NM1-63

Permit Application Vol 3 Part 7 of 8

10/12/16

APPLICATION FOR PERMIT OWL LANDFILL SERVICES, LLC

VOLUME III: ENGINEERING DESIGN AND CALCULATIONS SECTION 6: GEOSYNTHETICS APPLICATION AND COMPATIBILITY DOCUMENTATION

ATTACHMENT III.6.B

GEOTEXTILES REFERENCE DOCUMENTATION

Technical Note No. 7

Chemical Resistance of Amoco Polypropylene Geotextiles

Amoco woven and nonwoven geotextiles are manufactured from polypropylene with ultra violet stabilizing additives. The excellent chemical resistance of Amoco polypropylene geotextiles is one of the qualities which has established Amoco as a leading producer of geotextiles for use in the waste containment industry. This technical note addresses the chemical resistance of polypropylene with a focus on recent testing programs which have clearly demonstrated the durability of Amoco fabrics in a variety of chemical environments.

Are polypropylene geotextiles durable in the chemical environment of landfill leachates?

Yes. Of the polymers used to manufacture geotextiles, polypropylene exhibits the greatest resistance to chemical attack. In fact, polypropylene is the polymer of choice for such commonly used products as landfill liners, synthetic grass for athletic fields, outdoor carpeting, battery cases, bleach bottles, antifreeze jugs, washing machine agitators, and thousands of other commonly used items that are routinely exposed to chemical environments. Polypropylene is stable within a pH range of 2 to 13, making one of the most stable polymers.

Polypropylene geotextiles have been found to be durable in a wide range of chemical environments (Bell, et. al., 1980; Haxo, 1978, 1983; Pucetas, et.al., 1991; Tisinger, et. al., 1989). Research has found both woven and nonwoven polypropylene geotextiles to be non-biodegradable and resistant to commonly encountered soil-bound chemicals, landfill achates, mildew, and insects.

How is the chemical resistance of polypropylene geotextiles determined?

Numerous laboratory test programs have subjected polypropylene to severe chemical environments such as solutions of organic solvents, oils, organic acids, and inorganic acids. The laboratory tests are generally performed in accordance with ASTM D 543, "Standard Test Method for Resistance of Plastics to Chemical Reagents." These test programs have found polypropylene to exhibit superb chemical resistance.

In the ASTM D 543 procedure, the specimens are immersed in a concentrated chemical solution at a specified temperature for a specified exposure period. This test method exposes the polypropylene to etremely harsh conditions which are considerably more severe than those encountered in most civil engineering applications.

The chemical compatibility of geotextiles with leachates is determined by EPA Test Method 9090 (EPA 9090), "Compatibility Test for Wastes and Membrane Liners." This was the laboratory method used in the Amoco geotextile test programs reported in this technical note. Geotextile samples are immersed in a constant temperature leachate bath for four months. At the end of each month samples of the fabric are removed and subjected to physical testing. Changes in properties may indicate chemically imposed degradation.

Have Amoco geotextiles been proven to be chemically resistant?

Four laboratory testing programs have been performed to evaluate the chemical compatibility of Amoco geotextiles with landfill leachates. The tests exposed both Amoco woven and nonwoven products to hazardous and municipal waste leachates.

In all testing programs there was no indication of geotextile degradation due to exposure to landfill leachates. The test results are summarized in the remainder of this technical note.

Hazardous waste leachate

A laboratory testing program was performed in 1989 to evaluate the chemical compatibility of Amoco geotextiles with a hazardous waste leachate. The program included EPA 9090 testing of 4 oz/yd² and 8 oz/yd² nonwoven specimens. The testing exposed the geotextiles to leachate in both the laboratory and in a leachate collection sump at a hazardous waste landfill. Test evaluation incorporated detailed microstructural analyses which are not typically incorporated into chemical resistance testing programs. Methods included differential scanning calorimetry, thermal gravimetric analysis, and infrared spectrophotometry. These analyses were performed to identify any changes in the microstructure of the geotextile due to immersion in the leachate.

The results of this testing program found the geotextile microstructure remained intact, stable, and unchanged (Tisinger, et. al., 1989).

Municipal waste leachate

The chemical resistance of Amoco geotextiles to municipal solid waste leachate was evaluated in three laboratory testing programs. The first program, completed in 1990, included EPA 9090 testing of 16 oz/yd2 nonwoven geotextile specimens. The second test program, performed in 1992, tested specimens of 8 oz/yd² nonwoven geotextile. The third program, completed in 1993, evaluated the chemical resistance of a high strength woven geotextile. The testing programs evaluated changes in physical properties of the specimens, including specimen dimensions, thickness, grab tensile strength and elongation, puncture resistance, burst strength, and tear strength. In all cases there were no measurable changes in physical properties of the specimens after exposure to the leachate.

Are the results of these tests applicable to Amoco geotextiles which have not been similarly tested?

Yes. All Amoco geotextiles are equally resistant to chemical degradation because they are all manufactured using the same polymer and additives. This conclusion is supported by the test results, which demonstrated no difference in chemical resistance for different types of Amoco geotextiles. The information in this technical note, therefore, is considered to be applicable to all Amoco geotextiles regardless of weight, thickness, or strength.

References

Bell, J.R., et. al., "Evaluation of Test Methods and Use Criteria for Geotechnical Fabrics in Highway Applications," Federal Highway Administration, FHWA/RD-80-021, 1980, 202 p.

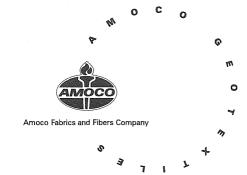
EPA Method 9090, "Compatibility Test for Wastes and Membrane Liners,"

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods. US Environmental Protection Agency, EPA 530/SW-846, 1988.

Haxo, R.S., "Chemical Resistance of Lining Materials with Different Waste Fluids," Proceedings of the Colloque sur l'Etanche'ite' Superficielle des Bassins, Barrages et Canaux, Paris, France, 1983, pp. 13-20.

Haxo, R.S., "Interaction of Selected Lining Materials with Various Hazardous Wastes," Proceedings of the Fourth Annual Research Symposium on Land Disposal of Hazardous Wastes, EPA-600/9-78-016, Southwest Research Institute, US Environmental Protection Agency, Solid and Hazardous Waste Research Division, San Antonio, TX, 1978, pp. 256-273.

Pucatas, R.C., Verschoor, K.L., Allen, S.R., and Sprague, C.J., "The Chemical Resistance of Geotextiles to be Used in Secondary Containment Systems for Underground Storage Tanks," *Geosynthetics '91 Conference Proceedings*, Atlanta, GA, published by the Industrial Fabrics Association International, St. Paul, MN, 1991, pp. 311-314.


Tisinger, L.G. and Dudzik, B.E., "An Evaluation of Chemical Resistance Test Results of Nonwoven, Needle-Punched Polypropylena Geotextile Exposed to Hazardous Waste Landfill Leachate," Sardinia '89 2nd International Landfill Symposium, 1989.

Nöte

This technical rativ is believed to be an accurate representation of information available from public sources; however, because the conditions in which such information may be used are beyond the control of Annoco Fabrics and Fibers Company. Annoco daes not guarantee the suggestions and recommendations contained herein. Annoco assumes no responsibility for the use of information presented herein and hereby disclaims all liabilities which may arise in connection with such use. Final determination of the suitability of information and suggested uses is the sale responsibility of the user.

Amoco Fabrics and Fibers Company 280 The Bluffs Austell, GA 30168 770-984-4444 800-445-7732 770-984-4544 800-445-7732 770-984-4544 Fax email address: geotextiles@bp.com http://geotextiles.com Part of the BP Amoco Group

Technical Note No. 14

Geotextile Polymers for Waste Applications

What types of polymers are used to manufacture geotextiles?

Virtually all geotextile fibers are made from either polypropylene or polyester polymers.

Are these polymers used in a 100% pure form?

The manufacture of geosynthetics usually includes the addition of stabilizers and other additives that are blended with the base polymer. The additives constitute a minor fraction of the polymer mixture.

Additives are used primarily to counteract the effects of oxidation, to which many synthetic polymers are sensitive. Oxidation can cause a reduction in material properties such as strength and elasticity. The main sources of oxidation are heat/temperature (thermal oxidation) and ultra violet (UV) radiation from sunlight (photo-oxidation). Manufacturers of geosynthetics add a variety of proprietary additives during production to make the polymers more stable against thermal and UV degradation (see Amoco Technical Note No. 9).

Should the designer specify polypropylene or polyester for geotextiles to be used in waste applications?

The type of polymer used in the fabrication of the geotextile is not a relevant design parameter. The specifications should be developed to focus on the required physical properties of the geotextile relative to strength, hydraulic performance, and chemical compatibility and durability. These elements are addressed in detail in the Amoco Waste-Related Geotextile Guide Specifications.

Does the type of base polymer affect the chemical resistance of geotextiles used in landfills?

Geotextiles in landfills are exposed to leachates, which are generally dilute solutions of chemicals. The geotextile must be resistant to degrading in this chemical environment. Chemical resistance of geotextiles to leachates is evaluated in the laboratory using EPA Test Method 9090 (EPA 9090). The results of such testing on polypropylene and polyester have proved both polymers to be relatively inert and durable in various chemical environments of hazardous and nonhazardous waste landfills (refer to Amoco Technical Note No. 7).

Of the polymers used to manufacture geotextiles, polypropylene exhibits the greatest resistance to chemical attack. Polypropylene is inert to most chemicals except for some highly concentrated solvents. Geotextiles are not expected to be exposed to such solvents in waste applications, where the associated leachates typically contain only trace to very low concentrations of solvent constituents.

Polyester exhibits comparable chemical compatibility. However, unlike polypropylene, polyester is subject to hydrolysis in aqueous environments such as landfill leachates. Hydrolysis is a process in which water-based solvents or water alone causes the polymer chains to break. This can result in a reduction in the mechanical properties of the polymer. Despite this characteristic, the results of EPA 9090 testing on polyester do not show an impact from hydrolysis.

What effect does polymer type have on the UV resistance of geotextiles used in landfills?

There are only slight differences in the UV stability of various geotextile polymers. From a construction perspective, these differences have no impact on the selection of geotextiles for landfill applications. Regardless of the polymer type, it is important to limit exposure of the geotextile to potentially damaging UV radiation.

In landfill applications, geotextiles are usually covered by soil layers and waste soon after construction. Their exposure to UV radiation therefore generally occurs only during construction. Regardless of polymer type, exposure of the fabrics to sunlight during installation should be limited in accordance with the project specifications (see Amoco Waste-Related Geotextile Guide Specifications).

On some landfill side slopes, the geotextile might be left exposed for an extended time before being covered with soil. In these cases, the geotextile must be protected from UV radiation by alternative methods, regardless of whether the fabric is manufactured of polypropylene or polyester. Alternatives include covering the geotextile with a sacrificial geotextile layer or opaque plastic sheet. The sacrificial layer would be removed prior to placing soil cover.

Has the performance of Amoco geotextiles in landfill applications been verified?

Yes. In fact, the excellent chemical resistance of Amoco polypropylene geotextiles is one of the qualities that has established Amoco as a leading supplier of fabrics to the waste containment industry.

Laboratory testing programs have been performed specifically to evaluate the chemical compatibility of Amoco polypropylene geotextiles with landfill leachates. In all test cases there were no measurable changes in the physical properties of the Amoco geotextiles after exposure to leachates. Also, unlike polyester, polypropylene does not undergo hydrolysis. Amoco Technical Note No. 7 provides detailed information regarding the chemical compatibility test conditions, procedures, and results.

References

Amoco Fabrics and Fibers Company, Technical Note No. 7, Chemical Resistance of Amoco Polypropylene Geotextiles.

Amoco Fabrics and Fibers Company, *Technical Note No. 9, Ultra Violet Light Degradation.*

Amoco Fabrics and Fibers Company, *Technical Note No. 12,* Staple Fiber and Continuous Filament Polypropylene Geotextiles: A Comparison. Amoco Fabrics and Fibers Company, *Waste-Related Geotextile Guide Specifications*.

EPA Method 9090, "Compatibility Test for Wastes and Membrane Liners," *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, Environmental Protection Agency*, EPA 530/SW-846, 1988.

GeoSyntec Consultants, Correspondence to Amoco Fabrics and Fibers Company, Atlanta, GA, July 1993.

Note: This technical note is believed to be an accurate representation of information available from public sources; however, because the conditions in which such information may be used are beyond the control of Amoco Fabrics and Fibers Company, Amoco does not guarantee the suggestions and recommendations contained herein. Amoco assumes no responsibility for the use of information presented herein and hereby disclaims all liabilities which may arise in connection with such use. Final determination of the suitability of information and suggested uses is the sole responsibility of the user.

Amoco Fabrics and Fibers Company

900 Circle 75 Parkway, Suite 550

Atlanta, Georgia 30339 (770) 984-4444 FAX: (770) 956-2430

© Copyright 1994 Amoco Fabrics and Fibers Company Code 94-014/3000/12-97

APPLICATION FOR PERMIT OWL LANDFILL SERVICES, LLC

VOLUME III: ENGINEERING DESIGN AND CALCULATIONS SECTION 6: GEOSYNTHETICS APPLICATION AND COMPATIBILITY DOCUMENTATION

ATTACHMENT III.6.C GEONET REFERENCE DOCUMENTATION

GSE TenDrain 275 mil Geocomposite

GSE TenDrain geocomposite consists of a 275 mil thick GSE TenDrain geonet heatlaminated on one or both sides with a GSE nonwoven needle-punched geotextile. TenDrain 275 is comprised of a tri-planar structure consisting of middle ribs that provide direct channelized flow, with diagonally placed top and bottom ribs. The geotextile is available in mass per unit area range of 6 oz/yd² to 16 oz/yd². TenDrain 275 geocomposite provides high transmissivity under high and low loads.

[*]

AT THE CORE:

A 275 mil thick TenDrain geonet heat-laminated on one or both sides with a nonwoven needlepunched geotextile.

Product Specifications

Tested Property	Test Method	Frequency	Minimum Ave	erage Roll Value
Geocomposite			6 oz/yd²	8 oz/yd²
Transmissivity ⁽²⁾ , gal/min/ft, (m²/sec) Double-Sided Composite	ASTM D 4716	1/540,000 ft ²	24.2 (5x10 ⁻³)	24.2 (5x10 ⁻³)
Ply Adhesion, lb/in	ASTM D 7005	1/50,000 ft ²	0.5	0.5
Geonet Core ^(1,3) - GSE TenDrain				
Geonet Core Thickness, mi	ASTM D 5199	1/50,000 ft ²	275	275
Density, g/cm³	ASTM D 1505	1/50,000 ft ²	0.94	0.94
Tensile Strength (MD), lb/in	ASTM D 7179	1/50,000 ft ²	75	75
Carbon Black Content, %	ASTM D 4218	1/50,000 ft ²	2.0	2.0
Creep Reduction Factor ⁽⁴⁾	GRI-GC8	per formulation	1.2	1.2
Compressive Strength, psf	ASTM D 6364	1/540,000 ft ²	60,000	60,000
Geotextile ^(1,3)				
Mass per Unit Area, oz/yd²	ASTM D 5261	1/90,000 ft ²	6	8
Grab Tensile Strength, Ib	ASTM D 4632	1/90,000 ft ²	160	220
Grab Elongation	ASTM D 4632	1/90,000 ft ²	50%	50%
CBR Puncture Strength, Ib	ASTM D 6241	1/90,000 ft ²	435	575
Trapezoidal Tear Strength, Ib	ASTM D 4533	1/90,000 ft ²	65	90
AOS, US sieve ⁽¹⁾ , (mm)	ASTM D 4751	1/540,000 ft ²	70 (0.212)	80 (0.180)
Permittivity, sec ⁻¹	ASTM D 4491	1/540,000 ft ²	1.5	1.3
Water Flow Rate, gpm/ft²	ASTM D 4491	1/540,000 ft ²	110	95
UV Resistance, % retained	ASTM D 4355 (after 500 hours)	per formulation	70	70
	NOMINAL ROLL DIMENSIO	DNS ⁽⁵⁾		
Roll Width, ft			12.75	12.75
Roll Length, ft	Double-Sided Comp	posite	200	200
Roll Area, ft²	Double-Sided Comp	oosite	2,550	2,550

NOTES:

• ^(I) All geotextile properties are minimum average roll values except AOS which is maximum average roll value and UV resistance is typical value. Geonet core thickness is minimum average value.

• ⁽²⁾ Gradient of 0.02, normal load of 7,000 psf, boundary condition: plate/sand/geocomposite/geomembrane/plate, water at 70°F for 1 hour.

• ⁽³⁾ Component properties prior to lamination.

• ⁽⁴⁾10,000 hour creep test under 10,000 psf at 70°F temperature

+ $^{\rm (5)}$ Roll widths and lengths have a tolerance of $\pm1\%.$

GSE is a leading manufacturer and marketer of geosynthetic lining products and services. We've built a reputation of reliability through our dedication to providing consistency of product, price and protection to our global customers.

Our commitment to innovation, our focus on quality and our industry expertise allow us the flexibility to collaborate with our clients to develop a custom, purpose-fit solution.

DURABILITY RUNS DEEP For more information on this product and others, please visit us at GSEworld.com, call 800.435.2008 or contact your local sales office.

This Information is provided for reference purposes only and is not intended as a warranty or guarantee. GSE assumes no liability in connection with the use of this Information. Specifications subject to change without notice. GSE and other trademarks in this document are registered trademarks of GSE Environmental, LLC in the United States and certain foreign countries. REV 24OCT2013

EVALUATION ON STRESS CRACKING RESISTANCES OF VARIOUS HDPE DRAINAGE GEONETS

M.S. Mok1, E. Blond2, J. Mlynarek3 and H. Y. Jeon4

ABSTRACT: Specimens from each geonet were placed under various compressive loads in a vessel containing a solution of 10% surface-active agent and 90% water at a temperature of 50°C. Then the surface morphology study of the specimen was performed after 500 hours test duration. The results show that all of these geonets did not appear any kind of stress cracking in the condition of 400 kPa, which is a typical landfill's loading condition. However, in the case of bi-planar geonet there were some deposits on the surface of geonet's strand and it is expected that this phenomena is due to the results of chemical clogging. On the other hand, in the case of the tri-planar and circular type bi-planar geonets, it maintained very clean flow channels until the end of the test. For high normal pressure some environmental stress cracks were detected for the circular type bi-planar geonet. The results show that the resistance to the environmental stress cracking is related to its polymer density, crystallinity and also rigidity not its mechanical properties.

KEYWORDS: geonet, compressive loads, surface morphology, stress cracking, chemical clogging, flow channels

INTRODUCTION

Land filling, by all indications, will continue to be the predominant method of solid waste disposal. As the use of high density polyethylene (HDPE) geonets increase in landfill applications, it is required to evaluate their long-term properties in several chemical conditions. (Ward and Brown 1990; Carlson 1993)

Typically, the high crystallinity of polyethylene geonets provides an excellent chemical resistance to harsh chemical leachate, however can be problematic with regard to environmental stress cracking. (Qian and Brown 1993; Thomas 1998) Under low stresses in the circumstance of room temperature polyethylenes will fracture by slow crack growth. This mode of failure limits the lifetime of polyethylenes used in critical applications as drainage materials, lining under landfills. (Lagaron, Pastor, Kip 1999; Bobsein 1999)

Geomembranes and geonets are used as a barrier and drainage component in this system, respectively. With addition of carbon black which is an anti-oxidation material HDPE geomembranes and geonets are normally used in hazardous landfill system as a barrier and drainage respectively.

Many researchers and a lot of work about environmental stress cracking resistance for the geomembranes were done and many beneficial reports have already been published. (Peggs and Kannien 1995; Thomas and Deschepper 1993) However a few research results on the environmental stress cracking resistance for the geonet drainage material were performed. Therefore, in this study the resistance to environmental stress cracking (ESCR) was examined mainly in morphological issues for various geonets (bi-planar, tri-planar and circular type of bi-planar geonet) under condition of various normal pressures.

SPECIMEN & TEST METHODS

Total three types of geonets were test in this study. Sample A has 5.6 mm mean value of thickness and two layers which means bi-planar geonet. The cross sectional shape of strand of Sample A is more likely to a square. Sample B has average of 8.6 mm thickness and has 3 layers (tri-planar). Sample C is also bi-planar geonet however has circular type cross sectional shape and thicker than sample A. The raw material of all these samples is high density polyethylene (HDPE). Typical specifications of the samples are provided in Table 1.

Fig. 1 shows these samples. Short-term compressive deformation test was performed using the procedures set forth in Standard Test Method for Determining Shortterm Compression Behavior of Geosynthetics (ASTM

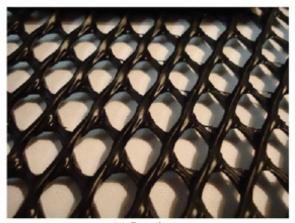
¹Researcher, CTT Group/SAGEOS, Saint-Hyacinthe, Quebec, CANADA, Email: munsungmok@gmail.com

² Director, CTT Group/SAGEOS, Saint-Hyacinthe, Quebec, CANADA, Email: eblond@gcttg.com

³ CEO, CTT Group/SAGEOS, Saint-Hyacinthe, Quebec, CANADA, Email: jmlynarek@gcttg.com

⁴ Professor, Division of Nano-Systems Engineering, Inha University, Incheon, KOREA, Email: hyjeon@inha.ac.kr

D6364) to evaluate basic mechanical properties of samples. Specimen is positioned between two rigid steel platens and compressed at a constant rate of 1.0 mm/min. To control an accurate temperature of specimen of 23°C heating platens were manufactured and its heating is 14°C/min. Also special test equipment for ESCR under compression was manufactured and this equipment is shown Fig. 2.


The specimens were immersed in a solution of 90% water and 10% I-gepal CO630 at a temperature of 50°C. The solution level was checked daily and de-ionized water used to keep the bath at a constant level.

And the solution was replaced every 2 weeks. 200, 400 and 700 kPa for sample A, 600, 1,000 and 1,200 kPa for sample B and 400, 600 and 800 kPa for C of load were subjected as compressive load using 6:1 arm lever loading system within considering their compressive strengths.

The immersion duration was 500 hours and during and after the test apparent observation and microscopic morphology was evaluated for the specimen.

Table 1 Typical specification of the samples

Decementar	Test	Unit		Sample	
Property	method	Unit	A	В	С
Thickness	ASTM D5199	mm	5.6	8.6	8.2
Mass per unit area	ASTM D5261	g/m ²	920	1700	2300
Carbon black	ASTM D4218	%	2.3	2.2	2.3
Density	ASTM D1505	g/cm3	0.942	0.944	0.940
Crystallinity	ASTM D2910	%	56	55	61

(a) Sample A

(b) Sample B

(c) Sample C

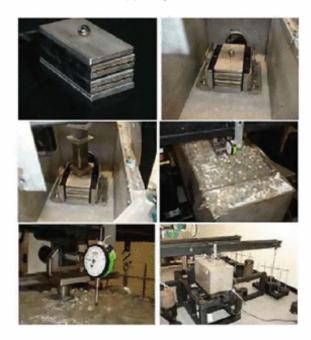


Fig. 2 Compressive environmental stress cracking test equipment

RESULTS & DISCUSSION

Considering the compressive strength and strain properties, the sample C has the stiffest behavior in these three Samples. Initial 5% elastic modulus is much higher than other samples. From this behavior of Sample C it is expected that sample C has rigid structure and has high crystallinity of over 60%. Table 1 confirms this phenomenon. In the other hand Sample A and C have more flexible behavior and low initial elastic modulus.

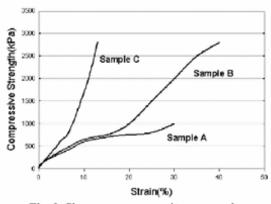


Fig. 3 Short-term compression test results

Figs. 4–9 exhibit the results of apparent observations and microscopic morphologies. Some kind of chemical clogging due to the I-gepal solution is expected for the Sample A because of its flow channel and thickness. This chemical clogging for the Sample A was confirmed by the apparent observation. Fig. 4 shows the results of apparent observations for Sample A. In this figure many deposits on the surface of the specimens were detected during and end of the test and it seems that these deposits which were induced from the chemical solution may occur clogging and therefore affect geonet's in-plane flow capacity. Also there is no chemical clogging on the surface of the specimen for Sample B and this fact was confirmed by apparent observation (Fig. 5).

Considering flowing pattern of the I-gepal solution through out the specimen, the I-gepal has zig-zag flow pattern and this courses some frictions with strands of sample A, therefore the chance of clogging is higher than the Sample B which has straight flow pattern. Also thin thickness compared to other samples can increase chance of any clogging. For the Sample C, the initial creep deformation was very low which means the initial modulus is higher than the other samples and therefore high modulus indicate more rigid than others. High rigidity has brittle failure pattern rather than ductile failure and this can induce a stress crack during the compressive creep test. Also it seems that the chemical act a stress cracking accelerator.

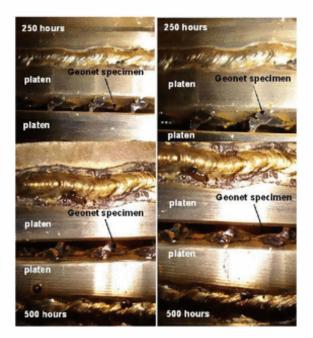


Fig. 4 Apparent observation during and end of the test for sample A (200kPa)

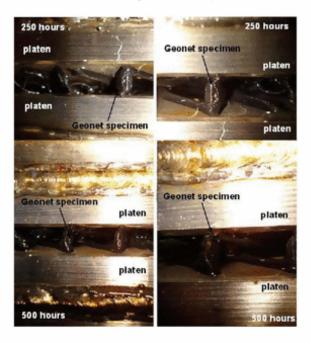


Fig. 5 Apparent observation during and end of the test for sample B (700 kPa)

Figs. 6-9 confirm this environmental stress cracking phenomenon. From these exhibitions it is clear that Sample A and Sample B which have relatively more flexible HDPE strand than Sample C didn't experience any kind of environmental stress cracking. For the Sample C which is more rigid and has high crystallinity (Table 1) likely has to chance of stress cracking. The microscopic morphologies indicate that the extent of environmental stress cracking observed in the Sample C is related to its flexibility and crystallinity. And from the morphologies it seems that the stress cracks occurred at the junction point of the strands first and then propagate to strands with increasing normal pressure.

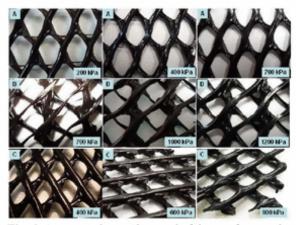


Fig. 6 Apparent observations end of the test for samples under various normal pressures

Fig. 7 Microscopic morphologies of Sample A after the test for various normal pressures

Fig. 8 Microscopic morphologies of Sample B after the test for various normal pressures

Fig. 9 Microscopic morphologies of Sample C after the test for various normal pressures

CONCLUSIONS

In this study long-term (500 hours) environmental stress cracking resistance for various geonets under various normal pressures were evaluated. The conclusions are as follows:

 ESCR property is one of the most critical parameters for evaluating long-term chemical resistance of HDPE geonets which used in hazardous landfill systems.

 Traditional bi-planar geonets which have square type strand and tri-planar geonet have very strong chemical and stress cracking resistance even high normal pressure.

 Cylindrical type bi-planar geonets is more rigid material than other samples and it is very week to environmental stress cracking with increasing normal pressure

REFERENCES

- Bobsein RL (1999) factors influencing SP-NCTL test results, Proceedings of the 13th GRI Seminar: 46-57
- Carlson, DS, etc. (1993) laboratory evaluation of HDPE geomembrane seams, Geosynthetics 93, Vancouver, Canada: 1543
- Lagaron JM, Pastor JM, Kip BJ (1999) Polymer 40: 1629-1636
- Peggs ID, Kannien MF (1995) Geosynthetics International 2(1)
- Qian R, Lu X, Brown N (1993) Polymer 34(22)
- Thomas, RW (1998) evaluating the stress crack resistance of HDPE seams, 6th International Conference on Geosynthetics
- Thomas RW, Deschepper BW (1993) stress crack testing of unnotched HDPE geomembrane and seams, Proceedings of the 7th GRI seminar Dec. 14-15
- Ward AL, Lu X, Brown N (1990) Polymer Engineering and Science, Sep 30(18)

APPLICATION FOR PERMIT OWL LANDFILL SERVICES, LLC

VOLUME III: ENGINEERING DESIGN AND CALCULATIONS SECTION 6: GEOSYNTHETICS APPLICATION AND COMPATIBILITY DOCUMENTATION

ATTACHMENT III.6.D

GEOSYNTHETIC CLAY LINER REFERENCE DOCUMENTATION

geosynthetic clay liners • geosynthetic clay liners • geosynthetic clay liners

Laboratory Data Reports

THE EFFECTS OF LEACHATE ON THE HYDRAULIC CONDUCTIVITY OF BENTOMAT[®]

Compatibility testing was performed to determine the effects of solid waste landfill leachate on the permeability of Bentomat over a prescribed time period. Testing was performed in accordance with United States Environmental Protection Agency (USEPA) Method 9100, as provided in SW846.

Hydration of specimens was conducted using de-aired tap water for approximately 48 hours. Saturation was also conducted using de-aired tap water until a minimum B value of 0.95 was achieved. Following hydration and saturation, baseline hydraulic conductivity was performed using water. After the baseline hydraulic conductivity was established, the permeant was switched to leachate. Testing continued for an additional 30 days to allow a sufficient number of pore volumes to permeate the specimen to establish a hydraulic conductivity with leachate.

Results show that the hydraulic conductivity of Bentomat ^{was} unaffected when permeated with this leachate.

TR-101A Revised 12/00

1500 W. Shure Drive • Arlington Heights, IL 60004 • USA • (847) 392-5800 • FAX (847) 577-5571 /www.CETCO.com A wholly owned subsidiary of AMCOL International

The information and data contained herein are believed to be accurate and reliable. CETCO makes no warranty of any kind and accepts no responsibility for the results obtained through application of this information.

FINAL REPORT

LABORATORY TESTING OF BENTOMAT

•

Prepared for

American Colloid Company One North Arlington .1500 West Shure Drive Arlington Heights, Illinois 60004-1434

Prepared by

GeoSyntec Consultants Geomechanics and Environmental Laboratory 1600 Oakbrook Drive, Suite 565 Norcross, Georgia 30093

GeoSyntec Consultants Project Number: GL1614

31 July 1991

.

2. TEST PROCEDURES

2.1 Task 1: EPA 9100 Compatibility Testing

Compatibility testing on the Bentomat was performed to measure the effect of leachate on the hydraulic conductivity of the mat product over a prescribed period of time. Testing was performed in accordance with the United States Environmental Protection Agency (USEPA) Method 9100 SW-846, Revision 1, 1987. The test conditions for Task 1 were as follows:

- Testing was conducted using flexible-wall triaxial permeameters, as shown in Photograph 2.1-1.
- Three replicate samples of the Bentomat were tested.
- Each sample was trimmed to a diameter of 2.8 in. (70 mm) and assembled in the following test configuration (from bottom to top): porous stone/filter paper/sand layer/Bentomat/sand layer/filter paper/porous stone.
- Hydration and saturation of the samples using de-aired tap water was conducted at an effective stress of 2.0 psi (14 kPa) for a time period of approximately 48 hours. Saturation was defined as a minimum Skempton's B-parameter of 0.95.
- Consolidation of the saturated test samples was performed at an effective stress of 5.0 psi (35 kPa). Pore-water displacement was monitored until primary consolidation was complete.
- To determine the baseline hydraulic conductivity, the samples were permeated using de-aired tap water. The average hydraulic gradient used for baseline permeation was approximately 50. For this testing program, initial hydration and saturation was

3

GL1614/GEL91066

91.07.31

conducted using de-aired tap water. Hydration with leachate may or may not yield different results.

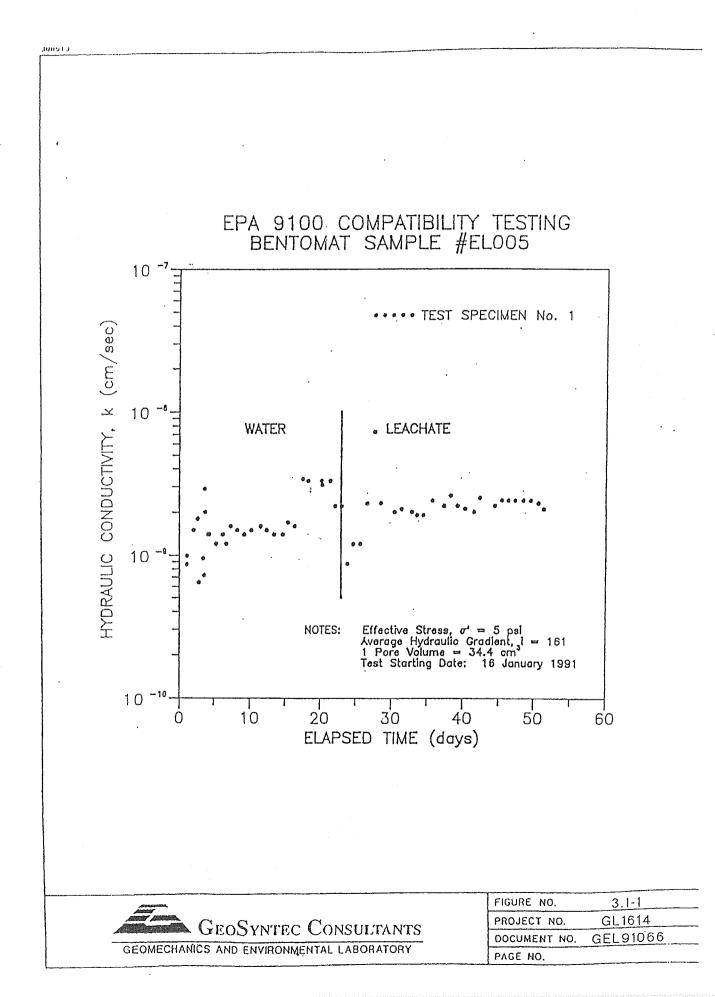
- After establishing the baseline hydraulic conductivity, the permeant was switched to the leachate. Because of the slow permeation rates and the objective to increase the volume of leachate in contact with the Bentomat, the sand layer was replaced on all samples by an Amoco 4516 geotextile after approximately three weeks of testing. Permeation of the samples with the leachate continued for an additional 30 days. The hydraulic conductivity of the sample was monitored and reported daily during this period.
- Permeation of the test specimens with the leachate was initially conducted at an average hydraulic gradient of approximately 50. In order to increase flow through the Bentomat during the prescribed time period, the average hydraulic gradient was increased to approximately 160.
- Because the final hydrated thickness of the Bentomat is unknown until the completion of testing and for comparison of the test data, the hydraulic conductivity was calculated using 0.4 in. (1.0 cm) for the Bentomat. These values were used in all calculations of hydraulic conductivity in Tasks 1 through 7.

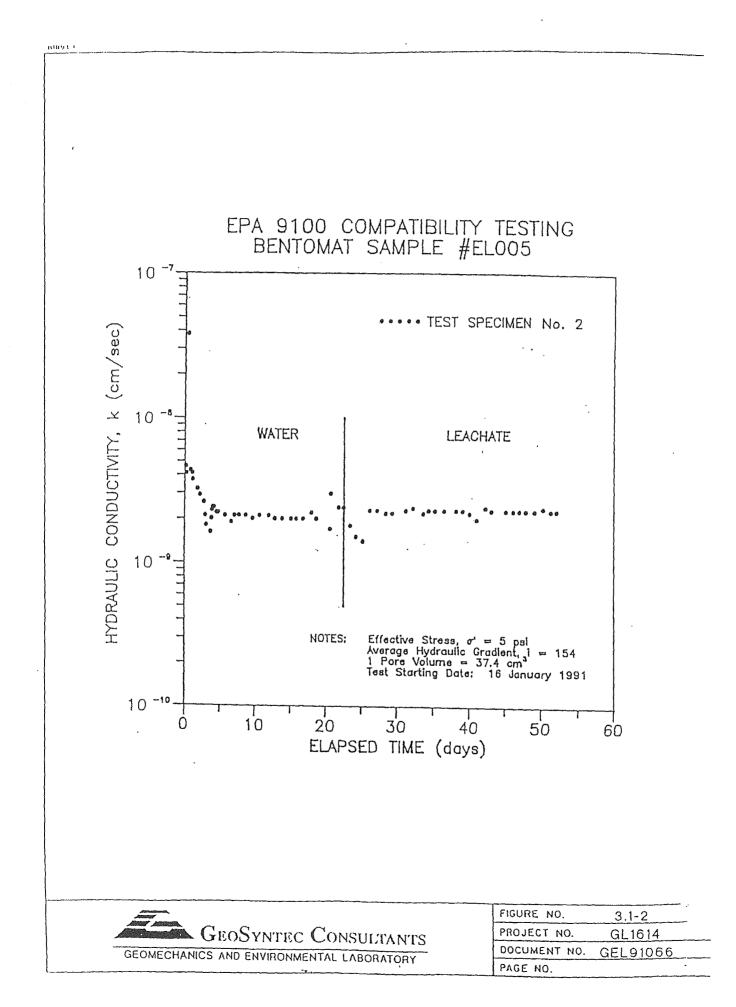
TABLE 3.1-1

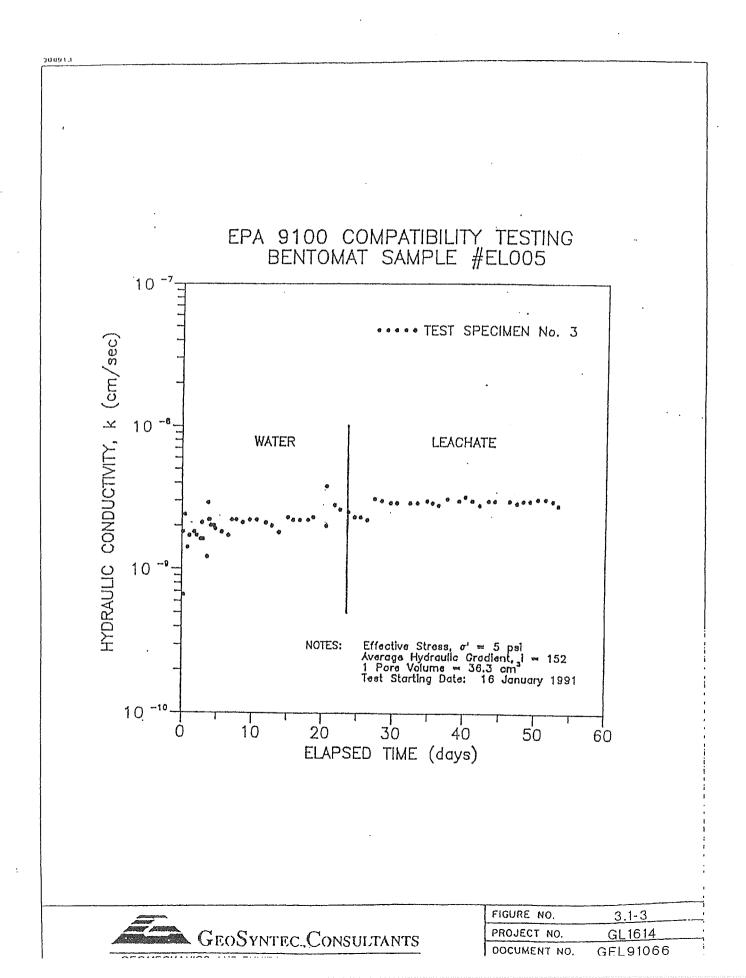
EPA 9100 COMPATIBILITY TESTING BENTOMAT SPECIMEN CONDITIONS

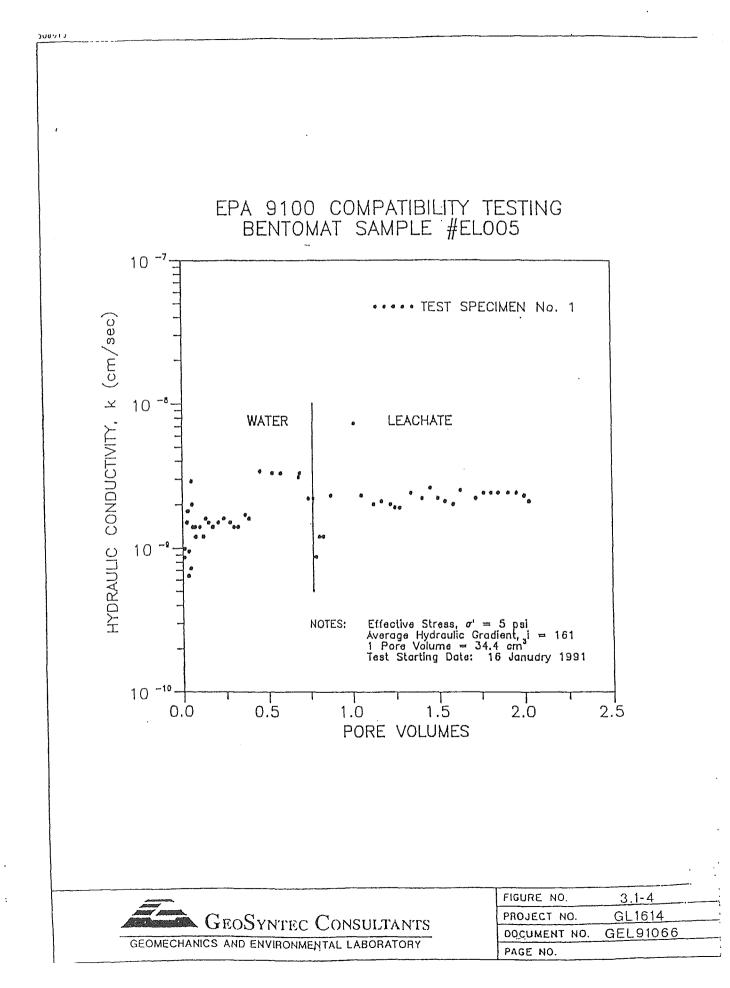
	Specimer	n No. 1	Specime	n No. 2	Specimen No. 3		
Parameters	Initial	Final	Initial	Final	Initial	Final	
Thickness, in.	0.29	0.39	0.33	0.43	0.28	0.36	
Diameter, in.	3.01	3.14	3.19	3.30	3.11	3.18	
¹ Dry Mass, g	30.8	24.4	38.3	31.4	34.4	26.1	
² Mass/Area, 1b/ft ²	1.37	1.00	1.54	1.16	1.44	1.05	
Water Content, %	18.8	170.1	15.7	169.4	10.9	167.4	

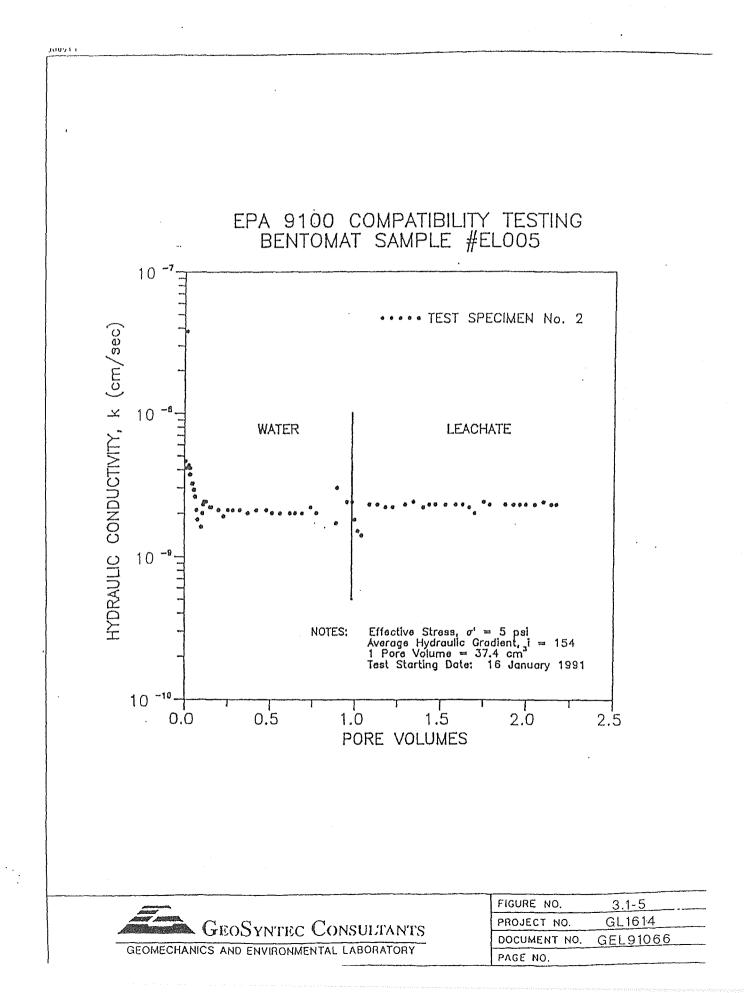
American Colloid Company

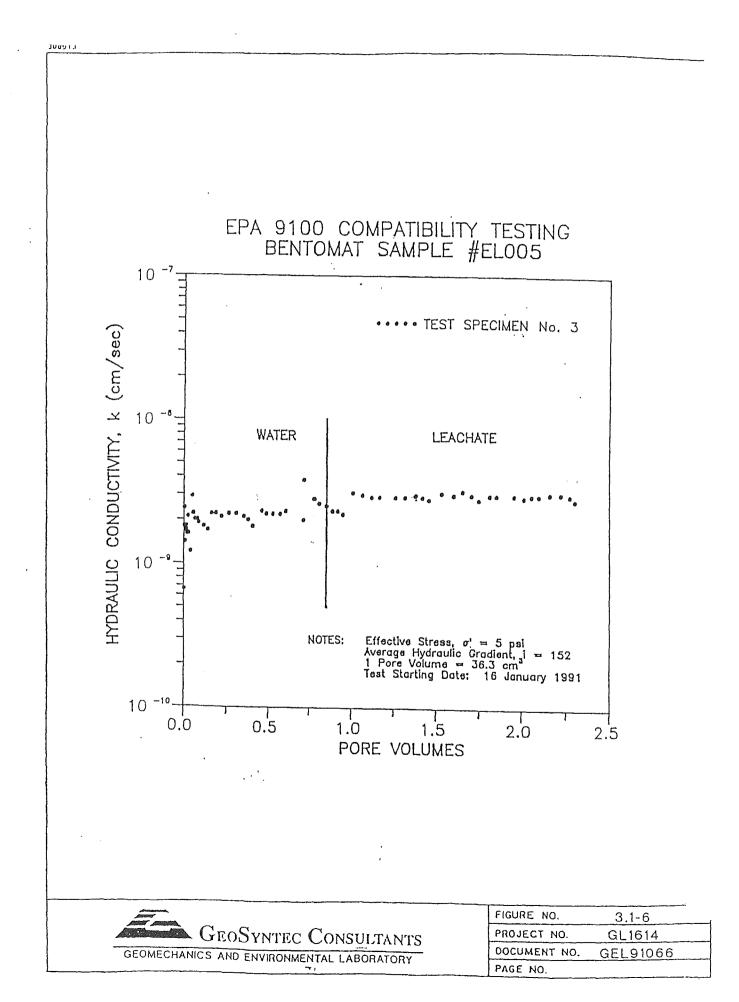

Notes:


¹ The dry mass includes the dry weight of the bentonite and the geotextiles bonded to the specimen.


² The mass/area is determined using the dry mass of the material normalized with respect to the cross-sectional area of the test specimen before drying.


311614/GEL91066


91.06.27



3.1 Task 1: EPA 9100 Compatibility Testing

3.1.1 Test Results

The physical conditions of the three Bentomat specimens, measured before and after the tests, are summarized in Table 3.1-1. Graphical presentations of the hydraulic conductivity as a function of elapsed time are presented in Figures 3.1-1, 2, and 3. Graphical presentations of the hydraulic conductivity as a function of the volume of liquid passed through the specimens (i.e., pore volumes) are presented in Figures 3.1-4, 5, and 6.

3.1.2 Observations

Because of the low hydraulic conductivity of the bentonite mat, and in order to maximize the volume of leachate through the mat, the sand layer in each test was replaced by an Amoco 4516 geotextile during that test. This generally occurred shortly before the permeant was switched from water to leachate. In many cases the data indicated erratic behavior for a short time after the switch, but the hydraulic conductivities eventually became consistent.

All specimens were initially permeated at a hydraulic gradient of 50. The resulting hydraulic conductivity measurements were somewhat variable. The hydraulic gradient was subsequently increased to 160 after approximately five days of testing. The test results tended to stabilize after the gradient increase. The average hydraulic gradients that were used for the remainder of each test after the initial increase gradient is indicated on each figure.

In all cases, the data presented in the tables show that each specimen swelled in thickness and in diameter, and that each specimen experienced an apparent loss of mass. The effluent water however, was not visibly cloudy in any of the tests.

G:1614/GEL91066

91.07.31

•• ,

In each figure, a transition from water to leachate is indicated. The variability in the test results near this transition is likely the result of disturbance due to leachate injection and removal of the sand layer. Within a short period of time, the test results stabilized.

-**.**.

BENCH-SCALE HYDRAULIC CONDUCTIVITY TESTS OF BENTONITIC BLANKET MATERIALS FOR LINER AND COVER SYSTEMS

by

PAULA ESTORNELL, B.S.C.E.

THESIS

Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Degree of MASTER OF SCIENCE IN ENGINEERING

> THE UNIVERSITY OF TEXAS AT AUSTIN August, 1991

aid in maintaining a 6- to 9-in-wide overlap during installation.

2.1.2 Available Laboratory Test Data of the Hydraulic

Properties of Bentomat[®]

2.1.2.1 Bentomat[®] Permeation with Water

J & L Testing Company (1990) conducted flexible-wall hydraulic conductivity tests on 6-in (150-mm) diameter samples of Bentomat[®] containing either untreated granular bentonite ("CS" grade) or high-contaminant-resistant bentonite ("SS" grade). Test conditions and results are summarized in Table 2.2. The duration of the tests was not reported. Figure 2.2 presents the relationship between hydraulic conductivity and maximum effective stress. Hydraulic conductivities ranged from 6 x 10⁻¹⁰ cm/s to 6 x 10⁻⁹ cm/s.

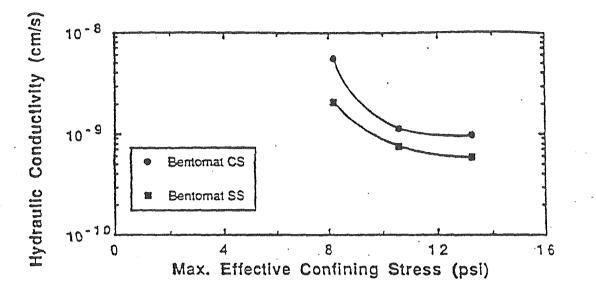
2.1.2.2 Bentomat[®] Permeation with Chemical Leachates

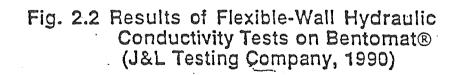
GeoSyntec Consultants (1991a) performed compatibility tests on Bentomat[®] in flexible-wall permeameters in order to measure the effect of landfill leachate on the alternative barrier material. Three 2.8-in (70-mm) diameter replicate samples were permeated first with de-aired water (under an effective stress of 2.0 psi (14 kPa) and a hydraulic gradient of about 50) and then with leachate (under an effective stress of

Table 2.2	Summary of	Results o	f Hydraulic	Conductivity	Tests on
	Bentomat®	(J&L Tes	ting Compa	iny, 1990)	

Grade of	Bentonite	<u>Cell</u> E		ss (psi) erTailwate	Maximum erEffective	Hydraulic Conductivity (cm/s)
High-Con Resistant	• • • •	50 50	42.2 44.6	41.8 39.4 36.8		2.1 x 10 ⁻⁹ 7.5 x 10-10 5.8 x 10 ⁻¹⁰
Untreated	.	50	42.2	41.8	* 8.2	5.6 x 10 ⁻⁹
Bentonite	(*CS*)	50 50	44.6 47.2	39.4 36.8	10.6 13.2	1.1 × 10-9 9.8 × 10-10
•				. <u>.</u>		. • .

. .


· **-** ·


16

.

.....

.

5.0 psi (35 kPa) and an average hydraulic gradient of approximately 160). The steady-state hydraulic conductivity, after two months of testing and 2.3 pore volumes of flow, was approximately 2 x 10^{-9} cm/s using the de-aired water and approximately 2.5 x 10^{-9} cm/s using the landfill leachate. The results seem to indicate that Bentomat[®] samples that have been hydrated first with de-aired water will have very little increase in hydraulic conductivity after the introduction of landfill leachate.

2.1.2.3 Effects of Desiccation on Bentomat®

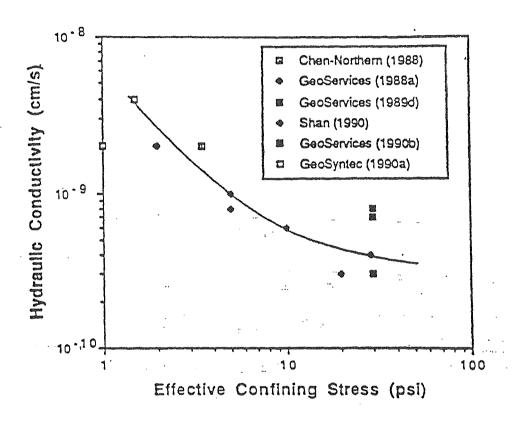
GeoSyntec Consultants (1991a) conducted a flexible-wall hydraulic conductivity test on a 2.8-in (70-mm) sample of Bentomat[®] that had undergone 4 desiccation cycles. Each cycle involved first permeating the sample with de-aired water (using an effective stress of 5.0 psi (34 kPa) and an average hydraulic gradient of approximately 25) then desiccating the sample for two weeks in a 40°C (104°F) oven. This procedure was repeated 4 times. The steady-state hydraulic conductivity, measured after each cycle, ranged sporadically between 1 x 10⁻⁹ cm/s and 3 x 10⁻⁹ cm/s. The results show little effect of desiccation on the hydraulic conductivity of Bentomat[®].

2.2.2 Available Laboratory Test Data on the Hydraulic

Properties of Clavmax[®]

2.2.2.1 Claymax[®] Permeation with Water

Literature published by the James Clem Corporation lists 2×10^{-10} cm/s as the hydraulic conductivity of Claymax[®] permeated with de-aired water. A summary of published measurements of the hydraulic conductivity of Claymax[®] to water is given in Table 2.4. Results are plotted in Fig. 2.5 in terms of hydraulic conductivity versus effective confining stress. The results show that the hydraulic conductivity to water varies from just under about 1 x 10^{-8} cm/s at low effective stress to just above 1 x 10^{-10} cm/s at high effective stress.


2.2.2.2 Claymax[®] Permeation with Various Liquid and Chemical

Leachates

The information available concerning hydraulic conductivity of Claymax[®] permeated with liquids other than water is summarized in Table 2.5. All of the test specimens that were hydrated with water and then permeated with chemicals maintained a hydraulic conductivity $\leq 1 \times 10^{-8}$ cm/s, even for compounds such as diesel fuel and heptane that would normally be very aggressive to soil liner materials. Brown, Thomas, and Green (1984), for example, found that the

Table 2.4 Results of Hydraulic Conductivity Tests on Claymax[®] Permeated with Water

	•				Effective	Hydraulic
		Backpressure		Diameter of	Stress	Conductivity
Source of Information	Permeameler	Saluration?	Permeanl Waler	Sample (in.)		(cm/s)
Ciem Corp. Literature		•	Dealred Water	4	1	2 x 10-10
Chen-Northern (1988)	Flex. Wall	Yes	•	2.5	3.5	2 x 10 ⁻⁹
GeoServices (1988a)	Flex. Wall	Yes	Dealred Tap Water	2.8	29	4 x 10-10
GeoServices (1989c)	Flex. Wall	Yes	Dealred Tap Water	2.8	30	8 × 10-10
GeoServices (1989c)	Flex. Wall	Yes	Deaired Tap Water	2.8	30	8 x 10 ⁻¹⁰
GeoServices (1989c)	Flex, Wall	Yes	Dealred Tap Water	2.8	30	3 x 10 ⁻¹⁰
GeoServices (1989c)	Flex. Wall	Yes	Dealred Tap Water	2.8	30	7 × 10-10
Shan (1990)	Flex. Wall	Q	Distilled Water	4.0	લ્ય	2 x 10-9
Shan (1990)	Flex. Wall	R.	Tap Waler	4.0	2	2 x 10 ⁻⁹
Shan (1990)	Flex. Wall	R	Distilled Water	4.0	5	1 x 10-9
Shan (1990)	Flex. Wall	QN	Tap Waler	4.0	£	8 x 10-10
Shan (1990)	Flex. Wall	z	Distilled Waler	4.0	10	6 × 10-10
Shan (1990)	Flex. Wall	Q	Distilled Water	4.0	2 Ó	3 × 10-10
Shan (Unpub.)	Flex. Wall	Yes	Tap Waler	12	2	2 x 10 ⁻⁹
GeoServices (1990b)	Flex. Wall	Yes	Dealred Waler	•	30	3 × 10-10
GeoSyntec (1990a) ·	Flex. Wall	Yes	Dealred Water	•	1.0	2 x 10 ⁻⁹
GeoSyntec (1990a)	Flex. Wall	Yes	Dealred Water	•	<u>ل</u> . ت	4 x 10-9

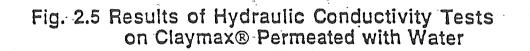


Table 2.5 Hydraulic Conductivity of Claymax® Permeated with Various Liquids

	·			Effective	Hydraullc
		•	Pore Volumės	Stress	Conductivity
Source of Information	Permeant Liquid	Hydration Liquid	of Flow	(Isa)	(cm/s)
STS Consultants (1988b)	Sewage Leachale	Sewage Leachale	•	4	8 x 10-10
STS Consultants (1988c)	Paper Pulp Sludge	Paper Pulp Sludge	4 6	1 1	2 x 10-10
GeoServices (1988b)	Simulated Seawater	Simulated Seawater	4 8	30	2 x 10-10
STS Consultants (1989a)	Landlill Leachale	Landill Leachale	•	•	4 x 10-10
STS Consultants (1989b)	Ash-Fill Leachale	Ash-Fill Leachale	4 6	e 7	f x 10-10
GeoServices (1989c)	Diesel Fuel	Water	້	30	9 x 10-10
GeoServices (1989c)	Jet Fuel	Water	2.5	30	9 x 10-10
GeoServices (1989c)	Uniteaded Gasoline	Water	1.6	30	3 x 10-10
Shan (1990)	50% (Vol) Methanol	. Waler	2.2	ស	9 x 10-10
Shan (1990)	Heplane	Waler	0.2	IJ	1 x 10-10
Shan (1990)	Sulfric Acid	Water	ë.	ſŎ	6 x 10-11
Shan (1990)	0.01 N CaSO4	[:] Waler	2.2	IJ	1 x 10-9
Shan (1990)	0.5 N CaCl2	Water	24	ທ	9 x 10-0
Shan (Unpublished)	50% (Vol) Melhanol	50% Methanol	ব্দ	ស	5 × 10-8
Shan (Unpublished)	Melhanof	Methanol	5.4	പ	3 × 10-5
Shan (Unpublished)	Heplane	Preptane	4.3	ស	5 x 10 ⁻⁵
GeoServices (1990a)	Methyl Tertlary Bulyl Ether	Dealred Water	1.8	30	7 x 10-10
Klohn Leonoli (1990)	Solution from Goldmine Solution from Goldmine	olution from Goldmine	8.	17.4	2 x 10-10
GeoSynlec (1991b)	Landill Leachalo	Dealred Water	1.7	ŝ	3 × 10-9

hydraulic conductivity of a compacted, micaceous soil was 1 to 4 orders of magnitude higher to kerosene, diesel fuel, and gasoline than it was to water. The inconsistency of results reported in Table 2.5 to the research conducted by Brown and his co-workers may be related to either a small cumulative pore volumes of flow in the tests on Claymax[®] or application of a high compressive stress to the test specimens. The cumulative pore volumes of flow of permeant liquid was not reported in many of the test referenced in Table 2.5; in many cases, there was probably an insufficient quantity of flow to determine the full effects of the permeant liquids. In some tests, a large effective confining stress was used. Broderick and Daniel (1990) found that one compacted clay was vulnerable to significant alterations in hydraulic conductivity when compressive stresses were ≤ 5 - 10 psi (34 - 69 kPa) but did not undergo an increase in hydraulic conductivity when the specimens were permeated with compressive stresses larger than 5+to 10 psi (34 to 69 kPa). Brown and his co-workers applied no compressive stress to their test specimens.

Tests on specimens of Claymax[®] that were hydrated with the same liquid as the eventual permeant liquid (rather than water) showed mixed results. For leachates, a paper pulp sludge, and simulated seawater, the hydraulic conductivity was found to be < 1 x 10⁻⁹ cm/s. However, the significance of

these results is questionable because the duration of the tests was short, the cumulative pore volumes of flow was not reported, and the applied compressive stress was not reported. In as-yet unpublished tests by Shan, markedly different results were obtained when Claymax[®] was not prehydrated with water. Shan found that when dry Claymax[®] was permeated directly with a 50% mixture of water and methanol, with pure methanol, or with heptane, the bentonite did not hydrate even after several pore volumes of flow, and the hydraulic conductivity did not drop below 1 x 10-6 cm/s. Shan used a compressive stress of 5 psi (34 kPa). Thus, with concentrated organic liquids, -the conditions of hydration appear to play an important role in determining the ability of the bentonitic blanket to resist the deleterious action of organic chemicals. The bentonite appears to be more chemically resistant if hydrated with fresh water before exposure to concentrated organic chemicals.

2.2.2.3 Effects of Desiccation on Claymax®

The effects of desiccation were investigated by GeoServices (1989d). Three hydrated samples of Claymax[®] were placed in a temperature and humidity-controlled chamber. The chambers operated on a timed cycle to simulate day and night conditions. The temperature and humidity during

33

thick HDPE geomebrane, was the material tested during this study.

2.3.2 <u>Available Laboratory Test Data of the Hydraulic</u> <u>Properties of Paraseal and Gundseal</u>

2.3.2.1 Paraseal Permeation with Water

Pittsburgh Testing Laboratory (1985) conducted a hydraulic conductivity test on a 2.5-in (64-mm) diameter sample of Paraseal. A 15-ft (4.6-m) head of water was applied to the sample, which was soaked for 5 days prior to permeation. A single, falling-head test was performed, which yielded a hydraulic conductivity reported to be 4 x 10⁻¹⁰ cm/s. Further details of the test procedures are not available. However, because the direction of flow was apparently through the HDPE membrane, the test may have provided a measure of sidewall leakage rather than flow through the material.

2.3.2:2 Gundseal Permeation with Chemical Leachates

The hydraulic conductivity of Gundseal permeated with landfill leachate was measured by GeoSyntec Consultants (1991c). A grid of 0.12-in (3-mm) diameter holes on 0.3 in (0.75 cm) centers were drilled into the Gundseal test samples in order to effectively test the bentonite portion of the Gundseal product. Three 2.8-in (70-mm) diameter samples were placed in flexible-wall permeameters and subjected to an effective stress of 5.0 psi (35 kPa). The test specimens were permeated, first with de-aired water then with leachate. The average hydraulic gradient applied during permeation with de-aired water was 50. The hydraulic gradient was increased to 230 during permeation with the leachate in order to increase flow through the Gundseal. The average hydraulic conductivity of the punctured Gundseal specimens was 1 x 10⁻⁹ cm/s for both the de-aired water and the leachate after approximately 1.2 pore volumes of flow. The hydraulic conductivity of the prehydrated bentonite appeared unaffected by the introduction of the leachate.

2.3.2.3 Effects of Desiccation on Gundseal

GeoSyntec Consultants (1991c) measured the hydraulic conductivity of a sample of Gundseal that had undergone 4 desiccation cycles. The 2.8-in (70-mm) diameter sample was punctured with small holes in the same grid pattern as the samples described previously. The test sample was permeated with de-aired water in a flexible-wall permeameter under an effective stress of 5.0 psi (34 kPa) and an average hydraulic gradient of 215 in order to determine hydraulic conductivity. The sample was removed from the permeameter, subjected to a 0.4 psi (3 kPa) confining stress, and placed in an oven for two

2.5 <u>Summary of Hydraulic Properties of Bentomat®</u>, <u>Claymax®</u>, and Paraseal/Gundseal

Table 2.10 is an abridged summary of the hydraulic conductivity data of Bentomat[®], Claymax[®], and Paraseal/Gundseal. The table includes results from tests conducted by GeoSyntec (1991a,b,c), GeoSyntec (1990b), and Shan (1990). Results from hydraulic conductivity tests conducted by other laboratories have not been included in Table 2.10 in order to present the information in a simplified and consise form.

70

		Bentomal®	1 1 6	ਕ	Claymax®	ŝ	Pera:	Parazeal/Gundsen	ltead	
		Ellocive	Plydraulic	111	llechve	Ellochvø Hydraullc		Ellective	 Hydraulic 	ulle
Samthe	Reference	Stress	Conductivity (crrvs)	Roloronce	Stress [bsl]	Conductivity (cm/s)	Reforence	Stress (psl)	Conductivity (cm/s)	cclwlly a)
Sample Permeated with Deshed Water	CeoSyr#ec (1991a)	50	2.0 x 10.9	GeoSymboc (1991b)	2.0	1.8 × 10.9	0005ymaac (1991c)	6.0	apua A apua	x 10 ⁻⁹
Serrote Permeated with Landill Leachete	CooSynker (1981a)	0 9	2.5 x 10-9	GooSynhoc (1991b)	ъ.0 С	2.8 х 10-9	OeoSynteic (1991c)	ອີ	49 49 49	x 10-0
Desiccated Sample	0eocynaeo (1991a)	8,0	1.0 x 10 ⁻⁹ 10 3.0 x 10 ⁻⁹	(0661)	2.0	2.0 x 10° \$	0=05ymaa (1991c)	B.O	: 5.0 x 10 ⁻¹⁰ 10 2.0 x 10 ⁻⁹	* 10-10 * 10-9
Freeze-Thaw Sarrighe	0003)milio (1991a)	0 9	1.0 x 10 ⁻⁹ to 6.0 x 10 ⁻⁹	Steen (1990)	2.0	2.2 x 10-9	0eo3ynaeo (1991c)	4	Č, K	R 10-9
Demoged Santife 1-in channeler incle 2-in channeler incle	GeoSynimo (1001a)	8 8 6 8	1.3 x 10-4 1.7 x 10-4	(1)(0681)	0. • •	8.0 x 10.8	Geochnae (1991c)	4 4 4	Ú Ú Ú Ú Ú	x 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3-kn kong ak		6 6.	3.0 × 10 5	•	# 9	e 4		e e	а 0. -	10- 3 3
Composite Sangula	CeoSymoo (1991a)	¢ 9	3.0 x 40-19	Shim (1990)	5.0	4.0 x 10 ⁻⁹	CencSyntero (19910)	4	2.0	x 10.9
Overlapped Searn Sample	Coocynamo (1991a)	a T	6.0 x 10 ⁻⁷ 10 2.0 x 10 ⁻⁵	GeoSynteo (1990b)	0.	2.0 x 10.9	CoocSynterio (19910)	· ·	6.0	\$ 10-8

Table 2.10 Summary of Hydraulic Conductivity Tests on Bentomat[®], Claymax[®], and Parasoal/Gundseal

.

71

(1) The domaged Claymax® sample tested by Shan (1090) was punctured with 3 - 1 inch diameter intes.

Report

. roject

HYDRAULIC CONDUCTIVITY AND COMPATIBILITY TESTING OF CLAYMAX BALTIMORE COUNTY LANDFILL PROJECT TOWNSON, MARYLAND

Client

CLEM ENVIRONMENTAL CORPORATION 444 NORTH MICHIGAN AVENUE, SUITE 1610

CHICAGO. IL 60611

-

•

Project # 25868-XH

Date . MAY 11. 1989

. .

53

STS Consultants Ltd. Consulting Engineers

HYDRAULIC CONDUCTIVITY AND COMPATIBILITY TESTING OF CLAYMAX BALTIMORE COUNTY LANDFILL PROJECT TOWNSON, MARYLAND

SCOPE OF SERVICES

STS was to perform two hydraulic conductivity tests on sections of Claymax liner material in conjunction with a six inch sand layer utilizing leachates as the hydration medium and the permeants. The Claymax specimens were supplied to STS by Clem Environmental and the leachate specimens were obtained from L.A. Solamen. Inc. All testing materials were delivered to our Northbrook Testing Facility.

Test Equipment

The equipment used in the compatibility study was a triaxial compression permeameter. This equipment incorporates the use of a flexible membrane, preventing sidewall seepage. back pressure to facilitate specimen saturation small diameter burettes making measurement of small volumes of collected permeant possible and the system is closed preventing the permeant from being exposed to the surrounding air.

Specimen Construction

Each of the specimens, utilized throughout the testing program, consisted of an approximately six inch cylindrical column of silica sand on top of which a circular section of Claymax was placed. The orientation of the Claymax to the sand provided for permeant flow initiated through the sand followed by the Claymax section. The directional flow of the permeant, is similar to those conditions found in the field applications.

Clem Environmental Corporation STS Project No. 25868-XH May 11, 1989

Once the specimens were assembled, a flexible rubber membrane was used to encase the specimens while sealed in the triaxial permeameter chamber.

Test Procedures

After its initial construction and placement in a triaxial compression permeameter each of the specimens is backpressure saturated. To aide in specimen saturation, carbon dioxide gas was allowed to flow freely through the test specimen, inundating the voids in the sand and dry Claymax. The use of this carbon dioxide gas has been accepted as a procedure to aide in specimen saturation. The carbon dioxide gas will go into solution more readily than normal atmospheric air. Once it was determined that the carbon dioxide gas had completely inundated the voids of the test specimen, the permeants were allowed to free flow through the test specimen first saturating the silica sand and then the Claymax section. For this study, the leachates were utilized both as a set hydrating medium and as the actual permeant for the hydraulic conductivity determination.

Two leachates were used during the study. The first was labeled Parkton Landfill and the second labeled as Eastern Sanitary Landfill. It is the understanding of STS. Consultants that the two leachates were a municipal landfill leachate and contained such things as heavy metals, phenals, cyanide, copper, phosphorus and other substances.

and a the second s

Once the leachate had fully hydrated the test specimen, the specimen was allowed to stand for a 24 hour hydration period. Following the hydration period, the backpressure saturation techniques were implemented to complete the saturation procedures. This was accomplished by simultaneously increasing the cell and back pressures in increments while maintaining a pressure differential of 0.125 kilograms per square centimeter (KSC). Pressures were incrimentally increased until obtaining testing pressures of 4.125 KSC cell pressure and 4.00 KSC back pressure.

-2-

Clem Environmental Corporation STS Project No. 25868-XH May 11, 1989

Specimen saturation was considered complete when a Skempton's Pore Pressure B-parameter of 0.95 or greater was obtained. The "B" parameter is simply a ratio of an increase in pore water pressure to a simultaneous increase in confining pressure. When full specimen saturation was determined, permeant flow was initiated through the bottom of the test specimen, allowed to flow through the top of the test specimen and collect in a calibrated burette. The test was performed utilizing two separate gradients. The initial gradient consisted of an application of a hydraulic head of one foot. The second gradient was applied as a hydraulic head equivalent to 35 feet.

During the entire test, permeant volume versus time measurements were recorded and the hydraulic conductivity of the test specimen at the two gradients was determined. The test was allowed to continue until it had been determined that a minimum of three pore volumes of pore fluid had passed through the test specimen. Once this had occurred and steady state flow had been established, the test was terminated.

Laboratory Test Results

As a result of the testing as outlined above, the Claymax section utilizing the Parkton Landfill Leachate, as the permeant, obtained hydraulic conductivity values of 2×10^{-10} centimeters per second (cm/sec) for a hydraulic head of one foot and 4×10^{-10} cm/sec for a hydraulic head of 35 feet. The Claymax section exposed to the Eastern Sanitary Landfill leachate obtain hydraulic conductivity values of 3×10^{-10} cm/sec utilizing a hydraulic head of 35 feet. A summary of specific specimen characteristics and final hydraulic conductivity values is attached to this report.

-3-

STS Consultants Ltd.

....¢

		STS PROJECT NO. 25868-XH
		PROJECT Baltimore County
		Landfill Project
		DATE
	SUMMARY OF HYDRAULIC CONDUCT	TIVITY TESTS
· · · · ·		· · ·
Permeant	Parkton Landfill	Eastern Sanitary Landfill
Sample No.	1 .	2
Classification	Claymax with 6" Silica Sand	Claymax with 6" Silica Sand
v Unit ght (pcf)	51.6	62.5
n na na na na mara na mara. Na na na na		
	· · ·	· · ·
Water Content (%)	Dry	Dry
Diameter (cm)	7.028	7.026
(Cm)	· · ·	
Length (cm)	0.568	0.616
Saturation B Value	0.97	0.99
Hydraulic	$ 1 \text{ ft. } 2 \times 10^{-10} $	1 ft. 3 x 10 $^{-10}$.
Conductivity k (cm/sec)	35 ft. 4 x 10 -10	$35 \text{ fc. } 4 \times 10^{-10}$

in n

· · · · · ·

	المعادية المناطقة ال		X 474	2931	BALTO, CO.	0
•						
		BALTIMORE COUNTY WASTEWATER MONII INDUSTRIAL DISCH	ORING AND A	ANALYSJ	IS DIVISION	Rev: 12/87
Dennis F. R County Recould		SAMPLINC/ANALYSI	FORM		Sample No.:	9 01110
Industry N	ane: EASTERN	SANITARY LANDFILI		••••••••••••••••••••••••••••••••••••••	Facility No. 7	
	Days Cove Ro					· · · · · · · · · · · · · · · · · · ·
			Requesto	d by: _	P. Phillips	and a company of the state of the
	ite Location: _				• • • • • • • • • • • • • • • • • • •	۲۹۹۹-۱۹۹۹-۱۹۹۹-۱۹۹۹-۱۹۹۹-۱۹۹۹-۱۹۹۹-۱۹۹۹
Special In	structions: ST	D 5, metals, Total	alkalinit	y & Ch	lorides	and the second secon
FIELD						ݮݷݐݠݔݕݾݸݙݹݐݱ ݿݿݞݿݸݖݿݸݿݿݸ ݒ _{ݤݸݪݒ} ݬݿݿݗݷݵݾݞݕݵݲݕݴݪݥݪݪݖݾݛݕݾݩݷݷݒݵݞݖݖݥݞݞݹ
Date and T	ime of Sampling	: Scart 1/18/89	10:20 a.	n. F	inish	
Sampled by	: P. Phillip	s, T.E. Ryan			•	
Type of Sa	mpla: Crab					
						······
Sample Cha	racterístics:	Lquarr: dark gr	ay: 1 quar	t; darl	< brown	an a
Preservati	ves Added;	Cooled with ice	ļ ļ		۰ ۱	
Comments a	nd Observations		/ 9 4 4 4		ىر ئىرىمىيى ھەر ھەر ھەر ھەر ھەر يەر بىرى بىرى بىرى يەر بەر يىرى	
Delivered	co Lab by: <u>p</u>	P. TER -	 	Dace	: 1/18/89 TI	mu: 11:50 a.m
anderskeinen auf anderen auf anderen auf der eine sonen anderen auf der eine sonen auf anderen auf der eine sonen auf anderen auf a Auf anderen auf	مىسى مەربىيە يېرىمىيە يېرىكى ئېرىكى ئېرى ئىسى بىرىكى ئېرىكى ئې		<u> </u>			
	••••	WP	<u></u>	_ Date	: <u>1/18/89</u> TI	mai 11:50 a.m
Characteri	stice of Note:				<u>مر من </u>	
Fritzen ander ander ander ander ander		ن <u>ب سر بر بر</u>	:]	· · · · · · · · · · · · · · · · ·	_ (Origin of Se	ed: Polyseed)
		ANALYTIC	AL RESULTS		. ,	
Code BDL	Parameter	Conc. (mg/L)	Code	BDL	Paramecer	Conc. (my/L)
	BH	6.3	3011	0.05	Ni (Nickel)	BDL
-	BOD	122 mg/L	3015	0.01	Zn (Zinc)	0.05 mg:/1.
T the state of the	COD	148 mg/L	3130		Phenols	
a	TSS	125 mg/L	3013	0.01	Silver	BDL
5012	FOC - ALV					
3(113	FOG - Petr		; ¢		GRAD pH	
2026	P(Phosphorus)	2.52 mg/L		•	Chargelog y distanting with the charge of the second second second second second second second second second se	Contraction and a second s
3006 0.01	Cd(Cadmium)	BDL	1 1		Total Fe	3.88 mg/L
3007 0.05	Cr(Chromium)	BDL	tip summerie		Torni alkalini	ty 350 mg/L
3008 0.02	Cu(Copper)	0.04 mg/L			Chioride	80 mg/L
	Cn(Cyanide)	a server and a server a serve			Caracter of States of Stat	A
	Pb (Lead)	0.36 mg/L.	• _ 		۲. دیکھری کر میں کاریک کر میں کر 1. دیکھری کر میں کر	<i>ݷ᠁᠆ᡣᡆᠯ᠆ᢩᡩᢗᡁ᠆ᠳᢩᠳᡣ᠁ᡆ</i> ᠮ᠂ᡁᡣ <i>ᡨ᠄᠁</i> ᠁ᠴ᠆ᡏ
		anna a na ann ann ann ann an ann ann an	Nga Pananakan Karata		Contraction and the second second second second	و، ۵ ا همیسیدین بر بیاه مستقبل میدونین

BALTIHOKE COUNTY

į 1 1

Rev: 12/87

R. A.	WASTEWATER MON. INDUSTRIAL DISC				
Dennis F. Rasmusson	SAMPLINC/ANALYS	IS FORM		Sample No.: 9	02104
Industry Hame: PARKTO		**************************************		Facilicy No.:	
Address:	1			anning the associate for the state of the st	
Telephone:		Requested	Ъу:	R'. Huch	and the second se
Sampling Site Location: _	Call 03				•
Special Instructions:	PH, BOD, COD, TS	8, Alkalinity,	Chlor	ide, Hetals	
FIELD					
Date and Time of Sampling	1 - Start 2/9	/89	Fi	nish	an at some and a set of a state o
Sampled by: Huch.	-				
Type of Sample: Grab					
Sampler Settings1					
Sample Characteristics:	and and an an	, , ,			
Presorvatives Added:	┠┉╛╬┉┉╷ _┙ ╄ _┲ ┑╀┲┲╧₽┺╊╘╍┰┲╬╓┲╧┲╔╬╌┲╧┷╖╡╝╪╼╸╼╝ _{╋╸╸} ╸		,,	_{ֈՠֈֈ} ֈՠՠֈՠՠ֎ֈֈ֎ՠֈ֎ֈՠ֎֎ֈֈ֎֎ֈՠ֎֎ֈՠ֎֎ՠֈՠՠՠՠ֎ՠֈՠՠՠՠՠՠ	<u>har dar yn an an de an am an </u>
Conments and Observations					
Delivored to Lab by:B			Dates	2/9/89 Time:	2:20 P.H.
Les en	۵۰۰۰ می بادید میرد بادید می بادید این با ۱ ۱۹ می بادید این بادید این بادید این بادید این بادید بادید این بادید بادید این بادید این بادید این بادید این باد ۱۹ می بادید این بادید این بادید این بادید بادید بادید بادید بادید بادید بادید بادید بادید این بادید این بادید ب				
LABORATORY			•• •		and the second
Sample received by:	WP		Dates	2/9/89 Time:	2:20 F.M.
Characteristics of Note:			-		
				(Origin of Seed:	Polyseed)
	ANALY	1		~	
ode <u>BDL</u> Parameter			ROI		
ode BDL Parameter	6.1	\	0.05		1.44 = g/L
- <u>BOD</u>	38,888 mg/L	<u>3011</u>		<u></u>	5.45 mg/
<u>Cop</u>		. <u>3015</u>	0.01	$\frac{z_n(2inc)}{z_n(2inc)}$	
TSS	60,831 mr./1.	3130	0.01	Phenols	0.03 =x/L
012 FOC - ALY	<u>691 mg/L</u>	3013	<u> </u>	OTTACT .	
013. FOC - P	garment waraning of May and the pression of the standard internal				
DIG . FOG - Petr	- 479-000000000000000000000000000000000000	*		GRAB pH	
1006 0.01 Ed(Cod-14)				Quantum construction and a set	
0.05 0.01 <u>Cd(Cadmium</u>)	0,10 mg/L	Children Davie and State		Total Fe	736.00 mg/L
008 0.02 Cu(Copper)	0.22 me/L	·		Total alkalinit	
$\frac{12}{012} \qquad \frac{FOC - A4V}{FOC - Petr}$ $\frac{13}{026} \qquad \frac{FOC - Petr}{P(Phosphorus)}$ $\frac{1006}{0.01} \qquad \frac{Cd(Cadmium)}{Cd(Cadmium)}$ $\frac{1008}{0.02} \qquad \frac{Cu(Copper)}{Cn(Cvanidc)}$ $\frac{1009}{0.10} \qquad \frac{Ch(Cvanidc)}{Ch(Cud)}$	1.17 mg/L			Chloride	1,500 =g/
0.10 Pb (Leud)	0.60 mg/L				•

APPLICATION FOR PERMIT OWL LANDFILL SERVICES, LLC

VOLUME III: ENGINEERING DESIGN AND CALCULATIONS SECTION 6: GEOSYNTHETICS APPLICATION AND COMPATIBILITY DOCUMENTATION

ATTACHMENT III.6.E

HDPE PIPE REFERENCE DOCUMENTATION

Chemical Resistance of Plastics and Elastomers Used in Pipeline Construction

1. Introduction

It is now inconceivable to construct pipelines without the use of plastics. Pipes made from plastics are used not only for drinking water, water for general use and waste water, but also for the conveyance of agaressive liquids and gases. Expensive pipe materials such as lined metal, ceramic or glass, have been largely superseded by plastic pipes. It is, however, important that the most suitable plastic material is selected for each application. This "Chemical Resistance List" serves as a useful quide in this respect. The list is periodically revised to include the latest findinas. It contains all plastics and elastomers in the George Fischer product range which can come into direct contact with the media.

The information is based on experiments, immersion and, when available, on data from tests which include temperature and pressure as stress factors. The results achieved in immersion experiments cannot be applied without reservation to pipes under stress, i.e. internal pressure, as the factor "stress corrosion crackina" is not taken into consideration. In certain cases it can be of advantage to test the suitability under the planned working conditions. The tests referred to have been carried out partly by George Fischer and partly by the International Standardization Organization (ISO) or national standards organizations.

Pure chemicals were used for the tests. If a mixture of chemicals is to be conveyed in practice this may affect the chemical resistance of the plastic. It is possible in special cases to carry out appropriate tests with the specific mixture. Suitable test equipment is available at George Fischer for this purpose, which we regard as part of our service to the customer. It goes without saying that we are willing to give individual advice at any time. In this connection it is worth mentioning that George Fischer already possesses information concerning the behavior towards plastics of a number of chemicals or mixtures of chemicals which are

not yet included in this list. The "Chemical Resistance List" gives valuable assistance in the planning of plastic pipelines. Please refer to the following instructions, which are important for the application and evaluation of this list.

2. Instructions for the Use of the Chemical Resistance List

2.1 General

As stated in the introduction, the "Chemical Resistance List" is only intended as a guide. Changes in the composition of the medium or special working conditions could lead to deviations. If there is any doubt, it is advisable to test the behavior of the material under the specific working conditions, by means of a pilot installation. No guarantees can be given in respect of the information contained in this booklet. The data shown is based upon information available at the time of printing, but it may, however, be revised from time to time in the light of subsequent research and experience.

2.2 Classification

The customary classifications: resistant, conditionally resistant and not recommended are depicted by the signs: +, O, and –, which allow simple presentation and application. These classifications are defined as:

Resistant: +

Within the acceptable limits of pressure and temperature the material is unaffected or only insignificantly affected.

Conditionally Resistant: O

The medium can attack the material or cause swelling. Restrictions must be made in regard to pressure and/or temperature, taking the expected service life into account. The service life of the installation can be noticeably shortened. Further consultation with George Fischer is recommended.

Not recommended: -

The material cannot be used with the medium at all, or only under special conditions.

2.3 Pipe Joints

2.3.1 Solvent Cement Joints (PVC) Solvent cement joints made with standard PVC cement and primer systems

are generally as resistant as the PVC material itself. The following chemicals are, however, an exception:

- Sulphuric acid H₂SO₄ in concentrations above 70 percent
- Hydrochloric acid HCl in concentrations above 25 percent
- Nitric acid HNO₃ in concentrations above 20 percent

Hydrofluoric acid in any concentration In conjunction with the above media the solvent cement joining is classified as "conditionally resistant". Previously recommended solvent cement IDytex, by Henkel, Germany! used for pipe and fittings to carry concentrated acids, can no longer be brought into the United States because of its methylene chloride solvent system being classified as a carcinogen. There is no known domestically available substitute. Special consideration should be given to the possible attack of the cemented joints by these concentrated acids.

2.3.2 Fusion Joints

In the case of PE, PP, and PVDF (SYGEF®) heat fusion joints have practically the same chemical resistance as the respective material. In conjunction with media which could cause stress cracking, the fused joints can be subjected to an increased risk due to residual stress from the joining process.

2.4 Sealing Materials

Depending upon the working conditions and the stress involved, the life span of the sealing materials can differ from that of the pipeline material. Seals in PTFE, which are not included in this list, are resistant to all the chemicals indicated. The greater permeability of PTFE should, however, be considered. Under certain working conditions, for example when conveying highly aggressive media such as hydrochloric acid, this material characteristic must be taken into account.

(Courtesy George Fischer Engineering Handbook)

2.5 General Summary and Limits of Application

The following table includes all the materials contained in the George Fischer product range, and their abbreviations. The summary gives preliminary information regarding the general behavior of the materials and the temperature limits.

2.6 Standards

This list has been compiled with reference to the following ISO standards: ISO/TR 7473

Unplasticized polyvinyl chloride pipes and fittings – Chemical resistance with respect to fluids.

ISO/TR 7474

High density polyethylene pipes and fittings – Chemical resistance with respect to fluids to be conveyed. ISO/TR 7471

Polypropylene (PP) pipes and fittings – Chemical resistance with respect to fluids.

ISO TR 10358

Plastic pipes and fittings – Combined chemical resistance classification table. DVS 2205 Part I

Calculations for thermoplastic containers and appliances.

DIN 8080 Supplement 1 «Pipes of chlorinated polyvinyl chloride (PVC-C1, PVC-C 250 – Chemical Resistance».

Wateriał	Abbre- viation	Remarks	Maximum Pe Temperature	
			Constant	Shori Term
Polyvinyl Chloride	PVC	Resistant to most solutions of acids, alkolis and sats and to arganic compounds miscible with water. Not resistant to aromatic and chlournated hydrocarbons	60°	60°
Chlorinated Polyvinyl Chloriae	CPVC	Can be used similarly to PVC but at higher temperatures. Consult factory for specific applications.	90°	110°
High-density Polyeihylene	PE 50	Resistant to hydrous solutions of acids, alkalis and salts as well as to a large number of arganic solvents. Unsuitable for concentrated axidizing acids.	60°	80°
Polypropylene, heat stabilized	PP	Chemical resistance similar to that of PE but suitable for higher temperatures	90°	110°
Polyvinylidene Fluoride	PVDF (SYGEF*)	Resistant to acids, solutions of sals, aliphatic, aromutic and chlorinoted hydrocarbons, alcohols and halogens. Conditio- nally suitable for ketones, esters, organic bases and all aline solutions.	140°	150°
Polybutylene-1	98	Similar to PE 50, but can be used up to 90°C	90°	100°
Polyaxymethylene	POM	Resistant to most solvents and hydrous alkalis. Unsuitable for acids	60°	80°
Polytetrafluorcethylene le.g. Teflon*)	PTFF	Resistant to all chemicals in this list	250°	300°
Nitrile Rubber	NBR	Good resistance to oil and petrol. Unsuitable for oxidizing media	90°	120°
Butyl Rubber Elhylene Propylene Rubber	IIR EFDM	Good resistance to ozone and weather. Especially suitable for aggressive chemicals. Unsuitable for oits and fats	90°	120°
Chioroprene Rubber (e.g. Neoprene®)	CR	Chemical resistance very similar to that of PVC-U and between that of Nitrile and Butyi Rubber	80°	110°
Fiuorine Rubber (e.g. Viton ^{is})	FPM	Has best chemical resistance to solvents of all elastomers	150°	200°
Chlorine Sulphonyl Polyethylene (e.g. Hypolon*)	CSM	Chemical resistance similar to that of EPDM	100°	140°

®Registered trade name

The abbreviations listed below are found throughout the listings and have the following definition:

Q/E (Quellung/Erweichung) = swelling/softening D/P (Diffusion/Permeation) = diffusion/permeation SpRB (Spannungsrissbildung) = environmental stress cracking

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-4d	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Acetaldehyde	CH ₃ -CHO IC ₂ H ₄ O)	21	technically pure	20 40 60 80 100 120 140	-	-	-	+ 0	0	-	+0-	0	-	-	C -
Acetaldehyde			40%, aqueous solution	20 40 60 80 100 120 140	0	-	-	++0	+ + + 0 -	-	+++++	++0 -	1	++0.	+++++++++++++++++++++++++++++++++++++++
Acetic acid (SpRB)	сн₃соон	118	technically pure, glacial	20 40 60 80 100 120 140	0	-	-	++0	++0-	+ 0 -	0	-		0	С
Acetic acid (SpRB)	сн₃соон		10%, aqueous	20 40 60 80 100 120 140	++0	+++++	+ + 0	+ + +	+ + + + +	+ + + +	++0	0 -	+0	++0	-
Acetic acid ISpRB)			50%, aqueous	20 40 60 80 100 120 140	++0	+		++++	++++	+++00	+	0		0	C
Acetic acid (SpRBI	сн₃соон		60%	20 40 60 80 100 120 140	+	-	-	+	+	+	+				
Acetic acid (SpRB)		118	98%	20 40 60 80 100 120 140	-	-	-	+	+	+	0	-		and the second se	
Acetic acid anhydride {SpRB	ICH3-CO)2O		technically pure	20 40 60 80 100 120 140	-	-	-	+ 0	+0	-	0	-	-	-	4

Aggressive Media					Ch	emic	al Re	sista	nce							
Medium	Formula	Boiling point ² C	Concentrotion	Temperature ² C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	- Local -	EYUM	FPM	NBR	S,	CSM
Acetic acid isobutyl ester	1СH ₂ I ₂ -СH-1СH ₂ I ₂ -СО ₂ н		technically pure	20 40 60 80 100 120 140												
Acetone	CH3-CO-CH3	56	technically pure	20 40 60 80 100 120 140	-	-	-	+ + +	+++++	-		+ + +	-	-	-	000
Acetone			up to 10%, aqueous	20 40 60 80 100 120 140	-	-	0	+++	++++	000		+ + +	00.	-	+ 0 -	000
Acetonitrile	CH₃CN	81.6	100%	20 40 60 80 100 120 140	-	-	-					and the second				
Acetophenone	CH3-CO-C6H3		100 %	20 40 60 80 100 120 140	-	-	-			-		+			-	
Acrylic acid methyl ester	CH2=CHCOOCH3	80.3	technically pure	20 40 60 80 100 120 140	-		-			+		0				
Acrylic ester	CH2=CH-COO CH2CH3	100	technically pure	20 40 60 80 100 120 140	-	-	-		-	ĸ		0		-	0	+
Acrylonitrile	CH₂=CH-CN	77	technically pure	20 40 60 80 100 120 140	-		-	+ + +	+ 0	-		+ + 0	00.	-	++++	00.

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Adipic acid	НООС-ІСН2)4-СООН	Fp 153	saturated, aqueous	20 40 60 80 100 120 140	+ +	+ + +	-	++++	+ + + +	+	+++++++++++++++++++++++++++++++++++++++	++++	++++	++++	++++
Aluni	see Potassium/ aluminium sulphate														
Alcoholic spirits (Gin, Whisky,etc.)			approx. 40% ethyl alcohol	20 40 60 80 100 120 140	+	0		+	+	+	+	+	+	+	+
Allyl olcohol	H ₂ C=CH-CH ₂ -OH	97	96%	20 40 60 80 100 120 140	0.	0	-	++++	+ + +		000 -	0	+ + + +	0 -	+++-
Aluminium chloride	AICI3		10%, aqueous	20 40 60 100 120 140	+++++	+++++	++++	++++	++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+++++++++++++++++++++++++++++++++++++++	++0	++++	+++++
Aluminium chloride	AICI3	115	saturated	20 40 60 100 120 140	++++	+++++	++++	++++	++++0	+++++++++++++++++++++++++++++++++++++++	++++	++++++	+ + + 0 -	++++++	++++++
Aluminium fluoride	AiF ₃		saturated	20 40 60 80 100 120 140		++++	and a second			+ + +					
Aluminium hydroxide	AllOH) ₃		Suspension	20 40 60 100 120 140		++++++		on a second of the second of t			+++++				
Aluminium nitrate	Alino _{3¹3}	and you are an a second and a second	saturated	20 40 60 80 100 120 140		+++++				+ + +	++++				

Aggressive Media					Che	emic	ol Re	sisto	nce						
Medium	Formula	Bailing peint [°] C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-99	PVDF (SYGEF)	EPDM	FPM	NBR	č	CSM
Aluminium sulphate	Al ₂ ISO ₄ I ₃		10%, aqueous	20 40 60 80 100 120 140	+ + 0	+++++	+++++	+ + +	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + +	+++++	+++++	+++0
Aluminium sulphate			cold saturated, aqueous	20 40 60 80 100 120 140	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + +	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++	+++++	+++++	++00
Ammonia (SpRB)	NHa	-33	gaseous, technically pure	20 40 60 80 100 120 140	+++++++++++++++++++++++++++++++++++++++	-	-	++++	++++	++0000	+	+ 0	+	+	+
Ammonium acetate	CH3COONH4		aqueous, all	20 40 60 80 100 120 140	+ + 0	+++++	0	+ + +	+++++++	++++	+ + + 0	++++	+0	++0	++
Ammonium oluminium sulfate				20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++					
Ammonium bramide				20 40 60 80 100 120 140						+ + +					
Ammonium carbor.ate	INH4½CO3		50%, aqueous	20 40 60 80 100 120 140	+ + 0	++++++	++++	+ + +	++++++	+ + + + + +	+++++	++++	++++	++++	++++
Ammonium chloride	NH₄CI	115	aqueous, cold saturated	20 40 60 100 120 140	+ + 0	+++++	+++++	+ +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	++++++	+++	++++++	+ + + + +

Aggressive Media					Ch	emic	ol Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM CSM
Ammonium citrate				20 40 60 80 100 120 140	+ + +					+++++++++++++++++++++++++++++++++++++++					
Ammonium dicromate	INH ₄] ₂ Cr ₂ O ₇		saturated	20 40 60 80 100 120 140		++++++									
Ammonium dihydrogenphosphate				20 40 60 80 100 120 140	++++			+ + +	+ + +					and the second and the second s	
Ammonium fluoride	NH ₄ F			20 40 60 80 100 120 140	+ + +	+		++++	++++++	+++++++++++++++++++++++++++++++++++++++				and the property of the second se	
Ammonium formiate				20 40 60 80 100 120 140						+ + + +					
Ammonium hexafluorosuilicate				20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++				Tomation and the second s	
Ammonium hydrogen fluoride	NH ₄ HF ₂		50%, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +		+ +	+ + +	+ + +	+	+			A second s
Ammonium hydrogencarbonate				20 40 60 80 100 120 140	+ + +			+ + +	+ + +						

PLASTIC PIPING HANDBOOK

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	H.	H-H	PVDF ISYGEF!	EPDM	FPM	NBR	ð	CSM
Ammonium hydrogenphosphate				20 40 60 80 100 120 140	+ + +			+ + +	+++++						
Ammonium hydrogensulfite				20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++					
Ammonium hydroxide	№н₄ОН		aqueous, cold saturated	20 40 60 80 100 120 140	+ + 0	-	+ + 0		+ + +		+ + 0	~	+ 0 0	+++0	++0
Ammonium nitrate	NH4NO3	112	aqueous, saturated	20 40 60 80 100 120 140	+ + +	++++++	+ + +	+ + 0	+ + + 0	+ + + + +	++++	+++++	++0	++	++0
Ammonium oxalate	H4NOOC-COONH4			20 40 60 80 100 120 140						+ + + +	+				
Ammonium persulphate	(NH4l2S2O8			20 40 60 80 100 120 140		+++++				+++++++++++++++++++++++++++++++++++++++					
Ammonium phosphate	(NH4i3PO4		saturated	20 40 60 80 100 120 140	+++++	++++	++++++	+++++	+ + +	+ + + +	+ +	+++++++++++++++++++++++++++++++++++++++	+ + 0	++++	++0
Ammonium sulphate	INH412504		aqueous, saturated	20 40 60 80 100 120 140	+ + +	+++++	++++	++++	+ + + + +	+ + + + + +	++++++	+++++	++0	++++	++0

Aggressive Media					Che	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-4d	PVDF ISYGEFI	EPDM	FPM	NBR	СR	CSM
Ammonium sulphide	INH412S		aqueous, all	20 40 60 80 100 120 140	++0	000 -	+ + +	+ + +	++++++	+++++++	+++++	+ 0	++++	++++++	++++
Ammonium tetrafluoroborate				20 40 60 80 100 120 140	And a second					+++++++++++++++++++++++++++++++++++++++		And a second secon			
Ammonium thiocyanate	NH4SCN		saturated	20 40 60 80 100 120 140		+++++				+++++++++++++++++++++++++++++++++++++++					
Amyl acetate	CH3ICH2/4-COOCH3	141	technically pure	20 40 60 80 100 120 140			-	++++	00 -	+ 0 0	0	1	-	-	-
Amyl αlcohol (SpRB)	CH3ICH2J3-CH2-OH	137	technically pure	20 40 60 80 100 120 140	+ + 0	++++	-	++++	+++++	+ + + + + 0	++++	0	+ + +	+ + +	c
Aniline	C ₆ H ₅ NH ₂	182	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+ 0	-	000	-		-
Aniline hydrochloride	C _o H ₇ N+HCI	245	aqueous, saturated	20 40 60 80 100 120 140	0	+	-	++0	+ + 0	+	++++	0 -	0	~	+++0
Antimony thiocyanate				20 40 60 80 100 120 140						+++++++					

PLASTIC PIPING HANDBOOK

Aggressive Media	·····				Ch	emic	ol Re	sista	nce						
Medium	Formula	Boiling point [°] C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-dd	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Antimony trichloride ISpRBI	SbCl3		90%, aqueous	20 40 60 80 100 120 140	++	+	-	+++++	++++	+++++++++++++++++++++++++++++++++++++++	+	+	-	+	+
Aqua regia (SpRB)	HNO3+HCI			20 40 60 80 100 120 140	+ 0	+	-	-	-	0	-	0	-	-	0
Arsenic ocid	H ₃ AsO ₄		80%, aqueous	20 40 60 80 100 120 140	++0	+ + +	+ + +	+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+ + + +	+++++++	+++0	++++++	+ + + +
Barium carbonote	BoCO₃			20 40 60 80 100 120 140	+ + +	++++++	+	++++	+++++	+++	++++++	++	+++	+	+
Borium chloride	BoCl ₂		saturated	20 40 60 80 100 120 140	++++	+++++	+	++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++	++	+	+
Barium hydroxide	BolOHI ₂	102	aqueous, saturated	20 40 60 80 100 120 140	++0	++++++	++++	++++	+++++	-	++++++	+	+++	+ + +	+0
Barium salts			aqueous, all	20 40 60 80 100 120 140	++++	+++++	++++	++++	+++++	++++++++	+++++	+++++	++++	+ + +	++++
Barium sulfate	BoSO₄			20 40 60 80 100 120 140	+++			++++	+++++	+ + + + +	+ + +				

Aggressive Media					Che	emic	ol Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEFI	EPDM	FPM	NBR	ð	CSM
Borium sulfide	BaS		suspension	20 40 60 80 100 120 140	++++	+ + + +		+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	++++				
Battery acid Beef tallow emulsion, sulphonated (SpRB)	see Sulphuric acid 40%		usual commercial	20 40 60 100 120 140	+	o	+	+	+	+++++	- contraction of the second se	+	+	+	+
Beer			usual commercial	20 40 60 80 100 120 140	+++++	+ + + +	+ + +	+ + +	++++	+ + +		+	+	+	+
Benzaldehyde	C₀H₅-CHO	180	saturated, aqueous	20 40 60 80 100 120 140	-	-	-	++++	+	+ 0 -	+ + +	+ + +	0	-	-
Benzene	C₀H₀	80	technically pure	20 40 60 80 100 120 140	-	-		00	0	+ 0 -	-	+	0	-	-
Benzenesulfonic acid	C₀H₅SO₃H		technically pure	20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++		+			
Benzoic acid	с₀н₅-соон	Fp.*, 122	aqueous, all	20 40 60 100 120 140	++0	+++0	++	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ +	+ + + + 0	-	-	
Benzoyi chloride	C₀H₅CHCl₂		technically pure	20 40 60 80 100 120 140						+ + + 0			And a manufacture of the second se		

Aggressive Media					Ch	emic	al Re	sista	псе						
Medium	Formula	Boiling paint °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-H	PVDF (SYGEF)	EPDM	FPM	NBR	õ	CSM
Benzyl alcohol (SpRB)	С ₆ Н ₅ -СН ₂ -ОН	206	technically pure	20 40 60 80 100 120 140	0	-	-	++0	++0	++0.	-	+	-	+ + +	0
Beryllium chloride				20 40 60 80 100 120 140						++++++					
Beryllium sulfate				20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++		++++			
Borax	Na284O7		aqueous, all	20 40 60 80 100 120 140	++0	+++++	++	++++	++++++	+++++	+ + + +	++++++	++++	+ + +	++0
Boric acid	H ₃ BO ₃		all, aqueous	20 40 60 80 100 120 140	++0	++++++	++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++	++++	++++	++++
Brine, containing chlorine				20 40 60 80 100 120 140	+++++	+++	-	+	0	++0	0	+	0	0	0
Brombenzene	C ₆ H ₃ Br			20 40 60 80 100 120 140	-	-				+		+			
Bromine, liquid	Br2	59	technically pure	20 40 60 80 100 120 140	-		-	-	-	+ + + + 0		+	-	-	-

Aggressive Media					Che	emic	al Re	sista	nce						
Medium	Formula	Boiling point ^a C	Concentration	Temperature °C	PVC	CPVC	ABS	ш. Ш.	PP-H	PVDF ISYGEFI	EPDM	FPM	NBR	GR	CSM
Bramine, vapours	Br ₂		high	20 40 60 80 100 120 140	-	-	-	-		+ + + + 0		+	-	-	-
Bromine water	Br.H ₂ O		saturated, aqueous	20 40 60 80 100 120 140	+	o	-	-	-	+++++++++++++++++++++++++++++++++++++++	-	4	-		
Butadiene (Q/E)	H ₂ C=CH-CH=CH ₂	-4	technically pure	20 40 60 80 100 120 140	+	+	-	+	++++	+ + + + +	-	0		++0	+ 0 .
Butane	C ₄ H ₁₀	0	technically pure	20 40 60 80 100 120 140	+	+	+	+	+	+	-	+	+	+	
Butanediol (SpRB)	НО-ІСН ₂)4-ОН	230	aqueous, 10%	20 40 60 80 100 120 140	+ 0	+	-	+++	+++		++++	++++	+++	0.	
Butanol (SpRB)	C₄H ₉ OH	117	technically pure	20 40 60 80 100 120 140	+ + 0	+ + + O	-	+ + +	++0	+ + + + 0	+++	+ 0	+++	++0	
Butyl acetate	CH ₃ COOCH ₂ CH ₂ CH ₂ CH ₃	126	technically pure	20 40 60 100 120 140	-	-		+	0	+ 0	+	0	-	0	C .
Butyi phenoi, p-tertiory	ICH3J3C-C6H4-OH	237	technically pure	20 40 60 80 100 120 140	0	0		0	+	+++++++++++++++++++++++++++++++++++++++	-	0		-	

Aggressive Media					Ch	emic	al Re	sisto	nce						
Medium	Formula	Boiling point °C	Concentration	femperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	ð	CSM
Butylene glycol (SpRB)	HO-CH ₂ -CH=CH-CH ₂ -OH	235	technically pure	20 40 60 80 100 120 140	+ + 0	+ + +	+ + +	+ + +	+++++	+ + + +	+++++	++0	-	++++	0
Butylene liquid	C ₄ H ₈	51	technically pure	20 40 60 80 100 120 140	+			-		+	0	+	+	+	0
Butyric acid (SpRB)	CH ₃ -CH ₂ -CH ₂ -COOH	163	technically pure	20 40 60 80 100 120 140	+	÷	-	+ + 0	+	+ + + 0	0	0	-	0	0
Cadmium bromide	CdBr ₂			20 40 60 80 100 120 140	+ + +	++++++		+ + +	+++++		++++	+ + + +			
Cadmium chloride	CdCl2			20 40 60 80 100 120 140	+ + +	+++++		++++	+ + +		++++	+ + +			
Cadmium cyanide	Cd(CN)2			20 40 60 80 100 120 140	+ + +			++++	+++++						
Cadmium sulfate	CdSO4			20 40 60 80 100 120 140	+ + +	+++++		++++	+++++		+++++	++++++			
Calcium acetate	(CH₅COO)₂Ca		saturated	20 40 60 80 100 120 140	+	+ + +	+	+ + +	+ + +	+++++	+++	+			

Aggressive Medía					Che	emice	ol Re	sista	nce						
Medium	Formulo	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Calcium bisulphite	CalHSO ₃ 1 ₂		cold saturated, aqueous	20 40 60 80 100 120 140	+	+ + +	+++			+++++++++++++++++++++++++++++++++++++++	+	+ + + + +	-	0	+
Colcium carbonate	CaCO3			20 40 60 80 100 120 140	+ + +	++++++		+++	+++++	+ + + + +	++++	+++++			
Calcium chlorate	CaIClO _{3l2}			20 40 60 80 100 120 140	+ + +	++++++		++++	++++	++++					
Calcium chloride	CaCl2	125	saturated, aqueous, all	20 40 60 80 100 120 140	+ + 0	+++++	++	++++++	++++++	+ + + + + + + +	+ + + + 0	+++++	+ + + 0	+ + + 0	+++++
Calcium fluoride	CaF ₂			20 40 60 80 100 120 140	++++			++++	+++++			++++			
Calcium hydrogencarbonate				20 40 60 80 100 120 140						+++++++	++++++	++++++			
Calcium hydrogensulfide	CalSH)2			20 40 60 80 100 120 140		+++++				+++++++++++++++++++++++++++++++++++++++	+ + +	and the second se			
Calcium hydrosulfite	CalHSO ₃ 1 ₂		saturated	20 40 60 80 100 120 140						+ + + +					

Aggressive Media					Ch	emic	al Re	sista	nce						-
Medium	Formula	Boiling point °C	Concentration	Temperature ^a C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Calcium hydroxide	CalOHI2	100	saturated, aqueous	20 40 60 80 100 120 140	+	++++++	+++++	+++++	+ + +	0	+++++++++++++++++++++++++++++++++++++++	+ + + + +	++0	+ + +	+++++
Calcium nitrate	Ca(NO312	115	50%, aqueous	20 40 60 80 100 120 140		++++++	++	++++	+++++	+ + + + +	+++	+ + + +	++	++	+++
Calcium phosphate	CalH2PO412 CaHPO4 CaJPO412 CaJPO412			20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++					
Calcium sulfide	Cos			20 40 60 80 100 120 140	++++++				+++++		+				
Calcium sulphate	CαSO₄		suspensions	20 40 60 80 100 120 140	+ + +	+ + +				+ + + + +	++++				
Calcium sulphite	CalHSO ₃ 1 ₂		aqueous, cold saturoted	20 40 60 80 100 120 140	+			+ + +	++++++		+				
Calcium tungstate				20 40 60 80 100 120 140						+ + +					
Całciumbromide	CaBr2			20 40 60 80 100 120 140	+++	++++++		++++	++++++		++++	+++			

1 1

Aggressive Media					Ch	emice	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Calciumlactote	ICH ₃ COO) ₂ Co		saturated	20 40 60 80 100 120 140				+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++				
Caprolactam	C ₀ H ₁ NO			20 40 60 80 100 120 140		-									Manager
Caprolactone	C ₆ H ₁₀ O ₂			20 40 60 80 100 120 140		-									
Carbon dioxide -corbonic acid	CO2		technically pure, anhydrous	20 40 60 80 100 120 140	+ + +	+ + + +	+ + +	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	++	++++	+++	+ + +	+++++++++++++++++++++++++++++++++++++++
Carbon disulphide	CS ₂	46	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+		+	-	1	
Carbon tetrachloride	CCla	77	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	+	-	+			-
Carbonic acid				20 40 60 80 100 120 140	+ +	+++++		++++	++++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++		And a second	
Caro's acid Casein	see Peroxomonosulturic acid			20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++		A CALENDARY AND		A STATE OF A STAT	

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-4d	PVDF (SYGEF)	EPDM	FPM	NBR	СК	CSM
Cäsium chloride	CICs			20 40 60 80 100 120 140						+++++					
Cäsiumhydroxide	CsOH			20 40 60 80 100 120 140						+++++++					
Caustic potash solution Ipotassium hydroxidel	КОН	131	50%, aqueous	20 40 60 80 100 120 140	+ + 0	++++++	+ + +	+ + +	+ + + +	-	+ + + O	-	0.	-	+00 -
Caustic soda solution	NaOH		50%, aqueous	20 40 60 80 100 120 140	++	+++++	+	+++	+ + + +	0	++++	-	0.	-	+0-
Cerium (III) -chloride	CeCl3			20 40 60 80 100 120 140						+ + + + + + + + + + + + + + + + + + + +					
Chloral hydrate	CCI3-CHIOHI2	98	technically pure	20 40 60 80 100 120 140	-		-	+++++++++++++++++++++++++++++++++++++++	0	-	0	0	-	0	+
Chloric acid (SpRB)	HCIO3		10%, aqueous	20 40 60 80 100 120 140	++0	++++	-	+		+ +	+++++	-	-	-	+++
Chloric acid ISpRB)	HCIO3		20%, aqueaus	20 40 60 80 100 120 140	++0	+++++	-	0	-	*	+++		-	-	++

Aggressive Media					Che	emico	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-H	PVDF (SYGEF)	EPDM	FPM	NBR	ð	CSM
Chlorosulphonic acid	CISO₃H	158	technically pure	20 40 60 80 100 120 140	0	-			-	0	-	-	-	-	-
Chrome alum Ichromium potassium sulphate)	KCrISO412		cold saturated, aqueous	20 40 60 100 120 140	+++++	+ + +	+ +	+ + +	+++++	+++++	+ + + +	+++++	+++++	++++	+++++
Chromic acid (SpRB)	CrO ₃ +H ₂ O		up to 50%, aqueous	20 40 60 80 100 120 140	00 -	+ 0 0 -	-	0	0	+ + + + 0 0	000	+ + + +		-	000
Chromic acid (SpRB)			all, aqueous	20 40 60 80 100 120 140	0	0	-	0	0	+ + + 0 0		++0	i i	-	000
Chromic acid + sulphuric acid + water (SpRB)	CrO ₃ H ₂ SO ₄ H ₂ O		50 g 15 g 35 g	20 40 60 80 100 120 140	+ + 0	+ + + 0	-	•	-	+ + + 0	00	++++	-	-	CC
Chromium (III -chloride				20 40 60 80 100 120 140	+++++					+ + + + + + +					
Chromium (II) -fluoride	CrF3			20 40 60 80 100 120 140						+++++					
Chromium () -chloride	CrCl ₃			20 40 60 80 100 120 140	+ + +					+++++++++++++++++++++++++++++++++++++++					

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Chlorine	Cl ₂		maist, 97%, gaseous	20 40 60 80 100 120 140			-			-	-	+		-	0
Chlorine	Cl ₂		anhydrous, technically pure	20 40 60 80 100 120 140	-	-		00.	-	+ + + + + 0	0	+	-	-	0
Chlorine ,	Cl ₂		liquid, technically pure	20 40 60 80 100 120 140	-		-	-	-	+	-	0	-	-	
Chlorine water (SpRB)	Cl ₂ H ₂ O		saturated	20 40 60 80 100 120 140	+ + 0	+ + 0 -	0	00	0	0	0	0	-	0	-
Chloroacetic acid, mono (SpRB)	CICH2COOH		50%, aqueous	20 40 60 80 100 120 140	++	-	-	+ + +	+++++	+ 0 -	0	-	-	-	0
Chłoroacetic acid, mono ISpRBI	CICH2COOH	188	technically pure	20 40 60 80 100 120 140	+ + 0	•	-	+ + +	+++	-	0	-		-	0
Chlorobenzene	C₄H₅Cl	132	technically pure	20 40 60 80 100 120 140	-	-	-	0	+	++0-	-	-	-	-	0
Chlorosthanol	CICH ₂ -CH ₂ OH	129	technically pure	20 40 60 80 100 120 140	-		-	+ + +	++++	+00 ·	• 0		+	-	0

Aggressive Media	~		·······		Ch	emic	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-H4	PVDF (SYGEF)	EPDM	FPM	NBR	č	CSM
Chromium ((()) -nitrate	Crino3i3			20 40 60 80 100 120 140	+++					+++++++++++++++++++++++++++++++++++++++					
Chromium (111) -sulfate	Cr2(SO4)3			20 40 60 80 100 120 140	++++					+++++++++++++++++++++++++++++++++++++++		and a second			
Cider				20 40 60 80 100 120 140	+	+	+++	+	+	+ + +.	+	+	+	+	
Citric acid		fp. *153	10%, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +	+ + +	+ + +	+ + + +	+ + + + +	++++	+++	++0	++++	and a second sec
Citric acid				20 40 60 80 100 120 140	++			+ + +	+++++						
Citric acid up to 10 %				20 40 60 80 100 120 140						++++++	and the second		a management of the second		
Coal gas, benzene free				20 40 60 80 100 120 140	+	+	+	+	+	+		+	+	0	
Caconut fat alcohol (SpRB)			technically pure	20 40 60 80 100 120 140	+ + 0	-		+ 0	+ + 0	+ + +		++++	++++	+ 0	

Aggressive Media					Ch	emic	al Re	sista	псе	· · · · ·					
Medium	Formula	Boiling point °C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Compressedair, containing oil ISpRB)				20 40 60 80 100 120 140	-	-	-	++	0	+++++++++++++++++++++++++++++++++++++++	-	+	+	+	+
Copper salts	CuCl, CuCl ₂ , CuF ₂ , CuINO3J ₂ , CuSO4, CuICNI ₂		all, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +	++++	+++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++	++++++	++0	++++	++0
Com oil (SpRB)			technically pure	20 40 60 80 100 120 140	0	00	0	+ + 0	++0	+++++++		+++	+++++	0	++0
Cresol	HO-C ₆ H ₄ -CH ₃		cold saturated, aqueous	20 40 60 80 100 120 140	0	-		++	++	+ + + 0		+ +	00	-	0
Crotonic oldehyde	CH3-CH=CH-CHO	102	technically pure	20 40 60 80 100 120 140	-	-	-	+	+	+ 0	+	+	+	+	+
Cyclohexane (Q/E)	C ₆ H ₁₂	81	technically pure	20 40 60 80 100 120 140	-	-	-	++++	+	++++++		+	+		
Cyclohexanol (SpRB)	C ₆ H ₁₂ O	161	technically pure	20 40 60 80 100 120 140	+ + +	+ + + 0	-	+++	++0	++00-	-	+	0	+	+
Cyclohexanone	C ₆ H ₁₀ O	155	technically pure	20 40 60 80 100 120 140	-			+00	+00	+0-	0			-	-

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling paint "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Densodrine W				20 40 60 80 100 120 140	++++	+++++	0			+		+	+	+	
Detergents (SpRB)	see washing powder		for usual washing lathers												
Dextrine	{C ₆ H ₁₀ O ₅ } _n		usual commercial	20 40 60 80 100 120 140	++++	++++++	++++	+++	+	+++++++++++++++++++++++++++++++++++++++	+ + +	++++	++++	+++	++++
Dextrose	siehe Glucose			20 40 60 80 100 120 140	+++++	+++++	+	+++	++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++			
Dibuttyl ether	C ₄ H ₉ OC ₄ H ₉	142	technically pure	20 40 60 80 100 120 140		-	-	-	0		-	++0	+0 -	-	000
Dibutyl phtholote	C ₆ H ₄ ICOOC ₄ H ₉ I ₂	340	technically pure	20 40 60 80 100 120 140	-	• •	-	+00	+00	+ + 0	0	0		-	-
Dibutyl sebacate	C ₈ H ₁₆ (COOC ₄ H9l ₂	344	technically pure	20 40 60 80 100 120 140	1	-		+	+	+	+	+	-		-
Dichlorbenzol	C ₆ H ₄ Cl ₂	180	technically pure	20 40 60 80 100 120 140	-		-								The second
Dichloroacetic acid	CI ₂ CHCOOH	194	technically pure	20 40 60 80 100 120 140	+ + 0		-	+ + 0	++0	+ + 0 -	++++	0.	*	0	+0 -

Aggressive Media					Ch	emic	al Re	sista	nce	·····		~			
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Dichloroacetic acid (SpRB)	СІ₂СНСООН		50%, aqueous	20 40 60 80 100 120 140	++0	-	-	+ + +	+ + +	+ + + 0 -	+++++	00.	-	+0	1 + 0
Dichloroacetic acid methyl ester	Cl ₂ CHCOOCH ₃	143	technically pure	20 40 60 80 100 120 140	-	-	•	+++++	++++++	0	++0	-	-	-	
Dichloroethan	Ethylene chloride														
Dichloroethylene	CICH=CHCI	60	technically pure	20 40 60 80 100 120 140	-	-	-	- 3	0	+ +	-	0	-	-	
Dichloromethane				20 40 60 80 100 120 140	-	-	-								
Diesel oil ISpRB, Q/EI				20 40 60 80 100 120 140	+ +	++	0	+	0	+++++++++++++++++++++++++++++++++++++++	-	++	++	0	0
Diethyl ether				20 40 60 80 100 120 140	-	-	-						And a second		
Diethylamine	1C ₂ H ₅ I ₂ NH -	56	technically pure	20 40 60 80 100 120 140	0	-	-	+	+	+0-	0	-		-	
Diethylene glycol butyl ether				20 40 60 80 100 120 140	-	-	-							and a second	*****

Aggressive Media	·····				Che	emic	al Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-4d	PVDF (SYGEF)	EPDM	FPM	NBR	ŭ	CSM
Diglycolic acid (SpRB)	НООС-СН ₂ -О-СН ₂ -СООН	Fp*., 148	30%, aqueous	20 40 60 80 100 120 140	+ + 0	++++	+	+ + +	+ + +	+	+	0	+	+	C
Di-isobutyl ketone	(ICH ₃)2CHCH ₂) ₂ CO	124	technically pure	20 40 60 80 100 120 140	-	-	-	+	+	+ + 0	0		-	-	-
Dimethyl formamide	ICH312CHNO	153	technically pure	20 40 60 80 100 120 140	-		-	+ + 0	+++	-	0	-	0	+	4
Dimethylamine	ICH32NH	7	technically pure	20 40 60 80 100 120 140	0	-		+	+	0.	0	-	-		
Dimethylphthalate IDMPI	C ₆ H ₄ ICH ₃ h			20 40 60 80 100 120 140	-	-	-								
Dinonylphthalate (DNP)			technically pure	20 40 60 80 100 120 140	-	-	-	0	+		0	+	-		
Dioctylephthalate (SpRB) (DOP)			technically pure	20 40 60 80 100 120 140	-	-	-	0	+		0	+	-	-	
Dioxane	C ₄ H ₈ O ₂	101	technically pure	20 40 60 80 100 120 140		-	-	+ + +	000.				0		
Drinking water	see water														

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Bailing point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	СК	CSM
Ethanolamine	see Annino ethanol				-	 						1	1	-	-
Ethyl acetate	CH ₃ COOCH ₂ -CH ₃	77	technically pure	20 40 60 80 100 120 140	-	-	-	+00	+00	0	+	-	-	-	-
Ethyl alcohol + acetic acid (fermentation mixture)			technically pure	20 40 60 80 100 120 140	++0	0	-	++++	+	+ + + 0	00	000	00	+++	+++++
Ethyl olcohol [Ethnoc] [SpRB]	CH ₃ -CH ₂ -OH	78	technically pure, 96%	20 40 60 80 100 120 140	++0	0		+++++	+ + + +	+ 0 -	+++++	000	0	+	+
Ethyl benzene	C ₀ H ₅ ·CH ₂ CH ₃	136	technically pure	20 40 60 80 100 120 140	-	1	-	0	0	0	-	+	-		•
Ethyl chloride	CH ₃ -CH ₂ CI	12	technically pure	20 40 60 80 100 120 140	-	-		0	0	0	-	0		-	
Ethyl ether	CH ₃ CH ₂ -O-CH ₂ CH ₃	35	technically pure	20 40 60 80 100 120 140	-		-	+	0	+	-	~	-	-	
Ethylenchloride {],2-Dichloroethane}				20 40 60 80 .100 120 140	-	-	-					2			
Ethylene chloride	CICH2-CH2CI	83	technically pure	20 40 60 80 100 120 140		1		0	0	+ + + 0 -	-	++0	0.	0.	-

Aggressive Media					Che	emic	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Ethylene diamine	H ₂ N-CH ₂ -CH ₂ -NH ₂	117	technically pure	20 40 60 80 100 120 140	0	-	-	+ + +	+++++	00 -	+	00 -	+ 0 -	+ 0 -	C
Ethylene glycol (SpRB)	HO-CH2-CH2-OH	198	technically pure	20 40 60 80 100 120 140	++++++	0	-	+ + +	++++++	+++++++	+++++	+++0	++0	++0	+ + + (
Ethylene glycol	CH2OHCH2OH	198	technically pure	20 40 60 80 100 120 140	+ + +		-	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + + 0	++0	++0	+++
Ethylene oxide	CH ₂ -CH ₂	10	technically pure, moist	20 40 60 80 100 120 140		-	-	-	0	+	0		-	-	
Ethylenediaminetetra- acetic acid IEDTAI				20 40 60 80 100 120 140				+	+	+	+				
Fatty acids >C ₆ (SpRB)	R-COOH		technically pure	20 40 60 80 100 120 140	+ + +	++++	-	+ + 0	++++	++++++	+	+	0	0	
Fatty alcohol sulphonates (SpRB)			aqueous	20 40 60 80 100 120 140	+ + 0	+ + 0		+ + +	++0	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	++++	+ + +	+ + +
Fertilizers			oqueous	20 40 60 80 100 120 140	+ + 0	+ + +	0	+ + +	++++	+++++	++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++	

		1													
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Fluorine	F2		technically pure	20 40 60 80 100 120 140	-	-	-	-	-	-		-	-	-	-
Fluorosilicic acid (Q/E)	H ₂ SiF ₆		32%, aqueous	20 40 60 80 100 120 140	+ + +	+ + +	+ + +	+ + +	+	+++++++++++++++++++++++++++++++++++++++	+	0	0	0	+0-
Formoldehyde (SpRB)	НСНО		40%, aqueous	20 40 60 80 100 120 140	++	+ +	++++	+ + +	++	+++++++	+++++	+++++++++++++++++++++++++++++++++++++++	++0	++0	++0
formamide	HCONH ₂	210	technically pure	20 40 60 80 100 120 140	-	-	•	+ + +	+++++		+	0	+	+	
Formic acid (SpRB)	нсоон		up to 50%, aqueaus	20 40 60 80 100 120 140	+ + 0	-	0	+ + +	+ +.0	+++++++++++++++++++++++++++++++++++++++	+ + 0	++0-		+ + 0	+++0
Formic acid (SpRB)	нсоон	101	technically pure	20 40 60 100 120 140	+ 0	-	-	+++	+ 0	+++++++++++++++++++++++++++++++++++++++	+ + + + 0	+	-	+ 0 -	+++0
Formic acid (SpRB)		announce of the New York, the children property of the second	25%	20 40 60 80 100 120 140	++++	+ + +		+ + +	+++++	++++++	++++				
Freon 113	see trifluoro, trichlorethane	48													
Frigen 12 (D/P)	see Freon 12	-30	technically pure					c							

Aggressive Media					Ch	emico	al Re	sista	nce						
Medium	Farmula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF ISYGEF)	EPDM	FPM	NBR	Ğ	CSM
Fruit juices (SpRB)				20 40 60 80 100 120 140	+ + +	++++++	+++++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + +	+++++++
Fruit pulp				20 40 60 80 100 120 140	+	+	++	+ + +	+ + +		+	+	+	+	+
Fuel oil				20 40 60 80 100 120 140	+0	++		0	0.	+++++++++++++++++++++++++++++++++++++++	-	+ + +	++++++	++0	-
Furfuryl alconol (SpRB)	C₃H₅O₂	171	technically pure	20 40 60 80 100 120 140	-	-	-	++++	+	+ + 0 -	0	-	-	0	C
Gasoline (SpRB)	C5H12 to C12H26	80- 130	free of lead and aromatic compounds	20 40 60 100 120 140	+++	++++	-	+ + 0	0	+++++++++++++++++++++++++++++++++++++++	-	+.+++++++++++++++++++++++++++++++++++++	++++		-
Gelatin			all, aqueous	20 40 60 100 120 140	+ +	++++	+++++	+ + +	+++++++++++++++++++++++++++++++++++++++	++++++	++	++	++	++	++
Glucose	C ₆ H ₁₂ O ₆	Fp*., 148	all, aqueous	20 40 60 80 100 120 140	+ + 0	+ + + +	++++	+ + +	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	+++++	++++++	++++
Giverol	НО-СН ₂ -СНЮНІ-СН ₂ ОН	290	technically pure	20 40 60 80 100 120 140	++++	++++	+ +	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+00	++0.	+ + + 0	++++0	++++0

Aggressive Media	511 155159904-000052 100004002999999				Ch	emic	ol Re	sista	nce							
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	11100	EPUM	FPM	NBR	CK	CSM
Glycocoll (SpRB)	NH2-CH2-COOH	Fp.* 233	10%, aqueous	20 40 60 80 100 120 140	+ +	+++++	+	+ +	+++	+++++++++++++++++++++++++++++++++++++++			++	+ 0	+ +	+ 0
Glycol	see Ethylene glycol															
Glycolic acid	HO-CH ₂ -COOH	Fp.*, 80	37%, aqueous	20 40 60 80 100 120 140	+	-	+	+ + +	+	+++++++++++++++++++++++++++++++++++++++			+	+	+	+
Heptane (SpRB)	C7H16	98	technically pure	20 40 60 80 100 120 140	+	0	-	+	+	+ + + +		-	+ + +	+ + +	+ + +	+ 0 -
Hexane (SpRB)	C ₆ H ₁₄	69	technically pure	20 40 60 80 100 120 140	+	0	-	+ 0	+	+++++++++++++++++++++++++++++++++++++++			+ + +	+ + +	+ + +	+0
Hydrazine hydrate (SpRB)	H ₂ N-NH ₂ . H ₂ O	113	aqueous	20 40 60 80 100 120 140	+	-	-	+ + +	+ + +	-		+	0	•	-	+
Hydrobromic acid (SpRB)	HBr	124	aqueous, 50%	20 40 60 80 100 120 140	+ + +	+++0	+ +	+ + +	++++	+++++++++++++++++++++++++++++++++++++++		++0.	+++0-	0	++0-	+++0.
Hydrochloric acid IQ/E, D/PI	нсі		up to 38%	20 40 60 80 100 120 140	+ + +	++++	-	+ +	0	+ + + +	(and the second s	+	+ +	-	0	+
Hydrochloric acid IQ/E, D/PI	на		5%, aqueous	20 40 60 80 100 120 140	++0		++	+ + +	+++0	+ + + + +	the second se	++++	+ + +	0	0.	+0-

Aggressive Media					Che	emic	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF ISYGEFI	EPDM	FPM	NBR	ð	CSM
Hydrochloric acid (Q/E, D/P)	HCI		10%, aqueous	20 40 60 80 100 120 140	+ + 0	++++++	++++	+ + +	++00	+++++++++++++++++++++++++++++++++++++++	++++	++++++	0	0	+ C -
Hydrochloric acid (Q/E, D/P)	HCI		up to 30%, aqueous	20 40 60 80 100 120 140	++0	++++++	0.	+ + +	+00.	+ + + + +	++0	++0	-	-	+ C
Hydrochloric acid IQ/E, D/Pi	на		36%, aqueous	20 40 60 80 100 120 140	+ + 0	++00	-	+ + +	+ 0 -	+ + + + +	00 -	+0-	-	-	C ·
Hydrocyanic ocid	HCN	26	technically pure	20 40 60 80 100 120 140	+ + 0	++++		+ + +	+ + +	+ + + +	+0	+0	0.	0	+ C
Hydrafluoric acid	HF .			20 40 60 80 100 120 140	+00	-		+ + 0	+ + +	+++++++++++++++++++++++++++++++++++++++	-	+ + 0	-	-	++
Hydrogen	H ₂	-253	technically pure	20 40 60 80 100 120 140	+ + +	+++++	+ + +	+ + +	+++	+ + + + +	++++++	++++++	+ + + + +	+++++++	+++++++++++++++++++++++++++++++++++++++
Hydrogen chloride (Q/E)	HCI .	-85	technically pure, gaseous	20 40 60 80 100 120 140	+ + 0	+ + + 0	-	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	++++	++++	0	0	C C
Hydrogen perocide			70%	20 40 60 80 100 120 140	+	+	-	+	+	00	0	+			

Aggressive Media					Che	mice	al Re	sista	псе	,,			.	_	
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Hydrogen peroxide ISpRBI	H ₂ O ₂		50%, aqueous	20 40 60 80 100 120 140	+	+	-	+	+	0	0	+			
Hydrogen peroxide (SpRB)	H ₂ O ₂		10%, oqueous	20 40 60 80 100 120 140	+ + 0	÷		+++++	++++	00.	00 -	+0-	0	-	++
Hydrogen peroxide ISpRBI	H ₂ O ₂	139	90%, aqueous	20 40 60 80 100 120 140	+			+	-	0		0			С
Hydrogen peroxide ISpRB)	H ₂ O ₂	105	30%, aqueous	20 40 60 80 100 120 140	+	+	-	+	+	0	0	+	-	~	+0
Hydrogen sulphide	H₂S		technically pure	20 40 60 80 100 120 140	++++++	+ + +	+ +	++0	+ + +	+++++++++++++++++++++++++++++++++++++++	+	++0	+0 -	0	+ 000
Hydrogen sulphide	H ₂ S		saturated, aqueous	20 40 60 80 100 120 i40	+ + 0	+ + +	+ +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+	+++0		+	++0-
Hydroquinone .	C ₆ H₄IOHI₂		saturated	20 40 60 80 100 120 140	+	+		++++	+ + + +		+			and the second se	
Hydrosulphite	see Sodium dithione														
Hydroxylamine sulfate				20 40 60 80 100 120 140	+ + +			+++++			+				

Aggressive Media					Che	emico	al Re	sista	nce						
Medium	Formula	Boiling paint °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-H	PVDF (SYGEFI	EPDM	FPM	NBR	CK	CSM
Hydroxylamine sulphate	(NH30H12SO4		all, aqueous	20 40 60 80 100 120 140	+ +	++++	-	+ + +	+ + +		+	++	+ 0	0	
lodine-potassium iodide solution (lugol's solution)				20 40 60 80 100 120 140	+	-	-			+		+			
lodium	l ₂	185	100%	20 40 60 80 100 120 140	-	-	-			+		+			
Iron III) -chloride			saturated	20 40 60 80 100 120 140	+ + +	+ + + +	+	+ + +	+ + + +	++++++	++++	++++++			
lran (II) -chloride	FeCl ₂		saturated	20 40 60 80 100 120 140	+ + +	+ + +	+	+ + +	+ + +	+ + + + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++			
lron (li) -nitrate	FeINO ₃ I ₂		saturated	20 40 60 80 100 120 140	+ + +	+ + +	+	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	++++	+++++			
kon (III) -chloride	FeCl ₃		saturatea	20 40 60 80 100 120 140	+ + +	+ + +	+	+ +	+++++	+ + + +	++++++	+++++++			State of the state
Iron (III) -chloride			saturated	20 40 60 80 100 120 140	+ +	+ + + +	+	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+ + + + +			

Aggressive Media					Ch	emic	al Re	sista	nce				_		
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEFI	EPDM	FPM	NBR	CK	CSM
Iron (III) -chloridsulfate			saturated	20 40 60 80 100 120 140	+++++	+++++	+	+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++			
Iron (111) -nitrate			saturated	20 40 60 80 100 120 140	+ + +	+ + + +	+	+++	+++++	+++++++	++++++	+++++++			
Iron ((()) -nitrate	FelNO ₃ I ₃		saturated	20 40 60 80 100 120 140	+ + +	+ + + +	+	+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + + +			
lron (III) -sulfate	F92(SO4)3		saturated	20 40 60 80 100 120 140	+ + +	+ + +	+	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++			
lron (III) -sulfate			saturated	20 40 60 80 100 120 140	+ + +	+++++	+	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++			
Iron (III) -nitrate	feino ₃ i3		saturated	20 40 60 80 100 120 140	++++					+++++++++++++++++++++++++++++++++++++++	++++++	++++++			
Iron (II) -sulfate	FeSO₄		saturated	20 40 60 80 100 120 140	+ + +	+ + +	+	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++++	++++++			
Iron (III) -sulfate			saturated	20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++	and the second				

Aggressive Media			·····		Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
iron saits			all, aqueous	20 40 60 80 100 120 140	++0	+++++++++++++++++++++++++++++++++++++++	+++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	++.++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++++
Isooctone (SpRB)	ICH313-C-CH2-CH-ICH312	99	technically pure	20 40 60 80 100 120 140	+		-	+	+	+++++++		+	+	+	C
Isophorone (SpRB)	C ₉ H ₁₄ O		technically pure	20 40 60 80 100 120 140						-					
Isopropyl alcahol (SpRB)	ICH3J2-CH-OH	82	technically pure	20 40 60 80 100 120 140				+	+	+++0	+				and the second se
Isopropyl ether	ICH3/2-CH-O-CH-ICH3/2	68	technically pure	20 40 60 80 100 120 140		-	-	0	-	++++++	0	-		-	-
IsopropyIbenzene				20 40 60 80 100 120 140	-	-	-								
Jam, Marmalade				20 40 60 80 100 120 140	+00	++++	+ +	++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++	++++++	+++++	++++	++++	++++
Loctic acid (SpRB)	СН₃СНОНСООҢ		10%, aqueous	20 40 60 80 100 120 140	+ 0 -	+++++	+ 0	+ + +	+++++++++++++++++++++++++++++++++++++++	++00 ·	000 .	+000	1		000

(Courtesy George Fischer Engineering Handbook)

9.37

PLASTIC PIPING HANDBOOK

Aggressive Media	· · ·				Ch	emic	al Re	sisto	nce					_	
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Lanolin (SpRB)			technically pure	20 40 60 80 100 120 140	+ 0	a	+++++	+++++	++++	+++++++++++++++++++++++++++++++++++++++		+ + +	++++	+0.	0.
lead acetate	PbICH ₃ COOI ₂		aqueous, saturated	20 40 60 80 100 120 140	+ + +	++++++	+++++	++++	+ + +	+++++++++++++++++++++++++++++++++++++++	++++	+++	+++++	++++	++++
lead solts	PbCl ₂ , PbINO ₃ 1 ₂ , PbSO4		saturated	20 40 60 80 100 120 140		++++++									
Leadcarbonate				20 40 60 80 100 120 140	+	+		+	+	++++++	+				-
Leadniirate	РЫNО312			20 40 60 80 100 120 140		+ + +									
Leadniirate				20 40 60 80 100 120 140	+ + +					+++++++++++++++++++++++++++++++++++++++					
Leadtetrafluoroborate				20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++					
linoleic acid				20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++					

Aggressive Media			1		Che	emic	al Re	sista	nce				-		
Medium	Formula	Boiling point "C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Linseed oil (SpRB)			technically pure	20 40 60 80 100 120 140	+ + 0	++	+	+++++	+ + + + +	+++++++++++++++++++++++++++++++++++++++		+++++	+++++	0	+0.
Liqueurs				20 40 60 80 100 120 140	++			++	+	+++++++	+	+	+	+	+
Liquid fertilizers				20 40 60 80 100 120 140				+++	+++++		+++++				
lithiumbromide	LiBr			20 40 60 80 100 120 140	+	+		÷	+	+ + + + +	+	+			
Lithiumsulfate				20 40 60 80 100 120 140	+	+		+	+	+++++++++++++++++++++++++++++++++++++++	+	+		statement we are a subscription of the	
Lubricating oils				20 40 60 80 100 120 140	+ + +	0		++0	0	+++++++++++++++++++++++++++++++++++++++	-	+++0.	+ + 0	+0.	+0-
Magnesium salts	MgCl ₂ , MgCO ₃ , MgNo31 ₂ , MgOHI ₂ , MgSO ₄		all, aqueous,saturated	20 40 60 80 100 120 140	+ + 0	++++++	++	++++	+++++	+ + + + + +	+++	+++++++++++++++++++++++++++++++++++++++	++++	+++	++++
Magnesiumhydrogen- carbonate				20 40 60 80 100 120 140	++++			+ + +	++++		++++				

Aggressive Media					Ch	emic	al Re	sista	nce							
Medium	Formula	Bailing point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	CDDAA		FPM	NBR	CK	CSM
Maleic acid (SpRB)	ICH-COOH) ₂	Fp. *131	cold saturated, aqueous	20 40 60 80 100 120 140		++	+	+ + +	+++++	+ + + + + +			+++	-		-
Medio water or similar media				20 40 60 80 100 120 140	++++	++++++	+++++	++++	+ + + +	+ + + + + + +						
Mercury	Hg	357	pure	20 40 60 80 100 120 140	+++++	+	+	+ + +	++++	+++++++++++++++++++++++++++++++++++++++			+ + + + *	+ + +	+++	+++++
Mercury (11) -chloride	HgCl ₂			20 40 60 80 100 120 140	++++	+ + +	÷	+ + +	+++++++	+ + + +	1.	+ + +	+ +	+ + +	+++	++++++
Mercury III) -cyanide -	HgiCN12			20 40 60 80 100 120 140	++++	+++++++++++++++++++++++++++++++++++++++	+	+ + +	++++	+++++++++++++++++++++++++++++++++++++++			+ + +	+ +	++++	+++++
Mercury (II) -cyanide	HgINO ₃ } ₂			20 40 60 80 100 120 140	+ + +	+++++++++++++++++++++++++++++++++++++++		++++	+++++	+++++++++++++++++++++++++++++++++++++++			+ + + +	+ + +	++++	+++++
Mercury (11) -sulfate				20 40 60 80 100 120 140	++++	+++++	+	+ + +	+++++	+ + + +		+ + +	+ + +	++++	+++	+++++
Mercury salts	HgNO3, Hg Cl ₂ , Hg(CNl ₂		cold saturated, aqueous	20 40 60 80 100 120 140		++++	+	++++	++++	+++++++++++++++++++++++++++++++++++++++		+ +	+ +	00.	00.	00 -
Methane	see natural gas	-161	technically pure													

Aggressive Media					Che	emic	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Methanol (SpRB)	СН3ОН	65	all	20 40 60 80 100 120 140	++0	-	-	+ + +	+ + +	+ 0 -	+++++	000	++++	++0	
Methyl acetate	СН3СООСН3	56	technically pure	20 40 60 80 100 120 140	-	-	-	+	++0	+0		-	•	-	
Methyl omine	CH ₃ NH ₂	-6	32%, aqueous	20 40 60 80 100 120 140	0	-	-	+	+	0		+		+	
Methyl bromide	CH ₃ Br	4	technically pure	20 40 60 80 100 120 140	-	-	-	0	-	+ + +		0		-	
Methyl chloride	CH₃CI	-24	technically pure	20 40 60 80 100 120 140	-	-	-	0	~	+ + +		-	-	-	
Methyl ethyl ketone	CH₃COC₂H₅	80	technically pure	20 40 60 80 100 120 140	-	-		+ 0	+00	-		-	-		
Methylene chloride	CH ₂ Cl ₂	40	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+00		0	-	-	
Methylisobutylketone	C ₆ H ₁₂ O			20 40 60 80 100 120 140	-	-	-								

PLASTIC PIPING HANDBOOK

Aggressive Media					Ch	emic	ol Re	sista	псе						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM .	NBR	G	CSM
Methylmethacrylate	C ₃ H ₈ O ₂			20 40 60 80 100 120 140	-	-									
Methylphenylketone (Acetophenon)	C ₈ H ₈ O			20 40 60 80 100 120 140	-	-	-								
Milk (SpRB)				20 40 60 80 100 120 140	+++	+ + +	++++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++		÷	+	+	+
Mineral oils, free of aromotics				20 40 60 80 100 120 140	+ + +	+	-	+ + 0	+ + 0	+ + + + +		++++	+ + +	0	0
Mineral water				20 40 60 80 100 120 140	+ + +	+ + + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+++++	+++++++
Mixed acids - nitric - hydrofluaric - sulphuric	15% HNO₃ 15% HF 18% H₂SO₄		3 parts 1 part 2 parts	20 40 60 80 100 120 140	0	0	-	0	•	+ + +		+0	-	-	+ 0
Mixed acids • sulphuric • nitric • water	H ₂ SO ₄ HNO ₃ H ₂ O		48% 49% 43%	20 40 60 80 100 120 140	+ 0	+	-	-		+		E.	-	-	-
Mixed ocids - sulphuric - nitric - water	H₂SO₄ HNO₃ H₂O		50% 50% 40%	20 40 60 80 100 120 140	0	0	-	-	-	+		-		-	-

Aggressive Media					Ch	emice	al Re	sista	nce							
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	ranti	Erum	FPM	NBR	CK	CSM
Mixed ocids - sulphuric - nitric - water -	H ₂ SO4 HNO3 H ₂ O		1096 87% 43%	20 40 60 80 100 120 140	0	0	-	-	-	0			-	-	-	-
Mixed ocids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		50%6 33%6 17%6	20 40 60 80 100 120 140	+ 0	+	-	-	-	+			+	-	-	0
Mixed ocids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		10% 20% 70%	20 40 60 80 100 120 140	++	+	-	0	-	+ + +			+ + +	-	0	+0
Mixed acids - sulphuric - nitric - water	H ₂ SO ₄ HNO ₃ H ₂ O		50% 31% 19%	20 40 60 80 100 120 140	+			-	-	+			+	-	0	C
Mixed acids - sulphuric - phosphoric - phosphoric	H ₃ SO4 H ₃ PO4 H ₃ O		30% 60% 10%	20 40 60 80 100 120 140	++	+++++	-	+ 0	+ 0	+ + +			+ + +	•	+ 0	+ C
Molasses			-	20 40 60 80 100 120 140	++0	+ + +	+++++	+ + +	+++	+++++++++++++++++++++++++++++++++++++++		+	+ + + +	+ + +	+ + + 0	++++
Molasses wort				20 40 60 80 100 120 140	++++++	+ + +	++++	+ + +	+ +	+ + +	1	+	+++++	+ + +	+ + +	+++
Monochloroacetic acid êthyl ester	CICH ₂ COOC ₂ H ₅	144	technically pure	20 40 60 80 100 120 140	-	-	-	+ + +	+ + +	0			0	-	-	-

PLASTIC PIPING HANDBOOK

Aggressive Media					Ch	emic	al Re	sista	nce							
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-H-	PVDF (SYGEF)	LOCU .	EFUN	FPM	NBR	CK	CSM
Morpholin	C₄H₀NO -	129	technically pure	20 40 60 80 100 120 140	-	-	-	+ + +	+ + +	+ + 0			+	-	0	0
Mowilith D			usual commercial	20 40 60 80 100 120 140	+	+		+	+	+			+	+	+	+
Naphthalene		218	technically pure	20 40 60 80 100 120 140	-	-	-	+	+	+ + 0		-	+ + +	+ + +	-	0
Natriumhydrogensulfite	NoH3O3			20 40 60 80 100 120 140	+ + +	+ + + +		+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++		+ + + + + + + + + + + + + + + + + + + +	+			5
Natriumsulfate			*	20 40 60 80 100 120 140	+ + +	+++++	+	+ + +	+ + +	+ + + + + +		+++++++	+ + + +			
Natriumtetraborate (Borax)				20 40 60 80 100 120 140	+++	++++++	+	+ + +	+ + +	+ + +		+ + + + + + + + + + + + + + + + + + + +	+			
Nickel salts	ICH3COO12Ni, NiCl₂, N11NO312, Ni 504		cold saturated, aqueous	20 40 60 80 100 120 140	++0	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++		++	+ + + +	+ + +	++++	++++++
Nitroting acid	H ₂ SO ₄ HINO ₃ H ₂ O		65% 20% 15%	20 40 60 80 100 120 140						+				3		

Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ol Re SBA		PP-H	PVDF ISYGEFI	EPDM	FPM	NBR	CR	and the second se
Nitric acid (SpRB)	HNO₃			20 40 60 80 100 120 140	+++	+ + +	-	+	0	+++++++++++++++++++++++++++++++++++++++	+	++++		-	
Nitric acid (SpRB)	HNO₃		×	20 40 60 80 100 120 140	++++	++++++	-	+ + +	+ 0	+ + + + +	+	++			and the second se
Nitric acid up to 55% (SpRB)		~		20 40 60 80 100 120 140	+ +	++	-	+	-	+ + +		+			and the second se
Nitric acid Isee note 2.3.1 on jointing) ISpRBI	see Salpetre		6,3%, aqueous												
Nitric acid Isee note 2.3.1 on jointing) (SpRB)	see Saipetre		up to 40%, aqueous												
Nitric acid Isee note 2.3.1 on jointing) (SpRB)	see Salpetre		65%, aqueous												
Nitric acid Isee note 2.3.1 on jointing) ISpRB)	see Salpetre		100%												
Nitric acid Isee note 2.3.1 on jointing) ISpRB1	see Salpetre		85%												
Nitric oxide	see Nitrous gases										•				
Nitrilotriacetic acid	NICH ₂ -COOHI ₃			20 40 60 80 100 120 140				+	+		+				
Nitrobenzene	C ₆ H ₅ -NO ₂	209	technically pure	20 40 60 80 100 120 140			-	+ 0 0	++	+ 0 -	-	0			
(Courtesy George	Fischer Engineerin	Hard	(hook)										;		

Aggressive Media		~			Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-dd	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM.
Nitrotoluene lo-, m-, p-)		222- 238	technically pure	20 40 60 80 100 120 140	-	-	-	+ 0	+0	+ + + + 0	-	.0	0 -	-	-
Nitrous acid	HNO ₂			20 40 60 80 100 120 140	++	+ +	-	+		+++++++++++++++++++++++++++++++++++++++	+	+			
Nitrous gases	see Nitric oxide		diluted, moist, anhydrous												
N-Methylpyrrolidor.				20 40 60 80 100 120 140	-		-								
N,N-Dimethylaniline	C ₆ H ₅ NICH ₃ I ₂		technically pure	20 40 60 80 100 120 140	-		-	+	+		+				
n-Pentylacetate			÷	20 40 60 80 100 120 140	-	-	-					Card and a second s			
Oleic acid (SpRB)	С ₁₇ Н ₃₃ СООН		technically pure	20 40 60 80 100 120 140	++++	0	-	+ + 0	++0	+ + + + + + + + + + + + + + + + + + +	-	+0'.	0.	-	1
Oleum (SpRB)	H ₂ SO ₄ +SO ₃		10% SO3	20 40 60 80 100 120 140	-	-	-	-	-	-	-				-
Oleum vapours (SpRB)			traces	20 40 60 80 100 120 140	+	-	-	-	-			+	•	-	0

Aggressive Medio			·····		Chi	emico	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Olive oil (SpRB)				20 40 60 80 100 120 140	+ + +	-	-	+ + 0	+ + +	+ + +	-	+ + + +	+++++	+++++	++0.
Oxolic ocid (SpRB)	ICOOH)2		cold saturated, aqueous	20 40 60 80 100 120 140	+ + +	+ + + O	+ +	++++	++++	+++++++++++++++++++++++++++++++++++++++	+	++0.	0	0-	
Oxygen .	02		technically pure	20 40 60 80 100 120 140	+ + +	+	+ + +	+ + 0	+ + 0	++++00	++++	+	+	++++	
Ozone (SpRB)	03		up to 2%, in air	20 40 60 80 100 120 140	+	+	-	0	0	0	C	+		0	
Ozone (SpRB)	O ₃		cold saturated, aqueous	20 40 60 80 100 120 140	++	+		0	0	0	-	+0.		0	
Palm ail, palm nut ail ISpRBI				20 40 60 80 100 120 140	4	0	+	++0	++0	+ + + + +	-	++++	++0	+0-	0
Palmitic acid (SpRB)	С ₁₅ Н ₃₁ СООН	390	technically pure	20 40 60 80 100 120 140	+	-	+	0	0	+++++++++++++++++++++++++++++++++++++++	c	+0-	0	+	
Paraffin emulsions			usual commercial, aqueous	20 40 60 80 100 120 140	++	+ +	0	+ + 0	++0	+++++++++++++++++++++++++++++++++++++++	-	+ + + +	++0	+0-	

Aggressive Media					Ch	emic	al Re	sista	nce	, <i>,</i>				,	
Medium	Formula	Bailing point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF ISYGEFI	EPDM	FPM	NBR	CR	CSM
Paraffin oil				20 40 60 80 100 120 140	+ + 0	+	0	+ + +	+ + + 0	+++++++++++++++++++++++++++++++++++++++	-	+ + + 0	+00	+0.	0
p-Dibromo benzene	C ₆ H ₅ Br ₂		technically pure	20 40 60 80 100 120 140	-	-	•	0	0	+ + + + +	-	+	-	-	•
Perchlorethylene Itetrachlorethylene)	Cl ₂ C=CCl ₂	121	technically pure	20 40 60 80 100 120 140	-	-		0	0	+ + + 0 -		++++	0	-	-
Perchlorid acid (SpRB)	нсю₄		10%, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +	0	++++	++++	+ + + + +	+ 0	+ + 0		-	++0 •
Perchlorid acid (SpRB)			70%, aqueous	20 40 60 80 100 120 140	0	0	-	+ 0 -	0.	+++++++++++++++++++++++++++++++++++++++	-	+ + + 0		-	++0
Petroleum			technically pure	20 40 60 80 100 120 140	+		-	+ + 0	+00	+++++++++++++++++++++++++++++++++++++++		++0.	+++	0.	-
Petroleum ether (SpRB)		40- 70	technically pure	20 40 60 80 100 120 140	+ + +	-	-	+00	+00	+ + + +		++0	+ 0 -	-	-
Phenol (SpRB)	C ₆ H ₅ -OH	182	up to 10%, aqueous	20 40 60 80 100 120 140	+0	++	-	++0	++++	+++++++++++++++++++++++++++++++++++++++	+0	+ + + + 0	-		-

Aggressive Media					Che	emic	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEF)	EPDM	FPM	NBR	CR	CSM
Phenol (SpRB)			up to 5%	20 40 60 80 100 120 140	+	++	-	+ + +	++++++	+ + + 0	+0	+++0	-	-	
Phenol (SpRB)	C₀H₅-OH		up to 90%, aqueous	20 40 60 80 100 120 140	0	-	-	++0	+++++	+ + 0	-	+0 -	-	0	-
Phenylhydrazine	C ₆ H ₅ -NH-NH ₂	243	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	0	-	++0	-	-	-
Phenylhydrazine hydrochloride	C ₆ H ₅ -NH-NH ₂ .HCl		aqueous	20 40 60 80 100 120 140	0	0	-		+00	+++++	0	++0.	0	0	+ + C
Phosgene (SpRB)	COCI2	8	liquid, technically pure	20 40 60 80 100 120 140	-	-	-	-	-	-	-	+	0	+	+
Phosgene (SpRB)			gaseous, technically pure	20 40 60 80 100 120 140	+ 0 0	-		0	0	+ +	+	++0	+ + +	+ 0 -	+
Phosphate disodique	see d'isodiumphosphate		saturated												
Phosphoric acid	H ₃ PO ₄		up to 30%, aqueous	20 40 60 80 100 120 140	+ + 0	+++++	+ + 0	++++	+++++	+++++++++++++++++++++++++++++++++++++++	++0	+ + + + +	00 -	+ + + 0	+ + + C
Phosphoric acid			50%, aqueous	20 40 60 80 100 120 140	+ + +	+ + +	+ + 0	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+0	+ + + + O	0	+ + 0	+ + + + C

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF ISYGEFI	EPDM	FPM	NBR	ð	CSM
Phosphoric acid			85%, aqueous	20 40 60 80 100 120 140		++++++	++0	++0	++++++	+++++++++++++++++++++++++++++++++++++++	++0	++++0	-	++0	+0
Phosphoric acid	H ₃ PO4			20 40 60 100 120 140	+++	++++		++	++	++++++	0	+ + 0	-		
Phosphoric acid	H ₃ PO ₄			20 40 60 80 100 120 140	++++	++++		+	+++++	+++++++++++++++++++++++++++++++++++++++		+ + + + 0			
Phosphoric acid tributyl ester	(HoC₄OI3P≃O			20 40 60 80 100 120 140	-	-	-	+	+		+	-			
Phosphorous chlorides: - Phosphorous trichloride - Phosphorous pentachloride - Phosphorous oxichloride (SpRB)	PCI3 PCI5 POCI3	175 162 105	technically pure	20 40 60 80 100 120 140	-	-	-	+	0	-		+	-	-	+
Photographic developer (SpRB)			usual commercial	20 40 60 80 100 120 140	++0	+++0	++0	++0	++	++++	+ +	++	00	++	++
Photographic emulsions (SpRB)				20 40 60 80 100 120 140	+	++0	++	+	++	++++	++	++	0	+	++
Photographic fixer (SpRB)			usual commercial	20 40 60 80 100 120 140	++0	+++	++0	+ +	+	++++++	++	+ +	++	++	+ +

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEF)	FPDM	FPM	NBR	CK	CSM
Phthalic acid (SpRB)	C ₆ H ₃ ICOOHI ₂	Fp.*, 208	saturated, aqueous	20 40 60 80 100 120 140	-	-	-	+++++	++++	+++++++++++++++++++++++++++++++++++++++	Ċ		-	++0	+++
Phthalic acid dioctayl ester	C ₂₄ H ₃₈ O ₄			20 40 60 80 100 120 140		-	-	+	÷		-	-	-		
Picric acid (SpRB)	C ₆ H ₃ N ₃ O ₇	FP. 122	1%, aqueous	20 40 60 80 100 120 140		-		+	+	+ + + + +	4 4 4 4 4 4 4	+++++++++++++++++++++++++++++++++++++++	-	0	+0.
Potash	see potassium carbonate		cold saturated, aqueous												
Potash lye	кон		50%	20 40 60 80 100 120 140	÷ +	++++		++++	++++	-					
Potassium (SpRB)	KMnO₄ .		cold saturated, aqueous	20 40 60 80 100 120 140		++		++0	++	+ + + +	-	. + + +	-	0	++++
Potassium acetate (SpRB)	СН3СООК		saturated	20 40 60 80 100 120 140	++++	++++++	+	++++	+++++	+++++++++++++++++++++++++++++++++++++++	4 4 4 4		and a state of the		
Potassium bichromate ISpRBJ	K ₂ Cr ₂ O ₇	107	saturated, aqueous	20 40 60 80 100 120 140	+	++++	++++	+++	+++++++++++++++++++++++++++++++++++++++	+ + + + + + +	-	+++++			+++
Potassium borate	K₂8O3		10%, aqueous	20 40 60 80 100 120 140	++0	++++++	+ + +	++++	+ + +	+ + +	4	+++	+	+++++	++++

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point 'C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-99	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Potassium bromate	KBrO ₃		cold saturated, aqueous	20 40 60 80 100 120 140	++0	+++++++++++++++++++++++++++++++++++++++	+ + +	+ + 0	+ + + +	+++++++++++++++++++++++++++++++++++++++	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++00	++++++
Potassium bromide	KBr		all, aqueous	20 40 60 80 100 120 140	++0	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	++++	+++++++++++++++++++++++++++++++++++++++	+++00	+ + + + 0	+ + + + +
Potassium carbonate Ipotashl				20 40 60 80 100 120 140	+ + +	++++++	+	+ + +	+++++++++++++++++++++++++++++++++++++++	0	++++				
Potassium chlorate (SpRB)	K ClO ₃		cold saturated, aqueous	20 40 60 80 100 120 140	++++	+ + +	+ + +	+ + +	+ + +	0	++	+++++++++++++++++++++++++++++++++++++++	+0	+ 0	+++0
Potassium chloride	KCI		all, aqueous	20 40 60 80 100 120 140	++++	+ + +	+ + +	+ + +	+ + + +	+ + + + + +	++++	++++	+ + +	++++	+++++
Potassium chromate (SpRB)	K ₂ CrO ₄		cold saturated, aqueous	20 40 60 80 100 120 140	++++	++++	+ + +	÷	+ + +	+++++++++++++++++++++++++++++++++++++++	÷	+++	+ 0 -	++0	+ + 0
Potassium cyanide	KCN		cold saturated, aqueous	20 40 60 80 100 120 140	+++	++++++	+ + +	+++++	+ + +	+ + 0	+++	+ 0 -	+++++++++++++++++++++++++++++++++++++++	++0-	+++++++++++++++++++++++++++++++++++++++
Potassium dichromate	K ₂ Cr ₂ O ₇		saturoted	20 40 60 80 100 120 140		++++++		++++	+ +	+ + + + +	+	+			

Aggressive Media					Che	emico	ol Re	sista	nce						
Medium	Formula	Boiling point ⁿ C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	Ğ	CSM
Potassium fluoride	KF		saturated	20 40 60 80 100 120 140	++++++	+ + + +		+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++		+			
Potassium Hexacyanoferrate -{III	K4[FeICNI ₀]. ₃ H ₂ O			20 40 60 80 100 120 140	+ + +	++++		+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+	+			And a second
Potassium hydrogen carbonate	КНСО3		saturated	20 40 60 80 100 120 140	+ + +	+ + + +		+ + +	++++	+++++	++++	+			
Potassium hydrogen sulphate	KHSO₄		saturated	20 40 60 80 100 120 140	+	+ + + +		++++	+++++		++++++				
Potassium iodide	KJ		cold saturoted, aqueous	20 40 60 80 100 120 140	++++	++++++	++++	+ +	++++	+++++++++++++++++++++++++++++++++++++++	+	+ + + +	+0.	+ 0 -	
Potassium nitrate	KNO3		50%, aqueous	20 40 60 80 100 120 140	+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	++++	+ + +	+ + + + + +	+	++++	++++	+++	
Potassium perchlorate ISpRBI	KCIO4		cold saturoted, aqueous	20 40 60 80 100 120 140		++++++		+		+++++++	+	++++++	+0	+ 0	
Potassium persulphate (SpRB)	K ₂ S ₂ O ₈		all, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +	+++++	+ + +	+ + +	+ + +	++	++++++	-	+ + + 0	

PLASTIC PIPING HANDBOOK

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	formula	Boiling point °C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEFI	EPDM	FPM	NBR	ŭ	CSM
Potassium sulphate	K ₂ SO ₄		all, aqueous	20 40 60 80 100 120 140	+ + 0	++++++	+++++	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	++	+ + + + +	++++++	++++	++++
Potossium sulphide	K ₂ S		saturated	20 40 60 80 100 120 140	++++	+ + + +		+ + +	++++	000	+++++++++++++++++++++++++++++++++++++++				
Potassium sulphite	K ₂ SO ₃		saturated	20 40 60 80 100 120 140	+ + +	+ + +		+ + +	+++++++		+				
Polassium- oluminiumsulfate (alum)			50%	20 40 60 80 100 120 140	+ + +	++++++		+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++				
Pottasium hexacyanoferrate -{	K3[FetCN16].			20 40 60 80 100 120 140	+ + +	+ + +		+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+	+			
Pottasium tartrat				20 40 60 80 100 120 140	+			+ + +	+ + +	+ + + + + + + + + + + + + + + + + + + +	+++++				
Pottasiumhydrogensulfite				20 40 60 80 100 120 140	+ +					+++++++++++++++++++++++++++++++++++++++	++				
Pottasiumhypochlorite	косі			20 40 60 80 100 120 140	+	0		+	+	0	4	0			

Aggressive Media					Che	emic	al Re	sista	nce						
Medium	Formula	Bolling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEF!	EPDM	FPM	NBR	ŭ	CSM
Pottasiumperoxodisulfate	K ₂ S ₂ O ₈		saturated	20 40 60 80 100 120 140	++++++	+++++									
Pattasiumphosphate	KH2PO4 und K2H PO4		all, aqueous	20 40 60 80 100 120 140	++0	++++++	0	+ + +	++++++	+ + + +	+++	+++++++++++++++++++++++++++++++++++++++	+ 0 -	+ 0	
Pottasiumphosphote				20 40 60 80 100 120 140	+ + +				++++						
Propone	C ₃ H _a	-42	technically pure, liquid	20 40 60 80 100 120 140	+	-	-	+	+	+++++	-	+	+	-	
Propane			technically pure, gaseous	20 40 60 80 100 120 140	+	+		+	+	+++++	-	+	+	+	
Propanol, n- and iso- (SpRB)	C ₃ H ₇ OH	97 bzw. 82	technically pure	20 40 60 80 100 120 140	+00	-	-	+ + +	+ + +	+ + + 0	++	+++	+ 0 -	++++	
Prapargyl alcohol (SpRB)	CH&C-CH ₂ -OH	114	7%, αqueous	20 40 60 80 100 120 140	+ + +	-	-	+ + +	+++++	+ 0 0	++	++++	+++	++0	
Propionic ocid (SpRB)	CH3CH2COOH	141	50%, aqueous	20 40 60 80 100 120 140	+ + 0	0	-	+ + +	++++	+++++++	++	++0	-	0	(

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Propionic acid (SpRB)		141	technically pure	20 40 60 80 100 120 140	+ 0	0	-	+00	+00	+ + +	+ C	+ + + 0	-	-	-
Propylene glycol (SpRB)	C ₃ H ₈ O ₂	188	technically pure	20 40 60 80 100 120 140	+ + +		0	+++	+++++	+++++++++++++++++++++++++++++++++++++++	+	++0	+ 0	++	+++
Propylene oxide	C ₃ H ₆ O	35	technically pure	20 40 60 80 100 120 140	0		-	+	+	+ 0	c	-			-
Pyridine	CsH5N	115	technically pure	20 40 60 80 100 120 140	-	•	-	+ 0 0	000	+	c		-	-	•
Pyrogalial	C ₆ H ₃ IOHI ₃		100%	20 40 60 80 100 120 140						+ +		+			
Ramsit fabric waterproofing agents			usual commercial	20 40 60 80 100 120 140	+ + +			+	+	+ +	+	+	+	+	+
Solicylic ocid	C ₆ H₄IOHICOOH		saturated	20 40 60 80 100 120 140	+	+	0	++++	++++	+ + +	+++++++++++++++++++++++++++++++++++++++		+	+	+
Sea water Silicic acid	see Brine SilOH)4			20 40 60 80 100 120 140	++++	++++	+	++++	+++++		+++++				

Aggressive Media					Ch	emico	al Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Silicone oil				20 40 60 80 100 120 140	+ 0 -	+++	+	+ + +	+ + + +	+++++++++++++++++++++++++++++++++++++++	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+ + 0	+ +
Silver	AgCn		saturated	20 40 60 80 100 120 140	++++++	+ + +	+	++++	+ + +	+ + +	+++++	++++	+	+	-
Silver salts	AgNO ₃ , AgCN, AgCI		cold saturated, aqueous	20 40 60 80 100 120 140	+ + 0	+++++	+++++	+ + +	+ + +	++++++	+++++	++++	++++	++++	
Silvercyanide				20 40 60 80 100 120 140	+++	+ + +	+	++++	++++	+ + +	++++	+++	+	+	
Soap solution (SpRB)			all, aqueous	20 40 60 80 100 120 140	++0	++++	++	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	++++	+ + +	+ + +	+++++	
Sadium acetate	see Sodium carbonate CH ₃ COONa		all, aqueous	20 40 60 80 100 120 140	+ + +	++++	+	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + + 0	++++		+ +	++	
Sodium aluminium sulfate				20 40 60 80 100 120 140	+ + +			+ + +	+++++						
Sodium arsenite	Na ₃ AsO ₃		saturated	20 40 60 80 100 120 140	++++	+++++		++++	+++++		+++++				

9.58	P	LASTIC I	PIPING HANI	OBO	ЭK										
Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Boiling point ² C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-dd	PVDF (SYGEF)	EPDM	FPM	NBR	č	CSM
Sadium benzaate	C ₆ H ₅ -COONa		cold saturated, aqueous	20 40 60 80 100 120 140	++0	+++++	-	++++	+++++	+ + + 0	+0	+ + + 0	++	+++	+ + 0
Sodium bicarbonate	NaHCO3		cold saturated, aqueous	20 40 60 80 100 120 140	+++	++++	++++	++++	+++++	+ + + + +	++++++	++++++	+++++	++++	+++++
Sodium bisulphate	NoHSO4		10%, aqueous	20 40 60 80 100 120 140	++0	+++++	+ + +	++++	++++	+ + + + + + + +	+	+ + + +	+ 0	+ + 0	+++
Sodium bisulphite	NoHSO3		all, aqueous	20 40 60 80 100 120 140	+0.	+++++		+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+0-	0	0 -	++0-	+ + + 0
Sodium borate	No3BO3		saturated	20 40 60 80 100 120 140	+++++	++++++		+ + +	+++++		+++++	++++			
Sodium bromate	NaBrO3		ali, aqueous	20 40 60 80 100 120 140	+0	++		+ 0	+0	+++++	+	++++	+0.	++0	+++++
Sodium bromide	Naßr		all, aqueous	20 40 60 80 100 120 140	++0	++++++	+ + +	++++	++++++	+ + + + + + + + + + + + + + + + + + + +	+	+++++++++++++++++++++++++++++++++++++++	+0	++0	+ + 0
Sodium carbonate	see soda		cold saturated, aqueous												
Sodium chlorate (SpRB)	NoClO3		all, aqueous	20 40 60 80 100 120 140	++0	++++++	++++	++++	++++	0	+++0-	+++++	+ 0 -	+ + 0 -	+ + + 0

Aggressive Media					Che	emic	ol Re	sista	nce						
Medium	formula	Boiling point °C	Concentration	Temperature "C	PVC	CPVC	ABS	ЪЕ	H-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Sodium chlorite (SpRB)	N _G ClO ₂		diluted, aqueous	20 40 60 80 100 120 140	0	+ + + +		+ 0	+ 0	+00	++++	+ + +	-	0	++++++
Sodium chromate (SpRB)	No ₂ CrO ₄		diluted, aqueous	20 40 60 80 100 120 140	+ + 0	++	+++	+	++	+ + + +	++++	++++	+ 0	+ + 0	++ C
Sodium disulphite	Na ₂ S ₂ O ₅		all, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +		+	+	+++++++++++++++++++++++++++++++++++++++	++++	++++	0	+ + +	+ + C
Sodium dithionite	see hyposulphite		up to 10%, aqueous												
Sodium fluoride Sodium hydroxide Isee Caustic sodal	NoF		cold saturated, aqueous	20 40 60 80 100 120 140	++++	+++	++++	+	+	+++++++++++++++++++++++++++++++++++++++	+ + +	++++	++0	+++	+ + +
Sodium hypochlorite (SpRB)	NaOCI		12,5% active chlorine, aqueous	20 40	++			0	0	0	+	+	-	-	+
Sodium iodide	Nai		all, aqueous	60 20 40 60 80 100 120 140	0++0	++++++	++++	+	+	+++++	+	+ + +	++0	++++	++0
Sodium nitrate	NoNO3		cold saturated, aqueous	20 40 60 80 100 120 140	++0	+ + +	++	+++	+++++	+ + + + +	+ + +	++++	++++	+++++	4 4 4
Sodium nitrite	NaNO ₂		cold saturated, aqueous	20 40 60 80 100 120 140	+++++	++++++	++	+++++	++++++	+++++++++++++++++++++++++++++++++++++++	+	++++	+0.	+ + +	7 7 7

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	- Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	ß	CSM
Sodium oxalate	No ₂ C ₂ O ₄		cold saturated, aqueous	20 40 60 80 100 120 140	+ + 0	++++	+	+	+	+ + 0		+	+	+	+
Sodium perbarate	NoBO3 4H2O		saturated	20 40 60 80 100 120 140	+++++	+++++		+	+	++++++	+	+			and a state of the second
Sodium perchlorate	NaClO₄		saturated	20 40 60 80 100 120 140	+++++	+ + + +		+	+		+	+			
Sodium persulphate (SpRB)	No ₂ S ₇ O ₈		cold saturated, aqueous	20 40 60 80 100 120 140	++0			+ + +	+++	+++++++	++	+ + + + +	-	+++0	+ + + C
Sodium phosphate	Na3PO4		cold saturated, aqueous	20 40 60 80 100 120 140	++0	+++++	+	+ + +	+ + + + +	+ + + 0 -	+++	+ + +	++++	++++	++++
Sodium silicate	No ₂ SiO ₃		all, aqueous	20 40 60 80 100 120 140	++0	++++	++	++++	+ + +	+ + 0 .	+++++	+ + +	++++	++++	+++
Sodium Sulfide	Natriumsulfid				ļ										
Sodium sulphate	No25O4, NoH5O⊿		cold saturated, aqueous	20 40 60 80 100 120 140	+ + 0	+++++	++++++	+ + +	+ + +	+ + + + + +	000	++++	++++++	++++++	+++
Sodium sulphide	Na2S		cold saturated, aqueous	20 40 60 80 100 120 140	+ + 0	+++++	+ + +	+ + +	+ + + +	000	++++++	+	+ + +	-	+++

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

Aggressive Media	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				Che	emico	al Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEFI	EPDM	FPM	NBR	ъ	CSM
Sodium sulphite	Na ₂ SO ₃		cold saturated, aqueous	20 40 60 80 100 120 140	+ + 0	+++++	+	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	++++	++++	+ 0	+ + 0	
Sadium thiosulphate	No ₂ S ₂ O ₃		cold saturated, aqueous	20 40 60 80 100 120 140	+	+	+	+	+	+	+	+	+ 0	+ + 0	
Sodiumchloride	NaCl		each, aqueous	20 40 60 80 100 120 140	++++	+++++++++++++++++++++++++++++++++++++++	+ +	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+ + + +	++++++			
Sadiumcyanide	NoCN			20 40 60 80 100 120 140	++++	++++++		++++	+++++	++++	++++	+++			
Sodiumdichromate	No ₂ Cs2O7			20 40 60 80 100 120 140	0	++++		++	+		++	++++			
Södiumhydrogen- carbonate	NoHCO3			20 40 60 80 100 120 140	++++	+++++	+	+++++	+ + + +	++++++	++++++	+			the second se
Sodiumhydragensulfate .	NaHSO4			20 40 60 80 100 120 140	++++	+++++	+	++++	++++++	++++++++	++++	++++			
Spindle oil				20 40 60 80 100 120 140	0	0	-	0	+0-	+++++++++++++++++++++++++++++++++++++++	-	+0-	++0.	0 -	(

Aggressive Media					Ch	emic	al Re	siste	Ince						
	1				-	1	1	T	T			1	T	T	
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-99	PVDF ISYGEF)	EPDM	FPM	NBR	CK	CSM
Spinning both acids containing carbon disulphide (SpRB)			100 mg CS ₂ /I	20 40 60 80 100 120 140	++++			÷	+	++++++		+	-	-	0
Spinning bath acids containing carbon disulphide (SpRB)			200 mg CS ₂ /I	20 40 60 80 100 120 140	0			+	+	+	-	+		-	-
Spinning bath acids containing carbon disulphide (SpRB)			700 mg CS ₂ /I	20 40 60 80 100 120 140	-			+	+	++	-	+	-	-	
Stannous chloride	see Tin II chloride		cold saturated, aqueous												
Stannous chloride - Tin IV chloride	SnCl4		cold saturated, aqueous	20 40 60 80 100 120 140				++++	++++++						
Starch solution	IC₀Hı₀O₅In		oll, oqueous	20 40 60 80 100 120 140	+ + +	+ + + +	++	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++	+ +	+++++	++++
Starch syrup			usual commercial	20 40 60 80 100 120 140	++++	+++++	+++	+++	++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	++++++	+ + + + +	+ + + + + +
Stearic acid (SpRB)	С ₁₇ Н ₃₅ СООН	Fp. 69	technically pure	20 40 60 80 100 120 140	+ + +	0	++	+ 0	+	+++++++++++++++++++++++++++++++++++++++	++ C	++0	++0	++0	00 -
Styrol				20 40 60 100 120 140	-	-				+		+			

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

Aggressive Media					Ch	emic	ol Re	sista	nce						
Medium	Formula	Boiling point "C	Concentration	Temperature ³ C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CK	CSM
Succinic acid	HOOC-CH2-CH2-COOH	Fp*., 185	aqueous, all	20 40 60 80 100 120 140	+ + +	+++++	+	+++++	+ + +	+ + +	+++++	++++++	+ + +	+++++	++++++
Sugar syrup			usual commercial	20 40 60 100 120 140	+ + 0	++++	+ 0	+ + +	++++++	+ + + + + + + + + + + + + + + + + + + +	+++++++++++++++++++++++++++++++++++++++	+++++	+ + +	++++	+++++
Sulfur	S	Fp.*, 119	technically pure	20 40 60 80 100 120 140	0	0	-	+++++	+++++++	+++++++++++++++++++++++++++++++++++++++	+	+ + + +	A Contraction of the American	+	+++++
Sulfur dioxide	SO ₂	-10	technically pure, anhydrous	20 40 60 80 100 120 140	++++	++++	-	++++	++++	00.	+ 0	+0	a contract and the contract	-	c
Sulfur diaxide	SO ₂		technically pure, moist	20 40 60 100 120 140		-	-	-	-	-	-	0	-	-	c
Sulfur dioxide	SO ₂		all, moist	20 40 60 100 120 140	++0	++		+ + +	++++	+ 0 -	+0.	+ 0 .		-	c
Sulfur trioxide	SO3			20 40 60 80 100 120 140	-	-				~				-	-
Sulfuric acid saturated by Chlorine	H ₂ SO ₄ +Cl ₂		60%	20 40 60 100 120 140						+++++++++++++++++++++++++++++++++++++++					and the second se

Aggressive Media	Ţ				Ch	emic	al Re	sisto	nce				_		
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Sulfuric acid Isee note 2.3.1 on jointing)	H ₂ SO ₄	120	up to 40%, aqueous	20 40 60 80 100 120 140	+ + 0	+ + +	+ 0	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++0	+ + + 0	0	+ 0	++00-
Sulfuric acid Isee note 2.3.1 on jointing) ISpRBI	H ₂ SO ₄	140	up to 60%, aqueous	20 40 60 80 100 120 140	++++	+++++	-	++++	+ 0 -	+ + + + + + +	++0	+ + + 0		-	+ 0 0
Sulfuric acid Isee note 2.3.1 on jointing) ISpRBI	H ₂ ŞO ₄	195	up to 80%, oqueous	20 40 60 80 100 120 140	+ + +	++++++	-	+ + 0	+ + 0	+ + + + 0	00	++0-	-	-	+ 0
Sulfuric acid (see note 2.3.) on jointing) (SpRB)	H ₂ SO4	250	90%, aqueous	20 40 60 80 100 120 140	+ +	+++++	-	0	0	+ + + + 00	-	++	-		
Sulfuric acid (see note 2.3.1 on jointing) (SpRB)	H ₂ SO ₄		96%, aqueous	20 40 60 80 100 120 140	+ + 0	++++	-	-	-	+ -	-	++	-	-	÷
Sulturic acid Lee note 2.3.1 on jointing) ISpRBI	H ₂ SO ₄		97%	20 40 60 80 100 120 140	+	+	-	-	-	0		+	-	-	1
Sulfuric acid Isee note 2.3.1 on jointing) ISpRBI	H ₂ SO ₄	340	98%	20 40 60 80 100 120 140	+ 0	++0	-	-	-	-	-	0	-	•	
Sulfurous acid	H ₂ SO ₃		saturated, oquecus	20 40 60 80 100 120 140	+ + 0	+++	0 +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+	++0-	-	-	00.

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

Aggressive Media					Che	emic	al Re	sista	nce						
Medium	Farmula	Boiling point "C	Concentration	Temperature "C	PVC	CPVC	ABS	PE	H-dd	PVDF (SYGEF)	EPDM	FPM	NBR	Ğ	CSM
Sulfuryl chloride	SO ₂ Cl ₂	69	technically pure	20 40 60 80 100 120 140			-	-		0		+	-	0	+
Surfactants (SpRB)			up ta 5%, aqueous	20 40 60 80 100 120 140	000	-	-	+	+00	+ 0 0 0	+	+	+	+	+
Surfactonts IESCI				20 40 60 80 100 120 140	0	0	0	0	0	0	0	0	0	0	
Tallow (SpRB)			technically pure	20 40 60 80 100 120 140	++++	-	-	+++++	++++	++++++	++++	++++	+++++	+++	++++
Tannic acid (SpRB)			oll, aqueous	20 40 60 80 100 120 140	+	++++	++	++++++	+++			+	+	+	+
Tanning extracts form plants (SpRB)			usual commercial	20 40 60 100 120 140	+	+ +	++	+	+	+	+	+	+	+	+
Tortaric acid				20 40 60 80 100 120 140						+					
Tartaric acid	HO ₂ C-CHIOHECHIOHECO ₂ H		all, aqueous	20 40 60 80 100 120 140	++0	+	++	+ + +	+++	+++++++++++++++++++++++++++++++++++++++	++++	+ + +	++0	++++	++++
	1														

			,	Ch	emic	al Re	sista	nce						
Formula	Bailing point ^a C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-44	PVDF (SYGEF)	EPDM	FPM	NBR	ŭ	CSM
			60						+++++++++++++++++++++++++++++++++++++++		-			
			20 40 60 80 100 120 140	-	-	-	-	-	+		+			
Cl ₂ CH-CHCl ₂	146	technically pure	20 40 60 80 100 120 140	-	-	-	0	0	+ + 0	-	С	-	-	-
see Ferchloroethylene	121													
IC2Hal4Pb		technically pure	20 40 60 80 100 120 140	+	+	-	+	+	+ + + + + + +	C	+	+	0	+
C₄H ₈ O	66	technically pure	20 40 60 80 100 120 140		-	-	0	0	-	C	-	-	-	-
Teralin	207	lechnically pure												
SOCI ₂	79	technically pure	20 40 60 80 100 120 140	-	-		-	-	-	C	+	-		-
			40	+	++++++		5		+ + + + + +	14	+++			
	Cl2CH-CHCl2 see Ferchloroethylene IC2Hal4Pb C4H6O	Cl2CH-CHCl2 146 see Ferchiorosthylene 121 IC2H34Pb C4H8O 66 Terolin 207	Cl ₂ CH-CHCl ₂ 146 technically pure see Ferchioroethylene 121 IC ₂ H ₃ l ₄ Pb 121 technically pure C ₄ H ₈ O 66 technically pure Terolin 207 technically pure	Cl ₂ CH-CHCl ₂ 146 technically pure 20 40 80 80 80 100 120 140 Cl ₂ CH-CHCl ₂ 146 technically pure 20 40 80 100 120 140 see Ferchloroethylene 121 IC ₂ H ₃ µPb 121 121 Cc ₄ H ₆ O 66 technically pure 20 40 80 100 120 Terolin 20 technically pure 20 40 80 100 120 CaH ₆ O 66 technically pure 20 40 80 100 120 Terolin 207 technically pure 20 40 80 100 120 SOCl ₂ 79 technically pure 20 40 40 40 40 40 40 40 40 40 40 40 40 40	Formula V 100 100 100 100 100 100 100 100 100 10	Formula Y 100 000 Concentration Y 100 000 Y 100 000 Y 100 Y 100 <th{< td=""><td>Formula V tronula V tronula V tronula</td><td>Formulo V big big big big big concentrotion V big big big big concentrotion V big big big big big big big big big big</td><td>Cl₂CH-CHCl₂ 146 technically pure 20 40 140 - - - - - Cl₂CH-CHCl₂ 146 technically pure 20 140 - - - - See Ferchioroethylene 121 -</td><td>Formula V P V P</td><td>Formula U<!--</td--><td>Formula \bigvee_{igg} \bigvee_{igg}</td><td>Formula $\begin{array}{ c c }{\hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$</td><td>Formula V V</td></td></th{<>	Formula V tronula V tronula V tronula	Formulo V big big big big big concentrotion V big big big big concentrotion V big big big big big big big big big big	Cl ₂ CH-CHCl ₂ 146 technically pure 20 40 140 - - - - - Cl ₂ CH-CHCl ₂ 146 technically pure 20 140 - - - - See Ferchioroethylene 121 -	Formula V P V P	Formula U </td <td>Formula \bigvee_{igg} \bigvee_{igg}</td> <td>Formula $\begin{array}{ c c }{\hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$</td> <td>Formula V V</td>	Formula \bigvee_{igg}	Formula $\begin{array}{ c c }{\hline 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 &$	Formula V

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

1		ABS	+ + + PE	H-99 + + + +	PVDF (SYGEF)	FPDM	ET UNI	¥			
	-		+	+++++				£	NBR	CK	CSM
	-		1								
		-	0	0	+		-	+	-	-	
-	-	-	+	+	++		+				
-	1	-	+++++	++++	+	-	+	-	-		
-	-	-	+ 0	++0	0	c	S		-	-	
1	W)		++++	+ + 0	+ + 0 -		c		-	-	
-	-	-	-	0	+ + + 0		-	+		-	
-				+	+ 0	+ 0 0	+ 0 0	+ 0 0	+ 0 0	+ 0 0 0 + - + -	+ 0 0 0 + - +

Aggressive Media					Ch	emic	al Re	sista	nce						
Medium	Formula	Bolling point "C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	Ŭ	CSM
Tricresyl phosphate (SpRBI	H3C-C6H5-O I3PO4		technically pure	20 40 60 80 100 120 140	-	-	-	+ + +	+		+	-	0.	v	-
Triethonolamine (SpRB)	NICH ₂ -CH ₂ -OHI ₃	Fp. *21	technically pure	20 40 60 80 100 120 140	0		-	+	+	+++	0	-	0	-	-
Triethylamine (SpRB)	NICH ₂ -CH ₃ 13	89	technically pure	20 40 60 80 100 120 140		-	-	+	+	0	-	-	-	-	-
Trifluoro acelic ocid (SpRB)	F ₃ C-COOH		up to 50%	20 40 60 80 100 120 140	-	-	•	+	+	+ 0	0	-	-	-	-
Trioctyl phosphate (SpRB)	(C ₈ H ₁₇) ₃ PO ₄		technically pure	20 40 60 80 100 120 140	-	-	-	++	+ 0	0	+		0	*	
Turpentine oil (SpRB)			technically pure	20 40 60 100 120 140	+ 0	-	-	00	-	+	-	++++	0		-
Urea (SpRB)	H ₂ N-CO-NH ₂	Fp.*, 133	up to 30%, aqueous	20 40 60 80 100 120 140	++0	+++0	+	++++	+++	+ + + + 0	+++++	++++	+++++	++++	+++
Urine				20 40 60 80 100 120 140	++0	+ + +	++	++++	++++	+++++++++++++++++++++++++++++++++++++++	++++	+++	+ + +	++++	+++

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

Medium	Formula	Boiling paint °C	Concentration	Temperature °C		0	ABS		H-dd	PVDF (SYGEF)	EPDM	FPM	NBR	c
Vaseline			technically pure	20 40 60 80 100 120 140	0 -	0	-	+	0	+++++++++++++++++++++++++++++++++++++++	-	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	-
Vegetable ails				20 40 60 80 100 120 140	0	-	-	+	+	++++++	~	+	+	0
Vegetable oils and fats (SpRB)				20 40 60 80 100 120 140	+0	0		+0	++0	+++++++++++++++++++++++++++++++++++++++	-	+ + +	++++	00 -
Vinegar Vinyi acetate	see wine vinegar CH ₂ =CHOOCCH ₃	73	technically pure	20 40 60 80 100 120 140	-	-	-	++	+	+	+	1		-
Vinyl chloride	CH₂=CHCI	-14	technically pure	20 40 60 80 100 120 140	-	-	-	-	-	+++++	-	+	-	-
Viscose spinning solution				20 40 . 60 80 100 120 140	+++++++++++++++++++++++++++++++++++++++	-	-	++++	+ + +	+++++	+++	++++		00 -
Waste gases containing - Alkaline				20 40 60 80 100 120 140	++++	+ + + +	3	++++	++++	+0.	+++++	+++0	++++	+++
Waste gases containing - Carbon oxides			all	20 40 60 80 100 120 140	+ + +	+ + + +		+++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++	++++	++++

PLASTIC PIPING HANDBOOK

Aggressive Media					Ch	emic	ol Re	sista	nce						
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEFI	EPDM	FPM	NBR	CK	CSM
Waste gases containing ~ Hydrochloric acid			oli	20 40 60 80 100 120 140	+ + +	+ + +		+ + +	++0	+++++++++++++++++++++++++++++++++++++++	+++0	+ + + + +	0	+ + +	+++++++++++++++++++++++++++++++++++++++
Waste gases containing - Hydrogen fluoride (SpRB)			traces	20 40 60 80 100 120 140	+ + +	++++++		+ + +	+ + +	++++++	+ + 0	++++	+ 0	++0	+++
Waste gases containing - Nitrous gases			traces	20 40 60 80 100 120 140	+ + +	+ + +		+ + +	+ + 0	+++++++++++++++++++++++++++++++++++++++	+++0	+ + + + O	0	++0	+++0
Waste gases containing - Sulphur dioxide			traces	20 40 60 80 100 120 140	+ + +	+++++++		+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	+++++++++++++++++++++++++++++++++++++++	0.	++++	+ + + +
Waste gases containing - Sulphur trioxide (SpRBI			traces	20 40 60 80 100 120 140	+ + +	++++++		+ + +	++0	+++++++++++++++++++++++++++++++++++++++	+ + + 0	+ + + +	0	++++	+++
Waste gases containing - Sulphuric acid			a11	20 40 60 80 100 120 140	+ + +	+++++		+ + +	+++0	+++++++++++++++++++++++++++++++++++++++	+ + + + 0	+ + + + +	0	+++++	++++
Water - distilled - deionised	H ₂ O ·	100		20 40 60 80 100 120 140	+ + +	+++++++	+ + +	+ + +	++++++	+ + + + + + + +	+0	+ + + + + +	+++++++	+ + +	++++
Water, condensed				20 40 60 80 100 120 140	+ + 0	+++++	++++	++++	+++++	+ + + + + + + + + + + + + + + + + + + +	+0	+++++	+++0	++++	+ + + +

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

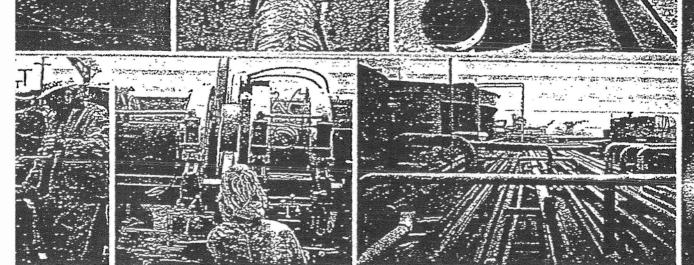
Aggressive Media					Che	emico	ol Re	sista	nce						_
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF (SYGEF)	EPDM	FPM	NBR	ð	CSM
Water, drinking, chlorinated				20 40 60 80 100 120 140	+ + +	+ + +	+ + +	+ + +	+++++++++++++++++++++++++++++++++++++++	+ + + + +	+0	+++++++++++++++++++++++++++++++++++++++	+ + + 0	+++++	
Water, waste water without organic solvent and surfactonts				20 40 60 80 100 120 140	+ +	+ + + +	+ + +	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+0	+++++	+ + + + O	+++++	
Wax alcohol (SpRB)	С ₃₁ н ₆₃ он		technically pure	20 40 60 80 100 120 140	+ + +	0	-	0 -	0	++++++	+++++	++++	+++++	++++	
Wine vinegar (SpRB)			usual commercial	20 40 60 80 100 120 140	+ + +	Q	0	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+	0	-	0	
Wines, red and white			usual commercial	20 40 60 80 100 120 140	+	0	++	+ + +	++++	+++++++++++++++++++++++++++++++++++++++	+	+	+	+	
Xylene	C ₆ H ₄ ICH ₃ I ₂	138? 144	technically pure	20 40 60 80 100 120 140			-		-	+ + 0 -		+ 0 -		-	
yeasts			all, aqueous	20 40 60 80 100 120 140	+ +	++++++	+	+ + +	+++++	+++++++	++	++	++	+++	
Zinc salts	ZnCl ₂ , ZnCO ₃ , ZnINO ₃ 1 ₂ , ZnSO ₄	-	all, aqueous	20 40 60 100 120 140	++0	+ + +	++	+ + +	+++++	+ + + + + + + + +	+++	+++	+ 0	++++	

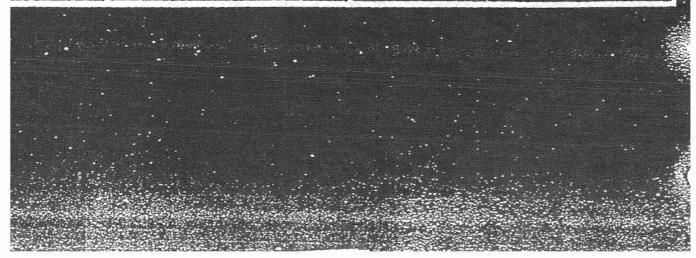

Aggressive Media		*****			Ch	smic	al Re	sista	nce						
Medium	formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	H-99	PVDF (SYGEF)	EPDM	FPM	NBR	CR	CSM
Zinccarbonate				20 40 60 80 100 120 140	++++++	++++++	+	++++++	+ + + +	+++++++	+++++++++++++++++++++++++++++++++++++++	++++++			
Zincchloride			saturated	20 40 60 80 100 120 140	++++	++++	+	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	++++	+++++			
Zincnitrate	ZnINO ₃ I ₂		saturated	20 40 60 80 100 120 140	++++	++++	+	+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++	+++++			
Zincoxide			Suspension	20 40 60 80 100 120 140						+++++++++++++++++++++++++++++++++++++++		and a second state of the second s			
Zincphosphate			saturated	20 40 60 80 100 120 140	++++	++++++	0	+ + +	++++++	+++++++++++++++++++++++++++++++++++++++	+++++	++++			
Zincstearate			Suspension	20 40 60 80 100 120 140	-		-	++++	+++++	+++++++++++++++++++++++++++++++++++++++	+++++	0			
Zincsulfate	Zn\$O4			20 40 60 80 100 120 140	+++	++++		+ + +	+++++	+++++++++++++++++++++++++++++++++++++++	+++++++	+++++++++++++++++++++++++++++++++++++++			
1-Chloropentan	C ₃ H ₁₁ Cl			20 40 60 80 100 120 140	-		-								

CHEMICAL RESISTANCE OF PLASTICS AND ELASTOMERS

Aggressive Media					Chemical Resistance											
Medium	Formula	Boiling point °C	Concentration	Temperature °C	PVC	CPVC	ABS	PE	PP-H	PVDF ISYGEFI		EPDM	FPM	NBR	G	CSM
Medium 1),2-Tirifuoro, 1,2-Tirchioroethone (Freon 113) (SpRB)	Formula FCI ₂ C-CCIF ₂	50,1100 47	Concentration technically pure	baduey 200 800 100 120 140	+ + PVC	CPVC	. ABS	33	Hid	+ PVDFIS		EPDM	+ FPM	+ NBR	+ 08	+

Engineering Characteristics




STOCKING DISTRIBUTORS OF FINE UTILITY PRODUCTS IRRIGATION SUPPLY CO., INC. 926 BAXTER AVE. P.O. BOX 4545 LOUISVILLE, KY. 40204 502 - 583-6591

Contents: Introduction Physical Properties Long Term Strength Design Pressure Ratings Flow Characteristics Lightweight—Flexible Toughness—"Ductile PE Pipe". Environmental Stress Crack Resistance

- stance
- ethod

O DEISTOPPED

Driscopipe[®] Engineering Characteristics

Introduction

Driscopipe high density polyethylene piping systems offer the modern engineer the opportunity to take advantage of the unusual characteristics of these materials and use them to solve many old problems and to design systems for applications where traditional materials are either unsuitable or too expensive. When compared to the older traditional piping materials, Driscopipe polyethylene piping systems offer a new freedorn in environmental design, extended service life, significant savings for installation labor and equipment costs, and reduced maintenance for pipeline systems where operating conditions are within the pressure and temperature capabilities of the material.

This brochure outlines the Engineering Characteristics of Driscopipe high density polyethylene pipe and fittings and points out many of the advantages and benefits to be realized through the use of these systems. The discussion is directed primarily toward the large diameter (3" through 54") Driscopipe 8600 and Driscopipe 1000 Industrial and Municipal product lines. However, these engineering characteristics are also typical of other Driscopipe polyethylene product lines.

Physical Properties

Driscopipe 8600 is manufactured from Marlex M-8000 very high molecular weight high density PE 3408 resin. Pipe and fittings made from Marlex M-8000 are extremely tough and durable, and possess exceptional long term strength. Marlex M-8000 is a proprietary product and is extruded only by Phillips Driscopipe, Inc.

Driscopipe 1000 is manufactured from Marlex TR-480, a PE 3408 polyethylene pipe resin in a molecular weight range which permits the pipe to be extruded by conventional methods. In this respect, Driscopipe 1000 is comparable to other extra high molecular weight, high density, PE 3408 polyethylene pipes commercially available in North America.

Sheets detailing typical physical properties for Driscopipe 1000 and Driscopipe 8600 are available upon request.

Long Term Hydrostatic Strength

One of the cutstanding engineering characteristics of Driscopipe high density polyethylene pipe is its long term hydrostatic strength under various thermal and environmental conditions. Life expectancy is conservatively estimated to be in excess of 50 years using the standard design basis. This strength is determined by standardized methods and – – – procedures which the plastic pipe industry has used for many years to evaluate the long term strength of all types of plastic pipe.

Pipe hoop stress versus time to failure plots of long term hydrostatic pressure data for thermoplastic pipe have been studied and analyzed for many years. The mathematical equations used to evaluate the test data and extrapolate values to longer periods of time were chosen after careful evaluation of more than 1,000 sets of long term test data representing more than 400 plastic pipe compounds. Continued testing on new compounds and extended testing of older compounds have proven the validity of these test methods. Actual data from more than 11½ years (100,000 hours) of continuous testing shows the industry methods to be slightly conservative in that actual values are slightly higher than those calculated by the industry-accepted ASTM method.

The reduction in strength which occurs with time, as indicated by the stress-life curves, does not represent a strength degradation of the material but is more inthe nature of a relaxation effect. Plastic pipe samples which have been on test for periods up to 70,000 hours have been de-pressurized and checked for permanent reduction of strength by using the quickburst test. No loss has been found when compared to samples previously quick-burst from the same test lot.

All evidence confirms that the methods used to predict the long term strength of plastic pipe are sound methods. Through the years, these policies and procedures, used to develop recommended hydrostatic design strengths, have influenced manufacturers to research and develop improved piping products such as Driscopipe 8600 and Driscopipe 1000.

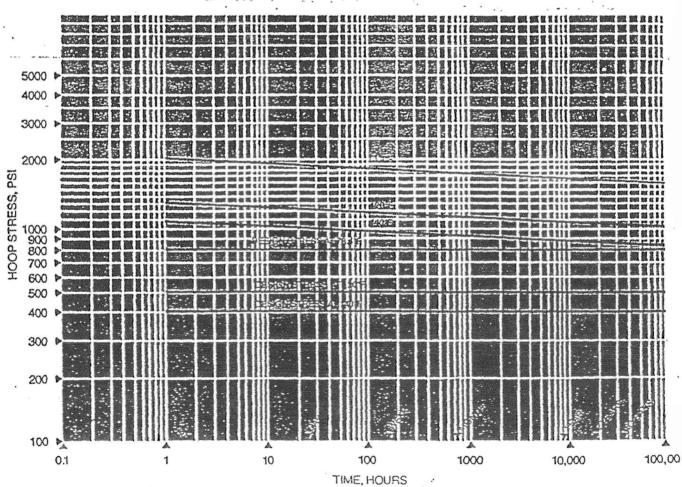
Typical calculated long term strengths are shown below:

Long Term Strength @ 73.4°F(23°C)

Time	Hoop Stress, psl
100,000 hrs. (11.43 yrs.)	1635
438,000 hrs. (50 yrs.)	1604
500,000 hrs. (57 yrs.)	. 1601
1,000,000 hrs. (114 yrs.)	1586

1

OD: KROPPE


The 114-year long term strength has been included to show more about the nature of the method used by the industry to evaluate the long term strength of plastic pipe and to illustrate the very slow reduction in strength as time progresses.

Long term hoop stresses for design purposes are normally selected at a level which is much lower than the long term strength of the materials. This ensures that the pipe is operating in a hoop stress range where creep (relaxation) of the materials is nil and assures service life in excess of 50 years. Design stress levels are discussed further in the next section.

The long term hydrostatic tests are conducted by using ASTM standard test procedures which may be applied to all types of plastic pipe (ASTM D 1598 Test for Time-to-Failure of Plastic Pipe Under Constant Internal Pressure). Stress-life tests are conducted by using numerous pipe samples which are filled with water (or other environmental fluids) and subjected to a controlled pressure at a controlled temperature. Samples are held on test until they fail. The pressure, temperature and time-to-failure data from all samples are used to calculate and plot stress-life curves for the particular type pipe being tested (ASTM D 2837 Obtaining Hydrostatic Design Basis for Thermoplastic Pipe Materials). This data is then used to predict the probable safe life of the pipe at various stress levels (working pressures) and various temperatures. Because it is not practical to test at all temperature levels, these tests are generally conducted at temperatures of 73.4°F and one or more higher temperatures such as 100°F, 120°F and 140°F.

These stress-life curves give a relationship of the expected life span of the pipe when subjected to various internal stress levels (working pressures) at various temperatures. By comparing stress-life curves, one can compare relative long term performance ability of different plastic pipes. Stress-life curves for Driscopipe 8600 and Driscopipe 1000 are shown in Figure 1.

Figure 1

Stress-Life of Driscopipe® 8600 and Driscopipe® 1000

Those stress-life curves were obtained using water as

st medium. However, years of laboratory testing any field experience have shown that these same curves may be used to design Driscopipe systems for natural gas, salt water, sewage and hundreds of other industrial and municipal fluids, mixtures and effluents. The long term strength of Driscopipe indicated by these curves must be de-rated in some environmental circumstances, such as in the presence of liquid hydrocarbons or abrasive fluids, although the pipe is very suitable for use in these environments. An outstanding engineering advantage of Driscopipe is its exceptionally long term service life in the presence of internal and external corrosive service conditions.

Design Pressure Ratings

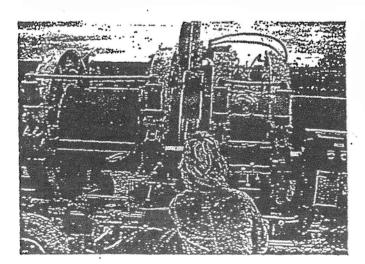
Since plastic pipe was introduced in the late 50s, the safety factor for design of water systems at standard temperature has been 2 to 1. The 2:1 design factor which was officially adopted by the plastic pipe industry in 1963, was based on allowances for many sources of variation. The guiding principle has always been to make the selection on a conservative basis but not to be unreasonably conservative.

The sources of variation for which allowances are made include ... variation in test methods and

cedures among laboratories ... variation among s of the same compound ... variation of lots of pipe

from the compound in different plants and from different extruders ... variation in compounds of the same general class ... variations in handling and installation techniques ... variation in operating pressures (water hammer and surge) ... a strengthtime allowance to give service life well beyond 50 years ... and, finally, the great unknown. Each of the

factors was judged to reduce the 100,000 hour design strength by 5%-10% or 20% ... for a total of 100% ... or a design factor of 2:1. This is why polyethylene pipe, with a designated 100,000 hour strength of 1600 psi at 73.4°F, has a hydrostatic design strength of 800 psi hoop stress.


The design pressures for Driscopipe are determined by the following equation, adopted internationally by the industry for this purpose:

$P = \frac{23}{SDR}$	S -1×F	or $P = 2S \frac{t}{D-t} \times F$
Where:	D ==	Specified Outside Diameter, Inches
	P=	Design Pressure, psi
-	S=	Long Term Hydrostatic Strength,
		psi, at the design temperature
	t=	Minimum Wall Thickness, Inches
	F=	Service Design Factor
	cno-	Standard Dimension Patio of D#

SDR = Standard Dimension Ratio of D/t

The traditional Service Design Factor for water at standard temperature (73.4°F) is one-half (.5). The Service Design Factor for oil or liquid hydrocarbons is 0.25 @ 73°F. The service design factor may be adjusted by the design engineer to reflect the particular conditions anticipated for the application. The temperature selected for design should consider both internal and external conditions. The design temperature should be based on the temperature of the pipe itself. For practical purposes, it is safer to design to the highest temperature.

The design service factor for water may also be used for solutions of inorganic salts, alkaline fluids, non- -oxidizing acids, low concentrations of oxidizing acids and many other solutions. See the discussion on chemical resistance for more information.

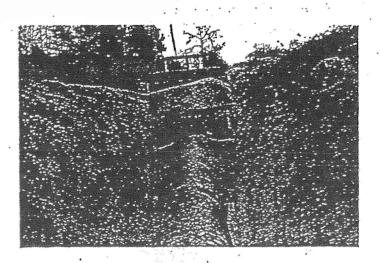
All standard design pressure ratings shown in Driscopipe literature are based on water at 73.4°F temperature; ie, a safety factor of 2:1 based on the long term hydrostatic strength of the material. Driscopipe is applicable at pressures from 0 to 265 psi and temperatures from below 32°F up to 180°F. Standard Dimension Ratios (SDR) are available from SDR 32.5 to SDR 7.0

Flow Characteristics

Driscopipe polyethylene has excellent flow characteristics as compared to traditional materials. An extremely smooth interior surface offers low resistance to flow. It maintains these excellent flow properties throughout its service life in most applications due to the inherent chemical and abrasion resistance of the material. Because of smooth walls and the non-wetting characteristic of polyethylene, higher flow capacity and less friction loss is possible with Driscopipe. In many cases this higher flow capacity may permit the use of smaller pipe at a lower cost.

A "C" factor of 155 is commonly used in the Hazen-Williams formula for calculating flow in pressure applications. For gravity flow, an "n" factor of .009 is used in Manning's formula.

Experimental test data regarding pumping and pressure drop through Driscopipe is available upon request. This study compares the flow through 8" Driscopipe with and without internal fusion beads using clear water. It also includes flow data for some clay-water slurries and clay-water-sand slurries. Velocities up to 20 fps are studied. Data includes determination of Hazen-Williams. "C" factor, Reynolds number, boundry drag, relative roughness, sand grain roughness and friction loss at various velocities.


Lightweight-Flexible

The inherent light weight and flexibility of Driscopipe provides many cost saving benefits related to handling, storage, hauling, unloading, stringing, joining and installation. Because of its light weight, Driscopipe can be moved, handled and placed in the ditch with smaller and less expensive construction equipment. Usually, manpower requirements are also reduced.

Driscopipe weighs less than water, it has a specific gravity of .955-.957. Because it will float, it can be joined in long strings and easily towed into position on job sites where water is encountered. The combination of light weight and flexibility provides opportunity to fusion join the pipe in a convenient work area and pull it into position in difficult work areas where terrain or other obstacles present installation problems. The pipe can be joined above ground and rolled or lowered into the trench thus allowing the use of smaller trench widths and eliminating the necessity of placing men and equipment inside the trench. Such installation methods can dramatically reduce the time required for installation in many instances.

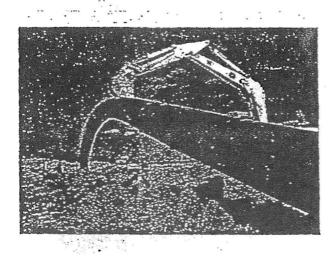
The flexibility of Driscopipe allows it to be curved over, under and around obstacles and to make elevation and directional changes, thus eliminating fittings and reducing installation costs. The pipe can be cold bent as it is installed to a radius of 20-40 times the pipe diameter. This flexibility and the butt fusion joining method make Driscopipe ideally suited for inserting it inside older piping systems to renew and renovate such systems at a much lower cost than would be possible otherwise.

Pipe flexibility and toughness also allow small diameter Driscopipe to be plowed-in or pulled-in with suitable equipment.

Toughness - "Ductile PE Pipe"

verall "toughness" of Driscopipe is an important characteristic of the pipe which is derived from many of the chemical and physical properties of the material as well as the extrusion method. The pipe is ductile. It flexes, bends and absorbs impact loads over a wide temperature range of - 180°F up to + 180°F. This inherent resiliency and flexibility allow the pipe to absorb surge pressures, vibration and stresses caused by soil movement. Driscopipe can be deformed without permanent damage and with no adverse effect on long term service life. It is flexible for contouring to installation conditions. The toughness of Driscopipe is one of its outstanding engineering characteristics leading to innovative piping design.

Even though "toughness" has become generally recognized by the industry as a highly desirable characteristic ... there is no standard test which can be used to directly compare the "toughness" among polyethylenes ... as well as among the different plastic materials which are considered suitable for piping.

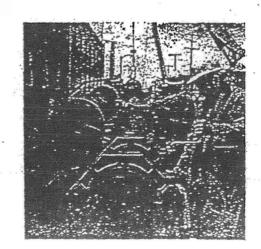

A "toughness" test has not been devised is simply because it is influenced by so many of the physical and chemical properties of the material. The extreme toughness of Driscopipe has been noted as one of its

standing features since its introduction to theustry... yet to explain "toughness", many properties are discussed and demonstrated. To obtain a complete evaluation of the toughness of a plastic material, it is necessary to see demonstrations of tests and to conduct some tests in person in order to compare it with materials which are more familiar, such as cast iron, steel, cement, copper, etc.

Toughness is related to ... Environmental Stress Crack Resistance (ESCR) ... Notch sensitivity ... Resistance to secondary stresses from external loading ... Impact strength ... Tear strength ... Flexibility ... Kink resistance ... Abrasion and scratch resistance ... Flexural strength ... Elongation ... Chemical resistance ... Tensile strength ... Ductility ... Creep resistance ... Temperature resistance ... Density ... Molecular weight ... and the thermoplastic nature of the material. Part of the toughness of any polyethylene material can be attributed to its flexibility. flexural strength and impact resistance as compared to the more rigid thermoplastic materials such as PVC. Polyethylene is ductile and will elongate many times more than PVC. Consequently, it will absorb more impact without damage or failure. PE will flex or elongate and stress relieve itself rather than rupture. Generally, impact strength is greater for the higher molecular weight PE resins. Impact resistance is also important from the standpoint of a piping system being able to absorb energy imposed on it by external forces.

The expansive force of water freezing inside Driscopipe will not damage it.

ESCR is one of the properties closely related to "toughness" and has been studied as a possible means to define and measure toughness. The exceptional resistance of Driscopipe 8600 to environmental stress cracking as compared to other PE materials is discussed further in the next section.


 Driscopipe 8600 is unique and differs from Driscopipe 1000 and from all other polyethylene pipes. Driscopipe 8600 exhibits a superior toughness which gives the pipe the highest impact strength, highest tear strength and lowest notch sensitivity of any polyethylene pipe currently available. Driscopipe 8600 offers the highest resistance to cuts, scratches and abrasions which occur when handling and installing the pipe.

These properties are maintained throughout its temperature range without a loss of ductility or reduced resistance to notch sensitivity. Driscopipe has been successfully installed in numerous arctic applications. Some of these applications have included direct burial in the unstable arctic permafrost.

To learn more of the relative toughness of Driscopipe 8600, we encourage you to take a piece of pipe with a butt fusion joint and try to tear it up without using sharp tools. Pound it flat with a sledge hammer ... slam it against a corner of angle iron ... run over it with a truck ... then do the same with steel, copper, PVC, cast iron and the less rugged PEs. It's not very scientific ... but we believe you'll be convinced that Driscopipe 8600 has extremely high toughness. We have evaluated Driscopipe many times in laboratory and field test experiments to demonstrate and prove this toughness.- One excellent indicator of the relative toughness of Driscopipe 8600, as compared to other polyethylene pipe materials, can be observed in the ASTM Standard Test for determination of flow rate of the thermoplastic materials.

When Driscopipe 8600 is heated to 190°C (374°F) to measure the flow rate, it requires 432.5 pounds/ sq. in. force, applied for 10 minutes, to flow 1½ grams of 8600 material through the orifice of the test unit! Other commercially available polyethylene pipe materials will flow 10 to 20 times this amount under the same conditions.

- When Driscopipe 8600 is heated to 475-500°F to melt it for fusion joining, it requires 150 pounds pressure per square inch of material to make the melted surfaces flow together. This is another indicator of toughness. Other commercially available polyethylene pipe materials require about one-half that amount of pressure and some competitive pipes require less than 25 psil
- Driscopipe 8600 has been pressure tested for long periods at temperatures up to 140°F and performance requirements at these high temperatures can be used in purchase specifications to assure that the user is getting the highest performing polyethylene pipe.

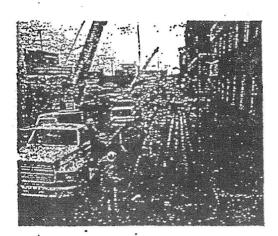
Environmental Stress Crack Resistance

he most recent ASTM specification written to identify olyethylene plastic pipe and fittings materials is ASTM D 3350, "Polyethylene Plastics Pipe and Fittings Materials", adopted in 1974. This specification uses six (6) properties to classify PE material ... one of these is ESCR.

ASTM D 3350 lists three cell limits for ESCR classification which use the ESCR test outlined in ASTM D 1693, Test Method for Environmental Stress Cracking of Ethylene Plastics. The cell limits are:

	Test			
Cell	Condition	Test	Percent of	Test
Classification	ASTM	Duration	Failures	Temp.
Limit	D 1693	Hours	Allowed	°C
1	А	48	50	50°
2	В	24	50	50°
3	c	192	20	100°

Minimum Notch for A is .020"; for B and C is .012". Minimum Thickness for A is .120"; for B and C is .070". A and B use a diluted aqueous solution reagent, C uses full strength reagent.


This method of testing for ESCR was first written in 1959 and was developed primarily to evaluate polyethylene as a jacketing material for power and rommunications cable. Although the method requires he use of laboratory compression molded specimens rather than pipe, it became the generally accepted method for evaluating ESCR of PE

materials used for piping. Its wide use was responsible for its inclusion in ASTM D 3550 to describe one of the six primary properties of a PE pipe material. The test method, ASTM D-1693, is an accelerated test method to determine the resistance of a polyethylene material to environmental stress cracking. It is a measure of the ability of the polyethylene to withstand secondary stress loadings. These loadings are typically thought of as low-level, long-term, external stresses which may act upon the polyethylene pipe in field installations.

Under conditions of the test, high local multiaxial stresses are developed through the introduction of a controlled imperfection (notch). The notched sample is subjected to an elevated temperature bath of a surface active agent. Environmental stress cracking has been found to occur most readily under such conditions.

A note in the test specifications states that, generally, low density (Type I) polyethylenes are tested under Condition A, medium and high density (Type II and Type III) polyethylenes are generally tested under Condition B and high density resins with high melt viscosity, such as pipe grade P34, are tested under Condition C.

As pipe grade polyethylenes have improved, the testing requirements of ASTM D-1693 have become less stringent for P34 pipe grade polyethylenes such as Driscopipe 8600 and Driscopipe 1000. As a result, a more severe stress crack resistance test has been developed to evaluate high density polyethylene pipe. The ASTM F-1248 stress crack resistance test method was developed by a gas distribution company for quality control purposes and is often referred to as Ring ESCR since it tests actual produced pipe ring samples rather than molded specimens.

ASTM F-1248 utilizes rings cut from a pipe sample. The rings are notched on one side and compressed between parallel plates until the distance between the plates is three times the specified pipe minimum wall thickness. The compressed ring samples are subjected to an elevated temperature bath of a surface active agent and visibly inspected for crack formation or propagation.

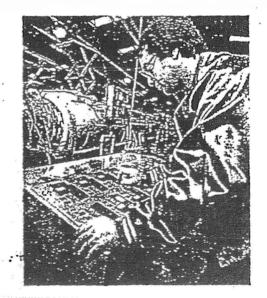
The Ring ESCR test provides useful information regarding the different polyethylene pipe grade materials. Driscopipe 8600 shows no tendency for sample failures when tested in excess of 10,000 hours. This further reinforces the unique ability of Driscopipe 8600 to provide the highest degree of resistance to the external stresses inherent to a pipeline installation.

Driscopipe 1000, an extra high molecular weight HDPE pipe, will exhibit a ring ESCR of F_{50} > 1000 hours. Other lower molecular weight pipes may exhibit lower F_{50} values.

Chemical Corrosion Resistance

The outstanding resistance of Driscopipe to attack by most chemicals makes it suitable to transport these chemicals or to be installed in an environment where these chemicals are present. Factors which determine the suitability and service life of each <u>particular application include the specific chemical</u> and its concentration, pressure, temperature, period of contact and service conditions which may introduce stress concentrations in the pipe or fittings.

Driscopipe is, for all practical purposes, chemically inert within its temperature use range. This advantageous engineering characteristic is one of the primary reasons for the wide use of Driscopipe in industrial applications. It does not rot, rust, pit, corrode or lose wall thickness through chemical or electrical reaction with the surrounding soil, whether acid, alkaline, wet or dry. It neither supports the growth of, nor is affected by, algae, bacteria or fungi and is resistant to marine biological attack. It contains no ingredients which make it attractive to rodents, gophers, etc.


Information relative to the resistance of Driscopipe to a wide range of chemicals is shown in the following tables. This information is based on results of immersion tests (usually 3 months) at various temperatures. Changes in tensile strength and elongation are evaluated at a rapid strain rate to emphasize any strength decay in the material.

8

Most acids, bases and other chemicals can be transported by Driscopipe using the same design parameters as would apply to water, natural or manufactured gas and water solutions of inorganic salts. Strong oxidizing agents such as fuming sulfuric acid may adversely affect the pipe, depending upon concentration, temperature and period of contact. In many cases, such as gravity flow waste lines, these chemicals can be handled because of dilution and intermittent flow.

Some chemicals, such as all types of liquid hydrocarbons, will mechanically absorb into the wall of the pipe and cause a reduction in hoop stress but this does not degrade the material. This effect is temporary if exposure is intermittent. Where exposure is continuous, it is necessary to derate the pressure capability of the pipe for long term service. This includes such products as gasoline, ethyl alcohol, benzene, carbon tetrachloride, crude and refined oils, etc. Where 5-100% hydrocarbon liquids are continuously present in a pressure system, a service design factor of .25 should be used to calculate design pressures instead of the service design factor of .5 used with water.

$P = \frac{2}{SDF}$	S I-1×F	or $P=2S\frac{t}{D-t} \times F$
Where:	D==	Outside Diameter, Inches
	P=	Design Pressure, psi
	S= .	Long Term Hydrostatic Strength,
		psi, at the design temperature
	t=	Minimum Wall Thickness, Inches
	F=	Service Design Factor
	SDR=	Standard Dimension Ratio of D/t

HEMICAL RESISTANCE OF DRISCOPIPE

S – Satisfactory U – Unsatisfactory				70°F 21°C)	140°F (60°C)	Reagent	70°F (21℃)	140°F (60°C)
M - Marginal			Boric Acid Conc.	s	s	Diazo Salts	S	s
N – Not known			Bromic Acid 10%	s	s	Diethylene Glycol	s	s
All concentrations are 1009		200	Bromine Liquid 100%	M	ũ	Diglycolic Acid	s	s
noted otherwise.		200	Butanediol 10%	S	s	Dimethylamine	м	ŭ
TIDLED OTHER MISE.			Butanediol 60%	S	s	Emulsions, Pholographic	S	s
On reagents marked margi	inal		Butanediol 100%	s	s			
chemical attack will be rece	ogniz	ed by	Butyl Alcohol 100%	S	s	Ethyl Acetate 100%	M S	U
a loss of physical propertie			Calcium Bisutfide	S	s	Ethyl Alcohol 100%	S	S
which may require a chang			Calcium Carbonate Satt	S	S	Ethyl Alcohol 35%		S
factors.			Calcium Chlorate Satu	S	S	Ethyl Butyrate Ethyl Chloride	M	U
							м	U
			Calcium Chloride Satt	s	S	Ethyl Ether	U	U
•	70°F	140°F	Calcium Hydroxide	S	S	Ethylene Chloride	U	U
	21°C)		Calcium Hypochlorite BLGH Sol		S	Ethylene Chlorohydrin	U	U
			Calcium Nitrate 50%	S	s	Ethylene Dichloride	м	U
Acetic Acid 1-10%	S	S	Calcium Sulfate	S	S	 Ethylene Glycol 	S	S
Acetic Acid 10-60%	S	м	Camphor Oil	N	U	Ferric Chloride Satu	S	S
Acetic Acid 80-100%	s	м	Carbon Dioxide 100% Dry	S	S	Ferric Nitrate Satu	S	S
Acetone	м	υ	Carbon Dioxide 100% Wet	S	S	Ferrous Chloride Satt	S	S
Acrylic Emulsions	s	S	Carbon Dioxide Cold Satu	S	S	Ferrous Sulfate	s	S
Aluminum Chloride-Dilute	s	s	Carbon Disutfide	N	U	Fish Solubles	S	s
Aluminum Chloride Conc.	s	ŝ	Carbon Monoxide	S	S	Fluoboric Acid	S	S
Aluminum Fluoride Conc.	S	\$	Carbon Tetrachloride	м	U	Fluorine	S	U
Akaninkin Suttate Conc.	S	S	Carbonic Acid	S	S	Fluosilicic Acid 32%	S	S
ums (All Types) Conc.	S	S	Castor Oil Conc.	S	· \$	Fluositicic Acid Conc.	S	S
and a second	S	S	Chlorine Dry Gas 100%	s	M	Formaldehyde 40%	S	. N
Ammonia 100% Dry Gas	S	S	Chlorine Moist Gas	M	ບໍ່	Formic Acid 0-20%	S	S
Amount of Ohladda Calld	~	Ċ	Chlorine Liquid	M	U	Formic Acid 20-50%	S	S
Ammonium Fluoride 20%	s	S	Chlorobenzene	M	U	Formic Acid 100%	S	S
Ammonium Hydroxide 0.88 S.G.	-	S	Chicroform	M	U	Fructose Satu	S	S
		s	Chlorosulfonic Acid 100% -	м	· U	Fruit Pulp	s	S ·
Ammonium Metaphosphate Sati Ammonium Nitrate Satid	0 S S	s	Chrome Alum Satd	S	S	Fuel Oil	s	U
Ammonium Persuifate Satu	S	- S	Chromic Acid 20%	S	S	Furfural 100%	м	U
Ammonium Sulfate Satu	s	s	Chromic Acid Up to 50%	S	S	Furfuryl Alcohol	M	U
Ammonium Sulfide Satd	s	S	Chromic Acid and Sutfuric Acid	S	M	Gallic Acid Satt	S	S
		· .	Cider	S	S	Gas Liquids*	S	M
Ammonium Thiocyanate Satu	S	S	Citric Acid Satt	s	S	Gasoline	м	ប
Arnyl Acetate	M	U	Coconut Oil Alcohols	ŝ	s	Gin	S	Ŭ
Arnyl Alcohol 100%	S	S	Cola Concentrates	S	s	Glucose	s	s
Arnyl Chloride 100% Anišne 100%	NS	ម	Copper Chloride Satd	s	S	Glycerine	s	s
		N	Copper Cyanide Satu	s	s	Glycol	S	s
Antimony Chloride	S	Ş	Copper Fluoride 2%		S	•	S	S
Aqua Regia	U	U	Copper Nitrate Satu	s s	s	Glycolic Acid 30%	S	S
Barium Carbonate Satu	S	s.	Copper Suffate Dikute	S	s	Grape Sugar Satt Aq.	s	s
Barium Chloride	S	S	Copper Sulfate Satt	s	s	Hexanol, Tert.	S	S
Barium Hydroxide	S	S	Cottonseed Oil	S	S	Hydrobromic Acid 50% Hydrocyanic Acid Sattl	S	S
Barium Sulfate Satu	S	S						
Banum Suffice Safd	S	S ·	Crude Oil*	S	M	Hydrochloric Acid 10%	S	S
Beer	S	S	Cuprous Chloride Satd	S	S	Hydrochloric Acid 30%	S	S
Benzene	м	U	Oychohexanol	S	S	Hydrochloric Acid 35%	S	S
Benzene Suttonic Acid	S	S	Oydohexanone	MS	บ ธ	Hydrochloric Acid Conc.	s s	s s
Bismuth Carbonate Satt	S	S	Detergents Synthetic			Hydrofluoric Acid 40%		
leach Lye 10%	S	S	Developers, Photographic	S	\$	Hydrofluoric Acid 60%	S	S
Black Liquor	S	s	Dextrin Sato	S	S	Hydrofluoric Acid 75%	S	-S
Borax Cold Salid	S	S	Dextrose Salt	S	S	Hydrogen 100%	S	S
Boric Acid Dilute	S	S	Dibutyiphthalate	S	M	Hydrogen Bromide 10%	S	S
			Disodium Phosphate	S	S	Hydrogen Chloride Gas Dry	S	S

"HDPE Resin Service Design Factor for hydrocarbons per the formula on page 3 and 8 is F = 0.25 to compensate for hydrocarbon saturation effects on long term hydrostatic strength.

continued from page 9

CHEMICAL RESISTANCE OF DRISCOPIPE

Jeagent	70°F (21°C)	140°F (60°C)	Reagent	70°F (21°C)	140°F (60°C)	Reagent	70°F (21°C)	140*F (60°C)
Hydrogen Peroxide 30%	s	S	Phosphorous (Yellow) 100%	s	N	Sodium Bicarbonate Satt	s	S
tydrogen Peroxide 90%	S	м	Phosphorus Pentoxide 100%	S	N	Sodium Bisulfate Satd	S	S
tydrogen Phosphide 100%	s	S	Photographic Solutions	S	S	Sodium Bisultite Satt	s	S
lydroquinone	s	s	Pickling Baths			Sodium Borate	S	S
lydrogen Sulfide	s	s	Sutturic Acid	S	S	Sodium Bromide Dilute Sol.	S	S
			Hydrochloric Acid	S	s "	Sodium Carbonate Con.	S	S
typochlorus Acid Conc.	S	S	Sutturic-Nitric	s	Ű	Sodium Carbonate	s	S
nks	S	S	Plating Solutions	. 5	U U	Sodium Chlorate Satid.	S	S
odine (Alc. Sol.) Conc.	S	U	Brass	s	s	Sodium Chloride Satu	S	S
actic Acid 10%	S	S	Cadmium	S	s			
actic Acid 90%	S	5	Caomum	5	5	Sodium Cyanide	Ş	S
atex	S	S	Chromium	N	N	Sodium Dichromate Satu	S	S
ead Acetate Satt	S	S	Copper	S	S	Sodium Ferricyanide	S	s
ube Oil	s	м	Gold ·	S	S	Sodium Ferrocyanide Salt	S	S
Agnesium Carbonate Satt	s	S	Indium	S	S	Sodium Fluoride Satu	S	S
Aagnesium Chloride Satt	s	s	Lead	S	S	Sodium Hydroxide Conc.	S	S
•	-		Aliahal	ċ	S		c	s
Aagnesium Hydroxide Sald	S	S	Nickel	Ś		Sodium Hypochlorite	S	
Aagnesium Nitrate Satd	S	s	Rhodium	S	S	Sodium Nitrate	S	S
lagnesium Sulfate Satu	S	S	Silver	S	S	Sodium Sulfate	S	· S
Aercuric Chloride Sattl	S	S	Ta	S	S	Sodium Sulfide 25%	S	s
Aercuric Oyanide Satt	S	S	Zinc	S	S	Sodium Sulfide Sat'd Sol.	S	S
Aerourous Nitrate Satt	S	s	Potassium Bicarbonate Satu	S	S	Sodium Sulfite Satu	S	S
	s	s	Potassium Borate 1%	S	S	Stannous Chloride Sattl	S	S
Aercury		-	Potassium Bromate 10%	S	S	Stannic Chloride Sattl	S	S
Aethyl Alcohol 100%	S	S	Polassium Bromide Satt	s	s	Starch Solution Satu	s	ŝ
Aethyl Bromide	M	Ų	Folassium Carbonate	s.	S.S.	Stearic Acid 100%	s	s
Aethyl Chloride	M	U	Next 1					• • •
Nethyl Ethyl Ketone 100%	M	U	Potassium Chlorate Sattl	S	S	Sutturic Acid 0-50%	S	S
Methylsuthuric Acid	S	" S	Potassium Chloride Satu	. S	. \$	Sulfuric Acid 70%	S	M
Aethylene Chloride 100%	- M	· · U ·	 Potassium Chromate 40% 	S	S	Sulfuric Acid 80%	S	U
Aik	S	S	Potassium Cyanide Satt	S	S	Sulluric Acid 96%	M	U
Aineral Oils	S	. U	Potassium Dichromate 40%	S	S	Sutturic Acid 98%	м	U
Internation Community	~	0	Potassium Ferri/			Sutturic Acid, Furning	U	U
Volasses Comm.	S	S	Ferro Cyanide Satt	S	s	Sulfurous Acid	s	S
Nickel Chloride Sattl	S	S	Potassium Fluoride	s	s	Tallow	s	. M
Nickel Nitrate Conc.	S	S	Potassium Hydroxide 20%	S	s	Tannic Acid 10%	s	S
Nickel Sulfate Satt	S	S	Potassium Hydroxide Conc.	s	s	Tanning Extracts Comm.	s	s
vicotine Dilute	S -	. S		-		-		
Nicolinic Acid	S	S	Potassium Nitrate Satu	s	S	Tartanic Acid Satt	N	N
Nitric Acid 0-30%	S	S	Potassium Perborate Satd	s	S	Tetrahydrofurane	N	U
Nitric Acid 30-50%	S	м	Potassium Perchilorate 10%	S	S	Titanium Tetrachloride Sattl	N	U
Nitric Acid 70%	s	M	Potassium Sulfate Conc.	S	S	Toluene	м	U
Natric Acid 95-98%	ŭ	U	Potassium Sullide Conc.	S	S	Transformer Oil	S	M
	-	-	Potassium Sulfite Conc.	S	S	Trisocium Phosphate Satu	S	S
Nitrobenzene 100%	U	U						Ŭ
Octyl Cresol	S	U	Potassium Persultate Satu	S	S	Trichloroethylene	U	
Dits and Fats*	S	M	Propargyl Alcohol	S	S	Unea Up to 30%	S	S
Dileic Acid Conc.	S	U	Propyl Alcohol	S	S	Urine	S	S
Dieum Conc.	U	U	Propylene Dichloride 100%	U	U	Vinegar Comm.	s	S
Orange Extract	S	S	Propylene Glycol	S	S	Vaniža Extract	s	S
Divatio Add Divute			Rayon Cosquiating Bath	S	S	Wetting Agents	S	S
	S	S	Sea Water	ŝ	S	Whiskey	S	N
Doafic Acid Satd	s	S	Selenic Acid	S	s	Wines .	s	s
Ozone 100%	S	U	Shortening	S	S	Xylene	м	Ŭ
Perchloric Acid 10%	S	S	•					
Petroleum Ether	U	U	Salicic Acid	S	S	Yeast	S	S
Phenol 90%	U	U	Silver Nitrate Sol.	S	S	Zinc Chloride Satt	S	S
Phosphoric Acid Up to 30%	s	ŝ	Soap Solution Any Conc'n	S	S	Zinc Sulfate Satu	S	S
	~	0	· ·					
Phosphoric Acid Over 30%	S	S	Sodium Acetate Satd	S	S			

For additional chemical resistance listings, consult the P.P.I. technical report #TR 19/10-84, Table I and the ISO technical report #ISO/Data 8-1979, Tables I, II, III.

Temperature Characteristics

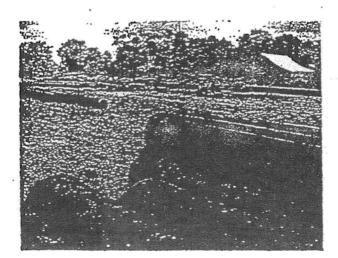
nce polyethylene is a thermoplastic material, many of its physical and chemical properties are dependent on temperature and will change as the temperature of the material is increased or decreased. However, the exposure of Driscopipe to temperature variations within the recommended operating range does not result in degradation of the material. As these temperature changes are reversed, the material properties also reverse to their original values.

You will note from the information on physical properties that Driscopipe has a brittleness temperature below – 180°F and a softening temperature of +257°F. The recommended operating temperature is limited only on the higher temperature side to a range of 140-180°F, dependent upon the pressure of the application and other operating and installation considerations. On the lower temperature side, Driscopipe gains strength without becoming brittle and is ideal for use at sub-zero temperatures.

Driscopipe becomes molten at 400-500°F and temperatures in this range are used to fusion join the piping system. Pipe is extruded at about the same temperature. To protect the material against degradation at the higher temperature, it is chemically stabilized. This stabilizer protects the material against thermal degradation which might otherwise occur during manufacture, outside storage and installation.

Driscopipe has been tested for thousands of hours at elevated temperatures of 140°F and 180°F without thermal degradation. These long term pressure tests at the higher temperatures are used to obtain recommended design strengths for the pipe at these temperatures. Since all thermoplastic piping materials are affected by temperature, it is a general practice to characterize these materials at ambient temperature of 23°C (73.4°F). Nearly all ASTM tests relating to physical, mechanical and chemical properties of thermoplastic materials are conducted at this temperature. If a test is conducted, or a property defined, at other than 73.4°F, it is always noted.

One example of the effect of temperature on Driscopipe is the change in long term strength of the material as shown on the stress-life curves. This type behavior is true for all thermoplastics but there are large differences between the performance of specific materials at the higher temperatures.


Knowledge of the long term strength of Driscopipe at the various temperatures allows selective design of a system. Accurate interpolations can be made for other temperatures between those which are known when data at three or more temperature levels is available.

Other properties of thermoplastic pipe which change with temperature and can affect system design and installation procedures include the following.

Burst strength – Short term (1 minute) burst tests on Driscopipe at various temperatures show these typical hoop stress values:

Temperature, °F	Hoop Stress, psi
73.4°	3250
32°	4300
0°	5290
-20°	5670
40°	6385

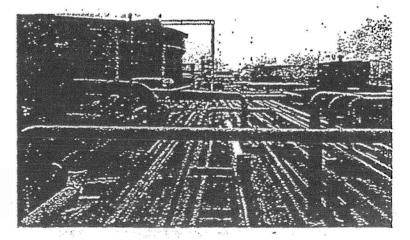
Driscopipe will quick-burst at a pressure approximately four times greater than the rated operating pressure.

Chemical Resistance – The ability of most thermoplastics to resist degradation in the presence of corrosive chemicals is reduced as temperature increases. This is also true for Driscopipe but to a lesser extent because of its high density and high molecular weight. The effect of temperature on Driscopipe in the presence of various chemicals is shown in the chemical resistance tables.

Flexibility – As temperature is decreased, the flexibility of Driscopipe is also decreased. This has very little effect on installation except that at the lower winter temperatures, coiled pipe becomes more difficult, mechanically, to uncoil and stretch out in the ditch. Although Driscopipe becomes stiffer at low temperature, it can be bent, uncoiled or plowed in with sufficient mechanical power and no damage will occur to the pipe because of bending it at cold temperatures.

Other Physical Properties – There is a slight change with temperature of impact strength, notch sensitivity, flexural modulus, hardness and elongation ... but none are of such extent as to affect design parameters or installation procedures over the normal range of temperatures.

Modulus of Elasticity – Typical values for the variance in modulus of elasticity with temperature change is shown below.


Tempe	rature °F	Modulus of Elasticity, psi
	-20°	300,000
	0°	260,000
	32°	200,000
	75° .	
	100°	105,000
	140°	60,000

Thermal Expansion and Contraction – Polyethylene, like other thermoplastics, has a coefficient of expansion higher than metals. This coefficient is usually determined by a standard test method which employs the use of molded specimens. Measurements are made with a quartz dilatometer while the test specimen is held at elevated temperature. Typical coefficient values by this method range from $.75 \times 10^{-4}$ for Driscopipe 8600 to $.83 \times 10^{-4}$ for Driscopipe 1000.

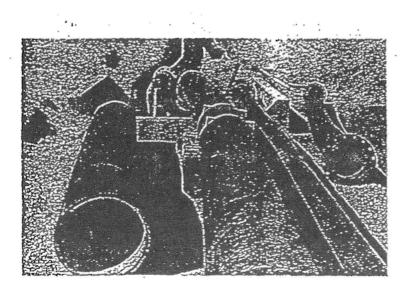
The coefficient of linear expansion may also be determined by measuring the change in length of unrestrained pipe samples at different temperatures. The calculated coefficient is somewhat higher on extruded pipe than on molded test specimens. This appears to be true for all polyethylene pipe. The average coefficient calculated from measurements made on Driscopipe in the temperature range 0°F to 140°F, is 1.2×10^{-4} in/in/°F.

The circumferential coefficient of expansion and contraction for Driscopipe is approximately $.6 \times 10^{-4}$ in/in/°F in the range of 0° to 140°F ... or about ½ the linear coefficient. This circumferential change with temperature rarely presents any problems in system design. There may be need to consider this factor if compression fittings are used.

The expansion or contraction for Driscopipe can be stated in an easy rule of thumb ... the pipe will expand or contract approximately 1.4" per 100 feet for each 10°F change in temperature. Thus a 1000 foot unrestrained line which undergoes a 20°F increase in temperature change will increase in length 28 inches. The relatively large amount of expansion and contraction of plastic pipe generally presents no real problems in installation. The pipe has a relatively low elastic modulus and consequently there is less stress build-up. These stresses, caused by temperature change, are easily dissipated due to the thermoplastic nature of the material which relaxes and adjusts with time.

Tests have been conducted wherein the temperature re than 100 feet of unrestrained pipe was

unged 130°F in a period of a few minutes. The total force created by contraction was measured and proved to be about (½) one-half the theoretical calculated value. Thermoplastic materials are unique in their ability to stress-relieve themselves. Actual changes in temperature in most applications take place slowly over an extended period of time. The total stresses imposed will vary but are generally much lower than the calculated values.


Direct buried pipe will generally have ample soil friction and interference to restrain movement of the pipe under normal application temperature changes. It is a good idea to make the final tie-ins on a system at a temperature which is as close to operating temperature as possible. This is particularly true for insert liner systems where there is no soil restraint.

Normal good direct burial installation practices which include snaking the pipe in the ditch, proper backfill and compaction, making the tie-in at the proper temperature, etc. should be used at all times and will substantially reduce the possibility of pull out at tie-in connections on such installations. However, planning the transition tie-in becomes more important when Driscopipe is used for insert renewal inside another pipe because there is no restraint from earth loading.

contraction of the pipe due to reduction in perature is freely transmitted to the transition unnection and may result in pull-out if proper design precautions are not taken. In those cases, it may be necessary to provide additional anchoring at the terminations of the insert liner. Concrete anchors poured into undisturbed soil and cast around anchor projections in the Driscopipe line will restrict movement at the end of the line. Anchor projections on the Driscopipe liner can be made by fusing a blind tee into the line or by the use of two reducers, to the next larger size of pipe, fused together in the line.

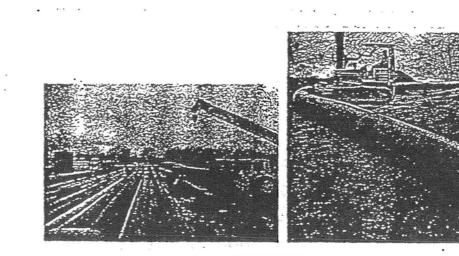
Thermal Conductivity -- This property of Driscopipe is lower than that for metals and can sometimes be exploited in the design of the system. It may eliminate or reduce the need for insulating pipe which carries water or other fluids through freezing temperatures. Thermal Conductivity of Driscopipe is 2.7 BTU per hour per sq. ft. per °F per inch of thickness. The slow heat transfer inhibits freezing and, if normal burial precautions are used, accidental freezing is usually eliminated. If the pipe does freeze, it does not fracture but fluid flow will be stopped. It will resume its function upon thawing. Direct application of intense heat should not be used to thaw a line. Antifreeze compounds such as methanol, isoproponol and ethylene glycol can be used without detrimental effect on the pipe.

Ignition Temperatures – The flash point for high density polyethylene using the Cleveland open cup method (ASTM D92) is 430°F. The flash ignition and self ignition temperatures using ASTM D1929 are 645°F and 660°F.

Weatherability

Two principal factors influence the weathering of plastic pipe in outside above ground applications ... temperature changes caused by seasonal variations and solar heating and solar radiation of ultraviolet rays. Effects of temperature variations on Driscopipe were discussed in the preceding section. Expansion and contraction of a line above ground, due to differential heating, will cause the line to move laterally, particularly if it is empty. This movement can easily be controlled within desired limits through the use of restraints.

Driscopipe is also protected against degradation caused by ultraviolet rays when exposed to direct sunlight. The material contains 2½% of finely divided carbon black which also accounts for the black color of Driscopipe. Carbon black is the most effective single additive capable of enhancing the weathering characteristic of plastic materials. The protection even relatively low levels of carbon black impart to the plastic is so great that it is not necessary to use other light stabilizers or UV absorbers.


Weatherability tests indicate that Driscopipe can be safely used outside in most climates for periods of many years without danger of loss of physical properties due to UV exposure. Phillips has done extensive testing of polyethylene compounds containing 2 to 3% carbon black and compared these to other UV stabilizers to determine their effectiveness for protection against UV degradation in outdoor exposure. Samples were aged in outdoor exposure in three geographical locations: Phoenix, Arizona, Bartlesville, Oklahoma (Phillips 66 headquarters) and Akron, Ohio, From these actual tests, it was determined that one year exposure in Arizona was equivalent to at least two years in Bartlesville and greater than three and one-half years in Akron.

Weather-Ometer tests were run under standard conditions as set out in ASTM D 1499-64 and compared with the actual test samples in the three locations described above. From this test work, it was determined, conservatively, that 5000 hours (approximately 7 months) in the Weather-Ometer compares to greater than 42 months exposure in Arizona. Samples containing 2 to 3% carbon black and thermal stabilizers as used in Driscopipe have been tested for greater than 25,000 hours (2.85 years) in the Weather-Ometer without any brittleness or loss of physical properties. This is equivalent to over 17 years in Arizona and over 60 years in Akron, Ohio.

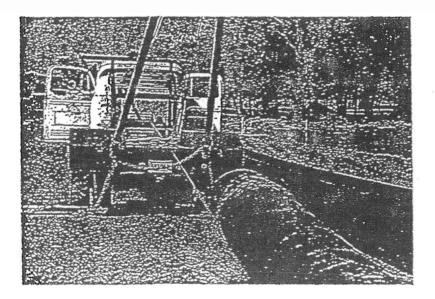
Permeability

The permeability of gases, vapors or liquids through a plastic membrane is generally considered to be an activated diffusion process. That is, the gas, vapor or liquid dissolves in the membrane and then diffuses to a position of lower concentration. The permeation rate is determined by the functional groups of the permeating molecules and by the density of the plastic... the higher the density, the lower the permeability. Listed below are typical permeability rates for HDPE.

search and search and a

٠.	Permeability Rate*
-ioun Dioxide	345
Hydrogen	321
Oxygen	111
Helium	247
Ethane	236
Natural Gas	113
Freon 12	95
Nitrogen	53

*Cubic centimeters per day per 100 sq. inches per mil thickness at atmospheric pressure differential.


These permeation rates are considered very low. They result in negligible loss of product and create no hazard. For example, polyethylene piping systems are the predominant material used to construct new gas distribution systems and to renew old deteriorated systems. The permeation rate will vary in direct proportion to the differential pressure applied.

If the internal operating pressure is 60 psi, for example, the permeability rate would be approximately 4 times that shown above but volume losses would still be extremely low. Calculated volume loss in one mile of SDR 11 pipe (any size) in one day, for natural gas, would be ¼ of one cubic foot. At 120 psi, it would be ¼ cubic foot per day.

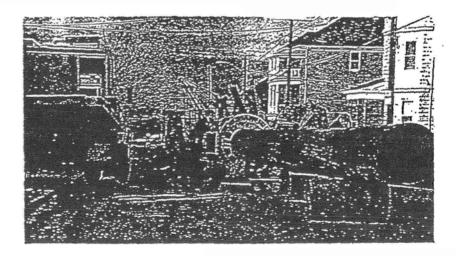
Abrasion Resistance

One of the many outstanding characteristics of Driscopipe polyethylene is its resistance to abrasion. The inherent resilience and toughness of Driscopipe allows the mining industry to use this pipe in numerous surface applications where more conventional materials would be unsatisfactory, either because of the terrain encountered or the abrasiveness of the slurry to be moved. Quite often, a Driscopipe system offers substantial economic advantage as a means of transport over more conventional transportation methods used in the mining industry. Some of the more common applications include tailings lines and the transport of gypsum, limestone, sand, slimes and coal.

Due to its unique toughness, as indicated by low melt flow values, Driscopipe 8600 provides improved abrasion resistance over all other polyethylene piping materials. Controlled pipe loop pumping tests have demonstrated that Driscopipe can outlast steel pipe by as much as 4 to 1. One such test, performed by Williams Brothers Engineering, Tulsa, Oklahoma, compared Driscopipe to steel in pumping a coarse particle size magnetite iron ore slurry. At 13½ fl/sec velocity, Driscopipe was better by a factor of 4:1 and at 17 ft/sec by a factor of 3:1.

Heat Fusion Joining

The heat fusion joining technique has a long history of use for joining polyethylene pipe materials. The heat fusion method of joining PE pipe began shortly after the first commercial production of high density polyethylene in the early 1950s ... both developed by Phillips 66.

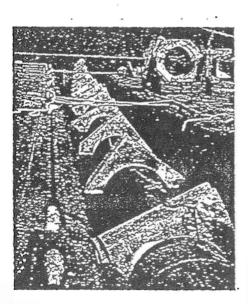

The integrity and superiority of heat fusion are now recognized universally. The modern day heat fusion joint is the same joint made in 1956 ... only the fusion equipment has evolved to gain efficiency, reliability and convenience. The principles learned on early equipment for making a successful joint are still in use today. Phillips designed, developed and built many models of heat fusion equipment from 1956 until the early 1970s. Since that time, Phillips has guided this development by others. The extensive line of high quality, efficient fusion equipment offered by McElroy Manufacturing, Inc., Tulsa, Oklahoma is one of the results of this long history of development. Phillips pioneered the idea and development of heat fusion and has used it exclusively in every high density polyethylene piping system sold by Phillips since 1956. There are millions of these joints in service today. In fact, 92% of all natural gas distribution pipe to homes, farms and factories is installed with polyethylene pipe and fittings. Heat fusion joints are industry accepted and field proven.

The heat fusion joining system has been so successful that it is the "standard" joining system for polyethylene. There are many reasons ... here are some. Heat fusion joining ideally meets the requirements for a fast joining method to facilitate all phases of construction work in a safe and reliable manner.

The heat fusion joint is structurally superior to the socket fusion joint by configuration and, therefore, better meets the requirements of service. The heat joint configuration allows it to better disperse stresses initiated by pipe deflection and external loading. Stress concentration is minimized when the joint is placed in a strain and the joint is more "forgiving" when ground settlement occurs. In a socket joint, there is an extremely high ratio of "joint wall" to "pipe wall", resulting in stress intensification from external loading.

The Driscopipe heat fusion joining system is a simple, visual procedure with straight forward instructions. No "timing cycles" are necessary. The visual procedure allows the operator to concentrate on his work rather than a clock. Visually, he knows when the pipe ends have melted to the degree required to fuse them together. Visually, he observes and controls fusion pressure by observing the amount and configuration of the fusion bead as it is formed.

In the course of this work, the fusion operator is faced with a wide variety of job conditions. Changes in air temperature, material temperature, wind velocity, sun exposure, humidity, as well as condition of the terrain and the equipment all influence the joining requirements. Quality work under field conditions is more consistent with a simple, straight-forward, visual procedure.


One heat fusion operator, with equipment, typically he whole operation himself, sometimes using a

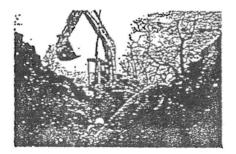
and curvature are no problem and "melt" is easily controlled by the visual procedure.

Heat lusion joints offer a large advantage over socket coupled joints for plow-in installation and for insert renewal applications. Socket coupled pipe requires larger size plow chutes and bore holes. Heat fused pipe one size larger can usually be handled and installed through bore holes and plow chutes selected for socket coupled pipe. Larger sizes of heat fused pipe can be used inside old mains for insert renewal because it does not require the extra space for the coupling.

Heat fusion joints may easily be cut out and re-done. This fact has a bearing on the quantity and quality of training necessary and favorably affects operator attitude toward quality in the field. These joints can be easily cut out and destructively tested in the field to check joining proficiency and equipment condition and it's inexpensive. There is no coupling to destroy and throw away.

The heat fusion joining system is especially effective with Driscopipe 8600. The melt of this material is very viscous and tough. The operator can apply ample pressure to form the heat fusion joint with little danger)rcing the molten material from between the two ...ds of the joint, as can be done with the softer, less viscous, high density materials.

Driscopipe 8600 can be lusion joined to other polyethylene piping materials when necessary. Special joining techniques are required to achieve good joints. Phillips Driscopipe technical personnel are available to instruct and demonstrate the fusion joining procedure for joining Driscopipe to other polyethylene materials.


Fatigue Resistance

Driscopipe 8600 very high molecular weight, high density polyethylene has superior resistance to fatigue failure caused by cyclic loading. Independent laboratory tests were conducted to determine the suitability of Driscopipe 8600 for use as the cold water supply pipe and the barge mooring leg of the Mini-OTEC Project (Hawaii, 1979). In that application, 2150' of 24" 60 psi Driscopipe 8600 was deployed vertically in a deep ocean trench just offshore Keahole Point and was subject to cyclic distortion caused by wave action, current, and barge motion.

Cyclic tests showed that Driscopipe 8600 very high molecular weight PE could endure more than 100,000 cycles at a stress of 1800 psi without failure. Copies of this test report are avialable upon request.

Driscopipe 1000 offers good fatigue service life also, but not equal to 8600. Neither requires de-rating like PVC AWWA C-900 pipe. In fact, per AWWA C-906 for 4" to 63" HDPE pipe, no water hammer or fatigue derating factor need be applied to Driscopipe 8600 or Driscopipe 1000 ductile PE pipe.

The Driscopipe performance team offers you innovative solutions to your piping requirements. Contact your nearest Driscopipe Sales Representative. He'll give you personalized technical service, installation assistance and all the cost-saving advantages of a Driscopipe Piping System. Engineered for Performance!

(Fillips Driscopipe, Inc. A Subsidiary of Phillips 66 Company

To Secure Product Information or Leave a Message for a Sales Engineer or Technical Service Representative:

Mail:

Attn: Customer Service Department P.O. Box 83-3866 2929 North Central Expressway · Suite 100 Richardson, Texas 75083

Phone:

U.S. Domestic Toll Free (800) 527-0662

TWX:	Fax:
910-867-4818	214-783-2689

This document reports accurate and reliable information to the best of our knowledge but our suggestions and recommendations cannot be guaranteed because the conditions of use are beyond our control, the user of such information assumes all risk connected with the use thereol. Phillips 66 Company and its subsidiaries assume no responsibility for the use of information presented herein and hereby expressly disclaims all liability in and to such use.

butane may condense and liquefy in the pipe. Such liquefied fuel gasses are known to permeate polyethylene pipe, and result in unreliable heat fusion or electrofusion joints.

In potable water applications, permeating chemicals could affect the pipe or water in the pipe. ANSI/AWWA standards provide the following guidance for potable water applications:

"The selection of materials is critical for water service and distribution piping where there is likelihood the pipe will be exposed to significant concentrations of pollutants comprised of low molecular weight petroleum products or organic solvents or their vapors. Research has documented that pipe materials such as polyethylene, polybutylene, polyvinyl chloride, and asbestos cement, and elastomers, such as used in jointing gaskets and packing glands, may be subject to permeation by lower molecular weight organic solvents or petroleum products. If water pipe must pass through such a contaminated area or an area subject to contamination, consult with the manufacturer regarding permeation of pipe walls, jointing materials, and so forth, before selecting materials for use in that area."¹

Chemical Attack

A direct chemical attack on the polymer will result in permanent, irreversible polymer damage or chemical change by chain scission, cross-linking, oxidation, or substitution reactions. Such damage or change cannot be reversed by removing the chemical.

Chemical Resistance Information

The following chemical resistance guide, Table 5-1 (next page), presents immersion test chemical resistance data for a wide variety of chemicals.

- This data may be applicable to gravity flow and low stress applications.
- □ It may not be applicable when there is applied stress such as internal pressure, or applied stress at elevated temperature.

Unless stated otherwise, polyethylene was tested in the relatively pure, or concentrated chemical.

It is generally expected that dilute chemical solutions, lower temperatures, and the absence of stress have less potential to affect the material. At higher temperature, or where there is applied stress, resistance may be reduced, or polyethylene may be unsuitable for the application. Further, combinations of chemicals may have effects where individual chemicals may not.

Testing is recommended where information about suitability for use with chemicals or chemical combinations in a particular environment is not available. PLEXCO cannot provide chemical testing services.

> Second Edition ©1998 Chevron Chemical Company LLC Issued 12/98

1 ANSI/AWWA C906-90, Section 1.2; ANSI/AWWA C901-96, Section 4.1.

Table 5-1 Chemical Resistance

Because the particular conditions of each application may vary, Table 5-1 information should be used only as a preliminary guide for PLEXCO and SPIROLITE polyethylene pipe materials. This information is offered in good faith, and is believed to be accurate at the time of publication, but it is offered without any warranty, expressed or implied. Additional information may be required, particularly in regard to unusual or special applications. Determinations of suitability for use in particular chemical or environmental conditions may require specialized laboratory testing.

Additional information on chemical compatibility may be found in PPI TR-19, *Thermoplastic Piping for the Transport of Chemicals*.

Key†	Meaning			
Х	resistant (swelling <3% or weight loss <0.5%; elongation at break not substantially changed)			
/	limited resistance (swelling 3 - 8% or weight loss 0.5 - 5%; elongation at break reduced by <50%)			
	not resistant (swelling $>$ 8% or weight loss $>$ 5%; elongation at break reduced by $>$ 50%)			
D	discoloration			
*	aqueous solutions in all concentrations			
** only under low mechanical stress				

Chemical Resistance Key

† Where a key is not printed in the table, data is not available.

Medium	73°F	140°F	Medium	73°F	140°F
Acetaldehyde, gaseous	Х	/	Ammonia, liquid (100%)	Х	Х
Acetic acid (10%)	Х	Х	Ammonium chloride	*Х	Х
Acetic acid (100%) (Glacial acetic acid)	Х	/D	Ammonium flouride, aqueous (up to 20%)	Х	X
Acetic anhydride	Х	/D	Ammonium nitrate	*Х	Х
Acetone	Х	Х	Ammonium sulphate	*Х	X
Acetylene tetrabromide	**/ to		Ammonium sulfide	*Х	Х
Acids, aromatic	Х	Х	Amyl acetate	Х	Х
Acrylonitrile	Х	Х	Aniline, pure	Х	Х
Adipic acid	Х	Х	Anisole	/	
Allyl alcohol	Х	Х	Antimony trichloride	Х	Х
Aluminum chloride, anhydrous	Х	Х	Aqua regia		
Aluminum sulphate	*Х	Х	Barium chloride	*Х	Х
Alums	X	Х	Barium hydroxide	*Х	Х

Second Edition ©1998 Chevron Chemical Company LLC Issued 12/98

Medium	73°F	140°F	Medium	73°F	140°F
Beeswax	Х	**/ to	Cyclohexanone	X	X
Benzene	/	/	Decahydronaphthalene	Х	/
Benezenesulphonic acid	Х	Х	Desiccator grease	Х	. /
Benzoic acid	*Х	X	Detergents, synthetic	Х	Х
Benzyl alcohol	Х	X to /	Dextrin, aqueous (18% saturated)	Х	Х
Borax, all concentrations	Х	Х	Dibutyl ether	X to /	
Boric acid	*Х	Х	Dibutyl phthalate	Х	/
Brine, saturated	Х	Х	Dichloroacetic acid (100%)	Х	/D
Bromine		PRODUCTS	Dichloroacetic acid (50%)	Х	Х
Bromine vapor			Dicliloroacetic acid methyl ester	Х	Х
Butanetriol	Х	Х	Dichlorbenzene	/	
Butanol	Х	Х	Diclolorethane	/	/
Butoxyl	*Х	/	Dicloroethylene		
Butyl acetate	Х	/	Diesel oil	Х	/
Butyl glycol	Х	Х	Diethyl ether	X to /	/
Butyric acid	Х	/	Diisobutyl ketone	Х	/ to
Calcium chloride	*Х	Х	Dimethyl formamide (100%)	Х	X to /
Calcium hypochlorite	*Х	Х	Dioxane	Х	Х
Camphor	Х	/	Emulsifiers	Х	Х
Carbon dioxide	Х	Х	Esters, aliphatic	Х	X to /
Carbon disulphide	/		Ether	X to /	/
Carbon tetrachloride	**/ to —		Ethyl acetate	/	
Caustic potash	Х	Х	Ethyl alcohol	Х	Х
Caustic soda	Х	Х	Ethyl glycol	Х	Х
Chlorine, liquid			Ethyl hexanol	Х	Х
Chlorine bleaching solution (12% active chlorine)	/	NEW YORK	Ethylene chloride (dichlorothene)	/	/
Chlorine gas, dry	/		Ethylene diamine	Х	Х
Chlorine gas, moist	/		Fatty acids (>C ⁶)	Х	/
Clorine water (disinfection of mains)	Х		Feric chloride*	Х	Х
Chloroacetic acid (mono)	Х	Х	Fluorine	******	
Chlorobenzene	/		Fluorocarbons	/	<u></u>
Chloroethanol	Х	XD	Fluorosilic acid, aqueous (up to 32%)	Х	Х
Chloroform	**/ to —		Formaldehyde (40%)	Х	Х
Chlorosulphonic acid			Formamide	Х	Х
Chromic acid (80%)	Х	—D	Formic acid	Х	
Citric acid			Fruit juices	Х	Х
Coconut oil X /		Fruit pulp	Х	Х	
Copper salts *X X		Х	Furfuryl alcohol	Х	XD
Corn oil	Х	/	Gelatine	Х	Х
Creosote	Х	XD	Glucose	*Х	Х
Creosol	Х	XD	Glycerol	Х	Х
Cyclohexane	Х	Х	Glycerol chlorohydrin	Х	Х
Cyclohexanol	Х	Х	Glycol (conc.)	Х	Х

Second Edition ©1998 Chevron Chemical Company LLC Issued 12/98

Medium	73°F	140°F	Medium	73°F	140°F
Glycolic acid (50%)	Х	Х	Nitric acid (25%)	Х	Х
Glycolic acid (70%)	Х	Х	Nitric acid (50%)	/	
Halothane	/	/	Nitrobenzene	Х	1
Hydrazine hydrate	Х	Х	o-Nitrotoluene	Х	/
Hydrobromic acid (50%)	Х	Х	Octyl cresol	/	
Hydrochloric acid (all concentrations)	Х	Х	Oils, ethereal	/	/
Hydrocyanic acid	Х	Х	Oils, vegetable & animal	Х	X to /
Hydrofluoric acid (40%)	Х	/	Oleic acid (conc.)	Х	/
Hydrofluoric acid (70%)	Х	/	Oxalic acid (50%)	Х	Х
Hydrogen	Х	Х	Ozone	/	
Hydrogen chloride gas, moist and dry	Х	Х	Ozone, aqueous solution (Drinking water purification)	Х	
Hydrogen peroxide (30%)	Х	Х	Paraffin oil	Х	Х
Hydrogen peroxide (100%)	Х		Perchloric acid (20%)	Х	Х
Hydrogen sulfide	Х	Х	Perchloric acid (50%)	Х	1
lodine, tincture of, DAB 7 (German Pharmacopoeia)	Х	/D	Perchloric acid (70%)	Х	D
Isooctane	Х	/	Petrol	Х	X to /
Isopropanol	Х	Х	Petroleum	Х	/
Isopropyl ether	X to /		Petroleum ether	Х	/
Jam	Х	Х	Petroleum jelly	**X to /	1
Keotones	Х	X to /	Phenol	Х	XD
Lactic acid	Х	Х	Phosphates	*Х	X
Lead acetate	*Х	Х	Phosphoric acid (25%)	Х	Х
Linseed oil	Х	Х	Phosphoric acid (50%)	Х	Х
Magnesium chloride	*Х	Х	Phosphoric acid (95%)	Х	/D
Magnesium sulphate	*Х	Х	Phosphorus oxychloride	Х	/D
Maleic acid	Х	Х	Phosphorus pentoxide	Х	X
Malic acid	Х	Х			
Menthol	Х	/	Phosphorus trichloride	Х	1
Mercuric chloride (sublimate)	Х	X	Photographic developers, commecial	Х	X
Mercury	Х	X	Phthalic acid (50%)	Х	Х
Methanol	Х	Х	Polyglycols	Х	Х
Methyl butanol	Х	Х	Potassium bichromate (40%)	Х	Х
Methyl ethyl ketone	Х	/ to	Potassium borate, aqueous (1%)	Х	Х
Methyl glycol	Х	Х	Potassium bromate, aqueous (up to 10%)	Х	х
Methylene chloride	/	/	Potassium bromide	*Х	Х
Mineral oils	Х	X to /	Potassium chloride	*Х	Х
Molasses	Х	Х	Potassium chromate, aqueous (40%)	Х	
Monochloroacetic acid	Х	Х	Potassium cyanide	*Х	· X
Monochloroacetic ethyl ester	Х	Х	Potassium hydroxide (30% solution)	Х	х
Monochloroacetic methyl ester	Х	Х	Potassium nitrate	*Х	Х
Morpholine	Х	Х	Potassium permanganate	Х	XD
Naptha	Х	/	Propanol	Х	X
Naphthalene	X	/	Propionic acid (50%)	Х	Х
Nickel salts	*Х	Х	Propionic acid (100%)	Х	/

Second Edition ©1998 Chevron Chemical Company LLC Issued 12/98

140°F / -----/ Х Х / to ----

> -----Х /

> > Х Х Х Х

Х Х Х Х Х Х Х Х -----Х Х

Medium	73°F	140°F	Medium	73°F
Propylene glycol	Х	Х	Thiophene	/
Pseudocumene	/	/	Toluene	1
Pyridine	Х	/	Transformer oil	Х
Seawater	Х	Х	Tributyl phosphate	Х
Silicic acid	Х	Х	Trichloroacetic acid (50%)	Х
Silicone oil	Х	Х	Trichloroacetic acid (100%)	Х
Silver nitrate	Х	Х	Trichloroethylene	**X to
Soduim benzoate	Х	Х	Triethanolamine	Х
Sodium bisulphite, weak aqueous solutions	Х	Х	Turpentine, oil of	x to /
Sodium carbonate	*Х	Х	Tween 20 and 90 (Atlas Chemicals)	Х
Sodium chloride	*Х	Х	Urea	*Х
Sodium chlorite (50%)	Х	/	Vinegar (commecial conc.)	Х
Sodium hydroxide (30% solution)	Х	х	Viscose spinning solutions	Х
Sodium hypochlorite (12% active chlorine)	/		Waste gases containing carbon dioxide	х
Sodium nitrate	*Х	Х	carbon monoxide	X
Sodium silicate	*Х	X	hydrocloric acid (all conc.)	X
Sodium sulfide	*X	X	hydrogen fluoride (traces)	X
Sodium thiosulphate	X	X	nitrous vitriol (traces)	X
Spermaceti	X	/	sulfur dioxide (low conc.)	X
Spindle oil	X to /	/	sulphuric acid, moist (all conc.)	X
Starch	Х	Х	Water gas	Х
Steric acid	Х	/	Xylene	
Succinc acid (50%)	Х	X	Yeast, aqueous preparations	Х
Sugar syrup	Х	Х	Zinc chloride	*Х
Sulfates	*X	X		~
Sulfur	X	X		
Sulfur dioxide, dry	X	X		
Sulfur dioxide, moist	X	x		
Sulfur trioxide				
Sulfuric acid (10%)	Х	X		
Sulfuric acid (50%)	X	X		
Sulfuric acid (98%)	л /	Х		
Sulfuric acid, fuming	1			
Sulfurous acid		 V		
Sulfuryl chloride	Х	Х		
•) (
Tallow	Х	Х		
Tannic acid (10%)	Х	Х		
Tartaric acid	Х	Х		
Tetrachloroethane	**X to /			
Tetrahydrofurane	**X to /			
Tetetrahydronapthalene	Х	/		
Thionyl chloride				

Second Edition ©1998 Chevron Chemical Company LLC Issued 12/98