

May 29, 2019

#5E27950-BG11

NMOCD District 1 1625 N. French Drive Hobbs, New Mexico 88240

SUBJECT: Remediation Plan for the State AA #001 SWD Release (1RP-5257), Lea County, New Mexico

To Whom It May Concern:

On behalf of Marathon Oil Permian LLC, Souder, Miller & Associates (SMA) has prepared this Remediation Plan that describes the delineation and proposed remediation for a release of produced water at the State AA #001 salt water disposal (SWD) site. The site is in Unit I, Section 35, Township 21S, Range 34E, Lea County, New Mexico, on New Mexico State Land. Figure 1 illustrates the vicinity and site location on an USGS 7.5-minute quadrangle map.

Table 1, summarizes information regarding the release.

	Table 1: Release Information and Closure Criteria						
Name	State AA #001	Company	Marathon Oil Permian LLC				
API Number	30-025-02605	Location	32.43342° -103.433816°				
Incident Number		2RP-5257					
Estimated Date of Release	October 18, 2018	Date Reported to NMOCD	November 2, 2018				
Land Owner	State	Reported To	NMOCD, NMSLO				
Source of Release	Hole on bottom of produced water t	ank					
Released Volume	232 bbl	Released Material	Produced Water				
Recovered Volume	0 bbl	Net Release	232 bbl				
NMOCD Closure Criteria	<50 feet to groundwater						
SMA Response Dates	October 22, 2018, March 7, 2019, and April 25, 2019						

1.0 Background

On October 18, 2018, a Site Operator reported staining around one of the produced water tanks at the State AA #001 SWD site. The tank was gauged, and the resulting liquid depth was measured at 10 inches. The previous tank gauge measurement had reported a liquid level of 7 feet, 7 inches, verifying that a release had occurred. It was suspected that a hole had developed in the bottom of the tank and allowed approximately 232 barrels (bbl) of produced water to flow out of the tank and into the unlined tank battery.

Initial response activities were conducted by Marathon, and included draining the remaining liquids in the tank and isolating the tank. No free liquids were observed to recover. The contaminated soils were left in place in the tank battery and will be removed during site remediation.

Figure 1 illustrates the vicinity and site location, and Figures 2 through 4 illustrate the release location. The C-141 form is included in Appendix A.

2.0 Site Information and Closure Criteria

The State AA #001 is located approximately 45 miles east of Carlsbad, New Mexico on State land at an elevation of approximately 3,630 feet above mean sea level (amsl).

Based upon a drill log file for water well CP-00934 from the New Mexico Office of the State Engineer (NMOSE) online water well database (*https://gis.ose.state.nm.us/gisapps/ose_pod_locations/*), depth to groundwater in the area is estimated to be as shallow as 42 feet below grade surface (bgs). The water well is located approximately 1.0 miles southeast of the site location at 3,608 feet amsl and is also the closest known water source to the release location.

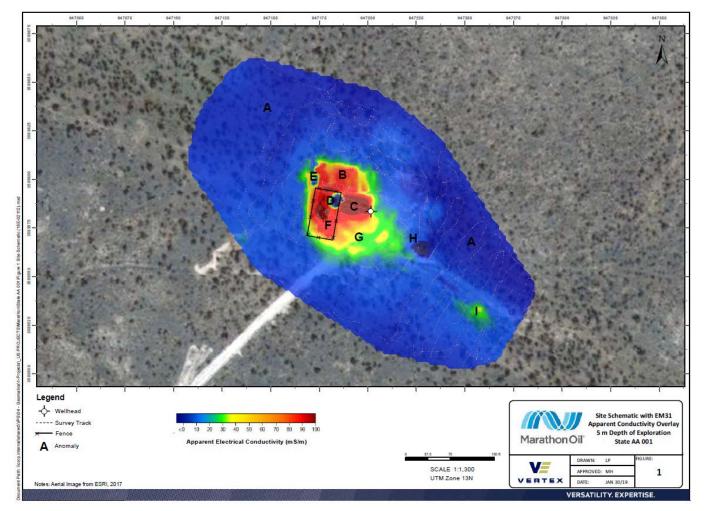
The site is located within a depression along the path of an unnamed arroyo, according to the San Simon Ranch Quad 7.5-min USGS topographic map. Figure 2 illustrates the site with 200 and 300-foot radii to indicate that it does lie within a sensitive area (unnamed arroyo) as described in 19.15.29.12.C(4) NMAC.

Based on the information presented herein, the applicable NMOCD Closure Criteria for this site is for groundwater depth of less than 50 feet bgs. Unless a deferral is approved by NMOCD per 19.15.29.12.B.(2), the site will be restored to meet the standards of Table I of 19.15.29.12 NMAC. Table 3 in the attachments demonstrates the Closure Criteria applicable to this location. Pertinent well data is attached in Appendix B.

3.0 Release Characterization Activities and Findings

3.1 Initial Site Assessment, October 22, 2018

On October 22, 2018, SMA personnel arrived on site in response to the release associated with State AA #001. SMA performed initial site delineation activities by collecting soil samples around the release source area and throughout the visibly stained area within the tank battery. A total of seven sample locations (L1-L7) and seven perimeter/sidewall samples (SW1-SW7) were investigated using a hand-auger, to depths up to 2-feet bgs. The samples were field screened for chloride using an electrical conductivity (EC) meter using Method 4500. It was noted that all sample locations were saturated and had a strong hydrocarbon odor. Field-screening results indicated chloride levels as high as 7,404 parts per million (ppm, equivalent to mg/kg) within the stained area inside the tank battery. Background field readings indicated chloride concentrations of 118 ppm.


Initial sampling field results are included in Table 4, and sample locations are shown in Figure 3.

3.2 Electromagnetic Survey, January 9, 2019

On January 9, 2019, Vertex Resource Services Inc. (Vertex) conducted an electromagnetic (EM) survey of the entire wellsite and extending off the wellsite. The purpose of the EM survey was to map variations in ground conductivity that may identify the location of and extent of a produced water release, which are typically high in chlorides and exhibit high conductivity readings. The survey was performed using a Geonics EM31 Terrain Conductivity Meter at 10-yard spaced transects across the site.

Results of the survey indicated elevated conductivity levels, relative to background, on the well pad, particularly in the areas of the tank battery, north of the tank battery, and northeast of the tank battery, as shown in Image 1, below. The highest conductivity readings (>100 – 200 milli-Siemen/meter (mS/M)) were reported inside the tank battery where the release occurred, and along the pipe that runs from the pump to the injection wellhead. The specific depth of the elevated conductivity could not be determined using the EM survey method; however, the effective measurement depth of the instrument is approximately 16 feet and readings are a weighted average. Note that a small hotspot occurred southeast of the tank battery (denoted as "I" in Image 1); this hotspot was a result of two partially buried metal stakes and not due to contamination.

A copy of the Vertex EM survey report is included in Appendix B.

Image 1. Vertex EM Survey Results

3.3 Confirmation Soil Borings, March 7, 2019

To determine the vertical extent of contamination, SMA oversaw drilling of soil borings on March 7, 2019. Soil borings were drilled using a trailer mounted LST1G drill rig operated by C&M. The borings were drilled using a hollow stem auger (HSA) and sampled using the split-spoon method. Samples were field-screened for chloride using an EC meter under Method 4500 and hydrocarbons using a PetroFLAG® Hydrocarbon Analyzer. A subset of samples were selected by SMA to be analyzed for the laboratory methods listed below:

- EPA Method 300.0 Chloride
- EPA Method 8015 Total Petroleum Hydrocarbons (TPH) for Gasoline Range Organics (GRO), Diesel Range Organics (DRO), and Motor Oil Range Organics (MRO)

A background soil boring (BG1), located approximately 260 feet northwest and upgradient of the well pad, was drilled to 15 feet bgs. Chloride concentrations for the background sample were below laboratory detection limits (<60 mg/kg).

Soil boring SB1 was drilled inside the tank battery in a depressed area that exhibited signs of liquid pooling. The drill rig augured to 27 feet, at which point moisture was detected. Drilling ceased at that depth since permits were not obtained from NMOSE to drill into groundwater. Samples from SB1 were laboratory analyzed at the 15- and 27-foot depths. Laboratory results indicated chloride concentrations of 3,700 mg/kg at 15 feet and 1,600 mg/kg at 27 feet. Total petroleum hydrocarbons for GRO, DRO, and MRO were non-detect for both samples.

Soil boring SB2 was drilled north-northeast of the pad in the area indicated by the EM survey to also be high in conductivity. Field-screening results indicated soil chlorides were elevated (2,637 mg/kg) to at least 4 feet bgs, with concentrations below 600 mg/kg at 8- and 12-feet depths. Laboratory results at 12 feet indicated chloride concentrations at 730 mg/kg.

Soil boring SB3 was drilled on the eastern edge of the pad and downgradient of the release. Fieldscreening results indicated soil chlorides were below the closure level at 4-, 10-, and 15-foot depths. Laboratory results at 10 feet indicated chloride concentration of 710 mg/kg.

Samples collected for laboratory analysis were analyzed by Hall Environmental Analytical Laboratory in Albuquerque, NM, for total chloride using EPA Method 300.0, and MRO, DRO, and GRO by EPA Method 8015D. Field and analytical results for soil borings SB1 through SB3 are shown in Table 5, locations are shown in Figure 4, and laboratory results are included in Appendix E

3.4 Confirmation Soil Borings/Temporary "Wells", April 25, 2019

SMA obtained NMOSE-approved permits to drill "temporary wells" to fully delineate the vertical extent of chloride contamination, which had a potential to extend into the shallow groundwater. Drilling was performed on April 25, 2019, using a CME 55 track-mounted drill rig operated by HRL Solutions, Inc. (HRL). Drilling resumed at soil boring SB1, starting at 30 feet and extending to 40 feet bgs. Samples were collected and field-screened at 30, 35, and 40 feet bgs, and laboratory analyzed at 30 and 35 feet bgs. Results indicated chloride concentrations were below the closure criteria of 600 mg/kg at all depths. Additionally, groundwater was not encountered during drilling operations. The boring was set as a temporary well for one week. Upon returning a week later, it was observed that no groundwater had entered the well. The well was removed, plugged, and abandoned per NMOSE specifications.

An additional soil boring/well (SB5) was drilled approximately 50 feet southeast of SB3. SB5 was drilled and sampled at 20, 30, and 40 feet bgs in an effort to fully delineate the horizontal and vertical extents of chloride contamination on the eastern portion of the well pad. All three sample depths indicated field-

screening results below 600 mg/kg for chlorides, and laboratory results for SB5 at 20 and 30 feet confirmed chloride concentrations were below closure standards.

Field and analytical results for soil borings SB3 and SB5 are shown in Tables 4 and 5, and locations are shown in Figure 4. (*Note that there is no SB4.*) The NMOSE-approved well permits, WR-07, WD-08, and WD-11, are included in Appendix C. Field notes are included in Appendix D, and laboratory reports are included in Appendix E.

3.5 Summary of Contamination

As determined by field and laboratory testing, results indicate that the area inside the tank battery is contaminated with petroleum hydrocarbons to a depth of approximately 10 feet bgs, and chloride contamination extends to 30 feet bgs inside the tank battery, comprising a total of 53,400 ft³ (1,967 yd³) of impacted soil, in situ. This impacted area is labelled "Area 1" in Figure 4.

The well pad outside of the tank battery indicated presence of elevated chlorides remain on the well pad and extend to a maximum depth of approximately 15 feet. This impacted area consists of approximately 208,200 ft³ (7,711 yd³), in situ, and is shown as "Area 2" in Figure 4.

A total of 261,300 ft³ (9,678 yd³) at the site area above closure criteria for petroleum hydrocarbon and/or chlorides. Depth to groundwater at the site is greater than 40 feet, and drilling has demonstrated that contamination does not extend to groundwater. Section 4.0 details the proposed remediation for the site.

4.0 Proposed Soil Remediation Work Plan

SMA proposes targeted excavation and removal of petroleum-impacted soils inside the tank battery (Area 1), which extends to approximately 10 feet bgs. At 10 feet, or when laboratory results confirm hydrocarbon contamination has been removed, SMA proposes installing a compacted soil clay/bentonite liner to prevent leaching of remaining chlorides deeper into the soils. SMA proposes placement of a 12-inch thick clay/bentonite-enhanced low permeability layer at the base of the excavation. Clean soil will then be placed over the clay/bentonite-enhanced layer to surface, leveled, and contoured to match the surrounding grade. This low-permeability cover will effectively prevent water infiltration into the soils below that remain high in chloride concentration, and thus, preventing the leaching of chloride ions into the local groundwater.

Additionally, SMA proposes excavation and removal of chlorides from the well pad outside of the tank battery (Area 2) down to 4 feet bgs, at which point, a compacted soil bentonite/clay liner will be installed. Similar to Area 1, the clay/bentonite liner will be approximately 12 inches thick and covered with clean fill to surface, leveled, and contoured to match the surrounding grade.

Table 2: Proposed Soil Excavation Volume							
Area	Area Excavated (ft ²)	Depth of Excavation (ft)	Volume Excavated, in situ (ft³)	Volume Excavated, in situ (yd³)			
Area 1 – Tank Battery	1,770	10	17,700	656			
Area 2 – Well Pad	13,880	4	55,520	2,056			
Total	15,650	4-10	73,220	2,712			

A summary of the soils to be excavated are included in Table 2 below:

Page 6 of 7

SMA will guide the excavation by collecting soil samples for field screening for hydrocarbon impacts using a calibrated MiniRAE 2000 photoionization detector (PID) and PetroFLAG® Hydrocarbon Analyzer. Chlorides will be field-screened using an EC meter.

Confirmation samples will be comprised of 5-point composite samples from each wall and base, and each composite sample representing less than 200-ft² of exposed excavation area. Samples will be analyzed for:

- EPA Method 300.0 Chloride
- EPA Method 8015 TPH GRO, DRO, and MRO
- EPA Method 8021 Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX)

The contaminated soil will be transported for disposal at R360 near Hobbs, NM, an NMOCD permitted disposal facility. Upon approval by NMOCD, the projected timeline for completion of remediation activities is approximately 90 days.

5.0 Scope and Limitations

The scope of our services included: assessment sampling; verifying release stabilization, regulatory liaison, and preparing this remediation plan. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact either Stephanie Hinds or Shawna Chubbuck at 505-325-7535.

Submitted by: SOUDER, MILLER & ASSOCIATES Reviewed by:

Atylianie Alvols

Stephanie Hinds Staff EIT II

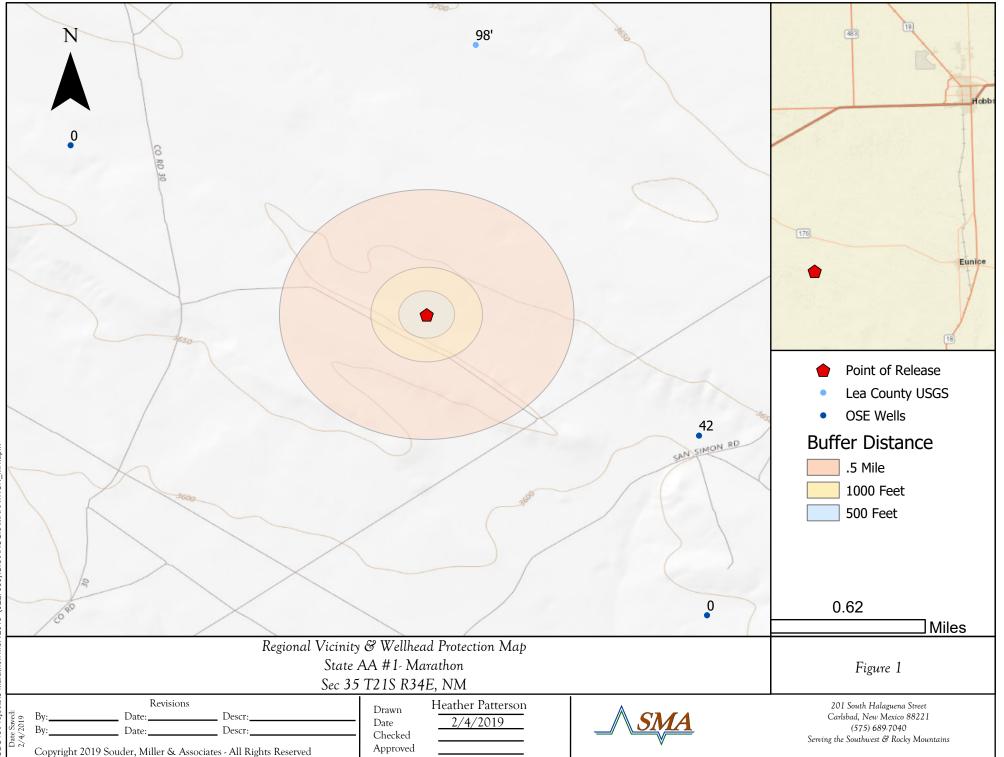
hauna Chubbuck

Shawna Chubbuck Senior Scientist

ATTACHMENTS:

Figures:

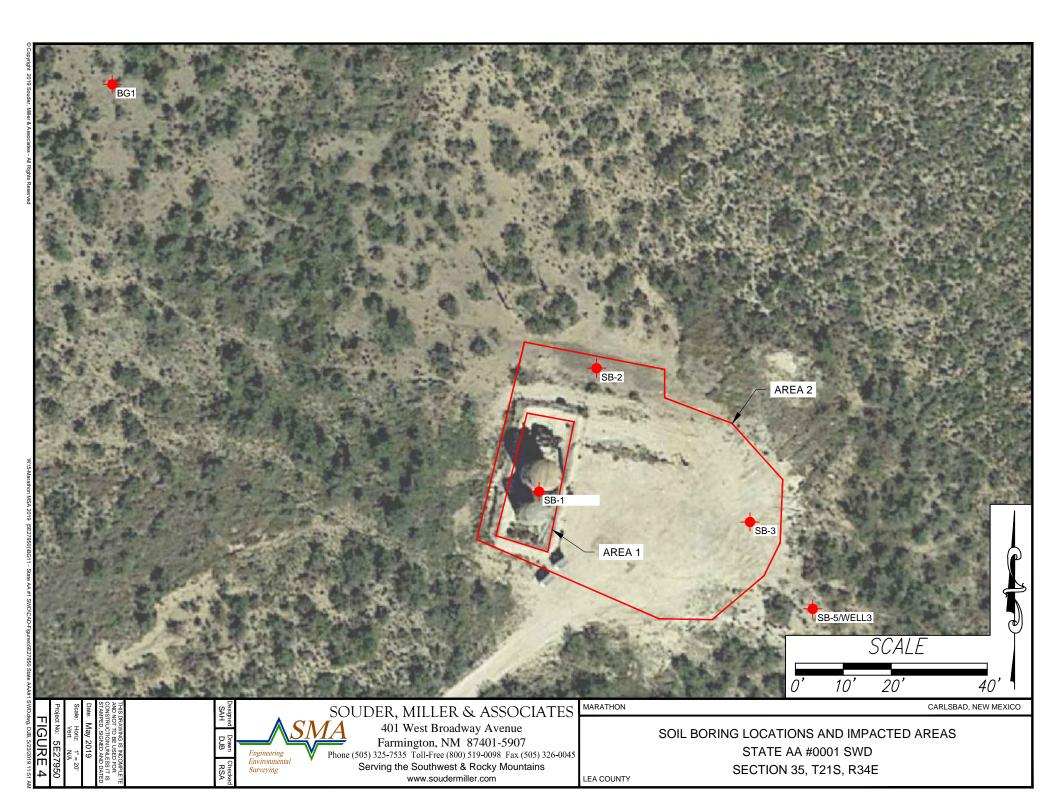
- Figure 1: Vicinity and Well Head Protection Map
- Figure 2: Surface Water Radius Map
- Figure 3: Initial Site Assessment Sampling Locations
- Figure 4: Soil Boring Locations and Impacted Areas


Tables:

- Table 2: Proposed Soil Excavation Volume
- Table 3: NMOCD Closure Criteria Justification
- Table 4: Summary of Initial Field Conductivity Results
- Table 5: Summary of Sample Results

Appendices:

Appendix A: Form C141 Appendix B: Vertex *Electromagnetic Survey Results and Interpretation for State AA 001* Report Appendix C: NMOSE Well Drilling Permits WR-07, WD-08, and WD-11 Appendix D: Field Notes Appendix E: Laboratory Analytical Reports


FIGURES

3670	
3660	 Point of Release Springs Seeps Streams Canals
	Rivers NM Wetlands Lakes Playas FEMA Flood Zones 2011
	Buffer Distance 100 Feet 200 Feet 300 Feet
	N
	750 Feet
Surface Water Protection Map State AA #1- Marathon Sec 35 T21S R34E, NM	Figure 2
By: Date: Descr: By: Date: Descr: Copyright 2018-19 Souder, Miller & Associates - All Rights Reserved Drawn	201 South Halaguena Street Carlsbad, New Mexico 88221 (575) 689.7040 Serving the Southwest & Rocky Mountains

SW4 SW1 L1 L4 L3 SW2 SW5 SW3 15 SW6 SCALE 20 10 MARATHON CARLSBAD, NEW MEXICO SOUDER, MILLER & ASSOCIATES Ă 401 West Broadway Avenue INITIAL SITE ASSESSMENT SAMPLING Phone (505) 325-7535 Toll-Free (800) 519-0098 Fax (505) 326-0045 Serving the Southwest & Rocky Mountains www.soudermiller.com DJB LOCATIONS STATE AA #0001 SWD Engineering Environmental SECTION 35, T21S, R34E RSA Surveying LEA COUNTY

40

TABLES

Table 3: NMOCD Closure Criteria Justification

Site Information (19.15.29.11.A(2, 3, and 4) NMAC)		Source/Notes
Double to Consume devictory (foot leas)	~42	NMOSE online water well database, CP-00934, drill log file date
Depth to Groundwater (feet bgs)	~42'	9/14/2005
		NMOSE online water well database, active well CP-00934,
Hortizontal Distance From All Water Sources Within 1/2 Mile (ft)	none	located 1.0 mi to SE
Hentisentel Distance to Neonet Circuificant Materia	01	Google Earth Pro and San Simon Ranch Quad 7.5-min USGS
Hortizontal Distance to Nearest Significant Watercourse (ft)	0	Topo Map, well along a depression, intermittent flow line

Closure Criteria (19.15.	29.12.B(4) and	Table 1 NMAC)				
	Closure Criteria (units in mg/kg)					
Depth to Groundwater	Chloride *numerical limit or background, whichever is greater	ТРН	GRO + DRO	BTEX	Benzene	
< 50' BGS	yes	600	100		50	10
51' to 100'		10000	2500	1000	50	10
>100'		20000	2500	1000	50	10
Surface Water	yes or no		if ye	s, then		
<300' from continuously flowing watercourse or other significant watercourse?	yes (intermittent watercourse)					
<200' from lakebed, sinkhole or playa lake?	no					
Water Well or Water Source						
<500 feet from spring or a private, domestic fresh water well used by less than 5 households for domestic or stock watering purposes?	no					
<1000' from fresh water well or spring?	no					
Human and Other Areas		600	100		50	10
<300' from an occupied permanent residence, school, hospital, institution or church?	no					
within incorporated municipal boundaries or within a defined municipal fresh water well field?	no					
<100' from wetland?	no					
within area overlying a subsurface mine	no					
within an unstable area?	no]				
within a 100-year floodplain?	no					

Table 4:Summary of Field Conductivity Results

Sample	Date	EC readings (mS)	Temp	Chloride (ppm)
L1-1	10/22/2018	0.402	21.2	494
L1-2	10/22/2018	2.26	20.0	3179
L2-2	10/22/2018	0.573	19.9	791
L3-1	10/22/2018	0.257	20.1	335
L3-2	10/22/2018	0.586	19.0	848
L4-1	10/22/2018	0.507	18.4	762
L4-2	10/22/2018	0.581	18.8	849
L5-1	10/22/2018	0.535	21.4	674
L5-2	10/22/2018	0.353	19.0	518
L6-1	10/22/2018	0.285	14.0	634
L6-2	10/22/2018	0.51	18.8	749
SW1	10/22/2018	0.542	20.2	735
SW2	10/22/2018	1.65	19.4	2340
SW3	10/22/2018	0.316	19.3	452
SW4	10/22/2018	3.97	19.3	5632
SW5	10/22/2018	5.22	19.3	7404
SW6	10/22/2018	0.082	19.1	129
SW7	10/22/2018	0.373	19.1	542
BG	10/22/2018	0.077	19.2	118
BG1-6	3/7/2019	0.05	18.0	131
BG1-15	3/7/2019	0.04	16.9	163
SB1-5	3/7/2019	1.68	18.5	2420
SB1-10	3/7/2019	1.72	19.6	2430
SB1-15	3/7/2019	1.4	19.1	1998
SB1-26	3/7/2019	0.65	20.5	875
SB1-27	3/7/2019	0.61	19.6	856
SB2-4	3/7/2019	1.8	19.4	2637
SB2-8	3/7/2019	0.35	19.8	480
SB2-12	3/7/2019	0.3	19.3	430
SB3-4	3/7/2019	0.14	20.1	169
SB3-10	3/7/2019	0.36	20.1	481
SB3-15	3/7/2019	0.34	19.7	469

L: location BG: background SW: sidewall SB: soil boring Table 5: Summary of Sample Results

Sample ID NMO	Date Sampled	Depth	Chloride mg/kg 600		GRO mg/kg	DRO mg/kg	MRO mg/kg	m	al TPH g/kg .00
			Lab	Field	Lab	Lab	Lab	Lab	Field
	3/7/2019	5-6		131					
BG1 (background)	3/7/2019	14-15	<60	163					
	3/7/2019	5		2420					6297
	3/7/2019	10		2430					
	3/7/2019	15	3700	1998	<4.6	<9.3	<47	<60.9	530
CD1	3/7/2019	26-27		875					
SB1	3/7/2019	27	1600	856	<4.7	<9.2	<46	<59.9	637
	4/25/2019	30	210	403					
	4/25/2019	35	380	345					
	4/25/2019	40		111					
	3/7/2019	4		2637					624
SB2	3/7/2019	8		480					526
	3/7/2019	12	730	430	<4.7	<9.8	<49	<63.5	536
	3/7/2019	4		169					
SB3	3/7/2019	10		481					562
	3/7/2019	15	710	469	<4.9	<9.6	<48	<62.5	541
	4/25/2019	20	490	266					
SB5	4/25/2019	30	<30	<60					
	4/25/2019	40		<60					

APPENDIX A. FORM C141

APPENDIX A.

FORM C141

Engineering + Environmental + Surveying

www.soudermiller.com

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

)

Incident ID	NOY1830941911
District RP	1RP-5257
Facility ID	
Application ID	pOY1830942336

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD) NOY1830941911
Contact mailing address	

Location of Release Source

Latitude Longitude		
Site Name	Site Type	
Date Release Discovered	API# (if applicable)	

Unit Letter	Section	Township	Range	County	State minerals
					Otate minerais

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Crude Oil	ial(s) Released (Select all that apply and attach calculations or specific Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of total dissolved solids (TDS) in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page 2

State of New Mexico Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a main n	IFVEC for sub-t-manager (-) does the manager it is material within a main malager 2
Was this a major	If YES, for what reason(s) does the responsible party consider this a major release?
release as defined by	
19.15.29.7(A) NMAC?	
Yes No	
If YES, was immediate no	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature: Callis Kassigan	Date:
email:	Telephone:
OCD Only Received by: RECEIVED By Olivia Yu at 11:48 am, Nov 05, 2018	Date:

APPENDIX B. VERTEX ELECTROMAGNETIC SURVEY RESULTS AND INTERPRETATION FOR STATE AA 001 REPORT

January 30, 2019

Vertex Project #: 18E-02112-11

Marathon Oil Permian LLC. 4111 S. Tidwell Rd Carlsbad, New Mexico 88220

Attention: Callie Karrigan

Re: Electromagnetic Survey Results and Interpretation for State AA 001

Ms. Karrigan,

Marathon Oil Permian LLC. (Marathon) retained Vertex Resource Services Inc. (Vertex) to conduct an electromagnetic (EM) survey at the upstream facility State AA 001 (hereafter referred to as the "site"). The site is located approximately 16 miles west of Eunice, New Mexico. Vertex personnel conducted the EM survey on January 9, 2019. This letter reviews the results of the EM survey at the site and discusses the apparent conductivity anomalies that were observed.

Method

The fixed-frequency electromagnetic method was used to map variations in ground conductivity to identify anomalously conductive soils and infer changes in the soil characteristics and composition. This method uses portable instrumentation consisting of a magnetic transmitter coil and receiver coil. A primary EM field from the transmitter coil induces subsurface eddy currents, which in turn generate a secondary field. The ratio of the primary and secondary fields is related to ground conductivity.

Ground conductivity is influenced by the following:

- Concentration of total dissolved solids (TDS) within the groundwater
- Type of substrate
- Soil grain size (fine-grained clay is more electrically conductive than coarser grained material such as sand or gravel)
- Soil temperature (conductivity decreases as soil temperature approaches freezing)

Ground conductivity measurements were acquired using the Geonics EM31 Terrain Conductivity Meter. Data were collected continuously along regularly spaced transects across the site, with a line spacing of approximately 10 yards. Data were logged using a Juniper Systems Archer2 Data Logger with an integrated global positioning system (GPS).

The effective depth of investigation for the EM31, as operated during this investigation, is approximately 16 feet. The conductivity values are not specific values from discrete depths; they are weighted averages of conductivity

vertex.ca

between the surface and the depth of exploration of the EM field and are termed "apparent conductivities". The apparent conductivity values obtained are in units of millisiemens per metre (mS/m).

Interpretation

The results of the EM31 survey are presented in Figure 1. Pertinent features and anomalies are identified and discussed in the table below.

Anomaly	Conductivity Range	Description			
	(mS/m)				
A	5 - 10	Low conductivity region possibly representative of background			
		conditions (blue contours). These very low conductivity values are			
		indicative of coarse-grained, unconsolidated, well-drained sandy soils.			
В	30 – 70	Elevated conductivity region on the north edge of the lease pad. May			
		be attributable to increased TDS, increased clay content, and/or metal			
		influence. Possible evidence of a former pit (yellow to orange			
		contours).			
С	75 – 200	High conductivity response measured adjacent and parallel to surface			
		pipe between the wellhead and pump. Likely attributable to the close			
		proximity to the metal pipe but may be attributable to increased TDS			
		and/or increased clay content (dark red contours).			
D	< 0	Metal response adjacent to the pump (dark blue contours).			
E	Oscillating Values	Signature metal response coincident with an underground cable sign.			
F	30 - 130	Elevated conductivity region within the fenced area immediately			
		south of the pump. May be attributable to increased TDS, increased			
		clay content, and/or metal influence (yellow to red contours).			
G	25 - 60	Moderately elevated conductivity zone coincident with the			
		southwest portion of the lease pad. May be attributable to			
		increased TDS, increased clay content, and/or metal influence (green			
		to yellow contours).			
н	< 0	Isolated metal response (dark blue contours).			
I	18 - 33	Localized area of slightly elevated conductivity southeast of the			
		lease pad within the dry creek channel (green contours).			

If it is determined that the elevated conductivity anomalies are coincident with elevated chlorides, an electrical resistivity tomography (ERT) investigation is recommended to determine the vertical extent of the anomalies.

Any subsequent investigations should include areas of apparent background conductivity, as well as potentially impacted areas.

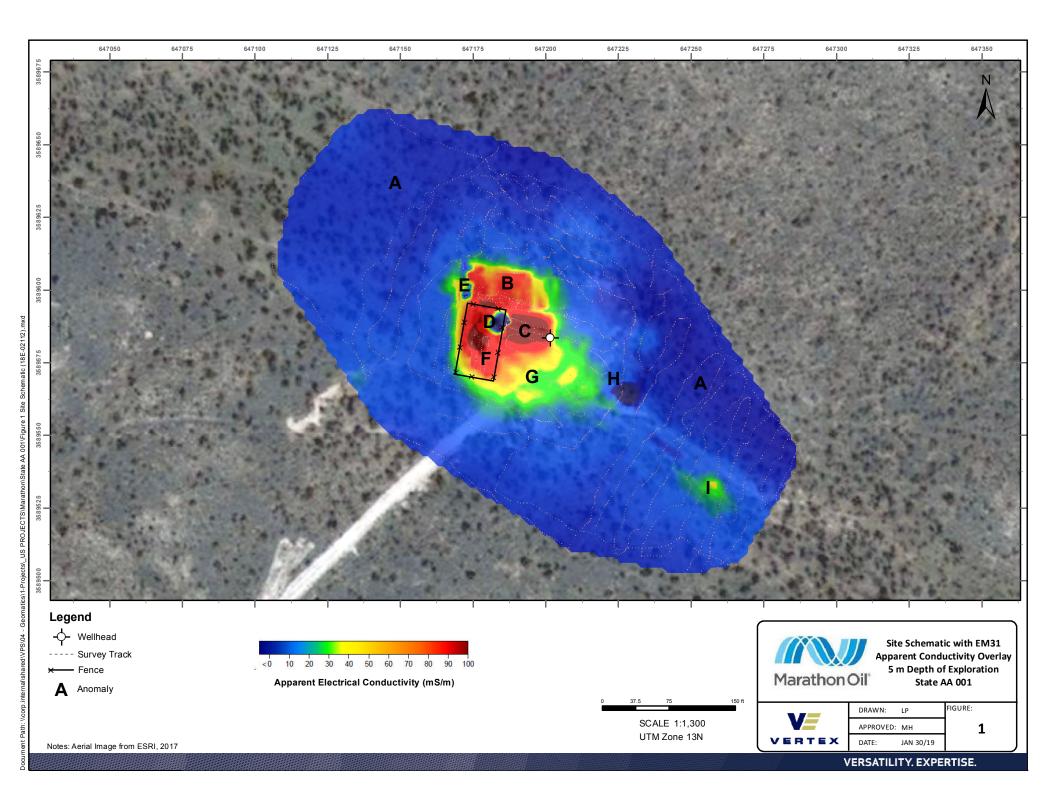
Should you have any questions or concerns, please do not hesitate to contact the undersigned at 403.229.3969 or mhammond@vertex.ca.

Sincerely,

Dhugal Hanton VICE PRESIDENT - ENVIRONMENT

mHd

Mark Hammond, P.Geo., P.Biol., PMP MANAGER, GEOPHYSICS


Attachments

Attachment 1. Figure 1

Limitations

This report has been prepared for the sole benefit of Marathon Oil Permian LLC. (Marathon). This document may not be used by any other person or entity without the express written consent of Vertex Resource Services Inc. (Vertex) and Marathon. Any use of this report by a third party, or any reliance on decisions made based on it, or damages suffered as a result of the use of this report are the sole responsibility of the user.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted scientific practices current at the time the work was performed. The conclusions and recommendations presented represent the best judgement of Vertex based on the data collected during the assessment. Due to the nature of the assessment and the data available, Vertex cannot warrant against undiscovered environmental liabilities. Conclusions and recommendations presented in this report should not be considered legal advice.

APPENDIX C.

NMOSE WELL DRILLING PERMITS WR-07, WD-08, AND WD-11

John R. D Antonio, Jr., P.E. State Engineer

Roswell Office 1900 WEST SECOND STREET ROSWELL, NM 88201

Trn Nbr: 645764 STATE OF NEW MEXICO File Nbr: CP 01787 OFFICE OF THE STATE ENGINEER

Apr. 16, 2019

MARATHON OIL COMPANY C/O STEPHANIE HINDS SOUDER MILLER & ASSOCIATES 401 W BROADWAY FARMINGTON, NM 87401

Greetings:

Your approved copy of the above numbered permit to drill a well for non-consumptive purposes is enclosed. You must obtain an additional permit if you intend to use the water. It is your responsibility to provide the contracted well driller with a copy of the permit that must be made available during well drilling activities.

Carefully review the attached conditions of approval for all specific permit requirements.

- * If use of this well is temporary in nature and the well will be plugged at the end of the well usage, the OSE must initially approve of the plugging. If plugging approval is not conditioned in this permit, the applicant must submit a Plugging Plan of Operations for approval prior to the well being plugged. The Plugging Record must be properly completed and submitted to the OSE within 30 days of the well plugging.
- * If the final intended purpose and condition requires a well ID tag and meter installation, the applicant must immediately send a completed meter report form to this office.
- * The well record and log must be submitted within 30 days of the completion of the well or if the attempt was a dry hole.
- * This permit expires and will be cancelled if no well is drilled and/or a well log is not received by the date set forth in the conditions of approval.

Appropriate forms can be downloaded from the OSE website www.ose.state.nm.us.

cerel Claudia (575) 622-6521

Enclosure

explore

File No.	CP-	17	87
----------	-----	----	----

NEW MEXICO OFFICE OF THE STATE ENGINEER WR-07 APPLICATION FOR PERMIT TO DRILL A WELL WITH NO WATER RIGHT (check applicable box): For fees, see State Engineer website: http://www.ose.state.nm.us/ Pollution Control And/Or Recovery Purpose: Ground Source Heat Pump Other(Describe): Exploratory Well (Pump test) Construction Site/Public Works Dewatering Monitoring Well Mine Dewatering A separate permit will be required to apply water to beneficial use regardless if use is consumptive or nonconsumptive. Temporary Request - Requested Start Date: Requested End Date: □ No Plugging Plan of Operations Submitted? Yes

1. APPLICANT(S)	Ť		
Name: Souder, Miller & Associates	on behalf of Marathon Oil Company	Name:	
Contact or Agent:	check here if Agent	Contact or Agent:	check here if Agent
Stephanie Hinds			
Mailing Address: 401 W. Broadway		Mailing Address:	201 R(
City: Farmington		City:	2010 APR
State: NM	Zip Code: 87401	State:	Zip Code:
Phone: 505-325-7535 Phone (Work):	Home Cell	Phone Phone (Work).	
E-mail (optional): stephanie.hinds@soudermill	er.com	E-mail (optional):	5

FOR OSE INTERNAL USE	Application for Permit, Form WR-0	07, Rev 11/17/16
File No.: CP-1787	Trn. No.: 645764	Receipt No.: 2-40646
Trans Description (optional):		
Sub-Basin: CP	PCW/LOG Due	Date:
		Page 1 of 3

2. WELL(S) Describe the well(s) applicable to this application.

Location Required: Coordin (Lat/Long - WGS84).	ate location must be	e reported in NM S	tate Plane (NAD 83), UTM (NAD 83), <u>or</u> Latitude/Longitude
	trict VII (Cimarron) c	ustomers, provide	a PLSS location in addition to above.
NM State Plane (NAD83)		ITM (NAD83) (Mete]Zone 12N]Zone 13N	Trs) Ext/Long (WGS84) (to the nearest 1/10 th of second)
Well Number (if known):	X or Easting or Longitude:	Y or Northing or Latitude:	Provide if known: -Public Land Survey System (PLSS) (<i>Quarters or Halves , Section, Township, Range</i>) OR - Hydrographic Survey Map & Tract; OR - Lot, Block & Subdivision; OR - Land Grant Name
Well 1	103°26′6.09"W	32°26'2.73"N	NE1/4 SE1/4 of T21S, R34E, S35
Well 2	103°26'4.16"W	32°26'1.03"N	NE1/4 SE1/4 of T21S, R34E, S35
Well 3	103°26'2.50"W	32°26'0.43"N	NE1/4 SE1/4 of T21S, R34E, S35
NOTE: If more well location Additional well descriptions			1 WR-08 (Attachment 1 – POD Descriptions) If yes, how many
Other description relating wel Located near State AA #1 SW	I to common landmar		
Well is on land owned by Sta	te or Private - Mercha	Int Livestock LLC	
Well Information: NOTE: If I If yes, how many	more than one (1) we	ell needs to be des	cribed, provide attachment. Attached? 🗌 Yes 🔳 No
Approximate depth of well (fe	et): 45	(Dutside diameter of well casing (inches): 2 inch
Driller Name: HRL COMPLIA	NCE SOLUTIONS, IN	C [Driller License Number: 1789

3. ADDITIONAL STATEMENTS OR EXPLANATIONS

Soil borings will be drilled for investigative purposes, which is to delineate the vertical extent of chloride contamination due to a produced water release at the State AA #1 SWD. Groundwater may be as shallow as 30 feet. Temporary wells will be installed if contamination is shown to extend to groundwater. If chloride contamination cleans up prior to reaching groundwater, then no wells will be installed.

FOR OSE INTERNAL USE

File No.:

Application for Permit, Form WR-07

Trn No.:

4. SPECIFIC REQUIREMENTS: The applicant must include the following, as applicable to each well type. Please check the appropriate boxes, to indicate the information has been included and/or attached to this application:

Exploratory:	Pollution Control and/or Recovery:	Construction	Mine De-Watering:
Include a	Include a plan for pollution	De-Watering:	Include a plan for pollution
description of	control/recovery, that includes the	Include a description of the	control/recovery, that includes the following:
any proposed	following	proposed dewatering	A description of the need for mine
pump test, if -	A description of the need for the	operation,	dewatering.
applicable.	pollution control or recovery operation.	The estimated duration of	The estimated maximum period of time
	The estimated maximum period of	the operation,	for completion of the operation.
	time for completion of the operation.	The maximum amount of	The source(s) of the water to be diverted.
	The annual diversion amount.	water to be diverted,	The geohydrologic characteristics of the
	The annual consumptive use	A description of the need	aquifer(s).
	amount.	for the dewatering operation.	The maximum amount of water to be
	The maximum amount of water to be	and.	diverted per annum.
	diverted and injected for the duration of	A description of how the	The maximum amount of water to be
	the operation.	diverted water will be disposed	diverted for the duration of the operation.
	The method and place of discharge.	of.	The quality of the water.
Monitoring:	The method of measurement of	Ground Source Heat Pump:	The method of measurement of water
Include the	water produced and discharged.	Include a description of the	diverted.
reason for the	The source of water to be injected.	geothermal heat exchange	The recharge of water to the aquifer.
monitoring	The method of measurement of	project,	Description of the estimated area of
well, and,	water injected.	The number of boreholes	hydrologic effect of the project.
The	The characteristics of the aguifer.	for the completed project and	The method and place of discharge.
duration	The method of determining the	required depths.	An estimation of the effects on surface
of the planned	resulting annual consumptive use of	The time frame for	water rights and underground water rights
monitoring.	water and depletion from any related	constructing the geothermal	from the mine dewatering project.
	stream system.	heat exchange project, and	A description of the methods employed to
	Proof of any permit required from the	The duration of the project.	estimate effects on surface water rights and
	New Mexico Environment Department.	Preliminary surveys, design	underground water rights.
	An access agreement if the	data, and additional	Information on existing wells, rivers,
	applicant is not the owner of the land on	information shall be included to	springs, and wetlands within the area of
	which the pollution plume control or	provide all essential facts	hydrologic effect.
	recovery well is to be located.	relating to the request.	ingen energie eneret.

ACKNOWLEDGEMENT

I, We (name of applicant(s)), Stephanie Hinds

(

Print Name(s) affirm that the foregoing statements are true to the best of (my, our) knowledge and belief.

amini that the foregoing statements are the to the best of (my, but) knowledge and benefi.	See.	201
flylninflis	~ <u>5</u>	
Applicant Signature Applicant Signature	w	171
ACTION OF THE STATE ENGINEER		32
	?	MEXICO
This application is:		0
🖾 🖾 💭 💭 🖂 🖂 🖂 🖂 🖂 🖂 🖓 🖓 🖓	S	
provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation Mexico nor detrimental to the public welfare and further subject to the <u>attached</u> conditions of approval. Witness my hand and seal this <u>////</u> day of <u>APRIL</u> 20 <u>19</u> , for the State Engineer JOHN R. D'NTONIO JR., P.E. State Engineer	STAT	ion and
By: Signature Difference Differe	19 · 19	STATE OF

File No.:

FOR OSE INTERNAL USE Applica

Trn No.:

Application for Permit, Form WR-07

6107

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL

- 17-1B Depth of the well shall not exceed the thickness of the Ogallala formation.
- 17-4 No water shall be appropriated and beneficially used under this permit.
- 17-6 The well authorized by this permit shall be plugged completely using the following method per Rules and Regulations Governing Well Driller Licensing, Construction, Repair and Plugging of Wells; Subsection C of 19.27.4.30 NMAC unless an alternative plugging method is proposed by the well owner and approved by the State Engineer upon completion of the permitted use. All pumping appurtenance shall be removed from the well prior to plugging. To plug a well, the entire well shall be filled from the bottom upwards to ground surface using a tremie pipe. The bottom of the tremie shall remain submerged in the sealant throughout the entire sealing process; other placement methods may be acceptable and approved by the state engineer. The well shall be plugged with an office of the state engineer approved sealant for use in the plugging of non-artesian wells. The well driller shall cut the casing off at least four (4) feet below ground surface and fill the open hole with at least two vertical feet of approved sealant. The driller must fill or cover any open annulus with sealant. Once the sealant has cured, the well driller or well owner may cover the seal with soil. A Plugging Report for said well shall be filed with the Office of the State Engineer in a District Office within 30 days of completion of the plugging.
- 17-7 The Permittee shall utilize the highest and best technology available to ensure conservation of water to the maximum extent practical.

Trn Desc: CP 01787 POD1-POD3

File Number: <u>CP 01787</u> Trn Number: <u>645764</u>

NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

- 17-B The well shall be drilled by a driller licensed in the State of New Mexico in accordance with 72-12-12 NMSA 1978. A licensed driller shall not be required for the construction of a well driven without the use of a drill rig, provided that the casing shall not exceed two and three-eighths (2 3/8) inches outside diameter.
- 17-C The well driller must file the well record with the State Engineer and the applicant within 30 days after the well is drilled or driven. It is the well owner's responsibility to ensure that the well driller files the well record. The well driller may obtain the well record form from any District Office or the Office of the State Engineer website.
- 17-C2 No water shall be diverted from this well except for testing purposes which shall not exceed ten (10) cumulative days, and well shall be plugged or capped on or before, unless a permit to use water from this well is acquired from the Office of the State Engineer.
- 17-P The well shall be constructed, maintained, and operated to prevent inter-aquifer exchange of water and to prevent loss of hydraulic head between hydrogeologic zones.
- 17-Q The State Engineer retains jurisdiction over this permit.
- 17-R Pursuant to section 72-8-1 NMSA 1978, the permittee shall allow the State Engineer and OSE representatives entry upon private property for the performance of their respective duties, including access to the ditch or acequia to measure flow and also to the well for meter reading and water level measurement.

Trn Desc: CP 01787 POD1-POD3

File Number: CP 01787 Trn Number: 645764

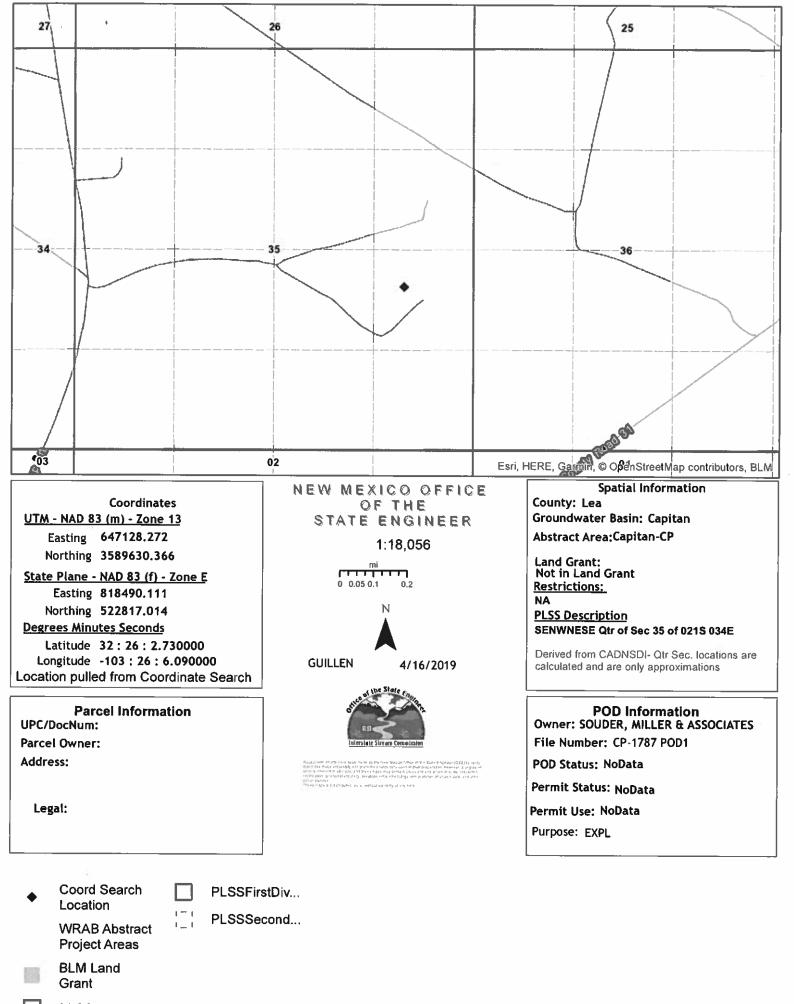
NEW MEXICO STATE ENGINEER OFFICE PERMIT TO EXPLORE

SPECIFIC CONDITIONS OF APPROVAL (Continued)

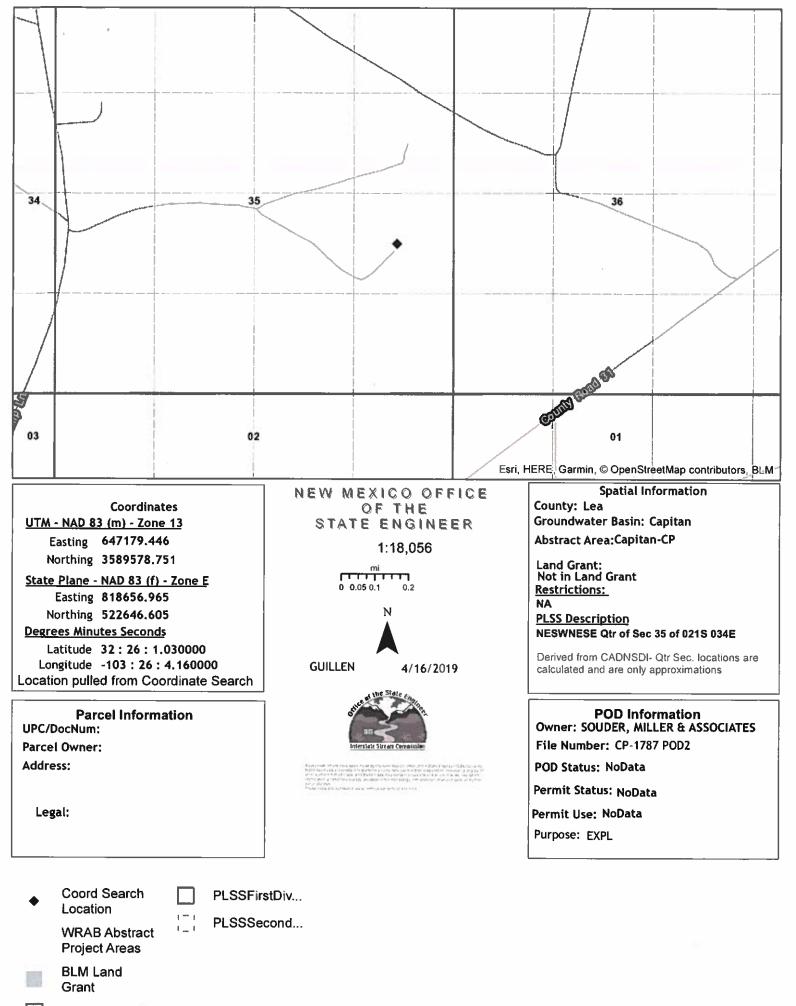
- LOG The Point of Diversion CP 01787 POD1 must be completed and the Well Log filed on or before 04/15/2020.
- LOG The Point of Diversion CP 01787 POD2 must be completed and the Well Log filed on or before 04/15/2020.
- LOG The Point of Diversion CP 01787 POD3 must be completed and the Well Log filed on or before 04/15/2020.

IT IS THE PERMITTEE'S RESPONSIBILITY O OBTAIN ALL AUTHORIZATIONS AND PERMISSIONS TO DRILL ON PROPERTY OF OTHER OWNERSHIP BEFORE COMMENCING ACTIVITIES UNDER THIS PERMIT.

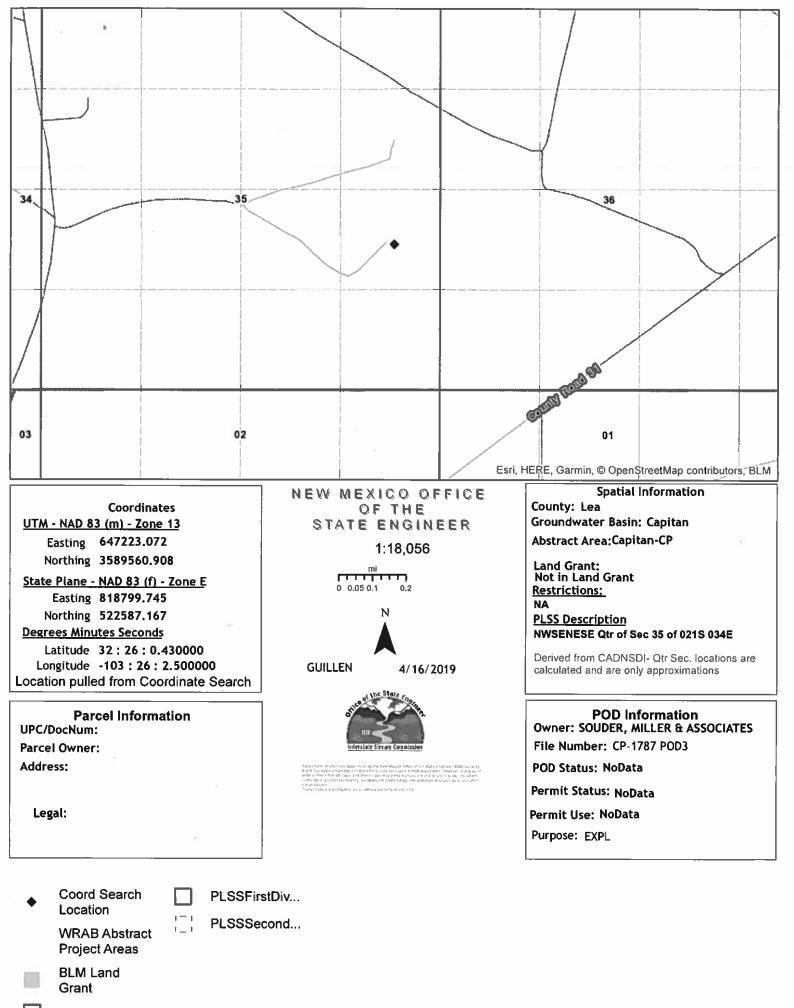
ACTION OF STATE ENGINEER


Notice of Intention Rcvd:Date Rcvd. Corrected:Formal Application Rcvd: 04/08/2019Pub. of Notice Ordered:Date Returned - Correction:Affidavit of Pub. Filed:

This application is approved provided it is not exercised to the detriment of any others having existing rights, and is not contrary to the conservation of water in New Mexico nor detrimental to the public welfare of the state; and further subject to the specific conditions listed previously.


Witness my hand and seal this 16 day of Apr A.D., 2019 John R. D Antonio __State Engineer PE Tr Bv: HERNANDE?

Trn Desc: CP 01787 POD1-POD3


File Number: CP 01787 Trn Number: 645764

ΡL	.SS	Т	νc	'n	sł	ni	p
							÷.

	PL	SST	Śwn	ship
--	----	-----	-----	------

PLSSTownship

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

ROSWELL

John D' Antonio, P.E. State Engineer

District II 1900 West Second St. Roswell, New Mexico 88201 Phone: (575) 622-6521 Fax: (575) 623-8559

April 11, 2019

Marathon Oil Company c/o Souder, Miller & Associates 401 West Broadway Farmington, NM 87401

RE: Well Plugging Plan of Operations (CP-1787 P0D1-P0D3)

Greetings:

Attached is your copy of the Well Plugging Plan of Operations for the above described project.

The proposed method of operations for the subject coreholes is found to be acceptable and in accordance with the Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells 19.27.4 NMAC adopted June 30, 2017 by the State Engineer subject to the following:

The applicant states the coreholes are not anticipated to encounter groundwater. Should the coreholes be dry to total depth, the applicant, may apply clean native fill to 10 feet bgs followed by a 10 ft seal to ground surface. The applicant may use bentonite pellets in lieu of cuttings if desired.

Should groundwater be encountered, direct pour of pellets may be conducted provided the applicant apply the sealant in lifts, maintain a record of the amount applied, anticipated tag and actual tag. The pellets should be hydrated in lifts according to manugaturer's instructions.

Sincerely,

Alvaro Alvarado Water Resources Manager I Cc Santa Fe

. .

WELL PLUGGING PLAN OF OPERATIONS

. .

. .

. . .

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging.

. .

I. FILING FEE: There is no filing fee for this form.

II. GENERAL / WELL OWNERSHIP:

. . .

Aailing address: 401 W. Broadway						
	State:		NM	I	Zip code	. 87401
ty: Farmington 505-325-7535		E-mail:	stephanie.	hinds@soude	ermiller.com	
I. WELL DRILLER INFORMATION:						2019
/ell Driller contracted to provide plugging services:	RL Con	mpliance S	olutions, Ir	IC.		
ew Mexico Well Driller License No.: 1789					12/20/2020	
V. WELL INFORMATION:						
ote: A copy of the existing Well Record for the well to	o be plu	ugged shou	ld be attac	hed to this p	lan.	9 - 50
) GPS Well Location: Latitude: <u>32</u> Longitude: <u>103</u>	0 30	deg, deg,	26 mii		sec _sec, WGS84 are decimal form:	at
Reason(s) for plugging well:						
Well is intended only for temporary investigative drilled into groundwater (only if contamination is for lab analysis. The well will then be backfilled	shown	to extend	to ground			
Was well used for any type of monitoring progra what hydrogeologic parameters were monitore water, authorization from the New Mexico Envir	ed. If	the well	was used	to monitor c	ontaminated or	r poor qual
) Does the well tap brackish, saline, or otherwise	e poor	quality wa	ter?	knownIf;	yes, provide add	ditional deta
including analytical results and/or laboratory rep	port(s):	:				
menueling analytical results and of insolutory rep				-		
Analytical results will be provided.						

6) Depth of the well: <u>-45</u> feet

7)	Inside diameter of innermost casing: inches.
8)	Casing material: PVC
9)	The well was constructed with: an open-hole production interval, state the open interval: a well screen or perforated pipe, state the screened interval(s): -5-10 feet of 0.010" slotted screen
10)	What annular interval surrounding the artesian casing of this well is cement-grouted? N/A
11) 🖇	Was the well built with surface casing? <u>no</u> If yes, is the annulus surrounding the surface casing grouted or otherwise sealed? <u>N/A</u> If yes, please describe:

12) Has all pumping equipment and associated piping been removed from the well? <u>yes</u> If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.

V. DESCRIPTION OF PLANNED WELL PLUGGING:

Note: If this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie pipe, a detailed diagram of the well showing proposed final plugged configuration shall be attached, as well as any additional technical information, such as geophysical logs, that are necessary to adequately describe the proposal.

1) Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology

proposed for the well:

Well will be plugged using drill cuttings from the bore hole from total depth to ground surface.

2) Will well head be cut-off below land surface after plugging? <u>N/A</u>

VI. PLUGGING AND SEALING MATERIALS:

Note: The plugging of a well that taps poor quality water may require the use of a specialty cement or specialty sealant

- 1) For plugging intervals that employ cement grout, complete and attach Table A.
- 2) For plugging intervals that will employ approved non-cement based sealant(s), complete and attach Table B.

3) Theoretical volume of grout required to plug the well to land surface: $\frac{N/A}{N}$

- 4) Type of Cement proposed: <u>N/A</u>
- 5) Proposed cement grout mix: <u>N/A</u> gallons of water per 94 pound sack of Portland cement.
- 6) Will the grout be: N/A batch-mixed and delivered to the site

N/A mixed on site

Well Plugging Plan Version: 06/30/2017 Page 2 of 5

7) Grout additives requested, and percent by dry weight relative to cement:

	N/A					
8)	Additional notes and calculations:					
	N/A					

VII. ADDITIONAL INFORMATION: List additional information below, or on separate sheet(s):

If there is a possibility of soil contamination extending into groundwater, then a temporary well will be placed. Upon reaching groundwater, a temporary screen will be placed, and a groundwater sample will be collected. After groundwater sample has been collected, the temporary well will be backfilled with drill cuttings from total depth up to ground surface.

VIII. SIGNATURE:

1. Stephanie Hinds

, say that I have carefully read the foregoing Well Plugging Plan of Operations and any attachments, which are a part hereof; that I am familiar with the rules and regulations of the State Engineer pertaining to the plugging of wells and will comply with them, and that each and all of the statements in the Well Plugging Plan of Operations and attachments are true to the best of my knowledge and belief.

22

Signature of Applicant

4/8/2019

Date

IX. ACTION OF THE STATE ENGINEER:	2019	ROS
This Well Plugging Plan of Operations is: Approved subject to the attached conditions. Not approved for the reasons provided on the attached letter. Witness my hand and official seal thisday ofAPRIL, 2017	APR -8 M 9: 16	AELL, NEW MEXICO
Tom Blaine P.E., New Mexice State Engineer By: Con Auby Monley Well Plugging Version: 06/30 Page	g Plan	

TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

r 6

.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of grout placement (ft bgl)			
Bottom of proposed interval of grout placement (ft bgl)			
Theoretical volume of grout required per interval (gallons)			
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement			
Mixed on-site or batch- mixed and delivered?			
Grout additive 1 requested			
Additive 1 percent by dry weight relative to cement	V		
Grout additive 2 requested	k2		
Additive 2 percent by dry weight relative to cement			

TABLE B - For plugging intervals that will employ approved non-cement based sealant(s). Start with deepest interval.

36

.....

2

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)	-		
Bottom of proposed sealant of grout placement (ft bgl)			
Theoretical volume of sealant required per interval (gallons)			
Proposed abandonment sealant (manufacturer and trade name)			

2010

Wbb

0

™ ??

5

Well Plugging Plan Version: 06/30/2017 Page 5 of 5

STATE OF NEW MEXICO

OFFICE OF THE STATE ENGINEER

ROSWELL

John D' Antonio, P.E. State Engineer

District II 1900 West Second St. Roswell, New Mexico 88201 Phone: (575) 622-6521 Fax: (575) 623-8559

April 11, 2019

Marathon Oil Company c/o Souder, Miller & Associates 401 West Broadway Farmington, NM 87401

RE: Well Plugging Plan of Operations (CP-1787 POD1-POD3)

Greetings:

Attached is your copy of the Well Plugging Plan of Operations for the above described project.

The proposed method of operations for the subject coreholes is found to be acceptable and in accordance with the Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells 19.27.4 NMAC adopted June 30, 2017 by the State Engineer subject to the following:

The applicant states the coreholes are not anticipated to encounter groundwater. Should the coreholes be dry to total depth, the applicant, may apply clean native fill to 10 feet bgs followed by a 10 ft seal to ground surface. The applicant may use bentonite pellets in lieu of cuttings if desired.

Should groundwater be encountered, direct pour of pellets may be conducted provided the applicant apply the sealant in lifts, maintain a record of the amount applied, anticipated tag and actual tag. The pellets should be hydrated in lifts according to manugaturer's instructions.

Sincerely,

Alvaro Alvarado Water Resources Manager I Cc Santa Fe

. . .

J.

WELL PLUGGING PLAN OF OPERATIONS

.

. . .

. . . .

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging.

.

. . . .

. .

I. FILING FEE: There is no filing fee for this form.

II. GENERAL / WELL OWNERSHIP:

•

. . .

	g address: 401 W. Broad					
City:	Farmington	State:		NM	Zip code:	87401
hone	number: 505-325-7535	State:	_ E-mail:	hanie.hinds@soude	rmiller.com	(m)
						2019
ш. у	ELL DRILLER INFOR	MATION:				APR
Well [Priller contracted to provid	le plugging services: HRL Co	ompliance Solut	ons, Inc.		~~
	fexico Well Driller Licens				12/20/2020	Ó
IV. W	ELL INFORMATION:					.9
Note:	A copy of the existing We	ell Record for the well to be pl	lugged should b	e attached to this pl	an.	6
		L.	00		2.50	-
1)	GPS Well Location:	Latitude: 32	_deg,26 deg,26	min, <u>1.03</u>	_sec	
		Longitude: 103	_deg,26	min, 4.16	_sec, WGS84	•
2)	Reason(s) for plugging	well			ire decimai torma	
	Well is intended only for drilled into groundwater	r temporary investigative purpo (only if contamination is show all will then be backfilled with d	in to extend to g			
3)	what hydrogeologic pa	ype of monitoring program? _ rameters were monitored. 11 m the New Mexico Environme	f the well was	used to monitor c	ontaminated or	
	Does the well tap brack	kish, saline, or otherwise poor	r quality water?	<u>unknown</u> If y	es, provide add	itional det
9		1)•			
ł)	including analytical rest	lits and/or laboratory report(s)	<i>,</i> ,			

6) Depth of the well: <u>~45</u> feet

7)	Inside diameter of innermost casing:2 inches.
8)	Casing material: PVC
9)	The well was constructed with: an open-hole production interval, state the open interval: a well screen or perforated pipe, state the screened interval(s):5-10 feet of 0.010" slotted screen
10)	What annular interval surrounding the artesian casing of this well is cement-grouted? N/A
11)	Was the well built with surface casing? no [f yes, is the annulus surrounding the surface casing grouted or otherwise sealed? N/A [f yes, please describe:

12) Has all pumping equipment and associated piping been removed from the well? <u>yes</u> If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.

V. DESCRIPTION OF PLANNED WELL PLUGGING:

Note: If this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie pipe, a detailed diagram of the well showing proposed final plugged configuration shall be attached, as well as any additional technical information, such as geophysical logs, that are necessary to adequately describe the proposal.

1) Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology

proposed for the well:

Well will be plugged using drill cuttings from the bore hole from total depth to ground surface.

2) Will well head be cut-off below land surface after plugging? $\frac{N/A}{N}$

VI. PLUGGING AND SEALING MATERIALS:

Note: The plugging of a well that taps poor quality water may require the use of a specialty cement or specialty sealant

- 1) For plugging intervals that employ cement grout, complete and attach Table A.
- 2) For plugging intervals that will employ approved non-cement based sealant(s), complete and attach Table B.
- 3) Theoretical volume of grout required to plug the well to land surface: $\frac{N/A}{A}$
- 4) Type of Cement proposed: <u>N/A</u>
- 5) Proposed cement grout mix: <u>N/A</u> gallons of water per 94 pound sack of Portland cement.
- 6) Will the grout be: <u>N/A</u> batch-mixed and delivered to the site

N/A mixed on site

1 6

7) Grout additives requested, and percent by dry weight relative to cement:

	N/A
0)	Additional water and calculations.
8)	Additional notes and calculations:

VII. ADDITIONAL INFORMATION: List additional information below, or on separate sheet(s):

If there is a possibility of soil contamination extending into groundwater, then a temporary well will be placed. Upon reaching groundwater, a temporary screen will be placed, and a groundwater sample will be collected. After groundwater sample has been collected, the temporary well will be backfilled with drill cuttings from total depth up to ground surface.

VIII. SIGNATURE:

1. Stephanie Hinds

_, say that I have carefully read the foregoing Well Plugging Plan of Operations and any attachments, which are a part hereof; that I am familiar with the rules and regulations of the State Engineer pertaining to the plugging of wells and will comply with them, and that each and all of the statements in the Well Plugging Plan of Operations and attachments are true to the best of my knowledge and belief.

him flis 8/2019

Signature of Applicant

Date

IX. ACTION OF THE STATE ENGINEER: 2019 APR This Well Plugging Plan of Operations is: 5 Approved subject to the attached conditions. Not approved for the reasons provided on the attached letter. Witness my hand and official seal this dav of Tom Blaine P.E., New Mexico State Engineer By:

Well Plugging Plan Version: 06/30/2017 Page 3 of 5

TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

• te

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow		
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.		
Top of proposed interval of grout placement (ft bgl)					
Bottom of proposed interval of grout placement (ft bgl)					
Theoretical volume of grout required per interval (gallons)					
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement					
Mixed on-site or batch- mixed and delivered?					
Grout additive 1 requested					
Additive 1 percent by dry weight relative to cement					
Grout additive 2 requested					
Additive 2 percent by dry weight relative to cement					

TABLE B - For plugging intervals that will employ approved non-cement based sealant(s). Start with deepest interval.

٠

11.

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)			
Bottom of proposed sealant of grout placement (ft bgl)			
Theoretical volume of sealant required per interval (gallons)			
Proposed abandonment sealant (manufacturer and trade name)			

7019 APR

0

AH 9: 16

Well Plugging Plan Version: 06/30/2017 Page 5 of 5

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

ROSWELL

John D' Antonio, P.E. State Engineer

District II 1900 West Second St. Roswell, New Mexico 88201 Phone: (575) 622-6521 Fax: (575) 623-8559

April 11, 2019

Marathon Oil Company c/o Souder, Miller & Associates 401 West Broadway Farmington, NM 87401

RE: Well Plugging Plan of Operations (CP-1787 POD1-POD3)

Greetings:

Attached is your copy of the Well Plugging Plan of Operations for the above described project.

The proposed method of operations for the subject coreholes is found to be acceptable and in accordance with the Rules and Regulations Governing Well Driller Licensing; Construction, Repair and Plugging of Wells 19.27.4 NMAC adopted June 30, 2017 by the State Engineer subject to the following:

The applicant states the coreholes are not anticipated to encounter groundwater. Should the coreholes be dry to total depth, the applicant, may apply clean native fill to 10 feet bgs followed by a 10 ft seal to ground surface. The applicant may use bentonite pellets in lieu of cuttings if desired.

Should groundwater be encountered, direct pour of pellets may be conducted provided the applicant apply the sealant in lifts, maintain a record of the amount applied, anticipated tag and actual tag. The pellets should be hydrated in lifts according to manugaturer's instructions.

Sincerely,

Alvaro Alvarado Water Resources Manager I Cc Santa Fe

. .

. . .

1

WELL PLUGGING PLAN OF OPERATIONS

.

NOTE: A Well Plugging Plan of Operations shall be filed with and accepted by the Office of the State Engineer prior to plugging.

.

. . .

ų,

I. FILING FEE: There is no filing fee for this form.

. .

II. GENERAL / WELL OWNERSHIP:

	State Engineer POD Number Souder, Miller & Associates, ag		umber) for well to be plugged: larathon Oil Company	Well 3 cp-	1787	POD3
Mailing address: 401						-
City: Farmington	20035-88	State:	NM	Zip code:	87401	_
Phone number: 505-328	j-7535		E-mail: stephanie.hinds@soud	ermiller.com		

III. WELL DRILLER INFORMATION:

Well [Driller contracted to provid	de plugging servi	ces: HRL	Complianc	e Soluti	ons, Inc.			~	
New N	Aexico Well Driller Licen	se No.: 1789				Expirat	ion Date	12/20/2020	2019	RO
									APR	N.
IV. W	ELL INFORMATION:	•							:	
Note:	A copy of the existing W	ell Record for the	well to be	plugged s	hould b	e attached	to this pl	an.	MM 8	
I)	GPS Well Location:	Latitude:	32	deg,	26	min,			<u> </u>	EXICO
		Latitude: Longitude:	103	deg,		min, Check if		_sec, WGS84 are decimal formation	<mark>. б</mark>	8
2)	Reason(s) for plugging	well:								
3)	Was well used for any t what hydrogeologic pa water, authorization fro	arameters were n	nonitored.	If the we	ell was	used to m	onitor co	ontaminated or		
4)	Does the well tap brac	kish, saline, or o	herwise po	oor quality	water?	unknow		es, provide add	itional de	etail,
	including analytical res									
	Analytical results will be	e provided.								
5)	Static water level:	unknown feet	below land	surface/	feet abo	ve land sur	face (c	ircle one)		
6)	Depth of the well:	~45 feet								

7)	Inside diameter of innermost casing: inches.
8)	Casing material: PVC
9)	The well was constructed with: an open-hole production interval, state the open interval: a well screen or perforated pipe, state the screened interval(s):5-10 feet of 0.010" slotted screen
10)	What annular interval surrounding the artesian casing of this well is cement-grouted? N/A
11)	Was the well built with surface casing? If yes, is the annulus surrounding the surface casing grouted or otherwise sealed? If yes, please describe:

12) Has all pumping equipment and associated piping been removed from the well? <u>yes</u> If not, describe remaining equipment and intentions to remove prior to plugging in Section VII of this form.

V. DESCRIPTION OF PLANNED WELL PLUGGING:

Note: If this plan proposes to plug an artesian well in a way other than with cement grout, placed bottom to top with a tremie pipe, a detailed diagram of the well showing proposed final plugged configuration shall be attached, as well as any additional technical information, such as geophysical logs, that are necessary to adequately describe the proposal.

1) Describe the method by which cement grout shall be placed in the well, or describe requested plugging methodology

proposed for the well:

Well will be plugged using drill cuttings from the bore hole from total depth to ground surface.

2) Will well head be cut-off below land surface after plugging? <u>N/A</u>

VI. PLUGGING AND SEALING MATERIALS:

Note: The plugging of a well that taps poor quality water may require the use of a specialty cement or specialty sealant

- 1) For plugging intervals that employ cement grout, complete and attach Table A.
- 2) For plugging intervals that will employ approved non-cement based sealant(s), complete and attach Table B.
- 3) Theoretical volume of grout required to plug the well to land surface: $\frac{N/A}{N}$
- 4) Type of Cement proposed: <u>N/A</u>
- 5) Proposed cement grout mix: <u>N/A</u> gallons of water per 94 pound sack of Portland cement.
- 6) Will the grout be: $\frac{N/A}{N}$ batch-mixed and delivered to the site

N/A mixed on site

1.11

Grout additives requested, and percent by dry weight relative to cement:

	N/A
8)	Additional notes and calculations:
	N/A

VII. ADDITIONAL INFORMATION: List additional information below, or on separate sheet(s):

If there is a possibility of soil contamination extending into groundwater, then a temporary well will be placed. Upon reaching groundwater, a temporary screen will be placed, and a groundwater sample will be collected. After groundwater sample has been collected, the temporary well will be backfilled with drill cuttings from total depth up to ground surface.

VIII. SIGNATURE:

L. Stephanie Hinds

\$

7)

, say that I have carefully read the foregoing Well Plugging Plan of Operations and any attachments, which are a part hereof; that I am familiar with the rules and regulations of the State Engineer pertaining to the plugging of wells and will comply with them, and that each and all of the statements in the Well Plugging Plan of Operations and attachments are true to the best of my knowledge and belief.

ttephin Alis 1/8/2019 Signature of Applicant Date **IX. ACTION OF THE STATE ENGINEER:** APR This Well Plugging Plan of Operations is: -Approved subject to the attached conditions. Not approved for the reasons provided on the attached letter. Witness my hand and official seal this day of Tom Blaine P.E., New Mexico State Engineer By: POR ALLY MORLEY Well Plugging Plan Version: 06/30/2017 Page 3 of 5

TABLE A - For plugging intervals that employ cement grout. Start with deepest interval.

1. · · ·

	Interval 1 – deepest	Interval 2	Interval 3 – most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of grout placement (ft bgl)			
Bottom of proposed interval of grout placement (ft bgl)			
Theoretical volume of grout required per interval (gallons)			
Proposed cement grout mix gallons of water per 94-lb. sack of Portland cement			
Mixed on-site or batch- mixed and delivered?			
Grout additive 1 requested			
Additive 1 percent by dry weight relative to cement			
Grout additive 2 requested			
Additive 2 percent by dry weight relative to cement			

TABLE B - For plugging intervals that will employ approved non-cement based sealant(s). Start with deepest interval.

1:1

	Interval 1 – deepest	Interval 2	Interval 3 - most shallow
			Note: if the well is non-artesian and breaches only one aquifer, use only this column.
Top of proposed interval of sealant placement (ft bgl)			
Bottom of proposed sealant of grout placement (ft bgl)			
Theoretical volume of sealant required per interval (gallons)			
Proposed abandonment sealant (manufacturer and trade name)			

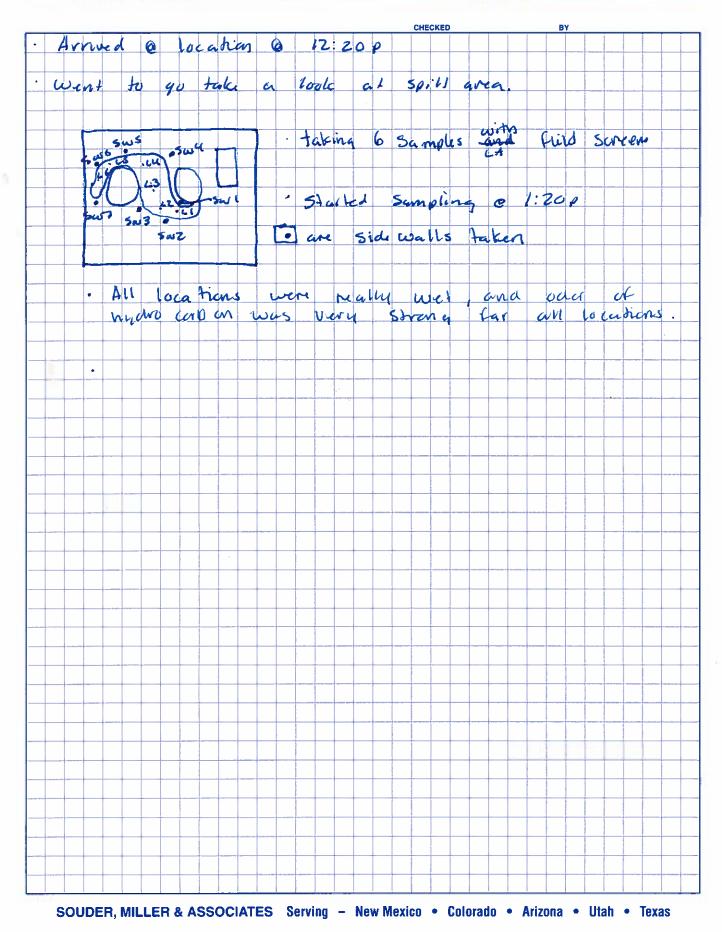
2019 APR

-80

AM 9:

17

Well Plugging Plan Version: 06/30/2017 Page 5 of 5


APPENDIX D. FIELD NOTES

SUBJECT Mitial Samplin	24
------------------------	----

PROJECT State AA # 1 PAGE 1

CLIENT Maraman Oil

DATE 10/22/2018 BY LA

			SMA	Field Scr	eening			
tion Name: Style AH ++ 1				Date:	10/22/18			
Sample Name:	Collection Time:	EC (mS)	Temp (°C)	PID Reading /PF	Soil Color	Primary Soil Type	Moisture Level	Other Remarks/Notes:
AAHI LI-I	1:22	402	21.2		Light -Dark Tan Brown Gray- Olive Yellow Red	Gravel -Ros k San d Silt Clay	Dry Moist Wet	HC Smell
61-2	1:27	2.76	20.0	-	Light Dark Tan Brown G ray Olive Yellow Red	Gravel Rock Sand Silt _Clay -	Dry Moist Wet	HC Smell
(2-2	130	. 573		-	Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay -	Dry Moist - Wet -	32.4355 103.4344 HC Smill
L3-1	202	. 257	20.1	-	Light <u>Dark</u> Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt -Glay	Dry Moist -Wet	32.43360 -103.43449 HC Smell
13-2	205	.586	19.0	-	Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist <u>Wet</u>	HL Smell
L 4 - I	207		18.4	-	Light Da rk Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	32.43361 103.43452 HC Smell
14-2	210		18.8	1	Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay -	Dry Moist Wet	HC SMell
					Light -Đark Tan Brown	Gravel Rock Sand Silt	Dry 1Moist	32.4355

Gray

Yellow

Light

Tan

Gray

Yellow

231

234

535 21.4

353 19.0

Olive

Red

Dark

Brown

Olive

Red

Sand

Glay

Gravel Rock

Clay

Silt

_Wet

Dry

Moist

Wet

HC Smill

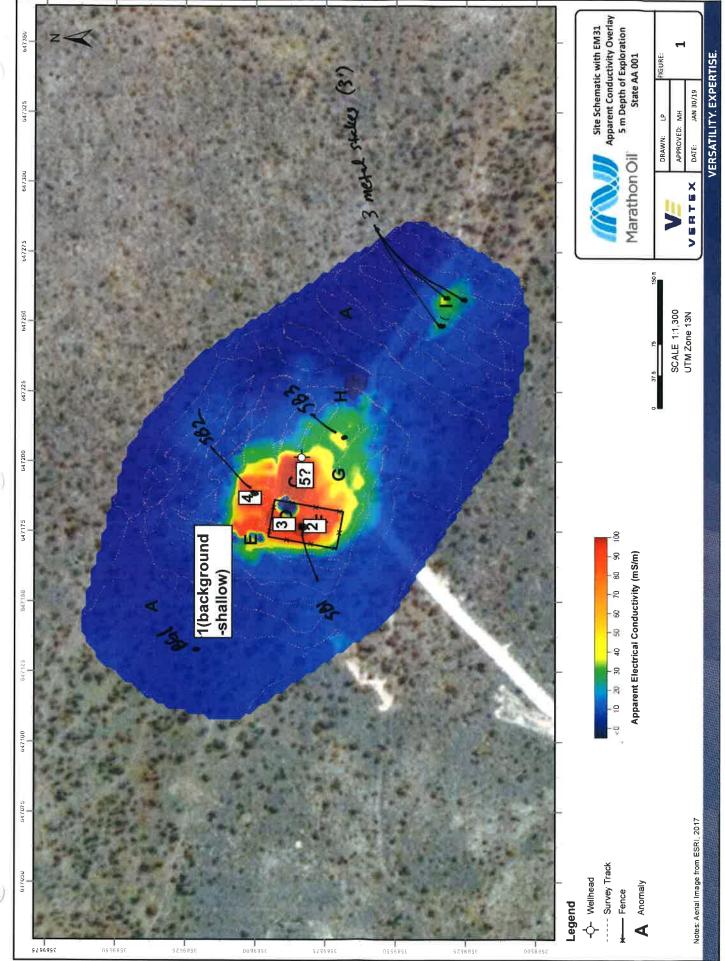
Smell

HC

i

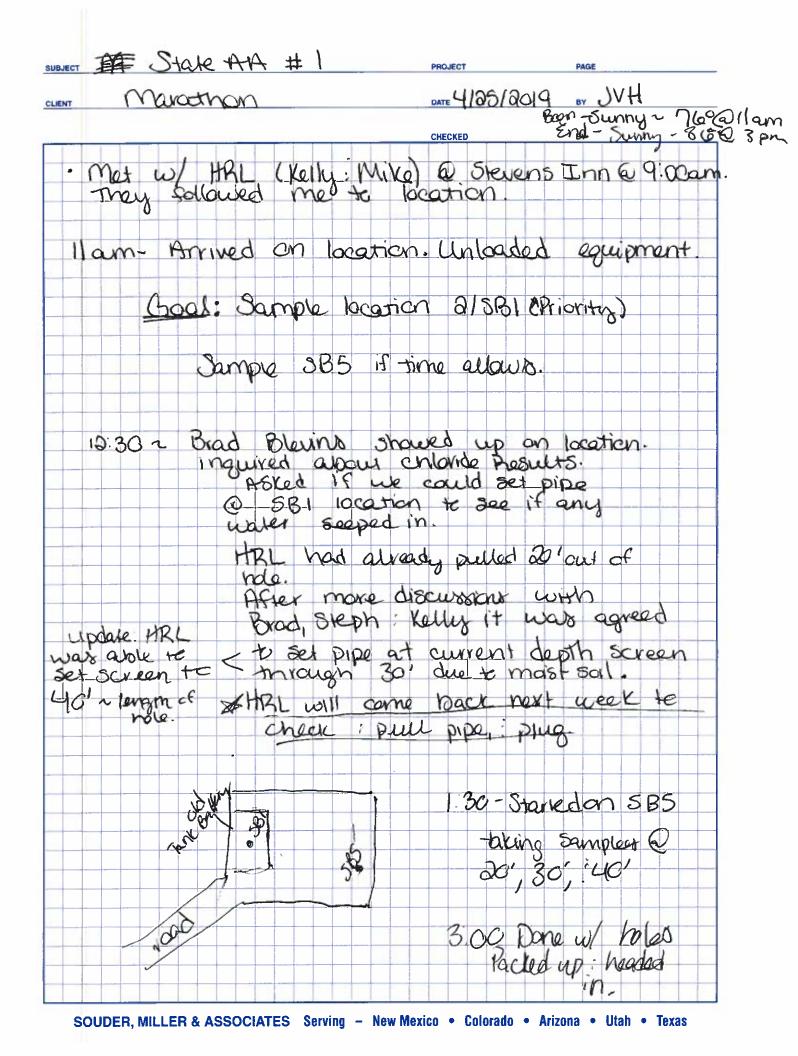
LS-1 LS-2

			<u>SMA</u>	Field Scr	eening			
ocation Name: State AA	¥1			Date:	10/22/2	ciô		
Sample Name:	Collection Time:	EC (mS)	Temp (°C)	PID Reading /PF	Soil Color	Primary Soil Type	Moisture Level	Other Remarks/Notes:
66-1	2:38	85	14.0	_	Light Dark Tan Brow n G ray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	32.433555 103.4345083 HC SWELL
L6-2	242	C4	18.8	-	Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock <u>Sand-</u> Silt Clay	Dry Moist Wet	HC SMell
Swi	258	.542	20.2	_	Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand- Silt Clay	Dry - Moist - Wet	32.4336138
SwZ	300	1.65	19.4		Light Dark T an Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist - Wet	32.4336 103.434458 berm
Sw2 Sw3	302	.316	19.3	-	Light Dark T an Brown Gray Olive Yellow Red	Gravel Rock San d Silt Clay	Dry Moist - Wet	32.433594 103.434472
Su 4	304	3.47	19.3°	_	Light Dark J an Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	32. 433594 103. 434472
Sw 5	306	5.22		0	Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand- Silt Clay	Dry Moist Wet	32.433575
5 cu 6	30 9	.082	19-1	-	Light Dark Jan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry <u>Mois</u> t Wet	32.433552 103.434338
			19.1		Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	32.433558
56 7 BG	320	.077	19.2	-	Morle Brang	Snd	mist	32.433816 103.434633


3/7/2019 Start Date/Time: 9:25 Stop Date/Time. Borehole Diameter: 2.	Remarks (Use trace, occa incre	5-5.5. Butter organics ut/smid	5.5-6. Linkter.	/					(~ d)																											monsthe detected. Very time soft sand.	
الأ ا الأ	OVA results (ppm)		ה מ נ	0:02	~~ V(C))	11002	5	, c	SVCUI)	1																-										2	
onst	Moisture	P		Moist	Wet	Dry	:	Moist	Wet	Dry		Moist	W/at	744	Ś	Moist		Wet	Dry	Moint	MOISI	Wet	Dry		NIOIST	Wet	Dry		Moist		Drv	ì	Moist		Wet	35'	
le# BGI arType:	Consolidation	Rock	Semi-consolidated	Dense Plastic	dinconsolidated	Rock	Semi-consolidated	Dense	Unconsolidated	Rock	Semi-consolidated	Dense	Plastic I Inconsolidated	Prok	Semi-consolidated	Dense	Plastic	Unconsolidated	Rack	Dencollisoliuated	Plastic	Unconsolidated	Rock	Semi-consolidated	plactic	Unconsolidated	Rock	Semi-consolidated	Dense	Plastic	Unconsolidated Rock	Semi-consolidated	Dense	Plastic	Unconsolidated	Drilled to	
Boreho Rig/Sé Driller:	Grain Size (Sands Only)	Very Coarse	Coarse	Medium	Very Fine	Very Coarse	Coarse	Fine	Very Fine	Very Coarse	Coarse	Medium	Vary Fina	Van, Coarea	coarse	Medium	Fine	Very Fine	Very Coarse	Modium	Fine	Very Fine	Very Coarse	Coarse	Fine	Very Fine	Very Coarse	Coarse	Medium	i Eine	Very Coarse	Coarse	Medium	Fine	Very Fine	X A.	
	Sorted	Poorty			Well	Poorly			Well	Poorly			Mell	Poorly				Well	Poorly			Well	Poorly			Well	Poorly			-	Poorly				Well	t	
3	y Soil Je	U		Clay		10,	iii oii	Clay		Sand	s alt	Clay		Sand	Silt	Clay			Sand		Clay		Sand	Silt	Clay		Sand	Silt	Clay		Sand	Silt	Clay			(wate	
S 1:#*	Primary Soil Type	Boulder	Cobble	Gravel		Boulder	Cobble	Gravel		Boulder	Cobble	Pepple	Gravel	Boulder	Cobble	Pebble	Gravel		Boulder	Dahhla	Gravel		Boulder	Cobble	Gravel		Boulder	Cobble	Pebble	Gravel	Boulder	Cobble	Pebble	Gravel		goun	
the At	Secondary Soil Type	Gravelly	Sandy	Sility Clavev		Gravelly	Sandy	Clayev		Gravelly	Sandy	Allo	Ulayey	Gravelly	Sandy	Silty	Clayey		Gravelly	Silty	Clayey		Gravelly	Sandy	Claver	6	Gravelly	Sandy	Silty	Clayey	Gravelly	Sandy	Silty	Clayey		ansio	
Project: <u>Murathum - Shuke AA #</u> .(SWD) ject # sMA Field Tech: 5.M.mds	Color	tan	DTOWD	yellow red		tan	brown	red		tan	brown	yellow	D D D D D D D D D D D D D D D D D D D	tan	E	yellow	red		tan hrown	violion	red		tan	brown "	yellow			brown	yellow	red	tan	c	yellow	red		Detection of weighter ground water	
Project: <u>Murath</u> ject # sMA Field Tech:		Cight		gray olive		Light		yray olive		Light	Dark	gray	olive	l inht	Dark	gray	olive		Light		olive		Light	Dark	gray olive		Light	Dark	gray	olive	Liaht	Dark	gray	olive		etechi	
roject: ject # MA Fiel	əmiT		0	Q:]	/		12	bil	1																											المعيوي	
	əlqms2 htq9D		າ	-1	5	-	51	-4	/																												

Start Date/Time: 12:00 Stop Date/Time. Borehole Diameter 2.*	Remarks (Use trace, occasional, freguent and with to desribe increasing amounts)	Mad alor, sticking	9 00 000 000	no odor, tew pieces of river rode 14	MIRCA WWW CALINA	no odar smill chicke miked in		PF = 307/123/45	1 th about 1 th	same account super set of many	(*		Collected top of spean @ 27'		12/12/12/12											
to state	PVA resolts (ppm)	18.5°C Mar 1.68	12271	0.7.6	(02 m ()		5,16	1,4098	100	2 602		12181	19.6.6	10.0	(12 8 1 m)				5							
KSA, S	Moisture	Dry	Wet		Moist	A	Moist	Wet	1	_	2	Wet	Dry	Moist	Wet	Dry	Moist		Wet	Dry	Moist		Wet	ρίλ	Moist	Wet
arType:	Consolidation	Rock Semi-consolidated Dense Plastic	Unconsolidated	Rock Semi-consolidated	Dense Plastic	Rock	Semi-consolidated Dense	Plastic	Rock	Semi-consolidated	Plastic	Unconsolidated	Rock Semi-consolidated	Dense Plastic	Unconsolidated	Rock	Semi-consolidated	Plastic	Unconsolidated	Rock	Semi-consolidated Dense	Plastic	Unconsolidated	Rock Semi-consolidated	Dense	Plastic Unconsolidated
Boreho Rig/S∈ Driller:	Grain Size (Sands Only)	Very Coarse	Very Fine	Very Coarse	Fine Verv Fine	Very Coarse	Coarse /	Fine Very Fine	Very Coarse	Coarse	Fine	Very Fine	Very Coarse	Medium	Very Fine	Very Coarse	Coarse	Fine	Very Fine	Very Coarse	Medium	Fine	Very Fine	Very Coarse Coarse	Medium	Fine Very Fine
	Sorted	Poorly		Poorty	Well	POOLIN		Well	Poorly		freu	Well	Poorly	R.	Well	Poorly		-		Poorly			-	Poorly		Well
	y Soil oe	Clay Sit	1	-	Clay	Sand	Clay		Sand	sit o	Clay			Clay	_	75	Clav		_	Sand	Clay	`	_	Sand	Clay	
i.	Primary Soil Type	Boułder Cobble Pebble Gravel		Boulder Cobble	Gravel	Boulder	Cobble Pebble	Gravel	Boulder	Cobble	Gravel		Boulder Cobble	Pebble Gravel		Boulder	Cobble Pebble	Gravel		Boulder	Pebble	Gravel		Boulder Cobble	Pebble	Giave
	Secondary Soil Type	Gravelly Sandy Silty Clayer		Gravelly	Clayey	Gravelly	Silty	Clayey	Gravelly	A LANG	Clayey		Gravelly	Silty Clavev		Gravelly	sandy Siltv	Clayey	-	Gravelly		~	-	Gravelly	_	Clayey
AA #1 511	Calor	yellow		down	red		yellow	red	-	vellow			tan tan	yellow	-	-	yełłow				yellow		-†	brown	-	
State Tech:	ပိ	L <i>ight</i> <u>Bark</u> gray olive			olive		V	olive		-	olive			gray olive			gray v			Light				Lignt Dark b		
Project:)ject # SMA Field	этіТ	\$1:7	-		(7)		CS :				sh1			0.0 11.h/	1	<u> </u>	10	0	1	14	10		Ť	10	00	2
Pro	Sample Depth d	v			0]		S	-	6	1-	77	1		<2												
							*	-					7	4								0.55	_1			

*


Start Date/Time 14:35 Stop Date/Time. Borehole Diameter 24	ith	Sugut hydrocuren oder. PF= 350/150/118	er. Sgt sity suc. PF = 294/131/101	odor. Saft sitty sand.					
and and	Ren		No 01	2 8					
جہ ۱۱	by A results (ppm)	184.0	19.8 0.35	14.3 C					
SB 2 HSA	Moisture	Moist	Wet Moist	0	Dry Moist Wet	Dry Moist Wet	Dry Moist Wet	Dry Moist Wet	Dry Moist Wet
alett 200	Consolidation	Rock Semi-consolidated Dense Plastic	Unconsolidated Rock Semi-consolidated Dense Plastic	Rock Semi-consolidated Dense Plastic	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Danse Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated
Borehol Rig/Sé Driller:	Grain Size (Sands Only)	Coarse Coarse Medium	Very Fine Very Coarse Coarse	Very Coarse Coarse Fine	Very Coarse Coarse Medium Fine Verv Fine	Very Coarse Coarse Medium Fine Very Fine	Very Coarse Coarse Medium Fine Very Fine	Very Coarse Coarse Medium Fine Very Fine	Very Coarse Coarse Medium Fine Very Fine
	Sorted	FOOT	Well Poorly Well	Poorly	Poorly Well	Poorly Well	Poorly Well	Poorly Well	Poorly
1 200	y Soil 3e	Clay Clay	Clay	Clay Clay	Sand Silt Clay	Sand Silt Clay	Sand Silt Clay	Sand Silt Clay	Sand Sitt Clay
144	Primary Soíl Type	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel
Stut	Secondary Secondary	Gravelly Sandy Silty Etaye	Gravelly Sandy Sandy Clayey	Gravelly Sandy Sitty Clayey	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey
- mg	Color	tan yellow red	brown yellow red	brown yellow red	tan brown yellow red	tan brown yellow red	tan brown yellow red	tan brown yellow red	tan brown yellow red
Project: Manathun ject # SMA Field Tech: 5V		L <i>ight</i> Dark gray olive	Dark Dark gray olive	Dark Dark gray olive	<i>Light</i> <i>Dark</i> gray olive	Light Dark gray olive	Light Dark gray olive		Light Dark I gray y olive
Project: 	əmiT	oh i h l	00:51	01:51					7700
Pro	əlqms2 ritqəD	h	8	15					

Chronolus (EC) Start Date/Time: 15:15 Stop Date/Time: Borehole Diameter: 22	trace, occasional, freguent and with t increasing amounts)	(m)	F = 318/138/106	PF = 328/124/899					
E T	evA resolts (ppm)	20.1.02	1 0 00	19.7% 0.34 (46)					
SA	Moisture	Moist			Dry Moist Wet	Dry Moist Wet	Dry Moist Wet	Dry Moist Wet	Dry Moist Wet
Borehol∞ 4 583 Rig/St arType: <u>1454</u> Driller: Ct N	Consolidation	Rock Semi-consolidated Dense Plastic	Rock Semi-consolidated Dense Plastic	Rock Semi-consolidated Dense Plastic	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated	Rock Semi-consolidated Dense Plastic Unconsolidated
Boreho Rig/Sá Driller:	Grain Size (Sands Only)	Very Coarse Coarse Medum Fine Very Fine	Very Coarse Coarse Medium	Very Coarse Coarse Medium	Very Coarse Coarse Medium Fine Very Fine				
	Sorted	Poorly	Poorly Well	Poorly Well	Poorly Well	Poorly Well	Poorly	Poorly Well	Poorly Well
Oms	y Soil Je	Clay Stan	Silt	Sand Silt Clay	Sand Silt Clay	Sand Silt Clay	Sand Silt Clay	Sand Silt Clay	Sand Silt Clay
T#¥	Primary Soil Type	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel	Boulder Cobble Pebble Gravel
-Shter AA # I SWD	Secondary Secondary	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey	Gravelty Sandy Silty Clayey	Gravelly Sandy Silty Clayey	Gravelly Sandy Silty Clayey		Gravelly Sandy Silty Clayey
WW SM	Color	brown yellow red	brown yellow red	yellow red	tan brown yełłow red	tan brown yellow reď	tan brown yellow red	tan brown yellow red	tan brown yellow red
Project: Munufhum oject # SMA Field Tech: 5Y	Ŭ	L <i>ight</i> Dark gray olive	Dark gray olive	Dark Dark gray olive	<i>Light Dark</i> gray olive	<i>Light</i> <i>Dark</i> gray olive	Light Dark gray olive	<i>Light Dark</i> gray olive	<i>Light</i> <i>Dark</i> gray olive
oject: ject # MA Field	əmiT	07:51	08:51	56:51					
er er M	Depth Sample	h	01	5					
8				×					

bxm. [51150-381] allements all 2 to 11g17100 AA alei2/notifies6MI2TO3LO99 2U_(1259(0)4-1/450) allements alle 1 single 1

		5	SMA	Field Screening	eening			
Location Name: State AAA	#	Marathor . 1	_	Date:	4/28/19			1V/
Sample Name:	Collection Time:	EC (mS)	Temp (°C)	PID Reading /PF	Soil Color	Primary Soil Type	Moisture Level	Other Remarks/Notes:
3BI @ 30'	sh:ll	95	Je 28. 6		Light Dark Tan Brown Gray Oliye Yellow Red	Gravel Rock Sand Silt Clay	Moist Wet	
' CS () ''	hg.11	ette	<i>3</i> 33		Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Sult Clay	Dry Moist Wet	red to light tan/red
04 Q	00.Cl	h.C.	B.hB		Light Dark Tan Brown Gray Olive Yellow (Red)	Gravel Rock Sand Sitt Clay	Moist Wet	
SR5 @ 20'	1:47	ohi	78.S		ran Dark Gray Dive Yellow Red	Gravel Rock Sand Silt Clay	Moist Wet	
, OG ()	200	.\C	2012		Light Dark Tan Brown Gray Olixe Yellow (Red)	Gravel Sand Clay	Andois Wet	
QHO	0;20	so.	29.60		Gray Olive Yellow (Red	Gravel Rock Sand Silt	Moist Wet	
					Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	
					Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	
					Light Dark Tan Brown Gray Olive Yellow Red	Gravel Rock Sand Silt Clay	Dry Moist Wet	

24

a'

4

1. 20

APPENDIX E. LABORATORY ANALYTICAL RESULTS

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

March 25, 2019

Stephanie Hinds Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-7040 FAX

RE: State AA #1

OrderNo.: 1903466

Dear Stephanie Hinds:

Hall Environmental Analysis Laboratory received 5 sample(s) on 3/9/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis	s Laboratory, In	с.			Lab Order 1903466 Date Reported: 3/25/2	2019
CLIENT: Souder, Miller & Associates		Client	Sample II	D: BC	JI-15	
Project: State AA #1		Coll	ection Dat	e: 3/7	/2019 11:45:00 AM	
Lab ID: 1903466-001	Matrix: SOIL	Ree	ceived Dat	e: 3/9	/2019 10:50:00 AM	
Analyses	Result	RL Qu	al Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analy	rst: smb
Chloride	ND	60	mg/Kg	20	3/15/2019 12:31:34 F	PM 43706

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analy
	D	Sample Diluted Due to Matrix	Е	Value
	Н	Holding times for preparation or analysis exceeded	J	Analy
	ND	Not Detected at the Reporting Limit	Р	Samp
	PQL	Practical Quanitative Limit	RL	Repor
	S	% Recovery outside of range due to dilution or matrix	W	Samp

- lyte detected in the associated Method Blank
- e above quantitation range
- lyte detected below quantitation limits Page 1 of 8

Analytical Report

- ple pH Not In Range
- orting Detection Limit
- ple container temperature is out of limit as specified

Analytical Report Lab Order 1903466

Date Reported: 3/25/2019

CLIENT: Souder, Miller & Associates Project: State AA #1 Lab ID: 1903466-002	Matrix: SOIL			e: 3/7	BI-15 7/2019 12:50:00 PM 9/2019 10:50:00 AM	
Analyses	Result	RL	Qual Units		Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	3700	150	mg/Kg	50	3/19/2019 4:56:36 PM	43722
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	: Irm
Diesel Range Organics (DRO)	ND	9.3	mg/Kg	1	3/12/2019 1:44:03 PM	43618
Motor Oil Range Organics (MRO)	ND	47	mg/Kg	1	3/12/2019 1:44:03 PM	43618
Surr: DNOP	124	70-130	%Rec	1	3/12/2019 1:44:03 PM	43618
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.6	mg/Kg	1	3/13/2019 9:53:22 AM	43605
Surr: BFB	95.6	73.8-119	%Rec	1	3/13/2019 9:53:22 AM	43605

Refer to the OC S la login absolution for fle л d OC dat А ation info ation.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte
	D	Sample Diluted Due to Matrix	Е	Value a
	Н	Holding times for preparation or analysis exceeded	J	Analyte
	ND	Not Detected at the Reporting Limit	Р	Sample
	PQL	Practical Quanitative Limit	RL	Reporti
	S	% Recovery outside of range due to dilution or matrix	W	Sample

- te detected in the associated Method Blank
- above quantitation range
- te detected below quantitation limits Page 2 of 8
- le pH Not In Range
- ting Detection Limit
- pple container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1903466

Date Reported: 3/25/2019

CLIENT: Souder, Miller & Associates		C	ient Sample II	D: SE	BI-27	
Project: State AA #1			Collection Dat	e: 3/7	7/2019 2:15:00 PM	
Lab ID: 1903466-003	Matrix: SOIL		Received Dat	e: 3/9	9/2019 10:50:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	MRA
Chloride	1600	60	mg/Kg	20	3/18/2019 10:44:24 AM	43722
EPA METHOD 8015M/D: DIESEL RAN	IGE ORGANICS				Analyst	: Irm
Diesel Range Organics (DRO)	ND	9.2	mg/Kg	1	3/12/2019 2:08:28 PM	43618
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	3/12/2019 2:08:28 PM	43618
Surr: DNOP	123	70-130	%Rec	1	3/12/2019 2:08:28 PM	43618
EPA METHOD 8015D: GASOLINE RA	NGE				Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	3/13/2019 10:16:55 AM	43605
Surr: BFB	99.4	73.8-119	%Rec	1	3/13/2019 10:16:55 AM	43605

Refer to the OC Summary report and sample login checklist for flagged OC data and preservation information.

Refer to the QC Summary report and sample togin checknist for hagged QC data and pres	
---	--

Qualifiers:	*	Value exceeds Maximum Contaminant Level.
	D	Sample Diluted Due to Matrix
	Н	Holding times for preparation or analysis exceeded
	ND	Not Detected at the Reporting Limit
	POL	Practical Quanitative Limit

Hall Environmental Analysis Laboratory, Inc.

- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 3 of 8 J
- Sample pH Not In Range Р
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Analytical Report
Lab Order 1903466

Date Reported: 3/25/2019

CLIENT: Souder, Miller & Associates Project: State AA #1 Lab ID: 1903466-004	Client Sample ID: SB2-12 Collection Date: 3/7/2019 3:10:00 PM Matrix: SOIL Received Date: 3/9/2019 10:50:00 AM									
Analyses	Result	RL	Qual Units		Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst	MRA				
Chloride	730	60	mg/Kg	20	3/18/2019 10:56:49 AM	43722				
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	: Irm				
Diesel Range Organics (DRO)	ND	9.8	mg/Kg	1	3/12/2019 2:32:47 PM	43618				
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	3/12/2019 2:32:47 PM	43618				
Surr: DNOP	82.0	70-130	%Rec	1	3/12/2019 2:32:47 PM	43618				
EPA METHOD 8015D: GASOLINE RANG	Ε				Analyst	NSB				
Gasoline Range Organics (GRO)	ND	4.7	mg/Kg	1	3/13/2019 10:40:13 AM	43605				
Surr: BFB	98.8	73.8-119	%Rec	1	3/13/2019 10:40:13 AM	43605				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

	QC Summary	report and	sample log	gill checklist 10.	i naggeu (preservation	morman

*	Value exceeds Maximum Contaminant Level.	
---	--	--

D Sample Diluted Due to Matrix

Qualifiers:

- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits Page 4 of 8
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 1903466

Date Reported: 3/25/2019

CLIENT: Souder, Miller & Associates Project: State AA #1	Client Sample ID: SB3-15 Collection Date: 3/7/2019 3:45:00 PM								
Lab ID: 1903466-005	Matrix: SOIL Received Date: 3/9/2019 10:50:00 AM								
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch			
EPA METHOD 300.0: ANIONS					Analyst	: MRA			
Chloride	710	60	mg/Kg	20	3/18/2019 11:09:13 AN	43722			
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	: Irm			
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	3/12/2019 2:57:59 PM	43618			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	3/12/2019 2:57:59 PM	43618			
Surr: DNOP	121	70-130	%Rec	1	3/12/2019 2:57:59 PM	43618			
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	3/13/2019 11:03:46 AN	43605			
Surr: BFB	98.3	73.8-119	%Rec	1	3/13/2019 11:03:46 AN	43605			

Refer to the OC Summary report and sample login checklist for flagged OC data and preservation information.

Refer to the	QC Summar	y report and	i sample lo	ogin checklist	for hagged	QC data and	r preservation	informatic

Qualifiers:	*	Value exceeds Maximum Contaminant Level.				
	D	Sample Diluted Due to Matrix				
	Н	Holding times for preparation or analysis exceeded				
	ND	Not Detected at the Reporting Limit				

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- В Analyte detected in the associated Method Blank
- E Value above quantitation range
- Analyte detected below quantitation limits Page 5 of 8 J
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- W Sample container temperature is out of limit as specified

Hall Environmental Analysis Laboratory, Inc.

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1903466
	22.16 10

25-Mar-19	
-----------	--

Client: Project:	Souder, N State AA		ssociate	2S								
Sample ID: N	MB-43706	Samp	ype: ME	BLK	Tes	tCode: EF	PA Method	300.0: Anion	s			
Client ID: F	PBS	Batc	h ID: 43	706	F	RunNo: 58427						
Prep Date:	3/15/2019	Analysis Date: 3/15/2019			SeqNo: 1960621			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	1.5									
Sample ID: L	-CS-43706	Samp	ype: LC	S	Tes	tCode: EF	PA Method	300.0: Anion	s			
Client ID: L	CSS	Batc	h ID: 43	706	F	RunNo: 5 8	8427					
Prep Date:	3/15/2019	Analysis [Date: 3/	15/2019	S	SeqNo: 19	960622	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		14	1.5	15.00	0	95.0	90	110				
Sample ID:	MB-43722	Samp	Type: mb	olk	Tes	tCode: EF	PA Method	300.0: Anion	s			
Client ID: F	PBS	Batch ID: 43722			F	RunNo: 58434						
Prep Date:	3/18/2019	Analysis Date: 3/18/2019			SeqNo: 1961725 Uni			Units: mg/K	Units: mg/Kg			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	1.5									
Sample ID: L	-CS-43722	Samp	ype: Ics	i	Tes	tCode: EF	e: EPA Method 300.0: Anions					
Client ID: L	CSS	Batc	h ID: 43	722	RunNo: 58434							
Prep Date:	3/18/2019	Analysis E	Date: 3/	18/2019	S	SeqNo: 19	961726	Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		14	1.5	15.00	0	94.0	90	110				
Sample ID:	MB-43722	Samp	Type: mk	olk	Tes	tCode: EF	PA Method	300.0: Anion	s			
Client ID: F	PBS	Batc	h ID: 43	722	F	RunNo: 5 8	8484					
Prep Date:	3/18/2019	Analysis [Date: 3/	19/2019	5	SeqNo: 19	962996	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	1.5									
Sample ID: I	-CS-43722	Samp	ype: Ics		Tes	tCode: EF	PA Method	300.0: Anion	s			
Client ID: L	CSS	Batc	h ID: 43	722	F	RunNo: 5 8	8484					
Prep Date:	3/18/2019	Analysis Date: 3/19/2019			SeqNo: 1962997			Units: mg/Kg				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		14	1.5	15.00	0	95.6	90	110				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified
- Page 6 of 8

Page 7 of 8

Client:SoudeProject:State A	r, Miller & As AA #1	ssociate	es							
Sample ID: LCS-43618 SampType: LCS				Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: LCSS	Batch	ID: 43	618	F	RunNo: 5	8282				
Prep Date: 3/11/2019	Analysis D	ate: 3/	12/2019	5	SeqNo: 1	954863	Units: mg/ #	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	60	10	50.00	0	120	63.9	124			
Surr: DNOP	5.9		5.000		118	70	130			
Sample ID: MB-43618	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics	
Client ID: PBS	Batch	ID: 43	618	F	RunNo: 5	8282				
Prep Date: 3/11/2019	Analysis D	ate: 3/	/12/2019	8	SeqNo: 1	954864	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Diesel Range Organics (DRO)	ND	10								
Motor Oil Range Organics (MRO)	ND	50								
Surr: DNOP	9.3		10.00		93.2	70	130			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix D
- Holding times for preparation or analysis exceeded Η
- Not Detected at the Reporting Limit ND
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S
- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Detection Limit RL
- Sample container temperature is out of limit as specified W

Page 8 of 8

Client: Souder, Project: State A	Miller & A A #1	ssociate	Ś							
Sample ID: MB-43605	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e				
Client ID: PBS Batch ID: 43605		F	RunNo: 5	8288						
Prep Date: 3/11/2019 Analysis Date: 3/12/2019			SeqNo: 1955652			Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	ND	5.0								
Surr: BFB	960		1000		95.8	73.8	119			
Sample ID: LCS-43605	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015D: Gasc	line Rang	e	
Client ID: LCSS	Batch	n ID: 43	605	F	RunNo: 5	8288				
Prep Date: 3/11/2019	Analysis D	ate: 3/	12/2019	S	SeqNo: 1	955653	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO)	25	5.0	25.00	0	101	80.1	123			
Surr: BFB	1100		1000		108	73.8	119			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

HALL ENVIRONMENT ANALYSIS LABORATORY	AL	Hall Environmental Albu TEL: 505-345-3975 Website: www.ha	4901 Hawk Iquerque, NM FAX: 505-343	ins NE 87109 San 5-4107	nple Log-In (Check List
Client Name: SMA-CARI	SBAD	Work Order Number:	1903466		RcptNo	p: 1
Received By: Anne Tho Completed By: Victoria Z Reviewed By: DAD 3	ellar	3/9/2019 10:50:00 AM 3/11/2019 9:17:21 AM		Arri I. Victoria, Gel		by
Chain of Custody				YG (SINING	Ū
1. Is Chain of Custody comp			Yes 🗹	No	Not Present	
2. How was the sample deliv	vered?		<u>Client</u>			
Log In 3. Was an attempt made to o	cool the samples?		Yes 🗹	No 🗌		
4. Were all samples received	at a temperature o	f >0° C to 6.0°C	Yes 🗹	No 🗌	NA \Box	
5. Sample(s) in proper conta	iner(s)?		Yes 🗹	No 🗌		
6. Sufficient sample volume f	or indicated test(s)	?	Yes 🗹	No 🗌		
7. Are samples (except VOA	and ONG) properly	preserved?	Yes 🗹	No 🗌		
8. Was preservative added to	bottles?		Yes 🗌	No 🗹	NA 🗌	
9. VOA vials have zero heads	space?		Yes 🗌	No 🗌	No VOA Vials 🗹	
10. Were any sample containe			Yes	No 🗹	# of preserved bottles checked	
11. Does paperwork match bot (Note discrepancies on cha			Yes 🗹	No 🗌		>12 unless noted)
12. Are matrices correctly iden	tified on Chain of C	ustody?	Yes 🗹	No 🗌	Adjusted?	
13. Is it clear what analyses we			Yes 🗹	No 🗌		(G 3)11/16
 Were all holding times able (If no, notify customer for a 			Yes 🗹	No	Checked by:	16 311119
Special Handling (if app	olicable)					
15. Was client notified of all di	screpancies with th	is order?	Yes	No 🗌	NA 🗸	
Person Notified: By Whom: Regarding: Client Instructions:		Date: Via:] eMail 🗌	Phone 🗌 Fax	In Person	
16. Additional remarks:						
17. <u>Cooler Information</u> Cooler No Temp °C 1 1.0	Condition Sea Good Yes	al Intact Seal No Se	eal Date	Signed By		

Cha	ain-o	Jf-Cu	Chain-of-Custody Record	Turn-Around Time:	Time:				4				Q		ENVTDONMENTA		
Client: SMA	AI			🕅 Standard	□ Rush				- 9		ц Г.	SIS		BOB	ANALYSIS LABORATORY	R	
				Project Name						www	www.hallenvironmental.com	vironn	nental.	com			
Mailing Adc	dress:	2015.	Mailing Address: 2015. Halagueno	State AA	T # 4:			4901	4901 Hawkins NE	ins NI		enbnc	rque,	Albuquerque, NM 87109	60		
	Car	Cartsbad NM	12283 MN 1	Project #:				Tel.	505-345-3975	15-39	75	Fax 5	505-34	505-345-4107		-	
Phone #:	505-3	505-325-7535	1535								Analysis	A DOCTOR OF STREET, ST. OF	Request	st			
email or Fa	×#: \$1-	ephani	email or Fax#: Stephanie. hinds @ souder	Project Manager:	ger:		(1	(0)	â		[†] O		(+4	()))			
QA/QC Package:	(age:	-	miller. com	a hule	S		208)			SM	S '≉C			2501			
Standard	g		Level 4 (Full Validation)		101) s,ɛ			IS0.) Р (
Accreditation:		AZ COI	Az Compliance	Sampler: SH			IMT			28	NO ^z			282			
□ NELAC		□ Other		On Ice:	-A Yes	□ No	. / :			or	_	_					
□ EDD (Type)	(be)			# of Coolers:			38.			018							
				Cooler Temp(including CF):	(including CF): / C) , (LM			y 83		_	100 B200				
				Container	Preservative	HEAL No.	/ XƏT	08:H9	M) 80	d sHA	S ARD S	V) 092	S) 072	otal Co			
Date Lime		Matrix		I ype and #	I ype	14U0Han	8	_	_	Ы	_	_	_			_	
3.7-19 11:	11:45 5	50í	861-15	(I) 403	000	100-		_			×		-				
11	11:50	1	581-15		_	-002		×			×						
.h(21:41		581-27			- 003		×			×		-				
115	15:10	-	51-285			HUU-		×			×						
B →	1000	>	563-15	\rightarrow	\rightarrow	-005		×			\times						
SI	Shis			,													
															-		
										1							
											. v						
2.8.19 12:00		Relinquished by:	quished by: lengturi Ali L	Received b:	ie l	3 8119 1300	Å .	emarks: On end:	<	han	Marathon	,					
Date: Time: 3 8/19 19 0		Relinquished by	Start -	Received by:	Via:	Date Time	8	to get run	(A	TPH on	ł.	B61-18	5				
		A solow	This concers of this concersion of this concersion of this concers of this concers of this concersion of this contracted on the analytical concersion of this concersion of this concersion of this concersion of the concersion of	Sector to other of	andited laboratori	This series as action of the	idioood o				1.11						٦

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

May 02, 2019

Stephanie Hinds Souder, Miller & Associates 201 S Halagueno Carlsbad, NM 88221 TEL: (575) 689-8801 FAX

RE: State AA 1

OrderNo.: 1904D42

Dear Stephanie Hinds:

Hall Environmental Analysis Laboratory received 5 sample(s) on 4/27/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical Report

Lab Order: 1904D42

Hall Environ	mental Analysis Lab	oratory, I	nc.			Ι	Date Reported: 5/2/	2019
	ouder, Miller & Associates tate AA 1				L	ab C)rder: 1904	D42
Lab ID:	1904D42-001		C	ollecti	on Date	: 4/2	25/2019 11:43:00	AM
Client Sample ID:	SB 1-30				Matrix	: SC	DIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch I
EPA METHOD 300	.0: ANIONS						An	alyst: MR A
Chloride		210	60		mg/Kg	20	5/1/2019 2:05:17 F	PM 4463
Lab ID:	1904D42-002		C	ollecti	on Date	: 4/2	25/2019	
Client Sample ID:	SB 1-35				Matrix	: SC	DIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch I
EPA METHOD 300	.0: ANIONS						An	alyst: MR
Chloride		380	60		mg/Kg	20	5/1/2019 2:17:41 F	PM 4463
Lab ID:	1904D42-003		C	ollecti	on Date	: 4/2	25/2019 1:47:00 P	М
Client Sample ID:	SB 5-20				Matrix	: SC	DIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch I
EPA METHOD 300	.0: ANIONS						An	alyst: MR A
Chloride		490	60		mg/Kg	20	5/1/2019 2:30:05 F	PM 4463
Lab ID:	1904D42-004		C	ollecti	on Date	: 4/2	25/2019	
Client Sample ID:	SB 5-30				Matrix	: SC	DIL	
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch I
EPA METHOD 300	.0: ANIONS						An	alyst: MR A
Chloride		ND	60		mg/Kg	20	5/1/2019 2:42:29 F	-

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

* Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix S

Analyte detected in the associated Method Blank Е Value above quantitation range

Analyte detected below quantitation limits J

Sample pH Not In Range

P Sample pH Not RL Reporting Limit

в

Page 1 of 2

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Client: Project:	Souder, State A	, Miller & As A 1	sociate	S							
Sample ID:	MB-44638	SampTy	/pe: mb	olk	Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	PBS	Batch	ID: 440	638	F	RunNo: 5	9556				
Prep Date:	5/1/2019	Analysis Da	ate: 5/	1/2019	S	SeqNo: 2	007895	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		ND	1.5								
Sample ID:	LCS-44638	SampTy	/pe: Ics		Tes	tCode: El	PA Method	300.0: Anion	s		
Client ID:	LCSS	Batch	ID: 440	638	F	RunNo: 5	9556				
Prep Date:	5/1/2019	Analysis Da	ate: 5/	1/2019	S	SeqNo: 2	007896	Units: mg/K	g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride		15	1.5	15.00	0	97.8	90	110			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

e quantitation range

ANAL	RONMENTAL YSIS RATORY	TEL: 505-345-	ental Analysis Labor 4901 Hawkii Albuquerque, NM 8 3975 FAX: 505-345- ww.hallenvironmenta	ns NE 87109 Sam -4107	ple Log-In C	heck List
Client Name:	SMA-CARLSBAD	Work Order Nun	nber: 1904D42		RcptNo:	1
Received By:	Erin Melendrez	4/27/2019 9:15:00	AM	UL MA	7	
Completed By:	Erin Melendrez	4/27/2019 11:26:3	1 AM	ight	2	
Reviewed By:	LAS	4/29/19				
LB:	20 41	29 19				
Chain of Cus	tody	2111				
1. Is Chain of C	ustody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the	sample delivered?		<u>Courier</u>			
<u>Log In</u>						
	npt made to cool the samp	les?	Yes 🖌	No 🗌		
			2 3.34 8.55 1			
4. Were all samp	ples received at a tempera	ture of >0° C to 6.0°C	Yes 🖌	No 🗌		
5 Sample(c) in	proper container(s)?			N		
	proper container(s)?		Yes 🗹	No		
6. Sufficient sam	ple volume for indicated te	est(s)?	Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) pro	operly preserved?	Yes 🔽	No 🗌		
8. Was preservat	tive added to bottles?		Yes 🗌	No 🗹	NA 🗌	
	e zero headspace?					
		raka 2	Yes	No 🗌	No VOA Vials 🗹	70
TO, were any san	nple containers received b	roken?	Yes 🗀	No 🗹	#of preserved	1/29/19
11. Does paperwo	ork match bottle labels?		Yes 🔽		bottles checked for pH:	$\eta = 0$
	ancies on chain of custody					>12 unless noted)
	correctly identified on Chain	•	Yes 🗹	No 🗌	Adjusted?	
	t analyses were requested ng times able to be met?	?	Yes ✔ Yes ✔	No 🗌	Checked by:	
	ustomer for authorization.)		Yes 🗹		Checked by.	
Special Handli	ing (if applicable)					
	tified of all discrepancies v	with this order?	Yes	No 🗌	NA 🔽	
		And an			NA 🖭	
Person By Who	Notified:	Date				
Regardi		Via:	eMail F	Phone 🗌 Fax	In Person	
	nstructions:					
16. Additional rer	,				······································	
Auditional fer	narks.					
17. Cooler Inform	mation					

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	1.6	Good	Yes			

Chain-of-Custody Record	Turn-Around Time:	
Client: SMA	□ Standard	
Carlsbad	-	ent
Mailing Address:	ーキキャモっち	4901 Hawkins NE - Albuquerque, NM 87109
	Project #:	10
Phone #:		Analysis Request
email or Fax#:	Project Manager:	±05
QA/QC Package:	S. Hinds	's (802 PCB's PCB's PCB's PCB's PCB's PCB's PCB's
Accreditation:		у) / DК 105 ⁵⁺ 11, 1) 14, 1)
	olers: // TE/	VO tals des des
	Cooler Temp(including CF): \. 6°C	etho M
Time Matrix Samula Nama	Container Preservative HEAL No.	2081 Pe 2081 Pe 208 (M 208 (M 208 (V 208 (V 209 (V 209 (S 209 (V
A II:43 Shill		3 3 3 4 4 4 3 3 1 2 3
11:54	-200- /	
12:00 581-40		Please hold ~
1:41) 585-20	-003	×
V 7:00 6 585-30	400- T	×
	0	
Date: Time: Relinquished by: A Watton	0	Remarks: Maratuan \$ 581-40
Date: Time: Relinquished by:	Received by Via:COUNOC / Date / Time 915	test further
If necessary, samples submitted to Hall Environmental may be subc	contracted to other accredited laboratories. This serves as notice of thi	If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.