Facility:	B-6 500 Leak	Date:	9/9/2019
-----------	--------------	-------	----------

Enter data in shaded fields to calculate gas volumes released due to leak and/or blowdown of system.

Hours of leak	0.5
Diameter of hole (inches)	0.0625
Line Pressure at Leak	300
Volume of Gas Leaked	0.61

NOTE: Enter Components on the Gas Leak or Gas Blowdown sheet as needed.

Hourly Basis

Rectangle or Line Crack

0.61	MSCF

Length, in.	
Width, in,	
Eqv. Diameter, in.	#DIV/0!

Calculations:

Volume of Gas Leaked (MSCF) = Diameter*Diameter*(Upstream Gauge Pressure + Atmospheric Pressure)*Hours of Leak

^{**}Reference: Pipeline Rules of Thumb Handbook, 3rd Edition, McAllister. Page 260. Assuming Standard Temperature and Pressure (14.7 psi and 60 F)

Volume of Gas Blown Down	1809
Diameter of Pipe (inches)	14
Initial line pressure	437
Footage of Pipe blowndown	47520

MSCF

Calculations:

Volume of Gas Blown Down (MSCF) = Volume at pipeline conditions (ft3)*(Gauge Pressure (psig)+Atmospheric Pressure 13.7 psi)*Standard Temperature (60F) /(1000 scf/mscf)*Standard Pressure (14.7psi)*Temperature(F)*Z Factor

Volume at pipeline conditions (scf) = Diameter/12 (ft)*Diameter/12 (ft)*PI/4*Length of pipe (ft)

^{**}Reference: Gas Pipeline Hydraulics, Menson (2005) Pages 132-134. Assuming the Ideal Gas Law and Tpipeline = Tatm.

Total Gas Loss 1809 MSCF 1.809 MMSCF

Cause/ Reason: Unknown

Corrective Action: Isolated and blew down

Name: David Sedillo Cell Phone: 575-200-7981