NM1 - ____35_

Part 36 MAJOR MODIFICATION Application 4 of 5

July 30, 2019

FOR MODIFICATION

Lea Land Landfill OCD Facility Permit No.: Lea County, New Mexico

NM-1-0035

VOLUME IV: SITING AND HYDROGEOLOGY

Submitted To:

New Mexico Energy, Minerals, and Natural Resources Department Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505 505.476.3440

Prepared For:

Lea Land LLC 1300 W. Main St. Oklahoma City, OK 73106 405.236.4257

Prepared By:

Gordon Environmental/PSC 333 Rio Rancho Blvd, Suite 400 Rio Rancho, NM 87124 505.867.6990

June 2019 Gordon/PSC Project #: 01041618.00

TABLE OF CONTENTS

C-137 APPLICATION FOR SURFACE WASTE MANAGEMENT FACILITY

STATEMENT OF APPLICATION

VOLUME I: PERMIT APPLICATION TEXT

SECTION	TITLE
19.15.36	SURFACE WASTE MANAGEMENT FACILITIES

VOLUME II: FACILITY MANAGEMENT PLANS

SECTION

TITLE

- 1 OPERATIONS, INSPECTION, AND MAINTENANCE PLAN
- 2 OIL FIELD WASTE MANAGEMENT PLAN
- 3 HYDROGEN SULFIDE (H₂S) PREVENTION AND CONTINGENCY PLAN
- 4 CLOSURE/POST-CLOSURE PLAN
- 5 CONTINGENCY PLAN
- 6 MIGRATORY BIRD PROTECTION PLAN
- 7 LINER CONSTRUCTION QUALITY ASSURANCE (CQA) PLAN
- 8 LEACHATE MANAGEMENT PLAN
- 9 VADOSE ZONE MONITORING PLAN

VOLUME III: ENGINEERING DESIGN AND CALCULATIONS

TITLE

- 1 ENGINEERING DESIGN
- 2 VOLUMETRICS CALCULATIONS
- 3 DRAINAGE CALCULATIONS
- 4 HELP MODEL
- 5 PIPE LOADING CALCULATIONS
- 6 GEOSYNTHETIC APPLICATION AND COMPATIBILITY DOCUMENTATION
- 7 SETTLEMENT CALCULATIONS
- 8 EVAPORATION POND CALCULATIONS
- 9 WAVE ACTION CALCULATIONS
- 10 GEOTEXTILE FILTER FABRIC ANALYSIS

TITLE

TABLE OF CONTENTS (CONT.)

VOLUME IV: SITING AND HYDROGEOLOGY

SECTION		

- 1 SITING CRITERIA
- 2 HYDROGEOLOGY

LIST OF PERMIT PLANS

SHEET	TITLE
G-001	COVER SHEET AND INDEX
C-101	SITE PLAN – EXISTING CONDTIONS
C-102	SITE DEVELOPMENT PLAN
C-103	EXISTING PERMIT – COMPLETION GRADING PLAN
C-104	LANDFILL BASE GRADING PLAN
C-105	LANDFILL FINAL GRADING PLAN
C-106	LANDFILL COMPLETION DRAINAGE PLAN
C-107	PROCESS AREA LAYOUT
C-108	EVAPORATION POND LAYOUT
C-109	LIQUID PROCESS AREA EQUIPMENT LAYOUT
C-301	LANDFILL CROSS- SECTIONS
C-501	LANDFILL LINER SYSTEM AND FINAL COVER DETAILS
C-502	LEACHATE COLLECTION SYSTEM DETAILS
C-503	EVAPORATION PONDS DETAILS
C-504	TANK MANAGEMENT AREA CROSS-SECTIONS & DRYING PAD LEAK

C-504 TANK MANAGEMENT AREA CROSS-SECTIONS & DRYING PAD LEAK DETECTION DETAILS

TABLE OF CONTENTS

on No. Title	Page
INTRODUCTION	IV.1-1
Purpose	IV.1-1
Site Location	IV.1-1
Facility Description	IV.1-2
SITING CRITERIA FOR SURFACE WASTE MANAGEMENT FACILITIES	IV.1-2
Depth to Groundwater	IV.1-2
Watercourse, Lakebed, Sinkhole, or Playa Lake	IV.1-3
Wellhead Protection Area; 100-Year Floodplain	IV.1-6
Wetlands	IV.1-7
Subsurface Mines	IV.1-7
Land Use Setbacks	IV.1-8
Unstable Areas	IV.1-8
2.7.1 Karst Potential	IV.1-9
2.7.2 Pleistocene Faults and Seismic Zones	IV.1-12
Maximum Size	IV.1-12
Climatology	IV.1-13
SUMMARY	IV.1-14
	INTRODUCTION Purpose Site Location Facility Description SITING CRITERIA FOR SURFACE WASTE MANAGEMENT FACILITIES Depth to Groundwater Watercourse, Lakebed, Sinkhole, or Playa Lake Wellhead Protection Area; 100-Year Floodplain Wetlands Subsurface Mines Land Use Setbacks Unstable Areas 2.7.1 Karst Potential 2.7.2 Pleistocene Faults and Seismic Zones Maximum Size

LIST OF FIGURES

Title

Title
SITE LOCATION
SITE PLAN
POTENTIOMETRIC SURFACE DEWEY LAKE REDBEDS
SHALLOW LOCAL HYDROGEOLOGIC CROSS-SECTION B-B'
SITE TOPOGRAPHY AND DRAINAGE
SURFACE WATER FEATURES
WATER WELL LOCATION MAP
WETLANDS MAP
MINES, MILLS AND QUARRIES MAP
SUBSURFACE MINING ACTIVIITY
AERIAL PHOTOGRAPH
REGIONAL PHYSIOGRAPHY
QUATERNARY FAULTS MAP
SEISMIC IMPACT ZONES MAP

IV.1.15 WIND ROSE

LIST OF TABLES

Table No.	Title	Page
IV.1.1	KARST TERRAIN CONDITIONS	IV.1-9
IV.1.2	KARST INDICATORS	IV.1-9
IV.1.3	UNSTABLE AREAS - REFERENCES	IV.1-12
IV.1.4	SITE ACREAGES	IV.1-13

LIST OF ATTACHMENTS

Attachment No.	Title
IV.1.A	WATERSHED REPORT OFFICE OF WATER USEPA
IV.1.B	INTEGRATED LIST, STATE OF NEW MEXICO CLEAN WATER ACT
IV.1.C	ON-SITE SHEET FLOW

1.0 INTRODUCTION

Lea Land LLC (the Facility) is an existing Surface Waste Management Facility (SWMF) providing oil field waste solids (OFWS) disposal services. The existing Lea Land SWMF is subject to regulation under the New Mexico Oil and Gas Rules, specifically 19.15.9.711 and 19.15.36 NMAC, administered by the Oil Conservation Division (OCD) of the NM Energy, Minerals, and Natural Resources Department (NMEMNRD). This document is a component of the "Application for Permit Modification" that proposes continued operations of the existing approved waste disposal unit; lateral and vertical expansion of the landfill via the construction of new double-lined cells; and the addition of waste processing capabilities. The proposed Facility is designed in compliance with 19.15.36 NMAC, and will be constructed and operated in compliance with a Surface Waste Management Facility Permit issued by the OCD. The Facility is owned by, and will be constructed and operated by, Lea Land LLC.

The Lea Land SWMF is one of the most recently designed facilities to meet the new more stringent standards that, for instance, mandate double liners and leak detection for land disposal. The new services that Lea Land will provide needed resources to fill an existing void in the market for technologies that exceed current OCD requirements.

1.1 Purpose

This section provides compliance demonstrations for the Siting Criteria for Surface Waste Management Facilities specified in the NM Oil and Gas Rules, 19.15.36.13.A-C NMAC. These requirements include depth to groundwater; and proximity of watercourse, floodplains, wetlands, mines, residences/institutions, and unstable areas. The Lea Land site meets the Siting Requirements applicable to a Surface Waste Management Facility (i.e., 19.15.36.13.A-C NMAC).

1.2 Site Location

The Lea Land site is located approximately 27 miles northeast of Carlsbad, straddling US Highway 62-180 (Highway 62) in Lea County, NM. The Lea Land site is comprised of a 642-acre ± tract of land encompassing Section 32, Township 20 South, Range 32 East, Lea County, NM (**Figure IV.1.1**). Site access is currently provided on the south side of US Highway 62. The coordinates for the approximate center of the Lea Land site are Latitude 32°31'46.77" and Longitude -103°47'18.25".

1.3 Facility Description

The Lea Land SWMF comprises approximately 463 ± acres of the 642-acre ± site, and will include two main components: an oil field waste Processing Area and an oil field waste solids Landfill, as well as related infrastructure (i.e., access, waste receiving, stormwater management, etc.). Oil field wastes are delivered to the Lea Land SWMF from oil and gas exploration and production operations in southeastern NM and west Texas. The Site Plan provided as **Figure IV.1.2** identify the locations of the Processing Area and Landfill Disposal facilities, which are further detailed on the **Permit Plans (Volume III.1)**. The proposed facilities are detailed in **Table II.1.2 (Volume II.1)**, and are anticipated to be developed in four primary phases as described in **Table II.1.3 (Volume II.1)**.

2.0 SITING CRITERIA FOR SURFACE WASTE MANAGEMENT FACILITIES

In order to re-confirm the suitability of the proposed Lea Land site for a Surface Waste Management Facility, an evaluation with respect to each of the Siting Requirements detailed in 19.15.36.13.A-C NMAC was performed and is presented herein. Based upon available information, the proposed Lea Land site satisfies the size restriction and each of the eight siting criteria. Following is a detailed description of the Lea Land Site's compliance with the siting criteria. Each siting criterion is defined, applied and discussed individually. The following sections provide the regulatory citation for each criterion in bold, followed by a narrative response. In most cases, a Figure or study is referenced to demonstrate compliance with applicable standard(s).

2.1 Depth to Groundwater

No landfill shall be located where ground water is less than 100 feet below the lowest elevation of the design depth at which the operator will place oil field waste. (19.15.36.13.A(1) NMAC)

No other surface waste management facility shall be located where ground water is less than 50 feet below the lowest elevation at which the operator will place oil field waste. (19.15.36.13.A(5) NMAC)

The Oil and Gas Rules define ground water as *"interstitial water that occurs in saturated earth material and is capable of entering a well in sufficient amounts to be used as a water supply"* per 19.15.2.7.G(10) NMAC. The maximum distance from the ground surface to the floor of the waste (i.e., cell basegrades) is 50 feet (ft) \pm , i.e., landfill excavation extends 50 ft \pm below ground surface (bgs). Therefore, for the purposes of this analysis, the minimum acceptable depth to groundwater is 150 ft bgs.

As described in **Volume IV.2** (Hydrogeology), saturation in shale beds in the Permian Dewey Lake Redbeds is the shallowest saturation beneath the Lea Land site. Information obtained from five groundwater monitoring wells at the Lea Land SWMF was used to determine the depth and character of shallow saturation zones at the Facility. **Figure IV.1.3** provides the potentiometric surface of waterbearing zones in the Dewey Lake Redbeds using available historic water level data from the above referenced wells.

A Local Hydrogeologic Cross Section through the Lea Land site is presented as **Figure IV.1.4**. As shown in **Figure IV.1.4**, the top of the Dewey Lake Redbeds at the Lea Land site is 50 ft bgs \pm , and the shallowest saturated zones at site are present in zones ranging between 123 ft and 148 ft beneath the top of the Dewey Lake Redbeds at depths ranging between 173 ft to 198 ft bgs \pm . The depth from the cell base grades (i.e., a maximum depth 50 ft bgs \pm) to the top of the saturated zones in the Dewey Lake Redbeds is estimated to be between 122 ft and 149 ft.

In summary, information obtained from on-site borings that were advanced by air rotary drilling at the Lea Land site (**Volume IV.2**) provide adequate demonstration that the minimum depth to the shallowest saturated zone on the property approaches 200 ft bgs; and is more than 100 ft below projected landfill base grade levels. Therefore, the depth to saturation is greater than 100 ft below the lowest elevation of the design depth at which the operator will place oil field waste in the landfill, and greater than 50 ft below the processing area. Additionally, saturation zones penetrated by monitoring wells at the site do not produce enough water to be used as a water supply, therefore, water saturation in these zones does not meet the definition of "groundwater" as defined in 19.15.2.7.G(10) NMAC.

2.2 Watercourse, Lakebed, Sinkhole, or Playa Lake

No surface waste management facility shall be located: within 200 feet of a watercourse, lakebed, sinkhole or playa lake. (19.15.36.13.B(1) NMAC)

The Oil and Gas Rules specifically define watercourses and playa lakes as follows:

"Watercourse" means a river, creek, arroyo, canyon, draw or wash or other channel having definite banks and bed with visible evidence of the occasional flow of water. (19.15.2.7.W(4) NMAC)

"Playa lake" means a level or nearly level area that occupies the lowest part of a completely closed basin and that is covered with water at irregular intervals, forming a temporary lake. (19.15.2.7.P(4) NMAC)

Figure IV.1.5 is a United States Geological Survey 7.5-minute topographic map (contour interval 10 ft) that shows detailed terrain within one mile of the Lea Land SWMF. This map indicates that no watercourses are present within two hundred feet of the Lea Land SWMF. On-site photo documentation of the site can be found in **Attachment IV.1.C** (On-site Sheet Flow). Two ephemeral washes are present on the Livingston Ridge escarpment approximately one half mile southwest of the Lea Land SWMF. Drainage at the facility is northwest and surface grade is less than 5 feet per mile. A small closed depression comprising approximately 8 acres is present in the northeast corner of the Lea Land property. This feature is less than two feet in depth and does not appear to contain water; however, an area within the depression of approximately one-half acre has been excavated to promote stormwater capture. Another shallow closed depression comprising approximately 52 acres is located approximately 4,000 feet northwest of the Lea Land property. This depression is less than five feet deep and does not appear to contain ephemeral pooled water as a playa lake. Laguna Toston is a playa lake of approximately 713 acres and is located approximately 1950 feet northeast of the Lea Land SWMF. Laguna Toston receives brine from potash milling operations at the Intrepid mine and contains hypersaline water.

Figure IV.1.6 shows that the Lea Land SWMF is not located within 200 feet of a watercourse, lakebed, sinkhole or playa lake, as those terms are defined by the Oil and Gas Rules. The June 4, 2015 United States Environmental Protection Agency (USEPA) National Pollutant Discharge Elimination System (NPDES) Multi-Sector General Permit (MSGP) regulations authorize stormwater discharges from certain industrial facilities (including landfills) to "waters of the United States" (WOTUS). Facilities that have the potential for stormwater discharges to WOTUS are required to obtain coverage under the 2015 MSGP through submission of a Notice of Intent (NOI) and development and implementation of a Stormwater Pollution Prevention Plan (SWPPP). In accordance with the Oil Pollution Prevention regulation at 40 CFR Part 112, the USEPA requires non-transportation-related facilities (including landfills) to develop and implement a Spill Prevention, Control, and Countermeasures (SPCC) Plan if the facility "could reasonably be expected to discharge oil in quantities that may be harmful into navigable WOTUS". The following evaluation of the potential to discharge to WOTUS has been performed to determine the applicability of both the MSGP and SPCC regulations for the Lea Land SWMF.

As shown on **Figure IV.1.6**, the Lea Land SWMF is located within a catchment encompassing approximately 45 square miles (115.65 km²) of the Upper Pecos-Black Watershed (Hydrologic Unit Code (HUC) 13060011). The direction of local surface drainage in the vicinity of the Facility is to the north-northwest (NNW) toward the Williams Sink (Assessment Unit (AU) ID NM9000.B_109). The Williams Sink, located within the catchment approximately 3 miles NNW of the site, is a natural subsidence and deflation basin feature, and is the closest "receiving water" to the Facility.

The most recent USEPA Watershed Report (i.e., 2016) is included in **Attachment IV.1.A** (obtained through USEPA's online WATERS GeoViewer watershed delineation tool) for the area surrounding the Facility specifies that the 45-mi² catchment is a "sink catchment with no outflow, and that its catchment and watershed are the same". The Watershed Report characterizes the surficial lithology within the catchment and watershed as consisting of eolian and coarse-textured (sand dunes) soils with a mean permeability of 19.59 cm/hr (i.e., 5.4 X 10⁻³ cm/s). Potential sheet flows from the site would need to traverse approximately 3 miles of relatively flat terrain (~0.5 %) consisting of these highly pervious soils prior to reaching the Williams Sink.

The 2018-2020 State of New Mexico Clean Water Act Section 303(d)/Section 305(b) Integrated Report, Appendix A 303(d)/305(b) List identifies one of the uses for the Williams Sink as livestock watering (LW). However, the Integrated Report (**Attachment IV.1.B**) also states that "potash activities have led to hypersaline conditions which likely make livestock watering not attainable or existing". To-date, water quality standards (WQS) for the Williams Sink have not been assessed by NMED Surface Water Quality Bureau, and the US Army Corps of Engineers (USACE) has not rendered either a preliminary or an approved jurisdictional determination (PJD or AJD) for WOTUS applicability. The evaluation presented above shows that MSGP coverage is not required for the Lea Land SWMF; and the SPCC regulations do not apply to the site.

No lakebeds or sinkholes have been observed by Gordon/PSC on the Lea Land SWMF. The depressional feature located in the northeastern corner of the Lea Land site (**Figure IV.1.5**) has been excavated mechanically to serve as a cattle tank. The Lea Land SWMF is not located within 200 ft of any off-site playa lakes.

2.3 Wellhead Protection Area; 100-Year Floodplain

No surface waste management facility shall be located: within an existing wellhead protection area or 100-year floodplain. (19.15.36.13.B(2) NMAC)

The Oil and Gas Rules specifically define wellhead protection areas as follows:

"Wellhead protection area" means the area within 200 horizontal feet of a private, domestic fresh water well or spring used by less than five households for domestic or stock watering purposes or within 1000 horizontal feet of any other fresh water well or spring. Wellhead protection areas does not include areas around water wells drilled after an existing oil or gas waste storage, treatment or disposal site was established. (19.15.2.7.W(8) NMAC)

In addition, fresh water is defined as follows:

"Fresh water" to be protected includes the water in lakes and playas (regardless of quality, unless the water exceeds 10,000 mg/l TDS and it can be shown that degradation of the particular water body will not adversely affect hydrologically connected fresh ground water), the surface waters of streams regardless of the water quality within a given reach, and underground waters containing 10,000 mg/l or less of TDS except for which, after notice and hearing, it is found there is no present or reasonably foreseeable beneficial use that contamination of such waters would impair. (19.15.2.7.F(3) NMAC)

The New Mexico Office of the State Engineer (OSE) manages a database, the New Mexico Water Rights Reporting System (NMWRRS), which relates to wells and water rights. Based on NMWRRS data, the closest well is a "domestic one household" well (CP-368) located approximately 6626 ft west of the Lea Land site (**Figure IV.1.7**). The OSE Well Record for this well indicates that the well was drilled in 1966, was a dry hole and was not cased. Therefore, the Lea Land SWMF is not located within 200 ft of an existing wellhead protection area.

A review of potential floodplains was conducted. Flood Insurance Rate Maps are not available from the Federal Emergency Management Agency (FEMA) for this area. The Lea County Floodplain Coordinator was also contacted to inquire about the presence of mapped flood areas near the Lea Land SWMF. Lea County maintains no flood mapping in the vicinity of the Lea Land SWMF. Field reconnaissance of the Lea Land SWMF was conducted by Gordon/PSC personnel on February 25, 2018 to identify evidence of flooding or ponding on the property. No evidence of flood inundation was noted on the site, or in adjacent upgradient or downgradient areas near the facility. There are no apparent "rivers" or "streams" that would result in floodplain issues in the vicinity of the Lea Land site. Based on the field survey and communications with the Lea County Floodplain Coordinator, the Lea Land site is not located within a 100-year floodplain.

2.4 Wetlands

No surface waste management facility shall be located: within, or within 500 feet of, a wetland. (19.15.36.13.B(3) NMAC)

The Oil and Gas Rules specifically define wetlands as follows:

"Wetlands" means those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions in New Mexico. This definition does not include constructed wetlands used for wastewater treatment purposes. (19.15.2.7.W(9) NMAC)

The Lea Land SWMF area was evaluated for the presences of wetland indicators (i.e., hydrophytic vegetation, hydric soil, and wetland hydrology). The National Wetlands Inventory (NWI) identifies the depressional feature in the northeastern corner of the Lea Land site as an "intermittently flooded palustrine wetland" (**Figure IV.1.8**). This depressional feature is shallow, estimated to be less than 5 ft deep. The feature has been excavated and basal soils have been disrupted and removed. Inspection of the depressional feature during the site reconnaissance performed by Gordon/PSC personnel on February 25, 2019 indicated that no hydric soils or aquatic adapted vegetation are present. Therefore, the depressional feature does not qualify as a wetland, as defined in the Oil and Gas Rules [19.15.2.7.W(9) NMAC].

2.5 Subsurface Mines

No surface waste management facility shall be located: within the area overlying a subsurface mine. (19.15.36.13.B(4) NMAC)

The applicable section of the current NM Energy Minerals and Natural Resources Department (EMNRD) Mines, Mills and Quarries in New Mexico Map is provided as **Figure IV.1.9**. The closest mining operation is a potash mine and mill operated by Intrepid Potash Company, located in Eddy County and approximately 6100 feet south of the Lea Land Site. Therefore, the Lea Land SWMF is not located within an area overlying an existing subsurface mine.

Numerous underground potash mine works are present in the vicinity of the Lea Land SWMF. The Bureau of Land Management (BLM) owns the surface and mineral rights to much of the land in the eastern Eddy County and western Lea County and administers permitting for exploration and extraction of minerals on BLM land. Oil and gas exploration, development and production, along with underground potash mining, is ongoing in the vicinity of Lea Land. The BLM manages risks that oil and gas well drilling could pose to underground mine works by maintaining detailed maps of underground potash mine works and prohibiting drilling within safe setback distances to the existing

underground mine works. Map coverage obtained from BLM showing locations of existing underground mine works in the vicinity of the Lea Land site are shown on **Figure IV.1.10**. This map indicates that the nearest underground mine works to the Lea Land SWMF are located approximately 1350 feet west of the facility. The Intrepid Potash mine located to the east and south of the Facility does lease subsurface mineral rights from the Bureau of Land Management under a portion of the Lea Land site, where potential mineral resources are situated over 1,200 below ground surface.

2.6 Land Use Setbacks

No surface waste management facility shall be located: within 500 feet from the nearest permanent residence, school, hospital, institution or church in existence at the time of initial application. (19.15.36.13.B(5) NMAC)

Examination of land use surrounding the Facility, including a site reconnaissance and an aerial photo review (**Figure IV.1.11**), indicate that there are no permanent residences, schools, hospitals, institutions, or churches within 500 ft of the Lea Land site. No permanent structures are present within 500 ft of the Lea Land site, and there is no apparent trend for development of residential, institutional, or educational facilities in the general vicinity of the proposed Facility.

2.7 Unstable Areas

No surface waste management facility shall be located: within an unstable area, unless the operator demonstrates that engineering measures have been incorporated into the surface waste management facility design to ensure that the surface waste management facility's integrity will not be compromised. (19.15.36.13.B(6) NMAC)

The Oil and Gas Rules specifically define unstable area as follows:

"Unstable area" means a location that is susceptible to natural or human-induced events or forces capable of impairing the integrity of some or all of a division-approved facility's structural components. Examples of unstable areas are areas of poor foundation conditions, areas susceptible to mass earth movements and karst terrain areas where karst topography is developed as a result of dissolution of limestone, dolomite, or other soluble rock. Characteristic physiographic features of karst terrain include sinkholes, sinking streams, caves, large springs or blind alleys. (19.15.2.7.U(6) NMAC)

This section addresses regulatory requirements for defining site characteristics related to earth stability at the proposed facility.

2.7.1 Karst Potential

Gordon/PSC performed the following "unstable areas" analysis based on review of potential karst or other earth stability features within the vicinity of the Lea Land site. Numerous depressional features are present in western Lea County. Several of the larger depressional features are suspected to have formed, at least in part, by subsidence. Therefore, a thorough evaluation of the Lea Land site for potential karst conditions is warranted. The potential for unstable terrain or karst development at the Lea Land site was initially evaluated by review of published and unpublished information on the area, and then by detailed on-site reconnaissance to identify any evidence of potential karst or subsidence features in the area.

Karst Environments and Features

Thornbury (1969) identified several geologic and hydrologic conditions favorable to the development of karst terrain as follows:

TABLE IV.1.1 - Karst Terrain Conditions

- Presence of soluble rock such as limestone, gypsum, dolomite or halite at or near land surface
- Dense, highly jointed and/or thinly bedded soluble rock units
- Stream valleys deeply incised into soluble rock
- Moderate to high rainfall rates

Thornbury also identified numerous characteristic karst geomorphic landforms as follows:

TABLE IV.1.2 - Karst Indicators

- Sinkholes and associated forms, including solution sinks with broad shallow sinkhole ponds and collapse sinks, with steep rocky margins
- Karst plain, as a broad flat area with no laterally extensive drainages
- Sinking creeks, or creeks that end abruptly, typically in sinkholes
- Blind valleys, or ephemeral washes that end abruptly
- Rise and resurgence of streams
- Artesian springs
- Haystack hills or hums
- Caverns
- Voids and lost drilling circulation
- Tension cracks

Lea Land Site File and Literature Review

Comparison of conditions at the Lea Land site with those factors favorable to karst development identified in the literature indicates that conditions at the site are not conducive to karst development. No thick sections of soluble rock are present at or near land surface; the shallowest significant thickness of soluble bedrock materials are gypsum and halite beds in the Rustler Formation, which are located at least 1,200 ft bgs at the site. Additionally, rainfall rates in the area are low, and evapotranspiration rates are high (Section 2.9).

George Bachman (1980) identified laterally extensive pedogenic calcium carbonate (caliche) deposits in shallow soils of western Lea County and eastern Eddy County and proposed an informal stratigraphic unit and nomenclature for the caliche as the "Mescalero Caliche". The site characterization borings and monitoring wells drilled at the Lea Land site penetrated caliche in the upper 20 ft of the site soil profile. Copies of the boring logs and monitoring well logs are included in **Attachments IV.2.D** and **IV.2.E**. The Mescalero caliche can be soluble and is situated at or near land surface; however this unit is no more than 20 ft in thickness. Local dissolution of the Mescalero Caliche unit may have resulted in the development of a number of small shallow depressions in the area; however this is not regarded as a significant karst process at the Lea Land site. The design base grades for the landfill extend to 50 ft \pm below ground surface, and the resulting earthmoving will penetrate through the caliche zone. The excavated caliche is planned for beneficial use (e.g., road surfacing, erosion control).

The nearest karst features in the vicinity of the Lea Land site are identified on the physiographic map in **Figure IV.1.12** (Nicholson and Clebsch, 1963 and Kelly, 1979). Nash Draw, located approximately 3 miles southwest of the Lea Land site, is the likely result of dissolution of shallow and exposed gypsum and halite beds in the Rustler Formation, as well as dissolution of halite beds in the Salado Formation below. Another feature known as San Simon Sink is located approximately 26 miles southeast of the Lea Land site. The origin of San Simon Sink is less well understood; and Nicholson and Clebsch (1963) concluded that San Simon Sink likely resulted from a combination of deep-seated collapse and wind deflation. Several playas, including Williams Sink, Laguna Plata, Laguna Gatuna and Laguna Toston, are located north and east of the Lea Land SWMF. These playas are shallow, ranging in depth from less than 10 feet (Laguna Toston) to about 50 feet (Laguna Plata). Large downwind dune complexes are present at each of these playas except Laguna Toston, indicating that wind deflation was a significant contributor to development of these playas.

Site Reconnaissance

One of the common indicators of active karst and collapse is the presence of tension cracks in surface soil and rock on margins of actively subsiding areas. Other indicators of active karst processes may be tilting, offset and/or displacement of cultural features. Nicholson and Clebsch (1963) identified an array of large annular cracks in soils arrayed around San Simon Sink, which are clearly visible in aerial photographs. San Simon sink is approximately 25 miles southeast of the Lea Land site. Tension cracks are visible on the margins of many sinks and escarpments of the region where karst processes are active. Land and Love (2000) identified karst-related tension cracks in gypsum beds of the Seven Rivers Formation in the area of McMillan Escarpment on the east flank of the Pecos River near Lake McMillan (19 miles to the west).

During the Lea Land site reconnaissance conducted by Gordon/PSC on 02/25/2018, a detailed inspection of the Lea Land tract and surrounding properties was conducted to identify any tension cracks, disrupted soils, tilting or other evidence of earth displacement. No tension cracks, tilted or offset cultural features, or other evidence of displacement was observed during the reconnaissance.

A small depressional feature (approximately 1.7 acres) was identified on the Lea Land tract near the northeastern corner of Section 32. The location of the depressional feature is shown in **Figure IV.1.5**. The margins of the depressional feature were inspected and found to form gentle slopes with no evidence of off-set of soil horizons, tension cracks, accelerated erosion, or tilting. Maximum vertical relief from the depressional feature base to surfaces of adjacent slopes was estimated to be less than five ft \pm .

Cultural features, including road grades, utility poles and fence posts in the vicinity of the Lea Land site were inspected to identify evidence of tilting, offset or displacement that could indicate recent land movement and none was observed. Based upon the referenced literature review (**Table IV.1.3**) and site reconnaissance, we conclude that no evidence of active karst or land subsidence was discovered during these investigations.

TABLE IV.1.3 - Unstable Areas – References

- 1. Bachman, G. O., 1980, Regional geology and Cenozoic history of Pecos region, southeastern New Mexico: U.S. Geological Survey, Open-file Report 80-1099, 120 pp., map in 12 over-size sheets, scale 1:250,000 and 1:125,000.
- 2. Thornbury, W.D., 1969, Principles of Geomorphology: John Wiley and Sons, New York, NY
- 3. Nicholson, A., Alfred Clebsch. "Geology and Ground-Water Conditions in Southern Lea County, New Mexico". Ground-Water Report 6. State Bureau of Mines and Minerals
- 4. Land, L. and Love., D, 2000, Gypsum Karst Processes in the Seven Rivers Formation, Thire Day Road Log, New Mexico Geological Society 57th Field Conference Guidebook, p. 88
- Kelly, T.E., Geohydrology Associates, 1979, Water-resources study of the Carlsbad Potash area, New Mexico: Consultant report to the Bureau of Land Management, Denver Colorado, Contract No. YA-5112-CT8-195

2.7.2 Pleistocene Faults and Seismic Zones

The Lea Land site was evaluated for geologic faults that have experienced movement during the last 11,000 years (i.e., Holocene Period) and areas susceptible to potential seismic impacts to verify the physical stability of this location. The Quaternary Faults Map (**Figure IV.1.13**) is based on the United States Geological Survey (USGS) *Map of Quaternary faults and folds in New Mexico and adjacent areas*. The Lea Land site is located within an area that is described as an area of "no Quaternary Faults" or an area that is "unmapped". No faults are shown in the vicinity of the site.

The seismic impact zones map (**Figure IV.1.14**) is based on seismic data from the USGS National Seismic Hazard Mapping Project data. The seismic impact zone map indicates that the site is located within an area with no more than an 8% probability of peak horizontal ground acceleration of 0.10491 g in 250 years. A "seismic impact zone" is an area with a 10% or greater probability of peak horizontal ground acceleration of 0.10 g in 250 years. Therefore, the Lea Land site is not located within a seismic impact zone, as is most of the State of New Mexico.

2.8 Maximum Size

No surface waste management facility shall exceed 500 acres. (19.15.36.13.C NMAC)

The disposal and operational footprint (i.e., landfill and processing) of the selected site for a surface waste management facility must not exceed 500 acres. The Lea Land tract is comprised of 642 acres \pm , and the SWMF operational footprint is comprised of 463 acres \pm including basic

infrastructure (e.g., waste receiving, access, etc.). A description of the Lea Land SWMF components and corresponding acreages is provided in **Table IV.1.4**.

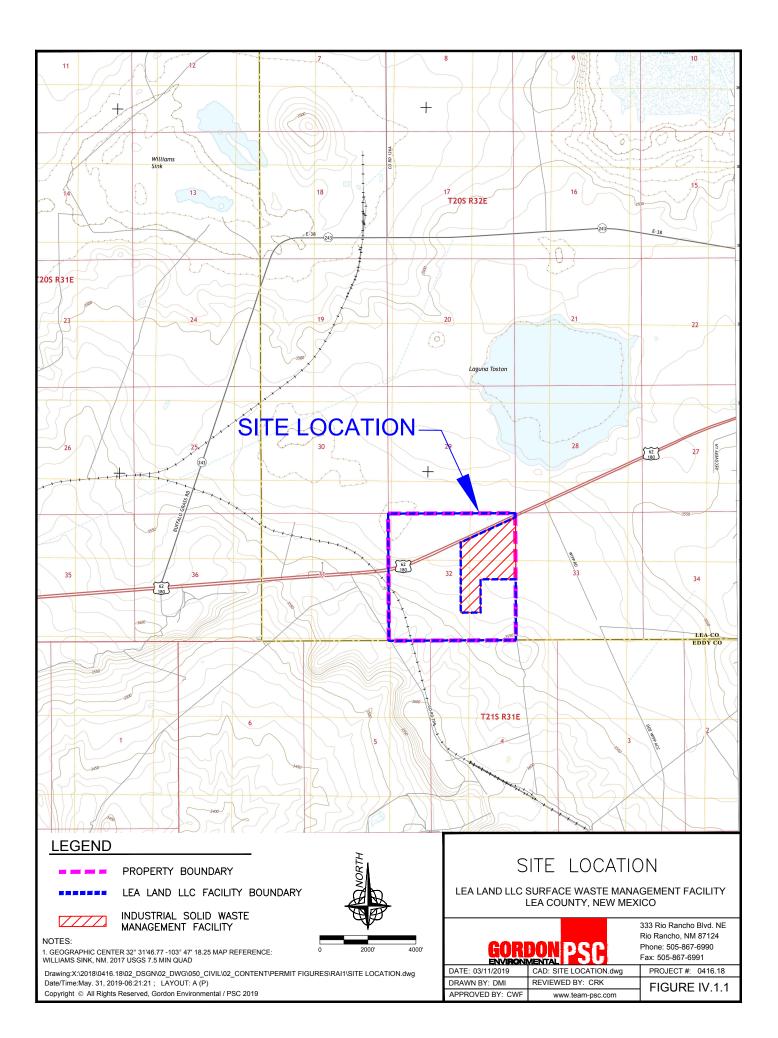
Description	Acres (±)
Lea Land Site: Total Tract	642.10
Municipal Solid Waste (MSW) Facility Footprint (Total)	134.73
Lea Land LLC Tract Size	507.37
Right-of-Way – US Highway 62/BNSF Rail Road	44
Surface Waste Management Facility Footprint (Total)	463.37
SWMF Landfill: Disposal Footprint	100
Processing Area: Operations Footprint (SE corner)	82
Infrastructure (Section 32 exclusive of MSW unit)	118
Additional Open Land	163.37

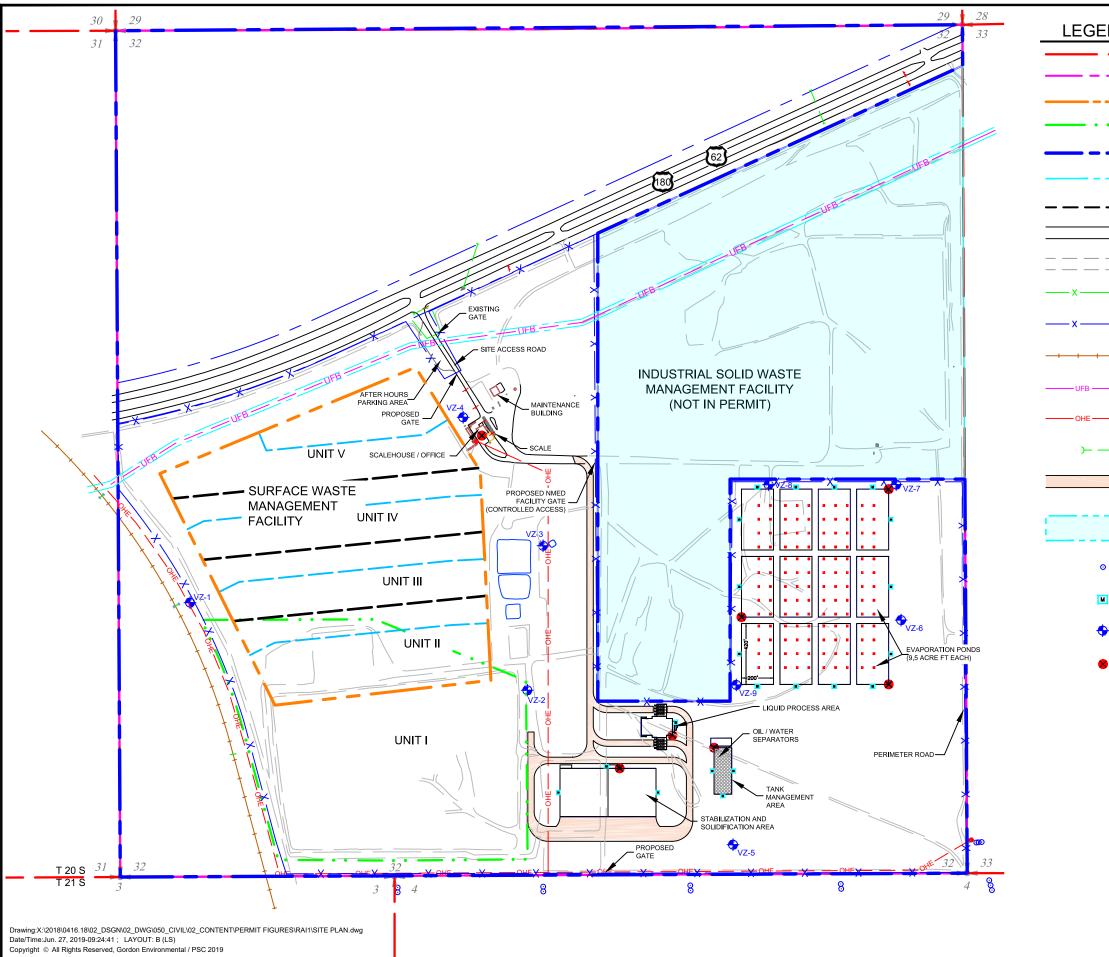
TABLE IV.1.4 - Site Acreages

2.9 Climatology

The Lea Land site enjoys an arid climate with ample sunshine and low precipitation. The US Climate Center database indicates an average annual precipitation of 13.43 inches with an evapotranspiration rate of approximately 34.00 inches per year. This balance results in a low potential for leachate generation, subsurface solubility, stormwater runoff, etc. The HELP Model (**Volume III.4**), however uses the maximum precipitation rate of approximately 30 inches per year in order to produce the most conservative results.

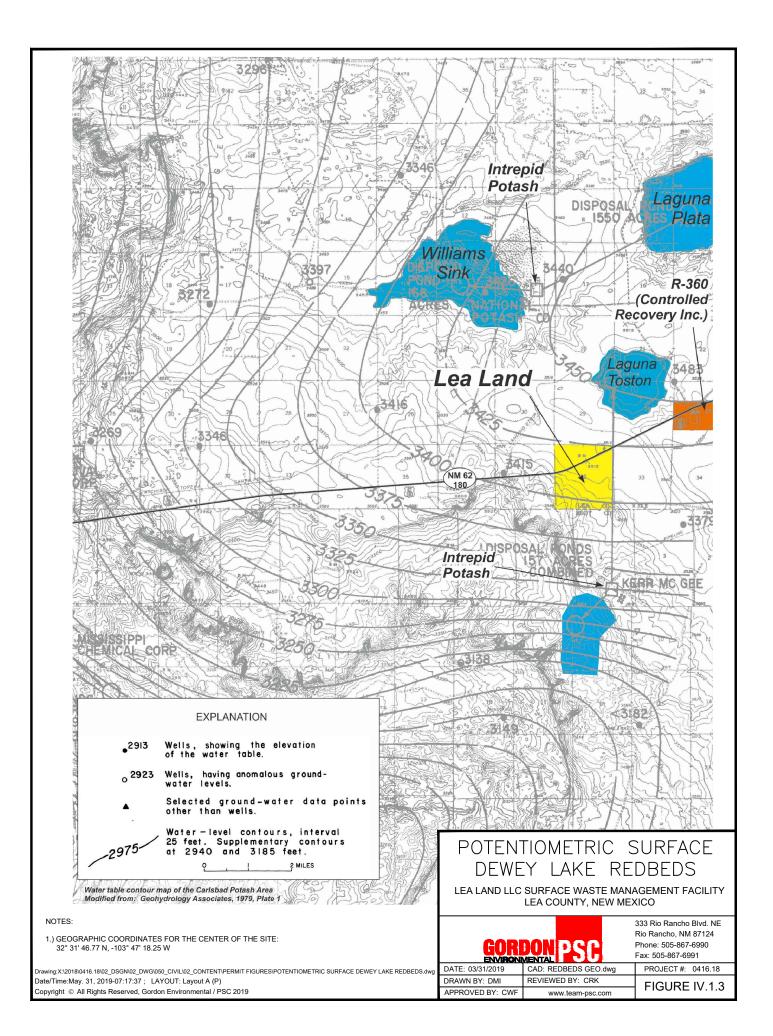
Figure IV.1.15 is a "Wind Rose" for the site area (Western Regional Climate Center). The local wind rose indicates a prevailing wind direction from the south/southeast. This positions Lea Land tracts and facilities downwind of proposed landfill and waste processing facilities, further enhancing the buffer zone from uninhabited adjacent properties. Potential impacts that are sensitive to wind propagation, such as short-term odors, dust, etc., will not typically extend to the Lea Land property lines. The proposed OCD processing is visually shielded from the highway by prior waste disposal deposits (100 ft high) and a buffer zone > 1,500.

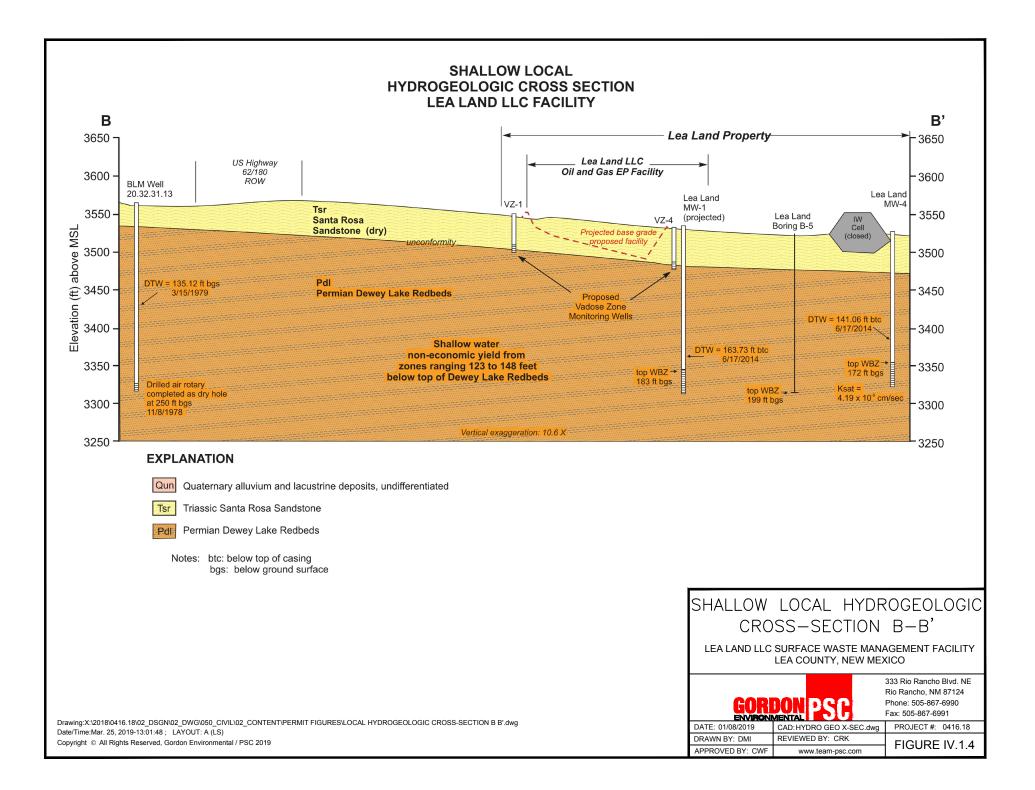

3.0 SUMMARY

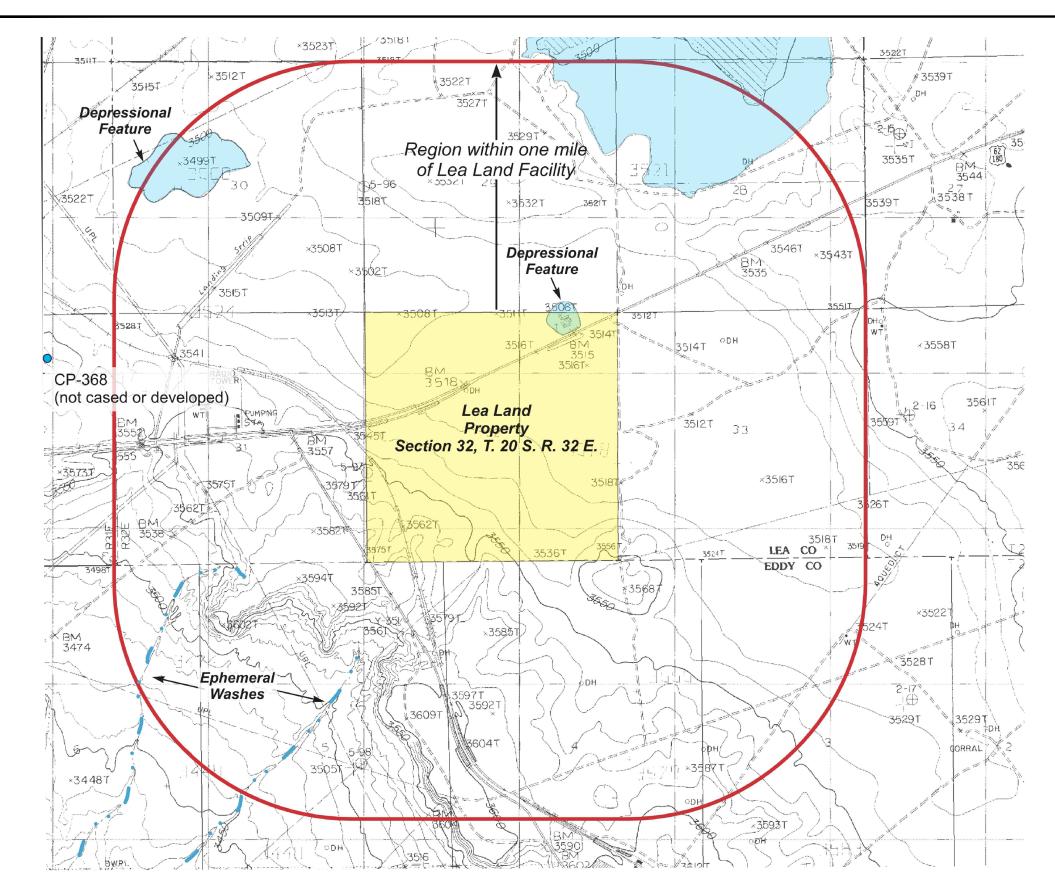

In conclusion, the Lea Land LLC Facility meets and exceeds each of the Part 36 Surface Waste Management Siting Criteria; and has operated with no negative environmental consequences at the same site for over 20 years. Lea Land offers a long-term sustainable disposal alternative for growing E&P activities in southeast NM, by transitioning to the new double liner standards specified in Part 36.

Due to its unique remote location, Lea Land does not conflict with any of the regional land uses or cultural resources. Water beneath the site is not produced in useable quantities, and proposed vadose zone monitoring will provide enhanced environmental protection well above the shallowest saturation zone at the facility. Local climatology demonstrates that the Lea Land Facility is ideally located in an arid zone of low precipitation and high evapotranspiration (Section 2.9).

FIGURES

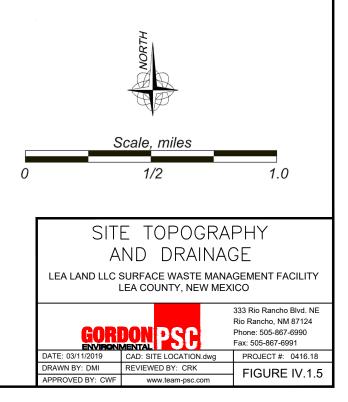

- IV.1.1 SITE LOCATION
- IV.1.2 SITE PLAN
- IV.1.3 POTENTIOMETRIC SURFACE DEWEY LAKE REDBEDS
- IV.1.4 SHALLOW LOCAL HYDROGEOLOGIC CROSS-SECTION B-B'
- IV.1.5 SITE TOPOGRAPHY AND DRAINAGE
- IV.1.6 SURFACE WATER FEATURES
- IV.1.7 WATER WELL LOCATION MAP
- IV.1.8 WETLANDS MAP
- IV.1.9 MINES, MILLS AND QUARRIES MAP
- IV.1.10 SUBSURFACE MINING ACTIVIITY
- IV.1.11 AERIAL PHOTOGRAPH
- IV.1.12 REGIONAL PHYSIOGRAPHY
- IV.1.13 QUATERNARY FAULTS MAP
- IV.1.14 SEISMIC IMPACT ZONES MAP
- IV.1.15 WIND ROSE

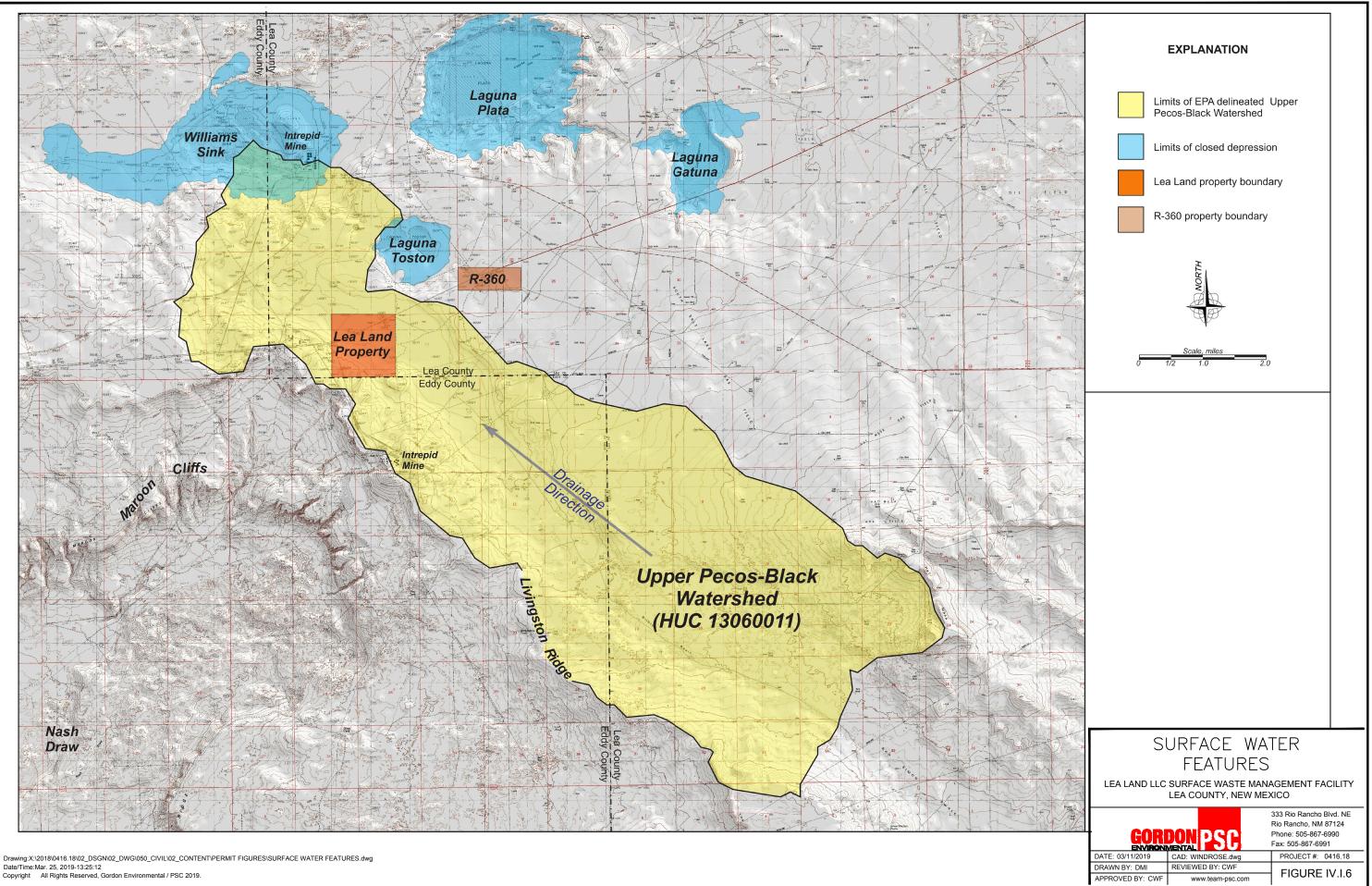


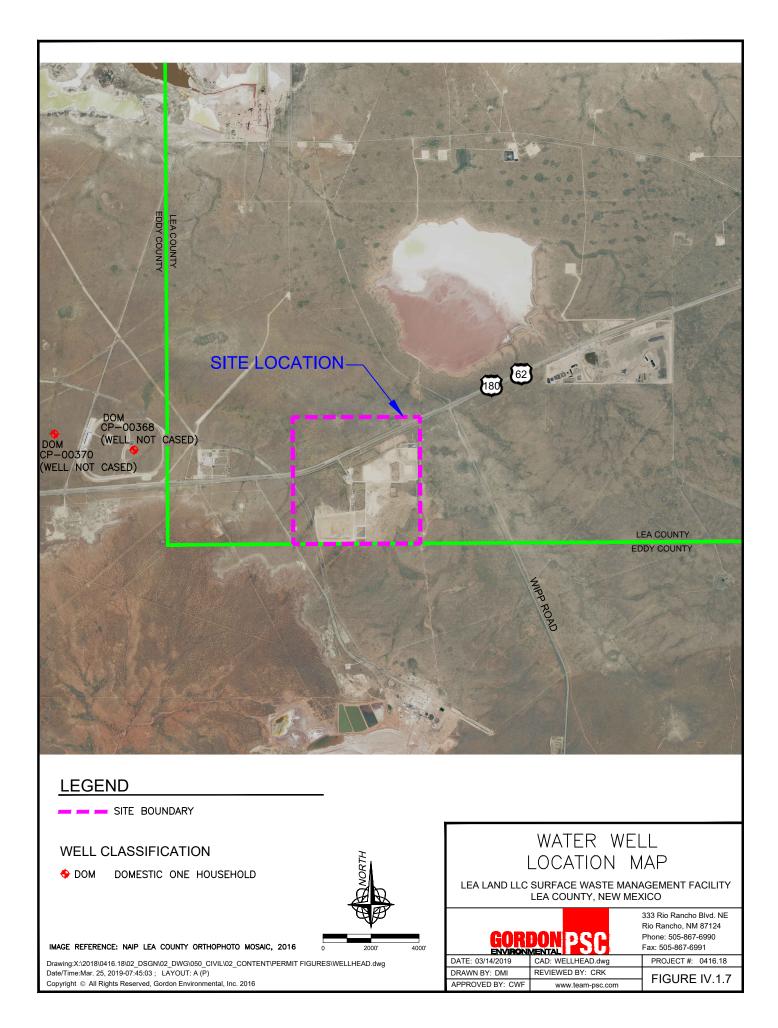


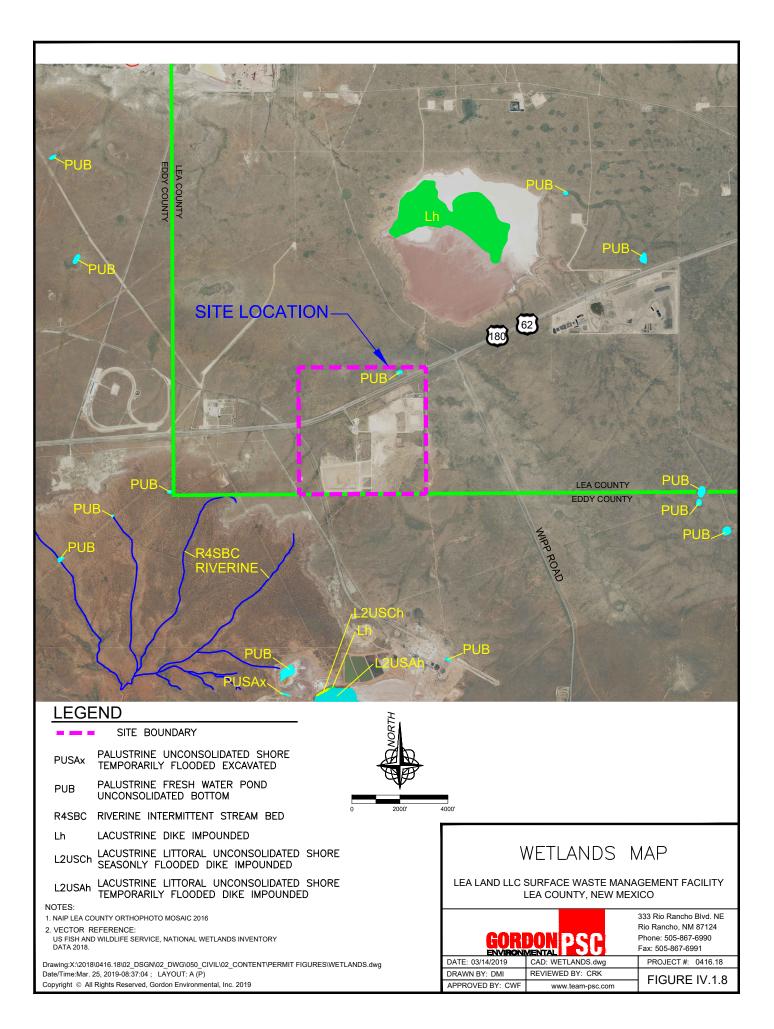
END	
	SECTION BOUNDARY
	PROPERTY BOUNDARY
	SURFACE WASTE MANAGEMENT BOUNDARY
•	EXISTING OCD PERMIT BOUNDARY
	PROPOSED SURFACE WASTE MANAGEMENT BOUNDARY
	INDUSTRIAL SOLID WASTE FACILITY BOUNDARY
	CELL BOUNDARY
	EXISTING PAVED ROAD
	EXISTING UNPAVED ROAD
_ x	EXISTING FENCE
_ x	PROPOSED FENCE
	EXISTING RAILROAD
— UFB ———	PROPOSED UNDERGROUND FIBER OPTIC
	PROPOSED OVERHEAD POWER LINE
(EXISTING CULVERT
	PROPOSED UNPAVED ROAD (GRAVEL)
	NOT IN OCD PERMIT
0	EXISTING TRANSMISSION LINE
M	H₂S MONITORING LOCATION
VZ-2	PROPOSED VADOSE ZONE MONITORING WELL
8	PPE AND EMERGENCY EQUIPMENT
	SITE PLAN
	LEA LAND LLC SURFACE WASTE MANAGEMENT FACILITY LEA COUNTY, NEW MEXICO
	333 Rio Rancho Blvd. NE Bio Rancho NM 87124

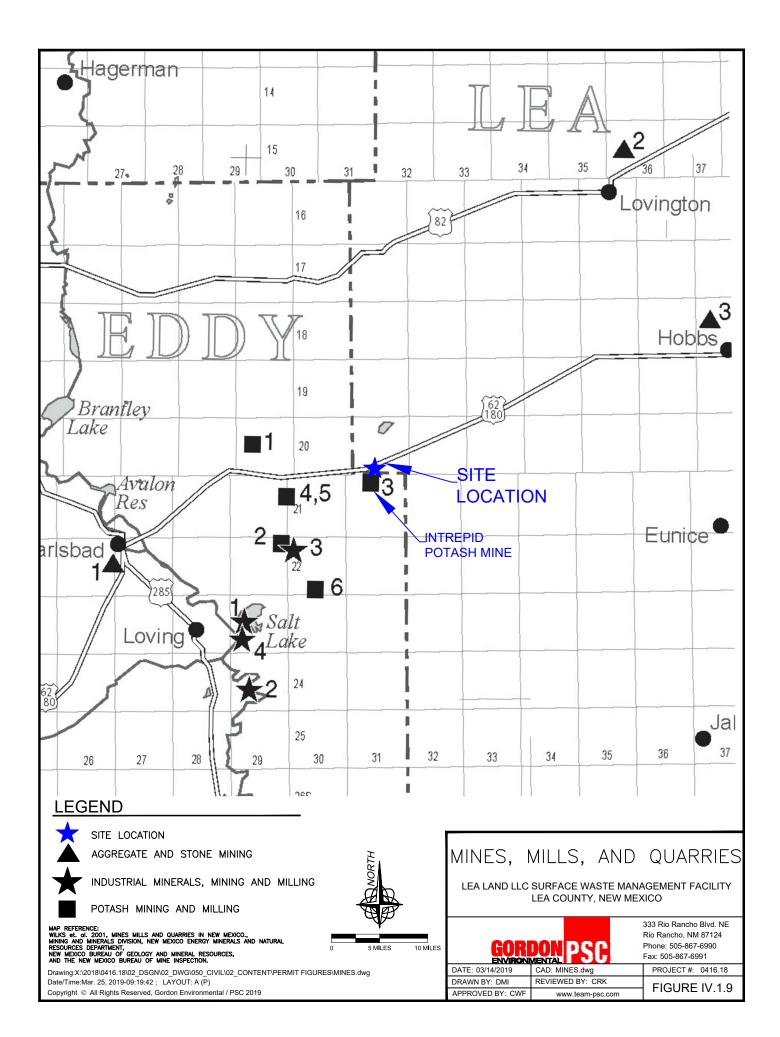
COR		333 Rio Rancho Blvd. NE Rio Rancho, NM 87124 Phone: 505-867-6990	
ENVIRONI		Fax: 505-867-6991	
DATE: 03/27/2019	CAD: SITE PLAN.dwg	PROJECT #: 0416.18	
DRAWN BY: DMI	REVIEWED BY: CRK	FIGURE IV.1.2	
APPROVED BY: CWE	www.team-nsc.com		

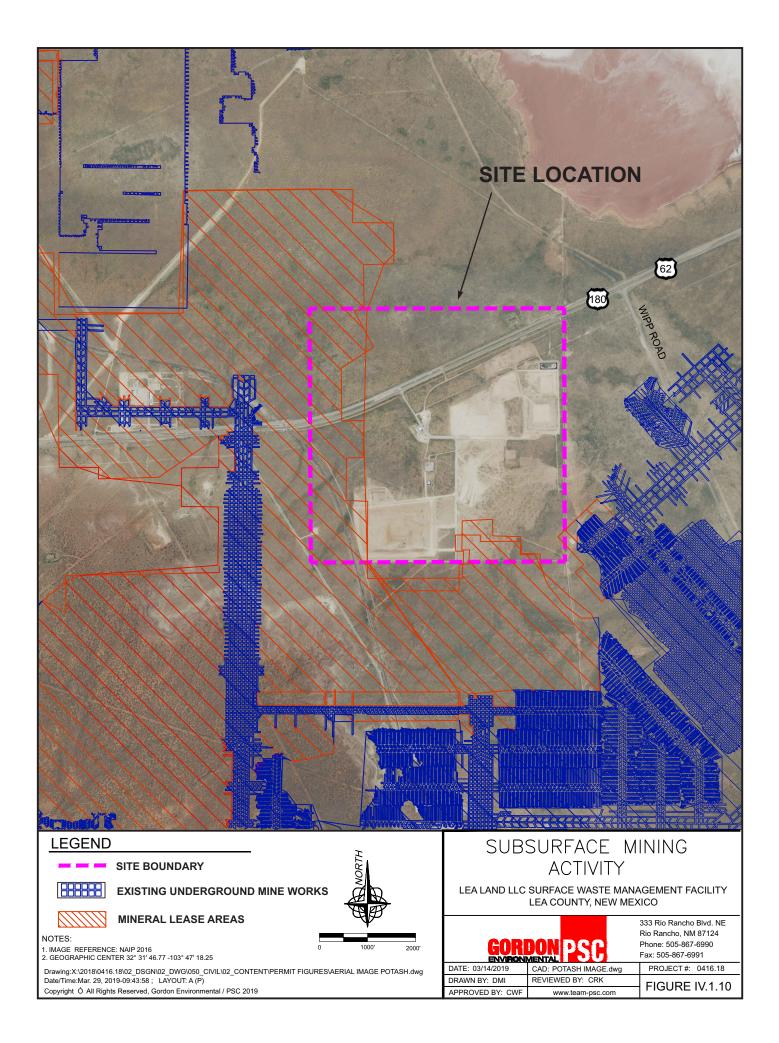

NOTES: 1. GEOGRAPHIC CENTER 32° 31' 46.77 -103° 47' 18.25

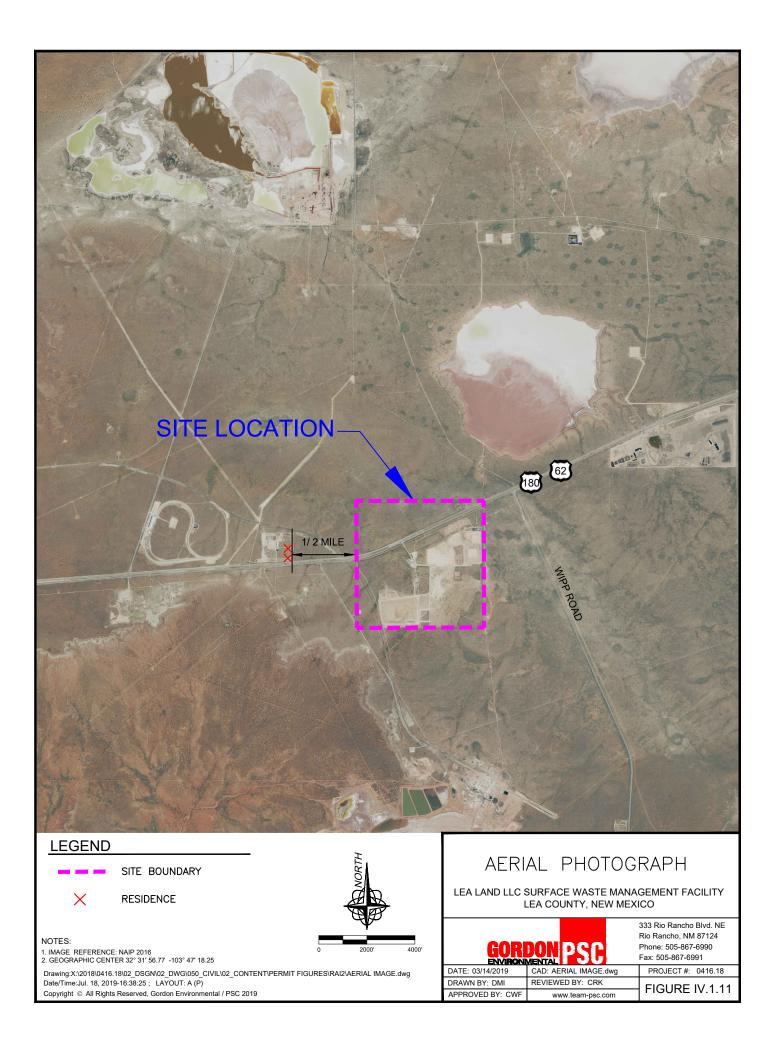

Drawing:X:\2018\0416.18\02_DSGN\02_DWG\050_CIVIL\02_CONTENT\PERMIT FIGURES\RAI1\SITE TOPO DRAINAGE.dwg Date/Time:May. 30, 2019-13:29:19; LAYOUT: B (LS) Copyright © All Rights Reserved, Gordon Environmental / PSC 2019

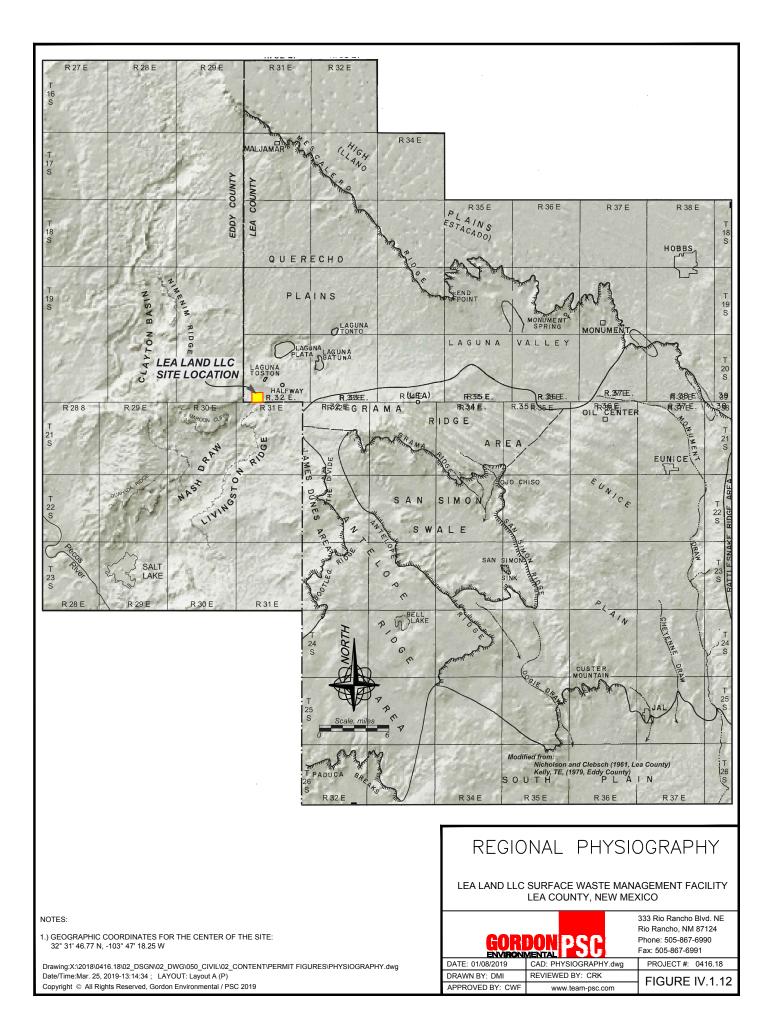

EXPLANATION

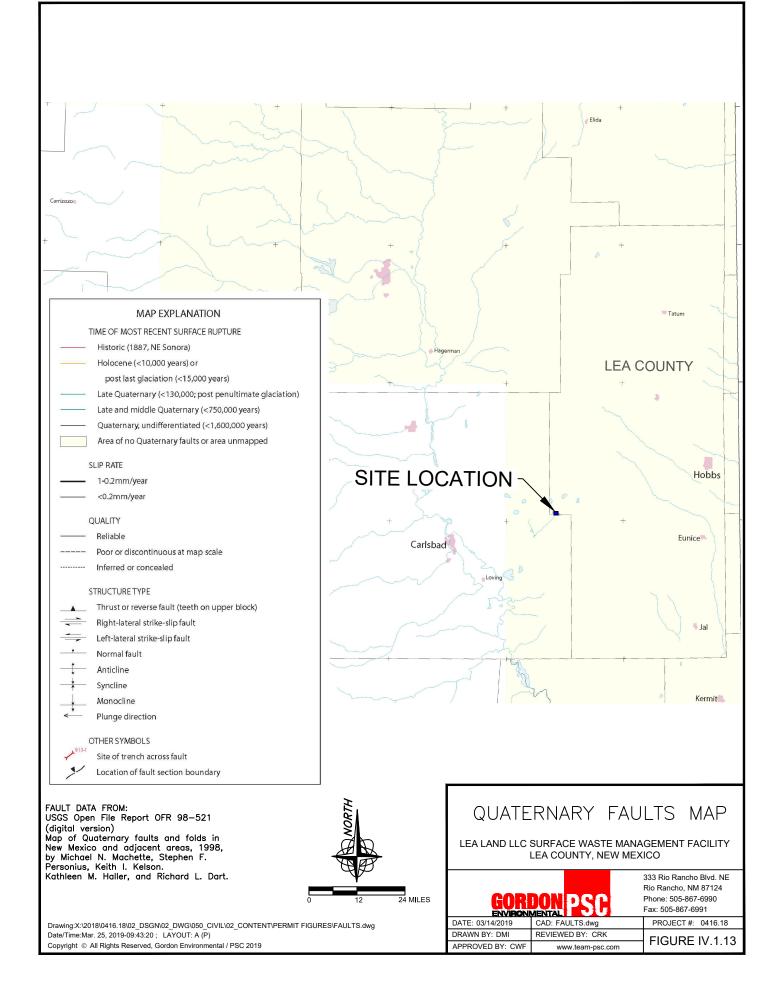

Location of NMOSE permitted water well showing NMOSE Basin and permit number

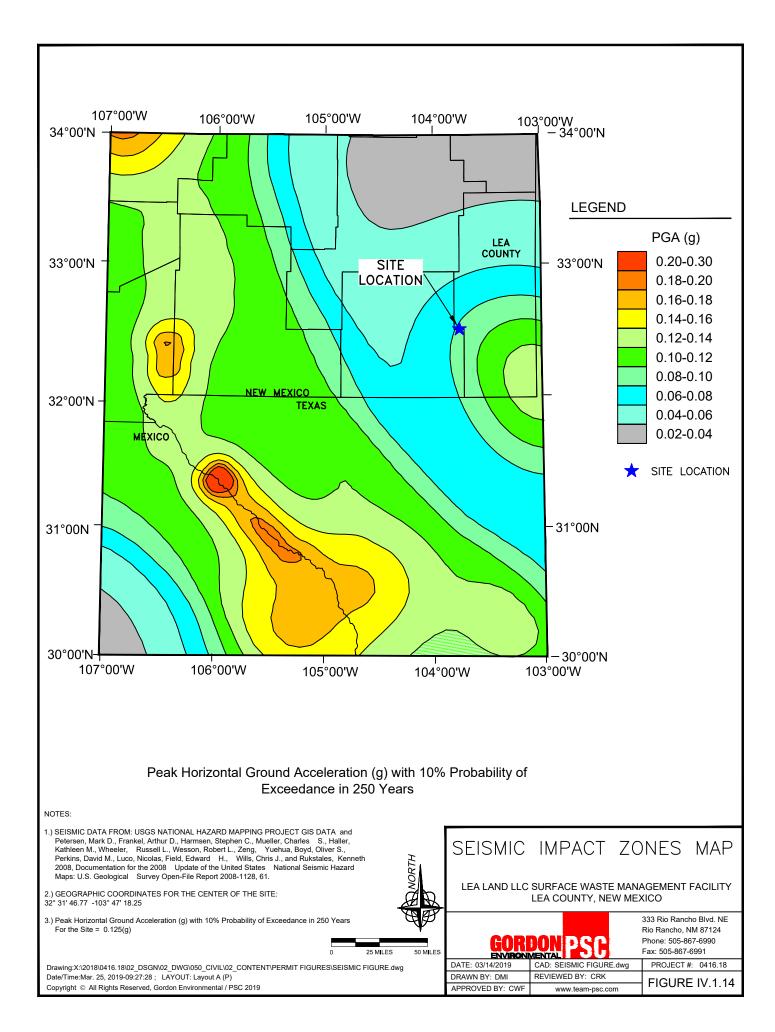


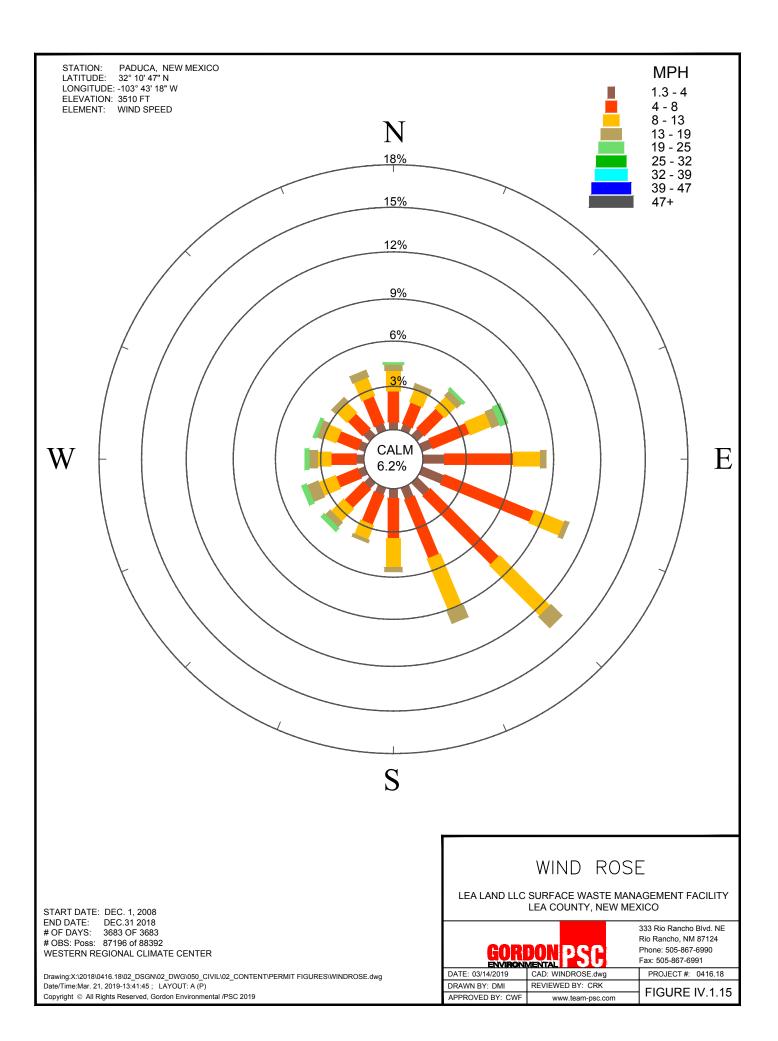












ATTACHMENT IV.1.A WATERSHED REPORT OFFICE OF WATER USEPA

Top	Thickness	Description
0	3	<pre>sand, brownish-buff, medium-fine texture (aeolian) 6" organic profile</pre>
3	9	caliche, white, medium to strong formation
3 12	9 18	<pre>sand, pinkish buff, medium-fine texture, calcareous cement</pre>
30	10	shale, brown, clayey with laminae of greenish-gray medium crystalline, anhydrite
40	20	shale, brown, silty
30 40 60 70 80	10	shale, red-brown, silty, clayey, has minor amount thin laminae of green silty shale
70	10	as above, but no green shale
80	20	shale, red-brown, clayey with laminae of green clayey-silty shale

Well 20.32.22.33; drilled November 8, 1978

Well 20.32.22.33 continued

Тор	Thickness	Description
100	10	as above, but no green shale
10	30	shale, brown, silty
140	10	shale, brown-silty, clayey, has laminae of gray silty shale
150	10	shale, brown, clayey, has laminae of greenish gray silty shale
160	10	shale, reddish brown, silty-clayey, has greenish gray inclusions, has small nodules of maroon limestone

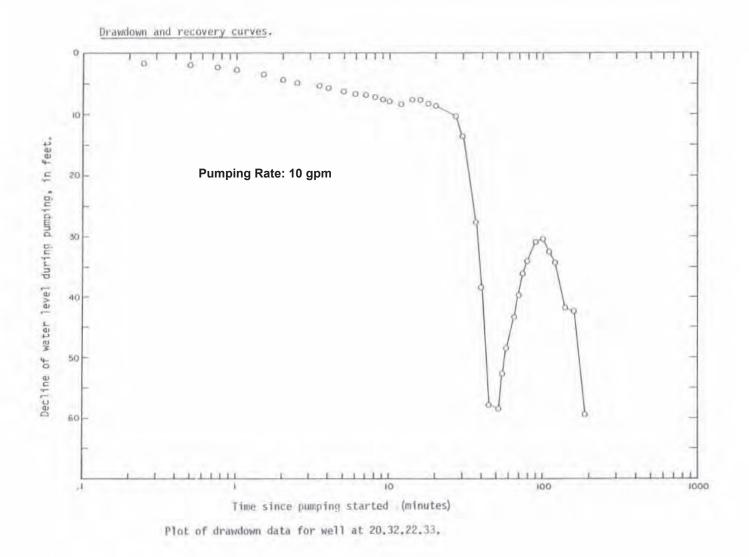
Total Depth - 170

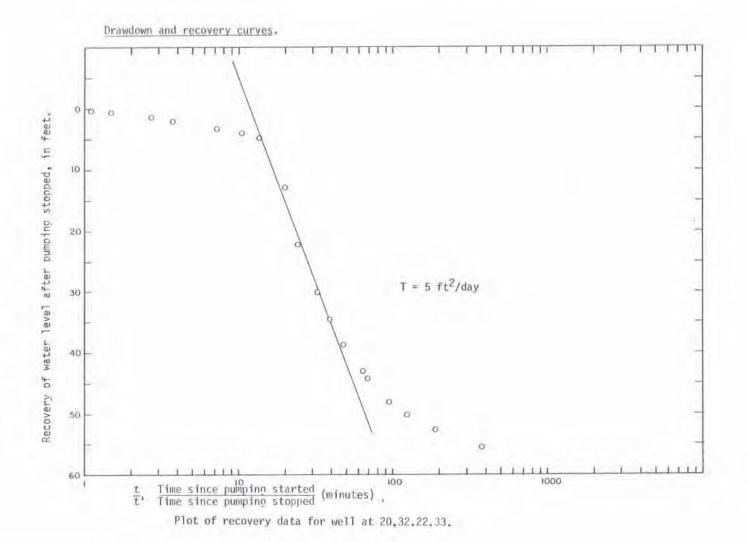
Driller encountered water at 35' (probably perched brine from Laguna Toston) Casing perforated - 150-179' below LSD Bailing results - estimates 12-15 gpm Tastes fresh Measurement: February 28, 1979: Water level - 30' below LSD

Gamma logs, continued.

U.S. GROLOGICAL SURVEY WATER ACEDUALES DIVISION 20.32.22.33

LOG READING LOCATION NO. 2 . 14. 18 22 . DAVER PROVILET B. L.M. SEC. 28 TH 203 THE 32 DECRATORIES How I W 1411 Fre 23 1979 DEPTH-ORILLER BORE SIZE 170 SEPTR-LOGGER 166 15. 10 01am._____1n._____Yr. to ______ Ft. _____ 01am.____ _16 . 44 INTERNAL LIBRER ____FP. 14 84. Ar. 10. Total 0(am.____)m. 51.00 in. *EX*2447 _ LOG MEAS. PHEM G.L. ELEVATIONS 18. àr. \$1.1 12. \$1, 18 _____F1; \# DEFLUERS HEAS. FROM C.L. TYPE FLUID 18/641 LEVEL DERETTY $t_{\rm T}$ NUCLEAR RADIATION ELECTRIC LOG DIANNEL NO. 1 7 1 4 REMARKS **JEFTA** ÷1. DEPTH RESISTIVITY -166 MALL CPS 5 IN. 5.7. 754 -0. w 100 SPAR VERTICAL SCALE R±/lin 1.0 CALIPER POSI F108 10.0 TINE CONSTRUCT Sec. VENTICAL SCALE Perin. Z LOSSING SPEED IL/WIN ZO HORYZUNTAL TEALE ----VERTICAL SCALE PERTIN 2.0 OTHER WATER LEVEL FL. 170 TEPTH 1 . SIGITAL RECORD. NANCE INPE LOC Goward




shale with limey lami

inae 🧮 🖂	+	14 100		<u></u>	÷		100	TF -
- S Aqui	fer	Ling	1112	.05	-7-			
1	一手	1 2	57		1.	and a		
-	1		L - 1		1			
N.	1 -	-			1			. 1.
13				1	1-1	1 5	=1=	
1			-	1.1	1 1	72.6		
3	÷	- 2 - 1		-1			-	Tores as
2	1.1	1 4 2 5		di-	10 MB (1100	-	
3	121		- 1	1	7	100	13	
10 20	30 4	v0 35					20	100
3	14				The second	1-2	-ite	
- I	perfor	cation						
1	1 10 10 10 10 10 10 10 10 10 10 10 10 10	2 32.0						
8	-	1						

Aquifer Test

Transmissivity 5 ft²/day 1

Albuquerque Analytical, Inc.

[505] 266-9106 [505] 294-6310 Nights

4115 Silver S.E. Albuquerque, N.M. 87108 No. 8804

Rec'd. Feb. 2, 1979

WATER ANALYSIS

Geohydrology & Associates 3225 Candelaria Road NE Address Owner Jean mr Grown 20,32,22,33 Appearance and Data Chemist

	mg/I	meq/l		mg/l	meq/l		
Aluminum			Beryllium (BeO'a)			Acidity	ppm
Ammonium			Bicarbonate			Alkalinity	ppm
Arsenic			Boron (BO ₂)	0.3		BOD	ppm
Barium			Bromide			Chlorine	ppm
Cadmium			Carbonate			COD	ppm
Calcium	105.		Chloride	75.		Color	PCU
Chromium (T)	10.02		Cyanide			Conductance	uho/cm
Cobalt	_		Fluoride			Dissolved O ₂	ppm
Copper			Hydroxide			Hardness	ppm
Gold			Iodide			H ₂ S	ppm
Iron			Molybdenum (MoO ₄)	+		Hydrazine	ppm
Lead			Nitrate			Odor	T.O.
Lithium			Nitrite			pH	
Magnesium	-92.		Phosphate (Tot.)			Phenols	ppm
Manganese			Phosphate (Meta)			Silica	ppm
Mercury			Phosphate (Ortho)			Solids (Tot.)	ppm
Nickel			Selenium (SeQ ₄)	224		Solids (Tot. Diss.)	3136 ppm
Potassium	33.5		Sulfate	550.		Solids (Tot. Susp.)	ppm
Silver	-102		Sulfite			Solids ()	ppm
Sodium	325.		Tellurium (TeO3)			Surfactant	ppm
Uranium (U3O8)			Vanadium			Turbidity*	JTU
Zinc			-chromium + 6	20.02		Volatile Acids	ppm

Lithologic Log, Completion and Hydrologic Data Well 20.32.31.13 (BLM Potash Study, Geohydrology Associates, 1979)

Top	Thickness	Description
0	10	sand, buff medium to fine texture, moderate caliche formation
10	13	<pre>sand, brown-buff, fine to medium texture, leached carbonate</pre>
23	13	shale, reddish brown, silty with clayey laminae
36	4	shale, greenish gray, silty, sandy
40	30	shale, brown, silty-clayey shale, reddish brown
70	10	silty-clayey, has a bed of greenish-gray siltstone
80	20	shale, brown, clayey
100	20	as above, but more silt
120	30	<pre>shale, brown, clayey, interbedded with limestone, brown, fine crystalline</pre>
150	10	shale, brown, clayey-silty
160	10	as above, but reddish brown
170	10	shale, brown, silty-clayey, has zones of superior cementation along bedding, probably calcite
180	10	shale, brown, clayey, fairly cohesive from cementation
190	10	shale, brown, varigated clayey to silty, has greenish gray inclusions
200	20	shale, greenish to gray, silty, interbedded with brown silty shale
220	20	shale, reddish brown silty zones of calcite cementation along bedding
240	10	shale, reddish brown, clayey

Well 20.32.31.13; drilled November 8, 1978

Well 20.32.31.13 continued

Total Depth - 250'

Water level-drilled dry, never encountered moist sediments Casing perforated - 230-250' below LSD Bailing results - bailing showed about 8' water in hole (probably residual from drilling) - dry; DTW 135.12' March 16, 1979

Gamma logs, continued.

			14.71 N.51	N RESOURC	CAL SURVEY		.31.13
		_			ADING		
DAKER	3	the second s		the second s	" 205 md 323	Contraction of the local division of the loc	and the second se
MOLECT		-					DATE Sei LT. 1979
DEPTH-ORILLER	250	1000			TRICKNESS		
DEPTH-LOGGEN	249	21.00	3 10.	- 24.	10 FL, <u>PV.C.</u>	21am	ft. toft
INTERNAL LOGGED					ra Fe		
LOS MEAS. FROM C.L		-			a. 10.	-	PERFORMATIONS
DRILLERS HEAS. YRON C				-	VEYEL SENSE	ty sh/Gel	Ft. toFt.
1	N	UCLEAR	R RADIATI	ON		EL	ECTRIC LOG
EXAMPLE: NO.	. 1	4	1		RENATION	DEPTH	M.
DEPTH	2.44		-			RESISTINITY	2546
AMAGE 199 3 14	185			1		S.P. PEN NO	a, mi
STAR	1.0	-				VENTICAL SC	ALE PERIN
P05+710#	10.0	-	1.000	-			CALIPER
TINE CONSTANT Las.	z			-		VERTICAL CO	ALE Felix
LOCOTHE SPEED TAUNIA	24					HOPIZONTAL	SCALE Infin
VENTICAL STALE VI/14	20					-	OTHER
WATER LEVEL Pt.	137					30879	Et
DIGITAL AECONO	1000	18				LANGE	
THE LOS	Commo	-					

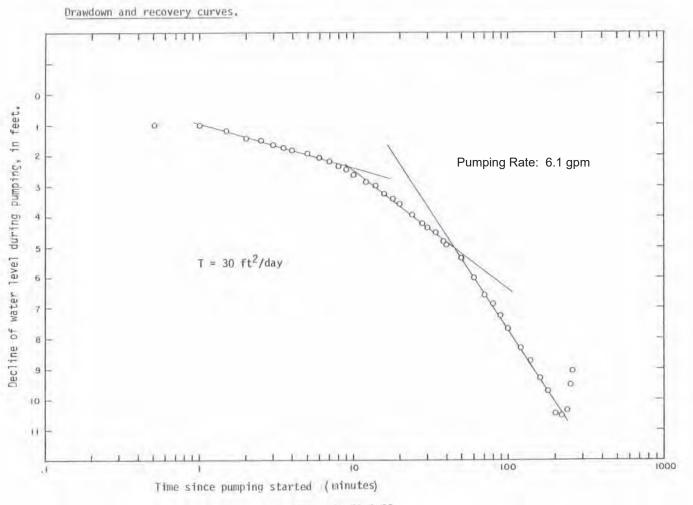
Count Por Second _ 4 -----1 1111 14 343 443 50 . 20 62) 70 50. -100 100 ÷... 1 Carlo I 100 137 ft: 02/28/79 W.L. Vinter ۵ * 30 30 - 40 40-- 50 60 70 32 Ż 201 perforation Dry upon completion Z

No Test

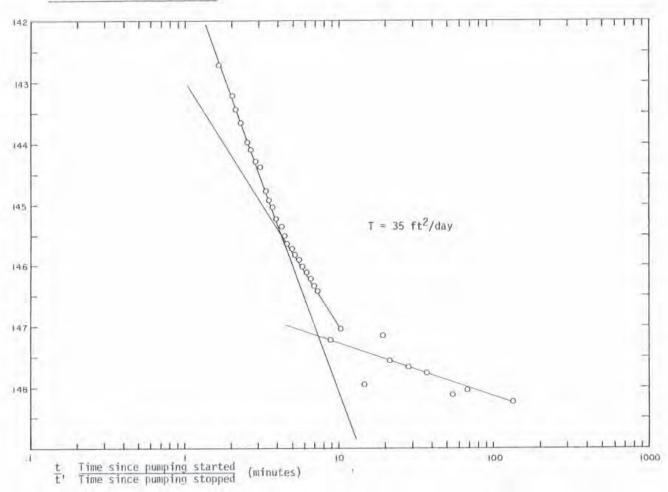
Тор	Thickness	Description
0	18	caliche, white, moderate to strong formation
18	12	sand, brown-buff, medium-fine texture,
		calcareous cement
30	10	shale, buff-red, silty, calcareous laminae
40	10	shale, red, clayey with some silt
50	10	shale, mottled red, greenish gray, has sandy laminae but mostly silt
60	10	shale, brown, silty, with clayey laminae, has greenish gray inclusions
70	10	<pre>shale, reddish, brown, silty, has good cement, some laminae (calcite) (these laminae are gray-red)</pre>
80	10	as above, but subequal amounts of silt and clay
90	10	shale, red, silty, ahs clayey laminae
100	20	shale, brownish red, silty, has laminae with calcite cement
120	10	as above, but more calcite zones (mineralized with crystalline calcite)
130	10	shale, brownish red, silty
140	10	as above, but has clayey laminae
150	10	shale, brownish red, silty, has calcite mineralized laminae
160	10	shale, red, clayey, has laminae of silty greenish gray shale
170	10	shale, reddish brown, silty
180	10	as above, but has laminae of greenish gray shale
190	10	shale, brownish red, subequal amounts of silt and clay, has greenish gray laminae, silty

Well 21.31. 3.22; drilled November 9, 1978

Total Depth - 200'


Driller encountered water at 150' below LSD Casing perforated 140-160' below LSD Bailing results - estimates 8 gpm Water level on completion - 128' below LSD Measurement: February 28, 1979: Water level - 142' below LSD

Gamma logs, continued.


silty shale


		1	ALP	uquerque.	CAL SURVEY		
					LADING	LOCATION NO. 3	
weld.		B.C.N			#. 21 5 MG. 32 5		
40/627		41	82.	COLUMN		N AV es SATE	Feb 18 1979
OPTH-SHILLOR	200		7 m.		10 PL. P.V.C 1		
EPTH-LOGGER	199	01am-	10,	F¢.	to ft 1	1 im1 m	Ft. 10 Ft.
NTERNAL LOGGES	Tetal	51.en	11.	Ft.	10 Pt		FL. TO TE.
DE MEAS. FROM G.C	. FLEN	ATIONS AN		UF.	·BL 75		Ft. 10
WHILLERS HEAS. FROM C	L TYPE	FLUID.			LEVEL DERSITY		
	N	UCLEAR	RADIAT	NOI		ELECTR	
DAABAEL NO.	5 K.	1	1		RENARKS	SEPTA.	ft.
10HTM	199		-	-		#5515714179	them.
TANKE CPS 5 In:	108	1	-	-		S.P. PER NO.	-
57 AB	1.7		-	-		VENTICAL SCALE	71/1×
POSITION	10.0	1	-	-			PER
TINE CONSTANT Sec.	2		-	-		YERTICAL SCALE	
LOGING SPEED FL/MIN	20	-	-	-		HORIZONTAL SCALE	and an owner of the second
VERTICAL SCALE FE/14	20	-	-	-			It.
WITER LEVEL PT.	142	-	-	-		SEPTN ANHEE	n
DIGITAL RECORD	-	-	-	-	-	overt.	
TINE LOS	Gauras	-	-			_	1
and the second se	-						
W.M.M.					Beak		
man My Jun My	M						
Mary My Mary Mar	ß						
Mary M. Land M. Marken		-			100		2 ft. 02
Munum In Marken Mark		-					2 ft. 02
Mr. Contraction		-		perf	100		12 ft. 02

Aquifer Test Transmissivity 35 ft²/day

Plot of drawdown data for well at 21.31.3.22,

Drawdown and recovery curves.

Albuquerque Analytical, Inc.

[505] 266-9106 [505] 294-6310 Nights

4115 Silver S.E. Albuquerque, N.M. 87108 No. 8804

Rec'd Feb. 2, 1979

ï

1 ...

+ - - - -

WATER ANALYSIS

Owner _ Geohydrology & Asucciates 3225 Candelaria Road NE Address 21.31.3.22 Appearance and Data Chemist en Dar 22 mg/l meq/l mg/L meq/l Beryllium (BeO3) Acidity Aluminum ppm Alkalinity Ammonium Bicarbonate ppm 10.05 BOD Boron (BO2) Arsenic ppm

A REPORTED		10101 (552)	And a state of the	41-12-64		- Popula
Barium		Bromide		 Chlorine		ppm
Cadmium		Carbonate		 COD		ppm
Calcium	19.9	Chloride	18.	 Color		PCU
Chromium (1)	20.02	Cyanide		 Conductance		uho/cm
Cobalt		Fluoride		 Dissolved O ₂		ppm
Copper		Hydroxide		 Hardness		ppm
Gold		lodide		 H ₂ S		ppm
Iron		Molybdenum (MoO ² ₄)		 Hydrazine		ppm
Lead		Nitrate		 Odor		T.O.
Lithium		Nitrite		 pH		
Magnesium	17.5	Phosphate (Tot.)		 Phenols		ppm
Manganese		Phosphate (Meta)		 Silica		ppm
Mercury		Phosphate (Ortho)		 Solids (Tot.)	- 1.01	ppm
Nickel		Selenium (SeO ₄)		 Solids (Tot. Diss.)	424.	ppm
Potassium	3.55	Sulfate	20.	 Solids (Tot. Susp.)		ppm
Silver		Sulfite		 . Solids ()		ppm
Sodium	19.6	Tellurium (TeO3)		 Surfactant		ppm
Uranium (U3O8)		Vanadium		 Turbidity'		ITU
Zinc		chromium + 6	20.02	Volatile Acids		ppm

ATTACHMENT IV.1.B

INTERGRATED LIST, STATE OF NEW MEXICO CLEAN WATER ACT

2018-2020 State of New Mexico Clean Water Act Section 303(d)/ Section 305(b) Integrated Report

Appendix A 303(d)/305(b) List

Prepared by:

New Mexico Environment Department Surface Water Quality Bureau 1190 St. Francis Drive Santa Fe, New Mexico 87505 https://www.env.nm.gov/surface-water-quality/

III. Abbreviations in Assessment Unit Names

The size of the assessment unit name is limited to 60 characters by the database. Therefore, the following abbreviations were used when necessary:

abv	=	above
AZ	=	Arizona
blw	=	below
bnd	=	boundary
BNSF	=	Burlington Northern – Santa Fe
Campgrd	=	Campground
Ck	=	Creek
Cny	=	Canyon
СО	=	Colorado
CR	=	County Road
confl	=	confluence
Div	=	Diversion
E	=	East
Fk	=	Fork
FS	=	Forest Service (usually road)
hdwtrs	=	headwaters
HWY	=	Highway
I	=	Interstate highway
Irr	=	irrigation
LANL	=	Los Alamos National Laboratory
Μ	=	Middle
mi	=	mile
Ν	=	North
NM	=	New Mexico
nr	=	near
NWR	=	National Wildlife Refuge
ОК	=	Oklahoma
prt	=	Portion (i.e., reaches)
R	=	River or Rio
rd	=	road
RR	=	railroad
Rsvr	=	Reservoir
S	=	South
SFNF	=	Santa Fe National Forest
Spr	=	Spring
SR	=	state road
trib	=	tributary
ТХ	=	Texas
VCNP	=	Valles Caldera National Preserve
xing	=	crossing
USFS	=	United States Forest Service
W	=	West
WWTP	=	waste water treatment plant

2018 State of New Mexico §303(d) List of Impaired Surface Waters

(Table of Contents of Category 5 waters on the following Integrated §303(d)/§305(b) List)

HUC: 11040001 - Cimarron Headwaters

- Dry Cimarron R (Perennial reaches OK bnd to Long Canyon)
- Dry Cimarron River (Long Canyon to Oak Ck)
- Dry Cimarron River (Oak Creek to headwaters)
- Long Canyon (Perennial reaches abv Dry Cimarron)

HUC: 11080001 - Canadian Headwaters

- Canadian River (Chicorica Creek to CO border)
- Doggett Creek (Raton Creek to headwaters)
- East Fork Chicorica Creek (Chicorica Creek to headwaters)
- Lake Maloya
- Maxwell Lake 13
- Raton Creek (Chicorica Creek to headwaters)
- Stubblefield Lake
- Tinaja Creek (West Fork Tinaja Creek to headwaters)
- VanBremmer Creek (HWY 64 to headwaters)
- Vermejo River (Rail Canyon to York Canyon)
- York Canyon (Vermejo R to Left Fork York Canyon)

HUC: 11080002 - Cimarron

- American Creek (Cieneguilla Creek to headwaters)
- Cimarron River (Canadian River to Ponil Creek)
- Cimarron River (Cimarron Village to Turkey Creek)
- Cimarron River (Turkey Creek to Eagle Nest Lake)
- Eagle Nest Lake
- Greenwood Creek (Middle Ponil Creek to headwaters)
- McCrystal Creek (North Ponil to headwaters)
- Middle Ponil Creek (Greenwood Creek to headwaters)
- North Ponil Creek (Seally Canyon to headwaters)
- Ponil Creek (Cimarron River to HWY 64)
- Ponil Creek (HWY 64 to confl of North and South Ponil)
- Rayado Creek (Cimarron River to Miami Lake Diversion)
- Saladon Creek (Cieneguilla Creek to headwaters
- Shuree Pond (North)
- Springer Lake

HUC: 11080003 - Upper Canadian

Charette Lake (Lower)

- Charette Lake (Upper)
- Wheaton Creek (Manuelas Creek to headwaters)

HUC: 11080004 - Mora

- Coyote Creek (Black Lake to headwaters)
- Coyote Creek (Mora River to Amola Ridge)
- Coyote Creek (Williams Canyon to Black Lake)
- Mora River (USGS gage east of Shoemaker to HWY 434)
- Rito Cebolla (Mora River to Rito Morphy)
- Sapello River (Mora River to Arroyo Jara)

HUC: 11080005 - Conchas

- Conchas Reservoir
- Conchas River (Conchas Reservoir to Salitre Creek)

HUC: 11080006 - Upper Canadian-Ute Reservoir

- Canadian River (TX border to Ute Reservoir)
- Canadian River (Ute Reservoir to Conchas Reservoir)
- Pajarito Creek (Perennial prt Canadian R to Vigil Canyon)
- Ute Reservoir

HUC: 11080008 - Revuelto

• Revuelto Creek (Canadian River to headwaters)

HUC: 11100101 - Upper Beaver

Clayton Lake

HUC: 13010005 - Conejos

- Canada Tio Grande (Rio San Antonio to headwaters)
- Rio San Antonio (CO border to Montoya Canyon)
- Rio San Antonio (Montoya Canyon to headwaters)

HUC: 13020101 - Upper Rio Grande

- Acid Canyon (Pueblo Canyon to headwaters)
- Arroyo del Palacio (Rio Grande to headwaters)
- Bitter Creek (Red River to headwaters)
- Canada Agua (Arroyo La Mina to headwaters)
- DP Canyon (Grade control to upper LANL bnd)
- DP Canyon (Los Alamos Canyon to grade control)
- Embudo Creek (Canada de Ojo Sarco to Picuris Pueblo bnd)

- Embudo Creek (Rio Grande to Canada de Ojo Sarco)
- Graduation Canyon (Pueblo Canyon to headwaters)
- Grassy Creek (Comanche Creek to headwaters)
- Los Alamos Canyon (DP Canyon to upper LANL bnd)
- Los Alamos Canyon (NM-4 to DP Canyon)
- Pioneer Creek (Red River to headwaters)
- Pojoaque River (San Ildefonso bnd to Pojoaque bnd)
- Pueblo Canyon (Acid Canyon to headwaters)
- Pueblo Canyon (Los Alamos Canyon to Los Alamos WWTP)
- Pueblo Canyon (Los Alamos WWTP to Acid Canyon)
- Red River (Placer Creek to headwaters)
- Red River (Rio Grande to Placer Creek)
- Rio Fernando de Taos (R Pueblo d Taos to USFS bnd at canyon)
- Rio Grande (Embudo Creek to Rio Pueblo de Taos)
- Rio Grande (Ohkay Owingeh bnd to Embudo Creek)
- Rio Grande (Red River to CO border)
- Rio Grande (Santa Clara Pueblo bnd to Ohkay Owingeh bnd)
- Rio Grande del Rancho (R Pueblo de Taos to Rito de la Olla)
- Rio Pueblo (Picuris Pueblo bnd to headwaters)
- Rio Pueblo de Taos (Arroyo del Alamo to R Grande del Rancho)
- Rio Pueblo de Taos (Rio Grande to Arroyo del Alamo)
- Rio Santa Barbara (non-pueblo Embudo Ck to USFS bnd)
- Santa Cruz Lake
- Santa Cruz River (San Clara Pueblo bnd to Santa Cruz Dam)
- South Fork Acid Canyon (Acid Canyon to headwaters)
- Unnamed Arroyo (Rio Pueblo de Taos to Taos WWTP)
- Vidal Creek (Comanche Creek to headwaters)
- Walnut Canyon (Pueblo Canyon to headwaters)

HUC: 13020102 - Rio Chama

- Abiquiu Creek (Rio Chama to headwaters)
- Abiquiu Reservoir
- Arroyo del Toro (Rio Chama to headwaters)
- Burns Lake (Rio Arriba)
- Canada de Horno (Rio Chama to headwaters)
- Canjilon Ck (Perennial portions Abiquiu Rsrv to headwaters)
- Canones Creek (Abiquiu Rsvr to Chihuahuenos Ck)
- Canones Creek (Rio Chama to Jicarilla Apache bnd)
- Chihuahuenos Creek (Canones Creek to headwaters)

- Coyote Creek (Rio Puerco de Chama to headwaters)
- El Rito Creek (Perennial reaches above HWY 554)
- El Rito Creek (Perennial reaches below HWY 554)
- Heron Reservoir
- Hopewell Lake
- Placer Creek (Hopewell Lake to headwaters)
- Poleo Creek (Rio Puerco de Chama to headwaters)
- Rio Nutrias (Perennial prt Rio Chama to headwaters)
- Rio Ojo Caliente (Arroyo El Rito to Rio Vallecitos)
- Rio Puerco de Chama (Abiquiu Reservoir to HWY 96)
- Rio Tusas (Perennial prt Rio Vallecitos to headwaters)
- Rio Vallecitos (Rio Tusas to headwaters)
- Rio del Oso (Perennial prt Rio Chama to headwaters)
- Rito Encino (Rio Puerco de Chama to headwaters)
- Rito de Tierra Amarilla (HWY 64 to headwaters)
- Rito de Tierra Amarilla (Rio Chama to HWY 64)
- Sixto Creek (Rio Chamita to CO border)

HUC: 13020201 - Rio Grande-Santa Fe

- Ancho Canyon (North Fork to headwaters)
- Ancho Canyon (Rio Grande to North Fork Ancho)
- Arroyo de la Delfe (Pajarito Canyon to headwaters)
- Canada del Buey (within LANL)
- Canon de Valle (LANL gage E256 to Burning Ground Spr)
- Canon de Valle (below LANL gage E256)
- Canon de Valle (upper LANL bnd to headwaters)
- Chaquehui Canyon (within LANL)
- Mortandad Canyon (within LANL)
- North Fork Ancho Canyon (Ancho Canyon to headwaters)
- Pajarito Canyon (Lower LANL bnd to Two Mile Canyon)
- Pajarito Canyon (Two Mile Canyon to Arroyo de La Delfe)
- Pajarito Canyon (upper LANL bnd to headwaters)
- Pajarito Canyon (within LANL above Starmers Gulch)
- Potrillo Canyon (above Water Canyon)
- Rio Grande (Cochiti Reservoir to San Ildefonso bnd)
- Rio Grande (non-pueblo Angostura Div to Cochiti Rsrv)
- Rito de los Frijoles (Rio Grande to headwaters)
- Sandia Canyon (Sigma Canyon to NPDES outfall 001)
- Sandia Canyon (within LANL below Sigma Canyon)

- Santa Fe River (Cienega Creek to Santa Fe WWTP)
- Santa Fe River (Cochiti Pueblo bnd to Cienega Creek)
- Santa Fe River (Guadalupe St to Nichols Rsvr)
- Santa Fe River (Nichols Reservoir to headwaters)
- Santa Fe River (Santa Fe WWTP to Guadalupe St)
- Ten Site Canyon (Mortandad Canyon to headwaters)
- Three Mile Canyon (Pajarito Canyon to headwaters)
- Two Mile Canyon (Pajarito to headwaters)
- Water Canyon (upper LANL bnd to headwaters)
- Water Canyon (within LANL below Area-A Cyn)

HUC: 13020202 - Jemez

- Calaveras Creek (Rio Cebolla to headwaters)
- Clear Creek (Rio de las Vacas to San Gregorio Lake)
- Clear Creek (San Gregorio Lake to headwaters)
- East Fork Jemez (San Antonio Creek to VCNP bnd)
- East Fork Jemez (VCNP to headwaters)
- Fenton Lake
- Jaramillo Creek (East Fork Jemez to headwaters)
- Jemez River (Jemez Pueblo bnd to Rio Guadalupe)
- Jemez River (Soda Dam nr Jemez Springs to East Fork)
- Jemez River (Zia Pueblo bnd to Jemez Pueblo bnd)
- La Jara Creek (East Fork Jemez to headwaters)
- Redondo Creek (Sulphur Creek to headwaters)
- Rio Cebolla (Fenton Lake to headwaters)
- Rio Cebolla (Rio de las Vacas to Fenton Lake)
- Rio Guadalupe (Jemez River to confl with Rio Cebolla)
- Rio de las Vacas (Clear Creek to headwaters)
- Rito Penas Negras (Rio de las Vacas to headwaters)
- Rito de las Palomas (Rio de las Vacas to headwaters)
- Rito de los Indios (San Antonio Creek to headwaters)
- San Antonio Creek (East Fork Jemez to VCNP bnd)
- San Antonio Creek (VCNP bnd to headwaters)
- San Gregorio Lake
- Sulphur Creek (Redondo Creek to headwaters)
- Sulphur Creek (San Antonio Creek to Redondo Creek)
- Vallecito Ck (Jemez Pueblo bnd to Div abv Ponderosa)
- Vallecito Ck (Perennial Prt Div abv Ponderosa to headwaters)

HUC: 13020203 - Rio Grande-Albuquerque

- Rio Grande (Arroyo de las Canas to Rio Puerco)
- Rio Grande (Isleta Pueblo boundary to Tijeras Arroyo)
- Rio Grande (Rio Puerco to Isleta Pueblo bnd)
- Rio Grande (San Marcial at USGS gage to Arroyo de las Canas)
- Rio Grande (Tijeras Arroyo to Alameda Bridge)
- Rio Grande (non-pueblo Alameda Bridge to HWY 550 Bridge)

HUC: 13020204 - Rio Puerco

- Rio Puerco (Arroyo Chijuilla to northern bnd Cuba)
- Rio Puerco (non-pueblo Rio Grande to Arroyo Chico)

HUC: 13020207 - Rio San Jose

- Arroyo del Valle (Laguna Pueblo bnd to headwaters)
- Bluewater Lake

HUC: 13020209 - Rio Salado

• Rio Salado (Rio Grande to Alamo Navajo bnd)

HUC: 13020211 - Elephant Butte Reservoir

- Elephant Butte Reservoir
- Rio Grande (Elephant Butte Rsvr to San Marcial at USGS)

HUC: 13030101 - Caballo

- Caballo Reservoir
- Las Animas Ck (perennial prt Animas Gulch to headwaters)
- Rio Grande (Caballo Reservoir to Elephant Butte Reservoir)

HUC: 13030102 - El Paso-Las Cruces

Rio Grande (International Mexico bnd to Anthony Bridge)

HUC: 13030202 - Mimbres

- Bear Canyon Reservoir
- Gallinas Creek (Mimbres River to headwaters)
- San Vicente Creek (Perennial prt Maudes Cny to Silva Creek)

HUC: 13050003 - Tularosa Valley

- Dog Canyon Creek (perennial portions)
- Fresnal Canyon (La Luz Creek to Salado Canyon)
- Karr Canyon (Fresnal Canyon to headwaters)

- Lake Holloman
- Nogal Creek (Tularosa Creek to Mescalero Apache bnd)

HUC: 13050004 - Salt Basin

• Sacramento R (Perennial prt Scott Able Canyon to headwaters)

HUC: 13060001 - Pecos Headwaters

- El Porvenir Creek (Gallinas River to SFNF bnd)
- El Rito (Pecos River to headwaters)
- Gallinas River (Pecos River to Aguilar Creek)
- Gallinas River (Perennial prt Aguilar Creek to Pecos Arroyo)
- Glorieta Ck (Perennial prt Pecos R to Glorieta CC WWTP)
- McAllister Lake
- Pecos River (Sumner Reservoir to Santa Rosa Reservoir)
- Pecos River (Tecolote Creek to Villanueva State Park)
- Santa Rosa Reservoir
- Storrie Lake
- Sumner Reservoir
- Tecolote Creek (I-25 to Blue Creek)
- Tres Lagunas (Northeast)

HUC: 13060003 - Upper Pecos

• Pecos River (Salt Creek to Crockett Draw)

HUC: 13060007 - Upper Pecos-Long Arroyo

- Figure Eight Lake
- Lake Van
- Pecos River (Eagle Creek to Rio Felix)
- Pecos River (Rio Felix to Rio Hondo)
- Pecos River (Rio Hondo to Salt Creek)
- Pecos River (Rio Penasco to Eagle Creek)

HUC: 13060008 - Rio Hondo

- Grindstone Canyon Reservoir
- Rio Bonito (Perennial prt NM 48 near Angus to headwaters)

HUC: 13060010 - Rio Penasco

• Agua Chiquita (perennial portions McEwan Cny to headwaters)

HUC: 13060011 - Upper Pecos-Black

- Brantley Reservoir
- Lower Tansil Lake/Lake Carlsbad (Carlsbad Municipal Lake)
- Pecos River (Avalon Reservoir to Brantley Reservoir)
- Pecos River (Black River to Six Mile Dam Lake)
- Pecos River (Brantley Reservoir to Rio Penasco)
- Pecos River (Six Mile Dam Lake to Lower Tansil Lake)
- Pecos River (TX border to Black River)
- Six Mile Dam Lake

HUC: 14080101 - Upper San Juan

- Navajo Reservoir
- Navajo River (Jicarilla Apache Nation to CO border)

HUC: 14080104 - Animas

- Animas River (Estes Arroyo to So. Ute Indian Tribe bnd)
- Lake Farmington (Beeline Reservoir)

HUC: 14080105 - Middle San Juan

- La Plata R (McDermott Arroyo to So. Ute Indian Tribe bnd)
- La Plata River (San Juan River to McDermott Arroyo)
- San Juan River (Navajo bnd at Hogback to Animas River)

HUC: 15020003 - Carrizo Wash

Quemado Lake

HUC: 15020004 - Zuni

- McGaffey Lake
- Ramah Reservoir

HUC: 15020006 - Upper Puerco

• Puerco River (non-tribal AZ border to Gallup WWTP)

HUC: 15040001 - Upper Gila

- Beaver Creek (Perennial prt Taylor Ck to Mule Canyon)
- East Fork Gila River (Gila River to headwaters)
- Gila River (Mogollon Ck to East and West Forks of Gila R)
- Gilita Creek (Middle Fork Gila R to Willow Creek)
- Iron Creek (Middle Fork Gila R to headwaters)
- Lake Roberts
- Middle Fork Gila River (Canyon Creek to headwaters)

- Middle Fork Gila River (West Fork Gila R to Canyon Creek)
- Snow Lake
- Taylor Creek (Perennial reaches Beaver Creek to headwaters)
- Turkey Creek (Gila River to headwaters)
- West Fork Gila R (East Fork to Middle Fork)
- West Fork Gila R (Middle Fork to headwaters)
- Willow Creek (Gilita Creek to headwaters)

HUC: 15040002 - Upper Gila-Mangas

- Bill Evans Lake
- Gila River (AZ border to Red Rock)
- Gila River (Mangas Creek to Mogollon Creek)
- Gila River (Red Rock to Mangas Creek)
- Mangas Creek (Gila River to Mangas Springs)

HUC: 15040004 - San Francisco

- Centerfire Creek (San Francisco R to headwaters)
- Mule Creek (San Francisco R to Mule Springs)
- Negrito Creek (Tularosa River to confl of N and S forks)
- San Francisco River (Box Canyon to Whitewater Creek)
- San Francisco River (Centerfire Creek to AZ border)
- San Francisco River (NM 12 at Reserve to Centerfire Creek)
- San Francisco River (Whitewater Ck to Pueblo Ck)
- Trout Creek (Perennial prt San Francisco R to headwaters)
- Tularosa River (San Francisco R to Apache Creek)

Uses Abbreviation Key					
ColdWAL	Coldwater Aquatic Life				
CoolWAL	Coolwater Aquatic Life				
DWS	Domestic Water Supply				
FC	Fish Culture				
HQColdWAL	High Quality Coldwater Aquatic Life				
IW Storage	Industrial Water Storage				
IW Supply	Industrial Water Supply				
IRR	Irrigation				
IRR Storage	Irrigation Storage				
LAL	Limited Aquatic Life				
LW	Livestock Watering				
MCWAL	Marginal Coldwater Aquatic Life				
MWWAL	Marginal Warmwater Aquatic Life				
MWS	Municipal Water Storage				
PC	Primary Contact				
PWS	Public Water Supply				
sc	Secondary Contact				
WWAL	Warmwater Aquatic Life				
WH	Wildlife Habitat				

Williams Sink (E	<mark>iddy</mark>)		AU IR CATEGORY	LOCATION DESCRIPTION			
			3/3A	HUC: 13060011	Upper Pecos-Black		
AU ID	WQS REF	WATER TYPE	SIZE	ASSESSED	MONITORING SCHEDULE		
NM-9000.B_109	20.6.4.98	LAKE, PLAYA	210.11 ACRES	1998	2021		
USE	ATTAINMENT	CAUSE(S)	FIRST LISTED	TMDL DATE	PARAMETER IR CATEGORY		
LW	Not Assessed						
MWWAL	Not Assessed						
PC	Not Assessed						
WH	Not Assessed						
AU Comment: Pot	ash activities have le	ead to hypersaline conditions which	likely make livestock	watering not attain	nable or existing.		
		HUC: 13	070002 Delav	ware			
Delaware River	(Pecos River to T	X border)	AU IR CATEGORY	LOCATION DES	CRIPTION		
			2	HUC: 13070002	Delaware		
AU ID	WQS REF	WATER TYPE	SIZE	ASSESSED	MONITORING SCHEDULE		
NM-2202.A_20	20.6.4.202	STREAM, PERENNIAL	8.43 MILES	2006	2019		
USE	ATTAINMENT	CAUSE(S)	FIRST LISTED	TMDL DATE	PARAMETER IR CATEGORY		
IW Supply	Not Assessed						
IRR	Fully Supporting						
LW	Fully Supporting						
PC	Fully Supporting						
WWAL	Fully Supporting						
WH	Fully Supporting						

ATTACHMENT IV.1.C ON-SITE SHEET FLOW

ATTACHMENT IV.1.C – On-site Sheet Flow

Site entry road looking east

ATTACHMENT IV.1.C – On-site Sheet Flow

Looking west from NW quadrant and rail road

ATTACHMENT IV.1.C – On-site Sheet Flow

Sheet flow looking north from NE quadrant

June 2019

TABLE OF CONTENTS

Section No.		Title	Page
1.0	INTR	ODUCTION	IV.1-1
1.1	Purp	00se	IV.1-1
1.2	Site	Location	IV.1-1
1.3		lity Description	
2.0	REGI	ONAL GEOLOGY AND HYDROLOGY	IV.1-2
2.1	Phys	siographic Setting	IV.1-2
2.2		ctural Setting	
2.3	Surf	ace Geology and Shallow Stratigraphy	IV.1-4
2.4	Sou	rces of Hydrogeologic Data	IV.1-5
2	.4.1	Permitted and Pre-basin Water Wells	
2	.4.2	Area Borings and Monitoring Wells	
2	.4.3	Lea Land Site Boring and Groundwater Monitoring Well Installation	IV.1-7
2	.4.4	Groundwater Sampling and Analyses	IV.1-7
2.5		er-Bearing Geologic Units	
3.0	SITE	SPECIFIC GEOLOGY AND HYDROGEOLOGY	IV.1-8
3.1	Site	Investigation, Data Compilation and Interpretation	IV.1-8
3.2	Faci	lity Geotechnical Evaluation	IV.1-10
3.3		lity Geology	
3.4	Faci	lity Hydrogeology	IV.1 - 11
3	.4.1	Santa Rosa Sandstone	IV.1-12
3	.4.2	Shallow Saturation in the Dewey Lake Redbeds	IV.1-12
3	.4.3	Shallow Alluvium	IV.1-13
3	.4.4	Groundwater Occurrence and Movement	
4.0	REG	JLATORY SITING REQUIREMENTS	IV.1-14
4.1	Stre	ams, Springs, Watercourses and Water Wells Within One Mile of the Site	IV.1-15
4.2	Labo	pratory Analyses of Shallow Groundwater Samples	IV.1-15
4.3	Depth, Formation Name, Type and Thickness of the Shallowest Fresh Water		
		ifer	
4.4		ology of Stratigraphic Units Above the Dewey Lake Redbeds at the Facility	-
4.5		logic Cross-Sections	
4.6		entiometric Surface of Shallow Groundwater	
4.7	•	th to Shallow Fresh Groundwater	
5.0			
6.0	REFE	ERENCES	IV.1-18

LIST OF FIGURES

Figure No.	Title
IV.2.1	REGIONAL PHYSIOGRAPHY
IV.2.2	MAJOR STRUCTURAL FEATURES
IV.2.3	REGIONAL SURFACE GEOLOGY AND GENERAL STRATIGRAPHY
IV.2.4	SURFACE GEOLOGY MAP
IV.2.5	POST-PENNSYLVANIAN STRATIGRAPHY UNITS
IV.2.6	WELL LOCATION MAP
IV.2.7	HYDROGEOLOGIC CROSS-SECTION A-A'
IV.2.8	FACILITY BASEGRADES AND PROPOSED VADOSE ZONE WELLS
IV.2.9	POTENTIOMETRIC SURFACE DEWEY LAKE REDBEDS
IV.2.10	LOCAL POTENTIOMETRIC SURFACE
IV.2.11	SHALLOW LOCAL HYDROGEOLOGIC CROSS-SECTION B-B'
IV.2.12	1 MILE RADIUS MAP

LIST OF TABLES

Title

IV.2.1	SUMMARY DATA FROM WELLS AND BORINGS IN THE VICINITY OF THE LEA LAND SWMF
IV.2.2.	WATER QUALITY DATA SUMMARY

IV.2.3 SOIL LABORATORY ANALYSIS SUMMARY

LIST OF ATTACHMENTS

Attachment No. Title WELL LOGS AND INFORMATION ON BLM 1979 POTASH STUDY IV.2.A IV.2.B WELL LOGS AND INFORMATION ON CRI FACILITY INVESTIGATIONS IV.2.C WELL LOG ON 1953 USGS POTASH EXPLORATORY COREHOLE IV.2.D GEOTECHNICAL BOREHOLE LOGS, LEA LAND SITE INVESTIGATION IV.2.E GROUNDWATER MONITORING WELL LOGS, LEA LAND SITE IV.2.F NMOSE WELL RECORDS FOR NEARBY PERMITTED WELLS IV.2.G GROUNDWATER SAMPLE LAB ANALYTICAL REPORTS, LEA LAND SITE, 2010 AND 2018 MONITORING EVENTS

Table No.

1.0 INTRODUCTION

Lea Land LLC (the Facility) is an existing Surface Waste Management Facility (SWMF) providing oil field waste solids (OFWS) disposal services. The existing Lea Land SWMF is subject to regulation under the New Mexico Oil and Gas Rules, specifically 19.15.9.711 and 19.15.36 NMAC, administered by the Oil Conservation Division (OCD) of the NM Energy, Minerals, and Natural Resources Department (NMEMNRD). This document is a component of the "Application for Permit Modification" that proposes continued operations of the existing approved waste disposal unit; lateral and vertical expansion of the landfill via the construction of new double-lined cells; and the addition of waste processing capabilities. The proposed Facility is designed in compliance with 19.15.36 NMAC, and will be constructed and operated in compliance with a Surface Waste Management Facility Permit issued by the OCD. The Facility is owned by, and will be constructed and operated by, Lea Land LLC.

The Lea Land SWMF is one of the most recently designed facilities to meet the new more stringent standards that, for instance, mandate double liners and leak detection for land disposal. The new services that Lea Land will provide needed resources to fill an existing void in the market for technologies that exceed current OCD requirements.

1.1 Purpose

This section provides compliance demonstrations for the Siting Criteria for Surface Waste Management Facilities specified in the NM Oil and Gas Rules, 19.15.36.13.A-C NMAC. These requirements include depth to groundwater; and proximity of watercourse, floodplains, wetlands, mines, residences/institutions, and unstable areas. The proposed Facility site meets the Siting Requirements applicable to a Surface Waste Management Facility (i.e., 19.15.36.13.A-C NMAC). Supplemental studies were also conducted for ecological resources, with positive results.

1.2 Site Location

The Lea Land site is located approximately 27 miles northeast of Carlsbad, straddling US Highway 62-180 (Highway 62) in Lea County, NM. The Lea Land site is comprised of a 642-acre ± tract of land encompassing Section 32, Township 20 South, Range 32 East, Lea County, NM (**Figure II.1.1**). Site access is currently provided on the south side of US Highway 62. The coordinates for

the approximate center of the Lea Land site are Latitude 32°31'46.77" and Longitude - 103°47'18.25".

1.3 Facility Description

The Lea Land SWMF comprises approximately 463 acres ± of the 642-acre ± site, and will include two main components: an oil field waste Processing Area and an oil field waste solids Landfill, as well as related infrastructure (i.e., access, waste receiving, stormwater management, etc.). Oil field wastes are delivered to the Lea Land SWMF from oil and gas exploration and production operations in southeastern NM and west Texas. The Permit Plans (**Attachment III.1.A**) identify the locations of the Processing Area and Landfill Disposal facilities. The proposed facilities are detailed in **Table II.1.2** (**Volume II.1**), and are anticipated to be developed in four primary phases as described in **Table II.1.3** (**Volume II.1**).

2.0 REGIONAL GEOLOGY AND HYDROLOGY

The Lea Land SWMF is situated in a mature oil and gas producing province in the Permian Basin of southeastern New Mexico. The site is also within a mature potash mining and refining province, and is located approximately 10.25 miles north of the Waste Isolation Pilot Project (WIPP) site. Pursuant to these activities, the regional geology and hydrogeology near the Lea Land SWMF has been studied extensively by numerous professionals (Figures, Tables, and Attachments).

2.1 Physiographic Setting

The proposed surface waste management Facility is located near the boundary between the Southern High Plains Section (Llano Estacado) and the Pecos Valley Section of the Great Plains Physiographic Province (Hawley, 1993b). The Great Plains Physiographic Province is characterized by low relief and lightly deformed Permian and Triassic sedimentary bedrock units overlain by variable thicknesses of late Tertiary and Quaternary age unconsolidated to semi-consolidated deposits. These strata consist of sand, silt, clay, gravel and calcrete (caliche) of the Ogallala Formation and younger Quaternary deposits of unconsolidated or aeolian sands and silts. These conditions are confirmed by focused on-site drilling, as well as local subsurface studies.

Physiography of the vicinity of the Lea Land SWMF in southern Lea County and eastern Eddy County was described by Nicholson and Clebsch (1961) and Kelly (1979) and is summarized in the physiographic map in **Figure IV.2.1**. The site is situated in the Upper Pecos-Black watershed (USGS cataloging Unit 1306011).

The Facility is located near the southwestern terminus of the Querecho Plains, which is a broad and relatively flat area that slopes gently from Mescalero Ridge at the western terminus of the Llano Estacado toward the Pecos River, approximately 80 miles to the west of Mescalero Ridge. The Querecho Plains are generally underlain by thin accumulations of unconsolidated sand, silt, gravel and caliche that mantle Triassic age redbeds and sandstones. The Tertiary Ogallala Formation, which is a thick sequence of unconsolidated to semi-consolidated sand, silt and gravel forms the caprock on Mescalero Ridge. Ogallala sediments were deposited on an erosional surface incised into the Triassic Chinle Formation in much of southeastern New Mexico. The Ogallala has been removed by erosion and is absent west of Mescalero Ridge

The Facility is situated east of the northernmost extension of Livingston Ridge, which, in the vicinity of the site, is a west-facing escarpment created by ledge-forming sandstone beds of the Triassic Santa Rosa Sandstone. The Facility rests on thinly alluvium-mantled gently east dipping beds of the Santa Rosa Sandstone.

Numerous subsidence features are present in eastern Eddy County and Western Lea County. (**Figure IV.2.1**). The most notable of these are Nash Draw, Clayton Basin and several large playas, including Williams Sink, Laguna Plata, Laguna Gatuna, Laguna Tonto and Laguna Toston. These features are generally believed to have formed from a combination of dissolution of deep-seated soluble substrates (Rustler and Salado) and wind deflation (Nicholson and Clebsch, 1961). Wind deflation is evidenced by dunes on the downwind flank of the Lagunas.

2.2 Structural Setting

The Lea Land SWMF is situated on the northeastern margin of a deep sedimentary feature known as the Delaware Basin. During most of the Permian period, the Delaware Basin was the site of a deep marine canyon that extended across southeastern New Mexico and west Texas. Major structural elements of the Delaware Basin area are shown in **Figure IV.2.2** (Powers, 1978). The major

structures of the basin include the Guadalupe Mountains on the west side, the Central Basin Platform on the east side, and the Capitan Reef Complex on the west, north and east sides of the basin.

The Central Basin Platform forms an abrupt eastern terminus to the Delaware Basin; it is a steeply fault-bound uplift of basement rocks that grew through the early and middle Paleozoic Era such that most of the pre-Permian sedimentary section is missing from its apex. Great thickness of organic-rich marine deposits in the Delaware Basin, and the presence of abrupt structural thinning in the Capitan Reef Complex and against the Central Basin Platform combined to produce a prolific oil and gas producing province. These areas have been the focus of intense petroleum exploration and development activities since approximately 1920.

Surficial geology and generalized stratigraphy across the Delaware Basin in the region of the Lea Land SWMF are depicted in the map and cross-section provided as **Figure IV.2.3** (New Mexico Bureau of Geology and Minerals, 2003 and Duchene and Cunningham, 2006). Tectonic development of the Delaware Basin began by the late Pennsylvanian period and major basin subsidence took place during the late Pennsylvanian period and early Permian period. Basin development ended in the late Permian period (Brokaw, et. al., 1972). Thickness of sediments in the Delaware Basin exceeds 20,000 feet, and Permian strata alone account for more than 13,000 feet of basin fill materials (Oriel, et. al., 1967). During the Triassic period, the area was uplifted, resulting in deposition of clastic continental shales (i.e., redbeds). Continuing uplift resulted in erosion and/or non-deposition until the middle to late Cenozoic period, when regional eastward tilting completed structural development of the Basin as it exists today (Stipp, 1954).

2.3 Surface Geology and Shallow Stratigraphy

Surface geologic mapping in Lea County and Eastern Eddy County was compiled by the Texas Bureau of Economic Geology and is depicted in detail on the 1:250,000 Hobbs Sheet of the Geologic Atlas of Texas (Eifler and Reeves, 1976). A portion of this map showing the vicinity of the Lea Land SWMF is shown as **Figure IV.2.4**.

Post-Pennsylvanian stratigraphic units of the Delaware Basin are summarized in the stratigraphic nomenclature chart in **Figure IV.2.5** (Hendrickson and Jones, 1952, Nicholson and Clebsch, 1961 and Hawley, et. al., 1993a). Geologic units that are present at land surface or in the shallow subsurface near the Lea Land SWMF include unconsolidated Quaternary alluvial, aeolian and playa

lacustrine deposits, semi-consolidated clastics of the Tertiary Ogallala Formation, Triassic bedrock shale and sandstone units of the Chinle/Dockum Group, and shale and evaporites, including gypsum and halite. Shallow stratigraphic units in the vicinity of the Lea Land SWMF as described by the Texas Bureau of Economic Geology for the Hobbs Sheet (1976) are listed below.

- **Eolian Deposits (Qcd Quaternary)** Sand, calcareous, primarily brown to grey, derived from and rests on lacustrine deposits.
- **Colluvium (Qscg Quaternary)** Sand, silt and gravel deposited by slopewash, and talus from Ogallala, red to gray; in part calcified, caliche 1-20 feet thick; may include weathered Gatuna Formation; rests mainly on Triassic and Permian rocks.
- **Tahoka Formation Lacustrine Deposits (Qta Quaternary)** Lacustrine clay, silt, sand and gravel, locally calcareous and selenitic, indistinctly bedded to massive, weakly coherent, various shades of light gray, grades to gravel at playa margins, contains molluscan and vertebrate fossils.
- Chinle Formation/Dockum Group (Trc/Td Triassic) upper is Chinle Formation consisting of Claystone, micaceous, greenish red with green reduction spots, interbedded with fine grained sandstone, thickness up to 300 feet; lower is Santa Rosa Sandstone; cross-bedded, conglomeratic with mixed lithology, thickness 50-70 feet.
- **Dewey Lake Redbeds (Pdl, Permian)** Siltstone and fine grained quartz sandstone, laminated, locally crossbedded, reddish orange, reddish brown, brownish yellow, greenish grey reduction spots up to 1 inch common; thickness 200-250 feet.
- **Rustler Formation (Pru, Permian)** Limestone, siltstone, sandstone, gypsum, marl, and clay. Upper part limestone and dolomitic limestone; thickness 50+ feet. Middle part siltstone and sandstone, yellowish grey; thickness 50 to 70 feet. Lower part siltstone and fine-grained sandstone, thin to medium bedded, red, interbeds of earth to sparry red gypsum, a few beds of red and greenish grey marl and clay; thickness 50+ feet.

The Lea Land site is situated on a gently northeast-dipping homocline. Shallow stratigraphy consists of a thin mantle of Quaternary alluvial sand and silt, which is underlain by a relatively complete section (i.e., 50 feet thick) of Triassic Santa Rosa Sandstone. The Santa Rosa Sandstone is underlain by Permian Dewey Lake Redbeds, then by Permian Rustler Formation,

2.4 Sources of Hydrogeologic Data

Available basic hydrogeologic data from wells near the Lea Land SWMF is summarized in **Table IV.2.1** in this submittal. Information in **Table IV.2.1** includes well locations, depths, water levels, saturated zones and available stratigraphic intercepts of hydrologically significant mappable units in the area.

2.4.1 Permitted and Pre-basin Water Wells

Numerous water wells in the general vicinity of the Lea Land SWMF were drilled prior to the administrative declaration of the Capitan Underground Water Basin (Capitan Basin) by the New Mexico Office of the State Engineer (NMOSE), in 1965. Lithologic logs and records of completions are generally not available for the "pre-basin" wells. Prior to the declaration of the Carlsbad Basin, Alexander Nicholson conducted well canvassing in southern Lea County in 1953, 1954 and 1955, identifying well locations and documenting the well ownership, depths, water levels, casing diameters, pump types and well yields and water quality and other available information (Nicholson and Clebsch, 1961). Additional well canvass information is kept in unpublished files in the NMOSE District 2 office in Roswell, NM. Tim Kelly (Geohydrology Associates, Inc., 1978) captured the NMOSE file data and performed extensive additional well canvassing in the area in 1977, revisiting numerous wells that Nicholson had catalogued, as well as a number of additional wells in the area.

Review of NMOSE on-line files of permitted water wells (NMOSE WATERS DATABASE, 2019) indicates that there are no permitted water wells near the Lea Land SWMF. Two domestic wells were attempted at locations approximately 1.5 miles west of the Facility in 1966 (Wells C-368 and C-370 in Sec. 36, T. 20 S., R. 31 E.); however, these holes found no production and were not cased. Copies of records for wells C-368 and C-370 are included in **Attachment IV.2.F**. Several other permitted monitoring wells associated with the Waste Isolation Pilot Project were installed from 2.8 miles and greater distances south and southeast of the Lea Land SWMF. Summary water well information compiled by Nicholson and Clebsch (1961), as well as available information on the nearest NMOSE permitted wells are presented in **Table IV.2.1**.

2.4.2 Area Borings and Monitoring Wells

Resource and environmental characterization projects have yielded information on subsurface stratigraphy and groundwater conditions in the vicinity of the Facility. Projects include:

- A water resources study of the Carlsbad Potash area (Geohydrology Associates 1979)
- An environmental hydrogeologic site characterization boring project for permitting the Controlled Recovery Inc. (CRI, now R-360) oil and gas waste disposal Facility (James Wright, 1990)
- Hydrogeologic update for the same Facility (Safety and Environmental Solutions, Inc., 2003)
- Potash mineral exploration drilling (United States Geological Survey, 1953),

Copies of boring logs and related information obtained from these investigations are included in **Attachments IV.2.A, IV.2.B** and **IV.2.C**, respectively.

2.4.3 Lea Land Site Boring and Groundwater Monitoring Well Installation

Pursuant to site characterization of Lea Land site in Section 32 T. 20 S. R. 32 E., ten shallow borings were advanced in November 1993 (Standard Testing and Engineering Company, 1993). Copies of logs of the borings are included in **Attachment IV.2.D**. The Lea Land borings were drilled with air rotary methods and were advanced through alluvial veneer, 30 to 50 feet of Santa Rosa Sandstone and into the Dewey Lake Redbeds to depths ranging from 126 to 201 feet below grade. During drilling, cuttings were inspected for lithology, color, degree of induration and moisture content; and samples were collected for laboratory analysis of engineering properties. The borings found no groundwater in the Santa Rosa Sandstone in the site area. Saturated zones were found beneath the Santa Rosa Sandstone in the Dewey Lake Redbeds at 125 feet below grade (BH-1) and 201 feet below grade (BH-5).

Based upon information from the geotechnical borings, five shallow groundwater monitoring wells were installed in June 1996 and June 1997, and completed in shallow saturated zones in the Dewey Lake Redbeds at depths ranging from 203.5 to 215 feet below ground surface (bgs). Water was found in confined zones such that water levels in the completed wells rose between approximately 22 feet and 51 feet above the tops of the saturated zones (i.e., base of the aquitard) identified during drilling. Locations of the Lea Land borings and monitoring wells, as well as locations of other wells and borings in the vicinity of the Facility are shown on **Figure IV.2.6**. Completion details, water levels and water-bearing zones of the groundwater monitoring wells are summarized in **Table IV.2.1**. Copies of the lithologic logs of Lea Land Geotechnical Borings 1-10 and Monitoring Wells 1-5 are included in **Attachments IV.2.D** and **IV.2.E**.

2.4.4 Groundwater Sampling and Analyses

Groundwater sampling and analyses have been performed on wells at the site and in the vicinity of the Lea Land SWMF for numerous projects. Groundwater sampling and analyses have been performed on Lea Land site monitoring wells MW-2, MW-4 and MW-5 since 1997. A copy and a summary of the laboratory analyses of water samples collected from the Lea Land site monitoring wells in March 2010 and June 2018 are included in **Attachment IV.2.G**. Water quality data was also obtained from two nearby wells installed during the BLM potash area groundwater investigation

(Geohydrology 1979). Copies of the laboratory analytical data sheets from the BLM wells are included with the information from these wells in **Attachment IV.2.A**. A summary of available groundwater quality data from the Lea Land site monitoring wells and the BLM potash investigation wells (Geohydrology 1979) is included in **Table IV.2.2**.

2.5 Water-Bearing Geologic Units

Potable water-bearing geologic units in southern Lea County and Eastern Eddy County include the Tertiary Ogallala Aquifer, shallow Quaternary alluvial aquifers and the Santa Rosa Sandstone unit of the lower portion of the Triassic Chinle/Dockum Group. Insufficient quantities of water are locally present in the Permian Dewey Lake Redbeds and deeper bedrock units at the Lea Land Site to sustain sampling. The Ogallala Formation has been removed by erosion and is absent in the vicinity of the Facility. The Santa Rosa Sandstone is above saturation and is dry at the Lea Land SWMF.

Thin, laterally discontinuous and often ephemeral saturations are occasionally present in the basal alluvium overlying the Triassic and Permian shale bedrock units, particularly in and around playas, where stormwater periodically recharges shallow sediments. Local saturations may also be present in basal alluvium in areas where the shale bedrock was deeply incised by drainages prior to deposition of the alluvium, forming buried paleochannels.

The Santa Rosa Sandstone (lower Triassic Dockum Group) is laterally extensive east of Livingston Ridge in the vicinity of the Lea Land SWMF and yields modest to moderate quantities of good quality groundwater to wells further east in Lea County but is non water-bearing at the Lea Land SWMF. Based upon data from vicinity wells and on-site Facility borings and groundwater monitoring well installations, shallow saturation is present in limited and unusable quantities in hydraulically tight confined zones in the Dewey Lake Redbeds beneath the site at depths ranging from 171 feet to 188 feet.

3.0 SITE SPECIFIC GEOLOGY AND HYDROGEOLOGY

3.1 Site Investigation, Data Compilation and Interpretation

A map of the surficial geology in southern Lea County and in the vicinity of the Lea Land SWMF was published by the Texas Bureau of Economic Geology (Hobbs Sheet, 1976). A portion of this map depicting surface geology in the vicinity of the Lea Land SWMF is shown as **Figure IV.2.4**.

Subsurface boring investigations were performed on the Lea Land SWMF to characterize geologic and hydrogeologic conditions of the site to demonstrate ultimate conformance with provisions set forth in 19.15.36.8.C.15 NMAC. Published and unpublished resources on shallow stratigraphy of the area have been supplemented with the results of the ten soil borings and five groundwater monitoring wells that were drilled on the Lea Land site in 1993, 1996-1997 to determine the shallow geologic conditions and potential saturated zones beneath the site. Subsurface investigations were performed at the Lea Land site using air rotary drilling, the most appropriate technology for detecting the presence of water. Data that was accumulated during boring and testing at the Lea Land site, as well as published and agency file data on local geology and groundwater were compiled into this site-specific assessment of hydrogeologic conditions at the Lea Land.

Ten soil borings were drilled, and five groundwater monitoring wells were installed on the Facility property at locations shown on the map in **Figure IV.2.6**. Numerous other shallow wells have been drilled in the vicinity of the Lea Land by the Bureau of Land Management and Controlled Recovery Inc. Locations, completions, stratigraphic and water level data on these wells is summarized in **Table IV.2.1**; this data was used to prepare this hydrogeologic site characterization. Copies of logs and other data associated with the BLM monitoring wells (Geohydrology, 1979) are included in **Attachment IV.2.A**; logs and completion data from the Controlled Recovery Inc. monitoring wells are included in **Attachment IV.2.B**; logs and completion data from the Lea Land borings and monitoring wells are included in **Attachments IV.2.D** and **IV.2.E**. A potash mineral exploration well was drilled to a depth of 1273 feet and logged by the USGS in 1953; a copy of the log is included in **Attachment IV.2.C**.

The Lea Land site borings (BH-1 through BH-10) and groundwater monitoring wells (MW-1 through MW-5) were installed using air rotary drilling methods. During air rotary drilling, circulated cuttings samples were collected. Depth-referenced formation samples collected during drilling were visually examined in the field to determine the lithology, texture color, degree of lithification, plasticity, and moisture content of penetrated materials. None of the Lea Land borings or groundwater monitoring wells encountered water in the Santa Rosa Sandstone. Non-economic saturations were in the Dewey Lake Redbeds at depths ranging from 171 feet below grade to 188 feet below grade confirmed.

Saturation was noted in Dewey Lake Redbeds in Lea Land boring B-1 at a depth of 125 feet when it was drilled in November 1993. Monitoring well MW-3, which was drilled approximately 185 feet west of boring B-1 in June 1996 encountered no saturation at this depth and was completed in the first penetrated saturation zone at a depth of 214 feet below grade.

3.2 Facility Geotechnical Evaluation

Table IV.2.3 provides summary results of site-specific surface and subsurface materials testing, which includes laboratory testing of depth-referenced soil boring samples as well as hydraulic tests of groundwater monitoring wells. The geotechnical testing data indicates that the Santa Rosa Sandstone is a fine-grained silty/sand unit, containing an average of 34% silt and finer particles. Available hydraulic tests of boring samples taken from the Santa Rosa Sandstone indicate a saturated hydraulic conductivity ranging from 1.4×10^{-4} centimeters per second (cm/sec) to 3.4×10^{-4} cm/sec.

Boring sample lab tests and well test data from Dewey Lake Redbed wells and borings indicate that the Dewey Lake Redbeds are significantly finer grained, containing an average of 49% silt and finer particles (i.e., 200 sieve). Hydraulic tests of monitoring wells completed in the Dewey Lake Redbeds indicate a saturated horizontal hydraulic conductivity ranging from 4.17 x 10^{-9} cm/sec to 1.33 x 10^{-6} cm/sec.

The site geotechnical boring and testing data indicates that an abrupt change in lithology occurs between the near-surface coarser-grained Santa Rosa Sandstone and the thick deposit of dense and relatively impermeable Dewey Lake Redbeds below. Prior to deposition of the Santa Rosa Sandstone, the Dewey Lake Redbeds were aerially exposed and incised by erosion. The Santa Rosa Sandstone was then deposited on top of the Dewey Lake Redbeds, forming an erosional unconformity. The unconformity between the Dewey Lake Redbeds and the Santa Rosa Sandstone is a significant impediment to vertical movement of water through the vadose zone and is an important hydrogeologic feature at the Facility.

Findings of the site-specific characterization of the onsite soils at the Facility are consistent with other studies in the area. The surface soils consist of colluvium and caliche materials, suited for specific environmental applications:

- Subgrade compactible *in situ* materials at basegrade elevations
- PSL protective soil layer
- Daily and intermediate cover in ample quantities

- Vegetative layer final cover establishment of erosion control
- Caliche ideal for temporary road base construction and permanent road subgrade

The lower soils (Permian Dewey Lake Redbed shale and siltstone), horizons are effective aquitards to vertical flow and represent the selected positions for vadose monitoring points.

3.3 Facility Geology

The Lea Land site borings, as well as those drilled by various entities on adjacent tracts confirm that site conditions are consistent with understanding of shallow stratigraphy and hydrogeology in the area based upon information published by Nicholson and Clebsch (1961). **Table IV.2.1** provides summary information on Lea Land SWMF and vicinity borings, water wells and mineral exploration wells, along with available information on water levels, stratigraphic intercepts and other pertinent information. **Figure IV.2.4** is a map showing surface exposures of geologic units in the area. A vicinity hydrogeologic cross-section (Cross-Section A-A') through the Lea Land SWMF was prepared using this information and is presented as **Figure IV.2.7**.

A potash mineral exploration boring was drilled approximately 1.5 miles northeast of the Facility, north of US 62-180 and east of Laguna Toston (Well, USGS 20-F, **Figure IV.2.6**). This well fully penetrated to the Permian Rustler Formation (depth 900 feet), the Permian Salado Formation (depth 1180 feet) and the potash-bearing section between 1239 feet and 1273 feet. This log, due to its lithologic description detail and depth, is an important deep stratigraphic reference for the vicinity of the Lea Land site. A copy of the log is included in **Attachment IV.2.C**.

The ten site borings and five groundwater monitoring wells penetrated various thicknesses of alluvium and Santa Rosa Sandstone above the Dewey Lake Redbeds, ranging from 30 feet to 50 feet. Shallow Santa Rosa Sandstone penetrated by the site borings was poorly graded fine and friable sandstone and intebedded shale. The Dewey Lake Redbed deposits penetrated by all site borings was reddish brown to pink, dense siltstone, shale, with fine grained silty sandstone stringers.

3.4 Facility Hydrogeology

Shallow saturation is present in hydraulically tight, artesian zones within the Dewey Lake Redbeds at depths ranging from 173 to 198 feet bgs at the Facility. The following is a summary of the stratigraphy beneath the Lea Land site.

3.4.1 Santa Rosa Sandstone

The Santa Rosa Sandstone is thinly mantled by alluvium and laterally continuous across the Facility. Although this unit is a significant water-bearing zone further east in Lea County, the Santa Rosa Sandstone is dry and above saturation in the vicinity of the site.

3.4.2 Shallow Saturation in the Dewey Lake Redbeds

The monitoring wells completed in the Dewey Lake Redbeds at the Facility communicate with saturated zones that range in depth between 171.5 feet below grade to 188 feet below grade; and between 123.5 feet and 148 feet below the top of the Dewey Lake Redbeds. The saturated zones are of low capacity, and are unable to sustain adequate water production for well purging prior to groundwater sample collection. "Hydra Sleeve" sampling methods have been necessary to obtain water samples for prior groundwater sampling at the Facility. Water levels in the completed monitoring wells at the Facility range from 22 feet to 51 feet above the levels where saturated conditions were noted during drilling, indicating confined conditions.

A hydraulic test of Monitoring well MW-4 at the Facility was performed in February 1997 (Intera, 1997). This test indicated a saturated horizontal hydraulic conductance of 4.17×10^{-9} cm/sec and a storage coefficient of 3.71×10^{-9} .

A monitoring well installed by the BLM (BLM-21.31.3.22, Geohydrology, 1979) and located approximately one mile southeast of the Facility was completed in the Dewey Lake Redbeds and tested. This well is shown in **Figure IV.2.6** and information on the well is included in **Table IV.2.1** and **Attachment IV.2.A.** Well BLM-21.31.3.22 penetrated a saturated zone at a depth of 150 feet below grade; the water level in the completed well was 140.81, or about 9 feet above the top of the saturated zone. The well was pumped at a rate of 6.1 gallons per minute for approximately 120 minutes, producing approximately 732 gallons and a water level decline of about 10.5 feet. The water level recovered approximately 5 feet during the initial 240 minutes after pumping ceased. Although this well had some initial yield, water level recovery after pumping cessation was slow and incomplete, indicating that local storage had been depleted. Analysis of the test data indicated a saturated horizontal hydraulic conductance of 1.33×10^{-6} cm/sec.

Another BLM monitoring well located approximately 1.5 miles west of the Facility (BLM-20.32.31.13, Geohydrology, 1979) was drilled with air rotary into the Dewey Lake Redbeds to a depth of 250 feet below grade, found no saturation, and was completed as a dry hole at the total drilled depth of 250 feet on 11/8/1978. A water level was sounded in the well at 135.12 feet below casing top on March 15, 1979, indicating that the well penetrated hydraulically tight saturated zones at this location. Summary data on this well is included in **Table IV.2.1** and a lithologic log of the well is included in **Attachment IV.2.A**.

3.4.3 Shallow Alluvium

It has been noted that thin and laterally discontinuous saturations are occasionally present in basal alluvium resting atop low permeability bedrock shales and dense sandstones in the region of the Lea Land SWMF. None of the borings or monitoring wells drilled at the Lea Land site found evidence of saturation in basal alluvium, or in basal Santa Rosa Sandstone above the Dewey Lake Redbeds.

3.4.4 Groundwater Occurrence and Movement

Relationships between terrain, subsurface geology and shallow saturations are summarized in Hydrogeologic Cross-Section A-A', presented as **Figure IV.2.7**. The line of this cross-section is shown on the vicinity well location map in **Figure IV.2.6**. Cross-Section A-A' shows the Lea Land site location on the east-dipping outcrop of the Santa Rosa Sandstone east of Livingston Ridge, which is a west-facing escarpment created by ledge-forming sandstone beds in the Santa Rosa Sandstone. Groundwater monitoring wells installed at Lea Land penetrated 40 to 50 feet of dry Santa Rosa Sandstone and 123 to 148 feet of Dewey Lake Redbeds, before reaching saturation in the redbeds. Saturation zones in the redbeds are confined, with water levels in completed wells rising between 19 and 48 feet above the observed saturation zones.

Based on the change from more permeable sediments in the Santa Rosa Sandstone to hydraulically tight shale in the Dewey Lake Redbeds below, impedance to vertical fluid flow and potential for perched saturation exists at this contact. No perched water was noted at the contact between the Dewey Lake Redbeds and the Santa Rosa Sandstone in any of the 10 soil borings or 5 groundwater monitoring wells that were drilled on the Lea Land site. Due to the propensity for perched conditions to exist atop the Dewey Lake Redbeds, terrain of the upper surface of the redbeds is an important feature to consider in plans for monitoring shallow horizons for potential fugitive liquids from the

proposed waste disposal and management facilities (i.e., Vadose Zone Monitoring Plan, **Volume II.9**). A map illustrating elevation of the upper surface of the Dewey Lake Redbeds, as well as the location and base grade elevations of the proposed facility expansion is presented in **Figure IV.2.8**. This map indicates that the upper redbed surface slopes east-northeasterly at the facility at a gradient of approximately 50 feet per mile. The excavation for the proposed facility expansion reaches a depth of approximately 50 feet in its northeastern extremity, having a minimum base grade elevation of 3490 feet above mean sea level (msl). This is within about 5 feet of the projected top of the redbed elevation of approximately 3485 feet above msl.

A regional gradient map was prepared pursuant to a groundwater study of the Carlsbad Potash Mining District commissioned by the BLM in 1979 (Geohydrology, 1979). A copy of this map is presented as **Figure IV.2.9**. This map indicates that the shallow gradient is toward the south-southwest at the Lea Land SWMF and has a gradient of approximately 30 feet per mile. A vicinity potentiometric gradient map, **Figure IV.2.10**, was prepared using water level data from the Lea Land monitoring wells, as well as monitoring wells at the R-360 facility located approximately one mile to the northeast, and two of the BLM potash study groundwater monitoring wells. This map indicates that gradient direction is southwest at a gradient of approximately 75 feet per mile. Relatively steep groundwater gradient at the Lea Land site is indicative of low hydraulic conductance in the shallow saturation zone beneath the site.

4.0 **REGULATORY SITING REQUIREMENTS**

This section addresses regulatory requirements for basic hydrogeologic site data, as well as for demonstration of compliance with siting requirements relative to minimum depth to groundwater, as follows:

19.15.36.8.C.15 NMAC

- (a) a map showing names and locations of streams, springs and other watercourses and water wells within one mile of the site;
- (b) laboratory analyses, performed by an independent commercial laboratory, for major cations, and anions; BTEX;, RCRA metals; and TDS of groundwater samples of the shallowest fresh water aquifer beneath the proposed site;
- (c) depth to, formation name, type and thickness of the shallowest fresh water aquifer;
- (d) soil types beneath the proposed surface waste management facility; including a lithologic description of soil and rock members from ground surface down to the top of the shallowest fresh water aquifer;
- (e) geologic cross sections;
- (f) potentiometric maps for the shallowest fresh water aquifer;

19.15.36.13.A(1) NMAC

Depth to groundwater: no landfill shall be located where groundwater is less than 100 feet below the lowest elevation of the design depth at which the operator will place oil field waste.

4.1 Streams, Springs, Watercourses and Water Wells Within One Mile of the Site

The map in **Figure IV.2.12** shows terrain, wells and drainages, as well as the region within a one mile radius of the Facility. No perennial or ephemeral streams or springs are present within one mile of the proposed Lea Land SWMF. There are no water wells within one mile of the proposed Lea Land SWMF. Locations of groundwater monitoring wells in the vicinity of the Lea Land SWMF are shown in **Figure IV.2.6**; a summary of vicinity wells is also included in **Table IV.2.1**.

4.2 Laboratory Analyses of Shallow Groundwater Samples

Groundwater samples were collected from Lea Land groundwater monitoring wells MW-2, MW-4 and MW-5, completed in the Dewey Lake Redbeds at the Lea Land SWMF on March 19, 2010 and on June 13, 2018. Laboratory analyses for analytes set forth in 19.15.36.8.C.15(b) indicate that the water is of moderately good quality, having a total dissolved solids (TDS) ranging from 778 milligrams per liter (mg/L) to 818 mg/L; and meeting all tested groundwater protection standards except selenium, which is regarded as a natural constituent, and was detected in upgradient and downgradient wells in similar concentrations. Available analytical data from all tests is included in **Table IV.2.2**, along with summary data from other nearby wells tested by BLM in 1979. Copies of laboratory reports for tests listed in **Table IV.2.2** are included in **Attachment IV.2.G**.

4.3 Depth, Formation Name, Type and Thickness of the Shallowest Fresh Water Aquifer

The shallowest fresh saturated zones at the Lea Land SWMF are present in hydraulically tight and confined zones within the Dewey Lake Redbeds. Several monitoring wells in the vicinity of the Facility were completed in the Dewey Lake Redbeds by the BLM (Geohydrology Associates, 1979). Depth to the shallowest saturated zones in the Dewey Lake Redbeds at the Facility is projected to range from 178 feet to 188 feet below grade. The shallow saturated zones are vertically limited to likely no more than a few feet or inches; similar zones are expected at deeper horizons within the Dewey Lake Redbeds. Hydraulic testing of monitoring wells completed in the Dewey Lake Redbeds at the Lea Land site and other nearby wells indicates that the Dewey Lake Redbed zones do not produce economically viable quantities of water.

4.4 Lithology of Stratigraphic Units Above the Dewey Lake Redbeds at the Facility

Stratigraphic units which are above the Dewey Lake Redbeds at the site include the Santa Rosa Sandstone and veneers of Quaternary colluvium deposits. Site characterization borings drilled on the Lea Land site penetrated fine silty sands with calcrete (caliche) zones in the alluvial section. The site borings penetrated interbedded fine grained dense red sandstone and siltstone bedrock in the Santa Rosa Sandstone section at depths ranging from 30 to 50 feet bgs.

4.5 Geologic Cross-Sections

A hydrogeologic cross-section depicting stratigraphy and geometry of the Alluvium, the Santa Rosa Sandstone, the Dewey Lake Redbeds potentiometric surface is included in **Figure IV.2.7**. This diagram indicates that the depth to the top of the Dewey Lake Redbeds at the Lea Land SWMF is projected to be 30 to 50 feet bgs; the depth to the saturated zones in the Dewey Lake Redbeds is approximately 175 feet.

4.6 Potentiometric Surface of Shallow Saturations

A regional potentiometric surface map was prepared using water level data from numerous wells completed in shallow geologic units in the Carlsbad potash mining district (Geohydrology, 1979) and is presented in **Figure IV.2.9**. This map indicates that regional gradient direction is southwesterly at a magnitude of about 30 feet per mile. A local vicinity potentiometric gradient map was prepared using combined water level data from the Lea Land onsite groundwater monitoring wells, as well as the CRI Facility monitoring wells, and the BLM wells and is shown in **Figure IV.2.10**. This map indicates that gradient direction is southwest at approximately 75 feet per mile.

4.7 Depth to Shallow Fresh Groundwater

Well logs and water level data from the onsite groundwater monitoring wells at the site indicate that the shallowest saturated zones at Lea Land are present in hydraulically tight and confined zones in the Dewey Lake Redbeds below the Santa Rosa Sandstone at projected depths of approximately 175 feet below-grade at the site.

Data from the Lea Land site characterization borings and monitoring wells indicates that no saturation is present in alluvial veneers, or in Santa Rosa Sandstone, which is laterally continuous across the site and varies in thicknesses from 30 ft to 50 ft.

5.0 CONCLUSIONS

Regional, vicinity and site characterization boring and testing data indicates that the shallowest saturated zones beneath the Lea Land SWMF are within hydraulically tight shale beds of the Dewey Lake Redbeds, at a depth are approximately 175 ft bgs and more than 100 ft below the projected base grade elevations. Water within these beds is under confined conditions. Small non-sustainable quantities of water are present in saturated zones penetrated by the groundwater monitoring wells at the Facility. These saturated zones are not regarded to be protectable as resources as defined by the Oil and Gas Rules.

19.15.2.7.G.(10) NMAC

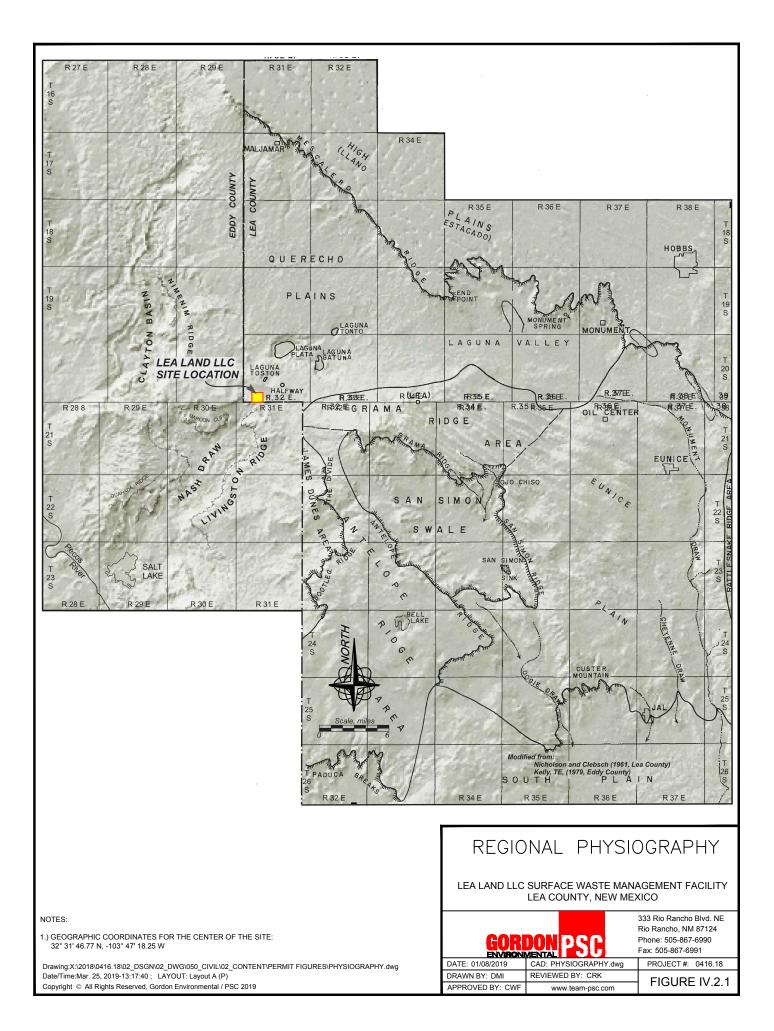
"Ground water" means interstitial water that occurs in saturated earth material and can enter a well in sufficient amounts to be used as a water supply.

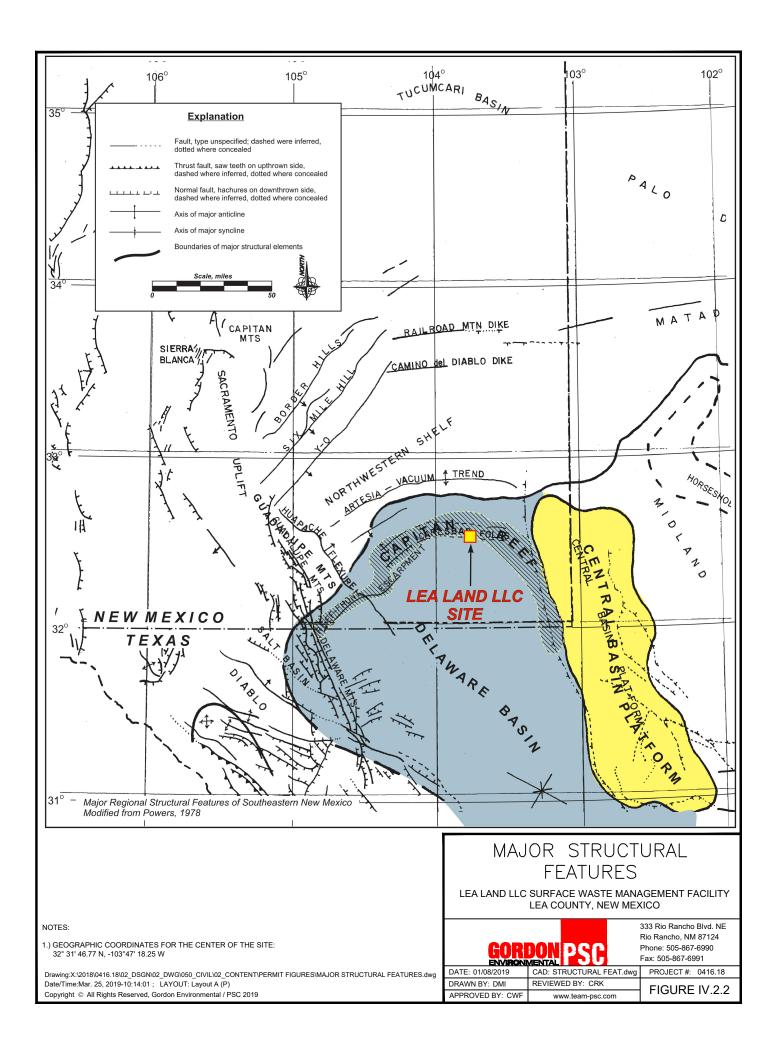
Due to the depth of the saturated zones within the Dewey Lake Redbeds and the fact that they are generally under confined conditions, a potential release from the Lea Land SWMF would not be expected to migrate readily into these confined saturated zones through the 124-148 feet of overlying Dewey Lake redbed deposits. Therefore, groundwater monitoring wells completed in the shallow saturated zones in the Dewey Lake Redbeds at the Lea Land SWMF would not be expected to provide a high level of environmental protection as sentinel wells.

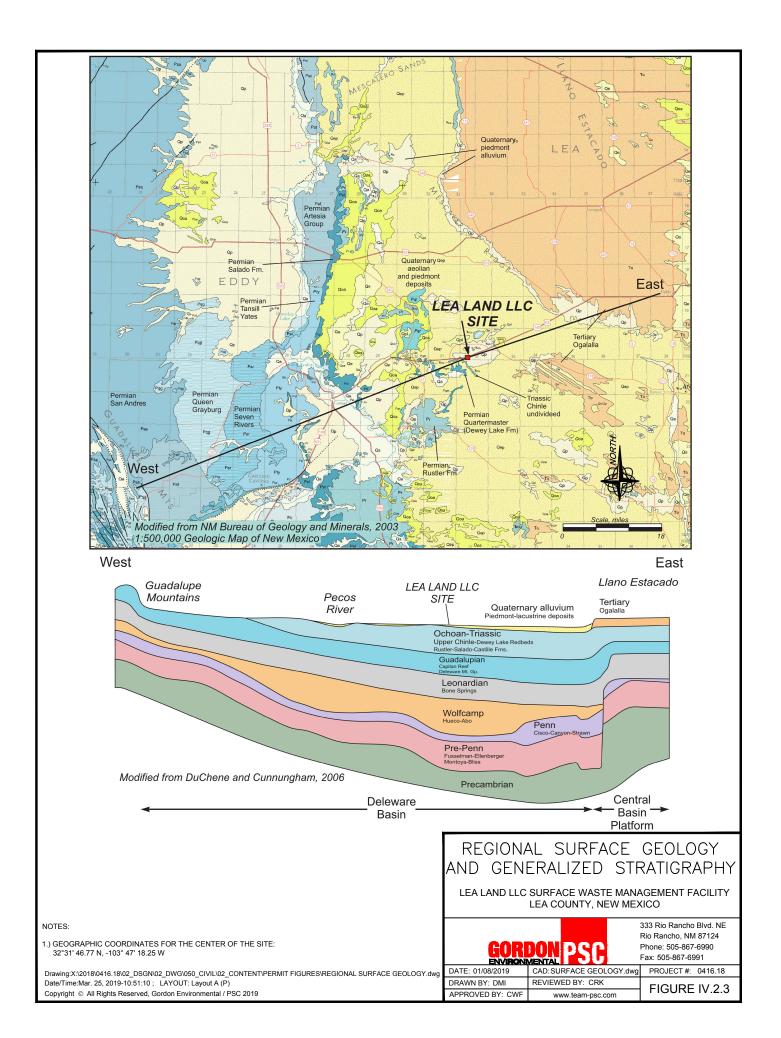
Based upon shallow stratigraphy at the site, as well as the geometry of the proposed waste disposal cells, it is concluded that vadose zone monitoring wells completed to communicate with more permeable basal Santa Rosa Sandstone sediments at the contact with underlying dense shale in the Dewey Lake Redbeds would provide the most effective early leak detection system and the greatest level of environmental protection for the site. These wells would be placed strategically at the downgradient east side of the Facility to optimize detection of potentially fugitive fluids.

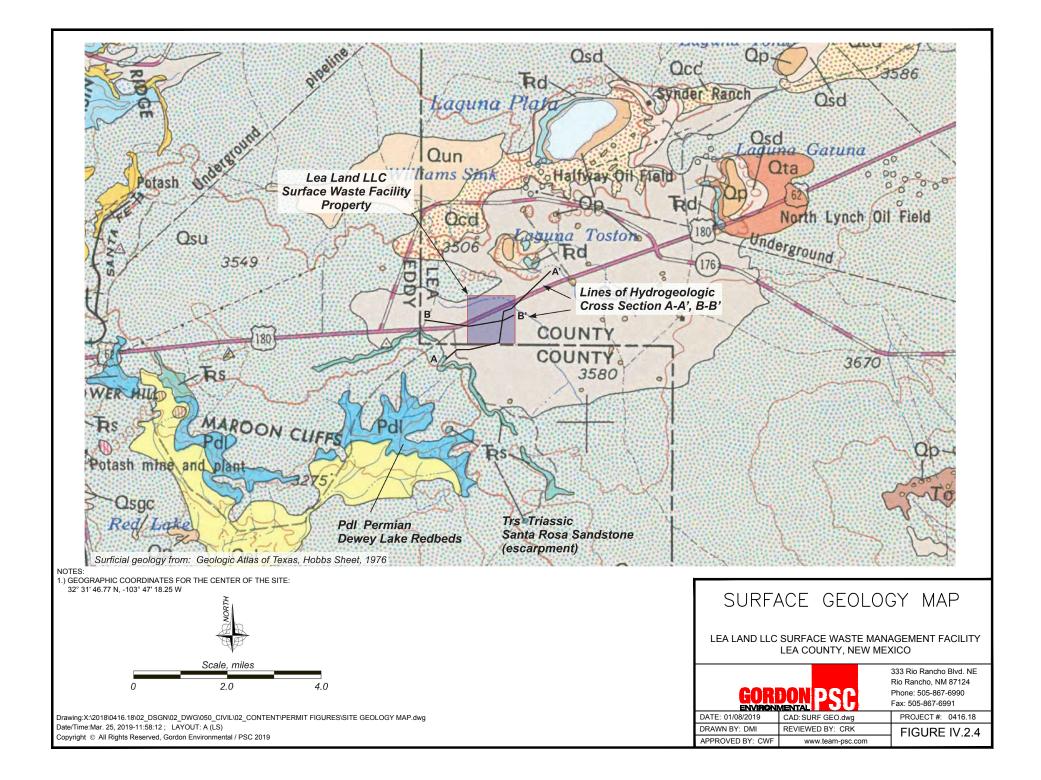
This site has the advantage that the local subsurface conditions have been significantly characterized during subsurface investigations conducted at the Facility, as well as the CRI site and the 1979 BLM potash study monitoring well installation and testing. No additional reconnaissance drilling is recommended to augment the hydrogeologic or geotechnical database; however emergent subsurface data that is obtained during installations of proposed vadose zone monitoring wells be used to update subsurface mapping and adjust well locations as appropriate. Detailed logs will be prepared for the four proposed vadose zone monitoring wells (see **Volume II.9**, Vadose Zone

Monitoring Plan) and will be provided to OCD. OCD will be notified of the proposed well installation program in advance and invited to observe.

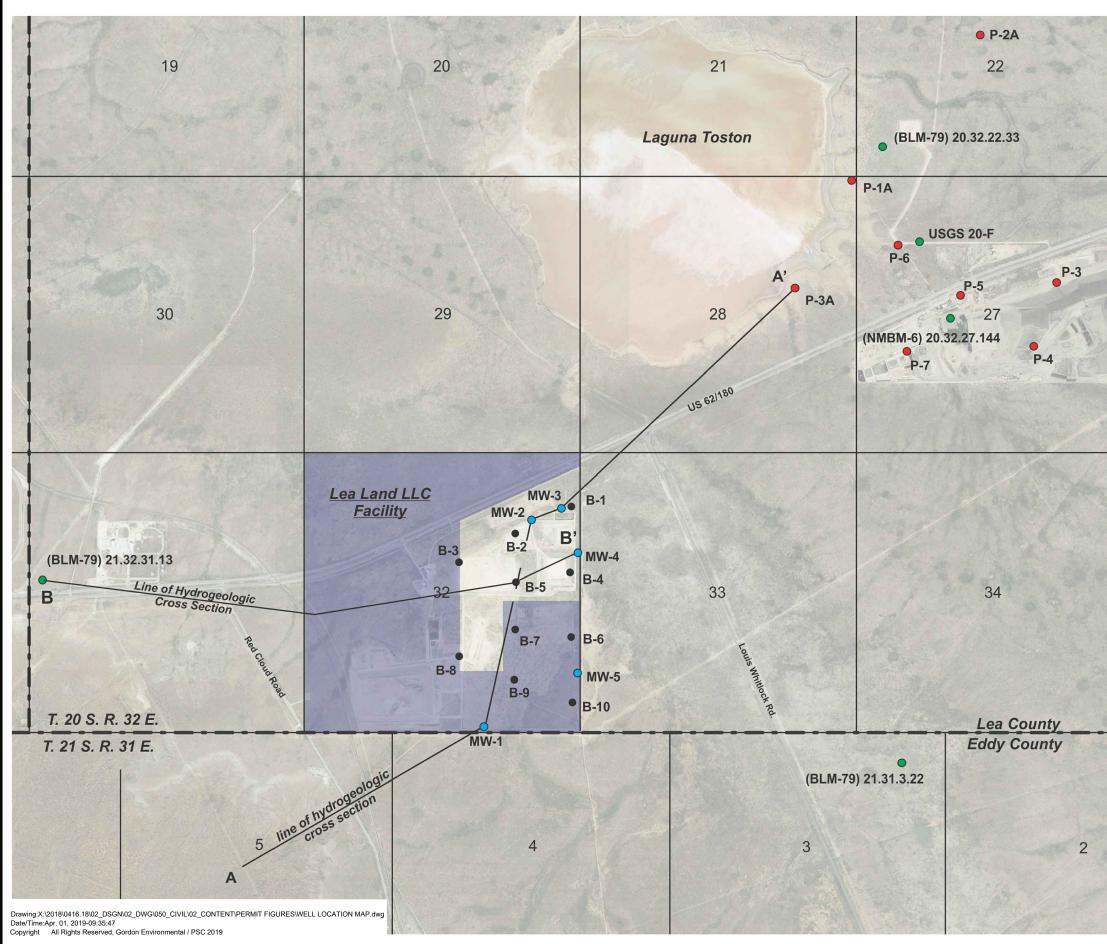

6.0 **REFERENCES**

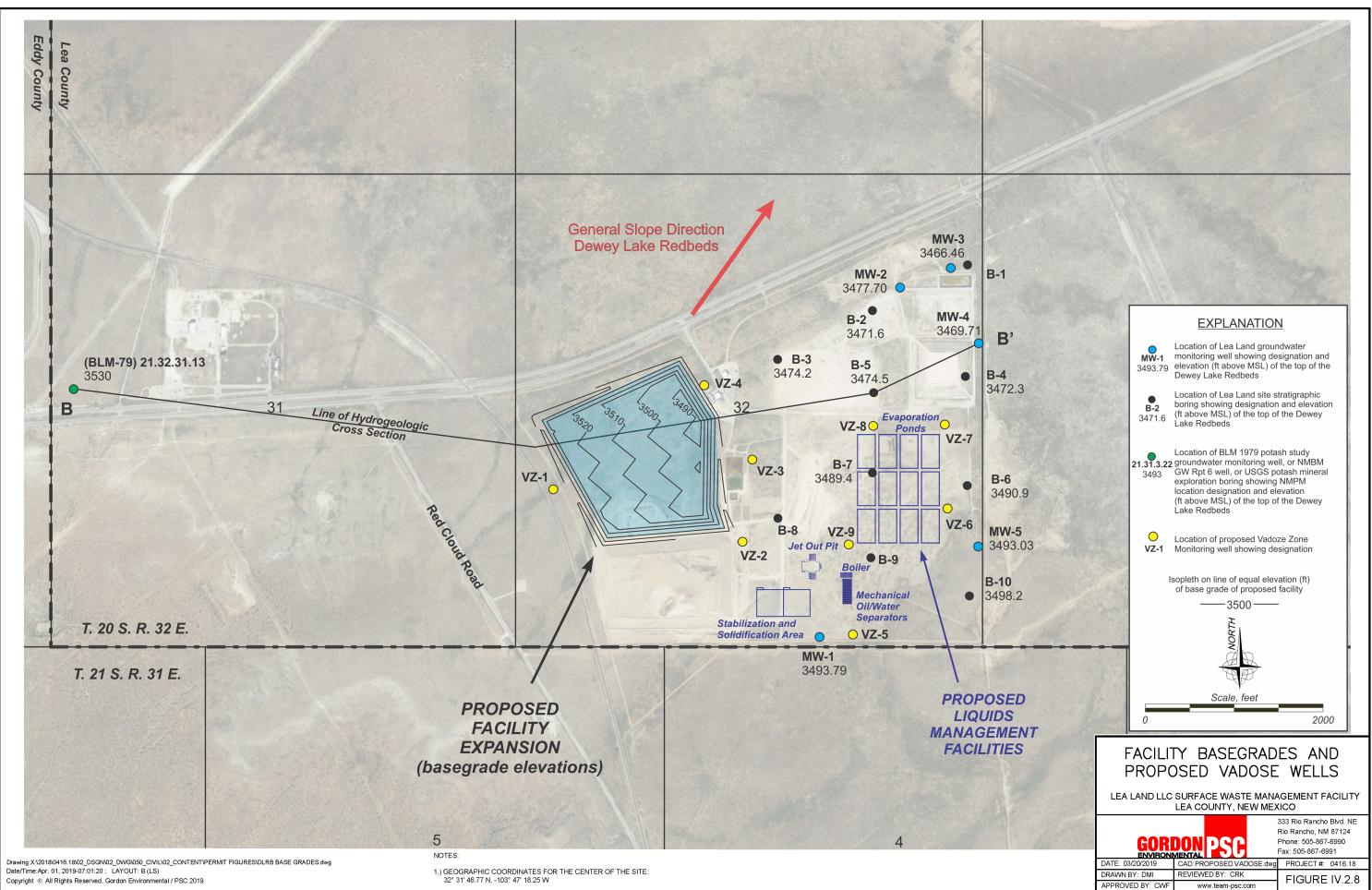

- Brokaw, A.L., Jones, C.L., Cooley, M.E., and Hays, W.H., 1972, Geology and Hydrology of the CarlsbadPotash Area, Eddy County, New Mexico: United States Geological Survey Open-File Report 72-49.
- DuChene, H.R., and Cunningham, K.I., 2006, Tectonic influences of Speleogenesis in the Guadalupe Mountains, New Mexico and Texas: New Mexico Geological Society Guidebook, 57th Field Conference, Caves and Karst of Southeastern New Mexico, 2006, p. 211-218.
- Eifler, G.K., and Reeves, C.C., 1976, Hobbs 1:250,000 Sheet, Texas Bureau of Economic Geology, 1976, Geologic Atlas of Texas, Hobbs Sheet 1:250,000, C.G Groat, Acting Director
- Geohydrology Associates, Inc., 1978, Collection of hydrologic data, eastside Roswell Range EIS area: Open-File Consultant Report to Bureau of Land Management, Denver, Colorado, Contract No. YA-512-CT-7-217, Table IV.2.4.
- Geohydrology Associates, Inc., 1979, Water-resources study of the Carlsbad Potash Area, New Mexico: Open-File Consultant Report to Bureau of Land Management, Denver, Colorado, Contract No. YA-215-CT8-195
- Hawley, J.W., 1993a, Overview of the Geomorphic History of the Carlsbad Area, in Carlsbad Region, New Mexico And West Texas, New Mexico Geological Society 44th Annual Field Conference Guidebook, October 6-9, 1993, p.2-3.
- Hawley, J.W., 1993b, The Ogallala and Gatuna Formations in the Southeastern New Mexico Region, A Progress Report, in Carlsbad Region, New Mexico And West Texas, New Mexico Geological Society 44th Annual Field Conference Guidebook, October 6-9, 1993, p.261-269.
- Hendrickson, G.E., and Jones, R.S., 1952, Geology and Ground-Water Resources of Eddy County, New Mexico, New Mexico Bureau of Mines and Mineral Resources, Ground Water Report 3. p. 16.
- Intera, 1997, Hydrologic Testing on Well MW-4: Consultant Report to Lea Land Inc., Carlsbad, New Mexico.
- James I. Wright, Consulting Hydrologist, Roswell, NM, February 1990, Proposal for an Oil Treating Plant Permit and Surface Waste Disposal in Lea County, New Mexico: Consultant Report to Controlled Recovery, Inc., Hobbs, New Mexico.
- New Mexico Bureau of Geology and Minerals, 2003, Geologic Map of New Mexico, 1:500,000 scale map.
- New Mexico Office of the State Engineer, 2013, Records of wells in the vicinity of the Lea Land SWMF, Unpublished agency file well records.
- Nicholson, A., and Clebsch, A., 1961, Geology and ground-water conditions in southern Lea County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Groundwater Report 6.
- Office of the New Mexico State Engineer, 2015, Unpublished canvassing records for wells in Lea County, New Mexico.
- Office of the New Mexico State Engineer, 2019, Unpublished on-line WATERS DATABASE records of permitted wells. <u>http://nmwrrs.ose.state.nm.us/nmwrrs/index.html</u>


- Oriel, S.S., et. al., 1967, West Texas Permian Basin Region, in Paleotectonic Investigations of the Permian System in the United States: United States Geological Survey Professional Paper 515, p. 21-60.
- Powers, D.W., et. al., 1978, "Geological Characterization Report, Waste Isolation Pilot Plant (WIPP) Site, Southeastern New Mexico". SAND 78-1596. Sandia National Laboratories, Albuquerque, New Mexico.
- Safety and Environmental Solutions, Inc., January 9, 2003, Hydrogeologic Update Report, Controlled Recovery, Inc., Lea County, New Mexico: Consultant Report to Controlled Recovery, Inc.
- Standard Testing and Engineering Company, 1993, Soil Boring Logs and Test Results, Borings 1-10, Lea Land, Inc., Consultant Report to Lea Land, Inc.
- Stipp, T.F., 1954, Editorial Comments, United States Geological Survey Open-File Report Texas Bureau of Economic Geology, 1976, Geologic Atlas of Texas, Hobbs Sheet, University of Texas at Austin, C.G. Groat, Acting Director.
- United States Geological Survey, 2015, Electronic files for inventory of watershed data for Landreth-Monument Draw and Lower Pecos-Red Bluff Reservoir Watersheds in southeastern New Mexico and West Texas, <u>http://water.usgs.gov/lookup/getwatershed?1307007</u>
- United States Geological Survey, 1953, Log of Prospect Borehole: Unpublished file data on potash mineral exploration core hole: conducted for the Farmers Educational and Cooperative Union of America.
- Vine, J.D., 1963, Geologic Map and Section of the Nash Draw Quadrangle, Eddy County, New Mexico, United States Geological Survey Bulletin 1141-B, Plate 1

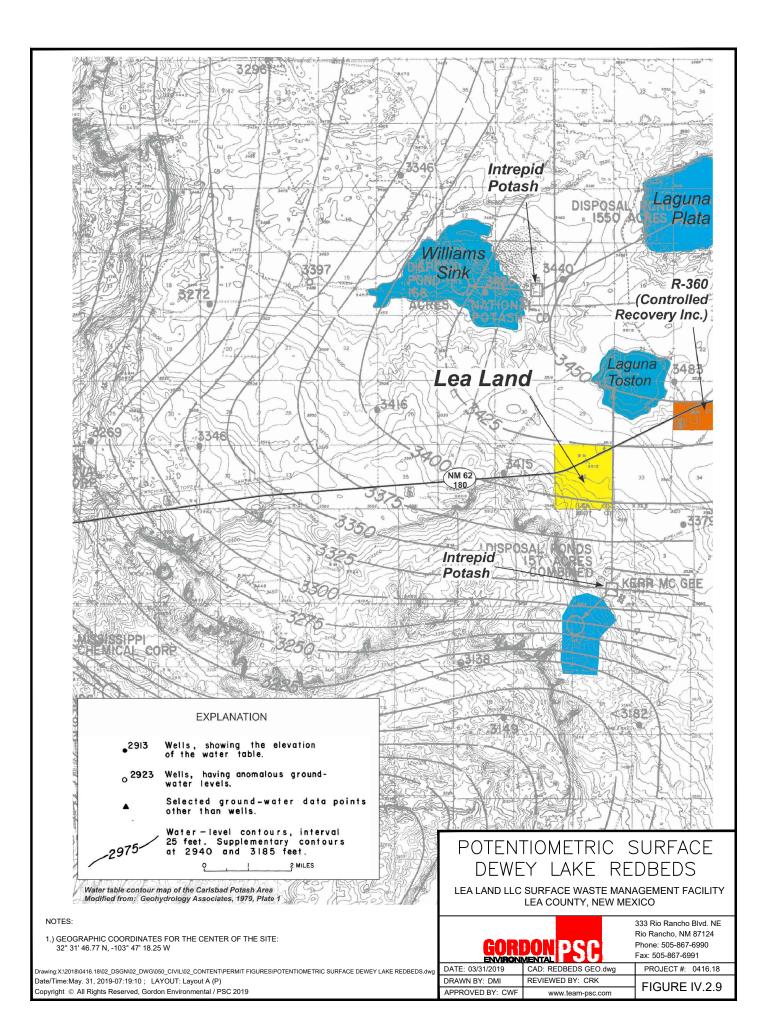

FIGURES

- IV.2.1 REGIONAL PHYSIOGRAPHY
- IV.2.2 MAJOR STRUCTURAL FEATURES
- IV.2.3 REGIONAL SURFACE GEOLOGY AND GENERAL STRATIGRAPHY
- IV.2.4 SURFACE GEOLOGY MAP
- IV.2.5 POST-PENNSYLVANIAN STRATIGRAPHY UNITS
- IV.2.6 WELL LOCATION MAP
- IV.2.7 HYDROGEOLOGIC CROSS-SECTION A-A'
- IV.2.8 FACILITY BASEGRADES AND PROPOSED VADOSE ZONE WELLS
- IV.2.9 POTENTIOMETRIC SURFACE DEWEY LAKE REDBEDS
- IV.2.10 LOCAL POTENTIOMETRIC SURFACE
- IV.2.11 SHALLOW LOCAL HYDROGEOLOGIC CROSS-SECTION B-B'
- IV.2.12 1 MILE RADIUS MAP

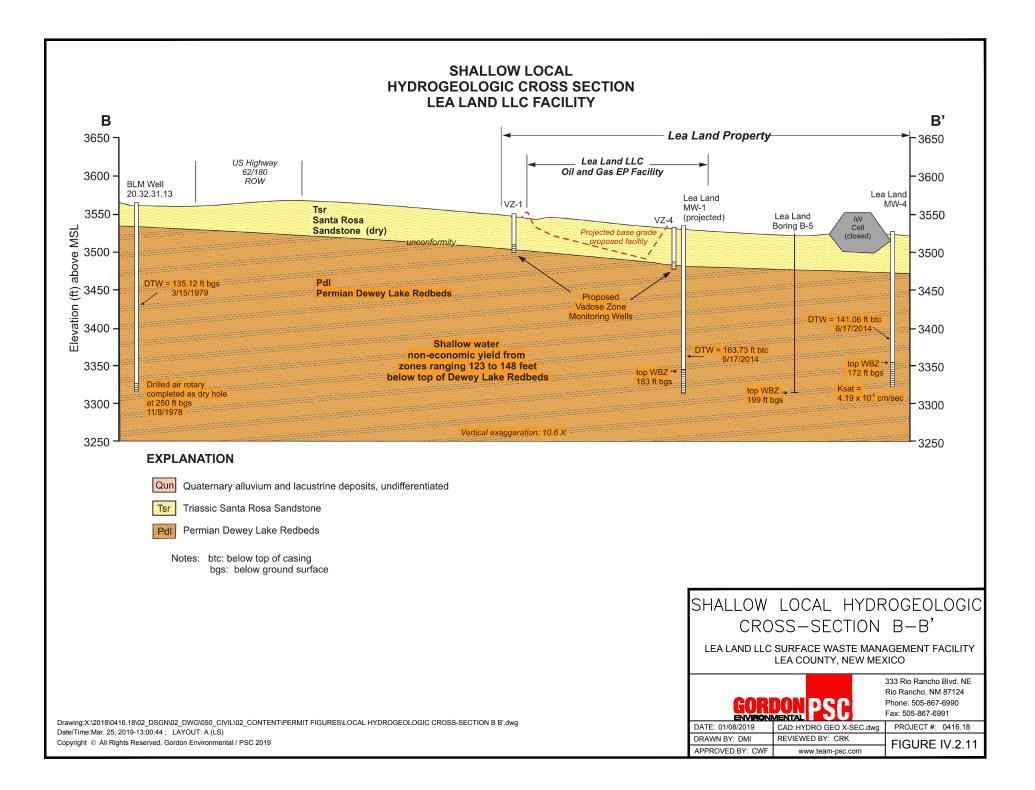


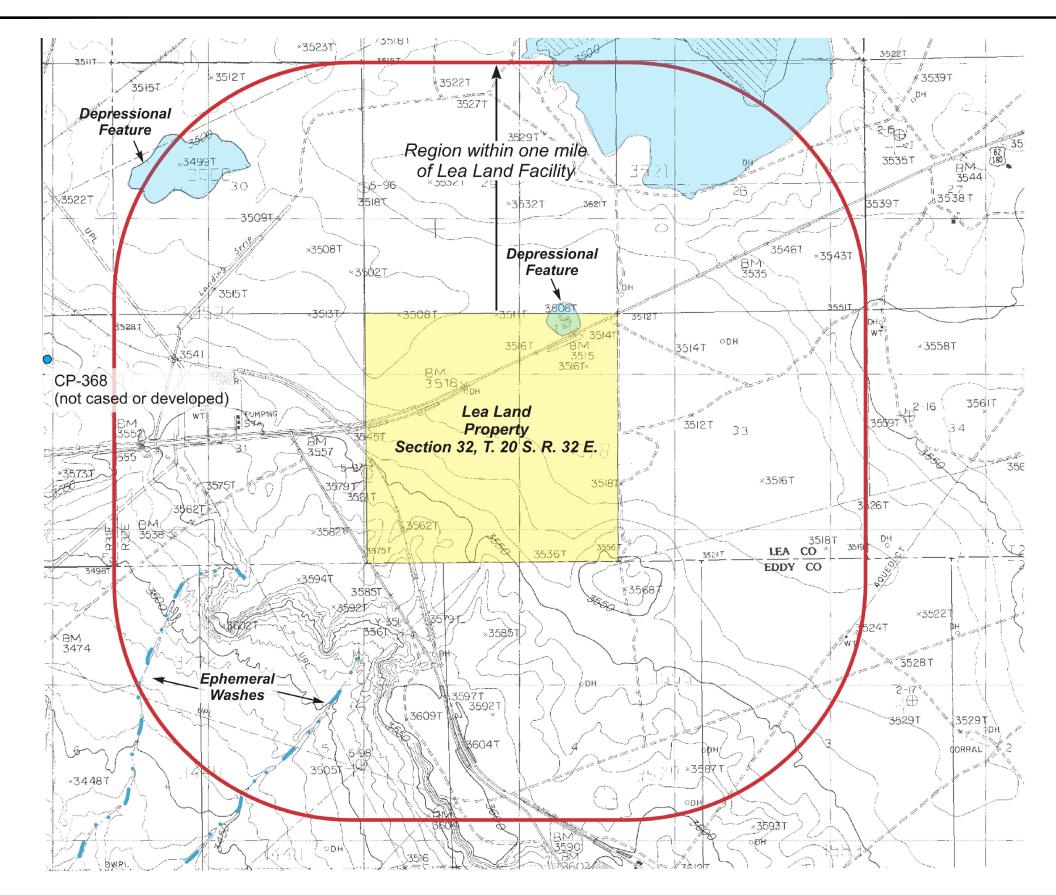


	System	Series		Delaware Basir	n Stratigraph	У	
	Quaternary		I <u></u>		liments, Valley Ipper Gatuna F		
	Tertiary			Low	er Gatuna Forn Ogallala	nation	
	Triassic		Dockur	n Groun	Chinle Formatio nta Rosa Sands		
		Ochoa			wey Lake Redb Rustler Formatio		
				s	Salado Formatio	on	
				c	astille Formati	on	
	PERMIAN	edr	vare ntain up	Bell Canyon Fo	<	Capitan Reef	
	L L L L L L L L L L L L L L L L L L L	Guadalupe	Delaware Mountain Group	Cherry Canyon	Formation < <	Facies	
		Ū		Brushy Canyor	Formation		
		Leonard	Bone Springs Limestone	Cutoff Shaly Mem	ber	<hr/>	
		Leo	Bc Spr Lime	Black Limestone	Beds	Abo Reef Facies	
		Wolfcamp			Hueco/Abo		
	Post-Pennsylvar from Hendrickso	ian stratigra n and Jones	phy of the , 1952, Nic	Delaware Basin holson and Clebsch	1961 and Hawle	ey, et al., 1993	1
						-PENNSYL	
					LEA LAND LLC	ATIGRAPHC surface waste man lea county, new me	AGEMENT FACILITY
					GOR	DONPSC	333 Rio Rancho Blvd. NE Rio Rancho, NM 87124 Phone: 505-867-6990 Fax: 505-867-6991
			FIGURES\POST P	ENNSYLVANIAN GEOLOGY.dwg	DATE: 01/08/2019	CAD: POST-PENN GEO.dwg REVIEWED BY: CRK	PROJECT #: 0416.18
Date/Time:Mar. 25, 2019-12:1 Copyright © All Rights Reser					DRAWN BY: DMI APPROVED BY: CWF	www.team-psc.com	FIGURE IV.2.5




23 R-360 Facility (Controlled Recovery Inc) P-2 26 P-1 **EXPLANATION** Location of Lea Land groundwaterMW-1MW-1 Location of Lea Land site stratigraphic boring showing designation B-1 Location of R-360 (CRI) grounwater monitoring well showing designation • P-1 Location of BLM 1979 potash study groundwater monitoring well, or 21.31.3.22 NMBM GW Rpt 6 well, or USGS potash mineral exploration boring showing NMPM location designation WELL LOCATION MAP LEA LAND LLC SURFACE WASTE MANAGEMENT FACILITY LEA COUNTY, NEW MEXICO 333 Rio Rancho Blvd. NE Rio Rancho, NM 87124 Phone: 505-867-6990 GORDON ÞΙ Fax: 505-867-6991 ENVIRONMENTAL PROJECT #: 0416.18 DATE: 01/08/2019 CAD: WELL LOCATION.dwg DRAWN BY: DMI REVIEWED BY: CRK FIGURE IV.2.6 APPROVED BY: CWF www.team-psc.com





Copyright © All Rights Reserved, Gordon Environmental / PSC 2019

NOTES: 1. GEOGRAPHIC CENTER 32° 31' 46.77 -103° 47' 18.25

Drawing:X:\2018\0416.18\02_DSGN\02_DWG\050_CIVIL\02_CONTENT\PERMIT FIGURES\RAI1\1 MILE RADIUS MAP.dwg Date/Time:Jun. 03, 2019-09:48:06; LAYOUT: B (LS) Copyright © All Rights Reserved, Gordon Environmental / PSC 2019

EXPLANATION

Location of NMOSE permitted water well showing NMOSE Basin and permit number

TABLES

- IV.2.1 SUMMARY DATA FROM WELLS AND BORINGS IN THE VICINITY OF THE LEA LAND SWMF
- IV.2.2 WATER QUALITY DATA SUMMARY
- IV.2.3 SOIL LABORATORY ANALYSIS SUMMARY

Well or Boring	Latitude	Longitude	Owner	Completion Date	¹ LS Elev (ft)	Water Bearing Zone	Top Casing Elev (ft)	Depth (ft)	WL (ft) Below Top Casing	WL (ft) Below Land Surface	WL Date	WL Elev (ft) above MSL	Top Screen Elev (ft) Above MSL	Bottom Screen Elev (ft) Above MSL	Depth to Top of Water- Bearing Zone (ft)		Elev Top of Pdl Dewey Lake Redbeds (ft)	Source of Data
Lea Land Facility G	Groundwate	r Monitoring	Wells						•									
MW-1	32.522613	-103.78581		Jun-96	3543.79	Pdl	3546.29	215.0	163.73		6/17/2014		3361	3329	183	50	3493.79	LL Permit Doc, GW Monitoring Reports
MW-2	32.533437	-103.78285		Jun-96	3517.70	Pdl	3520.20	220.0	139.74		6/17/2014		3330	3298	188	40	3477.70	LL Permit Doc, GW Monitoring Reports
MW-3	32.533989	-103.78099		Jun-96	3516.46	Pdl	3518.96	214.0	134.61		6/17/2014		3335	3303	182	50	3466.46	LL Permit Doc, GW Monitoring Reports
MW-4		-103.78001		Jun-96	3517.71	Pdl	3520.21	203.5	141.06		6/17/2014		3347	3315	171.5	48		LL Permit Doc, GW Monitoring Reports
MW-5	32.525402	-103.78000	Lea Land	Jun-97	3523.03	Pdl	3525.53	210.0	152.53		6/17/2014	3373.00	3346	3314	178	30	3493.03	LL Permit Doc, GW Monitoring Reports
Lea Land Facility S						-		-									-	
B-1		-103.780339		11/8/1993	3515.5	Pdl	not cased	126		125		3390.50				60	3455.5	Lea Land Boring Logs-Permit Document
B-2		-103.783891		11/8/1993	3516.6	dry	not cased	155		dry						45		Lea Land Boring Logs-Permit Document
B-3		-103.787568		11/8/1993	3519.2	dry	not cased	150.0		dry						45	3474.2	Lea Land Boring Logs-Permit Document
B-4	32.531098	-103.780226		11/8/1993	3517.3	dry	not cased	148.0		dry						45	3472.3	Lea Land Boring Logs-Permit Document
B-5	32.530447	-103.783806		11/8/1993	3519.5	Pdl	not cased	201.0		199		3320.50				45	3474.5	Lea Land Boring Logs-Permit Document
B-6	32.527602	-103.780036		11/8/1993	3520.9	dry	not cased	165.0		dry						30	3490.9	Lea Land Boring Logs-Permit Document
B-7	32.527902	-103.783752		11/8/1993	3524.4	dry	not cased	184		dry						35	3489.4	Lea Land Boring Logs-Permit Document
B-8	32.526431	-103.787421		11/8/1993	3536.4	dry	not cased	166		dry						95	3441.4	Lea Land Boring Logs-Permit Document
B-9		-103.783718		11/8/1993	3530.1	dry	not cased	160		dry						75	3455.1	Lea Land Boring Logs-Permit Document
B-10				11/8/1993	3548.2	dry	not cased	178		dry						50	3498.2	Lea Land Boring Logs-Permit Document
Controlled Recove																		
P-1				10/31/1989	3553	dry	3554.9	97.95	dry		3/7/2002					45		Safety-Environmental Solutions 2003
P-2		-103.745751		10/31/1989	3546	dry	3556.6	59.28	dry		3/7/2002					40		Safety-Environmental Solutions 2003
P-3		-103.750232		10/31/1989	3542	Qal	3543.4	46.8	31.98		3/7/2002	3511.4				40		Safety-Environmental Solutions 2003
P-4	32.542550	-103.751759		10/31/1989	3550	Qal	3551.2	58.6	39.01		3/7/2002	3512.2				50		Safety-Environmental Solutions 2003
P-5	32.545331	-103.756278		10/31/1989	3539	Qal	3541.0	48.57	18.85		3/7/2002	3522.2				50		Safety-Environmental Solutions 2003
P-6	32.547877	-103.760023		10/31/1989	3529	Qal	3531.8	50.21	18.00		3/7/2002	3513.8				40		Safety-Environmental Solutions 2003
P-7	32.542377	-103.759548		10/31/1989	3541	Qal	3543.7	42.04	17.74		3/7/2002	3526.0				35	3506	Safety-Environmental Solutions 2003
P-1A		-103.762889		1/26/1990	3519	Qal	3522.9	31.26	11.86		3/7/2002	3511.0				30	3489	Safety-Environmental Solutions 2003
P-2A	32.558896	-103.75490		1/26/1990	3527	Qal	3529.3	47.41	37.14		3/7/2002	3492.2				45	3482	Safety-Environmental Solutions 2003
P-3A		-103.76645		1/26/1990	3522	Qal	3526.1	55.45	12.94		3/7/2002	3513.2	3482	3467		50	3472	Safety-Environmental Solutions 2003
BLM 1978 Potash E																		
BLM 20.32.17.13				11/8/1978	3460.5	Qplaya	3450.35	100	9.90		3/15/1979		20	40	18	35		Geohydrology 1979
BLM 20.32.22.33		-103.76076		11/8/1978	3527	Tr undiff	3512.52	170	29.65		3/15/1979		150	179	35	30		Geohydrology 1979
BLM 20.32.31.13				11/8/1978	3553	Pdl	3549.95	250	135.12		3/15/1979		240	250	unknown	23		Geohydrology 1979
	32.520657	-103.75978	BLM	11/9/1978	3523	Pdl	3519.59	200	140.81		3/15/1979	3378.78	140	160	150	30	3493.0	Geohydrology 1979
NMBM GW-6			_															
20.32.18.233				1954	3450	Tr		400		89.2			WBZ 215-243 f	t				Nicholson-Clebsch, 1961
20.32.27.144		-103.756733			3545	Qal		25		12.3	6/11/1954							Nicholson-Clebsch, 1961
		-103.806406			3530	Pdl				9.9	6/11/1954	3520.1						Nicholson-Clebsch, 1961
NMOSE Permitted						r			· · ·							-		
CP-00368			Ballard-Bonfiel	6/9/1966	3573		not cased			dry			not cased			9		NMOSE WATERS DATABASE
CP-00370			Ballard-Bonfiel	7/14/1966	3549	ļ	not cased	120		80	7/14/1966		not cased			80	3469	NMOSE WATERS DATABASE
C-02953 EXPL				4/7/2004	3500				630									NMOSE WATERS DATABASE
C-03233 EXPLORE				6/19/2006	3349	ļ		566								ļ		NMOSE WATERS DATABASE
C-03151				8/23/2005	3433	<u> </u>		1352	$ \downarrow \downarrow$									NMOSE WATERS DATABASE
C-02727		-103.79000	DOE WIPP	8/27/2000	3440	Pr		913										NMOSE WATERS DATABASE
Mineral Exploration		100 7-0-1-1		0/0/40-0		r		40-0	,				1				0.46.5.5	
USGS 20-F	32.54044	-103.758712	⊢М Соор.	3/6/1953	3532		not cased	1273								40	3492.0	Mineral Expl Hole

TABLE IV.2.1 - Summary Data from Wells and Borings in the Vicinity of the Lea Land SWMF

TABLE IV.2.2 - Water Quality Data Summary

Lab Mathad																		mpour										
Lab Method												EPA	Metho	od 826	0B -	(all u	nits in	microg	rams per	· liter)								
Chloromethane	4	vinyi cnioriae	Bromomethane	Chloroethane	Trichlorofluoromethane	1,1-Dichloroethene	Methylene chloride	trans-1,2-Dichloroethene	1,1-Dichloroethane	cis-1,2-Dichloroethene	Chloroform	Carbon tetrachloride	1,1,1-Trichloroethane	Benzene	1,2-Dichloroethane	Trichloroethene	1,2-Dichloropropane	Bromodichloromethane	cis-1,3-Dichloropropene	Tetrachloroethene	trans-1,3-Dichloropropene	1,1,2-Trichloroethane	Dibromochloromethane	Chlorobenzene	Bromoform	1,1,2,2-Tetrachloroethane	1,4 Dichlorobenzene	1,2-Dichlorobenzene
NMWQCC Standard	0 1	.0				25	5	100		5	100		100	5	5	5	5			5		5		100		10	75	600
Lea Land Monitoring Wells Completed in Dew	wey	Lak	e Ree	dbeds																								
Well Location Sample Date				_					_													_			-	_		
				<0.2			<0.09										<0.1	<0.1	<0.08			<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1
				<0.2			<0.09				<0.1						<0.1	<0.1	<0.08		<0.08	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1
Lea Land MW-5 6/13/18 <0.2	2 <	0.1	<0.3	<0.2	<0.1	<0.2	< 0.09	<0.2	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1	<0.08	< 0.03	<0.08	<0.1	<0.1	<0.1	<0.2	<0.2	<0.1	<0.1

															Ir	norga	anic (Compo	ounds												
									All u	nits ar	e milli	grams	s per l	iter (n	ng/L)	excep	ot con	ductivit	y (micr	omhos/c	cm3) and	d pH (st	andard un	nits).						1	
	Lab Method			300.0	D		350.1	160.1			20	0.7				310.1		5310C	120.1	150.1				60	10B				1	1	1
		Chloride	Nitrate as N	Nitrate+Nitrite as N by IC	Vitrite as N	Sulfate	Ammonia	Fotal Dissolved Solids	Calcium	ron	Magnesium	Manganese	otassium	Sodium	Alkalinity, Bicarbonate	Alkalinity, Carbonate	Alkalinity Total	Fotal Organic Carbon	Conductivity mS/cm	Hd	Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver	Boron	Chromium, total	Chromium +6
	NMWQCC Standard	250	10.0		10.0			1,000		1.0		0.2						-		6-9	0.01	1.0	0.01	0.05	0.05	0.0020	0.05	0.05		0.05	
Lea Land Monitoring I Well Location		Dew	ey La	ke Re	dbeds																									<u> </u>	
	6/13/18	79.8	3.36	3.36	< 0.02	462	0.09	818	50.6	< 0.05	40.1	< 0.02	5.33	224	205	<1.0	168	1.36	1510	7.72											
Lea Land MW-2	3/19/10																				< 0.005	0.033	< 0.00209	0.0030	< 0.005	< 0.0002	0.069	< 0.005			
						•	0				•					•				0											
Lea Land MW-3	3/19/10	I	I	1		1							I								<0.005	0.017	< 0.00209	<0.005	<0.005	<0.0002	0.075	<0.005	1		
	0.10/10			1								1									0.000	0.011	0.00200	0.000	0.000	0.0002	0.010	0.000			
1	6/13/18	62.5	3 32	3.32	<0.02	361	0.05	778	484	<0.05	43.2	<0.02	4 92	170	190	<1.0	156	< 0.05	1280	7.74	1			1		1			<u> </u>	r	
Lea Land MW-4	3/19/10	02.0	0.02	0.02	0.02	501	0.00		.3.4	0.00	.5.2	0.02				1.0		0.00	.200		<0.005	0.025	<0.00209	0 004	<0.005	<0.0002	0.087	< 0.005			
L	0,10/10								L												0.000	0.020	0.00200	0.004	0.000	0.0002	0.001	0.000		·	
	6/13/18	54.0	3 15	3 15	< 0.02	412	0.07	886	58.6	<0.05	42.0	<0.02	4 14	176	224	<1.0	184	0.501	886	7.70	1			1		1			<u> </u>	r	
Lea Land MW-5	3/19/10	0-4.0	0.10	0.10	-0.02	12	0.07	000	00.0	-0.00	72.0	-0.02	4.14	.70	227	-1.0	104	0.001	000	1.10	<0.005	0.023	<0.00209	<0.005	<0.005	<0.0002	0.068	<0.005	<u> </u>		
	0,10/10			1																	-0.000	0.020	-0.00203	-0.000	-0.000	-0.0002	0.000	-0.000		1	1

BLM 1979 Potash Area Groundwater Monitoring Wells Completed in Dewey Lake Redbeds

¹ BLM 20.32.22.33	Jan 1979	75.0		550	3136	105												0.3 <0.02 <0.02
					-				-	1	1	1				1	r	
¹ BLM 21.31.3.22	Jan 1979	18.0		20.0	424.0	19.9												<0.05 <0.02 <0.02
Notes:																		

All units are milligrams per liter (mg/L) except conductivity (micromhos/cm³) and pH (standard units).

¹ Methods undetermined

TABLE IV.2.3 - Soil Laboratory Analysis Summary

(Page 1 of 3)

	Depth Top Sample	Depth Bottom				Sieve - %	Passing	Atterbe	rg Limits	_	¹ Permeability		
Boring, Well or Source	(Top Tested Interval)	Sample (Bottom Tested Interval)	Work Completed By	Date	USCS	No. 40	No. 200	Liquid Limit	Plasticity Index	Carbonate %	Range Based on Texture (cm/sec)	Ksat, (cm/sec) [Constant Head]	Ksat, (cm/sec) [Falling Head]
ests of Borehole Media fr	om Santa Rosa Sands	stone and Alluvial Ve	eneers										
B-1	5	6	STEC	11/8/1993	SM	71.6%	32.4%	NP	NP	100	10-3 to 10-6		
B-1	35	36	STEC	11/8/1993	SM	67.8%	23.4%	NP	NP	100	10-3 to 10-6		
B-1	45	46	STEC	11/8/1993	SM	82.2%	38.6%	NP	NP	24	10-3 to 10-6		
B-2	10	11	STEC	11/8/1993	SM	90.9%	30.4%	NP	NP	17	10-3 to 10-6		
B-2	25	26	STEC	11/8/1993	SM	82.2%	38.5%	NP	NP	24	10-3 to 10-6		
B-3	15	16	STEC	11/8/1993	SM	93.6%	30.5%	28	NP	8	10-3 to 10-6		
B-4	40	41	STEC	11/8/1993	SM	90.2%	38.0%	NP	NP	18	10-3 to 10-6		
B-5	35	36	STEC	11/8/1993	SM	89.9%	35.1%	NP	NP	18	10-3 to 10-6		
B-7	25	26	STEC	11/8/1993	SM	59.0%	19.1%	NP	NP	77	10-3 to 10-6		
B-8	0	1	STEC	11/8/1993	CL	85.4%	54.4%	NP	NP	4	10-6 to 10-8		
B-8	5	6	STEC	11/8/1993	SM	69.7%	33.4%	29	NP	77	10-3 to 10-6		
B-8	15	16	STEC	11/8/1993	SM	59.0%	19.1%	NP	NP	77	10-3 to 10-6		
B-8	85	86	STEC	11/8/1993	SM	95.4%	30.5%	NP	NP	18	10-3 to 10-6		
B-9	0	1	STEC	11/8/1993	ML	97.8%	53.9%	24	NP	5	10-3 to 10-6		
B-9	30	31	STEC	11/8/1993	SM	71.6%	32.4%	NP	NP	100	10-3 to 10-6		
B-9	35	36	STEC	11/8/1993	SM	93.6%	30.5%	28	NP	8	10-3 to 10-6		
B-9	50	51	STEC	11/8/1993	SM	95.4%	30.5%	NP	NP	18	10-3 to 10-6		
B-10	10	11	STEC	11/8/1993	SM	69.7%	33.4%	29	NP	77	10-3 to 10-6		
B-10	15	16	STEC	11/8/1993	SM	83.3%	37.8%	NP	NP	40	10-3 to 10-6		
ests of Borrow Material S	amples (Santa Rosa S	Sandstone and Alluv	ial Materials)	•	•				•	•			
Onsite Stockpile Soil 1			DBSA	7/19/2016								3.40E-04	N/A
Onsite Stockpile Soil 2			DBSA	7/19/2016	1							1.40E-04	N/A

Note:

¹ Permeability range estimates from Engineering document FM-5-47/NAVFAC MO 330/AFJMAN 32-1221(1)

TABLE IV.2.3 - Soil Laboratory Analysis Summary (Page 2 of 3)

	Depth Top Sample	Depth Bottom				Sieve - %	6 Passing	Atterbe	rg Limits		¹ Permeability		Coefficient of	
Boring, Well or Source	(Top Tested Interval)	Sample (Bottom Tested Interval)	Work Completed By	Date	USCS	No. 40	No. 200	Liquid Limit	Plasticity Index	Carbonate %	Range Based on Texture (cm/sec)	Ksat (cm/sec) (Horizotal)	Storage (dimensoinless)	Comments
Tests of Borehole Media fr	om Dewey Lake Redb	eds							•	•				
B-1	75	76	STEC	11/8/1993	CL	85.4%	54.4%	25	8	4	10-6 to 10-8			
B-1	90	91	STEC	11/8/1993	SC	78.9%	49.2%	31	14	19	10-6 to 10-8			
B-2	65	66	STEC	11/8/1993	CL	85.4%	54.4%	25	8	4	10-6 to 10-8			
B-4	50	51	STEC	11/8/1993	SM	92.3%	40.9%	NP	NP	16	10-3 to 10-6			
B-4	140	141	STEC	11/8/1993	SC	78.9%	49.2%	31	14	19	10-6 to 10-8			
B-6	30	31	STEC	11/8/1993	CL	96.5%	73.8%	27	11	27	10-6 to 10-8			
B-6	40	41	STEC	11/8/1993	SM	83.3%	37.8%	NP	NP	40	10-3 to 10-6			
B-6	55	56	STEC	11/8/1993	SM	90.0%	30.4%	NP	NP	17	10-3 to 10-6			
B-6	110	111	STEC	11/8/1993	SM	90.2%	38.0%	NP	NP	18	10-3 to 10-6			
B-8	105	106	STEC	11/8/1993	ML	97.8%	53.9%	24	NP	5	10-3 to 10-6			
B-8	120	121	STEC	11/8/1993	ML	97.8%	53.9%	24	NP	5	10-3 to 10-6			
B-9	65	66	STEC	11/8/1993	SM	85.9%	28.6%	NP	NP	24	10-3 to 10-6			
B-10	60	61	STEC	11/8/1993	SM	92.3%	40.9%	NP	NP	18	10-3 to 10-6			
B-10	70	71	STEC	11/8/1993	CL	96.5%	73.8%	27	11	27	10-6 to 10-8			
Insitu Tests of Wells Com	pleted in the Dewey La	ake Redbeds												
Lea Land MW-4	170	203	Intera	2/27/1997								4.17E-09	3.71E-09	Slug test
BLM 20.32.22.33	150	179	Geohydrology	11/8/1978								3.15E-07		Pump Test
BLM 21.31.3.22	140	160	Geohydrology	11/8/1978								1.33E-06		Pump Test

Note:

¹ Permeability range estimates from Engineering document FM-5-47/NAVFAC MO 330/AFJMAN 32-1221(1)

TABLE IV.2.3 - Soil Laboratory Analysis Summary (Page 3 of 3)

	Work	_		Sieve - % Passing	Max	Optimum	At	terberg Lin	nits	ASTM	I D-2922	Ksat, (cm/sec)	Ksat, (cm/sec)	Ksat, (cm/sec)	Ksat, (cm/sec)	_		Calculated
Boring, Well or Source	Completed By	Date	USCS	No. 200	Density (pcf)	Moisture (%)	Liquid Limit	Plastic Limit	Plasticity Index	Dry Density % Maximum	Moisture Content %		[Falling Head]	(Corrected) [Constant Head]	(Corrected) [Falling Head]	Cu	Cc	Porosity (%)
Tests of Proposed Cover Sa	mples for Municip	al Cell Closu	ıre (Sant	a Rosa Sand	stone and Al	luvial Materials)					•							-
Sample 1.0	DBS&A	8/7/20014	SC	45.8%	116.12	13.9	28	18	10	80.5%	13.5%	4.4E-03		4.1E-03		326	0.84	44.8
Sample 1.1	DBS&A	8/7/20014	SC		116.12	13.9				95.2%	17.4%		5.7E-07		5.3E-07			34.7
Sample 2.0	DBS&A	8/7/20014	SC	42.8%	117.99	12.7	28	17	11	80.4%	12.3%	4.1E-03		3.8E-03		205	0.48	44.3
Sample 2.0	DBS&A	8/7/20014	SC		117.99	12.7				95.3%	15.7%		3.0E-06		2.7E-06			33.9
Sample 3.0	DBS&A	8/7/20014	SC	44.4%	114.87	14.0	27	17	10	80.1%	13.7%	6.6E-03		6.1E-03		183	0.43	45.8
Sample 3.1	DBS&A	8/7/20014	SC		114.87	14.0				94.8%	17.4%		3.9E-06		3.5E-06			35.9
Sample 4.0	DBS&A	8/7/20014	SC	43.4%	114.87	14.0	28	17	11	80.3%	13.5%	4.9E-03		4.6E-03		211	0.39	45.5
Sample 4.1	DBS&A	8/7/20014	SC		114.87	14.0				95.1%	17.0%		1.0E-06		9.4E-07			35.5
Sample 5.0	DBS&A	8/7/20014	SC	48.4%	114.87	13.6	30	18	12	80.0%	13.0%	4.4E-03		4.1E-03		176	0.21	45.2
Sample 5.1	DBS&A	8/7/20014	SC		114.87	13.6				95.2%	16.3%		1.1E-06		1.0E-06			34.8
Sample 6.0	DBS&A	8/7/20014	SC	45.2%	115.49	13.6	29	19	10	80.0%	13.4%	5.2E-03		4.7E-03		195	0.23	45.6
Sample 6.1	DBS&A	8/7/20014	SC		115.49	13.6				94.9%	16.8%		8.2E-07		7.5E-07			35.4
Sample 7.0	DBS&A	8/7/20014	SC	43.7%	114.24	13.4	27	16	11	79.9%	12.9%	6.0E-03		5.6E-03		190	0.32	45.8
Sample 7.1	DBS&A	8/7/20014	SC		114.24	13.4				95.1%	16.4%		5.6E-06		5.3E-06			35.4
Sample 8.0	DBS&A	8/7/20014	SC	47.0%	115.49	14.4	30	18	12	80.1%	13.8%	5.3E-03		5.0E-03		184	0.13	45.2
Sample 8.1	DBS&A	8/7/20014	SC		115.49	14.4				95.3%	17.1%		4.4E-07		6.4E-07			34.8
Sample 9.0	DBS&A	8/7/20014	SC	44.8%	115.49	14.1	28	18	10	80.0%	13.8%	7.8E-03		7.4E-03		170	0.40	45.2
Sample 9.1	DBS&A	8/7/20014	SC		115.49	14.1				95.2%	16.8%		1.4E-06		1.3E-06			34.9
Sample 10.0	DBS&A	8/7/20014	SC	44.5%	114.24	14.3	29	17	12	80.1%	13.8%	7.5E-03		7.0E-03		214	0.52	45.9
Sample 10.1	DBS&A	8/7/20014	SC		114.24	14.3				94.9%	17.2%		1.3E-06		1.2E-06			35.8

Note:

¹ Permeability range estimates from Engineering document FM-5-47/NAVFAC MO 330/AFJMAN 32-1221(1)

ATTACHMENT IV.2.A

WELL LOGS AND INFORMATION ON BLM 1979 POTASH STUDY

Top	Thickness	Description
0	3	<pre>sand, brownish-buff, medium-fine texture (aeolian) 6" organic profile</pre>
3	9	caliche, white, medium to strong formation
3 12	9 18	<pre>sand, pinkish buff, medium-fine texture, calcareous cement</pre>
30	10	shale, brown, clayey with laminae of greenish-gray medium crystalline, anhydrite
40	20	shale, brown, silty
30 40 60 70 80	10	shale, red-brown, silty, clayey, has minor amount thin laminae of green silty shale
70	10	as above, but no green shale
80	20	shale, red-brown, clayey with laminae of green clayey-silty shale

Well 20.32.22.33; drilled November 8, 1978

Well 20.32.22.33 continued

Тор	Thickness	Description
100	10	as above, but no green shale
10	30	shale, brown, silty
140	10	shale, brown-silty, clayey, has laminae of gray silty shale
150	10	shale, brown, clayey, has laminae of greenish gray silty shale
160	10	shale, reddish brown, silty-clayey, has greenish gray inclusions, has small nodules of maroon limestone

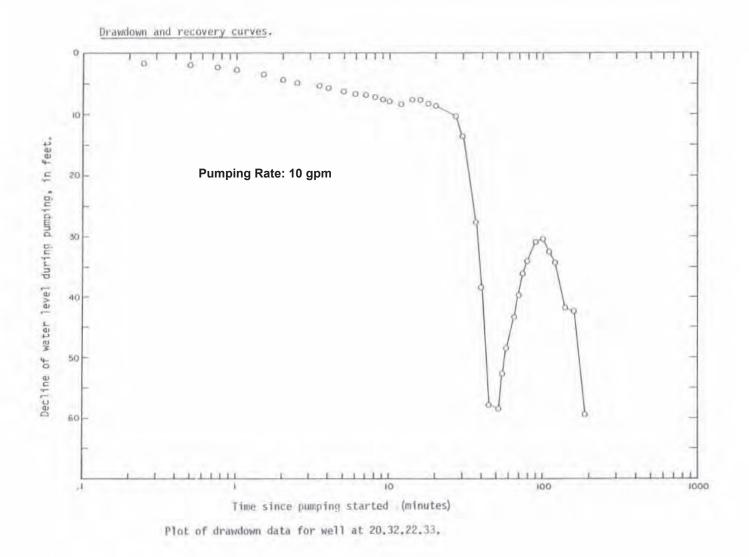
Total Depth - 170

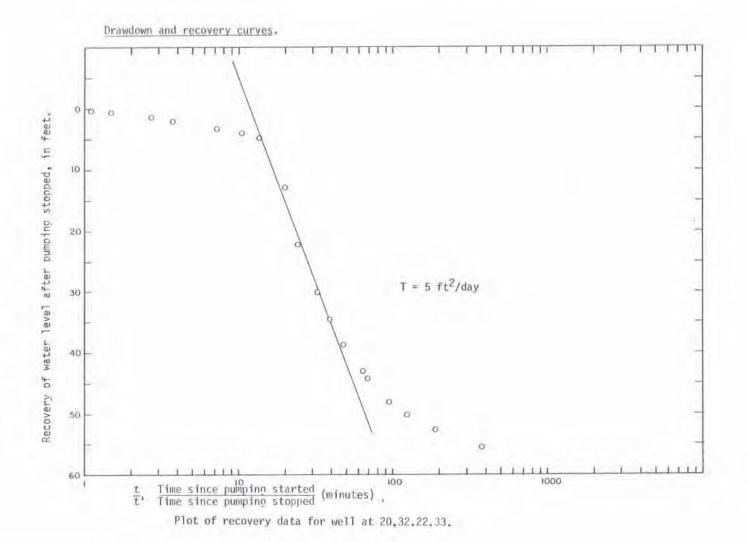
Driller encountered water at 35' (probably perched brine from Laguna Toston) Casing perforated - 150-179' below LSD Bailing results - estimates 12-15 gpm Tastes fresh Measurement: February 28, 1979: Water level - 30' below LSD

Gamma logs, continued.

U.S. GROLOGICAL SURVEY WATER ACEDUALES DIVISION 20.32.22.33

LOG READING LOCATION NO. 2 . 14. 18 22 . DAVER PROVILET B. L.M. SEC. 28 TH 203 THE 32 DECRATORIES How I W 1411 Fre 23 1979 DEPTH-ORILLER BORE SIZE 170 SEPTR-LOGGER 166 15. 10 01am._____1n._____Yr. to ______ Ft. _____ 01am.____ _16 . 44 INTERNAL LIBRER ____FP. 14 84. Pt. 10. Total 0(am.____)m. 51.00 in. *EX*2447 _ LOG MEAS. PHEM G.L. ELEVATIONS 18. àr. \$1.1 12. \$1, 18 _____F1; \# DEFLUERS HEAS. FROM C.L. TYPE FLUID 18/641 LEVEL DERETTY $t_{\rm T}$ NUCLEAR RADIATION ELECTRIC LOG DIANNEL NO. 1 7 1 4 REMARKS **JEFTA** ÷1. DEPTH RESISTIVITY -166 MALL CPS 5 IN. 5.7. 754 -0. w 100 SPAR VERTICAL SCALE R±/lin 1.0 CALIPER POSI F108 10.0 TINE CONSTRUCT Sec. VENTICAL SCALE Perin. Z LOSSING SPEED IL/WIN ZO HORYZUNTAL TEALE ----VERTICAL SCALE PERTIN 2.0 OTHER WATER LEVEL FL. 170 TEPTH 1 . SIGITAL RECORD. NANCE INPE LOC Goward




shale with limey lami

inae 🧮 🖂	+	10 100		<u></u>	÷		100	TF -
- S Aqui	fer	Ling	1112	.05	-7-			
1	一手	1 2	57		1.	and a		
-	1		L - 1		1			
N.	1 -	-			1			1
13				1	1-1	1 5	=1=	
AN P			-	1.1	1 1	72.6		
3	÷	- 2 - 1		-1			-	Tores as
2	1.1	1 4 2 5		di-	10 MB (1100	-	
3	121		- 1	1	7	100	13	
10 20	30 4	v0 35					20	100
3	14				The second	1-2	-ite	
- I	perfor	cation						
1	1 10 10 10 10 10 10 10 10 10 10 10 10 10	2 32.0						
8	-	1						

Aquifer Test

Transmissivity 5 ft²/day 1

Albuquerque Analytical, Inc.

[505] 266-9106 [505] 294-6310 Nights

4115 Silver S.E. Albuquerque, N.M. 87108 No. 8804

Rec'd. Feb. 2, 1979

WATER ANALYSIS

Geohydrology & Associates 3225 Candelaria Road NE Address Owner Jean mr Grown 20,32,22,33 Appearance and Data Chemist

	mg/l	meq/l		mg/l	meq/l		
Aluminum			Beryllium (BeO'a)			Acidity	ppm
Ammonium			Bicarbonate			Alkalinity	ppm
Arsenic			Boron (BO ₂)	0.3		BOD	ppm
Barium			Bromide			Chlorine	ppm
Cadmium			Carbonate			COD	ppm
Calcium	105.		Chloride	75.		Color	PCU
Chromium (T)	10.02		Cyanide			Conductance	uho/cm
Cobalt	_		Fluoride			Dissolved O ₂	ppm
Copper			Hydroxide			Hardness	ppm
Gold			Iodide			H ₂ S	ppm
Iron			Molybdenum (MoO ₄)	+		Hydrazine	ppm
Lead			Nitrate			Odor	T.O.
Lithium			Nitrite			pH	
Magnesium	-92.		Phosphate (Tot.)			Phenols	ppm
Manganese			Phosphate (Meta)			Silica	ppm
Mercury			Phosphate (Ortho)			Solids (Tot.)	ppm
Nickel			Selenium (SeQ ₄)	224		Solids (Tot. Diss.)	3136 ppm
Potassium	33.5		Sulfate	550.		Solids (Tot. Susp.)	ppm
Silver	-102		Sulfite			Solids ()	ppm
Sodium	325.		Tellurium (TeO3)			Surfactant	ppm
Uranium (U3O8)			Vanadium			Turbidity*	JTU
Zinc			-chromium + 6	20.02		Volatile Acids	ppm

Lithologic Log, Completion and Hydrologic Data Well 20.32.31.13 (BLM Potash Study, Geohydrology Associates, 1979)

Top	Thickness	Description
0	10	sand, buff medium to fine texture, moderate caliche formation
10	13	<pre>sand, brown-buff, fine to medium texture, leached carbonate</pre>
23	13	shale, reddish brown, silty with clayey laminae
36	4	shale, greenish gray, silty, sandy
40	30	shale, brown, silty-clayey shale, reddish brown
70	10	silty-clayey, has a bed of greenish-gray siltstone
80	20	shale, brown, clayey
100	20	as above, but more silt
120	30	<pre>shale, brown, clayey, interbedded with limestone, brown, fine crystalline</pre>
150	10	shale, brown, clayey-silty
160	10	as above, but reddish brown
170	10	shale, brown, silty-clayey, has zones of superior cementation along bedding, probably calcite
180	10	shale, brown, clayey, fairly cohesive from cementation
190	10	shale, brown, varigated clayey to silty, has greenish gray inclusions
200	20	shale, greenish to gray, silty, interbedded with brown silty shale
220	20	shale, reddish brown silty zones of calcite cementation along bedding
240	10	shale, reddish brown, clayey

Well 20.32.31.13; drilled November 8, 1978

Well 20.32.31.13 continued

Total Depth - 250'

Water level-drilled dry, never encountered moist sediments Casing perforated - 230-250' below LSD Bailing results - bailing showed about 8' water in hole (probably residual from drilling) - dry; DTW 135.12' March 16, 1979

Gamma logs, continued.

			14.71 N.51	N RESOURC	CAL SURVEY		.31.13
		_			ADING		
DAKER	3	the second s		the second s	" 205 mc 32 1	Contraction of the local division of the loc	and the second se
MOLECT		-					DATE Sei LT. 1979
DEPTH-ORILLER	250	1000			TRICKNESS		
DEPTH-LOGGEN	249	21.00	3 10.	- 24.	10 FL, <u>PV.C.</u>	21am	ft. toft
INTERNAL LOGGED					ra Fe		
LOS MEAS. FROM C.L		-			a. 10.	-	PERFORMATIONS
DRILLERS HEAS. YRON C				-	VEYEL SENSE	ty sh/Gel	Ft. toFt.
1	N	UCLEAR	R RADIATI	ON		EL	ECTRIC LOG
EXAMPLE: NO.	. 1	4	1		RENATION	DEPTH	M.
DEPTH	2.44		-			RESISTINITY	2546
AMAGE 199 3 14	185			1		S.P. PEN NO	a, mi
STAR	1.0	-				VENTICAL SC	ALE PERIN
P05+7108	10.0	-	1.000	-			CALIPER
TINE CONSTANT Las.	z			-		VERTICAL CO	ALE Felix
LOCOTHE SPEED TAUNIA	24					HOPIZONTAL	SCALE Infin
VENTICAL STALE VI/14	20					-	OTHER
WATER LEVEL Pt.	137					30879	Et
DIGITAL AECONO	1000	18				LANGE	
THE LOS	Commo	-					

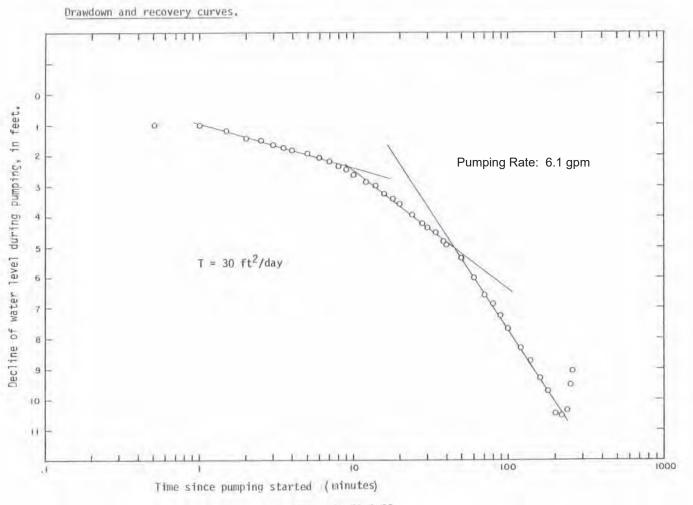
Count Por Second _ 4 -----1 1111 14 343 443 50 . 20 62) 70 50. -100 100 ÷... 1 Carlo I 110 137 ft: 02/28/79 W.L. Vinter ۵ * 30 30 - 40 40-- 50 60 70 152 Ż 201 perforation Dry upon completion Z

No Test

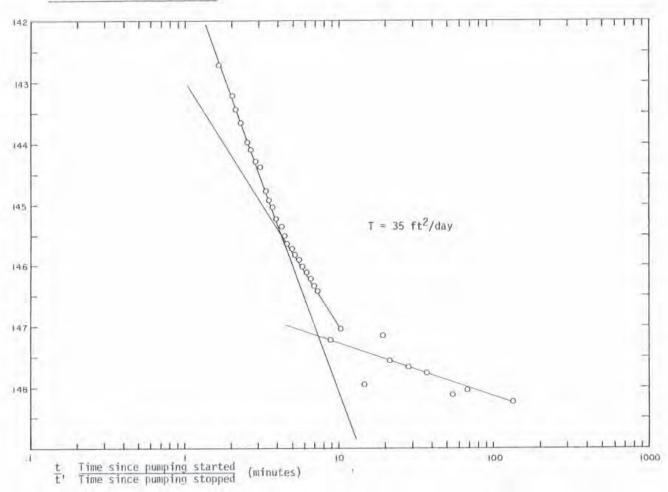
Тор	Thickness	Description
0	18	caliche, white, moderate to strong formation
18	12	sand, brown-buff, medium-fine texture,
		calcareous cement
30	10	shale, buff-red, silty, calcareous laminae
40	10	shale, red, clayey with some silt
50	10	shale, mottled red, greenish gray, has sandy laminae but mostly silt
60	10	shale, brown, silty, with clayey laminae, has greenish gray inclusions
70	10	<pre>shale, reddish, brown, silty, has good cement, some laminae (calcite) (these laminae are gray-red)</pre>
80	10	as above, but subequal amounts of silt and clay
90	10	shale, red, silty, ahs clayey laminae
100	20	shale, brownish red, silty, has laminae with calcite cement
120	10	as above, but more calcite zones (mineralized with crystalline calcite)
130	10	shale, brownish red, silty
140	10	as above, but has clayey laminae
150	10	shale, brownish red, silty, has calcite mineralized laminae
160	10	shale, red, clayey, has laminae of silty greenish gray shale
170	10	shale, reddish brown, silty
180	10	as above, but has laminae of greenish gray shale
190	10	shale, brownish red, subequal amounts of silt and clay, has greenish gray laminae, silty

Well 21.31. 3.22; drilled November 9, 1978

Total Depth - 200'


Driller encountered water at 150' below LSD Casing perforated 140-160' below LSD Bailing results - estimates 8 gpm Water level on completion - 128' below LSD Measurement: February 28, 1979: Water level - 142' below LSD

Gamma logs, continued.


silty shale


		1	ALP	uquerque.	CAL SURVEY		
					LADING	LOCATION NO. 3	
weld.		B.C.N			# 2/ 5 MG. 32 5		
40/627		41	82.	COLUMN		N AV es SATE	Feb 18 1979
OPTH-SHILLOR	200		7 m.		10 PL. P.V.C 1		
EPTH-LOGGER	199	01am-	10,	F¢.	to Ft 1	1 im1 m	Ft. 10 Ft.
NTERNAL LOGGES	Tetal	51.en	11.	Ft.	10 Pt		FL. TO TE.
DE MEAS. FROM G.C	. FLEN	ATIONS AN		UF.	·BL- 75-		Ft. 10
WHILLERS HEAS. FROM C	L TYPE	FLUID.			LEVEL DERSITY		
	N	UCLEAR	RADIAT	NOI		ELECTR	
DAABAEL NO.	5 K.	1	1		RENARKS	SEPTA.	ft.
10 ⁴ TM	199		-	-		#5515714179	them.
TANKE CPS 5 In:	108	1	-	-		S.P. PER NO.	-
57 AB	1.7		-	-		VENTICAL SCALE	71/1A
POSITION	10.0	1	-	-			PER
TINE CONSTANT Sec.	2		-	-		YERTICAL SCALE	
LOGING SPEED FL/MIN	20	-	-	-		HORIZONTAL SCALE	and an owner of the second
VERTICAL SCALE FE/14	20	-	-	-			It.
WITER LEVEL PT.	142	-	-	-		SEPTN ANHEE	n
DIGITAL RECORD	-	-	-	-	-	overt.	
TINE LOS	Gauras	-	-			_	1
and the second se	-						
W.M.M.					Beak		
man My Jun My	M						
Mary My Mary Mar	ß						
Mary M. Land M. Marken		-			100		2 ft. 02
Munum In Marken Mark		-					2 ft. 02
Mr. Contraction		-		perf	100		12 ft. 02

Aquifer Test Transmissivity 35 ft²/day

Plot of drawdown data for well at 21.31.3.22,

Drawdown and recovery curves.

Albuquerque Analytical, Inc.

[505] 266-9106 [505] 294-6310 Nights

4115 Silver S.E. Albuquerque, N.M. 87108 No. 8804

Rec'd Feb. 2, 1979

ï

1 ...

+ - - - -

WATER ANALYSIS

Owner _ Geohydrology & Asucciates 3225 Candelaria Road NE Address 21.31.3.22 Appearance and Data Chemist en Dar 22 mg/l meq/l mg/L meq/l Beryllium (BeO3) Acidity Aluminum ppm Alkalinity Ammonium Bicarbonate ppm 10.05 BOD Boron (BO2) Arsenic ppm

A REPORTED		10101 (552)	And a state of the	41-12-64		- Popula
Barium		Bromide		 Chlorine		ppm
Cadmium		Carbonate		 COD		ppm
Calcium	19.9	Chloride	18.	 Color		PCU
Chromium (1)	20.02	Cyanide		 Conductance		uho/cm
Cobalt		Fluoride		 Dissolved O ₂		ppm
Copper		Hydroxide		 Hardness		ppm
Gold		lodide		 H ₂ S		ppm
Iron		Molybdenum (MoO ² ₄)		 Hydrazine		ppm
Lead		Nitrate		 Odor		T.O.
Lithium		Nitrite		 pH		
Magnesium	17.5	Phosphate (Tot.)		 Phenols		ppm
Manganese		Phosphate (Meta)		 Silica		ppm
Mercury		Phosphate (Ortho)		 Solids (Tot.)	- 1.01	ppm
Nickel		Selenium (SeO ₄)		 Solids (Tot. Diss.)	424.	ppm
Potassium	3.55	Sulfate	20.	 Solids (Tot. Susp.)		ppm
Silver		Sulfite		 . Solids ()		ppm
Sodium	19.6	Tellurium (TeO3)		 Surfactant		ppm
Uranium (U3O8)		Vanadium		 Turbidity'		ITU
Zinc		chromium + 6	20.02	Volatile Acids		ppm

ATTACHMENT IV.2.B

WELL LOGS AND INFORMATION ON CRI FACILITY INVESTIGATIONS

Lithologic logs from CRI wells, taken from James Wright 1990 facility permitting report

	LOGS OF EXPLORATORY HOLES LARRY FELKINS, DRILLER	
TEST HOLE #1 20.32.27.424443 LS ELEV. 3553 DRILLED: 10/31/89	TEST HOLE #2 20.32.27.422221 LS ELEV. 3546 DRILLED: 10/31/89	TEST HOLE #3 20.32.27.234210 IS ELEV. 3542 DRILLED: 10/31/89
24-28 SAND & GRAVEL 28-34 SAND FINE	08 CALICHE 8-28 SAND 28-32 SAND & GRAVEL 32-36 GRAY ROOK 36-38 SAND & GRAVEL 38-50 RED BED (URY)	0-12 CALICHE 12-34 SAND THIN LAYERS GRAVEL 34-50 RED BED (DRY)
TEST HOLE #4 20.32.27.412333 LS ELEV. 3550 DRILLED: 10/31/89	TEST HOLE #5 20.32.27.144133 LS ELEV. 3539 DRILLED: 10/31/89	TEST HOLE #6 20.32.27.132121 LS ELEV. 3529 DRILLED: 10/31/89
39-42 RED BED 42-60 IAYERS RED, YELLOW, GRAY SANDY CLAY WITH SOME		24-32 SAND & GRAVEL WET 32-34 GRAY CLAY 34-36 RED BED 36-38 GREEN & GRAY CLAY
TEST HOLE #7 20.32.27.314122 LS FIEV. 3541 DRILLED: 10/31/89	TEST HOLE #la 20.32.28.222224 LS ELEV. 3519 DRILLED: 01/26/90	TEST HOLE #2a 20.32.22.322142 LS ELEV. 3527 DRILLED: 01/26/90
0-9 CALICHE 9-28 SAND LICHT 28-35 SAND DARK 35-37 RED BED 37-38 GRAY CLAY 38-40 SAND THIN LAYERS CLAY 40-50 RED BED THIN LAYERS GRAY & GREEN CLAY (WAILER AT 47 FT.)	0-8 CALICHE 8-24 SAND & CLAY 24-28 GRAVEL & SAND 28-34 CLAYS YELLOW & BROWN 34-37 RED BED CASED 37 FT. PERFS 29 FT.	20-35 RED CLAY & SAND 35-45 RED CLAY & GRAVEL
	TEST HOLE #3a 20.32.28.243123 LS ELEV. 3522 DRILLED: 01/26/90	

0-8 CALICHE 8-20 CALICHE SAND GRAVEL 20-45 DRY BROWN & RED CLAY 45-55 RED BED CASED 55 FT. PERFS 40 FT.

•

TEST HOLE #1 20.32.27.424443 IS FIEV. 3553 DRILLED: 10/31/89 0-5 CALICHE 5-10 CALICHE 10-15 CALICHE-FINE SAND 15-20 SAND CALICHE 20--25 SAND 25--30 SAND 25-30 SAND 30-35 NO SAMPLE 35-40 SAND GRAVEL 40-45 RED CLAY 45-50 RED BED 45-50 RED BED 50-55 VERY FINE SILITY SAND 55-60 SILIY SAND-GREY SHALE -IRACE OF GRAVEL 60-65 SAND 65-70 GREY SILISIONE 70-75 RED CLAY W/TRACE OF GRAVEL 75-80 RED SHALE 80-85 RED CLAY W/SOME SAND 85-90 RED CLAY 90-95 RED CLAY 95-99 NO SAMPLE TEST HOLE #4 20.32.27.412333 ls elev. 3550 DRILLED: 10/31/89 0-5CALICHE0-10SOIL-CALICHE5-10CALICHE10-20CALICHE AND SAND10-15SAND W/SOME CALICHE20-30SAND AND GRAVEL15-20SAND & GRAVEL30-35GREY SILTY SAND15-20SAND & GRAVEL30-35GREY SILTY SAND20-25SANDW/SOME CALICHE35-40GREY CLAY20-25SAND AND GRAVEL40-45RED CLAY20-35BROWN SAND AND GRAVEL45-50RED AND GREY CLAY30-35BROWN SAND AND GRAVELW/SOME GRAVEL35-40CLAY AND SAND50-55RED BED40-45RED AND GREY CLAY55-60BED BED 40-45 RED AND GREY CLAY 45-50 GREY CLAYEY SAND W/SOME GREY SHALE 50-55 RED BED W/SOME GRAVEL (SILISIONE) 55-60 GREY CLAY AND SAND

W/SOME CHERT

TEST HOLE #2 20.32.27.422221 LS ELEV. 3546 DRILLED: 10/31/89 0-5 CALICHE

 5-10
 CALICHE
 5-10
 CALICHE

 10-15
 FINE SAND
 10-15
 CALICHE

 15-20
 FINE SAND W/SMALL GRAVEL
 15-20
 SAND

TEST HOLE #3 20.32.27.234210 ls elev. 3542 DRILLED: 10/31/89 0-5 SAND AND CALICHE 5-10 CALICHE W/SOME SAND 20-25FINE SAND20-25CALICHE AND VERY FINE SAND25-30FINE SAND25-30SAND-GRAVEL30-35GREY SILITY SANDBIONE30-35RED SHALE W/IRACE OF GRAVEL35-40RED BED W/IRACE OF GRAVEL35-40RED BED W/SOME GRAVEL40-45RED BED40-45RED BED45-50RED BED45-50RED BED 45-50 RED BED

TEST HOLE #5 20.32.27.144133 LS FLEV. 3539 DRILLED: 10/31/89

45-50 RED BED

55-60 RED BED

TEST HOLE #6 20.32.27.132121 ls elev. 3529 DRILLED: 10/31/89

0-10 CALICHE 10-20 CALICHE SAND W/SOME GRAVEL 20-30 VERY FINE SAND W/SOME GRAVEL 30-40 RED BED W/SOME FINE SAND & TRACE OF GRAVEL 40-45 RED BED 45-50 RED BED

TEST HOLE #7 20.32.27.314122 LS ELEV. 3541 DRILLED: 10/31/89

- 0-10 CALICHE
- 10-20 SAND
- 20-30 VERY FINE SAND W/SOME RED CLAY 30-35 NO SAMPLE
- 35-40 RED BED
- 40-45 RED BED
- 45-50 RED SILT (LICHT COLORED)

TEST HOLE #1a 20.32.28.22224 LS ELEV. 3519 DRILLED: 01/26/90 0- 5 CALICHE 5-10 CALICHE W/SOME SAND 10-15 SAND & CLAY W/SOME SANDENCHE 15-20 SAND AND CLAY W/SOME GRAVEL 20-25 GREY & YELLOW CLAY 25-30 BROWN SAND AND GRAVEL TEST HOLE #2a 20.32.22.322142 IS ELEV. 3527 DRILLED: 01/26/90

0-5 CALICHE
5-10 CALICHE W/TRACE OF SAND
10-15 CALICHE W/SOME SAND
15-20 RED CLAY
20-25 RED CLAY - CALICHE
25-30 RED CLAY
30-35 RED CLAY W/SOME SAND
35-40 SAND AND CLAY
40-45 SAND-GRAVEL RED CLAY
45-50 RED BED - DARK RED
50-55 RED BED - DARK RED

TEST HOLE #3a 20.32.28.243123 LS ELEV. 3522 DRILLED: 01/26/90

30-35 RED BED

35-37 RED BED

0-5	CALICHE
5-10	SAND AND CALICHE
10-15	SAND GRAVEL W/SOME CLAY
15-20	SAND GRAVEL W/SOME CLAY
20-25	RED CLAY
25–30	RED CLAY
30-35	RED CLAY
35-40	RED CLAY W/IRACE OF GRAVEL
40-45	RED CLAY
45-50	DARK RED CLAY
50-55	NO SAMPLE

Hydrologic Update Report	Controlled Recovery, Inc.
January 9, 2003	Hobbs, New Mexico

Using depth to Red Bed data given in the Wright report and new elevation survey data for the top of casing at the existing piezometers, a Red Bed elevation contour map was prepared is shown as Figure 3. The map shows that in the area of the CRI facility, the slope of the Red Beds is to the northwest in the direction of Laguna Toston with a gradient of 0.0063 or 33 ft. per mile. Shallow groundwater in the area will flow on top of the red bed surface and therefore also move in the direction of Laguna Toston.

Hydrologic Work

The existing piezometer network was used to collect information on current groundwater conditions. Table 1 shows the results of the water level survey and was used to prepare a groundwater contour map (Figure 4). Information from several of the piezometers was not available or not used in the construction of the map. Two of the original piezometers were dry, another has been impacted by a water line leak, and a fourth is located over a mile from the main fluid processing areas at the facility.

Piezometer Number (ft.)	Date Measured	Casing Elevation (ft.)	Depth to Water (ft.)	Ground- water Elevation (ft.)	Total Depth (ft.)	Water Saturation (ft.)
P-1	03/07/02	3,554.9	(dry)		97.95	
P-2	03/07/02	3,556.6	(dry)		59.28	
P-3	03/07/02	3,543.4	31.98	3511.4	46.80	14.8
P-4	03/07/02	3,551.2	39.01	3512.2	58.60	19.6
P-5	03/07/02	3,541.0	18.85 ^a		48.57	
P-6	03/07/02	3,531.8	18.00	3513.8	50.21	32.2
P-7	03/07/02	3,543.7	17.74	3526.0	42.04	24.3
P-1A	03/07/02	3,522.9	11.86	3511.0	31.26	19.4
P–2A	03/07/02	3,529.3	37.14 ^b		47.41	
P-3A	03/07/02	3,526.1	12.94	3513.2	55.45	42.5

Table 1. Water Level Measurements and Groundwater Elevations,	
Controlled Recovery, Inc., Lea County, New Mexico	

Notes:

a. Water in P-5 is from a nearby water-line leak and a water level was not calculated for use in preparing the map.

b. P-2A is more than a mile north of the main liquids processing area of the facility and the water level was not calculated for use in preparing the map.

The groundwater map shows a groundwater mound in the vicinity of P-7 with decreasing hydraulic head radially outward. Although there is likely some movement to the east, piezometers P-1 and P-2 are dry, and the saturated thickness range in P-3 and P-4 is between 15 and 20 ft. Because the Red Beds dip to the northwest, most movement will be in that direction also and groundwater moving in other directions due to the influence of the groundwater mound will eventually be redirected to move to the northwest, also. The groundwater gradient to the northwest is 0.006 or about 30 ft. per mile.

As the groundwater approaches Laguna Toston, the salt lake, the groundwater contours flatten. The gradient between P-6 and P-1A decreases to 0.002, or about 10 ft. per mile. At some point lateral groundwater movement ceases in the vicinity of the lake and additional groundwater influx causes a rise in groundwater levels around the perimeter of the lake. Given the thin saturated thickness of the sediments, the low volume of recharge to the saturated zone and the slow movement of the groundwater, it is very unlikely that a small increase in groundwater elevation upgradient of the lake will have any type of measurable impact on water levels in the lake.

Water Quality

The current piezometers were not designed for the collection of water quality samples, and not much information is known about their construction. However they can be sampled and the results can be used to broadly characterize the groundwater in the area.

Samples were collected from several piezometers, Laguna Toston, and a borehole drilled beneath a pit closed for cleaning (Borehole 1, pit "D"). The results are tabulated in Table 2 and shown on Figure 5. The poorest overall water quality is in Laguna Toston which has a chloride concentration of 207,936 mg/L and a total dissolved solids (TDS) concentration of 446,900 mg/L. Samples from P-1A and P-3A show equally poor water quality, with a TDS of well over 100,000 mg/L at both locations. At a TDS of 103,900 mg/L, the borehole beneath pit D has less salt than the Laguna or these two piezometers. Piezometer 7 is located adjacent to pit D, and has a TDS of 39,300 mg/L, which is less than 10% of the TDS found in Laguna Toston. Piezometer P-6 has the "best" water quality. However, with a TDS of 15,200 mg/L, the groundwater at that location exceeds all state and federal standards for any use and is outside classification as an Underground Source of Drinking Water by state and federal water pollution control programs. (To be considered an Underground Source Of Drinking Water, the water must be less than 10,000 mg/L).

Sample Location	Date	Chloride (mg/L)	TDS (mg/L)
"A" Pit	05/08/02	154,952	319,400
Borehole 1	02/22/02	69,978	103,900
P-1A	02/14/02	198,000	361,900
P-3A	05/10/02	92,971	183,390
P-6	02/14/02	9,600	15,200
P-7	04/09/02	21,093	39,340
Laguna Toston	05/13/02	207,936	446,900

Table 2. Results of Water Quality Sampling for Chloride and TDS, Controlled Recovery, Inc., Lea County, New Mexico

ATTACHMENT IV.2.C

WELL LOG ON 1953 USGS POTASH EXPLORATORY COREHOLE

1250+NL	1250	F	WL
---------	------	---	----

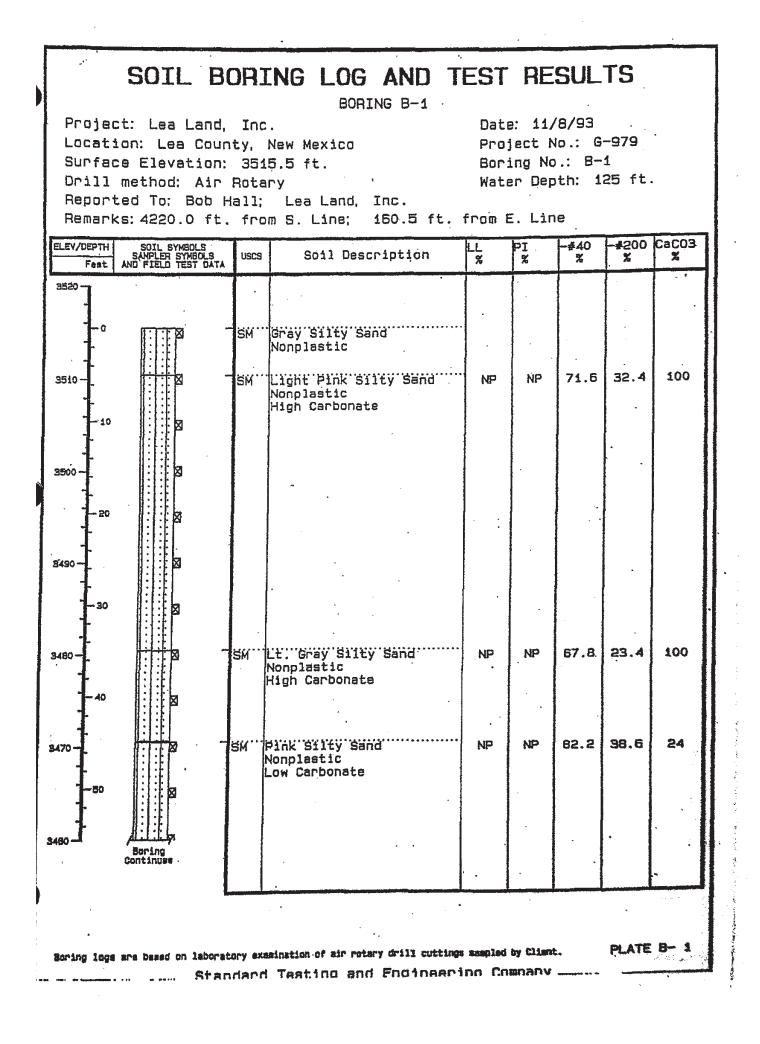
					1	
-1147			- 10 - 10			Copy mailed is Eachington-4
	O NF	u ø	20 F			DEPARTMENT OF THE INTERIOR U. B. Land Office
,						LOG OF PROSPECT BORE HOLE
		!				Logs of prospect bore holes are to be transmitted in duplicate to the regional mining supervis immediately upon completion of hole or shaft, or when work has been suspended indefinitely.
et fros	e hole c m N, or E ole is not	5. and I	2. or W, L	ine of se	ction;	Lessee or permitteeFarmers Educational and Geoperative Unit Address
	The in	form	ation g	given	* herew	with is a computety price rection of the bore hole and all work done thereor
o fai	газ са	in be	deteri	mined	l from	APR-1 1953 (signed) Charles W. Theke
Data		16		* 0.5	_	
Jate	ection	35(A)	of the	Unite	d State	U. S. Geological Survey (Title)
		TODER	sentati	on to :		
taten Eleva	nent or ation o	of tor	o of he	ole	-	epartment or Agency of the United States as to any matter within its jurisdiction.
taten Eleva	nent or	of top to se	o of he	ole 1	3532	FORMATION RECORD
taten Eleva re	nent or ation o lative	of top to se	o of he	le l	-	epartment or Agency of the United States as to any matter within its jurisdiction.
Eleva re	nent or ation o lative DEP	of top to se	o of ho a leve	le l	<u>3532</u>	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
taten Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
taten Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
taten Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
taten Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
taten Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;
Eleva re Fre	nent or ation o lative DEP	of top to se TH T	o of ho a leve	Thiclof str	1532 atum	Geologic formations; character of rock; oil, gas and water horizons;

Farmers 21-F

From	To	Inter	Formation
Of	201	201	Calicha - A little silty clay in the bottom 10".
201	10°	20 1	Sand - Fine grained. Approx. 30% red shale in the lower 10
40*	70"	301	Shale - Brown and gray.
701	1601	901	Shale - Reddish brown.
1601	2001	40	Siltstons - Red, some grey.
2001	2201	20	Siltstons - Red to magenta, a little grey. Approx. 40%
220	2801	60 1	Sandstons - Red, Approx. 20% red to magenta siltstons.
2801	3001	201	Shale - Red, a little magenta and grey.
300 [‡]	3101	10	Sandstons - Red. A little red and grey shale.
310	3301	20 [‡]	Clay - Red, silty.
3301	3601	301	Sandstons - Red. Approx. 15% red shale.
360	380†	201	Shale - Red to megenta.
3801	100	201	Clay - Red, silty.
f004	500*	100	Shale - Red to magenta. Broken caliche pebbles.
500*	5501	501	Shale - Brown, a little grey. Approx. 2% calichs.
5501	6601	110	Shale - Brown, very little grey. Traces of caliche.
560*	7201	60 F	Shale - Brown. Some red clay. Trace caliche.
†20 1	7501	301	Shale - Brown, little grey. Trace caliche.
1501	810	601	Siltatons - Red. Some brown shale. Very little green shale
10	890*	801	Shale - Red and brown, silty. Trace of caliche and green shale.
190 ¹	9001	101	Clay - Red, sandy. Trace of gypsum.
100	9601	601	Anhydrite - Grey, some gypsum. Approx. 20% red clay.
601	1010	501	Anhydrite - Dark gray. A little brown and gray clay.
10*	1080	70 ¹	Shale - Red. Approx. 20% gypsum and anhydrite.
801	1100	201	Shale - Red. Approx. 40% gypsum and anhydrite.
*0C	11101	101	Shale - Red. Approx. 10% gypsum and anhydrite.

r

'armars 20-F



. ...

rout	То	Inter	Formation
110*	1130*	201	Cypsum and analydrite - Approx. 5% red shale.
L130 ⁸	1150	201	Arelydrits - Gray, Set casing at 1132' 10".
11501	1170	201	Linestons - Tan. A little grey anhydrite. (Culebra).
11 7 01	1180*	101	Clay - Red and grey.
1180	1200	20 ¹	Halite - Approx. 20% brown alsy.
1200	12361	361	Halite - Approx. 11% brown clay.
	1236		Start coring - 2-23-53.
1236¶ 0 ^µ	1239¶ 4"	31 4 ⁴	Halite - Clear to faint orange, Occasional bleb of orange polyhalite. Approx. 2% brown clay.
1239† 4 ^µ	1240t 4+	1 [†] 0 ^µ	Clay - Red, silty. Approx. 15% halite.
1240° 4"	1247 6"	7 ¹ 2 ⁴	Halite - Clear, madium grained. Approx. 40% red siltatons.
1247 6H	1251' 2"	31 8 ^u	Siltstone - Hed. Approx. 5% halite.
1251 2"	1253" 1"	1 [‡] 11 ^µ	Halite - Clear, medium grained. Approx. 40% red and grey siltstone.
1253" 1"	125 7' 2 "	71 In	Siltstons - Red. A few halite crystals, more prominent in the top 2".
12571 2"	1264• 4"	71 2 ⁴	Clay - Red, silty. Occasional carnallite and halite bleb.
1264† 4ª	1266 ¹ 4 ⁴	2 ⁸ O ¹¹	Siltatone - Brown. Numerous small carnellite blebs.
1266¶ կ¤	1267 24	01 104	Anhydrite - Grey. A few small carnallite blebs. A few halite crystals.
12671 20	1268 ¹ 0 ⁴	0 1 10 0	Siltstons - Red. Numerous small carnallite blebs. A few halite crystals.
1268 04	1271 2"	3 ¹ 20	Annydrite - Grey and grey clay. A few halite crystals. Red, silty clay seems at 1268 ¹ 4 ⁰ and 1269 ¹ 8 ⁰ .
1271 2"	12 71' 6"	0• Ци	Clay - Red, silty. A few halite and carnallite blebs.
1271' 6"	1272 54	0 ¹ 11 ¹¹	Clay - Brownish grey. Some grey anhydrite. A few halite and carnallite blebs.
272 5ª	1272 ¹ 10 ⁴	0 * 5 *	Halite - and brown clay. Scattered carnallite blebs.
1272 10"	1273' 1"	0 ¹ 3 ¹¹	Clay - Green. A few halite and carnallite blebs. (12th ore some).

 \mathcal{A}^{*}

ATTACHMENT IV.2.D GEOTECHNICAL BOREHOLE LOGS, LEA LAND SITE INVESTIGATION

SOIL BORING LOG AND TEST RESULTS

BORING B-1

Project: Lea Land, Inc.Date: 11/8/93Location: Lea County, New MexicoProject No.: G-979Surface Elevation: 3515.5 ft.Boring No.: B-1Drill method: Air RotaryWater Depth: 125 ft.Reported To: Bob Hall;Lea Land, Inc.Remarks: 4220.0 ft. from S. Line;160.5 ft. from E. Line

SOIL SYMBOLS SANPLER SYMBOLS AND FIELD TEST DATA ELEV/DEPTH #200 CaCO3 -#40 ΡI LL USCS Soil Description % х % * % Fest 3460 60 SM Dark Pink Silty Sand X Nonplastic . ۰. 3450 SM Brown Silty Sand м Nonplastic Low Carbonate 70 85.4 54.4 4 Dark Brown V. Sandy Clay CL 25 8 9440 Low Plasticity 1 80 Dark Brown Clayey Sand sc Medium Plasticity Low Carbonate 3430 49.2 19 90 78.9 31 14 Dark Pink Silty Sand SM 3420 Nonplastic 100 Dark Brown Silty Sand SM 9410 Nonplastic Low Carbonate 110 Dark Brown Silty Sand SM Nonplastic Low Carbonate 3400 Baring Continues 11

Soring logs are based on laboratory examination of air rotary drill cuttings sampled by Client. Standard Testing and Engineering Company -----

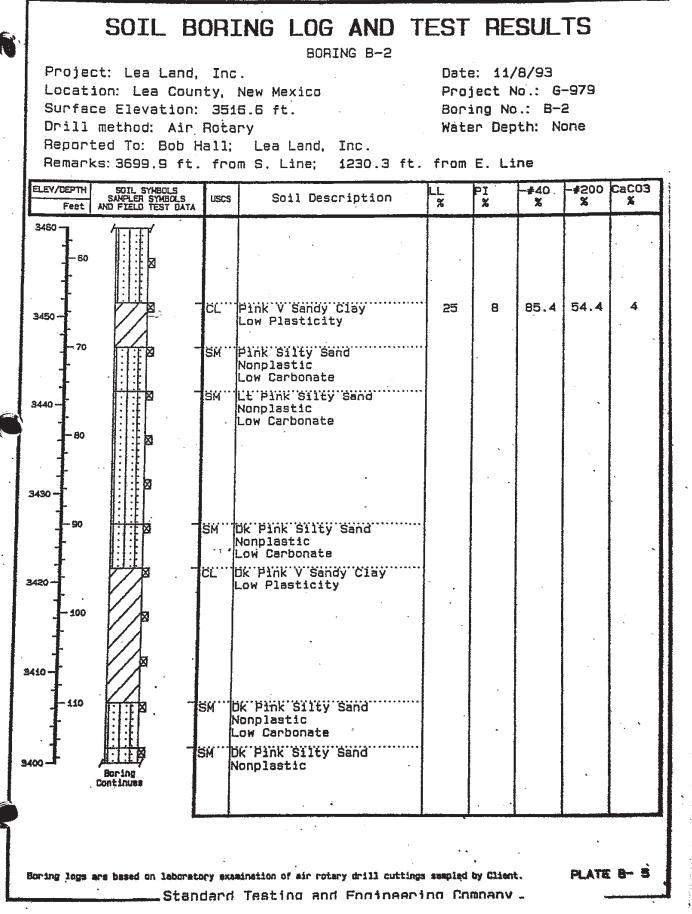
Project: Lea Land, Location: Lea Count Surface Elevation: Drill method: Air M Reported To: Bob Ha Remarks: 4220.0 ft.	ty, 351 Rota all:	New Mexico 5.5 ft. ry	Pro Bor Wat	e: 11/ ject N ing No er Dep E. Lin	lo.: 6 .: 8- th: 1	·1	•
LEV/DEPTH SOIL SYMBOLS SAMPLER SYMBOLS Feat AND FIELD TEST DATA	USC9	Soil Description	LL %	PI %	-#40 %	-#200 %	CaCO3 %
9400		Dk Brown Silty Sand Nonplastic Low Carbonate					
		· · · ·					9-
•		· · · · ·					
		·· ·					
				ł		•	

-

.

Standard Testing and Engineering Company .. • .

SOIL BORING LOG AND TEST RESULTS

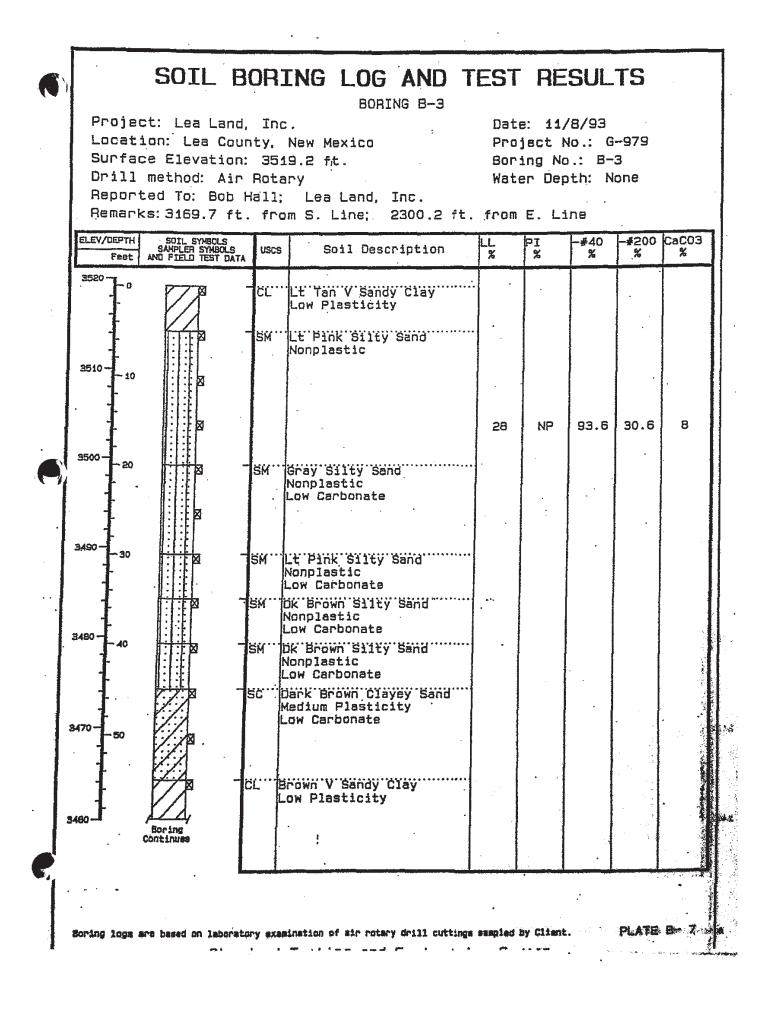

BORING B-2

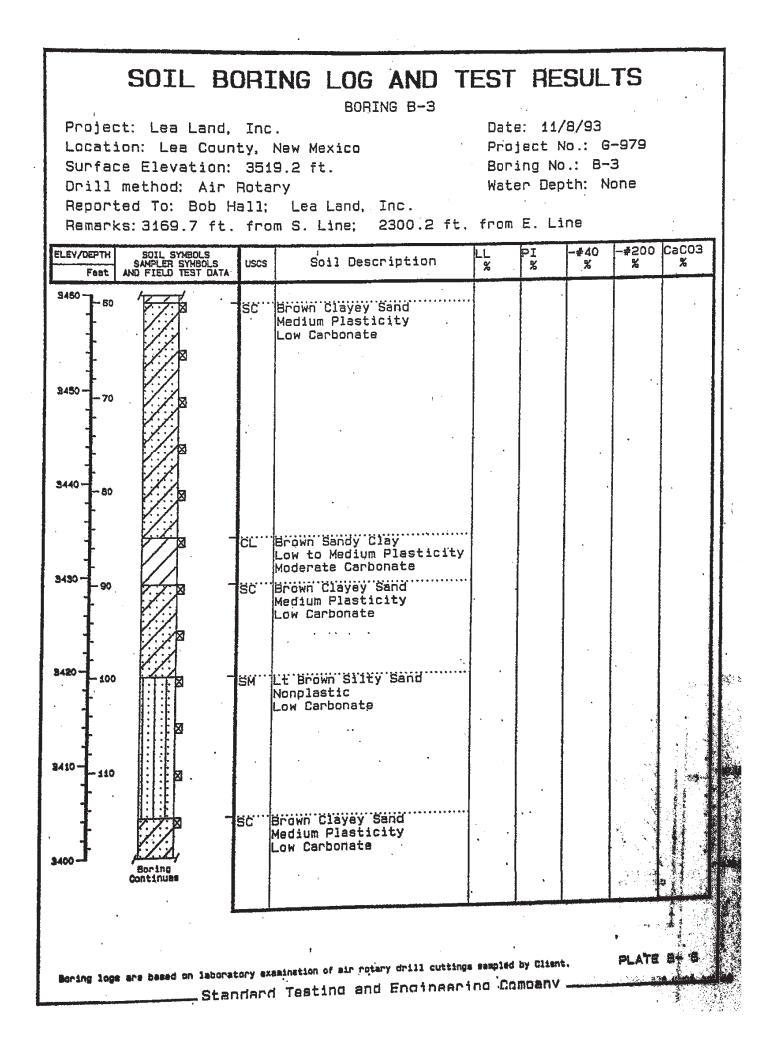
Project: Lea Land, Inc. Location: Lea County, New Mexico Surface Elevation: 3516.6 ft. Drill method: Air Botary Reported To: Bob Hall; Lea Land, Inc.

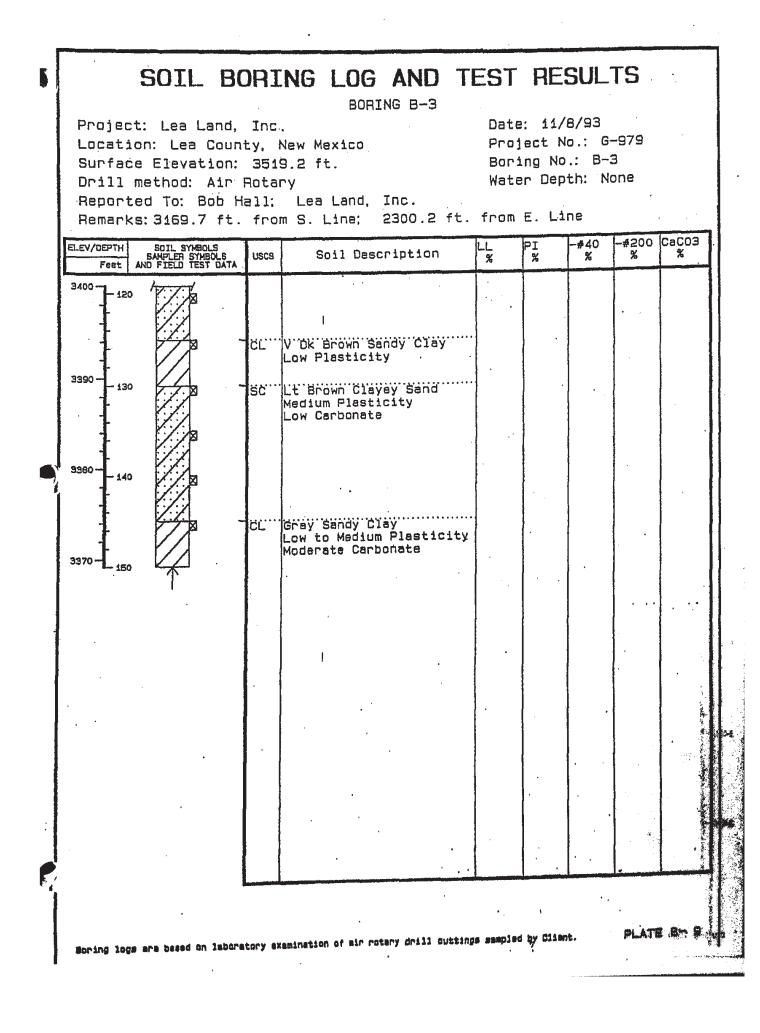
Date: 11/8/93 Project No.: G-979 Boring No.: 8-2 Water Depth: None

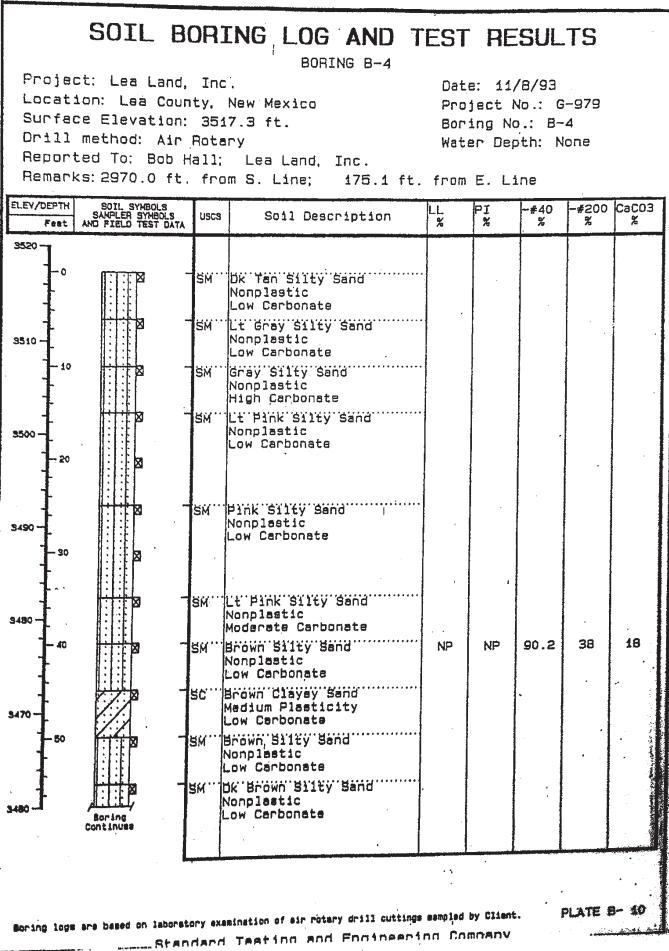
Remarks: 3699.9 ft. from S. Line; 1230.3 ft. from E. Line

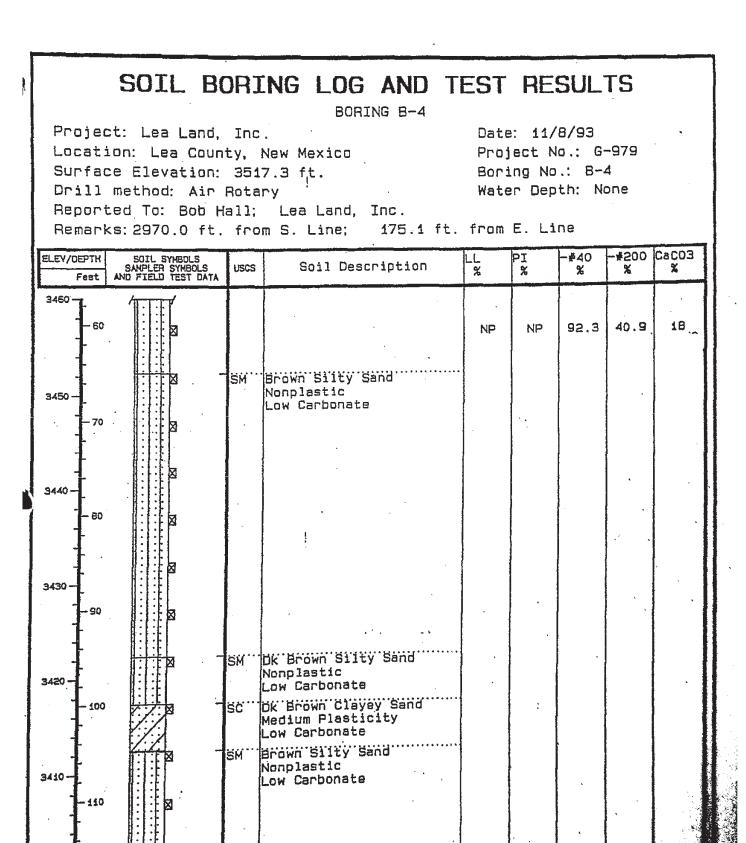
ELEV/DEPTH Feet	SDIL SYMBOLS SAMPLER SYMBOLS AND FIELD TEST DATA	LISCS	Soil Description	LL X	PI X	-#40 ¥	-#200 %	CoC03
3520	· ·							
3510-		SM	Lt. Tan Silty Sand Nonplastic Low Carbonate Lt. Pink Silty Sand Nonplastic Low Carbonate					
9500			Lt. Pink Silty Sand Nonplastic High Carbonate	NP	NP	90.9	30.4	17
3490			Pink Silty Sand Nonplastic Low Carbonate	Ν₽	NP	82.2	38.6	24
3480		L SM F	ik Pink Silty Sand Nonplastic Low Carbonate Pink Silty Sand Nonplastic					
470 - 50		N	k Pink Silty Sand onplastic ow Carbonate			•		
	Boring Continues				×			
			ination of air rotary drill cuttings :				PLATE	- 4



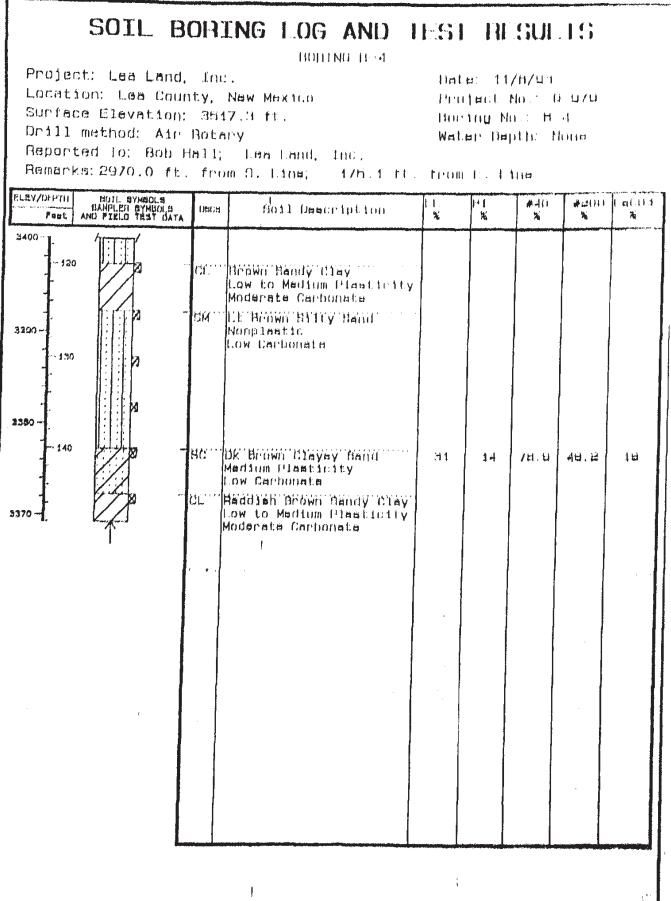

к •


SOIL BORING LOG AND TEST RESULTS BORING B-2 Project: Lea Land, Inc. Date: 11/8/93 Location: Lea County, New Mexico Project No.: G-979 Surface Elevation: 3516.6 ft. Boring No.: B-2 Drill method: Air Rotary Water Depth: None Reported To: Bob Hall; Lea Land, Inc. Remarks: 3699.9 ft. from S. Line; 1230.3 ft. from E. Line ELEV/DEPTH SOIL SYMBOLS SAMPLER SYMBOLS AND FIELD TEST DATA L #200 CaC03 ΡI #40 USCS Soil Description % % X 2 % Feet 3400 120 SM Pink Silty Sand Nonplastić Low Carbonate 3390 130 SM Pink Silty Sand Nonplastic Low Carbonate Lt Pink Silty Sand SM 3380 Nonplastic Low Carbonate 140 DK Brown V Sandy Clay ĊĹ Low Plasticity SC Dark Brown Clayey Sand 3370 Medium Plasticity Low Carbonate 150


Boring logs are based on laboratory examination of air rotary drill cuttings sampled by Eliant.

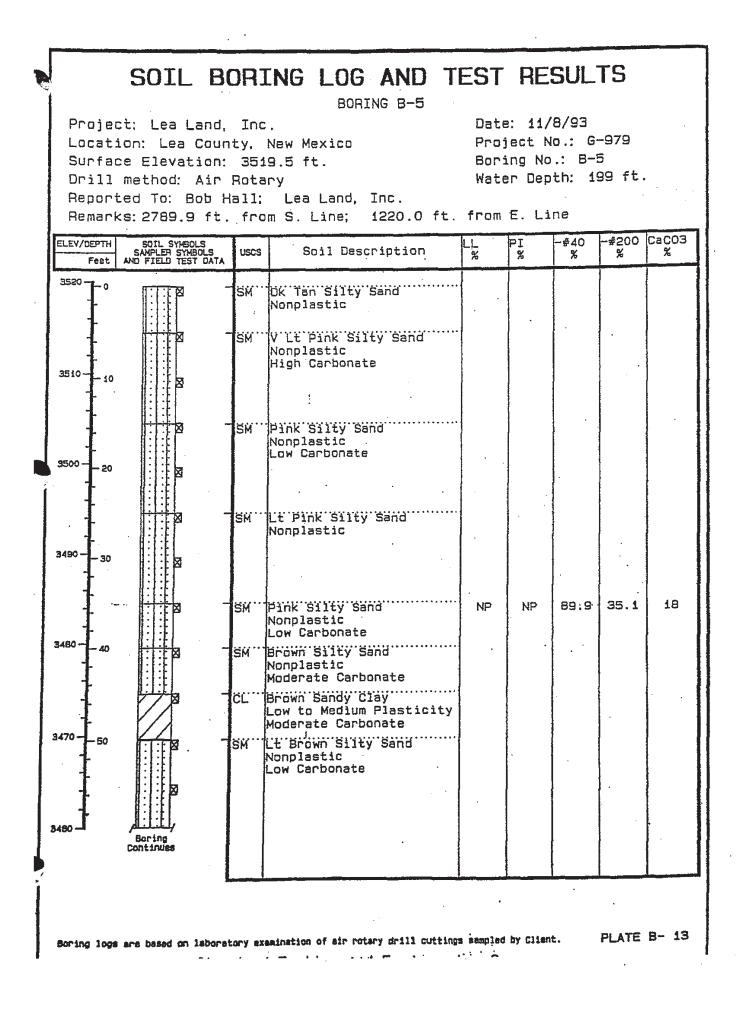

PLATE B

Boring logs are based on laboratory examination of air rotary drill outtings sampled by glients.


1

به مسر .

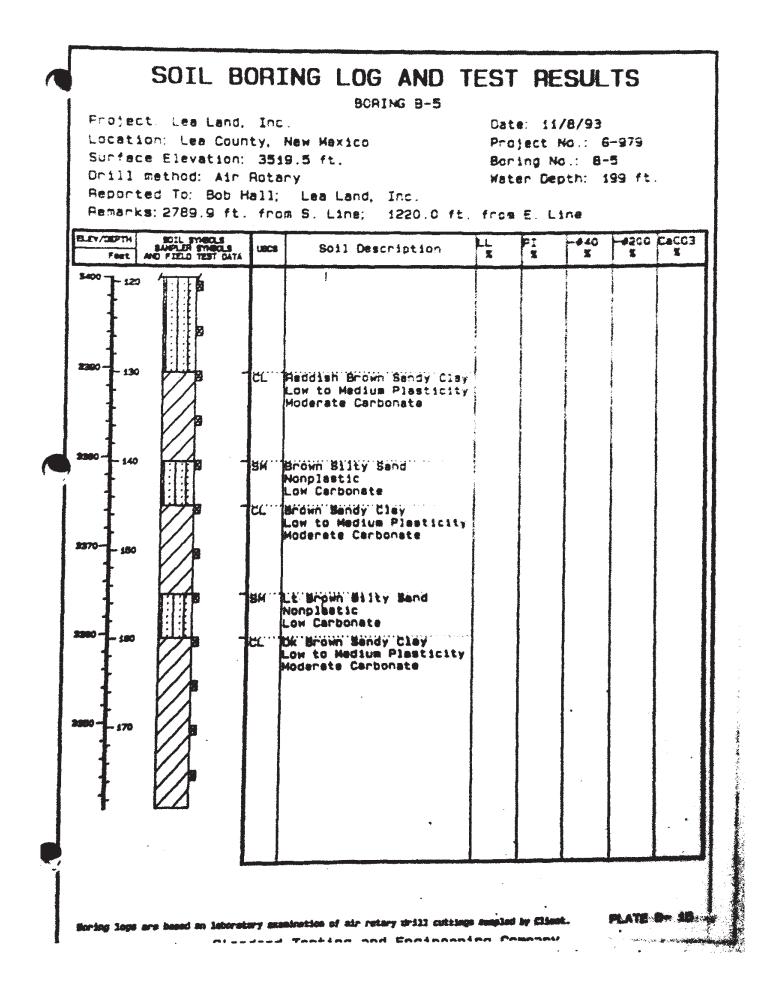
3400

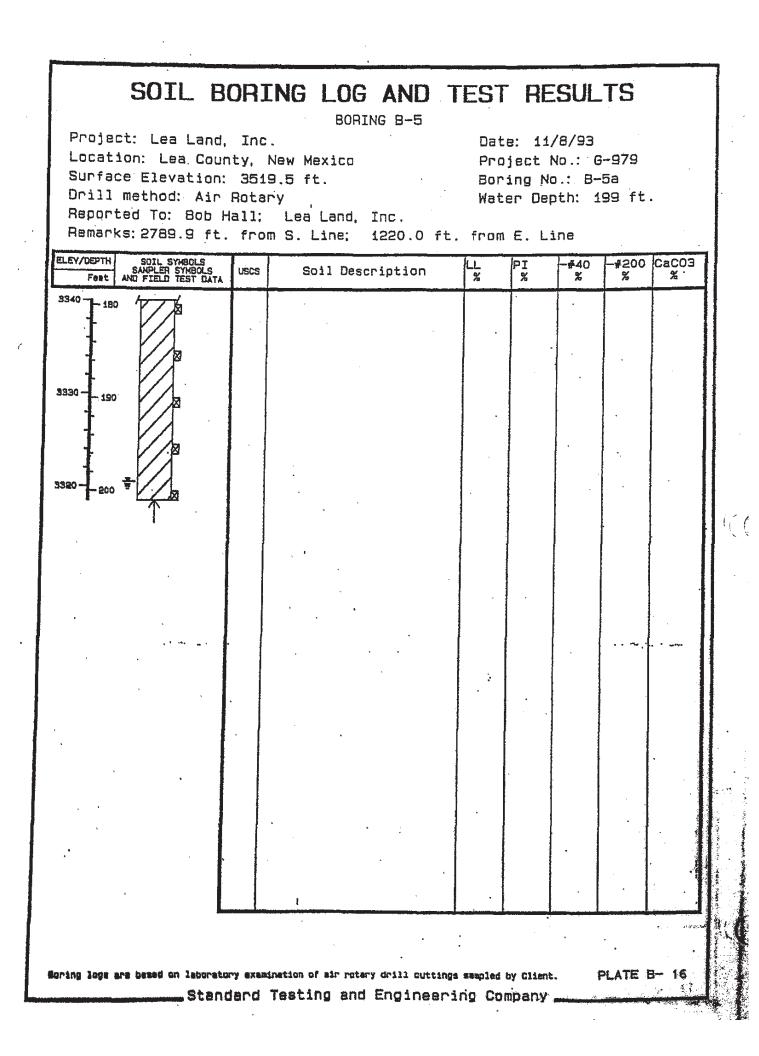

805102 CONTINUES

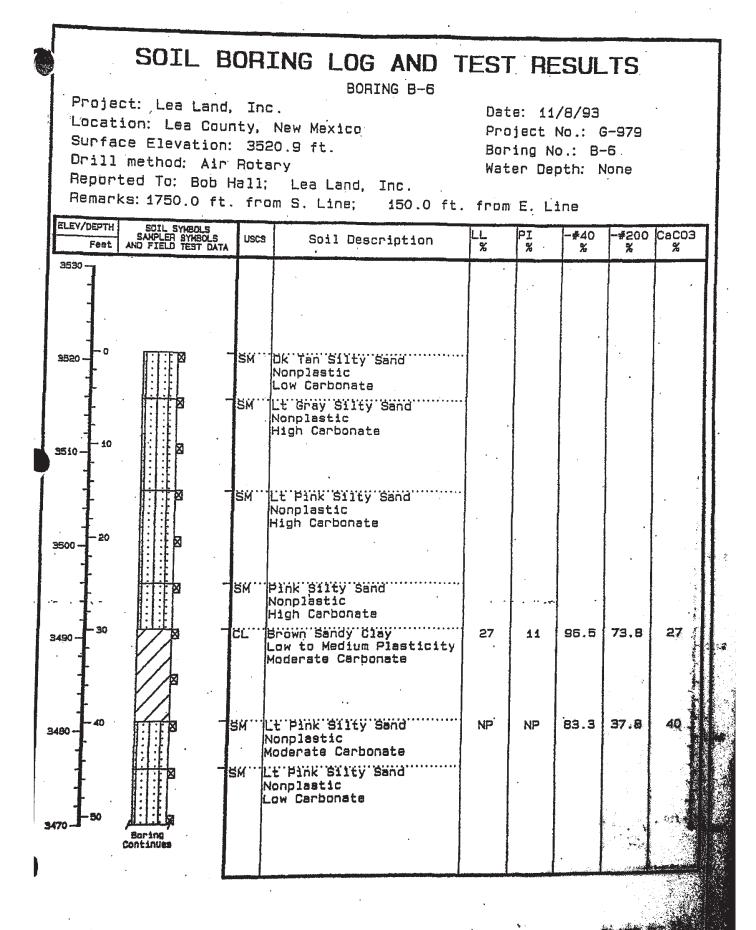
• -

Boring loss are based an inhoratory examination of Min raimry drill dittings sampled by Alisait.

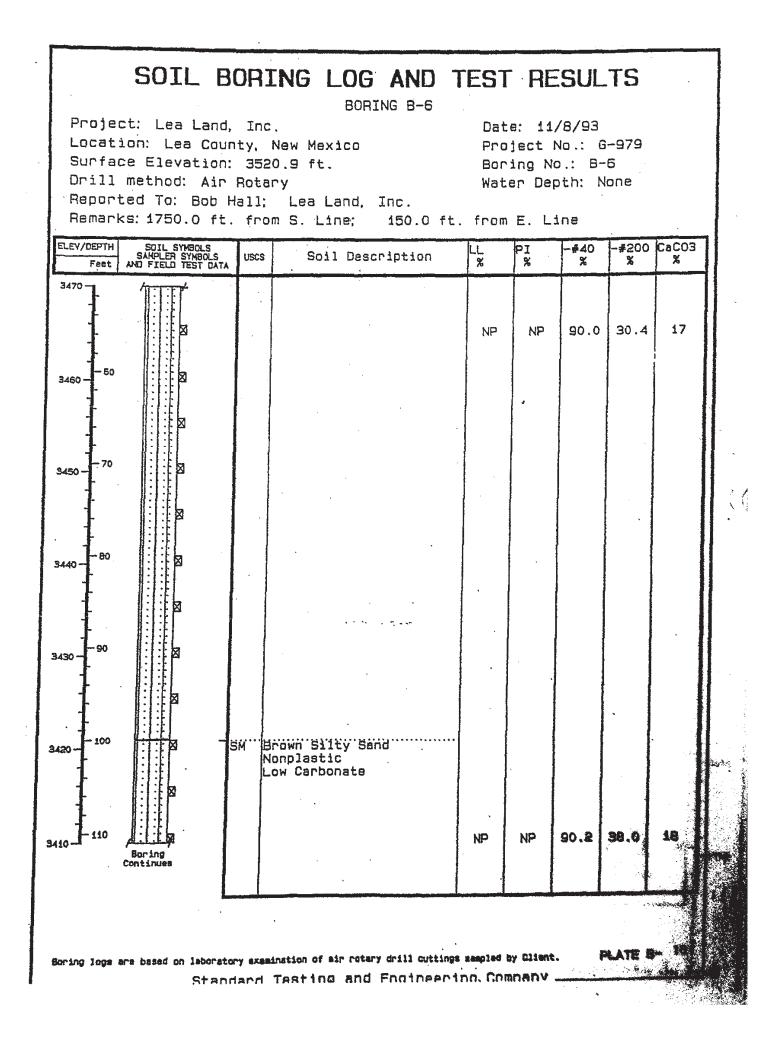
- PI-ATE 8~ 48

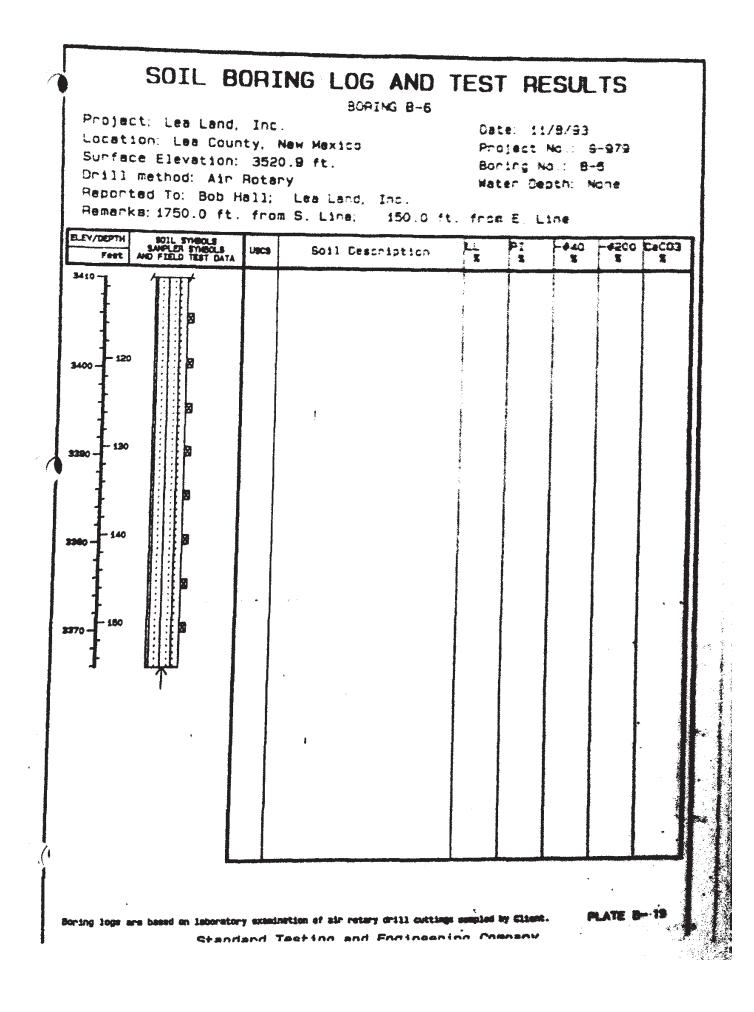


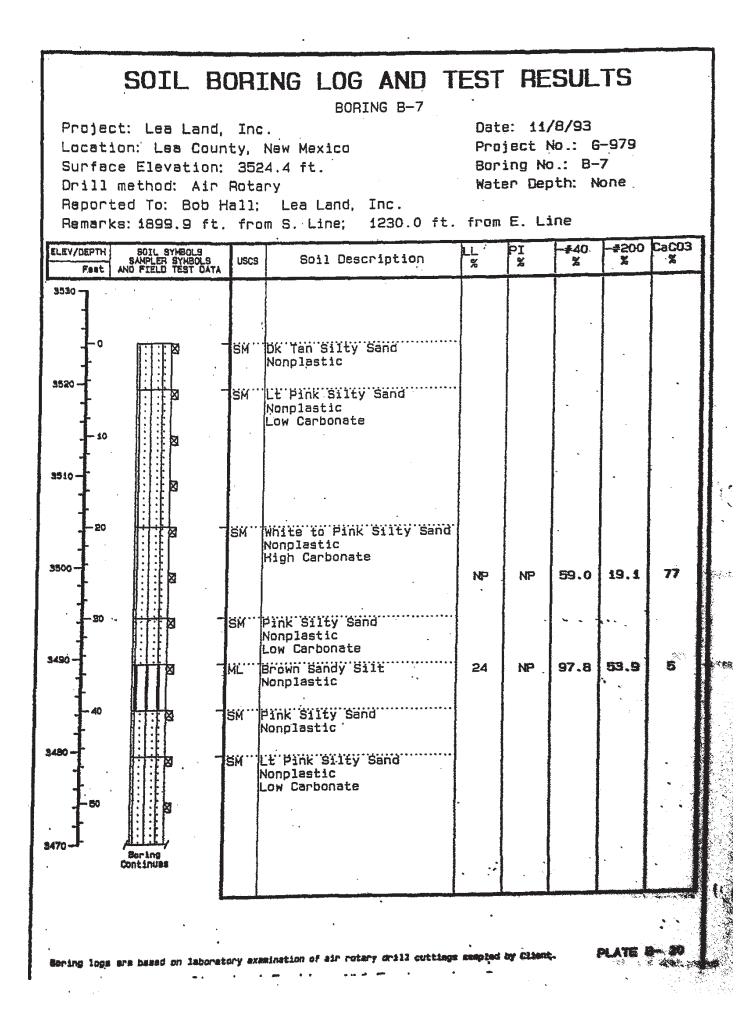

SOIL BORING LOG AND TEST RESULTS

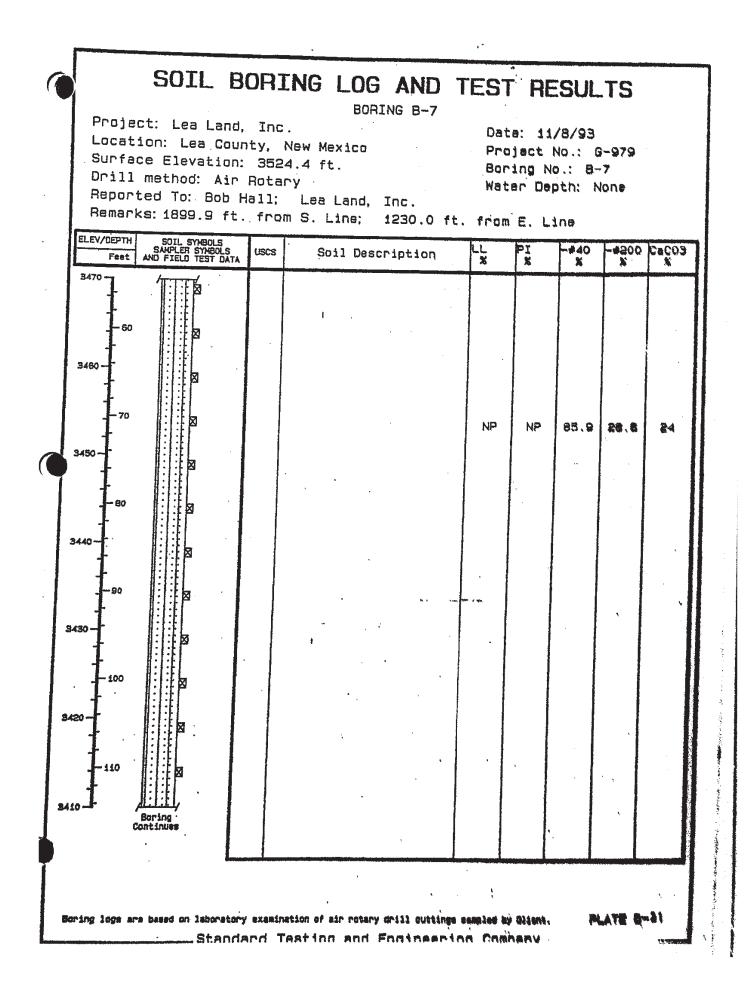

BORING B-5

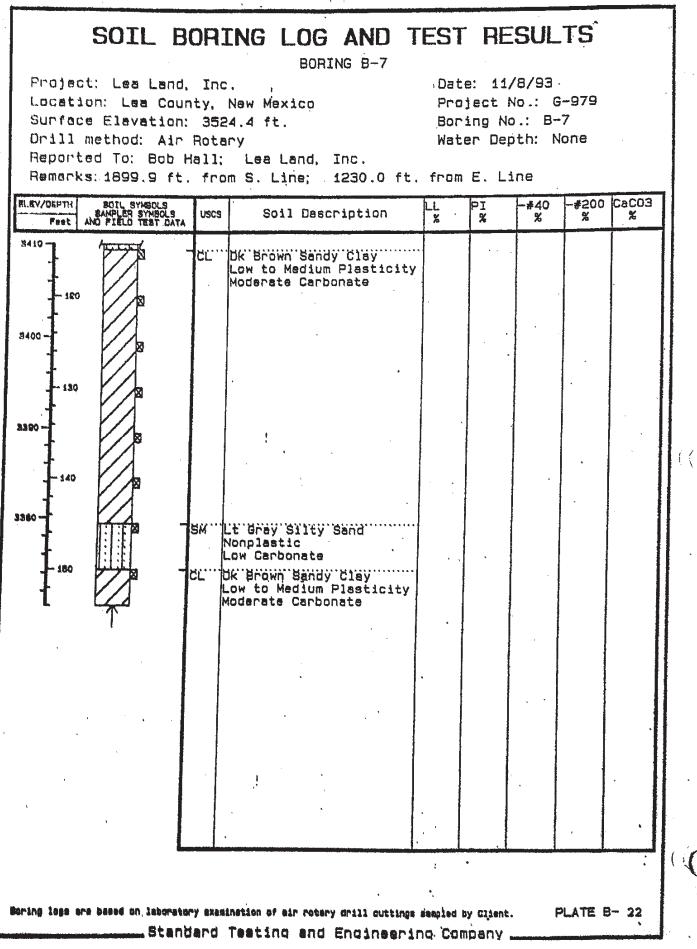
Project: Lea Land, Inc.	Date: 11/8/93
Location: Lea County, New Mexico	Project No.: G-979
Surface Elevation: 3519.5 ft.	Boring No.: 8-5
Drill method: Air Rotary	Water Depth: 199 ft.
Reported To: Bob Hall; Lea Land, Remarks: 2789.9 ft. from S. Line;	

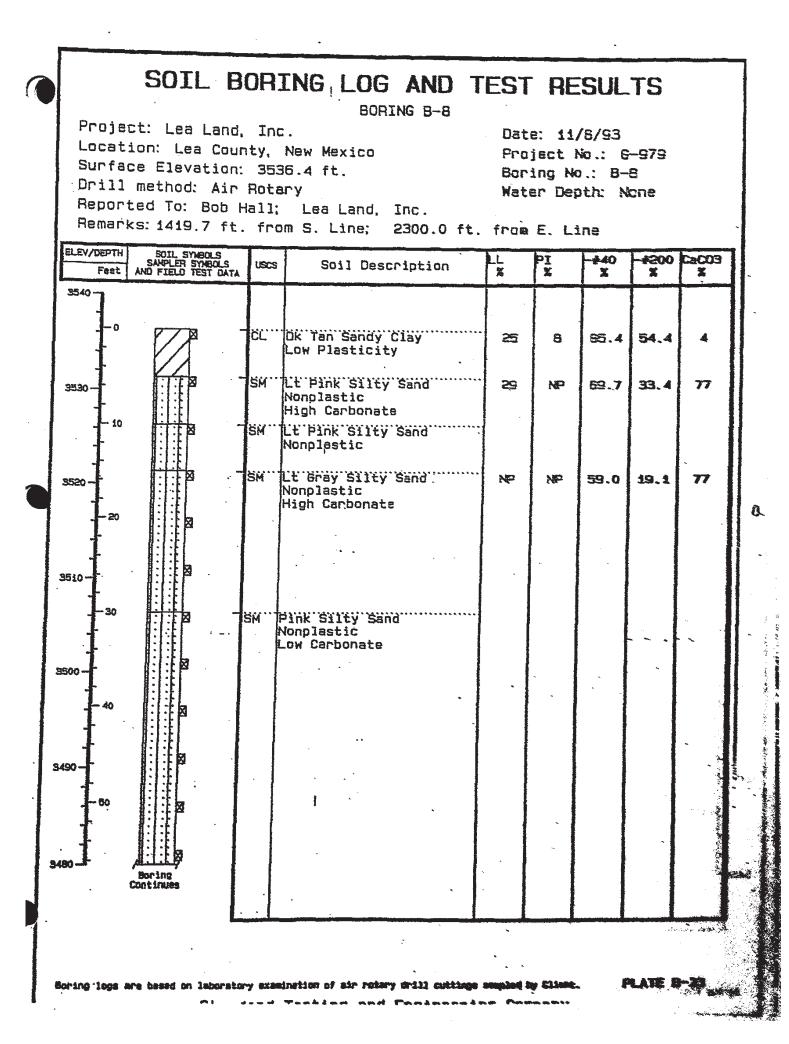


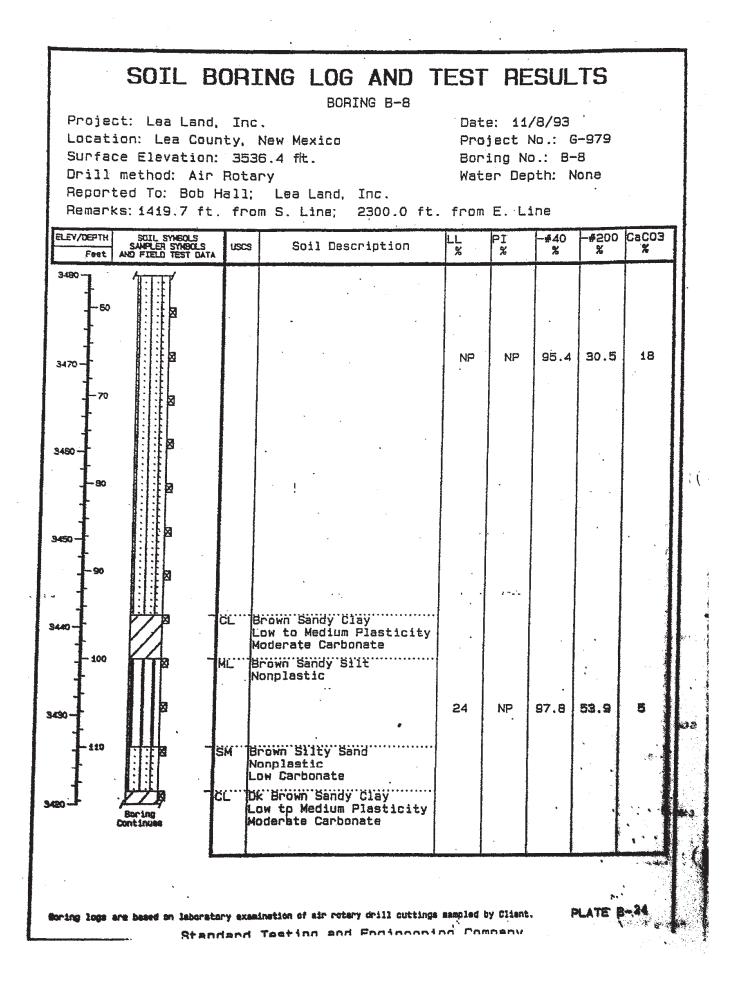




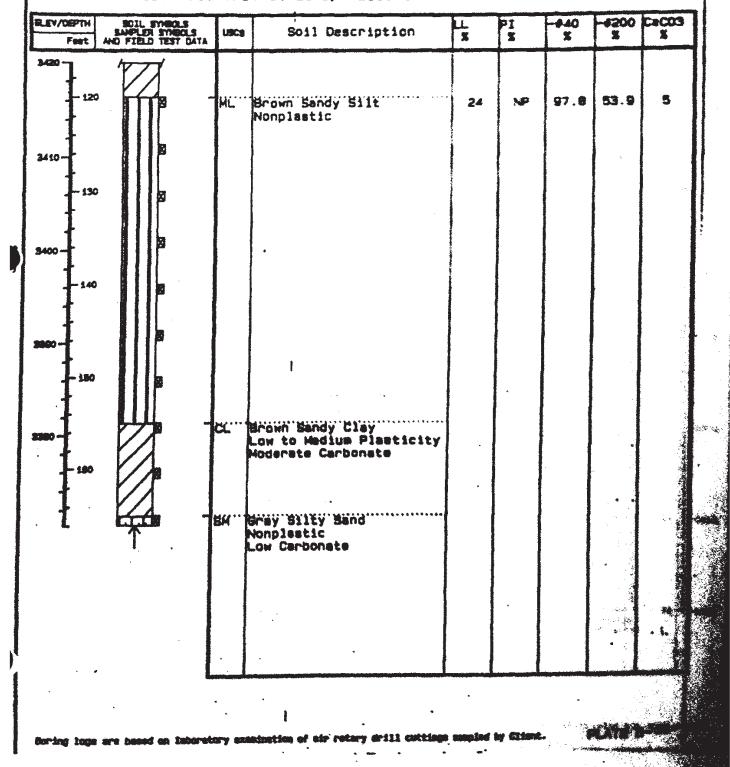


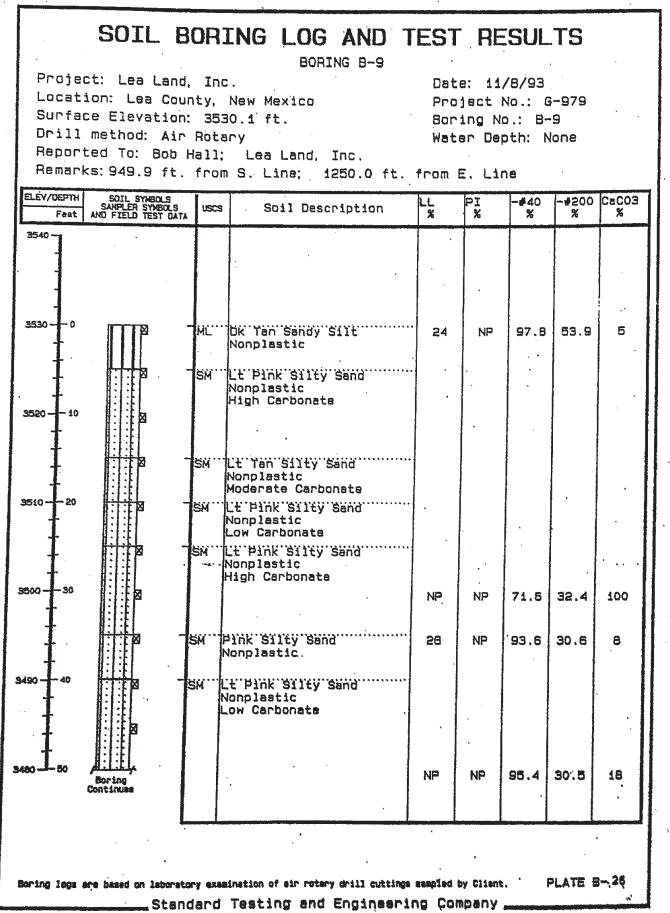

Boring logs are based on laboratory examination of air rotary drill cuttings sampled by Climit.





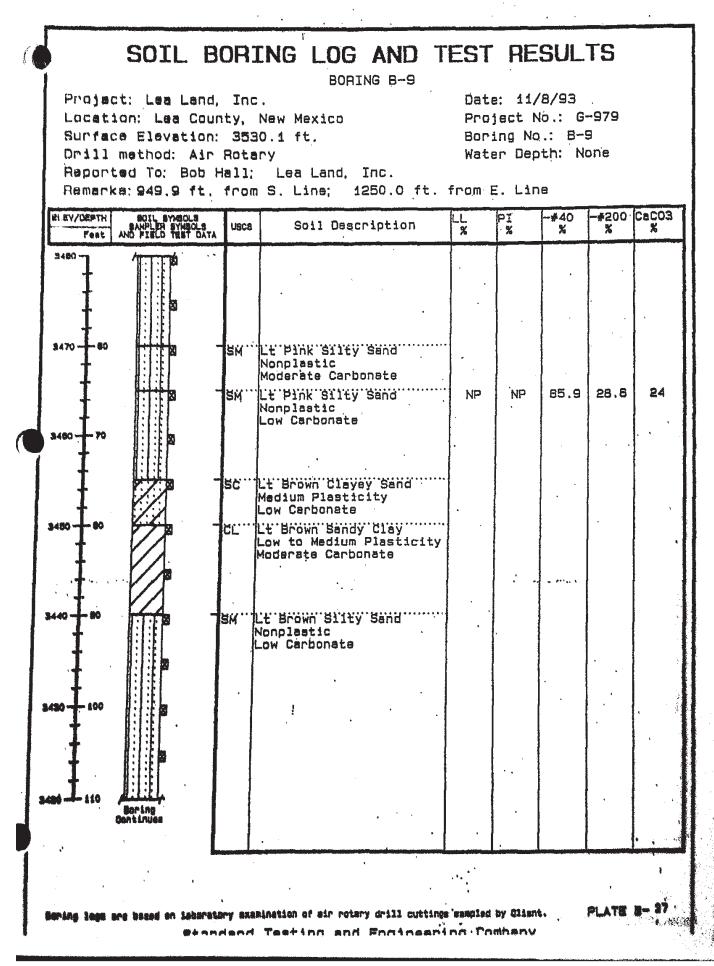
((

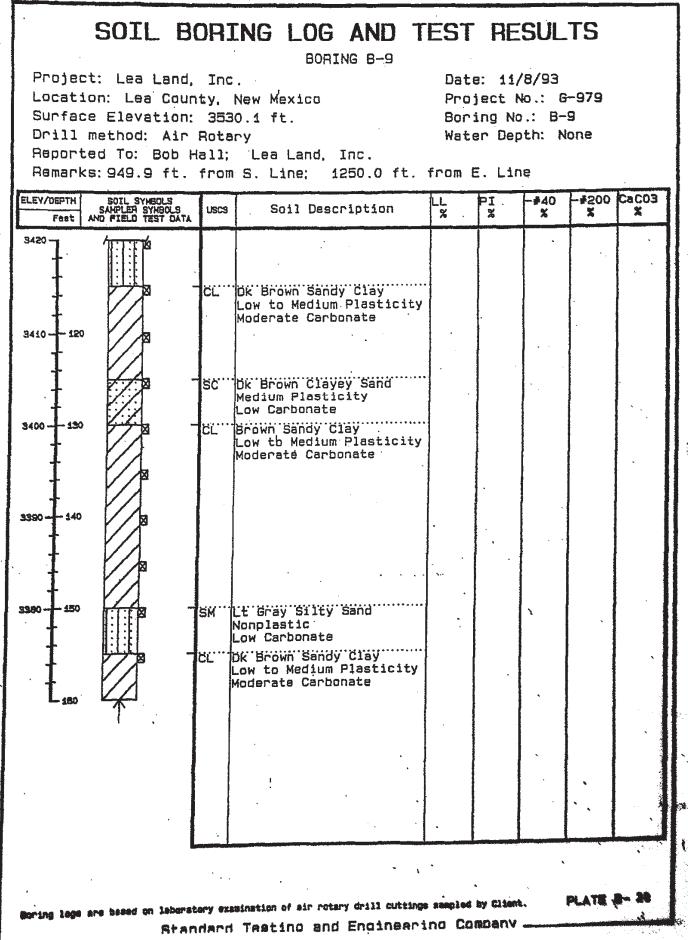




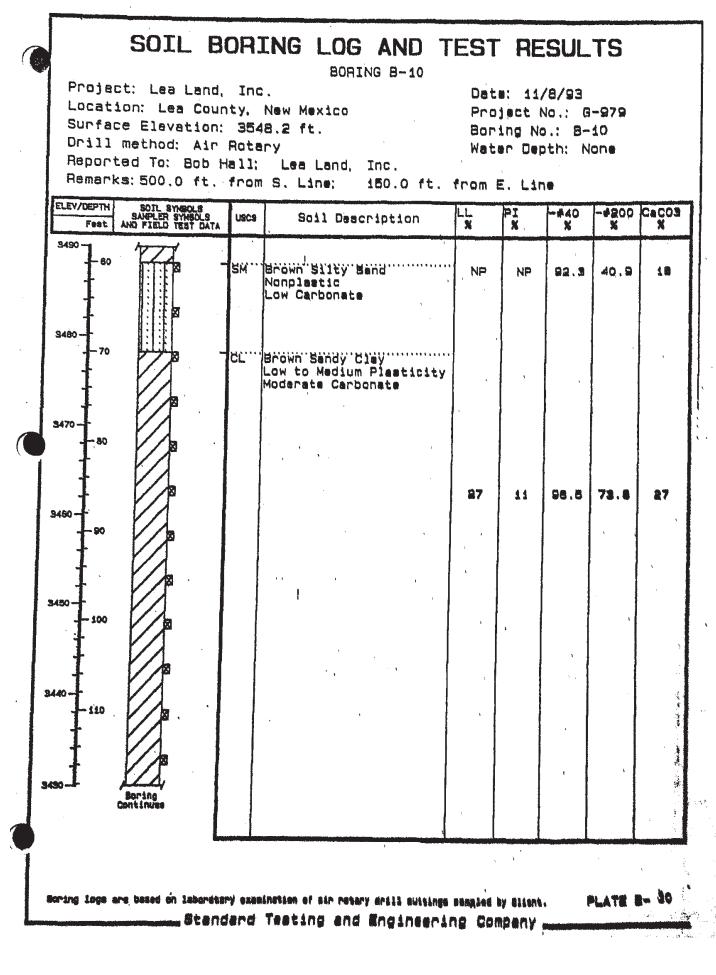
SOIL BORING LOG AND TEST RESULTS

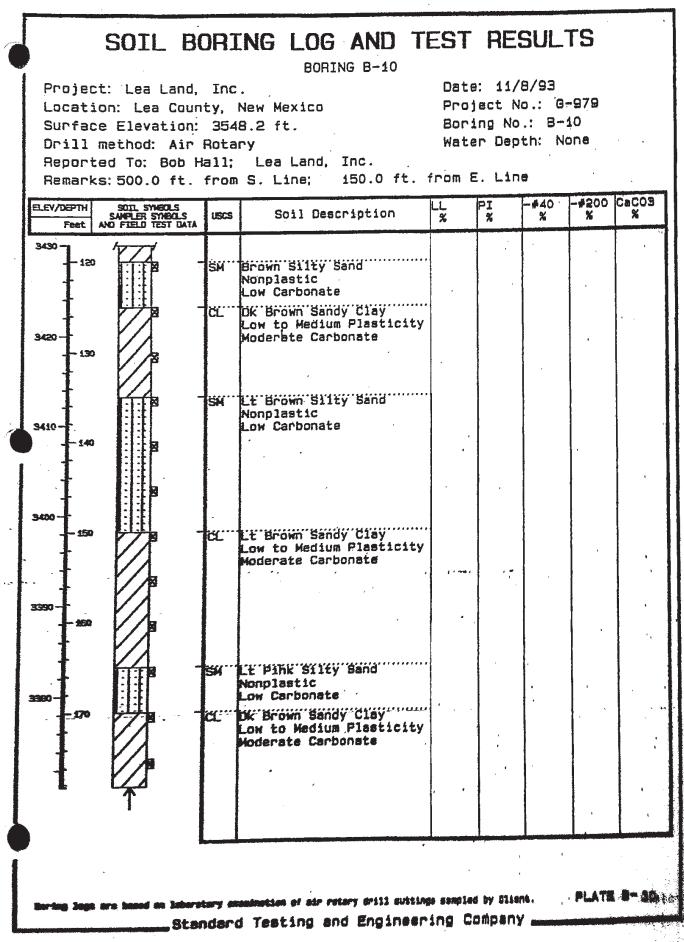
BORING 8-8

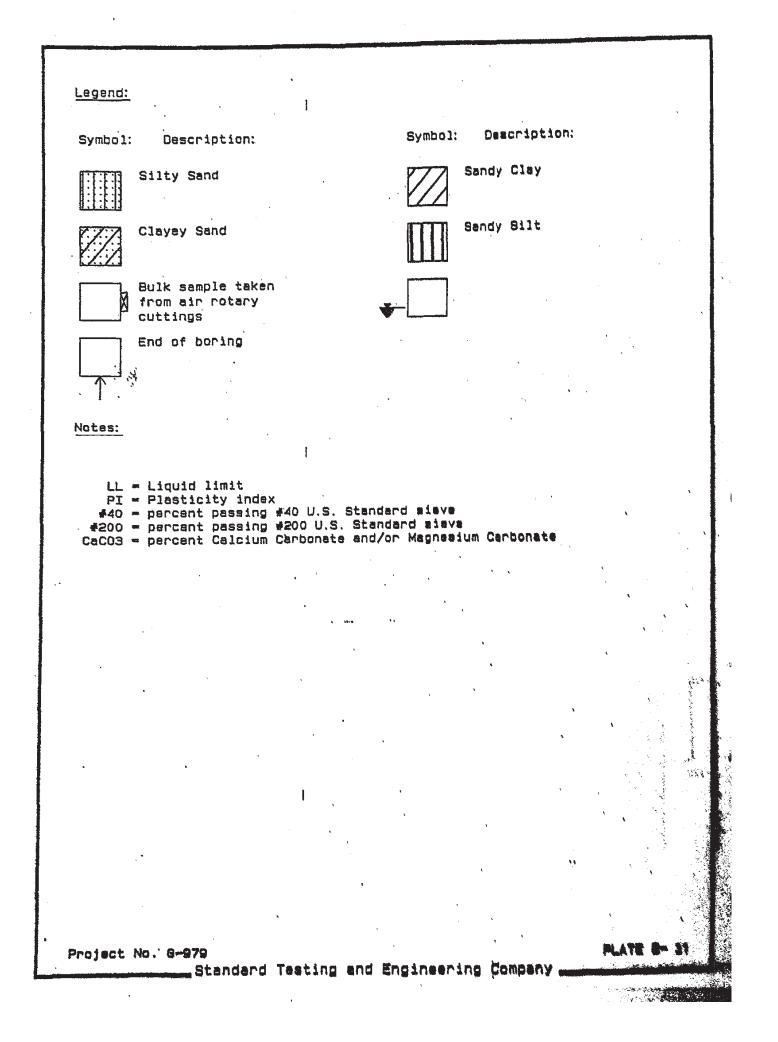

Project: Lea Land, Inc.Date: 11/8/93Location: Lea County, New MexicoProject No.: 6-979Surface Elevation: 3536.4 ft.Boring No.: 8-8Drill method: Air RotaryWater Depth: NoneReported To: Bob Hall:Lea Land, Inc.Remarks: 1419.7 ft. from S. Line:2300.0 ft. from E. Line

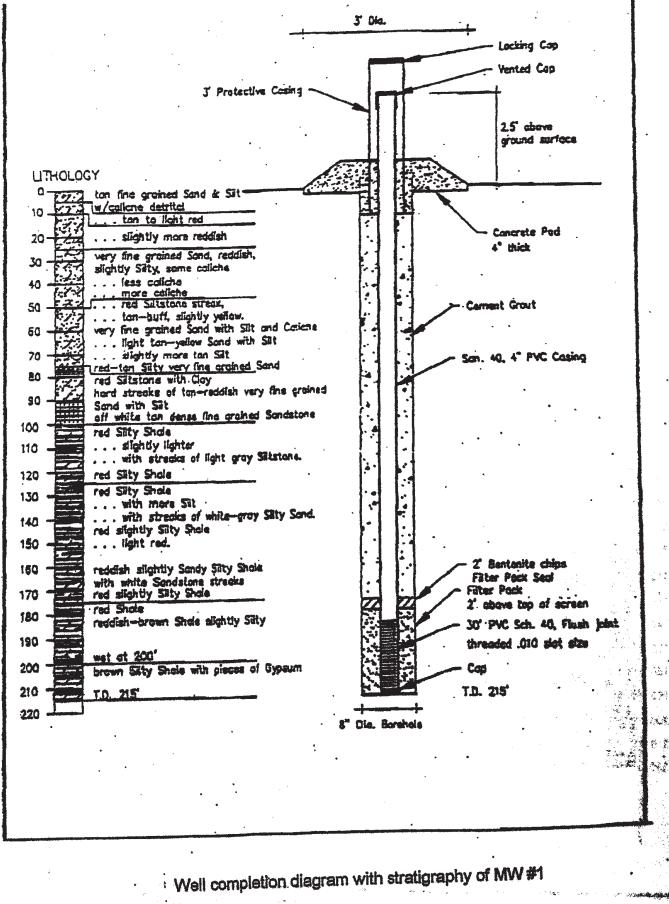

Î

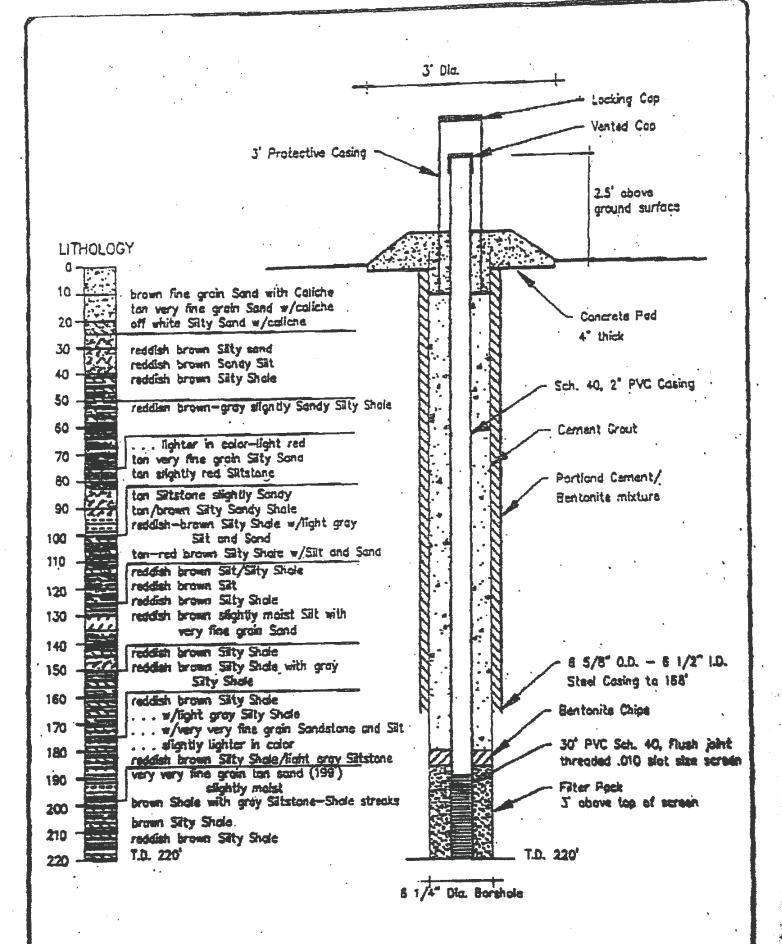
• ()




المراجعين المحمد المحمد المراجع المحمد ا


- 28° %





ATTACHMENT IV.2.E

GROUNDWATER MONITORING WELL LOGS, LEA LAND SITE

¹ Well completion diagram with stratigraphy of MW #2

Form WR-23

SANTA FE

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1

Section 1	(A) Owner of well Ballard & Bonfield	
	Street and Number 107 North Canal	
·····	Well was drilled under Permit No. C.P. 368 <u>14</u> NE <u>14</u> of Section 36	and is located in the
	(B) Drilling Contractor Enmett Barron Street and Number <u>307 South</u> 10th	License No. W.D.30
	City Carlsbad	State New Mexico
1 Andrew Star Land Holder	Drilling was commenced June 2	19 66
the the there was a dear to	Drilling was commenced June 2 Drilling was completed June 10	
(Plat of 640 acres)		
Elevation at top of casing in fe	et above sea level	well 303

none State whether well is shallow or artesian _____ Shallow ____ Depth to water upon completion _____

PRINCIPAL WATER-BEARING STRATA Section 2

No.	Depth	in Feet	Thickness in	Description of Water-Bearing Formation	5
110.	From	To	Feet	none	ς γ τ
1	0	303	. 303	Silt, Stone & Red Bed	
2		-	- 1	NG L	
3	• •			More rised	
4				R S S S	
5					
Section	3		- - - -		

RECORD OF CASING Section 3

Dia	Pounds	Threads	Der	pth	Feet	Type Shoe	Perforati	ons
in.	ft.	in	Тор	Bottom	, reet	Type Blide	From	То
			None	•		None	Used	<i></i>
		· · ·						
*					4			

Section 4

Plugging approved by:

... j,

'n

đ

i)

... RECORD OF MUDDING AND CEMENTING

	in Feet	Diameter Hole in in.	Tons	No. Sacks of Cement	Methods Used
From	То	Hole m m.	Clay	Cement	
• •	Ne				
· · ·					-
-	ř .				

PLUGGING RECORD Section 5 Name of Plugging Contractor..... ____License No..... City_____ Street and Number State:....

Tons of Clay used ______ Tons of Roughage used ______ Type of roughage ______, r · _____Date Plugged______ Plugging method used.... .19...

2.51

Cement Plugs were placed as follows:

	No.	Deptl	n of Plug	No. of Sacks Used
Basin Supervisor		From	To	NO. OF SACKS USEU
FOR USE OF STATE ENGINEER ONLY JJIJJO VJJUJO Date Received				
Date Received 03J110143 41418 /				
File No. CP-368 Use Arr	n		ocation No.	20.31.36.200

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		99.000	(a) Provide the second se Second second sec second second sec
i dina dia dia dia dia dia dia dia dia dia di		n tha an		
Soction 6		-		
Section 6			LOG C	JF WELL
Depth From	in Feet To	Thickness in Feet	Color	Type of Material Encountered
	ray l , w	1	Brown	Top Soil of gradient weight a state
<u>213 I</u> T	5	4	White	Caliche
<u>*4 *</u> +	30.3	299 🔅	Red	Silt Stone & Red Bed
e de la della delle constantes della		1 - 10		
**** * <u>1</u>			i de la composition de la comp	
	· · · · ·	-	· · · · · · ·	
	· · · ·			
·				
2.24	-	and at a	, T	
, , , , , , , , , , , , , , , , , , ,		tristaf 1 Friedrich		
* .* * * *			and the second second	and the second
	*		· · · · · · · · · · · · · · · ·	······································
	\$	· · · ·		
r	:		· ,	
			20-35. 11-1-1	
		an a		
an a		•		
		···· • •		
	÷			· · · · · · · · · · · · · · · · · · ·
		-		
	· · .		• • • • • •	
	<u> </u>			
- ; .	· · · · · ·			
				an a
د بر ا حقق بر العربي المحالي العربي			1.12	
<u></u>	<u></u>	<u></u>		······································
	<u></u>	<u></u>		
· · · ·				
The unders	igned hereb	oy certifies t	hat, to the best of h	is knowledge and belief, the foregoing is a true and cor-
rect record	of the abov	e described	well	
	•		111 - 「戸戸王 長年 新江市市(市内444	(Onmand) www.
+ 1 + .		1	ىلىرى ئىرىكى ئىرىكى ئىلىرى ئىرىكى ئىرىكى	nie wel driler Welder Bernetter
1	- <u>1</u> . - 1.	and the second		
	1 2	، المر ال		en an
•	•		್ರಿ ೧೯೯೯ ಕ್ರಮಕ್ರಿ ವಿಕ್ಷತಿಕ್ರತೆ ಮುಂ	
			u a ver s ys erer	ich dewij ichwy – Totani i initia Spijewej pojebijeje – Totani i initia
۲۰۱۰ م				n magneting of the provide states and the second s
ਪੁੱਛ ਦੇ ਦੱਤਾ ਸ਼ਾਹਿਤ ਦੀ ਤ	and the second second	<u></u>	e e e se se se rejoñez. O 15 e e jar etro more	en. 1943 - Maria Maria, Maria Maria Maria Maria Maria Maria.
an the state of the state	i de la calencia de la	3 (2017) - M	en geboord in die	

Form WR-23.

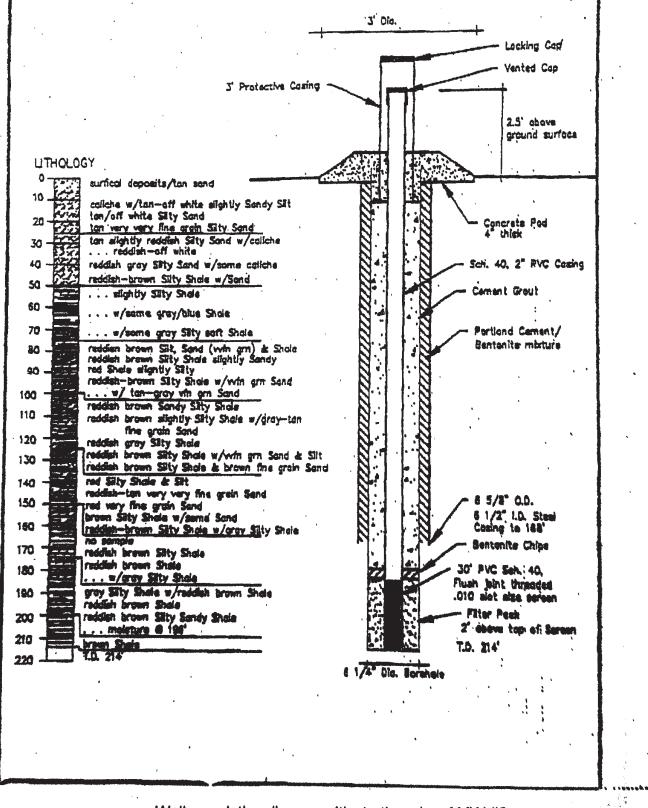
÷

The first first

i

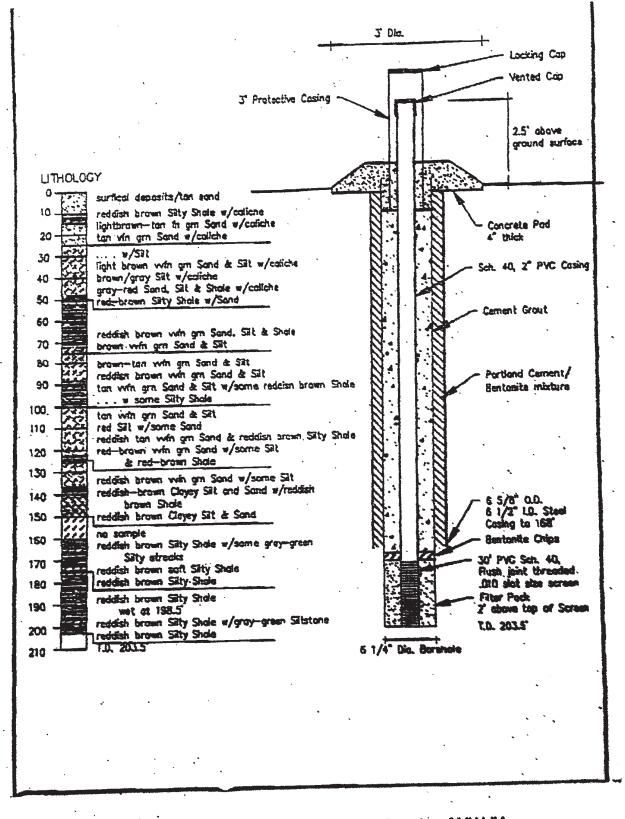
ŝ.

STATE ENGINEER OFFICE


WELL RECORD

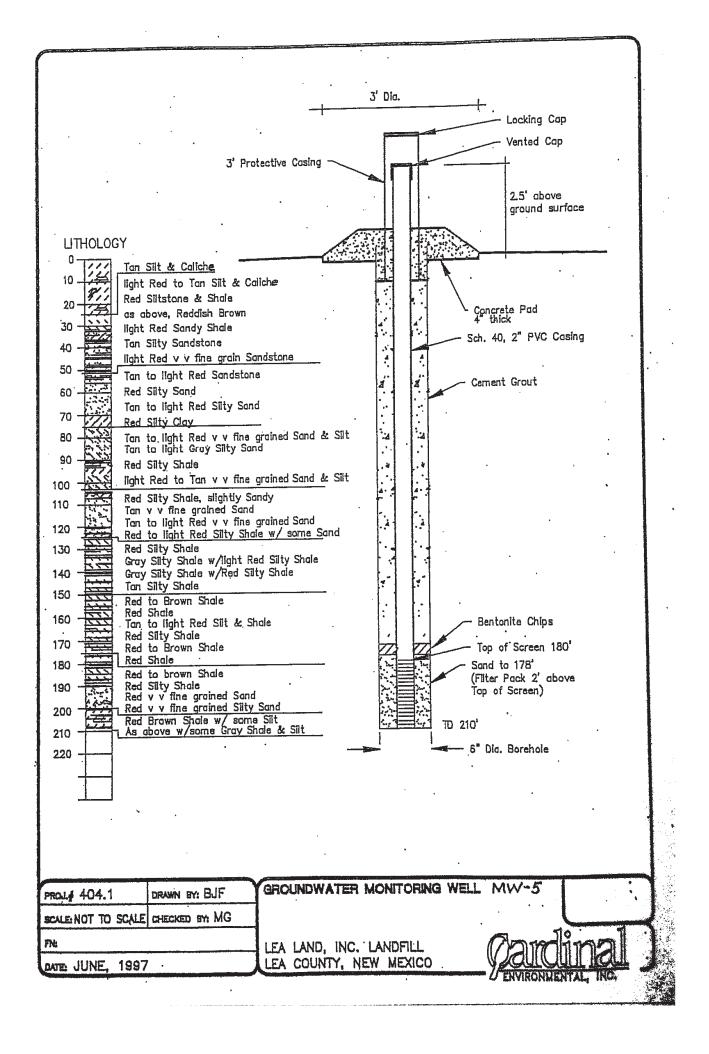
INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

Section 1	1			Owner of well	Balla	rd & Bonfi	eld	
			1	and Number	1007	North Cana	1	
	·			Carlsbad			State	New Mexico
			Well	was drilled u	nder Perm	nit No.C.P. 3	70 an	d is located in the
			NW	<u></u>	4	of Section 36	Twp20	ense No. W.D. 3
						South 10th		ense No.
			Street	and Number Carlst)od	Sou an Io ch	Ci. i	New Mexico
						[1] v]].	State	19 66
				ng was comm	nenced	uly 14		<u>19 66</u> 19 66
•	Plat of 640				:			
Elevatio	n at top o	of casing i	in feet abov	e sea level			oth of well	120'
State wł	nether we	ell is shall	low or arte	sian sh a l	low	Depth to wa	ter upon compl	etion 80 '
Section 2	2			PRINCIPAL W	ATER-BEAR	ING STRATA		· .
No.	Depth From	in Feet	Thickness Feet	in	De	scription of Water	-Bearing Formati	on ST IO
1.	75 '	80	5	Bro	wn sand	lstone and	silt stone	
2 .					" Wel			
3				b				
		·	· · · ·	· · · ·			· · · · · · · · · · · · · · · · · · ·	mm ·····
4		-		-		-		
5	•							<u>№</u>
ection a	3			RECO	RD OF CA	SING	• *	ICE 12
Dia	Pounds	1		Depth	Feet	Type Shoe		orations
in.	ft.	in	Toj	p Bottom	· ·		From	To .
			ONE					
	, .					NONE	USED	
					<u> </u>	<u> </u>		
Section 4	4		RE	CORD OF MU	DDING AN	ID CEMENTING		
	n in Feet	Diam	· · · · ·		acks of		Methods Used	. .
From	То	Hole i	n m. , C	lay Cer	ment			
			-			· · · · · · · · · · · · · · · · · · ·		
	i ·					-		· · ·
ection {	5		x	PILIC	GING REC	ORD		
	-	- 6						<u> </u>
	, 00		ctor			·····		0
		er						
	•							
	-		· · · · · · · · · · · · · · · · · · ·					
lugging	g approve	d by:	\$	يە مەرىپە بە كەمەر		Cement Plug	gs were placed a	as follows:
·					No	Depth of P	No.	of Sacks Used
	<u>ייי</u>	1.1 · 2.1 ² ·	Basir	Supervisor		From 7	No	
	FOR US	FOFSTA	TE ENGINE	ER ONLY				
*			SIVIE EV	/				
• • • •	OFFICE	UTAIEED	1			1 1	1	1
Date	301330 Received			V				
Date	301330 Received		LOO 9961	V				
Date	301330 Received			V				


From O	То	in Feet		Type of Material Encountered
V	· 2	2	Brown	Top Soll
2	75	.73	Red	
75	80		Brown	Silt stone and red bed Hard sand stone
80	120	40	Red	Silt stone and red bed
				r j takus
· · ·		<u>`````````````````````````````````````</u>		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	
	······			
:	- : .	· · · ·		
	•		н.	· · · · · · · · · · · · · · · · · · ·
	· · ·		and the pathe	· · · · · · · · · · · · · · · · · · ·
(Constraint)	•	1		
			Calles and Miller Aller	
	ì			
	•		4	
		-		Y 12
·	· · · · ·			and the second
			· · · · ·	
1 1. 			×	
- Maria Indiana				· · · · ·
1	· · ·		· · · · · · · · · · · · · · · · · · ·	
· · · ·	- 1 ,,			·····
	1 5 12 			
.,			·	and the second secon

<u></u>			· · · · · · · · · · · · · · · · · · ·	
and the second	<u> </u>			
	2010			s knowledge and belief, the foregoing is a true and cor-

Form WR-23.



* Well completion diagram with stratigraphy of MW #3

.

Well completion diagram with stratigraphy of MW #4

ATTACHMENT IV.2.F

NMOSE WELL RECORDS FOR NEARBY PERMITTED WELLS

	Form	WR-23
--	------	-------

į.

the state of the states

rj

ł,

į!

. . . .

1000

1

.

i.

SANTA FE

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

				(A) Own	er of well	Dalla	rd & Bonfi	010		
			1	Street and	d Number	107 N	orth Canal			
				City	Carls	bad		State	New 1	Mexico
			· · ·	Well was	drilled un	der Perm	it No. C.P.	368	and is lo	cated in th
						NE 1/2	of Section 3	6 _{Twp.} 2	20 Rg	e. 31
· · · ·				(B) Drill	ing Contra	actor Em	mett Barro	nL	icense No	W.D.3
1			1	Street and	d Number.	307 S	outh 10th			
				City	Carls	bad		State	New M	exico
4.	in chaire	. 4	* · ·	Drilling 1	vas comm	enced J	une 2			19 00
r 1.	- 3	i	<u> </u>	Drilling v	vas comple	ted.J	une 10	, <i>r</i> ,		
	Plat of 640 a			and the						
							Total de			
State w	hether wel	l is shall	ow or	r artesian.	sna.	LIOW	Depth to wa	ter upon con	npletion	10116
Section	2			PRIN	ICIPAL WA	TER-BEAR	ING STRATA	··· · ·	(*)	
N.	Depth in	n Feet	Thi	ckness in	1	De	scription of Wate	-Bearing Form	nation (2)	ē
No.	From	То		Feet			one	bearing 10th	A	396
1	0	303		303	Silt	, Stone	& Red Bed		- Sm Em	0
2				,					E SG	
3					-ma		nadi			01
4					11000	e u	sed		2 20 2 20	6
									<u>- 27</u>	<u>.</u>
5			<u> </u>		C 8 6		•			
Section	3	13			RECOR	D OF CAS	SING	10 8 9	, in i	\sim
Dia	Pounds	Threa	ads	De	pth			F	Perforations	
in.	ft.	in		Тор	Bottom	Feet	Type Shoe	From	J.	То
	-			Non	e		None	Used		19
		1.								
										NG 829990 N 52
				19		1	S 3.			
					· · · · ·		<u>.</u>			
Section	4	1.1		RECOR	ND OF MUL	DING AN	D CEMENTING		7. E	
	h in Feet	Diam	7500	Tons	No. Sa		*	Methods Us	ed	
From	To	Hole in	n in.	Clay	Cem	hent				
	N				141		92 %		-	
				1 10						
		_								
			-		_	2.1		· ·		
		<u> </u>	-							
		<u>+</u>						•		
Jame o	f Plugging							Charles in the second state in the second state in the		1011-1-1-20-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
Name o Street a	f Plugging and Numbe	er				City		State		
Name o Street a	f Plugging and Numbe	er			Roughage u	City		State		
Name o Street a Cons.'of	f Plugging and Numbe	r				City		State pe of rougha	ige	
Name o Street a Cons.'of Pluggin	f Plugging and Numbe Clay used	er 1sed			Roughage u	City	Ty Date_Ph	State pe of rougha	ige	
Name o Street a Cons.'of Pluggin	f Plugging and Numbe Clay used g method u	er 1sed			Roughage u	City used	Ty Date Plu Cement Plu	gs were place	ed as follo	19 ws:
Name o Street a Cons.'of Pluggin	f Plugging and Numbe Clay used g method u	er 1sed			Roughage u	City	Date Plu Cement Plu	gs were place	ige	19 ws:
Name o Street a Fons.'of Pluggin	f Plugging and Numbe Clay used g method u g approved	ised	11/1/2	Tons of F Basin Sup	Roughage u	City used	Date Plu Cement Plu	State pe of roughangged gs were place	ed as follo	19 ws:
Name o Street a Fons.'of Pluggin	f Plugging and Numbe Clay used g method u g approved FOR USE	ised l by:	11/1/2	Tons of F Basin Su	Roughage u	City used	Date Plu Cement Plu	State pe of roughangged gs were place	ed as follo	19 ws:
Street a Fons of Pluggin Pluggin	f Plugging and Numbe Clay used g method u g approved FOR USI J][J]	ised	11/1/2	Tons of F Basin Sup	Roughage u	City used	Date Plu Cement Plu	State pe of roughangged gs were place	ed as follo	19 ws:
Name o Street a Fons'of Pluggin _i Pluggin _i	f Plugging and Numbe Clay used g method u g approved FOR USI J)[J] Bereived	sed by: of state of state	LI/AS ISIO	Tons of F Basin Sup GINEER C	Roughage u	City used	Date Plu Cement Plu	State pe of roughangged gs were place	ed as follo	19 ws:
Name o Street a Fons of Pluggin Pluggin	f Plugging and Numbe Clay used g method u g approved FOR USI J)[J] Bereived	ised l by:	LI/AS ISIO	Tons of F Basin Sup GINEER C	Roughage u	City used	Date Plu Cement Plu	State pe of roughangged gs were place	ed as follo	19 ws:
Name o Street a Cons of Pluggin _i Pluggin _i	f Plugging and Numbe Clay used g method u g approved FOR USI J)[J] Bereived	sed by: of state of state	LI/AS ISIO	Tons of F Basin Sup GINEER C	Roughage u	City used	Date Plu Cement Plu	State pe of roughangged gs were place	ed as follo	19 ws:

1			21.4	a straight Maria an
. · · · ·	in an an trainn a thairt an a			The important technologies are used by 202 of the original second second sec
	1	11111	7ti	i ya sa maanaa maa maala ahaa ahaa ahaa ahaa ahaa ah
l' dan de		1 · · · · ·		
ų (t		-	× ×.	
Section 6	en y la ma	and a second	CONTRACT LOG	OF WELL
Depth in Feet		Thickness	Color	Type of Material Encountered
From	То	in Feet		and a second
		1	Brown	Top Soil and a chartened a chartened
<u> 1</u>	5	4	White	Caliche
<u>* ~4 * , e</u>		299	Red	Silt Stone & Red Bed
$\frac{\langle x, x \rangle_{1}}{\langle x^{n-1} \rangle_{1} \langle x \rangle_{2}}$	11 * * * * 		· .	
	nadat (n	1-16		
1994 - 19			n Styleta	Sector Martin
	• • • •	-	• • • • • •	· · · · · · · · · · · · · · · · · · ·
	* : *	* * <u>*</u>	· · · · · · · ·	
14	· · · · ·	in the the test	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
, k ^a h	···· · 4			· · · · · · · · · · · · · · · · · · ·
<u>а</u> к			an a	and the state data and a
· · · · ·				······································
	2		· · · · · · · · · ·	
0 	:	4 +		
	- an - (),	· · · · · ·		
·		and	**************************************	1
jan i	• • •			and a second
	• • • • • •		5 5 5 5 5 5 5	
		and parts and		
		•		
5 - 14 D.I.		ge les l		a second a second s
- 1.		1		strate of the strategy
		е. Р.		n an
			in the second second	
				hanna an
, 24 - 27 - 2 4 				an a
			<u> </u>	<u></u>
	······································	1. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Latin the birth	is knowledge and belief, the foregoing is a true and
rect record	of the abov	e described	well:	is knowledge and benef, the foregoing is a true and
÷		de la la filma	$A \rightarrow \gamma_{2} \gamma_{1} \gamma_{2} \gamma_{3}$	
			54 I F IS , V. A.	Well Driller
	· · · · · · · · · · · · · · · · · · ·	1	1 18 7. x 1 . jour 214 2	< add a second a second and a second a
1 · ·		8 1911 1911 1911 1911 1911 1911 1911 19	4 9 T C P	
	1		No. of the second se	e in an in the state of the sta
		1 3 ⁴ 1		e station en en a
		ه، (_{ارو}	्वे अपने हुस्लयम् । ते पुरुषका द्वर्य जन्म	son sowie is new
	in a second s			ellere s polladi
		140 gr a		an a
	tan in straa Agitta ayatan			and the second
18.2. Ye	in the second	- G - L - L	lan, a ser segunda ya	రాజిత్రాలు ఇంటి చేస్తో చిత్రి చిత్రి చిత్రి చిత్రి చిత్రి
Sec. Sec.			A.1. 7. 7	

ANTA FE

STATE ENGINEER OFFICE

WELL RECORD

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the nearest district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1A and Section 5 need be completed.

	L 		A) Owne	er of well.		ard & Bonfie	An and some Property in the second second second second	
			Street and			North Canal	L	
			City Ca	rlsbad			State N	ew Mexico
			Well was	drilled un	der Pern		70and	l is located in th
				ing Contra	Shows a			nse No. W.D.
			Street and	Number	307	South 10th	· -	ise 110
			City	Carlsba	ad		State N	ew Mexico
· .			Drilling v	vas commo	enced	July 11,		19 66
		1.	Drilling w	as comple	ted	July 14	x	19 66
	Plat of 640 a	Carlos Contra Carlos		84	· · ·			1.**.
Elevation	n at top of	casing in fe	eet above se	a level			th of well 1	20 ¹
State wh	ether well	is shallow	or artesian.	shal.	Low	Depth to wat	er upon comple	tion00*
Section 2	2		PRIN	CIPAL WA	TER-BEAR	ING STRATA		
- 1	Depth in	Feet T	hickness in			scription of Water-	Bearing Formatio	n μο
No	From .	То	Feet					1966 177
1.	75'	80	5	Brot	wn san	dstone and a	silt stone (ami A
2.					" Wet			
3,					- v rec			NINE 23
4				2 2			•	
5						-		(TT)
<u> </u>								
Section 3	3		•	RECOR	D OF CA	SING		ČË 2
Dia	Pounds	Threads	De		Feet	Type Shoe		orations ·
in.	ft.	in	Тор	Bottom			From	То
		NO 1		·				
			· "			NONE	USED	
			_					
		1.:	<u> </u>		•	<u> </u>		
Section 4	ł	51	RECOR		DING AN	D CEMENTING		
	in Feet	Diameter						
From	To	Hole in in	Second Se	Cem	1		Methods Used	9758 58
		e.						
			•				87.8 2010	
-	1 -	T		1		375		
								÷
Section 5		1 15	10 10		SING REC		385	
							License No)
		· <u>·····</u>				<u>1990 - 1997 - 1</u>		
Street ar			Tons of R					
Street ar				<u>,</u>		Date Plug		
Street ar Tons [:] of (Plugging	method u				2	Cement Plug	s were placed a	s follows:
Street ar Tons [:] of (Plugging				2	-	the state of the s		
Street ar Tons [:] of (Plugging	method u		· · ·		N	Depth of Pla	NO. O	f Sacks Used
Street ar Tons [:] of (Plugging	method u	by:	Basin Sur		N	Depth of Plance	NO. O	f Sacks Used
Street ar Tons [:] of (Plugging	g method us approved	by: 5	Basin Sur	ervisor	N		NO. O	f Sacks Used
Street ar Tons [:] of (Plugging	g method us approved XJH FOR USE	by:	Basin Sup	ervisor	N		NO. O	f Sacks Used
Street ar Tons of Plugging Plugging	g method us approved X3H FOR USE 301330 { Beceived	by: <u>NHITTSHAS</u> OCUSTISTE IJANIJA	Basin Sur Do ENGINEER O HVIS	ervisor	N(NO. O	f Sacks Used
Street ar Tons of Plugging Plugging	g method us approved X3H FOR USE 301330 { Beceived	by:	Basin Sur Do ENGINEER O HVIS	ervisor	N.		NO. O	f Sacks Used

Well Driller			- - 	a i	a faring a consul construction and active for a second second second second second second second second second s
ection 6 LOG OF WELL Depth in Feet Thickness Color Type of Material Rocountered 0 2 2 Brown Top \$5011 2 75 73 Red Sillt stone and red bed 75 80 5 Brown Hard sand stone 80 12 73 Red Sillt stone and red bed 75 80 5 Brown Hard sand stone 80 12 40 Red Sillt stone and red bed 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				м	
Depth in Peet Thickness Color Type of Material Encountered 0 2 2 Brown Top Soll 2 75 73 Red Silt stone and red bed 75 80 15 Prown Hard sand stone 80 120 40 Red Silt stone and red bed			. : '	· · · ·	a a a a a a a a a a a a a a a a a a a
Depth in Peet Thickness Color Type of Material Encountered 0 2 2 Brown Top Soll 2 75 73 Red Silt stone and red bed 75 80 15 Prown Hard sand stone 80 120 40 Red Silt stone and red bed	ection 6 -		بمنابط كورسوا	LOG	OF WELL
From To in Feet Coord Type of matchin information 0 2 2 Brown Top \$5011 2 75 80 \S Brown Hard sand stone 80 120 40 Red Stilt stone and red bed				<u></u>	
2 75 73 Red Silt stone and red bed 75 80 5 Brown Hard sand stone 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80			in Feet	Color	Type of Material Encountered
2 75 73 Red Silt stone and red bed 75 80 5 Brown Hard sand stone 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 40 Red Silt stone and red bed 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80 120 1 1 1 80	0.	. 2	2	Brown	Top Soil
75 80 5 Brown Hard sand stone 80 120 40 Red Silt stone and rèd bed				·······	
80 120 40 Red Silt stone and red bed 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described will.					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tet record of the above described well.	00			Rea	
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tet record of the above described well.			···· · ·		
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- set record of the above described well.					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- set record of the above described well.				<u>`,</u>	
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- set record of the above described well.		· · · · ·			
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tet record of the above described well.					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- set record of the above described well.					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.		. •	• . ³ •	$ \mathbf{g}_{i} ^{2} = \left[\hat{\mathbf{g}}_{i} - \hat{\mathbf{g}}_{i} \right]^{2} \mathbf{g}_{i}^{2} = \left[\hat{\mathbf{g}}_{i} $	
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- set record of the above described well.	De 1	•	1		
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tect record of the above described well.	-			1	
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ret record of the above described well.		1		· · · · · ·	
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ret record of the above described well.	-				
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tect record of the above described well.		. I	· · · ·	1. 65	
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tct record of the above described well.		· · · · · · · · · · · · · · · · · · ·			
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tect record of the above described well.					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- set record of the above described well					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- sect record of the above described well.	• • • •				
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- sect record of the above described well.					· · · · · · · · · · · · · · · · · · ·
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tect record of the above described well.	2.0	·, ·			· · · · · · · · · · · · · · · · · · ·
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.		· · · · · · · · · · · · · · · · · · ·	<u></u>		9- 19 S.
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- act record of the above described well.	- <u>-</u> - 1		• • • • •		· · · ·
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- tect record of the above described well.	<u> </u>				
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.					
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.	· · · · ·		· · · · · ·		at a factor at a strate of the
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.		••			
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.		2			
he undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and cor- ect record of the above described well.			,	· · · · · · · · · · · · · · · · · · ·	the second se
ect record of the above described well.			·····		
ect record of the above described well.				hat to the hard - 21	is knowledge and holief the formering in the side
Emile Barrow Well Driller	he undersi	gned hereb of the abov	by certifies t	hat, to the best of h	
Well Driller			1. 11		
		1	1 ,		Same Jarrow
		1	·	· . 7	
<pre>control = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =</pre>		1		X i gan	
			i		
Anne ale de la company de la com Intervente de la company	-04 00 MC		; :	tin i cal	
andra in the second second A second secon A second secon		3			
na na chen a completa e esta e altre en altre altre Altre altre altr		يغد المكري	an 14 and 1) and the start	
and the second			e the charges	. An is the same state	40 TO
	en dreath Thair		and so the	ورار المحافظ فالمحافظ	 Automatic april 10 (1999) Automatic april 10 (1999)
- 2019년 1월	11.	·	الم المعالي الم	The state of the second	
		1.1	1. 25 State and 25 State		new weather the second state of the second

ATTACHMENT IV.2.G GROUNDWATER SAMPLE LAB ANALYTICAL REPORT, LEA LAND SITE 2010 AND 2018 MONITORING EVENTS

July 02, 2018

MIKE STEWART

LEA LAND INC

PO BOX 3247

CARLSBAD, NM 88220

RE: LEA LAND DISPOSAL FACILITY

Enclosed are the results of analyses for samples received by the laboratory on 06/13/18 14:38.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-17-10. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

[Comula ID	Laboratory ID Materia	Data Samulad	Date Dessived
	CARLSBAD NM, 88220	Project Manager: Fax To:		
	LEA LAND INC PO BOX 3247	,	LEA LAND DISPOSAL FACILITY ANNUAL GW MONITORING	Reported: 02-Jul-18 16:23

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	
MONITOR WELL #2	H801607-01	Water	13-Jun-18 09:30	13-Jun-18 14:38	
MONITOR WELL #4	H801607-02	Water	13-Jun-18 10:30	13-Jun-18 14:38	
MONITOR WELL #5	H801607-03	Water	13-Jun-18 11:40	13-Jun-18 14:38	
DUPLICATE SAMPLE	H801607-04	Water	13-Jun-18 00:00	13-Jun-18 14:38	
FIELD BLANK	H801607-05	Water	13-Jun-18 08:00	13-Jun-18 14:38	
TRIP BLANK	H801607-06	Water	13-Jun-18 00:00	13-Jun-18 14:38	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220		Project: LEA LAND DISPOSAL FACILITY Project Number: ANNUAL GW MONITORING Project Manager: MIKE STEWART Fax To: NA						Reported: 02-Jul-18 16:23			
				TOR WEI 607-01 (Wa							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardir	nal Laborat	ories						
Inorganic Compounds											
Ammonia	0.0900		0.0500	mg/L	1	8061905	AC	19-Jun-18	350.1		
Alkalinity, Bicarbonate	205		5.00	mg/L	1	8060705	AC	18-Jun-18	310.1		
Alkalinity, Carbonate	<1.00		1.00	mg/L	1	8060705	AC	18-Jun-18	310.1		
Conductivity*	1510		1.00	uS/cm	1	8061401	AC	14-Jun-18	120.1		
pH*	7.72		0.100	pH Units	1	8061401	AC	14-Jun-18	150.1		
TDS*	818		5.00	mg/L	1	8061501	AC	18-Jun-18	160.1		
Alkalinity, Total*	168		4.00	mg/L	1	8060705	AC	18-Jun-18	310.1		
VOLATILES BY GC/MS											
Chloromethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Vinyl chloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Bromomethane*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Chloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Trichlorofluoromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Methylene chloride*	< 0.00009	0.00009	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
trans-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1-Dichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
cis-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Chloroform*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Carbon tetrachloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1,1-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Benzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,2-Dichloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Trichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,2-Dichloropropane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Bromodichloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
cis-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Tetrachloroethene*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitspewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based to prove stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be percoduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	NUAL GW M			Reported: 02-Jul-18 16:23			
			MONIT H80160	OR WEI 07-01 (Wa							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
VOLATILES BY GC/MS											
trans-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1,2-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Dibromochloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Chlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Bromoform*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1,2,2-Tetrachloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,4 Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,2-Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Surrogate: Dibromofluoromethane			98.4 %	86.5	-122	8061904	ms	19-Jun-18	8260B		
Surrogate: Toluene-d8			98.3 %	85.7	-112	8061904	ms	19-Jun-18	8260B		
Surrogate: 4-Bromofluorobenzene			96.2 %	86.3	-117	8061904	ms	19-Jun-18	8260B		
			Green Analy	tical Lab	oratories						
General Chemistry											
Chloride*	79.8		5.00	mg/L	5	B806185	AES	21-Jun-18	EPA300.0	Mf	
Nitrate as N*	3.36		0.100	mg/L	5	B806128	AES	14-Jun-18	EPA300.0		
Nitrate+Nitrite as N by IC	3.36		0.120	mg/L	5	[CALC]	AES	14-Jun-18	EPA300.0		
Nitrite as N*	< 0.020		0.020	mg/L	1	B806128	AES	14-Jun-18	EPA300.0		
Sulfate*	462		25.0	mg/L	25	B806185	AES	22-Jun-18	EPA300.0		
Total Organic Carbon*	1.36		0.500	mg/L	1	B806180	aes	21-Jun-18	5310C		
Total Recoverable Metals by I	CP (E200.7)										
Calcium*	50.6		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Iron*	< 0.050		0.050	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Magnesium*	40.1		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Manganese*	< 0.020		0.020	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Potassium*	5.33		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Sodium*	224		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

	LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: AN		ONITORI		С	Reported:)2-Jul-18 16:;	23
•				MONIT H80160	OR WE 07-01 (Wa						
	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other complete based water and the services of the services hereinder of the service and the service of the

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Nu Project Mar	roject: LEA mber: ANN nager: MIK ax To: NA	UAL GW M	10NITORIN	DSAL FACILITY Reported: NITORING 02-Jul-18 16							
	MONITOR WELL #4 H801607-02 (Water)													
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes				
Cardinal Laboratories														
Inorganic Compounds														
Ammonia	0.0500		0.0500	mg/L	1	8061905	AC	19-Jun-18	350.1					
Alkalinity, Bicarbonate	190		5.00	mg/L	1	8060705	AC	18-Jun-18	310.1					
Alkalinity, Carbonate	<1.00		1.00	mg/L	1	8060705	AC	18-Jun-18	310.1					
Conductivity*	1280		1.00	uS/cm	1	8061401	AC	14-Jun-18	120.1					
pH*	7.74		0.100	pH Units	1	8061401	AC	14-Jun-18	150.1					
TDS*	778		5.00	mg/L	1	8061501	AC	18-Jun-18	160.1					
Alkalinity, Total*	156		4.00	mg/L	1	8060705	AC	18-Jun-18	310.1					
VOLATILES BY GC/MS														
Chloromethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Vinyl chloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Bromomethane*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Chloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Trichlorofluoromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
1,1-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Methylene chloride*	< 0.00009	0.00009	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
trans-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
1,1-Dichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
cis-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Chloroform*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Carbon tetrachloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
1,1,1-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Benzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
1,2-Dichloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Trichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
1,2-Dichloropropane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Bromodichloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
cis-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					
Tetrachloroethene*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B					

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitspewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based to prove stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be percoduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	NUAL GW M			Reported: 02-Jul-18 16:23			
			MONIT H80160	OR WEI 07-02 (Wa							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
VOLATILES BY GC/MS											
trans-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1,2-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Dibromochloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Chlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Bromoform*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,1,2,2-Tetrachloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,4 Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
1,2-Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B		
Surrogate: Dibromofluoromethane			<i>97.5 %</i>	86.5	-122	8061904	ms	19-Jun-18	8260B		
Surrogate: Toluene-d8			99.9 %	85.7	-112	8061904	ms	19-Jun-18	8260B		
Surrogate: 4-Bromofluorobenzene			96.3 %	86.3	-117	8061904	ms	19-Jun-18	8260B		
			Green Analy	tical Lab	oratories						
General Chemistry											
Chloride*	62.3		5.00	mg/L	5	B806185	AES	21-Jun-18	EPA300.0		
Nitrate as N*	3.32		0.100	mg/L	5	B806128	AES	15-Jun-18	EPA300.0		
Nitrate+Nitrite as N by IC	3.32		0.120	mg/L	5	[CALC]	AES	15-Jun-18	EPA300.0		
Nitrite as N*	< 0.020		0.020	mg/L	1	B806128	AES	14-Jun-18	EPA300.0		
Sulfate*	361		25.0	mg/L	25	B806185	AES	22-Jun-18	EPA300.0		
Total Organic Carbon*	< 0.500		0.500	mg/L	1	B806180	aes	21-Jun-18	5310C		
Total Recoverable Metals by I	CP (E200.7)										
Calcium*	48.4		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Iron*	< 0.050		0.050	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Magnesium*	43.2		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Manganese*	< 0.020		0.020	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Potassium*	4.92		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		
Sodium*	170		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

	LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: AN		ONITORI		С	Reported:)2-Jul-18 16::	23
-				MONIT H8016(OR WE 07-02 (Wa						
	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other complete based water and the services of the services hereinder of the service and the service of the

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Nu Project Mar	roject: LEA mber: ANN nager: MIK ax To: NA	UAL GW M	10NITORIN		0	Reported: 2-Jul-18 16:	23
				TOR WEI 607-03 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardir	nal Laborat	ories					
Inorganic Compounds										
Ammonia	0.0700		0.0500	mg/L	1	8061905	AC	19-Jun-18	350.1	
Alkalinity, Bicarbonate	224		5.00	mg/L	1	8060705	AC	18-Jun-18	310.1	
Alkalinity, Carbonate	<1.00		1.00	mg/L	1	8060705	AC	18-Jun-18	310.1	
Conductivity*	1370		1.00	uS/cm	1	8061401	AC	14-Jun-18	120.1	
pH*	7.70		0.100	pH Units	1	8061401	AC	14-Jun-18	150.1	
TDS*	886		5.00	mg/L	1	8061501	AC	18-Jun-18	160.1	
Alkalinity, Total*	184		4.00	mg/L	1	8060705	AC	18-Jun-18	310.1	
VOLATILES BY GC/MS										
Chloromethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Vinyl chloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromomethane*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichlorofluoromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Methylene chloride*	< 0.00009	0.00009	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
trans-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroform*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Carbon tetrachloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,1-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Benzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloropropane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromodichloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Tetrachloroethene*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitspewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based to prove stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be percoduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	IUAL GW M			(Reported:)2-Jul-18 16:2	23
			MONIT H80160	OR WEI 07-03 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
VOLATILES BY GC/MS										
trans-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Dibromochloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromoform*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2,2-Tetrachloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,4 Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Surrogate: Dibromofluoromethane			102 %	86.5	-122	8061904	ms	19-Jun-18	8260B	
Surrogate: Toluene-d8			102 %	85.7	-112	8061904	ms	19-Jun-18	8260B	
Surrogate: 4-Bromofluorobenzene			97.0 %	86.3	-117	8061904	ms	19-Jun-18	8260B	
			Green Analy	tical Lab	oratories					
General Chemistry										
Chloride*	54.0		5.00	mg/L	5	B806185	AES	21-Jun-18	EPA300.0	
Nitrate as N*	3.15		0.100	mg/L	5	B806128	AES	14-Jun-18	EPA300.0	
Nitrate+Nitrite as N by IC	3.15		0.120	mg/L	5	[CALC]	AES	14-Jun-18	EPA300.0	
Nitrite as N*	< 0.020		0.020	mg/L	1	B806128	AES	14-Jun-18	EPA300.0	
Sulfate*	412		25.0	mg/L	25	B806185	AES	22-Jun-18	EPA300.0	
Total Organic Carbon*	0.501		0.500	mg/L	1	B806180	aes	21-Jun-18	5310C	
Total Recoverable Metals by IC	CP (E200.7)									
Calcium*	58.6		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Iron*	< 0.050		0.050	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Magnesium*	42.0		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Manganese*	< 0.020		0.020	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Potassium*	4.14		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Sodium*	176		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

	LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: AN		ONITORI		С	Reported:)2-Jul-18 16::	23
-				MONIT H8016(OR WE)7-03 (Wa						
	Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other complete based water and the services of the services hereinder of the service and the service of the

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Nu Project Mar	roject: LEA mber: ANN nager: MIK ax To: NA	UAL GW M	10NITORIN		0	Reported: 2-Jul-18 16:	23
				CATE SAN 607-04 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardin	nal Laborat	ories					
Inorganic Compounds										
Ammonia	0.0500		0.0500	mg/L	1	8061905	AC	19-Jun-18	350.1	
Alkalinity, Bicarbonate	220		5.00	mg/L	1	8060705	AC	18-Jun-18	310.1	
Alkalinity, Carbonate	<1.00		1.00	mg/L	1	8060705	AC	18-Jun-18	310.1	
Conductivity*	1360		1.00	uS/cm	1	8061401	AC	14-Jun-18	120.1	
pH*	7.72		0.100	pH Units	1	8061401	AC	14-Jun-18	150.1	
TDS*	874		5.00	mg/L	1	8061501	AC	18-Jun-18	160.1	
Alkalinity, Total*	180		4.00	mg/L	1	8060705	AC	18-Jun-18	310.1	
VOLATILES BY GC/MS										
Chloromethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Vinyl chloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromomethane*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichlorofluoromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Methylene chloride*	< 0.00009	0.00009	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
trans-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroform*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Carbon tetrachloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,1-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Benzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloropropane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromodichloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Tetrachloroethene*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitspewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether sur claim is based to prove stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be percoduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	IUAL GW M			(Reported: D2-Jul-18 16:2	23
			DUPLIC. H80160	ATE SAI 07-04 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
VOLATILES BY GC/MS										
trans-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Dibromochloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromoform*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2,2-Tetrachloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,4 Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
			97.8 %	86.5	-122	8061904	ms	19-Jun-18	8260B	
Surrogate: Toluene-d8			101 %	85.7	-112	8061904	ms	19-Jun-18	8260B	
Surrogate: 4-Bromofluorobenzene			99.8 %	86.3	-117	8061904	ms	19-Jun-18	8260B	
			Green Analy	tical Lab	oratories					
General Chemistry										
Chloride*	53.2		5.00	mg/L	5	B806185	AES	21-Jun-18	EPA300.0	
Nitrate as N*	3.16		0.100	mg/L	5	B806128	AES	14-Jun-18	EPA300.0	
Nitrate+Nitrite as N by IC	3.16		0.120	mg/L	5	[CALC]	AES	14-Jun-18	EPA300.0	
Nitrite as N*	< 0.020		0.020	mg/L	1	B806128	AES	14-Jun-18	EPA300.0	
Sulfate*	408		25.0	mg/L	25	B806185	AES	22-Jun-18	EPA300.0	
Total Organic Carbon*	0.595		0.500	mg/L	1	B806180	aes	21-Jun-18	5310C	
Total Recoverable Metals by I	CP (E200.7)									
Calcium*	59.1		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Iron*	< 0.050		0.050	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Magnesium*	42.5		0.100	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Manganese*	< 0.020		0.020	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Potassium*	4.20		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	
Sodium*	177		1.00	mg/L	1	B806156	AES	20-Jun-18	EPA200.7	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: AN		ONITORI		С	Reported:)2-Jul-18 16:2	23
			DUPLIC H8016	ATE SA 07-04 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	IUAL GW M			C	Reported: 2-Jul-18 16:	23
				LD BLAN 07-05 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
VOLATILES BY GC/MS										
Chloromethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Vinyl chloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromomethane*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichlorofluoromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Methylene chloride*	< 0.00009	0.00009	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
trans-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroform*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Carbon tetrachloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,1-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Benzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloropropane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromodichloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Tetrachloroethene*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
trans-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1.1.2-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Dibromochloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromoform*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2,2-Tetrachloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,4 Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Surrogate: Dibromofluoromethane			98.2 %	- 86.5-	.122	8061904	ms	19-Jun-18	8260B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	NUAL GW M			(Reported: D2-Jul-18 16:	23
				D BLAN)7-05 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
VOLATILES BY GC/MS										
Surrogate: Toluene-d8			102 %	85.7	-112	8061904	ms	19-Jun-18	8260B	
Surrogate: 4-Bromofluorobenzene			98.9 %	86.3	-117	8061904	ms	19-Jun-18	8260B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	, ber: ANN	IUAL GW M			C	Reported: 2-Jul-18 16:	23
				P BLANI)7-06 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
VOLATILES BY GC/MS										
Chloromethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Vinyl chloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromomethane*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichlorofluoromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Methylene chloride*	< 0.00009	0.00009	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
trans-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1-Dichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,2-Dichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chloroform*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Carbon tetrachloride*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,1-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Benzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Trichloroethene*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichloropropane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromodichloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
cis-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Tetrachloroethene*	< 0.0003	0.0003	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
trans-1,3-Dichloropropene*	< 0.00008	0.00008	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2-Trichloroethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Dibromochloromethane*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Chlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Bromoform*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,1,2,2-Tetrachloroethane*	< 0.0002	0.0002	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,4 Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
1,2-Dichlorobenzene*	< 0.0001	0.0001	0.0005	mg/L	1	8061904	ms	19-Jun-18	8260B	
Surrogate: Dibromofluoromethane			99.6 %	86.5-	-122	8061904	ms	19-Jun-18	8260B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Project Num Project Mana	ber: ANN	NUAL GW N			(Reported: D2-Jul-18 16:	23
				P BLAN 07-06 (Wa						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
VOLATILES BY GC/MS										
Surrogate: Toluene-d8			98.1 %	85.7	-112	8061904	ms	19-Jun-18	8260B	
Surrogate: 4-Bromofluorobenzene			96.4 %	86.3	-117	8061904	ms	19-Jun-18	8260B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220	Project: LEA LAND DISPOSAL FACILITY Project Number: ANNUAL GW MONITORING Project Manager: MIKE STEWART Fax To: NA	Reported: 02-Jul-18 16:23
---	--	------------------------------

Inorganic Compounds - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8060705 - General Prep - Wet Chem										
Blank (8060705-BLK1)				Prepared &	Analyzed:	07-Jun-18				
Alkalinity, Carbonate	ND	1.00	mg/L							
Alkalinity, Bicarbonate	5.00	5.00	mg/L							
Alkalinity, Total	4.00	4.00	mg/L							
LCS (8060705-BS1)				Prepared &	Analyzed:	07-Jun-18				
Alkalinity, Carbonate	ND	2.50	mg/L				80-120			
Alkalinity, Bicarbonate	355	12.5	mg/L				80-120			
Alkalinity, Total	290	10.0	mg/L	250		116	80-120			
LCS Dup (8060705-BSD1)				Prepared &	Analyzed:	07-Jun-18				
Alkalinity, Carbonate	ND	2.50	mg/L				80-120		20	
Alkalinity, Bicarbonate	318	12.5	mg/L				80-120	11.2	20	
Alkalinity, Total	260	10.0	mg/L	250		104	80-120	10.9	20	
Batch 8061401 - General Prep - Wet Chem										
LCS (8061401-BS1)				Prepared &	Analyzed:	14-Jun-18				
Conductivity	486		uS/cm	500		97.2	80-120			
pH	6.96		pH Units	7.00		99.4	90-110			
Duplicate (8061401-DUP1)	Sou	irce: H801607	7-01	Prepared &	Analyzed:	14-Jun-18				
Conductivity	1520	1.00	uS/cm		1510			0.925	20	
рН	7.78	0.100	pH Units		7.72			0.774	20	
Batch 8061501 - Filtration										
Blank (8061501-BLK1)				Prepared: 1	5-Jun-18 A	nalyzed: 18	3-Jun-18			
TDS	ND	5.00	mg/L							

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220	Project: LEA LAND DISPOSAL FACILITY Project Number: ANNUAL GW MONITORING Project Manager: MIKE STEWART Fax To: NA								Reported: 02-Jul-18 16:23			
	Ino	rganic Com Cordin	-	- Quality	Control							
		Carun		oratories								
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes		
Batch 8061501 - Filtration												
LCS (8061501-BS1)				Prepared: 1	15-Jun-18 A	analyzed: 18	3-Jun-18					
TDS	512	5.00	mg/L	527		97.2	80-120					
Duplicate (8061501-DUP1)	Sou	rce: H801607-	01	Prepared: 1	l 5-Jun-18 A	nalyzed: 18	3-Jun-18					
TDS	872	5.00	mg/L		818			6.39	20			
Batch 8061905 - General Prep - Wet Chem												
Blank (8061905-BLK1)				Prepared &	z Analyzed:	19-Jun-18						
Ammonia	ND	0.0500	mg/L									
LCS (8061905-BS1)				Prepared &	z Analyzed:	19-Jun-18						
Ammonia	1.88	0.0500	mg/L	2.00		94.0	80-120					
Duplicate (8061905-DUP1)	Sou	rce: H801607-	01	Prepared &	z Analyzed:	19-Jun-18						
Ammonia	0.100	0.0500	mg/L		0.0900			10.5	20			
Matrix Spike (8061905-MS1)	Sou	rce: H801607-	01	Prepared &	z Analyzed:	19-Jun-18						
Ammonia	1.91	0.0500	mg/L	2.00	0.0900	91.0	70-130					

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220	,		Reported: 02-Jul-18 16:23
---	---	--	------------------------------

VOLATILES BY GC/MS - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 8061904 - Volatiles										
Blank (8061904-BLK1)				Prepared &	z Analyzed:	19-Jun-18				
Chloromethane	ND	0.0005	mg/L							
Vinyl chloride	ND	0.0005	mg/L							
Bromomethane	ND	0.0005	mg/L							
Chloroethane	ND	0.0005	mg/L							
Trichlorofluoromethane	ND	0.0005	mg/L							
1,1-Dichloroethene	ND	0.0005	mg/L							
Methylene chloride	ND	0.0005	mg/L							
trans-1,2-Dichloroethene	ND	0.0005	mg/L							
1,1-Dichloroethane	ND	0.0005	mg/L							
cis-1,2-Dichloroethene	ND	0.0005	mg/L							
Chloroform	ND	0.0005	mg/L							
Carbon tetrachloride	ND	0.0005	mg/L							
1,1,1-Trichloroethane	ND	0.0005	mg/L							
Benzene	ND	0.0005	mg/L							
1,2-Dichloroethane	ND	0.0005	mg/L							
Trichloroethene	ND	0.0005	mg/L							
1,2-Dichloropropane	ND	0.0005	mg/L							
Bromodichloromethane	ND	0.0005	mg/L							
cis-1,3-Dichloropropene	ND	0.0005	mg/L							
Tetrachloroethene	ND	0.0005	mg/L							
trans-1,3-Dichloropropene	ND	0.0005	mg/L							
1,1,2-Trichloroethane	ND	0.0005	mg/L							
Dibromochloromethane	ND	0.0005	mg/L							
Chlorobenzene	ND	0.0005	mg/L							
Bromoform	ND	0.0005	mg/L							
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L							
1,4 Dichlorobenzene	ND	0.0005	mg/L							
1,2-Dichlorobenzene	ND	0.0005	mg/L							
Surrogate: Dibromofluoromethane	0.0100		mg/L	0.0100		100	86.5-122			
Surrogate: Toluene-d8	0.00980		mg/L	0.0100		98.0	85.7-112			
Surrogate: 4-Bromofluorobenzene	0.00971		mg/L	0.0100		97.1	86.3-117			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220	,		Reported: 02-Jul-18 16:23
---	---	--	------------------------------

VOLATILES BY GC/MS - Quality Control

Cardinal Laboratories

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch 8061904 - Volatiles

LCS (8061904-BS1)				Prepared & An	alyzed: 19-Jun-18		
Chloromethane	0.018	0.0005	mg/L	0.0200	90.5	63.7-134	
Vinyl chloride	0.018	0.0005	mg/L	0.0200	87.6	69.6-123	
Bromomethane	0.018	0.0005	mg/L	0.0200	90.4	57.9-133	
Chloroethane	0.019	0.0005	mg/L	0.0200	93.8	62.4-134	
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200	87.6	62.6-142	
1,1-Dichloroethene	0.017	0.0005	mg/L	0.0200	85.8	65-126	
Methylene chloride	0.019	0.0005	mg/L	0.0200	95.6	43.1-162	
trans-1,2-Dichloroethene	0.018	0.0005	mg/L	0.0200	90.8	76.6-122	
1,1-Dichloroethane	0.018	0.0005	mg/L	0.0200	90.2	80.9-121	
cis-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200	97.1	76.8-126	
Chloroform	0.018	0.0005	mg/L	0.0200	88.4	82.5-123	
Carbon tetrachloride	0.019	0.0005	mg/L	0.0200	97.0	77.5-136	
1,1,1-Trichloroethane	0.018	0.0005	mg/L	0.0200	90.9	88.3-127	
Benzene	0.018	0.0005	mg/L	0.0200	88.0	84.9-121	
1,2-Dichloroethane	0.017	0.0005	mg/L	0.0200	86.0	76.9-133	
Trichloroethene	0.017	0.0005	mg/L	0.0200	86.6	82.8-120	
1,2-Dichloropropane	0.019	0.0005	mg/L	0.0200	96.4	80.2-126	
Bromodichloromethane	0.018	0.0005	mg/L	0.0200	87.6	84.1-130	
cis-1,3-Dichloropropene	0.017	0.0005	mg/L	0.0200	86.4	76.8-130	
Tetrachloroethene	0.018	0.0005	mg/L	0.0200	88.0	65.3-133	
trans-1,3-Dichloropropene	0.017	0.0005	mg/L	0.0200	87.4	80.1-132	
1,1,2-Trichloroethane	0.017	0.0005	mg/L	0.0200	85.0	82.3-117	
Dibromochloromethane	0.018	0.0005	mg/L	0.0200	88.3	75.2-137	
Chlorobenzene	0.018	0.0005	mg/L	0.0200	88.2	76.8-125	
Bromoform	0.018	0.0005	mg/L	0.0200	90.8	54.1-155	
1,1,2,2-Tetrachloroethane	0.017	0.0005	mg/L	0.0200	85.4	72.8-123	
1,4 Dichlorobenzene	0.018	0.0005	mg/L	0.0200	90.4	71.5-122	
1,2-Dichlorobenzene	0.017	0.0005	mg/L	0.0200	85.2	73.9-123	
Surrogate: Dibromofluoromethane	0.00990		mg/L	0.0100	99.0	86.5-122	
Surrogate: Toluene-d8	0.0101		mg/L	0.0100	101	85.7-112	
Surrogate: 4-Bromofluorobenzene	0.00988		mg/L	0.0100	98.8	86.3-117	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Reported: 02-Jul-18 16:23
---	--	--	------------------------------

VOLATILES BY GC/MS - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 8061904 - Volatiles										
LCS Dup (8061904-BSD1)				Prepared &	Analyzed:	19-Jun-18				
Chloromethane	0.019	0.0005	mg/L	0.0200		94.8	63.7-134	4.64	20.9	
Vinyl chloride	0.018	0.0005	mg/L	0.0200		87.8	69.6-123	0.228	16.7	
Bromomethane	0.018	0.0005	mg/L	0.0200		91.8	57.9-133	1.54	33.2	
Chloroethane	0.018	0.0005	mg/L	0.0200		92.4	62.4-134	1.50	29.5	
Trichlorofluoromethane	0.017	0.0005	mg/L	0.0200		87.4	62.6-142	0.228	24.9	
1,1-Dichloroethene	0.018	0.0005	mg/L	0.0200		88.3	65-126	2.87	15.4	
Methylene chloride	0.020	0.0005	mg/L	0.0200		99.0	43.1-162	3.55	9.96	
trans-1,2-Dichloroethene	0.017	0.0005	mg/L	0.0200		87.4	76.6-122	3.87	11.5	
1,1-Dichloroethane	0.017	0.0005	mg/L	0.0200		87.4	80.9-121	3.10	7.62	
cis-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		93.9	76.8-126	3.35	8.74	
Chloroform	0.017	0.0005	mg/L	0.0200		83.7	82.5-123	5.52	8.33	
Carbon tetrachloride	0.019	0.0005	mg/L	0.0200		92.7	77.5-136	4.53	9.31	
1,1,1-Trichloroethane	0.017	0.0005	mg/L	0.0200		87.0	88.3-127	4.38	7.44	BS2
Benzene	0.017	0.0005	mg/L	0.0200		86.6	84.9-121	1.55	7.79	
1,2-Dichloroethane	0.017	0.0005	mg/L	0.0200		87.1	76.9-133	1.27	8.3	
Trichloroethene	0.017	0.0005	mg/L	0.0200		85.8	82.8-120	0.986	6.6	
1,2-Dichloropropane	0.019	0.0005	mg/L	0.0200		95.4	80.2-126	1.15	6.21	
Bromodichloromethane	0.017	0.0005	mg/L	0.0200		84.8	84.1-130	3.25	7.88	
cis-1,3-Dichloropropene	0.017	0.0005	mg/L	0.0200		83.2	76.8-130	3.78	10.6	
Tetrachloroethene	0.017	0.0005	mg/L	0.0200		83.9	65.3-133	4.83	21.1	
trans-1,3-Dichloropropene	0.017	0.0005	mg/L	0.0200		85.1	80.1-132	2.67	12.4	
1,1,2-Trichloroethane	0.017	0.0005	mg/L	0.0200		85.9	82.3-117	1.05	12.7	
Dibromochloromethane	0.017	0.0005	mg/L	0.0200		86.8	75.2 - 137	1.71	10.7	
Chlorobenzene	0.017	0.0005	mg/L	0.0200		83.9	76.8-125	4.94	10.9	
Bromoform	0.018	0.0005	mg/L	0.0200		89.4	54.1-155	1.61	23.6	
1,1,2,2-Tetrachloroethane	0.018	0.0005	mg/L	0.0200		88.4	72.8-123	3.34	26	
1,4 Dichlorobenzene	0.018	0.0005	mg/L	0.0200		88.0	71.5-122	2.80	7.03	
1,2-Dichlorobenzene	0.017	0.0005	mg/L	0.0200		85.1	73.9-123	0.0587	9.07	
Surrogate: Dibromofluoromethane	0.00979		mg/L	0.0100		97.9	86.5-122			
Surrogate: Toluene-d8	0.00975		mg/L	0.0100		97.5	85.7-112			
Surrogate: 4-Bromofluorobenzene	0.00974		mg/L	0.0100		97.4	86.3-117			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Reported: 02-Jul-18 16:23
---	--	--	------------------------------

General Chemistry - Quality Control

Green Analytical Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B806128 - General Prep - Wet Chem										
Blank (B806128-BLK1)				Prepared &	: Analyzed:	14-Jun-18				
Nitrite as N	ND	0.020	mg/L							
Nitrate as N	ND	0.020	mg/L							
LCS (B806128-BS1)				Prepared &	Analyzed:	14-Jun-18				
Nitrate as N	1.06	0.020	mg/L	1.00		106	90-110			
Nitrite as N	1.03	0.020	mg/L	1.00		103	90-110			
LCS Dup (B806128-BSD1)				Prepared &	Analyzed:	14-Jun-18				
Nitrite as N	1.00	0.020	mg/L	1.00		100	90-110	2.59	20	
Nitrate as N	1.01	0.020	mg/L	1.00		101	90-110	4.52	20	
Batch B806180 - General Prep - Wet Chem										
Blank (B806180-BLK1)				Prepared &	Analyzed:	21-Jun-18				
Total Organic Carbon	ND	0.500	mg/L							
LCS (B806180-BS1)				Prepared &	Analyzed:	21-Jun-18				
Total Organic Carbon	10.1	0.500	mg/L	10.0		101	85-115			
LCS Dup (B806180-BSD1)				Prepared &	Analyzed:	21-Jun-18				
Total Organic Carbon	10.1	0.500	mg/L	10.0		101	85-115	0.297	20	
Batch B806185 - General Prep - Wet Chem										
Blank (B806185-BLK1)				Prepared &	Analyzed:	21-Jun-18				
Chloride	ND	1.00	mg/L	-						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INC PO BOX 3247 CARLSBAD NM, 88220			Reported: 02-Jul-18 16:23
---	--	--	------------------------------

General Chemistry - Quality Control

Green Analytical Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B806185 - General Prep - Wet Chem										
LCS (B806185-BS1)				Prepared &	Analyzed:	21-Jun-18				
Chloride	23.5	1.00	mg/L	25.0		93.9	90-110			
Sulfate	23.6	1.00	mg/L	25.0		94.3	90-110			
LCS Dup (B806185-BSD1)				Prepared &	Analyzed:	21-Jun-18				
Sulfate	23.4	1.00	mg/L	25.0		93.4	90-110	0.997	20	
Chloride	23.3	1.00	mg/L	25.0		93.2	90-110	0.782	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

LEA LAND INCProject:LEA LAND DISPOSAL FACILITYReported:PO BOX 3247Project Number:ANNUAL GW MONITORING02-Jul-18 16CARLSBAD NM, 88220Project Manager:MIKE STEWARTFax To:NA	
--	--

Total Recoverable Metals by ICP (E200.7) - Quality Control

Green Analytical Laboratories

			•							
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B806156 - Total Rec. 200.7/200.8/200.2										
Blank (B806156-BLK1)				Prepared: 1	19 - Jun-18 A	nalyzed: 20	0-Jun-18			
Sodium	ND	1.00	mg/L							
Manganese	ND	0.020	mg/L							
Iron	ND	0.050	mg/L							
Potassium	ND	1.00	mg/L							
Calcium	ND	0.100	mg/L							
Magnesium	ND	0.100	mg/L							
LCS (B806156-BS1)				Prepared: 1	19 - Jun-18 A	nalyzed: 20	0-Jun-18			
Iron	4.14	0.050	mg/L	4.00		103	85-115			
Sodium	3.52	1.00	mg/L	3.24		109	85-115			
Manganese	2.19	0.020	mg/L	2.00		109	85-115			
Magnesium	21.1	0.100	mg/L	20.0		105	85-115			
Potassium	8.54	1.00	mg/L	8.00		107	85-115			
Calcium	4.27	0.100	mg/L	4.00		107	85-115			
LCS Dup (B806156-BSD1)				Prepared: 1	19 - Jun-18 A	nalyzed: 20	0-Jun-18			
Sodium	3.52	1.00	mg/L	3.24		109	85-115	0.0456	20	
Calcium	4.24	0.100	mg/L	4.00		106	85-115	0.569	20	
Iron	4.17	0.050	mg/L	4.00		104	85-115	0.702	20	
Magnesium	21.0	0.100	mg/L	20.0		105	85-115	0.492	20	
Potassium	8.57	1.00	mg/L	8.00		107	85-115	0.344	20	
Manganese	2.18	0.020	mg/L	2.00		109	85-115	0.262	20	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

M5	Sample was chosen for matrix spike. Spike recovery did not meet laboratory acceptance criteria, possible matrix interference in sample.
BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by clientified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

9^{1}_{1}	Reinquistien by Date: Time:		06 Trip Blank	05 Field Blank	OY Duplicate Sample	Monitor Well #5	C2 Monitor Well #4	OJ Monitor Well #2	LAB # FIELD CODE	Project #: Project Name: Lea Land Disposal Facility Project Location: Highway 62/180E Mile Marker 64, New Mexico	Phone # (575) 887-4048	Address: (Street, City, Zip) P. O. Box 3247 Carlsbad, New Mexico 88221	Stewa	Lea Land LLC	Tel (575) 393-2326 Fax (575) 393-2476	101 East Marland - Hobbs, NM 88240	Pare 28 of 29
Cool Intact	Charles of the Charles of the		۵۵ ×	G 3 X	G X	G X	G	G X	(G)rab or (C)omp # CONTAINERS WATER SOIL AIR SLUDGE HCL (2 40ml VOA) HNO3	Sampler Signature:	Fax #	Phone#: (575) 887-4048	P. O. Box 3247 Carlsbad, New Mexico 88221	Lea Land, LLC	La		
ED BY: Coll #15	18 14:38			X 6/13 8:00 X	X 6/13 00:00	X 6/13	X 6/13 /0:30	X 6/13 9:30	NaHSO4 H ₂ SO4 ICE (1-1Liter HDPE) NONE DATE (2018)	(575)631-9310 am.net	3-2 At	Fax#		PO# (Street, City, Zip)			
Dry Weight Basis Required TRRP Report Required check if special reporting limits needed	Yes No								See Attached L					ANALYSIS REQUEST (Circle or Specify Method No.)	LAB Order ID # 17 201607	REQUE	Page_1_of_1

Physical	0	Inorganic		
Specific Conductance Temperature Water Elevation pH	Bromodichloromethane Bromoform Bromomethane Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Dibromochloromethane 1,2-dichlorobenzene 1,4-dichlorobenzene 1,1-dichloroethane Vinyl Chloride	1,2-Dichloroethane (EDC) 1,1-Dichloroethene Cis-1,2-Dichloroethene Trans-1,2-dichloroethene 1,2-dichloropropane Cis-1,3-dichloropropene Trans-1,3-dichloropropene Methylene chloride 1,1,2,2-tetrachloroethane Tetrachloroethene 1,1,1-trichloroethane 1,1,2-trichloroethane Trichloroethene Trichlorofluoromethane Total Organic Carbon Benzene	Ammonia-N Bicarbonate Calcium Carbonate Chloride Iron Magnesium Manganese Nitrate-N Potassium Sodium Sulfate Total Dissolved Solids	

Table 3-2 NMED Approved Reduced Parameter List

<u>Note</u>: Parameter list approved in NMED Solid Waste Bureau correspondence to Michael Stewart, American Environmental Consulting LLC, dated June 28, 2011. Deletion of 1,3-dichlorobenzene approved in NMED Solid Waste Bureau correspondence dated November 3, 2011. Deletion of 1,2dibromoethane (EDB) approved in NMED Solid Waste Bureau correspondence dated July 19, 2012. Deletion of phosphate approved in NMED Solid Waste Bureau correspondence dated November 6, 2012. Most recent version of corrected Table 3-2 added to Groundwater Monitoring and Systems Plan on November 6, 2012.

APPENDIX 2

SUMMARY OF PARAMETER LIST CONSTITUENTS

Notes:

- 1. Only the constituents are currently included in the required suite are included.
- 2. The volatile organic compounds are not included because there have only been a limited number of detects that are discussed in the text.

APPENDIX 2 - SUMMARY OF HISTORICAL GROUNDWATER DATA

MW-2 SUMMARY OF APPLICABLE ANALYTICAL DATA

	Ammonia-N	Calcium	Chloride	Carbonate	Bicarbonate	Iron	Magnesium	Manganese
09/17/97	< 0.01	95	92	<10	210	0.0092	87	< 0.005
03/23/98	< 0.05	80	89	<10	150	< 0.005	90	0.008
03/15/00	< 0.5	101	120	0	134	0.1	77	0.1
07/11/01	< 0.1	99.2	132	0	146	0.412	75.6	< 0.05
12/04/01	< 0.1	54.6	135		138	< 0.150	49	< 0.0125
04/19/04	< 0.10	99.6	134		135	< 0.10	76.7	0.0326
01/14/10				<1	210			
03/19/10	0.868J	110	135	<1.00	160	1.07	80.7	0.044
12/20/10	<1	88	113	<1	120	0.147	68	< 0.005
06/29/11	1.54	84.4	130	<1.00	110	0.135	64.1	< 0.00269
12/08/11	1.4	79.8	115	40	70	0.239	60.6	< 0.00269
06/25/12	<1	92.4	109 J	<1	115	1.38	69.5	0.01
12/18/12	< 0.443	96.2	111	<1.00	159	2.09	70.9	0.026
06/25/13	0.42	131	<1	129	1.29	65.5	0.009	
06/17/14	12.6	73.4	102	<20	115	0.0593	56.4	< 0.00201
06/17/15	<1	63.7	71.4	<20	148	0.148	45.2	0.008
06/13/16	< 0.535	68	101	<20	160	0.011	53.5	0.003
06/27/17	< 0.0500	54.8	84.3	<1.00	215	< 0.203	45.1	< 0.132
06/13/18	0.09	50.6	79.8	<1.00	205	< 0.050	40.1	< 0.020
	Nitrate	Potassium	Sodium	Sulfate	TDS	SC	pН	
09/17/97	0.84	5.2	300	950	1700	2300		-
03/23/98	0.91	5.8	1900	1000	1700	2600		-
03/15/00	2.6	6	275	870	1670	2390		-
07/11/01	2.53	7.05	1018	521	1686	2036		-
12/04/01	2.62	7.2	5630	935	1560			<u>.</u>
04/19/04	2.8	6.49	277	850	1600	2190		<u>.</u>
01/14/10								<u>.</u>
03/19/10	2.74	9.97	289	816	1590	1790	7.71	<u>.</u>
12/20/10	2.57	9	300	776	1626	2160	7.75	<u>.</u>
06/29/11	2.90	7.04	289	828	1524	2180	7.36	<u>.</u>
12/08/11	2.2	6.85	263	676	1568	2230	7.42	<u>.</u>
06/25/12	2.41	9.42	318	787	1488	2260	7.45	
12/18/12	2.47	7.24	312	960	1472	2200	7.50	
06/25/13	2.49	5.49	308	761	1352	2230	7.58	_
06/17/14	2.96	5.73	288	708	1380	2020	8.39	
	=., *	2112	= = = =					
06/17/15	2.88	5.09	280	614	1290	1840	7.97	<u>.</u>
				614 639	1290 1220	1840 1780	7.97 7.93	-
06/17/15	2.88	5.09	280					

All units mg/l except SC (umhos/cm) and pH (pH units) TDS = total dissolved solids; SC = specific conductance; NR = LLI no longer required to sample for this constituent; J = estimated value

APPENDIX 2 - SUMMARY OF HISTORICAL GROUNDWATER DATA

MW-4 SUMMARY OF APPLICABLE ANALYTICAL DATA

	Ammonia-N	Calcium	Chloride	Carbonate	Bicarbonate	Iron	Magnesium	Manganese
09/17/97	0.013	50	54	<10	210	0.008	41	< 0.005
03/23/98	< 0.05	42	50	<10	130	0.045	37	< 0.005
03/15/00	< 0.5	50	65	0	138	< 0.1	45	< 0.03
07/11/01	< 0.1	48.4	72	0	178	0.31	43.1	< 0.05
12/04/01	< 0.1	44.4	77		152	< 0.150	44.5	< 0.0125
04/19/04	< 0.10	48.6	74.5		147	0.518	43.3	0.0126
01/14/10				<1	133			
03/19/10	0.616J	63.4	88.9	<1.00	140	0.947	54.9	0.015
12/20/10	<1	49	61	<1	120	0	44	< 0.005
06/29/11	1.40	43.3	62.7	<1.00	150	0.056	39.8	< 0.00269
12/08/11	0.84J	40.3	62.1	<1.00	220	0.041	35.9	< 0.00269
06/25/12	<1	49.3	63.8	<1	134	0.169	44.5	< 0.005
12/18/12	0.56	51	62.8	<1.00	166	0.011	46.2	< 0.00290
06/25/13	<1.00	50	60.2	<1.0	124	0.024	46.1	< 0.005
06/17/14	4.06	49.2	64.2	<20	121	0.0347	44.7	< 0.00201
06/17/15	<1	49.2	61.9	<20	137	0.019	44.3	0.001
06/13/16	< 0.535	50.3	63.4	<20	144	0.011	45.2	< 0.000382
06/27/17	0.120	47.3	62.7	<1.00	185	< 0.203	44.0	< 0.132
06/13/18	0.05	48.4	62.3	<1.00	190	< 0.050	43.2	< 0.020
	Nitrate	Potassium	Sodium	Sulfate	TDS	SC	pН	
09/17/97	2.3	6.5	190	480	970	1400	7.9	
03/23/98	1.4	6.1	1200	430	880	1300	8.4	
03/15/00	3.7	5	165	400	875	1292	8.07	
07/11/01	3.37	5.95	267	574	906	1247	7.8	
12/04/01	3.56	5.79	166	452	802			
04/19/04	3.6	5.46	157	386	868	1290	7.9	
01/14/10								
03/19/10	4.09	7.85	167	463	1020	1470	8.01	
12/20/10	3	8	166	367	830	1290	7.90	
06/29/11	3.17	5.25	159	423	862	1330	7.88	
12/08/11	0.826	5.55	147	360	819	1510	7.83	
06/25/12	3.11	6.81	173	424	978	1540	7.81	
12/18/12	2.88	4.94	177	434	844	1510	7.56	
06/25/13	3.1	4.92	174	406	792	1520	7.55	
06/17/14	3.36	5.44	165	402	876	1330	8.33	
06/17/15	3.1	4.51	170	366	864	1260	7.90	
06/13/16	3.34	4.89	176	372	836	1250	7.87	
06/27/17	3.41	4.27	175	413	862	1240	7.84	
06/13/18	3.32	4.92	170	361	778	1280	7.74	

All units mg/l except SC (umhos/cm) and pH (pH units) TDS = total dissolved solids; SC = specific conductance; NR = LLI no longer required to sample for this constituent; J = estimated value

APPENDIX 2 - SUMMARY OF HISTORICAL GROUNDWATER DATA

MW-5 SUMMARY OF APPLICABLE ANALYTICAL DATA

	Ammonia-N	Calcium	Chloride	Carbonate	Bicarbonate	Iron	Magnesium	Manganese
09/17/97	< 0.01	60	48	<10	210	< 0.005	38	0.032
03/23/98	< 0.05	51	52	<10	170	0.029	46	0.029
03/15/00	< 0.5	65	58	0	172	0.1	46	0.07
07/11/01	< 0.1	61.5	62.5	0	232	0.378	43.8	< 0.05
12/04/01	< 0.1	57.7	68		171	< 0.150	45.7	< 0.0125
04/19/04	< 0.10	63.2	64.5		164	1.23	45.3	0.0732
01/14/10				<1	170			
03/19/10	0.616J	68.6	55.8	<1.00	200	0.794	47.6	0.019
12/20/10	<1	60	54	<1	150	0.372	44	0
06/29/11	1.60	56.4	54.8	<1.00	160	0.126	41.4	< 0.00269
12/08/11	1.04/0.924J	88.7/85.7	53.9/55.2	<1.00/<1.00	160/140	0.072/0.068	64.5/61.8	<0.00269/ <0.00269
06/25/12	<1/<1	61.6/62	52.2/57.5	<1/<1	147/149	0.328/0.686	44.9/45.2	<0.005/0.006
12/18/12	<0.443/<0.443	63.8/61.8	53.5/52.5	<1.00/<1.00	176/186	0.053/0.1	46/44.7	<0.00290/ <0.00290
06/25/13	<1.00/2.1	63.2/63.3	52.1/56.5	<1.00/<1.00	148/140	0.0220/0.047	46.2/45.5	< 0.005/< 0.005
06/17/14	1.68/1.54	82.8/64.8	56.4/55.8	<20/<20	125/134	3.95/0.457	49.3/45.1	0.119/0.0058
06/17/15	<1/<1	63.3/63.7	78.2/71.4	<20/<20	155/148	0.173/0.148	44.9/45.2	0.009/0.008
06/13/16	< 0.535/< 0.535	64.8/64	57.8/60.5	<20/<20	171/171	0.01/0.011	47.3/45.9	0.001/0.001
06/27/17	< 0.0500/< 0.0500	58.2/58.0	55.0/54.9	<1.00/<1.00	220/210	<0.203/<0.203	43.4/43.8	<0.132/<0.132
06/13/18	0.07/0.05	58.6/59.1	54/53.2	<1.00/<1.00	224/220	<0.050/<0.050	42/42.5	<0.020/<0.020
	Nitrate	Potassium	Sodium	Sulfate	TDS	SC	pН	
09/17/97	1.8	5	170	470	990	1300	7.8	
03/23/98	2.4	4.3	1200	400	960	1200	8.5	
03/15/00	3.3	5	179	450	962	1385	7.93	
07/11/01	3.06	5.83	287	555	965	1324	7.93	
12/04/01	3.35	5.68	176	500	939			
04/19/04	3.37	5.42	193	440	1020	1380	7.8	
01/14/10								
03/19/10	3.45	6.71	162	436	868	1380	7.92	
12/20/10	3	7	173	408	890	1350	7.9	
06/29/11	3.16	4.91	172	475	924	1410	7.75	
12/08/11	2.68/2.69	10.50/9.51	148/149	412/419	910/872	1580	7.79	
06/25/12	2.92/2.93	6.2/6.16	182/182	470/484	902/822	1610	7.68	
12/18/12	2.51/2.46	4.29/4.53	186/180	459/455	898/930	1370	7.49	
06/25/13	5.84/2.8	3.74/3.65	186/186	450/454	902/908	1480	7.51	
06/17/14	3.23/3.18	6.42/4.95	181/168	456/453	888/944	1270/1410	8.3/8.29	
06/17/15	2.98/2.82	4.08/4.07	180/180	694/455	908/968	1340/1390	7.84/7.85	
06/13/16	3.01/3.08	4.34/4.42	195/192	424/415	928/916	1320/1290	7.79/7.77	
06/27/17	3.10/3.13	3.83/3.95	183/182	468/470	894/906	1320/1330	7.85/7.78	
06/13/18	3.15/3.16	4.14/4.2	176/177	412/408	886/874	1370/1360	7.7/7.72	

All units mg/l except SC (umhos/cm) and pH (pH units) TDS = total dissolved solids; SC = specific conductance; NR = LLI no longer required to sample for this constituent; J = estimated value

GEOLOGIC/HYDROGEOLOGIC DESCRIPTION LEA LAND, INC. LANDFILL LEA COUNTY, NEW MEXICO

Prepared for:

Lea Land Incorporated 1300 West Main Street Oklahoma City, Oklahoma 73106

Prepared by:

American Environmental Consulting, LLC 6885 South Marshall, Suite 3 Littleton, Colorado 80128 (303)948-7733

December 2010

Table of Contents

1	RE	GIONAL GEOLOGY	. 1
2	RE	GIONAL HYDROGEOLOGY	. 1
3	SIT	Έ GEOLOGY	. 2
4	SIT	Έ HYDROGEOLOGY	. 4
	4.1	Groundwater Distribution and Flow	. 4
	4.2	Groundwater Chemistry	. 6

Tables and Figures

 Table - 1 Summary of Piezometric Surface Elevations

- Table 2 Principal Ion and Total Dissolved Solids Concentrations for the Lea Land Landfill
- Table 3 RCRA Metal Results for the Lea Land Landfill
- Figure 1 Regional Geologic Map
- Figure 2 Inferred Potentiometric Surface of Groundwater in the Triassic Materials
- Figure 3 Boring Locations, Monitoring Well Locations and Cross Section Alignment
- Figure 4 Geologic Cross Section for the Lea Land Landfill
- Figure 5 Monitoring Well Hydrographs
- Figure 6 March 2010 Potentiometric Surface
- Figure 7 Piper Trilinear Diagram

Appendicies

- Appendix A Graphical Boring Logs
- Appendix B Certifications for Borehole Closure
- Appendix C 1997 Hyraulic Conductivity Evaluation
- Appendix D LLI Monitoring Well Testing Notes
- Appendix E Groundwater Data Base

APPENDIX E - GROUNDWATER DATA BASE

				SUBS	ECTION A						
					MW-2						
INORGANIC CONSTITUENT	9/17/1997	3/23/1998	3/15/2000	7/11/2001	ple Date 12/4/2001	4/19/2004	1/14/2010	3/19/2010	AML	PQL	Background
Antimony (Sb)(h)	< 0.01	< 0.01	< 0.003	< 0.006	< 0.005	< 0.005		<0.0123	0.003	0.020	PQL
Arsenic (h)	< 0.005	< 0.005	< 0.01	< 0.05	< 0.005	< 0.010		<0.00540	0.005	0.005	PQL
Barium (h)	0.016	0.013	< 0.02	<1	0.0288	0.0128		0.033	0.5	0.001	0.0177
Beryllium (h)	< 0.005	< 0.001	< 0.002	< 0.002	0.00068	< 0.001		< 0.002	0.002	0.002	0.0007
Cadmium (h)	< 0.005	< 0.005	< 0.002	< 0.005	< 0.001	< 0.002		<0.00209	0.0025	0.001	PQL
Chromium (h)	< 0.005	< 0.005	< 0.01	< 0.005	< 0.005	< 0.005		0.003J	0.025	0.001	PQL
Cobalt (i)	< 0.005	< 0.005	< 0.03	< 0.05	< 0.0125	< 0.010		< 0.005	0.025	0.001	PQL
Copper (a)	<0.005 <0.005	<0.005 <0.005	<0.05 <0.01	<0.5 <0.00375	<0.005 <0.00375	<0.005 <0.006		<0.005 <0.005	0.5	0.002	PQL PQL
Lead (h) Nickel (h)	<0.005	<0.005	<0.01	0.102	<0.00375	< 0.006		< 0.005	0.025	0.005	0.058
Selenium (h)	0.018	0.014	0.068	< 0.01	0.0135	0.0417		0.069	0.025	0.005	0.038
Silver (h)	< 0.005	< 0.005	< 0.01	< 0.05	< 0.005	< 0.005		< 0.005	0.025	0.005	PQL
Thallium (h)	< 0.005	< 0.005	< 0.001	< 0.001	< 0.001	< 0.005		<0.00674	0.001	0.020	PQL
Vanadium (h)	< 0.005	< 0.005	0.08	< 0.005	< 0.025	0.0269		0.03	0.00975*	0.005	0.0535
Zinc (a)	0.029	0.02	0.07	<1	0.0329	0.0109		<0.005	5	0.007	0.0326
Aluminum (i)	< 0.05	< 0.05	<3.0	<1	< 0.125	< 0.10		1.19	3.75	0.005	PQL
Boron (i)			0.6	0.661	0.816	0.664	0.514	0.614	0.5625	0.050	0.6853
Chloride (a)	92	89	120	132	135	134		135	187.5	2.500	117
Cyanide (h)	<0.02	< 0.02	<0.1	< 0.1	< 0.01	< 0.010		< 0.015	0.1	0.010	PQL
Fluoride (h)	< 0.05	0.12	<0.4	0.66	0.514	0.528		0.42J	0.8	0.980	0.456
Iron (a) Manganasa (a)	0.0092	<0.005 0.008	0.1	0.412 <0.05	<0.150 <0.0125	<0.10 0.0326		1.07 0.044	0.75	0.010	0.174 0.047
Manganese (a) Mercury (h)	<0.003	<0.008	<0.001	<0.03	<0.0125	<0.0002		<0.0044	0.13	0.003	0.047 PQL
Molybdenum (i)	<0.0002	<0.0002	<0.001	<0.002	0.0279	0.0255		0.033	0.001	0.000	0.027
Nitrate-N (h)	0.84	0.91	2.6	2.53	2.62	2.8		2.74	5	0.100	2.05
Sulfate (a)	950	1000	870	521	935	850		816	450	25.000	854
Uranium (h)	< 0.01	< 0.01	<2.5	< 0.20		0.071±0.006		<0.0242	0.015	0.050	PQL
Radium, combined 226/228 (h)	2.7	1.6	<5.0	0.59±0.23	0.45±0.21	<0.5±0.4		1.72	2.5		2.15
ORGANIC CONSTITUENT											
Acetone (h)	< 0.020	< 0.020	< 0.100	< 0.010	< 0.020	< 0.020		<0.01	0.0195*	0.010	PQL
Acrylonitrile (h)	< 0.020	< 0.020	< 0.20	< 0.010	< 0.020	< 0.020		<0.001	0.00195*	0.001	PQL
Benzene (h)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		0.35J	0.0025	0.001	PQL
Bromochloromethane (h)	< 0.001	< 0.001	<0.002	< 0.001	< 0.001	< 0.001		< 0.001	0.00195*	0.001	PQL
Bromodichloromethane (h) Bromoform (h)	<0.001 <0.002	<0.001 <0.002	<0.005 <0.015	<0.001 <0.002	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.00195* 0.00195*	0.001	PQL PQL
Carbon disulfide (h)	<0.002	<0.002	<0.013	<0.002	<0.001	<0.001		<0.001	0.00195*	0.001	PQL
Carbon tetrachloride (h)	<0.001	<0.001	<0.002	<0.001	<0.001	<0.001		<0.001	0.0025	0.001	PQL
Chlorobenzene (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		< 0.001	0.05	0.001	PQL
Chloroethane (h)	< 0.002	< 0.002	< 0.010	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Chloroform (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.05	0.001	PQL
Dibromochloromethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
1,2-dichlorobenzene (h)					< 0.001	< 0.001	< 0.001	<0.001	0.3	0.001	PQL
1,4-dichlorobenzene (h)	< 0.001	< 0.001	< 0.015	< 0.001	< 0.001	< 0.001		<0.001	0.0375	0.001	PQL
trans-1,4-dichloro-2-butene (h)	< 0.002	< 0.002	< 0.10	< 0.001			< 0.01	<0.01	0.0195*	0.010	PQL
1,1-dichloroethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		< 0.001	0.0125	0.001	PQL
1,2-dichloroethane (h)	< 0.001	<0.001	<0.001	<0.001	<0.001	< 0.001		< 0.001	0.0025	0.001	PQL
1,1-dichloroethylene (h)	< 0.001	< 0.001	<0.001	< 0.001	< 0.001	< 0.001		< 0.001	0.0025	0.001	PQL
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene			<0.005 <0.005		<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.035	0.001	PQL PQL
1,2-dichloropropane (h)	< 0.001	<0.001	<0.005	< 0.001	< 0.001	< 0.001		<0.001	0.0025	0.001	PQL
cis-1,3-dichloropropene (h)	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001		<0.001	0.00195*	0.001	PQL
trans-1,3-dichloropropene (h)	< 0.001	< 0.001	<0.020	< 0.001	< 0.001	< 0.001		< 0.001	0.00195*	0.001	PQL
Ethylbenzene (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		< 0.001	0.35	0.001	PQL
2-hexanone (h)	< 0.010	< 0.010	< 0.050	< 0.010	< 0.005	< 0.005		<0.005	0.00975*	0.005	PQL
Methyl bromide (h)	< 0.002	< 0.002	< 0.020	< 0.001	< 0.001	< 0.001		<0.005	0.00975*	0.005	PQL
Methyl chloride (h)	< 0.002	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Methylene bromide (h)	< 0.001	< 0.001	< 0.020	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Methylene chloride (h)	< 0.002	< 0.002	< 0.001	< 0.002	< 0.005	< 0.005		<0.005	0.0025	0.001	PQL
Methyl ethyl ketone (h)	< 0.020	< 0.020	< 0.010	< 0.010	< 0.020	< 0.020		<0.005	0.00975*	0.005	PQL
Methyl iodide (h)	< 0.002	< 0.002	< 0.040	< 0.001	< 0.005	< 0.005		< 0.005	0.00975*	0.005	PQL
4-methyl-2-pentanone (h)	< 0.001	< 0.001	< 0.015	< 0.010	< 0.005	< 0.005		< 0.005	0.00975*	0.005	PQL
Styrene (h)	< 0.001	<0.001	<0.010	<0.001	< 0.001	< 0.001		< 0.001	0.05	0.001	PQL
1,1,1,2-tetrachloroethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL

1,1,2,2-tetrachloroethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	 <0.001	0.005	0.001	PQL
Tetrachloroethylene (h)	< 0.001	< 0.001	< 0.0005	< 0.001	< 0.001	< 0.001	 <0.001	0.0025	0.001	PQL
Toluene (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.002	< 0.002	 <0.001	0.375	0.001	PQL
1,1,1-trichloroethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001	 <0.001	0.03	0.001	PQL
1,1,2-trichloroethane (h)	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001	 <0.001	0.0025	0.001	PQL
Trichloroethylene (h)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	 <0.001	0.0025	0.001	PQL
Trichlorofluoromethane (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	 <0.001	0.00195*	0.001	PQL
1,2,3-trichloropropane (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	 <0.001	0.00195*	0.001	PQL
Vinyl acetate (h)	< 0.002	< 0.002	< 0.050	< 0.010	< 0.010	< 0.010	 <0.005	0.00975*	0.005	PQL
Vinyl chloride (h)	< 0.002	< 0.002	< 0.0004	< 0.001	< 0.001	< 0.001	 <0.001	0.0005	0.001	PQL
Xylenes, total (h)	< 0.002	< 0.002	< 0.005	< 0.003	< 0.003	< 0.003	 <0.001	0.31	0.001	PQL
1,2-Dibromoethane (EDB)	< 0.00001	< 0.00001	< 0.000025	< 0.00026	< 0.00001	< 0.00001	 <0.00014	0.000025	0.001	PQL
1,2-dibromo-3-chloropropane (h)	< 0.00002	< 0.00002	< 0.00010	< 0.001	< 0.00001	< 0.00001	 <0.00065	0.0001	0.005	PQL
Phenols (a)	< 0.005	< 0.005	< 0.003	< 0.005	< 0.005		 <0.000484	0.0025	0.00001	PQL
Benzo(a)pyrene (h)	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00012	< 0.00012	 <0.00159	0.0001	0.000	PQL
Naphthalene (h)	< 0.001	< 0.001	< 0.010	< 0.00009	< 0.0005	< 0.0005	 <0.000466	0.015	0.000	PQL
PCBs (h)	< 0.00005	< 0.00005	< 0.00005	< 0.007	< 0.00005	< 0.000505	 <0.000148	0.00025	0.000	PQL

			SUBSECTIO	NA				
			MW-3					
			Sample Da					
INORGANIC CONSTITUENT Antimony (Sb)(h)	3/15/2000	7/11/2001	<0.005	4/19/2004	3/19/2010 <0.0123	AML 0.003	PQL 0.020	Background PQL
Arsenic (h)	< 0.003	< 0.000	< 0.005	< 0.010	<0.00540	0.005	0.020	PQL
Barium (h)	0.04	<1	0.0261	0.0163	0.017	0.5	0.001	0.03
Beryllium (h)	< 0.002	< 0.002	< 0.0005	< 0.001	< 0.002	0.002	0.002	PQL
Cadmium (h)	< 0.002	< 0.005	< 0.001	< 0.002	<0.00209	0.0025	0.001	PQL
Chromium (h)	< 0.01	< 0.005	< 0.005	< 0.005	<0.005	0.025	0.001	PQL
Cobalt (i)	< 0.03	< 0.05	< 0.0125	<0.010	< 0.005	0.025	0.001	PQL
Copper (a) Lead (h)	<0.05 <0.01	<0.5 <0.00375	<0.005 <0.00375	<0.005 <0.006	<0.005 <0.005	0.5	0.002	PQL PQL
Nickel (h)	<0.01	<0.1	< 0.010	< 0.005	<0.005	0.025	0.005	PQL
Selenium (h)	0.07	< 0.01	0.087	0.0659	0.075	0.025	0.010	0.07
Silver (h)	< 0.01	< 0.05	< 0.005	< 0.005	<0.005	0.025	0.005	PQL
Thallium (h)	< 0.001	< 0.001	< 0.001	< 0.005	<0.00674	0.001	0.020	PQL
Vanadium (h)	< 0.08	< 0.005	< 0.025	< 0.010	0.013	0.00975*	0.005	PQL
Zinc (a)	0.79	<1	0.0732	0.0187	<0.005	5	0.007	0.29
Aluminum (i)	<3.0	<1	<0.125	<0.10	0.271	3.75	0.005	PQL 0.52
Boron (i) Chloride (a)	<0.5 88	0.34	0.627	0.579 109	0.553 89.3	0.5625	0.050 2.500	0.52 102.75
Chloride (a) Cyanide (h)	88 <0.1	<0.1	<0.01	<0.010	89.3 <0.015	0.1	0.010	PQL
Fluoride (h)	<0.1	0.42	0.54	0.55	0.412J	0.1	0.980	0.50
Iron (a)	0.1	0.26	<0.150	< 0.10	0.326	0.75	0.010	0.18
Manganese (a)	< 0.03	< 0.05	< 0.0125	< 0.010	0.007	0.15	0.003	PQL
Mercury (h)	< 0.001	< 0.002	< 0.0002	< 0.0002	<0.0002	0.001	0.000	PQL
Molybdenum (i)	< 0.05	<0.5	0.0227	0.0217	0.022	0.75	0.010	0.02
Nitrate-N (h)	4.3	3.53	3.71	3.71	3.94	5	0.100	3.81
Sulfate (a)	510	521	620	589	555	450	25.000	560
Uranium (h)	<2.5 <2.5		0.108 ± 0.010		< 0.0242	0.015	0.050	PQL
Radium, combined 226/228 (h) ORGANIC CONSTITUENT	<2.3	1.1±0.3	<0.5	1.3±0.4	2.17	2.5		PQL
Acetone (h)	< 0.100	< 0.010	< 0.020	< 0.020	<0.01	0.0195*	0.010	PQL
Acrylonitrile (h)	< 0.20	< 0.010	< 0.020	< 0.020	< 0.001	0.00195*	0.001	PQL
Benzene (h)	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	0.0025	0.001	PQL
Bromochloromethane (h)	< 0.002	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
Bromodichloromethane (h)	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
Bromoform (h)	< 0.015	< 0.002	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
Carbon disulfide (h)	<0.10	< 0.001	<0.001	< 0.001	< 0.001	0.00195*	0.001	PQL
Carbon tetrachloride (h) Chlorobenzene (h)	<0.002 <0.005	<0.001 <0.001	<0.001	<0.001 <0.001	<0.001 <0.001	0.0025	0.001	PQL PQL
Chloroethane (h)	<0.003	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
Chloroform (h)	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	0.05	0.001	PQL
Dibromochloromethane (h)	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
1,2-dichlorobenzene (h)			< 0.001	< 0.001	<0.001	0.3	0.001	PQL
1,4-dichlorobenzene (h)	< 0.015	0.009	< 0.001	< 0.001	<0.001	0.0375	0.001	0.009
trans-1,4-dichloro-2-butene (h)	< 0.10	< 0.001			<0.01	0.0195*	0.010	PQL
1,1-dichloroethane (h)	<0.005	< 0.001	<0.001	< 0.001	< 0.001	0.0125	0.001	PQL
1,2-dichloroethane (h) 1,1-dichloroethylene (h)	<0.001 <0.001	<0.001 <0.001	<0.001	<0.001 <0.001	<0.001 <0.001	0.0025	0.001	PQL PQL
cis-1,2-Dichloroethylene			<0.001		<0.001	0.0023	0.001	PQL
trans-1,2-Dichloroethylene					<0.001	0.05	0.001	PQL
1,2-dichloropropane (h)	< 0.0005	< 0.001	< 0.001	< 0.001	< 0.001	0.0025	0.001	PQL
cis-1,3-dichloropropene (h)	< 0.020	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
trans-1,3-dichloropropene (h)	< 0.010	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
Ethylbenzene (h)	< 0.005	< 0.001	< 0.001	< 0.001	< 0.001	0.35	0.001	PQL
2-hexanone (h)	<0.050	< 0.010	< 0.005	< 0.005	< 0.005	0.00975*	0.005	PQL
Methyl bromide (h)	<0.020 <0.001	<0.001 <0.002	<0.001 <0.001	<0.001 <0.001	<0.005 <0.001	0.00975* 0.00195*	0.005	PQL PQL
Methyl chloride (h) Methylene bromide (h)	<0.001	<0.002	< 0.001	<0.001	<0.001	0.00195*	0.001	PQL
Methylene chloride (h)	<0.020	0.001	< 0.001	< 0.001	<0.001	0.00195	0.001	0.008
Methyl ethyl ketone (h)	< 0.010	< 0.010	< 0.020	< 0.020	< 0.005	0.00975*	0.005	PQL
Methyl iodide (h)	< 0.040	< 0.001	< 0.005	< 0.005	<0.005	0.00975*	0.005	PQL
4-methyl-2-pentanone (h)	< 0.015	< 0.010	< 0.005	< 0.005	<0.005	0.00975*	0.005	PQL
Styrene (h)	< 0.010	< 0.001	< 0.001	< 0.001	<0.001	0.05	0.001	PQL
1,1,1,2-tetrachloroethane (h)	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL

1,1,2,2-tetrachloroethane (h)	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	0.005	0.001	PQL
Tetrachloroethylene (h)	< 0.0005	< 0.001	< 0.001	< 0.001	<0.001	0.0025	0.001	PQL
Toluene (h)	< 0.005	< 0.001	< 0.002	< 0.002	<0.001	0.375	0.001	PQL
1,1,1-trichloroethane (h)	< 0.005	< 0.001	< 0.001	< 0.001	<0.001	0.03	0.001	PQL
1,1,2-trichloroethane (h)	< 0.002	< 0.001	< 0.001	< 0.001	<0.001	0.0025	0.001	PQL
Trichloroethylene (h)	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	0.0025	0.001	PQL
Trichlorofluoromethane (h)	< 0.010	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
1,2,3-trichloropropane (h)	< 0.010	< 0.001	< 0.001	< 0.001	<0.001	0.00195*	0.001	PQL
Vinyl acetate (h)	< 0.050	< 0.010	< 0.010	< 0.010	<0.005	0.00975*	0.005	PQL
Vinyl chloride (h)	< 0.0004	< 0.001	< 0.001	< 0.001	<0.001	0.0005	0.001	PQL
Xylenes, total (h)	< 0.005	< 0.003	< 0.003	< 0.003	<0.001	0.31	0.001	PQL
1,2-Dibromoethane (EDB)	< 0.000025	< 0.00026	< 0.00001	< 0.00001	<0.00014	2.5E-05	0.001	PQL
1,2-dibromo-3-chloropropane (h)	< 0.00010	< 0.001	< 0.00001	< 0.00001	<0.00065	0.0001	0.005	PQL
Phenolics (a)	< 0.003	< 0.005	< 0.005		<0.000478	0.0025	0.00001	PQL
Benzo(a)pyrene (h)	< 0.0001	< 0.00009	< 0.00012	< 0.00012	<0.00157	0.0001	0.000	PQL
Naphthalene (h)	< 0.010	< 0.00009	< 0.0005	< 0.0005	<0.000459	0.015	0.000	PQL
PCBs (h)	< 0.00005	< 0.001	< 0.00005	< 0.00005	<0.000149	0.00025	0.000	PQL

				SUBS	SECTION A						
					MW-4						
INOD CANUC CONSTITUENT	0/17/1007	2/22/1008	2/15/2000		nple Date	4/10/2004	1/14/2010	2/10/2010	ANT	POI	Dockground
INORGANIC CONSTITUENT Antimony (Sb)(h)	9/17/1997 <0.01	3/23/1998	3/15/2000	7/11/2001	12/4/2001	4/19/2004 <0.005	1/14/2010	3/19/2010 <0.0123	AML 0.003	PQL 0.020	Background PQL
Arsenic (h)	0.022	0.015	< 0.01	< 0.05	< 0.005	< 0.010		< 0.00540	0.005	0.005	0.019
Barium (h)	0.015	0.02	< 0.02	<1	< 0.025	0.0189		0.025	0.5	0.001	0.0180
Beryllium (h)	< 0.005	< 0.001	< 0.002	< 0.002	< 0.0005	< 0.001		< 0.002	0.002	0.002	PQL
Cadmium (h)	< 0.005	< 0.005	< 0.002	< 0.005	< 0.001	< 0.002		<0.00209	0.0025	0.001	PQL
Chromium (h)	<0.005	<0.005	<0.01	<0.005	<0.005 <0.0125	<0.005		0.004J	0.025	0.001	PQL
Cobalt (i) Copper (a)	<0.005 0.018	<0.005	<0.03 <0.05	<0.05	<0.0125	<0.010 0.0211		<0.005 0.006	0.025	0.001	PQL 0.0230
Lead (h)	< 0.005	< 0.005	< 0.01	< 0.00375	< 0.00375	0.00639		< 0.005	0.025	0.002	0.00639
Nickel (h)	< 0.005	< 0.005	<0.75	0.148	< 0.010	< 0.005		<0.005	0.1	0.005	0.148
Selenium (h)	0.0065	0.005	0.048	< 0.01	0.0445	0.0275		0.087	0.025	0.010	0.026
Silver (h)	< 0.005	< 0.005	< 0.01	< 0.05	< 0.005	< 0.005		<0.005	0.025	0.005	PQL
Thallium (h)	< 0.005	< 0.005	< 0.001	< 0.001	<0.001	< 0.005		< 0.00674	0.001	0.020	PQL
Vanadium (h) Zinc (a)	<0.005 0.0092	<0.005 0.016	<0.08 <0.05	<0.005	<0.025 0.016	0.0209		0.018 <0.005	0.00975* 5	0.005	0.021
Aluminum (i)	<0.05	<0.010	<3.0	<1	<0.125	0.531		0.871	3.75	0.007	0.531
Boron (i)			<0.5	0.502	0.525	0.538	0.456	0.543	0.5625	0.050	0.522
Chloride (a)	54	50	65	72	77	74.5		88.9	187.5	2.500	65
Cyanide (h)	< 0.02	< 0.02	<0.1	< 0.1	< 0.01	< 0.010		<0.015	0.1	0.010	PQL
Fluoride (h)	< 0.05	0.085	0.8	0.66	0.764	0.897		0.443J	0.8	0.980	0.6412
Iron (a)	0.008	0.045	<0.1	0.31	<0.150	0.518		0.947	0.75	0.010	0.22025
Manganese (a) Mercury (h)	<0.005 <0.0002	<0.005 <0.0002	<0.03 <0.001	<0.05 <0.002	<0.0125 <0.0002	0.0126		0.015 <0.0002	0.15	0.003	0.013 PQL
Molybdenum (i)	<0.0002	<0.0002	<0.001	<0.002	0.0173	0.0177		0.023	0.001	0.000	0.0175
Nitrate-N (h)	2.3	1.4	3.7	3.37	3.56	3.6		4.09	5	0.100	3.0
Sulfate (a)	480	430	400	574	452	386		463	450	25.000	454
Uranium (h)	< 0.01	< 0.01	<2.5	< 0.20	0.114±0.017	.103±0.0079		<0.0242	0.015	0.050	PQL
Radium, combined 226/228 (h)	3.6	1.6	<2.5	2.3±1.0	0.29±0.18	<0.7±0.4		0.83	2.5		2.6
ORGANIC CONSTITUENT	1		1		1	1					1
Acetone (h)	<0.020	< 0.020	<0.100	< 0.010	<0.020	<0.020		< 0.01	0.0195*	0.010	PQL
Acrylonitrile (h) Benzene (h)	<0.020 <0.001	<0.020 <0.001	<0.20 <0.001	<0.010	<0.020 <0.001	<0.020 <0.001		<0.001 <0.001	0.00195*	0.001	PQL PQL
Bromochloromethane (h)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		<0.001	0.00195*	0.001	PQL
Bromodichloromethane (h)	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001		< 0.001	0.00195*	0.001	PQL
Bromoform (h)	< 0.002	< 0.002	< 0.015	< 0.002	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Carbon disulfide (h)	< 0.001	< 0.001	< 0.10	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Carbon tetrachloride (h)	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001		<0.001	0.0025	0.001	PQL
Chlorobenzene (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		< 0.001	0.05	0.001	PQL
Chloroethane (h) Chloroform (h)	<0.002 <0.001	<0.002 <0.001	<0.010 <0.005	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.00195*	0.001	PQL PQL
Dibromochloromethane (h)	<0.001	<0.001	<0.005	<0.001	<0.001	<0.001		<0.001	0.00195*	0.001	PQL
1,2-dichlorobenzene (h)					< 0.001	< 0.001	< 0.001	< 0.001	0.3	0.001	PQL
1,4-dichlorobenzene (h)	< 0.001	< 0.001	< 0.015	0.01	< 0.001	< 0.001		<0.001	0.0375	0.001	0.01
trans-1,4-dichloro-2-butene (h)	< 0.002	< 0.002	< 0.10	< 0.001			< 0.01	<0.01	0.0195*	0.010	PQL
1,1-dichloroethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.0125	0.001	PQL
1,2-dichloroethane (h)	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001		< 0.001	0.0025	0.001	PQL
1,1-dichloroethylene (h) cis-1,2-Dichloroethylene	<0.001	<0.001	<0.001 <0.005	<0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.0025 0.035	0.001	PQL PQL
trans-1,2-Dichloroethylene			< 0.005		<0.001	<0.001		<0.001	0.05	0.001	PQL
1,2-dichloropropane (h)	< 0.001	< 0.001	< 0.0005	< 0.001	<0.001	< 0.001		<0.001	0.0025	0.001	PQL
cis-1,3-dichloropropene (h)	< 0.001	< 0.001	< 0.020	< 0.001	<0.001	< 0.001		<0.001	0.00195*	0.001	PQL
trans-1,3-dichloropropene (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Ethylbenzene (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		< 0.001	0.35	0.001	PQL
2-hexanone (h)	<0.010	<0.010	<0.050	<0.010	<0.005	<0.005		<0.005	0.00975*	0.005	PQL
Methyl bromide (h) Methyl chloride (h)	<0.002 <0.002	<0.002 <0.002	<0.020 <0.001	<0.001	<0.001 <0.001	<0.001 <0.001		<0.005 <0.001	0.00975* 0.00195*	0.005	PQL PQL
Methylene bromide (h)	<0.002	<0.002	<0.001	<0.002	<0.001	<0.001		<0.001	0.00193*	0.001	PQL
Methylene chloride (h)	< 0.002	<0.002	<0.001	< 0.001	< 0.005	< 0.005		< 0.005	0.0025	0.001	PQL
Methyl ethyl ketone (h)	< 0.020	< 0.020	< 0.010	< 0.010	< 0.020	< 0.020		<0.005	0.00975*	0.005	PQL
Methyl iodide (h)	< 0.002	< 0.002	< 0.040	< 0.001	< 0.005	< 0.005		<0.005	0.00975*	0.005	PQL
4-methyl-2-pentanone (h)	< 0.001	< 0.001	< 0.015	< 0.010	< 0.005	< 0.005		<0.005	0.00975*	0.005	PQL
Styrene (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001		< 0.001	0.05	0.001	PQL
1,1,1,2-tetrachloroethane (h)	<0.001	< 0.001	<0.005	< 0.001	<0.001	< 0.001		<0.001	0.00195*	0.001	PQL
1,1,2,2-tetrachloroethane (h) Tetrachloroethylene (h)	<0.001 <0.001	<0.001 <0.001	<0.005 <0.0005	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.005	0.001	PQL PQL
Toluene (h)	<0.001	<0.001	<0.0005	<0.001	<0.001	<0.001		<0.001	0.0023	0.001	PQL
1,1,1-trichloroethane (h)	<0.001	<0.001	<0.005	< 0.001	<0.002	<0.002		<0.001	0.03	0.001	PQL
1,1,2-trichloroethane (h)	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001		< 0.001	0.0025	0.001	PQL
· · · · · · · · · · · · · · · · · · ·		-		-			-				•

Trichloroethylene (h)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	 <0.001	0.0025	0.001	PQL
Trichlorofluoromethane (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	 <0.001	0.00195*	0.001	PQL
1,2,3-trichloropropane (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	 <0.001	0.00195*	0.001	PQL
Vinyl acetate (h)	< 0.002	< 0.002	< 0.050	< 0.010	< 0.010	< 0.010	 <0.005	0.00975*	0.005	PQL
Vinyl chloride (h)	< 0.002	< 0.002	< 0.0004	< 0.001	< 0.001	< 0.001	 <0.001	0.0005	0.001	PQL
Xylenes, total (h)	< 0.002	< 0.002	< 0.005	< 0.003	< 0.003	< 0.003	 <0.001	0.31	0.001	PQL
1,2-Dibromoethane (EDB)	< 0.00001	< 0.00001	< 0.000025	< 0.00026	< 0.00001	< 0.00001	 <0.00014	0.000025	0.001	PQL
1,2-dibromo-3-chloropropane (h)	< 0.00002	< 0.00002	< 0.00010	< 0.001	< 0.00001	< 0.00001	 <0.00065	0.0001	0.005	PQL
Phenolics (a)	< 0.005	< 0.005	< 0.003	< 0.005	< 0.005		 <0.000484	0.0025	0.00001	PQL
Benzo(a)pyrene (h)	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00012	< 0.00012	 <0.00159	0.0001	0.000	PQL
Naphthalene (h)	< 0.001	< 0.001	0.061	< 0.00009	< 0.0005	< 0.0005	 <0.000466	0.015	0.000	0.061
PCBs (h)	< 0.00005	< 0.00005	< 0.00005	< 0.001	< 0.00005	< 0.00063	 <0.000144	0.00025	0.000	PQL

				SUBS	SECTION A						
					MW-5						
INORGANIC CONSTITUENT	9/17/1997	3/23/1998	3/15/2000	Sar 7/11/2001	nple Date 12/4/2001	4/19/2004	1/14/2010	3/19/2010	AML	PQL	Background
Antimony (Sb)(h)	< 0.01	< 0.01	< 0.003	< 0.006	<0.005	<0.005		<0.0123	0.003	0.020	PQL
Arsenic (h)	< 0.005	< 0.005	< 0.01	< 0.05	< 0.005	< 0.010		<0.00540	0.005	0.005	PQL
Barium (h)	0.019	0.016	< 0.02	1.086	< 0.025	0.0342		0.023	0.5	0.001	0.289
Beryllium (h)	< 0.005	< 0.001	<0.002	< 0.002	< 0.0005	< 0.001		< 0.002	0.002	0.002	PQL
Cadmium (h) Chromium (h)	<0.005 <0.005	<0.005 <0.005	<0.002 <0.01	<0.005 <0.005	<0.001 <0.005	<0.002 <0.005		<0.00209 <0.005	0.0025	0.001	PQL PQL
Cobalt (i)	<0.005	< 0.005	<0.01	< 0.005	<0.0125	<0.003		<0.005	0.025	0.001	PQL
Copper (a)	0.0086	0.0098	< 0.05	<0.5	< 0.005	< 0.005		< 0.005	0.5	0.002	0.0092
Lead (h)	< 0.005	< 0.005	< 0.01	< 0.00375	< 0.00375	< 0.006		<0.005	0.025	0.005	PQL
Nickel (h)	< 0.005	< 0.005	<0.75	< 0.1	< 0.010	< 0.005		<0.005	0.1	0.005	PQL
Selenium (h)	0.013	0.01	0.053	< 0.01	0.0545	0.0366		0.068	0.025	0.010	0.03
Silver (h) Thallium (h)	<0.005 <0.005	<0.005 <0.005	<0.01 <0.001	<0.05 <0.001	<0.005 0.00145	<0.005 <0.005		<0.005 <0.00674	0.025	0.005	PQL 0.00145
Vanadium (h)	< 0.005	< 0.005	< 0.001	< 0.001	0.00143	0.0355		0.031	0.001	0.020	0.00145
Zinc (a)	0.038	0.023	< 0.05	<1	< 0.0125	0.0109		< 0.005	5	0.005	0.0240
Aluminum (i)	< 0.05	< 0.05	<3.0	<1	<0.125	1.35		0.715	3.75	0.005	1.35
Boron (i)			0.5	0.594	0.619	0.592	0.54	0.569	0.5625	0.050	0.6
Chloride (a)	48	52	58	62.5	68	64.5		55.8	187.5	2.500	59
Cyanide (h)	< 0.02	< 0.02	<0.1	< 0.1	< 0.01	< 0.010		< 0.015	0.1	0.010	PQL
Fluoride (h) Iron (a)	<0.05 <0.005	0.16 0.029	0.4	0.51 0.378	0.659 <0.150	0.606		0.451J 0.794	0.8	0.980	0.467 0.4
Manganese (a)	<0.005	0.029	0.1	<0.05	<0.150	0.0732		0.794	0.75	0.010	0.4
Marganese (a) Mercury (h)	<0.0002	< 0.0002	< 0.001	< 0.002	<0.002	<0.0002		<0.0002	0.001	0.000	PQL
Molybdenum (i)	< 0.005	< 0.005	< 0.05	<0.5	0.0246	0.0232		0.023	0.75	0.010	0.02
Nitrate-N (h)	1.8	2.4	3.3	3.06	3.35	3.37		3.45	5	0.100	2.88
Sulfate (a)	470	400	450	555	500	440		436	450	25.000	469
Uranium (h)	< 0.01	< 0.01	<2.5	< 0.20	0.037±0.005	.0517±0.005		< 0.0242	0.015	0.050	PQL 1.CE
Radium, combined 226/228 (h) ORGANIC CONSTITUENT	2.1	1.2	<2.5	1.8±0.9	1.94±1.35	1.2±0.4		1.48	2.5		1.65
Acetone (h)	< 0.020	< 0.020	< 0.100	< 0.010	< 0.020	< 0.020		<0.01	0.0195*	0.010	PQL
Acrylonitrile (h)	< 0.020	< 0.020	< 0.20	< 0.010	< 0.020	< 0.020		< 0.001	0.00195*	0.001	PQL
Benzene (h)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		<0.001	0.0025	0.001	PQL
Bromochloromethane (h)	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Bromodichloromethane (h)	< 0.001	< 0.001	<0.005	< 0.001	< 0.001	< 0.001		< 0.001	0.00195*	0.001	PQL
Bromoform (h) Carbon disulfide (h)	<0.002 <0.001	<0.002 <0.001	<0.015 <0.10	<0.002 <0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.00195* 0.00195*	0.001	PQL PQL
Carbon tetrachloride (h)	<0.001	< 0.001	<0.10	< 0.001	<0.001	<0.001		<0.001	0.00193	0.001	PQL
Chlorobenzene (h)	< 0.001	< 0.001	< 0.002	< 0.001	< 0.001	< 0.001		< 0.001	0.05	0.001	PQL
Chloroethane (h)	< 0.002	< 0.002	< 0.010	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
Chloroform (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.05	0.001	PQL
Dibromochloromethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
1,2-dichlorobenzene (h)					< 0.001	< 0.001	< 0.001	< 0.001	0.3	0.001	PQL
1,4-dichlorobenzene (h) trans-1,4-dichloro-2-butene (h)	<0.001 <0.002	<0.001 <0.002	<0.015 <0.10	0.011 <0.001	<0.001	<0.001	<0.01	<0.001	0.0375	0.001	0.011 PQL
1,1-dichloroethane (h)	<0.002	< 0.002	<0.10	< 0.001	<0.001	<0.001	<0.01	<0.01	0.0193*	0.010	PQL
1,2-dichloroethane (h)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		< 0.001	0.0025	0.001	PQL
1,1-dichloroethylene (h)	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001		<0.001	0.0025	0.001	PQL
cis-1,2-Dichloroethylene			< 0.005		< 0.001	< 0.001		<0.001	0.035	0.001	PQL
trans-1,2-Dichloroethylene			<0.005		<0.001	<0.001		< 0.001	0.05	0.001	PQL
1,2-dichloropropane (h) cis-1,3-dichloropropene (h)	<0.001 <0.001	<0.001 <0.001	<0.0005 <0.020	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001		<0.001 <0.001	0.0025	0.001	PQL PQL
trans-1,3-dichloropropene (h)	<0.001	< 0.001	<0.020	< 0.001	<0.001	<0.001		<0.001	0.00195*	0.001	PQL
Ethylbenzene (h)	<0.001	< 0.001	<0.005	< 0.001	<0.001	< 0.001		<0.001	0.35	0.001	PQL
2-hexanone (h)	< 0.010	< 0.010	< 0.050	< 0.010	< 0.005	< 0.005		<0.005	0.00975*	0.005	PQL
Methyl bromide (h)	< 0.002	< 0.002	<0.020	< 0.001	< 0.001	< 0.001		<0.005	0.00975*	0.005	PQL
Methyl chloride (h)	<0.002	< 0.002	< 0.001	< 0.002	< 0.001	< 0.001		< 0.001	0.00195*	0.001	PQL
Methylene bromide (h)	<0.001	< 0.001	<0.020	< 0.001	<0.001	<0.001		< 0.001	0.00195*	0.001	PQL
Methylene chloride (h) Methyl ethyl ketone (h)	<0.002 <0.020	<0.002 <0.020	<0.001 <0.010	0.002 <0.010	<0.005 <0.020	<0.005 <0.020		<0.005 <0.005	0.0025	0.001	0.002 PQL
Methyl iodide (h)	<0.020	<0.020	<0.010	< 0.010	<0.020	<0.020		< 0.005	0.00975*	0.005	PQL
4-methyl-2-pentanone (h)	<0.002	<0.002	<0.015	< 0.010	<0.005	< 0.005		<0.005	0.00975*	0.005	PQL
Styrene (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001		<0.001	0.05	0.001	PQL
1,1,1,2-tetrachloroethane (h)	< 0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.00195*	0.001	PQL
1,1,2,2-tetrachloroethane (h)	<0.001	< 0.001	< 0.005	< 0.001	< 0.001	< 0.001		<0.001	0.005	0.001	PQL
Tetrachloroethylene (h)	<0.001	< 0.001	<0.0005	< 0.001	<0.001	<0.001		< 0.001	0.0025	0.001	PQL
Toluene (h)	< 0.001	<0.001 <0.001	<0.005	< 0.001	< 0.002	<0.002		<0.001 <0.001	0.375	0.001	PQL PQL
1,1,1-trichloroethane (h) 1,1,2-trichloroethane (h)	<0.001 <0.001	<0.001	<0.005 <0.002	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001		<0.001	0.003	0.001	PQL PQL
r,r,# aremeroeuane (II)	-0.001	-5.001	-0.002	-9.001	-0.001	-0.001			0.0025	0.001	

Trichloroethylene (h)	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	 <0.001	0.0025	0.001	PQL
Trichlorofluoromethane (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	 < 0.001	0.00195*	0.001	PQL
1,2,3-trichloropropane (h)	< 0.001	< 0.001	< 0.010	< 0.001	< 0.001	< 0.001	 <0.001	0.00195*	0.001	PQL
Vinyl acetate (h)	< 0.002	< 0.002	< 0.050	< 0.010	< 0.010	< 0.010	 <0.005	0.00975*	0.005	PQL
Vinyl chloride (h)	< 0.002	< 0.002	< 0.0004	< 0.001	< 0.001	< 0.001	 <0.001	0.0005	0.001	PQL
Xylenes, total (h)	< 0.002	< 0.002	< 0.005	< 0.003	< 0.003	< 0.003	 <0.001	0.31	0.001	PQL
1,2-Dibromoethane (EDB)	< 0.00001	< 0.00001	< 0.000025	< 0.00026	< 0.00001	< 0.00001	 <0.00014	0.000025	0.001	PQL
1,2-dibromo-3-chloropropane (h)	< 0.00002	< 0.00002	< 0.00010	< 0.001	< 0.00001	< 0.00001	 <0.00065	0.0001	0.005	PQL
Phenolics (a)	< 0.005	< 0.005	< 0.003	< 0.005	< 0.005		 <0.000484	0.0025	0.00001	PQL
Benzo(a)pyrene (h)	< 0.0001	< 0.0001	< 0.0001	< 0.00009	< 0.00012	< 0.00012	 <0.00159	0.0001	0.000	PQL
Naphthalene (h)	< 0.001	< 0.001	< 0.010	< 0.00009	< 0.0005	< 0.0005	 <0.000466	0.015	0.000	PQL
PCBs (h)	< 0.00005	< 0.00005	< 0.00005	< 0.001	< 0.00005	< 0.00055	 <0.000144	0.00025	0.000	PQL

					SUBSECTION C	N C					
					MW-2 Sample Date	ite					
9/17/1997		3/23/1998	3/15/2000	7/11/2001	12/4/2001	4/19/2004	1/14/2010	3/19/2010	AML	PQL	Background
1		1	1	1				7.71	6 to 9		n/a
Fotal Dissolved Solids (a 1700	00	1700	1670	1686	1560	1600		1590	750	10.000	1643
<0.01)1	<0.05	<0.5	<0.1	<0.1	<0.10		0.868J	1.95*	1.000	PQL
95		80	101	99.2	54.6	9.66		110	1.95*	1.000	88
87		06	<i>LL</i>	75.6	49	76.7	1	80.7	1.95*	1.000	76
		-	1	-				<2.5		2.503	PQL
5.2	5	5.8	9	7.05	7.2	6.49		9.97	1.95*	1.000	9
300	0	1900	275	1018	5630	277		289	1.95^{*}	1.000	1567
0.053	53	0.14	9.8	3.69	<0.5	<0.50		4.06J	19.5*	10.000	3.4
0.053	53	1.4	12.4	6.22	2.62	2.8	-	6.8	5	1.000	4.2
3		1.7	2	5	1.48	<1.0		3.16	1.95*	1.000	3
210	0	150	134	146	138	135	210	160	1.95^{*}	1.000	152
<10	0	<10	0	0		-	<1	<1.00	1.95*	1.000	0
2300	0	2600	2390	2036	-	2190		1790			2303

Sample Date CONSTITUENT 3/15/2000 7/11/2001 12/4/2001 4/19/2004 3/19/2010 AML PQL Background Back				SU	SUBSECTION C MW-3	()			
3/15/20007/11/2001 $1/1/2001$ $1/1/2001$ $1/1/2004$ $3/19/2016$ AML PQL 7.697.67.98.026 to 97.607.697.6010271170103075010.000 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.5 <0.1 <0.1 <0.1 <0.1 <0.1 <0.0 <0.5 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.5 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.7 <0.1 <0.1 <0.1 <0.1 <0.0 <0.0 <0.7 <0.1 <0.1 <0.1 <0.0 <0.0 <0.0 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.8 <0.7 <0.7 <0.7 <0.7 <0.7 <0.8 <0.6 <0.7 <0.7 <0.7 <0.7 <0.8 <0.7 <0.7 <0.7 <0.7 <0.7 <0.8 <0.7 <0.7 <0.7 <0.7 <0.7 <0.8 <0.7 <0.7 <0.7 <0.7 <0.7 <0.8 <0.7 <0.7 <0.7 <0.7 <0.7 <0.8 <0.7 <0.7 <0.7 <0.7 $<$				S	ample Date				
7.69 7.6 $$ 7.9 8.02 $6 to 9$ 7.6 $ 1080$ 1027 1120 1170 1030 750 10.000 $ 60.5$ <0.1 <0.1 <0.1 0.6444 $1.95*$ 1.000 $ 59$ 34.8 61.1 64.1 64.8 $1.95*$ 1.000 $ 59$ 34.8 61.1 64.1 64.8 $1.95*$ 1.000 $ 48$ 28.7 57.1 54.6 55.7 $1.95*$ 1.000 $ 48$ 28.7 57.1 54.6 55.7 $1.95*$ 1.000 $ 48$ 28.7 57.1 54.6 55.7 $1.95*$ 1.000 $ 48$ 28.7 7.13 6.28 8.06 $1.95*$ 1.000 $ 5$ 4.22 7.13 6.28 8.06 $1.95*$ 1.000 $ 189$ 382 220 210 188 $1.95*$ 1.000 $ 2.5$ 4.03 <0.5 0.516 3.644 $1.9.5*$ 1.000 $ 2.5$ 4.03 <0.5 0.516 3.644 $1.9.5*$ 1.000 $ 2.5$ 1.20 1.20 1.20 $1.92*$ 1.000 $ 184$ 1.22 1.20 1.20 $1.92*$ 1.000 $ 2.5$ 1.20 1.20 1.20 $1.92*$ 1.000 $ -$ </td <td>CONSTITUENT</td> <td>3/15/2000</td> <td>7/11/2001</td> <td>12/4/2001</td> <td>4/19/2004</td> <td>3/19/2010</td> <td>AML</td> <td>PQL</td> <td>Background</td>	CONSTITUENT	3/15/2000	7/11/2001	12/4/2001	4/19/2004	3/19/2010	AML	PQL	Background
1080 1027 1120 1170 1030 750 10.000 10.000 <0.5 <0.1 <0.1 <0.10 0.644 1.95 1.000 1.000 59 34.8 61.1 <0.10 0.644 1.95 1.000 1.000 48 28.7 57.1 54.6 55.7 1.95 1.000 1.000 48 28.7 57.1 54.6 55.7 1.95 1.000 1.000 48 28.7 57.1 54.6 55.7 1.95 1.000 1.000 48 28.7 57.1 54.6 55.7 1.95 1.000 1.000 5 4.22 7.13 6.28 8.06 1.95 1.000 1.000 189 382 220 210 188 1.95 1.000 1.000 2.5 4.03 <0.5 0.516 $3.64J$ 19.5 1.000 1.000 2.8 1.02 3.71 4.23 7.58 5 1.000 1.000 2.9 120 <100 2.03 1.95 1.000 1.000 142 162 132 130 130 1.95 1.000 1.000 100 0 $$ $ 1.000$ 1.000 1.000 1142 162 1.00 1.00 1.95 1.000 1.000 1.000 100 0 $ 1.$	pH (a)	7.69	7.6	-	7.9	8.02	6 to 9		L.T
< 0.5 < 0.1 < 0.1 < 0.1 < 0.1 < 0.14 $1.95*$ 1.000 < 0.000 59 34.8 61.1 64.1 64.8 $1.95*$ 1.000 < 0.000 48 28.7 57.1 54.6 55.7 $1.95*$ 1.000 < 0.000 48 28.7 57.1 54.6 55.7 $1.95*$ 1.000 < 0.000 5 4.22 7.13 6.28 8.06 $1.95*$ 1.000 < 0.000 189 382 2200 210 188 $1.95*$ 1.000 < 0.000 2.5 4.03 <0.5 0.516 $3.64J$ $19.5*$ 1.000 < 0.000 2.6 1.03 0.516 $3.64J$ $19.5*$ 1.000 < 0.000 2.7 1.2 <1.0 2.03 $1.95*$ 1.000 < 0.000 142 162 132 130 $1.95*$ 1.000 < 0.000 162 1.32 1.000 $1.95*$ 1.000 < 0.000 1545 1471 $$ $$ $$ $$ $$ 1545 1471 $$ 1.670 $1.95*$ 1.000 < 0.000	Total Dissolved So	1080	1027	1120	1170	1030	750	10.000	1099
59 34.8 61.1 64.1 64.8 $1.95*$ 1.000 100 48 28.7 57.1 54.6 55.7 $1.95*$ 1.000 100 48 28.7 57.1 54.6 55.7 $1.95*$ 1.000 100 5 4.22 7.13 6.28 8.06 $1.95*$ 1.000 100 5 4.22 7.13 6.28 8.06 $1.95*$ 1.000 100 189 382 220 210 188 $1.95*$ 1.000 100 2.5 4.03 <0.5 0.516 $3.64J$ $19.5*$ 10.000 100 2.5 4.03 <0.5 0.516 $3.64J$ $19.5*$ 10.000 100 2.5 1.2 1.2 <1.0 7.58 5 1.000 100 142 162 132 130 130 $1.95*$ 1.000 100 162 132 130 130 $1.95*$ 1.000 100 1545 1471 $$ $$ $$ $$ $1.95*$ 1.000	Ammonia-N	<0.5	<0.1	<0.1	<0.10	0.644J	1.95*	1.000	PQL
48 28.7 57.1 54.6 55.7 $1.95*$ 1.000 100 5 4.22 7.13 6.28 8.06 $1.95*$ 1.000 2.503 189 382 220 210 188 $1.95*$ 1.000 100 189 382 220 210 188 $1.95*$ 1.000 100 2.5 4.03 <0.516 $3.64J$ $19.5*$ 10.000 100 2.6 7.56 3.71 4.23 7.58 5 10.000 2 12 <1.0 <1.02 $1.95*$ 1.000 142 162 132 130 130 $1.95*$ 1.000 0 0 $$ $$ -1.00 $1.95*$ 1.000 1545 1471 $$ 1670 $1.95*$ 1.000	Calcium	59	34.8	61.1	64.1	64.8	1.95^{*}	1.000	55
5 4.22 7.13 6.28 8.06 $1.95*$ 1.000 189 382 220 210 188 $1.95*$ 1.000 189 382 220 210 188 $1.95*$ 1.000 2.5 4.03 <0.5 0.516 $3.64J$ $19.5*$ 10.000 2.5 4.03 <0.5 0.516 $3.64J$ $19.5*$ 10.000 2.5 1.03 7.56 3.71 4.23 7.58 5 1.000 2 12 <10 <10 2.03 $1.95*$ 1.000 142 162 132 130 130 $1.95*$ 1.000 0 0 $$ $$ -1670 $1.95*$ 1.000 1545 1471 $$ 1670 1.956 1.000	Magnesium	48	28.7	57.1	54.6	55.7	1.95*	1.000	47
5 4.22 7.13 6.28 8.06 $1.95*$ 1.000 189 382 220 210 188 $1.95*$ 1.000 2.5 4.03 <0.5 0.516 3.64 $19.5*$ 10.000 6.8 7.56 3.71 4.23 7.58 5 1.000 2 12 <1.0 <1.02 <1.000 <1.000 2 12 <1.0 <1.02 <1.000 <1.000 142 122 <1.00 <1.00 $1.95*$ 1.000 142 162 132 130 130 $1.95*$ 1.000 0 0 $$ $$ <1.00 $1.95*$ 1.000 1545 1471 $$ 1670 1.560 $1.95*$ 1.000	Phosphate					<2.5		2.503	PQL
189382220210188 $1.95*$ 1.000 2.5 4.03 <0.5 0.516 3.64 $19.5*$ 10.000 2.6 7.56 3.71 4.23 7.58 5 10.000 6.8 7.56 3.71 4.23 7.58 5 10.000 2 12 <1.0 <1.0 <1.0 $1.95*$ 1.000 2 12 <1.0 <1.0 $1.95*$ 1.000 142 162 132 130 130 $1.95*$ 1.000 0 0 $$ $$ -1.00 $1.95*$ 1.000 1545 1471 $$ 1670 1560 $1.95*$ 1.000	Potassium	5	4.22	7.13	6.28	8.06	1.95*	1.000	9
2.5 4.03 <0.5 0.516 3.64 $19.5*$ 10.000 6.8 7.56 3.71 4.23 7.58 5 1.000 2 12 <1.0 <1.0 <1.00 $1.95*$ 1.000 142 162 132 130 130 $1.95*$ 1.000 0 0 $$ $$ <-1.00 $1.95*$ 1.000 1545 1471 $$ 1670 1560 $1.95*$ 1.000	Sodium	189	382	220	210	188	1.95*	1.000	250
6.8 7.56 3.71 4.23 7.58 5 1.000 2 12 <1.0 <1.0 <1.0 <1.00 142 162 132 130 $1.95*$ 1.000 0 0 $$ $$ <1.00 $1.95*$ 1.000 1545 1471 $$ 1670 1.560 $1.95*$ 1.000	Kjeldahl-N	2.5	4.03	<0.5	0.516	3.64J	19.5*	10.000	2.3
2 12 <1.0 <1.0 2.03 1.95* 1.000 142 162 132 130 130 136 1.95* 1.000 0 0 <1.000	Total Nitrogen (h)	6.8	7.56	3.71	4.23	7.58	5	1.000	5.6
142 162 132 130 130 195* 1.000 0 0 <1.00	Total Organic Car	2	12	<1.0	<1.0	2.03	1.95*	1.000	۲
0 0 <1.00 1.95* 1.000 1545 1471 1670 1560 1 1	Bicarbonate	142	162	132	130	130	1.95*	1.000	142
1545 1471 1670 1560	Carbonate	0	0	-	-	<1.00	1.95^{*}	1.000	0
	Specific Conducta	1545	1471	1	1670	1560			1562

				י אר אר	SUBSECTION C MW-4 Sample Date	υ					
CONSTITUENT	9/17/1997	3/23/1998	3/15/2000	7/11/2001	12/4/2001	4/19/2004	1/14/2010	3/19/2010	AML	PQL	Background
pH (a)	6.7	8.4	8.07	7.8	-	6°L	-	8.01	6 to 9		8.0
Total Dissolved Solids (a)	026	880	875	906	802	898	-	1020	750	10.000	884
Ammonia-N	0.013	<0.05	<0.5	<0.1	<0.1	<0.10	-	0.616J	1.95*	1.000	0.013
Calcium	50	42	50	48.4	44.4	48.6	-	63.4	1.95*	1.000	47
Magnesium	41	37	45	43.1	44.5	43.3	-	54.9	1.95*	1.000	42
Phosphate							-	<2.5		2.503	PQL
Potassium	6.5	6.1	5	5.95	5.79	5.46	-	7.85	1.95*	1.000	9
Sodium	190	1200	165	267	166	157	-	167	1.95*	1.000	358
Kjeldahl-N	0.067	0.22	<1.0	4.19	0.557	0.63	-	5.18J	19.5*	10.000	1.13
Total Nitrogen (h)	0.08	2.3	3.7	7.56	4.117	4.23	-	9.27	5	1.000	3.7
Total Organic Carbon	<1	1.9	2	9	<1.0	<1.0	-	3.35	1.95*	1.000	3
Bicarbonate	210	130	138	178	152	147	133	140	1.95*	1.000	159
Carbonate	<10	<10	0	0	-	1	<1	<1.00	1.95*	1.000	0
Specific Conductance	1400	1300	1292	1247	ł	1290	ł	1470			1306

					SUBSECTION C MW-5	TION C -5					
					Sample Date	Date					
CONSTITUENT	9/17/1997	3/23/1998	3/15/2000	7/11/2001	12/4/2001	4/19/2004	1/14/2010	3/19/2010	AML	PQL	Background
pH (a)	7.8	8.5	7.93	7.93	-	7.8	-	7.92	6 to 9		8.0
Total Dissolved Se	066	096	296	596	6£6	1020	1	898	750	10.000	973
Ammonia-N	<0.01	<0.05	<0.5	<0.1	<0.1	<0.10	-	0.616J	1.95*	1.000	PQL
Calcium	09	51	59	61.5	57.7	63.2	-	9.89	1.95*	1.000	60
Magnesium	38	46	46	43.8	45.7	45.3	1	47.6	1.95*	1.000	44
Phosphate							1	<2.5		2.503	PQL
Potassium	5	4.3	5	5.83	5.68	5.42	-	6.71	1.95*	1.000	5
Sodium	170	1200	179	287	176	193	-	162	1.95*	1.000	368
Kjeldahl-N	<0.05	0.13	<1.0	5.19	1.52	0.616	-	3.50J	19.5*	10.000	1.86
Total Nitrogen (h)	<0.05	1.4	3.3	8.25	4.87	3.99	-	6.95	5	1.000	4.4
Total Organic Car	2	2.2	2	8	<1.0	<1.0	-	2.42	1.95*	1.000	4
Bicarbonate	210	170	172	232	171	164	170	200	1.95*	1.000	187
Carbonate	<10	<10	0	0	-	-	<1	<1.00	1.95*	1.000	0
Specific Conducta	1300	1200	1385	1324	-	1380	1	1380			1318