AP - 111

LANDFARMS

2019

From: **Caitlin Fields**

Chavez, Carl J, EMNRD To:

Cobrain, Dave, NMENV; Suzuki, Michiya, NMENV; Heidi Jones; Paul Hildebrandt Cc:

[EXT] OCD Landfarm Closure Letter Subject: Date: Wednesday, April 29, 2020 1:11:07 PM

Attachments: image001.png

image002.png image003.png image004.png image005.png image006.png

202004 OCDLandfarmClosure LTR Signed.pdf

Hi Carl,

Please find Marathon's response to the requests made by OCD regarding the Central OCD Landfarm Closure Request at the Gallup Refinery. Marathon would like to request the closure of the OCD Landfarm independent of NMED. Please let us know if you have any questions.

Thank you, Caitlin

Caitlin Fields Associate Engineer

OUR SAFETY IS MY RESPONSIBILITY

1252 Commerce Drive Laramie, Wyoming 82070 (307) 745-7474 (phone) (307) 745-7729 (fax) cfields@trihydro.com

Connect with us on:

CONFIDENTIAL INFORMATION: This electronic message is intended only for the use of the person or entity to which it is addressed and may contain information that is privileged and confidential, the disclosure of which is governed by applicable law. If the reader of this message is not the intended recipient, or the employee or agent responsible for delivering it to the intended recipient, you are hereby notified that any dissemination, distribution or copying of this information is STRICTLY PROHIBITED. If you have received this message in error, please immediately notify the sender by either email or telephone. Please destroy the related message. Thank you for your cooperation.

Western Refining Southwest, Inc.

A subsidiary of Marathon Petroleum Corporation

92 Giant Crossing Road Jamestown, NM 87347 Tel: 505.722.3833

April 28, 2020

Mr. Carl J. Chavez
New Mexico Oil Conservation Division
Energy Minerals and Natural Resources Department
1220 South St Francis Drive
Santa Fe, New Mexico 87505

RE: Request for Closure, Central Oil Conservation Division Landfarm Marathon Petroleum Company LP, Gallup Refinery

EPA ID# NMD000333211

Dear Mr. Chavez:

The Marathon Petroleum Company LP (MPC) Gallup Refinery (Refinery) is submitting this correspondence to the Oil Conservation Division (OCD) to request closure of the Central OCD Landfarm (Landfarm) and to clarify requests made by OCD on March 24, 2020. As concluded in the *OCD Landfarm Closure Request* letter of January 16, 2020, the Refinery does not believe that the referenced chloride exceedances are the result of Landfarm operation. Accordingly, the Refinery does not believe that the chloride exceedances and investigation of Pond 10 need to be addressed prior to Landfarm closure as requested in OCD March 24, 2020 correspondence.

MPC received an approval from the New Mexico Environmental Department (NMED) for the *Response* to Comments NMED Approval with Modifications Letter Dated March 17, 2017 [Chloride Exceedance Excavation Report] on May 16, 2019 regarding a previously submitted report. NMED Comment 2, in that approval, states that "a work plan to install soil borings to collect soil samples of the underlying native soils, pond sediments, and the upper zone waste" needs to be submitted but no due date was stated in the letter.

OCD, in a March 24, 2020 email, agreed with the findings of the OCD Landfarm Closure Plan Report, but preferred "to await the results of the deeper environmental investigation of former Evaporation Pond 10" requested by NMED in the above-referenced Approval Letter. As stated above, Pond 10 which lies within the footprint of the Landfarm, will be investigated when MPC deems the Landfarm is accessible per the RCRA permit. MPC considers that the Landfarm is not accessible in part because the OCD Landfarm is not closed.

Therefore, MPC is requesting that the OCD formally grant MPC closure of the Central OCD Landfarm. If OCD believes that insufficient information is available for Landfarm closure, MPC will work with OCD to

92 Giant Crossing Road Gallup, NM 87301

develop a workplan and sampling program to address their concerns. In addition, MPC will include OCD on any communications with NMED related to the Pond 10 investigation.

Upon OCD approval of this request, the Refinery shall proceed with closure in general accordance with NMAC Rule 36 and the submittal of Form C-137 EZ and its requirements. If you have any questions or comments, please do not hesitate to call Brian Moore at 505-726-9745.

Certification

Icertify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Marathon Petroleum Company LP, Gallup Refinery

Robert S. Hanks

Robert S. Hanks Refinery General Manager

cc D. Cobrain, NMED HWB

M. Suzuki, NMED HWB

B. Moore, Marathon Gallup Refinery

H. Jones, Trihydro Corporation

From: Chavez, Carl J, EMNRD

To: Moore, Brian; "Scott Crouch"

Cc: Griswold, Jim, EMNRD; Wade, Gabriel, EMNRD; Cobrain, Dave, NMENV; Suzuki, Michiya, NMENV

Subject: OCD Centralized Landfarm (Former Evaporation Pond 10) Closure Plan Report

Date: Tuesday, March 24, 2020 8:57:00 AM

Brian, et al.:

The New Mexico Oil Conservation Division (OCD) has completed review of the above subject closure plan report.

While OCD agrees with the findings of the report, OCD prefers to await the results of the deeper environmental investigation of former Evaporation Pond 10 requested by the New Mexico Environment Department to assess the complete investigation of the area of concern before issuing a final determination.

Please contact me if you have questions. Thank you.

Mr. Carl J. Chavez, CHMM (#13099) New Mexico Oil Conservation Division (Albuquerque Office) Energy Minerals and Natural Resources Department 5200 Oakland Avenue, NE Albuquerque, New Mexico 87113 Ph. (505) 660-7923

E-mail: CarlJ.Chavez@state.nm.us

"Why not prevent pollution, minimize waste to reduce operating costs, reuse or recycle, and move forward with the rest of the Nation?" (To see how, go to: http://www.emnrd.state.nm.us/OCD and see "Publications")

January 6, 2020

Mr. Carl J. Chavez
New Mexico Oil Conservation Division
Energy Minerals and Natural Resources Department
1220 South St Francis Drive
Santa Fe, New Mexico 87505

RE: Request for Closure, Central Oil Conservation Division Landfarm

Marathon Petroleum Company LP, Gallup Refinery

EPA ID# NMD000333211

Dear Mr. Chavez:

The Marathon Petroleum Company LP Gallup Refinery (Refinery) is submitting this correspondence to the Oil Conservation Division (OCD) to request closure of the Central OCD Landfarm (Landfarm). To support this recommendation, the Refinery is re-submitting the September and October 2016 Chloride Exceedance Excavation Report (under Marathon's letterhead). The report is provided as Attachment A. As concluded in the report, the Refinery does not believe that the referenced chloride exceedances are the result of Landfarm operation. Accordingly, the Refinery does not believe that the chloride exceedances need to be addressed prior to Landfarm closure.

The Refinery has conducted semiannual Landfarm sampling since the original submittal of the above-referenced report (January 2017). To further support the closure recommendation, this submittal includes a data summary and evaluation of the DiSorbo-collected data. The semiannual data were collected from randomly selected locations within the Landfarm in general accordance with New Mexico Administrative Code (NMAC) Rule 36 (19.15.36 NMAC). For each semiannual sampling event, four samples were collected from the treatment zone and four samples from the vadose zone. Lab reports for the data are included as an Attachment B, and a Tier II data validation report for the June 2019 sampling event (the most recent sampling event) is provided as (Attachment C). The June 2019 data received additional validation because it is this data set that the Refinery is using to support the Landfarm closure request.

The June 2019 sampling data were compared to OCD Form C-137 EZ closure performance standards and alternative beneficial reuse soil screening levels (ABRSC). ABRSCs were developed by the Refinery conditionally approved by OCD in a letter dated November 4, 2011, and have been used to conduct Landfarm evaluations since that time. Rule 36 closure criteria rely on evaluation of treatment zone data; June 2019 treatment zone and vadose zone data are provided in Table 1. No sampling results (treatment zone or vadose zone) exceed the above-referenced standards/screening levels for the June 2019 sampling event.

The Refinery would like to move forward with the closure of the Central OCD Landfarm. Upon OCD approval of this request, the Refinery shall proceed with closure in general accordance with NMAC Rule 36 and the submittal of Form C-137 EZ and its requirements. If you have any questions or comments, please do not hesitate to call Brian Moore at 505-726-9745.

Certification

Icertify under penalty of law that this document and all attachments were prepared under my direction or supervision according to a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sincerely,

Marathon Petroleum Company LP, Gallup Refinery

Robert S. Hanks

Refinery General Manager

Robert S. Harls

Enclosures

cc B. Moore Marathon Gallup Refinery

Table

		1,1,1,2-		1,1,2,2-					
Sample ID	Date Sampled	Tetrachloroethane	1,1,1-Trichloroethane	Tetrachloroethane	1,1,2-Trichloroethane	1,1-Dichloroethane	1,1-Dichloroethene	1,1-Dichloropropene	1,2,3-Trichlorobenzene
·	·	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.096)
	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.1)
CentralOCD-TZ02-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.099)	ND(0.099)
CentralOCD-TZ03-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.099)	ND(0.099)
CentralOCD-VZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.096)
CentralOCD-VZ02-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.097)	ND(0.097)
CentralOCD-VZ03-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.096)
CentralOCD-VZ04-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.098)	ND(0.098)

Action Level and ABRSC	NA	64,300	NA	1,240	6,880	1,830	NA	NA
NMAC Closure Standard	NA	ŇA	NA	NA	NA	NA	NA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect
NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	1,2,3-Trichloropropane (mg/kg)	1,2,4-Trichlorobenzene (mg/kg)	1,2,4-Trimethylbenzene (mg/kg)	1,2-Dibromo- 3-chloropropane (mg/kg)	1,2-Dibromoethane (mg/kg)	1,2-Dichlorobenzene (mg/kg)	1,2-Dichloroethane (mg/kg)	1,2-Dichloropropane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.096)	ND(0.23)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.048)
	06/27/19	ND(0.1)	ND(0.2)	ND(0.05)	ND(0.1)	ND(0.05)	ND(0.2)	ND(0.05)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.099)	ND(0.19)	ND(0.049)	ND(0.099)	ND(0.049)	ND(0.19)	ND(0.049)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(0.1)	ND(2.1)	ND(0.05)	ND(0.1)	ND(0.05)	ND(2.1)	ND(0.05)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(0.099)	ND(2)	ND(0.05)	ND(0.099)	ND(0.05)	ND(2)	ND(0.05)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(0.096)	ND(2)	ND(0.048)	ND(0.096)	ND(0.048)	ND(2)	ND(0.048)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.097)	ND(0.21)	ND(0.048)	ND(0.097)	ND(0.048)	ND(0.21)	ND(0.048)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.096)	ND(0.23)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.098)	ND(0.47)	ND(0.049)	ND(0.098)	ND(0.049)	ND(0.47)	ND(0.049)	ND(0.049)

Action Level and ABRSC	NA	NA	NA	NA	NA	NA	751	NA
NMAC Closure Standard	NA	NA						

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect
NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	1,3,5-Trimethylbenzene (mg/kg)	1,3-Dichlorobenzene (mg/kg)	1,3-Dichloropropane (mg/kg)	1,4-Dichlorobenzene (mg/kg)	1-Methylnaphthalene (mg/kg)	2,2-Dichloropropane (mg/kg)	2,2'-oxybis (1-Chloropropane) (mg/kg)	2,4,5-Trichlorophenol (mg/kg)
ControlOCD T704 06272040	06/07/40	ND(0.048)	ND(0.23)			ND(0.23)	ND(0.096)	ND(0.23)	
CentralOCD-TZ01-06272019	06/27/19	,	,	ND(0.048)	ND(0.23)	` ,	` ,	` ,	ND(0.23)
	06/27/19	ND(0.05)	ND(0.2)	ND(0.05)	ND(0.2)	ND(0.2)	ND(0.1)	ND(0.2)	ND(0.2)
CentralOCD-TZ02-06272019	06/27/19	ND(0.049)	ND(0.19)	ND(0.049)	ND(0.19)	ND(0.2)	ND(0.099)	ND(0.19)	ND(0.19)
CentralOCD-TZ03-06272019	06/27/19	ND(0.05)	ND(2.1)	ND(0.05)	ND(2.1)	ND(2.1)	ND(0.1)	ND(2.1)	ND(2.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.05)	ND(2)	ND(0.05)	ND(2)	ND(2)	ND(0.099)	ND(2)	ND(2)
CentralOCD-VZ01-06272019	06/27/19	ND(0.048)	ND(2)	ND(0.048)	ND(2)	ND(2)	ND(0.096)	ND(2)	ND(2)
CentralOCD-VZ02-06272019	06/27/19	ND(0.048)	ND(0.21)	ND(0.048)	ND(0.21)	ND(0.21)	ND(0.097)	ND(0.21)	ND(0.21)
CentralOCD-VZ03-06272019	06/27/19	ND(0.048)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.096)	ND(0.23)	ND(0.23)
CentralOCD-VZ04-06272019	06/27/19	ND(0.049)	ND(0.47)	ND(0.049)	ND(0.47)	ND(0.47)	ND(0.098)	ND(0.47)	ND(0.47)

Action Level and ABRSC	NA	NA	NA	NA	0.6	NA	NA	23,800
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	ŇA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	2,4,6-Trichlorophenol (mg/kg)	2,4-Dichlorophenol (mg/kg)	2,4-Dimethylphenol (mg/kg)	2,4-Dinitrophenol (mg/kg)	2,4-Dinitrotoluene (mg/kg)	2,6-Dinitrotoluene (mg/kg)	2-Butanone (mg/kg)	2-Chloronaphthalene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.47)	ND(0.35)	ND(0.59)	ND(0.59)	ND(0.59)	0.1 J	ND(0.29)
	06/27/19	ND(0.2)	ND(0.4)	ND(0.3)	ND(0.5)	ND(0.5)	ND(0.5)	0.069 J	ND(0.25)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.37)	ND(0.28)	ND(0.46)	ND(0.46)	ND(0.46)	0.084 J	ND(0.23)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(4.3)	ND(3.2)	ND(5.4)	ND(5.4)	ND(5.4)	0.1 J	ND(2.7)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(4.1)	ND(3)	ND(5.1)	ND(5.1)	ND(5.1)	0.081 J	ND(2.5)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(3.9)	ND(2.9)	ND(4.9)	ND(4.9)	ND(4.9)	0.073 J	ND(2.4)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.42)	ND(0.31)	ND(0.52)	ND(0.52)	ND(0.52)	0.078 J	ND(0.26)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.46)	ND(0.34)	ND(0.57)	ND(0.57)	ND(0.57)	ND(0.48)	ND(0.29)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.94)	ND(0.71)	ND(1.2)	ND(1.2)	ND(1.2)	0.096 J	ND(0.59)

Action Level and ABRSC	238	715	4,760	476	NA	NA	NA	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	2-Chlorophenol (mg/kg)	2-Chlorotoluene (mg/kg)	2-Hexanone (mg/kg)	2-Methylnaphthalene (mg/kg)	2-Methylphenol (mg/kg)	2-Nitroaniline (mg/kg)	2-Nitrophenol (mg/kg)	3,3'-Dichlorobenzidine (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.48)	ND(0.23)	ND(0.47)	ND(0.23)	ND(0.23)	ND(0.29)
	06/27/19	ND(0.2)	ND(0.05)	ND(0.5)	ND(0.2)	ND(0.4)	ND(0.2)	ND(0.2)	ND(0.25)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.049)	ND(0.49)	ND(0.2)	ND(0.37)	ND(0.19)	ND(0.19)	ND(0.23)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.05)	ND(0.5)	ND(2.1)	ND(4.3)	ND(2.1)	ND(2.1)	ND(2.7)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.05)	ND(0.5)	ND(2)	ND(4.1)	ND(2)	ND(2)	ND(2.5)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.048)	ND(0.48)	ND(2)	ND(3.9)	ND(2)	ND(2)	ND(2.4)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.048)	ND(0.48)	ND(0.21)	ND(0.42)	ND(0.21)	ND(0.21)	ND(0.26)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.48)	ND(0.23)	ND(0.46)	ND(0.23)	ND(0.23)	ND(0.29)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.049)	ND(0.49)	ND(0.47)	ND(0.94)	ND(0.47)	ND(0.47)	ND(0.59)

Action Level and ABRSC	1,550	NA	NA	0.6	0.1	NA	0.1	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

				2-Methyl-4,6-	4-Bromophenyl			4-Chlorophenyl	
Sample ID	Date Sampled	3,4-Methylphenol	3-Nitroaniline	dinitrophenol	phenyl ether	4-Chloro-3-Methylphenol	4-Chloroaniline	phenyl ether	4-Chlorotoluene
· .		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.47)	ND(0.23)	ND(0.59)	ND(0.59)	ND(0.23)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.4)	ND(0.2)	ND(0.5)	ND(0.5)	ND(0.2)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.37)	ND(0.19)	ND(0.46)	ND(0.46)	ND(0.19)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(4.3)	ND(2.1)	ND(5.4)	ND(5.4)	ND(2.1)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(4.1)	ND(2)	ND(5.1)	ND(5.1)	ND(2)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(3.9)	ND(2)	ND(4.9)	ND(4.9)	ND(2)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.42)	ND(0.21)	ND(0.52)	ND(0.52)	ND(0.21)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.46)	ND(0.23)	ND(0.57)	ND(0.57)	ND(0.23)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.94)	ND(0.47)	ND(1.2)	ND(1.2)	ND(0.47)	ND(0.049)

	2.4		22.2		2.1	114		N I A
Action Level and ABRSC	0.1	NA	23.8	NA	0.1	NA	NA	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect
NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	4-Methyl-2-Pentanone (mg/kg)	4-Nitroaniline (mg/kg)	4-Nitrophenol (mg/kg)	Acenaphthene (mg/kg)	Acenaphthylene (mg/kg)	Acetone (mg/kg)	Aniline (mg/kg)	Anthracene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.48)	ND(0.47)	ND(0.29)	ND(0.23)	ND(0.23)	ND(0.72)	ND(0.23)	ND(0.23)
	06/27/19	ND(0.5)	ND(0.4)	ND(0.25)	ND(0.2)	ND(0.2)	ND(0.75)	ND(0.2)	ND(0.2)
CentralOCD-TZ02-06272019	06/27/19	ND(0.49)	ND(0.37)	ND(0.23)	ND(0.19)	ND(0.19)	ND(0.74)	ND(0.19)	ND(0.19)
CentralOCD-TZ03-06272019	06/27/19	ND(0.5)	ND(4.3)	ND(2.7)	ND(2.1)	ND(2.1)	ND(0.75)	ND(2.1)	ND(2.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.5)	ND(4.1)	ND(2.5)	ND(2)	ND(2)	ND(0.74)	ND(2)	ND(2)
CentralOCD-VZ01-06272019	06/27/19	ND(0.48)	ND(3.9)	ND(2.4)	ND(2)	ND(2)	ND(0.72)	ND(2)	ND(2)
CentralOCD-VZ02-06272019	06/27/19	ND(0.48)	ND(0.42)	ND(0.26)	ND(0.21)	ND(0.21)	ND(0.73)	ND(0.21)	ND(0.21)
CentralOCD-VZ03-06272019	06/27/19	ND(0.48)	ND(0.46)	ND(0.29)	ND(0.23)	ND(0.23)	ND(0.72)	ND(0.23)	ND(0.23)
CentralOCD-VZ04-06272019	06/27/19	ND(0.49)	ND(0.94)	ND(0.59)	ND(0.47)	ND(0.47)	ND(0.74)	ND(0.47)	ND(0.47)

Action Level and ABRSC	NA	NA	0.1	18,600	0.6	NA	NA	66,800
NMAC Closure Standard	NA	NA	NA	ŇA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect
NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Azobenzene (mg/kg)	Benzene (mg/kg)	Benzo(a)anthracene (mg/kg)	Benzo(a)pyrene (mg/kg)	Benzo(b)fluoranthene (mg/kg)	Benzo(ghi)perylene (mg/kg)	Benzo(k)fluoranthene (mg/kg)	Benzoic Acid (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.024)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	0.12 J
	06/27/19	ND(0.2)	ND(0.025)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.025)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)	0.096 J
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.025)	ND(2.1)	ND(2.1)	ND(2.1)	ND(2.1)	ND(2.1)	ND(5.4)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.025)	1.1 J	ND(2)	ND(2)	ND(2)	ND(2)	1.1 J
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.024)	ND(2)	ND(2)	ND(2)	ND(2)	ND(2)	ND(4.9)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.024)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	0.11 J
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.024)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.57)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.025)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	0.24 J

Action Level and ABRSC	NA	0.2	213	21.3	213	0.6	2,060	NA
NMAC Closure Standard	NA	0.2	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Benzyl Alcohol (mg/kg)	Bis(2-chloroethoxy) methane (mg/kg)	Bis(2-chloroethyl)ether (mg/kg)	Bis(2-ethylhexyl) phthalate (mg/kg)	Bromobenzene (mg/kg)	Bromodichloromethane (mg/kg)	Bromoform (mg/kg)	Bromomethane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.59)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.14)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.15)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.19)	0.14 J	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(2.1)	ND(5.4)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.15)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(5.1)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.15)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(4.9)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.14)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.21)	0.28 J	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.15)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.57)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.14)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.47)	ND(1.2)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.15)

| Action Level and ABRSC | NA |
|------------------------|----|----|----|----|----|----|----|----|
| NMAC Closure Standard | NA |

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Benzyl Butyl Phthalate (mg/kg)	Carbazole (mg/kg)	Carbon Disulfide (mg/kg)	Carbon Tetrachloride (mg/kg)	Chlorobenzene (mg/kg)	Chloroethane (mg/kg)	Chloroform (mg/kg)	Chloromethane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.14)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.05)	ND(0.15)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.49)	ND(0.049)	ND(0.049)	ND(0.099)	ND(0.049)	ND(0.15)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.1)	ND(0.05)	ND(0.15)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(0.5)	ND(0.05)	ND(0.05)	ND(0.099)	ND(0.05)	ND(0.15)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.14)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.097)	ND(0.048)	ND(0.15)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.48)	ND(0.048)	ND(0.048)	ND(0.096)	ND(0.048)	ND(0.14)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.49)	ND(0.049)	ND(0.049)	ND(0.098)	ND(0.049)	ND(0.15)

Action Level and ABRSC	NA	NA	NA	199	NA	NA	671	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Chrysene (mg/kg)	cis-1,2-Dichloroethene (mg/kg)	cis-1,3-Dichloropropene (mg/kg)	Dibenz(a,h)anthracene (mg/kg)	Dibenzofuran (mg/kg)	Dibromochloromethane (mg/kg)	Dibromomethane (mg/kg)	Dichlorodifluoromethane (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.05)	ND(0.05)	ND(0.2)	ND(0.2)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.049)	ND(0.049)	ND(0.19)	ND(0.19)	ND(0.049)	ND(0.049)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.05)	ND(0.05)	ND(2.1)	ND(2.1)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.05)	ND(0.05)	ND(2)	ND(2)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.048)	ND(0.048)	ND(2)	ND(2)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.048)	ND(0.048)	ND(0.21)	ND(0.21)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.049)	ND(0.049)	ND(0.47)	ND(0.47)	ND(0.049)	ND(0.049)	ND(0.049)

Action Level and ABRSC	20,600	NA	NA	21.3	NA	NA	0.002	NA
NMAC Closure Standard	ŇA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Diethyl Phthalate (mg/kg)	Dimethyl Phthalate (mg/kg)	Di-n-butylphthalate (mg/kg)	Di-n-octylphthalate (mg/kg)	Ethylbenzene (mg/kg)	Fluoranthene (mg/kg)	Fluorene (mg/kg)	Hexachlorobenzene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.47)	ND(0.47)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.23)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.4)	ND(0.4)	ND(0.05)	ND(0.2)	ND(0.2)	ND(0.2)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.37)	ND(0.37)	ND(0.049)	ND(0.19)	ND(0.19)	ND(0.19)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(4.3)	ND(4.3)	ND(0.05)	ND(2.1)	ND(2.1)	ND(2.1)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(4.1)	ND(4.1)	ND(0.05)	ND(2)	ND(2)	ND(2)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(3.9)	ND(3.9)	ND(0.048)	ND(2)	ND(2)	ND(2)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	0.23 J	ND(0.42)	ND(0.048)	ND(0.21)	ND(0.21)	ND(0.21)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.46)	ND(0.46)	ND(0.048)	ND(0.23)	ND(0.23)	ND(0.23)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.94)	ND(0.94)	ND(0.049)	ND(0.47)	ND(0.47)	ND(0.47)

Action Level and ABRSC	NA	NA	NA	NA	50	8,910	8,910	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Hexachlorobutadiene (mg/kg)	Hexachloro cyclopentadiene (mg/kg)	Hexachloroethane (mg/kg)	Indeno-(1,2,3-cd)pyrene (mg/kg)	Isophorone (mg/kg)	Isopropylbenzene (mg/kg)	Methylene Chloride (mg/kg)	MTBE (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.47)	ND(0.048)	ND(0.14)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.2)	ND(0.4)	ND(0.05)	ND(0.15)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.19)	ND(0.37)	ND(0.049)	ND(0.15)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(2.1)	ND(2.1)	ND(4.3)	ND(0.05)	ND(0.15)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(2)	ND(4.1)	ND(0.05)	ND(0.15)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(2)	ND(2)	ND(3.9)	ND(0.048)	ND(0.14)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.21)	ND(0.42)	ND(0.048)	ND(0.15)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.23)	ND(0.46)	ND(0.048)	ND(0.14)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.47)	ND(0.94)	ND(0.049)	ND(0.15)	ND(0.049)

Action Level and ABRSC	NA	NA	NA	213	NA	NA	10,600	NA
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	ŃA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Naphthalene (mg/kg)	n-Butylbenzene (mg/kg)	Nitrobenzene (mg/kg)	Nitrogen, Nitrate (mg/kg)	N-Nitrosodi-n- propylamine (mg/kg)	N-Nitroso diphenylamine (mg/kg)	n-Propylbenzene (mg/kg)	Pentachlorophenol (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.14)	ND(0.47)	4.5 J-	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.47)
	06/27/19	ND(0.2)	ND(0.15)	ND(0.4)	4.9 J-	ND(0.2)	ND(0.2)	ND(0.05)	ND(0.4)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.15)	ND(0.37)	4.2 J-	ND(0.19)	ND(0.19)	ND(0.049)	ND(0.37)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(0.15)	ND(4.3)	13 J-	ND(2.1)	ND(2.1)	ND(0.05)	ND(4.3)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(0.15)	ND(4.1)	4 J-	ND(2)	ND(2)	ND(0.05)	ND(4.1)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(0.14)	ND(3.9)	2.4 J-	ND(2)	ND(2)	ND(0.048)	ND(3.9)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.15)	ND(0.42)	2 J-	ND(0.21)	ND(0.21)	ND(0.048)	ND(0.42)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.14)	ND(0.46)	6.7 J-	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.46)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.15)	ND(0.94)	3.1 J-	ND(0.47)	ND(0.47)	ND(0.049)	ND(0.94)

Action Level and ABRSC	702	NA	NA	496,000	NA	NA	NA	1,030
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	ΝA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Phenanthrene (mg/kg)	Phenol (mg/kg)	p-Isopropyltoluene (mg/kg)	Pyrene (mg/kg)	Pyridine (mg/kg)	sec-Butylbenzene (mg/kg)	Styrene (mg/kg)	tert-Butylbenzene (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.47)	ND(0.048)	ND(0.048)	ND(0.048)
	06/27/19	ND(0.2)	ND(0.2)	ND(0.05)	ND(0.2)	ND(0.4)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ02-06272019	06/27/19	ND(0.19)	ND(0.19)	ND(0.049)	ND(0.19)	ND(0.37)	ND(0.049)	ND(0.049)	ND(0.049)
CentralOCD-TZ03-06272019	06/27/19	ND(2.1)	ND(2.1)	ND(0.05)	ND(2.1)	ND(4.3)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-TZ04-06272019	06/27/19	ND(2)	ND(2)	ND(0.05)	ND(2)	ND(4.1)	ND(0.05)	ND(0.05)	ND(0.05)
CentralOCD-VZ01-06272019	06/27/19	ND(2)	ND(2)	ND(0.048)	ND(2)	ND(3.9)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ02-06272019	06/27/19	ND(0.21)	ND(0.21)	ND(0.048)	ND(0.21)	ND(0.42)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ03-06272019	06/27/19	ND(0.23)	ND(0.23)	ND(0.048)	ND(0.23)	ND(0.46)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ04-06272019	06/27/19	ND(0.47)	ND(0.47)	ND(0.049)	ND(0.47)	ND(0.94)	ND(0.049)	ND(0.049)	ND(0.049)

Action Level and ABRSC	7,150	68,800	NA	6,680	NA	NA	NA	NA
NMAC Closure Standard	NA	ŇA	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

trans-1,	3-
----------	----

Sample ID	Date Sampled	Tetrachloroethene (mg/kg)	Toluene (mg/kg)	trans-1,2-Dichloroethene (mg/kg)	Dichloropropene (mg/kg)	Trichloroethene (mg/kg)	Trichlorofluoromethane (mg/kg)	Vinyl Chloride (mg/kg)	Xylenes, Total (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)
	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)
CentralOCD-TZ02-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.099)
CentralOCD-TZ03-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.1)
CentralOCD-TZ04-06272019	06/27/19	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.05)	ND(0.099)
CentralOCD-VZ01-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)
CentralOCD-VZ02-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.097)
CentralOCD-VZ03-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.096)
CentralOCD-VZ04-06272019	06/27/19	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.049)	ND(0.098)

Action Level and ABRSC	338	50	NA	NA	4,600	NA	248	50
NMAC Closure Standard	NA	NA	NA	NA	NA	NA	NA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Chloride (mg/kg)	Fluoride, Total (mg/kg)	Sulfate (mg/kg)	Mercury, Total (mg/kg)	Arsenic, Total (mg/kg)	Barium, Total (mg/kg)	Cadmium, Total (mg/kg)	Chromium, Total (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	140	7.3	990	0.0068 J	ND(4.9)	350	ND(0.2)	13
	06/27/19	160	5.4 J-	920	0.043	ND(5)	300	ND(0.2)	14
CentralOCD-TZ02-06272019	06/27/19	150	10 J-	700	0.14	3.4 J	320	ND(0.2)	13
CentralOCD-TZ03-06272019	06/27/19	330	7.1	1300	0.094	ND(5.1)	260	ND(0.2)	15
CentralOCD-TZ04-06272019	06/27/19	300	14	1500	0.077	ND(5)	350	ND(0.2)	16
CentralOCD-VZ01-06272019	06/27/19	240	3.7 J-	740	0.018 J	2.9 J	180	ND(0.2)	15
CentralOCD-VZ02-06272019	06/27/19	150	3.1 J-	850	0.0051 J	ND(5.1)	240	ND(0.2)	16
CentralOCD-VZ03-06272019	06/27/19	180	5.2	650	0.0053 J	ND(5)	290	ND(0.2)	14
CentralOCD-VZ04-06272019	06/27/19	280	2.4	550	0.0043 J	ND(4.9)	260	ND(0.2)	15

Action Level and ABRSC	500	18,600	12,000	63.6	65.4	4,350	309	447,000
NMAC Closure Standard	500	ŇA	ŇA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect
NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Copper, Total (mg/kg)	Cyanide, Total (mg/kg)	Iron, Total (mg/kg)	Lead, Total (mg/kg)	Manganese, Total (mg/kg)	Selenium, Total (mg/kg)	Silver, Total (mg/kg)	Uranium, Total (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	4 J	0.89 J-	17000	2.9	450	3.3 J	ND(0.49) UJ	ND(9.8) UJ
	06/27/19	12 J	ND(0.25) UJ	18000	3.4	380	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-TZ02-06272019	06/27/19	17	ND(0.25) UJ	16000	3.9	410	ND(5)	ND(0.5) UJ	ND(9.9) UJ
CentralOCD-TZ03-06272019	06/27/19	15	ND(0.25) UJ	20000	5.8	400	ND(5.1)	ND(0.51) UJ	ND(10) UJ
CentralOCD-TZ04-06272019	06/27/19	7	ND(0.25) UJ	17000	20	430	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-VZ01-06272019	06/27/19	4.1	ND(0.25) UJ	18000	ND(0.5)	340	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-VZ02-06272019	06/27/19	4.2	ND(0.25) UJ	21000	1.8	370	3 J	ND(0.51) UJ	ND(10) UJ
CentralOCD-VZ03-06272019	06/27/19	7.4	ND(0.25) UJ	19000	3.1	430	ND(5)	ND(0.5) UJ	ND(10) UJ
CentralOCD-VZ04-06272019	06/27/19	3.9	0.27 J-	18000	3	400	3.5 J	ND(0.49) UJ	ND(9.8) UJ

Action Level and ABRSC	12,400	6,190	217,000	800	463	1,550	1,550	929
NMAC Closure Standard	ŇA	ŃΑ	ŃA	NA	NA	ŃΑ	ΝA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Zinc, Total (mg/kg)	Total Petroleum Hydrocarbon (mg/kg)	Diesel Range Organics (mg/kg)	Gasoline Range Organics (mg/kg)	Motor Oil (mg/kg)	Aroclor-1016 (mg/kg)	Aroclor-1221 (mg/kg)	Aroclor-1232 (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	24	5.6 J	24 J	ND(4.8)	ND(49)	ND(0.024)	ND(0.024)	ND(0.024)
	06/27/19	33	ND(19)	ND(8.5) UJ	ND(5)	ND(43)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ02-06272019	06/27/19	59	54	33	ND(4.9)	57	ND(0.025)	ND(0.025)	ND(0.025)
CentralOCD-TZ03-06272019	06/27/19	53	52	87	ND(5)	110	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ04-06272019	06/27/19	49	600	490	ND(5)	480	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ01-06272019	06/27/19	21	ND(19)	ND(9.6)	ND(4.8)	ND(48)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-VZ02-06272019	06/27/19	23	ND(20)	ND(8.6)	ND(4.8)	ND(43)	ND(0.018)	ND(0.018)	ND(0.018)
CentralOCD-VZ03-06272019	06/27/19	47	ND(19)	ND(9.9)	ND(4.8)	ND(50)	ND(0.024)	ND(0.024)	ND(0.024)
CentralOCD-VZ04-06272019	06/27/19	24	ND(20)	ND(10)	ND(4.9)	ND(50)	ND(0.024)	ND(0.024)	ND(0.024)

Action Level and ABRSC	92,900	2,500	NA	NA	NA	15.3	71.3	71.3
NMAC Closure Standard	ŃA	2,500	NA	NA	NA	NA	NA	NA

Notes:

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect

NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Sample ID	Date Sampled	Aroclor-1242 (mg/kg)	Aroclor-1248 (mg/kg)	Aroclor-1254 (mg/kg)	Aroclor-1260 (mg/kg)
CentralOCD-TZ01-06272019	06/27/19	ND(0.024)	ND(0.024)	ND(0.024)	ND(0.024)
	06/27/19	ND(0.023)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ02-06272019	06/27/19	ND(0.025)	ND(0.025)	ND(0.025)	ND(0.025)
CentralOCD-TZ03-06272019	06/27/19	ND(0.023)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-TZ04-06272019	06/27/19	ND(0.048)	ND(0.048)	ND(0.048)	ND(0.048)
CentralOCD-VZ01-06272019	06/27/19	ND(0.023)	ND(0.023)	ND(0.023)	ND(0.023)
CentralOCD-VZ02-06272019	06/27/19	ND(0.018)	ND(0.018)	ND(0.018)	ND(0.018)
CentralOCD-VZ03-06272019	06/27/19	ND(0.024)	ND(0.024)	ND(0.024)	ND(0.024)
CentralOCD-VZ04-06272019	06/27/19	ND(0.024)	ND(0.024)	ND(0.024)	ND(0.024)

Action Level and ABRSC	75.8	75.8	4.36	75.8
NMAC Closure Standard	NA	NA	NA	NA

There are no Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances. Dup - Duplicate

J - Estimated concentration
J - Estimated concentration, but may be biased low
mg/kg - milligrams per kilogram
NA - Not Applicable
ND - Non-Detect
NMAC - New Mexico Administrative Code

OCD - Oil Conservation Division

UJ - Estimated reporting limit

Appendix A

MARATHON REFINING LOGISTICS SERVICES SEPTEMBER AND OCTOBER 2016 CHLORIDE EXCEEDANCE EXCAVATION REPORT

Table of Contents

Background	3
Excavation Extents and Confirnation Sampling Results	
Former Evaporation Pond #10	
Proposed Path Forward	
Γables	
Figures	
Appendix A: September 2016 and October 2016 Analytical Laboratory Reports	8
Appendix B: September 2016 and October 2016 Tier II Data Validation Reports	9

Marathon Petroleum Company, Gallup Refining Division (Gallup) is submitting this report to present the results of chloride-contaminated soil excavation and confirmation sampling conducted in accordance with the "Chloride Exceedance Response Action Plan, Central Oil Conservation Division Landfarm, Western Refining Company Southwest, Inc., Gallup Refinery, Gallup, New Mexico" (Response Action Plan), dated July 26, 2016. This report is also intended to inform the Oil Conservation Division (OCD) of a non-landfarm potential alternate chloride source believed to be the cause of the elevated chloride concentrations reported in samples collected from the vadose zone beneath the Central OCD Landfarm.

Background

Semiannual vadose zone monitoring is conducted at random locations in accordance with New Mexico Administrative Code (NMAC) Rule 36 (19.15.36 NMAC). The landfarm has been divided into 6 foot (ft) by 6 ft grids to assist with random sample location selection. As required by the Response Action Plan, Gallup excavated chloride-contaminated soil associated with two these grids. Chloride contamination was originally identified within these grids during the April 2016 semiannual vadose zone sampling event and the June 2016 confirmation sampling event. Per the Response Action Plan, soils with chloride concentrations in excess of the 500 milligram per kilogram (mg/kg) action level/alternate beneficial reuse screening concentration (ABRSC) were to be excavated. Confirmation samples were to be collected from the floor of the excavations, as well as the from the sidewalls of the excavation at the depths of the original exceedances (6 ft below ground surface (bgs)) in the four cardinal directions. The excavations were to be extended or deepened in the direction of chloride concentrations in excess of 500 mg/kg, as determined via the confirmation sampling.

Excavation Extents and Confirmation Sampling Results

Excavation of chloride contaminated soils began in September 2016 and continued through October 2016. Gallup contracted Trihydro Corporation (Trihydro) to oversee excavation completion and collect confirmation samples. The two grids scheduled for excavation were grids 1021 and 2271. The excavations associated with each grid are shown on Figure 1. Confirmation sampling results are summarized in Table 1. Analytical laboratory reports and data validation reports are provided as Attachments A and B, respectively.

As shown in Table 1, the chloride concentrations reported for the September 2016 floor and sidewall samples associated with Grid 1021 are below the 500 mg/kg action level/ARBSC. Accordingly, the excavation of chloride-

contaminated soil associated with Grid 1021 was deemed complete. The approximate excavation extents are illustrated on Figure 1, and the total depth of the excavation is 8 ft bgs.

Chloride concentrations reported for two of the September 2016 sidewall samples associated with Grid 2271 exceed the 500 mg/kg action level/ARBSC. In response to these confirmation sample exceedances, the excavation was expanded in the direction of the exceedances and additional confirmation samples were collected. Two such excavation expansion/resampling events were conducted in October 2016, and as shown on Figure 1, sidewall sample exceedances persist on the northern and eastern excavation boundaries. The growing size of the Grid 2271 excavation and the fact that contamination appears to extend to and possibly beyond the berms of the landfarm prompted Gallup and Trihydro to regroup and assess whether the current excavation plans (those outlined in the Response Action Plan) remain appropriate. This resulted in the acknowledgement that the refinery's former Evaporation Pond #10 occupied nearly the exact footprint of the Central OCD Landfarm prior to landfarm operation. Figure 2 illustrates the location of the former Evaporation Pond #10 and the Central OCD Landfarm. As discussed in the following section, former Evaporation Pond # 10 is believed to be the source of the elevated chloride concentrations present in the vadose zone soils beneath the Central OCD Landfarm.

Former Evaporation Pond #10

According to the "Inventory of Solid Waste Management Units", dated June 14, 1985, "cell" or Evaporation Pond # 10 received "wastewater from the boiler house and water softener regeneration wastes". The pond was replaced in 1980 with an in-line neutralization tank. Both of these wastes would be expected to contain elevated chloride concentrations. Since these wastes were stored in the unlined evaporation pond whose footprint is similar to the Central OCD Landfarm prior to landfarm operation, it is likely that the pond may have contributed to the chloride contamination in the area and may be the cause of the vadose zone chloride exceedances.

This idea is further supported by soil data collected from the landfarm's treatment zone over the past four years. Gallup has collected 6 treatment zone samples since 2013 to assist in determining if the landfarm may be eligible for closure or soil reuse. As shown in Table 2, the maximum reported chloride concentration for samples collected from the treatment zone (1 ft bgs) is 310 mg/kg. This is less than the 500 mg/kg action level/ABRSC and far less than some of the more elevated vadose zone samples which are in excess of 2,500 mg/kg (see Table 1). If soils treated in the landfarm were the source of the vadose zone chloride contamination, it would be

expected that the treatment zone chloride concentrations would be greater than the vadose zone chloride concentrations, but the data indicate the opposite. This line of evidence suggests a non-landfarm chloride source.

Proposed Path Forward

OCD Landfarm operation is governed by NMAC Rule 36. The Response Action Plan and subsequent excavations were intended to satisfy Rule 36 requirements and Central OCD Landfarm-specific agreements reached between Gallup and OCD. In light of the information presented in this correspondence, Gallup does not believe that vadose zone chloride concentrations in excess of the 500 mg/kg action level/ABRSC are a result of landfarm operation. Accordingly, Gallup does not believe vadose zone chloride contamination needs be addressed or remedied in accordance with NMAC Rule 36 or previous Central OCD Landfarm-specific agreements. The elevated chloride concentrations are believed to be associated with former Evaporation Pond # 10. Former Evaporation Pond # 10 is part of Solid Waste Management Unit (SWMU) 2. Therefore, Gallup believes that it would be appropriate to address the chloride contaminated soil as part of SWMU 2 remedies.

Gallup does intend to dispose of the already excavated chloride contaminated soil at an off-site disposal facility permitted to receive such wastes and to the fill the excavations with clean fill material. The excavated soil is currently stock piled on plastic sheeting within the landfarm berms. Pending OCD approval of this correspondence, Gallup will begin soil disposal and excavation backfilling.

Gallup is also still considering closure of the Central OCD landfarm. When closure is sought, Gallup believes that closure should still be conducted in general accordance with NMAC Rule 36. However, Central OCD Landfarm-specific agreements reached between Gallup and OCD, as well as the alternate chloride source identified in this correspondence (i.e., former Evaporation Pond # 10) should be taken into consideration. Pending OCD approval of this correspondence, Gallup will discuss closure details and expectations with OCD. If you have any questions or comments, please do not hesitate to call me at (505) 722-0217.

Tables

TABLE 1. CHLORIDE-CONTAMINATED SOIL EXCAVATION CONFIRMATION SAMPLING RESULTS WESTERN REFINING COMPANY SOUTHWEST, INC., GALLUP, NEW MEXICO

Sample Type	Sample ID	Date Sampled	Chloride	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-F	09/06/16	(mg/kg) 270	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-E	09/06/16	130	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-E Dup	09/06/16	110	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-N	09/06/16	160	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-S	09/06/16	280	
Grid 1021 Confirmation Sample	CentralOCD-1021-09062016-SW-W	09/06/16	490	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-F	09/06/16	170	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-E	09/06/16	1500	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-N	09/06/16	2200	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-S	09/06/16	160	
Grid 2271 Confirmation Sample	CentralOCD-2271-09062016-SW-W	09/06/16	300	
Grid 2271 Confirmation Sample	CentralOCD-2271-10062016-SW-E	10/06/16	800	
Grid 2271 Confirmation Sample	CentralOCD-2271-10062016-SW-E Dup	10/06/16	480	
Grid 2271 Confirmation Sample	CentralOCD-2271-10062016-SW-N	10/06/16	790	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-E	10/20/16	640	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-E Dup	10/20/16	600	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-NE	10/20/16	2600	
Grid 2271 Confirmation Sample	CentralOCD-2271-10202016-SW-NW	10/20/16	2600	

Action Level and ABRSC	500

Notes:

Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances are shown in bold font.

TABLE 2. HISTORICAL TREATMENT ZONE CHLORIDE ANALYTICAL DATA SUMMARY WESTERN REFINING COMPANY SOUTHWEST, INC., GALLUP, NEW MEXICO

Sample Type	Sample ID	Date Sampled	Chloride	
			(mg/kg)	
Treatment Zone Sample	CentralOCD-TZ_032713	03/27/13	310	
Treatment Zone Sample	CentralOCD-TZ_091614	09/16/14	130	
Treatment Zone Sample	CentralOCD-TZ-04062015	04/06/15	130	
Treatment Zone Sample	Central OCD-TZ-11242015	11/24/15	280	
Treatment Zone Sample	CentralOCD-TZ-04072016	04/07/16	260 J	
Treatment Zone Sample	CentralOCD-TZ-06162016	06/16/16	290	

Action Level and ABRSC 500

Notes:

Action Level/Alternate Beneficial Reuse Soil Screening Level (ABRSC) exceedances are shown in bold font.

J - Estimated concentration

Figures

FORMER EVAPORATION POND #10 SWMU 2 CENTRAL OCD LANDFARM

LOCATIONS OF FORMER EVAPORATION POND #10 AND THE CENTRAL OCD LANDFARM

> WESTERN REFINING COMPANY L.L.C **GALLUP REFINERY** GALLUP, NEW MEXICO

Drawn By: PH Checked By: GP Scale: 1" = 350'

Date: 12/5/16 File: Gallup_OCDLF_Fig2.mxd

Appendix A: September	r 2016 and Octob	er 2016 Analytica	al Laboratory Reports

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

OrderNo.: 1610A38

November 03, 2016

FAX (505) 722-0210

Ed Riege Western Refining Southwest, Gallup 92 Giant Crossing Road Gallup, NM 87301 TEL: (505) 722-3833

RE: OCD Central Landfarm Semiannual Sampling

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 4 sample(s) on 10/20/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190 Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order: **1610A38**

Date Reported: 11/3/2016

28324

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Lab Order: 1610A38

Project: OCD Central Landfarm Semiannual Sampling

Lab ID: 1610A38-001 **Collection Date:** 10/20/2016 9:38:00 AM

Client Sample ID: CentralOCD-2271-10202016-SW-NW Matrix: SOIL

Analyses Result MDL PQL Qual Units DF Date Analyzed Batch ID

EPA METHOD 300.0: ANIONS

Analyst: LGT

Chloride 2600 31 75 mg/Kg 50 10/29/2016 12:36:19 AM 28324

Lab ID: 1610A38-002 **Collection Date:** 10/20/2016 10:40:00 AM

Client Sample ID: CentralOCD-2271-10202016-SW-NE Matrix: SOIL

Analyses Result MDL PQL Qual Units DF Date Analyzed Batch ID

EPA METHOD 300.0: ANIONS

Analyst: LGT

Chloride 2600 31 75 mg/Kg 50 10/29/2016 12:48:43 AM 28324

Lab ID: 1610A38-003 **Collection Date:** 10/20/2016 11:10:00 AM

Client Sample ID: CentralOCD-2271-10202016-SW-E Matrix: SOIL

Analyses Result MDL PQL Qual Units DF Date Analyzed Batch ID

EPA METHOD 300.0: ANIONS

Analyst: LGT

 EPA METHOD 300.0: ANIONS
 Analyst: LGT

 Chloride
 640
 12
 30
 mg/Kg
 20
 10/27/2016 3:14:33 PM

Lab ID: 1610A38-004 **Collection Date:** 10/20/2016

Client Sample ID: CentralOCD-BD-10202016 Matrix: SOIL

Analyses Result MDL PQL Qual Units DF Date Analyzed Batch ID

 EPA METHOD 300.0: ANIONS
 Analyst: LGT

 Chloride
 600
 12
 30
 mg/Kg
 20
 10/27/2016 3:26:57 PM
 28324

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits Page 1 of 2

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: 1610A38

03-Nov-16

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-28324 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 28324 RunNo: 38293

Prep Date: 10/27/2016 Analysis Date: 10/27/2016 SeqNo: 1194989 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-28324 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 28324 RunNo: 38293

Prep Date: 10/27/2016 Analysis Date: 10/27/2016 SeqNo: 1194990 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 95.4 90 110

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

an the associated Method Blank

Page 2 of 2

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87105

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: Western Refining Gallup	Work Order Number: 16	10A38		Rcptl	No: 1
Received by/date: LC 10 2	edlo				
Logged By: Lindsay Mangin 1	0/20/2016 4:40:00 PM		Simulay How	_P D	
93	0/21/2016 8:47:40 AM		Finaly Hop	₽D	
Reviewed By: 10 21 16				,	
(.)					
Chain of Custody	V	es L	No [Not Present	√ ì
1. Custody seals intact on sample bottles?	•	es 🗸	No L	Not Present	
2. Is Chain of Custody complete?			110		
3. How was the sample delivered?	<u>U</u>	<u>lient</u>			
<u>Log In</u>					
4. Was an attempt made to cool the samples?	`	res 🔽	No [NA NA	[]
Were all samples received at a temperature contact of the samples received at a t	of >0° C to 6.0°C Y	es 🗸	No 🗆] NA [
		Yes 🗸	No L	·	
6. Sample(s) in proper container(s)?	'	103 121			
7. Sufficient sample volume for indicated test(s)	? Y	es 🗹	No [.]	
8. Are samples (except VOA and ONG) properly	preserved? Y	es 🗸	No [.]	
9. Was preservative added to bottles?	Y	res 🗍	No 🛚	NA NA	
10.VOA vials have zero headspace?	Y	es 🛄	No [No VOA Vials	
11. Were any sample containers received broker	n? `	Yes 🛄	No S		
, ,				# of preserved bottles checked	t
12.Does paperwork match bottle labels?	١	res 🗸	No .		(<2 or >12 unless noted)
(Note discrepancies on chain of custody)	Number of Land	∕es 🗸	No [Adjusted	•
13. Are matrices correctly identified on Chain of C14. Is it clear what analyses were requested?		res 🔽	No [
15. Were all holding times able to be met?		res 🔽	No [Checked	by:
(If no, notify customer for authorization.)				l	
Special Handling (if applicable)					l al
16. Was client notified of all discrepancies with the	nis order?	res 📋	No [NA NA	 √ ∴ 1
Person Notified:	Date:			100121	
By Whom:	Via: [eMail	Phone [] F	ax [] In Person	marker .
Regarding:					
Client Instructions:					
17. Additional remarks:					
18. Cooler Information					
Cooler No Temp °C Condition Se		al Date	Signed By	<u>' </u>	
1 2.8 Good Not	Present		<u> </u>	1	

	ANALYSIS LABORATORY	www.hallenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Fax 505-345-4107	Analysis Request			33.		Air Bubbles (Remarks: Please cc Grant Price (gprice@trihydro.com) with results. Call Grant @ 307-745-7474 w/ questions. <u>Data</u>	report and package w/ Irihydro EDD needed within 10 days of reciept.	
	ANALY	www.hallenvi	4901 Hawkins NE	Tel. 505-345-3975	Ana			0.006.	∀d≣	Chloride by I	×	×	×	×								Remarks: Please cc Gran results. Call Grant @ 307-	report and package w/ It days of reciept.	
			inual Sampling					Sitsuic		HEAL NO.	(Q)~	7002	289	150-								Date Time	1925	ישום וווום
ie:	usb.		dfarm Semian					240 C	iture: 2.8	Preservativ e Type	none	none	none	none								6		,
Turn-Around Time:	X Standard	Project Name:	OCD Central Landfarm Semiannual Sampling	Project #:	697-052-004	Project Manager:	Ed Riege	Sampler. On Ice	Sample Temperature: 2. B	Container Type and #	407- 7	T-204	405-1	402-1								Received by:	The last	
Chain-of-Custody Record		Western Refining	Route 3 Box 7				Level 4 (Full Validation)			Sample Request ID	CentralOCD-2271-10202016-SW-NW	CentralOCD-2271-10202016-SW-NE	CentralOCD-2271-10202016-SW-E	CentralOCD-BD-1 00202016					The Principle of the Pr	The state of the s		A	1	
in-of-C	· Refining	stern K			505-722-3833	505-722-0210	_	□ Other	☐ EDD (Type)_Please provide EDD	Matrix	soil	soil	soil	soil								Relinquished by	Roling liched hy	
င်	<u>}</u> ≂ ¥	We	dress:	187301		: X #:	(age:	ü.	rpe)_Phe	Time	s 938	040/s	21118	8 NA							<u> </u>	Time:) ig	
	Client		Mailing Address:	Gallup, NM 87301	Phone #	email or Fax#:	QA/QC Package:	Accreditation:	CI EDD (T)	Date	10/20/2016 938	10/20/2016 /040	10/20/2016 1110	10/20/2016			ļ					Date: Time: 16-70-16 1200	Date	101

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

September 22, 2016

Ed Riege
Western Refining Southwest, Gallup
92 Giant Crossing Road
Gallup, NM 87301
TEL: (505) 722, 3833

TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling OrderNo.: 1609455

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 11 sample(s) on 9/8/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190 Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Lab Order: 1609455

Date Reported: 9/22/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Lab Order: 1609455 **Project:** OCD Central Landfarm Semiannual Sampling Lab ID: 1609455-001 **Collection Date:** 9/6/2016 4:13:00 PM Client Sample ID: CentralOCD-1021-09062016-F Matrix: **Analyses** Result **MDL PQL Oual** Units DF **Date Analyzed Batch ID EPA METHOD 300.0: ANIONS** Analyst: LGT 9/19/2016 9:00:29 PM Chloride 270 12 30 mg/Kg 20 27590 1609455-002 Lab ID: **Collection Date:** 9/6/2016 4:07:00 PM Client Sample ID: CentralOCD-1021-09062016-SW-N Matrix: Result **MDL PQL Oual** Units **Date Analyzed Batch ID Analyses EPA METHOD 300.0: ANIONS** Analyst: LGT Chloride 160 12 30 mg/Kg 20 9/19/2016 9:12:53 PM 27590 Lab ID: 1609455-003 **Collection Date:** 9/6/2016 4:20:00 PM Client Sample ID: CentralOCD-1021-09062016-SW-S **Matrix:** MDL **PQL** DF **Date Analyzed Batch ID Analyses** Result **Oual** Units **EPA METHOD 300.0: ANIONS** Analyst: LGT Chloride 12 30 mg/Kg 9/19/2016 9:25:18 PM 27590 280 20 1609455-004 **Collection Date:** 9/6/2016 3:55:00 PM Lab ID: CentralOCD-1021-09062016-SW-E Client Sample ID: **Matrix: POL Date Analyzed Batch ID Analyses** Result **MDL** Qual Units **EPA METHOD 300.0: ANIONS** Analyst: LGT Chloride 130 12 30 mg/Kg 9/20/2016 12:53:42 PM 27599 Lab ID: 1609455-005 **Collection Date:** 9/6/2016 4:25:00 PM Client Sample ID: CentralOCD-1021-09062016-SW-W Matrix: **PQL Analyses** Result **MDL Oual** Units DF **Date Analyzed Batch ID EPA METHOD 300.0: ANIONS** Analyst: LGT 9/20/2016 1:06:07 PM Chloride 490 12 30 mg/Kg 20 27599

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B	lank		
	D	Sample Diluted Due to Matrix	E	Value above quantitation range			
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limits Page 1 of 4			
	ND Not Detected at the Reporting Limit			Sample pH Not In Range	1 4 5 6 1 01 4		
	R RPD outside accepted recovery limits		RL	Reporting Detection Limit			
S % Recovery outside of range due to dilution or matrix			W	Sample container temperature is out of limit	as specified		

Lab Order: **1609455**

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/22/2016

	Vestern Refining Southv OCD Central Landfarm S	-	mpling			Lab Or	der:	1609455	
Lab ID:	1609455-006) (201 C F		Colle		ate: 9/6/2	2016 1:	30:00 PM	
Analyses	CentralOCD-2271-090	062016-F Result	MDL	PQL	Mat Qual	rıx: Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	.0: ANIONS	170	12	30		mg/Kg	20	Analyst: LGT 9/20/2016 1:18:31 PM	27599
Lab ID: Client Sample ID:	1609455-007 CentralOCD-2271-090)62016-SW-N		Colle	ection Da	ate: 9/6/2 rix:	2016 1:	20:00 PM	
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	.0: ANIONS	2200	31	75		mg/Kg	50	Analyst: LGT 9/22/2016 5:18:25 AM	27599
Lab ID: Client Sample ID:	1609455-008 CentralOCD-2271-090)62016-SW-S		Colle	ection Da	ate: 9/6/2	2016 1:	37:00 PM	
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	.0: ANIONS	160	12	30		mg/Kg	20	Analyst: LGT 9/20/2016 1:43:20 PM	27599
Lab ID: Client Sample ID:	1609455-009 CentralOCD-2271-090)62016-SW-E		Colle	ection Da	ate: 9/6/2 rix:	2016 1:	05:00 PM	
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	.0: ANIONS	1500	30	75		mg/Kg	50	Analyst: LGT 9/22/2016 5:30:50 AM	27599
Lab ID: Client Sample ID:	1609455-010 CentralOCD-2271-090	062016-SW-W	7	Colle	ection Da	ate: 9/6/2	2016 1:	45:00 PM	
Analyses		Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300 Chloride	.0: ANIONS	300	12	30		mg/Kg	20	Analyst: LGT 9/20/2016 2:45:23 PM	27599

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:	*	Value exceeds Maximum Contaminant Level.	В	Analyte detected in the associated Method B	lank	
	D	Sample Diluted Due to Matrix	E	Value above quantitation range		
	Н	Holding times for preparation or analysis exceeded	J Analyte detected below quantitation limits Page 2			
	 ND Not Detected at the Reporting Limit R RPD outside accepted recovery limits S Recovery outside of range due to dilution or matrix 		P	Sample pH Not In Range	1 uge 2 01 1	
			RL	Reporting Detection Limit		
			W	Sample container temperature is out of limit	as specified	

Lab Order: 1609455

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 9/22/2016

CLIENT: Western Refining Southwest, Gallup Lab Order: 1609455

Project: OCD Central Landfarm Semiannual Sampling

Lab ID: 1609455-011 **Collection Date:** 9/6/2016

Client Sample ID: CentralOCD-BD-09062016 Matrix:

Cheft Sample ID: CentralOCD-BD-0	9002010			Mati	TIX:			
Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300.0: ANIONS							Analyst: LGT	
Chloride	110	12	30		mg/Kg	20	9/20/2016 3:22:36 PM	27599

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: Value exceeds Maximum Contaminant Level. Analyte detected in the associated Method Blank Sample Diluted Due to Matrix D Е Value above quantitation range Η Holding times for preparation or analysis exceeded J Analyte detected below quantitation limits Page 3 of 4 ND Not Detected at the Reporting Limit P Sample pH Not In Range R RPD outside accepted recovery limits RLReporting Detection Limit \mathbf{S} % Recovery outside of range due to dilution or matrix Sample container temperature is out of limit as specified

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1609455**

22-Sep-16

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-27590 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 27590 RunNo: 37316

Prep Date: 9/19/2016 Analysis Date: 9/19/2016 SeqNo: 1158856 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-27590 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 27590 RunNo: 37316

Prep Date: 9/19/2016 Analysis Date: 9/19/2016 SeqNo: 1158857 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 94.0 90 110

Sample ID MB-27599 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 27599 RunNo: 37349

Prep Date: 9/20/2016 Analysis Date: 9/20/2016 SeqNo: 1160293 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-27599 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 27599 RunNo: 37349

Prep Date: 9/20/2016 Analysis Date: 9/20/2016 SeqNo: 1160294 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 94.1 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107

Website: www.halleavironmental.com

Sample Log-In Check List

Client Name: Western Refining Gallup	Work Order Number	1609455		RcptNo: 1	
Received by/date: A	9/08/10				:
Logged By: Ashley Gallegos	9/8/2016 5:10:00 PM		A		
Completed By: Ashley Gallegos	9/9/2016 12:34:02 PM		SA 7	•	
Reviewed By: 09 12 16			·		
Chain of Custody					
Custody seals intact on sample bottles?		Yes	No 🗔	Not Present	
2. Is Chain of Custody complete?		Yes 🐠	No 🗔	Not Present	
3. How was the sample delivered?		Courier	r San		
Log In					
Was an attempt made to cool the sample	es?	Yes	No L	NA L.	
5. Were all samples received at a temperat	ture of >0° C to 6.0°C	Yes 🦸	No 🗍	NA [_]	
6. Sample(s) in proper container(s)?		Yes 🧖	No 🗌		
7. Sufficient sample volume for indicated to	est(s)?	Yes 🍻	No 🗔		
8. Are samples (except VOA and ONG) pro		Yes 🙀	No 🗔		
9. Was preservative added to bottles?		Yes [· · · · No 🗹	NA []	
10.VOA vials have zero headspace?	. A	Yes 🏚	No []	No VOA Vials	
11. Were any sample containers received b	roken?	Yes	No 🏕	# of preserved	-
				bottles checked	
12. Does paperwork match bottle labels?	A	Yes 🐠	No 🛄	for pH: (<2 o	r >12 unless noted)
(Note discrepancies on chain of custody 13. Are matrices correctly identified on Chai		Yes 🐠	No 🛄	Adjusted?	
14. Is it clear what analyses were requested		Yes 🖈	No 🖂		
15. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🐠	No 🗔	Checked by:	
(ii no, notify costomer for authorizations)			:		
Special Handling (if applicable)					
16. Was client notified of all discrepancies v	vith this order?	Yes 🗌	No 🗀	NA 🐼	
Person Notified:	Date	lar i sa santa en esta en en esta en esta en en esta en			
By Whom:	Via:	eMail	Phone Fax	n Person	1
Regarding:	n generalise briss se film gen et et et un marroup et et et et et et e	ENCOMPANIES AND	The state of the s	er dezen, erandulateko bat er er filologiak (olojopus dezen 1900 erandulareko dalea (olojopus da 1901 erandular	
Client Instructions:	ongang palamangan dagan dagan dagan kemanangan panggan dan pan-anggan baharan dagan dagan beranggan beranggan	· · · · · · · · · · · · · · · · · · ·	次(-) 114 7900 A 1986	is Through the latter for a residence construction of the property of the section is	
17. Additional remarks:	1		- · · · · · · · · · · · · · · · · · · ·		
18. Cooler Information					
Cooler No Temp °C Condition	Seal Intact Seal No	Seal Date	Signed By		
1 1.0 Good	Yes			1	

Project Name Proj	5	TO C	Chara-or-Custody Record				
Foliat Name Project Name Proje	West	efining		XStandard	□ Record		
Footbase Contraction Con				roject Name:			w
Third Martin Project #1 Project #1 Project #2 Project #2 Project #3 Project #4	Address:			OCD Central Landf	arm Semiannual	Sampling	- 1
Contract CD-102-0873 E47-062-004 E4 Reger E4 Re	JM 87301			Project #:			Fax
Contract C		505-722-		397-052-004			Analysis Reguest
ContractOCD-1021-09062016-SW-W No. 4-cz Fig.	Fax#:	505-722-		Project Manager:			
Time Matrix Sample Request 1D Sample	ackage:	Stage		Ed Riege			
Sample Request ID	ation:	Other			₹8ラ		
Sample Request Danieline Type Preservativ HEX.NB E Danieline Type Preservativ HEX.NB E Danieline Type Preservativ HEX.NB E Danieline Type Date Time CO.	(Type)_PI	ease prov		Tempera	$\dot{\gamma}$		
soil CentralOCD-1021-09062016-F two 4-oz none - 0.00 soil CentralOCD-1021-09062016-SW-N two 4-oz none - 0.00 soil CentralOCD-1021-09062016-SW-S two 4-oz none - 0.00 soil CentralOCD-1021-09062016-SW-N two 4-oz none - 0.00 soil CentralOCD-2271-09062016-SW-N two 4-oz none - 0.00 soil CentralOCD-2271-09062016-SW-S two 4-oz none - 0.00 soil CentralOCD-2271-09062016-SW-E-Wo 4-oz none - 0.00 0.00 soil CentralOCD-2271-09062016-SW-E-Wo 4-oz none - 0.00 0.00 soil CentralOCD-2271-09062016-SW-E-Wo 4-oz none - 0.00 0.00 soil CentralOCD-2271-09062016-SW-E-Wo 4-oz none	Time	Matrix	Sample Request ID	Container Type and #	eservativ e Type	HEALNO DOUGS	
soil CentralOCD-1021-09062016-SW-N two 4-oz none - CD G soil CentralOCD-1021-09062016-SW-E two 4-oz none - CD G soil CentralOCD-1021-09062016-SW-E two 4-oz none - CD G soil CentralOCD-2271-09062016-SW-N two 4-oz none - CD G soil CentralOCD-BD-09062016-SW-N two 4-oz none - CD G soil CentralOCD-BD-09062016-SW-N two 4-oz none	16 [[al3				none	- (OC)	×
soil CentralOCD-1021-09062016-SW-S two 4-oz none -00 Cf soil CentralOCD-1021-09062016-SW-W two 4-oz none -00 Cf soil CentralOCD-2271-09062016-F two 4-oz none -00 Cf soil CentralOCD-2271-09062016-SW-N two 4-oz none -00 Cf soil CentralOCD-2271-09062016-SW-W two 4-oz none	16 100		·	wo 4-oz	none	600-	×
soil CentralOCD-1021-08062016-SW-F two 4-oz none -OO 4 soil CentralOCD-1021-09062016-SW-W two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-N two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-N two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-N two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-W two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-W-W two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-W-W two 4-oz none -OO 6 soil CentralOCD-2271-09062016-SW-W-W two 4-oz none	16 1620	Soil	S	.wo 4-oz	ецол	-003	×
soil CentralOCD-1021-09062016-SW-W two 4-oz none - 0005 soil CentralOCD-2271-09062016-SW-N two 4-oz none - 000 soil CentralOCD-2271-09062016-SW-N two 4-oz none - 000 soil CentralOCD-2271-09062016-SW-E two 4-oz none - 000 soil CentralOCD-2271-09062016-SW-W two 4-oz none - 000 soil CentralOCD-BD-09062016 two 4-oz none - 000	1 1 3		1,1,1	WO 4-0Z	none	-00d	×
soil CentralOCD-2271-09062016-F two 4-oz none CC/C soil CentralOCD-2271-09062016-SW-N two 4-oz none CC/C soil CentralOCD-2271-09062016-SW-W two 4-oz none C/C soil CentralOCD-2271-09062016-SW-W two 4-oz none C/C soil CentralOCD-2271-09062016-SW-W two 4-oz none C/C soil CentralOCD-2271-09062016-SW-E-MS two 4-oz none <td< td=""><td>Zeall least</td><td>soil</td><td>1</td><td>wo 4-02</td><td>none</td><td>-005</td><td>×</td></td<>	Zeall least	soil	1	wo 4-02	none	-005	×
soil Certifual OCD-2271-09062016-SW-N two 4-oz none COT soil Central OCD-2271-09062016-SW-S two 4-oz none -00 S soil Central OCD-2271-09062016-SW-E two 4-oz none -00 S soil Central OCD-2271-09062016-SW-E-MS two 4-oz none -00 S soil Central OCD-2711-09062016-SW-E-MS two 4-oz none -00 S water FB-09062016-SW-E-MSD two 4-oz none -00 S water FB-09062016-SW-E-MSD two 4-oz none -00 S Relinquished by: Received by: Received by: -00 S -00 S	16 (330	soil		two 4-oz	епоп	-a04	×
soil CentralOCD-2271-09062016-SW-S two 4-oz none -00 S soil CentralOCD-2271-09062016-SW-E two 4-oz none -00 S soil CentralOCD-2271-09062016-SW-W two 4-oz none -00 S soil CentralOCD-2271-09062016-SW-E-MSD two 4-oz none -00 S soil CentralOCD-2271-09062016-SW-E-MSD two 4-oz none -00 S soil CentralOCD-2271-09062016-SW-E-MSD two 4-oz none -00 S soil CentralOCD-BD-09062016-SW-E-MSD two 4-oz none -00 S soil CentralOCD-BD-09062016-SW-E-MSD two 4-oz none -00 S water FB-09062016-SW-E-MSD two 4-oz none -00 S water FB-09062016-SW-E-MSD two 4-oz none -00 S Relinquished by: Received by: Received by: -00 S -00 S	10 33 C	Soil	22	wo 4-oz	попе	-007	×
soil CentralOCD-2271-09062016-SWV-E two 4-oz none -000 soil CentralOCD-2271-09062016-SW-W two 4-oz none -000 soil CentralOCD-2271-09062016-SWE-MS two 4-oz none -000 soil CentralOCD-BD-09062016-SWE-MSD two 4-oz none -000 soil CentralOCD-BD-09062016 two 4-oz none -000 water EB-09062016 two 4-oz none -000 water FB-09062016 two 4-oz none -000 water FB-09062016 two 4-oz none -000 water FB-09062016 two 4-oz none -000 Relinquished by: Received by: Received by: -000 Relinquished by: Received by: -000 -000	1837	i soil	S	two 4-oz	none	-008	><
soil CentralOCD-2271-09062016-SW-W two 4-oz none OLOGO soil CentralOCD-3716-09062016-SW-E-MS two 4-oz none OLOGO soil CentralOCD-3216-09062016-SW-E-MSD two 4-oz none OLOGO soil CentralOCD-BD-09062016-SW-E-MSD two 4-oz none OLOGO water EB-09062016-SW-E-MSD two 4-oz none OLOGO water FB-09062016-SW-E-MSD two 4-oz none OLOGO Relinquished by: Relinquished by: Received by: Date Time Relinquished by: Received by: Date Time	16 1305	Soil		two 4-oz	none	-200 200	×
soil CentralOCD-32T/L09062016-54/E-MSD two 4-oz none OLOGO GA soil CentralOCD-32D/1-09062016-34/E-MSD two 4-oz none OLOGO GA soil CentralOCD-BD-09062016 two 4-oz none OLOGO GA water EB-09062016 yOA-3 HCL OLOGO GA water FB-09062016 yOA-3 HCL OLOGO GA Relinquished by: Received by: Received by: Date Time Relinquished by: Received by: Date Time	16 1345	i soil	w	two 4-oz	попе	010-	×
soil CentralOCD2xx1-09062016-2x4E-MSD two 4-oz none OVB CP soil CentralOCD-BD-09062016 two 4-oz none OVB CP water EB-09062016 VOA-3 HCL OVB Relinquished by: Received by: Received by: Date Time Relinquished by: Received by: Date Time	16 [310	lics	МS	two 4-oz	none	-OHOG	×
soil CentralOCD-BD-09062016 two 4-oz none -OLB water EB-09062016 VOA-3 HCL -OLB water FB-09062016 VOA-3 HCL -OLB Relinquished by: Received by: Date Time Relinquished by: Received by: Date Time	16 1315	soil	SD	two 4-oz	none	-01000	×
water EB-09062016 ÿOA-3 HCL CYAP Water FB-09062016 ÿOA-3 HCL CYAP Relinquished by: Received by: Date Time Relinquished by: Received by: Received by: Date Time The convertibility of the	16 NA	soil		two 4-oz	none	-0(8)	×
water FB-09062016 VOA - 3 HCL CVS Relinquished by: Received by: Date Time Relinquished by: Received by: Date Time	16/635	water		VOA-3	19H	-011 P	×
Relinquished by: Relinquished by: Relinquished by: Received by: Rece	16 1640	water		VOA-3	101	8510-	×
Retinquished by: Received by:	Time: 0	Relinquist	\mathcal{A}	Received by:	Date Market		Remarks: Please cc Grant Price (gprice@trihydro.com) with results. Call Grant @ 307-745-7474 w/ questions. Data report and package w/ Trihydro EDD needed within 10
	Time:	Relinqui		Received by	09/08/1U	Time ////	days of reciept.

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

October 13, 2016

Ed Riege
Western Refining Southwest, Gallup
92 Giant Crossing Road
Gallup, NM 87301
TEL: (505) 722 3833

TEL: (505) 722-3833 FAX (505) 722-0210

RE: OCD Central Landfarm Semiannual Sampling OrderNo.: 1610345

Dear Ed Riege:

Hall Environmental Analysis Laboratory received 3 sample(s) on 10/7/2016 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0190 Sincerely,

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Analytical ReportLab Order **1610345**

Date Reported: 10/13/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: CentralOCD-2271-10062016-S

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 10/6/2016 10:50:00 AM

Lab ID: 1610345-001

Matrix: SOIL

Received Date: 10/7/2016 9:22:00 AM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300.0: ANIONS							Analyst: LGT	
Chloride	790	12	30		mg/Kg	20	10/12/2016 4:19:05 PM	28015

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limitsS Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 1 of 4

Analytical ReportLab Order **1610345**

Date Reported: 10/13/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: CentralOCD-2271-10062016-S

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 10/6/2016 10:40:00 AM
Lab ID: 1610345-002
Matrix: SOIL
Received Date: 10/7/2016 9:22:00 AM

Analyses	Result	MDL	PQL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 300.0: ANIONS						Analyst: LGT	
Chloride	800	12	30	mg/Kg	20	10/12/2016 4:56:18 PM	l 28015

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 2 of 4

Analytical ReportLab Order **1610345**

Date Reported: 10/13/2016

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Western Refining Southwest, Gallup Client Sample ID: Central OCD-BD-10062016

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 10/6/2016

Lab ID: 1610345-003 **Matrix:** SOIL **Received Date:** 10/7/2016 9:22:00 AM

Analyses	Result	MDL	PQL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 300.0: ANIONS							Analyst: LGT	
Chloride	480	12	30		mg/Kg	20	10/12/2016 5:08:43 PM	28015

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- R RPD outside accepted recovery limits
- S % Recovery outside of range due to dilution or matrix
- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Detection Limit
- W Sample container temperature is out of limit as specified

Page 3 of 4

QC SUMMARY REPORT

Hall Environmental Analysis Laboratory, Inc.

WO#: **1610345**

13-Oct-16

Client: Western Refining Southwest, Gallup

Project: OCD Central Landfarm Semiannual Sampling

Sample ID MB-28015 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 28015 RunNo: 37905

Prep Date: 10/11/2016 Analysis Date: 10/12/2016 SeqNo: 1180857 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride ND 1.5

Sample ID LCS-28015 SampType: LCS TestCode: EPA Method 300.0: Anions

Client ID: LCSS Batch ID: 28015 RunNo: 37905

Prep Date: 10/11/2016 Analysis Date: 10/12/2016 SeqNo: 1180858 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Chloride 14 1.5 15.00 0 94.7 90 110

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

R RPD outside accepted recovery limits

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Detection Limit

W Sample container temperature is out of limit as specified

Page 4 of 4

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109

Sample Log-In Check List

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Client Name: Western Refining Gallup Work Order I	Number: 1610345		RcptNo: 1	
Received by/date: A 10/67/16				
Logged By: Anne Thorne 10/7/2016 9:22	:00 AM	anne Am		
Completed By: Anne Thorne 10/7/2016		Anne Sham Anne Sham	_	
Reviewed By:		una jum		
Chain of Custody				
1. Custody seals intact on sample bottles?	Yes 🗌	No 🗆	Not Present	
2. Is Chain of Custody complete?	Yes 🗸	No 🗆	Not Present	
3. How was the sample delivered?	Client			
<u>Log In</u>				
4. Was an attempt made to cool the samples?	Yes 🗹	No 🗌	NA 🗆	
5. Were all samples received at a temperature of >0° C to 6.0°	°C Yes 🗹	No 🗆	NA \square	
6. Sample(s) in proper container(s)?	Yes 🗹	No 🗆		
7. Sufficient sample volume for indicated test(s)?	Yes 🗹	No 🗌		
8. Are samples (except VOA and ONG) properly preserved?	Yes 🗹	No 🗆		
9. Was preservative added to bottles?	Yes 🗌	No 🗹	NA 🗆	
10.VOA vials have zero headspace?	Yes 🗌	No 🗌	No VOA Vials	
11. Were any sample containers received broken?	Yes	No 🗹	# of preserved	
			bottles checked	
12. Does paperwork match bottle labels? (Note discrepancies on chain of custody)	Yes 🗹	No ∐	for pH: (<2 or	>12 unless noted)
13. Are matrices correctly identified on Chain of Custody?	Yes 🗸	No 🗆	Adjusted?	<u> </u>
14. Is it clear what analyses were requested?	Yes 🗸	No 🗆		
15. Were all holding times able to be met?	Yes 🗹	No 🗌	Checked by:	
(If no, notify customer for authorization.)				
Special Handling (if applicable)				
16. Was client notified of all discrepancies with this order?	Yes 🗔	No 🗆	NA 🗹	
Person Notified:	Date	4		
By Whom:	Via: eMail l	Phone Fax	☐ In Person	
Regarding:	and the short of the state of t		States Act and	
Client Instructions:				
17. Additional remarks:				
18. <u>Cooler Information</u>	1 - 22			
Cooler No Temp °C Condition Seal Intact Seal	No Seal Date	Signed By		
			ļ	

THAIL FNVIRONMEN	ANALYSIS LABORATORY	www.hailenvironmental.com	4901 Hawkins NE - Albuquerque, NM 87109	Tel. 505-345-3975 Fax 505-345-4107	Analysis Request			(N)		səlqqng JiA											Remarks: Please cc Grant Price (gprice@trihydro.com) with results. Call Grant @ 307-745-7474 w/ questions. Data report and package w/ Trihydro EDD needed within 10	1) Date Time / Gavs of reciept. (2) [7] / (2) [7] / (3) [7] / (4) [7] / (4) [7] / (5) [7] / (6) [7] / (7) /
_	ــا لــ ا						1	0.006 /	/4 <u>3</u>	Chloride by	×	×	<i>ι</i> β ×									
			ıual Sampling					Bitemie	7.0	HEAL NO.	100	702_	-43								10/1/10 725	Date Time / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 / 6 /
			lfarm Semianr					ZAC (ure.	Preservativ e Type	none	none	попе			e"					31	An Annative Committee
:	⊠ Standard	Project Name:	OCD Central Landfarm Semiannual Sampling	Project #:	697-052-004	Project Manager:	Ed Riege	Sampler: On Ice	emperal	Container Type and #	two 4-oz	two 4-oz	two 4-oz	7 4 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							Received by:	sived t
חיטטטון וויסטטיוט-ווי-ווי-ווי		Refining	Route 3 Box 7		3833	0210	□ Level 4 (Full Validation)			Sample Request ID	CentralOCD-2271-10062016-SW-N	CentralOCD-2271-10062016-SW-E	CentralOCD-BD-10062016								St. St. St.	Reo
7 5 -	{efining				505-722-3833	505-722-0210		Other	se provic	Matrix	soil	soil	lios								Relinquished by:	Relinquished by
1	C Wes	Jestern	ess:	17301	1		je:		e)_Plea	Time	1050	1040	NA S									Time: R
	lient: ζ^{N}	_	lailing Address:	iallup, NM 87301	hone #	mail or Fax#:	A/QC Package:	ccreditation.	1 EDD (Type) Please provide EDD	Date	10/6/2016		10/6/2016								ute: Time: 0-6-16 /300	77/k

Appendix B: September 2016 and October 2016 Tier II Data Validation Reports

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental						
Project Name: OCD Landfarm Semiannual Sampling	Sample Matrix: Soil						
Project Number: 697-052-003	Sample Start Date: 10/20/2016						
Date Validated: 11/14/2016	Sample End Date: 10/20/2016						
Parameters Included: Chloride by Environmental Protection Agency (EPA) Method 300.0							
Laboratory Project ID: 1610A38							
Data Validator: Charles Ballek, Senior Chemist							
Reviewer: Kyle Power, Environmental Chemist							

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, evaluating samples from the Western Refining Southwest, Inc. site located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

Field duplicate pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

Laboratory control sample (LCS)

Method compliance was established by reviewing sample integrity, holding times, detection limits, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-2271-10202016-SW-NW	1610A38-001A
CentralOCD-2271-10202016-SW-NE	1610A38-002A
CentralOCD-2271-10202016-SW-E	1610A38-003A
CentralOCD-BD-10202016	1610A38-004A

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\bigcirc) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- Initial and Continuing Calibrations (Item 9)
- ✓ Laboratory Blanks (Item 11)
- O Matrix Spike/Matrix Spike Duplicate (MS/MSD) (Item 13)
- √ LCS (Item 15)
- O System Monitoring Compounds (i.e., Surrogates) (Item 17)
- Field, Equipment, and Trip Blanks (Item 18)
- √ Field Duplicates (Item 20)
- O Laboratory Duplicates (Item 22)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, February 2016.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives.

Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 4 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST	
Was the report free of non-conformances identified by the laboratory?	Yes
Comments: The laboratory did not identify non-conformances regarding the analytical data.	
Were the data free of data qualification flags and/or notes used by the laboratory? If no, define.	Yes
Comments: The laboratory did not apply data qualification flags to results in this data set.	
3. Were sample CoC forms and procedures complete?	Yes
Comments: The CoC records from field to laboratory were complete and custody was maintained and laboratory personnel signatures, dates, and times of receipt.	ed as evidenced by field
Custody seals were not present nor required since the samples were delivered to the laboratory custody was maintained at all times.	by field personnel and
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes
Comments: The detection limits appeared to be acceptable. The following dilutions were applied	d.
Method 300.0: Samples CentralOCD-2271-10202016-SW-E and CentralOCD-BD-10202016 we times for the chloride analyses and dilutions of 50 times were applied to samples CentralOCD-227CentralOCD-2271-10202016-SW-NE.	
 Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Specify if any analytes were reported by more than one method. 	Yes
Comments: The reported analytical method was in compliance with the CoC and the laboratory constituents in accordance with the CoC.	reported the requested
6. Were samples received in good condition within method-specified requirements?	Yes
Comments: Samples were received on ice, in good condition, and with the cooler temperature we temperature range of $4^{\circ}C \pm 2^{\circ}C$ at $2.8^{\circ}C$ as noted on the Sample Log-In Check List.	vithin the recommended
7. Were samples extracted/digested and analyzed within method-specified or technical holding times?	Yes
Comments: The samples were analyzed within method-specific holding times.	
 Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil. 	Yes
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg), the sample matrices and the analyses requested. Analytical results for the soil samples were rewet weight basis.	
9. Did the laboratory provide any specific initial and/or continuing calibration results?	No
Comments: Initial and continuing calibration data were not included as part of this data set.	
10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?	N/A
Comments: Initial and continuing calibration data were not included as part of this data set.	
11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The number of laboratory blank samples prepared was equal to at least 5% of the to	otal number of samples.

VALIDATION CRITERIA CHECKLIST							
12. Were target analytes reported as not detected in the laboratory blanks?	Yes						
Comments: The target analyte was reported as not detected in the laboratory blank.							
13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	No						
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the total number of samples.							
Matrix spike samples were not prepared for the analyses reported in this data set.							
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A						
Comments: Matrix spike samples were not prepared for the analyses reported in this data set.							
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes						
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number	per of samples.						
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes						
Comments: The LCS percent recovery was within laboratory QC limits.							
17. Were surrogate recoveries within laboratory QC limits?	N/A						
Comments: Analysis of surrogates is not required for Method 300.0.							
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No						
Comments: The number of trip, field, and equipment blanks collected was not equal to at least 10 samples.	% of the number of						
Trip, field, and equipment blank samples were not collected for this sample set.							
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A						
Comments: Trip, field, and equipment blank samples were not collected for this sample set.							
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes						
Comments: The number of field duplicates collected was equal to at least 10% of the number of sa	amples.						
Sample CentralOCD-BD-10202016 was collected as a field duplicate of sample CentralOCD-2271	-10202016-SW-E.						
21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?	Yes						
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field dupli within data validation QC limits of 0-50% for soil samples.	cate RPD values were						
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A						
Comments: Laboratory duplicate samples were not prepared for this sample set.							

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-2271-10202016-SW-E									
Field Duplicate Sample ID: CentralOCD-BD-10202016									
Method	Analyte	Laboratory Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference (RPD)					
300.0	Chloride	640	600	6.5%					

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental Analysis Laboratory						
Project Name: OCD Landfarm Semiannual Sampling	Sample Matrix: Soil						
Project Number: 697-052-003	Sample Start Date: 09/06/2016						
Date Validated: 09/30/2016	Sample End Date: 09/06/2016						
Parameters Included: Chloride by US Environmental Protection Agency (EPA) Method 300.0							
Laboratory Project ID: 1609455							
Data Validator: Charles Ballek, Senior Chemist							
Reviewer: Mike Phillips, Senior Chemist							

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, evaluating samples from the Western Refining Southwest, Inc. site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

Field duplicate pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

Laboratory control sample (LCS)

Method compliance was established by reviewing sample integrity, holding times, detection limits, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-1021-09062016-F	1609455-001A
CentralOCD-1021-09062016-SW-N	1609455-002A
CentralOCD-1021-09062016-SW-S	1609455-003A
CentralOCD-1021-09062016-SW-E	1609455-004A
CentralOCD-1021-09062016-SW-W	1609455-005A
CentralOCD-2271-09062016-F	1609455-006A
CentralOCD-2271-09062016-SW-N	1609455-007A
CentralOCD-2271-09062016-SW-S	1609455-008A
CentralOCD-2271-09062016-SW-E	1609455-009A
CentralOCD-2271-09062016-SW-W	1609455-010A
CentralOCD-BD-09062016	1609455-011A

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (✓) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (⊗) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (O) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Item 9)
- ✓ Laboratory Blanks (Item 11)
- O MS/MSD (Item 13)
- ✓ LCS (Item 15)
- O System Monitoring Compounds (i.e., Surrogates) (Item 17)
- Field, Equipment, and Trip Blanks (Item 18)
- √ Field Duplicate (Item 20)
- Laboratory Duplicates (Item 22)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, February 2016.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.


Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 11 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST	
Was the report free of non-conformances identified by the laboratory?	Yes
Comments: The laboratory did not identify non-conformances regarding the analytical data.	
Were the data free of data qualification flags and/or notes used by the laboratory?If no, define.	Yes
Comments: The laboratory did not apply data qualification flags to results in this data set.	
3. Were sample CoC forms and procedures complete?	Yes
Comments: The CoC records from field to laboratory were complete and custody was maintaine and laboratory personnel signatures, dates, and times of receipt.	ed as evidenced by field
Custody seals were not present nor required since the samples were transferred to a lab courier laboratory and custody was maintained at all times.	for delivery to the
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes
Comments: The detection limits appeared to be acceptable. The following dilutions were applie	ed.
Method 300.0: Dilutions of 20 times were applied for the chloride analyses of the samples exceloped 90062016-SW-N and CentralOCD-2271-09062016-SW-E that were diluted by factors of 50 times.	
5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Specify if any analytes reported by more than one method?	Yes
Comments: The reported analytical methods were in compliance with the CoC and the laborato constituents in accordance with the CoC.	ry reported the requested
6. Were samples received in good condition within method-specified requirements?	No
Comments: Samples were received on ice, in good condition, and with the cooler temperature of temperature range of 4° C \pm 2° C at 1.0°C as noted on the Sample Log-In Check List. The cooler was judged as acceptable since the laboratory did not report the sample containers as broken o	temperature below 2.0°C
Were samples extracted/digested and analyzed within method-specified or technical holding times?	Yes
Comments: The samples were analyzed within method-specific holding times.	
 Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil. 	Yes
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg) the sample matrices and the analyses requested. Analytical results for the soil samples were re wet weight basis.	
9. Did the laboratory provide any specific initial and/or continuing calibration results?	No
Comments: Initial and continuing calibration data were not included as part of this data set.	
10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?	N/A
Comments: Initial and continuing calibration data were not included as part of this data set.	
11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The number of laboratory blank samples prepared was equal to at least 5% of the t	otal number of samples.

VALIDATION CRITERIA CHECKLIST	
12. Were target analytes reported as not detected in the laboratory blanks?	Yes
Comments: Target analytes were reported as not detected in the laboratory blanks.	
13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	No
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of samples.	the total number of
Matrix spike samples were not prepared for the analyses reported in this data set.	
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A
Comments: Matrix spike samples were not prepared for the analyses reported in this data set.	
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number.	ımber of samples.
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes
Comments: The LCS percent recoveries were within laboratory QC limits.	
17. Were surrogate recoveries within laboratory QC limits?	N/A
Comments: Analysis of surrogates is not required for Method 300.0.	
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No
Comments: The number of trip, field, and equipment blanks collected was not equal to at least samples.	10% of the number of
Trip, field, and equipment blank samples were not collected for this sample set.	
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A
Comments: Trip, field, and equipment blank samples were not collected for this sample set.	
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes
Comments: The number of field duplicates collected was equal to at least 10% of the number of	of samples.
Sample CentralOCD-BD-09062016 was collected as a field duplicate of sample CentralOCD-10	021-09062016-SW-E.
21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?	Yes
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field du within data validation QC limits of 0-50% for soil samples.	uplicate RPD values were
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A
Comments: Laboratory duplicate samples were not prepared for this sample set.	

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-1021-09062016-SW-E Field Duplicate Sample ID: CentralOCD-BD-09062016							
Analyte Method Laboratory Result Duplicate Result Relative Percent (mg/kg) (mg/kg) Difference (RPD)							
Chloride	300.0	130	110	16.7%			

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

Tier II Data Validation Report Summary

Client: Western Refining Southwest, Inc.	Laboratory: Hall Environmental
Project Name: OCD Landfarm Semiannual Sampling	Sample Matrix: Soil
Project Number: 697-052-003	Sample Start Date: 10/06/2016
Date Validated: 10/17/2016	Sample End Date: 10/06/2016
Parameters Included: • Chloride by Environmental Protection Agency (EPA) N	Method 300.0
Laboratory Project ID: 1610345	
Data Validator: Caitlin Fields, Staff Engineer	
Reviewer: Charles Ballek, Senior Chemist	

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory in Albuquerque, New Mexico, evaluating samples from the Western Refining Southwest, Inc. site located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of this data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

Field duplicate pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

Laboratory control sample (LCS)

Method compliance was established by reviewing sample integrity, holding times, detection limits, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with this analytical data set.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CentralOCD-2271-10062016-SW-N	1610345-001
CentralOCD-2271-10062016-SW-E	1610345-002
CentralOCD-BD-10062016	1610345-003

Tier II Data Validation Report Summary

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\bigcirc) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- ✓ Holding Times and Preservation (Items 6 and 7)
- Initial and Continuing Calibrations (Item 9)
- ✓ Laboratory Blanks (Item 11)
- O MS/MSD (Item 13)
- √ LCS (Item 15)
- O System Monitoring Compounds (i.e., Surrogates) (Item 17)
- Field, Equipment, and Trip Blanks (Item 18)
- √ Field Duplicates (Item 20)
- Laboratory Duplicates (Item 22)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Data Review, document number EPA-540-R-013-001, August 2014 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.
- Trihydro Data Validation Variance Documentation, February 2016.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

Tier II Data Validation Report Summary

OVERALL DATA PACKAGE ASSESSMENT


Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives.

Data qualifiers were not applied as a result of this validation.

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 3 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

VALIDATION CRITERIA CHECKLIST	
Was the report free of non-conformances identified by the laboratory?	Yes
Comments: The laboratory did not identify non-conformances regarding the analytical data.	
Were the data free of data qualification flags and/or notes used by the laboratory? If no, define.	Yes
Comments: The laboratory did not apply data qualification flags to results in this data set.	
3. Were sample CoC forms and procedures complete?	Yes
Comments: The CoC records from field to laboratory were complete and custody was maintained as ev and laboratory personnel signatures, dates, and times of receipt.	idenced by field
Custody seals were not present nor required since the samples were delivered to the laboratory by field custody was maintained at all times.	personnel and
4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?	Yes
Comments: The detection limits appeared to be acceptable. The following dilutions were applied.	
Method 300.0: Dilutions of 20 times were applied for the chloride analyses of the samples.	
 Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC? Specify if any analytes were reported by more than one method. 	Yes
Comments: The reported analytical methods were in compliance with the CoC and the laboratory report constituents in accordance with the CoC.	ted the requested
6. Were samples received in good condition within method-specified requirements?	No
Comments: Samples were received on ice, in good condition, and with the cooler temperature outside the temperature range of 4°C ± 2°C at 1.0°C as noted on the Sample Log-In Check List. The cooler temperature was judged as acceptable since the laboratory did not report the sample containers as broken or frozen.	ature below 2.0°C
Were samples extracted/digested and analyzed within method-specified or technical holding times?	No
Comments: The samples were analyzed within method-specific holding times.	
Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.	Yes
Comments: The results were reported in concentration units of milligrams per kilogram (mg/kg) which w the sample matrices and the analyses requested. Analytical results for the soil samples were reported o wet weight basis.	•
9. Did the laboratory provide any specific initial and/or continuing calibration results?	No
Comments: Initial and continuing calibration data were not included as part of this data set.	
If initial and/or continuing calibration results were provided, were the results within acceptable limits?	N/A
Comments: Initial and continuing calibration data were not included as part of this data set.	
11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The number of laboratory blank samples prepared was equal to at least 5% of the total num	nber of samples.

VALIDATION CRITERIA CHECKLIST	
12. Were target analytes reported as not detected in the laboratory blanks?	Yes
Comments: The target analyte was reported as not detected in the laboratory blank.	
13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?	No
Comments: The total number of matrix spike samples prepared was not equal to at least 5% of the samples.	total number of
Matrix spike samples were not prepared for the analyses reported in this data set.	
14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory quality control (QC) limits?	N/A
Comments: Matrix spike samples were not prepared for the analyses reported in this data set.	
15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?	Yes
Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number	er of samples.
16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?	Yes
Comments: The LCS percent recovery was within laboratory QC limits.	
17. Were surrogate recoveries within laboratory QC limits?	N/A
Comments: Analysis of surrogates is not required for Method 300.0.	
18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	No
Comments: The number of trip, field, and equipment blanks collected was not equal to at least 10% samples.	6 of the number of
Trip, field, and equipment blank samples were not collected for this sample set.	
19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?	N/A
Comments: Trip, field, and equipment blank samples were not collected for this sample set.	
20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?	Yes
Comments: The number of field duplicates collected was equal to at least 10% of the number of sa	mples.
Sample CentralOCD-BD-10062016 was collected as a field duplicate of sample CentralOCD-2271-	10062016-SW-E.
21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?	Yes
Comments: As indicated in the Field Duplicate Summary Table at the end of this report, field duplic within data validation QC limits of 0-50% for soil samples.	cate RPD values were
22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?	N/A
Comments: Laboratory duplicate samples were not prepared for this sample set.	

FIELD DUPLICATE SUMMARY

Client Sample ID: CentralOCD-2271-10062016-SW-E Field Duplicate Sample ID: CentralOCD-BD-10062016							
Method Analyte Laboratory Result Duplicate Result Relative Percent (mg/kg) (mg/kg) Difference (RPD)							
300.0	Chloride	800	480	50.0%			

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

DATA QUALIFICATION SUMMARY

Data qualifiers were not applied as a result of this validation.

Appendix B

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

July 31, 2019

Brian Moore Marathon 92 Giant Crossing Rd Gallup, NM 87301 TEL: (505) 722-3833

FAX

RE: OCD Central Landfarm Semiannual Sampling OrderNo.: 1906G37

Dear Brian Moore:

Hall Environmental Analysis Laboratory received 13 sample(s) on 6/27/2019 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please don't hesitate to contact HEAL for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

Andy Freeman

Laboratory Manager

andyl

4901 Hawkins NE

Albuquerque, NM 87109

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 9:30:00 AMLab ID:1906G37-001Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TON	И
Aroclor 1016	ND	0.0098	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1221	ND	0.018	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1232	ND	0.022	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1242	ND	0.012	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1248	ND	0.018	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1254	ND	0.018	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Aroclor 1260	ND	0.0085	0.023		mg/Kg	1	7/9/2019 11:39:53 PM	45963
Surr: Decachlorobiphenyl	82.8	0	25.7-135		%Rec	1	7/9/2019 11:39:53 PM	45963
Surr: Tetrachloro-m-xylene	98.4	0	32.3-138		%Rec	1	7/9/2019 11:39:53 PM	45963
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRN	И
Diesel Range Organics (DRO)	ND	1.7	8.5		mg/Kg	1	7/5/2019 3:43:02 PM	45994
Motor Oil Range Organics (MRO)	ND	43	43		mg/Kg	1	7/5/2019 3:43:02 PM	45994
Surr: DNOP	96.7	0	70-130		%Rec	1	7/5/2019 3:43:02 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: smb)
Fluoride	5.4	0.46	1.5		mg/Kg	5	7/10/2019 8:12:14 PM	46094
Chloride	160	0.51	7.5		mg/Kg	5	7/10/2019 8:12:14 PM	46094
Nitrogen, Nitrate (As N)	4.9	0.75	1.5		mg/Kg	5	7/10/2019 8:12:14 PM	46094
Sulfate	920	14	30		mg/Kg	20	7/10/2019 8:24:39 PM	46094
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	0.043	0.0018	0.032		mg/Kg	1	7/10/2019 2:21:22 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.9	5.0		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Barium	300	0.047	0.20		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Chromium	14	0.16	0.60		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Copper	12	0.23	0.60		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Iron	18000	73	250		mg/Kg	100	7/2/2019 8:15:38 AM	45944
Lead	3.4	0.49	0.50		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Manganese	380	0.042	0.20		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 8:55:34 AM	45944
Zinc	33	0.80	5.0		mg/Kg	2	7/2/2019 8:55:34 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	И
Acenaphthene	ND	0.12	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Acenaphthylene	ND	0.11	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Aniline	ND	0.13	0.20		mg/Kg	1	7/8/2019 5:19:18 PM	45929
Refer to the QC Summary report an	d sample log	gin checkli	st for flagg	ged QC		prese	rvation information.	

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 1 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 9:30:00 AMLab ID:1906G37-001Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Anthracene	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Azobenzene	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benz(a)anthracene	ND	0.097	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benzo(a)pyrene	ND	0.090	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benzo(b)fluoranthene	ND	0.089	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benzo(g,h,i)perylene	ND	0.087	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benzo(k)fluoranthene	ND	0.092	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benzoic acid	ND	0.10	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Benzyl alcohol	ND	0.13	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Bis(2-chloroethoxy)methane	ND	0.15	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Bis(2-chloroethyl)ether	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.14	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4-Bromophenyl phenyl ether	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Butyl benzyl phthalate	ND	0.10	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Carbazole	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4-Chloro-3-methylphenol	ND	0.15	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4-Chloroaniline	ND	0.14	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2-Chloronaphthalene	ND	0.13	0.25	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2-Chlorophenol	ND	0.13	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4-Chlorophenyl phenyl ether	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Chrysene	ND	0.089	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Di-n-butyl phthalate	ND	0.15	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Di-n-octyl phthalate	ND	0.10	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Dibenz(a,h)anthracene	ND	0.092	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Dibenzofuran	ND	0.13	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
1,2-Dichlorobenzene	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
1,3-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
1,4-Dichlorobenzene	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
3,3´-Dichlorobenzidine	ND	0.090	0.25	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Diethyl phthalate	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Dimethyl phthalate	ND	0.13	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,4-Dichlorophenol	ND	0.12	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,4-Dimethylphenol	ND	0.11	0.30	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.093	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,4-Dinitrophenol	ND	0.073	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,4-Dinitrotoluene	ND	0.12	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,6-Dinitrotoluene	ND	0.13	0.50	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Fluoranthene	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 9:30:00 AMLab ID:1906G37-001Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	. RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Fluorene	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachlorobenzene	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachlorobutadiene	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachlorocyclopentadiene	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Hexachloroethane	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.10	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Isophorone	ND	0.15	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
1-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2-Methylnaphthalene	ND	0.15	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2-Methylphenol	ND	0.12	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
3+4-Methylphenol	ND	0.12	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
N-Nitrosodi-n-propylamine	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
N-Nitrosodiphenylamine	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Naphthalene	ND	0.15	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2-Nitroaniline	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
3-Nitroaniline	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4-Nitroaniline	ND	0.13	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Nitrobenzene	ND	0.14	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2-Nitrophenol	ND	0.14	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
4-Nitrophenol	ND	0.14	0.25	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Pentachlorophenol	ND	0.10	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Phenanthrene	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Phenol	ND	0.13	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Pyrene	ND	0.095	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Pyridine	ND	0.12	0.40	mg/Kg	1	7/8/2019 5:19:18 PM	45929
1,2,4-Trichlorobenzene	ND	0.16	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,4,5-Trichlorophenol	ND	0.13	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
2,4,6-Trichlorophenol	ND	0.11	0.20	mg/Kg	1	7/8/2019 5:19:18 PM	45929
Surr: 2-Fluorophenol	60.5		24.8-95.2	%Rec	1	7/8/2019 5:19:18 PM	45929
Surr: Phenol-d5	61.6		29.9-97.8	%Rec	1	7/8/2019 5:19:18 PM	45929
Surr: 2,4,6-Tribromophenol	65.4		35.7-108	%Rec	1	7/8/2019 5:19:18 PM	45929
Surr: Nitrobenzene-d5	64.0		32.5-106	%Rec	1	7/8/2019 5:19:18 PM	45929
Surr: 2-Fluorobiphenyl	64.4		27.7-114	%Rec	1	7/8/2019 5:19:18 PM	45929
Surr: 4-Terphenyl-d14	65.1		15-148	%Rec	1	7/8/2019 5:19:18 PM	45929
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
Benzene	ND	0.0041	0.025	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Toluene	ND	0.0048	0.050	mg/Kg		7/3/2019 6:33:15 PM	
Ethylbenzene	ND	0.0029	0.050	mg/Kg		7/3/2019 6:33:15 PM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050	mg/Kg		7/3/2019 6:33:15 PM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 3 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: CENTRAL OCD LF TZ01

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 9:30:00 AM
Lab ID: 1906G37-001
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0045	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,3,5-Trimethylbenzene	ND	0.0048	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2-Dichloroethane (EDC)	ND	0.0051	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2-Dibromoethane (EDB)	ND	0.0045	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Naphthalene	ND	0.010	0.10		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1-Methylnaphthalene	ND	0.029	0.20		mg/Kg	1	7/3/2019 6:33:15 PM	45983
2-Methylnaphthalene	ND	0.022	0.20		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Acetone	ND	0.041	0.75		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Bromobenzene	ND	0.0048	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Bromodichloromethane	ND	0.0045	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Bromoform	ND	0.0045	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Bromomethane	ND	0.012	0.15		mg/Kg	1	7/3/2019 6:33:15 PM	45983
2-Butanone	ND	0.058	0.50		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Carbon disulfide	ND	0.016	0.50		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Carbon tetrachloride	ND	0.0047	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Chlorobenzene	ND	0.0064	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Chloroethane	ND	0.0073	0.10		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Chloroform	ND	0.0040	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Chloromethane	ND	0.0048	0.15		mg/Kg	1	7/3/2019 6:33:15 PM	45983
2-Chlorotoluene	ND	0.0043	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
4-Chlorotoluene	ND	0.0041	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
cis-1,2-DCE	ND	0.0068	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
cis-1,3-Dichloropropene	ND	0.0042	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Dibromochloromethane	ND	0.0035	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Dibromomethane	ND	0.0054	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2-Dichlorobenzene	ND	0.0041	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,3-Dichlorobenzene	ND	0.0043	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,4-Dichlorobenzene	ND	0.0042	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Dichlorodifluoromethane	ND	0.012	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1-Dichloroethane	ND	0.0032	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1-Dichloroethene	ND	0.020	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2-Dichloropropane	ND	0.0036	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,3-Dichloropropane	ND	0.0054	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983
2,2-Dichloropropane	ND	0.016	0.10		mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1-Dichloropropene	ND	0.0045	0.10		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Hexachlorobutadiene	ND	0.0051	0.10		mg/Kg	1	7/3/2019 6:33:15 PM	45983
2-Hexanone	ND	0.0083	0.50		mg/Kg	1	7/3/2019 6:33:15 PM	45983
Isopropylbenzene	ND	0.0036	0.050		mg/Kg	1	7/3/2019 6:33:15 PM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- O Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 9:30:00 AMLab ID:1906G37-001Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	 F
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
4-Methyl-2-pentanone	ND	0.0094	0.50	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Methylene chloride	ND	0.0088	0.15	mg/Kg	1	7/3/2019 6:33:15 PM	45983
n-Butylbenzene	ND	0.0046	0.15	mg/Kg	1	7/3/2019 6:33:15 PM	45983
n-Propylbenzene	ND	0.0040	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Styrene	ND	0.0039	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1,2,2-Tetrachloroethane	ND	0.0050	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
trans-1,2-DCE	ND	0.0046	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
trans-1,3-Dichloropropene	ND	0.0053	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2,3-Trichlorobenzene	ND	0.0044	0.10	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Trichloroethene (TCE)	ND	0.0058	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
1,2,3-Trichloropropane	ND	0.0081	0.10	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Vinyl chloride	ND	0.0033	0.050	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Xylenes, Total	ND	0.013	0.10	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Surr: Dibromofluoromethane	110		70-130	%Rec	1	7/3/2019 6:33:15 PM	45983
Surr: 1,2-Dichloroethane-d4	109		70-130	%Rec	1	7/3/2019 6:33:15 PM	45983
Surr: Toluene-d8	99.4		70-130	%Rec	1	7/3/2019 6:33:15 PM	45983
Surr: 4-Bromofluorobenzene	97.2		70-130	%Rec	1	7/3/2019 6:33:15 PM	45983
EPA METHOD 8015D MOD: GASOLINE	RANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	5.0	mg/Kg	1	7/3/2019 6:33:15 PM	45983
Surr: BFB	89.2	0	70-130	%Rec	1	7/3/2019 6:33:15 PM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	1
Petroleum Hydrocarbons, TR	ND	2.6	19	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ01

Project: OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 10:00:00 AM

Lab ID: 1906G37-002 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed I	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TOM	
Aroclor 1016	ND	0.010	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Aroclor 1221	ND	0.019	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Aroclor 1232	ND	0.023	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Aroclor 1242	ND	0.012	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Aroclor 1248	ND	0.019	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Aroclor 1254	ND	0.019	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Aroclor 1260	ND	0.0087	0.023		mg/Kg	1	7/10/2019 12:12:55 AM	45963
Surr: Decachlorobiphenyl	74.4	0	25.7-135		%Rec	1	7/10/2019 12:12:55 AM	45963
Surr: Tetrachloro-m-xylene	78.8	0	32.3-138		%Rec	1	7/10/2019 12:12:55 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS						Analyst: BRM	
Diesel Range Organics (DRO)	ND	1.9	9.6		mg/Kg	1	7/5/2019 4:05:11 PM	45994
Motor Oil Range Organics (MRO)	ND	48	48		mg/Kg	1	7/5/2019 4:05:11 PM	45994
Surr: DNOP	93.2	0	70-130		%Rec	1	7/5/2019 4:05:11 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: smb	
Fluoride	3.7	0.46	1.5		mg/Kg	5	7/10/2019 8:37:04 PM	46094
Chloride	240	0.51	7.5		mg/Kg	5	7/10/2019 8:37:04 PM	46094
Nitrogen, Nitrate (As N)	2.4	0.75	1.5		mg/Kg	5	7/10/2019 8:37:04 PM	46094
Sulfate	740	14	30		mg/Kg	20	7/10/2019 9:14:16 PM	46094
EPA METHOD 7471: MERCURY							Analyst: JLF	
Mercury	ND	0.0018	0.032		mg/Kg	1	7/10/2019 2:23:22 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.8	5.0		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Barium	180	0.046	0.20		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Cadmium	ND	0.048	0.20		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Chromium	15	0.16	0.60		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Copper	4.1	0.22	0.60		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Iron	18000	72	250		mg/Kg	100	7/2/2019 8:17:23 AM	45944
Lead	ND	0.48	0.50		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Manganese	340	0.041	0.20		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Uranium	ND	4.3	10		mg/Kg	2	7/2/2019 8:57:26 AM	45944
Zinc	21	0.79	5.0		mg/Kg	2	7/2/2019 8:57:26 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM	
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Aniline	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 6 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ01

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 10:00:00 AM
Lab ID: 1906G37-002 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Anthracene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benz(a)anthracene	ND	0.94	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzo(a)pyrene	ND	0.87	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzo(b)fluoranthene	ND	0.86	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzo(g,h,i)perylene	ND	0.84	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzo(k)fluoranthene	ND	0.89	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzoic acid	ND	1.0	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Benzyl alcohol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Bis(2-chloroethoxy)methane	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Bis(2-chloroisopropyl)ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Bis(2-ethylhexyl)phthalate	ND	1.4	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Bromophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Carbazole	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Chloro-3-methylphenol	ND	1.5	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Chloroaniline	ND	1.4	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Chloronaphthalene	ND	1.2	2.4	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Chlorophenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Chrysene	ND	0.86	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Di-n-butyl phthalate	ND	1.5	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Di-n-octyl phthalate	ND	0.99	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Dibenz(a,h)anthracene	ND	0.89	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1,3-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1,4-Dichlorobenzene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
3,3´-Dichlorobenzidine	ND	0.87	2.4	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Dimethyl phthalate	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4-Dichlorophenol	ND	1.1	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4-Dimethylphenol	ND	1.1	2.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.90	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4-Dinitrophenol	ND	0.71	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4-Dinitrotoluene	ND	1.1	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,6-Dinitrotoluene	ND	1.3	4.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 10:00:00 AMLab ID:1906G37-002Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDI	L RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Fluorene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachlorobenzene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachlorocyclopentadiene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.97	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Isophorone	ND	1.4	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Methylnaphthalene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Methylphenol	ND	1.2	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
N-Nitrosodiphenylamine	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
3-Nitroaniline	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Nitroaniline	ND	1.2	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Nitrobenzene	ND	1.3	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2-Nitrophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
4-Nitrophenol	ND	1.3	2.4	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Pentachlorophenol	ND	1.0	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Phenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Pyrene	ND	0.92	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Pyridine	ND	1.2	3.9	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
1,2,4-Trichlorobenzene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
2,4,6-Trichlorophenol	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 5:49:19 PM	45929
Surr: 2-Fluorophenol	0		24.8-95.2	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: Phenol-d5	0		29.9-97.8	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: 2,4,6-Tribromophenol	0		35.7-108	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: Nitrobenzene-d5	0		32.5-106	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: 2-Fluorobiphenyl	0		27.7-114	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
Surr: 4-Terphenyl-d14	0		15-148	SD	%Rec	1	7/8/2019 5:49:19 PM	45929
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Benzene	ND	0.0039	0.024		mg/Kg	1	7/3/2019 7:02:39 PM	45983
Toluene	ND	0.0046	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	
Ethylbenzene	ND	0.0028	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048		mg/Kg	1	7/3/2019 7:02:39 PM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 10:00:00 AMLab ID:1906G37-002Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0044	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,3,5-Trimethylbenzene	ND	0.0047	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dichloroethane (EDC)	ND	0.0049	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dibromoethane (EDB)	ND	0.0044	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Naphthalene	ND	0.0096	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1-Methylnaphthalene	ND	0.028	0.19	mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Methylnaphthalene	ND	0.021	0.19	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Acetone	ND	0.040	0.72	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromobenzene	ND	0.0046	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromodichloromethane	ND	0.0044	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromoform	ND	0.0043	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Bromomethane	ND	0.012	0.14	mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Butanone	ND	0.056	0.48	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Carbon disulfide	ND	0.016	0.48	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Carbon tetrachloride	ND	0.0046	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chlorobenzene	ND	0.0062	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chloroethane	ND	0.0071	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chloroform	ND	0.0039	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Chloromethane	ND	0.0046	0.14	mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Chlorotoluene	ND	0.0042	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
4-Chlorotoluene	ND	0.0039	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
cis-1,2-DCE	ND	0.0066	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
cis-1,3-Dichloropropene	ND	0.0041	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dibromo-3-chloropropane	ND	0.0049	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Dibromochloromethane	ND	0.0034	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Dibromomethane	ND	0.0052	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dichlorobenzene	ND	0.0039	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,3-Dichlorobenzene	ND	0.0042	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,4-Dichlorobenzene	ND	0.0040	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Dichlorodifluoromethane	ND	0.011	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1-Dichloroethane	ND	0.0031	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1-Dichloroethene	ND	0.019	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2-Dichloropropane	ND	0.0035	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,3-Dichloropropane	ND	0.0052	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
2,2-Dichloropropane	ND	0.016	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1-Dichloropropene	ND	0.0044	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Hexachlorobutadiene	ND	0.0049	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
2-Hexanone	ND	0.0080	0.48	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Isopropylbenzene	ND	0.0035	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ01

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 10:00:00 AM
Lab ID: 1906G37-002 Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
4-Isopropyltoluene	ND	0.0040	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
4-Methyl-2-pentanone	ND	0.0091	0.48	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Methylene chloride	ND	0.0085	0.14	mg/Kg	1	7/3/2019 7:02:39 PM	45983
n-Butylbenzene	ND	0.0045	0.14	mg/Kg	1	7/3/2019 7:02:39 PM	45983
n-Propylbenzene	ND	0.0038	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
sec-Butylbenzene	ND	0.0054	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Styrene	ND	0.0038	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
tert-Butylbenzene	ND	0.0045	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,1,2-Tetrachloroethane	ND	0.0032	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,2,2-Tetrachloroethane	ND	0.0049	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Tetrachloroethene (PCE)	ND	0.0038	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
trans-1,2-DCE	ND	0.0044	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
trans-1,3-Dichloropropene	ND	0.0051	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2,3-Trichlorobenzene	ND	0.0042	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2,4-Trichlorobenzene	ND	0.0049	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,1-Trichloroethane	ND	0.0043	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,1,2-Trichloroethane	ND	0.0034	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Trichloroethene (TCE)	ND	0.0056	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Trichlorofluoromethane	ND	0.016	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
1,2,3-Trichloropropane	ND	0.0078	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Vinyl chloride	ND	0.0031	0.048	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Xylenes, Total	ND	0.012	0.096	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Surr: Dibromofluoromethane	99.6		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
Surr: 1,2-Dichloroethane-d4	101		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
Surr: Toluene-d8	98.8		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
Surr: 4-Bromofluorobenzene	93.3		70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
EPA METHOD 8015D MOD: GASOLINE	RANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.8	mg/Kg	1	7/3/2019 7:02:39 PM	45983
Surr: BFB	86.0	0	70-130	%Rec	1	7/3/2019 7:02:39 PM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	1
Petroleum Hydrocarbons, TR	ND	2.7	19	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ02

Project: OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 10:50:00 AM

Lab ID: 1906G37-003 Matrix: SOIL Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	s DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S						Analyst: TO	M
Aroclor 1016	ND	0.011	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Aroclor 1221	ND	0.020	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Aroclor 1232	ND	0.024	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Aroclor 1242	ND	0.013	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Aroclor 1248	ND	0.020	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Aroclor 1254	ND	0.020	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Aroclor 1260	ND	0.0093	0.025	mg/K	g 1	7/10/2019 1:52:12 AM	A 45963
Surr: Decachlorobiphenyl	75.6	0	25.7-135	%Red	1	7/10/2019 1:52:12 AM	A 45963
Surr: Tetrachloro-m-xylene	87.6	0	32.3-138	%Red	1	7/10/2019 1:52:12 AM	A 45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst: BR	М
Diesel Range Organics (DRO)	33	1.8	9.1	mg/K	g 1	7/8/2019 6:24:41 PM	45994
Motor Oil Range Organics (MRO)	57	46	46	mg/K	g 1	7/8/2019 6:24:41 PM	45994
Surr: DNOP	96.5	0	70-130	%Red	1	7/8/2019 6:24:41 PM	45994
EPA METHOD 300.0: ANIONS						Analyst: sm	b
Fluoride	10	0.46	1.5	mg/K	g 5	7/10/2019 9:26:41 PM	A 46094
Chloride	150	0.51	7.5	mg/K	g 5	7/10/2019 9:26:41 PM	A 46094
Nitrogen, Nitrate (As N)	4.2	0.75	1.5	mg/K	-	7/10/2019 9:26:41 PM	A 46094
Sulfate	700	3.4	7.5	mg/K	-	7/10/2019 9:26:41 PM	Л 46094
EPA METHOD 7471: MERCURY						Analyst: JL I	=
Mercury	0.14	0.0017	0.031	mg/K	g 1	7/10/2019 2:29:25 PM	<i>l</i> 46081
EPA METHOD 6010B: SOIL METALS						Analyst: bc	,
Arsenic	ND	2.8	5.0	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Barium	320	0.046	0.20	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Cadmium	ND	0.048	0.20	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Chromium	13	0.16	0.60	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Copper	17	0.22	0.60	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Iron	16000	72	250	mg/K	g 100	7/2/2019 8:24:54 AM	45944
Lead	3.9	0.48	0.50	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Manganese	410	0.041	0.20	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Selenium	ND	2.5	5.0	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Silver	ND	0.064	0.50	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Uranium	ND	4.3	9.9	mg/K	g 2	7/2/2019 9:04:56 AM	45944
Zinc	59	0.79	5.0	mg/K	g 2	7/2/2019 9:04:56 AM	45944
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Acenaphthene	ND	0.11	0.19	mg/K	g 1	7/8/2019 6:19:41 PM	45929
Acenaphthylene	ND	0.10	0.19	mg/K	g 1	7/8/2019 6:19:41 PM	45929
Aniline	ND	0.12	0.19	mg/K	g 1	7/8/2019 6:19:41 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 11 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ02

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 6/27/2019 10:50:00 AM

Lab ID: 1906G37-003

Matrix: SOIL

Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	M
Anthracene	ND	0.099	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Azobenzene	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benz(a)anthracene	ND	0.089	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(a)pyrene	ND	0.083	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(b)fluoranthene	ND	0.082	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(g,h,i)perylene	ND	0.080	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzo(k)fluoranthene	ND	0.084	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzoic acid	ND	0.096	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Benzyl alcohol	ND	0.12	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-chloroethoxy)methane	ND	0.14	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-chloroethyl)ether	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.13	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Bromophenyl phenyl ether	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Butyl benzyl phthalate	ND	0.095	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Carbazole	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Chloro-3-methylphenol	ND	0.14	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Chloroaniline	ND	0.13	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Chloronaphthalene	ND	0.12	0.23	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Chlorophenol	ND	0.12	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Chlorophenyl phenyl ether	ND	0.10	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Chrysene	ND	0.082	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Di-n-butyl phthalate	ND	0.14	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Di-n-octyl phthalate	ND	0.095	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Dibenz(a,h)anthracene	ND	0.084	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Dibenzofuran	ND	0.12	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,2-Dichlorobenzene	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,3-Dichlorobenzene	ND	0.098	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,4-Dichlorobenzene	ND	0.099	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
3,3´-Dichlorobenzidine	ND	0.083	0.23	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Diethyl phthalate	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Dimethyl phthalate	ND	0.12	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4-Dichlorophenol	ND	0.11	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4-Dimethylphenol	ND	0.10	0.28	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.086	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4-Dinitrophenol	ND	0.067	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4-Dinitrotoluene	ND	0.11	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,6-Dinitrotoluene	ND	0.12	0.46	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Fluoranthene	ND	0.10	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ02

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 10:50:00 AMLab ID:1906G37-003Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDI	. RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Fluorene	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachlorobenzene	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachlorobutadiene	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachlorocyclopentadiene	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Hexachloroethane	ND	0.10	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.092	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Isophorone	ND	0.14	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
1-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Methylnaphthalene	ND	0.14	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Methylphenol	ND	0.11	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
3+4-Methylphenol	ND	0.11	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
N-Nitrosodi-n-propylamine	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
N-Nitrosodiphenylamine	ND	0.098	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Naphthalene	ND	0.14	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Nitroaniline	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
3-Nitroaniline	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Nitroaniline	ND	0.12	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Nitrobenzene	ND	0.13	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2-Nitrophenol	ND	0.13	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
4-Nitrophenol	ND	0.13	0.23	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Pentachlorophenol	ND	0.096	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Phenanthrene	ND	0.10	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Phenol	ND	0.12	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Pyrene	ND	0.087	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Pyridine	ND	0.11	0.37	mg/Kg	1	7/8/2019 6:19:41 PM	45929
1,2,4-Trichlorobenzene	ND	0.14	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4,5-Trichlorophenol	ND	0.12	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
2,4,6-Trichlorophenol	ND	0.098	0.19	mg/Kg	1	7/8/2019 6:19:41 PM	45929
Surr: 2-Fluorophenol	76.3		24.8-95.2	%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: Phenol-d5	78.6		29.9-97.8	%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: 2,4,6-Tribromophenol	77.1		35.7-108	%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: Nitrobenzene-d5	85.1		32.5-106	%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: 2-Fluorobiphenyl	80.6		27.7-114	%Rec	1	7/8/2019 6:19:41 PM	45929
Surr: 4-Terphenyl-d14	83.7		15-148	%Rec	1	7/8/2019 6:19:41 PM	45929
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
Benzene	ND	0.0040	0.025	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Toluene	ND	0.0047	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Ethylbenzene	ND	0.0029	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
,				mg/Kg			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 13 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ02

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 10:50:00 AM
Lab ID: 1906G37-003
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	 F
1,2,4-Trimethylbenzene	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	Л 45983
1,3,5-Trimethylbenzene	ND	0.0048	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	Л 45983
1,2-Dichloroethane (EDC)	ND	0.0050	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,2-Dibromoethane (EDB)	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Naphthalene	ND	0.0099	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
1-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Acetone	ND	0.041	0.74	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Bromobenzene	ND	0.0047	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Bromodichloromethane	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Bromoform	ND	0.0044	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
2-Butanone	ND	0.057	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Carbon disulfide	ND	0.016	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Carbon tetrachloride	ND	0.0047	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Chlorobenzene	ND	0.0063	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Chloroethane	ND	0.0073	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Chloroform	ND	0.0040	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Chloromethane	ND	0.0047	0.15	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
2-Chlorotoluene	ND	0.0043	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
4-Chlorotoluene	ND	0.0040	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
cis-1,2-DCE	ND	0.0067	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
cis-1,3-Dichloropropene	ND	0.0042	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,2-Dibromo-3-chloropropane	ND	0.0051	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Dibromochloromethane	ND	0.0035	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Dibromomethane	ND	0.0053	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,2-Dichlorobenzene	ND	0.0040	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,3-Dichlorobenzene	ND	0.0043	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
1,4-Dichlorobenzene	ND	0.0041	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
Dichlorodifluoromethane	ND	0.011	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,1-Dichloroethane	ND	0.0032	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,1-Dichloroethene	ND	0.020	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
1,2-Dichloropropane	ND	0.0036	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
1,3-Dichloropropane	ND	0.0053	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
2,2-Dichloropropane	ND	0.016	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	A 45983
1,1-Dichloropropene	ND	0.0045	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Hexachlorobutadiene	ND	0.0050	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
2-Hexanone	ND	0.0082	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983
Isopropylbenzene	ND	0.0036	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	И 45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 14 of 65

Analytical Report

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ02

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 10:50:00 AM
Lab ID: 1906G37-003
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
4-Isopropyltoluene	ND	0.0041	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
4-Methyl-2-pentanone	ND	0.0093	0.49	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Methylene chloride	ND	0.0087	0.15	mg/Kg	1	7/3/2019 11:56:17 PM	45983
n-Butylbenzene	ND	0.0046	0.15	mg/Kg	1	7/3/2019 11:56:17 PM	45983
n-Propylbenzene	ND	0.0039	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
sec-Butylbenzene	ND	0.0056	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Styrene	ND	0.0039	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
tert-Butylbenzene	ND	0.0047	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,2,2-Tetrachloroethane	ND	0.0050	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Tetrachloroethene (PCE)	ND	0.0039	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
trans-1,2-DCE	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
trans-1,3-Dichloropropene	ND	0.0052	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2,3-Trichlorobenzene	ND	0.0043	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,1-Trichloroethane	ND	0.0045	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,1,2-Trichloroethane	ND	0.0035	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Trichloroethene (TCE)	ND	0.0057	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Trichlorofluoromethane	ND	0.017	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
1,2,3-Trichloropropane	ND	0.0080	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Vinyl chloride	ND	0.0032	0.049	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Xylenes, Total	ND	0.012	0.099	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Surr: Dibromofluoromethane	107		70-130	%Rec	1	7/3/2019 11:56:17 PM	45983
Surr: 1,2-Dichloroethane-d4	106		70-130	%Rec	1	7/3/2019 11:56:17 PM	45983
Surr: Toluene-d8	98.2		70-130	%Rec	1	7/3/2019 11:56:17 PM	45983
Surr: 4-Bromofluorobenzene	95.4		70-130	%Rec	1	7/3/2019 11:56:17 PM	45983
EPA METHOD 8015D MOD: GASOLINE F	RANGE					Analyst: DJF	•
Gasoline Range Organics (GRO)	ND	1.2	4.9	mg/Kg	1	7/3/2019 11:56:17 PM	45983
Surr: BFB	88.6	0	70-130	%Rec	1	7/3/2019 11:56:17 PM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	
Petroleum Hydrocarbons, TR	54	2.7	20	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon
Client Sample ID: CENTRAL OCD LF VZ02
Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 11:10:00 AM
Lab ID: 1906G37-004
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Un	its DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S						Analyst: TON	I
Aroclor 1016	ND	0.0077	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Aroclor 1221	ND	0.014	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Aroclor 1232	ND	0.017	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Aroclor 1242	ND	0.0094	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Aroclor 1248	ND	0.014	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Aroclor 1254	ND	0.014	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Aroclor 1260	ND	0.0067	0.018	mg	/Kg 1	7/10/2019 2:25:16 AM	45963
Surr: Decachlorobiphenyl	56.0	0	25.7-135	%F	tec 1	7/10/2019 2:25:16 AM	45963
Surr: Tetrachloro-m-xylene	65.2	0	32.3-138	%F	lec 1	7/10/2019 2:25:16 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE	ORGANICS					Analyst: BRN	1
Diesel Range Organics (DRO)	ND	1.7	8.6	mg	/Kg 1	7/5/2019 5:34:23 PM	45994
Motor Oil Range Organics (MRO)	ND	43	43	mg	/Kg 1	7/5/2019 5:34:23 PM	45994
Surr: DNOP	95.0	0	70-130	%F	tec 1	7/5/2019 5:34:23 PM	45994
EPA METHOD 300.0: ANIONS						Analyst: smb	
Fluoride	3.1	0.46	1.5	mg	/Kg 5	7/10/2019 10:16:20 PM	1 46094
Chloride	150	0.51	7.5	mg	/Kg 5	7/10/2019 10:16:20 PM	1 46094
Nitrogen, Nitrate (As N)	2.0	0.75	1.5	mg	/Kg 5	7/10/2019 10:16:20 PM	1 46094
Sulfate	850	14	30	mg	/Kg 20	7/10/2019 10:28:44 PM	1 46094
EPA METHOD 7471: MERCURY						Analyst: JLF	
Mercury	ND	0.0017	0.031	mg	/Kg 1	7/10/2019 2:31:29 PM	46081
EPA METHOD 6010B: SOIL METALS						Analyst: bcv	
Arsenic	ND	2.9	5.1	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Barium	240	0.047	0.20	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Cadmium	ND	0.049	0.20	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Chromium	16	0.16	0.61	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Copper	4.2	0.23	0.61	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Iron	21000	74	250	mg	/Kg 10	7/2/2019 8:26:40 AM	45944
Lead	1.8	0.49	0.51	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Manganese	370	0.042	0.20	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Selenium	ND	2.5	5.1	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Silver	ND	0.065	0.51	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Uranium	ND	4.4	10	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
Zinc	23	0.80	5.1	mg	/Kg 2	7/2/2019 9:12:40 AM	45944
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DAN	1
Acenaphthene	ND	0.13	0.21	mg	/Kg 1	7/8/2019 6:50:14 PM	45929
Acenaphthylene	ND	0.11	0.21	mg	/Kg 1	7/8/2019 6:50:14 PM	45929
Aniline	ND	0.13	0.21	mg	/Kg 1	7/8/2019 6:50:14 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 16 of 65

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ02

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 11:10:00 AMLab ID:1906G37-004Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Anthracene	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Azobenzene	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benz(a)anthracene	ND	0.10	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benzo(a)pyrene	ND	0.093	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benzo(b)fluoranthene	ND	0.092	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benzo(g,h,i)perylene	ND	0.090	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benzo(k)fluoranthene	ND	0.095	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benzoic acid	ND	0.11	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Benzyl alcohol	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Bis(2-chloroethoxy)methane	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Bis(2-chloroethyl)ether	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.15	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4-Bromophenyl phenyl ether	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Butyl benzyl phthalate	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Carbazole	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4-Chloro-3-methylphenol	ND	0.16	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4-Chloroaniline	ND	0.15	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2-Chloronaphthalene	ND	0.13	0.26	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2-Chlorophenol	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4-Chlorophenyl phenyl ether	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Chrysene	ND	0.092	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Di-n-butyl phthalate	ND	0.16	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Di-n-octyl phthalate	ND	0.11	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Dibenz(a,h)anthracene	ND	0.095	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Dibenzofuran	ND	0.14	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
1,2-Dichlorobenzene	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
1,3-Dichlorobenzene	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
1,4-Dichlorobenzene	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
3,3´-Dichlorobenzidine	ND	0.093	0.26	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Diethyl phthalate	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Dimethyl phthalate	ND	0.14	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,4-Dichlorophenol	ND	0.12	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,4-Dimethylphenol	ND	0.12	0.31	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.097	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,4-Dinitrophenol	ND	0.076	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,4-Dinitrotoluene	ND	0.12	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,6-Dinitrotoluene	ND	0.14	0.52	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Fluoranthene	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 17 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: CENTRAL OCD LF VZ02

Project: OCD Central Landfarm Semiannual Sam

Collection Date: 6/27/2019 11:10:00 AM

Lab ID: 1906G37-004 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDI	. RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Fluorene	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlorobenzene	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlorobutadiene	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachlorocyclopentadiene	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Hexachloroethane	ND	0.12	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.10	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Isophorone	ND	0.15	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
1-Methylnaphthalene	ND	0.16	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2-Methylnaphthalene	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2-Methylphenol	ND	0.12	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
3+4-Methylphenol	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
N-Nitrosodi-n-propylamine	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
N-Nitrosodiphenylamine	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Naphthalene	ND	0.16	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2-Nitroaniline	ND	0.15	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
3-Nitroaniline	ND	0.14	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4-Nitroaniline	ND	0.13	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Nitrobenzene	ND	0.14	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2-Nitrophenol	ND	0.14	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
4-Nitrophenol	ND	0.14	0.26	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Pentachlorophenol	ND	0.11	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Phenanthrene	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Phenol	ND	0.13	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Pyrene	ND	0.098	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Pyridine	ND	0.13	0.42	mg/Kg	1	7/8/2019 6:50:14 PM	45929
1,2,4-Trichlorobenzene	ND	0.16	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,4,5-Trichlorophenol	ND	0.14	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
2,4,6-Trichlorophenol	ND	0.11	0.21	mg/Kg	1	7/8/2019 6:50:14 PM	45929
Surr: 2-Fluorophenol	69.1		24.8-95.2	%Rec	1	7/8/2019 6:50:14 PM	45929
Surr: Phenol-d5	76.9		29.9-97.8	%Rec	1	7/8/2019 6:50:14 PM	45929
Surr: 2,4,6-Tribromophenol	71.8		35.7-108	%Rec	1	7/8/2019 6:50:14 PM	45929
Surr: Nitrobenzene-d5	82.4		32.5-106	%Rec	1	7/8/2019 6:50:14 PM	45929
Surr: 2-Fluorobiphenyl	83.1		27.7-114	%Rec	1	7/8/2019 6:50:14 PM	45929
Surr: 4-Terphenyl-d14	83.5		15-148	%Rec	1	7/8/2019 6:50:14 PM	45929
EPA METHOD 8260B: VOLATILES						Analyst: DJI	=
Benzene	ND	0.0040	0.024	mg/Kg	1	7/4/2019 12:25:34 AM	45983
Toluene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	45983
Ethylbenzene	ND	0.0028	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	45983
D C				1001			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 18 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ02

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 11:10:00 AMLab ID:1906G37-004Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	F
1,2,4-Trimethylbenzene	ND	0.0044	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,3,5-Trimethylbenzene	ND	0.0047	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,2-Dichloroethane (EDC)	ND	0.0049	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,2-Dibromoethane (EDB)	ND	0.0044	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Naphthalene	ND	0.0097	0.097	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1-Methylnaphthalene	ND	0.028	0.19	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
2-Methylnaphthalene	ND	0.021	0.19	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Acetone	ND	0.040	0.73	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Bromobenzene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Bromodichloromethane	ND	0.0044	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Bromoform	ND	0.0044	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
2-Butanone	ND	0.056	0.48	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Carbon disulfide	ND	0.016	0.48	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Carbon tetrachloride	ND	0.0046	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Chlorobenzene	ND	0.0062	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Chloroethane	ND	0.0071	0.097	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Chloroform	ND	0.0039	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Chloromethane	ND	0.0046	0.15	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
2-Chlorotoluene	ND	0.0042	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
4-Chlorotoluene	ND	0.0040	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
cis-1,2-DCE	ND	0.0066	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
cis-1,3-Dichloropropene	ND	0.0041	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,2-Dibromo-3-chloropropane	ND	0.0050	0.097	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Dibromochloromethane	ND	0.0034	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Dibromomethane	ND	0.0052	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,2-Dichlorobenzene	ND	0.0040	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,3-Dichlorobenzene	ND	0.0042	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,4-Dichlorobenzene	ND	0.0041	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Dichlorodifluoromethane	ND	0.011	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,1-Dichloroethane	ND	0.0031	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,1-Dichloroethene	ND	0.019	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,2-Dichloropropane	ND	0.0035	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,3-Dichloropropane	ND	0.0052	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
2,2-Dichloropropane	ND	0.016	0.097	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
1,1-Dichloropropene	ND	0.0044	0.097	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Hexachlorobutadiene	ND	0.0049	0.097	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
2-Hexanone	ND	0.0080	0.48	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983
Isopropylbenzene	ND	0.0035	0.048	mg/Kg	1	7/4/2019 12:25:34 AM	A 45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 19 of 65

Analytical Report

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ02

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 11:10:00 AMLab ID:1906G37-004Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Uni	ts D	F	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES							Analyst: DJF	:
4-Isopropyltoluene	ND	0.0040	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
4-Methyl-2-pentanone	ND	0.0091	0.48	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Methylene chloride	ND	0.0086	0.15	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
n-Butylbenzene	ND	0.0045	0.15	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
n-Propylbenzene	ND	0.0039	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
sec-Butylbenzene	ND	0.0055	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Styrene	ND	0.0038	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
tert-Butylbenzene	ND	0.0046	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0049	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Tetrachloroethene (PCE)	ND	0.0039	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
trans-1,2-DCE	ND	0.0044	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
trans-1,3-Dichloropropene	ND	0.0051	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,2,3-Trichlorobenzene	ND	0.0043	0.097	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,2,4-Trichlorobenzene	ND	0.0049	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,1,1-Trichloroethane	ND	0.0044	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,1,2-Trichloroethane	ND	0.0034	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Trichloroethene (TCE)	ND	0.0056	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Trichlorofluoromethane	ND	0.016	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
1,2,3-Trichloropropane	ND	0.0078	0.097	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Vinyl chloride	ND	0.0032	0.048	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Xylenes, Total	ND	0.012	0.097	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Surr: Dibromofluoromethane	102		70-130	%R	ec 1		7/4/2019 12:25:34 AM	45983
Surr: 1,2-Dichloroethane-d4	102		70-130	%R	ec 1		7/4/2019 12:25:34 AM	45983
Surr: Toluene-d8	96.3		70-130	%R	ec 1		7/4/2019 12:25:34 AM	45983
Surr: 4-Bromofluorobenzene	96.0		70-130	%R	ec 1		7/4/2019 12:25:34 AM	45983
EPA METHOD 8015D MOD: GASOLINE RA	NGE						Analyst: DJF	:
Gasoline Range Organics (GRO)	ND	1.2	4.8	mg/	Kg 1		7/4/2019 12:25:34 AM	45983
Surr: BFB	93.2	0	70-130	%R			7/4/2019 12:25:34 AM	
EPA METHOD 418.1: TPH							Analyst: Irm	
Petroleum Hydrocarbons, TR	ND	2.7	20	mg/	Kg 1		7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analytical Report

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: Trip Blank

Project: OCD Central Landfarm Semiannual Sam Collection Date:

Lab ID: 1906G37-005 **Matrix:** AQUEOUS **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260: VOLATILES SHORT LIST							Analyst: RA	Α
Benzene	ND	0.17	1.0		μg/L	1	7/8/2019 3:11:00 PM	SL6122
Toluene	ND	0.35	1.0		μg/L	1	7/8/2019 3:11:00 PM	SL6122
Ethylbenzene	ND	0.13	1.0		μg/L	1	7/8/2019 3:11:00 PM	SL6122
Xylenes, Total	ND	0.45	1.5		μg/L	1	7/8/2019 3:11:00 PM	SL6122
Surr: 1,2-Dichloroethane-d4	116	0	70-130		%Rec	1	7/8/2019 3:11:00 PM	SL6122
Surr: 4-Bromofluorobenzene	101	0	70-130		%Rec	1	7/8/2019 3:11:00 PM	SL6122
Surr: Dibromofluoromethane	111	0	70-130		%Rec	1	7/8/2019 3:11:00 PM	SL6122
Surr: Toluene-d8	95.5	0	70-130		%Rec	1	7/8/2019 3:11:00 PM	SL6122

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 21 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT:MarathonClient Sample ID: CENTRAL OCD LF TZ03Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 11:50:00 AM

Lab ID: 1906G37-006 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TO l	M
Aroclor 1016	ND	0.0098	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Aroclor 1221	ND	0.018	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Aroclor 1232	ND	0.022	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Aroclor 1242	ND	0.012	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Aroclor 1248	ND	0.018	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Aroclor 1254	ND	0.018	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Aroclor 1260	ND	0.0085	0.023		mg/Kg	1	7/10/2019 2:58:19 AM	45963
Surr: Decachlorobiphenyl	78.8	0	25.7-135		%Rec	1	7/10/2019 2:58:19 AM	45963
Surr: Tetrachloro-m-xylene	91.6	0	32.3-138		%Rec	1	7/10/2019 2:58:19 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BR	М
Diesel Range Organics (DRO)	87	2.0	9.8		mg/Kg	1	7/8/2019 6:47:09 PM	45994
Motor Oil Range Organics (MRO)	110	49	49		mg/Kg	1	7/8/2019 6:47:09 PM	45994
Surr: DNOP	100	0	70-130		%Rec	1	7/8/2019 6:47:09 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: CA	s
Fluoride	7.1	0.46	1.5		mg/Kg	5	7/11/2019 5:03:32 PM	46126
Chloride	330	2.0	30		mg/Kg	20	7/11/2019 5:15:56 PM	46126
Nitrogen, Nitrate (As N)	13	0.75	1.5		mg/Kg	5	7/11/2019 5:03:32 PM	46126
Sulfate	1300	14	30		mg/Kg	20	7/11/2019 5:15:56 PM	46126
EPA METHOD 7471: MERCURY							Analyst: JLF	=
Mercury	0.094	0.0018	0.032		mg/Kg	1	7/10/2019 2:33:43 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	1
Arsenic	ND	2.9	5.1		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Barium	260	0.047	0.20		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Chromium	15	0.16	0.61		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Copper	15	0.23	0.61		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Iron	20000	74	250		mg/Kg	100	7/2/2019 8:30:19 AM	45944
Lead	5.8	0.49	0.51		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Manganese	400	0.042	0.20		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Selenium	ND	2.5	5.1		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Silver	ND	0.065	0.51		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 9:16:28 AM	45944
Zinc	53	0.80	5.1		mg/Kg	2	7/2/2019 9:16:28 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA l	М
Acenaphthene	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Acenaphthylene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Aniline	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929

Qualifiers: * Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 22 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ03

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 11:50:00 AM
Lab ID: 1906G37-006
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID		
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAM			
Anthracene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Azobenzene	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benz(a)anthracene	ND	1.0	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benzo(a)pyrene	ND	0.95	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benzo(b)fluoranthene	ND	0.95	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benzo(g,h,i)perylene	ND	0.92	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benzo(k)fluoranthene	ND	0.97	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benzoic acid	ND	1.1	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Benzyl alcohol	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Bis(2-chloroethoxy)methane	ND	1.6	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Bis(2-chloroethyl)ether	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Bis(2-chloroisopropyl)ether	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Bis(2-ethylhexyl)phthalate	ND	1.5	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
4-Bromophenyl phenyl ether	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Butyl benzyl phthalate	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Carbazole	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
4-Chloro-3-methylphenol	ND	1.6	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
4-Chloroaniline	ND	1.5	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2-Chloronaphthalene	ND	1.3	2.7	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2-Chlorophenol	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
4-Chlorophenyl phenyl ether	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Chrysene	ND	0.94	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Di-n-butyl phthalate	ND	1.6	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Di-n-octyl phthalate	ND	1.1	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Dibenz(a,h)anthracene	ND	0.97	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Dibenzofuran	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
1,2-Dichlorobenzene	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
1,3-Dichlorobenzene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
1,4-Dichlorobenzene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
3,3'-Dichlorobenzidine	ND	0.95	2.7	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Diethyl phthalate	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Dimethyl phthalate	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2,4-Dichlorophenol	ND	1.2	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2,4-Dimethylphenol	ND	1.2	3.2	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
4,6-Dinitro-2-methylphenol	ND	0.99	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2,4-Dinitrophenol	ND	0.78	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2,4-Dinitrotoluene	ND	1.3	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
2,6-Dinitrotoluene	ND	1.4	5.4	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		
Fluoranthene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 23 of 65

oratory, Inc. Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon

Client Sample ID: CENTRAL OCD LF TZ03

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 11:50:00 AMLab ID:1906G37-006Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDI	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Fluorene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Hexachlorobenzene	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Hexachlorobutadiene	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Hexachlorocyclopentadiene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Hexachloroethane	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Indeno(1,2,3-cd)pyrene	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Isophorone	ND	1.6	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
1-Methylnaphthalene	ND	1.6	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2-Methylnaphthalene	ND	1.6	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2-Methylphenol	ND	1.3	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
3+4-Methylphenol	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
N-Nitrosodi-n-propylamine	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
N-Nitrosodiphenylamine	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Naphthalene	ND	1.6	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2-Nitroaniline	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
3-Nitroaniline	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4-Nitroaniline	ND	1.4	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Nitrobenzene	ND	1.5	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2-Nitrophenol	ND	1.5	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
4-Nitrophenol	ND	1.5	2.7	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Pentachlorophenol	ND	1.1	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Phenanthrene	ND	1.2	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Phenol	ND	1.3	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Pyrene	ND	1.0	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Pyridine	ND	1.3	4.3	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
1,2,4-Trichlorobenzene	ND	1.7	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,4,5-Trichlorophenol	ND	1.4	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
2,4,6-Trichlorophenol	ND	1.1	2.1	D	mg/Kg	1	7/8/2019 7:20:47 PM	45929
Surr: 2-Fluorophenol	0		24.8-95.2	SD	%Rec	1	7/8/2019 7:20:47 PM	45929
Surr: Phenol-d5	0		29.9-97.8	SD	%Rec	1	7/8/2019 7:20:47 PM	45929
Surr: 2,4,6-Tribromophenol	0		35.7-108	SD	%Rec	1	7/8/2019 7:20:47 PM	45929
Surr: Nitrobenzene-d5	0		32.5-106	SD	%Rec	1	7/8/2019 7:20:47 PM	45929
Surr: 2-Fluorobiphenyl	0		27.7-114	SD	%Rec	1	7/8/2019 7:20:47 PM	45929
Surr: 4-Terphenyl-d14	0		15-148	SD	%Rec	1	7/8/2019 7:20:47 PM	45929
EPA METHOD 8260B: VOLATILES							Analyst: DJI	=
Benzene	ND	0.0041	0.025		mg/Kg	1	7/4/2019 12:55:21 AN	1 45983
Toluene	ND	0.0048	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	
Ethylbenzene	ND	0.0029	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050		mg/Kg	1	7/4/2019 12:55:21 AN	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 24 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ03

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 11:50:00 AMLab ID:1906G37-006Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: D J	ıF
1,2,4-Trimethylbenzene	ND	0.0046	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,2-Dibromoethane (EDB)	ND	0.0046	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Naphthalene	ND	0.010	0.10	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Acetone	ND	0.041	0.75	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Bromodichloromethane	ND	0.0046	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Bromoform	ND	0.0045	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
2-Butanone	ND	0.058	0.50	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Carbon disulfide	ND	0.016	0.50	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Chloroethane	ND	0.0074	0.10	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Chloroform	ND	0.0040	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Chloromethane	ND	0.0048	0.15	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
2-Chlorotoluene	ND	0.0043	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,2-Dibromo-3-chloropropane	ND	0.0051	0.10	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Dibromomethane	ND	0.0054	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,4-Dichlorobenzene	ND	0.0042	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
2,2-Dichloropropane	ND	0.016	0.10	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
1,1-Dichloropropene	ND	0.0045	0.10	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Hexachlorobutadiene	ND	0.0051	0.10	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
2-Hexanone	ND	0.0083	0.50	mg/Kg	1	7/4/2019 12:55:21 A	M 45983
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	7/4/2019 12:55:21 A	M 45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 25 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ03

Project: OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 11:50:00 AM

Lab ID: 1906G37-006 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJF	
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
4-Methyl-2-pentanone	ND	0.0094	0.50	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Methylene chloride	ND	0.0088	0.15	mg/Kg	1	7/4/2019 12:55:21 AM	45983
n-Butylbenzene	ND	0.0047	0.15	mg/Kg	1	7/4/2019 12:55:21 AM	45983
n-Propylbenzene	ND	0.0040	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Styrene	ND	0.0039	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0034	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0051	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
trans-1,2-DCE	ND	0.0046	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
trans-1,3-Dichloropropene	ND	0.0053	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2,3-Trichlorobenzene	ND	0.0044	0.10	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Trichloroethene (TCE)	ND	0.0058	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
1,2,3-Trichloropropane	ND	0.0081	0.10	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Vinyl chloride	ND	0.0033	0.050	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Xylenes, Total	ND	0.013	0.10	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Surr: Dibromofluoromethane	107		70-130	%Rec	1	7/4/2019 12:55:21 AM	45983
Surr: 1,2-Dichloroethane-d4	107		70-130	%Rec	1	7/4/2019 12:55:21 AM	45983
Surr: Toluene-d8	90.3		70-130	%Rec	1	7/4/2019 12:55:21 AM	45983
Surr: 4-Bromofluorobenzene	91.7		70-130	%Rec	1	7/4/2019 12:55:21 AM	45983
EPA METHOD 8015D MOD: GASOLINE R	ANGE					Analyst: DJF	
Gasoline Range Organics (GRO)	ND	1.2	5.0	mg/Kg	1	7/4/2019 12:55:21 AM	45983
Surr: BFB	81.9	0	70-130	%Rec	1	7/4/2019 12:55:21 AM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	
Petroleum Hydrocarbons, TR	52	2.8	20	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ03

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 12:10:00 PMLab ID:1906G37-007Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S						Analyst: TO	M
Aroclor 1016	ND	0.010	0.024	mg/Kg	1	7/10/2019 3:31:20 AM	A 45963
Aroclor 1221	ND	0.019	0.024	mg/Kg	1	7/10/2019 3:31:20 AN	A 45963
Aroclor 1232	ND	0.023	0.024	mg/Kg	1	7/10/2019 3:31:20 AN	A 45963
Aroclor 1242	ND	0.013	0.024	mg/Kg	1	7/10/2019 3:31:20 AM	A 45963
Aroclor 1248	ND	0.019	0.024	mg/Kg	1	7/10/2019 3:31:20 AM	A 45963
Aroclor 1254	ND	0.019	0.024	mg/Kg	1	7/10/2019 3:31:20 AM	A 45963
Aroclor 1260	ND	0.0090	0.024	mg/Kg	1	7/10/2019 3:31:20 AM	A 45963
Surr: Decachlorobiphenyl	61.6	0	25.7-135	%Rec	1	7/10/2019 3:31:20 AM	A 45963
Surr: Tetrachloro-m-xylene	68.0	0	32.3-138	%Rec	1	7/10/2019 3:31:20 AM	A 45963
EPA METHOD 8015M/D: DIESEL RANGE (ORGANICS					Analyst: BR	М
Diesel Range Organics (DRO)	ND	2.0	9.9	mg/Kg	1	7/5/2019 6:18:57 PM	45994
Motor Oil Range Organics (MRO)	ND	50	50	mg/Kg	1	7/5/2019 6:18:57 PM	45994
Surr: DNOP	95.4	0	70-130	%Rec	1	7/5/2019 6:18:57 PM	45994
EPA METHOD 300.0: ANIONS						Analyst: CA	S
Fluoride	5.2	0.46	1.5	mg/Kg	5	7/11/2019 5:53:10 PM	A 46126
Chloride	180	0.51	7.5	mg/Kg	5	7/11/2019 5:53:10 PN	A 46126
Nitrogen, Nitrate (As N)	6.7	0.75	1.5	mg/Kg	5	7/11/2019 5:53:10 PN	A 46126
Sulfate	650	14	30	mg/Kg	20	7/11/2019 6:05:34 PN	A 46126
EPA METHOD 7471: MERCURY						Analyst: JLi	=
Mercury	ND	0.0017	0.032	mg/Kg	1	7/10/2019 3:34:38 PM	A 46081
EPA METHOD 6010B: SOIL METALS						Analyst: bc v	/
Arsenic	ND	2.9	5.0	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Barium	290	0.047	0.20	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Cadmium	ND	0.049	0.20	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Chromium	14	0.16	0.60	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Copper	7.4	0.23	0.60	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Iron	19000	73	250	mg/Kg	100	7/2/2019 8:32:05 AM	45944
Lead	3.1	0.49	0.50	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Manganese	430	0.042	0.20	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Selenium	ND	2.5	5.0	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Silver	ND	0.064	0.50	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Uranium	ND	4.4	10	mg/Kg	2	7/2/2019 9:18:20 AM	45944
Zinc	47	0.79	5.0	mg/Kg	2	7/2/2019 9:18:20 AM	45944
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Acenaphthene	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Acenaphthylene	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Aniline	ND	0.15	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 27 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ03

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 12:10:00 PM
Lab ID: 1906G37-007
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Anthracene	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Azobenzene	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benz(a)anthracene	ND	0.11	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benzo(a)pyrene	ND	0.10	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benzo(b)fluoranthene	ND	0.10	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benzo(g,h,i)perylene	ND	0.098	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benzo(k)fluoranthene	ND	0.10	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benzoic acid	ND	0.12	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Benzyl alcohol	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Bis(2-chloroethoxy)methane	ND	0.17	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Bis(2-chloroethyl)ether	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.16	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4-Bromophenyl phenyl ether	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Butyl benzyl phthalate	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Carbazole	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4-Chloro-3-methylphenol	ND	0.18	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4-Chloroaniline	ND	0.16	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Chloronaphthalene	ND	0.14	0.29	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Chlorophenol	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4-Chlorophenyl phenyl ether	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Chrysene	ND	0.10	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Di-n-butyl phthalate	ND	0.17	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Di-n-octyl phthalate	ND	0.12	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Dibenz(a,h)anthracene	ND	0.10	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Dibenzofuran	ND	0.15	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
1,2-Dichlorobenzene	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
1,3-Dichlorobenzene	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
1,4-Dichlorobenzene	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
3,3´-Dichlorobenzidine	ND	0.10	0.29	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Diethyl phthalate	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Dimethyl phthalate	ND	0.15	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,4-Dichlorophenol	ND	0.13	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,4-Dimethylphenol	ND	0.13	0.34	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.11	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,4-Dinitrophenol	ND	0.083	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,4-Dinitrotoluene	ND	0.13	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,6-Dinitrotoluene	ND	0.15	0.57	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Fluoranthene	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 28 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ03

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 12:10:00 PMLab ID:1906G37-007Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: D A	M
Fluorene	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachlorobenzene	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachlorobutadiene	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachlorocyclopentadiene	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Hexachloroethane	ND	0.13	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.11	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Isophorone	ND	0.17	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
1-Methylnaphthalene	ND	0.17	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Methylnaphthalene	ND	0.17	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Methylphenol	ND	0.14	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
3+4-Methylphenol	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
N-Nitrosodi-n-propylamine	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
N-Nitrosodiphenylamine	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Naphthalene	ND	0.17	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Nitroaniline	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
3-Nitroaniline	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4-Nitroaniline	ND	0.15	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Nitrobenzene	ND	0.16	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2-Nitrophenol	ND	0.16	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
4-Nitrophenol	ND	0.16	0.29	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Pentachlorophenol	ND	0.12	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Phenanthrene	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Phenol	ND	0.14	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Pyrene	ND	0.11	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Pyridine	ND	0.14	0.46	mg/Kg	1	7/8/2019 7:51:22 PM	45929
1,2,4-Trichlorobenzene	ND	0.18	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,4,5-Trichlorophenol	ND	0.15	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
2,4,6-Trichlorophenol	ND	0.12	0.23	mg/Kg	1	7/8/2019 7:51:22 PM	45929
Surr: 2-Fluorophenol	63.6		24.8-95.2	%Rec	1	7/8/2019 7:51:22 PM	45929
Surr: Phenol-d5	65.9		29.9-97.8	%Rec	1	7/8/2019 7:51:22 PM	45929
Surr: 2,4,6-Tribromophenol	64.5		35.7-108	%Rec	1	7/8/2019 7:51:22 PM	45929
Surr: Nitrobenzene-d5	72.6		32.5-106	%Rec	1	7/8/2019 7:51:22 PM	45929
Surr: 2-Fluorobiphenyl	72.1		27.7-114	%Rec	1	7/8/2019 7:51:22 PM	45929
Surr: 4-Terphenyl-d14	65.5		15-148	%Rec	1	7/8/2019 7:51:22 PM	45929
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
Benzene	ND	0.0039	0.024	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Toluene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	
Ethylbenzene	ND	0.0028	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 29 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ03

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 12:10:00 PM
Lab ID: 1906G37-007
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0044	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,3,5-Trimethylbenzene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dichloroethane (EDC)	ND	0.0049	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dibromoethane (EDB)	ND	0.0044	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Naphthalene	ND	0.0096	0.096	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1-Methylnaphthalene	ND	0.028	0.19	mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Methylnaphthalene	ND	0.021	0.19	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Acetone	ND	0.040	0.72	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromobenzene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromodichloromethane	ND	0.0044	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromoform	ND	0.0043	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Bromomethane	ND	0.012	0.14	mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Butanone	ND	0.055	0.48	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Carbon disulfide	ND	0.016	0.48	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Carbon tetrachloride	ND	0.0045	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chlorobenzene	ND	0.0061	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chloroethane	ND	0.0071	0.096	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chloroform	ND	0.0038	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Chloromethane	ND	0.0046	0.14	mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Chlorotoluene	ND	0.0042	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
4-Chlorotoluene	ND	0.0039	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
cis-1,2-DCE	ND	0.0066	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
cis-1,3-Dichloropropene	ND	0.0040	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dibromo-3-chloropropane	ND	0.0049	0.096	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Dibromochloromethane	ND	0.0034	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Dibromomethane	ND	0.0052	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dichlorobenzene	ND	0.0039	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,3-Dichlorobenzene	ND	0.0042	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,4-Dichlorobenzene	ND	0.0040	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Dichlorodifluoromethane	ND	0.011	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1-Dichloroethane	ND	0.0031	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1-Dichloroethene	ND	0.019	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,2-Dichloropropane	ND	0.0035	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,3-Dichloropropane	ND	0.0052	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983
2,2-Dichloropropane	ND	0.016	0.096	mg/Kg	1	7/4/2019 1:25:05 AM	45983
1,1-Dichloropropene	ND	0.0044	0.096	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Hexachlorobutadiene	ND	0.0049	0.096	mg/Kg	1	7/4/2019 1:25:05 AM	45983
2-Hexanone	ND	0.0080	0.48	mg/Kg	1	7/4/2019 1:25:05 AM	45983
Isopropylbenzene	ND	0.0035	0.048	mg/Kg	1	7/4/2019 1:25:05 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ03

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 12:10:00 PMLab ID:1906G37-007Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Unit	s DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	 F
4-Isopropyltoluene	ND	0.0040	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
4-Methyl-2-pentanone	ND	0.0090	0.48	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Methylene chloride	ND	0.0085	0.14	mg/K	g 1	7/4/2019 1:25:05 AM	45983
n-Butylbenzene	ND	0.0045	0.14	mg/K	g 1	7/4/2019 1:25:05 AM	45983
n-Propylbenzene	ND	0.0038	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
sec-Butylbenzene	ND	0.0054	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Styrene	ND	0.0038	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
tert-Butylbenzene	ND	0.0045	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0032	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0049	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Tetrachloroethene (PCE)	ND	0.0038	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
trans-1,2-DCE	ND	0.0044	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
trans-1,3-Dichloropropene	ND	0.0051	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,2,3-Trichlorobenzene	ND	0.0042	0.096	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,2,4-Trichlorobenzene	ND	0.0048	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,1,1-Trichloroethane	ND	0.0043	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,1,2-Trichloroethane	ND	0.0034	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Trichloroethene (TCE)	ND	0.0055	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Trichlorofluoromethane	ND	0.016	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
1,2,3-Trichloropropane	ND	0.0078	0.096	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Vinyl chloride	ND	0.0031	0.048	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Xylenes, Total	ND	0.012	0.096	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Surr: Dibromofluoromethane	106		70-130	%Re	2 1	7/4/2019 1:25:05 AM	45983
Surr: 1,2-Dichloroethane-d4	105		70-130	%Re	2 1	7/4/2019 1:25:05 AM	45983
Surr: Toluene-d8	96.1		70-130	%Re	2 1	7/4/2019 1:25:05 AM	45983
Surr: 4-Bromofluorobenzene	94.5		70-130	%Re	1	7/4/2019 1:25:05 AM	45983
EPA METHOD 8015D MOD: GASOLINE	RANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.8	mg/K	g 1	7/4/2019 1:25:05 AM	45983
Surr: BFB	86.4	0	70-130	%Re	2 1	7/4/2019 1:25:05 AM	45983
EPA METHOD 418.1: TPH						Analyst: Irn	1
Petroleum Hydrocarbons, TR	ND	2.7	19	mg/K	g 1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ04

Project: OCD Central Landfarm Semiannual Sam Collection Date: 6/27/2019 12:45:00 PM

Lab ID: 1906G37-008 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TO	И
Aroclor 1016	ND	0.021	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Aroclor 1221	ND	0.038	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Aroclor 1232	ND	0.047	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Aroclor 1242	ND	0.025	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Aroclor 1248	ND	0.038	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Aroclor 1254	ND	0.038	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Aroclor 1260	ND	0.018	0.048		mg/Kg	1	7/10/2019 4:04:20 AM	45963
Surr: Decachlorobiphenyl	113	0	25.7-135		%Rec	1	7/10/2019 4:04:20 AM	45963
Surr: Tetrachloro-m-xylene	130	0	32.3-138		%Rec	1	7/10/2019 4:04:20 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS						Analyst: BRI	М
Diesel Range Organics (DRO)	490	1.8	8.9		mg/Kg	1	7/8/2019 7:31:56 PM	45994
Motor Oil Range Organics (MRO)	480	45	45		mg/Kg	1	7/8/2019 7:31:56 PM	45994
Surr: DNOP	121	0	70-130		%Rec	1	7/8/2019 7:31:56 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: CAS	3
Fluoride	14	0.46	1.5		mg/Kg	5	7/11/2019 6:17:59 PM	46126
Chloride	300	2.0	30		mg/Kg	20	7/11/2019 6:30:24 PM	46126
Nitrogen, Nitrate (As N)	4.0	0.75	1.5		mg/Kg	5	7/11/2019 6:17:59 PM	46126
Sulfate	1500	14	30		mg/Kg	20	7/11/2019 6:30:24 PM	46126
EPA METHOD 7471: MERCURY							Analyst: JLF	•
Mercury	0.077	0.0017	0.031		mg/Kg	1	7/10/2019 3:36:41 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.9	5.0		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Barium	350	0.047	0.20		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Cadmium	ND	0.049	0.20		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Chromium	16	0.16	0.60		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Copper	7.0	0.23	0.60		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Iron	17000	73	250		mg/Kg	100	7/2/2019 8:33:51 AM	45944
Lead	20	0.49	0.50		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Manganese	430	0.042	0.20		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Selenium	ND	2.5	5.0		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Silver	ND	0.064	0.50		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Uranium	ND	4.4	10		mg/Kg	2	7/2/2019 9:20:12 AM	45944
Zinc	49	0.80	5.0		mg/Kg	2	7/2/2019 9:20:12 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAI	М
Acenaphthene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Acenaphthylene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Aniline	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929

Qualifiers:

Page 32 of 65

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ04

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 12:45:00 PM
Lab ID: 1906G37-008
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	M
Anthracene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Azobenzene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benz(a)anthracene	ND	0.98	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benzo(a)pyrene	ND	0.90	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benzo(b)fluoranthene	ND	0.90	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benzo(g,h,i)perylene	ND	0.87	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benzo(k)fluoranthene	ND	0.92	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benzoic acid	ND	1.0	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Benzyl alcohol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Bis(2-chloroethoxy)methane	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Bis(2-chloroethyl)ether	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Bis(2-chloroisopropyl)ether	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Bis(2-ethylhexyl)phthalate	ND	1.5	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Bromophenyl phenyl ether	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Butyl benzyl phthalate	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Carbazole	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Chloro-3-methylphenol	ND	1.6	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Chloroaniline	ND	1.4	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Chloronaphthalene	ND	1.3	2.5	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Chlorophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Chlorophenyl phenyl ether	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Chrysene	ND	0.89	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Di-n-butyl phthalate	ND	1.5	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Di-n-octyl phthalate	ND	1.0	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Dibenz(a,h)anthracene	ND	0.92	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Dibenzofuran	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
1,2-Dichlorobenzene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
1,3-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
1,4-Dichlorobenzene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
3,3'-Dichlorobenzidine	ND	0.90	2.5	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Diethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Dimethyl phthalate	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,4-Dichlorophenol	ND	1.2	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,4-Dimethylphenol	ND	1.1	3.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.94	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,4-Dinitrophenol	ND	0.74	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,4-Dinitrotoluene	ND	1.2	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,6-Dinitrotoluene	ND	1.3	5.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Fluoranthene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 33 of 65

Hall Environmental Analysis Laboratory, Inc.

Date Reported: 7/31/2019

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ04

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 12:45:00 PM
Lab ID: 1906G37-008
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDI	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Fluorene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachlorobenzene	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachlorobutadiene	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachlorocyclopentadiene	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Hexachloroethane	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Indeno(1,2,3-cd)pyrene	ND	1.0	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Isophorone	ND	1.5	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
1-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Methylnaphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Methylphenol	ND	1.2	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
3+4-Methylphenol	ND	1.2	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
N-Nitrosodi-n-propylamine	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
N-Nitrosodiphenylamine	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Naphthalene	ND	1.5	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
3-Nitroaniline	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Nitroaniline	ND	1.3	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Nitrobenzene	ND	1.4	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2-Nitrophenol	ND	1.4	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
4-Nitrophenol	ND	1.4	2.5	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Pentachlorophenol	ND	1.0	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Phenanthrene	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Phenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Pyrene	ND	0.95	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Pyridine	ND	1.2	4.1	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
1,2,4-Trichlorobenzene	ND	1.6	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,4,5-Trichlorophenol	ND	1.3	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
2,4,6-Trichlorophenol	ND	1.1	2.0	D	mg/Kg	1	7/8/2019 8:21:53 PM	45929
Surr: 2-Fluorophenol	0		24.8-95.2	SD	%Rec	1	7/8/2019 8:21:53 PM	45929
Surr: Phenol-d5	0		29.9-97.8	SD	%Rec	1	7/8/2019 8:21:53 PM	45929
Surr: 2,4,6-Tribromophenol	0		35.7-108	SD	%Rec	1	7/8/2019 8:21:53 PM	45929
Surr: Nitrobenzene-d5	0		32.5-106	SD	%Rec	1	7/8/2019 8:21:53 PM	45929
Surr: 2-Fluorobiphenyl	0		27.7-114	SD	%Rec	1	7/8/2019 8:21:53 PM	45929
Surr: 4-Terphenyl-d14	0		15-148	SD	%Rec	1	7/8/2019 8:21:53 PM	45929
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Benzene	ND	0.0041	0.025		mg/Kg	1	7/4/2019 1:54:19 AM	45983
Toluene	ND	0.0047	0.050		mg/Kg	1	7/4/2019 1:54:19 AM	
Ethylbenzene	ND	0.0029	0.050		mg/Kg	1	7/4/2019 1:54:19 AM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.050		mg/Kg	1	7/4/2019 1:54:19 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 34 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ04

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 12:45:00 PMLab ID:1906G37-008Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,3,5-Trimethylbenzene	ND	0.0048	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2-Dichloroethane (EDC)	ND	0.0051	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2-Dibromoethane (EDB)	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Naphthalene	ND	0.0099	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1-Methylnaphthalene	ND	0.029	0.20	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2-Methylnaphthalene	ND	0.022	0.20	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Acetone	ND	0.041	0.74	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Bromobenzene	ND	0.0048	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Bromodichloromethane	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Bromoform	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2-Butanone	ND	0.057	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Carbon disulfide	ND	0.016	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Carbon tetrachloride	ND	0.0047	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Chlorobenzene	ND	0.0064	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Chloroethane	ND	0.0073	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Chloroform	ND	0.0040	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Chloromethane	ND	0.0047	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2-Chlorotoluene	ND	0.0043	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
4-Chlorotoluene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
cis-1,2-DCE	ND	0.0068	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
cis-1,3-Dichloropropene	ND	0.0042	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2-Dibromo-3-chloropropane	ND	0.0051	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Dibromochloromethane	ND	0.0035	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Dibromomethane	ND	0.0053	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,3-Dichlorobenzene	ND	0.0043	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,4-Dichlorobenzene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Dichlorodifluoromethane	ND	0.012	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1-Dichloroethane	ND	0.0032	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1-Dichloroethene	ND	0.020	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2-Dichloropropane	ND	0.0036	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,3-Dichloropropane	ND	0.0054	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2,2-Dichloropropane	ND	0.016	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1-Dichloropropene	ND	0.0045	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Hexachlorobutadiene	ND	0.0050	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
2-Hexanone	ND	0.0082	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Isopropylbenzene	ND	0.0036	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 35 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF TZ04

Project: OCD Central Landfarm Semiannual Sam
Collection Date: 6/27/2019 12:45:00 PM
Lab ID: 1906G37-008
Matrix: SOIL
Received Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ l	F
4-Isopropyltoluene	ND	0.0041	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
4-Methyl-2-pentanone	ND	0.0094	0.50	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Methylene chloride	ND	0.0088	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
n-Butylbenzene	ND	0.0046	0.15	mg/Kg	1	7/4/2019 1:54:19 AM	45983
n-Propylbenzene	ND	0.0040	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
sec-Butylbenzene	ND	0.0056	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Styrene	ND	0.0039	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
tert-Butylbenzene	ND	0.0047	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0050	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Tetrachloroethene (PCE)	ND	0.0040	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
trans-1,2-DCE	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
trans-1,3-Dichloropropene	ND	0.0052	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2,3-Trichlorobenzene	ND	0.0044	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,1-Trichloroethane	ND	0.0045	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,1,2-Trichloroethane	ND	0.0035	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Trichloroethene (TCE)	ND	0.0057	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Trichlorofluoromethane	ND	0.017	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
1,2,3-Trichloropropane	ND	0.0080	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Vinyl chloride	ND	0.0032	0.050	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Xylenes, Total	ND	0.013	0.099	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Surr: Dibromofluoromethane	104		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
Surr: 1,2-Dichloroethane-d4	105		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
Surr: Toluene-d8	97.7		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
Surr: 4-Bromofluorobenzene	93.5		70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
EPA METHOD 8015D MOD: GASOLINE RA	NGE					Analyst: DJ I	F
Gasoline Range Organics (GRO)	ND	1.2	5.0	mg/Kg	1	7/4/2019 1:54:19 AM	45983
Surr: BFB	86.5	0	70-130	%Rec	1	7/4/2019 1:54:19 AM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	l
Petroleum Hydrocarbons, TR	600	2.6	19	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ04

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:00:00 PMLab ID:1906G37-009Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S							Analyst: TON	Л
Aroclor 1016	ND	0.011	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Aroclor 1221	ND	0.020	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Aroclor 1232	ND	0.024	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Aroclor 1242	ND	0.013	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Aroclor 1248	ND	0.020	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Aroclor 1254	ND	0.020	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Aroclor 1260	ND	0.0092	0.024		mg/Kg	1	7/10/2019 5:10:26 AM	45963
Surr: Decachlorobiphenyl	73.2	0	25.7-135		%Rec	1	7/10/2019 5:10:26 AM	45963
Surr: Tetrachloro-m-xylene	82.0	0	32.3-138		%Rec	1	7/10/2019 5:10:26 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE O	RGANICS						Analyst: BRN	Л
Diesel Range Organics (DRO)	ND	2.0	10		mg/Kg	1	7/5/2019 7:03:24 PM	45994
Motor Oil Range Organics (MRO)	ND	50	50		mg/Kg	1	7/5/2019 7:03:24 PM	45994
Surr: DNOP	94.7	0	70-130		%Rec	1	7/5/2019 7:03:24 PM	45994
EPA METHOD 300.0: ANIONS							Analyst: CAS	3
Fluoride	2.4	0.46	1.5		mg/Kg	5	7/11/2019 6:42:49 PM	46126
Chloride	280	2.1	30		mg/Kg	20	7/11/2019 6:55:14 PM	46126
Nitrogen, Nitrate (As N)	3.1	0.75	1.5		mg/Kg	5	7/11/2019 6:42:49 PM	46126
Sulfate	550	3.4	7.5		mg/Kg	5	7/11/2019 6:42:49 PM	46126
EPA METHOD 7471: MERCURY					0 0		Analyst: JLF	
Mercury	ND	0.0018	0.032		mg/Kg	1	7/10/2019 3:38:45 PM	46081
EPA METHOD 6010B: SOIL METALS							Analyst: bcv	
Arsenic	ND	2.8	4.9		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Barium	260	0.046	0.20		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Cadmium	ND	0.048	0.20		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Chromium	15	0.16	0.59		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Copper	3.9	0.22	0.59		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Iron	18000	72	250		mg/Kg	100	7/2/2019 8:35:36 AM	45944
Lead	3.0	0.48	0.49		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Manganese	400	0.041	0.20		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Selenium	ND	2.5	4.9		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Silver	ND	0.063	0.49		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Uranium	ND	4.3	9.8		mg/Kg	2	7/2/2019 9:22:03 AM	45944
Zinc	24	0.78	4.9		mg/Kg	2	7/2/2019 9:22:03 AM	45944
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DAN	Л
Acenaphthene	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Acenaphthylene	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Aniline	ND	0.30	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929

Qualifiers:

Page 37 of 65

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ04

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:00:00 PMLab ID:1906G37-009Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: DA	М
Anthracene	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Azobenzene	ND	0.33	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benz(a)anthracene	ND	0.23	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(a)pyrene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(b)fluoranthene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(g,h,i)perylene	ND	0.20	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzo(k)fluoranthene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzoic acid	ND	0.24	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Benzyl alcohol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-chloroethoxy)methane	ND	0.35	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-chloroethyl)ether	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.27	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.34	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Bromophenyl phenyl ether	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Butyl benzyl phthalate	ND	0.24	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Carbazole	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Chloro-3-methylphenol	ND	0.36	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Chloroaniline	ND	0.33	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Chloronaphthalene	ND	0.29	0.59	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Chlorophenol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Chlorophenyl phenyl ether	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Chrysene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Di-n-butyl phthalate	ND	0.35	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Di-n-octyl phthalate	ND	0.24	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Dibenz(a,h)anthracene	ND	0.21	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Dibenzofuran	ND	0.31	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1,2-Dichlorobenzene	ND	0.28	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1,3-Dichlorobenzene	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1,4-Dichlorobenzene	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
3,3´-Dichlorobenzidine	ND	0.21	0.59	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Diethyl phthalate	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Dimethyl phthalate	ND	0.31	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,4-Dichlorophenol	ND	0.27	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,4-Dimethylphenol	ND	0.26	0.71	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.22	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,4-Dinitrophenol	ND	0.17	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,4-Dinitrotoluene	ND	0.28	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,6-Dinitrotoluene	ND	0.31	1.2	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Fluoranthene	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 38 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ04

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:00:00 PMLab ID:1906G37-009Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDI	L RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES							Analyst: D	M
Fluorene	ND	0.27	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachlorobenzene	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachlorobutadiene	ND	0.33	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachlorocyclopentadiene	ND	0.27	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Hexachloroethane	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.23	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Isophorone	ND	0.35	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1-Methylnaphthalene	ND	0.35	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Methylnaphthalene	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Methylphenol	ND	0.28	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
3+4-Methylphenol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
N-Nitrosodi-n-propylamine	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
N-Nitrosodiphenylamine	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Naphthalene	ND	0.36	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Nitroaniline	ND	0.34	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
3-Nitroaniline	ND	0.33	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Nitroaniline	ND	0.30	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Nitrobenzene	ND	0.33	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2-Nitrophenol	ND	0.32	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
4-Nitrophenol	ND	0.32	0.59	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Pentachlorophenol	ND	0.24	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Phenanthrene	ND	0.26	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Phenol	ND	0.29	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Pyrene	ND	0.22	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Pyridine	ND	0.28	0.94	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
1,2,4-Trichlorobenzene	ND	0.37	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,4,5-Trichlorophenol	ND	0.31	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
2,4,6-Trichlorophenol	ND	0.25	0.47	D	mg/Kg	1	7/8/2019 8:52:17 PM	45929
Surr: 2-Fluorophenol	72.5		24.8-95.2	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: Phenol-d5	77.1		29.9-97.8	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: 2,4,6-Tribromophenol	74.0		35.7-108	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: Nitrobenzene-d5	88.1		32.5-106	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: 2-Fluorobiphenyl	83.8		27.7-114	D	%Rec	1	7/8/2019 8:52:17 PM	45929
Surr: 4-Terphenyl-d14	83.7		15-148	D	%Rec	1	7/8/2019 8:52:17 PM	45929
EPA METHOD 8260B: VOLATILES							Analyst: DJ	F
Benzene	ND	0.0040	0.025		mg/Kg	1	7/4/2019 2:24:18 AM	45983
Toluene	ND	0.0047	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	
Ethylbenzene	ND	0.0029	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	
Methyl tert-butyl ether (MTBE)	ND	0.012	0.049		mg/Kg	1	7/4/2019 2:24:18 AM	

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 39 of 65

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ04

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:00:00 PMLab ID:1906G37-009Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0045	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,3,5-Trimethylbenzene	ND	0.0048	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dichloroethane (EDC)	ND	0.0050	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dibromoethane (EDB)	ND	0.0045	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Naphthalene	ND	0.0098	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1-Methylnaphthalene	ND	0.028	0.20	mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Methylnaphthalene	ND	0.021	0.20	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Acetone	ND	0.041	0.74	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromobenzene	ND	0.0047	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromodichloromethane	ND	0.0045	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromoform	ND	0.0044	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Bromomethane	ND	0.012	0.15	mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Butanone	ND	0.057	0.49	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Carbon disulfide	ND	0.016	0.49	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Carbon tetrachloride	ND	0.0047	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chlorobenzene	ND	0.0063	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chloroethane	ND	0.0072	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chloroform	ND	0.0039	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Chloromethane	ND	0.0047	0.15	mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Chlorotoluene	ND	0.0043	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
4-Chlorotoluene	ND	0.0040	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
cis-1,2-DCE	ND	0.0067	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
cis-1,3-Dichloropropene	ND	0.0041	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dibromo-3-chloropropane	ND	0.0050	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Dibromochloromethane	ND	0.0035	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Dibromomethane	ND	0.0053	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dichlorobenzene	ND	0.0040	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,3-Dichlorobenzene	ND	0.0043	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,4-Dichlorobenzene	ND	0.0041	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Dichlorodifluoromethane	ND	0.011	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1-Dichloroethane	ND	0.0031	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1-Dichloroethene	ND	0.020	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2-Dichloropropane	ND	0.0036	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,3-Dichloropropane	ND	0.0053	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
2,2-Dichloropropane	ND	0.016	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1-Dichloropropene	ND	0.0045	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Hexachlorobutadiene	ND	0.0050	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
2-Hexanone	ND	0.0082	0.49	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Isopropylbenzene	ND	0.0035	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 40 of 65

Lab Order **1906G37**

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF VZ04

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:00:00 PMLab ID:1906G37-009Matrix: SOILReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
4-Isopropyltoluene	ND	0.0041	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
4-Methyl-2-pentanone	ND	0.0093	0.49	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Methylene chloride	ND	0.0087	0.15	mg/Kg	1	7/4/2019 2:24:18 AM	45983
n-Butylbenzene	ND	0.0046	0.15	mg/Kg	1	7/4/2019 2:24:18 AM	45983
n-Propylbenzene	ND	0.0039	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
sec-Butylbenzene	ND	0.0055	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Styrene	ND	0.0039	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
tert-Butylbenzene	ND	0.0046	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0050	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Tetrachloroethene (PCE)	ND	0.0039	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
trans-1,2-DCE	ND	0.0045	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
trans-1,3-Dichloropropene	ND	0.0052	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2,3-Trichlorobenzene	ND	0.0043	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2,4-Trichlorobenzene	ND	0.0050	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,1-Trichloroethane	ND	0.0044	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,1,2-Trichloroethane	ND	0.0035	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Trichloroethene (TCE)	ND	0.0057	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Trichlorofluoromethane	ND	0.017	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
1,2,3-Trichloropropane	ND	0.0079	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Vinyl chloride	ND	0.0032	0.049	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Xylenes, Total	ND	0.012	0.098	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Surr: Dibromofluoromethane	106		70-130	%Rec	1	7/4/2019 2:24:18 AM	45983
Surr: 1,2-Dichloroethane-d4	102		70-130	%Rec	1	7/4/2019 2:24:18 AM	45983
Surr: Toluene-d8	96.8		70-130	%Rec	1	7/4/2019 2:24:18 AM	45983
Surr: 4-Bromofluorobenzene	93.5		70-130	%Rec	1	7/4/2019 2:24:18 AM	45983
EPA METHOD 8015D MOD: GASOLINE	RANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.9	mg/Kg	1	7/4/2019 2:24:18 AM	45983
Surr: BFB	93.7	0	70-130	%Rec	1	7/4/2019 2:24:18 AM	45983
EPA METHOD 418.1: TPH						Analyst: Irm	1
Petroleum Hydrocarbons, TR	ND	2.7	20	mg/Kg	1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF DUP01

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 6/27/2019

Lab ID: 1906G37-010 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8082A: PCB'S						Analyst: TON	1
Aroclor 1016	ND	0.010	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1221	ND	0.019	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1232	ND	0.023	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1242	ND	0.013	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1248	ND	0.019	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1254	ND	0.019	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Aroclor 1260	ND	0.0090	0.024	mg/Kg	1	7/10/2019 5:43:25 AM	45963
Surr: Decachlorobiphenyl	71.2	0	25.7-135	%Rec	1	7/10/2019 5:43:25 AM	45963
Surr: Tetrachloro-m-xylene	79.6	0	32.3-138	%Rec	1	7/10/2019 5:43:25 AM	45963
EPA METHOD 8015M/D: DIESEL RANGE C	RGANICS					Analyst: BRN	1
Diesel Range Organics (DRO)	24	2.0	9.9	mg/Kg	1	7/10/2019 11:18:34 AN	A 45994
Motor Oil Range Organics (MRO)	ND	49	49	mg/Kg	1	7/10/2019 11:18:34 AN	A 45994
Surr: DNOP	101	0	70-130	%Rec	1	7/10/2019 11:18:34 AN	A 45994
EPA METHOD 300.0: ANIONS						Analyst: CAS	;
Fluoride	7.3	0.46	1.5	mg/Kg	5	7/11/2019 7:07:39 PM	46126
Chloride	140	0.51	7.5	mg/Kg	5	7/11/2019 7:07:39 PM	46126
Nitrogen, Nitrate (As N)	4.5	0.75	1.5	mg/Kg	5	7/11/2019 7:07:39 PM	46126
Sulfate	990	14	30	mg/Kg	20	7/11/2019 7:20:03 PM	46126
EPA METHOD 7471: MERCURY						Analyst: JLF	
Mercury	ND	0.0017	0.032	mg/Kg	1	7/10/2019 3:40:49 PM	46081
EPA METHOD 6010B: SOIL METALS						Analyst: bcv	
Arsenic	ND	2.8	4.9	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Barium	350	0.046	0.20	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Cadmium	ND	0.048	0.20	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Chromium	13	0.16	0.59	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Copper	4.0	0.22	0.59	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Iron	17000	71	250	mg/Kg	100	7/2/2019 8:37:22 AM	45944
Lead	2.9	0.48	0.49	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Manganese	450	0.041	0.20	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Selenium	ND	2.5	4.9	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Silver	ND	0.063	0.49	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Uranium	ND	4.3	9.8	mg/Kg	2	7/2/2019 9:23:55 AM	45944
Zinc	24	0.78	4.9	mg/Kg	2	7/2/2019 9:23:55 AM	45944
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DAN	1
Acenaphthene	ND	0.14	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Acenaphthylene	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Aniline	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 42 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF DUP01

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 6/27/2019

Lab ID: 1906G37-010 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Anthracene	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Azobenzene	ND	0.16	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benz(a)anthracene	ND	0.11	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benzo(a)pyrene	ND	0.10	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benzo(b)fluoranthene	ND	0.10	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benzo(g,h,i)perylene	ND	0.10	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benzo(k)fluoranthene	ND	0.11	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benzoic acid	ND	0.12	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Benzyl alcohol	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Bis(2-chloroethoxy)methane	ND	0.17	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Bis(2-chloroethyl)ether	ND	0.14	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Bis(2-chloroisopropyl)ether	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Bis(2-ethylhexyl)phthalate	ND	0.17	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Bromophenyl phenyl ether	ND	0.14	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Butyl benzyl phthalate	ND	0.12	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Carbazole	ND	0.14	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Chloro-3-methylphenol	ND	0.18	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Chloroaniline	ND	0.17	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Chloronaphthalene	ND	0.15	0.29	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Chlorophenol	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Chlorophenyl phenyl ether	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Chrysene	ND	0.10	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Di-n-butyl phthalate	ND	0.17	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Di-n-octyl phthalate	ND	0.12	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Dibenz(a,h)anthracene	ND	0.11	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Dibenzofuran	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,2-Dichlorobenzene	ND	0.14	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,3-Dichlorobenzene	ND	0.12	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,4-Dichlorobenzene	ND	0.12	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
3,3´-Dichlorobenzidine	ND	0.10	0.29	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Diethyl phthalate	ND	0.17	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Dimethyl phthalate	ND	0.16	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4-Dichlorophenol	ND	0.14	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4-Dimethylphenol	ND	0.13	0.35	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4,6-Dinitro-2-methylphenol	ND	0.11	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4-Dinitrophenol	ND	0.085	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4-Dinitrotoluene	ND	0.14	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,6-Dinitrotoluene	ND	0.15	0.59	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Fluoranthene	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 43 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF DUP01

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 6/27/2019

Lab ID: 1906G37-010 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8270C: SEMIVOLATILES						Analyst: DA	М
Fluorene	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachlorobenzene	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachlorobutadiene	ND	0.16	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachlorocyclopentadiene	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Hexachloroethane	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Indeno(1,2,3-cd)pyrene	ND	0.12	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Isophorone	ND	0.17	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
1-Methylnaphthalene	ND	0.18	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Methylnaphthalene	ND	0.17	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Methylphenol	ND	0.14	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
3+4-Methylphenol	ND	0.14	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
N-Nitrosodi-n-propylamine	ND	0.17	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
N-Nitrosodiphenylamine	ND	0.12	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Naphthalene	ND	0.18	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Nitroaniline	ND	0.17	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
3-Nitroaniline	ND	0.16	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Nitroaniline	ND	0.15	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Nitrobenzene	ND	0.16	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2-Nitrophenol	ND	0.16	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
4-Nitrophenol	ND	0.16	0.29	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Pentachlorophenol	ND	0.12	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Phenanthrene	ND	0.13	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Phenol	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Pyrene	ND	0.11	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Pyridine	ND	0.14	0.47	mg/Kg	1	7/8/2019 9:22:35 PM	45929
1,2,4-Trichlorobenzene	ND	0.18	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4,5-Trichlorophenol	ND	0.15	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
2,4,6-Trichlorophenol	ND	0.12	0.23	mg/Kg	1	7/8/2019 9:22:35 PM	45929
Surr: 2-Fluorophenol	54.9		24.8-95.2	%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: Phenol-d5	59.0		29.9-97.8	%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: 2,4,6-Tribromophenol	59.4		35.7-108	%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: Nitrobenzene-d5	64.1		32.5-106	%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: 2-Fluorobiphenyl	65.6		27.7-114	%Rec	1	7/8/2019 9:22:35 PM	45929
Surr: 4-Terphenyl-d14	62.3		15-148	%Rec	1	7/8/2019 9:22:35 PM	45929
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
Benzene	ND	0.0039	0.024	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Toluene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Ethylbenzene	ND	0.0028	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Methyl tert-butyl ether (MTBE)	ND	0.011	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

Page 44 of 65

Value exceeds Maximum Contaminant Level.

Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF DUP01

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 6/27/2019

Lab ID: 1906G37-010 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
1,2,4-Trimethylbenzene	ND	0.0044	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,3,5-Trimethylbenzene	ND	0.0047	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2-Dichloroethane (EDC)	ND	0.0049	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2-Dibromoethane (EDB)	ND	0.0044	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Naphthalene	ND	0.0097	0.096	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1-Methylnaphthalene	ND	0.028	0.19	mg/Kg	1	7/4/2019 2:53:31 AM	45983
2-Methylnaphthalene	ND	0.021	0.19	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Acetone	ND	0.040	0.72	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Bromobenzene	ND	0.0046	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Bromodichloromethane	ND	0.0044	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Bromoform	ND	0.0044	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Bromomethane	ND	0.012	0.14	mg/Kg	1	7/4/2019 2:53:31 AM	45983
2-Butanone	ND	0.056	0.48	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Carbon disulfide	ND	0.016	0.48	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Carbon tetrachloride	ND	0.0046	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Chlorobenzene	ND	0.0062	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Chloroethane	ND	0.0071	0.096	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Chloroform	ND	0.0039	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Chloromethane	ND	0.0046	0.14	mg/Kg	1	7/4/2019 2:53:31 AM	45983
2-Chlorotoluene	ND	0.0042	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
4-Chlorotoluene	ND	0.0039	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
cis-1,2-DCE	ND	0.0066	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
cis-1,3-Dichloropropene	ND	0.0041	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2-Dibromo-3-chloropropane	ND	0.0049	0.096	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Dibromochloromethane	ND	0.0034	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Dibromomethane	ND	0.0052	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2-Dichlorobenzene	ND	0.0040	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,3-Dichlorobenzene	ND	0.0042	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,4-Dichlorobenzene	ND	0.0040	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Dichlorodifluoromethane	ND	0.011	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1-Dichloroethane	ND	0.0031	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1-Dichloroethene	ND	0.019	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,2-Dichloropropane	ND	0.0035	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,3-Dichloropropane	ND	0.0052	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983
2,2-Dichloropropane	ND	0.016	0.096	mg/Kg	1	7/4/2019 2:53:31 AM	45983
1,1-Dichloropropene	ND	0.0044	0.096	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Hexachlorobutadiene	ND	0.0049	0.096	mg/Kg	1	7/4/2019 2:53:31 AM	45983
2-Hexanone	ND	0.0080	0.48	mg/Kg	1	7/4/2019 2:53:31 AM	45983
Isopropylbenzene	ND	0.0035	0.048	mg/Kg	1	7/4/2019 2:53:31 AM	45983

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF DUP01

Project: OCD Central Landfarm Semiannual Sam **Collection Date:** 6/27/2019

Lab ID: 1906G37-010 **Matrix:** SOIL **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Unit	s DF	Date Analyzed	Batch ID
EPA METHOD 8260B: VOLATILES						Analyst: DJ	F
4-Isopropyltoluene	ND	0.0040	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
4-Methyl-2-pentanone	ND	0.0091	0.48	mg/k	(g 1	7/4/2019 2:53:31 AM	45983
Methylene chloride	ND	0.0085	0.14	mg/ł	-	7/4/2019 2:53:31 AM	45983
n-Butylbenzene	ND	0.0045	0.14	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
n-Propylbenzene	ND	0.0038	0.048	mg/k	(g 1	7/4/2019 2:53:31 AM	45983
sec-Butylbenzene	ND	0.0054	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Styrene	ND	0.0038	0.048	mg/l	(g 1	7/4/2019 2:53:31 AM	45983
tert-Butylbenzene	ND	0.0045	0.048	mg/l	(g 1	7/4/2019 2:53:31 AM	45983
1,1,1,2-Tetrachloroethane	ND	0.0033	0.048	mg/l	(g 1	7/4/2019 2:53:31 AM	45983
1,1,2,2-Tetrachloroethane	ND	0.0049	0.048	mg/l	(g 1	7/4/2019 2:53:31 AM	45983
Tetrachloroethene (PCE)	ND	0.0039	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
trans-1,2-DCE	ND	0.0044	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
trans-1,3-Dichloropropene	ND	0.0051	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
1,2,3-Trichlorobenzene	ND	0.0042	0.096	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
1,2,4-Trichlorobenzene	ND	0.0049	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
1,1,1-Trichloroethane	ND	0.0044	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
1,1,2-Trichloroethane	ND	0.0034	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Trichloroethene (TCE)	ND	0.0056	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Trichlorofluoromethane	ND	0.016	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
1,2,3-Trichloropropane	ND	0.0078	0.096	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Vinyl chloride	ND	0.0031	0.048	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Xylenes, Total	ND	0.012	0.096	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Surr: Dibromofluoromethane	102		70-130	%Re	c 1	7/4/2019 2:53:31 AM	45983
Surr: 1,2-Dichloroethane-d4	101		70-130	%Re	c 1	7/4/2019 2:53:31 AM	45983
Surr: Toluene-d8	99.6		70-130	%Re	c 1	7/4/2019 2:53:31 AM	45983
Surr: 4-Bromofluorobenzene	98.5		70-130	%Re	c 1	7/4/2019 2:53:31 AM	45983
EPA METHOD 8015D MOD: GASOLINE	RANGE					Analyst: DJ	F
Gasoline Range Organics (GRO)	ND	1.2	4.8	mg/ł	(g 1	7/4/2019 2:53:31 AM	45983
Surr: BFB	87.8	0	70-130	%Re	Ū	7/4/2019 2:53:31 AM	45983
EPA METHOD 418.1: TPH						Analyst: Irn	1
Petroleum Hydrocarbons, TR	ND	2.7	20	mg/l	(g 1	7/9/2019	45999

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF FB01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:15:00 PMLab ID:1906G37-011Matrix: AQUEOUSReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260: VOLATILES SHO	ORT LIST					Analyst: RA	\A
Benzene	ND	0.17	1.0	μg/L	1	7/8/2019 3:35:00 PM	SL6122
Toluene	ND	0.35	1.0	μg/L	1	7/8/2019 3:35:00 PM	l SL6122
Ethylbenzene	ND	0.13	1.0	μg/L	1	7/8/2019 3:35:00 PM	l SL6122
Xylenes, Total	ND	0.45	1.5	μg/L	1	7/8/2019 3:35:00 PM	l SL6122
Surr: 1,2-Dichloroethane-d4	120	0	70-130	%Rec	1	7/8/2019 3:35:00 PM	l SL6122
Surr: 4-Bromofluorobenzene	101	0	70-130	%Rec	1	7/8/2019 3:35:00 PM	l SL6122
Surr: Dibromofluoromethane	115	0	70-130	%Rec	1	7/8/2019 3:35:00 PM	l SL6122
Surr: Toluene-d8	94.6	0	70-130	%Rec	1	7/8/2019 3:35:00 PM	SL6122

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 47 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: CENTRAL OCD LF EB01

Project:OCD Central Landfarm Semiannual SamCollection Date: 6/27/2019 1:25:00 PMLab ID:1906G37-012Matrix: AQUEOUSReceived Date: 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual U	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260: VOLATILES SHO	ORT LIST						Analyst: RA	AA
Benzene	ND	0.17	1.0	ŀ	µg/L	1	7/8/2019 3:59:00 PM	SL6122
Toluene	ND	0.35	1.0	ŀ	ug/L	1	7/8/2019 3:59:00 PM	SL6122
Ethylbenzene	ND	0.13	1.0	ŀ	ug/L	1	7/8/2019 3:59:00 PM	SL6122
Xylenes, Total	ND	0.45	1.5	ŀ	ug/L	1	7/8/2019 3:59:00 PM	SL6122
Surr: 1,2-Dichloroethane-d4	115	0	70-130	Ç	%Rec	1	7/8/2019 3:59:00 PM	SL6122
Surr: 4-Bromofluorobenzene	98.9	0	70-130	Ç	%Rec	1	7/8/2019 3:59:00 PM	SL6122
Surr: Dibromofluoromethane	109	0	70-130	ç,	%Rec	1	7/8/2019 3:59:00 PM	SL6122
Surr: Toluene-d8	94.7	0	70-130	ç,	%Rec	1	7/8/2019 3:59:00 PM	SL6122

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 48 of 65

Lab Order 1906G37

Date Reported: 7/31/2019

Hall Environmental Analysis Laboratory, Inc.

CLIENT: Marathon Client Sample ID: Trip Blank

Project: OCD Central Landfarm Semiannual Sam Collection Date:

Lab ID: 1906G37-013 **Matrix:** AQUEOUS **Received Date:** 6/27/2019 4:20:00 PM

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed	Batch ID
EPA METHOD 8260: VOLATILES SHO	ORT LIST						Analyst: RA	Α
Benzene	ND	0.17	1.0		μg/L	1	7/8/2019 4:23:00 PM	SL6122
Toluene	ND	0.35	1.0		μg/L	1	7/8/2019 4:23:00 PM	SL6122
Ethylbenzene	ND	0.13	1.0		μg/L	1	7/8/2019 4:23:00 PM	SL6122
Xylenes, Total	ND	0.45	1.5		μg/L	1	7/8/2019 4:23:00 PM	SL6122
Surr: 1,2-Dichloroethane-d4	116	0	70-130		%Rec	1	7/8/2019 4:23:00 PM	SL6122
Surr: 4-Bromofluorobenzene	102	0	70-130		%Rec	1	7/8/2019 4:23:00 PM	SL6122
Surr: Dibromofluoromethane	112	0	70-130		%Rec	1	7/8/2019 4:23:00 PM	SL6122
Surr: Toluene-d8	94.4	0	70-130		%Rec	1	7/8/2019 4:23:00 PM	SL6122

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 49 of 65

1906G37-001C CENTRAL OCD LF TZ01 Collected date/time: 06/27/19 09:30

SAMPLE RESULTS - 01

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:12	WG1308753

1906G37-002C CENTRAL OCD LF VZ01

SAMPLE RESULTS - 02

ONE LAB. NATIONWIDE.

製

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 10:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:13	WG1308753

1906G37-003C CENTRAL OCD LF TZ02

SAMPLE RESULTS - 03

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 10:50

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:18	WG1308753

SDG:

L1114971

1906G37-004C CENTRAL OCD LF VZ02

SAMPLE RESULTS - 04

ONE LAB. NATIONWIDE.

學

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 11:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:19	WG1308753

1906G37-006C CENTRAL OCD LF TZ03 Collected date/time: 06/27/19 11:50 SAMPLE RESULTS - 05

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:20	WG130875.

1906G37-007C CENTRAL OCD LF VZ03

SAMPLE RESULTS - 06

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 12:10

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:21	WG1308753

1906G37-008C CENTRAL OCD LF TZ04

SAMPLE RESULTS - 07

ONE LAB, NATIONWIDE.

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 12:45

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	ND		0.250	1	07/12/2019 11:22	WG1308753

1906G37-009C CENTRAL OCD LF VZ04

SAMPLE RESULTS - 08

ONE LAB. NATIONWIDE.

製

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 13:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Cyanide	0.269	PI	0.250	1	07/12/2019 11:23	WG1308753

1906G37-010C CENTRAL OCD LF DUP01

SAMPLE RESULTS - 09

ONE LAB. NATIONWIDE.

Wet Chemistry by Method 9012B

Collected date/time: 06/27/19 00:00

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	-
Cyanide	0.887		0.250	1	07/12/2019 11:25	WG1308753

		_	
N	ח	ŋ	
1		1	
И	-	,	
	-	-	
	_	^	
Į.	٥	U	
1		7	
ľ	_	-	
1	n	7	
	-	Ĺ	
	Ξ.		

Wet Chemistry by Method 9012B

Method Blank (MB)

.1114971-01,02,03,04.05,06,07,08.09

QUALITY CONTROL SUMMARY

ONE LAB. NATIONWIDE

10.01 01.21.10 1-0.00101 (01.1)					
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Cyanide	O		0.0390	0.250	

L1112842-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1112842-01 07/12/19 11:01 • (DUP) R3430073-3 07/12/19 11:02

DUP RPD Limits	96	20
DUP Qualifier		
DUP RPD	98	0.000
Dilution		-
DUP Result	mg/kg	0.0542
Original Result DUP Result	mg/kg	QN
	Analyte	Cyanide

C

ō

 $\overline{\mathbb{O}}$

SS

L1114971-08 Original Sample (OS) · Duplicate (DUP)

(OS) L1114971-08 07/12/19 11:23 (DUP) R3430073-8 07/12/19 11:24

200000000000000000000000000000000000000	2011	000000000000000000000000000000000000000	1			
	Original Result DUP Result Dilution	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
e;	mg/kg	mg/kg		96		96
Je	0.269	0.000	-	200	10	20

Sc

Laboratory Control Sample (LCS)

	LCS Qualifier		
	Rec. Limits	%	50.0-150
		96	
	LCS Result	mg/kg	2.59
07/12/19 10:55	Spike Amount	Analyte mg/kg mg/kg	2.50
(LCS) R3430073-2		Analyte	Cyanide

L/1/3860-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(03) E1113000-04 07/12/19 11:07 • (M3) R3+3007 3-4 07/12/19 1	2(2)	0.000	1.00.11	LOCATON CON	61/71/10 0-0	1.09						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	esult MSD Result MS Rec. M	MS Rec.	MSD Rec.	Dilution	Vilution Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	96	96		8%			92	96
Cyanide	1,67	ND	1.49	1,47	86.4	85.1	-	75.0-125			1,40	20

L1114971-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

75) LI1149/1-02 0,	(OS) LITI49/1-02 0//12/19 11:13 • (MS) K34300/3-6 0//12/19 11:14 • (M	300/3-6 0//12	13 11.14 · (MS	D) K34300/3-/	0//12/19 11:1	n						
	Spike Amount	Spike Amount Original Result MS Result	MS Result	MSD Result M	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	96	%		26			%	96
yanide	1.67	ND	1.51	1.61	6.06	96.4	+	75.0-125			5.85	20

07/12/19 15:39 DATE/TIME:

L1114971

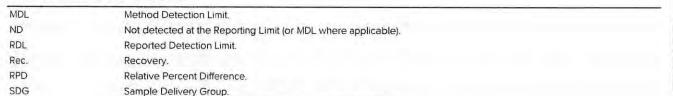
SDG:

PROJECT:

Hall Environmental Analysis Laboratory

ACCOUNT:

Ss


Cn

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

U Not detected at the Reporting Limit (or MDL where applicable). The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes

Analyte reported.

If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the Dilution laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.

Limits

These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.

The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control Original Sample sample. The Original Sample may not be included within the reported SDG.

This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and Qualifier

potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.

The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was

no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect

or report for this analyte.

Uncertainty Confidence level of 2 sigma. (Radiochemistry)

Result

Custody (Sc)

A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will Case Narrative (Cn) be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.

This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material. Quality Control Summary (Qc)

This is the document created in the field when your samples were initially collected. This is used to verify the time and Sample Chain of date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.

This section of your report will provide the results of all testing performed on your samples. These results are provided Sample Results (Sr) by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and Sample Summary (Ss) times of preparation and/or analysis

Qualifier Description

PI RPD value not applicable for sample concentrations less than 5 times the reporting limit.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1906G37

Pace Project No.:

30311799

Sample: 1906G37-001DCENTRAL

Lab ID: 30311799001

Collected: 06/27/19 09:30 Received: 07/02/19 09:30

OCD LFTZ01

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	9.974 ± 2.360 (1.033) C:NA T:NA	pCi/g	07/30/19 13:42	13966-00-2	
Radium-226	EPA 901.1	1.372 ± 0.315 (0.189) C:NA T:NA	pCi/g	07/30/19 13:42	13982-63-3	Ra
Radium-228	EPA 901.1	1.359 ± 0.581 (0.551) C:NA T:NA	pCi/g	07/30/19 13:42	15262-20-1	

Sample: 1906G37-002DCENTRAL

OCD LFVZ01

Lab ID: 30311799002

Collected: 06/27/19 10:00 Received: 07/02/19 09:30 Matrix: Solid

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	11.644 ± 3.379 (2.324) C:NA T:NA	pCi/g	07/30/19 14:02	13966-00-2	
Radium-226	EPA 901.1	1.322 ± 0.324 (0.155) C:NA T:NA	pCi/g	07/30/19 14:02	13982-63-3	Ra
Radium-228	EPA 901.1	2.012 ± 0.483 (0.261) C:NA T:NA	pCi/g	07/30/19 14:02	15262-20-1	

Sample: 1906G37-003DCENTRAL

Lab ID: 30311799003

Collected: 06/27/19 10:50

Received: 07/02/19 09:30

PWS:

PWS:

OCD LFTZ02

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	8.101 ± 2.195 (1.415) C:NA T:NA	pCi/g	07/30/19 14:21	13966-00-2	
Radium-226	EPA 901.1	0.910 ± 0.237 (0.154) C:NA T:NA	pCi/g	07/30/19 14:21	13982-63-3	Ra
Radium-228	EPA 901.1	1.120 ± 0.419 (0.341) C:NA T:NA	pCi/g	07/30/19 14:21	15262-20-1	

Sample: 1906G37-004DCENTRAL OCD LFVZ02

Lab ID: 30311799004

Site ID:

Collected: 06/27/19 11:10

Received: 07/02/19 09:30 Matrix: Solid

PWS:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	14.187 ± 3.125 (1.198) C:NA T:NA	pCi/g	07/30/19 14:21	13966-00-2	
Radium-226	EPA 901.1	1.398 ± 0.372 (0.239) C:NA T:NA	pCi/g	07/30/19 14:21	13982-63-3	Ra
Radium-228	EPA 901.1	1.786 ± 0.443 (0.277) C:NA T:NA	pCi/g	07/30/19 14:21	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1906G37

Pace Project No.:

30311799

Sample: 1906G37-006DCENTRAL

Lab ID: 30311799005

Collected: 06/27/19 11:50 Received: 07/02/19 09:30 Matrix: Solid

PWS:

OCD LFTZ03

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	10.658 ± 2.105 (0.656) C:NA T:NA	pCi/g	07/30/19 14:41	13966-00-2	
Radium-226	EPA 901.1	1.455 ± 0.301 (0.134) C:NA T:NA	pCi/g	07/30/19 14:41	13982-63-3	Ra
Radium-228	EPA 901.1	1.102 ± 0.410 (0.356) C:NA T:NA	pCi/g	07/30/19 14:41	15262-20-1	

Sample: 1906G37-007D

CENTRALOCD LFVZ03

Lab ID: 30311799006

Collected: 06/27/19 12:10 Received: 07/02/19 09:30

PWS:

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	11.742 ± 2.710 (1.134) C:NA T:NA	pCi/g	07/30/19 14:42	13966-00-2	
Radium-226	EPA 901.1	1.282 ± 0.327 (0.212) C:NA T:NA	pCi/g	07/30/19 14:42	13982-63-3	Ra
Radium-228	EPA 901.1	1.819 ± 0.530 (0.262) C:NA T:NA	pCi/g	07/30/19 14:42	15262-20-1	

Sample: 1906G37-008D

Lab ID: 30311799007

Collected: 06/27/19 12:45 Received: 07/02/19 09:30

PWS:

CENTRALOCD LFTZ04

Site ID:

Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	11.766 ± 2.240 (0.635) C:NA T:NA	pCi/g	07/30/19 15:00	13966-00-2	
Radium-226	EPA 901.1	1.207 ± 0.284 (0.149) C:NA T:NA	pCi/g	07/30/19 15:00	13982-63-3	Ra
Radium-228	EPA 901.1	1.201 ± 0.437 (0.364) C:NA T:NA	pCi/g	07/30/19 15:00	15262-20-1	

Sample: 1906G37-009DCENTRAL OCD LFVZ04

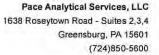
Lab ID: 30311799008

Collected: 06/27/19 13:00

Received: 07/02/19 09:30 Matrix: Solid

PWS:

Site ID:


Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	12.218 ± 2.741 (1.088) C:NA T:NA	pCi/g	07/30/19 15:01	13966-00-2	
Radium-226	EPA 901.1	1.233 ± 0.276 (0.234) C:NA T:NA	pCi/g	07/30/19 15:01	13982-63-3	Ra
Radium-228	EPA 901.1	1.731 ± 0.446 (0.252) C:NA T:NA	pCi/g	07/30/19 15:01	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:

1906G37

Pace Project No.:

30311799

Sample: 1906G37-010DCENTRAL

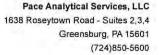
Lab ID: 30311799009

09 Collected: 06/27/19 00:01 Received: 07/02/19 09:30 Matrix: Solid

PWS:

OCD LFDUP

Site ID:


Sample Type:

Results reported on a "dry-weight" basis

Parameters	Method	Act ± Unc (MDC) Carr Trac	Units	Analyzed	CAS No.	Qual
Potassium-40	EPA 901.1	12.113 ± 2.436 (0.979) C:NA T:NA	pCi/g	07/30/19 15:17	13966-00-2	
Radium-226	EPA 901.1	1.354 ± 0.288 (0.173) C:NA T:NA	pCi/g	07/30/19 15:17	13982-63-3	Ra
Radium-228	EPA 901.1	1.480 ± 0.392 (0.312) C:NA T:NA	pCi/g	07/30/19 15:17	15262-20-1	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL - RADIOCHEMISTRY

Project: 1906G37 Pace Project No.: 30311799

QC Batch: 352550 Analysis Method: EPA 901.1

QC Batch Method: EPA 901.1 Analysis Description: 901.1 Gamma Spec Ingrowth

Associated Lab Samples: 30311799001, 30311799002, 30311799003, 30311799004, 30311799005, 30311799006, 30311799007,

30311799008, 30311799009

METHOD BLANK: 1712695 Matrix: Solid

Associated Lab Samples: 30311799001, 30311799002, 30311799003, 30311799004, 30311799005, 30311799006, 30311799007,

30311799008, 30311799009

Parameter	Act ± Unc	(MDC) Carr Trac	Units	Analyzed	Qualifiers
Potassium-40	0.000 ± 0.188 (1.92	7) C:NA T:NA	pCi/g	07/30/19 13:25	
Radium-226	0.046 ± 0.086 (0.14	8) C:NA T:NA	pCi/g	07/30/19 13:25	Ra
Radium-228	0.000 ± 0.108 (0.39	2) C:NA T:NA	pCi/g	07/30/19 13:25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 1906G37
Pace Project No.: 30311799

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: For Safe Drinking Water Act (SDWA) analyses, the reported Unc. Is the calculated Count Uncertainty (95% confidence interval) using a coverage factor of 1.96. For all other matrices (non-SDWA), the reported Unc. is the calculated Expanded Uncertainty (aka Combined Standard Uncertainty, CSU), reported at the 95% confidence interval using a coverage factor of 1.96.

Gamma Spec: The Unc. reported for all gamma-spectroscopy analyses (EPA 901.1), is the calculated Expanded Uncertainty (CSU) at the 95.4% confidence interval, using a coverage factor of 2.0.

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 07/30/2019 05:14 PM

Ra

The reported Ra-226 results were determined by hermetically sealing the dried, processed sample in an appropriatesized can. Each sample was stored for a minimum of 21 days to ensure that equilibrium between Ra-226 and daughters Bi-214 and Pb-214 was achieved. Reported Ra-226 results were inferred from gamma peaks attributable to Bi-214 and Pb-214.

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: 1906G37-002AMS	SampT	ype: MS	;	TestCode: EPA Method 300.0: Anions						
Client ID: CENTRAL OCD L	F V Batch	ID: 46 0	094	F	RunNo: 6	1307				
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	8	SeqNo: 2	078213	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	4.4	1.5	3.000	3.729	23.7	15	138			
Chloride	280	7.5	30.00	241.1	128	54.5	140			
Nitrogen, Nitrate (As N)	9.8	1.5	15.00	2.368	49.8	54.8	141			S

Sample ID: 1906G37-002A	Sample ID: 1906G37-002AMSD SampType: MSD TestCode: EPA Method 300.0: Anions									
Client ID: CENTRAL OC	D LF V Batch	n ID: 46	094	F	RunNo: 6	1307				
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	8	SeqNo: 2	078214	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	3.8	1.5	3.000	3.729	1.33	15	138	16.4	20	S
Chloride	250	7.5	30.00	241.1	43.4	54.5	140	9.47	20	S
Nitrogen, Nitrate (As N)	9.4	1.5	15.00	2.368	47.1	54.8	141	4.20	20	S

Sample ID: MB-46094	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	300.0: Anion	300.0: Anions			
Client ID: PBS	Batch	1D: 46 0	094	F	RunNo: 6	1307					
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	8	SeqNo: 20	078230	Units: mg/K	g			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	ND	0.30									
Chloride	ND	1.5									
Nitrogen, Nitrate (As N)	ND	0.30									
Sulfate	ND	1.5									

Sample ID: LCS-46094	SampT	ype: LC	S	Tes	tCode: El	PA Method	300.0: Anion	s			
Client ID: LCSS	Batch	1D: 46 0	094	F	RunNo: 6	1307					
Prep Date: 7/10/2019	Analysis D	ate: 7/	10/2019	8	SeqNo: 2	078231	Units: mg/Kg				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Fluoride	1.6	0.30	1.500	0	110	90	110				
Chloride	14	1.5	15.00	0	92.9	90	110				
Nitrogen, Nitrate (As N)	7.4	0.30	7.500	0	99.2	90	110				
Sulfate	29	1.5	30.00	0	96.5	90	110				

Sample ID: MB-46126	SampT	ype: ME	BLK	Test	tCode: El	PA Method	300.0: Anion	s		
Client ID: PBS	Batch	ID: 46	126	R	RunNo: 6	1343				
Prep Date: 7/11/2019	Analysis Da	ate: 7/	11/2019	S	SeqNo: 20	079410	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	ND	0.30					_	-	•	
Chloride	ND	1.5								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 50 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: MB-46126 SampType: MBLK TestCode: EPA Method 300.0: Anions

Client ID: PBS Batch ID: 46126 RunNo: 61343

Prep Date: 7/11/2019 Analysis Date: 7/11/2019 SeqNo: 2079410 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Nitrogen, Nitrate (As N) ND 0.30 Sulfate ND 1.5

Sample ID: LCS-46126 SampType: LCS TestCode: EPA Method 300.0: Anions
Client ID: LCSS Batch ID: 46126 RunNo: 61343

Pren Date: 7/11/2019 Analysis Date: 7/11/2019 SegNo: 2079411 Units: mg/Kc

Prep Date: 7/11/2019	Analysis D	Date: 7/	11/2019	S	SeqNo: 20	079411	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride	1.5	0.30	1.500	0	103	90	110			
Chloride	14	1.5	15.00	0	93.3	90	110			
Nitrogen, Nitrate (As N)	7.5	0.30	7.500	0	99.4	90	110			
Sulfate	29	1.5	30.00	0	98.1	90	110			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: MB-45999 SampType: MBLK TestCode: EPA Method 418.1: TPH

Client ID: **PBS** Batch ID: **45999** RunNo: **61241**

Prep Date: 7/3/2019 Analysis Date: 7/9/2019 SeqNo: 2075997 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR ND 20

Sample ID: LCS-45999 SampType: LCS TestCode: EPA Method 418.1: TPH

Client ID: LCSS Batch ID: 45999 RunNo: 61241

Prep Date: 7/3/2019 Analysis Date: 7/9/2019 SeqNo: 2075998 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 110 20 100.0 0 111 54.3 153

Sample ID: 1906G37-002AMS SampType: MS TestCode: EPA Method 418.1: TPH

Client ID: CENTRAL OCD LF V Batch ID: 45999 RunNo: 61241

Prep Date: **7/3/2019** Analysis Date: **7/9/2019** SeqNo: **2076001** Units: **mg/Kg**

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 110 19 94.88 0 116 80 120

Sample ID: 1906G37-002AMSD SampType: MSD TestCode: EPA Method 418.1: TPH

Client ID: CENTRAL OCD LF V Batch ID: 45999 RunNo: 61241

Prep Date: 7/3/2019 Analysis Date: 7/9/2019 SeqNo: 2076002 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Petroleum Hydrocarbons, TR 110 19 94.52 0 113 80 120 3.14 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 52 of 65

Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

4.3

WO#: **1906G37**

31-Jul-19

Client: Marathon

Sample ID: LCS-45994

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: MB-45994 SampType: MBLK TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: PBS Batch ID: 45994 RunNo: 61163 Prep Date: 7/3/2019 Analysis Date: 7/5/2019 SeqNo: 2072907 Units: mg/Kg SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Analyte Result PQL Qual Diesel Range Organics (DRO) ND 10 Motor Oil Range Organics (MRO) ND 50 Surr: DNOP 70 8.3 10.00 83.3 130

Client ID: LCSS Batch ID: 45994 RunNo: 61163 Prep Date: 7/3/2019 Analysis Date: 7/5/2019 SeqNo: 2072909 Units: mg/Kg Analyte PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 45 10 50.00 63.9 89.9 124 Surr: DNOP 4.0 5.000 80.7 70 130

TestCode: EPA Method 8015M/D: Diesel Range Organics

Sample ID: 1906G37-002AMS SampType: MS TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: CENTRAL OCD LF V Batch ID: 45994 RunNo: 61157 Prep Date: 7/3/2019 Analysis Date: 7/5/2019 SeqNo: 2074746 Units: mg/Kg Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Diesel Range Organics (DRO) 46 9.2 0 100 57 46.04 142 Surr: DNOP 4.2 4.604 91.2 70 130

SampType: MSD Sample ID: 1906G37-002AMSD TestCode: EPA Method 8015M/D: Diesel Range Organics Client ID: CENTRAL OCD LF V Batch ID: 45994 RunNo: 61157 Prep Date: 7/3/2019 Analysis Date: 7/5/2019 SeqNo: 2074747 Units: mg/Kg LowLimit %RPD Result PQL SPK value SPK Ref Val %REC HighLimit **RPDLimit** Qual Analyte Diesel Range Organics (DRO) 47 9.1 45.33 0 105 57 142 2.95 20

4.533

Qualifiers:

Surr: DNOP

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

94.3

70

130

0

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

0

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Sample ID: MR-45063

Project: OCD Central Landfarm Semiannual Sampling

Result

0.11

0.086

0.048

0.046

PQL

0.025

0.025

SampType: MRI K

Sample ID: WB-45963	Samp	ype: wit	SLK	res	tCode: E	PA Wethod	8082A: PCB	S		
Client ID: PBS	Batc	h ID: 45	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis [Date: 7/	9/2019	9	SeqNo: 2	076333	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	ND	0.025								
Aroclor 1221	ND	0.025								
Aroclor 1232	ND	0.025								
Aroclor 1242	ND	0.025								
Aroclor 1248	ND	0.025								
Aroclor 1254	ND	0.025								
Aroclor 1260	ND	0.025								
Surr: Decachlorobiphenyl	0.040		0.06250		64.8	25.7	135			
Surr: Tetrachloro-m-xylene	0.047		0.06250		75.2	32.3	138			
Sample ID: LCS-45963	Samp	Гуре: LC	s	Tes	tCode: E	PA Method	8082A: PCB'	s		
Client ID: LCSS	Batc	h ID: 45	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis [Date: 7/	9/2019	5	SeqNo: 2	076334	Units: mg/K	(g		

TestCode: FDA Method 8082A: DCB's

Sample ID: 1906G37-002AN	//S Samp1	ype: MS	<u> </u>	Tes	tCode: El	PA Method	8082A: PCB'	s		
Client ID: CENTRAL OCD	·	h ID: 45 9		F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis D	Date: 7/	10/2019	S	SeqNo: 2	076343	Units: mg/k	ζg		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.099	0.022	0.1122	0	88.0	33.5	145			
Aroclor 1260	0.11	0.022	0.1122	0	96.6	39.1	160			
Surr: Decachlorobiphenyl	0.047		0.05610		84.4	25.7	135			
Surr: Tetrachloro-m-xylene	0.042		0.05610		75.6	32.3	138			

0

0

%REC

87.6

69.1

76.8

72.8

LowLimit

32

32.2

25.7

32.3

HighLimit

156

111

135

138

%RPD

RPDLimit

Qual

SPK value SPK Ref Val

0.1250

0.1250

0.06250

0.06250

Sample ID: 1906G37-002AMSD SampType: MSD TestCode: EPA Method 8082A: PCB's										
Client ID: CENTRAL OCD L	F V Batch	ID: 45 9	963	F	RunNo: 6	1252				
Prep Date: 7/2/2019	Analysis Da	ate: 7/	10/2019	S	SeqNo: 20	076344	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aroclor 1016	0.088	0.021	0.1057	0	82.9	33.5	145	11.9	36.6	
Aroclor 1260	0.088	0.021	0.1057	0	83.0	39.1	160	21.1	39	
Surr: Decachlorobiphenyl	0.036		0.05283		68.8	25.7	135	0	0	
Surr: Tetrachloro-m-xylene	0.041		0.05283		77.6	32.3	138	0	0	

Qualifiers:

Analyte

Aroclor 1016

Aroclor 1260

Surr: Decachlorobiphenyl

Surr: Tetrachloro-m-xylene

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 54 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: mb-45983 SampType: MBLK TestCode: EPA Method 8260B: Volatiles

Prep Date: 7/2/2019	Client ID: PBS	Batch	1D: 45 9	983	R	RunNo: 61	1138				
Berzane	Prep Date: 7/2/2019	Analysis D	ate: 7/	3/2019	S	SeqNo: 20)72389	Units: mg/K	g		
	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Ethylaenzene ND 0.050 Methyl terbuyl either (MTBE) ND 0.050 1.3.5-Trimfeltylbenzene ND 0.050 1.3.5-Trimfeltylbenzene ND 0.050 1.2.Delbromeethane (EBDC) ND 0.050 Naphthalene ND 0.050 Naphthalene ND 0.20 2-Methylnaphthalene ND 0.75 Bromobenzene ND 0.050 Bromodichromethane ND 0.050 Bromodichromethane ND 0.050 Bromoform ND 0.050 Bromoform ND 0.050 Carbon disulfide ND 0.050 Carbon disulfide ND 0.050 Chlorochane	Benzene	ND	0.025								
Methyl tert-bulyl ether (MTBE) ND 0.050 1.2.4-Timethylbenzene ND 0.050 1.2-Dichloroethane (EDC) ND 0.050 1.2-Dichloroethane (EDB) ND 0.050 1.4-Bitylnaphthalene ND 0.10 1-Methylnaphthalene ND 0.20 2-Methylaphthalene ND 0.050 Bromobenzene ND 0.050 Bromoderhane ND 0.050 Carbon delrachloride ND 0.050 Carbon delrachloride ND 0.050 Chloroderzene ND 0.050 Chlorodermene ND 0.050 Chlorodormelhane ND 0.050 4-Chlorofoluene ND 0.050 4-Chloroformelhane ND 0.050 5-L-Doct ND 0.050	Toluene	ND	0.050								
1,2,4-Trimethylbenzene ND 0.050 1,3,5-Trimethylbenzene ND 0.050 1,2-Dibromoethane (ECD) ND 0.050 Naphthalene ND 0.10 1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.75 Bromodenzene ND 0.050 Bromodichloromethane ND 0.050 Bromomethane ND 0.050 Bromomethane ND 0.50 Carbon disulfide ND 0.50 Carbon disulfide ND 0.50 Chlorodenane ND 0.050 Chlorodoluene ND 0.050 cis-1,3-Dichloropropene ND 0.050 Dibromochiloromethane <td>Ethylbenzene</td> <td>ND</td> <td>0.050</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ethylbenzene	ND	0.050								
1,3.5-Trimethylbenzene ND 0.050 1,2-Dichloroethane (EDD) ND 0.050 Naphthalene ND 0.10 1-Methyinaphthalene ND 0.20 Acetone ND 0.75 Bromobenzene ND 0.050 Bromodichromethane ND 0.050 Bromodishoromethane ND 0.050 Bromodishoromethane ND 0.050 Bromodishoromethane ND 0.050 Bromodishoromethane ND 0.050 Carbon disulfide ND 0.050 Carbon disulfide ND 0.050 Chlorobenzene ND 0.050 Chlorobenzene ND 0.050 Chlorothane ND 0.050 Chlorothuene ND 0.050 Chlorothuene ND 0.050 cis-1,3-Dichloropropane ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 1,2-Dichlorobenzene ND 0.050	Methyl tert-butyl ether (MTBE)	ND	0.050								
1,2-Dichloreenhane (EDR) ND 0.050 1,2-Dibromoethane (EDR) ND 0.050 Naphthalene ND 0.10 1-Methylnaphthalene ND 0.20 Acetone ND 0.050 Bromodichloromethane ND 0.050 Bromofichnomethane ND 0.050 Bromofichnomethane ND 0.050 Bromofichnomethane ND 0.050 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chiorochenzene ND 0.050 4-Chiorotoluene ND 0.050 cis-1,3-Dichloropropene ND 0.050 cis-1,3-Dichloropropene ND 0.050 Dibromochoromethane ND 0.050 Dibromochoromethane ND 0.050	1,2,4-Trimethylbenzene	ND	0.050								
1.2-Dibromoethane (EDB) ND 0.050 Naphthalene ND 0.10 1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.20 Acetone ND 0.050 Bromodenbozene ND 0.050 Bromoform ND 0.050 Bromofhorm ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.050 Chlorothane ND 0.050 Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,2-DCE ND 0.050 cis-1,2-Dibromos-3-chloropropane ND 0.050 1,2-Dichloroberzene ND 0.050 1,2-Dichloroberzene ND 0	1,3,5-Trimethylbenzene	ND	0.050								
Naphthalene ND 0.10 1-Methyinaphthalene ND 0.20 2-Methyinaphthalene ND 0.20 Acetone ND 0.75 Bromobenzene ND 0.050 Bromoderhoromethane ND 0.050 Bromomethane ND 0.50 Bromomethane ND 0.50 Carbon disulfide ND 0.050 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chlorodethane ND 0.050 Chlorodethane ND 0.050 Chlorodethane ND 0.050 Chlorotoluene ND 0.050 Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 6s-1,3-Dichloropropene ND 0.050 1,2-Dichlorodenzene ND 0.050 Dibromochlorodenzene ND 0.050 1,4-Dichlorodenzene ND 0.050 1,4-Dichlorodenzene	1,2-Dichloroethane (EDC)	ND	0.050								
1-Methylnaphthalene ND 0.20 2-Methylnaphthalene ND 0.20 Acetone ND 0.75 Bromoberzene ND 0.050 Bromodichloromethane ND 0.050 Bromomethane ND 0.15 2-Butanone ND 0.50 Carbon disulfide ND 0.050 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chloroform ND 0.050 Chloroformethane ND 0.15 2-Chlorofoluene ND 0.050 4-Chlorofoluene ND 0.050 4-Chlorofoluene ND 0.050 4-Lorona-3-chloropropene ND 0.050 41-2-Dickloropropene ND 0.050 1-2-Dibromo-3-chloropropene ND 0.050 1-2-Dibromo-3-chloropropene ND 0.050 1-2-Dichlorobezene ND 0.050 1-3-Dichlorobezene ND 0.050	1,2-Dibromoethane (EDB)	ND	0.050								
2-Methylnaphthalene ND 0.20 Acetone ND 0.050 Bromodechloromethane ND 0.050 Bromofform ND 0.050 Bromomethane ND 0.050 Bromomethane ND 0.050 2-Butanone ND 0.050 Carbon disulfide ND 0.050 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chloroform ND 0.050 Chloroform ND 0.050 Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 4is-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,1-Dich	Naphthalene	ND	0.10								
Actone ND 0.75 Bromoberzene ND 0.050 Bromofichromethane ND 0.050 Bromoferm ND 0.050 Bromomethane ND 0.050 2-Butanone ND 0.50 Carbon disulfide ND 0.050 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chloroform ND 0.050 Chloroform ND 0.050 Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 4-L'Jobichropropene ND 0.050 1,2-Dichloropropene ND 0.050 1,2-Dichloropropene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,4-Dichloroethane ND 0.050 1,1-Dichloroethane ND	1-Methylnaphthalene	ND	0.20								
	2-Methylnaphthalene	ND	0.20								
	Acetone	ND	0.75								
	Bromobenzene	ND	0.050								
	Bromodichloromethane	ND	0.050								
2-Butanone ND 0.50 Carbon disulfide ND 0.50 Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chlorodhane ND 0.050 Chloromethane ND 0.050 Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 is-1,2-DEC ND 0.050 1,2-Dichloropropene ND 0.050 1,2-Dibrimon-3-chloropropane ND 0.050 Dibromoethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloropopane ND 0.050	Bromoform	ND	0.050								
	Bromomethane	ND	0.15								
Carbon tetrachloride ND 0.050 Chlorobenzene ND 0.050 Chloroethane ND 0.10 Chloroform ND 0.050 Chloromethane ND 0.050 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 Dibromoethlane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	2-Butanone	ND	0.50								
Chlorobenzene ND 0.050 Chloroethane ND 0.050 Chloroform ND 0.050 Chloromethane ND 0.050 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 Dibromoethlane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethane ND 0.050 1,2-Dichloropropane ND 0.050	Carbon disulfide	ND	0.50								
Chloroethane ND 0.10 Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 Dibromoethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	Carbon tetrachloride	ND	0.050								
Chloroform ND 0.050 Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethane ND 0.050 1,2-Dichloropropane ND 0.050	Chlorobenzene	ND	0.050								
Chloromethane ND 0.15 2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 Dibromoethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethane ND 0.050 1,2-Dichloropopane ND 0.050	Chloroethane	ND	0.10								
2-Chlorotoluene ND 0.050 4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.010 Dibromoethloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 1,4-Dichloromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	Chloroform	ND	0.050								
4-Chlorotoluene ND 0.050 cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.050 Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	Chloromethane	ND	0.15								
cis-1,2-DCE ND 0.050 cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	2-Chlorotoluene	ND	0.050								
cis-1,3-Dichloropropene ND 0.050 1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	4-Chlorotoluene	ND	0.050								
1,2-Dibromo-3-chloropropane ND 0.10 Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	cis-1,2-DCE	ND	0.050								
Dibromochloromethane ND 0.050 Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	cis-1,3-Dichloropropene	ND	0.050								
Dibromomethane ND 0.050 1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	1,2-Dibromo-3-chloropropane	ND	0.10								
1,2-Dichlorobenzene ND 0.050 1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	Dibromochloromethane	ND	0.050								
1,3-Dichlorobenzene ND 0.050 1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	Dibromomethane	ND	0.050								
1,4-Dichlorobenzene ND 0.050 Dichlorodifluoromethane ND 0.050 1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	1,2-Dichlorobenzene	ND	0.050								
DichlorodifluoromethaneND0.0501,1-DichloroethaneND0.0501,1-DichloroetheneND0.0501,2-DichloropropaneND0.050	1,3-Dichlorobenzene	ND	0.050								
1,1-Dichloroethane ND 0.050 1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	1,4-Dichlorobenzene	ND	0.050								
1,1-Dichloroethene ND 0.050 1,2-Dichloropropane ND 0.050	Dichlorodifluoromethane	ND	0.050								
1,2-Dichloropropane ND 0.050	1,1-Dichloroethane	ND	0.050								
	1,1-Dichloroethene	ND	0.050								
	1,2-Dichloropropane	ND	0.050								
115 01000	1,3-Dichloropropane	ND	0.050								
2,2-Dichloropropane ND 0.10											

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: mb-45983	SampT	mpType: MBLK TestCode: EPA Method 8260B: Volatiles								
Client ID: PBS	Batch	1D: 4598	33	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis D	ate: 7/3/	2019	5	SeqNo: 2	072389	Units: mg/K	g		
Analyte	Result	PQL :	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
1,1-Dichloropropene	ND	0.10								
Hexachlorobutadiene	ND	0.10								
2-Hexanone	ND	0.50								
Isopropylbenzene	ND	0.050								
4-Isopropyltoluene	ND	0.050								
4-Methyl-2-pentanone	ND	0.50								
Methylene chloride	ND	0.15								
n-Butylbenzene	ND	0.15								
n-Propylbenzene	ND	0.050								
sec-Butylbenzene	ND	0.050								
Styrene	ND	0.050								
tert-Butylbenzene	ND	0.050								
1,1,1,2-Tetrachloroethane	ND	0.050								
1,1,2,2-Tetrachloroethane	ND	0.050								
Tetrachloroethene (PCE)	ND	0.050								
trans-1,2-DCE	ND	0.050								
trans-1,3-Dichloropropene	ND	0.050								
1,2,3-Trichlorobenzene	ND	0.10								
1,2,4-Trichlorobenzene	ND	0.050								
1,1,1-Trichloroethane	ND	0.050								
1,1,2-Trichloroethane	ND	0.050								
Trichloroethene (TCE)	ND	0.050								
Trichlorofluoromethane	ND	0.050								
1,2,3-Trichloropropane	ND	0.10								
Vinyl chloride	ND	0.050								
Xylenes, Total	ND	0.10								
Surr: Dibromofluoromethane	0.51		0.5000		103	70	130			
Surr: 1,2-Dichloroethane-d4	0.51		0.5000		102	70	130			
Surr: Toluene-d8	0.49		0.5000		98.4	70	130			
Surr: 4-Bromofluorobenzene	0.47		0.5000		93.6	70	130			
Sample ID: Ics-45983	SampT	ype: LCS		Tes	tCode: El	PA Method	8260B: Volat	iles		
Client ID: LCSS	Batch	1D: 4598	33	F	RunNo: 6	1138				
Prep Date: 7/2/2019	Analysis D	ate: 7/3/	2019	5	SeqNo: 2	072390	Units: mg/K	g		
Analyte	Result	PQL :	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.2	0.025	1.000	0	118	70	130			

Qualifiers:

Chlorobenzene

Toluene

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded

0.95

0.92

0.050

0.050

1.000

1.000

- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

94.9

92.5

70

70

130

130

- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

0

0

Page 56 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: 1906G37

31-Jul-19

Client: Marathon

Sample ID: Ics-45983

Project: OCD Central Landfarm Semiannual Sampling

SampType: LCS

Client ID: LCSS Batch ID: 45983 RunNo: 61138 Prep Date: 7/2/2019 Analysis Date: 7/3/2019 SeqNo: 2072390 Units: mg/Kg Analyte SPK value SPK Ref Val %RFC Lowl imit Highl imit %RPD **RPDLimit** Qual

TestCode: EPA Method 8260B: Volatiles

Allalyte	Nesuit	i QL	of it value	of Kitter var	/orkeo	LOWLIIIII	riigiiLiiiii	/01X1 D
1,1-Dichloroethene	1.1	0.050	1.000	0	115	50.8	164	
Trichloroethene (TCE)	0.97	0.050	1.000	0	96.8	70	130	
Surr: Dibromofluoromethane	0.52		0.5000		105	70	130	
Surr: 1,2-Dichloroethane-d4	0.53		0.5000		105	70	130	
Surr: Toluene-d8	0.46		0.5000		92.6	70	130	
Surr: 4-Bromofluorobenzene	0.48		0.5000		96.9	70	130	

Sample ID: 1906g37-002ams SampType: MS TestCode: EPA Method 8260B: Volatiles

Client ID: CENTRAL OCD LF V Batch ID: 45983 RunNo: 61138

Prep Date: 7/2/2019	Analysis D)ate: 7/ .	3/2019	૬	SeqNo: 20	072393	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.2	0.025	0.9960	0	124	68.9	131			
Toluene	1.0	0.050	0.9960	0	104	64.3	137			
Chlorobenzene	0.97	0.050	0.9960	0	97.1	65.9	143			
1,1-Dichloroethene	1.2	0.050	0.9960	0	124	53.4	150			
Trichloroethene (TCE)	0.99	0.050	0.9960	0	99.8	70	130			
Surr: Dibromofluoromethane	0.52		0.4980		103	70	130			
Surr: 1,2-Dichloroethane-d4	0.53		0.4980		105	70	130			
Surr: Toluene-d8	0.49		0.4980		98.3	70	130			
Surr: 4-Bromofluorobenzene	0.46		0.4980		91.6	70	130			

Sample ID: 1906g37-002amsd SampType: MSD TestCode: EPA Method 8260B: Volatiles

Client ID: CENTRAL OCD LF V Batch ID: 45983 RunNo: 61138

Prep Date: 7/2/2019	Analysis Date: 7/3/2019			5	SeqNo: 2072394 Units: mg/Kg					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	1.2	0.025	0.9843	0	125	68.9	131	0.768	20	
Toluene	1.0	0.049	0.9843	0	102	64.3	137	3.49	20	
Chlorobenzene	1.0	0.049	0.9843	0	102	65.9	143	3.63	20	
1,1-Dichloroethene	1.2	0.049	0.9843	0	120	53.4	150	3.96	20	
Trichloroethene (TCE)	1.0	0.049	0.9843	0	104	70	130	3.21	20	
Surr: Dibromofluoromethane	0.51		0.4921		103	70	130	0	0	
Surr: 1,2-Dichloroethane-d4	0.51		0.4921		104	70	130	0	0	
Surr: Toluene-d8	0.46		0.4921		93.8	70	130	0	0	
Surr: 4-Bromofluorobenzene	0.45		0.4921		90.8	70	130	0	0	

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

Н Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

Analyte detected in the associated Method Blank

Value above quantitation range

Analyte detected below quantitation limits

Sample pH Not In Range

RL Reporting Limit Page 57 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: 100ng Ics	SampT	ype: LC	S	Tes	tCode: El	PA Method	8260: Volatile	es Short L	.ist	
Client ID: LCSW	Batch	ID: SL	61220	F	RunNo: 6	1220				
Prep Date:	Analysis D	ate: 7/	8/2019	S	SeqNo: 20	075444	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	101	70	130			
Toluene	20	1.0	20.00	0	101	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		104	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	10		10.00		101	70	130			
Surr: Toluene-d8	9.7		10.00		96.9	70	130			

Sample ID: RB	SampT	ype: ME	BLK	Tes	tCode: El	PA Method	8260: Volatile	es Short L	_ist	
Client ID: PBW	Batch	n ID: SL	.61220	F	RunNo: 6	1220				
Prep Date:	Analysis D	ate: 7/	8/2019	9	SeqNo: 2	075445	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0		_						
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	11		10.00		107	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		102	70	130			
Surr: Dibromofluoromethane	11		10.00		105	70	130			
Surr: Toluene-d8	9.7		10.00		96.6	70	130			

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: 1906G37

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: Ics-45929	SampT	ype: LC	s	Tes	tCode: El	PA Method	8270C: Semi	ivolatiles		
Client ID: LCSS	Batcl	n ID: 45 9	929	F	RunNo: 6	1183				
Prep Date: 7/1/2019	Analysis D	Date: 7/	5/2019	5	SeqNo: 2	073789	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	1.0	0.20	1.670	0	61.1	41.3	106			
4-Chloro-3-methylphenol	2.4	0.50	3.330	0	71.9	39.7	113			
2-Chlorophenol	2.2	0.20	3.330	0	67.5	30.1	99.9			
1,4-Dichlorobenzene	1.0	0.20	1.670	0	60.0	27.5	98.1			
2,4-Dinitrotoluene	0.89	0.50	1.670	0	53.2	36	98.3			
N-Nitrosodi-n-propylamine	1.1	0.20	1.670	0	66.3	34.6	115			
4-Nitrophenol	1.8	0.25	3.330	0	54.9	39.7	114			
Pentachlorophenol	1.2	0.40	3.330	0	37.3	37	94.7			
Phenol	2.2	0.20	3.330	0	66.2	35	96.7			
Pyrene	1.1	0.20	1.670	0	67.8	44.8	108			
1,2,4-Trichlorobenzene	1.2	0.20	1.670	0	69.1	31.2	114			
Surr: 2-Fluorophenol	2.0		3.330		59.6	24.8	95.2			
Surr: Phenol-d5	2.3		3.330		69.5	29.9	97.8			
Surr: 2,4,6-Tribromophenol	2.1		3.330		62.9	35.7	108			
Surr: Nitrobenzene-d5	1.2		1.670		69.5	32.5	106			
Surr: 2-Fluorobiphenyl	1.1		1.670		66.2	27.7	114			
Surr: 4-Terphenyl-d14	1.1		1.670		65.7	15	148			

Sample ID: mb-45929	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	ID: 45 9	929	R	tunNo: 6	1183				
Prep Date: 7/1/2019	Analysis D	ate: 7/	5/2019	S	SeqNo: 2	073790	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Acenaphthene	ND	0.20								
Acenaphthylene	ND	0.20								
Aniline	ND	0.20								
Anthracene	ND	0.20								
Azobenzene	ND	0.20								
Benz(a)anthracene	ND	0.20								
Benzo(a)pyrene	ND	0.20								
Benzo(b)fluoranthene	ND	0.20								
Benzo(g,h,i)perylene	ND	0.20								
Benzo(k)fluoranthene	ND	0.20								
Benzoic acid	ND	0.50								
Benzyl alcohol	ND	0.20								
Bis(2-chloroethoxy)methane	ND	0.20								
Bis(2-chloroethyl)ether	ND	0.20								
Bis(2-chloroisopropyl)ether	ND	0.20								
Bis(2-ethylhexyl)phthalate	ND	0.50								

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

% Recovery outside of range due to dilution or matrix

- Analyte detected in the associated Method Blank
- Value above quantitation range
- Analyte detected below quantitation limits
- Sample pH Not In Range
- RL Reporting Limit

Page 59 of 65

Hall Environmental Analysis Laboratory, Inc.

SampType: MBLK

WO#: **1906G37**

31-Jul-19

Client: Marathon

Sample ID: mb-45929

Project: OCD Central Landfarm Semiannual Sampling

Client ID: PBS Batch ID: 45929 RunNo: 61183 Prep Date: 7/1/2019 Analysis Date: 7/5/2019 SeqNo: 2073790 Units: mg/Kg PQL SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Qual Analyte Result LowLimit 4-Bromophenyl phenyl ether ND 0.20 Butyl benzyl phthalate ND 0.20 ND 0.20 Carbazole 4-Chloro-3-methylphenol ND 0.50 4-Chloroaniline ND 0.50 2-Chloronaphthalene ND 0.25 2-Chlorophenol ND 0.20 4-Chlorophenyl phenyl ether ND 0.20 Chrysene ND 0.20 Di-n-butyl phthalate ND 0.40 Di-n-octyl phthalate ND 0.40 Dibenz(a,h)anthracene ND 0.20 0.20 Dibenzofuran ND 1,2-Dichlorobenzene ND 0.20 1,3-Dichlorobenzene ND 0.20 1,4-Dichlorobenzene ND 0.20 3.3'-Dichlorobenzidine ND 0.25 Diethyl phthalate ND 0.20 Dimethyl phthalate ND 0.20 2,4-Dichlorophenol ND 0.40 2,4-Dimethylphenol ND 0.30 4,6-Dinitro-2-methylphenol ND 0.40 2,4-Dinitrophenol ND 0.50 2,4-Dinitrotoluene ND 0.50 2,6-Dinitrotoluene ND 0.50 Fluoranthene ND 0.20 Fluorene ND 0.20 ND Hexachlorobenzene 0.20 Hexachlorobutadiene ND 0.20 Hexachlorocyclopentadiene ND 0.20 Hexachloroethane ND 0.20 ND Indeno(1,2,3-cd)pyrene 0.20 Isophorone ND 0.40 0.20 1-Methylnaphthalene ND 2-Methylnaphthalene ND 0.20 2-Methylphenol ND 0.40 3+4-Methylphenol ND 0.20 N-Nitrosodi-n-propylamine ND 0.20 N-Nitrosodiphenylamine ND 0.20

TestCode: EPA Method 8270C: Semivolatiles

Qualifiers:

- * Value exceeds Maximum Contaminant Level
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 60 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: 1906G37

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: mb-45929	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	8270C: Semi	volatiles		
Client ID: PBS	Batch	n ID: 45	929	R	RunNo: 6	1183				
Prep Date: 7/1/2019	Analysis D	oate: 7/	5/2019	S	SeqNo: 2	073790	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Naphthalene	ND	0.20								
2-Nitroaniline	ND	0.20								
3-Nitroaniline	ND	0.20								
4-Nitroaniline	ND	0.40								
Nitrobenzene	ND	0.40								
2-Nitrophenol	ND	0.20								
4-Nitrophenol	ND	0.25								
Pentachlorophenol	ND	0.40								
Phenanthrene	ND	0.20								
Phenol	ND	0.20								
Pyrene	ND	0.20								
Pyridine	ND	0.40								
1,2,4-Trichlorobenzene	ND	0.20								
2,4,5-Trichlorophenol	ND	0.20								
2,4,6-Trichlorophenol	ND	0.20								
Surr: 2-Fluorophenol	2.3		3.330		67.6	24.8	95.2			
Surr: Phenol-d5	2.4		3.330		72.6	29.9	97.8			
Surr: 2,4,6-Tribromophenol	2.2		3.330		66.4	35.7	108			
Surr: Nitrobenzene-d5	1.3		1.670		75.4	32.5	106			
Surr: 2-Fluorobiphenyl	1.1		1.670		64.0	27.7	114			
Surr: 4-Terphenyl-d14	1.2		1.670		71.1	15	148			

Qualifiers:

- Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: MB-46081 SampType: MBLK TestCode: EPA Method 7471: Mercury

Client ID: **PBS** Batch ID: **46081** RunNo: **61284**

Prep Date: 7/9/2019 Analysis Date: 7/10/2019 SeqNo: 2077571 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033

Sample ID: LLLCS-46081 SampType: LCSLL TestCode: EPA Method 7471: Mercury

Client ID: BatchQC Batch ID: 46081 RunNo: 61284

Prep Date: 7/9/2019 Analysis Date: 7/10/2019 SeqNo: 2077572 Units: mq/Kq

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury ND 0.033 0.006660 0 89.8 70 130

Sample ID: LCS-46081 SampType: LCS TestCode: EPA Method 7471: Mercury

Client ID: LCSS Batch ID: 46081 RunNo: 61284

Prep Date: 7/9/2019 Analysis Date: 7/10/2019 SeqNo: 2077573 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.17 0.033 0.1667 0 100 80 120

Sample ID: 1906G37-002BMS SampType: MS TestCode: EPA Method 7471: Mercury

Client ID: CENTRAL OCD LF V Batch ID: 46081 RunNo: 61284

Prep Date: **7/9/2019** Analysis Date: **7/10/2019** SeqNo: **2077576** Units: **mg/Kg**

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.18 0.033 0.1663 0.01771 94.8 80 120

Sample ID: 1906G37-002BMSD SampType: MSD TestCode: EPA Method 7471: Mercury

Client ID: CENTRAL OCD LF V Batch ID: 46081 RunNo: 61284

Prep Date: 7/9/2019 Analysis Date: 7/10/2019 SeqNo: 2077577 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Mercury 0.17 0.032 0.1595 0.01771 94.7 80 120 3.81 20

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 62 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: LCS-45944	SampT	ype: LC	S	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID: LCSS	Batch	n ID: 45 9	944	F	RunNo: 6	1102				
Prep Date: 7/1/2019	Analysis D	Date: 7/	2/2019	S	SeqNo: 2	070362	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	26	2.5	25.00	0	102	80	120			
Barium	25	0.10	25.00	0	99.0	80	120			
Cadmium	26	0.10	25.00	0	102	80	120			
Chromium	26	0.30	25.00	0	102	80	120			
Copper	27	0.30	25.00	0	107	80	120			
Iron	27	2.5	25.00	0	109	80	120			
Lead	25	0.25	25.00	0	99.6	80	120			
Manganese	25	0.10	25.00	0	102	80	120			
Selenium	25	2.5	25.00	0	99.7	80	120			
Silver	5.2	0.25	5.000	0	103	80	120			
Uranium	25	5.0	25.00	0	98.3	80	120			
Zinc	26	2.5	25.00	0	102	80	120			

Sample ID: MB-45944	SampT	уре: МЕ	BLK	Tes	tCode: El	PA Method	6010B: Soil	Metals		
Client ID: PBS	Batch	n ID: 45	944	F	RunNo: 6	1102				
Prep Date: 7/1/2019	Analysis D	ate: 7/	2/2019	S	SeqNo: 2	070364	Units: mg/k	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	ND	2.5								
Barium	ND	0.10								
Cadmium	ND	0.10								
Chromium	ND	0.30								
Copper	ND	0.30								
Iron	ND	2.5								
Lead	ND	0.25								
Manganese	ND	0.10								
Selenium	ND	2.5								
Silver	ND	0.25								
Uranium	ND	5.0								
Zinc	ND	2.5								

Sample ID: 1906G37-002BMS	SampT	ype: MS	3	Tes	tCode: El	PA Method	6010B: Soil I	/letals		
Client ID: CENTRAL OCD L	F V Batch	ID: 45 9	944	F	RunNo: 6	1102				
Prep Date: 7/1/2019	Analysis D	ate: 7/	2/2019	8	SeqNo: 20	070395	Units: mg/K	g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Arsenic	24	5.0	25.11	2.944	83.0	75	125			
Barium	260	0.20	25.11	184.7	286	75	125			S
Cadmium	23	0.20	25.11	0	90.1	75	125			
Chromium	39	0.60	25.11	15.08	95.6	75	125			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of range due to dilution or matrix

- B Analyte detected in the associated Method Blank
- E Value above quantitation range
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Page 63 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: 1906G37-002BMS SampType: MS TestCode: EPA Method 6010B: Soil Metals Client ID: CENTRAL OCD LF V Batch ID: 45944 RunNo: 61102 Analysis Date: 7/2/2019 Prep Date: 7/1/2019 SeqNo: 2070395 Units: mg/Kg PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD **RPDLimit** Qual Analyte Result 4.131 29 0.60 25.11 99.6 75 125 22 0.50 25.11 0 85.8 75 125 0.20 25.11 357 75 S 430 343.9 125

Copper Lead Manganese Selenium 26 5.0 25.11 0 105 75 125 Silver 3.6 0.50 5.022 0 71.4 75 125 S ND 10 25.11 0 33.8 75 125 S Uranium Zinc 45 25.11 21.02 95.9 75 125

Sample ID: 1906G37-002BMSD SampType: MSD TestCode: EPA Method 6010B: Soil Metals

Client ID: CENTRAL OCD LF V Batch ID: 45944 RunNo: 61102

Prep Date: **7/1/2019** Analysis Date: **7/2/2019** SeqNo: **2070396** Units: **mg/Kg**

110p Bate. 1/1/2013	/ trialyolo L	outo. 17	2/2013	,	204110. Z	070330	Office. High	9			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual	
Arsenic	24	5.0	25.14	2.944	85.4	75	125	2.53	20		
Barium	320	0.20	25.14	184.7	554	75	125	23.2	20	RS	
Cadmium	23	0.20	25.14	0	91.9	75	125	2.16	20		
Chromium	41	0.60	25.14	15.08	104	75	125	5.56	20		
Copper	30	0.60	25.14	4.131	105	75	125	4.53	20		
Lead	24	0.50	25.14	0	95.6	75	125	11.0	20		
Manganese	390	0.20	25.14	343.9	202	75	125	9.39	20	S	
Selenium	27	5.0	25.14	0	108	75	125	2.88	20		
Silver	3.5	0.50	5.028	0	70.6	75	125	1.08	20	S	
Uranium	ND	10	25.14	0	31.9	75	125	0	20	S	
Zinc	48	5.0	25.14	21.02	109	75	125	6.86	20		

Sample ID: 1906G37-0	02B SampT	ype: PS	1	Tes	tCode: El	PA Method	6010B: Soil I	Metals		
Client ID: CENTRAL	OCD LF V Batch	n ID: 45 9	944	F	RunNo: 6	1102				
Prep Date: 7/1/2019	Analysis D	oate: 7/	2/2019	9	SeqNo: 2	070397	Units: mg/K	(g		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	230	0.20	49.78	184.7	88.6	80	120			
Manganese	390	0.20	49.78	343.9	85.5	80	120			
Silver	8.0	0.50	9.955	0	80.6	80	120			
Uranium	29	10	49.78	0	59.2	80	120			S

Qualifiers:

Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 64 of 65

Hall Environmental Analysis Laboratory, Inc.

WO#: **1906G37**

31-Jul-19

Client: Marathon

Project: OCD Central Landfarm Semiannual Sampling

Sample ID: mb-45983 SampType: MBLK TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: **PBS** Batch ID: **45983** RunNo: **61138**

Prep Date: 7/2/2019 Analysis Date: 7/3/2019 SeqNo: 2072414 Units: mq/Kq

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

Gasoline Range Organics (GRO) ND 5.0

Surr: BFB 440 500.0 88.2 70 130

Sample ID: Ics-45983 SampType: LCS TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: LCSS Batch ID: 45983 RunNo: 61138

Prep Date: 7/2/2019 Analysis Date: 7/3/2019 SeqNo: 2072415 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 20
 5.0
 25.00
 0
 80.2
 70
 130

 Surr: BFB
 440
 500.0
 87.4
 70
 130

Sample ID: 1906g37-002amsg SampType: MS TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: CENTRAL OCD LF V Batch ID: 45983 RunNo: 61138

Prep Date: 7/2/2019 Analysis Date: 7/3/2019 SeqNo: 2072418 Units: mg/Kg

Analyte Result PQL SPK value SPK Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual

 Gasoline Range Organics (GRO)
 22
 4.9
 24.68
 0
 91.1
 68.2
 135

 Surr: BFB
 500
 493.6
 101
 70
 130

Sample ID: 1906g37-002amsdg SampType: MSD TestCode: EPA Method 8015D Mod: Gasoline Range

Client ID: CENTRAL OCD LF V Batch ID: 45983 RunNo: 61138

Prep Date: 7/2/2019 Analysis Date: 7/3/2019 SeqNo: 2072419 Units: mg/Kg

SPK value SPK Ref Val %REC HighLimit %RPD **RPDLimit** Result PQL LowLimit Qual Gasoline Range Organics (GRO) 23 5.0 24.75 93.8 68.2 135 3.15 20 Surr: BFB 450 495.0 91.3 70 130 0 0

Qualifiers:

Value exceeds Maximum Contaminant Level

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of range due to dilution or matrix

B Analyte detected in the associated Method Blank

E Value above quantitation range

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

Page 65 of 65

Hall Environmental Analysis Laboratory 4901 Hawkins NE Albuguergue, NM 87109

TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

Client Name: **MARATHON GALLUP** Work Order Number: 1906G37 RcptNo: 1 Received By: **Andy Freeman** 6/27/2019 4:20:00 PM anne Am Completed By: **Anne Thorne** 6/28/2019 4:26:34 PM x7.1.19 Reviewed By: Chain of Custody 1. Is Chain of Custody complete? Yes 🗸 No 🗆 Not Present 2. How was the sample delivered? Client Log In No 🗔 3. Was an attempt made to cool the samples? Yes 🗸 NA 🗌 No 🗌 NA 🗌 Were all samples received at a temperature of >0° C to 6.0°C Yes 🗸 Sample(s) in proper container(s)? Yes 🗸 No i Yes 🗸 Sufficient sample volume for indicated test(s)? No 🗌 Yes 🗸 7. Are samples (except VOA and ONG) properly preserved? Yes 🗌 No 🗹 NA \square 8. Was preservative added to bottles? 9. VOA vials have zero headspace? Yes 🗸 No 🗔 No VOA Vials Yes No 🔽 10. Were any sample containers received broken? # of preserved bottles checked No 🗌 11. Does paperwork match bottle labels? Yes 🗸 for pH: (Note discrepancies on chain of custody) Adjusted: Yes 🗸 Nα 12. Are matrices correctly identified on Chain of Custody? 13. Is it clear what analyses were requested? Yes 🔽 No 14. Were all holding times able to be met? Yes 🗸 No Checked by: (If no, notify customer for authorization.) Special Handling (if applicable) 15. Was client notified of all discrepancies with this order? Yes 🗌 No 🗆 NA 🗹 Person Notified: Date By Whom: Via: ☐ eMail ☐ Phone Fax In Person Regarding: Client Instructions: 16. Additional remarks: CUSTODY SEALS INTACT ON SAMPLE BOTTLES/at 6/28/19 17. Cooler Information Cooler No Temp ºC Condition Seal Intact Seal No Seal Date Signed By 4.6 Good Yes 2 4.9 Good Yes 3 5.1 Good Yes

7 0 7

i	, >	-						(Νıα) (Y o	Air Bubbles											
	RONMENTAL LABORATORY								•		ХЭТВ							×				
5		-									NMAC LIST	×	×	×	×	×	×					
	<u> </u>		7109	_				-	LSI	1 3 N	VADOSE ZO	×	×	×	×	×	×					
1		E E	M 87	410					(A	ΌΛ	-imə2) 0728											
		tal.c	je Z	505-345-4107	nesi						8260B											
		men	Jergi	505	Red						S081 Pestic											
	HALL ENVIRONMEN ANALYSIS LABORAT	www.hallenvironmental.com	Albuquerque, NM 87109	Fax	Analysis Request		(*os**o	С			IO, H) snoinA			ļ 								
	╙	allen	1		Ana						. <u>.</u> RCRA 8 Ме											
	HALL	ww.h	N N	397			(SI				01E8) HA9										_ [:	
·	Ì	≨	vkins	345							TPH (Metho										5	
	пг	_	4901 Hawkins NE	Tel. 505-345-3975			(ONIN)				OdiaM) HQT	×				×				;;;	cos (20)	
			490,	<u>le</u>							BTM+X3T8									arks	Cos	
								-			BTM+X3T8									Remarks.	\sim	
	1											جدافلتهم و	2	7	J	3		Ň		0	20	
		ARM								ý	fo. 3.7	00	202	202	502	77	B			Time //9	Time // //	
		Ä								5.1	HEAL NO.	3	•	}	. '	·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ĺ		10	61/2	
		Ĭ				<u>a</u>			ક	6.4	₩ ₩									Date	Define Contraction of the Contra	
	الے	20	G			Š			№	4.6.										10	,	
	Rush_	RAL	PLIN			ct Manager: Brian Moore					Ě	ō	<u>o</u>	<u>e</u>	ā	<u>a</u>	9	_			1	
<u></u>		ENT	NA.			ā			X Kyes	ature	eserval Type	None	None	None	None	None	None	도		F 1	1	
d Tin	p.	ne: C	JAL 3			lage			X	nper								<u> </u>		//,	h	
rogn	ındaı	Nar	Ž	#		Mar		 		a Ter	ainer and #	jar - 3 jar - 1	. jar - 3 . jar - 1	jar - 3 jar - 1	jar - 3 jar - 1	jar - 3 jar - 1	jar - 3 jar - 1	/oa-		<u>ё</u>	ž (N)	
Turn-Around Time:	X Standard	Project Name: CENTRAL OCD LANDFARM	SEMIANNUAL SAMPLING	Project #		Project		Sampler:	On Ice:	Sample Temperature:	Container Type and #	802 ja 402 ja	802 ja 402 ja	8oz ja 4oz ja	8oz ja 4oz ja	8oz ja 4oz ja	8oz ja 4oz ja	40ml voa-X		Received by:	ceiver	
ĿĔ	$\stackrel{\frown}{\Box}$	ā	Š	<u>L</u>	Г				Ō	ιÿ				8 4	8 4			4	\dashv	8	<u>&</u>	
7			þ			.con	Standard OC PUTP * Lovet + (Full Validation)				t D	CENTRAL OCD LF TZ01	CENTRAL OCD LF VZ01	F.	F	CENTRAL OCD LF TZ02	CENTRAL OCD LF VZ02					
Ö	any		Roa			leum	alig				sent	7.) LF	CENTRAL OCD LF VZ01MS	CENTRAL OCD LF VZ01MSD	그) LF	X X				
sec.	mc		ng l	2		etro	0C,	9119			Red	50	100	FRAL OC VZ01MS	TRAL OCI VZ011MSD	50	00	TRIP BLANK			1.	
<u>></u>	ŭ		ssi	873		thon	2 4 T	6/2			ple	RAL	RAL	NTR. VZ	NTR. VZ(RAL	RAL	IR			1 / 1	
po	enu		Cro	Σ	745	Mara	Standard OC PUTP * Level 4 (Full Validation	7			Sample Request ID	ENT	ENT	CEI	CEI	ENT	EN				. <u>//</u>	
ns.	tro	ery	ian	np,	26-3	1@	办义	T.	_				-3			<u> </u>	ပ	~		₹\ r	g //	
ပ္	n Pe	efin	92 Giant Crossing Road	Gallup, NM 87301	505-726-3745	BMoore1@Marathonpetroleum.com			EXCE		Matrix	SOIL					 	WATER		Relinquished by	Relinquished by:	\
<u></u>	Ĭţ.	up R			<u>2</u>													≥			-	
Chain-of-Custody Record	Client: Marathon Petroleum Company	Gallup Refinery	Mailing Address:		#:	email or Fax#:	QA/QC Package:	5	X EDD (Type)		Time	6/27/9 0930	000)	0001	000	1050	0111	ŧ		Date: (6/21/19 1400	Date: Time:	
Ç	ient:		ailing		Phone #:	nail o	QA/QC Packa		EDD		Date	b//2:								E	10 E	
	Ö		ž		🗗	= 	Z Ó		×	İ		1/9				l				E B	Soft Pate:	İ
																					W.	

2 or 2

1		>								(1	1 10	Υ)	Bubbles	ηİΑ										
	HALL ENVIRONMENTAL	ANALYSIS LABORATORY											X3	T8				[×	×	×	<u> </u>	
ם ל	Z	Ĕ											TSIJ DA	MN	×	×	×	×	×				1	
1		2		109	7					Т	SIT	ИE	OZ 3SOC	ΙΑV	×	×	×	×	×		_		1	
1	Ź	$\overline{\mathbf{Q}}$	Ē	M 87	410						(A(οΛ-	imə2) 0	728									1	
ĺ	9	¥	<u>18</u>	<u>a</u>	-345	nest			-				808	928									1	
			mení	ierau	Fax 505-345-4107	Req		CBIS	7 b(808	} / S	əpi	oitse9 18	308										
;	Ź	ij	/iron	Albuquerque, NM 87109	Fax	ysis		(°0S	' [†] Oc	O ₂ ,F	Ν'ε(ON'	O,3) sno	inA										
	Ш	Z	allen	- 1		Analysis Request							<u>өМ</u> 8 АЯ											
1		₹	www.hallenvironmental.com	4901 Hawkins NE	Tel. 505-345-3975			- ((SM				01E8) H											
, ,	Ì	4	₹	vkins	345-						_		odieM) 8										-	
		r		Ħ	505-			(0)	1141 /				H (Metho										.,	
				1901	<u>•</u>) 3108 H		×		×						arks	
				1									8TM+X3 8TM+X3										Remarks	
		٦						()(,-,-			GTM.Y	та	2		8				-/	_		9
			R										o i	37	Bl	8	13	Q.	<u>0</u>	りに	2	<u> </u>	1402	Time /626
			IDFA										HEAL No.	Š	`	12			1	P	1	1		F 8
			Ž				စ္				٥		HE/	1906G									Date //	Safe 77
			200	/D			100				% □		·	0									0	6
	٠	□ Rush	₹	LIN			an						tive		4)	é	4)	4)	-					<u> </u>
l as	[Ë	AMP			E.				□ Yes	ture:	Preservative Type		None	None	None	None	None	HCI	된	달	1	
Turn-Around Time:	_		Project Name: CENTRAL OCD LANDFARM	SEMIANNUAL SAMPLING			Manager: Brian Moore					Temperature:	Pre								6	15] {/	
ouno	-	dard	Nam	Š	#:					Ŀ		Tem	ner nd #		r-3 r-1	r-3 r-1	r-3	r-3 r-1	1-3	oa-3	oa-3	oa-X	\	# (A)
_{\rac{1}{2}}	č	X Stan	ject	MA	Project #:		Project			Sampler	On Ice:	Sample.	Container Type and #		8oz jar 4oz jar	8oz jar 4oz jar	8oz jar 4oz jar	8oz jar 4oz jar	8oz jar 4oz jar	40ml voa-3	40ml voa-3	40ml voa-X	Received by:	Received
Ē	;	<u> </u>	P.	SE	A.	1	Pro	_		Sa	티	Sal	ე		8 4	8c 4c	<u>8 4</u>	8c 4c		40	40	40	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Rec
							EQ W	۵	ion)				₽		203	Z03	Z04	Z04	CENTRAL OCD LF DUP01	B01	B01			
orc	2			oac			el El	7	alidat				Jest		<u>F</u>	LF V	F.	LF V	Ē.	1	LF E	¥		
Š		<u> </u>		ng R	_		etro	Standard OC ferTP	* Level 4 (Full Validation)	<u> </u>			Sample Request ID		CENTRAL OCD LF TZ03	CENTRAL OCD LF VZ03	CENTRAL OCD LF T204	CENTRAL OCD LF VZ04	103	CENTRAL OCD LF FB01	CENTRAL OCD LF EB01	TRIP BLANK		1/8
X	(3		ssir	730		guo	70	4 E	12/2			ole F		AL (AL (AL (AL (, L 0	AL (AL (B		1/4
þ		E		Cro	M 8	745	arat	3	evel	700			amp		NT R	NTR	NTR	NTR	¥TR⁄	NTR	NTR		1	$\mid \mathcal{N}$
Ista		֡֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	یّز	ant	Gallup, NM 87301	505-726-3745	BMoore 1@Marathonpetroleum.com	大	*	*			S		8	5	CE	CE	Ü				Relinquished by:	i
Ç		<u> </u>	fine	Z Gi	allu	3-72)ore				EXCEL		Matrix		SOIL					WATER	WATER	WATER		Kelinquished by:
Ģ	9		S Re	6	Ű	505	BMC				짋		 									×		<u></u>
Chain-of-Custody Record	14040	CHERL: Marathon Petroleum Company	Gallup Refinery	Mailing Address: 92 Giant Crossing Road			ax#:	QA/QC Package:	Ē		X EDD (Type)_		Time		6/21/9	1210	1245	1300	1	1315	325		Time:	Time:
ည	4	ا ≥	ບ	ng A		Je #∶	email or Fax#:	C Pa	又 Standard	ther	D) QC			_	_ <u>5</u> _			-					<u> </u>	- 3
	2	<u>נ</u>		Maili		Phone #:	emai	QAVQ	S X	□ Other	×		Date		14								G/27/19	Z age:
		'		, —	•	, 		, ~	•		•	'			-U		'	•	1	ı	•	•	. •	. 19

Analyte	Analytical Method	Reporting Unite	Requested Reporting Limit
Fluorida	E300	mα/kg .	D,3000
Nitrogen, Nitrate (As N)	E300	mg/kg	2,2000
Sulfate Redium-228	E900 E901.1	mg/kg	21,5000 1,3950
*Radium-228	E901.1	pCi/g	1.2500
*Radium-228+Radium-228	E901.1	pCi/a	2.6450
Arsenic	SW6010A	ത്വിശ	2.5000
Barium Cedmium	SW6010A SW6010A	mg/kg	1.0000
Chrombum	SW8010A	mg/kg mg/kg	0.1000 0.3000
Copper	SW8010A	пожо	0.6000
Iron	SW8010A	mp/kg	500.0000
Lead	SW6010A	mg/kg	0.2500
Manganese Selenium	8W8010A SW8010A	mg/kg mg/kg	2.5000
Säver	SW601DA	mg/kg	0.2500
Unantum	SW6010A	morke	5.0000
Zinc	SWBD10A	mg/kg	2.5000
Mercury Ameler 1056	SW7471	mg/kg	0.0330
Araclor 1016 Araclor 1221	SW8082 SW8082	mg/kg mg/kg	0.0200
Aroclor 1232	SW8082	mg/kg	0.0200
Arodor 1242	SW8082	тойка	0.0200
Aroclor 124B	8W8082	mg/kg	0.0200
Araclor 1254 Araclor 1260	SW8082	mg/kg	0.0200
1,1,1-Trichloroothene	SW82808	mg/kg mg/kg	0,0280
1,1,2-Trichloroethane	SW82608	mg/kg	0.0480
1,1-Dichloroethane	SW/82808	mg/kg	0.0970
1,1-Dichlorosthene	SW82808	mg/kg	0.0480
1,2-Dichloroethane Cerbon tetrachloride	SW82808 SW82808	mg/kg mg/kg	0.04B0 0.0970
Chloroform	SW8260B	mg/kg	0.0480
Dibramomethane	SW8260B	marka	0.1000
Methylene chloride	SW8280B	nig/kg	0.1500
Tetrachloroethene	5W8260B	mg/kg	0.0480
Trichlargethans Vinyl chloride	SW0260B SW0280B	mg/kg mg/kg	0.0480
2,4,5-Trichlorophenol	SW0270C	mg/kg	0.2000
2,4,6-Trichtprophenol	SWB270C	mg/kg	0.2000
2.4-Dichlorophena!	SW8270C	mg/kg	0.4000
2,4-Dimethylphenol 2,4-Dinitrophenol	SW8270C SW8270C	mg/kg mg/kg	0,3000 0,4000
2-Chlorophenol	SW8270C	mg/kg	0.2000
2-Methylphenol	SW8270C	mg/kg	0.1000
2-Nitrophanoi	SW8270C	mg/kg	0.1000
3+4-Mei/hylphenof 4,6-Dinitro-2-methylphenol	SW8270C SW8270C	mg/kg	0.1000
4-Chioro-3-methylphenol	SW8270C	mg/kg mg/kg	0.5000
4-Nitrophenol	SW6270C	mg/kg	0.1000
Penlachiorophenol	SW8270C	mg/kg	0.4000
Phenol 1 Melhylpophindens	SW8270C	mg/kg	0.2000
1-Methylnaphthetene 2-Methylnaphthatene	SW8260B SW8260B	mg/kg mg/kg	0.2000
Acenaphthene	SW8270C	mg/kg	0.2000
Acensphihylene	SW8270C	mg/kg	0.2000
Anthresena	8W8270C	mu/kg	0.2000
Benzo(e)antitracens	SW8270C SW8270C	mg/kg	0.2000 0.2000
Benzo(a)pyrene Benzo(b)fluorenthene	SW6270C	mg/kg mg/kg	0.2000
Benzo(p,h,l)perylene	SW8270C	mg/kg	0.2000
Benzo(k)fluoranthene	59V8270C	rng/kg	0.2000
Chrysene	SW8270C	rng/kg	0.2000
Dibenz(e,h)enthracene Fluorarithene	SW8270C SW8270C	mg/kg mg/kg	0.2000
Fluorene	SW8270C	rag/kg	0.2000
Indeno(1,2,3-c,d)pyrena	6W8270C	mg/kg	0.2000
Naphthalene	SW8270C	mu/kg	0.2000
Phenanthrene	\$W8270C	mg/kg	0.2000
Pyrene Cyanide	SW8270C EPA 335.4	mg/kg mg/kg	0.2000
Diesel Range Organics (DRO)	SW8015	mg/kg	12
Gasolina Range Organics (GRO)	SW8015	mg/kg	1.0

VADOSE ZONE ANALYTES AND REPORTING LIMITS, CENTRAL OIL CONSERVATION DIVISION LANDFARM WESTERN REFINING SOUTHWEST, GALLUP REFINERY, GALLUP, NEW MEXICO

Analyte	Analytical Method	Reporting Units	Requested Reporting Limit
Chloride	E300	mg/kg	30
Benzene	SW8260B	mg/kg	0.050
Ethylbenzene	SW8260B	mg/kg	0.050
Toluene	SW8260B	mg/kg	0.050
Xylenes, Total	SW8260B	mg/kg	0.100
Petroleum Hydrocarbons, TR	E418.1	mg/kg	20

Appendix C

Client: Marathon Oil	Laboratory: Hall Environmental Analysis Laboratory
Project Name: DiSorbo Sampling, Western Refining Southwest	Sample Matrix: Soil
Project Number: 697-064-001 Task: 0002	Sample Start Date: 06/27/2019
Date Validated: 12/19/2019	Sample End Date: 06/27/2019

Parameters Included:

- Volatile Organic Compounds (VOC) by Test Methods for Evaluating Solid Waste (SW-846) Method 8260B
- Semivolatile Organic Compounds (SVOC) by SW-846 Method 8270C
- Total Petroleum Hydrocarbons (TPH) Gasoline Range Organics (GRO), TPH Diesel Range Organics (DRO), and TPH Motor Oil Range Organics (MRO) by SW-846 Method 8015D
- Polychlorinated Biphenyls (PCB) by SW-846 Method 8082
- Cyanide by SW-846 Method 9012
- Metals by SW-846 Method 6010B
- Mercury by SW-846 Method 7471
- Anions by Methods for Chemical Analysis of Water and Wastes (MCAWW) Method 300.0
- Total Recoverable Petroleum Hydrocarbons (TRPH) by Environmental Protection Agency (EPA) Method 418.1
- Radium 226 and Radium 228 by EPA Method 901.1

Laboratory Project ID: 1906G37

Data Validator: Daran O'Hollearn, Lead Project Scientist

Reviewer: Mike Phillips, Senior Chemist

DATA EVALUATION CRITERIA SUMMARY

A Tier II Data Validation was performed by Trihydro Corporation's Chemical Data Evaluation Services Group on the analytical data report package generated by Hall Environmental Analysis Laboratory of Albuquerque, New Mexico with additional data from Pace Analytical, evaluating samples from the Marathon Oil site, located in Gallup, New Mexico.

Precision, accuracy, method compliance, and completeness of these data package were assessed during this data review. Precision was determined by evaluating the calculated relative percent difference (RPD) values from:

- Field duplicate pairs
- Laboratory duplicate pairs
- Matrix spike (MS) and matrix spike duplicate (MSD) pairs

Laboratory accuracy was established by reviewing the demonstrated percent recoveries (%R) of the following items to verify that data are not biased.

- MS/MSD samples
- Laboratory control samples (LCS)
- Organic system monitoring compounds (surrogates)

Field accuracy was established by collecting and analyzing the following samples to monitor for possible ambient or cross contamination during sampling and transportation.

- Trip blanks
- Field blanks
- Equipment blanks

Method compliance was established by reviewing sample integrity, holding times, detection limits, surrogate recoveries, laboratory blanks, initial and continuing calibrations (where applicable), and the LCS percent recoveries against method-specific requirements.

Completeness was evaluated by determining the overall ratio of the number of samples and analyses planned versus the number of samples with valid analyses. Determination of completeness included a review of the chain-of-custody (CoC), laboratory analytical methods, and other laboratory and field documents associated with these analytical data sets.

SAMPLE NUMBERS TABLE

Client Sample ID	Laboratory Sample Number
CENTRAL OCD LF TZ01	1906g37-001
CENTRAL OCD LF VZ01	1906g37-002
CENTRAL OCD LF TZ02	1906g37-003
CENTRAL OCD LF VZ02	1906g37-004
Trip Blank	1906g37-005
CENTRAL OCD LF TZ03	1906g37-006
CENTRAL OCD LF VZ03	1906g37-007
CENTRAL OCD LF TZ04	1906g37-008
CENTRAL OCD LF VZ04	1906g37-009
CENTRAL OCD LF DUP01	1906g37-010
CENTRAL OCD LF FB01	1906g37-011
CENTRAL OCD LF EB01	1906g37-012

The laboratory data were reviewed to evaluate compliance with the methods and the quality of the reported data. Assessment of CoC completeness is included in Item 3 of the Data Validation Checklist. A check mark (\checkmark) indicates that the referenced validation criteria were deemed acceptable, whereas a crossed circle (\otimes) indicates validation criteria for which the data have been qualified by the data validator. An empty circle (\odot) indicates that the specified criterion does not apply to the reviewed data. Details are noted in the tables below.

Validation Criteria

- ✓ Data Completeness
- ✓ CoC Documentation (Item 3)
- Holding Times and Preservation (Items 6 and 7)
- O Initial and Continuing Calibrations (Items 9 and 10)
- ✓ Laboratory Blanks (Items 11 and 12)
- ⊗ MS/MSD (Items 13 and 14)
- ✓ LCS (Items 15 and 16)
- ✓ System Monitoring Compounds (i.e., Surrogates) (Item 17)
- ✓ Field, Equipment, and Trip Blanks (Items 18 and 19)
- ⊗ Field Duplicates (Items 20 and 21)
- ✓ Laboratory Duplicates (Item 22)
- ✓ Data Relationships (Item 23)

Guidance References

Chemical data validation was conducted in accordance with the United States Environmental Protection Agency (USEPA) Contract Laboratory Program (CLP) National Functional Guidelines for the analyses listed below, or by the appropriate method if not covered in the National Functional Guidelines.

- Data for organic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Organic Superfund Methods Data Review, document number EPA-540-R-2017-002, January 2017 with additional reference to the USEPA CLP National Functional Guidelines for Organic Data Review, document number EPA 540/R-99/008. October 1999
- Data for inorganic analyses were evaluated according to validation criteria set forth in the USEPA CLP National Functional Guidelines for Inorganic Superfund Methods Data Review, document number EPA-540-R-2017-001, January 2017 with additional reference to the USEPA CLP National Functional Guidelines for Inorganic Data Review, document number EPA 540-R-04-004, October 2004.
- Review of field duplicates was conducted according to the USEPA Region 1 New England Environmental Data Review Supplement for Region 1 Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement1, June 2018.
- Trihydro Data Validation Variance Documentation, February 2019.
- Project-specific Quality Assurance Project Plans (QAPP) data validation requirements, as applicable.

202001_TierII_1906G37_DV.docx 3 of 14

OVERALL DATA PACKAGE ASSESSMENT

Based on a data validation review, the data are acceptable as delivered. Data qualified by the laboratory are discussed in Item 2 of the Validation Criteria Checklist.

The purpose of validating data and assigning qualifiers is to assist in proper data interpretation. Data that are not qualified meet the site data quality objectives. If values are assigned qualifiers other than an R (rejected, data not usable), the data may be used for site evaluation; however, consideration should be given to the reasons for qualification when interpreting sample concentrations. Data points that are assigned an R qualifier should not be used for site evaluation purposes.

If applicable, text was identified in **bold font** in the Validation Criteria Checklist to indicate that further action and/or qualification of the data were required. Data may have been qualified with J data flags by the laboratory if the result was greater than or equal to the method detection limit (MDL) but less than the reporting limit (RL). These laboratory-applied J flags were preserved, if present, and included in the Data Qualification Summary table at the end of this report. If applicable, data validation qualifiers were added for the items noted with crossed circles in the Validation Criteria section above. Please see the Data Qualification Summary table at the end of this report for a complete list of samples and analytes qualified.

If data would be qualified with more than one flag, one qualifier was assigned based on the severity; however, all reasons for qualification were retained. Data that would be qualified with both J+ and J- flags were evaluated based on validation criteria and assigned the appropriate flag. The hierarchy of qualifiers from the most to least severe is as follows:

■ R > JB/U > NJ > J+/J- > J/UJ

Data qualifiers used during this validation are included in the following table.

Qualifier	<u>Definition</u>
J	Estimated concentration
J-	The result is an estimated concentration, but may be biased low
UJ	Estimated reporting limit

Data Completeness

The analyses were performed as requested on the CoC records. The associated samples were received by the laboratory and analyzed properly unless otherwise noted in the Criteria Checklist below. The complete data package consisted of 1,494 data points. No data points were rejected. The data completeness measure for this data package is calculated to be 100% and is acceptable.

1. Was the report free of non-conformances identified by the laboratory?

Yes

Comments: The laboratory did not identify non-conformances regarding the analytical data.

Were the data free of data qualification flags and/or notes used by the laboratory? If no, define. No

Comments: The laboratory applied the following data qualification flags to data in this report.

- J Analyte detected below quantitation limits.
- D Sample diluted due to matrix.
- P1 RPD value not applicable for sample concentrations less than 5 times the reporting limits.
- R %RPD outside of range.

Ra – The reported Ra-226 results were determined by hermetically sealing the dried, processed sample in an appropriate sized can. Each sample was stored for a minimum of 21 days to ensure the equilibrium between Ra-226 and daughters Bi-214 and Pb-214 was achieved. Reported Ra-226 results were inferred from gamma peaks attributable to Bi-224 and Pb-214.

- S % Recovery outside of range due to dilution or matrix.
- 3. Were sample CoC forms and custody procedures complete?

Yes

Comments: The CoC records from field to laboratory were complete and custody was maintained as evidenced by field and laboratory personnel signatures, dates, and times of receipt. The laboratory also noted that the shipping containers were sealed and custody seals were present.

4. Were detection limits in accordance with the quality assurance project plan (QAPP), permit, or method, or indicated as acceptable?

Yes

Comments: The reporting limits for the data set were reviewed and appeared to be acceptable. The following dilutions were applied to the project samples.

<u>Method</u>	Sample(s)	<u>Analyte(s)</u>	<u>Dilution Factor</u>
6010B	Submitted Samples	Select Metals	2
300.0	Submitted Samples	Fluoride and Nitrate	5
300.0	Multiple Samples	Chloride	5
300.0	CENTRAL OCD LF TZ02, CENTRAL OCD LF VZ04	Sulfate	5
300.0	CENTRAL OCD LF TZ03, CENTRAL OCD LF TZ04, CENTRAL OCD LF VZ04	Chloride	20
300.0	Multiple Samples	Sulfate	20
6010B	Submitted Samples	Iron	100

5. Were the reported analytical methods and constituents in compliance with the QAPP, permit, or CoC?

Yes

Comments: The reported analytical methods were in compliance with the CoC and the laboratory reported the requested constituents in accordance with the CoC.

6. Were samples received in good condition within method-specified requirements?

Yes

Comments: Samples were received on ice, with the cooler temperatures within the recommended temperature range of $4^{\circ}\text{C} \pm 2^{\circ}\text{C}$ at 4.6°C , 4.9°C , and 5.1°C as noted in the Sample Log-in Check List.

202001_Tierll_1906G37_DV.docx 5 of 14

7. Were samples extracted/digested and analyzed within method-specified or technical holding times?

No

Comments: The samples were extracted/digested and analyzed within method-specific holding times, with the following exception.

<u>Method 300.0:</u> Nitrate as Nitrogen was analyzed outside the holding time of 7 days for the submitted samples by approximately 6 to 7 days. The nitrate as N results in the submitted samples were detections and were qualified as J- to indicate estimated concentrations with a potential low bias.

<u>Method 9012:</u> Cyanide was analyzed outside the holding time of 14 days for the submitted samples by approximately 1 day. Detected results in the submitted samples were qualified as J- to indicate estimated concentrations. Non-detected results were qualified as UJ to indicate estimated detection limits.

8. Were reported units appropriate for the sample matrix/matrices and analytical method(s)? Specify if wet or dry units were used for soil.

Yes

Comments: The results were reported in concentration units of micrograms per liter (μ g/L), milligrams per kilogram (μ g/kg), and picoCuries per gram (μ gCi/g), which were acceptable for the sample matrices and the analyses requested. Radium 226 and radium 228 soil results were reported on a dry weight basis for this sample set, and the remaining soil parameters were reported on a wet weight basis.

9. Did the laboratory provide any specific initial and/or continuing calibration results?

No

Comments: Initial and continuing calibration data were not included as part of this data set.

10. If initial and/or continuing calibration results were provided, were the results within acceptable limits?

N/A

Comments: Initial and continuing calibration data were not included as part of this data set.

11. Was the total number of laboratory blank samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of laboratory blank samples prepared was equal to at least 5% of the total number of samples.

12. Were target analytes reported as not detected in the laboratory blanks?

No

Comments: Target analytes were reported as not detected in the laboratory blanks, with the following exceptions.

Radium-226 was detected in the laboratory blank for Method 901.1 batch 352550 at a concentration of 0.046 pCi/g. The associated sample results were concentrations greater than 10 times the blank detection; therefore, qualification was not required.

The analyte 2-butanone was detected in the laboratory blank for Method 8260B batch 45983 at a concentration of 0.068 mg/kg. The associated sample results for 2-butanone were non-detections and qualification was not required.

Copper, iron, and zinc were detected in the laboratory blank for Method 6010B batch 45944 at concentrations of 0.22 mg/kg, 0.96 mg/kg, and 0.42 mg/kg . The associated sample results were concentrations greater than 10 times the blank detection; therefore, qualification was not required.

6 of 14 202001_TierII_1906G37_DV.docx

13. Was the total number of MS samples prepared equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of matrix spike samples prepared was equal to at least 5% of the total number of samples, although MS samples were not prepared for all analyses. The matrix spike sample source for each analytical batch in this sample set has been indicated below.

<u>Method</u>	<u>Analytes</u>	Analysis Batch	MS Sample Source
300.0	Anions	46094	CENTRAL OCD LF VZ01
300.0	Anions	46126	Not Prepared
418.1	TRPH	45999	CENTRAL OCD LF VZ01
901.1	Radium-226 and Radium-228	352550	Not Prepared
6010B	Metals	45944	CENTRAL OCD LF VZ01
7471	Mercury	46081	CENTRAL OCD LF VZ01
8015D	DRO and MRO	45994	CENTRAL OCD LF VZ01
8015D	GRO	45983	CENTRAL OCD LF VZ01
8082	PCB 1016 and PCB 1260	45963	CENTRAL OCD LF VZ01
8260B	VOCs	45983	CENTRAL OCD LF VZ01
8260B	VOCs	SL61220	Not Prepared
8270C	SVOCs	45929	Not Prepared
9012B	Cyanide	WG1308753	CENTRAL OCD LF VZ01 and Not Associated

Not Prepared – Matrix spikes were not prepared or reported for this batch.

Not Associated - The MS sample source was not associated with this project.

A post-digestion spike (PDS) was prepared for Method 6010B batch 45944 from sample CENTRAL OCD LF VZ01 for the analyses of metals. The PDS recovery result for uranium was 59.2% which was below the laboratory QC acceptance limits of 80-120% and the data validation QC limits of 75-125%.

14. For MS/MSDs prepared from project samples, were percent recoveries and RPDs within data validation or laboratory QC limits?

No

Comments: The percent recoveries and RPDs for MS/MSDs prepared from project samples were within data validation and laboratory QC limits or were not applicable because the unspiked amount was more than four times the spike added, with the following exceptions.

Method	<u>Analyte</u>	<u>Batch</u>	MS Recovery	MSD Recovery	MS/MSD QC Limits
300.0	Fluoride	46094	Acceptable	1.33%	15-138%
300.0	Nitrate	46094	49.8%	47.1%	54.8-141%
6010B	Silver	45944	71.4%	70.6%	75-125%
6010B	Uranium	45944	33.8%	31.9%	75-125%

The MSD recovery for fluoride in Method 300.0 batch 46094 was outside the QC limits of 15-138% at 1.33%. Fluoride results were detections in the associated samples and were qualified as J- due to evidence of potential low bias. The MS and MSD recoveries for nitrate in Method 300.0 batch 46094 were outside the QC limits of 54.8-141% at 49.8% and 47.1%, respectively. Nitrate was detected in the associated samples and the results were qualified as J- due to evidence of potential low bias.

The MS and MSD recoveries for silver and uranium in Method 6010B batch 45944 were less than the lower laboratory QC limit. The silver and uranium results for the associated samples in batch 45944 were non-detections and were qualified as UJ due to evidence of potential low bias.

202001_Tierll_1906G37_DV.docx 7 of 14

The percent recoveries and RPD values for MS/MSDs prepared from non-project samples were evaluated and considered but data were not qualified based on those results since matrix similarity to project samples could not be guaranteed.

15. Was the total number of LCSs analyzed equal to at least 5% of the total number of samples or analyzed as required by the method?

Yes

Comments: The total number of LCS samples analyzed was equal to at least 5% of the total number of samples.

16. Were LCS/LCSD percent recoveries and LCS/LCSD RPDs within data validation or laboratory QC limits?

Yes

The LCS percent recoveries were within laboratory QC limits. LCSDs were not analyzed as part of this sample set.

17. Were surrogate recoveries within laboratory QC limits?

Nο

Comments: The surrogate recoveries were within laboratory QC limits with the following exceptions.

As explained in external communications with laboratory personnel, the SVOC results for samples CENTRAL OCD LF VZ01, CENTRAL OCD LF TZ03, and CENTRAL OCD LF TZ04 were not qualified based on the surrogate non-conformances in the Method 8270C analyses since the applied dilutions of 10, 10, and 10 times, respectively, resulted in surrogate concentrations below routinely calibrated levels and those results were deemed unreliable and possibly inaccurate.

18. Were the number of trip blank, field blank, and/or equipment blank samples collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit?

Yes

Comments: The number of trip, field, and equipment blanks collected was equal to at least 10% of the total number of samples. One trip blank sample, Trip Blank, one field blank sample, CENTRAL OCD LF FB01, and one equipment blank sample, CENTRAL OCD LF EB01, were collected as part of this sample set.

19. Were target analytes reported as not detected in the trip blank, field blank, and/or equipment blank samples?

Yes

Comments: Target analytes were reported as not detected in the trip blank sample, field blank sample, and equipment blank sample.

20. Was the number of field duplicates collected equal to at least 10% of the total number of samples or as required by the project guidelines, QAPP, SAP, or permit? Yes

Comments: The number of field duplicates collected was equal to at least 10% of the number of samples. Sample CENTRAL OCD LF DUP01 was collected as a field duplicate of sample CENTRAL OCD LF TZ01.

21. Were field duplicate RPD values within data validation QC limits (soil 0-50%, water 0-30%, or air 0-25%)?

No

Comment: As indicated in the Field Duplicate Summary Table at the end of this report, field duplicate RPD values were within data validation QC limits of 0-50% for soil samples, with the following exceptions.

The RPD value for copper exceeded the data validation limit of 50% at 100.0%, which was evidence of poor precision. The copper results were qualified as J for samples CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP

An RPD value could not be calculated for TPH DRO for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, TPH DRO was qualified as J and UJ for the duplicate and parent samples, respectively.

An RPD value could not be calculated for total cyanide for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, total cyanide was qualified as J and UJ for the duplicate and parent samples, respectively.

8 of 14 202001_TierII_1906G37_DV.docx

VALIDATION CRITERIA CHECKLIST

22. For laboratory duplicates prepared from project samples, were RPDs within laboratory QC limits?

Yes

Comments: Laboratory duplicates were prepared for the analysis of cyanide in batch WG1308753 from sample CENTRAL OCD LF VZ04 and from a sample not related to this project. The RPD for the laboratory duplicate pair prepared from the project sample was not applicable since the cyanide concentrations in both the original sample and the laboratory duplicate were less than 5 times the reporting limit.

The RPD value for the laboratory duplicate pair prepared from the non-project sample was evaluated and considered, but data were not qualified based on that result since matrix similarity to project samples could not be guaranteed.

23. Were the following data relationships realistic and acceptable?

• Target analytes were reported by more than one method (e.g., 8260/8270, EPH/8270) and the results were in agreement?

Yes

Comments: Target analytes were not reported by more than one method in this data set, with the following exceptions.

Target analytes 1,2,4-trichlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, hexachlorobutadiene, and naphthalene were reported by both Method 8260B and Method 8270C. These analytes were reported as not detected by both methods.

• Both total and dissolved metals analyses were performed and the total metals results were greater than or equal to the dissolved metals results?

N/A

Comments: Dissolved metals analyses were not performed for the samples in this data set.

202001_TierII_1906G37_DV.docx 9 of 14

FIELD DUPLICATE SUMMARY

Client Sample ID: CENTRAL OCD LF TZ01									
	Field Duplicate Sample ID: CENTRAL OCD LF DUP 01 Relative Percent								
Analyte	nalyte Method Laboratory Result Duplicate Result								
Chloride	E300	160 mg/kg	140 mg/kg	13.3%					
Fluoride, Total	E300	5.4 mg/kg	7.3 mg/kg	29.9%					
Nitrogen, Nitrate	E300	4.9 mg/kg	4.5 mg/kg	8.5%					
Sulfate	E300	920 mg/kg	990 mg/kg	7.3%					
Radium 226 Total	E901.1	1.372 pCi/g	1.354 pCi/g	1.3%					
Radium 228 Total	E901.1	1.359 pCi/g	1.480 pCi/g	8.5%					
Barium, Total	SW6010B	300 mg/kg	350 mg/kg	15.4%					
Chromium, Total	SW6010B	14 mg/kg	13 mg/kg	7.4%					
Copper, Total	SW6010B	12 mg/kg	4 mg/kg	100.0%					
Iron, Total	SW6010B	18,000 mg/kg	17,000 mg/kg	5.7%					
Lead, Total	SW6010B	3.4 mg/kg	2.9 mg/kg	15.9%					
Manganese, Total	SW6010B	380 mg/kg	450 mg/kg	16.9%					
Zinc, Total	SW6010B	33 mg/kg	24 mg/kg	31.6%					
Mercury, Total	SW7471	0.043 mg/kg	ND (0.032 mg/kg)	DL					
TPH DRO	SW8015	ND (8.5 mg/kg)	24 mg/kg	DL					
Cyanide, Total	SW9012	ND (0.25 mg/kg)	0.89 mg/kg	DL					

Field duplicate RPD control limits are not to exceed 50% for soil as established by USEPA New England Environmental Data Review Supplement for Regional Data Review Elements and Superfund Specific Guidance/Procedures, EQADR-Supplement0, April 2013.

DL – Indicates that the analyte was detected in one of the duplicate samples and was undetected in the other sample, and therefore an RPD could not be calculated. Data were not qualified since the detection was within two times the reporting limit. Non-detected results are indicated above with the applicable reporting limit as ND (RL).

Method 6010B: The RPD value for copper exceeded the data validation limit of 50% at 100.0%, which was evidence of poor precision. The copper results were qualified as J for samples CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01.

Method 8015: An RPD value could not be calculated for TPH DRO for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, TPH DRO was qualified as J and UJ for the duplicate and parent samples, respectively.

Method 9012: An RPD value could not be calculated for total cyanide for the field duplicate pair CENTRAL OCD LF TZ01 and CENTRAL OCD LF DUP 01 since the analyte was detected in the duplicate sample and was undetected in the parent sample. As the detection in the duplicate sample was greater than two times the reporting limit, total cyanide was qualified as J and UJ for the duplicate and parent samples, respectively.

DATA QUALIFICATION SUMMARY

Abbreviation	Reason
HT-AN	Sample was analyzed outside of the method holding time.
LR-MS	The MS and/or MSD percent recovery was less than the lower acceptable limit indicating possible matrix interference.
ERPD-FD	High field duplicate RPD.
MDLRL	Flagged by the laboratory: The result was greater than the MDL but less than the RL.

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
2-Butanone	SW8260B	CENTRAL OCD LF TZ01	1906g37-001a	0.069	0.50	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF VZ01	1906g37-002a	0.073	0.48	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF TZ02	1906g37-003a	0.084	0.49	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF VZ02	1906g37-004a	0.078	0.48	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF TZ03	1906g37-006a	0.10	0.50	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF TZ04	1906g37-008a	0.081	0.50	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF VZ04	1906g37-009a	0.096	0.49	mg/kg	J	MDLRL
2-Butanone	SW8260B	CENTRAL OCD LF DUP01	1906g37-010a	0.10	0.48	mg/kg	J	MDLRL
Arsenic, Total	SW6010B	CENTRAL OCD LF VZ01	1906G37-002B	2.9	5	mg/kg	J	MDLRL
Arsenic, Total	SW6010B	CENTRAL OCD LF TZ02	1906G37-003B	3.4	5	mg/kg	J	MDLRL
Benzo(a)anthracene	SW8270C	CENTRAL OCD LF TZ04	1906g37-008a	1.1	2	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF TZ02	1906g37-003a	0.096	0.46	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF VZ02	1906g37-004a	0.11	0.52	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF TZ04	1906g37-008a	1.1	5.1	mg/kg	J	MDLRL
Benzoic Acid	SW8270C	CENTRAL OCD LF VZ04	1906g37-009a	0.24	1.2	mg/kg	J	MDLRL

202001_TierII_1906G37_DV.docx 11 of 14

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Benzoic Acid	SW8270C	CENTRAL OCD LF DUP01	1906g37-010a	0.12	0.59	mg/kg	J	MDLRL
Bis(2-ethylhexyl)phthalate	SW8270C	CENTRAL OCD LF TZ02	1906g37-003a	0.14	0.46	mg/kg	J	MDLRL
Bis(2-ethylhexyl)phthalate	SW8270C	CENTRAL OCD LF VZ02	1906g37-004a	0.28	0.52	mg/kg	J	MDLRL
Copper, Total	SW6010B	CENTRAL OCD LF TZ01	1906G37-001B	12	0.60	mg/kg	J	ERPD-FD
Copper, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	4	0.59	mg/kg	J	ERPD-FD
Cyanide, Total	SW9012	CENTRAL OCD LF VZ04	1906G37-009C	0.27	0.25	mg/kg	J-	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF VZ01	1906G37-002C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ02	1906G37-003C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF VZ02	1906G37-004C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ03	1906G37-006C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF VZ03	1906G37-007C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ04	1906G37-008C	ND	0.25	mg/kg	UJ	HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF DUP01	1906G37-010C	0.89	0.25	mg/kg	J-	ERPD-FD, HT-AN
Cyanide, Total	SW9012	CENTRAL OCD LF TZ01	1906G37-001C	ND	0.25	mg/kg	UJ	ERPD-FD, HT-AN
Di-n-butylphthalate	SW8270C	CENTRAL OCD LF VZ02	1906g37-004a	0.23	0.42	mg/kg	J	MDLRL
Fluoride, Total	E300	CENTRAL OCD LF TZ01	1906G37-001A	5.4	1.5	mg/kg	J-	LR-MS
Fluoride, Total	E300	CENTRAL OCD LF VZ01	1906G37-002A	3.7	1.5	mg/kg	J-	LR-MS
Fluoride, Total	E300	CENTRAL OCD LF TZ02	1906G37-003A	10	1.5	mg/kg	J-	LR-MS
Fluoride, Total	E300	CENTRAL OCD LF VZ02	1906G37-004A	3.1	1.5	mg/kg	J-	LR-MS
Mercury, Total	SW7471	CENTRAL OCD LF VZ01	1906G37-002B	0.018	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	CENTRAL OCD LF VZ02	1906G37-004B	0.0051	0.031	mg/kg	J	MDLRL

202001_TierII_1906G37_DV.docx 12 of 14

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Mercury, Total	SW7471	CENTRAL OCD LF VZ03	1906G37-007B	0.0053	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	CENTRAL OCD LF VZ04	1906G37-009B	0.0043	0.032	mg/kg	J	MDLRL
Mercury, Total	SW7471	CENTRAL OCD LF DUP01	1906G37-010B	0.0068	0.032	mg/kg	J	MDLRL
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ03	1906G37-006A	13	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ03	1906G37-007A	6.7	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ04	1906G37-008A	4	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ04	1906G37-009A	3.1	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF DUP01	1906G37-010A	4.5	1.5	mg/kg	J-	HT-AN
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ01	1906G37-001A	4.9	1.5	mg/kg	J-	HT-AN, LR-MS
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ01	1906G37-002A	2.4	1.5	mg/kg	J-	HT-AN, LR-MS
Nitrogen, Nitrate	E300	CENTRAL OCD LF TZ02	1906G37-003A	4.2	1.5	mg/kg	J-	HT-AN, LR-MS
Nitrogen, Nitrate	E300	CENTRAL OCD LF VZ02	1906G37-004A	2	1.5	mg/kg	J-	HT-AN, LR-MS
Selenium, Total	SW6010B	CENTRAL OCD LF VZ02	1906G37-004B	3	5.1	mg/kg	J	MDLRL
Selenium, Total	SW6010B	CENTRAL OCD LF VZ04	1906G37-009B	3.5	4.9	mg/kg	J	MDLRL
Selenium, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	3.3	4.9	mg/kg	J	MDLRL
Silver, Total	SW6010B	CENTRAL OCD LF TZ01	1906G37-001B	ND	0.50	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ01	1906G37-002B	ND	0.50	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF TZ02	1906G37-003B	ND	0.50	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ02	1906G37-004B	ND	0.51	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF TZ03	1906G37-006B	ND	0.51	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ03	1906G37-007B	ND	0.5	mg/kg	UJ	LR-MS

202001_TierII_1906G37_DV.docx 13 of 14

Analyte	Method	Field Sample ID	Lab Sample ID	Result	Limit	Units	Reviewer Qualifier	DV Flag Reasons
Silver, Total	SW6010B	CENTRAL OCD LF TZ04	1906G37-008B	ND	0.5	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF VZ04	1906G37-009B	ND	0.49	mg/kg	UJ	LR-MS
Silver, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	ND	0.49	mg/kg	UJ	LR-MS
Total Petroleum Hydrocarbons	E418.1	CENTRAL OCD LF DUP01	1906G37-010A	5.6	20	mg/kg	J	MDLRL
TPH DRO	SW8015	CENTRAL OCD LF DUP01	1906G37-010A	24	9.9	mg/kg	J	ERPD-FD
TPH DRO	SW8015	CENTRAL OCD LF TZ01	1906G37-001A	ND	8.5	mg/kg	UJ	ERPD-FD
Uranium, Total	SW6010B	CENTRAL OCD LF TZ01	1906G37-001B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ01	1906G37-002B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF TZ02	1906G37-003B	ND	9.9	mg/kg	ΟJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ02	1906G37-004B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF TZ03	1906G37-006B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ03	1906G37-007B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF TZ04	1906G37-008B	ND	10	mg/kg	UJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF VZ04	1906G37-009B	ND	9.8	mg/kg	ΟJ	LR-MS
Uranium, Total	SW6010B	CENTRAL OCD LF DUP01	1906G37-010B	ND	9.8	mg/kg	ΟJ	LR-MS

202001_TierII_1906G37_DV.docx 14 of 14

Michelle Lujan Grisham Governor

Howie C. Morales
Lt. Governor

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505-6313
Phone (505) 476-6000 Fax (505) 476-6030
www.env.nm.gov

James C. Kenney
Cabinet Secretary

Jennifer J. Pruett
Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

May 16, 2019

John Moore Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: APPROVAL

RESPONSE TO COMMENTS NMED APPROVAL WITH MODIFICATIONS LETTER DATED MARCH 17, 2017 [CHLORIDE EXCEEDANCE

EXCAVATION REPORT]

WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY

EPA ID # NMD000333211

HWB-WRG-17-003

Dear Mr. Moore:

The New Mexico Environment Department (NMED) has reviewed the *Response to Comments NMED Approval with Modifications Letter dated March 17, 2017[Chloride Exceedance Excavation Report]* (Response), dated April 11, 2019, submitted on behalf of Marathon Petroleum Company dba Western Refining Southwest Inc., Gallup Refinery (the Permittee). NMED hereby issues this Approval. The Permittee must address the following comments provided by both NMED and the New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division (OCD).

Comment 1

NMED's Approval with Modifications Comment 1 states, "[t]he OCD regulates the Central OCD Landfarm under 19.15.36 NMAC (also known as Part 36) and required the Permittee to address chloride exceedances discovered in the landfarm." With the exception of sample identified as CentralOCD-03-6/16/2016, the chloride concentrations did not exceed the screening level of 500 mg/kg in the rest of samples collected from the landfarm. Although the chloride

Mr. Moore May 16, 2019 Page 2

concentrations in the excavation confirmation samples collected from depths of approximately six feet below ground surface exceed the screening level in multiple locations, these soil samples were likely collected within the footprint of former Evaporation Pond (EP)-10 or native soils below the pond, rather than shallow soils within the OCD Landfarm. Therefore, the landfarm is likely not the source of chloride in groundwater. Since the landfarm is not closed, current and future use of the landfarm must be clarified in a response letter to OCD.

Comment 2

The response to NMED's Approval with Modifications Comment 2 states, "[w]hile Marathon Petroleum Company (MPC) is unaware of any design drawings for Pond 10, the surface expression of the pond currently appears to be approximately 325 feet by 200 feet." Since the OCD Landfarm overlies former pond EP-10 and pond EP-10 may be the source of the chloride contamination in groundwater, the depth of pond EP-10 must be identified and the soils below the landfarm must be investigated. Submit a work plan to install soil borings to collect soil samples of the underlying native soils, pond sediments, and the upper zone waste treated within the landfarm. If the interface between the native soils, pond sediments, and landfarm waste can be distinguished, collect the samples within six inches of each interface.

This approval is based on the information presented in the document as it relates to the objectives of the work identified by NMED at the time of review. Approval of this document does not constitute agreement with all information or every statement presented in the document.

If you have questions regarding this letter, please contact Michiya Suzuki of my staff at 505-476-6059.

Sincerely,

John E. Kieling

Chief

Hazardous Waste Bureau

ce: K. Van Horn, NMED HWB

D. Cobrain, NMED HWB

M. Suzuki, NMED HWB

C. Chavez, OCD

L. King, EPA Region 6 (6LCRRC)

B. Moore, WRG

File: Reading File and WRG 2019 File

HWB-WRG-17-003

Chavez, Carl J, EMNRD

From: Martinez, Cynthia, NMENV
Sent: Monday, April 8, 2019 10:47 AM

To: John.Moore@andeavor.com

Cc: Kieling, John, NMENV; Cobrain, Dave, NMENV; VanHorn, Kristen, NMENV; Suzuki,

Michiya, NMENV; Chavez, Carl J, EMNRD; 'king.laurie@epa.gov';

Brian.Moore@andeavor.com

Subject: Letter to Mr. Moore

Attachments: Western Refining- HWB-WRG-18-016.pdf

Good Morning,

Please open attachment.

Cynthia Martinez New Mexico Environment Department Hazardous Waste Bureau 2905 Rodeo Park Drive East, Bldg.1 Santa Fe, New Mexico 87505 Phone 505-476-6000

Howie C. Morales

NEW MEXICO ENVIRONMENT DEPARTMENT

Hazardous Waste Bureau

2905 Rodeo Park Drive East, Building 1
Santa Fe, New Mexico 87505-6313
Phone (505) 476-6000 Fax (505) 476-6030
www.env.nm.gov

James C. Kenney
Cabinet Secretary

Jennifer J. Pruett
Deputy Secretary

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

April 5, 2019

John Moore Environmental Superintendent Western Refining, Southwest Inc., Gallup Refinery 92 Giant Crossing Road Gallup, New Mexico 87301

RE: DISAPPROVAL

INVESTIGATION WORK PLAN SWMU NO. 9 – DRAINAGE DITCH AND INACTIVE LANDFARM WESTERN REFINING SOUTHWEST INC., GALLUP REFINERY EPA ID # NMD000333211

HWB-WRG-18-016

Dear Mr. Moore:

The New Mexico Environment Department (NMED) has reviewed the *Investigation Work Plan SWMU No. 9 – Drainage Ditch and Inactive Landfarm* (Work Plan), dated December 2018, submitted on behalf of Marathon Petroleum Company dba Western Refining Southwest Inc., Gallup Refinery (the Permittee). NMED hereby issues this Disapproval. The Permittee must address the following comments.

Comment 1

In Section 2, *Background*, page 2-2, the Permittee states, "[o]nly chromium was detected at a concentration above the residential soil screening level. This occurred in one soil sample collected at boring RFI 0907 in the surface interval collected from 0 – 0.5 feet with a concentration of 102 mg/kg vs. the screening level of 96.6 mg/kg." Discuss historic use of chromium at the site in the revised Work Plan.

Comment 2

In Section 2, *Background*, page 2-3, the Permittee states, "[i]n the 2001 No Further Action Request, the drainage ditch was described as being on the west side of the Inactive Landfarm; however, further review of the survey plat and other early RFI documents and field reconnaissance confirms the drainage ditch is actually on the east side of the Inactive Landfarm and is a much smaller feature. The ditch is two to three feet wide and up to two feet deep, running north to south along the east side of the Inactive Landfarm (Figures 2 and 5)." According to Figure 5, *Proposed Sample Locations*, the ditch is depicted along the east side of the Inactive Landfarm; however, the figure titled as *Inactive Land Treatment and Associated Drainage Ditch*, included in Appendix B, *Historical Documentation*, indicates that the ditch is located along the west side of the Inactive Landfarm. Clarify if the north arrow on the figure included in Appendix B is correct and whether previous samples were collected along the correct ditch. In addition, the topographic survey map included in Appendix B shows that the surface elevation is higher at the south side of the Inactive Landfarm; however, the statement describes the ditch runs north to south. Resolve the discrepancy in the revised Work Plan and provide clarification in a response letter.

Comment 3

In Section 2, Background, page 2-4, the Permittee states, "[t]he eastern most soil borings/temporary wells (NDD-4, NDD-5 and NDD-6) are shown on Figure 2. The analytical results for soil samples collected at NDD-4, NDD-5 and NDD-6 are summarized in Table 2 and the groundwater analyses from samples collected at NDD-4, NDD-6, OW-14, OW-54, OW-55, and OW-56 are provided in Tables 3-1 and 3-2. Both the soil and groundwater analyses from these locations along the Drainage Ditch show increasing concentrations of constituents to the west, away from the up-gradient direction of surface water flow along the Drainage Ditch and the location of the Inactive Landfarm." The statement is not clear regarding the reference to the "Drainage Ditch". The ditch next to the Inactive Landfarm does not extend west; however, the North Drainage Ditch does. According to Table 2, NDD-4, NDD-5, and NDD-6 Soil Analytical Results Summary, the organic constituents concentrations in the soil samples collected from borings NDD-5 and NDD-6, located at the west side of the North Drainage Ditch are generally higher compared to those from boring NDD-4, located at the east side of the North Drainage Ditch, closer to the Inactive Landfarm. However, the discussion does not appear to be relevant to the Drainage Ditch (the ditch next to the Inactive Landfarm) and the Inactive Landfarm. Similarly, according to Table 3-1, 2016 Groundwater Analytical Results Summary, the benzene concentrations in the groundwater samples collected from wells OW-14 and OW-55, located on the south and north sides of the Inactive Landfarm, are recorded as 8,100 ug/L and 18,000 ug/L (average of two values), respectively. The benzene concentrations increase to the north along the Drainage Ditch, rather than to the west. However, the benzene concentrations in the groundwater samples collected from wells NDD-4, NDD-6 and OW-56, located west of the Inactive Landfarm along the North Drainage Ditch, downgradient of the Inactive Landfarm, are recorded as < 0.195 ug/L, 5,300 ug/L and 1.5 ug/L (average of two values), respectively. The benzene concentrations do increase to the west of the North Drainage Ditch; however, the discussion does not appear to be relevant to the Drainage Ditch and the Inactive Landfarm. Clarify the statement regarding the reference to the Drainage Ditch and revise the Work Plan, as needed.

Comment 4

In Section 3.1, Surface Conditions, page 3-1, the Permittee states, "[a] topographic map of the area near SWMU 9 is included as Figure 3." Well OW-14 is the only well identified in Figure 3, Topographic Map. Since other wells (e.g., RW-5, OW-55) are also present in the area covered by Figure 3, these wells must also be included on the figure; otherwise, remove well OW-14 from the revised figure. In addition, Figure 3 does not provide detailed elevation data in the vicinity of SWMU 9. Provide another topographic map with larger image of SWMU 9, similar to that included in Appendix B. Provide the revised figures in the revised Work Plan.

Comment 5

In Section 3.1, *Surface Conditions*, page 3-1, the Permittee states, "[t]he area of the site near SWMU 11 is at an approximate elevation of 6,896 feet above mean sea level (msl)." SWMU 11 is not pertinent to the discussion in the Work Plan. Revise the statement to include information pertaining to SWMU 9.

Comment 6

In Section 4.1, Investigation, page 4-1, the Permittee states, "[a]ll soil borings will be drilled to a minimum depth of 6 feet, five feet below the reported depth of tilling. If there is field evidence of impacts at depths greater than 6 feet, then soil borings will be drilled deeper to achieve full vertical delineation." Provide a more specific explanation for what field evidence will prompt advancement of deeper borings in the revised Work Plan (e.g., criteria for the PID readings). Similarly, the Permittee states, "[i]f there are indications of lateral migration of constituents, then additional borings will be completed within approximately 30 feet of the original boring location." Provide a more specific explanation for what indications of lateral migration of constituents will prompt advancement of additional borings in the revised Work Plan (e.g., laboratory analytical and/or field screening results). Additionally, the location of additional borings 30 feet from the original boring location will not likely delineate the contamination associated with the ditch and the Inactive Landfarm since the distribution of the contaminated soils may be limited to the areas where refinery waste was previously placed. Propose to advance additional borings ten feet from the original boring location in the revised Work Plan. Furthermore, clarify whether additional borings will be advanced in all directions (e.g., north, south, east and west) from the original boring location; otherwise, include a provision for the Permittee to consult the NMED to determine the location of additional borings when the advancement of additional borings is warranted.

Comment 7

In Section 4.1.1, Soil Sample Field Screening and Logging, page 4-2, the Permittee states, "[d]iscrete soil samples will be retained for laboratory analysis from within the following intervals: [f]rom the upper 0.5-foot interval of the ground surface..." The proposed sampling method may not capture potential contamination from the upper one-foot interval. The constituents in the soils from the upper 0.5-foot interval may not be representative of the site conditions. Propose to collect soil samples from depths of 0.5 to 1.5 foot to capture the upper one-foot interval of potential contamination in the revised Work Plan.

Comment 8

In Section 4.1.1, Soil Sample Field Screening and Logging, page 4-2, the Permittee states, "[d]iscrete soil samples will be retained for laboratory analysis from within the following intervals: [f]rom the upper 0.5 foot interval of native soils (i.e., below any fill material)." Explain whether a part of SWMU 9 was previously excavated and backfilled with fill material and how the fill material and native soils are distinguished in the revised Work Plan. The Permittee also states that additional intervals will be sampled as determined based on field screening results. Provide a more specific explanation for what field screening results will prompt collection of samples from additional intervals in the revised Work Plan (e.g., criteria for the PID readings).

Comment 9

In Section 4.1.2, *Drilling Activities*, page 4-3, the Permittee states, "[a]fter groundwater samples are collected from the temporary well completion, the well screen will be pulled and all borings will be grouted to the ground surface." If separate-phase hydrocarbon (SPH) is present in any temporary wells after purging, the wells must be converted to permanent groundwater monitoring or recovery wells or the Permittee must contact NMED to discuss the circumstances. While most likely not related to the SWMU, the opportunity to delineate SPH plumes during an investigation may save time in the future.

Comment 10

In Section 4.1.7, Chemical Analyses, page 4-7, the Permittee states, "[g]roundwater and soil samples will also be analyzed for the following Skinner List metals and iron and manganese using the indicated analytical methods shown." Elevated total chromium concentrations were previously detected at the site (see Comment 1). Hexavalent chromium may potentially be present at the site. Include hexavalent and total chromium analyses for soil and groundwater samples collected at the site. Add the analysis to the revised Work Plan.

The Permittee must address all comments in this Disapproval and submit a revised Work Plan. Two bound hard copies and two electronic versions must be submitted to NMED. In addition, include a red-line strikeout version in electronic format showing where all revisions to the Work Plan have been made. The revised Work Plan must be accompanied with a response letter that details where revisions have been made, cross-referencing NMED's numbered comments. The revised Work Plan must be submitted to NMED no later than **August 30, 2019**.

If you have questions regarding this Disapproval, please contact Michiya Suzuki of my staff at 505-476-6059.

Sincerely,

John E. Kieling

Chief

Hazardous Waste Bureau

cc: K. Van Horn, NMED HWB

D. Cobrain, NMED HWB

M. Suzuki, NMED HWB

C. Chavez, OCD

L. King, EPA Region 6

B. Moore, WRG

File: Reading File and WRG 2019 File

HWB-WRG-18-016