Breitburn Operating LP Jalmat 192 Work Plan

Section 11, Township 22S, Range 35E Lea County, New Mexico

September 11, 2019

Prepared for:

Maverick Resources P.O. BOX 678 Andrews, TX 79714

By:

Safety & Environmental Solutions, Inc. 703 East Clinton Street Hobbs, New Mexico 88240 (575) 397-0510

TABLE OF CONTENTS

I.	COMPANY CONTACTS	1
II.	BACKGROUND	1
III.	SURFACE AND GROUND WATER	1
IV.	CHARACTERIZATION	1
V.	WORK PERFORMED	2
VI.	ACTION PLAN	2
VII.	FIGURES & APPENDICES	3
F	igure 1 – Site Map	4
Α	ppendix A – C-141	5
Α	, . ppendix B – Groundwater	6
A	ppendix C – Analytical Results	7

I. Company Contacts

Representative	Company	Telephone	E-mail
Thomas Haigood	Maverick Resources	(432) 523-1807	Thomas.haigood@mavresources.com
Bob Allen	SESI	(575) 397-0510	ballen@sesi-nm.com

II. Background

Safety and Environmental Solutions, Inc., hereinafter referred to as (SESI) was engaged by Maverick Resources to assess a spill on Jalmat Field Yates Sand Unit #192, concernin a 70 bbls spill of produced water. The spill area was mapped using a handheld Juno 3B. According to the mapped area the spill impacted approximately 1,232 square yards. This site is situated in Section 11, Township 22S, and Range 35E.

According to the C-141: A 2" casing riser at the wellhead developed a hole due to oberpressure in the tubing, causing fluid to escape. Most of the impact was contained on the pad area, while impacting approximately 352 sq. yards of pasture area.

III. Surface and Ground Water

There is no record of groundwater in the immediate vicinity of the site location. Further research of the New Mexico Office of the State Engineer records indicates the average depth to groundwater for the area to be 185' bgs., as documented for the depth to water in Section 14.

IV. Characterization

The target cleanup levels are determined using the NMAC 19.15.29 revisions dated July 24, 2018. The soil screening criteria presented below, and the applicable Recommended Remediation Action Levels (RRAL) for depths to groundwater >300' are 10 parts per million (ppm) Benzene, 50 ppm combined Benzene, Toluene, Ethyl Benzene, and Total Xylenes (BTEX), and 2,500 ppm Total Petroleum Hydrocarbons (TPH). Characterization of vertical extent of chloride concentration to a levels of 20,000 Mg/kg, furthermore 600 mg/kg (PPM) is also required for pasture impact.

Minimum depth below any point			
within the horizontal boundary of the release to ground water less than 10,000 mg/l	Constituent	Method*	Limit**
TDS			
<50 feet	Chloride***	EPA 300.0 or SM4500 Cl B	600 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	100 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
51 feet-100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	10.000 ma/ka
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	2,500 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg
	Benzene	EPA SW-846 Method 8021B or 8260B	10 mg/kg
>100 feet	Chloride***	EPA 300.0 or SM4500 Cl B	20,000 mg/kg
	TPH (GRO+DRO+MRO)	EPA SW-846 Method 8015B	2,500 mg/kg
	BTEX	EPA SW-846 Method 8021B or 8260B	50 mg/kg

V. Work Performed

On Auagust 27, 2019 SESI personnel, together with personnel and equipment from Custom Welding of Hobbs, NM were on site to advance soil testing trenches. Six test trenches locations were designated and flagged in order to delieate the spill area vertically, and horizontally. Soil samples were grabbed at surface and one foot incremnets and field tested for Total Petorleum Hydrocarbons and Chlorides. All soil samples were properly packaged, preserved and transported to Hall Environmental Analysis Laboratory of Albuquerque, NM via chain of custody, and analyzed for TPH(total petroleum hydrocarbons)(Method 8015M), BTEX, and Chlorides (Method SM4500CI-B). The lab results are recapped in the following table:

	Breitburn Operating LP Jalmat #192											
Soil Sample Results: Cardinal Laboratories 9-06-2018												
SAMPLE ID	Benzene	Toluene	Ethyl-	Total	Total	Chlorides	TPH	TPH	EXT			
			benzene	Xylenes	BTEX		GRO	DRO	DRO			
TT-1 @ 1ft	ND	ND	ND	ND	ND	3500	ND	ND	ND			
TT-1 @ 2ft	ND	ND	ND	ND	ND	2000	ND	ND	ND			
TT-1 @ 3ft	ND	ND	ND	ND	ND	250	ND	ND	ND			
TT-2 @ Surface	ND	ND	ND	ND	ND	30000	ND	12	57			
TT-2 @ 1ft	ND	ND	ND	ND	ND	4700	ND	ND	ND			
TT-2 @ 2ft	ND	ND	ND	ND	ND	970	ND	ND	ND			
TT-2 @ 3ft	ND	ND	ND	ND	ND	250	ND	ND	ND			
TT-3 @ Surface	ND	ND	ND	ND	ND	16000	ND	ND	ND			
TT-3 @ 1ft	ND	ND	ND	ND	ND	5800	ND	ND	ND			
TT-3 @ 2ft	ND	ND	ND	ND	ND	1300	ND	ND	ND			
TT-4 @ Surface	ND	ND	ND	ND	ND	12000	ND	500	400			
TT-4 @ 1ft	ND	ND	ND	ND	ND	5500	ND	27	51			
TT-4 @ 2ft	ND	ND	ND	ND	ND	1400	ND	ND	ND			
TT-5 @ Surface	ND	ND	ND	ND	ND	46000	ND	1300	1900			
TT-5 @ 1ft	ND	ND	ND	ND	ND	3200	ND	14	ND			
TT-5 @ 2ft	ND	ND	ND	ND	ND	1300	ND	ND	ND			
TT-6 @ Surface	ND	ND	ND	ND	ND	66000	ND	790	1400			
TT-6 @ 1ft	ND	ND	ND	ND	ND	7600	ND	250	690			
TT-6 @ 2ft	ND	ND	ND	ND	ND	1500	ND	ND	ND			

VI. Action Plan

The results of the samples listed above indicate no BTEX present in any of the samples. SESI proposes to excavated the pad area, whereby the Recommende Remeidation Levels are < 20,000 ppm for the Chloride Constituency, and < 2,500 ppm for Total Petroleum Hydrocarbons. The pasture are is to be remediated to the extint that Chloride levels are below 600 ppm, or background, and TPH concentrations of less than 100 mg/kg.

The horizontal extent of contamination will be determined by side wall samples to be taken at the time of excavation. Vertical remediation will be documented with bottom soil grab sample laboratory confirmation of RL's. The excavated area in the pasture will be backfilled with uncontaminated soil, and reseeded. All contaminated soil will be transported to an NMOCD approved facility, and documented via disposal manifests. The pad area will be backfilled with like material and returned to grade. Upon completion of all approved remediation activity; all necessary closure documentation will be submitted to the appropriate regulatory agencies, and parties of concern.

VII. Figures & Appendices

Figure 1 - Site Map Appendix A – C-141 Appendix B – Groundwater Appendix C – Analytical Results Appendix D – Photo Documentation

Figure 1 Site Map

Legend

- Initial Sample Points
- × Oil or Gas Well
- TT=Test Trench
- 🕹 Spill Area

Appendix A C-141 Appendix B Groundwater

Wat	er	Col	ur	n	n/		/er	age	Dep	th to V	Vater	•
(R=POD replaced, O=orpha C=the fil closed)	has been ned, e is	ı (qu (qu	arters	are are	1=NV smalle	V 2=N est to l	E 3=SW argest)	4=SE) (NAD8	3 UTM in mete	ers)	(In feet)	
	POD			_								
Code	Sub- basin	County	Q Q 64 16	Q 4	Sec	Tws	Rno	x	v	Denth Well Der	W hthWater Col	ate lum
cout	CP	LE	4	4	06	22S	35E	650422	3587591*	62		. un
	СР	LE	2	1	34	22S	35E	654553	3580819*	98		
	СР	LE	2	2	20	22S	35E	652089	3584000* 🦲	96		
	СР	LE	2	2	14	22S	35E	656891	3585687* 🧧	215	185	
									Average Depth	to Water:	185 feet	t
									Minin	num Depth:	185 feet	t
									Maxim	um Depth:	185 feet	t
D	250											
	Wat (R=POD replaced, O=orpha: C=the fil closed) Code	(R=POD has beer replaced, O=orphaned, C=the file is closed) POD Sub- Code basin CP CP CP CP	New M Water Col (R=POD has been replaced, O=orphaned, C=the file is (qu closed) (qu POD Sub- Code basin County CP LE CP LE CP LE CP LE	New Mexit Water Colum (R=POD has been replaced, O=orphaned, C=the file is (quarters - closed) (quarters - (quarters	New Mexico Water Colum (R=POD has been replaced, O=orphaned, C=the file is (quarters are closed) (quarters are (quarters are (quarters are (quarters are (quarters are (quarters are CP LE 4 4 CP LE 2 1 CP LE 2 2 CP LE 2 2	New Mexico C Water Column/ (R=POD has been replaced, O=orphaned, C=the file is closed) (quarters are I=NV (quarters are smaller smal	New Mexico Offi Water Column/A (R=POD has been replaced, O=orphaned, C=the file is closed) (quarters are smallest to I POD Sub- Q Q Q Q Q Vector Code basin County 64 16 4 See Tws CP LE 4 4 06 22S CP LE 2 1 34 22S CP LE 2 2 10 22S CP LE 2 2 14 22S CP LE 2 2 14 22S	New Mexico Office of Water Column/Aver (R=POD has been replaced, O=orphaned, C=the file is (quarters are smallest to largest) POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng CP LE 4 4 06 228 35E CP LE 4 4 06 228 35E CP LE 2 1 34 228 35E CP LE 2 2 1 34 228 35E CP LE 2 1 4 228 35E	New Mexico Office of the Water Column/Average (R=POD has been replaced, O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (NAD8 POD Sub- Q Q Q Colspan="2">X Code basin County 64 16 4 Sec Tws Rng X CP LE 4 4 06 228 35E 650422 CP LE 2 1 34 228 35E 654553 CP LE 2 2 20 228 35E 652089 CP LE 2 2 14 228 35E 656891	New Mexico Office of the State E Water Column/Average Dep (R=POD has been replaced, O=orphaned, (quarters are 1=NW 2=NE 3=SW 4=SE) (NAD83 UTM in meta POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng X Y CP LE 4 4 06 22S 35E 650422 3587591* CP LE 2 1 34 22S 35E 650422 3587591* CP LE 2 2 2 1 34 22S 35E 650493 3580819* CP LE 2 2 2 14 22S 35E 656891 3585687* CP LE 2 2 1 4 22S 35E 656891 3585687* Average Depth Minin Maxim	New Mexico Office of the State Engineer Water Column/Average Depth to V (R=POD has been replaced, O=orphaned, C=the file is (quarters are 1=NW 2=NE 3=SW 4=SE) closed) (quarters are smallest to largest) (NAD83 UTM in meters) POD Sub- Q Q Q Code basin County 64 16 4 Sec Tws Rng X Y DepthWellDep CP LE 4 4 06 22S 35E 650422 3587591* 6 CP LE 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 1 34 22S 35E 650422 3587591* 6 CP LE 2 2 1 34 22S 35E 65089 3584000* 96 CP LE 2 2 2 14 22S 35E 656891 3585687* 215 Average Depth to Water: Maximum Depth:	New Mexico Office of the State Engineer Water Column/Average Depth to Water (R=POD has been replaced, O-orphaned, C=the file is (quarters are smallest to largest) (NAD83 UTM in meters) (In feet) POD Sub- Q Q Q W Odd basin County 64 16 4 Sec Tws Rng X Y DepthWellDepthWater Col Code Depth (CP LE 4 4 0 06 228 35E 650422 3587591*) 62 CP LE 2 1 34 228 35E 650422 3587591* 62 CP LE 2 1 34 228 35E 650422 3587591* G CP LE 2 1 34 228 35E 65089 3584000* 98 CP LE 2 2 2 14 228 35E 656891 3585687* 215 185 Average Depth to Water: 185 feet Maximum Depth: 185 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/11/19 2:13 PM

WATER COLUMN/ AVERAGE DEPTH TO WATER Appendix C Analytical Results

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 06, 2019

Bob Allen Safety & Environmental Solutions PO Box 1613 Hobbs, NM 88241 TEL: (575) 397-0510 FAX (575) 393-4388

RE: Maverick Jalmat 192

OrderNo.: 1908G52

Dear Bob Allen:

Hall Environmental Analysis Laboratory received 19 sample(s) on 8/28/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Date Reported: 9/6/2019
Client Sample ID: TT-1 1ft.

Project: Maveric	k Jalmat 192	Collection Date: 8/27/2019 8:30:00 AM							
Lab ID: 1908G5	2-001	Matrix: SOIL	Received Date: 8/28/2019 8:45:00 AM						
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 30	0.0: ANIONS					Analyst	CAS		
Chloride		3500	150	mg/Kg	50	9/5/2019 2:52:26 AM	47249		
EPA METHOD 80 ⁴	E ORGANICS				Analyst	: JME			
Diesel Range Orga	inics (DRO)	ND	9.2	mg/Kg	1	8/30/2019 9:43:00 PM	47154		
Motor Oil Range O	rganics (MRO)	ND	46	mg/Kg	1	8/30/2019 9:43:00 PM	47154		
Surr: DNOP		94.0	70-130	%Rec	1	8/30/2019 9:43:00 PM	47154		
EPA METHOD 80 ⁴	15D: GASOLINE RAN	GE				Analyst	: NSB		
Gasoline Range O	rganics (GRO)	ND	4.9	mg/Kg	1	8/29/2019 7:01:25 PM	47144		
Surr: BFB		98.0	77.4-118	%Rec	1	8/29/2019 7:01:25 PM	47144		
EPA METHOD 802	21B: VOLATILES					Analyst	: NSB		
Benzene		ND	0.025	mg/Kg	1	8/29/2019 7:01:25 PM	47144		
Toluene		ND	0.049	mg/Kg	1	8/29/2019 7:01:25 PM	47144		
Ethylbenzene		ND	0.049	mg/Kg	1	8/29/2019 7:01:25 PM	47144		
Xylenes, Total		ND	0.098	mg/Kg	1	8/29/2019 7:01:25 PM	47144		
Surr: 4-Bromoflu	orobenzene	99.7	80-120	%Rec	1	8/29/2019 7:01:25 PM	47144		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 26

Date Reported: 9/6/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Maverick Jalmat 192

Project:

Client Sample ID: TT-1 2ft. Collection Date: 8/27/2019 8:45:00 AM Received Date: 8/28/2019 8:45:00 AM

Lab ID:	1908G52-002	Matrix: SOIL		Received Date	e: 8/2	28/2019 8:45:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst:	CAS
Chloride		2000	60	mg/Kg	20	9/5/2019 3:29:28 AM	47249
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst:	JME
Diesel Ra	ange Organics (DRO)	ND	9.7	mg/Kg	1	8/30/2019 10:56:33 PM	47154
Motor Oil	Range Organics (MRO)	ND	48	mg/Kg	1	8/30/2019 10:56:33 PM	47154
Surr: [DNOP	84.9	70-130	%Rec	1	8/30/2019 10:56:33 PM	47154
EPA MET	HOD 8015D: GASOLINE RANG	E				Analyst	: NSB
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	8/29/2019 8:11:41 PM	47144
Surr: E	3FB	90.2	77.4-118	%Rec	1	8/29/2019 8:11:41 PM	47144
EPA MET	HOD 8021B: VOLATILES					Analyst:	: NSB
Benzene		ND	0.024	mg/Kg	1	8/29/2019 8:11:41 PM	47144
Toluene		ND	0.049	mg/Kg	1	8/29/2019 8:11:41 PM	47144
Ethylben	zene	ND	0.049	mg/Kg	1	8/29/2019 8:11:41 PM	47144
Xylenes,	Total	ND	0.098	mg/Kg	1	8/29/2019 8:11:41 PM	47144
Surr: 4	-Bromofluorobenzene	91.0	80-120	%Rec	1	8/29/2019 8:11:41 PM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 2 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Project: Maverick Jalmat 192

Date Reported: 9/6/2019
Client Sample ID: TT-1 3ft.

Collection Date: 8/27/2019 9:00:00 AM

Lab ID:	1908G52-003	Matrix: SOIL		Received Dat	e: 8/2	28/2019 8:45:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst	CAS
Chloride		250	60	mg/Kg	20	9/5/2019 3:41:48 AM	47249
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME
Diesel R	ange Organics (DRO)	ND	9.3	mg/Kg	1	8/30/2019 11:21:08 PM	47154
Motor Oi	I Range Organics (MRO)	ND	47	mg/Kg	1	8/30/2019 11:21:08 PM	47154
Surr: [DNOP	86.7	70-130	%Rec	1	8/30/2019 11:21:08 PM	47154
EPA MET	HOD 8015D: GASOLINE RANGI	E				Analyst	NSB
Gasoline	Range Organics (GRO)	ND	4.8	mg/Kg	1	8/29/2019 8:35:05 PM	47144
Surr: E	3FB	94.5	77.4-118	%Rec	1	8/29/2019 8:35:05 PM	47144
EPA MET	HOD 8021B: VOLATILES					Analyst	: NSB
Benzene		ND	0.024	mg/Kg	1	8/29/2019 8:35:05 PM	47144
Toluene		ND	0.048	mg/Kg	1	8/29/2019 8:35:05 PM	47144
Ethylben	zene	ND	0.048	mg/Kg	1	8/29/2019 8:35:05 PM	47144
Xylenes,	Total	ND	0.097	mg/Kg	1	8/29/2019 8:35:05 PM	47144
Surr: 4	4-Bromofluorobenzene	95.1	80-120	%Rec	1	8/29/2019 8:35:05 PM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Maverick Jalmat 192

Project:

Date Reported: 9/6/2019 Client Sample ID: TT-2 Surface Collection Date: 8/27/2019 9:15:00 AM

Lab ID:	1908G52-004	Matrix: SOIL		Received Date	e: 8/2	8/2019 8:45:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst	CAS
Chloride		30000	1500	mg/Kg	500	9/5/2019 1:40:16 PM	47249
EPA MET	HOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst	BRM
Diesel Ra	ange Organics (DRO)	12	9.9	mg/Kg	1	8/30/2019 1:46:09 PM	47154
Motor Oi	I Range Organics (MRO)	57	49	mg/Kg	1	8/30/2019 1:46:09 PM	47154
Surr: D	DNOP	98.3	70-130	%Rec	1	8/30/2019 1:46:09 PM	47154
EPA MET	HOD 8015D: GASOLINE RAI	NGE				Analyst	NSB
Gasoline	Range Organics (GRO)	ND	5.0	mg/Kg	1	8/29/2019 8:58:34 PM	47144
Surr: E	BFB	89.0	77.4-118	%Rec	1	8/29/2019 8:58:34 PM	47144
EPA MET	HOD 8021B: VOLATILES					Analyst	NSB
Benzene		ND	0.025	mg/Kg	1	8/29/2019 8:58:34 PM	47144
Toluene		ND	0.050	mg/Kg	1	8/29/2019 8:58:34 PM	47144
Ethylben	zene	ND	0.050	mg/Kg	1	8/29/2019 8:58:34 PM	47144
Xylenes,	Total	ND	0.10	mg/Kg	1	8/29/2019 8:58:34 PM	47144
Surr: 4	1-Bromofluorobenzene	90.2	80-120	%Rec	1	8/29/2019 8:58:34 PM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 4 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Project: Maverick Jalmat 192

Date Reported: 9/6/2019 Client Sample ID: TT-2 1ft. Collection Date: 8/27/2019 9:20:00 AM

Lab ID: 1908G52-005	Matrix: SOIL		Received Date	e: 8/2	28/2019 8:45:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CJS
Chloride	4700	150	mg/Kg	50	9/5/2019 12:59:28 PM	47249
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME
Diesel Range Organics (DRO)	ND	9.9	mg/Kg	1	8/30/2019 11:45:34 PM	47154
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/30/2019 11:45:34 PM	47154
Surr: DNOP	91.7	70-130	%Rec	1	8/30/2019 11:45:34 PM	47154
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/29/2019 9:21:57 PM	47144
Surr: BFB	98.9	77.4-118	%Rec	1	8/29/2019 9:21:57 PM	47144
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.025	mg/Kg	1	8/29/2019 9:21:57 PM	47144
Toluene	ND	0.050	mg/Kg	1	8/29/2019 9:21:57 PM	47144
Ethylbenzene	ND	0.050	mg/Kg	1	8/29/2019 9:21:57 PM	47144
Xylenes, Total	ND	0.099	mg/Kg	1	8/29/2019 9:21:57 PM	47144
Surr: 4-Bromofluorobenzene	100	80-120	%Rec	1	8/29/2019 9:21:57 PM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 5 of 26

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Maverick Jalmat 192

Project:

Date Reported: 9/6/2019 Client Sample ID: TT-2 2ft. Collection Date: 8/27/2019 9:35:00 AM Received Date: 8/28/2019 8:45:00 AM

Lab ID:	1908G52-006	Matrix: SOIL		Received Date	e: 8/2	28/2019 8:45:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst	CAS
Chloride		970	60	mg/Kg	20	9/5/2019 4:43:30 AM	47249
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	: JME
Diesel Ra	ange Organics (DRO)	ND	9.8	mg/Kg	1	8/31/2019 12:10:01 AM	47154
Motor Oil	Range Organics (MRO)	ND	49	mg/Kg	1	8/31/2019 12:10:01 AM	47154
Surr: D	NOP	86.6	70-130	%Rec	1	8/31/2019 12:10:01 AM	47154
EPA MET	HOD 8015D: GASOLINE RANG	E				Analyst	: NSB
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	8/29/2019 9:45:22 PM	47144
Surr: E	BFB	90.4	77.4-118	%Rec	1	8/29/2019 9:45:22 PM	47144
EPA MET	HOD 8021B: VOLATILES					Analyst	: NSB
Benzene		ND	0.025	mg/Kg	1	8/29/2019 9:45:22 PM	47144
Toluene		ND	0.049	mg/Kg	1	8/29/2019 9:45:22 PM	47144
Ethylben	zene	ND	0.049	mg/Kg	1	8/29/2019 9:45:22 PM	47144
Xylenes,	Total	ND	0.098	mg/Kg	1	8/29/2019 9:45:22 PM	47144
Surr: 4	-Bromofluorobenzene	92.0	80-120	%Rec	1	8/29/2019 9:45:22 PM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 6 of 26

S % Recovery outside of range due to dilution or matrix

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Maverick Jalmat 192

Project:

Date Reported: 9/6/2019 Client Sample ID: TT-2 3ft. Collection Date: 8/27/2019 9:45:00 AM Received Date: 8/28/2019 8:45:00 AM

Lab ID:	1908G52-007	Matrix: SOIL		Received Date	e: 8/2	28/2019 8:45:00 AM	
Analyses		Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA MET	HOD 300.0: ANIONS					Analyst	CAS
Chloride		250	60	mg/Kg	20	9/5/2019 4:55:50 AM	47249
EPA MET	HOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME
Diesel Ra	ange Organics (DRO)	ND	9.5	mg/Kg	1	8/31/2019 12:34:31 AM	47154
Motor Oil	Range Organics (MRO)	ND	47	mg/Kg	1	8/31/2019 12:34:31 AM	47154
Surr: D	NOP	87.6	70-130	%Rec	1	8/31/2019 12:34:31 AM	47154
EPA MET	HOD 8015D: GASOLINE RANGE	E				Analyst	NSB
Gasoline	Range Organics (GRO)	ND	4.9	mg/Kg	1	8/29/2019 10:56:03 PM	47144
Surr: E	BFB	94.5	77.4-118	%Rec	1	8/29/2019 10:56:03 PM	47144
EPA MET	HOD 8021B: VOLATILES					Analyst	NSB
Benzene		ND	0.025	mg/Kg	1	8/29/2019 10:56:03 PM	47144
Toluene		ND	0.049	mg/Kg	1	8/29/2019 10:56:03 PM	47144
Ethylben	zene	ND	0.049	mg/Kg	1	8/29/2019 10:56:03 PM	47144
Xylenes,	Total	ND	0.098	mg/Kg	1	8/29/2019 10:56:03 PM	47144
Surr: 4	-Bromofluorobenzene	94.7	80-120	%Rec	1	8/29/2019 10:56:03 PM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 7 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Maverick Jalmat 192

Project:

Date Reported: 9/6/2019 Client Sample ID: TT-3 Surface Collection Date: 8/27/2019 9:50:00 AM Pageived Date: 8/28/2010 8:45:00 AM

Lab ID:	1908G52-008	2-008 Matrix: SOIL			Received Date: 8/28/2019 8:45:00 AM					
Analyses		Result	RL	Qual Uni	its DI	7 Date Analyzed	Batch			
EPA MET	HOD 300.0: ANIONS					Analyst	CAS			
Chloride		16000	1500	mg	′Kg 50	00 9/5/2019 1:52:41 PM	47249			
EPA MET	HOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	: JME			
Diesel Ra	ange Organics (DRO)	ND	9.9	mg	′Kg 1	8/31/2019 12:58:59 AM	47154			
Motor Oil Range Organics (MRO)		ND	50	mg	′Kg 1	8/31/2019 12:58:59 AM	47154			
Surr: E	NOP	90.2	70-130	%R	ec 1	8/31/2019 12:58:59 AM	47154			
EPA MET	HOD 8015D: GASOLINE RANG	ЭЕ				Analyst	: NSB			
Gasoline	Range Organics (GRO)	ND	4.8	mg	′Kg 1	8/29/2019 11:19:50 PM	47144			
Surr: E	3FB	90.9	77.4-118	%R	ec 1	8/29/2019 11:19:50 PM	47144			
EPA MET	HOD 8021B: VOLATILES					Analyst	: NSB			
Benzene		ND	0.024	mg	′Kg 1	8/29/2019 11:19:50 PM	47144			
Toluene		ND	0.048	mg	′Kg 1	8/29/2019 11:19:50 PM	47144			
Ethylben	zene	ND	0.048	mg	′Kg 1	8/29/2019 11:19:50 PM	47144			
Xylenes,	Total	ND	0.097	mg	′Kg 1	8/29/2019 11:19:50 PM	47144			
Surr: 4	-Bromofluorobenzene	92.4	80-120	%R	ec 1	8/29/2019 11:19:50 PM	47144			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 8 of 26

S % Recovery outside of range due to dilution or matrix

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908G52** Date Reported: **9/6/2019**

CLIENT: Safety & Environmental Solutions			Cl	Client Sample ID: TT-3 1ft.						
Project:	Maverick Jalmat 192		Collection Date: 8/27/2019 9:55:00 AM							
Lab ID:	1908G52-009	Matrix: SOIL		Received Date: 8/28/2019 8:45:00 AM						
Analyses		Result	Result RL Qual Units D		DF	DF Date Analyzed				
EPA MET	THOD 300.0: ANIONS					Analyst	CAS			
Chloride		5800	300	mg/Kg	100	9/5/2019 1:15:28 PM	47249			
EPA MET	THOD 8015M/D: DIESEL RAI	NGE ORGANICS				Analyst	JME			
Diesel R	ange Organics (DRO)	ND	10	mg/Kg	1	8/31/2019 1:23:28 AM	47154			
Motor Oi	il Range Organics (MRO)	ND	50	mg/Kg	1	8/31/2019 1:23:28 AM	47154			
Surr: I	DNOP	94.0	70-130	%Rec	1	8/31/2019 1:23:28 AM	47154			
EPA MET	THOD 8015D: GASOLINE RA	NGE				Analyst	NSB			
Gasoline	e Range Organics (GRO)	ND	4.8	mg/Kg	1	8/29/2019 11:43:32 PM	47144			
Surr: I	BFB	92.6	77.4-118	%Rec	1	8/29/2019 11:43:32 PM	47144			
EPA MET	THOD 8021B: VOLATILES					Analyst	NSB			
Benzene	9	ND	0.024	mg/Kg	1	8/29/2019 11:43:32 PM	47144			
Toluene		ND	0.048	mg/Kg	1	8/29/2019 11:43:32 PM	47144			
Ethylben	izene	ND	0.048	mg/Kg	1	8/29/2019 11:43:32 PM	47144			
Xylenes,	Total	ND	0.096	mg/Kg	1	8/29/2019 11:43:32 PM	47144			
Surr: 4	4-Bromofluorobenzene	94.1	80-120	%Rec	1	8/29/2019 11:43:32 PM	47144			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 9 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Project: Maverick Jalmat 192

Date Reported: 9/6/2019 Client Sample ID: TT-3 2ft. Collection Date: 8/27/2019 10:05:00 AM

Lab ID: 1908G52-010	Matrix: SOIL		Received Dat	e: 8/2	28/2019 8:45:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	1300	60	mg/Kg	20	9/5/2019 5:32:52 AM	47249
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME
Diesel Range Organics (DRO)	ND	9.7	mg/Kg	1	8/31/2019 1:47:53 AM	47154
Motor Oil Range Organics (MRO)	ND	49	mg/Kg	1	8/31/2019 1:47:53 AM	47154
Surr: DNOP	91.4	70-130	%Rec	1	8/31/2019 1:47:53 AM	47154
EPA METHOD 8015D: GASOLINE RANGE	1				Analyst	NSB
Gasoline Range Organics (GRO)	ND	5.0	mg/Kg	1	8/30/2019 12:07:11 AM	47144
Surr: BFB	93.6	77.4-118	%Rec	1	8/30/2019 12:07:11 AM	47144
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.025	mg/Kg	1	8/30/2019 12:07:11 AM	47144
Toluene	ND	0.050	mg/Kg	1	8/30/2019 12:07:11 AM	47144
Ethylbenzene	ND	0.050	mg/Kg	1	8/30/2019 12:07:11 AM	47144
Xylenes, Total	ND	0.099	mg/Kg	1	8/30/2019 12:07:11 AM	47144
Surr: 4-Bromofluorobenzene	94.6	80-120	%Rec	1	8/30/2019 12:07:11 AM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 10 of 26

Date Reported: 9/6/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: TT-4 Surface Collection Date: 8/27/2019 10:15:00 AM **Project:** Maverick Jalmat 192 Lab ID: 1908G52-011 Matrix: SOIL Received Date: 8/28/2019 8:45:00 AM Result **RL Oual** Units **DF** Date Analyzed Batch Analyses Analyst: CAS **EPA METHOD 300.0: ANIONS** 200 9/5/2019 2:17:29 PM Chloride 12000 600 mg/Kg 47249 **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM **Diesel Range Organics (DRO)** 500 9.8 mg/Kg 1 8/30/2019 2:27:47 PM 47154 Motor Oil Range Organics (MRO) 400 8/30/2019 2:27:47 PM 47154 49 mg/Kg 1 Surr: DNOP %Rec 8/30/2019 2:27:47 PM 47154 114 70-130 1 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB ND 8/30/2019 12:30:46 AM 47144 Gasoline Range Organics (GRO) 4.7 mg/Kg 1 Surr: BFB 97.6 77.4-118 %Rec 8/30/2019 12:30:46 AM 47144 1 **EPA METHOD 8021B: VOLATILES** Analyst: NSB ND Benzene 0.024 8/30/2019 12:30:46 AM 47144 mg/Kg 1 Toluene ND 0.047 mg/Kg 1 8/30/2019 12:30:46 AM 47144 Ethylbenzene ND 0.047 mg/Kg 1 8/30/2019 12:30:46 AM 47144 Xylenes, Total ND 0.095 mg/Kg 8/30/2019 12:30:46 AM 47144 1 Surr: 4-Bromofluorobenzene 8/30/2019 12:30:46 AM 47144 98.3 80-120 %Rec 1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL
 - Reporting Limit

Page 11 of 26

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1908G52 Date Reported: 9/6/2019

CLIENT: Safety & Environmental Solutions			Client Sample ID: TT-4 1ft.							
Project: Maverick Jalmat 192		(Collection Dat	e: 8/2	7/2019 10:35:00 AM					
Lab ID: 1908G52-012	Matrix: SOIL	Received Date: 8/28/2019 8:45:00 AM								
Analyses	Result	RL	RL Qual Units DF Dat		Date Analyzed	Batch				
EPA METHOD 300.0: ANIONS					Analyst:	CAS				
Chloride	5500	300	mg/Kg	100) 9/5/2019 1:27:52 PM	47249				
EPA METHOD 8015M/D: DIESEL RAN	GE ORGANICS				Analyst:	BRM				
Diesel Range Organics (DRO)	27	9.8	mg/Kg	1	8/30/2019 2:03:17 PM	47154				
Motor Oil Range Organics (MRO)	51	49	mg/Kg	1	8/30/2019 2:03:17 PM	47154				
Surr: DNOP	113	70-130	%Rec	1	8/30/2019 2:03:17 PM	47154				
EPA METHOD 8015D: GASOLINE RAI	NGE				Analyst:	NSB				
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/30/2019 12:54:24 AM	47144				
Surr: BFB	91.9	77.4-118	%Rec	1	8/30/2019 12:54:24 AM	47144				
EPA METHOD 8021B: VOLATILES					Analyst:	NSB				
Benzene	ND	0.024	mg/Kg	1	8/30/2019 12:54:24 AM	47144				
Toluene	ND	0.048	mg/Kg	1	8/30/2019 12:54:24 AM	47144				
Ethylbenzene	ND	0.048	mg/Kg	1	8/30/2019 12:54:24 AM	47144				
Xylenes, Total	ND	0.097	mg/Kg	1	8/30/2019 12:54:24 AM	47144				
Surr: 4-Bromofluorobenzene	91.7	80-120	%Rec	1	8/30/2019 12:54:24 AM	47144				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 12 of 26

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908G52** Date Reported: **9/6/2019**

CLIENT: Safety & Environmental Soluti	ons	Cl	ient Sample II	D: TT	Γ-4 2ft.	
Project: Maverick Jalmat 192		(Collection Dat	e: 8/2	27/2019 10:45:00 AM	
Lab ID: 1908G52-013	Matrix: SOIL		Received Dat	e: 8/2	28/2019 8:45:00 AM	
Analyses	Result	ult RL Qual Units D		DF	DF Date Analyzed	
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	1400	60	mg/Kg	20	9/5/2019 6:09:54 AM	47249
EPA METHOD 8015M/D: DIESEL RANG	E ORGANICS				Analyst	JME
Diesel Range Organics (DRO)	ND	10	mg/Kg	1	8/31/2019 2:12:18 AM	47154
Motor Oil Range Organics (MRO)	ND	50	mg/Kg	1	8/31/2019 2:12:18 AM	47154
Surr: DNOP	99.2	70-130	%Rec	1	8/31/2019 2:12:18 AM	47154
EPA METHOD 8015D: GASOLINE RANG	GE				Analyst	NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/30/2019 1:18:03 AM	47144
Surr: BFB	91.3	77.4-118	%Rec	1	8/30/2019 1:18:03 AM	47144
EPA METHOD 8021B: VOLATILES					Analyst	NSB
Benzene	ND	0.024	mg/Kg	1	8/30/2019 1:18:03 AM	47144
Toluene	ND	0.048	mg/Kg	1	8/30/2019 1:18:03 AM	47144
Ethylbenzene	ND	0.048	mg/Kg	1	8/30/2019 1:18:03 AM	47144
Xylenes, Total	ND	0.096	mg/Kg	1	8/30/2019 1:18:03 AM	47144
Surr: 4-Bromofluorobenzene	91.5	80-120	%Rec	1	8/30/2019 1:18:03 AM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 26

Date Reported: 9/6/2019

8/30/2019 1:41:46 AM

47144

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: TT-5 Surface Collection Date: 8/27/2019 10:55:00 AM **Project:** Maverick Jalmat 192 Lab ID: 1908G52-014 Matrix: SOIL Received Date: 8/28/2019 8:45:00 AM Result **RL Oual** Units **DF** Date Analyzed Batch Analyses Analyst: CAS **EPA METHOD 300.0: ANIONS** Chloride 46000 1500 mg/Kg 500 9/5/2019 2:05:05 PM 47249 **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM **Diesel Range Organics (DRO)** 1300 95 mg/Kg 10 8/30/2019 4:22:46 PM 47154 Motor Oil Range Organics (MRO) 1900 470 8/30/2019 4:22:46 PM 47154 mg/Kg 10 Surr: DNOP 70-130 %Rec 8/30/2019 4:22:46 PM 47154 0 S 10 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB ND 8/30/2019 1:41:46 AM Gasoline Range Organics (GRO) 4.9 47144 mg/Kg 1 Surr: BFB 90.8 77.4-118 %Rec 8/30/2019 1:41:46 AM 47144 1 **EPA METHOD 8021B: VOLATILES** Analyst: NSB Benzene ND 0.024 8/30/2019 1:41:46 AM 47144 mg/Kg 1 Toluene ND 0.049 mg/Kg 1 8/30/2019 1:41:46 AM 47144 Ethylbenzene ND 0.049 mg/Kg 1 8/30/2019 1:41:46 AM 47144 Xylenes, Total ND 0.098 mg/Kg 8/30/2019 1:41:46 AM 47144 1

91.4

80-120

%Rec

1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

*

- Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

Surr: 4-Bromofluorobenzene

% Recovery outside of range due to dilution or matrix S

- в Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Page 14 of 26

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions

Project: Maverick Jalmat 192

Date Reported: 9/6/2019 Client Sample ID: TT-5 1ft. Collection Date: 8/27/2019 11:10:00 AM

Lab ID: 1908G52-015	Matrix: SOIL		Received Dat	e: 8/2	28/2019 8:45:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 300.0: ANIONS					Analyst	CAS
Chloride	3200	150	mg/Kg	50	9/5/2019 1:03:03 PM	47249
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS				Analyst	: JME
Diesel Range Organics (DRO)	14	9.1	mg/Kg	1	8/30/2019 10:40:39 AM	47154
Motor Oil Range Organics (MRO)	ND	46	mg/Kg	1	8/30/2019 10:40:39 AM	47154
Surr: DNOP	108	70-130	%Rec	1	8/30/2019 10:40:39 AM	47154
EPA METHOD 8015D: GASOLINE RANGE					Analyst	: NSB
Gasoline Range Organics (GRO)	ND	4.8	mg/Kg	1	8/30/2019 2:05:21 AM	47144
Surr: BFB	103	77.4-118	%Rec	1	8/30/2019 2:05:21 AM	47144
EPA METHOD 8021B: VOLATILES					Analyst	: NSB
Benzene	ND	0.024	mg/Kg	1	8/30/2019 2:05:21 AM	47144
Toluene	ND	0.048	mg/Kg	1	8/30/2019 2:05:21 AM	47144
Ethylbenzene	ND	0.048	mg/Kg	1	8/30/2019 2:05:21 AM	47144
Xylenes, Total	ND	0.097	mg/Kg	1	8/30/2019 2:05:21 AM	47144
Surr: 4-Bromofluorobenzene	105	80-120	%Rec	1	8/30/2019 2:05:21 AM	47144

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 15 of 26

Analytical Report

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1908G52

Date Reported: 9/6/2019

CLIENT: Safety & Environmental Solutio	Client Sample ID: TT-5 2ft.							
Project: Maverick Jalmat 192		(Collection Dat	e: 8/2	27/2019 11:25:00 AM			
Lab ID: 1908G52-016	Matrix: SOIL		Received Dat	e: 8/2	28/2019 8:45:00 AM			
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS					Analyst	CAS		
Chloride	1300	59	mg/Kg	20	9/5/2019 1:26:01 AM	47249		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	JME		
Diesel Range Organics (DRO)	ND	9.0	mg/Kg	1	8/31/2019 2:36:45 AM	47154		
Motor Oil Range Organics (MRO)	ND	45	mg/Kg	1	8/31/2019 2:36:45 AM	47154		
Surr: DNOP	98.0	70-130	%Rec	1	8/31/2019 2:36:45 AM	47154		
EPA METHOD 8015D: GASOLINE RANG	E				Analyst	: NSB		
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/30/2019 2:29:06 AM	47144		
Surr: BFB	97.3	77.4-118	%Rec	1	8/30/2019 2:29:06 AM	47144		
EPA METHOD 8021B: VOLATILES					Analyst	: NSB		
Benzene	ND	0.025	mg/Kg	1	8/30/2019 2:29:06 AM	47144		
Toluene	ND	0.049	mg/Kg	1	8/30/2019 2:29:06 AM	47144		
Ethylbenzene	ND	0.049	mg/Kg	1	8/30/2019 2:29:06 AM	47144		
Xylenes, Total	ND	0.099	mg/Kg	1	8/30/2019 2:29:06 AM	47144		
Surr: 4-Bromofluorobenzene	97.8	80-120	%Rec	1	8/30/2019 2:29:06 AM	47144		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 16 of 26

Date Reported: 9/6/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Safety & Environmental Solutions Client Sample ID: TT-6 Surface **Project:** Maverick Jalmat 192 Collection Date: 8/27/2019 11:35:00 AM Lab ID: 1908G52-017 Matrix: SOIL Received Date: 8/28/2019 8:45:00 AM Result **RL Oual** Units **DF** Date Analyzed Batch Analyses **EPA METHOD 300.0: ANIONS** Analyst: CJS Chloride 66000 3000 mg/Kg 1E+ 9/5/2019 12:47:03 PM 47268 **EPA METHOD 8015M/D: DIESEL RANGE ORGANICS** Analyst: BRM **Diesel Range Organics (DRO)** 790 95 mg/Kg 10 8/30/2019 5:07:07 PM 47154 Motor Oil Range Organics (MRO) 1400 480 8/30/2019 5:07:07 PM 47154 mg/Kg 10 Surr: DNOP 70-130 %Rec 8/30/2019 5:07:07 PM 47154 0 S 10 **EPA METHOD 8015D: GASOLINE RANGE** Analyst: NSB 8/30/2019 3:16:47 AM Gasoline Range Organics (GRO) ND 5.0 47144 mg/Kg 1 Surr: BFB 90.3 77.4-118 %Rec 8/30/2019 3:16:47 AM 47144 1 **EPA METHOD 8021B: VOLATILES** Analyst: NSB ND Benzene 0.025 8/30/2019 3:16:47 AM 47144 mg/Kg 1 Toluene ND 0.050 mg/Kg 1 8/30/2019 3:16:47 AM 47144 Ethylbenzene ND 0.050 mg/Kg 1 8/30/2019 3:16:47 AM 47144 Xylenes, Total ND 0.099 mg/Kg 8/30/2019 3:16:47 AM 47144 1 Surr: 4-Bromofluorobenzene 8/30/2019 3:16:47 AM 47144 89.3 80-120 %Rec 1

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of range due to dilution or matrix S

- В Analyte detected in the associated Method Blank
- Е Value above quantitation range
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- - RL Reporting Limit

Page 17 of 26

Hall Environmental Analysis Laboratory, Inc.

Lab Order 1908G52 Date Reported: 9/6/2019

CLIENT: Safety & Environmental Solution	Client Sample ID: TT-6 1ft.								
Project: Maverick Jalmat 192		Collection Date: 8/27/2019 11:50:00 AM							
Lab ID: 1908G52-018	Matrix: SOIL		Recei	ved Dat	e: 8/28	8/2019 8:45:00 AM			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA METHOD 300.0: ANIONS						Analyst	CJS		
Chloride	7600	300		mg/Kg	100	9/5/2019 12:09:49 PM	47268		
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst	BRM		
Diesel Range Organics (DRO)	250	98		mg/Kg	10	9/5/2019 9:36:03 AM	47187		
Motor Oil Range Organics (MRO)	690	490		mg/Kg	10	9/5/2019 9:36:03 AM	47187		
Surr: DNOP	0	70-130	S	%Rec	10	9/5/2019 9:36:03 AM	47187		
EPA METHOD 8015D: GASOLINE RANGE	E					Analyst	NSB		
Gasoline Range Organics (GRO)	ND	4.8		mg/Kg	1	8/30/2019 9:52:01 PM	47173		
Surr: BFB	88.2	77.4-118		%Rec	1	8/30/2019 9:52:01 PM	47173		
EPA METHOD 8021B: VOLATILES						Analyst	NSB		
Benzene	ND	0.024		mg/Kg	1	8/30/2019 9:52:01 PM	47173		
Toluene	ND	0.048		mg/Kg	1	8/30/2019 9:52:01 PM	47173		
Ethylbenzene	ND	0.048		mg/Kg	1	8/30/2019 9:52:01 PM	47173		
Xylenes, Total	ND	0.095		mg/Kg	1	8/30/2019 9:52:01 PM	47173		
Surr: 4-Bromofluorobenzene	90.5	80-120		%Rec	1	8/30/2019 9:52:01 PM	47173		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 26

Hall Environmental Analysis Laboratory, Inc.

Lab Order **1908G52**Date Reported: **9/6/2019**

CLIENT: Safety & Environmental Solution	Client Sample ID: TT-6 2ft.								
Project: Maverick Jalmat 192		Collection Date: 8/27/2019 12:10:00 PM							
Lab ID: 1908G52-019	Matrix: SOIL		Received Dat	e: 8/2	28/2019 8:45:00 AM				
Analyses	Result	RL	RL Qual Units DF Date Analyz		Date Analyzed	ed Batch			
EPA METHOD 300.0: ANIONS					Analyst	CJS			
Chloride	1500	60	mg/Kg	20	9/4/2019 7:22:13 PM	47268			
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS				Analyst	BRM			
Diesel Range Organics (DRO)	ND	9.6	mg/Kg	1	9/3/2019 10:14:30 AM	47187			
Motor Oil Range Organics (MRO)	ND	48	mg/Kg	1	9/3/2019 10:14:30 AM	47187			
Surr: DNOP	105	70-130	%Rec	1	9/3/2019 10:14:30 AM	47187			
EPA METHOD 8015D: GASOLINE RANGE	E				Analyst	NSB			
Gasoline Range Organics (GRO)	ND	4.9	mg/Kg	1	8/30/2019 11:02:53 PM	47173			
Surr: BFB	92.6	77.4-118	%Rec	1	8/30/2019 11:02:53 PM	47173			
EPA METHOD 8021B: VOLATILES					Analyst	NSB			
Benzene	ND	0.024	mg/Kg	1	8/30/2019 11:02:53 PM	47173			
Toluene	ND	0.049	mg/Kg	1	8/30/2019 11:02:53 PM	47173			
Ethylbenzene	ND	0.049	mg/Kg	1	8/30/2019 11:02:53 PM	47173			
Xylenes, Total	ND	0.097	mg/Kg	1	8/30/2019 11:02:53 PM	47173			
Surr: 4-Bromofluorobenzene	93.5	80-120	%Rec	1	8/30/2019 11:02:53 PM	47173			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range

RL Reporting Limit

Page 19 of 26

WO#:	1908G52
	06-Sep-19

Client: Project:	Sat Ma	fety & Environmen werick Jalmat 192	ntal So	olutions								
Sample ID: MB-47268 SampType: mblk			Tes	tCode: EP	A Method	300.0: Anion	s					
Client ID:	PBS	Batch	ID: 47	: 47268 RunNo:			lo: 62664					
Prep Date:	9/4/2019	Analysis Da	ite: 9/	4/2019	S	eqNo: 21	33793	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		ND	1.5									
Sample ID:	LCS-47268	SampTy	pe: Ics	5	Tes	tCode: EP	A Method	300.0: Anion	s			
Client ID:	LCSS	Batch	ID: 47	268	F	unNo: 62	2664					
Prep Date:	9/4/2019	Analysis Da	ite: 9/	4/2019	S	eqNo: 21	33794	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Chloride		15	1.5	15.00	0	101	90	110				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 20 of 26

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1908G52
	06-Sep-19

Client:Safety &Project:Maveric	z Environm k Jalmat 19	ental So 2	olutions								
Sample ID: MB-47154	SampT	ype: ME	BLK	Tes	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PBS	Batch	n ID: 47	154	F	RunNo: 62583						
Prep Date: 8/29/2019	Analysis D	Analysis Date: 8/30/2019			SeqNo: 2	129832	Units: mg/ #	Units: mg/Kg			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	ND	10									
Motor Oil Range Organics (MRO)	ND	50									
Surr: DNOP	9.4		10.00		93.6	70	130				
Sample ID: LCS-47154	SampT	ype: LC	s	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: LCSS	Batch	h ID: 47	154	F	RunNo: 6	2583					
Prep Date: 8/29/2019	Analysis D	Date: 8/	30/2019	S	SeqNo: 2	129834	Units: mg/ #	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	45	10	50.00	0	90.8	63.9	124				
Surr: DNOP	4.5		5.000		89.3	70	130				
Sample ID: 1908G52-001AM	Sample ID: 1908G52-001AMS SampType: MS TestCode: EPA Method 8015M/D: Diesel Range Organics										
Client ID: TT-1 1ft.	Batch	n ID: 47	154	RunNo: 62583							
Prep Date: 8/29/2019	Analysis D	0ate: 8/	30/2019	S	SeqNo: 2	129839	Units: mg/ #	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	41	10	49.95	0	83.0	57	142				
Surr: DNOP	4.2		4.995		84.9	70	130				
Sample ID: 1908G52-001AM	SD SampT	ype: M	SD.	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: TT-1 1ft.	Batch	n ID: 47	154	F	RunNo: 6	2583					
Prep Date: 8/29/2019	Analysis D	Date: 8/	30/2019	S	SeqNo: 2	129841	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	40	9.4	46.95	0	84.2	57	142	4.69	20		
Surr: DNOP	4.2		4.695		88.7	70	130	0	0		
Sample ID: LCS-47187	SampT	ype: LC	S	Tes	tCode: El	PA Method	8015M/D: Di	esel Rang	e Organics		
Client ID: LCSS	Batch	h ID: 47	187	F	RunNo: 6	2625					
Prep Date: 8/30/2019	Analysis D	Date: 9/	3/2019	S	SeqNo: 2	131974	Units: mg/k	٢g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Organics (DRO)	52	10	50.00	0	104	63.9	124				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

WO#:	1908G52
	06-Sep-19

Client:	Safety &	z Environme	ental So	olutions								
Project:	Maveric	k Jalmat 19	2									
Sample ID: ME	B-47187	SampT	ype: MI	BLK	Tes	TestCode: EPA Method 8015M/D: Diesel Range Organics						
Client ID: PE	BS	Batch ID: 47187			R	RunNo: 62625						
Prep Date: 8	8/30/2019	Analysis D	ate: 9/	/3/2019	S	eqNo: 2	131975	Units: mg/K	g			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Diesel Range Orga	anics (DRO)	ND	10									
Motor Oil Range O	organics (MRO)	ND	50									
Surr: DNOP		12		10.00		116	70	130				
Sample ID: LC	CS-47254	SampType: LCS TestCode: EPA Method 8015M/D: Diesel Range Organics										
Client ID: LC	CSS	Batch	n ID: 47	254	R	unNo: 6	2660					
Prep Date: 9	0/4/2019	Analysis D	ate: 9/	5/2019	S	eqNo: 2	133502	Units: %Red	;			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: DNOP		4.3		5.000		86.6	70	130				
Sample ID: ME	B-47254	SampT	ype: MI	BLK	Tes	tCode: El	PA Method	8015M/D: Die	esel Range	e Organics		
Client ID: PE	BS	Batch	n ID: 47	254	R	unNo: 6	2660					
Prep Date: 9	0/4/2019	Analysis D	ate: 9/	5/2019	S	eqNo: 2	133503	Units: %Red	;			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Surr: DNOP		10		10.00		101	70	130				

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 22 of 26

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1908G52
	06-Sep-19

Client: S Project: M	afety & Environme Iaverick Jalmat 19	ental Solut 2	ions							
Sample ID: MB-47144	sampT	ype: MBLK		TestCode: EPA Method 8015D: Gasoline Range						
Client ID: PBS	Batch	n ID: 47144		F	RunNo: 62533					
Prep Date: 8/28/201	9 Analysis D	ate: 8/29/	2019	S	SeqNo: 21	127343	Units: mg/K	g		
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (Surr: BFB	GRO) ND 980	5.0	1000		97.6	77.4	118			
Sample ID: LCS-4714	4 SampT	ype: LCS		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch	n ID: 47144		F	RunNo: 62	2533				
Prep Date: 8/28/201	9 Analysis D	ate: 8/29/	2019	S	SeqNo: 21	127344	Units: mg/K	g		
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 21	5.0	25.00	0	85.0	80	120			
Surr: BFB	1000		1000		103	77.4	118			
Sample ID: MB-47173	s SampT	ype: MBLK		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	9	
Client ID: PBS	Batch	n ID: 47173		F	RunNo: 62	2566				
Prep Date: 8/29/201	9 Analysis D	ate: 8/30/	2019	5	SeqNo: 21	129020	Units: mg/K	g		
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (Surr: BFB	GRO) ND 910	5.0	1000		90.9	77.4	118			
Sample ID: LCS-4717	' 3 SampT	ype: LCS		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	e	
Client ID: LCSS	Batch	n ID: 47173		RunNo: 62566						
Prep Date: 8/29/201	9 Analysis D	ate: 8/30/	2019	S	SeqNo: 21	129021	Units: mg/K	g		
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 21	5.0	25.00	0	86.0	80	120			
Surr: BFB	1000		1000		100	77.4	118			
Sample ID: 1908G52-	018AMS SampT	ype: MS		Tes	tCode: EF	PA Method	8015D: Gaso	line Range	9	
Client ID: TT-6 1ft.	Batch	n ID: 47173		F	RunNo: 62	2566				
Prep Date: 8/29/201	9 Analysis D	ate: 8/30/	2019	S	SeqNo: 21	129029	Units: mg/K	g		
Analyte	Result	PQL SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range Organics (GRO) 23	4.9	24.53	0	93.3	69.1	142			
Surr: BFB	1000		981.4		102	77.4	118			
Sample ID: 1908G52-	018AMSD SampT	ype: MSD		Tes	tCode: EF	PA Method	8015D: Gaso	line Rang	9	
Client ID: TT-6 1ft.	Batch	n ID: 47173		F	RunNo: 62	2566				
Prep Date: 8/29/201	9 Analysis D	ate: 8/30/	2019	S	SeqNo: 21	129030	Units: mg/K	g		
Analyte	Result	PQL_SI	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Client:	Safety & E	Environme	ntal So	olutions							
Project:	Maverick.	Jalmat 192									
Sample ID: 19	Sample ID: 1908G52-018AMSD SampType: MSD TestCode: EPA Method 8015D: Gasoline Range										
Client ID: T	Г-6 1ft.	Batch	ID: 47	173	F	RunNo: 6	2566				
Prep Date: 8	3/29/2019	Analysis Da	ite: 8/	/30/2019	S	SeqNo: 2	129030	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Gasoline Range C	Organics (GRO)	24	4.9	24.65	0	98.0	69.1	142	5.34	20	
Surr: BFB		1100		986.2		109	77.4	118	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 26

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1908G52

06-Sep-19

Client:	Safety &	Environm	ental Sc	olutions							
Project:	Maverick	Jalmat 19	92								
Sample ID:	MB-47144	Samp	Гуре: МЕ	BLK	Tes	TestCode: EPA Method 8021B: Volatiles					
Client ID:	PBS	Batc	h ID: 47	144	F	RunNo: 62533					
Prep Date:	8/28/2019	Analysis [Date: 8/	29/2019	S	SeqNo: 2'	127381	Units: mg/h	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		ND	0.025								
Toluene		ND	0.050								
Ethylbenzene		ND	0.050								
Xylenes, Total		ND	0.10								
Surr: 4-Bron	nofluorobenzene	0.99		1.000		98.9	80	120			
Sample ID:	LCS-47144	Samp	Гуре: LC	S	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID:	LCSS	Batc	h ID: 47	144	F	RunNo: 62	2533				
Prep Date:	8/28/2019	Analysis [Date: 8/	29/2019	S	SeqNo: 2	127382	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		0.95	0.025	1.000	0	95.0	80	120			
Toluene		1.0	0.050	1.000	0	100	80	120			
Ethylbenzene		1.0	0.050	1.000	0	100	80	120			
Xylenes, Total		3.1	0.10	3.000	0	102	80	120			
Surr: 4-Bron	nofluorobenzene	0.97		1.000		97.1	80	120			
Sample ID:	Sample ID: 1908G52-001AMS SampType: MS TestCode: EPA Method 8021B: Volatiles										
Client ID:	TT-1 1ft.	Batc	h ID: 47	144	RunNo: 62533						
Prep Date:	8/28/2019	Analysis [Date: 8/	29/2019	S	SeqNo: 2127384 Units: mg/Kg					
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.025	0.9950	0	102	76	123			
Toluene		1.1	0.050	0.9950	0.009547	107	80.3	127			
Ethylbenzene		1.1	0.050	0.9950	0	111	80.2	131			
Xylenes, Total		3.3	0.10	2.985	0	111	78	133			
Surr: 4-Bron	nofluorobenzene	0.95		0.9950		95.1	80	120			
Sample ID:	1908G52-001AMS	D Samp	Гуре: М	SD	Tes	tCode: EF	PA Method	8021B: Vola	tiles		
Client ID:	TT-1 1ft.	Batc	h ID: 47	144	F	RunNo: 62	2533				
Prep Date:	8/28/2019	Analysis [Date: 8/	29/2019	5	SeqNo: 2	127385	Units: mg/k	٢g		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene		1.0	0.025	0.9833	0	103	76	123	0.666	20	
Toluene		1.1	0.049	0.9833	0.009547	111	80.3	127	2.13	20	
Ethylbenzene		1.1	0.049	0.9833	0	114	80.2	131	1.20	20	
Xylenes, Total		3.4	0.098	2.950	0	115	78	133	1.96	20	
Surr: 4-Bron	nofluorobenzene	0.96		0.9833		97.6	80	120	0	0	

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	1908G52

Client: Safe Project: Mav	ety & Environm verick Jalmat 19	nental So 92	olutions							
Sample ID: MB-47173	Samp	Type: ME	BLK	TestCode: EPA Method 8021B: Volatiles						
Client ID: PBS	Bato	h ID: 47	173	F	RunNo: 6	2566				
Prep Date: 8/29/2019	Analysis I	Date: 8/	30/2019	S	SeqNo: 2	129059	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	0.025								
Toluene	ND	0.050								
Ethylbenzene	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: 4-Bromofluorobenzene	0.92		1.000		92.0	80	120			
Sample ID: LCS-47173	Samp	Type: LC	s	Tes	tCode: El	PA Method	8021B: Vola	tiles		
Client ID: LCSS	Bato	h ID: 47	173	F	RunNo: 6	2566				
Prep Date: 8/29/2019	Analysis I	Date: 8/	30/2019	S	SeqNo: 2	129060	Units: mg/k	٢g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.0	0.025	1.000	0	100	80	120			
Toluene	1.0	0.050	1.000	0	103	80	120			
Ethylbenzene	1.0	0.050	1.000	0	102	80	120			
Xylenes, Total	3.1	0.10	3.000	0	104	80	120			
Surr: 4-Bromofluorobenzene	0.95		1.000		95.3	80	120			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

HALL ENVIE ANAL LABO	RONMENTAL Ysis Ratory	Hall Environmen TEL: 505-345-3 Website: www	ntal Analysis Labor 4901 Hawkin Albuquerque, NM & 975 FAX: 505-345- v.hallenvironmenta	atory ns NE 17109 San 1.com	Sample Log-In Check List					
Client Name:	Safety Env Solutions	Work Order Num	ber: 1908G52		RcptNo: 1					
Received By: Completed By: Reviewed By: []	Daniel M. Michelle Garcia DAD 8/29/19	8/28/2019 8:45:00 / 8/28/2019 2:05:56	am Pm	Minus G	anue)					
Chain of Cus 1. Is Chain of C 2. How was the	stody ustody complete? sample delivered?		Yes ⊻ <u>Courier</u>	No 🗌	Not Present					
<u>Log In</u> 3. Was an atten	npt made to cool the samples	\$?	Yes 🔽	No 🗌						
 Were all sam; Sample(s) in 	ples received at a temperatu	re of >0° C to 6.0°C	Yes ☑ Yes ☑	No 🗌	NA 🗌					
 6. Sufficient sam 7. Are samples (8. Was preserva 	ple volume for indicated test except VOA and ONG) prop tive added to bottles?	(s)? erly preserved?	Yes ✔ Yes ✔ Yes	No 🗌 No 🗌 No 🗹	NA 🗆					
9. VOA vials hav 10. Were any sar	re zero headspace? nple containers received bro	ken?	Yes	No 🗌 No 🗹 [No VOA Vials 🗹	TO				
11. Does paperwo (Note discreps 12. Are matrices o	ork match bottle labels? ancies on chain of custody) correctly identified on Chain o	of Custody?	Yes 🗹 Yes 🔽	No 🗆	bottles checked for pH: (<8 or > Adjusted?	12 unless noted)				
13. Is it clear wha 14. Were all holdi (If no, notify c	t analyses were requested? ng times able to be met? ustomer for authorization.)		Yes ✔ Yes ✔	No 🗌 No 🗖	Checked by:					
<u>Special Handl</u> 15. Was client no	ing (if applicable) tified of all discrepancies wit	h this order?	Yes	No 🗌	NA 🗹					
Person By Who Regard Client II	Notified:	Date: Via:	eMail F	Phone 🗌 Fax	In Person					

16. Additional remarks:

1

17. Cooler Information

Cooler No	Temp °C	Condition	Seal Intact	Seal No	Seal Date	Signed By
1	3.7	Good	Yes			
2	4.0	Good	Yes			

Analysis Request	EDB (Method 504.1) TPH:8015D(GRO / DRO / MRO) 8081 Pesticides/8082 PCB's 8081 Pesticides/8082 PCB's EDB (Method 504.1) PPHs by 8310 or 8270SIMS RCRA 8 Metals CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8270 (Semi-VOA) 8270 (Semi-VOA) 10tal Coliform (Present/Absent) Total Coliform (Present/Absent)		ssibility. Any sub-contracted data will be clearly notated on the analytical report.
Turn-Around Time: Durk Standard Rush Project Name: MANUANER Project #: MAN-19-010	Project Manager: Project Manager: Rampler: Sampler:	Ned -001 1 Ned -003 1 Ned -003 1 -005 -005 1 -005 -005 1 -005 -005 1 -005 -006 1 -005 -006 1 -006 -006 1 -006 -006 1 -006 -006 1 -006 -006 1 -006 -006 1 -006 -006 1 -006 -006 1 -006 -006	Received by: Via: Date Time Received by: Via: Date Time Court, W 28/19 8:45 contracted to other accredited laboratories. This serves as notice of this po
Chain-of-Custody Record Client: Shut fould manual Secure we Mailing Address: 723 5 Charter Mailing Address: 723 5 Charter Mailing Address: 723 5 Charter Phone #: 575-397-05 Pa	email or Fax#: OA/OC Package: Er Standard I Level 4 (Full Validation) Accreditation: I Az Compliance I NELAC I Other I EDD (Type) Date Time Matrix Sample Name	08/27 0830 7 71 187 09964 87-1 24 09900 87-1 24 09120 87-2 84 09120 87-2 84 09120 87-2 84 09120 87-2 84 09120 87-2 84 09120 87-2 84 09120 87-2 84 09120 87-3 84 09120 87-3 84 09120 87-3 84 09120 87-3 84 09120 87-3 84 09125 87-3 84 0925 87-3 84 0925 87-3 84 0925 87-3 84 0925 87-3 84 0925 87-3 84 0925 87-3 84 015 87-4 84 035 84 14	ORD IS 60 Sw. Date: Time: Relinquished 60: Image: Time: Relinquished 60: Image: Time: Relinquished 60: Image: Time: Relinquished 60: Image: Time: Relinquished 60:

HALL ENVIRONMENTAL ANALYSIS LABORATORY www.hallenvironmental.com Hawkins NE - Albuquerque, NM 87109 505-345-3975 Fax 505-345-4107	EDB (Method 504.1) EDB (Method 504.1) PPHs by 8310 or 8270SIMS CI, F, Br, NO ₃ , NO ₂ , PO ₄ , SO ₄ 8260 (VOA) 8260 (VOA) 8270 (Semi-VOA) Total Coliform (Present/Absent)	
4901	20 20 20 20 20 20 20 20 20 20	- 013 XX - 014 XX - 014 - 014 - 019 XX - 019 X - 019
Turn-Around Time: 20 x Standard Rush Project Name: M. AUCU M. AU C. 192 Project #:	Project Manager: Project Manager: Sampler: Dn lce: Proders: Cooler: Cooler: Cooler: Cooler: Preservative	Received by Via:
Client: Sute + GULLAMMARCORd Client: Sute + GULLAMMARCORd Mailing Address: 703 (51 Churton)	Phone #: 7.	BETRICE A TI-4 2 PA I (128 A TI-4 2 PA I (128 A TI-6 A TI-4 2 PA I (128 A TI-6 A TI

Appendix D Site Photos Maverick Resources Jalmat 192

