Extract

Cool

Cool & Intact

Project #: Date Reported:

Date Sampled: Date Received:

Date Analyzed: Chain of Custody: 92270-0204

06-24-08 06-16-08 06-16-08 06-20-08

4593

Analytical	
Result	Units
8.08	su
950	mg/L
1.7	mg/L
<0.1	mg/L
5.70	mg/L
65.0	mg/L
322	mg/L
	Result 8.08 950 1.7 <0.1 5.70 65.0

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

La Plata Pond.

Analyst

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Water Analysis

Client:	Chevron		Project #:	92270-0204
Sample ID:	NW		Date Reported:	06-24-08
Laboratory Number:	45922	-	Date Sampled:	06-16-08
Sample Matrix:	Soil Extract		Date Received:	06-16-08
Preservative:	Cool		Date Analyzed:	06-20-08
Condition:	Cool & Intact		Chain of Custody:	4593
			•	

Parameter	Analytical Result	Units
рН	8.84	su
Total Dissolved Solids @ 180C	710	mg/L
Nitrate Nitrogen	0.5	mg/L
Cyanide	<0.1	mg/L
Fluoride	4.22	mg/L
Chloride	73.0	mg/L
Sulfate	273	mg/L

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

La Plata Pond.

Analyst

Review Weeten

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Water Analysis

92270-0204

06-24-08

06-16-08

06-16-08

06-20-08

4593

Client: Chevron Project #: SE Sample ID: **Date Reported:** Laboratory Number: 45923 Date Sampled: Soil Extract Sample Matrix: Date Received: Cool Preservative: Date Analyzed: Condition: Cool & Intact Chain of Custody:

Analytical Parameter Result Units 8.37 pН su Total Dissolved Solids @ 180C 1,060 mg/L Nitrate Nitrogen 2.2 mg/L Cyanide < 0.1 mg/L **Fluoride** 3.78 mg/L Chloride 82.0 mg/L **Sulfate** 345 mg/L

Reference:

 $U.S.E.P.A.,\,600/4\text{-}79\text{-}020,\,\text{"Methods for Chemical Analysis of Water and Wastes"},\,1983.$

Standard Methods For The Examination of Water And Waste Water, 18th ed., 1992.

Comments: L

La Plata Pond.

Analyst

(Review) Cetter

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW

Water Analysis

Client:
Sample ID:
Laboratory Number:
Sample Matrix:

Parameter

Chevron SW 45924 Soli Extract Cool Project #:
Date Reported:
Date Sampled:
Date Received:
Date Analyzed:

92270-0204 06-24-08 06-16-08 06-16-08 06-20-08 4593

Preservative: Condition:

Cool & Intact

Chain of Custody:

Analytical
Result Units

pH	8.26	su
Total Dissolved Solids @ 180C	1,130	mg/L
Nitrate Nitrogen	1.3	mg/L
Cyanide	<0.1	mg/L
Fluoride	5.60	mg/L
Chloride	73.0	mg/L
Sulfate	341	mg/L

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments:

La Plata Pond.

Analyst

Review Noches

PRACTICAL SOLUTIONS FOR A BETTER TOMORROW.

Water Analysis

Client:	Chevron		Project #:	92270-0204
Sample ID:	Background		Date Reported:	06-24-08
Laboratory Number:	45925	-	Date Sampled:	06-16-08
Sample Matrix:	Soil Extract		Date Received:	06-16-08
Preservative:	Cool		Date Analyzed:	06-20-08
Condition:	Cool & Intact		Chain of Custody:	4593

[Analytical				
į	Parameter	Result	Units		
				•	
	рН	7.88	s u		
	Total Dissolved Solids @ 180C	1,310	mg/L		
	Nitrate Nitrogen	3.5	mg/L		
	Cyanide	<0.1	mg/L		
	Fluoride	<0.1	mg/L		
	Chloride	15.0	mg/L		
	Sulfate	<0.1	mg/L		

Reference:

U.S.E.P.A., 600/4-79-020, "Methods for Chemical Analysis of Water and Wastes", 1983.

Standard Methods For The Examination of Water And Waste Water", 18th ed., 1992.

Comments: La

La Plata Pond.

Analyst

Review Machen

Client:	Chevron	Project #:	92270-0204
Sample ID:	NE _	Date Reported:	07-10-08
Laboratory Number:	45921	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Extracted:	06-25-08
Preservative:	Cool	Date Analyzed:	07-07-08
Condition:	Intact	Analysis Requested:	Phenois

Parameter	Concentration (mg/Kg)	Detection Limit (mg/Kg)	Regulatory Limit (mg/Kg)
o-Cresol	ND	0.005	200
p,m-Cresol	ND	0.005	200
2,4,6-Trichlorophenol	ND	0.005	2.0
2,4,5-Trichlorophenol	ND	0.005	400
Pentachlorophenol	ND	0.005	100

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	2-Fluorophenol	98.0%
	2,4,6-Tribromophenol	97.0%

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8270, Phenois, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

La Plata Pond.

Analyst

Client:	Chevron	Project #:	92270-0204
Sample ID:	NW _	Date Reported:	07-10-08
Laboratory Number:	45922	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Extracted:	06-25-08
Preservative:	Cool	Date Analyzed:	07-07-08
Condition:	Intact	Analysis Requested:	Phenois

Parameter	Concentration (mg/Kg)	Detection Limit (mg/Kg)	Regulatory Limit (mg/Kg)
o-Cresol	ND	0.005	200
p,m-Cresol	ND	0.005	200
2,4,6-Trichlorophenol	ND	0.005	2.0
2,4,5-Trichlorophenol	ND	0.005	400
Pentachlorophenol	ND	0.005	100

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery	
	2-Fluorophenol	98.0%	
	2,4,6-Tribromophenol	97.0%	

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8270, Phenois, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

La Plata Pond.

Analyst

Mustum Water

Client:	Chevron	Project #:	92270-0204
Sample ID:	SE _	Date Reported:	07-10-08
Laboratory Number:	45923	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Extracted:	06-25-08
Preservative:	Cool	Date Analyzed:	07-07-08
Condition:	Intact	Analysis Requested:	Phenois

Parameter	Concentration (mg/Kg)	Detection Limit (mg/Kg)	Regulatory Limit (mg/Kg)
o-Cresol	ND	0.005	200
p,m-Cresol	ND	0.005	200
2,4,6-Trichlorophenol	ND	0.005	2.0
2,4,5-Trichlorophenol	ND	0.005	400
Pentachlorophenol	ND	0.005	100

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	2-Fluorophenol	98.0%
	2,4,6-Tribromophenol	97.0%

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8270, Phenols, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

La Plata Pond.

Analyst

Review Waster

Client:	Chevron	Project #:	92270-0204
Sample ID:	sw	Date Reported:	07-10-08
Laboratory Number:	45924	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Soil	Date Extracted:	06-25-08
Preservative:	Cool	Date Analyzed:	07-07-08
Condition:	Intact	Analysis Requested:	Phenois

Parameter	Concentration (mg/Kg)	Detection Limit (mg/Kg)	Regulatory Limit (mg/Kg)
o-Cresol	ND	0.005	200
p,m-Cresol	ND	0.005	200
2,4,6-Trichlorophenol	ND	0.005	2.0
2,4,5-Trichlorophenol	ND	0.005	400
Pentachlorophenol	ND	0.005	100

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	2 Eksemenhan al	00.00
	2-Fluorophenol	98.0%
	2,4,6-Tribromophenol	9 7.0%

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8270, Phenois, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

La Plata Pond.

Analyst

Review Wasters

Client:	Chevron	Project #:	92270-0204
Sample ID:	Background _	Date Reported:	07-10-08
Laboratory Number:	45925	Date Sampled:	06-16-08
Chain of Custody:	4593	Date Received:	06-16-08
Sample Matrix:	Sall	Date Extracted:	06-25-08
Preservative:	Cool	Date Analyzed:	07-07-08
Condition:	Intact	Analysis Requested:	Phenois

Parameter	Concentration (mg/Kg)	Detection Limit (mg/Kg)	Regulatory Limit (mg/Kg)
o-Cresol	ND	0.005	200
p,m-Cresol	ND	0.005	200
2,4,6-Trichlorophenol	ND	0.005	2.0
2,4,5-Trichlorophenoi	ND	0.005	400
Pentachlorophenol	ND	0.005	100

ND - Parameter not detected at the stated detection limit.

Surrogate Recoveries:	Parameter	Percent Recovery
	2-Fluorophenol	98.0%
	2,4,6-Tribromophenol	97.0%

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for Evaluating Solid

Waste, SW-846, USEPA, July 1992.

Method 8270, Phenois, Test Methods for Evaluating Solid Waste, SW-846, USEPA, Sept. 1986.

Note:

Regulatory Limits based on 40 CFR part 261 subpart C section 261.24, July 1, 1992.

Comments:

La Plata Pond.

Analyst

Review

EPA METHOD 8270 PHENOLS Quality Assurance Report

Client:

QA/QC

Sample ID:

07-07-TCA QA/QC

Laboratory Number:

45921

Sample Matrix: Preservative:

2-Propanol N/A

Condition:

N/A

Project #:

Date Reported:

Date Sampled:

Date Received: Date Analyzed:

Analysis Requested:

N/A 07-07-08

07-10-08

N/A

N/A

Phenois

Blanks & Duplicate Conc (mg/Kg)	In st rument Blank	Method Blank	Detection Limit	Sample	Duplicate	Percent Diff.
o-Cresol	ND	ND	0.005	ND	ND	0.0%
p,m-Cresol	ND	ND	0.005	ND	ND	0.0%
2,4,6-Trichlorophenol	NĐ	ND	0.005	ND	ND	0.0%
2,4,5-Trichlorophenol	ND	ND	0.005	ND	ND	0.0%
Pentachiorophenol	ND	ND	0.005	ND	ND	0.0%

ND - Parameter not detected at the stated detection limit.

References:

Method 1311, Toxicity Characteristic Leaching Procedure Test Methods for

Evaluating Solid Waste, SW-846, USEPA, July 1992.

Method 3510, Separatory Funnel Liquid-Liquid Extraction, Test Methods for

Evaluating Solid Waste, SW-846, USEPA, July 1992.

Method 8041, Phenois, Test Methods for Evaluating Solid Waste, SW-846,

USEPA, Sept. 1986.

Comments:

QA/QC for Sample 45921 - 45925.

Analyst

CHAIN OF CUSTODY RECORD

M O. W

Sample Intact Sample Cool Date 80G A NALYSIS / PARAMETERS (1.814) H9T 7 8310 HAq TCLP with H/P HCI > Received by: (Signature) Received by: (Signature) VOC (Method 8260) 7 7 BTEX (Method 8021) 7 7 (2108 boriteM) H9T Sample No./Volume Preservative of Matrix Containers Hoog to 7 1653 Time 30 11 62 8) 3 3 3 M Date 92270-cap4 LA PLATA POLID N. HAYWOLTI Sort 45922 45925 Sampler Name: 45924 45923 45924 Lab No. Client No.: Sample Time Sample Date Relinquished by: (Signature) Relinquished by: (Signature BACKEROUMD CHEVRON Identification Client Phone No.: Sample No./ Client Address SW 37 SE

ENVIROTECH INC.

Received by: (Signature)

Relinquished by: (Signature)

5796 U.S. Highway 64 • Farmington, New Mexico 87401 • (505) 632-0615

Date: 16-Jul-08

CLIENT:

Envirotech

Lab Order:

0806294

Project:

Chevron

Lab ID:

0806294-01

Client Sample ID: 45921/NE

Collection Date: 6/16/2008

Date Received: 6/19/2008

Matrix: SOIL

Lab ID; Ve00294-01					
Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8082: PCB'8					Analyst: JAT
Aroclor 1016	ND	0,020	, mg/Kg	1	7/2/2008 4:17:21 PM
Aroclor 1221	ND	0.020	mg/Kg	1	7/2/2008 4:17:21 PM
Aroclor 1232	ND	0.020	mg/Kg	1	7/2/2006 4:17:21 PM
Aroclor 1242	ND	0.020	mg/Kg	1	7/2/2008 4:17:21 PM
Aroclor 1248	ND	0.020	mg/Kg	1	7/2/2008 4:17:21 PM
Aroclor 1254	· ND	0.020	mg/Kg	1	7/2/2008 4:17:21 PM
Aroclor 1260 .	ND	0.020	mg/Kg	1	7/2/2008 4:17:21 PM
Surr: Decachloroblphenyl	44.4	15.8-133	%REC	1	7/2/2008 4:17:21 PM
PA METHOD 8310: PAHS					Analyst: DMF
Naphthalone	ND	0.25	mg/Kg	1	7/1/2008 6:13:32 AM
1-Methylnaphthalene	ND	0.25	mg/Kg	1 .	7/1/2008 6:13:32 AM
2-Methylnaphthalene	ND	0.25	mg/Kg	1	7/1/2008 6:13:32 AM
Acenaphthylene	ND	0.25	mg/Kg	1	7/1/2008 6:13:32 AM
Acanaphthene	ND	0.25	mg/Kg	1	7/1/2008 6:13:32 AM
Fluorene	ND	0.030	mg/Kg	. 1	7/1/2008 6:13:32 AM
Phenanthrene	ND	0.015	mg/Kg	1	7/1/2006 6:13:32 AM
Anthracene	ND	0,015	mg/Kg	1	7/1/2006 6:13:32 AM
Fluoranthene	ND	0.020	mg/Kg	1	7/1/2008 6:13:32 AM
Pyrene	ND	0.025	mg/Kg	1	7/1/2008 6:13:32 AM
Benz(a)anthracene	ND	0.010	mg/Kg	1	7/1/2008 8:13:32:AM
Chrysene	ND	0.011	mg/Kg	1	7/1/2008 6:13:32 AM
Benzo(b)fluoranthene	ND	0.010	mg/Kg	1	7/1/2008 6:13:32 AM
Benzo(k)fluoranthene	ND	0.010	mg/Kg	1	7/1/2008 5:13:32 AM
Benzo(a)pyrene	ND	0.010	mg/Kg	1	7/1/2008 6:13:32 AM
Dibenz(a,h)anthracene	ND	0.010	mg/Kg	1	7/1/2008 6:13:32 AM
Benzo(g,h,i)perylene	, ND	0.010	mg/Kg	1	7/1/2008 6:13:32 AM
Indeno(1,2,3-cd)pyrene	. ND	0.10	mg/Kg	1	7/1/2008 6:13:32 AM
Surr: Benzo(e)pyrene	70.5	40.7-93.1	%REC	. 1	7/1/2008 6:13:32 AM

Она	liffers:

Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Maximum Contaminant Level

RL Reporting Limit

Date: 16-Jul-08

CLIENT:

Lab ID:

Envirotech

Lab Order:

0806294

Project: Chevron

0806294-02

Client Sample ID: 45922/NW

Collection Date: 6/16/2008

Date Received: 6/19/2008

Matrix: SOIL

Analyses	Result	PQL	Qual Units	Dk	Date Analyzed
EPA METHOD 8082; PCB'S					Analyst: JAT
Aroctor 1018	ND	0.020	mg/Kg	1	7/3/2008 7:06:34 AM
Aroclor 1221	NO	0.020	/mg/Kg	1	7/3/2008 7:06:34 AM
Aroclor 1232	NO	0.020	mg/Kg	1	7/3/2008 7:06:34 AM
Aroclor 1242	ND	0.020	. mg/Kg	1	7/3/2008 7:08:34 AM
Arodor 1248	ND	0.020	mg/Kg	1	7/3/2008 7:08:34 AM
Araclor 1254	ND	0.020	mg/Kg	1	. 7/3/2008 7:08:34 AM
Arocior 1260	ND	0.020	mg/Kg	1	7/3/2008 7:06:34 AM
Sun: Decachloroblphenyl	39.2	15.8-133	%REC	1	7/3/2008 7:06:34 AM
EPA METHOD 8310: PAHS				•	Analyst: DMI
Naphthalene	ND .	0,25	mg/Kg	1	7/1/2008 7:01:32 AM
1-Methylnephthalene	ND	0.25	mg/Kg	1	7/1/2008 7:01:32 AM
2-Methylnaphthalene	ND	0.25	mg/Kg	1	7/1/2008 7:01:32 AM
Acenephthylene	NO	0.25	mg/Kg	1	7/1/2008 7:01:32 AM
Acertaphthene `	ND	0.25	mg/Kg	` 1	7/1/2008 7:01:32 AM
Fluorene	ND	0.030	mg/Kg	1	7/1/2008 7:01:32 AM
Phenanthrone	ND	0.018	mg/Kg	1 .	7/1/2008 7:01:32 AM
Anthracene	ND	0.015	mg/Kg	1	7/1/2008 7:01:32 AM
Fluoranthene	ND	0.020	mg/Kg	1	7/1/2006 7:01:32 AM
Pyrene	ND	0.028	mg/Kg	1	· 7/1/2006 7:01:32 AM
Benz(a)anthracene	ND	0.010	mg/Kg	1	7/1/2008 7:01:32 AM
Chrysene	ND	0.011	mg/Kg	1	7/1/2006 7:01:32 AM
Benzo(b)fluoranthene	ND	0.010	mg/Kg	1	7/1/2006 7:01:32 AM
Benzo(k)fluoranthene	ND	0.010	mg/Kg	1	7/1/2006 7:01:32 AM
Benzo(a)pyrene	ND	0.010	mg/Kg	1	7/1/2006 7:01:32 AM
Dibenz(a,h)anthracene	ND	0.010	mg/Kg	1	7/1/2008 7:01:32 AM
Senzo(g,h,i)perylene	ND	0.010	mg/Kg	. 1	7/1/2008 7:01:32 AM
Indeno(1,2,3-cd)pyrens	ND	0.10	mg/Kg	1	7/1/2008 7:01:32 AM
Surr: Benzo(e)pyrene	59.0	40,7-93.1	%REC	1	7/1/2008 7:01:32 AM

Anne	.124	

- Value exceeds Maximum Contaminant Level
- 3 Value above quantitation runge
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Page 2 of 5

Date: 16-Jul-08

CLIENT:

Envirotech

Lab Order:

0806294

Project: Chevron

Lab ID: 0806294-03

Client Sample ID: 45923/SE

Collection Date: 6/16/2008

Date Received: 6/19/2008

Matrix: SOIL

1.00 1.05						
Analyses .	Result	PQL	Qual 3	Units	DF	Date Analyzed
EPA METHOD 8082: PCB'S						Anaiyat: JA7
Aroclor 1016	ND	0.020	r	ng/Kg	1	7/3/2008 7:55:39 AM
Aroclor 1221	ND	0.020	r	ng/Kg	1	7/3/2008 7:55:39 AM
Arodor 1232	ŃD	0.020	n	ng/Kgi	1	7/3/2008 7:55:39 AM
Arodor 1242	ŊD	0.020	n	ng/Kg	1	7/3/2008 7:55:39 AM
Aroctor 1248	ND	0.020	n	ng/Kg	1	7/3/2006 7:55:39 AM
Araclor 1264	NO	0.020	· n	ng/Kg	1.	7/3/2008 7:55:39 AM
Aroclor 1260	ND	0.020	· n	ng/Kg	1	7/3/2008 7:55:39 AM
Surr: Decachlorobiphenyl	55.2	15.8-133	,	KREC	1	7/3/2008 7:56:39 AM
EPA METHOD 8310: PAHS						Analyst: DMF
Naphthalene	· ND	0.25	n	ng/Kg	1	7/1/2008 7:49:84 AM
1-Methylnaphthalene	ND	0.25	r	ng/Kg	1	7/1/2008 7:49:34 AM
2-Methylnaphthalene	ND	0.26	rr	ng/Kg	1	7/1/2008 7:49:34 AM
Acenephthylene	ND	0.26	m	ng/Kg	1	7/1/2006 7:49:34 AM
Acenephthene	· ND	0.25	n	ng/Kg	1	7/1/2008 7:49:34 AM
Fluorene	ND	0.030	m	ng/Kg	1	7/1/2008 7:49:34 AM
Phenanthrene	ND	0.018	n	ng/Kg	1	7/1/2008 7:49:34 AM
Anthracene	ND	0.015	n	ng/Kg	. 1	7/1/2008 7:49:34 AM
Fluoranthene	ND	0.020	. 17	ng/Kg	1	7/1/2008 7:49:34 AM
Pyrene	ND	0.025	n	ng/Kg	1	7/1/2008 7:49:34 AM
Benz(a)anthracene	ND	0.010	n	ng/Kg	1	7/1/2008 7:49:34 AM
Chrysone	ND	0.011	n	ng/Kg	1	7/1/2008 7:49:34 AM
Benzo(b)flucranthene	ND	0.010	r	ng/Kg	1	7/1/2008 7:49:34 AM
Benzo(k)fluoranthene	ND	0.010	rr	ng/Kg	1	7/1/2008 7:49:34 AM
Benzo(a)pyrene	ND	0.010	m	ng/Kg	1	7/1/2008 7:49:34 AM
Dibenz(a,h)anthracene	ND	0.010	· m	ng/Kg	1	7/1/2008 7:49:34 AM
Benzo(g,h,l)perylane	ND	0.010	п	ng/Kg	1	7/1/2008 7:49:34 AM
Indeno(1,2,3-cd)pyrene	ND	0.10		ng/Kg	1	7/1/2008 7:49:34 AM
Surr: Benzo(e)pyrene	63.4	40.7-93.1	%	REC	1	7/1/2008 7:49:34 AM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- B Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 16-Jul-08

CLIENT:

Envirotech

Lab Order:

0806294

Project:

Chevron

Lab ID:

0806294-04

Client Sample ID: 45924/SW

Collection Date: 6/16/2008

Date Received: 6/19/2008

Matrix: SOIL

Analyses	Result	PQL	Qual Units	DF	Date Analyzed
EPA METHOD 8082: PCB'S				······································	Analyst: JAT
Aroclor 1016	ND	0.020	mg/Kg	1	7/3/2008 8:45:35 AM
Aracior 1221	ND	0.020	mg/Kg	1	7/3/2008 8:45:35 AM
Aroclor 1232	ND	0.020	mg/Kg	1	7/3/2008 8:46:35 AM
Aroclor 1242	ND .	0.020	mg/Kg	1	7/3/2008 8:45:35 AM
Aroclor 1248	ND	0.020	mg/Kg	1	7/3/2008 8:45:35 AM
Arodor 1254	ND	0.020	- mg/Kg	1	7/3/2008 8:45:35 AM
Arador 1260	ND	0.020	mg/Kg	1	7/3/2006 8:45:35 AM
Surr: Decachlorobiphenyl	63.2	15.8-133	%REC	1	7/3/2008 8:45:35 AM
PA METHOD 8310: PAHS					Analyst: DMF
Naphthalone	ND	0.25	mg/Kg	. 1	7/1/2008 8:37:35 AM
1-Methylnaphthalene	ND	0.25	mg/Kg	1	7/1/2008 8:37:35 AM
2-Methylnaphthalene	ND	0.25	mg/Kg	1	7/1/2008 8:37:35 AM
Acenaphthylene	ND	0.25	mg/Kg	1	7/1/2008 8:37:35 AM
Acenaphthene .	ND	0.25	mg/Kg	1	7/1/2008 8:37:35 AM
Fluorene	ND	0.030	. mg/Kg	1	7/1/2006 8:37:35 AM
Phenanthrens	ND	0.016	mg/Kg	1	7/1/2008 8:37:35 AM
Anthracene	ND	0.015	mg/Kg	1	7/1/2008 8:37:35 AM
Fluoranthens	ND	0.020	mg/Kg	1	7/1/2008 8:37:36 AM
Pyrene	ND	0.025	rng/Kg	1	7/1/2008 8:37:35 AM
Benz(a)anthracene	·ND	0.010	mg/Kg	1	7/1/2008 8:37:35 AM
Chrysene	ND	0.011	mg/Kg	1	7/1/2008 8:37:35 AM
Benzo(b)fluoranthene	ND	0.010	mg/Kg	1	7/1/2008 8:37:35 AM
Benzo(k)fluoranthene	ND	0.010	mg/Kg	1	7/1/2006 8:37:35 AM
Benzo(a)pyrene	ND	0.010	mg/Kg	1	7/1/2008 8:37:35 AM
Dibenz(a,h)anthracene	NĐ	0.010	mg/Kg	1	7/1/2008 8:37:35 AM
Benzo(g,h,l)perylene	. ND	0.010	mg/Kg	1	7/1/2006 8:37:35 AM
Indenc(1,2,3-cd)pyrene	ND	0.10	mg/Kg	1	7/1/2006 8:37:35 AM
Surr: Benzo(e)pyrene	51.6	40.7-93.1	%REC	1	7/1/2008 8:37:35 AM

Qualifiers:

- Value exceeds Maximum Contaminant Level
- E Value above quantitation range
- Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Splike recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- MCL Maximum Contaminant Level
- RL Reporting Limit

Date: 16-Jul-08

CLIENT: Lab Order: Envirotech

0806294

Project:

Chevron

Lab ID: 0806294-05

Client Sample ID: 45925/Background

Collection Date: 6/16/2008

Date Received: 6/19/2008

Matrix: SOIL

Analyses	Result	PQL	Qual	Units	DF	Date Analyzed
EPA METHOD 8082: PCB'S						Analyst: JAT
Aroclor 1016	. N D	0.020		mg/Kg	1	7/3/2008 9:34:44 AM
Aroctor 1221	ND	0.020		mg/Kg	1	7/3/2008 9:34:44 AM
Aroclor 1232	ND	0.020		mg/Kg	1	7/3/2008 9:34:44 AM
Aroclor 1242	ND	0.020		mg/Kg .	1	7/3/2008 9:34:44 AM
Arccior 1248	ND	0.020		mg/Kg	1	7/3/2008 9:34:44 AM
Aroclor 1254	. ND	0.020		mg/Kg	1	7/3/2008 9:34:44 AM
Aredor 1280	ND	0.020		mg/Kg	1	7/3/2006 9:34:44 AM
Surr: Decachlorobiphenyl	76.2	15.8-133		%REC	1	7/3/2006 9:34:44 AM
EPA METHOD 8310: PAHS						Analyst: DMF
Naphthalene	ND	0.25	•	mg/Kg	1	7/1/2008 9:25:36 AM
1-Methylnaphthalene	ND	0.25		mg/Kg	1	7/1/2006 9:25:36 AM
2-Methylnaphthalene	ND	0.26		mg/Kg	1	7/1/2008 9:25:36 AM
Acenaphthylene	ND	0.25		mg/Kg	1	7/1/2008 9:25:38 AM
Acenaphthene	ND	0.25		mg/Kg	1	7/1/2008 9:25:36 AM
Fluorene	, ND	0.030		mg/Kg	1	7/1/2008 9:25:36 AM
Phenanthrene	ND	0.015		mg/Kg	1	7/1/2006 9:25:36 AM
Anthracene	ND	0.015		mg/Kg	1	7/1/2008 9:25:36 AM
Fluoranthene	ND	0.020	•	mg/Kg	1	7/1/2008 9:25:36 AM
Pyrene	ND	0.025		mg/Kg	1	7/1/2008 9:25:36 AM
Benz(a)anthracene	ND	0.010	•	mg/Kg	1	7/1/2008 9:25:36 AM
Chrysene	· ND	0.011		mg/Kg	1	7/1/2008 9;25:36 AM
Benzo(b)fluoranthene	ND	0.010		mg/Kg	1	7/1/2006 9:25:36 AM
Benzo(k)fluorenthene	ND	0.010		mg/Kg	1	7/1/2008 9:25:36 AM
Benzo(a)pyrene	ND	0.010		mg/Kg	1	7/1/2006 9:25:36 AM
Dibenz(a,h)anthracene	ND	0.010		mg/Kg	1	7/1/2008 9:25:36 AM
Benzo(g,h,i)perylene	ND	0.010		mg/Kg	1	7/1/2008 9:25:36 AM
indeno(1,2,3-cd)pyrene	ND	. 0.10		mg/Kg	1	7/1/2008 9:25:36 AM
Surr: Benzo(e)pyrene	38.5	40.7-93.1	S	%REC	1	7/2/2008 8:50:32 AM

Qua	UL I	tr:
-----	------	-----

Value exceeds Maximum Contaminant Level

B Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

MCL Meximum Contaminant Level

RL Reporting Limit

BENCHMARK ANALYTICS, INC. 4777 Saucon Creek Road Center Valley, PA 18034-9004

Work Order: 08063010

PHONE (810) 974-8100 FAX (810) 974-8104

	NAME: COMPANY: ADDRESS:	Andy Freeman Hall Environmen 4901 Hawldns N Albuquerque, NA	E, Suite D				PAC POI	3E: 1 of 2		
	PHONE: FAX:	(505) 345-3976 (505) 345-4107	•		FËST RE	PORT	PW	\$ ID#		
-	0806294	OR LAB BY: TJM	A	D/	ATE: 08/2	0/2008 9:30			1	Page 1 of 2
		06294-01B, 45921/ D BY: Cilent		Sample Tim	Lab I no 06/16/200	ID; 08093010-001A 08 0:00	Grab			,
	<u>Test</u> Radiun Radiun	1-226 13	19.2 ± 11.94 34.0 ± 96.95	47,23	<u>Linita</u> pCl/Kg pCl/Kg	Maihod EPA 903.0 EPA 904.0	MCL.	Analysis Statt .06/27/08 9:05 07/11/08 8:00	07/08/08	Amenat.* BH-CV CCA-CV
		08294-0219, 45922/ D BY: Client		Sample Tim	Lab (e 08/16/200	D: 08063010-002A	Grab	STREET - STREET	ari baydaya paysa gagan da 18 a a a	delibre state.
	<u>Test</u> Redium Redium	-226 14	sult Uncert. 5.8 ± 12.06 3.4 ± 110.2	47,79	<u>Units</u> pCI/Kg . pCI/Kg	<u>Method</u> EPA 903.0 EPA 904.0	MCL	Analysis Start 06/27/06 9:05 07/11/08 8:00	Anatysis En 07/06/08 07/15/08	BH-CV CCA-CV
-		06294-03B, 45923/ D BY: Client		Sample Tim	Lab /i e 08/16/200	D: 08063010-003A 8 0:00	Greb			A-1
	Tasi Radium Radium		8.5 ± 12,84	44.84	Linka pc/Kg pc/Kg	Method EPA 903.0 EPA 904.0	MCL.	Analysis Start 06/27/08 9:05 07/11/08 8:00	Analysis En 07/08/06 07/15/06	Anshat* BH-CV CCA-CV
		16294-04B, 46924/ 6 DBY: Client		Sample Tim	Lab II e 06/16/200	D: 08063010-004A 6 0:00	Grab		*********	
	<u>Test</u> R adi um Radium		8.6 ± 11.92	MDA 46.98 132.5	Units pCl/Kg pCl/Kg	Method EPA 903.0 EPA 804.0	MCL.	Analysis Start 06/27/08 9:06 07/11/08 6:00	Analysis End 07/06/06 07/15/08	BH-CV CCA-CV

REMARKS:

SEND DATA TO:

The above test procedures meet all the requirements of NELAC and relate only to these samples. * CV = Benchmark Analytics, Inc. Center Valley, PA; SA = Benchmark Analytics, Inc. Sayre, PA

				4		1.	-0.03	,				
MANAGER			 	_ (/	إنك	Mes	•	 	 DATE:	7/16/2008	

BENCHMARK ANALYTICS, INC. 4777 Saucon Creek Road Center Valley, PA 18034-9004

Work Order: 08063010

08063010

2 of 2

PHONE (610) 974-8100 FAX (610) 974-8104

SEND DATA TO:

NAME: Andy Freeman

COMPANY: Hall Environmental Analysis Lab, Inc.

ADDRESS:

4901 Hawkins NE. Suite D

Albuquerque, NM 87109-4372

PAGE: PO#:

WO#:

PWS ID#

PHONE: FAX:

(505) 345-3975

(505) 345-4107

0806294

RECEIVED FOR LAB BY: TJM

DATE: 08/20/2008 9:30

TEST REPORT

Page 2 of 2

SAMPLE: 0806294-05B, 45925/Buckground **SAMPLED BY: Client**

Lab ID: 08063010-006A Sample Time 06/16/2008 0:00

Test Redium-226 Radium-228

Result 263.5 ± 16.26

336.5

Units pCl/Kg 46.05 131.7 pCVKg

Method EPA 903.0 **EPA 904.0**

MCL Analysis Start Analysis End Analysis

08/27/08 9:05 07/08/06 BH-CV 07/11/08 8:00

07/15/08 CCA-CV

The above test procedures meet all the requirements of NELAC and relate only to these samples. * CV = Benchmark Analytics, Inc. Center Valley, PA; SA = Benchmark Analytics, Inc. Sayre, PA

MANAGER

climel

DATE:

Benchmark Analytics, inc.

4777 Saucon Creek Road Center Valley, PA 18034

Phone: (610) 974-8100 Fax: (610) 974-8104 Work Order: 08063010

SEND DATA TO:

Andy Freeman

COMPANY: Hall Environmental Analysis Lab, Inc.

ADDRESS:

4901 Hawkins NE, Suite D

Albuquerque, NM 87109-4372

WO#:

08063010

PAGE:

1 of 1

PO#:

PHONE: FAX:

(505) 345-3975 (505) 345-4107

TEST REPORT

PWS ID#

0808204

RECEIVED FOR LAB BY: TJM		DATE: 06/20/2008 9:30			P	age 1 of 1
SAMPLE: 0806294-01B, 45921/NE SAMPLED BY: Client		Lab ID: 08063010-001A Sample Time: 08/18/2008 0:00	Grab			
Isal Uranium Uranium	<u>Result</u> 987 µg/Kg 661 pCl/Kg	EPA 200.8	RL.	Analysis Start 06/24/08 10:00 06/24/06 10:00	Analysis End 08/25/08 06/25/08	Analysi * JRA-CV JRA-CV
SAMPLE: 0806294-02B, 48922/NW SAMPLED BY: Clent	. ##*****	Lab ID: 08083010-002A Sample Time: 06/18/2008 0:00	Grab	THE WAS A RESERVE THE E CO.		di sterri e v
<u>Test</u> Urankım Urankım	<u>Reauli</u> 913 µg/Kg 612 pCVKg		RL	Analysis Start 06/24/08 10:00 06/24/05 10:00	<u>Analysis End</u> 06/25/08 06/25/06	Analyst: JRA-CV JRA-CV
SAMPLE: 0806294-03B, 45923/8E SAMPLED BY: Client		Lab ID: 08063010-003A Sample Time: 06/16/2008 0:00	Grab			
<u>Test</u> Urantum Uranium	<u>Result</u> 906 µg/Kg 607 pCl/Kg	<u>Method</u> EPA 200.8 EPA 200.8	· <u>RL</u>	Analysis Start 06/24/06 10:00 06/24/06 10:00	Analysis End 08/26/08 08/26/08	Analysi.* JRA-CV JRA-CV
SAMPLE: 0806284-04B, 45924/SW SAMPLED BY: Client		Lab ID: 08063010-004A Sample Time: 06/16/2006 0:00	Grab			· had obere
<u>Test</u> Uranium Uranium	<u>Result</u> 852 µg/Kg 571 pCVKg	<u>Method</u> EPA 200.8 EPA 200.8	BL	Analysis Start 08/24/06 10:00 08/24/06 10:00	Analysis End 06/25/06 06/25/08	Analyst * JRA-CV JRA-CV
SAMPLE: 0808294-05B, 45925/Backgri SAMPLED BY: Client	ound	Lab ID: 08063010-008A Sample Time: 06/16/2008 0:00	Grab	ili.di t iz - Mil-A alkabigad () ; alaman miş yê ye () mir diri	loue from the species and an are as as a	* 25 base
<u>Test</u> Uranjum	Reevit 602 µg/Kg	<u>Mathod</u> EPA 200.8	RL.	Ansiyeis Start 06/24/08 10:00	Anetysis End 05/25/06	Analysi *

REMARKS:

MAI

Uranium

The above test procedures meet all the requirements of NELAG and relate only to these samples. * CV = Benchmark Analytics, Inc. Center Valley, PA; SA = Benchmark Analytics, Inc. Sayre, PA

	•
IAGER	clime
1いかだい	

DATE: 7/16/2008

JRA-CV

08/24/08 10:00

EPA 200.8

Benchmark Analytics, Inc.
CLERT: Hall Environmental Analysis Lab, Inc. 08063010

0806294 Work Orden Project:

Date: 16-Jul-08

ANALYTICAL QC SUMMARY REPORT

TestCode: RA226_903.0

Sample ID: BLANK	SampType: MBLK	Test	TestCode: RA226_903.0 Units: pCff.	903.0	Units: pc	745	Prep Date:	¥		RunNo: 24702	g	-
Client ID: PBW	Batch ID: R24702	£	TestNo: E983.0	_			Analysis Date:		6/27/2008	Sechio: 466832	ä	
Analyte	Resutt	헕	SPK value	SPK Ref Val	ef Val	%REC		HighLin	LowLimit HighLimit RPD Ref Val	%RPD	RPCL IME	D.
Radiun-226	2070											
Serrote ID: EXTR.BLANK	SampType: MBLK	Test	TestCode: RAZZE 908.0 Units: pCVI.	903.0	Sept.	5	Presp Date:	ij		RunNo: 24742	70	
Cleater Prow	Batch ID: R24702	į .	TestNo: E903.0	_			Analysie Date: 6/27/2008		27/2008	SeqNo: 465833	833	
Analyte	Result	ğ	SPK value	SPK Ref Val	er Val	MREC		Highlim	LowLimit Highlimit RPD Ref Val	%RPD	%RPD RPDLimit	Oreg
Radiun-226	-0.02											
Semple ID: LCS	SampType: LC6	120	TestCode: RA226_903.0	903.0	Units: pCut.	Ä	Prep Dute:	iste.		RunNo: 24702	702	
Client ID: LCSW	Balch ID: R24702	i <u>r</u>	Testivo: Esos.o				Analysis Date:		6/27/2008	SeqNo: 466654	752	,
Anabyte	Result	友	SPH value	SPK Ref Val		*REC	LOWLINE		HighLimit RPD Ref Val	%RPD	RPOLIMIT	
Radium-226	8.17		10.86		٥	96.0	74	128				
Semple ID: LCS DUP1	SampType: LCSD	Test	TestCode: RA228_909.0 Units: pCif.	9000	z i	ř	Prep Date:	ää		RunNo: 24702	25.	
Client ID: LCSS02	Batch ID: R24702	4	Testilio: E903.0	•			Analysis Date:		8002/12008	SaqNo: 465836	9836	
Analyte	Result	헕	SPK value SPK Raf Val	SPK	bef Val	%REC		HighLin	LowLimit HighLimit RPD Ref Val	94RPD	MRPD RPDLIMIT	
Radium-226	80'8		10.66		٥	85.0	74	#	128	2.00	O	
Sample ID: LCS DUP2	SampType: LCSD	7	TestCode: RAZZ6_903.0	903.0	Unibs: pCf.	×	Prep Date	ğ		- RunNo: 24702	25	
Client ID: LCSS82	Betch IC: K24702	Ľ	Testific: E903.0	•			Analysis Date		6/2772088	SeqNo: 469836	9836	
Analyte	Result	정	SPK value	SPK Ref Val	Sef Val	%REC	LowLimit		HighLimit RPD Ref Val	SARPD	RPDL imit	Q
Radium-228	9.64		10.56	_	٥	80.0	74	2	128	9.00	0	

PHQC Sample pel was >2. Due to matrix effects, not all quality

Page 1 of 3

Analyse denoted to the associated Method Blank Analyze reported below quentitation limits Quelifiers:

Lend based paint is defined as a paint with greater that Vatue above quantitation range Value above calibration range but within annually verifie LBP Limit of detection increased due to matrix interference an E D. Limit of describe increases due to matrix invafarence at L. Value above californion range but within amounty verific Q. Due to matrix effects, not all quality control parameters

R RPD outside accepted necevery lineits

01069080 0806294 Work Order: CLIENT: Project

Hall Environmental Analysis Lab, Inc. ----

ANALYTICAL QC SUMMARY REPORT

.....

.

TestCode: RAZ28_904.0

O DES KRPD RPDLIMIK Secho: 472390 RunNo: 26014 Rundo: 25014 LOWLING Highlimit RPD Ref Val Analysis Date: 7/11/2008 Prep Date: Prep Dete: *REC TestCode: RAZZB_804.0 Units: pciril TestCode: RAZZ8_904.0 . Units: pCif. SPK value SPK Ref Val TestNo: B804.0 헎 Batch (C: R25014 SampType: MBLK SampType: LCS Zesult. 0.28 Sample ID: BLANK Cfent ID: PBW Sample ID: LCS Radium-228 Analyte

Ö

%RPD RPDLImit

LOWLINE HIGHLINK RPD Ref Val

Z. A. 8

SPK value SPK Ref Val

젍

Rest

11.42

10.74

Radium-228

Analyte

TestMc: E994.0

Batch ID: R25014

Cleat ID: LCSW

ž

24

Analysis Date: 771172008

SeqNo: 472982

Page 2 of 3 Load besed paint is defined as a paint with greater than Value above gazztitation rango Value above calibration reago but within semially verifie LES Linst of detection incressed due to matrix interference as

Analyte detocted in the associated Method Blank

Qualifferr;

Analyse reported below quantitation limits

RPD outside accepted recovery timits Due to matrix efforts, not all quality control parameters 0 PHIQC Sample pH was >2. Due to matrix effects, not all quality

Hall Environmental Analysis Lab, Inc. CLIENT:

08063010 Work Order:

0806294 **Project:**

TestCode: U_200.8

ANALYTICAL QC SUMMARY REPORT

Sample ID: MBLK ES 062408 A	Samp?ype: MBLK	TestCode: U_200.	8 Units: poffq		Prep Date:		RunNo: 24170	
Client ID: PBW	Batch t.D.: E8 062408 A TestNo.: E200.8	TestNo: E200.8			Analysis Dete: 6/24/2006	3/24/2008	SeqNa: 456960	
Analyte	Result	PQL SPK value	SPK value SPK Ref Val	KREC	LowLimit HighLi	KREC LOWLING Highlink RPD Ref Val	%RPD RPDLimit Qual	nit Quel
Paning	< 212	212						

Urseiten	< 212	212									
Sample IC: 08063018-501A IES Cient ID: 0806284-01B, 45921AVE	SampType: #15 Batch ID: ES 062406 A	1	TestCode: U_ZBB.6 TestNo: EZBB.8	Units: Marka	2	Prep Date: Analysis Dete:	Prep Date: 4/2008	2008	Runno: 24170 Secino: 455963	2 28	
Analyte	Result	<u> </u>	PK value	POL SPK value SPK Ref Val	%REC	LowLimit	HighLimit	WREC LOWLINK HIGHLIMIT RPD Ref Val	SKRPD	WAPP RPDLIMIK Qual	Que
Uranium	16900	0ZZ	17620	396.5	90.0	æ	130 081				
Semple ID: 08063016-081A MSD Client ID: 0806294-01B, 45321ARE	SampType: DUP Batch IC: ES 062408 A	1	TestCode: U_200.8 TestNo: E200.8	Units: µg/Kg	2	Prep Date: Analysis Date:	Prep Date: Analysia Date: 6/24/2008	2008	Runino: 24170 Segno: 465854	72	
Anatyte	Result	2 d	PK value	SPK value SPK Ref Val	SAREC.	LowLimit	HighLimit	WREC LOWLIMIT HighLimit RPD Ref Val	%RPD	%RPD RPDLIME Qual	er o
Unabium	15800	902						0	٥	ส	×

Limit of detection increased due to matrix interference an Analyte desected in the associated Method Blank Analyte repected below quantitation limits Д Quelificati

Load besed paint is defined as a paint with greater than Value above quantitation range Value above calibration range but widtin samually verifie LBP ø PHQC Sample pit was >2. Due to matrix effects, not all quality

Date: 16-Jul-08

QA/QC SUMMARY REPORT

Client:

Envirotech

Project: Chevron

Work Order:

0806294

									0000234
Analyte	Result	Units	PQL	- %Rec	LowLimit H	i g hLimit	%RPD	RPD	Limit Qual
Method: EPA Method 8082	: PCB's							٠.	
Sample ID: MB-16281		MBLK			Batch (D:	16281	Analysis I	ete:	7/2/2008 1:51:06 PM
Aracter 1016	ND	mg/Kg	0:020						
Arodor 1221	ND	mg/Kg	0.020						
Aroclor 1232	ND .	mg/Kg	0.020						
Arocior 1242	ND	mg/Kg	0,020						
Arocior 1248	ND	mg/Kg	0.020						
Aroclor 1254	ND	mg/Kg ⋅	0.020						
Aroclor 1260	ND	mg/Kg	0.020						
Sample ID: LC8-16821	•	LCS			Batch ID:	16281	Analysis D	ato:	7/2/2008 2:40:10 PM
Aroctor 1221	ND	mg/Kg	0.020						
Aroclor 1232	ND	mg/Kg	0.020						
Arocior 1242	ND	mg/Kg	0.020						
Aroclor 1248	ND	mg/Kg	0.020						
Aroclor 1254	ND	mg/Kg	0.020						
Aroctor 1260	0.06070	mg/Kg	0.020	48.6	23.7	105			
Sample ID: LCSD-16821	•	LCSD			Batch ID:	16281	Analysis D	ate:	7/2/2008 3:28:45 PM
Aroclor 1221	ND	mg/Kg	0.020				0	0	,
Aracter 1232	ND	mg/Kg	0.020				0	0	
Aroclor 1242	ND	mg/Kg	0.020				0	0	
Aroclor 1248	ND	mg/Kg	0.020				0	0	
Aroclor 1254	ND	rng/Kg	0.020				0	0	
Aroctor 1260	0.07145	mg/Kg	0.020	57.2	23.7	105 ·	16.3	20	

Qualiflers:

E Value above quantitation range

Analyte detected below quantitation limits .

R RPD outside accepted recovery limits

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

Spike recovery outside accepted recovery limits

QA/QC SUMMARY REPORT

Client: Project: Envirotech

ect: Chevron

Work Order:

0806294

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD	RPOLIM	it Qual
Method: EPA Method 8310: PAI	ts				* 4 *		A b t - 0		
Sample ID: 0806294-05AMSD		MSD			Batch		Analysis D		/2008 11:01:36 A
Naphthalene	0.3830	mg/Kg	0.25	38.3	17.9	67 .1	12,4	20	
1-Methylnaphthalene	0.4088	mg/Kg	0.25	40.9	20.7	66.4	7.65	20	
2-Methylnaphthalene	0,3978	mg/Kg	0.25	39.8	21.4	67.3	8.43	20	
Acenaphthylene	0.4149	mg/Kg	0.25	41.5	26.2	82.1	4.32	20	
Acensphthene	0.4202	mg/Kg	0.25	42.0	25	74.4	0.770	20	
Fluorene	0.04375	mg/Kg	0.030	43.8	25.2	82	1.15	20	
Phenanthrene	0.02700	mg/Kg	0.015	44.7	25.1	93.9	0	20	
Anthracene	0.02450	mg/Kg	0.015	44.7	25.1	92.6	2.08	20	
Fluoranthene	0.04800	mg/Kg	0.020	47.9	28.5	99	1.05	20	
Pyrene	0.04300	mg/Kg	0.025	43.0	32.3	98.3	7.23	20	
Benz(a)anthracene	ND	mg/Kg	0.010	45.0	-13.B	187	0	. 20	
Chrysene	0.02300	mg/Kg	0.011	45.7	45.7	91.4	0	20	
Benzo(b)fluoranthone	ND	mg/Kg	0.010	56.0	42	100	0	20	
Benzo(k)fluoranthene	NID	mg/Kg	0.010	48.0	43.3	99.9	0	20	
Benzo(a)pyrena	ND	mg/Kg	0.010	65.7	46.7	101	0	20	
Dibenz(a,h)anthracene	ND	mg/Kg	0.010	40.0	50.2	97	0	20	8 .
Benzo(g,h,i)pelylene	ND	mg/Kg	0.010	44.0	51.5	101	0	20	9
Indeno(1,2,3-cd)pyrene	ND	mg/Kg	0.10	137	23.2	158	0	20	
Sample ID: MB-16312		MBLK			Batch I	D: 16312	Analysis Do	ite: 6/2	6/2008 1:55:53 A
Naphthalene	ND	mg/Kg	0.25				•		
	NO	mg/Kg	0.25						
1-Methylnsphthalene	ND	mg/Kg	0.25						
2-Methyinaphthalene	ND	mg/Kg	0.25						
Acenaphthylena	ND	mg/Kg	0.25						
Acensphthene	ND		0.030						
Fluorene	ND	mg/Kg mg/Kg	0.030				•	,	•
Phenanthrene			0.015						
Anthracene	ND	mg/Kg							
Fluoranthene	NO NO	mg/Kg	0.020						
Ругепе	ND	mg/Kg	0.025						
Benz(a)anthracene	ND	mg/Kg	0.010						
Chrysene	ND	mg/Kg	0.011 0.010						
Benzo(b)fluoranthene	ND	mg/Kg	0.010						
Benzo(k)fluoranthene	ND	mg/Kg	0.010						
Benzo(a)pyrene	ND	mg/Kg	0.010						
Dibenz(a,h)anthracene	ND	mg/Kg	0.010		•				
Benzo(g,h,i)perylene	ND	mg/Kg	0.010						
indeno(1,2,3-cd)pyrene	ND	mg/Kg	0.10				A		0.0000 0.40.50 A
Sample ID: LCS-16312		LCS			Batch 1		Analysis D	iu: 6/2	6/2008 2:43:52 A
Naphthalene	0.7582	mg/Kg	0.25	75.6	30.1	90.4			
1-Methylnaphthalene	0.7680	mg/Kg	0.25	78.8	31.1	88.5			
2-Methylnaphthalene	0.7670	mg/Kg	0.25	76.7	32.2	89			
Acenaphthylene	0.7011	mg/Kg	0.25	70 .1	29.5	94.2			
Acenaphthene	0.7748	mg/Kg	0.26	77.5	35.6	89.7			
Fluorene	0.07600	mg/Kg	0.030	76.0	36.9	90.7			

Qualiflere

Page 2

P Value above quantitation range

Analyte detected below quantitation limits

R RPD outside accepted recovery firmits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

S Spike recovery outside accepted recovery limits

Date: 16-Jul-08

QA/QC SUMMARY REPORT

Client:

Envirotech

Project: Chevron

Work Order:

0806294

			Units	PQL	%Rec	LOWEIIII	HighLimit	%RPD F		t Qual
	Method: EPA Method 8310: PAI Sample ID: LCS-16312	Hs	LCS			Batch I	D: 16312	Analysis Date		6/2008 2:43:52 AM
٠.,	•	0.00075		0.04#	70.4			Allaysis Dale	. 0/2	U12040 2.40.02 AM
:	Phenanthrene	0.03875 0.03776	mg/Kg	0.015	73.1 75.0	37.2 -37.4	95.3 95.4			
	Anthracene	0.03775	mg/Kg	0.015 0.020	75.0 81.0	30.4	97.8			
	Fluoranthene	0.08125	mg/Kg mg/Kg	0.025	81.2	33.3	100			
	Pyrene Benz(a)anthracene	0.00120 ND	mg/Kg	0.010	77.6	38.9	102			
:	Chrysene	0.03900	mg/Kg	0.011	77.5	24.2	100			
	Benzo(b)fluorantherie	ND	mg/Kg	0.010	78.0	35.5	102			
	Benzo(k)fluoranthene	ND	mg/Kg	0.010	78.0	30.4	101			
	Benzo(a)pyrene	ND	mg/Kg	0.010	75.6	29.6	112			
	Dibenz(a,h)anthracene	ND	.mg/Kg	0.010	76.0	29.3	108			
	Benzo(g,h,i)perylene	ND	mg/Kg	0.010	78.0	21.3	118			
	Indeno(1,2,3-cd)pyrene	ND	mg/Kg	0.10	81.9	18.6	112			
	Sample ID: LCSD-16312	••-	LCSD		••	Batch I		Analysis Date:	6/26	V2008 3:31:56 AM
	Naphthalene	0.5798	mg/Kg	0.25	58.0	30.1	90.4	26.4	35	
	1-Methylnaphthalene	0.5788	mg/Kg	0.25	57.9	31.1	88.5	28.1	35	
	2-Methylnaphthalene	0.5748	mg/Kg	0.25	57.5	32.2	89	28. 7	35	
	Acenaphthylene	0.5273	mg/Kg	0.25	52.7	29.5	94.2	28.3	35	
-	Acenaphthene ·	0.5745	mg/Kg	0.25	57.A	35.6	89.7	29.7	35	
1	Fluorene	0.05875	mg/Kg	0.030	50.8	36.9	90.7	29.0	35	
	Phenanthrene	0.02700	mg/Kg	0.015	53.7	37.2	95.3	30.6	35	
: .	Anthracene	0.02775	mg/Kg	0.015	55.2	37.4	95.4	30.5	35	
:	Fluoranthene	0.06300	mg/Kg	0.020	62.8	30.4	97.8	25.3	35	
	Pyrene	0.05900	mg/Kg	0.025	59.0	33.3	100	31.7	35	
	Benz(a)anthracene	ND	mg/Kg	0.010	57.5	38.9	102	0	36	
	Chrysene	0.02925	mg/Kg	0.011	58.2	24.2	100	28.6	35	
-	Benzo(b)fluoranthene	ND	mg/Kg	0.010	58.0	35.5	102	0	35	
	Benzo(k)fluoranthene	ND	mg/Kg	0.010	56.0	30.4	101	0	35	
	Benzo(a)pyrene	ND	mg/Kg	0.010	59.7	29.6	112	0	35	
	Dibenz(a,h)anthracene	ND	mg/Kg	0.010	58.0	29.3	108	0	35	
	Benzo(g,h,l)perylene	ND	mg/Kg	0.010	60.0	21.3 18.5	116 112	0	35 35	
	Indeno(1,2,3-çd)pyrene	ND	mg/Kg <i>M</i> S	0.10	59.8	Batch II		0 Analysis Date:		2008 10:13:36 AM
	Sample ID: - 0606294-05AMS Naphthalene	0.4335	mg/Kg	0.25	43.4	17.9	<i>5.</i> 10312 87.1	Allelysis Date:	77 17	2006 TU. 15.36 ANI
	1-Methylnaphthalene	0.4412	mg/Kg	0.25	44.1	20.7	66.4			
	2-Methyinaphthalene	0.4328	mg/Kg	0.25	43.3	21.4	67.3			
	Acenaphthylene	0.4332	mg/Kg	0.25	43.3	26.2	82.1			
	Acenaphthene	0.4235	mg/Kg	0.25	42.4	25	74.4			
	Pluorene	0.04325	mg/Kg	0.030	43.3	25.2	82			
,	Phenanthrene	0.02700	mg/Kg	0.015	44.7	25.1	93.9			
	Anthracena	0.02400	mg/Kg	0.016	43.7	25.1	92.6			
	Fluoranthene	0.04750	mg/Kg	0.020	47.4	28.5	99			
	Pyrene	0.04000	mg/Kg	0.025	40.0	32.3	98.3			
	Benz(a)anthracene	ND	mg/Kg	0,010	45.0	-13.8	167			
	Chrysene	0.02300	mg/Kg	0.011	45.7	45.7	91.4			

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- R RPD outside accepted recovery limits

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- S Spike recovery outside accepted recovery limits

Page 3

Date: 16-Jul-08

QA/QC SUMMARY REPORT

Client:

Envirotech

Project:

Chevron

Work Order:

0806294

Analyte	Result	Units	PQL	%Rec	LowLimit	HighLimit	%RPD RPI	DLImit Qual
Method: EPA Method 8310: P. Sample ID: 0806294-05AMS	Alts	MS			Batch	ID: 16312	Analysis Date:	7/1/2008 10:13:36 AM
Benzo(b)fluoranthene	ND	mg/Kg	0.010	50.0	42	100		
Benzo(k)fluoranthene	ND	mg/Kg	0.010	40.0	43.3	99.9	•	8
Велио(в)ругеле	ND	mg/Kg	0.010	51.8	46.7	101	•	
Dibenz(a,h)anthracene	ND	mg/Kg	0.010	44.0	<i>5</i> 0.2	97		8
Benzo(g,h,i)perylene	ND	mg/Kg	0.010	66.0	51.5	101		·
Indeno(1,2,3-cd)pyrene	ŅD	mg/Kg	0.10	154	23.2	168		

Qualifiers:

R RPD outside accepted recovery limits

S Spike recovery outside accepted recovery limits

B Value above quantitation range

J Analyte detected below quantitation limits

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

Sample	Rec	elpt Ci	hecklist				
Client Name ENVIROTECH	•		Date Receive	d:		6/19/2008	
Work Order Number 0808294	-		Received by	: AT		1	•
1106				ibele checked	by:	AT	
Checklist completed by: Signature Signature	Т	Date	119/08			ir ddels	
	1		•				
Matrix: Carrier name	Grey	hound	•				
Shipping container/cooler in good condition?	Yes	V	No 🗆	Not Present			
Custody seals intact on shipping container/cooler?	Yes	\square	No 🔲	Not Present		Not Shipped	
Custody seals intact on sample bottles?	Y68		No 🗀	N/A			
Chain of custody present?	Yes	\square	No 🗀				
Chain of custody signed when relinquished and received?	Yes	\mathbf{Z}	No 🗆				
Chain of custody agrees with sample labels?	Yes	\mathbf{Z}	No 🗀				
Samples in proper container/bottle?	Yes	Ø	No 🗆				
Sample containers intact?	Yes	Z	No 🗆				
Sufficient sample volume for indicated test?	Yes	\square	No 🗆	•			
All samples received within holding time?	Yes		No 🗀				
Water - VOA vials have zero headspace? No VOA vials aubit	milted		Yes 🗆	No □			
Water - Preservation labels on bottle and cap match?	Yes		No 🗀	N/A 🗹			
Water - pH acceptable upon receipt?	Yes		No 🗆	NA 🗹	•		
Container/Temp Blank temperature?		1*	<6° G Acceptable			•	
COMMENTS:			If given sufficient	time to cool.			
			•				
•							
					==:		
•							
Client contacted Date contacted:			Dom	on contacted		•	
Client contacted Date contacted:			rois	OH COMMENSAGE			
Contacted by: Regarding:							
Comments:							
Corrective Action							
	 8						
						<u> </u>	

								(N 10	Y) selddug //	1		Ė				_			1	1]
	HALL ENVIRONMENTAL ANALYSIS LABORATORY								चउट	1	2	>	7	7	\dashv	\dashv		+	+	+			
}	FE	ċ	:	7		8-	C Z +	727	Gadium	2	>	7	2	>.	寸			1	+	†			-
Γ	⊒ \$		8	7		· .	Ş		الصينيي	2	2	7	2	>						Ŀ		0	,
}	₹ <u>0</u>	چ	M 87	410	_			(AC	V-imaë) 0798				·									e	
[TRONME:	- 18	Z	505-345-4107	Reguest	: :	7	:	(AOV) 8005£	1								_		1	ړ اـ	786	ľ
	FI	www.hallenvironmental.com	Albuquerque, NM 87109	505				<u> </u>	bioliseq 1806						_	_	_		4	-	┧ `	1-	ŀ
١	EN	, in	bug	뛼	Analysis	(*05")			ho AMY) 0188 1,10,7) snoin/				·		-	\dashv	\dashv	-	+	+	- ; ;	6	
	. Ш 🛼	allen	.: i		Ana	· ·	1		EDC (Method		_	7	7	<u>ر د</u>	+	-		\dashv	+	+	+	#04 T	1
1-	33	*	N S	397			ř.		borteM) 80					- 1	_	┪	ᅱ		+	+		ৱ	
	35	*	wkin	385					DorteM) H91	ļ					\dashv	7	-	+	\dagger	+	-		
F**.	= 7 m		4901 Hawkins NE	Tel. 505-345-3975		(lesei0	(Gas/	8910	B bodieM Hq1						_	7		7	一	\top	-	•	
			96	Ē		(vino a	H (Ga	lфт + :	BTEX + MTB												Pemarks		l
1						(150	8) e'B	MT +	BTEX + MTB												<u></u>		
					:		1.			-	ا	W	3	N		;]	İ	.			80%	3	1
г									ALNo.	ŀ	12). m 'i	3	-17					.	-	2/3	53	l
		. •	. • }		_	:			HEAL NO	4					\cdot						1		I
		•	. ,	7000]	3	HE												1	7	١
	1.7			ζ	5	6.77	٠ ·	3	4	\					_	4		:	\downarrow	+	_} '	1	l
		· ·			5		· .	34	Preservative Type	·	:::										1	2 2	l
			ξ	}	- -		₹ :	T M	eserva Type	2			÷	٦						}			۱
	and Time	ø.	Cheuran	7	1001	Project Manager	nrsthe.	2		<u> ا</u>						_	4	4	+	<u> </u>	*	¥ .	$\frac{1}{2}$
	Turn-Around	Project Name:	5			Ma d	5		Container Type and #												1		
_	Tum-Arou	oject		Project #.		oject		Sampler:	Contain Type an	3-40	-			4					-		1.3		١
	2 -	<u>ā</u>	-	å	_	-		ഗ്	Z C	1,0				-41	\dashv	\dashv	\dashv	+	+	+	- 9	7	
	- I					CLUCITED @ CONTRACTORS	2	1 1	۵		,			8							9	φ	
••	ğ	; · .	اهر			420	🗆 Level 4 (Full Validation)		Sample Request ID	12	2	SE	SN	Becker							4		
	2	/		36	Casa dels	ONE	Valic		nbe	1	~	, , ,	3/	8						:	=		
<i>::</i>	A		4	۶٤ ع	Q C	0	£		6	۱	N	₩.	-,					ľ			<u> </u>	Š	Ì
-	8		7		4	g	4		dua	45921	45922	45923	92,	32.	-			. :	\cdot		peds		I
	2 2		acatt cri	7		470	<u> </u>		Ø	 	13	45	45824	45925	1						Refinquished by	Refinguished by:	
'	인경	: :	, 1	4	508	7.1				\vdash			H		+	-	-	+	+	+		1	\dashv
•	o S		2796	Team	4.7				Time			. ·									1100	یا	
			(y	$ \mathcal{F} $		-axof	Ŋ.	P. G.			ļ			·		\perp					E :	E E	1
٠.	Chain-of-Custody Record		Address:	: ; :	Phone #:	email or Fax#:	E Standard	C Other C EDD (Type)	Dette	3			:							.	in the second		
	S S		Add		Pho	OA/C	8		ď	Sel ne	† –			-)								A SE	
				•		-				9	•										_		