AP - 111

OW-58 INVESTIGATION WP

2018

Chavez, Carl J, EMNRD

From:	Martinez, Cynthia, NMENV
Sent:	Tuesday, October 23, 2018 7:34 AM
То:	Jessica.L.OBrien@andeavor.com
Cc:	Kieling, John, NMENV; VanHorn, Kristen, NMENV; Suzuki, Michiya, NMENV; Chavez, Carl
	J, EMNRD; 'king.laurie@epa.gov'
Subject:	Letter to Ms. O'Brien
Attachments:	Wester Refining 2018- Disapproval Investigation Work Plan OW-58 Twin Well.pdf

Good Morning, Please open attachment.

Cynthia Martinez New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg.1 Santa Fe, New Mexico 87505 Phone 505-476-6000

SUSANA MARTINEZ Governor JOHN A. SANCHEZ Lieutenant Governor

State of New Mexico ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6313 Phone (505) 476-6000 Fax (505) 476-6030 www.env.nm.gov

BUTCH TONGATE Cabinet Secretary

BRUCE YURDIN Acting Deputy Secretary

CERTIFIED MAIL – RETURN RECEIPT REQUESTED

October 19, 2018

Jessica L. O'Brien Environmental Supervisor Western Refining, Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: DISAPPROVAL INVESTIGATION WORK PLAN OW-58 TWIN WELL WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211 HWB-WRG-18-005

Dear Ms. O'Brien:

The New Mexico Environment Department (NMED) has reviewed the *Investigation Work Plan OW-58 Twin Well* (Work Plan), dated August 2018, submitted on behalf of Western Refining Southwest Inc., Gallup Refinery (the Permittee). NMED hereby issues this Disapproval. The Permittee must address the following comments.

Comment 1

The Permittee submitted two copies of the Work Plan. One of copies was submitted unbound. Although there are no formal requirements to bind submittals, submittal of bound documents facilitates review and placement in the Hazardous Waste Bureau Administrative Record. Submit all future documents that contain more than 20 pages as bound documents. Refer to Comment 1 in the NMED's *Approval with Modifications for Revised OW-14 Source Area Investigation Work Plan OW Series Wells and Contaminant Plume Migration*, dated May 12, 2016 as well as NMED's September 7, 2018 letter, *Document Submittal Requirements*.

Comment 2

In the *Executive Summary* Section, page E1, the Permittee states, "[a]n investigation was conducted in the OW-14 Source Area in September 2016, which included the installation of two

Ms. O'Brien October 19, 2018 Page 2

new permanent monitoring wells (OW-57 and OW-58)." Since the rationale for installing OW-58 originates from the OW-14 Source Area investigation, it is essential for NMED to review the OW-14 investigation report. Although the Revised OW-14 Source Investigation Work Plan was approved on May 12, 2016, the report documenting the investigation has not been submitted to NMED. Even though some information regarding the investigation was included in separate submittals (e.g., Appendix D in the Facility Wide Ground Water Monitoring Work Plan -Updates for 2018), a full and detailed investigation report was not submitted. The Permittee must provide a report that summarizes the results of the OW-14 source investigation so that NMED can conduct an informed review of this Work Plan. The Permittee has not included the report in the investigation implementation schedule shared with NMED. The Permittee must submit the investigation report to NMED before NMED can continue its technical review of this Work Plan. During a May 2018 meeting between the Permittee and NMED, the Permittee indicated that unapproved additional work, conducted at risk, was ongoing regarding the OW-14 source area investigation. It is not clear if the Permittee considers this Work Plan as part of the discussed additional work. A separate report must be submitted for that work plan. Submit the OW-14 source area investigation report for NMED review no later than November 17, 2018.

Comment 3

In the Section 2, *Background*, page 2-2, the Permittee states, "[a] possible leak from a seam in an unidentified storage tank located adjacent to Tank 569 was reported to have been repaired in 1995 (Giant, 1997). It is likely that this leaking tank resulted in the observed presence of [separate phase hydrocarbons] SPH instead of the burial of leaked tank bottoms." Currently, Tanks 568, 570, 571, 572, 581, 582, and 716 are located adjacent to Tank 569. Provide information indicating whether the "unidentified storage tank" is one of these tanks; otherwise, provide a figure showing the location of the unidentified storage tank and discuss the current status of the tank in the revised Work Plan. In addition, provide a basis for stating the probable source of SPH is the unidentified storage tank, rather than the burial of leaked tank bottoms in the revised Work Plan. It should be noted that there are multiple potential SPH sources in the source area. Tables previously provided by the Permittee indicate that Tanks 569, 570, 571, 572, 581, and 582 contain gasoline or gasoline-range hydrocarbons. If hydrocarbon fingerprint analysis was previously conducted for SPH collected from wells in the vicinity of the source area (e.g., RW-1 or RW-2), provide the results of the analysis or reference the submittals where the results were included. Otherwise, propose to collect SPH from all wells in the source area where detected for hydrocarbon fingerprint analysis in the revised Work Plan.

Comment 4

In the Section 2, *Background*, page 2-2, the Permittee states, "[t]he borings logs are included in Appendix A and the chemical analyses are included in Table 2." Table 2, *Groundwater Analyses*, presents historical concentrations of constituents in the groundwater samples collected from the relevant wells up to 2016. However, new data that were collected in 2017 and 2018 are not included in the table. Since review of recent data will help NMED to provide more appropriate direction to execute the Work Plan, new data must be provided in the OW-14 source area investigation report required by Comment 2.

Ms. O'Brien October 19, 2018 Page 3

Comment 5

In the Section 2, *Background*, page 2-2, the Permittee states, "[t]he boring logs and chemical analyses were also previously provided in the 2018 Update of the Facility-Wide Ground Water Monitoring Work Plan." It should be noted that the chemical analyses presented in Table 2 were not included in the 2018 Update of the Facility-Wide Ground Water Monitoring Work Plan (FWGWMP). Remove this statement from the revised Work Plan.

Comment 6

In the Section 3.2, *Subsurface Conditions*, page 3-2, the Permittee states, "[f]luid level measurements for 2013 through 2016 are included Table 3." The 2018 FWGWMP presents the depth to groundwater (DTW) data from March to December 2017. The Section 4.1, *Investigation*, also provides a DTW data in April 25, 2018. Since new DTW data is available, it must be provided in the OW-14 source area investigation report required by Comment 2. Include all new data in the report. In addition, according to Table 3, well OW-58 was installed in September 22, 2016, and the SPH column thickness was recorded as 0.98 feet in September 30, 2016. However, Appendix C-1 in the 2018 FWGWMP indicates well OW-58 was installed in October 3, 2016, and SPH was non-detect during all four 2017 gauging events. Verify the date of installation and correct the discrepancy. Also, provide an explanation for why SPH detected in September 30, 2016 disappeared in 2017.

Comment 7

In the Section 4.1.1, *Soil Sample Field Screening and Logging*, page 4-1, the Permittee states, "[t]he soil boring will be drilled to a depth of 30 feet and continuously logged and samples field screened." According to the OW-58 boring log in Appendix A, *Boring Logs*, a sand lens appears to be present at a depth around 33 feet below ground surface (bgs). The soil boring must be sampled continuously to a depth of 35 feet bgs. If sand lenses are observed during the process of installation, place the screen interval to intercept the sand lenses. If the proposed well is to be completed at 35 feet bgs due to the presence of sand lenses, the screened interval must be placed from 20 to 35 feet bgs. Revise the Work Plan to propose to advance the boring to 35 feet bgs, as necessary.

Comment 8

In the Section 4.1.3, *Groundwater Sample Collection*, page 4-3, the Permittee states, "[g]roundwater samples will be collected within 24 hours of the completion of well purging using disposal bailers." SPH may be present in the well at a time when collecting groundwater samples. If SPH is present, propose to gauge the well for SPH thickness and collect a SPH sample for hydrocarbon fingerprinting analysis in the revised Work Plan.

Ms. O'Brien October 19, 2018 Page 4

The Permittee must address all comments in this Disapproval. The response must include a letter that cross-references where the modifications were addressed in the revised Work Plan. Additionally, an electronic redline-strikeout version of the Work Plan and a revised electronic copy of the Work Plan must be submitted to NMED no later than **December 31, 2018**.

If you have questions regarding this Disapproval, please contact Michiya Suzuki of my staff at 505-476-6059.

Sincerely, John E. Kieling

Chief Hazardous Waste Bureau

- cc: K. Van Horn NMED HWB M. Suzuki NMED HWB C. Chavez OCD L. King EPA Region 6
- File: Reading File and WRG 2018 File HWB-WRG-18-005

INVESTIGATION WORK PLAN OW-58 TWIN WELL

Gallup Refinery Western Refining Southwest, Inc. Gallup, New Mexico

EPA ID# NMD000333211

AUGUST 2018

hour

Scott Crouch Senior Geologist

8501 North Mopac Expy 512.693.4190 (P)

Suite 300 512.279.3118 (F)

Austin, TX 78759 www.disorboconsult.com

Table of Contents

List of Acro	nyms	i
Executive S	Summary	E1
Section 1 Ir	ntroduction	1-1
Section 2 B	Background	2-1
Section 3 S	Site Conditions	3-1
3.1 Su	urface Conditions	3-1
3.2 Su	ubsurface Conditions	3-1
Section 4 S	Scope of Services	4-1
4.1 In	nvestigation	4-1
4.1.	1 Soil Sample Field Screening and Logging	4-1
4.1.	2 Drilling Activities	4-3
4.1.	3 Groundwater Sample Collection	4-3
4.1.	4 Sample Handling	4-4
4.1.		4-5
4.1.	6 Documentation of Field Activities	4-6
4.1		
4.1		
Section 5 R	References	5-1
List of Ta	ables	
Table 1	RW-1 Recovery Volumes	5-1
Table 2	Groundwater Analyses	5-1
Table 3	Fluid Level Measurements	5-1
List of Fig	gures	
Figure 1	Site Location Map	
Figure 2	Site Map	5-1
Figure 3	Topographic Map	5-1
Figure 4	Alluvium/Chinle GP Interface Water Elevation Map	5-1
Figure 5	Proposed Sample Location Map	5-1

Appendices

Appendix A Boring Logs

Appendix B Investigation Derived Waste Management Plan

List of Acronyms

benzene, toluene, ethylbenzene, and xylene (BTEX) below ground level (bgl) Code of Federal Regulations (CFR) Contract Laboratory Program (CLP) data quality objective (DQO) diesel range organics (DRO) dilution attenuation factor (DAF) Environmental Protection Agency (EPA) investigation derived waste (IDW) Maximum Contaminant Level (MCL) mean sea level (msl) monitoring well (MW) motor oil range organics (MRO) methyl tert butyl ether (MTBE) New Mexico Administrative Code (NMAC) New Mexico Environment Department (NMED) New Mexico Oil Conservation Division (NMOCD) photoionization detector (PID) polynuclear aromatic hydrocarbon (PAH) polyvinyl chloride (PVC) quality assurance/quality control (QA/QC) Resource Conservation and Recovery Act (RCRA) separate-phase hydrocarbon (SPH) semi-volatile organic compound (SVOC) Solid Waste Management Unit (SWMU) total petroleum hydrocarbon (TPH) toxicity characteristic leaching procedure (TCLP) volatile organic compound (VOC)

Executive Summary

The Gallup Refinery, which is located 17 miles east of Gallup, New Mexico, has been in operation since the 1950s. Pursuant to the terms and conditions of the facility Resource Conservation and Recovery Act (RCRA) Post-Closure Care Permit and 20.4.1.500 New Mexico Administrative Code, this Investigation Work Plan has been prepared for the area up-gradient of monitoring well OW-14.

Groundwater samples collected from monitoring well OW-14 have indicated increasing concentrations of benzene and ethylbenzene since 2009, although the concentrations of ethylbenzene remain below screening levels. Methyl tert butyl ether (MTBE) has been detected at concentrations above the screening level since 2008 and 1-methylnaphthalene has sporadically been reported at concentrations above the screening level. OW-14 is located down-gradient of recovery wells RW-1 (OW-27) and RW-2 (OW-28), which were installed in near Tanks 569 and 576 in 1995 to address the presence of separate-phase hydrocarbon (SPH). An investigation was conducted in the OW-14 Source Area in September 2016, which included the installation of two new permanents monitoring wells (OW-57 and OW-58).

The purpose of this Work Plan is to install a second well near OW-58. The new well will have the screen set at a higher interval to intersect the potentiometric surface.

Section 1 Introduction

The Gallup Refinery is located approximately 17 miles east of Gallup, New Mexico along the north side of Interstate Highway I-40 in McKinley County. The physical address is I-40, Exit #39 Jamestown, New Mexico 87347. The Gallup Refinery is located on 810 acres. Figure 1 presents the refinery location and the regional vicinity.

The Gallup Refinery generally processes crude oil from the Four Corners area transported to the facility by pipeline or tanker truck. Various process units are operated at the facility, including crude distillation, reforming, fluidized catalytic cracking, alkylation, sulfur recovery, merox treater, and hydrotreating. Current and past operations have produced gasoline, diesel fuels, jet fuels, kerosene, propane, butane, and residual fuel.

This investigation work plan addresses the area up-gradient of monitoring well OW-14. The area of interest is located in the eastern portion of the refinery tank farm (Figure 2). The purpose of this investigation is to determine the source of the increasing concentrations of primarily benzene that are being observed in monitoring well OW-14. An additional well will be installed near OW-58 to facilitate the investigation of this area. The investigation activities will be conducted in accordance with Section IV.H.5 of the Post-Closure Care Permit.

Section 2 Background

This section presents background information for the area of the refinery property near monitoring well OW-14, including a review of historical waste management activities to identity the following:

- Type and characteristics of all waste and all contaminants handled in the subject areas;
- Known and possible sources of contamination;
- History of operations; and
- Prior investigations.

Monitoring well OW-14 is located immediately north of the main refinery tank farm, which was built in the late 1950s. The *Inventory of Solid Waste Management Units* prepared in June 1985 identified six product storage tanks that contained leaded gasoline (Geoscience Consultants, Ltd., 1985). These six, as well as, additional tanks were subsequently identified as SWMU No. 6 due to the historic practice of disposing of leaded tank bottoms within the tank berms. The practice of cleaning the tanks and burying the leaded tank bottoms was reported to have occurred every five years and was terminated after November 19, 1980.

The three leaded gasoline storage tanks (TK-568, TK-569, and TK-570) closest to OW-14 were investigated as part of SWMU No. 6 in the early to mid 1990s. Impacts to soil and the presence of separate-phase hydrocarbon (SPH) on groundwater was found within the alluvium overlying the Chinle Group. Boring BG-4, which was later identified as OW-27 and RW-1, was drilled east of TK-569 to a depth of 48.5 feet (Figure 2). A water-bearing sand layer was logged at approximately 30 feet with a strong hydrocarbon odor and an elevated PID reading. Subsequently 4-inch well screen was installed in the boring from 40.0 to 25.0 feet. The water level was initially measured at a depth of 28' 7" with an accumulation of 8" of SPH. A second soil boring B-2, which was later identified as OW-28 and RW-2, was drilled southwest of TK-576 to a depth of 38 feet. Saturation was first encountered in a sand layer at a depth of 23.6 feet with additional deeper water-bearing sand/gravel layers extending to top of the Chinle Group at a depth of 32.9 feet. The well screen was set from 36.1 feet to 26.1 feet below ground surface. The water level initially was measured at 24' 3" with 2" of SPH. The boring logs are included in Appendix A.

A possible leak from a seam in an unidentified storage tank located adjacent to Tank 569 was reported to have been repaired in 1995 (Giant, 1997). It is likely that this leaking tank resulted in the observed presence of SPH instead of the burial of leaded tank bottoms.

RW-1 had an estimated 2.33 gallons of SPH recovered in 2016 using a submersible bladder pump, while no SPH has been observed in RW-2 since before 2005 (Western, 2016). The estimated annual volumes of SPH recovered at RW-1 from 2005 through 2016 are shown in Table 1. The measured thickness of SPH in RW-1 increased in 2016 and volume of SPH recovered increased from 2 gallons in 2015 to 8.5 gallons in 2016.

Beginning in 2011 groundwater samples have been collected annually from RW-1 and RW-2 and analyzed for dissolved-phase organic constituents and metals. Elevated concentrations of benzene, toluene, ethylbenzene, and xylenes (BTEX) and MTBE have been reported for samples collected at both recovery wells. The concentrations of BTEX are significantly higher at the recovery wells than observed in down-gradient well OW-14. MTBE is also detected at higher concentrations in the up-gradient recovery wells, but the difference is less than what is observed for BTEX. The dissolved-phase concentrations are included in Table 2. The chemical analyses for recovery wells RW-5 and RW-6 are also included in Table 2 as they are located within the refinery main tank farm; however, these wells are over 800 feet southwest of well OW-14 and are unlikely to represent a possible source for the constituents detected at OW-14. BTEX concentrations are less in groundwater samples collected at RW-5 and RW-6 than those collected at RW-1, RW-2, and OW-14.

In September 2016, two new permanent monitoring wells (OW-57 and OW-58) were installed to the south of OW-14 in the northeastern corner of the tank farm. The boring logs are included in Appendix A and the chemical analyses are included in Table 2. The boring logs and chemical analyses were also previously provided in the 2018 Update of the *Facility-Wide Ground Water Monitoring Work Plan*. In correspondence dated June 5, 2018 NMED requested that a new well be installed near OW-58 to address the concern that the water level measured in OW-58 was above the top of the well screen and could hinder the investigation of SPH.

Well OW-58 was drilled to the top of bedrock as specified in the OW-14 Source Area Investigation work Plan, which was approved with modifications by NMED on May 12, 2016. As indicated on the enclosed boring log, a saturated sandy gravel interval was encountered from the top of bedrock at 48 feet below ground level (bgl) to 47 feet bgl. This interval had an elevated reading using a Photoionization Detector (PID) and a hydrocarbon odor. The well screen was placed at the bottom of

the well to intercept this interval on top of bedrock and extended upward for 10 feet to within a silty clay layer. The silty clay layer extended from 33.5 feet to 40 feet bgl. Significantly higher PID readings were observed above the top of the silty clay layer and evidence of SPH was observed on the outside of the cores from 24 feet to 28 feet in a silty clay interval. Due to concerns over using an excessively long screen length and the possibly of cross-contaminating across zones not otherwise in direct hydraulic connection, the decision was made to screen only the lower interval in OW-58. It was determined that a second well would be necessary to screen the upper interval.

Section 3 Site Conditions

3.1 Surface Conditions

A topographic map of the area near the monitoring well OW-14 and the refinery main tank farm is included as Figure 3. Site topographic features include high ground in the southeast gradually decreasing to a lowland fluvial plain to the northwest. Elevations on the refinery property range from 7,040 feet to 6,860 feet. The area of the site near OW-14 is at an approximate elevation of 6,934 feet above mean sea level (msl).

The soils in the vicinity of OW-14 include two soil types. Surface soils within most of the area of investigation are primarily Rehobeth silty clay loam. To the north are the bordering Simitarq-Celavar sandy loams. Rehobeth soil properties include a pH ranging from 8 to 9 standard units and salinity (naturally occurring and typically measuring up to approximately 8 mmhos/cm). The Simitarq-Celavar Celavar soils are well drained with a conservative permeability of 0.20 inches/hour and minimal salinity. Simitarq soils have nearly neutral pH values ranging from 7.2 to 7.4 standard units.

Regional surface water features include the refinery evaporation ponds and a number of small ponds (one cattle water pond and two small unnamed spring fed ponds). The site is located in the Puerco River Valley, north of the Zuni Uplift with overland flows directed northward to the tributaries of the Puerco River. The Puerco River continues to the east to the confluence with the Rio Grande. The South Fork of the Puerco River is intermittent and retains flow only during and immediately following precipitation events.

3.2 Subsurface Conditions

The shallow subsurface soils consist of fluvial and alluvial deposits comprised of clay and silt with minor inter-bedded sand layers. Very low permeability bedrock (e.g., claystones and siltstones) underlie the surface soils and effectively form an aquitard. The Chinle Group, which is Upper Triassic, crops out over a large area on the southern margin of the San Juan Basin. The uppermost recognized local Formation is the Petrified Forest Formation and the Sonsela Sandstone Bed is the uppermost recognized regional aquifer. Aquifer test of the Sonsela Bed northeast of Prewitt indicated a transmissivity of greater than $100 \text{ ft}^2/\text{day}$ (Stone and others, 1983). The Sonsela Sandstone's highest point occurs southeast of the site and slopes downward to the northwest as it

passes under the refinery. The Sonsela Sandstone forms a water-bearing reservoir with artesian conditions throughout the central and western portions of the refinery property.

The diverse properties and complex, irregular stratigraphy of the surface soils across the site cause a wide range of hydraulic conductivity ranging from less than 10-2 cm/sec for gravel like sands immediately overlying the Petrified Forest Formation to 10-8 cm/sec in the clay soils located near the surface (Western, 2009). Generally, shallow groundwater at the refinery follows the upper contact of the Petrified Forest Formation with prevailing flow from the southeast to the northwest, although localized areas may have varying flow directions (Figure 4). Fluid level measurements for 2013 through 2016 are included in Table 3.

Section 4 Scope of Services

The site investigation of soil and groundwater will be conducted to determine the source of the increasing concentrations of benzene that have been observed in monitoring well OW-14. The investigation will commence upon approval of this investigation work plan by NMED.

4.1 Investigation

An investigation of soil and groundwater conditions in the eastern portion of the Refinery main tank farm is proposed to determine the source of constituents apparently migrating down-gradient towards OW-14. One new permanent monitoring well is proposed a short distance to the northeast of OW-58 (Figure 5). OW-58 is completed within a dirty roadway and the new well will be drilled outside of the roadway to allow use of a stick-up type of completion.

To facilitate the investigation of potential SPH in this area, the well screen in the new will be placed at a depth to intercept the potentiometric surface as measured in OW-58. On April 25, 2018 the depth to water measured in OW-58 was 24.25 feet below the top of casing. The top of casing is 0.21 feet below ground level, thus the water level is approximately 24.5 feet below ground level. The screen interval will be placed from 20 feet to 30 feet below ground level. This will allow the well to not only intercept the potentiometric surface, but also be open to intervals where SPH was observed on the outside of the cores retrieved while drilling OW-58 (see discussion in Section 2.0).

4.1.1 Soil Sample Field Screening and Logging

The soil boring will be drilled to a depth of 30 feet and continuously logged and samples field screened. Samples obtained from the soil boring will be screened in the field on 2.0 foot intervals for evidence of contaminants. Field screening results will be recorded on the exploratory boring log. Field screening results will be used to aid in selection of soil samples for laboratory analysis. The primary screening methods include: (1) visual examination, (2) olfactory examination, and (3) headspace vapor screening for volatile organic compounds. Additional screening for site- or release-specific characteristics such as pH or for specific compounds using field test kits may be conducted where appropriate. Visual screening includes examination of soil samples for evidence of staining caused by petroleumrelated compounds or other substances that may cause staining of natural soils such as elemental sulfur or cyanide compounds. Headspace vapor screening targets volatile organic compounds and involves placing a soil sample in a plastic sample bag or a foil sealed container allowing space for ambient air. The container will be sealed and then shaken gently to expose the soil to the air trapped in the container. The sealed container will be allowed to rest for a minimum of 5 minutes while vapors equilibrate. Vapors present within the sample bag's headspace will then be measured by inserting the probe of the instrument in a small opening in the bag or through the foil. The maximum value and the ambient air temperature will be recorded on the field boring or test pit log for each sample.

The monitoring instruments will be calibrated each day to the manufacturer's standard for instrument operation. A photoionization detector (PID) equipped with a 10.6 or higher electron volt (eV) lamp or a combustible gas indicator will be used for VOC field screening. Field screening results may be site- and boring-specific and the results may vary with instrument type, the media screened, weather conditions, moisture content, soil type, and type of contaminant, therefore, all conditions capable of influencing the results of field screening will be recorded on the field logs.

Discrete soil samples will be retained for laboratory analysis from within the following intervals:

- From the interval with the greatest apparent degree of contamination in the vadose zone, based on field observations and field screening;
- From the bottom of the borehole;
- From the 0.5 foot interval at the top of saturation; and
- Any additional intervals as determined based on field screening results.

The physical characteristics of the samples (such as mineralogy, ASTM soil classification, moisture content, texture, color, presence of stains or odors, and/or field screening results), depth where each sample was obtained, method of sample collection, and other observations will be recorded in the field log by a qualified geologist or engineer. Detailed logs of each boring will be completed in the field by a qualified engineer or geologist. Additional information, such as the presence of water-bearing zones and any unusual or noticeable conditions encountered during drilling, will be recorded on the log.

Quality Assurance/Quality Control (QA/QC) samples will be collected to monitor the validity of the soil sample collection procedures as follows:

- Field duplicates will be collected at a rate of 10 percent; and
- Equipment blanks will be collected from all sampling apparatus at a frequency of one per day.

4.1.2 Drilling Activities

The soil boring will be drilled using hollow-stem augers. The drilling equipment will be properly decontaminated before drilling each boring. The NMED will be notified as early as practicable if conditions arise or are encountered that do not allow the advancement of borings to the specified depths or at planned sampling locations. Appropriate actions (e.g., installation of protective surface casing or relocation of borings to a less threatening location) will be taken to minimize any negative impacts from investigative borings. Slotted (0.01 inch) PVC well screen will be placed at the bottom of the borings and will extend for 10 feet to ensure that the well is screened across the water table, where water table conditions exist. A 10/20 sand filter pack will be installed to two feet over the top of the well screen.

4.1.3 Groundwater Sample Collection

Groundwater samples will be collected within 24 hours of the completion of well purging using disposal bailers. Alternatively, well sampling may also be conducted in accordance with the NMED's Position Paper Use of Low-Flow and other Non-Traditional Sampling Techniques for RCRA Compliant Groundwater Monitoring (October 30, 2001, as updated). Sample collection methods will be documented in the field monitoring reports. The samples will be transferred to the appropriate, clean, laboratory-prepared containers provided by the analytical laboratory. Sample handling and chain-of-custody procedures will be in accordance with the procedures presented below in Section 4.1.4.

Groundwater samples intended for metals analysis will be submitted to the laboratory as both total and dissolved metals samples. QA/QC samples will be collected to monitor the validity of the groundwater sample collection procedures as follows:

• Field duplicate water samples will be obtained at a frequency of ten percent, with a minimum, of one duplicate sample per sampling event;

- Equipment rinsate blanks will be obtained for chemical analysis at the rate of ten percent or a minimum of one rinsate blank per sampling day. Equipment rinsate blanks will be collected at a rate of one per sampling day if disposable sampling equipment is used. Rinsate samples will be generated by rinsing deionized water through unused or decontaminated sampling equipment. The rinsate sample will be placed in the appropriate sample container and submitted with the groundwater samples to the analytical laboratory for the appropriate analyses; and
- Trip blanks will accompany laboratory sample bottles and shipping and storage containers intended for VOC analyses. Trip blanks will consist of a sample of analyte-free deionized water prepared by the laboratory and placed in an appropriate sample container. The trip blank will be prepared by the analytical laboratory prior to the sampling event and will be kept with the shipping containers and placed with other water samples obtained from the site each day. Trip blanks will be analyzed at a frequency of one for each shipping container of groundwater samples to be analyzed for VOCs.

4.1.4 Sample Handling

At a minimum, the following procedures will be used at all times when collecting samples during investigation, corrective action, and monitoring activities:

- 1. Neoprene, nitrile, or other protective gloves will be worn when collecting samples. New disposable gloves will be used to collect each sample;
- 2. All samples collected of each medium for chemical analysis will be transferred into clean sample containers supplied by the project analytical laboratory with the exception of soil, rock, and sediment samples obtained in Encore® samplers. Sample container volumes and preservation methods will be in accordance with the most recent standard EPA and industry accepted practices for use by accredited analytical laboratories. Sufficient sample volume will be obtained for the laboratory to complete the method-specific QC analyses on a laboratory-batch basis; and
- 3. Sample labels and documentation will be completed for each sample following procedures discussed below. Immediately after the samples are collected, they will be stored in a cooler with ice or other appropriate storage method until they are delivered to the analytical laboratory. Standard chain-of-custody procedures, as described below, will be followed for all samples collected. All samples will be submitted to the laboratory

soon enough to allow the laboratory to conduct the analyses within the method holding times.

Chain-of-custody and shipment procedures will include the following:

- 1. Chain-of-custody forms will be completed at the end of each sampling day, prior to the transfer of samples off site.
- Individual sample containers will be packed to prevent breakage and transported in a sealed cooler with ice or other suitable coolant or other EPA or industry-wide accepted method. The drainage hole at the bottom of the cooler will be sealed and secured in case of sample container leakage. Temperature blanks will be included with each shipping container.
- 3. Each cooler or other container will be delivered directly to the analytical laboratory.
- 4. Glass bottles will be separated in the shipping container by cushioning material to prevent breakage.
- 5. Plastic containers will be protected from possible puncture during shipping using cushioning material.
- 6. The chain-of-custody form and sample request form will be shipped inside the sealed storage container to be delivered to the laboratory.
- 7. Chain-of-custody seals will be used to seal the sample-shipping container in conformance with EPA protocol.
- 8. Signed and dated chain-of-custody seals will be applied to each cooler prior to transport of samples from the site.
- 9. Upon receipt of the samples at the laboratory, the custody seals will be broken, the chain-of-custody form will be signed as received by the laboratory, and the conditions of the samples will be recorded on the form. The original chain-of-custody form will remain with the laboratory and copies will be returned to the relinquishing party.
- 10. Copies of all chain-of-custody forms generated as part of sampling activities will be maintained on-site.

4.1.5 Collection and Management of Investigation Derived Waste

Drill cuttings, excess sample material and decontamination fluids, and all other investigation derived waste (IDW) associated with soil borings will be contained and characterized using methods based on the boring location, boring depth, drilling method, and type of contaminants suspected or

encountered. All purged groundwater and decontamination water will be characterized prior to disposal unless it is disposed in the refinery wastewater treatment system upstream of the API Separator. An IDW management plan is included as Appendix B.

Field equipment requiring calibration will be calibrated to known standards, in accordance with the manufacturers' recommended schedules and procedures. At a minimum, calibration checks will be conducted daily, or at other intervals approved by the Department, and the instruments will be recalibrated, if necessary. Calibration measurements will be recorded in the daily field logs. If field equipment becomes inoperable, its use will be discontinued until the necessary repairs are made. In the interim, a properly calibrated replacement instrument will be used.

4.1.6 Documentation of Field Activities

Daily field activities, including observations and field procedures, will be recorded in a field log book. Copies of the completed forms will be maintained in a bound and sequentially numbered field file for reference during field activities. Indelible ink will be used to record all field activities. Photographic documentation of field activities will be performed, as appropriate. The daily record of field activities will include the following:

- 1. Site or unit designation;
- 2. Date;
- 3. Time of arrival and departure;
- 4. Field investigation team members including subcontractors and visitors;
- 5. Weather conditions;
- 6. Daily activities and times conducted;
- 7. Observations;
- 8. Record of samples collected with sample designations and locations specified;
- 9. Photographic log, as appropriate;
- 10. Field monitoring data, including health and safety monitoring;
- 11. Equipment used and calibration records, if appropriate;
- 12. List of additional data sheets and maps completed;
- 13. An inventory of the waste generated and the method of storage or disposal; and
- 14. Signature of personnel completing the field record.

4.1.7 Chemical Analyses

All samples collected for laboratory analysis will be submitted to an accredited laboratory. The laboratory will use the most recent standard EPA and industry-accepted analytical methods for target analytes as the testing methods for each medium sampled. Chemical analyses will be performed in accordance with the most recent EPA standard analytical methodologies and extraction methods.

Groundwater and soil samples will be analyzed by the following methods:

- SW-846 Method 8260 for volatile organic compounds;
- SW-846 Method 8270 for semi-volatile organic compounds; and
- SW-846 Method 8015B gasoline range (C5-C10), diesel range (>C10-C28), and motor oil range (>C28-C36) organics.

Groundwater and soil samples will also be analyzed for the following Skinner List metals and iron and manganese using the indicated analytical methods shown. The groundwater samples collected for metals analysis will be analyzed for total and dissolved concentrations. Groundwater samples will also be analyzed for chloride, fluoride, and sulfate.

Analyte	Analytical Method
Antimony	SW-846 method 6010/6020
Arsenic	SW-846 method 6010/6020
Barium	SW-846 method 6010/6020
Beryllium	SW-846 method 6010/6020
Cadmium	SW-846 method 6010/6020
Chromium	SW-846 method 6010/6020
Cobalt	SW-846 method 6010/6020
Cyanide	SW-846 method 335.4/335.2 mod
Lead	SW-846 method 6010/6020
Mercury	SW-846 method 7470/7471
Nickel	SW-846 method 6010/6020
Selenium	SW-846 method 6010/6020
Silver	SW-846 method 6010/6020
Vanadium	SW-846 method 6010/6020

Inorganic Analytical Methods

Zinc	SW-846 method 6010/6020
Iron	SW-846 method 6010/6020
Manganese	SW-846 method 6010/6020

Groundwater field measurements will be obtained for pH, specific conductance, dissolved oxygen concentrations, oxidation-reduction potential, and temperature.

4.1.8 Data Quality Objectives

The Data Quality Objectives (DQOs) were developed to ensure that newly collected data are of sufficient quality and quantity to address the project goals, including Quality Assurance/Quality Control (QA/QC) issues (EPA, 2006). The project goals are established to determine and evaluate the presence, nature, and extent of releases of contaminants at specified SWMUs. The type of data required to meet the project goals includes chemical analyses of soil and groundwater to determine if there has been a release of contaminants.

The quantity of data is location specific and is based on the historical operations at individual locations. Method detection limits should be 20% or less of the applicable background levels, cleanup standards and screening levels.

Additional DQOs include precision, accuracy, representativeness, completeness, and comparability. Precision is a measurement of the reproducibility of measurements under a given set of circumstances and is commonly stated in terms of standard deviation or coefficient of variation (EPA, 1987). Precision is also specific to sampling activities and analytical performance. Sampling precision will be evaluated through the analyses of duplicate field samples and laboratory replicates will be utilized to assess laboratory precision.

Accuracy is a measurement in the bias of a measurement system and may include many sources of potential error, including the sampling process, field contamination, preservation, handling, sample matrix, sample preparation, and analysis techniques (EPA, 1987). An evaluation of the accuracy will be performed by reviewing the results of field/trip blanks, matrix spikes, and laboratory QC samples.

Representativeness is an expression of the degree to which the data accurately and precisely represent the true environmental conditions. Sample locations and the number of samples have been selected to ensure the data is representative of actual environmental conditions. Based on SWMU specific conditions, this may include either biased (i.e., judgmental) locations/depths or unbiased (systematic grid samples) locations. In addition, sample collection techniques (e.g., field

monitoring and decontamination of sampling equipment) will be utilized to help ensure representative results.

Completeness is defined as the percentage of measurements taken that are actually valid measurements, considering field QA and laboratory QC problems. EPA Contract Laboratory Program (CLP) data has been found to be 80-85% complete on a nationwide basis and this has been extrapolated to indicate that Level III, IV, and V analytical techniques will generate data that are approximately 80% complete (EPA, 1987). As an overall project goal, the completeness goal is 85%; however, some samples may be critical based on location or field screening results and thus a sample-by-sample evaluation will be performed to determine if the completeness goals have been obtained.

Comparability is a qualitative parameter, which expresses the confidence with which one data set can be compared to another. Industry standard sample collection techniques and routine EPA analytical methods will be utilized to help ensure data are comparable to historical and future data. Analytical results will be reported in appropriate units for comparison to historical data and cleanup levels. EPA, 1987, Data Quality Objectives for Remedial Response Activities; United States Environmental Protection Agency, Office of Emergency and Remedial Response and Office of Waste Programs Enforcement, OSWER Directive 9355.0-7B, 85p.

EPA, 2006, Guidance on Systematic Planning Using the Data Quality Objectives Process, United States Environmental Protection Agency, Office of Environmental Information; EPA/240/B-06/001, p. 111.

Geoscience Consultants, Ltd, 1985, Inventory of Solid Waste Management Units, June 14, 1985, p. 22.

Giant Refining Company, 1997, Comprehensive Facility Investigation Work Plan (Stage 1 Abatement Plan), June 30, 1997, p. 7.

NMED, 2017, Risk Assessment Guidance for Site Investigation and Remediation, New Mexico Environment Department.

Stone, W.J., Lyford, F.P., Frenzel, P.F., Mizel, N.H., and Padgett, E.T., 1983, Hydrogeology and Water Resources of San Juan Basin, New Mexico; Hydrogeologic Report 6, New Mexico Bureau of Mines and Mineral Resources, p. 70.

Western, 2009, Facility-wide Groundwater Monitoring Plan: Gallup Refinery, p. 97.

Western, 2016, Annual Ground Water Monitoring Report: Gallup Refinery - 2016, p. 286.

Tables

- Table 1RW-1 Recovery Volumes
- Table 2Groundwater Analyses
- Table 3Fluid Level Measurements

Year	Product Recovered (gallons)	Water Recovered (gallons)
2005	431.5	1,210.5
2006	23.52	1,107.0
2007	1.72	148.5
2008	3.99	152.0
2009	1.78	338.0
2010	0.66	128.0
2011	0.42	165.0
2012	0.97	137.0
2013	2.328	86.0
2014	2.37	83.0
2015	2	54.0
2016	8.5	53.0
total	479.758	3,662.0

Table 1 - RW-1 Recovery Volumes Western Refining Southwest, Inc. - Gallup Refinery

recovery volumes are field estimates for RW-1

						wes	stern Renn	ing South	vest, inc	Gallup Re	ennery								
		Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)	1,2,4- Trimethyl benzene (mg/L)	1,3,5- Trimethyl benzene (mg/L)	1,2- Dichloro ethane (EDC) (mg/L)	Naphthale ne (mg/L)	nanhthala	2- Methylna phthalen e (mg/L)	1,1- Dichloroe thane (mg/L)	lsopropyl benzene (mg/L)	n- Butylbenz ene (mg/L)	n- Propylben zene (mg/L)	2,4- Dimethylp henol (mg/L)	Acetone (mg/L)	Sec- butylbenz ene (mg/L)
WQC	C 20NMAC 6.2.3103	0.01	0.75	0.75	0.62	NE	NE	NE	0.01	NE	NE	NE	0.025	NE	NE	NE	NE	NE	NE
	0 CFR 141.62 MCL	0.005	1.0	0.7	10	NE	NE	NE	0.005	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
NMED	Tap Water (DEC 2014)	0.00454	1.1	0.0149	0.193	0.143	NE	NE	0.002	0.00165	NE	NE	0.0275	0.447	NE	NE	0.354	14.1	NE
EPA RSL	for Tap Water (JAN 2015)	0.00045	0.11	0.0015	0.019	0.014	0.0015	0.012	0.0017	0.00017	0.0011	0.15	0.0027	0.045	0.1	0.066	0.73	22	0.2
Well ID	DATE SAMPLED																		
	11/15/2016	<0.001	<0.001	< 0.001	<0.0015	0.044	<0.001	NA	0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	8/31/2016	0.0001	<0.001	< 0.001	<0.0015	0.038	<0.001	NA	0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	6/6/2016	<0.001	<0.001	<0.001	<0.0015	0.036	<0.001	NA	0.75	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	3/4/2016	<0.001	<0.001	< 0.001	<0.0015	0.035	<0.001	NA	0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	10/27/2015	<0.001	0.0013	< 0.001	0.0016	0.035	<0.001	NA	<0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	8/11/2015	<0.001	<0.001	<0.001	<0.0015	0.031	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.004	<0.001	<0.003	<0.001	NA	NA	<0.001
	6/1/2015	<0.001	<0.001	<0.001	<0.0015	0.025	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	3/9/2015	<0.001	<0.001	<0.001	<0.0015	0.026	< 0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	11/10/2014	<0.001	<0.001	<0.001	<0.0015	0.027	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	9/15/2014	<0.001	<0.001	<0.001	<0.0015	0.023	<0.001	NA	<0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	6/3/2014	<0.001	<0.001	<0.001	<0.0015	0.02	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.004	<0.001	<0.003	<0.001	NA	NA	<0.001
	3/7/2014	<0.001	<0.001	<0.001	<0.0015	0.023	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	11/11/2013	<0.001	<0.001	<0.001	<0.0015	0.017	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	9/4/2013 ²	<0.001	<0.001	<0.001	<0.0015	0.014	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
0W-13	6/13/2013	<0.001	<0.001	<0.001	<0.0015	0.015	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	NA	NA	<0.001
	3/19/2013	<0.001	<0.001	<0.001	<0.0015	0.012	<0.005	NA	<0.005	<0.01	<0.004	NA	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001
	11/27/2012	<0.001	<0.001	<0.001	<0.0015	0.011	< 0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001
	8/23/2012	<0.001	<0.001	<0.001	<0.0015	0.0092	< 0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.003	<0.001	<0.001	<0.001	<0.001
	6/14/2012	<0.001	<0.001	<0.001	<0.0015	0.0079	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	3/21/2012	<0.001	<0.001	<0.001	<0.0015	0.0082	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	12/13/2011	<0.001	<0.001	< 0.001	<0.0015	0.0065	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
	10/25/2011	<0.001	<0.001	< 0.001	<0.0015	0.0062	<0.001	NA	<0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001
	6/20/2011	<0.001	<0.001	<0.001	<0.0015	0.0048	< 0.001	NA	<0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001
	2/24/2011	<0.001	<0.001	<0.001	<0.0015	0.0040	<0.001	NA	<0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001
	11/8/2010	<0.001	<0.001	<0.001	<0.0015	0.0038	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001
	9/22/2010	<0.001	<0.001	<0.001	<0.0015	0.0031	<0.001	NA	<0.001	<0.002	< 0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001
	6/7/2010	<0.001	<0.001	<0.001	<0.0015	0.0027	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001
	3/25/2010	<0.001	<0.001	<0.001	<0.0015	0.0023	<0.001	NA	<0.001	<0.002	<0.004	NA	<0.001	<0.001	<0.001	<0.001	NA	NA	<0.001

Table 2 - Groundwater Analyses Western Refining Southwest, Inc. - Gallup Refinery

Table 2 - Groundwater Analyses Western Refining Southwest, Inc. - Gallup Refinery

						wes		ing South	vest, mc.	Gallup Re	intery								
WQCC 20NMAC 6.2.3103		Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)	benzene (mg/L)	1,3,5- Trimethyl benzene (mg/L)	1,2- Dichloro ethane (EDC) (mg/L)	Naphthale ne (mg/L)	naphthale ne (mg/L)	2- Methylna phthalen e (mg/L)	thane (mg/L)	Isopropyl benzene (mg/L)	ene (mg/L)	n- Propylben zene (mg/L)	henol (mg/L)	Acetone (mg/L)	Sec- butylbenz ene (mg/L)
		0.01	0.75	0.75	0.62	NE	NE	NE	0.01	NE	NE	NE	0.025	NE	NE	NE	NE	NE	NE
) CFR 141.62 MCL	0.005	1.0	0.7	10	NE	NE	NE	0.005	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	Tap Water (DEC 2014)	0.00454	1.1	0.0149	0.193	0.143	NE	NE	0.002	0.00165	NE	NE	0.0275	0.447	NE	NE	0.354	14.1	NE
	for Tap Water (JAN 2015)	0.00045	0.11	0.0015	0.019	0.014	0.0015	0.012	0.0017	0.00017	0.0011	0.15	0.0027	0.045	0.1	0.066	0.73	22	0.2
Well ID	DATE SAMPLED																		
	11/15/2016	8.7	0.0057	0.3	0.013	0.5	0.0084	0.0015	0.0034	0.02	0.03	NA	<0.01	0.01	0.0034	0.013	NA	NA	0.0041
	8/31/2016	8.1	0.0029	0.25	0.008	0.58	0.0071	0.0008	<0.005	0.018	0.034	NA	<0.005	0.0085	0.0013	0.011	NA	NA	0.0022
	6/6/2016	7.8	0.0026	0.23	0.012	0.62	0.008	0.0017	<0.01	0.019	0.033	NA	0.0033	0.0096	<0.03	0.011	NA	NA	0.0031
	3/4/2016	6.5	<0.05	0.23	<0.075	0.68	<0.05	NA	<0.05	0.017	0.03	NA	<0.05	<0.05	<0.15	<0.05	NA	NA	<0.05
	10/27/2015	6.2	<0.02	0.15	<0.03	0.57	<0.02	NA	<0.02	< 0.04	<0.08	NA	<0.02	<0.02	<0.06	<0.02	NA	NA	<0.02
	8/10/2015	5.4	<0.01	0.16	<0.015	0.78	<0.01	NA	<0.01	<0.02	<0.04	NA	<0.04	<0.01	<0.03	<0.01	NA	NA	<0.01
	6/1/2015	4.6	<0.02	0.16	<0.03	0.74	<0.02	NA	<0.02	<0.04	<0.08	NA	<0.02	<0.02	<0.06	<0.02	NA	NA	<0.02
	3/9/2015	3.9	<0.02	0.16	<0.03	0.76	<0.02	NA	<0.02	< 0.04	<0.08	NA	<0.02	<0.02	<0.06	<0.02	NA	NA	<0.02
	11/10/2014	3.6	0.015	0.17	<0.015	0.81	<0.01	NA	<0.01	<0.02	0.044	NA	<0.01	<0.01	<0.03	<0.01	NA	NA	<0.01
	9/15/2014	3.8	<0.02	0.16	<0.03	0.82	<0.02	NA	<0.02	< 0.04	0.016	NA	<0.02	<0.02	<0.06	<0.02	NA	NA	<0.02
	6/3/2014	3.7	<0.02	0.12	<0.03	0.93	<0.02	NA	<0.02	< 0.04	<0.08	NA	<0.08	<0.02	<0.06	<0.02	NA	NA	<0.02
	3/7/2014	4.0	0.026	0.14	0.032	1.1	< 0.01	NA	< 0.01	< 0.02	< 0.04	NA	<0.04	< 0.01	< 0.03	< 0.01	NA	NA	< 0.01
	11/11/2013	3.3	0.046	0.13	0.019	1.1	<0.005	NA	< 0.005	< 0.01	0.027	NA	<0.005	0.0066	<0.015	< 0.005	NA	NA	<0.005
014/14	9/4/2013 ²	2.6	<0.005	0.063	< 0.0075	0.94	<0.005	NA	<0.005	< 0.01	0.024	NA	<0.005	0.006	<0.015	< 0.005	NA	NA	<0.005
0W-14	6/13/2013	3.4	< 0.01	0.073	<0.015	1.3	<0.01	NA	< 0.01	< 0.02	<0.04	NA	< 0.01	< 0.01	< 0.03	< 0.01	NA	NA	< 0.01
	3/19/2013	2.8	< 0.01	0.065	<0.015	1.3	<0.01	NA	< 0.01	< 0.02	< 0.04	NA	< 0.01	< 0.01	< 0.03	< 0.01	NA	NA	< 0.01
	11/27/2012	2.7	< 0.01	0.056	<0.015	1.4	<0.01	NA	< 0.01	< 0.02	< 0.04	NA	< 0.01	< 0.01	< 0.03	< 0.01	NA	NA	< 0.01
	8/23/2012	2.1	< 0.01	0.037	<0.015	1.6	<0.01	NA	< 0.01	<0.02	<0.04	NA	< 0.01	< 0.01	< 0.03	< 0.01	NA	NA	<0.01
	6/14/2012	2.6	< 0.01	0.053	<0.015	1.2	< 0.01	NA	< 0.01	< 0.02	< 0.04	NA	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	< 0.01
	3/21/2012	2.3	< 0.01	0.051	<0.015	1.4	< 0.01	NA	< 0.01	< 0.02	< 0.04	NA	< 0.01	< 0.01	< 0.01	< 0.01	NA	NA	< 0.01
	12/13/2011	1.5	< 0.005	0.036	< 0.0075	1.3	< 0.005	NA	< 0.005	< 0.01	0.021	NA	< 0.005	0.007	< 0.005	< 0.005	NA	NA	< 0.005
	10/24/2011	1.4	< 0.005	0.045	< 0.0075	1.4	< 0.005	NA	< 0.005	< 0.01	0.022	NA	< 0.005	0.008	< 0.005	< 0.005	NA	NA	< 0.005
	6/20/2011	1.8	0.0015	0.0610	< 0.0015	1.6	0.001	NA	0.002	0.002	0.020	NA	0.001	0.007	<0.001	0.002	NA	NA	0.002
	2/24/2011	1.3	0.0019	0.0420	< 0.0015	1.4	0.001	NA	0.002	<0.002	0.019	NA	< 0.001	0.005	< 0.001	0.001	NA	NA	0.003
	11/8/2010	0.63	< 0.001	0.0180	< 0.0015	1.3	0.001	NA	0.002	< 0.002	0.022	NA	< 0.001	0.004	< 0.001	< 0.001	NA	NA	0.003
	9/22/2010	0.47	< 0.001	0.0083	< 0.0015	1.4	< 0.001	NA	0.002	< 0.002	0.022	NA	< 0.001	0.003	< 0.001	< 0.001	NA	NA	0.003
	6/7/2010	0.33	0.0018	0.0085	< 0.0015	1.4	0.001	NA	0.002	< 0.002	0.020	NA	< 0.001	0.003	< 0.001	< 0.001	NA	NA	0.002
	3/24/2010	0.25	< 0.005	0.0100	< 0.0075	1.5	< 0.005	< 0.005	< 0.005	< 0.01	< 0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	< 0.005
0W-57	10/1/2016	11	0.0540	0.5700	0.1400	0.18	0.007	< 0.005	< 0.005	0.220	0.150	0.140	< 0.005	0.022	0.009	0.048	NA	<0.245	< 0.006
0W-58	9/30/2016	32	6.6	1.5	4.4	3.3	0.690	0.210	< 0.005	0.240	0.089	0.097	< 0.005	0.072	0.021	0.150	NA	<0.245	0.018
	2015 - 2016		collected -											1	1			1	
-	9/18/2014	37	35	1.8	10	1.2	<1.0	<1.0	NA	<2.0	<4.0	<4.0	NA	<1.0	NA	<1.0	0.037	NA	<1.0
RW 1	9/16/2013	54	35	2.4	13	2.2	1.3	<1.0	NA	<2.0	<4.0	<4.0	NA	<1.0	NA	<1.0	0.087	NA	<1.0
=	8/23/2012	45	82	4.9	31	3.1	2.8	<1.0	NA	<2.0	<4.0	<4.0	NA	< 0.01	NA	< 0.01	0.21	NA	NA
	10/3/2011	51	37	3.7	23	2.9	5.8	0.98	NA	0.6	0.15	0.15	NA	< 0.01	NA	0.4	<0.1	NA	NA
	10/ 3/ 2011	<u></u>	- 37	0.1	23	2.3	0.0	0.90	INA	0.0	0.15	0.10	IN/A	×0.01	INA	0.4	\0.T	IN/A	INA

Table 2 - Groundwater AnalysesWestern Refining Southwest, Inc. - Gallup Refinery

			1	-		1103			-	- Gallup Re	initery					-			
		Benzene (mg/L)	Toluene (mg/L)	Ethyl Benzene (mg/L)	Total Xylenes (mg/L)	MTBE (mg/L)	1,2,4- Trimethyl benzene (mg/L)	1,3,5- Trimethyl benzene (mg/L)	1,2- Dichloro ethane (EDC) (mg/L)	Naphthale ne (mg/L)	naphthale ne (mg/L)	phthalen e (mg/L)	1,1- Dichloroe thane (mg/L)	lsopropyl benzene (mg/L)	ene (mg/L)	n- Propylben zene (mg/L)	henol (mg/L)	Acetone (mg/L)	Sec- butylbenz ene (mg/L)
-	C 20NMAC 6.2.3103	0.01	0.75	0.75	0.62	NE	NE	NE	0.01	NE	NE	NE	0.025	NE	NE	NE	NE	NE	NE
) CFR 141.62 MCL	0.005	1.0	0.7	10	NE	NE	NE	0.005	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
	Tap Water (DEC 2014)	0.00454	1.1	0.0149	0.193	0.143	NE	NE	0.002	0.00165	NE	NE	0.0275	0.447	NE	NE	0.354	14.1	NE
EPA RSL 1	for Tap Water (JAN 2015)	0.00045	0.11	0.0015	0.019	0.014	0.0015	0.012	0.0017	0.00017	0.0011	0.15	0.0027	0.045	0.1	0.066	0.73	22	0.2
Well ID	DATE SAMPLED																		
	11/16/2016	38	3.4	1.2	3.2	1.7	0.2	0.049	NA	0.15	0.13	<0.8	NA	<0.2	NA	0.063	NA	NA	NA
	9/13/2016	38	3.8	1.2	3.1	1.6	0.21	0.044	NA	0.14	0.088	<0.8	NA	0.03	NA	0.056	NA	NA	NA
-	6/8/2016	36	2.9	1.1	3.1	1.7	0.23	0.12	NA	0.18	0.17	<2.0	NA	<0.5	NA	0.071	NA	NA	NA
	3/7/2016	<mark>46</mark>	4.1	1.2	3.5	1.9	0.18	0.028	NA	0.1	0.069	0.028	NA	0.011	NA	0.045	NA	NA	NA
RW 2	8/23/2015	42	6.9	1.1	3.7	1.8	0.21	<0.2	NA	<0.4	<0.8	<0.8	NA	<0.2	NA	<0.6	NA	NA	NA
	9/18/2014	40	4.5	0.86	2.5	1.9	0.15	<0.1	NA	<0.2	<0.4	<0.4	NA	<0.1	NA	<0.1	0.084	NA	NA
	9/16/2013	48	3.4	0.87	2.3	2.8	0.13	<0.1	NA	<0.2	<0.4	<0.4	NA	<0.1	NA	<0.1	0.15	NA	NA
	8/23/2012	42	2.6	0.59	1.7	3.3	<0.1	<0.1	NA	<0.2	<0.4	<0.4	NA	<0.1	NA	<0.1	0.22	NA	NA
	10/3/2011	39	5.3	0.57	1.5	3.7	0.098	0.024	NA	0.057	0.054	<0.04	NA	<0.01	NA	0.036	0.16	NA	NA
	11/16/2016	0.72	0.0035	0.34	0.13	0.0012	0.062	0.014	NA	0.14	0.12	0.12	NA	0.02	0.012	0.043	NA	NA	0.0071
	9/13/2016	0.57	0.0035	0.26	0.12	<0.005	0.049	0.013	NA	0.13	0.097	0.12	NA	0.016	0.012	0.037	NA	NA	0.0075
	6/7/2016	0.54	0.0038	0.15	0.11	0.0042	0.046	0.017	NA	0.13	0.13	0.15	NA	0.01	0.016	0.026	NA	NA	0.0079
- [3/7/2016	0.39	0.0024	0.15	0.086	0.0026	0.041	0.013	NA	0.12	0.11	0.12	NA	0.012	0.014	0.032	NA	NA	0.01
RW 5	10/29/2015	0.5	<0.01	0.13	0.095	< 0.01	0.048	0.015	NA	0.17	0.11	0.13	NA	<0.01	NA	0.027	NA	NA	<0.01
RW 5	8/23/2015	0.43	<0.005	0.037	0.07	<0.005	0.041	0.012	NA	0.085	0.067	0.083	NA	<0.005	NA	<0.005	NA	NA	<0.005
	9/18/2014	0.35	<0.01	0.11	0.056	< 0.01	0.045	0.011	NA	0.1	0.084	0.11	NA	0.012	NA	0.039	<0.01	NA	0.01
	9/16/2013	0.37	<0.01	0.11	0.089	< 0.01	0.09	0.022	NA	0.12	0.097	0.13	NA	<0.01	NA	0.031	<0.01	NA	<0.01
	8/23/2012	0.19	<0.01	0.26	0.091	0.032	0.054	0.016	NA	0.11	0.11	0.17	NA	<0.01	NA	0.068	<0.01	NA	0.013
	10/3/2011	0.56	<0.01	0.21	0.26	0.095	0.13	0.046	NA	0.17	0.11	0.16	NA	0.01	NA	0.04	<0.01	NA	NA
	11/16/2016	0.27	0.12	0.29	0.78	0.014	0.06	0.1	NA	0.61	0.33	0.35	NA	0.024	0.015	0.048	NA	NA	0.0088
[9/13/2016	0.28	0.11	0.29	0.81	0.017	0.064	0.12	NA	0.55	0.28	0.37	NA	0.028	0.02	0.055	NA	NA	0.011
	3/7/2016	0.39	0.19	0.51	0.086	0.021	0.075	0.13	NA	0.59	0.28	0.33	NA	0.012	0.014	0.032	NA	NA	0.01
_	10/29/2015	0.34	0.11	0.28	0.85	0.043	0.09	0.1	NA	0.68	0.32	0.41	NA	0.025	NA	0.044	NA	NA	<0.01
RW 6	8/23/2015	0.36	0.071	0.093	0.67	0.05	0.095	0.11	NA	0.41	0.22	0.29	NA	<0.01	NA	0.012	NA	NA	<0.01
	9/18/2014	0.47	0.23	0.45	1.3	0.046	0.17	0.17	NA	0.57	0.19	0.28	NA	0.045	NA	0.11	<0.01	NA	< 0.01
	9/16/2013	0.68	<0.05	0.18	1.1	<0.05	0.28	0.14	NA	0.48	0.2	0.27	NA	<0.05	NA	<0.05	<0.01	NA	<0.05
	8/23/2012	0.74	0.052	0.4	1.6	0.073	0.38	0.17	NA	0.58	0.22	0.36	NA	<0.05	NA	0.074	<0.01	NA	<0.05
	10/3/2011	0.87	0.029	0.33	<0.015	<0.01	0.42	0.16	NA	0.52	0.21	0.31	NA	0.043	NA	0.078	<0.1	NA	NA
	pressed in milligrams per lite																		

All values expressed in milligrams per liter

DEFINITIONS

NE = Not established

NA = Not analyzed

Bold and highlighted values represent values above the applicable standards

Bold screening level is applicable screening under RCRA Permit

STANDARDS

WQCC 20 NMAC 6.2.3103 - Standards for Ground Water of 10,000 mg/I TDS Concentration or Less.

a) Human Health Standards; b) Other Standards for Domestic Water

40 CFR 141.62 Maximum Contaminant Levels

EPA Regional Screening Level (RSL) Summary Table

NMED Tap Water (Dec. 2014)

Datast			Qualitat	00110	0044.0			ng Southwe				Durath 41				Quality white with a second state
Date of	Well ID	Inspection or	Casing	-	2011 Survey ¹	-		2011 Survey		Depth to	SPH ²	•	Ground water	-		Stratigraphic unit screened
Installation	Number	Sample Date	Diameter (Inch)	Ground Level	Well Casing Rim Elevations	Ground Elevation	length (ft)	¹ Well Casing	Depth (ft)	SPH (ft)	Column Thickness	water (It)	Elevation ³ (ft)	Elevation	Depth Top to Bottom	
					(ft)	Inside Steel	(11)	Bottom		(11)	(ft)			(factor 0.8)	(ft)	
					(10)	Sleeve		Elevations						(ft)	(10)	
12/10/1980		3/19/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.54	6,897.53	N/A	78.2 98.2	Sonsela
12/10/1000		6/13/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.74	6,897.33	N/A	78.2 98.2	Sonsela
		9/3/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.80	6,897.27	N/A	78.2 98.2	Sonsela
		11/11/2013	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.38	6,897.69	N/A	78.2 98.2	Sonsela
		3/7/14	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.77	6,898.30	N/A	78.2 - 98.2	Sonsela
		6/3/14	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.95	6,898.12	N/A	78.2 - 98.2	Sonsela
	-	9/15/14	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.61	6,897.46	N/A	78.2 - 98.2	Sonsela
	OW 13	11/10/14	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.45	6,897.62	N/A	78.2 - 98.2	Sonsela
		3/9/2015	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.92	6,898.15	N/A	78.2 - 98.2	Sonsela
		6/1/2015	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.76	6,898.31	N/A	78.2 - 98.2	Sonsela
		8/10/2015	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.14	6,897.93	N/A	78.2 - 98.2	Sonsela
		10/27/2015	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	22.10	6,897.97	N/A	78.2 - 98.2	Sonsela
		3/4/2016	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.43	6,898.64	N/A	78.2 - 98.2	Sonsela
		6/6/2016	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.45	6,898.62	N/A	78.2 - 98.2	Sonsela
		8/31/2016	4.00	6,918.95	6,920.07	6,915.33	1.12	6,820.92	99.15	NPP	NPP	21.94	6,898.13	N/A	78.2 - 98.2	Sonsela
12/17/1980		3/19/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.79	6,901.86	N/A	35 45	Chinle/Alluvium Interface
		6/13/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.89	6,901.76	N/A	35 45	Chinle/Alluvium Interface
		9/3/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.92	6,901.73	N/A	35 45	Chinle/Alluvium Interface
		11/11/2013	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.59	6,902.06	N/A	35 45	Chinle/Alluvium Interface
		3/7/14	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.12	6,902.53	N/A	35 - 45	Chinle/Alluvium Interface
		6/3/14	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.15	6,902.50	N/A	35 - 45	Chinle/Alluvium Interface
	-	9/15/14	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.40	6,902.25	N/A	35 - 45	Chinle/Alluvium Interface
	OW 14	11/10/14	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	24.25	6,902.40	N/A	35 - 45	Chinle/Alluvium Interface
		3/9/2015	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	46.52	6,880.13	N/A	35 - 45	Chinle/Alluvium Interface
		6/1/2015	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	46.52	6,880.13	N/A	35 - 45	Chinle/Alluvium Interface
		8/10/2015	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	46.52	6,880.13	N/A	35 - 45	Chinle/Alluvium Interface
		10/27/2015	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	23.69	6,902.96	N/A	35 - 45	Chinle/Alluvium Interface
		3/4/2016	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	23.20	6,903.45	N/A	35 - 45	Chinle/Alluvium Interface
		6/6/2016	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	23.18	6,903.47	N/A	35 - 45	Chinle/Alluvium Interface
		8/31/2016	4.00	6,924.55	6,926.65	6,924.40	2.10	6,880.13	46.52	NPP	NPP	23.50	6,903.15	N/A	35 - 45	Chinle/Alluvium Interface
9/21/2016	0W-57	10/01/16	2.00	6,930.64	6,933.10	NM	2.46	6,905.14	25.50	NPP	NPP	21.62	6,911.48	N/A	15 - 25	Chinle/Alluvium Interface
9/22/2016	0W-58	09/30/16	2.00	6,943.71	6,934.50	NM	0.21	6,886.21	48.50	27.6	0.98	28.58	6,905.92	6906.70	38 - 48	Chinle/Alluvium Interface

Table 3 - Fluid Level Measurements Western Refining Southwest Inc. - Gallun Refinery

Date of	Well ID	Inspection or	Casing	2011 Survey ¹	2011 Survey ¹	2011 Survey ¹		2011 Survey	st, Inc Gal Total Well	Depth to	SPH ²	Depth to	Ground water	€ orrected	Screened Interval	Stratigraphic unit screened
Installation	Number	Sample Date	Diameter	Ground Level	Well Casing	Ground	length	¹ Well	Depth (ft)	SPH	Column		Elevation ³ (ft)		Depth Top to	
motanation	Number		(Inch)		Rim Elevations	Elevation	(ft)	Casing	Dopan (it)	(ft)	Thickness			Elevation	Bottom	
			((ft)	Inside Steel	(,	Bottom		(,	(ft)			(factor 0.8)	(ft)	
					()	Sleeve		Elevations			x7			(ft)	(4	
3/28/1995		3/26/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	29.11	3.49	32.60	6,913.46	6916.25	25 40	Chinle/Alluvium Interface
		6/17/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	29.37	3.73	33.10	6,912.96	6915.94	25 40	Chinle/Alluvium Interface
		9/16/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.75	4.34	33.09	6,912.97	6916.44	25 40	Chinle/Alluvium Interface
		11/12/2013	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.73	4.38	33.11	6,912.95	6916.45	25 40	Chinle/Alluvium Interface
		3/14/14	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.11	3.54	31.65	6,914.41	6917.24	25 - 40	Chinle/Alluvium Interface
		6/9/14	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.05	5.01	33.06	6,913.00	6917.01	25 - 40	Chinle/Alluvium Interface
	-	9/18/14	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.31	NR	NR	NR	N∖A	25 - 40	Chinle/Alluvium Interface
	RW 1	11/13/14	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.15	4.89	33.04	6,913.02	6916.93	25 - 40	Chinle/Alluvium Interface
		3/23/2015	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.10	4.70	32.80	6,913.26	6917.02	25 - 40	Chinle/Alluvium Interface
		6/9/2015	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	27.70	4.40	32.10	6,913.96	6917.48	25 - 40	Chinle/Alluvium Interface
		8/23/2015	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.08	1.94	30.02	6,916.04	6917.59	25 - 40	Chinle/Alluvium Interface
		10/29/2015	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	27.65	2.45	30.10	6,915.96	6917.92	25 - 40	Chinle/Alluvium Interface
		3/4/2016	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	28.05	2.50	30.55	6,915.51	6917.51	25 - 40	Chinle/Alluvium Interface
		6/8/2016	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	27.98	3.82	31.80	6,914.26	6917.32	25 - 40	Chinle/Alluvium Interface
		9/13/2016	4.00	6,942.86	6,946.06	6,941.25	3.20	6,903.02	43.04	27.90	4.14	32.04	6,914.02	6917.33	25 - 40	Chinle/Alluvium Interface
3/29/1995		3/26/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	24.74	6,903.79	6901.66	26.1 36.1	Chinle/Alluvium Interface
		6/17/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	24.80	6,903.73	6901.6	26.1 36.1	Chinle/Alluvium Interface
		9/16/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	24.64	6,903.89	6901.76	26.1 36.1	Chinle/Alluvium Interface
		11/12/2013	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	24.66	6,903.87	6901.74	26.1 36.1	Chinle/Alluvium Interface
		17/03/2014	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	24.59	6,903.94	6903.94	26.1 - 36.1	Chinle/Alluvium Interface
		09/06/2014	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	23.79	6,904.74	6904.74	26.1 - 36.1	Chinle/Alluvium Interface
	-	18/09/2014	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	23.95	6,904.58	6904.58	26.1 - 36.1	Chinle/Alluvium Interface
	RW 2	13/11/2014	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	23.90	6,904.63	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		3/23/2015	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	23.52	6,905.01	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		6/9/2015	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	23.02	6,905.51	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		8/23/2015	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	23.37	6,905.16	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		10/29/2015	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	22.80	6,905.73	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		3/4/2016	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	22.45	6,906.08	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		6/8/2016	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	22.31	6,906.22	6904.63	26.1 - 36.1	Chinle/Alluvium Interface
		9/13/2016	4.00	6,926.40	6,928.53	6,925.02	2.13	6,888.73	39.80	NPP	NPP	22.47	6,906.06	6904.63	26.1 - 36.1	Chinle/Alluvium Interface

Table 3 - Fluid Level Measurements Western Refining Southwest Inc. - Gallun Refinery

Date of	Well ID	Inspection or	Casing	2011 Survey 1	2011 Survey 1	2011 Survey 1	Stick up	2011 Survey	Total Well	Depth to	SPH ²	Depth to	Ground water		Screened Interval	Stratigraphic unit screened
Installation	Number	Sample Date	Diameter	Ground Level	Well Casing	Ground	length	¹ Well	Depth (ft)	SPH	Column	Water (ft)	Elevation ³ (ft)	Water Table	Depth Top to	
			(Inch)	Elevations (ft)	Rim Elevations	Elevation	(ft)	Casing		(ft)	Thickness			Elevation	Bottom	
					(ft)	Inside Steel		Bottom			(ft)			(factor 0.8)	(ft)	
						Sleeve		Elevations						(ft)		
8/27/1997		3/26/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	29.45	6,914.12	6912.08	29.5 39.5	Chinle/Alluvium Interface
		6/17/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	29.44	6,914.13	6912.09	29.5 39.5	Chinle/Alluvium Interface
		9/16/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.98	6,914.59	6912.55	29.5 39.5	Chinle/Alluvium Interface
		11/12/2013	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.96	6,914.61	6912.57	29.5 39.5	Chinle/Alluvium Interface
		14/03/2014	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	27.92	6,915.65	6915.65	29.5 - 39.5	Chinle/Alluvium Interface
	_	09/06/2014	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.80	6,914.77	6914.77	29.5 - 39.5	Chinle/Alluvium Interface
	-	18/09/2014	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.81	6,914.76	6914.76	29.5 - 39.5	Chinle/Alluvium Interface
	RW 5	13/11/2014	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.70	6,914.87	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		3/23/2015	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	29.10	6,914.47	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		6/9/2015	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.80	6,914.77	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		8/23/2015	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	29.08	6,914.49	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		10/29/2015	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	27.97	6,915.60	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		3/4/2016	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.22	6,915.35	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		6/7/2016	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	28.22	6,915.35	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
		9/13/2016	4.00	6,941.53	6,943.57	6,940.82	2.04	6,903.98	39.59	NPP	NPP	27.70	6,915.87	6914.87	29.5 - 39.5	Chinle/Alluvium Interface
8/27/1997		3/26/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	29.59	6,914.42	6912.37	28.5 38.5	Chinle/Alluvium Interface
		6/17/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	29.52	6,914.49	6912.44	28.5 38.5	Chinle/Alluvium Interface
		9/16/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	29.13	6,914.88	6912.83	28.5 38.5	Chinle/Alluvium Interface
		11/12/2013	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	29.10	6,914.91	6912.86	28.5 38.5	Chinle/Alluvium Interface
		17/03/2014	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.04	6,915.97	6915.97	28.5 - 38.5	Chinle/Alluvium Interface
		23/06/2014	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.85	6,915.16	6915.16	28.5 - 38.5	Chinle/Alluvium Interface
	-	18/09/2014	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.89	6,915.12	6915.12	28.5 - 38.5	Chinle/Alluvium Interface
	RW 6	13/11/2014	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.83	6,915.18	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		3/23/2015	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	29.18	6,914.83	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		6/9/2015	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.68	6,915.33	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		8/23/2015	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	29.06	6,914.95	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		10/29/2015	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	27.97	6,916.04	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		3/4/2016	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.25	6,915.76	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		6/7/2016	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	28.24	6,915.77	6915.18	28.5 - 38.5	Chinle/Alluvium Interface
		9/13/2016	4.00	6,941.96	6,944.01	6,941.49	2.05	6,903.11	40.90	NPP	NPP	27.99	6,916.02	6915.18	28.5 - 38.5	Chinle/Alluvium Interface

Table 3 - Fluid Level Measurements Western Refining Southwest Inc. - Gallun Refinery

DEFINITIONS:

N\A - Not applicable

SPH = Separate Phase Hydrocarbons

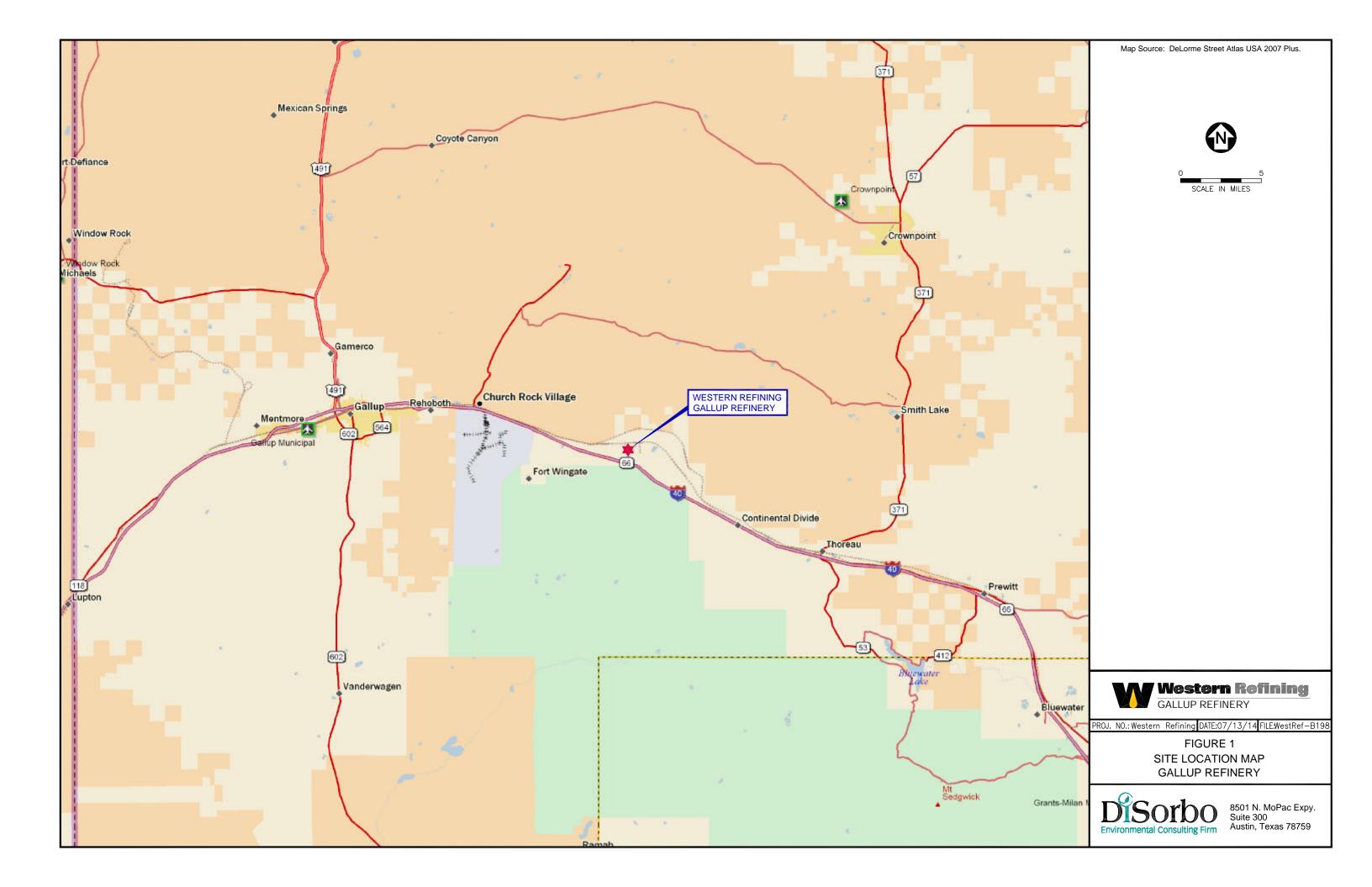
NPP - No Product Present

NR - Not recorded

NM - not measured

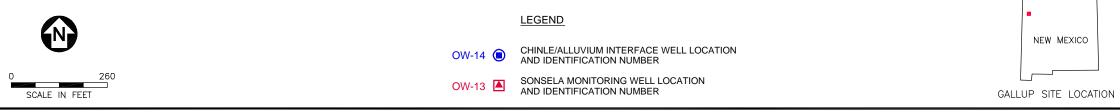
NOTES:

1. Elevation data from NMED's "Approval with Modifications, Requirement to Resurvey Ground water Monitoring Wells and Recovery Wells", dated 9/26/12.

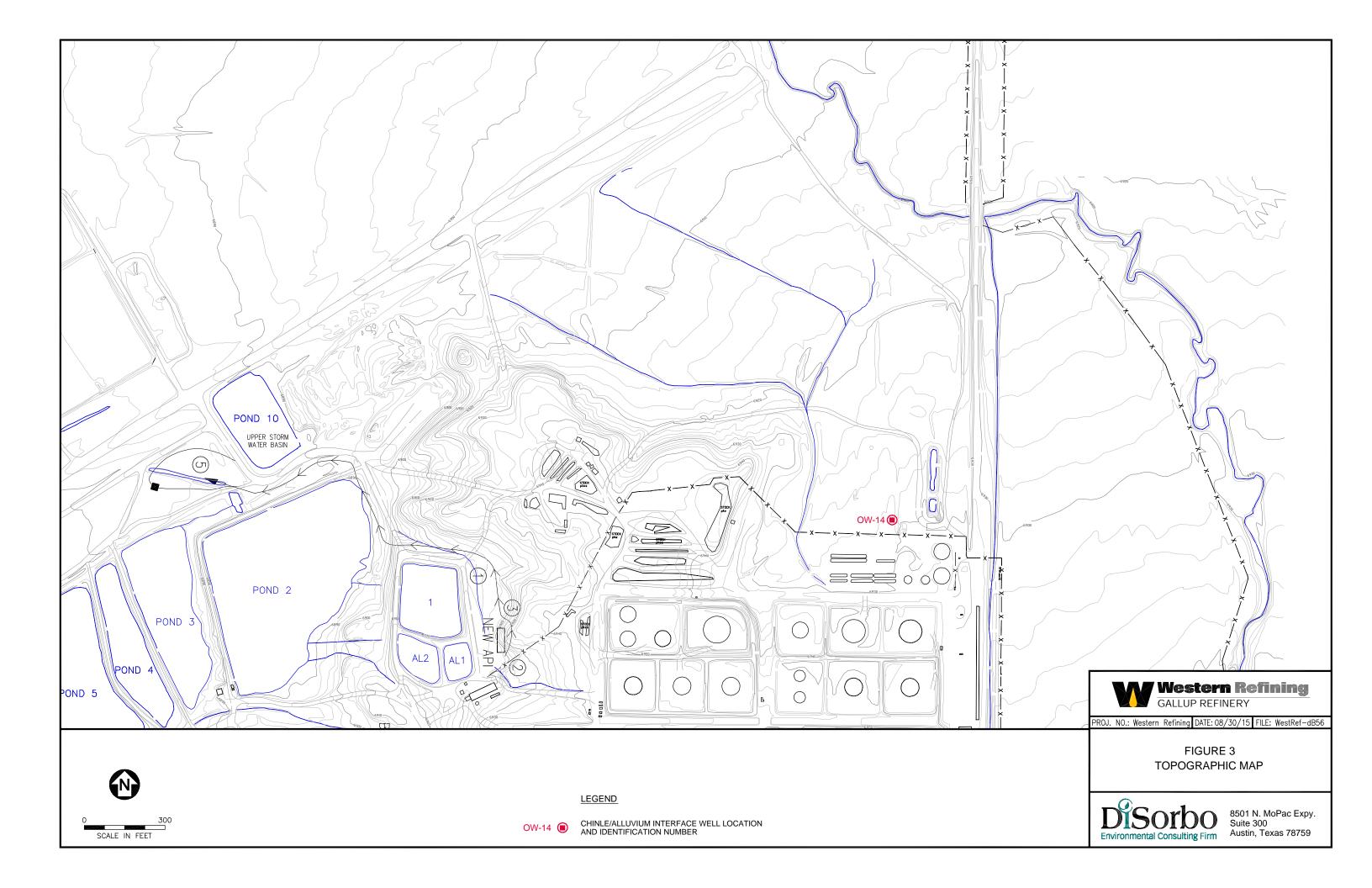

2. Ground water elevation Depth to SPH = SPH Column Thickness.

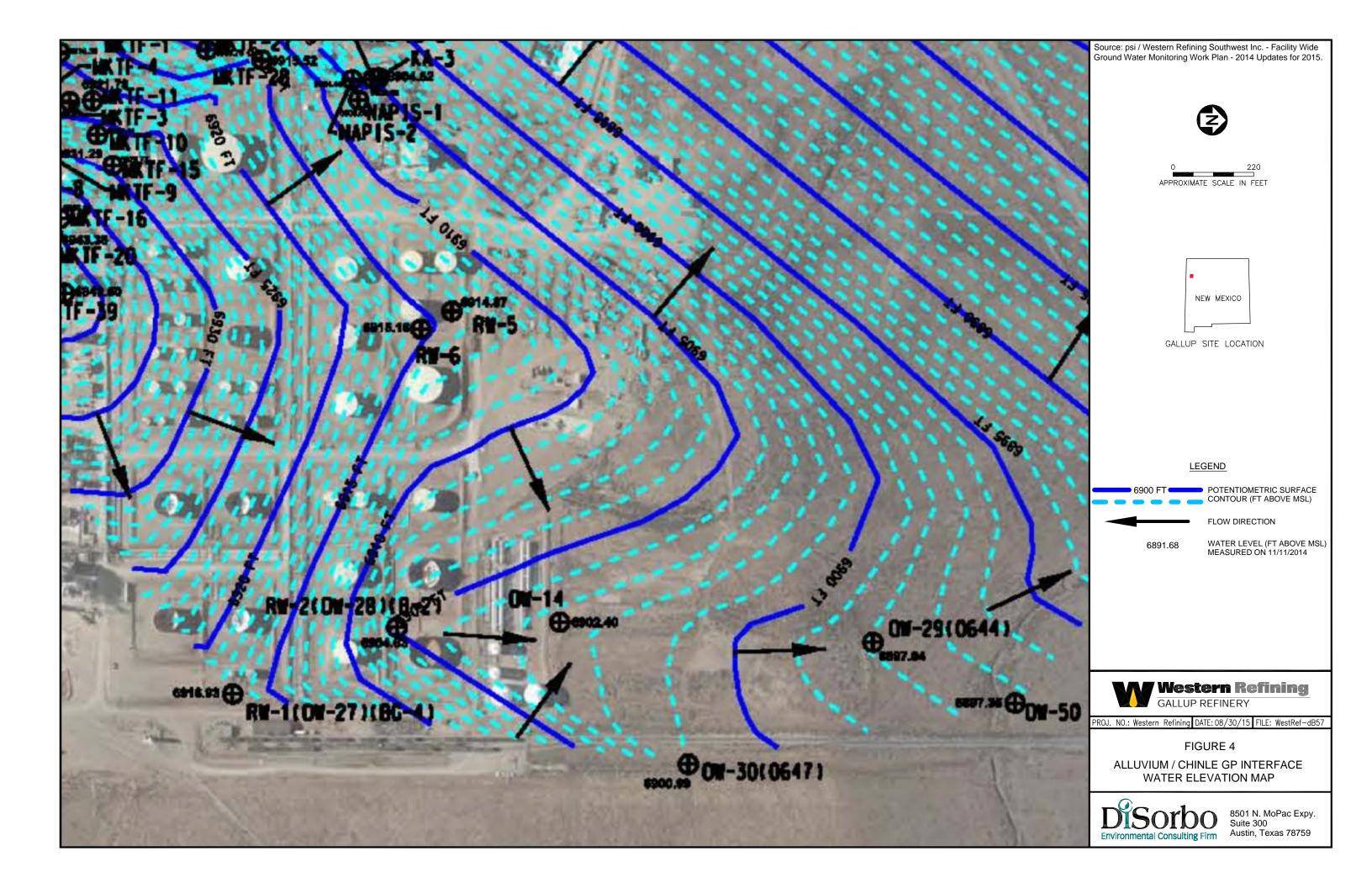
3. 2011 Survey well casing rim elevation depth to water measurement.

4. Corrected Water Table Elevation applies only if SPH thickness column measurement exists. (0.8 X SPH thickness + Ground Water Elevation)

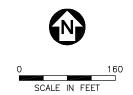

Figures

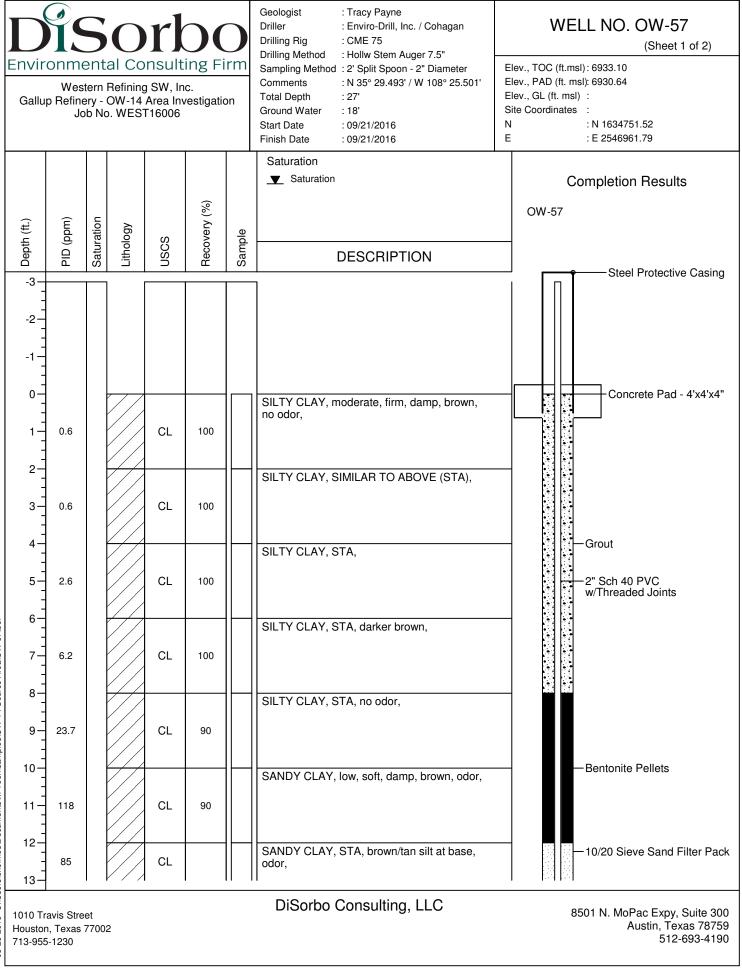
- Figure 1 Site Location Map
- Figure 2 Site Map
- Figure 3 Topographic Map
- Figure 4Alluvium/Chinle GP Interface Water Elevation Map
- Figure 5 Proposed Sample Location Map

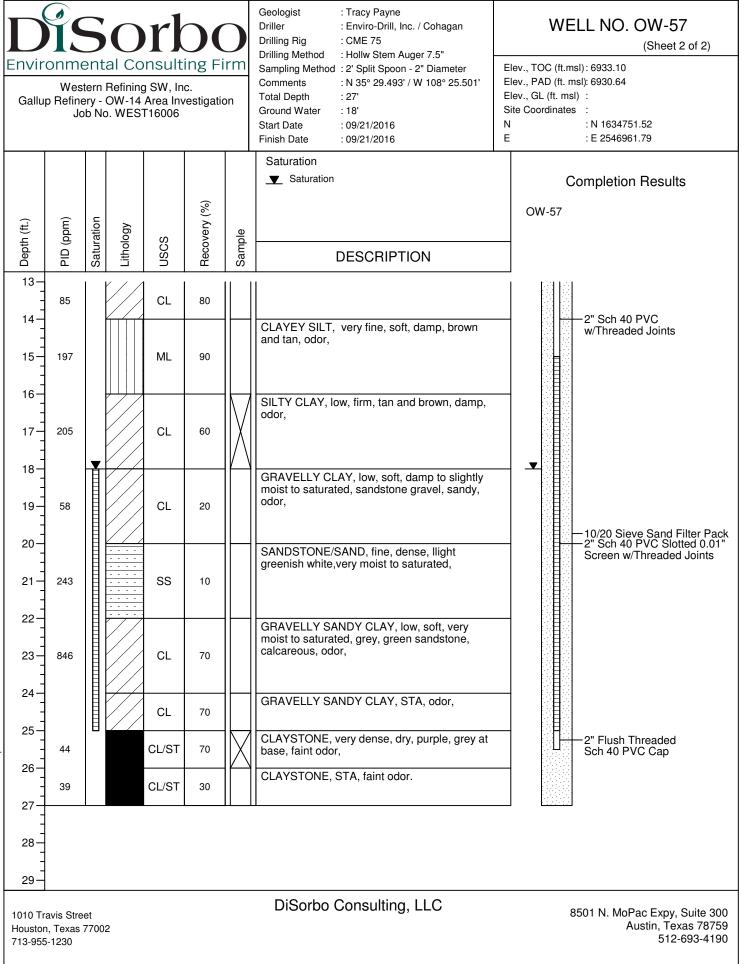


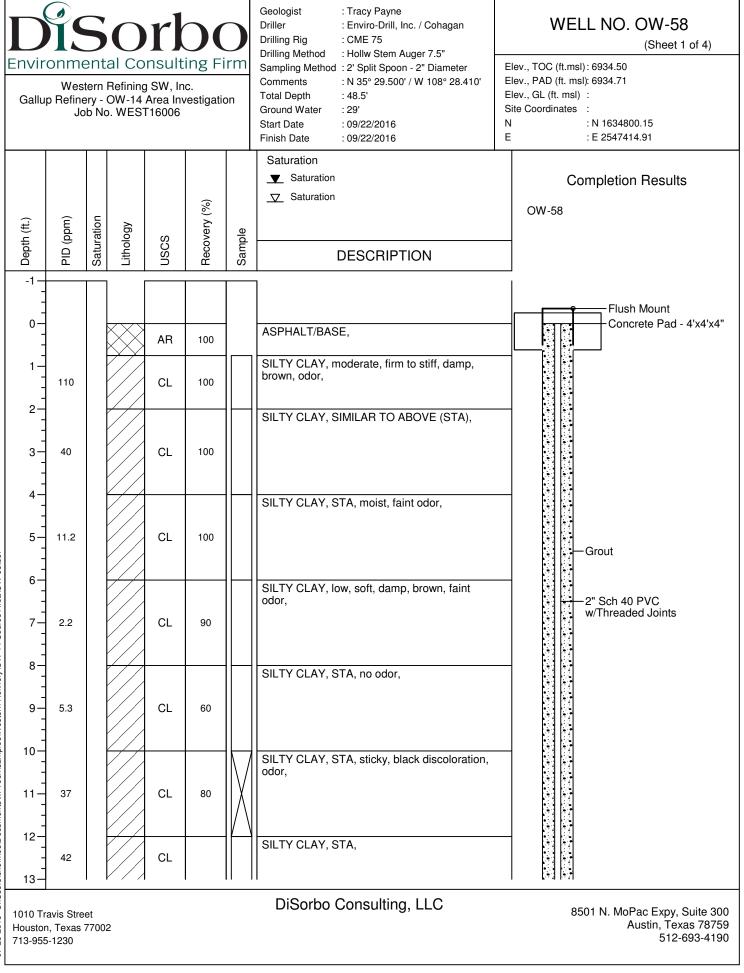


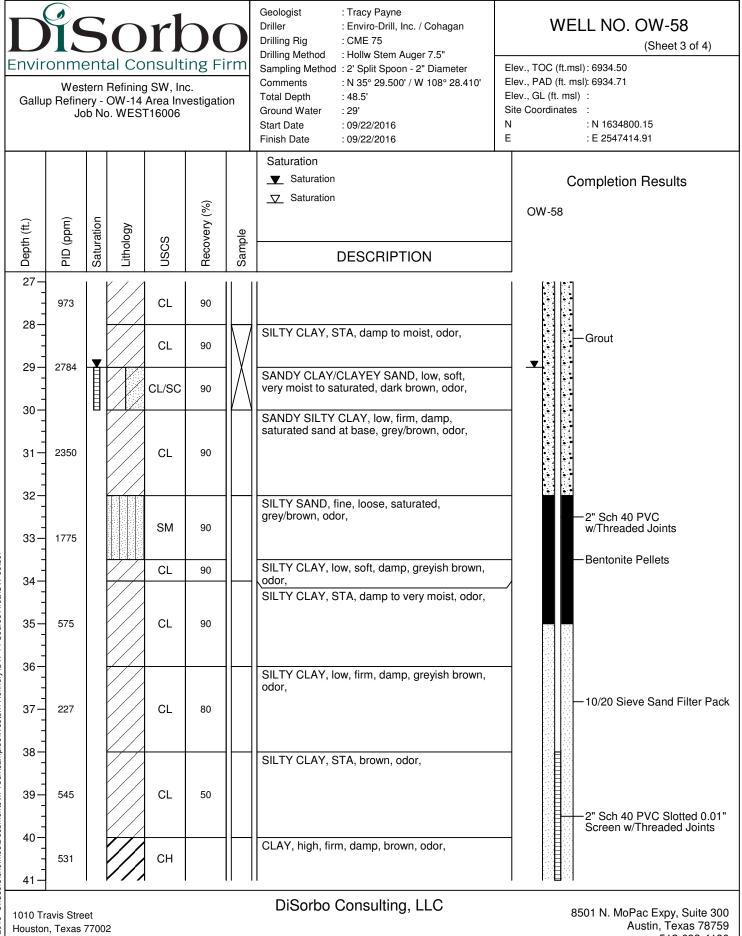
Aerial Map Source: Google Map, 01/05/2014.

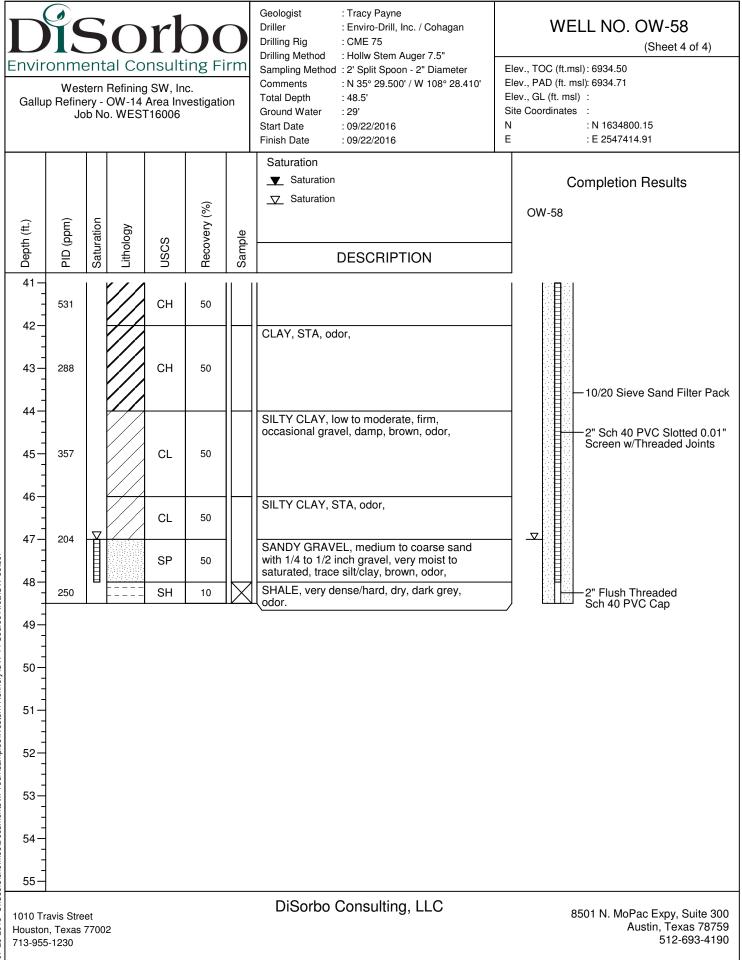









Appendix A Boring Logs


Environmental Consulting Firm Western Refining SW, Inc. Gallup Refinery - OW-14 Area Investigation Job No. WEST16006							Geologist: Tracy PayneDriller: Enviro-Drill, Inc. / CohaganDrilling Rig: CME 75Drilling Method: Hollw Stem Auger 7.5"Sampling Method: 2' Split Spoon - 2" DiameterComments: N 35° 29.500' / W 108° 28.410'Total Depth: 48.5'Ground Water: 29'Start Date: 09/22/2016Finish Date: 09/22/2016	WELL NO. OW-58 (Sheet 2 of 4) Elev., TOC (ft.msl): 6934.50 Elev., PAD (ft. msl): 6934.71 Elev., GL (ft. msl) : Site Coordinates : N : N 1634800.15 E : E 2547414.91
Depth (ft.)	PID (ppm)	Saturation	(Boom		Recovery (%)	Sample	Saturation Saturation Saturation Saturation DESCRIPTION	Completion Results OW-58
13	42		С	L 7	70			
14	25		с	L é	60		SILTY CLAY, low, stiff, damp, brown with black discoloration, faint odor,	
16- - - 17-	226		c	L e	60		SANDY CLAY, low, stiff, very fine grain sand, damp, brown, odor,	
18 - - - 19 - -	240		c	L E	50		SANDY CLAY, STA, odor,	Grout
	200		c	L 6	60		SANDY CLAY, STA, odor,	
21	2020		c	L S	90		SILTY CLAY, low, very stiff, damp, brown, tan silt pockets/seams present, odor,	
24	1980		c	L S	90	<u>v </u>	SILTY CLAY, low, firm, soft/ crumbly, damp, brown, strong odor, outside of core is oily/phase separated hydrocarbon (PSH),	
	973		c	L			SILTY CLAY, STA, firm to stiff, odor, outside of core is oily/PSH,	
1010 Tr Houstor 713-955	avis Stre n, Texas 3 5-1230						DiSorbo Consulting, LLC	8501 N. MoPac Expy, Suite 300 Austin, Texas 78759 512-693-4190

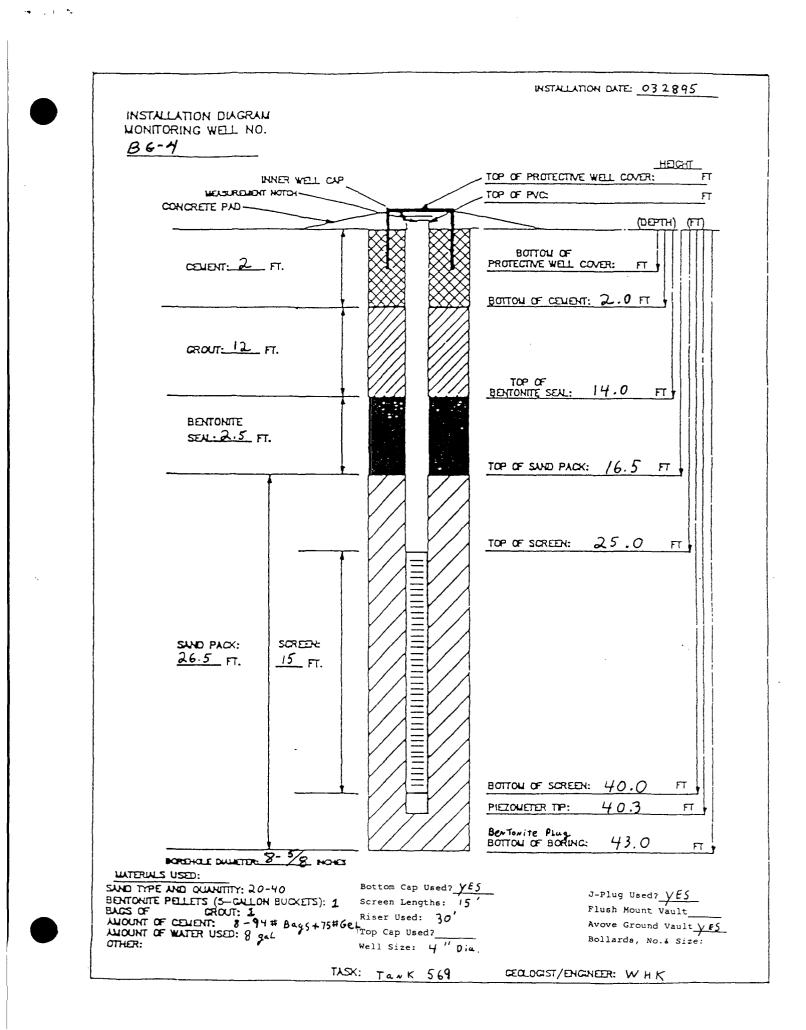
C:\Users\choImes\Documents\M-Tech\samples\Western Refinery\OW-14 Source Area\OW-58.bor -25-2018 6

713-955-1230

512-693-4190

07-25-2018 C:\Users\cholmes\Documents\M-Tech\samples\Western Refinery\OW-14 Source Area\OW-58.bor

PROJECT:				ELEVATION:	95-018 6943.7	
LOCATION:	See Boring	Pla	n		48.5	
	,				WHR	
			s	DATE:	3-28-95	
		s	A	STATIC WATER:	28.0	
	P	c	M	BORING ID:	BG4	
		A	P	PAGE:	1	
	0	L	L L	MATERIAL CHARACTERISTICS	PID	
DEPTH	Т	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(mqq)	
0.0-0.3	*******		l c	Sand, fine, dry, brown, loose	1	
0.3-0.4	xxxxxxxxx	11.0		Asphalt Cement Concrete	11.0	
0.4-5.0	///***///	:		Clay, sandy, wet, brown, firm, (fill), odor below 3.9', water saturated @ 4.8'	>1438	
0.4-5.0	///***///		:		1	
			1	bottom of fill is at 4.8'		
	///***///	:	C			
	///***///	•	c			
	///***///		C		ļ	
	///***///	1	c			
	///***///		C.		<u> </u>	
5.0-11.8	///+///	5.0	c	Clay, silty, blocky, wet, brown, firm, scattered carbonate filaments, some	0.0	
	111+///	1	c	nodules, native, no odor, redder >10'	1	
	1///+///	i	İc	i de la companya de la	i	
	111+///		c		i	
	///+///	!	c		1	
	///+///		c		1	
			1		1	
	///+///	1	C		1	
	///+///		с			
	///+///		C			
	///+///		C			
	///+///		C			
	///+///		С			
	///+///	11	C			
	1///+///		с		İ	
11.8-13.0	1///***///	12	C	Clay , sandy, very fine, wet, red brown to brown, soft	0.0	
11.0-13.0	///***///		с		i	
		13	C	Clay, stiff, fissured, wet, brown, some carbonate nodules	0.0	
13.0-14.1	1////+++//		: :		1	
13.0-14.1	////+++//		I C :		1	
	////+++//		C	Sand fine clean damn white loose		
14.1-14.6	////+++//	14	с	Sand, fine, clean, damp, white, loose	0.0	
14.1-14.6 14.6-15.0	////+++// ++++++// ////++0+//	14	c c	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard	0.0	
14.1-14.6	////+++// ++++++// ///++0+// ///++////	14 15	с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft		
14.1-14.6 14.6-15.0	////+++// ********* ///**0*/// ///**//// ///**////	14 15	с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0	////+++// ********* ///**0*/// ///**//// ///**////	14	с с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0	////+++// ++++++// ///+++0+// ///+++//// ///++//// ///++//// ///++////	14	с с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0	////+++// ********* ///**0*/// ///**//// ///**////	14	с с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0 15.0-16.9	////+++// ++++++// ///+++0+// ///+++//// ///++//// ///++//// ///++////	14 15 15	с с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0 15.0-16.9	////+++// ++++++// ///+++0+// ///+++//// ///++//// ///++//// ///++////	14 15 15	с с с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0 15.0-16.9	////+++// +******** ///**0*/// ///**//// ///**//// ///**//// ///*///// ///*/////	14 <u>15</u> <u>17</u> 18	с с с с с с с	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1	////+++/// ****************************	14 15 15 17 18	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard <u>Clay</u> , very fine sandy, laminar bedded, wet, brown, soft <u>Clay</u> , very fine sandy, slightly less than above, slightly blocky, wet, brown, firm	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1	////+++/// +***************************	14 15 15 17 18	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8	////+++// +****************************	14 15 15 17 18	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8	////+++// *****************************	14 15 15 17 18	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8	////+++// *****************************	14 15 15 17 18 20		Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8 19.8-21.3	////+++// ********** ///**0*// ///**/// ///**//// ///*//// ///*//// ///*//// ///*//// ///*//// ///*//// ///**///// ///**///// ///**///// ///**//// ///**//// ///**//// //****//**** 000***000 000***000 000***000	14 15 15 17 18 20 21	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil Gravel, sandy, moist, light grey to white, dense, subrounded	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8 19.8-21.3 21.3-21.8	////+++// *****************************	14 15 15 17 18 20 21	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil Gravel, sandy, moist, light grey to white, dense, subrounded Clay, sandy, wet, brown, soft	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8 19.8-21.3	////+++// *****************************	14 15 15 17 18 20 21 21	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil Gravel, sandy, moist, light grey to white, dense, subrounded Clay, sandy, wet, brown, soft Sravel, slightly sandy, some clay as binder, moist, grey to brown, dense	0.0	
14.1-14.6 14.6-15.0 15.0-16.9 16.9-18.1 18.1-19.8 19.8-21.3 21.3-21.8	////+++// *****************************	14 15 15 17 18 20 21 22	C C C C C C C C C C C C C C C C C C C	Clay, sandy, slightly gravelly, wet, brown, very stiff to hard Clay, very fine sandy, laminar bedded, wet, brown, soft Clay, very fine sandy, slightly less than above, slightly blocky, wet, brown, firm Sand, some clay, sandy in bands, moist to wet, brown, moderately dense to soft interbedded with finer soil Gravel, sandy, moist, light grey to white, dense, subrounded Clay, sandy, wet, brown, soft	0.0	


ZE AND TYPE OF BORING: 4'-1/4" HSA

1

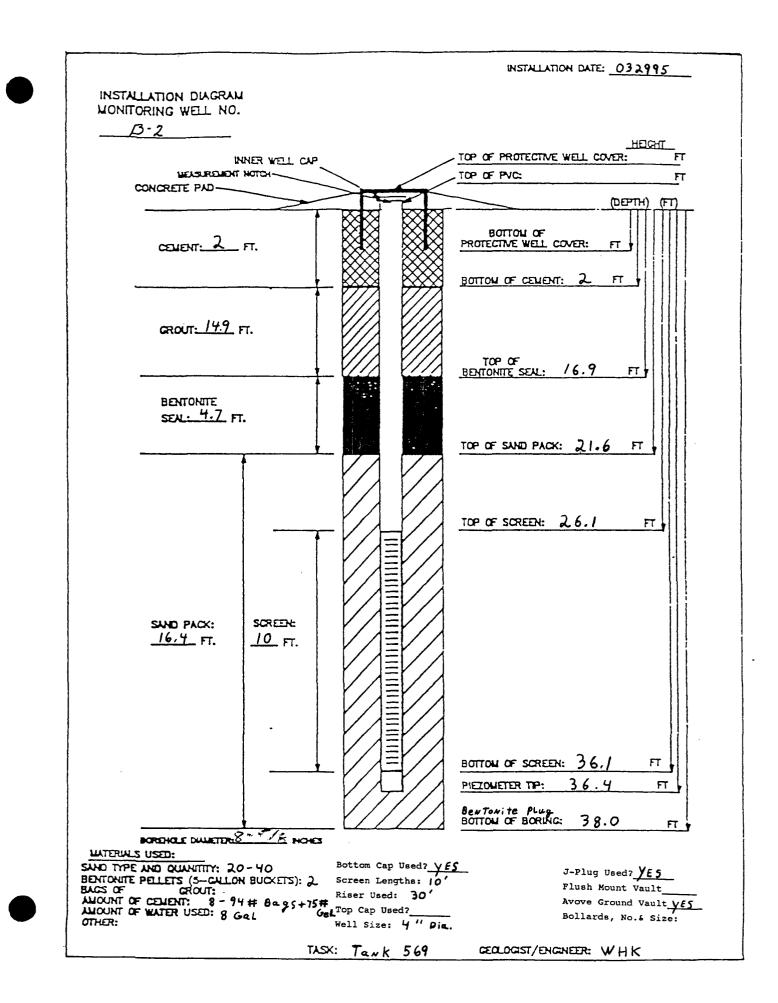
. . .----

DDA 7007 -				PRECISION ENGINEERING, INC. FILE #:	95-018
PROJECT:		D 1	_		6943.7
LOCATION:	See Boring	PIA	n	LOG OF TEST BORINGS TOTAL DEPTH:	48.5
	1	1	s		WHK 3-28-95
		s	A		28.0
	P	c	M		BG4
	L	A	P		2
		L	L	MATERIAL CHARACTERISTICS	PID
DEPTH	T	Е	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(ppm)
	000++/000			continued from page 1	1
	000++/000	1	c		i
	000++/000		c		160 @ 24.
	000**/000	:	c		İ
25.5-29.4	******		c	Sand, fine, clean of silt and clay, moist, brown, loose	45.0
	******	26	c		
			c		Ì
	 *******	!	c		1
	 *******	!	c		
	! *******		c		i
	******	!	c		
	 *******	!	c		
29.4-30.5	*******	!—	!	Sand as above but very weakly water bearing @ 29.4', grey to black, strong odor	1100
	! * * * * * * * * *	!	:		
30.5-31.2	///***///	i	c	Clay, sandy, wet, brown, soft, odor	770
	111+++111				
31.2-34.0	///+++///		•••••	Clay, blocky, wet, very stiff, numerous carbonate filaments, brown, slightly	770
	///+++///		:	fissured, odor	
	///+++///		c		
	///+++///	1	с		
	///+++///		с		
34.0-35.0	******		C	Sand, silty, very fine, does not appear water bearing, but sample covered with	700
	******			water from above, very dark brown to black, soft, strong odor	
35.0-37.3	***///***	35	c	Sand, very fine, clayey, saturated, water bearing zones2" thick, gradational to	1000
	///	i	c	clay below, brown, strong odor	
	+++///+++	i	j c		
	///	i	c		
	///	!	l c		1
37.3-39.2	///+++///			Clay, wet, brown, stiff, carbonate filaments, soft to firm, not blocky or fissured	320
	///+++///		c		j
	///+++///		c		İ
	///+++///	:	l c		İ
39.2-40.9	000++/000		C	Gravel, sandy, slightly clayey, water bearing, brown, dense, rounded to subrounded	800
	000++/000		c	odor	j
	000++/000	Ĺ.	c		ļ
40.9-45.0	*	41	c	CHINLE FORMATION	
	*	i	c	Shale, slightly sandy, fissle, fissured, slightly blocky, moist, red brown, hard	2.0
	*	İ	c	some grey green banding, no odor	
	*	İ	c		1
	*	İ	c		
	*	İ	c		1
	*	i	c		1
	*	i	c		
45.0-48.5	**	45	c	Shale, sandy, fissle, moist to damp, hard, water from above runs into fissle	
	**	i	:	partings (dry on interior of sample) difficult to obtain uncontaminated sample	Ì
	++	i	!	dark red brown, suspect samples taken may be contaminated by water from above	<u> </u>

PROJECT: LOCATION:	Tank 569 See Boring	Pla	n	PRECISION ENGINEERING, INC. LOG OF TEST BORINGS	FILE #: ELEVATION: TOTAL DEPTH: LOGGED BY:	95-018 6943.7 48.5 WHK
	1		s	_ 	DATE:	3-28-95
	i	s	A		STATIC WATER:	28'-7"
	P	:	M		BORING ID:	BG4
	_ L	A	P		PAGE:	3
	0	L	L	MATERIAL CHARACTERISTICS		PID
DEPTH	т	E	E	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)		(ppm)
	**	i	c	continued from page 2		1
	**	47	c			23 @ 47
	**		C			
	**	48	C			
	**	 	c			12 @ 48
TD				<pre>stop drilling 11:05a water @ 18.8' @ 11:30a 8" of hydrocarbon on water @ 2:00p wate completed 4" well, screened from 25' to 40' (see attached completion diagram) </pre>	r level @ 28'-7⁼	
		ł	ļ	······································	LOGGED BY:	WEK
	OF BORING:					

PROJECT:	Tank 569			PRECISION ENGINEERING, INC. FILE #: ELEVATION:	95-018 6927.3
	See Boring	Pla	n	LOG OF TEST BORINGS TOTAL DEPTH:	38.0
Decition	Tank 576	1 14	•	LOGGED BY:	WEK
		1	s	DATE:	3-29-95
	1	s	:	STATIC WATER:	
	P		A	BORING ID:	B2
		C	M	PAGE:	1
		!	P T	MATERIAL CHARACTERISTICS	PID
DEPTH	U	L E	L E		(ppm)
0.0-5.0	1///-+////	•		(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	
0.0-5.0	///-+////	:	!	Clay, slightly silty, little sand, wet, brown, soft to firm, no odor	0.0
			1	<u>Clay</u> , Bilghely Billy, fittle Band, wet, brown, Bort to film, no oddr	
	///-*////	:	C		
	///-+////	!	C		ł
	///-*////		C		
	///-*////		C		ļ
	///-*////	•	C		
	///-*////	:	С		
	///-*////		С		
	///-*////				
	///-*////		С		
	///-+////		С		
	///-*////		С		
	///-*////	1	C		1
	///-*////	1	c		1
	111-+1111	8.0	c		
8.4-10.6	111+++111	İ	c	Clay, fine sandy, gradational fine above and to below, wet, brown, firm, no odo	r 0.0
	1//***///	İ	c		İ
		i	c		i
	1///***///	10	c		. i
10.6-12.0	******		l c	Sand, silty, fine, moist, light red brown, loose, no odor	0.0
	******	i	c		i
	******	İ	l c		
12.0-12.5	+++000+++	12	c	Sand, very gravelly, to 2", moist, light red brown, dense, slightly rounded roc	k 0.0
12.5-13.1	******	l	с	Sand, silty, moist, light red brown, loose, no odor	0.0
13.1-15.0	11/**//	13	c	Clay, sandy, silty, moist, red brown, firm to stiff, some root filaments	0.0
	111++11	i —	i c		i
	1///++//	•	i c		i
	1///**//		c		i
15.0-16.8			****	Sand, clayey, fine, moist, red brown, moderately dense, no odor	0.0
	///		c		i
	///	•	c		i
	///	•	c		
16.8-19.1				Clay, silty grading to very fine sandy, moist to wet, red brown, stiff, no odor	0.0
	//+++-///		:	carbonate filaments common	
	///+++-///		C		
	///*++=///		C		1
	//+++-///		1		1
19.1-20.0	//00++/			Clay, silty, large gravel present (2"), wet, dark brown, hard, no odor	0.0
••	//00++/			numerous carbonate filaments	1
20.0-23.6	//++///			Clay, silty, brown, stiff, slightly blocky, no odor, carbonate filaments	0.0
	//++///			<u>and</u> , bitt, bitwee, bitt, bitgetty blocky, no odol, carbonate filaments	
		•	C		
	//++///	•	C		l r
	//++///		с		
	///++/// //++////		C C		540 @ 22.6

PROJECT: Tank 569				PRECISION ENGINEERING, INC. FILE #: ELEVATION:		
LOCATION:	See Boring	Pla	n	LOG OF TEST BORINGS TOTAL DEPTH:		
				LOGGED BY:	WHK	
	1	1	s	DATE:	3-29-95	
	i	s	A	STATIC WATER:	24'-3"	
	P	c	м	BORING ID:	B2	
	L	A	P	PAGE:	2	
	- 0	L	L	MATERIAL CHARACTERISTICS	PID	
DEPTH	T	і — 1 в	1	(MOISTURE, CONDITION, COLOR, GRAINSIZE, ETC.)	(mqq)	
23.6-24.2	***00****			Sand, coarse, some fine gravel, saturated but does not appear water bearing, brown		
	00*			dense, hydrocarbon odor		
24.2-25.5	1111111		*	Clay, wet, not water bearing, brown, stiff, hydrocarbon odor	1060	
2010	11111111		!	<u></u> ,,,,,,		
25.5-27.1	***///***			Sand, clayey, water bearing, brown, odor	610	
	+++///+++	!	c	,		
	 ///	!	c			
27.1-28.5	1//////////////////////////////////////		*	Clay, some sand @ 28'-28.5', wet, brown, soft, slightly blocky, hydrocarbon odor		
	1//////////////////////////////////////			saturated but not water bearing	1	
	///////////////////////////////////////	:				
28.5-30.9	///***///		-	Clay, sandy, some laminations, wet, brown, stiff	60	
20.5-30.9			:	Clay, Bandy, Bome laminations, wet, blown, Btill		
	///***///	!	C		1	
	1///***///	2	C		1	
	///***///		C		ł	
	///***///		c			
30.9-32.9	000**0000	!—		Gravel, some sand, silica rock, water bearing, brown, dense, rounded to subrounded	1030	
	000++0000		C		1	
	000**0000	2	C			
	000**0000		<u>c</u>			
32.9-35.0		:		CHINLE FORMATION		
		:	1	Shale, weathered, wet to moist, some green mottling, red brown overall, stiff	20	
		!		weak odor	ļ	
			C			
35.0-38.0	*	·		Shale, as above, slightly more sand, blocky, dark red brown, wet to moist	57	
	*	!	1	suspect contamination by water flowing from gravel abovegravel produces more		
	*	1	1	water at this location than previous drilling	ļ	
	*	1	C		!	
	*		C			
			1			
	+	ļ	c			
		38	c c		 	
TD	+	38	1	stop drilling 11:25a	 	
TD	+	38_	1	completed 4" well - see attached well completion diagram	 	
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water	 	
TD	+	38	1	completed 4" well - see attached well completion diagram	 	
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water	 	
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		
TD	+	38	1	completed 4" well - see attached well completion diagram 24'-3" to water		


ł

į

1

- -

I

Appendix B

Investigation Derived Waste Management Plan

Investigation Derived Waste (IDW) Management Plan

All IDW will be properly characterized and disposed of in accordance with all federal, State, and local rules and regulations for storage, labeling, handling, transport, and disposal of waste. The IDW may be characterized for disposal based on the known or suspected contaminants potentially present in the waste.

A dedicated decontamination area will be setup prior to any sample collection activities. The decontamination pad will be constructed so as to capture and contain all decontamination fluids (e.g., wash water and rinse water) and foreign materials washed off the sampling equipment. The fluids will be pumped directly into suitable storage containers (e.g., labeled 55-gallon drums), which will be located at satellite accumulation areas until the fluids are disposed in the refinery wastewater treatment system upstream of the API separator. The solids captured in the decontamination pad will be shoveled into 55-gallon drums and stored at the designated satellite accumulation area pending proper waste characterization for off-site disposal.

Drill cuttings generated during installation of soil borings will be placed directly into 55-gallon drums and staged in the satellite accumulation area pending results of the waste characterization sampling. The portion of soil cores, which are not retained for analytical testing, will be placed into the same 55-gallon drums used to store the associated drill cuttings.

The solids (e.g., drill cuttings and used soil cores) will be characterized by testing to determine if there are any hazardous characteristics in accordance with 40 Code of Federal Regulations (CFR) Part 261. This includes tests for ignitability, corrosivity, reactivity, and toxicity. If the materials are not characteristically hazardous, then further testing will be performed pursuant to the requirements of the facility to which the materials will be transported. Depending upon the results of analyses for individual investigation soil samples, additional analyses may include VOCs, TPH and polynuclear aromatic hydrocarbons (PAHs).