

August 6, 2018

Mr. Mike Bratcher New Mexico Oil Conservation Division 811 South First Street Artesia, New Mexico 88210

RE: Closure Request JRU #36 Remediation Permit Number 2RP-2981 and 2RP-3617 Eddy County, New Mexico

Dear Mr. Bratcher:

LT Environmental, Inc. (LTE), on behalf of XTO Energy, Inc. (XTO), is pleased to present the following letter report detailing the soil sampling activities at the JRU #36 well pad (Site) in Unit Letter G, Section 1, Township 23 South, Range 30 East, in Eddy County, New Mexico (Figure 1). The purpose of the investigation was to assess impacts to soil after two separate events caused the release of crude oil in the processing equipment containment area.

On April 23, 2015, an air eliminator failure on the circulating pump broke off at the valve due to vibration of the pump, causing a release of approximately 20 barrels (bbls) of crude oil. The spill impacted approximately 2,000 square feet of the containment area. Free-standing liquid was removed with a vacuum truck; approximately 11 bbls of crude oil was recovered. The former operator reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 on April 29, 2015, and was assigned Remediation Permit Number (RP) 2RP-2981 (Attachment 1).

On February 1, 2016, a discharge bleed valve was left open on the circulating pump. This caused a release of approximately 17 barrels (bbls) of crude oil. The spill impacted approximately 1,575 square feet of the well pad within the process equipment area. Free-standing liquid was removed with a vacuum truck; approximately 5 bbls of crude oil was recovered. The former operator reported the release to the NMOCD on a Release Notification and Corrective Action Form C-141 on March 15, 2016, and was assigned 2RP-3617 (Attachment 1).

Although the releases occurred while the facility was operated by the previous operator, XTO is the current operator and is committed to addressing any releases that remain unresolved. The sampling was conducted to assess current site conditions. Based on the results of the confirmation sampling events conducted after impacted soil was removed, XTO is requesting no further action for these release events.

BACKGROUND

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest water well data and known aquifer properties. The nearest permitted water well is C 03139, located approximately 0.44 miles southeast of the Site, with a depth to groundwater of 354 feet bgs and a total depth of 425 feet bgs. The Site is greater than 1,000 feet from a water source and greater than 200 feet from a private domestic water source. The closest surface water to the Site is an arroyo located approximately 0.74 miles southwest of the Site. Based on these criteria, the NMOCD site ranking for remediation action levels is 0, and the following remediation action levels apply: 10 milligrams per kilogram (mg/kg) benzene; 50 mg/kg benzene, toluene, ethylbenzene, and total xylenes (BTEX); and 5,000 mg/kg total petroleum hydrocarbons (TPH). Based on standard practice in this region, LTE proposes a site-specific chloride action level of 600 mg/kg or within 10 percent (%) of the background concentrations.

SOIL SAMPLING

On January 4, 2018, an LTE scientist collected nine soil samples (SS-1 through SS-9) from a depth of 0.5 feet bgs to determine the lateral extent of soil impact. The soil sample locations, depicted on Figure 2, were based on information provided on both the initial Form C-141s and field observations. Both releases were a result of the circulating pump in the processing equipment area. The latitude and longitude on the Form C-141 for 2RP-3617 is incorrect and was corrected to be 32.336152, -103.831835 on the final Form C-141. Samples were screened for volatile aromatic hydrocarbons using a photo-ionization detector (PID) equipped with a 10.6 electron volt lamp in accordance with the NMOCD Guidelines for Remediation of Leaks, Spills and Releases, August 13, 1993. Hydrocarbon odor or soil staining was not observed at the Site. The soil samples were placed directly into pre-cleaned glass jars, labeled with location, date, time, sampler, and method of analysis, and immediately placed on ice. The samples were delivered at 4 degrees Celsius (°C) under strict chain-of-custody procedures to ESC Lab Sciences in Mount Juliet, Tennessee, for laboratory analysis of BTEX by United States Environmental Protection Agency (EPA) Method 8021B, total petroleum hydrocarbons (TPH)-gasoline range organics (GRO), TPHdiesel range organics (DRO), and TPH-oil range organics (ORO) by EPA Method SW8015 Modified, and chloride by EPA Method 300.

Laboratory analytical results indicated two soil samples (SS-1 and SS-5) exceeded the NMOCD site-specific remediation action level for TPH. No soil samples exceeded the remediation action level for chloride. Analytical results are depicted on Figure 2 and summarized in Table 1, and the laboratory analytical reports are attached.

EXCAVATION ACTIVITIES

Based on results of the initial sampling, XTO excavated in the areas around surface samples SS-1 and SS-5 on April 18 through May 25, 2018. An LTE scientist field screened soil using a PID and

chloride test strips to direct the hydro-vacuum and hand digging to delineate and remove impacted soil laterally and vertically in two excavations. LTE collected eleven confirmation soil samples (SS-2, SS-3, SS-4, SS-6 through SS-11, SS1A, and SS5A). Samples collected on April 19 and May 25, 2018, were collected and handled as previously described and submitted to Xenco Laboratories in Midland, Texas.

The western excavation was approximately 72 square feet with an average depth of three feet. The eastern excavation was approximately 190 square feet with a depth ranging from 1 foot to 2 feet. The horizontal extents of these two excavations are illustrated on Figure 2. Approximately 17 cubic yards of impacted soil were removed via hand digging and hydro excavation. Impacted soil from the western and the eastern excavations were transported and properly disposed of at the Lea Land and R360, in Eunice, New Mexico, and Hobbs, New Mexico.

ANALYTICAL RESULTS

Laboratory analytical results for the soil samples indicated BTEX and chloride concentrations were compliant with NMOCD remediation action levels. Laboratory analytical results indicated concentrations of TPH were compliant with the NMOCD remediation action level of 5,000 mg/kg in all soil samples except SS-1 and SS-5. The areas around sample locations SS-1 and SS-5 were excavated and subsequent soil samples SS1A and SS5A indicated TPH concentrations of 189 mg/kg and 24.2 mg/kg, respectively. Laboratory analytical results are presented on Figure 2 and summarized in Table 1, and the complete laboratory analytical report is included as Attachment 2.

CONCLUSIONS

Laboratory analytical results for eleven confirmation soil samples collected within the former release footprints indicate impact to soil, as defined by concentrations of BTEX, TPH, and chloride, do not exceed NMOCD site-specific remediation action levels. Initial response efforts, natural degradation, and remediation work has mitigated impacts at this Site, and XTO therefore respectfully requests no further action for these releases.

Bratcher, M. Page 4

If you have any questions or comments, please do not hesitate to contact Adrian Baker at (432) 887-1255 or <u>abaker@ltenv.com</u>.

Sincerely,

LT ENVIRONMENTAL, INC.

Aduan Baker

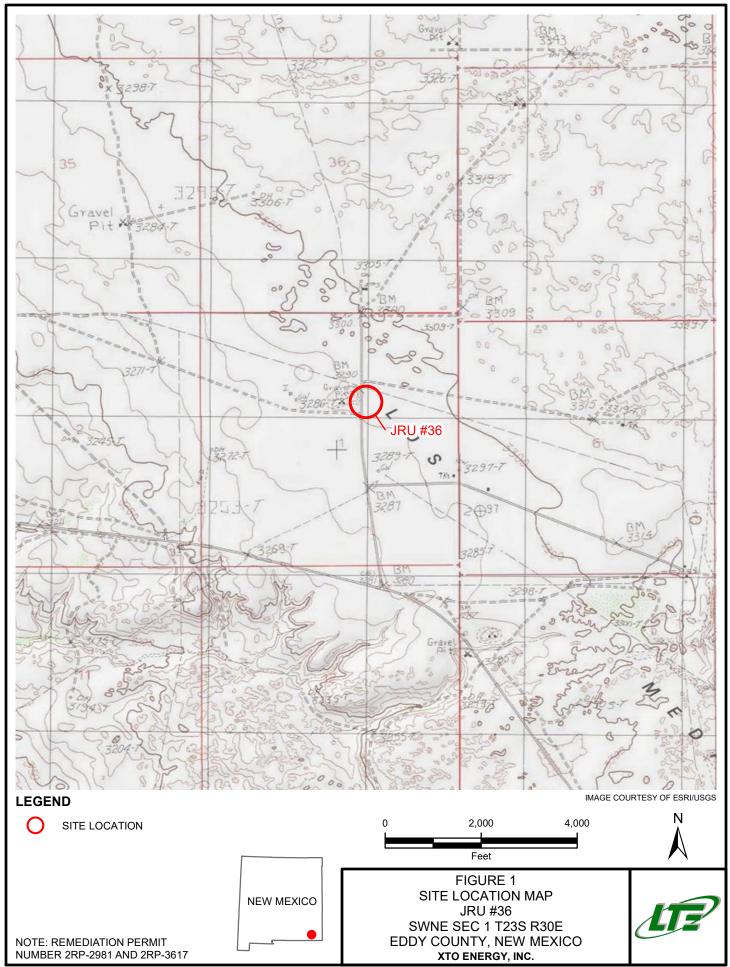
Adrian Baker Project Geologist

Ashley L. ager

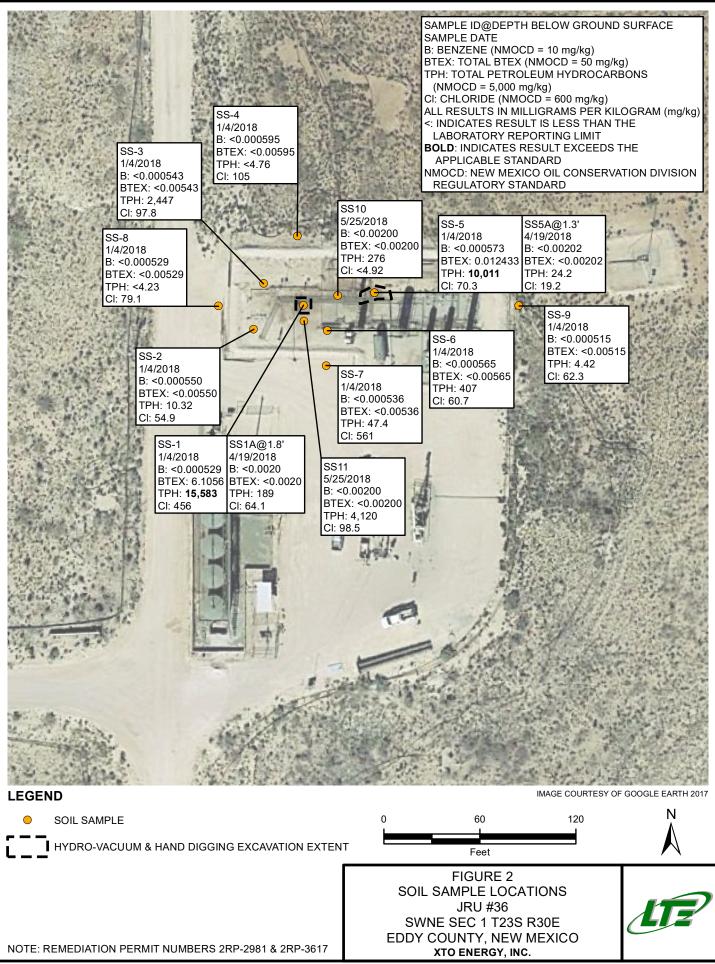
Ashley L. Ager, P.G. Senior Geologist

cc: Kyle Littrell, XTO Maria Pruett, NMOCD Jim Amos, BLM Shelly Tucker, BLM

Attachments:


- Figure 1 Site Location Map
- Figure 2 Soil Sample Locations
- Table 1Soil Analytical Results
- Attachment 1 Initial/Final NMOCD Form C-141 (2RP-2981 and 2RP-3617)

Attachment 2 Laboratory Analytical Reports



FIGURES

P:\XTO Energy\GIS\MXD\012918001_JRU 36\012918001_FIG01_SL_2018.mxd

TABLE

TABLE 1 SOIL ANALYTICAL RESULTS JRU #36 REMEDIATION PERMIT NUMBER 2RP-2981 and 2RP-3617 EDDY COUNTY, NEW MEXICO XTO ENERGY, INC.

Sample Name	Sample Depth (feet bgs)	Sample Date	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	C6-C10 Gasoline Range Organics (mg/kg)	C10-C28 Diesel Range Organics (mg/kg)	C28-C40 Motor Oil Range Organics (mg/kg)	TPH (mg/kg)	Chloride (mg/kg)
SS-1	0.5	1/4/2018	< 0.000529	< 0.00529	0.0456	6.06	6.1056	183	12,300	3,100	15,583	456
SS1A	1.8	4/19/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	189	<15.0	189	64.1
SS-2	0.5	1/4/2018	< 0.000550	< 0.00550	< 0.000550	< 0.00165	< 0.00550	< 0.110	5.41	4.91	10.32	54.9
SS-3	0.5	1/4/2018	< 0.000543	< 0.00543	< 0.000543	< 0.00163	< 0.00543	< 0.109	1,730	717	2,447	97.8
SS-4	0.5	1/4/2018	< 0.000595	< 0.00595	< 0.000595	< 0.00178	< 0.00595	< 0.119	<4.76	<4.76	<4.76	105
SS-5	0.5	1/4/2018	< 0.000573	< 0.00573	0.000733 B	0.0117	0.012433	1.58	7,180	2,830	10,011	70.3
SS5A	1.3	4/19/2018	< 0.00202	< 0.00202	< 0.00202	< 0.00202	< 0.00202	<15.0	24.2	<15.0	24.2	19.2
SS-6	0.5	1/4/2018	< 0.000565	< 0.00565	< 0.000565	< 0.00170	< 0.00565	< 0.113	281	126	407	60.7
SS-7	0.5	1/4/2018	< 0.000536	<0.00536 J3	<0.000536 J3	<0.00161 J3, J6	< 0.00536	<0.107 J3	29.5	17.9	47.4	561
SS-8	0.5	1/4/2018	< 0.000529	< 0.00529	< 0.000529	< 0.00159	< 0.00529	< 0.106	<4.23	<4.23	<4.23	79.1
SS-9	0.5	1/4/2018	< 0.000515	< 0.00515	< 0.000515	< 0.00155	< 0.00515	< 0.103	<4.12	4.42	4.42	62.3
SS10	0.5	5/25/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	<15.0	255	21.3	276	<4.92
SS11	0.5	5/25/2018	< 0.00200	< 0.00200	< 0.00200	< 0.00200	< 0.00200	72.5	4,000	44.5	4,120	98.5
NMOCD I	Remediation Acti	on Levels	10	NE	NE	NE	50	NE	NE	NE	5,000	600

Notes:

bgs - below ground surface

BTEX - benzene, toluene, ethylbenzene, and total xylenes

mg/kg - milligrams per kilogram

NE - Not established

NMOCD - New Mexico Oil Conservation Division

TPH - total petroleum hydrocarbons

< - indicates result is less than the stated laboratory method detection limit

Bold indicates result exceeds the applicable regulatory standard.

B - Same analyte is found in the associated blank.

 ${\sf J3}$ - The associated batch QC was outside the established quality control range for precision.

J6 - The sample matrix interfered with the ability to make any accurate determination; spike value is low.

NM OIL CONSERVATION ARTESIA DISTRICT District I State of New Mexico Form C-141 1625 N. French Dr., Hobbs, NM 88240 Energy Minerals and Natural Resources APR 2 9 2015 District II Revised August 8, 2011 811 S. First St., Artesia, NM 88210 Submit 1 Copy to appropriate District Office in District III Oil Conservation Division 1000 Rio Brazos Road, Aztec, NM 87410 accordance with 19.15.29 NMAC. 1220 South St. Francis Dr. RECEIVED District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 Santa Fe, NM 87505 **Release Notification and Corrective Action** NAB 524371081 **OPERATOR** Final Report Initial Report Name of Company: BOPCO, L.P. 200737 Contact: Bradley Blevins Address: 522 W. Mermod, Suite 704 Carlsbad, N.M. 88220 Telephone No. 575-887-7329 Facility Name: JRU #36 Facility Type: Exploration and Production Surface Owner: Federal API No. 30-015-27686 Mineral Owner: Federal LOCATION OF RELEASE Range Feet from the Unit Letter Section Township North/South Line East/West Line County Feet from the 23S30E 1980 North G 1 1860 East Eddy Latitude: N 32.336152° Longitude: W 103.831835° NATURE OF RELEASE Type of Release: oil Volume of Release: 20 bbls Volume Recovered: 11 bbls Source of Release: An air eliminator failure on the circulating pump. Date and Hour of Occurrence: Date and Hour of Discovery: The air eliminator broke off at the valve due to vibration of the pump. 4/23/15 @ 8:24 am 4/23/15 @ 8:24 am Was Immediate Notice Given? If YES, To Whom? Yes No Not Required Mike Bratcher, OCD; Jim Amos, BLM via email By Whom? Bradley Blevins Date and Hour: 4/24/15 @ 2:55 pm Was a Watercourse Reached? If YES, Volume Impacting the Watercourse: Yes X No Not Applicable If a Watercourse was Impacted, Describe Fully.* Not Applicable · Carlos and a second second Describe Cause of Problem and Remedial Action Taken.* An air eliminator failure on the circulating pump. The air eliminator broke off at the valve due to vibration of the pump. Describe Area Affected and Cleanup Action Taken.* The release impacted approximately 2,000 sq. ft. of containment area. Vacuum truck recovered 11 bbls of fluid. The area will be remediated in accordance with the NMOCD and BLM remediation guidelines. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. **OIL CONSERVATION DIVISION** Signature: Approved by Environmental Specialist: Printed Name: Bradley Blevins Title: Assistant Remediation Foreman Approval Date: **Expiration Date:** E-mail Address: bblevins@basspet.com Conditions of Approval: Attached Remediation per O.C.D. Rules & Guidelines Date: 4-29-15 Phone: 432-214-3704 SUBMIT REMEDIATION PROPOSAL NO * Attach Additional Sheets If Necessary ZRP-298 LATER THAN:

.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

			Dolor	ase Notifica		and \mathbf{Cor}		tion				
			Neica					TION		D	57	D' 1 D
Name of Co	mnany X	CO Energy				OPERAT Contact Kyl		2	Initial	Report	\bowtie	Final Report
		ne Street Car	lsbad, N.	M. 88220			No. 432-221-73	31	_			
Facility Na			isotia, r ti			Facility Type Exploration and Production						
Surface Ow	mer Føders	1		Mineral C	8					. 30-015-	77686	
Surface Ow			_						AIINO	. 30-013-	27080	
Unit Letter	Section	Township	Damaa	LOCA Feet from the		OF REL		East	West	Country		
G	1	23S	Range 30E	1980		North	Feet from the 1860	East/ Line	west	County Eddy		
						=			East			
		Latitude	N 3	2.336152	Lo	ngitude	103.831835		NAE	083		
				NATI	IRE (DF RELE	ASE					
Type of Rele	ase Crude	Dil					Release 20 bbls		Volume F	Recovered	11 bbl	5
				the circulating pu ibration of the pu		Date and H 4/23/15 8:2	our of Occurrenc	e	Date and 4/23/15 8	Hour of D :24 A.M	iscover	у
Was Immedia		Given?				If YES, To	Whom?					
D 111 0 1			Yes	No 🗌 Not Re	equired		her, OCD; Jim A		LM via ema	ail		
By Whom? E Was a Water							our: 4/24/15 @ 2 lume Impacting t		010011100			
was a water	course read		Yes 🛛	No		N/A	iune impacing i	ine wau	ercourse.			
If a Watercou	irse was Im	pacted, Descri	be Fully.*	N/A								
		em and Remed				- 66 - 4 41 I		F 41-				
All all ellinn	ator ranure	on the circula	ung pump	. The air eliminat	OF DFOKE	e off at the val	ve due to vibratio	on or un	e pump.			
		and Cleanup A proximately 2		en.* re feet of containr	nent are	a. Vacuum tru	ick recovered 11	bbls of	fluid.			
Retween Ion	1am/ 1 2019	and May 25	2018 VT	O collected soil s	amplas	and avagyated	impacted soil at	the Site	LTE colle	oted alava	n confi	rmation soil
				sing equipment ar								
confirmation	n soil samp	oles indicate	impact to	soil, as defined	l by coi	ncentrations	of BTEX, TPH	, and c	hloride, do	not exce	ed N№	10CD site-
			nitial resp	oonse efforts, na	itural d	egradation, a	and excavation	have re	emediated	this Site,	and X	ΓO requests
no further a	ction for th	is release.										
I hereby certi	fy that the in	nformation giv	ven above	is true and comp	lete to th	e best of my	knowledge and u	ndersta	nd that purs	uant to NN	AOCD	rules and
				d/or file certain re								
				e of a C-141 repo investigate and re								
				tance of a C-141								
federal, state,	or local lav	vs and/or regu	lations.	/							_	
	1	24	11	2			OIL CONS	SERV	ATION	DIVISI	ON	
Signature	Æ	futte	A									
Printed Name	: Kyle Littr	ell				Approved by	Environmental S	pecialis	t: Brad	lford	Bu	llings
Title: SH&E	Coordinator	r				Approval Date	_{e:} 11/18/201	9	Expiration	Date:		Ū.
E-mail Addre	ss: Kyle Li	ttrell@xtoene	rgy.com			Conditions of	Approval:			Attache	a 🗆	
Date:	8/01/2	2018	Ph	one: 432-221-73	31					Allacite	ч Ц	

* Attach Additional Sheets If Necessary

NM OIL CONSERVATION

ARTESIA DISTRICT

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources

> Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505

MAR **1 5** 2016

Form C-141 Revised August 8, 2011

.

Submit 1 Copy to appropriate District Office in **RECEIVEd** cordance with 19.15.29 NMAC.

						, NM 8/3			<u> </u>			
• -			Rele	ease Notific	cation	and Co	rrective A	ction				
	1081398			A		OPERA	OR		🛛 Initia	al Report		Final Report
	ompany: BOPC			240731		Contact: Am						
	22 W. Mermod. me: James Ra			bad, N.M. 8822			lo. 575-887-73: e: Exploration		duction			·
			1#050									
Surface Ow	vner: Federal		.	Mineral (Owner:	Federal	· · ·		API No	. 30-015-2	27686	
				LOCA	ATIO	N OF REI	LEASE					
Unit Letter		wnship	Range	Feet from the	1	South Line	Feet from the		est Line	County		
G	1 23	8	30E	1980	North		1860	East		Eddy		
			La	titude_ <u>32.335</u>	<u>850°</u>	Longitude	_ <u>-103.861675</u>	0				
				NAJ	URE	OF RELI	EASE					
Type of Rela	ease	Crude	Oil	· · · · · · · · · · · · · · · · · · ·		Volume of	Release 17 bbl	s	Volume I	Recovered	5 bbls	······································
Source of Re	elease V	Valve on (Circulating	Pump		Date and H	our of Occurren	ce l	Date and	Hour of Dis	coverv	,
	· · · · · · · · · · · · · · · · · · ·					2/1/2016 1	ime Unknown		2/1/2016			
Was Immed	iate Notice Giver] No 🖾 Not R	equired	If YES, To N/A	Whom?					
By Whom?	N/A				equireu	Date and H	our NI/A					
Was a Water	rcourse Reached?	?					lume Impacting	the Water	rcourse.			
		Ľ	Yes 🛛	🕽 No		. N/A						
	urse was Impacte	ed, Desci	ibe Fully.	*	<u></u>			·				
N/A												:
A discharge Describe Art	ea Affected and (left open	on the cir Action Ta	rculating pump. 7						e valve.		
I hereby cert regulations a public healt should their or the enviro	tify that the infor all opcrators are r h or the environm operations have	rmation g required (nent. The failed to ion, NM(iven abov to report a acceptan adequatel OCD acce	e is true and comp ind/or file certain the of a C-141 rep y investigate and ptance of a C-141	olete to the to the total of total of the total of the total of the total of the total of total	he best of my otifications ar e NMOCD m e contaminati	knowledge and the perform corre arked as "Final F on that pose a the operator of	understan ctive actio Report" do reat to gro responsil	id that pur ons for rel oes not rel ound wate bility for c	leases which lieve the ope r, surface w compliance	may e rator o ater, hu with an	ndanger f liability ıman health
	$-\lambda$	The		4			OIL CON	ISERV.	ATION	DIVISI	<u> NC</u>	
Signature:	1 Jun	$\sqrt{\sqrt{2}}$	1 rl	<u>~</u>			<u>a</u> ,	y.	R. J	1		
Printed Nam)- C. Ruth		<u> </u>		Approved by	Signed F Environmental S	pecialist	1.14 X	RAPULS	<u>*</u>	-
	HS Remediation		st			Approval Da	te: 3/21/1	U F	Expiration	Date: 11	A	
E-mail Add	ress: ACRut	h@bassp	et com			Conditions o	Annroval:					
				<u> </u>		Domodiat	ion ner O.C.	D. Rule	s & Gui	dennese	ı. ⊔	
Date: 3/15				2-661-0571		SUBMIT F	EMEDIATIO	N PRO	POSAL	NO		
' Attach Add	litional Sheets I	If Neces	sary			_ATER Th	ian: <u>4</u> /	äL//U	<u></u>	2£	P-2	3617

.

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe. NM 87505 Submit 1 Copy to appropriate District Office in accordance with 19.15.29 NMAC.

1220 S. St. Fran	icis Di., Salia	a re, inivi 87503		Sa	inta Fe	e, NM 875	05					
			Relea	ase Notifica	ation	and Co	rrective Ac	tion				
						OPERAT			Initial	Report	\boxtimes	Final Report
Name of Co						Contact Kyl			_		_	
		ne Street Car	lsbad, N.	M. 88220			No. 432-221-733					
Facility Na							e Exploration a	na Pro			_	
Surface Ow	mer Federa	ıl	_	Mineral C	Wher I	Federal			API No	. 30-015-	27686	
						OF REL						
Unit Letter G	Section 1	Township 23S	Range 30E	Feet from the 1980		/South Line North	Feet from the 1860	East/ Line	West	County Eddy		
U		233	JUE	1980		norta	1800		East	Eduy		
		Latitude	N 3	2.336152	Lo	ngitude	103.831835		NAE	083		
						OF RELE						
Type of Rele	ase Crude	Oil		NATU	JKE		Release 17 bbls		Volume F	Recovered	5 bbls	
Source of Re	lease Valv	e on circulation	ng pump				lour of Occurrenc ime unknown	e	Date and 2/1/16 8:3	Hour of Di 30 A.M	scover	у
Was Immedi	ate Notice (If YES, To						
D DI A	7/4		Yes _	No 🛛 Not Re	equired	N/A						
By Whom? N Was a Water		ched?				Date and H	lour N/A lume Impacting t	he Wat	ercourse			
			Yes 🛛	No		N/A						
If a Watercou	urse was Im	pacted, Descr	ibe Fully.*	* N/A		1						
		em and Reme										
A discharge l	pleed valve	was left open	on the cire	culating pump. Th	ne valve	was closed a	nd the handle was	remov	ed from the	valve.		
		and Cleanup A										
The leak affe	cted 1,575	square feet of	well pad v	vithin the process	equipm	ent area. Star	ding fluids were	recover	ed.			
				O collected soil s								
				sing equipment a								
				o soil, as defined ponse efforts, na								
no further a			inclui 105		iturur u	ogradation, i			inculatou			
I haraby carti	fy that the	nformation gi	van abova	is true and comp	lata ta ti	he hest of my	knowledge and w	ndorsta	nd that nurs	uent to NN	10CD	rules and
				id/or file certain r								
				e of a C-141 repo								
				investigate and re tance of a C-141								
		ws and/or regu						copons				
		1	1	1			OIL CON	SERV	ATION	DIVISI	ON	
Signature:	ZR	eta	tul									
Printed Name	Kyle Litte	(Approved by	Environmental Sj	pecialis	t: Braa	lford	Bi	lings
200							44/40/004					
Title: SH&E	Coordinato	r				Approval Dat	_{e:} 11/18/201	9	Expiration	Date:		
E-mail Addre	ess: Kyle_L	ittrell@xtoene	ergy.com			Conditions of	Approval:			Attache	-	
Date:	8/01/2	2018	Ph	one: 432-221-73	331							

* Attach Additional Sheets If Necessary

ANALYTICAL REPORT

January 15, 2018

XTO Energy- Delaware Division

Sample Delivery Group:	L961532
Samples Received:	01/06/2018
Project Number:	30-015-27686
Description:	Confrimation Soil Sampling
Site:	JRU #36 (2RP-298I)
Report To:	Kyle Littrell
	6401 N Holiday Hill Rd
	Suite 200
	Midland, TX 79707

Entire Report Reviewed By:

Dapline R Richards

Daphne Richards Technical Service Representative

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

TABLE OF CONTENTS

*

Ss

Cn

Sr

*Q*c

Gl

ΆI

Sc

Cp: Cover Page	1	1
Tc: Table of Contents	2	
Ss: Sample Summary	3	2
Cn: Case Narrative	5	
Sr: Sample Results	6	
SS1 L961532-01	6	
SS2 L961532-02	7	L
SS3 L961532-03	8	Ę
SS4 L961532-04	9	L
SS5 L961532-05	10	e
SS6 L961532-06	11	- E
SS7 L961532-07	12	
SS8 L961532-08	13	8
SS9 L961532-09	14	L
Qc: Quality Control Summary	15	
Total Solids by Method 2540 G-2011	15	L
Wet Chemistry by Method 300.0	20	
Volatile Organic Compounds (GC) by Method 8015/8021	21	
Semi-Volatile Organic Compounds (GC) by Method 8015	23	
GI: Glossary of Terms	24	
Al: Accreditations & Locations	25	
Sc: Sample Chain of Custody	26	

SDG: L961532 DATE/TIME: 01/15/18 09:45

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

⁴Cn

Sr

Qc

GI

ΆI

Sc

	SAMPLE SU	JUIVIAI	τ ĭ	UN ON	IE LAD. NATIONWIDE
SS1 L961532-01 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 11:08	Received date/time 01/06/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1060778	1	01/10/18 12:40	01/10/18 12:43	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/08/18 23:53	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	25	01/08/18 07:33	01/09/18 18:38	BMB
Volatile Organic Compounds (GC) by Method 8021	WG1060512	1	01/08/18 07:33	01/09/18 15:26	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	50	01/08/18 19:43	01/11/18 08:16	ACM
			Collected by Aaron Williamson	Collected date/time 01/04/18 11:17	Received date/time
SS2 L961532-02 Solid					01/06/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:18	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/09/18 18:01	01/09/18 19:00	BMB
Volatile Organic Compounds (GC) by Method 8021	WG1060512	1	01/08/18 07:33	01/09/18 15:48	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/11/18 00:39	ACM
SS3 L961532-03 Solid			Collected by Aaron Williamson	Collected date/time 01/04/18 11:20	Received date/time 01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Batan	Bildton	date/time	date/time	, indigot
Total Solids by Method 2540 G-2011	WG1060779	1	01/09/18 12:42	01/09/18 12:53	KDW
Net Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:27	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/04/18 11:20	01/09/18 19:22	BMB
/olatile Organic Compounds (GC) by Method 8021	WG1060512	1	01/08/18 07:33	01/09/18 16:10	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	10	01/08/18 19:43	01/11/18 07:34	ACM
			Collected by	Collected date/time	Received date/time
SS4 L961532-04 Solid			Aaron Williamson	01/04/18 11:23	01/06/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
Net Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:35	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 17:12	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/11/18 00:52	ACM
			Collected by	Collected date/time	Received date/time
SS5 L961532-05 Solid			Aaron Williamson	01/04/18 11:26	01/06/18 08:45
M ethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1059974	1	01/09/18 14:06	01/09/18 14:22	JD
Vet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:44	MAJ
/olatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/09/18 16:32	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	50	01/08/18 19:43	01/11/18 08:30	ACM
			Collected by	Collected date/time	Received date/time
SS6 L961532-06 Solid			Aaron Williamson	01/04/18 11:29	01/06/18 08:45
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1060779	1	01/09/18 12:42	01/09/18 12:53	KDW
Net Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 00:53	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 17:55	BMB
ACCOUNT:	PROJECT:		SDG:	DATE/TIME:	PA
XTO Energy- Delaware Division	30-015-27686		L961532	01/15/18 09:45	З с

SAMPLE SUMMARY

ONE LAB. NATIONWIDE.

*

Ср

Tc

Ss

Cn

Sr

Qc

GI

ΆI

Sc

			Collected by	Collected date/time	Received date/time
SS6 L961532-06 Solid			Aaron Williamson	01/04/18 11:29	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 07:57	ACM
			Collected by	Collected date/time	Received date/time
SS7 L961532-07 Solid			Aaron Williamson	01/04/18 11:34	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060773	1	01/09/18 13:10	01/09/18 13:17	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 01:05	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 18:16	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 07:13	ACM
			Collected by	Collected date/time	Received date/time
SS8 L961532-08 Solid			Aaron Williamson	01/04/18 11:37	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
Wet Chemistry by Method 300.0	WG1060409	1	01/08/18 16:26	01/09/18 01:30	MAJ
Volatile Organic Compounds (GC) by Method 8015/8021	WG1060512	1	01/08/18 07:33	01/08/18 18:37	BMB
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1060456	1	01/08/18 19:43	01/10/18 07:27	ACM
			Collected by	Collected date/time	Received date/tim
SS9 L961532-09 Solid			Aaron Williamson	01/04/18 11:40	01/06/18 08:45
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1060784	1	01/10/18 11:03	01/10/18 11:05	KDW
Total Solids by Method 2340 0-2011			01/08/18 16:26	01/09/18 01:39	MAJ
Wet Chemistry by Method 300.0	WG1060409	1	01/06/16 10.20	01/09/16 01.59	IVIAJ
	WG1060409 WG1060512	1	01/08/18 07:33	01/08/18 18:59	BMB

SDG: L961532 DATE/TIME: 01/15/18 09:45

CASE NARRATIVE

*

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All radiochemical sample results for solids are reported on a dry weight basis with the exception of tritium, carbon-14 and radon, unless wet weight was requested by the client. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Japhne R Richards

Daphne Richards Technical Service Representative

SDG: L961532 DATE/TIME: 01/15/18 09:45 **PAGE**: 5 of 26

SAMPLE RESULTS - 01 L961532

Total Solids by Method 2540 G-2011

						1'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	94.5		1	01/10/2018 12:43	WG1060778	Tc
Wet Chemistry b	y Method 300.0					³ Ss

Dy

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	456		10.6	1	01/08/2018 23:53	WG1060409	СП

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000529	1	01/09/2018 15:26	WG1060512
Toluene	ND		0.00529	1	01/09/2018 15:26	WG1060512
Ethylbenzene	0.0456		0.000529	1	01/09/2018 15:26	WG1060512
Total Xylene	6.06		0.0397	25	01/09/2018 18:38	WG1060512
TPH (GC/FID) Low Fraction	183		2.65	25	01/09/2018 18:38	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	63.1	<u>J2</u>	77.0-120		01/09/2018 15:26	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	95.5		77.0-120		01/09/2018 18:38	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	102		75.0-128		01/09/2018 18:38	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	67.8	<u>J2</u>	75.0-128		01/09/2018 15:26	WG1060512

Sample Narrative:

L961532-01 WG1060512: Low surrogates due to matrix interference. Confirmed by a previous run.

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	12300		212	50	01/11/2018 08:16	WG1060456
C28-C40 Oil Range	3100		212	50	01/11/2018 08:16	WG1060456
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		01/11/2018 08:16	WG1060456

SDG: L961532 Analyte

Chloride

Collected date/time: 01/04/18 11:17

SAMPLE RESULTS - 02

Cn

Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		 'Ср
Analyte	%			date / time			2
Total Solids	90.9		1	01/10/2018 11:05	WG1060784		Tc
Wet Chemistry b	by Method 300.0						³ Ss
	Result (dry)	Qualifier	RDL (dry) Dilution	Analysis	Batch	

1

date / time

01/09/2018 00:18

WG1060409

mg/kg

11.0

Volatile Organic Compounds (GC) by Method 8015/8021

mg/kg

54.9

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	I
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000550	1	01/09/2018 15:48	WG1060512	
Toluene	ND		0.00550	1	01/09/2018 15:48	WG1060512	
Ethylbenzene	ND		0.000550	1	01/09/2018 15:48	WG1060512	
Total Xylene	ND		0.00165	1	01/09/2018 19:00	WG1060512	, in the second s
TPH (GC/FID) Low Fraction	ND		0.110	1	01/09/2018 19:00	WG1060512	
(S) a,a,a-Trifluorotoluene(FID)	93.4		77.0-120		01/09/2018 15:48	WG1060512	l
(S) a,a,a-Trifluorotoluene(FID)	90.6		77.0-120		01/09/2018 19:00	WG1060512	
(S) a,a,a-Trifluorotoluene(PID)	100		75.0-128		01/09/2018 15:48	WG1060512	
(S) a,a,a-Trifluorotoluene(PID)	97.6		75.0-128		01/09/2018 19:00	WG1060512	

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	5.41		4.40	1	01/11/2018 00:39	WG1060456
C28-C40 Oil Range	4.91		4.40	1	01/11/2018 00:39	WG1060456
(S) o-Terphenyl	66.1		18.0-148		01/11/2018 00:39	WG1060456

SAMPLE RESULTS - 03 L961532

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.1		1	01/09/2018 12:53	<u>WG1060779</u>	² Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0								
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time			⁴ Cn
Chloride	97.8		10.9	1	01/09/2018 00:27	WG1060409		CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
Benzene	ND		0.000543	1	01/09/2018 16:10	WG1060512	
Toluene	ND		0.00543	1	01/09/2018 16:10	WG1060512	
Ethylbenzene	ND		0.000543	1	01/09/2018 16:10	WG1060512	
Total Xylene	ND		0.00163	1	01/09/2018 19:22	WG1060512	
TPH (GC/FID) Low Fraction	ND		0.109	1	01/09/2018 19:22	WG1060512	
(S) a,a,a-Trifluorotoluene(FID)	89.5		77.0-120		01/09/2018 19:22	WG1060512	
(S) a,a,a-Trifluorotoluene(FID)	81.9		77.0-120		01/09/2018 16:10	WG1060512	
(S) a,a,a-Trifluorotoluene(PID)	87.8		75.0-128		01/09/2018 16:10	WG1060512	
(S) a,a,a-Trifluorotoluene(PID)	96.3		75.0-128		01/09/2018 19:22	WG1060512	

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	1730		43.4	10	01/11/2018 07:34	<u>WG1060456</u>
C28-C40 Oil Range	717		43.4	10	01/11/2018 07:34	<u>WG1060456</u>
(S) o-Terphenyl	212		18.0-148		01/11/2018 07:34	WG1060456

Sample Narrative:

L961532-03 WG1060456: High surrogate due to matrix

SDG: L961532

SAMPLE RESULTS - 04

Total Solids by Method 2540 G-2011

						1 Cm
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	84.1		1	01/10/2018 11:05	WG1060784	² Tc
Wet Chemistry b	by Method 300.0					³ Ss

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4 Cn
Chloride	105		11.9	1	01/09/2018 00:35	WG1060409	CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		ိုင္ရင
Benzene	ND		0.000595	1	01/08/2018 17:12	WG1060512	
Toluene	ND		0.00595	1	01/08/2018 17:12	WG1060512	⁷ Gl
Ethylbenzene	ND		0.000595	1	01/08/2018 17:12	WG1060512	
Total Xylene	ND		0.00178	1	01/08/2018 17:12	WG1060512	8
TPH (GC/FID) Low Fraction	ND		0.119	1	01/08/2018 17:12	WG1060512	ĬĂĬ
(S) a,a,a-Trifluorotoluene(FID)	88.8		77.0-120		01/08/2018 17:12	<u>WG1060512</u>	
(S) a,a,a-Trifluorotoluene(PID)	94.8		75.0-128		01/08/2018 17:12	WG1060512	°Sc

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.76	1	01/11/2018 00:52	WG1060456
C28-C40 Oil Range	ND		4.76	1	01/11/2018 00:52	WG1060456
(S) o-Terphenyl	63.2		18.0-148		01/11/2018 00:52	WG1060456

SAMPLE RESULTS - 05 L961532

⁵Sr

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	87.3		1	01/09/2018 14:22	<u>WG1059974</u>	Tc
Wet Chemistry b	by Method 300.0					³ Ss

Wet Chemistry by Method 300.0

							100
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	70.3		11.5	1	01/09/2018 00:44	WG1060409	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg		date / time		ľ
Benzene	ND		0.000573	1	01/09/2018 16:32	WG1060512	
Toluene	ND		0.00573	1	01/09/2018 16:32	WG1060512	7
Ethylbenzene	0.000733	В	0.000573	1	01/09/2018 16:32	WG1060512	
Total Xylene	0.0117		0.00172	1	01/09/2018 16:32	<u>WG1060512</u>	8
TPH (GC/FID) Low Fraction	1.58		0.115	1	01/09/2018 16:32	WG1060512	ČΑ
(S) a,a,a-Trifluorotoluene(FID)	65.6	<u>J2</u>	77.0-120		01/09/2018 16:32	<u>WG1060512</u>	
(S) a,a,a-Trifluorotoluene(PID)	70.1	<u>J2</u>	75.0-128		01/09/2018 16:32	WG1060512	⁹ S

Sample Narrative:

L961532-05 WG1060512: Low surrogates due to matrix interference. Confirmed by a previous run.

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	7180		229	50	01/11/2018 08:30	WG1060456
C28-C40 Oil Range	2830		229	50	01/11/2018 08:30	WG1060456
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		01/11/2018 08:30	WG1060456

Analyte

Chloride

Collected date/time: 01/04/18 11:29

SAMPLE RESULTS - 06

Cn

Sı

Total Solids by Method 2540 G-2011

							¹ Cn
	Result	Qualifier	Dilution	Analysis	Batch		- Cp
Analyte	%			date / time			2
Total Solids	88.5		1	01/09/2018 12:53	WG1060779		Tc
Wet Chemistry b	by Method 300.0						³ Ss
	Result (dry)	Qualifier	RDL (dry) Dilution	Analysis	Batch	

1

date / time

01/09/2018 00:53

WG1060409

mg/kg

11.3

Volatile Organic Compounds (GC) by Method 8015/8021

mg/kg

60.7

	Result (dry)	Qualifiar	RDL (dry)	Dilution	Analysis	Datch	
Analyte	mg/kg	Qualifier	mg/kg	Dilution	date / time	Batch	6
Benzene	ND		0.000565	1	01/08/2018 17:55	WG1060512	
Toluene	ND		0.00565	1	01/08/2018 17:55	WG1060512	7
Ethylbenzene	ND		0.000565	1	01/08/2018 17:55	WG1060512	
Total Xylene	ND		0.00170	1	01/08/2018 17:55	WG1060512	8
TPH (GC/FID) Low Fraction	ND		0.113	1	01/08/2018 17:55	WG1060512	Ĩ,
(S) a,a,a-Trifluorotoluene(FID)	87.8		77.0-120		01/08/2018 17:55	WG1060512	
(S) a,a,a-Trifluorotoluene(PID)	92.4		75.0-128		01/08/2018 17:55	WG1060512	9 <

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	281		4.52	1	01/10/2018 07:57	WG1060456
C28-C40 Oil Range	126		4.52	1	01/10/2018 07:57	WG1060456
(S) o-Terphenyl	56.0		18.0-148		01/10/2018 07:57	WG1060456

SAMPLE RESULTS - 07 L961532

⁵Sr

Total Solids by Method 2540 G-2011

						Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ch
Analyte	%			date / time		2
Total Solids	93.3		1	01/09/2018 13:17	WG1060773	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by	Method 300.0						³ Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	561		10.7	1	01/09/2018 01:05	WG1060409	CII

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000536	1	01/08/2018 18:16	WG1060512
Toluene	ND	J3	0.00536	1	01/08/2018 18:16	WG1060512
Ethylbenzene	ND	<u>J3</u>	0.000536	1	01/08/2018 18:16	WG1060512
Total Xylene	ND	<u>J3 J6</u>	0.00161	1	01/08/2018 18:16	<u>WG1060512</u>
TPH (GC/FID) Low Fraction	ND	<u>J3</u>	0.107	1	01/08/2018 18:16	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	89.8		77.0-120		01/08/2018 18:16	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	95.1		75.0-128		01/08/2018 18:16	WG1060512

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	29.5		4.29	1	01/10/2018 07:13	<u>WG1060456</u>
C28-C40 Oil Range	17.9		4.29	1	01/10/2018 07:13	<u>WG1060456</u>
(S) o-Terphenyl	53.7		18.0-148		01/10/2018 07:13	WG1060456

SAMPLE RESULTS - 08 L961532

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.5		1	01/10/2018 11:05	WG1060784	Tc
Wet Chemistry b	by Method 300.0					³ Ss

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	79.1		10.6	1	01/09/2018 01:30	WG1060409	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
alyte	mg/kg		mg/kg		date / time	
nzene	ND		0.000529	1	01/08/2018 18:37	WG1060512
iene	ND		0.00529	1	01/08/2018 18:37	WG1060512
hylbenzene	ND		0.000529	1	01/08/2018 18:37	WG1060512
ital Xylene	ND		0.00159	1	01/08/2018 18:37	WG1060512
PH (GC/FID) Low Fraction	ND		0.106	1	01/08/2018 18:37	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	89.6		77.0-120		01/08/2018 18:37	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	95.5		75.0-128		01/08/2018 18:37	WG1060512

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.23	1	01/10/2018 07:27	WG1060456
C28-C40 Oil Range	ND		4.23	1	01/10/2018 07:27	WG1060456
(S) o-Terphenyl	66.6		18.0-148		01/10/2018 07:27	WG1060456

SAMPLE RESULTS - 09 L961532

⁵Sr

Total Solids by Method 2540 G-2011

						Ľ (Cn
	Result	Qualifier	Dilution	Analysis	Batch		~h
Analyte	%			date / time		2	
Total Solids	97.1		1	01/10/2018 11:05	<u>WG1060784</u>		Тс

Wet Chemistry by Method 300.0

Wet Chemistry by	/ Method 300.0						³ Ss
	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		⁴ Cn
Chloride	62.3		10.3	1	01/09/2018 01:39	WG1060409	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	ND		0.000515	1	01/08/2018 18:59	WG1060512
Toluene	ND		0.00515	1	01/08/2018 18:59	WG1060512
Ethylbenzene	ND		0.000515	1	01/08/2018 18:59	WG1060512
Total Xylene	ND		0.00155	1	01/08/2018 18:59	WG1060512
TPH (GC/FID) Low Fraction	ND		0.103	1	01/08/2018 18:59	WG1060512
(S) a,a,a-Trifluorotoluene(FID)	91.2		77.0-120		01/08/2018 18:59	WG1060512
(S) a,a,a-Trifluorotoluene(PID)	94.3		75.0-128		01/08/2018 18:59	WG1060512

	Result (dry)	Qualifier	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
C10-C28 Diesel Range	ND		4.12	1	01/10/2018 23:57	<u>WG1060456</u>
C28-C40 Oil Range	4.42		4.12	1	01/10/2018 23:57	<u>WG1060456</u>
(S) o-Terphenyl	76.0		18.0-148		01/10/2018 23:57	WG1060456

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3278464-1 01/0	09/18 14:22			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.001			

L961178-02 Original Sample (OS) • Duplicate (DUP)

(OS) L961178-02 01/09/18	3 14:22 • (DUP) F	₹3278464-3 C)1/09/18 14:	.22		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.7	85.2	1	2		5

Laboratory Control Sample (LCS)

(LCS) R3278464-2 01/0	(LCS) R3278464-2 01/09/18 14:22					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85-115		

PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 15 of 26

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

[°]Qc

Gl

Â

Sc

Method Blank (MB)

(MB) R3278455-1 01/0	09/18 13:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.002			

L961517-04 Original Sample (OS) • Duplicate (DUP)

(OS) L961517-04 01/09/18	8 13:17 • (DUP) R3	3278455-3 C	01/09/18 13:1	7		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	94.3	94.3	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3278455-2 0	(LCS) R3278455-2 01/09/18 13:17					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85-115		

PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 16 of 26

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

(MB) R3278697-1 01/10	0/18 12:43			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.001			

L961506-01 Original Sample (OS) • Duplicate (DUP)

(OS) L961506-01 01/10/18	12:43 • (DUP) R	3278697-3 0	1/10/18 12:4	13		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	77.4	80.0	1	3		5

Laboratory Control Sample (LCS)

(LCS) R3278697-2 01	1/10/18 12:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 17 of 26

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE.

Тс

Ss

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

(MB) R3278447-1 01/0	9/18 12:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.002			

L961532-03 Original Sample (OS) • Duplicate (DUP)

(OS) L961532-03 01/09/18	8 12:53 • (DUP) I	R3278447-3 (01/09/18 12	:53		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.1	92.1	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3278447-2 01/0	09/18 12:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 18 of 26

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L961532-02,04,08,09

⁺Cn

Sr

Qc

Gl

Â

Sc

Method Blank (MB)

MB Result MB Qualifier MB MDL MB RDL	MB Rs278693-1 01/10/18 11:05 MB Result MB Qualifier MB MDL Analyte % % Total Solids 0
	Analyte % %
Analyte % %	
	Total Solids 0

L961534-21 Original Sample (OS) • Duplicate (DUP)

(OS) L961534-21	01/10/18 11:05	• (DUP) R3278693-3	01/10/18 11:05	

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	76.9	77.0	1	0		5

Laboratory Control Sample (LCS)

(LCS) R3278693-2 0	01/10/18 11:05				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85-115	

PROJECT: 30-015-27686

SDG: L961532

DATE/TIME: 01/15/18 09:45

PAGE: 19 of 26

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L961532-01,02,03,04,05,06,07,08,09

(MB) R3278237-1 01/	/08/18 17:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.47	J	0.795	10.0

L961528-09 Original Sample (OS) • Duplicate (DUP)

(OS) L961528-09 01/08/1	8 23:10 • (DUP) F	R3278237-4	01/08/18 23	3:19		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	235	225	1	4.39		20

L961532-09 Original Sample (OS) • Duplicate (DUP)

L961532-09 Original Sample (OS) • Duplicate (DUP)									
(OS) L961532-09	01/09/18 01:39 · (DUP)	R3278237-7	01/09/18 0	1:47					
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD .imits			
Analyte	mg/kg	mg/kg		%		6			
Chloride	62.3	60.3	1	3.27		20			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278237-2 01/08/18 18:05 • (LCSD) R3278237-3 01/08/18 18:13										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Chloride	200	199	200	99.4	100	90-110			0.657	20

L961532-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-01 01/08/18 23:53 • (MS) R3278237-5 01/09/18 00:01 • (MSD) R3278237-6 01/09/18 00:10												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	529	456	1070	1040	116	111	1	80-120	E		2.62	20

ACCOUNT:	PROJECT:	SDG:	DATE/TIME:	PAGE:
XTO Energy- Delaware Division	30-015-27686	L961532	01/15/18 09:45	20 of 26

Ср

Τс

Ss

Cn

Sr

Qc

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

(MB) R3278105-5 01/08/1	18 11:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000120	0.000500
Toluene	0.000207	J	0.000150	0.00500
Ethylbenzene	0.000113	J	0.000110	0.000500
Total Xylene	U		0.000460	0.00150
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	92.4			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	96.3			75.0-128

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

8 09:46 • (LCSD) R3278105-2	01/08/18 10:07							
Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
mg/kg	mg/kg	mg/kg	%	%	%			%	%
0.0500	0.0448	0.0450	89.7	90.1	71.0-121			0.456	20
0.0500	0.0473	0.0471	94.7	94.2	72.0-120			0.484	20
0.0500	0.0486	0.0485	97.2	96.9	76.0-121			0.247	20
0.150	0.146	0.147	97.6	97.7	75.0-124			0.0683	20
			89.8	89.6	77.0-120				
			93.0	92.4	75.0-128				
	Spike Amount mg/kg 0.0500 0.0500 0.0500	Spike Amount LCS Result mg/kg mg/kg 0.0500 0.0448 0.0500 0.0473 0.0500 0.0486	Spike Amount LCS Result LCSD Result mg/kg mg/kg mg/kg 0.0500 0.0448 0.0450 0.0500 0.0473 0.0471 0.0500 0.0486 0.0485	mg/kg mg/kg mg/kg % 0.0500 0.0448 0.0450 89.7 0.0500 0.0473 0.0471 94.7 0.0500 0.0486 0.0485 97.2 0.150 0.146 0.147 97.6	Spike Amount LCS Result LCSD Result LCS Rec. LCSD Rec. mg/kg mg/kg mg/kg % % 0.0500 0.0448 0.0450 89.7 90.1 0.0500 0.0473 0.0471 94.7 94.2 0.0500 0.0486 0.0485 97.2 96.9 0.150 0.146 0.147 97.6 97.7	Spike Amount LCS Result LCS Result LCS Rec. LCSD Rec. Rec. Limits mg/kg mg/kg % % % % 0.0500 0.0448 0.0450 89.7 90.1 71.0-121 0.0500 0.0473 0.0471 94.7 94.2 72.0-120 0.0500 0.0486 0.0485 97.2 96.9 76.0-121 0.150 0.146 0.147 97.6 97.7 75.0-124 89.8 89.6 77.0-120 97.9 96.9 97.9	Spike Amount LCS Result LCS Result LCS Rec. LCS D Rec. Rec. Limits LCS Qualifier mg/kg mg/kg mg/kg %	Spike Amount LCS Result LCS Result LCS Rec. LCSD Rec. Rec. Limits LCS Qualifier LCSD Qualifier mg/kg mg/kg mg/kg %	Spike Amount LCS Result LCS Result LCS Rec. Rec. Limits LCS Qualifier LCSD Qualifier RPD mg/kg mg/kg mg/kg %

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278105-3 01/08	/18 10:29 • (LCSE	D) R3278105-4	1 01/08/18 10:50	C							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	4.88	4.76	88.7	86.5	70.0-136			2.47	20	
(S) a,a,a-Trifluorotoluene(FID)				87.7	85.9	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				104	103	75.0-128					

ACCOUNT:
XTO Energy- Delaware Division

PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 21 of 26

Volatile Organic Compounds (GC) by Method 8015/8021

QUALITY CONTROL SUMMARY

L961532-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.0536	ND	0.0233	0.0274	43.5	51.2	1	10.0-146			16.2	29
Toluene	0.0536	ND	0.0171	0.0238	31.6	44.1	1	10.0-143		<u>J3</u>	32.7	30
Ethylbenzene	0.0536	ND	0.0106	0.0180	19.5	33.5	1	10.0-147		J3	52.3	31
Total Xylene	0.161	ND	0.0309	0.0536	19.2	33.3	1	10.0-149	<u>J6</u>	<u>J3 J6</u>	53.8	30
(S) a,a,a-Trifluorotoluene(FID)					89.0	88.9		77.0-120				
(S) a,a,a-Trifluorotoluene(PID)					92.2	91.7		75.0-128				

L961532-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-07 01/08/18	NS) L961532-07 01/08/18 18:16 • (MS) R3278105-8 01/08/18 20:02 • (MSD) R3278105-9 01/08/18 20:24													
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		
TPH (GC/FID) Low Fraction	5.89	ND	4.13	1.18	70.1	20.0	1	10.0-147		<u>J3</u>	111	30		
(S) a,a,a-Trifluorotoluene(FID)					86.2	88.9		77.0-120						
(S) a,a,a-Trifluorotoluene(PID)					96.4	92.8		75.0-128						

DATE/TIME: 01/15/18 09:45 Ср

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3278394-1 01/09	/18 19:44			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	63.5			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3278394-2 01/0	9/18 19:59 • (LCS	D) R3278394-	-3 01/09/18 20:	13							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	60.0	41.0	35.2	68.3	58.6	50.0-150			15.2	20	
(S) o-Terphenyl				72.3	64.5	18.0-148					

L961532-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L961532-09 01/10/18	OS) L961532-09 01/10/18 23:57 • (MS) R3278802-1 01/10/18 22:35 • (MSD) R3278802-2 01/10/18 22:48											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	61.8	ND	43.9	45.6	67.5	70.2	1	50.0-150			3.86	20
(S) o-Terphenyl					57.9	58.2		18.0-148				

SDG: L961532 DATE/TIME: 01/15/18 09:45 PAGE: 23 of 26

GLOSSARY OF TERMS

*

Τс

Ss

Cn

Sr

*Q*c

GI

Al

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 30-015-27686

SDG: L961532 PAGE: 24 of 26

ACCREDITATIONS & LOCATIONS

ESC Lab Sciences is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our "one location" design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be **YOUR LAB OF CHOICE.** * Not all certifications held by the laboratory are applicable to the results reported in the attached report.

State Accreditations

Alabama	40660	Nevada	TN-03-2002-34
Alaska	UST-080	New Hampshire	2975
Arizona	AZ0612	New Jersey-NELAP	TN002
Arkansas	88-0469	New Mexico	TN00003
California	01157CA	New York	11742
Colorado	TN00003	North Carolina	Env375
Connecticut	PH-0197	North Carolina ¹	DW21704
Florida	E87487	North Carolina ²	41
Georgia	NELAP	North Dakota	R-140
Georgia ¹	923	Ohio-VAP	CL0069
Idaho	TN00003	Oklahoma	9915
Illinois	200008	Oregon	TN200002
ndiana	C-TN-01	Pennsylvania	68-02979
lowa	364	Rhode Island	221
Kansas	E-10277	South Carolina	84004
Kentucky ¹	90010	South Dakota	n/a
Kentucky ²	16	Tennessee 14	2006
Louisiana	AI30792	Texas	T 104704245-07-TX
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	6157585858
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	109
Minnesota	047-999-395	Washington	C1915
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA
Nebraska	NE-OS-15-05		

Third Party & Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	S-67674
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ^{n/a} Accreditation not applicable

Our Locations

ESC Lab Sciences has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. ESC Lab Sciences performs all testing at our central laboratory.

¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc	
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	¹ Cp
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	² Tc
⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al	³ Ss
[°] Sr ⁶ Qc ⁷ Gl ⁸ Al	⁴ Cn
[°] Qc ⁷ Gl ⁸ Al	⁵ Sr
⁸ Al	⁶ Qc
Â	⁷ Gl
⁹ Sc	⁸ Al
	°Sc

ACCOUNT: XTO Energy- Delaware Division PROJECT: 30-015-27686

SDG: L961532 DATE/TIME: 01/15/18 09:45

- 3472			Billing Infor	mation:		T			An	alysis / Conta	ainer / Preserv	ative		Chain of Custod	v Page of
LTE		24	2	XTD		Pr	COLUMN TWO IS NOT		1						
eport to: Kyle Littre			A	<yle_litte baker@Li City/State</yle_litte 	Tenvico	m	8021	15	300					12065 Labunon Bd Maunt Juliet, TN 3 Phone: 615-758-51 Phone: 800-767-51 Fax: 615-758-5859	7122 558 59
hone:	Client Project #	:15an	nples	Collected: Lab Project #	N	[Method S	00	20					L# 961 G092	
ax: 1-970-317-1867 Collected by (print): Aaron Williamson Colleged by (signature):	Rush? (La 	#36 hb MUST Be f y	() RP 266 () RP 266 Notified) lay (Rad Only)	Quote #	1800	1	FPA	PA M	EPA					Acctnum: X Template: Prelogin: TSR:	a set and a set of the
nmediately acked on Ice N Y Sample ID	Two Day Three Da Comp/Grab		y (Rad Only) Depth	Date	Time	0	o. TCX	TPH I	Chlor					PB: Shipped Via: Remarks	Sample # (lab.only)
SSI -	Grab	55	6"	1-4-18	11:	08	1 1	X	1			2. 7			-01
552	Grab	55	6"	1-4-18	11:	17	11	V	J						102
553	Grab	55	6"	1-4-18	11:	20	IV	V	V,	1					-03
554	Grab	55	6"	1-4-18	11:	23	1 1	V,	V					1000	04
555	Grab	55	6"	1-4-18	11.	26	IV	V	V					-	-05
556	Grab	55	6 "	1-4-18	11!	29	1	V	V						-04
557	Grab	55	6"	1-4-18	11:	34	IV	V	V						17
558	Grab	55	6"	1-4-18	111	37	11	V	V					-	-08
559	Grab	55	6"	1-4-18	11:	40	1 1	V	V						-09
N.F.E. ARW		-	6	ar	-	1		-						F	1-0
Aatrix: - Soil AIR - Air F - Filter V - Groundwater B - Bioassay W - WasteWater	Remarks:			1						pH	Temp Other		COC Sea COC Sig Bottles Correct	Sample Receipt. 1 Present/Intac ned/Accurate: arrive intact: bottles used:	t: _w _v _v
W - Drinking Water or - Other telingalshed by : (Signature)	Samples retur	ned via: idExCou		Time: R	racking # eccived by: ((Signatur	32	711	10	1616 Trip Blank Re	ceived: Yes			ent volume sent <u>If Applics</u> o Headspace: ation Correct/C	
Relipquished by : (Signature)	1	1-5- Date:	-18	19:00:	Confu edeived by:	un.	Ac	L	X	Temp: 2	TBR	Heceived:	If preserv	vation required by (.ogin: Date/Time
Relinquished by : (Signature)		0ate:	0	and the second se	Acceived for 1	lab by: (S	ignature)	hah	- BO	Date:	Time:	45	Hold:		Condition: NCF / OK

Adrian Baker

NM

Contact:

Project Location:

Certificate of Analysis Summary 583282

LT Environmental, Inc., Arvada, CO

Project Name: JRU 36

Date Received in Lab:Sat Apr-21-18 10:00 amReport Date:27-APR-18Project Manager:Jessica Kramer

	Lab Id:	583282-0	001	583282-	002		
	Field Id:	SS5A		SS1A			
Analysis Requested	Depth:	16- In		22- Ir			
	-	SOIL		SOIL			
	Matrix:						
	Sampled:	Apr-19-18 (09:00	Apr-19-18	09:40		
BTEX by EPA 8021B	Extracted:	Apr-24-18	13:00	Apr-24-18	13:00		
	Analyzed:	Apr-24-18 2	20:03	Apr-24-18	20:22		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Benzene		< 0.00202	0.00202	< 0.00200	0.00200		
Toluene		< 0.00202	0.00202	< 0.00200	0.00200		
Ethylbenzene		< 0.00202	0.00202	< 0.00200	0.00200		
m,p-Xylenes		< 0.00403	0.00403	< 0.00401	0.00401		
o-Xylene		< 0.00202	0.00202	< 0.00200	0.00200		
Total Xylenes		< 0.00202	0.00202	< 0.00200	0.00200		
Total BTEX		< 0.00202	0.00202	< 0.00200	0.00200		
Chloride by EPA 300	Extracted:	Apr-26-18	16:00	Apr-26-18	16:00		
	Analyzed:	Apr-26-18	19:42	Apr-26-18	19:53		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Chloride		19.2	4.98	64.1	4.96		
TPH By SW8015 Mod	Extracted:	Apr-25-18	16:00	Apr-25-18	16:00		
	Analyzed:	Apr-25-18 2	22:40	Apr-26-18	00:02		
	Units/RL:	mg/kg	RL	mg/kg	RL		
Gasoline Range Hydrocarbons (GRO)		<15.0	15.0	<15.0	15.0		
Diesel Range Organics (DRO)		24.2	15.0	189	15.0		
Oil Range Hydrocarbons (ORO)		<15.0	15.0	<15.0	15.0		
Total TPH		24.2	15.0	189	15.0		

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

fession kenner

Jessica Kramer Project Assistant

Analytical Report 583282

for

LT Environmental, Inc.

Project Manager: Adrian Baker

JRU 36

(2RP-2981 & 2RP-3618)

27-APR-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-24), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

27-APR-18

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): **583282 JRU 36** Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 583282. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 583282 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

Jession KRAMER

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 583282

LT Environmental, Inc., Arvada, CO

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS5A	S	04-19-18 09:00	16 In	583282-001
SS1A	S	04-19-18 09:40	22 In	583282-002

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU 36

Project ID: (2RP-2981 & 2RP-3618) Work Order Number(s): 583282 Report Date: 27-APR-18 Date Received: 04/21/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3047816 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

LT Environmental, Inc., Arvada, CO

Lab Sample	Id: 583282-001		Date Colle	cted: 04.19.18 09.00	.00 Sample Depth: 16 In			
Analytical N	1ethod: Chloride by El	PA 300				Prep Method: E30	00P	
Tech:	OJS					% Moisture:		
Analyst:	SCM		Date Prep:	04.26.18 16.00		Basis: We	t Weight	
Seq Number	: 3048105							
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	19.2	4.98	mg/kg	04.26.18 19.42		1

Analytical Method: TPH By SW801 Tech: ARM	5 Mod					rep Method: TX 6 Moisture:	1005P	
Analyst: ARM		Date Prep	p: 04.25.	18 16.00	E	Basis: We	t Weight	
Seq Number: 3047990								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	04.25.18 22.40	U	1
Diesel Range Organics (DRO)	C10C28DRO	24.2	15.0		mg/kg	04.25.18 22.40		1
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	04.25.18 22.40	U	1
Total TPH	PHC635	24.2	15.0		mg/kg	04.25.18 22.40		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	108	%	70-135	04.25.18 22.40		
o-Terphenyl		84-15-1	111	%	70-135	04.25.18 22.40		

LT Environmental, Inc., Arvada, CO

Sample Id:SS5ALab Sample Id:583282-001	Matrix: Soil Date Collected: 04.19.18 09.00	Date Received:04.21.18 10.00 Sample Depth: 16 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3047816	Date Prep: 04.24.18 13.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Toluene	108-88-3	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Ethylbenzene	100-41-4	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
m,p-Xylenes	179601-23-1	< 0.00403	0.00403		mg/kg	04.24.18 20.03	U	1
o-Xylene	95-47-6	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Total Xylenes	1330-20-7	< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Total BTEX		< 0.00202	0.00202		mg/kg	04.24.18 20.03	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	103	%	70-130	04.24.18 20.03		
4-Bromofluorobenzene		460-00-4	98	%	70-130	04.24.18 20.03		

LT Environmental, Inc., Arvada, CO

Sample Id: SS1A Lab Sample Id: 583282-002		Matrix: Date Collec	Soil cted: 04.19.18 09.40		Date Received:04.21.18 10.00 Sample Depth: 22 In		
Analytical Method: Chloride by EF	PA 300				Prep Method: E30)0P	
Tech: OJS					% Moisture:		
Analyst: SCM		Date Prep:	04.26.18 16.00		Basis: We	t Weight	
Seq Number: 3048105							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride	16887-00-6	64.1	4.96	mg/kg	04.26.18 19.53		1
Analytical Method: TPH By SW80	15 Mod				Prep Method: TX	1005P	
Tech: ARM					% Moisture:		
Analyst: ARM		Date Prep:	04.25.18 16.00		Basis: We	t Weight	
Seq Number: 3047990							
Parameter	Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0	mg/kg	04.26.18 00.02	U	1
Diesel Range Organics (DRO)	C10C28DRO	189	15.0	mg/kg	04.26.18 00.02		1

Dieser Kange Organics (DKO)	CIUC28DRO	109	15.0		mg/kg	04.20.18 00.02		1	
Oil Range Hydrocarbons (ORO)	PHCG2835	<15.0	15.0		mg/kg	04.26.18 00.02	U	1	
Total TPH	PHC635	189	15.0		mg/kg	04.26.18 00.02		1	
Surrogate		Cas Number	% Recoverv	Units	Limits	Analysis Date	Flag		
			necovery						
1-Chlorooctane		111-85-3	106	%	70-135	04.26.18 00.02			
l-Chlorooctane o-Terphenyl		111-85-3 84-15-1		% %	70-135 70-135	04.26.18 00.02 04.26.18 00.02			

LT Environmental, Inc., Arvada, CO

Sample Id:SS1ALab Sample Id:583282-002	Matrix: Soil Date Collected: 04.19.18 09.40	Date Received:04.21.18 10.00 Sample Depth: 22 In
Analytical Method:BTEX by EPA 8021BTech:ALJAnalyst:ALJSeq Number:3047816	Date Prep: 04.24.18 13.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	04.24.18 20.22	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	04.24.18 20.22	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	99	%	70-130	04.24.18 20.22		
4-Bromofluorobenzene		460-00-4	89	%	70-130	04.24.18 20.22		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- E The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- K Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection Limit SDL Sample Detection Limit LOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 583282

LT Environmental, Inc.

JRU 36

Analytical Method:	: Chloride by EPA 300						Prep Method: E300P					
Seq Number:	3048105		Matrix: Solid				Date Prep: 04.26.					
MB Sample Id:	7643509-1-BLK LCS Sample Id: 7643509-1-BKS						LCSI	O Sample	e Id: 7643	3509-1-BSD		
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag
Chloride	< 5.00	250	235	94	235	94	90-110	0	20	mg/kg	04.26.18 18:40	

Analytical Method:	: Chloride by EPA 300							Pre	ep Metho	d: E30	0P	
Seq Number:	3048105 Matrix:				Soil				Date Pre	ep: 04.2	26.18	
Parent Sample Id:	583288-001		MS Sample Id: 583288-001 S					MSI	O Sample	Id: 583	288-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD I	RPD Limi	t Units	Analysis Date	Flag

Analytical Method:	Chloride by EPA 3	00						Pr	ep Metho	od: E30	0P	
Seq Number:	3048105			Matrix:	Soil				Date Pro	ep: 04.2	6.18	
Parent Sample Id:	583452-018		MS San	nple Id:	583452-01	8 S		MSI	O Sample	e Id: 5834	452-018 SD	
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD	RPD Lim	it Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec					Date	riag

Analytical Method:	TPH By S	W8015 M	od						1	Prep Method	l: TX1	.005P	
Seq Number:	3047990				Matrix:	Solid				Date Prep	o: 04.2	5.18	
MB Sample Id:	7643471-1	-BLK		LCS Sar	nple Id:	7643471-	1-BKS		LCS	SD Sample l	ld: 764	3471-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	1010	101	1070	107	70-135	6	20	mg/kg	04.25.18 21:46	
Diesel Range Organics	(DRO)	<15.0	1000	1010	101	1090	109	70-135	8	20	mg/kg	04.25.18 21:46	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		111		1	14		122		7	0-135	%	04.25.18 21:46	
o-Terphenyl		116		1	13		121		7	0-135	%	04.25.18 21:46	

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 583282

LT Environmental, Inc.

JRU 36

Analytical Method:	TPH By S	W8015 M	lod						1	Prep Method	l: TX1	1005P	
Seq Number:	3047990				Matrix:	Soil				Date Prep	o: 04.2	25.18	
Parent Sample Id:	583282-00	1		MS Sar	nple Id:	583282-00	01 S		M	SD Sample l	ld: 583	282-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarbo	ons (GRO)	<15.0	998	1060	106	1010	101	70-135	5	20	mg/kg	04.25.18 23:06	
Diesel Range Organics ((DRO)	24.2	998	1060	104	1020	100	70-135	4	20	mg/kg	04.25.18 23:06	
Surrogate					1S Rec	MS Flag	MSD %Ree			Limits	Units	Analysis Date	
1-Chlorooctane				1	25		118		7	0-135	%	04.25.18 23:06	
o-Terphenyl				1	21		115		7	0-135	%	04.25.18 23:06	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3047816 7643366-1-BLK	1B	LCS Sar	Matrix: nple Id:	Solid 7643366-	1-BKS			Prep Metho Date Pre SD Sample	p: 04.2	5030B 4.18 3366-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00202	0.101	0.115	114	0.114	114	70-130	1	35	mg/kg	04.24.18 17:48	
Toluene	< 0.00202	0.101	0.109	108	0.108	108	70-130	1	35	mg/kg	04.24.18 17:48	
Ethylbenzene	< 0.00202	0.101	0.110	109	0.108	108	70-130	2	35	mg/kg	04.24.18 17:48	
m,p-Xylenes	< 0.00403	0.202	0.226	112	0.224	112	70-130	1	35	mg/kg	04.24.18 17:48	
o-Xylene	< 0.00202	0.101	0.114	113	0.112	112	70-130	2	35	mg/kg	04.24.18 17:48	
Surrogate	MB %Rec	MB Flag			LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1,4-Difluorobenzene	95		1	08		109			70-130	%	04.24.18 17:48	
4-Bromofluorobenzene	89		1	02		93			70-130	%	04.24.18 17:48	

Analytical Method: Seq Number: Parent Sample Id:	BTEX by EPA 802 3047816 583285-001	1B		Matrix: nple Id:	Soil 583285-00	01 S			Prep Methoo Date Prej SD Sample	p: 04.2	5030B 4.18 285-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPI) RPD Limit	Units	Analysis Date	Flag
Benzene	< 0.00200	0.0998	0.0983	98	0.0878	88	70-130	11	35	mg/kg	04.24.18 18:27	
Toluene	< 0.00200	0.0998	0.0934	94	0.0824	82	70-130	13	35	mg/kg	04.24.18 18:27	
Ethylbenzene	< 0.00200	0.0998	0.0937	94	0.0796	80	70-130	16	35	mg/kg	04.24.18 18:27	
m,p-Xylenes	< 0.00399	0.200	0.192	96	0.162	81	70-130	17	35	mg/kg	04.24.18 18:27	
o-Xylene	< 0.00200	0.0998	0.0977	98	0.0834	83	70-130	16	35	mg/kg	04.24.18 18:27	
Surrogate				1S Rec	MS Flag	MSD %Re			Limits	Units	Analysis Date	
1,4-Difluorobenzene			1	08		109			70-130	%	04.24.18 18:27	
4-Bromofluorobenzene			1	06		103			70-130	%	04.24.18 18:27	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

CHAIN OF CUSTODY

Page ____ Of ____

San Antonio, Texas (210-509-3334) Midland, Texas (432-704-5251)

Phoenix, Arizona (480-355-0900)

Dallas Texas (214-902-0300)	Midland, Texas (432-704-5251)	as (432-70-	4-5251)						[1	2.	5	2	2)
			WWW.X	www.xenco.com					Xen	Xenco Quote #	e#				Xenco Job #	Job #	0	\mathcal{O}	U	8	Q	9
					No. of Street, or Stre						A	Analytical Information	al Info	rmatic	š			1.46				Matrix Codes
Client / Reporting Information		Project I	Project Information								_											
Company Name / Branch: LTE/Midland	Project Name/Number:	umber:	na-	26																		W = Water
Company Address:	Project Location:																					GW =Ground Water
3300 North A Street Building 1, Unit #103 Midland, Texas			NM	-																		DW = Drinking Water P = Product
Email: Phone No: <u>abaker@ltenv.com</u> 439-894-5641	Invoice To: K	Kyle Littrell																				SW = Surface water SL = Sludge
Project Contact: Adrian Baker	PO Number:																					WI = Wipe
Samplers's Name Eric Caryoll	32	30-015	N	7686	(JRP	1862-222	0	JAP-34	5													WW= Waste Water
	Collection				Number of preserved bottles	of prese	rved bo	ttles			Э											A = Air
No. Field ID / Point of Collection Sample Depth	Date	Time Ma	# of bottles	HCI	NaOH/Zn Acetate HNO3	H2SO4	NaOH NaHSO4	MEOH	BTEX	ТРН	Chloride										π	Field Comments
1 \$55A 16"	4/14/18	5	-					-	XX	X	~											
2 551A 22"	K	0940 5	-						XX	×	×											
ω							\vdash		-													
4									-													
5									-	\vdash	\square											
6							-															
7							-			-												
0			-																			
9																						2
10																						
Turnaround Time (Business days)			Data De	Data Deliverable Information	nformatio				No. of Street, or other		1000 1000 1000			Notes:								
Same Day TAT 5 Day TAT		Level I	Level II Std QC			Leve	Level IV (Full Data Pkg	I Data I		/raw data)												
Next Day EMERGENCY		Level I	Level III Std QC+ Forms	Forms			TRRP Level IV	2		•												
2 Day EMERGENCY		Level 3	Level 3 (CLP Forms)	ms)			UST / RG -411	1														
3 Day EMERGENCY			TRRP Checklist																			
TAT Starts Day received by Lab, if received by 5:00 pm													FED-	FED-EX / UPS: Tracking #	PS: Ti	ackin	g #					
Relinquished by Sampler:	IME: R	BELOW EACH Received By:	TIME SAME	PLES CHA	NGE POS	Reline	, INCLUD	ING COL	JRIER D	ELIVER	_ 1	Time-			Rece	Vod B	•					
and and	8:5	1 Esperanza	6	Sin Ma	201	26	2 Specamo		Gow	au zalez		4/20	12:5	55	2	Ved						
		everved by.				4	dusued	By:			Date	IIme:			Kece 4	Keceived By: 4	Y:					
Sector Analysis Date Time: 5 5	ime: R	Received By: 5			-	Custo	Custody Seal #	*		Pre	Preserved where applicable	where	appli	cable			On Ice	e	Coo ()	$\frac{\text{Cooler Temp.}}{0.5}$	imp.	Thermo. Corr. Factor
Notice: Notice: Signature of this document and relinquishment of samples coater from client company to Xeno, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any to Xeno, its affiliates and subcontractors. It assigns standard terms and conditions of service.	lid purchase order fror	n client compa	any to Xenco	, its affiliate	es and sub	contractor	s. It assig	ins stand	ard term	s and co	Inditions	of serv	ice. Xer	ICO WILL	be liab	e only	for the	cost of	samp	es and	shall r	tot assume any responsibility for any

XENCO Laboratories Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc. Acceptable Temperature Range: 0 - 6 degC Air and Metal samples Acceptable Range: Ambient Date/ Time Received: 04/21/2018 10:00:00 AM Temperature Measuring device used : R8 Work Order #: 583282 Comments Sample Receipt Checklist #1 *Temperature of cooler(s)? -1 #2 *Shipping container in good condition? Yes #3 *Samples received on ice? Yes #4 *Custody Seals intact on shipping container/ cooler? N/A #5 Custody Seals intact on sample bottles? N/A #6*Custody Seals Signed and dated? N/A #7 *Chain of Custody present? Yes #8 Any missing/extra samples? No #9 Chain of Custody signed when relinquished/ received? Yes #10 Chain of Custody agrees with sample labels/matrix? Yes #11 Container label(s) legible and intact? Yes #12 Samples in proper container/ bottle? Yes TPh received in bulk container #13 Samples properly preserved? Yes #14 Sample container(s) intact? Yes #15 Sufficient sample amount for indicated test(s)? Yes #16 All samples received within hold time? Yes #17 Subcontract of sample(s)? No #18 Water VOC samples have zero headspace? N/A

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by:

Katie Lowe

Date: 04/23/2018

Checklist reviewed by:

fession kramer

Jessica Kramer

Date: 04/23/2018

Analytical Report 587528

for LT Environmental, Inc.

Project Manager: Adrian Baker JRU-36 Battery/ 012918001

04-JUN-18

Collected By: Client

1211 W. Florida Ave, Midland TX 79701

Xenco-Houston (EPA Lab Code: TX00122): Texas (T104704215-18-26), Arizona (AZ0765), Florida (E871002-24), Louisiana (03054) Oklahoma (2017-142)

> Xenco-Dallas (EPA Lab Code: TX01468): Texas (T104704295-17-16), Arizona (AZ0809), Arkansas (17-063-0)

Xenco-El Paso (EPA Lab Code: TX00127): Texas (T104704221-17-12) Xenco-Lubbock (EPA Lab Code: TX00139): Texas (T104704219-17-16) Xenco-Odessa (EPA Lab Code: TX00158): Texas (T104704400-18-14) Xenco-San Antonio (EPA Lab Code: TNI02385): Texas (T104704534-17-3) Xenco Phoenix (EPA Lab Code: AZ00901): Arizona (AZ0757) Xenco-Phoenix Mobile (EPA Lab Code: AZ00901): Arizona (AZM757) Xenco-Atlanta (LELAP Lab ID #04176) Xenco-Tampa: Florida (E87429) Xenco-Lakeland: Florida (E84098)

04-JUN-18

This PACEREONE

Project Manager: **Adrian Baker LT Environmental, Inc.** 4600 W. 60th Avenue Arvada, CO 80003

Reference: XENCO Report No(s): 587528 JRU-36 Battery/ 012918001 Project Address: NM

Adrian Baker:

We are reporting to you the results of the analyses performed on the samples received under the project name referenced above and identified with the XENCO Report Number(s) 587528. All results being reported under this Report Number apply to the samples analyzed and properly identified with a Laboratory ID number. Subcontracted analyses are identified in this report with either the NELAC certification number of the subcontract lab in the analyst ID field, or the complete subcontracted report attached to this report.

Unless otherwise noted in a Case Narrative, all data reported in this Analytical Report are in compliance with NELAC standards. The uncertainty of measurement associated with the results of analysis reported is available upon request. Should insufficient sample be provided to the laboratory to meet the method and NELAC Matrix Duplicate and Matrix Spike requirements, then the data will be analyzed, evaluated and reported using all other available quality control measures.

The validity and integrity of this report will remain intact as long as it is accompanied by this letter and reproduced in full, unless written approval is granted by XENCO Laboratories. This report will be filed for at least 5 years in our archives after which time it will be destroyed without further notice, unless otherwise arranged with you. The samples received, and described as recorded in Report No. 587528 will be filed for 45 days, and after that time they will be properly disposed without further notice, unless otherwise arranged with you. We reserve the right to return to you any unused samples, extracts or solutions related to them if we consider so necessary (e.g., samples identified as hazardous waste, sample sizes exceeding analytical standard practices, controlled substances under regulated protocols, etc).

We thank you for selecting XENCO Laboratories to serve your analytical needs. If you have any questions concerning this report, please feel free to contact us at any time.

Respectfully,

fession WRAMER

Jessica Kramer Project Assistant

Recipient of the Prestigious Small Business Administration Award of Excellence in 1994. Certified and approved by numerous States and Agencies. A Small Business and Minority Status Company that delivers SERVICE and QUALITY

Houston - Dallas - Midland - San Antonio - Phoenix - Oklahoma - Latin America

Sample Cross Reference 587528

LT Environmental, Inc., Arvada, CO

Sample Id	Matrix	Date Collected	Sample Depth	Lab Sample Id
SS10	S	05-25-18 13:00	- 6 In	587528-001
SS11	S	05-25-18 13:05	- 6 In	587528-002

CASE NARRATIVE

Client Name: LT Environmental, Inc. Project Name: JRU-36 Battery/ 012918001

Project ID: Work Order Number(s): 587528 Report Date:04-JUN-18Date Received:05/30/2018

Sample receipt non conformances and comments:

None

Sample receipt non conformances and comments per sample:

None

Analytical non conformances and comments: Batch: LBA-3052094 BTEX by EPA 8021B Soil samples were not received in Terracore kits and therefore were prepared by method 5030.

Project Id:Contact:Adrian BakerProject Location:NM

Certificate of Analysis Summary 587528

LT Environmental, Inc., Arvada, CO Project Name: JRU-36 Battery/ 012918001

Date Received in Lab:Wed May-30-18 10:40 amReport Date:04-JUN-18Project Manager:Jessica Kramer

					1
Lab Id:	587528-001	587528-002			
Field Id:	SS10	SS11			
Depth:	6 In	6 In			
Matrix:	SOIL	SOIL			
Sampled:	May-25-18 13:00	May-25-18 13:05			
Extracted:	May-31-18 15:00	May-31-18 15:00			
Analyzed:	May-31-18 21:21	May-31-18 21:37			
Units/RL:	mg/kg RL	mg/kg RL			
	<0.00200 0.00200	<0.00200 0.00200			
	<0.00200 0.00200	<0.00200 0.00200			
	<0.00200 0.00200	<0.00200 0.00200			
	<0.00401 0.00401	<0.00400 0.00400			
	<0.00200 0.00200	<0.00200 0.00200			
	<0.00200 0.00200	<0.00200 0.00200			
	<0.00200 0.00200	<0.00200 0.00200			
Extracted:	May-31-18 08:30	May-31-18 08:30			
Analyzed:	May-31-18 10:47	May-31-18 11:29			
Units/RL:	mg/kg RL	mg/kg RL			
	<4.92 4.92	98.5 4.97			
Extracted:	May-31-18 07:00	May-31-18 07:00			
Analyzed:	Jun-01-18 07:52	Jun-01-18 08:12			
Units/RL:	mg/kg RL	mg/kg RL			
	<15.0 15.0	72.5 15.0			
	255 15.0	4000 15.0			
	21.3 15.0	44.5 15.0			
	276 15.0	4120 15.0			
	Field Id: Depth: Matrix: Sampled: Extracted: Analyzed: Units/RL: Extracted: Analyzed: Units/RL: Extracted: Analyzed:	Field Id: SS10 Depth: 6 In Matrix: SOIL Sampled: May-25-18 13:00 Extracted: May-31-18 15:00 Analyzed: May-31-18 21:21 Units/RL: mg/kg RL <0.00200	Field Id: SS10 SS11 Depth: 6 In 6 In 6 In Matrix: SOIL SOIL SOIL Sampled: May-25-18 13:00 May-25-18 13:05 May-31-18 15:00 Extracted: May-31-18 15:00 May-31-18 15:00 May-31-18 21:37 Units/RL: mg/kg RL mg/kg RL < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 < 0.00200 0.00200 < 0.00200 < 0.00200 <t< td=""><td>Field Id: SS10 SS11 Depth: 6 In 6 In Matrix: SOIL SOIL Sampled: May-25-18 13:00 May-25-18 13:05 Extracted: May-31-18 15:00 May-31-18 21:37 Units/RL: mg/kg RL mg/kg <d><d><d0.00200< td=""> 0.00200 0.00200 <d0.00200< td=""> 0.00200 0.00200 <d1< td=""> May-31-18 0.830 May-31-18 0.830 Analyzei: May-31-18 0.700 May-31-18 0.700 <td>Field Hi: SS10 SS11 Depth: 6 In 6 In Matrix: SOIL SOIL Sampled: May-25-18 13:00 May-25-18 13:05 Extracted: May-31-18 5:00 May-31-18 15:00 Analyzed: May-31-18 21:21 May-31-18 21:37 Units/RL: mg/kg RL mg/kg RL <0.00200</td> 0.00200 <0.00200</d1<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d></d></td> <0.00200</t<>	Field Id: SS10 SS11 Depth: 6 In 6 In Matrix: SOIL SOIL Sampled: May-25-18 13:00 May-25-18 13:05 Extracted: May-31-18 15:00 May-31-18 21:37 Units/RL: mg/kg RL mg/kg <d><d><d0.00200< td=""> 0.00200 0.00200 <d0.00200< td=""> 0.00200 0.00200 <d1< td=""> May-31-18 0.830 May-31-18 0.830 Analyzei: May-31-18 0.700 May-31-18 0.700 <td>Field Hi: SS10 SS11 Depth: 6 In 6 In Matrix: SOIL SOIL Sampled: May-25-18 13:00 May-25-18 13:05 Extracted: May-31-18 5:00 May-31-18 15:00 Analyzed: May-31-18 21:21 May-31-18 21:37 Units/RL: mg/kg RL mg/kg RL <0.00200</td> 0.00200 <0.00200</d1<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d0.00200<></d></d>	Field Hi: SS10 SS11 Depth: 6 In 6 In Matrix: SOIL SOIL Sampled: May-25-18 13:00 May-25-18 13:05 Extracted: May-31-18 5:00 May-31-18 15:00 Analyzed: May-31-18 21:21 May-31-18 21:37 Units/RL: mg/kg RL mg/kg RL <0.00200

This analytical report, and the entire data package it represents, has been made for your exclusive and confidential use. The interpretations and results expressed throughout this analytical report represent the best judgment of XENCO Laboratories. XENCO Laboratories assumes no responsibility and makes no warranty to the end use of the data hereby presented. Our liability is limited to the amount invoiced for this work order unless otherwise agreed to in writing.

Houston - Dallas - San Antonio - Atlanta - Tampa - Boca Raton - Latin America - Odessa - Corpus Christi

Version: 1.%

lession beamer

Jessica Kramer Project Assistant

LT Environmental, Inc., Arvada, CO

Sample Id: Lab Sample I	SS10 d: 587528-001		Matrix: Date Collec	Soil ted: 05.25.18 13.00		Date Received:05. Sample Depth: 6		0
Analytical Me Tech: Analyst: Seq Number:	ethod: Inorganic Anions SCM SCM 3051902	s by EPA 300	Date Prep:	05.31.18 08.30		Prep Method: E30 % Moisture: Basis: We	00P t Weight	
Parameter		Cas Number	Result	RL	Units	Analysis Date	Flag	Dil
Chloride		16887-00-6	<4.92	4.92	mg/kg	05.31.18 10.47	U	1

Analytical Method: TPH by SW801:	5 Mod				Р	rep Method: TX	005P	
Tech: ARM					%	6 Moisture:		
Analyst: ARM		Date Prep	o: 05.31.	18 07.00	В	asis: Wet	Weight	
Seq Number: 3052046								
Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	<15.0	15.0		mg/kg	06.01.18 07.52	U	1
Diesel Range Organics (DRO)	C10C28DRO	255	15.0		mg/kg	06.01.18 07.52		1
Oil Range Hydrocarbons (ORO)	PHCG2835	21.3	15.0		mg/kg	06.01.18 07.52		1
Total TPH	PHC635	276	15.0		mg/kg	06.01.18 07.52		1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1-Chlorooctane		111-85-3	88	%	70-135	06.01.18 07.52		
o-Terphenyl		84-15-1	94	%	70-135	06.01.18 07.52		

LT Environmental, Inc., Arvada, CO

Sample Id:SS10Lab Sample Id:587528-001	Matrix: Soil Date Collected: 05.25.18 13.00	Date Received:05.30.18 10.40 Sample Depth: 6 In
Analytical Method:BTEX by EPA 8021BTech:JUMAnalyst:JUMSeq Number:3052094	Date Prep: 05.31.18 15.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
m,p-Xylenes	179601-23-1	< 0.00401	0.00401		mg/kg	05.31.18 21.21	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.31.18 21.21	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	88	%	70-130	05.31.18 21.21		
4-Bromofluorobenzene		460-00-4	112	%	70-130	05.31.18 21.21		

LT Environmental, Inc., Arvada, CO

Sample Id:SS11Lab Sample Id:587528-002		Matrix: Date Colle	Soil cted: 05.25.18 13.05		Date Received:05.30.18 Sample Depth: 6 In	8 10.40
Analytical Method:Inorganic AnionTech:SCMAnalyst:SCMSeq Number:3051902	is by EPA 300	Date Prep:	05.31.18 08.30		Prep Method: E300P % Moisture: Basis: Wet Wet	ight
Parameter	Cas Number	Result	RL	Units	Analysis Date Fla	ag Dil
Chloride	16887-00-6	98.5	4.97	mg/kg	05.31.18 11.29	1
Analytical Method: TPH by SW801	5 Mod				Prep Method: TX1005	Р
Tech: ARM					% Moisture:	
Analyst: ARM		Date Prep:	05.31.18 07.00		Basis: Wet Wei	ight
Seq Number: 3052046						
Parameter	Cas Number	Result	RL	Units	Analysis Date Fla	ag Dil
Gasoline Range Hydrocarbons (GRO)	PHC610	72.5	15.0	mg/kg	06.01.18 08.12	1
Diesel Range Organics (DRO)	C10C28DRO	4000	15.0	mg/kg	06.01.18 08.12	1

Diesel Range Organics (DRO)	CI0C28DRO	4000	15.0		mg/kg	06.01.18 08.12		1	
Oil Range Hydrocarbons (ORO)	PHCG2835	44.5	15.0		mg/kg	06.01.18 08.12		1	
Total TPH	PHC635	4120	15.0		mg/kg	06.01.18 08.12		1	
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag		
1-Chlorooctane		111-85-3	108	%	70-135	06.01.18 08.12			
o-Terphenyl		84-15-1	123	%	70-135	06.01.18 08.12			

LT Environmental, Inc., Arvada, CO

Sample Id:SS11Lab Sample Id:587528-002	Matrix: Soil Date Collected: 05.25.18 13.05	Date Received:05.30.18 10.40 Sample Depth: 6 In
Analytical Method: BTEX by EPA 8021B Tech: JUM Analyst: JUM	Date Prep: 05.31.18 15.00	Prep Method: SW5030B % Moisture: Basis: Wet Weight
Seq Number: 3052094	Date 11ep. 05.51.10 15.00	Dusis. Wet Weight

Parameter	Cas Number	Result	RL		Units	Analysis Date	Flag	Dil
Benzene	71-43-2	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Toluene	108-88-3	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Ethylbenzene	100-41-4	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
m,p-Xylenes	179601-23-1	< 0.00400	0.00400		mg/kg	05.31.18 21.37	U	1
o-Xylene	95-47-6	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Total Xylenes	1330-20-7	< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Total BTEX		< 0.00200	0.00200		mg/kg	05.31.18 21.37	U	1
Surrogate		Cas Number	% Recovery	Units	Limits	Analysis Date	Flag	
1,4-Difluorobenzene		540-36-3	111	%	70-130	05.31.18 21.37		
4-Bromofluorobenzene		460-00-4	118	%	70-130	05.31.18 21.37		

Flagging Criteria

- X In our quality control review of the data a QC deficiency was observed and flagged as noted. MS/MSD recoveries were found to be outside of the laboratory control limits due to possible matrix /chemical interference, or a concentration of target analyte high enough to affect the recovery of the spike concentration. This condition could also affect the relative percent difference in the MS/MSD.
- **B** A target analyte or common laboratory contaminant was identified in the method blank. Its presence indicates possible field or laboratory contamination.
- **D** The sample(s) were diluted due to targets detected over the highest point of the calibration curve, or due to matrix interference. Dilution factors are included in the final results. The result is from a diluted sample.
- **E** The data exceeds the upper calibration limit; therefore, the concentration is reported as estimated.
- **F** RPD exceeded lab control limits.
- J The target analyte was positively identified below the quantitation limit and above the detection limit.
- U Analyte was not detected.
- L The LCS data for this analytical batch was reported below the laboratory control limits for this analyte. The department supervisor and QA Director reviewed data. The samples were either reanalyzed or flagged as estimated concentrations.
- **H** The LCS data for this analytical batch was reported above the laboratory control limits. Supporting QC Data were reviewed by the Department Supervisor and QA Director. Data were determined to be valid for reporting.
- **K** Sample analyzed outside of recommended hold time.
- **JN** A combination of the "N" and the "J" qualifier. The analysis indicates that the analyte is "tentatively identified" and the associated numerical value may not be consistent with the amount actually present in the environmental sample.
- ** Surrogate recovered outside laboratory control limit.
- **BRL** Below Reporting Limit.
- RL Reporting Limit
- MDL Method Detection LimitSDLSample Detection LimitLOD Limit of Detection
- PQL Practical Quantitation Limit MQL Method Quantitation Limit LOQ Limit of Quantitation
- DL Method Detection Limit
- NC Non-Calculable

SMP Clie	ent Sample	BLK	Method Blank	
BKS/LCS	Blank Spike/Laboratory Control Sample	BKSD/LCSD	Blank Spike Duplicate/Labor	ratory Control Sample Duplicate
MD/SD	Method Duplicate/Sample Duplicate	MS	Matrix Spike	MSD: Matrix Spike Duplicate

+ NELAC certification not offered for this compound.

* (Next to analyte name or method description) = Outside XENCO's scope of NELAC accreditation

QC Summary 587528

LT Environmental, Inc.

JRU-36 Battery/ 012918001

Analytical Method:	Inorganic Anions b	y EPA 300						Pr	ep Metho	od: E300	OP	
Seq Number:	3051902			Matrix:	Solid				Date Pre	ep: 05.3	1.18	
MB Sample Id:	7655767-1-BLK		LCS Sar	nple Id:	7655767-	1-BKS		LCSI	O Sample	Id: 7655	5767-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPD	RPD Lim	t Units	Analysis Date	Flag
Chloride	< 5.00	250	269	108	269	108	90-110	0	20	mg/kg	05.31.18 09:22	

Analytical Method:	Inorganic Anions b	y EPA 300						Pre	p Method	l: E300)P	
Seq Number:	3051902			Matrix:	Soil]	Date Prep	p: 05.3	1.18	
Parent Sample Id:	587377-005		MS San	nple Id:	587377-00)5 S		MSD	Sample l	ld: 5873	377-005 SD	
Parameter	Parent	Spike	MS	MS	MSD	MSD	Limits	%RPD R	PD Limit	Units	Analysis	Flag
	Result	Amount	Result	%Rec	Result	%Rec					Date	Tiag

Analytical Method:	Inorganic Anions b	y EPA 300						Pı	ep Metho	od: E30	0P	
Seq Number:	3051902			Matrix:	Soil				Date Pre	ep: 05.3	1.18	
Parent Sample Id:	587528-001		MS Sar	nple Id:	587528-00	01 S		MS	D Sample	Id: 587	528-001 SD	
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Lim	it Units	Analysis Date	Flag

Analytical Method:	TPH by S	W8015 M	od]	Prep Method	l: TX1	005P	
Seq Number:	3052046				Matrix:	Solid				Date Prep	p: 05.3	1.18	
MB Sample Id:	7655868-1	-BLK		LCS Sar	nple Id:	7655868-	1-BKS		LC	SD Sample	Id: 765	5868-1-BSD	
Parameter		MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI	ORPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	1000	920	92	953	95	70-135	4	20	mg/kg	05.31.18 10:15	
Diesel Range Organics	(DRO)	<15.0	1000	993	99	1040	104	70-135	5	20	mg/kg	05.31.18 10:15	
Surrogate		MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Re			Limits	Units	Analysis Date	
1-Chlorooctane		86		1	26		128			70-135	%	05.31.18 10:15	
o-Terphenyl		92		1	19		121		-	70-135	%	05.31.18 10:15	

[D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

QC Summary 587528

LT Environmental, Inc.

JRU-36 Battery/ 012918001

Analytical Method:	TPH by S	W8015 M	lod						F	Prep Method	l: TXI	005P	
Seq Number:	3052046				Matrix:	Soil				Date Prep	p: 05.3	1.18	
Parent Sample Id:	587529-00)1		MS Sar	nple Id:	587529-0	01 S		MS	SD Sample l	ld: 587	529-001 SD	
Parameter		Parent Result	Spike Amount	MS Result	MS %Rec	MSD Result	MSD %Rec	Limits	%RPD	RPD Limit	Units	Analysis Date	Flag
Gasoline Range Hydrocarb	ons (GRO)	<15.0	999	896	90	894	90	70-135	0	20	mg/kg	05.31.18 11:19	
Diesel Range Organics	(DRO)	<15.0	999	979	98	980	98	70-135	0	20	mg/kg	05.31.18 11:19	
Surrogate					AS Rec	MS Flag	MSD %Ree		-	Limits	Units	Analysis Date	
1-Chlorooctane				1	02		103		7	0-135	%	05.31.18 11:19	
o-Terphenyl				1	03		104		7	0-135	%	05.31.18 11:19	

Analytical Method: Seq Number: MB Sample Id:	BTEX by EPA 802 3052094 7655894-1-BLK	lB	LCS San	Matrix: nple Id:		1-BKS			Prep Metho Date Pre SD Sample	p: 05.3	5030B 1.18 5894-1-BSD	
Parameter	MB Result	Spike Amount	LCS Result	LCS %Rec	LCSD Result	LCSD %Rec	Limits	%RPI	D RPD Limit	t Units	Analysis Date	Flag
Benzene	< 0.00200	0.100	0.102	102	0.0961	96	70-130	6	35	mg/kg	05.31.18 18:01	
Toluene	< 0.00200	0.100	0.0948	95	0.0990	99	70-130	4	35	mg/kg	05.31.18 18:01	
Ethylbenzene	< 0.00200	0.100	0.0949	95	0.0962	96	70-130	1	35	mg/kg	05.31.18 18:01	
m,p-Xylenes	< 0.00401	0.200	0.201	101	0.202	100	70-130	0	35	mg/kg	05.31.18 18:01	
o-Xylene	< 0.00200	0.100	0.109	109	0.107	107	70-130	2	35	mg/kg	05.31.18 18:01	
Surrogate	MB %Rec	MB Flag		CS Rec	LCS Flag	LCSI %Ree			Limits	Units	Analysis Date	
1,4-Difluorobenzene	101		ç	93		91			70-130	%	05.31.18 18:01	
4-Bromofluorobenzene	125		8	36		103			70-130	%	05.31.18 18:01	

Seq Number:	BTEX by EPA 802 3052094	1B		Matrix:			Prep Meth Date Pr		5030B 1.18	
Parent Sample Id:	587374-002		MS San	nple Id:	587374-002 S					
Parameter	Parent Result	Spike Amount	MS Result	MS %Rec		Limits		Units	Analysis Date	Flag
Benzene	0.00616	0.0992	0.0262	20		70-130		mg/kg	05.31.18 18:35	Х
Toluene	0.0459	0.0992	0.0540	8		70-130		mg/kg	05.31.18 18:35	Х
Ethylbenzene	0.0117	0.0992	0.0177	6		70-130		mg/kg	05.31.18 18:35	Х
m,p-Xylenes	0.0893	0.198	0.0957	3		70-130		mg/kg	05.31.18 18:35	Х
o-Xylene	0.0314	0.0992	0.0334	2		70-130		mg/kg	05.31.18 18:35	Х
Surrogate				1S Rec	MS Flag		Limits	Units	Analysis Date	
1,4-Difluorobenzene			8	81			70-130	%	05.31.18 18:35	
4-Bromofluorobenzene			1	02			70-130	%	05.31.18 18:35	

MS/MSD Percent Recovery Relative Percent Difference LCS/LCSD Recovery Log Difference [D] = 100*(C-A) / B RPD = 200* | (C-E) / (C+E) | [D] = 100 * (C) / [B] Log Diff. = Log(Sample Duplicate) - Log(Original Sample)

LCS = Laboratory Control Sample A = Parent Result C = MS/LCS Result E = MSD/LCSD Result MS = Matrix Spike B = Spike Added D = MSD/LCSD % Rec

Setting the Standard since 1990 Stafford,Texas (281-240-4200) Dallas Texas (214-902-0300)

CHAIN OF CUSTODY

Page ____ Of ____

San Antonio, Texas (210-509-3334)

Phoenix, Arizona (480-355-0900)

losses of expenses incurred by the Client if such loses are d will be enforced unless previously negatiated under a fully ex-	5 Notice: Notice: Simplifie of this document and with the	3 Relinguished by:	Relinquished-by:	Relinquished by Sampler	The plans bay received by Lab, 01	TAT State Day and the State	2 vay EMERGENCY		Next Day EMEDGENCY	Iumaround Time (Business days)	10	6	6	7	0	5	4	ۍ ن	2 5511	1 5510		No. Field ID./ Point of Collection	Samplers's Name DO Wal The wool	Project Contact: Adition Boyther	aballer @ Henvillom	Email: 460 LV 60" Are Arvedia, Co	Company Address:		Client / Reporting Information		
m or samples constitutes a valid purchase or ue to circumstances beyond the control of Xe lecuted client contract		04:01 8104.5	Date Time:	Date Time:	SAMPLE CUSTONY MUST BE DOCUMENT	rderd	Contract TAT	JA DAY TAT	5 Day TAT									-+	ج ج	Sist - 2 - 2 - 1 - 3		Colleption	isotomics is a	DO NUM	1 1132-8914-5641	\$ D003	ASTA DA S.	Carlohad / Mr. Wand Projec		Z , ² .	atestad
der fröm citent cömpany to Xenco, its affiliates and subcontrac ncc. A minimum charge of \$75 will be applied to each project	Received By: 6	3 Birle China	Received But IN LUNG	Received By: 1. Received By:		TRRP Checklist	Level 3 (CLP Forms)	Level III Std QC+ Forms	Level II Std QC	Data Deliverable Information								N	- 1	1308 504 1	Time Marrix # of HQI NaOHUZn Accetate		JABE-JAE1	5	Wale Charell	NM	Project Location:	0 . 11			Midiand, Texas (432-704-5251) WWW xence com
ctors, it assigns standard terms and conditions of service. Xenco's liability will be limited to the cost of samples. Am	Custody Seal # Preserved where applicable	A Date Time:		DELIVERY			UST / RG 411	TRRP Level IV	Level IV (Full Data Pkg /raw data)											1	42504 NaOH NaHSO4 NONE B71 T.P.H. C.H.I.	Number of preserved bottles	6				01241800		Analytic		Xenco Quote #
OL B	ipplicable On Ice Cooler Temp. Thermo. Com Factor	Received By:	2 2		FED-EX / UPS: Tracking #					Notes:										Field Comments		A = Air		OW = Ocean/Sea Water	SW = Surface water SL = Sluton	GW = Ground Water	S = Soll/Sed/Solid		Analytical Information Matrix Codes	CPC AC # MAN AND A	0121011

XENCO Laboratories

ABORATORIES Prelogin/Nonconformance Report- Sample Log-In

Client: LT Environmental, Inc.	Acceptable Temperature Range: 0 - 6 degC									
Date/ Time Received: 05/30/2018 10:40:00 AM	Air and Metal samples Acceptable Range: Ambient									
Work Order #: 587528	Temperature Measuring device used : R8									
Sample Reco	eipt Checklist	Comments								
#1 *Temperature of cooler(s)?	2									
#2 *Shipping container in good condition?	Yes									
#3 *Samples received on ice?	Yes									
#4 *Custody Seals intact on shipping container/ cooler?	N/A									
#5 Custody Seals intact on sample bottles?	N/A									
#6*Custody Seals Signed and dated?	N/A									
#7 *Chain of Custody present?	Yes									
#8 Any missing/extra samples?	No									
#9 Chain of Custody signed when relinquished/ received?	Yes									
#10 Chain of Custody agrees with sample labels/matrix?	Yes									
#11 Container label(s) legible and intact?	Yes									
#12 Samples in proper container/ bottle?	Yes	TPH WAS RECEIVED IN BULK CONTAINERS								
#13 Samples properly preserved?	Yes									
#14 Sample container(s) intact?	Yes									
#15 Sufficient sample amount for indicated test(s)?	Yes									
#16 All samples received within hold time?	Yes									
#17 Subcontract of sample(s)?	N/A									
#18 Water VOC samples have zero headspace?	N/A									

* Must be completed for after-hours delivery of samples prior to placing in the refrigerator

Analyst:

PH Device/Lot#:

Checklist completed by: Biddla Tal Brianna Teel

Date: 05/30/2018

Checklist reviewed by: Jessica Wramer

Date: 05/30/2018